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This work presents experimental work aimed at investigation of 
superconducting flux qubits that feature an orthogonal control 
of the qubit potential. This approach allows to combine qubit 
frequency tunability with the optimal coherence at the potential 
symmetry point. 
The results of the research reported in this work show that tunable 
gap flux qubits have a potential for building quantum registers. 
Cavities coupled to flux qubits can be used for information stor-
age and transfer between qubits. SFS π-shifters provide a simple 
approach to bias multi-qubit circuits. A possibility to change the 
qubit resonance frequency while preserving qubit coherence 
enables implementation of switchable coupling between qubits 
and cavities. Thus circuit quantum electrodynamics with flux 
qubits renders an excellent test-bed to investigate light-matter 
interaction and to apply the gained knowledge to quantum infor-
mation science.
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Chapter 1

Introduction

1.1 Quantum mechanics

What is quantum mechanics? Quantum mechanics is a set of rules for the
construction of physical theories that describe the behaviour of the micro-
scopic world. The rules of quantum mechanics are simple but even experts
find them counterintuitive, and among the earliest motivations of thinking
about quantum computing and quantum information, one may find the long-
standing desire of physicists to better understand quantum mechanics.

The best known critic of quantum mechanics, Albert Einstein, helped to
invent it. In 1905, he published the paper “On a heuristic viewpoint con-
cerning the production and transformation of light” [1], where he proposed
the modern concept of the photon, a quantum of the electromagnetic en-
ergy. This idea was motivated by an earlier work on black body radiation by
Max Planck [2]. The theory of light quanta was a strong indicator of wave-
particle duality, a fundamental principle of quantum mechanics. But thirty
years later he tried to disprove quantum theory. In 1935, Einstein, Podolsky
and Rosen introduced a “Gedankenexperiment” that was intended to show
that quantum mechanics cannot be a complete theory [3]. They argued that
measurements performed on spatially separated parts of a quantum system
can apparently have an instantaneous influence on one another. Einstein
considered these nonlocal interactions to be impossible and called this effect
“spooky action at a distance”. In quantum theory, this phenomenon is known
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Chapter 1. Introduction

as quantum entanglement. In 1982, Alain Aspect published a paper detailing
his experiments showing that nonlocal interactions do occur [4].

1.2 Quantum computing

In 1985, David Deutsch tried to define a computational device that would
be capable to efficiently simulate an arbitrary physical system [5]. Because
the laws of physics are ultimately quantum mechanical, Deutsch considered
computing devices based upon the principles of quantum mechanics. These
devices, quantum analogues of the machines defined half a century earlier by
Turing [6], led to the modern conception of a quantum computer.

The recent excitement in this area of research was triggered by Peter Shor
who showed how a quantum algorithm could exponentially “speed-up” clas-
sical computation and factor large numbers into primes much more rapidly
(at least in terms of the number of computational steps involved) than any
known classical algorithm [7].

The implementation of Shor’s algorithm on a large scale quantum com-
puter might result in the destruction of modern electronic commerce, since
widely used RSA cryptography protocols rely on the assumption that all
known classical worst-case algorithms for factoring take a time which grows
exponentially with the length of their input.

A classical computer has a memory made up of bits, where each bit
represents either a one or a zero. A quantum computer is a set of quantum
bits (qubits). A single qubit can represent a one, a zero, or, crucially, any
quantum superposition of these; moreover, a pair of qubits can be in any
quantum superposition of 4 states, and three qubits in any superposition
of 8. In general a quantum computer with n qubits can be in an arbitrary
superposition of up to 2n different states simultaneously (this compares to
a normal computer that can only be in one of these 2n states at any one
time). A quantum computer operates by manipulating those qubits with a
fixed sequence of quantum logic gates. The sequence of gates to be applied
is called a quantum algorithm.

There are criteria any candidate for a physical realisation of a quantum
computer must satisfy. These criteria were originally formulated by David
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1.3. Superconducting quantum bits

P. DiVincenzo [8] and therefore are known as “DiVincenzo criteria”.
The candidate must:

1. Be a scalable physical system with well-defined qubits;

2. Be initialisable to a pure state such as the ground state;

3. Have a universal set of quantum gates;

4. Permit qubit-specific measurements;

5. Have decoherence times (i.e. the time during which the system main-
tains quantum coherence) that are much (several orders of magnitude)
longer than time required to perform a single quantum gate.

1.3 Superconducting quantum bits

The computer I am using to type this text is a solid-state device. It was
produced be means of microfabrication techniques. These techniques were
developed mainly to satisfy needs of the semiconductor industry, but using
them we can easily scale-up almost any solid-state device. Therefore, it
is natural to look for an appropriate candidate among solid-state systems,
because of their scalability.

The smallest solid-state systems that can be microfabricated have size
of order of several hundred nanometers and contain huge amount of atoms
and electrons, which are individual quantum mechanical systems, and even
larger number of degrees of freedom. A direct access to and control of each
and every system is impossible. A large number of degrees of freedom can
be a reason for infinitesimally short coherence times, unless we can isolate a
particular quantum mechanical system from the others.

Superconductors stand out from the rest of solid-state systems, because of
a single macroscopic wavefunction describing all the electrons that take part
in a dissipationless charge current (supercurrent). These electrons form a
so-called condensate that is a single quantum mechanical system. Moreover,
this system is isolated from other quantum mechanical systems, which exist
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Chapter 1. Introduction

in solids, due to an energy gap that separates excitations in a superconductor
from the condensate.

Thus superconducting circuits are promising candidates for a physical
implementation of a quantum computer.

1.4 Flux quantisation and Josephson tunneling

The macroscopic wavefunction results in two phenomena that are vital for
superconducting qubits. The first phenomenon is flux quantisation. The
magnetic flux Φ in a superconducting ring cannot possess any arbitrary value,
but it is quantised [9] in integer values of the flux quantum

Φ0 ≡
h

2e ≈ 2.07× 10−15 Wb.

This quantisation arises from the requirement that the macroscopic wave-
function is single valued.

The second phenomenon is Josephson tunneling [10]. A Josephson junc-
tion consists of two superconductors separated by a thin insulating barrier,
the barrier thickness usually equals to a few nanometer, through which elec-
trons that belong to the condensate can tunnel coherently. Brian Josephson
showed that the dissipationless current I through the barrier is related to
the phase difference ϕ(t) (so-called Josephson phase) between the phases of
wavefunctions in the two superconductors by the sinusoidal current-phase
relation

I = Ic sinϕ , (1.1)

where Ic is the critical current,i.e. the maximum dissipationless current that
can flow through the junction. If there is a voltage V applied to the junction,
the phase ϕ(t) evolves in time as

∂ϕ

∂t
= 2π

Φ0
V . (1.2)

Thus, the Josephson junction is a non-linear element without energy dissi-
pation. It has a non-linear inductance LJ determined by the critical current
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1.4. Flux quantisation and Josephson tunneling

Ic and the phase ϕ
LJ = Φ0

2πIc cosϕ.

This non-linearity is crucial for a qubit implementation, since it enables a
circuit containing Josephson junctions to form an anharmonic oscillator and
thus allows for different transition frequencies in the circuit. Therefore, a
superconducting qubit can be approximated as a two (or a few) level system.

There are two relevant energy scales associated with a Josephson junction.
They are the Josephson coupling energy

EJ ≡
IcΦ0

2π
and the charging energy

Ec ≡
(2e)2

2C ,

where C is the intrinsic junction capacitance.
The quantum mechanical operators for the Josephson phase ϕ and the

charge Q across the intrinsic junction capacitance are canonically conjugated:

[ϕ,Q] = i · 2e .

If EJ � Ec, ϕ is well defined, and the charge Q across the capacitance has
large quantum fluctuations. When EJ � Ec, Q is well defined, and ϕ has
large quantum fluctuations.

A variety of quantum circuits has been realised, including a charge qubit
[11], a phase qubit [12], the ‘quantronium’ [13] (a hybrid charge-phase qubit),
the ‘transmon’ [14](which is essentially a phase qubit, but its design was
derived from a charge qubit), and a flux qubit [15]. Different realisations of
superconducting quantum bits have different EJ -to-Ec ratios and are thus
better described in terms of either phase (EJ � Ec) or charge (EJ � Ec).

In this thesis, we focus on the flux qubit. This specific realisation of the
quantum bit is characterised by a large EJ -to-Ec ratio and a small geometric
inductance of the circuit. The qubit potential is very anharmonic, which
allows for fast qubit manipulation. Hence, one can perform more qubit op-
erations in the same coherence time compared with other superconducting
qubits. For a review on the superconducting qubits please see Ref. [16].
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Chapter 1. Introduction

1.5 The flux qubit

A flux qubit consists of a superconducting loop interrupted by three Joseph-
son junctions (Fig. 1.1). In this device, one junction is smaller in area and
thus has a smaller critical current than the other two. The junctions has a
large ratio between Josephson coupling energy EJ and the charging energy
Ec

EJ
Ec
� 1 ,

so the phase difference ϕ is a good quantum variable. In this case, flux
quantisation in the loop gives

∑
i

ϕi + 2π Φ
Φ0

= 0 . (1.3)

The two quantum states are anticlockwise qubit persistent supercurrent Ip

circulating in the loop |	〉 and clockwise supercurrent |�〉. This system has
a double-well potential U ,

U =
∑
i

EJi(1− cosϕi) . (1.4)

We take the electrical energy as the kinetic energy and the Josephson energy
as the potential energy. Combined with the flux quantisation condition (1.3),
the total Josephson energy (potential energy) is given as

U = EJ

(
2 + α− cosϕ1 − cosϕ2 − α cos

(
ϕ1 + ϕ2 + 2π Φ

Φ0

))
. (1.5)

We can rewrite the last equation by choosing as coordinates the sum and the
difference of phases, ϕ = (ϕ1 + ϕ2)/2 and ξ = (ϕ1 − ϕ2)/2:

U = EJ

(
2 + α− 2 cos ξ cosϕ− α cos

(
2ϕ+ 2π Φ

Φ0

))
(1.6)

≈ EJ

(
2 + α− 2 cosϕ− α cos

(
2ϕ+ 2π Φ

Φ0

))
. (1.7)

The latter transformation is possible, since we are working in the limit of
a well defined Josephson phase and thus cos ξ ≈ 1. Hence, the flux qubit
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Ip

Φ

EJ1

V3

C3

V1

C1

V2

C2

EJ3

EJ2

ϕ1

ϕ2

ϕ3

Figure 1.1: A flux qubit. The circuit consists of three Josephson junctions. Two
Josephson junctions are considered to be identical, EJ1 = EJ2 = EJ , C1 = C2 = C,
and EJ3 = αEJ , C3 = αC.

potential is pseudo one-dimensional. The two states are coupled by the
quantum-mechanical tunneling of ϕ through the barrier separating the wells.
When the externally applied magnetic flux Φ = Φ0/2, the double-well poten-
tial becomes symmetrical, and the two eigenfunctions become symmetrical
and antisymmetrical superpositions of the two basis states:

|Ψ〉 = 1√
2

(|	〉 ± |�〉) . (1.8)

In the vicinity of this degeneracy point, the system can effectively be de-
scribed as a spin-1/2 particle in a magnetic field. The Hamiltonian of this
simplified two-level system is

H = −ε2σz −
∆
2 σx , (1.9)

where σi are the Pauli-spin matrices, ε = 2Ip(Φ−Φ0/2), and ∆ is the splitting
of the energy levels of the ground state |0〉 and the first excited state |1〉 at
the degeneracy point, which exponentially depends on α. Away from the
degeneracy point, the energy difference is E =

√
(∆2 + ε2), (Fig. 1.2a ).
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Chapter 1. Introduction

The probabilities to observe the states |	〉 and |�〉 in the ground state
as a function of Φ is shown in Fig. 1.2b. At the degeneracy point, the mean
supercurrent in the qubit loop is 0. Therefore, the probability to observe
each state is 1/2. At smaller values of Φ the probability to observe |�〉 is
higher than one to observe |	〉. In the first excited state the probabilities
are reversed. Hence, we can detect the qubit state by measuring a magnetic
flux produced by the qubit supercurrent Ip.

This pseudo-spin-1/2 model is applicable as long as the energy splitting
between the ground and the first excited state is much smaller than the split-
ting between the first excited state and the higher states. The full quantum
mechanical calculations of the flux qubit energy spectrum can be found in
Ref. [17].

1.6 Decoherence

Decoherence limits the number of qubit operations that can be performed
without error. It is caused by coupling between the qubit and its environ-
ment. In other words, decoherence is uncontrolled changes of the qubit state
due to variations of parameters in the environment. These changes result
in a loss of information about the qubit state, thus making well-controlled
operations problematic.

For a quantitative analysis of decoherence, one can use a general frame-
work as described by Ithier et al. [18]. It allows for a systematic study of the
influence of noise in any normalised external parameter λ on the properties
of the qubit. These parameters can represent any fluctuations, whether they
originate from circuit induced or environmental noise.

Decoherence of two-level systems (spins) is described in terms of two rates
(or times): the longitudinal relaxation (depolarisation) rate

Γ1 = T−1
1

and the transverse relaxation (dephasing) rate

Γ2 = T−1
2 .

8



1.6. Decoherence
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Figure 1.2: A flux qubit in the vicinity of the degeneracy point. a, The energy
of the ground state and first excited state versus the externally applied magnetic
flux is shown. The energy-level splitting is ∆ at the degeneracy point, Φ = Φ0/2,
and is E for Φ 6= Φ0/2. b, The probabilities of the qubit persistent supercurrent
circulating counterclockwise or clockwise in the ground state versus externally
applied flux are presented. In the first excited state the probabilities are reversed.
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Chapter 1. Introduction

The dephasing process is a combination of effects of the depolarisation and of
the so-called pure dephasing. The pure dephasing is usually associated with
the inhomogeneous broadening in ensembles of spins, but occurs also for a
single spin due to the longitudinal low-frequency noise. It is characterised by
the rate Γφ. These two processes combine to a rate

Γ2 = 1
2Γ1 + Γφ. (1.10)

Introducing the spectral density

Sλ(F ) =
∫

dt〈δλ(0)δλ(t)〉e−i2πFt ,

the relaxation rate is

Γ1(ν) = πD2
λ,⊥Sλ(ν), (1.11)

where
Dλ,⊥ = 1

h

∣∣∣∣∣〈Ψ0|
∂H0

∂λ
|Ψ1〉

∣∣∣∣∣ .
The pure dephasing time can be written as

Γφ(ν) = πD2
λ,ZSλ(0), (1.12)

where
Dλ,Z = ∂ν

∂λ
.

These expressions are linear approximations and valid when the noise is
week and short correlated (e.g. white noise). Moreover, the spectral shape
of the noise has to be smooth from ν ≈ 0 up to frequencies of the order
of Γφ. There are alternative approaches to translate the spectral shapes to
dephasing rates, which can be used in more general situations. See Ref. [18]
for an in-depth discussion.

1.7 π-shifters

To realise degenerate quantum states in a flux qubit one has to supply an
additional phase shift of π along the loop. This shift can be produced by

10



1.7. π-shifters

external magnetic flux or alternatively by a circuit element that provides
a phase difference of π between its terminals. Such circuit elements are
generally named π-shifters.

In usual flux qubits, external magnetic flux is used to produce phase bias
along the loop. In many experiments, an external coil with a large current
and weak coupling to the qubits has been used. However, this prevents one
from using a superconducting shield that provides good shielding of qubits
from external flux noise. On the other hand, if one uses a local biasing with a
control line, noise in the current source degrades the coherence of the qubit.
Therefore, π-shifters may be an attractive option for individual phase biasing
on qubits, especially in multi-qubit circuits.

There was a number of proposals put forward to implement a phase shifter
in a qubit circuit. Below we briefly discuss advantages and disadvantages of
some of them.

One of the conceptually easiest ideas is to replace the external magnetic
field by a field produced by a permanent micromagnet [19]. A physical real-
isation of such a phase shifter is presented in Fig. 1.3. If properly designed,
this phase shifter will provide a stable phase bias and the value of the phase
difference gained along the qubit loop can be engineered to be equal to π.
However, this type of phase shifters cannot be used in multi-qubit circuits
with large density of the qubits because of stray fields of the permanent
magnets.

Another simple phase bias was proposed by Majer et al. [20] It is based
on a trapped flux in a superconducting ring (a flux-trap loop). If there is a
flux quantum trapped in a ring, then the phase gained along this ring equals
to 2π. If we include this ring in another circuit (see Fig. 1.4), then the phase
difference δϕ over shared element will be equal to 2πa

s
, where a is the length

of the shared part and s is the circumference of the ring with trapped flux.
The flux-trap loop phase shifter is easy to implement, since it does not require
any additional technological steps. If the length of the enclosed part equals
to a half of the loop circumference, the phase bias will be reliably fixed at
π, if there is a flux quantum (or an odd number of quanta) trapped in the
loop. Nevertheless, trapping a well defined number of flux quanta in every
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Chapter 1. Introduction

Figure 1.3: An AFM image of a physical realisation of a phase shifter based on
a permanent magnet [19]. The permanent magnet is the disk inside the circular
loop.

flux-trap loop in a multi-qubit circuit might be not an easy task.
To realise π-shift in a loop one can make use of a copper-oxide d-wave su-

perconductor: making contacts to the (1,0,0) and (0,1,0) surfaces of a d-wave
material (e.g. YBa2Cu3O7) [21]. The condensate wave function has different
signs on those surfaces that corresponds to phase shift of π. Unfortunately, it
is not easy to incorporate single crystals of high-Tc superconductors in qubit

Φ0 trapped

a

s

δϕ

Figure 1.4: A phase shifter based on a flux-trap loop [20]. a is the length of the
shared part, s is the circumference of the flux-trap loop.

12



1.7. π-shifters

circuits.
Another possibility to implement a π-shifter is to include a Josephson

π-junction [22] into the qubit loop. π-junction is a Josephson junction that
features a π-phase shift across in the ground state. Since this device is a
Josephson junction, its phase difference is connected with the supercurrent
flowing through. The current-phase relation differs from the usual one (see
Fig. 1.5 for comparison) and has the following form [22]:

I = Ic sin(ϕ+ π) = −Ic sin(ϕ) . (1.13)

We note here that for a π-junction the sign of the supercurrent is reversed
in respect to the sign of the phase drop over the junction. This behaviour
can also be described by introducing negative critical current and negative
Josephson coupling energy.

To have the phase bias provided by a π-junction close to the required value
of π, the supercurrent I flowing in the qubit loop must be much smaller then
the critical current of the π-junction Ic:

I � Ic .

This restriction makes, for instance, π-junction based on a quantum dot pop-
ulated with an odd number of electrons [23] unusable in flux qubit circuits.
The π-junctions can be realised in such systems through a weak Kondo ef-
fect [24]. In this case the condensate electrons flip their spin when tunneling
through the dot. This process changes the sign of the condensate wave func-
tion, i.e. introduces a phase shift of π.

Historically, the first system where a Josephson π-junction was realised
was a mesoscopic superconductor - normal metal - superconductor (SNS)
junction with nonequilibrium current injection [25]. The junction schematics
is shown in Fig. 1.6. The control voltage across the gold channel induces
a position-dependent electron distribution that affects Josephson coupling
energy. Applying some control voltage we can make the Josephson cou-
pling energy to be negative, consequently turning the SNS junction into a
π-junction. The SNS junction stays in the π-state, as long as there is the con-
trol voltage applied. Therefore, this type of π-junctions can hardly be used
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Chapter 1. Introduction

in qubit ciruits. Due to stronger coupling to the environment, the coherence
times here might be severely limited.

Long before the first physical realisation of a π-junction it was suggested
that using superconductor - ferromagnet - superconductor (SFS) sandwiches
makes it possible to create a π-junction [26]. Here the π-state can be fixed
during the fabrication stage and no control signal is needed to keep the junc-
tion in this state. Inversion of the condensate wavefunction sign over the SFS
junction occurs due to exchange-field-induced oscillations of superconducting
order parameter (the condensate wavefunction) in the ferromagnetic layer.
The induced superconductivity in F-layer is spatially inhomogeneous and the
superconducting order parameter contains nodes where the phase changes by

 π - state

E E

II

0 - state

ϕ ϕ

ϕϕ

Figure 1.5: The current-phase relations and the energy vs. junction phase
dependences of Josephson junctions in conventional (0-) and π-states.
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Figure 1.6: A mesoscopic SNS π-junction [25]. A gold channel between two
electron reservoirs is connected to two niobium superconducting leads. The control
voltage across the channel induces a position-dependent electron distribution that
affects Josephson coupling energy. The current through the Josephson junction is
indicated by ISNS .

π. Whether the SFS junction will be in 0 or π-state, depends on the thickness
of the ferromagnetic interlayer. The advantage of this type of π-junctions is
that the phase drop of π appears without any manipulations, if the ferro-
magnetic thickness is chosen properly. The remaining uncertain issue here
is that the ferromagnetic layer might be a source of extra decoherence for a
qubit circuit.

Flux qubit experiments with the phase bias provided by flux trap-loops
are described in Chapters 2 and 3. Phase shifters based on SFS π-junctions
will be discussed in detail in Chapter 4.

1.8 Thesis overview

The original goal of this research was to realise a tunable gap flux qubit
biased by an SFS π-junction inserted in the loop. The SFS junctions are
fabricated out of niobium, hence we started to explore niobium based flux
qubits. Meanwhile, we developed the design of a “silent” tunable flux qubit.
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Chapter 1. Introduction

A description of this system and the experimental results are presented in
Chapter 2. Due to some fabrication related problems, our attempts to realise
all-niobium flux qubit failed. Hence, we tried out aluminum as the qubit
material to check if a tunable flux qubit can have relatively long coherence
times. This experiment is described in Chapter 3. Since it was doubted that
SFS π-junctions can become useful in superconducting circuits designed for
quantum computing applications, we endeavoured to check their impact on
the coherence properties of the qubits. The details of this experiment can be
found in Chapter 4.
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Chapter 2

Measurements of two-cell flux qubits

The flux qubits use junctions enclosed in superconducting loops as quantum
coherent systems. Single-cell flux qubits have been previously studied at MIT
and Delft [1]. These devices have already shown quantum superposition of
macroscopic persistent current states and quantum-coherent oscillations in
direct time-resolved measurements. We are focusing on two-cell flux qubits
consisting of four Josephson tunnel junctions. These devices have an advan-
tage of having a control over the barrier hight between two potential wells.
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Chapter 2. Measurements of two-cell flux qubits

2.1 Introduction

The standard Delft [1] qubit based on the single-loop 3-junction SQUID has a
double well potential at half frustration. It is not possible to change the split-
ting between the two lowest energy levels of the qubit during an experiment
without breaking the symmetry of the potential, since the barrier height at
half frustration is fixed by fabrication. Outside the symmetry point the flux
qubit is linearly coupled to flux noise that results in short dephasing time. In
the original persistent-current qubit [2] shown in Fig. 2.1(a) the height of the
barrier at the symmetry point can be tuned during an experiment, but one
has to change two control fluxes simultaneously to keep the symmetry of the
potential. This will also require a stronger coupled control line which can in
turn reduce qubit coherence. The full tunability of this circuit is reached by
replacing the smaller qubit junction by a dc-SQUID, thus its Josephson en-
ergy and consequently the minimal splitting between the two lowest energy
levels of the qubit (the qubit gap) can be tuned by varying an externally
applied flux Φα.

At the symmetry point the flux qubit dephasing time is maximal. There-
fore, it would be favourable to develop a qubit design where the splitting
between the two lowest energy levels of the qubit can be changed in situ dur-
ing an experiment by changing a current flowing in one control line without
affecting the symmetry of the potential. That is we are looking for a system
with an orthogonal control over the Hamiltonian

H = −ε2σz −
∆
2 σx , (2.1)

Such qubit will allow us to realise a switchable coupling between the qubit and
a cavity keeping the qubit coherence optimal (please see Chapterr̃efchap:osc
for details on this experiment).

In Fig. 2.1(b,c), we schematically present two topologically modified ver-
sions of the tunable gap flux qubit presented in Fig. 2.1(a). Both structures
features an orthogonal control over the Hamiltonian (2.1), because of the
internal symmetry of the circuits.

For our initial experiments we have chosen the version shown in Fig.
2.1(c), which we call a two-cell flux qubit, since it is possible to manipulate
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2.2. Qubit potential
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Figure 2.1: Tunable gap flux qubit designs. (a)Original proposal by J. E. Mooij
et al. [2] (b) Gradiometer tunable gap flux qubit. (c) Two-cell flux qubit

it without an external superconducting coil.
We came to the idea of a two-cell flux qubit through a collaboration

with Dr. Stanford Yukon, when we were investigating the triangular long
Josephson junction prism discussed in Refs. [3, 4].

2.2 Qubit potential

A two-cell flux qubit shown in Fig. 2.1(c) contains four Josephson junctions
of two different sizes. Two outer Josephson junctions numbered #3 and #4
have smaller area than two inner ones numbered #1 and #2. We denote by
ρ the ratio between their critical currents and thus their Josephson energies:

E
(3,4)
J = ρE

(1,2)
J , (2.2)

The potential energy U of the qubit is periodic as a function of the average
phase χ = 0.5(ϕ1 + ϕ2) on junctions #1 and #2. Assuming that we are
working in the regime of a well defined phase |ϕ1−ϕ2| � 1 and the potential
energy can be written as:

U = −2 cosχ+ r cos(2χ− 2π φaΦ0
) . (2.3)

r = −2ρ cos(2π φsΦ0
), (2.4)
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Chapter 2. Measurements of two-cell flux qubits

while
φs = φL + φR

2
and

φa = φL − φR
2

are the symmetric and anti-symmetric parts of the flux in the two cells,
respectively. Each period of U(χ) has two minima. The height of the barrier
between these minima is defined by r (see Fig. 2.2) that can be changed in
situ by changing the symmetric component of the flux applied to the qubit
loop φs. For ρ = r/2 we can operate this qubit at half frustration in each
cell, i.e. an integer number of flux quanta penetrating the outer qubit loop.
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Figure 2.2: The two-cell flux qubit potential U(χ, φs).

2.3 “Silent” two-cell qubit

We developed a modified scheme for two-cell flux qubits which we call a
“silent” qubit. Its main idea can be seen from Fig. 2.3. With a single flux
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2.3. “Silent” two-cell qubit

quantum Φ0 frozen in the inner loop the qubit has the advantage of only
smaller range of magnetic fields needed for the symmetric flux control. The
trapped flux serves as π-shifter of the phase [5] and contributes equally to
the phase change in both loops. It corresponds to φa/Φ0 = 1/2 that can be
considered as simply a change of the sign of r in the potential (2.3). Thus
one does not need to apply large external flux and the qubit is operated close
to zero symmetric field.

iL iR

ΦL
ΦR

ϕ1

ϕ2

ϕ3 ϕ4Φ0 
trapped

Figure 2.3: A “silent” two-cell flux qubit

The potential (2.3) has two minima associated with the circulating cur-
rents in the outer loops, as shown in Fig. 2.4. Numerical calculations show
that at the working point of r = 2ρ ≈ 0.8, the current through the outer
qubit junctions nearly reaches the critical current value (i.e. is maximal).
When qubit switches from one persistent current state to the other (i.e.
from state (a) to state (b)in Fig. 2.4), the current through the central line
changes by approximately 4I(3,4)

c = 2rI(1,2)
c , thus the state of the qubit can

be distinguished by a coupled dc-SQUID. The dc-SQUID should be coupled
asymmetrically to the qubit cells, because of the internal symmetry of the
qubit.

In quantum regime, at the qubit symmetry point the mean current through
every Josephson junction is zero due to quantum superposition of two cur-
rent states. Taking into account that we work near zero external magnetic
field, it means that at the operating point the “silent” qubit is decoupled in
the linear order from the fluctuations caused by the flux control and readout
lines.
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Chapter 2. Measurements of two-cell flux qubits

(a) (b)

Figure 2.4: Two states of the simplified version of the two-cell flux qubit shown
in Fig. 2.1(c). The arrows show the flow directions of the persistent currents.

Generally speaking, the flux trap-loop in Fig. 2.3 can be replaced by
any structure that provides a phase difference of π between its terminals,
e.g. an SFS π-junction [6, 7]. In distinction from phase-shifting loops with
frozen magnetic flux [5], the SFS circuits do not require trapping a well-
defined integer number flux quanta in their superconducting loops. these
alternative phase shifters based on SFS π-junctions will be discussed in detail
in Chapter 4.

However, the qubit design version shown in Fig.2.3 has also some dis-
advantages. In this scheme a galvanic coupling between the qubit and the
readout SQUID is not possible. To achieve a required readout contrast,
one has to make qubit loop size larger. This also increases coupling to the
environment and consequently decreases qubit coherence. Superconducting
islands between junction #1 and junctions #3, #4 are large, thus the qubit
might be more sensitive to charge noise, because of stronger capacitive cou-
pling to the control circuitry. Moreover, a small trap-loop can trap a single
flux quantum only when it is made of a superconductor with a high depairing
current, e.g. niobium, but it is difficult to fabricate submicron-scale niobium
tunnel junctions: the technological process is very complicated and has some
limitations.

Up to now the easiest and the most reliable technique to fabricate submicron-
scale Josephson tunnel junction has been the Dolan process [8] also known as
two angle shadow evaporation. This process allows for fabricating of small
Josephson junctions and simple circuits in a single lithography step. Usually
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2.4. Initial design

this process is used to produce Al − AlOx − Al tunnel junctions, because of
low melting point of aluminium and reasonable quality of the AlOx tunnel
barriers.

Since a trap-loop made of aluminium should be relatively large, we cannot
use the scheme described above. An outer trap-loop (see Fig. 2.1(b)) is a
better choice in this case. It allows us to keep the qubit loop inductance small,
which in turn decreases coupling to the environment. The qubit junctions
are placed close to each other, which should decrease sensitivity to charge
noise. This system features a gradiometer design, fluctuations of the uniform
magnetic field affect only the height of the barrier due to the circuit geometry.
The corresponding fluctuations of the barrier height will be small, as long
as the size of the inner loop is small. An experiment with an aluminium
gradiometer qubit will be described in Chapter 3.

2.4 Initial design

We designed a readout circuit to measure the “silent” qubit described above.
This circuit contains an asymmetric three-junction dc-SQUID inductively
coupled to the qubit. The SQUID has non-zero flux sensitivity at zero exter-
nal magnetic field. The qubit is placed inside the readout SQUID loop, which
is coupled asymmetrically to the two cells of the qubit. The flux through the
SQUID loop changes when the qubit switches between two persistent current
states.

We submitted our design to MIT Lincoln Laboratory foundry. The sub-
mitted layout contains circuits discussed in the previous section. Sizes of
junctions were optimised for the critical current density of 500 A/cm2.

The targeted critical current ICq of inner qubit junctions is about 0.35µA
and capacitance Cq ≈ 5 fF. The outer qubit junctions are designed 2.33 times
smaller than the inner ones. The calculated splitting between the two of the
lowest levels of the qubit is around ν01 ≈ 2.5 GHz at the working point
r = 0.8 (see Eq. (2.4) and the calculated transition frequency between the
first and the second excited states is ν12 ≈ 27.5 GHz.

A fragment of the circuit layout is presented in Fig. 2.5. In this circuit
we intended to use biasing resistors on chip (shown in green). We have

27



Chapter 2. Measurements of two-cell flux qubits

placed on chip three different types of control lines: (i) an antisymmetric
line to change antisymmetric part of the flux through the qubit cells, i.e. the
symmetry of the qubit potential (in Fig. 2.5 it is situated below the qubit),
(ii) a symmetric line to control the working point r, i.e. the hight of the
potential barrier (above the qubit in Fig. 2.5), and (iii) two lines for biasing
the readout SQUID (to the left of the qubit in Fig. 2.5).

Every control line is weekly coupled to the qubit in order to minimise
coupling of the noise in the control lines to the qubit.

Figure 2.5: A fragment of the circuit layout.

We have designed three circuits with different coupling strength between
the readout SQUID and the qubit: “Strong”,“Medium” and “Weak”. Qubit
parameters were the same for every circuit. The self inductance of every loop
of the two-cell flux qubit is LQB ≈ 155 pH. Mutual inductances between a
cell of the qubit and the control lines are:

- for the antisymmetric control line M (AS)
QB ≈ 0.55 pH;

- for the symmetric control line M (S)
QB ≈ 2.8 pH.

Every readout SQUID consists of three Josephson junctions. There is a junc-
tion with the critical current IC = ICq in one branch and two junctions in
series with twice larger critical current in the other branch. Thus the induc-
tances of the SQUID branches are equal, that should decouple the qubit from
the room temperature electronics at zero bias of the readout SQUID. Param-
eters of the readout SQUID for every coupling strength are summarised in
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the following table.

“Strong” “Medium” “Weak”
M 22.9 pH 17.3 pH 12.8 pH

∆Φmax 3.1mΦ0 2.4mΦ0 1.8mΦ0

LSQUID 355 pH 360 pH 364 pH
M

(AS)
SQUID 0.89 pH 0.85 pH 0.80 pH

M
(S)
SQUID 11.2 pH 11.3 pH 11.4 pH

The parameters are:

- mutual inductance between the qubit and the readout SQUID M ;

- maximum change of the flux penetrating the readout SQUID loop in-
duced by the qubit switching ∆Φmax = 2MρICq;

- self inductance LSQUID;

- mutual inductance between the readout SQUID and the antisymmetric
control line M (AS)

SQUID;

- mutual inductance between the readout SQUID and the symmetric
control line M (S)

SQUID.

2.5 Measurements of the samples from the wafers #1
and #2

2.5.1 Samples
We have received two batches of Nb/AlOx/Nb junction chips fabricated ac-
cording to our design at MIT Lincoln Laboratory. Every chip had three qubit
circuits with different coupling strength between the readout SQUID and the
qubit and four single Josephson junctions of the same sizes as junctions in
the qubit and the readout SQUID. We use them for testing purposes. Two
test junctions have the size equal to the size of the smallest qubit junctions.
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Chapter 2. Measurements of two-cell flux qubits

Figure 2.6 shows an SEM micrograph of a two-cell flux qubit together
with its readout SQUID. Red circles mark regions where Josepson junctions
are situated.

25 µm

SQUID Qubit

Φ0

Ia

Is

SQUID
bias 
current

Josephson junctions

Figure 2.6: An SEM micrograph of a sample fabricated at MIT Lincoln Labora-
tory.

The fabrication process is characterised by a process bias, which deter-
mines a reduction of the electrical junction sizes form the drawn sizes. The
average process bias specified by Lincoln Laboratory in the design rules is
about 0.25µm. This value was taken into account when designing the qubits.
Larger process biases result in increasing the maximal barrier hight and de-
creasing of the qubit flux signal. Smaller process biases result in decreasing
of the maximal barrier hight, this makes qubit operating difficult. However,
there is a variation across the wafer and from wafer to wafer. For the wafer
#1 the process bias is to 0.23 ± 0.03µm. The dies with the process bias
close to 0.25µm had smaller yield of junctions. The yield for those chips is
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seven working junctions out of eleven drawn, the median yield over the wafer
is nine working junctions. The yield estimate includes the drawn 0.2µm and
0.3µm Josephson junctions. The smallest junction reliably yielded has the
drawn size of 0.4µm, while the smallest qubit junction has the drawn size
of 0.45µm. For the wafer #2 the process bias is 0.21 ± 0.04µm and the
median yield is eight working junctions out of nine drawn. The smallest
junction has the drawn size of 0.4µm. The chip B4 is the only die with the
process bias equal to 0.25µm on this wafer. There are several dies with pro-
cess bias 0.26µm and 0.27µm on the wafer, but the expected qubit signals
on these chips might be too week, as the critical current density on these
dies is around 440A/cm2. Thus only few chips from the available batch were
expected to be close to the targeted parameters.

The test Josephson junctions showed high-quality current-voltage char-
acteristics, which are presented in Fig. 2.7. By scaling these curves we
can calculate sizes of the junctions. The small qubit junctions have area
of about 0.03µm2, the large qubit junctions are of about 0.08µm2 and the
large SQUID junctions have the area of about 0.16µm2. These values are
close to designed values, which were 0.03µm2, 0.07µm2 and 0.14µm2 respec-
tively, and suitable for qubit operation. One can see that the spread between
critical currents of two smallest qubit junctions is negligible.

Figure 2.8 shows measured current-voltage characteristics of readout
SQUIDs on the chip C4 from the wafer #1 and on the chip B4 from the wafer
#2. Despite the high quality of the test junctions, the critical current of the
readout SQUID is much below the expected value. There is no peculiarity
around 3mV, which should correspond to 2∆/e, where ∆ is the supercon-
ducting energy gap of niobium. We find a step around 1mV for the wafer #1
and 0.4mV for the wafer #2, which can most probably be due to difference of
energy gaps in top and bottom niobium electrodes. We measured six chips
from both wafers (we tested chips with the process bias about 0.25µm ),
and all 15 measured readout SQUIDs had the current-voltage characteristics
similar to ones presented in Fig. 2.8. A couple of SQUIDs showed clear in-
dications of shorts, but they might have been destroyed by an electro-static
discharge during mounting procedure. This behaviour of the readout SQUIDs
was later confirmed by tests of 42 SQUIDs done by Dr. William Oliver at
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Figure 2.7: Current-voltage characteristics of the test junctions on chip C4 from
the wafer #1 at 300mK.

MIT Lincoln Laboratory. He assumed that these defects are caused by the
sizes of the junctions in the readout SQUIDs and the topology of electrodes
which were creating a kind of antenna for plasma throughout inductively cou-
pled plasma etching steps of the fabrication process. Dr. William Oliver also
suggested that we should enlarge junctions in the readout SQUID. This was
done in May 2008 when we submitted the revised circuit design to Lincoln
Laboratory foundry.

In spite of the abnormal behaviour of the readout SQUIDs we were able
to observe a modulation of the SQUID critical current with applied magnetic
flux. This allows us to read the qubit state out around zero symmetric control
flux.
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Wafer #1, chip C4
Wafer #2, chip B4

Figure 2.8: Current-voltage characteristics of the readout SQUIDs at 300mK.

2.5.2 Characterisation procedure

First of all we characterised the readout SQUID. For this purpose we measure
a dependence of the SQUID critical current (Ic) on the symmetric control flux
(Is). This dependence allows us to estimate the readout SQUID sensitivity
around zero applied flux. If the sensitivity is too low we can try to increase
it by flux biasing the readout SQUID using one of the SQUID biasing lines.

To bias a two-cell flux qubit to the optimal working point r = 2ρ (assum-
ing we have trapped an even number of flux quanta in the passive π-shifter
loop) we should apply a flux quantum to the qubit loop (i.e. a half flux
quantum per qubit cell). Taking into account that the mutual inductance
between the symmetric control line and the qubit loop is almost twice smaller
than the mutual inductance between the symmetric control line and the read-
out SQUID one can readily see that the optimal working point of the qubit
corresponds to two flux quanta penetrating the readout SQUID loop. Thus
subtracting a dependence of the SQUID critical current on the antisymmetric
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control flux (Ia) at zero symmetric control flux from one at the optimal work-
ing point, we should see an “S”-curve which corresponds to switching of the
qubit between two persistent current states. If we cannot see the “S”-curve
it means that the qubit has a defect.

If we have trapped an odd number of flux quanta in the passive π-shifter
loop while cooling down, the qubit will be biased to the optimal working point
at zero symmetric control flux and the qubit potential will have two minima.
In this case a flux quantum applied to the qubit loop will turn the qubit
potential into single-well one and the difference of the dependences of the
SQUID critical current on the antisymmetric control flux at these symmetric
control fluxes should show us qubit switching between two persistent current
states.

2.5.3 Measurement technique

To flux bias a qubit we use custom built battery powered current sources.
These sources are controlled by a voltage in the range of ± 10V and generate
currents in a switchable range from 10−2 to 10−7 A/V. The dc-voltages cor-
responding to the flux levels are delivered by a set of 16-bit precision digital-
to-analog converters. These are equipped with a serial interface that allows
cascading of multiple converters in a daisy-chain, such that only one signal
input is necessary. To avoid the presence of digital noise in the electronics
during qubit operation, the DAC clock signal is generated by a custom-built
logic circuit only during reprogramming the voltage levels. The digital data
are encoded in a pulse-width modulated signal, which is created by a National
Instruments (NI) output interface card in the controlling computer [9].

The current source for biasing the readout SQUID is controlled by a saw-
tooth generator, which produces a linearly increasing voltage once a trigger
signal is sent to its start input. The voltage across the SQUID is amplified
by a factor of 1000 using an instrumentation amplifier at room temperature,
whose output is fed into a trigger calibrated to generate a TTL pulse when-
ever the SQUID switched to its voltage state. This pulse is applied to the
stop input of the ramp generator to switch the SQUID within approximately
200µs back to the superconducting state, thus avoiding excess heating of the
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sample chip. The time ∆t between the pulses starting the current ramp and
the voltage trigger is measured by a precision time interval counter. With the
knowledge of the current ramp rate dI/dt, the switching current Isw = dI

dt
∆t

is obtained with high resolution. This sequence is repeated at typical rates
of 200 to 400 Hz, which are limited by the time necessary to do the current-
ramp measurement and subsequent idle time for cool-down, in total of about
2 ms. One data point for a given parameter set is usually averaged over 1000
to 5000 repetitions.

The described technique was used to measure every qubit circuit except
for circuits on the chip C4 from the wafer #1. Due to a lack of high preci-
sion electronics throughout experiments with this die we used the National
Instruments output interface card to supply dc-voltages that define flux lev-
els. This card was also controlling a current source used for current biasing
of the readout SQUID. The switching current was measured by an analog to
digital converter of the NI interface card.

2.5.4 Results

Since the resolution of our detectors was limited due to fabrication related
problems, we only measured structures with “strong” coupling between the
redout SQUID and the qubit, because of a larger signal induced by the qubit
switching and thus larger probability to detect it. We chose dies with a high
yield of test junctions and the process bias close to 0.25µm. The data below
is reported to illustrate the performed work. Unfortunately no successful
results were obtained besides a qubit switching between two classical states.

Wafer #1, die C4

The die C4 was used to check quality of the test junctions and readout
SQUIDs. The chip was measured in a Helium-3 cryostat at a temperature of
about 300mK. As was mentioned above the readout SQUIDs showed abnor-
mal behaviour, which was limiting resolution of our readout circuits. We also
tried to characterised qubits, but the technique used to measure the SQUID
critical current had low resolution and thus the results are not conclusive.
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Wafer #1, die C3

The chip #C3 was measured in a dilution refrigerator at the base temper-
ature of about 50mK. The Fig. 2.9 shows the dependence of the readout
SQUID critical current on the symmetric control field. We saw no difference
between the dependence of the SQUID critical current on the antisymmetric
control flux at zero applied symmetric flux and the dependence with one flux
quantum penetrating the qubit loop. That indicates that the qubit has a
defect. The measured curves are shown in Fig. 2.10.
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Figure 2.9: Dependence of the critical current of the readout SQUID on the chip
C3 from the wafer #1 on symmetric control flux.

Wafer #2, die D2

The measurements of the die D2 were also done in a dilution refrigerator at
its base temperature of 50mK. The Ic vs. Is dependence is shown in Fig. 2.11.
The Fig. 2.12 shows Ic vs. Ia dependences for different values of applied sym-
metric flux. The curves show no qubit signature.
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Figure 2.10: Dependence of the critical current of the readout SQUID on the
chip C3 from the wafer #1 on antisymmetric control flux.

Wafer #2, die D4

The die D4 was measured in our helium-3 cryostat at the temperature of
about 300mK. The Figs. 2.13 and 2.14 show Ic vs. Is and Ic vs. Ia depen-
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Figure 2.11: Dependence of the critical current of the readout SQUID on the
chip D2 from the wafer #2 on symmetric control flux.
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Figure 2.12: Dependence of the critical current of the readout SQUID on the
chip D2 from the wafer #2 on antisymmetric control flux.

dences respectively. No feature which could be associated with the qubit
switching was observed.
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Figure 2.13: Dependence of the critical current of the readout SQUID on the
chip D4 from the wafer #2 on symmetric control flux.
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Figure 2.14: Dependence of the critical current of the readout SQUID on the
chip D4 from the wafer #2 on antisymmetric control flux.

Wafer #2, die B4
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Figure 2.15: Dependence of the critical current of the readout SQUID on the
chip B4 from the wafer #2 on symmetric control flux.
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Figure 2.16: Dependence of the critical current of the readout SQUID on the
chip B4 from the wafer #2 on antisymmetric control flux.

The dependence of the SQUID critical current on symmetric control flux
induced by control line Is for the readout SQUID on the chip B4 is presented

Figure 2.17: Dependence of the critical current of the readout SQUID on the
chip B4 from the wafer #2 on antisymmetric control flux.
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in Fig. 2.15. The measurements of this die were done at the temperature of
about 300mK. The figure shows that the critical current of the SQUID is
decreasing with the applied symmetric flux. It indicates that we are heating
up our circuit by a current flowing through the symmetric control line. Most
probably this happens due to a large contact resistance on a contact pad
of the line. The Ic vs. Ia dependences are presented in Fig. 2.16. Since
the dependences were taken at different effective temperatures, we cannot
compare them directly. However, one can readily see a step-like feature
around zero of antisymmetric control flux. This feature is present on both
curves.

Figure 2.17 presents the dependence of the readout SQUID critical current
on antisymmetric control flux at zero applied symmetric flux measured with
high resolution around zero antisymmetric control flux. The dependence is
non-monotonic around zero flux. At zero antisymmetric flux, we expect a
switching of the qubit from one classical state to another, which changes the
magnetic flux penetrating the readout SQUID loop. However, the measured
curve does not look like an abrupt switching, as we see a slow change of the
flux instead.

We believe that the zero-field response of the circuit is due to an odd
number of flux quanta trapped in the passive π-shifter loop while cooling
down. We made three attempts to trap flux inside the passive π-shifter
loop. Making further tries turned impossible due to rapid degradation of
the readout circuit. We saw a shift of the dependence of the SQUID critical
current on the control current Is after every attempt, which means that we
trapped a different number of quanta However, every time we trapped an
odd number of quanta, as we saw a switching at zero applied symmetric flux.

This feature cannot be explained by a two-cell flux qubit switching, since
it does not depend on the value of the applied symmetric control flux.

2.5.5 Discussion

Qubits from four dies from both wafers were characterised using high-resolution
current-ramp technique. Every qubit circuit was insensitive to the symmet-
ric control flux, this fact can be explained by the assumption that the outer
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Chapter 2. Measurements of two-cell flux qubits

qubit junctions were damaged (short or open) even on the dies with high
yield of test junctions.

2.6 Revised design

Taking into account suggestions of Dr. William Oliver we redesigned readout
SQUIDs to avoid damage of the SQUID junctions by plasma etching during
fabrication. In the new design the critical currents of junctions used in the
readout SQUIDs are 1.4µA and 2.8µA. Josephson junctions in a few readout
SQUIDs were shunted by capacitors to minimise quantum fluctuations.

All the self and mutual inductances were kept unchanged. Thus the
βL = 2πLIC

Φ0
parameter for the readout SQUID is around 1.5 for the new

design, this might decrease the sensitivity of the readout circuit.
The revised design was submitted to the Lincoln Laboratory foundry in

May 2008. The submitted design contained structures optimised for the
critical current densities of 500 A/cm2 and 1 kA/cm2.

2.7 Measurements of the samples from the wafer #3

2.7.1 Samples

We have received seven dies from the wafer #3, that was fabricated according
to the revised design. Unfortunately we have not got any test data from MIT
Lincoln Laboratory. Every chip contains two sets of structures designed for
the critical current densities of 500 A/cm2 and 1kA/cm2. Every set consists
of seven qubit circuits with three different coupling strengthes between the
readout SQUID and the qubit and four single Josephson junctions. In every
set Josephson junctions in four readout SQUIDs were shunted by capacitors.

A readout SQUID with unshunted Josephson junctions showed a high-
quality current-voltage characteristic, however, a readout SQUID with shunted
Josephson junctions fabricated on the same chip showed a suppression of the
superconducting gap of niobium electrodes and higher leakage currents. Both
characteristics are presented in Fig. 2.18.
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Figure 2.18: Current-voltage characteristics of the readout SQUIDs from the die
D3 at 300mK.

The chips from the wafer #3 showed poor adhesion of circuit contact
pads. Pads were peeling off during bonding. Fig. 2.19 shows a bonded qubit
circuit. There are several pads in the circuit which were almost destroyed
by unsuccessful bonding attempts. When bonding it was hardly possible to
distinguish whether only the top metallisation layer of the pad was destroyed
or the whole pad.

2.7.2 Results

Dies from the wafer #3 were characterised in our Helium-3 cryostat at its
base temperature.

Die D3

We measured a circuit with “medium” coupling between the redout SQUID
and the qubit. The Figs. 2.20 and 2.21 show Ic vs. Is and Ic vs. Ia dependences
respectively. No feature which could be associated with the qubit switching
was observed. However, during this experiment one of the branches of the
antisymmetric control line was shunted to the ground. We have not found

43



Chapter 2. Measurements of two-cell flux qubits

Figure 2.19: A photograph of a circuit from the chip D4 from the wafer #3.

any reason for this. Thus in this experiment the antisymmetric control line
current Ia changed both symmetric and antisymmetric flux, i.e. both the
hight of the potential barrier and the symmetry of the potential.
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Figure 2.20: Dependence of the critical current of the readout SQUID on the
chip D3 from the wafer #3 on symmetric control flux.
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Figure 2.21: Dependence of the critical current of the readout SQUID on the
chip D3 from the wafer #3 on antisymmetric control flux.

Die B4

Wemeasured a circuit with “strong” coupling between the redout SQUID and
the qubit. Due to the issue with contact pads the symmetric control line was
disconnected throughout the experiment. We tried to produce both control
fluxes passing different currents through the branches of the antisymmetric
control line. The measured Ic vs. Is and Ic vs. Ia dependences are presented
in the Figs. 2.22 and 2.23 respectively.

In Fig. 2.23 one can readily see that two curves differ around zero anti-
symmetric control flux. The difference between two curves is presented in
Fig. 2.24. We believe that the step at small positive values of the antisymmet-
ric control flux is due to the qubit switching. The difference in flux between
two qubit states is around 8mΦ0. This value is larger than calculated one of
about 3mΦ0. It might be caused by larger than designed critical current of
the outer qubit junctions.

When ramping antisymmetric control field in the opposite directions we
saw a hysteretic behaviour of the Ic vs. Ia dependences. An example of the
hysteresis is presented in Fig. 2.25. We cannot explain this hysteresis, it
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might be caused by the current biasing scheme we used in this experiment.
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Figure 2.22: Dependence of the critical current of the readout SQUID on the
chip B4 from the wafer #3 on symmetric control flux.
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Figure 2.23: Dependence of the critical current of the readout SQUID on the
chip B4 from the wafer #3 on antisymmetric control flux.
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Figure 2.24: Difference between two curves presented in Fig. 2.23.

Die C4

We tried to measure a circuit with “medium” coupling between the redout
SQUID and the qubit. Unfortunately the readout SQUID was broken.
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Figure 2.25: Hysteretic dependence of the critical current of the readout SQUID
on the chip B4 from the wafer #3 on antisymmetric control flux.
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Die D4

In the circuit with “strong” coupling between the readout SQUID and the
qubit one of the SQUID contact pads peeled off completely during bonding
procedure. We only found it out after cooling the chip down.

In the circuit with “medium” coupling between the qubit and the read-
out SQUID with capacitively shunted junctions Ic vs. Ia dependences show
a rapid change of the flux penetrating the SQUID loop. The dependance
is shown in Fig. 2.26. The positing of this feature depends on the applied
symmetric control flux. Such response of the circuit is abnormal for a qubit
with designed parameters. Ic vs. Is dependence is presented in the Fig. 2.27.
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Figure 2.26: Dependence of the critical current of the readout SQUID on the
chip D4 from the wafer #3 on antisymmetric control flux.

Die C5

We measured structures with “strong” and “medium” coupling between the
qubit and the readout SQUID. The readout SQUID in the structure with
“strong” coupling had capacitively shunted junctions.

Ic vs. Is dependence of the readout SQUID with “strong” coupling to the
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Figure 2.27: Dependence of the critical current of the readout SQUID on the
chip D4 from the wafer #3 on symmetric control flux.

qubit is presented in Fig. 2.28.We could not see any change in the Ic vs. Ia
patterns (see Fig. 2.29) for this structure due to applied symmetric flux.
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Figure 2.28: Dependence of the critical current of the readout SQUID with
“strong” coupling to the qubit on the chip C5 from the wafer #3 on symmetric
control flux.
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Figure 2.29: Dependence of the critical current of the readout SQUID with
“strong” coupling to the qubit on the chip C5 from the wafer #3 on antisymmetric
control flux.

The structure with “medium” coupling showed a qubit switching between
the two classical states. Ic vs. Is and Ic vs. Ia dependences are presented in
Figs. 2.30 and 2.30 correspondingly. The S-curve is presented in Fig. 2.32.
However the flux change in the SQUID loop induced by the qubit switching
amounted to 23mΦ0, that is almost an order of magnitude larger than esti-
mated value of 2.4mΦ0. It might be again explained by the fact, that the
critical currents of the outer qubit junctions were larger than designed.
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Figure 2.30: Dependence of the critical current of the readout SQUID with
“medium” coupling to the qubit on the chip C5 from the wafer #3 on symmetric
control flux.
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Figure 2.31: Dependence of the critical current of the readout SQUID with
“medium” coupling to the qubit on the chip C5 from the wafer #3 on antisym-
metric control flux.
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Figure 2.32: Difference between two curves presented in Fig. 2.31.
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2.8 Summary

We designed our structures to realise the proposed “silent” two-cell qubits.
At the operating point, the “silent” qubit should be insensitive to fluctuations
caused by the flux control circuits.

We have observed switching of the two-cell flux qubit with a passive π-
shifter between two classical states at 300mK. The qubit switches around
zero flux for both symmetric and antisymmetric flux components, which
meets our expectation. This behaviour minimises the coupling of the qubit
to the environment.

2.8.1 Wafers #1 and #2
The resolution of the experiment was limited due to the defects in the read-
out SQUID junctions. Furthermore, the outer junctions in the qubits were
damaged as well.

2.8.2 Wafer #3
Capacitive shunts did not help us to increase measurement resolution. The
capacitors increased subgap leakage instead. The yield of smallest qubit junc-
tions in our design was low. One of the reason for this might be the absence
of the “fill” structures (metal structures used to improve the uniformity of
the chemical-mechanical-polishing process) inside the readout SQUID in our
design.

2.8.3 Outlook
Since yield of working structures produced by Lincoln Lab foundry depends
on the topology of the circuits, optimisation process is quite difficult. Varying
of the qubit topology instead of the coupling strength might give better result.
The “fill” structures should be put all over the chip. Large area silicon dioxide
capacitors should be avoided.
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Chapter 3

Strong coupling of a quantum
oscillator to a flux qubit at its

symmetry point

A flux qubit biased at its symmetry point shows a minimum in the en-
ergy splitting (the gap), providing protection against flux noise. We have
fabricated a qubit whose gap can be tuned fast and have coupled this qubit
strongly to an LC oscillator. We show full spectroscopy of the qubit-resonator
system and generate vacuum Rabi oscillations. When the gap is made equal
to the oscillator frequency νosc we find the strongest qubit-resonator coupling
(g ∼ 0.1νosc). Here being at resonance coincides with the optimal coherence
of the symmetry point. Significant further increase of the coupling is possi-
ble.∗

∗This experiment was performed in collaboration with A. Fedorov, P. Macha, P. Forn-
Díaz, C. J. P. M. Harmans, and J. E. Mooij in the Quantum Transport group at the Kavli
Institute of Nanoscience at Delft University of Technology.
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Chapter 3. Strong coupling of a quantum oscillator to a flux qubit at its
symmetry point

3.1 Introduction

Superconducting qubits coupled to quantum oscillators have demonstrated
a remarkable richness of physical phenomena in the last few years. After
the first reports of coherent transfer and strong coupling [1, 2], we have
witnessed a rapid development of the field called cavity or circuit quantum
electrodynamics (cQED) using high quality superconducting oscillators in
realising quantum gates [3], algorithms [4] as well as non-classical states of
light and matter in artificially fabricated structures [5, 6]. Among the dif-
ferent superconducting implementations the transmon [2, 3, 4, 5] and the
phase qubit [6] dominated this development. With flux qubits the avoided
crossing between qubit and oscillator level was observed [7, 8, 9, 10] and the
coherent single-photon exchange between qubit and oscillator at resonance
was demonstrated [10]. In contrast to the transmon and the phase qubit,
the coherence of the flux qubit is optimally preserved only in the symmetry
point where the energy splitting is minimal (h∆) and do not easily coin-
cide with frequency of an oscillator. We now have developed a flux qubit
where the minimum energy splitting (the gap) can be tuned over a broad
range on sub-ns time scales. This tunable-gap flux qubit can be kept at its
high-coherence point while providing tunable and strong coupling; it even
allows entering the ultra-strong coupling regime where the coupling strength
approaches the qubit and/or oscillator energy [11, 12, 13, 14]. This regime is
not easily accessible in quantum optics with atoms and ions. Here we demon-
strate strong coupling combined with good coherence for the flux qubit and
a lumped-element LC resonator, showing fast and long-living vacuum Rabi
oscillations.

Superconducting qubits are fabricated objects and their relevant param-
eters, such as the energy (or frequency νqb) versus flux dependence and the
coupling strength g, to a large extent can be chosen in the design phase.
Typically, the qubit and oscillator frequencies νqb and νosc are in the GHz
range. For strong coupling, where g exceeds the cavity and qubit loss rates,
the rotating-wave approximation (RWA) can be applied and the system can
be described by a Jaynes-Cummings type Hamiltonian. If g approaches the
qubit or oscillator frequencies the RWA no longer holds, leading into the

58



3.1. Introduction

(b)

10µm

(c)

Iε
f =f -ε 1 f2

f1 f2fα

-Iε,dc

+Iε,dc

IbL

C

Vout

Iα

(a)

ν osc

fε

E

0.5

B

Figure 3.1: (a) Circuit schematics: the tunable gap flux qubit (green) coupled
to a lumped element superconducting LC oscillator (red) and controlled by the
bias lines Iε,Iε,dc and Iα (black). SQUID (blue) measures the state of the qubit.
The gradiometer loop (emphasised by a dashed line) is used to trap fluxoids. (b)
Scanning Electron Micrograph (SEM) of the sample. (c) Energy diagram of the
qubit-oscillator system. The minimum of energy of the qubit ∆ is reached in
the symmetry point when one fluxoid is traped in the gradiometer loop and the
difference in magnetic fluxes fεΦ0 is 0 controlled by Iε and Iε,dc. By controlling
the flux fαΦ0 with Iα and a uniform field B one can tune ∆ in resonance with
oscillator frequency νosc.

ultra-strong coupling regime [11, 12, 13, 14]. For a flux qubit the ratio g/νosc

can be made an order of magnitude stronger than for charge and phase
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qubits [15], while these latter devices have a coupling that can be several
orders of magnitude larger than the atom-light interaction energy [2]. For
good coherence, operating the qubit at its spectral symmetry point is re-
quired. So, experimentally combining galvanic coupling of oscillator and flux
qubit with this symmetry point operation provides a major step forward in
the development of cQED systems. For the flux qubit at the symmetry point
the anharmonicity (distance between 2nd and 3rd level relative to qubit split-
ting) is very high, allowing very fast operation without quantum leakage.

3.2 Samples

Our tunable gap flux qubit is galvanically attached to a lumped-element
LC resonator, as shown schematically in Fig. 3.1(a,b). A carefully imposed
symmetric design complemented by suppressing thermal noise currents from
low resistances in the various excitation lines resulted in good coherence. The
flux qubit has a gradiometric topology [16] to suppress decoherence due to
external flux noise, by having the Josephson junctions that form the qubit
being symmetrically attached to the circumference loop; this loop is also
employed to trap fluxoids (or 2π-phase-winding numbers) [17]. To obtain a
variable-gap qubit the two center junctions form a SQUID structure, where
the flux fαΦ0 in situ sets the effective critical current and in this way the qubit
gap frequency ∆. It covers nearly two decades from 150 MHz to 12 GHz,
providing full frequency control relative to the resonator at νosc = 2.723 GHz
(see Fig. 3.1(c)). The Hamiltonian of the flux qubit can be written as

Hqb = −h
(
ε(fε, fα)σz + ∆(fα)σx

2

)
,

where σz and σx are Pauli matrices written in the persistent current states
basis; hε is the magnetic energy bias

hε(fε, fα) = Ip(fα)fεΦ0,

with Ip being the circulating current in the qubit and fεΦ0 the magnetic
flux in the qubit loop taken relative to Φ0/2. Note that the frustration
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2fεΦ0 = (f1− f2)Φ0 describes the difference in flux in the two loop halves of
the gradiometer (Fig. 3.1(a)). Qubit excitation is obtained by the quadrupo-
lar magnetic field generated by current in the symmetrically-split Iε line,
acting on the qubit flux fεΦ0. Similarly, the line Iα together with the homo-
geneous field B generated by an external superconducting coil only modulates
fαΦ0 thus affecting the gap frequency ∆. Symmetry forbids crosstalk, thus
implying a fully orthogonal control.

The qubit states are detected from measuring the qubit persistent current,
using a DC-SQUID which is coupled to the qubit with a shared part of a wire
of length l = 6µm, width w = 350 nm and thickness t = 70 nm leading to
a mutual SQUID-qubit inductance M ' 11 pH. Half of M is provided by a
kinetic inductance of the shared part

LK ∼
l

tw

which can be easily made even larger than the geometric contribution. At
zero bias current the noise induced by the readout circuitry is decoupled in
linear order both from fα and fε due to the SQUID-qubit geometry. The
junctions of the SQUID are shunted with two on-chip Al-AlOx-Al parallel
plate capacitors of C = 4 pF reducing the plasma frequency to νp ≈ 1.3 GHz
and providing additional filtering of high frequency noise from Ib.

The inductances of the superconducting lines L and capacitors C form a
lumped element LC resonator with frequency

νosc = 1

2π
√

2LC2

= 2.723 GHz.

The oscillator is coupled to the qubit via the same shared part of the wire
with the qubit-SQUID mutual inductance M ' 11 pH (since M is much
smaller than the Josephson inductances of the SQUID junctions most of the
current flows through the shared part). Unlike the plasma resonance of the
SQUID, the LC resonator contour does not include the Josephson junctions
and the connections of resonator to the external circuit occurs in the voltage
nodes of the resonance mode. Thus the resonator quality factor Q is not
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severely affected by the external impedance, reaching Q ∼ 6000 for strong
excitation and a few hundreds at low photon number. Being designed as part
of the readout circuit, it was not optimised for high Q performance.

All structures excluding the bottom plate of the capacitors C were fabri-
cated in the same layer of aluminum using standard lithography techniques.
The bottom plates of the capacitors were fabricated in a separate layer fol-
lowed by a plasma oxidation step resulting in a thin layer of Al-AlOx-Al used
as the dielectric of the capacitor.

3.3 Theoretical description

The interaction between the qubit and the oscillator can be described by

Hint = hg

2 (a+ a†)σz

written in the basis of the persistent current states, where a†, a are photon
creation and annihilation operators of the oscillator defined in the oscillator
Fock space |n〉. The qubit-oscillator interaction strength

hg = 2MIpI0,

where M = 11 pH is the qubit-oscillator mutual inductance, Ip is the qubit
persistent current and

I0 =
√
hνosc

2L = 31 nA

is the ground state current in the oscillator, with L the inductance of the
resonator loop. In the energy eigenstates of the qubit, |g〉, |e〉, the system
Hamiltonian reads

H = hνqb

2 σz + hνosc

(
a†a+ 1

2

)
+ hg

2 (cos η σz − sin η σx) (a+ a†), (3.1)

where
νqb ≡

√
∆2 + ε2

is the splitting of the qubit energy levels and

tan η ≡ ∆/ε.
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We perform spectroscopy for the two representative cases ∆ = νosc and ∆ <

νosc, both showing strong level repulsion. In particular in the former case we
concurrently establish maximum coupling and maximum coherence, favoured
by the coincidence of the resonance condition with the qubit symmetry point.

While the qubit is in the symmetry point, qubit and resonator coherently
exchange the excitation with a frequency that is determined by the coupling
and the detuning δν = ∆− νosc according to Ref. [18]

νR =
√
g2 + δν2. (3.2)

In case of nonzero magnetic energy bias ε, taking into account only |0〉, |1〉
oscillator states the Rabi frequency can be found analytically form (3.1) as

νR =
(
g2 + ν2

osc + ν2
qb − 2

√
g2ε2 + ν2

qbν
2
osc

)1/2
. (3.3)

Note that Eq. (3.3) reduces to Eq. (3.2) if ε = 0.

3.4 Measurement procedure

The experiment was conducted in a dilution refrigerator at a base temper-
ature of 20 mK. The spectroscopy of the system was performed with the
protocol sketched in Fig. 3.2. First we set the gap of the qubit with the
external magnetic field B and apply a dc offset to Idc,ε to tune the qubit fre-
quency to νqb = 9 GHz. In the second step we apply a square current pulse
in Iε, tuning the qubit splitting to the required frequency, combined with a
microwave excitation. After each excitation pulse the qubit is returned to
νqb = 9 GHz and a short bias current pulse Ib is applied to the SQUID for
measurement of the qubit state.

By measuring the qubit away from its symmetry point we benefit from
the high expectation value of the circulating current of the qubit eigenstates
and a long relaxation time T1, ranging from T1 ' 1 µs as a minimum in the
symmetry point and gradually increasing to T1 > 4 µs at νqb ' 9 GHz with
∆ ' 2 GHz.

The sequence of operations to observe the vacuum Rabi oscillations starts
by tuning the qubit gap ∆ into the vicinity of νosc, setting fα by the external
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(b)

1 2 3 4

Iε
Ib

Vout time

(a)

Figure 3.2: (a) During the spectroscopic measurement protocol the system un-
dergoes Landau-Zener transitions transferring the excitation of the oscillator to
the qubit. (b) Schematic representation of the control and measurement pulses.
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magnetic field. The qubit is tuned to νqb = 7 GHz by fε , and a π-pulse is
applied to excite the qubit. Subsequently the qubit is taken to the symmetry
point by means of a fast 0.3 ns rise time pulse. As the qubit energy changes
fast relative to the coupling strength g, this transfer is non-adiabatic. The
qubit is kept here for a time ∆t, returned fast to the 7 GHz level and read
out. While the qubit is in the symmetry point, qubit and resonator coherently
exchange the excitation with a frequency given by Eq. (3.2).

3.5 Experimental results

Fig. 3.3 shows a spectrum of the system for ∆ < νosc. In order to be resonant
with the oscillator the qubit has to be tuned away from its symmetry point.
The clear observation of the level anti-crossing confirms that the system is
in the cQED regime. The size of the anti-crossing of 180 MHz is consistent
with the design parameters combined with the independent measurement of
g (see Fig. 3.5) and the interaction angle η.

To observe the spectral line of the resonator we use a Landau-Zener tran-
sition at the anti-crossing of the qubit and resonator energies. A passage
through the anti-crossing region performed with a DC-shift pulse on Iε with
a rise time of 4 ns is found to lead to a ∼ 25% probability of an oscillator
photon to be converted to the excited state of the qubit. The latter can be
detected by the SQUID and the resonator line becomes visible on a spectrum.

To spectroscopically observe the level anti-crossing one also has to be
able to excite the qubit strongly by microwave radiation without appreciably
exciting the resonator [19]. In our design (Fig. 3.1(a)) the Iε current distri-
bution has a quadruple symmetry with respect to the trap loop, in this way
effectively decoupling it from the LC circuit.

The vacuum Rabi oscillations are shown in Fig. 3.4(a). For each value of
fα (and therefore ∆), the probability to find the qubit in one of its eigenstates
oscillates as a function of ∆t with a frequency that is minimal for fα ∼=
−0.202, the point where ∆ = νosc = 2.723 GHz . Fig. 3.4(b) shows the
spectrum as a function of fα, with the avoided crossing clearly visible. From
the slope the value d∆/dfα ≈ 69.5 GHz/mΦ0 can be determined, which is
used to estimate δν as δν = (d∆/dfα)δfα. By fitting to Eq. (3.2) the bare
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180 MHz

Figure 3.3: Microwave frequency vs magnetic frustration fε (controlled by the
amplitude of the current pulse Iε). The colour indicates the switching probability
of the SQUID minus 0.5. The white dotted line is obtained from Eq. (3.1) with
g = 239 MHz, ∆ = 2.04 GHz, Ip = 250 nA. The anti-crossing size of 180 MHz
corresponds to the qubit-oscillator coupling strength reduced by sin η.

coupling g is found to be 239 MHz (see Fig. 3.5).
We now focus on the most interesting on-resonance regime with ∆ =

νosc. From (3.1) one can see that here the qubit-oscillator coupling is fully
transversal making the effective coupling g sin η to attain its maximum value
g. The measurement of the corresponding spectrum, shown in Fig. 3.6(a),
indeed exhibits the maximum anti-crossing of 239 MHz corresponding to the
highest photon exchange rate between the oscillator and the qubit.

Interestingly Landau-Zener transitions change now qualitatively: going
through the anti-crossing the qubit and the oscillator almost fully exchange
their populations creating strong asymmetry in the visibility of the spectral
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Figure 3.4: Vacuum Rabi oscillations (a) and microwave frequency (b) vs mag-
netic frustration fα. In the experiment the qubit was kept in its symmetry point
(ε = 0) by appropriately adjusting the amplitude of the current pulse Iε while ∆
was changed by fα with use of the external magnetic field B (a) or by applying
the current pulse Iα for fixed B (b). The colour scale in (a,b) shows the switching
probability of the SQUID minus 0.5.
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Figure 3.5: (a) Frequency of the vacuum Rabi oscillations extracted from data
shown in Fig. 3.4(a) and theoretical estimation (blue line) from Eq. (3.2) as a
function of fα. The minimum in the oscillations frequency determines the bare
qubit-oscillator coupling g = 239 MHz and corresponds to the resonance conditions
∆ = νosc = 2.723 GHz. (b) Single trace of the vacuum Rabi oscillations for
∆ ' νosc.

lines in Fig. 3.6(a) (for ∆ < νosc (see Fig. 3.3) the qubit and the oscillator
tend to retain their populations). This effect was used by Koch et al. [20]
to create coherent operations.

In Figure 3.6(b) we demonstrate vacuum Rabi oscillations for differ-
ent magnetic frustrations fε. The Rabi frequency in this case is given by
Eq. (3.3), which explains the measured data as shown in Fig. 3.6(c).

Fig. 3.6(b) shows another interesting feature: νR is constant in a large
range around fε ∼ 0 due to strong qubit-oscillator interaction. Consequently
the qubit-oscillator photon exchange becomes highly robust against the flux
noise and fε control imperfections.

3.6 Discussion

Implementation of the gap control loop might in principle lead to extra deco-
herence. However, in practice the effect of flux noise in α-loop in our design
is estimated to be about two orders of magnitude smaller than that of the
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Figure 3.6: (a) Microwave frequency vs magnetic frustration fε . The dotted
white line is obtained from Eq. (3.1) with g = 239 MHz, Ip = 232 nA and ∆ =
νosc = 2.723 GHz. The observed anti-crossing is maximal due to fully transverse
coupling of the qubit to the oscillator η = π/2. (b) Vacuum Rabi oscillations for
different values of fε. In the experiment fε was controlled by the amplitude of
the current pulse Iε while ∆ was tuned to νosc by changing the external magnetic
field B. The inset (c) shows frequency of vacuum Rabi oscillations extracted from
data (red circles) and estimated from Eq. (3.3) (blue line). The colour indicates
the switching probability of the SQUID minus 0.5.
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Figure 3.7: Ramsey oscillations. Red line is a fit to a cosine function decaying
exponentially with time constant T2 ' 400 ns.

ε-loop. Measuring the qubit in the symmetry point we find decay time of
Ramsey oscillations T2 ' 400 ns (see fig. 3.7) and T1 ' TRabi ' 1µs for
∆ ∼ 1.5 − 6 GHz (see figs. 3.8,3.9). While T1 and TRabi are in accordance
with design values we observed no dependence of T2 < 2T1 on ∆ which rules
out the flux noise in both fε, fα as a limiting decoherence source in the sym-
metry point. Detailed analysis of the data showed that the limitation of T2

is most likely not due to the gap or the epsilon controls but due to a low
frequency interference with the dilution refrigerator cooling cycle. Further
measurements are required to verify the intrinsic value of T2.

Since the qubit is optimally protected from low-frequency flux noise in
the symmetry point fε = 0 the vacuum Rabi oscillations show the longest
decay time of ∼ 40 ns. This is limited only by the losses in the resonator,
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Figure 3.8: Rabi oscillations at the qubit symmetry point. Red line is a fit to a
cosine function decaying exponentially with time constant TRabi ' 850 ns.

as measured coherence times in the symmetry point are much longer. Out
of the symmetry point we measure the usual rapid degradation of the qubit
coherence to T2 ∼ 15 − 20 ns for ε � ∆ [21, 22] due to flux noise which
precludes generation of long-living vacuum Rabi oscillations. Obviously, by
using a fully compatible fabrication technology optimised for high Q res-
onators [2, 3, 4, 5] it is possible to achieve a ratio of

g

max
(
T−1

2 , T−1
1 , 2πνoscQ−1

) > 100

necessary for creating qubit-oscillator entanglement with high fidelity.
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Figure 3.9: Decay of the qubit excited state. Red line is a fit to an exponential
decay with time constant (a) T1 ' 950 ns for the qubit at the symmetry point and
(b) T1 ' 3.4µs for the qubit magnetically biased to νqb ≈ 7 GHz. The qubit gap
is 2 GHz. T1 is gradually increasing with magnetic bias energy hε as expected.
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3.7 Summary

We experimentally studied the tunable gap flux qubit coupled galvanically to
a superconducting lumped-element LC resonator. We measured the avoided
level crossings and generated vacuum Rabi oscillations for two representa-
tive cases: the gap was tuned substantially below and in resonance with the
resonator frequency. For the particularly interesting case of ∆ = νosc the
qubit reaches the resonance condition in its symmetry point thus combining
two most desired ingredients of the cQED regime: strong coupling and opti-
mal coherence. Here the avoided level crossing attains its maximal value of
g ' 0.09 × νosc and at the same time the qubit is effectively protected from
1/f flux noise resulting in the longest and fastest sequence of on-resonant
vacuum Rabi oscillations. We emphasise that with the galvanic coupling the
interaction strength can be readily increased by use of simple design changes,
reaching the ultra-strong coupling regime g ∼ {νosc, νqb}.
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Chapter 4

Implementation of superconductor-
ferromagnet-superconductor

π-shifters in superconducting digital
and quantum circuits

High operation speed and low energy consumption may allow the supercon-
ducting digital single flux quantum circuits to outperform traditional com-
plementary metal-oxide-semiconductor logic. The remaining major obstacle
to a high density of elements on a chip is a relatively large cell size nec-
essary to hold a magnetic flux quantum Φ0. Inserting a π-type Josephson
junction [1, 2] in the cell is equivalent to applying flux Φ0/2 and thus makes
it possible to solve this problem [3]. Moreover, using π-junctions in super-
conducting qubits may help to protect them from noise [4, 5]. Here we
demonstrate the operation of two superconducting circuits – one of them is
classical and one quantum – which both utilise such π-phase shifters realised
using superconductor-ferromagnet-superconductor sandwich technology [6].
The classical circuit is based on single-flux-quantum cells, which are shown to
be scalable and compatible with conventional niobium-based superconduct-
ing electronics. The quantum circuit is a π-biased phase qubit, for which we
observe coherent Rabi oscillations. We find no degradation of the measured
coherence time compared to that of a reference qubit without π-junction.
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π-shifters in superconducting digital and quantum circuits

4.1 Introduction

In superconducting circuits, currents can flow without applying any electric
field. The role of the electrostatic potential difference required to drive a
current in conventional circuits is played here by a difference ϕ between the
phases of the superconducting order parameters. In the absence of current,
ϕ is zero, but this can be altered by inserting a particular type of super-
conducting weak link, a so-called π-junction [1, 2] yielding a phase shift of
π. The fundamental property of superconducting weak links is a 2π-periodic
current-phase relation. The supercurrent through a conventional Josephson
junction is usually described by the harmonic relation Is = Ic sinϕ, where
Ic is the critical current, while the π-junction has the inverse current-phase
relation Is = Ic sin(ϕ + π) = −Ic sinϕ. The π-junctions were theoretically
proposed about three decades ago, whereas their remarkable properties have
been demonstrated in experiments notably later [7, 8, 6]. Practical imple-
mentations of π-junctions have been widely discussed for a variety of different
technologies. These include approaches using superconductors with d-wave
order parameter symmetry [7, 9, 10], circuits with nonequilibrium current in-
jection [8], junctions with ferromagnetic layers [6], and junctions with gated
carbon nanotubes [11].

The ideas of using π-junctions in superconducting classical and quantum
circuits have been explored in several theoretical proposals. In classical digi-
tal logic, a complementary Josephson junction inverter [12] was suggested as
a superconducting analog of the complementary metal-oxide-semiconductor
(CMOS) logic. It relies on using Superconducting Quantum Interference
Devices (SQUIDs) of conventional (0−junctions) and π-types and requires
similar parameters as Ic and normal state resistance for 0- and π-junctions.
These technologically stringent requirements can be softened by using an
alternative "asymmetric" approach [3] which employs π-junctions as passive
phase shifters (phase inverters) in basic cells of the modified Single-Flux
Quantum (SFQ) logic. Here the π-junction critical current Ic is chosen to
be much larger than that of conventional 0−junctions employed in the very
same SFQ cell, so the phase difference across the π-junction is always close to
π even at zero magnetic field. Since the total change of the order parameter’s
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phase over the closed path must become a multiple of 2π, the ’missing’ phase
difference of π or −π is induced on the rest part of the cell by a spontaneously
generated superconducting current.

The first proposal for using a loop with an integrated π-junction as a
superconducting quantum circuit [4, 5] featured a superposition of two per-
sistent current states in a loop at zero magnetic field, in analogy to a spin-1/2
system. The π-junctions required here must have very low dissipation (high
normal resistance), which so far has seemed unattainable for any of the exist-
ing technologies for making π-junctions. The alternative usage of π-junctions
as passive phase shifters offers an advantage for the operation of supercon-
ducting flux qubits at the degeneracy point requiring zero or a very small
external magnetic field. Potentially, this allows noise and electromagnetic
interference induced by magnetic field sources to be minimised. There re-
mains an open question: Do π-junctions themselves introduce any intrinsic
decoherence when they are inserted into a superconduction quantum circuit?

4.2 SFS π-junctions

The origin of the π-state in an SFS junction is an oscillating and sign-
reversing superconducting order parameter in the ferromagnet close to the
SF interface [2, 13]. Due to these oscillations, different signs of the order
parameter can occur at the two banks of the SFS sandwich when the F-layer
thickness is of the order of half an oscillation period, which corresponds to
a sign change of the supercurrent and a negative Josephson coupling energy.
This behaviour was first observed experimentally on Nb-CuNi-Nb sandwiches
in Ref. [6]. Further experiments reported the spontaneous flux [14] and half-
periodical shifts of the superconducting interferometer Ic(H) dependence [15]
as well as a sign change of the junction current-phase relation [16]. Recently,
the critical current density of the Nb-Cu0.47Ni0.53-Nb π-junctions was pushed
above 1000 A/cm2 [17]. These junctions are compatible with conventional
niobium thin film technology and thus can be easily integrated in the con-
ventional fabrication process of superconducting digital circuits.
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4.3 Samples

Details on the fabrication technique for tunnel Nb/Al/AlOx/Nb junctions
employed in complementary SQUID circuits are presented in Ref. [18]. In
brief, a three-layer Nb/Al/AlOx/Nb structure is deposited by magnetron
sputtering. The layers have thicknesses of 180, 7, and 80 nm, respectively.
Aluminum is oxidised in pure oxygen to form a tunnel barrier having a critical
current density of about 200 A/cm2. The junction area, here 10 µm2, is
defined by reactive ion etching and subsequent SiO2 deposition. Resistive
shunts in parallel to the tunnel junctions are formed by a molybdenum layer
with a specific resistance of 2 Ω per square.

For fabrication of SFS π-junctions, the bottom Nb-electrode with thick-
ness of 110 nm was fabricated by dc-magnetron sputtering followed by a
lift-off process. A 15 nm thick Cu0.47Ni0.53 layer (F layer) was deposited
by rf sputtering after ion cleaning of the niobium surface. Afterwards, the
insulating layer having a window which determines the junction area was pre-
pared by the lift-off process. We used a 150 nm thick SiO film as insulator,
which was thermally evaporated. The fabrication procedure was completed
by Ar plasma cleaning and dc-magnetron sputtering of the upper niobium
electrode of 240 nm thickness. A 10×10 µm2 junction normal resistance Rn

is about 150 µΩ. The critical currents of such π-junctions are about 200 µA
and hence the junctions do not switch to the resistive state when embedded
in loops with conventional tunnel junctions having critical currents of about
10 µA. This large difference between two critical currents means that during
the dynamic switchings in the rest of the circuit, π-junctions do not introduce
any noticeable phase shifts deviating from π.

The qubit circuit was fabricated in a standard Nb/Al-AlOx/Nb trilayer
process, whereas the π-junction was integrated subsequently by performing
the further lithographic steps described above.
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4.4 Realisation of complementary Josephson junction
logic cells using a passive π-shifter

To verify the operation of π-junction phase shifters in an analog regime, we
fabricated two geometrically identical superconducting loops on a single Si
substrate (see Fig. 4.1(c)) schematically shown in Figs. 4.1(a) and (b). Cir-
cuit (b) is a two-junction interferometer conventionally called a DC-SQUID.
Configuration of circuit (a) is nominally identical to (b), except that an SFS
π-junction has been additionally inserted in the left branch of the loop, seen in
the lower left corner of the circuit image in Fig. 4.1(c). The on-chip distance
between the centers of the two loops is 140 µm, so both interferometers are
exposed to the same magnetic field during the experiment. The π-junction
critical current is much larger than one of the tunnel junctions. Therefore,
during the dynamic switchings in the rest of the circuit, π-junctions do not
introduce any noticeable phase shifts deviating from π.

The dependencies of the critical currents Ic(H) of the two devices shown
in Figs. 4.1(a) and (b) are presented in Fig. 4.2. Whereas both curves have
the same shape, they are shifted by a half-period. A small offset of the
symmetry axes for both curves from the zero-field value is due to a residual
magnetic field in the cryostat. The minimum of the red Ic(H) curve at zero
field is due to inclusion of the π-junction in the superconducting loop. In the
conventional SQUID the same frustrated state exists at an external magnetic
field corresponding to half-integer numbers of magnetic flux quanta per cell.
Thus, embedding an SFS π phase shifter into a superconducting loop indeed
leads to self-biasing of the loop by a spontaneously induced supercurrent.

Complementary DC-SQUIDs realised in this experiment are the basic
cells of complementary Josephson junction logic proposed by Terzioglu and
Beasley [12]. DC-SQUIDs with SFS π-junction phase shifters and similarly
built cells [3] can be also used in Single-Flux-Quantum (SFQ) logic circuits.
The SFQ logic circuits enable processing of information in the form of single
flux quanta which can be stored in elementary superconducting cells including
inductors and Josephson junctions. Dynamically, this information is repre-
sented by SFQ voltage pulses [19] having a quantised area

∫
V (t)dt = Φ0

and corresponding to the transfer of one flux quantum across a Josephson
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Figure 4.1: Complementary DC-SQUIDs. a, Schematic of a complementary
DC-SQUID employing two conventional Josephson junctions (red crosses) and a
π-junction (orange star). b, Schematic of a conventional DC-SQUID used as a
reference device. c, A SEM micrograph of the fabricated DC-SQUIDs. The fer-
romagnetic layer is shown in orange. d, Schematic cross-section through an SFS
π-junction.
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Figure 4.2: Magnetic field dependencies of complementary DC-SQUIDs.
Dependencies of the critical currents of the devices shown in Fig. 4.1(c) vs. the
applied magnetic field. The red curve related to the π-SQUID is shifted by half a
period. Modulation amplitude is limited, since the factor 2LIc ≈ 0.85 Φ0.

junction. The first SFQ circuits with active π elements were made of high-Tc
superconductor (YBa2Cu3O7−δ) employing d-wave pairing symmetry com-
bined with conventional low-Tc superconductor (Nb) [20]. Operation of the
circuits with the phase shifting element based on frozen flux quanta [21] has
been tested earlier in Ref. [22].

4.5 The flux biased phase qubit with an SFS π-shifter

Another attractive application of SFS π-junctions is their use as phase shifters
in coherent quantum circuits realising superconducting quantum bits. The
answer to the question of whether or not π-junctions can become useful
in superconducting circuits designed for quantum computing applications
depends on their impact on the coherence properties of the qubits. Potential
sources of decoherence introduced by π-junctions can for instance be spin-
flips in the ferromagnetic barrier [23], either occurring randomly or being
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Figure 4.3: Self-biased phase qubit. a, Schematic of a phase qubit circuit
used to test the decoherence properties of the π-junction. The qubit is realised by
the central loop with embedded conventional and π - Josephson junctions. The
larger loop to its left is a DC-SQUID for qubit readout. To the right of the qubit
is a coupled weakly flux bias coil. b, SEM picture of the realised phase qubit
employing a π - junction in the qubit loop. The flux bias coil is not shown.

driven by high-frequency currents and fields, as well as the dynamic response
of the magnetic domain structure[24]. We address these important coherence
issues in another experiment, in which we use an SFS π-junction to self-bias a
superconducting phase qubit. We have chosen here a phase qubit [25] rather
than a flux qubit [26] due to the simpler fabrication procedure for the former.
The results reported below would nevertheless remain fully applicable to flux
qubits.

86



4.5. The flux biased phase qubit with an SFS π-shifter

A phase qubit [25] consists of a single Josephson junction embedded in a
superconducting loop. It is magnetically biased close to an integer number
of flux quanta in the loop. At such a bias, the potential energy of the qubit
exhibits an asymmetric double-well potential, whereas two quantised energy
eigenvalues of the phase localised inside the shallow well are used as the log-
ical qubit states |0〉 and |1〉. Figure 4.3(a) shows a circuit schematic and
4.3(b) a micrograph of the tested sample. Here, a π-junction is connected
in series to the phase qubit’s tunnel junction. The qubit is controlled by in-
ducing a small-amplitude microwave current in the loop whose frequency is
tuned in resonance to the |0〉 to |1〉 transition, giving rise to Rabi oscillation
of the state population. Reading out the qubit is accomplished by applying
a short dc flux pulse to the qubit loop, during which only the excited qubit
state may tunnel to the neighbouring potential well. Since this tunneling
event entails a flux quantum entering the qubit loop, reading out the qubit is
concluded by a measurement of the flux threading the qubit loop by means
of an inductively coupled DC-SQUID. Coherent qubit operation is demon-
strated by the data reported in Fig. 4.4(a), showing Rabi oscillation of the
excited qubit state population probability in dependence on the duration of
a resonant microwave pulse. The oscillations exhibit a decay time of about 4
ns, which is a typical value reachable in samples fabricated using similar fab-
rication processes [27]. To find out whether π-junction does introduce extra
decoherence, a conventional phase qubit without a π-junction was fabricated
on the same wafer. As shown in Fig. 4.4(b), this reference qubit shows a
nearly identical decay time for Rabi oscillations.

Thus we obtained experimentally that the decay time limited by π-junction
is significantly larger than 4 ns.

Figure 4.5 shows a dependence of self-biased phase qubit coherent os-
cillation frequency on amplitude of the resonant microwave drive. The de-
pendence is in an agreement with earlier observations on conventional phase
qubits fabricated by similar technological process [28].

The excited state of the self-biased phase qubit exhibits an exponential
decay as expected (see Fig. 4.6). The energy relaxation time T1 is about
5 ns.
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Figure 4.4: Rabi oscillations between the ground and the excited qubit
states resulted from resonant microwave driving. a, Observed in the phase
qubit with embedded π-junction, and b, A conventional phase qubit made on the
same wafer as a reference. Each data set was taken using the indicated microwave
power as delivered by the generator, giving rise to a change in the coherent oscil-
lation frequency as expected for Rabi oscillation.
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4.6 Estimates of decoherence in π-junctions

We compared the measured decoherence time with the theoretical predic-
tions [29]. We assume here an overdamped SFS π-junction having a normal
resistance of RN,π ≈ 500 µΩ and a critical current IC,π ≈ 50 µA. In our
case, the qubit level splitting ∆ � 2eIC,πRN,π, where ∆ ≈ h· 13.5 GHz,
h is the Plank’s constant and e is the elementary charge. Here, the energy
2eIC,πRN,π ≈ h·12MHz is associated with characteristic Josephson frequency
of our SFS π-junction.

In the paper by Kato, Golubov and Nakamura [29], the following ex-
pressions for the effective noise spectrum Jeff and relaxation time τrelax were
obtained:

Jeff(ω) = 8E2
JEC,π
~3

[
γω

γ2ω2 + (ω2 − ω2
0)2

]
, (4.1)
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Figure 4.6: Decay of the first excited state of the self-biased phase qubit.
T1 ≈ 5 ns

where γ = 1
RN,πCπ

, ω0 =
√

8EJ,πEC,π
~ , EC,π = e2

2Cπ and

τ−1
relax = 2Jeff(∆/~) coth

(
∆

2kBT

)
, (4.2)

where ∆ is the qubit energy level splitting. These equations were derived
using an RCSJ model under an assumption EJ,π � EJ � EC , which means
the π-junction remains in the superconducting state and is operated in the
regime of a well defined phase.

For our case, we should take into account that the capacitance Cπ of
our SFS junction is very small (less than 10 fF according to our estimate).
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Assuming therefore that ω � ω0, we can write

Jeff(ω) ≈ 8E2
JEC,π
~3

[
γω

γ2ω2 + ω4
0

]
= (4.3)

= 8E2
JEC,π
~3

 γω

γ2ω2 + 64E
2
J,πE

2
C,π

~4

 = (4.4)

=
4E2

J
e2

RN,πC2
π
ω

~3

R2
N,πC

2
π

[
ω2 + 16E

2
J,π

~4 e4R2
N,π

] . (4.5)

Now we can exclude Cπ ,

Jeff(ω) ≈ 4E2
Je

2RN,πω

~3
[
ω2 + 16E

2
J,π

~4 e4R2
N,π

] . (4.6)

Since EJ = ICΦ0
2π = IC~

2e , it allows us to further simplify the latter expression:

Jeff(ω) ≈
4 I

2
C~

2

4e2 e
2RN,πω

~3
[
ω2 + 16 I

2
C,π~2

4e2
e4

~4R2
N,π

] = (4.7)

= I2
CRN,π~ω

~2ω2 + 4e2I2
C,πR

2
N,π

. (4.8)

The qubit relaxation time referred to the frequency ω = ∆/~ can be calcu-
lated as

τrelax =
[
2Jeff(∆/~) coth

(
∆

2kBT

)]−1

≈ (4.9)

≈

2

 I2
CRN,π~∆

~

~2
(

∆
~

)2
+ 4e2I2

C,πR
2
N,π

 coth
(

∆
2kBT

)
−1

= (4.10)

=
(

∆2 + 4e2I2
C,πR

2
N,π

2I2
CRN,π∆

)
tanh

(
∆

2kBT

)
. (4.11)

If the qubit level splitting ∆ � 2eIC,πRN,π we can neglect the second term
in the numerator:

τrelax ≈
(

∆
2I2
CRN,π

)
tanh

(
∆

2kBT

)
≈ 2 ns. (4.12)
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Temperature T was about 50 mK, thus tanh
(

∆
2kBT

)
≈ 1. Here ∆ ≈ h ·

13.5GHz, IC ≈ 2µA is the critical current of the small SIS qubit junction,
and RN,π ≈ 500µΩ. Thus, in our case of strongly overdamped π-junction,
qubit relaxation time is limited by the ohmic losses in π-junction.

Finally we note that, in general, expression (4.12) remains valid without
restriction to the case ω � ω0, under a softer assumption that γ2ω2 �
(ω2−ω2

0)2. The qubit relaxation time given by the equation (4.12) should thus
provide the lowest possible value corresponding to the worst case scenario.

The estimated value of the energy relaxation time is of the same order
as the measured decoherence time of our reference qubit without a SFS π-
junction. In fact, the theoretical estimate is valid for the qubit operated as
a flux qubit. In the phase qubit regime, the relaxation time is expected to
be longer, since the amplitude of the microwave current in the qubit loop is
much smaller than IC , allowing us to conclude that at least on the observable
time scale no extra decoherence is introduced by the SFS π phase shifter
employed in this circuit and that the decoherence in both qubits is limited
by some other mechanism. We note, however, that the expected relaxation
time 4.12)can be enhanced by using SFS junctions having a smaller resistance
RN,π.

4.7 Discussion

In contrast to π-junctions based on high-Tc superconductor junctions with
d-wave pairing symmetry, SFS elements can have a sufficiently large critical
current, so that the desired π phase shift remains reliably fixed during circuit
operation. In distinction from phase-shifting loops with frozen magnetic flux
[21], the SFS circuits are much more compact and do not require trapping a
well-defined integer number flux quanta in their superconducting loops.

As an outlook, a significant reduction in the size of the demonstrated
SFS π-phase shifters for digital circuits is readily possible, opening the way
to scaling superconducting logic circuits down to sub-µm dimensions [3]. The
visualisation of the magnetic structure of our F layer material shows domain
sizes smaller than 100 nm. Therefore, we believe that a reduction of the
junction planar dimensions down to 300-500 nm is feasible. Furthermore,
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4.8. Summary

combining the high-jC π-junction technology with in-situ grown tunnel bar-
riers [30, 31] may open the way towards active inverter elements which are
in great demand for superconducting electronics.

4.8 Summary

We demonstrated here the successful operation of two generic superconduct-
ing circuits with embedded π-junction phase shifters. For the studied π-
biased phase qubit, we observed Rabi oscillations and compared their co-
herence time with that of conventional phase qubits fabricated by the same
technology. We find no degradation of the coherence time induced by the
presence of the π-junction. The demonstrated SFS π-junction phase shifter
circuits are readily scalable and compatible with conventional niobium-based
superconducting circuit technology.
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Summary

This thesis presents experimental work aimed at investigation of supercon-
ducting flux qubits that feature an orthogonal control of the qubit potential.
These qubits are promising candidates for the implementation of scalable
quantum information processing. This approach allows to combine qubit
frequency tunability with the optimal coherence at the potential symmetry
point.

After general introduction given in Chapter 1, our flux qubit design where
the splitting between the two lowest energy levels can be changed in situ is
introduced in Chapter 2. A topological modification that allows for an or-
thogonal control over the qubit Hamiltonian is described. We observe a
switching of the two-cell flux qubit with a passive π-shifter between two clas-
sical states. The switching occurs around zero flux for both symmetric and
antisymmetric flux components. That indicates that the proposed “silent”
two-cell qubits are insensitive in the linear order to fluctuations caused by
the flux control circuitry. Our experiments have thus shown an approach to
minimise the coupling between a qubit and its environment while keeping
the full control over the circuit.

Chapter 3 presents an experimental investigation of a gradiometer flux
qubit with a tunable gap coupled to a lumped-element LC resonator mode
in the SQUID circuitry. We found strong coupling between the qubit and
the cavity. Vacuum Rabi oscillations are observed for different qubit gaps,
including the case where the qubit gap is equal to the resonant frequency of
the cavity. This allows the qubit to interact with the cavity at the symmetry
point where qubit coherence is optimal, and where the coupling between the
two systems is maximal. This experiment opens a way to implement a cavity
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Summary

bus for flux qubits.
In Chapter 4, an experimental implementation of a passive π-shifter based

on superconductor-ferromagnet-superconductor Josephson junctions is pre-
sented. The successful operation of two generic superconducting circuits
with embedded π-junction phase shifters is demonstrated. For the studied
π-biased phase qubit, no degradation of the coherence time induced by the
presence of the π-junction is observed. The demonstrated SFS π-junction
phase shifter circuits are readily scalable and compatible with conventional
niobium-based superconducting circuit technology.

The results of the research reported in this thesis show that tunable gap
flux qubits have a potential for building quantum registers. Cavities cou-
pled to flux qubits can be used for information storage and transfer between
qubits. SFS π-shifters provide a simple approach to bias multi-qubit circuits.
π-junction biased flux qubits are expected to be realised soon. A possibility
to change the qubit resonance frequency while preserving qubit coherence
enables implementation of switchable coupling between qubits and cavities.
Thus circuit quantum electrodynamics with flux qubits renders an excel-
lent test-bed to investigate light-matter interaction and to apply the gained
knowledge to quantum information science.

Alexey Feofanov
Karlsruhe, November 2010
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Zusammenfassung

Das Ziel der hier vorgestellten Arbeit war die experimentelle Untersuchung
von supraleitenden Fluss-Qubits, welche als Besonderheit die unabhängi-
ge Kontrolle des Qubit-Potenzials erlauben. Diese Qubits haben ein gros-
ses Potential zur Realisierung skalierbarer Strukturen für die Quanteninfor-
mationsverarbeitung. Unser Ansatz vereint eine Abstimmbarkeit der Qubit-
Resonanzfrequenz mit dem Erhalt der optimalen Kohärenz am Symmetrie-
punkt des Qubit-Potenzials. Nach einer allgemeinen Einführung im ersten
Kapitel wird in Kapitel zwei unser Fluss-Qubit Design vorgestellt, welches
eine in situ Änderung des Abstands zwischen den beiden niedrigsten Ener-
gieniveaus des Qubits erlaubt. Wir beschreiben eine topologische (geome-
trische) Modifikation des Qubits, die eine unabhängige Kontrolle des Qubit
Hammilton-Operators ermöglicht. An einem solchen Zwei-Schleifen Fluss-
Qubit mit integriertem passivem π-Phasenschieber konnten wir ein Schalten
zwischen zwei klassischen Flusszuständen beobachten. Dieses Schalten trat
in der Nähe der Nullpunkte sowohl der symmetrischen als auch der antisym-
metrischen Flusskomponente auf. Dies zeigt, dass das vorgeschlagene “stille”
zweischleifige Qubit in linearer Ordnung unempfindlich gegenüber Rauschen
ist, dass aus dem zur Flusskontrolle notwendigen Schaltungsteil herrührt.
Unsere Experimente haben damit eine Möglichkeit gezeigt, die Kopplung
zwischen einem Qubit und der Umgebung zu Minimieren, während gleichzei-
tig die volle Kontrolle gewährt bleibt.

Im dritten Kapitel präsentieren wir experimentelle Untersuchungen an
einem voll verstimmbaren gradiometrischen Fluss-Qubit, welches an einen
LC-Resonator gekoppelt ist, der von dem SQUID-Detektor gebildet wird.
Hierbei beobachteten wir eine starke Kopplung zwischen dem Qubit und dem
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Resonator und konnten Vakuum-Rabi-Schwingungen für verschieden Abstän-
de der Energieniveaus messen. Dabei betrachteten wir auch den Spezialfall,
bei dem der Abstand der zwei niedrigsten Energieniveaus des Qubits gera-
de der Resonanzfrequenz des SQUID-Detektors entspricht. Dies ermöglicht
eine Qubit-Resonator Wechselwirkung bei optimalen Kohärenzbedingungen
am Symmetriepunkt, bei gleichzeitig grösstmöglicher Stärke der Wechsel-
wirkung. Dieses Experiment zeigt daher einen Weg zur Realisierung eines
“Bus-Resonators” für Fluss-Qubits auf.

Im vierten Kapitel beschreiben wir schließlich eine experimentelle Reali-
sierung eines passiven π-Phasenschiebers, der auf einem Supraleiter - Ferro-
magnet - Supraleiter Josephsonkontakt basiert. Wir zeigen die Funktionsfä-
higkeit von zwei auf gewöhnlichen Josephsonkontakten basierenden Struktu-
ren, die nachträglich mit π-Kontakt Phasenschiebern versehen wurden. An
einem durch einen π-Kontakt versorgtem Phasen-Qubit wurde keine Verrin-
gerung der Kohärenzzeit durch die Integration des π-Kontakts beobachtet.
Die vorgestellten SFS π-Kontakt Phasenschieber sind skalierbar sowie kom-
patibel zu konventionellen, Niob-basierten Herstellungsprozessen für supra-
leitende Schaltkreise.

Die in dieser Arbeit vorgestellten Forschungsergebnisse zeigen, dass ab-
stimmbare Fluss-Qubits das Potential zur Realisierung von Quantenregistern
haben. An solche Qubits gekoppelte Resonatoren können sowohl als Spei-
cher für Quanteninformation als auch zur Zustandsübertragung zwischen
Qubits dienen. SFS π-Phasenschieber bieten eine einfache Möglichkeit, aus
mehreren Qubits bestehende Systeme an ihrem Arbeitspunkt zu betreiben.
Die erste Realisierung eines Fluss-Qubits mit eingebettetem π-Kontakt ist
in naher Zukunft zu erwarten. Die Möglichkeit, die Resonanzfrequenz des
Qubits zu ändern und dabei seine Kohärenz zu erhalten, erlaubt die Reali-
sierung einer schaltbaren Kopplung zwischen Resonatoren und Qubits. Fluss-
Qubits liefern daher exzellente Voraussetzungen für die weitere Untersuchung
der Wechselwirkung zwischen Licht und Materie im Bereich der Quanten-
Elektrodynamik, während die dabei gewonnenen Erkenntnisse der Wissen-
schaft der Quanteninformationsverarbeitung dienen.

Alexey Feofanov
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