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1. Introduction

The interaction of electromagnetic radiation with matter, which is investigated in the
research field of optics and photonics, has a wide variety of applications in telecom-
munication and sensing. Furthermore, microscopy and lithography make use of the
fundamental properties of light and its interaction with matter, as well.

Especially, the optical properties of periodic systems such as photonic crystals [1, 2]
and metamaterials [3] can be used for enhancing and modifying the interaction of light
and matter. These systems may lead to the development of more efficient sensors [4],
telecommunication devices with higher bandwidth, or microscopy and lithography with
higher resolution [5] than feasible with conventional techniques. Since those structures
represent artificial materials, they can be engineered to have special properties which
are not available in nature.

The main focus in this thesis lies in the investigation of periodic photonic nanostruc-
tures, such as photonic crystals and metamaterials as well as periodically structured
surfaces. These systems may exhibit interesting optical responses which can be ex-
ploited for numerous applications.

Photonic crystals contain a periodicity at the scale of the operation wavelength desired.
With the appropriate choice of both the unit cell design, as woodpile photonic crystals
or inverse opals, and the constituent materials, the resulting photonic crystal can ex-
hibit a complete photonic band gap, i.e., a frequency range in which the propagation
of electromagnetic waves is forbidden.

By deliberately introducing of deviations from the perfect periodicity, functional el-
ements such as cavities and waveguiding structures can be realized [6]. They allow
selected frequencies to propagate in the forbidden region and find applications in opti-
cal devices. Photonic crystals can support the advance in all-optical circuitry and data
processing [7].

In contrast to photonic crystals, metamaterials require a periodicity at subwavelength
range. Thus, they act as effective media. Consequently, their optical properties can
be described by effective material parameters such as the refractive index, permittivity
and permeability. It is especially intriguing that the metamaterial concept allows
not only for tailoring the permittivity, but also the permeability. In order to vary the
permeability, the structure needs to include also metallic components. Many interesting
phenomena have been proposed for metamaterials, e.g. negative refractive indices [8],
which allow for astonishing effects such as perfect lensing [5] or inverse Cherenkov
radiation [8]. Additionally, metamaterials form the basis for certain types of cloaking
devices [9, 10, 11].

In the visible and near-infrared part of the spectrum, the experimental realization of
such devices remains challenging. Unfortunately, for general problems no analytical
solutions are known. Thus, efficient numerical tools are required for both modeling
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these devices and obtaining a deeper understanding of the underlying physics. These
have to model the propagation and diffraction of light. Thereby, structured optical
materials are characterized as well as optimized designs can be developed.

Since the individual problems have different requirements it is hard to find a numerical
method which can handle all of them at once in adequate time. The method of choice
depends on the system which shall be studied.

Numerical methods can be roughly subdivided into two distinct classes: time domain
and frequency domain methods. Time domain methods are mainly more general meth-
ods which reproduce the situation by illuminating the investigated system with a light
pulse. Then, they record the temporal evolution of the system. Here, the most popular
method is the finite-difference time-domain method [12]. A further method is the dis-
continuous Galerkin time-domain method [13], which solves the spatial discretization
part of the problem adapted to the structure via an unstructured grid instead of an
equidistant cubic grid.

In many cases, the exact temporal response of the system on the exciting electric field is
not important. More specialized methods can be applied. These are frequency domain
methods which solve the time-harmonic Maxwell’s equations. This set of equations
can also be solved on an unstructured grid where the most popular method is the
finite element method [14] but there are also other methods which are more adapted
to special problems.

In the case of strictly periodic systems the plane-wave method [15] is advantageous.
This method sets up an eigenvalue problem by Maxwell’s equations in Fourier space
to determine the bandstructure with the corresponding Bloch functions of the special
system.

Another class of numerical methods is formed by the grating methods [16] which are
specially adapted to grating systems. They treat the lateral periodicity in Fourier
space whilst the finite part, which determines the propagation through the grating,
is solved in real space. There are different possibilities to determine the finite part.
Accordingly, several methods have been developed such as the differential method [16],
the Chandezon method [17] and the Fourier Modal Method (FMM) [18].

In this thesis, we use and extend the FMM, which is an adequate and commonly used
method for the numerical analysis of periodic structures and the investigation of their
optical properties in frequency domain.

Outline of this Thesis

We will start in chapter 2 with a short introduction to the fundamentals of optics by
Maxwell’s equations and the description of different material types. We also take a look
at the behavior of light which impinges on a material interface and more generally on
a periodically structured surface. Additionally, we give a short overview on curvilinear
coordinates in combination with Maxwell’s equations. In the next chapter (chapter
3) we introduce the FMM and the Chandezon method after a short historical review
on the developments in the numerical investigation of gratings. We also discuss some
extensions to the FMM such as perfectly matched layers and excitation of the system by
internal point sources. In chapter 4 we present calculations of photonic crystals. In the




case of woodpile photonic crystals, we investigate cavities and waveguiding structures.
Opal photonic crystals are studied with respect to their polarization properties. In both
cases we compare the calculations with experimentally measured results if possible. At
the end (chapter 5) we present our efforts in improving the convergence of the FMM
by application of adaptive spatial resolution. We investigate the convergence of three
different test systems. Finally, we summarize this thesis in chapter 6 and give a short
outlook.







2. Basic Principles of Classical Optics

In this chapter the fundamentals of optics are discussed. First, Maxwell’s equations
and the mathematical description of different materials are presented. Additionally, we
state Poynting’s theorem and introduce the plane wave solutions of the wave equation
in homogeneous materials. Then, we determine the behavior of the fields at material
interfaces and calculate transmittance and reflectance of a plane wave impinging onto
a planar interface.

We give a short introduction to Maxwell’s equations in covariant formulation, since we
need this for the numerical method we apply. Because periodicity plays an essential
role in this thesis, we introduce the optical properties of periodic systems. Finally,
rescaled variables for Maxwell’s equations are introduced.

2.1. Maxwell’s Equations

Maxwell’s equations provide the basis to describe electromagnetism [19]. They are a
set of four equations which consists of two divergence equations

V- D(I‘, t) = p(ra t)a (21&)
V.-B(r,t) = 0, (2.1b)
and two curl equations
V x E(r,t) = —0,B(r,1), (2.2a)
V xH(r,t) = 0,D(r,t)+ J(r,t). (2.2b)

Here, they are written in Sl-units. Since we have stated the so-called macroscopic
Maxwell equations, p depicts the free charge density and J the free current density in
the system. By Maxwell’s equations we can derive the continuity equation

V- J(r,t) + Op(r,t) =0, (2.3)

which determines the conservation of charge in the system.

In this formulation of Maxwell’s equations, the electric field E and the magnetic field
H represent only macroscopic field quantities. They are locally averaged in space over
the microscopic fields and do not depict the fields on atomic scale. However, also the
contribution of the charges and currents which form the matter have to be considered.
Thus, in order to include the existence of matter with its bound charges and currents,
the macroscopic magnetic induction B and electric displacement field D are introduced.
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2.2. Constitutive Relations

Maxwell’s equations (2.1) and (2.2) can not give a full description of the electromagnetic
fields. We also need relations between the four field quantities. These relations are
given by the so-called material equations which are in general form [19, 20]

D = DI[E H], (2.4a)
B = B[E H], (2.4b)

and describe the interaction of light with matter. Here, we consider only materials
which do not cross-couple the electric and magnetic fields. The interaction is also
assumed to be local in space and only dipolar interaction in the materials are taken
into account. Thus, our starting point for the material equations is

D(r,t) = eE(r,t)+ P(r,t), (2.5a)
t) = poH(r,t) + pnoM(r,t), (2.5b)

with the electric polarization P and magnetization M. pg is the vacuum permeability
and €y the vacuum permittivity. They are related by the vacuum speed of light via
c§ = 1/(noco).

The polarization is the material contribution to the dielectric displacement field D and
represents the response of the medium to the external electric field E. The polarization
can be expanded into orders of the electric field. We only consider the first order, since
we deal only with weak electric fields. Thus, the linear dependency determines the
behavior of light-matter interaction. The higher order terms would be responsible for
nonlinear effects [21]. Some examples for second order nonlinear effects are second
harmonic generation, sum frequency generation and difference frequency generation.
The third order nonlinearity is responsible for self-focusing, self-phase modulation and
third harmonic generation.

The linear interaction is described by

P(r,t) =€ /oo drxyW(r,t — 7)E(r, 7), (2.6)

oo

with the electric susceptibility x(!). The time dependence of the susceptibility is due
to the fact that the response of the matter to the external light does not need to be
instantaneous in time. Since the integral (2.6) is a convolution, the relation is easier to
examine in frequency domain by a Fourier transformation [22]. In order to transform
the fields f(r,¢) we use

f(r,w) = QL /00 dt f(r,t)e*" < f(r,t) = /_00 dw f(r,w)e ™, (2.7)

7T—OO o0

Thus, in frequency domain the polarization can be written as

P(r,w) = eoxV(r,w)E(r,w), (2.8)
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with the susceptibility in frequency domain as

1 [ .
YV (r,w) = 2—/ dtx® (r, t)elt, (2.9)
7r

—00

We can introduce the permittivity e(r,w) = 1 + xM(r,w) to relate the electric field
directly with the dielectric displacement field. Similar to the expansion of the polar-
ization, the magnetization can be expanded into orders of the magnetic field. The
linear dependence between magnetic field and magnetic induction is then described by
the permeability p of the material. As constitutive relations in frequency domain we
obtain

D(r,w) = ¢e(r,w)E(r,w), (2.10a)
B(r,w) = pop(r,w)H(r,w). (2.10Db)

In the optical regime natural materials exhibit nonmagnetic behavior and we can set
the magnetization equal to zero throughout this thesis and the permeability = 1. This
is only valid for natural materials. There is a whole class of new artificial materials,
metamaterials, which exhibit a permeability different from one due to sub-wavelength
structuring [23].

Because the constitutive relations read easier in frequency domain, we transform Max-
well’s curl equations (2.2) also into frequency domain and obtain

VxE(rw) = iwwH(rw), (2.11a)
VxH(r,w) = —lwee(r,w)E(r,w)+ J(r,w). (2.11Db)

These two equations are the foundation of the numerical method we treat in this thesis.
Since we do not deal with nonlinearities, the individual frequencies do not couple and
the equations can be solved for each frequency independently. In case of no free currents
and charges, the divergence equations (2.1) are implicitly fulfilled which can be easily
seen by eq. (2.11) if we apply the divergence operator V on the whole curl equations.
We directly obtain V-H = 0 and V-€E = 0. Consequently, the divergence equations do
not need to be considered separately. By a Fourier transformation the solution of the
fields in time domain can be constructed. In our case, we only consider time-harmonic
fields

E(r,t) = E(r)e ™", (2.12)

which only exhibit a time dependence by the oscillating term.

2.2.1. Ordinary Dielectrics

In dielectric materials the polarization field P is formed by the induced dipole mo-
ments of the atoms, that are generated by the applied electric field E. Their strength
depends on the polarizability of the atoms in the material. In an isotropic material
the polarizability is independent of the direction of the external electric field. Thus,
the polarization points always into the same direction as the electric field. Therefore,
the permittivity is a scalar. If the response of the material to the applied field is
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instantaneous, the permittivity is constant in time. Then, the constitutive relation
reads
D(r,t) = epeE(r, t), (2.13)

and can be easily written down in time as well as in frequency domain.

2.2.2. Anisotropic Dielectrics

If the polarizability of the material depends on the direction of the electric field vector,
€ becomes a second rank tensor. As constitutive relation of such an anisotropic material
we obtain

Dy = €0 Y €mnEn, (2.14)

n

where we sum over the three field components n = z,y,z. D,, and E, denote the
components of the electric displacement and the electric field. Then, the permittivity
€ possesses nine components. In reciprocal materials the components have to fulfill
the condition €,,, = €,,. Thus, only six of these components are independent of
each other [20]. Due to the anisotropy, the dielectric displacement field can point in
another direction than the electric field vector. In other words, the polarization P of
the material is no longer parallel to the external electric field.

Figure 2.1.: Ellipsoid to visualize the permittivity in the principle coordinate system
with the principle axes ny, ny, and ngs.

In order to display the permittivity we can use an ellipsoid as in fig. 2.1. In the principle
coordinate system of this ellipsoid the three principal axes have different dielectric
constants which are the eigenvalues of the e-tensor [24]. The propagation of light
through such a material is determined by the direction of the electric field vector. This
dependence is called birefringence.

If all three eigenvalues of the permittivity differ, the crystal is biaxial. With two
identical eigenvalues the crystal is called uniaxial. In this case, it is characterized by
a single optical axis. The last possibility with all three eigenvalues identical brings
us back to the isotropic case. This classification is governed mainly by the crystal
structure. But anisotropy can also be induced in isotropic crystals by external effects
such as deformation or applying of electric (Kerr effect) or magnetic fields (Cotton-
Mouton effect), which introduce a direction dependence in the permittivity.
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2.2.3. Dispersive Materials

If the permittivity is frequency dependent, the materials are called dispersive and the
response of the material is nonlocal in time. The dispersion of a material comes always
hand-in-hand with dissipation which is stated by the Kramers-Kronig relation [19]. It
relates real and imaginary part of the permittivity to each other. Thus, a dispersive
material has a complex permittivity and consequently a complex refractive index, which
accounts for dissipation.

In the following, we present two models which describe the light-matter interaction for
two different types of materials.

Lorentz Oscillator Model

As already explained, an external electric field induces a dipole moment in the atoms
of the material. In the Lorentz model, the atoms are modelled as electron and positive
atom core forming an oscillator with a resonance frequency wy and a damping constant
.. The external field acts as a driving force on the oscillator and we can set up the
equation of motion for the electrons with mass m and charge —e as

mi + myLt + mwir = —eE(t). (2.15)

We assume an electric field oscillating with frequency w and amplitude Eq as E(t) =
Ej exp (—iwt). Therefore, the differential equation can be solved for the position r
by Fourier transformation (2.7). In frequency domain we obtain for the equation of
motion

—w’r — iwypr + wir = —%EO, (2.16)

and the solution in frequency domain reads

e/m
= E,. 2.17
' w? + iwyy, — wi 0 (2.17)

As consequence the induced dipole moment for one oscillator is p = —er. In a further
step we can identify the polarizability a of the atom by the relation p = oE as

e?/m

alw) = (2.18)

wp — w? —iwy,
The contribution of several such dipoles sums up to the polarization P(w) = n.aEq of
the material with electron number density n,.

In order to obtain the permittivity of such a material, we assume that the density n.
is low, which means in this model we have one electron per atom. Thus, the local field
at the dipoles is completely determined by the external electric field since we disregard
interaction of the single oscillators between each other. Then, the permittivity can be
derived by the relation for the polarization P = n.aEq = eox(l)Eo with the help of the
susceptibility in eq. (2.8) as

Nee? 1

eL(W) = €00 + (2.19)

com wi — w? — iwyy,’
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Here, we included also a constant background permittivity by e,,. The second part is
a Lorentzian shaped curve which represents the response of the material to an external
field around a resonance frequency of an oscillator. This model gives good agreement for
systems with atomic transitions in the frequency spectrum. The influence of different
atomic transitions can be modeled by adding more Lorentz curves with the respective
resonance frequencies to the permittivity. As predicted by the Kramers-Kronig relation
the dispersion of the permittivity is accompanied by an imaginary part which causes
absorption around the resonance. Real and imaginary part of the permittivity are
shown in fig. 2.2.

8

6 Re(e)

4 Im(e)
w 2
0
-2
-4

0 0.5 1 1.5 2

Frequency/m0

Figure 2.2.: Real and imaginary part of the permittivity in the Lorentz model with
€00 = 1 and v, = 0.15wy. The prefactor n.e?/eym is set equal to wy.

Drude Model

In order to obtain an analytical model for the permittivity of metals, we use the so-
called Drude model. In this model a metal is described as a material with a positive
background charge which is formed by the ions and the free electrons of the metal
which can move freely in the whole crystal. To derive the Drude model, we can use
the Lorentz model with a few modifications. Since the electrons are no longer bound
to the atoms, the restoring force in the Lorentz model vanishes. Formally, we can take
care of this by putting the oscillator’s resonance frequency wy equal to zero. Thus, we
can keep the equation of motion (2.15) and explain the damping phenomenologically.
The damping vp in the Drude model is also known as the collision frequency. It is the
inverse of the mean time between collisions of free electrons.

By regarding the permittivity in the Lorentz model (2.19) with wy = 0 and defining
the plasma frequency w, = y/ne€?/egm, we find for the Drude model

w2

p
ep(w) = €p — ——m—. 2.20

p(w) w (w +ivp) (2.20)
Figure 2.3 shows the permittivity in the Drude model. Materials with such a dispersion
relation show metallic character for frequencies well below the plasma frequency where
the real part of the permittivity is negative. Here, the propagation constant of light

10
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10
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Frequency/mp

Figure 2.3.: Real and imaginary part of the permittivity in the Drude model with
€ = 1 and yp = 0.1wy,.

obtains a large imaginary part and no propagation over longer distances can take
place. Therefore, metals are nontransparent and exhibit a high reflectivity. In the case
of .. = 1, the plasma frequency is exactly the frequency at which the real part of the
permittivity crosses zero. Above the plasma frequency metals become transparent and
behave analogously to dielectrics.

Figure 2.4 shows the experimentally measured data of the permittivity for a gold film
[25]. We compare the experimental data with the Drude permittivity. The usual way is
to fit the Drude permittivity to the measured one. The plasma frequency, the damping
and the background permittivity are used as fit parameters. In the plot, the fitting
results of ref. [26] are presented. We can observe that the Drude model is a good
description for gold in the infrared, but in the visible spectrum we can detect some
deviations. The reason is the interband transitions in gold which are responsible for the

50

~ 200 300 400 500 600 700

400 800 1200 1400 2000
Wavelength/nm

Figure 2.4.: Real and imaginary part of the permittivity for gold plotted over wave-
length. The markers show the experimentally measured data by Johnson
and Christy [25] and the solid line is the Drude model with parameters
wp = 1.3544 x 10087 yp = 1.1536 x 107! and €., = 9.0685 [26]. The
inset shows a zoom into the visible region of the permittivity.

11
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typical yellowish color of gold. The permittivity of such transitions can be explained
by the Lorentz model. In order to find a good description for both frequency ranges,
the Drude and Lorentz model can be combined to the Drude-Lorentz model [26].

2.3. Reduction to Two Dimensions

In general, we do not need to apply full Maxwell’s equations to describe systems ex-
hibiting a translational invariance in one direction. Such systems are considered as
two-dimensional. We can orientate the system such that the homogeneous direction
is identical to the y-axis. By incidence in the zz-plane, the spatial derivatives of the
fields in y-direction are equal to zero. Then, the curl equations (2.2) decouple into two
independent sets of equations, if the propagation is restricted to the xz-plane. This
splitting is not only valid for isotropic materials but also for anisotropic materials with
one principal axis, which corresponds to the y-axis.

The first set is called E-polarization with the electric field pointing in the homogeneous
direction

-0,E, = —0,B,, (2.21a)
oE, = —0,B., (2.21b)
0.H, —0,H, = 0.D,, (2.21c)
and, respectively, in the second set the magnetic field takes over this role
0.b, -0, F, = —0,By, (2.22a)
-0,H, = 0,D,, (2.22b)
0.H, = 0,D.. (2.22¢)

This set of equations represents the H-polarization-case.

2.4. Wave Equation

In this section, we discuss the propagation of light through a transparent medium as
in section 2.2.1. For such a material the wave equation can be derived by combining
Maxwell’s curl equations (2.2). We assume no free currents and charges and obtain the
homogeneous wave equation for the electric field

V2E(r, t) + C—Z@fE(r, t) = 0. (2.23)
0

The wave equation for the magnetic field looks the same by exchanging the electric
field E with the magnetic field H. A solution of the wave equation are plane waves

E(r,t) = Ege*r (2.24)

with frequency w and wave vector k. The absolute value of the wave vector k£ and the
frequency are connected via the dispersion relation of this material as

Co
= —k 2.25
w ="k, (2.25)

12
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where we introduced the refractive index n = y/e of the material. The field vector
E, determines the polarization of the wave. For plane waves there are two possible
polarization states which span the plane perpendicular to the wave vector. The plane
wave possesses also a magnetic field which exhibits the same form as the electric field
with the field vector Hj

H(r,t) = Hoe* ™", (2.26)

Using eq. (2.2a), we can derive the relation
k x E() = /,LOCL)HO (227)

to connect the electric and magnetic field vectors.

Since the plane wave solutions form a complete set of basis functions, we can use
them to build arbitrary time and space dependent fields by a linear superposition of
monochromatic waves as

E(r,t) = / &3k / dw E(k, w)e* T+, (2.28)

This is also known as the Fourier transform of the electric field E(r,t), where the field
vector E(k,w) in the integration is the Fourier space representation of the electric field
in time and space.

In addition to the propagating plane waves with real wave vector which have been
discussed in the previous, there is also another class of waves which is called evanescent
waves. Formally, they can be described by a plane wave as in eq. (2.24), but their wave
vector is imaginary. Thus, they are exponentially decaying. Evanescent waves do not
transport energy but give an important contribution to near field effects.

In dispersive materials with complex permittivity, the plane wave solution consists of
an oscillatory and an evanescent part. These waves can only propagate a finite distance
until they are completely absorbed by the medium.

2.5. Poynting’s Theorem

With the help of Maxwell’s curl equations (2.2) we can also derive Poynting’s theorem
[27]
ow+V-S=-J-E. (2.29)

In this equation two new quantities are defined. The energy density of the electromag-
netic field reads

and the Poynting vector
S=ExH (2.31)

is the energy flux of an electromagnetic field which is the amount of energy propagating
per time unit through a unit area normal to the direction of E and H. The Poynting
theorem describes the conservation of energy for electromagnetic fields, where the term
on the right-hand side is the work of the electric field on the sources.

13
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By integrating over a volume V' and applying Gauss’ theorem, we obtain the integral
form of the Poynting theorem

/dV@tw—i-/ dAn-S:—/dVJ-E, (2.32)
v av v

with the normal vector n on the closed surface 0V of the volume V. In this repre-
sentation of the Poynting theorem, it can be seen that it describes the conservation of
energy for electromagnetic fields in the volume V. The term on the right-hand side is
the work of the electric field on external currents contained in the volume whereas the
left-hand side is determined by the macroscopic fields. The first term on the left-hand
side describes the change of the energy stored in the fields. Here, also dispersive mate-
rials contribute which are time dependent as seen in the general constitutive relation
(2.6). The dispersion gives a contribution of the material to the energy density by the
imaginary part of the permittivity which acts as absorber or radiator of energy [19].
The second term is the integrated Poynting vector over the surface which presents the

power radiated out of or into the volume V. Thus, the power of the electromagnetic
field can be defined as

P:/ dAn-S, (2.33)
oV

which is the amount of energy flowing through the surface per unit time.
If we consider time-harmonic fields, we are no longer interested in the Poynting vector
as defined in eq. (2.31), but rather use the time-averaged Poynting vector defined as

1
<S>= §Re (Ex H"), (2.34)

where the asterisk * denotes the complex conjugate. If we talk about the Poynting flux
later, we use this expression. In the case of the plane waves, introduced in the previous
section, the Poynting flux is < S >= 1 |E¢[ k.

2uow

2.6. Electromagnetic Waves at Boundaries

Until now, we considered only the interaction of light with a single material. If we
have a second material in the system, we have to create an interface between these
two media. By means of Maxwell’s equations the behavior of the fields at material
interfaces is obtained with the help of Gauss’ and Stokes’ theorem [19]. Let us investi-
gate an interface between material 1 and material 2 with normal vector n. Then, the
components of the electric and magnetic fields tangential to the surface are related by

n X (E1 — EQ) = 0, (235)
n X (Hl — Hg) = JS, (236)
where Jg denotes the surface current density. The subscripts denote the fields in the

respective materials. The normal field components of the dielectric displacement field
and magnetic induction are given on both sides of the boundary as

n-(D;—D,) = o, (2.37)
n- (Bl — BQ) = O, (238)
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2.6. Electromagnetic Waves at Boundaries

with the surface charge density o. These relations show that in systems without free
charges and currents the tangential components of the electric and magnetic field are
continuous such as the normal components of the magnetic inductance and the dielec-
tric displacement. In this case, we can also specify exactly the jump discontinuity of
the normal components of the electric field at the material interface between isotropic
materials as

n-E =2n E,. (2.39)

€1

With this knowledge we can determine analytically exact the behavior of an incident
plane wave impinging onto a planar material interface.

Reflectance and Transmittance

If we consider a linearly polarized plane wave which is incident on a planar interface at
z = 0, one part of the incident wave is reflected and the other part is transmitted. The
situation is sketched in fig. 2.5. Since the materials are assumed to be isotropic and
homogeneous, we can use a plane wave ansatz to describe the reflected and transmitted
wave, as well. In medium 1 with refractive index n; = (/&1 (2 < 0) the electric field
with the incident and reflected part is

Ei(r,t) = Ege T 4 By gtk —iwt (2.40)

and the transmitted wave in medium 2 with ny = /€, for z > 0 is
Ea(r, 1) = Eoranse™ 0, (2.41)
The same equations can be set up for the corresponding magnetic fields which are

related to the electric fields by eq. (2.27). The magnitudes of the wave vectors in the
different materials are ki, = ket = wny/co and kyans = wna/cy. As the tangential

(b)

Figure 2.5.: Reflection and refraction of a plane wave at a planar interface for the case
of (a) s-polarization and (b) p-polarization.
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2. Basic Principles of Classical Optics

components of the electric field have to be continuous at all points on the interface,
the phase factors of the three plane waves have to be the same,

(kin . r)z:O - (kreﬁ . r)z:O - (ktrans : r)z:O' (242)

With this relation we obtain, on the one hand, that the angle of incidence 6;, and the
angle of the reflected light 6,.q are identical. On the other hand, we obtain Snell’s law
which gives the refraction of the transmitted light at the interface

1y Sin G, = Ny Sin Gy pans- (2.43)

The amount of the reflected and transmitted light does not only depend on the in-
cident angle but also on the polarization of the incident plane wave. We distinguish
between s- and p-polarized light: The electric field vector of an s-polarized plane wave
(also TE: transversal electric) points perpendicular to the plane of incidence, which
is spanned by the wave vector of the incident wave and the normal vector to the in-
terface. Accordingly, p-polarized light (also TM: transversal magnetic) has an electric
field vector lying in the plane of incidence. Thus, we can decompose the arbitrarily
polarized incident wave into a s- and p-polarized wave which can be treated separately.
Both cases are illustrated in fig. 2.5.

Applying the boundary conditions for the electric and magnetic field, we can derive the
Fresnel equations. These express the reflection coefficient r and transmission coefficient
t of the field amplitudes for the two polarizations [24, 28|. In case of s-polarization, we
obtain

e = EO,reﬁ _ Tip COS Qtrans — N1 COS Qin (244)
Eo in Ny cos Oy, + No €S Orans

{ = Lotrans 2n, cos by, (2.45)
Eo in nq cos Oy, + 19 €S Oirans

o Eorei €112 08 Oyrans — €any 08 by, (2.46)
P - ) '
Eyin €119 oS By, + €9m1 €OS By rans

b= EO,trans o 262”1 COs ein €1 (2 47)
p -_— - . .
Eyin €911 cOS By, + €119 COS Oirans V €2

The field directions can be deduced from fig.2.5. The coefficients are also valid for
incidence on a material with complex permittivity. In that case, the transmitted waves
decay.

In order to determine the amount of energy which is reflected and transmitted, the
reflectance R and transmittance 7" are defined. They depict the ratio between the re-
flected /transmitted power and the incident power. We calculate the power by eq. (2.33).
Since we consider only plane waves, we can replace the Poynting vector by the time-
averaged Poynting vector (2.34). As volume V' we choose a box around the interface
with faces parallel to the material interface as shown in fig. 2.6. Thus, we only have
to calculate the flux through the top and bottom area, since the contributions from
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2.6. Electromagnetic Waves at Boundaries

Figure 2.6.: Box with volume V for integration around the interface to determine the
incident, reflected and transmitted electromagnetic power. The red arrows
denote the Poynting flux in and out of the box.

the other faces cancel each other. Therefore, we only need the z-component of the
Poynting vector. The height of the box is not important for us since we consider here
the transmittance and reflectance for materials with purely real refractive indices. We
obtain

Preﬁ o
P
Ptrans N2 COs gtrans |t|2

R = 7|2, (2.48a)

T = (2.48D)

P,  njcosby
In this system we do not have absorption. Thus, the energy is conserved. This is

expressed by the condition
R+T =1, (2.49)

which is always fulfilled for both polarizations and follows directly from the Poynting
theorem (2.32).

We discuss briefly two effects which can occur for reflectance and transmittance at an
interface. With Snell’s law we can directly obtain, that in the case of incidence from
an optically denser material (n; > ns) there is no transmittance for too large angles
of incidence. Then, the transmitted electric field is evanescent. This effect is called
total internal reflection and the critical angle can be directly derived from eq. (2.43) as
0. = arcsin Z—j

A polarization dependent effect in reflection is the Brewster angle

O = arctan 2. (2.50)

n
If the incidence angle is equal to fg and the plane wave is p-polarized, the reflection
is equal to zero. Since the angle between reflected and transmitted light is exactly
90°, the electric dipoles which are excited at the boundary cannot radiate energy in
the direction of the reflection. Thus, light propagation for p-polarization along this
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2. Basic Principles of Classical Optics

direction is totally suppressed. Arbitrarily polarized light impinging at the Brewster
angle will be purely s-polarized in reflection. This effect can be used for polarization
filters.

2.7. Maxwell’s Equations in Covariant Formulation

Since Maxwell’s equations state the fundamental laws in electromagnetism, they are
valid independently of the coordinate system we use to describe physics. This means,
we can write Maxwell’s equations in a mathematical form which is invariant under
coordinate transformations. This property is called covariance. Later in this thesis,
we want to use Maxwell’s equations in curvilinear coordinates. Thus, we give a short
introduction to curvilinear coordinates, here.

2.7.1. Curvilinear Coordinates

In our case, the starting point is always the Cartesian coordinate system Ozyz which
is called Oz'7%z°, here. The Cartesian system is spanned by the basis vectors by, by
and bs. A vector in this system is described by its components z', 7?2 and 73 as

r = 7'b,, (2.51)

where we assume Einstein’s sum convention with summation over upper and lower
index 7 =1, 2, 3.

With the help of a coordinate transformation, we change to the curvilinear coordinate
system Oxz'z?x3. This is connected to the Cartesian system by

= z'(at 2t 2%, (2.52a)
7 = (2t 2? ), (2.52b)
= (2t 2?27, (2.52¢)

As requirement the coordinate transformation has to be locally invertible at each point.
With a covariant transformation we can derive the basis vectors b, in the curvilinear
space as [19]
ox"

= o by. (2.53)
Due to this transformation the basis vectors with lower index are called covariant basis
vectors. They are tangents on the coordinate curves which is illustrated in fig. 2.7 for a
two-dimensional system. With the covariant derivative 9; = 9/0x the covariant basis
vectors in the curvilinear coordinate can also be written as b; = o;r.

In general, the covariant basis vectors are used to span the real space of the system.
In addition to the covariant basis vectors there are also the contravariant basis vectors
which span the dual space. In our case, the dual space is identical to the reciprocal
space. The contravariant basis vectors, written with upper index, can be calculated by
the relations

b;

_bQng

b3><b1
pl— 22208 -
e

b1><b2
p2 — 28X D1 _
-

b® = 7 (2.54)
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2.7. Maxwell’s Equations in Covariant Formulation

Figure 2.7.: Covariant basis vectors (blue) and contravariant basis vectors (red) in a
two-dimensional curvilinear system. The curvilinear coordinate lines are
plotted in the Cartesian system.

J is the Jacobian matrix, which contains the first-order partial derivatives of the coor-
dinates
19 - ozt Ozt 057!
(7. 72, 73 1 2 3
J - M - 81f2 (92.%2 83.%'2 3 (255)
(2t 22, 2%) HTd T 37

and the determinant can be calculated directly by |J| = b;-(by X bsz). The determinant
is never equal to zero since we demand that the coordinate transformation is invertible.
Thus, we obtain the reciprocal relation b'b; = %, where % is the Kronecker delta
symbol.

From this, we can easily deduce that the contravariant basis vectors are normal on the
coordinate surfaces as shown in fig. 2.7. In the Cartesian system this means that the
covariant and contravariant basis vectors are identical. The transformation behavior
of the contravariant basis vectors differs from the covariant basis vectors

o

b =
ok

b* = V', (2.56)

with the gradient V in Cartesian space. This type of transformation is called con-
travariant.

The components of a vector in the covariant basis transform in contravariant manner
and are denoted by upper index. Correspondingly, the covariant vector components
are paired with contravariant basis vectors. For completeness, we state here also the
transformation of the co- and contravariant vector components

ozk . Ot
F=""F and F'=
P gt P at ok

F* (2.57)
The vector F can be presented in two ways as

F = F'b;, = F,b'. (2.58)
The contravariant components are the projections of the vector F onto the respective

contravariant basis vectors F'* = F-b’. The same is valid for the covariant components
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2. Basic Principles of Classical Optics

In order to change between the co- and contravariant formulation one can define a
metric for the coordinate system by

F' = g"F}. (2.59)

The metric in Cartesian space is a unit matrix. In the curvilinear system, the metric
can be calculated in co- and contravariant formulation by

oz oz _

i = pui gk = Pibj, (2.60a)
oxt Ox? y

97 = gl = b (2.60D)

The contravariant metric is the inverse of the covariant metric gijgjk = 0F and the
determinant is |g;;| = g = |J|*%.

From now on we try to formulate the problems with the co- and contravariant basis
vectors. The Cartesian coordinates Oxyz are always used as reference system to give
a simplified view on the presented problem.

2.7.2. Maxwell’'s Equations

Now, we want to re-write Maxwell’s equations (2.1) and (2.2) in the co- and contravari-
ant formalism. We obtain [29]

oD = p, (2.61a)
OH" = 0, (2.61b)
¢k, E), = —0,B', (2.61c)
RO H, = O.D'+ T, (2.61d)

with the Levi-Civita tensor £. In this form, Maxwell’s equations are invariant under
general coordinate transformations in space. In the curl equations, the electric and
magnetic field components transform covariantly. In contrast, the components of the
dielectric displacement and magnetic induction are contravariant in their transforma-
tion behavior.

The linear constitutive relations in general curvilinear coordinates are

B = uouH;, (2.62a)
D' = ee'E;. (2.62b)

The tensors € and p% for permittivity and permeability in the curvilinear space do not
only depend on the medium as in section 2.2 but also on the geometry of the problem.
They are defined in general coordinates for an anisotropic material in the Cartesian
space, € and ", as

. ox' 0x7

EU = \/gajf‘k @Ekl, (263&)
y oz Oxd

p = \@ag—;k @Mkl- (2.63b)
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2.8. Optics in Periodic Systems

As indicated by the upper indices at the permittivity and permeability tensors, they
transform contravariantly [30]. In order to keep the original form of Maxwell’s equations
in the curvilinear coordinate system we let them absorb the factor |/g.

For isotropic media in the Cartesian system we can assume €’ = €6” and " = j16".
Then, we obtain for the permittivity and permeability in the transformed space

el = \/geg”, (2.64a)
pl= \fong", (2.64b)

with the contravariant metric tensor (2.60b).

Thus, we simply have to consider Maxwell’s equations with anisotropic materials in
the curvilinear coordinates. The coordinate information is completely absorbed in the
permittivity and permeability. Also with permittivity in real space ;i = 1 we obtain a
permeability which is anisotropic.

The property of the coordinate transformation is used the other way round in transfor-
mation optics, which is the basis for cloaking. Here one intends to influence the path of
light through a system by using appropriate material distributions. The desired path
can be translated into new coordinates such that the light is propagating straight in
this new coordinate system. However, in the original coordinates it travels the desired
path. In the case of cloaking, the light is bent around an object. These new coordi-
nates are curvilinear coordinates and can be realized by creation of the corresponding
anisotropic material [9, 10]. In this material the light is passed around an object such
that the observer cannot see the object because he “is looking around” this object.

In order to complete the treatment of Maxwell’s equations in curvilinear coordinates
we also state the curl equations with harmonic time dependence for the fields (2.11)
and without free sources and currents [30]

RO E), = iwpop Hy, (2.65a)
RO H, = —iwepe” E;. (2.65b)

Later, we use Maxwell’s equations for materials with anisotropic permeability and
permittivity, to keep the formulation independent of the coordinate system.

2.8. Optics in Periodic Systems

Since we treat in this thesis periodic structures, we give a short introduction into some
properties which refer to the periodicity of the system. In our case, the periodicity
occurs in the permittivity distribution as

e(r)=c(r+R), (2.66)
with the lattice vector
R = lldlbl -+ lgdgbg -+ lgdgbg, ll - 0, :i:l, :i:2, e (267)

The basis vectors of the real space b; are the covariant basis vectors (2.53) as already
mentioned in the previous section. Together with the lattice constants d; for the three
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2. Basic Principles of Classical Optics

spatial directions, they represent the lattice. The smallest unit cell of the lattice is
given by the Wigner-Seitz cell [31]. Thus, we only need the permittivity distribution
in this cell (or another cell with the same size) to describe the whole system. The cell
can be further reduced by the symmetry of the permittivity distribution in the unit
cell and the lattice.

In fig. 2.8, the basis vectors in a nonrectangular lattice are shown together with the
corresponding reciprocal lattice.

real space reciprocal space

\
®
\
N
\
®
=
[ fe/ =/
| Y
[/

—
d, {ZW/dz
%’\

Figure 2.8.: Real space (left) and reciprocal space (right) for a two-dimensional periodic
system with a nonrectangular lattice. The angle ( denotes the angle which
the nonrectangular system forms with the Cartesian coordinate system. In
the reciprocal space the first Brillouin zone is depicted by the light blue
area.

The reciprocal lattice is described by the reciprocal lattice vectors

G = m12—7rb1 + m22—7rb2 + m32—7rb3, m; =0,4+1,£2, ... (2.68)
dy dy ds

with the contravariant basis vectors b’ (2.56). The primitive unit cell in the reciprocal
lattice is called the first Brillouin zone (FBZ, see fig. 2.8) and is constructed in the same
way as the Wigner-Seitz cell in the real space lattice. The unit cells in both spaces are
reciprocal to each other. The larger the real space unit cell is, the smaller is the first
Brillouin zone.
Real space and reciprocal space are connected by a Fourier transformation. Thus, we
can easily switch between these two spaces. As consequence, we can give the permit-
tivity of the system (2.66) also in the reciprocal space by a Fourier transformation on
the lattice

di d2 d3 . T L T

€ = 1 / dZL’l/ dl‘2/ dz3 €(I1,$2, I?))efl(ml%x1+m2%x2+m3%x3>7 (269)
didads Jo 0 0

where we denote by the index m a reciprocal lattice point which is described by the

triple {my, my, ms}. Correspondingly, we have to sum over all reciprocal lattice points

to perform the back transformation

27 2m .3

6(1’1, .1'2, 1’3) = Z emei(mlaxl+m2%x2+m3@x ) . (2.70)

m
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The periodic permittivity is the basis in the theory of photonic crystals and gratings.
These systems are investigated in detail in this thesis. However, for performing numer-
ical calculations we use only properties of the periodicity in two dimensions. In the
next section, we recall the general form of eigensolutions in periodic systems such as
reflectance and transmittance properties.

2.8.1. Bloch Theorem

The wave propagation in periodic media can be compared with solutions of the Schro-
dinger equation in periodic potentials [31]. Due to the translational symmetry of the
problem, the wave functions ¢y (r) exhibit the same periodicity up to a phase factor.
This is stated in the Bloch theorem for a wave function 1y (r)

Ui (r) = ™y (1), (2.71)

with the lattice periodic function ug(r) = ux(r + R) and the plane wave envelope
function with the wave vector k. Together, they form the Bloch wave. In contrast to
the case of plane waves, the wave vector is restricted to the first Brillouin zone, since
it can always be back-folded by the reciprocal lattice vector G as defined in eq. (2.68).
Thus, the system can be completely characterized by the solutions in the first Brillouin
zone. By the Bloch theorem we obtain the relation

Yrra(r) = Yy (r). (2.72)
Another formulation of the Bloch theorem is
(r+R) = wk(r)eikR, (2.73)

which shows that the wave function at two points connected by a lattice vector R only
differ in a phase factor. This means, that the intensity distribution o W!Q shows the
same periodicity as the system.

2.8.2. Diffraction

In section 2.6, we described the reflectance and transmittance behavior of a plane wave
on a planar interface between two homogeneous materials. Now, we modify the problem
and add a periodic structure between the two materials as illustrated in fig. 2.9. The
structured region shall exhibit periodicity in a plane which is oriented parallel to the
surface. This situation corresponds to a diffraction grating between two homogeneous
half-spaces which are called the superstrate with refractive index n; and the substrate
with ny. Due to the periodicity, the boundary condition for the parallel components of
wave vector (2.42) is conserved up to a reciprocal lattice vector G. Hence, we do not
only have one single plane wave in reflection and not only one in transmittance. The
reflected and transmitted wave split up in several diffraction orders which are called
Bragg orders or spatial harmonics. The same effect can also be observed in crystal
optics where X-rays are diffracted by the crystal lattice. In order to see this effect, the
lattice constant has to be of the same order as the wavelength of the incident light.
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2. Basic Principles of Classical Optics

Figure 2.9.: Reflectance and transmittance on a periodic plane. The incident light is
marked red and impinges with the angle 6;, to the normal on the periodic
plane. The reflected and transmitted diffraction orders are presented by
black arrows.

Since we know the periodicity and the vacuum wavelength of the incident plane wave
Ao, we can determine the reflected and transmitted orders analytically. In general we
consider gratings with two-dimensional periodicity and the periodic plane is described
with the basis vectors b; and by as shown in fig.2.8. Such gratings are known as
crossed gratings, and gratings with only one-dimensional periodicity are called lamellar
gratings.

The light impinges on the grating with the wave vector k;, = agb! + 3yb? +~yb?. Since
the tangential components have to be conserved up to reciprocal lattice vectors, we can
write the first and second component of the transmitted and reflected wave vector by

2
Ay = Oéo+m1—7T, (2.74a)
dy
2w
Bms = Bo—l—mgd—. (2.74Db)
2

The factors m; = 0,+1,+2, ... and my = 0,41, £2,... determine the possible diffrac-
tion order. The third component of the wave vectors can be determined by the equation

iy 2mn )\ 2
g7 kik; = (/\—0) ; (2.75)

which states that the frequency of the diffracted waves does not change. n is the
refractive index of either the superstrate or substrate. The covariant components k;
are only used for short notation and are simply the components of the wave vector.
The condition has to be fulfilled by each diffracted wave with k; = a,,,, ko = B, and
k3 = Ym={mimo}- Thus, we obtain a finite number of diffracted waves which have a
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purely real third component. The others are purely imaginary and describe evanescent
waves.
Then, the electric field can be expressed by the Rayleigh expansion [32] in the super-
strate

. 1, 2 . 3_: . 1, 2 3_:
El(r, t) — Einelaox +ifoz+ivox® —iwt + E Ereﬁ,melamlx FiBmo = —iyma® —iwt (276)

m={m1,ma2}
and the substrate

Bat,t) = Y Epangme e Hinas Hmad—iot 2.77)

m={m1,ma}

By the summation over the pairs m = {my, my}, all reciprocal lattice vectors in the
two-dimensional space are included. The sum is not limited and thus the expansion
contains all propagating and evanescent waves which can be excited due to the lattice
effect. The number of propagating plane waves in the homogeneous regions depends
on the ratio between wavelength and lattice constant as well as on the material of the
super- or substrate. In the wavelength region \g > nd; with lattice constant d;, 7 = 1, 2
there exists no diffraction for perpendicular incidence on the grating. The smaller the
wavelength in comparison to the lattice constant becomes, the more diffraction orders
can be observed.

By changing the wavelength continuously, diffraction orders can vanish or appear in
transmittance and reflectance. Exactly, at the wavelengths where new diffraction or-
ders appear a resonance can be observed in the spectrum which is known as Rayleigh
anomaly (or also Wood’s anomaly) [33]. It is explained by the redistribution of the
energy into another number of propagating modes.

The transmittance 7,, and reflectance R,, into the different diffraction orders, as indi-
cated in fig. 2.9, can be calculated similar to the transmittance and reflectance in section
2.6 on a planar interface. There, we obtained only one reflected and transmitted plane
wave. Nevertheless, we can also apply egs. (2.48) to each reflected and transmitted
diffraction order separately, since each diffraction order is a plane wave. Thus, the sum
over all propagating orders is ) T, + R, = 1 in the case of non-absorbing systems.
Photonic crystals can be considered as diffraction gratings which exhibit additional
periodicity in the permittivity in the third direction. Thus, also the transmitted and
reflected field of a photonic crystal can be described by the Rayleigh expansion. How-
ever, the strength of the reflected and transmitted fields cannot be determined analyt-
ically. This depends strongly on the periodic structure. To solve this problem is the
main part of this thesis.

2.9. Rescaled Variables

By examining Maxwell’s curl equations (2.2), we recognize that there is no fundamental
length scale in these equations. We also apply this property and scale all lengths in
the system to the length a which is finally set equal to the lattice constant d;. Thus,
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we introduce new dimensionless variables

S wa _a W = wa
N 27'('00 )\7 n Co '
A
N ==, K = ka, (2.78)
a
o =2, =2,
a a

which are denoted by a prime ’. The dispersion relation of homogeneous space is in
the rescaled system ' = k’/n. Additionally, we scale the electric and magnetic fields
to

E = J&E, (2.79a)
H = /H. (2.79b)

Thus, we can write the time-harmonic curl equations (2.65) as

¢RO,Ey = iwpHj, (2.80a)
¢ Hy = —iweEj, (2.80b)

where we omitted already the primes. From here on, we use Maxwell’s equations always
with the scaled variables. This form of Maxwell’s equations is useful for our simulations
since we do not have to operate with the vacuum permittivity and permeability such
as the vacuum speed of light. Additionally, in the case of nondispersive materials, the
calculation does not depend on the wavelength but only on the ratio of the wavelength
to the structure size.

To compare with real values, we simply have to multiply the rescaled results with the
appropriate factors according to the scaling rules in egs. (2.78) and (2.79).
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3. Numerical Methods in Diffractive
Optics

In this thesis, we are interested in the simulation of periodic nanostructures by the
Fourier Modal Method (FMM).

Originally, the FMM was developed to investigate the incidence of a plane wave on
a grating in order to obtain the transmitted and reflected plane waves in the several
spatial harmonics, as already discussed in section 2.8.2. Since the crucial prerequisite
is the periodicity of the system in the grating plane, the FMM can also be applied to
the investigation of photonic crystals and metamaterials.

In this chapter, we start with a short overview on the development of the method.
Then, we present the FMM for three-dimensional systems. We introduce the systems
which can be investigated. In the FMM, the periodic region is divided into a stack
of two-dimensional subsystems via the so-called staircase approximation. These sub-
systems can be solved independently as eigenvalue problems. The individual solutions
are finally combined to form the complete system by a scattering matrix approach.
Thus, we can calculate the reflectance and transmittance as well as the fields in the
periodic structures. We also show how the FMM can be extended to investigate non-
periodic structures. Besides, point sources may be introduced into the grating region
and can serve as internal light sources instead of an external illumination by an in-
cident plane wave. Finally, we shortly present the Chandezon method, which solves
the grating problem by transforming it into curvilinear coordinates. This method is of
relevance since similar techniques are used in chapter 5, where we formulate the FMM
in curvilinear coordinates.

3.1. Historical Review

One of the first methods for the numerical investigation of gratings has been the differ-
ential method [16]. The method is mainly applied to calculate the interaction of light
with gratings. More precisely, a plane wave is impinging on a grating as in section 2.8.2
and the aim is to obtain the electric and magnetic fields in- and outside the grating
structure. Thus, only time-harmonic Maxwell’s equations are considered — the method
belongs to the class of frequency domain methods.

The grating system is divided into three regions: (i) The homogeneous superstrate
above the grating, (ii) the structured grating region, and (iii) the homogeneous sub-
strate region as shown in fig. 3.1(a). Due to the periodicity of the grating, the solutions
in the homogeneous super- and substrate are given by the Rayleigh expansion (see
egs. (2.76) and (2.77)). The fields in the grating region can be expanded in Fourier se-
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Figure 3.1.: (a) Grating with homogeneous superstrate half-space, structured grating
region and the homogeneous substrate half-space. (b) Same grating as in
(a) but built of three stacked lamellar gratings by means of the staircase
approximation.

ries along the periodic directions according to the Bloch theorem (2.71). By inserting
the expansion for the grating region in Maxwell’s curl equations (2.80), we obtain a
set of differential equations for the coefficients which determine the propagation of the
light perpendicular to the grating plane. Together with the Rayleigh expansions in the
super- and substrate, the differential equations form a boundary value problem. In the
classical differential method this is solved via the so-called shooting method [16].
Since these problems are solved with computers, the infinite series of the expansions
have to be truncated. This can cause convergence problems which already arise for
purely two-dimensional metallic gratings in H-polarization. Additionally, the method
becomes unstable for deep gratings [16]. By trying to find alternative approaches, new
methods, such as the Rigorous Coupled Wave Analysis (RCWA)[34, 35], have been
developed. Here, the grating profile is approximated by a stack of lamellar gratings by
the staircasing technique as illustrated in fig. 3.1(b). In this case, each lamellar grat-
ing can be solved independently by an eigenvalue technique. Originally, the different
gratings are connected at the interfaces using the continuity condition of the tangential
electric and magnetic fields through the transfer matrix method. Unfortunately, again
the convergence of metallic gratings for H-polarization was not satisfactory and for
deep gratings numerical instabilities have been observed [36].

A first step towards stable and reliable results was made by introducing the scattering
matrix algorithm. It replaces the transfer matrix method [37] and removes the inherent
instabilities. The superiority of the scattering matrix is due to the careful treatment
of the evanescent modes when matching the individual lamellar gratings.

At the same time the convergence for lamellar metallic gratings in the RCWA for H-
polarization has been improved [38, 39]. The explanation was found in the convergence
behavior of the truncated Fourier series for continuous and discontinuous functions and
is named correct Fourier factorization [40]. Using this technique a new formulation of
the RCWA for crossed gratings was established by Li that is called the FMM [18]. Tt
is the fundamental method of this thesis.

Clearly, the correct Fourier factorization was also useful for the differential method
and improved the convergence behavior [41]. The resulting algorithm is called the Fast
Fourier Factorization method. Of course, the scattering matrix algorithm was also
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included in the differential method to avoid the unstable behavior for deep gratings
[16].

Another method which evolved from the differential method was the Chandezon method
[17, 42]. Here, the grating problem is solved by transforming the grating surface into a
planar surface. Then, in this curvilinear coordinates the system consists of two homo-
geneous regions, where the Rayleigh expansion can be applied. However, this method
exhibits similarly bad convergence properties for grating profiles with sharp edges as
the RCWA for H-polarization. Since the origin is the same this could be also improved
by the correct Fourier factorization rules [43].

In the following, we present the Fourier Modal Method as developed by Li and also
provide an introduction to the Chandezon method as an example of a numerical method
formulated in curvilinear coordinates.

3.2. Fourier Modal Method

3.2.1. System

Before we start to explain the FMM, we specify the systems which are investigated. As
in fig. 3.1, we orient the grating in the Cartesian system such that the z3-axis (which
is the z-axis in the figure) is perpendicular to the grating plane. The substrate region
below the grating consists of a material with permittivity e, and the region above
the grating, the superstrate, has permittivity €,. The periodic directions in the x'z2-
plane do not need to be orthogonal. Thus, we work in a nonrectangular coordinate
system Ox'z?2? that is defined by the lattice vectors. The lattice vectors in real and
reciprocal space are defined as in egs. (2.67) and (2.68). They are connected to the
Cartesian coordinates Ozyz = Oz'7?z” by the relation [18]

#t = z'+a?sing, (3.1a)
7* = 2°cos(, (3.1b)
= a2 (3.1c)

where ( is the angle between the z2- and z%-axis. The x!-axis is parallel to the z'-axis.
The basis vectors can be derived as described in section 2.7.1. Thus, we obtain the
contravariant metric tensor

. sec? ¢ —tan(sec( 0
g9 = | —tan(sec( sec? ¢ 01, (3.2)
0 0 1

with the inverse determinant g = cos? (. Hence, in the nonrectangular coordinates the
permittivity is anisotropic (2.64a). Since we assume isotropic materials in the Cartesian
system, all anisotropic components of the permittivity in the nonrectangular coordi-
nates show the same spatial variation, but the strength is determined by a geometry-
dependent factor. The permeability (2.64b) becomes anisotropic, too. However, each
component is constant since in the original Cartesian system the permeability tensor is
equal to the unit matrix. In the following, we prefer formulating Maxwell’s equations
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with the permeability terms though they contain only angle-dependent factors as the
metric tensor g¥ in eq. (3.2).

Since the coordinate transformation is performed only in the grating plane, the anisotropy
exhibits a principal axis along the z3-axis. In comparison to completely anisotropic
systems, this property simplifies the method later in section 3.2.3.

First, we present the incident field in the superstrate. Then, we explain how to treat
the structured region in the FMM. Thereafter, we handle the homogeneous super- and
substrate regions of the system which can be treated as special cases of the structured
region.

3.2.2. Incident Plane Wave

The light impinges as a linearly polarized plane wave on the grating from the super-
strate region. This is not a restriction since we can decompose arbitrarily-shaped waves
into plane waves (2.28) and solve each component independently. In the nonrectangu-
lar coordinates we obtain for the covariant field components of the plane wave E, and
H, with 0 =1,2,3

E,(z', 2%, 2%) = Egelcor' thor*tae?) (3.3a)

H,(z', 2% 2%) = Hy el the1i'a?), (3.3b)

The components of the incident wave vector are

ap = k™sinf cos ¢, (3.4a)
By = k™sinfsin(¢+ (), (3.4Db)
= k™cosf, (3.4¢)

which is denoted in fig. 3.1 by ki, = (g, 5o, V") with k™ = \/enko. ko is the wave
vector in vacuum. The direction of incidence is determined by the azimuth angle 6
and the polar angle ¢. The polarization of the incident plane wave can be arbitrary.
However, we always calculate two orthogonal polarizations. Thus, by superposition,
arbitrarily polarized incident plane waves can be generated. On the one hand, we
choose a s-polarized plane wave as introduced in section 2.6. The components of the
electric and magnetic field are [44]

Ey, = Eysin ¢, Hy 1 =Ey+/€in cos 0 cos ¢,
Eyo = —FEycos(¢ + (), Hoy o =Ey+\/€m cossin(¢ + (),
E073 :O, H073 :—EO\/EmSiIIQ.

On the other hand, we calculate a p-polarized incident plane wave with

Ey, = Eycosfcos @, Hy 1 = — Ep\/€insin ¢,
Eys = Eycosfsin(é + ¢), Hy o =Eg\/ém cos(¢ + ),
E073 = —E() sin 9, H073 =0.
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3.2.3. Structured Region

In the FMM, the structured region is divided into several subsystems by the staircase
approximation. This means the subsystems are slices perpendicular to the z3-axis [35].
The individual slices are homogeneous in z3-direction and they are periodic in the
slicing plane. As illustrated in fig. 3.2, arbitrarily shaped systems can be approximated
by stacks of such slices. Due to the homogeneity in one direction, the dimensionality of
the problem is reduced and we only have to solve two-dimensional subsystems which
can be treated independently of each other. This is a significant advantage of the
method since slices which appear several times in the structure have to be calculated
only once. Additionally, systems which can be divided into thick slices can be treated
particularly efficiently because only the number of slices is relevant.

s g
9 o o
‘ Q\:"

LI
v
Figure 3.2.: Sliced crystal with single slice to the right.

4

As next step, we have to solve Maxwell’s equations in the individual slices. In the
two-dimensional plane, the fields in the slices have to fulfill the Bloch theorem (2.71).
The lattice periodic function of the Bloch wave is Fourier transformed. Therefore, the
fields are expanded in Fourier-Floquet series. This expansion can be regarded as an
extension of the Rayleigh expansion (see section 2.8.2) and we obtain

Fy(a,a?,2%) = 3 fom{a)eiome it (35)

m

F, stands for any one of the six components of the electric and magnetic field. The
components f,, are the x*-dependent Fourier coefficients which have to be determined
via Maxwell’s equations. The wave vector components «,,, and f3,,, are defined as in
eq. (2.74). The summation runs over the points in the two-dimensional reciprocal space
which are denoted by the pairs m = {mj, my}. This sum has to be truncated since we
can only handle a finite number of coefficients. The reciprocal space can be truncated
to parallelogram or circular shape as illustrated in fig. 3.3. The number of points in
the truncated space is denoted by N. In this thesis, we usually apply the truncation
on a circular area.

We also have to transform the permittivity and permeability in each slice into Fourier
space. Because of the truncation of the reciprocal space we do not simply want to
use the Fourier expansion of the permittivity as denoted in eq.(2.70). In order to
obtain fast convergence, the expansion has to be performed by carefully considering
Li’s Fourier Factorization rules [40], which are presented in appendix A.1. With these
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(a) (b)

Figure 3.3.: Reciprocal space of the transformed system with truncation on a (a) cir-
cular and (b) parallelogram-shaped area.

rules the permittivity has to be Fourier transformed by considering the constitutive
relation

D' = e Ej.
The exact calculation in the nonrectangular coordinate system is given in appendix

A.2. In Fourier space we obtain for the constitutive relation

a' =[],

with the Toeplitz matrix of the permittivity as defined in eq. (A.14), the Fourier vectors
for the electric field e and the dielectric displacement field d. The Fourier vectors
contain the Fourier coefficients of the Fourier-Floquet expansions in eq. (3.5).

After inserting the field expansion and the Toeplitz matrices, Maxwell’s curl equations
(2.80) read

Beg +1i0s€9 = w ([[u“ ﬂ h, + [[u12 ﬂ hg) , (3.6a)
ither — ey = w ([ ] b+ [12] hy) (3.6b)
ey — Bel = w [[u33 ﬂ hs, (3.6¢)
and
Bhg +10shy = —w ([[611 ﬂ e + [[612 ﬂ 82) , (3.7a)
oy —ahy =~ ([ ] e+ []]es), (3.7h)
dhy — fhy = —w[[e?]] es. (3.7¢)

& and B are diagonal matrices with the entries oy, = am, dmn a0d B = By Omn. We
eliminate e3 and hj via egs. (3.7c) and (3.6¢), respectively. Then, we cast eq. (3.6) in
the form

83e|| = iFh” (38)

with the matrix

%Ezz]]ajz ) . (3.9)
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The Fourier coefficients of the fields parallel to the slices are denoted by the vectors

e = ( _e'jQ ) and hy = ( E: ) . (3.10)

In the same manner we reformulate eq. (3.7) as
63h|| = iGe”, (3.11)
with the matrix

L S N0 R e
G = w0 1. 1wA 11 A ) .
( —w [[612]]_%6 [[/1/33]] & w[[ell]]_zﬁ [[/1/33]] ﬁ (3 12)

By merging the two egs. (3.8) and (3.11), we obtain a second order differential equation
for the Fourier coefficients of the parallel electric field components

—6§e|| = FGeH. (3.13)

It is this equation which we have to solve in each slice.
Since the slices are homogeneous in x3-direction we can apply a simple plane-wave
ansatz for the z3-dependence of the electric field as

e(z”) = Peld?” (3.14)

The propagation constant along the x3-direction is ¢ and the corresponding field vector
is denoted by ®. With the help of this ansatz we obtain the eigenvalue problem

*® = FGP, (3.15)

which yields 2N eigenvectors and eigenvalues. The eigenvectors represent the eigen-
modes in the two-dimensional periodic subsystem. These solutions are two-dimensional
Bloch waves. The corresponding eigenvalue ¢? is the squared propagation constant in
x3-direction. For each eigenmode we obtain two propagation constants by taking the
square root of the eigenvalue. The two propagation constants describe the eigenmode
propagating on the one hand downwards and on the other hand upwards in the slice.
We define the propagation constant ¢ such that Im(q) > 0, which is the downward
propagating case in direction of the positive z3-axis.

Then, the electric field in the slice is expanded into the eigenstates ®

2N
e = Z o, <eiQn£E3an + eiqn(d—x3)bn) 7 (3.16)
n=1

with the coefficients a,, (b,) for the downward (upward) propagating modes. We set
the phase of the downward propagating mode to zero at the lower end of the slice and
the phase of the upward propagating mode at the upper end according to ref. [44]. The
slice has thickness d as illustrated in fig. 3.4.
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5 |

Figure 3.4.: Amplitudes of downward (a) and upward (b) propagating modes in a single
slice [ with thickness d.

The magnetic field is determined by eq. (3.11) as

h =G Z ®,q;" ( fana? eiwd—m%n) . (3.17)

In matrix form the expansions of the electric and magnetic fields are

( b ) - ( % —%2 ) ( f(é(f?);?)b ) : (3.18)

with the two matrices

W, = @, (3.19a)
Wy, = G&G 1, (3.19b)

and the phase matrices f (23). The phase matrices are diagonal matrices with entries
fo(23) = el These entries mimic the propagation of the mode through the slice.
® denotes the matrix with all eigenvectors ®,,. By this representation we can easily
couple the solutions of adjacent slices at their mutual interface.

3.2.4. Homogeneous Regions

In the homogeneous super- and substrate region we can represent the electric and
magnetic fields by the Rayleigh expansion due to the periodicity of the grating as
already discussed in section 2.8.2 by egs. (2.76) and (2.77).

In the superstrate region we obtain for the covariant components of the electric field

ESUP(Il ZE2 T ) E elOt():E Ligoa? +iyoax® + Ereﬂ iam, @ +lﬁm2x —i'yi{l‘ac3 (3 20)
o ; ) E .

with the incident plane wave and the reflected spatial harmonics. In the substrate we
only have the transmitted light in its different diffraction orders

Esub ZL‘ ZL‘ I § Etrans iovm @ HiBmg, 22+ e 3‘ (321)

The reflected and transmitted field amplitudes are denoted by Ereﬂ and Efrans

a,m ?
spectively. The summation runs over the same reciprocal space as in the case of the

structured slices in eq. (3.5). The wave vector components «,,, and ,,, are defined as
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in eq. (2.74) and the third component 7, is given by eq. (2.75). In the nonrectangular
coordinate system with the metric (3.2) we obtain in both homogeneous regions

infout \/ en/out k2 — sec? ¢ (a2, + B2, — 20, Bm, sin (). (3.22)

The permittivity is always real in the super- and substrate of the systems, since we
consider only non-absorbing materials in these regions. Thus, the wave vector com-
ponents are either purely real or purely imaginary. They describe either propagating
waves or evanescent waves.

With the resulting reflected and transmitted fields we determine the reflectance and
transmittance into the different diffraction orders as in section 2.8.2. We either di-
rectly calculate the Poynting vector for each diffraction order by the electric fields via
eq. (2.34) or we determine the transmittance and reflectance with the amplitudes of
each propagating plane wave by eq. (2.48). The resulting values are identical.

We also obtain the Rayleigh solutions of the homogeneous super- and substrate region
by solving the eigenvalue problem (3.15) numerically with the corresponding Toeplitz
matrices. However, we solve the eigenvalue problem analytically in order to treat the
possible degeneracy of the eigenvalues correctly. Then, the eigenvector matrix ® is

. 2
a unit matrix 1 and the eigenvalues are given by ¢? = <”y$/ Om) . The degenerate

eigenvectors are treated such that the field vectors represent the Rayleigh expansion as
in egs. (3.20) and (3.21). Thus, the solutions of the eigenvalue problems in the super-
and substrate region are expressed in the same form as the solutions in the structured
layers. This simplifies the formalism later. The electric field expansion in these regions
can then be written down as in eq. (3.16). With the help of the G-matrix (3.12), we can
directly determine the corresponding magnetic fields by eq. (3.17). In the calculation,
the thickness d of the super- and substrate region can be chosen arbitrarily since the
two regions should not contain absorbing materials. Therefore, the propagation length
does not play a role. Finally, we can write the solution in the form of eq. (3.18) and
we can treat all slices identical when we connect the solutions in the different slices in
the following.

3.2.5. Scattering Matrix

Until now we know the eigensolutions in the individual slices. As illustrated in fig. 3.5
we have L + 2 slices: L slices in the structured region plus one slice each for the super-
and substrate regions. Now, we have to rebuild the complete system by stacking these
L + 2 slices on top of each other (see fig. 3.5). Adjacent slices can be connected at the
interfaces by the tangential field components which have to be continuous.

Thus, if we consider the interface between slice [ and slice [ + 1, we have to equate the
fields in slice [ on the bottom at 2 = d; with fields in slice [ + 1 on top at 2® =0

e\ o
hl(ll) (z°=d)) = h|(|l+1) (z° =0). (3.23)
l

Now, we can determine an interface matrix to connect the amplitudes in the adjacent
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Figure 3.5.: Connection of neighboring slices at the interfaces by the tangential fields
components in order to couple the amplitudes in the first and last slice.

slices by a transfer matrix

FO(d)a® \ al+)
( b =1I(l,l+1) FED (b0 ) (3.24)

This matrix is illustrated in fig.3.6. The interface matrix (I, + 1) can be easily
expressed by the W, and W, matrices [45, 46]

LI+ D)+ Qa1 +1) Qi(lLT+1) — Q21,1+ 1)

HU+Q_§<QNJ+D—@@LH)QMJ+U+QMJ+U)’ (3.25)
where Q;(I,1 + 1) = <VVZ~(“) 1 VVZ-(H—I)‘
In other words, the interface matrix propagates the field from one slice to the adjacent
slice by relating the amplitudes in slice [ to the amplitudes in slice [ + 1. Following
this line of thought, we can construct a matrix which connects the amplitudes in the
superstrate slice with the amplitudes in the substrate slice by simple matrix multipli-
cations. This corresponds to the transfer matrix algorithm. Unfortunately, it turns
out that this algorithm is numerically unstable [37, 47| since it allows the fields to grow
exponentially. This can be a problem when the slices become too thick. Therefore,
we use the scattering mat