

 Karlsruhe Reports in Informatics 2011,2
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Software Evolution for
Industrial Automation Systems:

Literature Overview

Johannes Stammel, Zoya Durdik, Klaus Krogmann
Roland Weiss, Heiko Koziolek

 2011

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

ABB DARWIN

Software Evolution for

Industrial Automation Systems:

Literature Overview

Johannes Stammel, Zoya Durdik, Klaus Krogmann
FZI Forschungszentrum Informatik

Haid-und-Neu-Straße 10-14, 76131 Karlsruhe

Roland Weiss, Heiko Koziolek
Industrial Software Systems, ABB Corporate Research

Wallstadter Str. 59, 68526 Ladenburg

Fakultät für Informatik, Karlsruher Institut für Technologie (KIT), Interner Bericht
2011-2

February 7, 2011

2

Outline

In this document we collect and classify literature with respect to software evolution. The main
objective is to get an overview of approaches for the evolution of sustainable software systems
with focus on the domain of industrial process control systems.

The document is structured as follows: In Chapter 1 we describe the literature investigation
strategy. We present questions with respect to the problem space (software evolution) and the
solution space (solution approaches), and a set of evaluation criteria. Chapter 2 surveys the
problem domain and explains our understanding of sustainability and evolution. In Chapter 3
we summarise analytical approaches, which aim at identifying evolution problems or factors
that influence evolution. In Chapter 4 we describe solution approaches for active prevention or
handling of evolution challenges. Chapter 5 gives a quick overview on related survey documents.
Chapter 6 briefly summarises the findings from this document. Chapter 7 lists information
sources which were used for this document and Chapter 8 lists the definitions of important
terms used in this document in a glossary.

3

4

Contents

1 Motivation and Objectives 9

1.1 Objectives . 9

1.2 Investigation Process . 9

1.3 Investigation Questions . 10

1.3.1 Understanding and description of evolution problems 10

1.3.2 Description and evaluation of solution strategies 11

1.4 Evaluation Criteria . 11

2 Background: Terms and Scope 15

2.1 Software Evolution . 16

2.2 Software Migration . 18

2.3 Properties of the Automation Domain . 19

2.4 Meaning of “Long living” and “Sustainability” in the Automation Domain 20

2.5 Relevant Standards . 21

2.5.1 OPC . 21

2.5.2 OPC UA . 21

2.5.3 IEC 61850 . 22

2.5.4 IEC 61508 . 23

3 Identifying and Analysing Evolution Problems 25

3.1 Lehman’s Laws . 30

3.2 Architecture-Based Understanding and Description 32

3.2.1 Approach: Architecture Tradeoff Analysis Method, ATAM 33

3.2.2 Approach: Software Architecture Analysis Method, SAAM 35

3.2.3 Approach: Architecture-Level Modifiability Analysis, ALMA 36

3.3 Software Comprehension by using Data Mining 37

3.3.1 Information sources . 37

3.3.2 Data mining techniques . 38

3.3.3 Data mining goals . 39

3.4 Monitoring and Evaluating Quality Indicators . 42

3.4.1 Summary: Metrics for Identifying Evolution Problems 42

3.4.2 Approach: Detection of Bad Smells or Antipatterns 44

3.4.3 Architectural Enforcements . 45

3.4.3.1 Approach: Dependency-Analysis using Lattix LDM 45

3.4.3.2 Approach: SISSy . 46

5

6 CONTENTS

3.4.3.3 Approach: ISIS . 47

4 Solving Evolution Problems 49

4.1 Strategies for Software Structuring . 55

4.1.1 Heuristics, Best Practices, Design Principles 55

4.1.2 Design Patterns . 57

4.1.3 Reference Architectures . 59

4.2 Reactive elimination of evolution problems . 60

4.2.1 Approach: Evolution in the small . 60

4.2.2 Approach: Migration with DUBLO architectural pattern 61

4.3 Variability Strategies . 62

4.3.1 Approach: Generative Programming (Czarnecki, Eisenecker) 62

4.3.2 Summary: Product Lines . 63

4.3.3 Approach: Product Lines with purevariants 64

4.3.4 Approach: COSVAM: COVAMOF Software Variability Assessment Method 65

4.4 Automating Software Development . 66

4.4.1 Approach: Model Driven Architecture (OMG) 66

4.4.2 Approach: xtUML - Executable UML . 68

4.4.3 Approach: Architecture-Centric MDSD 69

4.4.4 Summary: Eclipse-Based Modelling . 71

4.4.5 Approach: SQL Server Modeling CTP (old name: OSLO) 72

4.4.6 Approach: Constructor MDRAD . 73

4.4.7 Approach: Stratego XT . 74

4.5 Development Process Decisions . 75

4.5.1 Agile methods . 76

4.5.1.1 Properties and introduction of agile methods into the organiza-
tion process . 76

4.5.1.2 Maintenance and Agile Development, Long-term Life Cycle Im-
pact of Agile Methodologies . 79

4.5.1.3 Architecture modelling and agile methods 80

4.5.1.4 Approach: CEFAM Comprehensive Evaluation Framework for
Agile Methodologies (Taromirad) 82

4.5.1.5 Approach: Agile Architecture Interactions (Madison) 83

4.5.2 Knowledge Transfer, Documentation, UML 84

4.5.2.1 General Approaches for Knowledge Transfer 85

4.5.2.2 Documentation Artefacts . 88

4.5.3 Consistency between artefacts . 91

4.5.3.1 Architecture Compliance Checking 92

4.5.3.2 Documentation and Code Consistency 97

4.5.4 Quality Assurance Strategies . 101

4.5.5 Team Organization Strategies . 102

4.5.6 Development Environment Strategies, Virtualisation 103

4.6 Management Strategies: Make or Buy Decision Support 104

4.6.1 Risks, Selection and Integration of the COTS into the process 104

CONTENTS 7

4.6.2 Maintenance of COTS . 107

4.6.3 Trade-off between Make or Buy decision, COTS and Open Source 108

5 Related Surveys 109

6 Management Summary 111

6.1 Categorisation of Approaches . 111

6.2 Decision Levels . 112

6.3 Overall . 114

7 Information Sources 115

7.1 Books . 115

7.2 Journals . 117

7.3 Dissertations . 117

7.4 Conferences and Workshops . 118

7.5 Interviews . 118

7.6 Other . 118

7.7 Search keywords . 119

8 Glossary 121

8 CONTENTS

Chapter 1

Motivation and Objectives

1.1 Objectives

This document contains a literature overview for the DARWIN research project. It is a living
document and is regularly reviewed and extended. The ABB project manager, Roland Weiss,
and FZI Project Manager, Klaus Krogmann, are responsible for upkeep of this document.

The goal of this document is to provide an overview of various strategies concerning evolution of
sustainable systems. The selection criteria for the survey include the applicability of the proposed
approaches to real-world evolution scenarios and systems. The applicability is determined based
on the availability of industrial experience reports and tooling.

The research areas are derived from questions covering the problem domain of evolution and
migration in general, with special attention to sustainable systems. The solution space includes
analytical solutions, proactive solutions (prevention and avoidance of problems), and reactive
solutions (migration, refactoring, reengineering, and evolution).

1.2 Investigation Process

Our investigation activities in order to come up with this document comprise the following
high-level investigation steps:

1. Understand and characterise evolution problems

2. Derive a classification scheme for problems and solution strategies

3. Collect solution strategies and fill in the classification scheme

The following selection criteria are applied for the surveyed approaches:

1. Books are used as a starting point as they carry fundamental and well-established knowl-
edge.

2. Dissertations serve for the knowledge transfer, as they provide an innovative and well-
detailed approach to a problem.

3. Journal articles provide an overview on more recently developed approaches which are
usually mature, since a rigorous review process is passed and the demands for validations
are high.

4. Articles from conferences and workshops provide novel approaches to the problem, however
there might be fewer expert review, validation, or practical experience.

9

10 CHAPTER 1. MOTIVATION AND OBJECTIVES

For an extended list of reviewed information sources (conferences, articles, books) and search
keys refer to Section 7.

This documents contains chapters and sections with a survey character and those which discuss
a single approach in more detail. In overview chapters, the literature and references are sorted
according to the two criteria: suitability to provide an overview and the relevance of literature
and references. Survey articles with high relevance are listed first, literature on single approaches
with less relevance in the end of the listing.

1.3 Investigation Questions

Our literature investigation is guided by these two sets of questions:

• Questions regarding the understanding and description of evolution problems;

• Questions regarding the description and evaluation of solution strategies.

The corresponding questions sets are provided in the subsections 1.3.1 and 1.3.2.

1.3.1 Understanding and description of evolution problems

What are the characteristics of sustainable systems? Sustainable systems have several
problems and peculiarities: Such systems are existing and running for at least 10 years and some
of them could reach more than 30 years. During the lifetime, various changes need to be done
to the system.

These changes are triggered by:

1. Changes of hardware devices (e.g. as old devices get outdated)

2. Changes of communication standards (new state-of-the-art)

3. Changes of user behaviour (e.g. more/other devices, increased usage behaviour, usability
issues)

4. New customer requirements

5. New laws and regulations

6. Deprecation of surrounding software (e.g., OS, compilers, middleware, databases)

7. New development approaches (e.g., agile methods, model-driven techniques)

Dependencies to external technologies in these systems build a high technology stack (e.g. Win-
dows XP, Java 1.5, Tomcat 5.5). During the long lifetime, a high team fluctuation, bad knowl-
edge transfer, and distributed development lead to a loss of knowledge about the system (this
also holds for other domains, but it is a factor which has to be considered).

Therefore, there the following questions arise:

• What are typical migration and evolution difficulties and problems?

Typical migration and evolution difficulties and problems are reviewed in Section 2.

• How can these difficulties and problems be identified?

Approaches for identifying such problems are presented in Section 3.

• Which approaches can be used to prevent and/or to solve these difficulties and problems
(preventive and reactive)?

Approaches for preventing and/or dealing with migration and evolution difficulties and
problems are listed in Section 4.

1.4. EVALUATION CRITERIA 11

1.3.2 Description and evaluation of solution strategies

Questions regarding the description and evaluation of solution approaches are the following:

• In which domains are these approaches applied?

• What are the benefits? What are the problems?

• What is the maturity of these approaches (existing tools, case studies, etc.)?

These questions are discussed together with the evaluation criteria, which are explained in detail
in Section 1.4.

1.4 Evaluation Criteria

The identified approaches are evaluated with respect to a set of evaluation criteria.

The criteria catalogue covers properties like applicability, relevance, positive/negative perspec-
tive, degree of formalization, abstraction level, and development phase. A detailed description
of these criteria is provided in the Table 1.1.

12 CHAPTER 1. MOTIVATION AND OBJECTIVES

Criteria Description

Development Phase: Determines whether an approach is applicable for design, imple-
mentation, or maintenance.
(Design / Implementation / Maintenance)

Relevance,
Automation:

Specifies relevance for the automation domain.

• Approaches specific to other domains (than automation) are
marked as low relevant.

• Approaches which are moderate beneficial or have some re-
strictions are marked as medium relevant.

• Approaches bringing special benefits or suiting special con-
ditions of the automation domain are marked as highly rele-
vant.

(Low / Medium / High)

Relevance,
Sustainability:

Specifies the relevance from the sustainability perspective. Sus-
tainability is the ability for a (software) system to be able stay
alive for a long time (more than 10 years) and requires the ability
to cope with a changing environment and changing user require-
ments during the whole period of life. These criteria indicate if
an approach may have a high, medium or low impact on sustain-
ability properties of a system. For example, an approach aiming
to prevent architecture erosion or to empower knowledge transfer
may be highly relevant.
(Low / Medium / High)

Applicability: Concerns the development stage of the approach regarding its ap-
plicability in industry. The applicability is determined by the avail-
ability of the technology, maturity of tools, and industrial experi-
ence with the approach. For example, if a tool suite is available
which has already been used in industry, which is confirmed by
industrial experience reports, this indicates a high applicability.

• High applicability is given to approaches that are validated
and supported by a tool.

• Medium applicability is assigned if the approach is validated,
but has no/weak tool support or that an application of ap-
proach/tools is connected to some risk.

• Low applicability applies if only an idea of an approach exists
and it still has to be validated and/or the application of it
is could imply a high overhead.

(Low / Medium / High)

Tool: An URL to a supporting tool (if it exists).
(URL)

Preventive / Reac-
tive / Analytical:

Classifies if approaches are used to analyse problems to sustain-
ability, their sources, prevent of problems, or whether they can be
used to solve problems.
(Preventive / Reactive / Analytical)

1.4. EVALUATION CRITERIA 13

Formalization: Concerns the form in which an approach is described, for example,
for further automation. It is ranging from informal “best practices”
to formal metrics or pattern systems. This criterion might not be
applicable for some approaches. For example, software metrics are
quite formalised. On the other hand best practices for software
design are informal.
(Formal / Informal / Not applicable)

Perspective: Distinguishes if an approach actively increases the quality of the
source code or software architecture with respect to sustainability
(e.g. design patterns) or reduces negative influence factors (e.g.
bad smell detection). This criterion might not be applicable for
some approaches.
(Positive / Negative / Not applicable)

Abstraction level: Describes the level of abstraction at which the approach is applied;
the following levels are considered: software development process
(high level of abstraction), architectural and design (medium level
of abstraction) or code (low level of abstraction). This criteria
might not be applicable for some approaches.
(Low / Medium / High / Not applicable)

Benefit for sustain-
able systems:

Briefly describes the benefit of the proposed approach with focus
on the sustainability of systems.

Table 1.1: Evaluation criteria

14 CHAPTER 1. MOTIVATION AND OBJECTIVES

Chapter 2

Background: Terms and Scope

The topic of evolution with respect to sustainable systems is accompanied with a very broad
problem space. We first provide a break down of this problem space.

The following issues may have a negative impact on the sustainability of software systems
[Som06]:

• Undefined (insufficiently defined) management process, project management in particular

• Time and budget pressure

• Outsourcing or off-shoring decisions

• Make or buy decisions

• Size and complexity of technology stack, dependency to multiple technologies

• Different evolution cycles of technology

• Unclear project roles and team organization

• Fluctuation in teams

• Understandability problems, lack of documentation, inconsistent or outdated artefacts

• Bad internal software quality, e.g., bad smells and antipatterns

• Weak quality assurance, insufficient testing

• Customer requirements to the system, e.g., no downtime allowed.

The following levels for addressing the above mentioned issues can be identified:

• Structural decisions

• Management and team organisation

• Development environment

• Automation strategies

In this document we investigate the state of the art for solutions regarding the mentioned
sustainability issues. For each level we present a selection of approaches.

15

16 CHAPTER 2. BACKGROUND: TERMS AND SCOPE

2.1 Software Evolution

There are multiple definitions of software evolution which are summarised in [TRDL07] (confer-
ence paper):

• The Research Institute on Software Evolution defines software evolution as: the set of
activities, both technical and managerial, that ensures that software continues to meet
organisational and business objectives in a cost effective way [TRDL07].

• Lehman and Ramil define software evolution as: all programming activity that is intended
to generate a new software version from an earlier operational version [LR00] (journal
paper).

• Chapin defines software evolution as: the application of software maintenance activities
and processes that generate a new operational software version with a changed customer-
experienced functionality or properties from a prior operational version (...) together with
the associated quality assurance activities and processes, and with the management of the
activities and processes [CHK+99] (journal paper).

Therefore, under software evolution we will understand the following:

Software evolution is a change process of a software concerning both hardware and software
starting from its development and going on until system retirement, during which the system
changes into a different and usually more complex or better state. System evolution is part of
the system life cycle.

Software evolution (the change process) may be caused through several reasons, such as:

• New requirements (change requests) to the system

• Evolution of the technology stack (especially in the case of strong coupling to it) causes
the co-evolution of certain system parts

• Change of the environment

The ability to evolve a software rapidly and reliably preserving the architectural integrity of an
application is a challenge for every organization. However, the evolution of a software system
may become very cost and work expensive, this is usually caused by so-called “software erosion”.
Software erosion is the decreasing quality of the internal structure of a software system. It may
occur already at early development stages of the system [BSB08]. If the system, despite of its
degraded quality, is still valuable to its stakeholders, it is called legacy system [BSB08].

Software erosion may be for example caused by:

• Unmanaged or unstructured introduction of new features (processing of change requests
or bugs)

• Unmanaged or unstructured changes of the system

• Unclear or outdated system architecture or bad system development, e.g., software redun-
dancy through “copy and paste programming” or violation of architectural decisions

• Loss of knowledge about the system by team fluctuation, or insufficient or outdated docu-
mentation

The problem of software erosion is especially relevant for long living systems, as they are exposed
to the change process during a very long period of time.

2.1. SOFTWARE EVOLUTION 17

There are Workshops dedicated to the domain of sustainable systems: Workshop for sustainable
and sustainable systems in the frame of SE Conference 2009 and the annual design for future
workshop on sustainable software systems of the GI working group (L2S2).

As can be seen from the headings of the workshop contributions, a wide area of topics is covered
for sustainable software: Model-Driven Solutions, Model-Based Solutions, Application Land-
scapes, Component Protocol Checking, Patterns and Pattern Systems, Modelling Evolving Sys-
tems, Variant Management and Co-Evolution of Requirements and Architecture, Learning from
Open Source Development, Style-Based Architectures, Program Understanding, Application
Landscapes, Models, Components, Patterns, Self-Adapting Systems, Embedded Models, Code
Repositories and Model-Based Development, Architectural Maintainability Prediction, Distribu-
tion of Software Product Lines, Co-Evolution (architecture, embedded), Domain Specific Models,
Life cycle Management, and Knowledge discovery and preservation.

References:

• [T. Mens. Software Evolution. Springer Berlin Heidelberg, 2008] [Men08]. (book)

• [C. Bommer, M. Spindler, and V. Barr. Software Wartung. dpunkt.verlag, 2008] [BSB08]. (book)

• [Jingwei Wu. Open Source Software Evolution and Its Dynamics. PhD thesis, The University of Waterloo,
2006] [Wu06]. (PhD thesis)

• [H. Malik, A.E. Hassan. Supporting software evolution using adaptive change propagation heuristics. IEEE
International Conference on Software Maintenance, 2008. ICSM 2008., pages 177 – 186, 2008.] [MH08].
(conference paper)

• [S. Brcina, R. Bode, and M. Riebisch. Optimisation Process for Maintaining Evolvability during Software
Evolution. 16th Annual IEEE International Conference and Workshop on the Engineering of Computer
Based Systems, 2009. ECBS 2009., pages 196 – 205, 2009] Discusses evolvability, and introduces a quality
model for it. Presents a meta-model-based process for controlling and optimizing the evolvability charac-
teristics of software baselines [BR09]. (conference paper)

• [M. Torchiano, F. Ricca, and A. De Lucia. Empirical Studies in Software Maintenance and Evolution. IEEE
International Conference on Software Maintenance, 2007. ICSM 2007., pages 491 – 494, 2007] Working
session on empirical studies in maintenance and evolution [TRDL07]. (conference paper)

• [E. Burd, S. Bradley, and J. Davey. Studying the Process of Software Change: an analysis of software
evolution. Seventh Working Conference on Reverse Engineering, 2000. Proceedings., pages 232 –239, 2000]
Describes the analysis and results of studies in software evolution. The main conclusions: 1) fewer software
releases tend of lead to slower increases in data complexity 2) best people should be assigned to maintenance
3) preventative maintenance needs to be continuous theme [BBD00]. (conference paper)

• [P. Sneed, H.M. Brossler. Critical success factors in software maintenance: a case study. International
Conference on Software Maintenance, 2003. ICSM 2003. Proceedings., pages 190 – 198, 2003] Tries to
answer the questions: what is success in software maintenance and what factors have the greatest influence
on the success of maintenance and evolution [SB03]. (conference paper)

• [U. Vora. Architectural Design Methodologies for Complex Evolving Systems. 12th IEEE International
Conference on Engineering Complex Computer Systems, 2007., pages 197 – 206, 2007] Discusses the impact
of evolution on the architectural design of a system designed using Aspect Oriented Design Methodology
and a system designed using the Framework (CFFES) proposed by the authors [Vor07]. (conference paper)

• [M. M. Lehman, J. F. Ramil. Software evolution in the age of component-based software engineering. IEE
Proceedings - Software, 147, pages 249 – 255, 2000] [LR00]. (journal paper)

• [N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, Wui-Gee Tan. Types of software evolution and software
maintenance. Journal of Software Maintenance and Evolution: Research and Practice, 2, pages 3 – 30,
1999] [CHK+99]. (journal paper)

18 CHAPTER 2. BACKGROUND: TERMS AND SCOPE

2.2 Software Migration

Software migration is a change process during which a software system is being moved from
one environment or technology (meaning both, HW and SW) to another, [Men08] (book). This
process is usually triggered either by a change request or by an own life cycle of environment or
technology. Migration is a variant of reengineering in which the transformation is driven by a
major technology change. Reengineering is the examination and alteration of a subject system
to reconstitute it in a new form and the subsequent implementation of the new form, [CI90]
(journal paper). Reengineering generally includes some form of reverse engineering (to achieve
a more abstract description) followed by some kind of forward engineering or restructuring.

In the automation domain the term migration is usually associated with what we define as DCS
migration.

DCS migration is the transfer process of a control system to a newer (or some other) version
of the DCS, or to a competitor DCS. DCS migration is beyond the scope of this document. DCS
migration includes application migration that is responsible for moving applications from one
control platform to another one.

References:

• [T. Mens. Software Evolution. Springer Berlin Heidelberg, 2008] [Men08]. (book)

• [C. Bommer, M. Spindler, and V. Barr. Software Wartung. dpunkt.verlag, 2008] [BSB08]. (book)

• [J. Bisbal, D. Lawless, R. Richardson, D. O’Sullivan, B. Wu, J. Grimson, and V. Wade. A Survey of
Research into Legacy System Migration. Technical report, Trinity College and Broadcom Eireann Research,
Dublin, Ireland, 1997] [BLR+97]. (technical report)

• [L. Wu, H. Sahraoui, and P. Valtchev. Coping with legacy system migration complexity. 10th IEEE In-
ternational Conference on Engineering of Complex Computer Systems, 2005. ICECCS 2005. Proceedings.,
pages 600 – 609, 2005] Coping with Legacy System Migration Complexity [WSV05]. (conference paper)

• [Ying Zou. Techniques and Methodologies for the Migration of Legacy Systems to Object Oriented Plat-
forms. PhD thesis, The University of Waterloo, 2003] [Zou03]. (PhD thesis)

• [E. J. Chikofsky , J. H. Cross II. Reverse Engineering and Design Recovery: A Taxonomy. IEEE Software,
7, page 13, 1990] [CI90]. (journal paper)

2.3. PROPERTIES OF THE AUTOMATION DOMAIN 19

2.3 Properties of the Automation Domain

The automation domain consists of automated plants, factories and utilities and their control
systems. Such control systems usually contain real-time components and have client-server or
multi-tier architectures with event-driven communication. They consist of distributed server
nodes, client nodes, and embedded systems, e.g., controllers and field devices.

The automation domain has several properties:

• Strict requirements on the systems’ availability: downtimes have to be minimised and
ideally aligned with downtimes of machines or plants. Therefore software updates are
often combined with hardware updates.

• Systems have to be developed following several industrial standards, which contribute
additional requirements and constraints on the architecture and design. The relevant
standards are briefly described in Section 2.5.

• Automation systems are usually developed based on the existing versions of the system
(previous generations). Therefore, there is a danger of inheritance of existing problems
regarding sustainability in the new systems.

• Automation systems have to handle a large number of embedded devices of different types.
Therefore, there are dependencies to the technology stack and various devices and their
evolution due to changing communication and integration standards.

• The same is true for the software systems as they are often build relying on 3rd party
components (DB, HMI, Virtualization, component technology), which reflects in the tech-
nology stack.

• The increasing number and complexity of processes to be controlled and a therefore in-
creasing complexity of the control systems has to be dealt with.

• A limited number of customers and thus less feedback compared to a mass software, as
well as limited opportunities to learn from mistakes and to improve systems are typical.

• Automation systems are usually built on much more restricted budgets than military or
aerospace systems.

• Changes of system’s user profile, which demands new functionality, new technologies, and
advanced look-and-feel are, due to the long-term use of these systems, are common.

Existing systems in the automation domain suffer from expensive evolution and maintenance as
well as from long release cycles because sustainability was often not well considered during their
construction.

20 CHAPTER 2. BACKGROUND: TERMS AND SCOPE

2.4 Meaning of “Long living” and “Sustainability” in the Au-
tomation Domain

By long living software systems we understand systems having a life cycle of more than 10 years.
The life cycle ranges from installation, engineering, and deployment to the final shut-down of
the system.

Within their lifespan, these systems have to be adapted in order to react to environmental
changes (standards, technologies) or user change requests (bugs, features), or to reflect changes
of underlying hardware devices or communication standards. System users expect the system
to provide support for more and diverse devices and to cope with increased plant sizes (more
devices connected, more control loops executed, etc).

Among the common sustainability troubles in automation systems are dependencies to standard
information technology, e.g. component systems (COM), .NET, or graphics subsystems. Their
evolution cycles are usually shorter than the one of the process control system software.

Moreover, there is a high quality assurance effort involved in system changes. This is usually
caused by laws, regulations and requirements on safety, changes of the development process and
/ or system environment, and the resulting very high testing effort.

By sustainable software systems we understand systems that can be maintained as product and
that deployed cost effectively over total lifetime.

References:

• Working group “Sustainable Software Systems” (AK L2S2) (in German) http://akl2s2.ipd.kit.edu/.

• [F. J. R. Rojo, R. Roy, and E. Shehab. Obsolescence management for long-life contracts: state of the art
and future trends. The International Journal of Advanced Manufacturing Technology, 2009] Provides a
literature review on the problem of obsolescence in “sustainment dominated systems” in the aerospace do-
main. Clarifies and classifies issues regarding an obsolescence management planning (electronic components,
mechanical components, software, materials, skills and tooling) [RRS09]. (conference paper)

http://akl2s2.ipd.kit.edu/

2.5. RELEVANT STANDARDS 21

2.5 Relevant Standards

There are plenty of predefined standards for use in the automation domain and therefore relevant
for ABB. They influence the system architecture, which means that further structural decisions
and modifications should be applied under consideration of these standards. In this section, we
present several relevant standards: OPC UA, OPC, IEC 61508, and IEC 61850. This list should
not be considered to be comprehensive. From the sustainability perspective, the list gives an
impression on the kinds of dependencies that arise from standards and the kinds of APIs that
are used in the automation domain (at ABB).

2.5.1 OPC

OPC is the abbreviation for an open connectivity standard in industrial automation and en-
terprise systems that support industry. Interoperability is assured through the creation and
maintenance of open standard specifications. It is COM-based (COM – Component Object
Model, Microsoft).

OPC specifications include:

• OPC Data Access

• OPC Alarms and Events

• OPC Batch

• OPC Data eXchange

• OPC Historical Data Access

• OPC Security

• OPC XML-DA

• OPC Complex Data

• OPC Commands

• OPC Unified Architecture

The effect on evolution resulting from this standard is the application of COM as a base tech-
nology and, therefore, a dependency to Microsoft’s operating system families and technology
stack.

References:

• OPC: http://www.opcfoundation.org

2.5.2 OPC UA

The Unified Architecture (UA) is the next generation OPC standard that provides a cohesive,
secure and reliable cross platform framework for access to real time and historical data and events.
One of the reasons for the establishment of this standard is that Microsoft has de-emphasized
COM in favour of cross-platform capable Web Services and SOA (Service Oriented Architecture).

The Unified Architecture (OPC-UA) is described in a layered set of specifications broken into
parts in order to isolate changes in OPC-UA from changes in the technology used to implement
it.

The following parts comprise the OPC Unified Architecture specification:

• Concepts

http://www.opcfoundation.org

22 CHAPTER 2. BACKGROUND: TERMS AND SCOPE

• Security

• Address Space

• Services

• Information Model

• Mappings

• Profiles

• Data Access

• Alarms and Conditions

• Programs

• Historical Access

• Discovery

• Aggregates

The Unified Architecture is designed specifically to allow object and information models defined
by others (vendors, end-users, other standards ...) to be exposed without alteration by OPC-UA
servers.

The following Unified Architecture information model companion specifications have been devel-
oped:

• OPC UA For Devices (DI) Companion Specification;

• OPC UA For Analyser Devices (ADI) Companion Specification;

• OPC UA For IEC 61131-3 Companion Specification.

The effect on evolution resulting from this standard is the application of SOA and Web Services in
order to enable platform independence. Compared to OPC, sustainability in terms of decoupling
of layers is explicitly addressed.

References:

• OPC UA: www.opcfoundation.org/UA/

2.5.3 IEC 61850

IEC 61850 – the international standard for communication networks and systems in substations,
defines the communication between devices in substations and related system requirements. It
supports substation automation functions as well as their engineering.

Its goal is to support systems built from multi-vendors intelligent electronic devices (IEDs) net-
worked together to perform protection, monitoring, automation, metering, and control. The
standard enables the integration of the equipment and systems for controlling the electric power
into complete system solutions and ensures interoperability of equipment by powering compat-
ibility between interfaces, protocols, and data models. It is Ethernet based, provides device-to-
device and station-to-station networks and operates as a client to control the network and talk
to all the servers or slaves on the network.

IEC 61580 standard parts:

• IEC 61850-1 Introduction and overview

www.opcfoundation.org/UA/

2.5. RELEVANT STANDARDS 23

• IEC 61850-2 Glossary

• IEC 61850-3 General requirements

• IEC 61850-4 System and project management

• IEC 61850-5 Communication requirements for functions and devices models

• IEC 61850-6 Configuration description language for communication in electrical substa-
tions related to IEDs

• IEC 61850-7-1 Basic communication structure for substation and feeder equipment – Prin-
ciples and models

• IEC 61850-7-2 Abstract communication service interface (ACSI)

• IEC 61850-7-3 Common data classes

• IEC 61850-7-4 Compatible logical node classes and data classes

• IEC 61850-7-410 Hydroelectric power plants - Communication for monitoring and control.

• IEC 61850-8-1 Specific communication service mapping (SCSM) - Mappings to MMS
(ISO/IEC 9506-1 and ISO/IEC 9506-2) and to ISO/IEC 8802-3

• IEC 61850-9-1 Sampled values over serial unidirectional multi drop point to point link

• IEC 61850-9-2 Sampled values over ISO/IEC 8802-3

• IEC 61850-10 Conformance testing

The effect on evolution resulting from this standard is the enabled interoperability of multi-
vendor IEDs, and therefore, lower costs to install, configure, and maintain such devices. However,
the standard is based on Ethernet technology and therefore inherits its limitations, such as a
complicated troubleshooting and change processes (the latter usually resulting in downtimes).

References:

• IEC 61580: http://www.abb.com/cawp/seitp202/c1256a8c00499292c1256d410038e215.aspx

2.5.4 IEC 61508

IEC 61508 – a standard for Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-Related Systems provides general guidance on the selection of design techniques
according to the safety criticality of a software element under design.

IEC 61508 standard parts:

• Part 1: General requirements (required for compliance)

• Part 2: Requirements for electrical/electronic/programmable electronic safety-related sys-
tems (required for compliance)

• Part 3: Software requirements (required for compliance)

• Part 4: Definitions and abbreviations (supporting information)

• Part 5: Examples of methods for the determination of safety integrity levels (supporting
information)

• Part 6: Guidelines on the application of parts 2 and 3 (supporting information)

• Part 7: Overview of techniques and measures (supporting information)

http://www.abb.com/cawp/seitp202/c1256a8c00499292c1256d410038e215.aspx

24 CHAPTER 2. BACKGROUND: TERMS AND SCOPE

The effect on evolution resulting from this standard is the enhanced safety and therefore reduced
costs for the maintenance (decreased fault tolerance of devices if no danger exists in the process
interface). IEC 61508 designs require maintenance throughout the product lifecycle and thus
manufacturers are responsible for the documentation and certifications. On the other hand, IEC
61508 requires a strict development processes and costly recertification, which hinders evolution.

References:

• IEC 61508: http://www.iec.ch/zone/fsafety/

http://www.iec.ch/zone/fsafety/

Chapter 3

Identifying and Analysing Evolution
Problems

25

26 CHAPTER 3. IDENTIFYING AND ANALYSING EVOLUTION PROBLEMS

Outline

The approaches for the understanding and analysis of the evolution problems can be divided
into the four major groups (no claim for completeness) (see Figure 3.1).

Figure 3.1: Classification of approaches for analysis of evolution problems (Selection of ap-
proaches presented in this overview)

27

Lehman’s Laws are general laws of evolution, which provide a fundamental understanding
of the evolution process of software systems. Although not all the laws are valid for different
software systems types, they are still useful to be considered when developing systems aimed to
be sustainable. An overview of Lehman’s Laws is provided in Section 3.1.

Architecture-based understanding and description provides a set of analysis approaches,
which can be applied to analyse an impact of planned evolution steps. These approaches are
executed at the architectural level. There is a plenty of methods, however, only the following
the most famous methods are described:

• Architecture Tradeoff Analysis Method, ATAM, Section 3.2.1

• Scenario-Based Architecture Analysis Method, SAAM, Section 3.2.2

• Architecture-Level Modifiability Analysis, ALMA, Section 3.2.3

Software comprehension by using historical data mining uses various information
repositories (e.g. code repositories, mailing lists) in order to discover hidden dependencies in
the data (e.g. change propagation) or to predict possible future development scenarios of the
data (e.g. bug prediction). Among others, understanding (large) software systems, propagating
changes, and predicting and identifying bugs are the most interesting research directions, when
concerning sustainable systems. Here, change propagation, and bug prediction and identification
could support maintenance. Understanding of the system could compensate lack of documen-
tation. Section 3.3 provides an introduction into the topic and relevant references. Besides the
historical data mining, that is described here, there are other types of mining data, e.g., web
mining, text mining, and mining of statistical data that are less relevant for sustainable software
systems.

Quality indicators indicate state of the implementation or design of a system and may
help to identify possible problems. Regular monitoring of quality indicators and correction
of identified problems helps to minimize overall maintenance overhead of sustainable systems.
Beside that, it improves the overall system quality.

There are two types of indicators: quantitative (numeric representations and have to be
interpreted in order to derive the semantic rationale of the problem) and qualitative (provide
semantic rationale about the problem itself) indicators.

Subsection 3.4.1 explains and provides a brief overview of product, process and project metrics.
Metrics are helpful indicators for the state of the system and may be used in order to indicate
possible troubles. Subsection 3.4.3 introduces dependency analysis tool (Lattix LDM) and intern
quality analysis tools (SISSY, ISIS). Such tools provide partial automated support for monitoring
system state (e.g. based on metrics). Subsection 3.4.2 describes the concepts of bad smells and
antipatterns. These are indicators for possible troubles in the system on architectural and code
levels.

Most of the quality indicators should be interpreted carefully. What is a sign for a bad design
in one case (antipattern), might be actually a pattern solving some specific problem in a given
context (e.g. Façade pattern).

All practicable approaches (beside the overview sub/sections and approaches from low relevant
sections) are evaluated according to the evaluation criteria. The evaluation result is summarised
in Figure 3.2.

28 CHAPTER 3. IDENTIFYING AND ANALYSING EVOLUTION PROBLEMS

Figure 3.2: Evaluation overview of approaches for analysis of evolution problems

Here the approaches are placed in the matrix according to their relevance for automation
domain and sustainability. Relevance is being estimated by handling one or several of the
following criteria:

• applicable to embedded systems

• considers concurrency / safety

• respects expensive hardware / environment

• failures / safety issue become very expensive

• large investments implied by each installation: investments must be assured

The thickness of the point indicates their applicability. The applicability is being estimated
using the following criteria:

• C/C++ / legacy code support

• available tooling

• tooling tested in case studies

• tooling tested in industrial studies

29

• support for tooling available

A thicker point indicates a higher applicability.

30 CHAPTER 3. IDENTIFYING AND ANALYSING EVOLUTION PROBLEMS

3.1 Lehman’s Laws

Goal: Serve as a base for understanding “aging” processes of software systems. Such under-
standing may enable to optimize design and development of a system in order to minimize
maintenance and evolution overhead in future. Lehman’s Laws are listed in this review in order
to provide an introduction to the solution strategies to evolution problems.

Short Description: A fundamental article by Lehman (1980) divides Software into three
categories, depending on their evolution behaviour:

• S-Systems (Specifiable) - stable and do not evolve

• P-Systems (Problem solving) - do evolve

• E-Systems (Embedded in concrete context) - do evolve and cause their own evolution

The Lehman’s Laws, or so-called Laws of Software Evolution, were formulated by Lehman and
Belady starting from 1972 during their research of evolution history of big software systems. The
laws are believed to apply mainly to monolithic, proprietary software, however some empirical
observations coming from the study of open source software development appear to challenge
some of the laws [MFRD08, WYL08, XCI09].

The laws are provided in the table below and can be summarized as follows:

• Law of continuing change: A system that is being used undergoes continuing change or
degrades in effectiveness.

• Law of increasing complexity: A computer program that is changed, becomes less and less
structured. The changes increase the entropy and complexity of the program.

The initial system development influence is not reflected in the laws, although it impacts further
maintenance and system evolution stages.

Nr.
(Date)

The Law Explanation

1 (1974) Continuing Change E-type systems must be continually adapted or
they become progressively less satisfactory.

2 (1974) Increasing Complexity As an E-type system evolves, the complexity of its
structure increases unless work is done to maintain
or reduce it.

3 (1974) Self Regulation An E-type system evolution process is self regulat-
ing with a distribution of product and process mea-
sures close to a normal distribution.

4 (1978) Conservation of Organ-
isational Stability (in-
variant work rate)

The average effective global activity rate in an
evolving E-type system is invariant over product
lifetime.

5 (1978) Conservation of Famil-
iarity

As an E-type system evolves, anything associated
or working with it (for example developers, sales
personnel or users) must maintain mastery of its
content and behaviour to achieve satisfactory evo-
lution. Excessive growth diminishes that mastery.
Hence the average incremental growth remains in-
variant as the system evolves.

3.1. LEHMAN’S LAWS 31

6 (1991) Continuing Growth The functional content of E-type systems must be
continually increased to maintain user satisfaction
over their lifetime.

7 (1996) Declining Quality The quality of E-type systems will appear to be
declining unless they are rigorously maintained and
adapted to operational environment changes.

8 (1996) Feedback System (first
stated 1974, formalized
as law 1996)

E-type evolution processes constitute multi-level,
multi-loop, multi-agent feedback systems and must
be treated as such to achieve significant improve-
ment over any reasonable base.

Evaluation:

Development Phase: Design

Relevance, Automation: Medium (Not automation specific, no limitation for do-
main)

Relevance, Sustainability: Medium (Provide generalisation and basic understanding,
however laws do not hold for all systems)

Applicability: Low (More general principles)

Tool: No tool support available. Lehman’s Laws represent a
rule of thumb.

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Informal

Perspective: Positive

Abstraction level: High

Benefit for sustainable sys-
tems:

Help to understand maintenance and evolution phases,
and, therefore, consider them during system development.
This may help to minimise future overhead.

References:

• [C. Bommer, M. Spindler, and V. Barr. Software Wartung. dpunkt.verlag, 2008. Chapter 4.2] [BSB08]
(book)

• Wikipedia: http://en.wikipedia.org/wiki/Software_evolution

• [T. Mens, J. Fernandez-Ramil, and S. Degrandsart. The evolution of Eclipse. IEEE International Confer-
ence on Software Maintenance, 2008. ICSM 2008. pages 386 – 395, 2008] Presents a metrics-based study
of the evolution of Eclipse, an open source integrated development environment, based on data from seven
major releases, from releases 1.0 to 3.3. Investigates whether the laws of software evolution were supported
by the data. The authors found supportive, as well as contradictive evidences. [MFRD08] (conference
paper)

• [M. Wermelinger, Yijun Yu, and A. Lozano. Design principles in architectural evolution: A case study.
IEEE International Conference on Software Maintenance, 2008. ICSM 2008. pages 396 – 405, 2008]
Investigates how structural design principles are used in practice, in order to assess the utility and relevance
of such principles to the maintenance of large, complex, sustainable and successful systems. Eclipse is used
for the case study in order to check whether its architecture follows, throughout multiple releases, some
proposed evolution principles. The authors found supportive as well as contradictive evidences. [WYL08]
(conference paper)

• [Guowu Xie, Jianbo Chen, and I. Neamtiu. Towards a better understanding of software evolution: An
empirical study on open source software. IEEE International Conference on Software Maintenance, 2009.
ICSM 2009. pages 51 – 60, 2009] Tries to verify Lehman’s laws of software evolution. The findings indicate
that several of these laws are confirmed, while the rest can be either confirmed or disproved depending
on the law’s operational definitions. Analyses the growth rate for projects development and maintenance
branches, and the distribution of software changes. Finds similarities in the evolution patterns of the
studied programs (Plan: construction of rigorous models for software evolution). [XCI09] (conference
paper)

• [A. Israeli, D. G. Feitelson. The Linux kernel as a case study in software evolution. Journal of Systems
and Software, Volume 83 , Issue 3, pages 485-501, 2010] [IF10] (journal paper)

http://en.wikipedia.org/wiki/Software_evolution

32 CHAPTER 3. IDENTIFYING AND ANALYSING EVOLUTION PROBLEMS

3.2 Architecture-Based Understanding and Description

Software Architecture plays an important role in Software Engineering. In this chapter we
present approaches which use software architecture modelling for analyses and description of
evolution problems.

There are several surveys of scenario-based architecture analysis approaches:

• [M.A. Babar, L. Zhu, and R. Jeffery. A framework for classifying and comparing soft-
ware architecture evaluation methods. Australian Software Engineering Conference 2004.
Proceedings, 2004, pages 309–318, 2004] A Framework for Classifying and Comparing Soft-
ware Architecture Evaluation Methods, Covers: Software Architecture Analysis Method
(SAAM), Architecture Tradeoff Analysis Method (ATAM), Active Reviews for Intermedi-
ate Design (ARID), SAAM for Evolution and Reusability (SAAMER), Architecture-Level
Modifiability Analysis (ALMA), Architecture-Level Prediction of Software Maintenance
(ALPSM), Scenario-Based Architecture Reengineering (SBAR), SAAM for Complex Sce-
narios (SAAMCS), and integrating SAAM in domain-Centric and Reuse-based develop-
ment (ISAAMCR) [BZJ04]. (conference paper)

• [E. Dobrica, L. Niemela. A survey on software architecture analysis methods. Transac-
tions on Software Engineering, 28(7): 638–653, 2002] A Survey on Software Architecture
Analysis Methods, Covers: software architecture analysis method (SAAM) and its three
particular cases of extensions, one founded on complex scenarios (SAAMCS), and two ex-
tensions for reusability, ESAAMI and SAAMER, the architecture trade-off analysis method
(ATAM), scenario-based architecture reengineering (SBAR), architecture level prediction
of software maintenance (ALPSM), and a software architecture evaluation model (SAEM)
[Dob02]. (conference paper)

3.2. ARCHITECTURE-BASED UNDERSTANDING AND DESCRIPTION 33

3.2.1 Approach: Architecture Tradeoff Analysis Method, ATAM

Goal: Support an architectural decision process considering a tradeoff between several quality
attributes.

Short Description: A structured approach for understanding the tradeoffs inherent in the
architectures of software-intensive systems. This approach was developed to provide a principle
way to evaluate a software architecture’s fitness with respect to multiple competing quality
attributes: modifiability, security, performance, availability, and so forth. The approach helps
to reason about architectural decisions that affect quality attribute interactions, e.g. when
improving one quality attribute leads to decreasing another.

The ATAM approach comprises nine steps which are structured in four groups: Presentation
(Present the ATAM, Present business drivers, Present architecture), Investigation and Analysis
(Identify architectural approaches, Generate quality attribute utility tree, Analyze architectural
approaches), Testing (Brainstorm and prioritize scenarios, Analyze architectural approaches),
and Reporting (Present results).

Architectural approaches are architecture styles, or in general architectural design decisions,
that should be evaluated. A utility tree is used to elicit the quality attributes of interest and
determine a ranking of quality attributes.

ATAM consists of four phases, which are performed in a couple of stakeholder workshops. Phase
0 is a setup phase. Phase 1 and 2 are the evaluation phases and comprise the nine steps mentioned
before. Phase 1 is architecture-centric with focus on eliciting architectural information. Phase
2 is stakeholder-centric and aims at eliciting stakeholder points of view. Phase 3 is a follow-up
phase for producing a final report and planning follow-on actions.

The approach has been applied to several case studies and software systems in practice.

Evaluation:

Development Phase: Design / Maintenance

Relevance, Automation: Low (Approach is not addressing automation itself, de-
pending on participating stakeholders)

Relevance, Sustainability: Low (Approach is not addressing sustainability itself, de-
pending on participating stakeholders)

Applicability: High (Can be applied without tools by performing work-
shops with stakeholders)

Tool: There is a journal paper about a collaborative web-based
architecture evaluation tool for ATAM, however this tool
is not available in Web [MT05].

Preventive / Reactive / An-
alytical:

Analytical

Formalization: Informal (Manual work, high stakeholder involvement)

Perspective: Not applicable

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Applying ATAM with focus in sustainability might help
stakeholders to get a better common understanding of
sustainability factors and improve decisions, but depend-
ing on stakeholder’s experience.

References:

• [P. Clements, R. Kazman, and M. Klein. Evaluating software architectures. Addison-Wesley, 4. print.
edition, 2005] [CKK05] (book)

• [R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-based analysis of software architecture.
Software, IEEE, 13(6), pages 47 – 55, 1996] [KKB+98] (conference paper)

• [Piyush Maheshwari and Albert Teoh. Supporting atam with a collaborative webbased software archi-
tecture evaluation tool. Science of Computer Programming, 57, pages 109 – 128, 2005] [MT05] (journal

34 CHAPTER 3. IDENTIFYING AND ANALYSING EVOLUTION PROBLEMS

paper)

• Official Webpage: http://www.sei.cmu.edu/architecture/tools/atam/

http://www.sei.cmu.edu/architecture/tools/atam/

3.2. ARCHITECTURE-BASED UNDERSTANDING AND DESCRIPTION 35

3.2.2 Approach: Software Architecture Analysis Method, SAAM

Goal: Analyse software architecture and get a better understanding of sustainability problems.

Short Description: An approach for analyzing software architectures by using a set of sce-
narios. Based on the observation that claims about qualities, like “a certain pattern ensures
maintainability of the system”, could not be tested effectively, the creators of SAAM replaced
such claims with scenarios that operationalize those claims. Originally SAAM was focused on
modifiability analyses, but has proven to be useful for many other quality attributes as well (such
as portability, extensibility, etc.). Stakeholders enumerate a set of scenarios that are scrutinized,
prioritized, and mapped onto a representation of the architecture.

Scenarios are brief descriptions of some anticipated or desired use of a system. A scenario that
is directly supported by an architecture is called direct scenario. A scenario that requires mod-
ifications of the architecture is called indirect scenario. The identification of indirect scenarios
is an important objective of SAAM.

SAAM comprises of the following steps: 1) develop scenarios, 2) describe architecture, 3) classify
and prioritize scenarios, 4) individually evaluate indirect scenarios, 5) assess scenario interactions,
6) create overall evaluation.

Evaluation:

Development Phase: Design / Maintenance

Relevance, Automation: Low (Approach is not addressing automation itself, de-
pending on participating stakeholders)

Relevance, Sustainability: Low (Approach is not addressing sustainability itself, de-
pending on participating stakeholders)

Applicability: High (Can be applied without tools by performing work-
shops with stakeholders)

Tool: –

Preventive / Reactive / An-
alytical:

Analytical

Formalization: Formal

Perspective: Not applicable

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Helps stakeholders to get a better understanding of sus-
tainability problems when applied with focus on evolu-
tion, but depending on stakeholder’s experience.

References:

• [P. Clements, R. Kazman, and M. Klein. Evaluating software architectures. Addison-Wesley, 4. print.
edition, 2005] [CKK05] (book)

• [R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-based analysis of software architecture.
Software, IEEE, 13(6):47 – 55, 1996] [KKB+98] (conference paper)

36 CHAPTER 3. IDENTIFYING AND ANALYSING EVOLUTION PROBLEMS

3.2.3 Approach: Architecture-Level Modifiability Analysis, ALMA

Goal: Besides other, analyse change efforts and identify evolution risks.

Short Description: Architecture-level modifiability analysis (ALMA), a architecture-level anal-
ysis approach that focuses on modifiability, distinguishes multiple analysis goals, has explicit
assumptions and provides repeatable techniques for performing the steps.

ALMA consists of five main steps, i.e. goal selection, software architecture description, change
scenario elicitation, change scenario evaluation, and interpretation. Supported goals are: main-
tenance effort prediction, risk assessment, and comparison of candidate architectures.

For description of the architecture an architectural model, i.e., views from several architectural
viewpoints have to be created. The kind of model is not fixed. Change scenario elicitation is
done by interviewing of stakeholders. Since the number of possible changes is almost infinite
the approach considers usage of equivalence classes and classification of change categories for
change scenarios. The authors propose two techniques for selection of scenarios: 1) top-down:
predefined classification of change categories is used to guide the search for change scenarios,
2) bottom-up: stakeholders are interviewed without predefined classification. The scenario
evaluation step evaluates the effect of the change scenarios on the architecture. Therefore three
impact analysis steps are performed: 1) Identify affected components, 2) Determine effect on
the components, 3) Determine ripple effects.

The approach has been validated through its application in several cases, including software
architectures at Ericsson Software Technology, DFDS Fraktarna, Althin Medical, the Dutch
Department of Defense and the Dutch Tax and Customs Administration.

Evaluation:

Development Phase: Design / Maintenance

Relevance, Automation: Medium (There is no limitation of domain)

Relevance, Sustainability: High (Approach addresses modifiability, change effort ex-
plicitly)

Applicability: Medium (Manual approach, modelling is required but no
tool support available, difficult to rate since there a only
a few case study reports.)

Tool: –

Preventive / Reactive / An-
alytical:

Analytical

Formalization: Informal

Perspective: Positive / Negative

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Approach can help identifying evolution risks, i.e.
changes that are critical for sustainability and can only
be performed at high costs.

References:

• [P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet. Architecture-level modifiability analysis (ALMA).
Journal of Systems and Software, 69(1-2):129 – 147, 2004] [BLBvV04] (journal paper)

3.3. SOFTWARE COMPREHENSION BY USING DATA MINING 37

3.3 Software Comprehension by using Data Mining

An investigation of project history gives insights into the evolution process of a system. Ap-
proaches belonging to this category use data from the (past) projects (e.g. code, bug tracker
systems or archived project communication) and data mining techniques (e.g. generalization or
clustering) in order to derive knowledge about evolution stages, frequent causes and problems.

Due to space restrictions and presence of an excessive survey ([80309]), this section only high-
lights general aspects, which are representing a general introduction to the topic.

Data mining has two general purposes:

• To uncover hidden dependencies in the data (“descriptive”)

• To predict possible future development scenarios of the data (“predictive”)

An overview of the data mining techniques, goals (sections) and information sources is presented
in Figure 3.3 ([Has08]).

Figure 3.3: Overview: Data mining research sections (goals), approaches and information sources

3.3.1 Information sources

An important part of data mining is comprehensive data, which plays the base for the data
mining techniques. Such techniques are used to process and analyse different data types from
various information sources depending on the goals of such analysis (see section above). Ex-
amples of data information sources (both software and document repositories)[Has08] (journal
paper) are:

• Historical repositories, such as source control repositories, bug repositories, and archived
communications, record informations about the evolution and progress of a project.

38 CHAPTER 3. IDENTIFYING AND ANALYSING EVOLUTION PROBLEMS

Figure 3.4: Repositories in data mining, publications 2004-2008 ([Has08]) (journal paper)

• Run-time repositories, such as deployment logs (e.g. logs of software or updates installed
by different user groups, Web services logging), contain information about the execution
and the usage of an application at a single or multiple deployment sites.

• Code repositories, such as Sourceforge.net and Google code, contain the source code of
various applications developed by several developers.

Mining these historical, run-time and code repositories, one can uncover patterns and informa-
tion, e.g. historical dependencies between project artefacts, such as functions, documentation
files, or configuration files. Such historical dependencies may be a link between an update of
a requirement document and introduction of a new feature into the system (e.g. discovered by
corresponding changes in code). One can also eventually trace this change propagation through
several system parts and therefore, for example, predict which system parts will be sequen-
tially affected by maintenance activities. Such pattern and information analysis runs (semi-)
automatically.

The study provided by [Has08] analyses the publications made in the 2004-2008 along various
types of repositories (see Figure 3.4). It shows that a large amount (more than 80%) of the
published work focuses on source code and bug related repositories. The Figure counts all types
of repositories used by a particular paper.

3.3.2 Data mining techniques

A detailed overview of currently used data mining techniques is presented in [80309] (project
survey). It reviews data types, data processing, most common data mining techniques, mining
complex data sets and future trends in the data mining field.

According to [80309] (project survey), data mining techniques can be divided into the following
groups:

• Data generalisation - is a process that abstracts a large set of task-relevant data in a
database from a relatively low conceptual level, such as numerical values, to higher concep-
tual levels, such as categorical labels, in concise terms, at different granularity, and from
different angles. Data generalization is a form of descriptive data mining that discovers
interesting general properties of the data.

• Frequent pattern clustering - is the process of grouping the data into classes or clusters so
that objects within a cluster have high similarity to one another within the same cluster

3.3. SOFTWARE COMPREHENSION BY USING DATA MINING 39

but are dissimilar to objects in other clusters. The quality of clustering can be assessed
by a measure of dissimilarity between objects. Frequent patterns are substructures, sub-
sequences, or item sets (a set of items) that appear in a data set frequently. One example
of it is that milk and bread may frequently appear together in a shopping transaction data
set.

• Classification and prediction - are two forms of data analysis to extract models describing
data classes or to predict future data trends. Classification predicts categorical labels,
whereas prediction models continuous-valued functions.

For further information please refer to the former mentioned document.

3.3.3 Data mining goals

The main directions of the data mining goals are listed in the following [Has08] (journal paper).
Since [Has08] represents an extensive overview, only the main research directions are listed. For
further details refer to the overview article.

• Understanding (large) software systems. Large software systems are often insuffi-
ciently documented or/and the documentation is out of date. The initial project partic-
ipants are as well usually no longer available. Dependency graphs and the source code
documentation offer a static view of a system and fail to reveal details about the history of
a system or the rationale for its current state or design. Sustainable systems typically suffer
from outdated documentation (respectively, such systems are usually under-documented),
thus this data mining goal is of high interest for sustainable systems.

• Propagating Changes. Current practices for propagating software changes often rely
on human communication, and the knowledge of experienced developers. Many bugs that
are hard to find are introduced by developers who did not notice dependencies between
entities, and failed to propagate changes correctly. However, instead of using traditional
dependency graphs to propagate changes, one could make use of historical co-changes. The
assumption here is that entities co-changing frequently in the past are very likely to co-
change in the future. This data mining research direction is of high interest for sustainable
systems.

• Automating Empirical Studies. The automation of empirical studies permits the
repetition of studies on a large number of subject and the ability to verify the generality
of many findings in these studies. This goal is less relevant for the goals of this project, as
it provides more theoretical result having less immediate impact on evolution.

• Understanding Team Dynamics. Many large projects communicate through mailing
lists, IRC channels, or instant messaging. These discussions cover many topics such as
future plans, design decisions, project policies, and code or patch reviews. Is less relevant
for the goals of this project, as a suitable information for such analysis first has to be
gathered that might be conflicting with information and privacy protection policies.

• Predicting and identifying bugs. The assumption is that the code that had bugs in
the past is likely to have bugs in the future. Furthermore, bugs are not likely to appear in
unchanged code. Thus, recent bugs and changes have a higher effect on the bug potential
of a code over older changes. Although, early bug prediction and identification could
improve overall maintenance effort, the efficiency of such predictions would first have to
be investigated. Therefore, this goal is less relevant for the goals of this project.

• Improving the User Experience. One can mine reported bugs and execution logs to
prevent an application from crashing, by warning the user, when he attempts to perform
an action which has been reported by others to have bugs. However, in the automation

40 CHAPTER 3. IDENTIFYING AND ANALYSING EVOLUTION PROBLEMS

domain a special attention to the system’s robustness. Such systems are not allowed to
crash on user actions, therefore, this direction is less relevant for the goals of this project.

• Code Reuse. Large code libraries are usually not well-documented, and have complex
APIs, which are hard to use by non-experts. So one could mine code repositories to help
developers reuse code. However, the extend of reuse of such code libraries by ABB is
unclear. Additionally, tools required to support such analysis and their efficiency will first
have to be implemented and evaluated. Therefore, this direction is less relevant for the
goals of this project.

Further on, data mining techniques may consider both architecture level and code level, and
may be used during design, implementation and maintenance phases of system life.

Data mining techniques concerned with understanding (large) software systems and propagation
of changes are matters of the highest interest for sustainable systems. We provide several
example references to the approaches concerned with the mining information repositories for
understanding software systems and propagating changes.

References:

• [A.E. Hassan. The road ahead for Mining Software Repositories. Frontiers of Software Maintenance, 2008.
FoSM 2008. pages 48 – 57, 2008] [Has08] (journal paper)

• [CRID 80321. Data Mining Survey, 200] [80309] (project survey, CRID)

• [T. Girba and S. Ducasse. Modeling History to Analyze Software Evolution. Journal of Software Mainte-
nance: Research and Practice (JSME), pages 207 – 236, 2006] Current approaches reasoning about general
laws of software evolution do not rely on an explicit metamodel, and thus, they make it difficult to reuse
or compare their results. The authors present a survey of the evolution analyses and deduce a set of
requirements that an evolution meta-model should have. They define, Hismo, a meta-model in which his-
tory is modelled as an explicit entity: it adds a time layer on top of structural information, and provides
a common infrastructure for expressing and combining evolution analyses and structural analyses. The
authors validate the usefulness of their meta-model by presenting how different analyses are expressed with
it [GD06]. (journal paper)

• [A.E. Hassan, Zhen Ming Jiang, and R.C. Holt. Source versus object code extraction for recovering software
architecture. 12th Working Conference on Reverse Engineering, page 10, 2005] To support developers
maintaining and evolving under (or un-) documented systems, an up to date view of the architecture
could be recovered from the system’s implementation. Source code or object code extractors may be
used to recover the architecture. This paper explores using two types of extractors (source code and
object code extractors) to recover the architecture of several large open source systems. It investigates the
differences between the results produced by these extractors to gain a better understanding of the benefits
and limitations of each type of extractor. Results show that both types of extractors have their benefits
and limitations. For example, an object code extractor is easier to implement while a source code extractor
recovers more dependencies that exist in the source code as seen by developers [HJH05]. (conference paper)

• [L. Moonen, PhD thesis, The University of Amsterdam. Exploring Software Systems. 2002] In the disser-
tation, the author investigates approaches and tools that help remedy the knowledge degradation about a
system during its evolution by supporting the exploration of a software system and improving its legibility.
He examines an analogy with urban exploration and present approaches for the extraction, abstraction,
and presentation of information needed for understanding software [Moo02]. (PhD thesis)

• [L. Canfora, G.and Cerulo and M. Di Penta. Tracking Your Changes: A Language-Independent Approach.
Software, IEEE, 26 , Issue:1, 50 –57, 2009] The authors use versioning systems (svn, etc.) for studying
and monitoring a software system’s evolution. The approach enables tracking the evolution of software
entities treatable as a sequence of lines, such as source code, but also requirements, use cases, and test
cases [CDP09] (journal paper)

• [D. Cubranic. Project History as a Group Memory: Learning From the Past. PhD thesis, 2005] Proposes a
tool called Hipikat which indexes historical repositories, and displays on demand relevant historical informa-
tion (Email exchange, bug reports, etc.) within the development environment. Hipikat then recommends
relevant artefacts from the memory during a software modification task. While working on a particular
change, Hipikat can display pertinent artefacts such as old emails and bug reports, discussing the code
being viewed in the code editor [Cub05]. (PhD thesis)

• [A.E. Hassan and R.C. Holt. Using development history sticky notes to understand software architecture.
Program Comprehension, 2004. Proceedings. 12th IEEE International Workshop on, pages 183 – 192,
2004] An approach that recovers information (called source sticky notes) from source control systems and
attaches this information to the static dependency graph of a software system. The article demonstrates

3.3. SOFTWARE COMPREHENSION BY USING DATA MINING 41

how to use these notes along with the software reflexion framework (has been proposed by Murphy et
al. to assist in understanding the structure of software systems, [MNS95]) to assist in understanding the
architecture of large software systems. These notes record various properties concerning a dependency such
as the time it was introduced, the name of the developer who introduced it, and the rationale for adding it.
NetBSD (an open source operating system) is used as an example for demonstration [HH04]. (conference
paper)

• [A.E. Hassan. Mining software repositories to assist developers and support managers. In Proceedings of
ICSM 2006: IEEE International Conference on Software Maintenance, Chicago, Philadelphia, USA, pages
pp. 339–342, Sept. 24-27, 2006] This paper presents approaches and tools which mine and transform static
record keeping software repositories to active repositories. Such repositories then can be used by researchers
to gain empirically based understanding of software development, and by practitioners to predict, plan and
understand various aspects of their project [Has06]. (conference paper)

• [M. Di Penta. Evolution Doctor: A Framework to Control the Evolution of Undocumented Software
Systems. PhD thesis, 2003] This work proposes a framework, Evolution doctor, to diagnose and “cure”
software erosion caused by the maintenance activities. Some example of negative maintenance activities
(mentioned in the work) are growth of cloning percentage, the presence of unused objects, the loss of source
file organisation and traceability links [Pen03]. (PhD thesis)

• [D. Poshyvanyk. Using information retrieval to support software maintenance tasks. ICSM 2009. IEEE
International Conference on Software Maintenance, 2009, pages 453 – 456, 2009] Defines and validates a
semi-automated approach for feature location in source code based on the combination of a single execution
trace and comments and identifiers from source code. The approach is based on information retrieval (IR)
approach for extracting and representing the unstructured information in large software systems. These
approaches are supposed to contribute directly to the improvement of design of incremental changes and
thus increased software quality and reduction of software maintenance costs [Pos09]. (conference paper)

• [L. Cerulo. On the Use of Process Trails to Understand Software Development (Analysis of historical data in
combination with static and dynamic analysis). PhD thesis, 2006] The author investigates the usefulness of
historical data stored in software repositories to support developers and managers in maintenance activities.
There are three case studies: 1) derivation of the set of files impacted by a change by considering those
that have been impacted by similar changes in the past; 2) selection of the best developers able to resolve
a new change request; 3) derivation of presence of crosscutting concerns in source code, the hypothesis is
that developers usually perform logical transactions coupled in a concern. The approach is implemented
in an Eclipse plug-in: Jimpa [Cer06]. (PhD thesis)

• [A. Tarvo. Mining Software History to Improve Software Maintenance Quality: A Case Study. Software,
IEEE, Volume: 26 , Issue: 1, 34 – 40, 2009] A case study on the “Binary Change Tracer”, which collects
data on software projects and helps predict regressions (e.g. decreases of quality through introduction of
a new feature) in software projects. Microsoft and C++ based [Tar09]. (journal paper)

42 CHAPTER 3. IDENTIFYING AND ANALYSING EVOLUTION PROBLEMS

3.4 Monitoring and Evaluating Quality Indicators

Quality Indicators help to identify potential problems in the software, which may have an impact
on system evolution.

• Quantitative Indicators are numeric representations of software quality properties and
have to be interpreted in order to derive the semantic rationale of quality problems. Soft-
ware metrics are typical representatives of this category.

• Qualitative Indicators give hints on potential software quality problems. Qualitative
indicators can provide the semantic rationale of software quality problems. Typical rep-
resentatives of this category are e.g., antipatterns. An antipattern is associated with an
explicit knowledge about negative quality impact, i.e., the semantic rationale.

3.4.1 Summary: Metrics for Identifying Evolution Problems

A software metric is a measure of some property of a software or its development process. Metrics
help analyse the state, quality and (possible) troubles of a system. They can be used to support
the implementation, maintenance and evolution phases. Furthermore, they can be interpreted
as quantitative software quality indicators.

Metrics belong to quality assurance activities and can be divided into the three general categories:

• Product metrics - characteristics of the product such as size, complexity, design features,
performance, and quality level. Can be divided into conventional metrics and object-
oriented metrics. These can be further dived on size metrics (e.g. amount of entities) and
structure / complexity metrics (e.g. coupling, cohesion).

Conventional size metrics are for example LOC (lines of code), NOS (number of statements)
and Halstead (determines a quantitative measure of complexity directly from the operators
and operands in the module, can be used for the estimation of maintenance and test
overhead).

Conventional structural metrics are for example Cyclomatic complexity (measures the
number of linearly independent paths through a program’s source code), Fan-in / Fan-out
(measure the relationships/calls between procedures/modules) and Maintainability index
(is calculated from lines-of-code measures, McCabe measures and Halstead metrics with
coefficients, can be used for maintainability evaluation and monitoring).

Object-oriented size metrics are for example NOA (number of attributes per class)and
NOM (number of methods per class). They can be used for estimation of a maintainability
overhead.

Object-oriented structural metrics are for example CBO (coupling between objects), DIT
(depth inheritance tree) and NOC (number of children).

• Process metrics - can be used to improve software development and maintenance, e.g.
effectiveness of defect removal, response time of the fix process, and pattern of testing
defect arrival. Process metrics can help answering the following questions, considering
evolution of the systems. Such questions can be for example about size of old / new
release, how often is system change needed or how much does a change cost.

An example of a process metric: Growth of the system = (Size of the new release - Size of
the old release) / Size of the old release.

• Project metrics - describe the project characteristics and execution, e.g. the number of
software developers, the stuffing pattern over the life cycle of software, cost, schedule, and
productivity.

3.4. MONITORING AND EVALUATING QUALITY INDICATORS 43

Such metrics can be used for the project monitoring. However they are of less practical
interest for the prevention evolution problems. Metrics may help to monitor development
process and issues influencing later maintenance, evolution and migration activities.

Tools like SISSY, Section 3.4.3.2, and ISIS, Section 3.4.3.3, are designed to execute auto-
matic analyses and metric calculation so that the potential system’s problems are uncov-
ered. Another tool suite for static code analysis and metric calculation is the Sotograph
Software-Tomograph, Sotograph.

Some metrics may belong to multiple categories. Metrics help to analyse and monitor the
system and thus indicate the potential problems. This contributes to the general quality and
understandability, and lowers complexity of a system.

References:

• [S. H. Kan. Metrics and Models in Software Quality Engineering (2nd ed.). Addison-Wesley Longman,
2002] [Kan02] (book)

• [C. Bommer, M. Spindler, and V. Barr. Softwarewartung. dpunkt.verlag, 2008. Chapter 9] [BSB08] (book)

• [N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical Approach. PWS Publishing
Company, 1997] (book) [FP97] (book)

• [B. Henderson-Sellers. Object-oriented Metrics Measures of Complexity. Prentice Hall, 1996] [HS96] (book)

• [R. Dumke and F. Lehner. Software-Metriken Entwicklungen, Werkzeuge und Anwendungsverfahren.
Deutscher Unversitaets-Verlag, 2000] [DL00] (book)

• [S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, v. 20, 476 – 493, 1994] [CK94] (journal paper)

• [M. Alshayeb and Wei Li. An empirical validation of object-oriented metrics in two different iterative
software processes. IEEE Transactions on Software Engineering, v. 29, Issue: 11, 1043 – 1049, 2003]
[AL03] (journal paper)

• SISSy project, Section 3.4.3.2: http://sissy.fzi.de

• ISIS project, Section 3.4.3.3: http://www.andrena.de/node/160/

• Sotograph: http://www.software-tomography.ch/html/sotograph.html

http://sissy.fzi.de
http://www.andrena.de/node/160/
http://www.software-tomography.ch/html/sotograph.html

44 CHAPTER 3. IDENTIFYING AND ANALYSING EVOLUTION PROBLEMS

3.4.2 Approach: Detection of Bad Smells or Antipatterns

Goal: Detect possible problems at the code level.

Short Description: A bad smell or antipattern is any symptom in the source code or design
that possibly indicates a deeper problem. It might not be an error, but a situation that might
easily lead to an error when changing the system.

Examples for bad smells in code (according to [FBB+99](book)) are:

• Duplicated Code: changes to duplicated code might lead to inconsistency and adaptation
overhead since several locations need to be adapted instead of one.

• Shotgun Surgery: Elements which belong together (and are usually changed together) are
spread over a lot of different classes and locations. When changes are all over the place,
they are hard to find, and it’s easy to miss an important change.

• Divergent Change: If a class is commonly changed in different ways for different reasons.
This indicates an suboptimal encapsulation structure.

There are formalised heuristics for detecting bad smells in code and appropriate tools support,
e.g. SISSy, FindBugs, etc.

[RL04] (book) provides a small collection of architectural smells. This comprises smells regarding
packages, subsystems, and layers.

Evaluation:

Development Phase: Implementation / Maintenance

Relevance, Automation: Medium (Not automation specific, no limitation for do-
main)

Relevance, Sustainability: High

Applicability: Medium (Approaches highlight potential quality prob-
lems, which must be tackled manually.)

Tool: Many (e.g. SISSY Problem pattern detection (see Sec-
tion 3.4.3.2), FindBugs)

Preventive / Reactive / An-
alytical:

Analytical

Formalization: Formal (Formalized heuristics)

Perspective: Negative

Abstraction level: Low / Medium

Benefit for sustainable sys-
tems:

Detect critical areas in systems, which block or impair
evolution.

References:

• [M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999, Chapter 3, Bad Smells in Code] [FBB+99] (book)

• [F. Simon, O. Seng, and T. Mohaupt. Code-Quality-Management. dpunkt.verlag, 2006, Chapter 10,
Catalog of Quality Indicators] [SSM06] (book)

• [S. Roock, M. Lippert. Refactorings in grossen Softwareprojekten. Dpunkt-Verlag, 1. au. edition, 2004]
[RL04] (book)

• SISSy project, Section 3.4.3.2: http://sissy.fzi.de

• FindBugs: http://findbugs.sourceforge.net/

http://sissy.fzi.de
http://findbugs.sourceforge.net/

3.4. MONITORING AND EVALUATING QUALITY INDICATORS 45

3.4.3 Architectural Enforcements

3.4.3.1 Approach: Dependency-Analysis using Lattix LDM

Goal: Find design rule and architectural violations in Java / C++ code via graphical visualiza-
tion in so-called dependency structure matrices.

Short Description: The Lattix LDM tool takes Java or C++ files as inputs and performs a
static code analysis. The result is a dependency structure matrix (DSM) visualizing the call
dependencies between classes or packages. It reflects the hierarchical structure of the code.
Using the DSMs layering violation in the code can be detected relatively easily therefore giving
pointers to potential architectural erosion. The code has to be refactored manually to remove
these violations. The tool helps to check the compliance of code with architectural principles.
Code adhering to a high-level structure is supposed to be easier maintainable and can therefore
increase the sustainability of a system.

Evaluation:

Development Phase: Maintenance

Relevance, Automation: Medium (Not automation specific, no limitation for do-
main)

Relevance, Sustainability: Medium (Detects violations, therefore supports sustain-
ability. Manual actions required)

Applicability: High (Has been applied in industry)

Tool: http://www.lattix.com

Preventive / Reactive / An-
alytical:

Reactive

Formalization: Not applicable

Perspective: Negative

Abstraction level: Low

Benefit for sustainable sys-
tems:

Uncover architecture erosion in source code and improve
the inner structure of systems to reduce future mainte-
nance efforts

References:

• [N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using Dependency Models to Manage Complex Software
Architecture. Proceedings of OOPSLA’05, pages 167–76, 2005] [SJSJ05] (conference paper)

• [C. Hinsman, N. Sangal, and J. A. Stafford. Achieving Agility through Architecture Visibility. QoSA,
Lecture Notes in Computer Science, Springer, Vol. 5581, 116 – 129, 2009] [HSS09] (conference paper)

• URL: http://www.lattix.com

http://www.lattix.com
http://www.lattix.com

46 CHAPTER 3. IDENTIFYING AND ANALYSING EVOLUTION PROBLEMS

3.4.3.2 Approach: SISSy

Goal: Metric calculation and Problem pattern detection in object-oriented source code.

Short Description: SISSy stands for Structural Investigation of Software Systems. It is a
tool for static analysis of object-oriented software. It supports analysis of programs written in
Java and C/C++. Programs are extracted into a generalised abstract syntax tree, which is
stored into a relational database. SISSy can detect violations of over 50 typical object-oriented
design principles, heuristics and patterns, such as bottleneck classes, god classes, data classes,
and cyclical dependencies between classes or packages. SISSy is implemented in Java and is
available as Eclipse plugin set. It can be installed from sourceforge via Eclipse update site
mechanism.

Evaluation:

Development Phase: Implementation / Maintenance

Relevance, Automation: Medium (As long as object-oriented systems are ad-
dressed)

Relevance, Sustainability: High (See benefits below)

Applicability: Medium (Automated, already applied in industry in sev-
eral quality assessments)

Tool: http://sissy.fzi.de

Preventive / Reactive / An-
alytical:

Analytical

Formalization: Formal

Perspective: Negative

Abstraction level: Low / Medium

Benefit for sustainable sys-
tems:

Problem patterns usually indicate unnecessary dependen-
cies, too high complexity, bad separation of concerns, etc.
The presence of a problem patterns can handicap evolu-
tion tasks. Therefore, detection and removal of problem
patterns improves sustainability.

References:

• Official Webpage: http://sissy.fzi.de

• Updatesite: http://sissy.sourceforge.net/SISSy_Nightly/

• Q-Bench Webpage: http://www.qbench.de

• [Frank Simon, Olaf Seng, and Thomas Mohaupt. Code-Quality-Management. dpunkt.verlag, 2006] [SSM06]
(book)

http://sissy.fzi.de
http://sissy.fzi.de
http://sissy.sourceforge.net/SISSy_Nightly/
http://www.qbench.de

3.4. MONITORING AND EVALUATING QUALITY INDICATORS 47

3.4.3.3 Approach: ISIS

Goal: Navigation system for quality management.

Short Description: ISIS is a tool for detection, scaling of quantitative quality indicators and
creation of quality history for development projects. It is developed by andrena objects ag and
is used to control the quality of Scrum projects. Core element of ISIS is the project log, where
indicators (metrics) for process and software quality are automatically recorded, condensed, and
documented in time series.

Considered metrics are: Customer satisfaction, Number of bugs, Estimation difference, Average
test coverage, Number of Packages in Cycles, Cyclomatic Complexity, Average Component De-
pendency (on class level), classes with more than 20 methods, methods with more than 15 LOC,
and number of compiler warnings. Metrics are condensed into a set of quality indexes, which
can be used to visualize internal quality to stakeholders (e.g. managers, customers, etc.). This
enables architects to show decrease of software quality, e.g., in case of implementation under
time pressure, and to make internal quality aspects explicit in negotiations with management
and customers.

The tool is available as RCP application and Eclipse plugin. It is capable to analyse Java and
C] projects. Metric calculation and static analysis is done with Sotograph tool suite, (http:
//www.software-tomography.ch). Test coverage is measured using EclEmma, (http://www.
eclemma.org/).

Evaluation:

Development Phase: Implementation / Maintenance

Relevance, Automation: Medium (Focus on object-oriented systems)

Relevance, Sustainability: High (See benefits below)

Applicability: High (Tool is used in several industry projects by andrena
objects ag)

Tool: This tool can be provided by andrena object ag

Preventive / Reactive / An-
alytical:

Analytical

Formalization: Formal

Perspective: Positive

Abstraction level: Low / Medium

Benefit for sustainable sys-
tems:

Keeping code clean and quality index high improves evo-
lution tasks.

References:

• Website about ISIS Project, Used Technology, http://www.andrena.de/projekte/isis

• Website with Project Examples, Contact, Events, http://www.andrena.de/know-how/isis

• Website about Sotograph tool suite, http://www.software-tomography.ch

• Website about EclEmma, http://www.eclemma.org/

http://www.software-tomography.ch
http://www.software-tomography.ch
http://www.eclemma.org/
http://www.eclemma.org/
http://www.andrena.de/projekte/isis
http://www.andrena.de/know-how/isis
http://www.software-tomography.ch
http://www.eclemma.org/

48 CHAPTER 3. IDENTIFYING AND ANALYSING EVOLUTION PROBLEMS

Chapter 4

Solving Evolution Problems

49

50 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

Outline

Overview: Approaches pro-actively supporting software evolution can be categorised in sev-
eral ways. In this chapter we summarise approaches which can be used to actively deal with
software evolution during design and implementation of systems. The following strategies pro-
vide means to improve the sustainability of software systems.

The classification of solution strategies is presented on the Figures 4.1 and 4.2.

Figure 4.1: Classification of solution strategies, part 1

We present the following types of strategies:

51

Figure 4.2: Classification of solution strategies, part 2

Strategies for Software Structuring use structural means for reducing complexity and
controlling of dependencies. Section 4.1 presents structural strategies in three categories: 1)
Design Principles, 2) Reference Architectures, and 3) Patterns.

Reactive elimination of evolution problems deals with approaches that help with sys-
tematic improvement of software quality in order to remove evolution problems. In Section 4.2
we present 1) Evolution in the small and 2) Migration with DUBLO architectural pattern.

Variability Strategies apply techniques for domain analysis in order to determine the re-
quired variability in software systems. Approaches are presented in Section 4.3 and comprise of
1) Generative Programming and 2) Product Line Approaches.

Automating Software Development describes approaches using modelling in order to
increase the abstraction level of software development and automate software development by
code generation and model transformations. Section 4.4 covers 1) Model Driven Architecture

52 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

Figure 4.3: Evaluation summary of solution strategies: Strategies for Software Structuring,
Variability and Active Elimination

(MDA, following the OMG standard) and 2) Model Driven Software Development (summarising
the remainder of model driven approaches).

Development process decisions have influence on sustainability. Therefore we present a
selection of approaches in Section 4.5. This comprises strategies dealing with 1) Agile methods,
2) Knowledge transfer, documentation, UML, 3) Consistency of artefacts, 4) Quality Assurance,
5) Team Organization, and 6) Development Environment.

Management Strategies in Section 4.6 deal with the topics of 1) Make or buy decision
support and 2) Virtualisation.

Summary sections provide topics descriptions without evaluation and sections dealing with ap-
proaches are evaluated according the evaluation criteria. The evaluation results are summarised
on Figures 4.3-4.5.

The approaches are placed in the matrix according to their relevance for automation domain
and sustainability. The thickness of the point means their applicability (the thicker is the point,
the higher is the applicability).

53

Figure 4.4: Evaluation summary of solution strategies: Automation Strategies

54 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

Figure 4.5: Evaluation summary of solution strategies: Development Process Decisions

4.1. STRATEGIES FOR SOFTWARE STRUCTURING 55

4.1 Strategies for Software Structuring

In this section we survey approaches that help structuring of software systems in a way, that
modifiability and flexibility is increased and sustainability is improved.

4.1.1 Heuristics, Best Practices, Design Principles

Goal: Provide knowledge about good design in an informal way.

Short Description: Best practices cover knowledge of good design in an informal way, predom-
inantly expressed in natural language. They are in principle derived from practical experience
and could be expressed either positively (what and how should something be done) or negatively
(what should be avoided). Patterns and bad smells can be considered as a kind of formalization
of best practices and design principles.

With respect to sustainability there are several best practices and design principles known.

Examples of Object-Oriented Design Principles are:

• The Open Closed Principle (OCP) – A module/component should be open for extension
but closed for modification.

• The Liskov Substitution Principle (LSP) – Subclasses should be substitutable for their
base classes.

• The Dependency Inversion Principle (DIP) – Depend upon abstractions. Do not depend
upon concretions.

• The Interface Segregation Principle (ISP) – Many client specific interfaces are better than
one general purpose interface.

In [BF07] (technical report) the authors propose Modifiability Tactics that are architectural
design decisions. These decisions affect parameters based on coupling and cohesion.

Examples:

• Split a Responsibility – In order to reduce the cost of modifying a single responsibility.

• Abstract Common Services – In order to increase cohesion.

• Reduce coupling by use of encapsulation, use of wrapper, raise of abstraction level, use of
intermediary, or restriction of communication paths.

Patterns are usually build on top of design principles. In [BF07] (technical report) the authors
show how modifiability tactics are applied in architectural design patterns.

Evaluation:

Development Phase: Design / Implementation

Relevance, Automation: Medium (No limitation to domain, however there might
be automation-specific principles)

Relevance, Sustainability: High (Software development should consider best prac-
tices)

Applicability: Medium / High (Most principles come from industry, but
validation is difficult)

Tool: –

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Informal

56 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

Perspective: Positive / Negative

Abstraction level: Low / Medium / High

Benefit for sustainable sys-
tems:

Principles help to increase independence, reduce complex-
ity, and improve modifiability.

References:

• [Oliver Ciupke. Problemidentifikation in objektorientierten Softwarestrukturen. PhD thesis, The Univer-
sity of Karlsruhe, 2002, page 133] [Ciu02], List of Design Heuristics (with references)

• [Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1996] [Rie96] (book)

• [Nord R. Bachmann F., Bass L. Modifiability tactics. Technical Report CMU/SEI-2007-TR-002, Software
Engineering Institute, 2007] [BF07] (technical report)

• Design Principles from Clean Code Philosophy [Mar09], http://www.objectmentor.com

http://www.objectmentor.com

4.1. STRATEGIES FOR SOFTWARE STRUCTURING 57

4.1.2 Design Patterns

Goal: Provide solution for recurring design problems, incorporate variability and flexibility.

Short Description: A pattern describes a problem that occurs over and over again in software
development, and describes the core of the solution to that problem. According to [GHJV95]
(book) a pattern has four essential elements: 1) pattern name, 2) problem, 3) solution, and
4) consequences. [GHJV95] (book) divides design patterns into three categories: 1) creational
patterns, 2) structural patterns, 3) behavioral patterns. In [Bus01] (book) patterns for software
architectures are defined as “a particular recurring design problem that arises in specific design
contexts, and presents a well-proven generic scheme for its solution. The solution is specified by
describing its constituent components, their responsibilities and relationships, and the ways in
which they collaborate”.

There are several patterns that help with controlling dependencies and increasing independence
of system parts. These patterns are likely to improve system maintenance and have a positive
impact on sustainability.

Patterns that have influence on modifiability are for example:

• Facade – Provide a unified interface to a set of interfaces in a subsystem. Facade defines
a higher-level interface that makes the subsystem easier to use.

• Bridge – Decouple an abstraction from its implementation so that the two can vary inde-
pendently.

• Decorator – Attach additional responsibilities to an object dynamically. Decorators pro-
vide a flexible alternative to subclassing for extending functionality.

The patterns in [GHJV95] (book) are primarily on object-oriented design level. But on archi-
tecture level one finds also collections of patterns.

In [Bus01] (book) the authors distinguish architectural patterns, design patterns, and idioms.
An idiom is a low-level pattern specific to a programming language.

Examples for architectural patterns with influence on modifiability are:

• Layers – Helps to structure applications that can be decomposed into groups of subtasks
in which each group of subtasks is at a particular level of abstraction.

• Model-View-Controller – Divides an interactive application into three components. The
model contains the core functionality and data. Views display information to the user.
Controllers handle user input. Views and controllers together comprise the user interface.

• Reflection – Provides a mechanism for changing structure and behaviour of software sys-
tems dynamically. It supports the modification of fundamental aspects, such as type struc-
tures and function call mechanisms. An application is split into two parts. A meta level
provides information about selected system properties and makes the software self-aware.
A base level includes the application logic. Its implementation builds on the meta level.
Changes to information kept in the meta level affect subsequent base-level behaviour.

Each pattern introduces a certain degree of flexibility or variability. To determine which flexibil-
ity is necessary and to select the appropriate pattern is a challenge. Approaches in the context
of product line engineering might help with eliciting variability requirements.

Evaluation:

58 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

Development Phase: Design / Implementation

Relevance, Automation: Medium (No limitation to the domain, some patterns
might be typical for usage in automation systems, e.g.,
regarding event-driven communication, real-time, etc.)

Relevance, Sustainability: High (Patterns highly influence modifiability and there-
fore are highly relevant for achieving sustainability)

Applicability: Medium (Patterns are applied in industry, but highly de-
pends on developer knowledge and acceptance)

Tool: –

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Formal

Perspective: Positive

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Patterns can be used to control flexibility and variability.

References:

• [Ralph Johnson, John Vlissides, Erich Gamma, Richard Helm. Design Patterns Elements of Reusable
Object-Oriented Software. Addison-Wesley Publishing Company, 1995] [GHJV95] (book)

• [Frank Buschmann. A system of patterns. Wiley, repr. edition, 2001] [Bus01] (book)

• [Weihang Wu and Tim Kelly. Safety tactics for software architecture design. Proceedings of the 28th Annual
International Computer Software and Applications Conference, 01:368-375, 2004] This article presents
a method (”safety driven method”) for software architecture design within the context of safety. The
proposed method is centered upon extending the existing notion of architectural tactics to include safety
as a consideration. For the selection of appropriate tactics (consistent with SEI tactics) the authors propose
the construction of arguments for each candidate based on provided template.The method addresses the
failures of components and failure behaviors through the interaction of components under consideration of
safety requirements. [WK04] (conference paper)

4.1. STRATEGIES FOR SOFTWARE STRUCTURING 59

4.1.3 Reference Architectures

Goal: Standardisation of architectures that are specific to an application domain.

Short Description: A reference architecture is an abstract software architecture, which defines
structures and types of software elements, their allowed interactions and their responsibilities
specific to an application domain. Structures are applicable for all systems within an application
domain. They represent established basic constructions that contain collected experience of
several engineering generations, and are supported by a large community of researchers and
practitioners.

For example, in compiler construction it is common to split components into lexical analy-
sis (Scanner), syntactical analysis (Parser), semantic analysis, and generators, [RH09] (book).
Other examples are Quasar, [Sie06] (book), which is a reference architecture for business infor-
mation systems and AUTOSAR, [AK] (webpage), providing a reference architecture for software
in cars.

Evaluation:

Development Phase: Design / Implementation

Relevance, Automation: Medium (No limitation to the domain, not automation
specific)

Relevance, Sustainability: High (See sustainability benefits below)

Applicability: Medium (No experience reports found, no tool support)

Tool: –

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Formal

Perspective: Positive / Negative

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Reference architecture provide standardized solutions for
domain-specific structuring. This also covers aspects of
flexibility and modifiability, which influence sustainabil-
ity.

References:

• [Ralf Reussner and Wilhelm Hasselbring. Handbuch der Software-Architektur. dpunkt.verlag, 2. edition,
2009, Chapter 17] [RH09] (book)

• Quasar: [Johannes Siedersleben. Moderne Softwarearchitektur. dpunkt.verlag, 2006] [Sie06] (book)

• Autosar: AUTOSAR (AUTomotive Open System ARchitecture) is an open and standardized automotive
software architecture, jointly developed by automobile manufacturers, suppliers, and tool developers. http:
//www.autosar.org [AK]

http://www.autosar.org
http://www.autosar.org

60 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.2 Reactive elimination of evolution problems

4.2.1 Approach: Evolution in the small

Goal: Refactoring of the architecture in order to better facilitate the extension by new func-
tionality.

Short Description: This comprises the usage of small, fast and efficiently executable, system-
atic steps of adaptation. System is runnable the whole time and can stay in productive use.
Evolution in the small is especially reasonable if it is embedded in a development method.

Some well-known refactoring techniques [FBB+99](book) focus on code level, but even on model
level refactoring techniques are very promising. In Section 7.4 they describe an example refac-
toring approach on model level. In this example a new reporting component is introduced in
a business application, the information flow to the component is initiated, after testing the
components output the output is connected with the management component.

There are several criteria for the applicability of evolution on architecture level: 1) architecture
is explicitly given, 2) architecture should have a reasonable abstraction level, 3) project must
not be too large

Evaluation:

Development Phase: Implementation / Maintenance

Relevance, Automation: Medium (No limitation of domain)

Relevance, Sustainability: High (Improves actively sustainability)

Applicability: High (Industrial applicable, tool support available)

Tool: Refactoring tools exist, also provided by IDEs and their
extensions.

Preventive / Reactive / An-
alytical:

Reactive

Formalization: Formal

Perspective: Not applicable

Abstraction level: Low / Medium

Benefit for sustainable sys-
tems:

Refactoring in the smalls helps keeping code clean, better
understandable, having less duplication, better encapsu-
lation, etc.

References:

• [Ralf Reussner and Wilhelm Hasselbring. Handbuch der Software-Architektur. dpunkt.verlag, 2. edition,
2009, Chapter 7] [RH09] (book)

4.2. REACTIVE ELIMINATION OF EVOLUTION PROBLEMS 61

4.2.2 Approach: Migration with DUBLO architectural pattern

Goal: Architecture pattern for smooth evolution of business information systems.

Short Description: The DUBLO pattern can be generalized and reused for other evolution
scenarios. DUBLO is based on a partial duplication of business logic between legacy system and
new middle tier. Although separation of concern principle is violated to some degree, one gains
flexibility and the possibility of a smooth evolution.

Advantages are smooth evolution is possible, consistency of database, independence of database,
and reusability. Disadvantages are new adapter between legacy and new business logic is neces-
sary, functional access layer in legacy system (if not already present), possibly negative perfor-
mance impact through additional layers, and risk of duplication of legacy code.

The pattern has been applied to migration of client-server information system of the KDO
company in Germany.

Evaluation:

Development Phase: Implementation, Maintenance

Relevance, Automation: Low / Medium (Applied to client-server information sys-
tem of KDO)

Relevance, Sustainability: Medium (Helps with actively evolution of systems)

Applicability: Medium (Industrial applicability shown, but no tool sup-
port)

Tool: no tool support

Preventive / Reactive / An-
alytical:

Reactive

Formalization: Formal

Perspective: Not applicable

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Smooth evolution

References:

• [W. Hasselbring, R. Reussner, H. Jaekel, J. Schlegelmilch, T. Teschke, and S. Krieghoff. The dublo archi-
tecture pattern for smooth migration of business information systems: an experience report. In Software
Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on, pages 117-126, 2004.]
[HRJ+04] (conference paper)

• [Ralf Reussner and Wilhelm Hasselbring. Handbuch der Software-Architektur. dpunkt.verlag, 2. edition,
2009, Chapter 9] [RH09] (book)

62 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.3 Variability Strategies

This section surveys approaches that help to investigate the requirements of variability in soft-
ware systems. Providing the appropriate degree of variability is important for sustainable soft-
ware systems, since software systems should provide variability for parts that have to change
during evolution. The kinds of sustainable systems, which we are addressing here, should in
particular provide variability regarding the exchange and evolution of (underlying) technologies
and therefore aim at separating business logic from technical layers. The presented approaches
can be used to identify the technological dependencies and determine the demand for variation
points.

4.3.1 Approach: Generative Programming (Czarnecki, Eisenecker)

Goal: Automatically create a highly customized and optimized intermediate or end-product.

Short Description: Generative Programming is a software engineering paradigm based on
modelling software system families, such that, given a particular requirement specification, a
highly customized and optimized intermediate or end-product can be automatically manufac-
tured on demand from elementary, reusable implementation components by means of configura-
tion knowledge.

The approach proposes analysis and design methods and several implementation technologies.
Analysis and design methods involve domain engineering, object-oriented analysis and design
(OOA/D), and feature modelling.

Proposed implementation technologies comprise generic programming, template-based C++ pro-
gramming, aspect-oriented programming, generators, static meta programming in C++, and
intentional programming.

The principles of domain analysis and feature modelling are still relevant, especially in context
of product line engineering, domain-specific languages, and model-driven development. The
proposed technologies are outdated.

Evaluation:

Development Phase: Design / Implementation

Relevance, Automation: Medium (Not limited to a domain)

Relevance, Sustainability: Medium (Aims at increasing reuse, understandability and
flexibility, which have influence on sustainability)

Applicability: Low (Domain analysis and feature modelling relevant,
but technology is outdated, successors can be seen in
product line approaches and model-driven software de-
velopment approaches.)

Tool: –

Preventive / Reactive / An-
alytical:

Analytical

Formalization: Informal

Perspective: Not applicable

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Domain analysis and feature modelling can improve un-
derstanding and implementation of flexibility require-
ments, hence lead to an better evolution of system.

References:

• [Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming. Addison-Wesley, 2000] [CE00]
(book)

• [Thomas Stahl and Markus Völter. Model-Driven Software Development Technology, Engineering, Man-
agement. Wiley, 2006, Section 4.4] [SV06] (book)

4.3. VARIABILITY STRATEGIES 63

4.3.2 Summary: Product Lines

Product Lines represent a set of software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of reusable core assets in a prescribed way, (http://www.sei.
cmu.edu/architecture/start/glossary/).

According to [CN02] (book) there are three essential activities for product line development: 1)
Core Asset Development, 2) Product Development, and 3) Management.

In product line engineering variability considerations have a very high priority, in order to de-
termine which parts should be manifested as core assets, which parts should be present in each
product, and which are optional. Therefore product-line engineering incorporates a sustainabil-
ity awareness.

References:

• [Jan Bosch. Design and Use of Software Architectures Adopting and evolving a product-line approach.
Addison-Wesley, 2000] [Bos00] (book)

• [Jack Greenfield and Keith Short. Software Factories Assembling Applications with Patterns, Models,
Frameworks, and Tools. Wiley, 2004] [GS04] (book)

• [Paul Clements and Linda Northrop. Software Product Lines Practices and Patterns. Addison Wesley,
2002] [CN02] (book)

http://www.sei.cmu.edu/architecture/start/glossary/
http://www.sei.cmu.edu/architecture/start/glossary/

64 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.3.3 Approach: Product Lines with purevariants

Goal: Pure::Variants is a variation modelling approach to model the variation found in a
Software Product Family (SPF) in design and code artefacts as to enable large scale re-use.

Short Description: An important aspect of SPFs is managing the variability. A SPF offers a
set of features spanning the scope of products it tries to cover. An individual product is (ideally)
derived from a SPF by selecting a subset of the feature set applicable to the product in question.
A variation model describes these available features, their constraints, and the relationship they
have to the design and code artefacts.

Evaluation:

Development Phase: Design / Implementation

Relevance, Automation: Medium

Relevance, Sustainability: Medium (Helps with variability management, establish-
ing the right variability leads to sustainable systems)

Applicability: Medium (Not applied at ABB BUs. However, two re-
search projects in DECRC and SECRC have investigated
the use of different variation modeling tools and both rec-
ommended the use of the Pure::Variants.)

Tool: http://www.pure-systems.com/

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Informal

Perspective: Not applicable

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Managing of variability helps to keep the critical parts,
which are likely to change, flexible and modifiable.

References:

• Pure::Variants website: http://www.pure-systems.com/

http://www.pure-systems.com/
http://www.pure-systems.com/

4.3. VARIABILITY STRATEGIES 65

4.3.4 Approach: COSVAM: COVAMOF Software Variability Assessment
Method

Goal: The goal is to determine whether, when, and how variability should evolve in a Software
Product Family (SPF).

Short Description: COSVAM is the COVAMOF (ConIPF Variability Modelling Framework)
Software Variability Assessment Method, a structured approach for assessing the variability
provided and required by a SPF. The approach does this both for time, i.e., when is the variability
required and provided, and in space, i.e., what functionality needs to be variable. The found
variability mismatch provides viable information for release planning and planning the evolution
of the SPF.

COVAMOF is supported by a tool-suite, called COVAMOF-VS. This tool-suite is implemented
as a combination of Add-Ins for Microsoft Visual Studio and provides an integrated variability
view on the active project, which contains the product family artefacts.

Evaluation:

Development Phase: Design / Implementation

Relevance, Automation: Medium

Relevance, Sustainability: Medium (Helps with variability management, establish-
ing the right variability leads to sustainable systems)

Applicability: Medium (Industrial validation presented in journal paper,
tool support is focused on Microsoft Technology)

Tool: COVAMOF-VS (Link not found)

Preventive / Reactive / An-
alytical:

Preventive / Analytical

Formalization: Informal

Perspective: Not applicable

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Variability modelling is important for sustainability be-
cause is helps with keeping the critical parts, which are
likely to change, flexible and modifiable.

References:

• [S. Deelstra, M. Sinnema, J. Nijhuis, and J. Bosch. Cosvam: a technique for assessing software variability
in software product families. In Software Maintenance, 2004. Proceedings. 20th IEEE International
Conference on, pages 458-462, 2004] [DSNB04] (conference paper)

• [Marco Sinnema and Sybren Deelstra. Industrial validation of covamof. Journal of Systems and Software,
81(4):584-600, 2008] [SD08] (journal paper)

• [Sybren Deelstra, Marco Sinnema, and Jan Bosch. Variability assessment in software product families. Inf.
Softw. Technol., 51(1):195-218, 2009] [DSB09] (journal paper)

66 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.4 Automating Software Development

In this section we survey approaches that aim at automating software development and increase
the abstraction level of the implementation. For sustainable software systems the application
of model-driven development increases the abstraction level, which is suitable to hide techni-
cal details. For example, the architecture and business logic of an application are described
at an technology independent level and only transformations, which are the drivers of model-
driven techniques, carry technology specific information. If such systems evolve, ideally only the
transformations need to be adapted.

4.4.1 Approach: Model Driven Architecture (OMG)

Goal: Model Driven Architecture (MDA) aims at strictly separating domain-specific, technical
and implementation specific aspects of a software system in order to establish portability and
interoperability of software.

Short Description: The MDA is a standardization initiative of the OMG for model-driven
software development. The core building blocks are:

• UML 2.0 - The unified modelling language comprising 14 diagrams for modelling different
views of object-oriented software systems.

• Meta Object Facility (MOF) - Meta Object Facility describes a meta meta model which
is the basis for UML2.0 and MDA-conforming tools

• XML Metadata Interchange (XMI) - A mapping from MOF to XML

• Three kinds of models (PIM, PSM, PDM) - Platform-independent model (PIM) for de-
scribing the business logic. A platform-specific model (PSM) is created from a PIM via
model transformation and covers platform-specific properties (e.g. for J2EE, .NET, or
other implementation platforms). The platform description model (PDM) is the meta
model of the target platform.

• Multi-Stage Transformation - Source code is obtained via several subsequent model-to-
model transformations. QVT (Query/View/Transformation), in the model-driven archi-
tecture, is a standard for model transformation defined by the Object Management Group.

• Action Languages - for modelling of procedural behaviour.

• UML profiles, Executable UML (see Section 4.4.2)

The MDA has coined many established terms in the standardization process. It serves as a
reference model for the whole MDSD community.

Evaluation:

4.4. AUTOMATING SOFTWARE DEVELOPMENT 67

Development Phase: Design / Implementation

Relevance, Automation: Medium (No limitation of domain)

Relevance, Sustainability: Medium (Generation of code helps with avoiding coding
errors)

Applicability: Medium (A survey of experience reports in [MC07] (jour-
nal article) shows that MDA has been applied in industry
several times in various domains, but maturity has still
some limitations.)

Tool: A list of tools is available at http://www.omg.org/mda/
committed-products.htm

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Informal

Perspective: positive

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Rise abstraction level closer to domain, generate repeti-
tive code.

References:

• [OMG. MDA Guide Version 1.0.1. http://www.omg.org/cgi-bin/doc?omg/03-06-01, 2003] [OMG03] (stan-
dard specification)

• Official Website of OMG to MDA, www.omg.org/mda, Specifications, UML Profiles, etc.

• [Thomas Stahl and Markus Völter. Model-Driven Software Development Technology, Engineering, Man-
agement. Wiley, 2006, Chapter 12: The MDA Standard] [SV06] (book)

http://www.omg.org/mda/committed-products.htm
http://www.omg.org/mda/committed-products.htm
www.omg.org/mda

68 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.4.2 Approach: xtUML - Executable UML

Goal: Build extensive UML specifications that can be executed and simulated without generat-
ing code for more cost effective development.

Short Description: xtUML is a profile for UML2.0 that allows enhancing UML models with
an action language to be executable. The models can be simulated with additional simulators,
and platform-specific code can be generated in different programming languages. The main
benefits are that a specification can be evaluated through simulation during early development
stages, and that different hardware platforms or programming languages can be supported with
relative ease.

SAAB has used the approach to simulate and generate code for a military tactical simulator
application. They generated ADA and C++ code from 70KLOC of action language code. In
addition to the 450KLOC generated code they added 120KLOC of manually implemented code.
The whole approach is in line with the MDA initiative by the OMG.

Evaluation:

Development Phase: Design / Implementation

Relevance, Automation: Medium (No limitation to domain))

Relevance, Sustainability: Medium (Higher abstraction level, hiding of low-level de-
tails improves understanding, avoids consistency prob-
lems between artefacts, separation of domain-logic and
technology)

Applicability: High (Has been applied in industry, e.g., at SAAB)

Tool: –

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Informal

Perspective: Positive

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Higher abstraction level, better hiding of low-level details.

References:

• [Stephen J. Mellor and Marc J. Balcer. ”Executable UML: A Foundation for Model-Driven Architecture”.
Addison-Wesley, 2002] [MB02] (book)

• [Erik Wedin (SAAB). ”Model-Driven Architecture and xtUML in Practice” IESF Conference 2009, Seattle,
USA] [EW09] (conference paper)

• http://en.wikipedia.org/wiki/Executable_UML

http://en.wikipedia.org/wiki/Executable_UML

4.4. AUTOMATING SOFTWARE DEVELOPMENT 69

4.4.3 Approach: Architecture-Centric MDSD

Goal: The goal of MDSD is to integrate automation of infrastructure code generatio, and
the minimization of redundant infrastructure code in application development with a special
emphasis on software architecture.

Short Description: Architecture-Centric MDSD is a specialization of MDSD that conceptually
overlaps with MDA. In contrast to the primary goals of the OMG for MDA, interoperability
and software portability, AC-MDSD aims at increasing development efficiency, software quality,
and reusability. Software developers are relieved from tedious and error-prone routine work by
generation of infrastructure code, which mostly serves to establish technical coupling between
infrastructure and application that facilitates the development of domain-specific code on top
of it, e.g. J2EE/EJB.

The properties of AC-MDSD are:

• Architecture-centric design – No use of platform-specific models (like in MDA), but platform-
independent models only. The maintenance effort for intermediate results is reduced and
consistency problems are avoided.

• Forward engineering – No round-trip engineering. Thus no reverse engineering of models.
Changes are done only in the model (design). Thus model is always consistent with
generated source code.

• Model-to-Model transformation for modularization only – Intermediate models are consid-
ered as implementation details, that are invisible to developers.

• Source code generation without explicit use of the target metamodel – There is no meta
model representing source code, but generation is based on generator templates. A ref-
erence architecture implementation which demonstrates the realisation in source code is
used to derive generator templates. Quality of generated code is controlled by quality of
template code.

AC-MDSD serves as foundation for several modern tools and frameworks, e.g. Eclipse Modeling
Tools, Section 4.4.4.

Sustainable systems benefit from AC-MDSD if the target software system involves a standard
platform which is ideally shared among multiple software projects (reuse potential). Neverthe-
less, as all model-driven techniques, AC-MDSD has strong tool dependencies, therefore, the
development cycles and the maturity of tools impacts the sustainability. The application of
MDSD implies high learning efforts and a steep learning curve.

Evaluation:

Development Phase: Design / Implementation

Relevance, Automation: Medium (Not limited to domain)

Relevance, Sustainability: Medium (See benefits below)

Applicability: High (tool support available)

Tool: An implementation of the approach is available, for ex-
ample, by Eclipse Based Modeling (Section 4.4.4), but it
is not restricted to Eclipse.

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Formal

Perspective: Positive

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Generation of infrastructure code, separation of domain-
logic and technology.

70 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

References:

• [Thomas Stahl and Markus Völter. Model-Driven Software Development Technology, Engineering, Man-
agement. Wiley, 2006, Chapter 11, 18, 19, 20] [SV06] (book)

• [Ralf Reussner and Wilhelm Hasselbring. Handbuch der Software-Architektur. dpunkt.verlag, 2. edition,
2009, Chapter 5: Model-driven Software Development] [RH09] (book)

4.4. AUTOMATING SOFTWARE DEVELOPMENT 71

4.4.4 Summary: Eclipse-Based Modelling

Eclipse modelling projects provide implementations and tooling for the Model-Driven Archi-
tecture and Model-Driven Software Development approaches mentioned in previous sections.
Eclipse-based tooling represents a de-facto standard for model-driven techniques in practice.
The following projects are the most relevant to MDSD.

Abstract Syntax Development

• Eclipse Modeling Framework (EMF): a modelling framework and code generation
facility for building tools and other applications based on a structured data model.

Concrete Syntax Development

• Graphical Modeling Framework (GMF): provides a generative component and run-
time infrastructure for developing graphical editors based on EMF and Graphical Editing
Framework (GEF).

• Textual Modeling Framework (TMF): provides tools and frameworks for developing
textual syntaxes and corresponding editors based on EMF.

Model Transformation

• Model to Model Transformation (M2M): an extensible framework for model-to-
model transformation languages, with an exemplary implementation of the QVT Core
language.

• Model to Text Transformation (M2T): focuses on technologies for transforming mod-
els into text (typically language source code and the resources it consumes)

References:

• Eclipse Modeling Project

– [Erich Gamma, Lee Nackmann, and John Wiegand, ”eclipse Modeling Project A Domain-Specific
Language (DSL) Toolkit”, Addison-Wesley, 2009] [GNW09] (book)

– Website: http://www.eclipse.org/modeling

• Open Architecture Ware (OAW)

– The components of OAW (Workflow Engine, Xtext, Xpand, Xtend, Check) are now part of the
Eclipse Modeling Project

– Website: http://www.oaw-dev.de

http://www.eclipse.org/modeling
http://www.oaw-dev.de

72 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.4.5 Approach: SQL Server Modeling CTP (old name: OSLO)

Goal: The goal of SQL Server Modeling CTP is to build applications out of data and meta
data stored in database.

Short Description: The SQL Server Modeling CTP is a set of tools for building applications
out of data. This means the applications are completely described in data and metadata that
is contained within a database. As data, the application definition can be viewed and edited
in a variety of forms. The SQL Server Modeling CTP is a Microsoft Technology and formerly
known as OSLO.

The components of the SQL Server Modeling CTP are:

• “M” is a textual language for defining schemas, queries, values, functions and domain-
specific languages for SQL Server databases

• “Quadrant” is a customizable tool for interacting with large datasets stored in SQL Server
databases

• SQL Server Modeling Services (formerly the “Oslo” Repository) is a SQL Server role for
the secure sharing of models between applications and systems

Sustainable systems benefit from SQL Server Modeling CTP since its application enables chang-
ing of data representation in central places. Moreover an integrated meta-data handling is
possible, i.e., the representation of data in database and in implementation is synchronized by
design. The approach is proprietary therefore there is a risk of vendor lock-in.

Evaluation:

Development Phase: Design / Implementation

Relevance, Automation: Medium (No limitation to domain)

Relevance, Sustainability: Medium

Applicability: Low (Few practical evidence)

Tool: Integrated in Visual Studio, http://msdn.microsoft.

com/en-us/library/cc709420.aspx

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Formal

Perspective: Positive

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Increase abstraction level, Hide low-level details, genera-
tion of infrastructure code for technology stack dependen-
cies.

References:

• Official page at MSDN: http://msdn.microsoft.com/en-us/library/cc709420.aspx

http://msdn.microsoft.com/en-us/library/cc709420.aspx
http://msdn.microsoft.com/en-us/library/cc709420.aspx
http://msdn.microsoft.com/en-us/library/cc709420.aspx

4.4. AUTOMATING SOFTWARE DEVELOPMENT 73

4.4.6 Approach: Constructor MDRAD

Goal: Apply approach for easier access to database by generation of object-representation of
database schema.

Short Description: Constructor/MDRAD is a toolkit integrated to the Visual Studio 2002,
2003, 2005 or 2008 IDE. It allows developers to build a set of classes that closely follow a
database schema, and provides an extensive API with CRUD (Create, Read, Update, Delete)
functionality at run time, without the need to write or hard-code any SQL statements.

The Object Run Time assemblies handle data inheritance, one-to-one, one-to-many and many-
to-many relationships. Data is automatically lazy-filled when relationship paths are navigated
and object queries provide a way to retrieve data that follow a specific criteria.

By applying this approach the evolution of database schema becomes easier, since after changes
to database schema the access code could be re-generated and does not need to be adapted
manually.

Evaluation:

Development Phase: Design / Implementation

Relevance, Automation: Medium

Relevance, Sustainability: Medium

Applicability: Low (Few practical evidence)

Tool: (commercial license, academic license) http://www.

i3design.co.uk/constructor/mdrad/

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Formal

Perspective: Positive

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Generation of code for handling database content

References:

• Official Website: http://www.i3design.co.uk/constructor/mdrad/

http://www.i3design.co.uk/constructor/mdrad/
http://www.i3design.co.uk/constructor/mdrad/
http://www.i3design.co.uk/constructor/mdrad/

74 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.4.7 Approach: Stratego XT

Goal: In order to rise the abstraction level of the code closer to domain terminology use domain-
specific languages and generate fine-grained code by applying program transformation and code
generation. By applying this approach evolution of business logic can be kept more independent
from evolution of technological platform.

Short Description: Stratego/XT is a language and toolset for program transformation. The
Stratego language provides rewrite rules for expressing basic transformations, programmable
rewriting strategies for controlling the application of rules, concrete syntax for expressing the
patterns of rules in the syntax of the object language, and dynamic rewrite rules for expressing
context-sensitive transformations, thus supporting the development of transformation compo-
nents at a high level of abstraction.

The XT toolset offers a collection of extensible, reusable transformation tools, such as parser and
pretty-printer generators and grammar engineering tools. Stratego/XT supports the develop-
ment of program transformation infrastructure, domain-specific languages, compilers, program
generators, and a wide range of meta-programming tasks.

The toolset is implemented using C, but for some parts Java versions are available as well.
Closely related is the Spoofax Language Workbench, which is a platform for developing textual
domain-specific languages with Eclipse editor plugins.

The approach seems to be more on a scientific level, without much practical experience.

Evaluation:

Development Phase: Design / Implementation

Relevance, Automation: Medium

Relevance, Sustainability: Medium

Applicability: Low (Few practical evidence)

Tool: http://strategoxt.org/

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Formal

Perspective: Positive

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Increase abstraction level, Hide low-level details, Gener-
ation of infrastructure code for technology stack depen-
dencies.

References:

• Official Website: http://strategoxt.org/

• Spoofax Language Workbench, http://strategoxt.org/Spoofax/WebHome

http://strategoxt.org/
http://strategoxt.org/
http://strategoxt.org/Spoofax/WebHome

4.5. DEVELOPMENT PROCESS DECISIONS 75

4.5 Development Process Decisions

Topics reviewed in this section have an introductory purpose, their description in intentionally
kept high-level without detailed overview of exact approaches. The only exclusion are sections
dedicated to the agile methods and consistency checking, which intentionally provide some
approaches in order to demonstrate the peculiarity of issues described in the corresponding
subsections.

The following topics are reviewed:

• Agile methods

• Knowledge transfer, documentation, UML

• Consistency between artefacts

• Quality assurance strategies

• Team organisation strategies

• Development environment Strategies

76 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.5.1 Agile methods

As agile methods become more and more popular in the broader software development commu-
nity, they were included into the literature research [Bab09, SA08, SD07]. Due to the emerging
character of agile methods, their applicability for sustainable systems is highlighted in the fol-
lowing. In the conclusion, their relevance and applicability are critically reflected.

The advantages of agile methods, like flexibility and quick reaction to changes, could be interest-
ing for the automation domain with its typically heavy weight processes. However, it is unclear
to what extend such methods can be adopted for projects which develop sustainable systems.
For safety-critical systems of the automation domain, heavy weight approaches with compre-
hensive documentation and extensive planning are necessary to comply with safety regulations.
Therefore, before adapting an agile development process, one has to consider and analyse its
impact on different project stages (system’s life phases).

This section provides an overview of aspects of agile methods and introduces the following topics:

• Properties and introduction of agile methods into the organization process (brief method
overview, method selection and traps), 4.5.1.1

• Long-term impact of agile methods on software life cycle (expert opinion), 4.5.1.2

• Architecture modelling and agile methods, 4.5.1.3

• An example of an approach assisting in the selection of an agile method corresponding to
the organisation’s needs, 4.5.1.4

• An example of a hybrid agile method with explicitly considers architecture and design (for
elimination of maintenance and evolution issues common for poor agile methods), 4.5.1.3

4.5.1.1 Properties and introduction of agile methods into the organization process

This subsection provides a brief overview of the most known agile methods, methods selection
and several issues connected to the introduction of agile methods into the processes of an orga-
nization.

First of all, one has to ensure, that the right method for the organization’s needs is selected.
Considering the available variety of agile methods, this is a non-trivial task. There are many
agile methods, of which the most known are:

• Extreme Programming (XP), [K. Beck and C. Andres, Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley Professional, 2004] [BA04] (book). It
is one of the most famous agile methods, judging on the amount of publications. Being
strongly dogmatic and quite high-level, it is currently rather rarely used in it’s original
form. The survey [Ver09] shows that the Scrum and XP hybrid method is more likely to
be fit for many projects, compared to pure XP. However, many of the XP practices were
overtaken by other agile methods.

• Scrum, [K. Schwaber and M. Beedle, Agile Software Development with Scrum. Pearson
Studium, 2008] [SB08] (book). According to [Ver09], Scrum is the most widely spread
agile method nowadays. It’s advantages are flexibility and simplicity. It is based on team
spirit and forwards self-motivation.

• Crystal (clear) methods, [A. Cockburn, Crystal Clear: A Human-Powered Methodology for
Small Teams. Addison-Wesley Longman, Amsterdam, 2004] [Coc04] (book). Is a method
family consisting of 7 members, each destined for a certain type of projects. The method
family is more dogmatic than XP and often more flexible, depending on exact project
needs. The methods are, however, still under development (only brief descriptions are

4.5. DEVELOPMENT PROCESS DECISIONS 77

available). The most comprehensively described is the “clear” method variant (for small
teams with not more than 6 persons).

• Feature Driven Development (FDD), [S. R. Palmer, M. Felsing, and S. Palmer, A Practical
Guide to Feature-Driven Development. Prentice Hall International, 2002] [PFP02] (book).
This method is based on meta modelling and a set of best practices approved in industry.
Although, there is are a dedicated community (http://www.featuredrivendevelopment.
com/) and various certifications available, only a few publications and supporting software
concerning FDD are currently available.

An example of the approach that may assist in selecting the right method for the organisation’s
needs in described in 4.5.1.4. One has to consider that the introduction of a new development
method is usually connected to the restructuring of already existing organisational processes,
and therefore creates additional overhead and costs.

Furthermore, agile methods are usually applied for smaller projects. In order to support large
scale development, special techniques have to be adapted together with the agile methods.
[CH01] mentions an agile project with ca. 250 members and, according to the materials provided
by http://scrumcenter.net/, Scrum (one of the agile methods) is known to be successfully
adapted for 500+ team members.

As systems in the automation domain are highly complex, basic principles of agile methods,
such as “code is documentation” and “avoidance of waste” in form of architectural modelling,
likely do not fit to the needs of software projects in the automation domain. Experts believe
that poor agile methods have a rather negative impact on system maintenance and evolution
4.5.1.2. Hybrid agile methods extended with additional practices (like architectural modelling)
are therefore intended to prevent issues during system maintenance and evolution, such as
architectural erosion and low system understandability that are common troubles of long living
systems. More on the reconciliation of agile methods and architecture modelling, as well as a
set of related references can be found in 4.5.1.3. An example of a hybrid approach is presented
in 4.5.1.5.

References:

• [G. Goth. Agile Tool Market Growing with the Philosophy. Software, IEEE, 26 Issue:2,
88 – 91, 2009] [Got09] (journal paper)

• [M. Taromirad, R. Ramsin, ”An Appraisal of Existing Evaluation Frameworks for Agile
Methodologies”, In Proceedings of the 15th IEEE International Conference and Workshop
on the Engineering of Computer Based Systems (ECBS’08), Northern Ireland, 2008, pp.
418 – 427] [TR08] (conference paper)

• [P. Lappo, H. C.T. Andrew, “Assessing Agility”, Lecture Notes on Computer Science,
Springer-Verlag, Germany, 2004, pp. 331 – 338] [LA04] (journal paper)

• [D. Turk, R. France, B. Rumpe, “Assumptions Underlying Agile Software Development
Processes”, Journal of Database Management, Idea Group Inc., October-December 2005,
pp. 62 – 87] [TFR05] (journal paper)

• [P. Abrahamsson, O. Salo, J. Ronkainen, J. Warsta, Agile Software Development Methods:
Review and Analysis, VTT Publication, Finland, 2002] [ASRW02] (conference paper)

• [P. Abrahamsson, J. Warsta, M. Siponen, J. Ronkainen, “New Directions on Agile Methods:
A Comparative Analysis”, In Proc. of the 25th International Conference on Software
Engineering (ICSE’03), Oregon, 2003, pp. 244 – 254] [AJaJR03] (conference paper)

• [J. Koskela, Software Configuration Management in Agile Methods, VTT Publication,
Finland, 2003] [Kos03] (conference paper)

http://www.featuredrivendevelopment.com/
http://www.featuredrivendevelopment.com/
http://scrumcenter.net/

78 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

• [L. Williams, W. Kerbs, L. Layman, A. Anton, “Toward a Framework for Evaluating
Extreme Programming”, In Proc. of the 8th International Conference on Empirical As-
sessment in Software Engineering (EASE 04), Edinburgh, 2004, pp. 11 – 20] [WKLA04]
(conference paper)

• [E. Germain, P. Robillard, “Engineering-based Processes and Agile Methodologies for Soft-
ware Development: a Comparative Case Study”, The Journal of Systems and Software,
Elsevier, February 2005, pp. 17 – 27] [GR05] (journal paper)

• [A. Qumer, B. Hendersson-Sellers, “Comparative Evaluation of XP and Scrum Using the
4D Analytical Tool (4-DAT)”, In Proceedings of the European and Mediterranean Confer-
ence on Information Systems (EMCIS), Spain, 2006] [QHS06] (conference paper)

• [M. Pikkarainen, U. Passoja, “An Approach for Assessing Suitability of Agile Solutions: A
Case Study”, In Proceedings of the 6th International Conference on Extreme Programming
and Agile Processes in Software Engineering (XP 2005), UK, June 2005, pp. 171 – 179]
[PP05] (conference paper)

• [D. Turk, R. France, B. Rumpe, “Limitations of Agile Software Processes”, In Proceedings
of the 3rd International Conference on Extreme Programming and Flexible Processes in
Software Engineering (XP 2002), Italy, May 2002, pp. 43 – 46] [TFR02] (conference paper)

• [K. Beck et al., “Manifesto for Agile Software Development”, Available at http://www.

agilemanifesto.org] (on-line article)

• [Agile Alliance, “Agile Principles”, Available at http://agilealliance.org] (on-line ar-
ticle)

• [K. Conboy, B. Fitzgerald, “Toward a Conceptual Framework of Agile Methods: A Study
of Agility in Different Disciplines”, In Proceedings of the 2004 ACM workshop on Interdis-
ciplinary software engineering research, CA, USA, 2004, pp. 37 – 44] [CF04] (conference
paper)

• [Mohan K., Ramesh B., Sugumaran V., Integrating Software Product Line Engineering
and Agile Development. Software, IEEE, 27 Issue:3, 48 – 55, 2010] [MRS10] (journal
paper)

• [Laanti, Nokia Corporation, 2008, Paper, Implementing Program Model with Agile Prin-
ciples in a Large Software Development Organization] [Laa08]

• [Koehnemann, 2009, Paper, Experiences Applying Agile Practices to Large Systems] [Koe09]

• [I. Christou, S. Ponis, and E. Palaiologou. Using the Agile Unified Process in Banking.
Software, IEEE, 27 Issue:3, 72 – 79, 2010] The Agile Unified Process (AUP)-a hybrid ap-
proach designed by Scott Ambler combining RUP with agile methods to a successful project
in the banking sector. The project achieved on-time delivery within budget, integrating
heavy legacy back-end application systems with newly reengineered client user-interface
applications on a modern service-oriented architecture (SOA) platform. [CPP10] (journal
paper)

• [Goetzenauer. Agile Methoden in der Softwareentwicklung: Vergleich und Evaluierung.
Master’s thesis, 2005] [Göt05] (diploma thesis, in German)

• [M. A. Babar. An exploratory study of architectural practices and challenges in using
agile software development approaches. Joint Working IEEE/IFIP Conference on Software
Architecture, 2009 and European Conference on Software Architecture. WICSA/ECSA
2009., pages 81 – 90, 2009] [Bab09] (conference paper)

http://www.agilemanifesto.org
http://www.agilemanifesto.org
http://agilealliance.org

4.5. DEVELOPMENT PROCESS DECISIONS 79

• [O. Salo, P. Abrahamsson. Agile methods in European embedded software development
organisations: a survey on the actual use and usefulness of extreme programming and
scrum. Software, IET, 2, Issue 1, pages 58 – 64, 2008] [SA08] (journal paper)

• [K. Silva and C. Doss. The growth of an agile coach community at a fortune 200 company.
AGILE 2007, pages 225 – 228, 2007] [SD07] (conference paper)

• [K. Beck and C. Andres. Extreme Programming Explained: Embrace Change (2nd Edi-
tion). Addison-Wesley Professional, 2004] [BA04] (book)

• [Versionone. State of agile survey, 2009] [Ver09] (survey)

• [K. Schwaber and M. Beedle. Agile Software Development with Scrum. Pearson Studium,
2008] [SB08] (book)

• [A. Cockburn. Crystal Clear: A Human-Powered Methodology for Small Teams. Addison-
Wesley Longman, Amsterdam, 2004] [Coc04] (book)

• [S. R. Palmer, M. Felsing, and S. Palmer, A Practical Guide to Feature-Driven Develop-
ment. Prentice Hall International, 2002] [PFP02] (book)

• [A. Cockburn and J. Highsmith. Agile software development: The people factor. Com-
puter, pages 131 – 133, 2001] [CH01] (journal paper)

• Feature Driven Development (FDD), http://www.featuredrivendevelopment.com/ (ded-
icated community)

• Scrum Center, http://scrumcenter.net/

4.5.1.2 Maintenance and Agile Development, Long-term Life Cycle Impact of Agile
Methodologies

This subsection introduces research on the impact of agile methods on the maintenance (which
are as well related to the evolution) of systems. Certain aspects, nevertheless, like lack of
documentation and bad architecture, are also relevant for other methodologies.

Maintenance of system developed using agile methods, pros and cons ([KMSN+06]:

• (negative) Current agile software methodologies only represent a few implementation de-
tails of the product development process, and because of this “low-level” approach they
may build software that meet short-term individual project needs, but that do not neces-
sarily lead to software systems suitable for longterm “enterprise” software (Heydt M.).

• (negative) “Compare the savings made through agile development to the costs of main-
taining a product for the next 20 years. Agile development is only postponing costs which
then come later in the maintenance phase” (Sneed H.).

• (negative) A lack of or insufficient system documentation may lead to increased system
complexity, deteriorated maintainability, lack of system familiarity, difficulties to assess
the impact of change and side effects, and confusion in the already difficult and complex
maintenance task (Kajko-Mattsson M.).

• (neutral) The small role that software architecture plays in agile methodologies such as XP
and Scrum is an impediment to long-term software maintenance, eventually makes a sys-
tem unmaintainable. Emerging agile methodologies such as Feature-Driven Development
(FDD) and the more structured versions of Crystal recognize the role and importance of
software architecture, even if at a high level (Lewis G.).

http://www.featuredrivendevelopment.com/
http://scrumcenter.net/

80 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

• (positive) Software maintainability coupled with agile development methodologies can only
be effective if built upon other best practices. Top-of-mind best practices include: 1) Team
Building 2) Architecture 3) Test-driven development practices, architecture review and
code inspection 4) Project Management. Agile enhancements include increased visibility,
task and resource tracking (Siracusa D.).

Most agile methods assume that development starts from scratch and ends with a release —
postrelease maintenance is not covered. There is no guarantee that the code can serve as doc-
umentation (“the code is the documentation”), if the system was originally developed using
different methods. This has a rather negative impact on the system evolution, as typical trou-
bles of long living systems, a) architecture erosion and b) system’s understandability, are not
concerned during the agile development.

References:

• [Kajko-Mattsson et al.. Long-term Life Cycle Impact of Agile Methodologies. 22nd IEEE
International Conference on Software Maintenance, 2006. ICSM ’06. Pages 422 – 425,
2006] Discussion of the long-term life cycle impact of agile methodologies. [KMSN+06]
(conference paper)

• [Hanssen G.K., Yamashita A.F., Conradi R., Moonen L., Maintenance and agile develop-
ment: Challenges, opportunities and future directions. IEEE International Conference on
Software Maintenance, 2009. ICSM 2009. Pages 487 – 490, 200] Investigation of software
entropy issue through an industrial case study, overview of the literature on this topic
(focus on the detection of code smells and their treatment by refactoring). Conclusion:
in order to remain agile despite of software entropy, developers need better support for
understanding, planning and testing the impact of changes. However, it is exactly work
on refactoring decision support and task complexity analysis that is lacking in literature.
[HYCM09] (conference paper)

4.5.1.3 Architecture modelling and agile methods

Most of the agile methods consider architectural modelling to be superfluous. Most of the agile
methods offer only high-level practices on explicit system design and architecture modelling.
Therefore, multiple hybrid approaches were proposed to overcome this issue. Questions con-
cerning the role and potential insertion of architecture modelling in agile methods and their
reconciliation are becoming matters of high interest not only in research, but also in practice.

Explicit design and architecture modelling have the following benefits [CBBG02, Gar00]:

• Communication: architecture may be used as a focus of discussion by system stakeholders;

• Understanding: presenting a complex system at an easier abstraction level;

• Analysis: consistency checking, conformance to constraints and quality attributes, depen-
dence analysis;

• Reuse: architectural descriptions support reuse at multiple levels and across a range of
systems (styles, patterns, components, frameworks, code); existing components can be
considered during design (COTS, in-house components, commissioned or off-shore);

• Management: evaluation of an architecture typically leads to a much clearer understanding
of requirements, implementation strategies and potential risks (cost-estimation, mile stone
organization, dependency analysis, change analysis, staffing);

• Implementation support: provides a partial blueprint for development by indicating the
major components and dependencies between them;

4.5. DEVELOPMENT PROCESS DECISIONS 81

• Evolution: exposure of the dimensions along which a system is expected to evolve

From the perspective of sustainable software architectures, only agile methods with explicit
architecture considerations are recommended. Unfortunately, most of the work in this area
is high-level and only discusses advantages of the reconciliation of agile methods and explicit
architecture and design (you can find a set of reference below). For an example of a practical
hybrid agile method with explicitly considered architecture and design refer to 4.5.1.3.

References:

• [P. Abrahamsson, M. A. Babar and P. Kruchten. Agility and Architecture: Can They
Coexist? IEEE Software, 27 , Issue:2, 16 – 22, 2010] A good introduction into the prob-
lem. This article discusses the roots of misunderstanding architecture modelling and agile
methods contradictions. It questions the general challenge of their reconciliation and gives
several general advices, but provides no practical method. [AABK10] (journal paper)

• [P. Kruchten. Voyage in the Agile Memeplex. ACM 1542-7730/07/0700, Volume 5, Is-
sue 5:1, 2007] Points out several problems in the agile community: community-specific
terminology; usual absence of context (where to apply the method, where the method
was useful); absence of established understanding of certain process parts and definition
of waterfall method; attempts to create a culture out of agile methods. [Kru07] (journal
paper)

• [S. Ambler. Agile Modeling: Effective Practices for eXtreme Programming and the Unified
Process. Wiley, 2002] Provides an introduction into agile methods, UML-modelling and
describes general agile modelling methodologies. However all advices are kept very general,
mostly concentration on the “best practices” of Extreme Programming (XP, one of the
agile methods) and are more concerning a very general management level. [Amb02] (book)

• [M. Isham. Agie Architecture is possible - You first have to believe! Conference Agile, 2008.
AGILE ’08, pages 484 – 489, 2008] Presents a project success report where architecture
and Scrum (one of the agile methods) were joined. This report however neither gives any
details on architecture modelling (if it was used and how), nor proposes any method or
process for their reconciliation. [Ish08] (journal paper)

• [D. Falessi, G. Cantone, S. Alessandro Sarcia, G. Calvaro, P. Subiaco, and C. D’Amore.
Peaceful Coexistence: Agile developer perspectives on Software architecture. Software,
IEEE, 27, Issue:2, 23 – 25, 2010] An exploratory study conducted by IBM and University
of Rome Tor Vergata. It describes an agile developer perspective on the architecture. It
shows that in 95% of cases, developers consider a focus on architecture as important, but
it does not state what is understood by architecture in this case. It does not propose any
method. [FCS+10] (journal paper)

• [B. Nuseibeh. Weaving Together Requirements and Architectures. Computer, 34, Issue:3,
115 – 119, 2001] The proposed method is an adoption of the spiral life-cycle model and the
author describes it as a complementary to XP (Extreme Programming, one of the agile
methods). However, the article is on a very high level, it gives no exact details about the
method itself. [Nus01] (journal paper)

• [P. Clements, F. Bachmann, L. Bass, D. Garlan. Documenting software architectures:
Views and beyond (SEI series in software engineering), 2002] [CBBG02] (book)

• [David Garlan. Software architecture: a roadmap. In Proceedings of the Conference on
The Future of Software Engineering, pages 91 – 101, 2000] [Gar00] (conference paper)

82 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.5.1.4 Approach: CEFAM Comprehensive Evaluation Framework for Agile Method-
ologies (Taromirad)

Goal: Assist in the selection of an agile method corresponding to the organisation’s needs.

Short description: This approach supports the selection of an appropriate agile methodology.
The proposed Comprehensive Evaluation Framework for Agile Methodologies (CEFAM) [TR08]
(workshop paper) is an evaluation tool for project managers and method engineers. It is based
on a hierarchical (and mostly quantitative) evaluation criterion set, presented in Figure 4.6.

Figure 4.6: CEFAM Evaluation Criteria (structure)

Evaluation:

Development Phase: Design / Implementation

Relevance, Automation: Medium (Not automation specific, however, no domain
limitation)

Relevance, Sustainability: Medium (The decision to select a particular agile method
influences system properties)

Applicability: Low / Medium (Industrial validation is unclear, however,
this framework is built on top of already existing methods
eliminating their drawbacks)

Tool: –

Preventive / Reactive / An-
alytical:

Preventive / Analytical

Formalization: Informal

Perspective: Positive

Abstraction level: High

Benefit for sustainable sys-
tems:

Goal oriented selection of a method that suits the needs
of an organisation

References:

• [Taromirad M. and Ramsin R., CEFAM: Comprehensive Evaluation Framework for Ag-
ile Methodologies. 32nd Annual IEEE Software Engineering Workshop, pages 195 – 204,
2008] [TR08] (workshop paper)

4.5. DEVELOPMENT PROCESS DECISIONS 83

4.5.1.5 Approach: Agile Architecture Interactions (Madison)

Goal: Reconcile agile methods with architecture modelling.

Short description: This is a practice-oriented approach: A combination of agile methods and
architectural modelling which uses agile techniques to derive good architectures. It is presented
in a form of a framework based on Scrum (agile method), XP (agile method) and sequential
project management. It proposes to use an architecture for communication, quality attributes
and technology stack establishment purposes. It requires an architect who plays a central role
and uses design patterns to define further forms of implementation. The proposed approach
does not concern requirements engineering and seems to target organizations having only one
software system type and thus similar project types (in the article: insurance software systems)
as it is should use former architectural decisions. However, this assumption may hold for the
automation domain.

Evaluation:

Development Phase: Design / Implementation

Relevance, Automation: Medium (Not automation specific, domain seems to be
limited. However, this assumption may to hold for the
automation domain)

Relevance, Sustainability: Medium (Introduces architectural modelling into agile
methods, therefore, cares about elimination of troubles
during later system’s evolution phase)

Applicability: Medium (Not enough information for a complete adop-
tion of proposed method, however, has been successfully
applied in industry throughout multiple projects)

Tool: –

Preventive / Reactive / An-
alytical:

Analytical

Formalization: Informal

Perspective: Not applicable

Abstraction level: High

Benefit for sustainable sys-
tems:

Supports architectural modelling and, therefore, im-
proves the impact on maintenance

References:

• [J. Madison. Agile Architecture Interactions. Software, IEEE, 27 , Issue: 2, 41 – 48, 2010]
[Mad10] (journal paper)

84 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.5.2 Knowledge Transfer, Documentation, UML

The main goal of knowledge transfer is to prevent the loss of knowledge about the system and
used technologies (highly relevant for evolution and maintenance of the long living systems)
[BSB08] (book):

• General approaches for the knowledge transfer [BSB08] (book). Sharing knowledge be-
tween team members (or multiple teams) help to avoid situations, where suddenly nobody
is able to maintain some system parts or carries knowledge about certain technologies.
In-team rotation, regular meetings and reviews enable team members to take care of
some system parts and processes even in case the main specialist responsible for it out
of some reason is unavailable. Approaches that are introduced in the following sections
are, however, only complimentary to documenting systems and are more helpful during
implementation or bug fixing phases. Knowledge transfer approaches are presented in the
Subsection 4.5.2.1.

• Documentation artefacts. Documentation artefact are text documents (specifications, man-
uals, requirements specifications and etc.) and models. Such artefacts are useful for per-
forming activities during implementation and maintenance phases. Team members (spe-
cialists) may use them in order to obtain information about the system or system changes
(design and/or implementation changes) required to perform their activities. Such arte-
facts, if being regularly updated, help to reduce reduces overhead connected to the system
understanding. For long living systems in automation domain sufficient system documen-
tation is highly relevant, as such systems are very complex and initial team members are
often unavailable for support. Subsection 4.5.2.2 provides several references discussing
positive influence of documentation on system maintenance activities.

4.5. DEVELOPMENT PROCESS DECISIONS 85

4.5.2.1 General Approaches for Knowledge Transfer

General knowledge transfer approaches are used along with documentation to ensure knowledge
transfer in the team. These are common practices widely used in the IT community. Certain
knowledge sometimes is carried only by single person, thus making the whole team highly depen-
dant on it. Knowledge transfer approaches help to avoid having the only available technology
or system “experts” in the team . They also help to maintain overall knowledge state inside the
team and support learning from the past. However, these approaches seem to be more useful
during system implementation and bug fixing, as they tend to effectively support equal level of
technical knowledge in the team during some shorter periods of time, but do not scale sufficiently
enough over a longer period of time (long living is a common system attribute in the automation
domain). Main general knowledge transfer approaches are ([BSB08]):

• Knowledge inventory table

• Retrospective meetings

• Knowledge database

• Review

• Meetings / Groups

• In-Team rotation

As these approaches do not prevent loss of knowledge about system and it’s modifications during
a longer period of time, they have to be seen as complimentary to documentation.

Knowledge inventory table helps to discover knowledge and abilities distribution in teams.
Long living system often tend to get obsolete parts, e.g. implemented in an old/legacy pro-
gramming language. Specialist able to work with these parts are likely to disappear (e.g. leave
the company) over time. Therefore, it is important to assure that the knowledge they have is
shared with newcomers and other team members. Knowledge inventory table may help keeping
an overview of such knowledge in the team. It structurally shows which person carries which
knowledge and abilities, therefore making gaps in the knowledge distribution visible.

An example of a knowledge inventory table:

– Importance Main
knowl-
edge rep-
resenter

Depth
of knowl-
edge

Deputy Note

System

Core system 1 Smith 2 Jones –

Automatic func-
tionality

3 Brown 2 – –

GUI functionality 2 Taylor 2 – Taylor is
leaving the
company in
3 months

Technology

.Net 1 Johnson 3 Jones Johnson
requires a
training

86 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

Visual Basic 3 Jones 2 Williams Technology
is obsolete

MS SQL 2 Williams 1 – –

A tabular way of information representation provides a quick overview on the knowledge distri-
bution.

Retrospective meetings are often used in the agile methods in order to improve the process
for the next iteration. It is a meeting held by a project team at the end of a project or process
(in agile methods: iteration) to discuss what was successful about the project or time period
covered by that retrospective, what could be improved, and how to incorporate the successes and
improvements in future iterations or projects. Retrospective meetings assure that feedback from
team members comes into development process, thus improving overall development quality.
Such feedback may also be helpful during maintenance phase, where a team may learn on
mistakes from the past. It might be a good strategy to document such decisions (e.g. in a
WiKi) or some other knowledge database, so that these lessons-learned do not get lost.

Knowledge database may have several forms: A personal knowledge database contains per-
sons and knowledge carried by them, the access to such database is usually open to everybody.
However such database may become quickly out of date and itself produces too much mainte-
nance overhead. Wikis may be used for information to be kept and exchanged, providing an
easy and quick access to e.g. rules, experiences, decisions, etc. However Wikis may lack usability
and scalability. They quickly become unmanageable.

Review is a process or meeting during which a software product is examined by project person-
nel, managers, users, customers, user representatives, or other interested parties for comment or
approval (IEEE 1028, Wikipedia). For more information c.f. Section 4.5.4.

Meetings / Groups can include so-called “team rounds”, meeting dedicated to some special
issue or topic and groups of interest. Meetings contribute to the distribution of the various
knowledge types between team members and teams. It is a good way of keeping team members
synchronised during some development and maintenance activities.

In-Team rotation is a practice, where different team members exchange their team roles or
projects. Each team member will be familiar with the whole system (or sub system in case of
larger systems) and, on demand, will be able to overtake tasks when other team members are
unavailable or are overloaded at the moment. Though such “non specialists” are usually less
efficient at implementing task beyond their profile, they still are able to execute these successfully
during a reasonable time for task implementation.

Evaluation:

Development Phase: Design / Implementation / Maintenance

Relevance, Automation: Medium (Not automation specific, however, no domain
limitation)

Relevance, Sustainability: High (However, do not scale well over time)

Applicability: Medium (These are simple practices, which are widely
spread in the development community. However, their
applicability might be restricted by legal issues or com-
plexity and conditions of automation domain)

4.5. DEVELOPMENT PROCESS DECISIONS 87

Tool: –

Preventive / Reactive / An-
alytical:

Preventive / Reactive / Analytical

Formalization: Informal

Perspective: Not applicable

Abstraction level: High

Benefit for sustainable sys-
tems:

Keep an overview of the knowledge state in organisa-
tion. Prevent unnecessary implementation and mainte-
nance overhead caused by insufficiently informed team
members. Eventually reduce dependency on “experts” in
an knowledge area.

References:

• [Bommer C., Spindler M., and Barr V., Softwarewartung. dpunkt.verlag, 2008, Chapter
7] [BSB08] (book)

• You may also apply to section 3.3 ”Historical Data, Data Mining” for information on data
mining approaches (restoring information from various informational sources, e.g. code
repositories and bug tracking systems).

88 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.5.2.2 Documentation Artefacts

Under documentation artefact we understand:

• Text documents (specifications, manuals, requirements specifications, etc.)

• Models (UML - Unified Modelling Language, DSM - Domain-specific modelling, etc.)

These artefacts are useful for performing activities during implementation and maintenance
phases. Team members (specialists) may apply to them in order to obtain information about
the system or system changes (design and/or implementation changes) required to perform their
activities. If those artefacts are regularly updated, they help to reduce overhead connected to
the system understanding. For long living systems in automation domain sufficient system
documentation is highly relevant, as such systems are very complex and initial team members
are usually unavailable for support.

Clearly, the documentation itself has to be regularly maintained, and this produces additional
cost and overhead. It might even seem that these costs and overhead generally do not pay off.
However, several studies provided as references in this subsection tend to prove positive result
of investments into documentation during the system’s maintenance phase [CRR09, DAB08,
AHGT06, TH03, Try97]. Several selected statements from these surveys (for detailed information
please apply to the surveys):

• “The results indicated that having documentation available during system maintenance
reduces the time needed to understand how maintenance tasks can be performed by ap-
proximately 20 percent”

• “The subjects in the UML group had on average a practically and statistically significant
54% increase in the functional correctness of changes (p=0.03), and an insignificant 7%
overall improvement in design quality (p=0.22)”

• “There are clear benefits to be derived from using UML e.g., traceability from functional
requirements to code”

• “The subjects performed better with DSM (in investigated maintenance activities) for
each dependent variable, although the subjects had extensive UML training but only brief
experience with DSM.”

More information can be found in the brief summary for each provided reference.

Evaluation:

Development Phase: Design / Implementation / Maintenance

Relevance, Automation: High (Although not automation specific, documentation
help to deal with the domain complexity)

Relevance, Sustainability: High (Documentation supports knowledge about the sys-
tem over long period of time)

Applicability: Medium (Created additional overhead, especially con-
nected with maintaining documentation)

Tool: –

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Formal / Informal

4.5. DEVELOPMENT PROCESS DECISIONS 89

Perspective: Positive

Abstraction level: Not applicable

Benefit for sustainable sys-
tems:

Reduces overhead of maintenance activities, improves sys-
tem understandability

References:

• [E. Tryggeseth. Report from an Experiment: Impact of Documentation on Maintenance.
Empirical Software Eng., vol. 2, 201–207, 1997] A controlled experiment investigated how
access to textual system documentation (the requirements specification, design document,
test report, and user manual) helped when performing maintenance tasks. The results in-
dicated that having documentation available during system maintenance reduces the time
needed to understand how maintenance tasks can be performed by approximately 20 per-
cent. The subjects who had the documentation available also showed better understanding
and a more detailed solution to how the change can be incorporated as compared to those
who had only the source code available. The results also suggested that there is an inter-
action between the maintainer’s skill (as indicated by a pretest score) and the potential
benefits of the system documentation: The most skilled maintainers benefited the most
from the documentation. (Adapted from journal paper [DAB08]) [Try97] (journal paper)

• [W.J. Dzidek, E. Arisholm, and L.C. Briand. A Realistic Empirical Evaluation of the
Costs and Benefits of UML in Software Maintenance. IEEE Transactions on Software
Engineering, v 34 , Issue:3, 2008] Controlled experiment that investigates the costs of
maintaining and the benefits of using UML documentation during the maintenance and
evolution of a real, non-trivial system, using professional developers as subjects, working
with a state-of-the-art UML tool during an extended period of time. The subjects in
the control group had no UML documentation. In this experiment, the subjects in the
UML group had on average a practically and statistically significant 54% increase in the
functional correctness of changes (p=0.03), and an insignificant 7% overall improvement
in design quality (p=0.22) - though a much larger improvement was observed on the first
change task (56%) - at the expense of an insignificant 14% increase in development time
caused by the overhead of updating the UML documentation (p=0.35). This experiment
confirms that the presence of additional documentation in UML form gives the developers a
better understanding of the system (via better correctness results). Authors state that they
obtained similar results by using different measurements, both with trained students and
professionals and systems of widely varying size, and that they are confident that UML will
bring practically significant benefits under a large number of conditions.[DAB08] (journal
paper)

• [B. Anda, K. Hansen, I. Gullesen, and H.K. Thorsen. Experiences from Using a UML-
Based Development Method in a Large Organization. Empirical Software Eng., vol. 11,
555 – 581, 2006] Evaluation whether using UML is cost effective in a realistic context
for a large project. The participants in the case study acknowledged that, despite some
difficulties (e.g., the need for adequate training), there are clear benefits to be derived from
using UML (e.g., traceability from functional requirements to code). All of the subjects in
the UML group found the diagrams to be useful and traceability was enhanced. [AHGT06]
(journal paper)

• [S. Tilley and S. Huang. A Qualitative Assessment of the Efficacy of UML Diagrams as a
Form of Graphical Documentation in Aiding Program Understanding. Proc. ACM Inter-
national Conference on Design of Communication 2003, ACM SIGDOC ’03, pages 184–191,
2003] Qualitative efficiency of UML diagrams in aiding program understanding. Fifteen
subjects whose UML expertise varied (six beginners, eight intermediate, and one expert)
had to analyse a series of UML diagrams (with access to code) acknowledged that, UML’s
efficacy in supporting program understanding is limited by 1) unclear specifications of syn-
tax and semantics in some of UML’s more advanced features, 2) spatial layout problems

90 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

(e.g., large diagrams are not easy to read), and 3) insufficient support for representing the
domain knowledge required in understanding a program. [TH03] (conference paper)

• [Lan Cao, B. Ramesh, and M. Rossi. Are Domain-Specific Models Easier to Maintain Than
UML Models? Software, IEEE, Volume: 26 , Issue: 4, 19 – 21, 2009] Investigates if DSM
(domain specific models) improve the maintenance performance of designers, compared to
general-purpose modeling using UML. Authors investigated how each type of modeling lan-
guage affects model comprehension, the correctness of changes, and the degree of changes
made during a maintenance task. They also assessed the accuracy with which designers
understand model syntax and model semantics. Based on results authors suggest that the
subjects performed better with DSM for each dependent variable, although the subjects
had extensive UML training but only brief experience with DSM. The DSM models’ cor-
rectness score was about 20 percent higher than the UML models’ score. The degree of
changes in DSM was much smaller than in UML; UML diagrams required nearly twice the
number of steps.
[CRR09] (journal paper)

• [Antony Tang, Jun Han, and Rajesh Vasa. Software Architecture Design Reasoning: A
Case for Improved Methodology Support. Software, IEEE, 26, Issue: 2, 43 – 49, 2009]
educe maintenance overhead caused by wrong design decisions. Software Architecture
Design Reasoning proposes capturing and recording the reasoning behind software archi-
tecture design, which can encourage architects to more carefully consider design decisions
and better support future maintenance. [THV09] (journal paper)

4.5. DEVELOPMENT PROCESS DECISIONS 91

4.5.3 Consistency between artefacts

Artefacts present different views on a system, they support understandability of it and are
used (either modified, e.g. code, or support modification, e.g. architectural models) during the
maintenance phase. Preventing inconsistency between various system artefacts contributes to
improving system understandability and preventing mistakes at system maintenance.

Artefact types:

• Documentation (design documents, requirement specifications, guides, manuals, reports,
etc.)

• Models, polymeric views

• Source code

• Wiki

• FAQs

However, keeping artefacts consistent is a challenge. Inconsistent artefacts may lead to mistakes
through false understanding of the system and implementation of bugs or wrong functionality.
Inconsistent documentation, therefore, increases time and overhead required for evolving the
system. Another aspect of inconsistency between artefacts is architecture violations. This means
that the implementation of the system does not follow the initial architectural plan. In such
cases violations either shall be prevented or architectural models shall be updated accordingly
to the code.

In the following document, we provide a brief state-of-the-art overview for the following aspects:

• Tracing architecture violations - this is called compliance checking and can be found in
the section

• Tracing documentation and code consistency

These approaches can be complemented by those presented in Section 3.4.3, e.g. to create initial
versions or to contribute parts of the documentation.

92 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.5.3.1 Architecture Compliance Checking

Goal: Architecture compliance checking has the following goals:

• Identification of deviations between the intended architecture and the implemented archi-
tecture

• Identification of changes to the architectural design description during implementation and
maintenance activities

• Detection of the structural violations

Architecture compliance checking contributes to the prevention of architecture decay (erosion)
and drift between implementation and structural view. As system structure remains conform-
ing to the describing artefacts, the overall understandability of the system remains on a more
satisfactory level. This pays off during further maintenance activities, as it helps to reduce costs
and overhead connected to them. A maintained system structure additionally contributes to the
overall system quality and maybe even to the system performance. Beside that, the automation
domain is controlled by strict regulations and standards. So, compliance checking might also
contribute to not violating these regulations.

4.5. DEVELOPMENT PROCESS DECISIONS 93

A Comparison of Static Architecture Compliance Checking Approaches (Knodel et
al.)

Short Description: Guidance on when to use which static architecture compliance checking
approach. Architecture compliance checking is an approach to detect architectural violations
(i.e., deviations between the intended architecture and the implemented architecture). The
paper compares three static architecture compliance checking approaches (reflection models,
relation conformance rules, and component access rules) by assessing their applicability in 13
distinct dimensions. The main differences between analysed approaches concern the dimensions
defect types, maintainability, transferability, multiple view support, and restructuring scenarios.
Considering robustness of the architecture compliance checking approach with respect to code
evolution, relation conformance rules seem to fit the best. Authors use TSAFE - a prototype of
the Tactical Separation Assisted Flight Environment specified by NASA Ames Research Center
- for their case study.

Evaluation:

Development Phase: Implementation /Maintenance

Relevance, Automation: Medium (Case study executed on a prototype from
Aerospace domain)

Relevance, Sustainability: Medium

Applicability: Low (A study of approaches, more theoretical purpose)

Tool: –

Preventive / Reactive / An-
alytical:

Preventive / Reactive

Formalization: Formal

Perspective: Negative

Abstraction level: Medium

Benefit for sustainable sys-
tems:

Results may help selecting a more suitable static ap-
proach for the architecture compliance checking. It may
prevent architectural erosion and reduce maintenance
overhead.

References:

• [Knodel J. and Popescu D. A Comparison of Static Architecture Compliance Checking Ap-
proaches. The Working IEEE/IFIP Conference on Software Architecture, 2007. WICSA
’07. Page 12, 2007] [KP07] (conference paper)

94 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

Static Architecture Conformance Checking - An Illustrative Overview (Passos et
al.)

Short Description: Compares and illustrates the use of three static architecture confor-
mance techniques:dependency structure matrices (Lattix Inc’s Dependency Manager), source
code query languages (Semmle’s .QL), and reflection models (Fraunhofer IESE’s SAVE). To
highlight the similarities and differences between the three techniques, it describes how some of
their available supporting tools can be applied to specify and checks architectural constraints for
a simple personal information management system. The authors provide following conclusions:

Criteria DSM/LDM SCQL/.QL RM/SAVE

Expressiveness Limited (only can-
use, cannot-use
constraints)

High (Datalog seman-
tics)

Medium (regular ex-
pressions, but not sub-
types)

Abstraction
level

Medium (based on
package hierarchy)

Low (based on code
queries)

High (models provided
by architects)

Ease of applica-
tion

Medium (requires de-
sign rules for each con-
straint)

Medium (requires
queries for each
constraint)

Medium (requires map-
ping between models)

Architecture
reasoning and
discovery

High (DSM help to re-
veal architecture pat-
terns)

Medium (warning, ta-
bles, graphs, charts,
and tree maps)

Limited (only marks in
the reflection model)

Evaluation:

Development Phase: Implementation / Maintenance

Relevance, Automation: Medium (Not automation specific, no limitation for do-
main)

Relevance, Sustainability: Medium (Detects violations, therefore supports sustain-
ability. Manual actions required)

Applicability: High (Techniques are applied in industry)

Tool: Semmle’s .QL: semmle.com, Lattix LDM: lattix.

com, SAVE (link to Fraunhofer IESE): www.iese.

fraunhofer.de

Preventive / Reactive / An-
alytical:

Reactive / Analytical

Formalization: Formal

Perspective: Negative

Abstraction level: Low / Medium

Benefit for sustainable sys-
tems:

Comparative evaluation of the architecture conformance
techniques and tools. Such techniques may prevent archi-
tectural erosion and reduce maintenance overhead.

References:

• [Passos L., Terra R., Diniz R., Valente M. T., and Mendon N. Static Architecture Con-
formance Checking - An Illustrative Overview. Software, IEEE, PP , Issue: 99, 2009]
[PTD+09] (journal paper)

semmle.com
lattix.com
lattix.com
www.iese.fraunhofer.de
www.iese.fraunhofer.de

4.5. DEVELOPMENT PROCESS DECISIONS 95

Lightweight prevention of architectural erosion (O’Reilly et al.)

Short Description: The authors present a lightweight approach to the control of architectural
erosion. It covers the representation of an architectural description and the management of align-
ment between description and implementation during system evolution. A prototype support
tool, ArchAngel, is introduced. This tool is meant to:

• support the building and maintenance of simple architectural descriptions;

• support the linking of an architectural description to an implementation;

• be proactive in determining whether or not an evolving implementation conflicts with the
defined dependencies;

• notify stakeholders (software engineers and architects) of inconsistencies that are detected
(no assumptions have been made about how these stakeholders will use this information).

Evaluation:

Development Phase: Implementation / Maintenance

Relevance, Automation: High (Concerns prevention of the top relevant problems
for the automation domain)

Relevance, Sustainability: High (Concerns prevention of the top relevant problems
for the sustainability)

Applicability: Low (Inapplicable, no link to prototype tool found, and
unclear if the tool was further developed)

Tool: –

Preventive / Reactive / An-
alytical:

Preventive / Reactive / Analytical

Formalization: Formal

Perspective: Positive / Negative

Abstraction level: Medium / High

Benefit for sustainable sys-
tems:

Early recongnition and prevention of inconsistency and
architectural erosion, thus, lower costs and maintenance
overhead

References:

• [C. OReilly, P. Morrow, and D. Bustard. Lightweight prevention of architectural erosion.
Sixth International Workshop on Principles of Software Evolution, 2003. Proceedings,
pages 59 – 64, 2003] [OMB03] (conference paper)

96 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

Constructive architecture compliance checking — an experiment on support by live
feedback (Knodel et el.)

Short Description: Detection of the structural violations to prevent an architecture decay,
prevention of the drift between the implementation and the structural view. It uses analyti-
cal reverse engineering technology (architecture compliance checking, automated as a variant
of the SAVE - Software Architecture Visualization and Evaluation - tool) for monitoring the
modifications made by developers. The new variant “SAVE LiFe” is integrated into the Eclipse
development environment (IDE) and enables the live feedback for multiple developers. When
a structural violation is detected, the particular developer receives feedback allowing prompt
removal of the violations. These shall prevent architecture decay. A case study was performed
with the help of 6 development teams. Three teams supported by the live compliance check-
ing inserted about 60% less structural violations into the architecture than did the three other
development teams.

Evaluation:

Development Phase: Implementation / Maintenance

Relevance, Automation: Medium (Not automation specific, however, no domain
limitation)

Relevance, Sustainability: High (Concerns architecture erosion problem, which is
common for sustainable systems)

Applicability: Low (Too few information about the developed tool is
provided in the paper, tool itself was not found for down-
load)

Tool: – (Link to SAFE LiFe not available; link to Fraunhofer
IESE, SAVE: www.iese.fraunhofer.de)

Preventive / Reactive / An-
alytical:

Preventive

Formalization: Not applicable (Not enough information)

Perspective: Positive / Negative

Abstraction level: Low / Medium / High

Benefit for sustainable sys-
tems:

Prevent architecture erosion by notifying developers
about architectural violations at real-time during their
activities

References:

• [J. Knodel, D. Muthig, and D. Rost. Constructive architecture compliance checking –
an experiment on support by live feedback. IEEE International Conference on Software
Maintenance, 2008. ICSM 2008, pages 287 – 296, 2008] [KMR08] (conference paper)

www.iese.fraunhofer.de

4.5. DEVELOPMENT PROCESS DECISIONS 97

4.5.3.2 Documentation and Code Consistency

Goal: Establish and maintain links between the source code and free (natural language) text
documents. Support software evolution through representation of concerns in code.

Documentation and code consistency checking contributes to prevention of drift between arte-
facts and actual implementation of the system. If the actual implementation of the system
remains conform to the describing artefacts, the overall understandability and traceability of
the system improves. This pays off during further maintenance activities, as it helps to re-
duce costs and overhead connected to them (caused through overhead by understanding the
system). Section 4.5.2.2 contains several studies on positive influence of documentation on the
implementation phase.

Beside advantages during the maintenance phase, linking code and documentation (and their
consistency) may contribute to requirement tracing, reuse of existing implementation parts and
change impact analysis.

98 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

Recovering Code to Documentation Links in OO Systems (Antoniol et al.)

Short Description: An approach to establish and maintain traceability links between the
source code and free text documents (documentation is expressed informally, stochastic language
models are used for document’s estimation). Supposes that programmers use meaningful names
for program’s items, such as functions, variables, types, classes, and methods and assumes
that the application-domain knowledge that programmers process when writing the code is
often captured by the mnemonics for identifiers; therefore, the analysis of these mnemonics can
help to associate high level concepts with program concepts, and vice-versa. This approach is
demonstrated on software written in C++ in order to trace classes to manual’s sections. The
process is automated (tool supported), it basically maps classes to the ordered list of manual
sections.

Evaluation:

Development Phase: Maintenance

Relevance, Automation: Medium ((Not automation specific, however, no domain
limitation)

Relevance, Sustainability: Low (Long living systems tend to lack or to have outdated
documentation, therefore there might be a few use for
recovering links between code and documentation)

Applicability: Low (Although, this approach is fully automated, link to
the tool was not found)

Tool: –

Preventive / Reactive / An-
alytical:

Analytical

Formalization: Formal

Perspective: Negative

Abstraction level: Not applicable

Benefit for sustainable sys-
tems:

Support developers at exploring legacy systems

References:

• [G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo. Recovering Code to Documentation
Links in OO Systems. Proceedings. Sixth Working Conference on Reverse Engineering,
pages 136 – 144, 1999] [ACLM99]

4.5. DEVELOPMENT PROCESS DECISIONS 99

Recovering traceability links between a simple natural language sentence and source
code using domain ontologies (Yoshikawa et al.)

Short Description: Establish and maintain links between the source code and natural language
text documents. Proposes an ontology-based technique for recovering traceability links between
a natural language sentence specifying features of a software product and the source code of
the product. If a software product is insufficiently documented (or documentation is out of
date), this approach may be used to automatically detect code fragments associated with the
functional descriptions written in the form of simple sentences. The relationships between source
code structures and problem domains are important. The knowledge of the problem domains is
modelled as domain ontologies. A provided case study demonstrates better results than without
ontologies.

Evaluation:

Development Phase: Maintenance

Relevance, Automation: Medium (Not automation specific, however, no domain
limitation)

Relevance, Sustainability: Low (Long living systems tend to lack or to have outdated
documentation, therefore there might be a few use for
recovering links between code and documentation)

Applicability: Low (The approach is still at the beginning of develop-
ment)

Tool: –

Preventive / Reactive / An-
alytical:

Analytical

Formalization: Formal

Perspective: Negative

Abstraction level: Medium

Benefit for sustainable sys-
tems:

Support developers at exploring legacy systems

References:

• [T. Yoshikawa, S. Hayashi, and M. Saeki. Recovering traceability links between a simple
natural language sentence and source code using domain ontologies. IEEE International
Conference on Software Maintenance, 2009. ICSM 2009. Pages 551 – 554, 2009] [YHS09]

100 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

Representing Concerns in Source Code (Robillard)

Short Description: Support software evolution through representation of concerns in code.
Description of concerns, representing program structures and linked to source code that can
be produced cost-effectively during program investigation activities. This can help developers
perform software evolution tasks more systematically, and on different versions of a system. It
makes possible to precisely define the notion of inconsistency between a concern graph and
the corresponding source code and automatically detect and repair inconsistencies between a
description of source code and an actual code base. The approach is tool-supported: FEAT, an
Eclipse plug-in for locating, describing, and analysing concerns in source code.

Evaluation:

Development Phase: Implementation

Relevance, Automation: Medium (Not automation specific, however, no domain
limitation)

Relevance, Sustainability: Medium (Long living systems tend to lack or to have
outdated documentation)

Applicability: Medium (Has a tool, however, it’s usability was not anal-
ysed)

Tool: FEAT Tool: http://www.cs.mcgill.ca/~swevo/feat/

Preventive / Reactive / An-
alytical:

(Preventive / Reactive / Analytical)

Formalization: Formal

Perspective: Negative

Abstraction level: Low / Medium

Benefit for sustainable sys-
tems:

Support maintenance activities at insufficiently docu-
mented systems, thus, reducing overhead and costs

References:

• [Robillard. Representing Concerns in Source Code. PhD thesis, 2003] [Rob03] (PhD
Thesis)

http://www.cs.mcgill.ca/~swevo/feat/

4.5. DEVELOPMENT PROCESS DECISIONS 101

4.5.4 Quality Assurance Strategies

General quality assurance strategies contribute to higher system quality and, therefore, poten-
tially lower maintenance and system evolution costs and overhead. Examples of the quality
assurance strategies are:

• Testing (Unit testing, integration testing, etc.)

• Reviews (Code reviews, inspections, pair programming, etc.)

There is a tool supportt for the quality assurance, i.e. SISSy, ISIS, Checkstyle, Findbugs, etc.

Testing: detailed overview of the testing techniques is out of scope of this document. However
has a great impact on evolvability of (long living) systems. Systems having a high test coverage
usually have less bugs that are found during maintenance phase. This leads to reduced (fixing)
changes to the system during maintenance and, thus, fewer possibilities that lead to erosion of
software.

Reviews: Reviews are parts of quality assurance strategies and have the same benefits as
testing. There are several review types, for example the following:

• Code review is systematic examination (often as peer review) of computer source code.

• Pair programming is a type of code review where two persons develop code together at
the same workstation.

• Inspection is a formal type of peer review where the reviewers are following a well-defined
process to find defects.

• Walkthrough is a form of peer review where the author leads members of the development
team and other interested parties through a software product and the participants ask
questions and make comments about defects.

• Technical review is a form of peer review in which a team of qualified personnel examines
the suitability of the software product for its intended use and identifies discrepancies from
specifications and standards.

• Fagan review is a structured process of trying to find defects in development documents
such as programming code, specifications, designs and others during various phases of the
software development process.

• Semantic analysis is tracking variable/function/type declarations and type checking.

• Control-flow analysis is a representation, using graph notation, of all paths that might be
traversed through a program during its execution.

SISSy / ISIS: are examples of tools that can be used as a part of quality assurance strategies.
For more information on SISSy and ISIS apply to: SISSy Section 3.4.3.2 and ISIS Section 3.4.3.3.

References:

• [Balzert H. Lehrbuch der Software-Technik - Software-Entwicklung. Spektrum-Akademischer
Vlg, 2000 (in German)] [Bal00] (book)

• [Ludewig J. and Lichter H. Software Engineering. Dpunkt Verlag, 2006] [LL06] (book)

• Projects (tools):

SISSY http://sissy.fzi.de,

ISIS http://www.andrena.de/node/160/.

http://sissy.fzi.de
http://www.andrena.de/node/160/

102 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.5.5 Team Organization Strategies

One of the goals of optimizing team organization (beside reducing the costs) is to increase quality
of the developed system that has an impact on further evolution and migration complexity. A
detailed overview of the team organization strategies do not contribute directly to the goals of
this project. However, it is important to realize that a wrong organization of a development
team may produce a negative impact on quality and evolution phase of the system life cycle.

4.5. DEVELOPMENT PROCESS DECISIONS 103

4.5.6 Development Environment Strategies, Virtualisation

The development environment and its evolution exhibit an impact on the later maintenance of
long living systems. Therefore, the goal would be to explicitly consider reducing dependency to
the evolution of development environment. For example ABB uses Microsoft Technologies for
system development, which leads to the need of co-evolution with them.

This problem may be solved partially through the virtualisation of the development environ-
ment. This helps to retain the development environment as used to on top of evolving hardware
technology.

Virtualization is a broad term which encompasses a number of different technologies. Under
virtualization we understand the “separation of a resource or request for a service from the
underlying physical delivery of that service”.

Virtualization may not yet solve the specific hardware problems, however it can be successfully
applied for resolving of the following issues at ABB:

• enabling application migration

• reducing footprint

• maintaining development environment

• reducing installation effort

Application of virtualization solutions at ABB is only possible under consideration of the stan-
dards, mentioned in the Section 2.5 “Relevant standards”.

Detailed overview of the development environment strategies is out of scope of this document.

References:

• [Barnett R. J., Irwin B. V.. Virtualized Systems and their Performance: A Literature
Review. 2007] [BI07] (conference paper)

• [Menascé D. A.. Virtualization: Concepts, Applications, and Performance Modeling.
White Paper, George Mason University, 2005] [Men05] (white paper)

• [Wolf C. and Halter E. M.. Virtualization: from the desktop to the enterprise. Apress; 1
edition, 2005] [WH05] (book)

104 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.6 Management Strategies: Make or Buy Decision Support

Certain decisions regarding infrastructure technology are met at the management level. These
are decisions concerned with development policy, such as (Section 4.6):

1. Buying third party solutions (COTS, Commercial-Off-The-Shelf)

2. Using Open-source Software Solutions (adaptation)

3. Implementing own solutions

These management decisions influence the evolution phase of software, as they have impact on
the system’s maintenance. So for example buying third party solutions (or using open source
solutions) may reduce development costs, however may also create dependencies to the evolution
of external software. Virtualization may help keeping outdated technology (required for system
maintenance) available or in some cases reduce dependency to the underlying software. However,
it creates additional costs, requires special knowledge and maintenance itself.

The goal is to reduce dependency to the evolution of external software, and, from another side,
reduce overhead of the development of own software.

Term “Off-the-shelf” (OTS) is used to summarise external development options, such as Commercials-
Off-The-Shelf (COTS) or open source software (OSS). Decisions either to implement or to buy
(adapt) software have advantages and disadvantages. So buying third party solutions (or using
open source solutions) may reduce development costs, however may also create dependencies to
the evolution of external software. Implementation of own software might be more expensive,
however the evolution of such software is depending on organisation itself.

This provides a brief overview for the following aspects, concerning make or bye decisions:

• Risks connected with the use of COTS

• Selection of the COTS, integration of the COTS usage into the process

• Trade-off between Make or Buy decision, advantages and disadvantages, COTS and Open
Source

• Maintenance of COTS systems

This section has an introductory purpose, the majority of references presents a discussion of the
topic.

4.6.1 Risks, Selection and Integration of the COTS into the process

The process of selection of OTS (COTS or OSS) may be either formal or informal:

• Informal ways include using in-house expertise and Web-based search engines. Such ways
may be more suitable in case of the limited number of OTS candidates available, or the
company’s pre-existing, long-term partnership with a specific provider.

• Formal ways are for example direct assessment, compatible COTS component selection
(CCCS) or domain-based COTS product selection method. However, there is few empir-
ical evaluation of formal processes for selecting OTS components, the cost benefits and
preconditions of using a formal process are often unclear.

OTS may be selected during design, implementation and maintenance phases. The study
[LCB+09] (journal paper) points that OTS components are mainly selected based on archi-
tecture compliance instead of function completeness and used without modifications.

4.6. MANAGEMENT STRATEGIES: MAKE OR BUY DECISION SUPPORT 105

Integration of OTS into the system is connected to certain effort. This effort may be estimated
by using personal experience of persons responsible for integration (however, they are usually
inaccurate) or using a formal effort estimation approach (e.g. tool COCOT, http://csse.usc.
edu/csse/research/COCOTS/index.html or EPIC process, http://www.sei.cmu.edu/).

Usage of OTS is connected to certain risks, these risks concern OTS selection and integration
phases, as well as system maintenance phase. For example, during OTS selection and integration
there may be the following risks:

• Wrong OTS was selected (at the end, it may become more expensive then self-implementation)

• Underestimation of integration effort

• High learning curve required to adapt an OTS

• Lack of evaluated methods for OTS selection and integration

• OTS are not sufficiently compatible with the deployment environment of the system

• Different quality practices of a vendor and purchasing organisation

Examples of risks during the maintenance phase:

• Asynchronous update cycles, rapid and asynchronous changes

• The new OTS version is incompatible with the system (incl. its environment or legal
regulations)

• The OTS provider stops its support

• Licensing, legal issues and new standards

• Hard to estimate if a defect is inside or outside the OTS borders

References:

• [Elisabeth Hansson and Goran V. Grahn. One Global COTS-Based Systemto Replace
20+ Local Legacy Systems. Lecture Notes in Computer Science,COTS-Based Software
Systems, 3412/2005, 144 – 145, 2005] Presentation of the technical challenges and lessons
learned within the project, replacing 20+ different IT systems, both in-house developed
and bought packages, with one COTS-based IT system. Because of long living property of
the new system, the COTS based solution had to be open, flexible and scalable over time.
Another key part of the architecture required in their solution was integration to existing
systems. [HG05] (outline)

• [Francis L. Lifetime procurement - Look deep for dependability. Electronics Systems and
Software, 4, Issue:6, 22 – 25, 2006] Article on the obsolescence planning in the military
area, concerns hardware components. Points to problems also relevant in the automation
domain (e.g. different life cycles of systems and COTS). [Fra06] (journal paper)

• [Jingyue Li, Conradi R., Odd P., Slyngstad O., Torchiano M., Morisio M. and Bunse
C. Validation of New Theses on Off-the-Shelf Component Based Development. Software
Metrics, 2005. 11th IEEE International Symposium, pages 26 – 26, 2005] Survey on the
OTs usage in the praxis. The supported theses are: 1) OSS components were mainly used
without modification in practice, custom code mainly provided additional functionality; 2)
formal OTS selection processes were seldom used. The unsupported theses are: 1) stan-
dard mismatches were more frequent than architecture mismatches; 2) OTS components
were mainly selected based on architecture compliance instead of function completeness
[LCS+05] (conference paper)

http://csse.usc.edu/csse/research/COCOTS/index.html
http://csse.usc.edu/csse/research/COCOTS/index.html
http://www.sei.cmu.edu/

106 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

• [Jingyue Li, Conradi R., Bunse C., Torchiano M., Slyngstad O., and Morisio M.. Devel-
opment with Off-the-Shelf Components: 10 Facts. Software, IEEE, 26 Issue:2:, 80 – 87,
2009] Article on the survey’s results from the year 2008 by the same authors (see [LCS+05]
listed in this section) [LCB+09] (journal paper)

• [Land R., Blankers L., Chaudron M., and Crnkovic I. COTS Selection Best Practices in
Literature and in Industry. Lecture Notes in Computer Science, High Condence Software
Reuse in Large Systems, pages 100 – 111, 2008.] Literature survey of the software COTS
component selection methods, followed by a metamodel consolidating the activities and
practices of these methods. Provides recommendations which will enable organizations
to identify suitable practices when designing a customized selection processes. [LBCC08]
(journal paper)

[Jingyue Li,Bunse C., Torchiano M., Slyngstad O., and Morisio M.. A State-of-the-Practice
Survey of Risk Management in Development with Off- the-Shelf Software Components.
IEEE Transactions on Software Engineering,34 , Issue:2, 271 – 286, 2008] An international
survey on risk management in software development with off-the-shelf (OTS) components.
Analysed data from 133 software projects in Norway, Italy, and Germany. [LST+08]
(journal paper)

• [Becker S. Cost Model, Decision Support and Selection Process for COTS. Dimploma
thesis, Carl von Ossietzky Universitaet Oldenburg, 2003] (in german) [Bec03] (dimploma
thesis)

• [Kotonya G., Hutchinson J.. Analysing the Impact of Change in COTS-Based Systems.
Lecture Notes in Computer Science, COTS-Based Software Systems, 3412/2005, 212 – 222,
2005] An approach to to impact analysis in COTS-based system. It is based on the use of a
COTS component oriented development process and an architecture description language
(ADL) for documenting component system architectures. [KH05] (journal paper)

• [Lewis P. et al.. Lessons Learned in Developing Commercial Off-The-Shelf (COTS) In-
tensive Software Systems. Technical report, The Federal Aviation Administration (FAA),
2000] Tech report on topics: problems with vendors, leverage in gaining vendor cooper-
ation, need for flexibility in defining requirements, importance of operational demonstra-
tions, assessment of specific attributes, life-cycle issues, COTS integrator experience, need
for technology watch to keep up with vendors, interface to legacy systems, impacts of
volatility during development, vendor management. [Lew00] (Tech report)

• [Lipson H. F., Mead N. R., and Moore A. P.. Can We Ever Build Survivable Systems
from COTS Components? Lecture Notes in Computer Science, Advanced Information
Systems Engineering, 2348/2006, 216 – 229, 2001] Describes a risk-mitigation framework
for deciding when and how COTS components can be used to build survivable systems.
[LMM01] (journal paper)

• [Meine van der Meulen, Riddle S., Strigini L., and Jefferson N.. Protective Wrapping
of Off-the-Shelf Components. Lecture Notes in Computer Science, COTS-Based Software
Systems, 3412/2005, 168 – 177, 2005] Discusses the use of wrappers to improve the depend-
ability – i.e., “non-functional” properties like availability, reliability, security, and/or safety
– of a component and thus of a system. Wrappers can improve dependability by adding
fault tolerance, e.g. graceful degradation, or error recovery mechanisms. [vdMRSJ05]
(journal paper)

• [Leung K., Leung H. On the eficiency of domain-based COTS product selection method.
Information and Software Technology, Volume 44, Issue 12, 703–715, 2002] Discussion of
the efficiency of domain-based COTS product selection method [LL02] (journal paper)

4.6. MANAGEMENT STRATEGIES: MAKE OR BUY DECISION SUPPORT 107

4.6.2 Maintenance of COTS

Maintenance of the COTS systems is a complicated topic. The cost to maintain such systems
often is equal or even exceeds that of developing custom software. The maintenance activities
include:

• Bug-fixing

• Licensing, new standards

• Version and technology upgrades

• Support of obsolete technologies

One of the most common troubles is asynchronous update cycles of COTS and long-living
systems in automation domain. Such systems usually have long update cycles equal to several
years (coupled to maintenance of underlying hardware), whether COTS might have an update
cycle of several weeks.

Examples of risks during the maintenance phase (duplicate from the previous section):

• Asynchronous update cycles, rapid and asynchronous changes

• The new OTS version is incompatible with the system (incl. its environment or legal
regulations)

• The OTS provider stops its support

• Licensing, legal issues and new standards

• Hard to estimate if a defect is inside or outside the OTS borders

References:

• [Reifer D., Boehm B., Basili V. and Clark B.. Eight Lessons Learned during COTS-Based
Systems Maintenance. IEEE Software, 20, 94 – 96, 2003] Results of the empirical study
[RBB+03] (journal paper)

• [Vigder M. R. and Dean J.. Maintaining COTS-Based Systems. Fifth International IEEE
Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS’06),
pages 11 – 18, 2000] Maintenance of COTS-Based systems and its difference from custom-
built systems [VD00] (conference paper)

• [Clapp J. A. and Taub A.E.. A Management Guide to Software Maintenance in COTS-
Based Systems. MITRE, Center for Air Force C2 Systems, Bedford, Massachusetts, 1998]
Planning of maintaining COTS software products in COTS-based systems. Discusses
issues and risks in using COTS over the life cycle and how to control them [CT98] (tech
report)

• [Reifer D., Basili V. , Boehm V., and Clark B. COTS-Based Systems: Twelve Lessons
Learned about Maintenance. Lecture Notes in Computer Science, COTS-Based Software
Systems, 2959/2004, 137 – 145, 2004] Lists activities specially connected to the use of
COTs during the maintenance process. It describes learned lessons about the maintenance
of systems containing COTs and risks connected to it [RBBC04] (journal paper)

108 CHAPTER 4. SOLVING EVOLUTION PROBLEMS

4.6.3 Trade-off between Make or Buy decision, COTS and Open Source

There is a trade-off between these options, so called “Make or Buy Decision”. In section 4.5 of
[RH09] (book) authors list several advantages and disadvantages of such make or buy decisions.
Decisions between make or buy affect the reusability of own or external development results.

Implementation of the own software (“Make”) has the following properties:

• (positive) It leads to own know-how and ownership of solutions

• (negative)It requires resources like time, money and qualifications/skills/know-how

Usage of the third party solution (“Buy”) has the following properties:

• (positive) Less costs when using external

• (negative) Project management risks: Unknown effort for adaptation and integration, un-
known fulfilment of performance and reliability requirements, unknown support of manu-
facturer with respect to integration or maintenance.

References:

• [Reussner R. and Hasselbring W.. Handbuch der Software-Architektur. dpunkt.verlag, 2.
edition, 2009] [RH09] (book)

• [Jingyue Li, Bjornson F. O., Conradi R., and Kampenes V. B.. An empirical study of
variations in COTS-based software development processes in the Norwegian IT industry.
Empirical Software Engineering, Volume 11, Number 3, 433 – 461, 2006] Studies how to use
and customize COTS-based development processes for different project contexts. Describes
an exploratory study of state-of-the-practice of COTS-based development processes, briefly
discusses: COTS-specific activities, risks, selection [LBCK06] (journal paper)

• [Giacomo P. D.. COTS and Open Source Software Components: Are They Really Different
on the Battlefield? Lecture Notes in Computer Science, COTS-Based Software Systems,
3412/2005, 301 – 310, 2005] Discussion of the OSS and COTS, a guideline for the correct
use of OSS within component-based systems [Gia05] (journal paper)

• [Mohagheghi P. and Conradi R.. Quality, productivity and economic benefits of software
reuse: a review of industrial studies. Empirical Software Engineering, Volume 12, Number
5, 471 – 516, 2007] Reviews systematic software reuse topic, assess the effects of software
reuse in industrial contexts in the period between 1994 and 2005. Makes conclusions about
benefits of reuse like: problem density (defect, fault or error), productivity, etc [MC07]
(journal paper)

• [Holck J., Larsen M. H., and Pedersen M. K.. Managerial and Technical Barriers to the
Adoption of Open Source Software. Lecture Notes in Computer Science, COTS-Based Soft-
ware Systems, 3412/2005, 289 – 300, 2005] Discusses managerial and technical decisions
for acquisition of OSS, compares COTS and OSS [HLP05] (journal paper)

Chapter 5

Related Surveys

In this chapter we summarise several publications that survey research and state of the art
in software evolution and its related topics, e.g., software maintenance, reverse engineering,
software refactoring, model-driven development.

[CI90] (journal paper) is about a taxonomy in the area of reverse engineering and design re-
covery. The paper addresses the problem of confusion about terminology in context of reverse
engineering. The authors define and relate six terms: forward engineering, reverse engineering,
redocumentation, design recovery, restructuring, and reengineering.

[Ben96] (journal paper) is about the past, present, and future of software evolution. In this
paper the authors review progress in software evolution. They present a three-level approach to
considering software evolution, in terms of the impact 1) on the organization, 2) on the process,
3) and on technology supporting that process. Progress is reported in all three levels. Moreover
a proposal for an IEEE standard for maintenance processes is described. They encourage to
think in terms of solutions instead of problems.

[BR00] (conference paper) is about a roadmap for software maintenance and evolution. The pa-
per aims at describing a landscape for research in software maintenance, identifies key problems,
solution strategies, and topics of importance. Trends and practices are projected forward by
using a staged model of software evolution.

[CHK+01] (journal paper) is about types of software evolution and software maintenance. The
paper proposes a (clarifying) redefinition of the types of software evolution and software mainte-
nance. A classification of software evolution types is presented by distinguishing changes of (1)
the software, (2) the documentation, (3) the properties of the software, and (4) the customer-
experienced functionality. The paper provides a classified list of maintenance activities and a
condensed decision tree as a summary guide to use the presented classification.

[MD01] (conference paper) is about future trends in software evolution metrics. The paper pro-
vides a classification of the various approaches that use metrics to analyse, understand, control
and improve the software evolution process, and identifies topics that require further research.

[Men02] (journal paper) is about the state of the art (survey) in software merging. The pa-
per provides a comprehensive survey and analysis of available merge approaches. The paper
covers initial techniques based on textual merging, but also techniques that take syntax and
semantics into account. Moreover operation-based merging is presented. After comparing the
possible merge techniques, a number of important open problems and future research directions
is discussed.

[MT04] (journal paper) provides a survey of software refactoring. The paper provides an exten-
sive overview of existing research in the field of software refactoring. This research is compared
and discussed based on a number of different criteria: the refactoring activities that are sup-
ported, the specific techniques and formalisms that are used for supporting these activities, the
types of software artifacts that are being refactored, the important issues that need to be taken
into account when building refactoring tool support, and the effect of refactoring on the software

109

110 CHAPTER 5. RELATED SURVEYS

process.

[BMZ+05] (journal paper) gives a taxonomy of software change that is based on characterizing
the mechanisms of change and the factors that influence these mechanisms. The ultimate goal of
this taxonomy is to provide a framework that positions concrete tools, formalisms and methods
within the domain of software evolution. Such a framework would considerably ease comparison
between the various mechanisms of change. It would also allow practitioners to identify and
evaluate the relevant tools, methods and formalisms for a particular change scenario. As an
initial step towards this taxonomy, the paper presents a framework that can be used to charac-
terize software change support tools and to identify the factors that impact on the use of these
tools. The framework is evaluated by applying it to three different change support tools and by
comparing these tools based on this analysis.

[MWD+05] (conference paper) is about challenges in software evolution, that are considered
important by the authors aiming to provide novel research directions in the software evolution
domain.

[CP07] (conference paper) is about new frontiers of reverse engineering that presents an overview
of the field of reverse engineering, reviews main achievements and areas of application, and
highlights key open research issues for the future.

[FR07] (conference paper) is about a research roadmap for model-driven engineering (MDE) of
complex software. The paper gives an overview of current research in MDE and discusses some
of the major challenges that must be tackled in order to realize the MDE vision of software
development. The authors argue that full realizations of the MDE vision may not be possible
in the near to medium-term primarily because of some difficult problems, but attempting to
realize the vision will provide valuable insights.

[KCM07] (journal paper) gives a survey and taxonomy of approaches for mining software repos-
itories in the context of software evolution. The survey deals with those investigations that
examine multiple versions of software artifacts or other temporal information. It presents work
via four dimensions: the type of software repositories mined (what), the purpose (why), the
adopted/invented methodology used (how), and the evaluation method (quality).

[TTBS07] (journal paper) is about the state of the art and future trends of empirical studies
in reverse engineering. The authors’ position is that the next stage of development for this
discipline will necessarily be based on empirical evaluation of methods. The paper contributes
a roadmap for the future research in the field with the goal to clarify the scope of investigation,
to define a reference taxonomy, and to adopt a common framework for the execution of the
experiments.

[Van07] (workshop paper) is about a research agenda for model-driven software evolution. The
paper addresses the evolution of applications built by using model-driven development ap-
proaches and points out the need for consideration of multiple dimensions of evolution: regular
evolution, meta-model evolution, platform evolution, and abstraction evolution. The authors
identify problems and challenges for research in four research themes: model developments en-
vironments, ”from model to code”, ”from code to models”, and evaluation.

[GG08] (conference paper) is about the past, present, and future of software evolution. The paper
discusses the definitions of evolution and maintenance terminology and compares Lehman’s
Laws with Staged Model (of maintenance and evolution) of Bennett and Rajlich. Moreover
software evolution is compared with biological evolution. The authors present a roadmap with
challenges and opportunities addressing six areas: 1) model building and empirical studies,
2) open source development, 3) evolutionary pressure and emergent design, 4) improving the
collective memory of software developers, 5) the emergence of software “ecospheres”, and 6)
improved understanding of economic tradeoffs and risks.

Chapter 6

Management Summary

6.1 Categorisation of Approaches

This document presents a survey of analytical and proactive approaches for dealing with evo-
lution of sustainable software systems. It aims at structuring the field of sustainable software
engineering approaches.

In this survey document, we divided the presented approaches for identification and analysis of
evolution problems (see Section 3) into three categories:

• Architecture analysis

• Software Comprehension using Historical Data

• Quality Indicators

Each category is briefly summarised in the following.

Architecture Analysis provides means for the development of understanding of the current
state and investigation of the quality potential of software systems. It allows to derive strategic
development perspectives for software systems. Approaches of this category are predominantly
informal and manual. The most critical point of analytical approaches is that they are usually
heavy-weight approaches since they require a large amount of participants to be involved in their
application which typically represent different stakeholders of a software system. The challenge
and change of architecture analysis lie in the creation of a common shared understanding of a
software systems among all participants.

One of the most fitting approaches with respect to sustainability is ALMA (see Section 3.2.3).
However the applicability of ALMA has limitations, e.g., there is no tool support available since
the process is mostly informally described.

Software Comprehension using Historical Data has minor importance from the project
perspective, since there are only few stringent implications from historical data on the current
situation of a software system – especially on the architecture level. Approaches of this category
are appropriate for problems with low granularity, e.g., probability of coding errors or the
identifying of the right specialist for maintenance tasks and predicting which of a system’s
parts are most likely to change together. However, predictions based on historical data are
less reliable, require special tools, large and well-maintained databases of historical data, and
technical training, especially for result interpretation.

The absence of applicable solutions for the architecture-relevant analysis of historical data might
be predominantly caused by lack of data to be analysed. Application of solutions for the

111

112 CHAPTER 6. MANAGEMENT SUMMARY

architecture-relevant analysis of historical data is only possible if historical data can be pro-
vided. In order to achieve relevant data a systematic collection and aggregation of data is
necessary. Artefacts containing explicit historical information on the software architecture, if
initially documented at all, are usually badly maintained and are mostly outdated. Architects
should take care of this. Therefore, architecture artefacts have to be first recovered from system
code stored in the version systems by using reverse engineering approaches.

Quality Indicators are mainly related to metrics and bad smells for detecting evolution
problems (refer to Section 3.4 for more details about metrics and tools.). The overall question
for approaches of this category is, whether evolution problems can be effectively detected by
using metrics and bad smells which are typically based on the code representation of a software
system. Literature proposes a huge amount of metrics, but their relationship to evolution and
sustainability is difficult to prove or validate.

When establishing metrics and bad smell detections as a part of a software lifecycle, the aware-
ness for low-granular and medium-granular problems in software systems can be significantly
increased. The rationale behind quality indicators metrics and the awareness for bad smells
should be an essential part of workforce training and basic knowledge for software developers to
assist them in developing sustainable software systems.

There is substantial tool support for the calculation of software metric and bad smell detection
available. The support by tools for identifying problems to sustainability can be considered
as powerful. Furthermore, a high degree of automation can contribute in establishing quality
assurance mechanisms for sustainable software. Implications of metrics and bad smell results
have nevertheless to be derived manually since no direct implications for a software system exist
(e.g. intended bad smell due to the application of a software pattern). As promising tools
for calculation and monitoring of software metrics we recommend SISSy and Sotograph, see
Section 3.4.1, for detection of bad smells we recommend SISSy and FindBugs, see Section 3.4.2,
and for dependency analysis we recommend Lattix LDM, see Section 3.4.3.1.

A support for an automatic translation from detected problem patterns or bad smells into code
improvements is not possible.

6.2 Decision Levels

The approaches for preventing and solving evolution problems in Section 4 address several
decision levels. These levels are briefly sketched in the following. Each level should be reflected
when aiming at sustainable software development an sustainable software systems.

Static Architecture and Software System Structure. The Static Architecture and Soft-
ware System structure is crucial for achieving sustainable systems. Due to little automation and
the sheer size of the design space of typical software systems, the appropriate usage of struc-
tural approaches is relying on human knowledge. Section 4.1 presents a selection of approaches
that are highly relevant with respect to sustainability from the perspective of the static archi-
tecture and the system structure. These approaches represent basic knowledge that should be
an essential part of workforce training. In the area of best practices we recommend the study
of Modifiability Tactics and other common known design principle. Design Patterns should be
common knowledge, especially patterns with influence on modifiability (e.g., Façade, Layers,
Model-View-Controller, etc.). These approaches are good candidates for empirical validation
using industrial case studies.

Reactive elimination of evolution problems deals with systematic removing of identified
evolution problems, like bad smells, by performing small structured evolution steps. Refactoring
approaches are necessary to keep a software system modifiable, to reduce complexity, and to

6.2. DECISION LEVELS 113

remove unnecessary dependencies. These approaches should be essential part of the development
of sustainable software systems.

Variability Strategies surveys approaches that help to investigate the requirements of vari-
ability in software systems. Providing the appropriate degree of variability is important for
sustainable software systems, since software systems should provide variability for parts that
have to change during evolution. The kinds of sustainable systems, that we are addressing
here, should in particular provide variability regarding the exchange and evolution of (underly-
ing) technologies and therefore aim at separating business logic from technical layers. Project
managers and software architects should use variability approaches to identify the technologi-
cal dependencies and determine the demand for variation points. Since implementing variation
points is always connected with additional costs this kind of analysis is necessary to keep the
cost-benefit balance.

Automation of Software Development aims at increasing the consistency between arte-
facts (models, code, and documentation), increasing the productivity of software development,
and reducing the time-to-market. This is achieved by rising the abstraction level of the code
closer to the domain and by a better separation of domain knowledge and technology. Especially
techniques like domain specific languages decouple domain knowledge from technical details and
imply the hope to have persistent domain knowledge separated from more short-term technical
knowledge. Studies which prove the sustainability of domain model are still lacking.

Architecture-Centric Model-Driven Software Development (AC-MDSD, see Section 4.4.3) is
among the most promising approaches with respect to sustainable systems due to the explicit
consideration of architectures and the explicit separation of platform and application aspects.

Development Process is another layer of preventing evolution problems. If a development
process explicitly accounts for maintenance activities and quality assurance, establishing a sus-
tainable software system is more likely. Hence, the choice of the right development process is
suitable to reduce future evolution problems. There is no universal process solution supporting
all types of the projects. Therefore, the development process should be selected depending on a
project scope and environment conditions.

For example, lightweight processes, like agile development, are more suitable for smaller, rapidly
changing projects or execution of short-term maintenance activities. However, agile methods
in their pure form have rather negative impact on the later system maintenance, [KMSN+06,
HYCM09] (conference papers), so such methods should be carefully used for the initial develop-
ment of a software system. Currently available agile methods that support architectural mod-
elling and consider further maintenance and evolution phases of a software system are not yet
sufficiently developed and evaluated to an extend to be immediately applicable in the industries
which rely on sustainability.

One of the interesting approaches for a detailed case study on influence of explicit architecture
modelling on maintainability in agile methods could be an approach presented in [Mad10] (jour-
nal paper). It has a strong practice orientation and, according to the author, was aprobed in
multiply projects in industry context. Another case study could be dedicated to the applica-
tion of DCI architectures (not reviewed in this document because of insufficient data on its
application) [CB10] (book).

Knowledge Management and Documentation. Sustainable software development sub-
sumes knowledge management and transfer among generation of developers. Furthermore, the
consistence of artefacts helps keeping knowledge. Empirical studies prove that sufficient doc-
umentation (also of the system architecture) pays off well during evolution and maintenance
phases and improve the overall system quality. Clearly, any kind of documentation has to be
maintained, otherwise the positive effect on reducing evolution problems will be lost.

114 CHAPTER 6. MANAGEMENT SUMMARY

Team Support. A development process should be complemented by corresponding team or-
ganisation strategies which reduce dependencies among subsystems and account for the structure
of existing software systems. To support the maintenance tasks of software developers, appro-
priate environments can help which for example encapsulate outdated or legacy development
environments and infrastructures in virtual machines. A detailed overview of these topics is out
of scope of this document.

Software Infrastructure deals with decisions regarding the usage of third-party software.
The decision on the usage of third-party software comprises the selection of criteria reflecting
risk evaluation, maintainability properties, and an estimation on the ease of integrations with
existing systems. Generally, there are two dimensions for the selection of third-party software. In
the first dimension, one has to decide whether to i) buy readily available software or components
from third party vendors or ii) let the software implement by third parties. The second dimension
is to i) employ close source and black box software or to ii) use open source software.

6.3 Overall

This document identifies relevant approaches and techniques for sustainable software develop-
ment. Aiming at sustainable software systems implies sustainable software development. The
surveyed literature suggest a mixture of approaches for different stages of the software devel-
opment process which are tailored on a per-project and on a per-domain base. Addressing
sustainable software systems is a holistic task that cannot be mastered by single isolated means.
Due to a strongly varying degree of tool support and maturity of proposed approaches in litera-
ture, automated approaches are suggested to be combined with trainings on partially automated
and fully manual approaches to cover the spectrum of challenges for sustainable software systems.
In order to provide operational decision support for software architects and project managers a
guidelines document based on this document will be set up. It will serve as a kind of a cookbook
for proactive evolution handling in sustainable software development.

Chapter 7

Information Sources

This chapter summarises the information source which were reviewed for contribution to the
creation of this document.

7.1 Books

• Christopher Alexander. A Pattern Language: Towns, Buildings, Construction. Oxford
University Press, ISBN 0195019199, 1977

• Scott Ambler. Agile Modeling: Effective Practices for eXtreme Programming and the
Unified Process. Wiley, 2002

• Helmut Balzert. Lehrbuch der Software-Technik - Software-Entwicklung. Spektrum-Akademischer
Vlg, 2000

• K. Beck and C. Andres. Extreme Programming Explained: Embrace Change (2nd Edi-
tion). Addison-Wesley Professional, 2004

• Bommer C., Spindler, M., Barr, V., Softwarewartung, dpunkt.verlag, 2008

• Jan Bosch. Design and Use of Software Architectures Adopting and evolving a product-line
approach. Addison-Wesley, 2000

• Frank Buschmann. A system of patterns. Wiley, repr. edition, 2001

• William J. Brown, Raphael C. Malveau, Hays W. McCormick, III, and Thomas J. Mowbray.
AntiPatterns: refactoring software, architectures, and projects in crisis. John Wiley and
Sons, Inc., New York, NY, USA, 1998

• Paul Clements, Felix Bachmann, Len Bass, and David Garlan. Documenting software
architectures: Views and beyond (sei series in software engineering). 2002.

• Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming. Addison-Wesley,
2000

• Paul Clements, Rick Kazman, and Mark Klein. Evaluating software architectures. Addison-
Wesley, 4. print. edition, 2005

• Paul Clements and Linda Northrop. Software Product Lines Practices and Patterns. Ad-
dison Wesley, 2002

• A. Cockburn. Crystal Clear: A Human-Powered Methodology for Small Teams. Addison-
Wesley Longman, Amsterdam, 2004

115

116 CHAPTER 7. INFORMATION SOURCES

• James Coplien and Gertrud Bjornvig. Lean Architecture: for Agile Software Development.
John Wiley and Sons; Aufage: 1, 2010

• R. Dumke and F. Lehner. Software-Metriken Entwicklungen, Werkzeuge und Anwen-
dungsverfahren. Deutscher Unversitaets-Verlag, 2000

• Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional, 1999

• Norman E. Fenton and Shari Lawrence Peeger. Software Metrics A Rigorous and Practical
Approach. PWS Publishing Company, 1997

• Gamma E., Nackmann, L., Wiegand, J., Eclipse Modeling Project A Domain-Specific
Language (DSL) Toolkit, Addison-Wesley, 2009

• Erich Gamma, Lee Nackmann, and John Wiegand. eclipse Modeling Project A Domain-
Specific Language (DSL) Toolkit. Addison-Wesley, 2009

• Jack Greenfield and Keith Short. Software Factories Assembling Applications with Pat-
terns, Models, Frameworks, and Tools. Wiley, 2004

• Brian Henderson-Sellers. Object-oriented Metrics Measures of Complexity. Prentice Hall,
1996

• Ralph Johnson, John Vlissides Erich Gamma, Richard Helm. Design Patterns Elements
of Reusable Object-Oriented Software. Addison-Wesley Publishing Company, 1995

• Stephen H. Kan. Metrics and Models in Software Quality Engineering (2nd ed.). Addison-
Wesley Longman, 2002

• Jochen Ludewig and Horst Lichter. Software Engineering. Dpunkt Verlag, 2006

• Robert C. Martin. Clean Code A Handbook of Agile Software Craftmanship. Prentice
Hall, 2009

• Stephen J. Mellor and Marc Balcer. Executable UML: A Foundation for Model-Driven
Architectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

• Mens T., Software Evolution, Springer Berlin Heidelberg, 2008

• S. R. Palmer, M. Felsing, and S. Palmer. A Practical Guide to Feature-Driven Develop-
ment. Prentice Hall International, 2002

• Reussner R., Hasselbring, W., Handbuch der Software-Architektur, dpunkt.verlag, 2009

• Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1996

• Stefan Roock and Martin Lippert. Refactorings in grossen Softwareprojekten. dpunkt-
Verl., 1. au. edition, 2004.

• K. Schwaber and M. Beedle. Agile Software Development with Scrum. Pearson Studium,
2008

• Johannes Siedersleben. Moderne Softwarearchitektur. dpunkt.verlag, 2006

• Frank Simon, Olaf Seng, and Thomas Mohaupt. Code-Quality-Management. dpunkt.verlag,
2006

• Thomas Stahl and Markus Volter. Model-Driven Software Development Technology, En-
gineering, Management. Wiley, 2006

7.2. JOURNALS 117

• Chris Wolf and Erick M. Halter. Virtualization: from the desktop to the enterprise. Apress;
1 edition, 2005

• Ian Sommerville. Software Engineering 8 (International Computer Science Series): Update.
Addison Wesley; Ausgage: 8th ed., 2006.

7.2 Journals

• ACM Queue

• Elsevier Information and Software Technology

• Elsevier Journal of Systems and Software

• Elsevier Science of Computer Programming

• IEEE Computer

• IEEE Electronics Systems and Software

• IEEE Software

• IEEE Transactions on Software Engineering

• Springer Empirical Software Engineering

• Springer Lecture Notes in Computer Science

• Springer, The International Journal of Advanced Manufacturing Technology

• Wiley Journal of Software Maintenance and Evolution: Research and Practice (JSME)

7.3 Dissertations

• Cerulo L., On the Use of Process Trails to Understand Software Development (Analysis
of historical data in combination with static and dynamic analysis) 2006

• Ciupke O., Problemidentifikation in objektorientierten Softwarestrukturen, The University
of Karlsruhe, 2002

• Cubranic D., Project History as a Group Memory: Learning From the Past 2005

• Hassan A. E., Mining Software Repositories to Assist Developers and Support Managers,
The University of Waterloo, 2004

• Moonen L., Exploring Software Systems, The University of Amsterdam, 2002

• Penta, M. D., Evolution Doctor: A Framework to Control the Evolution of Undocumented
Software Systems 2003

• Robillard. Representing Concerns in Source Code. PhD thesis, 2003

• Wu J., Open Source Software Evolution and Its Dynamics, The University of Waterloo,
2006

• Zou Y., Techniques and Methodologies for the Migration of Legacy Systems to Object
Oriented Platforms, The University of Waterloo, 2003

118 CHAPTER 7. INFORMATION SOURCES

7.4 Conferences and Workshops

• ACM SIGDOC ’03,

• Agile Conference, 2007-2009. AGILE

• European Science Foundation Conference 2009

• Frontiers of Software Maintenance 2008. FoSM 2008.

• IEEE International Conference and Workshop on the Engineering of Computer Based
Systems, 2009. ECBS 2009.

• IEEE International Conference on Engineering Complex Computer Systems, 1998, 2000,
2005. ICECCS

• IEEE International Conference on Software Maintenance, 2003-2009, ICSM.

• IEEE International Symposium Software Metrics, 2005.

• IEEE International Workshop on Program Comprehension, 2004

• IEEE Software Engineering Workshop, 2008

• International Computer Software and Applications Conference, 2004

• International Conference on COTS-Based Software Systems, ICCBSS, 2006

• International Conference on Software Engineering, 2004. ICSE 2004.

• International Workshop on Principles of Software Evolution, 2003

• Joint Working IEEE/IFIP Conference on Software Architecture, 2009 and European Con-
ference on Software Architecture. WICSA/ECSA 2009.

• OOPSLA’05

• Software Engineering Conference, 2004

• Working Conference on Reverse Engineering, 1999, 2000, 2005

• The Conference on The Future of Software Engineering, 2004

• The Working IEEE/IFIP Conference on Software Architecture, 2007. WICSA ’07.

• Third ACM SIGSOFT Symposium on the Foundations of Software Engineering 1995

7.5 Interviews

• MDSD: Interview of MDSD researchers at FZI

7.6 Other

• AUTOSAR-Konsortium. Automotive open system architecture

• CRID 80321. Data mining survey, 2009

• Götzenauer, Master’s thesis, Agile Methoden in der Softwareentwicklung: Vergleich und
Evaluierung 2005

7.7. SEARCH KEYWORDS 119

• Heise Developer SoftwareArchitekTOUR-Podcast, (http://www.heise.de/developer/podcast/
itunes/heise-developer-podcast-softwarearchitektour.rss)

• MITRE, Center for Air Force C2 Systems, Bedford, Massachusetts, 1998

• Nokia corporation report. 2008

• SE Radio Podcast, (http://se-radio.net)

• Steffen Becker, Master’s thesis, Carl von Ossietzky Universitaet Oldenburg, 2003

• Software Engineering Institute

• Technical report, The Federal Aviation Administration (FAA), 2000

• Technical report, Trinity College and Broadcom Eireann Research, Dublin, Ireland, 1997

• White Paper, George Mason University, 2005

• Versionone. State of agile survey, 2009

7.7 Search keywords

The following list comprises the most important search keywords which were used for the iden-
tification of documents and approaches which are relevant for this document (examples):

• agility and architecture

• software evolution

• strategies, strategy, tactic(s), method(s), approach

• software maintenance

• maintainability

• evolvability

• longevity

• modifiability

• flexibility

• sustainability

• COTS

• (data) mining

• virtualization

• software quality

• architecture compliance checking

• architecture analysis

• code and architecture consistency

• architecture(al) enforcements

• survey, evaluation

http://www.heise.de/developer/podcast/itunes/heise-developer-podcast-softwarearchitektour.rss
http://www.heise.de/developer/podcast/itunes/heise-developer-podcast-softwarearchitektour.rss
http://se-radio.net

120 CHAPTER 7. INFORMATION SOURCES

• taxonomy, classification

• empirical

• controlled experiment

• experience report

• And other

Chapter 8

Glossary

Agile methods are software development methodologies based on iterative development, where
requirements and solutions evolve through collaboration between self-organizing cross-
functional teams. The term was coined in the year 2001 when the Agile Manifesto
was formulated. Agile methods generally promote a disciplined project management pro-
cess that encourages frequent inspection and adaptation, a leadership philosophy that
encourages teamwork, self-organization and accountability, a set of engineering best prac-
tices intended to allow for rapid delivery of high-quality software, and a business ap-
proach that aligns development with customer needs and company goals, (Source: http:

//en.wikipedia.org/wiki/Agile_software_development).

Antipatterns is a pattern that may be commonly used but is ineffective and/or counterproduc-
tive in practice. According to [BMMM98] there must be at least two key elements present
to formally distinguish an actual anti-pattern from a simple bad habit, bad practice, or
bad idea: 1) Some repeated pattern of action, process or structure that initially appears
to be beneficial, but ultimately produces more bad consequences than beneficial results,
and 2) a refactored solution exists that is clearly documented, proven in actual practice
and repeatable.

Application migration is a transfer process of a control system on newer or some other version
of the technical system (for the automation domain). Due to the domain specific migra-
tion process (”migration strategy”) is usually plant or factory specific and is introduced
gradually.

Architectural Description Methods According to ANSI/IEEE standard 1471-2000 a archi-
tecture description is a set of models (e.g., textual specifications or graphical diagrams
(e.g. UML diagrams)), which document the software architecture.

Artifacts are tangible byproducts produced during the development of a software. Some ar-
tifacts (e.g., use cases, class diagrams, and other UML models, requirements and design
documents) help describe the function, architecture, and design of software. Other arti-
facts are concerned with the process of development itself - such as project plans, busi-
ness cases, and risk assessments, (Source: http://en.wikipedia.org/wiki/Artifact_

%28software_development%29).

Automation domain is an appellation for automated plants, factories and utilities and their
control systems. Such control systems usually contain real-time components and have
client-server or multi-tier architectures with event-driven communication. They consist of
distributed server nodes, client nodes, and embedded systems (e.g. controllers and field
devices).

Automation Strategies are approaches, which automate software development, e.g., by in-
creasing the abstraction level and generation of repetitive low-level code fragments.

121

http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Artifact_%28software_development%29
http://en.wikipedia.org/wiki/Artifact_%28software_development%29

122 CHAPTER 8. GLOSSARY

Bad Smell or Code Smell is a symptom in the source code of a program that possibly indi-
cates a deeper problem, [FBB+99].

COTS (Commercial off-the-shelf) is a term defining technology which is ready-made and avail-
able for sale, lease, or license to the general public. The term often refers to computer
software or hardware systems and may also include free software with commercial support,
(Source: http://en.wikipedia.org/wiki/Commercial_off-the-shelf).

Data Mining is the process of extracting patterns from data, (Source: http://en.wikipedia.
org/wiki/Data_mining).

DCS (Distributed Control System) refers to a control system usually of a manufacturing system,
process or any kind of dynamic system, in which the controller elements are not central
in location but are distributed throughout the system with each sub-system controlled by
one or more controllers. The entire system of controllers is connected by networks for com-
munication and monitoring. (Source: http://en.wikipedia.org/wiki/Distributed_

control_system).

Design pattern in architecture and computer science is a formal way of documenting a so-
lution to a design problem in a particular field of expertise. The idea was introduced
by the architect Christopher Alexander, [Ale77], in the field of architecture and has been
adapted for various other disciplines, including computer science, [GHJV95]. An organized
collection of design patterns that relate to a particular field is called a pattern language.
Original statement of Christopher Alexander: ”The elements of this language are entities
called patterns. Each pattern describes a problem that occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a way
that you can use this solution a million times over, without ever doing it the same way
twice.”

Development environment consists of all development tools which are used for designing,
implementing, and maintaining a software system. This covers editors, integrated develop-
ment environments, debugging tools, testing tools, as well as versioning and bug tracking
tools.

Eclipse is a multi-language software development environment comprising an integrated devel-
opment environment (IDE) and an extensible plug-in system. It is written primarily in
Java and can be used to develop applications in Java and, by means of various plug-ins, in
other languages including C, C++, COBOL, Python, Perl, and PHP. During the last years
Eclipse evolved from a pure development environment to a rich client platform, which can
be used as a foundation for a wide range of applications.

Executable UML is a profile of the UML, that graphically specifies a system ”at the next
higher level of abstraction, abstracting away both specific programming languages and
decisions about the organization of the software.” The models are testable, and can be
compiled into a less abstract programming language to target a specific implementation,
(Source: http://en.wikipedia.org/wiki/Executable_UML).

Evolution see Software Evolution

Generative Programming is a software engineering paradigm based on modeling software
system families such that, given a particular requirements specification, a highly cus-
tomized and optimized intermediate or end-product can be automatically manufactured on
demand from elementary, reusable implementation components by means of configuration
knowledge, [CE00].

IEC 61508 is a standard for Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-Related Systems provides general guidance on the selection of design tech-
niques according to the safety criticality of a software element under design.

http://en.wikipedia.org/wiki/Commercial_off-the-shelf
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Distributed_control_system
http://en.wikipedia.org/wiki/Distributed_control_system
http://en.wikipedia.org/wiki/Executable_UML

123

IEC 61850 is the international standard for communication networks and systems in substa-
tions, defines the communication between devices in the substation and related system
requirements. It supports substation automation functions as well as their engineering.

Knowledge transfer is a process of passing knowledge within a company, department, or
development team. Knowledge could range from domain-specific or application-specific
knowledge to general knowledge like best practice or experience about past challenges and
solutions. This can cover knowledge about system, processes, methodologies, techniques,
tools, etc. Knowledge transfer can happen over time and space. A special challenge with
represents to sustainability represents the knowledge transfer of design decisions, design
rationale and selection evolution strategies.

Legacy system is a system, which is still valuable to its stakeholders despite of its degraded
quality.

Lehman’s Laws or so-called ”Laws of Software Evolution” describe a set of behaviors (ob-
servations) in the evolution of proprietary software and are believed to apply mainly to
monolithic, proprietary software. The laws predict that change is inevitable and not a
consequence of bad programming and that there are limits to what a software evolution
team can achieve in terms of safely implementing changes and new functionality. The laws
we formulated by Lehman and Belady starting from 1972 during their research of evolution
history of big software systems.

Longevity is the ability for a (software) system to be able stay alive for a long time (more than
10 years) and requires the ability to cope with a changing environment and changing user
requirements during the whole period of life.

Long living systems are systems having a life cycle of more than 10 years. The life cycle
ranges from first installation and deployment to final shutdown of the system.

Maintainability is, according to ISO/IEC 9126-1, the capability of the software system to
be modified. Modifications may include corrections, improvements or adaptations of the
software to changes in environment, and in requirements and functional specification.

Model Driven Architecture (MDA) is the standardization initiative of the Object Manage-
ment Group (OMG) with respect to MDSD, (http://www.omg.org/mda/), and a flavor
of the MDSD paradigm.

The core building blocks of MDA standard are UML2.0, Meta Object Facility (MOF),
XML Metadata Interchange (XMI), the three kinds of models (PIM, PSM, PDM), Multi-
Stage Transformations, Action Languages, the various core models, model marking, and
Executable UML.

Model Driven Software Development (MDSD) is a software development paradigm based
on modeling where models are considered equal to code, as their implementation is auto-
mated. Another common name is Model Driven Development, [SV06].

Modifiability of a software system is the ease with which it can be modified to changes in the
environment, requirements or functional specification.

OPC is open connectivity in industrial automation and the enterprise systems that support in-
dustry. Interoperability is assured through the creation and maintenance of open standards
specifications.

Product lines see Software product line

Reengineering is the examination and alteration of a subject system to reconstitute it in a
new form and the subsequent implementation of the new form. Reengineering generally
includes some form of reverse engineering (to achieve a more abstract description) followed
by some more form of forward engineering or restructuring.

http://www.omg.org/mda/

124 CHAPTER 8. GLOSSARY

Refactoring (noun) is a change made to the internal structure of software to make it easier
to understand and cheaper to modify without changing its observable behaviour of the
software.

Refactor (verb) means to restructure software by applying a series of refactorings without
changing the observable behaviour of the software.

Reference Architecture is an abstract software architecture, which defines structures and
types of software elements, their allowed interactions and their responsibilities specific to an
application domain. Structures are applicable for all systems within an application domain.
They represent established basic constructions, that might contain collected experience of
several engineering generations and are supported by a large community of researchers and
practitioners. For example in compiler construction it is common to split components into
lexical analysis (Scanner), syntactical analysis (Parser), semantic analysis, and generators,
[RH09]. Other examples are Quasar, [Sie06], which is a reference architecture for business
information systems and AUTOSAR, [AK], providing a reference architecture for software
in automobiles. [RH09] distinguish three kinds of reference architectures: 1) functional, 2)
logical, and 3) technical.

Software erosion is the decreasing quality of the internal structure of a software system, it
may occur already at early development stages of the system.

Software evolution is a change process of a system (concerning both HW and SW) starting
from its development and going on until system recycling, during which system changes
into a different and usually more complex or better. System evolution is part of the system
life cycle.

Software factory is a configuration of languages, patterns, frameworks, and tools that can be
used to rapidly and cheaply produce an open-ended set of unique variants of a software
product. It is not only intended for automating software development within an individual
organization, but should promote the formation of software supply chains, [GS04].

Software migration is a change process during which system is being moved from one envi-
ronment, technology or technique (meaning both, HW and SW) to another. This process
is usually triggered either by change request or by own life cycle of environment, technol-
ogy, or technique. Migration is a variant of reengineering in which the transformation is
driven by a major technology change. In the automation domain an application migration
is usually understood under the term migration.

Software product line is a set of software-intensive systems sharing a common, managed
set of features that satisfy the specific needs of a particular market segment or mission
and that are developed from a common set of reusable core assets in a prescribed way,
(http://www.sei.cmu.edu/architecture/start/glossary/).

Structural strategies provide ways of organizing the software structure,i.e., its architecture
or design, in a way that dependencies are better controlled, changes are easier to make or
at least are doable in a more systematic way.

Sustainability see Longevity.

Utility tree is a top-down vehicle for characterizing the ”driving” attribute-specific require-
ments where nodes represent important quality goals and leaves represent scenarios, (http:
//www.sei.cmu.edu/architecture/start/glossary/).

Virtualization is a broad term which encompasses a number of different technologies. In the
document’s context virtualization is the “separation of a resource or request for a service
from the underlying physical delivery of that service”.

http://www.sei.cmu.edu/architecture/start/glossary/
http://www.sei.cmu.edu/architecture/start/glossary/
http://www.sei.cmu.edu/architecture/start/glossary/

Bibliography

[80309] CRID 80321. Data mining survey, 2009.

[AABK10] Pekka Abrahamsson, Muhammad Ali Babar, and Philippe Kruchten. Agility and
architecture: Can they coexist? IEEE Software, 27 , Issue:2:16–22, 2010.

[ACLM99] G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo. Recovering code to docu-
mentation links in oo systems. Proceedings. Sixth Working Conference on Reverse
Engineering, pages 136 – 144, 1999.

[AHGT06] B. Anda, K. Hansen, I. Gullesen, and H.K. Thorsen. Experiences from using a
uml-based development method in a large organization. Empirical Software Eng.,
vol. 11:555–581, 2006.

[AJaJR03] P. Abrahamsson, J.Warsta, and M. Siponen and. J. Ronkainen. New directions on
agile methods: A comparative analysis. 25th International Conference on Software
Engineering (ICSE’03), pages 244 – 254, 2003.

[AK] AUTOSAR-Konsortium. Automotive open system architecture,
http://www.autosar.org.

[AL03] M. Alshayeb and Wei Li. An empirical validation of object-oriented metrics in two
different iterative software processes. IEEE Transactions on Software Engineering,
29, Issue: 11:1043 – 1049, 2003.

[Ale77] Christopher Alexander. A Pattern Language: Towns, Buildings, Construction.
Oxford University Press, ISBN 0195019199, 1977.

[Amb02] Scott Ambler. Agile Modeling: Effective Practices for eXtreme Programming and
the Unified Process. Wiley, 2002.

[ASRW02] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile software development
methods: Review and analysis. VTT Publication, 2002.

[BA04] K. Beck and C. Andres. Extreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional, 2004.

[Bab09] M. A. Babar. An exploratory study of architectural practices and challenges in us-
ing agile software development approaches. Joint Working IEEE/IFIP Conference
on Software Architecture, 2009 & European Conference on Software Architecture.
WICSA/ECSA 2009., pages 81 – 90, 2009.

[Bal00] Helmut Balzert. Lehrbuch der Software-Technik - Software-Entwicklung. Spektrum-
Akademischer Vlg, 2000.

[BBD00] Elizabeth Burd, Steven Bradley, and John Davey. Studying the process of software
change: an analysis of software evolution. Seventh Working Conference on Reverse
Engineering, 2000. Proceedings., pages 232 – 239, 2000.

125

126 BIBLIOGRAPHY

[Bec03] Stefen Becker. Cost model, decision support and selection process for cots. Master’s
thesis, Carl von Ossietzky Universität Oldenburg, 2003.

[Ben96] K Bennett. Software evolution: past, present and future. Information and Software
Technology, 38(11):673–680, November 1996.

[BF07] Nord R. Bachmann F., Bass L. Modifiability tactics. Technical Report CMU/SEI-
2007-TR-002, Software Engineering Institute, 2007.

[BI07] R. J. Barnett and B. V. Irwin. Virtualized systems and their performance: A
literature review. 2007.

[BLBvV04] PerOlof Bengtsson, Nico Lassing, Jan Bosch, and Hans van Vliet. Architecture-
level modifiability analysis (alma). Journal of Systems and Software, 69(1-2):129
– 147, 2004.

[BLR+97] J. Bisbal, D. Lawless, R. Richardson, D. O’Sullivan, B. Wu, J. Grimson, and
V. Wade. A survey of research into legacy system migration. Technical report,
Trinity College and Broadcom Éireann Research, Dublin, Ireland, 1997.

[BMMM98] William J. Brown, Raphael C. Malveau, Hays W. McCormick, III, and Thomas J.
Mowbray. AntiPatterns: refactoring software, architectures, and projects in crisis.
John Wiley & Sons, Inc., New York, NY, USA, 1998.

[BMZ+05] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter Kniesel.
Towards a taxonomy of software change:Â Research Articles. Journal of Software
Maintenance and Evolution: Research and Practice, 17(5):309, 2005.

[Bos00] Jan Bosch. Design and Use of Software Architectures Adopting and evolving a
product-line approach. Addison-Wesley, 2000.

[BR00] Keith H. Bennett and Václav T. Rajlich. Software maintenance and evolution: a
roadmap. In International Conference on Software Engineering, page 73, 2000.

[BR09] S. Brcina, R.and Bode and M. Riebisch. Optimisation process for maintaining
evolvability during software evolution. 16th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems, 2009. ECBS 2009.,
pages 196 – 205, 2009.

[BSB08] Christoph Bommer, Markus Spindler, and Volkert Barr. Softwarewartung.
dpunkt.verlag, 2008.

[Bus01] Frank Buschmann. A system of patterns. Wiley, repr. edition, 2001.

[BZJ04] M.A. Babar, L. Zhu, and R. Jeffery. A framework for classifying and comparing
software architecture evaluation methods. Software Engineering Conference, 2004.
Proceedings. 2004 Australian, pages 309–318, 2004.

[CB10] James Coplien and Gertrud Bjørnvig. Lean Architecture: for Agile Software Devel-
opment. John Wiley & Sons; Auflage: 1, 2010.

[CBBG02] Paul Clements, Felix Bachmann, Len Bass, and David Garlan. Documenting soft-
ware architectures: Views and beyond (sei series in software engineering). 2002.

[CDP09] L. Canfora, G.and Cerulo and M. Di Penta. Tracking your changes: A language-
independent approach. Software, IEEE, 26 , Issue:1:50 – 57, 2009.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming. Addison-
Wesley, 2000.

BIBLIOGRAPHY 127

[Cer06] Luigi Cerulo. On the Use of Process Trails to Understand Software Development
(Analysis of historical data in combination with static and dynamic analysis). PhD
thesis, 2006.

[CF04] K. Conboy and B. Fitzgerald. Toward a conceptual framework of agile methods:
A study of agility in different disciplines. The 2004 ACM workshop on Interdisci-
plinary software engineering research, pages 37 – 44, 2004.

[CH01] A. Cockburn and J. Highsmith. Agile software development: The people factor.
Computer, pages 131–133, 2001.

[CHK+99] Ned Chapin, Joanne E. Hale, Khaled Md. Khan, Juan F. Ramil, and Wui-Gee Tan.
Types of software evolution and software maintenance. JOURNAL OF SOFT-
WARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE,
2:3–30, 1999.

[CHK+01] Ned Chapin, Joanne E. Hale, Khaled Md. Kham, Juan F. Ramil, and Wui-Gee
Tan. Types of software evolution and software maintenance. Journal of Software
Maintenance: Research and Practice, 13(1):3, 2001.

[CI90] Elliot J. Chikofsky and James H. Cross II. Reverse Engineering and Design Recov-
ery:Â A Taxonomy. IEEE Software, 7(1):13, 1990.

[Ciu02] Oliver Ciupke. Problemidentification in objektorientierten Softwarestrukturen. PhD
thesis, The University of Karlsruhe, 2002.

[CK94] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476 – 493, jun 1994.

[CKK05] Paul Clements, Rick Kazman, and Mark Klein. Evaluating software architectures.
Addison-Wesley, 4. print. edition, 2005.

[CN02] Paul Clements and Linda Northrop. Software Product Lines Practices and Patterns.
Addison Wesley, 2002.

[Coc04] A. Cockburn. Crystal Clear: A Human-Powered Methodology for Small Teams.
Addison-Wesley Longman, Amsterdam, 2004.

[CP07] Gerardo CanforaHarman and Massimiliano Di Penta. New Frontiers of Reverse
Engineering. In International Conference on Software Engineering, pages 326–341,
2007.

[CPP10] I. Christou, S. Ponis, and E. Palaiologou. Using the agile unified process in banking.
Software, IEEE, 27 Issue:3:72 – 79, 2010.

[CRR09] Lan Cao, B. Ramesh, and M. Rossi. Are domain-specific models easier to maintain
than uml models? Software, IEEE, Volume: 26 , Issue: 4:19 – 21, 2009.

[CT98] Judith A. Clapp and Audrey E. Taub. A management guide to software mainte-
nance in cots-based systems. MITRE, Center for Air Force C2 Systems, Bedford,
Massachusetts, 1998.

[Cub05] Davor Cubranic. Project History as a Group Memory: Learning From the Past.
PhD thesis, 2005.

[DAB08] W.J. Dzidek, E. Arisholm, and L.C. Briand. A realistic empirical evaluation of the
costs and benefits of uml in software maintenance. Software Engineering, IEEE
Transactions on, v 34 , Issue:3, 2008.

128 BIBLIOGRAPHY

[DL00] R. Dumke and F. Lehner. Software-Metriken Entwicklungen, Werkzeuge und An-
wendungsverfahren. Deutscher Unversitäts-Verlag, 2000.

[Dob02] E. Dobrica, L.; Niemela. A survey on software architecture analysis methods.
Transactions on Software Engineering, 28(7):638–653, Jul 2002.

[DSB09] Sybren Deelstra, Marco Sinnema, and Jan Bosch. Variability assessment in soft-
ware product families. Inf. Softw. Technol., 51(1):195–218, 2009.

[DSNB04] S. Deelstra, M. Sinnema, J. Nijhuis, and J. Bosch. Cosvam: a technique for
assessing software variability in software product families. In Software Maintenance,
2004. Proceedings. 20th IEEE International Conference on, pages 458 – 462, 11-14
2004.

[EW09] SAAB Erik Wedin. Model-driven architecture and xtuml in practice. In ESF
Conference 2009, Seattle, USA, 2009.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley Professional, 1999.

[FCS+10] Davide Falessi, Giovanni Cantone, Salvatore Alessandro Sarcia, Guiseppe Calvaro,
Paolo Subiaco, and Cristiana D’Amore. Peaceful coexistence: Agile developer
perspectives on software architecture. Software, IEEE, 27 , Issue:2:23 – 25, 2010.

[FP97] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics A Rigorous and
Practical Approach. PWS Publishing Company, 1997.

[FR07] Robert France and Bernhard Rumpe. Model-driven Development of Complex Soft-
ware:Â A Research Roadmap. In International Conference on Software Engineer-
ing, pages 37–54, 2007.

[Fra06] L. Francis. Lifetime procurement - look deep for dependability. Electronics Systems
and Software, 4 , Issue:6:22 – 25, 2006.

[Gar00] David Garlan. Software architecture: a roadmap. In Proceedings of the Conference
on The Future of Software Engineering, pages 91 – 101, 2000.

[GD06] Tudor Gı̂rba and Stéphane Ducasse. Modeling history to analyze software evo-
lution. Journal of Software Maintenance: Research and Practice (JSME), pages
207–236, 2006.

[GG08] Michael W. Godfrey and Daniel M. German. The Past, Present, and Future of
Software Evolution. In Proc. 24th Int. Conf. on Software Maintenance, 2008.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns Elements of Reusable Object-Oriented Software. Addison-Wesley Publishing
Company, 1995.

[Gia05] Piergiorgio Di Giacomo. Cots and open source software components: Are they
really different on the battlefield? Lecture Notes in Computer Science, COTS-
Based Software Systems, 3412/2005:301–310, 2005.

[GNW09] Erich Gamma, Lee Nackmann, and John Wiegand. eclipse Modeling Project A
Domain-Specific Language (DSL) Toolkit. Addison-Wesley, 2009.

[Got09] G. Goth. Agile tool market growing with the philosophy. Software, IEEE, 26
Issue:2:88 – 91, 2009.

BIBLIOGRAPHY 129

[GR05] E. Germain and P. Robillard. Engineering-based processes and agile methodologies
for software development: a comparative case study. The Journal of Systems and
Software, Elsevier, pages 17 – 27, 2005.

[GS04] Jack Greenfield and Keith Short. Software Factories Assembling Applications with
Patterns, Models, Frameworks, and Tools. Wiley, 2004.

[Göt05] Götzenauer. Agile methoden in der softwareentwicklung: Vergleich und
evaluierung. Master’s thesis, 2005.

[Has06] Ahmed E. Hassan. Mining software repositories to assist developers and support
managers. In Proceedings of ICSM 2006: IEEE International Conference on Soft-
ware Maintenance, Chicago, Philadelphia, USA, pages pp. 339–342, Sept. 24-27,
2006.

[Has08] A.E. Hassan. The road ahead for mining software repositories. Frontiers of Soft-
ware Maintenance, 2008. FoSM 2008, pages 48 – 57, 2008.

[HG05] Elisabeth Hansson and Göran V. Grahn. One global cots-based system to replace
20+ local legacy systems. Lecture Notes in Computer Science, COTS-Based Soft-
ware Systems, 3412/2005:144–145, 2005.

[HH04] A.E. Hassan and R.C. Holt. Using development history sticky notes to understand
software architecture. Program Comprehension, 2004. Proceedings. 12th IEEE
International Workshop on, pages 183 – 192, 2004.

[HJH05] A.E. Hassan, Zhen Ming Jiang, and R.C. Holt. Source versus object code ex-
traction for recovering software architecture. Reverse Engineering, 12th Working
Conference on, page 10, 2005.

[HLP05] Jesper Holck, Michael Holm Larsen, and Mogens Kühn Pedersen. Managerial
and technical barriers to the adoption of open source software. Lecture Notes in
Computer Science, COTS-Based Software Systems, 3412/2005:289–300, 2005.

[HRJ+04] W. Hasselbring, R. Reussner, H. Jaekel, J. Schlegelmilch, T. Teschke, and
S. Krieghoff. The dublo architecture pattern for smooth migration of business
information systems: an experience report. In Software Engineering, 2004. ICSE
2004. Proceedings. 26th International Conference on, pages 117 – 126, 23-28 2004.

[HS96] Brian Henderson-Sellers. Object-oriented Metrics Measures of Complexity. Prentice
Hall, 1996.

[HSS09] Carl Hinsman, Neeraj Sangal, and Judith A. Stafford. Achieving agility through
architecture visibility. QoSA, Lecture Notes in Computer Science, Springer, Vol.
5581:116–129, 2009.

[HYCM09] G.K. Hanssen, A.F. Yamashita, R. Conradi, and L. Moonen. Maintenance and
agile development: Challenges, opportunities and future directions. Software Main-
tenance, 2009. ICSM 2009. IEEE International Conference on, pages 487 – 490,
2009.

[IF10] Ayelet Israeli and Dror G. Feitelson. The linux kernel as a case study in software
evolution. Journal of Systems and Software, Volume 83 , Issue 3:485–501, 2010.

[Ish08] Mark Isham. Agie architecture is possible - you first have to believe! Conference
Agile, 2008. AGILE ’08., pages 484 – 489, 2008.

[Kan02] Stephen H. Kan. Metrics and Models in Software Quality Engineering (2nd ed.).
Addison-Wesley Longman, 2002.

130 BIBLIOGRAPHY

[KCM07] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and tax-
onomy of approaches for mining software repositories in the context of software
evolution. Journal of Software Maintenance and Evolution: Research and Practice,
19(2):77–131, 2007.

[KH05] Gerald Kotonya and John Hutchinson. Analysing the impact of change in cots-
based systems. Lecture Notes in Computer Science, COTS-Based Software Systems,
3412/2005:212–222, 2005.

[KKB+98] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere.
The architecture tradeoff analysis method. In Engineering of Complex Computer
Systems, 1998. ICECCS ’98. Proceedings. Fourth IEEE International Conference
on, pages 68 –78, 10-14 1998.

[KMR08] J. Knodel, D. Muthig, and D. Rost. Constructive architecture compliance checking
— an experiment on support by live feedback. Software Maintenance, 2008. ICSM
2008. IEEE International Conference on, pages 287 – 296, 2008.

[KMSN+06] G.A. Kajko-Mattsson, M.and Lewis, D. Siracusa, T. Nelson, N. Chapin, M. Heydt,
J. Nocks, and H.; Snee. Long-term life cycle impact of agile methodologies. Software
Maintenance, 2006. ICSM ’06. 22nd IEEE International Conference on, pages 422
– 425, 2006.

[Koe09] Koehnemann. Experiences applying agile practices to large systems. Agile Confer-
ence, 2009. AGILE ’09, pages 295 – 300, 2009.

[Kos03] J. Koskela. Software configuration management in agile methods. VTT Publication,
2003.

[KP07] J. Knodel and D. Popescu. A comparison of static architecture compliance checking
approaches. Software Architecture, 2007. WICSA ’07. The Working IEEE/IFIP
Conference on, page 12, 2007.

[Kru07] Phillipe Kruchten. Voyage in the agile memeplex. Queue, Volume 5 , Issue 5:1,
2007.

[LA04] P. Lappo and H. C. T. Andrew. Assessing agility. Extreme Programming and Agile
Processes in Software Engineering, Lecture Notes in Computer Science, Volume
3092/2004:331 – 338, 2004.

[Laa08] Laanti. Implementing program model with agile principles in a large software
development organization, nokia corporation. 2008.

[LBCC08] Rikard Land, Laurens Blankers, Michel Chaudron, and Ivica Crnkovic. Cots se-
lection best practices in literature and in industry. Lecture Notes in Computer
Science, High Confidence Software Reuse in Large Systems,, pages 100–111, 2008.

[LBCK06] Jingyue Li, Finn Olav Bjørnson, Reidar Conradi, and Vigdis B. Kampenes. An
empirical study of variations in cots-based software development processes in the
norwegian it industry. Empirical Software Engineering, Volume 11, Number 3:433–
461, 2006.

[LCB+09] Jingyue Li, R. Conradi, C. Bunse, M. Torchiano, O. Slyngstad, and M. Morisio.
Development with off-the-shelf components: 10 facts. Software, IEEE, 26 Issue:2:80
– 87, 2009.

[LCS+05] Jingyue Li, R. Conradi, O.P.N. Slyngstad, C. Bunse andU. Khan, M. Torchiano,
and M. Morisio. Validation of new theses on off-the-shelf component based devel-
opment. Software Metrics, 2005. 11th IEEE International Symposium, pages 26 –
26, 2005.

BIBLIOGRAPHY 131

[Lew00] Patrick Lewis. Lessons learned in developing commercial off-the-shelf (cots) in-
tensive software systems. Technical report, The Federal Aviation Administration
(FAA),, 2000.

[LL02] Karl Leung and Hareton Leung. On the efficiency of domain-based cots product
selection method. Information and Software Technology, Volume 44, Issue 12:703–
715, 2002.

[LL06] Jochen Ludewig and Horst Lichter. Software Engineering. Dpunkt Verlag, 2006.

[LMM01] Howard F. Lipson, Nancy R. Mead, and Andrew P. Moore. Can we ever build
survivable systems from cots components? Lecture Notes in Computer Science,
Advanced Information Systems Engineering, 2348/2006:216–229, 2001.

[LR00] M. M. Lehman and J. F. Ramil. Software evolution in the age of component-based
software engineering. IEE Proceedings - Software, 147:249–255, 2000.

[LST+08] Jingyue Li, O.P.N. Slyngstad, M. Torchiano, M. Morisio, and C. Bunse. A state-of-
the-practice survey of risk management in development with off-the-shelf software
components. Software Engineering, IEEE Transactions on, 34 , Issue:2:271 – 286,
2008.

[Mad10] James Madison. Agile architecture interactions. Software, IEEE, 27 , Issue:2:41 –
48, 2010.

[Mar09] Robert C. Martin. Clean Code A Handbook of Agile Software Craftmanship. Pren-
tice Hall, 2009.

[MB02] Stephen J. Mellor and Marc Balcer. Executable UML: A Foundation for Model-
Driven Architectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002. Foreword By-Jacoboson, Ivar.

[MC07] Parastoo Mohagheghi and Reidar Conradi. Quality, productivity and economic
benefits of software reuse: a review of industrial studies. Empirical Software Engi-
neering, Volume 12, Number 5:471–516, 2007.

[MD01] Tom Mens and Serge Demeyer. Future trends in software evolution metrics. In
International Conference on Software Engineering, page 83, 2001.

[Men02] T. Mens. A State-of-the-Art Survey on Software Merging. IEEE Transactions on
Software Engineering, 28(5):449, 2002.

[Men05] Daniel A. Menascé. Virtualization: Concepts, applications, and performance mod-
eling. White Paper, George Mason University, 2005.

[Men08] Tom Mens. Software Evolution. Springer Berlin Heidelberg, 2008.

[MFRD08] T. Mens, J. Fernandez-Ramil, and S. Degrandsart. The evolution of eclipse. IEEE
International Conference on Software Maintenance, 2008. ICSM 2008., pages 386
– 395, 2008.

[MH08] H. Malik and A.E. Hassan. Supporting software evolution using adaptive change
propagation heuristics. IEEE International Conference on Software Maintenance,
2008. ICSM 2008., pages 177 – 186, 2008.

[MNS95] G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging
the gap between source and high-level models 1995. acm. In Proceedings of the
Third ACM SIGSOFT Symposium on the Foundations of Software Engineering,
page 18–28, 1995.

132 BIBLIOGRAPHY

[Moo02] Leon Moonen. Exploring Software Systems. PhD thesis, The University of Ams-
terdam, 2002.

[MRS10] K. Mohan, B. Ramesh, and V. Sugumaran. Integrating software product line
engineering and agile development. Software, IEEE, 27 Issue:3:48 – 55, 2010.

[MT04] Tom Mens and Tom Tourwé. A Survey of Software Refactoring. IEEE Transactions
on Software Engineering, 30(2):126, 2004.

[MT05] Piyush Maheshwari and Albert Teoh. Supporting atam with a collaborative web-
based software architecture evaluation tool. Science of Computer Programming,
57(1):109–128, 2005.

[MWD+05] Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer, Robert
Hirschfeld, and Mehdi Jazayeri. Challenges in Software Evolution. In IWPSE,
page 13, 2005.

[Nus01] Bashar Nuseibeh. Weaving together requirements and architectures. Computer, 34
, Issue:3:115 – 119, 2001.

[OMB03] C. OReilly, P. Morrow, and D. Bustard. Lightweight prevention of architectural
erosion. Software Evolution, 2003. Proceedings. Sixth International Workshop on
Principles of, pages 59 – 64, 2003.

[OMG03] OMG. MDA Guide Version 1.0.1. http://www.omg.org/cgi-bin/doc?omg/03-06-01,
2003.

[Pen03] Massimiliano Di Penta. Evolution Doctor: A Framework to Control the Evolution
of Undocumented Software Systems. PhD thesis, 2003.

[PFP02] S. R. Palmer, M. Felsing, and S. Palmer. A Practical Guide to Feature-Driven
Development. Prentice Hall International, 2002.

[Pos09] D. Poshyvanyk. Using information retrieval to support software maintenance
tasks. Software Maintenance, 2009. ICSM 2009. IEEE International Conference
on, pages 453 – 456, 2009.

[PP05] M. Pikkarainen and U. Passoja. An approach for assessing suitability of agile solu-
tions: A case study. The 6th International Conference on Extreme Programming
and Agile Processes in Software Engineering (XP 2005), pages 171 – 179, 2005.

[PTD+09] Leonardo Passos, Ricardo Terra, Renato Diniz, Marco Tulio Valente, and Nabor
Mendon. Static architecture conformance checking - an illustrative overview. Soft-
ware, IEEE, PP , Issue:99, 2009.

[QHS06] A. Qumer and B. Hendersson-Sellers. Comparative evaluation of xp and scrum
using the 4d analytical tool (4-dat). The European and Mediterranean Conference
on Information Systems (EMCIS), 2006.

[RBB+03] Donald J. Reifer, Victor R. Basili, Barry W. Boehm, , and Betsy Clark. Eight
lessons learned during cots-based systems maintenance. IEEE Software, 20:94–96,
2003.

[RBBC04] Donald J. Reifer, Victor R. Basili, Barry W. Boehm, and Betsy Clark. Cots-based
systems – twelve lessons learned about maintenance. Lecture Notes in Computer
Science, COTS-Based Software Systems, 2959/2004:137–145, 2004.

[RH09] Ralf Reussner and Wilhelm Hasselbring. Handbuch der Software-Architektur.
dpunkt.verlag, 2. edition, 2009.

BIBLIOGRAPHY 133

[Rie96] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1996.

[RL04] Stefan Roock and Martin Lippert. Refactorings in großen Softwareprojekten.
dpunkt-Verl., 1. aufl. edition, 2004.

[Rob03] Robillard. Representing Concerns in Source Code. PhD thesis, 2003.

[RRS09] Francisco Javier Romero Rojo, Rajkumar Roy, and Essam Shehab. Obsolescence
management for long-life contracts: state of the art and future trends. The Inter-
national Journal of Advanced Manufacturing Technology, 2009.

[SA08] O. Salo and P. Abrahamsson. Agile methods in european embedded software
development organisations: a survey on the actual use and usefulness of extreme
programming and scrum. Software, IET, 2 , Issue:1:58 – 64, 2008.

[SB03] H.M. Sneed and P. Brossler. Critical success factors in software maintenance: a
case study. International Conference on Software Maintenance, 2003. ICSM 2003.
Proceedings., pages 190 – 198, 2003.

[SB08] K. Schwaber and M. Beedle. Agile Software Development with Scrum. Pearson
Studium, 2008.

[SD07] K. Silva and C. Doss. The growth of an agile coach community at a fortune 200
company. AGILE 2007, pages 225 – 228, 2007.

[SD08] Marco Sinnema and Sybren Deelstra. Industrial validation of covamof. J. Syst.
Softw., 81(4):584–600, 2008.

[Sie06] Johannes Siedersleben. Moderne Softwarearchitektur. dpunkt.verlag, 2006.

[SJSJ05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency
models to manage complex software architecture. Proceedings of OOPSLA’05,
pages 167–176, 2005.

[Som06] Ian Sommerville. Software Engineering 8 (International Computer Science Series):
Update. Addison Wesley; Auflage: 8th ed., 2006.

[SSM06] Frank Simon, Olaf Seng, and Thomas Mohaupt. Code-Quality-Management.
dpunkt.verlag, 2006.

[SV06] Thomas Stahl and Markus Völter. Model-Driven Software Development Technology,
Engineering, Management. Wiley, 2006.

[Tar09] A. Tarvo. Mining software history to improve software maintenance quality: A
case study. Software, IEEE, Volume: 26 , Issue: 1:34 – 40, 2009.

[TFR02] D. Turk, R. France, and B. Rumpe. Limitations of agile software processes. The
3rd International Conference on Extreme Programming and Flexible Processes in
Software Engineering (XP 2002), pages 43 – 46, 2002.

[TFR05] D. Turk, R. France, and B. Rumpe. Assumptions underlying agile software-
development processes. Journal of Database Management (JDM), Volume 16, issue
4:62 – 87, 2005.

[TH03] S. Tilley and S. Huang. A qualitative assessment of the efficacy of uml diagrams as
a form of graphical documentation in aiding program understanding. Proc. ACM
SIGDOC ’03, pages 184–191, 2003.

134 BIBLIOGRAPHY

[THV09] Antony Tang, Jun Han, and Rajesh Vasa. Software architecture design reasoning:
A case for improved methodology support. Software, IEEE, 26 , Issue:2:43–49,
2009.

[TR08] Masoumeh Taromirad and Raman Ramsin. Cefam: Comprehensive evaluation
framework for agile methodologies. 32nd Annual IEEE Software Engineering Work-
shop, pages 195–204, 2008.

[TRDL07] M. Torchiano, F. Ricca, and A. De Lucia. Empirical studies in software mainte-
nance and evolution. IEEE International Conference on Software Maintenance,
2007. ICSM 2007., pages 491 – 494, 2007.

[Try97] E. Tryggeseth. Report from an experiment: Impact of documentation on mainte-
nance. Empirical Software Eng., vol. 2:201–207, 1997.

[TTBS07] Paolo Tonella, Marco Torchiano, Bart Du Bois, and Tarja Systä. Empirical studies
in reverse engineering:Â state of the art and future trends. Empirical Software
Engineering, 12(5):551, 2007.

[Van07] Arie Van Deursen. Model-driven software evolution: A research agenda . In Proc.
Int’l Workshop on Model-Driven Software Evolution, June 2007.

[VD00] Mark R. Vigder and John Dean. Maintaining cots-based systems. Fifth Inter-
national IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software
Systems (ICCBSS’06), pages 11–18, 2000.

[vdMRSJ05] Meine van der Meulen, Steve Riddle, Lorenzo Strigini, and Nigel Jefferson. Pro-
tective wrapping of off-the-shelf components. Lecture Notes in Computer Science,
COTS-Based Software Systems, 3412/2005:168–177, 2005.

[Ver09] Versionone. State of agile survey, 2009.

[Vor07] U. Vora. Architectural design methodologies for complex evolving systems. 12th
IEEE International Conference on Engineering Complex Computer Systems, 2007.,
pages 197 – 206, 2007.

[WH05] Chris Wolf and Erick M. Halter. Virtualization: from the desktop to the enterprise.
Apress; 1 edition, 2005.

[WK04] Weihang Wu and Tim Kelly. Safety tactics for software architecture design. Pro-
ceedings of the 28th Annual International Computer Software and Applications
Conference, 01:368–375, 2004.

[WKLA04] L. Williams, W. Kerbs, L. Layman, and A. Anton. Toward a framework for eval-
uating extreme programming. The 8th International Conference on Empirical
Assessment in Software Engineering (EASE 04), pages 11 – 20, 2004.

[WSV05] Lei Wu, H. Sahraoui, and P. Valtchev. Coping with legacy system migration com-
plexity. 10th IEEE International Conference on Engineering of Complex Computer
Systems, 2005. ICECCS 2005. Proceedings., pages 600 – 609, 2005.

[Wu06] Jingwei Wu. Open Source Software Evolution and Its Dynamics. PhD thesis, The
University of Waterloo, 2006.

[WYL08] M. Wermelinger, Yijun Yu, and A. Lozano. Design principles in architectural
evolution: A case study. IEEE International Conference on Software Maintenance,
2008. ICSM 2008., pages 396 – 405, 2008.

BIBLIOGRAPHY 135

[XCI09] Guowu Xie, Jianbo Chen, and Neamtiu I. Towards a better understanding of soft-
ware evolution: An empirical study on open source software. IEEE International
Conference on Software Maintenance, 2009. ICSM 2009., 51 - 60, 2009.

[YHS09] T. Yoshikawa, S. Hayashi, and M. Saeki. Recovering traceability links between a
simple natural language sentence and source code using domain ontologies. Soft-
ware Maintenance, 2009. ICSM 2009. IEEE International Conference on, pages
551 – 554, 2009.

[Zou03] Ying Zou. Techniques and Methodologies for the Migration of Legacy Systems to
Object Oriented Platforms. PhD thesis, The University of Waterloo, 2003.

	2011,2_Titelbl
	Software Evolution for
	Literature Overview

	Interner Bericht 2011-02-1.pdf
	Motivation and Objectives
	Objectives
	Investigation Process
	Investigation Questions
	Understanding and description of evolution problems
	Description and evaluation of solution strategies

	Evaluation Criteria

	Background: Terms and Scope
	Software Evolution
	Software Migration
	Properties of the Automation Domain
	Meaning of ``Long living'' and ``Sustainability'' in the Automation Domain
	Relevant Standards
	OPC
	OPC UA
	IEC 61850
	IEC 61508

	Identifying and Analysing Evolution Problems
	Lehman's Laws
	Architecture-Based Understanding and Description
	Approach: Architecture Tradeoff Analysis Method, ATAM
	Approach: Software Architecture Analysis Method, SAAM
	Approach: Architecture-Level Modifiability Analysis, ALMA

	Software Comprehension by using Data Mining
	Information sources
	Data mining techniques
	Data mining goals

	Monitoring and Evaluating Quality Indicators
	Summary: Metrics for Identifying Evolution Problems
	Approach: Detection of Bad Smells or Antipatterns
	Architectural Enforcements
	Approach: Dependency-Analysis using Lattix LDM
	Approach: SISSy
	Approach: ISIS

	Solving Evolution Problems
	Strategies for Software Structuring
	Heuristics, Best Practices, Design Principles
	Design Patterns
	Reference Architectures

	Reactive elimination of evolution problems
	Approach: Evolution in the small
	Approach: Migration with DUBLO architectural pattern

	Variability Strategies
	Approach: Generative Programming (Czarnecki, Eisenecker)
	Summary: Product Lines
	Approach: Product Lines with purevariants
	Approach: COSVAM: COVAMOF Software Variability Assessment Method

	Automating Software Development
	Approach: Model Driven Architecture (OMG)
	Approach: xtUML - Executable UML
	Approach: Architecture-Centric MDSD
	Summary: Eclipse-Based Modelling
	Approach: SQL Server Modeling CTP (old name: OSLO)
	Approach: Constructor MDRAD
	Approach: Stratego XT

	Development Process Decisions
	Agile methods
	Properties and introduction of agile methods into the organization process
	Maintenance and Agile Development, Long-term Life Cycle Impact of Agile Methodologies
	Architecture modelling and agile methods
	Approach: CEFAM Comprehensive Evaluation Framework for Agile Methodologies (Taromirad)
	Approach: Agile Architecture Interactions (Madison)

	Knowledge Transfer, Documentation, UML
	General Approaches for Knowledge Transfer
	Documentation Artefacts

	Consistency between artefacts
	Architecture Compliance Checking
	Documentation and Code Consistency

	Quality Assurance Strategies
	Team Organization Strategies
	Development Environment Strategies, Virtualisation

	Management Strategies: Make or Buy Decision Support
	Risks, Selection and Integration of the COTS into the process
	Maintenance of COTS
	Trade-off between Make or Buy decision, COTS and Open Source

	Related Surveys
	Management Summary
	Categorisation of Approaches
	Decision Levels
	Overall

	Information Sources
	Books
	Journals
	Dissertations
	Conferences and Workshops
	Interviews
	Other
	Search keywords

	Glossary

