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Can computer models of the heart be personalized to gain 
better understanding of atrial arrhythmias? For example, 
they might then improve treatment of atrial fibrillation, the 
most common cardiac arrhythmia.

This thesis addresses major challenges of heart model perso-
nalization. Analysis techniques for clinical intracardiac elec-
trograms are developed. They determine wave direction and 
conduction velocity from single beats. Then, electrophysiolo-
gical measurements are reproduced in the simulation (in-silico) 
to compare excitation conduction and validate the models.

Further investigations describe how to deal with uncertain-
ties in tissue conductivities within the torso, which impact 
on simulated surface ECGs. Finally, a minimal model of single 
cardiac myocytes is adapted to atrial properties.

The presented results make personalized cardiac models a 
promising technique to improve understanding and treat-
ment of atrial arrhythmias. 
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1

Introduction

1.1 Motivation

Atrial fibrillation (AF) is the most common cardiac arrhythmia. An estimated number
of 2.2 million people in the United States and 4.5 million people in Europe suffer
from AF. The number of patients is strongly increasing, among others due to ageing
of the population. Hospital admissions have increased by about 66% during the last
20 years. Furthermore, treatment of AF is extremely expensive. The overall annual
societal burden in Europe caused by AF is estimated to around 13.5 billion Euros [1].
Hospitalization causes over 50% of these costs. Other atrial arrhythmias such as atrial
flutter are not even included in these statistics. So there is a very strong interest for
efficient and successful treatment methods for these atrial arrhythmias.
AF by itself is not lethal, however it severely impairs quality of life and increases the
risk of stroke. Therefore, it requires treatment. Besides drug administration, a very
common therapeutic approach for atrial arrhythmias is catheter ablation. Selected
regions of atrial tissue that are suspected to initiate or maintain the arrhythmia are
thereby electrically isolated. This prevents excitation conduction and optimally ter-
minates the arrhythmia. However, catheter ablation is still challenging, and clinically
evaluated ablation methods are leading to moderate success rates only. Many patients
have to undergo repeated interventions until the arrhythmia is cured.
Personalized computer models have been proposed to assist the physicians in plan-
ning and performing interventions. However, model personalization is a difficult task.
Many different parameters that influence the results need to be adjusted to the in-
dividual patient. In this context, several aspects are of special importance. First, a
personalized simulation anatomy is required, i.e. a segmented model of the patient’s
atria. Second, the description of cellular electrophysiology must be adjusted, that
means cell model parameters need to be tuned to represent individual pathologies in
the patient. If conclusions based on simulated electrocardiograms are to be made, the
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electrical conductivities of different structures within the torso must further be con-
sidered, because they show large individual variations and impact on the simulated
signals. Finally, measurements from electrophysiological studies should be consid-
ered for model personalization, because they are recorded directly at the location of
the electric sources and thus possess a very high information content. Apart from that,
it is important that the necessary steps be applicable in clinical practice. Otherwise,
the required efforts will quickly exceed the possible benefits.
With appropriate methods available, however, personalized computer models could
in a long-term perspective be able to assist the cardiologists. This could, for example,
be achieved by simulating the outcome of different ablation strategies or providing
patient-individual analyses of arrhythmia patterns. Thus, it might further lead to a
better understanding of the underlying mechanisms. This way, personalized models
could reduce examination times, improve success rates and significantly reduce both
the patients’ burden and the overall treatment costs.

1.2 Aims of the Thesis

Four major challenges in the personalization of atrial models are addressed in this
thesis:

• Investigation of a minimal electrophysiological cell model and an adaptation of its
parameters to atrial excitation properties

• A ranking of the influence of electrical conductivities of different organs in the
torso on simulated ECGs. Furthermore, an efficient method for predicting changes
in ECG that are caused by tissue conductivity variations

• Methods for quantitative analysis of intracardiac electrograms to calculate con-
duction properties such as propagation direction and conduction velocity from the
electrograms

• Comparison of personalized simulations with clinical measurements

1.3 Structure of the Thesis

Part I introduces fundamental clinical and technical backgrounds:

• Chapter 2 gives an overview over the medical background of the heart, atrial ar-
rhythmias, and electrophysiological studies.

• Chapter 3 presents technical foundations about cardiac simulations and the analy-
sis of intracardiac data.
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Part II explains the methods that were created and applied in this work:

• Chapter 4 describes the adaptation of the minimal cell model to atrial excitation
properties.

• Chapter 5 covers the influence of different organ conductivities in the torso on
the simulated body surface potentials. A ranking of the different tissue types is
performed, and an efficient prediction of signal changes caused by conductivity
variations is developed.

• Chapter 6 discusses the simulation of intracardiac electrograms and introduces
analysis techniques for these signals.

• Chapter 7 describes how patient-specific simulation models were created, param-
eterized, and compared to clinical measurements.

Part III presents the results that were obtained in the course of this thesis:

• Chapter 8 displays the adaptation results of the minimal cell model to atrial exci-
tation properties and shows simulations in 2-D patches.

• Chapter 9 shows the results of the organ ranking and the efficient prediction of
signal changes for conductivity variations.

• Chapter 10 demonstrates the applicability of the techniques that analyze intracar-
diac electrograms and discusses the analysis results from clinical patient data.

• Chapter 11 covers the results of the comparison between patient-specific simula-
tion models and clinical measurements.

Finally, chapter 12 summarizes the thesis and gives an outlook on possible future
work.





Part I

Basic Foundations





2

Medical Background

2.1 Cardiac Anatomy and Physiology

This section gives a general overview over the anatomy and physiology of the heart
as well as the measurement of electrocardiograms.

2.1.1 General Anatomy

The heart is a hollow muscular organ located between the lungs and posterior to the
sternum. With a size comparable to the human fist, it pumps approximately 8000
liters of blood every day [2]. As shown in Fig. 2.1, the heart comprises four differ-
ent chambers: the left ventricle pumps blood into the systemic circuit via the aorta,
the blood returns to the right atrium (RA) via the superior and inferior vena cava
(SVC and IVC), the right ventricle pumps it into the pulmonary circuit, from where
it returns to the left atrium (LA) via the pulmonary veins (PVs).

Superior vena cava

Right pulmonary artery

Right pulmonary veins

Right atrium

Inferior vena cava

Right ventricle

Left ventricle

Left atrium

Left pulmonary artery

Left pulmonary veins

Aorta

Coronary sinus

Fig. 2.1. The human heart (posterior view). Adapted from [3, 4].
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Fig. 2.4. Schematic description of the cell membrane including membrane proteins and ionic concentrations
for K+ and Na+. Red and blue circles characterize Na+ and K+ ions, respectively. The Na-K pump and
one exemplary K+ channel as transmembrane proteins are marked in yellow. The binding sites of the
K+ channel are displayed with a minus sign. The thin arrows across the membrane depict the direction
of concentration and voltage gradients. The thick arrows show the direction of the ion flow through the
membrane proteins. Fig. adapted from [12].

so-called transversal tubuli (T tubules). The fraction of the T tubule surface of the whole
sarcolemmal area is between 10 % and 50 % [13].
Various pore forming proteins are included in the sarcolemma. These pores are mainly specific
to distinct ion types e.g. sodium, potassium and calcium. Also exchanger and pump proteins
are located in the membrane. Specific calcium channels are located in the membrane of the
transversal tubuli to trigger the calcium release of the sarcoplasmic reticulum into the intra-
cellular domain (myoplasm). In contrast to membrane ion channels, the low resistance ohmic
coupling pores between adjacent cells, so-called gap junctions, do not show ion selectivity.
The structure of the ionic channels, exchangers, and pumps as well as of the gap junctions is
described in detail below.

2.1.1.1 Ionic Channels, Exchanger and Pumps

Various pore forming proteins are inserted in the sarcolemma (fig. 2.4). They normally have
a cylindrically shaped form with a diameter of approximately 1 nm [12]. These proteins
function as ionic transport, exchange or pumping mechanisms, specified by the ion type,
which can pass through, e.g. the sodium channel, calcium channels, potassium channels, the
sodium-calcium exchanger and the sodium-potassium pump. All these proteins define the
selective sarcolemmal permeability to the specific ion type. Their molecular structure and
electrophysiology can vary under a subdivision group of each channel type. Their gating
characteristics is described by an opening and closing behavior (section 4.3).
All functional channels consist of several subunits coded by different genes (fig. 2.5). Addi-
tionally to the channel building α-subunits, several coexisting subunits, i.e. β- and γ-subunits,
can modulate the channels function. Thus, a wide range of channel function is possible with
species, organ or even tissue specific expression.

Fig. 2.2. Simplified illustration of the cell membrane. Active transportation mechanisms for sodium and potas-
sium as well as a passive potassium channel are included. The equilibrium potential is maintained at -90 mV.
Adopted from [5].

The coronary arteries originate from the aorta closely behind the aortic valve and
supply the heart muscle with blood over a network of vessels. This blood is returned
to the heart via the coronary sinus (CS). The CS runs closely along the posterior LA
wall and then enters the RA in the vicinity of the IVC ostium.

2.1.2 General Physiology

Cardiac myocytes are excitable. In the cellular membrane, specific ionic channels,
pumps, and exchangers for mainly Na+, K+, an Ca2+ ions are embedded (see
Fig. 2.2). During the resting phase, they maintain a constant transmembrane volt-
age (TMV) of -80 to -90 mV , i.e. the intracellular potential is 90 mV lower than the
extracellular potential. If the TMV is raised above a certain threshold due to external
currents (typically -50 to -60 mV), an action potential (AP) as shown in Figure 2.3 is
triggered.
The sudden increase in TMV (Phase 1) is mainly caused by the opening of Na+

gates as soon as the threshold voltage is reached. After several milliseconds, the Na+

channels are inactivated. In the following, the influx of Ca2+ from the extracellular
space prolongs the AP and results in the plateau phase (Phase 2). After 200 to 400 ms,
outward K+ currents repolarize the membrane (Phase 3) to the original resting poten-
tial (Phase 4). The Na+ channels are not reactivated unless repolarization is almost
complete, which makes the cell refractory during the AP course. This means that no
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Fig. 2.3. Time-dependent conductivities of the most important ionic channels (left) and resulting action poten-
tial (right), both schematic. The AP comprises a fast upstroke during the depolarization, a plateau phase, and a
slower repolarization. Adopted from [6].

further excitations can be triggered before the first AP is complete. As a result of the
Ca2+ influx during the plateau phase and further Ca2+ release from the sarcoplasmic
reticulum, mechanical contraction of the myocyte is triggered.
Adjacent cells are coupled via so-called gap junctions. They are formed by two non-
selective ion channels (connexons) from the opposing cells. Each connexon con-
sists of six connexin proteins. Excitation from a depolarized cell to a neighbour cell
spreads to a large extent via intercellular currents through gap junctions. Therefore,
conductivity of the gap junctions is an important factor for the speed of excitation
conduction, the so-called conduction velocity (CV). Because all cardiac cells are
electrically coupled by such gap junctions, the heart is an electrical syncytium. This
means that the whole myocardium will be excited if an electrical excitation is trig-
gered anywhere in the heart [2].
A small part of the cardiac cells belongs to the cardiac excitation-conduction system.
These cells have an unstable resting potential and are thus self-depolarizing. They
can be found in the sinus node (SN), the atrio-ventricular (AV) node, the Bundle of
His and the left and right bundle branches. The sinus node is located subepicardially
in the RA, close to the orifice of the superior vena cava and is the primary pacemaker.
Excitation spreads over the atria to the AV node, where a proper delay of conduction
is added. A fast-conducting pathway continues along the bundle branches to the apex.
From there, excitation spreads over the whole myocardium via the Purkinje fibers.
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Fig. 2.4. Standard ECG. During the P-wave, the atria depolarize. The QRS complex marks depolarization of
the ventricles, and the T-wave is caused by the repolarization of the ventricles. Adapted from [3].

2.1.3 Measuring Electrical Heart Activity on the Body Surface

Depolarization wavefronts on the myocardium cause currents, which create an elec-
trical field in the torso and on the body surface. Measuring the electrocardiogram
(ECG) on the body surface is a routine clinical procedure with a very high diagnostic
value. Typically, potential differences between two points are measured. For exam-
ple, the Einthoven leads I to III are measured between right arm and left arm, right
arm and left leg, and left arm and left leg. Lead systems of 3 or 12 leads are common
in clinical practice.
A typical ECG signal as depicted in Figure 2.4 can be divided into three parts: During
the P-wave, the atria depolarize. The QRS complex describes the depolarization of
the ventricles. Finally, the T-wave represents repolarization of the ventricles. Atrial
repolarization is normally obscured by the QRS complex and thus cannot be recog-
nized in the ECG.
Besides clinical ECG recordings, so-called body surface potential maps (BSPMs)
can be acquired with 64 or 80 electrodes distributed over the body surface. As can be
seen in Figure 2.5, most of the electrodes are located on the left anterior thorax side.
There, the spatial potential variation is highest because the region is close to the heart.
With such dense measurements, the potential distribution on the whole torso can be
visualized and analyzed in more detail than possible for normal ECG measurements.
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Fig. 2.5. Body Surface Potential Map acquisition. The electrodes are mainly located on the left chest, which is
closest to the heart.

2.2 Atrial Arrhythmias

2.2.1 Specific Atrial Anatomy and Physiology

The atrial walls are relatively thin compared to the ventricles. Observations in the LA
revealed values between 1 and 3 mm with variations between the different parts of
the LA [7]. Thinner walls were reported especially at the LA roof and thicker walls
at the septum that separates RA and LA.
Besides the septum, the RA mainly consists of three parts: the appendage, the ve-
nous part and the vestibule [8]. The appendage is located anterior and laterally with
wide junctions to the venous part and the vestibule. Its surface contains the pectinate
muscles that originate in the Crista Terminalis. The venous part receives the caval
veins, and the vestibule describes the smooth-walled myocardium around the tricus-
pid valve.
The Crista Terminalis is a horseshoe-shaped muscular structure that is significantly
thicker (typically 2 to 10 mm) than the normal atrial wall. It originates close to the
sinus node, extends inferior to the IVC orifice, and ends in the region between the
IVC and the tricuspid valve. Thus, it separates the venous part from the pectinate
muscles. Its conduction properties are anisotropic with a higher CV in the longitudi-
nal direction up to 10 times faster than in the transverse direction, which makes it a
functional conduction block in the transverse direction.
The region between the tricuspid valve and the IVC orifice is referred to as cavotri-
cuspid isthmus. It is a part of re-entrant circuits during typical atrial flutter. Reduced
conduction velocities have been reported for the cavotricuspid isthmus in patients
suffering from atrial flutter [9]. It is therefore a standard target for ablation.
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Fig. 2.6. Interatrial bridges between right and left atrium in 15 specimens [12].

The LA comprises four components: appendage, vestibule, venous part, and septum.
All parts except the left atrial appendage (LAA) have a smooth wall without trabec-
ulations. The LAA is a tubular structure that is located anterior of the left superior
pulmonary vein. The vestibular part covers the area surrounding the mitral valve.
The venous component receives the PVs. Typically, there are two left and two right
PVs: the left superior PV (LSPV), the left inferior PV (LIPV), the right superior PV
(RSPV), and the right inferior PV (RIPV). However, there exist variations in num-
ber, size, and shape of the ostial regions [10]. Muscular sleeves surround the PV os-
tia [11]. The LA walls are often described as superior/roof, posterior, lateral, septal,
and anterior [8].
Excitation conduction between RA and LA has not yet been completely under-
stood. However, three mechanisms are widely accepted to play an important role [12]
(Fig. 2.6). Firstly, Bachmann’s Bundle originates in the RA close to the SVC orifice
and extends over the septum to the region of the LAA. According to [12] it is present
in 73% of the population. Secondly, the rim of the fossa ovalis was shown to connect
the RA and LA during LA pacing [13]. Finally, the CS was reported to contain its
own musculature and to serve as intraatrial connection [13, 14].
Measurements of conduction velocity in the human atrium are scarce. CVs on the
RA free wall between 68 and 103 cm/s (mean value 88±9 cm/s) have been re-
ported by Hanson et al. [15] in patients suffering from ischemic heart disease or
Wolff-Parkinson-White syndrome. In the cavotricuspid isthmus, CVs between 37 and
42 cm/s were measured during pacing in patients with a history of atrial flutter and
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Fig. 2.7. Macroscopic reentries can either occur around an anatomical obstacle (left side) or around a refractory
zone that is maintained by the rotor itself (right side, so-called leading circle concept [19]).

values between 50 and 55 cm/s in patients with no such history [9]. Especially, slow
conduction was observed in the medial part of the isthmus [16].
Normal effective refractory periods (ERPs) in adults between 150 and 360 ms have
been reported [8]. Furthermore, measurements of the ERP in the RA and LA as well
as in the PVs were performed in patients without prior history of atrial fibrillation,
both before and after inducing and maintaining AF for 15 min. ERPs before vs. af-
ter the AF episodes were 248±27 ms vs. 211±40 ms in the PVs, 233±23 ms vs.
214±20 ms in the LA, and 226±29 ms vs. 188±20 ms in the RA [17].

2.2.2 Arrhythmia Types and Underlying Mechanisms

Cardiac arrhythmias can be subdivided into ventricular and supraventricular (i.e.
atrial) arrhythmias. Ventricular arrhythmias comprise mainly bundle branch blocks,
ventricular extrasystoles, and ventricular tachycardias (repeated ventricular extrasys-
toles). Supraventricular arrhythmias may have their origin in the sinus node, the atrial
myocardium (including the PV ostia), or the AV node [18]. Both focal origins and
reentry mechanisms are possible, see below. In this thesis, only supraventricular ar-
rhythmias are considered with a focus on atrial flutter and atrial fibrillation.
Atrial tachycardias with macroscopic excitation fronts may arise from ectopic ac-
tivity of a single focus (ectopic atrial tachycardia) or multiple foci (multifocal atrial
tachycardia), as well as from reentrant circuits. The latter mechanism is referred to
as reentry tachycardia or — for frequencies above 220 bpm — atrial flutter. Reentry
mechanisms both with and without anatomical obstacle have been demonstrated [19],
as shown in Figure 2.7. A key parameter of such reentry circuits is the wavelength
calculated as the product of ERP and CV. Thus, it corresponds to the distance trav-
elled by the wavefront during the refractory phase. If it is smaller than the reentry
path, the cardiac tissue can be repeatedly excited by the circulating excitation wave.
A region of slow conduction in the cavotricuspid isthmus is part of the (clockwise
or counterclockwise) reentry path in typical atrial flutter [9]. Atypical atrial flutter
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Fig. 2.8. AF is believed to be maintained by a combination of focal activity (left), large-scale rotors (middle)
and multiple wavelets (right) [22].

circuits may be located in the RA or LA, for example, around the tricuspid or mitral
valve.
Atrial fibrillation (AF), in contrast, is characterized by repetitive, chaotic, and dissy-
chronous activation of different parts of the atria. AF is classified according to the
length of episodes and their termination [8]. If the episodes do not last longer than 7
days and terminate spontaneously, they are referred to as paroxysmal AF. Character-
istic for paroxysmal AF is an initiating trigger that is often located in the pulmonary
veins [20]. In contrast, persistent AF lasts from 7 days to several months and does
not terminate spontaneously. Sites showing complex fractionated atrial electrograms
have been associated with the maintenance of persistent AF [21].
The mechanisms of AF maintenance are still under debate. It is assumed that a com-
bination of focal activity, single mother rotors and multiple wavelets maintains the
arrhythmia [22], see Figure 2.8.

2.2.3 Remodeling

The atrial substrate responds to atrial fibrillation by structural and electrophysiologi-
cal changes, a process known as remodeling. Unfortunately, these changes favour the
genesis and maintenance of further arrhythmia episodes. This vicious circle is also
described as “AF begets AF” [22, 23].
Three major contributions to cellular remodeling have been identified: electrical, con-
tractile, and structural remodeling [24], see Figure 2.9. Electrical remodeling affects
the ionic channels. Due to the repetitive activations with short cycle lengths, the cel-
lular Ca2+ loading increases. As a protection mechanism, the conduction of the ICa,L

current is reduced on a time scale of several minutes, and the expression of the ICa,L

channels is reduced within several hours to days [22]. The reduced ICa,L leads to a
shorter APD and ERP, which in its turn decreases the wavelength and favours reen-
try. Furthermore, an increase in the inward rectifier K+ current IK1 leads to a reduced
resting transmembrane voltage and a further APD shortening. Finally, although it
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Fig. 2.9. Mechanisms of atrial remodeling. Down-regulation of Ca2+ channels is considered the primary
contributor for electrical and contractile remodeling. Stretch of the atrial myocardium due to contractility loss
is thought to be the main cause for structural remodeling. The remodeled substrate consists of an enlarged
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Modified from [24, 29].

cannot be directly expected, an increase of the transient outward rectifier K+ current
Ito also shortens the APD [25].
Contractile remodeling is mainly caused by the reduced ICa,L current. This leads to
a decreased Ca2+ release from the sarcoplasmic reticulum and thus to a decreased
activation of the contractile apparatus. The loss of contractility increases atrial com-
pliance and can lead to atrial dilation. Enlargement of the atria provides more space
for reentrant circuits and thus favours reentry.
Structural remodeling is assumed to affect the expression of gap junctions. Previous
studies showed to some extent inconsistent results [26, 27, 28]. However, a tendency
of reduced connexin 40 expression was present. Such a reduction could further reduce
CV and thus the reentry wavelength.

2.3 Electrophysiological Studies

Electrophysiological (EP) studies are performed to record and analyze intracardiac
electrograms (EGMs). Different types of electrode catheters are inserted via venous
access and are placed at distinctive locations in the heart such as the sinus node,
the PVs or inside the chambers to analyze cardiac excitation. EP studies are typi-
cally performed in patients suffering from cardiac arrhythmias. Besides diagnostic
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Fig. 2.10. Three different intracardiac measurement catheters [4]. (a) Inquiry Optima circular mapping catheter
(www.sjm.com). (b) Biosense Pentaray catheter (www.spo.escardio.org). (c) Inquiry Optima AFocus spiral
catheter (www.sjm.com).

examinations, catheter ablation can be performed to damage areas of pro-arrhythmic
substrate to such an extent that excitation conduction in this tissue is blocked.

2.3.1 Catheter Types and Mapping Techniques

There exist different catheter types with different shapes as well as electrode number
and arrangement. A standard mapping catheter with typically eight or ten electrodes
arranged in pairs is placed in the CS. It covers a large region in the LA around the
mitral valve and records signals both from the LA and the left ventricle. Excitation
in the CS catheter normally starts at the proximal end during sinus rhythm.
For spatial mapping, a circular mapping catheter as shown in Figure 2.10(a) is often
inserted into the atria. Especially for PV isolation during AF ablation, it is used to find
excitation breakthroughs from the PV ostia to the LA myocardium. Many circular
catheters are variable in diameter, i.e. the diameter can be adjusted during the exami-
nation. Further catheters that cover a larger area are the PentaRay catheter (Biosense
Webster, Diamond Bar, USA; Fig. 2.10(b)) and the AFocusII spiral catheter (St. Jude
Medical, St. Paul, USA; Fig. 2.10(c)). Such catheters can be used for high-density
mapping [30, 31], e.g. the localization of ectopic foci.
The current position of the catheter in the heart can be tracked by x-ray fluo-
roscopy. However, in recent years, 3D electroanatomical mapping systems have
been developed such as Biosense CARTO and EnSite NavX (St. Jude). They al-
low to localize the catheter electrodes based on magnetic sensors (older CARTO
systems [32]) or impedance measurements in high-frequency transthoracic electrical
fields (CARTO3 [33] and Ensite NavX [34]). It has been shown that such mapping
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Fig. 2.11. Schematic example of complex fractionated electrogram (blue). Activity is marked by the red curve.
Active regions of the fractionated EGM show multiple deflections. Figure modified from [40].

systems can reduce fluoroscopy exposure and procedure duration during PV isola-
tion [35].

2.3.2 Ablation of Cardiac Arrhythmias

The most commonly used catheter ablation techniques are nowadays radiofrequency
(RF) [36] and cryothermal [37] ablation. During RF ablation, high-frequency currents
with 300 to 1000 kHz are inserted into the tissue at the tip of an ablation catheter.
Most commonly, a unipolar setup is used, in which the currents leave the body at a
large ground electrode at the posterior aspect of the chest. The high density of elec-
tric current near the catheter tip causes local resistive heating of the tissue in a 2 mm
radius [8]. Due to thermal conduction, deeper regions are progressively heated [38],
even after termination of the RF pulse. To form lesions by irreversible cellular death,
the tissue must be heated up to at least 50◦ C. To ensure lesion formation in deeper re-
gions, ablation currents are typically applied for 60 s. However, temperatures should
not exceed 70◦ C to avoid thromboembolic complications. Therefore, tip temperature
and impedance are constantly monitored. To avoid local temperature peaks at the
electrode tip, irrigated tip electrodes are used.
Cryothermal catheter ablation is performed by delivering a refrigerant (typically liq-
uid nitrogen) through the catheter shaft that expands in the catheter tip. This results
in a cooling of the tip and the surrounding tissue. The tissue is damaged and replaced
by fibrotic tissue within a few weeks after the procedure [8]. It is an alternative to RF
ablation, and possible advantages of both approaches are currently under study [39].
Typical targets for catheter ablation are the pulmonary veins, re-entry paths, and sites
of focal activity. However, attention has recently been drawn also to sites showing
complex fractionated atrial electrograms that may be sustaining persistent AF [21].
An example signal is shown in Figure 2.11. The ultimate goal of catheter ablation is
restoring sinus rhythm. This is not always achieved, however, in such cases at least a
rhythm regulation may be possible [41].





3

Simulation and Quantitative Analysis of Cardiac
Excitation

This chapter describes the basics for simulating cardiac excitation and analyzing mea-
sured data of cardiac activation. The required components for simulations are an
anatomical model, cellular electrophysiological models, and excitation conduction
models. Optionally, the resulting surface ECG can be forward-calculated. Further-
more, an overview of simulation approaches and analysis techniques is given.

3.1 Anatomical Models

Anatomical models describe the geometry of the heart. In addition, inside the heart
different tissue types can be differentiated. Different possibilities to create such mod-
els are available.

3.1.1 Visible Human Project

The visible human project comprises two highly detailed anatomical data sets of a 38
year old man (Visible Man, VM) and a 59 year old woman (Visible Female) [42, 43].
Computed tomography (CT) and magnetic resonance (MR) images were acquired
from both whole bodies. Afterwards, the bodies were frozen and cut into small slices
of 1 mm (VM) and 0.33 mm (Visible Female) thickness. These cryosections were
photographed and digitalized and provided additional high resolution data. From the
CT and MR scans together with the cryosection images, high resolution models of the
thorax and the heart were created. Examples of the VM data are shown in Figure 3.1.

3.1.2 Individual Segmentation

While principal questions can be investigated in the visible human models, clinical
applications require personalized anatomical models. These must be derived based
on data from standard medical imaging techniques such as CT or MR imaging. The
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Fig. 3.1. Visible Man (VM) data set. (a) Semi-transparent anterior view of the torso model. (b) Posterior view
of the atrial model.

segmentation of the data can be performed manually, for example, using deformable
meshes.
However, manual segmentation is time-consuming and thus hardly applicable for
clinical studies. Therefore, automatic or semi-automatic segmentation techniques
have been developed. For example, the endocardium of the four cardiac chambers
and the epicardial wall of the left ventricle can be segmented with an active-shape
approach proposed by Lorenz and von Berg [44], see Figure 3.2. Segmentation of the
atrial epicardium is not included in this model, because the atrial walls are very thin
and cannot be distinguished on normal CT or MR scans. However, the simulations
performed in this thesis are based on models with finite wall thickness, therefore, this
approach cannot be directly applied.

3.2 Electrophysiological Cell Models

The ionic properties of different cell types are described by electrophysiological cell
models. They can include a detailed description of all ionic channels or be based on
phenomenological properties. The heart comprises different cell types with different
ionic properties, therefore, it can be necessary to combine different cell models in one
simulation. This is made possible by including the different cell models in a common
C++ framework [45].

3.2.1 Hodgkin-Huxley Model

The basis for the current mathematical models of cellular electrophysiology was pro-
posed in 1952 by Hodgkin and Huxley [46]. Their model described an electrical
equivalent circuit for a giant squid axon membrane and is depicted in Figure 3.3(a).



3.2. ELECTROPHYSIOLOGICAL CELL MODELS 21

Fig. 3.2. Segmentation results with the active-shape approach proposed by Lorenz and von Berg [44].

Ion channels are modeled as voltage dependent resistors, and the voltage sources are
determined by the Nernst voltages (and thus the concentration gradients). The cell
membrane itself is represented by a capacitance C.
The total transmembrane current Imem is the sum of the sodium current INa, the potas-
sium current IK, and the leakage current IL:

Imem = INa + IKa + IL. (3.1)

Considering also intercellular currents Iinter, the change in transmembrane voltage Vm

can be calculated according to [5] as

dVm

dt
=− 1

C
(Imem− Iinter) . (3.2)

3.2.2 Courtemanche et al. Model

A cell model for the atrial working myocardium has been developed by Courte-
manche, Ramirez, and Nattel (referred to as CRN model) based on data from humans
and animals [47]. A schematic description is shown in Figure 3.3(b). The sum of the
different ionic currents represents the total membrane current
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with the transmembrane voltage dependent function fNaK of [Na+]o.
The non-specific Ca2+ activated current ICa,ns has a Na+ and K+ component each described
by a Hill’s equation approach presented in eq. 5.9 considering that the maximum current is
given in the same form like eq. 5.15. The sarcolemmal Ca2+ pump current Ip,Ca is defined by
the voltage independent pump characteristics of eq. 5.9. The intracellular calcium dynamics
is described in the next section since it is not defined in a closed mathematical formula in
the Luo-Rudy model, but has a trigger. Also, the variation of the concentrations is explained
later (section 5.5.4). The resulting action potential and [Ca2+]i transient of the Luo-Rudy
model is presented in fig. 5.3 b,d.

5.5.3 Courtemanche et al. Model

The model of Courtemanche, Ramirez, and Nattel (CRN) is describing the electrophysiolo-
gical properties of a cell of the human atrial working myocardium [238]. The schematic de-
scription of the currents representing the selective permeability of the membrane is depicted
in fig. 5.6 a. The temporal evolution of the transmembrane voltage (fig. 5.3 a) is described
using eq. 5.13 with Imem as the sum of the membrane currents:

Imem = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L

+Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca

with the currents: INa = fast Na+; IK1 =rectifier outward K+; Ito =transient outward K+;
IKur =ultra rapid delayed outward K+; IKr =rapid delayed outward K+; IKs =slow delayed
outward K+; ICa,L =L-type inward Ca2+; Ip,Ca =Ca2+ pump outward; INaK =Na/K pump;
INaCa =Na/Ca exchanger; Ib,Na =background Na+; and Ib,Ca =background Ca2+. Some of
these currents during an AP are depicted in fig. 5.7 a.
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Fig. 5.6. Schematic description of (a) the Courtemanche et al. and (b) the Nygren et al. electrophysiological
model. Both models are structurally similar, different only in IKur in the one and Isus in the other model.
The properties differ largely (fig. 5.3 a and fig. 5.7). The symbols and ionic currents are explained in
previous figures or in the text.

(b)

Fig. 3.3. (a) Hodgkin-Huxley model of a giant squid axon. (b) Atrial cell model by Courtemanche, Ramirez,
and Nattel [47]. Figures adopted from [5].

Imem = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L + Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca.

(3.3)
The different currents are: INa = fast Na+; IK1 = rectifier outward K+; Ito = transient
outward K+; IKur = ultra rapid delayed outward K+; IKr = rapid delayed outward
K+; IKs= slow delayed outward K+; ICa,L = L-type inward Ca2+ ; Ip,Ca = Ca2+ pump
outward; INaK = Na/K pump; INa,Ca = Na/Ca exchanger; Ib,Na = background Na+; and
Ib,Ca = background Ca2+. Details can be found in [47].
It is known that the ionic concentrations in the model drift away from the steady-state
values during long-term repetitive stimulations. Solutions to overcome this limitation
have been proposed in [48].
The properties of electrophysiological remodeling during AF as described in sec-
tion 2.2.3 can be implemented into the model by changing the corresponding model
parameters [49].

3.2.3 Minimal Model

The Courtemanche model described in section 3.2.2 is a detailed mathematical de-
scription of the ionic processes on the cell level. In contrast, a rather phenomeno-
logical model, the so-called “minimal model” (MM), has been proposed by Bueno-
Orovio, Cherry, and Fenton [50]. It describes more abstract currents which, however,
reflect the most important features of detailed ionic models, such as AP morphology
and restitution behaviour. The MM is an extension of the Fenton-Karma model [51]



3.2. ELECTROPHYSIOLOGICAL CELL MODELS 23

Table 3.1. Parameter sets for the MM for ventricular cells as supplied in [50].

uo uu θv θw θ−v θo τ
−
v1 τ

−
v2 τ+v τ

−
w1

Epi 0 1.550 0.300 0.130 0.006 0.006 60 1150 1.451 60
M 0 1.610 0.300 0.130 0.100 0.005 80 1.451 1.451 70
Endo 0 1.560 0.300 0.130 0.024 0.006 75 10 1.451 6

τ
−
w2 k−w u−w τ+w τ f i τo1 τo2 τso1 τso2 kso

Epi 15 65 0.030 200 0.110 400 6 30.018 0.996 2.046
M 8 200 0.016 280 0.078 410 7 91.000 0.800 2.100
Endo 140 200 0.016 280 0.104 470 6 40.000 1.200 2.000

uso τs1 τs2 ks us τsi τw∞ w∗∞ Vm,u V0
Epi 0.650 2.734 16 2.099 0.909 1.887 0.070 0.940 85.7 -83
M 0.600 2.734 4 2.099 0.909 3.385 0.010 0.500 85.7 -83
Endo 0.650 2.734 2 2.099 0.909 2.901 0.027 0.780 85.7 -83

with an additional state variable for producing spike-and-dome morphology in the
AP. Its behaviour can be adjusted by tuning the 28 model parameters listed in Ta-
ble 3.1.
Details of the model can be found in [50], but a brief summary is given here. The
MM describes three major currents: a fast inward current J f i, a slow outward current
Jso, and a slow inward current Jsi (Figure 3.4(a)). No absolute correspondence be-
tween these phenomenological currents and real ionic currents exists. However, J f i

mainly represents the sodium currents during AP upstroke, Jso the potassium currents
during repolarization, and Jsi the calcium currents during the plateau phase. Current
equations are given as

J f i =−
v ·H(u−θv)(u−θv)(uu−u)

τ f i
(3.4)

Jso =
(u−uo)(1−H(u−θw))

τo
+

H(u−θw)

τso
(3.5)

Jsi =−
H(u−θw) ·w · s

τsi
(3.6)

where H(x) is the Heaviside (or step) function. The four state variables implemented
in the model are u (corresponds to scaled TMV), v (gate for J f i/sodium current), as
well as w and s (gates for Jsi/calcium current). Their time-dependence is shown in
Figure 3.4(b) and is governed by the following equations:
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Fig. 3.4. Minimal Model. (a) Schematic description of currents. (b) Time-course of the state variables for the
supplied ventricular parameter set (epicardial cells).

∂tu = ∇(D̃∇u)− (J f i + Jso + Jsi) (3.7)

∂tv =
(1−H(u−θv))(v∞− v)

τ
−
v

− H(u−θv) · v
τ
+
v

(3.8)

∂tw =
(1−H(u−θw))(w∞−w)

τ
−
w

− H(u−θw) ·w
τ
+
w

(3.9)

∂ts =
(1+ tanh(ks · (u−us)))/2− s

τs
(3.10)

Several of the time constants determining the evolution of the currents or state vari-
ables are functions of the voltage variable u:

τ
−
v = (1−H(u−θ

−
v )) · τ−v1 +H(u−θ

−
v ) · τ−v2 (3.11)

τ
−
w = τ

−
w1 +

(τ−w2− τ
−
w1) · (1+ tanh(k−w · (u−u−w )))

2
(3.12)

τso = τso1 +
(τso2− τso1) · (1+ tanh(kso · (u−uso)))

2
(3.13)

τs = (1−H(u−θw)) · τs1 +H(u−θw) · τs2 (3.14)

τo = (1−H(u−θo)) · τo1 +H(u−θo) · τo2 (3.15)

As an example, τ−v takes on either the value τ
−
v1 or τ

−
v2 with a step-like transition at

θ−v . In contrast, τ−w takes on values between τ
−
v1 and τ

−
v2. The transition is smooth, it

reaches the mean value of both at u−w , and the sharpness of the transition is determined
by k−w .
Further definitions comprise limits for the gating variables:
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v∞ =

{
1, u < θ−v
0, u≥ θ−v

(3.16)

w∞ = (1−H(u−θo)) · (1−u/τw∞)+H(u−θo) ·w∗∞ (3.17)

The initial conditions for the state variables are u = 0, v = 1, w = 1, and s = 0. The
TMV can be calculated from u by a linear transformation

Vm =Vm,u ·u+V0, (3.18)

in which V0 is the resting membrane potential and Vm,u is the scaling factor between
u and Vm.
It was previously shown that in the MM, action potential duration (APD) and ERP are
relatively closely linked. This impairs the simulation of ischemia [52], in which APD
is shortened and ERP prolonged. For the simulation of atrial arrhythmias, however,
this is not a problem, because no extreme disparity between APD and ERP has been
reported.

3.3 Excitation Conduction

Excitation is conducted between adjacent heart cells based on electrical coupling
through gap junctions. To model this conduction, macroscopic models which are
frequently used were applied in this work. On one hand, the electrophysiologically
detailed bi-/monodomain model was used, on the other hand, a rule-based cellular
automaton was employed.

3.3.1 Bidomain Model

In the bidomain model, the intra- and extracellular space are considered as two con-
tinuous domains [53, 54]. They are separated by the cell membrane, through which
the currents between the two domains flow. For each domain, Poisson’s equation
connects the respective current source densities with the resulting potential Φ

∇(σe∇Φe) =−β · Im− Ise, (3.19)

∇(σi∇Φi) = β · Im− Isi. (3.20)

The indices i or e denote the intra- or extracellular domain. σi and σe represent the
(possibly anisotropic) conductivity tensors, β is the surface-to-volume ratio of the
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cell, Im stands for the total membrane current and Isi and Ise for intra- and extracellular
stimulus currents.
If no external stimulus currents are applied, the equations can be reformulated to

∇((σi +σe)∇Φe) =−∇(σi∇Vm). (3.21)

This is the first part of the bidomain model. It describes how the transmembrane
voltage Vm (calculated from the electrophysiological cell models) influences the ex-
tracellular potential. Furthermore, the second bidomain equation can be derived as

∇(σi∇Vm)+∇(σi∇Φe) = β · (Cm ·
dVm

dt
+ Imem)− Isi. (3.22)

It describes how the currents in the intra- and extracellular space affect the intercel-
lular stimulus current, which in its turn serves as input for the cell models.
The excitable cardiac tissue is normally surrounded by an unexcitable bath medium.
The extracellular domain is assumed to be connected between the excitable cells and
the bath with different conductivity tensors. The intracellular domain is not defined in
the bath, i.e. σi = 0. A Dirichlet boundary condition is applied in the bath by setting
a grounded potential. At the tissue-bath interface, Neumann boundary conditions are
applied to the extracellular and intracellular potential. This means that in the extra-
cellular domain, the normal current density across the boundary must be continuous.
In the intracellular domain, the normal current density at the boundary must vanish.
Under the assumption that conductivities in the intra- and extracellular domain have
the same anisotropy ratio (i.e. σi = κ ·σe), the monodomain equation can be derived
as

∇(σi∇Vm) = (κ +1) ·β · (Cm ·
dVm

dt
+ Imem). (3.23)

In practice, the monodomain model is significantly less computationally intensive
and was therefore used in this work for electrophysiologically detailed simulations.

3.3.2 Cellular Automaton

In contrast to the detailed electrophysiological models coupled with the bidomain
approach, the cellular automaton (CA) is a rule-based system [55]. The principle
function of the CA is depicted in Figure 3.5. Conduction times between adjacent cells
are calculated from the intercellular distance and the predefined conduction velocity
(CV). After a cell has been activated, it is unexcitable for a configured refractory time.
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(a) (b)

(d) (e) (f)

(c)

Fig. 3.5. Principle function of a cellular automaton. Active elements are marked with green dots, red dots
represent the refractory cells. From an initial stimulus (a), excitation is conducted to neighboring cells (b).
During the plateau phase, the elements are refractory (c,d). After repolarization (e,f) the cells can be excited
again. Figure adapted from [5].

Finally, it becomes re-excitable again. Whenever a cell in the CA has been excited, a
precalculated action potential course takes place in the cell.
Different AP courses, CVs and refractory periods can be stored for up to 255 distinct
tissue types. AP courses and the upcoming refractory periods can further depend on
heart rate (i.e. the preceding cycle length) and level of repolarization when the last
excitation occurred.
The CA is much faster than detailed electrophysiological models coupled with the
bi-/monodomain approach. However, all states and transitions are discrete. Especially
for simulations of chaotic rhythms e.g. during atrial fibrillation (AF), it therefore
suffers from discretization artifacts. Thus, it was only used for simulations during
sinus rhythm or during controlled stimulation in this work.

3.4 Forward Calculation and Tissue Conductivities

The forward problem of electrocardiography calculates the resulting potential distri-
bution on the body surface from the electrical current sources in the heart.

3.4.1 Forward Problem Formulation

To calculate the potentials in the torso and on the torso surface, a model of the torso
volume is required. In principle, the bidomain equation (3.21) could be solved in a
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combined model of the heart and thorax. This would directly calculate the extracel-
lular potential in the torso as part of the bath medium.
However, this is hardly recommendable or feasible due to computational reasons.
In practice, a two-step approach is commonly used. First, the transmembrane volt-
age distribution on the heart is calculated with the monodomain model or a cellular
automaton. The right-hand side of (3.21), which constitutes the impressed current
source density, is then calculated from Vm as Iimp = −∇ · (σi∇Vm). In a second step,
the remaining differential equation

∇ · [(σi +σe)∇Φe] = Iimp (3.24)

is solved using a finite element technique (with σi = 0 in the torso). To this end, a
tetrahedron model of the heart and surrounding torso is created, in which the extra-
cellular potential Φe is calculated [56].

3.4.2 Conductivities and Importance of Different Tissue Types

For a given set of cardiac sources during an excitation sequence, the electric field
in the torso and on the torso surface is mainly determined by size and position of
internal organs and structures (also referred to as inhomogeneities). However, it is
known that electrical conductivity and degree of anisotropy of the various tissues,
fluids, and structures vary [57, 58]. Thus, their influence on the surface ECG cannot
be intuitively predicted.
Obviously, there is a lack of consensus in the literature about measured tissue con-
ductivity values [59]: For all major tissues in the thorax, the conductivities differ by
a factor of 2.3 to 16.5 comparing different studies. As an example, values between
0.0544 S/m [60] and 0.9 S/m [61] for the conductivity of the kidneys have been re-
ported.
Partly, these differences are due to the technological challenges that occur when mea-
suring conductivities in the low frequency range that is relevant for the forward prob-
lem. Further deviations arise from differing measurement techniques [62], measure-
ments on different species or even sample variations within the same species. Apart
from that, many measurements are performed ex-vivo after the sample has been ex-
cised, for which it is known that tissue conductivities change [63, 64]. Finally, patho-
logical conditions may cause changes in tissue or fluid conductivity [65, 66]. These
variations also influence simulated ECGs. The higher the conductivity uncertainty for
a specific tissue becomes, the more severe modeling errors it can introduce depending
on site and location with respect to the electrodes.
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Simulation studies have previously attempted to characterize how such inhomo-
geneities influence the computed body surface potential maps (BSPMs). Studies
based on dipole sources [67] and measured epicardial signals [68] have been re-
ported. However, they do not consider the lack of consensus in the literature men-
tioned above. Furthermore, no studies based on simulated physiological excitation
sequences exist to the knowledge of the author.

3.5 Atrial Simulations

Atrial simulations have reached a level of sophistication that allows for moving to-
wards clinical applications, e.g. interpreting study outcomes and aiding in therapy
design [69].
The simplest and earliest models represented the two atria as two spheres with holes
for the veins and valves [70, 71], for example to study re-entry behaviour. More
realistic 2D surface models were derived from MR images [72, 73]. The first 3D
model including atrial wall thickness was presented in [74] with simulations using the
Nygren et al. cell model [75]. Further studies on 3D models have also been performed
with the VM data set [76] and the CRN model.
A substrate for atrial fibrillation was for example modeled by introducing patchy het-
erogeneities in APD90 [72]. Sustained AF was then induced by rapid pacing with a
cycle length of 150 ms. In the 3D visible female atria, AF was induced in a cellu-
lar automaton simulation by S1-S2 pacing. Different ablation strategies were then
evaluated with respect to their effect on AF suppression [77].
Recently, special attention is paid to complex fractionated atrial electrograms. Such
signals are likely to result from fibrotic tissue which plays an important role in the
maintenance of persistent AF. Simulations of fractionated electrograms in a 2D tissue
patch with high resolution yielded valuable insights into possible underlying mecha-
nisms to the development of fractionated electrograms [78].

3.6 Quantitative Analysis of Electrophysiological Measurements

Intracardiac electrograms (EGMs) recorded during electrophysiological (EP) studies
can be classified qualitatively by the physician, e.g. in terms of which electrodes are
activated first and which are activated later [31, 30]. Alternatively, mapping tech-
niques such as activation mapping can be used to identify the earliest point of activa-
tion.
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There are interesting parameters that can be quantitatively determined from cardiac
mapping data, especially the local wave direction and conduction velocity (CV).
These parameters can aid in the understanding of the arrhythmia pattern and possi-
ble substrate changes. Some quantitative approaches have been applied [79, 80, 81],
however they require additional efforts. Local activation time (LAT) maps are regu-
larly interpolated from measured activation times at different locations. Such maps
give an overview of activation patterns if these are stable over several minutes, which
is the time required to record the map. This is possible, for example, during sinus
rhythm or atrial flutter. Local direction of propagation and CV were estimated from
LAT maps using a three-point method [79, 80] or vector field analysis [81]. How-
ever, the LAT map must be recorded at a large number of sites in the atrium and
is therefore time-consuming to create. A problem is that the arrhythmia pattern can
change during the examination, for example, after starting the ablation. Then, a new
activation map must be recorded for every new pattern to perform the analysis.
A quantitative analysis of single wavefronts was reported based on epicardial mea-
surements from dense electrode arrays. Activation sequences in pigs and dogs were
mathematically analyzed with the help of 2D and 3D vector fields [82, 83]. CV in
humans has also been measured using dense electrode arrays [15]. However, these
methods are invasive and require open-heart surgery, thus, they cannot be applied to
a larger group of patients during catheter ablations. An interpolation method for acti-
vation times from single simulated wave fronts that were measured with a PentaRay
catheter has been proposed by Mase et al. [84]. It is based on radial basis functions
and will be further described and investigated in section 6.2.
Of further interest is the analysis of complex fractionated atrial electrograms [85, 86,
87] and electrograms recorded during atrial fibrillation [88]. Finally, CS electrograms
recorded during 60 s have been analyzed using correlation analysis [89].
However, such quantitative analysis methods have not yet been applied in clinical
practice on a larger scale. This may be due to the fact that they are not implemented
in current electroanatomical mapping systems. However, analysis techniques that on
one hand are simple and on the other hand deliver data of high diagnostic value could
be interesting for manufacturers to implement into future mapping systems.
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4

Adaptation of a Minimal Cell Model to Properties of
Atrial Tissue

As presented in section 3.2.3, the minimal model (MM) comprises 28 parameters.
They can be adjusted to reproduce different AP shapes and restitution behaviours. So
far, only parameters for the ventricles were available [50]. In this work, the model
parameters have been analyzed and adapted to reproduce excitation properties as
given by the CRN model. Both the physiological and the electrical remodeling case
were considered.
The adaptation process was performed as follows:

• Detailed model parameter analysis
• Creation of reference curves
• Selection of parameters for adaptation
• Adaptation in 3 steps: AP shape, APD restitution, and CV restitution, followed by

iterative refinement

Finally, 2D patch simulations with the CRN and the minimal model considering elec-
trical and structural remodeling (reduction of gap junction conductivity) were per-
formed. The results of the adaptation and the patch simulations will be discussed in
chapter 8.

4.1 Parameter Analysis

To better understand the influence of the distinct parameters, a schematic analysis
was plotted for the epicardial parameters supplied in [50]. The three currents were
analyzed separately, and the results are shown in Figures 4.1 to 4.3.
The fast inward (Na+) current is controlled by a single gating variable v. The slow
outward (K+) current is not related to a gating variable and only depends on the volt-
age variable u. The slow inward (Ca2+) current is controlled by two gating variables,
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Fig. 4.1. Parameters for fast inward current (Na). Promoting or inhibiting factors are color coded from orange
to green. Orange represents inhibiting factors (e.g. values close to 0) and green promoting factors (e.g. values
close to 1). Time constants are color coded from light blue to violet. Light blue stands for slow processes (large
time constants) and violet for fast processes (small time constants). During the AP course, the current can only
be active for u > θv (excitation threshold). In this region, the term (u−θv) describes a positive feedback, i.e.
more channels open for higher u. The term (uu−u) corresponds to the inhibition of ion flux for positive TMVs
that approach the respective equilibrium potential. The current time constant τ f i that determines the current
strength is constant during the AP course. The gating variable v is 1 before depolarization (all channels open)
and quickly approaches 0 after depolarization starts (channels inactivated). This is described by the limit that
v approaches with the time constant τv1. Gates become inactivated very quickly (τ+v ≈ 1) while reactivation is
much slower (τ−v1 = 60).
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Fig. 4.2. Parameters for slow outward current (K). It is described without gating variables using two types of
currents. For u < θw, it amounts to u/τo with two regions of different time constants. For u→ 0, the current
vanishes. In the region u > θw, the current is described as 1/τso, i.e. the time constant τso directly determines
the current strength. τso values become lowest (i.e. the current strongest) for u > uso.

w and s. While the restitution behaviour is mainly controlled by w, the additional
variable s enables the presence of spike-and-dome morphology in the AP [50].
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Fig. 4.3. Parameters for slow inward current (Ca). The current can only be active for u > θw and has a time-
independent time constant τsi. The gating variable w is close to 1 before depolarization in sinus rhythm. It then
decreases slowly during the AP course (limit for w is 0 for u > θw with time constant τ+w = 200). As soon as
u falls below θw again, w increases. If the next beat is stimulated before w is close to 1, the APD of this beat
will be shortened. The gating variable s is 0 before depolarization and increases dome-like in the course of the
AP. Thus, it permits to reproduce spike-and-dome morphology in the AP.

4.2 Simulation of Reference Data

Reference data from the CRN cell model for adaptation comprised the AP shape at
a cycle length (CL) of 1000 ms, an APD restitution curve (APD vs. CL), and a CV
restitution curve (CV vs. CL).
References for both the physiological and remodeling CRN model were simulated in
a one-dimensional tissue patch with monodomain coupling. It consisted of 200×1×1
voxels with 0.1 mm border length. The integration time step for both the cell models
and the monodomain coupling was dt = 10 µs. The conductivity was adjusted such
that the CV amounted to approximately 700 mm/s for the physiological model at a
CL of 1000 ms.
Stimulations at different cycle lengths were performed on one end, and the resulting
APs during propagation were recorded at a distance of 3 mm and 18 mm from the
stimulus site. Cycle lengths were chosen in 14 steps between 1250 and 320 ms for the
physiological case and in 16 steps between 1250 and 110 ms for the remodeling case.
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Steps were chosen with smaller intervals at shorter CLs where APD and CV changes
were larger. The resulting steps for the physiological case were 1250, 1090, 1000,
920, 750, 650, 550, 500, 450, 400, 380, 360, 340, and 320 ms. For the remodeling
case, they amounted to 1250, 1000, 750, 650, 550, 470, 400, 340, 270, 230, 210,
190, 170, 150, 130, and 110 ms, the last two steps were only included in the CV
adaptation.
At every CL, the tissue was initialized with the state after 50 beats of single cell
simulations. Then, APD and CV from the fifth stimulus in tissue were recorded as
reference. CV was calculated from the time difference and the spatial distance be-
tween the two recording sites. APD was calculated as time difference between the
maximum TMV and the point at which TMV reached -73 mV. This is the voltage
that corresponds to the APD90 in the physiological CRN model at a CL of 1000 ms.
It is of advantage to use a fixed threshold instead of 90% of the maximum TMV. Oth-
erwise, parameters causing a change in the maximum TMV could falsely be related
to changes in APD.
Furthermore, it is important to note that for the CRN model, AP morphology is con-
siderably different between single cell and patch simulations. Therefore, also the ref-
erence curve for the AP shape must be generated in a tissue patch. For the MM, in
contrast, AP morphology did not change notably between single cell and patch sim-
ulations. Thus, during the optimization, parameter sets could be tested in single cell
simulations which are significantly faster.

4.3 Choosing the Parameters for Adaptation

For the actual optimization it is desirable not to tune all 28 parameters simultane-
ously, but only a limited set that covers the relevant changes in the specific optimiza-
tion step. As an example, recovery of the state variables u and w should not affect
AP shape at a CL of 1000 ms, because under normal conditions they typically have
recovered to 1 when the next beat is stimulated. Regarding the AP shape, parameters
were manually tuned based on the ventricular parameter set as initial guess. More pa-
rameters were successively included until the result was satisfying. The parameters
to be optimized in the AP shape adaptation were thus chosen as uu, θw, θo, τ+v , τ

−
w1,

τ
−
w2, τ+w , τo1, τo2, τso1, τso2, kso, uso, τs1, τs2, ks, us, τsi, and τw∞.

For APD restitution, the parameter set was limited to the main contributors to re-
covery of the Jsi (Ca) gating variable w. This comprised τ

−
w1, τ

−
w2, u−w , k−w , and w∗∞.

Additionally, small variations of τsi were allowed, which could shift the restitution
curve up or down.
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Optimization of CV restitution was performed by adjusting τ
−
v1 and θ−v (controlling

v recovery) as well as τ f i (upstroke velocity corresponding to a CV shift).
The respective fit borders were chosen empirically such that on one hand, sufficient
parameter variations were possible, and on the other hand, physiological constraints
were considered.

4.4 Adaptation Process

First of all, the V0 parameter was set to the resting membrane potential. Then, adapta-
tion of AP shape and APD restitution was performed using an interior point algorithm
supplied with Matlab. To this end, a single-cell version of the MM with explicit Euler
time integration was implemented. This approach was much more efficient compared
to evaluating MM parameter sets in patch simulations.
In the AP shape adaptation step, the reference was preprocessed by detecting the
AP upstroke and cutting out an appropriate window of the reference AP. Then, the
actual parameter adaptation was performed with respect to the minimal quadratic
error between the reference AP and the AP of the adapted model.
The resulting parameter set was used as initial values for the APD adaptation. APD
parameters were further tuned manually to estimate a good initial guess. For the ac-
tual optimization, single-cell simulations were performed for the same CLs that were
used for the reference. From the resulting APs, the APD−73mV value was determined.
This way, the quadratic error between the reference APDs and the APDs calculated
from the MM model was minimized.
Adaptation of CV restitution started with a manual parameter adjustment. CV adapta-
tion required testing parameter sets in patch simulations in the C++ framework during
the adaptation. Combining these patch simulations with the Matlab optimization rou-
tines seemed disadvantageous due to several reasons. First, due to the limited spatial
and temporal resolution of the patch simulation, for very small parameter changes it
could happen that the numerically calculated CV did not change at all. Furthermore,
for calculation of numerical derivatives with respect to the varied parameters, a large
number of test function calls (in this case time-consuming patch simulations) would
be required. Therefore, an alternative technique based on Particle Swarm Optimiza-
tion, which was implemented in the C++ framework, was used [45]. With 20 test
points (so-called particles) in each of the 10 iterations, it could find the minimum
with altogether 200 patch simulations.
The adaptation cycle was repeated for iterative refinement. Thus, the result of the CV
adaptation was used as initial-guess for another AP shape adaptation. Subsequently,
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Fig. 4.4. Patch simulation with crossfield stimulus (schematic). (a) The tissue is initialized with plane waves.
(b) A crossfield stimulus is applied. It excites the repolarized back of the previous wave. (c) This results in a
spiral wave, or rotor, to arise in the tissue.

adaptation of APD and CV restitution were performed with the result of the previous
step as initial-guess.
To increase the chance of finding the global minimum, the parameters obtained from
the second CV adaptation were randomly varied in the range of ±50% of their final
value. This way, each of the adaptation steps was repeated with fifteen new randomly
created start vectors. It was then ensured that none of these adaptations resulted in a
better fit as it had been achieved before.

4.5 2D Patch Simulations

The adaptation of the MM parameters was performed based on single-cell or 1D tis-
sue simulations. However, when considering simulations of AF, especially 2D wave
dynamics are of interest.
Therefore, simulations in a 2D patch of 1000× 1000× 1 voxels (size 0.1 mm) were
performed to compare the excitation patterns of the CRN and the minimal model.
This corresponded to a size of 10×10cm, which is comparable to the dimensions of
a human atrium.
Structural remodeling was included by reducing intracellular conductivity by 30% as
described in [49] (κ = 0.046S/m). The tissue was initialized with 50 beats of single-
cell simulations at a frequency of 3 Hz. Three initialization beats were then performed
at the left edge of the tissue with a frequency of 3 Hz. A crossfield stimulus at 140 ms
after the last beat created a single spiral wave (schematically shown in Fig. 4.4). It
was then exemplarily compared how the system evolved for another smaller ectopic
focus 190 ms later in the two models.



5

Influence of Tissue Conductivities on the ECG

As described in section 3.4, the electrocardiographic forward problem connects the
electrical sources in the heart with the resulting potential distribution on the body
surface. The electric field in the human torso (and therefore also on the body surface)
is strongly influenced by size and position of internal organs and structures (also re-
ferred to as inhomogeneities). However, the various tissues, fluids, and structures vary
with respect to conductivity and degree of anisotropy [57, 58]. Thus, it is important
to quantify their influence on the surface ECG.
Furthermore, tissue conductivities are difficult to determine and the resulting uncer-
tainty [59] could have a strong impact on the calculated body surface potential maps
(BSPMs). Especially for patient-individual models it will be difficult to specify exact
conductivity values for the different tissues.
To address these problems, the following steps are described in this chapter:

• Tissue conductivity values from previous literature reports were compiled and the
importance of different tissues based on a sensitivity and an uncertainty analysis
was ranked.

• Based on principal component analysis, a method was developed to quantitatively
describe changes in surface potentials caused by conductivity variations.

The corresponding results will be presented in chapter 9.

5.1 Ranking the Influence of Different Tissues

In the following, a literature overview is presented to determine minimum and max-
imum conductivity values for certain tissues. A test geometry was created based on
the VM anatomy to perform forward calculations with different conductivity setups.
This way, a sensitivity and an uncertainty analysis were performed [90].
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5.1.1 Literature Overview of Tissue Conductivities

To evaluate the conductivity uncertainty in the measurement literature, a table with
the conductivity ranges for the most relevant organs was compiled (see results in
Table 9.1 on page 86). 10 primary sources [62, 64, 66, 91, 92, 93, 94, 95, 96, 97]
and five review articles [57, 60, 61, 63, 98] were considered. The conductivities for
each organ were tabulated and sorted for the highest and lowest reported value. If a
range of conductivities instead of a single value was stated, the respective upper or
lower boundary was considered. An exception was made for the intestine: because
reported measurement values were scarce and most anatomical models do not sep-
arate between different parts of the intestine, the lower boundary was chosen based
on measurements from colon samples and the upper boundary based on values from
the small intestine. The forward problem is considered to be quasi-static, therefore
measurements that were reported to be performed above 10 kHz were not included in
the analysis.
One of the main goals was to include conductivity values that are frequently used
in modeling studies. This explicitly included measurements on animal samples that
are often used because human data are rare. Furthermore, no distinction was made
between in-vivo or ex-vivo studies or measurements at different sample temperatures.

5.1.2 Torso Model and Forward Calculation

Excitation in the VM atria was simulated with the Cellular Automaton parameterized
from the CRN model. CV was set to 70 cm/s in the atrial myocardium, 130 cm/s in
the crista terminalis and 177 cm/s in Bachmann’s bundle [74, 99].
To calculate the surface potentials for different tissue conductivity setups, a tetrahe-
dron torso model was created based on the VM data set. In this model, the forward
problem was implemented using the finite element method. The torso model con-
tained the heart and the following tissue types: blood (both intracavitary and in the
main vessels), lungs, fat (both visceral and subcutaneous), anisotropic skeletal mus-
cle (referred to as muscle in all tables), intestine, liver, kidneys, bone, cartilage, and
spleen. Tissues covering less than 0.5% of the body volume are omitted in this list.
An initial mesh comprising 70,000 nodes was created from a 2 mm voxel data set of
the VM torso. Next, the heart region was refined with another 200,000 nodes gener-
ated from the high-resolution cardiac data sets: 190,000 nodes for atria and ventricles
and 10,000 for the major blood vessels in the vicinity of the heart.
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Fig. 5.1. Tetrahedron model of the VM torso. A BSPM is superposed for atrial activation at 41 ms. Electrode
locations at which the body surface potentials were extracted are marked with red dots. Exemplary electrode
numbers are labeled (black circles). Seven electrodes are not visible because they are positioned on the back
of the torso.

All tissues, except the ventricles and the skeletal muscle, were assumed to be
isotropic within the torso. Skeletal muscle fiber orientation was created based on
the highly detailed thin-section photos of the VM data set [100].
In the standard configuration, the tissue conductivities as reported by Gabriel et
al. [60] at 10 Hz were used. For the skeletal muscle, an anisotropy ratio of 7 was
applied as this value is frequently cited in the literature [57]. The intestine was not
separated into small intestine and colon. Instead, an averaged intestine conductivity of
0.278 S/m was used. It was calculated based on medical textbook’s length and diam-
eter reports of the small intestine and colon (small intestine: length 6.7 m; Ø 31.5 mm
/ colon: length 1.5 m; Ø 62.3 mm). The resulting volume fractions (small intestine:
53.3% / colon: 46.7%) were multiplied with the corresponding Gabriel et al. conduc-
tivities at 10 Hz (small intestine: 0.511 S/m; colon: 0.0122 S/m).
Besides this standard conductivity configuration, different test setups (as will be de-
scribed in section 5.1.3) were used to determine the changes in surface potential
caused by the conductivity variations. With each of these setups, the forward calcu-
lation was performed as described in section 3.4. The potentials at the body surface
were then extracted at 64 electrodes (see Fig. 5.1) on the front side and parts of the
back side of the torso. To simplify further statistical analysis, the extracted signals
were rearranged to an m-dimensional spatio-temporal vector Φ . For k electrodes and
t time samples, the vector dimension m calculates to m = k · t.
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5.1.3 Ranking by Sensitivity and Uncertainty Analysis

The importance of a certain tissue or fluid was assessed by two different approaches.
In a sensitivity analysis, the conductivity of one organ at a time was increased and
decreased by 25% of its value used in the standard configuration (see section 5.1.2).
Skeletal muscle anisotropy was varied in the same way. The influence of the specific
tissue conductivity on the BSPM was assessed as the difference between the BSPM
calculated at the upper and lower conductivity value.
As an alternative method, the conductivity of one organ at a time was varied be-
tween the minimal and maximal conductivity that were found in the literature (section
5.1.1). All other conductivities were set to their standard value. This way, the effect
of known uncertainties in distinct conductivities on the BSPM could be evaluated.
This analysis is referred to as uncertainty analysis.
The difference between the signals Φ1 and Φ2 calculated at two conductivity values
σ1 and σ2 was determined quantitatively using the root mean square error (RMSE)

RMSE =

√
1
m
·

m

∑
i=1

[Φ1(i)−Φ2(i)]
2. (5.1)

Additionally, the signals were normalized to a maximum absolute value of 1. The
RMSE of the normalized signals was calculated again and labeled RMSEnorm. The
idea behind this was that, unlike the RMSE for the original signals, the RMSEnorm

for the normalized signals was not influenced by homogeneous signal amplitude scal-
ings. RMSEnorm was rather considered to measure changes in signal morphology or
relative amplitude changes between different regions or time instants.
Finally, the linear correlation coefficient (CC) between Φ1 and Φ2 was calculated as
an alternative measure. It is independent of amplitude scaling as well:

CC =
1

s1 · s2

m

∑
i=1

[
Φ1(i)−Φ1

]
·
[
Φ2(i)−Φ2

]
(5.2)

The arithmetic mean values are denoted Φ1,2, and s1,2 are the standard deviations of
the respective signals Φ1,2.

5.1.4 Possible Torso Model Simplifications

To evaluate possible torso model simplifications, low-ranking organs or structures
were removed from the model. The conductivity of the heart muscle was included in
each simplified setup because the heart always has to be segmented to simulate excita-
tion conduction. Additionally to the heart, the 7, 5 or 3 structures with the highest im-
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portance in the RMSE-sorted (and additionally CC-sorted) sensitivity ranking were
added. The resulting setups were referred to as TOP7RMSE (TOP71−CC), TOP5RMSE

(TOP51−CC) and TOP3RMSE (TOP31−CC). Furthermore, the quality of the results that
can be achieved with a homogeneous torso model that only contains the heart as
inhomogeneity was assessed. To this end, the HOMRMSE setup with no additional
inhomogeneities was created (equal to HOM1−CC).
A mean conductivity value σ replaced the removed organs, it represented the average
conductivity within the trunk. Two different mean values were considered: σ1 was
calculated from the weighted average conductivity over all structures in the torso. Us-
ing the conductivity values from Gabriel et al. at 10 Hz [60] and each organ’s volume
fraction within the Visible Man torso, it amounted to 0.123 S/m. σ2 was derived from
literature values for the trunk. Measurements by Burger et al. [93] (0.241 S/m) and
Rush et al. [95] (0.216 S/m) resulted in an arithmetic mean value of σ2 = 0.229S/m.
The quality of the simplified setups was determined by comparing them to the results
of the fully inhomogeneous model which served as gold standard for this comparison.
The RMSE was used as a quality measure for the TOPRMSE models, and 1-CC for
the TOP71−CC models, respectively.

5.2 BSPM Prediction for Varying Conductivities Based on Principal
Component Analysis

With the conductivity ranking described in the previous section, it was evaluated
which organs had the strongest effects on the BSPM. However, no description was
made of how the signal was actually changed. Therefore, in this section it is described
how certain conductivities actually affected the BSPM and how these effects can
be efficiently predicted from few sample simulations based on principal component
analysis (PCA).
The PCA is used to describe the variance in data by transforming it to a new set
of orthogonal basis vectors. This allows to reduce the dimensionality of the prob-
lem while minimizing the representation error [101]. It has been applied in many
fields of biomedical engineering, e.g. in image processing [102]. Regarding BSPM
or ECG analysis, PCA has been used to remove spatial redundancy [103], extract
respiratory information [104], estimate T-Wave alternans [105], or suppress signal
noise [106, 107]. For the proposed approach, we performed few sample forward cal-
culations over a wide range of conductivities. This data was then used as input for
the PCA. BSPM changes due to conductivity variations were described by a mean
signal and the first PCA eigenvector scaled by a conductivity dependent PCA score.
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With this relationship, missing PCA scores were interpolated and the BSPM for con-
ductivities that were not part of the initial sample could be reconstructed [108]. The
method is presented and evaluated for conductivity variations in single as well as in
multiple tissues. The method is very promising especially for combined conductivity
variations in more than one tissue, because it can predict the resulting BSPMs from
separate forward calculations in which only one conductivity at a time is varied. In
addition to the atria, the analysis was also performed on ventricular data from [108].

5.2.1 Data Source

The same torso model as described in section 5.1.2 was used to simulate body sur-
face potentials. The electrophysiological simulation in the atria was performed on the
same anatomical model as in section 5.1.2. Here, the monodomain reaction-diffusion
equations together with the cell model by Courtemanche et al. [47] were used to cal-
culate excitation propagation. The cell model was initialized with 60 beats at 1 Hz.
Intracellular conductivities were set isotropic such that the CV was 70 cm/s in all
tissue classes. Excitation in the atria was simulated for 150 ms and Vm was recorded
with time steps of 1 ms. This comprised the whole atrial depolarization (P-wave).
The electrophysiological simulation in the ventricles was performed as described
in [90]. The ventricular anatomical data set from the VM was interpolated to an
isotropic voxel size of 0.4 mm. Fiber orientation was implemented in the left and
right ventricle identically using a rule-based approach based on the measurements
from Streeter et al. [109]. Thus, the transmurally rotating helix angle α1 was de-
creased linearly from 55◦ at the endocardium to −75.3◦ at the epicardium. For the
transverse angle α3 describing the amount of fiber imbrication, a fixed value of −3◦

was used.
The ionic model by ten Tusscher et al. [110] described the dynamic electrophysio-
logical properties of the ventricular tissue. This model describes transmural hetero-
geneities of the transient outward current Ito and the slow delayed rectifier current IKs.
To account for these heterogeneous channel distributions, the ventricular walls were
divided into three distinct tissue layers: endocardium 40%, midmyocardium 40%,
and epicardium 20%, which is in the range reported in literature [111, 112, 113].
Changes in tissue resistivity through the ventricular walls have been reported for hu-
man and canine [112, 113]. Yan et al. [112] determined resistivity-scaling factors
from wedge-measurements. These were used to adapt transmural conductivities in
the left and right ventricle. Apart from that, larger values of the potassium conduc-
tance gKs at the apex (2x basal value) have been reported by Szentadrassy et al. [114].
These were integrated into the model by linearly increasing gKs towards the ventric-
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ular apex similar to [115]. Between left and right ventricle, no electrophysiological
distinctions were made. Activation in the ventricles was initiated with a sequence of
endocardial stimulation imitating the excitation conduction system [116].
Before simulation of the ventricular activation, all parameter configurations of the
electrophysiological models were pre-calculated in an uncoupled environment for
60 s with a basic cycle length of 1 s. Intracellular conductivity in the ventricles was
adapted to compensate for the large voxel size of 0.4 mm and the relatively thick walls
of the Visible Man ventricles. The adapted intracellular conductivity was chosen such
that the average transmural conduction time amounted to approximately 30 ms [112].
In order to test if the PCA method could describe the changes in BSPM caused by
tissue conductivity variations, several tissues were considered. These were blood,
skeletal muscle, lungs and fat, because they belonged to the tissues with the strongest
influence on the BSPM. The respective Gabriel-Gabriel (GG) conductivity values
were 0.7 S/m, 0.202 S/m, 0.0389 S/m, and 0.0377 S/m [60]. To probe the prediction-
technique for these tissues, forward calculations at distinctive conductivities were
performed the results analyzed using PCA (see section 5.2.2.2). For each tissue, seven
forward calculations were conducted over a wide range of conductivities to account
for the existing conductivity uncertainties. Thus, the default GG conductivities were
varied by ±25%, ±50% and ±75%. A change of ±75% corresponds to a ratio of 7
between the highest and lowest conductivity value. This is larger than the uncertainty
ranges of 2.3 to 5.5 found in the literature for the tissues that were considered here
(see Table 9.1 on page 86). For better readability, the resulting seven conductivities
are in the following referred to as σi = -75%, -50%, -25%, GG, +25%, +50%, +75%.

5.2.2 PCA Analysis

The changes in body surface potential that arise from the underlying conductivity
variations were quantitatively analyzed using PCA. For all four tissues (blood, mus-
cle, lungs, and fat) the method described in this section was applied separately for
atrial and ventricular data. This resulted in eight PCA decompositions altogether.

5.2.2.1 Arrangement of Spatio-Temporal Data Matrix

PCA is a statistical analysis method that detects variational patterns in data of high
dimension. Given are m variables with n observations each, which are arranged in an
m×n matrix X. For the BSPM data, the signal at a certain electrode at a given time
corresponded to a variable (m = number of electrodes× number of time steps). Each
variable was observed using the seven different conductivity values for the tissue
under investigation (n = 7).
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The forward calculations provided seven BSPMs from the different conductivity val-
ues, recorded at 64 electrodes at time steps t = t0, . . . , tmax. For every conductivity
σi, the signals from all 64 electrodes at all time steps were concatenated into one
spatio-temporal signal vector

xσi = [x1
σi
(t0), . . . ,x1

σi
(tmax), . . . ,x64

σi
(t0), . . . ,x64

σi
(tmax)]

T
.

Next, the signal vectors from the seven BSPMs (σi = -75%, -50%, -25%, GG, +25%,
+50%, +75%) were combined to a signal matrix X that was used as input for the
PCA:

X =

 x1
−75%(t0) · · · x1

GG(t0) · · · x1
+75%(t0)

...
...

...
...

...
x64
−75%(tmax) · · · x64

GG(tmax) · · · x64
+75%(tmax)


Each column of X contained the full signal vector for one conductivity value.

5.2.2.2 PCA Decomposition

The principle of PCA is as follows: From every row in the input matrix X, the mean
value over all observations is calculated and stored in the m-dimensional mean vector
x̂. It is subtracted from all columns of X to obtain the mean-free data matrix Xmf.
From the m×m-dimensional covariance matrix

C = cov(Xmf) (5.3)

the principal components P are determined by solving the eigenvector problem

CP = PΛ, (5.4)

where P and Λ are m×m-dimensional matrices. The columns j = 1, . . . ,m of P con-
tain the m eigenvectors p j, and the diagonal elements of Λ contain the correspond-
ing eigenvalues λ j (with all off-diagonal elements being 0). The magnitude of the
eigenvalue λ j describes the amount of signal variation represented by p j. Therefore,
eigenvectors and eigenvalues are sorted in order of decreasing eigenvalue.
For practical reasons, the PCA is often performed more efficiently using singular
value decomposition [101]. It then delivers the first n−1 eigenvectors. This approach
was also applied in this work based on the implementation of a modified Golub-
Reinsch algorithm [117, 118] in the GNU Scientific Library [119].
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5.2.2.3 Signal Reconstruction

The eigenvectors obtained from the PCA span a new orthonormal coordinate sys-
tem with the origin x̂ and the base {p j | j = 1, . . . ,m}. The input signals xσi can be
expressed in the new coordinate system by superposing the new base vectors

xσi = x̂+
m

∑
j=1

s j,ip j. (5.5)

The PCA scores s j,i are the coordinates in the new system and correspond to the
entries of the score matrix S = PT Xmf. It is calculated by projecting the initial mean-
free data onto the new coordinate system.
In many cases, however, the main amount of data variation is already described by
the first few eigenvectors. For the analysis shown here, it was even sufficient to only
consider the first eigenvector, because λ1 � λ2 as will be shown in section 9.2.1.
Therefore, the signal can be reconstructed using

xσi ≈ x̂+ s1,i ·p1. (5.6)

The mean signal x̂ is usually different for the respective tissues. Therefore, the origin
of the coordinate system was shifted to the default signal obtained from the GG con-
ductivities, because this signal was included in the PCA input matrix for all tissues.
This yielded the shifted scores q1,i = s1,i− s1,GG and the reconstruction formula

xσi ≈ xGG +q1,i ·p1. (5.7)

This last step is not part of a standard PCA, but (5.6) and (5.7) are mathematically
equivalent. The advantage of this shift was that it allowed to combine the results of
PCAs from different tissues in section 5.2.3.

5.2.3 Signal Estimation for Arbitrary Conductivities

Equation (5.7) described how to reconstruct the simulated signal for each of the seven
conductivities from the standard GG signal for a given setup, e.g. for atrial signals
and blood conductivity variations. This is done by adding a certain “portion” of the
first principal component to the GG signal. The “size” of the portion for conductivity
σi was solely determined by the shifted score q1,i.
In this section, the signal is estimated for arbitrary conductivity values between the
minimal and maximal conductivity used for the simulations. This was performed first
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Fig. 5.2. Example for shifted scores from PCA of blood conductivity variations for the ventricular sig-
nals [108]. The PCA coordinate system was shifted such that the GG conductivity was located at the origin
(shifted score q is 0). With the polynomial interpolation function, the interpolated score for any conductiv-
ity between the minimal and maximal conductivity could be calculated (e.g. for σ = 0.423S/m, the shifted
score was q(σ) = −0.008). The shifted score together with the first PCA eigenvector allowed to estimate the
corresponding signal with the help of (5.8).

for one tissue conductivity that was varied and then also for combined conductivity
variations in several tissues.

Signal estimation for variations in one tissue

Fig. 5.2 shows an example of shifted scores for the seven blood conductivities during
the QRS-complex. Because the scores were monotonically dependent on the con-
ductivities, a polynomial interpolation function q(σ) was calculated in the range
σ1 = −75% to σ7 = +75%. It established a bijective relation between conductivity
σ and shifted score q. The signal x for an arbitrary conductivity σ was then predicted
by the relation

x(σ)≈ xGG +q(σ) ·p1. (5.8)

Signal Estimation for Variations in Several Tissues

The PCAs for the four different tissues blood, muscle, lungs, and fat resulted in the
interpolated score curves q(σ) and first eigenvectors p1 for each tissue. These were
denoted with the respective indices B, M, L, and F, e.g. qB(σB) and p1,B for blood.
The prediction of the BSPM signal for combined conductivity variations was then
performed as follows:
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x(σB,σM,σL,σF) ≈ xGG + qB(σB) ·p1,B

+ qM(σM) ·p1,M

+ qL(σL) ·p1,L

+ qF(σF) ·p1,F

(5.9)

This implied the hypothesis that the effect of combined conductivity variations of
several tissues could be described as superposition of signal changes caused by sep-
arately varying the single conductivities.

5.2.4 Validation

As a first validation step for this methodology, the ratio between the first and sec-
ond eigenvalue of each PCA decomposition was compared. This ensured that it was
tolerable to reconstruct the signal from the first eigenvector only.
Furthermore, the first eigenvectors from the PCAs for the four tissues were not neces-
sarily orthogonal, therefore the pairwise angles between them were calculated. They
are a measure of how independent changes caused by different tissues were. Pairwise
angles were calculated separately for atria and ventricles.
Subsequently, BSPM signals for different conductivities of one tissue were recon-
structed using the exact shifted PCA scores, with only the first eigenvector according
to (5.7). Then, the root mean squared error (RMSE) was calculated between the re-
constructed and the original forward-calculated signal which provided the reference.
This RMSE could assess possible errors that were due to the omission of the second
and successive eigenvectors. The process is summarized in Fig. 5.3(a).
The simulated signals mainly comprised the relevant parts in the cardiac cycle
(150 ms of atrial depolarization and 400 ms of ventricular de- and repolarization).
Therefore, the RMSE reflected the relevant errors that could be introduced.
The error that originated from the PCA score interpolation was assessed by a leave-
one-out validation. In this case, one input signal at a specific conductivity was delib-
erately omitted from the PCA (see Fig. 5.3(b)). Then, the interpolation technique was
used to derive the associated interpolated score. The BSPM signal was reconstructed
from this score and compared to the original signal by calculating the RMSE. This
addressed the combined error introduced by both the omission of the second and
successive eigenvectors and the score interpolation.
Finally, it was tested if the PCA method could reconstruct simultaneous conductivity
variations in all four tissues. To this end, the signals were estimated for the cases in
which all four conductivities were either increased or decreased by 25%. All possible
24=16 combinations were reconstructed using (5.9). Additional 16 forward calcu-
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Fig. 5.3. PCA reconstruction and validation for single tissue conductivities. (a) Reconstruction from exact
scores. The simulated BSPMs with the conductivity values from -75% to +75% were arranged in the PCA
input data matrix. After the PCA analysis, the first PCA eigenvector and the shifted PCA scores were used to
reconstruct the different input signals from the GG signal. Then, the reconstructed signals were compared to
the respective input signals with the RMSE or CC. (b) Reconstruction from interpolated scores. In a leave-one-
out validation, one conductivity at a time was omitted in the data matrix (here -50%). After the PCA analysis,
the score function was interpolated to determine the score for the omitted conductivity. The signal that was
reconstructed from the interpolated score was then compared to the input signal to determine the interpolation
error.

lations with the combined conductivity variations were performed as a reference.
Finally, the RMSE between the reconstructed signal and the simulated reference was
calculated. It was used to evaluate the assumption that combined conductivity varia-
tions of several tissues could be predicted by superposing the changes introduced by
a single tissue separately. This procedure was repeated for larger variations of±50%,
respectively.

5.2.5 Confidence Intervals

It can be assumed that for a given model, e.g. for a specific patient, there exist best-
guess conductivity values that however contain some measurement uncertainty. The
question in this case is: How large are the possible deviations in the BSPM or ECG
signal if the true σ value for a certain tissue lies somewhere between the uncertainty
boundaries? The upper and lower signal boundary can then be regarded as confidence
interval for the signal.
The ECG signal could be predicted over the full range of simulated conductivity
values as described in section 5.2.3. If upper and lower boundaries for each conduc-
tivity were given, the minimum and maximum possible signal value between these
boundaries at each time step could be determined. In this work, the best-guess values
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were the GG conductivity values, for which a relative uncertainty δσrel was assumed.
Here, the confidence interval for simultaneous uncertainties δσrel = ±10%, ±30%,
and ±50% in all four tissues was calculated.
The uncertainties in clinical bipolar ECG leads are of special interest, therefore the
minimum and maximum bipolar signals of the Einthoven II lead were evaluated ex-
emplarily.





6

Quantitative Analysis of Electrophysiological Data

This chapter presents methods that allow for quantitatively analyzing data from in-
tracardiac electrophysiological (EP) studies. Such data are frequently acquired during
routine interventions. Because they contain valuable information for model person-
alization and validation, quantitative analysis techniques were developed.
Catheter electrogram recordings were analyzed for local activation times. A cosine fit
method was developed to calculate the incidence direction and conduction velocity
for the activation times from a single wavefront passing a circular mapping catheter
as reported in [120]. Additionally, a more general approach based on activation time
interpolation using radial basis functions (RBFs) was implemented. It was proposed
in [84] together with tests on simulated data. Furthermore, electrograms recorded in
the coronary sinus were analyzed in terms of the general propagation direction.
These analysis methods were then applied to clinical electrogram recordings to ana-
lyze incidence direction and conduction velocity. Finally, changes in CV for decreas-
ing pacing cycle length were analyzed to estimate patient-individual CV restitution
curves. The results will be presented in chapter 10.

6.1 Cosine Fit

Circular mapping catheters are often used during EP studies in patients suffering
from atrial arrhythmias. In this section, a data model is presented that calculates the
incidence direction and CV from the activation pattern of a single wavefront passing
a circular catheter. The presence of single wavefronts is a valid assumption for both
sinus rhythm and several arrhythmic conditions, such as atrial flutter or ectopic atrial
tachycardias.
First, the activation time in each channel is determined, then, a cosine data model is
numerically fitted to the detected activation times. To validate the method, simula-
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Fig. 6.1. Analysis of intracardiac electrograms. (a) Example activation time detection with NLEO analysis.
The Gauss-filtered NLEO signal was rescaled, but because the barycenter is determined, the absolute value of
the signal does not influence detection of the activation time. (b) Schematic derivation of cosine data model
for activation pattern. An almost plane excitation front hits the catheter from above. Because the electrodes are
arranged on a circle, their activation time delays with respect to the catheter center are described by a cosine
function.

tions in a 2D tissue patch are performed and artificial noise is added to test the model
accuracy.

6.1.1 Activation Time Detection

The activation time in each electrogram (EGM) was determined with the help of a
non-linear energy operator (NLEO). It was proposed by Teager and Kaiser [121] and
has been demonstrated to be an effective analysis method for intracardiac electro-
grams [122, 40].
From a signal x j, the operator calculates the non-linear energy E j at each sample j as

E j = x2
j − x j+1x j−1. (6.1)

The resulting energy signal E j was filtered using a Gaussian low pass filter with a
cut-off frequency of 24 Hz at -3 dB. The barycentric median of the filtered energy
signal was then determined as the activation time in the EGM. An example is shown
in figure 6.1(a).
This procedure was repeated for each EGM in the catheter recording, resulting in
the activation times t(n). For bipolar EGMs, n = 1.5,2.5, ... denoted the virtual, half-
integer “electrode numbers” for the EGMs 1-2, 2-3, ..., respectively.
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6.1.2 Data Model

If a plane excitation wave front travels across a circular catheter, this results in a
sinusoidal activation pattern (Figures 6.1(b) and 6.2). Therefore, the activation pattern
t(n) in the n catheter electrodes is described as a cosine function

t(n) = tc−A · cos [ϕ(n)−ϕ0] . (6.2)

Here, tc is the center activation time (base line of the cosine function), A is the time
amplitude of the cosine function, ϕ(n) is the angle at which electrode n is placed, and
the phase shift ϕ0 corresponds to the angle at which the earliest activation occurs. ϕ

was defined relative to electrode 1, i.e. ϕ(1) = 0◦. If a parameter γ is introduced
that describes the angle offset between two neighbour electrodes, then ϕ could be
written as ϕ(n) = γ · (n− 1) (bipolar electrograms are virtually placed at the point
between the electrodes, e.g., EGM 1-2 is recorded between electrodes 1 and 2 at
ϕ(1.5) = γ/2). Thus, (6.2) becomes

t(n) = tc−A · cos [γ · (n−1)−ϕ0] . (6.3)

The parameters tc, A, γ and ϕ0 could then be determined by fitting (6.3) to any de-
tected set of activation times. For this, a sequential quadratic programming algorithm
implemented in Matlab was used. The initial values and boundaries for tc, A, and
ϕ0 were estimated from the activation sequence. A best-guess for γ was either known
from the catheter parameters for simulated data or derived from the mapped positions
for the clinical data (see section 6.5.2.2).
The incidence angle ϕ0 gave the incidence direction of the wave and therefore repre-
sented the wave direction. The local CV at the measurement position was calculated
from the catheter radius r and the cosine amplitude A as CV = r/A. Finally, the fit
residual was calculated as the sum of squared deviations between fitted and measured
time at each data point.

6.1.3 Patch Validation

The cosine fit algorithm was first tested on synthetic intracardiac EGMs. These were
derived from a patch simulation (301× 301× 5 voxels with 0.33 mm voxel size).
Stimulation sites were located around the patch center at angles in 10◦ intervals (see
Fig. 6.2(a) for example) and at a distance of 50 mm. This resulted in 36 setups with 36
different stimulation points. For these setups, intracardiac EGMs in a virtual catheter
at the patch center were simulated in the following way.
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Fig. 6.2. Simulation and analysis of intracardiac EGMs in a tissue patch [120]. (a) Schematic patch setup. The
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clockwise relative to electrode 1 that was aligned with the y-axis. 36 stimuli were initiated at 10◦ intervals.
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cosine curve is marked with a dotted line. (c) Detailed plot of activation times as a function of electrode
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Transmembrane voltages Vm for the 36 setups were simulated using the cellular
automaton. The CV was set to 70 cm/s (within the range reported for atrial tissue
in [15]). Due to the rule-based architecture of the automaton, the CV is independent
of e.g. wavefront or tissue curvature and thus provides a well-known reference.
The extracellular potentials Φe that the catheter measures were derived using a for-
ward calculation on a tetrahedron representation of the patch, embedded in blood.
Before the actual forward calculation, a circular mapping catheter had been inserted
into the model at the patch center. It comprised ten equally-spaced electrodes and
had a radius of 10 mm. The electrodes were represented by metallic spheres of 1 mm
radius. The signal for each electrode was then recorded at the sphere center for 60 ms
with a sampling frequency of 1000 Hz while the wavefront passed the catheter. The
synthetic bipolar EGMs were calculated from the signal difference of two neighbour
electrodes. The EGMs were artificially prolonged with 50 ms of zero signal at both
ends. This ensured a correct signal analysis.
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Stability Analysis

To prove the stability of this algorithm against misdetections in the activation times,
random errors were applied to the detected times from the patch simulation. This
covered all possible error sources that could lead to errors in the detected activation
times. If, in contrast, signal noise was added to the electrograms, this would neglect
other potential influences such as local signal distortions, small catheter deforma-
tions, and even other unexpected factors. Therefore, the noise is added directly to the
activation times, where all such error sources would manifest. Gaussian noise with
different standard deviations σ was used. This was repeated 1000 times for each an-
gle and each σ value. The σ values were chosen based on the approximate cosine
amplitude A = 14ms for the catheter radius of 10 mm and the CV of 70 cm/s. Then,
σ values of 5%, 10%, 15%, and 20% of A were used to calculate the noise offsets.
Thus, the 3-σ range covering 99% of the deviations amounted to 15%, 30%, 45%,
and 60% of A, respectively.
For the simulated catheter in the patch, γ = 36◦ is exactly known. For clinical mea-
surements, this is generally not the case because many catheters are variable in diam-
eter while the electrode spacing is constant. Therefore, the sensitivity of the algorithm
to the allowed variation in γ was evaluated. From clinical data, the overall angle cov-
ered by ten catheter electrodes can be estimated from the recorded positions. It was
assumed that this error normally does not exceed 20◦ in total, which corresponds to
2◦ per electrode. Therefore, each of the above-described analyses was repeated with
δγ values in that range, which were 1◦, 2◦, and 3◦.
For each of the 36 stimulation setups, this resulted in 12 parameter combinations
(4 σ values × 3 δγ values) that were tested 1000 times. This way, a total num-
ber of 432,000 parameter estimations were performed. For each of the 12 parameter
combinations, 36,000 results (36 stimuli × 1,000 tests) were analyzed regarding the
mean angle error, the 95-quantile of the angle error and the mean fit residual. The
95-quantile corresponds to the error that was not exceeded by 95% of the calculated
angles. The mean fit residual was further calculated for the four σ values from all
parameter estimations including different δγ values.
Furthermore, the algorithm was tested on data where two wavefronts collided under
the catheter. To this end, two synchronous stimuli were set at 0◦ and 210◦. For this
setup, the cosine function no longer is a valid data model. The fit residual was com-
pared to the average fit residuals of the single wavefronts with noise added in order
to determine how the parameter estimation responded in such cases.
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6.2 RBF Interpolation

In the cosine fit analysis presented in section 6.1, a spatio-temporal relationship was
established between the measurement position and the local activation time (LAT) at
that point. With a data model especially designed for a plane wave front passing a
circular mapping catheter, the incidence direction and conduction velocity could be
estimated.
However, there may be different situations, such as measurements with other catheter
types or activation patterns (e.g. colliding wavefronts), that cannot be resolved with
the cosine fit method. Therefore, a more general approach as proposed by Masè et
al. [84] is the following: First, from the measured LATs, the LAT field at every point
in the catheter area is interpolated. Then, the interpolated LAT field is quantitatively
analyzed.
The interpolation is performed using radial basis functions (RBFs), a so-called
“mesh-free interpolation” [123]. This means it can be used to reconstruct an un-
known function (here, the LAT field) from scattered and sparse data as is the case
with the catheter measurements. RBF interpolation is further used in, for example,
geophysics, computer graphics, or economics.

6.2.1 Mathematical Background

Some mathematical aspects have to be considered when using the RBF interpolation.
Section 6.2.1.1 introduces different types of radial basis functions. Section 6.2.1.2
describes how RBFs can be used to interpolate activation time fields. Finally, sec-
tion 6.2.1.3 covers the analysis of the interpolated fields in terms of conduction di-
rection and velocity.

Table 6.1. Common radial basis functions and their properties [124].

Name φ Type

Gaussian e−
1
2 (

r
σ
)2

Positive definite
Linear |r| Conditionally positive definite
Cubic |r3| Conditionally positive definite
Thin-plate splines r2log(r+1) Conditionally positive definite
Multiquadrics

√
1+ r

σ
Conditionally positive definite
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6.2.1.1 Definition and Function Types

A radial basis function φ(r) depends only on one variable, which is the distance r
from its origin

φ(r) = φ(x) = φ(‖x‖), (6.4)

or from a defined “center” point c

φ(r) = φ(x,c) = φ(‖x− c‖). (6.5)

The norm used in this work is the Euclidean Distance, although other distance func-
tions are possible. Several RBF types exist, an overview is given in Table 6.1.

6.2.1.2 Interpolation of the Activation Time Field

The unknown activation time field T (x) is reconstructed by a superposition of trans-
lates φ(‖x−xk‖) of a specified RBF

T (x) =
N

∑
k=1

λkφ(‖x−xk‖), N ∈ N (6.6)

which is the so-called trial function. The N translations xk are the RBF centers which
represent the N points at which data were measured. With the measured function
values f(xk) = [ f (x1), f (x2), . . . , f (xN)]

T at these points, the coefficients λk are cal-
culated such that the trial function exactly reproduces the measured values at the
function centers. This results in solving the linear system Φ ·λ = f as follows:


φ(‖x1−x1‖) φ(‖x1−x2‖) · · · φ(‖x1−xN‖)
φ(‖x2−x1‖) φ(‖x2−x2‖) · · · φ(‖x2−xN‖)

...
... . . . ...

φ(‖xN−x1‖) φ(‖xN−x2‖) · · · φ(‖xN−xN‖)




λ1

λ2
...

λN

=


f (x1)

f (x2)
...

f (xN)

 (6.7)

Φ j,k is given as
Φ j,k = φ(‖x j−xk‖) 1≤ j,k ≤ N. (6.8)

To ensure solvability, the system matrix Φ must be non-singular. One possible way
for achieving this is to use positive definite RBFs according to the following defini-
tion [125]:
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Definition 6.1. A radial basis function φ on [0,∞) is positive definite on R, if for all
choices of sets X := {x1, . . . ,xm} of finitely many points x1, . . . ,xm and arbitrary m,
the symmetric m×m matrices ΦX are positive definite.

However, as can be seen in table 6.1, many RBF types are not positive definite. For
interpolations with such RBFs, additional polynomials are added [124]. In this work,
linear polynomials (i.e. maximal order 1) were used. In the two-dimensional case of
the LATs with x = (x,y), this resulted in M = 3 polynomials: p1(x) = 1, p2(x) = x
and p3(x) = y.
Thus, the new general trial function can be written as

T (x) =
N

∑
k=1

λkφ(‖x−xk‖)+
M

∑
l=1

dl pl(x), x ∈ R2. (6.9)

p1, . . . , pM span the basis of the M-dimensional linear space of polynomials. Requir-
ing that T (xk) = f (xk) be valid also for the new trial function leads to a new linear
equation system with M additional degrees of freedom. To solve the new system, M
additional conditions are added

N

∑
k=1

λk pl(xk) = 0, l = 1, . . . ,M, (6.10)

which lead to a unique solution [124].
Thus, the linear system to be solved now can be written as(

Φ P
PT O

)(
λ

d

)
=

(
f
0

)
, (6.11)

where Pjl = pl(x j) with j = 1, . . . ,N, l = 1, . . . ,M form the matrix P of polynomial
function values at the RBF centers, d = (d1, . . . ,dM)T is the vector of polynomial
coefficients, 0 is a zero vector of length M, and O is an M×M zero matrix.

6.2.1.3 Analysis of the Activation Time Field

The interpolated LAT field as a function of position T (x,y) can then be analyti-
cally analyzed in terms of propagation direction and conduction velocity as described
in [82]. The gradient vector ∇T = [∂T

∂x ,
∂T
∂y ] = [∂xT,∂yT ] is always normal to the lo-

cal isochrone. Thus, it defines the direction of propagation. It can also be regarded
as “slowness-vector”, because high values correspond to large changes in time over
small distances in space, i.e. a slow conduction.
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The actual CV is derived from the LAT field as follows. Because the gradient is
normal to the isochrone, the components of a differential vector (dx,dy)T always
satisfy the equation

dy
dx

=
∂yT
∂xT

or dy =
∂yT
∂xT

dx. (6.12)

Between two points on the surface T (x,y) separated by (dx,dy)T , the following iden-
tity holds:

dT = ∂xT dx+∂yT dy = (∂xT +
(∂yT )2

∂xT
)dx. (6.13)

From this, the velocity vx along the x direction can be determined as

vx =
dx
dT

=
∂xT

(∂xT )2 +(∂yT )2 . (6.14)

The y-component vy is calculated analogously, so the velocity vector field is deter-
mined as

v = [vx,vy] = [
dx
dT

,
dy
dT

] = [
∂xT

(∂xT )2 +(∂yT )2 ,
∂yT

(∂xT )2 +(∂yT )2 ]. (6.15)

6.2.2 Analysis of EP Measurements

A single wavefront detected in a circular mapping catheter could be analyzed as
follows. The LATs in all channels were determined with the NLEO as for the cosine
fit. The electrode positions were part of the NavX data and thus known. The spatial
positions x for the RBF interpolation were chosen as the points between the two
electrodes that delivered one bipolar EGM channel.
The RBF coefficients were determined by solving the linear system (6.11). Next, the
LAT field was reconstructed according to (6.9) on a numerical rectangular grid with
a resolution of 0.1 mm. The grid size was chosen such that it covered the catheter
electrodes. The local velocity vector was then calculated numerically at each grid
point according to (6.15).
From the velocity vectors at all grid points, the mean propagation direction and con-
duction velocity were calculated. The standard deviations of all angles or CVs within
one LAT field are a measure of the field inhomogeneity and thus of the interpolation
quality. It is in this work referred to as angle spread or CV spread, respectively.
To account for regions of local stationary LAT values (i.e. local maxima) that could
cause very low numerical gradients and therefore very high CV values, grid points
with unphysiologically high CVs above 200 cm/s were excluded from the analysis.
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6.2.3 Validation

The RBF interpolation analysis method was validated and the quality of the results
was compared to the cosine fit algorithm. To this end, RBF interpolation was applied
to the same simulated data with artificial noise that was used for validation of the
cosine fit (see section 6.1.3 for details). It must be noted that exactly the same activa-
tion times (including the same noise representation) were fed into the RBF analysis
for comparison. The interpolation centers were placed between two neighbour elec-
trodes.

6.2.4 Detection of Two Colliding Wavefronts

It is possible that two wave fronts collide under the circular mapping catheter during
the measurement. Then, it would be desirable to detect such a collision. Wavefront
collision is characterized by two regions of velocity vectors that (at least partially)
point into opposite directions. At the border between these regions, this results in a
high negative value of the divergence, corresponding to a sink. Therefore, wavefront
collision was determined by analyzing the divergence of the velocity vector field

divv = ∇ ·v =
∂vx

∂x
+

∂vy

∂y
. (6.16)

Like the CV, the divergence was numerically calculated using finite differences on
the 0.1 mm grid.
To find a line of high divergence, the Radon transformation was used. In contrast to
other line finding algorithms (such as a linear least-squares fit or the Hough trans-
formation), the Radon transformation can easily be applied to non-binarized data
and is not sensitive to outliers. Furthermore, in the interpolated LAT field, there of-
ten was no real line but just spots of high divergence along that line. The Radon
transformation was therefore easy to implement and has been used for line detection
before [126, 127].
Once a split line was found, two analysis approaches were tested: First, the existing
LAT field could be analyzed on both sides of the split line separately. Second, two
new interpolations could be carried out including only the centers from the respective
sides. The advantage of the new interpolation is that in the original interpolation,
smoothing effects appear at the collision line with local conduction vectors along the
line. With separate interpolation for the respective sides, these effects disappear. On
the other hand, the reduced number of centers for the split interpolation makes the
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Fig. 6.3. Analysis techniques for CS signals. (a) Wavefronts that activate the CS catheter from distal end,
center, and proximal end. Wave fronts that first activate the distal end (CS 1-2) and then uniformly travel along
the catheter result in a CC close to +1 and a positive linear slope. Wave fronts that first activate the proximal
end (CS 7-8) and then travel along the catheter in the opposite direction lead to a CC close to -1 and a negative
linear slope. If fronts first activate the catheter center and then travel towards both catheter ends, the CC value
will be closer to 0 (e.g. between -0.5 and +0.5) and the linear slope will be very steep (with either positive
or negative values). (b) Corresponding activation patterns with linear fits (schematic). Note that the data were
arranged as they can be observed when EGM recordings are displayed, i.e. with a horizontal time axis. In the
CS analysis, however, the pair number actually corresponded to the x-axis and the time to the y-axis, so that
activations from the left side had a positive CC or slope m.

method more sensitive to detection errors. It is only suitable if a sufficient number of
centers is present in the initial interpolation.

6.3 Analysis of Coronary Sinus Signals

During the EP study, a stationary mapping catheter is placed in the coronary sinus
(CS). The catheter used in the clinical measurements analyzed in this work comprised
four electrode pairs with an electrode spacing of 2 mm and a distance between the
pairs of 5 mm. Because the location does not change significantly during the study,
the electrograms from the CS can be used to compare different sections of the studies
with respect to atrial activation rate, propagation direction etc.
In this section, two quantitative analysis methods are introduced that determine if the
activation along the CS occurs from the proximal to the distal end or vice versa. To
this end, the activation times t(np) in the electrode pairs np = 1, . . . ,4(,5) (from distal
to proximal) are determined with the NLEO operator described in section 6.1.1. They
are further analyzed using a linear correlation coefficient and a linear least-squares
fit.

6.3.1 Linear Correlation Coefficient

The linear correlation coefficient (CC) according to Pearson between two variables
X and Y with standard deviations σX and σY is defined as
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rX ,Y =
cov(X ,Y )

σXσY
. (6.17)

Its value is between +1 for absolutely correlated data and -1 for absolutely anti-
correlated data (A value of 0 means that there is no linear correlation between X
and Y , while other, non-linear, correlations still may exist).
For the CS data, the correlation coefficient was calculated between pair number np

and the corresponding activation time t(np). A value close to +1 represented an al-
most linear increase of activation time with pair number and corresponded to a wave
front that first activated the distal end. A value close to -1 meant an activation starting
at the proximal end, such as typical during NSR. Examples are shown in Figure 6.3.

6.3.2 Linear Fit

The activation pattern was further fitted to a linear equation

t(np) = m ·np + t0 (6.18)

with slope m and center activation time t0 by linear regression. The slope m also
was an indicator for the direction of propagation. As for the CC, negative values
resulted from right-to-left conduction whereas positive value corresponded to left-to-
right conduction. However, the CV cannot be estimated from m, because for wave
fronts that do not run along the catheter but rather hit it under a certain angle, as
normally is the case, the CV will be overestimated.

6.4 Electrogram Simulation and Analysis in a Realistic Atrial Data
Set

To bridge the gap between patch simulations and clinical measurements, intracar-
diac EGMs were also simulated in the realistic Visible Man atria [128] as described
in [129]. The same computational setup as for the patch validation (section 6.1.3) was
used.
A circular mapping catheter was placed in the simulation model on the left atrial
roof at approximately equal distances to all four PV ostia. To this end, a projection
method [130] was used as follows: The number of electrodes (10), the catheter ra-
dius (7.5 mm) and a center point at some distance from the heart wall were specified.
There, inside the atrium, a temporary set of electrodes was created. Using a second
point, the direction towards the tissue was specified. Then, each electrode was pro-
jected onto the boundary between blood and tissue to ensure wall contact for each
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electrode. Details about the projection method can be found in [130]. Further, a de-
capolar deflectable catheter was manually placed in the CS. The five electrode pairs
had an electrode spacing of 1.5 mm and 9 mm distance between the pairs.
Simulations were performed with the cellular automaton that was initialized with
two sinus beats at a cycle length of 800 ms. Data for NSR were taken from the third
beat. Furthermore, stimuli in all four PVs were simulated. They were initiated 100 ms
before the following sinus beat to ensure that no tissue was refractory and that wave-
fronts from the PV stimuli did not collide with NSR on the LA roof.
Intracardiac EGMs were simulated in the LA roof circular catheter with the different
PV stimuli sites and during NSR. They were then analyzed with the cosine fit method
described in section 6.1.2. The EGMs had a sampling frequency of 1000 Hz and were
150 ms long. From the incidence angle, the origin of the stimulus was estimated.
Additionally, the CV was calculated and compared to the simulated value of 70 cm/s.
The data from the CS catheter was analyzed as described in section 6.3 with respect
to linear slope and CC.

6.5 Analysis of Patient Data

The analysis methods presented in this chapter were applied to clinical data from
Städtisches Klinikum Karlsruhe. Data were acquired during EP studies in patients
suffering from atrial arrhythmias. For AF patients, a CT scan with contrast enhance-
ment in the LA and the PVs was routinely acquired the day before the examination
and was available in DICOM format. Normally, the cosine-fit analysis was applied,
however, for a case with suspected wavefront collision and measurement with an
AFocusII spiral catheter, RBF interpolation was used.

6.5.1 Details of Electrophysiological Data

The seven patients under study suffered from paroxysmal AF (six patients) or focal
right atrial (RA) tachycardia (one patient) and underwent an EP study for catheter
ablation. An overview of available patient data is given in Table 6.2 on page 69. The
data segments analyzed for each patient are listed together with the measurement site
and a description of the analyzed data.
The following catheters were introduced via a right femoral vein access: a mapping
catheter (10-electrode circular mapping catheter of type Inquiry Optima, St. Jude
Medical, or Lasso 2515, Biosense Webster; in patient 7, a St. Jude AFocus II spiral
catheter), an ablation catheter (Cool Path Duo, St. Jude Medical), and an octopolar
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catheter (EP-XT, Bard Electrophysiology, Lowell, USA) for stationary placement in
the CS. The proximal electrode pair of the CS catheter was normally located close to
the CS orifice and the distal pair at the inferolateral wall. Catheter electrode number-
ing started in the distal electrode. Pacing pulses could be applied from the CS catheter
or the tip of the ablation catheter using a Biotronik UHS 3000 stimulator (5 V, 1 ms
pulse width). Pacing was performed such that 1:1 capture was present. Patients were
off antiarrhythmic agents for more than five half time periods at the time of the EP
study.
All data were retrospectively extracted from an EnSite NavX electroanatomical map-
ping system (St. Jude Medical) for offline analysis. A whole EP study could manually
be subdivided into so-called segments during the examination. After data export, each
data segment consisted of two parts, one containing recorded electrograms and an-
other one containing the static anatomical geometry of the atria as well as the catheter
positions at each time during the measurement.
In detail, the electrogram part typically contained the following recordings with a
sampling frequency of 1200 Hz:

• Bipolar electrograms from mapping catheter (Optima 7-7 / Lasso 2515 with 10
electrodes or AFocus II with 20 electrodes)

• Bipolar electrograms from CS catheter with 8 electrodes (4 pairs with 2 electrodes
each)

• Bipolar electrograms from mapping/ablation catheter
• ECG recording

The geometry part consisted of

• The 3D positions of all catheter electrodes at every 13th time step in the electro-
gram data

• The static surface geometry of the patient’s atrium that was mapped with the cir-
cular mapping catheter at the beginning of the examination (containing RA or LA
depending on arrhythmia type; LA geometries included the PV ostia and the LAA
with separate labels).

For most EP studies in the LA, the static geometry recorded with the NavX system
was semi-automatically registered with the atrial CT scan by the physician directly
after it had been recorded. To this end, defined landmark points were selected in both
geometries and further processed by the EnSite system (so-called Fusion). As a result
of this process, the coordinate system of an EnSite geometry was adjusted to match
the CT coordinate system.
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6.5.2 Data Analysis

The clinical data were analyzed with the cosine fit and (for measurements without
CS pacing) the CS analysis methods. Furthermore, some test applications of the RBF
interpolation were performed. Compared to the analysis of simulated data, additional
solutions had to be found for the clinical data regarding:

• Detection of single wavefronts in the continuous EGM recordings
• Analysis of the electrode positions to determine initial values for γ (cosine-fit) or

to set up the coordinate system for RBF interpolation
• Suppression of far-field signals originating from pacing electrodes during stimu-

lation

These techniques are described in the following sections.

6.5.2.1 Detecting Wavefronts in Continuous EGM Recordings

Wavefront detection was performed in the complete set of electrograms from one
catheter using a moving window (width typically 125-200 ms). At the current window
position, all channels exceeding a voltage amplitude threshold were marked active
(threshold typically 0.3-2 mV). If the number of active channels was large enough
(3-5 active channels for circular catheters and 2-3 for CS catheter), the activation
times in all channels were detected. Then, the position of the moving window was
iteratively re-adjusted to the center of detected activation times to avoid cutting of
electrograms at the window edge. At this position, the final activation times in all
channels were detected. Finally, it was ensured that the time difference between the
detected activation and the previous one was large enough (typically 200 to 500 ms).
If the difference was smaller, the activation set with the lower added signal energy
from all channels was discarded.

6.5.2.2 Geometrical Preprocessing

For every detected wavefront, the corresponding electrode positions of the circular
mapping catheter were analyzed.
First, the positions were projected onto a 2D surface. To this end, a PCA was per-
formed on the 3D position data to separate the in-plane components (first and second
eigenvector) from the normal direction (third eigenvector). An elliptic model was
then fitted to the in-plane positions to determine the catheter center and the semi-
major axis. This was necessary, because the mean position of all electrodes did not
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necessarily represent the catheter center, especially when there was an overlap be-
tween the first and last electrodes. In this case, the first PCA eigenvector did not
correspond to the semi-major axis either.
An estimate for the γ parameter in the cosine fit (angle difference between neigh-
bouring electrodes) was finally determined by performing a cosine-fit of the x- and
y-positions depending on the electrode number. To improve stability and reduce the
number of parameters, a combined fit for x and y with a fixed phase shift of 90◦ was
used.

6.5.2.3 Pacing Suppression

Several data segments contained measurements during pacing, i.e. electrically stim-
ulated activity originating mostly in the CS. Due to the pulse strength, the pacing
far-field was also detected in the circular mapping catheter, and its amplitude was
often comparable to the EGMs originating from local substrate activation. Thus, it
could impair wavefront detection.
Because the circular mapping catheter was far away from the pacing site, the time de-
lay between pacing far-field and local excitation was large enough so that the two sig-
nals did not overlap. Therefore, far-fields could be removed with a relatively simple
method. The pacing pulse was clearly visible in the electrograms of the correspond-
ing pacing electrodes (e.g. in the CS catheter) and could be detected by applying a
threshold of 15 mV. Then, 30 ms of signal in the circular catheter were set to 0 around
the maximum of the pacing pulse.
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6.6 CV Restitution Curves

CV restitution plays an important role in the genesis and maintenance of re-entrant
excitations. Unfortunately, measurements from humans are very scarce. However,
the cosine-fit method presented in section 6.1(b) allowed to calculate CV restitution
curves from in-vivo measurements.
CV restitution can be expressed as relation between CV and the preceding diastolic
interval [131]. However, effective refractory periods (ERPs) that are required to cal-
culate the diastolic interval are more difficult to determine in clinical measurements.
Therefore, CV restitution is also given as the relation between CV (or time delay) and
preceding pacing cycle length (PCL) [132, 133] or inter-beat-interval (IBI) [134]. In
the context of this analysis, CV restitution refers to the relation between CV and
preceding IBI.

6.6.1 Available Data

Analysis of CV restitution was performed on the five patients in which measurements
from incremental pacing were available. These were patients 1 to 5 (mean age 63±10
years) with the recorded segments 1a, 1b, 2d, 3d, 4f, 4g, and 5a (see Table 6.2).
In patient 2 and 5, stimulation was performed from one position, whereas in patients
1, 3, and 4, two pacing sequences were available: one from CS bipole 3-4 and one
from CS 7-8. The initial PCL was typically 600 ms and was then stepwise decreased
to 500, 450, 400, 350, and 300 ms. In patients 1 and 5, the maximal pacing cycle
length was 500 ms instead of 600 ms.
The electrograms of the wave propagation during normal sinus rhythm and during
the different pacing setups were measured with the circular catheter. During the LA
recordings, the catheter was in a stable position on the LA roof or posterior wall in
case of the AF patients. For patient 5 with the RA tachycardia, the circular catheter
was positioned at the RA free wall.

6.6.2 Local Conduction Velocity

The recorded pacing sequences were analyzed with the cosine-fit method presented
in section 6.1(b). Local CV was calculated for every wavefront that was detected
in the circular mapping catheter. If fits had a strongly increased residual they were
likely to be invalid and were thus excluded from the analysis. As will be shown in
section 10.5, typical residual values varied strongly between the data sets depending
on signal morphology. Therefore, the residual mean and standard deviation over all
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beats from one pacing sequence were determined. Then, beats with a residual of
larger than two standard deviations above the mean residual were excluded.
Next, the IBI for each beat was calculated from the time difference to the previous
event that was detected. To quantify rate-dependent changes, the events were binned
based on the preceding IBI. Bins were separated at 275, 325, 375, 425, 475, 525, 800,
and 1250 ms, resulting in seven bins from 275–325 to 800–1250 ms. They were set
up such that the pacing intervals were mostly at the bin center. For patients in which
pacing started at 500 ms, the bin 525–800 ms was not considered for further analysis.
To test if there were significant differences between the distinct PCLs, the results
were statistically analyzed. For every bin, the mean CV, the standard deviation and
the 95% confidence interval for the mean CV were calculated. For a bin with n beats,
the confidence interval was calculated from the t-distribution with n− 1 degrees of
freedom.
To have a concrete quantity that could be compared between different patients and
pacing sequences, the relative CV change between PCLs of 500 and 300 ms was
examined. To test if the change was significant, a two-tailed Student’s t-test was
used [135, 136]. Changes with P<0.05 were considered significant. Quantitative
comparisons between NSR and pacing were not performed because in these cases
CV changes could either result from different propagation directions or from differ-
ent cycle lengths, making the results ambiguous.
In patient 4 during a PCL of 300 ms, a single pacing pulse was followed by multiple
excitations in the circular mapping catheter, which implied a more chaotic rhythm.
Therefore, only PCLs down to 350 ms were considered for analysis and statistics
were calculated between 500 and 350 ms PCL.

6.6.3 Global Conduction Velocity

As an additional validation, the time delay T between pacing pulse and wavefront de-
tection in the circular mapping catheter was calculated for all events (except for NSR,
because there was no defined pacing pulse). The real distance that the wavefront trav-
elled over the atria before detection was unknown, e.g. due to surface curvature and
possible conduction anisotropy. However, the inverse 1/T of the time delay consti-
tuted a rescaled, spatially averaged CV over the regions that the wavefront passed
before detection. It is from now on referred to as global CV and is expressed in rela-
tive units compared to the value at 500 ms in each pacing sequence.
The same statistical analysis as described in section 6.6.2 for the local CV was also
performed for the global CV: For each bin, the average global CV over all beats
was calculated together with the standard deviation and the 95% confidence interval.
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Furthermore, the relative change in global CV between pacing at 500 and 300 ms was
analyzed, including a t-test as described above.



7

Comparison of Simulated and Clinical Data

As a long-term goal, patient-specific atrial simulations could improve the understand-
ing, diagnosis, and treatment of atrial arrhythmias. The first step into this direction
is to test how well real excitation conduction in patients is reproduced by simula-
tions. In this chapter, an attempt is described to compare patient measurements to
simulation results based on the analysis of intracardiac electrograms.
To this end, patient-specific anatomical models were created from cardiac CT scans
of the patients. Measurement positions of a circular mapping catheter and stimulation
positions during coronary sinus (CS) pacing were taken from the recorded mapping
data. These positions together with the anatomical model were then used to repeat the
measurements in silico, i.e. in a simulation environment. The CV measured with the
circular catheter was used in the simulations. The incidence directions of the clinical
measurements and the simulations were then compared.
The analysis was performed for patients 1 to 4, for which a CT scan with contrast
enhancement in the LA and the PVs was available. For each measurement site in the
LA (anterior/posterior/roof) one segment with normal sinus rhythm (NSR), CS 3-4
stimulation, and CS 7-8 stimulation was included where available. The results will
be demonstrated in chapter 11.

7.1 Creating Anatomical Models

Anatomical simulation models were created with an automatic segmentation tool.
The segmented mesh was then transformed into a simulation geometry.

7.1.1 Automatic Segmentation Tool

CT scans from the four patients were segmented with an automatic atrial segmenta-
tion tool provided by PHILIPS Research Hamburg [137]. The tool was developed in
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the course of two diploma theses by Raghed Hanna [138] and Peter Neher [139] in
close collaboration with the Institute of Biomedical Engineering at KIT.
Automatic segmentation of the atria is especially challenging because the atrial epi-
cardium is barely or not at all visible in CT-images. Therefore, a model based seg-
mentation of only the atrial endocardium based on [44] was used as a landmark gen-
erator. Then, a finite wall-thickness model of only the left or of the left and right atrial
myocardium was registered to the endocardial model.
As described in section 2.2.1, the PVs in the left atrium possess a strong topologi-
cal variability between different patients. Therefore, a hybrid segmentation method
was used for the LA that combined a model-based approach with a guided region
growing. First, a shape model of the endocardial walls of all four chambers (without
pulmonary veins) was adapted to the patient CT. Its approximate position was deter-
mined with a Generalized Hough Transformation. For segmentation of only the LA,
a shape model of the LA was adapted using the Generalized Hough Transformation.
In this simplified shape model, the PV regions with high variability were marked.
This allowed to use a guided region growing in the next step to determine the number
and shape of early branches of the PVs.
Based on this information, one of three precalculated mean shape models with differ-
ent PV configurations was chosen and again adapted to the patient data. The different
parts of the shape model were classified according to their position. The correspond-
ing finite wall-thickness tetrahedron model was then registered to the endocardial
model and represented the final segmented geometry.
In patients 1 to 3, the segmentation of only the LA was used for the simulations
during CS stimulation. For simulations during NSR, the RA was manually segmented
for patient 1, and the combined RA/LA segmentation was used in patients 2 and 3.
In patient 4, a combined RA/LA model was used for all simulations.
The combined RA/LA model also contained information about electrophysiologi-
cally relevant structures such as Crista Terminalis and Bachmann’s Bundle. However,
for a first comparison between measurements and simulations, isotropic properties
were assumed in the complete myocardium.

7.1.2 Creating Simulation Models

The cellular automaton requires cardiac anatomy to be stored as a voxel model.
Therefore, the tetrahedron model from the automatic segmentation was voxelized
with a resolution of 0.33 mm. Tissue class labels were converted to the notation used
by the CA, and classes that were not included in the current simulations (such as
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the pectinate muscles and the septum) were replaced by normal atrial myocardium.
Finally, a closing filter was applied to smoothen spiky edges and to fill small holes.
The global coordinate system of the voxelized model was further aligned with the
CT coordinate system. For the solution of the forward problem, a new tetrahedron
geometry of the atria surrounded by blood was created from the voxel model.

7.2 Extracting and Adapting Catheter Positions

For every segment, the catheter position from the EnSite data was used to place a
virtual circular mapping catheter in the simulation model. However, the mapped po-
sitions usually had no wall contact in the simulation model due to localization inaccu-
racies. Therefore, the catheter was projected onto the model surface along its normal
direction as described in section 6.4 and [130]. At the final position, metal electrodes
with a radius of 1 mm were inserted in the tetrahedron geometry.
Localization errors for the catheter positions in patient 3 were even larger. Although
the quality of the recorded electrograms suggested that there was good contact be-
tween catheter and the atrial wall, the mapped catheter positions were not parallel to
the mapped endocardial surface. Therefore, the positions were rotated to be parallel
to the surface before projection. To this end, the normal vector nc of the catheter and
the normal vector ns of the closest surface region were determined. Then, the catheter
was rotated around the rotation axis nr = nc×ns such that the catheter normal and
the surface normal were parallel. Because the rotation axis was perpendicular to the
catheter normal, the catheter was not rotated around its own axis. This minimized
artificial offsets in the detected incidence directions.
The position of the CS stimuli was also determined from the recorded electrode posi-
tions of the CS catheter. For every segment, the position of the respective stimulating
electrode pair was recorded for further use in the CA simulation.
For patients 1, 3, and 4, the mapped EnSite geometry had already been registered
to the CT scan by a semi-automatic method in the EnSite system. Thus, mapped
electrode positions could be transferred into the model coordinate system without
further modification. This was not the case for patient 2, therefore, a transformation
between EnSite coordinates and the segmented CT model was calculated using an
iterative closest points method before further processing.
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7.3 Electrogram Simulation and Analysis

Simulation of excitation conduction on the personalized anatomies was performed
with the cellular automaton. For each patient and each measurement region (i.e. ante-
rior/posterior/roof), a conduction velocity (CV) in the range of the measured values
was used as input parameter for the CA.
Then, stimulations were applied at the same location as in the clinical measurements,
i.e. at the position of the respective CS electrodes or in the sinus node. The resulting
transmembrane voltage distributions were recorded every millisecond. They served
as input data for the forward calculation in the respective tetrahedron geometry, in
which the circular mapping catheter was modeled at the corresponding position. Fi-
nally, the electrograms at the electrodes of the circular catheter were extracted at the
catheter centers.
These simulated electrograms were analyzed in the same way as the clinical signals,
both with the cosine fit and (in case of wavefront collisions) with the RBF interpola-
tion. Then, the resulting incidence directions were compared to those of the clinical
measurements. The determined CVs from the simulated EGMs were further com-
pared with the input CVs of the CA. It must be noted in advance that the comparison
of simulated and measured incidence angles gives an idea of how well the simu-
lated excitation pattern reflects the real excitation pattern in the patient for a given
stimulus site. In contrast, the isotropic CV that is used to parametrize the CA does
not influence the excitation pattern, it only makes it faster or slower. Therefore, the
comparison of CV values determined from simulated EGMs to the input CV of the
cellular automaton only gives an idea of possible errors in the CV measurement for a
given catheter location and shape.
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Results
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Results: Adaptation of a Minimal Cell Model to
Properties of Atrial Tissue

This chapter presents the adaptation results of the minimal model (MM) [50] to the
cell model by Courtemanche, Ramirez, and Nattel (CRN) [47] as described in chap-
ter 4. Section 8.1 presents the results for both the physiological and the remodeling
case. Section 8.2 compares the minimal model and the CRN in a 2D patch for the
remodeling case.

8.1 Adaptation Results

In the following, the adaptation results for the physiological and the remodeling case
are described. The remodeling case is of special interest for simulations regarding
atrial arrhythmias.

8.1.1 Physiological Case

Reference APs for the physiological case showed APD−73mV values between ap-
proximately 320 ms for the longest and 290 ms for the shortest CLs. CV increased
from 69 cm/s for the longest CLs to 70.5 cm/s at CLs of 500 ms, and then dropped to
62 cm/s for the shortest CL. The small CV increase at intermediate CLs is known as
supernormal conduction [140].
The resulting parameter set is listed in Table 8.1 and the adaptation results are de-
picted in Figure 8.1. All curves for the MM that are shown were generated in a 1D
patch as it was used for simulating the reference. The AP shapes show a good match
between reference and minimal model. APD is around 5 ms higher in the MM. This
is due to the fact that with the resulting MM parameter set, APD in the tissue patch
was slightly higher than in the single cell simulations used for adaptation. The CV
shows a very good fit between CRN reference and adapted MM. The wavelength
(which was calculated as the product of ERP and CV) showed a good match, mainly
due to the fact that ERP was somewhat shorter than APD.
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Fig. 8.1. Adaptation results for physiological case. (a) The AP shape at a CL of 1000 ms was well-reproduced
by the MM. (b) The APD restitution curve of the MM was slightly shifted towards longer APDs compared to
the CRN model. (c) CV restitution curves. (d) Wavelength restitution curves. Although the APD of the MM
was longer than in the CRN model, the wavelength (calculated from ERP and CV) showed a good match
between the models.

8.1.2 Remodeling Case

Implementation of the electrical remodeling shortened the APs by around 190 ms.
Thus, resulting APDs were in the range of 127 to 100 ms. Because the APD was
shortened, the point in the CV restitution curve at which CV started to strongly de-
crease was also shifted towards lower CLs. Thus, CV remained almost constant down
to CLs of 170 ms, but then dropped of to 49 mm/s at a CL of 110 ms.
Table 8.1 also contains the parameter set for the remodeling case. Furthermore,
Fig. 8.2 shows the corresponding adaptation results. The AP shape is well-reproduced,
and both APD and CV restitution show a very good match between reference and
adapted MM. For the remodeling case, there was no significant change between APD
in single cell and patch simulations. However, ERP is some milliseconds longer than
APD, resulting in a slightly increased wavelength compared to the CRN reference.
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Table 8.1. Parameter sets for the MM after adaptation to the CRN model for physiological (Phys) and remod-
eling (Rem) case.

uo uu θv θw θ−v θo τ
−
v1 τ

−
v2 τ+v τ

−
w1

Phys 0 0.920 0.35 0.328 0.126 0.00005 41.857 1150 1.700 138.689
Rem 0 1.009 0.30 0.182 0.101 0.01547 16.300 1150 1.703 79.963

τ
−
w2 k−w u−w τ+w τ f i τo1 τo2 τso1 τso2 kso

Phys 62.341 202.659 0.055 177.412 0.045 410.000 64.914 115.000 6.500 1.386
Rem 28.136 60.219 0.010 213.549 0.084 250.033 16.632 73.675 6.554 2.975

uso τs1 τs2 ks us τsi τw∞ w∗∞ Vm,u V0
Phys 0.332 11.457 53.902 1.226 0.792 7.802 0.050 1.000 85.700 -80.960
Rem 0.592 9.876 4.204 2.227 0.816 10.699 0.223 0.902 85.700 -84.100
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Fig. 8.2. Adaptation results for remodeling case. (a) Also the shortened AP of the remodeling case was well-
reproduced by the MM. (b) The offset in APD restitution was lower than for the physiological case. (c) CV
restitution matched well between the models. (d) Wavelength in the MM was slightly longer than in the CRN
model.

8.2 Re-entry Simulations in a 2D Patch

The crossfield protocol described in section 4.5 successfully created a spiral wave
(also called rotor) for both the CRN and the adapted MM under remodeling. First, a
single rotor was present. Then, the single rotor could be split into two rotors by an ec-
topic beat 190 ms after the crossfield stimulus. The ectopic beat comprised 300×500
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Fig. 8.3. 2D patch simulations for remodeling case. After 745 ms, the crossfield stimulus was applied and
induced a spiral wave rotating clock-wise (shown at 880 ms). With a second stimulus, the single rotor was
split into two rotors that formed a figure-of-eight re-entry. The re-entry pattern was stable for the remaining
approximately 500 ms.

voxels and was placed in the back of the rotor. Example pictures of the rotor dy-
namics are shown in Figure 8.3. It can be seen that the dynamics of the minimal
model were very similar to those of the CRN reference. However, the small wave-
length difference also influenced dynamics in 2D. This can for example be seen in
Figure 8.3 at t = 1500 ms, where the rotor tip was already moving downwards in the
CRN simulation, whereas it was still moving to the right in the MM simulation.

8.3 Discussion

In this chapter, it was shown that with the proposed methods it was possible to adapt
the parameters of the minimal model such that it reproduced excitation properties of
the CRN model. Both the physiological and the remodeling case were considered,
and one parameter configuration for each case was created. It was possible to use
a limited subset of parameters for the different adaptation steps. Especially for the
adaptation of the APD and CV restitution, it was sufficient to vary 6 or 3 parameters,
respectively.
Small deviations occurred in the APD curve, because during the adaptation, APD was
evaluated in the single-cell simulation for performance reasons. Curves in Figures 8.1
and 8.2, in contrast, were simulated in a more realistic patch environment. Especially
for the physiological case, APDs in the patch were higher than in the single-cell
simulations used during adaptation causing the observed deviation.
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Although one-dimensional simulations can be used to ensure model agreement re-
garding basic properties, models should also be compared in 2D simulations. This
ensures that the resulting wave dynamics are comparable, which is of high interest
for the simulation of atrial arrhythmias. In such a 2D setup, the CRN and MM were
compared for the remodeling case. It was demonstrated that basic wave dynamics
were in good agreement. They only showed small deviations that probably resulted
from the slight increase in wavelength for the MM. No 2D simulations were per-
formed with the physiological models, because their wavelength was too high for
stable rotors in realistic atrial dimensions.
Different best-guess parameter sets were used as start vectors to decrease the chance
of finding local minima. However, there may always be a trade-off between the differ-
ent adaptation steps, and performing more than two iterations might further improve
the adaptation result. So the current parameter sets must be regarded as adaptations
with a sufficient accuracy to demonstrate the feasibility of model adaptation. Further-
more, it is possible that different parameter sets may lead to very similar results. On
the other hand, this is not a problem as long as the resulting model properties are sat-
isfactory. Apart from that, further model comparisons in realistic 3D atrial geometries
could be performed in addition to the 2D simulations.
When considering patient-specific simulations, the electrophysiological models need
to be adapted to the patient’s individual physiological parameters. Complex mod-
els such as the CRN model contain many parameters that were derived from ion
channel measurements in humans and also in animals. Accurately determining these
parameters for an individual patient is practically impossible in clinical routine. On
the other hand, tuning some of the parameters to match measured properties is also
challenging, because unwanted side-effects may appear. In contrast, a phenomeno-
logical model as the minimal model is less complex and thus more controllable. Still,
it considers for example restitution behaviours that are not covered by the cellular au-
tomaton. It was sufficient to tune 6 or 3 parameters to adapt APD and CV restitution,
respectively. Thus, the model can be adapted to patient-individual measurement data
with less effort and without risking unwanted side-effects. It is therefore a promising
approach for future patient-specific simulations of atrial arrhythmias.
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Results: Influence of Tissue Conductivities on the ECG

This chapter presents the results of the two analyses regarding influences of tissue
conductivities on the ECG or BSPM as described in chapter 5 as well as [90, 108].
Section 9.1 shows which tissue types had the strongest impact on the resulting sig-
nals for atrial simulations and analyses possible torso model simplifications. In sec-
tion 9.2, the PCA method is evaluated which allows to efficiently estimate the signal
changes resulting from tissue conductivity variations.

9.1 Tissue Ranking

To evaluate which tissues had the strongest impact on forward-calculated BSPMs,
the conductivity values found in the literature for different tissues are presented first.
Based on this compilation, the errors resulting from the sensitivity and uncertainty
analysis are reported. Finally, errors resulting from possible torso model simplifica-
tions are analyzed.

9.1.1 Conductivity Values in the Literature

The maximum and minimum conductivities for each tissue as compiled from the
literature are summarized in Table 9.1. These values were used as upper and lower
boundaries for the uncertainty analysis. The table is sorted by the ratio of conductiv-
ity boundaries. ‖ and ⊥ indicate conductivities along and across muscle fibers. The
lower boundary for intestine is taken from colon measurements, whereas the upper
conductivity was measured on the small intestine. The values by Gabriel et al. at
10 Hz are indicated for comparison [60]. They were varied by ±25% in the sensitiv-
ity analysis. The resulting upper and lower conductivity boundaries for the sensitivity
analysis are not explicitly stated in Table 9.1 but can easily be calculated from the
given values. Values from Colli Franzone et al. [141] were used for the intracellu-
lar transverse conductivity of the heart muscle σi⊥ and the corresponding anisotropy
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Table 9.1. Lower and upper tissue conductivity boundaries

Name σmin GG σmax Ratio
(S/m) (S/m) (S/m)

Intestine 0.0122 [60] 0.278 0.511 [60] 41.9
Kidneys 0.0544 [60] 0.0544 0.9 [61] 16.5
Bone 0.005 [98] 0.02 0.06 [98] 12.0
Heart, rand. 0.0537 [60] 0.0537 0.483 [92] 9.0
Muscle aniso. 2.04 † [93] - 15.3 † [95] 7.5
Liver 0.0277 [60] 0.0277 0.2 [98] 7.2
Spleen 0.0396 [60] 0.0396 0.24 [57] 6.1
Fat 0.0122 [60] 0.0377 0.0667 [91] 5.5
Muscle ⊥ 0.0435 [95] 0.202 0.213 [93] 4.9
Lungs 0.0389 [60] 0.0389 0.134 [92] 3.4
Muscle ‖ 0.33 [62] - 0.8 [62] 2.4
Blood 0.435 [92] 0.7 1.0 [91] 2.3
Trunk 0.216 [95] - 0.241 [93] 1.1
†The anisotropy ratios are dimensionless

ratio (σi⊥ = 0.031525 S/m; anisotropy ratio: 9.516). Extracellular anisotropy ratios
that are frequently used are e.g. 2.23 [95], 2.5 [142] or 4 [143]. For the uncertainty
analysis, conductivity values for heart muscle at a random fiber orientation were cho-
sen for the extracellular conductivity across the fiber. The anisotropy ratio was fixed
at 3, this is in good agreement with the previously stated ratios.

9.1.2 Ranking for Atrial Signals

Tables 9.2 and 9.1.2 show the results of the atrial sensitivity and uncertainty analysis.
Tissue types are sorted according to the RMSE calculated from the not-normalized
signals. The numbers in parentheses correspond to the ranks in the respective
RMSEnorm or CC-sorted tables.
In both rankings, there was a group of more important organs that comprised mus-
cle (including anisotropy), blood, lungs, fat, and the heart muscle. In contrast, liver,
bone, spleen, and kidneys played a minor role in both rankings. When comparing
the uncertainty with the sensitivity ranking, the main differences were an increase
in heart and intestine importance and a decrease in blood and fat importance. The
intestine was shifted upwards in the uncertainty ranking due to the large uncertainty
caused by including values from both small and large intestine.
For some organs, the ranking based on the CC was different from the RMSE-sorted
ranking. When looking at the CC in the sensitivity ranking, the main differences
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compared to the RMSE-sorted ranking were the higher importance of lung and fat
tissue and the significantly reduced importance of skeletal muscle conductivity. All
other organs in the sensitivity ranking did not move more than one rank up or down.
For the uncertainty ranking, skeletal muscle conductivity and anisotropy as well as
blood were less important in a CC-sorted ranking, whereas heart, fat, and liver were
more important.
Finally, the RMSEnorm-sorted ranking was taken into account. The RMSEnorm-sorted
and CC-sorted rankings were compared because both criteria focus on signal mor-
phology rather than amplitude scaling. In case of the sensitivity ranking, the skeletal
muscle anisotropy and the heart muscle conductivity became less important for the
RMSEnorm. Intestine and skeletal muscle conductivity, in contrast, became more im-
portant. For the uncertainty ranking, intestine ranked significantly higher whereas fat
ranked lower in the RMSEnorm-sorted table.

9.1.3 Ranking for Ventricular Signals

A similar analysis has been performed for ventricular input signals during the PhD
thesis of David Keller, the results can be found in [90]. Rankings for the atrial and
ventricular signals showed many common features, apart from the tendency that the
lungs were more important for atrial signals and skeletal muscle as well as heart were
more important for ventricular signals. Therefore, statements in the discussion hold
for both types of signals.

Table 9.2. Results of the sensitivity analysis for atrial signals

Rank Name RMSE (µV) RMSEnorm 1-CC
1 Muscle ⊥ 13.2 6.85E-3 (4) 2.88E-3 (6)
2 Blood 10.4 1.03E-2 (2) 7.89E-3 (1)
3 Muscle aniso. 9.0 6.59E-3 (6) 3.15E-3 (4)
4 Lungs 6.9 1.09E-2 (1) 7.80E-3 (2)
5 Fat 5.3 8.77E-3 (3) 6.14E-3 (3)
6 Heart 4.6 6.19E-3 (7) 3.12E-3 (5)
7 Intestine 4.1 6.82E-3 (5) 2.47E-3 (7)
8 Liver 2.2 3.59E-3 (8) 9.78E-4 (8)
9 Bone 1.6 2.49E-3 (9) 5.16E-4 (9)

10 Cartilage 0.55 9.33E-4 (10) 6.18E-5 (10)
11 Spleen 0.16 2.65E-4 (11) 5.82E-6 (11)
12 Kidneys 0.12 2.01E-4 (12) 2.19E-6 (12)
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Table 9.3. Results of the uncertainty analysis for atrial signals

Rank Name RMSE (µV) RMSEnorm 1-CC
1 Muscle ⊥ 46.1 2.12E-2 (7) 2.43E-2 (7)
2 Muscle aniso. 35.7 2.52E-2 (5) 4.49E-2 (5)
3 Heart 22.0 3.28E-2 (2) 7.62E-2 (1)
4 Lungs 20.9 3.25E-2 (3) 5.88E-2 (3)
5 Intestine 19.6 3.32E-2 (1) 5.32E-2 (4)
6 Blood 17.0 1.67E-2 (8) 2.06E-2 (8)
7 Fat 16.8 2.76E-2 (4) 6.29E-2 (2)
8 Liver 12.8 2.12E-2 (6) 3.40E-2 (6)
9 Bone 7.0 1.12E-2 (9) 1.03E-2 (9)

10 Kidneys 0.85 1.50E-3 (10) 1.24E-4 (10)
11 Spleen 0.61 9.95E-4 (11) 8.16E-5 (11)

Table 9.4. Error (RMSE or CC based) of possible torso simplifications

σ1 σ2

R
M

SE

TOP7RMSE 6.0 µV 7.1 µV
TOP5RMSE 11.2 µV 11.6 µV
TOP3RMSE 15.3 µV 16.9 µV
HOMRMSE 89.3 µV 42.9 µV

1-
C

C

TOP71−CC 7.8E-3 1.1E-2
TOP51−CC 2.4E-2 2.9E-2
TOP31−CC 5.0E-2 4.2E-2
HOM1−CC 1.3E-1 1.2E-1

9.1.4 Possible Torso Model Simplifications

Table 9.1.4 lists the evaluation of possible torso model simplifications. Organs that
were not considered were replaced with one of two mean conductivities σ1 (weighted
average over VM torso) or σ2 (derived from literature values). The more organs and
structures were considered in the model, the better the BSPMs matched the reference
data.

9.1.5 Discussion

In section 9.1, the influence of tissue conductivities on forward-calculated ECGs was
ranked. A number of studies with similar aims has been performed before [67, 68,
144, 145]. However, the current results deliver additional and new insights because
the approach is different regarding the underlying cardiac source distribution, the
torso model and utilized conductivity comparison methods. The most important dif-
ferences are:
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1. To the knowledge of the author, this is the first study to systematically evaluate
the role of torso inhomogeneities based on realistic cardiac simulations for atrial
signals. Previous investigations were based on dipole [67, 144, 146] or double
layer sources [147, 148], sources calculated from an inverse procedure [149] or
epicardial recordings that were acquired from dog [145] or during open heart
surgery on a human [68].

2. The details of the torso model significantly differ compared to previous stud-
ies. The eccentric spheres models used in [147] and [148] have been criticized
by Bradley et al. [67] and van Oosterom et al. [149]. While the use of "tai-
lored" geometries was favored, several older studies used only coarse torso mod-
els containing only a few hundred or thousands of nodes to reduce computation
time [144, 146, 149]. Furthermore, even recent studies [67, 68] (and all studies
before) evaluate only a limited subset of the organs and structures that were in-
vestigated here. In simple torso models that only consider a small number of inho-
mogeneities, the importance of one inhomogeneity might be increased or reduced
if additional inhomogeneities would have been considered. Therefore, the impor-
tance of inhomogeneities is difficult to judge in such simple torso models, and the
results from investigations that evaluated differently composed torso models are
not necessarily directly comparable.

3. Conductivity values utilized for the different inhomogeneities and ratios between
the conductivities of the various organs strongly differed between previous stud-
ies. However, they made no efforts to estimate the effects that such differences
might have had on the results.

Within the current study it was therefore differentiated between a sensitivity and an
uncertainty analysis. For the sensitivity analysis, fixed percental changes of a specific
conductivity were used. In the uncertainty analysis, the impact of the existing uncer-
tainty in frequently used conductivities was evaluated. To this end, published conduc-
tivity values were collected and forward calculations for each organ’s minimum and
maximum conductivity were conducted. With the RMSE as evaluation criterion, the
atrial simulation was most sensitive to skeletal muscle, blood, heart, lungs, and fat
conductivity as well as skeletal muscle anisotropy. For changes in signal morphology
with the CC as a criterion, skeletal muscle had a much lower impact but fat on the
other hand was more important.
It was explained above that a comparison of the presented findings with results of pre-
vious studies is difficult due to methodological differences, differences in the torso
model and in the chosen conductivities. While keeping that in mind, the following
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similarities and differences were observed: Previous reports stated that the lungs
were both important [67, 68, 144, 147] and unimportant [149, 145]. Skeletal mus-
cle conductivity showed a large [148], moderate [67, 147] or small [68] impact on
torso potential, whereas skeletal muscle anisotropy was always found to be impor-
tant [68, 145]. Heart tissue conductivity had a strong effect in [67] and [149], which is
in accordance with presented results. Furthermore, the large effects reported here for
blood agree with studies from Rudy et al. [147] and van Oosterom et al. [149]. How-
ever, they contradict earlier findings from Rudy et al. [148] in which blood was less
important. In the current investigations, fat had moderate effects on signal amplitude
but stronger effects on signal morphology. This contradicts findings from Bradley et
al. [67] and Klepfer at al. [68], where large effects were seen, and a study by Rudy
et al. [147] where only small effects were found. Investigations that considered the
effects of spine and sternum found that they were of small importance [68, 144, 145].
Klepfer et al. [68] additionally evaluated the effect of bone but found no relevant
influence on the forward solution. The current data included all major bony and car-
tilaginous structures but likewise found no significant impact. Intestine, liver, spleen,
and kidneys were not included in previous studies. The presented results show that
of these four structures, intestine was the most important one, followed by the liver.
This was probably due to its large size (intestine: 6.3% vs. liver: 4.1% vs. kidneys
0.8% and spleen 0.5% of the torso volume). However, this group ranged at the lower
end of most rankings.
When the uncertainty of the published conductivities was considered in the uncer-
tainty ranking, the importance of heart tissue and intestine increased, whereas the
impact of blood and fat decreased. The importance in the uncertainty ranking was
directly related to the degree of uncertainty (Table 9.1): The higher the ratio between
lower and upper conductivity value, the higher the ranking of the respective organ was
in the uncertainty analysis. Especially for kidney, bone, liver, and spleen, which are
rarely considered, but also for very important tissues (e.g. heart or skeletal muscle
fiber anisotropy) there are significant differences that the measurement community
should address.
No simple answer exists with respect to the level of detail to be incorporated into a
torso model. As expected, solution quality increased with increasing number of inho-
mogeneities. This can be seen as the RMSE or 1-CC between the gold standard (com-
pletely inhomogeneous model) and the simplified setups decreased. Furthermore, re-
moving inhomogeneities with conductivities close to the average conductivities σ1,2

had a comparatively small influence. However, for most applications, including the
5 most important inhomogeneities besides the heart should be sufficient. These are
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skeletal muscle conductivity as well as anisotropy, blood, lungs, and fat. This list
agrees with the suggestions from Bradley et al. [67], although their ranking was dif-
ferent and no effects of the intracavitary blood pool were evaluated. It is interesting
to note that the errors caused by model simplifications also depended on the utilized
mean conductivity σ1,2. It might therefore be possible to derive an optimized σ that
minimizes the differences between simplified and completely inhomogeneous torso
model for future studies.
Furthermore, the impact of the blood in the major vessels (superior and inferior vena
cava, pulmonary arteries and veins, aorta) was evaluated as well as the impact of
the fat layer around the heart. Because segmentation is time-consuming, these struc-
tures are rarely included in patient-specific geometries. In the Visible Man data set,
they constituted a part of the total blood and fat volume, respectively. To rate their
importance, they were isolated by assigning unique tissue classes, then a sensitivity
analysis as described in section 5.1.3 was performed. In an RMSE-sorted ranking,
the blood in the main vessels would rank on position 4, so that it should be included
in torso models for atrial simulations. The fat around the heart, in contrast, ranked on
position 8 and might therefore be negligible.
One may not forget that all evaluations of the BSPM sensitivity with respect to tis-
sue conductivities inherently depend on the default conductivities and the utilized
torso model. Using the same default conductivities in combination with different
torso models or the opposite case of different default conductivities in combination
with the same torso model are likely to produce different sensitivity rankings. Al-
though this study quantified the effects of the present conductivity uncertainties on
electrocardiographic simulations, the ideal solution would be to further narrow down
the possible choices, which will be the task of the measurement community.
Bradley et al. [67] and Klepfer et al. [68] reported that different organs have slightly
varying influences on the different ECG segments (P, QRS, T). This means that dif-
ferent excitation sequences will result in slightly different RMSE or CC values (but
not necessarily different rankings). To validate the results, additional atrial simula-
tions were performed with altered conduction velocities in the Crista Terminalis and
Bachmann’s Bundle (both set to 1400 mm/s). This different anisotropy setup pro-
duced minor ranking changes only, so that the conclusions drawn in this work are
applicable to other physiological excitation sequences as well.
Furthermore, gender-specific differences concerning the composition of the torso
model (i.e. skeletal muscle volume vs. fat volume) must be considered. The Visi-
ble Man data set has a very high body fat volume fraction (38% within the torso) and
results will probably be different for slimmer models. Additionally, the Visible Man
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Table 9.5. Ratio between first and second PCA eigenvalue λ1/λ2

Blood Muscle Lung Fat
Atria 232 181 299 77
Ventricles 652 106 489 31

data set includes fine structures with many details. From images recorded using cur-
rent medical imaging techniques such as MRI or CT, such detailed models can not be
generated. Therefore, conductivity sensitivities might be different in patient-specific
models.
This study could be repeated with a larger set of differently composed torso models
as soon as methods become available that allow for creation of skeletal muscle fiber
orientation for patient-specific data sets. Such a study would take into account both
inter-individual as well as gender-specific variations. Thus, it would allow a conclud-
ing evaluation of how different inhomogeneities impact on the BSPM.

9.2 BSPM Prediction for Varying Conductivities Based on Principal
Component Analysis

In the previous section, tissue conductivities were shown to have a significant impact
on the forward-calculated ECGs. In the following, it is evaluated how such signal
changes can be efficiently addressed with the PCA method proposed in section 5.2.
First, the ratios between the eigenvalues and the angles between different eigenvec-
tors are shown to support the assumptions made when developing the method. Then,
errors for signal reconstruction for variations of one and four tissue conductivities are
evaluated. Finally, an exemplary ECG confidence interval is demonstrated.

9.2.1 Eigenvalue Ratios and Eigenvector Angles

Table 9.5 lists the ratios λ1/λ2 for the different tissues which were in the range of 31
to 652. This confirmed that the information content of the first principal component
(PC) was much larger than that of the second PC for all organs. The assumption was
used in the transformation from (5.5) to (5.6).
Pairwise angles between the first eigenvectors of the four tissues ranged between 45◦

and 124◦ for the atria and 57◦ and 143◦ for the ventricles. Thus, they were far from
0◦ or 180◦.
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Fig. 9.1. Shifted PCA scores for first eigenvectors of atrial (left) and ventricular input data (right) [108]. The
exact scores that were determined directly from the PCA are marked as data points. The solid lines show the
results of the polynomial interpolation. The sensitivity of the forward problem to the respective conductivity
variation is reflected by the difference between minimum and maximum score for a specific tissue.

9.2.2 Signal Reconstruction

The shifted PCA scores of the different tissues were monotonically dependent on the
conductivity values for atrial and ventricular data (Fig. 9.1).
The upper part of Table 9.6 lists the RMSEs if the signal for a single tissue conduc-
tivity variation was reconstructed from the exact scores within ±75% of the Gabriel-
Gabriel (GG) conductivity from the first eigenvector only. The maximum RMSE was
approximately 2.6 µV for the atria and 12.6 µV for the ventricles. Thus, compared
to the signal amplitudes in the millivolt range, the RMSE was at least two orders of
magnitude smaller.
The lower part of Table 9.6 shows the RMSEs if the signal for a single tissue conduc-
tivity variation was reconstructed from the interpolated scores within ±50% of the
GG conductivity. The maximum RMSE was around 1.8 µV for the atria and 8.5 µV
for the ventricles. Thus, the maximum errors were comparable to the maximum errors
for the exact scores (for variations of ±50%).
The results for the combined variations of all four conductivity values are listed in
Table 9.7. When each conductivity was varied by ±25%, reconstruction of the atrial
data resulted in an average RMSE of 1.6±0.4 µV. For variations of ±50%, the av-
erage RMSE was 6.3±2.9 µV. In the ventricles, the average RMSE was 5.8±1.5 µV
for variations of 25% and 19.0±5.6 µV for variations of 50%. An example of the
reconstruction is shown in Fig. 9.2.

9.2.3 Confidence Intervals

The confidence intervals resulting from relative conductivity variations of ±10%,
±30%, and ±50% are shown in Fig. 9.3. As the relative uncertainty δσrel becomes
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Table 9.6. RMSE (µV ) when using exact and interpolated scores

RMSE exact scores RMSE interpolated scores
Blood Muscle Lung Fat Blood Muscle Lung Fat

A
tr

ia

σ−75% 1.910 2.612 1.389 1.200 — — — —
σ−50% 0.387 0.457 0.259 0.139 0.566 0.709 0.209 0.216
σ−25% 0.422 0.097 0.588 0.207 0.441 0.609 0.114 0.219
σGG 0.002 0.001 0.001 0.000 — — — —
σ+25% 0.597 0.832 0.307 0.328 0.598 0.831 0.296 0.324
σ+50% 1.248 1.695 0.751 0.715 1.316 1.779 0.783 0.748
σ+75% 1.903 2.557 1.274 1.120 — — — —

V
en

tr
ic

le
s

σ−75% 5.782 12.597 2.868 12.120 — — — —
σ−50% 1.009 1.335 0.343 0.767 1.465 2.420 0.560 1.671
σ−25% 1.071 2.492 0.516 1.945 1.151 2.591 0.547 2.081
σGG 0.008 0.002 0.002 0.003 — — — —
σ+25% 1.586 3.884 0.866 3.166 1.585 3.862 0.864 3.113
σ+50% 3.370 8.100 1.895 6.875 3.578 8.475 1.994 7.209
σ+75% 5.215 12.434 2.975 10.713 — — — —

larger, the gap between the GG signal and the respective minimal/maximal signal
becomes wider. The real signal will lie somewhere within the gap. It can be seen
that the effects of increasing conductivity uncertainty on the different phases of the
cardiac cycle (P-wave, QRS complex, and T-wave) are very similar.

9.2.4 Discussion

A PCA-based method for prediction of forward-calculated BSPM signals for differ-
ent tissue conductivities has been developed. It allows for predicting signals over
a wide range of tissue conductivity values from few sample simulations only. The
method was further validated for both atrial and ventricular signals.
The proposed PCA-method is based on the assumption that variation of a single tis-
sue conductivity causes changes in the BSPM that can be expressed by the first eigen-
vector of a PCA decomposition. This assumption holds, because the first eigenvalue
for all tissues was significantly higher than the second and all following eigenvalues
with ratios larger than 30. Therefore, the first eigenvector described the major part of
signal variation. This is further supported by the relatively small errors when recon-
structing BSPM signals for single tissue conductivity variations based on the exact
scores. These errors were due to considering only the first eigenvector. No higher
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Table 9.7. RMSE (µV ) for combined conductivity variations

Atria Ventricles
Relative variation z 25% 50% 25% 50%

σB−z σM−z σL−z σF−z 2.1 11.3 7.2 22.6
σB−z σM−z σL−z σF+z 1.9 10.0 4.1 18.8
σB−z σM−z σL+z σF−z 2.7 13.6 8.4 27.7
σB−z σM−z σL+z σF+z 1.0 5.7 4.5 21.0
σB−z σM+z σL−z σF−z 1.7 6.7 5.0 18.1
σB−z σM+z σL−z σF+z 1.7 5.8 8.1 26.2
σB−z σM+z σL+z σF−z 1.3 5.4 4.3 15.0
σB−z σM+z σL+z σF+z 1.7 5.2 7.0 18.4
σB+z σM−z σL−z σF−z 1.2 4.3 6.0 16.6
σB+z σM−z σL−z σF+z 1.7 6.0 5.8 20.9
σB+z σM−z σL+z σF−z 1.4 5.0 7.9 26.5
σB+z σM−z σL+z σF+z 1.5 5.9 5.5 19.1
σB+z σM+z σL−z σF−z 1.3 3.7 6.0 20.8
σB+z σM+z σL−z σF+z 1.6 5.2 4.2 7.6
σB+z σM+z σL+z σF−z 1.2 3.6 4.8 15.9
σB+z σM+z σL+z σF+z 1.2 2.9 4.8 9.3

Average 1.6 6.3 5.8 19.0

eigenvectors were needed for the reconstruction, because the RMSE was small (max.
12.6 µV) compared to the signal amplitude in the millivolt range. It was further ev-
ident that RMSEs for the ventricles were typically larger than for the atria, because
the amplitude of the ventricular signal was higher.
It was sufficient to perform only seven sample simulations with different conduc-
tivities for each tissue. Then, signals for values in between could be derived by an
interpolation of the PCA score curve. A leave-one-out validation with the ±25% and
±50% simulations was performed. It showed that RMSEs of reconstruction using
interpolated scores were not significantly increased compared to the RMSEs from
exact scores for equal conductivity variations. It should be noted that no leave-one-
out validation was performed with the ±75% simulations, because the score curve
is only interpolated between the minimal and maximal conductivity. Removing one
simulation at the outer end of the curve, e.g. at +75%, from the PCA input data means
that the interpolation function would only be defined in the -75% to +50% region.
Typically, there can be more than one tissue for which the conductivity is not ex-
actly known. Therefore, it was shown that the PCA method can also predict effects
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Fig. 9.2. Example for PCA reconstruction of signal changes caused by combined conductivity variations (here:
blood and muscle decreased by 25%, lungs and fat increased by 25%) [108]. The bottom part magnifies the
QRS complex shown above. The signal calculated using the standard Gabriel et al. (GG) conductivities signif-
icantly deviates compared to the signal with all four tissue conductivities varied. The presented PCA method
could predict the effect of these combined variations in all sections (P-wave, QRS-T complex) with small
errors only (P-wave amplitude 2x magnified for better visibility).

of combined conductivity variations on the BSPM. To this end, the coordinate sys-
tems of the different PCAs were aligned with the GG signal as a common origin.
It was then assumed that the effects of combined conductivity variations can be ex-
pressed by a superposition of the effects caused by the respective single conductivity
variations. Although previous reports noted that the combined effect of conductiv-
ity variations in two different organs was not necessarily additive [68, 150], Fig. 9.2
already demonstrates that the PCA method can reproduce most of the signal changes.
The fact that the average RMSE for combined variations of ±25% amounted to only
1.6 µV in the atria and 5.8 µV in the ventricles further supported the validity of the
superposition. Even when increasing the conductivity variations to ±50%, the av-
erage RMSE only was 6.3 µV for the atria and 19.0 µV for the ventricles (for sim-
plicity reasons equal variations were chosen here, generally however, the amount of
conductivity variation may be different for different tissues). There are of course sig-
nal changes caused by combined conductivity variations that are not accounted for
by the proposed PCA method, for example, amplification of changes or non-linear
cancellation. It is therefore emphasized that the linearization applied here is only an
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Fig. 9.3. ECG confidence intervals derived from PCA method [108]. Shown are the maximum and minimum
Einthoven II signals at each time step that are possible for different conductivity uncertainties. Confidence
intervals for simultaneous uncertainties of ±10%, ±30%, and ±50% in all four tissues were calculated. The
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approximation. Such linear approximations are applicable to many problems, the key
question is over which range they are feasible and how large the errors are. In the pre-
sented data, the RMSE values demonstrate that the PCA method provides a very good
estimation of the real signal without the necessity to perform another time-consuming
forward calculation that can take over one hour. In contrast, the PCA decomposition
and BSPM reconstruction were completed within approximately 1 s (which includes
program startup and data loading) on a single CPU of a standard desktop computer.
Apart from reconstructing BSPM signals for different conductivity combinations, the
presented PCA method allows for estimating an ECG confidence interval for various
conductivity uncertainties without additional forward calculations. To this end, the
minimum and maximum signal that could result from certain conductivity boundaries
were calculated for every time step and electrode. Furthermore, it can determine the
minimum and maximum signals in any set of bipolar leads. Because the problem
is monotonic, only signals at the boundaries of the conductivity ranges needed to
be evaluated. The minimal and maximal curve are shown in Fig. 9.3. However, they
were normally not signals that resulted from one fixed conductivity setup. Instead,



98 CHAPTER 9. RESULTS: INFLUENCE OF TISSUE CONDUCTIVITIES ON THE ECG

different conductivity combinations produced the maximum signal at different time
instants. Therefore, the confidence intervals corresponded to the range within which
the ECG signal will certainly lie.
In future studies, a more advanced confidence interval could also be calculated by
evaluating the probability for the signal to lie within certain boundaries, similar
to [150]. The PCA method is able to efficiently predict the signals at finite conductiv-
ity steps between the boundaries. These signals could then be statistically analyzed in
terms of the mean signal and the standard deviation. Compared to [150], such statis-
tics give only limited insight into the underlying processes and are only calculated
on the torso surface. On the other hand, they can be computed a posteriori with the
advantage that the setup does not have to be changed. Furthermore, they can easily
be computed for a 3D torso and at all time steps, whereas in [150], only 2D slices are
analyzed at distinct time steps.
In theory, it might also be possible to apply the PCA method to the inverse problem of
electrocardiography, which means locating the cardiac sources for a certain BSPM.
To this end, the potentials on the heart surface could be calculated several times from
a measured BSPM signal with different conductivities for a specific organ. Based on
this data, the PCA could then by used to determine changes in the source distribution
on the heart that result from conductivity variations.
In conclusion, an efficient PCA-based method to analyze BSPM signals was de-
veloped. The first eigenvector of a PCA decomposition quantitatively described the
changes in body surface potential when a single tissue conductivity was varied. Su-
perposing eigenvectors from PCAs for different tissues gave a good estimation of
how combined conductivity variations changed the resulting BSPM. This way, the
method could further calculate confidence intervals for arbitrary conductivity uncer-
tainties within the initial conductivity boundaries. It must be noted that eigenvectors
and PCA scores are calculated separately for every model, e.g. for different patients.
Thus, they are tailored, which means that they consider patient-specific differences in
thorax anatomy (like organ size and position), cardiac anatomy and electrophysiol-
ogy. Therefore, the method is not limited to a certain setup and can also be applied to
models resulting from anatomical and electrophysiological personalization. Hence,
it is a promising approach to evaluate the impact of conductivity uncertainties on the
outcome of clinically relevant personalized forward calculations.
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Results:
Quantitative Analysis of Electrophysiological Data

In this chapter, the results of the quantitative analysis methods for intracardiac elec-
trophysiological (EP) recordings are presented. The detailed methods can be found
in chapter 6.
Section 10.1 discusses the validation of the cosine-fit analysis. In section 10.2, RBF
test interpolations are outlined. In section 10.3, it is demonstrated how the cosine
fit could be applied to simulated electrograms from a realistic atrial geometry. Sec-
tion 10.4 then covers the analysis of patient data with the cosine-fit method and coro-
nary sinus analysis techniques, including test applications of the RBF interpolation
for special cases. Finally, in section 10.5, rate-dependent changes in conduction ve-
locity are determined with the cosine-fit method.

10.1 Validation of the Cosine Fit

The cosine fit method estimates incidence direction and conduction velocity (CV)
from a single wavefront passing a circular mapping catheter. It was validated in a
patch simulation setup [120]. Fig. 6.2(b) on page 56 shows an example of the sim-
ulated patch signals for an incidence angle of 130◦. It can be seen that activation
times were shifted between different electrodes in a sinusoidal pattern altogether
(Fig. 6.2(b) and (c)). As in the schematic drawing (Fig. 6.2(a)), the earliest activation
was in channel 4-5 and the latest activation in channel 9-10. The activation pattern
without artificial noise was quantitatively analyzed with the method described in sec-
tion 6.1. For the example stimulus at 130◦, the calculated incidence direction ϕ0 was
132.6◦ (2.6◦ error). Simulated data from all 36 stimuli were analyzed with the cosine-
fit method. The resulting mean error over all incidence directions with δγ = 2◦ and
in the absence of artificial noise was 4.2◦.
The stability analysis was performed to reveal how different conditions influenced the
result quality. The average error of direction estimation for different combinations of
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levels and qualities of the catheter geometry estimation. The error ranged between 3.6◦ (best-case combination
with σ = 0.05A and δγ = 1◦) and 9.7◦ (worst-case combination with σ = 0.2A and δγ = 3◦).

σ and δγ is depicted in Fig. 10.1. The minimum error was 3.6◦ (for the best-case
scenario with σ = 0.05A and δγ = 1◦), and the maximum error was 9.7◦ (for the
worst-case scenario with σ = 0.2A and δγ = 3◦). The corresponding 95-quantiles
amounted to 8.2◦ and 21.6◦, respectively. Thus, for 95% of all estimated incidence
directions, the error was below 8.2◦ for the best-case parameters and 21.6◦ for the
worst-case setup. It can bee seen in Fig. 10.1 that the mean error increased both when
noise was added and when the uncertainty in γ increased. However, it remained below
10◦ for all tested parameter combinations.
Conduction velocity (CV) and mean fit residual were not considerably influenced
by δγ . Therefore, only the averages over all values of δγ for increasing noise level
(σ = 0.05A, 0.1A, 0.15A, and 0.2A) are stated for CV and residual. The average CV
errors for the respective noise levels were 2.0 cm/s, 3.0 cm/s, 4.1 cm/s, and 5.3 cm/s.
The fit residuals amounted to 5± 3 ms2, 14± 8 ms2, 30± 17 ms2, 51± 29 ms2. The
fit residual can be employed to determine the quality of the fit.
For the setup with two colliding waves from 0◦ and 210◦, the cosine-fit calculated an
incidence direction of 279◦ and a fit residual of 151 ms2. Comparing the residual to
the mean residual of the single-wavefront data with highest noise level (51± 29 ms2),
the value from the invalid fit was more than three standard deviations higher. There-
fore, the high residual is a warning sign that the model was not valid for this case.
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10.2 RBF Interpolation

The analysis of simulated data with the RBF interpolation is presented in the follow-
ing. The RBF interpolation was first applied to the patch simulations used for the
cosine-fit validation. Furthermore, colliding wavefronts were separated and ectopic
foci could be detected for more advanced catheter designs.

10.2.1 Validation

In order to validate the RBF interpolation method and to compare the results to those
from the cosine fit algorithm, RBF interpolation was applied to the same simulated
data with artificial noise used in section 10.1. The mean angle errors for increasing
noise levels (σ = 0.05A, 0.1A, 0.15A, and 0.2A) were 2.5◦, 3.0◦, 3.8◦, 4.8◦. These
errors were around 1 to 1.5◦ lower than for the cosine-fit analysis with angle uncer-
tainty δγ = 1◦. However, no angle uncertainty was assumed for the RBF analysis. If
the angle errors for the cosine fit were extrapolated to δγ = 0◦, very similar results to
those from the RBF interpolation could be expected.
Errors in estimated CV when using RBF interpolation were (for increasing noise
level): 2.1, 3.3, 5.2, and 7.6 cm/s. These values were up to 2.5 cm/s higher than for
the cosine fit. One source of error might be the occurrence of local extrema in the
interpolated LAT field. Such extrema lead to very small numerical gradients and thus
very high local CV values. To correct for such errors, data points with local CVs
greater 200 cm/s were not included when calculating the mean CV of a single acti-
vation pattern. However, the decision which data points to include could further be
optimized to reduce such errors.
An error source that has not been considered is the electrode position uncertainty
that is present when clinical recordings are analyzed. For example, circular catheters
may appear squeezed, i.e. elliptic, probably due to distortions in the localization field.
Such errors may for example lead to an over- or underestimation of CV and should
therefore be analyzed in future studies.

10.2.2 Detection of Two Colliding Wavefronts

The two colliding wavefronts that were simulated during validation of the cosine-fit
method (section 10.1) were analyzed using RBF interpolation. The simulated inci-
dence directions were 0◦ and 210◦. The interpolation results are depicted in Fig-
ure 10.2. The RBF interpolation detected incidence directions of 347◦ and 218◦,
which corresponds to an error of 13◦ and 8◦.
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10.2.3 Detection of Ectopic Foci

An activation time field for an ectopic focus inside the catheter region was recon-
structed using RBF interpolation. Figure 10.2.3 shows the interpolated fields for the
AFocusII spiral catheter, the PentaRay catheter, and a standard circular mapping
catheter with 10 electrodes. For the AFocusII and the PentaRay, the earliest point
of activation was reconstructed inside the catheter region at the focus position. In the
circular mapping catheter, the ectopic activation could not be reconstructed. Instead,
the result was a plane wave pattern. The advantage of the AFocusII and the PentaRay
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Table 10.1. Cosine-fit results for simulated circular catheter on LA roof.

LA roof CS
tc A γ ϕ0 Res CV Slope CC

(ms) (ms) (◦) (◦) (ms2) (cm/s) ms
Sinus 93.8 10.9 34.6 318 8.7 69 -5.0 -0.71
LSPV 53.0 10.2 36.3 64 4.5 73 15.5 1.0
LIPV 40.9 10.8 35.5 120 6.2 70 6.8 0.72
RIPV 38.9 10.7 37.9 219 2.7 70 -8.9 -0.94
RSPV 53.0 10.2 35.4 287 5.2 73 -7.0 -0.89

catheter is that they also measure radial information, which allows for detection of
activation that spreads outwards from the catheter center.

10.3 Electrogram Simulation and Analysis in a Realistic Atrial Data
Set

Fig. 10.4 depicts the simulated electrograms for stimulations in the VM atrial data
set. Estimation results for the parameters are given in Table 10.1. Obviously, inci-
dence directions significantly differed for stimuli in the LSPV (64◦), LIPV (120◦),
RIPV (219◦), and RSPV (287◦) as well as in sinus rhythm (318◦). The visualization
of these directions in Fig. 10.4 shows that they point precisely into the direction of
the corresponding stimulation points. The average CV amounted to 71± 2 cm/s, cor-
responding to an error of 1 cm/s compared to the simulated value of 70 cm/s (relative
error 1.4%).
The activation times from the CS were characterized by a negative slope and a neg-
ative CC for stimuli originating at the right side (NSR, RIPV and RSPV). Thus,
proximal electrodes with higher numbers were activated earlier. Stimuli from the left
side (LSPV, LIPV), in contrast, showed a positive slope and CC.

10.4 Analysis of Patient Data

The clinical measurements were analyzed with the cosine-fit method and (for data
without CS pacing) the CS analysis techniques. For measurements with colliding
wavefronts and data from an AFocusII spiral catheter, RBF interpolation was ap-
plied. The results for the cosine-fit and the CS analysis are summarized in Tables 10.2
and 10.3 on pages 112/113. For the segments measured during incremental pacing,
only the longest pacing cycle length was analyzed. Rate-dependent CV changes for
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from CS 7-8. This corresponded to a reduced CV.

patients 1 to 5 will be analyzed in detail in section 10.5. Generally, it must be noted
that the calculated incidence direction ϕ0 depends on the catheter position and ori-
entation. Therefore, results from different patients or catheter positions cannot be
directly compared to each other or to the simulated results above.

Patient 1

In patient 1, segment 1a contained six beats of stable sinus rhythm and 18 beats
of stimulated excitation from CS electrodes 3-4 with a PCL of 500 ms. During si-
nus rhythm, the incidence direction was ϕ0 = 56± 4◦ and the conduction velocity
CV = 115±14cm/s. Under pacing at 500 ms, the values amounted to ϕ0 = 211±4◦

and CV = 70±4cm/s. The resulting directions and example signals are depicted in
Fig. 10.5. The second recording, segment 1b, comprised 11 beats of sinus rhythm
and 17 beats of stimulated excitation from CS 7-8. In sinus rhythm, the incidence
direction was calculated to ϕ0 = 51±5◦ and the CV to CV = 108±2cm/s. During
stimulated excitation, the parameters were ϕ0 = 268±20◦ and CV = 109±8cm/s.
Incidence directions during NSR pointed towards the RA, whereas incidence di-
rections for beats during pacing pointed towards the respective pacing electrodes
(Fig. 10.5). Apart from that, it must be noted how the CV decreased from 115 cm/s
for NSR to 70 cm/s for stimulation from CS 3-4. One possible explanation could be
fiber orientation that causes a directional dependence of the CV. On the other hand,
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the results from [15] showed velocity deviations of more than 80% between stimu-
lations even from opposite directions. This velocity drop will be further discussed in
section 10.5.1 where CV changes for shorter CLs are analyzed.
Segments 1c to 1f contained recordings from the CS catheter. Pacing pulses were ap-
plied close to the different PVs using the ablation catheter, with one PV per segment.
Like in the simulation, CC values were highest (i.e. highest positive or lowest nega-
tive values) for the LSPV (-0.27), followed by the LIPV (-0.35), the RSPV (-0.70),
and the RIPV (-0.99). In contrast to the simulation results, even the CCs (and slopes
from the linear fit) for stimuli on the left side were negative. This could be due to the
fact that the clinical stimulation points in the PVs may have been located closer to
the LA center, or because the location of the CS catheter may have been different.

Patient 2

Analysis of section 2a showed that there was an alternating conduction pattern. In this
patient, an atrial bigeminus was present, i.e. the CLs in the circular mapping catheter
alternated between around 1300 ms and 450 ms. When analyzing the segment as a
whole, this resulted in a very high CL standard deviation of 432 ms. Therefore, beats
with a long and short CL were analyzed separately. Incidence direction was different
between the two CLs (259±11◦ for long CL vs. 312±13◦ for short CL), as it is illus-
trated in Fig. 10.6(a). While the incidence direction for beats with long CL pointed
towards the SN, it pointed more downwards for beats with short CL. Furthermore,
the mean CC of the CS activation was -0.98 for beats with a long CL, correspond-
ing to a typical right-to-left activation. For beats with a short CL, the mean CC was
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Fig. 10.7. Patient 2, segment 2c from LA posterior wall. (a) Incidence directions of sinus rhythm (NSR),
ectopic beats, and during stimulation in the coronary sinus (CS 3-4). (b) Corresponding electrograms. In the
CS electrograms during stimulation, large artifacts can be seen during and directly after stimulation. Therefore,
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-0.62, i.e. the activation did not propagate linearly along the catheter in one direction.
The corresponding electrograms are depicted in Fig. 10.6(b), where it can be seen
that for beats with short CLs, the first activation typically occurred in channel CS
5-6. A third parameter that was calculated here was the delay between the center of
activation in the circular catheter and in the CS catheter. For beats with a long CL,
the delay was 49± 1ms, i.e. activation in the CS catheter occurred later than in the
circular catheter. For beats with short CL, in contrast, the delay was -9±15 ms, which
means that for many beats, activation in the CS catheter preceded the activation in the
circular catheter. Therefore, it is likely that the beats with short CL were initiated in
the LA. This would mean that every beat from the SN was followed by a premature
beat from the LA 450 ms later. However, the question remains why the CL of the
premature beat was relatively long compared to the atrial activation time of 100 to
150 ms, and why only one beat followed each sinus beat (there are only two events
where a sinus beat was followed by two beats with short CL).
Segment 2b comprised 38 beats during pacing at a CL of 600 ms measured at the an-
terior LA wall. Several signals contained distortions due to contact between overlap-
ping catheter electrodes. Therefore, one beat was not detected. This lead to a doubled
CL for the following beat and in its turn to the large standard deviation of 113 ms
for the cycle length. Analysis of other beats did not seem to be affected, however.
The resulting incidence direction of 336± 23◦ pointed downwards, which was in
accordance with the pacing site in the CS.
Recordings in segment 2c were performed on the posterior LA wall. Measurements
during NSR showed a very high residual value that was caused by high fractionation
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of the electrograms. Example signals are shown in Fig. 10.7. It can be seen that the
highest deviation between detected and fitted LAT occurs in the highly fractionated
channel 2-3. However, the cosine line crosses the fractionated signal region in this
channel, so the cosine can still be assumed to be a valid data model. The incidence
direction of 315±23◦ pointed towards the RA along a line below the RIPV. The
recording further contained seven ectopic beats with CLs below 0.9 s, different in-
cidence angles and CCs. Therefore, beats with long (≥0.9 s) and short (<0.9 s) CLs
were analyzed separately. The incidence direction for short CLs was 13± 28◦ and
pointed into the superior direction towards the LA roof as can be seen in Fig. 10.7(a).
Furthermore, the CC showed non-linear activation of the CS catheter with an average
CC of -0.68. As can be seen in Fig. 10.7(b), CS 5-6 was the channel with the earli-
est activation for the ectopic beats. The delay between activation of the circular and
the CS catheter was 10± 2ms for beats with a long CL and 34± 12ms for ectopic
beats with a shorter CL. Thus, it is very likely that the beats with a shorter CL did
not originate in the SN. Comparing these properties to the results from segment 2a
for beats with a short CL, the question is if the ectopic beats in segment 2c had the
same origin. The CC values were very similar (-0.62 vs. -0.68), which would sup-
port this hypothesis. This would then mean that the wavefront caused by the ectopic
beat propagated across the LA anterior wall in the superior direction, then posteriorly
across the LA roof and inferiorly at the posterior wall. On the other hand, it seems
unlikely that such an ectopic focus would be detected in the CS more than 30 ms later
than on the posterior wall. It might rather be conducted to the CS faster along the LA
inferior wall. Therefore (and also due to the fact that no atrial bigeminus is present as
it is the case in segment 2a), it is well possible that different foci were active in the
respective segments.
Under pacing from CS 3-4 at a PCL of 500 ms, the incidence angle of 175±2◦ pointed
downwards to the origin of the stimulus. CV during pacing was higher than during
NSR (83 vs. 56 cm/s), while at the same time the residual was decreased (205 vs. 609
ms2). The incidence direction and example electrograms are included in Fig. 10.7.
Results for segment 2d were quite similar to those from segment 2c. Electrograms
during NSR also contained one ectopic beat, however, no separate analysis was per-
formed due to the limited overall number of ten beats.

Patient 3

Segments 3a and 3b were recorded at the LA anterior wall. Both segments contained
recordings in NSR with an incidence direction pointing obliquely downwards be-
tween the SVC ostium and the inferior direction. CVs were 79 and 71 cm/s together
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with residuals of 33 and 36 ms2. During pacing from CS 3-4 and 7-8 in segment
3b, calculated CV values were strongly increased to 170 or 150 cm/s respectively,
which appears unphysiologically high and suggests a detection error. Compared to
the NSR measurements, the residual was strongly increased for CS 3-4 pacing (316
ms2), but only moderately for CS 7-8 pacing (89 ms2). However, when looking at
the LATs, it seems very probable that the LAT pattern was caused by two colliding
wavefronts for both pacing cases. Therefore, a smaller amplitude was obtained from
the cosine fit that resulted in a falsely increased value for the CV. The patterns from
these wavefronts were therefore analyzed with the RBF interpolation method to test
the hypothesis of colliding wavefronts as described in section 6.2.4. As can be seen
in Figure 10.8, two colliding wave fronts were indeed detected for each of the stim-
ulations. The corresponding incidence directions were 52◦ and 298◦ for CS 3-4, and
74◦ and 224◦ for CS 7-8.
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Segments 3c and 3d were recorded at the LA posterior wall. Segment 3d contained
two pacing sequences, one from CS 3-4 and another one from CS 3-7. During NSR,
incidence directions in both segments pointed across the LA roof towards the RA.
The absolute incidence angles differed due to a different catheter position and ori-
entation. For the second NSR section, the CC standard deviation from the CS elec-
trograms was increased because during the last analyzed beat, pacing already started
in the CS catheter and interfered with LAT detection. The incidence direction during
the stimulations pointed downwards into the direction of the CS catheter.

Patient 4

Segment 4a was recorded on the anterior LA wall. It comprised 20 beats of NSR
and 15 beats of pacing from CS 3-4 at a CL of 600 ms. Incidence directions pointed
towards the SN during NSR and along a line probably above the mitral valve during
pacing (Fig. 10.9). Segment 4b contained 41 beats measured at the LA anterior wall
during pacing from CS 7-8. Here, the wave front may have passed below the mitral
valve before detection in the catheter. This points out the role of the mitral valve as a
geometrical obstacle.
The measurements in segments 4c, 4d, 4e, and 4f were performed at the LA roof.
Analysis of segment 4c yielded an incidence direction of 91± 9◦ that pointed to-
wards the stimulating CS 3-4 electrodes. Segment 4d contained recordings of NSR,
in which the incidence direction pointed towards the RA. Results from the follow-
ing stimulation sequence from CS 3-4 with a PCL of 600 ms were quite consistent
with those from segment 4c with a PCL of 500 ms. Segment 4e (stimulation from
CS 7-8) resulted in very similar incidence direction than those observed in 4c and
4d, i.e. pointing rather towards the CS 3-4 electrodes. However, it was confirmed by
the recorded CS electrograms that pacing pulses were indeed applied in the CS 7-8
electrodes. Therefore it is likely that anisotropic conduction along the LA posterior
wall led to a conduction path between pacing and recording site which did not corre-
spond to the direct connection along the tissue surface. Segment 4f contained another
recording during stimulation from CS 7-8 which produced similar results.

Patient 5

In patient 5, segment 5a from the RA lateral free wall contained six beats of stable
sinus rhythm before pacing was initiated. The incidence direction was calculated to
ϕ0 = 316±3◦ and the CV to 79±3cm/s. Stimulation from the ablation catheter close
to the sinus node yielded ϕ0 = 308± 4◦ and CV = 76± 4cm/s for the 13 recorded
beats. Both directions pointed towards the sinus node.
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(b) Corresponding electrograms (CS 7-8 scaled by 2).

Segment 5b from the posterior RA wall comprised 20 beats of stable sinus rhythm
with ϕ0 = 10±8◦ and CV = 97±2cm/s. During stimulation from the CS, the inci-
dence direction was shifted approximately 90◦ down towards the CS.
It is interesting to note that unlike in all other segments, the CC from the CS signals
was very close to zero. This was due to the fact that activation in the distal electrode
pair CS 7-8 was delayed.

Patient 6

Data from patient 6 contained 91 beats of stable sinus rhythm. The incidence direc-
tion was ϕ0 = 312±2◦ and the conduction velocity CV = 91±4cm/s. The incidence
direction pointed towards the RA.

Patient 7

Data in patient 7 comprised 59 beats and was measured at the anterior LA wall with
an AFocusII spiral catheter. It was therefore analyzed with the RBF interpolation
method. The resulting incidence directions during NSR and CS 7-8 pacing were
276±2◦ and 38±7◦. They are shown in Figure 10.10 together with the corresponding
electrograms and interpolated LAT fields. The average CV was 87± 5cm/s during
NSR and 65±10cm/s during CS 7-8 pacing.
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Fig. 10.10. Patient 7, segment 7a. (a) Incidence directions in the AFocusII catheter during NSR and CS 7-8
stimulation. (b) Corresponding electrograms. (c, d) Interpolated LAT fields for NSR and CS 7-8 stimulation.
Note the arrangement of electrodes when comparing the field to the catheter position from (a).

10.5 CV Restitution Curves

Analysis of CV restitution was performed in patients 1 to 5, in which recordings from
incremental pacing at the LA roof or LA posterior wall were available (segments 1a,
1b, 2d, 3d, 4e, 4f, and 5a).
Local CV typically decreased for shorter pacing cycle lengths. The mean local CV
over the considered patients was 108±14 cm/s during NSR, 86±15 cm/s during pac-
ing at 500 ms, and 77±20 cm/s during pacing at 300 ms. In the LA, local CV values
ranged between 104 and 120 cm/s during NSR, between 70 and 109 cm/s during pac-
ing at 500 ms, and between 47 cm/s and 107 cm/s during pacing at 300 ms. In the
RA measurement, local CV was 79 cm/s during NSR, 76 cm/s at a PCL of 500 ms
and 70 cm/s at 300 ms. Table 10.5.1 summarizes absolute CV values and changes
between pacing at a cycle length of 500 ms and 300 ms. Fig. 10.13 shows example
restitution curves.
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Table 10.4. CV restitution analysis results for different pacing sequences.

Meas Stim No Beats Residual Local CV (cm/s) Local CV Global CV
Pat Site Site Incl Excl (ms2) NSR PCL 500 PCL 300 Rel P Rel P

1 LA roof CS 3-4 94 7 31± 25 113±10 70± 4 107±12 53% <0.001 2% n.s.
CS 7-8 105 6 23± 13 108± 2 109± 9 101± 4 -7% <0.01 7% <0.001

2 LA post CS 3-4 123 7 331±166 (n/a) 80± 7 47± 6 -42% <0.001 -25% <0.001
3 LA roof CS 3-4 123 13 116± 83 120±11 84± 8 82±14 -2% n.s. -16% <0.001

CS 7-8 132 8 115± 81 120±16 108± 4 70±15 -35% <0.001 -39% <0.001
4 LA roof CS 3-4 117 8 61± 73 104± 5 82±11 69*±17 -16% <0.05 -6% <0.05

CS 7-8 137 9 64± 74 111± 8 76± 9 67±10 -12% <0.01 -14% <0.001
5 RA FW SN 100 6 100± 59 79± 9 76± 4 70± 6 -8% <0.001 -2% <0.05

* value at PCL 350 ms.

10.5.1 Individual Results from Different Patients

In the following, results obtained from the different patients are explained in detail.

Patient 1

In contrast to the majority of measurements, patient 1 showed a remarkable CV
change of inverse nature. Local CV during NSR was approximately 110 cm/s. Af-
ter the start of pacing from CS 3-4, local CV directly dropped from around 110 cm/s
during NSR to 70 cm/s. At shorter PCLs, however, the local CV then increased step
by step (Fig. 10.12(a)). At the shortest PCL of 300 ms, the CV of 107 cm/s was again
close to the value during NSR. This corresponded to an increase of 53% (P<0.001)
between pacing at 500 and 300 ms. Global CV, in comparison, did not change signif-
icantly. During CS 7-8 pacing, local CV decreased by 7% (P<0.01) whereas global
CV increased by 7% (P<0.001). Apart from that, the global CV showed a larger
increase between 500 and 400 ms than between 500 and 300 ms for both pacing sites.

Patient 2

Patient 2 showed a strong decrease in both local and global CV between PCLs 500
and 300 ms as can be seen in Figure 10.12(b). Local CV decreased by 42% (P<0.001)
and global CV by 25% (P<0.001). The local CV decrease of 42% was the highest
decrease observed in the patients under study. It must be noted for patient 2 that the
residual from the cosine fit (331± 166 ms2) was considerably higher than in other
measurements. This was mainly caused by a higher electrogram fractionation. As
a result, electrograms were broadened and the detection uncertainty in the activa-
tion times was increased, which also increased the fit residual. However, despite the
increased residual, it can be seen in Fig. 10.11 that the cosine data model still repre-
sented the activation pattern and therefore was a valid assumption.
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Fig. 10.11. Example electrograms for pacing at 500 and 300 ms with resulting cosine-fits. (a) Electrograms
from patient 1 (CS 3-4). The strong and atypical increase in CV is reflected by the decrease in cosine amplitude
A from 14.6 ms (at 500 ms PCL, left column) to 9.3 ms (at 300 ms pacing, right column). (b) Electrograms
from patient 2. Due to conduction slowing, the time amplitude of the cosine increases from 12.0 ms to 20.5 ms.
Fits in this patient had a high average residual of 331 ms2 due to low signal amplitude and high electrogram
fractionation, as can be seen by the lower voltage scale compared patient 1. However, the cosine is still a valid
data model as it represents the general shape of the activation pattern.

Patient 3

For patient 3 during pacing from CS 3-4, the local CV change was not signifi-
cant (84±8 cm/s at 500 ms vs. 82±14 cm/s at 300 ms). However, local CV changes
showed a rather triphasic behaviour. The CV at 600 ms was 96 cm/s and decreased to
about 85 cm/s at 500 and 450 ms. During faster pacing at 400 and 350 ms, it increased
again to around 92 cm/s, and finally went down to 82 cm/s at 300 ms. Comparing lo-
cal CVs between PCLs 600 ms (instead of 500 ms) and 300 ms, there was a significant
decrease of 15% (P<0.001). The global CV, in contrast, monotonically decreased by
15% (P<0.001) not only compared to the value at 600 ms, but also compared to the
value at 500 ms. An explanation might be that local variations might have cancelled
each other out, for example, in regions of discordant alternans [132, 151]. During
pacing from CS 7-8, both local and global CV were strongly decreased by 35% and
39% (P<0.001). Fig. 10.13(a) shows the corresponding restitution curves that were
quite similar to those from patient 2. Furthermore, as in patient 2, the CV at 500 ms
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Fig. 10.12. Restitution curves for local and global CV. The y-axis of the global CV was aligned such that the
100% value of global CV was at the same level as the local CV at 500 ms (marked with dotted line). The global
CV range matches the local CV range in relative units to make both plots comparable. The local CV at NSR is
given by a dashed line for comparison. (a) CV restitution for patient 1 during pacing from CS 3-4. The local
CV on the LA roof (left panel) showed a strong increase of 53% (P<0.001), while the mean global CV (right
panel) only increased slightly by 2% (P = n.s.). (b) Data for patient 2. Local CV on the LA posterior wall was
reduced by 42% (P<0.001) and global CV by 25% (P<0.001).
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Fig. 10.13. CV restitution in patients 3 and 4. (a) Data from patient 3 under CS 7-8 pacing. Between pacing at
500 and 300 ms, local CV on the LA posterior wall was decreased by 35% (P<0.001) and global CV by 39%
(P<0.001). (b) In patient 4 under CS 7-8 pacing, local CV on the LA roof was reduced by 12% (P<0.01) and
global CV by 14% (P<0.001).

was slightly higher than at 600 ms. This phenomenon is referred to as supernormal
conduction, i.e. increased CV for shorter pacing intervals.

Patient 4

In patient 4 (CS 3-4 pacing), the local CV decreased by 16% (P<0.05) and the
global CV by 6% (P<0.05). During pacing at 300 ms, rhythm was no longer reg-



118 CHAPTER 10. RESULTS: QUANTITATIVE ANALYSIS OF ELECTROPHYSIOLOGICAL DATA

ular (whereas after termination of pacing, NSR was restored immediately). There-
fore, data from PCL 300 ms were not considered, and statistics were calculated be-
tween 500 and 350 ms. During pacing from CS 7-8, the local CV decreased by 12%
(P<0.01) and the global CV by 14% (P<0.001). Fig. 10.13(b) depicts the restitution
curves.

Patient 5

In patient 5, local CV decreased by 8% (P<0.001) and global CV by 2% (P<0.05).
These were rather small changes, but they still were significant. Furthermore, it is
interesting to note that the global CV dropped by 4% between 500 and 400 ms, but
increased again for shorter PCLs.

10.6 Discussion

In this chapter, intracardiac electrograms were simulated, and quantitative methods
were presented to analyze data that is frequently acquired during routine EP stud-
ies. A cosine-fit method estimated the wave direction (represented by the incidence
direction) and conduction velocity from intracardiac EGMs recorded with circular
mapping catheters. An extension of the RBF interpolation method proposed in [84]
for simulated data was used to interpolate local activation times in the catheter region
from which incidence direction and CV were estimated. It can be applied to universal
catheter geometries such as the PentaRay or AFocusII catheter. An analysis for acti-
vation of the CS catheter was proposed based on linear correlation between activation
time and pair number or based on linear regression.
These methods are not based on activation time maps of the whole atrium, but are
instead capable of single-shot analysis of individual wavefronts passing the catheter.
Thus, they are able to capture singular events such as ectopic beats or limited numbers
of wavefronts excited by stimulations. Repetitive measurements of stable patterns can
of course reduce measurement uncertainties.
All methods have been demonstrated to be applicable for the analysis of measurement
data from patients. Furthermore, rate dependent changes in CV were analyzed with
the cosine-fit method.

10.6.1 Simulation and Analysis of Intracardiac Electrograms

Intracardiac electrograms could be simulated in three steps: calculating transmem-
brane voltage distributions, forward-calculating the extracellular potentials, and ex-
tracting the catheter signals at the center of the metal electrodes in the model. With
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simulated electrograms from a tissue patch, the proposed analysis methods could be
validated.
In the stability analysis, different levels of noise were added to the detected acti-
vation times. It must be emphasized that by adding noise directly to the activation
times, all possible sources of noise were considered, regardless of the underlying
mechanisms. As could be expected, the directional estimation of the cosine-fit was
better for lower noise levels and more exactly determined catheter geometries. But
even in the worst-case scenario, the average directional error was below 10◦. This is
an enormous improvement compared to just visually selecting the channel of earliest
activation. In the latter case, a deviation of one channel already amounts to an error
of 30◦ to 40◦ or even more, depending on the catheter geometry. CV estimation was
almost independent of the catheter geometry parameter δγ . The average CV error
only increased for higher noise levels, but was less than 5.4 cm/s even for the highest
noise level. This corresponds to approximately 5% to 10% of typical CV values (50
to 100 cm/s). The setup with two wavefronts colliding under the catheter showed a
significantly increased fit residual.
The cosine fit and the RBF interpolation showed similar estimation qualities. Angle
errors were 1-1.5◦ smaller with the RBF interpolation, however, it assumed that the
catheter geometry was exactly known (which was the case in the simulation). On the
other hand, CV errors were up to 2.5 cm/s lower for the cosine fit.
A restriction of the cosine-fit is the assumption of a single wavefront passing over a
circular mapping catheter. However, this assumption covers a large number of mea-
surements, e.g., during atrial flutter and during mapping of patients suffering from
paroxysmal AF who are measured during NSR. Circular mapping catheters are fre-
quently used in clinical practice, therefore, the cosine model is applicable to a large
amount of intracardiac EGMs.
For two colliding wavefronts or different catheter types, RBF interpolation can be
used. It is a more general approach, because in theory, arbitrary catheter setups and
excitation patterns can be reconstructed. However, this also makes the approach more
error-prone. For example, if catheter positions recorded with electroanatomical map-
ping systems are used as interpolation centers, geometrical distortions of the elec-
trode positions may lead to over- or underestimations of the CV. Such influences must
be evaluated in future studies concerning the stability of the RBF interpolation. The
cosine fit in contrast assumes a circular catheter shape. Fluoroscopic images of the
circular catheters during the examinations were not analyzed systematically, how-
ever, when sporadically looking at such pictures, the real catheter geometry rather
appeared to be circular. In such cases, the results of the cosine fit are more reliable
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than those of the RBF interpolation. Therefore, clinical data were quantitatively an-
alyzed with the cosine-fit method, and only in cases of wavefront collisions or for
measurements with the AFocusII spiral catheter, RBF interpolation was applied.
It must be noted that incidence directions are measured in the local catheter coordi-
nate system. If the catheter is rotated, the results change even if the activation pat-
tern is the same. Therefore, the catheter position and orientation must be considered
when comparing measurements from different sites. However, this is easily possi-
ble, because the local directions from different sites can be combined into a common
geometric model. Furthermore, local incidence directions do not necessarily point
towards the stimulation origin, e.g. if conduction is anisotropic due to fiber orienta-
tion. Also for spiral waves that can be present during atrial arrhythmias, incidence
directions may not always point directly towards the spiral wave center.
Typical catheter diameters are in the range of 20 mm, therefore, only macroscopic
wavefronts can be analyzed. Substrate changes such as microfibrosis may induce
local micro-conduction phenomena and complex fractionated electrograms [78]. For
the study of such micro-conduction, sensors with higher resolution have been used in
tissue preparations [87].
Activation times in the bipolar electrograms were detected with the NLEO operator.
To determine activation times in unipolar signals, the maximum negative derivative
can be used. For bipolar signals like in this work, however, the NLEO appears to
be a more suitable approach, because it is, e.g., independent of the sign of the signal.
Furthermore, it allows to determine the signal center (instead of e.g. the onset). This is
necessary because only the center of activation has a defined spatial connection with
the point between the two electrodes. Generally, the proposed analysis techniques
can be used with both uni- and bipolar signals.
A realistic anatomical model was used to simulate intracardiac EGMs for stimula-
tions in all four PVs. The signals were quantitatively analyzed with the cosine-fit
method. Then it was distinguished between the stimuli origins based on the local
incidence direction. This shows how the analysis can extract clinically-relevant data
from simulation models. Such data are useful to parametrize the electrophysiology
of patient-specific models and to validate the simulation results.

10.6.2 Analysis of Clinical Measurements

From clinical intracardiac EGMs, the cosine-fit analysis reliably extracted incidence
directions and conduction velocities. Detected incidence directions were in good
agreement with expected values. Conduction velocities were mostly in the range re-
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ported in [15]. Furthermore, rhythm features of clinical relevance were observed in
the measurements, for example an atrial bigeminus and ectopic beats.
Cases of colliding wavefronts and measurements with an AFocusII spiral catheter
could be analyzed with the RBF interpolation. The resulting incidence angles were
also in good agreement with the expected directions.
Calculating the CC of the CS activation pattern was a simple but helpful method
to determine the propagation direction along the CS. During NSR, CC values were
typically between -0.9 and -1.0. For stimulations in the different PVs (segments 1c
to 1f), the changes were similar to those observed in the Visible Man simulations.
However, no positive values were observed in the clinical data, not even for stimuli
in the left PVs. A possible reason is that stimulations may have been performed more
at the side of the PV that was closer to the center of the atrium. Generally, the CC
is easier to interpret than the slope of the linear fit, because the CC is normalized to
a range from -1 to 1. In future studies, it is therefore probably sufficient to calculate
the CC only.
Our evaluation of clinical data comprised a considerable number of measurements.
The results show that the proposed methods are very promising techniques to ef-
ficiently extract patient-specific substrate parameters from intracardiac EGMs. The
cosine-fit is based on data from frequently used circular mapping catheters. There-
fore, additional requirements (e.g. to use special catheters) and additional examina-
tion time are minimized. The RBF interpolation method, in contrast, can be used for
different catheter types. However, the method still needs to be systematically evalu-
ated in terms of sensitivity to errors in clinical catheter positions.
The presented methods open up the possibility to systematically study larger patient
groups with respect to the atrial activation sequence and conduction velocity. For
example, analysis of the wave direction in atypical atrial flutter can quickly give an
idea about the underlying arrhythmia pattern and can immediately analyze pattern
changes. Thus, it could decrease examination times and reduce treatment costs. Sys-
tematic CV measurements after termination of paroxysmal AF could, for example,
be compared to recidivism rates and thus help to better understand the mechanisms
underlying AF.
Such data is further valuable for the integration into personalized simulation models
that could assist the physician in ablation planning for atrial arrhythmias [69].

10.6.3 CV Restitution

Measured local CV values in the LA varied much stronger during pacing (range 47 to
107 cm/s at PCL 300 ms) than during NSR (range 104 to 120 cm/s). This implies that
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individual responses to shorter pacing intervals show a high variability in patients
suffering from atrial arrhythmias.
For seven out of eight analyzed pacing sequences, local CV significantly changed
between a PCL of 500 ms on one hand and 300 ms on the other hand. Local CV
decreased in six data sets, whereas in one sequence it increased. In the data sets with
decreasing CV, the average decrease amounted to -20±15% (range -7% to -42%). In
one sequence, local CV increased by 53%. For global CV, a significant change was
observed in seven pacing sequences: six times it decreased and once it increased. For
the sequences with decreasing global CV, the average decrease was -17±13% (range
-2% to -39%).
Previous measurements in the human RA compared CVs at PCLs of 600 and
300 ms [9]. For patients with a history of atrial flutter, the average CV was reduced
by 7%, for patients with no such history it was reduced by 5%. Changes in patient
5 in the RA were of comparable magnitude, but changes in the other patients in the
LA were considerably higher. It is further interesting to note that in [9], CV changes
in atrial flutter patients were statistically significant in three out of four measurement
setups, but only in one setup for control patients. In another study in isolated rabbit
atrium [152], relative CV changes of up to -40% have been reported between a basic
cycle length of 500 ms and early premature beats, which is comparable to the results
obtained here for the LA.
Several CV restitution curves observed in this study showed morphological features
that have been reported previously in the literature. Regions of supernormal conduc-
tion (i.e. increased CV for shorter pacing intervals), for example, have been discussed
in [140] and [153]. Triphasic restitution curves have further been documented for the
ERP in the ventricles [154, 155]. At a fixed PCL, ERP restitution can also influence
the DI and therefore local CV. This could possibly produce similar observations in
the CV restitution curve as a function of the inter-beat-interval.
In contrast, changes such as the 53% increase in local CV in patient 1 during CS 3-4
pacing have not been observed yet to the knowledge of the author. As an explanation
for such unexpected behaviour, a measurement error was very unlikely due to several
reasons. First, the local CV increase was very large. Second, the fit residual was low,
and Fig. 10.11 shows that the quality of the fit was good. Furthermore, because the
data were recorded and analyzed as continuous signal, any accidental interchange of
electrograms (i.e. in reverse order) can be precluded. There is no ready explanation
for this phenomenon yet. However, in the global CV in Fig. 10.12(a) at PCL 300 ms,
one can recognize an alternans effect: a group of points shows a somewhat increased
IBI and reduced global CV, whereas another group has a decreased IBI and increased
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global CV. These events appear in alternating order in the original data. Thus, this al-
ternans may have influenced the development of the observed pattern. Generally, such
unexpected behaviour shows that studying larger patient groups could gain valuable
insights. Such studies might help to give better explanations and could reveal similar
or other unexpected phenomena.
In future studies, it would also be interesting to compare electrogram morphologies
for different PCLs. For example, the average amplitude and number of deflections
might be an indicator for the rate-dependent level of fractionation. Apart from that,
the average signal for a certain channel could be computed from all beats within one
PCL. It could then be compared to the average signal from the same channel for
different PCLs.
Furthermore, a question is if steady-state is already reached during the limited num-
ber of approximately 15 stimuli for each PCL. Observations in the ventricles showed
that steady-state is typically reached after 2-3 minutes when the PCL is increased
from 1000 to 600 ms [156]. As the ERP gradually adapts, CV restitution could be in-
fluenced by changes in diastolic interval. On the other hand, ERP measurements have
been performed using pacing protocols with a comparable number of stimuli [17].
Furthermore, when looking at a certain PCL in our data, we found rather a statistical
fluctuation in CV than, for example, a linear or exponential decrease. Therefore, also
due to the comparably small PCL steps present in this work, the results should give a
good approximation of the steady-state conditions.
Global CV was derived from the propagation time between pacing and detection.
This time can be influenced by the coupling latency, i.e. the delay between stimu-
lus application and start of wave propagation in the cardiac tissue [152]. However,
the aim of calculating global CV restitution was to have a rough comparison to the
values obtained from the proposed method to measure local CV restitution with a
circular mapping catheter. In this context, rate-dependent changes of the latency time
should be negligible. It should be mentioned here that an advantage of the local CV
measurements is that such latency effects are eliminated.
In cardiac modeling studies, CV restitution often is an important parameter [131].
There, it is most often given as CV over DI. In the data presented here, ERP and DI
could not be evaluated. ERP could possibly be determined from intracardiac EGMs
by an estimation of action potential duration, which is however especially challenging
to measure in the atria [157]. However, the presented method could also be applied to
more complex S1-S2 pacing protocols, which are, for example, used to measure the
effective refractory period [17]. The CV could additionally be measured with a cir-
cular mapping catheter in such studies. The diastolic interval could be estimated for
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each PCL from the difference between PCL and ERP. This could enable in-vivo mea-
surements of CV restitution curves over DI. Furthermore, combined measurements
of CV and ERP restitution would allow to directly determine wavelength restitution
in the human atria in-vivo. This is of special interest, because wavelength is a very
important parameter for the maintenance of re-entrant excitations [19, 152, 131, 9].
In contrast, it may also be advantageous to analyze data from incremental pacing as
presented here. The reason is that measurements can easily be included into clinical
practice. The length of the analyzed data segments was typically around 60 s long,
which corresponds to the time required for the measurements. This way, one could
study large cohorts of patients with respect to rate-dependent CV changes during
routine electrophysiological studies. With this method, it could even be possible to
detect pro-arrhythmic substrate during sinus rhythm and thus decrease examination
times during catheter ablation of atrial fibrillation.
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Results: Comparison of Simulated and Clinical Data

As a first step towards the personalization of atrial models, simulated catheter mea-
surements from patient-individual anatomical models were compared to clinical
recordings. To this end, both the simulated and the clinical electrograms (EGMs)
were analyzed with the cosine fit in terms of wavefront direction. Where colliding
wavefronts were measured, the RBF interpolation method was used for analysis. The
applied methods are described in detail in chapter 7.

11.1 Simulation Results

An overview of the simulated and clinical results is given in Table 11.1. The mean
deviation in incidence angles was 28±15◦. The relative error of the calculated con-
duction velocity (CV) compared to the value used as input parameter for the cellular
automaton was 16±15% on average. The results for the individual patients are dis-
cussed in more detail in the following.

Patient 1

In patient 1, the deviations between simulated and clinical incidence angles were
smaller than average and ranged between 19◦ and 24◦. Figure 11.1 shows the sim-
ulated wavefront during stimulation from CS 7-8. The deviation compared to the
clinically measured angle was less than half an electrode spacing. The simulated
electrograms show similar morphological features as the clinical signals.

Patient 2

In the anterior simulation for patient 2, the deviations between simulated and clinical
incidence angles were 45◦ and 36◦ and thus rather large. However, the offsets between
NSR and CS 3-4 stimulation are quite similar in both cases (77◦ vs. 68◦). This implies
that the simulated catheter may have been rotated with respect to the real position.
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Table 11.1. Comparison between simulated values and clinical measurements.

Incid. Dir. ϕ0(
◦) CV (cm/s)

Patient Seg Location Stim Site Clinical Sim ∆ϕ0 Clinical Sim Rel Err
1 1b Roof NSR 51 32 19 110 108 2%

1a CS 3-4 211 235 24 110 119 8%
1b CS 7-8 268 248 20 110 106 4%

2 2a Anterior NSR 259 304 45 56 58 4%
2b CS 3-4 336 12† 36 56 61† 9%
2c Posterior NSR 310 1 51 56 51 9%
2c CS 3-4 175 174 1 68 58 15%

3 3a Anterior NSR 230 221 9 87 76 13%
3b CS 3-4 (coll) 298† 340 42 90 136 51%
3b CS 7-8 (coll) 224† 284 60 90 112 24%
3c Roof NSR 227 246 19 120 92 23%
3d CS 3-4 29 38 9 97 60 38%
3d CS 7-8 18 48 30 97 99 2%

4 4a Anterior NSR 218 192 26 68 56 18%
4a CS 3-4 351 19 28 68 61 10%
4b CS 7-8 345 303 42 68 100 47%
4e Roof NSR 271 290 19 96 80 17%
4c CS 3-4 91 107 16 96 93 3%
4e CS 7-8 83 121 38 96 83 14%

† Derived using RBF Interpolation

Furthermore, it must be noted that in the simulation of CS 3-4 stimulation, two wave
fronts collided in the catheter area. Therefore, RBF analysis was applied to separate
the wavefronts, and the angle that was closer to the clinical measurement was used
for comparison.
The posterior simulation in patient 2 showed a very good match for CS 3-4 stimu-
lation (difference 1◦), but a large deviation of 51◦ for NSR. In Figure 11.2 it can be
seen that in the NSR simulation, a wavefront passing the LA roof was the first front
to arrive at the catheter. However, a second front approached the catheter from the
direction of the posterior septal region with some delay. The incidence direction of
the second front matched quite well the clinical incidence direction. So it is possible
that for adapted RA to LA conduction properties in the simulation, the front from the
septal region would be the first one to pass the catheter. This would then result in a
better match of simulation and clinical measurement.
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Fig. 11.3. Simulation for patient 3, stimulus in coronary sinus electrodes CS 3-4. (a) Excitation fronts (small
arrows) on the anterior LA wall, the extracellular potential is shown. The catheter electrodes are located on the
endocardium, but shown here on the epicardium for better visibility. Detected incidence directions are marked
at the catheter center (solid arrow: simulated direction, dotted arrows: clinical results from RBF interpolation).
The simulated direction is rotated counter-clockwise due to the wavefront components passing the LAA. A
second front is approaching over the LA roof, its direction is similar to the second clinical incidence direction.
(b) Clinical and simulated electrograms (EGMs).

catheter as demonstrated in Figure 10.8 on page 109. The simulation of the CS 3-4
pacing is shown in Figure 11.3. The deviation between simulated incidence direction
and clinical measurements was rather large with 42◦. In the simulation, there was no
collision of wavefronts from opposite directions. However, there was a wave front
from the left lateral side that rotated the determined incidence angle towards higher
angles. A second wave front was approaching the catheter on the LA roof with an in-
cidence direction similar to that of the second clinical direction. However, it arrived
too late in the simulation. Errors in estimated CV were rather high. This may be due
to the squeezed catheter geometry and the contribution of several wave fronts on the
activation of the catheter. However, the influence of the other fronts does not seem to
be high enough to use the RBF interpolation instead of the cosine fit.
Simulations in patient 3 on the LA roof showed moderate angle deviations between
9◦ and 30◦. For these simulations, the original mapped catheter positions were rotated
to be parallel to the surface. Obviously, no significant angle errors were introduced
by this correction.

Patient 4

For the anterior simulations in patient 4, directional errors were above average (be-
tween 26◦ and 42◦). Here, the mitral valve plays an important role as geometrical
obstacle. The mitral valve splits wave fronts stimulated in the CS into an inferior
and a superior part as can be seen in Figure 11.4 for the CS 3-4 stimulation. In this
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Fig. 11.4. Simulation for patient 4, stimulus in coronary sinus electrodes CS 3-4. (a) Excitation fronts (small
arrows) on the anterior LA wall, the extracellular potential is shown. The catheter electrodes are located on the
endocardium, but shown here on the epicardium for better visibility. Detected incidence directions are marked
at the catheter center (solid arrow: simulated direction, dotted arrows: clinical results from RBF interpolation).
The wave front passing the mitral valve superiorly mainly determines the incidence direction. (b) Clinical and
simulated electrograms (EGMs).

case, mainly the front passing superior over the mitral valve activates the catheter
region. In the CS 7-8 simulation, only the inferior part activates the circular mapping
catheter, which leads to an incidence direction pointing downwards. In the clinical
measurement, in contrast, the incidence direction for the CS 7-8 stimulation is sim-
ilar to those from CS 3-4 stimulation (see Figure 10.9 on page 111). This leads to
a high directional deviation of 42◦ between simulation and measurement for the CS
7-8 stimulation.
In the simulations in patient 4 with a catheter on the LA roof, the deviations between
simulation and clinical measurements are moderate for NSR and CS 3-4 pacing (19◦

and 16◦), but increased for CS 7-8 pacing (38◦).

11.2 Discussion

A workflow was demonstrated to create personalized anatomical simulation models.
It includes clinical catheter measurement positions and stimuli sites, simulated car-
diac excitation and the resulting electrograms, and comparisons of the simulation to
the clinical measurements based on quantitative electrogram analysis.
The average directional error was 28◦ and was thus smaller than the typical inter-
electrode spacing (which would be around 36◦ for a 10-electrode catheter adjusted to
cover a full circle). This directional error is a measure of how good the simulations
agree with measured excitation propagation. For cases with high deviations it might
be necessary to tune further model parameters. For example, conduction between
RA and LA plays an important role [12, 13] and influences the activation sequence
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of the LA. Furthermore, fast conducting pathways and fiber orientation can impact
on excitation propagation [159, 160, 161]. Such properties could be included into
the personalized model [99, 162] to test if this results in significant changes of exci-
tation conduction and possibly even better correspondence between simulation and
measurement.
The average relative error in CV estimation from the simulated EGMs was 16%. It
only gives an idea how well a known reference CV used as simulation input param-
eter can be reproduced by the EGM analysis. A possible cause for deviations is that
the cosine-fit method assumes that the catheter shape is perfectly circular. However,
the mapped catheter positions often show a squeezed geometry, i.e. they have a rather
elliptical shape. Although it has not been systematically evaluated, sporadic compar-
isons of the mapped positions and the positions in the fluoroscopic x-ray suggested
that the real shape of the catheter was indeed rather circular than elliptic. The squeez-
ing probably results from measurement limitations in the mapping systems, such as
field inhomogeneities. For analysis of real clinical measurements, the cosine-fit anal-
ysis is therefore more stable. For the simulation in the patient-specific geometry,
however, the mapped elliptic catheter shapes were inserted into the model. Now, the
in-silico measurements were in fact performed with elliptic catheters. Therefore, the
cosine-fit is likely to over- or underestimate CV, depending on the incidence direc-
tion. In future studies, catheter positions could therefore be corrected before inserting
them into the model.
A big advantage of analyzing single wavefronts is that the required clinical measure-
ments can be performed very quickly, even for different stimulation sites. This ap-
proach is therefore very promising for the adaptation and validation of personalized
models during routine clinical workflows.
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Conclusion

In this thesis, important aspects for personalizing atrial simulations have been in-
vestigated. First, a minimal electrophysiological cell model has been implemented.
It was originally supplied only with parameter sets to reproduce ventricular excita-
tion properties. In the course of this work, the model parameters have been adapted
to reproduce atrial properties as given by the Courtemanche-Ramirez-Nattel model.
Besides the physiological case, a parameter set for atrial remodeling during chronic
AF has been created. This will allow for studying arrhythmic behaviour with this
model in future. For the atrial simulations in the remaining part of this work, the
cellular automaton was used, because no advanced excitation properties such as, for
example, conduction velocity (CV) restitution were considered in these simulations.
However, the adaptation framework allows for further adaptations of the minimal
model with respect to patient-specific measurements. An important advantage com-
pared to detailed ionic models is that the minimal model behavior can be adjusted
on a phenomenological basis, using a very limited number of parameters only. As
an example, the CV restitution curve of the model can in future be adapted to mea-
sured CV restitution curves as demonstrated in the analysis section of this work. If no
patient-specific measurements for the effective refractory periods are available, liter-
ature values could be used as a first guess. This allows for including patient-specific
excitation properties in the simulations.
Second, the influence of tissue conductivities on simulated electrocardiograms
(ECGs) and body surface potential maps (BSPMs) has been evaluated. Although the
question which torso inhomogeneities are more important than others has been ad-
dressed before, the current evaluation gives new insights. On one hand, to the knowl-
edge of the author it is the first study to be based on simulated transmembrane voltage
distributions. This is the relevant case for patient-specific computer simulations. On
the other hand, it was investigated how the uncertainty in literature values for different
conductivities influences the ECG. With the resulting ranking, patient-tailored torso



132 CHAPTER 12. CONCLUSION

geometries can be simplified by including only the necessary level of detail. Apart
from the description of important tissues and organs, an efficient prediction method
for changes in BSPM due to conductivity variations was developed in this work. It
is based on principal component analysis and can predict signal changes over a wide
range of conductivities from few sample simulations. This is of great advantage in
the personalization of torso models and the simulation of patient-individual ECGs.
A significant part of this thesis covered the quantitative analysis of intracardiac
catheter measurements taken during electrophysiological studies. A cosine-fit method
has been developed that estimates the incidence direction and conduction velocity of
a single wavefront passing a circular mapping catheter. It allows to study excita-
tion propagation on a single-beat level. Thus, it is for example possible to analyze the
incidence direction of ectopic beats. Furthermore, conduction velocities can be deter-
mined as input parameters for personalized models. A considerable number of clin-
ical measurements has been successfully analyzed in this thesis using the cosine-fit.
An alternative method based on radial basis function interpolation was adapted and
extended. It allows to analyze electrograms measured with different catheter shapes
and more complex activation patterns such as colliding wavefronts. In a simulated
test setup, it showed a comparable result quality as the cosine-fit. For clinical data,
excitation measured with a spiral catheter and two colliding wavefronts measured
with a circular catheter could be reconstructed. However, the method still needs to be
systematically evaluated in terms of sensitivity to errors in clinical catheter positions.
A third component analyzed propagation direction in the coronary sinus, which is a
helpful supplemental analysis, e.g., for detecting ectopic beats. In future, the chal-
lenge will be to combine the strengths of these three methods for even more reliable
and flexible analysis techniques. They could then also be implemented into elec-
troanatomical mapping systems to give a quick quantitative feedback to the physician
based on the measured electrograms and provide data of high diagnostic value.
The cosine-fit analysis has further been used to measure CV restitution curves in in-
dividual patients. Such data were very scarce so far, but are of great interest both
for clinical considerations and atrial modeling. It was shown in this work that atrial
CV was rate-dependent. Further studies with more patients can now be performed
to confirm these findings. They may provide valuable insights into the underlying
mechanisms of atrial arrhythmias and allow characterizing arrhythmogenic substrate
during sinus rhythm. This way, regions of abnormal CV restitution could be iden-
tified as possible target regions for ablation. The cosine-fit and the coronary sinus
analysis are also good examples of analysis techniques that were developed and val-
idated in silico, i.e. based on simulations of the catheter measurement. The resulting
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analysis methods, however, can be applied directly to clinical data without incorpo-
rating further modeling. This demonstrates the possibilities of cardiac modeling for
the development of new quantitative analysis techniques.
Finally, patient specific simulations were performed. The simulation anatomy was
tailored by using a segmentation workflow for CTs with contrast enhancement in the
left atrium and the pulmonary veins. As an electrophysiological parameter, CV was
determined from intracardiac recordings with the cosine-fit method. Then, the clini-
cal excitation sequence was reproduced by stimulating the model at the sinus node or
the catheter electrodes used in the clinical pacing protocol. For most cases, incidence
directions showed a good correspondence between simulation and measurement. In
some patients, larger angle deviations possibly resulted from delays between concur-
ring wavefronts. Such comparisons are a valuable basis for further personalization.
For example, they allow for investigating if fiber orientation in the model reduces the
remaining directional errors. This shows that analysis and simulation of intracardiac
electrograms can be used as an interface between clinical measurements and simu-
lation models. On one hand electrophysiological parameters can be determined from
frequently used clinical measurements, on the other hand, simulation results can be
quantitatively compared to measured data.
In summary, it was shown that important limitations in the personalization of atrial
models can be overcome with the presented methods. This opens up the possibil-
ity for studying atrial model personalization in larger groups of patients. Further-
more, the analysis methods developed for intracardiac electrograms can be directly
applied to clinical measurements without additional modeling steps. These results
will hopefully lead to a better understanding of the underlying mechanisms and an
improvement of the treatment. This way, personalized models could reduce examina-
tion times, improve success rates and significantly reduce both the overall treatment
costs and — most important — the patients’ burden.
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