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Zusammenfassung

“Dass ich nicht mehr, mit sauerm Schweiß,

Zu sagen brauche was ich nicht weiß;

Dass ich erkenne was die Welt

Im Innersten zusammenhält,”

[Faust, Der Tragödie Erster Teil,

J. W. Goethe, 1808]

Dem fiktiven Doktor Faustus gleich, widmen sich Teilchenphysiker der Erforschung der

Bausteine unserer Materie und der Eigenschaften der Kräfte, die zwischen diesen funda-

mentalen Einheiten wirken. Das Standardmodell der Teilchenphysik fasst das gesammelte

Wissen über die elementaren Teilchen und deren Wechselwirkungen zusammen. Es wur-

de in den frühen siebziger Jahren des 20. Jahrhunderts entwickelt und gilt bislang als

vollständigste und erfolgreichste Theorie zur Beschreibung der beobachteten Phänome-

ne. Insgesamt beinhaltet das Standardmodell zwölf fundamentale Fermionen, zu denen

jeweils ein Antiteilchen mit entgegengesetzten Ladungen existiert. Die Wechselwirkun-

gen zwischen den Fermionen werden beschrieben durch den Austausch von Eichbosonen,

die an die Teilchen mit entsprechender Ladung koppeln. Gemäß dieser Ladungen können

die zwölf Fermionen weiter in sechs Quarks und sechs Leptonen unterteilt werden. Dabei

nehmen Quarks an allen drei Standardmodellwechselwirkungen teil, d. h. an der elektro-

magnetischen, der schwachen und der starken Wechselwirkung. Leptonen andererseits

nehmen nur an der schwachen Wechselwirkung teil, beziehungsweise die elektrisch ge-

ladenen Leptonen zudem an der elektromagnetischen. Als Austauschteilchen stehen im

Standardmodell Photonen, W- und Z-Bosonen sowie Gluonen zur Verfügung. Darüber

hinaus sagt das Standardmodell ein skalares Boson vorher, das Higgs-Boson, was jedoch

bislang nicht experimentell beobachtet werden konnte.

Das schwerste unter den fundamentalen Fermionen ist das Top-Quark, das erstmals

im Jahr 1995 von den Experimenten CDF und DØ am Tevatron-Ringbeschleuniger des

Fermilab in der Nähe von Chicago nachgewiesen werden konnte [1, 2]. Mit einer Masse

von mt = 173.3± 1.1 GeV/c2 [3] ist es etwa so schwer wie der Kern eines Goldatoms

und rund 40 mal schwerer als das nächst leichtere Fermion, das Bottom-Quark. Auf-

grund dieser großen Ruhemasse treten im Bereich der Top-Quark Physik Phänomene auf,

die in dieser Art bei leichteren Quarks nicht beobachtbar sind. So treten alle leichteren

Quarks in gebundenen Systemen aus Quark-Antiquark-Paaren oder in Kombinationen

aus drei Quarks auf. Top-Quarks dagegen zerfallen mit einer mittleren Lebensdauer von

τt = 4.2 · 10−25 s [4] bevor sich derartige gebundene Systemen ausbilden können.

Die uns umgebende gewöhnliche Materie besteht ausschließlich aus den zwei leich-

testen Quarks, dem Up- und dem Down-Quark. Top-Quarks hingegen können lediglich

durch die Kollision hochenergetischer Teilchen erzeugt werden, z. B. bei der Kollision von

Teilchen aus der kosmischen Strahlung mit Molekülen in der Atmosphäre, oder unter La-

borbedingungen in Kollisionsexperimenten. Für die Erzeugung von Top-Quarks sagt das

Standardmodell zwei Mechanismen vorher, zum einen die Produktion von Top-Antitop-

Quark-Paaren über die starke Wechselwirkung, zum anderen die elektroschwache Pro-

duktion einzelner Top-Quarks. Während die Paarproduktion 1995 zur Entdeckung des
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Top-Quarks führte, gelang der Nachweis der elektroschwachen Top-Quark-Erzeugung

erst 2009 [5–7], wiederum durch die Experimente CDF und DØ. Top-Quarks zerfal-

len dann, mit einem Verzweigungsverhältnis von fast 100%, über die elektroschwache

Wechselwirkung in ein Bottom-Quark und ein W-Boson. Die tt̄-Ereignisse lassen sich

entsprechend dem Zerfall der W-Bosonen kategorisieren. Zerfallen beide W-Bosonen

hadronisch in ein Quark-Antiquark-Paar bzw. leptonisch in ein geladenes Lepton und

das zugehörige Neutrino, so spricht man vom vollhadronischen bzw. vom dileptonischen

Kanal. In Prozessen mit einem leptonischen und einem hadronischen W-Boson-Zerfall

hingegen spricht man vom semileptonischen Zerfallskanal. Die hier vorgestellte Analyse

konzentriert sich auf den semileptonischen Myonkanal, in dem das eine W-Boson in ein

Quark-Antiquark-Paar, das andere in ein Myon und ein Myonneutrino zerfällt.

Bis Anfang letzten Jahres war es allein dem Tevatron-Ringbeschleuniger des Fermi-

lab vorbehalten Top-Quarks unter Laborbedingungen zu erzeugen. Hierfür stehen Proton-

Antiproton-Kollisionen bei einer Schwerpunktsenergie von
√

s = 1.96 TeV zur Verfü-

gung. Mit Inbetriebnahme des Large Hadron Collider (LHC) des CERN in der Nähe

von Genf, ist es nun auch in Europa möglich, Top-Quarks zu erzeugen. Der LHC ist ein

Proton-Proton-Ringbeschleuniger, der 2010 bei einer Schwerpunktsenergie von 7 TeV be-

trieben wurde. Theoretische Berechnungen für diese Schwerpunktsenergie ergeben einen

Wirkungsquerschnitt von σtheo
tt̄

= 164.6+11.4
−15.7

pb [8–10] für die Erzeugung von Top-Anti-

top-Quark-Paaren.

Mit dem Compact Muon Solenoid (CMS) Detektor, der sich in einer Untergrundkaver-

ne etwa 100 Meter unter der Erdoberfläche in Cessy, Frankreich, befindet, lassen sich die

Proton-Proton-Kollisionen des LHC beobachten und analysieren. Das CMS-Experiment

weist den hierfür üblichen zwiebelschalenförmigen Aufbau eines Kolliderdetektors auf,

der schematisch in Abbildung I dargestellt ist. Dabei sind zunächst radialsymmetrisch um

den Wechselwirkungspunkt Spurdetektoren aufgebaut, die zur Rekonstruktion der Spuren

geladener Teilchen dienen. Die Spurrekonstruktionsdetektoren werden hermetisch einge-

schlossen von den elektromagnetischen und hadronischen Kalorimetern, die der Ener-

giemessung von elektromagnetisch und stark wechselwirkenden Teilchen dienen, wobei

letztere als Hadronen bezeichnet werden. Wie bereits der Name suggeriert, handelt es

sich beim CMS-Detektor um ein sehr kompaktes Instrument, d. h. alle bisher beschrie-

benen Detektorkomponenten befinden sich innerhalb einer supraleitenden Solenoidspule,

die ein Magnetfeld von etwa 3.8 T zur Verfügung stellt, und somit die Impulsmessung ge-

ladener Teilchen im Spurrekonstruktionsdetektor ermöglicht. Die einzigen experimentell

direkt beobachtbaren Teilchen, die diesen inneren Detektorteil verlassen können, sind mi-

nimalionisierende Myonen. Zu deren Nachweis sind außerhalb der Solenoidspule weite-

re Spurrekonstruktionsdetektoren angebracht, die zusammengefasst als Myonsystem be-

zeichnet werden. Insgesamt weist der CMS-Detektor einen Durchmesser von etwa 15 m,

eine Länge von etwa 22 m und ein Gesamtgewicht von rund 12.500 t auf. Im Jahr 2010

konnten mit dem CMS-Detektor Proton-Proton-Kollisionsereignisse aufgezeichnet wer-

den, die einer Datenmenge von L = (36.1± 4.0) pb−1 [11] entsprechen, und nun den

Physikanalysen zur Verfügung stehen. Ziel dieser Arbeit war es, die Erzeugung von Top-

Quarks in den Daten des CMS-Experiments nachzuweisen und eine erste Messung des

Wirkungsquerschnitts für die tt̄-Produktion vorzunehmen.
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Abbildung I: Schematische Darstellung des Compact Muon Solenoid Detektors mit dem für Kol-

liderexperimente typischen zwiebelschalenförmigen Aufbau und der Zylinder- und Endkappen-

struktur zur maximalen räumlichen Abdeckung [12].

Der Wirkungsquerschnitt der Top-Antitop-Quark-Paarerzeugung liegt etwa neun Grö-

ßenordnungen unter dem inelastischen pp-Wirkungsquerschnitt. Zudem ist die experi-

mentelle Signatur eines hochenergetischen Myons, fehlender Transversalenergie, die auf

das nicht direkt experimentell beobachtbare Neutrino hinweist, und vier Jets nicht al-

lein tt̄-Myon+Jets-Ereignissen vorbehalten. Verschiedene andere Standardmodellprozes-

se weisen eine ähnliche Signatur auf und können dadurch irrtümlicherweise als Signaler-

eignisse klassifiziert werden. Man verwendet daher Monte-Carlo-Methoden um tt̄-Signal-

und Untergrundprozesse zu simulieren. Basierend auf diesen simulierten Kollisionsereig-

nissen wurde im Rahmen dieser Arbeit eine Ereignisselektion entwickelt, um ein gutes

Verhältnis zwischen Signal- und Untergrundbeiträgen zu erhalten. Hierbei wurden Se-

lektionskriterien auf genau ein wohlidentifiziertes und isoliertes Myon, die Abwesenheit

weiterer Lepton-Kandidaten und das Auftreten von exakt drei beziehungsweise mindes-

tens vier Jets pro Ereignis angewendet. Auf ein dediziertes Selektionskriterium die feh-

lende Transversalenergie betreffend wurde verzichtet, um dieser Observablen eine andere,

zentralere Rolle in der Analyse zuzuweisen.

Basierend auf der Simulation von tt̄-Signal- und den erwarteten Untergrundprozessen,

konnten zunächst die Akzeptanz des CMS-Detektors sowie die Effizienz der Ereignisse-

lektion abgeschätzt werden. Um die Abhängigkeit von diesen simulationsbasierten Erwar-

tungen zu minimieren, wurden datenbasierte Techniken verwendet, die eine Korrektur der

Trigger- und Lepton-Selektionseffizienzen ermöglicht. Hierfür bedient man sich der soge-

nannten Tag-And-Probe (T&P) Methode, die unter Verwendung von Z → μμ Ereignissen

die Bestimmung dieser Effizienzen erlaubt. Vergleicht man nun die Effizienzen, die mit-

tels T&P-Methode in Daten und in simulierten Z+Jets Ereignissen bestimmt wurden, so
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kann eine Korrektur der rein simulationsbasierten Effizienzen vorgenommen werden. Un-

ter Berücksichtigung dieser Korrekturen erwartet man für die verwendete Ereignisselekti-

on von mindestens vier (genau drei) Jets pro Ereignis rund 220 (204) tt̄-Signalereignisse

und etwa 146 (388) Untergrundereignisse in einem Datensatz von 36.1 pb−1. Das erwartet

Verhältnis von Signal- und Untergrundbeiträgen ergibt sich somit zu S/B = 1.5 (0.3) in

Ereignissen mit mindestens vier (genau drei) Jets. Der Vergleich von beobachteten und er-

warteten Ereigniszahlen jedoch weist eine Abweichung von bis zu 20% auf, die aufgrund

eines Vergleichs kinematischer Verteilungen durch eine Unterschätzung von Untergrund-

beiträgen begründet wurde.

Zur Bestimmung des tt̄-Signalanteils in den aufgezeichneten Kollisionsereignissen, wur-

de eine Maximum-Likelihood-Methode verwendet. Dieses statistische Verfahren wurde

auch von den Experimenten am Tevatron eingesetzt und ermöglichte so die Entdeckung

des Top-Quarks 1995. Um die Maximum-Likelihood-Methode anwenden zu können, be-

nötigt man geeignete Observablen, die eine Trennung von Signal- und Untergrundbei-

trägen erlauben, sowie Modelle um die Verteilungen dieser Observablen adäquat zu be-

schreiben. Zum einen wurde hierfür die fehlende Transversalenergie (�ET) ausgewählt,

deren Verteilung für Ereignisse mit genau drei Jets in Abbildung II (a) dargestellt ist. Auf-

grund des Neutrinos im Endzustand der tt̄-Paarerzeugung erwartet man einen signifikan-

ten Beitrag zur fehlenden Transversalenergie. In Prozessen ohne leptonische W-Boson-

Zerfälle im Endzustand hingegen erwartet man im Mittel weniger fehlende Transversal-

energie, beispielsweise in der Produktion von Z-Bosonen in Assoziation mit Jets, oder

auch in QCD-Multijet-Ereignissen. Als zweite Observable wurde M3 definiert als invari-

ante Masse der drei Jets, die vektoriell addiert den höchsten Transversalimpuls aufweisen.

Aus einfachen geometrischen Überlegungen erkennt man, dass die Jets aus dem hadro-

nisch zerfallenden Top-Quark typischerweise räumlich sehr dicht beieinander liegen, was

einen Zusammenhang zwischen der Masse des hadronisch-zerfallenden Top-Quarks und

M3 nahe legt. Die Sensitivität von M3 auf die tt̄-Erzeugung wird in Abbildung II (b) für

Ereignisse mit mindestens vier Jets deutlich. Während sich die tt̄-Signalereignisse bevor-

zugt im Bereich der Top-Quark-Masse anhäufen, weisen die erwarteten Untergrundpro-

zesse eher breitere Verteilungen auf. Zur Beschreibung der beobachteten �ET- und M3-

Verteilungen dienen Modelle, die größtenteils auf Monte-Carlo-Simulationen basieren,

sowie ein datenbasiertes Modell zur Beschreibung der Verteilungen von QCD-Multijet-

Ereignissen. Letzteres wurde entwickelt, da die Simulation dieser Untergrundprozesse als

besonders unzuverlässig gilt. Verwendet man modifizierte Selektionskriterien, so erhält

man Kollisionsereignisse in einem QCD-angereicherten Seitenband und somit eine Mo-

dellierung der �ET- und M3-Verteilungen für QCD-Multijet-Ereignisse in der Signalregion.

Aus der Anpassung der Modelle an die beobachteten �ET- und M3-Verteilungen in pp-

Kollisionsereignissen kann nun der Anteil der tt̄-Signal- und der Untergrundereignisse

ermittelt werden. Dabei gilt es systematische Unsicherheiten zu berücksichtigen, welche

die erwarteten Ereigniszahlen und die Form der �ET- und M3-Verteilungen beeinflussen

können. Mögliche Quellen systematischer Unsicherheiten stellen dabei einerseits die zur

Ereignissimulation verwendeten theoretischen Modelle dar, andererseits können experi-

mentelle Unsicherheiten, wie beispielsweise die Unsicherheit auf die Jet-Energieskala, zu

systematischen Unsicherheiten führen. Um den Einfluss dieser systematischen Unsicher-

heiten zu evaluieren, wurden sogenannte prior-predictive Ensembles verwendet.
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Abbildung II: Vergleich der beobachteten und erwarteten Verteilungen der fehlenden Transversa-

lenergie (a) und M3 (b), normiert auf die Signal- und Untergrundbeiträge, die auf einer Anpassung

der Modelle an die beobachteten �ET- und M3-Verteilungen beruhen. Man erkennt eine sehr gute

Übereinstimmung der beobachteten und erwarteten Verteilungen.

Der formale Nachweis für die Erzeugung von Top-Quarks über die starke Wechselwir-

kung wird durch einen Hypothesentest erbracht, in dem die Wahrscheinlichkeit für eine

möglicherweise irrtümliche Beobachtung der Top-Antitop-Quark-Paarerzeugung ermit-

telt wird, die lediglich auf einer Fluktuation von Untergrundbeiträgen beruhen würde.

Hierzu bedient man sich der Hypothesen H0 und H1, wobei die Hypothese H0 besagt,

dass es ausschließlich Untergrundbeiträge gibt, die Hypothese H1 hingegen berücksich-

tigt sowohl Signal- als auch Untergrundbeiträge. Zur Unterscheidung dieser zwei Hy-

pothesen definiert man ein Likelihood-Verhältnis Q, dass nach dem Neyman-Pearson

Lemma [13] als sensitivste Observable zur Trennung zweier Hypothesen gilt. Um nun

die Signifikanz für die Beobachtung der Top-Antitop-Quark-Paarerzeugung zu bestim-

men, generiert man Pseudodaten-Verteilungen für �ET und M3 gemäß einer Datenmenge

von 36.1 pb−1 unter der Hypothese H0, und erhält so die in Abbildung III blau darge-

stellte Verteilung. Der Vergleich des experimentell beobachteten Wert Q̂obs mit dieser

generierten Q-Wert-Verteilung, ermöglicht nun die Bestimmung der Signifikanz. Eine

kleiner Wert, z. B. Q̂ = 0, entspricht dabei eher der Untergrund-Hypothese H0, ein ho-

her Wert andererseits favorisiert eher die Hypothese H1. Zudem führt man Pseudoex-

perimente unter der Hypothese H1 durch, um über den Median Q̂exp der entsprechen-

den Q-Wert-Verteilung eine erwartete Signifikanz zu bestimmen. Vom Nachweis eines

erwarteten Prozesses spricht man, wenn der beobachtete Q-Wert mindestens fünf Stan-

dardabweichungen von der reinen Untergrund-Hypothese entfernt liegt. Dieser Q-Wert

ist in Abbildung III durch eine vertikale gelbe Linie angedeutet. Der experimentell be-

obachtete Wert Q̂obs in pp-Kollisionsereignissen, sowie der erwartete Wert Q̂exp, liegen

weit oberhalb dieser unteren Grenze. Mit einer Signifikanz von mehr als 6.13σ konnte so-

mit, für eine Datenmenge von L = (36.1± 4.0) pb−1, der Nachweis für die Top-Quark-

Paarerzeugung am CMS-Experiment durch die hier vorgestellte Analyse erbracht werden.
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Abbildung III: Experimentell beobachteter Wert Q̂obs und erwartete Q-Wert-Verteilungen un-

ter der Hypothese H0 (blau) und unter der Hypothese H1 (rot), für die jeweils statistische sowie

systematische Unsicherheiten berücksichtigt wurden. Die untere Grenze für den Nachweis der

Top-Quark-Paarerzeugung, d. h. ein Signifikanzniveau von 5σ, ist durch die vertikale gelbe Li-

nie angedeutet. Für den beobachteten Wert Q̂obs = 10.45, berechnet sich eine Signifikanz von

mehr als 6.13σ. Somit konnte die Top-Antitop-Quark-Paarerzeugung in einer Datenmenge von

L = (36.1± 4.0) pb−1 nachgewiesen werden.

Der erfolgreiche Nachweis der Top-Quark-Paarerzeugung erlaubt nun die Messung des

tt̄-Produktionswirkungsquerschnitts, der wiederum die Bestimmung des tt̄-Signalbeitrags

mittels Maximum-Likelihood-Methode zugrunde liegt. Um zudem statistische sowie sys-

tematische Unsicherheiten zu ermitteln, verwendet man eine Neyman-Konstruktion zur

Bestimmung zentraler Konfidenzintervalle mit der Maximum-Likelihood-Abschätzung

des Signalparameters als Teststatistik. Zum einfacheren Vergleich mit der theoretischen

Vorhersage wurde der Parameter βtt̄ definiert als Verhältnis der beobachteten und er-

warteten tt̄-Signalanzahlen, welches gerade dem Verhältnis des beobachteten und theo-

retisch vorhergesagten Wirkungsquerschnitts, βtt̄ = σobs
tt̄

/σtheo
tt̄

, für die Top-Antitop-

Quark-Paarerzeugung entspricht. Generiert man nun unter der Annahme verschiedener tt̄-
Erzeugungswirkungsquerschnitte Pseudodaten-Verteilungen für die fehlende Transversal-

energie und M3 und ermittelt für jedes dieser Pseudoexperimente einen Wert für den Si-

gnalparameter βtt̄, so erhält man die in Abbildung IV dargestellte Neyman-Konstruktion.

Der gemessene Wert β̂obs
tt̄

= 1.03 des Signalparameters, kann nun verwendet werden, um

den Wirkungsquerschnitt nebst experimentellen Unsicherheiten zu bestimmen. Dies ist

in Abbildung IV durch die Schnittpunkte der horizontale rote Linie mit den Zentralwer-

ten und den Grenzen des 68% Konfidenzgürtels angedeutet und ergibt einen zugehörigen

wahren Wert für den Parameter von β̂true
tt̄

= 1.03 und eine experimentelle Unsicherheit

von etwa (20− 25)%. Daraus ergibt sich für den Wirkungsquerschnitt der Top-Antitop-

Quark-Paarerzeugung bei einer Schwerpunktsenergie von 7 TeV und einer angenomme-

nen Top-Quark-Masse von 172.5 GeV/c2 ein Wert von

σobs
tt̄ = 169+42

−33 (stat.+syst.) ± 19 (lumi.) pb,

der sehr gut mit der theoretischen Vorhersage von σtheo
tt̄

= 164.6+11.4
−15.7

pb übereinstimmt.
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Abbildung IV: Neyman-Konstruktion zur Bestimmung des tt̄-Produktionswirkungsquerschnitts.

Durch Auswertung der Neyman-Konstruktion bei β̂obs
tt̄ = 1.03 kann der Zentralwert sowie die

kombinierte statistische und systematische Unsicherheit ermittelt werden. Dies liefert einen zu-

gehörigen wahren Wert von βtrue
tt̄ = 1.03 und Unsicherheiten von −19.7% und +24.7%, die zur

Berechnung des Produktionswirkungsquerschnitts verwendet werden.

Basierend auf Pseudoexperimenten konnte zudem eine Abschätzung für die rein statis-

tische Unsicherheit auf den beobachteten Wirkungsquerschnitt von etwa 11% bestimmt

werden. Somit ist die Messung des Wirkungsquerschnitts bereits nach einem Jahr der

Datennahme mit dem CMS-Experiment durch systematische Unsicherheiten dominiert,

wobei der Hauptbeitrag auf die Unsicherheiten in der Bestimmung der Jet-Energieskala

zurückzuführen ist. Um die Präzision dieser Wirkungsquerschnittsmessung zu erhöhen,

könnte man nun einerseits versuchen die Quelle dieser systematischen Unsicherheit zu

verringern. Andererseits könnte man eine alternative Analysemethode verwenden, z. B. ei-

ne simultane Messung von σtt̄ und der Jet-Energieskala durchführen.

Die hier vorgestellte Messung des tt̄-Produktionswirkungsquerschnitts im tt̄-Myon+Jets-

Kanal kann zudem mit den entsprechenden Ergebnissen für den dileptonischen Kanal [14],

den Elektron+Jets-Kanal [15], und der simultanen Messung im Lepton+Jets-Kanal [15]

verglichen werden, wobei sich der Terminus Lepton auf Elektronen und Myonen bezieht.

Diese drei Messungen ergeben für den tt̄-Produktionswirkungsquerschnitt

σ
dilepton

tt̄
= 194± 76 (stat.+syst.) ± 21 (lumi.) pb,

σ
e+jets

tt̄
= 178+45

−37 (stat.+syst.) ± 20 (lumi.) pb,

σ
l+jets

tt̄
= 172+39

−32 (stat.+syst.) ± 19 (lumi.) pb,

wobei das Ergebnis im dileptonischen Kanal auf einer Datenmenge von 3.1 pb−1 be-

ruht, während die Messungen in den Lepton+Jets-Kanälen auf der gesamten Datenmenge

von 36.1 pb−1 durchgeführt wurden. Aufgrund einer etwas konservativeren Abschätzung

der Unsicherheit für die Jet-Energieskala ist die Unsicherheit auf σtt̄ in den Lepton+Jets-

Kanälen geringfügig größer als das Ergebnis, das im Rahmen der hier vorgestellten Ana-

lyse erarbeitet wurde. Darüber hinaus wurde kürzlich von der ATLAS Kollaboration ei-

ne Messung des Wirkungsquerschnitts von σATLAS
tt̄

= 145± 31 (stat.) +42
−27 (syst.) pb [16]
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veröffentlicht, die auf einer Kombination der Resultate des Elektron+Jets-, Myon+Jets-

und des dileptonischen Kanals beruht und der eine Datenmenge von L = 2.9 pb−1 zu-

grunde liegt. Im Gegensatz zu den oben genannten Ergebnissen beinhaltet die hier ge-

zeigte systematische Unsicherheit auch die Unsicherheit von 11% auf die integrierte Lu-

minosität. Insgesamt stimmen somit die Ergebnisse in den verschiedenen Kanälen, das

Ergebnis der ATLAS Kollaboration, und das in dieser Arbeit gewonnene Resultat inner-

halb der Unsicherheiten gut miteinander überein.

Bereits ein Jahr nach der Inbetriebnahme des Large Hadron Collider bei einer Schwer-

punktsenergie von 7 TeV konnte die Erzeugung von Top-Quarks nachgewiesen und ei-

ne erste Messung des tt̄-Produktionswirkungsquerschnitts durchgeführt werden. Diese

grundlegende Analyse ermöglicht nun weiterführende Untersuchungen, beispielsweise

die Messung der Top-Quark-Masse [17], darüber hinaus ist die Suche nach Physik jen-

seits des Standardmodells [18] denkbar. Somit läßt dieser erste Schritt auf dem Gebiet der

Top-Quark-Physik hoffen auf viele neue Erkenntnisse über die Eigenschaften und Wech-

selwirkungen des schwersten Fermions im Standardmodell der Teilchenphysik.
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Introduction

“Dass ich nicht mehr, mit sauerm Schweiß,

Zu sagen brauche was ich nicht weiß;

Dass ich erkenne was die Welt

Im Innersten zusammenhält,”

[Faust, Der Tragödie Erster Teil,

J. W. Goethe, 1808]

Like the fictional Doctor Faustus, particle physicists devote themselves to the understand-

ing of the elementary building blocks of matter and the nature of the forces acting between

them. Over the last six decades, great success has been made on this field as a result of

a fruitful interplay between improved experimental techniques and ingenious theoretical

insights which enabled a comprehensive description of the observed phenomena. In the

early seventies, the Standard Model (SM) of elementary particle physics was derived,

summing up our current understanding of the particles composing all matter and their

interactions. According to this theory, the fundamental fermions, namely six flavours

of quarks and leptons, respectively, interact via the exchange of force-mediating bosons

which couple to the charges of the fermions. Since its formulation, the Standard Model

has been subject to a large number of experimental tests and highest-precision data which

collectively confirmed its predictions.

One major success for the predictive power of the Standard Model was the experi-

mental observation of the top quark in 1995 [1, 2]. With an exceptionally large mass of

mt = (173.3± 1.1) GeV/c2 [3], the top quark is nearly as massive as a gold nucleus and

outweighs the next-heaviest fermion, the b quark, by about a factor of 40. This character-

istic property implies that top quarks on average decay before top-flavoured hadrons can

be formed, offering a unique possibility to study quasi-free quarks. The Standard Model

predicts two mechanisms for the production of top quarks, either in pairs of top and anti-

top quarks via the strong interaction or singly in charged-current weak interactions. While

the pairwise production led to its discovery in 1995, the second production mechanism

was experimentally observed only about two years ago [5–7]. Once produced, top quarks

almost exclusively decay via the weak interaction into a b quark and a W boson.

While all ordinary matter is composed of the two lightest quarks, the up and down

quarks, the four heavier quark flavours only appear in collisions of high-energy parti-

cles. Therefore, their production under laboratory conditions requires modern particle-

accelerator and collider facilities. Until last year, only the Fermilab Tevatron collider near

Chicago, USA, provided sufficient centre-of-mass energy for the production of top quarks

and thus paved the way for its discovery about sixteen years ago. Since the Tevatron was

built, substantial technological progress in the intervening years has enabled the design

and construction of the Large Hadron Collider (LHC) of the European Organisation for

Nuclear Research (CERN) near Geneva, Switzerland. Extensively using superconducting

magnets, the LHC provides hitherto unachievable centre-of-mass energies for the pro-

duction of heavy particles in proton-proton collisions. After long design and construction
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phases, the first pp collisions at a centre-of-mass energy of
√

s = 7 TeV were achieved on

March 30th 2010, turning the LHC to the most powerful collider ever operated. Given this

huge centre-of-mass energy and instantaneous luminosity, the LHC can be considered a

top quark factory and will thus facilitate scrutiny of top quark properties and interactions.

The two general-purpose detectors ATLAS and CMS have been built to detect and

analyse pp collisions provided by the Large Hadron Collider. Driven by the intention

to exploit the full discovery potential of the LHC, the designs of ATLAS and CMS con-

centrated on the discovery of the as yet unobserved Higgs boson, which constitutes the last

particle predicted by the Standard Model, and on the search for experimental evidences

of phenomena predicted by extensions of the Standard Model. The CMS apparatus is lo-

cated near Cessy, France, in an underground cavern about 100 m below surface. Since the

first pp collision event recorded by the CMS apparatus, a data set corresponding to an in-

tegrated luminosity of L = (36.1± 4.0) pb−1 [11] was acquired with a fully-operational

detector until November 2010.

Due to the extremely short lifetime of top quarks, only its decay products can be ex-

perimentally observed. Therefore, electronic signals recorded by the CMS apparatus are

subjected to reconstruction algorithms which aim for the detailed extraction of informa-

tion available on the interactions occurred in pp collision events. Simulations further

serve for the comparison of these reconstructed events with expectations based on the-

oretical and phenomenological models. Given these simulated samples of signal and

background events, criteria for the selection of candidate events can be chosen, driven

by the requirement for a good signal-to-background ratio while maintaining high signal

selection efficiency. Moreover, analysis strategies can be developed and their expected

performance tested, prior to their application to observed pp collision data.

Based on the early data set provided by the CMS collaboration, and employing all the

techniques mentioned above, the analysis presented in this thesis is dedicated to the search

for top quarks at the LHC and to perform a first measurement of the top quark pair pro-

duction cross section at a centre-of-mass energy of 7 TeV.
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Chapter 1

The Top Quark in the Standard Model

The traditional goal of elementary particle physics has been to identify the structureless

units of matter and to understand the nature of the forces acting between them. The most

complete model currently known for the description of these smallest constituents and

their interactions is the Standard Model (SM) of elementary particle physics. Since its

formulation in the 1960s and 1970s, the Standard Model has undergone and successfully

passed a large number of experimental tests. Therefore, despite some remaining open

questions, it hitherto constitutes the most accurate theory tested with highest precision

data. One important proof for the predictive power of this elegant mathematical formal-

ism was the observation of the top quark about sixteen years ago. Being the heaviest

elementary particle observed to date, the top quark is of particular interest for scrutinising

the Standard Model and serves as a probe for possible new phenomena beyond it.

1.1. The Standard Model of Elementary Particle Physics

1.1.1. Phenomenological Introduction

The Standard Model of elementary particle physics [19–31] predicts point-like and struc-

tureless particles to be the building blocks of matter. Quantum numbers like the electric

charge Q can be used to categorise these elementary fermions carrying spin 1/2 h̄. Due

to their fermionic nature, they obey the Fermi-Dirac statistics and are subject to the Pauli

exclusion principle, which states that two fermions cannot share the same quantum state.

For each elementary particle exists a corresponding anti-particle, which exhibits the same

properties like mass, spin, and lifetime but has opposite quantum numbers. The funda-

mental fermions can further be classified as quarks and leptons. In total, the SM predicts

six types of quarks and leptons, which can be arranged in three generations as shown

in table 1.1. Each generation consists of an up-type quark, a down-type quark, a charged

lepton and the corresponding neutrino. While the particles of the first generation consti-

tute the building blocks of all ordinary matter, fermions of the second and third generation

appear solely in high-energetic interactions like collider experiments or the interaction

of cosmic rays with the earth’s atmosphere. The kinetic energies of colliding particles

thereby facilitate the production of heavier fermions, which subsequently decay into the

lighter fermions of the first generation.

Among the six leptons are the three electrically charged leptons, the electron e−, the

muon μ−, and the tau τ− and their corresponding electric charge-neutral neutrinos, the

electron neutrino νe, the muon neutrino νμ, and the tau neutrino ντ. The Standard Model

postulates neutrinos to be strictly massless, however, several observations [32–36]indicate

that neutrinos do have non-vanishing masses. To account for these results, possible ex-

tensions of the Standard Model are required [37, 38].



2 Chapter 1. The Top Quark in the Standard Model

Table 1.1: The three Standard Model fermion generations, each comprising an up-type quark, a

down-type quark, a charged lepton, and the corresponding neutrino. Electric charges are given in

units of the elementary charge e = 1.602176487(40)× 10−19 C [4]. As the fermion masses are

not predicted by the Standard Model, the given values are obtained from experimental measure-

ments summarised in [4], except for the mass of the top quark, which is adapted from [3].

Generation Flavour Symbol Charge [e] Mass
[
MeV/c2

]

L
ep

to
n

s

1
electron e −1 0.511

electron neutrino νe 0 < 2 · 10−6

2
muon μ −1 105.658

muon neutrino νμ 0 < 0.190

3
tau τ −1 1776.82± 0.16

tau neutrino ντ 0 < 18.2

Q
u

a
rk

s

1
up u 2/3 (1.7− 3.3)

down d −1/3 (4.1− 5.8)

2
charm c 2/3

(
1.27+0.07

−0.09

)
· 103

strange s −1/3 101+29
−21

3
top t 2/3 (173.3± 1.1) · 103

bottom b −1/3

(
4.19+0.18

−0.06

)
· 103

Besides the leptons, the Standard Model predicts six different flavours of quarks, up (u),

down (d), charm (c), strange (s), top (t), and bottom (b). In contrast to leptons, quarks

carry fractional electric charge of either +2/3 (up-type quarks: u, c, t) or−1/3 (down-type

quarks: d, s, b) of the elementary charge e = 1.602176487(40)× 10−19 C [4]. Further-

more, quarks cannot exist as free particles. Rather, they are forced to form bound states

collectively referred to as hadrons, which either consist of three quarks (baryons) or of

a quark-antiquark pair (mesons). This special feature of the interaction between quarks

is called quark confinement. The top quark constitutes an exception in this context. Due

to its large mass the relevant time scale for its decay is much smaller compared to the

corresponding time scale for the formation of hadrons. The top quark decay therefore of-

fers a unique possibility to study a quasi-free quark. Section 1.2 is dedicated to a detailed

discussion about the top quark and its special role in the Standard Model. Accounting

for the Pauli exclusion principle, the formation of hadrons necessitates the introduction of

an additional quantum number for quarks, the so-called colour [39–41], and each quark

exists in one of the three different colour states, i.e. red, blue, or green. As colour is a

non-observable quantum number, all hadrons are colour-neutral objects not carrying any

net colour charge. Consequently, mesons consist of a quark carrying a certain colour and

of an anti-quark carrying the corresponding anti-colour. For baryons consisting of three

quarks the only allowed combinations are those leading to a zero net colour charge, e.g. an

equal mixture of red, blue, and green.

Four fundamental forces effectuate the interactions between elementary particles, i.e. the

electromagnetic, the strong, the weak, and the gravitational force. The former three can
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Table 1.2: Properties of the force mediating bosons adapted from [4]. Electric charges are given

in units of the positron charge e. Masses are given in units of GeV/c2, the value for the W± boson

mass is taken from [44].

Type Symbol Force Electric Charge [e] Mass
[
GeV/c2

]
gluon g strong 0 0

photon γ electromagnetic 0 0

W± boson W± weak ±1 80.420± 0.031

Z0 boson Z0 weak 0 91.188± 0.002

be formulated as quantum gauge field theories and have therefore been successfully in-

corporated in the Standard Model. The gravitational force on the other hand is described

by the theory of general relativity [42, 43]. Gravity is important for understanding in-

teractions on large scales, like the formation of galaxies and solar systems, but can be

neglected on sub-nuclear scales. At these scales, the interactions between elementary

particles are dominated by the electromagnetic, the weak, and the strong force. Due to

this extreme separation of scales on which gravity and the three SM forces are relevant,

only the Standard Model forces are considered in the following discussion.

Quantised gauge fields serve for the description of the Standard Model forces. An in-

teraction between elementary particles can be ascribed to the exchange of field quanta

of the gauge fields, which can thus be interpreted as the force mediators and are called

gauge bosons. In contrast to the half-integer spin fermions, gauge bosons carry spin 1 h̄
and obey the Bose-Einstein statistics, which allows several bosons to occupy the same

quantum state. A list of the force mediating bosons and some of their properties is given

in table 1.2. Fermions carrying the appropriate charge partake in the corresponding inter-

actions. Hence, quarks carrying electric, weak, and colour charges participate in all SM

interactions. All leptons experience the weak but not the strong force. In addition to the

weak force, electrically charged leptons also interact via the electromagnetic force.

Feynman diagrams like the ones depicted in figure 1.1 serve as intuitive graphical repre-

sentations of the interaction between elementary particles via emission and re-absorption

of gauge bosons. Moreover, these diagrams embody mathematical expressions, whereas

the propagation of particles in space-time is represented by lines and couplings are de-

picted by vertices. Applying the associated Feynman rules, a diagram is translated into

the corresponding formula. For a given process, the summation over all possible con-

tributing Feynman graphs can then be used to calculate the transition amplitude M for

this particular process. Finally, the transition amplitude is used to compute the corre-

sponding cross section, which represents a measure for the probability of an interaction to

occur. A more detailed discussion is given in section 1.2.1, exemplarily using top-quark

production via the strong interaction in hadron-hadron collisions.

The theory of Quantum Electrodynamics (QED) [45–52] describes the interactions of

electrically charged particles. The gauge boson mediating the electromagnetic force is the

charge-neutral photon γ which represents the excitation of the massless photon field. This

zero-mass of the gauge boson leads to an infinite range of the electromagnetic interaction.

For an electrically charged fermion, the interaction strength with the force mediating pho-

ton is fully determined by the charge Q the fermion carries.
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(a) (b) (c) (d)

Figure 1.1: An example of leading order Feynman diagrams for typical fundamental interac-

tions. Each diagram illustrates the annihilation of fermions into a virtual gauge boson and subse-

quent fermion pair-production. Electron-positron annihilation is depicted for the electromagnetic

force (a) and for the weak force (b). In (c) the annihilation of quarks via the charged weak force

is shown and correspondingly for the strong force in (d). This description uses the convention of

time evolving from left to right.

In a similar way, the strong force between colour-charged particles is described by the

theory of Quantum Chromodynamics (QCD) [28–31, 41]. Of all fermions, only the

colour-charged quarks interact via this force mediated by massless gluons, the gauge

bosons of the strong interaction. Similar to the electric charge in QED, the colour charge

defines the strength of the interaction between quarks and gluons. As gluons are mass-

less, an infinite range of the strong interaction could naively be expected. However, a

completely different behaviour of the strong interaction is observed. For increasing ener-

gies and thus decreasing distances the coupling constant decreases, a phenomenon called

asymptotic freedom. On the other hand, the strength of the strong interaction increases at

large distances. This special feature is referred to as infrared slavery of quarks, forcing

quarks to create colourless bound states and limiting the range of the strong interaction

to very short length scales of about 10−15 m. In contrast to the charge-neutral photons,

gluons are colour-charged themselves, each carrying one unit of colour and one unit of

anti-colour. Infrared slavery and asymptotic freedom thus constitute two direct conse-

quences of the self-interactions between colour-charged gluons.

Unlike the electromagnetic and the strong forces, the weak force is mediated by massive

bosons, i.e. the charge-neutral Z0 boson and the electrically charged W± bosons. Due to

the large mass of the weak gauge bosons given in table 1.2, the range of the weak force

is limited to sub-nuclear scales. The charge of the weak interaction to which the gauge

bosons couple is called weak isospin I. The weak interaction therefore constitutes the

only force in the SM affecting neutrinos, which exhibit a non-zero isospin but carry nei-

ther electric nor colour charge. Furthermore, since the eigenstates of the weak interaction

are not identical with the mass eigenstates of the quarks, the weak interaction provides

the possibility for flavour change via the exchange of charged W± bosons. The unitary

transformation of mass eigenstates into flavour eigenstates can be written as a multiplica-

tion of the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM [53, 54] with the

mass eigenstates ⎛⎝d′

s′

b′

⎞⎠ =

⎛⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎠⎛⎝d
s
b

⎞⎠ . (1.1)
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By convention the 3 × 3 CKM matrix operates on the mass eigenstates of the down-

type quarks (d, s, b) resulting in the corresponding weak eigenstates (d′, s′, b′). For

example, the weak partner b′ of the top quark results from a linear combination of the

mass eigenstates of the three down-type quarks. The coupling of two quarks q and q′ to

a W± boson is proportional to the corresponding CKM matrix element Vqq′ . Assuming

unitarity holds, the measured values for the CKM matrix elements are [4]

VCKM =

⎛⎜⎜⎝
0.97428± 0.00015 0.2253± 0.0007 0.00347+0.00016

−0.00012

0.2252± 0.0007 0.97345+0.00015
−0.00016

0.0410+0.0011
−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045

⎞⎟⎟⎠ . (1.2)

Diagonal elements exhibit the largest values, as transitions of quarks within one gener-

ation are favoured over the transitions into quarks of other generations. For the given

example, the top quark decay into a b quark is the most favoured one. Since the values

of the diagonal elements are even very close to unity, transitions between two different

quark generations are strongly suppressed.

Parity conservation implies the invariance of physical measurements under reversal of

all spatial axes. While the electromagnetic and the strong force follow this principle, it is

violated in weak interactions mediated by charged W± bosons. Particle wave functions

can be decomposed into linear combinations of left-handed and right-handed components.

The W± bosons couple only to the left-handed part of the fermion wave functions and to

the right-handed part of anti-particle wave functions. Since the parity transformed object

of a left-handed particle is a right-handed particle, this coupling of W± bosons constitutes

a maximal violation of parity. In contrast, the Z0 boson couples to both components,

but with different strengths depending on the electric charge of the quark-type or lepton

involved.

At low energies, there are obvious differences between the weak force with its massive

W± and Z0 bosons and the electromagnetic force mediated via massless photons. How-

ever, quantum electrodynamics itself is a unified theory of electricity and magnetism. The

inclusion of another type of force therefore became conceivable. This has been accom-

plished in the electroweak theory [19,20,22,24], which explains the electromagnetic and

the weak forces as two aspects of a unified theoretical model. Four gauge fields and there-

with four strictly massless gauge bosons are predicted to mediate the electroweak force.

This seems to be in conflict with the massive W± and Z0 bosons. Consequently, there

has to be a mechanism for breaking the electroweak symmetry through which three of the

four massless gauge bosons acquire mass while one remains massless.

The most promising description of this symmetry breaking is given by the Higgs mech-

anism [55–59], wherein the symmetry is broken spontaneously, leading to the occurrence

of a massless Goldstone boson [60–63]. Massless gauge bosons can then acquire mass

via coupling to one of the broken generators and the Goldstone boson is replaced by the

missing longitudinal degree of freedom of the former massless gauge boson. While the

gauge bosons of the weak interaction acquire mass, the symmetry of the electromagnetic

force is preserved in the Higgs mechanism and consequently the photon remains mass-

less. Furthermore, the masses of the charged SM fermions can be explained via so-called

Yukawa interactions. Although the Higgs mechanism provides an explanation for the
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fermion masses, a prediction of their values is not implicit since the Yukawa couplings

enter the theory as free parameters. One major aim of the Large Hadron Collider (LHC)

project is to verify this mechanism for the description of electroweak symmetry breaking.

This can be accomplished, since the Higgs mechanism furthermore predicts a massive

scalar spin-zero particle, the Higgs boson. As yet unobserved, the Higgs boson is the

last particle predicted by the Standard Model. Its discovery would be one further major

success for the Standard Model of elementary particle physics.

1.1.2. Mathematical Introduction

Behind the elementary fermions and their interactions via exchange of gauge bosons lies

an elegant mathematical framework. The Standard Model is described in terms of a rela-

tivistic quantum field theory, incorporating both quantum mechanics and special relativity.

The dynamics of a physical system are formulated in functions called Lagrangians. To ac-

count for the relativistic nature of the theory, the Lagrangians are required to be invariant

under Lorentz transformation. Using the Hamilton principle of least action [64], the equa-

tions of motion can be obtained from the Lagrangian density L through a minimisation

of the action S

δS = δ

(∫
L (ψ(x), ∂μψ(x)) d4x

)
= 0 . (1.3)

The Lagrangian density L depends on the particle’s field wave functions ψ(x) and their

first derivatives ∂μψ(x). In the Standard Model, fermion wave functions ψ(x) are repre-

sented by Dirac spinors ψ. The Lagrange function for a spin 1/2 particle1 of mass m is

given by

LDirac = iψ̄γμ∂μψ−mψ̄ψ , (1.4)

with the Dirac matrices γμ, the fermionic field ψ, and its adjoint field ψ̄. Using the princi-

ple of least action leads to the Euler-Lagrange equations, which translates the Lagrangian

LDirac into the Dirac equation [65](
iγμ∂μ −m

)
ψ = 0 . (1.5)

This equation represents the relativistic quantum mechanical wave equation for the de-

scription of an elementary spin 1/2 particle. The four solutions of equation (1.5) include

the two spin states of a fermion and the two spin states of the corresponding anti-fermion.

The Dirac Lagrangian in equation (1.4) describes the motion of an elementary fermion

in the absence of any interaction. Since the absolute phase of a complex spinor ψ does not

constitute a quantum mechanical observable, local phase transformations are permitted,

which leave observables depending on |ψ|2 invariant. An example for such a transforma-

tion U is given by

ψ → ψ′ = Uψ = eigεk(x)· τk
2 ψ , (1.6)

with a positive real constant g and rotation parameters εk(x) in an internal space repre-

sented by the generators τk of a given Lie group. On the other hand, the Dirac Lagrangian

1So-called natural units with h̄ = c = 1 are applied if not explicitly stated otherwise.
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LDirac is in general not invariant under the transformation given in equation (1.6). How-

ever, gauge invariance requires the Lagrangians in gauge theories to be invariant under a

certain continuous group of local transformations. These gauge transformations form a

Lie group referred to as the symmetry group or gauge group of the theory. According to

the Noether theorem [66], gauge invariance of the Lagrangian entails a conserved current

to which the charges of the forces correspond. Therefore, to each group generator τk an

additional vector field called gauge field has to be introduced into the Lagrangian. The

effects raised by the transformations can thus be compensated and the invariance of the

Lagrangian under local group transformation is ensured. Technically, this can be done by

introducing a covariant derivative via a so-called minimal substitution

∂μ → Dμ = ∂μ + ig
τk

2
Ak

μ , (1.7)

with the usual space-time derivative ∂μ and Ak
μ represents the required gauge boson fields.

The constant g acquires its physical meaning as the coupling constant, which determines

the universal interaction strength associated with the field. Substituting this covariant

derivative into the Lagrangian in equation (1.4) leads to

L = iψ̄γμ∂μψ−mψ̄ψ− gψ̄γμ τk

2
Ak

μψ , (1.8)

where the last term characterises the coupling between the fermion field and the gauge

fields Ak
μ. Hence, the Lagrangian comprises terms describing fermionic fields in the ab-

sence of any interaction as well as those describing the interactions between different

fields. The requirement of gauge invariance thus induces the introduction of gauge fields,

which imply the existence of the spin 1 h̄ gauge bosons. Since gauge fields per construc-

tion interact with the fermion fields, the gauge bosons can be interpreted as the mediator

particles of the force emerging from the gauge symmetry. Moreover, gauge fields Ak
μ en-

ter the Lagrangian also through kinematic terms describing the gauge fields in the absence

of fermions. These terms are of the form

− 1

4
Fk

μνF
μν
k . (1.9)

The field strength tensor Fk
μν of the gauge field Ak

μ is defined as

Fk
μν = (∂μ Ak

ν − ∂ν Ak
μ) + g fklm Al

μ Am
ν , (1.10)

where g denotes again the coupling constant and fklm are the structure constants specify-

ing the symmetry group. These structure constants define the commutation relations of

the generators of the symmetry group through

[τk, τl] = i fklmτm . (1.11)

Requiring the Lagrangian in equation (1.8) to be invariant under the local phase transfor-

mation given in equation (1.6) leads to the transformation relation

τk

2
A′kμ = − i

g
(∂μU)U−1 + U

τk

2
Ak

μU−1 , (1.12)
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Table 1.3: The fields of the Standard Model and their gauge quantum numbers. There are three

generations of quarks and leptons, labelled by the index i = 1, 2, 3 and one Higgs field φ. I and

I3 are the total weak isospin and its third component. The hypercharge in the last column can be

calculated from the charge Q and the third component of the weak isospin via Y = 2(Q− I3).

I I3 Q Y

Qi
L =

(
uL

dL

) (
cL

sL

) (
tL

bL

)
1/2

+1/2

−1/2

+2/3

−1/3

+1/3

+1/3

ui
R = uR cR tR 0 0 +2/3 +4/3

di
R = dR sR bR 0 0 −1/3 −2/3

Li
L =

(
νe,L

eL

) (
νμ,L

μL

) (
ντ,L

τL

)
1/2

+1/2

−1/2

0

−1

−1

−1

νi
R = νe,R νμ,R ντ,R 0 0 0 0

ei
R = eR μR τR 0 0 −1 −2

φ =

(
φ+

φ0

)
1/2

+1/2

−1/2

+1

0

+1

+1

for the fields Ak
μ, which is valid for any transformation U in some internal space. Choos-

ing for example a U(1) phase transformation U = eiχ(x) with an arbitrary space-time

function χ(x) and one generator τ = 1, equation (1.10) simplifies to (∂μ Aν − ∂ν Aμ).
Consequently, the corresponding gauge group is Abelian and equation (1.12) simplifies to

A′μ = Aμ − ∂μχ(x)/g. In contrast, a theory with a local non-Abelian phase invariance

is called a Yang-Mills theory, wherein self-interactions of gauge bosons arise from the

non-commutative structure of the symmetry group.

The Standard Model represents a particular quantum field theory based on the principle

of gauge invariance. It is based on the set of fields shown in table 1.3 and the gauge sym-

metries SU(3)C × SU(2)L ×U(1)Y . The gauge fields introduced by the requirement

of gauge invariance under SU(2)L ×U(1)Y describe the electroweak force, whereas the

gauge bosons of the strong force are linked to the SU(3)C gauge group. The Standard

Model Lagrangian can thus be written as

LSM = LEW + LQCD + LHiggs + LYukawa . (1.13)

The first two terms, LEW and LQCD, describe free fermions, free gauge bosons associ-

ated with the SU(2)L ×U(1)Y and SU(3)C gauge symmetries, the interaction between

fermions and gauge bosons, and the interactions among gauge bosons themselves. The

latter terms LHiggs and LYukawa introduce the Higgs particle and non-zero gauge boson

and fermion masses.

Electroweak phenomena can be described by the SU(2)L ×U(1)Y gauge symmetry.

The subscript Y denotes the hypercharge and L implies coupling only to left-handed

fields. The charges corresponding to the SU(2)L and U(1)Y symmetries are the weak
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isospin I and the hypercharge Y, respectively. Using the Gell-Mann-Nishijima relation

Q = I3 −Y/2, the hypercharge can be calculated from the electric charge Q and the third

component of the weak isospin I3. The electroweak interaction distinguishes between

left-handed and right-handed fermion states which can be constructed from an arbitrary

spinor ψ via

ψL =
1

2
(1− γ5)ψ and

ψR =
1

2
(1 + γ5)ψ . (1.14)

The operator γ5 = iγ0γ1γ2γ3γ4 is given as a product of the four Dirac matrices. Left-

handed fermions transform as doublets under SU(2)L , whereas right-handed fermion

fields are singlets. The analogy in electromagnetism would be that left-handed fermions

exhibit a non-zero electric charge, whereas right-handed fermions are charge-neutral. In

this way the parity-violating nature of weak interactions is incorporated in the theory. As

depicted in table 1.3, left-handed fermions are grouped into weak-isospin doublets called

Weyl spinors

ΨL =

(
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

)
,

(
νe,L

eL

)
,

(
νμ,L

μL

)
,

(
ντ,L

τL

)
. (1.15)

The right-handed states in turn form weak-isospin singlets which remain unchanged under

SU(2)L gauge transformations. A local SU(2)L ×U(1)Y phase transformation can be

written as

ΨL → Ψ′L = eigεk(x)· σk
2 · eig′θ(x)·Y

2 ΨL and

ΨR → Ψ′R = eig′θ(x)·Y
2 ΨR , (1.16)

with an arbitrary one-dimensional function θ(x) and the rotation parameters εk(x). Us-

ing the standard representation, the Pauli matrices σk (k = 1, 2, 3) and the hypercharge Y
denote the generators of the SU(2)L and U(1)Y symmetry transformations, respectively,

and g and g′ represent the corresponding coupling constants. The covariant derivative

ensuring gauge invariance of the Lagrangian under local SU(2)L ×U(1)Y phase trans-

formation is given by

Dμ = ∂μ + ig
σk

2
Wk

μ + ig′
Y

2
Bμ . (1.17)

Wk
μ and Bμ represent the gauge fields associated to the SU(2)L and U(1)Y group, respec-

tively. The field strength tensors Bμν and Wk
μν are defined by equation (1.10). Since the

U(1)Y structure constant is zero, corresponding to a commuting gauge field, the gauge

field Bμ couples to fermions but not to itself. The non-zero structure constants in the

field strength tensors Wk
μν of SU(2)L gauge fields however lead to interactions of gauge

bosons among themselves. The gauge invariance of the electroweak theory thus induces

the introduction of the four gauge bosons B0 and Wk, where the latter only couple to left-

handed fermion doublets and interact among themselves. The electroweak Lagrangian is

given by

LEW = iΨ̄LγμDμΨL + iΨ̄RγμDμΨR −
1

4
BμνBμν − 1

4
Wk

μνWkμν , (1.18)
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where ΨL denotes left-handed fermion doublets and ΨR the corresponding right-handed

singlets. Two of the SU(2)L gauge fields can be linearly combined into the physically

observable charged fields

W±
μ =

1√
2

(
W1

μ ∓ iW2
μ

)
, (1.19)

whose quanta are observed as W± bosons. The remaining charge-neutral SU(2)L field

mixes with the U(1)Y field through the weak mixing angle θW, which results in the fields

Aμ and Zμ via a mass matrix diagonalisation given by

Aμ = Bμ cos θW + W3
μ sin θW and

Zμ = −Bμ sin θW + W3
μ cos θW . (1.20)

Requiring the quanta of the Aμ field to correspond to the massless photons, the weak

mixing angle is defined by g sin θW = g′ cos θW = e, with the elementary electric charge

e. On the other hand, the quanta of the Zμ field are observed as Z0 bosons. The relation

between the weak mixing angle, also referred to as the Weinberg angle, and the coupling

constants is given by

tan(θW) =
g′

g
. (1.21)

Quantum chromodynamics is formulated in a manner analogous to the electroweak

theory. The appropriate gauge group for the description of the strong interaction is the

SU(3)C symmetry group, with the subscript C denoting colour. Restoring the gauge

invariance of the theory with respect to local SU(3)C phase-space transformation in-

vokes the introduction of eight gauge fields, corresponding to the eight generators of

the SU(3)C . In the standard representation, these eight generators are given by the 3× 3

Gell-Mann matrices λk (k = 1, . . . , 8) acting on quark colour triplets. The covariant

derivative in QCD is given by

Dμ = ∂μ + ig3

λk

2
Gk

μ , (1.22)

where Gk
μ represents the eight gauge fields and g3 the associated coupling constant. Glu-

ons are the quanta of the gauge fields and are thus referred to as the force mediators

introduced into the theory by requiring SU(3)C gauge invariance. Similar to SU(2)L ,

the commutator relations of the SU(3)C group generators exhibit non-zero structure con-

stants. This non-Abelian character ensures the self-interaction of gluons. In contrast to

SU(2)L ×U(1)Y , the SU(3)C colour symmetry however is unbroken leading to the pre-

diction of massless gluons. Finally, the Lagrangian of the strong interaction is given by

LQCD = iq̄ f γμDμq f −
1

4
Gk

μνG
μν
k , (1.23)

with colour triplets q f of quarks of flavour f and Gk
μν denotes the field strength tensors.
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The requirement of gauge invariance under local SU(2)L ×U(1)Y phase transforma-

tion led to the introduction of four gauge fields whose field quanta can be connected to

the photon γ, and the three bosons W± and Z0. However, the gauge fields and the implied

gauge bosons introduced are predicted to be strictly massless, which is in contradiction

with the measured W± and Z0 boson masses. Introducing explicit mass terms for gauge

bosons into the Lagrangian would break the SU(2)L ×U(1)Y gauge invariance and is

therefore not an option. The Higgs mechanism on the other hand can be used to solve this

obstacle using the idea of spontaneous symmetry breaking. One simple and elegant way

for breaking the SU(2)L ×U(1)Y gauge symmetry is to introduce a scalar field into the

SM Lagrangian. Using the doublet representation of SU(2)L , this complex scalar field is

given by

φ =

(
φ+

φ0

)
=

1√
2

(
η1 + iη2

η3 + iη4

)
, (1.24)

wherein the complex fields φ+ and φ0 can be written in terms of the four real fields ηi. Un-

like the gauge fields introduced by requiring gauge invariance, there is no corresponding

gauge group responsible for the Higgs field. The Lagrangian density for such a complex

scalar field can be written with a specific potential V(φ) in the form

LHiggs = (Dμφ)†(Dμφ)−V(φ)

= (Dμφ)†(Dμφ)− μ2(φ†φ)− λ(φ†φ)2 , (1.25)

where Dμ is the electroweak covariant derivative given in equation (1.17), which thus

introduces coupling terms between the Higgs field and the weak gauge bosons. μ2 denotes

a mass parameter and λ > 0 the strength of the Higgs boson field’s self-interaction. For

μ2 > 0, the potential V(φ) has a global minimum for φ = 0. However, if μ2 < 0

is required, the minimum of the potential is no longer unique but exhibits a value on

a continuous ring in the complex plane shown in figure 1.2. In this ring the vacuum

expectation value ν of the field φ is equal to

〈0|φ|0〉 = −|μ
2|

2λ
=

ν2

2
. (1.26)

Hence, the ground state is not symmetric, whereas the Lagrangian in SU(2)L ×U(1)Y is

symmetric, a feature referred to as spontaneous symmetry breaking. Using the a priori

arbitrary choice η3 = ν and η1 = η2 = η4 = 0 for the vacuum, an expansion around the

minimum leads to the transformation of equation (1.24) into

φ =
1√
2

(
0

ν + H(x)

)
, (1.27)

wherein H(x) represents the Higgs boson field, whose quanta are called Higgs bosons. In

this altered representation, only one of the four degrees of freedom of the original Higgs

doublet remains. The other three fields ηi (i = 1, 2, 4) appear as longitudinal degrees of

freedom for the three gauge bosons W± and Z0, which thus acquire masses given by

mW± =
1

2
νg and

mZ0 =
1

2
ν
√

g2 + g′2 , (1.28)
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V (Φ)V (Φ)

φ1φ1

φ2φ2

Φ0 = (φ01, . . . , φ0N)
� �= 0Φ0 = (φ01, . . . , φ0N)
� �= 0

Figure 1.2: Scalar potential V(φ) of the Higgs field with λ > 0 and μ2 < 0 adapted from [67].

With this particular choice of the vacuum, the minimum of the potential is a circle in the complex

plane. The vacuum expectation value of the Higgs field is hence not unique, and therefore the

symmetry of the field spontaneously broken.

or simply mW = mZ cos θW. The vacuum expectation value of the Higgs field can thus

be deduced from measurements of the W± mass and of the coupling constant g, lead-

ing to a numerical value of ν = 246 GeV. The last term in equation (1.25) induces

self-interactions of the Higgs field. Therefore, the Higgs boson H0 also acquires mass

mH0 =
√
−2μ2, which has to be determined experimentally due to the appearance of the

essentially free parameter μ2 < 0.

In contrast to the boson masses, the masses of the fermions are not generated by a gauge

principle. They are rather included via introduction of additional gauge invariant terms

into the Lagrangian, resulting in an increase of free parameters in the Standard Model.

These Yukawa terms describe the couplings of the fermionic fields to the Higgs field. For

example the Yukawa terms for top quarks are given by

gt
Y

(
Ψ̄LφtR + t̄Rφ†ΨL

)
, (1.29)

wherein ΨL denotes the third-generation left-handed quark doublet, tR the right-handed

top singlet as shown in table 1.3, and gt
Y is the corresponding Yukawa coupling constant.

In the specific representation of equation (1.27) this can be written as

gt
Yν√
2

tt̄ +
gt

Y√
2

tt̄H . (1.30)

The first term denotes the top quark mass term, while the second term specifies the cou-

pling of the top quark to the Higgs boson. The top quark mass is given by mt = gt
Yν/

√
2

with the top quark coupling to the Higgs boson being mt/ν. Similar Yukawa terms are

introduced for the other quarks and the charged leptons. The couplings of charged leptons

and quarks to the Higgs boson are proportional to the fermion masses. Hence, the Yukawa

coupling constants, or equivalently the fermion masses, appear as free parameters in the

Standard Model. The extremely high mass, and therewith its strong coupling to the Higgs

boson, grants the top quark a special role for indirect predictions of the Higgs boson mass.
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1.2. The Top Quark

The top quark was discovered by the CDF and DØ collaborations at the Fermilab Teva-

tron in 1995 [1, 2]. This observation of top quark pair production via the strong interac-

tion is however not the only production mode predicted by the Standard Model. Elec-

troweak production of single top quarks also constitutes a Standard Model production

mechanism, which was experimentally observed only two years ago [5, 6]. Since the first

observation of this heaviest fundamental particle currently known, the mass of the top

quark has been measured with ever increasing precision. The most recent combination

by the Tevatron Electroweak Working Group for the top quark mass yields a value of

173.3± 1.1 GeV/c2 [3]. Since it is about 40 times heavier than the next heaviest quark

and nearly as massive as a gold nucleus, the large mass of the top quark leads to con-

jectures about whether this observed particle might not correspond to the weak isospin

partner of the b quark in the Standard Model. It would then rather be an exotic quark

carrying an electric charge of− 4
3

e [68]. A recent measurement [69], however, disfavours

this hypothesis of such an exotic quark with this particular electric charge. Since the

Yukawa coupling of the top quark is close to unity, as can be deduced from the second

term of equation (1.30), the top quark mass is in the range of the electroweak symme-

try breaking scale. Therefore, this heaviest fermion might play a role in the process of

electroweak symmetry breaking [70, 71]. One further peculiarity based on the large mass

of the top quark is its very short lifetime. Although it decays exclusively via the weak

interaction, the large mass induces a lifetime of τt ≈ 5 · 10−25 s [72], which is about

two orders of magnitude smaller than the typical time scale for hadronisation processes

Λ−1
QCD ≈ 3 · 10−23 s. Consequently, top quarks on average decay before top-flavoured

hadrons can be formed, which offers the unique possibility to study quasi-free quarks.

Moreover, in contrast to the lighter quarks whose spins are depolarised by chromomag-

netic interactions within the bound states, there is insufficient time for depolarisation of

the top quark spin. Thus, the spin of the top quark remains undisturbed by the strong

interaction and is directly transferred to its decay products [73]. Detailed reviews on the

current status and prospects of top quark physics can for example be found in [72,74] and

references therein.

1.2.1. Top Quark Production via the Strong Interaction

The Standard Model predictions are not limited to the existence of the fundamental parti-

cles, but additionally include information on their production probability in a given exper-

imental collider setup. Based on an analogy to classical scattering experiments, the cross

section of a given process is a measure of the effective surface area seen by a striking

particle. Cross sections are therefore expressed in units of area, with the most commonly

quoted unit is barn, defined by 1 b = 10−28 m2, or its corresponding sub-multiples like

1 pb = 10−12 b. In the collision of two particles, the cross section is a measure of the

probability for an interaction to occur. For a transition of two incoming particles i and j
into two outgoing particles k and l, the cross section in the centre-of-mass system can be

calculated via

σ(ij → kl) =
∫

1

4W p
|M|2 · dΦ(s; pk, pl) , (1.31)
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with W2 = s, i.e. the four-momentum transfer squared s = (pi + pj)
2, the initial particle

momentum p = |�pi,j|, and a Lorentz-invariant phase-space factor dΦ(s; pk, pl). Of spe-

cial importance is the matrix element M, which can be determined from the Lagrangian

using perturbation theory. For this purpose, the matrix element can be written in terms of

a perturbation series expansion in the coupling constant of the corresponding interaction.

Feynman diagrams constitute graphical representations for the individual terms in this se-

ries. Moreover, these diagrams allow for a translation into the corresponding formulae by

application of the appropriate Feynman rules, which are given by the Lagrangian. Includ-

ing only terms of the lowest non-vanishing order in the coupling constant yields a leading

order (LO) computation of the matrix element. The inclusion of diagrams exhibiting one

order more in the coupling constant results a next-to-leading order (NLO) calculation and

so on. For the calculation of cross sections, the inclusion of terms beyond leading order

in the coupling constant leads to divergences, which can be treated using the technique of

renormalisation. Therein, divergences are avoided by defining physical quantities like a

coupling constant as a combination of the bare quantity appearing in the Standard Model

Lagrangian LSM and the divergent contributions. For renormalisable theories, like the

Standard Model, the unobservable value of the bare quantity can be chosen such that di-

vergences to all orders in perturbation theory are cancelled. Consequently, the value of

the coupling constant depends on the energy scale, which is also referred to as the renor-

malisation scale μR. This scale defines which higher-order contributions are absorbed

into the redefined quantities of the Lagrangian and which are taken into account using

perturbation theory. Hence renormalised coupling constants are referred to as running

coupling constants obeying the so-called renormalisation group equation. If the complete

perturbation series could be calculated, the result for the cross section would be indepen-

dent of μR. However, since calculations are performed at finite orders, the cross section

depends on the renormalisation scale μR. In general, a good choice μ̂R is a scale that

minimises the size of higher-order corrections. Therefore, usually a scale characteristic

for the hard scattering is used. The renormalisation scale uncertainty denotes the uncer-

tainty of a computation due to this non-unique choice. Conveniently, this uncertainty is

evaluated as the effect of varying the renormalisation scale between 1
2

μ̂R and 2 μ̂R.

The dominant production mechanism for top quarks at hadron colliders is the production

of top-antitop quark pairs via the strong interaction. Although tt̄ production can also be

accomplished via Z0 boson or photon exchange, these contributions can be neglected in

hadron-hadron collisions. Furthermore, the Standard Model predicts the production of

single top quarks via the electroweak interaction, which will be reviewed in section 1.2.2.

Partonic Cross Section

The cross sections σ̂ of the hard parton-parton processes ij → tt̄ can be calculated for

all possible initial-state partons i and j in perturbative QCD. The leading order (Born)

cross sections for heavy quark production were calculated in the late 1970s [75–80]. The

leading-order processes, contributing with the square of the strong coupling constant αs

to the perturbation series, are quark-antiquark annihilation (qq̄ → tt̄) and gluon-gluon

fusion (gg → tt̄). Feynman diagrams for these LO processes are depicted in figure 1.3.

Application of the corresponding Feynman rules allows for the calculation of the transi-
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(a) (b) (c) (d)

Figure 1.3: Leading order Feynman diagrams for the production of top quark pairs via quark-

antiquark annihilation (a) and via gluon-gluon fusion (b), (c), and (d).

tion amplitudes and thus for the computation of the differential hard cross sections dσ̂
dt̂

.

The LO differential cross sections for quark-antiquark annihilation and gluon-gluon fu-

sion are given by

dσ̂

dt̂
(qq̄ → tt̄) =

4πα2
s

9ŝ4
·
[(

m2
t − t̂

)2

+
(

m2
t − û

)2

+ 2m2
t ŝ

]
and (1.32)

dσ̂

dt̂
(gg → tt̄) =

πα2
s

8ŝ2
·
[

6
(
m2

t − t̂
) (

m2
t − û

)
ŝ2

− m2
t

(
ŝ− 4m2

t

)
3
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û− t̂

)
ŝ
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, (1.33)

with the top quark mass mt and the Lorentz-invariant Mandelstam variables ŝ, t̂, and û
of the process. They are defined as ŝ = (pi + pj)

2, t̂ = (pi − pt)2, and û = (pi − pt̄)
2,

where pi and pj represent the four-momenta of parton i and j, i.e. of the quarks q and q̄
or of the two gluons, respectively. The four-momenta of the top and the anti-top quark

are given by pt and pt̄. The Mandelstam variables ŝ, t̂, and û can be identified with

the square of the partonic centre-of-mass energy and with the squares of the momentum

transfers from the initial parton to the top quark or to the anti-top quark, respectively. The

cross sections in equations (1.32) and (1.33) are quoted in the form given in [81].

Parton Distribution Functions

The differential cross sections given in equations (1.32) and (1.33) describe the LO tt̄ pro-

duction via quark-antiquark annihilation and gluon-gluon fusion. However, at the Large

Hadron Collider compound particles are collided. Assuming the collision of hadron A



16 Chapter 1. The Top Quark in the Standard Model

Figure 1.4: Parton distribution functions of u quarks, d quarks, ū quarks, d̄ quarks, s quarks and

gluons inside the proton. The parametrisation used is CTEQ6.6 [84] and the scale at which the

PDFs are evaluated is chosen to μ̂ = 172.5 GeV. A typical value for tt̄ production at the LHC with

a centre-of-mass energy of
√

s = 7 TeV is x̂ = 0.05, which is indicated by the vertical blue line.

and B, the momentum of each hadron is shared among its constituents. A proton for ex-

ample consists of two u quarks and one d quark. These three valence quarks are bound by

virtual gluons, which can fluctuate into quark-antiquark pairs, so-called sea quarks. The

parton distribution function (PDF) fi/A(xi, μ) describes the probability density for find-

ing a parton i inside hadron A, where parton i carries a longitudinal momentum fraction

xi =
pi
pA

of the total hadron momentum pA. Parton distribution functions depend on the

factorisation scale μF which describes the typical energy scale of the considered interac-

tion. Since the factorisation scale μF and the previously discussed renormalisation scale

μR are to some extend arbitrary parameters, they are customarily set to one single scale

μ = μR = μF. For the calculation of top quark production cross sections, μ is usually set

to the top quark mass mt. For example, figure 1.4 depicts PDFs in the CTEQ6.6 [82, 83]

parametrisation at a scale μ̂ = 172.5 GeV for the valence quarks (u and d), the sea quarks

(here: ū, d̄, and s) and gluons inside the proton. Using the momentum fractions xi and

xj, the square of the total energy of the partonic sub-process ŝ can be obtained from the

square of the total hadronic centre-of-mass energy s = (PA + PB)
2

via

ŝ =
(

pi + pj

)2
=

(
xiPA + xjPB

)2 ≈ 2xixjPAPB ≈ xixjs , (1.34)

where the residual masses of the two incoming hadrons are neglected. For top quark

pair production, the energy in the partonic interaction has to exceed the minimal value of

ŝmin = 4m2
t , leading together with the approximation xi ≈ xj = x̂ to a typical value of

x̂ ≈ 2mt√
s

for tt̄ production at the kinematic threshold. Hence, the centre-of-mass energy

of the Large Hadron Collider induces tt̄ production in the low x regime, with a typical

value x̂ ≈ 0.05, given the centre-of-mass energy of 7 TeV. Since the PDF for gluons

in this region is very much enhanced compared to those of the valence or sea quarks,

the dominant production sub-process, with a contribution of about 90%, is gluon-gluon

fusion.
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Total Hadronic Cross Section (The Factorisation Ansatz)

Finally, the total hadronic cross section σ for tt̄ production in hadron-hadron collisions is

given by the convolution of the parton distribution functions of the colliding hadrons and

the hard parton-parton cross section σ̂ij

σ(AB → tt̄) = ∑
i,j

∫
dxidxj fi/A(xi, μ2) f j/B(xj, μ2) · σ̂ij(ij → tt̄; ŝ, μ2) , (1.35)

summed over all pairs of initial partons contributing to the process. While the next-

to-leading order corrections to top quark pair production at hadron colliders have been

calculated for unobserved spins in [85, 86] and with the full top quark spin dependency

in [87, 88], a complete analytical result for the NLO partonic cross section was pub-

lished only recently [89]. Moreover, approximations towards a full NNLO result have

been obtained by several groups [8, 9, 90–93]. Based on the techniques deduced in [8, 9],

the HATHOR [10] package allows for the calculation of the tt̄ production cross section.

Setting the renormalisation and factorisation scales to μ̂ = 172.5 GeV and using the

CTEQ6.6 [84] PDF parametrisation, this procedure results in a predicted value of

σ(pp → tt̄) =
(

164.6+11.4
−15.7

)
pb , (1.36)

for the tt̄ production cross section at the LHC. The uncertainty of about 10% on this pre-

diction includes scale and PDF uncertainties. For the evaluation of the scale uncertainty,

the scale μ is varied to 1
2
μ̂ and 2μ̂, respectively. In order to determine the uncertainty

induced by the used parton distribution functions, the 22 orthogonal eigenvectors in the

CTEQ6.6 PDF set are separately varied to their 90% confidence interval boundary value

and the resulting deviations are added in quadrature. For the design centre-of-mass en-

ergy
√

s = 14 TeV of the Large Hadron Collider, an enhanced cross section value for

top quark pair production of σ(pp → tt̄) = 918+64
−41

pb [92, 94] is expected, based on the

MSTW2008 NNLO PDF [82, 83] parametrisation and a scale μ̂ = 173 GeV.

1.2.2. Top Quark Production via the Electroweak Interaction

Besides the production of top quark pairs involving the strong interaction, the production

of single top quarks via the electroweak interaction is predicted by the Standard Model.

Since electroweak top quark production proceeds via a Wtb vertex, it facilitates a direct

measurement of the magnitude of the CKM matrix element Vtb. Figure 1.5 illustrates

the LO Feynman diagrams for the three different modes for single top quark production,

i.e. the t-channel, the s-channel, and the associated production. For a centre-of-mass

energy of 7 TeV, recent results on the approximated NNLO cross sections for s-channel

production of top quarks and of anti-top quarks yield [95]

σt
s-chan =

(
3.17± 0.06+0.13

−0.10

)
pb and

σt̄
s-chan =

(
1.42± 0.01+0.06

−0.07

)
pb , (1.37)

at μ̂ = 173 GeV and using the MSTW2008 NNLO PDF set. While the first uncertainty is

determined by varying the scale μ, the second uncertainty accounts for PDF uncertainties.
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(a) (b) (c) (d)

Figure 1.5: Leading order Feynman diagrams for the electroweak production of single top quarks

via the t-channel (a), the s-channel (b), and the associated Wt production (c) and (d).

Given these small cross section values, a sub-leading role is ascribed to s-channel single

top quark production compared to pairwise production of top quarks at the LHC.

The t-channel production mode on the other hand exhibits a larger cross section value

of about [96]

σt
t-chan =

(
42.6+0.9

−0.8 ± 2.2

)
pb and

σt̄
t-chan =

(
22.6+0.6

−0.3 ± 0.8

)
pb , (1.38)

where the MCFM [97] package with μ̂ = 172.5 GeV and the CTEQ6M PDF has been

employed to derive NLO cross section values. Due to this moderate value compared to the

predicted tt̄ production cross section given in equation (1.36), the t-channel production

mode has to be considered as background contribution in the analysis of tt̄ production.

However, the different final state topologies of the two processes can be used to distin-

guish top quark pair production from the single top t-channel production mode.

The third single top quark production mode is characterised by the associated produc-

tion of a top quark and an on-shell (or close to on-shell) charged W± boson, which is

therefore also referred to as Wt production. For this production mechanism, the approxi-

mate NNLO cross section calculation yields [98]

σWt =
(

15.6± 0.4+1.0
−1.2

)
pb , (1.39)

where the uncertainties again include scale and PDF uncertainties. The associated produc-

tion is of particular importance for the analysis of tt̄ events, since this process interferes

at next-to-leading order with tt̄ production at leading order [99]. In phase-space regions

where the final state Wb system is close to the top mass, this interference becomes large,

due to the large propagator value for the intermediate top quarks in this particular phase-

space region. In order to estimate the interference between Wt and tt̄ production, two

definitions of the Wt mode are given in [99]. The first approach is called Diagram Re-

moval (DR), wherein all diagrams in the NLO Wt amplitudes are removed, which are

doubly resonant in the sense that the intermediate top quark can be on-shell. In the sec-

ond definition, called Diagram Subtraction (DS), the NLO Wt cross section is modified by

implementing a subtraction term designed to locally cancel the tt̄ contributions. Hence,

the comparison of results obtained from the two complementary definitions can be used

to estimate the impact of the interference on the analysis.



1.2. The Top Quark 19

Figure 1.6: LO Feynman diagram for tt̄ production via gluon-gluon fusion and subsequent top

quark decays. This example shows the lepton+jets event topology, wherein the W− boson origi-

nating from the anti-top quark decays leptonically into a charged lepton l− and the corresponding

anti-neutrino ν̄l . The W+ boson from the top quark on the other hand subsequently decays hadron-

ically into a qq̄′ quark pair.

1.2.3. Decay of the Top Quark

Constituting the up-type quark of the third generation, the top quark could in principle

decay into an electrically charged W boson and any down-type quark of one of the three

generations. However, the decay into a quark of the first or second generation is strongly

suppressed by the small values for the corresponding CKM matrix elements Vtu and Vtc

given in equation (1.2). The matrix element Vtb is close to one, implying an almost ex-

clusive decay of the top quark into a W boson and a b quark. Since the top quark mass

exceeds the sum of the masses of its decay products, the top quark decays into a real W bo-

son, which is one of the reasons for the extremely short lifetime of top quarks. Figure 1.6

depicts again the LO Feynman diagram for tt̄ production via gluon-gluon fusion, includ-

ing the decay of the top quarks. The electrically charged W bosons subsequently decay

either leptonically into a charged lepton and the corresponding neutrino or into a quark-

antiquark pair. Top quark pair event topologies can thus be distinguished by the W boson

decay modes. All-hadronic events are characterised by the hadronic decay of both W
bosons, whereas in dilepton events both W bosons decay leptonically. A third possibility

is provided in the lepton+jets event topology, where one W decays leptonically, while

the other decays hadronically into a quark-antiquark pair as depicted in figure 1.6. Dis-

regarding mass differences, the universality of the electroweak interaction implies equal

probabilities for the different fermionic decay modes. However, due to the three differ-

ent quark colour charges, the decay into quark-antiquark pairs is enhanced by a factor of

three, leading to a LO branching ratio of 1/9 for each of the three leptonic decay modes

and LO branching ratios of 3/9 for decays into a ud̄′ or cs̄′ quark pair. The branching

ratios for the various decay channels are depicted in figure 1.7. While the all-hadronic

channel exhibits a high branching ratio, large background contributions from processes

like QCD multijet production are expected. The dilepton channel in turn is characterised

by its small branching ratio and low expected background contributions. A compromise

providing low background contributions on the one hand while exhibiting a moderate
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Figure 1.7: Decay channels for tt̄ events [100]. The graphic shows the three different tt̄ event

topologies, i.e. the all-hadronic, the lepton+jets, and the dilepton channel. The branching ratios

for the various channels are thereby indicated by the size of the different areas.

branching ratio on the other hand is provided by the lepton+jets event topology. The anal-

ysis presented in this thesis is therefore performed in the muon+jets channel, which, in

combination with the electron+jets channel, is habitually called the golden channel.
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The CMS Experiment at the Large Hadron Collider

Top quarks, like the other fermions of the second and third generation, do not constitute

ordinary matter. The production of these higher-generation fermions can however be

achieved in collider experiments, where the interaction of particles exhibiting sufficient

kinetic energy facilitates the production of new particles. For a detailed observation of

such collision events and the detection of the particles produced, dedicated detectors are

required, which are installed hermetically around the interaction point.

Since the first intentional proton-proton collisions at a centre-of-mass energy of 7 TeV

on March 30th 2010, the Large Hadron Collider (LHC) operated by the European Organ-

isation for Nuclear Research (CERN) near Geneva, Switzerland, constitutes the highest

energetic collider ever built. Revealing its discovery potential within the next decade,

the LHC is expected to answer several open questions in particle physics, such as the

nature of electroweak symmetry breaking or existence and properties of physics beyond

the Standard Model. One of the two general-purpose particle detectors at the LHC is the

Compact Muon Solenoid (CMS) apparatus, which has been designed to meet the versatile

requirements implied by the rich physics goals of the Large Hadron Collider.

2.1. The Large Hadron Collider

Revealing phenomena at decreasing length scales requires increasing energy densities

in collider experiments. The resolved length scale probed in an interaction is given by

the de Broglie wavelength λ = h/p of a probe particle with momentum p. Over the

past decades many accelerator facilities with increasing centre-of-mass energies have al-

lowed the exploration of matter and interactions at scales in the order of 10−18 m, where

two kinds of collider experiments have been performed. In the collision of structure-

less particles like electrons, the entire energy of the colliding particles is available in the

centre-of-mass of the collision. On the other hand, in the collision of composite parti-

cles like protons, high-energetic interactions take place between the constituents of the

colliding protons. According to the parton density functions discussed in section 1.2.1,

these constituents carry only a fraction of the total proton momentum, effectively leading

to a reduced centre-of-mass energy. This has to be considered in the design of a hadron

collider in order to be well above the production energy threshold for a desired process.

This apparent drawback however implies the advantage of a wide spectrum of effective

collision energies. Hadron colliders thus constitute ideal discovery machines, whereas

electron-positron colliders serve better for precision measurements at fixed energy scales.

Besides the centre-of-mass energy, high interaction rates are required for precision mea-

surements and searches for rare phenomena, which typically exhibit very small cross sec-

tions. In general, the event rate of a certain physics process is given by the product of
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its cross section σ and the luminosity L of the collider via dN
dt = σ · L. The acceleration

of particles at colliders is commonly performed using radio frequency (RF) cavities, in

which oscillating electric fields of adequate frequencies lead to accelerating effects. For

this reason, particles cannot be accelerated in continuous particle beams but are rather

grouped into so-called bunches, which generally exhibit high particle densities. For a

head-on collision of two bunches, A and B, comprising NA and NB particles, the lumi-

nosity is given by [101]

L = f
NANB

4πσxσy
, (2.1)

where σx and σy characterise the approximately Gaussian beam profiles in horizontal and

vertical directions at the interaction point and f denotes the revolution frequency. Taking

into account some more realistic assumptions, the luminosity for the collision of nb proton

bunches containing Np protons each can be expressed as [102]

L = f
γnbN2

p

4πεnβ∗
F , (2.2)

where γ is the Lorentz factor and εn represents the normalised transverse emittance,

which is a measure of the phase-space area associated with either of the two transverse

degrees of freedom of the beams. The amplitude function at the interaction point is de-

noted by β∗ and F is a reduction factor due to a finite bunch crossing angle.

The Large Hadron Collider [102, 103] is a hadron-hadron collider employed by the

European Organisation of Nuclear Research (CERN) near Geneva, Switzerland. Cur-

rently operated at an unprecedented centre-of-mass energy of
√

s = 7 TeV (a factor of

two below the design value of
√

s = 14 TeV) the LHC constitutes the most powerful

proton-proton collider to date. It is hosted in a tunnel of 26.7 km circumference, located

between 45 m and 170 m below the surface on a plane inclined at 1.4% sloping towards

Lake Geneva. The tunnel was originally built for the Large Electron-Positron collider

(LEP) [104], which was been operated at CERN from 1989 until 2000. LEP provided

electron-positron collisions at a centre-of-mass energy of up to 209 GeV and facilitated

precision measurements of the W± and Z0 gauge boson properties by the four LEP ex-

periments [105, 106]. One major constraint for the centre-of-mass energy at LEP was the

beam particles’ energy loss induced by synchrotron radiation. The energy loss per turn is

given by [107]

ΔE =
4παem

3R
β3γ4 , (2.3)

where R denotes the effective dipole bending radius of the accelerator and αem is the elec-

tromagnetic fine-structure constant. The Lorentz factor γ is given by γ ≈ E
mc2 and in the

ultra-relativistic scenario β ≈ 1. The energy loss per turn is thus inversely proportional

to the fourth power of the energy-mass ratio of the accelerated particles. Accordingly, an

electron with an energy of 100 GeV at LEP radiated about 2.3% of its energy per turn,

which had to be compensated for by the accelerator facility. One possibility for the re-

duction of this energy loss is to increase the radius of the accelerator, with the optimal

realisation being a linear collider. For the design of the Large Hadron Collider an alter-

native approach has been chosen. Protons exhibit a 2,000 times higher rest mass than
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Table 2.1: Summary of proton energies at the different acceleration stages from the proton source

to the Large Hadron Collider.

Acceleration stage Final proton energy [GeV]

RFQ 7.5 · 10−4

LINAC2 5.0 · 10−2

PSB 1.4

PS 26

SPS 450

LHC up to 7,000

electrons. Therefore, synchrotron radiation is negligible for the acceleration and storage

of protons due to the increased energy-mass ratio.

Further, the LHC design comprises an envisaged luminosity of L = 1034 cm−2s−1. To

attain such high luminosities, bunches of 1.15 · 1011 protons are collided every 25 ns,

corresponding to a collision frequency of 40 MHz. Collimation of the proton bunches to

a transverse size of about 16 μm at the interaction points further enhances the collision

probability. However, a small luminosity reduction is caused by the finite bunch crossing

angle of 285 μrad, which is needed for the beam-beam separation in order to avoid unin-

tended collisions near the dedicated interaction regions. The beam intensity required for

the high design luminosity of the LHC excludes the use of antiproton beams. Choosing a

proton-proton collider however does not significantly restrict the physics potential of the

accelerator, as interactions involving a few hundred GeV momentum transfer are mostly

gluon-initiated.

Due to the high luminosities envisaged at the LHC, several proton-proton collisions

are expected to occur during the same bunch crossing. In general, only one of these

collisions contains a hard interaction of interest, while the other superimposed interactions

typically constitute soft minimum-bias collisions. These soft interactions are collectively

referred to as pile-up collisions, while an event denotes the total of all proton-proton

collisions occurring in the same bunch crossing. The average number of pile-up collisions

is proportional to the instantaneous luminosity of the accelerator, leading to a total of

about 20 pile-up collisions per event at nominal LHC luminosity.

2.1.1. Production and Pre-acceleration of Protons

Before entering the LHC, protons traverse the CERN pre-accelerator complex [108] de-

picted in figure 2.1. This injection facility had already served for other experimental

purposes for decades and has been extensively modified and upgraded for operating with

the LHC. The accelerator chain consists of the proton source and several facilities for

the subsequent increase of proton energies as summarised in table 2.1. A duoplasma-

tron source is used for the production of protons, where interactions of high-energetic

electrons lead to the ionisation of hydrogen atoms. The protons obtained are extracted

by applying a high voltage and transferred to the Radio Frequency Quadrupole (RFQ)

of about 1.75 m length, serving as a linear accelerator. In the RFQ, protons are acceler-

ated, focused and grouped into bunches, which finally leave this acceleration stage with



24 Chapter 2. The CMS Experiment at the Large Hadron Collider

Figure 2.1: Schematic view of the CERN accelerator complex (not to scale). Starting on the

right hand side at the proton source, protons are accelerated via the Radio Frequency Quadrupole

(RFQ), the linear accelerator LINAC2, the Proton Synchrotron Booster (PSB), the Proton Syn-

chrotron (PS), and the Super Proton Synchrotron (SPS). Finally, the proton bunches are injected

as two counter-rotating beams into the Large Hadron Collider via the two transfer lines TI 2 and

TI 8. The LHC is depicted, superimposed with the octant structure comprising eight arcs and

eight straight sections, where each octant is centred around a straight insertion. Four of these

straight sections are dedicated to utility insertions, i.e. two for cleaning of the LHC beams, one for

the beam dump systems, and one for the RF systems. The general-purpose detectors, CMS and

ATLAS, are located at P5 and P1, while the special purpose detectors ALICE and LHCb can be

found at P2 and P8, respectively.

an energy of 750 keV. Also based on radio frequency technology, the linear accelerator

LINAC2 constitutes the consecutive acceleration stage. Over a length of 30 m, the proton

energy is enhanced to 50 MeV. The first circular accelerator in the chain is the Proton Syn-

chrotron Booster (PSB), where the energy of the protons is increased to 1.4 GeV before

entering the Proton Synchrotron (PS), which has a circumference of about 630 m. Finally,

protons emerging from the PS with an energy of 26 GeV are injected into the Super Pro-

ton Synchrotron (SPS), constituting the final pre-acceleration stage. Between 1981 and

1984, the SPS was named Spp̄S and served as proton-antiproton collider, leading to the

discovery of the W± and Z0 bosons by the UA1 and UA2 collaborations [109–112]. In

the LHC pre-accelerator chain, the SPS serves for the acceleration of proton bunches to

an energy of 450 GeV before being injected as two counter-rotating beams into the LHC

main ring via the transfer lines TI 2 and TI 8.
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2.1.2. The LHC Main Ring

The Large Hadron Collider has been designed to fit into the existing LEP tunnel. There-

fore, the centre-of-mass energy of the LHC is limited by the maximal attainable mag-

netic dipole field required to compensate for the centrifugal force experienced by charged

beam particles. Since the LHC consists of several arcs and straight sections imposed by

the tunnel geometry, the effective bending radius in the ring is 2.8 km. Hence, in order

to keep particles with a design energy of 7 TeV in the beam pipe, specially-designed

superconducting dipole magnets are employed providing a vertical magnetic field of

8.33 T [102, 103]. The magnet coils are made of copper-clad niobium-titanium (NbTi)

cables and are cooled down for operation to a temperature of 1.9 K. The cooling is per-

formed using superfluid helium which ingresses all excavations due to its negligible vis-

cosity. In the copper-clad NbTi construction, copper provides rapid conduction of local

heat generated by small surface defects or impurities. The advantage of this design com-

pared to the use of solid niobium thus lies in the reduced susceptibility to quenching,

which denotes the transition of the superconductor to the normal-conducting or resistive

state. The choice of a proton-proton collider precluded the particle-antiparticle collider

configuration of a common magnet system for both circulating beams, which exploits the

opposite charges of the beam particles. At the Large Hadron Collider, the two beams of

protons are therefore accelerated and stored in two separate beam pipes in the main arcs

with common sections only at dedicated interaction regions. A beneficial effect of this

architecture is the reduction of beam-beam interactions and collisions outside the inter-

action regions, which is needed to achieve the high LHC design luminosity. Instead of

using two completely separate proton rings, the limited available space in the tunnel ne-

cessitated the design of twin-bore magnets comprising two sets of superconducting coils

and beam pipes within a common mechanical structure and cryostat. A disadvantage of

this twin-bore design, however, is the magnetic and mechanical coupling of the rings,

which adversely affects the flexibility and results in a complicated magnetic structure. In

addition to the 1,232 superconducting dipole magnets, a total of about 7,000 normal- and

superconducting magnets are used for cleaning and focusing the beams, and to correct

their trajectories.

The LHC consists of eight arcs and eight straight sections, which can be grouped into

octants centred around the straight sectors, as depicted in figure 2.1. Each of the eight

straight sections serves as a possible interaction point, referred to as Point 1 to Point 8,

where experimental or utility insertions can be installed. At four of these possible inter-

action regions, the beams are forced to collide and particle detectors are installed in un-

derground caverns to record such collisions. The two high luminosity insertions Point 1

and Point 5 are located at diametrically opposite straight sections, where the two general-

purpose detectors ATLAS (A Toroidal LHC Apparatus) [113] and CMS [114, 115] are

installed. In addition, the LHC hosts two special-purpose detectors located at the ex-

perimental insertions in Octant 2 and Octant 8, which also include the two beam injec-

tion systems. ALICE (A Large Ion Collider Experiment) [116] is dedicated to heavy

ion physics and the LHCb (Large Hadron Collider beauty) [117] experiment has been

specially-designed to investigate flavour physics. In addition, the comparatively small ex-

periment LHCf (Large Hadron Collider forward) [118] will measure particle production

very close to the beam pipes using detectors located about 140 m away from the ATLAS
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Table 2.2: List of important LHC machine parameters for the phase of high luminosity running

at the design centre-of-mass energy of 14 TeV adapted from [102] and for the current operation

mode at a centre-of-mass energy of 7 TeV.

Quantity Design Current Operation

Luminosity
[
cm−2s−1

]
1034 2 · 1032

Number of bunches per proton beam 2,808 312

Number of protons per bunch 1.15 · 1011 1.15 · 1011

Normalised transverse emittance εn [μm] 3.75 1.6

Amplitude function β∗ [m] 0.55 3.5

Crossing angle at interaction point [μrad] 285 100

Nominal bunch separation [ns] 25 75

Nominal energy of protons [GeV] 7,000 3,500

Number of main superconducting dipoles 1,232 1,232

Peak magnetic dipole field [T] 8.33 4.17

Dipole operating temperature [K] 1.9 1.9

Stored energy per beam [MJ] 362 24

interaction point. Similarly, the TOTEM (Total Elastic and Differential Cross Section

Measurement) experiment [119] is designed to measure the total proton-proton cross sec-

tion. For this purpose, forward detectors are employed which are installed at distances

between 150 m and 400 m away from the CMS interaction point. The remaining four

straight sections in Octant 3, 4, 6, and 7 are not intended for beam crossings but host

utility insertions. Point 3 and Point 7 are dedicated to collimation systems, serving for

momentum cleaning of both beams. Particles with a large momentum offset or large am-

plitude function are scattered and absorbed by dedicated collimators located at the two

cleaning insertions. The straight section in Octant 4 contains two independent RF and

feed-back systems for the two LHC beams. Protons entering the LHC main ring via one

of the two transfer lines are accelerated to their nominal energy of 7,000 GeV using the

superconducting copper-clad niobium radio frequency cavity system. The independent

acceleration systems for the two beams are equipped with eight 400 MHz RF cavities

each, accelerating the beams in total by 0.5 MeV/turn in an electric field of 5.5 MV/m.

Finally, the straight insertion in Octant 6 is equipped with two independent beam abort

systems. Therein, the two LHC beams can be independently extracted from the machine

using dedicated fast-pulsed kicker magnets. The beams are then deflected away from the

machine components to absorbers located in a beam dump cavern about 750 m away from

the extraction magnets. Carbon has been chosen as absorbing material for the 362 MJ

LHC beams due to its high sublimation temperature and thermal shock resistance. A list

of important LHC machine parameters can be found in table 2.2, including design val-

ues for proton-proton collisions at a centre-of-mass energy of
√

s = 14 TeV and for the

current operation mode at
√

s = 7 TeV.

In addition to the proton-proton operation, the LHC can also provide heavy ion colli-

sions. For this purpose bunches of 7 · 107 lead nuclei Pb82+ can be collided at a centre-

of-mass energy of about 5.5 TeV/nucleon. The design luminosity for heavy ion operation
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is L = 1027 cm−2s−1 with a bunch separation time of 100 ns. Ion-ion collisions are pri-

marily provided at Point 2 for the specialised ALICE detector, but the CMS and ATLAS

collaborations also study these collisions with similar luminosities. The CMS heavy ion

physics program [120] is however not further discussed here, since the study presented in

this thesis concentrates on results obtained from proton-proton collisions.

The injection of beams into the different facilities of the CERN accelerator complex is

accomplished by special fast-ramping magnets called injection kickers. The rise times of

these injection kickers entail gaps of missing bunches in the beams. At nominal operation,

the 25 ns bunch spacing is induced by the 40 MHz RF system of the Proton Synchrotron

leading to a total of 3,564 RF buckets over the entire LHC ring. These RF buckets,

denoting the specific phase-space regions for acceleration of protons by the oscillating

fields, limit the maximum number of bunches per beam. At nominal operation the SPS is

filled from three to four PS batches, where each batch consists of 72 bunches and eight

empty buckets due to the SPS injection kicker rise time of 220 ns. The LHC is then filled

from twelve SPS batches of 5.48 μs or 7.86 μs duration, to be successively deposited over

the machine circumference. Due to the LHC injection kicker rise time of 0.94 μs, the SPS

batches are injected with gaps of 38 RF buckets. One final gap of 3.0 μs allows for the

fall time of the injection kickers and the rise time of the beam dump kickers to be able to

dump the LHC beams in a controlled manner within one revolution. This leads in total

to 2,808 bunches of 1.15 · 1011 protons filling the 3,564 available RF buckets per LHC

beam. The minimum time required for filling both LHC beams from multiple cycles of

the involved accelerators, and acceleration to their nominal energy of 7 TeV is estimated

to about seventy minutes.

The luminosity is not constant over a physics run, but decays due to the depletion of

intensities and emittances of the circulating beams. The main reason for the luminosity

reduction during nominal LHC operation is the beam loss from collisions. Other contribu-

tions emerge from Touschek scattering and from particle losses due to emittance blow-up,

which can be caused by the scattering of beam particles on residual gas, the non-linear

force of the beam-beam interaction, intra-beam scattering, or RF noise. Flux monitors

are used for the measurement of the instantaneous luminosity, for optimisations, and for

the equalisation of the two beams at the interaction regions. In order to suppress the

beam loss related background, gas ionisation chambers are employed to detect the flux of

showers generated by neutral particles emerging from the proton-proton collisions. These

luminosity flux monitors are installed inside the TAN (Target Absorber Neutral) devices,

which serve to protect machine elements from neutral particles. For this purpose, the

TAN absorbers are located in front of the dipole magnets guiding the beams from the

interaction regions into the two separate beam pipes. The LHC luminosity lifetime at the

design value of L = 1034 cm−2s−1 and a centre-of-mass energy of 14 TeV is estimated

to be about fifteen hours before the luminosity has degraded and necessitates a dump and

refill procedure of the Large Hadron Collider.

Since the first intentional proton-proton collision on May 30th, the Large Hadron Col-

lider has been operated as pp collider at a centre-of-mass energy of 7 TeV until November

2010. Shortly thereafter, a period of about one month was dedicated to lead-lead colli-

sions which finally demonstrated the successfully commissioning of the LHC machine.
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(a) (b)

Figure 2.2: Instantaneous and integrated luminosity of the LHC [123]. The instantaneous lumi-

nosity as a function of time is depicted in (a), leading to a peak luminosity of 2.0 · 1032 cm−2s−1.

Of special interest for physics analyses is the integrated luminosity given in (b). Therein, the

integrated luminosity delivered by the LHC is represented by the red curve and the blue curve

indicates the luminosity successfully recorded with CMS detector, corresponding to 43.2 pb−1.

The reduction of the centre-of-mass energy for pp collisions to half of the design value

has been devised for the operation in 2010 [121, 122]. During a one year shut-down in

2012, the LHC will presumably be prepared for operation at the design parameter values.

Besides the lower centre-of-mass energy, several other parameters have been altered in

the LHC start-up phase. A comparison between the design values and the ones most re-

cently achieved is given in table 2.2. Accordingly, a maximum of 312 bunches per beam,

each consisting of 1.15 · 1011 protons, have been collided and the amplitude function at

the CMS interaction point was enlarged to β∗ = 3.5 m. The performance of the machine

in this configuration is depicted in figure 2.2, where the instantaneous luminosity is given

as a function of time. Additionally, the integrated luminosity of the LHC and the cor-

responding value for the recorded luminosity by the CMS experiment are shown. Until

November 2010, the LHC provided an integrated luminosity of 47.0 pb−1, among which

43.2 pb−1 have been successfully recorded with the CMS apperatus.

2.2. The CMS Experiment

The observation and detailed analysis of proton-proton collisions requires the applica-

tion of large-scale general-purpose detectors to explore the versatile physics opportunities

provided by the Large Hadron Collider. Multi-purpose particle detectors are typically de-

signed forward-backward and azimuthally symmetric, and comprise a cylindrical barrel

and end cap structure aiming for a 4π solid angle coverage. This hermetic angular cov-

erage is important for identification and measurement of a large phase-space of final state

particles emerging from the interaction region. Several specially-designed sub-systems

for the detection of different types of particles are arranged concentrically around each

other in an onion-like structure, exemplarily depicted in figure 2.3. Closest to the interac-

tion region is a tracking system featuring measurements for the reconstruction of charged
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particle trajectories. A homogeneous magnetic field with field lines parallel to the beam

axis furthermore leads to a bending of these trajectories, which facilitates the determina-

tion of the particles’ momentum and the sign of their charges. Calorimetry systems based

on electromagnetic and hadronic calorimeters surrounding the tracking volume serve to

absorb particles and to measure their deposited energy. Electromagnetic calorimeters are

designed to measure the energy of particles interacting primarily via the electromagnetic

force like electrons or photons. Electrons penetrating the electromagnetic calorimeter

radiate highly energetic bremsstrahlung photons, which in turn convert into e+e− pairs.

This results in a cascade of secondary particles of decreasing energy referred to as elec-

tromagnetic showers. The radiation length X0, defined as the distance over which a high-

energetic electron looses all but 1/e of its energy by bremsstrahlung, is the characteristic

length scale for the description of the longitudinal electromagnetic calorimeter thickness.

For high-energetic photons, the radiation length corresponds to 7/9 of the mean free path

for e+e− pair production. Similar to the electromagnetic showers, hadronic showers re-

sult from strong interactions of hadrons with heavy nuclei in the material of the hadronic

calorimeter. Here, the typical length scale for characterising the hadronic calorimeter

thickness is the nuclear interaction length λI, which denotes the mean free path length of

a high-energetic hadron before interacting with the traversed material. Finally, the muon

system constitutes the outermost part of a typical general-purpose detector. Due to their

higher rest mass, muons emit significantly less bremsstrahlung compared to electrons and

do not strongly interact within the hadronic calorimeter. Therefore, muons deposit only

a small fraction of their energy in the calorimeter system and penetrate the muon system,

which is used for their detection and identification.

The Compact Muon Solenoid [114, 115] experiment hosted in an underground cavern

about 100 m below surface at Point 5 near Cessy, France, is one of the two competing

general-purpose particle detectors at the Large Hadron Collider. The CMS apparatus has

an overall length of 21.6 m, a diameter of 14.6 m, and a total weight of 12,500 t, which

can almost entirely be ascribed to the enormous weight of the 10,000 t iron yoke. Since

the excavation of the underground cavern was not completed until 2004, the CMS detector

has been build on the surface in fifteen separate sections, which have then been lowered

into the experimental cavern for assembly and installation. In contrast to its competitor

ATLAS, the CMS detector thus features a modular concept of several discs as depicted

in figure 2.4, permitting the simultaneous work on different detector parts and an easy

accessibility for maintenance work during regularly scheduled LHC shut-down phases.

Despite its huge weight the CMS apparatus is comparatively compact, at least compared

to ATLAS, which exhibits twice the volume of CMS but only half of its weight.

The design of the CMS experiment has been driven by the requirements imposed by

the envisaged physics goals of the Large Hadron Collider. The prime motivation of the

LHC is to elucidate the nature of electroweak symmetry breaking and to examine the

consistency of the Standard Model at energy scales above 1 TeV, where various alterna-

tives to the SM invoke new symmetries, new forces, or constituents. The main focus in

the Higgs boson search at CMS lies in final states including leptons or photons, such as

H0 → ZZ∗ → μμμμ or H0 → γγ, whereas physics beyond the Standard Model could

lead to discoveries of supersymmetric particles, extra dimensions, or novel massive vector

particles like a Z′ boson involving a forward-backward asymmetrically dileptonic decay.
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Figure 2.3: Transverse slice through the CMS detector exhibiting the onion-like structure of a

typical general-purpose collider detector [12]. Additionally, some typical signatures like parti-

cle trajectories and electromagnetic and hadronic showers are depicted, originating from primary

electrons, muons, charged and neutral hadrons, and photons. Electrons and photons deposit their

entire energy in the electromagnetic calorimeter, whereas hadrons pass this detector component

and induce hadronic showers in the hadronic calorimeter. Muons traversing the detector mate-

rial are identified in the muon system in the outermost part of the detector. Charged particles

furthermore exhibit curved trajectories due to the applied magnetic field.

A significant amount of missing transverse energy constitutes the signature of supersym-

metric processes. Due to momentum conservation, the vector sum of all transverse mo-

menta must be balanced in a proton-proton collision. The non-vanishing part of this sum

is therefore called missing transverse energy and is an indirect measure for neutrinos or

exotic particles which interact only weakly within the detector material. To accomplish

the versatile requirements, a hermetic and compact design with a strong central magnetic

field has been chosen for the CMS detector, aiming for an excellent muon identifica-

tion and muon momentum resolution up to pT = 1 TeV/c over a wide geometric range.

Furthermore, the CMS apparatus design aspires a good reconstruction efficiency and mo-

mentum resolution for charged particles in the inner tracking system, an accurate diphoton

and dielectron invariant mass resolution of 1% at 100 GeV/c2 with high angular coverage,

efficient photon and lepton isolation at high luminosities, and efficient π0 meson rejec-

tion. Additionally, a hadronic calorimeter with optimal hermetic coverage is required for

an accurate missing transverse energy determination and fine lateral segmentation for a

good dijet mass resolution.

Prior to the observation of proton-proton collision events, the CMS experiment was ex-

tensively tested in an exercise known as Cosmic Run At Four Tesla (CRAFT). Operating

at nominal detector conditions, about 270 million cosmic muon triggered events were

recorded, serving for detector performance studies, the commissioning of the alignment

and calibration techniques, and to make several cosmic ray measurements [124]. As result

of this exercise, the Compact Muon Solenoid apparatus has been well prepared and the
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Figure 2.4: Schematic view of the Compact Muon Solenoid apparatus with the typical onion-

like structure of a collider detector and the 4π solid angle design with a barrel part and two

end caps [12]. The beam line in the innermost part is surrounded by the tracking system, the

electromagnetic and hadronic calorimeters, and the superconducting solenoid. The muon system

in the outermost part is inserted in excavations of the iron return yoke. The modular concept of

several barrel segments and two end cap discs facilitates an easy accessibility for possible detector

maintenance work during regularly scheduled LHC shut-down phase.

first meaningful physics results from proton-proton collisions were obtained by the CMS

collaboration shortly after the LHC resumed operation at reduced centre-of-mass energies

in November 2009 [125].

The coordinate system adopted for the description of the CMS detector geometry is

depicted in figure 2.5 with the origin centred at the nominal collision point inside the

experiment. The y axis points vertically upwards and the x axis points radially inwards

towards the centre of the LHC. Thus, in order to obtain a right-handed coordinate system,

the z axis points from Point 5 along the beam direction towards the Jura mountains. The

azimuthal angle φ is measured from the x axis in the x − y plane, the polar angle θ is

defined with respect to the z axis, and r denotes the radial distance to the beam pipe.

Another commonly used quantity in particle physics is the rapidity y defined as

y =
1

2
ln

(
E + pz

E− pz

)
, (2.4)

where E is the energy of the particle and pz the z component of its momentum vector. An

advantage of this dimensionless quantity is the invariance of rapidity differences Δy under

Lorentz boost in the z direction. For massless particles, as well as for massive particles

in the ultra-relativistic limit, the rapidity y is equal to the purely geometrically defined
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Figure 2.5: Coordinate system for the description of the CMS detector geometry with the origin

centred at the nominal proton-proton interaction point.

pseudorapidity η given by

η = − ln

(
tan

θ

2

)
, (2.5)

which is typically used to describe detector geometries and particle directions. The az-

imuthal angle φ and the pseudorapidity η can then be used to define the angular distance

between two point-like objects in the detector volume as ΔR =
√
(Δη)2 + (Δφ)2. The

transverse energy and the transverse momentum of a particle are defined as ET = E · sin θ
and pT = p · sin θ, respectively, and can be computed from the corresponding x and y
components.

The required performance of the inner tracking and the muon system, and therefore the

required bending of charged particle tracks drives the design of the detector layout through

the choice of the magnetic field configuration. A superconducting solenoid constitutes the

core of the CMS detector. With an inner diameter of 5.9 m and a length of 12.9 m, the

superconducting magnet is large enough to envelope the inner tracking and calorimetry

systems. Operated at a nominal current of about 19.5 kA, the superconducting niobium-

titanium coil provides a magnetic field of 3.8 T along the beam axis, leading to a total

stored field energy of 2.7 GJ. Its return field with a strength of about 2 T saturates 1.5 m

of iron in the return yoke allowing for the insertion of four muon stations. The individual

sub-systems depicted in figures 2.3 and 2.4 are briefly discussed in the following sections,

starting with the tracking system at the innermost part of the detector.

2.2.1. Tracking System

The inner tracking system [126, 127] of the CMS apparatus is designed to provide a ro-

bust, efficient, and precise measurement of charged particle trajectories emerging from

proton-proton collisions and the accurate reconstruction of primary and secondary ver-

tices. One important constraint for the design of the tracking system is the high particle

density. At nominal LHC luminosity, an average of about 1,000 particles per bunch cross-

ing are expected to traverse the tracker volume. Therefore, a tracking device with high

granularity and fast response is required for reliable identification of trajectories and to at-

tribute them to the correct bunch crossing. The intense particle flux will also cause severe

radiation damage to the tracking system, which demanded the development of detector

components able to operate in this harsh environment for an expected lifetime of about

ten years of operation. Furthermore, the amount of material in the tracker has to be kept at

a minimum in order to limit multiple scattering, photon conversion, and nuclear interac-

tions. For these various reasons, an all-silicon detection technology has been chosen for
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Figure 2.6: Schematic longitudinal view of the CMS tracking system. The innermost part is

instrumented with the pixel detector comprising a three-layered barrel tracking device and two

end cap discs on each side. The silicon micro-strip detector is divided into the Tracker Inner

Barrel (TIB) and the Tracker Outer Barrel (TOB) in the barrel part, while the end cap system

includes the Tracker Inner Disc (TID) and the Tracker End Caps (TEC). Each line represents a

detector module, whereas stereo modules are indicated by double lines.

the inner tracking system, which exhibits a length of 5.8 m and a diameter of 2.5 m lead-

ing to a tracking coverage of up to |η| = 2.5. With an overall active silicon area of about

200 m2, the CMS tracking system is the largest silicon tracker ever built. The tracking

system, schematically illustrated in figure 2.6, can be divided into two main sub-systems

employing two different silicon designs. All detector elements are housed in the tracker

support tube and the whole tracking volume is operated at a temperature of about−10◦C.

The region closest to the interaction point is instrumented with a silicon pixel detector

comprising three barrel layers and two end cap discs on each side. The barrel layers are

arranged in concentric rings at radii of 4.4 cm, 7.3 cm, and 10.2 cm and have a length of

53 cm each. The two end cap discs located at z = ±34.5 cm and z = ±46.5 cm exhibit a

turbine-like geometry with blades rotated by 20◦ and a radial expansion of (6− 15) cm.

Driven by the desired resolution and occupancy of the detector, a total of 66 million pixels

with a size of 100× 150 μm2 cover an area of 1 m2 over the entire pseudorapidity range

|η| < 2.5. The expected single point resolution of the pixel detector is about 10 μm for

an r− φ measurement and about 15 μm in the z coordinate.

At intermediate distances from the beam pipe, the reduced particle flux allows the use

of a micro-strip detector composed of 9.3 million silicon strips. Constituting the second

component of the CMS tracking system, the silicon strip detector is also designed with

barrel layers and end cap discs and covers the region 20 cm < r < 116 cm. In the barrel

part the Tracker Inner Barrel (TIB) with four layers of silicon strips covers a region up

to |z| = 65 cm and extends in radius towards r = 55 cm. The Tracker Outer Barrel

(TOB) comprises six detection layers and extends up to |z| = 110 cm. The end cap

structure of the micro-strip detector include two Tracker End Cap (TEC) discs in the

region 120 cm < |z| < 280 cm and 22.5 cm < r < 113.5 cm with nine layers each and

three layers in the Tracker Inner Disc (TID) closing the gap between TIB and TEC. With

a single point resolution of (23− 35) μm for the TIB and of (35− 53) μm for the TOB,
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a total of ten r− φ measurements are provided. Furthermore, the end caps allow twelve

φ measurements to be performed per particle trajectory. As can be seen in figure 2.6,

several layers are equipped with stereo modules. In these cases, a second module is

mounted back-to-back with a stereo angle of 100 mrad in order to provide a measurement

of the second coordinate, i.e. the z coordinate in the barrel and r in the discs. The typical

single point resolutions for a measurement of the z coordinate ranges between 230 μm

and 530 μm in the TIB and the TOB, respectively. This tracker layout ensures at least

nine hits per particle trajectory in the silicon strip tracker in the full range of |η| < 2.4

with at least four of them being two-dimensional measurements.

The expected transverse momentum resolution for a high-momentum charged particle

of pT ≈ 100 GeV/c is about (1 − 2)% up to |η| = 1.6, while at lower momenta the

resolution is decreased due to multiple scattering within the tracker material. The effi-

ciency for muons is expected to be about 99% over most of the acceptance with slight

inefficiencies at |η| > 2.1, due to the reduced coverage of the pixel end cap discs.

2.2.2. Calorimetry System

The calorimetry system of the CMS apparatus is equipped with electromagnetic and

hadronic calorimeters to perform energy measurements of final state particles leaving

the tracker volume. The electromagnetic calorimeter (ECAL) [128, 129] provides an en-

ergy measurement of electrons, photons, and charged hadrons, and is placed hermetically

around the silicon tracker. The hadronic calorimeter (HCAL) [130] in turn enfolds the

ECAL and is designed to measure the energy of charged and neutral hadrons. A schematic

view of the calorimetry system completed by the relative location of the tracking system

and the muon chambers can be found in figure 2.7.

The homogeneous, compact, and high granularity design of the ECAL has been driven

by the need for excellent diphoton resolution. Lead tungstate (PbWO4) scintillating crys-

tals are used as detector material due to its high density of 8.28 g/cm3 and radiation hard-

ness. Correlated to this high density is a small radiation length of X0 = 0.89 cm and a

Molière radius of RM = 2.2 cm, where the latter defines the radius of a cylinder contain-

ing on average 90% of the shower energy and hence characterises the transverse scale of

an electromagnetic shower. Furthermore, fast energy measurements are facilitated by the

scintillation decay time of PbWO4, which is of the same order of magnitude as the LHC

bunch crossing time, leading to approximately 80% light emission within 25 ns.

Like the tracking system, the ECAL exhibits the characteristic barrel and end cap struc-

ture. The Electromagnetic Barrel (EB) covers the region |η| < 1.479 and consists

of 61,200 tapered-shaped PbWO4 crystals mounted in a quasi-projective geometry to

avoid cracks aligned with particle trajectories. Each barrel crystal covers an area of

Δη × Δφ = 0.0174× 0.0174 with an inner front-face cross-section of about 22× 22 mm2

and a length of 230 mm corresponding to 25.8 X0. Another 14,648 lead tungstate crys-

tals instrument the two Electromagnetic End caps (EE) with an angular coverage of

1.479 < |η| < 3.0. Located at z = ±315.4 cm, the positioning of the EE takes into

account an estimated shift of 1.6 cm towards the interaction point once the solenoidal

magnetic field is switched on. The EE consists of identically shaped crystals, which are

installed in an x− y grid slightly off-point from the nominal vertex position. Each crystal
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Figure 2.7: Longitudinal view of one quarter of the CMS detector [115]. The tracking system is

surrounded by the electromagnetic and the hadronic calorimeters located inside the superconduct-

ing solenoid coil, except for the Hadronic Outer (HO) and the Hadronic Forward (HF) calorime-

ters. The barrel part of the calorimetry system is equipped with the Electromagnetic Barrel (EB)

and the Hadronic Barrel (HB) calorimeters, while in the end caps the Electromagnetic End caps

(EE) and the Hadronic End caps (HE) are installed. Furthermore, the ECAL preshower detec-

tor is mounted in front of the EE. In the outermost part of the detector, the iron return yoke is

interspersed with several muon chambers.

has a front-face cross-section of 28.62× 28.62 mm2 with a length of 22 cm correspond-

ing to 24.7 X0. Despite the obvious advantages of lead tungstate it has a comparatively

low light emittance and thus requires the adoption of photodetectors with intrinsic gain.

The magnetic field configuration and the expected level of radiation led to the choice of

avalanche photodiodes in the barrel part, due to their insensitivity to high magnetic fields,

whereas the high particle flux in the end cap region favoured specially-designed vacuum

phototriodes with higher quantum efficiency. For the identification of neutral pions in the

ECAL end caps within the fiducial region 1.653 < |η| < 2.6, a silicon preshower detec-

tor (ES) is located between TEC and EE. It furthermore assists in the identification of

electrons and improves the position determination of electrons and photons. The ES is

a sampling calorimeter comprising two layers of lead radiators and silicon strip sensors.

While the lead radiators serve for initiation of electromagnetic showers from incoming

photons or electrons, the two orthogonally aligned silicon sensors are installed behind

each radiator to measure the deposited energy and the transverse shower profile. The total

thickness of the preshower detector at |η| = 1.653 is 20 cm, corresponding to a material

budget of 2 X0 and 1 X0 in front of the first and second sensor layer, respectively. There-

fore, about 90% of incident photons in this geometrical region produce a e+e− pair before

reaching the second sensor layer.

The energy resolution of the ECAL was tested with electron beams of (20− 250) GeV

in 2004, leading to a typical value of
σ(E)

E = 2.8%√
E
⊕ 0.3% [131], with the energy E mea-

sured in GeV. Another challenge is the ECAL calibration, including the absolute energy

calibration and the inter-calibration, which have to be taken into account due to crystal-

to-crystal variations of the scintillation light yield. Initial inter-calibrations have been

performed using cosmic rays and high-energy electron test beam data [132]. The ultimate

inter-calibration precision can then be achieved in situ with physics events, for example by
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comparison with trajectory measurements in the tracking system or with electrons from

W± → eν boson decays. Furthermore, Z → e+e− and Z → μ+μ−γ decay processes

provide information about photon conversions and bremsstrahlung radiation.

The hadronic calorimeter enfolding the electromagnetic calorimeter is particularly im-

portant for measurements of hadronic particle jets in conjunction with the ECAL and for

the estimation of the missing transverse energy. The design of the HCAL has mainly

been driven by the magnetic properties of the material and the requirement to place the

calorimeter inside the bore of the solenoid, which constrains the total amount of shower

absorbing material in terms of interaction lengths. To provide sufficient absorber material,

a sampling calorimeter is employed with non-magnetic brass absorbers interspersed with

scintillator tiles as active material. Due to its high density of 8.53 g/cm3, brass exhibits

a radiation length of X0 ≈ 1.5 cm and a nuclear interaction length of λI = 16.42 cm.

Wave length shifting fibres are employed to collect and transport the emitted light to hy-

brid photodiodes (HPD). In contrast to the ECAL, most of the energy is deposited in the

absorber material and only a fraction of the energy is actually measured, resulting in a

decreased energy resolution of the HCAL.

The Hadronic Barrel (HB) calorimeter covering |η| < 1.3 consists of 36 identical az-

imuthal wedges constructed of flat brass absorber plates aligned parallel to the beam axis,

while the inner- and outermost plates are made of stainless steel for structural strength.

The plastic scintillator system is divided into 16 η sectors, resulting in a segmenta-

tion of Δη × Δφ = 0.087 × 0.087. The Hadronic End caps (HE) covers the region

1.3 < |η| < 3.0 with a granularity of Δη × Δφ = 0.087× 0.087 for |η| < 1.6, increas-

ing to Δη × Δφ ≈ 0.17× 0.17 for higher pseudorapidities. Here, the design is driven

by the need to minimise cracks between the HB and HE, rather than the single-particle

energy resolution. Since the HE is inserted into the ends of the solenoid, the same ab-

sorber material has been chosen as for the HB, resulting in a total HE absorber thickness

of about 10 λI including the ECAL material. The effective thickness of the HB increases

from 5.82 λI at η = 0 to 10.6 λI at |η| = 1.3, while the ECAL adds an additional material

budget of 1.1 λI. In order to ensure adequate sampling in the central region, the hadronic

calorimeter is extended outside the solenoid coil by the Hadron Outer (HO) calorimeter.

Covering the region |η| < 1.26, the HO closely follows the barrel calorimeter segmenta-

tion. The HO consists of one to two scintillator tiles mounted outside the vacuum tank of

the magnet coil using the solenoid as additional absorbing material. Its purpose is to de-

tect the tails of the hadronic shower and the missing transverse energy measurements, by

sampling the energy leakage of deeply penetrating hadron showers at the rear of the bar-

rel calorimetry system. Thus, the HO extends the minimum absorber thickness to 11.8 λI,

except at the barrel end cap boundary region. The HCAL coverage at 3.0 < |η| < 5.0 is

provided by the Hadronic Forward (HF) calorimeter, which is mainly designed to with-

stand the large particle flux in this region. This led to the choice of steel absorber plates

interspersed with quartz fibres as active medium. The signals are generated in form of

Cherenkov light, rendering the detector mostly sensitive to the electromagnetic compo-

nent of the hadronic showers. The HF is designed as a cylindrical steel absorber structure

with a radial expansion of 12.5 cm < r < 130 cm and the front-face of the calorimeter

is located at |z| = 11.2 m. The quartz fibres run parallel to the beam axis, and provide

a segmentation of Δη × Δφ = 0.175× 0.175 which becomes coarser for higher pseudo-
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rapidities. Fast photomultiplier tubes shielded with steel and polyethylene are used for

amplification of the Cherenkov light signals, facilitating real-time luminosity measure-

ments with the Hadronic Forward calorimeter.

2.2.3. Muon System

The muon system [133] of the Compact Muon Solenoid apparatus is designed for the

momentum and charge reconstruction of muons over the entire kinematic range of the

Large Hadron Collider and provides a full geometric coverage for muon identification up

to |η| = 2.4. Good muon momentum resolution and trigger capability is facilitated by

the high solenoidal magnetic field and its flux return yoke, where the latter also serves as

hadron absorber and therefore improves the muon identification. As depicted in figure 2.8,

the muon system comprises three different types of gaseous detectors embedded in the

iron return yoke. The particular choice of detector technologies has been driven by the

requirement for fast response, excellent resolution, coverage of a very large total surface,

and the need to operate in dense radiation environments.

Like the tracking and calorimetry systems, the muon system comprises a barrel part and

two planar end caps. In the barrel region covering |η| < 1.2, the neutron induced back-

ground is small. Therefore, the anticipated low rate, combined with the comparatively low

strength of the residual magnetic field, allows for the use of 250 drift tube (DT) chambers

arranged concentrically around the beam line. Each of the first three barrel muon stations,

called MB 1 to MB 3, contains eight chambers for the measurement of muon trajectory

coordinates in the r − φ bending plane and four chambers for the measurement in z di-

rection. In contrast, the fourth muon station MB 4 does not include the z measurement

planes. The number of chambers in each station and their orientation have been chosen to

provide a good efficiency for linking muon hits recorded with the different stations into

a single muon track, while efficiently rejecting background hits. In each DT chamber,

several drift tube cells are arranged in two or three superlayers, which in turn consist of

four layers of drift tubes. Two of these superlayers have anode wires parallel to the beam

line, providing an r − φ measurement for each particle trajectory. In between, the third

superlayer has a perpendicular orientation and thus provides a measurement of the z co-

ordinate. This design facilitates a 95% trajectory reconstruction efficiency for high-pT

muons in |η| < 0.8 and momentum measurements solely derived with the barrel muon

system. Furthermore, the mechanical precision of the muon chamber construction aims

at a resolution of 100 μm for an r− φ measurement.

The two end caps covering the region 0.9 < |η| < 2.4 are equipped with 468 Cathode

Strip Chambers (CSCs), as they can withstand the enhanced muon rates and background

levels, and the largely non-uniform magnetic field. Similar to the barrel region, the trape-

zoidal CSCs are arranged in four layers, called ME 1 to ME 4, positioned perpendicularly

to the beam axis and interspersed between the flux return yoke. CSCs are multi-wire

proportional chambers comprising six anode wire planes interleaved among seven cath-

ode panels. While the wires are installed azimuthally and provide an r measurement for

particle trajectories, the cathode panels, segmented into strips of constant Δφ width, run

approximately perpendicular to the wires. Thus, induced charges on the strips provide a

measurement of the φ coordinate. The muon system typically shows a (95− 99)% offline

reconstruction efficiency obtained from simulated single-muon samples. Small inefficien-
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Figure 2.8: Longitudinal view of one quarter of the CMS Muon System adapted from [114]. In

the barrel region Drift Tubes (DT) and Resistive Plate Chambers (RPC) are employed, while the

end cap region is equipped with RPCs and Cathode Strip Chambers (CSC). In total four barrel

muon stations, MB 1 to MB 4, and four end cap muon stations, ME 1 to ME 4, are installed.

cies at |η| = 0.25, |η| = 0.8, and |η| = 1.2 can be ascribed to the region between two DT

wheels and the barrel end cap transition region, respectively. The best spatial resolution

is provided at the centre of the charge distribution on the CSC strips and is typically about

200 μm, while the resolution in φ is of the order of 1 mrad.

In addition to the CSC and DT chambers, a complementary system of Resistive Plate

Chambers (RPCs) is installed in the barrel and the end cap region. RPCs are double-gap

chambers operated in avalanche mode to ensure reliable operation at high rates. While

the DT and CSC sensors yield precise position measurements, RPCs exhibit a very fast

response and are thus particularly suited to unambiguously identify the correct bunch

crossing to which a trajectory is to be associated. Moreover, they provide position infor-

mation in the barrel end cap overlap region, which has typically few measurements from

the other systems. In the initial stage of the CMS experiment, the RPCs will cover the

region |η| < 1.6, which will then be extended to the region |η| < 2.1. As can be seen

in figure 2.8, this initial coverage is provided by six layers of RPCs, among which two

chambers are installed in each of the first two muon stations, MB 1 and MB 2, and one

RPC in each of the two last stations, MB 3 and MB 4. The end cap region is instrumented

with one RPC in each of the first three stations, ME 1 to ME 3, in order to exploit coinci-

dences between the stations for background reduction, to improve the time resolution for

bunch crossing identification, and to achieve a good pT resolution.

Due to multiple scattering in the detector material in front of MB 1, the offline muon

momentum resolution for transverse momenta up to pT = 200 GeV/c in the central re-

gion is about 9% for the muon system, while, at pT = 1 TeV/c, this resolution varies

between (15 − 40)% depending on |η|. A global momentum reconstruction based on

muon system and inner tracking system information can be used to improve these reso-

lutions. Employing this alternative approach yields a momentum resolution of about 1%

or better for central muons with pT < 100 GeV/c and about (5− 10)% at pT = 1 TeV/c,

again depending on |η|. The entire muon system layout reaches a reconstruction effi-

ciency of 90% for muons with a transverse momentum larger than 100 GeV/c in the full

geometric range of |η| < 2.4.



2.2. The CMS Experiment 39

Figure 2.9: Architecture of the CMS Data Acquisition System [115] comprising detector electron-

ics, the first level trigger processors, the readout network, and an online CPU filter farm executing

the high-level trigger software. With the two applied filter steps, the enormous data volume in-

duced by the 40 MHz LHC bunch crossing frequency can be reduced to a manageable level of

100 events/s, which are then transferred for permanent archiving and further processing.

2.2.4. Data Acquisition and Trigger System

The LHC bunch crossing rate of 40 MHz entails about 109 interactions per second, re-

sulting in about 100 TB/s of data. The trigger and data acquisition system [134, 135]

serves for the reduction of this enormous amount of data to a manageable level by select-

ing interesting events among the huge amount of background events. In order to achieve

this reduction, the data acquisition system depicted in figure 2.9 consists of the detector

electronics, the first level (Layer-1) trigger processors, the readout network, and an online

CPU filter system, which executes the high-level trigger (HLT) software. The Level-1 trig-

ger is based on customised programmable hardware aiming for a data reduction to about

100 kHz. For this purpose, the Level-1 trigger is divided into the calorimeter trigger, the

muon trigger, and the global trigger. In a first step, the first two of these triggers involve

algorithms for the reconstruction and ranking of calorimeter and muon objects. The four

best candidates of each type are then passed to the global trigger, which also receives the

total and missing transverse energy measurements and the jet multiplicity above certain

programmable thresholds from the calorimeter trigger. According to configurable trigger

conditions, the global trigger finally selects the interesting events based on the presence of

several different objects with energies or momenta above predefined thresholds. In order

to allow a dead-time free data acquisition, the entire event information is stored in pipeline

memories while the trigger decision is being taken. The depth of these pipeline buffers is

limited to 128 LHC bunch crossings, leading to a total Layer-1 trigger latency of 3.2 μs.

The readout network has to handle a data volume of about 100 GB/s, which is transferred

to the online computing farm running the HLT software. For the high-level trigger, more

detailed information and sophisticated reconstruction algorithms are used providing the

possibility for a full reconstruction of the event topologies and filtering according to sev-

eral desired physics goals. Due to this trigger software approach, a maximum flexibility in

terms of the optimisation of selection algorithms and trigger thresholds can be obtained.

Moreover, the usage of standard computer hardware allows to profit from the fast evolu-

tion of computing technology during the years of operation. Finally, the application of the

high-level trigger reduces the overall data volume to an event rate of a few 100 Hz, which

is then transferred for permanent archiving to a central storage system located at CERN.

Although the CMS trigger system allows for an event rate reduction by five orders of

magnitude, the overall amount of data will reach several petabytes per year. This huge



40 Chapter 2. The CMS Experiment at the Large Hadron Collider

data volume necessitates the connection of computing services and storage resources all

around the world via the Grid computing network. Based on Grid middleware, denoting a

standardised interface to storage and CPU facilities, the CMS computing model [136] has

been designed as a fully distributed system with common Grid services at centres defined

and managed through the Worldwide LHC Computing Grid (WLCG) project [137]. This

WLCG project is a collaboration between the LHC experiments, computing centres, and

Grid middleware providers. The CMS computing model defines a hierarchy comprising

three interconnected layers of computing centres referred to as Tier-0, Tier-1 and Tier-2,

providing different resources and services. Of central importance for the CMS comput-

ing model and therefore for the CMS software framework (CMSSW) is the Event Data

Model (EDM). Therein, all possible information belonging to a particular collision event

can collectively been stored in one common data format. Physically stored as persistent

ROOT files [138], these information may include raw digitised data up to high-level ob-

jects for real or simulated bunch crossings. Additional provenance information like the

software configuration, detector conditions, and calibration setups used, further allows

the unambiguous identification of each individual event contributing to a final analysis.

The CMS computing model provides several dedicated data format layers in order to

reduce the required storage space and computing time for the individual reconstruction

and analysis steps. The RAW data format comprises detector information like individu-

al pixel hits, which are needed for the reconstruction of high-level objects like electrons

or muons. The Tier-0 centre located at CERN provides archiving for RAW events and

serves for initial calibration and reconstruction. Based on immutable trigger information,

events are divided into primary data-sets, stored at the Tier-0 and distributed to at least

one Tier-1 centre. Currently eight Tier-1 centres serve for a redundant copy of the RAW

events and provide extensive CPU power for re-reconstruction and calibration. Several

levels of pattern recognition and compression algorithms are applied for the event recon-

struction, which constitutes the most CPU intensive activity in the CMS data processing

chain. The resulting RECO format is transferred to the Tier-1 centres and contains high-

level physics objects, a full record of the reconstructed hits and clusters used to produce

them, and sufficient information to allow subsequent application of new calibrations or

algorithms without recourse to RAW data. Therefore, the RECO format is still too large

for frequent transfer and contains more information than required by most analyses. As

a sub-set of the RECO format, the Analysis Object Data (AOD) represents the third data

format layer. Requiring about 100 kB/event, the AOD format is designed to facilitate a

wide range of physics analyses while occupying sufficiently small storage for distribution

to several Tier-2 centres. At these Tier-2 centres, substantial CPU and storage resources

are provided for the individual analyses. Data processing is thereby enabled via the Grid

by remote job submission to the Tier-2 centres hosting the specific data-sets. Based on

fair-share basis, the jobs are executed at computing nodes and the resulting output files are

transferred to a user-selected storage element for final analysis. Furthermore, using the

AOD or RECO format as input, a fourth data format is provided by the Physics Analysis

Toolkit (PAT), which serves for data processing common to most high-level analyses.
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Generation, Simulation, and Reconstruction of Events

Top quark pairs can be produced via an elementary hard parton-parton interaction in

proton-proton collisions. The full structure of such events however is complex and gen-

erally not predictable from first principles. Besides the hard interaction, radiation and

hadronisation processes, as well as subsequent particle decays lead to the production of

hundreds of outgoing particles in a typical tt̄ event. Based on electronic signals from the

tracking devices, the calorimeters, and the muon system, specially-designed algorithms

are employed for the reconstruction of these emerging particles, aspiring to a comprehen-

sive analysis of the underlying hard parton-parton interaction.

Dedicated simulations of proton-proton collision events can be used for the development

of analysis strategies, the estimation of efficiencies, acceptances, and kinematic distribu-

tions. Therein, the hard interaction and the evolution of emerging particles are provided

by Monte Carlo event generators, while the interactions of particles within the material

and the magnetic field inside the apparatus are emulated in the subsequent CMS detector

simulation. Finally, observed and simulated events exhibit the same data format and are

therefore subject to the same reconstruction algorithms, facilitating a direct comparison

between simulated processes and observed collision data.

3.1. Event Generation

Due to the quantum mechanical character of nature, an event-by-event prediction for

proton-proton collisions is unfeasible. Rather the expected probability distributions, ob-

tained by averaging over a large number of events, can be used for the comparison with

observed collision data. Therefore, event generators employ Monte Carlo (MC) tech-

niques, wherein choices based on random numbers are made, intended to reproduce the

quantum mechanical probabilities arising in the generation process. As depicted in fig-

ure 3.1, the simulation of the complex event structure can be factorised into several con-

secutive generation stages, roughly corresponding to increasing scales of distances and

time. Some of these generation steps can be described from first principles, while for

others purely phenomenological models are required with parameters tuned to data.

Calculation of the corresponding cross section constitutes the initial generation stage.

Following the factorisation ansatz in equation (1.35), the cross section is given by the con-

volution of the partonic cross section and the parton distribution functions of the colliding

protons. Since the scattering process usually takes place at large momentum-transfer

scales, where the strong coupling constant αs is small, the partonic cross section can be

computed by means of perturbation theory. This typically yields a small number of final

state particles which include the decay products of primarily produced particles in case of

top quark or weak gauge boson production.
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Figure 3.1: Illustration of consecutive event generation steps in proton-proton collisions adapted

from [139]. Incoming protons are characterised by parton distribution functions and the hard

process can be computed by means of perturbation theory. Colour-charged initial and final state

particles generally allow for gluon radiation processes, resulting in cascades of emerging particles,

called parton showers. In the subsequent hadronisation stage, observable colourless hadrons are

formed and, finally, unstable particles are decayed in the last event generation step.

The accelerated colour-charges involved in proton-proton collisions entail the possibil-

ity of gluon radiation in the initial or final state, referred to as Initial State Radiation (ISR)

and Final State Radiation (FSR), respectively. Two approaches exist to either compute or

estimate the effects of these higher-order perturbative corrections to the elementary hard

process. In the Matrix Element (ME) method a given number of additional emissions is

included based on exact leading order matrix element calculations of the hard scattering

process. Due to the perturbative treatment, however, the ME approach is limited to in-

teractions at large momentum-transfer scales. Therefore, only diagrams corresponding to

real emissions like hard gluon radiations can be taken into account. In contrast to the ME

approach, the Parton Shower (PS) method is based on approximations derived by simpli-

fying kinematics and interferences, rather than using the full matrix element expressions.

Thus, higher-order corrections in this approach are implemented via iterative parton split-

tings, leading to initial or final state parton showers. To account for the inclusive effects of

initial state radiations, evolved parton distribution functions can be employed. In general,

the PDF fi/p(xi, Q2) for a parton i inside the proton p is a function of the momentum

fraction xi and the scale Q2 as discussed in section 1.2.1. By numerically solving the

DGLAP evolution equations [140–142], a given parton distribution function at fixed scale

Q2
0 can be used to derive the PDF at an arbitrary scale Q2. For this purpose, partons

are iteratively split according to the perturbative splitting functions describing the pro-

cesses g → gg, g → qq̄, and q → qg. This procedure results in additional parton

production that constitute the initial state parton showers. Employing such evolved PDFs,

initial state parton showers in the PS approach can be approximated by space-like parton

showers, which are modelled within the backward-evolution scheme. Starting from an

incoming parton in the hard scattering process, the shower is traced backwards in time to

the shower initiator using sequences of increasing Q2 scales. Final state parton showers
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in turn are approximated by time-like parton showers starting from final state partons in

the elementary hard scattering process. For this procedure, sequences of decreasing Q2

scales are used along the positive time axis. Since the branching processes involved might

emerge from soft and collinear gluon emissions, the mathematical description of parton

showers contains singularities. This requires the implementation of a generator depen-

dent lower cut-off scale to justify the perturbative treatment. However, a reasonably low

cut-off value is desirable to ensure an adequate description of soft parton showers.

These two approaches for the inclusion of higher-order perturbative corrections serve

for the description of complementary aspects. The parton shower approach facilitates the

modelling of multi-parton final states without an explicit upper limit on the number of

emerging partons, resulting in an accurate description for soft gluon emissions. While the

PS method is therefore well-suited for modelling the internal structure of jets in the low

transverse momentum region, it has only limited predictive power for the rates of well-

separated jets originating from hard gluon radiations. Such phenomena, however, take

place at higher momentum-transfer scales, where an appropriate description can be ob-

tained from matrix element methods. To benefit from the advantages of both approaches

and to obtain a most adequate description over the whole phase space, typically, com-

binations of the two methods are employed. Several matching techniques have therefore

been developed to resolve possible ambiguities in the final state configurations and to pre-

clude gaps in the phase space coverage. The most prominent matching schemes available

are the CKKW [143, 144] and the MLM [145] algorithms, and the modified subtraction

method implemented in MC@NLO [146].

In the previous event generation stages, short distances and high momentum-transfer

scales facilitated the application of perturbative methods. However, as partons recede

from each other, the lower momentum-transfer scales imply large values for the strong

coupling constant αs, rendering perturbative treatments useless. Confinement effects

like the evolution of colour-charged partons into experimentally observable colourless

hadrons, referred to as fragmentation or hadronisation, can therefore not be perturbatively

described from first principles based on the QCD Lagrangian. Consequently, the de-

scription of hadronisation processes is accomplished by purely phenomenological models

which comprise model parameters that have to be tuned to data. Among the most promi-

nent descriptions for hadronisation processes are the string fragmentation model [147]

and the cluster fragmentation model [148].

In the string fragmentation model, also referred to as the Lund string model, colour-

singlet partons are converted into colour-neutral objects via an iterative string break-up

scheme. Therein, the separation of final state partons moving away from their common

production vertex leads to an increase of stored energy in their interconnecting colour-

flux tube. This increase in potential energy may result in the production of a q′q̄′ pair and

the system is split into two colour-singlet systems as depicted in figure 3.2. One or both

emerging colour-flux tubes might then be subject to further splitting processes until only

on-mass-shell hadrons remain.

In contrast to the Lund string model, the cluster fragmentation model exploits the so-

called preconfinement [149] property of perturbative QCD. This denotes the tendency of

partons generated in iterative branching processes to be arranged in colour-singlet clusters

with limited extension in both coordinate and momentum space. Therefore, perturbative
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Figure 3.2: Illustration of colour-flux tube splitting in the Lund string model. While the two

partons q and q̄ are moving apart, their interconnecting colour-flux tube is stretched leading to

an increase of stored potential energy. Above a certain distance and potential energy threshold, a

q′q̄′ pair is produced and the string is split. One or both resulting colour-flux tubes might then be

subject to further splitting processes.

QCD does not directly provide information on confinement mechanisms, but predicts that

the hadronisation process depends only on local structures, and is independent of the hard

elementary process and its energy scale. Colour-singlet clusters then constitute the basic

units out of which hadrons arise non-perturbatively, and the invariant mass of a given

cluster determines the multiplicity of hadrons emerging from the fragmentation process.

Many particles produced in the preceding generation stages are unstable and decay fur-

ther into experimentally observable particles. To facilitate proper description and mod-

elling of these decay processes according to the available phase space, known branching

ratios and decay models are implemented in the event generator programs. Depending on

the actual decay package used, further information like the spin of the decaying particle is

taken into account. Finally, charged leptons, neutrinos, photons, and hadrons like pions,

kaons, protons, and neutrons emerge from this last event generation stage.

Besides the hard elementary process, interactions of proton remnants and additional

proton-proton collisions in the same bunch crossing have to be taken into account by

the MC generators to ensure realistic event simulation. Additional proton-proton inter-

actions, so-called minimum bias or pile-up collisions, typically lead to the production of

soft hadrons that have to be added to the final state. For the treatment of proton remnants

and multiple interactions (MI) of partons, collectively referred to as the underlying event,

more sophisticated techniques are required. Since the energy consumed by the partons

partaking in the elementary hard process constitutes only a small fraction of the available

proton energy, high energetic proton remnants are entailed. Due to colour-connections,

these remnants are part of the same hadronisation system as the hard interaction. More-

over, the composite nature of the colliding beam particles allows for the occurrence of

several parton-parton interactions per proton-proton collision, while each of these inter-

actions implies ISR and FSR processes. Underlying event activity thus typically yields

additional soft contributions to the final state and requires a dedicated description based

on phenomenological models tuned to data.

Depending on the particular simulation techniques involved, two types of event gen-

erators can be distinguished. General-purpose parton shower and hadronisation event

generators like PYTHIA [150] or HERWIG [151] provide full event simulations, includ-

ing the modelling of hadronisation and decay processes. Matrix element event generators

like MADGRAPH/MADEVENT [152], ALPGEN [153], or MC@NLO [146], on the other

hand, provide simulations which typically include leptons, quarks, and gluons in the final

generation stage. Employing proper matching techniques, these ME generators thus need

to be interfaced to an MC generator of the first type to obtain a complete event simulation.
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In the following paragraphs, some aspects of the event generators relevant for the analysis

presented in this thesis are briefly discussed.

MADGRAPH/MADEVENT

One of the most commonly used ME event generators is the multi-purpose tree-level

generator MADEVENT, which is powered by MADGRAPH [152]. For a given process

including up to eight particles in the final state, MADGRAPH automatically identifies

all relevant Feynman graphs and generates the squared amplitudes for these diagrams

as well as the mappings needed for the subsequent MC phase space integration. These

process-dependent information are then passed to MADEVENT which produces stand-

alone code for the subsequent calculation of cross sections and the unweighted generation

of events. Generated events may then be passed to any parton shower and hadronisation

event generator using matching approaches like the MLM or the CKKW prescription.

ALPGEN

The matrix element generator ALPGEN [153] is dedicated to the study of hard processes

in hadron collisions with special emphasis on final states comprising high jet multiplici-

ties. For a large set of parton level processes in QCD and electroweak interactions, ALP-

GEN performs the calculation of the exact matrix elements at leading order perturbation

theory. The generation of events can then either be performed in a weighted or an un-

weighted operation mode. The weighted event generation mode is thereby well-suited for

parton-level studies and for the calculation of total cross sections in the presence of some

overall generation cuts, e.g. production rates of jets above a given threshold. In the second

operation mode, the unweighted generation of events can be used for subsequent evolution

via parton shower and hadronisation programs. For this purpose, the second mode fea-

tures matrix element calculations including the full flavour and colour information needed

for a subsequent shower evolution. As with MADEVENT, a proper matching of matrix

elements and parton showers in ALPGEN is performed using the MLM approach.

MC@NLO

The most ambitious approach in some aspects is provided by MC@NLO [146], in which

next-to-leading order matrix element calculations for a given QCD process are matched to

parton shower simulations provided by HERWIG. MC@NLO thus allows to obtain NLO

results for most observables formally expanded in powers of αs, especially the calcula-

tion of cross sections is accurate to next-to-leading order in perturbation theory. This is

achieved in the MC@NLO approach, by treating hard emissions as in ME computations

at next-to-leading order, while soft and collinear emissions are handled by PS simulations.

The necessary matrix element and parton shower matching procedure in MC@NLO is

provided by a modified subtraction method which, however, disadvantageously features

negative weights for a small fraction of generated events.

PYTHIA

The general-purpose parton shower and hadronisation event generator PYTHIA [150] is

dedicated to the description of multi-particle production in elementary hard interactions,

in particular those provided by e+e−, pp, pp̄, and ep colliders. For the generation of

events including all simulation stages, PYTHIA comprises theory predictions and models
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for a number of physics aspects including hard and soft interactions, parton distribution

functions, initial and final state parton showers, multiple interactions, fragmentation, and

decays. While the program is largely based on original research, further knowledge and

many formulae are incorporated from the literature. For the treatment of hadronisation

processes, an implementation of the Lund string model is used. Furthermore the large

number of parameters in PYTHIA, which can be used to develop tunes that optimally

describe certain physics aspects of collision data, like the underlying event structure or

contributions from pile-up collisions, are of particular interest.

HERWIG

Another commonly used general-purpose parton shower and hadronisation event genera-

tor is HERWIG [151]. It is dedicated to the simulation of lepton-lepton, lepton-hadron and

hadron-hadron collisions with special emphasis on detailed QCD parton shower simula-

tions. For this purpose, HERWIG comprises a large set of 2 → n scattering processes for

both the Standard Model and its supersymmetric extensions. Moreover, the description

of processes includes initial and final state radiations based on angular-ordered parton

showers, hadronisation, hadron decays, and a dedicated underlying event simulation. Us-

ing the angular-ordered parton shower approach for initial and final state gluon radiation,

HERWIG facilitates the inclusion of colour-coherence effects and azimuthal correlations

within and between jets. In contrast to the Lund string model used in PYTHIA, HER-

WIG employs a cluster fragmentation model for jet hadronisation and a similar model for

soft and underlying hadronic events. Furthermore, for most processes full spin correla-

tions are implemented using the approach described in [154] for the simulation of particle

decays.

3.2. Detector Simulation

The generation of events described so far is, in principle, valid for any of the LHC ex-

periments, since the simulated particle-level processes are solely defined by initial condi-

tions like the centre-of-mass energy and the types of colliding particles. For an aspired

comparison with observed collision data, simulated events are thus further subject to a

dedicated CMS detector simulation. Two alternative approaches exist for this purpose. In

the standard simulation, also referred to as full simulation, the interactions of generated

particles within the material and the magnetic field inside the apparatus are emulated.

The CMS detector simulation is based on the GEANT4 package [155] which includes

a rich set of physics processes to model electromagnetic and hadronic interactions of

particles with matter within a magnetic field. Furthermore, GEANT4 features tools for

detailed modelling of the CMS detector geometry including information on sensitive de-

tector parts as well as on support structures and cabling material. Interfaces for particle

tracking procedures are also implemented in the GEANT4 package, facilitating the re-

trieval of information from various detector sub-systems and the magnetic field. Since the

full detector simulation is, however, very time consuming and for some processes several

million events have to be generated in order to obtain statistically reliable estimates, an

alternative approach has been developed for the CMS detector simulation. This so-called

fast simulation [156] employs techniques that allow for large-scale event simulations on
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reasonable time scales while exhibiting an accuracy comparable to the GEANT4-based

simulation. The lower computing time in the fast simulation is facilitated by several sim-

plified assumptions regarding detector geometry, a number of dedicated parametrisations,

and optimised algorithms. For the validation of this alternative approach and the tuning of

involved parameters, comparisons with detailed GEANT4-based simulations can be used.

Moreover, both detector simulations are extensively compared with observed collision

data in order to validate the employed techniques.

Finally, both detector simulations yield low-level detector objects like energy deposits in

individual calorimeter cells or tracking hits. Since the resulting objects are provided in the

same format as those obtained from observed pp collision data, common reconstruction

procedures can be applied to obtain high-level analysis objects.

3.3. Event Reconstruction

The analysis of an elementary hard parton-parton interaction occurred in proton-proton

collisions requires a comprehensive reconstruction of emerging particles belonging to

this particular event. This is accomplished by a multitude of dedicated algorithms imple-

mented in CMSSW, which aim for a successive reconstruction of the entire event. The

information acquired at each reconstruction step is thereby consistently stored in a single

data format, based on the Event Data Model described in section 2.2.4. In an initial stage,

electronic signals from the tracking devices, the calorimetry systems, and the muon cham-

bers are used for the reconstruction of high-level detector objects like charged particle tra-

jectory candidates or energy deposits. Using combined information from various detector

systems, these objects can then further be associated with physics object candidates that

constitute the basic input objects for most physics analyses. Of particular interest for the

analysis presented in this thesis is the complex tt̄ lepton+jets event topology comprising

several different physics objects as discussed in section 1.2.3. The investigation of such

elementary hard processes therefore necessitates the reconstruction of electron, muon, jet,

and neutrino candidates.

3.3.1. Reconstruction of Charged Particle Trajectory Candidates

Charged particles traversing the CMS silicon tracking system entail discrete signals along

their trajectories. The reconstruction procedures applied aspires to a proper combination

of these measurable hits to reproduce the entire particle track. As the applied magnetic

field inside the tracking volume leads to helical trajectories on which the charged parti-

cles move, the momentum and charge of the traversing particle can be determined from

the curvature of the reconstructed helix. Of eminent importance for the performance of

the applied algorithms is a good estimate for the proton-proton interaction region, re-

ferred to as beam spot. This measure constitutes an initial estimate of the elementary

hard interaction point in the transverse region, prior to primary vertex or particle track

reconstruction. Based on the beam spot and reconstructed hits within the pixel tracking

devices, an initial trajectory and vertex reconstruction yields so-called pixel vertex candi-

dates. These constitute the basic input objects for the standard trajectory reconstruction

procedures. The default algorithm for the reconstruction of charged particle trajectories
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within the CMSSW framework is the Combinatorial Track Finder (CTF) [157], which

is modularised into four stages, namely seed generation, trajectory building, ambiguity

resolution, and final track fit.

In the seed generation stage, possible trajectory candidates, including their uncertain-

ties, are obtained either from hit triplets or from hit pairs compatible with a given beam

spot or pixel vertex. Here, hits reconstructed in the pixel tracking devices provide the best

track seeding, due to the fine granularity and low occupancy of the pixel detector. More-

over, this procedure implicitly favours trajectories evoking pixel hits, which facilitates the

tracking precision required at the hard interaction region.

In the second stage, the resulting seeds are used for a recursive trajectory building proce-

dure, which is based on a standard Kalman filter pattern recognition approach [158, 159].

Starting from a coarse estimate of the track parameters provided by the seed, the filter

proceeds iteratively, layer-by-layer, and subsequently includes information obtained on

the successive detection layers. In the most often used procedure, known as inside-out

tracking, trajectory candidates are grown from the first pixel layer to the outermost layer

of the silicon strip tracker. In this procedure, the initial seed trajectory is extrapolated

to the next compatible layer by taking into account the equations of motion for charged

particles in a constant magnetic field, multiple scattering processes, and energy loss in

the traversed material. Based on a χ2 constructed from the predicted trajectory state and

compatible measured hit positions on this successive detection layer, the track parameters

and their corresponding uncertainties are updated according to the Kalman filter formal-

ism, leading to a new trajectory candidate. Since several hits on this current layer may

be compatible with the predicted trajectory, this procedure can result in a full set of new

trajectory candidates. To account for the possibility that the traversing particle did not

leave any hit on this particular layer, one further trajectory candidate is created for which

no measured hit, a so-called invalid hit, is used. Finally, to limit the number of combina-

tions, the updated trajectories are rated based on their χ2 values and the number of invalid

hits. Only those trajectories exhibiting a small χ2 value are kept for further propagation,

while possible ambiguities among tracks sharing a substantial number of hits are resolved

in favour of the highest quality trajectories. In order to have an unbiased result, all result-

ing trajectory candidates are then propagated in parallel to the successive tracking layer

and the procedure is repeated until either the outermost layer of the tracker is reached,

no more compatible hits can be found, or a stopping condition is satisfied. This latter

procedure is typically applied to achieve very fast CPU performance suitable for use in

the HLT software. In turn, the high track finding efficiencies and accurate determination

of trajectory parameters required for offline analyses favour use of the full set of available

measured hits.

As a given seed may result in more than one trajectory candidate or a given trajectory

may be reconstructed from two different seeds, the candidate collection resulting from the

trajectory building stage may exhibit ambiguities or mutually exclusive tracks. The third

trajectory reconstruction stage is therefore dedicated to resolve these ambiguities and thus

to avoid double counting of tracks. For this purpose, the number of hits shared among two

trajectory candidates and their assigned qualities are determined. If more than 50% of hits

are shared, the trajectory candidate with fewer associated hits or, if both exhibit the same

number of hits, the trajectory with the higher χ2 value is discarded.
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For each trajectory candidate, the building stage results in a collection of hits and esti-

mated track parameters, which might be biased by constraints introduced in the seeding

stage. Therefore, each trajectory is subject to a final track fit which is based on a two-

layered least squares approach implemented in the CTF algorithm. In the first stage, a

standard Kalman filter is initialised at the location of the innermost hit assigned to the

trajectory candidate. By processing the list of assigned hits iteratively in the inside-out

direction, this filter serves to remove the approximations and biases introduced in the

seeding and building stage. A consecutive smoothing stage complements this procedure

by applying a second Kalman filter, proceeding outside-in towards the beam line, which

yields optimum track parameter estimates at the origin vertex. Since the updated pa-

rameters of the second filter at each intermediate tracking layer are combined with the

predicted parameters of the first filter, this two-layered filtering and smoothing procedure

also yields the best estimates at each tracking layer. Parameter estimates on other surfaces

can then be derived by extrapolating the trajectory candidates starting from the hit closest

to the desired surface.

The standard trajectory reconstruction procedure at CMS employs an iterative approach

involving multiple applications of the CTF algorithm. After the first iteration, a high-

purity filter is applied to the reconstructed trajectory candidates, resulting in a first track

collection. Hits associated with these high-purity tracks are then removed and remain-

ing hits are subjected to further CTF iterations that subsequently differ in their seed-

ing and filtering criteria. While the first iterations are dedicated to the reconstruction of

prompt tracks, progressively including those at lower momenta, subsequent iterations are

intended to find trajectory candidates originating from displaced vertices or those not ex-

hibiting any pixel hits. Compared to a single iteration, this procedure facilitates a faster

and more efficient reconstruction of charged particle tracks, e.g. about 5% of additional

trajectory candidate can be recovered in simulated tt̄ events [160].

3.3.2. Reconstruction of Primary Vertex Candidates

An accurate determination of the primary vertex to infer the hard elementary interaction

point is essential for the reconstruction of kinematic properties and hence for the com-

prehensive analysis of the entire event. Due to the finite volume of the colliding hadron

bunches, the exact position of the elementary hard interaction varies on an event-by-event

basis. This requires the reconstruction of primary vertex candidates for each event in-

dividually, which is accomplished in CMSSW by a two-step approach. Starting from a

given set of reconstructed tracks, the vertex finding stage is dedicated to the grouping of

trajectory candidates into subsets that share a common point of origin. In the subsequent

vertex fitting stage, the vertex parameters, including the covariance matrix, are iteratively

estimated from a given set of tracks.

As for the track reconstruction procedures, the particular vertex finding algorithm ap-

plied depends on the particular use case. While a fast vertex finding algorithm is needed

for implementation in the HLT software, offline physics analyses demand approaches

yielding high efficiencies and accurate results for the primary vertex reconstruction. There-

fore, the latter uses fully reconstructed tracks with certain quality criteria like the number

of associated hits in the tracking devices, the reduced χ2 of the trajectory fit, and their

transverse momenta with respect to the beam line. Another important quantity in this
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context is the impact parameter (IP), denoting the minimum distance between the trajec-

tory candidate and a given reference point. The associated impact parameter significance

is defined as the IP divided by its uncertainty. For the reconstruction of primary vertex

candidates, only tracks below a maximal transverse IP significance with respect to the

beam spot are considered in order to reject tracks that are not compatible with the pri-

mary interaction point of the event. Finally, primary vertex candidates are obtained in the

vertex finding stage by clustering these preselected tracks along the beam line.

The resulting candidates are then subjected to a vertex fitting procedure. For this pur-

pose, the CMSSW framework features several algorithms based on Kalman filter tech-

niques. The algorithms mainly differ in their sensitivity to outlying tracks resulting either

from mis-measured track parameters or from tracks originating from another vertex. A

reduced sensitivity to outlying tracks can be achieved with non-linear algorithms which

do not simply reject outlying tracks but rather down-weight the outliers depending on

their compatibility with the vertex candidate. Two non-linear algorithms have been de-

veloped at CMS, the Trimmed Kalman Vertex Fitter [135] and the Adaptive Vertex Fitter

(AVF) [161], whereas the latter represents the default primary vertex fitting algorithm.

The AVF is an iterative weighted Kalman filter, wherein each track is weighted by a func-

tion of the reduced distance between the track and the vertex candidate. Vertex fitting is

then accomplished by minimising the weighted least sum of squares and iteratively com-

puting the vertex position and the involved weights. The candidates obtained are then

filtered according to their compatibility with the beam spot and the χ2 value of the vertex

fit. Finally, the resulting primary vertex candidates are ranked by the scalar p2
T sum of

their associated trajectory candidates.

3.3.3. Reconstruction of Electron Candidates

The experimental signature of an electron produced at the interaction point comprises a

charged particle track in combination with a localised energy deposit within the electro-

magnetic calorimeter. Electron reconstruction techniques can therefore, in principle, be

summarised as the procedure for matching two such objects. However, the large material

budget of the silicon tracking system and the applied solenoidal magnetic field compli-

cate the determination of the two ingredients. Electrons traversing the silicon tracking

layers radiate bremsstrahlung photons along their helical trajectory, leading to a signif-

icant spread of ECAL energy deposits in the φ direction. To account for this energy

loss in the tracker material and to collect the bremsstrahlung energy, dedicated trajec-

tory reconstruction and energy clustering algorithms are applied for the reconstruction

of electron candidates [162]. The specialised clustering procedure results in the forma-

tion of so-called ECAL superclusters (SCs). Seeds for the subsequent reconstruction of

electron trajectory candidates can then be obtained by combining superclusters with two

compatible hits in the inner tracker layers. This so-called supercluster driven pixel-seed

finding is very efficient for isolated electrons with pT ≥ 10 GeV/c, where reliable SC

energy and position estimates can be obtained, and kinks originating from the emission

of bremsstrahlung photons do not significantly impair track reconstruction. For electrons

with lower transverse momenta or electrons within jets, the SC driven seeding strategy is

complemented by a tracker driven algorithm. In this approach, short track segments with

at least three assigned hits are loosely matched to energy deposits in the electromagnetic
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calorimeter. Finally, seeds provided by the two complementary approaches are merged

into a single collection to benefit from the advantages of both seeding techniques.

The emission of bremsstrahlung photons, in general, introduces non-Gaussian con-

tributions to the event-by-event fluctuations of calorimetry and tracking measurements.

Therefore, a specially-designed Gaussian Sum Filter (GSF) algorithm [163, 164] with a

dedicated Bethe-Heitler energy loss model [165] is employed for the electron trajectory

building and fitting procedure. In contrast to standard Kalman filters, the GSF algorithm

facilitates proper handling of highly non-Gaussian tails in the position predictions for the

electron trajectory state on the successive tracking layers. As with the standard tracking

procedure, this dedicated approach yields accurate estimates for track momenta at the in-

teraction vertex as well as at the ECAL surface. Furthermore, the determination of the

electron energy fraction emitted by bremsstrahlung photons can be determined through

the comparison of the outermost and innermost track momentum estimates. Finally, elec-

tron candidates are built by associating a GSF track with a compatible supercluster. Here,

the energy of the electron candidate is obtained by averaging the supercluster energy and

the track momentum, weighted by their corresponding uncertainties.

Once electron candidates have been reconstructed, additional requirements can be ap-

plied to distinguish between electrons and charged hadrons or other objects, which exhibit

a similar signature. For this purpose, dedicated electron identification methods have been

developed [166], which classify the obtained candidates based on observables sensitive to

the pattern of bremsstrahlung emission and electromagnetic showering in the tracker ma-

terial. Available track-cluster observables, such as the transverse energy of the superclus-

ters or the ratio of deposited energies in the hadronic and electromagnetic calorimeters,

can thus be used to further select the candidates obtained from the electron reconstruction

procedure.

3.3.4. Reconstruction of Muon Candidates

Muons produced at the interaction region leave two characteristic footprints while travers-

ing the CMS detector. As charged particles, their helical trajectories can be reconstructed

in the silicon tracker and, due to their minimum ionising nature, muons are capable to

penetrate the muon system. The reconstruction of muon candidates therefore aspires to

properly combine the information from these two sub-detectors. Moreover, the small

fraction of muon energy deposited in the calorimetry system allows further identifica-

tion of the reconstructed candidates. Muon reconstruction and identification in CMSSW

is accomplished by several complementary approaches [114, 167], collectively based on

standard Kalman filter techniques. The final collection of muon candidates obtained with

this multi-faceted reconstruction procedure comprises three different categories of can-

didates. Standalone muon candidates are obtained using only detector information from

the muon system, while the supplementation of silicon tracker information facilitates the

reconstruction of global muon candidates. The third type of reconstructed objects com-

prises tracker muon candidates that result from the standard trajectory reconstruction by

additionally requiring compatible information from the muon system.

Prior to the so-called standalone reconstruction of trajectory candidates in the muon

system, a local reconstruction of track segments is performed from the combination of
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individual hits in each CSC and DT chamber. Resulting track segments and hit informa-

tion from the RPCs are then used to generate seeds, which serve to initiate the standalone

trajectory building stage. In the standard configuration, the seed trajectory state parame-

ters are propagated to the innermost compatible muon detection layer. Trajectory building

is then performed using the track segments and RPC hits in an inside-out pattern recog-

nition procedure similar to the standard tracking approach. The propagation of track

parameters at each step takes into account the non-uniform magnetic field and energy

loss induced by ionisation processes, multiple scattering, and emission of bremsstrahlung

photons. Finally, trajectory smoothing is applied in the form of a backward pattern recog-

nition procedure employing the individual hit information, composed of the previously

used track segments. The obtained track parameters are then extrapolated to the point of

closest approach to the beam line, where a constraint to the nominal interaction point can

be imposed to further improve track momentum resolution.

Following the concept of global muon reconstruction, the most accurate muon descrip-

tion can be obtained by combining information from the silicon tracker and the muon

system. Therefore, trajectory candidates resulting from the standard track reconstruction

procedure are linked to those obtained from the standalone reconstruction omitting any

vertex compatibility constraints. The first global muon reconstruction stage is dedicated

to identifying silicon tracker tracks compatible with a given standalone muon trajectory

candidate. Due to the large multiplicity of reconstructed trajectory candidates in the sili-

con tracking device, this selection is performed in two steps. First, a subset of candidates

is selected based on their rough correspondence to a standalone muon track in momentum

and position space. For this initial track matching procedure, a so-called region of interest

is defined, denoting a rectangular region in the η−φ space. In the second step, more strin-

gent spatial and momentum matching criteria are applied to select the silicon tracker track

for the subsequent combination with the standalone muon trajectory candidate. Ideally,

this matching procedure is performed after propagating the two tracks onto a common

reference surface, where two competing objectives determine the choice of this particular

surface. While the covariance matrices of the propagated track parameters should be min-

imal, only a small number of matches per standalone trajectory candidate are desirable.

Since the propagation of tracks through a lot of material typically involve large uncertain-

ties in the propagated track parameters, natural choices for the common reference surface

include the outer boundary of the silicon tracking system, the inner boundary of the muon

system, or a specific cylindrical layer in between. After the matching and subsequent tra-

jectory candidate selection procedures have been performed, the next reconstruction stage

is dedicated to a global track fit involving standard Kalman filter techniques. This pro-

cedure however does not perform any additional pattern recognition. Rather, the global

reconstruction algorithm combines the collections of hits associated with the two trajec-

tory candidates and initiates a trajectory fitting and smoothing procedure. The resulting

global muon candidates are then checked for ambiguities and the χ2 value of the fit is

used to select, at most, one global muon candidate per standalone muon track.

The tracker muon reconstruction constitutes a complementary approach, dedicated to

the reconstruction of muons with low transverse momenta or muons lost by geometri-

cal effects like gaps in the muon system. For this purpose, the algorithm starts from the

standard collection of silicon trajectory candidates above a given momentum threshold.
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Figure 3.3: Schematic illustration of the muon isolation cone [114]. The cone axis is defined

by the muon direction at the vertex position. Transverse momenta of tracks or energy deposits

inside the cone are then used to define muon isolation variables, whereas the contributions from

the muon itself are omitted through the applied inner veto cone. The so-called veto values in turn

can be used to test the muon candidate for compatibility with a minimum ionising particle.

These reconstructed tracks are then propagated into the muon system and positively clas-

sified as muon candidates if at least one compatible track segment in the muon system

can be found. In contrast to the global reconstruction approach, however, no final track

refit is performed. The momentum vector of the tracker muon candidate is thus identical

to the one obtained from the standard trajectory reconstruction. The resulting collection

comprises muon candidates in combination with compatibility value which indicate the

probability of the track being a muon. This additional information is stored for each

candidate and can be used for muon identification techniques.

Muon Identification

In addition to the collection of candidates, the three muon reconstruction techniques pro-

vide additional information which can be used in offline physics analyses to further select

and identify the reconstructed objects. Based on this additional information, muon iden-

tification algorithms have been developed [167] which try to minimise the probability of

mis-identification while maintaining high efficiencies. These identification algorithms in-

volve track quality information like the number of hits associated with any of the three

types of trajectory candidates, the χ2 values of the various track fits, and the number

of invalid hits. Furthermore, energy deposits in the ECAL crystals and HCAL cells are

recorded while propagating the muon trajectory candidates through the calorimetry sys-

tem. This is of special interest for analyses involving prompt muons originating from hard

elementary interactions, in contrast to muons emerging from decays of B mesons, pions,

or kaons. As these non-prompt muons are typically accompanied by nearby hadronic ac-

tivity, the energy deposit within a cone around the muon track is usually much larger com-

pared to prompt muon tracks. This feature is exploited by isolation algorithms, wherein

the scalar sum of energy deposits or track momenta within a cone of R = 0.3 in the η− φ
plane around the muon track is calculated as depicted in figure 3.3. The application of
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a small inner cone, called veto cone, serves to exclude the contributions from the muon

itself. The radii of this veto cone are R = 0.07 and R = 0.1 for the electromagnetic and

the hadronic calorimeters, respectively. Moreover, the energy deposits inside this inner

cone can be used to test the muon candidate for compatibility with a minimum ionising

particle.

3.3.5. Reconstruction of Jets

Colour-charged partons emerging from the interaction region underlie the confinement

principle of QCD and therefore hadronise into collimated streams of colour-neutral ob-

jects, called particle jets that can be observed as energy deposits in the calorimetry system.

The evolution from the hard elementary interaction to energy deposits in the electromag-

netic and hadronic calorimeters is schematically depicted in figure 3.4. Jet reconstruction

techniques are employed to cluster all energy deposits which are supposed to originate

from one individual outgoing parton, to ultimately provide information about the final

state quarks and gluons from the hard interaction. Besides the aspired correspondence

between parton level and hadron level, a well-behaved jet reconstruction algorithm has

to be collinear and infrared safe. Collinear safety ensures that additional collinear gluon

splittings within parton showers do not alter the result of the jet reconstruction algorithm.

The demand for collinear safety can thus be achieved if the reconstruction algorithm is

invariant under the interchange of an input object with two adjacent objects that add up to

the original input. Infrared safety on the other hand denotes the stability of the jet cluster-

ing results against the addition of soft partons. This is motivated by the large probability

of soft gluon radiation processes in parton showers, soft contributions arising from the un-

derlying event, and instrumental contributions like calorimeter noise. Furthermore, from

the theoretical point of view, infrared and collinear safety is essential to obtain meaningful

finite perturbative calculations and to maintain the relation between the Born or low-order

partonic structure of the event and the experimentally observable jets.

Jet reconstruction algorithms typically involve abstract implementations which facili-

tate their application to any set of four-vector-like input objects, called pseudo-particles.

This simplifies the comparison of jets reconstructed from detector objects such as en-

ergy deposits in the calorimeters, simulated partons, or generated stable particles after

hadronisation and decay. Hence, from the technical point of view, a jet is just defined

by the clustering algorithm used, its parameters, and the applied recombination scheme

which determines the method used to combine the individual jet constituents to form the

four-vector of the jet. Thus, since jet finding is not a unique procedure, several different

algorithms have been developed which can typically be categorised either as cone-type or

as sequential recombination algorithms.

Cone-type algorithms are inspired by the idea of defining a jet as an angular cone around

some direction of dominant energy flow. Therefore, jets are constructed as the sum of all

pseudo-particles within a stable cone of given radius R in the η − φ plane. The term sta-

ble in this context indicates that the jet axis coincides with the four-momentum sum of its

constituents. The most straight-forward implementation for this kind of jet finder is pro-

vided by the Iterative Cone (ICONE) algorithm [114], wherein all pseudo-particles above

a certain configurable transverse energy threshold are used as seeds for the iterative search

of stable cones. Starting with the seed exhibiting the highest transverse energy as the ini-
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Figure 3.4: Schematic illustration of a hadronisation process with the subsequent formation of

jets. The light and dark blue ellipses indicate energy deposits in the calorimetry systems, which

can be used as input objects for jet reconstruction algorithms. Cone-type jet finders then define

jets by a cone of given radius R around the dominant direction of energy flow.

tial cone axis, all pseudo-particles inside a cone of radius R centred around this initial

axis are combined to obtain a new estimate for the cone axis. This procedure is iteratively

repeated until the cone axis converges to yield a stable cone. The associated pseudo-

particles are then combined according to the applied recombination scheme. Rather than

using the stable cone kinematics that are typically obtained from the ET weighted sum

of all jet constituents, the so-called E scheme is applied in CMSSW to calculate the jet

four-vector. In this recombination scheme, the N pseudo-particles comprising the jet are

treated as massless particles and the sum of their four-momenta pi yields the reconstructed

jet four-momentum

pjet = (Ejet,�pjet) =
N

∑
i=1

(Ei,�pi) . (3.1)

The pseudo-particles associated with this jet are then removed from the input collection

and the jet finding procedure is reinitiated until no seeds above the given energy threshold

remain. Possible overlaps between two stable cones are thus prevented by this so-called

progressive removal procedure. Due to the comparably low execution time and the good

pT resolution achieved, the ICONE algorithm is ideally suited for its extensive use in the

HLT software. However, like most commonly used cone-type algorithms due to the appli-

cation of energy threshold dependent seeds, it is neither collinear nor infrared safe. One

approach to fix this behaviour is to search for all stable cones in the event omitting the

application of seeds, and afterwards run a split-merge procedure on all stable cones to ac-

count for ambiguities arising from possible overlaps. Employing appropriate split-merge

procedures, such algorithms are infrared and collinear safe [168]. Disadvantageously
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however, straight-forward implementations of such procedures yield very time consum-

ing algorithms due to the large set of cones that have to be checked for stability. This

required the development of advanced approaches like the Seedless Infrared Safe Cone

(SISCONE) algorithm [168]. Implemented with a dedicated split-merge procedure and

employing an exhaustive non-iterative procedure to provably find all stable cones in the

event, the SISCONE algorithm is infrared and collinear safe to all orders of perturbative

QCD, while providing a moderate execution time.

Sequential recombination algorithms constitute the second class of iterative jet find-

ing procedures. Complementary to cone-type approaches, these algorithms introduce a

distance measure between pseudo-particles and recombine pair-wise those exhibiting the

smallest distance. For this purpose, the clustering algorithm exhibits a testing variable to

decide whether two objects should be combined and a dedicated recombination scheme.

Starting from a set of input objects, the clustering algorithm calculates the distances di,j

between each pair of pseudo-particles i and j, and the distance dk,B of any pseudo-particle

k to the beam axis,

di,j = min

(
p

2p
T,i, p

2p
T,j

) Δ2
ij

D2
, (3.2)

dk,B = p
2p
T,k , (3.3)

where Δij =
√
(yi + yj)2 + (φi + φj)2, and pT,i, yi and φi are the transverse momen-

tum, rapidity, and azimuth of pseudo-particle i, respectively. The clustering algorithm

then identifies the smallest distance among all di,j and dk,B in the list of input objects. In

case the smallest value is among the set of di,j distances, the two objects are combined to

form a new pseudo-particle with four-momentum p = pi + pj according to the E scheme.

On the other hand, if dk,B constitutes the smallest value, particle k is removed from the

list of input objects and defined as a jet. After this step is performed, all distances are re-

calculated and the procedure is iteratively repeated until no pseudo-particles are left to be

clustered. The configurable jet size parameter D in equation (3.2) serves to rescale the dis-

tances di,j of two pseudo-particles such that any pair of jets a and b are at least separated by

Δa,b = D. According to the general definition of the clustering metrics in equations (3.2)

and (3.3), the parameter p governing the relative power of energy versus geometrical

scale, can be used to distinguish between several algorithms. Well-known examples of

these jet cluster algorithms are the kT algorithm [169] and the Cambridge/Aachen algo-

rithm [170, 171], which are defined by p = 1 and p = 0, respectively. Furthermore,

recent developments lead to an implementation with p = −1, which is known as the

anti-kT algorithm [172]. Thus, the only difference between the three sequential cluster-

ing algorithms is the actual distance definition, while all three of them are collinear and

infrared safe. From the experimental point of view, jets are defined by the applied cluster-

ing algorithm and the type of pseudo-particles used. In this context, CMS provides three

complementary jet reconstruction procedures. The most commonly used approach is the

so-called calorimeter jet reconstruction employing as input objects the unweighted sum of

energy deposits in the electromagnetic and hadronic calorimeters, so-called calorimeter

towers. Due to the finer granularity of the electromagnetic calorimeter, each HCAL cell

thereby corresponds to 5× 5 ECAL crystals. The second approach aspires to improve
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Figure 3.5: Transverse momentum resolutions of calorimeter-based, JPT and PF jets as functions

of pREF
T for the ranges 0 < |η| < 0.5 and 2 < |η| < 2.5 taken from [173]. The transverse

momenta pT and pREF
T correspond to the reconstructed jet and its matched reference generator

jet, respectively. Due to the incorporated tracking information, JPT and PF jets exhibit improved

resolutions compared to calorimeter jets. Moreover, the PF jet reconstruction does not rely on

combined ECAL and HCAL input objects and thus benefits from the fine ECAL granularity.

the transverse momentum information of calorimeter jets by exploiting the kinematics of

associated charged particle tracks. This procedure is known as the Jet Plus Tracks (JPT)

algorithm [174]. After reconstruction of charged particle trajectories and calorimeter jets,

the algorithm associates reconstructed tracks with calorimeter jets based on their spatial

distance in the η − φ plane and the track momenta at the interaction vertex. Associated

tracks are then propagated to the calorimeter surface, where a classification as in-cone or

out-cone tracks is performed depending on whether they point towards a region inside or

outside the jet cone. The momenta of both track types are then added to the energy of the

corresponding calorimeter jet. Furthermore, the expected average calorimeter energy de-

posit for in-cone tracks is subtracted based on the track momentum and the hypothesis that

the track originated from a charged pion. Finally, the jet axis of the original calorimeter jet

is also corrected. The third jet reconstruction approach implemented in CMSSW is based

on the so-called Particle Flow (PF) algorithm [175] which attempts to reconstruct, iden-

tify, and calibrate every single particle in the event individually, prior to the reconstruction

of jets. For this purpose, object candidates are reconstructed from the combined informa-

tion of the tracking devices, the electromagnetic and hadronic calorimeters, and the muon

system. Subsequently, the resulting candidates are identified as electron, muon, photon,

charged hadron, or neutral hadron candidates based on the detector systems involved in

their reconstruction. Depending on the assigned particle type, the energy of each recon-

structed object is calibrated, assuming hadrons as pions. In contrast to the calorimeter jet

approach, the PF algorithm thus yields calibrated input objects for the jet reconstruction.

Moreover, the PF jet reconstruction benefits from the excellent momentum resolution of

the silicon tracking system and the fine ECAL granularity as no a priori combination of

ECAL and HCAL clusters is performed. The comparison of transverse momentum res-

olutions for the three different jet reconstruction procedures in two exemplary |η| ranges

can be found in figure 3.5.
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Jet Energy Corrections

To accomplish the original aim of estimating the underlying parton properties, several cor-

rections have to be applied to the reconstructed jets. For example, a given jet of certain en-

ergy and direction leads to a reconstructed jet energy that depends on the electromagnetic

fraction of the jet. This results from the non-compensating nature of the CMS calorimetry

system, which exhibits a higher response, i.e. ratio of measured to true energy, to the elec-

tromagnetic than to the hadronic component of jets. Moreover, calorimeter jets have to

be corrected for the energy-dependent calorimeter response, instrumental effects, and for

radiation and fragmentation processes. The jet correction procedure at CMS is factorised

into seven sequential steps [176], also referred to as correction levels, where each level

adresses a certain effect. Among this sequence, the first three correction levels aim to

cover all instrumental effects and to correct for any non-linearity and inefficiency in the

calorimeter response. These jet energy corrections can be determined either from Monte

Carlo simulations or in-situ from data-driven approaches like dijet-balancing or Z/γ-jet

pT balancing techniques [173].

Level 1: Offset corrections [177] account for increased jet energies induced by pile-up

collisions and electronic noise. The average amount of these additional contributions is

therefore subtracted from the measured jet energies.

Level 2: To account for the non-uniform calorimeter response in η, arising from the non-

compensating behaviour and possible inefficiencies caused by uninstrumented regions in

the detector acceptance, so-called relative corrections [178] are applied. This correction

level aims to equalise the jet response as a function of jet η with respect to the response

in a central region |η| < 1.3.

Level 3: Absolute jet energy corrections [173] are applied to account for the pT dependent

calorimeter response, aiming for a uniform jet response as a function of pT. In combi-

nation with the two preceding correction levels, the application of Level 3 corrections

account for all instrumental effects. The first three levels therefore provide corrected jet

energies comparable to the underlying particle jets as defined in figure 3.4.

Level 4 to Level 7: Four optional correction levels exist to further estimate the momen-

tum and energy of underlying partons. Level 4 is dedicated to correcting for variations

arising from the different electromagnetic fractions of jets. Since gluons exhibit higher

probabilities for radiation induced energy loss, light quark (u, d, s) initiated jets typically

yield higher energy responses in the calorimeters compared to gluon-induced jets. This is

accounted for by flavour-dependent jet corrections, provided in Level 5. Energy deposits

originating from the underlying event activity are assumed to be almost independent from

the direction and energy scale of the hard elementary final state. This additional energy

is therefore subtracted from the jet energy by application of Level 6 corrections. Finally,

parton corrections can be applied in Level 7, which consider possible differences between

the energies of an initial parton and its corresponding particle jet.

Identification of b Jets

One special feature in the hadronisation process can be exploited to distinguish between

jets initiated by light quarks or gluons and those originating from b quarks. This is of par-

ticular interest for the classification of event topologies and to select certain processes that
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comprise b quarks in the final state. Emerging b quarks fragment into B hadrons which

typically carry most of the transverse momentum of the initial quark. Since these hadrons

predominantly decay via the weak interaction, they exhibit a considerably long lifetime

of about τ = 1.6 ps which might result in an experimentally observed transverse decay

length of several millimetres. This property of B hadrons can be exploited to identify

b quark induced jets, a procedure known as b-tagging. CMSSW features several different

b-tagging algorithms [179] which aspire to the identification of b jets based on a dis-

placed secondary vertex, on the high invariant mass of b jets compared to light quark jets,

or on the presence of a soft charged lepton inside the jet, originating from semileptonic

B hadron decays.

3.3.6. Reconstruction of the Missing Transverse Energy

Neutrinos emerging from the hard elementary process interact only weakly with matter

and thus escape the CMS apparatus undetected. Since the initial particles in the hard

elementary interaction exhibit no transverse momenta, the vector sum of all final state

transverse momenta must also vanish due to momentum conservation. An imbalance in

this vector sum can therefore be attributed to the presence of neutrinos or other weakly

interacting particles. Due to its high angular coverage, the calorimetry system is ideally

suited to providing a measure of this imbalance. For this purpose, the so-called missing

transverse energy ��ET is reconstructed as the vector sum of all transverse energy deposits

in the calorimetry system [180]

��ET = −
N

∑
n=1

(En sin θn cos φnx̂ + En sin θn sin φnŷ) , (3.4)

where the index n runs over all calorimeter input objects and x̂ and ŷ denote the unit vec-

tors in the x and y directions, respectively. Finally, several corrections have to be applied

for an accurate determination of the missing transverse energy. Since reconstructed jets

are corrected for the calorimeter response, this has to be taken into account in the calcula-

tion of ��ET. For this purpose, the missing transverse energy is corrected for the jet energy

scale by vectorially subtracting these corrections

(
��ET

)
corr

= ��ET−
Njets

∑
i=1

(
�pcorr

T,i − �praw
T,i

)
, (3.5)

where �pT,i denotes the transverse momentum of jet i before and after applying the jet

energy corrections. Since the corrections for low-pT jets are known to have large un-

certainties, the correction in equation (3.5) only considers jets above pT = 10 GeV/c.

Energy deposits from electrons on the other hand are well-measured by the calorimeters

and are therefore not corrected. However, jet reconstruction procedures potentially cluster

energy deposited by electrons which would lead to spurious corrections of ��ET. Therefore,

jets above a certain electromagnetic fraction are also excluded for the corrections defined

in equation (3.5). Muons traversing the detector are minimally ionising particles and thus

deposit, on average, only a few GeV in the calorimetry system, which potentially leads to

a significant contribution to the missing transverse energy. This requires a specific muon
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Figure 3.6: Calibrated �ET resolution versus the calibrated ET sum of particle flow objects taken

from [182]. Depicted are the resolution values for Type-II corrected calorimeter-based (calo�ET),

track-corrected (tc�ET), and particle flow (pf�ET) missing transverse energy in data and the corre-

sponding values for Monte Carlo simulations. Compared to the calorimeter-based missing trans-

verse energy, both alternative reconstruction techniques show improved �ET resolutions.

correction procedure, wherein the transverse momenta of all muons in the event are sub-

tracted from ��ET, while their estimated calorimeter energy deposits are added in order to

avoid double counting. The combination of jet energy and muon corrections yields the

so-called Type-I correction, while the optional Type-II correction is dedicated to further

account for effects arising from pile-up collisions and the underlying event activity.

There exist two alternative approaches in CMS to measure the missing transverse en-

ergy. Similarly to the Jet Plus Tracks algorithm, additional tracker information can be used

for the determination of ��ET. This approach is known as track-corrected missing trans-

verse energy (TCMet) reconstruction [181]. Starting from the standard ��ET calculation,

the TCMet algorithm extends the vector sum in equation (3.4) by including the transverse

momenta of reconstructed silicon tracker tracks, while subtracting their inferred calorime-

ter energy deposits under the assumption that the track was initiated by a pion. The third

approach for the reconstruction of missing transverse energy is based on particle flow

objects, similar to the reconstruction of PF jets. Instead of using energy deposits in the

calorimetry system, the so-called PFMet algorithm [175] calculates the negative vector

sum of all reconstructed PF objects in the event to determine the missing transverse en-

ergy. As shown in figure 3.6, both alternative missing transverse energy reconstruction

techniques show a significantly improved �ET resolution [182], where �ET = |��ET| denotes

the magnitude of the missing transverse energy.
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Selection of Candidate Events

The expected top quark pair production cross section is about nine orders of magnitude

smaller than the total inelastic proton-proton cross section of about 60 mb, as illustrated

in figure 4.1. Therefore, only one among more than 300 million events constitutes signal

for the analysis of top quark pair production. The characteristic final state topology of tt̄
events in the muon+jets channel, however, can be used to select a signal-enriched sam-

ple, aspiring a good signal-to-background ratio, while maintaining a high signal selection

efficiency. For the development of event selection strategies, Monte Carlo simulations of

signal and background processes are employed. These samples of simulated events can

furthermore be used to estimate selection efficiencies and candidate event yields. Com-

plementary information from data-driven techniques are used to minimise the dependency

on these simulation-based yield estimates. Finally, observed and estimated event yields

as well as kinematic distributions are compared to validate the employed simulation tech-

niques, which play a crucial role in the search for top quark pair production and the corre-

sponding cross section measurement. For this analysis, pp collision data corresponding to

an integrated luminosity of L = (36.1± 4.0) pb−1 is available, which has been recorded

with the CMS apparatus at a centre-of-mass energy of
√

s = 7 TeV between June and

October 2010.

4.1. Analysed Data Sample

The analysis of top quark pair production presented in this thesis focuses on the muon+jets

channel, where muon refers to a muon or its corresponding antiparticle. The appearance

of a high-energetic muon in the event topology facilitates to start the selection of candidate

events already at the stage of data-taking by means of the CMS trigger system introduced

in section 2.2.4. So-called trigger streams are defined by a combination of several HLT

software triggers, leading to primary data sets which comprise data accepted by at least

one of the incorporated triggers. Before being analysed by the different physics analysis

groups, the primary data sets are split into secondary data sets (SD) according to specific

HLT paths accepting the particular events. For the analysis of tt̄ muon+jets events, the

secondary data set SD_Mu is investigated which comprises events accepted by one of the

high-pT muon triggers.

An LHC fill is usually divided into several cycles of CMS data-taking, denoted as runs,

which typically end when a detector subsystem fails, rendering full detector read-out tem-

porarily impossible. Each run is furthermore divided into luminosity section, defined as

the subsection of a run during which the instantaneous luminosity is considered constant.

This period is defined by about 220 orbits which corresponds to approximately 93 s. De-

pending on the particular physics analysis topic, the impeccable operation of different
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Figure 4.1: Next-to-leading order cross sections for several processes as a function of
√

s in pp̄
(for

√
s < 4 TeV) and pp (for

√
s > 4 TeV) collisions adapted from [183]. The centre-of-mass

energies of the Tevatron (
√

s = 1.96 TeV), the design value of the LHC (
√

s = 14 TeV), and the

current operation value of the LHC (
√

s = 7 TeV) are indicated by the dashed green lines. The

expected tt̄ production cross section at
√

s = 7 TeV is about nine orders of magnitude smaller

than the total inelastic proton-proton cross section, requiring dedicated selection criteria to obtain

a tt̄ signal-enriched sample. Moreover, the values for W and Z boson production are about two to

three orders of magnitude larger compared to the tt̄ production cross section.

detector components during the run is essential. The recorded data for each run is there-

fore verified online and offline. Since the analysis of top quark events requires a fully

functional tracking, calorimetry, and muon system, only data with a fully operational de-

tector are investigated. A listing of runs and luminosity sections which are considered

usable for the given requirements is provided by so-called JSON files, which can be used

to select a subset of the given SD_Mu data set. For the analysis presented in this thesis,

the JSON file Cert_136033-149442_7TeV_Nov4ReReco_Collisions10_JSON [184] is

employed, which comprises all certified pp collision data recorded with the CMS appa-

ratus at a centre-of-mass energy of
√

s = 7 TeV between June and October 2010.

As summarised in table 4.1, the acquired pp collision data is divided into two data-

taking periods, in between which a technical stop of the LHC allowed for several major

software upgrades, e.g. of the HLT software. Applying the filtering procedure based on

the corresponding JSON file, the data set usable for analysis corresponds to an integrated

luminosity of L = (36.1± 4.0) pb−1 [11]. The determination of the integrated luminos-
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Table 4.1: Summary of analysed CMS data sets. The data-taking periods, run ranges, and corre-

sponding integrated luminosities are listed. Application of the filtering procedure using the corre-

sponding JSON file, the total accumulated luminosity by the CMS apparatus at a centre-of-mass

energy of
√

s = 7 TeV in 2010 is L = (36.1± 4.0) pb−1.

Period Run Range
Integrated

Luminosity
[
pb−1

]
Run2010A 135821− 144114 3.2± 0.3

Run2010B 146240− 149709 32.9± 3.6

Total 135821− 149709 36.1± 4.0

ity is based on signals from the hadronic forward calorimeter. In the so-called zero count-

ing method, the average fraction of empty calorimeter towers is used to infer the mean

number of interactions per bunch crossing. This method provides a relative luminosity

measurement, which is complemented by an approach to obtain the absolute luminos-

ity. For this purpose, horizontal and vertical separation scans, namely Van der Meer

scans [185], are employed to measure the beam size in the interaction region. According

to equation (2.1) in chapter 2, the beam size in combination with beam current mea-

surements can then be used to determine an absolute luminosity value. Using this ap-

proach, an accuracy of 11% for the measurement of the integrated luminosity is achieved,

whereas the dominating uncertainty of about 10% is attributed to the beam current mea-

surements [11].

Finally, after the reconstruction or re-reconstruction stage and the filtering for certified

data according to the JSON file, dedicated cleaning procedures are applied to pp colli-

sion. In order to reject anomalous HCAL noise signals arising due to instrumentation

issues associated with the employed photo multipliers, a so-called HB/HE-NoiseFilter

algorithm [186] is applied to all reconstructed data events. Moreover, in events with more

than 10 associated tracks, at least 25% of these tracks have to be qualified as high purity

tracks. This event veto is dedicated to the rejection of so-called beam scraping events.

4.2. Modelling of Signal and Background Processes

The final state of tt̄ events in the muon+jets channel comprises a high-pT muon and a

neutrino from the leptonically decaying W boson, two light quarks from the hadronically

decaying W boson, and two b quarks. This is exemplarily shown in figure 4.2, depict-

ing a Feynman diagram for tt̄ production and the subsequent decay of top quarks and

W bosons. The experimental signature of four jets, a high-pT muon and missing trans-

verse energy is, however, not unique. Several other Standard Model processes can exhibit

a similar experimental signature, which might lead to erroneous classification as signal

events. Therefore, an event selection is applied, exploiting differences in kinematic ob-

servables and characteristic properties of signal and background processes, in order to

obtain a signal-enriched sample of candidate events. For the development of such event

selection techniques, Monte Carlo simulations are employed to model the tt̄ signal and

the expected background processes.
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Figure 4.2: LO Feynman diagram for tt̄ production via gluon-gluon fusion and the subsequent

decay of top quarks in the muon+jets channel. Both top quarks decay into a b quark and a charged

W boson. The W+ boson originating from the top quark then decays leptonically into a μ+

and its corresponding neutrino νμ, while the W− boson from the t̄ quark subsequently decays

hadronically into a q̄q′ pair. Throughout the analysis, the charge conjugated decays are implicitly

included.

4.2.1. Expected Background Processes

Given the characteristic muon+jets event topology, only certain Standard Model processes

are expected to potentially counterfeit the experimental signature of tt̄ events and thus

constitute significant background contributions. Among these expected background pro-

cesses are W boson, Z boson, and electroweak single top quark production, which can

exhibit prompt muons in the final state. Produced in association with additional jets, the

experimental signature of these processes is similar to tt̄ muon+jets events. Furthermore,

QCD multijet production has to be considered as background contribution as well, since

falsely identified or secondarily produced muons in such events might lead to a signal-like

experimental signature.

Electroweak Production of Single Top Quarks

Due to the top quark in the final state of the hard interaction, electroweak production of

single top quarks provides the most tt̄ signal-like event topology. This process is accom-

plished via one of the three production modes discussed in section 1.2.2, and for which

exemplary tree-level Feynman diagrams including the decay of top quarks are depicted in

figure 4.3. Including higher-order effects leading to additional partons in the final state,

single top quark production exhibits a similar experimental signature as tt̄ events. Es-

pecially the hadronic decay of a W boson in the associated production provides three

final state quarks already at leading order. Among electroweak production of single top

quarks, the Wt-channel thus constitutes the most significant background contribution for

the analysis of tt̄ events in the muon+jets channel.

W+Jets and Z+Jets Production

Given the sizable cross sections for vector boson production illustrated in figure 4.1, the

production of on-shell W bosons or Z bosons is expected to constitute the most dominant

background contribution to top quark pair production in the muon+jets channel. Fig-

ure 4.4 illustrates leading order and exemplary two higher-order Feynman diagrams for
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(a) (b) (c)

Figure 4.3: Leading order Feynman diagrams for the electroweak production of single top quarks.

The s-channel and t-channel production modes can be found in (a) and (b), respectively, while the

associated production of a top quark and a W boson is depicted in (c). In each diagram, the top

quark decays into a b quarks, a muon, and the corresponding neutrino, while the associatively

produced W boson in (c) decays hadronically into a q̄q′ pair. If produced in association with

additional partons, these processes lead to final state configurations similar to those of tt̄ events.

(a) (b)

Figure 4.4: Feynman diagrams for the production of W bosons and Z bosons including decays

involving muons. Besides the LO production of W bosons in (a) and of Z bosons in (b), exemplary

higher-order contributions with additional partons in the final state configurations are depicted.

Including these higher-order effects, the production of W bosons and Z bosons in association

with additional jets can exhibit a tt̄ signal-like experimental signature and therefore constitutes

background in the analysis of top quark pair production in the muon+jets channel.

these processes, wherein only W boson and Z boson decays including muons are consid-

ered. If produced in association with additional jets emerging from higher-order effects,

these processes can exhibit a similar experimental signature as tt̄ muon+jets events. Of

special importance is the production of W bosons in association with jets, since the lep-

tonic W boson decay into a muon and the corresponding neutrino leads to a tt̄ signal-like

experimental signature. Compared to W+jets events, Z boson production in association

with additional jets is expected to constitute a less significant background contribution,

since a requirement on the presence of exactly one muon minimises contributions from

Z → μμ decays. On the other hand, Z+jets events in the Z → ττ decay mode exhibit

a similar experimental signature as the tt̄ muon+jets event topology, if one tau lepton

decays into a muon and its corresponding neutrino, while the other decays hadronically.
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(a) (b)

Figure 4.5: Exemplary Feynman diagrams for QCD multijet production processes. The produc-

tion of a bb̄ pair is illustrated in (a). While the b quark decays hadronically, the b̄ quark decays

in the process of hadronisation via the weak interaction into a c̄ quark, a muon, and the corre-

sponding neutrino. Another QCD multijet production mode is depicted in (b), leading to a final

state configuration comprising four quarks and one gluon. In the process of fragmentation, one of

these five partons might entail a decay-in-flight muon, emerging from the decay of a charged pion

or kaon in the jet. Alternatively, one jet might lead to an erroneously identified muon signature

induced by hadrons penetrating the muon system, a so-called punch-through muon.

QCD Multijet Processes

The expected background processes discussed so far each contain prompt muons from

W boson or Z boson decays. In addition, processes including secondarily produced

muons have to be considered. These muons might emerge from heavy flavor decays

during the hadronisation process, e.g. via the decay of hadrons containing b or c quarks.

Furthermore, so-called decay-in-flight muons might emerge from pion or kaon decays,

produced in any hadron shower and decayed in the detector volume. The decay-in-flight

muon produces a track in the muon system, which might be matched to some nearby

inner track and thus leads to a global muon signature. Another possibility for a counter-

feited muon signature arises from hadrons penetrating the muon system, so-called punch-

through muons. Hits associated to the deeply-penetrating hadrons might be combined to

a standalone muon track and matched to an inner track, where the latter originates from

charged hadrons composing the punched-through jet. Although the probability for this er-

roneous identification of muons and the probability for secondary muons to pass stringent

quality criteria is very small, processes with large cross sections might still constitute

a non-negligible background contribution in the analysis of tt̄ production. A potential

source for secondarily produced or mis-identified muons is multijet production via the

strong interaction, for which exemplary Feynman diagrams can be found in figure 4.5.

The hard final state parton configurations of such processes comprise solely quarks and

gluons, while muons or muon-like objects originate from radiation or particle decays dur-

ing the hadronisation process.
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4.2.2. Simulation-Based Modelling of Signal and Background Processes

For the development of event selection strategies and to estimate acceptances and efficien-

cies, Monte Carlo simulations of top quark pair production and the expected background

processes are employed. The aspired statistical accuracy of yield estimates and the mod-

elling of kinematic distributions thereby leads to the requirement of a sufficiently large

number of simulated events per contributing process. For the comparison with observed

collision data and to obtain yield estimates corresponding to a certain integrated luminos-

ity, the events of the simulated samples are weighted with a process-dependent factor w

w =
L · σ · εfilter

Ngen
, (4.1)

which accounts for the integrated luminosity L, the number of simulated events Ngen in the

given Monte Carlo sample, and the corresponding production cross section σ. If available,

NNLO or NLO cross section values are used for the calculation of the weighting factor w.

Furthermore, the amount of generated events which are presumably rejected by an applied

event selection can be reduced in favour of enriching certain phase-space regions relevant

for the analysis of tt̄ production. For this purpose a filter on generator level can be applied,

which is accounted for in equation (4.1) via the filter efficiency εfilter.

The Monte Carlo samples investigated for the analysis presented in this thesis have been

generated with the 38X cycle of the CMSSW framework and the full simulation has been

employed for the simulation of the CMS detector. As discussed in section 3.1, for an

adequate description of certain physics aspects of pp collision data, like the underlying

event structure, phenomenological models with parameters tuned to data are required.

For this purpose, the PYTHIA tune D6T [187] has been used in the simulation of signal

and background processes, except for electroweak single top quark and QCD multijet

production, for which the PYTHIA tune Z2 [187] has been employed.

Modelling of tt̄ Signal Events and Single Top Background Processes

For the simulation of top quark pair production and electroweak single top quark pro-

duction, MADGRAPH/MADEVENT is employed with a top quark mass of 172.5 GeV/c2.

Using the matrix element generator MADGRAPH, the production of top quarks in as-

sociation with up to three additional hard partons in the final state is facilitated. To

provide higher statistics for analyses involving leptons in the final state, the simulation

of the single top quark s-channel and t-channel production modes is furthermore re-

stricted to leptonic top quark decays, i.e. t → bW → blνl, where l denotes an elec-

tron, a muon, a tau, or the corresponding antiparticles. For the simulation of hadroni-

sation processes and the subsequent decay of unstable particles, the hard parton con-

figurations provided by MADGRAPH/MADEVENT are passed to the parton shower gen-

erator PYTHIA, employing the MLM matching prescription. Table 4.2 lists the cross

sections, numbers of simulated events, and the weighting factors for an integrated lu-

minosity of 36.1 pb−1 for tt̄ and single top quark production. Since the leading order

branching ratio BR(W → lν) = 1/9 instead of the experimentally determined value

BR(W → lν) = 0.1080± 0.0009 [4] for leptonic W boson decays has been employed

in the generation of tt̄ signal and Wt single top quark production, selected events are
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Table 4.2: Summary of cross sections, numbers of generated events, and weighting factors cor-

responding to an integrated luminosity of 36.1 pb−1 for tt̄ production and electroweak production

of single top quarks. All samples have been produced using MADGRAPH/MADEVENT interfaced

to PYTHIA and μ̂ = 172.5 GeV has been adopted for the renormalisation and factorisation scale.

While the simulation of tt̄ production and the Wt single top quark production mode includes all

SM final state configurations, only leptonic top quark decays, i.e. t → blνl with l = e, μ, τ, are

considered for the simulation of the s-channel and t-channel single top quark production modes.

For top quark pair production, the cross section value is obtained from approximate NNLO cal-

culations [8–10] as discussed in section 1.2.1. The filter efficiency and cross section values for

electroweak single top quark production are adopted from [96], whereas MCFM [97] has been

employed for the calculation of NLO cross section values.

Process σ · εfilter [pb] Generated Events Ngen Event Weight w

tt̄, inclusive 164.6+11.4
−15.7

1,306,182 0.0046

s-channel, t → blνl 1.40± 0.06 494,967 0.0015

t-channel, t → blνl 20.48+1.08
−1.01

484,060 0.0001

Wt-channel, inclusive 10.6± 0.8 494,961 0.0008

weighted by a factor fBR, which depends on the decay mode of the W boson. In par-

ticular, events involving two leptonic or two hadronic W boson decays are weighted by

a factor fBR = (0.108 · 9)2 or fBR = (0.676 · 3
2
)2, respectively. Accordingly, semilep-

tonic tt̄ events and Wt events in which one W decays leptonically while the other decays

hadronically are weighted by fBR = (0.108 · 9) · (0.676 · 3
2
).

Modelling of W+Jets and Z+Jets Background Processes

Similar to top quark production processes, the generation of W boson and Z boson pro-

duction is accomplished using MADGRAPH/MADEVENT interfaced to PYTHIA. Accord-

ing to the MLM scheme, the hard parton configurations with up to four additional partons

in the final state are matched to parton showers provided by PYTHIA. In order to enhance

the number of events presumably selected in tt̄ lepton+jets analyses, only leptonic decays

of W bosons and Z bosons are accounted for in the generation process. The interference

of Z boson and virtual photon production is furthermore taken into account by includ-

ing the matrix elements containing a virtual photon, leading to Z/γ∗ production, which

is also referred to as Drell-Yan production. The cross section for Drell-Yan production

is very large for small invariant masses ml+l− of the final state leptons. Such events,

however, are likely rejected by an event selection applied in the analysis of tt̄ muon+jets

events, leading to the application of a generator-level cut of ml+l− > 50 GeV/c2. A sum-

mary of the cross section values, numbers of generated events, and process-dependent

weighting factors can be found in table 4.3.

Modelling of QCD Multijet Background Processes

The most demanding process in terms of simulation-based modelling of background con-

tributions in tt̄ muon+jets analyses is QCD multijet production. Due to the large cross
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Table 4.3: Summary of cross sections, numbers of generated events, and weighting factors cor-

responding to an integrated luminosity of 36.1 pb−1 for W boson and Z boson production in

association with additional final state partons. Both samples have been generated using MAD-

GRAPH/MADEVENT interfaced to PYTHIA. The given product of cross section times filter effi-

ciency accounts for branching fractions, since only leptonic decays W → lνl and Z → l+l− with

l = e, μ, τ are considered. The production of Z bosons furthermore includes matrix elements

including virtual photons and therefore a generator-level cut on the invariant mass of the final state

leptons ml+ l− > 50 GeV/c2 is applied. The cross section and filter efficiency values are adopted

from [96], providing NNLO cross section calculations based on FEWZ [188].

Process σ · εfilter [pb] Generated Events Ngen Event Weight w

W+jets, W → lνl 31314± 1558 14,805,546 0.076

Z+jets, Z → l+l− 3048± 132 2,543,727 0.043

Table 4.4: Summary of cross section, filter efficiency, number of generated events, and weighting

factor corresponding to an integrated luminosity of 36.1 pb−1 for QCD multijet production. For

this sample, the parton shower generator PYTHIA has been used, employing additional generator-

level cuts on p̂T > 20 GeV/c and on the occurrence of at least one muon with |η| < 2.5 and

pT >15 GeV/c. To account for the simulation of decay-in-flight muons, PYTHIA has been con-

figured to include decays of long-lived kaons and pions within a cylinder of radius r = 2 m and

length l = 8 m around the beam axis. The cross section and filter efficiency values are adopted

from [189], whereas PYTHIA has been used to calculate the LO cross section value.

Process σ · εfilter [pb] Generated Events Ngen Event Weight w

InclusiveMu15 84679 29, 504, 866 0.10

section values involved, a huge number of events has to be generated in order to achieve

statistically accurate event yield estimates. Moreover, the small probability for secondar-

ily produced muons or decay-in-flight muons to survive stringent event selection criteria,

requires the application of filters on generator level. The third category of background

contributions possibly arising from QCD multijet production processes are events com-

prising punch-through muons. The selection probability of such events is, however, very

small and its proper modelling demands an excellent understanding of details and even

unusual effects in the detector. Therefore, only the production of secondary muons and

decay-in-flight muons are considered for the simulation of QCD multijet background pro-

cesses. The simulation of QCD multijet production is performed using PYTHIA for the

generation, simulation, hadronisation, and decay of unstable particles. For this purpose,

PYTHIA is configured for the generation of so-called minimum bias events, which consist

of all 2 → 2 processes with q, q̄, and g as initial and final state particles. In order to reduce

the number of events in phase-space regions which are likely rejected by selection criteria

applied in a tt̄ muon+jets analysis, a filter on generator level is applied to all generated

events before being subject to the CMS detector simulation. As can be inferred from fig-

ure 4.1, at low ŝ values the cross section for QCD multijet production strongly increases,

however, low selection efficiencies are expected for events in this phase-space region.
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Therefore, a requirement on generator level is applied on the transverse momentum of the

hard process p̂T =
√

t̂·û
ŝ > 20 GeV/c, with the partonic Mandelstam variables ŝ, t̂, and

û. The commonly used generation of very short-lived particles, which cannot reach the

detector, has to be extended in order to incorporate the simulation of events comprising

decay-in-flight muons. For this purpose, PYTHIA is configured to include the decay of

long-lived pions and kaons within a cylinder of radius r = 2 m and length l = 8 m around

the beam axis. Finally, to further enhance the number of events including muons in the

final state, a generator-level filter is applied on the occurrence of at least one muon with

|η| < 2.5 and pT >15 GeV/c, taking into account multiple-step decays. A summary

of details on the simulated QCD multijet sample can be found in table 4.4, evincing a

weighting factor w = 0.10 despite the large number of generated events. Therefore, the

sample of simulated events can only be used to obtain a rough estimate for the amount

of the QCD multijet background contribution, while the description of kinematic distri-

butions might suffer from low statistics after the application of dedicated event selection

criteria.

4.3. Selection Criteria

The characteristic experimental signature of a high-pT muon, missing transverse energy,

and several jets in a typical tt̄ muon+jets event can be used to select a signal-enriched

sample of candidate events. For this purpose, the occurrence of the characteristic ob-

jects is required and differences in kinematic observables and characteristic properties

of signal and background events are exploited. The applied selection criteria are driven

by the requirement on an effective rejection of events originating from background pro-

cesses, while maintaining a high signal selection efficiency. Therefore, the event selection

developed for the analysis presented in this thesis employs requirements on the trigger,

the primary vertex, the muon candidate, and on the number of jets, where each object

candidate is required to satisfy several quality criteria. Furthermore, candidate events

with additional lepton candidates are rejected. This event veto allows for the selection of

candidate event samples, which are statistically orthogonal to the selected samples inves-

tigated by tt̄ analyses using other decay channels, namely the tt̄ production cross section

analysis in the electron+jets channel [15] or the corresponding analysis in the dilepton

channel [14]. The detailed description of selection criteria in the following paragraphs

furthermore represents the reference event selection for the measurement of the tt̄ pro-

duction cross section in the muon+jets channel presented in Ref. [15, 190].

Trigger Requirements

Driven by the procedure applied on pp collision data, the first stage of the event selection

accounts for trigger information provided by the HLT software. Observed and simulated

events are required to pass the HLT trigger path HLT_Mu9, which is part of the trigger

stream defining the secondary data set SD_Mu. The trigger path HLT_Mu9 represents a sin-

gle muon trigger, accepting events based on the occurrence of a muon object candidate

in the trigger acceptance above a kinematic threshold of pT = 9 GeV/c. Starting from

pp collision run number 147197, the high initial LHC luminosities and therewith the high
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trigger rates of HLT_Mu9, necessitated a prescaling of this particular trigger path. Conse-

quently, only one event among several positive HLT_Mu9 trigger decisions is recorded and

subject to event reconstruction and further analysis. In order to prevent event selection in-

efficiencies induced by this trigger prescaling, an alternative trigger path is exploited. For

this purpose, a positive decision of the single muon trigger HLT_Mu15_v1 is required for

pp collision data starting from run 147197. This trigger path is similar to the HLT_Mu9,

except for the transverse momentum thresholds on the muon object candidates, which is

set to pT = 15 GeV/c as indicated by the path name.

Primary Vertex Requirements

The primary vertex provides an estimate for the location of the hard partonic interaction

and is therefore of central importance for the analysis of tt̄ muon+jets events, for which

only the top quark decay products can be experimentally observed. Moreover, object

candidates originating from pile-up events might further complicate the analysis of the

tt̄ topology. The primary vertex candidate with the highest scalar pT-sum of tracks is

deemed to provide the best estimate for the location of the hard partonic interaction and its

occurrence is therefore used to select events for further considerations. Besides the mere

occurrence, a requirement on the number of degrees of freedom ndof > 4 is imposed on

the primary vertex candidate, where ndof denotes the weighted sum of tracks used for the

reconstruction of the primary vertex candidate. In addition, the PV candidate has to be

located in a central region of the CMS detector, which is defined by Δz(PV, IP) < 24 cm

and Δρ(PV, IP) < 2 cm with respect to the nominal interaction point (IP).

Muon Selection Criteria

The key elements in the applied event selection are the identification and selection require-

ments imposed on the reconstructed muon object candidates. First of all, muon candidates

have to be identified as tracker muons as well as global muons, which reduces the prob-

ability for falsely identified muon objects. Muon candidates passing this identification

criteria are further required to exhibit a transverse momentum of pT > 20 GeV/c and to

fall within the trigger acceptance, which is ensured by requiring |η| < 2.1. In addition,

the selected candidates are required to fulfil the so-called GlobalMuonPromptTightID.

This implies a value of χ2
red < 10 for the reduced χ2 of the global fit in the muon tra-

jectory reconstruction, and the occurrence of at least one valid hit in the muon system,

which can be matched to the reconstructed global muon trajectory. To further enrich the

purity of the muon selection, the number of valid hits in the silicon tracking system is

required to exceed a value of Nhits = 10. Moreover, there has to be at least one pixel

hit found for the track reconstruction in the inner tracking system, and the global muon

reconstruction has to exhibit at least two segments matched to the global muon fit. This

latter requirement is imposed, since the trigger information provided by the drift tube

chambers requires at least two muon track segments. Besides these identification require-

ments imposed to minimise the probability for erroneous classification of reconstructed

object candidates as muons, additional requirements aim for the selection of muon candi-

dates emerging the hard interaction and to reject muon candidates originating from pile-up
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Figure 4.6: Distribution of the muon transverse impact parameter with respect to the beam spot in

a selected event sample without explicit jet multiplicity criteria. The muon candidate is required to

complying with the full set of muon selection criteria, except for the requirement on the presented

observable. The shape comparison in (a) demonstrates smaller values for this characteristic ob-

servable in processes comprising prompt muons, i.e. for tt̄, electroweak single top quark, W+jets,

and Z+jets production. QCD multijet production processes in turn exhibit larger transverse im-

pact parameter values, which can be ascribed to secondarily produced muons. Therefore, muon

candidates are required to exhibit an impact parameter of less than 0.02 cm. In (b), the expected

distribution scaled to an integrated luminosity of 36.1 pb−1 is shown.

events. Therefore, the distance between the muon vertex obtained using the track recon-

struction within the inner tracking system and the primary vertex candidate is required to

be Δz(μ, PV) < 1 cm. Furthermore, to reject secondarily produced muons, which are

typically close to a nearby jet, muon candidates are required to be well-separated from

jets in the event

ΔR(μ, jet30) > 0.3 , (4.2)

where jet30 denotes a jet with pT > 30 GeV/c and dedicated quality criteria applied,

which will be discussed on page 74. Two more selection criteria have been developed to

reduce contamination from background events comprising secondarily produced muons

or muons emerging from decay-in-flight processes. Such muons typically exhibit large

values for the impact parameter with respect to the primary vertex candidate or to the

beam spot. The distribution of this characteristic observable can be found in figure 4.6,

where e.g. tt̄ or W+jets events are deemed to comprise prompt muons, while secondarily

produced muons are expected in QCD multijet events. In order to select prompt muons

and hence to reduce background contributions involving secondarily produced muons,

the impact parameter of the muon track reconstructed from silicon tracking measure-

ments with respect to the beam spot is required to be smaller than 200 μm. Another

characteristic property of prompt muons is exploited in the isolation algorithms discussed

in section 3.3.4. These algorithms can be used to construct a combined relative isola-

tion variable Irel from the summed contributions of tracker, ECAL, and HCAL energies,
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Figure 4.7: Distribution of the relative isolation for muons in a selected event sample without

explicit jet multiplicity criteria. The muon candidate is required to complying with the full set

of selection criteria, except for the requirement on the presented observable. The shape compar-

ison in (a) demonstrates smaller values for this characteristic quantity in processes comprising

prompt muons, i.e. for tt̄, electroweak single top quark, W+jets, and Z+jets production. Due to

the contribution of non-muon+jets decay modes, a tail towards higher values in the Irel distribu-

tion is observed for simulated tt̄ signal and Wt single top quark events. In contrast to processes

comprising prompt muons, QCD multijet production processes exhibit larger values, which can

be ascribed to secondarily produced muons. Therefore, muon candidates are required to exhibit a

relative isolation of less than 0.05. In (b), the expected distribution of the relative isolation for an

integrated luminosity of 36.1 pb−1 is shown.

divided by the transverse momentum of the muon candidate

Irel =
ITrk + IECAL + IHCAL

pT
. (4.3)

The tracker isolation energy ITrk is defined as the sum of the transverse momenta of tracks

with pT > 1 GeV/c within a cone of radius R = 0.3 around the muon, while omitting

the track corresponding to the muon candidate. Similarly, the calorimeter isolation ener-

gies are calculated by summing the deposited transverse energies in the ECAL crystals or

HCAL cells in a cone of R = 0.3 around the muon. To remove the energy deposits orig-

inating from the muon candidate, inner veto cones of R = 0.07 and R = 0.1 are applied

in the ECAL and HCAL, respectively. A shape comparison of this relative isolation vari-

able for tt̄ signal and several background processes is depicted in figure 4.7, together with

the simulation-based expectation for an integrated luminosity of 36.1 pb−1. Signal and

background events involving prompt muons exhibit small values for this relative isolation

variable, while for QCD multijet events higher values are expected. Therefore, the total

isolation energy of muon candidates is required to be less than 5% of the muon transverse

momentum, leading to a muon selection criterion of Irel < 0.05.

Employing the discussed requirements, only events with exactly one reconstructed muon

candidate satisfying all described selection and identification criteria are subject to further

considerations.
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Loose Lepton Veto

In order to minimise background contributions originating from Drell-Yan or tt̄ produc-

tion in the dilepton channel, a veto is applied on events comprising additional, more

loosely defined muon candidates. The rejection of tt̄ dilepton events is of particular im-

portance to ensure the statistical independence of the tt̄ muon+jets and the tt̄ dimuon

channel, in order to facilitate a straight forward comparison or combination of results ob-

tained in the two individual channels. The same motivation for statistical orthogonality

holds for the rejection of events comprising electron candidates, which are selected by

analyses investigating tt̄ electron+jets or dileptonic electron+muon event topologies.

For the rejection of events comprising additional muons, a veto on the occurrence of an

additional global muon candidates with pT > 10 GeV/c, |η| < 2.5, and relative isola-

tion Irel < 0.2 is imposed. Similarly, events containing an electron candidate with certain

quality criteria are rejected. For this event veto, electron candidates reconstructed with

the standard GSF algorithm discussed in section 3.3.3 are required to exhibit a transverse

energy of ET > 15 GeV, |η| <2.5, and a relative isolation of Ie
rel < 0.2. The definition of

the relative isolation Ie
rel for electrons [15] is similar to the corresponding isolation vari-

able used for muon candidates, except for the radii of the inner veto cones and the use of

the transverse energy of the electron, rather than using its transverse momentum.

Jet Requirements

The reconstruction of jets is performed using the anti-kT clustering algorithm on particle

flow objects with a jet size parameter D = 0.5, resulting in so-called particle flow jets.

To account for the non-uniform calorimeter response in η and pT, the reconstructed PF

jets are corrected employing Level 2 and Level 3 jet energy correction levels described

on page 58. Due to the abstract implementation of jet clustering algorithms discussed in

section 3.3.5, the collection of particle flow jets comprise a non-negligible contamination

of muons. Therefore, the ΔR distance between each jet and the selected muon candidate

is determined, whereas all selection criteria are applied to the muon candidate, except

for the criterion in equation (4.2). If the distance between the jet and the selected muon

candidate is ΔR(μ, jet) < 0.1, the jet is removed from the collection of particle flow jets.

Furthermore, in the determination of Layer 2 jet energy corrections [191], the jet energy

resolution has been determined to be about 10% worse in data compared to simulation-

based expectations. To account for this jet energy resolution (JER) bias, all jets in the

simulated samples are matched to generator-level jets, based on a ΔR(jet, gen jet) < 0.4

and a
ΔpT(jet, gen jet)

pT, gen jet
< 3.0 criterion. For all reconstructed jets in the simulated samples,

which can be matched to a generator-level jet above a transverse momentum threshold of

pT = 15 GeV/c, the difference between the transverse momentum of the reconstructed

and the generator-level jet is increased by 10% and the four-momentum of the jet is cor-

rected accordingly. Due to the correlation of jets and the missing transverse energy, which

is reconstructed from particle flow objects as well, this JER bias correction has to be prop-

erly propagated to �ET. For this purpose, the missing transverse energy is modified for

this JER bias based on so-called uncorrected jets, i.e. particle flow jets without Layer 2

and Layer 3 jet energy corrections applied. In particular, prior to the application of the
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Figure 4.8: Distribution of the particle flow jet multiplicity with all selection and identification

requirements imposed on the reconstructed jets. Moreover, the selection of exactly one tight muon

candidate, and the veto on loose lepton candidates are applied. The shape comparison in (a)

illustrates high event fractions for tt̄ events with three or more jets, while the background processes

typically exhibit smaller jet multiplicities. In (b), the expected jet multiplicity distribution for an

integrated luminosity of 36.1 pb−1 is shown. While the lower multiplicities are dominated by

QCD multijet and W+jets production processes, a significant tt̄ signal contribution is expected in

events with three or more jets.

JER bias correction the transverse momenta of the uncorrected jets are vectorially added

to the missing transverse energy and subtracted again after the JER bias correction has

been employed.

After this dedicated cleaning and correction procedures, only Layer 2 and Layer 3 cor-

rected jets above a lower transverse momentum threshold of pT = 30 GeV/c within the

tracker acceptance of |η| < 2.4 are selected for further considerations. Furthermore, all

jets are required to pass dedicated jet identification criteria, designed to minimise the erro-

neous identification of electrons, photons, single pions, or high-energetic ECAL or HCAL

noise as jet candidates. In particular, the neutral electromagnetic, the neutral hadronic,

and the charged electromagnetic fraction of jets are required to exhibit values below 99%

each. The charged hadronic fraction and the multiplicity of charged constituents in turn

must exceed a value of zero. Finally, there have to be at least two constituents per recon-

structed jet candidate. The multiplicity of jets with the full set of selection and identifi-

cation criteria applied can be found in figure 4.8. Therein, the mere shape comparison of

tt̄ signal and expected background processes would lead to an event selection requirement

of at least three jets per event. Using the additional information provided by the expected

jet multiplicity distribution normalised to an integrated luminosity of 36.1 pb−1, signifi-

cant background contamination in candidate event samples with a requirement of exactly

three jets is expected. In order to benefit from both phase-space regions, requirements

on exactly three or at least four jets per event have been chosen, leading to statistically

orthogonal samples of candidate events for the analysis of tt̄ production.
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Despite the occurrence of two b quarks in the final state topology of tt̄ events, no explicit

requirement on information provided by b-tagging algorithms is employed. Instead, an

alternative ansatz has been chosen for the selection of tt̄ muon+jets events. Therefore, the

analysis of top quark pair production presented in this thesis is commonly referred to as

untagged analysis [15].

4.4. Estimation of Selection Efficiencies

Applying the elaborated event selection criteria to simulated signal and background events,

selection efficiencies can be estimated based on these simulations. Moreover, using the

process-dependent weighting factor w defined in equation (4.1), candidate yield estimates

corresponding to a particular integrated luminosity can be obtained. These yield estimates

could then in principle be used for a comparison with observed collision data. However,

in order to reduce the dependency on simulation-based estimates, supplementary infor-

mation from data-driven techniques can be used to correct the simulation-based lepton

reconstruction, selection, and trigger efficiencies. For this purpose, the tag-and-probe

method is employed which investigates a distinct mass resonance exhibiting a μ+μ− fi-

nal state. Imposing stringent quality criteria on one of the two decay products facilitates

to measure various efficiencies by application of reconstruction, selection, or trigger re-

quirements on the other decay product of the given resonance. But before addressing

these data-driven techniques, simulation-based selection efficiencies and yield estimates

will be discussed.

4.4.1. Simulation-Based Selection Efficiencies and Yield Estimates

The impact of sequentially imposing the various event selection criteria discussed in sec-

tion 4.3 on simulated signal and background events is shown in table 4.5. Therein, the

simulation-based efficiency estimates are given with respect to the full statistic of the

event samples under investigation. Requiring exactly one well-identified and isolated

muon candidate effectively reduces the QCD multijet background selection efficiency

to less than 1%, while other background processes evince efficiencies in the order of

(13− 20)%. In turn, the efficiency for selecting tt̄ events is 55% in the muon+jets chan-

nel and 4.7% for other tt̄ decay modes. Application of the consecutive veto on events

comprising additional, more loosely defined muon or electron candidates serves for the

reduction of the selection efficiency for Z+jets background events and tt̄ contributions

in non-muon+jets decay modes. The highest simulation-based background selection effi-

ciencies after application of these loose lepton event vetoes are observed for electroweak

production of single top quarks and W+jets events, exhibiting values of 19% and 15%, re-

spectively. The cross section for electroweak production of single top quarks is, however,

small compared to the corresponding value for top quark pair production. Large selec-

tion efficiencies in combination with a large production cross section value for W+jets

events, on the other hand, lead to a significant background contribution. Therefore, an

effective reduction of this particular background contribution is aspired, which can be ac-

complished by a jet multiplicity requirement. The highest signal selection efficiency and

most effective background rejection is found for requirements on exactly three or at least
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Table 4.5: Simulation-based event selection efficiencies for tt̄ signal and expected background

processes. The individual efficiencies listed are with respect to the overall number of simulated

events per sample. Therefore, the event selection efficiencies for all background processes except

from the Wt production mode of single top quarks are intrinsically biased, due to the applied filters

on generator level discussed in section 4.2.2. The overall selection efficiencies for tt̄ events includ-

ing all decay channels is estimated to about 3.6% and 3.8% for requirements on exactly three or at

least four jets per event. In turn, less than 1% selection efficiency is expected for all background

processes, except for the Wt single top quark production mode with overall efficiencies of 3.3%

and 1.5%, respectively.

Requirement tt̄ tt̄ single top single top W+jets Z+jets QCD

muon+jets other t-chan. Wt-chan.

Trigger 84.98% 22.20% 34.73% 27.34% 22.47% 31.33% 84.85%

PV 84.96% 22.19% 34.71% 27.34% 22.38% 31.26% 84.81%

Tight Muon 55.30% 4.73% 19.60% 12.95% 14.56% 13.25% 0.39%

Loose μ veto 55.15% 4.25% 19.56% 12.50% 14.56% 7.95% 0.39%

Loose e veto 53.90% 2.67% 19.18% 10.78% 14.53% 7.76% 0.39%

≥ 1 jet 53.81% 2.62% 17.56% 10.55% 1.95% 1.71% 0.13%

≥ 2 jets 52.21% 2.17% 10.01% 8.84% 0.34% 0.29% 0.01%

≥ 3 jets 42.95% 1.32% 3.11% 4.85% 0.06% 0.05% 0.002%

≥ 4 jets 23.06% 0.54% 0.80% 1.52% 0.01% 0.01% 0.0003%

four jets per event, respectively. Using all these selection criteria, overall selection effi-

ciencies of 3.6% and 3.8% are expected for tt̄ events with requirements on exactly three or

at least four jets, whereas the separately investigated efficiency for the tt̄ muon+jets chan-

nel yields estimates of 19% and 23% respectively. In turn, the simulation-based selection

efficiencies for all background processes are well below 1%, except for the Wt mode

of electroweak single top quark production with expected selection efficiencies of about

3.3% and 1.5% in events with exactly three or at least four jets. However, as discussed

in section 4.2.2, all background processes except for the Wt single top quark production

are preselected for leptonic final states, while an inclusive simulation has been performed

for top quark pair production processes. The simulation of QCD multijet production fur-

thermore employs filter criteria on generator level to select events comprising muons.

Therefore, the comparison of selection efficiencies for signal and background processes

is intrinsically biased, with systematically higher selection efficiencies for all background

processes, except for Wt single top quark production.

The decomposition of finally selected tt̄ events passing the full set of selection crite-

ria including the requirement on exactly three or at least four jets per event comprises

88.1% or respectively 81.6% tt̄ muon+jets events. The remaining fraction of 18.4% and

11.9% are dominated by contributions from tt̄ decay modes involving tau leptons, namely

6.1% and 6.3% are provided by the tau+jets channel and 8.4% and 3.7% stem from dilep-

tonic muon+tau decay processes after imposing requirements on exactly three jets or at

least four jets per event. For illustration, the decomposition of selected tt̄ events with a

requirement on at least four jets can be found in figure 4.9.
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Figure 4.9: Pie chart of tt̄ decay modes contributing to the candidate sample obtained after

employing the full set of event selection criteria on simulated tt̄ events, including the requirement

on at least four jets. The dominant fraction of 88% originates from tt̄ muon+jets events, while the

remaining fraction of 12% mainly comprise decay modes involving tau leptons, namely tau+jets

and muon+tau decays.

Table 4.6: Simulation-based event yield estimates for tt̄ signal and expected background pro-

cesses, normalised to an integrated luminosity of 36.1 pb−1. Applying the full set of event selec-

tion criteria, including the requirement on exactly three or at least four jets per event, a total of

about 851 and 383 candidate events are expected, among which 214 and 230 events are deemed

to originate from tt̄ production. The dominating background contribution is W+jets production

with about 507 and 120 events, respectively.

Requirement tt̄ single top single top W+jets Z+jets QCD

t-channel Wt-channel

Tight Muon 726.3 145.1 49.6 164832.4 14600.1 12047.4

Loose μ veto 700.5 144.8 47.9 164825.3 8755.0 12034.0

Loose e veto 609.2 142.0 41.3 164472.2 8549.4 11929.4

≥ 1 jet 606.3 130.0 40.4 22090.8 1879.8 3897.0

≥ 2 jets 573.9 74.1 33.9 3816.1 317.9 436.0

≥ 3 jets 444.5 23.1 18.6 627.4 59.9 60.8

≥ 4 jets 230.3 5.9 5.8 120.1 11.8 9.3

In addition to the estimated selection efficiencies, simulation-based yield estimates for

tt̄ signal and all expected background processes can be obtained through the application

of the process-dependent weighting factor w defined in equation (4.1). Assuming an in-

tegrated luminosity of 36.1 pb−1, the estimated candidate event yields can be found in

table 4.6. Imposing selection criteria on exactly three or at least four jets per event, a

total of about 851 and 383 candidate events are expected. Among these candidate events,

about 214 and 230 events are expected to originate from top quark pair production. The

dominating background contribution emerges from W+jets production, with an expec-

tation of about 507 and 120 events, respectively. In addition, a contribution of about 51

and 9 events from QCD multijet production processes are expected for the two selec-

tion criteria. However, due to the large weighting factor, low selection efficiencies, and

the demanding modelling procedures applied during simulation, large uncertainties are

expected for this simulation-based yield estimate. Therefore, the expected background

contribution from QCD multijet production can only be considered as rough estimate,

while particularly for this estimation data-driven methods are preferable.
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4.4.2. Estimation of Muon Reconstruction, Selection, and Trigger Efficiencies

The accurate and reliable estimation of object reconstruction, event selection, and trigger

efficiencies is a key element for the search of top quark pair production and the analysis

of the tt̄ production cross section. Simulation-based efficiency estimates, however, might

suffer from imperfect modelling of signal and background processes, or from an imprecise

description of the detector response. Therefore, supplementary information from data-

driven techniques are used to correct the simulation-based efficiency estimates. A well-

established data-driven approach to measure efficiencies is the so-called tag-and-probe

(T&P) method, which employs a mass resonance to select a particular type of particle

candidates. The efficiency estimates are then obtained by probing certain criteria on these

objects. For this purpose, a so-called tag object is defined by imposing a set of stringent

selection criteria. Since these requirements are designed to select a particular type of

particles, the rate of other objects erroneously passing the tag selection criteria should

be negligible. In a second step, probe object candidates with less stringent selection

criteria are selected by pairing these probe candidates with a tag object such that the

invariant mass of the tag-and-probe pair is consistent with the mass of the considered

resonance. Especially for rather loose probe selection criteria, this object pairing might

involve contamination from background processes or combinatorial background. These

background contributions can be taken into account using an analytical fit to the mass

resonance, or by subtraction of background contributions, estimated from dedicated side-

band region studies. The efficiency determination for a selection criterion in the tag-and-

probe approach is then obtained from the number of probe objects passing this particular

requirement Npass and the total number of probe objects Nall via

ε =
Npass

Nall
. (4.4)

In case a probe object also passes the stringent tag selection criteria, this specific tag-

and-probe pair induces a double pairing in the same event, which is accounted for in the

definition of the efficiency ε. Consequently, the determined efficiency does not represent a

selection efficiency per event, but rather the efficiency per probe object, e.g. a reconstruc-

tion, selection, or trigger efficiency per muon candidate. Due to the correlation between

numerator and denominator in equation (4.4), binomial uncertainties for the efficiency ε
are expected. The mere calculation of binominal uncertainties might, however, lead to an

underestimation of the uncertainties, especially for small numbers of probe candidates or

for efficiencies close to unity. In order to prevent undercoverage, a Clopper Pearson inter-

val construction [192] is used to obtain 68% confidence level intervals for the estimation

of the statistical uncertainty on the efficiency ε.

For the estimation of muon efficiencies in the analysis of top quark pair production, the

Z boson mass resonance in the Z → μμ decay mode is used for the selection of tag-

and-probe candidates. The overall efficiency εoverall, can thereby be factorised into three

sequentially measured efficiencies, namely the muon reconstruction efficiency εreco, the

muon selection efficiency εsel, and the trigger efficiency εtrigger

εoverall = εreco · εsel · εtrigger . (4.5)
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In order to facilitate this factorisation, the probe muon candidates for each sequential

measurement are defined with respect to the previous requirements. For example, the

probe objects for trigger efficiency measurements are required to pass the muon recon-

struction and selection criteria, which are probed in the preceding stages of the efficiency

determination.

The efficiency estimates obtained by application of the tag-and-probe method to ob-

served and simulated events, denoted by εdata
T&P and εMC

T&P, respectively, are then used to

correct simulation-based efficiencies in a data-driven way

εdata
β

εMC
β

Assumpt.
=

εdata
T&P

εMC
T&P

⇒ εdata
β =

εdata
T&P

εMC
T&P

· εMC
β = κ · εMC

β , (4.6)

wherein β denotes any simulated signal or background process, i.e. tt̄, electroweak sin-

gle top quark, W+jets, Z+jets, or QCD multijet production. This approach is based on

the assumption, that the ratio of efficiencies in observed and simulated Z boson events is

equal to the corresponding ratio for all other processes under investigation. Therefore, the

correction factor κ is employed to obtain an estimate for the efficiencies in data εdata
β by

weighting the simulation-based efficiencies εMC
β . The uncertainty on the correction factor

κ is given by propagation of the individual uncertainties. Moreover, to account for possi-

ble inefficiencies in certain phase-space regions, the correction factor κ can be determined

as a function of a muon specific observable like η. This parametrised approach allows to

correct simulated processes, according to their phase-space specific distributions. In the

following paragraphs the individual methods for the determination of the correction fac-

tor κ from the application of the tag-and-probe method to estimate muon reconstruction,

muon selection, and trigger efficiencies will be discussed.

Muon Reconstruction Efficiency

For the determination of the muon reconstruction efficiency εreco, tag muons are defined

as global muon candidates, which pass the muon trigger requirements. The definition

of probe candidates takes into account all reconstructed tracks within the silicon track-

ing system with an additional requirement, that the probe object has the signature of a

minimum-ionising particle in the calorimeters [167]. Using the Z boson mass resonance,

probe candidates are paired with an oppositely-charged tag muon. To account for back-

ground contamination, the invariant mass of the tag-and-probe pairs for both categories,

passing as well as failing probes, are subject to an analytical fit. For this purpose, an ap-

propriate signal-shape and category-dependent background-shapes are used to model the

invariant mass spectrum. Finally, the muon reconstruction efficiency is estimated from

the number of passing probes divided by the sum of passing and failing probe categories.

Since no significant deviations between εdata
reco, T&P and εMC

reco, T&P in certain phase-space

regions have been observed, overall efficiency values are determined. The resulting ef-

ficiency values in data and simulation can be found in table 4.7, leading to an overall

correction factor κ = 0.990± 0.007 [193].
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Table 4.7: Summary of muon reconstruction efficiencies in data and simulation obtained via the

tag-and-probe (T&P) method, adopted from [193]. In addition, the value for the corresponding

correction factor κ is given in the last column.

εdata
reco, T&P [%] εMC

reco, T&P [%] Corr. Factor κ

95.5± 0.6 96.52 0.990± 0.007

Muon Selection Efficiency

The definition of tag muons for the determination of the muon selection efficiency εsel

comprises reconstructed muon candidates with the full set of identification and selection

requirements applied as for the analysis of tt̄ muon+jets events. Moreover, the tag muons

are required to match an hltSingleMu9L3Filtered9 trigger object, which corresponds

to the HLT_Mu9 trigger path. For the data-taking period in which this HLT trigger has been

prescaled and the alternative trigger path HLT_Mu15_v1 is employed, tag muons for the

determination of εdata
sel, T&P are required to match an hltSingleMu15L3Filtered15 trig-

ger object. For both trigger object matching procedures, a geometrical distance between

the tag muon and the trigger object of ΔR < 0.2 is required. The collection of probe ob-

jects includes muon candidates reconstructed as global and tracker muons above a trans-

verse momentum threshold of pT = 20 GeV/c within the trigger acceptance |η| < 2.1.

Only oppositely-charged tag-and-probe combinations with an invariant mass close to the

Z boson pole mass are taken into account, i.e. |M(μμ)−M(Z)| < 15 GeV/c2. Since

the tight tag selection criteria renders the background contributions negligible, dedicated

background subtraction methods are omitted. Alternatively, the muon selection efficiency

is directly determined from the number of probe objects passing the selection criteria and

the total number of probe candidates. Due to isolation requirements, the selection effi-

ciency εsel is expected to depend on the hadronic activity in the vicinity of the muon.

Since tt̄ events typically exhibit more hadronic activity compared to Z boson events, this

dependency could be estimated using for example the tag-and-probe method in Z + n jets

events (n = 1, 2, 3, . . .). However, the expected amount of tag-and-probe combinations

in the higher jet bins are small, leading to large statistical uncertainties. Using an alter-

native ansatz, this dependency is accounted for by a differential determination of εsel in

a variable measuring hadronic activity. For this purpose, εsel is given as a function of the

distance between the muon and the closest jet in the event, leading to ΔR(μ, jet) depen-

dent efficiencies and correspondingly, a ΔR(μ, jet) dependent weighting factor κ. Results

for the muon selection efficiencies in data and simulation and the corresponding correc-

tion factors κ can be found in figure 4.10 (c) and figure 4.10 (d). Due to the low statistics

for the tag-and-probe method in events with at least one jet per event, which is necessary

to determine the ΔR dependent efficiencies, no significant deviations from an overall cor-

rection factor are observed. Therefore, the determination of muon selection efficiencies is

repeated as a function of the pseudorapidity of the given probe muons. As can be seen in

figure 4.10 (a), comparable efficiencies are determined in data and simulation, leading to

a flat behaviour of the correction factor depicted in figure 4.10 (b). The determined overall

values for the efficiencies in observed and simulated event samples and the corresponding

correction factor of κ = 0.995± 0.003 are summarised in table 4.8.
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Figure 4.10: Comparison of muon selection efficiencies in data and simulation obtained via the

tag-and-probe method in (a) and (c). The corresponding correction factors κ can be found in (b)

and (d), respectively. Due to isolation requirements applied, the selection efficiency is expected

to depend on the hadronic activity in the vicinity of the muon. To account for this dependency,

the selection efficiency εsel and the corresponding correction factor κ in (c) and (d) are determined

as a function of ΔR between the muon and the closest jet. Since no significant deviations from

an overall flat correction factor, indicated by the horizontal red lines, have been observed within

the given statistical uncertainties, the determination of εsel and κ have been repeated as a function

of the pseudorapidity of the probe muon candidates in (a) and (b). Since this alternative selec-

tion efficiency determination can be performed in event samples without dedicated jet multiplicity

requirements, lower statistical uncertainties on εsel and κ are observed, leading to an overall cor-

rection factor κ = 0.995± 0.003.
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Table 4.8: Summary of muon selection efficiencies in data and simulation obtained via the tag-

and-probe method in events without dedicated jet requirement and with a requirement of at least

one jet per event. Moreover, the corresponding correction factors κ are given in the last column.

Due to smaller statistical uncertainties for the tag-and-probe method applied to the sample without

the jet multiplicity requirement, the overall correction factor κ = 0.995± 0.003 is used for the

correction of simulation-based yield estimates.

range εdata
sel, T&P [%] εMC

sel, T&P [%] Corr. Factor κ

≥ 0 jets 88.2± 0.2 88.43± 0.05 0.995± 0.003

≥ 1 jets 82.6± 0.7 82.6± 0.1 1.000± 0.009

Trigger Efficiency

For the determination of the trigger efficiency εtrigger, the definition of tag muons is iden-

tical to the one used for estimating the muon selection efficiency. Probe muon candidates

are required to pass the full set of muon selection criteria and are paired with oppositely-

charged tag muons, if the invariant mass of the tag-and-probe combination is compatible

with the Z boson pole mass, i.e. |M(μμ)−M(Z)| < 15 GeV/c2. The trigger efficiency

εtrigger is then obtained analogously to the selection efficiency from the number of probe

candidates passing the trigger requirements, divided by the total number of probe objects.

The trigger requirements on probe candidates are checked via a ΔR matching to a corre-

sponding trigger object. For this purpose, the distance between the probe muon candidate

and the corresponding HLT trigger object is required to be ΔR < 0.2. For observed

and simulated events, hltSingleMu9L3Filtered9 trigger objects are considered, which

correspond to the HLT_Mu9 trigger path. For the data-taking period in which the alter-

native trigger path HLT_Mu15_v1 is applied, a matching between probe candidates and

an hltSingleMu15L3Filtered15 trigger object is required for passing probes. Similar

to the procedure applied for the reconstruction efficiency, the trigger efficiency is deter-

mined in several η ranges of the probe muon candidate. Results for the HLT_Mu9 trigger

path before and after the technical stop of the LHC discussed in section 4.1, for the trigger

path HLT_Mu15_v1, and for the simulation-based HLT_Mu9 trigger path can be found in

figure 4.11. Based on the luminosity-weighted mean of the individual trigger efficiencies

in data, the correction factor κ can be found in figure 4.11 (b). As for the determination of

the muon selection efficiency, no statistically significant deviations from an overall cor-

rection factor have been observed. The individual trigger efficiency values in data and

simulation and the overall correction factor κ = 0.969 ± 0.004 are summarised in ta-

ble 4.9.
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Table 4.9: Summary of muon trigger efficiencies in data and simulation obtained via the tag-

and-probe method, and the corresponding correction factor κ. Depending on the run range, the

HLT_Mu9 or the HLT_Mu15_v1 trigger path is used for the determination of the trigger efficiency

in pp collision data, while for simulated events only the HLT_Mu9 trigger path is investigated. The

efficiency for the HLT_Mu9 trigger path is furthermore obtained as the luminosity-weighted mean

efficiencies before and after the technical stop of the LHC discussed in section 4.1. Accordingly,

the correction factor κ is calculated from the trigger efficiency in the simulated sample and the

luminosity-weighted mean of the individual trigger efficiencies in data.

εdata,HLT_Mu9
trigger, T&P [%] εdata,HLT_Mu15_v1

trigger, T&P [%] εMC
trigger, T&P [%] Corr. Factor κ

90.4± 1.1 92.8± 0.2 95.20± 0.03 0.969± 0.004
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Figure 4.11: Comparison of muon trigger efficiencies in data and simulation as a function of

η obtained via the tag-and-probe method. In (a) observed trigger efficiencies for the trigger path

HLT_Mu9 before and after the technical stop of the LHC, for the trigger path HLT_Mu15_v1, and

for the simulation-based trigger path HLT_Mu9 are shown. Small trigger inefficiencies can be seen

in the barrel end cap transition region, i.e. in the range 0.9 < |η| < 1.2, especially for HLT_Mu9

prior to the technical stop. Calculating the luminosity-weighted mean of the individual trigger

efficiencies in data, the correction factor κ as a function of the probe muon pseudorapidity in (b)

is deduced. As in case of the muon reconstruction efficiency, no statistically significant deviations

from an overall correction factor, indicated by the horizontal red line, is observed.
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4.5. Comparison of Observed and Simulated Events

Finally, using the full set of event selection criteria elaborated in section 4.3, candidate

event yields as well as kinematic distributions in observed and simulated pp collision data

can be compared. This comparison is of central importance, since the expected kinematic

distributions of tt̄ signal and the expected background processes will play a crucial role in

the search for top quark pair production and the measurement of the tt̄ production cross

section. The event yield comparison for observed and simulated pp collision data cor-

responding to an integrated luminosity of (36.1± 4.0) pb−1 can be found in table 4.10.

Therein, the correction factor κ = 0.955± 0.008 obtained from the three correction fac-

tors κ discussed in section 4.4.2 is taken into account for the yield estimates of tt̄ signal

and the expected background processes. Moreover, the jet resolution bias and the mea-

sured branching ratios for leptonic W boson decays have been used to derive these yield

estimates. As can be deduced, especially in a selected event sample with exactly two or

three jets per event, the overall yield estimates are about 20% lower than the observed

number of candidate events. However, especially the yield estimates for QCD multijet

production are considered unreliable. Moreover, the theory-predicted cross section values

for W boson and Z boson production are accurate up to next-to-leading order. However,

the generation of these processes is accomplished with the LO generator MADGRAPH us-

ing PYTHIA for the parton shower simulation. Therefore, the yield estimate of events with

higher jet multiplicities might suffer from this overall rescaling to NLO theory predictions

for the cross section values of W boson and Z boson production.

Applying the requirement on exactly three or at least four jets per event, a total of

about 812 and 366 events is expected, among which 204 and 220 events are deemed

to originate from tt̄ production. This corresponds to expected signal-to-background ra-

tios of S/B = 0.34 and S/B = 1.51 and pseudo-significances of S/
√

B = 8.3 and

S/
√

B = 18.2, respectively.

Table 4.10: Comparison of event yields for observed and simulated pp collision data. The yield

estimates for simulated signal and background processes are scaled to an integrated luminosity of

L = 36.1 pb−1 and account for the overall correction factor κ = 0.955± 0.008, the jet resolu-

tion bias, and the measured branching ratios for leptonic W boson decays. In the second-to-last

column, the sum over all signal and background event yields is given, which can be compared to

the observed yields in pp collision data. As can be deduced, especially in a selected event sample

with exactly two or three jets per event, the overall yield estimates are about 20% lower compared

to the observed number of candidate events. However, especially the yield estimate for QCD mul-

tijet production is considered unreliable. Moreover, the yield estimates for W boson and Z boson

production might suffer from improper knowledge on the corresponding production cross section

for events with higher jet multiplicities.

Requirement tt̄ single top W+jets Z+jets QCD Sum Data

= 1 jet 30.9 59.6 17443.4 1490.9 3303.5 22328.3 25661

= 2 jets 123.5 63.3 3043.6 246.3 358.1 3834.9 5001

= 3 jets 204.5 28.6 484.2 45.9 49.1 812.3 1064

≥ 4 jets 219.8 11.2 114.6 11.3 8.9 365.8 423
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Figures 4.12 to 4.15 show comparisons of several kinematic distributions for observed

and simulated candidate events. Similar to the event yields presented in table 4.10, the

distributions of simulated events are weighted to the integrated luminosity of 36.1 pb−1

and account for the various correction factors κ. Figure 4.12 is dedicated to the compari-

son of the jet multiplicity and the so-called M3 variable, which is defined as the invariant

mass of three jets in the event, exhibiting the highest vectorial-summed transverse mo-

mentum. This observable provides a simple and rough estimate for the invariant mass of

the three jets originating from the hadronically decaying top quark. Although this simple

approach is not expected to substitute an elaborated procedure for the correct reconstruc-

tion of hadronically decaying top quarks in tt̄ events, the resulting M3 distributions allows

for a fast and easy check of signal contamination in the selected sample of events. More-

over, this observable in a selected sample of events with a requirement of at least four jets

depicted in figure 4.12 (c) will play a central role in the search for top quark pair produc-

tion and the measurement of the tt̄ production cross section. The comparison of pT and

η distributions for the leading, second-, and third-leading jet can be found in figure 4.13,

visualising again the discrepancy between observed and estimated candidate event yields.

However, the transverse momentum distributions suggest that these excesses of observed

candidate events can be ascribed to background processes, rather than an underestimation

of signal contributions. The comparison of kinematic distributions for the selected muon

candidate and the missing transverse energy with the requirement of exactly three or at

least four jets per event can be found in figure 4.14 and figure 4.15, respectively. Besides

the pT and η distributions of the selected muon candidate, the missing transverse energy,

reconstructed with the particle flow algorithm, and the reconstructed transverse W boson

mass MT,W are depicted. This observable is defined from the momentum components of

the muon and the neutrino as

MT,W =
√
(pT,μ + pT,ν)2 − (px,μ + px,ν)2 − (py,μ + py,ν)2 , (4.7)

where the momentum components of the neutrino, px,ν, py,ν, and pT,ν, are approximated

using the corresponding components of the missing transverse energy. Finally, the sum

of the transverse momentum of the selected muon candidate and the missing transverse

energy are used to construct HT,lep, for which distributions in events with a requirement

of exactly three or at least four jets are shown in the corresponding figures. Of particular

interest in figure 4.15 is the distribution of the missing transverse energy, which, in com-

bination with the M3 distribution, will play a central role in the search for top quark pair

production and for the measurement of the tt̄ production cross section in chapter 5.
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Figure 4.12: Comparison of kinematic distributions for observed and simulated pp collision data,

normalised to the predictions given in table 4.10. In (a) the jet multiplicity distribution is shown

for events with the full event selection applied, except for the requirement on at least four jets.

Demanding for exactly three or at least four jets per event leads to the M3 distributions depicted in

(b) and (c), respectively, where the latter represents a simple estimator for the reconstructed mass

of the hadronically decaying top quark.
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Figure 4.13: Comparison of kinematic distributions for observed and simulated pp collision data,

normalised to the predictions given in table 4.10. In (a), (c), and (e), the transverse momentum

distribution of the leading, second-, and third-leading jet can be found. The corresponding η
distributions for these jets are depicted in (b), (d), and (f), respectively. The comparison of these

kinematic distributions visualises again the discrepancy between observed and estimated candidate

event yields. However, especially the transverse momentum distributions suggest underestimated

background contributions.
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Figure 4.14: Comparison of kinematic distributions for observed and simulated pp collision

data in a selected sample with exactly three jets per event and normalised to the predictions given

in table 4.10. The transverse momentum and pseudorapidity distribution of the selected muon

candidate can be found in (a) and (b), respectively. In (c), (d), and (e) the distributions of the miss-

ing transverse energy, of the transverse W boson mass, and of HT,lep are depicted. Of particular

importance is the �ET distribution in (c), since this observable will play a central role in the search

for top quark pair production and the measurement of the tt̄ production cross section in chapter 5.
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Figure 4.15: Comparison of kinematic distributions for observed and simulated pp collision

data in a selected sample with at least four jets per event and normalised to the predictions given

in table 4.10. The transverse momentum and pseudorapidity distribution of the selected muon

candidate can be found in (a) and (b), respectively. In (c), (d), and (e) the distributions of the

missing transverse energy, of the transverse W boson mass, and of HT,lep are depicted.



Chapter 5

Search for Top Quarks and Measurement of the tt̄

Production Cross Section

The ultimate aim of the analysis presented in this thesis is the observation of top quark

pair production and the measurement of its cross section in the muon+jets channel. For

these purposes, the fraction of tt̄ events ftt̄ in a given data set comprising Nobs
data observed

candidate events is extracted by means of a binned likelihood fit to the distributions of ap-

propriate observables which facilitate the discrimination between signal and background

processes. Comparing the observed value of ftt̄ with expectations obtained by employing

the binned likelihood fit procedure to a hypothetical model neglecting any tt̄ signal con-

tributions, the sensitivity of the tt̄ search can be determined. Moreover, the top quark pair

production cross section can be extracted from ftt̄ via

σtt̄ =
ftt̄ · Nobs

data

(A · ε)tt̄ · L
, (5.1)

where L is the integrated luminosity and (A · ε)tt̄ denotes the product of acceptance times

efficiency for tt̄ events. Before applying the elaborated procedures to observed pp colli-

sion data, Monte Carlo techniques are employed to estimate the sensitivity of the tt̄ search

and the statistical uncertainty on the cross section measurement. Furthermore, uncertain-

ties in the theoretical modelling and in the experimental techniques might adversely affect

the determination of ftt̄. Therefore, potential sources of systematic uncertainties are taken

into account and their impact on the applied analysis methods is investigated. Finally, the

sensitivity of the top quark search and the cross section for tt̄ production at a centre-of-

mass energy of
√

s = 7 TeV are determined, based on the full set of pp collision data

acquired with the CMS detector in 2010, corresponding to an integrated luminosity of

L = (36.1± 4.0) pb−1.

5.1. Discriminating Observables

The determination of the fraction ftt̄ of tt̄ events in a given data set by means of a binned

likelihood fit procedure requires the selection of observables which allow to separate

signal from background processes. For this purpose, a two-layered approach has been

adopted for the analysis presented in this thesis. First, an observable is chosen which

facilitates the discrimination between top quark pair production and the most significant

background contribution in the muon+jets channel, namely W+jets production. To fur-

ther reduce the uncertainty on the determination of this main background contribution,

a second observable is selected, devoted to the separation of W+jets production from

remaining background contributions.
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Figure 5.1: Shape comparisons of the �ET and M3 distributions for signal and background pro-

cesses. The distribution of the missing transverse energy with a requirement on exactly three jets

per event, is shown in (a). Since tt̄, electroweak single top quark, and W+jets production pro-

cesses comprise neutrinos from leptonic decays of on-shell W bosons in the event topology, these

processes feature higher �ET values compared to Z+jets or QCD multijet production. In (b) the

distribution of M3 is shown after imposing the requirement on at least four jets per event. Due

to its sensitivity to the top quark mass, the M3 distribution for tt̄ signal and for electroweak pro-

duction of single top quarks exhibit a prominent peak around the top quark mass, while all other

background processes show broader M3 distributions.

As discussed in section 4.4.1, the highest signal-to-background ratio is expected in a

sample of candidate events with the full set of selection criteria are applied, including the

requirement on at least four jets per event. Therefore, an observable sensitive to charac-

teristic signal properties in this phase-space region provides a promising candidate for the

separation of tt̄ and W+jets production. Due to its sensitivity to the top quark mass, the

chosen discriminating observable is M3, denoting the invariant mass of those three jets

per event which exhibit the highest vectorial-summed transverse momentum as introduced

in section 4.5. The separation power of M3 can be deduced from figure 5.1 (b), depicting a

shape comparison of M3 distributions for tt̄ production and the expected background pro-

cesses. Compared to top quark pair production, all background processes, except for elec-

troweak production of single top quarks, exhibit broader M3 distributions with maxima

around the top quark mass, but without the prominent peak observed in tt̄ events. Since

the production of single top quarks also comprises a top quarks in the final state topology,

the M3 distribution is very signal-like and thus hardly distinguishable from the distribu-

tion in tt̄ events. However, this background process is theoretically well-understood and

the contribution induced by single top quark production is comparatively small.

The second observable is dedicated to the separation of W+jets and the remaining back-

ground contributions to tt̄ production in the muon+jets channel, namely QCD multijet and

Z+jets production. For this purpose, a characteristic property in the leptonic decay of on-

shell W bosons can be exploited to select an appropriate discriminating observable. Due

to emerging neutrinos, events comprising such leptonic W boson decays are expected to

exhibit substantial amounts of missing transverse energy (�ET). In contrast, for QCD mul-
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tijet and Z+jets production less missing transverse energy is predicted. Depending on

the particular QCD multijet production process involved, the �ET contribution emerges

from semileptonic decays of hadrons comprising b or c quarks in the process of hadro-

nisation, from processes involving decay-in-flight muon production, or merely from the

finite energy resolution provided by the calorimetry system. Similar arguments hold for

Z+jets events, where significant amounts of missing transverse energy are only expected

in Z → ττ events with a subsequent τ → μνμντ decay. Applying the event selection

criterion on exactly one well-identified and isolated muon candidate to simulated Z+jets

events, however, yields relative fractions of about 70% and 30% for Z → μμ and Z → ττ
decays, respectively. Consequently, �ET constitutes an appropriate observable for the sep-

aration of W+jets production and background contributions emerging from Z+jets and

QCD multijet production processes. Moreover, since the final state topology of tt̄ events

in the muon+jets channel comprise neutrinos emerging from an on-shell W boson decay

as well, the use of missing transverse energy as discriminating observable facilitates to

further improve the separation of tt̄ signal and these background contributions. As can

be deduced from table 4.6, the contribution of W+jets production is enhanced in can-

didate event samples for which altered jet multiplicity requirements applied. In order

to perpetuate a phase-space region close to the one selected for the separation of tt̄ and

W+jets production, and hence to profit from an additional tt̄ contribution, the criterion

on exactly three jets per event is used. Figure 5.1 (a) shows the missing transverse en-

ergy distributions for tt̄, W+jets, and all other considered background processes for these

event selection criteria. As expected, QCD multijet and Z+jets events exhibits on average

smaller values for the missing transverse energy compared to W+jets, tt̄, or electroweak

single top quark production.

5.1.1. Data-Driven Modelling of QCD Multijet Production Processes

Despite the large number of generated events, the sizable weighting factor w for the

simulation-based modelling of QCD multijet production processes presented in table 4.4,

renders statistically accurate predictions of kinematic distributions for this background

contribution unfeasible. Moreover, demanding modelling procedures are required for

an accurate description of the various contributing QCD multijet production processes,

which collectively feature small selection efficiencies. Consequently, the �ET and M3 dis-

tributions, as well as the expected event yields, provided by the simulation-based mod-

elling of QCD multijet production processes can only be considered as coarse estimates.

To circumvent intricacies induced by statistical fluctuations related to an insufficient num-

ber of generated events and to minimise the dependency on simulation-based predictions,

a data-driven procedure is employed to model the �ET and M3 distribution of events orig-

inating from QCD multijet production processes. For this purpose, the applied selection

criteria are modified, aiming for the selection of a candidate event sample which is highly

enriched in QCD multijet events. By appropriately choosing these altered selection crite-

ria, events populating this so-called side-band region are assumed to emulate the �ET and

the M3 distribution of QCD multijet production processes in the signal region, which is

defined by the standard event selection criteria. As depicted in figure 4.7, the isolation re-

quirement imposed on muon candidates effectively reduces contributions from QCD mul-

tijet production processes which comprise secondarily produced or erroneously identified
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Figure 5.2: Comparison of �ET and M3 distributions for QCD multijet production processes

obtained from simulation-based and data-driven models. In order to obtain such a data-driven

model, the isolation requirement in the event selection applied to observed pp collision data is

modified to 0.2 < Irel < 0.5, leading to a so-called AntiIso sample. As consistency check, this

AntiIso selection is additionally applied to the full set of simulated events of all considered signal

and background processes, denoted by AntiIso (MC). Within the statistical uncertainties, good

agreement is observed for the �ET and M3 distributions obtained from the simulated sample of

QCD multijet events and the AntiIso selection in observed and simulated pp collision data.

muon candidates. Therefore, altering the event selection such that the selected muon can-

didate satisfies all requirements except for the Irel < 0.05 requirement is well-suited to

provide a sample of events enriched in QCD multijet production processes. However,

instead of merely inverting the isolation requirement, a criterion of 0.2 < Irel < 0.5 is

imposed on the muon candidate. The motivation for the lower boundary in this so-called

AntiIso selection is to reduce potential contamination of tt̄ signal or other considered

background processes in this side-band region. On the other hand, due to the correlation

between Irel and the transverse momentum of the selected muon candidate, the kinematic

behaviour of events with large Irel values is expected to be different from events in the sig-

nal region. Therefore, the upper boundary of Irel = 0.5 is applied to maintain a sample of

candidate events, covering a phase-space region similar to the one selected by the standard

event selection criteria. Apart from the described modifications, the default event selec-

tion criteria including the loose lepton vetoes and the requirements of exactly three or at

least four jets per event are imposed. Hence, employing this AntiIso selection to observed

pp collision data provides a so-called AntiIso sample of candidate events which can be

used to emulate kinematic distributions for QCD multijet production processes. As can be

seen in figure 5.2, the �ET and M3 distributions obtained via this data-driven procedure and

the corresponding simulation-based distributions show good agreement within the statis-

tical fluctuation. Moreover, an additional consistency check is performed by application

of the AntiIso selection to the full set of simulated events for all considered signal and

background processes. The corresponding �ET and M3 distributions for this simulation-

based AntiIso sample are depicted in figure 5.2 as well, exhibiting good agreement with

the data-driven distributions obtained by application of the AntiIso selection to observed

pp collision data.
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Table 5.1: Expected composition of the AntiIso sample. The given contributions are esti-

mated from employing the AntiIso selection, defined by a modified isolation requirement of

0.2 < Irel < 0.5, to the full set of simulated events for all signal and considered background

processes. Accordingly, an event sample highly enriched in QCD multijet production processes

is expected for both jet multiplicity requirements. In addition, the last column comprises can-

didate event yields, obtained by employing the AntiIso selection to observed pp collision data,

corresponding to an integrated luminosity of 36.1 pb−1.

requirement tt̄ W+jets Z+jets QCD observed events

= 3 jets 0.7% 0.5% 0.4% 98.3% 2158

≥ 4 jets 4.7% 0.6% 0.5% 94.1% 488

Applying the AntiIso selection to the full set of simulated events furthermore allows to

estimate the composition of the AntiIso sample as listed in table 5.1. Accordingly, the

expected purity of QCD multijet production processes in the AntiIso sample with a re-

quirement of exactly three or at least four jets per event is 98.3% and 94.1%, respectively.

Moreover, table 5.1 comprises the candidate event yields obtained by employing the An-

tiIso selection to observed pp collision data, corresponding to an integrated luminosity of

L = 36.1 pb−1. Compared to the unweighted number of simulated events after imposing

the standard selection criteria, the data-driven AntiIso sample thus provides about two

times more events for the modelling of QCD multijet production processes.

5.2. Statistical Methods

The search for top quark pair production can be formally related to the concept of sta-

tistical significance, wherein the significance level quantifies the probability for observ-

ing signal events based on a mere fluctuation of expected background contributions. A

well-established procedure for the determination of this significance level is provided

by hypothesis testing. In this procedure, the probability for the rejection of a hypoth-

esis without signal contributions is computed, assuming this so-called null hypothesis

were true. Moreover, for the determination of the tt̄ production cross section according

to equation (5.1), the fraction ftt̄ of tt̄ events in a given data set with Nobs
data candidate

events has to be extracted. Both analysis techniques are based on a binned likelihood

fit procedure which simultaneously investigates the observed �ET and M3 distributions in

statistically orthogonal candidate events with requirements on exactly three or at least

four jets, respectively. To accomplish this approach, a likelihood function and appropri-

ate models for the description of the observed kinematic distributions are required. The

number of tt̄ events as well as the expected background contributions are incorporated in

the likelihood function as model parameters and can thus be determined by maximising

the likelihood function. Prior to the application of the elaborated techniques to the �ET and

M3 distributions in observed pp collision data, the significance level of the tt̄ search

and the statistical uncertainty on the cross section measurement can be estimated us-

ing ensemble test comprising pseudo-experiments. Therein, Monte Carlo techniques are

used to derive so-called pseudo-data distributions from the expected signal and back-
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ground processes. Applying the analysis procedures to the �ET and M3 distributions in

each pseudo-experiment therefore allows to obtain ensemble-averaged expectations. For

the implementation of the binned likelihood fit procedure and to perform ensemble tests,

theta [194] is used, a framework for template-based modelling and inference.

5.2.1. Modelling and Binned Likelihood Fit Procedure

The modelling of �ET and M3 distributions in observed pp collision data is based on sim-

ulated samples of tt̄, electroweak single top quark, W+jets, and Z+jets production, as

well as on the data-driven AntiIso sample introduced in section 5.1.1. In particular, a

linear combination of all contributing processes k (k = tt̄, t, W, Z, and QCD) is used to

predict the event yield in bin i of the distribution of observable o (o = M3, �ET) via

μi(νk) = ∑
k

μik = ∑
k

νk · Tik . (5.2)

The event yield of process k is given by the corresponding model parameter νk, and Tik

denotes the relative fraction of events for process k in bin i. Alternatively, the probabil-

ity distributions Tk can be conceived as histograms normalised to unit area which fulfil

the normalisation condition ∑i Tik = 1 ∀ k. Depending on the investigated discriminating

observable, �ET or M3, the parameters νk represent Poisson means of the expected number

of events emerging from tt̄, single top quark, W+jets, Z+jets, or QCD multijet produc-

tion in a candidate event sample with an applied requirement of exactly three or at least

four jets per event, respectively. The electroweak production of single top quarks, denoted

by k = t, thereby comprise a combination of the Wt- and the t-channel production mode

according to theory predictions.

A simultaneous investigation of �ET and M3 as discriminating observables can be accom-

plished by combining the two individual models used for the description of the �ET and

M3 distribution. For this purpose, the relative fraction of event yields for applied selec-

tion criteria of exactly three and at least four jets per event, are fixed to the predictions

obtained from table 4.10. Consequently, the model used for the description of observed

�ET and M3 distributions in pp collision data comprises only five model parameters νk,

corresponding to the number of tt̄ signal, electroweak single top quark, W+jets, Z+jets,

and QCD multijet production events. To furthermore facilitate a direct comparison of

model parameters with given predictions, the parameters βk can be introduced via

βk =
νk

ν̂k
=

σk

σ
theory
k

, (5.3)

representing the ratio of measured to predicted event yields, whereas the yield estimates

ν̂k are taken from the corresponding rows of table 4.10. Moreover, the parameters βk can

be interpreted as the ratio of measured to theory-predicted cross section values. Using

this alternative parametrisation, the predicted event yield μi can be rewritten as

μi(βk) = ∑
k

βk · ν̂k · Tik . (5.4)

Using this elaborated model, the investigation of observed �ET and M3 distributions in

pp collision data facilitates the determination of the model parameters βk by means of a
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maximum likelihood procedure. For this purpose, the MINUIT package [195] is used to

minimise the negative logarithm of a likelihood function which depends on the observed

distributions and the model parameters βk. Given an observed distribution d of observable

o with ni events per bin i, the likelihood function can be defined as

L(βk; Δk|d) =
Nbins

∏
i=1

P (ni|μi) · G(βk; Δk) , (5.5)

where Nbins denotes the total number of bins used for the distribution of observable o. In

particular, Nbins = 36 and Nbins = 24 have been chosen for the distribution of �ET and

M3, respectively. The first term in equation (5.5)

P (ni|μi) =
μ

ni
i · e−μi

ni!
, (5.6)

represents the Poisson probability of observing ni events, given a Poisson mean μi. The

second term in equation (5.5) introduces a Gaussian constraint

G(βk; Δk) =
1√

2πΔ2
k

e
− (βk−1)2

2Δ2
k , (5.7)

facilitating the incorporation of a priori knowledge such as estimated background event

yields. This allows for a more robust application of the maximum likelihood technique

in terms of avoiding free floating model parameters βk for certain background processes,

or maximisation issues in case the separation power provided by the discriminating ob-

servables is insufficient. As discussed in section 5.1, the distributions of �ET and M3 for

tt̄ signal and electroweak single top quark production are quite similar, potentially leading

to computational issues in the applied maximisation technique. Due to this similarity, to

the small number of expected single top quark events, and to the fact that this process is

theoretically well-understood and described, a constraint on the amount of electroweak

single top quark events is employed. Therefore, a Gaussian constraint G(βt; 0.30) is

applied, whereas the predictions ν̂t are taken from table 4.10. Due to the discrepancy be-

tween observed and expected event yields discussed in section 4.5, the width Δt = 0.30

incorporates a conservatively estimated uncertainty of 30% on the expected event yields.

In addition, the separation between W+jets and Z+jets production might suffer from the

similarity of the expected M3 distributions for these two processes and from the similarity

of the �ET distributions in Z+jets and QCD multijet production events. Therefore, a sec-

ond constraint G(βW/βZ; 0.30) is introduced on the ratio of theory-predicted cross sec-

tion values for W+jets and Z+jets production. Thus, substituting the ratio of model pa-

rameters βW/βZ for the single parameter βk in equation (5.7), a constraint is applied

with a width of ΔW/Z = 0.30. Moreover, all model parameters βk in equation (5.5) are

constrained to non-negative values in order to prevent unphysical results for event yields

or cross section values.

Finally, the product of two likelihood functions is used in the search for top quark pair

production and for the measurement of the tt̄ production cross section

L(βk; Δk|d) = L3(βk; Δk|d3) · L4(βk; Δk|d4) . (5.8)
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Except for the Gaussian constraints G(βt; 0.30) and G(βW/βZ; 0.30) which only ap-

pear once in this product, the likelihood functions L3 and L4 are defined according to

equation (5.5), based on observed distributions d3 and d4, corresponding to the observed

�ET and M3 distributions, respectively. For the determination of the model parameter

values β̂k, the likelihood function L(βk; Δk|d) is maximised with respect to all model pa-

rameters βk. However, prior to a detailed discussion about the application of this binned

likelihood fit procedure in the search for top quark pair production in section 5.2.3 and

for the measurement of the tt̄ production cross section in section 5.2.4, the concept of

ensemble testing will be described.

5.2.2. Ensemble Testing

In order to estimate central values and uncertainties of a statistical method prior to its

application to observed collision data, the procedure of ensemble testing can be employed.

For this purpose, pseudo-experiments are performed, wherein a particular model is used to

obtain so-called pseudo-data distributions by means of Monte Carlo techniques. The term

ensemble in this context denotes the collection of pseudo-experiments based on the same a

priori knowledge used to derive the pseudo-data distributions. In each pseudo-experiment,

the pseudo-data distribution of observables o, namely the �ET and M3 distributions, are

then subject to the elaborated binned likelihood fit procedure, resulting in a determination

of values for the various model parameters βk. Performing a large number of pseudo-

experiments, ensemble-averaged expectations can be obtained, e.g. the expected statistical

uncertainty on the measurement of the tt̄ production cross section.

The most straight forward application of this ensemble testing procedure is to derive

pseudo-data distributions from the same model used to describe the observed �ET and

M3 distributions. For this purpose, a random number ν′k per pseudo-experiment and pro-

cess k is drawn according to a Poisson distribution with predicted mean ν̂k. To addition-

ally incorporate uncertainties on the expected background event yields, ν̂k is modified to

ν̂k · δk for all background processes k. The parameters δk are drawn according to a Gaus-

sian distribution centred around zero with a process-dependent width Δ
exp
k , as given in

table 5.2. The ν′k events are then drawn from the corresponding probability distributions

T ′k , which are in the given example identical to the nominal distributions Tk. This leads to

a pseudo-data distribution of observable o with μ′i events per bin i according to the linear

combination

μ′i = ∑
k

ν′k · T ′ik . (5.9)

On the other hand, the definition of the likelihood function is not modified for these al-

tered predictions. Consequently, possible modifications like altered yield estimates ν′k or

altered probability distributions T ′k are only accounted for in the preparation of pseudo-

data distributions. This consideration of a priori information in the generation of pseudo-

experiments leads to so-called prior-predictive ensembles.

5.2.3. Hypothesis Testing

The determination of the significance level in the search for tt̄ production is based on a

hypothesis testing procedure. Therein, the probability for rejecting a hypothetical model
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Table 5.2: Expected background uncertainties Δ
exp
k used for prior-predictive ensembles. Based on

the uncertainties of theory-predicted cross section values for single top quark, W+jets, and Z+jets

production, and to account for the differences between observed and simulated event yields, con-

servative rate uncertainties of 30% are assumed. Since the simulation-based modelling of QCD

multijet production processes is considered particularly unreliable and thus merely provides coarse

event yield estimates, an uncertainty of 100% is assumed on this expectation.

Δ
exp
t Δ

exp
W Δ

exp
Z Δ

exp
QCD

0.30 0.30 0.30 1.00

without signal contributions is computed, given this hypothesis were true. This hypoth-

esis testing thus allows to determine whether observed candidate events can be ascribed

to a mere fluctuation of background contributions, or to the occurrence of the investi-

gated signal. To accomplish this determination, two distinct models are introduced for

the description of observed �ET and M3 distributions. The first model comprises signal

and background contributions, corresponding to the so-called signal-plus-background hy-

pothesis H1, and is identical to the model introduced in equation (5.4). The alternative

model, in turn, is based on a background-only assumption, also referred to as null hypoth-

esis H0. For this purpose, the signal parameter is fixed to βtt̄ = 0.0 in this second model.

Given observed �ET and M3 distributions in data d, the maximisation of the two likelihood

functions corresponding to the two alternative models can be used to define a likelihood

ratio

Q =

√
−2.0 · ln L(β̂tt̄, β̂k|d)

L(βtt̄ = 0.0, β̂′k|d)
, (5.10)

where the numerator is obtained by maximising the likelihood function defined in equa-

tion (5.8) with respect to all model parameters βk. On the other hand, the denominator is

determined from the maximisation with respect to the background parameters βk, while

the signal parameter is fixed to βtt̄ = 0.0. Since this latter procedure corresponds to the

null hypothesis, a small value of this likelihood ratio in data indicates compatibility with a

mere fluctuation of background processes, while a large Q value favours the signal-plus-

background hypothesis. The use of the likelihood ratio Q as test statistic is motivated

by the Neyman-Pearson lemma [13] which indicates that a likelihood ratio is the most

sensitive observable for separating hypotheses.

In order to quantify the rejection of the null hypothesis, and thus to determine the signif-

icance level of the tt̄ search, the value Q̂obs obtained from the likelihood fit to the �ET and

M3 distributions in observed pp collision can be compared to the Q value distribution q0

of the background-only assumption. For this purpose, an ensemble test is performed us-

ing the null hypothesis as model to obtain pseudo-data distributions for the discriminating

observables �ET and M3. Therein, the number of events ν′k for each background processes

k, is drawn from a Poisson distribution with mean ν̂k · δk and the ν′k events are drawn from

the corresponding probability distributions Tk as discussed in section 5.2.2. The determi-

nation of the Q value per pseudo-experiment then yields the distribution q0 which can be
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used to quantify the significance level of the tt̄ search via the so-called p value

p̂obs =
1

Aq
·
∫ ∞

Q̂obs

q0(Q
′)dQ′ , (5.11)

with Aq =
∫ ∞

−∞
q0(Q

′)dQ′. The p value determines the probability of observing a value

Q at least as large as Q̂obs, given the null hypothesis were true. Alternatively, the result

of a hypothesis test can be reported in terms of standard Gaussian deviations σ, derived

by converting the p value according to the integral expression

σ(p) =
√

2 · Erf−1[1− 2(1− p)] with Erf(z) =
2√
π

∫ z

0
e−t2

dt . (5.12)

The used criterion for claiming observation of tt̄ production is p̂obs < 2.87 · 10−7 which

corresponds to a 5σ discrepancy between the observed likelihood ratio and the corre-

sponding expectation based on a mere fluctuation of background contributions.

Prior to the evaluation of physical results, the expected significance of the applied proce-

dure can be tested. For this purpose, an ensemble test based on the signal-plus-background

hypothesis H1 is performed. The model used to construct pseudo-data �ET and M3 distri-

butions therefore includes signal and background contributions. The median of the result-

ing Q value distribution q1 can be used to determine an expected value Q̂exp. The choice

of this so-called median-expected Q value is motivated by a 50% probability for observ-

ing a value of Q < Q̂exp, given the signal-plus-background hypothesis H1 were true.

Substituting Q̂exp for the observed value Q̂obs in equation (5.11), the expected p value

p̂exp can be obtained. However, several sources of systematic uncertainties might alter

the Q value distributions q0 and q1 by affecting the probability distributions Tk or the ex-

pected event yields ν̂k, subsequently leading to altered significance levels p̂obs and p̂exp.

Therefore, the impact of systematic uncertainties on the distribution q0 and thus on the

significance for tt̄ production will be studied in section 5.3.10.

5.2.4. Cross Section Measurement

For the determination of the tt̄ production cross section, a Neyman construction for central

intervals is employed, using the maximum likelihood estimate for βtt̄ as test statistic. For

this purpose, several ensemble tests are performed, wherein the models used to construct

the prior-predictive ensembles systematically differ in the expected signal event yields

ν̂tt̄. In contrast, the Poisson means ν̂k of the expected background event yields remain

constant for the full set of ensemble tests. Employing the maximisation procedure to the

likelihood function defined in equation (5.8) allows for the determination of the model

parameter values β̂k (k = tt̄, t, W, Z, and QCD), yielding distributions of β̂tt̄ for each

particular value ν̂tt̄, or equivalently a true value βtrue
tt̄

. The median values, and the 68%

and 95% quantiles of these β̂tt̄ distributions can then be used to estimate central values

and to construct confidence belts, respectively. This is exemplarily shown in figure 5.3 (a)

for a true value of βtrue
tt̄

= 1.0. Performing this construction of central values and central

confidence intervals in a βtrue
tt̄

range of [0.0, 3.0], the Neyman construction depicted in fig-

ure 5.3 (b) can be obtained. Given observed �ET and M3 distributions in pp collision data,
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Figure 5.3: Distribution of the maximum likelihood estimate for βtt̄ in an ensemble test based

on βtrue
tt̄ = 1.0 and the Neyman construction for the determination of the statistical uncertainty on

σtt̄, both assuming an integrated luminosity of L = 36.1 pb−1. The dashed vertical black line and

the filled green areas in (a) illustrate the extraction of the median, the 68%, and the 95% central

confidence intervals which serve for the construction of central values and confidence belts in (b).

Given this Neyman construction for central intervals based on the maximum likelihood estimate

for βtt̄ as test statistic, the observed value β̂obs
tt̄ in pp collision data can be used to determine the

corresponding input value β̂true
tt̄ as well as the statistical uncertainty. This determination is illus-

trated by the vertical red lines in (b), which indicates the intersections of a horizontal line at the

median-expected value β̂exp

tt̄
= 1.0 with the central values and the boundaries of the 68% con-

fidence belt. Accordingly, the estimated central value is β̂true
tt̄ within statistical uncertainties of

−10.4% and +10.9%.

the determination of β̂obs
tt̄

allows for the extraction of the corresponding input value β̂true
tt̄

from this Neyman construction, as indicated by the intersection of the horizontal red line

with the central values in figure 5.3 (b). Due to the linearity of the Neyman construction,

the true value equals the observed value, i.e. β̂true
tt̄

= β̂obs
tt̄

. Moreover, the ±1σ statistical

uncertainties on this extracted value β̂true
tt̄

can be obtained from the 68% confidence belt

of the Neyman construction, as illustrated by the intersections of the horizontal red line

with the boundaries of the inner confidence belt in figure 5.3 (b).

As for the determination of the significance level by means of hypothesis testing, several

sources of systematic uncertainties might adversely effect the procedure for the extraction

of the tt̄ production cross section. However, the derived Neyman construction can be used

to estimate the purely statistical uncertainty on the measurement of σtt̄. For this purpose,

the intersection of a horizontal red line at the median-predicted value β̂
exp

tt̄
= 1.0 with

the boundaries of the 68% confidence belt is used to determine the expected statistical

uncertainty, as depicted in figure 5.3 (b). Consequently, the expected ±1σ statistical

uncertainties on the tt̄ production cross section in a data set corresponding to an integrated

luminosity of L = 36.1 pb−1 is −10.4% and +10.9%.
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5.3. Systematic Uncertainties

Several sources of systematic uncertainties might lead to a reduction of the significance

level for the tt̄ search, as well as to an increased uncertainty on the determination of the

tt̄ production cross section. These sources of systematic uncertainties are involved due

to assumptions made in the simulation-based modelling of signal and background pro-

cesses, like the parametrisation of the parton distribution functions or the parton shower

configuration. Moreover, an inappropriate modelling of the considered processes might

be induced by experimental uncertainties, for example on the determination of the jet

energy scale or the jet energy resolution. Therefore, the systematic impact of uncertain-

ties in the theoretical modelling and the experimental setup on the elaborated analysis

techniques are investigated.

Since the source of a systematic uncertainty can affect the expected event yields for

signal and background processes, as well as the probability distributions Tk of the inves-

tigated discriminating observables, the combined effect of altered rate and shape uncer-

tainties has to be studied. For this purpose, the systematic impact on the measurements

is evaluated by altering the modelling of the affected processes within the uncertainties

of the given systematic, or by assigning a reasonable alternative model. As a result, rel-

ative changes of the event yields with respect to the nominal predictions ν̂k and altered

probability distributions T ′k are obtained. Incorporating these altered predictions into the

statistical methods, the impact of systematic uncertainties can be investigated. For this

purpose, prior-predictive methods are used to incorporate systematic uncertainties into

the hypothesis testing procedure, as well as into the Neyman construction. While this is

straight-forward for the hypothesis testing procedure, also the Neyman construction al-

lows for this inclusion via prior-predictive ensembles, since the method does not rely on

asymptotic properties of the test statistic but yields per construction correct prior-averaged

interval coverage. Finally, the expected sensitivity of the tt̄ search and the uncertainty on

the measurement of σtt̄ including systematic uncertainties can be evaluated.

In order to estimate the systematic impact induced by the theoretical modelling of signal

and background processes, several simulation-based samples have been produced with

modified settings for the modelling of tt̄, W+jets, and Z+jets production. A listing of

these dedicated systematic samples can be found in appendix A.

5.3.1. Parton Distribution Functions

The simulation-based modelling of signal and considered background processes collec-

tively depend on the parton distribution functions used to describe the colliding pro-

tons. Due to experimental uncertainties and employed evolution procedures based on the

DGLAP equations, an imperfect knowledge of the applied parton distribution functions

has to be assumed which potentially leads to systematic effects on the employed analysis

techniques. To account for this uncertainty on the PDF modelling, the CTEQ6.6 [84]

PDF set and the LHAPDF [196] package is used to perform a re-weighting procedure.

Therein, each of the 22 orthogonal eigenvectors is separately altered to its 90% confidence

interval boundary values. Calculating the difference between the nominal and these al-

tered PDF values, an event-by-event weighting factor is obtained, which can be applied to

the simulated events. Performing this re-weighting procedure with each of the 44 eigen-
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vector variations, the relative deviations from the nominal yield estimates ν̂k depicted

in figure 5.4 are obtained. Accordingly, maximal relative yield deviations of 0.6% and

0.4% are expected for tt̄ events with selection criteria of exactly three or at least four

jets, respectively. Similarly, small relative deviations are expected for single top quark

production, while for W+jets and Z+jets production the most significant variations in

terms of expected event yields are of the order of 3.3%. Table 5.3 summarises the maxi-

mal relative deviations of expected event yields for tt̄ signal and the expected background

processes for selection criteria of exactly three or at least four jets per event. Moreover,

this re-weighting procedure leads to altered �ET and M3 probability distributions T ′k for tt̄,
single top quark, W+jets, and Z+jets production.
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Figure 5.4: Impact of varying the values of the 22 orthogonal eigenvectors in the

CTEQ6.6 PDF set within their 90% confidence interval boundaries on the expected event yields.

In particular, the relative differences of expected event yields for the 44 eigenvector variations,

denoted by PDF Idx, with respect to the central CTEQ6.6 PDF value are shown for tt̄ (a), single

top quark (b), W+jets (c), and Z+jets (d) production, employing a requirement on at least four

jets per event.
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Table 5.3: Impact of varying the values of the 22 orthogonal eigenvectors in the

CTEQ6.6 PDF set within their 90% confidence interval boundaries on the expected event yields.

The relative differences quoted are obtained as the maximal deviations between the nominal yield

estimates and the ones derived from the 44 systematical variations. In particular, maximal yield

differences for tt̄, electroweak single top quark, W+jets, and Z+jets production are listed, corre-

sponding to selection criteria of exactly three or at least four jets per event, respectively.

Requirement tt̄ single top W+jets Z+jets

= 3 jets 0.6% 0.7% 2.9% 2.4%

≥ 4 jets 0.4% 0.8% 3.3% 3.3%

5.3.2. Initial- and Final-State Radiation

Initial- and final-state radiation processes directly impact the jet topology of pp collision

events. Therefore, uncertainties on the probability for initial- and final-state radiation to

occur, represent potential sources of systematic uncertainties on the yield estimates ν̂k,

as well as on the simulation-based probability distributions Tk for the discriminating ob-

servables �ET and M3. In order to investigate the effect of higher or lower radiation proba-

bilities, and thus the effect of reduced or increased initial- and final-state radiation in the

simulation-based modelling of tt̄ production, dedicated samples have been generated, for

which several parameters in the parton-shower simulation provided by PYTHIA have been

systematically varied. In particular, parameters governing the maximum parton virtuality,

the maximal p⊥ threshold of the parton shower, and ΛQCD for the running coupling con-

stant αs have been adjusted. The impact of lower and higher probabilities for ISR/FSR

processes on the expected tt̄ event yields in selected candidate event samples including

requirements of exactly three or at least four jets per event, can be found in table 5.4.

Accordingly, differences up to −4.3% with respect to the nominal yield estimates are

expected. In addition to this rate uncertainty, the impact on the shape of the �ET and the

M3 probability distributions Ttt̄ are depicted in figure 5.5. Compared to the variation of

expected event yields, the altered probability distributions T ′tt̄ exhibit minor differences

compared to the nominal distributions.

Table 5.4: Impact of varying the amount of initial- and final-state radiation processes. The relative

differences of yield estimates are derived from simulated tt̄ event samples with lower (less) and

higher (more) initial- and final-state radiation probability and the nominal tt̄ sample. In particular,

the differences in expected event yields correspond to selection criteria of exactly three or at least

four jets per event, respectively.

Source Requirement tt̄

less ISR/FSR
= 3 jets +0.6%

≥ 4 jets −0.1%

more ISR/FSR
= 3 jets −4.3%

≥ 4 jets −4.2%
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Figure 5.5: Impact of varying the amount of initial- and final-state radiation processes on the

probability distributions Ttt̄ of the discriminating observables. The comparison of the �ET probabil-

ity distributions for the nominal sample of simulated tt̄ events and dedicated systematic samples

with reduced and increased ISR/FSR probability is depicted in (a). Similarly, in (b) the corre-

sponding shape comparison is shown for the distribution of the M3 distribution.

5.3.3. Uncertainty on Leptonic W Bosons Branching Ratios

As discussed in section 4.2.2, simulated tt̄ signal and Wt single top quark events are

weighted by a decay-mode specific factor fBR, accounting for the measured leptonic

W boson branching ratio BR(W → lν) = 0.1080± 0.0009. The uncertainty of about

0.8% on this measurement thus entails uncertainties on the expected event yields as well

as on the �ET and M3 probability distributions for tt̄ and single top quark production. In

order to account for this uncertainty, fBR is subject to a ±1σ variation. Table 5.5 sum-

marises the impact of employing the weighting procedure described in section 4.2.2 based

on the ±1σ varied factors f ′BR on the expected event yields. Moreover, the impact on the

distributions of the discriminating observables for tt̄ and Wt single top quark production

has been investigated, yielding probability densities T ′k which are indistinguishable from

the nominal distributions Tk.

Table 5.5: Impact of varying the leptonic W boson branching ratio in the simulation-based mod-

elling of tt̄ and Wt single top quark events. The relative differences of yield estimates are derived

from a ±0.8% variation of the measured branching ratio, technically implemented by a variation

of the decay-mode specific fraction fBR. In particular, the differences in expected event yields for

selection criteria of exactly three or at least four jets per event are given.

Source Requirement tt̄ Wt-channel

smaller fBR
= 3 jets −0.7% −0.6%

≥ 4 jets −0.6% −0.6%

larger fBR
= 3 jets +0.7% +0.6%

≥ 4 jets +0.6% +0.6%
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Table 5.6: Impact of pile-up events in the generation of tt̄ and W+jets production on the expected

event yields, employing selection criteria of exactly three or at least four jets per event. The

relative differences of yield estimates compared to the nominal expectations ν̂k are derived from

samples of simulated events including additional hard interactions per bunch crossing. Since the

amount of pile-up events in the given samples is slightly larger compared to expectations based on

the observed SD_Mu data set, the listed yield differences represent conservative estimates on the

expected rate uncertainties.

Source Requirement tt̄ W+jets

Incl. pile-up events
= 3 jets −3.5% +15.2%

≥ 4 jets +3.2% +18.1%

5.3.4. Pile-Up Events

The samples of simulated events for tt̄ signal and the expected background processes do

not include the simulation of pile-up events. The assumption of negligible amounts of

additional hard interactions per bunch crossing might be reasonable for early LHC data,

however, for the most recent data the large instantaneous luminosity values lead to an

expectation of about 4 − 5 pile-up events. In order to estimate the effect of these ad-

ditional hard interactions per bunch crossing, dedicated samples of simulated tt̄ signal

and W+jets background events have been generated. Although the average number of

pile-up events in these samples is slightly larger compared to the given expectation, these

samples of simulated events can be used to obtain a conservative estimate on the expected

differences in terms of event yield estimates and probability distributions T ′k . The im-

pact on the expected yield estimates is summarised in table 5.6, exhibiting differences of

up to 18% compared to the nominal expectations for W+jets production. In figure 5.6

shape comparisons of simulated events omitting and including effects of pile-up events

on the expected �ET and M3 distributions for tt̄ signal and W+jets production are shown.

Compared to the sizable differences of event yield estimates, the probability distributions

obtained from the systematically varied samples of simulated events evince less signifi-

cant deviations compared to the nominal distributions Tk.

5.3.5. Factorisation Scale and Matching Threshold

The simulation-based modelling of signal and background processes furthermore includes

information on the factorisation and renormalisation scale, which are customarily set to

a common scale μ̂ = μ̂F = μ̂R as discussed in section 1.2.1, and on the threshold value

used in the MLM matching procedure. Since the particular parameter values used for

the simulation of signal and background processes are to some extent arbitrary and might

not be the optimal choice for the description of observed pp collision data, the impact

of up- and downwards variations of these values are investigated. For this purpose, four

additional event samples have been produced for the simulation-based modelling of tt̄,
W+jets, and Z+jets production, respectively. In particular, for the so-called scale sys-

tematic samples, the scale at which the running strong coupling constant αs is evaluated is

varied by a factor of 0.5 or 2.0, while the value of ΛQCD used to calculate the running of
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Figure 5.6: Impact of pile-up events in the generation of tt̄ and W+jets production on the prob-

ability distributions Tk of the discriminating observables. Since the amount of pile-up events in

the given samples of simulated events are slightly larger compared to expectations based on the

observed SD_Mu data set, the comparison of nominal and systematically modified �ET and M3 dis-

tributions represent conservative estimates on the expected shape uncertainties. In (a) and (c) the

comparisons of �ET distributions for the nominal samples and ones including the simulation of

pile-up events are depicted for tt̄ and W+jets production, respectively, using selection criteria of

exactly three jets per event. The corresponding shape comparisons for the M3 distributions in

selected samples with a requirement on at least four jets per event are shown in (b) and (d).
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Table 5.7: Impact of varying the factorisation and renormalisation scale and the matching thresh-

old for the simulation-based modelling of tt̄, W+jets, and Z+jets production. The relative differ-

ences of yield estimates are derived from simulation-based samples with lower (down) and higher

(up) values for the renormalisation and factorisation scale and for the matching threshold, respec-

tively. In particular, the differences in expected event yields correspond to selection criteria of

exactly three or at least four jets per event, respectively.

Source Requirement tt̄ W+jets Z+jets

Scale down
= 3 jets −3.1% +102.7% +67.7%

≥ 4 jets +9.1% +97.7% +81.7%

Scale up
= 3 jets +3.5% −34.7% −33.3%

≥ 4 jets −4.9% −43.5% −44.6%

Threshold down
= 3 jets −0.3% +5.0% −8.9%

≥ 4 jets +1.8% −0.4% −0.3%

Threshold up
= 3 jets +1.3% +5.3% −4.6%

≥ 4 jets −1.3% −7.8% −17.3%

αs is simultaneously varied by a factor of 2.0 and 0.5, respectively. A similar procedure

is used for the matching threshold, which has been varied by a factor 0.5 and 2.0 for the

generation of the corresponding systematic samples. The effect of these variations on the

expected event yields are summarised in table 5.7. Especially for W+jets and Z+jets pro-

duction, variations of the factorisation and renormalisation scale lead to large differences

of expected event yields with respect to the nominal yield estimates ν̂k. For tt̄ production,

the corresponding yield differences are estimated to (3− 9)%. Compared to the scale

uncertainty, the impact of varying the matching threshold induces minor differences in

terms of event yield estimates. Furthermore, the effects of the scale and matching thresh-

old variations on the �ET and M3 distributions Tk are depicted in figure 5.7 and figure 5.8,

respectively.

Besides systematic effects induced by uncertainties in the theoretical modelling, experi-

mental uncertainties might adversely effect the expectated event yields and the probability

distribution of the discriminating observables. This second category of sources for sys-

tematic uncertainties will be discussed in the following sections.
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Figure 5.7: Impact of varying the renormalisation and factorisation scales on the probability

distributions Tk of the discriminating observables. Shape comparisons of the nominal �ET distri-

butions and the ones derived from the systematic samples are depicted in (a), (c), and (e) for tt̄,
W+jets, and Z+jets production, respectively. Similarly, in (b), (d), and (f), the corresponding

shape comparisons for the M3 distributions are shown.



110 Chapter 5. Top Quark Search and Cross Section Measurement

 [GeV]TE

0 50 100 150

ev
en

t 
fr

ac
ti

o
n

0

0.02

0.04

0.06

0.08

 [GeV]TE

0 50 100 150

ev
en

t 
fr

ac
ti

o
n

0

0.02

0.04

0.06

0.08

default

thresh. x 0.5

thresh. x 2.0

3 jets, ttbar

(a)

]2M3 [GeV/c

0 200 400 600

ev
en

t 
fr

ac
ti

o
n

0

0.1

0.2

]2M3 [GeV/c

0 200 400 600

ev
en

t 
fr

ac
ti

o
n

0

0.1

0.2

default

thresh. x 0.5

thresh. x 2.0

 4 jets, ttbar≥

(b)

 [GeV]TE

0 50 100 150

ev
en

t 
fr

ac
ti

o
n

0

0.05

0.1

 [GeV]TE

0 50 100 150

ev
en

t 
fr

ac
ti

o
n

0

0.05

0.1

default

thresh. x 0.5

thresh. x 2.0

3 jets, W+jets

(c)

]2M3 [GeV/c

0 200 400 600

ev
en

t 
fr

ac
ti

o
n

0

0.05

0.1

0.15

]2M3 [GeV/c

0 200 400 600

ev
en

t 
fr

ac
ti

o
n

0

0.05

0.1

0.15

default

thresh. x 0.5

thresh. x 2.0

 4 jets, W+jets≥

(d)

 [GeV]TE

0 50 100 150

ev
en

t 
fr

ac
ti

o
n

0

0.05

0.1

 [GeV]TE

0 50 100 150

ev
en

t 
fr

ac
ti

o
n

0

0.05

0.1

default

thresh. x 0.5

thresh. x 2.0

3 jets, W+jets

(e)

]2M3 [GeV/c

0 200 400 600

ev
en

t 
fr

ac
ti

o
n

0

0.05

0.1

0.15

]2M3 [GeV/c

0 200 400 600

ev
en

t 
fr

ac
ti

o
n

0

0.05

0.1

0.15

default

thresh. x 0.5

thresh. x 2.0

 4 jets, W+jets≥

(f)

Figure 5.8: Impact of varying the matching threshold on the probability distributions Tk of the

discriminating observables. Shape comparisons of the nominal �ET distributions and the ones de-

rived from the systematic samples are depicted in (a), (c), and (e) for tt̄, W+jets, and Z+jets

production, respectively. Similarly, in (b), (d), and (f), the corresponding shape comparisons for

the M3 distributions are shown.
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5.3.6. Jet Energy Scale and Jet Energy Resolution

The applied selection criteria of exactly three or at least four jets per event are based on

jet objects which have been subject to Level 2 and Level 3 jet energy corrections as dis-

cussed in section 4.3. The experimental determination of these jet energy corrections in-

duces an uncertainty which depends on the pseudorapidity and the transverse momentum

of the reconstructed jet [191]. Since this determination is mostly based on gluon-induced

jets, while the final state topology of tt̄ events comprise quark- and particularly b quark-

induced jets, an additional overall uncertainty of 5% is added in quadrature to these η-

and pT-dependent uncertainties. To account for this so-called jet energy scale (JES) un-

certainty, the four-momentum of each jet candidate is subject to a ±1σ variation, prior

to the application of event selection criteria. Similar to the modification of the missing

transverse energy entailed by the correction for the jet energy resolution bias correction

discussed in section 4.3, this variation of the jet energy scale has to be propagated to the

calculation of the missing transverse energy. For this purpose, the uncorrected jets are

vectorially added to ��ET prior to the JES variation and subtracted again after the±1σ vari-

ation has been performed. The impact on the estimated event yields in terms of relative

differences with respect to the nominal values ν̂k is summarised in table 5.8. Moreover,

the probability distributions Tk of the discriminating observables �ET and M3 are modified

as depicted in figure 5.9. While the +1σ variation entails a shift towards higher values

for the �ET and the M3 distributions of simulated tt̄, W+jets, and Z+jets events, a similar

effect but in opposite direction is observed for the corresponding −1σ variation.

Besides the jet energy resolution bias discussed in section 4.3, the experimental deter-

mination of the jet energy resolution entails an uncertainty of about ±10% on this quan-

tity. In order to account for this source of systematic uncertainty and to properly handle

the employed JER bias correction, variations of ±9.1% on the jet energy resolution are

employed. Technically, this is again achieved via the ΔR and
ΔpT

pT
matching procedure

described in section 4.3 and the corresponding propagation of corrections to the calcu-

lation of the missing transverse energy. The impact of these variations on the expected

event yields for tt̄ signal and the expected background contributions is given in table 5.8.

In contrast to the variation of the absolute jet energy scale, a variation of the jet energy

resolution leads to smaller deviations in terms of yield estimates. Figure 5.10 shows shape

comparisons for the nominal and the systematically modified �ET and M3 distributions in

tt̄, W+jets, and Z+jets events.

5.3.7. Unclustered Energy

The variation of the jet energy scale and jet energy resolution discussed in the previous

section only accounts for effects on the �ET probability distributions, induced by variations

in energy measurements of objects clustered into jets. Similarly, the effects of a variation

of the so-called unclustered energy might affect the �ET probability distributions and thus

lead to an additional source of systematic uncertainties. Since the applied selection cri-

teria, however, do not comprise a requirement on the amount of the missing transverse

energy, only effects on the shape of the �ET distributions for signal and background pro-

cesses are expected. To account for this potential source of systematic uncertainties, the
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Figure 5.9: Impact of varying the jet energy scale (JES) on the probability distributions Tk of

the discriminating observables. Shape comparisons between the nominal �ET distributions and the

ones derived by applying ±1σ variations of the jet energy scale are depicted in (a), (c), and (e) for

tt̄, W+jets, and Z+jets production, respectively. Similarly, in (b), (d), and (f), the corresponding

shape comparisons for the M3 distributions are shown.
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Figure 5.10: Impact of varying the jet energy resolution (JER) on the probability distributions

Tk of the discriminating observables. Shape comparisons between the nominal �ET distributions

and the ones derived by applying±9.1% variations of the jet energy resolution are depicted in (a),

(c), and (e) for tt̄, W+jets, and Z+jets production, respectively. Similarly, in (b), (d), and (f), the

corresponding shape comparisons for the M3 distributions are shown.
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Figure 5.11: Impact of varying the unclustered energy on the �ET probability distributions Tk.

Shape comparisons between the nominal �ET distributions and the ones derived by applying a

±10% variation on the unclustered energy are depicted for tt̄ (a), electroweak single top quark (b),

W+jets (c), and Z+jets (d) events.
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Table 5.8: Impact of varying the jet energy scale and the jet energy resolution. The relative

differences of yield estimates are derived from ±1σ variations of the jet energy scale (JES) and

the jet energy resolution (JER), prior to the application of event selection criteria. In particular, the

differences in the expected event yields for tt̄, electroweak single top quark, W+jets, and Z+jets

production are given, corresponding to selection criteria of exactly three or at least four jets per

event, respectively.

Source Requirement tt̄ single top W+jets Z+jets

JES− = 3 jets +1.7% −7.5% −15.6% −19.0%

≥ 4 jets −10.6% −14.2% −20.4% −14.3%

JES+
= 3 jets −2.4% +6.5% +17.5% +19.5%

≥ 4 jets +9.9% +14.9% +23.3% +25.3%

JER− = 3 jets +0.4% +0.4% −1.0% +0.0%

≥ 4 jets +0.8% +0.6% +0.0% +1.5%

JER+
= 3 jets −0.3% +0.6% +0.5% −1.1%

≥ 4 jets −0.9% −0.6% +0.0% +1.5%

effects of ±10% variations on the unclustered energy are investigated. For this purpose,

the four-momenta of all Level 2 and Level 3 uncorrected jets are vectorially added to

the missing transverse energy and subtracted again after a variation of the resulting un-

clustered energy by a factor of 0.9 and 1.1, respectively. The expected impact of this

±10% variations on the �ET probability distributions for tt̄ signal, W+jets, and Z+jets

production is shown in figure 5.11. Similar to the effects observed for a variation of the

absolute jet energy scale, the variation of the unclustered energy entails a shift of the

�ET distribution towards smaller and higher mean values, respectively.

5.3.8. Data-Driven Modelling and Yield Estimates for QCD Multijet Production

The data-driven modelling of QCD multijet events by means of the AntiIso sample dis-

cussed in section 5.1.1 might be inappropriate for the description of �ET and M3 distribu-

tions of QCD multijet events, leading to an additional source of systematic uncertainties

in the search for top quarks and the measurement of σtt̄. For this purpose, the side-band

region defined by the requirement of 0.2 < Irel < 0.5 in the AntiIso selection is modified

to criteria of 0.2 < Irel < 0.35 and 0.35 < Irel < 0.5, respectively. The comparison of

the �ET and M3 distributions for the nominal AntiIso sample and the ones obtained via this

segmentation procedure are shown in figure 5.12.

Moreover, according to the simulation-based yield estimates for QCD multijet produc-

tion a value of R
exp
4/3

= 0.25 is expected for the ratio of event yields in selected samples

with a requirement on exactly three or at least four jets. In turn, the corresponding value

obtained from the AntiIso sample is R4/3 = 0.23. In order to account for this difference,

an ±8% uncertainty is assumed on the ratio R4/3 for QCD multijet events.
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Figure 5.12: Impact of varying the AntiIso selection on the data-driven modelling of �ET and

M3 probability distributions TQCD for QCD multijet production. Shape comparison between the

nominal �ET and M3 distributions and the ones derived by altering the Irel boundaries of the An-

tiIso selection are depicted in (a) and (b), respectively. While a requirement of 0.2 < Irel < 0.5

is imposed in the nominal AntiIso selection, the altered side-band regions are defined by the sub-

ranges [0.2, 0.35] and [0.35, 0.5], respectively.

5.3.9. Integrated Luminosity and Efficiency Correction Factors

The uncertainty on the determination of the integrated luminosity described in section 4.1,

induces an additional source of systematic uncertainties on the expected event yields ν̂k.

Since this uncertainty affects all signal and background processes uniformly over the en-

tire phase-space, the difference between the systematically varied and the nominal yield

estimates is ±11%. Moreover, this overall rate uncertainty does not entail variations of

the �ET or M3 probability distributions Tk.

The correction factors κ derived in section 4.4.2 have been applied to account for the

differences between observed and simulation-based estimates of muon reconstruction,

selection and trigger efficiencies. Therefore, the experimental uncertainties on κ induce

a further source of systematic uncertainties on the estimated event yields ν̂k. Similar to

the uncertainty on the integrated luminosity, the usage of the overall correction factor

κ = 0.955 ± 0.008 affects signal and background processes uniformly over the entire

phase-space, leading to an overall rate uncertainty of±0.8% on the expected event yields.
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5.3.10. Expected Impact on the Results

Given the various sources of systematic uncertainties, their impact on the significance

level of the tt̄ search and on the measurement of the tt̄ production cross section have to

be investigated. For this purpose, prior-predictive ensembles are employed which incor-

porate the various sources of systematic uncertainties in the model predictions used to

construct the pseudo-data distributions of the discriminating observables. On the other

hand, the statistical methods used to determine the significance level of the tt̄ search and

to measure the production cross section are not modified. In particular, for the description

of observed or pseudo-data M3 and �ET distributions, the model defined in equation (5.4)

remains unchanged and is therefore still based on the nominal yield estimates ν̂k and

probability distributions Tk. Thus, the a priori information about systematic uncertainties

is solely accounted for in the preparation of pseudo-data distributions. The hypothesis

testing procedure and the Neyman construction are then performed, based on these prior-

predictive ensembles. Following this approach, the combined impact of statistical and

systematic uncertainties on the expected value p̂exp and the uncertainty on β̂
exp

tt̄
can be

estimated, finally allowing for a comparison of observed and estimated results.

Technically, the incorporation of the various sources of systematic uncertainties is ac-

complished by additional model parameters δsyst, governing the strength of the individual

systematic uncertainties, and by substituting systematically modified estimates ν̂′k and T ′k
for the nominal expectations ν̂k and Tk. The individual strength parameters δsyst in a large

number of pseudo-experiments are assumed to comply with a Gaussian distribution cen-

tred around zero with a width Δsyst = 1.0, except for δPDF, for which ΔPDF = 0.61 is

used to comply with the a priori information of 90% C.L. for the eigenvector values. For

each pseudo-experiment, the values of the incorporated δsyst parameters are then drawn

according to the corresponding Gaussian distributions. Besides these model parameters

δsyst, the model used to generate the pseudo-data �ET and M3 distributions is based on

the systematically altered Poisson means ν̂′k for the expected yield estimates of process k
according to

ν̂′k(δsyst) = ν̂k ·
[

1 +
Nsyst

∑
j=1

|δj| ·
(

H(δj)
ν̂+jk

ν̂k
+ H(−δj)

ν̂−jk
ν̂k
− 1

)]
, (5.13)

with the Heaviside step function H(x) and the nominal event yield estimates ν̂k. The

expected event yields ν̂±jk for the various source of systematic uncertainties j on process

k, are determined from the dedicated samples or modifications discussed in section 5.3.1

to section 5.3.9 which account for up- and downwards fluctuations of the given uncertain-

ties, e.g. a ±1σ variation of the jet energy scale. Similarly, the systematically modified

probability distributions T ′k are obtained from a bin-by-bin interpolation. Accordingly,

the relative fraction of events in bin i of T ′k is obtained via

T ′ik(δsyst) = Tik ·
[

1 +
Nsyst

∑
j=1

|δj| ·
(

H(δj)
T +

ijk

Tik
+ H(−δj)

T −ijk
Tik

− 1

)]
, (5.14)

using the nominal probability distribution Tk and the systematically modified distributions

T ±jk , whereas the latter correspond to the distributions obtained by up- and downwards

fluctuations of the systematic uncertainty under investigation.
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Finally, the pseudo-data �ET and M3 distributions are drawn from the various processes

k according to the given Poisson means ν̂′k and to the probability distributions T ′k . In case

the source of a systematic uncertainty affects several processes k, like the uncertainty on

the correction factor κ derived in section 4.4.2, a 100% correlation of the corresponding

model parameters δsyst is used for the involved processes k. The only exceptions in this

context are the uncertainty on the renormalisation and factorisation scale and the uncer-

tainty on the matching threshold, incorporated via δscale and δmatching, respectively, which

apply to tt̄, W+jets, and Z+jets production. Since the scale parameters μ̂k, as well

as the matching thresholds used for the simulation-based modelling of tt̄ and V+jets

(V = W, Z) production are not correlated, independent parameters δscale and δmatching

are used to determine the strength of the corresponding systematic uncertainties on tt̄ and

V+jets production in the prior-predictive ensembles.

Expected Impact on the Significance Level

In order to estimate the combined impact of statistical and systematic uncertainties on the

significance level of the tt̄ search, the hypothesis testing procedure is performed based

on the prior-predictive ensembles including the systematically modified expectations ν̂′k
and T ′k . For this purpose, all discussed sources of systematic uncertainties are taken

into account for the generation of pseudo-experiments. The statistical evaluation of ob-

served and expected significance levels is then accomplished using the procedures de-

scribed in section 5.2.2. Consequently, the Q value distributions q0 and q1 are obtained,

assuming the validity of the background-only or the signal-plus-background hypothesis,

respectively. As depicted in figure 5.13, this simultaneous investigation of statistical and

systematic uncertainties leads to a median-expected Q value of Q̂exp = 10.87 which

could in principle be used to calculate the expected significance level p̂exp according to

equation (5.11). However, the 2.22 · 109 pseudo-experiments performed to derive the dis-

tribution q0 are insufficient for the determination of p̂exp. Therefore, only an upper limit

of p̂exp < 4.51 · 10−10 can be estimated. In terms of standard Gaussian deviations, this

corresponds to an expected lower limit on the significance level of 6.13σ, which is well

above the aspired target for claiming observation of tt̄ production. Additionally, the value

Q̂ = 5.76 corresponding to a statistical significance of 5σ is indicated in figure 5.13,

illustrating the calculation of the corresponding p value p̂ = 2.87 · 10−7.

Expected Impact on the Cross Section Measurement

The impact of systematic uncertainties on the measurement of the tt̄ production cross

section is estimated using prior-predictive ensembles as well. In contrast to the proce-

dure used for hypothesis testing, however, the impact of the uncertainty on the integrated

luminosity is omitted in the prior-predictive procedure. Since the determination of the

integrated luminosity entails an overall uncertainty of±11% on the expected event yields

ν̂k for all processes k, but does not affect the probability distributions Tk, the impact of

this systematic uncertainty on the observed value β̂true
tt̄

, and consequently on the observed

tt̄ production cross section value, can be quoted separately. Including all other sources of

systematic uncertainties to derive the Neyman construction depicted in figure 5.14, the de-

termination of±1σ statistical-plus-systematic uncertainties closely follows the procedure
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Figure 5.13: Expected Q value distributions for the background-only hypothesis (blue) and the

signal-plus-background hypothesis (red) obtained from prior-predictive ensembles based on sta-

tistical and systematic uncertainties. Due to the insufficient number of pseudo-experiments for

the null hypothesis H0, the median-expected Q value obtained from an ensemble based on the H1

hypothesis can only be used to estimate an upper limit of p̂exp < 4.51 · 10−10 on the expected

significance level for the tt̄ search. In terms of standard Gaussian deviations, this upper limit on

p̂exp thus yields a lower limit for the rejection of the background-only assumption of 6.13σ. To

illustrate the formal determination of the p value based on the background-only Q value distribu-

tion q0 and a particular value Q̂, the latter is indicated by the yellow line at Q̂ = 5.76. Using the

integral of q0 indicated by the blue area, a value of p̂ = 2.87 · 10−7 is obtained which corresponds

to a 5σ significance level.

discussed in section 5.2.4. The combined impact of statistical and systematic uncertain-

ties can thus be estimated from the Neyman construction evaluated at β̂
exp

tt̄
= 1.0, leading

to expected uncertainties on the tt̄ production cross section of −19.9% and +24.9%.

To furthermore estimate which source of systematic uncertainties has to be reduced to

significantly decrease the overall uncertainty on the determination of the tt̄ production

cross section, this prior-predictive approach and the subsequent determination of the±1σ
uncertainties from the Neyman construction is repeated by neglecting individual sources

of systematic uncertainties. Table 5.9 summarises the expected statistical-plus-systematic

uncertainties on β̂true
tt̄

, given these so-called Nsyst − 1 ensembles. The most significant

reduction of the uncertainty is observed for the model omitting uncertainties on the jet en-

ergy scale, leading to statistical-plus-systematic uncertainties of about±15%. As already

mentioned, the uncertainty on the integrated luminosity has to be taken into account as

well which can be accomplished by either quoting the±11% uncertainty separately or by

adding this uncertainty in quadrature to the overall statistic-plus-systematic uncertainties.
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Figure 5.14: Neyman construction for the determination of statistical-plus-systematic uncertain-

ties. To account for the various sources of systematic uncertainties, prior-predictive ensembles

are employed, incorporating systematically modified expectations ν̂′k and T ′k . Evaluating the Ney-

man construction at β̂exp

tt̄
= 1.0, expected ±1σ uncertainty values of −19.9% and +24.9% are

determined, compared to the purely statistical uncertainties of about ±11%.

Table 5.9: Summary of expected statistical-plus-systematic uncertainties on the determination of

the tt̄ production cross section. The individual values are obtained from a Neyman construction

evaluated at β̂exp

tt̄
= 1.0, wherein prior-predictive ensembles are used to incorporate the sources

of systematic uncertainties. In addition, the potential reduction of the overall uncertainty is in-

vestigated by neglecting individual sources of systematic uncertainties, using so-called Nsyst − 1

ensembles. Accordingly, the most significant reduction is expected for the model omitting uncer-

tainties on the jet energy scale.

stat.+syst. uncertainty [%]

only stat.+bkg. uncertainty −10.4% +10.9%

total stat.+syst. uncertainty −19.9% +24.9%

w/o JES uncertainty −13.8% +15.0%

w/o JER uncertainty −19.8% +24.4%

w/o Unclustered energy uncertainty −19.8% +24.4%

w/o ISR/FSR uncertainty −19.6% +24.3%

w/o Scale uncertainty −19.4% +23.3%

w/o Matching threshold uncertainty −19.7% +24.0%

w/o BR(W → lν) uncertainty −19.9% +24.9%

w/o κ Corr. factor uncertainty −19.9% +24.9%

w/o QCD rate/shape uncertainty −19.8% +24.7%

w/o Pile-up events −19.9% +24.7%

w/o PDF uncertainty −19.8% +24.9%
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5.4. Significance of tt̄ Production

Finally, the hypothesis testing procedure is applied to the �ET and M3 distributions in ob-

served pp collision data, corresponding to an integrated luminosity of (36.1± 4.0) pb−1.

As illustrated in figure 5.15, the resulting Q value is Q̂obs = 10.45 and thus slightly

smaller compared to the median-expected value Q̂exp. However, the Q value distribution

q0 obtained from 2.22 · 109 pseudo-experiments discussed in section 5.3.10 still prevents

a formal calculation of the p value according to equation (5.11). Consequently, the deter-

mination of the observed p value yields

p̂obs < 4.51 · 10−10 . (5.15)

Since the same Q value distribution q0 is employed for the determination of p̂obs and

p̂exp, respectively, identical values are obtained for the two upper limits. According to

equation (5.15), the probability for a mere fluctuation of considered background processes

to describe the observed �ET and M3 distributions in pp collision data can be rejected at

a level exceeding 6.13σ. Consequently, the observed likelihood ratio allows to claim the

observation of top quark pair production via the strong interaction.
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Figure 5.15: Observed Q value Q̂obs in pp collision data and expected Q value distributions

for the background-only hypothesis H0 (blue) and for the signal-plus-background hypothesis H1

(red), both including statistical and systematic uncertainties via prior-predictive ensembles. As

for the median-expected Q value in figure 5.13, the value Q̂ corresponding to a 5σ significance

level is indicated by the vertical yellow line. Given the observed value Q̂obs = 10.45, an upper

limit on the observed p value of p̂obs = 4.51 · 10−10 can be determined. Consequently, in terms

of standard Gaussian deviations the significance level of the tt̄ search implies a rejection of the

background-only assumption by > 6.13σ, and thus allows to claim observation of tt̄ production.
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5.5. Measurement of the tt̄ Production Cross Section

For the determination of the tt̄ production cross section, the observed �ET and M3 dis-

tributions in pp collision data are subject to a maximum likelihood fit procedure, using

the likelihood function defined in equation (5.8). This yields the observed values β̂obs
k

listed in table 5.10 for the various model parameters βk. Therein, the quoted statistical

uncertainties on the maximum likelihood estimate of the model parameter values β̂obs
k

of the background contributions are provided by MINUIT, using the covariance matrix

at the minimum of the negative logarithm of the likelihood function. As suggested by

the discrepancy between observed and expected kinematic distributions in section 4.5,

larger background contributions of W+jets, Z+jets, and QCD multijet production pro-

cesses compared to the simulation-based expectations are observed. In particular, for

W+jets and Z+jets production the observed maximum likelihood estimates lead to 36%

and 33% higher event yields. The corresponding value for QCD multijet production re-

sults in an observed event yield which is about a factor of two larger compared to the

simulation-based expectation. In contrast to this sizable discrepancies between observed

and expected background contributions, the maximum likelihood estimate for the signal

parameter βtt̄ is about 3% higher and thus in good agreement with the expected value

β̂
exp

tt̄
= 1.0. In order to derive the central value β̂true

tt̄
and the corresponding statistical-

plus-systematic uncertainty, the Neyman construction discussed in section 5.3.10 is eval-

uated at the observed value β̂obs
tt̄

= 1.03 as depicted in figure 5.16. This procedure leads

to β̂true
tt̄

= 1.03 within statistical-plus-systematic uncertainties of −19.7% and +24.7%.
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Figure 5.16: Neyman construction for the determination of the observed cross section value and

the corresponding statistical-plus-systematic uncertainties. For the determination of the central

value β̂true
tt̄ and the corresponding uncertainties, the Neyman construction is evaluated at the ob-

served value β̂obs
tt̄ = 1.03. This leads to an observed value of β̂true

tt̄ = 1.03 with an uncertainty of

−19.7% and +24.7% which can be used for the determination of the tt̄ production cross section.
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Table 5.10: Maximum likelihood estimates β̂obs
k , determined from the binned likelihood fit to

observed �ET and M3 distributions in pp collision data, corresponding to an integrated luminosity

of L = (36.1± 4.0) pb−1. The quoted uncertainties on the background parameter values β̂obs
k

are derived from the covariance matrix at the minimum of the negative logarithm of the likelihood

function. Since these uncertainties do not include systematic uncertainties, these results cannot be

considered as estimates for cross section measurements of the background processes. Moreover,

in order to prevent ambiguity with these purely statistical uncertainties, the corresponding value

on β̂obs
tt̄ is omitted, since the statistical-plus-systematic uncertainty on β̂obs

tt̄ is derived by means of

the Neyman construction.

β̂obs
tt̄

β̂obs
t β̂obs

W β̂obs
Z β̂obs

QCD

1.03 1.00± 0.30 1.36± 0.10 1.33± 0.41 2.11± 0.58

Converting the maximum likelihood estimate β̂obs
tt̄

by means of equation (5.3), the ob-

served top quark pair production cross section at a centre-of-mass energy of 7 TeV in

pp collision data corresponding to an integrated luminosity of L = (36.1± 4.0) pb−1 is

σtt̄ = 168.9+41.7
−33.3 (stat.+syst.) ± 18.6 (lumi.) pb , (5.16)

and thus in remarkably good agreement with theory predictions of σtheo.
tt̄

= 164.6+11.4
−15.7

pb,

obtained from approximate NNLO calculations [8–10].

In addition, the maximum likelihood estimates β̂obs
k can be used to re-weight the event

yield estimates listed in table 4.10, in order to facilitate a final comparison of observed

and estimated kinematic distributions. In figure 5.17 this comparison is depicted for the

discriminating observables �ET and M3 in candidate event samples with a requirement

of exactly three and at least four jets per event, respectively. The good correspondence

for these distributions, however, is achieved per construction, since the simulation-based

modelling of �ET and M3 distributions in tt̄ signal, electroweak single top quark, W+jets,

Z+jets production, and the AntiIso sample used to model the QCD multijet contributions

are fit to the observed distributions in the applied maximum likelihood procedure. There-

fore, given the selection requirements of exactly three or at least four jets per event, the

comparison of kinematic distributions is additionally performed for the pseudorapidity of

the selected muon candidate, the transverse W boson mass, and for HT,lep in figure 5.18.

In summary, good agreement is observed for the expected and observed distributions of

the various kinematic observables.
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Figure 5.17: Comparison of observed and estimated distributions of the discriminating observ-

ables, re-weighting the expected yield estimates ν̂k by the maximum likelihood estimates for βk

given in table 5.10. Good agreement between the observed and estimated distributions of �ET and

M3 can be seen in (a) and (b), respectively. However, this comparison per construction allows

for a good correspondence, since the maximum likelihood procedure investigates �ET and M3 as

discriminating observables.
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Figure 5.18: Comparison of observed and estimated kinematic distributions, re-weighting the

expected yield estimates ν̂k by the maximum likelihood estimates for βk given in table 5.10. In (a),

(c), and (e), the comparison of observed and estimated pseudorapidity distributions of the selected

muon candidate, of the transverse W boson mass, and of HT,lep in a candidate event sample with

exactly three jets per event are depicted. Similarly, (b), (d), and (f), show the corresponding

comparisons in a candidate event sample with a requirement on at least four jets per event. In

summary, good agreement between observed and expected distributions is found for the presented

kinematic observables.
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Summary and Discussion

The Standard Model (SM) of particle physics constitutes the most complete model cur-

rently known for the description of the elementary building blocks of matter and forces

acting between them. Their interactions are ascribed to the exchange of force-mediating

bosons which couple to the charges of the fermions. Depending on the interactions in

which they partake, the twelve SM fermions can be divided into two main categories,

namely quarks and leptons. Among these, quarks are affected by all Standard Model

forces, while for leptons only electroweak interactions are predicted.

The heaviest among these elementary fermions is the top quark, which was first ob-

served by the CDF and DØ collaborations at the Fermilab Tevatron in 1995 [1,2]. With a

mass of mt = 173.3± 1.1 GeV/c2 [3], it is nearly as massive as a gold nucleus and about

40 times heavier than the b quark. Due to this exceptionally large mass, top quarks on

average decay before top-flavoured hadrons can be formed, and so offer a unique possibil-

ity to study quasi-free quarks. Moreover, the observed mass value provokes speculation

about whether the top quark might play a special role in the mechanism of electroweak

symmetry breaking.

Top quarks can either be produced in pairs of top and antitop quarks via the strong in-

teraction or singly in charged-current weak interactions. While the pairwise production

led to its discovery in 1995, the second production mechanism was experimentally ob-

served only about two years ago [5–7], again by the CDF and DØ collaborations. Once

produced, top quarks almost exclusively decay via the weak interaction into a b quark and

a charged W boson, leading to a categorisation of tt̄ events as all-hadronic, dilepton, or

lepton+jets events, according to the W bosons decay-mode.

Until last year, only the Tevatron collider provided interactions of particles exhibiting

sufficient kinetic energy for the production of top quarks. However, with the first inten-

tional proton-proton collisions at a centre-of-mass energy of 7 TeV on March 30th 2010,

the Large Hadron Collider (LHC) became the most powerful collider ever operated. Now,

about sixteen years after the top quark was discovered, the LHC enables its re-discovery

and permits scrutiny of its properties and interactions. The two general-purpose detectors

ATLAS and CMS have been built to detect and analyse hard interactions in pp collisions

provided by the LHC, which has been designed to unveil the mechanism of electroweak

symmetry breaking and to search for physics beyond the Standard Model. The CMS

apparatus is located near Cessy, France, in an underground cavern about 100 m below

surface. Since the first recorded pp collision event, a data set corresponding to about

43.2 pb−1 has been acquired with the CMS detector, among which 36.1 pb−1 were con-

sidered usable for the analysis of top quarks. The ultimate aim of the analysis presented

in this thesis was to establish a top quark signal in this early data set and to perform a first

measurement of the tt̄ production cross section in the muon+jets channel.

The expected tt̄ production cross section is about nine orders of magnitude smaller

than the total inelastic pp cross section. Moreover, the experimental signature of a high-

energetic muon, missing transverse energy entailed by the emerging neutrino, and four jets
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in a typical tt̄ muon+jets event, is not unique. Several other Standard Model processes

exhibit a similar experimental signature and could thus lead to erroneous classification as

signal events. Therefore, Monte Carlo techniques have been used to generate and simulate

tt̄ signal and the expected background processes. Based on these samples of simulated

events and driven by the requirements for a good signal-to-background ratio and high

signal efficiency, an event selection has been developed which employs criteria on exactly

one well-identified and isolated muon, the absence of additional lepton candidates, and

at least four jets per event. A dedicated selection requirement on the amount of missing

transverse energy has been omitted in favour of granting this observable another, more

central role to achieve the aspired analysis objectives. Furthermore, information provided

by b-tagging algorithms have not been used for the selection of events, leading to a so-

called untagged analysis.

The simulated samples of signal and background events allowed for the estimation of ac-

ceptances and selection efficiencies, which have been of central importance in the search

for top quarks and the measurement of the tt̄ production cross section. In order to min-

imise the dependency on these simulation-based estimates, supplementary information

provided by data-driven techniques on muon reconstruction, selection, and trigger effi-

ciencies were used. For this purpose, the tag-and-probe method was employed in observed

and simulated Z → μμ events, in order to derive correction factors for the simulation-

based efficiency estimates. Applying these procedures and selection criteria on at least

four (exactly three) jets per events, about 220 (204) tt̄ signal and approximately 146

(388) background events have been expected in a data set corresponding to an integrated

luminosity of 36.1 pb−1. Consequently, a signal-to-background ratio of S/B = 1.5 (0.3)

and a pseudo-significance of S/
√

B = 18.2 (8.3) has been expected for candidate event

samples with a requirement on at least four (exactly three) jets per event. The comparison

of observed and expected event yields, however, showed deviations of up to 20% which

have been ascribed to an underestimation of background contributions, as suggested by

the comparison of kinematic distributions.

The analysis procedures employed in the search for top quarks and the measurement of

the tt̄ production cross section were based on a binned likelihood fit and thus closely fol-

lowed the methods used for the observation of the top quark in 1995. Using this approach,

the selection of discriminating observables has been required which facilitated the sepa-

ration of signal and background processes. The missing transverse energy and M3 were

chosen as discriminating observables, where the latter denotes the invariant mass of those

three jets per event which exhibit the highest vectorial-summed transverse momentum. A

simultaneous investigation of �ET and M3 as discriminating observables has thereby been

permitted by the statistically orthogonal samples of candidate events, obtained by the ap-

plied selection criteria on exactly three or at least four jets per event, respectively. Besides

the selection of kinematic observables, the application of the binned likelihood fit required

appropriate models for the description of the observed �ET and M3 distributions. For this

purpose, the simulated samples of tt̄, single top quark, W+jets, and Z+jets produc-

tion have been used to derive probability distributions for the discriminating observables.

Since the simulation of QCD multijet background events has been considered particularly

unreliable, a modified event selection was developed which aimed for the selection of a

candidate sample highly-enriched in QCD multijet events. Application of these altered
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selection criteria to observed pp collision data thus facilitated a data-driven emulation of

kinematic distributions for QCD multijet events. Given the observed �ET and M3 distri-

butions and the models for signal and background processes, a likelihood function was

defined which incorporated the number of signal and background events as model param-

eters. The maximisation of this likelihood function with respect to the model parameters

then allowed for the determination of signal and background contributions in the given

data set.

The search for top quarks was accomplished by means of a hypotheses test, determin-

ing the probability for erroneously claiming observation of tt̄ production based on a mere

fluctuation of background contributions. Based on a hypothesis assuming signal and back-

ground contributions and an alternative hypothesis neglecting signal contributions, a like-

lihood ratio Q was defined which is deemed to provide the most sensitive observable for

discriminating hypotheses. In order to determine the significance level of the tt̄ search,

an ensemble test based on the background-only assumption was performed. Comparison

of the resulting Q value distribution with the observed value Q̂obs in pp collision data

corresponding to an integrated luminosity of L = (36.1± 4.0) pb−1, led to a lower limit

for the observed significance level of 6.13σ. Consequently, the discrepancy between the

observed Q value and expectations based on the background-only assumption justify to

claim observation of top quark pair production at the LHC.

The second objective of the analysis presented in this thesis was the measurement of

the tt̄ production cross section. For this purpose, the contribution of tt̄ events in the

given data set was extracted by means of the binned likelihood fit to observed �ET and

M3 distributions. Moreover, to determine the statistical-plus-systematic uncertainties, a

Neyman construction for central intervals was employed, using the maximum likelihood

estimate for the signal parameter as test statistic. Accordingly, the top quark pair produc-

tion cross section at a centre-of-mass energy of 7 TeV for an assumed top quark mass of

172.5 GeV/c2 was determined to

σtt̄ = 169+42
−33 (stat.+syst.) ± 19 (lumi.) pb, (5.17)

which is in remarkably good agreement with theory predictions of σtheo.
tt̄

= 164.6+11.4
−15.7

pb,

obtained from approximate NNLO calculations [8–10]. The purely statistical uncertainty

of about ±11% on this cross section measurement was deduced from an ensemble test

omitting systematic uncertainties. Therefore, the measurement of the tt̄ production cross

section is already systematically limited, with dominant contributions originating from

uncertainties on the jet energy scale. Thus, in order to improve the accuracy of this de-

termination, either the sources of systematic uncertainties have to be reduced or an al-

ternative method has to be employed, e.g. a simultaneous measurement of σtt̄ and the jet

energy scale.

Furthermore, the presented result on the measurement of the tt̄ production cross section

in the muon+jets channel can be compared to the corresponding results obtained in the

dilepton channel [14], the electron+jets channel [15], and to the combined measurement

in the lepton+jets channel [15], where lepton refers to an electron or muon, respectively.
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These three measurements yield

σ
dilepton

tt̄
= 194± 76 (stat.+syst.) ± 21 (lumi.) pb, (5.18)

σ
e+jets

tt̄
= 178+45

−37 (stat.+syst.) ± 20 (lumi.) pb, (5.19)

σ
l+jets

tt̄
= 172+39

−32 (stat.+syst.) ± 19 (lumi.) pb. (5.20)

While the result in the dilepton channel is based on a data set corresponding to 3.1 pb−1,

the measurements in the lepton+jets channels are based on the full data set. Due to a

slightly more conservative estimation of jet energy scale uncertainties, the uncertainties

on σtt̄ in the lepton+jets channels are marginally larger compared to the result obtained

from the analysis presented in this thesis. Moreover, the ATLAS collaboration recently

published a result of σATLAS
tt̄

= 145± 31 (stat.) +42
−27 (syst.) pb [16] on the tt̄ production

cross section, based on a combination of measurements in the electron+jets, muon+jets,

and dilepton channels in a data set corresponding L = 2.9 pb−1. In contrast to the previ-

ously given results, the quoted ±1σ systematic uncertainties on this measurement addi-

tionally account for the ±11% uncertainty on the integrated luminosity. Within the given

uncertainties, good agreement is observed for the results obtained in the various channels,

the measurement provided by ATLAS, and the result obtained from the analysis presented

in this thesis.

Less than one year of LHC operation at a centre-of-mass energy of
√

s = 7 TeV has

already allowed for the re-discovery of the top quark and the first measurement of the

tt̄ production cross section. Pioneered by this observation, further investigations like

the measurement of the top quark mass [17], or even the search for physics beyond the

Standard Model [18], are conceivable. Consequently, this very first step on the top quark

sector opens up promising perspectives for scrutinising the interactions and characteristics

of this heaviest fermion in the Standard Model of elementary particle physics.
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Additional Information on Systematic Samples

Table A.1: Summary of simulated tt̄, W+jets, and Z+jets events with modified parameters

for the investigation of systematic uncertainties. All samples have been generated using MAD-

GRAPH interfaced to the PYTHIA, according to the MLM matching prescription and the D6T tune

has been employed to account for the underlying event. The quoted numbers of simulated events

correspond to the number of sucessfully analysed Monte Carlo events. More information about

these samples can be found in [189].

Process Systematic Simulated Events

tt̄

less ISR/FSR 1, 221, 664

more ISR/FSR 1, 394, 010

smaller renormalisation/factorisation scale 1, 098, 971

larger renormalisation/factorisation scale 1, 153, 236

smaller matching threshold 938, 005

larger matching threshold 1, 036, 492

including pile-up 1, 281, 237

W+jets

smaller renormalisation/factorisation scale 5, 242, 219

larger smaller renormalisation/factorisation scale 6, 218, 255

smaller matching threshold 2, 706, 986

larger matching threshold 10, 370, 368

including pile-up 14, 766, 396

Z+jets

smaller renormalisation/factorisation scale 1, 436, 150

larger smaller renormalisation/factorisation scale 1, 329, 028

smaller matching threshold 1, 662, 884

larger matching threshold 1, 667, 367
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