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Abstract. Maximizing the quality index modularity has become one of the primary methods for
identifying the clustering structure within a graph. As contemporary networks are not static but evolve
over time, traditional static approaches can be inappropriate for specific tasks. In this work we pioneer
the NP-hard problem of online dynamic modularity maximization. We develop scalable dynamizations
of the currently fastest and the most widespread static heuristics and engineer a heuristic dynamization
of an optimal static algorithm. Our algorithms efficiently maintain a modularity-based clustering of a
graph for which dynamic changes arrive as a stream. For our quickest heuristic we prove a tight bound
on its number of operations. In an experimental evaluation on both a real-world dynamic network
and on dynamic clustered random graphs, we show that the dynamic maintenance of a clustering of
a changing graph yields higher modularity than recomputation, guarantees much smoother clustering
dynamics and requires much lower runtimes. We conclude with giving sound recommendations for the
choice of an algorithm.

1 Introduction

Graph clustering is concerned with identifying and analyzing the group structure of networks3. Generally, a
partition (i.e., a clustering) of the set of nodes is sought, and the size of the partition is a priori unknown. A
plethora of formalizations for what a good clustering is exist, good overviews are, e.g., (Brandes and Erlebach
2005; Fortunato 2009). In this work we set our focus on the quality function modularity, coined by Newman
and Girvan (2004), which has proven itself feasible and reliable in practice, especially as the target function
for a maximization approach (see (Brandes, Delling, Gaertler, Görke, Höfer, Nikoloski, and Wagner 2008)
for further references) that follows the paradigm of parameter-free community discovery (Keogh, Lonardi,
and Ratanamahatana 2004).

The foothold of this work is that most networks in practice are not static. Iteratively clustering snapshots
of a dynamic graph from scratch with a static method has several disadvantages: First, runtime cannot be
neglected for large instances or environments where computing power is limited (Schaeffer, Marinoni, Särelä,
and Nikander 2006), even though very fast clustering methods have been proposed recently (Blondel, Guil-
laume, Lambiotte, and Lefebvre 2008; Delling, Görke, Schulz, and Wagner 2009). Second, heuristics for the
NP-hard (Brandes, Delling, Gaertler, Görke, Höfer, Nikoloski, and Wagner 2008) optimization of modularity
suffer from local optima—this might be avoided by dynamically maintaining a good solution. Third, static
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Fig. 1: Problem setting.

heuristics are known not to react in a continuous way to small changes
in a graph. The left hand Figure 1 illustrates the general situation for
updating clusterings. A graph G is updated by some change ∆, yielding
G′. We investigate procedures A that update the clustering C(G) to C′(G′)
without re-clustering from scratch, but work towards the same aim as a
static technique T does.

∗This work was partially supported by the DFG under grant WA 654/15-2/3.
3We use the terms graph and network interchangeably.



1.1 Related Work

Dynamic graph clustering has so far been a rather untrodden field. Recent efforts (Görke, Hartmann, and
Wagner 2009) yielded a method that can provably dynamically maintain a clustering that conforms to a
specific bottleneck-quality requirement. Apart from that, there have been attempts to track communities
over time and interpret their evolution, using static snapshots of the network, e.g., (Hopcroft, Khan, Kulis,
and Selman 2004; Palla, Barabási, and Vicsek 2007), besides an array of case studies. Aggarwal and Yu (2005)
proposed a parameter-based dynamic graph clustering method which allows user exploration. Parameters are
avoided in (Sun, Yu, Papadimitriou, and Faloutsos 2007) where the minimum description length of a graph
sequence is used to determine changes in clusterings and the number of clusters. Hübner (2008) proposed an
explicitly bicriterial approach for low-difference updates and a partial ILP4, the latter of which we also discuss.
To the best of our knowledge no fast procedures for updating modularity-based clustering in general dynamic
graphs have been proposed yet. Beyond graph theory, the issue of clustering an evolving data set has been
addressed in the field of data mining, e.g., in (Chakrabarti, Kumar, and Tomkins 2006), where the authors
share our goal of finding a smooth dynamic clustering. The literature on static modularity-maximization
is quite broad. We omit a comprehensive review at this point and refer the reader to (Brandes, Delling,
Gaertler, Görke, Höfer, Nikoloski, and Wagner 2008; Fortunato 2009; Schaeffer 2007) for overviews, further
references and comparisons to other clustering techniques. Spectral methods, e.g., (White and Smyth 2005),
and techniques based on random walks (Pons and Latapy 2006; van Dongen 2000), do not lend themselves well
to dynamization due to their non-continuous nature. Variants of greedy agglomeration (Clauset, Newman,
and Moore 2004; Blondel, Guillaume, Lambiotte, and Lefebvre 2008), however, are well suited, as we shall
see.

This study is based on the preliminary paper (Görke, Maillard, Staudt, and Wagner 2010a). We broaden
the range of evaluated algorithms and discuss our results in full detail; we divert several tedious details to
our previous technical report (Görke, Maillard, Staudt, and Wagner 2010b), but announce this where we do
so.

1.2 Our Contribution

In this work we present, analyze and evaluate a number of concepts for efficiently updating modularity-
driven clusterings. We prove the NP-hardness of dynamic modularity optimization and develop heuristic
dynamizations of the most widespread (Clauset, Newman, and Moore 2004) and the fastest (Blondel, Guil-
laume, Lambiotte, and Lefebvre 2008) static algorithms, alongside apt strategies to determine the search
space. For our fastest procedure, we can prove a tight bound of Θ(log n) on the expected number of op-
erations required. We then evaluate these and a heuristic dynamization of an ILP4-algorithm (Brandes,
Delling, Gaertler, Görke, Höfer, Nikoloski, and Wagner 2008). We compare the algorithms with their static
counterparts and evaluate them experimentally on random preclustered dynamic graphs and on large real-
world instances. Then, shifting the focus towards large-scale changes per time step, we compare both the
static algorithms and our dynamic versions with static variants incorporating an explicit trade-off between
maximizing modularity and smoothness.

Our results reveal that the dynamic maintenance of a clustering yields higher quality than recomputation
and guarantees much smoother clustering dynamics and much lower runtimes. Additionally they yield strong
evidence that small search spaces around the center of the graph change work best, and that actual local
optimization (via an ILP) around this center is not the best choice. For large-scale changes, our static variant
which biases the process of identifying a clustering towards the previous results excels.

1.3 Notation

Throughout this paper, we will use the notation of Brandes and Erlebach (2005). We assume that G =
(V,E, ω) is an undirected, weighted, and simple graph5 with the edge weight function ω : E → R≥0. The

4ILP stands for Integer Linear Program.
5A simple graph in this work is both loopless and has no parallel edges.
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neighborhood of a node v is N(v) := {w ∈ V | {v, w} ∈ E}. We set |V | =: n, |E| =: m and C = {C1, . . . , Ck}
to be a partition of V . We call C a clustering of G and sets Ci clusters. C(v) means C 3 v. A clustering is
trivial if either k = 1 (C1), or all clusters contain only one element, i.e., are singletons (CV ). We identify

a cluster Ci with its node-induced subgraph of G, which is G(Ci, E(Ci)). Then E(C) :=
⋃k
i=1E(Ci) are

intra-cluster edges and E \E(C) inter-cluster edges, with cardinalities m(C) and m(C), respectively. Further,
we generalize degree deg(v) to clusters as deg(C) :=

∑
v∈C deg(v). While building up a clustering C, we

will often deal with a so-called preclustering C̃, which is a clustering on a subset Ṽ ⊆ V , but leaves V \ Ṽ
unclassified. When using edge weights, all the above definitions generalize naturally by using ω(e) instead of
1 when counting edge e. Weighted node degrees are called ω(v). A dynamic graph G = (G0, . . . , Gtmax

) is a
sequence of graphs, with Gt = (Vt, Et, ωt) being the state of the dynamic graph at time step t. The change
∆(Gt, Gt+1) between time steps comprises a batch sequence of b atomic events on Gt, which we detail later
(see Section 2). In our setting the sequence of changes arrives as a stream.

1.4 The Quality Index Modularity

In this work we set our focus on modularity (Newman and Girvan 2004), a measure for the quality of a
clustering. Just like any other quality index for clusterings (see, e.g., (Brandes and Erlebach 2005; Fortunato
2009)), modularity does have certain drawbacks such as non-locality and scaling behavior (Brandes, Delling,
Gaertler, Görke, Höfer, Nikoloski, and Wagner 2008) or resolution limit (Fortunato and Barthélemy 2007).
However, being aware of these peculiarities, modularity can very well be considered a robust and useful
measure that closely agrees with intuition on a wide range of real-world graphs, as observed by myriad
studies. Modularity can be formulated as

mod(C) :=
m(C)
m
− 1

4m2

∑
C∈C

(∑
v∈C

deg(v)

)2

, or equivalently as (1)

=
∑

{u,v}∈E

(
1

m
δuv

)
−
∑

(u,v)∈V×V

(
deg(u) · deg(v)

4m2
δuv

)
, δuv =

{
1 if C(u) = C(v)

0 otherwise
(2)

(weighted versions are analogous and merely require weighting edges and degrees).

Roughly speaking, modularity measures the fraction of edges which are covered by a clustering and compares
this value to its expected value, given a random rewiring of the edges which, on average, respects node degrees.
This definition generalizes in a natural way as to take edge weights ω(e) into account, for a discussion
thereof see (Newman 2004) and (Görke, Gaertler, Hübner, and Wagner 2010). ModOpt, the problem of
optimizing modularity is NP-hard (Brandes, Delling, Gaertler, Görke, Höfer, Nikoloski, and Wagner 2008),
but modularity can be computed in linear time and lends itself to a number of simple greedy maximization
strategies. For the dynamic setting, the following simple corollary theoretically corroborates the use of
heuristics, even if we do make the effort to compute an optimal initial clustering.

Corollary 1 (DynModOpt is NP-hard). Given graph G, a modularity-optimal clustering Copt(G) and
an atomic event ∆ to G, yielding G′. It is NP-hard to find a modularity-optimal clustering Copt(G′).
Proof. We reduce an instance G of ModOpt to a linear number of instances of DynModOpt. Given
graph G, there is a sequence G of graphs (G0, . . . , G` = G) of linear length such that (i) G starts with G0

consisting of one edge e of G and its incident nodes u, v, (ii) G ends with G, (iii) graph Gi+1 results from Gi
and an atomic event ∆i. ModOpt can be solved in constant time for G0 yielding Copt(G0). Subsequently
solving DynModOpt for instances Gi, Copt(Gi), ∆i yielding Copt(Gi+1), we end with Copt(G`) = Copt(G),
the solution to ModOpt.

1.5 Measuring the Smoothness of a Dynamic Clustering

By comparing consecutive clusterings, we quantify how smooth an algorithm manages the transition from
one output to the next, an aspect which is crucial to both readability and applicability. An array of measures
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exist that quantify the dissimilarity between two partitions of a set; for an overview and further references,
see (Delling, Gaertler, Görke, and Wagner 2008). Our results strongly suggest that most of these widely
accepted measures are qualitatively equivalent in all our (non-pathological) instances (see Figure 19 for
an example). We thus restrict our view to the graph-structural Rand index (Delling, Gaertler, Görke, and
Wagner 2008), being a well known representative; it maps two clusterings into the interval [0, 1], i.e., from
equality to maximum dissimilarity: Rg(C, C′) := 1 − (|E11| + |E00|)/m, with E11 = {{v, w} ∈ E : C(v) =
C(w)∧C′(v) = C′(w)}}, and E00 the analog for inequality (the weighted version is straightforward, if we use
ω(e) whenever we count edge e). Low distances correspond to smooth dynamics.

When we compare two clustering C(G), C′(G′) of different graphs G = (V,E) 6= G′ = (V ′, E′), the above
measures are not well-defined. A canonical solution is to use the intersection of the two graphs, i.e., define
G′′ = (V ′′, E′′) = (V ∩ V ′, E ∩ E′), and compare C|V ′′(G′′) and C′|V ′′(G′′). In fact any other workaround
seems unfair: Distance measures are based on either pair-counting, set overlaps or on entropy, but for none
of them the intuition conforms to classifying elements that are unknown in either G or G′ in any particular
way—be it smooth or distant. Simply ignoring new and discontinued elements avoids introducing a bias due
to particular dynamics in a graph such as growth or sparsification.

2 The Clustering Algorithms

Formally, a dynamic clustering algorithm is a procedure which, given the previous state of a dynamic graph
Gt−1, a sequence of graph events ∆(Gt−1, Gt) and a clustering C(Gt−1) of the previous state, returns a
clustering C′(Gt) of the current state. While the algorithm may discard C(Gt−1) and simply start from
scratch, a good dynamic algorithm will harness the results of its previous work. A natural approach to
dynamizing an agglomerative clustering algorithm is to break up those local parts of its previous clustering
which are most likely to require a reassessment after some changes to the graph. The half finished instance
is then given to the agglomerative algorithm for completion. A crucial ingredient thus is a prep strategy S
which decides on the search space which is to be reassessed. We will discuss such strategies later, until then
we simply assume that S breaks up a reasonable part of C(Gt−1), yielding C̃(Gt). We call C̃ the preclustering
and nodes that are chosen for individual reassessment free, which can be viewed as singletons.

Formalization of Graph Events. We describe our test instances in more detail later, but for a proper
description of our algorithms, we now briefly formalize the graph events we distinguish, making up the
sequence of changes between two graph states. Most commonly edge creations and removals take place, and
they require the incident nodes to be present before and after the event. Given edge weights, changes require
an edge’s presence. Node creations and removals in turn only handle degree zero nodes, i.e., for an intuitive
node deletion we first have to remove all incident edges. To summarize such compound events we use time
step events, which indicate to an algorithm that an updated clustering must now be supplied. Between time
steps it is up to the algorithm how it maintains its intermediate clustering.

2.1 Algorithms for Dynamic Updates of Clusterings

In the following we describe the static algorithms we evaluate and our dynamic versions. Please note that
we do not postprocess results with techniques like local optimization, as this blurs insights on the more
fundamental algorithms. For an evaluation of the effect of postprocessing and its interaction with the main
algorithm see (Noack and Rotta 2009).

Algorithm 1: Global(G, C)
while ∃Ci, Cj ∈ C : dQ∪(Ci, Cj) ≥ 0 do1

(C1, C2)← arg max
Ci,Cj∈C

dQ∪(Ci, Cj)
2

merge(C1, C2)3

The Global Greedy Algorithm The
most prominent algorithm for modularity
maximization is a globally greedy algo-
rithm (Clauset, Newman, and Moore 2004),
which we call Global (Algorithm 1). Starting
with singletons, for each pair of clusters, it de-
termines the increase in modularity dQ∪ that
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can be achieved by merging the pair and performs the most beneficial merge. This is repeated until no more
improvement is possible. As the pseudo-dynamic algorithm sGlobal, we let this algorithm cluster from scratch
at each time step for comparison. By passing a preclustering C̃(Gt) to Global we can define the properly dy-
namic algorithm dGlobal. Starting from C̃(Gt) this algorithm lets Global perform greedy agglomerations of
clusters and free nodes.

The Local Greedy Algorithm In a recent work (Blondel, Guillaume, Lambiotte, and Lefebvre 2008) the
simple mechanism of the aforementioned Global has been modified as to rely on local decisions (in terms
of graph locality), yielding an extremely fast and efficient maximization. Instead of looking globally for the
best merge of two clusters, Local repeatedly lets each node consider moving to one of its neighbors’ clusters,
if this improves modularity. Especially when starting with singletons, moves potentially merge clusters. We
denote by dQ↪→(v, C) the change in modularity incurred by moving node v into cluster C. From Equation 2
we can see that dQ↪→(v, C) can be computed by finding v’s neighbors in C(v) and in C, and by maintaining
the degree sums of these clusters. Furthermore, it is easy to see that a move towards a non-neighbor is always
less beneficial than isolating a node, thus checking neighbors’ clusters and isolation suffices. As soon as no
more nodes move, the current clustering is contracted, i.e., each cluster is contracted to a single node, and
adjacencies and edge weights between them are summarized. Then, the process is repeated on the resulting
graph which constitutes a higher level of abstraction. In the end, the highest level clustering is decisive about
the returned clustering: The operation unfurl assigns each elementary node to a cluster represented by the
highest level cluster it is contained in.

Algorithm 2: Local(G0...hmax , C̃0...hmax , P )

h← 01

repeat2

(G, C)← (Gh, Ch)3

repeat4

forall free v ∈ V do5

C ← arg max
C=C(u),u∈N(v)

dQ↪→(v, C)
6

if dQ↪→(v, C) > 0 then move(v, C)7

if dQ↪→(v,new Cluster) > 0 then move(v,new Cluster)8

until no more changes9

Ch ← C10

(Gh+1, C̃h+1)← contract(Gh, Ch, P )11

h← h+ 112

until no more real contractions13

C(G0)← unfurl(Ch−1)14

We again sketch out an algorithm which serves as the core for both a static and a dynamic variant
of this approach, as shown in Algorithm 2. As the input, this algorithm takes a hierarchy of graphs and
preclusterings and a search space policy P . Policy P affects the graph contractions, in that P decides which
nodes of the next level graph should be free to move. Note that the input hierarchy can also be flat, i.e.,
hmax = 0, then line 11 creates all necessary higher levels. Roughly speaking, each iteration of the algorithm’s
outer loop takes the preclustering of the current level and turns it into a clustering.

Again posing as a pseudo-dynamic algorithm, the static variant (as in (Blondel, Guillaume, Lambiotte,
and Lefebvre 2008)), sLocal, passes only (Gt,C̃V ,P ) to Local, where C̃V means that it starts with singletons
and all nodes freed, instead of a proper preclustering. The policy P is set to tell the algorithm to also start
from scratch on all higher levels and to not work on previous results in line 11, i.e., in C̃h+1 again all nodes
in the contracted graph are free singletons.
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The dynamic variant, dLocal, remembers its old results. It passes the changed graph, a current precluster-
ing of it and all higher-level contracted structures from its previous run to Local: (Gt, G

1,...,hmax

old , C̃, C1,...,hmax

old , P ).

In level 0, the preclustering C̃ defines the set of free nodes. In levels beyond 0, policy P is set to have the
contract-procedure free only those nodes (or their neighbors as well, tunable by policy P ) of the old next-
level clustering Ch+1, that have been affected by lower level changes just conducted, which yields C̃h+1 to be
worked on next.

Roughly speaking, dLocal starts by letting all free (elementary) nodes reconsider their cluster. Then it
lets all those (super-)nodes on higher levels reconsider their cluster, whose content has changed due to lower
level revisions. Thus, a run of Algorithm 2 avoids recomputing unrelated regions of the graph and resolving
ambiguous or near-tie situations in a complementary fashion without necessity.

Time-Dependent Local Greedy Suppose we face a problem instance where, despite a steady dynamicity
in the graph, we are rather infrequently required to report a new clustering. Along the lines of the procedures
described above, we could either use a static algorithm, arguing that after very large changes smoothness
must be abandoned anyway, or we could employ a dynamic algorithm and either let it accumulate a huge
search space (eventually becoming static), or have it eagerly maintain up-to-date clusterings. For suchlike
instances we thus briefly abandon our claim that a small search space suffices for implicitly bringing about
smoothness, and propose a third, rather obvious alternative methodology: It has been observed by Good,
de Montjoye, and Clauset (2009) that for modularity , the landscape of near-optimal clusterings is broad; if
now a change is large and many equally good solutions exist, why not try to mildly bias a static algorithm
towards its previous result?

We follow Chakrabarti, Kumar, and Tomkins (2006) and explicitly enforce smoothness by shaping into
an objective function TDα a convex combination of modularity and the Rand index: TDα := α · (1 −
Rg(Cold, Cnew)) + (1 − α) · mod(Cnew).6 Such an objective function embodies a scalable trade-off between
quality and smoothness and could thus be used by a standard static algorithm. However, for many distance
measures a re-formulation as an objective function for the case that one of the clusterings to be compared
is not fixed (but is to be determined) is not immediately obvious. In the following we show how to do this
for the graph-structural Rand index. The traditional Rand index can similarly be incorporated. We restrict
ourselves to building upon Local, as we shall later see that it is more reliable than Global; the algorithm we
thus derive is coined tdLocal@α.

Consider an old graph G = (V,E) and a changed, new graph G′ = (V ′, E′) with clusterings C and C′,
respectively, and set E′′ = E ∩ E′. Using δuv and δ′uv as in Equation 2 for C and C′, respectively, we can
rewrite Rg from Section 1.5 as

Rg(C, C′) = 1− 1

|E′′|
∑

{uv}∈E′′

( δuvδ
′
uv︸ ︷︷ ︸

=1 if {uv}∈E′′
11

+ (1− δuv)(1− δ′uv)︸ ︷︷ ︸
=1 if {uv}∈E′′

00

) (3)

= 1− 1

|E′′|
∑

{uv}∈E′′

(1− δuv + δ′uv · (2δuv − 1)) (4)

Being a contribution to the above term, let us define dS(u, v) := 1
|E′′| (2δuv − 1). Then we can see that

1−Rg(C, C′) changes by ∑
v∈Cb,{u,v}∈E′′

dS(u, v)−
∑

w∈Ca,{u,w}∈E′′

dS(u,w) , (5)

if we move u out of Ca and into Cb. We can thus annotate edges {u, v} ∈ E′′ by dS, explicitly ignoring
all discontinued e ∈ E \ E′ and all new {u, v} ∈ E′ \ E. This view is convenient, algorithmically, since for
computing changes dQ↪→(u, v) in modularity in Algorithm 2 (lines 6, 8), we proceed similarly: As suggested
by Equation 2, we record for each edge e = {u, v}, the change in modularity that putting v and u into

6Observe that since Rg is a distance measure, which we whish to minimize, we need to use 1−Rg for combining
it with modularity , which we whish to maximize.
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the same cluster incurs. In order to actually use TDα, we can therefore simply replace the term dQ↪→ in
Algorithm 2 by ((1−α)·dQ↪→+α· 2δuv−1

|E′′| ) and use this term as edge value just as the purely modularity-based

version of the algorithm does (see, e.g., (Blondel, Guillaume, Lambiotte, and Lefebvre 2008)).7 By design,
Rg does not require us to do any work for disconnected pairs.

One additional observation reveals that employing TDα with any α ∈ [0, 1] allows us to use Algorithm 2
in the very way we stated it. In line 6 (8) we use the fact that v may only move to one of its neighbors’ clusters
(or start a new one) to strongly limit v’s options. Pleasantly, this does not change when using TDα: Suppose
we move node v from cluster C1 into a nonempty cluster C2 with C2 ∩N(v) = ∅. Since no edges lead from
v into C2, moving v into C2 does not affect TDα. By contrast, moving v out of C1 might do so. However,
putting v into a new cluster has exactly the same effect (but is always strictly favored by modularity). Thus,
we need not check any additional options for v when using TDα, and avoid additional asymptotic runtime.

ILP While optimal modularity is out of reach, the problem can be cast as an ILP (Brandes, Delling,
Gaertler, Görke, Höfer, Nikoloski, and Wagner 2008). Based on Equation 2, a (binary) distance relation X
indicates whether elements are in the same cluster (set Ṽ = V for now):

X (Ṽ ) := {Xuv : {u, v} ∈
(
Ṽ

2

)
} with Xuv =

{
0 if C(u) = C(v)

1 otherwise
, (6)

constrained by ∀{u, v, w} ∈
(
Ṽ

3

)
:


Xuv +Xvw −Xuw ≥ 0

Xuv +Xuw −Xvw ≥ 0

Xuw +Xvw −Xuv ≥ 0

, X ∈ {0, 1} , (7)

set as to minimize modILP(G, CG) =
∑

{u,v}∈(Ṽ
2)

(
ω(u, v)− ω(u) · ω(v)

2 · ω(E)

)
Xuv . (8)

To ensure the properties of an equivalence relation, Equation 7 represents transitivity, we can omit the
other two: Reflexivity, Xuu = 0, is automatically ensured since a node is always in the same cluster as itself.
Symmetry, Xuv = Xvu, is ensured since there is only one such variable. Note that the definition of Xuv

renders this a minimization problem.
Since runtimes for the full ILP reach days for more than 200 nodes, we neither tackle a pure version

nor one based on TDα, tempting though that might be. A promising idea pioneered by Hübner (2008)
is to solve a partial ILP (pILP), using Ṽ ( V . Such a program takes a preclustering—of much smaller
complexity—as the input, and solves this instance, i.e., finishes the clustering, optimally via an ILP; a
singleton preclustering yields a full ILP (Ṽ = V ). We introduce two variants, (i) the argument noMerge
prohibits merging pre-clusters, and only allows free nodes to join clusters or form new ones, and (ii) merge
allows existing clusters to merge. For both variants we need to add constraints and terms to Equations 6
and 7 and change Equation 8.

For (i), variables Y indicating the distance of node u ∈ Ṽ to cluster C ∈ C̃ are introduced (again binary,
i.e., 0 iff u ∈ C) and triplets of constraints similar to Equation 7 ensure their transitive consistency with X .
Moreover a node must only join one cluster, and the target function must evaluate such joins. Formally this
translates to using Equations 6 and 7 plus the following:

Y(Ṽ , C̃) := {YuC : {u,C} ∈ Ṽ × C̃} with YuC =

{
0 if C(u) = C

1 otherwise
, (9)

constrained by ∀{u, v, C} ∈
(
Ṽ

2

)
×C̃ :


Xuv + YuC − YvC ≥ 0

Xuv + YvC − YuC ≥ 0

YuC + YvC −Xuv ≥ 0

, YuC ∈ {0, 1} (10)

7Note that when contracting (line 11), we need to handle the contributions separately.
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Table 2: Reactions of the algorithms to graph events. Isolated nodes are made singletons when inserted and simply
deleted when removed. With “→ S” we indicate that a prep strategy prepares a preclustering. Algorithm tdLocal@α
is covered by sLocal.

cause algorithms’ reactions

event sGlobal dGlobal sLocal dLocal dILP dEOO

∆ − → S − → S → S, pILP(args) -

t+ 1 Global Global Local(Gt Local(G1...hmax
t−1 , - EOO(Gt+1,

(Gt, CV ) (Gt, C̃) CV , all) C̃, C1...hmax
t−1 , P ) Ct+1, args)

and also by ∀u ∈ Ṽ :
∑
C∈C̃

YuC ≥ k − 1 (a node’s cluster must be unique), (11)

as to minimize mod pILP
no merge

(G, C) =
∑

Xuv∈X (Ṽ )

(
ω(u, v)− ω(u) · ω(v)

2ω(E)

)
Xuv (12)

+
∑

YuC∈Y(Ṽ ,C̃)

(∑
w∈C

(
ω(u,w)− ω(u) · ω(w)

2ω(E)

))
YuC

In the following we only roughly sketch out case (ii). If clusters are allowed to merge, we additionally need
variables ZCC′ for the distance between clusters, constrained just as in Equation 7. Details on this formulation
can be found in (Görke, Maillard, Staudt, and Wagner 2010b). Note that if in addition to the merging of
clusters we also allow splitting, we actually arrive at the full ILP again.

The dynamic clustering algorithms which first solicit a preclustering and then call pILP are called dILP.
Note that they react on any edge event; accumulating events until a time step occurs can result in prohibitive
runtimes.

Table 1: EOO operations, allowed/disallowed via pa-
rameters.

operation effect

merge(u,v) C(u) ∪ C(v)
shift(u,v) C(u)− u, C(v) + u
split(u) ({u}, C(u) \ u)← C(u)

Elemental Operations Optimizer Method EOO per-
forms a bounded number of operations, trying to increase
the quality. Specifically, we allow moving (to a neighbor)
or splitting off (isolating) a node and merging its cluster
with one of the others, as listed in Table 1. In a random
order, for each node the most beneficial of these opera-
tions is executed, terminating if either no node admits any improvement or if some maximum number opmax

of operations have been executed. Our dynamic algorithm dEOO (or dEOO@opmax) simply calls EOO at each
time step, doing nothing in between. Thus, no search space is accumulated for EOO to focus on; instead,
the algorithm simply tries to improve all parts of its previous clustering as to better fit the changed graph,
ignorant of the actual changes that have taken place. We can view EOO as a control, as it has all the options
dLocal and dGlobal together have, but lacks both a pool of free nodes and higher level capabilities. EOO or
very similar tools for local optimization can also be used as post-processing tools.

2.2 Strategies for Building the Preclustering

We now describe prep strategies which generate a preclustering C̃, i.e., define the search space. We distinguish
the backtrack strategy, which refines a clustering and is only applicable to Global, and subset strategies,
which free nodes. The rationale behind the backtrack strategy is that selectively backtracking the clustering
produced by Global enables it to respect changes to the graph. On the other hand, subset strategies are based
on the assumption that the effect of a change on the clustering structure is necessarily local. Both output a
half-finished preclustering. We detail the two approaches in the following two subsections.
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Table 3: Overview of how strategies handle graph events. Changes to edges’ weights are analog to creations/removals.
Degree-0 nodes are universally made singletons when inserted and ignored when removed.

cause reaction

event BT BU, Ṽ = N, Ṽ = BN, Ṽ =

E + {u, v}

{
sep(u, v) C(u) = C(v)

iso(u), iso(v) C(u) 6= C(v)
C(u) ∪ C(v) Nd(u) ∪Nd(v) BFS{u, v}|s

E − {u, v}

{
iso(u), iso(v) C(u) = C(v)

− C(u) 6= C(v)
C(u) ∪ C(v) Nd(u) ∪Nd(v) BFS{u, v}|s

2.3 Subset Strategies

A subset strategy is applicable to all dynamic algorithms. It frees a subset Ṽ of individual nodes that need
reassessment and extracts them from their clusters. We distinguish three variants which are all based on the
hypothesis that local reactions to graph changes are appropriate. Consider an edge event involving {u, v}.
The breakup strategy (BU) marks the affected clusters Ṽ = C(u) ∪ C(v); the neighborhood strategy (Nd)
with parameter d marks Ṽ = Nd(u) ∪ Nd(v), where Nd(w) is the d-hop neighborhood of w; the bounded
neighborhood strategy (BNs) with parameter s marks the first s nodes found by a breadth-first search
simultaneously starting from u and v.

2.4 Backtrack Strategy

The backtrack strategy (BT) records the merge operations of Global and backtracks them if a graph modifi-
cation suggests their reconsideration. We rigorously detail in (Görke, Maillard, Staudt, and Wagner 2010b)
what we mean by “suggests”, but for brevity we just state that the actions listed for BT provably require
very little asymptotic effort and offer Global a good chance to find an improvement. Speaking intuitively, the
reactions to a change in (non-)edge {u, v} are as follows (weight changes are analogous): For intra-cluster
additions we backtrack those merge operations that led to u and v being in the same cluster and allow
Global to find a tighter cluster for them, i.e., we separate them. For inter-cluster additions we track back u
and v individually, until we isolate them as singletons, such that Global can re-classify and potentially merge
them. Inter-cluster deletions are not reacted on. On intra-cluster deletions we again isolate both u and v such
that Global may have them find separate clusters. For more details on these operations see (Görke, Maillard,
Staudt, and Wagner 2010b). Note that this strategy is only applicable to Global; conferring it to Local is
neither straightforward nor promising as Local is based on node migrations in addition to agglomerations.
Anticipating this strategy’s low runtime, we can give a bound on the expected number of backtrack steps for
a single call of the crucial operation isolate. We leave its rather technical proof to (Görke, Maillard, Staudt,
and Wagner 2010b).

Theorem 1. Assume that a backtrack step divides a cluster randomly. Then, for the number I of steps
isolate(v) requires, it holds: E{I} ∈ Θ(lnn).

3 Experimental Evaluation of Dynamic Algorithms8

3.1 Instances

We use both generated graphs and real-world instances. We briefly describe them here, but for more details
please see (Görke and Staudt 2009) and (Hübner 2008).

8For implementation notes see App. 4, supplementary information is stored at
i11www.iti.uni-karlsruhe.de/projects/spp1307/dyneval
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Random Graphs {ran} Our Erdős-Rényi-type generator builds upon (Brandes, Gaertler, and Wagner
2003) and adds to this dynamicity in all graph elements and in the clustering, i.e., nodes and edges are
inserted and removed and ground-truth clusters merged and split, always complying with sound probabilities.
Our generator and a ready-to-use software package are thoroughly described in (Görke and Staudt 2009);
we here briefly summarize its behavior. The generator’s ground-truth clustering defines edge probabilities
(pin inside clusters and pout in between) and thereby steers how the graph evolves. Roughly speaking, within
ground-truth clusters edges accumulate and in between they become sparse. The generator additionally
maintains a reference clustering, which follows the ground-truth clustering, as soon as changes in the latter
actually manifest in the edge structure; we use this reference clustering to compare our algorithms to. We
conducted experiments for a large number of settings, varying size, density, node/edge-volatility, stability
of clusters, etc., and in the following only give representative plots, and point out specific peculiarities. A
number of plots uses a graph coined G1, one of our simpler test instances. It is is used in many examples, as
behavior on it is largely archetypal; Figure 2 depicts its rough statistics.
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(a) Numbers of nodes end edges, this instance does
not allow node events but only edge events for well
controlled experiments. G1 uses b = 10 atomic events
per time step.

0 500 1000 1500 2000

0.5

1.0

1.5

2.0

(b) Numbers and types (split, merge) of ongoing
changes in the clustering, plateaus indicate that a
ground-truth change has not yet been reacted to by
the reference, i.e., arguably is not yet well visible in the
graph.

Fig. 2: Graph G1, non-default parameters of its generation: tmax = 2k, n0 = 1k, |C| = 20, b = 10, pω = 10−3

(=P [cluster-event/time step]), pin = 0.1, pout = 0.005.
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n
Fig. 3: Nodes and edges of Ge.

EMail Graph Ge The network of email contacts at
the department of computer science at KIT is an ever-
changing graph with an inherent clustering: Work-
groups and projects cause increased communication.
We weigh edges by the number of exchanged emails
during the past seven days, thus edges can completely
time out; degree-0 nodes are removed from the net-
work. This network, Ge, has between 100 and 1500
nodes depending on the time of year, and about 700K
events spanning about 2.5 years. It features a strong
power-law degree distribution. Fig. 3 shows the tem-
poral development of this graph in terms of n (lower)
and m (upper) per 100 events. The first peak stems
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from a spam attack in late ’06, the two large drops from Christmas breaks and the smaller drops from spring
and autumn breaks.

arXiv Graphs {arx} Since 1992 the arXiv.org e-Print archive9 is a popular repository for scientific e-
prints, stored in several categories alongside timestamped metadata. We extracted networks of collaboration
between scientists based on coauthorship. For each e-print we add equally weighted clique-edges among the
contributors such that each author gains a total edge weight of 1.0 per e-print contributed to; see Fig. 4 for
three examples. We let e-prints time out after two years and remove disconnected authors. As these networks
are ill-natured for local updates, we shall use them as tough trials. We show results for two categories that
feature a large connected component.

3.2 Fundamental Results

For the sake of readability, we use a moving average in plots for distance and quality to smoothen the raw
data, separately looking at variances. We consider the criteria quality (modularity), smoothness (Rg) and
runtime (ms), and additionally |C|. Generally speaking, the x-axis always indicates the current time step,
and the y-axis gives the measurement as described in the corresponding legend.

Behavior of dEOO. In a first feasibility test, dEOO generally falls behind the other algorithms in terms
of quality; the more severely (up to 10%), the more volatile and clear the observable clustering is. On some
graphs dEOO manages to keep up quite a while, before eventually falling behind. We generally observed that
very few operations were actually conducted by dEOO; on most graphs (e.g., Ge) not even opmax = 10 was
a limiting value. This indicates that dEOO lacks the ability to sufficiently renovate the clustering—owing
to it being unable to reconsider a larger number of nodes at once. Exemplary plots for quality on Ge and a
random graph are shown in Figures 5 and 6. As a consequence, smoothness is often slightly better than for
other dynamic algorithms, runtimes are comparable (independent of opmax), and the number of identified
clusters is comparably low on the average (as large-scale splits of clusters cannot be performed). For some
random graphs with no significant reference clustering, dEOO managed to compete well in terms of quality.
Generally speaking, dEOO used as the sole technique to update a clustering is ill-suited, as it lacks the
abilities to operate more generously on a freed search space of nodes and to perform compound operations
(this does not devalue its potential as a postprocessing tool).

Parameters of Local. It has been stated by Blondel, Guillaume, Lambiotte, and Lefebvre (2008) that the
order in which Local considers nodes is irrelevant. In terms of average runtime and quality we can confirm
this for sLocal, though a random order tends to be slightly less smooth; for dLocal the latter observation
does not hold. Since a random order is likely to be more robust, we universally use it for Local; we divert

9Website of e-print repository: arxiv.org; for our tools for collecting and processing the data see i11www.iti.uni-
karlsruhe.de/projects/spp1307/dyneval .

Fig. 4: ArXiv category Nuclear Theory, containing 33k e-prints, after ’01, ’05 and ’09.
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Fig. 5: Modularity on the first quarter of Ge, b = 10:
(bottom to top) both EOO@10 and EOO@100 fail to
follow dLocal@BN8, dGlobal@BN8 and dGlobal@BNBT .
Larger batches to do not help, see Figure 20.
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Fig. 6: Modularity on G′1 (G1 with increased cluster-
ing volatility), b = 1: (bottom to top) EOO@10 and
EOO@100 lag behind the reference and dLocal@BN8,
dGlobal@BN8 and dGlobal@BNBT .

plots on discrepancies between orders to (Görke, Maillard, Staudt, and Wagner 2010b) for brevity. We found
that considering only affected nodes or also their neighbors in higher levels, does not affect any criterion on
average (we omit plots on this). Thus we prefer the affected policy, being the simpler variant.

pILP Variants. Allowing the ILP to merge existing clusters takes longer, and clusters coarser—which is
quite intuitive—but also yields a slightly worse modularity. We conjecture that the reason for this is that
merging invites hazardous local optima. We made this observation on almost all tested instances, and we
therefore reject merge for dILP. In terms of the number of clusters, merge and noMerge roughly bound both
dLocal and dGlobal from below and above, respectively; see Figure 18 for an example.

Fig. 7: Modularity for dLocal, dGlobal, dILP(noMerge) and
dILP(merge) on the first quarter of Ge, batch size 1, strategy
BN8.

Heuristics vs. dILP. A striking observation
about dILP is the fact that it yields worse quality
than dLocal and sLocal with identical prep strate-
gies, as shown in Fig. 7. Intuitively speaking, dILP
solves similar problems (using potentially differ-
ent preclusterings but the same set of free nodes)
in each time step as the other real heuristics do,
but dILP solves them optimally. We thus clearly
expect dILP to yield better quality—but this does
not happen. Being locally optimal seems to over-
fit and get stuck in inferior local optima, a phe-
nomenon that does not weaken over time and per-
sists throughout most instances. Together with
its high runtime and only small advantages in
smoothness, dILP is ill-suited for updates on large
graphs.

Static Algorithms. Briefly comparing sGlobal and sLocal we can state that sLocal consistently yields better
quality and a finer yet less smooth clustering. This observation has been made for other (huge) instances
by Blondel, Guillaume, Lambiotte, and Lefebvre (2008) and we can confirm it on all our generated instances;
these results are paralleled by the dynamic counterparts. An exception is instance Ge, as discussed later. In
terms of speed, however, sGlobal hardly lags behind sLocal, especially for small graphs with many connected
components, where sLocal cannot capitalize on its strength of quickly reducing the size of a large instance.

3.3 Prep Strategies

We now determine the best choice of prep strategies and their parameters for dGlobal and dLocal. In partic-
ular, we evaluate Nd for d ∈ {0, 1, 2, 3} and BNs for s ∈ {2, 4, 8, 16, 32}, alongside BU and BT. Throughout
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our experiments d = 0 (or s = 2) proved insufficient, and is therefore ignored in the following. For dLocal,
increasing d has only a marginal effect on quality and smoothness, while, empirically, runtime grows sub-
linearly, which suggests d = 1. Similar facts hold for other instances and batch sizes. Note that large batch
sizes b let a prep strategy accumulate many free nodes yielding a larger search space; however, we observed
that a small b does not benefit from larger search spaces. For dGlobal, Nd risks high runtimes for depths
d > 1, especially for dense graphs. In terms of quality N1 is the best choice, higher depths seem to deteriorate
quality—a strong indication that large search spaces contain local optima. Smoothness approaches the bad
values of sGlobal for d > 2. For BN, increasing s is essentially equivalent to increasing d, only on a finer scale.
Consequently, we can report similar observations as for Nd above. For dLocal, BN4 proved slightly superior.
dGlobal’s quality benefits from increasing s, but again at the cost of speed and smoothness, so that BN16 is
a reasonable choice.

The strategy which simply breaks up all clusters affected by changes, BU, clearly falls behind in terms
of all criteria compared to the other strategies, and often mimics the static algorithms. As expected, we can
discard this strategy and rather consider it as a “control”. Note that this is a very basic confirmation of the
assumption that local updates are a good idea.

dGlobal using BT is by far the fastest algorithm, confirming our theoretical predictions from Sec. 2.2, but
still produces competitive quality. However, it often yields a smoothness almost in the range of sGlobal.

Summarizing, our best dynamic candidates are the algorithms dGlobal@BT and dGlobal@BN16 (achieving
a speedup over sGlobal of up to 1k and of 20 at 1k nodes, respectively) and algorithm dLocal@BN4 (with a
speedup of 5 over sLocal). Figure 21 exemplarily illustrates a comparison of prep strategies for dGlobal in
terms of modularity on G1.
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Fig. 8:Rg on G1: sGlobal and sLocal are less smooth (fac-
tor 100) than dLocal@BN4, dGlobal@BN16 (bottom);
dGlobal@BT competes well.
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Fig. 9: Modularity on G1: dGlobal@BT (lower blue) and
dGlobal@BN16 (upper blue) beat sGlobal; dLocal@BN4

beats sLocal.

3.4 Comparison of the Best and their Static Counterparts

We now take a focused look at those dynamic clustering algorithms and prep strategies, which we observed
to be the most promising and compare them with their static counterpart. As a general observation, as
depicted in Fig. 9, each dynamic candidate beats its static counterpart in terms of modularity. On the
generated graphs, dLocal is superior to dGlobal, and faster, this is not the case for the email network—here
both Global algorithms beat each Local algorithm. In terms of smoothness (Fig. 8), dynamics (except for
dGlobal@BT) are superior to statics by a factor of ca. 100, but even dGlobal@BT beats them. For large batch
sizes (e.g., 100 and beyond), dynamics are still clearly smoother, but eventually lag behind the statics in
terms of quality by a few percent.
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3.5 Dynamic Algorithms React Quickly to Changing Clusterings

Throughout our experiments we observed that the dynamic algorithms exhibit the ability to react quickly
and aptly to changes in the ground-truth clustering. Figure 10 shows an example where our best dynamic
algorithms quickly cope with rapid changes to the clustering—in contrast to the reference clustering, with its
rather clumsy, stepwise adaption: The very simple method of the reference clustering to follow the ground-
truth relies solely on how clearly the split of a ground-truth cluster, or the merge of two ground-truth
clusters has manifested in terms of the affected edge mass. The changes in the ground-truth clustering are
visible by the drops in the reference quality. At each such change, after brief depressions, the modularity
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Fig. 10: Modularity on a long (10k×10 events) random
graph. Reference exhibits jumps where the clustering
changes, before which it clearly decreases. In contrast,
the dynamics adapt quickly to changes. Top to bot-
tom: dLocal@N1, dLocal@BN4, reference, dGlobal@BT,
dGlobal@BN8 dGlobal@BN16 which does not benefit from
its larger search space.

values of all algorithms rise to their old levels.

Only dGlobal@BN16 seems to need some more time
to adapt to the last clustering event. This instance is
a growing network with 10K changes of batch size 10,
its few changes in the clustering are rapidly realized
by a decent frequency of node insertions in ways con-
sistent with the coming clustering. It is thus a more
“difficult” instance for an algorithm to prove its re-
activity; on other instances we observed even better
results. The quick reactivity of a dynamic algorithm
is of particular importance as, clearly, static counter-
part algorithms are not subject to such issues, since
they “forget ” their previous work.

3.6 Time-dependent Static Algorithms for
Large Batches

The effect of scaling parameter α on the quality of
tdLocal@α is showcased in Figure 11. As expected, it
is immediate that quality monotonously decreases with increasing α, significantly so beyond ∼ 0.4, since
with a maximum modularity of about 0.8 on Ge, smoothness then gets the upper hand (see formulas in
Section 2.1). Compared to sLocal we observed a doubling in smoothness for tdLocal@0.1 already, with a
slower but monotonous improvement for larger α. Runtimes did not consistently differ. Keeping an eye on
the average modularity , which impacts α’s effect, we focus on tdLocal@0.2, which is a reasonable compromise.
Having compete tdLocal@0.2 against sLocal and dLocal@BN4 on a long random graph with 1000 time steps
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Fig. 11: Modularity, on Ge: batch size 100 e-mails:
top to bottom: tdLocal@0.1, tdLocal@0.2, tdLocal@0.3
tdLocal@0.4 and tdLocal@0.6.
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Fig. 12: Modularity, on Ge: batch size 100 e-mails:
top to bottom: sLocal, tdLocal@0.2, dGlobal@BN128,
dGlobal@N1,
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with 1000 events each, we can confirm that the time-dependent strategy holds the best of both worlds for
large batches: Figure 13 plainly exemplifies how tdLocal@0.2 equals the conventional static algorithm in
quality, and matches the dynamic algorithm in terms of smoothness. In fact, its average quality is even
slightly higher than that of sLocal, mildly suggesting that stability can even help quality; we observed this
phenomenon on several instances. Runtimes are still clearly lower for BN4, however, larger search spaces
let dLocal eventually approach sLocal. We observed that high values of α let tdLocal very mildly favor finer
clusterings; by Equation 5 it is not hard to see that this is due to Rg’s tendency to first put a set of nodes
into a separate cluster, if modularity intends to migrate them into a different cluster.

3.7 Trials on arXiv Data

As an independent data set, we use our arXiv graphs for testing our results from Ge and the generated
instances. These graphs consist solely of glued cliques of authors (papers), established within single time
steps where potentially many new nodes and edges are introduced. Together with modularity’s resolution
limit (Fortunato and Barthélemy 2007) and its fondness of balanced clusters and a non-arbitrary number
thereof in large graphs (Good, de Montjoye, and Clauset 2009), these degenerate dynamics are adequate
for fooling local algorithms that cannot regroup cliques all over as to modularity’s liking: Static algorithms
constantly reassess a growing component (Figure 4), while dynamics using N or BN will sometimes have no
choice but to further enlarge some growing cluster. Locally this is a good choice, but globally some far-away
cut might qualify as an improvement over pure componentwise growth.

However, we measured that dGlobal@BT easily keeps up with the static algorithms’ modularity, being
able to adapt its number of clusters appropriately. The dynamic algorithms using other prep strategies
do struggle to make up for their inability to re-cluster; however, they still only lag behind by about 1%.
Figures 14 and 15 show modularity for coarse and fine batches, respectively, using the arXiv category Nuclear
Theory (1992-2010, 33K e-prints, 200K elementary events, 14K authors). As before, dynamics are faster and
smoother. For the coarse batches, speedups of 10 to 2K (BT) are attained; for fine batches, these are 100 to
2K. In line with the above observations, their clusterings are slightly coarser (except for dGlobal@BT). See
Apps. B and C for insightful further results that exhibit dGlobal@BT’s appropriateness.

Figure 16 exemplifies for b = 200 e-prints (on Nuclear Theory) how tdLocal performs, compared to its pure
static and the dynamic counterpart. The results clearly confirm that mildly pushing a clustering towards
its previous structure does not have to be payed for in terms of modularity , but significantly improves
smoothness. In this setting, except for runtime, dLocal lags behind the time-dependent approach. Cross-
comparing with results for dGlobal@BT (as illustrated in Figure 17), we can state that the global backtrack
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(a) Modularity, {ran}, b = 1000.
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(b) Rg, {ran}, b = 1000.

Fig. 13: Results on a random graph with around 1000 nodes, 10k × 1k events, and expected intra- and inter-cluster
degrees of 6 and 4, respectively; 12 cluster events. For quality (top to bottom) tdLocal@0.2 even bests sLocal with
dLocal@BN4 having trouble to catch up after a series of cluster events (completed ones, though). In terms of distance
tdLocal@0.2 equals dLocal@BN4 with sLocal struggling at 3 times the formers average distance.
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Fig. 14: Modularity, {arx}, batch size 50 e-prints: Back-
tracking (dGlobal@BT) easily follows the static algo-
rithms (sLocal and sGlobal); even dLocal@BN4 and
dGlobal@BN16 lag behind by only ∼ 1%.

Fig. 15: Modularity, {arx}, batch size 1 e-print, dynamics
only: dGlobal@BT excels, followed by dLocal@N1 and
dLocal@BN4 and then dGlobal@BN16 and dGlobal@N1

which don’t benefit from finer batches.

strategy competes very well with the time-dependent strategy, with the slight advantage of the latter in
terms of both quality and smoothness getting larger with larger batches. If for such cases runtime remains
a central issue, dGlobal@BT is still by far the best choice for graphs like {arx} (see Figure 22 for analogous
observations on Ge).

3.8 Summary of Insights

Since we deal with a confusing array of degrees of freedom in the discussion of results above, we summarize
our findings in the following. The outcomes of our evaluation are very favorable for the dynamic approach in
terms of all three criteria. They are quicker, smoother and yield higher quality clusterings, and in addition,
they are by no means sluggish, but adapt to ground-truth changes quickly without major dents in quality.
We observed that dLocal is less susceptible to an increase of the search space than dGlobal. However, our
results argue strongly for the locality assumption in both cases—an increase in the search space beyond a
very limited range is not justified when trading off runtime against quality. On the contrary, quality and
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(a) Modularity, {arx}, b = 200 e-prints.
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(b) Rg, {arx}, b = 200 e-prints.

Fig. 16: Nicely stacked as expected, we find (top to bottom for modularity) sLocal, tdLocal@0.1, tdLocal@0.2,
tdLocal@0.4 and tdLocal@0.6, with sLocal@BN4 ranging somewhere between 0.4 and 0.6. This order is reversed
for distance Rg, with only tdLocal@0.4 being an exception and ranging around tdLocal@0.1. The dynamic algorithm
is still an order of magnitude faster. Other large batch sizes yield similar results.
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(a) Modularity, {arx}, b = 200 e-prints.
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Fig. 17: Almost equivalent in terms of quality are (top to bottom for modularity) sLocal, tdLocal@0.1, tdLocal@0.2
and dGlobal@BT, with even tdLocal@0.3 ranging less than 1% behind. In terms of smoothness, the parameter of
tdLocal hardly matters: all lie at about 60% the distance of dGlobal@BT and sLocal.

smoothness may even suffer for dLocal. Consequently, N and BN strategies with a limited range are capable
of producing high-quality clusterings while excelling at smoothness. The BT strategy for dGlobal yields
competitive quality at unrivaled speed, but at the expense of smoothness.

For dLocal a gradual improvement of quality and smoothness over time is observable, which can be
interpreted as an effect reminiscent of simulated annealing, a technique that has been shown to work well
(while being rather slow) for modularity maximization (Guimerà and Amaral 2005). In fact, our findings
on the quality that dILP yields—an algorithm that largely impedes the escape from a local maximum—
corroborate this: the combination of a prep strategy and a maximization heuristic surpassed dILP. In some
instances we even observed a behavior that resembles an asymptotic convergence towards a “consolidated”
result.

Although the majority of our findings can be claimed to be very general with respect to the different in-
stances we tested, our data indicates that the best choice for an algorithm in terms of quality may still depend
on the nature of the target graph. In particular we point out that while dLocal surpasses dGlobal on almost
all generated graphs, dGlobal is superior on our real-world instance Ge—independent of the batch size.We
speculate that this is due to Ge featuring a power law degree distribution in contrast to the Erdős-Rényi-type
generated instances. Note that this behavior has not been observed for the static counterparts (Blondel, Guil-
laume, Lambiotte, and Lefebvre 2008). In turn, our arXiv trial graphs, which grow and shrink in a volatile
but local manner, allow for a small margin of quality improvement, if the clustering is regularly adapted
globally (re-balanced and coarsened/refined). Only the statics and dGlobal@BT are able to do this, however,
at the cost of smoothness. Universally, the latter algorithm is the fastest.

Time-dependent static clustering appears superior for large batches, as having dynamics accumulate large
search spaces draws near a purely static algorithm. By contrast, an eager dynamic maintenance of a good
clustering in between time steps avoids this. However, the abovementioned effect that repeatedly stirring up
a clustering allows a dynamic algorithm to escape local optima certainly weakens for long, large and rough
dynamics, which are difficult to react to with a limited search space—even if many trials are allowed.

Concluding, some dynamic algorithm always beats the static algorithms; backtracking is preferable for
locally concentrated or monotonic graph dynamics and a small search space is to be used for randomly
distributed changes in a graph. Large-scale dynamics are best tackled with a mildly time-dependent static
algorithm, if runtime is not the prime concern.
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4 Implementation Notes

We conducted our experiments on up to eight cores, 1 per experiment, of a dual Intel Xeon 5430 running SUSE
Linux 11.1. The machine is clocked at 2.6GHz, has 32GB of RAM and 2× 1MB of L2 cache. Our algorithms
and measures are implemented in Java 1.6.0 13, partially using the yFiles graph library10, and run on a 64-
Bit Server VM. Evaluations, plots and the setups of experiments were conducted via a frontend programmed
in Mathematica (version 7.0.1.0). As priority queue we use a java.util.PriorityQueue. As a data structure
which supports backtrack, instead of using a rather involved fully dynamic union-find structure, we maintain
a similar structure, a binary forest with actual nodes as leaves and the merge operations as internal tree-
nodes.

5 Conclusion

As the first work on modularity-driven clustering of dynamic graphs, we deal with the NP-hard problem of
updating a modularity-optimal clustering after a change in the graph. We developed dynamizations of the
currently fastest and the most widespread heuristics for modularity-maximization and evaluated them and
a dynamic partial ILP for local optimality. For our fastest update strategy, we can prove a tight bound of
Θ(log n) on the expected number of backtrack steps required. Our experimental evaluation on real-world dy-
namic networks and on dynamic clustered random graphs revealed that dynamically maintaining a clustering
of a changing graph does not only save time, but also yields higher modularity than recomputation—except
for degenerate graph dynamics—and guarantees much smoother clustering dynamics. Moreover, heuristics
are better than being locally optimal at this task, just as a history-oblivious elemental optimizer alone can-
not compete with the proposed algorithms. Surprisingly small search spaces work best, avoid trapping local
optima well and adapt quickly and aptly to changes in the ground-truth clustering, which strongly argues
for the assumption that changes in the graph ask for local updates on the clustering. For large-scale changes,
where a big search space can accumulate, the dynamic algorithms draw near to their static counterparts.
For such settings we proposed and evaluated a time-dependent approach which clusters from scratch but
maximizes an explicit combination of modularity and smoothness; this technique proved to be superior to
the other strategies for large-scale changes.

10Licensed from yWorks for more information, see www.yworks.com .
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A Further Experiments and Various Observations

Fig. 18: Cluster count (on an excerpt of Ge):
dILP(merge) and dILP(noMerge) roughly bound
dLocal and dGlobal from below and above. For merge
(noMerge) merges are hard to revert (emulate).
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StaticNewman2:785 : Maximum Match avg 0.0646
StaticNewman2:785 : Fred & Jain avg 0.0912558
StaticNewman2:785 : Fowlkes-Mallows avg 0.0804927
StaticNewman2:785 : Jaccard avg 0.131191
StaticNewman2:785 : Rand avg 0.0523922

Fig. 19: Different distance measures (for sGlobal on
an excerpt of Ge) strongly agreed, qualitatively, in
our experiments: Jaccard, Fred & Jain, Fowlkes-
Mallows, van Dongen and Rand.
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Fig. 20: Modularity on the first quarter of Ge, b =
100: (bottom to top) as in Figure 5 for b = 10, both
EOO@10 and EOO@100 fail to follow dLocal@BN8,
dGlobal@N1, dGlobal@BN8, dGlobal@BNBT .
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Fig. 21: Modularity on G1 (bottom to top):
dGlobal@BU, dGlobal@BT, dGlobal@BN64,
dGlobal@N2, dGlobal@N1 and dGlobal@BN16.
Distance plots similarly (but inverted), and runtimes
range between the extremes dGlobal@BT (fastest)
and dGlobal@BU.
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(a) Modularity on Ge, b = 500 emails.
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(b) Rg on Ge, b = 500 emails.

Fig. 22: Practically equivalent in terms of quality are (bottom to top for Rg) tdLocal@0.2, tdLocal@0.1, sGlobal, and
dGlobal@BT and sLocal. In terms of distance, for this large batch size, the time-dependent approach is better by a
factor of about 2.
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B Trials with arXiv Data: Category Nuclear Theory

Dynamics and statics, batch size 50: Various dynamics, batch size 1:

Fig. 23: Rg, {arx}: On a very low level, the statics
(sLocal and sGlobal) and dGlobal@BT are slightly less
smooth than dLocal@BN4 and dGlobal@BN16. The
overall level indicates the graph’s stability.

Fig. 24: Rg, {arx}: On an extremely low level, only
dGlobal@BT reacts to the harsh graph changes (see
Fig. 27); dLocal@N1, dLocal@BN4, dGlobal@BN16

and dGlobal@N1 hardly spot out.

Fig. 25: |C|, {arx}: Clearly, dGlobal@BT and the stat-
ics (sLocal and sGlobal) rebalance and reorganize
the clustering, while dLocal@BN4 and dGlobal@BN16

more often enlarge existing clusters.

Fig. 26: |C|, {arx}: As in Fig. 25, dGlobal@BT re-
balances for higher quality; the locals (dLocal@N1,
dLocal@BN4) do slightly better than the globals
(dGlobal@BN16, dGlobal@N1).

Fig. 27: {arx}: The number of nodes (lower blue
plot) and especially the number of edges (upper red
plot) for Nuclear Theory are rather volatile. Clique-
wise growth proves local-unfriendly.

Fig. 28: Runtimes, {arx}: Only dGlobal@BT is
largely unaffected by graph growth. Prep strat-
egy N (dLocal@N1, dGlobal@N1, is slower than BN
(dLocal@BN4, dGlobal@BN16).
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C Trials with arXiv Data: Category Computer Science

Category CS with all subcategories consists of 14K e-prints, 25K authors. We use batch size 10 for dynamics,
compared to statics using batch size 100 in Fig. 34. dGlobal@BT excels.

Fig. 29: Rg, {arx}: Concerning smoothness, all tested
dynamic algorithms (dGlobal@BT, dLocal@BN4,
dLocal@N1, dGlobal@BN16) behave identically.

Fig. 30: Modularity , {arx}: On a very high level, only
dGlobal@BT starts to slightly stand out after a while,
and dGlobal@BN16 falls behind; dLocal@BN4 and
dLocal@N1 hardly differ.

Fig. 31: |C|, {arx}: All algorithms identify a lin-
ear growth in |C| over time; with dGlobal@BT
slightly beyond the others (dLocal@BN4, dLocal@N1,
dGlobal@BN16).

Fig. 32: Runtimes, {arx}: Even clearer than for Nu-
clear Theory, dGlobal@BT scales well, while the other
algorithms slow down more strongly (dLocal@BN4,
dLocal@N1, dGlobal@BN16).

Fig. 33: {arx}: There seems to be an unflinching growth
in popularity of arXiv’s categories of computer sci-
ence. Both the number of nodes (lower blue plot)
and the number of edges (upper red plot) grow
sharply and steadily.

Fig. 34: Modularity, {arx}: Batch size 100 for statics
vs. dGlobal@BT. By margins of 0.01% dGlobal@BT
lies between sLocal and sGlobal. dGlobal@BT has vir-
tually the same Rg and |C| as the statics but is faster
by factors beyond 104.
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