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Chapter 1

Introduction

1.1 Abstract

Photonic Crystals, or PCs, are artificially developed optical materials with periodic di-

electricity. They represent an innovative type of structures with tailor designed properties

and could be considered as semiconductors of the next generation. They are hoped to

become the first step to a technological revolution in computing, communication, optics

and other spheres.

The flow of light is much faster then the electric current, and the idea to use laser light

instead of electricity in information processing and transmission is very tempting. In-

vestigation of new optical materials permitting to capture, to direct and to control the

propagation of the electromagnetic waves is a challenge for physicists and mathematicians.

Theoretically, an appropriate modification of material composition, symmetry, dielectric

periodicity with embedding of defect structures can provide a creation of a semiconductor

applicable to any specific purpose. But because of their microscopic scale comparable

with the wavelength of light, Photonic Crystals are very complicated to fabricate. For

this reason a mathematical simulation plays such a significant role.

For description of light propagation, different techniques have been applied by researchers.

For example, the Finite Difference Time Domain (FDTD) approach was considered by A.
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Taflove in [Taf88]. Another route is to implement Galerkin-type methods with an appro-

priate set of basis functions, like, for instance, plane waves. However, these ways do not

seem to be very useful in modeling of complicated structures with piecewise-continuous

dielectric permittivity because of huge computational resources that they require.

It would be preferable if a simulation method could take into account the Photonic Crys-

tal structure that it deals with. Fortunately, it is possible. There exist basis functions for

a Galerkin approximation which already contain information about dielectric and sym-

metric properties of a particular PC — these are the eigenfunctions of this PC called the

Bloch waves. Although these functions are wide-spread and non-localized, one can use

the advantages that they give to build other, well-localized bases.

The Wannier functions have been introduced by G. Wannier in [Wan37] for description

of insulating crystals and afterwards have been successfully employed in modeling of elec-

tronic orbitals. The idea to draw an analogy between Photonic Crystals and real crystals

and to apply the same functions for PCs first appeared in 2003 in a work of the group of K.

Busch [BMGM+03] and at the same time in a paper of Whittaker and Croucher [WC03].

The Wannier functions have several advantages which make them very attractive for PC

simulation: first, they form a complete orthonormal basis applicable for Galerkin-type

methods; second, being calculated by definition via the Bloch waves, they already contain

the information about the layout of a given PC; and third, they are not unique and thus

can be localized — the existence of exponentially decaying Wannier functions is proved.

The last property is significant: due to the localization of a basis set, the computations

would require less resources which is highly desirable.

The aim of this Ph.D. thesis is to summarize and unify knowledge about the Wannier

functions and to explore several algorithms for construction of maximally localized Wan-

nier functions in application to Photonic Crystals. In Chapter 2 we state the problem

to consider within the thesis — the Transverse Magnetic for of the Maxwell’s equations

— and analyse the properties of its eigenfuctions, the Bloch waves. In Chapter 3 we
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define the Wannier functions as the result of application of the inverse Floquet transform

to the Bloch waves. We study the existence of real, (anti-) symmetric, exponentially

decaying Wannier functions for different types of crystals and give a method of comput-

ing such functions explicitly as the eigenfunctions of the projected position operator in

one-dimensional crystals. This method is implemented numerically. In Chapter 4 we in-

troduce the spread functional as a criterion of localization of the Wannier functions and

explore its properties. Chapter 5 is dedicated to an algorithm of minimization of the

spread functional given by Marzari and Vanderbilt and based on unitary transform of

the Bloch waves. This algorithm we implement numerically in 1D and 2D. In Chapter 6

we consider unitary transform of the Wannier functions and the method of simultaneous

diagonalization of a set of matrices developed by Gygi, Fatterbert and Schwegler. The

numerical results in 1D and 2D are also given. Chapter 7 describes a more general ap-

proach then in Chapter 6 — minimization of the spread under sum-unitary transform of

the Wannier functions which we first introduce in the framework of this thesis. Again,

we compute it numerically for 1D and 2D Photonic Crystals. Chapter 8 refers to the

application of the Wannier functions in physics — particularly, in simulation of Photonic

Crystals with point defects. Finally, the conclusions of the work are given in Chapter 9.

Some numerical aspects of the presented methods one can find in Appendix.
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1.3 List of notations

Symbol Meaning

δm,n the Kronecker symbol: equals to 1, if m = n, and 0 otherwise

δ(f) the Dirac distribution: generalized function with a property δ(f) = f(0)

for continuous f and
∫∞
−∞ f(r)δ(r− a) d r = f(a)

Uf Floquet transform acting on a function f

d the dimensionality of the problem (here 1 or 2)

r ∈ Rd a space vector, d-dimensional

WSC Wigner-Seitz cell — a fundamental domain in Rd: here [0, 1]d

Γ periodicity lattice in real space; here Γ = Zd

R ∈ Γ a node of the lattice Γ

∇ a d-dimensional gradient operator w.r.t. variable r

∆ a Laplacian operator ∇ · ∇ w.r.t. vector r

k ∈ Rd a dual space vector, also called a crystal momentum, d-dimensional

BZ the (first) Brillouin zone — a fundamental domain in the reciprocal space:

here [−π, π]d

Γ∗ reciprocal lattice; here Γ∗ = 2πZd

K ∈ Γ∗ a node of the reciprocal lattice Γ∗

∇k a d-dimensional gradient operator w.r.t. variable k

MP Monkhorst-Pack mesh in BZ: a mesh shifted by half-meshsize from the boundary

Sk a stencil of the closest neighbour mesh nodes for a node k

ε(·) crystal permittivity, periodic w.r.t. Γ: ε(r) = ε(r + R)

〈·, ·〉D,ε an inner product 〈f, g〉D,ε =
∫
D
f ∗(r)ε(r)g(r) d r; D is either WSC or Rd
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Symbol Meaning

〈·, ·〉D a shortend notation for 〈·, ·〉D,ε in cases when it is obvious

L2
ε(D) function space L2(D) with a weighted inner product 〈·, ·〉ε; D is WSC or Rd

λn,k the n-th eigenvalue of TM problem corresponding to the n-th Bloch wave

ψn,k(·) the n-th Bloch wave with crystal momentum k

un,k(·) the periodic part of the n-th Bloch wave: un,k(r) = e−ik·rψn,k(r)

wn,0(·) the n-th Wannier function centered at 0

wn,R(·) the n-th Wannier function centered at R ∈ Γ; wn,R(r) = wn,0(r− R)

β a composite band

Nβ the dimensionality of the composite band β

βψ a set of Bloch waves corresponding to the eigenvalues of a composite band β

P k projection onto the span of Bloch waves of a band β,

P k =
∑n1+Nβ−1

n=n1
ψn,k ⊗ ψn,k

P k
u projection onto the periodic parts of Bloch waves of a band β,

P k
u =

∑n1+Nβ−1
n=n1

un,k ⊗ un,k
P projection onto the span of Wannier functions of a band β,

P =
∑n1+Nβ−1

n=n1
wn,0 ⊗ wn,0

Q projection onto the span of other bands except β: Q = Id− P

R̂ projected position operator, R̂ = P rP

Ω spread functional — used as a measure of localization of a set of (Wannier)

functions

ΩI gauge invariant part of the spread functional

ΩD band-diagonal part of the spread functional

ΩOD band-off-diagonal part of the spread functional

ΩD,OD ΩD + ΩOD

ΩI,OD ΩI + ΩOD
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Symbol Meaning

r̄n a special notation for 〈rwn,0, wn,0〉Rd,ε ∈ Rd

〈r2〉n a special notation for 〈r2wn,0, wn,0〉Rd,ε ∈ R+

r̄4n a discrete analogue for r̄n (approximation)

〈r2〉4n a discrete analogue for 〈r2〉n

Uk a unitary transform of the Bloch waves of a band β, a matrix Nβ ×Nβ

WR a sum-unitary transform of the Wannier functions of a band β, a matrix Nβ ×Nβ



Chapter 2

Bloch waves

2.1 Maxwell’s equations. Transverse Magnetic and

Transverse Electric problems

At a macroscopic level a Photonic Crystal is a low-loss dielectric medium (one-, two-

or three-dimensional) with periodic electric permittivity, without free charges and non-

conducting. In some sense it is an optical analogue of an electrical wire where the infor-

mation is transported by photons instead of electrons.

From mathematical point of view, a Photonic Crystal is an infinite linear periodic medium

where the propagation of light is described by the time-harmonic Maxwell’s equations :

−∇× E(r) =
iω

c
H(r), (2.1.1)

∇×H(r) =
iω

c
ε(r)E(r), (2.1.2)

∇ · (ε(r)E(r)) = 0. (2.1.3)

∇ ·H(r) = 0, (2.1.4)

Here E is the electric field, H is the magnetic field, ω is frequency, c is the speed of light

and ε is the electric permittivity of the medium. Here we restrict electric and magnetic

fields E and H to be time-independent, which means that the medium properties depend

12
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on position in space r only. Most of the described Photonic Crystals have no magnetic

properties, for this reason in our considerations the magnetic permeability is assumed to

be 1 everywhere (and thus excluded from the equations above). We also assume that

the electric permittivity ε is scalar and independent of the third space coordinate r3.

Therefore, E and H do not depend on it either.

Since the Maxwell’s equations (2.1.1)-(2.1.4) are formulated for a vector

(E,H) = (E1, E2, E3, H1, H2, H3),

an exclusion of the third space coordinate r3 means that the waves propagate in the plain

(r1, r2) and therefore it is sufficient to study a vector of the form (E1, E2, 0, 0, 0, H3) or

(0, 0, E3, H1, H2, 0) [Kuc01]. Thus the Maxwell’s equations are getting decomposed into

a direct sum of two well-known forms:

−∇ ·
(

1

ε(r)
∇ψ(r)

)
=

ω2

c2
ψ(r) (Transverse Electric),

−∆ψ(r) =
ω2

c2
ε(r)ψ(r) (Transverse Magnetic).

The first equation (TE) describes polarized waves which have the electric field orthogonal

to the the r3 axis while the magnetic field propagates along it, in this case ψ = H3. Anal-

ogously, the second equation (TM) describes the waves with magnetic field orthogonal

to r3 and the electric field parallel to it, and ψ = E3. Here the space vector r and the

operators ∇ and ∆ are two-dimensional in terms of two remaining space coordinates r1

and r2:

r =

 r1

r2

 , ∇ =

 ∂
∂r1

∂
∂r2

 , ∆ =
∂2

∂r2
1

+
∂2

∂r2
2

.

In the framework of this thesis we will follow the second form (Transverse Magnetic prob-

lem). We will take it up as an eigenvalue problem in the following sense: for a fixed piece-

wise periodic function ε consider a partial differential operator with periodic coefficient

LTM = −∆/ε and find its eigenvalues λ = ω2/c2 and the corresponding eigenfunctions ψ:

−∆ψ(r) = λε(r)ψ(r). (2.1.5)
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Considerations analogous to those given here may also be implemented for the Transverse

Electric case.

2.2 Basic notations

In this section we introduce some notations which will be used in all parts of our work.

Let d be a dimensionality of a crystal, it can be equal to 1 or 2.

A Photonic Crystal that we consider is a medium with a certain periodicity. In practice

it means that cylinders of a particular dielectric material are embedded into another

dielectric material so that they form a periodic structure. Let us consider a uniform

square periodic lattice with the centers of the cylinders in the midpoints between its

nodes. Without loss of generality, let it be an integer-valued lattice Zd in real coordinate

space Rd. This lattice is often called Bravais lattice (henceforth denoted by “Γ”). The

smallest cell, or a fundamental domain, of this periodic structure is a unit square. To be

precise, let us consider the square [0, 1]d. In physics this is called Wigner-Seitz cell (in our

further notations “WSC”). This domain is called fundamental, because the whole space

R2 is formed of an infinite number of its repetitions so that

Rd =
⋃
R∈Γ

(WSC + R)

and every vector r ∈ Rd either belongs to the Wigner-Seitz cell r ∈ WSC or has a

“representative” there: r = r′ + R with r′ ∈ WSC and R ∈ Γ. Therefore, a Photonic

Crystal periodic with respect to Γ is completely described by its WSC and can be easily

reconstructed from it.

Now we define the spaces which we are going to work with. Let c0 be the center of the

Wigner-Seitz cell (1
2

in 1D or
[

1
2
, 1

2

]
in 2D). Let ε be a positive piecewise constant periodic

function, in particular, for some ρ0 <
1
2
, let

ε(r) =

 1, r ∈WSC, |r− c0| > ρ0

ε0 6= 1, ε0 > 0, |r− c0| ≤ ρ0

(2.2.1)
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and ε(r + R) = ε(r) for R ∈ Γ (see Figure 2.1).

Figure 2.1: A Photonic Crystal structure

Define ε-weighted inner products by

〈f, g〉WSC,ε =

∫
WSC

f ∗(r)ε(r)g(r) d r, (2.2.2)

〈f, g〉Rd,ε =

∫
Rd
f ∗(r)ε(r)g(r) d r. (2.2.3)

Let L2
ε(Rd) be the space L2(Rd) with the inner product 〈·, ·〉Rd,ε and analogously L2

ε(WSC)

be the space L2(WSC) with the inner product 〈·, ·〉WSC,ε. Obviously, these are Hilbert

spaces with corresponding norms ‖f‖Rd,ε =
√
〈f, f〉Rd,ε and ‖f‖WSC,ε =

√
〈f, f〉WSC,ε.

The mapping f 7→ f/
√
ε is an isometry between L2(Ω) and L2

ε(Ω) where Ω is either WSC

or Rd.

For the cases where the applicable domain of the functions f and g is evident, we will use

simplified notations 〈f, g〉ε and ‖f‖ε.



16

2.3 Floquet theory and the Bloch waves

Now let us introduce a transform U on the Bravais lattice which is called Floquet transform.

Let f ∈ L2
ε(Rd), then

[Uf ](r, k) :=
∑
R∈Γ

eik·Rf(r− R). (2.3.1)

This is an analogue of the Fourier transform in the periodic case. Note that in contrast

to the Fourier transform, the resulting function Uf depends not only on the dual variable

k, but on r as well. k is called quasi-momentum.

We review shortly the main properties of this transform; for a more detailed consideration

one can refer to the literature, e.g. [Kuc01].

First, the Floquet transform is quasi-periodic by r with respect to Γ, this property is called

Floquet condition:

[Uf ] (r + R, k) = eik·R [Uf ] (r, k), R ∈ Γ. (2.3.2)

Second, the Floquet transform is periodic by the quasi-momentum k:

[Uf ] (r, k + K) = [Uf ] (r, k), K ∈ Γ∗ = 2πΓ. (2.3.3)

Here we introduce a reciprocal lattice Γ∗ = 2πΓ, and a corresponding fundamental do-

main [−π, π]d, called Brillouin zone (or first Brillouin zone in some literature sources).

Henceforth we will use notation “BZ” for it.

From these two properties we can conclude that a resulting function Uf can be defined

on a finite domain WSC × BZ = [0, 1]d × [−π, π]d and reconstructed on its exterior by

periodicity with use of (2.3.2) and (2.3.2).

Third, the Floquet transform commutes with a periodic partial differential operator. Let

Lr be such an operator, the index “r” shows that it differentiates in space variable r. Then

we easily get

[U(Lrf)] (r, k) = [Lr(Uf)] (r, k). (2.3.4)
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On the right hand side the function Uf depends on both variables r and k and can be

considered as a set of r-depending functions [Uf ]k, so the differential operator Lr is applied

to each of them. Using the same formalism on the left hand side, we have a decomposition

of the differential operator into a direct integral of k-dependent operators:

Lr =

∫
BZ

L(k)
r d k,

with L
(k)
r having the same periodicity as Lr.

Finally, the fourth property of the Floquet transform will be formulated in the following

theorem.

Theorem 2.1 (Invertibility of the Floquet transform, [Kuc01]). The Floquet transform

U : L2
ε

(
Rd
)
7→ L2

(
BZ,L2

ε(WSC)
)
,

[Uf ]k (r) =
∑
R∈Γ

eik·Rf(r− R)

is an isometric isomorphism. Its inverse is given by

[
U−1g

]
(r) =

1

VBZ

∫
BZ

gk(r) d k, (2.3.5)

where VBZ is the volume of the Brillouin zone and gk(r) is extended to r ∈ Rd according

to the Floquet condition (2.3.2).

Here the space L2
(
BZ,L2

ε(WSC)
)

has an inner product

〈f, g〉L2(BZ,L2
ε(WSC)) =

1

VBZ

∫
BZ

〈fk, gk〉WSC,ε d k.

The proof of this theorem can be found in [Kuc01, Theorem 7.2, p. 220].

The Transverse Magnetic problem (2.1.5) represents a system of partial differential equa-

tions with periodic coefficients. The operator of the problem LTM = −∆/ε is an example



18

of a differential operator Lr considered above. Therefore, it can be decomposed under the

Floquet transform into an infinite set of k-dependent operators:

LTM = U−1 (U (LTM)) = U−1

(
U
(
−∆

ε

))
=

∫
BZ

−∆(k)

ε
d k =

∫
BZ

L
(k)
TM d k. (2.3.6)

For each of them the eigenvalue problem reads:

−∆(k)ψk(r) = λkε(r)ψk(r).

Here the Laplacian ∆(k) is the same operator as an ordinary Laplacian ∆ (in sense of dif-

ferentiation by spacial variable r). The index (k) just shows that its eigenvalues depend

on k either and this way represent a decomposition of the solution. Having this in mind,

we omit the index in further discussion.

Since the operators L
(k)
TM in (2.3.6) are elliptic, each of them has a compact resolvent and

therefore a discrete spectrum:

0 < λ1,k ≤ λ2,k ≤ . . . λn,k ≤ . . . .

The sequence is unbounded and the multiplicity of each eigenspace is finite. As it is well

known [Kuc01], λn,k as continuous functions of k exhibit band gap structure. It means that

the spectrum of LTM consists of closed intervals [λN1 , λN2 ] called bands : for n between

N1 and N2 − 1

max
k∈BZ

λn,k ≥ min
k∈BZ

λn+1,k

and the λn as functions of k cannot be separated from each other. Their graphs on a

plain (k, λ) can intersect or coincide. A band is called simple, if it contains only one such

a function (N2 = N1), or complex, if there are two or more functions (N2 > N1).

For ε 6= const there may exist gaps between the bands, namely, intervals on λ-axis which

consist of such values λ∗ that for k ∈ BZ they do not belong to a spectrum of any L
(k)
TM:

max
k∈BZ

λn,k < λ∗ < min
k∈BZ

λn+1,k.
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From the physical point of view it means that electromagnetic waves of a frequency

ω =
√
c2λ∗ cannot propagate into the Photonic Crystal.

An analytical proof of existence of band gaps for high-contrast media was given by Figotin

and Kuchment in [FK94]. For an illustration of the photonic band gap structure see Figure

2.2 (for numerical details see Appendix, Section 10.2).

Figure 2.2: Band Gaps in a Photonic Crystal: 1D (left) and 2D (right)

We say that two functions ψn,k, ψm,k which correspond to the eigenvalues λn,k and λm,k

“belong to one band”, if the eigenvalues λn,k, λm,k which they comply with belong to

one band, and this sentence actually makes sense only in this context, because the

eigenfunctions do not form any bandstructure.

According to Floquet-Bloch theory, the solutions of (2.1.5) permit the Floquet-Bloch

ansatz :

ψn,k(r) = eik·run,k(r), (2.3.7)

where the functions un,k(r) are periodic in r with respect to Γ: un,k(r + R) = un,k(r) for

all R ∈ Γ. For a fixed k, functions {ψn,k}n∈N are the eigenfunctions of the corresponding

operator L
(k)
TM = −∆(k)/ε. These functions are called Bloch waves.
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2.4 Properties of the Bloch waves

We start with a well-known orthogonality property:

Lemma 2.1. ∫
BZ

eik·R d k = VBZδR,0.

Proof. Indeed, if R = 0, ∫
BZ

eik·0 d k =

∫
BZ

1 d k = VBZ.

If R 6= 0, the integral
∫

BZ
consists of a sum of two integrals taken by half of BZ with

opposite signs of k:∫
BZ

eik·R d k =

∫
(BZ/2)−

eik·R d k +

∫
(BZ/2)+

eik·R d k

=

∫
(BZ/2)+

ei(−k)·R d k +

∫
(BZ/2)+

eik·R d k

=

∫
(BZ/2)+

(
eik·R + e−ik·R) d k

= 2

∫
(BZ/2)+

cos(k · R) d k = 0.

Together this proves the assistance.

Let us make a close acceptation which will be useful later:∑
R∈Γ

eik·R = VBZδ(k). (2.4.1)

This equality should be understood in the following sense. On the right hand side we have

a Dirac distribution δ, therefore, we do not speak here about values. On the left hand

side there is a series which actually does not converge absolutely. But in sense of tempered

distributions [Rud91] it can be considered as a Floquet transform of identity, which is δ:

1̂ 7→ δ. Of course, we should not forget that 1 /∈ L2
ε(Rd) and a Floquet transform can be

applied to it only in the distributional sense. For intuitive understanding we write the
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following sequence of formulas which can be made mathematically rigorous with some

effort:

1 = U−1 (U [1]) =
1

VBZ

∫
BZ

∑
R∈Γ

eik·R d k,∑
R∈Γ

eik·R = 0 for k 6= 0.

The same equality (2.4.1) is mentioned in [Koh59] as a “fact” which the author uses in

his computations.

Now we summarize the most important properties of the Bloch waves in the following

theorem.

Theorem 2.2 (Properties of the Bloch waves). For k ∈ BZ the operator L
(k)
TM = −∆(k)/ε

has a complete set of eigenfunctions ψn,k with eigenvalues λn,k. This functions have the

following properties:

1. They are periodic by k with respect to the lattice Γ∗:

ψn,k+K(r) = ψn,k(r), K ∈ Γ∗.

2. They are quasi-periodic by r with respect to the lattice Γ:

ψn,k(r + R) = eik·Rψn,k(r), R ∈ Γ.

3. They belong to L2
ε(WSC) and are orthonormal by means of its inner product:〈

ψm,k, ψn,k′
〉

WSC,ε
= δm,nδk,k′ .

4. Extended by quasi-periodicity to the whole space Rd, the ψn,k are orthogonal in the

sense of distributions:〈
ψm,k, ψn,k′

〉
Rd,ε = VBZδm,nδ(k− k′),

where VBZ is the volume of the Brillouin zone.
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5. Any function f ∈ L2
ε(Rd) admits an expansion

f(r) =
1

VBZ

∑
n

∫
BZ

fn,kψn,k(r) d k,

with ψn,k extended to Rd by Property 2 and fn,k = 〈ψn,k, [Uf ]k〉WSC,ε.

Proof. (After [RS78, p. 304] and [DLP+11])

Orthonormality of Bloch waves in WSC follows from the fact that they do form a complete

set of eigenfunctions of an elliptic operator L
(k)
TM (see [Kuc01], [RS78]). The periodic

properties 1-2 follow from the definition of the Floquet transform since L
(k)
TM = U(LTM).

Let us show k- and n-orthogonality of extended Bloch waves.

〈
ψm,k, ψn,k′

〉
Rd,ε =

∫
Rd
ψ∗m,k(r)ε(r)ψn,k′(r) d r

=
∑
R∈Γ

∫
WSC

ψ∗m,k(r− R)ε(r− R)ψn,k′(r− R) d(r− R)

=

∫
WSC

(∑
R∈Γ

ei(k−k′)·R

)
ψ∗m,k(r)ε(r)ψn,k′(r) d r

(according to (2.4.1))

= VBZδ(k− k′)
〈
ψm,k, ψn,k′

〉
WSC,ε

= VBZδ(k− k′)δm,n.

Let us consider the Property 5. From the definition of the Floquet transform (2.3.1),

Uf ∈ L2
ε(WSC × BZ) for any f ∈ L2

ε(Rd). As far as the Bloch waves {ψn,k}n∈N form an

orthonormal basis in this space, Uf can be expanded as

[Uf ]k (r) =
∑
n

〈ψn,k, [Uf ]k〉WSC,ε ψn,k(r) =
∑
n

fn,kψn,k(r)

with fn,k = 〈ψn,k, [Uf ]k〉WSC,ε for r ∈WSC.

To obtain f , we apply the inverse Floquet transform (2.3.5):

f(r) = U−1 [Uf ] (r) =
1

VBZ

∫
BZ

[Uf ]k (r) d k =
1

VBZ

∑
n

∫
BZ

fn,kψn,k(r) d k.
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Here r ∈ Rd and ψn,k are extended by the Property 2. A rigorous proof of the Property 5

(in particular, of the convergence of the sum) one can find in [DLP+11]. Theorem 2.2 is

proven.

Remark 2.1. The coefficients fn,k from Property 5 of Theorem 2.2 are defined for k in

the Brilloiun zone only. By Property 1 they can be considered as periodic in k with respect

to Γ∗.

Remark 2.2. The extended Bloch waves ψn,k do not belong to L2
ε(Rd). The inner product

in Property 4 can be computed only formally and understood in the sense of distributions.

2.5 Periodic functions un,k

In our analysis it is sometimes preferable to deal with periodic functions. That is why we

turn from the Bloch waves ψn,k to their periodic parts un,k. Recall (2.3.7):

un,k(r) = e−ik·rψn,k(r).

For functions un,k we update the eigenvalue problem (2.1.5):

−∆
(
eik·ruk(r)

)
= λkε(r)e

ik·ruk(r),

eik·r (−∆uk(r)− 2i (k · ∇)uk(r) + k2uk(r)
)

= λkε(r)e
ik·ruk(r)

and thus

− (∇+ ik) · (∇+ ik)uk(r) = λkε(r)uk(r). (2.5.1)

Note that functions un,k and ψn,k correspond to the same eigenvalue λn,k.

The operator to examine now is L
(k)
TM,u = − (∇+ ik)·(∇+ ik). As we see, the replacement

of ψn,k by un,k gives us a k-dependent operator, but a k-independent domain of definition.

For the functions un,k we formulate a theorem equivalent to Theorem 2.2:
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Theorem 2.3 (Properties of the functions un,k). For every k ∈ BZ the operator L
(k)
TM,u =

− (∇+ ik) · (∇+ ik) has a complete set of eigenfunctions un,k(r) with eigenvalues λn,k.

This functions have the following properties:

1. They are quasi-periodic by k with respect to the lattice Γ∗:

un,k+K(r) = e−iK·run,k(r), K ∈ Γ∗.

2. They are periodic by r with respect to the lattice Γ:

un,k(r + R) = un,k(r), R ∈ Γ.

3. They belong to L2
ε(WSC) and are orthonormal by means of its inner product:

〈
um,k, un,k′

〉
WSC,ε

= δm,nδk,k′ .

4. Being extended by periodicity to the whole space Rd, they form an orthogonal set:

〈
um,k, un,k′

〉
Rd,ε = VBZδm,nδ(k− k′),

where VBZ is the volume of the Brillouin zone.

5. Any function f ∈ L2
ε(Rd) admits an expansion

f(r) =
1

VBZ

∑
n

∫
BZ

fun,kun,k(r) d k,

with un,k extended to Rd by Property 2 and fun,k = 〈un,k, [Uf ]k〉WSC,ε.

Proof. A mapping T such that Tfk(r) = e−ik·rfk(r) is an isometry T : L2
ε(Ω) 7→ L2

ε(Ω) for

Ω being WSC or Rd. Indeed, for any fk, gk ∈ L2
ε(Ω)

〈Tfk, T gk〉Ω,ε =
〈
e−ik·rfk, e

−ik·rgk

〉
Ω,ε

= 〈fk, gk〉Ω,ε .
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Consequently, the functions un,k = Tψn,k inherit orthogonality from ψn,k.

Periodic properties of un,k can be easily obtained from those of Theorem 2.2 and its

definition. Obviously, since un,k(r) = e−ik·rψn,k(r), for K ∈ Γ∗ and R ∈ Γ we have:

un,k+K(r) = e−i(k+K)·rψn,k+K(r) = e−iK·re−ik·rψn,k(r) = e−iK·run,k(r),

un,k(r + R) = e−ik·(r+R)ψn,k(r + R) = e−ik·(r+R)eik·Rψn,k(r) = un,k(r).

Theorem 2.3 is proven.



Chapter 3

Wannier functions

3.1 Definition and properties

In the previous chapter we have made all necessary preparations to define the main subject

of this thesis — the Wannier functions. Formally, these are functions obtained from the

Bloch waves by application of the inverse Floquet transform:

wn,0(r) =
1

VBZ

∫
BZ

ψn,k(r) d k. (3.1.1)

Here the index “0” indicates that the functions defined this way are centered at r = 0.

More generally, Wannier function centered at R ∈ Γ are determined as

wn,R(r) =
1

VBZ

∫
BZ

e−ik·Rψn,k(r) d k = wn,0(r− R). (3.1.2)

These functions originally appeared in the chemical literature for modeling of electron

orbitals in crystal solids. They were described by Gregory Wannier [Wan37] first in 1937

and were named after him “Wannier orbitals”, or just “Wannier functions”. The idea to

apply the same tool to Photonic Crystals by analogy to normal crystals was stated in

2003 by two independent groups of scientists in their papers [BMGM+03] and [WC03].

By definition of the (inverse) Floquet transform, Wannier functions belong to L2
ε(Rd).

They can be understood as some “average” electromagnetic field at a certain node R of

26
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the Bravais lattice.

Theorem 3.1 (Orthonormality of the Wannier functions). Wannier functions form a

complete basis in L2
ε(Rd) which is R− and n−orthonormal:

〈
wm,R, wn,R′

〉
Rd,ε = δm,nδR,R′ .

Proof. First let us recall Lemma 2.1:

1

VBZ

∫
BZ

eik·R d k = δR,0.

From the definition of Wannier functions and the orthonormality of Bloch waves we have:

〈
wm,R, wn,R′

〉
Rd,ε =

〈
1

VBZ

∫
BZ

e−ik·Rψm,k d k,
1

VBZ

∫
BZ

e−ik′·R′ψn,k′ d k′
〉

Rd,ε

=
1

VBZ

∫
BZ

∫
BZ

ei(k·R−k′·R′) 1

VBZ

〈
ψm,k, ψn,k′

〉
Rd,ε d k d k′

=
1

VBZ

∫
BZ

∫
BZ

ei(k·R−k′·R′)δm,nδ(k− k′) d k d k′

= δm,n
1

VBZ

∫
BZ

eik·(R−R′) d k

= δm,nδR,R′ .

Now we want to show completeness. Let f ∈ L2
ε(Rd). From Theorem 2.2,

f(r) =
1

VBZ

∑
n

∫
BZ

fn,kψn,k(r) d k

with coefficients fn,k periodic in k with respect to Γ∗. Applying Fourier expansion yields:

fn,k =
∑
R∈Γ

e−ik·Rfn,R

with

fn,R =
1

VBZ

∫
BZ

e−ik·Rfn,k d k.
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Therefore,

f(r) =
1

VBZ

∑
n

∫
BZ

fn,kψn,k(r) d k

=
1

VBZ

∑
n

∑
R∈Γ

∫
BZ

e−ik·Rfn,Rψn,k(r) d k

=
∑
n

∑
R∈Γ

fn,Rwn,R(r).

To finish the proof it remains to show that fn,R = 〈wn,R, f〉Rd,ε.

〈wn,R, f〉Rd,ε =

〈
1

VBZ

e−ik·Rψn,k d k,
1

VBZ

∑
m

fm,k′ψm,k′ d k′

〉
Rd,ε

=
1

VBZ

∑
m

∫
BZ

∫
BZ

eik·Rfm,k′

[
1

VBZ

〈
ψn,k, ψm,k′

〉
Rd,ε

]
d k d k′

=
1

VBZ

∑
m

∫
BZ

∫
BZ

eik·R

(∑
R′∈Γ

e−ik′·R′fm,R′

)
δn,mδ(k− k′) d k d k′

=
∑
R′∈Γ

fn,R′

[
1

VBZ

∫
BZ

eik·(R−R′) d k

]
=

∑
R′∈Γ

fn,R′δR,R′ = fn,R.

So, we see that any function f ∈ L2
ε(Rd) allows a representation of the form f(r) =∑

n

∑
R∈Γ fn,Rwn,R(r) with the coefficients fn,R = 〈wn,R, f〉Rd,ε, which means the com-

pleteness of the orthonormal basis wn,R in the space L2
ε(Rd). Theorem 3.2 is proven.

3.2 Phase indeterminacy

Wannier functions represent a perfect basis for description of various effects in Photonic

Crystals, e.g. defect modes. They can be used for Galerkin approximation which will

be discussed later in Chapter 8. Since they are constructed from the Bloch waves of a

particular Photonic Crystal, they already contain implicitly the information about the

crystal structure. In general the Wannier functions appear to decay slowly and show
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erratic behaviour at a distance from the center R. But we can repair it using nonunique-

ness of Bloch waves which originates from freedom of phase choice. For a simple band

n0 (and an “isolated” Bloch wave) a phase factor is eiθn0 (k). In other words, if ψn0,k is a

Bloch wave of the band, then eiθn0 (k)ψn0,k is evidently also a Bloch wave – namely, also

an n0-eigenfunction of the operator L
(k)
TM (2.3.6):

L
(k)
TMeiθn0 (k)ψn0,k = λn0,keiθn0 (k)ψn0,k. (3.2.1)

For a complex band where several eigenvalue states λN1,k, . . . , λN2,k are mixed up such a

nonuniqueness is given by a unitary transform Uk of the set of the Bloch waves of this

band:

ψn,k 7→
N2∑

m=N1

Uk
mnψn,k. (3.2.2)

In this sense we can talk about generalized Bloch waves which represent a class of functions

defined uniquely up to a unitary transform of their set. The corresponding Wannier

functions are determined as

wn,R(r) =
1

VBZ

∫
BZ

e−ik·R
N2∑

m=N1

Uk
mnψm,k(r) d k, (3.2.3)

which means that they are also non-unique.

This important feature gives a possibility to influence the localization properties of the

Wannier function basis by choosing proper phases for the Bloch waves. Slowly and os-

cillating decaying functions can be substituted by the ones which decay faster and have

monotone “tails” away from the center. In particular, one can obtain exponentially local-

ized Wannier functions — namely, decaying like an exponential function at infinity.

The next section is dedicated to the question of existence of exponentially localized Wan-

nier functions. First, we will prove the existence in a case of one-dimensional crystals

with symmetries following the classical paper of W. Kohn [Koh59]. Second, we generalize

this result to arbitrary-dimensional crystals with symmetries using the investigation of J.
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des Cloizeaux [dC63], [dC64a], [dC64b]. Finally, we will adduce the proof of A. Nenciu

[Nen83] of the existence of exponentially decaying functions in a case of crystals without

symmetries in arbitrary dimensions.

Once the proofs will be given, our aim in the framework of the present thesis will be to

construct localized Wannier functions using various methods.

3.3 Existence of exponentially localized Wannier func-

tions

The existence of exponentially decaying Wannier functions is a very attractive property

which is, however, not so evident. From 1959 mathematicians proved it for several cases

starting from a very restricted one and making the result more and more general.

The Wannier functions were first introduced as electron orbitals in periodic crystalline

solids [Wan37]. The motion of an electron in such crystals is described by a Schrödinger

equation

[−∆ + V (r)]ψ(r) = λψ(r)

with a periodic potential V . Thus, the Bloch waves appeared as the eigenfunctions of the

Schrödinger operator −∆ + V , and the theory we are going to review in this section was

developed for this case. However, the problem we study in the framework of this thesis is

the Transverse Magnetic form (2.1.5) of the Maxwell’s equations with an elliptic operator

−∆/ε where ε is periodic. The analogy between these two operators was considered

in detail by Kuchment [Kuc01], [Kuc08]. In particular, he calls the TM problem a

“Schrödinger-type” spectral problem with ε playing a role of a metric. One can show that

there exists a Hilbert space isometry between L2(D) and L2
ε(D) where D is a Wigner-Seitz

cell [0, 1]d or a space Rd, [Klo04, Section 2.3]. This isometry is given by the mapping

Φ(D) : L2(D) → L2
ε(D),

ψ 7→ Φψ = ψ/
√
ε.
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Although in this section we review the theory for usual crystals — as it was originally

developed by the authors we refer to — we will mention that it can be adopted to Photonic

Crystals as well.

3.3.1 Kohn’s proof for 1D crystals with inversion symmetry

The first rigorous proof was introduced by Walter Kohn in [Koh59] for an isolated band

in a one-dimensional crystal with inverse symmetry. Consider a 1D Schrödinger equation:[
− d2

dx2
+ V (x)

]
ψ(x) = λψ(x)

with a periodic, symmetric and non-constant potential V :

V (x+ L) = V (x) = V (−x) 6= const.

Let ψn,k be its Bloch waves (see Section 2.3, 2.4), i.e. solutions with the quasi-periodicity

condition

ψn,k(L) = eikLψn,k(0), ψ′n,k(L) = eikLψ′n,k(0)

for real k and normalized:

2π

L

∫ L

0

|ψn,k(x)|2 dx = 1.

The corresponding eigenvalue curves k 7→ λn,k are called energy bands.

The Wannier functions wn,0 are defined as localized linear combinations of all Bloch waves

of a given band n, namely:

wn,0(x) =
L

2π

∫ π/L

−π/L
ψn,k(x) d k,

or, more general,

wn,R(x) = wn,0(x− RL) =
L

2π

∫ π/L

−π/L
e−ikRLψn,k(x) d k.
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To let these integrals exist, we consider a priori that the phases of ψn,k are chosen so that

they are piecewise continuous in k in the interval [−π/L, π/L] (the Brillouin zone).

In the framework of this chapter we observe only the key points of Kohn’s paper; for

further details see the original source [Koh59].

Let us denote with the symbol f̃ a complex extension of a real function f . The energy

bands λn,k can be studied as functions of a complex variable k = k′+ik′′. Kohn shows that

in a vicinity of the real axis the function k 7→ λ̃(k) is analytic, symmetric and periodic in

k:

λ̃(k) = λ̃(−k),

λ̃(k∗) = λ̃(k)∗,

λ̃

(
k +

2π

L

)
= λ̃(k).

The image of λ̃ lies on a Riemannian surface S with an infinite series of sheets Sn con-

nected with each other in branch points apart from the real axis. The bands λn,k′ are the

traces of λ̃(k) on the sheet Sn for k real. One can pass continuously from one band to

another in the complex plane.

The most important result of Kohn’s observations is the following theorem.

Theorem 3.2 (Existence and uniqueness of real, (anti-) symmetric and exponentially

localized Wannier function, W. Kohn). Consider a one-dimensional Schrödinger equation[
− d2

dx2
+ V (x)

]
ψ(x) = λψ(x)

with a periodic, symmetric and non-constant potential V : V (x + L) = V (x) = V (−x).

For every band number n there exists one and only one Wannier function wn,0 which has

all three of the following properties:

• it is real;
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• it is either symmetric or antisymmetric about either x = 0 or x = L/2;

• it falls off exponentially as

wn,0(x) ∼ e−An|x|

for some An ∈ (0,∞).

Proof. [Koh59]. To prove the theorem, let us introduce a more general class of functions

than the Bloch waves. Let ψ̃

• satisfy [
− d2

dx2
+ V (x)

]
ψ̃(x) = λ̃ψ̃(x) (3.3.1)

with complex λ̃,

• be quasi-periodic in the sense

ψ̃(L) = γψ̃(0), ψ̃′(L) = γψ̃′(0), γ ∈ C, (3.3.2)

• be normalized in a manner which for |γ| = 1 reduces to

2π

L

∫ L

0

|ψ̃(x)|2 dx = 1. (3.3.3)

For γ = eikL these are just ordinary Bloch waves.

For a given λ̃, we now search for such γ that (3.3.1) and (3.3.2) are fulfilled. ψ̃ which

satisfy (3.3.1) can be written as

ψ̃(x, λ̃) = a1ψ̃
(1)(x, λ̃) + a2ψ̃

(2)(x, λ̃) (3.3.4)

with

ψ̃(1)(0, λ̃) = 1,
(
ψ̃(1)

)′
(0, λ̃) = 0,

ψ̃(2)(0, λ̃) = 0,
(
ψ̃(2)

)′
(0, λ̃) = 1.
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Substituting (3.3.4) into (3.3.2) gives the ratio:

a1

a2

=
ψ̃(2)(L, λ̃)

γ − ψ̃(1)(L, λ̃)
=
ψ̃(2)(L, λ̃)

1
2

(
γ − 1

γ

) . (3.3.5)

By eliminating a1 and a2 we obtain the following relation for γ:

γ2 − 2µ(λ̃)γ + 1 = 0, (3.3.6)

where

µ(λ̃) =
1

2

(
ψ̃(1)(L, λ̃) +

(
ψ̃(2)

)′
(L, λ̃)

)
(3.3.7)

is a single-valued, entire function of λ̃, [Kra35].

Now we want to replace the variable λ̃ with γ in order to study the properties of ψ̃

depending on γ. By (3.3.6), µ relates to γ as

µ =
1

2

(
γ +

1

γ

)
. (3.3.8)

Thus,

λ̃ = λ̃(µ) = λ̃

(
γ + 1/γ

2

)
can be considered as a function of γ. For this reason, we may henceforth omit the

notation λ̃ and write ψ̄(x, γ), ψ̄(1)(L, γ), ψ̄(2)(L, γ), having in mind that it assists at these

expressions implicitly:

ψ̃(·, λ) = ψ̃(·, λ(γ)) 7→ ψ̄(·, γ). (3.3.9)

So, ψ̄ is the same function of x as ψ̃, the difference between them is only in the second

variable.

With the equation (3.3.5), ψ̄ as well as ψ̄(1) and ψ̄(2) can be considered as functions over

two variables x and γ:

ψ̄(x, γ) =
1

C1/2

[
ψ̄(2)(L, γ)ψ̄(1)(x, γ) +

1

2

(
γ − 1

γ

)
ψ̄(2)(x, γ)

]
,



35

where C is chosen to satisfy the normalization requirement (3.3.3).

Let us denote

χ(x, γ) = ψ̄(2)(L, γ)ψ̄(1)(x, γ) +
1

2

(
γ − 1

γ

)
ψ̄(2)(x, γ), (3.3.10)

so that

ψ̄(x, γ) =
χ(x, γ)

C1/2
. (3.3.11)

After simple computations one can conclude that C must have a form

C = −4π

L
ψ̄(2)(L, γ)

dµ

d λ̃
,

and therefore (3.3.11) turns to

ψ̄(x, γ) =
χ(x, γ)(

−4π

L
ψ̄(2)(L, γ)

dµ

d λ̃

)1/2
. (3.3.12)

We investigate the properties of the analytic function γ 7→ ψ̄(·, γ). From (3.3.12), it can

have singularities at the points where dµ/ d λ̃ = 0 or where ψ̄(2)(L, γ) = 0. Kohn shows

that such points are γ = ±1. He proves that one can find Laurent series for ψ̄ depending

on properties of ψ̄(2)(L,±1):

(A) if both ψ̄(2)(L, 1) and ψ̄(2)(L,−1) are zero or both nonzero, then ψ̄(·, γ) permits a

Laurent expansion of the form

ψ̄(x, γ) =
∞∑

R=−∞

αR(x)γR,

(B) while if one of ψ̄(2)(L, 1) or ψ̄(2)(L,−1) is zero and the other is nonzero, the Laurent

expansion is

ψ̄(x, γ) =
∞∑

R=−∞

βR(x)γR+1/2.
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In both cases the series converge in a ring

e−LA < |γ| < eLA

for some A ∈ (0,∞). Let us substitute γ = eikL:

ψ̄(x, γ) = ψ̄
(
x, eikL

)
.

Then γ = 1 corresponds to k = 0 and γ = −1 to k = π/L.

From [Koh59] we know that ψ̄ is a multivalued function of k whose branch points coincide

with those of λ̃. At each branch point four Riemannian sheets are connected; two of them

correspond to a band n and the other two to a band n + 1; two functions related to the

same band differ only by sign.

Let ψ̂n,k be branches of ψ̄. We need to observe some properties of these functions which

will be used further. Consider the same cases as before (A and B).

Case A: Both ψ̂n,0(0) and ψ̂n,π/L(0) are zero or both nonzero. We have the Fourier ex-

pansion

ψ̂n,k(x) =
∞∑

R=−∞

αR
n (x)eikRL

which represents an analytic function of k = k′+ ik′′ in a strip |k′′| < An. Obviously, ψ̂n,k′

as a function of a real variable k′ is periodic with period
2π

L
:

ψ̂n,k′+ 2π
L

(x) = ψ̂n,k′(x).

Case B: One of ψ̂n,0(0) or ψ̂n,π/L(0) is zero and the other is nonzero. The Fourier expan-

sion

ψ̂n,k(x) =
∞∑

R=−∞

βR
n (x)eik 2R+1

2
L

represents an analytic function of k = k′ + ik′′ in a strip |k′′| < An. In this case ψ̂n,k′ is

antiperiodic by k′ with period
2π

L
:

ψ̂n,k′+ 2π
L

(x) = −ψ̂n,k′(x).
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In addition to the described Case A and Case B, another classification of possible cases

will also be useful.

Case 1: ψ̂n,0(0) 6= 0. One can check that

ψ̂∗n,k′(x) = ψ̂n,k′(−x),

ψ̂n,−k′(x) = ψ̂n,k′(−x).

Case 2: ψ̂n,0(0) = 0. Then

ψ̂∗n,k′(x) = ψ̂n,k′(−x),

ψ̂n,−k′(x) = −ψ̂n,k′(−x).

Let us now switch to the Wannier functions which are defined via arbitrary Bloch waves

ψn,k:

wn,R(x) = wn,0(x− RL) =
L

2π

∫ π/2

−π/2
e−ikRLψn,k(x) d k

We will fix the phases of the Bloch waves according to their initial values in the point

x = 0.

(1) If ψn,0(0) 6= 0, choose the phase so that

• ψn,k(0) is real for real k;

• ψn,k is analytic for complex k in a strip | Im(k)| < An with some finite and positive

An.

Then it is equal (apart from a possible factor −1) to ψ̂n,k(x) described in Case 1. There-

fore,

ψ∗n,k′(x) = ψn,k′(−x),

ψn,−k′(x) = ψn,k′(−x),
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and this yields

w∗n,0(x) =
L

2π

∫ π/2

−π/2
ψ∗n,k′(x) d k′ =

L

2π

∫ π/2

−π/2
ψn,−k′(x) d k′ = wn,0(x),

wn,0(−x) =
L

2π

∫ π/2

−π/2
ψn,k′(−x) d k′ =

L

2π

∫ π/2

−π/2
ψn,−k′(x) d k′ = wn,0(x).

Consequently, wn,0 is real and symmetric about x = 0.

(2) If ψn,0(0) = 0, let the phase be such that

• ψn,k(0) is purely imaginary for real k;

• ψn,k(x) is analytic for complex k in a strip | Im(k)| < An with some finite and

positive An.

Then it coincides with ±iψ̂n,k described in Case 2. Consequently,

ψ∗n,k′(x) = −ψn,k′(−x),

ψn,−k′(x) = −ψn,k′(−x),

and thus

w∗n,0(x) =
L

2π

∫ π/2

−π/2
ψ∗n,k′(x) d k′ = − L

2π

∫ π/2

−π/2
ψn,−k′(x) d k′ = wn,0(x),

wn,0(−x) =
L

2π

∫ π/2

−π/2
ψn,k′(−x) d k′ =

L

2π

∫ π/2

−π/2
ψn,−k′(x) d k′ = −wn,0(x).

Hence, wn,0 is real and antisymmetric about x = 0.

What about the asymptotic behaviour of the Wannier functions?

Again, take the phases of the Bloch waves as described in (1) or (2) depending on whether

ψn,0(0) equals to 0 or not. Then our Bloch waves ψn,k are connected with ψ̂n,k(x) as

ψn,k(x) = εψ̂n,k(x),

ε = ±1 or ± i.
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Let us examine two combinations.

(a) Both ψn,0(0) and ψn,π/L(0) are zero or both nonzero. This is related to Case A above.

We have the Fourier expansion

ψn,k(x) = ε

∞∑
R=−∞

αR
n (x)eikRL

which represents an analytic function of k = k′ + ik′′ in a strip |k′′| < An. But from the

definition of the Wannier functions we obtain:

ψn,k(x) =
∞∑

R=−∞

eikRLwn,R(x).

Thus we immediately see that wn,R(x) ≡ εαR
n (x). But αR

n (x) are the coefficients of the

Laurent expansion of ψn,k and this series was convergent for |k′′| < An. This implies

limR→∞ α
R
n (x)eikRL = 0 for this range of k′′. This is equivalent to

lim
x→∞

wn,0(x)eqx =

 0, q < An

∞, q > An
.

Indeed, in the convergence domain it holds:

0 = lim
R→∞

αR
n (x)eikRL = lim

R→∞

1

ε
wn,R(x)eikRL

= lim
R→∞

1

ε
wn,0(x− RL)eikRL = lim

y→∞

1

ε
wn,0(−y)eqy

= lim
y→∞

wn,0(y)eqy,

where q < An.

(b) One of ψn,0(0) or ψn,π/L(0) is zero and the other is nonzero. Shifting the coordinates

(in x axis) by a half-period L/2, one can prove that in this case ψn,0(L/2) and ψn,π/L(L/2)

are both zero or both nonzero and therefore we have case (a) for the coordinate origin

x = L/2. Note that if we shifted the coordinate origin from x = 0 to x = L/2, then the
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(anti-)symmetry center is also shifted into this point.

No other choice of phase except a possible trivial factor ±1 leads to a Wannier function

which is simultaneously real and (anti-)symmetric. Indeed, let us suppose that another

set of Bloch waves leads to real and (anti-)symmetric exponentially decaying Wannier

functions. This set is connected with the just observed by a phase shift:

ψ̄n,k(x) = eiθn(k)ψn,k(x).

Representing the phase as

eiθn(k) =
∞∑

R=−∞

an,Re−iRLk,

we can rewrite the corresponding Wannier function as

w̄n,0(x) =
L

2π

∫ π/2

−π/2
ψ̄n,k(x) d k

=
L

2π

∫ π/2

−π/2
eiθn(k)ψn,k(x) d k

=
L

2π

∫ π/2

−π/2

∞∑
R=−∞

an,Re−iRLkψn,k(x) d k

=
∞∑

R=−∞

an,Rwn,R(x).

As far as the wn,R are real and orthonormal, and w̄n,0 is also real by assumption,

w̄n,0(x) = w̄∗n,0(x) =
∞∑

R=−∞

a∗n,Rwn,R(x),

we have: an,R = a∗n,R, hence an,R is real. Analogously, as soon as {wn,R}R∈Z and w̄n,0 are
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(anti-)symmetric,

±w̄n,0(x) = w̄n,0(−x)

=
∞∑

R=−∞

an,Rwn,R(−x)

=
∞∑

R=−∞

an,Rwn,0(−x− RL)

=
∞∑

R=−∞

an,−Rwn,0(−x+ RL)

= ±
∞∑

R=−∞

an,−Rwn,0(x− RL)

= ±
∞∑

R=−∞

an,−Rwn,RL(x),

hence, an,−R = ±an,R.

Substituting this into the representation of the phase yields:

eiθn(k) =

 an,0 + 2
∑∞

R=1 an,R cos(RLk), an,−R = an,R

−2i
∑∞

R=1 an,R sin(RLk), an,−R = −an,R
.

In the first case the phase is real and consequently, the factor eiθn(k) equals ±1. The

second case can be ruled out by setting k = 0. Theorem (3.2) is proven.

Remark 3.1. Let us turn to the Transverse Magnetic problem

− d2

dx2
ψ̃(x) = λ̃ε(x)ψ̃(x)

instead of (3.3.1). In this case (3.3.3) holds and (3.3.2) should be understood in sense

2π

L

∫ L

0

ψ̃∗(x)ε(x)ψ̃(x) dx = 1.

Then we can represent ψ̃ in form (3.3.4) and again obtain the relation (3.3.6). It means

that we can adopt the theorem for the TM problem and get the same result — namely,

the existence and uniqueness of real, (anti-) symmetric, exponentially localized Wannier

functions.
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Remark 3.2. In a multidimensional case, if a band is simple (namely, it contains only

one energy state λ), there exists a Bloch wave which is analytic in k = k′ + ik′′ in a

strip |k′′| < A. But if the band is composite (it consists of several intersecting eigen-

value branches λN1 , . . . , λN2), the energy λ̃ is a multivalued function of a complex variable

k = k′+ik′′; the points where several states touch or intersect each other are branch points

of this function and also branch points for the Bloch function k 7→ ψ̃(k) which therefore

cannot be analytic in k. This remark indicates that Kohn’s results cannot be trivially gen-

eralized to a multidimensional crystal and that another approach is required.

Remark 3.3. For a composite band, a simultaneous choice of a phase of each Bloch wave

of the band is nothing but a unitary transform (for every k) of the whole set of waves

corresponding to the band with regard to some fixed initial Bloch waves:

ψn,k 7→
n2∑

m=n1

Uk
mnψ

0
m,k,

where n1, . . . , n2 is a set of indices which determine the composite band.

3.3.2 Des Cloizeaux’s proof for multidimensional crystals with

inversion symmetry

The next step to the proof of existence of exponentially localized Wannier functions was

given by des Cloizeaux in [dC64a] and [dC64b] for crystals with a center of inversion in

arbitrary dimensions. Let us take up this approach in details.

Consider the Schrödinger equation in a crystal of dimensionality d ≥ 1 and periodic with

respect to some lattice Γ (for instance, Γ = Zd):

[−∆ + V (r)]ψ(r) = λψ(r). (3.3.13)

Here the potential V is assumed to be periodic: V (r + R) = V (r) for R ∈ Γ.

As we know from the fundamental works [RS78] (Chapter XIII.16) and [Kuc01], the
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eigenfunctions ψn,k of the operator −∆ + V lie in L2(WSC × BZ) with WSC being the

Wigner-Seitz cell of the crystal, BZ being the first Brillouin zone.

Following [dC64a], consider an isolated band β — by which we mean the following.

Definition 3.1. Let β be a set of Nβ energy branches λn,k = λn(k), n = n1 . . . nNβ ,

which are the eigenvalues of the Schrödinger equation noticed above. If the ranges of the

branches (i.e. projections of their graphs onto the λ-axis) create a continuous segment in

the spectrum and are separated from above and from below by spectral gaps, then we call

the set β an isolated band.

If Nβ = 1, the band is called simple. If 1 < Nβ <∞, the band is complex or composite.

For an illustration of a band gap structure see Figure 2.2. On this figure we can derive

two isolated bands: a simple band n = 1 and a complex band n ∈ [2, 4]. As we see, they

are separated by gaps from the other parts of the spectrum presented on the λ-axis.

Notation 3.1. Let βψ be a set of Nβ independent Bloch waves ψn,k which correspond to

the eigenvalues λn,k of band β. Here “independent” means that the phases of the Bloch

waves are somehow fixed, and there are no Bloch waves in the set obtained from other

waves of the set by a phase shift.

Remark 3.4. The requirement for Nβ to be finite excludes the case of a constant poten-

tial V =const because then all the eigenvalue branches touch and thus it is not possible to

single out an isolated band.

Without loss of generality, assume that the Bloch waves of the set βψ are enumerated

from n = 1 to Nβ.
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Let us introduce a projection operator P k, periodic in k, which characterizes the subspace

of the Bloch waves ψn,k belonging to βψ. For real k this operator can be defined as

P k =

Nβ∑
n=1

ψn,k ⊗ ψn,k (3.3.14)

or represented by its matrix elements

[P k]r,r′ =

Nβ∑
n=1

ψ∗n,k(r)ψn,k(r′)

which are invariant with respect to a phase transform of the wave functions ψn,k 7→

eiθn(k)ψn,k:

[
P k
]

r,r′
7→

Nβ∑
n=1

e−iθn(k)ψ∗n,k(r)eiθn(k)ψn,k(r′) = [P k]r,r′ . (3.3.15)

This operator acts on a function f ∈ L2(Rd) as

P k [f(r)] =

Nβ∑
n=1

〈ψn,k, f〉Rd ψn,k(r)

with inner product

〈f, g〉Rd =

∫
Rd
f ∗(r)g(r) d r.

For complex k = k′ + ik′′, the operator P k can be extended to a strip |k′′| < A for some

constant A > 0 as

P k =

Nβ∑
n=1

ψn,k∗ ⊗ ψn,k, or

[
P k
]

r,r′
=

Nβ∑
n=1

ψ∗n,k∗(r)ψn,k(r′).

Let us define another operator P k
u , proportional to P k and projecting onto the span of

periodic parts of the Bloch waves:

P k
u =

1

VWSC

Nβ∑
n=1

un,k∗ ⊗ un,k. (3.3.16)



45

Here VWSC is the volume of the Wigner-Seitz cell and

un,k(r) = e−ik·rψn,k(r),

un,k(r + R) = un,k(r) for R ∈ Γ.

P k and P k
u are closely related by the following equality:

[P k]r,r′ = VWSC · e−ik·(r−r′)[P k
u ]r,r′ .

In [dC64a] P k
u is proved to be analytic in a narrow strip |k′′| < A. A straightforward

consequence of this result is analyticity of the matrix elements [P k]r,r′ in the same domain.

Let us define a projection operator P as

P =
1

VBZ

∫
BZ

P k d k. (3.3.17)

Its matrix elements

Pr,r′ =

∫
BZ

[P k]r,r′ d k (3.3.18)

are continuous in r and r′. The operator is periodic with respect to lattice translations of

the crystal:

Pr+R,r′+R′ = Pr,r′ , R,R′ ∈ Γ.

By its definition, P can be expressed in the form

Pr,r′ =
∑
n,R

w∗n,R(r)wn,R(r′), (3.3.19)

where wn,R are the Wannier functions corresponding to the Bloch modes of the set βψ:

wn,R(r) =
1

VBZ

∫
BZ

e−ik·Rψn,k(r) d k.
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The relation (3.3.19) is easy to show:∑
n,R

w∗n,R(r)wn,R(r′) =
∑
n,R

1

V 2
BZ

∫
BZ

eik·Rψ∗n,k(r) d k

∫
BZ

e−ik′·Rψn,k′(r
′) d k′

=
1

VBZ

∑
n

∫
BZ

∫
BZ

(
1

VBZ

∑
R∈Γ

ei(k−k′)·R

)
ψ∗n,k(r)ψn,k′(r

′) d k d k′

(recall the property (2.4.1))

=
1

VBZ

∫
BZ

∑
n

ψ∗n,k(r)ψn,k(r′) d k

=
1

VBZ

∫
BZ

[P k]r,r′ d k = Pr,r′ .

In our further considerations we will need the following result.

Theorem 3.3 (Analyticity of periodic functions and asymptotic properties of their

Fourier coefficients). Let f be a periodic function of a d-dimensional complex vector

k = k′ + ik′′, admitting real vectors Kj (j = 1...d) as periods: f(k + Kj) = f(k). Let

R be translational vectors of the reciprocal lattice defined by vectors Rl (l = 1, ..., d) so

that

R =
∑
l

αlRl (αl ∈ Z),

Kj · Rl = 2πδjl.

Then, if f is analytic in a domain |k′′| < A with some constant A > 0, it can be expanded

in a convergent Fourier series:

f(k) =
∑
R∈Γ

eik·RgR

and the Fourier coefficients satisfy the condition:

lim
R→∞

eεA·RgR = 0

for some 0 < ε < 1.

Conversely, if the coefficients gR of a Fourier series have this asymptotic behaviour, the
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series converges in the strip |k′′| < A and its sum is an analytic function of k.

Different variations of this assertion appear in literature, in particular, the result is known

as Paley-Wiener theorem. Its proof, which is very simple, can be found, for instance, in

[dC64a, p. 692].

Theorem 3.3 implies that, due to analyticity of [P k]r,r′ in a vicinity of the real values of k

(|k′′| < A), the matrix elements Pr,r′ decrease exponentially with |r− r′| → ∞.

But unfortunately, as it is pointed out in [MV97, p. 12856], this result does not imme-

diately imply exponential localization of the Wannier functions. However, it is possible

to prove the possibility of choosing such Wannier functions, as des Cloizeaux does in his

paper [dC64b]. Let us review it shortly.

The Bloch waves can be represented as Fourier sums of the Wannier functions:

ψn,k(r) =
∑
R∈Γ

eik·Rwn,R(r).

With the help of the Theorem 3.3, if ψn,k is analytic in k = k′ + ik′′ in the strip |k′′| < A

with a constant A > 0, then its Fourier coefficients wn,R(r) satisfy conditions of the form:

lim
R′→∞

eεAR′wn,R(r + R′) = 0

with 0 < ε < 1. The converse is also true. Thus the problem is reduced to the construc-

tion of Bloch waves which are analytic in k in a strip centered on the real axis.

For a simple band (Nβ = 1), these functions can be constructed explicitly. Introduce

trial Wannier functions wtrial
n,0 which are arbitrarily normalizable with eAr

∣∣wtrial
n,0 (r)

∣∣ < ∞
and have a bounded support. These can be, for example, true Wannier functions with a
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cutoff:

wtrial
n,0 (r) =


wn,0(r), |r| < C,

θ(r), C ≤ |r| ≤ C + δ,

0, |r| > C + δ,

with some C > 0, some small δ > 0 and a smooth function θ such that θ(r)|r|=C =

wn,0(r)|r|=C and θ(r)|r|=C+δ = 0.

Apply the following construction:

1) φn,k(r) =
∫

Rd [P
k]r,r′w

trial
n,0 (r′) d r′, or equivalently φn,k(r) =

〈
ψn,k, w

trial
n,0

〉
Rd ψn,k(r)

(projection of trial functions onto the span of Bloch modes)

2) Gk =
∫

Rd
∫

Rd [P
k]r,r′

(
wtrial
n,R0

(r)
)∗
wtrial
n,R0

(r′) d r′ d r, which is the same as

[Gk]mn = 〈φm,k, φn,k〉Rd
(orthonormalization)

3) ψnew
n,k (r) =

[
Gk
]−1/2

φn,k(r)

(new Bloch modes)

The integrals converge uniformly, therefore, the functions k 7→ φn,k and k 7→ Gk are

analytic in k for |k′′| < A where A is the width of the strip of analyticity of [P k]r,r′ .

Moreover, by its definition, Gk is real and non-negative for real k, and, if Gk is strictly

positive, this remains true for some strip |k′′| ≤ A0 < A with A0 > 0 and constant.

Consequently,
[
Gk
]−1/2

is also analytic in this strip and, finally, ψnew
n,k is analytic — and

this is just what we want. The corresponding Wannier functions

wnew
n,R (r) =

1√
VBZ

∫
BZ

e−ik·Rψnew
n,k (r) d k

fall off exponentially at infinity.

Positivity of Gk will be discussed further.
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Remark 3.5. The construction described above can be interpreted as choosing a phase

for the Bloch waves:

ψn,k 7→
[
Gk
]−1/2 〈

ψn,k, w
trial
n,0

〉
Rd ψn,k = eiθn(k)ψn,k,

since this transform keeps the orthonormality.

Let us now consider the case of a complex band, or a composite group of eigenvalue

branches (Nβ > 1). In such a group the branches of λn,k are connected with each other by

degeneracies but separated from all the lower and higher branches by gaps. We introduce

the generalized Bloch waves (in [dC64b] they are named quasi-Bloch waves):

ψ̃n,k(r) =

Nβ∑
m=1

Uk
mnψm,k(r),

where Uk is a unitary matrix of size Nβ × Nβ for every k. The set of ψ̃n,k inherits the

following properties of ψn,k:

1. ψ̃n,k also form a complete orthonormal set in L2(WSC× BZ).

2. For every k ∈ BZ they span the same space Sβ(k) of functions formed by the Bloch

waves ψn,k of the set βψ (Notation 3.1), namely:

Sβ(k) =

fk(r) =

Nβ∑
n=1

αn,kψn,k(r) | ψn,k ∈ βψ, αn,k ∈ C


=

gk(r) =

Nβ∑
n=1

γn,kψ̃n,k(r) | γn,k ∈ C

 .

3. They are periodic in k with the same period: ψ̃n,k+K(r) = ψ̃n,k(r), K ∈ Γ∗.

These three properties allow us to call the new set “quasi-Bloch waves”, or “generalized

Bloch waves”.
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Accordingly, we introduce generalized Wannier functions as being obtained by

w̃n,R(r) =
1

VBZ

∫
BZ

e−ik·R)ψ̃n,k(r) d k.

They possess the following properties:

1. {w̃n,R}n,R form a complete orthonormal set in L2(Rd).

2. {w̃n,R}n,R span the space Sβ formed by the Wannier functions wn,R which correspond

to the set βψ:

Sβ =

f(r) =

Nβ∑
n=1

∑
R∈Γ

αn,Rwn,R(r) | wn,R =
1

VBZ

∫
BZ

e−ik·Rψn,k d k, ψn,k ∈ βψ


=

g(r) =

Nβ∑
n=1

∑
R∈Γ

γn,Rw̃n,R(r)

 .

3. The functions w̃n,R corresponding to a site R can be obtained from those attached

to the lattice origin R = 0 by a rotation or a reflection of the lattice. In particular,

w̃n,R(r) = w̃n,0(r− R).

In terms of the introduced notations, the goal is to prove the existence of generalized

Wannier functions which decay exponentially at infinity.

As in a simple band case, by applying Theorem 3.3 to Fourier series, we conclude that

existence of a set of exponentially decreasing Wannier functions is equivalent to the pos-

sibility to build quasi-Bloch waves which are analytic in a domain |k′′| < A with some

positive constant A. Again, our plan is to prove such a possibility by construction, and to

do so we need a generalization of the method described for a simple band. Let us review

it briefly.

First, choose trial Wannier functions wtrial
n,0 which satisfy the properties of generalized

Wannier functions and, moreover, have exponential tails. For example, these may be
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polynomial functions of r for |r| ≤ C and zero for |r| > C, C > 0. As before, unnormal-

ized trial waves are determined by

φn,k(r) =

∫
Rd

[P k]r,r′w
trial
n,0 (r′) d r′.

Their orthonormalization matrix turns out to be

Gk =

∫
Rd

∫
Rd

[P k]r,r′
(
wtrial
n,0 (r)

)∗
wtrial
n,0 (r′) d r′ d r.

And finally, the quasi-Bloch waves are introduced by putting

ψ̃n,k(r) =
[
Gk
]−1/2

φn,k(r).

φn,k and Gk are analytic functions of k in a strip |k′′| < A. The question is, however,

whether [Gk]−1/2 is analytic or not.

By its definition, Gk is non-negative for real values of k, and thus we can define the non-

negative function [Gk]−1/2. Furthermore, if Gk is strictly positive for k real, then [Gk]−1/2

can be continued analytically into a complex-space domain |k′′| < A0 ≤ A with some

constant A0 > 0. In this case the quasi-Bloch waves ψ̃n,k are also analytic in the same

domain. By Theorem 3.3, the corresponding Wannier functions

w̃n,R =
1

VBZ

∫
BZ

e−ik·Rψ̃n,k(r) d k

have exponential decay at infinity.

In both simple and complex bands, the open question which may (or may not) provide us

with the analyticity of (quasi-) Bloch waves is positivity of Gk for real k. Henceforth, to

make the description shorter, we write just “Bloch waves”, but for a complex band have

in mind “quasi-Bloch waves”.

We already have a result of Kohn [Koh59] for centrosymmetric one-dimensional crystals.

Des Cloizeaux [dC64b] removes the restriction of inverse symmetry in 1D and proves the

possibility to construct analytic Bloch waves.
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Let k = k0 be a point in which Gk vanishes. As an analytic function, Gk can be expanded

in a convergent series in the vicinity of k0:

Gk = a2(k− k0)2p[1 + ε(k− k0)].

Here a > 0, p ∈ N (namely, the exponent 2p is even), ε(k) is analytic and ε(k0) = 0. Thus,

[Gk]1/2 = ±a(k− k0)p[1 + ε(k− k0)]1/2.

[Gk]1/2 can be chosen to be analytic in k = k0. Therefore, if a crystal is linear, there exist

exponentially localized Wannier functions.

In d-dimensional crystals, if Gk0 = 0, the function [Gk]1/2 has a singularity in this point,

and its effect often cannot be eliminated. However, it is possible to overcome this difficulty

if the crystal has a center of inversion in R0, in particular, V (R0−r) = V (R0+r). Without

loss of generality, R0 may be zero.

In this case trial Wannier functions wtrial
n,R0

are symmetric or antisymmetric with respect

to this point [dC64b]. The Bloch functions can obey the form:

ψn,k(r) = sn,k(r) + ian,k(r),

where the functions sn,k and an,k are real and respectively symmetric or antisymmetric.

This representation implies that

Gk =
〈
sn,k, w

trial
n,R0

〉2

Rd , if wtrial
n,R0

is symmetric;

Gk =
〈
an,k, w

trial
n,R0

〉2

Rd , if wtrial
n,R0

is antisymmetric.

In such a way, [Gk]1/2 is analytic and real.

As a consequence, we have shown the existence of exponentially localized Wannier func-

tions (i) for 1D crystals in general and (ii) for multidimensional crystals under a restriction

of inverse symmetry.

Remark 3.6. The approach of des Cloizeaux can be applied in the same manner to the

Transverse Magnetic problem (2.1.5) instead of (3.3.13), with the corresponding substitu-

tion of the inner product: 〈·, ·〉Rd 7→ 〈·, ·〉Rd,ε.
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3.3.3 Nenciu’s proof for crystals without inversion symmetry

The projection method of des Cloizeaux was later used by Gheorghe Nenciu in [Nen83]

to generalize the proof for crystals without an inversion center.

Consider a nondegenerating band. Let us split a space vector r into two components:

r = ρ+ R,

where ρ ∈WSC, R ∈ Γ. Represent the Bloch waves as

ψn,k(r) = eik·run,k(r) = eik·Reik·ρun,k(ρ) = eik·Rvn,k(ρ).

The definition of Bloch waves is not unique because of a k-dependent phase factor; let it

be included into notation ûn,k(ρ) and the corresponding v̂n,k(ρ) and ψ̂n,k(r).

The Wannier functions turn out to be

ŵn,0(r) =
1

VBZ

∫
BZ

eik·Rv̂n,k(ρ) d k.

By Theorem 3.3, the functions ŵn,0 are exponentially decaying, if and only if their Fourier

sums v̂n,k(ρ) are periodic and analytic in k. To construct functions which satisfy these

two conditions, we need the following result.

Theorem 3.4 (G. Nenciu). Let X be a separable Hilbert space and Q(k) : X → X be

a projection operator, dependent on the d-dimensional complex vector k = k′ + ik′′ and

analytic in a strip |k′′| < A (A > 0). Let Q(k) satisfy the conditions:

Q(k) = Q∗(k) for k ∈ Rd,

Q(k) = Q(k + 2πK) for |k′′| < A, K ∈ Zd,

dim(Q(k)) = 1.

If there exists an antilinear involution θ : X → X such that

θQ(k)θ = Q(−k) for k ∈ Rd,
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then there exists a bounded operator-valued function B(k) : X → X, with bounded inverse,

analytic in the strip |k′′| < A and satisfying

Q(k) = B(k)Q(0)B−1(k), B(0) = 1 for |k′′| < A,

B−1(k) = B∗(k) for k ∈ Rd,

B(k)Q(0) = B(k + 2πK)Q(0) for |k′′| < A, K ∈ Zd.

A rigorous proof of this theorem can be found in [Nen83].

Applying Theorem 3.4, we now build now analytic and periodic in k functions v̂n,k(ρ).

Let Qn(k) be the orthogonal projection in L2
ε(WSC) (and therefore a restriction to BZ of

Q(k) from Theorem 3.4). Evidently, dim(Q(k)) = 1 — this results from the nondegeneracy

of the band β. Let θ be the involution representing complex conjugation such that θψn,k =

ψn,−k up to a phase factor. Q(k) and θ satisfy the conditions of Theorem 3.4; therefore,

a function B(k) can be determined.

Consider the phase factor of vn,0 fixed. Then functions v̂n,k = B(k)vn,0 are analytic and

periodic in k.

The existence of exponentially decaying Wannier functions of nondegenerated bands in

arbitrary multidimensional crystals is proven.

3.4 Projected position operator in 1D

In this section we will consider a special case when the exponentially decaying Wannier

functions can be found explicitly.

Consider a 1D crystal with inversion symmetry. As it is noticed in [dC64a], one-dimensional

crystals have in general only simple bands. We fix an n-th energy band.

As before, let Pn be a projection operator onto the subspace Sn of this band:

Pn =
∑
R∈Γ

wn,R ⊗ wn,R,
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where {wn,R}R are the Wannier functions of the n-th band:

wn,R(x) =
1

VBZ

∫
BZ

e−ikRψn,k(x) d k.

It acts on a function f ∈ L2(R) as

Pnf =
∑
R∈Γ

〈wn,R, f〉Rwn,R.

Define R̂n as a projected position operator:

R̂n = PnxPn, (3.4.1)

R̂nf =
∑
R,R′

〈
xwn,R, wn,R′

〉
R

〈
wn,R′ , f

〉
Rwn,R. (3.4.2)

S. Kivelson in his article [Kiv82] has shown that exponentially localized Wannier functions

of the band n are eigenfunctions of the operator R̂n:

R̂nw
loc
n,R(x) = Rwloc

n,R(x). (3.4.3)

We are going to examine this assertion.

Recall the translational invariance of the crystal and the orthogonality of the Wannier

functions:

wn,R(x) = wn,R−R′(x− R′), or wn,R′(x) = wn,0(x− R′),〈
wn,R, wn,R′

〉
R = δR,R′ .

One can write the following sequence of equations:〈
R̂nwn,R, wn,R′

〉
R

=
〈
PnxPnwn,R, wn,R′

〉
R

=
〈
Pn(R′ + (x− R′))Pnwn,R−R′(· − R′), wn,0(· − R′)

〉
R

= R′
〈
wn,R−R′ , wn,0

〉
R +

〈
R̂nwn,R−R′ , wn,0

〉
R

= δR,R′R +
〈
R̂nwn,R−R′ , wn,0

〉
R
.

We want to show that the second term can vanish. By definition of the projected position

operator,

R̂nwn,R = xwn,R.
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According to Kohn’s theorem 3.2, the Wannier functions can be (uniquely) chosen to

be real and (anti-)symmetric wloc
n,R(x) = ±wloc

n,−R(−x). (In addition, such functions are

exponentially localized). Thus,〈
R̂nw

loc
n,R, w

loc
n,0

〉
R

=
〈
xwloc

n,R, w
loc
n,0

〉
R

= (±1)2
〈
−xwloc

n,−R(−·), wloc
n,0(−·)

〉
R

= −
〈
xwloc

n,0, w
loc
n,−R

〉
R

= −
〈
(x− R)wloc

n,R(· − R), wloc
n,0(· − R)

〉
R + RδR,0

= −
〈
xwloc

n,R, w
loc
n,0

〉
R ,

and, comparing the first and the last lines, we conclude:〈
R̂nw

loc
n,R, w

loc
n,0

〉
R

= 0.

Consequently, for the exponentially decaying Wannier functions it holds〈
R̂nw

loc
n,R, w

loc
n,R′

〉
R

= δR,R′R.

Consider another isolated band m with its own set of Wannier functions wm,ρ, m 6= n.

From the definition of R̂n,

R̂nwm,ρ =
∑
R,R′

〈
xwn,R, wn,R′

〉 〈
wn,R′ , wm,ρ

〉
wn,R(x)

=
∑
R,R′

〈
xwn,R, wn,R′

〉
δm,nδρ,R′wn,R(x)

= 0.

Therefore, for an arbitrary l, R, R′ it holds:〈
R̂nw

loc
n,R, w

loc
l,R′

〉
= δn,lδR,R′R.

The last equation is the matrix equivalent of the eigenvalue problem:

R̂nw
loc
n,R(x) = Rwloc

n,R(x)

Finally, let us formulate a theorem to sum up the result of this section.
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Theorem 3.5 (The eigenfunctions of the projected position operator, S. Kivelson). Let

n be an isolated band for a 1D periodic crystal with inversion symmetry. Let Pn be a

projection operator onto the subspace of this band:

Pn =
∑
R∈Γ

wn,R ⊗ wn,R

and let R̂n be a projected position operator:

R̂n = PnxPn.

Then the exponentially localized Wannier functions of the band are the eigenfunctions of

the operator R̂n:

R̂nw
loc
n,R(x) = Rwloc

n,R(x).

A. Nenciu and G. Nenciu [NN82] have shown that the operator R̂n has discrete spectrum

and the functions from Theorem 3.5 are its only eigenfunctions. In [CNN08] the authors H.

D. Cornean, A. Nenciu and G. Nenciu generalize this result for arbitrary one-dimensional

crystals, not necessarily periodic — with a potential which tends to zero as the variable

tends to infinity, — and prove that the eigenfunctions of R̂n are maximally localized

Wannier functions in this case also.

3.5 Numerical computation of maximally localized

Wannier functions in a 1D Photonic Crystal

Our aim is to compute the eigenfunctions of the projected position operator — which are

at the same time the Kohn’s localized Wannier functions — numerically. The formulas

below should be applied to each band separately, for this reason the band index n is

further omitted.

The projected position operator R̂ = PxP is independent on the choice of phases of the
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Bloch waves because the operator P does not depend on them (3.3.15). Thus, let us fix

some initial set of Wannier functions w0
R; it is not yet important how we do it. Let the

functions we are looking for be wloc
R . Expand them into the basis {w0

R}R∈Z:

wloc
R (x) =

∑
R′∈Γ

α
(R)

R′
w0

R′(x). (3.5.1)

The eigenvalue problem to solve can be then reformulated:

R̂wloc
R = Rwloc

R ,∑
ρ,ρ′

〈
xw0

ρ, w
0
ρ′

〉
R,ε

〈
w0
ρ′ ,
∑
R′∈Γ

α
(R)

R′
w0

R′

〉
R,ε

w0
ρ = R

∑
ρ

α(R)
ρ w0

ρ.

Let Xρ,ρ′ =
〈
xw0

ρ, w
0
ρ′

〉
R,ε, then we have:∑
ρ,ρ′

Xρ,ρ′
∑
R′∈Γ

α
(R)

R′
δρ′,R′w

0
ρ = R

∑
ρ

α(R)
ρ w0

ρ,∑
ρ,ρ′

Xρ,ρ′α
(R)
ρ′ w

0
ρ = R

∑
ρ

α(R)
ρ w0

ρ,∑
ρ′

Xρ,ρ′α
(R)
ρ′ = Rα(R)

ρ .

Therefore, the eigenvalue problem for the projected position operator is reduced to the

following matrix equation:

Xα(R) = Rα(R). (3.5.2)

We know a priori the eigenvalues of X to be R ∈ Z, so when we find its eigenvectors α(R),

the corresponding eigenfunctions of the operator R̂ can be easily found:

wloc
R (x) =

∑
R′∈Γ

α
(R)

R′
w0

R′(x).

How to calculate Xρ,ρ′? Recall:

XRR′ =
〈
xw0

R, w
0
R′
〉

R,ε

=
〈
(x− R′ + R′)w0

R−R′(· − R′), w0
0(· − R′)

〉
R,ε

=
〈
xw0

R−R′ , w
0
0

〉
R,ε + RδR,R′ .



59

Now we want to use some facts which will be described in detail later. Since we need

them only for the numerical implementation, let us omit the explanations in this section

and take only the results. In Section 5.1 it will be pointed out that

〈
xw0

R−R′ , w
0
0

〉
R,ε =

i

2π

∫
BZ

eik(R−R′)
〈
u0

k, ∂ku
0
k

〉
WSC,ε

d k,

where u0
k(x) = e−ikxψ0

k(x) are periodic in x with respect to the nodes R: u0
k(x+R) = u0

k(x).

So far we have considered continuous problem, but now we turn to numerics. To do so,

we have to approximate X. After [MV97] (which will be considered in Section 5.2), the

last expression can be approximated by

i

2π

∫
BZ

eik(R−R′)
〈
u0

k, ∂ku
0
k

〉
WSC,ε

d k ≈ − 1

4π

Nk∑
k=1

eik(R−R′) Im ln
Mk,1

Mk,−1

with

Mk,s =
〈
u0

k, u
0
k+s

〉
WSC,ε

.

Introduce another notation:

M̃k = Im ln
Mk,1

Mk,−1
= Im ln

〈
u0

k, u
0
k+1

〉
WSC〈

u0
k, u

0
k−1

〉
WSC,ε

.

Then

〈
xw0

R−R′ , w
0
0

〉
Rd ≈ −

1

4π

Nk∑
k=1

eik(R−R′)M̃k

and thus

XRR′ ≈ − 1

4π

Nk∑
k=1

eik(R−R′)M̃k + RδR,R′ . (3.5.3)

Now we have the formula to solve the eigenvalue problem (3.5.2) numerically. First, we

need the initial functions u0
k. These can be obtained as the numerical solution of (2.5.1).

What we actually do here is implementing of the Finite Element method; for a descrip-

tion see Appendix, Section 2. Then we fix the amount 2L+ 1 of considered R-nodes (this
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means, L to the left and L to the right from R = 0) and compute matrix X by (3.5.3).

The eigenvector α(R) of (3.5.2) can be now found in Matlab with use of the subroutine

“eig”. The eigenfunctions wloc
R of the projected position operator R̂ are then determined

by (3.5.1).

We implement the algorithm with the following input data:

1. The Photonic Crystal:

• nodes R are integer from -50 to 50 (L = 50);

• in the Wigner-Seitz cell [0, 1]

ε(x) =

 1, x ∈ [0, 0.41) ∪ (0.59, 1],

11.56, x ∈ [0.41, 0.59];

2. Mesh in x-space: Nx = 51, hx = 0.02;

3. Monkhorst-Pack mesh in k-space as in Section 5.2: Nk = 100 hk = 2π/100;

4. Linear Finite Elements to compute u0
k;

5. Implemented for the first 4 bands (n = 1, 2, 3, 4).

As we see on Figures 3.1-3.4, the resulting functions look as expected: real, (anti-) sym-

metric about 0 or 1/2 and exponentially localized.
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Figure 3.1: Eigenfunction of R̂1

Figure 3.2: Eigenfunction of R̂2



62

Figure 3.3: Eigenfunction of R̂3

Figure 3.4: Eigenfunction of R̂4



Chapter 4

Spread functional

4.1 Localization criterion

In the previous chapter we have observed the proofs of existence of exponentially decaying

Wannier functions for periodic crystal structures. However, we have no general recipe

to obtain them, so, we have to talk about some “optimally” or “maximally” localized

functions. But how can one estimate, how “good” they are?

To discuss localization, we need to define a measure of the total spread of the Wannier

function basis such that its minimum could serve as a criterion of localized functions. For

a given basis {wn,0}n define:

Ω(w) =
∑
n

[〈
r2wn,0, wn,0

〉
Rd,ε −

∣∣∣〈rwn,0, wn,0〉Rd,ε∣∣∣2] . (4.1.1)

This spread functional was suggested by Nicola Marzari and David Vanderbilt in [MV97].

Following them, we shorten the notations:〈
r2
〉
n

=
〈
r2wn,0, wn,0

〉
Rd,ε , (4.1.2)

r̄n = 〈rwn,0, wn,0〉Rd,ε (a d-dimensional vector), (4.1.3)

so that

Ω =
∑
n

[〈
r2
〉
n
− |̄rn|2

]
.

63
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A functional of this type comes from chemistry literature as a criteria of “localized

molecule orbitals” — since the whole theory of the Wannier functions actually origins

from the modeling of electron orbitals.

To realize why such a functional was chosen as a criterion of localization of a Wannier

function set, let us turn to some analogies from probability theory.

The term

〈rwn,0, wn,0〉Rd,ε

has a meaning of mathematical expectation of r for given probability density f(r) =

ε(r)w2
n,0(r):

E(r) =

∫
Rd

rf(r) d r = 〈rwn,0, wn,0〉Rd,ε .

This term shows where the function w2
n,0 (and herewith wn,0) “is most probably located”.

Actually, we are interested in wn,0, but w2
n,0 (which has the same localization region) is

positive and thus can be considered as probability density.

So, 〈rwn,0, wn,0〉Rd,ε can be interpreted as the center of n-th Wannier function.

The expression 〈
r2wn,0, wn,0

〉
Rd,ε −

∣∣∣〈rwn,0, wn,0〉Rd,ε∣∣∣2
is a dispersion of r with the same density f :

D(r) = E(|r|2)− [E(r)]2

=

∫
Rd
|r|2f(r) d r−

∣∣∣∣∫
Rd

rf(r) d r

∣∣∣∣2
=

〈
r2wn,0, wn,0

〉
Rd,ε −

∣∣∣〈rwn,0, wn,0〉Rd,ε∣∣∣2 .
This shows the deviation of r from the expected center E , namely, how wide is the interval

where the w2
n,0 “most probably lie”.

So, the functional Ω can be understood as a sum of the second moments, or variances

of the band functions and therefore can serve as a measure of their deviations from the

center — namely, the measure of localization.
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4.2 Lattice shift

Let us examine the behaviour of the components of the spread by a lattice shift r 7→ r+R:

r̄n = 〈rwn,0, wn,0〉Rd,ε 7→ 〈(r− R)wn,0, wn,0〉Rd,ε

= 〈rwn,0, wn,0〉Rd,ε + R

= r̄n + R;〈
r2
〉
n

=
〈
r2wn,0, wn,0

〉
Rd,ε 7→

〈
(r + R)2wn,0, wn,0

〉
Rd,ε

=
〈
r2wn,0, wn,0

〉
Rd,ε + 2 〈rwn,0, wn,0〉Rd,ε · R +R2

=
〈
r2
〉
n

+ 2r̄n · R + |R|2.

The shift of the lattice (or, in other words, of the zero point) is equivalent to “movement”

of the Wigner-Seitz cell — namely, to the choice, which Wannier functions belong to the

fundamental domain. Notice that Ω itself keeps unchanged:

Ω =
∑
n

(〈
r2
〉
n
− |̄rn|2

)
7→

∑
n

(〈
r2
〉
n

+ 2r̄n · R +R2 − |̄rn + R|2
)

=
∑
n

(〈
r2
〉
n

+ 2r̄n · R +R2 − |̄rn|2 − 2r̄n · R−R2
)

=
∑
n

(〈
r2
〉
n
− |̄rn|2

)
.

4.3 Decomposition of the spread functional

For deeper understanding of the mathematical nature of the spread functional, it is useful

to decompose it into the following parts:

Ω = ΩD + ΩOD + ΩI
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such that

ΩD =
∑
n

∑
R6=0

∣∣∣〈rwn,R, wn,0〉Rd,ε∣∣∣2 , (4.3.1)

ΩOD =
∑
n,m 6=n

∑
R∈Γ

∣∣∣〈rwm,R, wn,0〉Rd,ε∣∣∣2 , (4.3.2)

ΩI =
∑
n

[〈
r2
〉
n
−
∑
m,R

∣∣∣〈rwm,R, wn,0〉Rd,ε∣∣∣2
]
. (4.3.3)

The terms ΩD and ΩOD are called band-diagonal and band-off-diagonal correspondingly.

It is evident that their sum

ΩD,OD =
∑
n

∑
R6=0,m 6=n

∣∣∣〈rwm,R, wn,0〉Rd,ε∣∣∣2 (4.3.4)

is positive.

For the third term ΩI we formulate the following result.

Theorem 4.1 (Invariant part of the spread functional). The functional ΩI is positive and

gauge invariant, namely, invariant with respect to a unitary transform of the Bloch waves

(3.2.2):

ψn,k(r) 7→
Nβ∑
m=1

Uk
mnψm,k(r).

Proof. Consider a composite energy band β in a crystal. Let P be a projection operator

(3.3.17) as in Section 3.3.2 onto a subspace of Wannier functions corresponding to this

band:

P =

nNβ∑
n=n1

∑
R∈Γ

wn,R ⊗ wn,R.

Let Q = Id− P be a projection onto all other bands. Then ΩI can be rewritten as

ΩI =
∑
n

d∑
α=1

〈rαQrαwn,0, wn,0〉Rd,ε

=
d∑

α=1

tr [PrαQrα] ,
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where d is the dimensionality of the crystal [MV97]. We immediately see that ΩI is

positive.

Having shown in Chapter 2 that the operator P is invariant under the considered transform

of the Bloch waves (3.3.15), we conclude that Q is also invariant. The required property

follows from the representation of ΩI. Theorem 4.1 is proven.

Remark 4.1. Since all three components ΩI, ΩD and ΩOD of the spread functional are

positive, Ω is also always positive. Its value is bounded from below by the constant ΩI.

The following combination can be useful:

ΩI,OD = ΩI + ΩOD =
∑
n

[〈
r2
〉
n
−
∑
R∈Γ

∣∣∣〈rwn,R, wn,0〉Rd,ε∣∣∣2
]
. (4.3.5)

Clearly, it is also positive.

4.4 Minimum of the spread in 1D

In a 1D crystal, let us choose a set of Wannier functions wloc
n,R to be eigenfunctions of

projected position operator (as in Section 2.3). For them it holds〈
R̂mw

loc
m,R, w

loc
n,R′

〉
Rd,ε

= δm,nδR,R′R.

Therefore,

ΩD,OD =
∑
n

∑
R 6=0,m6=n

∣∣∣〈rwloc
m,R, w

loc
n,0

〉
Rd,ε

∣∣∣2
=

∑
n

∑
R 6=0,m6=n

∣∣∣∣〈R̂mw
loc
m,R, w

loc
n,0

〉
Rd,ε

∣∣∣∣2
= 0.

In other words, the non-invariant part of Ω vanishes on this set. From here we make a

remarkable conclusion:
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In a 1D case, the eigenfunctions of the projected position operator are maximally localized

Wannier functions in sense of their spread.

From Theorem 3.2 we know their properties described by Kohn: real, (anti-)symmetric

about 0 or 1/2 and exponentially decaying (see Figures 3.1-3.4).

4.5 Minimization methods

Unfortunately, we have no exact solutions for crystals of higher dimensions. Our aim

is to employ and implement different minimization methods to obtain localized Wannier

functions numerically.

An efficient algorithm based on a conjugate gradient method was presented by N. Marzari

and D. Vanderbilt in [MV97]. They suggested to switch to the level of Bloch waves since

the computational domain WSC × BZ = [0, 1]d × [−π, π]d is bounded in both variables

r and k. The spread functional Ω is reformulated in terms of functions un,k and their

unitary transforms Uk. The authors could find an explicit formula for the gradient GU of

Ω from

〈Y,GU〉M = d Ω(U)[Y ] = lim
t→0

Ω(UetY )− Ω(U)

t

and applied conjugate gradient minimization to find

min
α

Ω(Ue−αGU)

with positive (small) α. This algorithm is known to be one of the best so far, and we will

consider it in detail in Chapter 5.

Another, intuitively simple approach was suggested by F. Gygi, J.-L. Fatterbert and E.

Schwegler in their paper [GFS03]. This one deals with unitary transformation of the Wan-

nier functions themselves without referring to the Bloch waves. Instead of ΩI introduced
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in (4.3.3), another part of the spread is shown to be invariant under this transform. The

minimization of the non-invariant part is reduced to a problem of simultaneous diagonal-

ization of several matrices. This method will be discussed in Chapter 6.

Finally, in Chapter 7 we present a new method based on sum-unitary transform of the

Wannier functions which has been developed in a framework of this thesis.



Chapter 5

Marzari-Vanderbilt method

The method we plan to review in this chapter was first presented by N. Marzari and D.

Vanderbilt in [MV97] and further developed in [SMV01]. Being relatively new, it became,

however, very popular very soon and is considered today as the most efficient way to

localize Wannier functions.

5.1 Ω as a functional over U

When one talks about numerical integration, the computational domain is naturally con-

sidered to be bounded. However, in the definition of the spread functional we have two

integrals over an unbounded domain Rd: 〈r2〉n and r̄n.

Let us turn to the Bloch waves level where we have the following theorem.

Theorem 5.1 (Representation of r̄n and 〈r2〉n, [Blo62]). For the periodic parts un,k of

the Bloch waves it holds:

〈rwn,R, wm,0〉Rd,ε =
i

VBZ

∫
BZ

eik·R 〈un,k,∇kum,k〉WSC,ε d k,〈
r2wn,R, wm,0

〉
Rd,ε =

1

VBZ

∫
BZ

eik·R 〈∇kun,k,∇kum,k〉WSC,ε d k.

70
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The proof can be found in [Blo62] or [Klo04].

From Theorem 5.1 follows that the spread functional can be rewritten as

Ω =
∑
n

[
1

VBZ

∫
BZ

〈∇kun,k,∇kun,k〉WSC,ε d k−
∣∣∣∣ i

VBZ

∫
BZ

〈un,k,∇kun,k〉WSC,ε d k

∣∣∣∣2
]
.

In Chapter 2 we established that Bloch waves as eigenfunctions of the operator LTM are

unique only up to a unitary transform of a band:

ψn,k 7→
nNβ∑
m=n1

Uk
m,nψm,k, un,k 7→

nNβ∑
m=n1

Uk
m,num,k.

With this freedom in mind, we fix some initial set u0
n,k and rewrite the spread as depending

only on U:

Ω(U) =
∑
n

[
1

VBZ

∫
BZ

∑
m,m′

〈
∇k

(
Uk
m,nu

0
m,k

)
,∇k

(
Uk
m′,nu

0
m′,k

)〉
WSC,ε

d k−

−

∣∣∣∣∣ i

VBZ

∫
BZ

∑
m,m′

〈
Uk
m,nu

0
m,k,∇k

(
Uk
m′,nu

0
m′,k

)〉
WSC,ε

d k

∣∣∣∣∣
2
 .

5.2 Discretized Ω in the Brillouin zone

As far as we plan to compute Ω numerically, we have to discretize it.

Following [MP76], we introduce a Monkhorst-Pack mesh MP in BZ which can be described

as follows. Let Nk be a number of nodes in every axis direction, and let hk = 2π/Nk be

a meshsize. The Monkhorst-Pack mesh has nodes in points with coordinates of the form

(−2π + hk/2) + jhk with integer j. Thus, the nodes are shifted from the boundary by

half-meshsize (see Figure 5.1). The mesh consists of Nd
k nodes.

What advantages does this mesh give? First, it simplifies the periodic boundary condition:

recall, un,−π = un,πe2iπ·r, therefore, the mesh contains only “unique” points. Second, it is

symmetric about the axes which gives some numerical advantages that we will show later.

Let

1

VBZ

∫
BZ

d k ≈ 1

(Nk)d

∑
k∈MP

.
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Figure 5.1: Monkhorst-Pack mesh in the Brillouin zone

Let Sk be a “stencil” of closest neighbouring nodes for a node k:

Sk = {−hk, hk} in 1D, (5.2.1)

Sk =


 −hk

0

 ,

 hk

0

 ,

 0

−hk

 ,

 0

hk

 in 2D. (5.2.2)

The stencil is the same for all nodes and independent on k. After [MV97], we approximate

by finite differences

∇kf(k) ≈
∑
s∈Sk

ass (f(k + s)− f(k)) , (5.2.3)

|∇kf(k)|2 ≈
∑
s∈Sk

as (f(k + s)− f(k))2 (5.2.4)

with some weights as which satisfy the consistency condition:∑
s∈Sk

ass⊗ s = Id.



73

From here we obtain the following

Lemma 5.1. For any vector s′ ∈ Rd,∑
s∈Sk

as|s · s′|2 = |s′|2.

Proof. This can be shown easily:

∑
s∈Sk

as|s · s′|2 =
∑
s∈Sk

as(s · s′)(s · s′)∗ = s′

(∑
s∈Sk

ass⊗ s

)
(s′)∗ = s′Id(s′)∗ = |s′|2.

The terms of the spread functional can be now approximated as

r̄n ≈
i

Nd
k

∑
k∈MP

∑
s∈Sk

ass [〈un,k, un,k+s〉 − 1] = r̄4n , (5.2.5)

〈
r2
〉
n
≈ 1

Nd
k

∑
k∈MP

∑
s∈Sk

as [2− 2 Re (〈un,k, un,k+s〉)] =
〈
r2
〉4
n
. (5.2.6)

Here we denote the approximations with a symbol “·4. These expressions tend to r̄n and

〈r2〉n as Nk →∞, which is equivalent to hk → 0.

Let

Mk,s
mn = 〈um,k, un,k+s〉WSC,ε . (5.2.7)

We note some properties of M :

1.
[
Mk+s,−s

]H
= Mk,s. Indeed,

[
Mk+s,−s

]H
mn

=
[
Mk+s,−s

nm

]∗
= 〈un,k+s, um,k+s−s〉∗

= 〈um,k, un,k+s〉 = Mk,s
mn.
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2. Mk+K,s = Mk,s for K ∈ Γ∗. We can easily show:

Mk+K,s
mn = 〈um,k+K, un,k+K+s〉

=
〈
e−iK·rum,k, e

−iK·run,k+s

〉
= 〈um,k, un,k+s〉 = Mk,s

mn.

The equations for r̄n and 〈r2〉n can be rewritten as

r̄4n =
i

Nd
k

∑
k,s

ass
[
Mk,s

nn − 1
]
,

〈
r2
〉4
n

=
1

Nd
k

∑
k,s

as
[
2− 2 Re

(
Mk,s

nn

)]
.

With these approximations we have, however, a small problem. They do not transform

by a lattice shift r 7→ r+R as their continuous analogues do. From Section 4.2, we require

for the approximations:

r̄4n 7→ r̄4n + R,〈
r2
〉4
n
7→

〈
r2
〉4
n

+ 2r̄4n · R +R2.

The approximations suggested above do not fulfill these conditions, however, they can be

modified a little to become satisfactory. Marzari and Vanderbilt suggested the following

update of (5.2.5) and (5.2.6):

r̄4n = − 1

Nd
k

∑
k,s

ass argMk,s
nn , (5.2.8)

〈
r2
〉4
n

=
1

Nd
k

∑
k,s

as

[
1−

∣∣Mk,s
nn

∣∣2 +
(
argMk,s

nn

)2
]
. (5.2.9)

A detailed derivation of these formulas can be found in [Klo04, Section 4.5]; we also refer

to Appendix (Section 10.4) of this thesis.

These new expressions still approximate r̄n and 〈r2〉n as Nk → ∞, but also satisfy the

lattice shift conditions. Together they give an approximation of the spread functional:

Ω ≈ Ω4 =
∑
n

 1

Nd
k

∑
k,s

as

[
1−

∣∣Mk,s
nn

∣∣2 +
(
argMk,s

nn

)2
]
−

∣∣∣∣∣ 1

Nd
k

∑
k,s

ass argMk,s
nn

∣∣∣∣∣
2
 .
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Now Ω formally depends on the variable M , but the information about unitary transforms

of Bloch waves is implicitly contained:

Mk,s
mn = 〈um,k, un,k+s〉WSC,ε

=

〈∑
m′

Uk
m′mu

0
m′,k,

∑
n′

Uk+s
n′nu

0
n′,k+s

〉
WSC,ε

=
∑
m′

∑
n′

(
Uk
mm′

)∗ 〈
u0
m′,k, u

0
n′,k+s

〉
WSC,ε

Uk+s
n′n

=
∑
m′

∑
n′

(
Uk
mm′

)∗
M0;k,s

mn Uk+s
n′n

=
[(

Uk
)H
M0;k,sUk+s

]
mn
,

where the set u0 is fixed and

M0;k,s
mn =

〈
u0
m,k, u

0
n,k+s

〉
WSC,ε

.

Therefore, M transforms as follows:

un,k 7→
∑
m

Uk
mnum,k,

Mk,s 7→
(
Uk
)H
Mk,sUk+s.

Let us update the formulas for ΩI, ΩD and ΩOD. First, we need to simplify∑
R∈Γ

∣∣∣〈rwm,R, wn,0〉Rd,ε∣∣∣2 =
∑
R∈Γ

〈rwm,R, wn,0〉Rd,ε 〈rwm,R, wn,0〉
∗
Rd,ε

=
∑
R∈Γ

i

VBZ

∫
BZ

eik·R 〈um,k,∇kun,k〉WSC,ε d k ·

·(−i)

VBZ

∫
BZ

e−ik′·R 〈um,k′ ,∇kun,k′
〉∗

WSC,ε
d k′

=
1

V 2
BZ

∫
BZ

∫
BZ

〈um,k,∇kun,k〉WSC,ε

〈
um,k′ ,∇kun,k′

〉∗
WSC,ε∑

R∈Γ

ei(k−k′)·R d k d k′.

As we stated in (2.4.1),

1

VBZ

∑
R∈Γ

eik·R = δ(k).
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With this in place, we continue:∑
R∈Γ

∣∣∣〈rwm,R, wn,0〉Rd,ε∣∣∣2 =
1

VBZ

∫
BZ

∣∣∣〈um,k,∇kun,k〉WSC,ε

∣∣∣2 d k.

Now we discretize it using the same scheme as before:∑
R∈Γ

∣∣∣〈rwm,R, wn,0〉Rd,ε∣∣∣2 ≈ 1

Nd
k

∑
k

∑
s∈Sk

as
∣∣Mk,s

mn − δm,n
∣∣2 .

Assuming the approximation (5.2.8) for r̄n, we finally obtain:

∑
R∈Γ

∣∣∣〈rwm,R, wn,0〉Rd,ε∣∣∣2 ≈


1

Nd
k

∑
k,s as

(
argMk,s

nn

)2
, m = n,

1

Nd
k

∑
k,s as

∣∣Mk,s
mn

∣∣2 , m 6= n.

Now we can write down discretized formulas for the decomposition parts of the spread

functional.

ΩI =
∑
n

[〈
r2
〉
n
−
∑
m,R

∣∣∣〈rwm,R, wn,0〉Rd,ε∣∣∣2
]

≈ 1

Nd
k

∑
n

∑
k,s

as

[
1− |Mk,s

nn |2 + (argMk,s
nn )2 − (argMk,s

nn )2 −
∑
m6=n

|Mk,s
mn|2

]

=
1

Nd
k

∑
n

∑
k,s

as

[
1−

∑
m

|Mk,s
mn|2

]
= Ω4I .

Remark 5.1. Note that the approximation Ω4I is also gauge invariant as its continuous

analogue ΩI (Theorem (4.1)) since it can be written in form

Ω4I =
1

Nd
k

∑
k,s

as tr
(
P kQk+s

)
with P k defined as (3.3.14) and Qk = Id− P k.
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For ΩD we have:

ΩD =
∑
n

∑
R 6=0

∣∣∣〈rwn,R, wn,0〉Rd,ε∣∣∣2
=

∑
n

[∑
R∈Γ

∣∣∣〈rwn,R, wn,0〉Rd,ε∣∣∣2 − ∣∣∣〈rwn,0, wn,0〉Rd,ε∣∣∣2
]

≈
∑
n

[
1

Nd
k

∑
k,s

as(argMk,s
nn )2 − |̄rn|2

]

=
1

Nd
k

∑
n

∑
k,s

as
[
(argMk,s

nn )2 + argMk,s
nn · r̄n

]
.

To continue, we will use the following trick:∑
k

(∑
s

as|s · r̄n|2
)

=
∑

k

|̄rn|2 = Nd
k |̄rn|2,∑

k,s

ass · r̄n argMk,s
nn = −Nd

k |̄rn|2,

=⇒ 0 =
∑
k,s

as
(
|s · r̄n|2 + s · r̄n argMk,s

nn

)
.

Adding this to the last expression, we obtain:

ΩD ≈ 1

Nd
k

∑
n

∑
k,s

as
[
(argMk,s

nn )2 + 2 argMk,s
nn s · r̄n + |s · r̄n|2

]
=

1

Nd
k

∑
n

∑
k,s

as
[
argMk,s

nn + s · r̄n
]2

= Ω4D .

Finally, for the last term we write:

ΩOD =
∑
n,m 6=n

∑
R∈Γ

∣∣∣〈rwm,R, wn,0〉Rd,ε∣∣∣2
≈ 1

Nd
k

∑
n,m 6=n

∑
k,s

as|Mk,s
nn |2 = Ω4OD.

For a construction ΩI,OD we write:

ΩI,OD = ΩI + ΩOD ≈
1

Nd
k

∑
n

∑
k,s

as

[
1−

∑
m

|Mk,s
mn|2 +

∑
m 6=n

|Mk,s
mn|2

]

=
1

Nd
k

∑
n

∑
k,s

as
[
1− |Mk,s

nn |2
]

= Ω4I,OD.
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Alltogether,

Ω ≈
∑
n

∑
k,s

as

[
1 +

(
argMk,s

nn + s · r̄n
)2 − |Mk,s

nn |2
]

= Ω4. (5.2.10)

5.3 Discrete gradient of Ω

It would be too costly to search for the minimum of the spread without the information

about the descent direction. Several minimization algorithms are considered in [BMR+00]

and the most effective ones are gradient methods. For this reason, in this section we want

to formulate explicitly a gradient of the spread functional for later use.

Consider Taylor’s expansion of Ω:

Ω(U0 + tU) = Ω(U0) + t
∑

k

∂Ω(U0)

∂Uk
Uk +O(t2)

= Ω(U0) + t 〈U,∇Ω(U0)〉F +O(t2).

From this we define a gradient of Ω to be

〈U, G(U0)〉F = 〈U,∇Ω(U0)〉F = d Ω(U0)[U] = lim
t→0

Ω(U0 + tU)− Ω(U0)

t
.

Here 〈·, ·〉F is some “inner product” between objects like U. An explicit form of this

product is so far not important. Let

4f(U) = f(U +4U)− f(U).

Compute a discretized expression for

4Ω = Ω(U0 + tU)− Ω(U0).

At this point we must mention that tU is not allowed to be arbitrary. The matrices

Uk
0 + tUk must be unitary, as the initial Uk

0 are. From the properties of matrices we

know that one unitary matrix can be obtained from another by multiplication by an ex-

ponential of a skew-hermitian matrix: namely, if Uk
0 is unitary

(
Uk

0

)H
Uk

0 = Id, and Y k is

skew-hermitian
(
Y k
)H

= −Y k, then Uk
0 exp

(
Y k
)

is unitary.
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As far as we search for a first-order approximation of 4Ω, it will be enough to take only

the linear part of matrix exponent: exp
(
Y k
)
≈ Id + tY k.

Alltogether, consider a perturbation of U0 as U0(Id + tY ) with a skew-hermitian Y .

Since we have rewritten Ω in terms of M (5.2.10), let us start with 4M .

Mk,s =
(
Uk

0

)H
M0;k,sUk+s

0 7→
(
Uk

0(Id + tY k)
)H
M0;k,sUk+s

0 (Id + tY k+s)

=
(
Id + tY k

)H
Mk,s(Id + tY k+s) +O(t2)

≈ Mk,s − tY kMk,s + tMk,sY k+s;

4Mk,s = −tY kMk,s + tMk,sY k+s

= −tY kMk,s + t
(
Y k+sMk+s,−s

)H
.

For the hemitian conjugate,

(
Mk,s

)H
=
(
Uk+s

0

)H
M0;k,sUk

0 7→
(
Mk,s

)H − tY k+s
(
Mk,s

)H
+ t
(
Mk,s

)H
Y k +O(t2);

from here

4
(
Mk,s

)H
= −tY k+sMk+s,−s + t

(
Y kMk,s

)H
=

(
4Mk,s

)H
.

Let us introduce some new notations:

Rk,s
mn = Mk,s

mn

(
Mk,s

nn

)∗
;

R̃k,s
mn =

Mk,s
mn

Mk,s
nn

;

qk,s
n = argMk,s

nn + s · r̄n;

T k,s
mn = R̃k,s

mnq
k,s
n .
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Recall the decomposition of the spread functional: Ω = ΩI,OD + ΩD. Perturbations give:

4ΩI,OD =
1

Nd
k

∑
n

∑
k,s

as4
(
1− |Mk,s

nn |2
)

=
1

Nd
k

∑
n

∑
k,s

as
[
−4

(
|Mk,s

nn |2
)]

= − 1

Nd
k

∑
n

∑
k,s

as

[∣∣Mk,s
nn +4Mk,s

nn

∣∣2 −Mk,s
nn |2

]
= − 2

Nd
k

∑
n

∑
k,s

as Re
([
Mk,s

nn

]∗4Mk,s
nn

)
+O(t2)

≈ 2t

Nd
k

∑
n

∑
k,s

as Re
([
Mk,s

nn

]∗ ([
Y kMk,s

]
nn

+
[
Y k+sMk+s,−s

]∗
nn

))
=

2t

Nd
k

∑
n

∑
k,s

as
(
Re
([
Y kRk,s

]
nn

)
+ Re

([
Y k+sRk+s,−s

]
nn

))
=

2t

Nd
k

∑
n

∑
k,s

as Re
(
tr
[
Y kRk,s

])
+

2t

Nd
k

∑
n

∑
k,s

as Re
(
tr
[
Y k+sRk+s,−s

])
=

4t

Nd
k

∑
n

∑
k,s

as Re
(
tr
[
Y kRk,s

])
.

Accordingly,

4ΩD =
1

Nd
k

∑
n

∑
k,s

as4
([

argMk,s
nn + s · r̄n

]2)
=

1

Nd
k

∑
n

∑
k,s

as4
([
qk,s
n

]2)
=

1

Nd
k

∑
n

∑
k,s

as

([
qk,s
n +4qk,s

n

]2 − [qk,s
n

]2)
=

2

Nd
k

∑
n

∑
k,s

asq
k,s
n 4 qk,s

n

=
2

Nd
k

∑
n

∑
k,s

asq
k,s
n

[
4
(
argMk,s

nn

)
+4 (s · r̄n)

]
=

2

Nd
k

∑
n

∑
k,s

asq
k,s
n 4

(
argMk,s

nn

)
+

2

Nd
k

∑
n

∑
k,s

asq
k,s
n 4 (s · r̄n) .
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Let us examine the terms separately.

4
(
argMk,s

nn

)
= 4

(
Im lnMk,s

nn

)
= Im

(
4 lnMk,s

nn

)
= Im

(
ln
(
Mk,s

nn +4Mk,s
nn

)
− ln

(
Mk,s

nn

))
= Im

(
ln

(
1 +
4Mk,s

nn

Mk,s
nn

))
= Im

4Mk,s
nn

Mk,s
nn

+O(t3)

≈ Im
−t
[
Y kMk,s

]
nn
− t
[
Y k+sMk+s,−s

]∗
nn

Mk,s
nn

= −t
[
Y kR̃k,s

]
nn

+ t
[
Y k+sR̃k+s,−s

]
nn

;

4 (s · r̄n) = 4

− 1

Nd
k

∑
k′,s′

as′s · s′ argMk′,s′

nn


= − 1

Nd
k

∑
k′,s′

as′s · s′4
(

argMk′,s′

nn

)
=

t

Nd
k

∑
k′,s′

as′s · s′
(

Im
([
Y k′R̃k′,s′

]
nn

)
− Im

([
Y k′+s′R̃k′+s′,−s′

]
nn

))
.

Note that

qk+s,−s
n = arg

(
Mk,s

nn

)∗ − s · r̄n

= − argMk,s
nn s · r̄n

= −qk,s
n ,∑

k,s

sqk,s
n =

∑
k,s

ass
(
argMk,s

nn + s · r̄n
)

=
∑
k,s

ass argMk,s
nn +

∑
k,s

ass (s · r̄n)

= −Nd
k r̄n +Nd

k

(∑
s

ass⊗ s

)
· r̄n

= −Nd
k r̄n +Nd

k r̄n

= 0.
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Therefore,

4ΩD = − 2t

Nd
k

∑
n

∑
k,s

asq
k,s
n Im

[
Y kR̃k,s

]
nn

− 2t

Nd
k

∑
n

∑
k,s

asq
k+s,−s
n Im

[
Y k+sR̃k+s,−s

]
nn

+
2t

N2d
k

∑
n

∑
k,s

asq
k,s
n s ·

∑
k′,s′

as′s
′ Im

[
Y kR̃k,s

]
nn

+
2t

N2d
k

∑
n

∑
k,s

asq
k,s
n s ·

∑
k′,s′

as′(−s′) Im
[
Y k+sR̃k+s,−s

]
nn

= − 4t

Nd
k

∑
n

∑
k,s

asq
k,s
n Im

[
Y kR̃k,s

]
nn

= − 4t

Nd
k

∑
n

∑
k,s

as Im
[
Y kT k,s

]
nn

= − 4t

Nd
k

∑
k,s

as Im
(
tr
[
Y kT k,s

])
.

Finally, we obtain the following formula for the discretized spread functional:

4Ω = 4ΩI,OD +4ΩD

=
4t

Nd
k

∑
k,s

as Re
(
tr
[
Y kRk,s

])
− 4t

Nd
k

∑
k,s

as Im
(
tr
[
Y kT k,s

])
.

Now it is time to define the inner product 〈·, ·〉F mentioned earlier. Let it be a Frobenius-

type product:

〈A,B〉F =
1

Nd
k

∑
k

tr
([
Ak
]H
Bk
)
.

Then we define a gradient of Ω as

〈Y,G〉F = lim
t→0

4Ω

t

for any skew-hermitian W .
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From previous calculations we have then:

〈Y,G〉F =
1

Nd
k

∑
k

tr
([
Y k
]H
Gk
)

(as far as Y k is skew-hermitian,
[
Y k
]H

= −Y k)

= − 1

Nd
k

∑
k

tr
(
Y kGk

)
=

4

Nd
k

∑
k,s

as
(
Re
(
tr
[
Y kRk,s

])
− Im

(
tr
[
Y kT k,s

]))
.

Let us introduce “asymmetric” and “symmetric” operators A[B] and S[B]:

A[B] = −1

2

(
B −BH

)
,

S[B] =
i

2

(
B +BH

)
.

Then

〈Y,A[B]〉F = −1

2

(
〈Y,B〉F −

〈
Y,BH

〉
F

)
= − 1

2Nd
k

∑
k

(
tr
([
Y k
]H
Bk
)
− tr

([
Y k
]H [

Bk
]H))

= − 1

2Nd
k

∑
k

(
− tr

(
Y kBk

)
− tr∗

(
Y kBk

))
=

1

Nd
k

∑
k

Re
(
tr
(
Y kBk

))
;

〈Y,S[B]〉F =
i

2

(
〈Y,B〉F +

〈
Y,BH

〉
F

)
=

i

2Nd
k

∑
k

(
tr
([
Y k
]H
Bk
)

+ tr
([
Y k
]H [

Bk
]H))

=
i

2Nd
k

∑
k

(
− tr

(
Y kBk

)
+ tr∗

(
Y kBk

))
= − 1

Nd
k

∑
k

Im
(
tr
(
Y kBk

))
.

Gathering together all these pieces of information, we conclude:

〈Y,G〉F = 4
∑

s

as (〈Y,A[R·,s]〉F + 〈Y,S[T ·,s]〉F)

= 4
∑

s

as 〈Y,A[R·,s] + S[T ·,s]〉F .
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From here we find the gradient:

Gk = 4
∑

s

as
(
A[Rk,s] + S[T k,s]

)
= 2

∑
s

as

(
−Rk,s +

[
Rk,s

]H
+ iT k,s + i

[
T k,s

]H)
.

Obviously, it is also skew-hermitian.

Let us take Y k = −αGk with some infinitesimal α ≥ 0. Then

d Ω(U)[Y ] = 〈Y,G〉F =
1

Nd
k

∑
k

tr
([
Y k
]H
Gk
)

= − α

Nd
k

∑
k

tr
([
Gk
]H
Gk
)

= − α

Nd
k

∑
k

‖Gk‖2
F ≤ 0,

where ‖·‖F is Frobenius matrix norm.

As we see, such a choice of W makes Ω decay or at least not grow. It means that if we

transform U as

Uk 7→ Uk exp
(
Y k
)

= Uk exp
(
−αGk

)
,

we can minimize the spread.

5.4 A choice of the initial set U

In the algorithm described in this chapter, we have skipped an important point — the

choice of initial values for U. Meanwhile, it has a big influence on efficiency of the method,

namely, on how fast a localized solution can be found and how good it will be.

Ω as a functional over U has erratic behaviour, and therefore conjugate gradient minimiza-

tion depends crucially on how far from the (global) minimum it starts. With a bad initial

guess, the algorithm can be trapped in a local minimum. Wannier functions obtained by

this minimum can have unphysical oscillations. Marzari and Vanderbilt notify that the

proposed method is not secured of such a possibility, but they also point out, that at a

global minimum
∣∣qk,s
n

∣∣� π, while at a false (local) minimum some of its values approach
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π.

We also remember that maximally localized Wannier functions are expected to be real,

apart from a trivial overall phase, while a false local minimum of Ω often is complex-

valued.

So, we conclude that initial matrices Uk should be “good”. But what does it mean?

First, they must be smooth in k. Indeed, as far as we use finite differences in k-mesh,

we expect to obtain a proper approximation of the functions un,k. Second, they have to

satisfy periodicity conditions on the Bloch waves ψn,k:

ψn,k = ψn,k+K,∑
m

Uk
mnψ

0
m,k = ψn,k = ψn,k+K =

∑
m

Uk+K
mn ψ

0
m,k+K =

∑
m

Uk+K
mn ψ

0
m,k,

Uk = Uk+K.

An intuitively natural way is to take identity matrices Uk = Id. As we will show later,

this choice is rather good, but can be also improved. With this goal in mind, we put the

third condition: initial values for U are desirable to look roughly like localized Wannier

functions.

A nice example of such localized functions can be Gaussian bell functions centered in the

Wigner-Seitz cell:

gn(r) = an exp

(
−(r− bn)2

2c2
n

)
,

where an is a peak height of n-th Gaussian, bn is the position of its center and cn is a

value related to its full width at half maximum (FWHM) as FWHM= 2
√

2 ln 2cn (see

Figure 5.2).

Let us consider such functions as an initial guess for Wannier functions, with an = 1,

bn ∈WSC = [0, 1]d and closer to its center, and c2
n taken such that FWHM is comparable

to the width of WSC.

We project the Gaussians onto the span of Bloch waves, orthonormalize the projections,

and take the result as starting Bloch waves — or, equivalently, construct such matrices
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Figure 5.2: A Gaussian bell function

Uk which rotate fixed initial Bloch waves ψ0
n,k to this starting guess. Algorithmically it

can be written down as follows.

Construction of matrices Uk based on Gaussian bells

1. Construct a random d×Nβ-dimensional set b such that bn ∈ [0.1, 0, 9]d for every n;

2. Construct a random d×Nβ-dimensional set c with cn ∈ [0.1,min(bn, 1− bn)]d;

3. Define d-dimensional Gaussian bells:

gn(r) = exp

(
−(r− bn)2

2c2
n

)
;

4. Project them onto the span of Bloch waves:

φl,k =

Nβ∑
m=1

〈
ψ0
m,k, gl

〉
ψ0
m,k;

5. Orthonormalize these functions to obtain a starting guess for Bloch waves:

ϕn,k =

Nβ∑
l=1

[
S
−1/2
k

]
ln
φl,k,

where Sk;ln = 〈φl,k, φn,k〉 (this must be strictly positive according to [dC64b]);
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6. Finally, construct the matrices Uk using two equalities:

ϕn,k =

Nβ∑
m=1

Uk
mnψ

0
m,k,

ϕn,k =

Nβ∑
l=1

[
S
−1/2
k

]
ln
φl,k

=

Nβ∑
l=1

[
S
−1/2
k

]
ln

Nβ∑
m=1

〈
ψ0
m,k, gl

〉
ψ0
m,k

=

Nβ∑
m=1

 Nβ∑
l=1

[
S
−1/2
k

]
ln

〈
ψ0
m,k, gl

〉ψ0
m,k.

Therefore, assign

Uk
mn =

Nβ∑
l=1

[
S
−1/2
k

]
ln

〈
ψ0
m,k, gl

〉
.

Such a construction suggested in [MV97] is not new — it comes from chemistry literature

on modeling electron orbitals. As we will show in the next section, this starting guess

leads to quite good results.

5.5 Minimization algorithm

In this section we describe explicitly the algorithm of spread minimization based on the

conjugate gradient method [She94].

The subroutines

(p) Preparational computations

At the very beginning compute:

p1) periodic parts of Bloch waves u0
n,k in Wigner-Seitz cell

p2) M0;k,s
m,n =

〈
u0
m,k, u

0
n,k+s

〉
ε,WSC
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p3) some initial values for Uk

(t) Transformations of matrices

Subroutines to transform U as U(Y ) and M as M(U):

t1) for given Y , Uk 7→ Uk exp
(
Y k
)

t2) for given U, Mk,s 7→
(
Uk
)H
Mk,sUk+s

(s) Spread functional Ω

Input: M .

s1) r̄n = − 1

Nd
k

∑
k

∑
s∈Sk

ass argMk,s
nn

s2) Ω =
1

Nd
k

∑
n

∑
k,s as

([
argMk,s

nn + s · r̄n
]2

+ 1− |Mk,s
nn |2

)

(g) Gradient G

Input: M .

g1) Rk,s
mn = Mk,s

mn

(
Mk,s

nn

)∗
g2) R̃k,s

mn =
Mk,s

mn

Mk,s
nn

g3) calculate r̄n as in (s1), then qk,s
n = argMk,s

nn + s · r̄n

g4) T k,s
mn = R̃k,s

mnq
k,s
n

g5) Gk = 2
∑

s as

(
−Rk,s +

[
Rk,s

]H
+ iT k,s + i

[
T k,s

]H)
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The minimization procedure

Input: U, tolerance δ, maximal number of iterations miter.

Conjugate gradient method [She94]:

m01) for initial set U, compute M as in (t2)

m02) for M , compute G as described in (g)

m03) let Flast = G

m1) for fixed G, find α0 ≥ 0 which minimizes Ω(M(U(−αG))); here first compute U(αG)

as in (t1), then M(U) as in (t2) and finally Ω(M) as in (s)

m2) update U 7→ U(−α0G) as in (t1)

m3) let F = G(M(U)) using subroutines (t2) and (g)

m4) Polac-Ribière formula: β = max

(
0,
〈F, F − Flast〉F
〈Flast, Flast〉F

)
m5) refine G 7→ F + βG and set Flast = F

Perform loop (m1)-(m5) until Ω cannot reduce the tolerance δ in 3 consequitive steps,

or until α0 = 0, or until the number of iterations achieves the prescribed maximum miter.

Localized Wannier functions

Input: u0
n,k, U.

w1) for the last values of U, compute the functions un,k as un,k =
∑

m Uk
mnu

0
m,k

w2) wn,0(r) =
1

Nd
k

∑
k eik·run,k(r)
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5.6 Computational results

1D case

In 1D all bands are isolated and thus can be considered separately. Let us take the first

four bands.

We take the following input data:

1. The Photonic Crystal: in the Wigner-Seitz cell [0, 1]

ε(x) =

 1, x ∈ [0, 0.41) ∪ (0.59, 1],

11.56, x ∈ [0.41, 0.59];

2. Mesh in x-space: Nx = 51, hx = 0.02;

3. Monkhorst-Pack mesh in k-space as in Section 5.2: Nk = 100, hk = 2π/100;

4. Stencil (5.2.1), weights a1 = a2 = 1/(2h2
k);

5. Linear Finite Elements to compute u0
n,k (for details see Appendix, Section 10.2.1);

6. Implemented for the first 4 bands (n = 1, 2, 3, 4).

If we start the algorithm of Section 5.4 with the initial guess Uk = Id = 1, the results

look as follows:

n Ω0 Ωmin iterations time

1 7.527 0.036 52 2 sec

2 0.148 0.147 6 1 sec

3 6.684 0.174 52 3 sec

4 2.711 0.139 52 2 sec

For the starting Uk constructed from Gaussian bells we obtain:
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n Ω0 Ωmin iterations time

1 24.098 0.036 52 3 sec

2 7.773 0.147 52 3 sec

3 3.109 0.174 52 2 sec

4 24.003 0.139 52 3 sec

The corresponding Wannier functions are illustrated in Figures 5.3-5.14.

2D case

In 2D we consider the following Photonic Crystal: In the Wigner-Seitz cell [0, 1]

ε(r) =

 1, (r1 − 1
2
)2 + (r2 − 1

2
)2 > 0.182,

11.56, (r1 − 1
2
)2 + (r2 − 1

2
)2 ≤ 0.182.

The band structure corresponding to this crystal is illustrated in Figure 2.2. The first

band is isolated (simple), the following tree bands a gathered together in a composite.

Therefore, we consider them in groups: 1) n = 1; 2) n = 2, 3, 4.

We take the following input data:

1. mesh in r-space: Nx = 31, hx = 0.033;

2. Monkhorst-Pack mesh in k-space as in Section 5.2 (see Figure 5.1): Nk = 40 hk =

2π/40;

3. stencil (5.2.2), weights a1 = a2 = a3 = a4 = 1/(2h2
k);

4. linear Finite Elements to compute u0
n,k (for details see Appendix, Section 10.2.2);

5. implemented for the first 4 bands (n = 1, 2, 3, 4).

We start the algorithm with the initial guess Uk = Id. For the isolated band (n = 1) it is

just 1, for the composite group (n = 2, 3, 4) it is a 3×3 identity matrix.

The localization process looks as follows:
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n Ω0 Ωmin iterations time

1 8.667 0.084 30 4 min 7 sec

2-4 26.552 0.510 73 20 min 21 sec

Again, as in 1D also, we remark the localization and the symmetries which corroborate

the theoretical expectations of Section 3.2.

Another initial guess is Uk constructed from gaussian bells.

The localization process looks as follows:

n Ω0 Ωmin iterations time

1 0.996 0.951 8 1 min 48 sec

2-4 8.896 1.637 30 8 min 45 sec

The corresponding Wannier functions are illustrated in Figures 5.15-5.20.
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Figure 5.3: 1D, band 1: Initial Wannier function w0
1,0

Figure 5.4: Localized w1,0 and the minimization of Ω, Uk = Id

Figure 5.5: Localized w1,0 and the minimization of Ω, Uk gaussian
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Figure 5.6: 1D, band 2: Initial Wannier function w0
2,0

Figure 5.7: Localized w2,0 and the minimization of Ω, Uk = Id

Figure 5.8: Localized w2,0 and the minimization of Ω, Uk gaussian
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Figure 5.9: 1D, band 3: Initial Wannier function w0
3,0

Figure 5.10: Localized w3,0 and the minimization of Ω, Uk = Id

Figure 5.11: Localized w3,0 and the minimization of Ω, Uk gaussian
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Figure 5.12: 1D, band 4: Initial Wannier function w0
4,0

Figure 5.13: Localized w4,0 and the minimization of Ω, Uk = Id

Figure 5.14: Localized w4,0 and the minimization of Ω, Uk gaussian



97

Figure 5.15: 2D, band 1 (composite 1): Initial Wannier function w0
1,0

Figure 5.16: Localized w1,0 and the minimization of Ω, Uk = Id

Figure 5.17: Localized w1,0 and the minimization of Ω, Uk gaussian
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Figure 5.18: 2D, composite 2-4: Initial Wannier functions w0
2,0, w0

3,0, and w0
4,0
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Figure 5.19: 2D, composite 2-4: localized Wannier functions w2,0, w3,0 and w4,0 and

minimization of Ω; Uk = Id
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Figure 5.20: 2D, composite 2-4: localized Wannier function w2,0, w3,0 and w4,0 and mini-

mization of Ω; Uk gaussian



Chapter 6

Unitary transform of Wannier

functions

6.1 Description of the method

Besides the algorithms which minimize the spread functional at Bloch level, we also review

the methods dealing with Wannier functions explicitly. The transformations here are

intuitively more transparent, but we must satisfy strong requirements to be sure that the

computations are actually allowed.

An elegant method of minimizing Ω was presented by F. Gygi, J.-L. Fatterbert and E.

Schwegler in their paper [GFS03]. Having in mind (3.1.2), we can speak here only about

the functions wn,0 centered at 0 and thus omit index “0”. Recall, the spread functional is

introduced as follows:

Ω(w) =
∑
n

[〈
r2wn, wn

〉
Rd,ε −

∣∣∣〈rwn, wn〉Rd,ε∣∣∣2] .
For a fixed composite ofNβ bands taken into account the summation is over n ∈ {1, . . . , Nβ}.

In this chapter we will mention any sum over n or m to be from 1 to Nβ.

101
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Defining hermitian Nβ ×Nβ matrices A, B by

Amn = 〈rwm, wn〉Rd,ε ,

Bmn =
〈
r2wm, wn

〉
Rd,ε ,

we rewrite the spread as

Ω(w) = tr(B)−
∑
n

|Ann|2 .

Note that the elements Amn are d-dimensional vectors.

In contrast to the Marzari-Vanderbilt method observed in Chapter 5, the authors of this

method suggest to apply a unitary transform to the set of Wannier functions instead of

the set of corresponding Bloch waves:

w̃n =
∑
m

Xmnwm, X unitary. (6.1.1)

According to the definition (3.1.1), w̃n are also Wannier functions since

w̃n(r) =
∑
m

Xmnwm(r) =
1

VBZ

∫
BZ

∑
m

Xmnψm,k(r) d k

and in Section 3.2 we illustrated that
∑

mXmnψm,k with unitary X are also Bloch waves.

We point out that the transform of Wannier functions suggested in this chapter is very

restricted; a more general type of transformation (7.1.4) will be considered in Chapter 7.

The spread functional is not invariant under (6.1.1):

Ω(w̃) =
∑
n

[〈
r2w̃n, w̃n

〉
Rd,ε −

∣∣∣〈rw̃n, w̃n〉Rd,ε∣∣∣2]

=
∑
n

〈r2
∑
m

Xmnwm,
∑
m′

Xm′nwm′

〉
Rd,ε

−

∣∣∣∣∣∣
〈

r
∑
m

Xmnwm,
∑
m′

Xm′nwm′

〉
Rd,ε

∣∣∣∣∣∣
2

=
∑
n

∑
m

X∗mn
∑
m′

Xm′n

〈
r2wm, wm′

〉
Rd,ε −

∣∣∣∣∣∑
m

X∗mn
∑
m′

Xm′n 〈rwm, wm′〉Rd,ε

∣∣∣∣∣
2


= tr(XHBX)−
∑
n

[XHAX]2nn

and in general Ω(w̃) 6= Ω(w).

The problem that we want to solve can be formulated in the following way:
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Problem 6.1. For given hermitian matrices A, B find a unitary transformation X that

minimizes the functional Ω = tr(XHBX)−
∑

n[XHAX]2nn.

But the trace stays invariant under a unitary transformation, therefore it suffices to max-

imize the term
∑

n[XHAX]2nn. As far as the Frobenius norm

‖A‖2
F = tr(AHA)

is also invariant under a unitary transformation, we can go further:∑
n

[XHAX]2nn =
∑
m,n

[XHAX]2mn −
∑

m,n 6=m

[XHAX]2mn = ‖A‖2
F −

∑
m,n 6=m

[XHAX]2mn

and thus maximization of
∑

n[XHAX]2nn is equivalent to minimization of
∑

m,n 6=m[XHAX]2mn.

Both together lead us to the problem of diagonalization of a matrix A. Consequently, the

new formulation of Problem 6.1 is:

Problem 6.2. For a given hermitian matrix A find unitary X such that the matrix XHAX

is diagonal.

6.2 Algorithm in 1D: eigenvalue problem

In a 1D case we have nothing else but the eigenvalue problem for A. The algorithm of

minimizing the spread of the Wannier functions under a unitary transformation of the

basis is now reduced to the following steps.

The minimization procedure

1) Compute the matrix A defined by its elements Amn = 〈rw0
m, w

0
n〉Rd,ε;

2) Solve the eigenvalue problem AX = XD;

3) Update the Wannier functions basis: wn =
∑

mXmnw
0
m.
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To obtain a numerical result, one has to deal with a finite set of Wannier functions. The

method is described in [GFS03] just for this requirement. Therefore it can be recom-

mended for application to composite bands which generically occur in higher dimensions.

It can also give a result for several isolated bands considered together as a group. For

a simple isolated band the problem of diagonalization does not make sense since in that

case the matrix A is 1× 1 and thus already diagonal.

Note that a unitary transform of a finite number of Wannier functions keeps the orthog-

onality of the whole basis. Indeed, let the functions wN1 , . . . , wN2 be transformed and the

others not. Then for m,n ∈ [N1, N2] we have

〈wm, wn〉Rd,ε =

N2∑
m′=N1

X∗mm′

N2∑
n′=N1

Xnn′
〈
w0
m′ , w

0
n′

〉
Rd,ε

=

N2∑
m′=N1

XH
m′m

N2∑
n′=N1

Xnn′δm′,n′

=
[
XHX

]
mn

= δmn.

For m ∈ [N1, N2] and n /∈ [N1, N2],

〈
wm, w

0
n

〉
Rd,ε =

N2∑
m′=N1

XH
m′mδm′,n = 0.

Remark 6.1. The results of this method do not guarantee to be the same as in the previ-

ous chapter. Here we apply another approach — the unitary transformation of a Wannier

function set, while a transform corresponding to that of Bloch waves is completely differ-

ent. Thus, here we are looking for a solution in another manifold, and the result is not

expected to be the same.

Remark 6.2. Note that in the algorithm suggested above only the second component of

the spread functional gets minimized: −
∑

n |〈rwn, wn〉|
2. The first summand is invariant

under a unitary transform.
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Remark 6.3. Formally the algorithm given above looks similar to that of Section 3.5:

first we compute a matrix with entries of a form 〈xw0
· , w

0
· 〉Rd,ε, then find its eigenvectors

and construct localized functions. However, there is an essential difference: in one case

(Section 3.5) the band n is fixed and the eigenvalues are enumerated with respect to nodes

R; while in the other case (this section) the node R = 0 is fixed and we consider several

bands. So, being resembling in form, these are two totally different methods.

6.3 Algorithm in 2D: simultaneous diagonalization

In a two-dimensional case the minimization of the spread is not so obvious. Instead of

one matrix A as in 1D, we now have two:

Amn = 〈rwm, wn〉Rd,ε =

〈 r1

r2

wm, wn

〉
Rd,ε

=

 A
(1)
mn

A
(2)
mn

 .

To write it explicitly,

A(1)
mn =

∫
R

∫
R
r1w

∗
m(r1, r2)ε(r1, r2)wn(r1, r2) d r1 d r2,

A(2)
mn =

∫
R
r2

∫
R
w∗m(r1, r2)ε(r1, r2)wn(r1, r2) d r1 d r2.

Matrices A(1) and A(2) have to be diagonalized — or, to be precise, maximally diagonal-

ized — simultaneously. If the matrices were commuting ones, there would be a unitary

transform to diagonalize both of them, but in general they do not commute. Therefore,

they cannot be brought to diagonal form with one unitary transform. For this reason we

discuss maximally diagonal matrices.

J.-F. Cardoso and A. Souloumiac in [CS96] introduce a Jacobi angle technique for si-

multaneous diagonalization of a set of any matrices, including non-commuting ones. An

object to minimize is a sum of the squares of offdiagonal elements:

Φ(X) =
∑

m,n 6=m

(∣∣[XHA(1)X
]
mn

∣∣2 +
∣∣[XHA(2)X

]
mn

∣∣2)
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which comes from the previous section.

A unitary transform X is represented as a product of plane rotations. Define a rotation

matrix R(i,j;c,s) which can be obtained from an identity matrix by a replacement of the

following elements: R
(i,j;c,s)
ii R

(i,j;c,s)
ij

R
(i,j;c,s)
ji R

(i,j;c,s)
jj

 =

 c∗ −s∗

s c

 c, s ∈ C, |c|2 + |s|2 = 1.

Introduce a functional O(i, j; c, s) as

O(i, j; c, s) = Φ
(
R(i,j;c,s)

)
=

∑
m,n 6=m

(∣∣∣[(R(i,j;c,s)
)H
A(1)R(i,j;c,s)

]
mn

∣∣∣2 +
∣∣∣[(R(i,j;c,s)

)H
A(2)R(i,j;c,s)

]
mn

∣∣∣2) .
The goal is, for every choice of i 6= j, to find Jacobi angles c, s which minimize O(i, j; c, s).

The resulting matrices R(i,j;c,s) are then multiplied to construct X.

In [CS96] the values of c, s were given explicitly. For an arbitrary matrix A define a vector

h(i,j)(A) = (Aii − Ajj, Aij + Aji, i(Aji − Aij)) .

Then a real symmetric 3× 3 matrix G(i, j) is given by

G(i, j) = Re
([
h(i,j)(A(1))

]H ⊗ h(i,j)(A(1)) +
[
h(i,j)(A(2))

]H ⊗ h(i,j)(A(2))
)
.

Let g(i,j) =
(
g

(i,j)
1 , g

(i,j)
2 , g

(i,j)
3

)T

be an eigenvector of G(i, j) associated to its largest

eigenvalue. Without loss of generality, let ‖g(i,j)‖ = 1 and g
(i,j)
1 ≥ 0. (Here ‖a‖ =√

a2
1 + a2

2 + a2
3 is just an Euclidean norm of a 3-dimensional vector). Cardoso and Souloumiac

proved in [CS96], that for any matrices A(1), A(2) the Jacobi angles which minimize

O(i, j; c, s) are equal to

c =

√
g

(i,j)
1 + 1

2
, s =

g
(i,j)
2 − ig

(i,j)
3√

2
(
g

(i,j)
1 + 1

) .
Now let us sum it all up.
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The algorithm [CS96], [GFS03]

1. For an initial set of Nβ Wannier functions w0
n, compute matrices A(1) and A(2).

2. Initialize X = Id of size Nβ ×Nβ.

3. (loop) For i = 1 . . . Nβ − 1 and j = i+ 1 . . . Nβ apply the following steps:

• compute the vectors h(i,j)(A(1)) and h(i,j)(A(2));

• construct 3× 3 matrix G(i, j);

• find the largest eigenvalue of G(i, j) and take the corresponding eigenvector

g(i,j);

• apply g(i,j) = g(i,j) · sign g
(i,j)
1 /‖g(i,j)‖;

• compute Jacobi angles c and s;

• construct an Nβ ×Nβ rotation matrix R(i,j;c,s);

• apply R(i,j;c,s) to A(1) and A(2): A(k) =
[
R(i,j;c,s)

]H
A(k)R(i,j;c,s), k = 1, 2;

• update the global unitary transform: X = XR(i,j;c,s).

4. Compute Φ(X) =
∑

m,n 6=m

(∣∣[A(1)
]
mn

∣∣2 +
∣∣[A(2)

]
mn

∣∣2).

5. Repeat the steps 3-4 until Φ(X) does not decrease by more than some given tolerance

at one loop.

6. Update the Wannier functions wn =
∑Nβ

m=1Xmnw
0
m.

Remark 6.4. According to [Blo62], initial matrices A(j) (j = 1, 2) can be determined as:

A(j)
mn =

i

4π2

∫ π

−π

∫ π

−π

∫ 1

0

∫ 1

0

u∗m,(k1,k2)(r1, r2)ε(r1, r2)
∂

∂kj
un,(k1,k2)(r1, r2) d r1 d r2 d k1 d k2.

It means that in computation for the initial data we can use periodic functions u0
n,k instead

of w0
n and integration over bounded domains WSC and BZ.
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6.4 Computational results

Although it looks nice and well in theory, the numerical results of the described algorithm

are not so good as we would hope. We will demonstrate it below.

1D case

Let us consider a 1D Photonic Crystal with periodicity R = 1, permittivity ε1 = 1 with

a strip of width 0.18 of permittivity ε2 = 11.56 in the center of the unit interval:

ε(x) =

 1, x ∈ [0, 0.41) ∪ (0.59, 1],

11.56, x ∈ [0.41, 0.59];

The figures were obtained with te following input data:

1. Mesh in x-space: Nx = 51, hx = 0.02;

2. Initial Wannier functions w0
n computed as in Appendix, Section 10.3, from functions

u0
n,k obtained by FE method as in Appendix, Section 10.2.1;

3. Implemented for the first 10 bands (n = 1, . . . , 10).

For such a crystal the term tr(B) is much larger than
∑

n |Ann|
2: 46.799 against 1.175. It

means that the larger term of the spread cannot be minimized. After diagonalization of

A the second part grows by 16 percent, but is of minor importance. Totally, Ω reduces

only to 99.492 percent:

Ω(w0) = 46.799− 1.175 = 45.625,

Ω(wloc) = 46.799− 1.406 = 45.393.

The resulting Wannier functions are not well-localized, see Figure 6.1.

Neither for another number of bands, nor for another crystal, the situation becomes better.
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2D case

Consider a 2D Photonic Crystal with a periodic cell [0, 1]2 and the following permittivity

distribution therein:

ε(r) =

 1, (r1 − 1
2
)2 + (r2 − 1

2
)2 > 0.182,

11.56, (r1 − 1
2
)2 + (r2 − 1

2
)2 ≤ 0.182

(see Figure 2.1). Take first two isolated bands: for n = 1 it is a simple band for n = 2, 3, 4

there is a composite band. Alltogether, we have four starting Wannier functions. Input

data:

1. Mesh in x-space: Nx = 31, hx = 0.033;

2. Initial Wannier functions w0
n computed as in Appendix, Section 10.3, from functions

u0
n,k obtained by FE method as in Appendix, Section 10.2.2;

3. Implemented for the first 2 composite bands grouped together: n = 1 and n = 2, 3, 4.

Again, like in 1D, the invariant part of the spread functional is much more significant

than the one we maximize:

Ω(w0) = 36.512− 0.470 = 36.042,

Ω(wloc) = 36.512− 0.532 = 35.979.

The matrices A(1) and A(2) get maximally diagonalized very fast — in 4 iterations. Nev-

ertheless, it does not help a lot to localize the Wannier functions. The results one can see

on Figure 6.2.

6.5 Conclusions

The technique presented in this chapter deals with unitary transformations of a set of

Wannier functions. Thanks to elegant simplifications we obtain an algorithm which can

be easily implemented. It does not require any information about a descent direction of
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the spread functional and gives quick results.

But unfortunately, due to the serious restriction (6.1.1) on the transform, these results are

not satisfactory. The main problem of this approach is the invariance of
∑

n 〈r2wn, wn〉Rd,ε
under such a unitary transform. This part of the spread functional is much larger that

the rest, and therefore any unitary transform of wn does not make the spread decrease

significantly. The authors of the method do not report about this problem in [GFS03].
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Figure 6.1: Wannier functions in 1D, bands 1-4: Non-localized (left) and localized under

unitary transform minimization (right)
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Figure 6.2: Wannier functions in 2D, bands 1-4: Non-localized (left) and localized under

unitary transform minimization (right)



Chapter 7

Sum-unitary transform of the

Wannier functions

7.1 Fourier transform of U

As we have mentioned in Section 3.2, nonuniqueness of Wannier functions originates from

phase indeterminacy of the corresponding Bloch waves. We fix some initial wave set and

consider generalized Bloch waves as unitary transforms of this set:

ψn,k(r) =
∑
m

Uk
mnψ

0
m,k(r).

Remember that the summation over m involves the Bloch waves of just one composite

band. In case of a simple band there is no summation and Uk = eiθ(k) with some real-

valued function θ(k).

Let us switch to the r-space level and see what happens to the Wannier functions under

these transformations:

wn,0(r) =
1

(2π)d

∫
BZ

∑
m

Uk
mnψ

0
m,k(r) d k.

The matrices Uk are unitary and periodic with respect to the reciprocal lattice Γ∗ in k-

space, i.e. Uk+K = Uk, K ∈ Γ∗. This means that Uk can be written as a Fourier transform

113
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over the space lattice Γ:

Uk =
∑
R∈Γ

e−ik·RWR (7.1.1)

with

WR =
1

(2π)d

∫
BZ

eik·RUk d k. (7.1.2)

For a simple (one-wave) isolated band there will be

WR =
1

(2π)d

∫
BZ

ei(k·R+θ(k)) d k.

The unitarity of Uk transforms to the following property of WR:

Id =
1

(2π)d

∫
BZ

(Uk)HUk d k

=
1

(2π)d

∫
BZ

∑
R

(WR)Heik·R
∑
R′

WR′e−ik·R′ d k

=
∑
R,R′

(WR)HWR′
(

1

(2π)d

∫
BZ

eik·(R−R′) d k

)
=

∑
R,R′

(WR)HWR′δR,R′

=
∑

R

(WR)HWR.

Therefore, the requirement for W is∑
R

(WR)HWR = Id. (7.1.3)

We call this property sum-unitarity and the transform W , accordingly, sum-unitary. The

corresponding generalized Wannier functions will be

wn,0(r) =
1

(2π)d

∫
BZ

∑
m

Uk
mnψ

0
m,k(r) d k

=
1

(2π)d

∫
BZ

∑
m

∑
R∈Γ

e−ik·RWR
mnψ

0
m,k(r) d k

=
∑
m

∑
R

WR
mn

(
1

(2π)d

∫
BZ

e−ik·Rψ0
m,k(r) d k

)
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and finally

wn,0(r) =
∑
m

∑
R∈Γ

WR
mnw

0
m,R(r). (7.1.4)

Note, here the initial (fixed) Wannier functions correspond to the initial (fixed) Bloch

waves:

w0
n,R(r) =

1

(2π)d

∫
BZ

e−ik·Rψ0
n,k(r) d k.

One can easily check that such a transform keeps the Wannier functions orthonormal:

〈wn,0, wn′,0〉Rd,ε =

〈∑
m

∑
R

WR
mnw

0
m,R,

∑
m′

∑
R′

WR′

m′n′w
0
m′,R′

〉
Rd,ε

=
∑
m,m′

∑
R,R′

(
WR
mn

)∗
WR′

m′n′

〈
w0
m,R, w

0
m′,R′

〉
Rd,ε

=
∑
m,m′

∑
R,R′

[
WR

]H
nm
WR′

m′n′δm,m′δR,R′

=
∑
m

∑
R

[
WR

]H
nm
WR
mn′

=

[∑
R

[
WR

]H
WR

]
nn′

= δn,n′ .

Let us introduce a manifold of sum-unitary elements W :

M =

{
W =

{
WR

}
R∈Γ

|
∑

R

(
WR

)H
WR = Id

}
. (7.1.5)

One can easily check the following properties of M:

1. If A ∈M, then −A ∈M.

2. If A ∈M, then AH ∈M.

3. If A ∈M and |α|2 = 1 (or α = eiθ), then αA ∈M.
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Clearly, the manifold is not linear.

From here on we assume that all further W belong toM. A trivial example of such W is

W 0[W 0]H = Id; WR = 0 for R 6= 0.

Such a particular case, already considered in Chapter 6, is very restricted. We have shown

that it provides a cheap minimization, but the result is not satisfactory. In this chapter

we will try to find the minimum of the spread in a wider manifold.

7.2 Ω as a functional over W

Introduce the notations:

[P 0;R,R′

j ]mn =
〈
rjw0

m,R, w
0
n,R′
〉

Rd,ε for j = 1, 2, (7.2.1)

PR,R′

j = (WR)HP 0;R,R′

j WR′ for j = 1, 2. (7.2.2)

One can easily check that (P 0;R,R′

j )H = P 0;R′,R
j and (PR,R′

j )H = PR′,R
j .

Remark 7.1.
[
P 0;R,R′

1

]
mn

and
[
PR,R′

1

]
mn

are vectors of dimensionality d, while
[
P 0;R,R′

2

]
mn

and
[
PR,R′

2

]
mn

are scalars.

Let us find the expressions for the parts of the spread functional r̄n and 〈r2〉n in terms of

the sum-unitary transform of the initial Wannier functions.〈
rjwn,0, wn,0

〉
Rd,ε =

〈
rj
∑
m

∑
R

WR
mnw

0
m,R,

∑
m′

∑
R′

WR′

m′nw
0
m′,R′

〉
Rd,ε

=
∑
R,R′

∑
m,m′

(WR
mn)∗WR′

m′n

〈
rjw0

m,R, w
0
m′,R′

〉
Rd,ε

=
∑
R,R′

∑
m,m′

(WR)Hnm[P 0;R,R′

j ]mm′W
R′

m′n

=
∑
R,R′

[(WR)HP 0;R,R′

j WR′ ]nn

=
∑
R,R′

[PR,R′

j ]nn.
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Therefore,

r̄n =
∑
R,R′

[PR,R′

1 ]nn,
〈
r2
〉
n

=
∑
R,R′

[PR,R′

2 ]nn, (7.2.3)

and then

Ω(W ) =
∑
R,R′

tr(PR,R′

2 )−
∑
n

∣∣∣∣∣∣
∑
R,R′

[PR,R′

1 ]nn

∣∣∣∣∣∣
2

. (7.2.4)

Or, equivalently,

Ω(W ) =
∑
R,R′

tr
(

(WR)HP 0;R,R′

2 WR′
)
−
∑
n

∣∣∣∣∣∣
∑
R,R′

[
(WR)HP 0;R,R′

1 WR′
]
nn

∣∣∣∣∣∣
2

.

7.3 Derivative of Ω

To find a minimum of the spread functional, we need the information about its direction of

decay. Without this information the minimization process can be too costly and inefficient

since we would have to go over many points, within any discretization. But before we

start, we have to find a way how to switch from one sum-unitary W to another — namely,

a way to update W keeping it sum-unitary.

Let us perturb W as

W 7→ WA. (7.3.1)

The requirement for A then comes from (7.1.3) and reads∑
R

WRAR[AR]H[WR]H = Id,

with
∑

RW
R[WR]H = Id. Let A have a form

AR = etX
R ≈ Id + tXR (7.3.2)

with infinitesimal t > 0. Then for X we have the following condition:

Id =
∑

R

WR
(
Id + tXR

) (
Id + t[XR]H

)
[WR]H

= Id + t
∑

R

WR
(
XR + [XR]H

)
[WR]H +O(t2),
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or

0 =
∑

R

WR
(
XR + [XR]H

)
[WR]H. (7.3.3)

The equation (7.3.3) characterizes TWM — the tangential manifold to M (7.1.5):

TWM =

{
X =

{
XR
}

R∈Γ
|
∑

R

WR
(
XR + [XR]H

)
[WR]H = 0

}
. (7.3.4)

The update for W corresponding to (7.3.1) reads:

W 7→ W exptX ≈ W (Id + tX). (7.3.5)

Unfortunately, we cannot derive an explicit formula for such X. One of the possible

choices satisfying (7.3.3) is

XR = −[XR]H for all R. (7.3.6)

Introduce a notation:

4f(W ) = f(W +4W )− f(W ).

Let us search for the derivative of the spread Ω in a point W in a direction X which we

denote as d Ω(W )[X] and define as

d Ω(W )[X] = lim
t→0

4Ω

t
= lim

t→0

Ω(W (Id + tX))− Ω(W )

t
.

To find 4Ω, we consider 4P . For j = 1, 2

4PR,R′

j =
(
Id + t[XR]H

)
[WR]HP 0;R,R′

j WR′
(

Id + tXR′
)
− PR,R′

j

=
(
Id− tXR

)
PR,R′

j

(
Id + tXR′

)
− PR,R′

j

= tPR,R′

j XR′ − tXRPR,R′

j

= tPR,R′

j XR′ − t
(
PR′,R
j XR

)H

.

From here,

4

∑
R,R′

[
PR,R′

j

]
nn

 = 2t
∑
R,R′

Re
([
PR,R′

j XR′
]
nn

)
.
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Then

4

(∑
n

〈
r2
〉
n

)
= 4

∑
R,R′

tr
(
PR,R′

2

)
= 2t

∑
R,R′

Re
(

tr
(
PR,R′

2 XR′
))

.

To evaluate the second component of the spread functional, first introduce the notation:

D = Diag(Re(r̄n)), (7.3.7)

where Diag(a) is a diagonal matrix with elements of the vector a at its diagonal.

We obtain:

4

(∑
n

|̄rn|2
)

=
∑
n

(
|̄rn +4r̄n|2 − |̄rn|2

)
= 2

∑
n

Re(r̄n · 4r̄n) +O(t2)

≈ 2
∑
n

Re

r̄n · 4

∑
R,R′

[PR,R′

1 ]nn


= 2

∑
n

Re(r̄n) · 2t
∑
R,R′

Re
([
PR,R′

1 XR′
]
nn

)
= 4t

∑
n

Dnn ·
∑
R,R′

Re
([
PR,R′

1 XR′
]
nn

)
= 4t

∑
n

∑
R,R′

Re
(
Dnn ·

[
PR,R′

1 XR′
]
nn

)
= 4t

∑
R,R′

∑
n

Re
([
D · PR,R′

1 XR′
]
nn

)
= 4t

∑
R,R′

Re
(

tr
([
D · PR,R′

1

]
XR′

))
.
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Recall that Dnn and
[
PR,R′

1

]
nn

are d-dimensional vectors. Therefore,

[
D · PR,R′

1

]
mn

=

[
d∑
p=1

Dp
(
PR,R′

1

)p]
mn

=
d∑
p=1

∑
l

Dp
ml

[
PR,R′

1

]p
ln

=
d∑
p=1

Dp
mm

[
PR,R′

1

]p
mn

= Dmm ·
[
PR,R′

1

]
mn
.

Finally, for the spread functional we now have:

4Ω = 4

(∑
n

〈
r2
〉
n

)
−4

(∑
n

|̄rn|2
)

= 2t
∑
R,R′

Re
(

tr
(
PR,R′

2 XR′
))
− 4t

∑
R,R′

Re
(

tr
([
D · PR,R′

1

]
XR′

))
= 2t

∑
R,R′

Re
(

tr
([
PR,R′

2 − 2D · PR,R′

1

]
XR′

))
= 2t

∑
R′

Re
(

tr
(
TR′XR′

))
,

with

TR′ =
∑

R

[
PR,R′

2 − 2D · PR,R′

1

]
. (7.3.8)

Therefore, a derivative of Ω reads:

d Ω(W )[X] = lim
t→0

4Ω

t
= 2

∑
R′

Re
(

tr
(
TR′XR′

))
. (7.3.9)

Now let us define an inner product of matrix-type structures as

〈A,B〉F :=
∑

R

tr
(
[AR]HBR

)
. (7.3.10)

Define an operator

A[B] =
1

2

(
B −BH

)
.
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Then, having in mind our choice
[
XR
]H

= −XR,

〈A[B], X〉F =
1

2

(
〈B,X〉F −

〈
BH, X

〉
F

)
=

1

2

∑
R

(
tr
(
[BR]HXR

)
− tr

(
BRXR

))
=

1

2

∑
R

(
tr
(
[BR]H[−XR]H

)
− tr

(
BRXR

))
= −1

2

∑
R

(
tr∗
(
BRXR

)
+ tr

(
BRXR

))
= −

∑
R

Re
(
tr
(
BRXR

))
.

Thus we conclude that

d Ω(W )[X] = 2
∑
R′

Re
(

tr
(
TR′XR′

))
= −2 〈A[T ], X〉F . (7.3.11)

7.4 The descent direction

From the expression for the derivative we can try to retrieve the descent direction of the

spread in the submanifold of TWM (7.3.4) determined by (7.3.6). Note that since we are

restricted to (7.3.6), we cannot talk here about the gradient of the spread. Unfortunately,

it was not possible to generalize the formulas in a way to consider the whole tangential

manifold TWM because of its complicated structure. For this reason, we just search for

a descent direction. Let us define it as

〈G(W ), X〉F
!

= d Ω(W )[X].

From (7.3.11),

〈G(W ), X〉F = −2 〈A[T ], X〉F ,

what immediately implies

G = −2A[T ], (7.4.1)

GR′ =
(
TR′
)H

− TR′ . (7.4.2)
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Clearly, GR′ is skew-hermitian. If we take XR = −αGR with some α ≥ 0, this guarantees

dΩ(W )[X] ≤ 0:

d Ω(W )[X] = 〈G,−αG〉F = −α
∑

R

tr
(
[GR]HGR

)
= −α

∑
R

‖GR‖2
F ≤ 0.

Here ‖.‖F is the Frobenius matrix norm. So, if we transform W using such X, we get

WR 7→ WRe−αG
R(W ),

Ω at least will not increase.

7.5 A weak point in the algorithm

Unfortunately, the numerical computations show that the algorithm described above does

not always work well. The main problem is sensitivity of the whole construction to the

initial values of w0
n,0 and W . To explain this, we recall the formula (7.4.1) for the gradient:

GR′ =
(
TR′
)H

− TR′ with

TR′ =
∑

R

(
PR,R′

2 − 2D · PR,R′

1

)
.

This formula has parts of sort PR,R′

j −
[
PR,R′

j

]H
, j = 1, 2. What difficulties can they

provide? Recall how we update PR,R′

j by (7.2.1):

PR,R′

j = [WR]HP 0;R,R′

j WR′ for j = 1, 2,

where

[
P 0;R,R′

j

]
mn

=
〈
rjw0

m,R, w
0
n,R′
〉

Rd,ε .

From here we see that if the initial Wannier functions
{
w0
n,R

}
n,R

are real, then the values of{
[P 0;R,R′

j ]mn

}
m,n,R,R′

will also be purely real, which means P 0;R,R′

j = P 0;R′,R
j . Furthermore,

if the matrices
{
WR

}
R

are self-adjoint, this brings us to the following situation:

PR,R′

j = WRP 0;R,R′

j WR′ ,[
PR,R′

j

]H
= WR′P 0;R,R′

j WR.



123

Clearly, for simple isolated bands (where all these matrices are 1 × 1) the difference

PR,R′

j −
[
PR,R′

j

]H
will be zero and as a consequence the gradient will also be zero.

An artificial grouping of simple bands into “composites” does not help to cure it since

WR is diagonal in this case. Quite generally, the same can happen to composite bands also.

To develop this concept further, we have to change the choice of the descent direction.

After (7.3.9), the derivative of Ω looks like

d Ω(W )[X] = 2
∑

R

Re
(
tr
(
TRXR

))
.

Let us try to find such values of X which make the derivative non-positive. At the moment

we forget about the requirement of its skew-hermitivity. For instance, if XR = −α[TR]H

with some α ≥ 0, we have

d Ω(W )[X] = −2α
∑

R

Re
(
tr
(
TR[TR]H

))
= −2α

∑
R

Re
(
‖TR‖2

F

)
≤ 0. (7.5.1)

Unfortunately, on this way we have another weak place: the sum-unitarity of W is not

guaranteed. Therefore, we need a trick. Let

W̃R = WRe−α[TR]H .

With this transform the old W has been shifted from the manifold M. We want to shift

W̃ “back” to M by

W̃R 7→ W̃R(Id− δ)

with some small δ. By definition of M, it means that

(Id− δ)H
[∑

R

(W̃R)HW̃R

]
(Id− δ) !

= Id.

Let

A =
∑

R

(W̃R)HW̃R.
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We look for such δ that for known A

(Id− δ)HA(Id− δ) = Id,

or equivalently

A =
(
(Id− δ)−1

)H
(Id− δ)−1.

As soon as A is a hermitian matrix, it permits Cholesky decomposition:

A = BHB

with a lower triangular matrix BH. Therefore, we can suppose:

(Id− δ)−1 = B,

δ = Id−B−1,

and, by composition,

W̃R(Id− δ) ∈M.

Rewrite the transform of W in its final form:

W̃R = WRe−α[TR]H ,

WR 7→ W̃RB−1,

where B is a matrix of Cholesky decomposition of
∑

R

(
W̃R

)H

W̃R.

As far as we apply a shift, or a “projection” of a computed value W̃ to the manifold M,

we want to be sure that the new choice is not worse than the one we started from. Namely,

we want to know that Ω
(
W̃ (Id− δ)

)
≤ Ω(W ). For this reason we must be careful with

δ = δ(α) to avoid that the functional increases too much. The non-negativity of the

parameter α guarantees that Ω does decay, see (7.5.1). It means that the value of Ω in

point W̃ (Id− δ) ∈M must be very close to that of the point W̃ /∈M

Ω(W ) 7→ Ω(W̃ ) ≤ Ω(W ) 7→ Ω(W̃ (Id− δ)) ≈ Ω(W̃ ).
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7.6 On computation of P 0;R,R′

1 and P 0;R,R′

2

In numerical implementation it is important, how the initial values for P 0;R,R′

1 and P 0;R,R′

2

are computed. Let us rewrite their constituents as

wn,R′(r) = wn,0(r− R′),

wm,R(r) = wm,0(r− R) = wm,0((r− R′)− (R− R′)) = wm,R−R′(r− R′).

Consequently,[
P 0;R,R′

1

]
mn

=
〈
rwm,R, wn,R′

〉
Rd,ε

=
〈
(r− R′ + R′)wm,R−R′(· − R′), wn,0(· − R′)

〉
Rd,ε

=
〈
rwm,R−R′ , wn,0

〉
Rd,ε + R′δm,nδR,R′

and[
P 0;R,R′

2

]
mn

=
〈
r2wm,R, wn,R′

〉
Rd,ε

=
〈
(r− R′ + R′)2wm,R−R′(· − R′), wn,0(· − R′)

〉
Rd,ε

=
〈(

(r− R′)2 + 2R′ · (r− R′) + |R′|2
)
wm,R−R′(· − R′), wn,0(· − R′)

〉
Rd,ε

=
〈
r2wm,R−R′ , wn,0

〉
Rd,ε + 2R′ ·

〈
rwm,R−R′ , wn,0

〉
Rd,ε + |R′|2δm,nδR,R′ .

We simplify the notations by introducing[
BR,R′

1

]
mn

=
〈
rwm,R−R′ , wn,0

〉
Rd,ε ,[

BR,R′

2

]
mn

=
〈
r2wm,R−R′ , wn,0

〉
Rd,ε .

Note that
[
BR,R′

1

]
mn

is a d-dimensional vector and
[
BR,R′

2

]
mn

is a scalar. We can rewrite

the formulas: [
P 0;R,R′

1

]
mn

=
[
BR,R′

1

]
mn

+ Rδm,nδR,R′ , (7.6.1)[
P 0;R,R′

2

]
mn

=
[
BR,R′

2

]
mn

+ 2R′ ·
[
BR,R′

1

]
mn

+ |R|2δm,nδR,R′ . (7.6.2)
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With help of Theorem 5.1 we can now calculate
[
BR,R′

1

]
mn

and
[
BR,R′

2

]
mn

by integration

over the Brillouin zone which is bounded. For further details how to do it numerically see

Appendix, Section 10.4. The other values in the computations described in this chapter

can be formulated in terms of P 0;R,R′

1 and P 0;R,R′

2 .

Remark 7.2. As far as we sum up by R, R′, in numerical simulations the number of

summands is always assumed to be finite. However, we must keep sum-unitarity of W .

Namely, as far as we fix a quantity of
{
WR

}
R

which will be involved into computations

(e.g. for R = N1, . . . , N2), we “normalize” them to get identity in the sum:

A =

N2∑
R=N1

(
WR

)H
WR,

W̃R = WRA−1/2,
N2∑

R=N1

(
W̃R

)H

W̃R = A−1/2

(
N2∑

R=N1

(
WR

)H
WR

)
A−1/2 = A−1/2AA−1/2 = Id.

Then the rest is allowed to be set to zero:

∞∑
R=−∞

(
WR

)H
WR = 0 +

N2∑
R=N1

(
WR

)H
WR + 0 = Id.

7.7 Starting guess for W

The Marzari-Vanderbilt algorithm has been started with Uk = Id, for which an analogue

would be WR = δR,0. But now this ansatz does not work since it would not make the

process start. Another idea is to start with Gaussian bell functions. Let us take it up in

detail.

Let gn be a random Gaussian bell centered at 0. Here n corresponds to a band number of

the corresponding Wannier function w0
n,0 which we want to replace with this bell, having

first modified it to keep orthogonality of the basis. The bell have a form

gn(r) = ane−(r−bn)2/(2c2n),
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where an is a peak height, bn is the location of the peak and cn determines the full width

of the bell at half maximum as 2
√

2 ln 2cn. All parameters are positive and random in

range [δ, 1− δ], e.g. [0.1, 0.9].

We project the functions {gn}n onto the set of
{
w0
n,R

}
n,R

by

φn(r) =
∑
m

∑
R

γR
mnw

0
m,R(r) with γR

mn =
〈
w0
m,R, gn

〉
.

Apply orthonormalization:

ϕn(r) =
∑
m

[
S−1/2

]
mn
φm(r), (7.7.1)

where

Smn = 〈φm, φn〉

=

〈∑
m′

∑
R

γR
m′mw

0
m′,R,

∑
n′

∑
R′

γR′

n′nw
0
n′,R′

〉
=

∑
m′,n′

∑
R,R′

(
γR
m′m

)∗
γR′

n′n

〈
w0
m′,R, w

0
n′,R′

〉
=

∑
m′

∑
R

(
γR
)H
mm′

γR
m′n

=
∑

R

[(
γR
)H
γR
]
mn
.

We take the function ϕn (7.7.1) as a starting value for wn,0. In other words, the transform

of the initial w0
n,R such that ϕn =

∑
m

∑
RW

R
mnw

0
m,R will be:

WR
mn =

∑
l

γR
ml

[
S−1/2

]
ln
, (7.7.2)

WR = γRS−1/2. (7.7.3)

Check sum-unitarity:∑
R

(WR)HWR =
∑

R

(S−1/2)H(γR)HγRS−1/2 = (S−1/2)HSS−1/2 = Id.
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7.8 Minimization algorithm

The subroutines

(i) Preparational computations

Compute:

pr1) un,k(r) in Wigner-Seitz cell

pr2)
[
BR,R′

1

]
mn

=
i

VBZ

∫
BZ

eik·(R−R′) 〈um,k,∇kun,k〉WSC,ε d k

pr3)
[
BR,R′

2

]
mn

=
1

VBZ

∫
BZ

eik·(R−R′) 〈∇kum,k,∇kun,k〉WSC,ε d k

pr4)
[
P 0;R,R′

1

]
mn

=
[
BR,R′

1

]
mn

+ Rδm,nδR,R′

pr5)
[
P 0;R,R′

2

]
mn

=
[
BR,R′

2

]
mn

+ 2R′ ·
[
BR,R′

1

]
mn

+ |R|2δm,nδR,R′

pr6) initial Wannier functions w0
n,R

pr7) initial values for WR

(ii) Update P1, P2

Input: P 0
1 , P 0

2 , W .

p1) PR,R′

j = (WR)HP 0;R,R′

j WR′ , j = 1, 2

(iii) The spread Ω

Input: W .

s1) update P1 and P2 as in (ii)

s2) Ω =
∑

R,R′ tr(P
R,R′

2 )−
∑

n

∣∣∣∑R,R′ [P
R,R′

1 ]nn

∣∣∣2
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(iv) descent direction T of the spread

Input: W .

t1) update P1 and P2 as in (ii)

t2) r̄n =
∑

R,R′

[
PR,R′

1

]
nn

t3) D = Diag(Re(r̄n))

t4) TR′ =
∑

R

(
PR,R′

2 − 2D · PR,R′

1

)

(v) Improved descent direction G of the spread

Input: T .

g1) GR =
(
TR
)H − TR

(vi) Update W (first version)

Input: α, G, Wold.

w1) WR
new = WR

olde−αG
R

(vii) Update W (second version)

Input: α, T , Wold.

w2.1) W̃R = WR
olde−αT

R

w2.2) A =
∑

R

(
W̃R

)H

W̃R

w2.3) B = chol(A) (Cholesky decomposition)

w2.4) WR
new = W̃RB−1
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Minimization procedure

Input: W , αmax, a small value δ (tolerance), miter.

m1) for known W , compute T as in (iv)

m2) for T , compute G as in (v)

m3) if G 6= 0, define function

Ω̃(α) = Ω(W (α,G,W ))

with W updated by the first version (vi) and let c = 1;

else define

Ω̃(α) = Ω(W (α, T,W ))

with W updated by the second version (vii) and let c = 2;

in both cases compute Ω(W ) as in (iii)

m4) find α0 ∈ [0, αmax] such that Ω̃(α0) = minα0∈[0,αmax] Ω̃(α)

m5) if c = 1, update W = W (α0, G,W ) as in (vi);

if c = 2, update W = W (α0, T,W ) as in (vii)

Loop m1-m5 till Ω cannot reduce for more than δtol for 3 consecutive steps, or till α0 = 0,

or till the number of iterations achieves the prescribed maximum miter.

Localized Wannier functions

Input: w0
m,R, W .

For the obtained values of WR, compute the localized Wannier functions:

wn,0(r) =
∑
m

∑
R

WR
mnw

0
m,R(r).
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7.9 Computational results

1D case

In 1D all bands are isolated and thus can be considered separately. Let us take first four

bands.

We take the following input data:

1. The Photonic Crystal: in the Wigner-Seitz cell [0, 1]

ε(x) =

 1, x ∈ [0, 0.41) ∪ (0.59, 1],

11.56, x ∈ [0.41, 0.59];

2. Mesh in x-space: Nx = 51, hx = 0.02; R ∈ {−5, . . . , 5};

3. Monkhorst-Pack mesh in k-space as in Section 5.2: Nk = 100 hk = 2π/100;

4. Stencil (5.2.1), weights a1 = a2 = 1/(2h2
k);

5. Linear Finite Elements to compute u0
n,k (for details see Appendix, Section 10.2.1);

6. We implemented the first 4 bands (n = 1, 2, 3, 4).

n Ω0 Ωmin iterations time

1 7.527 5.659 3 5 sec

2 0.473 0.147 19 1 min 32 sec

3 6.684 1.426 3 7 sec

4 2.711 1.166 2 5 sec

The corresponding Wannier functions are illustrated on the Figures 7.1. As we see, they

do not possess symmetry properties as the maximally localized functions (according to

Theorem 3.2 of Kohn). The minimum values of Ω are greater than those of the functions

obtained in Chapter 5, but comparable with them and much better as in Chapter 6. The

most significant properties are obtained: these functions are well-localized and real.
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2D case

In 2D we consider the following Photonic Crystal: In the Wigner-Seitz cell [0, 1]

ε(r) =

 1, (r1 − 1
2
)2 + (r2 − 1

2
)2 > 0.182,

11.56, (r1 − 1
2
)2 + (r2 − 1

2
)2 ≤ 0.182.

The band structure corresponding to this crystal is illustrated in Figure 2.2. The first

band is isolated (simple), the following tree bands a gathered together in a composite.

Therefore, we consider them in groups: 1) n = 1; 2) n = 2, 3, 4.

We take the following input data:

1. Mesh in r-space: Nx = 21, hx = 0.05; R ∈ {(−2,−2), . . . , (2, 2)};

2. Monkhorst-Pack mesh in k-space as in Section 5.2 (see Figure 5.1): Nk = 40 hk =

2π/40;

3. Stencil (5.2.2), weights a1 = a2 = a3 = a4 = 1/(2h2
k);

4. Linear Finite Elements to compute u0
n,k (for details see Appendix, Section 10.2.2);

5. We implemented the first 4 bands (n = 1, 2, 3, 4).

n Ω0 Ωmin iterations time

1 6.864 0.097 3 3 sec

2-4 24.179 11.701 3 2 sec

The corresponding Wannier functions are illustrated on the Figures 7.2.

7.10 Conclusions

As a generalization of the approach presented in Chapter 6, this method provides better

localization. This conclusion was expected at the very beginning since the manifold of
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sum-unitary transformations (7.1.4) in which we search for a minimizer in this chapter is

wider than that of unitary transformations (6.1.1).

However, we have a problem here — the tangential manifold could not be determined, for

this reason the presented minimization path is not optimal. Another descent direction is

an open question which can be studied in future.
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Figure 7.1: Wannier functions in 1D, bands 1-4: Non-localized (left) and localized under

sum-unitary transform minimization (right)



135

Figure 7.2: Wannier functions in 2D, bands 1-4: Non-localized (left) and localized under

sum-unitary transform minimization (right)



Chapter 8

Application of the Wannier functions

The route of light propagation in a Photonic Crystal can be specified by defects, properly

embedded into a periodic structure [BMGM+03], [Bus03]. An example of such a defect

can be an optical micro-cavity caused by a modified single rod — this can form a light

mode localized inside the PC. A chain of such sense defects can provide a staggering effect

— it works as a waveguide channel and can form sharp waveguide bends.

Figure 8.1: Single defect rod in a PC Figure 8.2: Row of defect rods in a PC

136
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Combining these types of basic defects, one can design various optical properties and rule

over the propagation of electromagnetic waves in a Photonic Crystal in a way similar to

the control over the motion of electrons in electronic circuits. These efforts provide a

possibility to create compact all-optical integrated circuits.

In this chapter we will consider an approach to modeling of defect modes using the Wannier

function basis.

8.1 Modeling of a defect: Galerkin approach

Let us consider a Photonic Crystal as a dielectric medium with certain electric permittivity

ε1 with periodically located rods of another permittivity ε2. As a defect structure embedded

into a periodic PC we define an amount of rods which have permittivity εd different from

ε2. Such a crystal with defect can be described, in accordance to (2.1.5), by the following

formula [BMGM+03], [SMHB05]:

−∆E(r) = Λ [εp(r) + δε(r)]E(r), (8.1.1)

where E is the electric field, Λ = (ω/c)2 with c being the speed of light, εp is a periodic

electric permittivity and δε is the contributional permittivity of the embedded defect.

Let us expand the electric field E into some complete orthogonal set of functions suffi-

ciently smooth to approximate (8.1.1):

E(r) =
∑
j

Ejϕj(r).

Inserting this expression into (8.1.1) gives:

−
∑
j

Ej∆ϕj(r) = Λ [εp(r) + δε(r)]
∑
j

Ejϕj(r),

−
∑
j

Ejϕ
∗
i (r)∆ϕj(r) = λ

∑
j

Ej [ϕ∗i (r)εp(r)ϕj(r) + ϕ∗i (r)δε(r)ϕj(r)] .
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Integrating both parts by Rd gives:

−
∑
j

Ej

∫
Rd
ϕ∗i (r)∆ϕj(r) d r = Λ

∑
j

Ej

[∫
Rd
ϕ∗i (r)εp(r)ϕj(r) d r (8.1.2)

+

∫
Rd
ϕ∗i (r)δε(r)ϕj(r) d r

]
. (8.1.3)

Introduce new notations:

Ai,j = −
∫

Rd
ϕ∗i (r)∆ϕj(r) d r,

Ci,j =

∫
Rd
ϕ∗i (r)ε(r)ϕj(r) d r,

Di,j =

∫
Rd
ϕ∗i (r)δε(r)ϕj(r) d r.

Therefore, (8.1.2) can be rewritten in matrix form as∑
j

Ai,jEj = Λ
∑
j

(Ci,j +Di,j)Ej. (8.1.4)

This technique of substituting of the partial differential equation (8.1.1) by the linear

system (8.1.4) is well known as the Galerkin approach. And the quality of this approach

depends crucially on a proper choice of the basis set {ϕj}j.

The Wannier functions {wn,R}n,R, computed for an analogous but perfectly periodic Pho-

tonic Crystal (δε = 0), are L2
ε(Rd)-orthogonal and, in contrast to other possible bases, they

already contain the information about the underlying crystal structure. Moreover, they

can be chosen real-valued, well-localized and possessing certain symmetries described in

Chapter 3. Apparently, the basis of Wannier functions is an optimal choice for our prob-

lem. A confirmation of this statement one can find in [SMHB05], where the authors

compare several different bases and make the same conclusion.

Let us insert the Wannier functions instead of ϕj; here i = {n,R}, j = {n′,R′}:

AR,R′

nn′ = −
∫

Rd
w∗n,R(r)∆wn′,R′(r) d r, (8.1.5)

CR,R′

nn′ =

∫
Rd
w∗n,R(r)εp(r)wn′,R′(r) d r = δn,n′δR,R′ , (8.1.6)

DR,R′

nn′ =

∫
Rd
w∗n,R(r)δε(r)wn′,R′(r) d r. (8.1.7)
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Now we want to simplify the matrices. Recall the definition (3.1.2) of the Wannier func-

tions via Bloch waves:

wn,R(r) =
1

VBZ

∫
BZ

e−ik·Rψn,k(r) d k

=
1

VBZ

∫
BZ

e−ik·R
∑
m

Uk
mnψ

0
m,k(r) d k.

We remember that ψ0
m,k is an eigenfunction of Transverse Magnetic problem (2.1.5):

−∆ψ0
m,k(r) = λm,kεp(r)ψ

0
m,k(r).

Therefore,

−∆wn′,R′(r) = − 1

(2π)d

∫
BZ

e−ik′·R′∆ψn′,k′(r) d k′

= − 1

(2π)d

∫
BZ

e−ik′·R′
∑
m′

Uk
m′n′∆ψ

0
m′,k′(r) d k′

=
εp(r)

(2π)d

∫
BZ

e−ik′·R′
∑
m′

Uk
m′n′λm′,k′ψ

0
m′,k′(r) d k′.

This implies:

AR,R′

nn′ = −
∫

Rd
w∗n,R(r)∆wn′,R′(r) d r

=

∫
Rd

1

(2π)d

∫
BZ

eik·R
∑
m

[Uk]Hnm
(
ψ0
m,k(r)

)∗
d k

× εp(r)
(2π)d

∫
BZ

e−ik′·R′
∑
m′

Uk′

m′n′λm′,k′ψ
0
m′,k′(r) d k′ d r

=
1

(2π)2d

∫
BZ

∫
BZ

ei(k·R−k′·R′)
∑
m,m′

[Uk]Hnmλm′,k′U
k′

m′n′ ×

×
[∫

Rd

(
ψ0
m,k(r)

)∗
εp(r)ψ

0
m′,k′(r) d r

]
d k d k′.

By Theorem 2.2, we recall that∫
Rd

(
ψ0
m,k(r)

)∗
εp(r)ψ

0
m′,k′(r) d r = (2π)dδmm′δ(k− k′).

With this in mind we conclude:

AR,R′

nn′ =
1

(2π)d

∫
BZ

∑
m

[Uk]Hnmλm,kUk
mn′e

ik·(R−R′) d k. (8.1.8)
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It is can be shown that this matrix A is positive definite.

As soon as the Wannier functions wn,R and the defect dielectricity δε are localized, both

matrices A and D are sparse — namely, with increasing distance between the integer-

lattice nodes R and R′ the values of AR,R′ and DR,R′ vanish. Moreover, since {wn,R}n,R
are real, A and D are real and symmetric.

The equation (8.1.4) can be rewritten as∑
n,R

AR,R′

nn′ E
R
n = Λ

∑
n,R

(
δn,n′δR,R′ +DR,R′

nn′

)
ER
n . (8.1.9)

We see now very clearly the advantage of the Wannier function basis in defect mode sim-

ulations. Instead of the system (8.1.4) with full complex matrices we obtain the system

(8.1.9) with sparse real symmetric matrices, one of those even reduced to unity.

Note that the entries of A depend only on the properties of perfectly periodic crystal;

the information about defects is contained in D. So, the parameter εp and herewith the

“initial” periodic PC are excluded from further computations.

8.2 Single defect rod

Let us consider a single embedded rod of electric permittivity εd centered at Rd:

δε(r) = [εd(r)− εp(r)] Θ(r− Rd)

with

Θ(r− Rd) =

 1, r inside the rod centered at Rd,

0, otherwise.
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Namely, the contribution δε is zero everywhere except the defect rod where it is equal to

εd − εp (see Figure 8.1). Then

DR,R′

nn′ =

∫
Rd
w∗n,R(r)δε(r)wn′,R′(r) d r

=

∫
Rd
w∗n,R(r) [εd(r)− εp(r)] Θ(r− Rd)wn′,R′(r) d r

=

∫
rod(Rd)

w∗n,R(r) [εd(r)− εp(r)]wn′,R′(r) d r.

8.3 Waveguides

A row of defect rods described in the previous section is the most significant type of PC

defects. These rows can be constructed in such a way that they form a waveguide which

allows to control and guide the propagation of electromagnetic waves with frequencies

within a photonic band gap.

A chain of defects is 1D-periodic, therefore its guided modes satisfy the quasi-periodicity

condition (Theorem 2.2, Property 2):

E(r + sw) = eik·swE(r),

where sw is a waveguide director — a d-dimensional vector which specifies the line of

defect rods in the Photonic Crystal.

The electric permittivity of the defects is given by

δε(r) =
∞∑

j=−∞

[εd(r)− εp(r)] Θ(r− Rw
j ),

where Rw
j = Rw

0 +jsw are the positions of the defect rods, Rw
0 is the origin of the waveguide.

As before, the function Θ defines the area of the defect rods and equals to 1 inside this

ares and 0 outside (see Figure 8.2).
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Let us compute the matrix D:

DR,R′

nn′ =

∫
Rd
w∗n,R(r)δε(r)wn′,R′(r) d r

=

∫
Rd
w∗n,R(r)

∞∑
j=−∞

[εd(r)− εp(r)] Θ(r− Rw
j )wn′,R′(r) d r

=
∞∑

j=−∞

∫
rod(Rwj )

w∗n,R(r) [εd(r)− εp(r)]wn′,R′(r) d r.

8.4 The main conclusion

In the framework of this chapter we do not present the numerical computations. Examples

of the application of this approach to different types of 2D crystals one can find in physical

papers [BMGM+03], [SMHB05]. The most important for us are the conclusions that the

authors make: the Galerkin method with the Wannier functions as a basis set allows very

efficient calculations which require much less data and time than other techniques such as

the Finite Difference Time Domain (FDTD) method or plane-wave supercell approach.

The basis of guided modes of PC waveguides, used instead of plane waves, allows to built

a transparent and easy understandable theory of Photonic Crystal circuits. This can

be effectively extended to 3D Photonic Crystals as well as to nonlinear and anisotropic

materials.

It is straightforward that the Wannier functions possessed of localization and symmetric

properties improve the situtation even more by significant decreasing of the data massives

required for the computations. For this reason the problem of finding better and better

ways to localize the Wannier functions is so asked-for and topical.



Chapter 9

Conclusions and directions for

further work

In the framework of this thesis we have explored an important numerical tool in Photonic

Crystal simulations — the Wannier functions. We summarized the information about

them and unified the notations which differ in various papers denoted to this topic.

We started from the analysis of the Bloch waves as the eigenfunctions of the Transverse

Magnetic problem and studied their properties. The non-uniqueness in determination of

the Bloch waves allowed us to construct the Wannier functions also non-uniquely and

thus to formulate the problem of finding localized Wannier functions.

We reviewed the proofs of existing of the exponentially localized Wannier functions for

different types of crystals: we started from a 1D case with inversion symmetry; then

turned to a case of a symmetric crystal in arbitrary dimensions; and finally generalized

the result to an arbitrary crystal, not necessarily symmetric.

We explored a way to compute the exponentially localized Wannier functions explicitly

for a 1D crystal.

We considered the spread functional as a criterion of localization of the Wannier func-

tions and examined its properties. We implemented several different methods of the

spread minimization, including the Marzari-Vanderbilt algorithm based on the unitary
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transform of the Bloch waves, the Gygi-Fatterbert-Schwegler approach dealing with the

unitary transform of the Wannier functions and we also suggested a new method never

considered before which minimizes the spread under the sum-unitary transform of the

Wannier functions. We researched and explained in detail the features of every method

and implemented all of them in Matlab for 1D and 2D Photonic Crystals using the Finite

Element method to compute the Bloch waves numerically.

We showed how the Wannier functions can be used in simulation of defect modes in

Photonic Crystals and what advantages they have in comparison to other tools. Being

well-localized, real and symmetric, they require significantly less computational resources.

Moreover, they already contain the information about the periodic structure of a partic-

ular Photonic Crystal and perfectly “fit” for modeling of the light propagation problems

in it.

At the end we can conclude that a big and fruitful work was done. As in any big research,

there remain unfinished problems as well as ways to improve the things. For example, in

Chapter 5 we considered two initial guesses for the unitary matrices Uk, one of them was

taken intuitively as the simplest example of a unitary matrix (identity), the other one was

chosen more smart and gave some localization at the very beginning (construction based

on the Gaussian bell functions). Nevertheless, we do not exclude the possibility that a

better initial value can be found to make the computations faster. In Chapter 7 we were

unfortunately not able to suggest an alternative update of the sum-unitary matrices WR,

but we believe that this could be a perspective research in this direction. For instance,

one could try to search for the minimizer in a space of rotations of the manifoldM. Other

descent directions of the spread functional as well as other initial values of WR could also

be tried. The algorithm from Chapter 6 can be applied to the results of any other method

in order to improve them.

The idea to use the Wannier functions in Photonic Crystal simulation is relatively new

and very attractive. But at the same time the problem of localization of the Wannier

functions becomes of high interest. We hope that the present work will be helpful for
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researches of this topic, will give them a good knowledge base and inspire them with new

ideas.



Chapter 10

Appendix: Numerical aspects of the

presented work

10.1 Explicit computation of the Bloch waves with

constant permittivity

Let us consider the simplest case of the Transverse Magnetic problem (2.1.5) — a 1D

Photonic crystal with constant electric permittivity ε. Without loss of generality, let

ε = 1. The eigenvalue problem in this case reduces to the form

− ψ′′k(x) =
ω2

k

c2
ψk(x) for x ∈ [0, 1] (10.1.1)

with the initial conditions

ψk(1) = eikψk(0), ψ′k(1) = eikψ′k(0).

In further notations let λk = ωk/c so that (10.1.1) turns into

−ψ′′k(x) = λ2
kψk(x).

Rewrite it for the periodic functions uk:

− u′′k(x)− 2iku′k(x) + k2uk(x) = λ2
kuk(x) (10.1.2)
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with

uk(1) = uk(0), u′k(1) = u′k(0). (10.1.3)

The solutions can be found analytically. The dispersion relation reads:

λ2
k − k2 + 2ikµk + µ2

k = 0.

Its roots are

µ+
k = i(−k + λk), µ−k = i(−k− λk). (10.1.4)

We make the following ansatz: uk can be found in the form

uk(x) = aeµ
+
k x + beµ

−
k x

with some coefficients a and b which we are going to find. The boundary conditions

(10.1.3) give:

uk(0) = uk(1):

a+ b = aeµ
+
k + beµ

−
k ,

a
(

1− eµ
+
k

)
+ b
(

1− eµ
−
k

)
= 0;

u′k(0) = u′k(1):

µ+
k a+ µ−k b = µ+

k aeµ
+
k + µ−k be

µ−k ,

aµ+
k

(
1− eµ

+
k

)
+ bµ−k

(
1− eµ

−
k

)
= 0.

Finally we obtain the following system for the coefficients a and b: 1− eµ
+
k 1− eµ

−
k

µ+
k

(
1− eµ

+
k

)
µ−k

(
1− eµ

−
k

)  a

b

 =

 0

0

 .

The system has nontrivial solutions only if its determinant vanishes:

−2iλk

(
1− eµ

+
k

)(
1− eµ

−
k

)
= 0.
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Figure 10.1: Eigenvalues of the 1D TM problem with ε = 1

Figure 10.2: Bloch waves of the 1D TM problem with ε = 1
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Except the trivial solution λk = 0, this can be achieved in two cases:

eµ
+
k = ei(−k+λk) = 1,

λ+
n,k = k + 2πνn, νn ∈ Z,

and

eµ
−
k = ei(−k−λk) = 1,

λ−n,k = −k + 2πνn, νn ∈ Z.

Alltogether, the eigenvalues can be rewritten as

λ2
n,k = (k + 2πνn)2, νn ∈ Z. (10.1.5)

The eigenfunctions un,k satisfy

un,k(x) = e2πiνnx, νn ∈ Z,

and the corresponding Bloch waves are

ψn,k(x) = ei(k+2πνn)x, νn ∈ Z. (10.1.6)

The functions ψn,k have degeneracy in points k = πm with m ∈ Z.

The graphs k 7→ λ(k) and x 7→ ψn,π/2(x) see at Fig.10.1 and Fig.10.2. As we see on the

graph, there are no gaps in the spectrum in this case and there is no possibility to single

out an isolated composite band.

An analogous situation appears in a 2D Photonic Crystal. The eigenvalue problem read

then as

−∆ψk(r) = λkψk(r) (10.1.7)

with the boundary conditions

ψk(r + R) = eikψk(r), (10.1.8)

∇ψk(r + R) · n = eik∇ψk(r) · n. (10.1.9)
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Figure 10.3: Eigenvalues of the 2D TM problem with ε = 1

Here

r =

 r1

r2

 ∈ [0, 1]2, R =

 R1

R2

 , R1, R2 ∈ Z, k =

 k1

k2

 ∈ [−π, π]2,

n is a normal vector to ∂[0, 1]2.

The eigenvalues can be found in a similar way and turn out to be

λ2
n,k = |k + 2πνn|2 , νn ∈ Z2. (10.1.10)

As in 1D case, there are no band gaps in the spectrum (see Fig 10.3). The corresponding

Bloch waves are

ψn,k(r) = ei(k+2πνn)·r, νn ∈ Z2. (10.1.11)

Again, they have degeneracies in points k = πm with m ∈ Z2.
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10.2 Numerical computation of the initial functions

un,k: Finite Element method for the eigenvalue

problem

In this section we explain shortly the application of the Finite Element method (FEM) to

computation of the Bloch waves as the eigenfunctions of the Transverse magnetic problem

(2.1.5).

10.2.1 1D case

A Photonic Crystal in 1D is described by the Transverse Magnetic equation:

−ψ′′k(x) = λkε(x)ψk(x), x ∈ [0, 1], k ∈ [−π, π]

with periodic piecewise constant electric permittivity ε(x) = ε(x+ R), R ∈ Z, given by

ε(x) =


1, x ∈ [0, xm1),

ε0, x ∈ [xm1 , xm2 ],

1, x ∈ (xm2 , 1],

where 0 < xm1 < xm2 < 1 and ε0 > 1.

Floquet ansatz for the solutions:

ψk(x) = eikxuk(x),

uk(x) = uk(x+ R), R ∈ Z.

Then in terms of the periodic functions uk the problem reads:

−u′′k(x)− 2iku′k(x) + k2uk(x) = λkε(x)uk(x),

or equivalently:

Lk,εuk(x) = λkuk(x), (10.2.1)
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where

Lk,ε =
1

ε

(
− dxx−2ik dx +k2

)
= −1

ε
(dx +ik)(dx +ik). (10.2.2)

Let us introduce a uniform mesh x1..xNx in [0, 1] such that x1 = 0 and xNx = 1; mesh

step hx = xj+1 − xj. Consider ε(x) = ε(xj) = εj for x ∈ [xj, xj+1).

Finite elements (FE) ϕj on the mesh are defined as some continuous functions with a

support (“hat”) on the intervals [xj−1, xj+1] correspondingly and are zero outside [Lay99].

Expansion of uk in basis of FE:

uk(x) =
Nx∑
j=1

αk,jϕj(x).

Thus (10.2.1) can be rewritten:

Nx∑
j=1

αk,jLk,εϕj(x) = λk

Nx∑
j=1

αk,jϕj(x),

Lk,εϕj(x) = λkϕj(x).

Multiply every equation by ϕi in sense of the inner product 〈·, ·〉ε in L2
ε([0, 1]):

〈u, v〉ε =

∫ 1

0

u∗(x)ε(x)v(x) dx,

〈ϕi, Lk,εϕj〉ε = 〈ϕi, λkϕj〉ε .

Insert the operator Lk,ε from (10.2.2):〈
ϕi,−

1

ε
(dx +ik)(dx +ik)ϕj

〉
ε

= λk 〈ϕi, ϕj〉ε ,〈
(dx +ik)ϕi,

1

ε
(dx +ik)ϕj

〉
ε

= λk 〈ϕi, ϕj〉ε ,〈
ϕ′i,

1

ε
ϕ′j

〉
ε

+ ik

〈
ϕ′i,

1

ε
ϕj

〉
ε

− ik

〈
ϕi,

1

ε
ϕ′j

〉
ε

+ k2

〈
ϕi,

1

ε
ϕj

〉
ε

= λk 〈ϕi, ϕj〉ε .
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Introducing the notations

Ai,j =

〈
ϕ′i,

1

ε
ϕ′j

〉
ε

,

Bi,j =

〈
ϕ′i,

1

ε
ϕj

〉
ε

,

Ci,j =

〈
ϕi,

1

ε
ϕ′j

〉
ε

,

Di,j =

〈
ϕi,

1

ε
ϕj

〉
ε

,

Ei,j = 〈ϕi, ϕj〉ε ,

we reformulate the equation:

Ai,j + ikBi,j − ikCi,j + k2Di,j = λkE
i,j.

From here one can find the matrices A, B, C, D and E.

For every k we reformulate the eigenvalue problem in the form

Stifk · Uk = Mass · Uk · Λk,

where Stifk is a stiffness matrix, Mass is a mass matrix, Λk is a diagonal matrix of the

eigenvalues λn,k of the operator Lk,ε, U
k is a desired matrix whose columns are the eigen-

functions un,k of Lk,ε, orthonormal in sense of the inner product 〈·, ·〉ε.

Note the periodic conditions: ε(x) = ε(x + R), uk(x) = uk(x + R), R ∈ Z. In numerical

computations, ε1 = εNx , uk(x1) = uk(xNx), and for this reason the size of the matrices

Stifk, Mass, Uk, Λk is (Nx − 1)× (Nx − 1) with Nx a mesh size.

One can compute the eigenfunctions for every k numerically, e.g. using Matlab command

”eig”:

[Uk,Λk] = eig(Stifk,Mass). The columns of the matrix Uk will then give us the eigenvec-

tors un,k of the operator Lk,ε.



154

The algorithms for localization of the Wannier functions given in Chapters 5, 6 and 7 are

independent on the method of computing the Bloch waves or their periodic parts un,k.

However, to be precise, we give here more details about the initial functions we work with.

Let us apply linear finite elements and unitary mesh for x and k with ε defined as

ε(x) =


1, x ∈ [0, 0.41),

11.56, x ∈ [0.41, 0.59],

1, x ∈ (0.59, 1],

The convergence properties of the corresponding functions un,k for different mesh sizes

Nx and Nk are described in the tables below; consider bands n = 1, . . . , 4.

Table 10.2.1: Convergence in x-mesh, 1D

Nk = 100, fixed point k0 = π/2, norm ‖fk0‖ =
(∑Nx

j=1(fk0)
2
j

)1/2

Nx ‖u1,k0(·)‖/
√
Nx ‖u2,k0(·)‖/

√
Nx ‖u3,k0(·)‖/

√
Nx ‖u4,k0(·)‖/

√
Nx

51 0.5479 0.8748 0.6879 0.8549

101 0.5381 0.8564 0.6795 0.8510

201 0.5432 0.8610 0.6792 0.8549

401 0.5459 0.8632 0.6799 0.8563

Table 10.2.2: Convergence in k-mesh, 1D

Nx = 51, fixed point x0 = 0.5, norm ‖f(x0)‖ =
(∑Nk

k=1 f
2
k (x0)

)1/2

Nk ‖u1,·(x0)‖/
√
Nk ‖u2,·(x0)‖/

√
Nk ‖u3,·(x0)‖/

√
Nk ‖u4,·(x0)‖/

√
Nk

50 0.6223 0.3034 0.2129 0.3584

100 0.6223 0.3034 0.2129 0.3584

200 0.6223 0.3034 0.2129 0.3584

400 0.6223 0.3034 0.2129 0.3584

Note that the norms given here are not the same as ‖·‖WSC,ε; in this weighted norm the

computed functions un,k are orthonormal in accordance to Theorem (2.3).

The corresponding eigenvalues λn,k form a bad gap structure with all simple bands. On
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Figure 10.4 we see such a structure computed for Nx = 51, Nk = 100, n = 1, . . . , 10.

Figure 10.4: Band Gaps in a 1D Photonic Crystal

10.2.2 2D case

Photonic crystal in 2D is described by the equation:

−∆ψk(r) = λkε(r)ψk(r), r ∈ [0, 1]2, k ∈ [−π, π]2,

with periodic electric permittivity ε(r) = ε(r + R) > 0, R ∈ Z2:

ε(r) =

 1, r ∈ [0, 1]2, |(x− 1
2
)2 + (y − 1

2
)2| > r1,

ε0, |(x− 1
2
)2 + (y − 1

2
)2| ≤ r1,

where 0 < r1 <
1
2

and ε0 > 1. Ansatz for the solutions:

ψk(r) = eik·ruk(r),

uk(r) = uk(r + R), R ∈ Z2.
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Then in terms of periodic functions uk:

−∆uk(r)− 2i(k · ∇)uk(r) + |k|2uk(r) = λkε(r)uk(r),

or

Lkuk(r) = λkε(r)uk(r),

where

Lk = −(∇+ ik) · (∇+ ik)

Let us introduce a uniform quadratic mesh [x1..xN ]× [y1..yN ] in [0, 1]2 such that (x1, y1) =

(0, 0) and (xN , yN) = (1, 1); mesh size hx = hy = h. Renumerating the nodes, we obtain

the mesh rs = (xi, yj): s = (j − 1)N + i.

Consider ε(r) = ε(xi, yj) = εi,j for (x, y) ∈ [xi, xi+1)× [yj, yj+1). With the same renumer-

ation as before, we get εs on the mesh rs. Introduce finite elements Φi,j with a support

[xi−1, xi+1]× [yj−1, yj+1]. Ansatz for uk in the FE-basis:

uk(r) =
N∑

i,j=1

ζk,i,jΦi,j(r).

Thus the equations can be rewritten:

N∑
i,j=1

ζk,i,jLkΦi,j(r) = λ2
kε(r)

N∑
i,j=1

ζk,i,jΦi,j(r),

LkΦi,j(r) = λ2
kε(r)Φi,j(r).

Multiply every equation by Φα,β(r) in sense of inner product 〈·, ·〉 in L2([0, 1]2):

〈u, v〉 =

∫
[0,1]2

u∗(r)v(r) d r,

〈Φα,β, LkΦi,j〉 = λ2
k 〈Φα,β, ε(r)Φi,j〉 .

Insert operator Lk:

〈Φα,β,−(∇+ ik) · (∇+ ik)Φi,j〉 = λ2
k 〈Φα,β, εΦi,j〉 ,

〈(∇+ ik)Φα,β, (∇+ ik)Φi,j〉 = λ2
k 〈Φα,β, εΦi,j〉 .
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For vectors this reads as:〈 f1

f2

 ,

 g1

g2

〉 =

∫
[0,1]2

 f ∗1

f ∗2

 ·
 g1

g2

 d r = 〈f1, g1〉+ 〈f2, g2〉 .

Applying the calculations similar to described for a 1D case, one can find stiffness and

mass matrices and then compute the eigenfunctions uk and the eigenvalues λk.

Let us apply linear finite elements and unitary mesh for x and k with ε defined as

ε(r) =

 1, r ∈ [0, 1]2, |(x− 1
2
)2 + (y − 1

2
)2| > 0.18,

11.56, |(x− 1
2
)2 + (y − 1

2
)2| ≤ 0.18,

The convergence properties of the corresponding functions un,k for different mesh sizes

Nx and Nk are described in the tables below; consider the high symmetry path ΓXMΓ

and bands n = 1, . . . , 4.

Table 10.2.3: Convergence in x-mesh, 2D

Nk = 40, fixed point k0 = (π/2, π/2), norm ‖fk0‖ =
(∑Nx

i=1

∑Nx
j=1(fk0)

2
ij

)1/2

Nx ‖u1,k0(·)‖/Nx ‖u2,k0(·)‖/Nx ‖u3,k0(·)‖/Nx ‖u4,k0(·)‖/Nx

15 0.5741 0.7637 0.5566 0.6676

31 0.5744 0.7379 0.5428 0.6586

61 0.5860 0.7500 0.5575 0.6339

Table 10.2.4: Convergence in k-mesh, 2D

Nx = 31, fixed point x0 = (0.5, 0.5), norm ‖f(x0)‖ =
(∑Nk

k1=1

∑Nk

k2=1 f
2
k1,k2

(x0)
)1/2

Nk ‖u1,·(x0)‖/Nk ‖u2,·(x0)‖/Nk ‖u3,·(x0)‖/Nk ‖u4,·(x0)‖/Nk

40 0.8759 0.5665 0.1994 0.4758

80 0.8780 0.5615 0.2046 0.4673

160 0.8790 0.5591 0.2079 0.4631

The corresponding eigenvalues λn,k form a bad gap structure with all simple bands. On

Figure 10.5 we see such a structure computed for Nx = 31, Nk = 40, n = 1, . . . , 10.
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Figure 10.5: Band Gaps in a 2D Photonic Crystal

10.3 Integration over the Brillouin zone

In this section we describe the numerics used for the computation of the Wannier functions.

By their definition,

wn,0(r) =
1

VBZ

∫
BZ

eik·run,k(r) d k.

Introduce a Monkhorst-Pack mesh in the Brillouin zone: kj = (−2π+hk/2)+jhk, j ∈ Zd,

hk = 2π/Nk (see Chapter 4, section 2). We have the values of the functions un,k only in

the mesh nodes, since they have been calculated numerically after the section 2 of this

chapter.

The simplest intuitive way would be to approximate the Wannier functions as

wn,0(r) ≈ 1

Nd
k

Nd
k∑

j=1

eikj ·run,kj(r).
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But, to improve the quality of the result, we apply the following trick.

Divide the Brillouin zone into a (Nk − 1)d smaller areas formed by the mesh nodes:

BZ =

Nk−1⋃
j=1

[kj, kj+1]d

and thus split up the integral:∫
BZ

f(k) d k =

Nk−1∑
j=1

∫
[kj ,kj+1]d

f(k) d k.

Let us approximate un,k in the k-space by some continuous piecewise polynomial functions:

un,k(r) ≈ ũn,j(k, r), k ∈ [kj, kj+1]d.

Therefore, on every cube [kj, kj+1]d we have a function k 7→ eik·rũn,j(k, r) which can be

integrated explicitly. The Wannier functions can then be calculated as

wn,0(r) ≈ 1

VBZ

Nk−1∑
j=1

∫
[kj ,kj+1]d

eik·rũn,j(k, r) d k

=
1

VBZ

Nk−1∑
j=1

gj(r).

where every gj is the result of an integration.

10.4 Numerical computation of the inner products of

type 〈rwm,R, wn,0〉Rd,ε and
〈
r2wm,R, wn,0

〉
Rd,ε

In different chapters we use values of the integrals 〈rwm,R, wn,0〉Rd,ε and 〈r2wm,R, wn,0〉Rd,ε
for further calculations. Here we will describe in detail how to obtain them numerically.

Apparently, one cannot integrate over Rd, therefore we need a trick. Recall Blount’s

theorem 5.1 that we have mentioned in Chapter 5. By this theorem,

〈rwm,R, wn,0〉Rd,ε =
i

VBZ

∫
BZ

eik·R 〈um,k,∇kun,k〉WSC,ε d k,〈
r2wm,R, wn,0

〉
Rd,ε =

1

VBZ

∫
BZ

eik·R 〈∇kum,k,∇kun,k〉WSC,ε d k.
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The Brillouin zone is bounded and therefore one can numerically integrate over it. Note

that the first expression is a d-dimensional vector and the second one is a scalar. To

simplify the notations, we set

I1
R;mn = 〈rwm,R, wn,0〉Rd,ε ,

I2
R;mn =

〈
r2wm,R, wn,0

〉
Rd,ε .

Let us shift the Wannier functions by a lattice vector R′ as wn,R 7→ wn,R+R′ or equivalently

un,k 7→ e−ik·R′un,k, which has a meaning of choosing the “home” unit cell. Then the

corresponding values of I1
R;mn and I2

R;mn also get shifted:

〈rwm,R, wn,0〉Rd,ε 7→ 〈rwm,R, wn,0〉Rd,ε + R′δm,nδR,0,〈
r2wm,R, wn,0

〉
Rd,ε 7→

〈
r2wm,R, wn,0

〉
Rd,ε + 2R′ · 〈rwm,R, wn,0〉Rd,ε + |R′|2 δm,nδR,0,

and thus

I1
R;mn 7→ I1

R;mn + R′δm,nδR,0, (10.4.1)

I2
R;mn 7→ I2

R;mn + 2R′ · I1
R;mn + |R′|2 δm,nδR,0. (10.4.2)

Let us now follow the notations from Section 5.2 (Monkhorst-Pack mesh in the Brillouin

zone, stencil Sk (5.2.1) or (5.2.2), definition (5.2.7) etc.). We approximate the terms with

k-gradient by (5.2.3) and (5.2.4):

∇kun,k ≈
∑
s∈Sk

ass (un,k+s − un,k) ,

|∇kun,k|2 ≈
∑
s∈Sk

as (un,k+s − un,k)2

with s from the stencil Sk and weights as such that
∑

s∈Sk
ass⊗s = Id. Recall the definition

(5.2.7) of Mk,s
mn, then

I1
R;mn ≈ I1,4

R;mn =
i

Nd
k

∑
k,s

eik·Rass
[
Mk,s

mn − δm,n
]
, (10.4.3)

I2
R;mn ≈ I2,4

R;mn =
1

Nd
k

∑
k,s

eik·Ras
[
2δm,n − 2 Re

(
Mk,s

mn

)]
. (10.4.4)
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Unfortunately, with a lattice shift wn,R 7→ wn,R+R′ these approximations do not satisfy

(10.4.1) and (10.4.2):

Mk,s
mn 7→ e−is·R′Mk,s

mn,

I1,4
R;mn 7→

i

Nd
k

∑
k,s

eik·Rass
[
e−is·R′Mk,s

mn − δm,n
]
,

I2,4
R;mn 7→

1

Nd
k

∑
k,s

eik·Ras

[
2δm,n − 2 Re

(
e−is·R′Mk,s

mn

)]
.

For this reason we want to update the approximation formulas in order to obtain the

same shift properties as we have for the continuous analogues. Following [Klo04, Section

4.5], consider small β > 0 and the Taylor expansion

un,k+βs = un,k + βs · ∇kun,k +O(β2),

where the derivative is understood to be taken in point β = 0 and s fixed. Suppose

Mk,βs
mn = δm,n + iµ1β +

1

2
µ2β

2 +O(β3),

then for the components of I1,4
R;mn and I1,4

R;mn it holds:

Mk,βs
mn − δm,n = iµ1β +

1

2
µ2β

2 +O(β3), (10.4.5)

2δm,n − 2 Re
(
Mk,βs

mn

)
= 2δm,n − 2

(
δm,n +

1

2
Re(µ2)β2

)
+O(β3) (10.4.6)

= −Re(µ2)β2 +O(β3). (10.4.7)

From the orthonormality of un,k we have:

δm,n = 〈um,k+βs, un,k+βs〉WSC,ε ,

δm,n = 〈um,k + βs · ∇kum,k, un,k + βs · ∇kun,k〉WSC,ε +O(β2),

δm,n = 〈um,k, un,k〉WSC,ε + 2β Re 〈s · ∇kum,k, un,k〉WSC,ε +O(β2),

0 = 2β Re 〈s · ∇kum,k, un,k〉WSC,ε +O(β2).

But

iµ1 = 〈s · ∇kum,k, un,k〉WSC,ε ,
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therefore, Imµ1 = 0.

So, we update the way to approximate the integrals in a manner suggested in [MV97] (for

detais see also [Klo04, Section 4.5]). Finally,

I1,∼
R;mn = − 1

Nd
k

∑
k,s

eik·Rass argMk,s
mn, (10.4.8)

I2,∼
R;mn =

1

Nd
k

∑
k,s

eik·Ras

[
δm,n −

∣∣Mk,s
mn

∣∣2 +
(
argMk,s

mn

)2
]
. (10.4.9)

From (10.4.8) and (10.4.9) one can derive the approximations for the expressions which

we need in different algorithms. In particular, with m = n and R = 0 we deduce to the

equations (5.2.8) and (5.2.9) of the Section 5.2 and thus find an approximation of the

spread functional for Marzari-Vanderbilt algorithm. In Sections 6.2 and 6.3 dedicated to

unitary transform of the Wannier functions we introduced matrix A which elements are

nothing but I1,∼
0;mn; and we used the same approximation for X in Section 3.5 (computation

of the eigenfunctions of the projected position operator). In Section 7.6 of the sum-

unitary method the values
[
BR,R′

1

]
mn

and
[
BR,R′

2

]
mn

can be obtained by substituting[
BR,R′

1

]
mn

= I1,∼
R−R′;mn

,
[
BR,R′

2

]
mn

= I2,∼
R−R′;mn

.
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