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Abstract

In this work we examine two kinds of applications in terms of stability and perform nu-
merical evaluations and benchmarks on parallel platforms. We consider the applicability
of pseudospectra in the field of hydrodynamic stability to obtain more information than a
traditional linear stability analysis can provide. We present parallel computational tech-
niques as well as evaluations of pseudospectra of complex flow processes. In the field of
nuclear engineering we treat the criticality problem which describes the crucial criteria for
the stability of a nuclear reactor. For the resulting eigenvalue problem we highlight the
Davidson method as an attractive alternative to the so far widely used power method.

Zusammenfassung

In dieser Arbeit untersuchen wir zwei Klassen von Anwendungen hinsichtlich ihres Stabi-
litätsverhaltens und führen entsprechende numerische Berechnungen und Benchmarks auf
parallelen Plattformen durch. Zum einen wird der Einsatz von Pseudospektren zur Untersu-
chung der hydrodynamische Stabilität diskutiert um stärkere Aussagen als in der klassischen
linearen Stabilitätstheorie zu erhalten. Wir präsentieren sowohl effiziente parallele Löser
als auch numerische Ergebnisse von Pseudospektren von komplexen Strömungsprozessen.
Des Weiteren umfasst diese Arbeit das Kritikalitätsproblem, welches das ausschlaggebende
Kriterium für die Stabilität von Kernreaktoren beschreibt. Für das resultierende Eigen-
wertproblem zeigen wir das Davidson Verfahren als attraktive Alternative der weitläufig
verwendeten Potenzmethode auf.
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Chapter 1

Introduction

The question of stability is crucial in a variety of disciplines, such as engineering, control
theory, physics, and mathematics. This can be seen in a large number of applications:
designing bridges or buildings, controlling nuclear reactors, stabilizing flow processes in
pipelines, developing electronic stability control for vehicles, or avoiding turbulences around
aircrafts. To cope with these kinds of problems is an enormous challenge due to the
high complexity of the whole solution process. First, an adequate mathematical model
describing the underlying physical processes needs to be constituted. Then, appropriate
discretizing techniques able to approximate the model accurately have to be established.
In order to solve the resulting large-scaled problems in a reasonable time, one further needs
to employ efficient numerical methods capable of exploiting parallel platforms.

In this work we treat two different stability problems. First, we devote ourselves to
the stability of fluid flow processes, which is a major field in the theory of fluid dynamics,
namely the hydrodynamic stability theory. In this respect, the examination is based on
exerting a perturbation on a laminar flow, and then to study the evolution of the perturbed
quantity. By means of eigenvalue problems, we determine whether the perturbation decays
or grows in time. We focus on the linear stability analysis which is directly linked to
the spectrum of the linearized operator describing the flow. Unlike a nonlinear stability
analysis, a purely linear stability analysis cannot guarantee the stability of the underlying
process. This work discusses the applicability of pseudospectra to tackle this matter.

Pseudospectra are also based on the linearized problem. Despite of the quite expensive
evaluation of pseudospectra compared to spectra, we believe that such an investigation is
valuable, as in the advent of high performance computing more computational power is
available, and by means of pseudospectra, one may gain a deeper insight in the stability
behavior of physical systems.

Based on results already available to approximate eigenvalues of elliptic operators, we
derive the mathematical foundation to approximate pseudospectra as well. Our general
approach allows us to treat complex flow processes approximated by finite element methods.
As for the computation, which consists of evaluating singular values, we focus on the
Davidson method and propose an efficient computational scheme for parallel hardware
architectures.

The second aspect treated in this manuscript is the criticality problem arising in the
field of neutron transport theory. It is concerned with the stability of nuclear fission chain-
reactions. The typical application is the modeling and controlling of nuclear reactors. The
criticality problem may also be formulated by means of an eigenvalue problem. The largest
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2 INTRODUCTION

eigenvalue of the resulting problem indicates how far the fission chain-reaction is from the
desired state of equilibrium, where the amount of neutrons emitted equals the amount of
neutrons absorbed.

So far, the power method has been the method of choice to solve the criticality eigenvalue
problem. Some more elaborated methods, such as the Arnoldi method or the Jacobi-
Davidson method, have also been successfully applied to this problem. However, to the
best of the authors’ knowledge, these methods have only been used in the context of some
simpler approximation schemes (P1 and SN methods to resolve the angular dependence,
see Section 4.2).

In this work we focus on the k eigenvalue problem which is one of the widely used
formulation to state the criticality problem. We apply the Davidson method to solve this
generalized eigenvalue problem in the framework of a more sophisticated approximation
scheme (PN method). Our numerical results show that this method is a promising alter-
native to the rather simple power method by speeding up our calculations significantly.
Furthermore, the Davidson method shows more flexibility and robustness than the power
method.

This thesis is organized as follows. In the following Section 1.1 we establish some basic
definitions and notations needed throughout this manuscript. In Chapter 2 we explain
the concepts of hydrodynamic stability. We start by establishing the equations describ-
ing incompressible flow and natural convection processes. Afterwards, we focus on linear
stability theory and the utilization of pseudospectra in this respect. The subject of Chap-
ter 3 is to describe the linear Boltzmann equation modeling the neutron transport, and to
formulate eigenvalue problems describing the criticality. Chapter 4 is concerned with the
theoretical background of the discretization methods which are used to approximate the
models arising in the hydrodynamic stability theory and the criticality problem. In both
applications we employ the Davidson method which is treated in Chapter 5. Moreover,
this chapter illustrates the basic mechanism of the applied parallelization techniques. In
Chapter 6 we present pseudospectra of two different flow processes: We consider an in-
compressible flow over a backward facing step as well as a natural convection process in an
annulus. Numerical results for criticality problems are shown in Chapter 7. In Chapter 8
we discuss our results and give an outlook to potential future research fields. Addition-
ally, in Appendix A we derive a bound for the Poincaré constant in an annulus and check
its quality numerically. Moreover, we apply the obtained results to a natural convection
problem.

1.1 Function Spaces and Notations

We give a short introduction to Lebesgue and Sobolev spaces, as we need these definitions
throughout this work, especially for the finite element framework. These definitions are
rather standard and can for instance be found in [21, 50, 93].

Suppose Ω to be a Lebesgue measurable subset of Rd (usually d = 2 or d = 3) with
non-empty interior. Let f be a real or complex valued function on Ω which is Lebesgue
measurable. By ∫

Ω
f(x) dx
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we denote the Lebesgue integral of f over Ω. For 1 ≤ p ≤ ∞ we define the Lebesgue norm:

‖f‖Lp(Ω) =


(∫

Ω
|f(x)|p dx

)1/p

, 1 ≤ p <∞,

ess sup
x∈Ω
|f(x)| = inf {C ≥ 0 : |f(x)| < C almost everywhere} , p =∞.

It can be shown that the Lebesgue spaces Lp(Ω) = {f : ‖f‖Lp(Ω) <∞} equipped with the
norm ‖ · ‖Lp(Ω) are Banach spaces for any 1 ≤ p ≤ ∞. In this context, we identify two
functions f and g if f(x) = g(x) almost everywhere, i.e. ‖f − g‖Lp(Ω) = 0. For the special
case p = 2, we have that L2(Ω) is a Hilbert space with the inner product

(f, g)0 := (f, g)L2(Ω) =
∫

Ω
f(x)g(x) dx. (1.1)

Let L1
loc = {f ∈ L1(K) : K compact, K ⊂ Ω̊} denote the set of locally integrable

functions. Here, Ω̊ refers to the interior of Ω. Furthermore, C∞0 (Ω) is the set of functions
in C∞(Ω) with compact support in Ω. Let Dα be shorthand for the partial derivative
operator:

Dα :=
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂x
αd
n
.

Here, the n-tuple α = (α1, α2, . . . , αn) is a multi-index with αi ∈ N0 and |α| =
∑d

i=1 αi.
We define a weak derivative Dα

wf of a function f ∈ L1
loc(Ω) if we have that Dα

wf ∈
L1
loc(Ω) and ∫

Ω
Dα
wf(x)ϕ(x) dx = (−1)|α|

∫
Ω
f(x)Dαϕ(x) dx

holds for any ϕ ∈ C∞0 (Ω). Since for any function ϕ ∈ C |α|(Ω) the classical derivative
coincides with the weak derivative, we do not make any distinction in the notation of D
and Dw.

Equipped with the definition of weak derivatives, we can set up the framework for
Sobolev spaces. For any k ∈ N0 we set the Sobolev norm

‖f‖Wk
p (Ω) =



∑
|α|≤k

‖Dαf‖pLp(Ω)

1/p

, 1 ≤ p <∞,

max
|α|≤k

‖Dαf‖pL∞(Ω), p =∞.

The Sobolev spaces defined by W k
p (Ω) = {f ∈ L1

loc(Ω) : ‖f‖Wk
p (Ω) <∞} endowed with the

corresponding Sobolev norm are Banach spaces. For the case p = 2, Hk(Ω) := W k
2 (Ω) are

Hilbert spaces with the inner product

(f, g)k := (f, g)Hk(Ω) =
∑
|α|≤k

(Dαf,Dαg)L2(Ω).

Note that for k = 0, we have H0(Ω) = L2(Ω) with the same inner product (·, ·)0 as in
(1.1). Moreover, we define Hk

0 (Ω) to be the completion of C∞0 (Ω) with respect to the norm
‖ · ‖Hk(Ω).
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For a vector x we set xH = xT (the complex conjugate of the transposed vector). The
same notation is used for a matrix A, i.e. AH = AT . Finally, for two vectors x, y in Rd

or Cd, we denote the usual scalar product by x · y = xHy.



Chapter 2

Hydrodynamic Stability

Stability of a fluid flow is a crucial question in many applications affecting our daily life:
How stable is a flying aircraft exposed to gusting winds? Can particles in pipelines, trans-
porting oil or gas, cause congestions? How can turbulences in a liquid, transporting the
heat out of a nuclear reactor, be avoided in order to maintain a failure-free cooling system?

These kinds of questions are very complex. For a theoretical analysis, an appropriate
model describing the underlying phenomena needs to be constituted. In most cases, many
assumptions have to be made in order to get a formulation (e.g. partial differential equa-
tions) both pure and numerical analysis can cope with. But no matter which model we
choose, just few aspects of the complex flow behavior which is observed are reflected by
available theoretical results – mostly for very simple configurations.

The approach of hydrodynamic stability is to investigate how a laminar fluid flow be-
haves with respect to perturbations. If the perturbation decays in time and the flow returns
to its original state it is said to be stable. On the other hand, if the perturbation causes
the flow to change into a different state, it is said to be instable. Instability may trigger
turbulence, but it may also take the flow to a different laminar state. Instability means in
particular, a computed solution might not be observable in experiments or the control of
a procedure in industrial production is just impossible.

In the field of hydrodynamic stability there are two main approaches. The nonlinear
stability theory is based on examining the kinetic energy of the flow by means of integral
inequality techniques. This method is also referred to as energy method. The linear stability
theory is concerned with a linearized model of the fluid flow and establishes statements by
means of the spectrum of the linearized operator. If all eigenvalues lie in the left half of
the complex plane, the flow is said to be linear stable. If there is at least one eigenvalue
in the right half of the complex plane, the flow is linear instable (and therefore instable as
we will see).

In Section 2.1 we give a brief review of the governing equations modeling fluid flow
processes, where we consider two different types. First, we study an incompressible fluid
flow modeled by the Naiver-Stokes equations. Afterwards, we extend this model in or-
der to consider a heat driven flow. This phenomenon is formulated by means of the
Oberbeck-Boussinesq equations. Subject of the succeeding Section 2.2 is to establish the
basic definitions of linear stability theory in terms of the Navier-Stokes equations. More-
over, we point out the differences between linear and nonlinear stability and show the close
relation between stability and eigenvalue problems. Afterwards, in Section 2.3 we give an
outline to a more general concept than eigenvalues, namely pseudospectra. We describe
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6 HYDRODYNAMIC STABILITY

how pseudospectra can be an asset to gain deeper insights in the stability behavior of
physical systems.

2.1 Modeling Fluid Flow Processes

We start in this section by deriving the basic equations which describe flow processes of
incompressible liquids or gases, namely the incompressible Navier-Stokes equations, see
e.g. [7, 28, 82, 114]. Afterwards, we are also concerned with flow processes governed by
temperature differences and gravity forces, the so-called Oberbeck-Boussinesq equations.
Both models are constituted by the conservation laws of mass and momentum, whereas
the Oberbeck-Boussinesq equations additionally require the balance of energy to formulate
the heat conduction.

Let Ω ∈ Rd (d = 2 or d = 3) be a region filled with a fluid moving due to prevailing
internal and external forces. In what follows, we consider a bounded test volume V (t) ∈ Ω
which satisfies the requirements to apply the divergence theorem. Furthermore, we denote
d-dimensional vectors by bold-faced letters, e.g. x ∈ Ω denotes the spatial variable in Rd.
For each time t, we assume that the fluid has a well-defined and continuous mass density
ρ(x, t) > 0 such that the mass m(t) of the volume V (t) is given by

m(V (t)) =
∫
V (t)

ρ(x, t) dx. (2.1)

This condition is also referred to as continuum hypothesis. The continuum hypothesis
allows us to speak of physical properties of an infinitesimally small volume element of the
fluid, which we call material particle in what follows. We define the movement of a material
particle η ∈ V (t) by a function x(η, t) such that the material particle η at time t is located
at position x(η, t) ∈ Ω. We assume the function x to be invertible and furthermore to be
sufficiently smooth.

A flow may be described by the physical properties of each material particle as a func-
tion of time, which is called Lagrangean formulation, i.e. for any fixed material particle η
one follows its trajectory. Whereas in the Eulerian formulation the flow is described by
specifying the physical properties as a function of time for any fixed point of the domain.
In the framework of the Eulerian formulation, we define the velocity of a material particle
which is at position x(η, t) by the d-dimensional vector field

v(x, t) = ∂tx(η, t).

Let f(x, t) represent any scalar physical property of the fluid at position x and time t. An
observation of the temporal change of f at a fixed point in a chosen coordinate system
is described by the local derivative ∂tf(x, t). Observing the temporal variation of f for a
fixed particle η by f(x, t) = f(x(η, t), t) leads to the time derivative in the Lagrangean
formulation, the so-called material derivative:

df

dt
=
df

dt
(x(η, t), t) = v · ∇f + ∂tf,

where the nabla operator ∇ acts only on the spatial variable x. Equipped with these
definitions, we are able to state the Transport theorem. Therefore, we assume that f , and
other functions to be introduced later, are smooth enough to apply standard operations
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on them.

Theorem 2.1 (Transport theorem) For any smooth scalar field f(x, t) and any test
volume V (t) we have

d

dt

∫
V (t)

f(x, t) dx =
∫
V (t)

∂tf(x, t) +∇ · (f(x, t)v(x, t)) dx.

For a proof, see e.g. [28, 114].
The derivation of the Navier-Stokes equations is based on the following conservation

laws, which are discussed in the following sections.

(1) Conservation of mass: Mass is neither created nor destroyed.

(2) Conservation of momentum (Newton’s second law): The momentum change rate of
a material volume is equal to the force exerted.

2.1.1 Conservation of Mass

The mass conservation law states that the mass m(V (t)) of an arbitrary test volume is
constant in time, i.e.

d

dt
m(V (t)) =

d

dt

∫
V (t)

ρ(x, t) dx = 0.

Applying the Transport theorem 2.1, we deduce that∫
V (t)

∂tρ(x, t) +∇ · (ρ(x, t)v(x, t)) dx = 0

holds for any V (t). Assuming the integrand to be continuous, we have that at each point

∂tρ+∇ · (ρv) = 0, (2.2)

which is known as the continuity equation.

2.1.2 Balance of Momentum

For any continuum, there are two types of forces acting on a piece of material V (t). Body
(or external) forces, such as gravity or electromagnetic forces, can be regarded as acting
throughout a volume. These are quantified by

Fext(V (t)) =
∫
V (t)

ρ(x, t)f(x, t) dx,

with the vector valued function f(x, t) representing an external force density. Whereas
contact (or internal) forces act through the surface of V (t) and are described by the stress
vector s(x, t) acting per unit area:

Fint(V (t)) =
∫
∂V (t)

s(x, t) ds.



8 HYDRODYNAMIC STABILITY

Here, ∂V (t) refers to the boundary of the test volume V (t). Let n denote the outward
unit normal. It can be shown that s(x, t) = n · σ, where σ = σij is the stress tensor, see
e.g. [7, 82].

The linear momentum conservation law states that

d

dt

∫
V (t)

ρ(x, t)v(x, t) dx =
∫
V (t)

ρ(x, t)f(x, t) dx +
∫
∂V (t)

s(x, t) ds (2.3)

holds for any test volume V (t). Applying the transport theorem and the divergence theo-
rem, and, moreover, using the continuity equation (2.2) yields

ρ∂tv + ρ (v · ∇) v = ρf +∇ · σ. (2.4)

This resulting equation (2.4) is called non-conservative form of the momentum equation.
Using the principle of conservation of angular momentum, one can show that the stress

tensor is symmetric, i.e. σT = σ, see e.g. [7, 82].

2.1.3 Constitutive Equations

So far, the derived equations are generic and appropriate for all kinds of fluids. However,
the number of unknowns

• velocity vector v ∈ Rd,

• density ρ ∈ R,

• stress tensor σ ∈ Rd×d

does not match the number of conditions imposed by the following equations

• continuity equation: ∂tρ+∇ · (ρv) = 0,

• momentum equation: ρ∂tv + ρ (v · ∇) v = ρf +∇ · σ,

• conservation of angular momentum: σ = σT .

In order to complete the system, we need to relate the stress tensor to the velocity and
density. These relations are derived empirically in physical experiments. The first assump-
tion we make, is that the fluid is Stokesian, i.e. the stress tensor is spherically symmetric
when the fluid is at rest:

σ|v=0 = −pI,

where p = p(x, t) denotes the thermodynamic pressure. This means, that the shear stress
components of σ vanish, while the normal stresses are equal to the pressure. Apparently,
for a fluid in motion this is not the case. Here, we set

σ|v 6=0 = −pI + τ, (2.5)

where τ is a symmetric tensor describing the shear stresses. To get a relation for τ we
define the deformation (or rate of strain) tensor as D = 1

2

(
∇v + (∇v)T

)
. We assume that

τ = F (D), where F is an appropriate continuous function mapping symmetric tensors on
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symmetric tensors. If we furthermore assume F to be linear (i.e. we consider Newtonian
fluids) and isotropic, equation (2.5) yields

σ = (−p+ λ∇ · v) I + 2µD,

see [7, 28, 82]. Here, λ is the volume viscosity and µ the shear viscosity.

2.1.4 The Incompressible Navier-Stokes Equations

Incompressibility means that the density is constant in space and time. Thus, by virtue of
the continuity equation (2.2) the velocity is solenoidal, i.e. ∇ · v = 0. This implies

∇ · σ = −∇p+∇ (λ∇ · v) + 2µ∇ ·D
= −∇p+ µ (∆v +∇(∇ · v))
= −∇p+ µ∆v.

Summing up, with (2.4) and (2.2), and defining the kinematic viscosity as ν = µ/ρ, we
obtain the incompressible Navier-Stokes equations:

∂tv − ν∆v + (v · ∇) v +
1
ρ
∇p = f ,

∇ · v = 0,
(2.6)

where suitable initial and boundary conditions on v have to be imposed.

2.1.5 Heat Conduction

Up to now, we have studied only isothermal flow processes, i.e. we assumed a constant tem-
perature, whereas in this section we introduce flow processes with heat variation. Typical
applications include cooling systems and insulation technologies.

Thermal convections, where the convection is only driven by some external forces (e.g. by
a fan), and the effects of buoyancy are neglected, are known as forced convections. How-
ever, no new flow phenomena arise, since the motion of the fluid is unaffected by the
temperature and can be determined in the way as in the preceding Section 2.1.4. On the
other hand, the case where the convection is only governed by buoyancy forces is called
natural convection. In this case the fluid would be at rest if no temperature variation
was introduced. In many applications the motion of the fluid is induced by temperature
difference between boundaries. Mixed convection is the combination of forced and natural
convection, i.e. buoyancy forces and external forces are both considered.

In this work, we confine ourselves to natural convection, where the fluid is moving due
to temperature differences and gravity. This phenomenon is formulated by means of the
Oberbeck-Boussinesq equations (or Boussinesq approximation). These equations are based
on the continuity equation, the momentum equation, and an additional equation for the
heat conduction.

So far, we have deduced the equations of continuity and motion by using the laws of
conservation of mass and momentum respectively. To formulate the heat conduction in a
fluid, we need to exploit the conservation of energy as well which is expressed by the first
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law of thermodynamics. The equation of heat conduction reads

ρ ∂t(cV T ) + ρv · ∇(cV T ) = ∇ · (k∇T )− p∇ · v + Φ, (2.7)

see [26, 105, 114]. Here, T = T (x, t) denotes the temperature. Furthermore, cV is the
specific heat at constant volume, k is the thermal conductivity. The energy dissipation Φ
per unit volume by viscosity reads in the case of Newtonian fluids

Φ = 2µD :D − 2
3

(∇ · v)2,

where the scalar product of two tensors is defined by A :B =
∑
ij

AijBij .

2.1.6 The Oberbeck-Boussinesq Equations

Boussinesq [18] and Oberbeck [73] recognized that if the temperature variations are small,
the dynamics of a fluid can be approximated by assuming a constant density everywhere,
except in the buoyancy. To give a brief sketch of this argumentation, suppose that the
density can be quantified by the linear dependence

ρ = ρ0 [1 + α(T0 − T )] ,

where T0 denotes the temperature for which ρ = ρ0 and α is the volumetric expansion
coefficient. Usually, α is in the range of 10−3 to 10−4 K−1 (e.g. perfect gas: α ≈ 3·10−3 K−1;
liquids which are mostly used in experiments: α ≈ 5 · 10−4 K−1). If we have small
temperature differences, say up to 10 K, the variations in the density are at most one per
cent. That is why the density variations may be ignored in all terms of (2.2), (2.4) and
(2.7), with one exception: the term describing the gravity force, see [26, 38, 105]. This
external force is given by fg = ρg, where g is the acceleration due to gravity.

Next, we have to simplify equation (2.7). Since we have replaced the continuity equation
by ∇ · v = 0, we can ignore the term p∇ · v. Furthermore, we can treat cV and k as
constants. Finally, we neglect the viscous dissipation Φ since it is most commonly of very
low order. Summing up, the Oberbeck-Boussinesq equations read

∂tv − ν∆v + (v · ∇) v +
1
ρ
∇p = g [1 + α(T0 − T )] ,

∇ · v = 0,
∂tT + v · ∇T − κ∆T = 0,

(2.8)

where we have replaced ρ0 by ρ and κ = k/(ρcV ) denotes the thermal diffusity. For both,
the velocity v and the temperature distribution T , suitable initial and boundary conditions
have to be prescribed. A more detailed physical background describing the approximations
we used in this section can be found in [105].

2.2 Linear Stability Theory

In this section we show the close relation between stability analysis and eigenvalue prob-
lems for the incompressible Navier-Stokes equations. Furthermore, we briefly discuss the
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stability of the Bénard problem. Later in this work, in Section 2.3.3, the linear stability
theory is put in a more abstract framework which allows us to establish bounds by means
of spectra and pseudospectra.

For simplicity, we scale the pressure p by setting ρ = 1. Then, the viscous fluid flow we
consider is governed by

∂tv − ν∆v + (v · ∇) v +∇p = f ,

∇ · v = 0
(2.9)

in a bounded domain Ω, with boundary conditions v = h on ∂Ω and an initial value
v(x, 0) = v0(x).

Before we go deeper into the linear stability theory, we start with an example to show
the different approaches of linear and the nonlinear stability. In what follows, we assume
v and p to be sufficiently smooth and the domain Ω under consideration to fulfill the
requirements of the divergence theorem.

2.2.1 Stability of the Zero Solution

In this example we examine the stability of the zero solution of (2.9), where the external
force f is given by a potential f = −∇Φ. Moreover, we impose an initial value v(x, 0) =
v0(x) for x ∈ Ω, and zero boundary values, i.e. v(x, t) = 0 for any x ∈ ∂Ω. Physically, this
setup corresponds to a model of a container filled with a liquid which is arbitrarily moved
around for t < 0, and then held fixed at t = 0. For t ≥ 0 the container is only exposed
to the gravitational force −∇Φ. Empirically, we expect the perturbation to decay and the
liquid to return to its initial state.

Nonlinear Stability

The nonlinear stability considers the kinetic energy E(t) which is given by

E(t) =
1
2
‖v‖20 =

1
2

(v,v)0.

Here, (·, ·)0 is the inner product in L2(Ω) and ‖ · ‖0 the corresponding L2(Ω) norm, cf. Sec-
tion 1.1. Differentiating E(t) with respect to t yields

d

dt
E(t) = (∂tv,v)0.

Next, the first equation of (2.9) is multiplied by v and we take the integral over Ω. Then
we integrate by parts to obtain

d

dt
E(t) = −ν‖∇v‖20 +

1
2

(v · v,∇ · v)0 + (p+ Φ,∇ · v)0,

see [94]. By assumption v is divergence free which implies

d

dt
E(t) = −ν‖∇v‖20.
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From the Poincaré inequality (A.1) we deduce

d

dt
E(t) ≤ −νk2

p ‖v‖20 = −2νk2
p E(t),

hence
E(t) ≤ e−2νk2

p tE(0).

Since kp > 0, we have that ‖v‖0 → 0 as t→∞, which means that all initial perturbations
die away. Note that the kinematic viscosity ν as well as the Poincaré constant kp determine
the evolution of the disturbance.

Linear Stability

The linear stability theory follows a different approach. We assume the perturbation to be
small in order to neglect products of higher order containing v. This means, we consider
the linear problem

∂tv − ν∆v +∇p = f ,

∇ · v = 0

in Ω, with the same initial and boundary conditions as before. Suppose that v and p are
comprised of superpositions of normal modes

v(x, t) = ṽ(x)eλt, p(x, t) = p̃(x)eλt,

where the eigenvalues λ and the corresponding eigenfunctions (ṽ, p̃) satisfy

λṽ = ν∆ṽ −∇p̃,
0 = ∇ · ṽ

(2.10)

in Ω, with zero Dirichlet boundary conditions for ṽ. Clearly, any mode with Reλ < 0
decays in time, whereas a mode with Reλ > 0 grows exponentially. Suppose we have
countably many eigenvalues with no accumulation point at 0. This can be shown in the
framework of elliptic operators assuming a bounded domain Ω with a sufficiently smooth
boundary ∂Ω, see Section 4.1. We say that the zero solution is linear stable if all normal
modes decay, i.e. Reλ < 0 for all eigenvalues. On the other hand, if there exists one
eigenvalue λ with Reλ > 0, the zero solution is said to be linear instable, see [37, 38].

In our case, it is easily shown that Reλ < 0 holds for all modes. We multiply the first
equation of (2.10) by ṽ and integrate over Ω. Then integrating by parts under consideration
of ∇ · ṽ = 0 leads to

λ‖ṽ‖20 = −ν‖∇ṽ‖20.

As a consequence of the Poincaré inequality (A.1) we obtain

λ ≤ −νk2
p < 0

for all eigenvalues λ. Note that, as in the case of nonlinear stability, the Poincaré constant
and the kinematic viscosity are essential for the stability. Both quantities prescribe the
evolution of the normal modes.

As we have seen exemplarily for the stability of the zero solution, both approaches,
linear and nonlinear stability, are closely related to eigenvalue problems. The energy
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method employs the Poincaré constant, which can be determined by means of an eigenvalue
problem (for bounded domains), see Appendix A, whereas the linear stability theory uses
the spectrum of the operator in addition. The nonlinear stability theory can guarantee
stability, since it provides an upper bound for the evolution of the perturbation. However,
if the upper bound tends to infinity, no statement in terms of stability can be made. On
the other hand, the linear stability theory can assure instability as soon as we have one
eigenvalue lying in the right half of the complex plane. But linear stability does not imply
nonlinear stability in general.

2.2.2 Linear Stability of a Steady Flow

To investigate the stability of an arbitrary steady flow (V(x), P (x)) governed by (2.9), we
disturb the steady solution at t = 0 by a function (v0, p0). The selected basic flow (V, P )
is assumed to be known, either analytically or only by means of numerical computations. In
order to study the evolution of the perturbation (v(x, t), p(x, t)), we insert the perturbed
quantities (V + v, P + p) in (2.9) yielding

∂tv − ν∆v + (v · ∇)V + (V · ∇)v + (v · ∇)v +∇p = 0,
∇ · v = 0

(2.11)

in Ω, with zero boundary conditions v = 0 on ∂Ω and initial conditions v(x, 0) = v0,
p(x, 0) = p0.

We follow the stability theory of ordinary differential equations by defining stability in
the sense of Lyapunov, see [4, 37, 51]. Therefore, we assume the functions v and p under
consideration to be elements of a Banach space, where, for brevity, we denote all norms by
‖ · ‖. A basic flow (V, P ) is said to be stable if for all ε > 0 there exists a δ = δ(ε) such
that

‖v(x, 0)‖ < δ and ‖p(x, 0)‖ < δ

implies
‖v(x, t)‖ < ε and ‖p(x, t)‖ < ε for all t > 0.

Otherwise it is said to be instable. This means, a stable flow ensures that all initially
small perturbations remain small for all time. If, additionally, the perturbations decay
asymptotically, we say that the basic flow is asymptotically stable, i.e. it is stable and

‖v(x, t)‖ → 0 and ‖p(x, t)‖ → 0 as t→∞.

The linear stability theory assumes the perturbations to be small. So we may neglect
products of the perturbed quantities in (2.11) yielding the linear problem

∂tv − ν∆v + (v · ∇)V + (V · ∇)v +∇p = 0,
∇ · v = 0,

(2.12)

with the same initial and boundary conditions. Since the basic flow is steady, the coeffi-
cients in (2.12) are independent of t. Suppose that a solution of the initial value problem
(2.12) may be separated, i.e. it is a linear superposition of normal modes

v(x, t) = ṽ(x)eλt, p(x, t) = p̃(x)eλt,
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where the eigenvalues λ and corresponding eigenfunctions (ṽ, p̃) satisfy

λṽ = ν∆ṽ − (ṽ · ∇)V − (V · ∇)ṽ −∇p̃,
0 = ∇ · ṽ

(2.13)

in Ω and ṽ = 0 on ∂Ω. All eigenvalues λ of (2.13) are either real or occur in complex
conjugate pairs. Again, if Reλ < 0, the corresponding mode dies out in time. Whereas a
mode with Reλ > 0 results clearly in instability. Finally, a mode with Reλ = 0 is called
neutrally stable and may trigger nonlinear instability.

If we have countably many eigenvalues with no accumulation point at 0, we conclude
that the basic flow of the linearized problem is stable if all normal modes are stable,
i.e. Reλ < 0 for all eigenvalues. If Reλ > 0 for at least one eigenvalue, the basic flow is
instable, see [37, 38]. Note that linear instability means in particular nonlinear instability.

Physically, we expect instabilities such as turbulences to occur for fast moving inviscid
fluids. These characteristics are inherent in a dimensionless quantity, namely the Reynolds
number. This number is defined as Re = V L/ν with characteristic velocity V and char-
acteristic length L. Typically, a flow becomes instable as the Reynolds passes a certain
threshold, which is called critical Reynolds number.

Hence, the critical Reynolds number Rec is defined as the smallest number such that
the basic flow under consideration is stable for all Re ≤ Rec, and becomes instable for a
Re > Rec. In terms of linear stability theory this means that all eigenvalues of (2.13) have
nonnegative real part for Re ≤ Rec, and there is at least one eigenvalue with positive real
part for a Re > Rec.

2.2.3 The Bénard Problem

We consider a layer of a fluid confined between two parallel planes which is heated from
below. If the temperature gradient is sufficiently large to overcome the gravitational force,
a tessellated pattern of cellular motion may be observed. This phenomenon is called Bénard
(or Rayleigh-Bénard) convection, see [15, 26, 94].

Let the coordinates of the spatial variable x be denoted by x = (x, y, z) in the three-
dimensional case and by x = (x, z) in the two-dimensional case. In order to describe the
natural convection process, suppose that the fluid is in an infinite layer z ∈ (0, l), and
that we have fixed temperatures T0 at z = 0 and Tl at z = l with T0 > Tl. For the
Oberbeck-Boussinesq equations (2.8), there exists a solution at rest with a linear temper-
ature distribution

v = 0, T = −βz + T0,

where the temperature gradient β is given by

β =
T0 − Tl
d

.

The stability of this system is dependent on the dimensionless Rayleigh number defined by

Ra =
αgβ

κν
l4,

where g is given by the gravitational vector g = (0, 0,−g)T .
As for the linear stability analysis, there exists a smallest number Ralinc such that for
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any Ra > Ralinc the basic state at rest is linear instable and hence instable. In general, this
does not imply that the solution is stable for all Ra < Ralinc . Considering the nonlinear
stability, there exists a critical Rayleigh number Ranlc such that the solution is stable for
any Ra < Ranlc . For the solution at rest one can show that Ralinc = Ranlc , see e.g. [94]. In
other words, this solution is linear stable if and only if it is nonlinear stable, and that it is
linear instable if and only if it is nonlinear instable.

As the Rayleigh number exceeds this critical value, a different steady solution – namely
a Bénard convection – can be realized. The critical Rayleigh number for this primary
bifurcation depends on the boundary setup chosen (rigid or free boundaries) and can for
instance be found in [37, 38]. By further increasing the Rayleigh number, more bifurcations
in laboratory experiments can be realized, where also time-dependent basic states are
observed. Unlike for the primary bifurcation, these depend on the Prandtl number

Pr =
ν

κ

as well, see e.g. [37].
In the setup we study later (cf. Section 6.2 and Appendix A) no exact solution of the

Oberbeck-Boussinesq equations (2.8) is known. In particular, there exists no solution at
rest as for the Bénard problem described above. Therefore, under certain conditions, a
simplified model is used for which analytical solutions are known. In Appendix A we
evaluate the relative error emerging from this simplification. In this framework, we show
the significance of the Poincaré constant for these type of evaluations.

The Poincaré constant is an important tool for the qualitative and quantitative descrip-
tion of fluid dynamics in general. Especially, it is essential for the stability behavior as we
have seen exemplarily for the stability of the zero solution of the Navier-Stokes equations.
In Appendix A we derive a bound for the Poincaré constant in a special setup and perform
numerical computations which show that the established bound is almost sharp.

2.2.4 Bibliographical Remarks

There are many references on hydrodynamic stability analysis. In addition to the references
quoted so far we mention here [26, 37] as books focused on the linear stability theory. The
energy method is treated in [94] with an emphasis on thermal convection. Both linear and
nonlinear stability are covered in [38, 90]. A relation between linear and nonlinear stability
in terms of the Navier-Stokes equations can be found in [89]. Stability of solutions of
ordinary differential equations are described in [4, 8]. For a general treatise of stability of
solutions in Banach spaces we refer to [31].

2.3 Pseudospectra

As we have seen, eigenvalues are a very important tool to study the stability of a dynamical
system. However, in experiments, a fluid flow is observed to become turbulent although
an eigenvalue analysis indicates linear stability, see [104] and references therein. This is
most notably the case for strongly non normal problems. One remedy is to investigate the
nonlinear stability which can assure the stability of a fluid motion. However, to handle
nonlinear problems more elaborated techniques than for linear problems are necessary.
Since we prefer a linear technique, we consider another encouraging approach by means of
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pseudospectra, which are a more general tool than spectra.
We consider a dynamical system describing the evolution of a perturbation u by

d

dt
u = Au,

where we assume A to be a linear operator. Under certain conditions, the solution can
be expressed in forms of a matrix or operator exponential etAu0, where u0 represents the
initial disturbance u(0). If the spectrum of A lies in the left half of the complex plane, etAu0

tends to zero for t → ∞ and no instability is detected. Considering the pseudospectra of
A one may discover that etAu0 becomes arbitrarily large for finite t and hence may trigger
instabilities.

In this section we establish lower and upper bounds on etA by means of pseudospectra.
We start by introducing some basic properties of pseudospectra of matrices and linear
operators. Our discussion follows [103].

2.3.1 Pseudospectra of Matrices

We begin with three equivalent definitions for pseudospectra of matrices. In what follows
we write (z −A) instead of (zI −A), where I is the identity on Cn. Moroever, we use the
convention ‖(z −A)−1‖ =∞ for any z ∈ σ(A), where σ(A) denotes the spectrum of A.

Definition 2.2 Let A ∈ Cn×n and ε > 0. The sets σε(A) defined by

σε(A) = {z ∈ C : ‖(z −A)−1‖ > ε−1}, (2.14)
σε(A) = {z ∈ C : z ∈ σ(A+ E) for some E ∈ Cn×n with ‖E‖ < ε}, (2.15)
σε(A) = {z ∈ C : ‖(z −A)v‖ < ε for some v ∈ Cn with ‖v‖ = 1} (2.16)

are called ε-pseudospectrum of A.

Note that the definitions depend on the norm. We have chosen definitions using strict
inequalities as these lead to equivalent definitions for closed operators in Banach spaces in
Section 2.3.2, see [25].

Theorem 2.3 The above definitions (2.14), (2.15) and (2.16) are equivalent.

Proof. For z ∈ σ(A) the equivalence is obvious. So we assume z /∈ σ(A).
To prove (2.15)⇒(2.16), let (A + E)v = zv for some E ∈ Cn×n with ‖E‖ < ε and

‖v‖ = 1. Then we have ‖(z −A)v‖ = ‖Ev‖ ≤ ‖E‖ < ε, hence (2.16).
To prove (2.16)⇒(2.14), let (z − A)v = su with ‖u‖ = ‖v‖ = 1 and s < ε. Thus, we

have ‖(z −A)−1‖ ≥ ‖(z −A)−1u‖ = ‖1
sv‖ = 1

s > ε, which means (2.14).
To prove (2.14)⇒(2.15), suppose ‖(z − A)−1‖ > 1

ε . Then, there exist s < ε and
u, v with ‖u‖ = ‖v‖ = 1 satisfying (z − A)−1u = 1

sv. Hence, we have zv − Av = su.
Next, we show that there exists E ∈ Cn×n with ‖E‖ = s and Ev = su which implies
(A + E)v = zv − su + su = zv and hence (2.15). Therefore, we choose E as a rank-1-
matrix of the form E = s uwH with vHw = 1. By virtue of the Hahn-Banach theorem there
is a linear functional L on Cn with Lv = ‖v‖ = 1 and ‖L‖ = 1. Due to the representation
theorem of Riesz, there exists a w ∈ Cn with Lv = vHw. This implies

∣∣vHw∣∣ = Lv = 1.
From ‖L‖ = 1 we obtain max‖x‖=1

∣∣xHw∣∣ = 1. Thus, ‖E‖ = smax‖x‖=1 ‖u(wHx)‖ =
smax‖x‖=1

∣∣wHx∣∣ = s, which completes the proof. 2
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Figure 2.1: Pseudospectra for log ε ∈ {0,−0.5,−1, . . . − 4} with respect to the spectral
norm of the discretized convection diffusion operator −0.05 ∆u+ 0.3ux+ 0.7uy defined on
a unit square with zero Dirichlet boundary conditions.

The next theorem presents some basic properties of pseudospectra. In this respect we
define the sum of two sets C,D by C +D = {c+ d : c ∈ C, d ∈ D}.

Theorem 2.4 Let A ∈ Cn×n and ε > 0.

(1) σε(A) is nonempty, open, and bounded.

(2) If 0 < ε1 ≤ ε2, then σε1(A) ⊆ σε2(A).

(3)
⋂
ε>0 σε(A) = σ(A).

(4) σε(A) ⊇ σ(A) + B(ε), where B(ε) = {z ∈ C : |z| < ε} denotes the ε-ball around the
origin.

(5) σε(A) consists of at most n connected components, each containing at least one eigen-
value of A.

If we choose the spectral norm, i.e. ‖ · ‖ = ‖ · ‖2, we can derive further properties. First,
note that the spectral norm of a matrix A corresponds to its largest singular value, i.e. the
largest eigenvalue of AHA, see e.g. [98]. This implies the spectral norm of the inverse A−1

to be the inverse of the smallest singular value. Thus, by denoting the smallest singular
value of (z −A) by smin(z −A) we have

‖(z −A)−1‖2 =
1

smin(z −A)
.

This leads to a further representation of pseudospectra, namely,

σε(A) = {z ∈ C : smin(z −A) < ε}. (2.17)

Theorem 2.5 Let A ∈ Cn×n and ‖ · ‖ = ‖ · ‖2. Then for all ε > 0,

(1) σε(AH) = σε(A),
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(2) σε(A) = σ(A) +B(ε) if and only if A is normal.

Proof. The first assertion follows directly from (2.17). For the second assertion, suppose
that A is normal. Then, by the spectral theorem, there exists a unitary matrix U such that
A = UΛUH , where Λ denotes the diagonal matrix with elements equal to the eigenvalues
of A. Since for any unitary matrix U we have ‖(z − UAUH)−1‖2 = ‖U(z − A)−1UH‖2 =
‖(z −A)−1‖2, we conclude

‖(z −A)−1‖2 = ‖(z − UAUH)−1‖2 = ‖(z − Λ)−1‖2

=
1

minλi |(z − λi)|
=

1
dist(z, σ(A))

,

and hence σε(A) = σ(A) +B(ε). For a proof of the converse statement, we refer to [103].
2

Further properties of pseudospectra can be found in [103]. The close relation between
eigenvalues and pseudospectra of matrices is discussed in [40].

2.3.2 Pseudospectra of Linear Operators

The definitions of the last section can be generalized to linear operators acting on an
arbitrary Banach space X. We consider closed linear operators A : D(A) → X, where
D(A) ⊆ X denotes the domain of A. The set of closed linear operators mapping from X
to X is denoted by C(X). Thus, by definition, A ∈ C(X) if for any sequence uk in D(A)
converging to a limit u ∈ X such that the sequence Auk is converging to a limit v ∈ X
implies u ∈ D(A) and Au = v. The set of bounded linear operators mapping X into itself
is denoted by B(X). Again we write (z − A) instead of (zI − A), where I denotes the
identity on the considered space.

The spectrum σ(A) of a closed operator is defined by all z ∈ C such that either (z−A)
is not invertible or (z −A)−1 is not bounded on X, see Definition 4.5.

As shown in [103], if z /∈ σ(A), then ‖(z − A)−1‖ ≥ dist(z, σ(A))−1. Therefore, we use
the same convention as before by setting ‖(z−A)−1‖ =∞ for z ∈ σ(A) and proceed with
the analogous definitions.

Definition 2.6 Let A ∈ C(X) and ε > 0. The sets σε(A) defined by

σε(A) = {z ∈ C : ‖(z −A)−1‖ > ε−1}, (2.18)
σε(A) = {z ∈ C : z ∈ σ(A+ E) for some E ∈ C(X) with ‖E‖ < ε}, (2.19)
σε(A) = {z ∈ C : ‖(z −A)v‖ < ε for some v ∈ D(A) with ‖v‖ = 1} (2.20)

are called ε-pseudospectrum of A.

Theorem 2.7 The above definitions (2.18), (2.19) and (2.20) are equivalent.

Proof. See [103]. 2

Theorem 2.8 Let A ∈ C(X) and ε > 0.

(1) σε(A) is nonempty and open.
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(2) If 0 < ε1 ≤ ε2, then σε1(A) ⊆ σε2(A).

(3)
⋂
ε>0 σε(A) = σ(A).

(4) σε(A) ⊇ σ(A) +B(ε).

(5) Any bounded component of σε(A) has a nonempty intersection with σ(A).

As stated in the preceding theorem, some basic properties are similar as in the finite
dimensional case (cf. Theorem 2.4). However, in the general case pseudospectra can become
unbounded, and only for bounded components it can be assured that they contain elements
of the spectrum.

2.3.3 Bounds on Matrix and Operator Exponentials

In studying linear stability, equations of the form

d

dt
u = Au (2.21)

arise. Here, A is a linear operator acting on a Banach space X. If A is bounded on X,
the general solution of (2.21) is given by u(t) = etAu0, with an initial value u0 and the
exponential function defined by

etA =
∞∑
k=0

1
k!
tnAn. (2.22)

The operator exponential converges for any complex number t. Moreover, it is bounded
and analytic with respect to t in the complex plane, see [59]. If A is unbounded, definition
(2.22) is not applicable because the domain of An may become narrower for increasing n.
In this case the operator exponential can be generalized by means of semigroups, see [79].

In this section we present lower and upper bounds for ‖etA‖, where we assume A to be
a bounded operator on a Banach space X with norm ‖ · ‖. Some of these results are also
valid for closed operators defining a C0 semigroup. For this discussion we refer to [79, 103].
In the sequel, we assume X to be a Banach space.

Definition 2.9 Let A ∈ B(X). The spectral abscissa of A is defined by

α(A) = sup
z∈σ(A)

Re z.

Moreover, the ε-pseudospectral abscissa of A is defined by

αε(A) = sup
z∈σε(A)

Re z.

Theorem 2.10 Let A be a bounded operator. Then there exist constants ω ∈ R and
M ≥ 1, such that

‖etA‖ ≤Meωt (2.23)
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holds for all t ≥ 0. For any z ∈ C with Re z > ω we have z /∈ σ(A), and, moreover,

(z −A)−1 =
∫ ∞

0
e−tzetAdt, (2.24)

and

‖(z −A)−1‖ ≤ 1
Re z − ω

. (2.25)

Furthermore, for any closed contour Γ enclosing σ(A) in its interior we have

etA =
1

2πi

∫
Γ
etz(z −A)−1dz. (2.26)

Proof. The inequality (2.23) follows directly from (2.22). For the proofs of (2.24), (2.25)
and (2.26) we refer to [79]. 2

Theorem 2.11 Let ε > 0 and Lε denote the arc length of the boundary of σε(A) or of its
convex hull. Then

‖etA‖ ≤ Lεetαε(A)

2πε
(2.27)

holds for all t ≥ 0.

Proof. Suppose that Lε < ∞, otherwise (2.27) obviously holds. Then, by (2.26) we have
for any t ≥ 0 and ε > 0

‖etA‖ ≤ 1
2π

∫
∂σε(A)

|etz| ‖(z −A)−1‖dz

≤ 1
2πε

∫
∂σε(A)

etRe zdz

≤ 1
2πε

etαε(A)Lε.

Clearly, these estimates apply for the convex hull of σε(A) as well. 2

By replacing σε(A) by its convex hull one may reduce the constant Lε. Before we state
lower bounds dealing with pseudospectra, we present some results involving the spectral
abscissa.

Theorem 2.12 Let A ∈ B(X). Then we have

‖etA‖ ≥ etα(A)

for all t ≥ 0 and, moreover, for the strict Lyapunov exponent

lim
t→∞

1
t

log ‖etA‖ = α(A).
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Proof. A proof can be found in [103]. 2

Now we are able to state the main result of this chapter which establishes lower bounds
on the norm of the operator exponential.

Theorem 2.13 Let A be a bounded operator acting on a Banach space.

(1) The ε-pseudospectral abscissa αε(A) is finite for all ε > 0.

(2) If z ∈ C with Re z > 0, then

sup
t≥0
‖etA‖ ≥ Re z ‖(z −A)−1‖. (2.28)

(3) We have
sup
t≥0
‖etA‖ ≥ K(A), (2.29)

where
K(A) := sup

ε≥0

αε(A)
ε

= sup
Re z>0

(Re z)‖(z −A)−1‖

denotes the Kreiss constant.

(4) If a = Re z > 0 and L = Re z ‖(z −A)−1‖, then

sup
0<t≤τ

‖etA‖ ≥ eτa
/(

1 +
eτa − 1
L

)
(2.30)

for all τ > 0.

(5) Let a = Re z and L = Re z ‖(z − A)−1‖. Suppose that ‖etA‖ ≤ M for all t ≥ 0 and
L/M ∈ (−∞, 1]. Then we have

‖eτA‖ ≥ eτa − eτa − 1
L/M

= 1− (eτa − 1)(1− L/M)
L/M

, (2.31)

and
‖eτA‖ ≥ 1− τL

‖(z −A)−1‖
. (2.32)

Proof. We set M = supt≥0 ‖etA‖ and suppose M < ∞. Thus, we can choose ω = 0 in
(2.23). By virtue of (2.24) we have for any z with Re z > 0

‖(z −A)−1‖ ≤M
∫ ∞

0
etRe zdt =

M

Re z
,

which implies (2.28) and hence (2.29).
To prove (2.30), we set Mτ = sup0<t≤τ ‖eτA‖ and suppose Mτ <∞. Thus, ‖etA‖ ≤Mτ

for 0 < t ≤ τ , ‖etA‖ ≤M2
τ for τ < t ≤ 2τ , and so on. By (2.24) this implies

‖(z −A)−1‖ ≤
∞∑
j=0

∫ (j+1)τ

jτ
e−taM j+1

τ dt =
∫ τ

0
e−tadt

∞∑
j=0

e−τajM j+1
τ ,
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where in the last step t was substituted by t + jτ . If Mτ ≥ eτa, we have τa > 0, L > 1
and hence (2.30) holds. So we assume Mτ < eτa and we may sum up the geometric series
to obtain

‖(z −A)−1‖ ≤ 1
a

(1− e−τa)
Mτ

1−Mτe−τa
=

eτa − 1
a(eτa/Mτ − 1)

.

Inverting this expression leads to

a

L
=

1
‖(z −A)−1‖

≥ a(eτa/Mτ − 1)
eτa − 1

,

and consequently
eτa

Mτ
− 1 ≤ eτa − 1

L
,

which proves (2.30).
Using (2.30) we show that αε(A) is finite for each ε > 0. Suppose the contrary, that

a = Re z becomes arbitrarily large for some value of ‖(z − A)−1‖ = ε−1. Setting τ = c/a
in (2.30) for some c > 0 yields

sup
0<t≤c/a

‖eτa‖ ≥ ec
/(

1 +
(ec − 1)ε

a

)
.

Taking a → ∞ shows that ‖eτa‖ must be arbitrarily large for arbitrarily small t, contra-
dicting (2.23).

To prove (2.31) we set P = ‖eτA‖ and for 0 ≤ t ≤ τ using (2.23) we conclude

‖etA‖ ≤M, ‖e(τ+t)A‖ ≤ PM, ‖e(2τ+t)A‖ ≤ P 2M,

and so on. If P ≥ eτa we have L/M ≥ 1, aL ≥ 0 which implies (2.31). For P < eτa we get
in the same manner as in the proof of (2.30)

L

a
≤
∫ τ

0
e−tadt

∞∑
j=0

e−τajP jM =
1
a

(1− e−τa)
M

1− P e−τa
,

and hence
L

M
≤ 1− e−τa

1− P e−τa
.

Thus,

P e−τa ≥ 1− 1− e−τa

L/M
,

which implies (2.31).
Finally taking a→ 0 and L→ 0 using l’Hôpital’s rule proves (2.32). 2

For matrices, we can also formulate an upper bound by means of the Kreiss constant,
see [103].

Theorem 2.14 (Kreiss Matrix theorem) For any A ∈ Cn×n,

K(A) ≤ sup
t≥0
‖etA‖ ≤ enK(A)
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holds, where K(A) is the Kreiss constant of A as defined in Theorem 2.13.

2.3.4 Pseudospectra of Matrix Pencils

As it is shown in Section 4.1, the discretization of an eigenvalue problem by means of finite
element methods leads to a generalized matrix eigenvalue problem of the form

Au = λMu. (2.33)

One can define the pseudospectrum as σε(M−1A) as in [85]. This may be the natural
definition, however, besides assuming M to be nonsingular, one might prefer the general-
ized form for computational reasons. A different definition is established in [84], where the
matrix M is assumed to be Hermitian positive definite. In this case the ε-pseudospectrum
can be defined by means of the Cholesky factorization M = FHF as the ε-curve of
‖(z − F−HAF−1)−1‖, where F−H is shorthand for (FH)−1. It is easy to show that as-
suming M = FHF and choosing ‖ · ‖ = ‖ · ‖2, the latter two definitions are equivalent, see
[103].

However, M may be singular as for instance by discretizing the incompressibility con-
straint of the Navier-Stokes equations. This leads us to the definitions followed in [43],
where the pseudospectrum is defined by perturbing both A and M independently.

Definition 2.15 Let ε > 0 and α, µ > 0. Then we define for A,M ∈ Cn×n the ε-
pseudospectrum of the matrix pencil (2.33) equivalently by

σε(A,M) = {z ∈ C : ‖(zM −A)−1‖ > (ε(α+ |z|µ))−1},
σε(A,M) = {z ∈ C : z ∈ σ(A+Aδ,M +Mδ) for some Aδ,Mδ ∈ Cn×n with

‖Aδ‖ < εα and ‖Mδ‖ < εµ},
σε(A,M) = {z ∈ C : ‖(zM −A)u‖ < ε(α+ |z|µ) for some u ∈ Cn with ‖u‖ = 1}.

Since we are mainly interested in ε-pseudospectra around the origin, we set α = 1 and
µ = 0, which is also the definition used in [108, 109]. In this case, Definition 2.15 is
applicable if we replace the second identity by

σε(A,M) = {z ∈ C : z ∈ σ(A+Aδ,M) for some Aδ ∈ Cn×n with ‖Aδ‖ < εα}.

For nonsingular matrices M , the spectrum of the matrix pencil σ(A,M) coincides with
the spectrum σ(M−1A). However, this property does not hold for pseudospectra in general,
but the following inclusions apply

σε/‖M‖(M
−1A) ⊂ σε(A,M) ⊂ σε‖M−1‖(M

−1A). (2.34)

From the last inclusion we know that σε(A,M) is bounded for nonsingular M . On the
contrary, this is not valid for singular matricesM in general as shown in the next theorem,
see [108].

Theorem 2.16 Let A,M ∈ Cn×n.

(1) If M is nonsingular, then σε(A,M) is bounded for any ε > 0.

(2) If M is singular, then σε(A,M) = C for ε > ε∗ = min
Mu=0, u 6=0

‖Au‖
‖u‖

.
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(3) If M is not the null matrix, then σε(A,M) 6= ∅ for all ε > 0.

Proof. The first statement is a direct consequence of (2.34). The next statement (2) follows
from Definition 2.15.

To prove (3), suppose σ(A,M) = ∅ (otherwise, for z ∈ σ(A,M) we have ‖(zM−A)−1‖ =
∞ by convention). Let ei denote the ith unit vector of Cn. For 1 ≤ i, j ≤ n we define
the functions ϕi,j(z) = eHi (zM − A)−1ej , which are analytic in C. As a consequence of
Liouville’s theorem, each of these functions ϕi,j are either unbounded or constant. If at
least one ϕi,j is unbounded, then ‖(zM − A)−1‖ ≥ ϕi,j(z) → ∞ for some |z| → ∞ and
therefore σ(A,M)ε 6= ∅ for each ε > 0. On the other hand, if all ϕi,j are constant, then
the entries of (zM −A)−1 are independent of z, and hence M is the null matrix. 2

We have seen in Theorem 2.4 that σε(A) contains the disks with radius ε around the
eigenvalues. Furthermore, if A is normal, σε(A) is even identical to the union of these
disks. For matrix pencils, this statement can be generalized by

σε(A,M) ⊇ σ(A,M) +B(ε/‖M‖),

provided that M is not the null matrix. In contrast to pseudospectra of normal matri-
ces, pseudospectra of a pencil (2.33) with A and M normal cannot be determined by its
eigenvalues alone. In fact, σε(A,M) can be much larger than the union of disks around
σ(A,M) with radius ε/‖M‖, see [108].



Chapter 3

Neutron Transport Criticality

The subject of utmost importance for the safety of nuclear reactors is the criticality prob-
lem. It examines the evolution of the fission chain reaction of neutrons. If this reaction
is in the desirable self-sustained state, the nuclear reactor is said to be critical. In a sub-
critical state, the population of free neutron decays, whereas in a supercritical state, the
chain reaction grows exponentially leading to an uncontrolled explosion. The population
of neutrons in a nuclear reactor is modeled by means of the neutron transport equation
which finds its applications in medical physics and nuclear radiation shielding technology
as well.

In the following Section 3.1 we review the linear Boltzmann equation for modeling
neutron transport and explain the basic mechanism of a nuclear reactor. Afterwards, in
Section 3.2, we state the criticality problem by means of eigenvalue problems.

3.1 Neutron Transport

The model of neutron transport goes back to Ludwig Boltzmann [17] who established
an integro-differential equation for the study of dilute gases. In contrast to the fluid flow
model of Section 2.1, it is based on statistical distributions of particles. It has not only been
applied successfully on describing dilute gases but also on modeling radiative transport in
planetary and stellar atmospheres and neutron transport in nuclear reactors, see [24].

The basic mechanism of the current generation of nuclear reactors (typically using the
U235 isotope of uranium as fuel) is depicted in Figure 3.1. We consider the three most
important types of interactions between neutrons and nuclei. Free neutrons cause fission
reactions with the nuclei contained in the fuel rods releasing energy as well as fission
neutrons. These neutrons are slowed down by the moderator (scattering reaction). This
enables the chain reaction, because slowed down neutrons are more likely to cause fission
reactions. In order for the chain reaction not to run out of control, control rods can be
inserted in the nuclear reactor catching free neutrons (capturing reaction). By handling
these control rods, the nuclear reactor can be kept in a critical state.

We give a brief introduction of the linear Boltzmann transport equation used in reactor
physics to understand its basic mechanisms. For a more detailed discussion we refer to
[13, 66]. A treatise of nuclear physics with a more introductory character can e.g. be found
in [115].

25
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control rods

fuel rods

moderator

protection barrier

Figure 3.1: Nuclear reactor principle.

3.1.1 General Assumptions

For the model used in this work, we state the following assumptions. In this context, a
particle denotes either a neutron or a photon (gamma ray).

(1) Particles may be considered as points, i.e. they can entirely be described by their
position and velocity.

(2) Collisions may be considered instantaneous, i.e. after a collision the emerging particles
are emitted immediately. For models with delayed neutrons see [13, 66].

(3) Only the expected value of the particle density is taken into account, i.e. fluctuations,
which are small in comparison with the average particle density, are neglected.

(4) Particles travel in straight lines between point collisions.

(5) Since the particle densities in nuclear reactors and other applications are small com-
pared to atomic densities, we may neglect particle-particle interactions.

(6) Material properties are assumed to be isotropic.

For a detailed discussion and physical justifications of these assumptions, we refer to [13,
66].
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δu

u

Figure 3.2: A beam of neutrons transmitting through a slab, cf. [66].

3.1.2 Cross Section Definitions

At the length scale considered here, we cannot deterministically predict that a particle hits
a target nucleus like on a billiard table. These kinds of interactions can only be formulated
by means of probabilities which are quantified by cross sections.

We consider a beam of particles with intensity I (i.e. I particles per second), with
energy E and direction u impinging perpendicular to a target slab comprised of atoms of
a single isotope as in Figure 3.2. The microscopic cross section σ̃(E) is the effective cross
sectional area per nucleus seen by the particles and is usually measured in barns (1 barn =
10−24 cm2). It expresses the probability that a particle interacts with a target nucleus. Let
n denote the number of nuclei per unit volume of the medium. Then the beam intensity
is governed by

I(u + δu) = I(u)[1− nσ̃(E) δu],

where we consider only particles which have not made a collision with nuclei. By

σ(E) = nσ̃(E)

we denote the macroscopic cross section, which has units of inverse length. It expresses the
probability of particle interaction per unit distance of particle travel. Note that compared
to the microscopic cross section, where the probability is based on one target nucleus, the
macroscopic cross section quantifies the probability based on one volume unit.

If more than one isotope is considered, the atom densities may not be uniform, and,
hence, the macroscopic cross section is in general dependent on the spatial variable r. In
this case the total cross section reads

σ(r, E) =
∑
i

ni(r) σ̃i(E),

where we use the index i to represent each type of nucleus. The total cross section may be
divided into particular cross sections for different types of particle reactions. By denoting
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Figure 3.3: Total neutron cross section for U238 as a function of incident neutron energy
measured in electron volt (1 eV ≈ 1.6× 10−19 joule); adapted from [66].

the microscopic cross section for a reaction type r for an isotope i as σ̃ir(E), we have

σr(r, E) =
∑
i

ni(r) σ̃ir(E).

We consider absorption and scattering reactions separately by setting

σ̃(E) = σ̃a(E) + σ̃s(E).

For a discussion of these kinds of cross sections we distinguish between neutron and gamma
ray cross sections.

Neutron Cross Sections

In the case of neutron absorption, a sum of various types of physical reactions occur. In
nuclear reactor applications, the most important are capture and fission reactions. In
a capture reaction, there is only one capture gamma ray emitted, whereas in a fission
reaction a mean value of ν(E) neutrons and additionally gamma rays are emitted. Thus,
we consider

σ̃a(E) = σ̃c(E) + σ̃f (E),

where σ̃c is the capture and σ̃f the fission cross section.
The scattering cross section is comprised of elastic σ̃n(E) and inelastic σ̃n′(E) scattering

cross sections:
σ̃s(E) = σ̃n(E) + σ̃n′(E).
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In elastic scattering interactions momentum and kinetic energy of the incident particle
are conserved, i.e. the impinging particle and the target remain intrinsically unchanged.
Whereas in inelastic scattering there is a loss of kinetic energy of the neutron, while the
energy state of the nucleus is elevated.

Figure 3.3 shows the complex behavior of neutron cross sections exemplarily for Uranium
238. This data cannot be determined by means of properties of the nuclides. Rather, it
has to be determined empirically as a function of energy for each nuclide and for each type
of interaction.

Gamma Ray Cross Sections

Unlike neutron cross sections, the significant components of gamma ray cross sections can
be determined by first principles or estimated from analytical approximations. We set the
absorption cross section equal to the photoelectric cross section, which involves absorption
of a photon on releasing an electron from one of the orbital shells:

σ̃a(E) = σ̃pe(E).

We assume the gamma ray scattering to be comprised of Compton scattering and pair
production scattering:

σ̃s(E) = σ̃cs(E) + σ̃pp(E).

Compton scattering consists of scattering of lower energy photons by free electrons. Pair
production involves the materialization of a photon into an electron-positron pair, which
share the photon energy.

Since gamma ray interactions do not influence the population of neutrons, we can neglect
gamma ray cross sections in stating the neutron transport equation in the following section.

3.1.3 The Linear Boltzmann Equation

In the sequel, let Ω denote the neutron direction of travel as it is common notation in
neutron transport theory. There should be no confusion with Ω denoting a domain in fluid
flow problems.

For a three-dimensional problem we need seven independent variables to describe the
distribution of neutrons: three spatial coordinates r, two angles for the neutron direction
of travel Ω, the neutron energy E, and the time t. Note that the energy of a neutron can
also be expressed by its velocity.

In order to state the neutron transport equation, we first need to introduce some nota-
tions. The scattering cross section σs(r, E′ → E,Ω′ · Ω) is defined such that σs(r, E′ →
E,Ω′ · Ω) dE dΩ quantifies the probability per unit distance of travel that a neutron at
position r with energy E′ traveling in direction Ω′ will scatter into an energy interval dE
about E into a solid angle interval dΩ about Ω.

Let ν(E) denote the mean number of neutrons produced in a fission by a neutron with
energy E. Furthermore, let χ(E) be defined such that χ(E) dE is equal to the probability
that a neutron produced in a fission will have an energy within an energy interval dE about
E.

The neutron angular density, denoted by N(r,Ω, E, t), is defined as the expected num-
ber of neutrons at position r with direction Ω and energy E at time t per unit volume per
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unit solid angle per unit energy. The neutron angular flux is defined by

ψ(r,Ω, E, t) = v N(r,Ω, E, t),

where v = ‖v‖2 is the particle speed.

The transport equation expressed in terms of the angular flux ψ reads[
1
v

∂

∂t
+ Ω · ∇+ σ(r, E)

]
ψ(r,Ω, E, t) = q(r,Ω, E, t), (3.1)

where the nabla operator ∇ operates only on the spatial variable r and q denotes the
emission density, cf. [13, 66]. The emission density q is comprised of contributions of
external sources qex, scattered neutrons qs, and fission neutrons qf , i.e.

q = qex + qs + qf .

External sources are considered to be known and to be independent of the flux ψ. The
emission density for scattered neutrons is given by

qs(r,Ω, E, t) =
∫ ∞

0

∫
S
σs(r, E′ → E,Ω′ ·Ω)ψ(r,Ω′, E′, t) dΩ′ dE′,

where S denotes the unit sphere. In our case we neglect delayed neutrons, see Section 3.1.1,
and thus, the emission density for fission reads

qf (r,Ω, E, t) = χ(E)
∫ ∞

0

∫
S
ν(E′)σf (r, E′)ψ(r,Ω′, E′, t) dΩ′ dE′.

Inserting q in equation (3.1) implies[
1
v

∂

∂t
+ Ω · ∇+ σ(r, E)

]
ψ(r,Ω, E, t) = qex(r,Ω, E, t)

+
∫ ∞

0

∫
S
σs(r, E′ → E,Ω′ ·Ω)ψ(r,Ω′, E′, t) dΩ′ dE′

+ χ(E)
∫ ∞

0

∫
S
ν(E′)σf (r, E′)ψ(r,Ω′, E′, t) dΩ′ dE′.

(3.2)

Let V denote the domain within which the neutron transport problem is to be solved and
let Γ = ∂V be its boundary. To solve the transport equation (3.2), one has to impose an
initial condition ψ(r,Ω, E, 0) at t = 0 as well as appropriate boundary conditions. Let n
denote the unit vector normal to Γ pointing outwards. Then the incoming flux is specified
by

ψ(r,Ω, E, t) = ψin(r,Ω, E, t), n ·Ω < 0, r ∈ Γ.

The common case where ψin = 0 is referred to as vacuum boundary condition. Reflective
boundary conditions, which prescribe that all outgoing neutrons are reflected back, are
characterized by

ψ(r,Ω, E, t) = ψ(r,Ω′, E, t), n ·Ω = −n ·Ω′,
(
Ω×Ω′

)
· n = 0, r ∈ Γ,

where Ω′ denotes the incident direction and Ω the reflection direction.
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3.2 Criticality

The stability of a system containing fissile nuclides is characterized by its population of
free neutrons. If the number of free neutron is decaying in time, which means the fission
reaction dies out in time, the system is said to be subcritical. On the other hand, it is
called supercritical if the population of free neutrons is growing. Finally, it is defined to
be critical if the number of free neutron reaches a time independent equilibrium in the
absence of external sources of neutrons, i.e. if there exists a steady nonnegative solution of
the source free transport equation (3.2)[

Ω · ∇+ σ(r, E)
]
ψ(r,Ω, E) =

∫ ∞
0

∫
S
σs(r, E′ → E,Ω′ ·Ω)ψ(r,Ω′, E′) dΩ′ dE′

+ χ(E)
∫ ∞

0

∫
S
ν(E′)σf (r, E′)ψ(r,Ω′, E′) dΩ′ dE′,

(3.3)

with appropriate boundary conditions (e.g. vacuum or reflective boundary conditions).
These criticality characterizations can be reformulated as eigenvalue problems.

3.2.1 The α Eigenvalue

Suppose that we have asymptotic solutions of the form

ψ(r,Ω, E, t) = ψα(r,Ω, E) eαt

satisfying the imposed initial and boundary conditions. Inserting this to the source free
formulation of (3.2) yields the eigenvalue problem[

α

v
+ Ω · ∇+ σ(r, E)

]
ψα(r,Ω, E) =

∫ ∞
0

∫
S
σs(r, E′ → E,Ω′ ·Ω)ψα(r,Ω′, E′) dΩ′ dE′

+ χ(E)
∫ ∞

0

∫
S
ν(E′)σf (r, E′)ψα(r,Ω′, E′) dΩ′ dE′.

Assume that there exists an expansion of the solution ψα in eigenfunctions ψi. Let α0

denote the eigenvalue having the largest real part and ψ0 an associated eigenfunction.
For large t, we expect that the solution of the initial value problem is proportional to
ψ0 eα0t. Furthermore, we assume for physical reasons that α0 is real, otherwise negative
or imaginary densities could occur. Thus, we make the following distinction by the sign of
α0 for characterizing the criticality:

α0


> 0 : supercritical,
= 0 : critical,
< 0 : subcritical.

3.2.2 The k Eigenvalue

To derive the k eigenvalue form, we assume that the system can be made critical by
adjusting the number of neutrons emitted by fission. That means we can replace ν by ν/k
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in (3.3) resulting in the eigenvalue problem[
Ω · ∇+ σ(r, E)

]
ψ(r,Ω, E) =∫ ∞

0

∫
S
σs(r, E′ → E,Ω′ ·Ω)ψ(r,Ω′, E′) dΩ′ dE′

+
χ(E)
k

∫ ∞
0

∫
S
ν(E′)σf (r, E′)ψ(r,Ω′, E′) dΩ′ dE′.

(3.4)

If the largest eigenvalue k is equal to one, the criticality condition (3.3) is clearly satisfied.
The case k < 1 means that the number of neutrons per fission to make the system critical
is larger than the actual ν, i.e. the system is subcritical. Conversely, it is supercritical for
k > 1. Wrapping up, we have:

k


> 1 : supercritical,
= 1 : critical,
< 1 : subcritical.

If the system is critical, i.e. α0 = 0 and k = 1, the corresponding eigenfunctions are
identical. However, for any subcritical or supercritical system, the eigenfunctions may
differ. In the α eigenvalue problem we have an additional term α0/v which is referred to
as time absorption. Since this term may cause difficulties in numerical computations, one
treats the criticality problem by evaluating the k eigenvalue rather than the α eigenvalue
in many applications, see [13, 66].



Chapter 4

Discretization of the Eigenvalue
Problems

In order to solve the eigenvalue problems arising in the context of hydrodynamic stabil-
ity (2.13) and criticality (3.4) numerically, we need appropriate discretization techniques.
In the following Section 4.1 we derive a priori error estimates for the spectrum and the
pseudospectrum in terms of a finite element approximation. Afterwards, in Section 4.2 we
treat the discretization of the k eigenvalue criticality problem.

4.1 Galerkin Finite Element Spectral Approximation

The spectral approximation theory we present is put in the framework of elliptic differential
operators which arise in the field of fluid dynamics. It is formulated by means of a bounded
operator with a compact inverse in order to apply the approximation theory of compact
operators. This presentation follows [16, 53].

4.1.1 Problem Formulation for Elliptic Eigenvalue Problems

Variational Formulation

Let A be a linear differential operator defined on a bounded domain Ω ⊂ Rd of order 2m:

Au =
∑
|α|≤m

∑
|β|≤m

(−1)|β|∂βaαβ(x)∂αu. (4.1)

We assume the operator A to be uniformly elliptic, i.e. there exists a constant ε > 0 such
that ∑

|α|,|β|=m

aαβ(x)ξα+β ≥ ε |ξ|2m ∀x ∈ Ω, ∀ξ ∈ Rd.

The classical formulation of the eigenvalue problem for this operator reads

Find λ ∈ C, u 6= 0 such that Au = λu in Ω,
Bju = 0 on ∂Ω, j = 1, . . . ,m,

(4.2)

where Bj denote appropriate boundary operators. Note that inhomogeneous Dirichlet
boundary conditions are not allowed since we need the space of functions fulfilling the

33
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boundary conditions to be a vector space.
The associated variational formulation (or weak formulation) of (4.2) is given by:

Find λ ∈ C, u ∈ V such that a(u, ϕ) = λ (u, ϕ)0 ∀ϕ ∈ V, ‖u‖0 = 1, (4.3)

where a : V × V → C is the sesquilinear form generated by the operator A. We assume V
to be an appropriate (complex) Sobolev space such that V ⊂ L2(Ω) ⊂ V ′ builds a Gelfand
triple, i.e. V ⊂ L2(Ω) is continuously and densly embedded (for instance V = Hm

0 (Ω)).
Here, V ′ denotes the continuous dual space of V .

In the case of homogeneous Dirichlet boundary conditions, the corresponding sesquilin-
ear form reads

a(u, ϕ) =
∫

Ω

∑
|α|,|β|≤m

aαβ(x) ∂αu ∂βϕdµ. (4.4)

The adjoint eigenvalue problem associated to (4.3) seeks λ∗ ∈ C and u∗ ∈ V such that

a(ϕ, u∗) = λ∗ (u∗, ϕ)0 ∀ϕ ∈ V, ‖u∗‖0 = 1. (4.5)

Clearly, the primal and adjoint eigenvalues are related to each other by λ∗ = λ.
Further, we assume the sesquilinear form a(·, ·) to be V -coercive. This means it is

bounded (or continuous), i.e.

|a(u, v)| ≤ CB‖u‖V ‖v‖V ∀u, v ∈ V,

with a constant CB > 0, and there exist CK ∈ R and CE > 0 such that

Re a(v, v) ≥ CE‖v‖2V − CK‖v‖20 ∀v ∈ V. (4.6)

For V = Hm
0 (Ω), assuming sufficiently smooth coefficients aαβ , this coercivity property is

derived by the uniform ellipticity of A using Gårding’s theorem, see e.g. [21, 120].
The sesquilinear form ã : V ×V → C defined by ã(u, v) = a(u, v) +CK(u, v)0 possesses

the same eigenfunctions as a(·, ·), and the eigenvalues of ã(·, ·) are the same eigenvalues
of a(·, ·) shifted by the constant CK . Therefore, without loss of generality, we can assume
CK = 0 in (4.6), i.e. a(·, ·) is V -elliptic.

Furthermore, we assume the embedding V ⊂ L2(Ω) to be compact. For V = Hm
0 (Ω) or

V = Hm(Ω) and assuming the boundary ∂Ω to be sufficiently smooth, this is a consequence
of the Rellich-Kondrachov compactness theorem, see [3, 116].

Let A ∈ B(V, V ′) be the unique linear operator associated to the sesquilinear form a(·, ·),
i.e. (Au)(v) = a(u, v). Let B(X,Y ) denote the space of bounded linear operators from X
to Y . Due to the V -ellipticity of a(·, ·), we have that A−1 ∈ B(V ′, V ).

Definition 4.1 With the continuous, dense and, compact embeddings IV ↪→L2(Ω), IL2(Ω)↪→V ′
and IV ↪→V ′ , we define the operators

T : L2(Ω)→ L2(Ω), T = IV ↪→L2(Ω) ◦A−1 ◦ IL2(Ω)↪→V ′ ,

T̃ : V → V, T̃ = A−1 ◦ IV ↪→V ′ .

Lemma 4.2 The operators T and T̃ are compact.

Proof. T and T̃ are defined as compositions of compact and bounded linear operators and
are therefore compact. 2
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Note that λ is an eigenvalue of the variational formulation (4.3) if and only if µ = 1
λ is an

eigenvalue of T . This holds for T̃ respectively.

Galerkin Finite Element Discretization

Let Vh ⊂ V be a finite-dimensional subspace endowed with the norm ‖ · ‖V . The approx-
imations of the eigenvalue problems (4.3) and (4.5) by a Galerkin finite element method
read:

Find λh ∈ C, uh ∈ Vh such that a(uh, ϕh) = λh (uh, ϕh)0 ∀ϕh ∈ Vh, ‖uh‖0 = 1. (4.7)
Find λ∗h ∈ C, u∗h ∈ Vh such that a(ϕh, u∗h) = λ∗h (u∗h, ϕh)0 ∀ϕh ∈ Vh, ‖u∗h‖0 = 1. (4.8)

Again, we have that λ∗h = λh. In algebraic notation this results in the following generalized
eigenvalue problems

Ahxh = λhMhxh, (4.9)

AH
h x
∗
h = λ∗hMhx

∗
h, (4.10)

where Ah =
(
a(ϕhj , ϕ

h
i )
)
i,j

is the stiffness matrix and Mh =
(

(ϕjh, ϕ
i
h)0

)
i,j

is the sym-

metric and positive definite mass matrix. Here {ϕhi } denotes a basis of Vh. If we have real
coefficients aαβ and choose the basis {ϕi} to be real, we obtain real matrices Ah and Mh.

Analogous to the continuous case, we define A−1
h : V ′ → Vh as the bounded linear

operator such that for f ∈ V ′ we have A−1
h f = uh, where uh is the solution of

a(uh, ϕh) = (f, ϕh)0 ∀ϕh ∈ Vh.

Now we are able to define the discrete counterpart of T and T̃ .

Definition 4.3 With the embeddings IVh↪→L2(Ω), IL2(Ω)↪→V ′ , IVh↪→V and IV ↪→V ′ , we define
the operators

Th : L2(Ω)→ L2(Ω), T = IVh↪→L2(Ω) ◦A−1
h ◦ IL2(Ω)↪→V ′ ,

T̃h : V → V, T̃ = IVh↪→V ◦A
−1 ◦ IV ↪→V ′ .

Lemma 4.4 The operators Th and T̃h are compact.

Proof. Th and T̃h are defined as compositions of compact and bounded linear operators
and are therefore compact. 2

Again, note that λh is an eigenvalue solution of the discrete formulation (4.7) if and only
if µh = 1

λh
is an eigenvalue of Th. This holds for T̃h respectively.

4.1.2 Spectral Approximation of Compact Operators

The previously defined differential operators A and Ah have compact inverses. Therefore,
we can apply the spectral approximation theory of compact operators based on [75]. We
start with some main results about compact operators including the Riesz-Schauder theory,
see e.g. [59, 113, 120].
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In the sequel, we write (z − T ) instead of (zI − T ), where I denotes the identity.
Throughout this section, let X be a Banach space.

Definition 4.5 Let T ∈ C(X) be a closed linear operator.

(1) The resolvent set ρ(T ) of T is defined by

ρ(T ) = {z ∈ C : (z − T )−1 exists in B(X)}.

(2) For any z ∈ ρ(T )
Rz = Rz(T ) = (z − T )−1

defines the resolvent of T .

(3) The set
σ(T ) = C \ ρ(T )

is called the spectrum of T .

Any µ ∈ σ(T ) with N(µ− T ) 6= {0} is called eigenvalue of T , where N denotes the kernel.
For an eigenvalue µ, the set N(µ − T ) is called eigenspace of T associated to µ, and any
element u ∈ N(µ− T ), u 6= 0 is called eigenvector or eigenfunction of T .

Theorem 4.6 (Riesz-Schauder theory) Let T : X → X be a compact linear operator.

(1) The set σ(T )\{0} consists of at most countably many elements.

(2) Each µ ∈ σ(T )\{0} is an eigenvalue of T .

(3) For any ε > 0 the set {λ ∈ σ(T ) : |λ| ≥ ε} is finite, i.e. the spectrum σ(T ) possesses
at most one accumulation point at 0.

(4) For any µ ∈ σ(T )\{0} the ascent αµ defined by

αµ = max{α ∈ N : N
(
(µ− T )α−1

)
6= N ((µ− T )α)}

is finite. Moreover, the geometric multiplicity defined by dimN(µ − T ) and the
algebraic multiplicity defined by dimN((µ−T )αµ) are finite. For µ ∈ σ(T )\{0}, the
elements of N((µ − T )αµ) are called the generalized eigenfunctions of T associated
to µ.

(5) For each µ ∈ σ(T )\{0} we have the direct decomposition

X = N ((µ− T )αµ)⊕R ((µ− T )αµ) ,

where R denotes the range.

(6) If µ ∈ σ(T )\{0}, then the identity σ(T |R((µ−T )αµ )) = σ(T )\{µ} holds.

Theorem 4.7 Let T ∈ C(X).

(1) The resolvent set ρ(T ) is open in C.

(2) The function C 3 z 7→ Rz(T ) ∈ B(X) is analytic in each connected component of
ρ(T ).



4.1. Galerkin Finite Element Spectral Approximation 37

(3) If T is compact, then in the neighborhood of an eigenvalue µ with ascent αµ the
resolvent can be expanded in a Laurent series:

Rz(T ) =
∞∑

k=−αµ

Ak(z − µ)k, where Ak =
1

2πi

∫
Γ

Rζ(T )
(ζ − µ)(k+1)

dζ,

and Γ is a Jordan curve enclosing µ and containing or intersecting no other elements
of σ(T ).

Definition 4.8 Let T ∈ B(X) be compact. Then for 0 6= µ ∈ σ(T ) the Dunford integral
given by

E(µ, T ) =
1

2πi

∫
Γ
Rz(T ) dz,

where Γ is a Jordan curve enclosing µ and not containing or intersecting any other elements
of σ(T ), is called spectral projector of T . By Cauchy’s integral theorem, this definition
does not depend on the choice of the Jordan curve Γ.

Note that E(µ, T ) corresponds to the residue of Rz(T ), i.e. E(µ, T ) = A−1. In the following
theorem we present some properties of the spectral projector which justify its denotation.

Theorem 4.9 Let T ∈ B(X) be compact.

(1) If µ ∈ σ(T )\{0}, then E(µ, T ) is a projection.

(2) If µ1, µ2 ∈ σ(T )\{0} and µ1 6= µ2, then E(µ1, T )E(µ2, T ) = 0.

(3) Let αµ denote the ascent of the eigenvalue µ ∈ σ(T )\{0}. Then the range R(E(µ, T ))
of the spectral projector corresponds to the space of generalized eigenfunctions asso-
ciated to µ, i.e.

R(E(µ, T )) = N((µ− T )αµ).

In the following lemma we show that an approximation of a bounded linear operator
approximates the spectrum and the resolvent as well.

Lemma 4.10 Let F ∈ B(X) and ε > 0. Then there exists δ > 0 such that for all S ∈ B(X)
with ‖F − S‖ < δ we have

σ(S) ⊂ Bε(σ(F )),
‖Rz(F )−Rz(S)‖ < ε for any z ∈ Bε(σ(F )),

where Bε(σ(F )) denotes the ε-disk around σ(F ), i.e.

Bε(σ(F )) = {µ+ ξ : µ ∈ σ(F ), |ξ| < ε}.

Proof. i) First, we show that the mapping A 7→ A−1 is continuous for invertible bounded
linear operators. Assume A ∈ B(X) is invertible. The set of invertible operators in B(X)
is open. Any B ∈ B(X) with ‖B −A‖‖A−1‖ < 1 is invertible and we have

B−1 = (A− (B −A))−1 = A−1(I − (B −A)A−1)−1 = A−1
∞∑
k=0

[
(B −A)A−1

]k
.
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Thus, we obtain

‖A−1 −B−1‖ ≤ ‖A−1‖
∞∑
k=1

(
‖B −A‖‖A−1‖

)k =
‖B −A‖‖A−1‖2

1− ‖B −A‖‖A−1‖
→ 0 (B → A),

which implies the continuity of the inverse mapping for linear bounded operators.

ii) Since
(
I − z−1F

)
→ I as z →∞ and using i) we obtain

lim
z→∞

‖Rz(F )‖ = lim
z→∞

‖1
z

(I − z−1F )‖ = 0.

Hence, there exists Nε ≥ 0 satisfying ‖Rz(F )‖ ≤ Nε for any z ∈ C\Bε(σ(F )).

iii) Let z ∈ C\Bε(σ(F )) and ‖S − F‖ < δ := N−1
ε . Then we have

Rz(F )
∞∑
i=0

[(S − F )Rz(F )]i = (z − F )−1
{

(I − (S − F )(I − F )−1
}−1

= (z − S)−1 = Rz(S),

(4.11)

which implies that (z − S)−1 exists and is bounded and therefore z ∈ ρ(S) holds. Conse-
quently for ‖S − F‖ < δ1 we have σ(S) ⊂ Bε(σ(F )).

iv) Let ‖S − F‖ ≤ δ := ε
(
N2
ε + εNε

)−1
< N−1

ε . Using (4.11) we have

‖Rz(S)−Rz(F )‖ ≤ ‖Rz(F )‖
∞∑
i=1

‖(S − F )Rz(F )‖i ≤ N2
ε ‖S − F‖

1− ‖S − F‖Nε
< ε,

which completes the proof. 2

In the sequel, let T and {Th}h>0 be compact operators defined on a Hilbert space such
that

lim
h→0
‖T − Th‖ = 0. (4.12)

This assertion is satisfied in the context of finite elements and will be proven later (Sec-
tion 4.1.3). We proceed by deriving a priori convergence estimates for eigenpairs of compact
operators.

Let Γ be a Jordan curve enclosing an eigenvalue µ ∈ σ(T )\{0} as in Definition 4.8. If
{Th}h>0 is a sequence of compact operators satisfying (4.12), Lemma 4.10 shows that for
h small enough we have Γ ⊂ ρ(Th), and therefore, analogously to Definition 4.8, we can
define the operator

E(µ, Th) =
1

2πi

∫
Γ
Rz(Th) dz.

For brevity, we set E = E(µ, T ) and Eh = E(µ, Th) if the arguments used are apparent
from the context.

Lemma 4.11 The operator E(µ, Th) is a spectral projector onto the direct sum of the
generalized eigenfunction spaces corresponding to the eigenvalues of Th enclosed by Γ.
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Lemma 4.12 For µ ∈ σ(T ) we have

‖E(µ, T )− E(µ, Th)‖ → 0, as h→ 0.

The following convergence result is stronger than Lemma 4.10 since it assures the conver-
gence of eigenvalues according to their algebraic multiplicity.

Theorem 4.13 For an eigenvalue µ ∈ σ(T ) let σµ denote its algebraic multiplicity. Given
a Jordan curve Γ enclosing µ and excluding all other eigenvalues of T , there exists h0 > 0
such that for all 0 < h < h0 the curve Γ encloses exactly σµ eigenvalues of Th counted with
their algebraic multiplicities.

The considered eigenvalues of Th in the preceding Theorem 4.13 which lie inside Γ are
denoted by µ1(h), . . . µσµ(h).

Definition 4.14 Let M,N be two subspaces of a Hilbert space X. We define

δX(M,N) = sup
x∈M, ‖x‖=1

dist(x,N),

and the gap δ̂X(M,N) between M and N as

δ̂X(M,N) = max(δ(M,N), δ(N,M)).

We write δ(M,N) and δ̂(M,N) if there is no confusion about the underlying Hilbert space
X.

Theorem 4.15 For h small enough, there is a constant C independent of h such that

δ̂(R(E), R(Eh)) ≤ ‖(E − Eh)|R(E)‖ ≤ C‖(T − Th)|R(E)‖.

Proof. See [75, Theorem 1]. 2

Theorem 4.13 shows that all eigenvalues µ1(h), . . . µσµ(h) converge to µ. However, the
individual µi(h) might be rather poor approximations to µ. Nevertheless their arithmetic
mean is generally a better approximation, cf. [20]. Thus, we define

µ̂(h) =
1
σµ

σµ∑
i=1

µi(h).

Theorem 4.16 For h small enough, there is a constant C independent of h such that

|µ− µ̂(h)| ≤ C‖(T − Th)|R(E)‖.

Proof. See [75, Theorem 2]. 2

A refined estimation is given in the following theorem.

Theorem 4.17 Let ϕ1, . . . , ϕσµ be an orthonormal basis of R(E) and ϕ∗k = E∗ϕk for
k = 1, . . . , σµ. For h small enough, there is a constant C independent of h such that

|µ− µ̂(h)| ≤ 1
σµ

σµ∑
j=1

∣∣((T − Th)ϕj , ϕ∗j )
∣∣+ C ‖(T − Th)|R(E)‖ ‖(T ∗ − T ∗h )|R(E∗)‖.
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Now we state the convergence of separate eigenvalues µk(h) instead of their arithmetic
mean. In this view, the order of convergence decreases by means of the ascent αµ of µ.

Theorem 4.18 Let ϕ1, . . . , ϕσµ be an orthonormal basis of R(E) and ϕ∗k = E∗ϕk for
k = 1, . . . , σµ. For h small enough, there is a constant C independent of h such that

|µ− µk(h)|αµ ≤ C


σµ∑
i,j=1

∣∣((T − Th)ϕi, ϕ∗j )
∣∣+ ‖(T − Th)|R(E)‖ ‖(T ∗ − T ∗h )|R(E∗)‖

 .

So far, we have only stated that eigenvectors of the discrete problem approximate gener-
alized eigenfunctions of the continuous problem (Theorem 4.15). The next theorem shows
that they even approximate eigenfunctions of the continuous problem.

Theorem 4.19 Let µ(h) be an eigenvalue of Th such that limh→0 µ(h) = µ. Suppose that
for h small enough, wh is a unit vector satisfying (µ(h)−Th)kwh = 0, where k is a positive
integer with k ≤ αµ. Then, for any integer l with k ≤ l ≤ αµ, there is a vector uwh ∈ R(E)
satisfying (µ− T )luwh = 0 and

‖uwh − wh‖ ≤ C‖(T − Th)|R(E)‖(l−k+1)/αµ ,

where C is a constant C independent of h and l.

For the proofs of the last three theorems, we again refer to [75].

4.1.3 A Priori Error Estimates for the Finite Element Approximation

Approximation of Spectra

We start by deriving estimates of ‖T − Th‖ which allow us to apply the results of Sec-
tion 4.1.2. In the following, we assume Th to be a quasi uniform triangulation Th of Ω,
see [19]. Furthermore, let the finite element space Vh ⊂ V ⊂ Hm(Ω) be defined such that
the restriction of any vh ∈ Vh on each cell K ∈ Th is a polynomial of degree at most equal
to r − 1. Then the following lemma holds, see [19].

Lemma 4.20 (Bramble-Hilbert) Let t ≥ 2. Then, under the assumptions made above,
there exists a constant C such that

inf
χ∈Vh

‖v − χ‖j ≤ Cht−j‖v‖t for any v ∈ Ht(Ω), 0 ≤ j ≤ t ≤ r.

Furthermore, we assume that the operator A (see Section 4.1.1) is Hs-regular, i.e. for any
f ∈ Hs−2m and u = A−1f , we have that u ∈ Hs, and there is a constant Cs = C(Ω, s)
such that

‖u‖s ≤ Cs‖f‖s−2m, (4.13)

where 2m denotes the order of the elliptic operator A (see (4.1)). In our context, inequality
(4.13) is assumed to hold for s ≤ r. If we have sufficiently smooth coefficients aαβ and a
sufficiently smooth boundary ∂Ω as well, one can prove theHs-regularity of A under certain
boundary conditions, see e.g. [50]. Note that Hs-regularity of A implies in particular that
all eigenfunctions have Hs-regularity, see [50, 53].
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Theorem 4.21 Given f ∈ Ht(Ω) and ϕ ∈ Hs(Ω) with 0 ≤ s, t ≤ r − 2m where r − 1 is
the polynomial order of the considered finite element discretization, we have

|((T − Th)f, ϕ)0| ≤ Cht+s+2m‖f‖t‖ϕ‖s.

Proof. For any χ ∈ Vh we have

‖(T − Th)f‖2m ≤
1
CE
|a((T − Th)f, (T − Th)f)| (ellipticity)

= |a((T − Th)f, Tf − χ)| (Galerkin orthogonality)

≤ CB
CE
‖(T − Th)f‖m‖Tf − χ‖m (continuity).

Hence,

‖(T − Th)f‖m ≤
CB
CE

inf
χ∈Vh

‖Tf − χ‖m

≤ C̃ht+2m−m‖Tf‖t+2m (Bramble-Hilbert)

≤ Ĉht+m‖f‖t (regularity). (4.14)

With a duality argument (also known as the Nitsche trick) we derive an estimate in L2(Ω):
For any χ ∈ Vh we have

|((T − Th)f, ϕ)0| = |a((T − Th)f, T ∗ϕ)|
= |a((T − Th)f, T ∗ − χ)| (Galerkin orthogonality)
≤ CB‖(T − Th)f‖m inf

χ∈Vh
‖T ∗ϕ− χ‖m (continuity)

≤ CBĈht+m‖f‖t inf
χ∈Vh

‖T ∗ϕ− χ‖m (see (4.14))

≤ Cht+m‖f‖t hs+m‖T ∗ϕ‖s+2m (Bramble-Hilbert)

≤ Cht+s+2m‖f‖t‖ϕ‖s (regularity),

which completes the proof. 2

Theorem 4.21 now allows us to prove assumption (4.12) we made in Section 4.1.2:

Corollary 4.22 Th converges to T , i.e. ‖T − Th‖0 → 0 as h→ 0.

Proof. Let g ∈ L2(Ω) and choose t = s = 0 in Theorem 4.21. Then we have

‖(T − Th)g‖0 = sup
ϕ∈L2, ‖ϕ‖0=1

|(T − Th)g, ϕ)0| ≤ Ch2m‖g‖0.

2

Theorem 4.23 Let r− 1 be the degree of the polynomials considered in the finite element
discretization. Then the following estimates

‖(T − Th)|R(E)‖0 ≤ Chr and ‖(T ∗ − T ∗h )|R(E)‖0 ≤ Chr
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hold.

Proof. Let f ∈ R(E). The regularity assumption (4.13) implies R(E) ⊂ Hr−2m(Ω).
Applying Theorem 4.21 with t = r − 2m and s = 0, we have for any ϕ ∈ L2(Ω)

|((T − Th)f, ϕ)0| ≤ C̃hr‖f‖r−2m‖ϕ‖0,

hence,

‖(T − Th)|R(E)‖0 = sup
f∈R(E), ‖f‖0=1

‖(T − Th)f‖0

= sup
f∈R(E), ‖f‖0=1

sup
ϕ∈L2(Ω), ‖ϕ‖0=1

|((T − Th)f, ϕ)0|

≤ C̃hr sup
f∈R(E), ‖f‖0=1

‖f‖r−2m

≤ Chr,

where the last estimate is derived by using that all norms are equivalent in the finite-
dimensional spaces R(E).

The second assertion can be proven analogously. 2

Now we are able to prove the main theorem which states quantitative convergence results
for the eigenvalues.

Theorem 4.24 Let A be a Hr-regular, uniformly elliptic operator of order 2m as defined
in (4.1), where r − 1 denotes the order of the finite element approximation. Furthermore,
assume λ to be an eigenvalue of A with algebraic multiplicity σ and ascent α. Then,
for sufficiently small h, there are exactly σ approximating eigenvalues {λh,i}i=1,...,σ of the
discrete problem (4.9) counted according to their algebraic multiplicity such that∣∣∣∣∣λ− 1

σ

σ∑
i=1

λh,i

∣∣∣∣∣ ≤ Cλh2(r−m), (4.15)

|λ− λh,i| ≤ C ′λh2(r−m)/α for i = 1, . . . , σ, (4.16)

where Cλ and C ′λ are constants independent of h.

Proof. Theorem 4.21 with t = s = r − 2m yields

σ∑
j=1

∣∣((T − Th)ϕj , ϕ∗j )0

∣∣ ≤ Ch2r−2m. (4.17)

The first assertion (4.15) follows from Theorem 4.17 combined with the estimate (4.17)
and Theorem 4.23. The second assertion (4.16) follows analogously from Theorem 4.18
together with the estimate (4.17) and Theorem 4.23. 2

By combining Theorem 4.15 and Theorem 4.23, we directly gain the following result about
the convergence order of the gap between the generalized eigenspaces and their approxi-
mations.
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Theorem 4.25 For a finite element approximation of order r−1 there holds for sufficiently
small h

δ̂L2(Ω) (R(E), R(Eh)) ≤ Chr,

where C is a constant independent of h.

Finally, we state the qualitative convergence of the generalized eigenfunctions.

Theorem 4.26 Let the assumptions of Theorem 4.24 hold. Furthermore, let Ah denote the
linear bounded operator associated to the sesquilinear form in (4.7) and λh an eigenvalue
of Ah converging to an eigenvalue λ of A (i.e. of (4.3)) with ascent α. Suppose that for
h small enough, wuh is a unit vector such that (λh −Ah)kwuh = 0 holds for any integer k
with 1 ≤ k ≤ α. Then, for any integer l with k ≤ l ≤ α, there exists a vector uh satisfying
(λ− T )luh = 0 and

‖uh − wuh‖0 ≤ Ch
r(l−k+1)/α,

where C is a constant independent of h and l.

Proof. The assertion follows directly from Theorem 4.19 and Theorem 4.23. 2

Convergence results can also be stated in the Hm-norm by considering T̃ and its discrete
counterpart T̃h for V = Hm(Ω) (cf. Definitions 4.1 and 4.3). We show this exemplarily for
the convergence order of the gap between R(E) and R(Eh). Using inequality (4.14) we
have that

‖(T − Th)f‖m ≤ Ĉht+m‖f‖t. (4.18)

For t = 0 we obtain ‖(T − Th)f‖m ≤ Chm‖f‖0 ≤ Chm‖f‖0 and consequently

lim
h→0
‖T̃ − T̃h‖m = 0.

Setting t = r−2m in (4.18) and using analogous arguments as in the proof of Theorem 4.23,
we obtain

‖(T − Th)|R(E)‖0 ≤ Chr−m.

Thus, using Theorem 4.15 we conclude the corresponding formulation of Theorem 4.25:

δ̂Hm(Ω) (R(E), R(Eh)) ≤ Chr−m,

where E (and Eh) is the spectral projector associated to T̃ (and T̃h respectively).

Approximation of Pseudospectra

The previously stated error estimates for eigenvalues allow us to derive a priori error
estimate for pseudospectra with respect to the spectral norm. We start with a theorem
quantifying the spectral norm for compact operators. In this view, recall that by virtue of
the Riesz-Schauder theory any compact operator possesses an eigenvalue with maximum
absolute value, cf. Theorem 4.6.

Theorem 4.27 Let T : H → H be a compact operator on a real or complex Hilbert space
H. Then for the spectral norm ‖ · ‖0 we have

‖T‖0 = smax(T ),
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where smax(T ) denotes the largest singular value of T , i.e. the squareroot of the largest
eigenvalue of T ∗T .

Proof. We adapt the proof for the finite-dimensional case which can be found e.g. in [98].
We have

‖T‖20 = sup
‖x‖0=1

(Tx, Tx)0 = sup
‖x‖0=1

(T ∗Tx, x)0,

where T ∗T is a normal compact operator with real nonnegative eigenvalues. By the spec-
tral theorem for compact operators (see e.g. [113]), there exists an orthonormal system
{e1, e2, . . .} of eigenvectors associated to the non-zero eigenvalues {λ1, λ2 . . .} of T ∗T such
that

T ∗Tx =
∑
k

λk(x, ek)0 ek

holds for any x ∈ H. Consequently,

‖T‖20 = sup
‖x‖0=1

∑
k

λk(x, ek)0(ek, x)0 = sup
‖x‖0=1

∑
k

λk |(ek, x)|2

≤ λmax(T ∗T ) sup
‖x‖0=1

∑
k

|(ek, x)|2 ,

and applying Parseval’s identity we conclude

‖T‖0 ≤ smax(T ).

On the other hand, we derive

‖T‖20 = sup
‖x‖0=1

(T ∗Tx, x)0 ≥ (T ∗Temax, emax)0 = λmax(T ∗T ),

where emax denotes an eigenvector associated to the largest eigenvalue λmax(T ∗T ). This
completes the proof. 2

Theorem 4.27 implies

‖A−1‖0 =
1

smin(A)
,

for a bounded operator A with a compact inverse.
For any z ∈ C, shifting the elliptic operator A in (4.1) to A − zI clearly leaves the

operator elliptic. For µ /∈ σ(A) ∩ σ(Ah) we can define the shifted version Tµ (and Tµh ) of
the compact operator T (and Th) analogously to Definition 4.1 (and Definition 4.3).

Definition 4.28 For µ /∈ σ(A) ∩ σ(Ah) we define

Tµ : L2(Ω)→ L2(Ω), T = IV ↪→L2(Ω) ◦ (A− µIV ↪→V ′)−1 ◦ IL2(Ω)↪→V ′ ,

Tµh : L2(Ω)→ L2(Ω), T = IVh↪→L2(Ω) ◦ (Ah − µIVh↪→V ′)
−1 ◦ IL2(Ω)↪→V ′

Now we are able to state the main theorem for the convergence of the resolvent norm.

Theorem 4.29 Let A be a Hr-regular, uniformly elliptic operator of order 2m as defined
in (4.1), where r − 1 denotes the order of the finite element approximation. Further, let
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µ /∈ σ(A) ∩ σ(Ah) and α denote the ascent of the largest singular value ς of Tµ, i.e. the
ascent of the largest eigenvalue of (Tµ)∗Tµ. Then, for h small enough, we have∣∣‖Tµ‖0 − ‖Tµh ‖0∣∣ ≤ Cςh2(r−m)/α, (4.19)

where Cς is a constant independent of h.

Proof. This assertion follows by the proof of Theorem 4.24 applied on the compact opera-
tors (Tµ)∗Tµ and (Tµh )∗Tµh to approximate the largest eigenvalue of (Tµ)∗Tµ. 2

4.1.4 Bibliographical Remarks

There are many publications on the spectral approximation theory for elliptic operators.
In addition to the references already cited we mention here [9, 20, 50, 76]. For a posteriori
error estimates we refer to [53, 56, 57]. The case of noncompact operators is described
in [34, 35]. Mixed and hybrid methods are treated in [68]. Without any attempt of
completeness, we mention [2, 61] as further works on spectral approximation. For treatises
on finite element methods we refer to [19, 21, 29, 47, 81].

4.2 Discretization of the Neutron Transport Equation

In the setup of general reactors no exact solutions of the transport equation are known.
This is especially due to the vast amount of detailed information about neutron cross
sections which has to be known. Thus, sophisticated approximation methods and numerical
methods are necessary. There exist two general approaches: deterministic andMonte Carlo
methods. Monte Carlo methods are stochastic methods that simulate a finite number of
particle histories. In this work we confine ourselves to deterministic methods and refer
to [13, 66] for a discussion of Monte Carlo methods with respect to neutron transport
problems.

The criticality problem involves three independent variables, namely, the position r,
the direction of travel Ω, and the energy E. In the approach used in this work, the
position dependence is approximated by means of finite element methods. The dependence
on particle direction is expanded as a series of spherical harmonics, whereas the energy
dependence is approximated by piecewise constant functions (multigroup approximation).

In this work we restrict ourselves to the k eigenvalue problem (3.4). The discretization of
the time dependent transport equation and the α eigenvalue problem are treated elsewhere,
see [66] and [63] respectively.

4.2.1 Energy Discretization

In order to discretize the energy variable, the energy interval of interest is divided into a
finite number of intervals (or groups) (Eg, Eg−1), g = 1, . . . , G. The cross section in each
group is assumed to be independent of the energy. This may be achieved for instance by
averaging within each interval. Note that for increasing g the energy of the associated
group is decreasing.
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We approximate the angular flux within every group g by a function ψg(r,Ω) known
as the group angular flux :

ψg(r,Ω) =
∫
g
ψ(r,Ω, E) dE,

where integration over g means integration over the interval (Eg, Eg−1).

We assume for now that the energy dependence is separable, i.e. that the angular flux
can be written as a product of a known function f(E) and the group angular flux:

ψ(r,Ω, E) = f(E)ψg(r,Ω). (4.20)

Note that by definition of the group angular flux the function f(E) is normalized in the
sense that ∫

g
f(E) dE = 1

holds for any group g.

Integrating (3.4) between Eg and Eg−1, and substituting (4.20) in the resulting equa-
tions yields[

Ω · ∇+ σg(r)
]
ψg(r,Ω) =

G∑
g′=1

∫
S
σg
′→g
s (r,Ω′ ·Ω)ψg′(r,Ω′) dΩ′ +

1
k

Fψ (4.21)

for any g = 1, . . . , G, where

Fψ =
χg
k

G∑
g′=1

νg′ σ
g′

f (r)
∫
S
ψg′(r,Ω′) dΩ′,

and ψ = (ψ1, ψ2 . . . , ψG)T . The multigroup cross sections in (4.21) are defined by

σg(r) =
∫
g
σ(r, E)f(E) dE,

σg
′→g
s (r,Ω′ ·Ω) =

∫
g

∫
g′
σs(r, E′ → E,Ω′ ·Ω)f(E′) dE′ dE,

νg′ σ
g′

f (r) =
∫
g′
ν(E)σf (r, E)f(E) dE,

and moreover we have set
χg =

∫
g
χ(E) dE.

The separability assumption (4.20) is in fact not needed to derive the within group
equations (4.21). By dropping this assumption one even obtains improved definitions
of the multigroup cross sections. However, we skip this lengthy derivation and refer to
[13, 14, 66] for the interested reader.

We define the streaming collision operator for a group g as

H0
ggψg = [Ω · ∇+ σg(r)]ψg(Ω, r)
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and the group-to-group scattering operator as

H1
gg′ψg′ =

∫
S
σg
′→g
s (r,Ω′ ·Ω)ψg(r,Ω′) dΩ′.

Moreover, the multigroup transport operator is defined by

Hgg′ = δgg′H
0
gg −H1

gg′ .

Setting the block matrix H as

H =


H11 H12 · · · H1G

H21 H22 · · · H2G
...

. . .
HG1 HGG

 ,
we obtain the block wise representation

Hψ =
1
k

Fψ (4.22)

of the criticality problem.

4.2.2 Second Order Even Parity Formulation

The second order even parity formulation allows us to derive self-adjoint diagonal blocks
Hgg in the block matrix H. We start with the within-group equations (4.21), where
we assume for simplification the scattering multigroup cross section to be isotropic. For
anisotropic scattering the derivation becomes more cumbersome and can for instance be
found in [65, 106]. Furthermore, for brevity we assume to have only one energy group.
This means we can drop the group indices, and consequently equation (4.21) reads[

Ω · ∇+ σ(r)
]
ψ(r,Ω) = σs(r)

∫
S
ψ(r,Ω′) dΩ′ +

χ

k
ν σf (r)

∫
S
ψ(r,Ω′) dΩ′. (4.23)

We proceed by splitting the angular flux into even and odd angular parity components

ψ(r,Ω) = ψ+(r,Ω) + ψ−(r,Ω),

where the even parity component ψ+ and the odd parity component ψ− are defined by

ψ±(r,Ω) =
1
2

[ψ(r,Ω)± ψ(r,−Ω)] .

Then, we evaluate (4.23) at −Ω to gain[
−Ω · ∇+ σ(r)

]
ψ(r,−Ω) = σs(r)

∫
S
ψ(r,Ω′) dΩ′ +

χ

k
ν σf (r)

∫
S
ψ(r,Ω′) dΩ′. (4.24)
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Adding equations (4.23) and (4.24) yields

Ω · ∇ψ−(r,Ω) + σ(r)ψ+(r,Ω) = σs(r)
∫
S
ψ(r,Ω′) dΩ′ +

χ

k
ν σf (r)

∫
S
ψ(r,Ω′) dΩ′.

Analogously, by subtracting these two equations we have

Ω · ∇ψ+(r,Ω) + σ(r)ψ−(r,Ω) = 0.

Finally, we combine the two last equations to eliminate ψ− which results in the second
order even parity formulation of the criticality problem:

−Ω · ∇
[

1
σ(r)

Ω · ∇ψ+(r,Ω)
]

+ σ(r)ψ+(r,Ω) = σs(r)
∫
S
ψ+(r,Ω′) dΩ′

+
χ

k
ν σf (r)

∫
S
ψ+(r,Ω′) dΩ′.

(4.25)

Note that since ψ+(r,Ω) = ψ+(r,−Ω), the even parity formulation (4.25) only needs to
be solved over half of the angular domain.

The vacuum boundary condition for the angular flux can be shown to result in a bound-
ary condition for the even parity component:

Ω · ∇ψ+(r,Ω)± σ(r)ψ+(r,Ω) = 0, n ·Ω ≷ 0, r ∈ Γ,

see [66]. The reflecting boundary conditions for the even parity component are given by

ψ+(r,Ω) = ψ+(r,Ω′), n ·Ω = −n ·Ω′,
(
Ω×Ω′

)
· n = 0, r ∈ Γ,

where Ω′ denotes the incident direction and Ω the reflection direction.

4.2.3 Angular and Spatial Discretization

The angular variable is treated mainly using three types of techniques. Integral methods
are based on integrating out the angular dependence from the transport equation, but
they lead to dense matrices. The Discrete ordinate (or SN ) collocation method consists
in evaluating the neutron transport equation along a finite number of angular directions.
This methods is simple to use but it suffers from anomalies in the angular flux distribution
known as ray effects, see [66].

In this work we consider the spherical harmonic (or PN ) method which does not suffer
from the ray effect phenomenon. The spherical harmonics are based on Legendre polyno-
mials and form an orthogonal basis of the square integrable functions on the unit sphere.
The idea relies on expanding the angular dependence in a series of spherical harmonics
truncated at order N .

The normalized spherical harmonics are defined by

Ylm(Ω) = Ylm(ϑ, ϕ) =

√
2l + 1

4π
(l −m)!
(l +m)!

Plm(cosϑ) eimϕ, l = 0, 1, . . . , m = 0, 1, . . . , l,

where Plm are the associated Legendre polynomials, ϑ ∈ [0, π] denotes the polar angle, and
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ϕ ∈ [0, 2π] the azimuthal angle. These functions are orthonormal in the sense that∫
S
Ylm(Ω)Yl′m′(Ω) dΩ =

∫ 2π

0

∫ π

0
Ylm(ϑ, ϕ)Yl′m′(ϑ, ϕ) sinϑ dϑ dϕ = δll′ δmm′ .

Moreover, they satisfy the parity property

Ylm(−Ω) = Ylm(π − ϑ, π + ϕ) = (−1)l Ylm(ϑ, ϕ) = (−1)l Ylm(Ω).

Hence, for expanding the even parity angular flux, only components Ylm with l even are
needed. Splitting Ylm into real and imaginary parts yields

Ylm(Ω) = Y e
lm(Ω) + iY o

lm(Ω),

where Y e
lm is even in ϕ and Y o

lm odd in ϕ.
The PN method for even parity in Ω uses the real and the imaginary part of Ylm as

basis functions, where l is even with l < N . We define the vector

y(Ω) =
(
Y00, Y20, Y

e
21, Y

o
21, Y

e
22, Y

o
22, Y40, . . . , Y

e
N−1N−1, Y

o
N−1N−1

)T
containing the basis functions for the angular dependence.

The dependence on the spatial variable is treated by means of finite element methods.
Let f denote the vector containing a finite element basis of dimension s, i.e.

f(r) = (f1(r), f2(r), . . . fs(r))T .

Then, the spatio-angular discretization ψ+
h of ψ+ is given by

ψ+
h (r,Ω) =

∑
i,j

αij fi(r)yj(Ω), (4.26)

where the coefficients αij are to be determined. Here, yj(Ω) denotes the j-th component
of the vector y(Ω).

In order to derive the weak matrix formulation of the criticality problem, one plugs the
spatio-angular discretization (4.26) in the even parity formulation of (4.21), where most
commonly the scattering cross section is expanded in Legendre polynomials. Then, the
resulting equation is tested by the expansion functions of ψ+

h , i.e. we multiply by functions
which are of the form fi(r)yj(Ω) and integrate over space and angle. This results in a
matrix form of a generalized eigenvalue problem seeking the largest eigenvalue λ (which
corresponds to the k eigenvalue to be approximated) and the associated eigenvector u
(which holds the coefficients αij of ψ+

h for each energy group) of

Fu = λHu.

Though straightforward, we do not present these tedious calculations and refer instead to
[106] for a detailed description of the weak form and its matrix formulation.
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Chapter 5

Eigenvalue Solvers and
Parallelization

The eigenvalue problems arising in the fields of hydrodynamic stability and criticality
are highly complex. This fact is especially reflected by the large size and complexity of
the resulting discretized problems. Therefore, we need powerful eigenvalue solvers which
in addition allow an efficient parallelization. In this work we focus on the application
of the Davidson method combined with different preconditioning techniques to compute
pseudospectra of elliptic operators and k eigenvalues of the linear Boltzmann equation.

In the following section we establish the Davidson method with a brief review of eigen-
value projection methods. Thereafter, in Section 5.2, we focus on pseudospectra compu-
tation in the spectral norm. In Section 5.3 we treat the parallelization schemes of basic
linear algebra routines in terms of finite element discretizations as well as an additional
parallelization technique for the computation of pseudospectra.

5.1 The Davidson Method

The Davidson method is an iterative algorithm to compute few extrem eigenvalues and
the corresponding eigenvectors of large sparse matrices. It was originally developed by
Davidson [32] for real-symmetric matrices in the field of quantum chemistry. Later, this
method was also successfully applied to nonsymmetric problems, see [69, 88]. It is closely
related to Krylov subspace methods which are among the most important methods for
solving large sparse eigenvalue problems. The concept of Krylov methods relies on the
projection of the problem onto a smaller subspace.

Let A ∈ Cn×n and K,L be two subspaces of Cn of same dimension m. We seek for
λ ∈ C and u ∈ Cn\{0} such that

Au = λu. (5.1)

The concept of projection methods is to approximate the exact eigenvector u by a vector
ũ belonging to the subspace K and the corresponding eigenvalue λ by some λ̃ such that
the Petrov-Galerkin condition

Aũ− λ̃ũ ⊥ L (5.2)

is satisfied. Let V = [v1, v2, . . . , vm] denote the matrix whose column vectors vi form a
basis of K and W = [w1, w2, . . . , wm] the matrix whose column vectors wi form a basis of
L. Suppose that V and W are biorthogonal, i.e. WHV = I, where I is the m-dimensional

51
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Algorithm 5.1 Power method.
1: function Power(A, k)
2: Choose an initial normalized vector v0;
3: for k = 1, 2, . . . do
4: Compute zk = Avk−1;
5: Compute vk = zk/‖zk‖2;
6: Compute the Rayleigh quotient αk = vHk Avk;
7: end for
8: end function

identity matrix. Then, we can reformulate the projection method by seeking λ̃ ∈ C and
y ∈ Cm\{0} satisfying

Hmy = λ̃y, (5.3)

where Hm = WHAV ∈ Cm×m is the Rayleigh matrix. Since we have usually m � n,
solving the eigenvalue problem (5.3) is much less expensive compared to solving the original
problem (5.1).

In the case L 6= K, projection methods are referred to as oblique projection methods,
whereas in the case L = K, they are referred to as orthogonal projection methods. General
convergence results of projection methods can be found in [86].

A very simple projection method is obtained by choosing

L = K = span{Akv}

for an integer k ≥ 0. The resulting procedure is known as power method and given in
Algorithm 5.1, see e.g. [49]. At each iteration k, the eigenvalue problem is projected
onto the one-dimensional subspace spanned by Akv0. Under very mild conditions the
sequence αk converges to the largest eigenvalue in modulus λ1 of A and the sequence vk
to the corresponding eigenvector. This holds, if λ1 is dominant (i.e. there is one and only
one eigenvalue of largest modulus) and semi-simple, and if v0 has a component of the
eigenvector associated with this eigenvalue, see [86]. The convergence rate is dictated by
the quotient |λ2|/|λ1|, where λ2 is the second largest eigenvalue in modulus.

More sophisticated projection methods can be derived by employing Krylov subspaces
which are defined by

Km = Km(A, v) = span{v,Av,A2v, . . . , Am−1v}

for a given v ∈ Cn. Krylov subspaces have desirable properties in the context of projection
methods, see e.g. [86, 87]. For instance, if we choose both L and K to be the Krylov
subspace Km(A, v), the projected matrix Hm is an upper Hessenberg matrix, i.e. it has
zero entries below the first subdiagonal. In this case, the resulting projection method is
known as Arnoldi method. If we further assume A to be Hermitian, i.e. AH = A, the
Rayleigh matrices Hm are tridiagonal. Then the Arnoldi algorithm simplifies to the so-
called Lanczos method.

To speed up convergence one may employ preconditioning techniques. The conver-
gence properties of the Arnoldi method are directly linked to the separation properties of
the eigenvalues, see [86]. A better separation of the desired eigenvalue leads to a faster
convergence. Therefore, one may reformulate (5.1) to an eigenvalue problem with better
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Algorithm 5.2 Block version of Davidson method.
1: function Davidson(A,m, l)
2: Choose an initial orthonormal matrix V1 = [v1, . . . , vl];
3: for k = 1, 2, . . . do
4: Compute the Rayleigh matrix Hk = V H

k AVk;
5: Compute the l desired eigenpairs (λ̃k,i, yk,i)1≤i≤l of Hk;
6: Compute the Ritz vectors ũk,i = Vk yk,i for i = 1, . . . , l;
7: Compute the residuals rk,i = Aũk,i − λ̃k,iũk,i for i = 1, . . . , l;
8: if convergence then exit;
9: Compute new directions tk,i = Ck,i rk,i for i = 1, . . . , l;

10: if dim(Vk) ≤ m then
11: Vk+1 = MGS(Vk, tk,1, . . . , tk,l);
12: else
13: Vk+1 = MGS(ũk,1, . . . , ũk,l, tk,1, . . . , tk,l);
14: end if
15: end for
16: end function

separation properties. For instance, one may transform (5.1) to (A− σI)−1x = µx, where
µ is close to the desired eigenvalue λ. The eigenvectors of A and (A− σI)−1 are identical
and the eigenvalues λ of A can be recovered by the identity µ = (λ − σ)−1. This is the
concept of the shift-and-invert Arnoldi method.

A more general approach is chosen in the method of Davidson. It is based on a precon-
ditioned version of the Arnoldi method, but in order to gain more flexibility it allows the
preconditioning to vary at each iteration. Note that in this case the Rayleigh matrices Hm

may become dense.
A block version of the Davidson method to compute l desired (for instance the smallest)

eigenvalues λi of a matrix A is given in Algorithm 5.2, see [30, 86]. The integer m refers
to the restart parameter and determines the maximum size of the basis Vj from which the
eigenvectors are built. At each iteration k, we compute the Rayleigh projection Hk of the
matrix A. Then, in step 5, the projected eigenvalue problem is solved. This problem is of
maximum size m + l and one can apply for instance the QR algorithm to determine the
desired eigenvalues and the corresponding eigenvectors, see e.g. [49]. In step 11 (and step 13
respectively) new directions tj,i = Cj,i rj,i are incorporated in the basis Vj . We choose the
preconditioning matrices Cj,i to be of the form M−1

i , where Mi is an approximation of
(A − λiI). In this context, the abbreviation MGS stands for the modified Gram-Schmidt
orthogonalization procedure.

Notice that besides some basic vector routines, only sparse matrix-vector multiplications
Av for a given vector v are needed. Since the preconditioning matrices Ck,i may vary at
each iteration k, these need not to be built actually. Instead, one may use iterative methods
in order to determine tk,i, i.e. one solves Mitk,i = rk,i in step 9 iteratively. Furthermore,
note that the Rayleigh matrices Hk can be computed only by updating the last l rows and
columns at each iteration k.

Algorithm 5.2 is valid for both symmetric and unsymmetric eigenvalue problems. The
only difference is, that in the unsymmetric case, complex eigenvalues may occur. Never-
theless, a complex arithmetic is easily avoided by splitting complex vectors into two real
vectors: one holding the real part, the other the imaginary part. In order to incorporate a
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complex vector to the basis Vj , we just append both real and imaginary part as two real
vectors. This separation is no restriction. Rather, it induces more flexibility, since with
more vectors in Vj , there are more ways to combine them.

The Davidson method can easily be extended to solve generalized eigenvalue problems

Au = λMu.

If M is symmetric positive definite, one may use an M -orthogonalization procedure in
step 11 and step 13 in Algorithm 5.2. For general M , we project both matrices A and M
and solve a generalized eigenvalue problem in step 5 (for instance with the QZ algorithm,
see [49]). In both cases, the residual computation in step 7 is replaced by rk,i = Aũk,i −
Mλ̃k,iũk,i.

Convergence results for the symmetric case can be found [30, 70, 86]. The nonsym-
metric case is examined in [69, 88]. An advancement of the Davidson method is the
so-called Jacobi-Davidson method. It adds an additional oblique projection in step 7 of
Algorithm 5.2, see [92]. However, the Jacobi-Davidson method is not proven to be better
than the Davidson method in all cases as pointed out in [72].

5.2 Computation of Pseudospectra

In this work we consider pseudospectra with respect to the spectral norm. Then, pseu-
dospectra can be determined by means of smallest singular values of shifted matrices,
cf. Section 2.3.1. More precisely, we compute the norm of the resolvent ‖(z − A)−1‖2 =
smin(z −A) for different z on a grid in the complex plane.

For large matrices, a complete singular value decomposition induces high computational
cost and high storage requirements. Therefore, different computational methods have been
developed, see [102, 103] and references therein.

The concept of the poor man’s pseudospectrum relies on the equivalent definition based
on disturbing the matrix A

σε(A) =
⋃
‖E‖<ε

σ(A+ E),

see Definition 2.2. The resulting algorithm computes spectra of the disturbed matrices
A + E for some random matrices E with ‖E‖ < ε. As we have seen in the proof of
Theorem 2.3, it is sufficient that E is of rank 1 which reduces the cost of scaling this
matrix, see [84].

Especially for smaller matrices the computation of pseudospectra can be performed by
means of spectral dichotomy methods, see [48, 64]. First, ε-spectral spots, i.e. regions in
the complex plain which contain the ε-pseudospectrum, are determined. Then, spectral
projectors associated to these regions are computed. In addition to the ε-pseudospectrum,
this method provides spectral projectors and invariant subspaces as well. However, it
entails higher computational costs and is therefore preferred for small-scaled problems.

Another approach, in particular for large matrices, is to project the matrix A onto a
subspace and compute the desired pseudospectra of the projected matrix. Let U denote a
matrix whose columns form an orthonormal basis of the subspace under consideration. If
the subspace is chosen to be invariant, it is easy to show that

σε(UHAU) ⊆ σ(A), (5.4)



5.2. Computation of Pseudospectra 55

Algorithm 5.3 Computation of a spectral portrait.
1: function Draw_portrait(A, (x1, x2), (y1, y2), nx, ny)
2: hx = x2−x1

nx−1 , hy = y2−y1
ny−1 ;

3: z = x1 + iy1;
4: for j = 1, . . . , nx do
5: for k = 1, . . . , ny do
6: Compute smin(z −A) with Algorithm 5.2;

// Start with the previous computed singular subspace
7: z = z + ihy; // Next line
8: end for
9: z = z − ihy + hx; // Next column

10: hy = −hy; // Change sweep direction along the column
11: end for
12: end function

see [103]. In [101] a projection onto Krylov subspaces is proposed. Typically, the eigenval-
ues of the projected matrix UHAU converge to the eigenvalues of A close to the boundary
of the spectrum. However, Krylov subspaces are not invariant in general and hence inclu-
sion (5.4) does not hold. Nevertheless, by appending one row to the Hessenberg matrix
UHAU one may show that the resulting pseudospectra are contained in σε(A), see [101].
In this case, the ε-pseudospectrum of a rectangular matrix is defined as the ε-curve of
‖(z −A)−1‖ with (z −A)−1 denoting the pseudoinverse of (z −A).

In this work we focus on the computation of pseudospectra by means of iterative sparse
eigenvalue solvers. In this context the Davidson method was successfully used, see [55, 80].

Following the definition of pseudospectra introduced in Section 2.3.1, we define the
spectral portrait of a matrix A by the plot of the map

z 7→ sp(A)(z) = log10

[
‖(z −A)−1‖2

]
= − log10 [smin(z −A)] ,

where smin(z −A) denotes the smallest singular value of z −A.
The computation of a spectral portrait of a matrix A is outlined in Algorithm 5.3.

Please note that here i refers to the imaginary unit. First, we define a grid in the domain
of interest in the complex plane. The grids we consider are given in a rectangular domain
[x1, x2] × [y1, y2] with nx × ny points (nx in the horizontal, ny in the vertical). Then,
for any grid point z we compute smin(z − A) =

[
λmin

(
(z −A)H(z −A)

)]1/2 by means of
the Davidson method. For two neighboring grid points z1 and z2, we expect the matrices
(z1 −A) and (z2 −A) to have close singular values and close singular vectors. To improve
performance, we start the Davidson algorithm using the singular subspace computed in
the last step as initial guess, see line 6 in Algorithm 5.3. Note that we do not need to
compute (z−A)H(z−A) explicitly. Only matrix vector products of the form Av and AHv
for a given vector v are needed. Moreover, if the matrix A is real, the spectral portrait of
A is clearly symmetric with respect to the real axis.

In hydrodynamic stability we are mainly interested in the spectral portrait around the
origin. Since we expect the eigenvalues of A to be in this region, the smallest singular value
of z − A is likely close to zero. Therefore, we choose all the preconditioning matrices Ck,i
in the Davidson method to be of the form M−1, where M is a approximation of AHA. It
is easy to choose M to be positive definite which is a desired property in the convergence



56 EIGENVALUE SOLVERS AND PARALLELIZATION

statements of the Davidson method, see [23, 80].
For a matrix pencil (A,M), we define the spectral portrait as

z 7→ gsp(A,M)(z) = log10

[
‖(zM −A)−1‖2

]
= − log10 [smin(zM −A)] ,

cf. Section 2.3.4. In this case, the computation of a spectral portrait is given by Algo-
rithm 5.3, where we have only to replace line 6 by applying the Davidson method on
(zM −A).

5.3 Parallelization

The problems we have to cope with are usually of high order (∼ 105−107) and consequently
entail high computational costs. To solve these kind of problems in reasonable time,
parallelization techniques are virtually mandatory.

In this section we treat parallelization schemes on platforms with distributed memory.
Since the most time consuming part in iterative solvers is the sparse matrix vector multi-
plication, we focus on this issue. We also show how this can be combined with a second
level of parallelism in order to manage the very expensive computation of pseudospectra.

5.3.1 Sparse Matrix Vector Multiplication for Finite Element Methods

In our framework assembled matrices and vectors are distributed row-wise over the pro-
cesses according to the distribution of the degrees of freedom (DoF) from the finite element
approach. Each local sub-matrix is divided into two blocks: a diagonal block representing
all couplings and interactions within the subdomain, and an off-diagonal block representing
the couplings across subdomain interfaces.

In Figure 5.1 we find a domain partitioning into four subdomains. In order to determine
the structure of the global system matrices, first, each subdomain has to be associated with
a single process. Then, each process not only detects couplings within its own subdomain,
but also couplings to the so-called ghost DoF, i.e. neighboring DoF which are owned by a
different process. In terms of a global system matrix, DoF i and j interact if the matrix
has a non-zero element in row i and column j.

The distributed sparse matrix vector multiplication is given in Algorithm 5.4. While
every process is computing its local contribution of the matrix vector multiplication, an
asynchronous communication for exchanging the ghost values is initiated. After this com-
munication phase has been completed, the local contributions from the coupled ghost DoF
are added accordingly, see [6, 58].

For the computation of pseudospectra, we need multiplications of a transposed matrix
with vectors as well. However, using a row-wise distribution results in an all to all commu-
nication of the vector to be multiplied, see [55]. Thus, in order to reduce communication,
we store the matrix twice: once with a row-wise distribution and once with a column-wise
distribution.

5.3.2 Parallel Computation of Pseudospectra

For different grid points z, the computation of singular values of z − A can be per-
formed completely independently which allows an easy way to parallelize the evaluations
of ‖(z −A)−1‖2. However, this implies that a copy of the matrix A is available to each



5.3. Parallelization 57

P0

P1

P2

P3

Figure 5.1: Domain partitioning: DoF of process P0 are marked in green (interior DoF in
diagonal block); the remaining DoF represent inter-process couplings for process P0 (ghost
DoF in off-diagonal block).

Algorithm 5.4 Distributed matrix vector multiplication.
function distr_mvmult(A, x, y)

Start asynchronous communication:
Exchange ghost values;
yint = Adiag xint;
Synchronize communication;
yint = yint +Aoffdiag xghost;

end function
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•
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•
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 P1 P2 P3
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•
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Figure 5.2: Distributed matrix vector multiplication.
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process. In order to avoid high storage costs in the case of large matrices, we utilize a
parallel linear algebra as well.

We use an approach which is referred to as hybrid parallelism. Therefore, we partition
the domain of grid points in C into k subdomains of the same size. Then p processes are
mapped to each of these subdomain of grid points building k groups, provided that we have
k × p processes available. Within each group the system matrices and vectors are spread
among the processes in order to perform a parallel computation of the smallest singular
vector, see Figure 5.3.

Ω1 Ω2

Ω0 Ω3

Ω

Re

Im

N HN HN H
N HN HN H
N HN HN H
N HN HN H
N HN HN H
N HN HN H
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N HN HN H
N HN HN H
N HN HN H
N HN HN H

G0 N G1 H G2

Figure 5.3: The left figure shows a decomposition of the physical domain Ω into four
subdomains (p = 4). The right one depicts the distribution of grid points in [x1, x2] ×
[y1, y2] ⊂ C among three groups Gi (k = 3).



Chapter 6

Pseudospectra for Applications in
Hydrodynamic Stability

The succeeding numerical computations of spectral portraits were carried out with the
predecessor of the finite element software HiFlow3, see [1, 6]. In the two-dimensional
case we have used the parallel direct sparse linear solver MUMPS as a preconditioner for
the Davidson method. This solver is based on a multifrontal method, see [5]. Although
this method may not be the best choice in terms of scalability, we have achieved the
best performance results for two-dimensional problems. For three-dimensional problems,
iterative solvers, such as the CG method, have been turned out to be successful as well.
The parallel linear algebra employed in this work was implemented by means of the library
PETSc, see [10, 11, 12].

The numerical benchmarks were performed on the HP XC3000 cluster at the Steinbuch
Centre for Computing (SCC), Karlsruhe, Germany. Each of the cores on the CPUs (Quad-
core Intel Xeon processors) runs at a clock speed of 2.53 GHz.

6.1 Incompressible Flow over a Backward Facing Step

We consider a stationary incompressible fluid flow over a backward facing step as depicted
in Figure 6.1. This set up is originated from a well-known optimization problem where the
vortex behind the step is to be reduced, see e.g. [27]. The fluid flow in the domain Ω is
governed by the steady-state Navier-Stokes equations

− 1
Re

∆v + (v · ∇) v +∇p = 0,

∇ · v = 0,
(6.1)

where we have set ρ = 1. Here Re = V L/ν denotes the Reynolds number with char-
acteristic velocity V and characteristic length L. As an inflow boundary condition we
set

v = vin on Γin,

where vin has a parabolic profile. On Γrigid we impose no-slip boundary conditions, i.e.

v = 0 on Γrigid.
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Figure 6.1: Geometry of the backward facing step benchmark.

Figure 6.2: Stationary flow in the two-dimensional backward facing step geometry with
Re = 100 (upper) and Re = 500 (lower).

Furthermore, we prescribe free-stream outflow conditions (or do-nothing conditions)

1
Re

∂nv − pn = 0 on Γout,

where n refers to the outward unit normal.
In our numerical examples we have chosen V to be the maximum velocity of the

parabolic inflow vin, and L to be the gap height. Stationary solutions for Re = 100
and Re = 500 of the two-dimensional problem are plotted in Figure 6.2.

We start with the variational formulation of the steady problem. We set

H(Ω) = {v ∈ (H1(Ω))d : v = 0 on Γin ∪ Γrigid}

for d = 2 or d = 3. Moreover, let vextin ∈ (H1(Ω))d be a solenoidal extension of the inflow
vin such that vextin = 0 on Γrigid, see e.g. [47]. Then, the weak formulation seeks for pairs
(V, P ) ∈ H(Ω)× L2(Ω) + {vextin , 0} such that

1
Re

(∇V,∇ϕ)0 + ((V · ∇)V,ϕ)0 − (P,∇ ·ϕ)0 + (∇ ·V, ψ) = 0

holds for any (ϕ, ψ) ∈ H(Ω) × L2(Ω). We solve this equation numerically with a con-
forming Galerkin finite element method by replacing the spaces H(Ω) and L2(Ω) by finite-
dimensional subspaces Hh and Lh. Hence, we have to find {Vh, Ph} ∈ Hh×Lh+{vextin, h, 0}
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satisfying

1
Re

(∇Vh,∇ϕh)0 + ((Vh · ∇)Vh,ϕh)0 − (Ph,∇ ·ϕh)0 + (∇ ·Vh, ψh) = 0 (6.2)

for any (ϕ, ψ) ∈ Hh×Lh ⊂ H(Ω)×L2(Ω). Here vextin, h is an adequate boundary interpolant
of vextin , see [91].

We choose a triangulation Th of Ω consisting of quadrilaterals (for d = 2) or hexahedrons
(for d = 3) such that the obtained mesh is affine, i.e. each K ∈ Th is affine equivalent to
the reference element K̂ := (0, 1)d. This means for any K ∈ Th there exists an affine and
orientation preserving mapping FK such that K = FK(K̂), see e.g. [41].

We consider so-called Qk finite elements which consist of continuous, piecewise polyno-
mial functions of degree k, see e.g. [41]. Let

Qk(K̂) = span{xiyj : 0 ≤ i, j ≤ k}, for d = 2,

Qk(K̂) = span{xiyjzl : 0 ≤ i, j, l ≤ k}, for d = 3,

be the polynomials up to the order k on the reference cell K̂. Then, the vector space of
Qk elements is given by

Xk
h := {uh ∈ C(Ω) : uh|K ◦ FK ∈ Qk(K̂) for any K ∈ Th}.

In our numerical experiments we have chosen Q2 elements for the velocity and Q1

elements for the pressure, i.e. Hh = {vh ∈ (X2
h)d : vh = 0 on Γin ∪ Γrigid} and Lh = X1

h,
in order to satisfy the inf-sup-condition

inf
ψ∈Lh

sup
ϕ∈Hh

|(∇ ·ϕ, ψ)0|
‖ϕ‖H1(Ω)‖ψ‖L2(Ω)

> 0.

For pairs uh = {vh, ph} and ξh = {ϕh, ψh} ∈ Hh × Lh we define the sesquilinear forms

a(uh, ξh) =
1
Re

(∇vh,∇ϕh)0 + ((vh · ∇)Vh,ϕh)0 + ((Vh · ∇)vh,ϕh)0

− (ph,∇ ·ϕh)0 + (∇ · vh, ψh)0,

m(uh, ξh) = (vh,ϕh)0,

where we have derived a(·, ·) just by linearization of (6.2) around a steady solution {Vh, Ph}
as described in Section 2.2. Let ξih (i = 1, . . . , n) be a basis of the finite-dimensional space
Hh × Lh. We denote by Ah the stiffness matrix

Ah =
(
a(ξjh, ξ

i
h)
)

1≤i,j≤n
, (6.3)

and by Mh the symmetric positive semidefinite mass matrix

Mh =
(
m(ξjh, ξ

i
h)
)

1≤i,j≤n
. (6.4)

The smallest singular values ςh are determined by finding the smallest eigenvalues ς2
h and
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Algorithm 6.1 Solution procedure in HiFlow.
1: Read initial mesh and perform h-refinement;
2: Define FEM on the cells (e.g. Q1 or Q2);
3: Solve (6.2) by means of a Newton method;
4: Assemble Ah and Mh;
5: for µ on a grid in C do
6: Compute smallest singular value ςh by means of (6.5) with the Davidson method;
7: end for
8: Plot spectral portrait;

the corresponding eigenvectors xh of

(µMh −Ah)H(µMh −Ah)xh = ς2
h MH

h Mhxh, (6.5)

for some µ on a grid in the complex plane. The complete solution procedure is outlined in
Algorithm 6.1.

Spectral portraits of the two-dimensional problem are plotted in Figure 6.3 with the
Reynolds number ranging from 100 to 500 as indicated. Here, we computed singular values
for 4,488 grid points in the complex domain [−0.6, 0.2] × [0, 0.4] ⊂ C and exploited the
symmetry along the real axis. The 259,971 unknowns were distributed among 4 cores and
the computation time for each of the depicted spectral portraits took around 110 − 135
minutes on 4×8 cores on the HP XC3000 cluster described above. For increasing Reynolds
numbers the pseudospectra protrude more and more into the right half of the complex plane
which may indicate instability.

In order to test strong scalability of our computations we have set up a two-dimensional
benchmark problem choosing Re = 100. This benchmark consists of the computation of
672 singular values on a grid in [−0.4, 0.2] × [0, 0.4] ⊂ C. The 259, 971 unknowns were
distributed among 2i, i = 2, . . . , 8 cores exploiting the hybrid parallelism as described in
Section 5.3.2. In Table 6.1 the results in terms of strong scalability using one group are
given. In Table 6.2 we find the corresponding results in case of two groups. By distributing
the unknowns over 4 processes, we have obtained the best performance, see Table 6.3.
Here, we spread the grid points, divided in vertical stripes, equally among each group as
in Figure 5.3. Altough this seems to be a quite simple load balancing technique, we have
achieved a significant improvement, see Figure 6.4.

Solutions of the steady flow in the three-dimensional case for Re = 100 and Re = 500
are plotted in Figure 6.5. As in the two-dimensional case, the vortex behind the backward
facing step enlarges as the Reynolds number increases. This tendency to instability is
reflected by the pseudospectra, which are protruding more and more into the right half
of the complex plane, see Figure 6.7. Here, the discretization of the problem yielded
143,484 unknowns, which were spread among 8 cores. We have chosen the same setup
as in the two-dimensional case, i.e. we plotted singular values for 4,488 grid points in
[−0.6, 0.2]× [0, 0.4] ⊂ C.

The estimate (2.30) in Theorem 2.13 states a minimum growth factor for the evolu-
tion of the perturbed quantity by means of pseudospectra: For any a = Re z > 0 and
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(a) Re = 100

(b) Re = 200 (c) Re = 300

(d) Re = 400 (e) Re = 500

Figure 6.3: Spectral portraits in the domain [−0.6, 0.2]× [−0.4, 0.4] of the two-dimensional
problem for different Reynolds numbers with contour plots for {−7,−6, ...,−1}.
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group size number cores time (s) speedup efficiency
4 4 6653 1. 1.
8 8 5185 1.28 0.64
16 16 4266 1.56 0.39
32 32 2889 2.30 0.29
64 64 2788 2.39 0.15

Table 6.1: Scalability test using one group.

group size number cores time (s) speedup efficiency
4 8 4313 1. 1.
8 16 3162 1.36 0.68
16 32 2513 1.72 0.43
32 64 1705 2.53 0.32
64 128 1628 2.65 0.17

Table 6.2: Scalability test using two groups.

number cores time (s) speedup efficiency
4 6653 1. 1.
8 4313 1.54 0.77
16 2447 2.72 0.68
32 1301 5.11 0.64
64 691 9.63 0.60
128 358 18.57 0.58
256 177 37.50 0.59

Table 6.3: Scalability test with group size four.
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Figure 6.4: Running times for different group setups.
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Figure 6.5: Stationary flow in the three-dimensional backward facing step geometry with
Re = 100 (upper) and Re = 500 (lower).
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Figure 6.6: Plot of lower bound (6.6) with respect to the three-dimensional problem with
Reynolds numbers ranging from 100 to 500 as indicated.
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(a) Re = 100

(b) Re = 200 (c) Re = 300

(d) Re = 400 (e) Re = 500

Figure 6.7: Spectral portraits in the domain [−0.6, 0.2]×[−0.4, 0.4] of the three-dimensional
problem for different Reynolds numbers with contour plots for {−7,−6, ...,−1}.
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L = a ‖(z −A)−1‖ we have

sup
0<t≤τ

‖etA‖ ≥ eτa
/(

1 +
eτa − 1
L

)
. (6.6)

For the three-dimensional problem we have plotted this bound in Figure 6.6, where we have
chosen a within the complex domain shown in Figure 6.7 such that L attains its maximum
value. The plot shows that for increasing Reynolds numbers, the lower bound increases
as well. This coincides with the observation that a steady flow tends to instability for
increasing Reynolds numbers.

6.2 Natural Convection in a Horizontal Annulus

In this section we consider natural convective flows of Newtonian fluids in an infinitely long
gap between two horizontal coaxial cylinders. This physical process appears in a variety of
applications, such as designing energy storage systems, cooling of electronic components,
or modeling aircraft cabin insulations.

We denote the radius of the inner cylinder by Ri, and by Ro the radius of the outer
cylinder (thus 0 < Ri < R0). Moreover, we prescribe constant surface temperatures Ti
on the inner and To on the outer jacket with To < Ti. Modeling this system with the
Oberbeck-Boussinseq equations (2.8), the flow pattern is characterized by three dimen-
sionless quantities. We have the geometric parameter

A =
2Ri

Ro −Ri

which is known as inverse relative gap width. Moreover, Ra denotes the Rayleigh number
defined by

Ra =
αg

νκ
(Ti − To)(Ro −Ri)3,

with the volumetric expansion coefficient α, gravity acceleration g, kinematic viscosity ν,
and thermal diffusity κ. Finally, the Prandtl number is given by

Pr =
ν

κ
.

Depending on these characteristics, the problem is very complex and allows very different
possible behavior of the flow. Up to now, it was mostly investigated by numerical exper-
iments, see e.g. [118, 119] and references therein, but there exist some theoretical results
as well, see [77, 78] and references therein.

Despite the fact that spiral flows may occur, we confine ourselves to a two-dimensional
model, which is physically reasonable for low Rayleigh numbers as pointed out in [39].
Hence, the domain under consideration is given by

Ω = {(r, ϕ) : Ri < r < Ro , 0 ≤ ϕ < 2π},

see Figure 6.8.
As described in [117], if the Rayleigh number exceeds a critical value, two steady solu-

tions are observed: The downward flow consists of two counter rotating vortices in each
half of the annulus, whereas the upward flow has a crescent shaped eddy on each side, see
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Figure 6.9.

The governing steady-state Oberbeck-Boussinseq equations read

−ν∆v + (v · ∇) v +
1
ρ
∇p = g [1 + α(T0 − T )] ,

∇ · v = 0,
∂tT + v · ∇T − κ∆T = 0,

see Section 2.1.6. We impose no-slip boundary conditions for the velocity, i.e.

v = 0 on ∂Ω.

Moreover, we set Ti = 1 and To = 0 which results in the following boundary conditions for
the temperature:

T (x) = 1 for ‖x‖2 = Ri,

T (x) = 0 for ‖x‖2 = Ro.

For the discretization we choose Q2 elements for the velocity and temperature and Q1

elements for the pressure. Thus, with the notations Hh = {vh ∈ (X2
h)2 : vh = 0 on ∂Ω},

Lh = {ph ∈ X1
h :

∫
Ω ph = 0} and Wh = {Th ∈ X2

h : Th = 0 on ∂Ω} and an appro-
priate boundary interpolant T exti,h of the imposed temperature on the inlet, we seek for
(Vh, Ph, τh) ∈ Hh × Lh ×Wh + {0, 0, T exti,h } such that

ν(∇Vh,∇ϕh)0 + ((Vh · ∇)Vh,ϕh)0 − (Ph,∇ ·ϕh)0 + gα(τh,ϕh)0

+ (∇ ·Vh, ψh)0

+ (Vh · ∇τh, ζ)0 + κ(∇τh,∇ζh)0

= αTo(g,ϕh)0

(6.7)

holds for any (ϕh, ψh, ζh) ∈ Hh × Lh × Wh. For brevity, we have set ρ = 1. By lin-
earization around a steady solution as in the preceding Section 6.1, we obtain for triples
uh = {vh, ph, Th} and ξh = {ϕh, ψh, ζh} ∈ (X2

h)2 ×X1
h ×X2

h the sesquilinear form

a(uh, ξh) = ν(∇vh,∇ϕh)0 + ((vh · ∇)Vh,ϕh)0 + ((Vh · ∇)vh,ϕh)0

− (ph,∇ ·ϕh)0 + gα(Th,ϕh)0 + (∇ · vh, ψh)0

+ (vh · ∇τh, ζh)0 + (Vh · ∇Th, ζh)0 + κ(∇Th,∇ζh)0.

Moreover, we define
m(uh, ξh) = (vh,ϕh)0 + (Th, ζh)0.

Then, using the definitions for the stiffness matrix and the mass matrix as in (6.3) and
(6.4), we obtain the same formulation as before: We seek the smallest eigenvalue ς2 of the
generalized eigenvalue problem

(µMh −Ah)H(µMh −Ah)xh = ς2
h MH

h Mhxh.

Spectral portraits with respect to the steady solutions depicted in Figure 6.9 are plotted
in Figure 6.10, where we have set A = 2, Pr = 0.7, Ra = 5,000. For each of these plots we
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Figure 6.8: Two-dimensional model of the flow region.

Figure 6.9: Streamlines and temperature distribution of the downward flow (left) and
upward flow (right) for A = 2, Pr = 0.7, Ra = 5,000.

Figure 6.10: Spectral portraits of the downward flow (left) and the upward flow (right) in
the domain [−0.4, 0.2]× [−0.4, 0.4] with contour plots for {−4,−3.5, . . . ,−1}.
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have chosen a discretization resulting in 429,568 unknowns and evaluated 2,624 singular
values exploiting the symmetry along the real axis.

The pseudospectra of the downward flow are protruding more into the right half of
the complex plane than the pseudospectra of the upward flow, which may indicate the
downward flow to be closer to instability than the upward flow. However, as for the
Bénard problem, if two steady solutions are realized, it is expected the upward flow to
be instable and the downward flow to be stable. If the Reynolds number is increased any
further, the downward flow is observed to become instable as well.



Chapter 7

Applications in Nuclear Reactor
Theory

Up to now, the power method (cf. Algorithm 5.1) has been the method of choice for solving
the k eigenvalue criticality problem (3.4) in reactor applications, see [66]. In order to find
a better alternative to this rather basic method, several ways have been investigated:
The employment of the implicit restarted Arnoldi method is examined in [22, 111, 112].
The Jacobi-Davidson method in this context is discussed in [52, 110], and, more recently,
the application of the Jacobian-free Newton-Krylov method is examined in [45, 46, 60].
These techniques have been applied to the diffusion equation (i.e. P1 approximation for
the spherical dependence) or to the discrete ordinate transport approximation (i.e. SN
approximation) so far.

In this chapter the Davidson method (cf. Algorithm 5.2) is compared to the traditional
power method in the framework of the PN approximation. The numerical evaluations
are performed within the framework of the software Parafish, see [107]. This parallel
solver is based on a non-overlapping domain-decomposition (DD) technique. It uses the
multigroup approach for the energy discretization, non-conforming finite elements for the
spatial discretization, and spherical harmonics for the angular discretization as described
in Section 4.2.

The order of discretization in Parafish is as follows: first the energy, then the space, and
finally the angle. At the energy level, we use a block version of the Gauss-Seidel method
given the block wise representation of the multigroup discretization, see Section 4.2.1. If
no upscattering is present, i.e. σg

′→g
s ≡ 0 for g < g′, block triangularity is fully achieved

and only one Gauss-Seidel iteration is sufficient.
At the spatio-angular level, domain-decomposition is applied yielding an interior block

shape such that each interior diagonal block is symmetric and corresponds to one domain,
see Section 4.2.2. Therefore, these diagonal blocks can be treated independently by dif-
ferent processes. At this spatio-angular level, we apply a block-diagonally preconditioned
version of the GMRES method by factorizing each interior diagonal block by an incom-
plete LU (ILU) factorization. The ILU decomposition was implemented by means of the
libraries SparseLib++ [36] and SuperLU [33]. The different iterations loops of Parafish are
schematically displayed in Figure 7.1.

Moreover, Parafish is designed in such a way that one process can handle more than one
domain. In this way, one can take full advantage of the flexibility of the resulting precondi-
tioning without increasing the number of processes. Furthermore, Parafish allows the user
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Figure 7.1: Parafish calculation scheme, see [107].

to use different factorization methods in different domains. Note that the parallelization
scheme used in Parafish differs from the one presented in Section 5.3. The interface nodes
are duplicated among neighboring domains, see [107].

7.1 The Takeda 1 Benchmark

The three-dimensional Takeda 1 benchmark [100] consists of a small light water reactor
(LWR) core of cubic shape as depicted in Figure 7.2. All units of length are given in cm.
This corresponds to the simplified model of a reactor as shown in Figure 3.1 with one core
and two control rods, and assuming symmetry along the planes x = 0, y = 0 and z = 0
(if we set the origin in the center of the reactor). The Takeda 1 benchmark considers only
one octant of the reactor describing the remaining ones by reflecting boundary conditions.
Hence, it prescribes reflective boundary conditions for x = 0, y = 0 and z = 0. On the
outer frame, i.e. for x = 25, y = 25 and z = 25, we impose vacuum boundary conditions.
Furthermore, we have two energy groups, where no upscattering is present, i.e. σ2→1

s ≡ 0.
The corresponding cross section values can be found in [100].

In the geometry three different zones are to be found: the core zone, the moderator
zone and the guide tube zone. We consider both instances of this benchmark:

• Case 1: The control rod is in the guide tube zone.

• Case 2: The control rod is out of the core, i.e. the guide tube zone is voided.

For the angular discretization we use the PN method, with N ranging from 3 to 7 as
indicated. The spatial dependence is discretized by means of a 25 × 25 × 25 mesh with
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Figure 7.2: Geometry of the 3D Takeda 1 benchmark. Zone 1 = core, zone 2 = moderator,
zone 3 = guide tube.

hexahedral NC6 elements. This element is a three-dimensional generalization of the two-
dimensional rotated Q1 element, see [83]. Its capability to accurately solve the Takeda 1
benchmark has been assessed previously in [106]. The finite element nodes are distributed
among 5 × 5 × 5 domains, with domain interfaces parallel to the cube faces. Note that
this domain decomposition implies the guide tube zone to be entirely comprised within
one single domain.

In case 1 of the benchmark, we have optimized our computational time by applying an
ILU(0) factorization in all domains as a preconditioner for the GMRES method. In case 2,
we have achieved the best results by applying a variant of an ILUTP (incomplete LU
factorization with threshold and pivoting) method as described in [67] in the voided guide
tube zone and an ILU(0) decomposition in all remaining domains. The results we obtained
in [96, 97] are given in the Tables 7.1, 7.2 and 7.3. These computations were performed
on the HP XC3000 cluster as described in Chapter 6. Please note that we listed only the
times for solving the eigenvalue problem including the time for the ILU decomposition.
We excluded the time for assembling the matrices.

For case 1, we obtained for the P3 (P5 and P7) approximation the critical eigenvalue
keff = 0.96122 (0.96222 and 0.96241 respectively) which agrees decently with the reference
values of [99], e.g. keff = 0.9623 ± 0.00048 with the Monte-Carlo method. Satisfying
results have also been achieved in case 2, where our numerical experiments yielded for the
P3 (P5 and P7) approximation the critical eigenvalue keff = 0.97247 (0.97553 and 0.97633
respectively) which is comparable with the reference value 0.9778± 0.00046 obtained with
the Monte-Carlo method in [99].

The computation of the critical eigenvalue and the corresponding eigenfunction using
the Davidson method consumes roughly half of the time which is needed by applying the
power method to gain comparable results. No improvement to the power method results
could be made by utilizing a Chebyshev acceleration. According to the number of outer
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Case 1: rod in

Davidson Method Power Method
Number Cores Time (s) Speedup Efficiency Time (s) Speedup Efficiency

1 21.8 1. 1. 41.0 1. 1.
5 5.6 3.88 0.78 11.2 3.66 0.73
25 1.6 14.03 0.56 3.1 13.14 0.53
125 1.1 20.02 0.16 1.2 33.20 0.27

Case 2: rod out

Davidson Method Power Method
Number Cores Time (s) Speedup Efficiency Time (s) Speedup Efficiency

1 32.7 1. 1. 58.0 1. 1.
5 8.4 3.9 0.78 15.4 3.8 0.75
25 3.3 9.8 0.39 5.8 10.0 0.40
125 2.2 15.1 0.12 3.6 16.0 0.13

Table 7.1: Results with P3 approximation (675,000 unknowns).

Case 1: rod in

Davidson Method Power Method
Number Cores Time (s) Speedup Efficiency Time (s) Speedup Efficiency

1 98.5 1. 1. 182.8 1. 1.
5 24.1 4.08 0.82 46.67 3.92 0.78
25 6.9 14.23 0.57 12.1 15.10 0.60
125 2.4 41.25 0.33 4.0 45.53 0.36

Case 2: rod out

Davidson Method Power Method
Number Cores Time (s) Speedup Efficiency Time (s) Speedup Efficiency

1 152.7 1. 1. 307.2 1. 1.
5 38.2 4.1 0.80 78.8 3.9 0.78
25 17.3 8.8 0.35 30.5 10.1 0.40
125 12.6 12.1 0.10 20.4 15.0 0.12

Table 7.2: Results with P5 approximation (1,687,500 unknowns).
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Case 1: rod in

Davidson Method Power Method
Number Cores Time (s) Speedup Efficiency Time (s) Speedup Efficiency

1 239.8 1. 1. 479.7 1. 1.
5 69.8 3.43 0.69 141.0 3.40 0.68
25 19.2 12.46 0.50 35.1 13.68 0.55
125 5.0 47.57 0.38 9.5 50.67 0.41

Case 2: rod out

Davidson Method Power Method
Number Cores Time (s) Speedup Efficiency Time (s) Speedup Efficiency

1 633.1 1. 1. 1117.6 1. 1.
5 161.6 3.9 0.78 268.4 4.2 0.83
25 90.7 7.0 0.28 139.0 8.0 0.32
125 77.8 8.1 0.07 112.0 10.0 0.08

Table 7.3: Results with P7 approximation (3,150,000 unknowns).

iterations, we have obtained similar results as shown in Table 7.4. With regards to the
speedup, both the Davidson and the power method show a comparable behavior. This is
quite evident since in both methods the same basic linear algebra routines are utilized.

The Davidson method appears to be a robust method to compute eigenvalues and the
corresponding eigenvectors of a generalized eigenvalue problem since the residuals of the
form Fv − λHv are computed accurately (in exact arithmetic). Moreover, the Davidson
method builds a full basis of an adequate projection space, whereas the power method
projects only onto the space spanned by the last built vector of the form (H−1F )jv. Hence,
the Davidson method keeps track of more information and therefore needs less iterations.
Both methods require solving linear systems of the form Hx = y. The Davidson method
turned out to be more robust in practice in the sense that the choice of the preconditioner
is less restrictive than in the power method. This means, solving linear systems of the form
Hx = y can be done very roughly, while the power method needs a more accurate solving
in order to converge.

Comparing the two cases of the Takeda 1 benchmark, we notice that the performance
and scalability achieved in case 2 (rod out) cannot keep up with the results obtained in case
1 (rod in). Having the rod out of the core is the tougher case because of the low-density
region appearing in the voided guide tube. As noticed before, the voided guide tube is
comprised within one domain, which implies that the corresponding workload within this
domain is larger compared to the case where the rod is in the core.

7.2 The NEA C5G7 Benchmark

In this section we consider the two-dimensional MOX fuel assembly benchmark issued by
the Nuclear Energy Agency (NEA). It uses C5 MOX fuel and 7 energy groups, hence its
“C5G7” nickname. As depicted in Figure 7.3 (again, all units of length are in cm), its
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Case 1: rod in

Davidson Method Power Method
Angular

Approximation
Number
Outers

Number
Inners

Number
Outers

Number
Inners

P3 6 217 12 549
P5 6 237 13 617
P7 5 194 14 671

Case 2: rod out

Davidson Method Power Method
Angular

Approximation
Number
Outers

Number
Inners

Number
Outers

Number
Inners

P3 7 279 12 644
P5 7 205 14 813
P7 7 334 15 918

Table 7.4: Number of outer (Davidson or power) and inner (GMRES) iterations for the
Takeda 1 benchmark.

geometry is a quarter core containing four fuel assemblies and the surrounding moderator.
Each fuel assembly is comprised of a 17 × 17 lattice of square pin cells. Each of these
pin cells is made out of a cylindrical section surrounded by moderator. These cylindrical
sections either contain a fuel-clad mix or constitute available space for the insertion of an
absorber rod. The pin cell compositions are detailed in Figure 7.4. The corresponding
cross section values can be found in [74]. Note that, unlike the Takeda 1 benchmark, the
C5G7 benchmark includes upscattering.

The Parafish model uses a finite element mesh with quadrilateral rotated Q1 elements
such that each pin cell is discretized into 14 × 14 elements. This approximation of the
cylindrical section by a Cartesian mesh was shown in [106] to be appropriate because it
preserves not only the volume ratio between the two pin components, but also the “density”
of the meshing in both these components. As for the angular discretization, we consider
here the P3 approximation.

We optimized the running times of our benchmarks by applying the ILUTP precondi-
tioner in every domain. As for the decomposition, we obtained good results using a 20×20
DD. The grouping was done such that one or several pin-cells belong to one domain, and,
within the assemblies, a domain limit is necessarily a pin-cell limit (the converse is not
true).

The resulting 400 domains were spread among 32 to 400 cores such that a decent load
balancing was obtained. This load balancing was performed semi-automatically, with some
fine-tuning done “by hand”.

The calculations for the C5G7 benchmark were run on the JuRoPA (Jülich Research
on Petaflop Architectures) supercomputer installed at the Forschungszentrum Jülich, Ger-
many. Each of the cores on the CPUs (Quad-core Intel Xeon processors) runs at a clock
speed of 2.93 GHz.

We have in [74] a k effective reference value of keff = 1.186550±0.00008 obtained by the
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Figure 7.3: Geometry of the 2D C5G7 benchmark.

Figure 7.4: Pin cells composition in the C5G7 benchmark, see [74].
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Davidson Method Power Method
Number Outers 19 37
Number Inners 3,287 14,651
Number Cores Time (s) Speedup Efficiency Time (s) Speedup Efficiency

32 161 1. 1. 528 1. 1.
64 96 1.68 0.84 325 1.62 0.81
256 30 5.41 0.68 100 5.28 0.66
400 20 8.00 0.64 72 7.38 0.59

Table 7.5: Results for the 2D C5G7 benchmark with P3 approximation (14,962,584 un-
knowns). The inner iterations refer to GMRES iterations in both cases. Speed-ups and
efficiencies are computed with respect to the 32 core case.

Monte-Carlo method. Both power and Davidson methods yield for the P3 approximation a
satisfying k effective of 1.18319 and 1.18320 respectively. The Davidson method was again
much more efficient to reach this solution, as it can be seen in Table 7.5, cf. [96].

The computing times as well as the number of iterations are drastically reduced by using
the Davidson method. Again, applying a Chebyshev acceleration to the power method
could not improve our results.



Chapter 8

Summary and Outlook

In this thesis we have considered two involved classes of applications in terms of stability.
We have illustrated that an efficient implementation exploiting parallel platforms enables
us to address more and more complex problems.

With regards to the linear stability, pseudospectra have been shown to be an encouraging
tool to facilitate the studies of nonlinear effects which may not be revealed by a traditional
linear stability analysis. We have established a theoretical background to approximate
spectral portraits of elliptic differential operators in terms of finite element methods. The
numerical examples covered in this manuscript include an incompressible fluid flow over
a backward facing step as well as a natural convection process in an annulus. For both
problems, we have illustrated that the Davidson method is capable to solve the inherent
singular value problems efficiently.

As we have seen, pseudospectra protruding considerably into the right half of the com-
plex plane may indicate a growth of perturbations. However, it still remains open to find
a more accurate interpretation of pseudospectra. We have shown that a performant com-
putation of pseudospectra on parallel platforms can be achieved. Nevertheless, a more
sophisticated load balancing to further exploit the trivial parallelism can be developed
in order to tune the scalability. For instance, one might include some dynamic assign-
ment of regions in the complex plane dependent on the workload of the process groups.
Furthermore, using parallel preconditioning techniques, such as multigrid or Schur com-
plement methods, may turn out to be valuable to precondition the inherent eigenvalue
computations.

As for the criticality problem, our numerical experiments have shown the superiority of
the Davidson method in comparison with the so far widely used power method. This is fully
comprehensible due to the fact that the Davidson method keeps track of more information
along the iterative procedure. The extra storage costs and additional computational effort
per iteration of the Davidson method are outweighted by the significant reduction of the
number of iterations. Furthermore, the Davidson method appears to be more robust than
the power method: First, the Davidson method controls the (mathematically) exact resid-
uals of the matrix pencil. Second, it needs a less accurate solving in each preconditioning
step than the power method. The power method applied to a matrix pencil may not need
an exact solving of the arising linear systems in practice as it is required in theory, but it
may not converge at all if this solving is done to roughly.

There is still potential to further tune the computation of critical eigenvalues which
might be useful in the field of neutron transport theory in general. In particular, for
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problems including large upscattering, a coupled solving on the energy level instead of
a block-wise applied Gauss-Seidel method may turn out to be valuable. Furthermore,
especially for large-scaled problems, a parallelization scheme for the energy dependence
can be introduced to improve scalability.



Appendix A

Estimates and Calculations for the
Poincaré Constant in an Annulus

In this chapter we derive a bound for the Poincaré constant in an annulus and perform
numerical evaluations which give us an insight about the quality of this bound. We apply
these results to make quantitative statements of the approximation quality of an simplified
model describing natural convection. These results are published in [54].

A.1 Bounds for the Poincaré Constant

As already seen in Section 2.2, the Poincaré constant is a very important tool to investigate
fluid flows. For instance, it is needed to prove existence of weak solutions and regularity
assumptions in the context of elliptic differential equations, see e.g. [19]. But as seen in
Section 2.2, it plays a major role in the stability theory as well.

Let Ω ⊂ Rn be bounded in at least one direction. The Poincaré constant is defined as
the smallest constant kp such that

‖u‖0 ≤ kp‖∇u‖0 (A.1)

holds for all u ∈ H1
0 (Ω). If Ω is bounded, one can show that kp = λ

−1/2
1 , where λ1 is the

smallest eigenvalue of the Laplace problem

−∆u = λu in Ω, u = 0 on ∂Ω, (A.2)

see e.g. [95]. The following two bounds we establish hold for quite general domains Ω and
can be found in [44].

Theorem A.1 If Ω ⊂ {x ∈ Rn : −d/2 < xn < d/2}, then we have

‖u‖0 ≤
d

π
‖∇u‖0

for all u ∈ H1
0 (Ω).

Proof. Since C∞0 (Ω) is dense in H1
0 (Ω), it is sufficient to show the assertion holds for all
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u ∈ C∞0 (Ω). We define the function

U(x) =
u(x)

sin[π(xn + d/2)/d]
.

Clearly, U is bounded and vanishes at −d/2 and d/2. We have
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Integrating the second term by parts yields
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Therefore, we have
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Since

sin−2 x− cot2 x =
1 + cos2 x

sin2 x
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1 + 1− sin2 x
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sin2 x

− 1 ≥ 1,

we obtain ∫ d/2

−d/2
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π2
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∂xn

)2

dxn.

Let Hn−1 denote the (n − 1)-dimensional hyperplane of the first n − 1 dimensions, i.e.
Hn−1 = span{x1, x2, . . . , xn−1}. Then, we have

‖u‖20 =
∫
Hn−1
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which completes the proof. 2
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Theorem A.2 Let Ω ⊂ {x ∈ Rn : −d/2 < xi < d/2, i = 1, . . . , n}, then

‖u‖0 ≤
d

π
√
n
‖∇u‖0 (A.3)

for any u ∈ H1
0 (Ω).

Proof. Again, it is enough to show the theorem for any u ∈ C∞0 (Ω). From the proof of the
last theorem we know that∫ d/2

−d/2
u2 dxn ≤
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∫ d/2
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(
∂u

∂xi

)2

dxi

holds for any i = 1, . . . , n. Denoting the (n− 1)-dimensional hyperplane of the dimensions
(1, . . . , i− 1, i+ 1, . . . , n) by Hn−1

i , we deduce
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which completes the proof. 2

From the last theorem, we obtain in terms of the annulus ΩA = {(r, ϕ) : A/2 < r <
1 +A/2 , 0 ≤ ϕ < 2π} the estimate

kp ≤
√

2
π

(
1 +
A
2

)
. (A.4)

This bound is only useful for small A because the gap width is not taken into account. If
we combine (A.4) with the bound derived in [42], we obtain

kp ≤ min

{
1
2

√
1 +

2
A
,

√
2
π

(
1 +
A
2

)}
. (A.5)

Theorem A.3 If Ω = {(r, ϕ) : Ri < r < Ro , 0 ≤ ϕ < 2π}, then for the Poincaré constant
kp we have the bound

kp ≤
√
Ro
Ri

Ro −Ri
π

.
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Proof. Introducing polar coordinates we obtain

k2
p = max

w∈H1
0 (Ω)

∫
Ω |w|

2 d(x, y)∫
Ω∇w · ∇w d(x, y)

= max
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0 (Ω)

∫
Ω r |w̃|

2 d(r, ϕ)∫
Ω r
(

(∂rw̃)2 + r−2 (∂ϕw̃)2
)
d(r, ϕ)

, (A.6)

where w̃(r, ϕ) = w(x, y). From [71, Proposition 1.1] we know that the argument for which
(A.6) attains its maximum value is a radial function ũ1 = ũ1(r). Hence, there holds

k2
p =

∫ R0

Ri
r |ũ1(r)|2 dr∫ R0

Ri
r |ũ′1(r)|2 dr

.

Note that ũ1 is the eigenfunction associated to the smallest eigenvalue of the Laplace
problem (A.2). Further, we know from the one-dimensional Laplace eigenvalue problem
that (

Ro −Ri
π

)2

= max
w̃∈H1

0 (Ri,Ro)

∫ R0

Ri
|w̃(r)|2 dr∫ R0

Ri
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,

which in combination with (A.1) implies
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|ũ′1(r)|2 dr
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π

)2

.

2

By virtue of Theorem A.3 we already obtain a new bound for the Poincaré constant with
respect to ΩA, namely

kp ≤
1
π

√
1 +

2
A
.

Together with (A.4) we have

kp ≤ min

{
1
π

√
1 +

2
A
,

√
2
π

(
1 +
A
2

)}
. (A.7)

A.2 Evaluation of the Poincaré Constant

In order to perform an efficient evaluation of the Poincaré constant, we want to exploit its
one-dimensional character. Therefore, we transform the eigenvalue problem (A.2) to polar
coordinates and use the result of [71] that all eigenfunctions associated to the smallest
eigenvalue are radial. Hence, we have that kp = λ

−1/2
1 , where λ1 is the smallest eigenvalue

of the one-dimensional problem

−ũ′′ − 1
r
ũ′ = λũ in (Ri, Ro), ũ(Ri) = ũ(Ro) = 0.

The subsequent computations were performed in the framework of the finite element soft-
ware HiFlow, see [1]. First, the problem was discretized by means of a finite difference
scheme of second order. Then, the algebraic eigenvalue problem was solved by means of
the Davidson method, see Section 5.1. The numerical results as well the bounds (A.5) and



A.3. Application in Natural Convection 85

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.0001  0.001  0.01  0.1  1  10  100  1000  10000

A

bound (A.5)
bound (A.7)

computed values

Figure A.1: Evaluation of Poincaré constants with respect to A.

(A.7) are plotted in Figure A.1. The performed computations show that the established
bound in Theorem A.3 is almost sharp for large A.

A.3 Application in Natural Convection

We consider the steady-state formulation of the Oberbeck-Boussinesq equations (2.8) as in
the setup of Section 6.2. By using polar coordinates (r, ϕ) and the defined dimensionless
quantities A, Ra, Pr, we obtain the dimensionless formulation

1
Pr

(v · ∇)v −∆v +∇p =
Ra

B
sinϕ er +Ra τ e3,

∇ · v = 0,

v · ∇τ −∆τ =
vr
rB

(A.8)

in ΩA, with boundary conditions v = 0, τ = 0 on ∂ΩA, see [77]. Here, τ = τ(r, ϕ) is the
excess temperature and we have set B = ln(1 + 2/A) = ln(Ro/Ri). Furthermore, e3 is the
unit vector into direction z, i.e. e3 = sinϕ er + cosϕ eϕ.

Because no exact solutions are known, simplified models may be more convenient. For
instance one may decouple the system by replacing the first equation of (A.8) by a linear
equation yielding

−∆v +∇p =
Ra

B
sin(ϕ) er,

∇ · v = 0,

v · ∇τ −∆τ =
vr
rB

(A.9)
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Figure A.2: Contour plots of E = 0.01, 0.05, 0.1.

in ΩA with zero boundary conditions for v and τ on ∂Ω. Note that the third equation
is still nonlinear. For this system an analytical solution in terms of Bessel functions is
known. The model (A.9) is preferred for describing natural convection in case of a small
A (usually A < 2.8).

An approximation scheme to estimate the relative error between the solution of the full
system (A.8) and the solution of its simplification (A.9) in terms of a quantity X under
consideration is described in [62]. First, an upper bound f1 on the norm of the absolute
error δX is stated:

δX ≤ f1(kp, Ra, Pr,A). (A.10)

Second, a lower bound f2 on the norm of the solution X0 of the simplified problem is
established:

f2(Ra, Pr,A) ≤ X0. (A.11)

Finally, by combining (A.10) and (A.11), we obtain

E =
δX

X
≤ δX

X0 − δX
≤ f1

f2 − f1
(A.12)

as an upper bound of the relative error E , provided that f2 > f1. In terms of ∇v and ∇τ
the functions f1 and f2 can be found in [62]. Since these functions are rather technical,
we do not state them here. Using the derived estimate (A.7) for the Poincaré constant, we
have computed upper bounds for the relative error E by evaluating f1 and f2. In Figure A.2
countour plots of the upper bound (A.12) as a function of Ra and A, with fixed Prandtl
number Pr = 0.7, in terms of ∇v are shown.
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