

 Karlsruhe Reports in Informatics 2011,15
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

A Computer-Assisted Proof of the
Bellman-Ford Lemma

Peter H. Schmitt

KIT, Karlsruhe Institute of Technology

March 31, 2011

 2011

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Abstract

These notes serve (at least) two purposes. First, they document a proof done
with the KeY system of a purely mathematical statement, Lemma 1 below,
within the context of Dijkstra’s Shortest Path Algorithm. This is an unusual
application of the KeY system that is designed to verify Java programs. The
verification of a Java implementation of Dijkstra’s algorithm itself is the topic
of the Diploma thesis [10].

Secondly, we use this simple proof exercise to review the widely practiced
method to handle partial functions via underspecification that is also used in
the KeY system. Little can be found in the literature on the theoretical foun-
dations of this approach. This report proposes a first step towards a theory
of underspecification. Particular emphasis is devoted to the axiomatisation
of abstract data types with partial functions.

As a side issue we also include some comments on conservative extensions.

Contents

1 A Computer-Assisted Proof 2
1.1 Basic Definitions . 2
1.2 The Bellman-Ford Lemma . 6
1.3 Auxiliary Concept . 8
1.4 Proof . 8

1.4.1 Proof of Claim 1 . 9
1.4.2 Proof of Claim 2 . 13

1.5 Conclusion and Outlook . 15

2 Partial Functions 19
2.1 Motivation and Introduction 19
2.2 A Theory of Underspecification 22
2.3 Total Formulas . 27
2.4 The Transformation Y . 36
2.5 Examples . 43
2.6 A Theory of Sequences . 51
2.7 An Overspecified Theory of Sequences 62
2.8 Closing Remarks . 67

3 Conservative Extension 69
3.1 Review of Basic Definitions 69
3.2 Digression . 74

4 Taclets 78
4.1 Taclets for some Axioms . 78
4.2 Taclets for the Sequence Data Type 79
4.3 Taclets for bSum . 89

1

Chapter 1

A Computer-Assisted Proof

1.1 Basic Definitions

Definition 1 (The Theory of Weighted Graph)

The theory of weighted graphs is formulated with the vocabulary

• sorts node and int

• predicate edge (node, node)

• function int w(node, node)

and the following axioms

∀node n; (!edge(n, n)) (1.1)

∀node m; (∀node n; (edge(n,m) − > w(n,m) > 0)) (1.2)

For formulas we use the asci syntax of the KeY input files even if it looks a
bit funny at times. In particular ! denotes negation.

Definition 2 (Weighted Graph)

A weighted graph is any structure satisfying the axioms of the theory of
weighted graphs from Definition 1. Thus it is a structure G = (V,E,w) with

2

1. V a nonempty set, called the set of nodes of the graph
This is the interpretation of the sort node. The interpretation of the
sort int is not mentioned at this level, since it is fixed.

2. E ⊆ V × V a set of pairs of nodes, called edges
Thus E is the interpretation of the binary predicate edge.

3. w : E → Z a function that associates an integer with every edge.
Here Z is the interpretation of sort int.

such that the two axioms are satisfied, i.e.;

1. ∀v ∈ V ((v, v) 6∈ E, i.e., a graph contains no self-loops.

2. ∀(n,m) ∈ E(w(n,m) > 0) i.e., there are no edges with negative or zero
weight.

In other contexts weights are real-valued, i.e., take values in the set R of real
numbers. For the purposes of the proof of Lemma 1 below, this does not
make any difference.

There is another issue involved here. Strictly speaking, the weight func-
tion w is a partial function, we only need weight for nodes that are connected
by an edge. In the KeY approach partial functions are handled by the prin-
ciple of underspecification. Thus w is always considered as a total function.
Since no particular assumptions are made about the values of w for non-
connected pairs of nodes this has the same effect as partiality. We will come
back to this issue later.

Definition 3 (Path)

A path s in a weighted graph G = (V,E,w) is a (finite) sequence v0, . . . , vk
of nodes such that for all 0 ≤ i < k the pair (vi, vi+1) is an edge of G, i.e.,
(vi, vi+1) ∈ E.
In particular every sequence s = v0 of length 1 is a path.

We extend our initial theory by adding a unary predicate fwpath(Seq) and
the defining axiom

3

∀Seq seq; (fwpath(seq) < − >
∀int iv; ((0 <= iv & iv < seqLen(seq)− 1)− >
edge(node :: seqGet(seq, iv), node :: seqGet(seq, iv + 1)) &
node :: instance(any : seqGet(seq, iv)) &
node :: instance(any : seqGet(seq, seqLen(seq)− 1)))

(1.3)

We make use of the abstract data type Seq built into the KeY system. The
function seqLen(seq) obviously denotes the length of the sequence seq while
node :: seqGet(seq, iv) denotes the element at position iv in the sequence seq
cast to type node. The first position is 0. The issue of underspecification
of the partial function node :: seqGet(seq, iv) also arises here. Since we do
not use polymorphic types the element any :: seqGet(seq, iv) stored in the
sequence seq at position iv could be of arbitrary type, any is the universal
type that is a supertype to all types. The function node :: seqGet(seq, iv)
is undefined if any :: seqGet(seq, iv) is not of type node. As part of the
defining axiom (1.3) we require that all elements stored in a sequence seq
that satisfies fwpath(seq) are of sort node.

The name of the predicate is accidentally named fwpath since in an early
version there was also a related notion called fdpath.

It is convenient for doing proofs with the KeY system to add for axioms
defining new functions or predicates as e.g., axiom 1.3 a proof rule that
unfolds the definition. In the case of axiom 1.3 unfolding, i.e., the application
of the →-part of the equivalence, suffices. It will turn out that the reverse
implication is not needed. For the sake of the experts the rule is presented
as a taclet in Section 4.

Among the functions defined for the abstract data type of sequences is
the concatenation function seqConcat defined by

seqConcat(s1, s2)[i] =

{
s1[i] if i < seqLen(s1)
s2[i− seqLen(s1)] if i ≥ seqLen(s1)

For brevity we wrote s[i] instead of seqGet(s, i) and suppressed casting. The
singleton sequence 〈a〉 with sole element a is denoted by seqSingleton(a).

Proofs of formulas of the form ∀seq s; b(s) will most of the time be done by
some kind of induction. Induction on the length of s would be one possibility.
More convenient is the structural induction rule

b(〈〉) ∀objx; (b(s)→ b(s+ 〈x〉))
∀seq s; b(s)

4

Here, s+ 〈x〉 is shorthand for seqConcat(s, seqSingleton(x)).
It is occasionally handy to also have the following variant of the structural

induction rule available:

b(〈〉) ∀objx; (b(s)→ b(〈x〉) + s)
∀seq s; b(s)

Here, 〈x〉+ s is shorthand for seqConcat(seqSingleton(x), s).
We have presented the induction rules in mathemantical style, the taclet

formalisations may be found in Subsection 4.1. Most of the time when prov-
ing a formula ∀seq s; b(s) the induction rule is used to first prove ∀seq s; a(s)
and then to show that ∀seq s; a(s)→ ∀seq s; b(s) is universally valid. This is
the reason why the taclets for the induction rules break done one proof goal
into three subgoals.

Definition 4 (Weight of a Path)

The weight of a path s = v0, . . . , vk, denoted by pw(s), is the sum of the
weights of its edges, i.e., pw(s) = Σi=k−1

i=0 w((vi, vi+1)).
For the degenerate case k = 0, a path of length 1, we define w(s) = 0.

It has become customary to call a path s = v0, . . . , vk a shortest path from
v0 to vk if for any other path t = x0, . . . , xn with x0 = v0 and xn = vk we
get pw(s) ≤ pw(t). This terminology may be a bit confusing, since it is
not the number of nodes in a path that count. To be consistent we should
speak of a path with least weight. But, you cannot beat common practise.
In particular, the one element path v is the shortest path from v to v.

To formalize the pathweight function we make use of the bounded sum
function bsum available with the KeY system. The syntax is

bsum{iv}(t1, t2, t)

where

1. iv is a variable of type int

2. t1, t2 are terms of type int that do not contain iv

3. t is a term of type int that typically will, but need not, contain the
variabel iv.

5

The term bsum{iv}(t1, t2, t) is evaluated in a structure A and variable as-
signment β as

bsum{iv}(t1, t2, t)(A,β) =

{
0 if b ≤ a
Σi<b
i=a c(i) otherwise

with

1. a = t
(A,β)
1

2. b = t
(A,β)
2

3. c(i) = t(A,βi) with βi(v) =

{
i if v ≡ iv
β(v) otherwise

Definition and lemmas for bsum are shown in Subsection 4.3. For the cases
where no obvious value exists, i.e., when the upper bound is less or equal to
the lower bound, one option would have been to leave the sum value unde-
fined. Here another decision was taken: the value is 0, see taclet bsum empty

in Subsection 4.3.
Using the bsum function provided by the KeY system we define the weight

of a path by:

∀Seq seq; (
pw(seq) = bsum{iv}(0, seqLen(seq)− 1,

w(node :: seqGet(seq, iv), node :: seqGet(seq, iv + 1))))
(1.4)

A taclet for unfolding Definition 1.4 is again shown in Subsection 4.1.
Definition 1.4 entails the following special cases:

pw(〈〉) = 0
pw(〈a〉) = 0
pw(〈a, b〉) = w(a, b)

1.2 The Bellman-Ford Lemma

We want to prove the following lemma.

Lemma 1 (Bellman-Ford Lemma)
Let G = (V,E,w) a weighted graph, start ∈ V . Let d : V → N be a mapping
satisfying the following properties

6

1. d(start) = 0

2. ∀m ∈ V \ {start}∃n ∈ V ((n,m) ∈ E ∧ d(m) = d(n) + w(n,m))

3. ∀m∀n((n,m) ∈ E → d(m) ≤ d(n) + w(n,m))

Then d(n) is the weight of the shortest path from start to n in G.

The properties 2 and 3 are called the Bellman-Ford Equations.
They are sometimes summarized as
∀ m ∈ V \ {start}(d(m) = min{d(n) + w(n,m) | (n,m) ∈ E}

The assumptions of the lemma are formalized as follows.

∀node n; (d(n) >= 0) (1.5)

This assumption is somewhat hidden in that the range of d is given as N and
not as Z.

d(start) = 0) (1.6)

∀node m; (m! = start− >
∃node n; (edge(n,m) & d(m) = d(n) + w(n,m)))

(1.7)

First Bellman-Ford equation.

∀node m; (∀node n; (edge(n,m)− > d(m) <= d(n) + w(n,m))) (1.8)

Second Bellman-Ford equation.
The claim of the lemma is split into the following two claims:

(∀node m; (m! = start − > (∃Seq s; (fwpath(s) &
node :: seqGet(s, 0) = start &
node :: seqGet(s, seqLen(s)− 1) = m &
pw(s) = d(m))))

(1.9)

∀node m; (∀Seq s; ((fwpath(s) &
node :: seqGet(s, 0) = start &
node :: seqGet(s, seqLen(s)− 1) = m)

− > d(m) <= pw(s))))

(1.10)

We observe that part of the claim, formula 1.9, is that the Bellman-Ford
equations also entail that every node in the graph is reachable from start.
This restriction could be waived by considering d : Node → N ∪ {∞}. We
will not persue this here, at least not on the first attempt.

7

1.3 Auxiliary Concept

The second Bellman-Ford equation guarantees that for all edges (vi, vi+1) the
inequality d(vi+1) ≤ d(vi) + w(vi, vi+1) is true. It will turn out that paths
such that all its edges satisfy the stricter requirement of equality will play a
prominent role in the proof. In the following definition we give these special
paths a name.

Definition 5
A path s = v0, . . . , vk in a weighted graph G = (V,E,w) is called faithful
with respect to d or for short a d-path if for all 0 ≤ i < k

d(vi+1) = d(vi) + w(vi, vi+1)

As a formula this definition reads as:

∀Seqs; (dpath(s) ↔ fwpath(s) &
∀int i; (0 <= i&i < seqLen(s)− 1− >
d(s[i+ 1]) = d(s[i]) + w(s[i], s[i+ 1]))

(1.11)

A taclet for unfolding Definition 1.11 is again shown in Subsection 4.1.

1.4 Proof

We are faced with showing universal validity of the following the implications:

(1.1) & (1.2) &(1.3) & (1.4) &(1.5) &
(1.6) & (1.7) & (1.8) & (1.11) → (1.9)

(1.1) & (1.2) &(1.3) & (1.4) &(1.5) &
(1.6) & (1.7) & (1.8) & (1.11) → (1.10)

In the KeY system these goals will be written as sequents:

(1.1) & (1.2) &(1.5) & (1.6) & (1.7) & (1.8) ==> (1.9)

(1.1) & (1.2) &(1.5) & (1.6) & (1.7) & (1.8) ==> (1.10)

The definitions (1.3), (1.11), (1.4) are available as taclets and need not be
stated as assumptions in the antecedent.

Halfway through the proof I noticed that (1.2) & (1.8) → (1.1) i.e., the
axiom (1.1) is redundant. In the description of the various proof subgoals
axiom (1.1) is still listed but it has never been used.

8

In a desperate attempt one could ask the system to prove these goals
without any further help or interaction. As expected this does not work,
after 5 000 steps 229 goals have been generated and not a single one has
been closed.

We will describe in detail the guidance and interactions necessary to pro-
duce a computer assisted proof with the KeY system. All proof obligations
are available in electronic form as input files for the KeY- system. Likewise,
the files that store the completed proofs.

Claim input file name proof file name

(1.12) Lemma1.key Lemma1.key.proof
(1.13) Lemma2.key Lemma2.key.proof
(1.14) Lemma3.key Lemma3.key.proof
(1.15) Lemma4.key Lemma4.key.proof
(1.16) Lemma5.key Lemma5.key.proof
(1.10) seqBFTheoremPart2.key seqBFTheoremPart2.key.proof

1.4.1 Proof of Claim 1

We propose to derive the following series of lemmata (1.12) through (1.16).
We will first present the lemma to be proved followed by some comments on
the interactive proof itself.

∀Seq s; (fdpath(s)− >
d(node :: seqGet(s, seqLen(s)− 1)) >= seqLen(s)− 1|seqLen(s) = 0)

(1.12)

This is an easy observation about d-paths. If s0, . . . sn−1 is a d-path then
d(sn−1) ≥ n. By the definition of a d-path we have d(sn−1) = d(s0) +
Σi=n−2
i=0 w(si, si+1). Using the facts d(s0) ≥ 0 and that all weights are strictly

positive a human reasoner will immediately believe the lemma. Of course at-
tention needs to be paid to the borderline cases of an empty or one-element
sequence. For a formal proof we need to use structural induction on se-
quences. KeY finds a proof with 4227 nodes, 13 branches and 19 interactive
steps. The first interaction is to start structural induction, which is the ob-
vious choice since the claim is of the form ∀Seqs; (. . .). The initial and use
case of the inductive proof complete automatically. The induction step is
split into two top cases. First, we need to show that when s+ 〈a〉 is a d-path
then also s is an d-path. The second part is the derivation of the inductive
claim from the induction hypothesis. In both cases it suffices to unfold the

9

definitions of d-path and fw-path. KeY does the rest automatically. It is
notable that instantiation of the universal quantifiers in (1.2) and (1.5) are
found automatically.

Not all assumptions are used in this proof. In fact it is shown that
(1.2) &(1.3) & (1.5) & (1.11)→ (1.12) is true.

∀int i; (i >= 0− > ∀node m; (∃Seq s; (
(fdpath(s) &
node :: seqGet(s, seqLen(s)− 1) = m &
seqLen(s) >= 1 &
(node :: seqGet(s, 0) = start|seqLen(s) >= i))))

(1.13)

To understand the motivation behind this lemma we observe that in order
to satisfy claim 1 (formula with number (1.9)) we need for any node n an
d-path that ends in n and begins in start. The first Bellman-Ford equation
(1.8) allows us to find for any d-path that ends in n and begins with m to
find a longer path that ends in n and now begins with a predecessor m1 of
m. If we are lucky we will hit in this way upon start as a first node in the
path. Otherwise the path gets longer and longer. That is what we prove
here. In Lemma 3 (formula with number (1.14)) below we exploit the fact
that by Lemma 1.12 the length of a d-path ending in m cannot grow beyond
d(m). So we are sure to hit start eventually.

We now step through the interactions need for a KeY proof of formula
(1.13).
The first interaction consists in starting integer induction. Strengthening of
the formula to be proved is not necessary.
For the initial case, i = 0, the formula ∀node m; (∃Seq s; (. . .) is proved by
instantiating s by seqSingleton(m 0) where m 0 is the Skolem constant for
∀node m. After manually triggering the unfolding of fdpath and fwpath the
proof completes automatically.
The use case is trivially closed in one step.
The main work is with the step case. It schematically is of the form
∀node m;∃seq s; (φ(m, s, i)⇒ ∀node m;∃seq s; (φ(m, s, i + 1)). Let m 1 be
the Skolem constant for the righhand side ∀node m. Instantiate the lefthand
side ∀node m with m 1 we obtain a Skolem constant s 0 with φ(m 1, s 0, i).
At this point it is clever to perform a case destinction whether
node :: seqGet(s0, 0) = start or not. If node :: seqGet(s0, 0) = start then
we can instantiate the quantifier ∃seq s; (φ(m 1, s, i + 1)) with s 0. The

10

sequence already starts with the start node and need not be extended. After
manually unfolding all fdpath and fwpath functions KeY completes the proof
automatically.
Thus the case node :: seqGet(s0, 0) ! = start remains. Instantiating the
leading universal quantifier of the first Bellman-Ford equation with node ::
seqGet(s0, 0) we obtain a node n 0 with

edge(n0, node :: seqGet(s0, 0)) and
d(node :: seqGet(s0, 0)) = d(n0) + w(n0, node :: seqGet(s0, 0))

For this node :: seqGet(s0, 0) ! = start is necessary. Now we are able to
instantiate the existential quantifier ∃seq s; (φ(m 1, s, i+1)) on the righthand
side by seqConcat(seqSingleton(n 0), s 0) and after the usual unfolding of
fdpath and fwpath the proof is completed automatically. In total 610 proof
nodes and 8 branches have been generated with 40 interactions.

Very few assumptions are needed. Indeed (1.3) & (1.11) & (1.7)→ (1.13)
is proved.

∀node m; (∃Seq s; (
fdpath(s) &
seqLen(s) >= 1 &
node :: seqGet(s, seqLen(s)− 1) = m &
node :: seqGet(s, 0) = start))

(1.14)

As already aluded to in the motivation for Lemma 2 (formula number (1.13))
we propose to prove: (1.2) & (1.12) & (1.13)⇒ (1.14).
Let m 0 be the Skolem constant introduced by eliminating the universal
qantifier ∀node m; (. . .) on the righthand side and instantiating ∀int i; (. . .) on
the lefthand side with d(m 0)+2 then Z3 can solve the problem immediately
(the time shows 0.0sec). KeY on the other hand cannot do this. Only after
unfolding all existential quantifiers and instantiating all universal quantifiers,
about a handful of interactions, KeY finds the rest of the proof automatically.

∀Seq s; (
(fdpath(s) & seqLen(s) >= 2 & node :: seqGet(s, 0) = start)
− >
d(node :: seqGet(s, seqLen(s)− 1)) = pw(s))

(1.15)

More precisely we show (1.3) & (1.4) & (1.6) & (1.11)⇒ (1.15)

11

For a human this lemma is obviously true. A formal proof needs some
kind of induction:

∀int i;∀Seq s; (fdpath(s)&
seqLent(s) = i&
seqLen(s) >= 1)&
node :: seqGet(s, 0) = start
− > d(node :: seqGet(s, sub(seqLen(s), 1))))

= pw(s))

The initial case is trivial since seqLen(s) = 0&seqLen(s) >= 1 on the left-
hand side of the implication to be proved is contradictory. KeY finds this
automatically. After interactive instantiation of i = seqLen(s 0) where s 0)
is the Skolemconstant for the quantifier ∀Seq s the proof completes auto-
matically.

The step case is now the only open goal. Let i 0 be the Skolem constant
for the universal integer quantification. We know i 0 >= 0. At this point it
makes sense to distinquish the cases i = 0 and i 0 > 0. The first case can be
closed with a few interactions (did not check automatic completion)

In the step case let s 4 be a Skolem constant for the universal quantifica-
tion to be proved. We make use of the induction hypothesis for the atomic
formula seqSub(s 4, 0, i 0 − 1). Before the crucial part of the induction hy-
pothesis can be used, we have to show that

1. seqSub(s 4, 0, i 0) is an d-path given that s 4 is a d-path

2. seqLen(seqSub(s 4, 0, i 0)) = i 0

3. seqLen(seqSub(s 4, 0, i 0)) >= 1

4. node :: seqGet(seqSub(s 4, 0, i 0), 0) = start
given that node :: seqGet(s 4, 0) = start .

It only takes unfolding of the definitions of pdpath and fwpath to prove 1 to
4 automatically. Note, that we need i 0! = 0 for 3. This shows why the case
distinction was useful. Now we know

d(node :: seqGet(s 4, i 0)) = d(node :: seqGet(s 4, i 0− 1)) +
w(node :: seqGet(s 4, i 0− 1), node :: seqGet(s 4, i 0))

plus

d(node :: seqGet(s 4, i 0− 1)) = pw(seqSub(s 4, 0, i 0− 1))

12

and need to prove

d(node :: seqGet(s 4, i 0)) = pw(s 4)

After unfolding pw the proof completes almost automatically. Suprisingly
the taclet bsum one summand has to be triggered interactively.
Statistics 715 nodes, 9 branches, 74 interactions.

Finally we show

(1.14) & (1.15)⇒ (1.9) (1.16)

This only needs the obvious instantiations of universal quantifiers left and
existential quantifiers right.

Summary We summarize the proof efforts for the various parts in the
proof of claim 1 in the following table.

Task nodes branches inter-
actions

(1.2) &(1.3) & (1.5) & (1.11)→ (1.12) 4227 13 19
(1.3) & (1.11) & (1.7)→ (1.13) 610 8 40
(1.2) & (1.12) & (1.13)⇒ (1.14) 83 4 24
(1.3) & (1.4) & (1.6) & (1.11)⇒ (1.15) 715 9 74
(1.14)&(1.15)⇒ (1.9) 82 2 11

Total 5697 36 168

The degree of automation thus is 97,1% without using Z3.

1.4.2 Proof of Claim 2

We prove claim 2 (formula with number (1.10)) directly without any inter-
mediate lemmata.

We start, unsurprisingly, by triggering structural induction on sequences,
taclet seqInd forward. No strengthening if the induction hypothesis is nec-
essary. Therefore the use case of the induction immediately is closed. Also
the initial step is quickly and automatically handled, since the righthand side
of the implication to be proved is obviously false. The leaves us struggling
with the step case. Instantiating the two leading universal quantifiers we
obtain Skolem constants s 0 and n 0. The principle of the preservation of

13

happiness takes its toll here. The initial step was trivial. In the step case we
need a case distinction s 0 = seqEmpty and s 0 ! = seqEmpty.

If s 0 = seqEmpty then the claim to be proved reduces to d(n 0) <=
pw(seqSingleton(n 0)). By definition of bsum with equal lower and upper
bound we get pw(seqSingleton(n 0)) = 0. It takes to interactions to trigger
direct cuts to obtain n 0) = start. KeY finds the assumption d(start) = 0
and finishes this case automatically. Note, the induction hypothesis is not
used here.

From now on we have s 0 ! = seqEmpty as an additional assumption.
Again we first rewrite the argument of d() in the claim to n 0. One Step -
Simplification is not powerful enough for this. Twice a direct cut has to be
triggered. Fortunately, the rest of the proof complete automatically. The
claim to be proved has so far been reduced to

d(0) <= pw(seqConcat(s 0, seqSingleton(n 0))).

To prepare the application of the induction hypothesis we unfold the defini-
tion of pw and split the resulting sum with the taclet bsum split:

d(n 0) <= Σ
j=seqLen(s 0)−2
j=0

w(node :: seqGet(seqConcat(s 0, seqSingleton(n 0)), j),
node :: seqGet(seqConcat(s 0, seqSingleton(n 0)), j + 1))

+w(node :: seqGet(s 0, seqLen(s 0)− 1), n 0)

After proving

1. fwpath(s 0)

2. node :: seqGet(s 0, 0) = start

3. seqLen(s 0) >= 1

which is done by apppying the rule implication left unfolding for the two
occurences of fwpath its definition and let KeY do the rest automatically, we
have the induction hypothesis d(node :: seqGet(s 0, seqLen(s 0) − 1)) <=
pw(s 0) at our disposal.

Now we face a serious problem. We have to show that bsum 1 = bsum 0
for

bsum 1 = Σ
j=seqLen(s 0)−2
j=0

w(node :: seqGet(seqConcat(s 0, seqSingleton(n 0)), j),
node :: seqGet(seqConcat(s 0, seqSingleton(n 0)), j + 1))

14

bsum 0 = Σ
j=seqLen(s 0)−2
j=0

w(node :: seqGet(s 0, j),
node :: seqGet(s 0, j + 1))

It is a formidable task for symbolic deduction to show that two sums
Σi=b
i=0 ti and Σi=b

i=0 si, even with the same bounds, are equal. This would , e.g.,
be true for any permuation s0, . . . , sb of t0, . . . , tb. A human might immedi-
ately spot this, but it would be a laborious job to cast this in proof rules.
Fortunately, the case at hand is of a simpler nature. While the summands si
and ti are syntactically different, it can be proved that they always evaluate
to the same element with the given bounds of the summation variable. The
taclet equal bsum3 does this. The pull out taclet has to be used twice to
prepare for an application of equal bsum3.

Summarizing, we have at this point

d(n 1)) <= bsum 1 (1.17)

with n 1 = node :: seqGet(s0, seqLen(s0)− 1).
Manual instantiations of the leading universal quantifiers in the second

BellmanFord equation gives us

d(n 0) <= d(n 1) + w(n 1, n 0) (1.18)

After (1.17) and (1.18) are available KeY finds automatically that

d(n 0) <= bsum 1 + w(n 1, n 0)

follows. But, this completes the proof of Claim 2.
Statistics 1281 nodes, 17 branches and 92 interactions. Thus we still have a
degree of automation of 92.82%.

1.5 Conclusion and Outlook

Given the fact that the KeY system was developed for program verification
and not as a mathematical proof assistent I was surprised how well it could
be used for exactly this purpose. After a close inspection of the lemma I
arrived at a fairly detailed proof plan and the KeY system offered all the
possibilities to carry it out without any compromise. Before the final version
of the proof as presented in Section 1.4 was found I went through some
failed attempts. They all had to do with inductive proofs. Strenghtening the

15

induction hypothesis was not a problem, that was either not needed at all
or really easy. It was the borderline cases that caused me trouble. E.g., the
empty sequence or one-element sequences required special attention which I
did not get right at first go.

I did not try hard to minimise the number of interaction. Besides the
interactions needed to implement my proof plan:

1. find a series of lemmata to be proved and in which order

2. trigger induction
(integer induction or structural induction on sequences)

3. trigger case distinctions

it was instantiations of universal quantifiers (to be utterly precise of universal
quantifiers on the left and existential quantifiers on the right of the sequent
seperator) and the choice of rules manipulating bounded sums.

I had some qualms about the liberal way partial functions were treated, in
the theory of weighted graphs, and in the theories of sequences and bounded
sums. I am now quite satisfied with the framework developed in Section
2. Considerable effort is still needed to establish the assumptions of The-
orem 8, but we believe that this is due to the inherent complexity of the
axiomatisation and cannot be reduced.

Do I have suggestions for improvements of the KeY tool? Yes.

1. Maybe one could add an (automatic) modification of the taclet bsum
one summand

bsum one summand auto {
\ f i n d (bsum{uSub ;} (i0 , i1 , i 1 +1))\ sameUpdateLevel
\varcond (\ notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 1))
\ r ep l a cew i th ({\ subst uSub ; (INT2) i 0 } t)

\ h e u r i s t i c s (s i m p l i f y)
} ;

2. When calling an (or all) SMT solver(s) the user can choose in a dialog
if he want to apply or ignore the result. It would be very convenient to
also have this feature for the apply rules automatically here.
This would be in particular useful for exploring the limits of interaction.

16

In a lot of proof situations I tried wether KeY would find the solution
automatically from here. If it did, wonderful. If not, I pruned the
proof tree back to where I started and did some further interactions.
It works, but is laborious.

3. A robustly working save and load mechanism for (partial) proofs is
absolutely mandatory. The user of the KeY system should be able to
interrupt his work and continue the other day where he left off. Also
he may want to exchange completed proofs with others.
That was a valid remark at the time I did the experiments. Now,
loading and saving works. Still, the mechanism is rather fragile.

4. Some kind of replay mechanism of a (complete or partial) proof in a
slightly different setting would be highly welcome.
E.g., one would like to run a completed proof again without one of the
assumptions to find out if that assumption was really used? I do not
mean to find out if a proof without this assumption exists, that might
be a difficult mathematical task, only if in the given proof it was used.
Another situation arises when the definition of a function in an abstract
datatype specification is slightly changed. The crucial information is,
when to unwind the definition, the rest should work automatically.
There is no limit to ambitions. I know, that is no easy task. I suggest
we commit ourselves to facing it.

A desirable simple extension of Lemma 1 would be to drop the restriction
that every node in the graph should be reachable from the start node. One
way to achieve this would be to change the typing of the distance estimation
function to d : V → N ∪ {∞} with the Bellman-Ford equations accordingly
modified:

∀node m; (m! = start & d(m) 6=∞→
∃node n; (edge(n,m) & d(m) = d(n) + w(n,m)))

(1.19)

∀node m; (∀node n; (edge(n,m) & d(n) 6=∞)→
d(m) <= d(n) + w(n,m)))

(1.20)

It is however not so easy to replace the type N by N ∪ {∞}, that type
theoretically is the disjunction of type N and the singleton type {∞}. Also, in

17

the course of Dijkstra’s algorithm d(m) =∞ signifies that d(m) has not been
defined yet. This suggests to model d as a partial function. The fixed value
formula is fixd(x) = reachstart(x) where reachstart(node) is a new atomic
predicate. With this axiomatisation the Bellman-Ford equations take on the
form:

∀node m; (m! = start & reachstart(m)→
∃node n; (edge(n,m) & d(m) = d(n) + w(n,m)))

(1.21)

∀node m; (∀node n; (edge(n,m) & reachstart(n)→
d(m) <= d(n) + w(n,m)))

(1.22)

The claim of the lemma corresponding to Lemma 1 now read:

∀node m; (m! = start & reachstart(m)
− > (∃Seq s; (fwpath(s) &

node :: seqGet(s, 0) = start &
node :: seqGet(s, seqLen(s)− 1) = m &
pw(s) = d(m))))

(1.23)

∀node m; (∀Seq s; ((fwpath(s) &
node :: seqGet(s, 0) = start &
node :: seqGet(s, seqLen(s)− 1) = m)

− > d(m) <= pw(s) & reachstart(m)))

(1.24)

From 1.23 and 1.24 it follows in particular that reachstart(m) is true if and
only if m is reachable from start.

18

Chapter 2

Partial Functions

2.1 Motivation and Introduction

While in classical mathematical logic partial functions were at best addressed
as a side issue for logic in computer science geared towards applications it
is absolutly essential to deal with them transparently and efficiently. Differ-
ent specification and verification languages, however, offer different solutions.
The situation has been carefully investigated in [9]. The author argues, con-
vincingly, that many-valued logic is not well suited for the purposes of speci-
fication and supports the approach called underspecification. This approach
can be traced back to the paper [8] that also contains references to earlier
research.

The way the KeY system implements underspecification is concisely ex-
plained in [4, page 90]. A greater part of this explanation is concerned with
Kripke structures with partial observer functions as needed for the semantics
of Dynamic Logic. Also the papers [15, 16], [7] and [14] focus on the treat-
ment of partial functions in software specifications and program annotations.
Here we will be mainly concerned with partiality in data types.

While [8] only gave an informal explanation of underspecification the
reference [9, Section 5.1] includes a formal definition. Our presentation below
improves on that by also paying attention to the specification of the domain
of partial functions and by formalizes the notion of logical inference.

The two main advantages of the method of underspecification is that
classical first-order logic can be used for reasoning without any changes and
the need to define evaluation of terms and formulas in partial structures is

19

sidestepped. But, what are the drawbacks? The main nuisance is the fact
that a lot of unintuitive or even strange properties can be derived.

It is a simpler exercise to understand that 1/0
.
= 1/0 is universally valid,

while 1/0
.
= 2/0 is not.It may also not be too hard to accept the statement

∀seqs ∃seq t(t .= seqSub(s,−1,−5)). But, would you have expected that

∃seq s(seqLen(s)
.
= 0 & int :: seqGet(seqSub(s, 1, 2))

.
= 5)

can be proved from the proof rules in Subsection 4.2?
These example formulas share a common feature: they are in some sense

not well defined. The solution taken by almost all verification systems is to
construct for every formula φ a well-definedness condition wdφ. The intention
is that if T ` wdφ can be derived then φ is well-defined in all models of the
underlying theory T . The proof task T ` φ is then augmented to T ` φ∧wdφ.

The seemingly innocent question When is a formula well-defined? does
not have a straight forward answer. There are many plausible answers. In
the JML manual [12] well-definedness is part of the notion of validity:

An assertion is taken to be valid if and only if its interpretation

• does not cause an exception to be raised, and

• yields the value true.

An attempt to cast this into a comprehensive formal semantics is contained
in the Diploma Thesis [6].

We could try to adapt this to our fist-order logic context and replace
what in this quote is called interpretation by the usual recursive definition of
truth of a formula in a given structure. If during this recursive evaluation we
need to evaluate a function on arguments outside its domain of definition we
could view this as the analogon of exceptions refered to in the JML context.
If during the recursive evaluation we never need to evaluate a function on
arguments outside its domain of definition then we declare the formula to be
well-defined. The problem with this approach is that it crucially depends on
the way the truth value of a formula is evaluated. If we encounter during the
computation of the truth value of a conjunction φ∧ψ the situation that φ is
false but ψ may be undefined, would we consider φ ∧ ψ to be well-defined?
What if ψ is false but φ may be undefined? Is ∃xφ well-defined if there
exists a (ground) term t such that φ(t/x) is well-defined and true? or should
we insist that φ(x) is well-defined? If a subformula of the form φ ∨ ¬φ is

20

encountered is it immediately evaluated to true, without decending into the
recursive truth definition of φ?

The papers [5, 3] take another approach. They start with a 3-valued logic
and call a formula φ well-defined if it can be proved that φ never evaluates
to the third truth value undefined. But, this only shifts the problem. The
notion of well-definedness now depend on the particular 3-valued logic in use
and on the algorithm to compute the truth value. The paper [5] offers a
choice between two versions of 3-valued logic. The paper [17] considerably
improves the results from [5, 3]. We will say more on this below.

There is a strong feeling that the different definitions of well-definedness
are in a sense approximations. But, approximations to what? Also all notions
of well-definedness mentioned so far are not preserved by logical equivalence.
Is there a sensible notion of well-definedness that is preserved by logical
equivalence?

Our answer if given as Definition 12 below. It is a purely semantic defi-
nition and may roughly be paraphrased as:

A formula φ is well-defined with respect to a theory Th if the
truth value of φ in any model of Th does not depend on the
values of functions f outside their fixed value formula fixf .

To distinguish this concept from previous well-definedness notions we intro-
duce a new terminology and call such φ total.

What we have discussed so far concerns formulas φ that are derived from
a given background theory Th, i.e., Th ` φ. But, what about the axioms of
Th? Should they also be well-founded? In the theory of sequences described
in Sections 2.7 and 4.2 e.g., the axiom

∀seq s∀int i, j(i > j → seqLen(seqSub(s, i, j)) = 0)

is encountered. This formula is definitely not well-defined, since the fixed-
value formula for seqSub(s, i, j) requires 0 ≤ i ≤ j < seqLen(s). The theory
for sequences for the Dafny system contains the axiom

∀ < T > SeqT s∀int i∀T v∀int len(
0 <= len ==> Seq#Length(Seq#Build(s, i, v, len)) == len)

The function Seq#Build(s, i, v, len) returns the subsequence of s from in-
dex 0 to index len − 1 that is in addition updated at index i by the value

21

v. This axiom is also not well-defined since the fixed-value formula for
Seq#Build(s, i, v, len) is (0 ≤ len < Seq#Length(s)) ∧ (0 ≤ i < len).

Including the full domain restrictions would make the axioms consider-
ably more bulky and reaoning with them, very likely, more involved. This
is the motivation for this phenomenon that has been named overspecifica-
tion since it fixes some function values outside the intended domain of the
function. There is the feeling that overspecification will not hurt, since we
are only interested in total (well-defined) consequences of the axioms. In the
context of this report we believe that overspecification does not compromise
the proofs in section 1.4. The claims (1.9) and (1.10) depend only on defined
values, they are in some sense well-defined. We will introduce below, Defi-
nition 13, the notion of two theories T1, T2 coinciding on the fixed part of
their common signature, that is to say the same total formulas can be derived
from T1 and T2. This will allow us to compare a strictly defensive axioma-
tisation Ax1 of some abstract data type with a more relaxed axiomatisation
Ax2 including overspecification. If Ax1 and Ax2 agree on the fixed part of
their common signature then we are sure that the overspecification in Ax2

does not cause problems. Lemma 13 below will provide a useful criterion to
prove fixed-part-coincidence.

2.2 A Theory of Underspecification

Definition 6 (Partial Signature)
The symbols Σ = Σp ∪ Σt of a partial signature are divided into partial, Σp

and total symbols Σt.
For every n-place symbol f ∈ Σp a Σt-formula fixf (x1, . . . , xn) with at

most the free variables x1, . . . , xn is also part of the signature definition,
called the fixed values formula of f .

In the following we will asume that Σp contains only function symbols. It
is in fact hard to imagine natural examples of partial predicates. In any case
in the Bellman-Ford case study partial predicates do not occur. If, neverthe-
less, there is a need for a partial predicate pred one could use its character-
istic Boolean function fpred (pred(x1, . . . , xn) ⇔ fpred(x1, . . . , xn) = true)
instead.

What we call here the fixed values formula fixf (x1, . . . , xn) is in most
other publications called a domain restriction. Since in the context of under-
specification every function is total, there is strictly speaking no restriction of

22

the domain. It seemed to us more appropriate to distinguish between values
that are fixed and values that could also be otherwise. But, as with most
terminological issues, this is a matter of taste.

Example 2

function fixed values formula

int w(node, node) edge(x1, x2)
node :: seqGet(seq, int) 0 ≤ x2 & x2 < seqLen(x1) &

node :: instance(any :: seqGet(x1, x2))
seq seqSub(seq, int, int) 0 ≤ x2 & x2 ≤ x3 & x3 < seqLen(x1)
int / int x2 6= 0
int pw(seq) ∀i((0 ≤ i & i < seqLen(x1)− 1)→

edge(node :: seqGet(x1, i),
(node :: seqGet(x1, i+ 1)))

We have adopted the requirement that fixf be a Σt-formula to keep things
simple. Anyhow the requirement is satisfied in all our examples. More liberal
requirements where fixf could contain partial function symbols will work,
provided circular dependencies are avoided. In particular, fixf should not
contain f .

The adoption of a specific partial signature Σ already includes impor-
tant modeling decisions. Consider as an example the bounded sum function
bsum{int i}(int from, int to, int t) as a formalisation of Σi<to

i=fromt(i). bsum
is a 3-place function symbol. The integer variable i plays a role similar to
bound variables in quantification. One modeling alternative would be to de-
clare bsum{int i}(int from, int to, int t) to be undefined when to ≥ from.
The axiomatisation reviewed in Subsection 4.3 takes another approach. For
inputs from ≥ to the value of bsum is set to 0.

In the above Example 2 seqSub(s, from, to) was declared to be undefined
when 0 ≤ from ≤ to < seqLen(s) is false. A partial alternative would be to
define ∀Seq s∀ from, to(from > to → seqSub(s, from, to) = seqEmtpy).
This would still leave the cases with from ≤ to but from < 0 or seqLen(s) ≤
to undefined.

Definition 7 (Partial Structures)
Let Σ = Σp ∪ Σt be a partial signature.
A structure M = (M, I) is a partial Σ-structure if

23

1. every n-place function symbol f ∈ Σt is interpreted as a total function
I(f),

2. for every n-place function symbol f ∈ Σp

fixMf ⊆ dom(I(f)),

with the abbreviation

fixMf = {(a1, . . . , an) ∈Mn | (M � Σt) |= fixf [a1, . . . , an]}.

3. There are no restrictions on the interpretations I(r) of predicate sym-
bols r ∈ Σ.

Furthermore, we have made use of the common concept and definition of
the domain dom(pf) for n-ary partial functions pf : Xn → Y , dom(pf) =
{(e1, . . . , en) ∈ Xn | pf(e1, . . . , en) is defined}.

A partial structureM = (M, I) is called a total structure if all functions
I(f) are total for all function symbols f ∈ Σ.

In the previous definition we used the notation N |= φ[a1, . . . , an] as a short-
hand for (N , β) |= φ with β(xi) = ai for all 1 ≤ i ≤ n. This abbreviation
presupposes that that we know from the context which variable in φ will be
assigned which value in the sequence a1, . . . , an. In all cases where we will
use this shortcut this association will be obvious.

Definition 8 (Extensions of Partial Structures)
Let M = (M, IM), N = (N, IN) be two partial structuress for the partial
signature Σ = Σp ∪ Σt.
M is an extension of N if

1. M = N ,

2. all symbols f ∈ Σt have the same interpretation, IM(f) = IN (f),

3. for all n-ary function symbols f ∈ Σp and all n-tupels (m1, . . . ,mn) ∈
Mn such that IM(f)(m1, . . . ,mn) is defined, also IN (f)(m1, . . . ,mn)
is defined and

IM(f)(m1, . . . ,mn) = IN (f)(m1, . . . ,mn)

24

Do not confuse the extension of a structure with the expansion of a structure
from Definition 27.

We will later also need the dual notation of a reduction of a total structure
to a partial structure. This seems a good place to introduce it.

Definition 9 (Reductions of Partial Structures)
Let M = (M, IM) be a total structure of the partial signature Σ = Σp ∪Σt.
The partial reduction of M, denoted by Mp

Σ = (M, IMp), if given by

• the same universe M as M,

• the same interpretation of all symbols in Σt,

• the total function IM(f) is replaced by the partial function IMp (f) that
coincides with IM(f) but is restricted to the domain

{(a1, . . . , an) ∈Mn | M |= fixf [a1, . . . , an]}

for all f ∈ Σp.

We note, that in general there may be a partial structure N 0 and a total
extension M of N 0 such that Mp

Σ is different from N 0. On the other hand

Lemma 3
Let M be a total Σ-structure for the partial signature Σ = Σp ∪ Σt and N
an arbitrary total extension of Mp

Σ. Then

N p
Σ = Mp

Σ

Proof Easy computation.

Definition 10 (Partial Semantics)
LetM = (M, I) be a partial structure over the partial signature Σ = Σp∪Σt,
φ a Σ-formula, and β a variables assignment.

We define φ to be true in (M, β), in symbols

(M, β) |=p φ,

if (N , β) |= φ for all total structures N that are extensions of M.

We finish off the series of basic definitions by the obvious

25

Definition 11 (Partial Entailment)
Let Σ be a partial signature, Φ a set of Σ-formulas and φ a single Σ-formula.

1. We say that φ is a partial logical consequence of Φ, in symbols

Φ `p φ,

if for all partial Σ structures M and all variable assignments β

if (M, β) |=p Φ then (M, β) |=p φ

2. We still write
Φ ` φ,

for the usual logical consequence relation where Σ is considered as a
normal signature with all symbols total.

The main advantages of this definition of logical consequence in the presence
of partial structures are

1. we circumvented evaluation of terms and formulas in partial structures

2. we do not need a new calculus as Lemma 4 below shows.

Lemma 4
Let Σ be a partial structure, Φ a set of Σ-formulas and φ a single Σ-formula.
Then

Φ `p φ ⇔ Φ ` φ

Proof We assume in this proof that Φ and φ contain no free variables. The
same proof works for the general case by adding β everywhere.

Assume Φ ` φ and let M be a partial Σ structure with M |=p Φ. We
need to show M |=p φ. By definition of |=p we know for all total extensions
N of M N |= Φ. Now, Φ ` φ implies for all those N also N |= φ. This
proves M |=p φ.

For the converse we assume Φ `p φ and look at a total structureM with
M |= Φ with the aim to show M |= φ. Since M is the only total structure
that extendsM we trivially haveM |=p Φ. By assumption we getM |=p φ.
Since M is already a total structure this is the same as M |= φ.

26

Theorems analogous to Lemma 4 have been proved in [1] for the propo-
sitional logic S5 (i.e., the modal logic where every world is accessible from
every other world) and for a complete logic C with the same propositional
modal syntax but semantics restricted to models where states are identified
with mappings assigning truth values to propositional variables.

Lemma 4 can be vastly generalised.

Lemma 5 (Generalised Partial Entailment)
Let T be an arbitrary mapping such that T (M) is a non-empty set of total
structures for any partial structureM. We only require that T (M) = {M}
if M is total.
Mimicking definitions 10 and 11 in this general context we define

M |=T φ ⇔ N |= φ for all N ∈ T (M)

and
Φ `T φ ⇔ for all models M

if M |=T Φ then M |=T φ

Then:
Φ `T φ ⇔ Φ ` φ

Proof Easy adaptation of the proof of Lemma 4.

2.3 Total Formulas

Definition 12 (Total Formulas)
Let φ(x1, . . . , xn) be a formula over a partial signature Σ = Σp ∪Σt, and Th
a Σ-theory, i.e. a set of Σ-sentences.

A formula φ is called total with respect to Th

iff

for any (total) Σ-model M of Th (i.e. M |= Th) and (a1, . . . , an) ∈Mn

• if M |= φ[a1, . . . , an]

• then
for any other (total) Σ-structureN satisfyingMp

Σ = N p
Σ (see Definition

9) we must also have N |= φ[a1, . . . , an]

27

We call a formula φ total if it is total with respect to the empty theory.

In the ensuing text we will tacitly use the following lemma.

Lemma 6
Let Σ = Σp ∪ Σt be a partial signature, Th a Σ-theory.

Every Σt-formula is total with respect to Th.

Proof Obvious.

Typical examples of total formulas are ∃x(f(x) = 0∧fixf (x)), ∃x(f(x) =
g(x)∧fixf (x)∧fixg(x)), or ∀x(fixf (x)→ f(x) > 0) if f, g are unary partial
functions.

Lemma 7
Let Σ be a partial signature, and T a Σ-theory

1. If T ` φ or T ` ¬φ then φ is total with respect to T .
In particular if φ is a tautology or contradictory then φ is total.

2. If φ,ψ are total with respect to T so are
φ ∧ ψ, φ ∨ ψ, ¬φ, ∀xφ ∃xφ.

Proof Item 1 is obviously true. Also item 2 is easy. Let us present just
one case, closure under negation. We have to consider two full Σ models M
and N of T such that Mp

Σ = N p
Σ and M |= ¬φ. If N |= φ then we obtain

from the assumption that φ is total and the observation that the definition
of totality is symmterical in M and N that also M |= φ. A contradiction.
Thus N |= ¬φ.

By item 1 of Lemma 7 the formula 1
0

= 1
0

is total. This is in the spirit of
underspecification, undefined terms are not totally avoided, they are allowed
whenever it does not make any difference how they are evaluated.

In general it is not so easy to find out if a formula is total. We will present
an accessible criterion for totality below, Lemma 9. First however, we will
continue with the outline of our approach at the top level.

The situation we are faced with can be described as follows: we are given
two theories Th1 and Th2 in the same partial signature Σ = Σp ∪ Σt that
deviate in the way they treat undefined values but agree on the fixed part

28

of Σ. We expect that Th1 and Th2 agree on the total formulas. Here is a
precise definition of what we mean by agreement on the fixed part of Σ,

Definition 13 (Agreement on Fixed Part)

Let Th1 and Th2 be theories in the same partial signature Σ = Σp ∪ Σt.
We say that Th1 and Th2 agree on the fixed part of Σ if for any total Σ-
sentence φ

Th1 ` φ ⇔ Th2 ` φ

Theorem 8
Let Th1 and Th2 be theories in the same partial signature Σ = Σp ∪ Σt.
Assume that

1. for every Σ-structureM withM |= Th1 there is an extension N of the
partial reduction Mp

Σ with N |= Th2

and vice versa:

2. for every Σ-structure N with N |= Th2 there is an extensionM of the
partial reduction N p

Σ with M |= Th1

Then Th1 and Th2 agree on the fixed part of Σ.

Proof Assume first that Th1 ` φ and let N be an arbitrary model of Th2,
i.e., N |= Th2. Let M be a model of Th1 that is an extension of N p

Σ which
exists by the assumption on Th1 and Th2. From Th1 ` φ we obtainM |= φ.
Since N p

Σ =Mp
Σ we get by the definition of a total formula also N |= φ. The

reverse implication is proved symmetrically.

In order for Theorem 8 to be useful we should have effective means to

1. determine wether a formula is total

2. see that two theories agree on the fixed part of their signature

We will address both issues in turn. First we return to the problem already
aluded to above, is there an easy way to prove that a formula is total? As a
prerequisite we need to deal with well-defined terms.

29

Definition 14 (Well-defined Terms)
Let Σ = Σp ∪ Σt be a partial signature, t a Σ-term containing at most
the variables x1, . . . , xn. Let furthermore f i(ti,1, . . . , ti,ki) for 0 ≤ i ≤ r
be all subterms of t with leading function symbol f i ∈ Σp. The formula
wft(x1, . . . , xn) with at most the free variables x1, . . . , xn, called the well-
definedness predicate for t is defined by:

wft(x1, . . . , xn) =

{ ∧
0≤i≤r fixf i(ti,1, . . . , ti,ki) if r > 0

true if r = 0

For the puposes of this definition we assume for t a variable or a total function
symbol fixf ≡ true.

The following definition gives a purely syntactic definition of a well-
definedness predicate wdφ for any Σ-formula φ.

Definition 15
For any formula φ(x1, . . . , xn) over a partial signature Σ = Σp ∪Σt we define
a Σt-formula wdφ as follows

1. wdφ =
∧

1≤i≤nwfti if φ = p(t1, . . . , tn) is an atomic formula

2. wd¬φ = wdφ

3. wdφ1∧φ2 = wdφ1∧wdφ2 , wdφ1∨φ2 = wdφ1∧wdφ2 , wdφ1→φ2 = wdφ1∧wdφ2

4. wd∀xφ =

{
∀x(φ0 → wdφ1) if φ ≡ φ0 → φ1with φ0 a Σt-formula
∀xwdφ otherwise

5. wd∃xφ =

{
∀x(φ0 → wdφ1) if φ ≡ φ0 ∧ φ1with φ0 a Σt-formula
∀xwdφ otherwise

The formula wdφ strongly depends on the accidental syntactic structure
of φ. The wd formula for ∀x(φ1 → φ2) is different from the wd formula for
∀x(¬φ1∨φ2). We can thus only expect that Lemma 9 and Corollary 10 below
are sufficient criteria and by no means necessary. This leaves considerable
room for variations of Definition 15. It might e.g., be a good idea to define
weaker well-definedness predicates that are easier to check and do not sacrifice
much on precision. This is done in [7, 17]. This paper also contains a carefully
researched list of previous research on the use of partial functions in formal
specification and verification, e.g, [3, 5].

30

In [13, 14] a variation of the wd formula, called the Exact predicate, is
given in the context of behavioral interface specification languages (at that
time the prototypical example of a BISL was the behavioral part of LSL, the
Larch specification language a precursor of present-day JML). The Exact
predicate differs in the inductive definition steps for the quantifiers, where
it does not take into account the part denoted by φ0 in Definition 15. Also,
what we called the fixed value formula is not supplied as part of the signature
but more flexible through specification clauses.

Lemma 9 (Totality Criterion)
Let Σ = Σp ∪ Σt be a partial signature, and wdφ be as in Definition 15.
Then for any (total) Σ-structure M and (a1, . . . , an) ∈ Mn the following is
true:

• if M |= wdφ[a1, . . . , an]

• then
for any other (total) Σ-structureN satisfyingMp

Σ = N p
Σ (see Definition

9) we must have

M |= φ[a1, . . . , an]⇔ N |= φ[a1, . . . , an]

The claim of this lemma sounds rather plausible. Nevertheless, let us step
through a detailed proof.

Proof By structural induction on the formula φ.
(terms) As a preparatory step we show for any Σ-term t:
Let M be an arbitrary (total) Σ-structure, (a1, . . . , an) ∈Mn with

M |= wft[a1, . . . , an].

Let N be another (total) Σ-structure satisfying Mp
Σ = N p

Σ. Then we claim:

tM(a1, . . . , an) = tN (a1, . . . , an)

This is proved by induction on the complexity of the, possibly nested, term
t. Let us just consider the case that t ≡ f(x1, . . . , xm) and leave the rest of
the argument to the reader.

The interptretation of a total function f is unchanged in all four structures
M, Mp

Σ, N p
Σ, and N .

31

If f ∈ Σp the assumption guarantees that the tupel (a1, . . . , an) is in the fixed
domain of f (remember that in this simple case wft ≡ fixf) thus the value
of f(a1, . . . , an)

• is the same in M and Mp
Σ,

• is the same in Mp
Σ and N p

Σ

since Mp
Σ = N p

Σ

• is the same in N p
Σ and N

This guarantees:
fM(a1, . . . , an) = fN (a1, . . . , an)

(atomic formulas) Let φ = p(t1, . . . , tm) for a predicate symbol p. Assume
M |= wdφ[a1, . . . , am] and Mp

Σ = N p
Σ. By definition wdφ =

∧
1≤i≤mwfti . As

shown in the first paragraph of this proof tMi [ā] = tNi [ā]. Thus

M |= p(t1, . . . , tm)[ā] ⇔ (tM1 [ā], . . . , tMm [ā]) ∈ pM semantics def.
⇔ (tN1 [ā], . . . , tNm [ā]) ∈ pM see above
⇔ (tN1 [ā], . . . , tNm [ā]) ∈ pN total predicates
⇔ N |= p(t1, . . . , tm)[ā] semantics def.

(propositional connectives) These cases are all straigth forward. We only
present that case of a disjunction in detail. We suppress the assigment [ā] of
free variables.
Assumption M |= wdφ1∨φ2 with wdφ1∨φ2 = wdφ1 ∧ wdφ2 .

M |= φ1 ∨ φ2 ⇔ M |= φi for some i semantics definition
⇔ N |= φi Ind.Hyp. using M |= wdφi
⇔ N |= φ1 ∨ φ2 semantics definition

(universal quantification) Let φ = ∀x0φ0(x0, . . . , xm). We first consider
the case wdφ = ∀x0wdφ0 . As an assumption we have M |= ∀x0wdφ0 [ā] for
ā = a1, . . . , am.

M |= ∀x0φ0[ā] ⇔ M |= φ0[a, ā] for all a ∈M semantics definition
⇔ N |= φ0[a, ā] for all a ∈M Ind.Hyp. and

M |= wdφ0 [a, ā]
⇔ N |= ∀x0φ0[ā] semantics definition

32

Now consider the case φ = ∀x0(φ0 → φ1)(x0, x̄) with φ0 a Σt-formula. Re-
member, we have wdφ = ∀x0(φ0 → wdφ1).

M |= φ[ā] ⇔ M |= φ0 → φ1[a, ā] for all a ∈M semantics def.

If M |= ¬φ0[a, ā] then N |= ¬φ0[a, ā] since φ0 is a Σt-formula
and we immediately get

⇔ N |= φ0 → φ1[a, ā] a ∈M

In case M |= φ0[a, ā] we also have M |= φ1[a, ā] and M |= wdφ1 [a, ā]. Now,
we can appeal to the induction hypothesis to obtain N |= φ1[a, ā]. In total
we have now shown

M |= φ[ā] ⇔ N |= φ[ā]

(existential quantification) Let φ = ∃x0φ0(x0, . . . , xm). We first consider
the case wdφ = ∀x0wdφ0 .

M |= ∃x0φ0[ā] ⇔ M |= φ0[a, ā] for some a ∈M semantics def.
⇔ N |= φ0[a, ā] for some a ∈M Ind.Hyp and

M |= wdφ0 [a, ā]
⇔ N |= ∃x0φ0[ā]

Notice, that the induction hypothesis is applicable because initially we have
M |= wdφ[ā]. Since wdφ = ∀x0wdφ0 , we obtain M |= wdφ0 [a, ā] for the
existing a. Had we defined wdwrongφ = ∃x0wdφ0 , the argument would not
have worked.

Finally, let us take up the case φ = ∃x0(φ0 & φ1(x0, . . . , xm)) with φ0 a
Σt-formula and case wdφ = ∀x0(φ0 → wdφ1).

M |= ∃x0(φ0 & φ1)[ā] ⇔ M |= (φ0 & φ1)[a, ā] for some a ∈M
semantics definition

From M |= φ0[a, ā]
We get N |= φ0[a, ā] since φ0 is a Σt-formula
From M |= φ0[a, ā]
We also get M |= wdφ1 [a, ā] since wdφ = ∀x0(φ0 → wdφ1)
Thus by Ind.Hyp N |= φ1[a, ā]

⇔ N |= φ0 & φ1[a, ā]
⇔ N |= ∃x0(φ0 & φ1)[ā]

33

Corollary 10
Let Σ = Σp ∪ Σt be a partial signature, Th a Σ-theory and wdφ be as in
Definition 15 with the free variables x̄ = x1, . . . , xn.
If Th ` ∀x̄wdφ then φ is total with respect to Th.

Proof Follows easily from Lemma 9.

The next lemma offers a (very) partial converse of Lemma 9. It also
gives support to our claim that total formulas are the right abstraction of
well-definedness.

Lemma 11
Let Σ = Σp ∪ Σt be a partial signature, f an n-place function symbol in Σt,
t1, . . . , tn, tn+1 terms that do not contain the symbol f , (x1, . . . , xk) = x̄ all
variables occuring in t1 to tn+1. If

∀x̄(f(t1, . . . , tn) = tn+1) is a total formula

then
∀x̄(fixf (t1, . . . , tn)) is a tautology

Proof If ∀x̄(fixf (t1, . . . , tn)) is not a tautology there is a Σ-structureM =
(M, I) and a variable assignment β with (M, β) |= ¬fixf (t1, . . . , tn). We
can thus find an extensionM′ = (M, I ′) ofMp

Σ that differs fromM only in
the interpretation of the symbol f

I ′(f)(a1, . . . , an) =

{
b if ai = t

(M,β)
i for all i

I(f)(a1, . . . , an) otherwise

In case (M, β) |= f(t1, . . . , tn) = tn+1 is true chose with b 6= t
(M,β)
n+1 . This

entail (M′, β) |= f(t1, . . . , tn) 6= tn+1 contradicting assumed the totality of

∀x̄(f(t1, . . . , tn) = tn+1. Notice, that t
(M,β)
i = t

(M′,β)
i for all 1 ≤ i ≤ n + 1

since f does not occur in any of these terms.
In case (M, β) |= f(t1, . . . , tn) 6= tn+1 chose b = t

(M,β)
n+1 . Thus (M′, β) |=

f(t1, . . . , tn) = tn+1. This again contradicts the totallity of ∀x̄(f(t1, . . . , tn) =
tn+1).

The relativization of the previous Lemma 11 to formulas that are total
with respect to a particular theory T is not true in general. But, we have
the following:

34

Lemma 12
Let Σ = Σp ∪ Σt be a partial signature, T a Σ theory axiomatized by a set
of total formulas, f an n-place function symbol in Σt, t1, . . . , tn, tn+1 terms
that do not contain the symbol f , (x1, . . . , xk) = x̄ all variables occuring in
t1 to tn+1. If

∀x̄(f(t1, . . . , tn) = tn+1) is a total formula with respect to T

then
T ` ∀x̄(fixf (t1, . . . , tn))

Proof Easy adaption of the proof of Lemma 11.

The following lemma gives a criterion for two theories to agree on the
fixed part of their common vocabulary (see Definition 13). It is a special
case of Theorem 8 and is taylored towards a frequently occuring situation in
the axiomatisation of abstract data types with partial functions.

Lemma 13
Let Th1, Th2 be two theories in a common partial signature Σ = Σp ∪ Σt

and P a partial Σ-structure such that

1. The partial reduction (Def. 9) of any Σ-modelM of Th1 or Th2 equals
P , i.e., Mp

Σ = P ,

2. There is a (total) extention M2 of P with M2 |= Th2

3. For every (total) extention M1 of P we have M1 |= Th1

then
Th1 and Th2 agree on the fixed part of Σ.

Proof According to Theorem 8 we need to show

1. for every Σ-structureM withM |= Th1 there is an extension N of the
partial reduction Mp

Σ with N |= Th2

2. for every Σ-structure N with N |= Th2 there is an extensionM of the
partial reduction N p

Σ with M |= Th1

35

For the proof of 1. we note thatMp
Σ = F by assumption 1 and the required

extensions N exists by assumption 2. For the proof of 2. we note again that
N p

Σ = F by assumption 3 every total extention of N can serve as a model
for Th1.

2.4 The Transformation Y
Figure 2.1 gives the definition of the well-definedness predicate Y(φ) from
the paper [7].

T (p(t1, . . . , tn)) = p(t1, . . . , tn) ∧
∧i=n
i=1 wfti

F(p(t1, . . . , tn)) = ¬p(t1, . . . , tn) ∧
∧i=n
i=1 wfti

T (¬φ) = F(φ) F(¬φ) = T (φ)
T (φ1 ∧ φ2) = T (φ1) ∧ T (φ2) F(φ1 ∧ φ2) = F(φ1) ∨ F(φ2)
T (φ1 ∨ φ2) = T (φ1) ∨ T (φ2) F(φ1 ∨ φ2) = F(φ1) ∧ F(φ2)
T (∀xφ) = ∀xT (φ) F(∀xφ) = ∃xF(φ)
T (∃xφ) = ∃xT (φ) F(∃xφ) = ∀xF(φ)

Y(φ) = T (φ) ∨ F(φ)

Figure 2.1: The well-definedness predicate Y from [7]

The following lemma is contained in [7], in fact it lies at the heart of the
introduction of the operators T and F . We repeat it here for the reader’s
convenience.

Lemma 14
Let Y(φ) as defined in Figure 2.1. Then

T (φ)→ φ and F(φ)→ ¬φ

are tautologies.
Free variables in T (φ)→ φ and F(φ)→ ¬φ are implicitly universally quan-
tified.

Proof The proof proceeds by induction on the structural complexity of φ.
We present the induction step from φ to ∃xφ. The induction hypotheses are

T (φ)→ φ and F(φ)→ ¬φ

36

By definition T (∃xφ) = ∃xT (φ). From the hypothesis we get ∃xT (φ)→ ∃xφ
and this immediately T (∃xφ)→ ∃xφ.
Againy by definition of F we have F(∃xφ) = ∀xF(φ) while the hypothesis
entails ∀xF(φ) → ∀x¬φ. Together we get immediately F(∃xφ) → ¬∃xφ.
The remaining cases are left to the reader or we refer to [7].

Lemma 15
1. For any φ the formulas T (φ),F(φ),Y(φ) are total.

2. We consider two full Σ models M and N of T such that Mp
Σ = N p

Σ.
If M |= φ ∧ Y(φ) then N |= φ.

3. If T ` Y(φ) then φ is total with respect to T .

Proof
Claim (1) is proved by simultaneous induction on the complexity of φ. If
φ is an atomic formula p(t1, . . . , t2) then T (p(t1, . . . , tn)) = p(t1, . . . , tn) ∧∧i=n
i=1 wfti , F(p(t1, . . . , tn)) = ¬p(t1, . . . , tn) ∧

∧i=n
i=1 wfti are obviously total

formulas. In the following we will tacitly use item 2 of Lemma 7. The first
appeal to this lemma yields totality of Y(φ) for atomic φ. If φ = φ1 ∧ φ2

we need to show that T (φ) = T (φ1) ∧ T (φ2) is total with respect to T . By
induction hypothesis T (φ1) and T (φ2) are total thus also T (φ1) ∧ T (φ2).
Along the same lines totality of F(φ1 ∧ φ2) and Y(φ1 ∧ φ2) is shown. Also
the induction step for φ = φ1 ∨ φ2 does not pose any problem. In the step
case φ = ¬φ0 we have by simultaneous induction the totality if T (φ0),F(φ0),
and Y(φ0) at our disposal. Since T (¬φ0) = F(φ0) and vice versa F(¬φ0) =
T (φ0) the argument for this case is again completed. Finally, appealing to
item 2 of Lemma 7 also the induction step for both quantifier cases are seen
to be true.
Claim (2): The proof again proceeds by induction on the complexity of φ.
atomic case If φ is the atomic formula p(t1, . . . , t2) then

Y(p(t1, . . . , tn)) = T (p(t1, . . . , tn) ∨ F(p(t1, . . . , tn)

= (p(t̄) ∧
∧i=n
i=1 wfti) ∨ (¬p(t̄) ∧

∧i=n
i=1 wfti)

⇔ (p(t̄) ∨ ¬p(t̄)) ∧
∧i=n
i=1 wfti

⇔
∧i=n
i=1 wfti

So if M |= p(t̄) ∧ Y(p(t̄)) then also M |= p(t̄).

37

conjunction We start from M |= (φ1 ∧ φ2) ∧ Y(φ1 ∧ φ2). By Lemma
14 we must have M |= T (φ1 ∧ φ2) since M |= F(φ1 ∧ φ2) would lead to the
contradictionM |= (φ1 ∧ φ2)∧¬(φ1 ∧ φ2). This entailsM |= φi ∧T (φi) and
thus M |= φi ∧ Y(φi) for i = 1, 2. Induction hypothesis yields N |= φi ∧ φ2,
as desired.

disjunction Absolutely analogous to the conjunction case.
negation We start from M |= ¬φ ∧ Y(¬φ). By Lemma 14 we get M |=
T (¬φ) which yields by definition of T that M |= ¬φ ∧ F(φ). By item (1)
of this lemma we get N |= F(φ) and thus also N |= Y(φ). If N |= φ were
true we would obtain from the induction hypothesis and the symmetry with
respect to M and N that M |= φ. A contradiction. Thus N |= ¬φ.

quantification We start from M |= ∀xφ ∧ Y(∀xφ). Following the
pattern from previous cases we argue that we must have M |= T (∀xφ).
SinceM |= F(∀xφ) would produce the contradictionM |= (∀xφ) ∧ (¬∀xφ).
By definition of T we get M |= ∀xT (φ). For any element a in the common
universe of M and N we get M |= φ[a] and M |= T (φ)[a]. Induction
hypothesis now yields N |= φ[a]. Since this works for arbitrary a we have
N |= ∀xφ. The case of the existential quantifier is absolutely analogous.

Claim (3): Trivial consequence of claim (2).

Definition 16
By PSubst(φ) we denote the formula that arises from φ by substituting

• every positive occurence of an atomic subformula p(t1, . . . , tn) in φ by∧i=n
i=1 wfti ∧ p(t1, . . . , tn)

• every negative occurence of an atomic subformula p(t1, . . . , tn) in φ by∧i=n
i=1 wfti → p(t1, . . . , tn).

By PSubst−(φ) we denote the following inverted substitution:

• every negative occurence of an atomic subformula p(t1, . . . , tn) in φ is
substituted by

∧i=n
i=1 wfti ∧ p(t1, . . . , tn)

• every positive occurence of an atomic subformula p(t1, . . . , tn) in φ is
substituted by

∧i=n
i=1 wfti → p(t1, . . . , tn).

An occurence of a subformula is called positive if it is on the scope of an
even number of negation symbols and negative if it is on the scope of an

38

odd number of negation symbols. We trust that this explanation is precise
enough. For a formal definition we would need to introduce a notation system
to denote occurences within a formula.

Lemma 16
The following equivalences are tautologies

1 PSubst(φ1 ∧ φ2) ⇔ PSubst(φ1) ∧ PSubst(φ2)
PSubst−(φ1 ∧ φ2) ⇔ PSubst−(φ1) ∧ PSubst−(φ2)

2 PSubst(φ1 ∨ φ2) ⇔ PSubst(φ1) ∨ PSubst(φ2)
PSubst−(φ1 ∨ φ2) ⇔ PSubst−(φ1) ∨ PSubst−(φ2)

3 PSubst(∀xφ) ⇔ ∀x PSubst(φ)
PSubst−(∀xφ) ⇔ ∀x PSubst−(φ)

4 PSubst(∃xφ) ⇔ ∃x PSubst(φ)
PSubst−(∃xφ) ⇔ ∃x PSubst−(φ)

5 PSubs(¬φ) ⇔ ¬PSubs−(φ)
PSubs−(¬φ) ⇔ ¬PSubs(φ)

6 PSubst(¬(φ1 ∨ φ2)) ⇔ PSubst(¬φ1) ∧ PSubst(¬φ2)
7 PSubst(¬(φ1 ∧ φ2)) ⇔ PSubst(¬φ1) ∨ PSubst(¬φ2)
8 PSubst(¬∀xφ) ⇔ PSubst(∃x¬φ)
9 PSubst(¬∃xφ) ⇔ PSubst(∀x¬φ)

10 PSubst(¬¬φ) ⇔ PSubst(φ)

Proof A really formal proof would need a notation system for occurences
of subformulas. But, we trust that the truth of the equivalences 1 to 5 will
be accepted by the reader without this formal effort. The remaining claims
6 to 10 follow from 1 to 5 easily. Here is a proof of 7

PSubst(¬(φ1 ∧ φ2)) ⇔ ¬PSubst−(φ1 ∧ φ2)
⇔ ¬(PSubst−(φ1) ∧ PSubst−(φ2))
⇔ ¬PSubst−(φ1) ∨ ¬PSubst−(φ2)
⇔ PSubst(¬φ1) ∨ PSubst(¬φ2)

It is tempting to conjecture that for a tautology φ also PSubst(φ) is a
tautology. But, p(t)∨¬p(t) is always a tautology while PSubst(p(t)∨¬p(t)) =
(p(t) ∧ wft) ∨ (¬p(t)) ∧ wft)⇔ wft is in general not.

Lemma 17
Let φ be a Σ-formula then

1. T (φ)⇔ PSubst(φ)

39

2. F(φ)⇔ PSubst(¬φ)

Proof The proof proceeds by simultaneous induction on the complexity of
φ.
atomic case
T (p(t1, . . . , tn)) =

∧i=n
i=1 wfti ∧ p(t1, . . . , tn)

= PSubst(p(t1, . . . , tn))

F(p(t1, . . . , tn)) =
∧i=n
i=1 wfti ∧ ¬p(t1, . . . , tn)

= ¬(
∧i=n
i=1 wfti → p(t1, . . . , tn)

= PSubst(¬p(t1, . . . , tn))
conjunction
T (φ1 ∧ φ2) = T (φ1) ∧ T (φ2) Def. T

= PSubst(φ1) ∧ PSubst(φ2) Ind.Hyp.
= PSubst(φ1 ∧ φ2) property of Psubst

F(φ1 ∧ φ2) = F(φ1) ∨ F(φ2) Def. F
= PSubst(¬φ1) ∨ PSubst(¬φ2) Ind.Hyp.
= PSubst(¬φ1 ∨ ¬φ2) property of Psubst
= PSubst(¬(φ1 ∧ φ2)) property of Psubst

disjunction Analogous to the conjunction case.
negation
T (¬φ) = F(φ1) Def. T

= PSubst(¬φ) Ind.Hyp.

F(¬φ) = T (φ1) Def. F
= PSubst(φ) Ind.Hyp.
= PSubst(¬¬φ) property of Psubst

quantification
T (∀xφ) = ∀xT (φ) Def. T

= ∀x PSubst(φ) Ind.Hyp.
= PSubst(∀xφ) property of Psubst

F(∀xφ) = ∃xF(φ) Def.
= ∃x PSubst(¬φ) Ind.Hyp.
= PSubst(¬∀xφ) property of Psubst

For the convenience of the reader we repeat here the connection of the
operator Y with three-valued logic. We assume a basic familiarity with three-
valued logics.

40

Definition 17 (Three-valued Structure)
LetM = (M, I) be a (full) Σ-structure for a partial signature Σ. A 3-valued
structure M3 = (M3, I3) is defined by:

M3 = M ∪ {⊥},⊥6∈M

I3(f)(a1, .., an) =


I(f)(a1, .., an) if (a1, .., an) ∈Mn and

f ∈ Σt or M |= fixf [a1, .., an]
⊥ otherwise

I3(p)(a1, .., an) =


1 if (a1, .., an) ∈Mn and M |= p[a1, .., an]
1
2

ai =⊥ for some i
0 if (a1, .., an) ∈Mn and M |= ¬p[a1, .., an]

As a consequence of this definition we get for all function symbols f in Σ
that I3(f)(a1, . . . , an) =⊥ if ai =⊥ for some i.

Definition 18 (Three-valued Logic)
The truth value of compound formulas in a three-valued structure M3 =
(M3 = M ∪ {⊥}, I3) will be fixed as follows:

I3(φ1 ∧ φ2) = min{I3(φ1), I3(φ2)}
I3(φ1 ∨ φ2) = max{I3(φ1), I3(φ2)}
I3(¬φ) = 1− I3(φ)
I3(φ1 → φ2) = I3(¬φ1 ∨ φ2)
I3(∀xφ) = min{I3(φ[a]) | a ∈M}
I3(∃xφ) = max{I3(φ[a]) | a ∈M}

The minimum and maxiumum operators are performed with respect to the
intuitive ordering 0 < 1

2
< 1 of the three truth values.

Note, that according to Definition 18 quantifiers only range over M and
not over the whole universe M3 = M ∪ {⊥} of M3.

Example 18
1 I3(1

0
> 0 ∨ 1 > 0) = 1

2 I3(1
0
> 0 ∨ 1

0
≤ 0) = 1

2

3 I3(1
0
> 0→ 1 > 0) = 1

4 I3(∀x(1
x
∗ x = x) = 1

2

5 I3(∃x(1
x
∗ x = x) = 1

Example 1 can be interpreted as a kind of short-cut evaluation as known
from Boolean operators in programming languages, with the difference that
here the order of the disjunctive parts is not relevant. Example 2 shows that

41

this short-cut evaluation does not extend to the evaluation of even simple
tautologies.

Lemma 19
Let M = (M, I) be a Σ-structure, t a term, φ a Σ-formula with the free
variables x1, . . . , xn, and ā = a1, . . . , an elements in M . Then

1. If M |= wft[a1, . . . , an] then I(t)(a1, . . . , an) = I3(t)(a1, . . . , an)

2. M |= T (φ)[a1, . . . , an] iff I3(φ[a1, . . . , an]) = 1

3. M |= F(φ)[a1, . . . , an] iff I3(φ[a1, . . . , an]) = 0

4. M |= Y(φ)[a1, . . . , an] iff I3(φ[a1, . . . , an]) 6= 1
2

Proof
Item 1 If t is a simple term of the form f(x1, . . . , xn) the claim follows
from Definitions 17 and 14. If t is a compound term f(t1, . . . , tn) the in-
duction hypothesis, making use of the fact that M |= wft[ā] implies M |=
fixf [I

M(t1)[ā], . . . , IM(tn)[ā]] yields I(ti)(a1, . . . , an) = I3(ti)(a1, . . . , an) for
all i. Now
I(t)(ā) = I(f)(I(t1)(ā), . . . , I(tn)(ā) semantics

= I3(f)(I(t1)(ā), .., I(tn)(ā)) M |= fixf [I(t1)(ā), .., I(tn)(ā)]
and Def.17

= I3(f)(I3(t1)(ā), . . . , I3(tn)(ā) Ind.Hyp
= I3(t)(ā) semantics

Items 2 and 3 The proof proceeds by simultaneous induction on the com-
plexity of φ.
atomic formulas
M |= T (p(t̄))[ā] ⇔ M |= (p(t̄) ∧

∧i=n
i=1 wfti)[ā] Def. T

⇔ M |= p[b̄] and bi = I(ti)[ā] = I3(ti)[ā] item 1
⇔ I3(p[b̄]) = 1 Def. I3

⇔ I3(p(t̄)[ā]) = 1 def. of b

M |= F(p(t̄))[ā] ⇔ M |= (¬p(t̄) ∧
∧i=n
i=1 wfti)[ā] Def. F

⇔ M |= ¬p[b̄] and bi = I(ti)[ā] = I3(ti)[ā] item 1
⇔ I3(p[b̄]) = 0 Def. I3

⇔ I3(p(t̄)[ā]) = 0 def. of b
conjunction

42

M |= T (φ1 ∧ φ2)[ā] ⇔ M |= (T (φ1) ∧ T (φ2))[ā] Def. T
⇔ I3(φ1[ā]) = 1 and I3(φ2[ā]) = 1 I.Hyp.
⇔ I3((φ1 ∧ φ2[ā])) = 1 Def. I3

M |= F(φ1 ∧ φ2)[ā] ⇔ M |= (F(φ1) ∨ F(φ2))[ā] Def. F
⇔ M |= F(φ1)[ā] or
M |= F(φ2)[ā] ∨

⇔ I3(φ1[ā]) = 0 or I3(φ2[ā]) = 0 I.Hyp.
⇔ I3((φ1 ∧ φ2[ā])) = 0 Def. I3

disjunction analogous to conjunction
negation
M |= T (¬φ)[ā] ⇔ M |= F(φ)[ā] Def. T

⇔ I3(φ[ā]) = 0 Ind.Hyp.
⇔ I3(¬φ[ā]) = 1 Def. I3

The case M |= F(¬φ)⇔ I3(¬φ) = 0 follow vice versa.
quantification
M |= T (∀x0φ)[ā] ⇔ M |= (∀x0T (φ))[ā] Def. T

⇔ M |= T (φ)[a0, ā] for all a0 ∈M Def. ∀
⇔ I3(φ[a0, ā]) = 1 for all a0 ∈M Ind.Hyp.
⇔ I3(∀x0φ[ā]) = 1 Def. I3

We leave the remaining case T (∃x0φ), F(∀x0φ), F(∃x0φ) to the reader.
Item 4 follows directly from 2 and 3.

2.5 Examples

Example 20
Let us compute wdφ for

φ(s1, s2) ≡
(s1 = s2 ↔ seqLen(s1) = seqLen(s2) &
∀int i(0 ≤ i < seqLen(s1)→ any :: seqGet(s1, i) = any :: seqGet(s2, i)))

This is the equality axiom SeqAxiom 1 on page 62 for the theory of sequences.
It just serves as an example here and does not imply any commitment that
axioms should be well-defined.

wdφ(s1, s2) = (true ∧ true & ∀int i(0 ≤ i&i < seqLen(s1)→
0 ≤ i & i ≤ seqLen(s1) & i ≤ seqLen(s2)))

↔ (∀int i(0 ≤ i & i < seqLen(s1)→
0 ≤ i & i ≤ seqLen(s1) & i ≤ seqLen(s2)))

43

Further

wd∀Seq s1,s2φ = ∀Seq s1, s2∀int i(0 ≤ i & i < seqLen(s1)→
0 ≤ i & i ≤ seqLen(s1) & i ≤ seqLen(s2))

↔ ∀Seq s1, s2∀int i(0 ≤ i & i < seqLen(s1)→
i ≤ seqLen(s2))

If Thseq is the overspecified theory of sequences given Section 2.7, then
Thseq 6` ∀s1, s2wdφ. But, the formula ∀s1, s2φ is nevertheless total. The
problem is, that when computing wd for the second conjunct on the righthand
side of the equivalence no use can be made of the equality seqLen(s1) =
seqLen(s2) stated in the first conjunct. This emphasizes the point the wdφ is
only a sufficient condition for totality and depends very much on the syntactic
structure of the formula under consideration. This is in contrast with the
notion of a total formula with respect to Th: If ψ is total with respect to
Th and Th |= ψ ↔ ψ′ then also ψ′ is total with respect to Th. Also the
operation Y from Section 2.4 shares this property. Y(φ) is computed in the
next Example 21.

A simple syntactic variation from φ to an equivalent formula φ′ would
yield Thseq ` ∀s1, s2wdφ′ :

φ′(s1, s2) ≡
(s1 = s2 ↔ seqLen(s1) = seqLen(s2) &
∀int i(0 ≤ i & i < seqLen(s1) & i < seqLen(s2)
→ any :: seqGet(s1, i) = any :: seqGet(s2, i)))

Example 21
Let us compute Y(φ) for the same formula as in Example 20:

φ(s1, s2) ≡
(s1 = s2 ↔ seqLen(s1) = seqLen(s2) &
∀int i(0 ≤ i < seqLen(s1)→ any :: seqGet(s1, i) = any :: seqGet(s2, i)))

For conciseness we write s[i] for any :: seqGet(s, i), Len for seqLen, and ∀i
∃i for ∀int i ∃int i.

44

T (φ) = (T (s1 6= s2) ∨ T (Len(s1) = Len(s2) ∧ ∀i(. . .))) ∧
(T (s1 = s2) ∨ T (¬(Len(s1) = Len(s2) ∧ ∀i(. . .))))

= (s1 6= s2 ∨ (Len(s1) = Len(s2) ∧ T (∀i(. . .)))) ∧
(s1 = s2 ∨ (Len(s1) 6= Len(s2) ∨ T (¬∀i(. . .))))

= (s1 6= s2 ∨ (Len(s1) = Len(s2) ∧
∀i(0 ≤ i ∧ i < Len(s1)→ T (s1[i] = s2[i])))) ∧

(s1 = s2 ∨ (Len(s1) 6= Len(s2) ∨
∃i(0 ≤ i ∧ i < Len(s1) ∧ F(s1[i] = s2[i]))))

= (s1 6= s2 ∨ (Len(s1) = Len(s2) ∧
∀i(0 ≤ i ∧ i < Len(s1)→

(s1[i] = s2[i]) ∧ 0 ≤ i ∧ i < Len(s1) ∧ i < Len(s2)))) ∧
(s1 = s2 ∨ (Len(s1) 6= Len(s2) ∨
∃i(0 ≤ i ∧ i < Len(s1)∧

s1[i] 6= s2[i]) ∧ 0 ≤ i ∧ i < Len(s1) ∧ i < Len(s2))
= (s1 = s2 → (Len(s1) = Len(s2) ∧

∀i(0 ≤ i ∧ i < Len(s1)→
(s1[i] = s2[i]) ∧ 0 ≤ i ∧ i < Len(s1) ∧ i < Len(s2)))) ∧

s1 6= s2 → (Len(s1) 6= Len(s2)∨
∃i(0 ≤ i ∧ i < Len(s1) ∧ i < Len(s2) ∧ s1[i] 6= s2[i]))

= true ∧
s1 6= s2 → (Len(s1) 6= Len(s2)∨
∃i(0 ≤ i ∧ i < Len(s1) ∧ i < Len(s2) ∧ s1[i] 6= s2[i]))

45

F(φ) = F(s1 6= s2 ∨ (Len(s1) = Len(s2) ∧ ∀i(. . .))) ∨
F(s1 = s2 ∨ ¬(Len(s1) = Len(s2) ∧ ∀i(. . .)))

= (F(s1 6= s2) ∧
(F(Len(s1) = Len(s2)) ∨ F(∀i(. . .)))) ∨
(F(s1 = s2) ∧
(F(¬(Len(s1) = Len(s2))) ∨ F(¬∀i(. . .))))

= (s1 = s2 ∧
(Len(s1) 6= Len(s2∨
F(∀i(0 ≤ i ∧ i < Len(s1)→ s1[i] = s2[i]))))) ∨

(s1 6= s2∧
(Len(s1) = Len(s2)∧
F(¬∀i(0 ≤ i ∧ i < Len(s1)→ s1[i] = s2[i]))))

= (s1 = s2∧
(Len(s1) 6= Len(s2∨
∃iF(0 ≤ i ∧ i < Len(s1)→ s1[i] = s2[i])))) ∨

(s1 6= s2∧
(Len(s1) = Len(s2)∧
T (∀i(0 ≤ i ∧ i < Len(s1)→ s1[i] = s2[i]))))

= (s1 = s2∧
(Len(s1) 6= Len(s2)∨
∃i(¬(0 ≤ i) ∧ ¬(i < Len(s1)) ∧ F(s1[i] = s2[i])))) ∨

(s1 6= s2∧
(Len(s1) = Len(s2))∧
∀i(0 ≤ i ∧ i < Len(s1)→ T (s1[i] = s2[i]))))

= (s1 = s2∧
(Len(s1) 6= Len(s2)∨
∃i(¬(0 ≤ i) ∧ ¬(i < Len(s1))∧
s1[i] 6= s2[i] ∧ 0 ≤ i ∧ i < Len(s1) ∧ i < Len(s2)))) ∨

(s1 6= s2∧
Len(s1) = Len(s2)∧
∀i(0 ≤ i ∧ i < Len(s1)→

s1[i] = s2[i] ∧ 0 ≤ i ∧ i < Len(s1) ∧ i < Len(s2)))
= false ∨

(s1 6= s2∧
Len(s1) = Len(s2)∧
∀i(0 ≤ i ∧ i < Len(s1)→ s1[i] = s2[i]))

46

Y(φ) = T (φ) ∨ F(φ)
= (s1 = s2 ∨ Len(s1) 6= Len(s2) ∨ ∃i(. . .))

∨
(s1 6= s2 ∧ Len(s1) = Len(s2) ∧ ∀i(. . .))

⇔ true ∧ true ∧
(s1 = s2 ∨ Len(s1) 6= Len(s2) ∨ ∃i(. . .) ∨ ∀i(. . .))

⇔ s1 = s2 ∨ Len(s1) 6= Len(s2) ∨
∃i(0 ≤ i ∧ i < Len(s1) ∧ i < Len(s2) ∧ s1[i] 6= s2[i]) ∨
∀i(0 ≤ i ∧ i < Len(s1)→ s1[i] = s2[i])

⇔ (s1 = s2 ∧ (. . . ∨ . . .))∨
(s1 6= s2 ∧ (. . . ∨ . . .))

⇔ (s1 = s2 ∧ (s1 = s2 ∨ false ∨ false ∨ true))∨
(s1 6= s2 ∧ (false ∨ Len(s1) 6= Len(s2)∨
∃i(0 ≤ i ∧ i < Len(s1) ∧ i < Len(s2) ∧ s1[i] 6= s2[i]) ∨
∀i(0 ≤ i ∧ i < Len(s1)→ s1[i] = s2[i])

⇔ s1 = s2 ∨
(s1 6= s2 ∧ (Len(s1) 6= Len(s2)∨
∃i(0 ≤ i ∧ i < Len(s1) ∧ i < Len(s2) ∧ s1[i] 6= s2[i]) ∨
∀i(0 ≤ i ∧ i < Len(s1)→ s1[i] = s2[i])))

⇔ s1 = s2 ∨
(s1 6= s2 ∧ (
(Len(s1) = Len(s2)∧
∀i(0 ≤ i ∧ i < Len(s1) ∧ i < Len(s2)→ s1[i] = s2[i]))
→
∀i(0 ≤ i ∧ i < Len(s1)→ s1[i] = s2[i])))

⇔ s1 = s2 ∨ (s1 6= s2 ∧ true)
⇔ true

Example 22
Let us compute wdφ for

φ ≡
(∀node m; (m 6= start − > (∃Seq s; (fwpath(s) &

node :: seqGet(s, 0) = start &
node :: seqGet(s, seqLen(s)− 1) = m &
pw(s) = d(m))))

47

This is the first claim (1.9) of the Bellman-Ford-Lemma. We compute wdφ
using the fixed values formulas from Example 2.

wdφ = ∀node m(m 6= start→
∀Seq s; (fwpath(s)→
& 0 ≤ 0 < seqLen(s) & node :: instance(any :: seqGet(s, 0))
& 0 ≤ seqLen(s)− 1 < seqLen(s) &
& node :: instance(any :: seqGet(s, seqLen(s)− 1)) &
& ∀i(0 ≤ i & i < seqLen(s)→
edge(node :: seqGet(x1, i), (node :: seqGet(x1, i+ 1))))
&
node :: instance(node :: seqGet(x1, i)))

Let ThWG be the theory of weighted graphs presented in Subsection 4.1.
Unfortunately we cannot prove ThWG ` wdφ since 0 < seqLen(s) does not
follow from fwpath(s). Changing φ to the logically equivalent formula φ′

φ′ ≡
(∀node m; (m 6= start − > (∃Seq s; (fwpath(s) & 0 < seqLen(s) &

node :: seqGet(s, 0) = start &
node :: seqGet(s, seqLen(s)− 1) = m &
pw(s) = d(m))))

then ThWG ` wdφ′ can be proved and we know that φ′, und thus also φ is a
total formula.

Let us now turn to the question how to determine if two theories agree
on the fixed part of their signature. We will look at two examples.

Example 23 (Weighted Graph)

The signature ΣWG is as given in Definition 1 on page 2:

• sorts node and int

• predicate edge (node, node)

• function int w(node, node)

We add here that the function w is partial with the fixed values formula
fixw(x1,x2) = edge(x1, x2).

48

Th1
WG is given by the axioms

∀node n; (!edge(n, n)) (1.1)

∀node m; (∀node n; (edge(n,m) − > w(n,m) > 0)) (1.2)

Th2
WG on the other hand is given by axiom (1.1) and

∀node m; (∀node n; (w(n,m) > 0)) (1.2a)

It is fairly obious that Th1
WG and Th2

WG agree on the fixed part of ΣWG.

A more complex example will be studied in Section 2.6.

Example 24 (Factorial Function)
Let us start from some base theory T0 in signature Σ0 that contains at least
the type int. As usual we consider the interpreted semantics, i.e. in any
model M = (M, I) of T0 the interpretation of int is (precisely) the set of
integers and the arithmetic operations I(+), I(∗), etc have their usual math-
ematical meaning. The signature is extended to Σfact = Σ0 ∪ {fact} by a
unary function symbol fact with fixed valued formula fixfact(x) ≡ x ≥ 0.
We want to extend T0 to axiomatize the following partial Σfact-structure Fp:

fact(n) =

{
n! if n ≥ 0
undefined otherwise

Here n! is the factorial function. In [8, page 373] two axiomatization are
presented.

T 1
fact adds the axioms

fact(0) = 1 (2.4)

∀int z(z > 0→ fact(z) = z ∗ fact(z − 1)) (2.5)

while T 2
fact adds the axioms

fact(0) = 1 (2.6)

∀int z(z 6= 0→ fact(z) = z ∗ fact(z − 1)) (2.7)

It is not hard to see that

For any Σfact-model M of T 1
fact or T 2

fact : Mp
Σfact

= Fp (2.8)

There is a (total) extention M∗ of Fp with M∗ |= T 1
fact ∧ T 2

fact (2.9)

Let M be an arbitrary (total) Σfact-structure, then M |= T 1
fact. (2.10)

49

For M∗ = (Z, I∗) define I∗(fact)(i) = 0 for all i < 0. Otherwise the claims
(2.8), (2.9), and (2.10) are easily verified. By Lemma 13 T 1

fact and T 2
fact agree

on the fixed part of Σfact. Thus the same total formulas are derivable in both
theories.

As a third possibility let T 3
fact be the theory obtained by adding the

following axiom to T 3
fact.

∀z(fact(z) 6= 0) (2.11)

Then T 3
fact is inconsistent since a model would have to satisfy

fact(−1) = (−1) ∗ fact(−2)
= (−1) ∗ (−2) ∗ fact(−3)
= (−1) ∗ (−2) ∗ (−3) ∗ fact(−4)

=
...

which is impossible unless fact(i) = 0 for all i < 0.

Example 25 (Choose Operator)
Let Σ∈ be a signature that contains the sorts elem, set, a constant ∅ of sort
set and the binary relation ∈ (elem, set). The Σ∈-theory T∈ consists of the
axioms

∀elem x(¬x ∈ ∅) (2.12)

∀set x∀set y(x = y ↔ ∀elem u(u ∈ x↔ u ∈ y)) (2.13)

Σch extends Σ∈ by a new function symbol choose : set→ elem with the fixed
value formulas fixchoose(x) ≡ x 6= ∅. We propose two extension T 1

c and T 2
c

of T∈. T
1
c is obtained by adding the axiom

∀set s(s 6= ∅ → choose(s) ∈ s) (2.14)

T 2
c is obtained by adding the axiom

∀set s(choose(s) ∈ s) (2.15)

T 2
c is inconsistent since T 2

c ` choose(∅) ∈ ∅ which contradicts (2.12).
One the other hand T 1

c ` choose(∅) 6∈ ∅ and
T 1
c ` ∀set s(choose(s) ∈ s → wdchoose(s)∈s(s)) since T 1

c ` choose(s) ∈ s →
s 6= ∅

50

Example 26
This example is used as a benchmark problem in [7]. The signature Σbm

consists of the usual operations and relations +, −, 0, . . .n, ≥ on Z and one
unary partial function symbol f with fixf (x) ≡ x ≥ 0. The following series
of formulas is concidered
φ0 ≡ f(x) = x ∨ f(−x) = −x
φn ≡ φn−1 ∧ (f(x+ n) = x+ n ∨ f(−x− n) = −x− n)

Well-definedness of φn is investigated with respect to the Σbm-theory Tbm
given by the usual theory of integers as far as the signature Σbm is concerned
plus the axiom ∀x(x ≥ 0) → f(x) = x). Since tbm ` ∀xφn all formulas are
total with respect to Tbm by Lemma 7.

Let us compute wd(φn) from Definition 15. We get

wd(φ0) ⇔ x = 0
wd(φ1) ⇔ x = 0 ∧ x = 1
wd(φn) ⇔ false for all n ≥ 1

The critereon wd(φn) is thus too crude to prove the totality of φn.
The authors of [7] observe that Y(φn) grows only linearly in the size of

φn. One gets, e.g.,

Y(φ0) ⇔Tbm x ≥ 0 ∨ −x ≥ 0
⇔Tbm true

Likewise Tbm ` Y(φn)↔ true for all n.

2.6 A Theory of Sequences

The goal of this subsection is to describe the sorted first-order theory of finite
sequences that forms the theoretical basis for the taclets in Subsection 4.2.
This theory will, typically, be only one part of the total theory used in an
application as can be seen in Section 1.1. Let Type be the set of types that
exist in a given application context. In particular, sorts any and int will
occur in Type, with α v any (α is a subtype of any) for all α ∈ Types.

The signature Σseq of a theory of sequences contains the additional type

51

Seq and the following function symbols

Constructors
seqEmpty : → Seq
seqSingleton : any → Seq
seqConcat : Seq, Seq → Seq
seqSub : Seq, int, int→ Seq
seqReverse : Seq → Seq

Observers
alpha: : seqGet : Seq, int→ alpha
seqLen : Seq → int

We did not want to include dependent types. So, we had to resort to the
poor man’s polymorphism. For any sort α in Type the signature contains a
function symbols alpha: : seqGet. The situation is a bit ameliorated by the
flexibility of the taclet mechanism that provides a schema variable for types
and by the alpha :: f contruct that easily allows to construct the family of
symbols that derive from the polymorphic symbol f .

The following table show that partial symbols Σseq,p of Σseq

function fixed values formula

seqSub(x1, x2, x3) 0 ≤ x2 ≤ x3 < seqLen(x1)
alpha: : seqGet(x1, x2) 0 ≤ x2 < seqLen(x1)∧

alpha :: instance(any : : seqGet(x1, x2))

We see that the total symbols are
Σseq,t = {seqEmpty, seqSingleton, seqConcat, seqReverse, seqLen}.

We introduce the theory ThseqC incrementally. First Th0
seqC is presented

that only uses the vocabulary Σ0
seq = {seqEmpty, seqSingleton, seqConcat,

seqLen, int : : seqGet, any : : seqGet }. Th1
seqC extends Th0

seqC by also includ-
ing the symbol seqSub into the vocabulary, Σ1

seq = Σ0
seq ∪ {seqSub}. Finally,

ThseqC is obtained as an extension of Th2
seqC by also considering the remain-

ing symbol, Σseq = Σ1
seq ∪ {seqReverse}.

The general approach in the theory of abstract data types is to start from
a structure that fixes the semantics of the data type under consideration. We
will call this structure SQ0, the data type of finite sequence in the signature
Σ0
seq.

For the purposes of this section we will restrict attention, apart from seq,
to the sorts int, any, with int as subsort of any, int v any. It is important

52

to note that we exclude seq v any. Otherwise, that would lead us to a
recursive tower of types sequences, sequences of sequences and so on.

Definition 19
The structure SQ0 = (U, I) consists of

1. the universe U = Z ∪ A ∪ Seq with

• Z as usual

• A an infinite set that serves as the interpretation of the sort any

• Seq = {〈a0, . . . , an〉 | n ∈ N and ai ∈ A}

2. I(seqEmpty) = 〈〉

3. I(seqSingleton)(a) = 〈a〉

4. I(seqConcat)(〈a0, . . . , an〉, 〈b0, . . . , bm〉) = 〈a0, . . . , an, b0, . . . , bm〉

5. I(seqLen)(〈a0, . . . , an〉) = n+ 1

6. I(any : : seqGet)(〈a0, . . . , an〉, i) =

{
ai if 0 ≤ i ≤ n
undef otherwise

7. I(int : : seqGet)(〈a0, . . . , an〉, i) =


ai if 0 ≤ i ≤ n and

ai ∈ Z
undef otherwise

We want to find a first-order axiomatisation ThseqC of SQ0. Later on we will
compare the axiomatisation ThseqC , with the theory Thseq, and its subtheo-
ries Th0

seq, Th
1
seq, embodied in the taclets in Section 4.2.

53

∀seq s1∀seq s2(s1 = s2 ↔ seqLen(s1) = seqLen(s2) &
∀int i(0 ≤ i & i < seqLen(s1)→

any : : seqGet(s1, i) = any : : seqGet(s2, i)))
(SeqAxiomC 1)

∀any x(beta :: instance(x)→ beta: : seqGet(seqSingleton(x), 0) = x)
(SeqAxiomC 2)

∀seq s1∀seq s2∀int i(
0 ≤ i & i < seqLen(s1)→
beta: : seqGet(seqConcat(s1, s2), i) = beta: : seqGet(s1, i)
∧
seqLen(s1) ≤ i & i < seqLen(s1) + seqLen(s2)→
beta: : seqGet(seqConcat(s1, s2), i) = beta: : seqGet(s2, i− seqLen(s1)))

(SeqAxiomC 3)

seqLen(seqEmpty) = 0 (SeqAxiomC 4)

∀any b(seqLen(seqSingleton(b)) = 1) (SeqAxiomC 5)

∀seq s1∀seq s2(
seqLen(seqConcat(s1, s2)) = seqLen(s1) + seqLen(s2))

(SeqAxiomC 6)

Th0
seqC is given by the axioms SeqAxiomC 1 – SeqAxiomC 6.

Lemma 27
From Th0

seqC associativity of the seqConcat function is derivable

∀Seq s1, s2, s3(
seqConcat(s1, seqConcat(s2, s3)) = seqConcat(seqConcat(s1, s2), s3)

Proof By axiom SeqAxiomC 1 it suffices to show for each i with 0 ≤ i & i <
seqLen(s1) + seqLen(s2) + seqLen(s2) that

any : : seqGet(seqConcat(s1, seqConcat(s2, s3))), i)
=
any : : seqGet(seqConcat(seqConcat(s1, s2), s3), i)

In the following arguments axioms SeqAxiomC 3 and SeqAxiomC 6 are used
repeatedly. We distinguish three cases

54

0 ≤ i & i < seqLen(s1)

any : : seqGet(seqConcat(s1, seqConcat(s2, s3))), i) =
any : : seqGet(s1, i)
and
any : : seqGet(seqConcat(seqConcat(s1, s2), s3), i) =
any : : seqGet(seqConcat(s1, s2), i) =
any : : seqGet(s1, i)

seqLen(s1) ≤ i & i < seqLen(s1) + seqLen(s2)

any : : seqGet(seqConcat(s1, seqConcat(s2, s3))), i) =
any : : seqGet(seqConcat(s2, s3), i− seqLen(s1)) =
any : : seqGet(s2, i− seqLen(s1))
and
any : : seqGet(seqConcat(seqConcat(s1, s2), s3), i) =
any : : seqGet(seqConcat(s1, s2), i) =
any : : seqGet(s2, i− seqLen(s1))

seqLen(s1) + seqLen(s2) ≤ i &
i < seqLen(s1) + seqLen(s2) + seqLen(s3)

any : : seqGet(seqConcat(s1, seqConcat(s2, s3))), i) =
any : : seqGet(seqConcat(s2, s3), i− seqLen(s1)) =
any : : seqGet(s3, i− seqLen(s1)− seqLen(s2))
and
any : : seqGet(seqConcat(seqConcat(s1, s2), s3), i) =
any : : seqGet(s3, i− seqLen(s1)− seqLen(s2))

Lemma 28
The following two formulas φi are theorems Th0

seqC ,
i.e., we can prove Th0

seqC ` φi.

1. ∀seq s(seqConcat(s, seqEmpty) = s)

2. ∀seq s(seqConcat(seqEmpty, s) = s)

55

Proof Easy exercise using Axiom SeqAxiomC 1.

Definition 20

1. A term t only built from variables x of sort any or a subsort of any
and the functions seqEmpty, seqSingleton and seqConcat is called a
constructor term.
Thus a constructor term does not contain variables of type seq.

2. A constructor term t is called a normal form if all subterms of t are
either

• seqEmtpy or

• of the form seqSingleton(x) for a variable x or

• of the form seqConcat(t0, seqSingleton(x))

By the way part 2 is phrased it is obvious that any subterm of a normal form
is also a normal form. A typical normal from thus looks like this:

seqConcat(seqConcat(. . . (seqConcat(seqSingleton(x1),
seqSingleton(x2)), . . .), seqSingleton(xn−1)), seqSingleton(xn))

Lemma 29
For every constructor term t there is a normal form nf(t) such that

Th0
seqC ` ∀x̄(t = nf(t))

Let us first establis a bit of terminology. We call two terms t and s equivalent
(in Th0

seqC) if Th0
seqC ` ∀x̄(t = nf(t)). Using this terminology the claim of the

lemma may be rephrased as: for every constructor term there is an equivalent
normal form.

Proof We call a term ε-free if the constant seqEmpty does not occur in it.
As a first step we show that any constructor term t is equivalent to a term
t0 such that

• t0 ≡ seqEmpty or

• t0 is ε-free.

56

t0 can be obtained from t by repeated application of Lemma 28.
The rough guide to the remainder of the proof is: apply the associative

law from left to right as long as possible, then after finitely many step a
normal from will be produced. If you are happy with that you can jump
forward to the end of the proof. For the remaining audience I will spell out
the, I am afraid rather laborious, details. I start be defining two integer
measures of any ε-free constructor term

Definition 21
Let t be an ε-free constructor term.

1. • dp(seqSingleton(x)) = 0

• dp(seqConcat(t0, t1)) = dp(t0) + dp(t1) + 1

2. • dct(seqSingleton(x)) = 0

• dct(seqConcat(t0, t1)) = dct(t0) + dp(t1)

The number dp(t) is just the number of occurences of the symbol seqConcat
in t. The number dct(t) is called the defect of t. We first observe .18

For all ε-free constructor terms t : dct(t) ≤ dp(t) (2)

The relevant part in the inductive argument is

dct(seqConcat(t0, t1)) = dct(t0) + dp(t1) Def.
≤ dp(t0) + dp(t1) Ind.Hyp.
< dp(t0) + dp(t1) + 1 arithmetic
= dp(seqConcat(t0, t1)) Def.

It can be readily seen that dct(t) = 0 for any normal form t. For the initial
cases in Definition 20 of a normal this is explicitly part of the Definition 21
of dct. For the inductive step case we have

dct(seqConcat(t0, seqSingleton(x))) = dct(seqSingleton(x)) Def 21
= dct(t0) + 0 Def 21
= 0 Ind.Hyp

.

The induction hypothesis is applicable since t0 is again a normal form. The
next claim states that also the converse is true.

Any ε-free constructor term t with dct(t) = 0 is a normal form. (3)

57

For the initial cases of the definition of a constructor term this is obvious.
For the rest of the argument we investigate an ε-free constructor term t of
the form seqConcat(t0, t1) with dct(seqConcat(t0, t1)) = 0. Thus dct(t0) = 0
and dp(t1) = 0. The induction hypothesis tells us that t0 is a normal form,
different from seqEmpty. Furthermore, we know that t1 does not contain
the function symbol seqConcat. Since t was ε-free the only possibility is
t1 ≡ seqSingleton(x). Our typing restriction exclude terms of the form
seqSingleton(seqSingleton(x)). Now, it remains to observe that, if t0 is a
normal form then also seqConcat (t0, seqSingleton(x)) is a normal form.

Here comes the next observation:

For all terms s1, s2, s3 dct(seqConcat(s1, seqConcat(s2, s3)))
>

dct(seqConcat(seqConcat(s1, s2), s3))
(4)

This follows from the easy computation:

dct(seqConcat(s1, seqConcat(s2, s3)))
= dct(s1) + dp(seqConcat(s2, s3)) Def
= dct(s1) + dp(s2) + dp(s3) + 1 Def
> dct(s1) + dp(s2) + dp(s3)) arithm.
= dct(seqConcat(s1, s2)) + dp(s3)) Def
= dct(seqConcat(seqConcat(s1, s2), s3)) Def

We are now ready to put the pieces together to finally prove Lemma 29.
Starting from an ε-free constructor term t we apply the rewriting rule

seqConcat(s1, seqConcat(s2, s3)) ; seqConcat(seqConcat(s1, s2), s3)

which by Lemma 27 yields equivalent terms as long as possible. By (4) we
know that this will terminate after finitely many (maybe 0) steps. The final
term tf in this series of rewriting will satisfy dct(tf) = 0 any thus be a normal
form by 3.

Theorem 30
Let M be a model of Th0

seqC (i.e., M |= Th0
seqC) then

Mp
Σ0

seq
= SQ0,

where Mp
Σo

seq
is then partial structure obtained from M (see Definition 9).

58

Proof LetM = (M, I). In our restricted setting M = Z∪A∪Seq, with Z,
A, Seq the interpretations of the sorts int, any and seq. For every constructor
term t and every assignment a1, . . . , an of its variables I(t)(a1, . . . , an) ∈ Seq.
If t is a normal form we write 〈a1, . . . , an〉 for I(t)(a1, . . . , an) ∈ Seq. This is
justified since by axiom SeqAxiomC 1 〈a1, . . . , an〉 = 〈b1, . . . , bm〉 iff n = m
and ai = bi for all 0 ≤ i < n. Furthermore, for any element s ∈ Seq we have
s = 〈a1, . . . , an〉 for n = I(seqLen)(s) and ai = I(any : : seqGet)(s, i). Thus
Seq = {〈a1, . . . , an〉 | n ∈ N, ai ∈ A} can be identified with the interpretation
of sort seq in the structure SQ0. Strictly mathematical we should define an
injective and surjective function F between the universes M of M and U of
SQ0 and then proceed to show that F is an isomorphism. In the remainder
of the proof we will assume the F is identity. This makes notation more
concise and once this simplification has been explained there is little danger
of confusion. It can now be easily verified that id is an isomorphism, i.e.,
that the interpretation of the symbols seqLen and alpha: : seqGet in M and
SQ0 agree on the their fixed value domain. Here is a sample. We show
that I(seqLen)(〈a1, . . . , an〉) = n. Naturally, this is proved via induction on
n. The cases n = 0 and n = 1 are covered by the axioms SeqAxiomC 4
nad SeqAxiomC 5. Assume that we know I(seqLen)(〈a1, . . . , an〉) = n and
want to convince ourselves of I(seqLen)(〈a1, . . . , an, an+1〉) = n + 1. Axiom
SeqAxiomC 6 is sufficient to guarantee this. We leave it to the reader to
handle the cases int : : seqGet and any : : seqGet.

As a side remark we point out that for a given infinite structure N it is
not possible to find a first order theory TN such that for all structures M
from M |= TN we conclude N =M. In the context of Theorem 30 it is the
requirement that the interpretation of sort int is Z that goes beyond first
order logic.

The property of theory Th0
seqC stated in Theorem 30 is in contrast to

the properties of theories ThiWG from Example 23. There may well be mod-
els M1, M2 of Th1

WG such that their restrictions (M1)pΣWG
, (M2)pΣWG

are
different, more precisely are not isomorphic.

Lemma 31
Let M be a (total) Σ0

seq-structure that extends SQ0 then

M |= Th0
seqC

59

Proof Easy.

Just to give an exampleM = (U, IM) could extend the structure SQ0 =
(U, I) by

IM(int :: seqGet)(〈a0, . . . , an〉, i) =

{
ai if 0 ≤ i ≤ n and ai ∈ Z
0 otherwise

Definition 22 (Th1
seqC)

The theory Th1
seqC extends Th0

seqC by including the symbol seqSub into the
vocabulary, Σ1

seq = Σ0
seq ∪{seqSub} and by adding the following two axioms:

∀seq s∀int i, j(i ≤ j → seqLen(seqSub(s, i, j)) = (j − i) + 1)
(SeqAxiomC 7)

∀seq s∀int i, j, k(0 ≤ i ∧ i ≤ j ∧ j < seqLen(s) ∧ 0 ≤ k ∧ i+ k < j∧
beta :: instance(seqGet(s, i+ k))
→ beta :: seqGet(seqSub(s, i, j), k) = beta :: seqGet(s, i+ k))

(SeqAxiomC 8)

In parallel the Σ0
seq-structure SQ0 is expanded to a Σ1

seq-structure SQ1

Definition 23
The structure SQ1 = (U, I) coincides with SQ0 on the vocabulary Σ0

seq and
defines in addition for s = 〈a1, . . . , an〉:

I(seqSub)(s, i, j) =

{
s = 〈ai, . . . , aj〉 if 0 ≤ i ≤ j ≤ n
undef otherwise

The analog of Theorem 30 now reads

Theorem 32
Let M = (M, IM) be a model of Th1

seqC then

Mp
Σ1

seq
= SQ1,

where Mp
Σ1

seq
is then partial structure obtained from M (see Definition 9).

60

Proof Because of Theorem 30 it remains to show that the interpretations
of seqSub agree in M and SQ1. But, this readily follows from axioms Se-
qAxiomC 1, SeqAxiomC 7, and SeqAxiomC 8.

Lemma 33
Let M be a (total) Σ1

seq-structure that extends SQ1 then

M |= Th1
seqC

Proof Easy.

Definition 24 (Th2
seqC)

The theory Th2
seqC extends Th1

seqC by including the symbol seqReverse into
the vocabulary, Σ2

seq = Σ1
seq ∪{seqReverse} and by adding the following two

axioms:

∀seq s(seqLen(seqReverse(s)) = seqLen(s)) (SeqAxiomC 9)

∀seq s∀int k(0 ≤ k ∧ k < seqLen(s)→
beta :: seqGet(seqReverse(s), k) = beta :: seqGet(s, seqLen(s)− k − 1))

(SeqAxiomC 10)

In parallel the Σ1
seq-structure SQ1 is expanded to a Σ2

seq-structure SQ2

Definition 25
The structure SQ2 = (U, I) coincides with SQ1 on the vocabulary Σ0

seq and

I(seqReverse)(〈a1, . . . , an〉) = 〈an, . . . , a1〉

The analog of Theorems 30 and 32 now reads

Theorem 34
Let M = (M, IM) be a model of Th2

seqC then

Mp
Σ2

seq
= SQ2,

61

Proof Easy. Left to the reader.

Lemma 35
Let M be a (total) Σ2

seq-structure that extends SQ2 then

M |= Th2
seqC

Proof Easy.

2.7 An Overspecified Theory of Sequences

As promised before we will now inspect the theory Thseq given by the taclets
from Section 4.2. As a first step we translate them into the usual mathemat-
ical form.

∀seq s1∀seq s2(s1 = s2 ↔ seqLen(s1) = seqLen(s2) &
∀int i(0 ≤ i&i < seqLen(s1)→ any : : seqGet(s1, i) = any : : seqGet(s2, i)))

(SeqAxiom 1)

∀alpha x(beta :: seqGet(seqSingleton(x), 0) = (beta)x)
∧
∀alpha x∀int i(i 6= 0→
beta :: seqGet(seqSingleton(x), i) = beta :: seqGet(seqEmpty, i))

(SeqAxiom 2)

We take the axioms as they are used in the KeY system.

∀seq s1∀seq s2∀int i(
i < seqLen(s1)→
beta :: seqGet(seqConcat(s1, s2), i) = beta :: seqGet(s1, i)
∧
seqLen(s1) ≤ i→
beta :: seqGet(seqConcat(s1, s2), i) = beta :: seqGet(s2, i− seqLen(s1)))

(SeqAxiom 3)

62

seqLen(seqEmpty) = 0 (SeqAxiom 4)

∀any b(seqLen(seqSingleton(b)) = 1) (SeqAxiom 5)

∀seq s1∀seq s2(

seqLen(seqConcat(s1, s2)) = seqLen(s1) + seqLen(s2))

(SeqAxiom 6)

SeqAxiom 9 to SeqAxiom 6 make up the theory Th0
seq. We observe that

Axioms SeqAxiom 1, SeqAxiom 4 SeqAxiom 5 SeqAxiom 6 are the same as
SeqAxiomC 1, SeqAxiomC 4 SeqAxiomC 5 SeqAxiomC 6. Furthermore it is
easy to see that Axioms SeqAxiom 2 implies SeqAxiomC 2 and SeqAxiom 3
implies SeqAxiomC 3. Thus every model of Th0

seq is also a model of Th0
seqC .

Lemma 36
There is a model M0

seq with M0
seq |= Th0

seq

Proof by Construction We assume that only the sorts int, any are avail-
able and that Z, A are non-empty universes interpreting them respectively
with Z ⊆ A. We assume furthermore that cast functions (int), (any) and
the predicates int :: instance, any :: instance have already been defined.

We are now ready for the construction of M0
seq = (M, I). The universe

M of M0
seq is given by

M = M0 ∪ Seq
M0 = Z ∪ A

with Seq = the set of sequences with element from Z∪A. We write elements
s ∈ Seq as s = 〈s0, s1, . . . , sn−1〉 with si ∈ M0. We use 〈〉 to stand for the
empty sequence. The symbols of Σ0

seq are interpreted as follows:

I(seqEmpty) = 〈〉
I(seqSingleton)(a) = 〈a〉 a ∈M0

I(seqConcat)(〈s0, . . . , sn−1〉, 〈sn, . . . , sm−1〉) = 〈s0, . . . , sm−1〉
I(seqLen)(〈s0, . . . , sn−1〉) = n

Finally

I(alpha: : seqGet)(〈s0, . . . , sn−1〉, i) =

{
(alpha)(si) if 0 ≤ i < n
0 otherwise

63

An easy inspection shows that indeed SeqAxiom 9 to SeqAxiom 6 are true in
the model M0

seq thus defined. We make use of the assumption that the cast
functions and type predicates satisfy their specifications, e.g. (int)0 = 0 and
(any)0 = 0.

We note that Lemma 31 fails for Th0
seq.

Lemma 37
Th0

seq and Th0
seqC agree on the fixed part of Σ0

seq.

Proof The assumptions of the criterion in Lemma 13 on page 35 follow
from

• Theorem 30,

• the fact that this theorem is also true for Th0
seq

since Th0
seq is a stronger theory than Th0

seqC

• Lemma 31 and

• Lemma 36

The theory Th1
seq extends Th0

seq by including the symbol seqSub into the
vocabulary, Σ1

seq = Σ0
seq ∪{seqSub} and by adding the following two axioms:

∀seq s∀int i, j(
(i ≤ j → seqLen(seqSub(s, i, j)) = (j − i) + 1)
∧

(i > j → seqLen(seqSub(s, i, j)) = 0))

(SeqAxiom 7)

∀seq s∀int i, j, k((0 ≤ k ∧ k ≤ j − i→
beta :: seqGet(seqSub(s, i, j), k) = beta :: seqGet(s, i+ k))∧
k < 0 ∨ k < j − i→
beta :: seqGet(seqSub(s, i, j), k) = beta :: seqGet(seqEmpty, 0)))

(SeqAxiom 8)

It can be easily seen that (SeqAxiom 7 → SeqAxiomC 7) and (SeqAx-
iom 8→ SeqAxiomC 8) are tautologies. This Th1

seq is a stronger theory than
Th1

seqC . This proves

64

Theorem 38
Let M be a model of Th1

seq then

Mp
Σ1

seq
= SQ1,

Proof Follows from Theorem 32 and the remarks preceeding the statement
of this theorem.

Axioms SeqAxiom 7 and SeqAxiom 8 are typical examples of what is
occasionally called the overspecification in underspecification. We observe
e.g., Th1

seq ` ∀seq s(seqLen(seqSub(s, 1, 0) = 0) while this formula is not
derivable in Th1

seqC . Or Th1
seq ` ∀seq s(any :: seqGet(seqSub(s, 0, 1), 2) =

any :: seqGet(s, 2)) and this formula is also not derivable in Th1
seqC . The

second example seems to be even more serious, since on the lefthand side
the sequence seqSub(s, 0, 1) is certainly undefined at position 2, however the
righthand side is defined if seqLen(s) ≥ 3. Yet, both formulas are not total.
We will in fact find out that Th1

seq and Th1
seqC agree on total formulas.

Lemma 39
There is a model M1

seq with M1
seq |= Th1

seq

Proof by Construction Let M0
seq = (M, I0) be the (total) model satis-

fyingM0
seq |= Th0

seq, already mentioned in passing after the proof of Lemma
36 on page 63 satisfying

I0(int :: seqGet)(〈a0, . . . , an〉, i) =

{
ai if 0 ≤ i ≤ n and ai ∈ Z
0 otherwise

M1
seq = (M, I1) is obtained from M0

seq by defining I1(seqSub) and let I1

agree with I0 on signature Σ0
seq.

I1(seqSub)(〈a0, . . . , an−1〉, i, j) =


seqEmpty if j > i
〈ai, . . . , aj〉 if i ≤ j
with
ai = I0(any : seqGet(〈a0, . . . , an−1〉, i)

Obviously SeqAxiom 7 is satisfied.
We now turn to argue thatM1

seq |=SeqAxiom 8. So let s = 〈a0, . . . , an−1〉
be an element in Mseq and i, j, k be given with 0 ≤ k ∧ k ≤ (j − i).
If j < i we need to verifiy

65

I1(beta :: seqGet(seqSub(s, i, j)))(k) = I0(beta :: seqGet(seqEmpty))(k)
= 0
= I0(beta :: seqGet(seqEmpty))(0)
= I1(beta :: seqGet(seqEmpty))(0)

If j ≥ i we get by definition I1(seqSub(s, i, j)) = 〈ai, . . . , aj〉 and thus

I1(beta :: seqGet(seqSub(s, i, j)))(k) = I0(beta :: seqGet(〈ai, . . . , aj〉))(k)
= I0(beta :: seqGet(〈a0, . . . , an−1〉))(i+ k)
= I1(beta :: seqGet(〈a0, . . . , an−1〉))(i+ k)

The axioms SeqAxiom 7 and SeqAxiom 8 have been chosen to be as
simple as possible neclecting the fact that they may entail strange looking
consequence. This is safe because of the following lemma

Lemma 40
Th1

seq and Th1
seqC agree on the fixed part of Σ1

seq.

Proof The assumptions of the criterion in Lemma 13 on page 35 follow
from

• Theorem 32,

• the fact that this theorem is also true for Th1
seq since Th1

seq is a stronger
theory than Th1

seqC

• Lemma 33 and

• Lemma 39

One has to be careful however not to chose that axioms simpler than
possible. If we had instead of SeqAxiom 8 adopted the even more liberal
axiom SeqAxiom(∗)

∀seq s∀int i, j, k((i ≤ j →
beta :: seqGet(seqSub(s, i, j), k) = beta :: seqGet(s, i+ k))∧
i > j →
beta :: seqGet(seqSub(s, i, j), k) = beta :: seqGet(seqEmpty, 0)))

the resulting theory Th∗seq would have been inconsistent. To see this let
s0 = 〈0, 0, 0, 0〉 as a shorthand for

66

s0 = seqConcat(seqConcat(seqConcat(seqSingleton(0),
seqSingleton(0)), seqSingleton(0)), seqSingleton(0))

Similarly let s1 denote 〈1, 1, 1, 1〉. From SeqAxiom(∗) we obtain

int :: seqGet(seqSub(s0, 1, 0), 2) = int :: seqGet(s0, 3) = 0
and
int :: seqGet(seqSub(s1, 1, 0), 2) = int :: seqGet(s1, 3) = 1

.

But, seqSub(s0, 1, 0) = seqEmpty = seqSub(s1, 1, 0), thus

0 = int :: seqGet(seqSub(s0, 1, 0), 2)
= int :: seqGet(seqEmpty, 3)
= int :: seqGet(seqSub(s1, 1, 0), 2)
= 1

The operation seqReverse has no well-definedness restrictions, so the exten-
sion of the above results to the theory Th2

seq offers no suprise and is left to
the reader.

2.8 Closing Remarks

For pratical purposes it is essential to have a series of lemmata available,
useful and frequently used consequences of the axioms.

An extremely valuable instrument of Th0
seq is the (structural) induction

axiom. If a formula is true of the empty sequence and whenever it is true of
a sequence s then it is also true for all sequences that are one entry longer
than s than the formula is true for all sequences.

(φ[seqEmtpy/s]∧
∀seq s∀any b(φ→ φ[seqConcat(s, seqSingleton(b))/s]))
→ ∀seq sφ[s])

(SeqAxiom 9)

For most pratical purposes this is too crude and you might want to use

(φ[seqEmtpy/s]∧
∀seq s∀alpha b(φ ∧ alpha :: sequence(s)→

φ[seqConcat(s, seqSingleton(b))/s]))
→ ∀seq s(alpha :: sequence(s)→ φ[s])

(SeqAxiom 9a)

where

67

alpha :: sequence(s) ≡ s = seqEmpty ∨
∀int i((0 ≤ i ∧ i < seqLen(s))→
alpha :: instance(any : : seqGet(s, i)))

Section 4.2 also contains a couple of useful taclets, whose correctness can
be derived from the axioms SeqAxiom 1 to SeqAxiom 8 plus the defining
axiom for the reverse operation.

68

Chapter 3

Conservative Extension

3.1 Review of Basic Definitions

The assumptions used in the proof as described in Section 1.4 are not all of
the same kind.

• (1.1), (1.2)
are the axioms of weighted graphs,

• (1.5), (1.6)
are assumptions on the function d that plays a centrol role in the algo-
rithm,

• (1.7), (1.8)
formalize the Bellman-Ford equations,

• (1.3), (1.4)
definitions of the concepts of a path and path weight used in the claim
of the lemma,

• (1.11)
Definition of d-path

The last item is different from the rest. The new function symbol fdpath
defined there is completely auxiliary. It does not occur in neither claim. So
we expect that also the implications

(1.1) & (1.2) &(1.3) & (1.4) &(1.5) & (1.6) & (1.7) & (1.8) → (1.9)

(1.1) & (1.2) &(1.3) & (1.4) &(1.5) & (1.6) & (1.7) & (1.8) → (1.10)

69

without (1.11) are universally valid. This section will provide the necessary
concepts and theorems to show that this is indeed the case.

We start with the relevant definition

Definition 26 (Conservative Extension)

Let Σ0 ⊆ Σ1 be signatures, and Ti set of sentences in FmlΣi
.

T1 is called a conservative extension of T0 if for all sentences φ ∈ FmlΣ0 :

T0 ` φ⇔ T1 ` φ

This definition in particular entails that a conservative extension of a consis-
tent theory is again consistent.

Note on terminology: frequently we use the term theory just as a synonym
for a set of formulas without free variables. Strictly speaking a theory is a
set of formulas without free variables that is closed under logical inference,
i.e., for a theory T in the strict sense {φ | T ` φ} = T . A set of axioms A
axiomatizes a theory T if {φ | A ` φ} = T .

In our situation let TBF0 = { (1.1), (1.2), (1.3), (1.4) & (1.5), (1.6), (1.7),
(1.8) } and TBF1 = TBF0 ∪{(1.11)}. Is TBF1 a conservative extension of TBF0 ?
Fortunately, there is a simple semantical criterion to answer this question.
We need a simple observation and some terminology.

Lemma 41 (Coincidence Lemma)

Let Σ0 ⊆ Σ1 be signatures, and φ ∈ FmlΣ0 . Furthermore let M0 be a
Σ0-structure and M1 an Σ1-expansion of M0. Then

M0 |= φ ⇔ M1 |= φ

Proof Obvious.

Definition 27 (Expansion)
Let Σ0 ⊆ Σ1 be signatures.

1. A Σ1-structureM1 = (M1, I1) is called an expansion of a Σ0-structure
M0 = (M0, I0) if

• M0 = M1 and

70

• for all f, p ∈ Σ0 I1(f) = I0(f) and I1(p) = I0(p).

2. If M1 = (M1, I1) is a Σ1-structure the structure obtained from it by
omitting the interpretations of all symbols in Σ1 \ Σ0 is called the
restriction of M1 to Σ0 and denoted by (M1 � Σ0)

Definition 28 (Semantic Conservative Extension)

Let Σ0 ⊆ Σ1 be signatures, and Ti sets of sentences in FmlΣi
.

T1 is called a semantic conservative extension of T0 if

1. for all Σ1-structures M1

M1 |= T1 ⇒ (M1 � Σ0) |= T0

2. for every Σ0-structure M0 with M0 |= T0 there is a Σ1-expansion M1

of M0 with M1 |= T1.

Theorem 42 (Criterion for Conservative Extension)

Let Σ0 ⊆ Σ1 be signatures, and Ti sets of sentences in FmlΣi
.

If T1 is a semantic conservative extension of T0 then it is also a (syntactic)
conservative extension.

Proof Let φ be a sentence in FmlΣ0 with T0 ` φ. Let M1 be an arbitrary
Σ1-structure. By assumption (M1 � Σ0) |= T0. Thus we also have (M1 �
Σ0) |= φ. By the coincidence lemma 41 we also have M1 |= φ. In total we
have shown T1 ` φ.
Now, assume T1 ` φ. If M0 is an arbitrary Σ0-structure there is by the
assumption an expansion ofM0 to a Σ1-structureM1. From T1 ` φ we thus
getM1 |= φ. The coincidence lemma 41 tells us again that alsoM0 |= φ. In
total we arrive at To ` φ.

Lemma 43 (Definitional Extension)

Let T0 be a set of sentences in the signature Σ0. Let Σ1 = Σ0 ∪ {f} for a
new n-place function symbol f .

Let t be a term in Σ0 with at most the variables v1, . . . , vn. Then

T1 = T0 ∪ {∀v1 . . . ∀vn(f(v1, . . . , vn) = t})

71

is a conservative extension of T0.

If T1 arises in this way from T0 we say that T1 is a definitional extension of
T0.

Proof It suffices to show that T1 is a semantic conservative extension of
T0. So let M0 = (M, I0) be a model of T0. The expansion M1 = (M, I1) of
M0 with M1 |= T1 can simply be defined by

I1(f)(m1, . . . ,mn) = t(M0.β)

with β(vi) = mi.

Our question at the beginning of this section is now answered since TBF1

is a definitional extension of TBF0 .

Lemma 44 (Definable Extension)

Let T0 be a set of sentences in the signature Σ0. Let Σ1 = Σ0 ∪ {f} for a
new n-place function symbol f and let φ be a Σ0 formula with at most the
free variables v, v1, . . . , vn.

Assume that T0 ` ∀v1 . . . ∀vn∃v(φ(v, v1, . . . , vn))
Then

T1 = T0 ∪ {∀v1 . . . ∀vn∀v(f(v1, . . . , vn) = v ↔ φ})
is a conservative extension of T0.

Proof Follows the lines of the proof of Lemma 43.

Lemma 45 (Skolem Extensions)
Let ψ be a formula with free variables w0, w1, . . . , wn in the signature Σ and
T a Σ-theory. The Skolem extension T∃w0ψ of T for ∃w0ψ is obtained by

1. adding an n-place function symbols f to Σ
(sometimes denoted in greater detail as f∃w0ψ) and

2. adding the axiom

∀w1, . . . , wn(∃w0ψ → ψ(f(w1, . . . , wn), w1, . . . , wn))

to T

72

T∃w0ψ is a conservative extension of T .

Let us remark that Lemma 45 is a special case of Lemma 44. Let ψ be
the formula addressed in Lemma 45 with free variables w, w1, . . . , wn. Use
Lemma 44 for the formula

φ(w,w1, . . . , wn) ≡ (∃wψ)→ ψ.

Now, ∀w1, . . . , wn∃wφ obviously is a tautology. Since Skolem extensions are
such an ubiquitously occuring special case we decided to devote a seperate
lemma to them.

Proof We argue that T∃w0ψ is a semantic conservative extension of T . So let
M = (M, I) be an arbitrary Σ-model of T . We define for a1, . . . , an = ā ∈M

I(f)(ā) =

{
some a with M |= ψ[a, ā] if M |= ∃w0ψ[ā]
arbitary if M |= ¬∃w0ψ[ā]

It is easy to see that this way we obtain a model of T∃w0ψ.

You can think of other variants of Lemmas 43 and 44, e.g., in theories
where an induction principle is available the definition of a function could
use recursion, etc.

Example 46
Here finally is an example of a theory extension that is not conservative. Let
TDG be the theory of directed graphs. The vocabulary ΣDG consists of one
binary relation N(x, y). If G = (G, I) is a ΣDG structure, then I(N)(g1, g2)
for g1, g2 ∈ G models the fact that there is a directed edge from node g1 to
g2. We do not impose any restriction on the edge relation. TDG thus has
no axioms. We regard equality = as a logical symbol, and the axioms for
equality as logical axioms. These, of course, are available for derivations in
the theory TDG.

The theory of ordered directed graphs TODG contains one more binary
relation symbol, ΣODG = {N,<} and the following axioms

∀x(¬x < x) strictness
∀x, y, z(x < y ∧ y < z → x < z transitivity
∀x, y(N(x, y)→ x < y) compatibility

Thus < is a strict order relation that is compatible with the edge relation

73

N . If G = (G, I) is a model of TODG the relation I(<) is frequently called
a topological odering of the graph (G, I(N)). It is well-known that only
acyclic graphs can be topologically ordered. Thus TODG is not a semantic
conservative extension of TDG. It can also be easily seen that TODG is not a
(syntactic) conservative extension of TDG:
TODG ` ∀x¬N(x, x) and TODG ` ¬∃x, y, z(N(x, y) ∧N(y, z) ∧N(y, z))
but TDG 6` ∀x¬N(x, x) and TDG 6` ¬∃x, y, z(N(x, y) ∧N(y, z) ∧N(y, z))

3.2 Digression

The reverse of Theorem 42 is also true in a restricted context. Before we state
the precise claim we start with a preparation, the definition and relevance of
the diagram Diag(M) of a structure M.

Definition 29
Let M be a Σ-structure.
The signature ΣM is obtained from Σ by adding new constant symbols ca for
every element a ∈M .

The expansion of M to a ΣM -structure M∗ = (M, I∗) is effected by the
obvious I∗(ca) = a.

Definition 30 (Diagram of a structure)
LetM be a Σ-structure. The diagram ofM, in symbols Diag(M), is defined
by

Diag(M) = {φ ∈ FmlΣM
| M∗ |= φ and φ is quantifierfree}

Lemma 47
Let M be a Σ-structure.
If N |= Diag(M) then M is (isomorphic to) a substructure of N .

Proof Easy.

Furthermore, we will need the following observation:

Lemma 48
Let M0 be a substructure of M and φ logically equivalent to a universal
sentence. Then

M |= φ⇒M0 |= φ

74

Proof Easy induction on the complexity of φ.

To make this notes as self-contained as possible we also repeat the defi-
nition of a substructure here:

Definition 31 (Substructure)
Let M = (M, I) and M0 = (M0, I0) be Σ-structures.
M0 is called a substructure of M iff

1. Mo ⊆M

2. for every n-ary function symbol f ∈ Σ and
any n of elements a1, . . . , an ∈M0

I(f)(a1, . . . , an) = I0(f)(a1, . . . , an)

3. for every n-ary relation symbol p ∈ Σ and
any n of elements a1, . . . , an ∈M0

(a1, . . . , an) ∈ I(p) = (a1, . . . , an) ∈ I0(p)

We are now ready to state and proof the main result of this subsection.

Lemma 49
Let Σ0 ⊆ Σ1 be signatures, and Ti sets of sentences in FmlΣi

and assume
that

1. T1 contains only universal sentences and

2. Σ1 \ Σ0 contains only relation symbols.

If T1 is a conservative extension of T0

then T1 is also a semantic conservative extension of T0

Proof We need to show the two clauses in Definition 28.
(1): Let M1 be a Σ1-structure with M1 |= T1 and M0 its restriction to
Σ0, i.e., M0 =M1 � Σ0. For all φ ∈ T0 obviously T0 ` φ. Thus also T1 ` φ
and thereforeM1 |= φ. By the coincidence lemma this givesM0 |= φ. Thus,
we get M0 |= T0 as desired.
(2): Here we look at a Σ0-structure M0 with M0 |= T0. We set out

75

to find an expansion M1 of M0 with M1 |= T1. To this end we con-
sider the theory T1 ∪ Diag(M0). If this theory were inconistent than al-
ready T1 ∪ F for a finite subset F ⊆ Diag(M0) would be inconsistent.
This is the same as saying T1 ` ¬F . Since the constants ca do not oc-
cur in T1 we get furthermore T1 ` ∀x1, . . . , xn¬F ′, where F ′ is obtained
from F be replacing all occurences of constants ca by the same variable
xi. This is equivalent to T1 ` ¬∃x1, . . . , xnF

′. Since T1 was assume to be
a conservative extension of T0 we also get T0 ` ¬∃x1, . . . , xnF

′ and thus
M0 |= ¬∃x1, . . . , xnF

′. This is a contradiction since by the definition of
Diag(M0) we haveM0 |= ∃x1, . . . , xnF

′ by instantiating the quantified vari-
able xi that replaces the constant ca by the element a. This contradiction
shows that T1∪Diag(M0) is consistent. Let N be a model of this theory. By
Lemma 47 we may assume that M0 is a substructure of (N � Σ0). Since by
assumption only new relation symbols are added when passing from Σ0 to Σ1

also (N � Σ1) is a substructure of N . By Lemma 48 we get (N � Σ1) |= T1.
Obviously, (N � Σ1) is an expansion of (N � Σ0) =M0 and we are finished.

We note that the proof of Lemma 49 make use of the completeness theo-
rem of first-order predicate logic. More precisely, the completeness theorem
is used in the form:

If a set Γ of formulas is consistent, then it has a model.

As a consequence this proof does not work in the context of first-order logic
with interpreted symbols, see e.g., [18, Subsection 4.2].

Lemma 49 is not true without restrictions. The following example from
[11] shows that there are theories T0 and T1 such that T1 is a conservative
extension of T0 but not a semantic conservative extension of T0

Example 50
Let Σ0 = {R, f, 0} be the signature with

• a binary relation symbol R

• a unary function symbol f

• a constant symbol 0

Let Σ1 = Σ0 ∪ {B,ω} with

• a unary relation symbol B

76

• a constant symbol ω

Theory T0 is given by the axioms

1. ∀xR(x, f(x))

2. ∀x∀y∀z(R(x, y) ∧R(y, z)→ R(x, z))

3. ∀x¬R(x, x)

T1 is T0 plus the following axioms

4. B(0)

5. ∀x(B(x)→ B(f(x))

6. ¬B(ω)

T1 is a conservative extension of T0

Obviously, T0 ` φ implies T1 ` φ for every Σ0-formula φ.
Now assume T1 ` φ. We want to show T0 ` φ. Assume this is not the case.
Thus there is a Σ0-model M of T0 ∪ {¬φ}. The axioms of T0 imply that
for all n ∈ N we have M |= R(fn(0), fn+1(0)) and the elements 0M, f(0)M,
. . . fn(0)M are all different. In particular M |= R(f i(0), fn(0)) for all 0 ≤
i < n. This shows that any finite subset of T0∪{¬φ}∪{R(fn(0), ω) | n ∈ N}
is satisfiable. By the compactness theorem T0∪{¬φ}∪{R(fn(0), ω) | n ∈ N}
is satisfiable, say by N . If we define BN1 = {f i(0)N | i ∈ N} then N1 satisfies
axiom 4. and 5. of T1. If N |= ω = fn(0) we would have N |= R(ω, ω) which
contradicts axiom 3 of T0. This N1 is a model of T1∪{¬φ} contradicting our
assumption. This completes the proof by contradiction of T0 ` φ.

T1 is not a conservative semantic extension of T0

Let M by a structure with universe M = N, 0M = 0, fM(n) = n + 1 and
RM(n,m)⇔ n < m. It can be easily checked that M |= T0. If M1 were an
Σ1-expansion of M with M1 |= T1 axiom 5 entails BM1 = N = M . Thus
axiom 6 cannot be satisfied.

We note that this example violates assumption 2 of Lemma 49 since
Σ1 \ Σ0 also contains a constant symbol.

77

Chapter 4

Taclets

4.1 Taclets for some Axioms

Taclet for Unfolding the Definition of fwpath

fwPath{
\schemaVar \term Seq seq ;
\schemaVar \ v a r i a b l e s i n t iv ;
\ f i n d (fwpath (seq))
\varcond (\ notFreeIn (iv , seq))
\ r ep l a cew i th (\ f o r a l l i v ;((0<= iv & iv<seqLen (seq)−1) −>

edge (node : : seqGet (seq , i v) , node : : seqGet (seq , i v +1))))
} ;

Taclet Forward Structural Seq Induction

seqInd forward {
\varcond (\ notFreeIn (m, b))
”Base Case ” : \add (==> {\ subst s ; seqEmpty}(b)) ;
” Step Case ” : \add (==> \ f o r a l l s ; (\ f o r a l l m ;

(b−>{\subst s ; (seqConcat (s , s eqS ing l e t on (m)))} b))) ;
”Use Case ” : \add (\ f o r a l l s ; (b) ==>)

} ;

Taclet Backward Structural Seq Induction

78

seqInd backward{
\varcond (\ notFreeIn (m, b))
”Base Case ” : \add (==> {\ subst s ; seqEmpty}(b)) ;
” Step Case ” : \add (==> \ f o r a l l s ; (\ f o r a l l m ;

(b−>{\subst s ; (seqConcat (s eqS ing l e t on (m) , s))}b))) ;
”Use Case ” : \add (\ f o r a l l s ; (b) ==>)

} ;

Taclet for Unfolding the Path Weight Function

pwSum{\ schemaVar \term Seq seq ;
\schemaVar \ v a r i a b l e s i n t uSub ;
\ f i n d (pw(seq))
\varcond (\ notFreeIn (uSub , seq))
\ r ep l a cew i th (bsum{uSub ;} (0 , seqLen (seq)−1 ,
w(node : : seqGet (seq , uSub) , node : : seqGet (seq , uSub +1))))
} ;

Taclet for Unfolding the Definition of a fdpath

fdPath{ \schemaVar \term Seq seq ;
\schemaVar \ v a r i a b l e s i n t iv ;
\ f i n d (fdpath (seq))
\varcond (\ notFreeIn (iv , seq))
\ r ep l a cew i th (fwpath (seq) &
\ f o r a l l i v ;((0<= iv & iv<seqLen (seq)−1) −>

d(node : : seqGet (seq , i v +1)) =
d(node : : seqGet (seq , i v)) +
w(node : : seqGet (seq , i v) , node : : seqGet (seq , i v +1))))

} ;

4.2 Taclets for the Sequence Data Type

\ s o r t s {
Seq ;

}

79

\ f u n c t i o n s {
// g e t t e r s
alpha alpha : : seqGet (Seq , i n t) ;
i n t seqLen (Seq) ;

// c o n s t r u c t o r s
Seq seqEmpty ;
Seq s eqS ing l e t on (any) ;
Seq seqConcat (Seq , Seq) ;
Seq seqSub (Seq , int , i n t) ;
Seq seqReverse (Seq) ;

}

\ r u l e s {

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// axioms
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

getOfSeqS ing le ton {
\schemaVar \term alpha x ;
\schemaVar \term i n t idx ;

\ f i n d (beta : : seqGet (s eqS ing l e t on (x) , idx))

\ r ep l a cew i th (\ i f (idx = 0)
\ then ((beta) x)
\ e l s e (beta : : seqGet (seqEmpty , 0)))

\ h e u r i s t i c s (s i m p l i f y)
} ;

getOfSeqConcat {
\schemaVar \term Seq seq , seq2 ;
\schemaVar \term i n t idx ;

\ f i n d (beta : : seqGet (seqConcat (seq , seq2) , idx))

80

\ r ep l a cew i th (
\ i f (idx < seqLen (seq))
\ then (beta : : seqGet (seq , idx))
\ e l s e (beta : : seqGet (seq2 , idx − seqLen (seq))))

\ h e u r i s t i c s (s i m p l i f y e n l a r g i n g)
} ;

getOfSeqSub {
\schemaVar \term Seq seq ;
\schemaVar \term i n t idx , from , to ;

\ f i n d (beta : : seqGet (seqSub (seq , from , to) , idx))

\ r ep l a cew i th (\ i f (0<=idx & idx<(to−from)+1)
\ then (beta : : seqGet (seq , idx + from))
\ e l s e (beta : : seqGet (seqEmpty , 0)))

\ h e u r i s t i c s (s i m p l i f y)
} ;

getOfSeqReverse {
\schemaVar \term Seq seq ;
\schemaVar \term i n t idx ;

\ f i n d (beta : : seqGet (seqReverse (seq) , idx))

\ r ep l a cew i th (beta : : seqGet (seq , seqLen (seq)−1− idx))

\ h e u r i s t i c s (s i m p l i f y e n l a r g i n g)
} ;

lenNonNegative {
\schemaVar \term Seq seq ;

81

\ f i n d (seqLen (seq))

\add (0 <= seqLen (seq) ==>)

\ h e u r i s t i c s (inReachab l eSta te Imp l i ca t i on)
} ;

lenOfSeqEmpty {
\ f i n d (seqLen (seqEmpty))

\ r ep l a cew i th (0)

\ h e u r i s t i c s (conc r e t e)
} ;

l enOfSeqS ing l e ton {
\schemaVar \term alpha x ;

\ f i n d (seqLen (s eqS ing l e t on (x)))

\ r ep l a cew i th (1)

\ h e u r i s t i c s (conc r e t e)
} ;

lenOfSeqConcat {
\schemaVar \term Seq seq , seq2 ;

\ f i n d (seqLen (seqConcat (seq , seq2)))

\ r ep l a cew i th (seqLen (seq) + seqLen (seq2))

\ h e u r i s t i c s (s i m p l i f y)
} ;

82

lenOfSeqSub {
\schemaVar \term Seq seq ;
\schemaVar \term i n t from , to ;

\ f i n d (seqLen (seqSub (seq , from , to)))

\ r ep l a cew i th (
\ i f (from <= to)\ then ((to − from) + 1)\ e l s e (0))

\ h e u r i s t i c s (s i m p l i f y e n l a r g i n g)
} ;

lenOfSeqReverse {
\schemaVar \term Seq seq ;

\ f i n d (seqLen (seqReverse (seq)))

\ r ep l a cew i th (seqLen (seq))

\ h e u r i s t i c s (s i m p l i f y)
} ;

equalityToSeqGetAndSeqLen {
\schemaVar \term Seq s , s2 ;
\schemaVar \ v a r i a b l e s i n t iv ;

\ f i n d (s = s2)
\varcond (\ notFreeIn (iv , s , s2))

\ r ep l a cew i th (seqLen (s) = seqLen (s2)
& \ f o r a l l i v ; (0 <= iv & iv < seqLen (s)

−>
any : : seqGet (s , i v) = any : : seqGet (s2 , i v)))

} ;

equalityToSeqGetAndSeqLenLeft {
\schemaVar \term Seq s , s2 ;

83

\schemaVar \ v a r i a b l e s i n t iv ;

\ f i n d (s = s2 ==>)
\varcond (\ notFreeIn (iv , s , s2))

\add (seqLen (s) = seqLen (s2)
& \ f o r a l l i v ; (0 <= iv & iv < seqLen (s)

−>
any : : seqGet (s , i v) = any : : seqGet (s2 , i v)) ==>)

\ h e u r i s t i c s (inReachab l eSta te Imp l i ca t i on)
} ;

equalityToSeqGetAndSeqLenRight {
\schemaVar \term Seq s , s2 ;
\schemaVar \ v a r i a b l e s i n t iv ;

\ f i n d(==> s = s2)
\varcond (\ notFreeIn (iv , s , s2))

\ r ep l a cew i th(==> seqLen (s) = seqLen (s2)
& \ f o r a l l i v ; (0 <= iv & iv < seqLen (s)

−>
any : : seqGet (s , i v) = any : : seqGet (s2 , i v)))

\ h e u r i s t i c s (s i m p l i f y e n l a r g i n g)
} ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
//EQ v e r s i o n s o f axioms
// (these are lemmata)
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

getOfSeqSingletonEQ {
\schemaVar \term alpha x ;
\schemaVar \term i n t idx ;
\schemaVar \term Seq EQ;

84

\assumes (s eqS ing l e t on (x) = EQ ==>)
\ f i n d (beta : : seqGet (EQ, idx))
\ sameUpdateLevel

\ r ep l a cew i th (\ i f (idx = 0)
\ then ((beta) x)
\ e l s e (beta : : seqGet (seqEmpty , 0)))

\ h e u r i s t i c s (s i m p l i f y)
} ;

getOfSeqConcatEQ {
\schemaVar \term Seq seq , seq2 ;
\schemaVar \term i n t idx ;
\schemaVar \term Seq EQ;

\assumes (seqConcat (seq , seq2) = EQ ==>)
\ f i n d (beta : : seqGet (EQ, idx))
\ sameUpdateLevel

\ r ep l a cew i th (
\ i f (idx < seqLen (seq))
\ then (beta : : seqGet (seq , idx))
\ e l s e (beta : : seqGet (seq2 , idx − seqLen (seq))))

\ h e u r i s t i c s (s i m p l i f y e n l a r g i n g)
} ;

getOfSeqSubEQ {
\schemaVar \term Seq seq ;
\schemaVar \term i n t idx , from , to ;
\schemaVar \term Seq EQ;

\assumes (seqSub (seq , from , to) = EQ ==>)
\ f i n d (beta : : seqGet (EQ, idx))
\ sameUpdateLevel

\ r ep l a cew i th (beta : : seqGet (seq , idx + from))

85

\ h e u r i s t i c s (s i m p l i f y)
} ;

getOfSeqReverseEQ {
\schemaVar \term Seq seq ;
\schemaVar \term i n t idx ;
\schemaVar \term Seq EQ;

\assumes (seqReverse (seq) = EQ ==>)
\ f i n d (beta : : seqGet (EQ, idx))
\ sameUpdateLevel

\ r ep l a cew i th (beta : : seqGet (seq , seqLen (seq) − 1 − idx))

\ h e u r i s t i c s (s i m p l i f y e n l a r g i n g)
} ;

lenOfSeqEmptyEQ {
\schemaVar \term alpha x ;
\schemaVar \term Seq EQ;

\assumes (seqEmpty = EQ ==>)
\ f i n d (seqLen (EQ))
\ sameUpdateLevel

\ r ep l a cew i th (0)

\ h e u r i s t i c s (conc r e t e)
} ;

lenOfSeqSingletonEQ {
\schemaVar \term alpha x ;
\schemaVar \term Seq EQ;

\assumes (s eqS ing l e t on (x) = EQ ==>)
\ f i n d (seqLen (EQ))
\ sameUpdateLevel

86

\ r ep l a cew i th (1)

\ h e u r i s t i c s (conc r e t e)
} ;

lenOfSeqConcatEQ {
\schemaVar \term Seq seq , seq2 ;
\schemaVar \term Seq EQ;

\assumes (seqConcat (seq , seq2) = EQ ==>)
\ f i n d (seqLen (EQ))
\ sameUpdateLevel

\ r ep l a cew i th (seqLen (seq) + seqLen (seq2))

\ h e u r i s t i c s (s i m p l i f y)
} ;

lenOfSeqSubEQ {
\schemaVar \term Seq seq ;
\schemaVar \term i n t from , to ;
\schemaVar \term Seq EQ;

\assumes (seqSub (seq , from , to) = EQ ==>)
\ f i n d (seqLen (EQ))
\ sameUpdateLevel

\ r ep l a cew i th (
\ i f (from <= to)\ then ((to − from) + 1)\ e l s e (0))

\ h e u r i s t i c s (s i m p l i f y e n l a r g i n g)
} ;

lenOfSeqReverseEQ {
\schemaVar \term Seq seq ;
\schemaVar \term Seq EQ;

87

\assumes (seqReverse (seq) = EQ ==>)
\ f i n d (seqLen (EQ))
\ sameUpdateLevel

\ r ep l a cew i th (seqLen (seq))

\ h e u r i s t i c s (s i m p l i f y)
} ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// lemmata f o r seqEmpty
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

concatWithEmpty1 {
\schemaVar \term Seq seq ;

\ f i n d (seqConcat (seq , seqEmpty))

\ r ep l a cew i th (seq)

\ h e u r i s t i c s (conc r e t e)
} ;

concatWithEmpty2 {
\schemaVar \term Seq seq ;

\ f i n d (seqConcat (seqEmpty , seq))

\ r ep l a cew i th (seq)

\ h e u r i s t i c s (conc r e t e)
} ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
//lemma f o r c a s t s
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

castedGetAny {
\schemaVar \term Seq seq ;

88

\schemaVar \term i n t idx ;

\ f i n d ((beta) any : : seqGet (seq , idx))

\ r ep l a cew i th (beta : : seqGet (seq , idx))

\ h e u r i s t i c s (s i m p l i f y)
} ;

}

4.3 Taclets for bSum

\ schemaVariables {
\term i n t subsumLeft , subsumRightBigger ,

subsumRightSmaller , subsumCoeffBigger ,
subsumCoeffSmaller ;

}

\ r u l e s {
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// r u l e s f o r bounded sums
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

bsum sp l i t {
\ f i n d (bsum{uSub ;} (i0 , i2 , t))
\varcond (\notFreeIn (uSub1 , i 0) ,

\notFreeIn (uSub1 , i 1) ,
\notFreeIn (uSub1 , i 2) ,
\notFreeIn (uSub , i 0) ,
\notFreeIn (uSub , i 1) ,
\notFreeIn (uSub , i 2) ,
\notFreeIn (uSub1 , t))

\ r ep l a cew i th (\ i f (i0<=i 1 & i1<=i 2)
\ then (bsum{uSub ; } (i0 , i1 , t) +

bsum{uSub1 ; } (i1 , i2 ,{\ subst uSub ; uSub1} t))
\ e l s e (bsum{uSub ; } (i0 , i2 , t)))

} ;

89

bsum commutat ive assoc iat ive {
\ f i n d (bsum{uSub ;} (i0 , i2 , t+t2))
\varcond (\notFreeIn (uSub1 , i 0) ,

\notFreeIn (uSub1 , i 2) ,
\notFreeIn (uSub , i 0) ,
\notFreeIn (uSub , i 2) ,
\notFreeIn (uSub1 , t2))

\ r ep l a cew i th (bsum{uSub ; } (i0 , i2 , t) +
bsum{uSub1 ; } (i0 , i2 , {\ subst uSub ; uSub1} t2))
\ h e u r i s t i c s (s i m p l i f y)

} ;

bsum induct ion upper {
\ f i n d (bsum{uSub ;} (i0 , i2 , t))
\varcond (\notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 2))
\ r ep l a cew i th (bsum{uSub ;} (i0 , i2 −1, t) +
\ i f (i0<i 2)
\ then ({\ subst uSub ; (INT2) (i2 −1)} t)
\ e l s e (0))

} ;

bsum induct ion upper2 {
\ f i n d (bsum{uSub ;} (i0 , i2 , t))
\varcond (\notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 2))
\ r ep l a cew i th (bsum{uSub ;} (i0 , i 2 +1, t) −
\ i f (i0<i 2 +1)
\ then ({\ subst uSub ; (INT2) (i 2)} t)
\ e l s e (0))

} ;

b sum induct ion upper concre te {
\ f i n d (bsum{uSub ;} (i0 , 1+i2 , t))
\varcond (\notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 2))
\ r ep l a cew i th (bsum{uSub ;} (i0 , i2 , t) +
\ i f (i0<=i 2)
\ then ({\ subst uSub ; (INT2) (i 2)} t)

90

\ e l s e (0))
\ h e u r i s t i c s (s i m p l i f y)
} ;

b sum induct ion upper2 concre te {
\ f i n d (bsum{uSub ;} (i0 , −1+i2 , t))
\varcond (\notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 2))
\ r ep l a cew i th (bsum{uSub ;} (i0 , i2 , t) −

\ i f (i0<i 2)
\ then ({\ subst uSub ; (INT2) (i2 −1)} t)
\ e l s e (0))

\ h e u r i s t i c s (s i m p l i f y)
} ;

bsum induct ion lower {
\ f i n d (bsum{uSub ;} (i0 , i2 , t))
\varcond (\notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 2))
\ r ep l a cew i th (bsum{uSub ;} (i 0 +1, i2 , t) +
\ i f (i0<i 2)
\ then ({\ subst uSub ; (INT2) (i 0)} t)
\ e l s e (0))

} ;

b sum induct i on lower conc re t e {
\ f i n d (bsum{uSub ;} (−1+i0 , i2 , t))
\varcond (\notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 2))
\ r ep l a cew i th (bsum{uSub ;} (i0 , i2 , t) +
\ i f (−1+i0<i 2)
\ then ({\ subst uSub ; (INT2)(−1+ i 0)} t)
\ e l s e (0))

\ h e u r i s t i c s (s i m p l i f y)
} ;

bsum induct ion lower2 {
\ f i n d (bsum{uSub ;} (i0 , i2 , t))
\varcond (\notFreeIn (uSub , i 0) ,

91

\notFreeIn (uSub , i 2))
\ r ep l a cew i th (bsum{uSub ;} (i0 −1, i2 , t) −
\ i f (i0−1< i 2)
\ then ({\ subst uSub ; (INT2) (i0 −1)} t)
\ e l s e (0))

} ;

b sum induct i on lower2 concre t e {
\ f i n d (bsum{uSub ;} (1+ i0 , i2 , t))
\varcond (\notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 2))
\ r ep l a cew i th (bsum{uSub ;} (i0 , i2 , t) −
\ i f (i0<i 2)
\ then ({\ subst uSub ; (INT2) (i 0)} t)
\ e l s e (0))

\ h e u r i s t i c s (s i m p l i f y)
} ;

b sum zero r ight {
\ f i n d(==> bsum{uSub ;} (i0 , i2 , t)=0)
\varcond (\notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 2))
\add(==> \ f o r a l l uSub ;
{\ subst uSub ; uSub}(uSub>=i 0 & uSub<i 2 −> t =0))

\ h e u r i s t i c s (comprehensions)
} ;

b sum d i s t r i bu t i v e {
\ f i n d (bsum{uSub ;} (i0 , i2 , t∗ t1))
\varcond (\notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 2) ,
\notFreeIn (uSub , t1))

\ r ep l a cew i th (bsum{uSub ;} (i0 , i2 , t)∗ t1)
} ;

b sum equa l sp l i t 1 {
\ f i n d(==> bsum{uSub1 ;} (i0 , i1 , t1)

= bsum{uSub2 ;} (i0 , i2 , t2))
\varcond (\ notFreeIn (uSub1 , i 0) ,

92

\notFreeIn (uSub1 , i 1) ,
\notFreeIn (uSub1 , i 2) ,
\notFreeIn (uSub1 , t2) ,
\notFreeIn (uSub2 , i 2) ,
\notFreeIn (uSub2 , i 1) ,
\notFreeIn (uSub2 , t1) ,
\notFreeIn (uSub2 , i 0))

\add(==> i0<=i 1 & i0<=i 2 &
\ i f (i1<i 2)
\ then (bsum{uSub1 ;} (i0 , i1 , t1−
{\ subst uSub2 ; uSub1} t2) =

bsum{uSub2 ; } (i1 , i2 , t2))
\ e l s e (bsum{uSub1 ;} (i2 , i1 , t1) =

bsum{uSub2 ; } (i0 , i2 , t2−{\subst uSub1 ; uSub2} t1)))
\ h e u r i s t i c s (comprehensions)
} ;

b sum equa l sp l i t 2 {
\assumes (bsum{uSub1 ;} (i0 , i1 , t1) = i ==>)
\ f i n d(==> bsum{uSub2 ;} (i0 , i2 , t2) = i)
\varcond (\ notFreeIn (uSub1 , i 0) ,

\notFreeIn (uSub1 , i 1) ,
\notFreeIn (uSub1 , i 2) ,
\notFreeIn (uSub1 , t2) ,
\notFreeIn (uSub2 , i 2) ,
\notFreeIn (uSub2 , t1) ,
\notFreeIn (uSub2 , i 1) ,
\notFreeIn (uSub2 , i 0))

\add(==> i0<=i 1 & i0<=i 2 &
\ i f (i2<i 1)
\ then (bsum{uSub1 ;} (i2 , i1 , t1) =

bsum{uSub2 ;} (i0 , i2 , t2−{\subst uSub1 ; uSub2} t1))
\ e l s e (bsum{uSub1 ; } (i0 , i1 , t1−{\subst uSub2 ; uSub1} t2)

= bsum{uSub2 ;} (i1 , i2 , t2)))
\ h e u r i s t i c s (comprehensions)
} ;

b sum equa l sp l i t 3 {

93

\ f i n d(==> bsum{uSub1 ;} (i1 , i0 , t1) =
bsum{uSub2 ;} (i2 , i0 , t2))

\varcond (\ notFreeIn (uSub1 , i 0) ,
\notFreeIn (uSub1 , i 1) ,
\notFreeIn (uSub1 , i 2) ,
\notFreeIn (uSub1 , t2) ,
\notFreeIn (uSub2 , i 2) ,
\notFreeIn (uSub2 , i 1) ,
\notFreeIn (uSub2 , t1) ,
\notFreeIn (uSub2 , i 0))

\add(==> i1<=i 0 & i2<=i 0 &
\ i f (i1<i 2)
\ then (bsum{uSub1 ;} (i1 , i2 , t1) =

bsum{uSub2 ;} (i2 , i0 , t2−{\subst uSub1 ; uSub2} t1))
\ e l s e (bsum{uSub1 ;} (i1 , i0 , t1−{\subst uSub2 ; uSub1} t2)

= bsum{uSub2 ;} (i2 , i1 , t2)))
\ h e u r i s t i c s (comprehensions)
} ;

b sum equa l sp l i t 4 {
\assumes (bsum{uSub1 ;} (i1 , i0 , t1) = i ==>)
\ f i n d(==> bsum{uSub2 ;} (i2 , i0 , t2) = i)
\varcond (\ notFreeIn (uSub1 , i 0) ,

\notFreeIn (uSub1 , i 1) ,
\notFreeIn (uSub1 , i 2) ,
\notFreeIn (uSub1 , t2) ,
\notFreeIn (uSub2 , i 2) ,
\notFreeIn (uSub2 , t1) ,
\notFreeIn (uSub2 , i 1) ,
\notFreeIn (uSub2 , i 0))

\add(==> i1<=i 0 & i2<=i 0 &
\ i f (i2<i 1)
\ then (bsum{uSub1 ; } (i1 , i0 , t1−{\subst uSub2 ; uSub1} t2)

= bsum{uSub2 ;} (i2 , i1 , t2))
\ e l s e (bsum{uSub1 ;} (i1 , i2 , t1) =

bsum{uSub2 ; } (i2 , i0 , t2−{\subst uSub1 ; uSub2} t1)))
\ h e u r i s t i c s (comprehensions)
} ;

94

b s u m s p l i t i n t h r e e {
\ f i n d (bsum{uSub ;} (i0 , i2 , t))\ sameUpdateLevel
\varcond (\ notFreeIn (uSub , i 1) ,

\notFreeIn (uSub1 , t) ,
\notFreeIn (uSub1 , i 1) ,
\notFreeIn (uSub , i 0) ,
\notFreeIn (uSub1 , i 2))

” Precond i t ion ” : \add(==> (i0<=i 1 & i1<i 2)) ;
” S p l i t t e d Sum” : \ r ep l a cew i th (

bsum{uSub ;} (i0 , i1 , t) +
{\ subst uSub ; (INT2) i 1 } t +
bsum{uSub1 ;} (i 1 +1, i2 , {\ subst uSub ; uSub1} t))

} ;

bsum empty {
\ f i n d (bsum{uSub ;} (i0 , i1 , t))\ sameUpdateLevel
\varcond (\ notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 1))
” Precond i t ion ” : \add(==> i1<=i 0) ;
”Empty Sum” : \ r ep l a cew i th (0)

} ;

bsum one summand {
\ f i n d (bsum{uSub ;} (i0 , i1 , t))\ sameUpdateLevel
\varcond (\ notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 1))
\ r ep l a cew i th (\ i f (i 0+1=i 1)

\ then ({\ subst uSub ; (INT2) i 0 } t)
\ e l s e (bsum{uSub ;} (i0 , i1 , t)))

} ;

bsum empty concrete1 {
\ f i n d(==>bsum{uSub ;} (Z(i z) , Z(j z) , t)=0)
\varcond (\ notFreeIn (uSub , i z) ,

\notFreeIn (uSub , j z))
\add(==> Z(j z)<=Z(i z))
\ h e u r i s t i c s (s i m p l i f y)

} ;

95

bsum empty concrete2 {
\ f i n d (bsum{uSub ;} (Z(i z) , Z(n e g l i t (j z)) , t))
\varcond (\ notFreeIn (uSub , i z) ,

\notFreeIn (uSub , j z))
\ r ep l a cew i th (
\ i f (Z(n e g l i t (j z))<=Z(i z))
\ then (0)
\ e l s e (bsum{uSub ;} (Z(i z) , Z(n e g l i t (j z)) , t)))

\ h e u r i s t i c s (s i m p l i f y)
} ;

bsum zero {
\ f i n d (bsum{uSub ;} (i0 , i1 , 0))
\varcond (\ notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 1))
\ r ep l a cew i th (0)
\ h e u r i s t i c s (s i m p l i f y)

} ;

bsum lower equa l s upper {
\ f i n d (bsum{uSub ;} (i0 , i0 , t))\ sameUpdateLevel
\varcond (\ notFreeIn (uSub , i 0))
\ r ep l a cew i th (0)
\ h e u r i s t i c s (s i m p l i f y)

} ;

// t h i s case occurs when t r a n s l a t i n g \num of
bsum pos i t ive1 {

\ f i n d (bsum{uSub ;} (i0 , i1 ,
\ i f (b)\ then (1)\ e l s e (0)))\ sameUpdateLevel

\varcond (\ notFreeIn (uSub , i 0) ,
\notFreeIn (uSub , i 1))

\add (bsum{uSub ; } (i0 , i1 ,\ i f (b)\ then (1)\ e l s e (0))>=0 ==>)
\ h e u r i s t i c s (s i m p l i f y)
} ;

// t h i s case occurs when t r a n s l a t i n g \num of
bsum pos i t ive2 {

\ f i n d (bsum{uSub ;} (i0 , i1 ,

96

\ i f (b)\ then (0)\ e l s e (1)))\ sameUpdateLevel
\varcond (\ notFreeIn (uSub , i 0) ,

\notFreeIn (uSub , i 1))
\add (bsum{uSub ; } (i0 , i1 ,\ i f (b)\ then (0)\ e l s e (1))>=0 ==>)
\ h e u r i s t i c s (s i m p l i f y)
} ;

equal bsum1 {
\ f i n d(==> bsum{uSub1 ;} (i0 , i1 , t1) =

bsum{uSub2 ;} (i0 , i1 , t2))
\varcond (\ notFreeIn (uSub2 , t1) ,

\notFreeIn (uSub1 , t2) ,
\notFreeIn (uSub1 , i 0) ,
\notFreeIn (uSub1 , i 1) ,
\notFreeIn (uSub2 , i 0) ,
\notFreeIn (uSub2 , i 1))

\add(==>\ f o r a l l uSub1 ; ((uSub1>=i 0 & uSub1<i 1) −>
t1 =({\ subst uSub2 ; uSub1} t2)))

\ h e u r i s t i c s (comprehens i ons h igh cos t s)
} ;

equal bsum2 {
\assumes (bsum{uSub1 ;} (i0 , i1 , t1) = i ==>)
\ f i n d(==> bsum{uSub2 ;} (i0 , i1 , t2) = i)
\varcond (\ notFreeIn (uSub2 , t1) ,

\notFreeIn (uSub1 , t2) ,
\notFreeIn (uSub1 , i 0) ,
\notFreeIn (uSub1 , i 1) ,
\notFreeIn (uSub2 , i 0) ,
\notFreeIn (uSub2 , i 1))

\add(==>\ f o r a l l uSub1 ; ((uSub1>=i 0 & uSub1<i 1) −>
t1 =({\ subst uSub2 ; uSub1} t2)))

\ h e u r i s t i c s (comprehens i ons h igh cos t s)
} ;

equal bsum3 {
\assumes (bsum{uSub1 ;} (i0 , i1 , t1) = i ,

bsum{uSub2 ;} (i0 , i1 , t2) = j ==>)
\ f i n d(==> j = i)

97

\varcond (\ notFreeIn (uSub2 , t1) ,
\notFreeIn (uSub1 , t2) ,
\notFreeIn (uSub1 , i 0) ,
\notFreeIn (uSub1 , i 1) ,
\notFreeIn (uSub2 , i 0) ,
\notFreeIn (uSub2 , i 1))

\add(==>\ f o r a l l uSub1 ; ((uSub1>=i 0 & uSub1<i 1) −>
t1 =({\ subst uSub2 ; uSub1} t2)))

\ h e u r i s t i c s (comprehens i ons h igh cos t s)
} ;

equa l bsum zero cut {
\ f i n d(==> bsum{uSub1 ;} (i0 , i1 , t1) =

bsum{uSub2 ;} (i2 , i3 , t2)∗ t)
\add (==> bsum{uSub1 ;} (i0 , i1 , t1)=0);
\add (bsum{uSub1 ;} (i0 , i1 , t1)=0 ==>)
\ h e u r i s t i c s (comprehens i ons h igh cos t s)

} ;

pullOutbsum1 {
\ f i n d (bsum{uSub1 ;} (i0 , i1 , t1) >= t ==>)
\varcond (\new(sk , \dependingOn (t1)) , 2

\new(sk , \dependingOn (i 0)) ,
\new(sk , \dependingOn (i 1)))

\ r ep l a cew i th (sk >= t ==>)
\add (bsum{uSub1 ;} (i0 , i1 , t1) = sk ==>)
\ h e u r i s t i c s (s i m p l i f y)

} ;

pullOutbsum2 {
\ f i n d (bsum{uSub1 ;} (i0 , i1 , t1) <= t ==>)
\varcond (\new(sk , \dependingOn (t1)) ,

\new(sk , \dependingOn (i 0)) ,
\new(sk , \dependingOn (i 1)))

\ r ep l a cew i th (sk <= t ==>)
\add (bsum{uSub1 ;} (i0 , i1 , t1) = sk ==>)
\ h e u r i s t i c s (s i m p l i f y)

} ;
}

98

Bibliography

[1] E. Aaron and D. Gries. Formal justification of underspecification for S5.
Inf. Process. Lett., 64(3):115–121, 1997.

[2] A. Armando, P. Baumgartner, and G. Dowek, editors. Automated Rea-
soning, 4th International Joint Conference, IJCAR 2008, Sydney, Aus-
tralia, August 12-15, 2008, Proceedings, volume 5195 of Lecture Notes
in Computer Science. Springer, 2008.

[3] C. Barrett, S. Berezin, I. Shikanian, M. Chechik, A. Gurfinkel, and
D. L. Dill. A practical approach to partial functions in CVC Lite. In
PDPAR’04 Workshop, Cork, Ireland, volume 125 of Electronic Notes in
Computer Science, pages 13–23, July 2005.

[4] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-
Oriented Software: The KeY Approach. LNCS 4334. Springer-Verlag,
2007.

[5] P. Behm, L. Burdy, and J.-M. Meynadier. Well defined B. In D. Bert,
editor, B, volume 1393 of Lecture Notes in Computer Science, pages
29–45. Springer, 1998.

[6] D. Bruns. Formal semantics for the Java Modeling Language. Diploma
thesis, Universität Karlsruhe, June 2009.

[7] Á. Darvas, F. Mehta, and A. Rudich. Efficient well-definedness checking.
In Armando et al. [2], pages 100–115.

[8] D. Gries and F. B. Schneider. Avoiding the undefined by underspecifi-
cation. In van Leeuwen [19], pages 366–373.

[9] R. Hähnle. Many-valued logic, partiality, and abstraction in formal
specification languages. Logic Journal of the IGPL, 13(4):415–433, 2005.

99

[10] V. Klasen. Verifying Dijstra’s algorithm with KeY. Diplomarbeit, Uni-
versität Koblenz, March 2010.

[11] M. Krötzsch. A counterexample on conservative extensions. private
communication, 2010.

[12] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller,
J. Kiniry, and P. Chalin. JML Reference Manual, september 2009.

[13] G. T. Leavens and J. M. Wing. Protection from the underpsecified.
Technical Report TR# 96-04, Iowa State University, April 1996.

[14] G. T. Leavens and J. M. Wing. Protective interface specifications. For-
mal Asp. Comput., 10(1):59–75, 1998.

[15] K. R. M. Leino. Specification and verification of object-oriented soft-
ware. Markoberdorf International Summer School, Lecture Notes, 2008.

[16] K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In E. M. Clarke and A. Voronkov, editors, LPAR (Dakar),
volume 6355 of Lecture Notes in Computer Science, pages 348–370.
Springer, 2010.

[17] A. Rudich, Á. Darvas, and P. Müller. Checking well-formedness of pure-
method specifications. In J. Cuéllar, T. S. E. Maibaum, and K. Sere,
editors, FM, volume 5014 of Lecture Notes in Computer Science, pages
68–83. Springer, 2008.

[18] P. H. Schmitt. Formal specification and verification. Lecture Notes,
2011.

[19] J. van Leeuwen, editor. Computer Science Today: Recent Trends and
Developments, volume 1000 of Lecture Notes in Computer Science.
Springer, 1995.

100

	2011,15_Titelbl.pdf
	KeYProof.pdf

