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Chapter 1

Introduction and Outline

In the focus of this thesis is the analysis of group stationary spatial stochastic pro-
cesses. These processes may conveniently be described as group stationary random
measures on an appropriate space, where group stationarity refers to a distributional
invariance property with respect to a group acting on this space. This property rep-
resents a requirement, which is weak enough to allow the construction of reasonable
and well-fitting models for a large variety of natural real-world phenomena such
as e.g. cell growth processes, the development of forest fires, rain-drop models, the
arrival and handling of phone calls in a call center or the development of cracks
in certain materials. At the same time, it represents a requirement strong enough
to allow a reasonable mathematical investigation of these models. Here, a random
measure is nothing but a random element in the space of all measures on a certain
fixed space and this rich class of objects will be of major interest to us (introductions
to the subject may be found in [14, 15, 28, 29]). Random measures are in the focus
of many researchers since the 1950s and the field developed rapidly since then. It
all started with the inspection of integer valued random measures (so called point
processes) on the real line as a model for the arriving phone calls in a call center.
Conrad Palm, a Swedish engineer, was the first who investigated such a model. A
central object for the examination of stationary random measures has been named
after him - the Palm measure. It has been defined so far for random measures living
on a space on which a certain group acts transitively and with respect to which the
measure is stationary. The transitivity together with the stationarity enforce a com-
plete statistical spatial homogeneity of the process. Loosely speaking, no matter in
which point of space an observer decides to measure the random mass configuration
around him, he will never be able to tell from his (repeated) measurements where
he sits (no matter which arbitrarily sophisticated statistical toolbox he employs).
The analysis of random measures on R? that are stationary with respect to the
group of all translations (i.e. with respect to R? itself) is by now a classical do-
main of random measure theory and became an indispensable pillar for the realm of
Stochastic Geometry (see [64, 66] for comprehensive introductions). Stationary par-
ticle processes, k-flat processes, cluster processes, random partitions or tessellations
on R? have under the stationarity assumption a spatial homogeneity property. This
property allows in spite of the fact that they consist realization wise of a discrete set
of infinitely many objects (which makes it impossible to average over these objects in
the naive sense in such a way that each object receives the same weight), the extrac-
tion of meaningful distributions associated to the collection of objects the process
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consists of. A random element that is distributed according to such a distribution
is interpreted as a typical object of the relevant process. For the above processes,
one speaks of the distribution of a typical particle, of a typical flat, a typical cluster
or a typical cell. The derivation of all these distributions is the result of a more
sophisticated fair averaging procedure, both over the underlying probability space
and over the space on which the process lives.

All these distributions may be interpreted as distributions of suitable random
objects under the Palm measure, which explains the central role of this measure.
It allows an elegant and unified treatment of all the above mentioned distributions.
Mecke was the first who used Palm methods in Stochastic Geometry in his seminal
paper [47]. Kallenberg contributed in [30] important results on which some of the
central results in this thesis are based and that are already published in [21]. We
have marked the relevant theorems. Some of these were also independently found
by Kallenberg in [31].

This brings us to the first main result of this thesis, namely the derivation of such
a Palm measure even for processes (living on some abstract space, possibly different
from RY) which are stationary with respect to arbitrary, possibly non-transitive,
group actions. The operating group needs not even be unimodular. As mentioned
above, this generalized Palm measure (which we shall call for good reasons the
cumulative Palm measure) will help us to identify typical objects even for processes,
that are not completely stationary, i.e. where the underlying group action is not
transitive. This is not only interesting from a theoretical viewpoint. Many real-
world phenomena exhibit spatial inhomogeneities, such that the assumption of a
complete spatial homogeneity is untenable. Our cumulative Palm measure will allow
the mathematical exploration of more adequate, non-transitive models. The reader
may think of e.g. a material consisting of different layers with different properties.

A second main part of this thesis is devoted to the extension of an impor-
tant deterministic principle, the mass-transport principle. It constitutes a mass-
conservation law for certain transportation rules. Again, this principle has been
found for special transitive group actions [24, 6, 7] and has been substantially ex-
tended in our paper [21] to the possibly non-transitive and possibly non-unimodular
case. As we shall show, it may be interpreted as an identity between cumulative
Palm measures which establishes the link to random measure theory, and contributes
a valuable intuitive understanding for the transformation of one cumulative Palm
measure into another one.

The third main tool that we shall develop for two special types of group station-
ary processes where the underlying operation in non-transitive, are ergodic theorems.
We note here, that Meijering [49] seems to be the first who investigated a random
geometric model under ergodicity assumptions. The two classes are, first, random
measures on R? that are stationary with respect to the operation of a discrete grid,
identified by Z¢, and second the case where we have stationarity with respect to the
action of a fixed lower dimensional linear subspace of R%. As it will turn out, the
cumulative Palm measure naturally arises under ergodicity assumptions in the limit
of certain a.s. and LP-convergence results, which again shows the relevance of the
cumulative Palm measure and establishes the link to Palm theory.

We finally show how this extended toolbox may be used for the inspection of
group stationary random processes, where the underlying group action is not neces-



sarily transitive. This includes a result on graph automorphism-stationary random
subgraphs of quasi-transitive, possibly non-unimodular deterministic graphs (e.g.
a bond percolation model) as well as random partitions on orientable Riemannian
manifolds stationary with respect to the natural action of the respective isometry
group. It also includes the identification and structural analysis of typical Cox Delau-
nay cells. A Cox-Delaunay tessellation is a special random tessellation of R?, where
the randomness stems from a Cox point process (which is a randomized Poisson
process).

The thesis is organized as follows: In Chapter 2 we provide the reader with
necessary background in measure theory and also present some recent developments
concerning the existence of invariant disintegrations. This chapter already contains
some new results. Most notably, we derive a technically elaborate result on the
existence of invariant kernels disintegrating any kernel from some measurable space
to a product space, exhibiting a certain invariance property.

We then proceed in Chapter 3 with the construction of an important kernel,
which is associated to any ‘well-behaving’ group action. This inversion kernel will
lead us to the construction of the ‘general’ Palm measure for arbitrary group actions,
the cumulative Palm measure. It is derived by factoring out the Haar measure of the
operating group from another measure which is naturally associated to the random
measure of interest. This cumulative Palm measure is an interesting object of study
on its own right, and we shall derive some important theorems around this measure
in Chapter 4.

Chapter 5 contains our extension of the mass-transport principle to non-
transitive group actions, as well as an important consequence for random measures
and transports. In particular, we show that there is a close link between a transport
theorem for cumulative Palm measures and a version of the mass-transport prin-
ciple for random transports. We also give a first application of this principle to
automorphism-stationary subgraphs of a quasi-transitive, possibly non-unimodular
graph.

Our convergence results are the content of Chapter 6. As mentioned above we
treat grid-stationarity and subspace-stationarity separately, and we show in the end
of that chapter how the cumulative Palm measure naturally arises in the limit under
ergodicity assumptions.

The final Chapter 7 will illustrate the usefulness of our developed tools. We
give structurally quite explicit formulas for the distribution of typical Cox-Delaunay
cells, where the underlying Cox process is assumed to be stationary with respect to
a subspace of R%. This clearly includes the completely stationary case, where the
subspace is R? itself, and even this special case seems to be new. We also introduce
random partitions on Riemannian manifolds and suitably define the notion of typical
celland 0-cell. We derive a relation between these objects which may be paraphrased
by the intuitively appealing statement that the O-cell is a volume-weighted version
of the typical cell, a fact well-known for completely stationary tessellations in R
We also illustrate the use of our ergodic theorems by deriving some quite general
convergence results for grid- or subspace-stationary random tessellations of R¢ and
we illustrate these by giving some examples. These examples include for instance
R-stationary tessellations on the infinite cylinder R x S! (where the action of R on
R x St is understood to affect the first component only via translation).



4 Chapter 1: Introduction and Outline

More detailed references to relevant literature may be found in the introductions
to each chapter as well as throughout the thesis.



Chapter 2

Fundamentals and recent
developments in measure theory

In this introductory chapter we try to familiarize the reader with some basic con-
cepts used in this thesis. These are some elementary as well as some more advanced
notions of measure theory in Section 2.1, the notion of Haar measure and group
invariant measures in Section 2.2, some recent developments in the theory of in-
variant disintegrations of jointly invariant measures on product spaces in Section
2.3 and finally the concept of random measures in Section 2.4. Along the lines we
also present some new results. These include in Section 2.3 the existence of invari-
ant disintegrations of kernels where each kernel member itself is a jointly invariant
measure on a product space. This was established by Gentner and Last [21]. In
Chapter 3 this result will be a key ingredient in our existence proof of the inversion
kernel for even non-transitive group operations, recently independently constructed
by Gentner and Last [21] and Kallenberg [31].

2.1 Some notions from measure theory

We shall mainly recall the concepts of universal measurability and kernels in this
section. We also fix our basic notation used throughout this thesis. S, 7" and R shall
always denote measurable spaces with respective o-algebras S, 7 and R. Given two
o-algebras & and T their product o-algebra will always be denoted by & ® 7. For
a measure v on S and a measurable function f : S — [—o00, 00| we denote the
integral [ fdv by vf = v(f) whenever it is well-defined. Further, whenever (S,S)
is a measurable space we denote by S, the space of S-measurable [0, oo]-valued
functions on S. For f € S, we often write f - v for the measure A — v(14 - f)
on §. The power set of a set S is denoted by P(S) and given a system of subsets
E C P(S) of S the smallest o-algebra containing £ will be denoted by o(€). If 1 and
v are measures on S the relation p < v means that p is absolutely continuous with
respect to v. The relation ~ denotes mutual absolute continuity between measures
and evidently represents an equivalence relation on the space of all measures on
a given space. Given a probability space (£2,.4,P) the distribution of a random
element 7 in a measurable space S (also called the law of 7) is denoted by L(7).
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2.1.1 Regularity properties and u-measurability

In many situations one has to require a measure p to be o-finite, i.e. to ask for the
existence of a measurable partition Bj, Bs, ... that splits it into finite pieces, or at
least to require it to be s-finite, relaxing the above condition by only requiring the
existence of a sequence (u,) of finite measures that approximates it setwise from
below such that p,(A) T u(A), A€ S.

The concept of s-finiteness was used by Kallenberg [30] who noted that it sim-
plifies many arguments, mostly since the class of s-finite measures is closed under
projections: an s-finite measure M on a product S x T' induces s-finite measures
M(-xT) and M (S x-). Note that the analogue statement with s-finiteness replaced
by o-finiteness is wrong: the 2-dimensional Lebesgue measure A\? on R? is o-finite,
unlike its projection A?(- x R). In addition s-finiteness is not only preserved under
most basic operations that also preserve o-finiteness - it is sometimes even easier to
verify than a possible o-finiteness property. Finally most computational rules such
as Fubini’s Theorem are still valid for s-finite measures.

There are many reasons that make both of these regularity concepts necessary
but two particularly important ones are the following.

First, a measure p # 0 on some space S is o-finite if and only if there is a strictly
positive function f : S — (0, 00) such that pf < co. This gives rise to an in the sense
of mutual absolute continuity equivalent finite measure v := f - u which may clearly
be assumed to be a probability measure. Then most spaces possess topological or
measure theoretical properties that allow us to identify them with Borel subsets of
the reals R. Such spaces are called Borel spaces. For a precise definition, a bijective
map f : S — T between measurable spaces S and 7' is called a Borel isomorphism if
both f and f~! are measurable (i.e. the Borel isomorphisms are the isomorphisms in
the category of measurable spaces). Now a Borel space is a measurable space Borel
isomorphic to a Borel subset of R. Hence o-finite measures on Borel spaces may
for some purposes be treated as probability measures on R, where we may use their
distribution functions to investigate their properties. As a particularly important
example where this observation bears fruits we mention Kallenberg’s [30] elegant
proof concerning the existence of disintegrations for o-finite measures on product
spaces where the second factor is Borel. It will be essential for our discussions in
Subsection 2.3.2.

Second, integration of universally measurable functions that are not measurable
with respect to the given o-algebra is meaningful only if the integrating measure can
be approximated by finite measures. Let us quickly repeat the concept of universally
measurable sets and functions here. If u is a measure on (S,S) then we denote by

S* the completion of S with respect to u. The universal completion of a o-algebra
S is then defined as

s =[s"
nw

where the intersection is taken over the class of all probability measures on (.5, S)
(clearly one may equivalently take the class of all finite measures on (5, S) here).
The elements of this o-algebra are called universally measurable sets and a map
f S — T is called universally measurable (u-measurable in short) if it is S*/T-
measurable. Noting that we may decompose any set A € S§* for an arbitrary finite
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measure 4 into A = BUC with B € S and C C N € § with u(N) = 0, it is
natural to define u(A) := u(B). This way p(A) is clearly well-defined and thus this
definition yields a natural extention of pr to §*. In a next step, we may approximate
a given u-measurable function f : § — [0, 00| by u-measurable step functions which
defines the integral pf in the obvious way. From integration with respect to finite
measures to o-finite or even more generally s-finite measures is a small step: just
note that any such measure p may be written as a countable sum of finite measures
which yields the desired extension.

Recall that a measurable space is Borel by definition if it is isomorphic to a
Borel subset of R in the category of measurable spaces, where isomorphisms are
bijections between measurable spaces that are measurable in both directions. As
indicated above this is a huge class of spaces: For instance any Polish (i.e. completely
metrizable and separable) space is Borel (see [28, Theorem A1.2] and [11, Theorem
A.47]) which is again a huge class even containing any topological space whose
topology is locally compact, second-countable and Hausdorff (see e.g. [59, Sdtze 8.15,
10.15, 13.17]). For u-measurable functions and sets we have powerful projection and
section theorems at our disposal:

Theorem 2.1 (projections and sections). Let S be a measurable space, T a Borel
space and A € SR T.

(i) The projection of A on S, i.e. the set
prg A:={se€ S:(s,t) € A for somet e T}
is u-measurable.

(ii) There is a u-measurable function f : S — T such that (s, f(s)) € A for all
s € prg(A).

Proof. See [16, p. 252] or [18, p. 392]. O

The next lemma highlights the advantages of u-measurability even further.

Lemma 2.2 (range and weak inverse). Let S and T be Borel spaces and f : S — T
be measurable.

(i) The image f(S) of f is u-measurable;
(ii) There is a u-measurable function g : T — S satisfying fogo f = f.

Proof. The following proofs are taken from [31, Lemma 2.5].

(i) The graph of f is the set Graph(f) := {(s, f(s)) : s € S}. It is a measurable
subset of S x T since it is the preimage of the (measurable) diagonal {(¢,t) : ¢t €
T} C T? under ® : S x T — T? ®(s,t) = (f(s),t). Hence we may apply the
Projection Theorem 2.1 (i) to the T-projection of Graph(f) and it remains to note
that pry(Graph(f)) = f(S5).

(ii) Since T is Borel, the Section Theorem 2.1 (ii) yields a u-measurable function
g : T — S such that (g(¢),t) € Graph(f),t € f(S). Hence for t € f(S) put s := g(¢)
and note that ¢t = f(s), which implies fog(t) = t for all such ¢ - hence fogo f = f.O0
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2.1.2 Kernels and their regularity properties

A fundamental object for probability and measure theory is the following: If (.5, S)
and (T, T) are measurable spaces, a kernel from S to T isamap p: S x T — [0, 0]
with the properties

(1) u(s,-) is a measure on (7', 7) for any fixed s € S,
(2) wp(-, A) is a measurable map for any fixed A € T.

We sometimes write p(+) instead of p(s,-). Similarly a map p: S x T — [0, o]
satisfying (1) and the modified property (2) where ‘measurable’ is replaced by ‘uni-
versally measurable’ is called u-kernel from S to T'. A kernel p is called Markovian
or stochastic if us(T) = 1,s € S, and finite if pus(T) < 00, s € S. We call a kernel
from S to T s-finite, if there is a sequence of finite kernels p,, with p,, T p. A kernel
p is pointwise o-finite if for each s € S the measure u(s,-) is a o-finite measure on
T and uniformly o-finite if there is a partition By, Bs, ... of T' which simultaneously
splits the p, into finite pieces, i.e. u(s, B;) < oo,s € S,i € N. In between these
two concepts, we call a kernel pu from S to T o-finite if for each s € S there is a
measurable partition Bf, Bs, ... of T such that (s,t) — 1{t € B/} is measurable for
alli € Nand u(s, Bf) < 0o,s € S. Clearly, a uniformly o-finite kernel is o-finite and
any such kernel in turn is pointwise o-finite. Just as there is a functional characteri-
zation of o-finiteness of measures we have the following functional characterizations
of the latter two types of kernels.

Lemma 2.3 (regularity properties of kernels). Let p be a kernel from S to T. The
following holds:

(i) p is o-finite iff there exists a measurable map f : S x T — (0,00) such that
psf(s,:) < oo,s €S (in this case f may be chosen such that psf(s,-) <1,s €
S).

(i) p is pointwise o-finite iff there exists a map f: S x T — (0,00) such that the
maps f(s,-),s € S, are measurable and psf(s, ) < oco,s € S.

Proof. (i) Let p be a o-finite kernel from S to 7', i.e. for each s € S there is a
partition B, B3, ... of T such that (s,t) — 1{t € B/} is measurable for any i € N
and pus(B7) < oo. Then we define

1
( ) §1+M(SaBz)2z

1{te B/} <1
and note that (. BY)
pis, B7) 1
,LLsf(S, ) =

= — =< 1.
1+ (s, By)2

Conversely, fix f > 0 on S x T with u,f(s, ) < co. Define

1 1
< t) < = i c N
¢+1—f(3’ ><Z.}, i €N,

Bf::{tET:
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and note that indeed since 0 < f < oo this defines a partition of T" for every s € S.
In addition

1 11

< Flsit) < = b (s dt

z‘+1—f<$’)<z’}z’+1“(3’ )
1

< () < < S, s, )

(ii) Use the same construction as in part (a) (which boils down to proving the
well-known criterion for o-finite measures for every fixed s € 5). O

2.2 Haar and invariant measures

In this section we summarize some basic facts concerning topological groups, Haar
measure and invariance of measures and sets under group operations. We will also
present some quickly accessible new results in Lemma 2.6, 2.8, 2.9 and 2.12.

2.2.1 Haar measure and modular function

By G we denote a group with neutral element e. Elements of a group G will usually
be denoted by g or h. If G carries a o-algebra G such that the maps (g, h) — gh
and g — ¢! are measurable, then we call G a measurable group. Similarly, if G
carries a topology O such that the above maps are continuous we call it a topological
group. Clearly, any topological group becomes a measurable one when endowed
with the Borel-o-algebra B(O) := ¢(O). It is clear that left- or right-shifts on G
are homeomorphisms in the topological and Borel isomorphisms in the measurable
setting, such that translates gA := {ga : a € A} for ¢ € G and A € G are again
measurable. A measure A defined on G is left-invariant if

AMgA) =AA4), geG,Aeg,

(right-invariance is defined with the obvious modification). In the topological set-
ting, a classical result is that whenever the group carries a locally compact Hausdorft
topology, then there is an up to constant multiples uniquely determined left-invariant
Radon measure \ # 0 defined on its Borel o-algebra. Here the Radon property means
that X is locally finite in the sense that it assigns finite values to compact sets, is
outer reqular on all Borel sets, meaning

AMA) =inf{\(U) : U D A, U open}, A€ B(O),
and inner reqular on all open sets, meaning
AMA) =sup{\(K) : K C A, K compact}, Ae€O.

Such a measure A is called a (left) Haar measure on the group G with respect to the
topology O. The following theorem constitutes a cornerstone of measure theory on
groups and harmonic analysis. A proof may be found in [20, Theorems 11.8, 11.9].
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Theorem 2.4 (existence and uniqueness of Haar measure). Any locally compact
Hausdorff group G possesses an up to positive multiples uniquely determined Haar
measure.

It is crucial to note at this point that the Radon condition enforces an intimate
and important relation between topology and measure. As an example, consider the
reals R on the one hand with the natural metric topology generated by d(z,y) =
|z — y|,z,y € R, and on the other hand equipped with the discrete topology such
that any subset A C R is open. Both topologies are locally compact and Hausdorff
but the respective Haar measures differ and are given as (multiples of) Lebesgue
measure in the first case and (multiples of) counting measure in the second.

The above example R with discrete topology and hence counting measure on its
power set as corresponding Haar measure also shows that Haar measures need not
be o-finite in general. To enforce o-finiteness of a Haar measure A it is enough, for
instance, to require the topology on G to be second-countable. Then, there is a
countable partition of GG into relatively compact subsets, on each of which A is finite
by definition.

If the topology on G is assumed to be second-countable in addition, then one
may drop the inner and outer regularity conditions of Haar measure stated above
- they will be implied by the local finiteness. In fact many authors consider Haar
measure and Radon measures only in this more specific second-countable setting,
e.g. [28, p. 36, p. 41].

In this thesis A will always denote a o-finite Haar measure on a group G, which
in turn is always assumed to be locally compact, Hausdorff and second-countable,
to ensure the existence of such a \. We will abbreviate these conditions by saying
that G is lese, the ‘Hausdorfl” condition being understood to be contained in the
‘locally compact’ condition. We now fix a left Haar measure A on a lesc group G.
The left-invariance property may be rephrased using the usual tandem consisting of
step functions and monotone convergence by writing

[ 1ng)xdg) = [ Fg)\dg). hEG, [ €.

For fixed h € G the measure A\, : A — A(Ah) is by associativity of group multi-
plication again left-invariant, clearly non-zero and locally finite (note that left- and
right-shifts on G are homeomorphisms). Hence, by uniqueness of Haar measure,
there is a unique positive constant, which we call A(h), such that A\, = A(h)A.
The map A : G — (0,00),h — A(h) is called the modular function (though A was
needed in the construction of A here it is clear that A does not depend on the choice
of normalization of \). It even constitutes a continuous (in particular measurable)
homomorphism A : G — (0,00) (see e.g. [20, Prop. 11.10]) satisfying

[ 1ighAg) = A7) [ F)Adg), heG.f€Gy, (2.1)

and has the additional property that

[ 1a79Mdg) = [ Alg™)f)Ndg), [ € G (2.2)
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A group G is called unimodular if A(g) =1 for all g € G. By (2.1) G is unimodular
if and only if A is right-invariant. Two examples of classes of unimodular groups are
the Abelian groups and the compact groups (while the Abelian case is immediate
note for compact G that the continuity and homomorphism property of A imply
that the set A(G) must be a compact multiplicative subgroup of (0,00) - the only
such subgroup evidently being {1}).

Remark 2.5. For many results in this thesis topological requirements are subordi-
nate and we might as well just assume G to be measurable and such that it carries a
left-invariant o-finite measure A # 0. Kallenberg chooses this consequent and more
natural setting in this recent paper [31] and in particular proves the existence of a
measurable, topology-free variant of the modular function satisfying (2.1) and (2.2)
([31, Lemma 2.3]). As the existence of left-invariant o-finite measures A # 0 is still
open without topological extra assumptions we shall always consider topological
groups in this thesis.

2.2.2 Group operations and invariance

Let G be a group and S a set. An operation of G on S is given by amap ¢ : G XS —
S, which we abbreviate by gs := ¢(g,s),9 € G, s € 5, satisfying both es = 5,5 € S,
where e denotes the neutral element of G, and g(hs) = (gh)s,g,h € G,s € S. If
such an operation along with the relevant map is given without risk of confusion
then we omit the map and simply say that G operates or acts on S. In this case we
also write G — S.

Whenever the group G is measurable with o-algebra G and the set S is a measur-
able space carrying a g-algebra S we naturally require an operation of G on S to be
measurable, in the sense that the underlying map G x S — S is G ®S/S-measurable.
This condition implies the measurability of the projections my : G — S, s € S, and
shifts 0, : S — S, g € G, given by

ms(g) = 04(s) =gs, geG,ses.

Whenever G and S are topological spaces, we call an operation G — S continuous
whenever the underlying map from G x S to S is. Clearly, continuous operations are
measurable with respect to Borel o-fields and the continuity passes on to projections
and shifts.

For fixed s € S the set m,(G) = Gs is called the orbit of s and whenever S = G's
for some s € S (and hence for all s € S) the operation is called transitive and
possesses only one orbit. Note that transitivity may be rephrased by saying that for
any s,t € S there is always a g € G with t = gs.

We now consider a measurable operation G < S where G is lcsc with o-finite
Haar measure A. It is interesting to note the following measurability property of the
orbits, which holds in large generality.

Lemma 2.6 (u-measurability of orbits). Given any measurable operation G — S
where G is Borel, the orbits are u-measurable subsets of S.

Proof. Consider the Borel isomorphism 1 : G x.S — G x S given by (g, s) = (g, 9s)
and the measurable sets A := (G x {s}), s € S. Since G is Borel the projection of
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A on S is a u-measurable set in S according to Theorem 2.1 (i). These projections
are clearly the orbits of the operation. 0

A subset A C S is called G-invariant if gA = A, g € G, and similarly a measure
@ on S G-invariant, if

w(gA) = u(A), geGAES.

If i lives on a product space S x T with given operations G — S and G — T, we
call it jointly G-invariant if it is invariant with respect to the diagonal operation

g(s,t) == (gs,gt), ge€G,seStel.
Furthermore, for s € 9,

Geo ={9€G:gs=s}=m."({s})

denotes the stabilizer of s and, taking a second t € S,

Gori={g € G:gs=t}=m"({t}),

is either empty (if ¢t & G's) or otherwise a left coset of G 4 since G5 = ¢5:Gs s, Where
gs. 1s a fixed group element satisfying g,;s = ¢. These subsets of G are measurable
if the one point sets {t},t € S, are measurable. This is the case, for instance, if S is
Borel.

2.2.3 Proper operations

The set of all o-finite G-invariant measures on S is a convex cone in the sense that
for any such p, v and a,b > 0 the measure ap + bv is again o-finite and G-invariant.
The prime examples for G-invariant measures are the pushforwards Aow !, s € S, of
the Haar measure A under projections. But without further regularity assumptions
on the operation, they need not be o-finite. To enforce this, we assume that G
operates properly on S in the sense that the operation is both measurable and such
that the set of all pushforwards

ps i =dom,l, ses,

is even uniformly o-finite. We recall that this requires the existence of a measurable
partition By, Bs,... of S such that us(B,) < oo, s € S, n € N. This concept was
introduced by Kallenberg in [30] and generalizes the classical notion of a topologically
proper operation (i.e. a continuous operation such that 7;'(K) C G is compact
whenever K C S is) of a lesc group on a lesc space. He also showed (see [30,
Lemma 2.1]) that properness is equivalent to the existence of a measurable function
k:S — (0,00) such that

ok = /k(t)us(dt) <00, seS&. (2.3)

As indicated earlier topologically proper operations are proper in this more gen-
eral sense.
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Examples. (i) Trivially, compact groups operate properly on any measurable

(vii)

space if the operation is measurable. If they operate continuously on a topo-
logical space then the action is clearly topologically proper.

One readily proves that for 1 < u < d any u-dimensional linear subspace L of
R? operates on R? via translation topologically proper.

74 operates on RY via translation topologically proper.

R operates on the cylinder Z := R x S, S! denoting the 1-dimensional unit
circle, via translation in the first component. This operation is trivially topo-
logically proper.

The group of rigid motions G, operates topologically proper on R? but acts
not (even) properly on the affine Grassmannian A(d, k), the space of all k-
dimensional affine subspaces of R%. The problem here is that the stabilizer of
a k-dimensional affine space E contains all translations with vectors contained
in F, i.e. cannot be compact. As we will show in Corollary 3.10, proper oper-
ations with (even only locally) closed stabilizers automatically have compact
stabilizers.

Given a graph I' = (V, E') with countable set of vertices V' and edge set E C
V x V its automorphism group G = Aut(I"), endowed with a suitable topology,
acts topologically proper on V' in the canonical way

Aut(T) x V=V, (p,s) — ©(s).
We postpone the details to Subsection 5.4.1.

Given a Riemannian manifold M, its isometry group G = (M), endowed with
a suitable topology, acts topologically proper on M in the canonical way

I(M)x M — M, (p,5)+— @(s).

This is also true for closed subgroups of G (an example is (iv)). Again, details
are postponed, in this case to Subsection 7.2.2.

2.2.4 Notions related to invariance of measures

The convex cone of all o-finite (resp. s-finite) G-invariant measures on a Borel space
S, where G — S is proper, has a striking structure that has been illuminated by
Kallenberg in [30, Theorem 2.4] (resp. [31, Theorem 4.2]). We consider the o-finite
case first. As noted before the projection measures g, s € S, are invariant measures
on S. They have the additional property that

Hgs = A(g_l),um g e G>S € S> (24)

which means that the properness condition upon the operation enforces

Alg)=1, g€Gy, s€S. (2.5)
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Note that by (2.1) this means nothing but right G, s-invariance of A\. Choosing a
system O of representatives of the orbits Gs, s € S, the space S splits into the
disjoint union
S =|J Gb,
beO

and we may consider the choice function (in Kallenberg’s related paper [31] called
orbit selector) f: S — S where 3(s) denotes the previously fixed representative of
G's. In order to establish measurability of 3, Gentner and Last [21] had to require
measurability of O. The argument is the following:

Lemma 2.8 (u-measurability of selectors). If O € S, then [ is u-measurable.

Proof. Note that for B C S we have 37(B) = G(BNO). Hence, recalling the Borel-
Isomorphism ¢ : G x S — G x S, (g,5) = (g,9s), we have 371(B) = G(BNO) =
prg(e(G x (BN O))) and for B,0 € S this implies together with Theorem 2.1 (i)
that S~1(B) is u-measurable since G is Borel. O

Kallenberg instead required S to be Borel and the operation to be proper (note
that the above argument does not need any of these assumptions) and proved the
existence of a u-measurable choice function without previously fixing a system of
representatives of the orbits (which is then clearly given by the image of the choice
function). The argument he gave in [31, Theorem 2.4] relies on Lemma 2.2 (ii), an
invariant labeling of the orbits by a suitable kernel and the crucial Borel property of
the space of probability measures on S which is inherited from S. It seems to be an
open problem if the space of all o-finite or even s-finite measures on a Borel space
also inherits the Borel property.

Instead of using the function k& from (2.3) some calculations simplify when k is
replaced by the following normalized version w:

Lemma 2.9. (existence of a G-symmetric function) Let G operate properly on S
and assume that there is a measurable system of orbit representatives, such that we
may fix one and call it O. Then there is a u-measurable function w : S — (0, 00)
on S such that

ww =1 beO. (2.6)

Proof. Since G < S is proper we may choose by [30, Lemma 2.1 (i)] a strictly
positive measurable function k : S — (0, 00) such that uy(k) < co,b € O. Now

_ k(s)
H(s) (k)

w(s) : sef,

is u-measurable by Lemma 2.8 and Fubini’s theorem and, in addition,

_ [ k() _
Jw = /Mbkub(ds) —1, beo. O
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Note that if G is not unimodular it would not be consistent to require psw = 1
for all s € S by (2.4) which makes the restriction to O in (2.6) necessary. We now
reformulate a result of Kallenberg [30, Theorem 2.4].

Theorem 2.10 (ergodic decomposition of invariant measures, Kallenberg).
Suppose G operates properly on the Borel space S and fix a measurable system O of
orbit representatives. Then for any o-finite, G-invariant measure v on S there is a
unique measure v* concentrated on O satisfying

v() = [ (v (). (2.7)

Proof. Choosing k as in (2.3) the measures g 1= ug/psk,s € S are G-invariant,
uniformly normalized in the sense that psk =1, s € S, and even constant on orbits,
ie.

Pgs = s, s€85,9g€ed. (2.8)

In other words, the map s — ¢, is a labeling of the orbits which is in addition
measurable by Fubini’s theorem, i.e. ¢ is a kernel on S. Kallenberg proved that this
kernel can be used as a (normalized) extremal generator of the convex cone of all

o-finite invariant measures on S since any such measure v on S may be written as
(cf. [30, Theorem 2.4])

= [ @ Ir(s)v(ds). (2.9)

We now search a representation as in (2.9) which does not depend on the choice of
k. As in Gentner and Last [21] we note, using (2.8) and (2.9), that

w>—/%< v(ds) = [ pao)(Ins) () k(s)v(ds)
— [ (2.10)

where v* := (ug(k) 'k - v) o f7! is a o-finite measure on S concentrated on O, in
the sense that any measurable B C S being disjoint with O has v*(B) = 0. In spite
of its definition v* is independent of k since v* is already uniquely determined by v:
To see this suppose v}, v both satisfy (2.10) and are concentrated on O. Then

J[ f@umasivi@n) = [[ f(uidss(a@). fe s,

and putting f(s) := w(s)h(5(s)) where w is as in (2.6) and h € S, is arbitrary
yields v{fh = vih,h € S;, and hence v = 1. O

Example 2.11 (countable S). Let G operate properly on the countable space S.
Our Lemma 3.8 states that this is the case if and only if

0 < A(Gss) <00, seS.
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Take a G-invariant measure v on S and fix a (countable) system O of orbit repre-
sentatives. Since by left-invariance of A

My = Z )\(Gb,s)és - Z A(Gb,b)(sw be 07

seGb s€Gb

it follows from (2.7) that (with respect to O)

oy YA (2.11)

beO )‘(vab)

Turning to the convex cone of s-finite G-invariant measures, Kallenberg proved
in [31, Theorem 4.2] a version of the above theorem using the above mentioned ex-
istent u-measurable orbit selector and the associated inversion kernel (which we will
construct in Subsection 3.1.1). A technical feature of his stream of arguments is that
he needs not require the existence of a measurable system of orbit representatives
and derives the existence of an orbit selector in a non-constructive way. From an
application viewpoint, this can be both blessing and curse: an advantage is that the
existence of a measurable system of orbit representatives O needs not be checked.
On the downside, one is left without any information about the range 3(S), i.e. the
induced system of representatives. Our approach has the advantage that it gives full
flexibility to choose a particularly convenient one among the in applications usually
plenty existing and easily accessible measurable ones and this will turn out to be
useful in later applications. After fixing O € S the associated choice function is
then simply given by Lemma 2.8.

Given an operation G — S two classes of subsets of S will play a special role at
several places in this thesis. The first class consists of the G-invariant sets A € S,
where G-invariance means

gA=A, g¢€aG.

These sets form a o-algebra which we denote by Z. The second class is the collection
of G-symmetric sets B € §, where G-symmetry refers to the property

0<upB=pB <o, bceO.

The latter collection is not even closed with respect to N, U or ¢. The use of the
defining property of its members, namely that they consist of finite and non-zero
pieces of each orbit will become apparent once we use them in the following chapters.
Given a G-symmetric set B C S we may define its width as

§(B) := upB (2.12)

where b € O is fixed (and arbitrary). We note here a simple property of these
objects.

Lemma 2.12 (invariant measures on symmetric intersections). Given a G-
invariant measure v on S, a G-invariant set A C S and a G-symmetric set B C S
the relation

v(ANB)=v*"(A)d(B) (2.13)
holds.
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Proof. The decomposition (2.7) implies

V(AN B) = [[ 1a(gb)15(gb)N(dg)v* ()

and since A is G-invariant this means

V(AN B) = / 14(b)15(gb)A(dg)v*(db) = 6(B) / 14(b)v*(db),

where we used the G-symmetry of B in the last step. O

Remarks and Examples. (i) It is evident that any G-invariant set is a union

(i)

(iii)

(iv)

of orbits and that any such union is G-invariant.

There are two important extreme situations: The first are transitive opera-
tions: If G < S is transitive then Z = {(}, S} and a set B € S is G-symmetric
if and only if 0 < p.(B) < oo for one ¢ € S (and then in this case for all
¢ € 5). In the case that G — G via left-translation this means nothing but
0 < A(B) < 0o0. The other extreme case is when G = {e} < S. This opera-
tion is totally non-transitive in the sense that each point is its own orbit. Here
the roles of G-invariant and G-symmetric sets are reversed compared to the
transitive case: the only G-symmetric set is S (the empty set is excluded for
technical reasons) while any subset A C S is now G-invariant.

It will be important for applications later to keep these extreme situations in

mind.

SO(d) — R? Here SO(d)-invariant sets are given by all possible different
unions of any of the concentric circles around the origin with arbitrary radii.
Examples of G-symmetric sets are drafted in the following Figure 2.1.

; o

/ ,

1 1 * ot

v

Figure 2.1: Examples of SO(2)-symmetric subsets B of R2.

L — R?% where L is a fixed k-dimensional linear subspace of R? where k €
{1,...,d}: L-invariant sets are unions of parallel translates of L. Examples of
L-symmetric sets are drafted in Figure 2.2.

74 — R Any Z%invariant set A may be represented by means of a uniquely
determined subset Ay C [0, 1)¢ such that

A:A0+Zd.

The collection of G-symmetric sets is given by the collection of all finite unions
of the integer translates z + [0,1)%, z € Z¢. The width of such a set is just the
number of translates the set consists of.
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] .C

/ =

Figure 2.2: Examples of L-symmetric subsets B of R? where L = {(,0) : x € R}.

2.3 Disintegration

Disintegrations emerge at many different places in Analysis, Probability Theory and
especially in Stochastic Geometry. There are numerous examples, and among these
are Cavalieri’s principle, the calculus of conditional expectations and probabilities
and the classical Palm formalism that leads to the notion of e.g. typical objects of
stationary particle processes and many other meaningful objects. In this section
we summarize the state of the art concerning existence of (invariant) disintegra-
tions in the most general form known to the author. New is Lemma 2.15 and the
elaborate existence result in Lemma 2.17 establishing measurably labeled invariant
disintegrations of measurably labeled jointly invariant measures on product spaces.

2.3.1 Kernels and invariance

If G operates on both S and T and p is a kernel from S to T then p is G-invariant
if

w(gs, gA) = p(s,A), se€S,AeT,geq. (2.14)

The covariance property

/f(t)u(gs,dt) = /f(gt)u(sydt)y geG, feT;,

is equivalent to (2.14) which is the reason why ‘invariance’ of kernels is sometimes
referred to as ‘covariance’ or ‘equivariance’ in the literature. Given measures r; and
vy on S and T respectively their product measure on S x T is denoted by 1y ® vs.
Conversely, given a measure M on S x T', M is usually not a product measure. Still,
for a large class of such measures a similar decomposition, called disintegration, is
possible - either from S to 7" in terms of one measure v on S and a kernel p from S
to T or vice versa from T to S where the measure lives on T and the kernel is from
T to S. A disintegration of M from S to T then reads, given v and p,

Mf = [[ £, s dvids) = (v @ p)f, feS@T)y,

2.3.2 Disintegration on product spaces

In Probability Theory disintegrations arise for instance whenever a joint distribution
of two random elements 7 and 7 is conditioned on one variable. Then

L(n,7)=L(n)@P(r € n=")=L(n) ®L(T]n =),
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hence v := L(n) and u(s, ) := P(7 € |n = s) is a valid disintegration as above
with a probability measure v and a Markovian kernel u. Kallenberg [30] derived
the existence of disintegrations for o-finite measures M on product spaces using the
procedure mentioned in Subsection 2.1.1:

Lemma 2.14. (disintegration of o-finite measures) A measure M on S x T, where
T is Borel is o-finite iff there is a o-finite measure v on S and a o-finite kernel
from S to T such that

M=v® pu.

Here p may be chosen Markovian iff M (- x T') is o-finite.

Proof. See [30, Lemma 3.1] for the implication that a o-finite M admits such a
disintegration. The converse is most easily seen by invoking Lemma 2.3. The last
assertion is trivial as we may choose v = M (- x T') in this case. O

We may even extend this result slightly to the s-finite case: note that any s-finite
measure M on S xT where T is Borel may be disintegrated by means of a probability
measure v on S and an s-finite kernel p from S to T. Here an s-finite kernel is a
kernel that admits a sequence of finite kernels u,, with u, 1 pu or equivalently may
be written as a countable sum of finite kernels.

Lemma 2.15 (disintegration of s-finite measures). Let M be an s-finite measure on
SxT. Then M = v ® p for a finite measure v on S and an s-finite kernel y from
S toT. Here M is o-finite iff n may be chosen o-finite. Further given a o-finite
measure U on S such that M (- x T) < U there is a suitable s-finite kernel fu from S
to T with M = v ® fi. As above M and ji are simultaneously o-finite.

Proof. The case M = 0 is trivial such that we may assume M # 0. If M =}, -, M,
with finite non-zero measures M, on S X T we have disintegrations M,, = v,, ® i,
with finite non-zero measures v, and finite kernels p, by Lemma 2.14 (or simply,
after obvious modifications, the existence of conditional distributions). Now define

the probability measure
1

ngl 2"u,(S)

V= Up.
Since v, < v, n € N, and each measure under consideration is finite, there are
Radon-Nikodym densities f, : S — [0,00) with v, = f,, - v. Using these, we may
define the s-finite kernel p from S to T via

,u($> ) = Z fn(S)/Ln(S, )

n>1

Then the monotone convergence theorem yields

n>1 n>1 n>1 n>1

If M is o-finite, then Lemma 2.14 yields a disintegration M = v ® u with o-finite
v and o-finite p. Using a function f > 0 on S with vf < co we may rewrite this
disintegration via M =v®@u = (f-v)® (% 1) which yields the desired disintegration.
The converse implications are trivial.



20 Chapter 2: Fundamentals and recent developments in measure theory

For the last assertion, fix i with the stated properties and consider a fixed
disintegration M = v ® . Here v and p may be chosen such that pu(s,T) > 0,s € S,
since A := {s € S : u(s,T) > 0} is measurable and we may form 1, - v and
redefine p outside of A suitably. Then clearly v ~ M(- x T') < 7 and the Radon-
Nikodym Theorem yields a measurable function f > 0 on S with v = f - D. Putting

f(s, ) == f(s)u(s,-),s € 9, yields

rRp=0 (fu)=(f7)Qu=veu= M. O

2.3.3 Invariant disintegrations

Note that if G operates on both S and T" and the disintegration M = v ® u consists
of a G-invariant measure v on S and a G-invariant kernel p from S to 7', then M
is jointly G-invariant, in the sense that M is invariant with respect to the diagonal
operation g(s,t) := (gs,gt),g € G,s € S;t € T, of G on S x T i.e.

[ flgs.gMd(s,0) = Mf. geG.fe(SeT)..

Conversely, it is natural to ask if a o-finite, jointly G-invariant measure M on S x T
admits such an invariant disintegration where both v and p are G-invariant. This
is in fact a problem that has been in the focus of many authors since the 1960’s.
Two main approaches were successful in different contexts: the skew factorization
approach of Matthes [45] (1963) and the combined regularization and perfection
approach which appeared first in the paper [61] by Ryll-Nardzewski in 1961. The
classical skew factorization of a jointly invariant measure on a product space requires
one of the two factors, say S, to be the group GG. Then the bijective skew-shift
¥(g,t) = (g,9t) transforms the jointly invariant measure M on G x T into the
measure Mo on G'xT which is invariant with respect to shifts in the first component
(only). It is then only a small step to deduce that any such measure is a product
measure of the form A ® p with a o-finite measure p on 7', and reversing the skew
shift then gives the desired disintegration. Kallenberg significantly generalized this
approach in [31] by showing how this technique may be even applied in the general
setting for jointly invariant measures on S X T by using the inversion kernel. We
shall give a short summary of his ideas in Subsection 3.2.1 for two reasons: First
these nicely support the relevance of the inversion kernel which is part of this thesis
and second we shall need them to establish Theorem 3.9 (which seems new in this
generality and will be needed in this form later).

On the other hand the regularization and perfection approach is more elaborate:
one first needs to identify an invariant supporting measure v on S, i.e. a o-finite
invariant measure satisfying M (- xT) < v. This is difficult since it may happen that
M(- x T') is not o-finite. Then a complicated construction follows (see our Lemma
2.17 which contains this as a special case) which comprehends the regularization
of a family of Radon-Nikodym densities as well as an averaging procedure over
G smoothing the resulting kernel into an invariant one. Gentner and Last used
this technique to construct the inversion kernel in [21] and we shall present this
construction in Subsection 3.1.1.
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In his 2007 paper [30, Section 3] Kallenberg extended and compared both meth-
ods and gave some applications to Palm (and related) kernels. Using the regular-
ization and perfection approach he proves in [30] the following theorem:

Theorem 2.16. (invariant disintegration of o-finite invariant measures, Kallen-
berg)

(i) A o-finite measure M on S x T, where T' is Borel, is jointly G-invariant if
and only if it admits an invariant disintegration from S to T.

(ii) If M as in (i) is jointly G-invariant and v > M(- x T') is o-finite and G-
invariant then there is a o-finite and G-invariant kernel p from S to T with
M=v®u.

(iii) If in (ii) M(- x T) is o-finite, then we may choose v := M(- x T) and the
associated G-invariant 1 is stochastic.

Proof. (i) A proof of the implication that any jointly G-invariant M admits such
a disintegration may be found in [30, Corollary 3.6]. The converse follows from a
simple calculation. (ii) is [30, Theorem 3.5] and (iii) is trivial. O

We will also give a complete proof of an extension of this result to measurably
labeled families of jointly invariant measures on product spaces in Lemma 2.17. In
addition we will further extend this theorem to the case of s-finite M in Theorem
3.9.

2.3.4 Invariant disintegration of kernels

Given measurable spaces R,S and T and operations G — S and G — T, our
aim in this subsection is to prove a measurable and invariant decomposition of
measurably labeled families of jointly G-invariant measures {M, },.cg on S x T in
an invariant and measurable way. For this we need the following lemma which is a
crucial extension of known results on the existence of disintegrations of measures on
product spaces (see e.g. [28, Theorem 6.3]) and their respective G-invariant versions
for jointly G-invariant measures found by Kallenberg in [30]. Though the proof is a
straightforward adaption of arguments found in [28, p. 107] and the regularization
and perfection arguments in [30, Theorem 3.5] it will serve as our main tool in the
construction of the inversion kernel in Subsection 3.1.1.

Lemma 2.17 (invariant disintegrations of kernels). Let R,S,T be measurable
spaces where S and T are Borel, M a o-finite kernel from R to S x T and let G
operate measurably on both S and T

(i) There is a stochastic kernel v from R to S and a o-finite kernel k from R x S
to T such that, writing K, := k(r,-, ),

M, =v.®k,, re€ER.

(i) If V' is a o-finite kernel from R to S with M,(- x T) < v.,r € R, then there
is a o-finite kernel k' from R x S to T such that

M,=v.®k., ré€R.
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(iii) If M is such that M, is jointly G-invariant for each r € R and v is a o-finite
kernel from R to S such that each v,.,r € R, is a G-invariant measure on S
with M,(- x T) < v, forr € R, then there is a o-finite kernel k from R x S
to T with the invariance property, writing K, = k(r, -, +),

kr(gs,A) = k,(s,0,'A), AeT,seSgeGreR,

such that
M, =v,®Kk,, r€R.

Proof. (i) We may assume that M,.(S x T') > 0,7 € R. Since M is o-finite we may
choose by Lemma 2.3 a measurable function f > 0 on Rx S xT such that M, f, =1,
r € R, and define the stochastic kernel P from R to S x T as P, := f, - M,, r € R.
Then [28, Proposition 7.26] yields a stochastic kernel & from R x S to T" such that
together with the stochastic kernel v, := P,.(- x T')

P.=v,®Fk., 1€R,
c.f. Dellacherie/Meyer [16, 5.58]. This is clearly equivalent to
M, =v,®Kk,, r€ER,

where k(r,s,A) == [14(t)f(r,s,t)"'&(r,s,dt), A € T, and thus proves the first
assertion.

(ii) If v is a given kernel from R to S with the property M, (- xT) < v.,r € R,
then v, from above satisfies v, ~ M,.(- x T') < v/, r € R, and by Dellacherie/Meyer
[16, 5.58] we may choose a measurable function f: R x .S — [0, 00| such that

dv, ,
f(rys) = dZ’ (s), wv-a.e s€S.

r

Then
M,=v,®k., r€ER,

where £/(r,s,-) :== f(r, s)k(r, s, ), which proves the second statement.
(iii) From (ii) we get a kernel s from R x S to T with M, = v, ® k., € R.
Invariance of M, and v, imply for any f € (S® T), that

//f(&t)/‘ér,gs(dt)w(ds) = //f(S,t)F;m o0, (dt)v.(ds), g€ G,reR.

Since T' is Borel it admits in particular a countable measure determining class which

gives
~1

, s Vvrae s€S,geG,rER.

Ry, gs = Ky O 0
Fixing some right Haar measure A on G Fubini’s theorem yields in particular

Krgs = Kr,s O 99_1, Mae. g € G,v-ae. s€ S, reR. (2.15)

Let [ > 0 be some measurable function on G with Al = 1. Then we may define

Fors 1= / (Frns © 0) (L N)(dh). (2.16)
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A similar calculation as in [30, Theorem 3.5] shows that on the sets
A, ={S €S Krps0 by = Fpys 00, M-ae.(p,q) €GP, reR,
we have
Rrs =FRrpns00n, heG,se€ A, reR. (2.17)

We now show that the map (7, s) + 14,(s) is measurable. For this take a countable
measure determining class C of 7 and define for each B € C the measurable map

mp(r,p,q) == min{k,p; 0 0p(B), Krgs 0 04(B)}, 1€ R,p,q€G.

Then also
wa(r.8) = [[ 1D (r © by = Frge 0 6)(B)1{m(r,p. @) < 0} X2(d(p, )

is measurable by Fubini’s Theorem. Further we clearly have s € A, iff for each
B € C the terms zp(r, s) are zero. Hence we may write

1a.(s)=1-— 1{1591213 zp(r,s) > 0},

which reveals the desired measurability. Further one can easily check that A, is
G-invariant and (2.15) implies that v,(AS) = 0. Finally we define

Rys:=14,(5)R;s, s€S,reR. (2.18)
Then by invariance of A, and (2.17)
Frgs(A) = FR.s(g7'A), ge€G,s€S AeT,reR,
and since R, s = Rrs = Ky, Vp-a.e. s € S, the required disintegrations
M,=v,®Rk.,, re€ER,
hold indeed. U

Remark 2.18. Here the smoothing of the kernel x in (2.16) is referred to as regu-
larization while the selection of ‘nice’ kernel members in (2.18) is called perfection
of the kernel.

2.4 Random measures and stationarity

In Subsection 2.4.1 we first define random measures in a very general (non-
topological) framework following Kallenberg in [31] and present some of their prop-
erties. Then, in Subsection 2.4.2 we define and discuss group stationarity of random
elements.
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2.4.1 Random measures and Palm pairs

Let (S,S) be a measurable space and M(S) the space of all o-finite measures on
S. We endow M(S) with the smallest o-field M(S) rendering the mappings p —
pu(B) for all B € S measurable. Let (€2, .4,P) be a o-finite measure space. We
use probabilistic notations even though P need not be a probability measure. In
particular, we denote by E integration with respect to P. A random measure on
S is a measurable mapping £ :  — M(S) that is o-finite in the sense that for
each w € Q) there is a countable partition BY, BY,... of S such that &(w, BY) < oo
P-a.e. w € Q2 for any ¢ € N and such that (w,s) — 1{s € By} is measurable for
i € N, i.e. ¢ is nothing but a o-finite kernel from €2 to S using the kernel notation
&(w, B) := &(w)(B). A point process on S is a random measure on S which charges
all measurable sets with values in NU {0, oo}. We denote the identity map on € by
6 in order to be consistent with (2.26).

If £ is a random measure on S then the Campbell measure C¢ of £ with respect
to P is the measure on €2 x S satisfying

Cef =B [ [(8..)8(ds), [ € (A®S),. (2.19)
Further if n is a random element in a Borel space T" then
Cenf =E [ f(n,9)E(ds), [ e (T@S), (2.20)

is called the Campbell measure of the pair (£,m). These measures have the following
properties.

Lemma 2.19 (properties of Campbell measures). (i) Given a random measure &
on a measurable space S its Campbell measure Cg is o-finite.
(ii) Given random measures & and & on a Borel space S, then

E=€ P-ve <& Ce = Cp.

(i) Given in addition a random element n in a Borel space T the Campbell
measure of the pair (§,1n) is s-finite and it is o-finite whenever & is n-measurable or
E¢ is o-finite.

Proof. (i) is evident in view of Lemma 2.3.
(ii) One implication of the equivalence is trivial. To see the other, suppose
Cg = Cg, i.e.
Cef =Cef, feE(A®RS)4.
Since S is Borel there is a countable measure determining class C C S. For B € C
the special choice f(w,s) = g(w)1p(s) for an arbitrary g € A, yields £(B) = &(B)
P-a.e., and since C is countable this yields

§(B) = é(B), B € C,P-a.e..

As C is measure determining this yields the assertion.

(iii) The s-finiteness is proved in [30, Lemma 4.2] as well as the o-finiteness in the
case when ¢ is n-measurable. The case when E¢ is o-finite is immediate as we may
chose a function f > 0 on S such that E{f < oo such that also [ f(s)C¢,(d(t,s)) =
Eéf < oc. O
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The o-finiteness of C¢ does not necessarily carry over to the intensity measure E
of ¢ defined via (E¢)(A) := E£(A),A € S. Note that E§ = C¢(©2 x -) and that
o-finiteness is usually not preserved under projections. But E¢ is s-finite, since the
class of s-finite measures is closed under projections - a key observation of Kallenberg
in [30]. This makes sometimes the use of supporting measures of £ necessary. These
are o-finite measures equivalent to [E£ in the sense of mutual absolute continuity.

Lemma 2.20 (s-finiteness and its use, Kallenberg).

(i) Any s-finite measure on a product space S X T has s-finite projections M (- xT)
and M(S x -).

(ii) Given a random measure £ its intensity measure EE is s-finite.
(iii) For any s-finite measure v there is a finite measure v ~ v.

(iv) Any random measure £ possesses a finite supporting measure.

Proof. (i) If M,, T M is an approximating sequence of finite measures then M, (- xT)
and M, (S x -) are approximating sequences of finite measures for M (- x T') and
M(S x ), respectively. Now (ii) follows since C¢ is o-finite, in particular s-finite,
and E¢ = C¢(Q2 x ). For (iii) we take a sequence of finite non-zero measures v, T v
and note that 7 := ¥, 27",,(S) ', has the desired property. Now (iv) follows
from (ii) and (iii). O

Note that the definition of E£ together with the monotone convergence theorem
yields

E [ f(s)¢(ds) = [ J(9)E€(ds), | €S,

This identity will be used frequently and is called Campbell’s Theorem in some parts
of the literature. If €2 is Borel then Lemma 2.14 yields a o-finite measure v on S
and a o-finite kernel @ from S to 2 disintegrating C¢ as follows:

Cef = [[ flw.9)Qu(dw)v(ds),  f € (A@S),. (2.21)

We call any pair (v, Q) satisfying (2.21) a Palm pair of £ (see [21]). The kernel @
is the v-associated Palm kernel of £&. To make the dependence on & explicit, we
sometimes write (v¢, Q¢) := (v, Q). @ may be chosen to be stochastic if and only if
[E¢ is o-finite in which case the measures ()5 are probability measures on €2, the Palm
probability measures on §2. Since structural requirements on {2 are not desirable one
may consider instead a random element 7 in a Borel space T and form similar to
(2.21) by means of Lemma 2.15 (together with the fact that C¢, is always s-finite
according to Lemma 2.19 (iii)) a disintegration of the form

Cenf = [[ 1(t.5)Pdt(ds), [ € (ARS),. (2.22)

Given a disintegration as in (2.22) we call the P-kernel members v-associated Palm
(pseudo) distributions Ps, s € S, of n. Whenever a v-associated Palm kernel ) exists
then clearly

P, =Qsne-) v-ae.
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It is clear from the construction that Ps contains less information on the underlying
stochastic experiment than ()5 which makes it sometimes preferable to work directly
on () instead on 7', see Subsection 2.4.2. If E¢ is o-finite such that Qs and P; are
[E&-a.e. stochastic then P; is also called the Palm distribution of n with respect to €
at s € S and we shall write, following Kallenberg [32, 33], in this case

P(n€-[8)s :=Ps(-), s€S.

Of particular importance is the case when n = £. If there is a fixed partition of S
into measurable sets P := { By, B, ... } such that £(B;) < oo P-a.e. then £ € M (5)
P-a.s. where

MP(S) := {u € M(S) : u(B;) < 00,i € N} (2.23)

is a measurable subset of M(S). It can be shown that M (S) is Borel whenever S
is by following similar arguments as in [28, pp. 561, 564]. It seems to be an open
problem whether or not the corresponding statement for M(.S) is true. Again, if E¢

is o-finite and ¢ takes P-a.s. values in a Borel space, then we may choose v = E£
and (2.22) reads

E [ £(&9)¢(ds) = [[ Fln9)B(E € dull€)(BS)(ds). € (M()®S). (2:24)

In contrast to our work [21] we will rarely use Palm pairs in this thesis (and
only sometimes the Palm (pseudo)-distributions). Their existence is only insured if
() is Borel and we shall not impose any such regularity conditions on our underlying
abstract probability space. The better object to look at will be a certain measure
Q on Q x O that we will introduce in Section 4.1.1 and whose existence does not
depend on structural properties of €.

Replacing in (2.22) ¢ by its n-fold random product measure " = { ®@ -+ ® &
yields, under the assumption that E&" is o-finite, the nth-order Palm distributions
P(n € -||€™)s of n with respect to €. In addition, if £ is a point process on the Borel
space S we may write £ = Y, 0,, where the sum is taken either over a finite set of
the form {1,...,n} for some n € N, or over N itself with a corresponding (finite
or infinite) sequence of random elements 7; in S. In either case we may form the
random measures

¢="3" 04 .um) n€EN

(i1y0rmrin) 2

on S™ respectively, where the sum is taken over all (iy,...,7,) € N” with pairwise
different components. Their intensity measures are called the factorial moment
measures of £ (of order n respectively). We finally mention a technical lemma here.

Lemma 2.21 (transformations of random measures). Let  denote a random mea-
sure on S, f: QxS — [0,00) a measurable function and v a o-finite kernel from

QxS toT. Then

(i) n(w,-) = /1{8 € -}f(w, s)¢(w,ds) is a random measure on S,
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(i) E®7)(w,:) = // 1{(s,t) € - }y(w, s, dt)é(w, ds) is a random measure on S X

(iii) &" is a random measure on S™.
(iv) If S is Borel and € is a point process, then €™ is a point process on S™.
Proof. (i) We need to show that 7 is a o-finite kernel from Q to S. Choose h :

QxS — (0,00) such that {(w, h(w,-)) < oo and let A := {(w,s) : f(w,s) > 0}.
Then put

D‘

(w, )
Flws)

and observe that ng(w) = [1{(w,s) € A}h(w, s)é(w,ds) < co. The assertion now
follows from Lemma 2.3 (i).

(ii) Again we need to check measurable o-finiteness. Choose f5: Q x S x T —
(0,00) with §(w, s, fs(w,s,-)) < L,w € Q,s € S, and fe : Q@ x S — (0,00) with
E(w, fe(w,+)) < 1,w € Q. Putting f = fsfe the assertion follows again from Lemma
23 (i)

For (iii) choose by Lemma 2.3 (i) a measurable function f: QxS — (0, 00) such
that £(w, f(w,)) < 1 and define g : Q x S™ — (0,00) by

g(w, s1,...,8n) = flw,s1) ... f(w,sn)

then clearly £"(w, g(w,-)) < 1. The assertion now follows from Lemma 2.3 (i).
(iv) now follows from (iii) since £ (w, f(w,-)) < €"(w, f(w,-)) together with the
fact that £ takes values in N U {0, co}. O

g(w,s) = 1xe(w, s) + La(w, s)

weNses,

The next lemma is due to Mecke [46].

Lemma 2.22 (taming of random measures). Let £ be a random measure on the
measurable space S.

(i) There is a function h :  x S — (0, 00) such that
[ e, )¢, ds) = 1e(w) £0}, we

(ii) If € is uniformly o-finite with respect to a partition P, there is a function
h:MP(S) x S — (0,00) such that

/h Je(w, ds) = 1{E(w) # 0}, we Q.

Proof. (i) Choose by means of Lemma 2.3 a measurable f :  x S — (0, 00) such
that £(w, f(w,-)) < co. Then

fw, )

[Tt dy T HEW =0} weses

h(w, s) = 1{E(w) # 0}
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has the desired property.
(ii) If P ={By, Bs,...} then we may put

i P
22 1+M(B)1BZ(S)7 MGM <S>78657

(]

and note that if u # 0 we have

0< /a(,u, s)u(ds) < 1.

We may then define

hlos) = 1 £ 0} o s 4 1 =0}, pe MP(S)s€ 5,

which has the desired properties. O

The last lemma in this subsection will be needed for our discussion of Cox-
Delauney mosaics in Chapter 7.

Lemma 2.23 (conditioning with respect to an integrating measure). Let £ denote

a random element in a Borel space T and let n denote a uniformly o-finite random
measure 1 on a measurable space S. Then for any n € N

E [ f(&s)n"(ds) = E [[ F(t (€ € dtlpr(ds), ] € (T @8,

where P[E € -|n] denotes a reqular version of the conditional distribution of & given
n.

Proof. As the uniform o-finiteness of 7 clearly carries over to the random measure

n™, say with respect to the partition P of S™, we choose by means of Lemma 2.22

(ii) a function h : MF(S™) x S™ — (0, 00) with
[ 1o @), i (. ds) = 1{"(w) # 0} = Ln(w) £0}, we
We first show that for any f € (T @ 8");

E/f L, s)i™(ds) E//fts P(¢ € dt|n)h(n", s)i(ds). (2.25)

Both sides are measures in f and by monotone convergence, it is enough to show
that

E [ 1{(&.5) € AYh(r",s)n"(ds) = E [[ 1{(t.5) € AYP(€ € dtln)h(y”, s)n" (ds).

for all A € T ® 8™. As both sides are finite (!) measures in A, we may, by a
monotone class argument (or a uniqueness result such as [28, Lemma 1.17] which is



2.4 Random measures and stationarity 29

essentially the same), further reduce to the case when A = B x C' where B € T and
C € §™. Starting left, we obtain by conditioning on 7 that

IE/ 1{¢ € B,s € CYh(y", )" (ds)
— [[1{r e BY [ 1{s € CYa(u", ) (ds)P(E € dtly = p)P(y € dp)
— [P(& € Bln=p) [ 1{s € CYu(u", ) (ds)P(n € dp)
—E|Plc e Bl [ 1{s € CYnl, )" (ds)|
We may proceed via
E [1{¢ € B,s € CYh(", s)"(ds) = E [ 1{s € CYP(¢ € Bl)h(", s)n" (ds)
—E [Pl¢ € B,s € Clal h(", s)" (ds),

and thus we proved (2.25). Applying (2.25) to the random variable £ := (&, 7) in
the Borel space T'x M (S) yields for any measurable f : T'x MF(S) x S — [0, )

E [ J(&n ", s (ds) =B [[ £t 8)P((E ) € At p)n)h(r”, )" (ds).

Choosing here finally

[t pu,s) = h{SﬁSs))’ teT,ueMF(S),se s,

for arbitrary f € (T ® S), yields

E [ f(&, 9" (ds) E//h P((&, ) € d(t, p) (", )" (ds)

—E [ ft.9) 5nedumm><>
—E [[ Jt.9)P( € dtlnn" (ds),

which is the assertion. O

2.4.2 The canonical framework for stationarity

(Partial) Stationarity of a random measure refers to invariance of its distribution
with respect to an operating group. To capture this description precisely, consider
an operation G — S of some lcsc group G on some measurable space S. This
operation induces an action G < M(S) of G on the space of all o-finite measures
on S via

gu(-) = po b, () = plg™), g€ G, peM(S).
The reason for defining the shift of a measure in terms of a shift by ¢! rather than
a shift by ¢ is that this choice leads to the covariance property

[ 1) gmids) = [ flgulds), g€ G, fes.,
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by using monotone convergence. Now, a G-stationary random measure £ is a random
measure whose law £(€) is a G-invariant probability measure on M(.S) with respect
to the induced operation G — M(S), i.e.

PegA)=PEeA), geG AecM(S).

Evidently this is equivalent to saying that g& has the same distribution as & for each
g € GG. Stationarity is a purely distributional property and is independent of the
concrete functional representation of £ as a random element of M(S). Still, among
the many possible representations of £ as a map from a space 2 to M(SS) there is one
that is particularly useful and convenient for Palm calculus: Choosing the canonical
setting € := M(S) the identity map £(w) := w becomes a random measure with
distribution P. Hence, G-stationarity of £ is nothing but G-invariance of P in this
setting. Evidently the relation

{(gw) = gw = g&§(w)

holds in addition. Hence stationarity may (without any loss of generality) be repre-
sented by the following mathematical framework.

Assume that G operates measurably on €2 (we do not need to require any further
regularity conditions here and in fact e.g. assuming properness here leads to heavy
inconsistencies: the operation G < M(S) is far from proper for non-compact G)
and write 6,0 = gw. The reason for this sudden change of notation is that it
enables us to distinguish between group elements themselves and actual shifts on €2,
which become Q-valued random variables in this setting. The family {6, : g € G} is
referred to as flow on €2 in the literature, and the induced structural properties of
this flow

w=w, wel), and 0,060,=0,, g heG, (2.26)

are often called flow-properties. The canonical setting mentioned above motivates
the following assumption and definition: We assume that P is invariant under the
flow and a G-stationary random measure on S is a random element & : Q@ — M(S)
satisfying

{(Ogw) = g€(w), g€ G,weQ,

which means set wise
£(0yw, B) = gé(w,B) = &(w,g7'B), geG,weQ,BES. (2.27)

Note that a G-stationary random measure is in this frame nothing but a G-invariant
kernel, which is the reason why some authors call stationary random measures in-
variant random measures.

Some additional words seem adequate to highlight the advantages of the above
framework. In Palm Theory the underlying stochastic experiment is usually a G-
stationary quite complicated random element, e.g. a stationary random set, tessel-
lation, particle process or random measure. The random measure £ with respect to
which the Palm measure is then formed is a derivate of this ‘underlying stochas-
tic experiment’ which is entirely captured by w but not by (w) since information
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might be lost. For instance w might live in the space of tessellations of R?, while
£(w) is the point process of the vertices of this tessellation. In probability theory
only the distribution of a random element is of interest, usually not the functional
representation in terms of a specific space (2. Choosing the canonical setting means
to restrict oneself to such a functional representation but the shifts on 2 itself have
the huge advantage, that they happen at the level where all the information about
the stochastic experiment is available. This simplifies formalities when looking at
two or more derived ‘typical” objects of a stationary process.

Similarly to stationarity of random measures we may define stationarity of ran-
dom elements. If G' operates measurably on a space T and 7 is a random element
in T, then 7 is G-stationary if L(7) is a G-invariant measure. By similar arguments
as above we may choose €2 such that 7 satisfies

T(0gw) = g7(w), we,g€eq,

and P to be G-invariant. Joint G-invariance of several random elements 74, ..., 7, is
defined as invariance of their joint distribution with respect to the diagonal operation
of G on the product of the spaces, where these random elements live. Again, we
may choose {2 such that

(T1(Ogw), ..., Tn(0yw)) = g(1(w), ..., Tn(w)), we geQqG,

and choose P to be G-invariant.






Chapter 3

Inversion kernel and applications

This chapter is devoted to the construction of an important kernel in Section 3.1
and to further constructions and conclusions based on this kernel in Section 3.2.

3.1 Inversion kernel

We will give a construction of the inversion kernel in Subsection 3.1.1 which is taken
from our paper [21] and thus constitutes an original part of this thesis. This ker-
nel first appeared in a paper by Rother and Zéhle [60] established in the setting of
homogeneous spaces, i.e. transitive operations of topological groups on topological
spaces with some topological regularity assumptions. In [31] Kallenberg (indepen-
dently of Gentner and Last) established the existence of the inversion kernel for
possibly non-transitive group actions at about the same time as well. Kallenberg’s
approach for constructing this kernel is very different from ours and the interested
reader might wish to read more about his elegant construction in [31, Theorem 3.1].

We shall then give examples of operations and respective inversion kernels in
Subsection 3.1.2.

3.1.1 Construction of the inversion kernel

In the following Theorem 3.1 we introduce a kernel x from S x S to G that will
enable us to handle stabilizers and their cosets within G in integrals with respect to
Haar measure A on GG. This kernel satisfies

[ fas.oMdg) = [[ f(t.okatdguar), fe(S©ses. (3

In particular s disintegrates the Haar measure A on GG along each orbit via

[ Hordg) = [[ Fgroldgludt). feGuses. (3.2

Theorem 3.1 (inversion kernel). If G operates properly on the Borel space S there
is a unique kernel k from S x S to G satisfying (3.1) and with the properties

(1) Hs,gt:’%s,toeg_ly g€G787t€S7

(i) Kse is concentrated on Gsy = {g € G:gs =1t} fort € Gs,s € S,
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(ili) kst(G)=1, teGs,ses.
Proof. Consider the kernel

M, :z/l{(gs,g) € -}\(dg), se€S,

from S to S x G which is clearly measurably o-finite by the properness of G < S and
has the property that every M, is a jointly G-invariant measure on S x G. Further
it is clear that us = Aom,; ! = M (- x G) and since the p, are o-finite G-invariant
measures we may apply Lemma 2.17 with R := S, T := G and v, := pu, to the kernel
M to obtain a kernel k from S x S to G such that (3.1) and the invariance property
(i) are fulfilled. It remains to show that s fulfills (ii) and (iii): For (ii) note that
for s € S by (3.1) (and the Borel property of S which insures measurability of the
relevant indicators)

J[ 1os # thraaldginsar) = [ 1{gs # gshrtdg) = 0.

This means that
Ket(G5y) =0, psae t€S,s€S,

and since 1, # 0 for each s € S we may pick some ¢ € G such that x,,(G;) =0
holds. But then by (i) r,(GS,) = 0 for all t € Gs (if { € Gs then ¢ = ht for some
h € G). For (iii) choose k as in (2.3) and note that setting f(t,g) := k(¢) in (3.1)
yields

ok = [ (o Ghps(dt) = ko (@pish, s € S, (3.3)

where we applied (i) in the last step. Again by (i) this implies rs:(G) = 1 for t € Gs.
To prove uniqueness of k suppose there is another kernel £ with the desired
properties. Then in particular

J] fgnaldgna) = [[ £t 9)rauldgus(dr). e (S©G)seS.

Since G is Borel (in particular G is countably generated) this implies
Kst = Rst, Ms-ae. t€S,s €5,

and the invariance property (i) of both x and & yields ks, = Rs¢,t € Gs,s € S.
Finally, by (ii) we may conclude x = & since G5, = ) for all t & Gs. O

In this thesis we will use the inversion kernel in the following form exclusively.

Corollary 3.2 (one-parametric version). Let G < S be proper and assume that
a measurable system of orbit representatives exists. Fixzing such a system O with
associated u-measurable choice function B the map

(s,B) = kg s(B), s€S,Beg,
s a u-kernel from S to G.

Proof. Just note that the map (s,t) — rs(B) is measurable according to Theorem
3.1 while s — (8(s), s) is u-measurable by Lemma 2.8 and elementary properties of
the product o-algebra. 0
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3.1.2 Special actions and their inversion kernels

We will investigate special cases and examples of proper operations along with their
respective inversion kernels in this section.

Example 3.3 (transitive case). A first step of specialization is to assume that the
operation G < S is transitive. Here ¢ := (s), s € S, is just one single representative
and since G., # () for all s € S the corresponding measure kg := k., is never 0.
If in addition the stabilizer G.. is locally compact (which is inherited from G for
instance if G.. is locally closed, i.e. the intersection of an open and a closed subset
of G, see also [10, 1.65]), then k. is nothing but Haar measure with total mass 1
on G.. and Ky is a translate of this measure representing the from G, . uniformly
distributed mass shifted onto the coset G ;. Note that this implies that necessarily
a proper transitive operation which is topologically well-behaving in the sense that
stabilizers are at least locally closed, must have compact stabilizers as these carry a
finite Haar measure. We refer to the following Corollary 3.10 for a detailed proof of
a generalization of this statement in the general non-transitive setting.

Example 3.4 (group case). Assume the lcsc G operates on itself via left-
translation. This is clearly a transitive operation which is even continuous. It is
clearly topologically proper as for compact K C G the sets 7;}(K) = Ks! are
trivially again compact. Also the sets G.s = {s},s € G, are compact. Here we have
ps = A(s7HA, s € G. Further we may choose O = {e}, 3(g9) = e,g € G, and since
Ges = {s},s € G, we have

Ks = Kes =05, SES.

Example 3.5 (trivial operation). Consider the trivial operation G = {e} — S
where S is an arbitrary measurable space. This operation is clearly proper since
{e} is compact and we have O = S (there is only this choice) A\ = ., B(s) = s, and
s = 05,5 € S. Further Gg,) s = Gss = {e} = G and the inversion kernel reduces to

KB(s),s = Kss = 0, SES.
It is clear that any measure or kernel is invariant with respect to this operation.

Example 3.6 (countable G). Consider the measurable operation G — S where
G is a countable group endowed with the discrete topology and S an arbitrary
measurable space. Here the Haar measures are all constant multiples of counting
measure (which is clearly also right-invariant, hence any such G is unimodular).
Choosing A as counting measure on GG, we get

1y = /1{g5 €INdg) =3 Gpe = 3 Gaaldy = |Gl S0 s€S.
e, teGs teGs
Here we used in the last step left-invariance of counting. As we may clearly find a
function £ > 0 on S such that > ,cq, k() < 0o,s € S, this means that G — S is
proper iff |G| < 00,5 € S (note that 0 < |Gss|,s € 5, since e € Gy). In this
setting evidently the inversion kernel is given by

1

1Ga(s),6(5)] 9€Gp(s),s ’

Kp(s),s
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Note that the mass of rg(5)s on a point g € G is either 1/|Gas)s| = 1/|Gps),505)] if
g € Gpa(s),s and 0 otherwise. When s varies within a fixed orbit these point masses
wander from one coset to the next, but the masses themselves do not change. But
they may change when s jumps from one orbit to another since the number of
elements in the cosets may vary.

Example 3.7 (countable S). Consider the measurable operation G — S where G
is lesc and S is a countable space with the power set as respective o-algebra. Here

the following lemma characterizes properness. As before, the cardinality of a set A
is denoted by |A].

Lemma 3.8 (proper operations on countable sets). G operates properly on a
countable set S if and only if

0 < MGs,) <00, s€ES.

In this case

)‘(Gs,S) _ |Gs,8ﬁ(5>|
MGss)85))  |Gpis)pes)sl

sef, (3.4)
and either all orbits are infinite or all orbits are finite.

Proof. The countability of S implies 0 < A(Gss), s € S, since A(Gs5) = 0 for some
s enforces

MG) =3 MGar) = > MGss) =0

teGs teGs

by left-invariance of A which is impossible. For any &k : S — [0,00) on S we have by
left-invariance of A

psk = /k:(gs) > 1{gs =t}A(dg) = M(Gs5) D k(t), seS. (3.5)

teGs teGs

Hence if G — S is proper then choosing k£ > 0 as in (2.3) shows that A\(G,;) < 0o
for any s € S. Equation (3.5) also shows the converse since we may always choose
k> 0 on S such that Y ,cq k(t) < 00, s € S.

Now assume that G < S is proper. By left-invariance of Haar measure we have
)\(Gs,s) - )\(Gs,s N Gt,t)|Gs,st|7

which implies, since 0 < A(G,,) < oo that 0 < |G, t|, \(Gss N Gyy) < 00,s,t € S.
Putting ¢ = (s) and dividing the resulting equality with the same equality where
s and [(s) are interchanged yields (3.4). To see the last assertion note that for
any orbit Gs we have A\(G) = |Gs|A\(Gss) and hence if |Gt| = oo for some t € S,
then necessarily A(G) = oo and thus for any other orbit Gs also |G's| = oo by
properness. O
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3.2 Consequences and applications

In order to illustrate the usefulness of the inversion kernel we will present some
consequences for proper operations from its existence and some applications in this
section. For our purposes Kallenberg’s idea in [31] to combine the skew factorization
approach with the inversion kernel in order to derive invariant disintegrations of
jointly invariant measures will be very useful to extend Theorem 2.16 to the s-finite
case in Theorem 3.9. Besides the pure sake of generality there is the following reason
to do this: intensity measures of random measures are not necessarily o-finite, but
they must be s-finite according to Lemma 2.20. Having established Theorem 2.16 in
this generality will allow us to drop technical extra assumptions such as o-finiteness
of certain intensity measures in later theorems. In particular, this extension will be
helpful for proving the stochastic version of the mass-transport principle in Theorem
5.5 in a shorter and more transparent way as we did in [21].

3.2.1 Disintegration revisited

We have derived the existence of the inversion kernel using Lemma 2.17. This lemma
clearly contains the existence of invariant disintegrations of jointly invariant mea-
sures on product spaces: it is enough to specialize R to be a one point set. In [31]
Kallenberg also makes heavy use of this result in his existence proof of the inversion
kernel though his argumentation does not use something similar to our Lemma 2.17.
Instead of purely considering (3.1), he integrated (3.1) against an arbitrary proba-
bility measure v, and derived by the ordinary existence of invariant disintegrations
a v-associated inversion kernel 4”. Then he proves in an interesting second step
that 7" is essentially independent of v, see [31, Theorem 3.1]. Even though both
constructions in [21] and [31] of the inversion kernel use the existence of invariant
disintegration of jointly invariant measures, it is interesting to inspect invariant dis-
integrations again using the inversion kernel as this sheds some additional light on
them.

What follows is a quick summary of Kallenberg’s ideas in [31] where he com-
bined the skew-factorization technique with the inversion kernel to derive invariant
disintegrations:

Consider a jointly invariant measure M on a product space S x T where both
factors are Borel. Then

3 = [[ £lg.8(5). sco.(dg) M (d(s,) (3.6)

defines a measure on G x S x T, which is concentrated on G x O x T'. This trans-
formation is a bijection between jointly invariant measures on S x T and measures
on G x O x T that are invariant with respect to joint shifts in G and T only. Now
using the bijective skew-shift

(g, s,t) == (g,s, gt)

we may consider the measure M o9 on the same space, which is now invariant with
respect to shifts in G (only). Hence, the well-known factorization for such measures
(see e.g. [31, Lemma 2.2]) yields a measure p on S x T' (more precisely on O x T')
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such that M o9 = A ® p. Now the point is that an arbitrary (1) disintegration
p =V ® i with a measure ¥ on O and a kernel i from O to T yields an invariant
disintegration M = v ® u where

- / / 1{gb € Y\ (dg)o(db) (3.7)
and
s, ) i= [[ gt € Hsio (dt)rsio(dg). (3.8)

This may be verified by direct calculation: First note that v is a G-invariant measure,
@ is a G-invariant kernel (as follows from Theorem 3.1 (i)) and that

J[ 1. 0uts,dtywids) = [[[ £lgb,0)ulgb, d)Adg)o(a)
— ] 1(gb. gyutv. A (dg)i(an)
- / / / / F(gb, ght)ii(b, dt) sy (dR)A(dg) D (db)
- / / / F(gb, gt) (b, dt)\(dg)D(db),

where we used Fubini and right Gj-invariance of A (note that A(h™') = 1 for
h € Gpp) in the last step. Since A\®@ 0 @ i = M oV we may proceed

/fst (s,dt)v(ds) /fgbgtMqu‘ (g,b,1)) /fgbt d(g,b,t)),
and by definition of M we arrive at
J[ #Gs 1t deywtas) = [[ £(9B(5), Omaco.0(dg) M (s, 1) = M.

Kallenberg’s complete result in [31] says that the correspondence M <« M estab-
lishes a bijection between jointly invariant o-finite measures M on S x T" and o-finite
measures M on G x O x T invariant with respect to joint shifts in the first and last
component. Using these insights together with Lemma 2.15 we may establish the
existence of invariant disintegrations even for jointly G-invariant s-finite measures:

Theorem 3.9 (invariant disintegrations of s-finite measures). Let M be an s-finite
jointly G-invariant measure on S X T'. Then there is a o-finite G-invariant measure
v on S and an s-finite G-invariant kernel p from S to T with M = v @ pu. In
addition, given a fized G-invariant o-finite measure U on S such that M (- x T) < U
there is a suitable G-invariant s-finite kernel i from S to T with M = U ® [i.
M and p, resp. i, are simultaneously o-finite. If M(- x T) is o-finite, then the
v := M(- x T)-associated u is stochastic.

Proof. Define the s-finite measure M on G'x O x T by (3.6). The measure Mo is G-
invariant with respect to shifts in G (only) and Lemma 2.2 in [31] yields Mo¥ = A@p
with an s-finite measure p on O x T'. Take a disintegration p = 7 ® i by means
of Lemma 2.15 with a finite measure # on S and an s-finite kernel i from O to T
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Define the o-finite v as in (3.7) and the s-finite p as in (3.8). Exactly the same
calculation as above shows that M = v ® u. For the last assertion, fix & with the
stated properties and consider a fixed invariant disintegration M = v ® u. Here v
and g may be chosen such that p(s,7) > 0,s € S, since A:={s e S: u(s,T) > 0}
is G-invariant, and 1,4 - v is thus again G-invariant. Then clearly v ~ M (- x T) < v
and [30, Lemma 2.3] yields a measurable G-invariant function f > 0 on S with
v = f 0. Putting ji(s,-) := f(s)u(s,-),s € S, yields

rRp=ve(fu)=(fr)@p=rveu=»M.

The rest is evident in view of Lemma 2.15. O

3.2.2 Disproving properness

In order to be able to apply parts of the theory in this thesis one needs to check
properness for the concrete operation G — S which is of interest. If it is indeed
proper then it is usually not hard to determine a suitable partition that splits the
[ts into finite pieces or to find a simultaneously ps-integrable function & > 0 on
S and thus to actually prove properness. Conversely if all these efforts fail one
might be tempted to guess that properness does not hold. But it seems hard to
ensure this without further tools. The inversion kernel k now actually represents an
appropriate tool that will enable us to reject properness in certain cases. Say that
a subset L C G is locally closed if it is the intersection of an open and a closed set.
It is well known that such sets inherit local-compactness from G with respect to the
inherited topology, see [10, 1.65].

Corollary 3.10 (properness and stabilizers). Let G operate properly on the Borel
space S such that G5 is locally closed in G for all s € S. Then G5 is compact in
G forall s € S.

Proof. The assumption that G s is locally closed in G implies that G 5 is a locally
compact subgroup of G and for each s we may choose some left Haar measure A
on G 4. Consider the kernel x from Theorem 3.1. For any s € S, the measure x4
is concentrated on G, s and for any g € G s we have by invariance

—1 _ o
Kss 00, = Ksgs = Kgs.

)

Hence K, is a left G, s-invariant finite non-zero measure on Gy ,. The uniqueness
result [30, Corollary 2.6] now implies A\; = ¢ - k5, for some ¢ € [0,00), hence A; is
finite, which, by a well-known theorem (see e.g. [20, Proposition 11.4 (d)] or [19,
Satz 3.15 (b)]), implies compactness of G ;. O

Examples (non-proper operations). By means of the above Corollary 3.10 it is
straightforward to see that R? does not operate properly on the Grassmanian A(k, d)
via translation. Similarly the operation of R? on F? - the space of closed subsets
of R? - via translation is not proper (note that e.g. k-dimensional linear subspaces
have closed but non-compact stabilizers).

For a last example consider the group Gy of rigid motions on R?. It operates
transitively on A(d, k) in the canonical way and this operation is, as G4 contains
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the translations, also not proper. If properness is needed one might instead consider
the proper (and also transitive) operation R¥* x SO(d) — A(d, k) defined via
(2,9, FE) — Y(¢Yp1(z)+ FE), where for any E € A(d, k) the map 5. is a fixed vector
space isomorphism from R?* to E+.

3.2.3 Projections of functions on groups

Given a proper operation G < S, our fixed choice of a system of orbit representatives
O C S (which induces the choice function () allows for the following canonical
transformation of any measurable function f defined on G into a u-measurable
function f* defined on S:

/f )KB(s),s(dg), s€S.

It maps s € S to the mean of f on the coset G g(s). This is particularly convenient
if f itself is constant on these cosets such that no functional information on f is lost
when forming f*. An important example is the modular function A on G which
may be projected to any space S on which it operates properly via

/ A(g™Yrpes(dg), s €S, (3.9)

without any loss of information from A, since by (2.5) A is constant on the cosets
of the stabilizers: If g,h € Ggs) s then g7'h € Gpys)p(5) SO that (2.5) implies 1 =
A(g~th), ie. A(g™') = A(h™!). The important point of the above construction is
that it automatically gives u-measurability in s. There are other possible ways for
introducing A*:

Lemma 3.12. (A* and A) Let G < S be proper and choose w as in (2.6). Further
Jor any fived s € S let g5 denote some element of Gs).s. Then

A*(s) = psw = Ags ).

Proof. The first equality follows from Fubini’s Theorem since

o = [[ wlghB(9) 5o o(@Ndg) = [ A rs0,(dh) = A(s). (3.10)
The other follows from the definition of A* in (3.9) and the fact that A is constant
on cosets of stabilizers. 0

As seen in various examples in Subsection 3.1.2 and also in the large generality
of Corollary 3.10, properness imposes restrictions on the size of stabilizers which
lead to explicit formulas when computing A* in special cases. Besides the trivial
case where G is unimodular and hence A* = 1 another computable (non-trivial)
case is that of countable S which is of independent interest for applications (e.g. for
percolation on countable graphs, see [6],[44]), also see Subsection 5.4.2.

Lemma 3.13. (A* for countable S) If G operates properly on a countable set S
then

)‘(Gs,é’) _ ‘Gs,sﬂ(s)‘
MGae).85))  |Gas),ps)8]

A*(s) = seS. (3.11)
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Proof. Choose k > 0 on S such that Y, . k(s) = X cap k(s) < 00, b,/ € O. Then
it follows that

A*(S) _ ,usk o )‘<Gs,s) ZteGs k(t) o )‘(Gs,s)

= = , s€b.
pask  AMGas).8) Dieaps) (1t AMGps),a0s)

The second equality in (3.11) follows from Lemma 3.8. O

In other cases the following derivate of the modular function will be useful. Let
G operate properly on Borel spaces S and T'. We consider the associated uniquely
determined inversion kernels x° and 7. In addition, assuming their existence, we
fix in each of these spaces measurable systems Og resp. Op of orbit representatives.
Then we may define

QMA K300 (dg)KT (dh), s€SteT. (3.12)
Note that A has the properties

A(gs, ht) = igfL;A(s,t), g heG seStelT,

(in particular A is jointly G-invariant) and
A(b,c) =1, be Og,cc Or. (3.13)

For later cons,1derat10ns it will be 1mportant to note the following representation of
A using functions w® on S and w” on T as in (2.6) as well as the connection to A*:

Lemma 3.14. (A and A*) Let G operate on the Borel spaces S and T properly.
Then

pw” A

B0 = s = Ar(sy

seSteT, (3.14)

where w® and wT are any functions on S and T respectively satisfying (2.6).

Proof. Using (2.6) we may write

Mﬁ(t)w S
//A ,uﬁ( wS 5(5)s<d9)55(t (dh)

B Nh,@(t)w (oS
—/ W o). (d9) Kby, (dh)

where we used (2.4) and the homomorphism property of A in the second step. The
first equality now follows, the second is then clear by Lemma 3.12. O

We quickly mention the special form that A takes when S is countable.



42 Chapter 3: Inversion kernel and applications

Lemma 3.15. (A for countable S) Assume that the operations G < S and G < T
are proper and both S and T are countable. Then for any s € S andt €T

As.t) = MGre)  MGayp0) _ 1GuBO]  Gps) 65|
7 MGss) MGsupsw)  |1Gswswtl  |GssB(s)]

Proof. Apply Lemma 3.13 and Lemma 3.14. U

Remark 3.16 (countable transitive case). Note that when S = T is countable and
G — S is transitive (this is e.g. the case for a countable transitive graph (V, E)
where V' is the set of vertices, £ C V x V the set of edges and G := Aut((V, E))
the group of graph automorphisms operating on V') then

~ - )‘(Gt,t) . |Gt,t8|
At =G0 " 1Gt

(3.15)

(use Lemma 3.15 for the first equality and Lemma 3.8 for the second).

Finally the following lemma is sometimes helpful.

Lemma 3.17 (unimodularity). Let G — S and G — T be proper where S, T are
Borel, A* defined on S as in (3.9) and A defined on S x T as in (3.12). Then the

following statements are equivalent:

(i) G is unimodular,

(i) A* =1,

(iii) A =1.
Proof. (i) = (ii) follows from (3.9) and (ii) = (iii) from (3.14). Now assume (iii).
Then (3.14) implies p,w® = 1,5 € S, and since G < S is proper this implies (i) by
(2.4) and (2.5). O

3.2.4 Transforming stationary random measures

Given an operation G < S we write here Z for the invariant o-algebra on M (S)
with respect to the induced operation and for any random measure £ on .S we put

o= M) = {{¢e I} T €T},

which is a c-algebra on . Given a random measure n on S and a measurable
function h : Q x S — [0, 00) with

/ h(0; w, B(s))kpeys(dg) < 00, weE Qs €S, (3.16)
we may define another random measure (by Lemma 2.21 (i)) £ on S via

§C) = [[1c()n(8," B(s) s (dg)n(ds). (3.17)

We call € the h-transform of n for given h and n as above. The important feature of
this transformation is that if n is G-stationary then ¢ inherits the G-stationarity.
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Lemma 3.18. (h-transform preserves stationarity) Given any h € (A®S), and a
G-stationary random measure 1 on the Borel space S, then its h-transform & is also
G-stationary and further I C I,.

Proof. As n is G-stationary we have for [ € GG

£, C) = [[ 1{s € CIR(0, 01, B(5) a0, (dg)n 01, ds)
= [[ 1415 € CY(0, 01, B(3)sio00(dg)(ds)
— [[ 1015 € CYR(6,'00, B(5))aioo(dg)n(ds)
= [[ 11is € CHr0;" B(s)aio o(dg)n(ds)

and by definition of ¢ this equals £(I7'C). Thus £ is G-stationary. To establish the
second assertion note that & = f(n) where

[iM(S) = M(S), f)i= [ 1s € (8,", B(5))kace)s(dg)n(ds)
is G-covariant in the sense that

f(egﬂ) = 99(f(ﬂ))7 g €GqG.

This readily implies that f~'(7) is G-invariant whenever this is true for I C M(S).
Hence

{cet={fmelt={Mnef (I)}eI,
for any such I. U

A second useful transformation of a G-stationary random measure & on S is the
following. We define the G-transform of £ as

&= [[ Hlg.8(s)) € Yoo sldg)é(ds).

We show that é is a random measure. Since £ is a random measure we may choose
h: QxS — (0,00) such that &(w, h(w,-)) < oco. Then f(w,g,s) := h(w,gs) is
strictly positive and we have

Eulf) = [[ hw,98()Rae)o(dg)E(w, ds) = £(u, h(w, ) < o0,

which gives the assertion. It is clear that & may be recovered from é as its image
under 7 : G x O — S,(g,b) — gb. It is also evident from the construction that
¢ is G-stationary if and only if f is G-stationary with respect to the operation
G — G x O given by (h, (g,b)) — (hg,b). If G — S is transitive, then O consists of
one element and GG x O may be identified with G. Hence in this important special
case the G-transform turns G-stationary random measures on S into G-stationary
random measures on G. Last [38] used this special form of the above introduced
G-transform to extend Palm Calculus from stationary random measures on groups
to stationary random measures on homogeneous spaces.
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3.2.5 Invariant Palm kernels

Given operations G — S and G — T on Borel spaces S and T together with a
random measure £ on S and a random element 7 in 7" such that (£,7) is a jointly
G-stationary pair in the sense that

(g€, 9m) £ (&,1), g€,

it is straightforward to check that the Campbell measure

Cenf =E [ f(n,9)E(ds), [ e (T@S).

of (&,n) is jointly G-invariant. As it is s-finite by Lemma 2.19 and since 7" is Borel,
Theorem 3.9 yields invariant disintegrations of the form

Cep = // F(t, ) Po(dt)(ds), [e(T®S),. (3.18)

Also, given a fixed o-finite G-invariant measure 7 > M(- x T') on S Theorem 3.9

yields a suitable invariant kernel of Palm pseudo distributions Ps (pseudo refers to
the fact that the P; may not be stochastic) such that

Cey = // F(t, ) Po(dt)i(ds), fe(T®S),. (3.19)

Let us recall that Theorem 3.9 also gives that C¢, and P are simultaneously o-
finite and that Lemma 2.19 (iii) contains sufficient conditions for this. Hence it is
always possible to choose invariant versions of our Palm pseudo distributions of 7
with respect to €. These insights (besides our slight extension to s-finite Campbell
measures) all stem in this generality from [30] and go back to [61, 45].



Chapter 4

Palm Theory

Classically, Palm theory was developed for completely stationary random measures
on R% ie. random measures stationary with respect to all translations. In our
language this means stationarity with respect to the operation of R? on itself via
translation, which we shall always denote by R? < R As explained in Subsection
2.4.2 we may model a stationary random measure & without loss of generality by
assuming the existence of an abstract measurable flow {0, : z € R%} on Q, requiring
the underlying measure P on (2, .4) to be invariant with respect to shifts induced
by this flow and by requiring £ to be adapted to this flow in the sense that

O,z + A) =E(w, A), weQ AcBYRY). (4.1)

Given such a R%stationary random measure on R?, its Palm measure Q on € with
respect to O = {0} is defined as

Q) =E [1{0;" € -} s (@)é(dr).

Evidently it combines a spatial averaging over [0, 1]¢ with respect to ¢ and a phase
averaging over ) with respect to P. If £ # 0 has finite intensity

0 < 7 := BE[D, 17 = Q(Q) < oo,
we may normalize Q to a probability measure Py via

1

Fol) e

Q().
This measure plays a prominent role in Stochastic Geometry, since it allows the
extraction of meaningful distributions of objects derived from spatially unbounded,
stationary processes. Examples are the notions of typical grain of a stationary par-
ticle process, typical cell of a stationary tessellation or partition, or the directional
distribution of a k-flat process. All these objects may be interpreted as the distribu-
tions of suitable random objects under the Palm probability measure. In the cases
of G-stationary random subgraphs, tessellations and partitions, we shall construct
analogues objects even for non-transitive operations using the tools developed in
this chapter later in Chapters 5 and 7.

If £ is a simple point process, then clearly Q, and thus Py, is concentrated on all
configurations w € Q having (w, {0}) = 1. In fact, in this case Py may be interpreted
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as the conditional probability derived from P, given the information that ¢ has a
point in the origin, see [28, Theorem 11.5]. Thus, under the Palm measure, £ has
a point at the origin and this point in the origin then receives the interpretation of
a typical point of £. It should be mentioned now, that the ambiguous word typical
leaves space for interpretations and in fact there are other possibilities to formalize
other ideas for typical. As should be clear from its definition, the Palm measure
favors configurations ¢ with a high sample intensity

s . &(rB)
¢ = Hm N(rB)’

and thus the word typical, even though often used in an informal manner in many
places in the relevant literature, has to be read with great care. Under ergodicity
assumptions on &, this sample intensity is constant, and the interpretation of the
origin as a typical point of £ is more accurate. In any case, it is interesting to
inspect derived random objects from a stationary random measure under this Palm
measure. We shall do so in Chapter 7.

Here, in Chapter 4, we shall introduce an analogue of the above Palm mea-
sure Q for a random measure £ on a measurable space S, on which a general lcsc
group G acts in some way. We neither require G' to be unimodular nor the ac-
tion G — S to be transitive. This analogue, the cumulative Palm measure will
be constructed in Section 4.1. We shall then proceed in Section 4.2 by explicitly
computing the cumulative Palm measure for G-stationary Cox processes and even
characterize G-stationary Cox processes in terms of their cumulative Palm measures
in a Slivnyak-type manner [65], cf. [29, Corollary 2.35]. We then proceed in Section
4.3 with an illustration on how probability measures may be derived from the cu-
mulative Palm measure and how these probability measures relate to each other via
conditioning. The final Section 4.4 contains two main results about cumulative Palm
measures, namely a Neveu exchange type formula for transport kernels (referred to
as transport theorem) and an intrinsic characterization of a cumulative Palm mea-
sure of £ (generalizing a result of Mecke [46]), both independently proved in [21] and
Kallenberg [31]. In this section, we also characterize balancing weighted transport
kernels between random measures in terms of a transport equation between their
cumulative Palm measures.

4.1 The cumulative Palm measure

We consider a lcsc group G with Haar measure \ operating properly on a Borel space
(S,8) together with a random measure £ on S which is G-stationary. We are not
assuming transitivity of the group operation. In Subsection 4.1.1 we introduce the
fundamental object of interest in this general mathematical frame: the cumulative
Palm measure of .

4.1.1 Construction

In this section we will construct and define a central object of this thesis. Recall
the function w from (2.6) which exists if G < S is proper. The following theorem
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makes crucial use of the inversion kernel and is even new in the transitive classical
setting R? — R? (even though the inversion kernel doesn’t play a real role in this
setting since trivially kg = Kos = 05,5 € R?). Assume that £ is a G-stationary
random measure on S. Then it is easy to see that the Campbell measure of £ is
jointly G-invariant. If (2, A) is Borel, Theorem 2.16 (see also Corollary 3.5 in [30])
implies that there is a G-invariant Palm pair (v, Q) of £, meaning that both v and
() are G-invariant. In probability theory it is not common to put extra technical
requirements upon the underlying space (£2,.4). As we will see in the following
Theorem 4.1, there is a single and more natural object to look at when investigating
partially stationary random measures. Its construction does not depend on Palm
pairs and its existence may be derived without technical assumptions on §2.

Theorem 4.1 (existence and uniqueness). Let G operate properly on the Borel
space S and fiz a system of representatives O € S. Further let £ be a G-stationary
random measure on S. Then there is a unique measure Q on €2 x .S concentrated on
Q x O satisfying both the refined Campbell equation

E [ £(6.,)¢(ds) = [[ F(0,0,99Ad9)Qd(w.0), fe(A@S):, (42
and the stabilizer invariance condition

//f 0, w,b)kpp(dh)Q /fwb dw,b), fe(A®S)y. (4.3)

In addition Q is o-finite and for any function w : S — [0, 00) with pyw = 1,b € O,
it is given by

—E [[1{(6,".8()) € -} ws(o(dg)(s)¢(ds) (44)

Proof. To prove the existence of Q, we fix an arbitrary w : S — [0,00) satisfying
ww = 1,0 € O, e.g. by means of Lemma 2.6 (as we may since G < S is proper).
Then we define Q as in (4 4) and compute

| 10,0, 90N do)QUd(w, 1)) = E [[[ 10,0, 98(s)Ndg)riaioo(d)w(s)é (ds)
= [[] £(6n-1. 9h™ )M dg) .o (dh)o()E(ds)
=E [[] A1) 16, 95)Mdg)rs0) (@) (s)¢(ds).

Using Fubini, G-invariance of P and G-stationarity of £ we arrive at

J] 16,0, 99N @9)QA(w, ) = [ E [[ AR)F(Ber 5y 5)rs101-15(dR)E(ds)A(dg)
=E [[[ A7 huwlg™ s)Adg)Ra(0)o(dh) F(Br, 5)S(ds).

Then, using property (2. 2) of the modular function we proceed as follows:

[ 16,0, 90N dg)QUd(w, 1) = E [[[ Alhywlgs)M(dg)msces(dR)f(0e, 5)¢(ds)
—E [[[ w(gh™ )M dg)rcacoo(dh) (6. )¢ (ds)
=E [[ w(98(s))\(dg) (0, 5)€(ds)

—E / (6., s)E(ds).
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Hence this Q satisfies (4.2). It also satisfies (4.3) since the left-hand side of (4.3)
equals

E [[[ 10510, 85)) a0 (@) o(dg ) (s)¢ (ds)
=E [[[ 105, 8(5)ka0,500 (@) (dg)u(s)E(ds)
=E [[[ 16, 85)ka00500 (@h) .o (dg)u(s)€(ds)
—E [[ 10, 8(5)atoo(dh)w(s)é(ds)
=Qf.
To establish uniqueness let Q and Q satisfy both (4.2) and (4.3). Then in particular

/[ 100, 9 A(dg)QA(w,b) = [[ £(b0. DN QA(. ), S € (ADS).,

and choosing f(w, s) := w(s) [ f(6; 'w, B(s ))ks(s),s(dh) for arbitrary feA®S),
this becomes

/] 765 600, b)ms oy gb)Ndg) QL 0, b))
= []] 767 0,00,6) 0, (@R} (90) A (dg) Q0. B))
which means (since [w(gb)A(dg) = 1)

J] 76 . bymsan)@ae,v) = [[ 76w, bk d)Qd(w, b)),

and hence Q = Q by (4.3). Finally we note that Q must be o-finite: Since Cy is o-
finite we may choose a measurable function f : Q x S — (0, 00) such that C¢f < 0.
Then

g(w,b) := /f(ng,gb))\(dg), weNbeO,
is strictly positive, and by (4.2) Qg = C¢f < 0. O

This theorem gives rise to the following definition:

Definition 4.2 (cumulative Palm measure). Given a random measure £ on the
Borel space S the unique measure Q satisfying both (4.2) and (4.3) in Theorem
4.1 is called the cumulative Palm measure of & with respect to O. We may some-
times write Q¢ := Q to make the dependence on ¢ explicit.

The word cumulative indicates the fact that Q is a superposition of ordinary
Palm measures, as we shall see in Theorems 4.10 and 4.12. Instead of using the
function w from Lemma 2.9 we may clearly use G-symmetric sets instead whenever
they exist.

Corollary 4.3 (cumulative Palm measure and symmetric sets). If B is a G-
symmetric set then

= S ) O ) € P ldp)tp(e)elds). (49
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Proof. 1t is enough to note that w(s) := 15(s)/d(B) has the property p,w = 1,b €
O. O

Example 4.4 (classical setting). Considering the classical setting R? — R?, equa-
tion (4.3) is trivially always fulfilled and may be omitted. Choosing O = {0} and
identifying © x {0} with €2 the refined Campbell equation reduces to

E [ 16 9)(ds) = [[ £, 0Mdg)Q(dw),  f € (A2 S),.

Hence the cumulative Palm measure Q with respect to £ and O = {0} is nothing
but the ordinary Palm measure of £ at 0 (see [14, 15, 38, 28, 29]).

Example 4.5 (transitive setting). Considering the transitive situation as in Exam-
ple 3.3 we may fix some ¢ € S which serves as representative for the single orbit, i.e.
O = {c} and 8 = ¢. Then the cumulative Palm measure of a G-stationary random
measure £ on S with respect to {c} is given by

Q) =E [[1(6;" ) € -}res(dg)uw(s)é(ds).

Identifying 2 x {c} with Q, this is exactly the ordinary Palm measure of stationary
random measures on homogenous spaces, compare e.g. in [38] the equations (3.12),
(3.8) and (3.5). In the further special case S = G of Example 3.4 we may take ¢ = e
and the cumulative Palm measure further simplifies to

Q) =E [ 1{(0,",¢) € Julg)é(dg). (4.6)

Under the same identification as above this is the ordinary Palm measure for random
measures on groups, see e.g. [46], [39] or [68].

Example 4.6 (completely non-stationary setting). As noted in Example 3.5 the
case where no stationarity or invariance assumptions are made may be treated as a
special case of our framework, namely by choosing G = {e} where A = 6., O = S
and for any s € S

B(S) =S8, Us= 65, and KB(s),s = Kss = 56.

First, note that (4.3) reduces to a condition which is always satisfied. In view of
(4.2) it is then clear that

Q = Céa
i.,e. Q is the Campbell measure of £ in this case. Since the only possible choice for
w as in (2.6) is given by w = 1 in this situation this is also consistent with (4.4).

Example 4.7 (cumulative Palm measure of deterministic measures). A determin-
istic measure v on a measurable space S is G-stationary with respect to an operat-
ing group G if and only if it is G-invariant. We now compute the cumulative Palm
measure of a G-invariant measure v on S. By (4.4) we have

Q' =E / / 1{(6;", B(s)) € }rp)(dg)w(s)v(ds)
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and Fubini and G-invariance of P yield

Q= [P0, B(5)) € Juls)u(ds).
Using the orbital decomposition of v from (2.7) yields

Q =Pxv". (4.7)

4.1.2 Basic properties

It is important to note a basic support property of the cumulative Palm measure in
the case when ¢ is a point process:

Lemma 4.8 (concentration property). Let Q be the cumulative Palm measure of a
G-stationary point process & on a Borel space S with respect to a fixed measurable
system of orbit representatives O. Then

Q{(w,b) € 2 x O : &{(w,{b}) =0}) =0.
Proof. By (4.4) the left side equals

E [ 1{&(6, "0, {8()}) = 0bragos(dg)w(s)é(ds)

which by (2.27) may be written as

E [] 1{&(w, {98(5)}) = 0}ragoo(dgu(s)¢(ds) = B [ 1{€(w, {s}) = Ohw(s)é(ds).
This last expression is clearly 0 as £ is a point process. 0

We emphasize here that the cumulative Palm measure Q of a random measure &
on a Borel space S with respect to a system O of orbit representatives in S emerged
by factoring out the Haar measure A from the Campbell measure C¢ of &, see (4.2).
As C¢ clearly contains all information about P outside of 1{{ = 0}, the same must
be true for @, and the following lemma makes this precise. In the special case of
random measures on groups it reduces to a formula found by Mecke [46], while for
random measures on a homogeneous space the formula can be found in [60].

Lemma 4.9 (inversion formula). Given a random measure § on a Borel space S the
underlying measure P on Q may be reconstructed from the cumulative Palm measure
Q of & with respect to a fized measurable system O of orbit representatives via

E[f-1g # 0} = [[ F0,0)h(0,0, ) Ad9)Qd(w. D)), f € A

where h is a fired measurable function h : Q x S — (0,00) satisfying

/h(w, §)E(w, ds) = 1{e(w) #0}, we Q.
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Proof. Choosing h as in Lemma 2.22 (i) and replacing f(w, s) in (4.2) by f(w)h(w, s)
for arbitrary f € A, yields the assertion. O

The earlier announced connection between Q and any possibly existing Palm pair
(v,Q) is the following. Here, b : O — O denotes the identity map on O, i.e.
b(b) = b,b € O. Recall the *-operator from (2.7).

Theorem 4.10 (link to Palm pairs). Let & be a G-stationary random measure on
the Borel space S and let G — S be proper. If a G-invariant Palm pair (v,Q) of &
exists, then it is related to the cumulative Palm measure Q of & via

— [ 1{w.b) € YQu(dw)v*(av) (4.8)

Proof. Assume a G-invariant Palm pair (v,Q) of § is given. Then we may define
Q :=v* ® Q and note that

E [ £(6.,5)¢(ds) = [[ flew,5)Qu(dw)v(ds)

— ][ 1w.9)Qu(@w)ds)v* (@)

= [[[ #(6,0.0)Ndg)Qo(d)" (db)

= /] 1B )N d9)Qd (e, ).

Thus Q satisfies (4.2). It also satisfies (4.3) since by Fubini’s theorem
[ 100, 0k @)@, 0) = [[[ 16, w0, 0)@u(d) s s(dh)v* (@b)

— [[[ 1. 0)Qu s deryrnslan)* (av)
=[] Fw.5)Qudw)" (@)
= [ f@.5)Qd(w,b)).

The uniqueness assertion in Theorem 4.1 now implies equation (4.8). U

The use of this theorem hinges on the existence of Palm pairs. These exist e.g. if
Q2 is Borel. But in the important special case when S is countable they exist even
without the Borel assumption upon €. For convenience we formulate this result
only for simple point processes on S even though (partial) extensions to random
measures with o-finite intensity measure are not hard to obtain. We identify simple
point processes with their support.

Theorem 4.11. (Palm pairs for countable S) Let £ be a G-stationary simple point
process on the countable space S with P(s € §) > 0,s € V, where G < S is proper.
Then

(EE, (P(-|s € €))ses)

is a G-invariant Palm pair of £, and fixing a complete system of orbit representatives

@)

(E¢)" = g{; IP;fGebj) 8y (4.9)
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Proof. Putting P(s,-) :=P(-|{{s} = 1) we have for C € A
P(0,C N{¢{gs} = 1})
P(e{gs}=1)

Here {£(gs) = 1} = 6,{&(s) = 1} which implies invariance of P. Further for A € A
and BC S

P(gs,0,0) =P(0,C1{{gs} = 1) =

) PAN{e(s) =1))
(E¢ ® P)(B x A) ;Ef{ s} Ple{s} = 1) 1{s € B}.
As 51 iz simple we have E¢{s} = P({{s} = 1) and since 1{{{s} = 1} = &{s} we

(E€@ P)(B x A) =Y P(An{&{s} =1})1{s € B}

seSs

= [ S 1{s € BY1{w € AYe(w, {sHP(dw)

- E/l{ 0., 5) € A x BYe(ds).

A monotone class argument yields E¢ ® P = C¢ and thus (E¢, P) is a Palm pair of
¢. Equation (4.9) readily follows from (2.11), since £ is simple. O

It is clear that combining Theorems 4.10 and 4.11 yields for a simple point process
& on a countable space S the explicit formula

()= X S Beb) € el = 1) (4.10)

The next theorem shows how certain important pushforwards of the cumulative
Palm measure are related to the (always existent!) invariant disintegrations as in
(3.18). We denote the identity map on O by b, i.e. b(b) =b,b € O.

Theorem 4.12 (pushforwards of the cumulative Palm measure). Let & be a ran-
dom measure on the Borel space S and 1n a random element in the Borel space
T such that (&,m) is jointly G-stationary. Then any invariant disintegration (v, P)
of Ce,y as in (3.18) satisfies

Q*((n.b)e-)=v' & P.
Proof. By (4.4) we have
Q((n,b) € ) = [[ 1{(n(6;"), 5(5)) € -} rscodg)(s)5(ds)
=B [[1{(s71.8(5)) € -} rato)s(dg)w(s)&(ds).
Applying (3.18) yields
Q(( /// g 't B(s } Ka(s),s(dg)w(s)Py(dt)v(ds)
= [[[1{.s6) e }P ()5 (dg () (ds)
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where we used Fubini and G-invariance of P. But this clearly equals

[ 11 8()) € -} Pao (dtywis)uds) = [[] 1{(t,) € } Bty (s)m(ds)v* (dab)
where we used the decomposition of v from (2.7). By (2.6) this yields the assertion.]

Slightly rewriting the first of its two defining equations (4.2) and combining it
with the second (4.3) yields the following identity for the cumulative Palm measure
of a random measure &, which will be useful later:

Lemma 4.13 (refined Campbell formula). For a G-stationary random measure &
on S the following holds:

E//f 1 g, B(5)) ka0 (dg)E(ds) //f W, g, DAA)Q(d(w, b)), (4.11)

Proof. Starting on the right side we have by (4.3), Fubini and right G p-invariance
of A

[ 1w.9.9Mdo)QUd(w, b)) = [[[ 10w, gh. b)rss(dn)Adg)Q(d(w,1)).

Using invariance of k we arrive at

[ 167 0,, by (AN dg) QA (e, b))
and finally by (4.2) at the left side of the assertion. O

Example 4.14 (intensity measure of the h-transform). Given a G-stationary ran-
dom measure 7 on S and a measurable function h € (A ® S); we recall the h-
transform £ of n defined in (3.17) via

:/ {s € CY(0, ", B(s))kss),s(dg)n(ds).

Lemma 4.13 reveals its intensity measure, since

—E [[ 1{gB(s) € CYn(0, ", B(5))sco(dg)n(ds)
= /[ Hab € CYh(w.HAdg) Q" (d(w, b))
= [ m(C)h(eo, HIQ (b))

4.2 Palm measure of Cox processes

The aims of this section are first to present a multivariate Slivnyak-Mecke-type for-
mula for Cox process in Subsection 4.2.2, to calculate the cumulative Palm measure
of a G-stationary Cox process on an arbitrary space S in Subsection 4.2.3 and to
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characterize G-stationary Cox processes in terms of their cumulative Palm mea-
sure in the spirit of Slivnyak’s [65] famous theorem for Poisson processes (see e.g.
[29, Corollary 2.35] and also [34, 35]). As Cox processes are (important) gener-
alizations of Poisson processes the calculation of the cumulative Palm measures of
G-stationary Poisson processes is included thereby. In Subsection 4.2.1 we first sum-
marize well-known properties of Poisson processes and extend these in Subsection
4.2.2 to Cox processes. Here Theorem 4.18 characterizes Cox processes in terms
of equation (4.14). The multivariate Cox Formula in Theorem 4.19 generalizes the
multivariate Mecke-Slivnyak formula for Poisson processes and slightly generalizes
results of Kallenberg in [33, Theorem 4.2], see Remark 4.20.

4.2.1 Some classical results for Poisson processes

Given a measurable space S and a o-finite measure p on S, a Poisson process on
S based on yu is a random measure £ on S such that for any n € N and disjoint
By, ..., B, € S the random variables £(By), ...,&(B,,) are independent (this property
is often paraphrased by saying that £ has independent increments, a term motivated
by the 1-dimensional situation of a Poisson process on the line) and such that for
any B € S the random variable £(B) is Poisson distributed with mean p(B) if
pu(B) < oo. As p is o-finite there is a partition of S into measurable sets By, By, . ..
such that u(B;) < co. Putting P := {Bj, B, ...} we have P(é € M (S)) = 1 where
MPF(S) is defined as in (2.23). As mentioned in Subsection 2.4.1, M”(S) is Borel
whenever S is which we shall assume in this section, such that we may interpret &
as a random element in a Borel space.

It is well-known that a ‘completely’ stationary (i.e. homogeneous) Poisson process
in R? with finite intensity possesses a very simple Palm distribution (its distribution
under its Palm probability measure at 0), namely the distribution of £ + dy under P.
Conversely a stationary point process in R? with finite intensity whose Palm distri-
bution at 0 is given by P(£+dy € -) is a stationary Poisson process. This equivalence
is also known as Slivnyak’s Theorem, see [63, Satz 3.3.6] for the first stated impli-
cation. Slivnyak’s result may be stated similarly without stationarity assumptions
by invoking the complete kernel of Palm distributions (see (2.24)) instead. A proof
of the following result may be found in [29, Theorem 2.34].

Theorem 4.15 (Poisson criterion, Slivnyak). A point process & on a Borel space
S with o-finite intensity measure is Poisson if and only if its Palm distributions
P(& € +|[€)s (defined via (2.24)) are given by P(§ + 65 € +) for E-a.e. s € S.

Note that £ is neither required to be simple nor that E¢ is atom-free. This
criterion may be equivalently stated in form of the Slivnyak-Mecke-equation (4.12)
due to Mecke [46, Satz 3.1]. It constitutes an integrated version of Theorem 4.15 and
the derivation of either theorem from the other is a trivial consequence of (2.24).

Theorem 4.16 (Poisson criterion, Mecke). A point process & on a Borel space S
with o-finite intensity measure is Poisson if and only if

E [ £(6,)¢(ds) = [ EF(§ +0,,5)(ES)(ds) (4.12)

for all measurable functions f: M(S) x S — [0, o).
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Theorem 4.16 even holds without Borel assumption on S, see [46, Satz 3.1]. It
is this beautiful criterion that leads to the fundamental and in Stochastic Geometry
frequently used multivariate Slivnyak-Mecke formula by a simple induction. Here a
point s € S™ is written as (sq, ..., Sp)-

Theorem 4.17 (multivariate Slivnyak-Mecke formula). Let £ be a Poisson process
on a Borel space S with intensity measure p. Let n € N and f : M(S) x S™ — [0, <]
be a measurable function. Then

E / F(€,5)6M (ds) = / Ef (g n é(s s) 1" (ds). (4.13)

4.2.2 Cox processes

Let (€2, A, P) denote a basic probability space. A uniformly o-finite random measure
n on a Borel space S is a random measure on S such that there is a partition
P := (By,By,...) of S where n(B;) < oo P-a.e. for each ¢ € N. Given such a
uniformly o-finite random measure 7, a Coz process £ directed by 1 may be defined
as the random measure derived by the following 2-step stochastic experiment. In
the first step we realize the a.s. o-finite 7 and in the second step construct £ as
a Poisson process with respect to the previously generated 7. It is now a simple
consequence, that ¢ is uniformly o-finite: by the Poisson property the uniform o-
finiteness of n directly carries over to ¢ and one may even use the same partition
for € as for . Thus both n and £ may be interpreted as random elements in the
Borel space M?(S) and hence even the random pair (£,7) is essentially a random
element in a Borel space. This will be crucial for us in the next theorems since it
allows us to condition (£, 7) on arbitrary random elements, in particular on 7 itself.
We note that a uniformly o-finite random measure is Cox driven by 7 if and only if
conditional on 7 it is a Poisson process with intensity measure n and in this case we
clearly have E[£(+)|n] = n(-) and thus trivially EE(-) = En(-).

We first derive by a simple conditioning procedure the following extension of
Mecke’s characterization to Cox processes.

Theorem 4.18 (characterization of Cox-processes). Consider a point process &
and a uniformly o-finite random measure n on a Borel space S. Then & is a Cox
process driven by n if and only if

E [ f(gm.5)6(ds) = E [ fg+0um.s)n(ds). [ € (MSP@S). (414

Proof. First assume that £ is Cox driven by 7. Then from what has been said above
the theorem we may condition the left side of (4.14) on n which gives

dii

Since conditional on 7 the point process ¢ is Poisson with intensity measure 7,
Theorem 4.16 gives
1]

E [ f€n9)¢(ds) =B [E| [ £(6n.5)¢(s)

E [ (& n.9)¢(ds) = E|E| [ F(&+ b 5)n(ds)
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and this clearly reduces to the right side of (4.14). Conversely, if (4.14) holds then
in particular

E [ g (&, )¢(ds) = E [ g(n)f(§ + .. 9)n(ds)
for arbitrary g € (M(S))+ and f € (M(S) ® S);4. Thus conditioning on 7 yields

]

and since all factors are n-measurable and g was arbitrary, it follows that

E| [ £ 9)¢(ds)]y

E |gE | [ /(¢ 5)¢(ds)

n” =E {g(n)E Uf(£+53,8)77(d8)

_E [ / F(€+ 6., 5)n(ds)

77] P-a.e.

Theorem 4.16 now implies that a.s. £ is conditional on 7 a Poisson process with
(conditional) intensity measure 1 and thus that it is Cox driven by 7. O

It is a small step to extend the argument used in the previous proof to the
multivariate case.

Theorem 4.19 (multivariate Cox formula). A Coz process & on a Borel space S
driven by n satisfies for any n € N

B[ fen ) =B [ 1+ S 0ns) @) 1€ MG 08,
. (4.15)

Proof. 1t is enough to condition the left side of (4.15) on 1 and to apply Theorem
4.17. OJ

Remark 4.20. We note that Theorem 4.19 yields in particular the relation
E¢™ = Er",

which allows us to choose a o-finite supporting measure v, ~ E£™ = En” for both.
Applying the Palm disintegration (2.22) with this same v,, on both sides of equation
(4.15) yields

P((fﬂ?) € 'Hf(”)>s =P <<€+i58“n> €. H n") . vp-ae. s € S", (4.16)

where v-a.e. means evidently the same as E€(™-a.e. or En"-a.e. This slightly extends
[33, Theorem 4.2 (ii), (iii)] which contains the two statements that one gets from
(4.16) by forming the two marginals.

4.2.3 Partially stationary Cox processes

Considering a fixed group action G — S and assuming the existence of a fixed
measurable system O of orbit representatives in S we may formulate a Slivnyak-
type result for general G-stationary Cox processes on S by using the cumulative
Palm measure of ¢ with respect to O. Clearly the characterizing equation (4.14)
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also applies in this case, but the stationarity allows us to drop, intuitively speaking,
all but one of the Palm distributions from each orbit respectively. Even though this
is basically known from the transitive case, the non-transitive case seems to be at
least technically new (the results of Kallenberg [30] already suggest the following
result on an intuitive level since Palm kernels may be chosen to be G-invariant, i.e.
no information is lost when dropping all but one Palm measure in every single orbit)
and the neat statement using the cumulative Palm measure is of independent interest
to us. We recall that Theorem 4.10 establishes the link to Palm pairs and emphasize
that it makes the above stated intuitive reduction of Palm kernel members precise.
The identity map on O shall be denoted by b, i.e. b(b) =b,b € O.

Theorem 4.21. (cumulative Palm measure and G-stationary Cox Processes) Let &
be a G-stationary point process and n a G-stationary random measure with o-finite
intensity measure both living on a Borel space S. Then & is Cox driven by n if and

only if
Q* ((&m,b) € ) = Q" ((£ +d,m,b) € -). (4.17)

Proof. Assume first that £ is Cox driven by 7. Then in particular E{ = En is o-finite.
Since by (4.4)

@ ((gmb)er) =K [[1{( 1(0,1),8(5)) € } rage).o(dg)w(s)€(ds)
—E [[1{(s7¢s mﬁ(s)) € -} w0 o(dg)uw(s)§(ds),

equation (4.14) implies that Q%((£,71,b) € ) equals

E [[1{(s7'(6+ 6,97, 8(5)) € -} R (dg)w(s)n(ds).

Noting that ¢710,(-) = 05(9-) = d4-15(-) = dp(s)(-) for g € Gps),s and using the
G-stationarity of £ and n gives that the above equals

E [ 1{(¢06,") + 831,16, 1). B(5)) € -} opcodg)w(s)r(ds),

and this equals the right side of (4.17) by (4.4).
Conversely if (4.17) holds, then

J] Flg(@).gn(w), gh)A[dg)Q (d(w,b)
=[] 1(9(6() + 8), gn(w), 9b)A(dg)Q"(d(w, )
which means
J[ €@ 1052, 9N dg) @ (A0, )
=[] (€0 + 8,0), 0(0,), D)A[A9) Q" (d(w, ).

Applying (4.2) on the left side with respect to £ and on the right side with respect
to n yields (4.14) and thus by Theorem 4.18, ¢ is Cox driven by 7. O
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The special case when ¢ is Poisson (i.e. when 7 = u is deterministic) deserves a
separate formulation as the argument 7 may be dropped and the right side simplifies
a bit:

Corollary 4.22. (cumulative Palm measure and G-stationary Poisson Processes)
Let £ be a G-stationary point process on the Borel space S with o-finite intensity
measure. Then & is a Poisson process if and only if

Q((Eb) € ) = Q*(( +db,b) € ). (4.18)
In addition
Q((§+ 05, b) € ) = [ P((& + . b) € )(BE)" (). (4.19)

Proof. Everything besides (4.19) follows from Theorem 4.21 and to see that last
assertion we note that from (4.4) and Fubini’s theorem

Q*((6+ 00, b) € ) = [PUEWB, ") + 509, B(5)) € Vo o(dg)o(s)(EE) (ds).

It remains to use G-invariance of P and to use the decomposition of E¢ as in (2.7).00

4.3 Palm probability measures

Given a G-stationary random measure on the Borel space S the cumulative Palm
measure of £ with respect to an arbitrary fixed system of orbit representatives O is
usually not a finite measure. To see this we note that by (4.4) it carries total mass

Q2 x 5) = QO x 0) = E [ w(s)¢(ds) = (E€)*(0) (4.20)

where w is such that pw = 1,b € O (and besides that arbitrary). This is infinite for
a large class of operations G — S. Still it will be possible to extract meaningful and
interesting probability measures from it by restricting it to certain subsets. This
will be the content of Subsection 4.3.1.

4.3.1 Cumulative Palm probability measures

We note that for any jointly G-invariant measurable subset I C 2 x S the restriction
Q(-N1I)of Qto Iis by (4.4) equal to the cumulative Palm measure of the random
measure

£I<w7 ) = /1{5 < '}1[(&), 5)5((*]7 dS)
and carries again by (4.4) the total mass
—E [ 1(6., 5)uw(s)€(ds).

As we will see in plenty of examples later, I may often be chosen such that 0 <
Q(I) < oo. In any such case we may define the following probability measure.
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Definition 4.23 (cumulative Palm probability measure). Given a G-stationary
random measure £ on the Borel space S and a jointly G-invariant measurable set
I C QxS with 0 <Q(]) < oo we define the I-averaged Palm probability measure
P! on Q x S via

1
Q(1)

It is clearly concentrated on I := (2 x O) N I and thus

PI(.) = Q(-N1I). (4.21)

(I,(A® 8)|I,P) (4.22)

may be considered as an underlying basic probability space, where the expression in
the middle denotes the trace of A® S on I. Since Q(- N I) is the cumulative Palm
measure of £; we may interpret P! as follows in many special cases. Namely, if E£;
is o-finite and 2 is Borel, Theorem 4.10 yields the disintegration

P = i [ M) € B ulien), (B (@)

It follows that the finite and non-zero number Q(7) is given by

Q1) = (E&)*(0), (4.23)
which means

P = ff 110t) € B (ulle), (o) (e 0. (1.21)

Thus P! governs a 2-step stochastic experiment. First a random orbit (representa-
tive) b is chosen according to
(E&r)™ ()

(E&r)*(0)

and then the configuration w is picked according to the Palm probability measure

B =P(-l&),

at b with respect to &;. P! is the joint law of these two random elements. Even the
case without stationarity (G = {e}) is interesting. Here O = S, (E&;)* = E&r, w =1
and the joint G-invariance requirement upon I C €2 x S represents a condition that
is always fulfilled. Hence 0 < Q(/) < oo holds if and only if 0 < E&;(S) < oo and
in this case b is chosen according to

(E&r)(-)

(E&r)(S)

If in this case I =€) x A where A € § is arbitrary, then b is chosen according to

(EE)(-NA)
(EE(A) -



60 Chapter 4: Palm Theory

If n is a random element in a Borel space T  such that (7, £) is jointly G-stationary
then the distribution of (1, ) under P’ gets a similar interpretation, where it suffices
now to require E&; to be o-finite (£2 need not be Borel). Here Theorem 4.12 yields
with similar steps as above

P (.9 €)= [[ 10 € por e arlen, TG wa)

Example 4.24 (I = x A where A invariant). If the jointly G-invariant set I is
of the special form I = Q2 x A where A € S is G-invariant then (E&;)* = (E€)*|A
and (4.23) simplifies to

Q(I) = (E&)*(A).

Hence, if £ and A are such that the finite height condition 0 < (E£)*(A) < oo is
satisfied then P/ is defined and may be written as

A =PI = (1) e. W
PAC) = P() = ey | U D) € ILa0QMw. D). (126)
The equations (4.24) and (4.25) reduce to

(b)
(E

B() = [[1{(w.b) € YR (dulfe), ™

7a2%
S—
*
~—~
o
N—

and

14 (D)(E€)" (db)

B ((1.6) €)= [[ 1) € VP (n € dtlle), =g

4.3.2 Conditional cumulative Palm measures

The defining equation (4.21) already suggests a close link between cumulative Palm
probability measures and ordinary conditional probabilities.

Lemma 4.25 (conditioning on jointly invariant subsets). Suppose I, 1o € A ® S
are both jointly G-invariant such that I; C Iy and 0 < Q(I1),Q(l2) < co. Then for
any G-stationary random measure & on the Borel space S

P (-) = P"(- |Iy).

Proof. By definition and I; C I, we have

Loy Q-nhL) Q-nhnk) P:-nhL) .
PO="0m ~amnn) - ey ECH) -

Example 4.26 (partially stationary tessellations). We consider the operation L <
R? of a fixed linear subspace L of dimension 0 < u < d of R? on R? via translation
together with an L-stationary simple point process & in R?. This point process
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induces a random Voronoi tessellation of R% defined as the collection of Voronoi
cells

Clw,s):={z €eR": [Jx = s|| < |lz —yll,y € €(w)}, s €&(w),weQ,
and C(w,s) := 0 if s € £(w). Clearly
Cllw,l+s)=1+C(w,s), leL,seSweqQ,
and we naturally interpret s € {(w) as the center of the cell C(w, s) in configuration

w. Fixing an L-invariant subset A of R? we may consider the following three different
jointly L-invariant subsets I;, Iy and I3 of €2 x S defined via

I ={(w,s):0#C(w,s) C A},
I ={(w,s):0+#C(w,s),s €A},

and
I3 :={(w,s): Clw,s) NA#0D}.
Clearly I} C I, C I3 and Lemma 4.25 applies. This gives

P () =P2(|L) =P"(|L,) and P"(:) =P"(|L).
Here a random polyhedral set Z

(1) with distribution P1(C(f,,b) € -) may be interpreted as the typical cell of the
Voronoi tessellation under all cells contained in A,

(2) with distribution P®2(C(., b) € -) may be interpreted as the typical cell of the
Voronoi tessellation under all cells with center in A,

(3) with distribution P/3(C(f,,b) € -) may be interpreted as the typical cell of the
Voronoi tessellation under all cells intersecting A.

Clearly we did not use any special property of Voronoi tessellations here and it
should be clear how to extend these notions to general L-stationary tessellations.
We shall inspect these notions in more detail for Cox-Voronoi mosaics in Section
7.1.

4.4 Properties of cumulative Palm mea-
sures

This sections contains first two results from [21] that have been also proved indepen-
dently by Kallenberg [31]: the Transport Theorem 4.27, generalizing [39, Theorem
3.6], [37, Theorem 3.15] and [38, Theorem 4.1] to non-transitive underlying group
actions, and the Characterization Theorem 4.33, generalizing Mecke’s [46] famous
characterization of the classical Palm measure to a characterization of our cumula-
tive Palm measure for possibly non-transitive group actions. Second, we extend [38,
Theorem 5.1] of Last in Theorem 4.31 which characterizes balancing G-invariant
transports between G-stationary random measures ¢ and 7 in terms of a transport
relation between their respective cumulative Palm measures.
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4.4.1 The Transport Theorem

As before we consider a lcsc group G operating measurably on €2 and properly on
the Borel spaces (5,8) and (7', T). For the sake of generality we shall allow P to be
a o-finite measure on (€2,.4). Our aim is to derive a fundamental transport property
of Palm measures. In the special case where G = S = T is an Abelian group the
result boils down to Theorem 3.6 in [39]. Other special cases will be discussed below.
Recall the function A* defined as in (3.9). We consider two G-stationary random
measures ¢ on S and 7 on T, together with invariant kernels v from €2 x S to T" and
0 from €2 x T to S. Here invariance is to be interpreted with respect to the diagonal
operation whenever product spaces come into play, i.e. we require e.g. v to satisfy

Y(0,w, gs, B) = y(w,s,g 'B), g€G,s€S,weN,BES. (4.27)

Consider the balance equation

//1{(3,75) € M(w, s, dt)é(w,ds) = //1{(s,t) € -}(w, t,ds)n(w,dt), P-a.e. weN.

Intuitively the applications of the random kernel v to the random measure £ on S
should be interpreted as lifting ¢ to a random measure I' on S x T where I'(- x T') is a
possibly resized version of £ while I'(S x -) is a possibly resized version of 7. Further,
the application of § to n must lift to the very same I for P-a.e. w € €. Given fixed
systems of orbit representatives Og C S and Or C T" we denote the corresponding
choice functions by 3° and 57. We will skip the upper indices whenever there is no
risk of confusion. The following theorem has been proved independently by Gentner
and Last [21] and Kallenberg [31].

Theorem 4.27 (Transport theorem). Consider two invariant random measures &
andn on S and T respectively, let v and § be invariant kernels from 2 x S to T and
from Q x T to S respectively satisfying

/ / 1{(s,1) € Yy(w, s, dt)E(w, ds) = / / 1{(s,t) € Yo(w,t,ds)n(w,dt)  (4.28)

for P-a.e. w € Q, and let Q% and Q" be the cumulative Palm measures of & and n
respectively, with respect to fived systems of orbit representatives Og and Op. Then
we have for any measurable function f € (ARGRS®T)y that

JJ] #9687 ()50 (dg) (e, b, d)QF (A, )
_ / / / F(0;, w0, g7, B5(s), D) A" (8)kps) 5 (dg) 3 (w, b, ds) Q" (d(w, b)). (4.29)
Proof. Let w : S — (0,00) be as in (2.6). Then for any b € O and g € G
/w(g‘lhb))\(dh) —1.

Take f € (A®RGRS®T ), and denote the left-hand side of (4.29) by I. By Fubini’s
theorem,

= //// flw.g.b, B(1)w(g™ hb)ks(dg)y(w, b, dt)Mdh)Q* (d(w. b)).
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Applying the refined Campbell theorem (4.11) gives that I equals

E [[[] £(6:"9.8(5). B0 1B (s) an.(dg)r (65 B(5), db)rcaco, o(d)E (ds)
ZE////f(eilyg,ﬁ(S),ﬁ(t))w(g*IS)w(t),h—lt(dg)fy(hﬁ( ), dt)kss).«(dh)E(ds)
:]E////fw}:l’g’ﬂ(s)’5(t))w<gilS)Kﬁ(t)vh_lt(d9>"§5(8),8(dh>7(57dt)§<d3)a

where we used invariance (4.27) of v and 8 and the fact that rg(,), is concentrated
on Gpg(s),s (see Theorem 3.1 (ii)). By Theorem 3.1 (i) and (4.28)

1=E [[[[ 10:* 079, 8(5), B(0))w(g™ )i o(dR)S(, ds)isgo o dg ()

Using invariance of  and k, we obtain that I equals
E (][] 16 00, 07", 8(5), BE)w(hgs) s, o(dh)3(0; ", 5(2), ds)rs(dg)n(at),

where we have used that 6, = 6," o 6, and that g~'t = §(t) for ¢,g as in the
above integral. At this stage we can use the refined Campbell Formula (4.11) for n
to obtain that I equals

I 10207 b, B@)w(hgs) s, (AR)S (b, d)N(dg)Q (d(w, 1)),

Now take h € G and s € S with hf(s) = s. Then

[ wihgs)Mdg) = [ wighB(s)A(dg) = A(h~) = A"(s),

where we used Lemma 3.12. Hence we obain from Fubini’s theorem that I equals
the right-hand side of (4.29). O

An immediate consequence of Theorem 4.27 is the following exchange formula
for cumulative Palm measures. A first version of this fundamental and very useful
formula was obtained by Neveu (see e.g. [56]) for ordinary Palm measures of random
measures on Abelian groups.

Corollary 4.28 (exchange formula). Let £ and n be G-invariant random measures
on S and T respectively. Then for any f € ( ARGRS®T),

JJ] £,9.b. 80 a0.(dgIn(ew, d)QS (d(e, b))

- /// f<0;1w7 gilv 5(8>7 b) ( )Hﬁ(s (dg)f(w, dS)Q@n(d(w7 b))
(4.30)

Proof. Specialize y(w, s, dt) := n(w,dt) and 6(w,t,ds) := &(w, ds). O

Another consequence is the following formula that arises when using integrands
of a special form in (4.28).
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Corollary 4.29 (special integrands). Under the hypothesis of Theorem 4.27 we
have for any f € (ARS®T)4

//f(w,b,t y(w, b, dE)QE(d(w, b))

= []] 1672, 5(), 710N (5) .0 dg) 0, d) Qe ).
(4.31)

Proof. For arbitrary f € (A® S ® T); we may take f(w,g,s,t) := f(w,s,gt) in
(4.28). O

4.4.2 'Transport properties

We consider Borel spaces S and T and an lcsc group G operating on each of them
properly. According to Lemma 2.21 a o-finite kernel 7 from 2 x S to 7" may be used
to transform a random measure ¢ on S (i.e. intuitively speaking a random ‘mass
distribution’ on S) into a random measure on 7' by forming

/T(w, s, )¢ (w, ds).

This underlying intuition for 7 of resizing and redistributing one random mass con-
figuration into another one in a random way is the reason why such kernels 7 are
sometimes referred to as weighted transport kernels ([37, 38, 39]). Fixing another
random measure 1 on 1" we say, following Last [37, 38] and Last and Thorisson [39],
that 7 is (&, n)-balancing if

/T(w, s, )€(ds) = n(w,-), w€Q,

and P-a.e. (§,n)-balancing if the above holds only for P-a.e. w.

In view of the Transport Theorem 4.27 it is of interest to know whether or not
for a (&, n)-balancing G-invariant transport 7 a G-invariant inverse transport kernel
exists. This is a kernel 7%, that for given £, and « := 7 satisfies (4.28) when putting
0 := 7. The answer is positive and may be derived by a straightforward adaption
of arguments found in Last [37, 38|.

Lemma 4.30 (existence of inverse transports). Let & and n denote G-stationary
random measures on the Borel spaces S and T respectively and let T denote a (§,n)-
balancing weighted transport kernel. Then there is a G-invariant Markovian trans-
port kernel 7 from Q x T to S such that (4.28) holds P-a.s., i.e. a stochastic inverse
transport kernel.

Proof. The measure M on 2 x S x T defined by

M= ///1{(w,s,t) € Ir(w, s, dt)E(w, ds)P(dw)

is o-finite, since it is the Campbell measure of the random measure { @ 7 (see Lemma
2.21 (ii) and Lemma 2.19 (i)) and jointly G-invariant, as is easy to check. Moreover

[ 1{(w.t) € M, 5,8) = Gy ()
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since 7 is P-a.e. (£, n)-balancing, which is again o-finite by Lemma 2.19 (i) and
jointly G-invariant. Thus Theorem 2.16 yields a stochastic G-invariant kernel 7*
from Q x T to S with

M=C,oT".

This means
/ / / 1{(w, 5,1) € }7(w, 5, d)E(w, ds)P(dw)
— [[[ 1w, s.8) € -} (b ds)n(e, de)P(dw),
which implies the assertion since S ® 7T is countably generated. U

The next theorem clarifies how the cumulative Palm measure transforms under
such transport kernels under invariance assumptions and represents a modest ex-
tension of results of Last in [38] and [37] from the case of random measures on one
homogeneous space to the case of possibly non-transitive group operations on two
possibly different spaces.

Theorem 4.31 (cumulative Palm measure and balancing transports). Let G oper-
ate properly on the Borel spaces S and'T" and consider G-stationary random measures
& andn on S and T respectively. Then an invariant weighted transport kernel T from
QxS toT is P-a.e. (£ n)-balancing if and only if

[ 1671w, 8 ) A O raaldg)r(e, b a)QE(d(w,b) = Q7f  (4.32)
for any measurable f: Q x Op — [0, 00).

Proof. Assume first that 7 is P-a.e. (§,n)-balancing. Then Lemma 4.30 yields a
stochastic invariant kernel 7* from Q x T" to S satisfying

//1{(s,t) € Ir(w, s, dt)E(w, ds) = //1{(s,t) € Y (w, t, ds)n(w, di).

The Transport Theorem 4.27 gives for any f € (A® GRS ® T), that

J[] 167 0,076 BT O)A (O)rs0,0(dg) (e, b, QS (e, )
=[] 10.9.85(5), b)Rata)o(do) T (0, b, ds)Q(d(e, 1))

Dropping the second and third argument of f yields (4.32).
Conversely if (4.32) holds for all measurable functions f : Q x Or — [0, 00) then,
in view of Lemma 2.19, it is enough to prove

E [[ (00, t)7(s,dt)é(ds) = E [ f(0r, tyn(at) (4.33)

for all measurable functions f € (A ® 7T),. Starting with the right-hand side we
have first by (4.2)

E [ f(0tin(dt) = [[ F(0,0, 9D)Adg)Q(d(w,b).
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By (4.32) the right side may be written as

I 108, 98" N dg) A (a0, dh) (w0, b, AT (A, ),

where by Lemma 3.12 the term A*(¢) may be replaced by A(h™!) . Using property
(2.1) of the modular function this turns into

J[[[ £(6. ghBT ()N g} () (o, b, dr)QE (),

which, using the properties of x, Fubini and invariance of 7, reduces to

/ / / F(O,0,6)7 (0w, gb, dt)\(dg) Q5 (d(w, b)),

and thus to the left-hand side of (4.33) by using (4.2) again. O

4.4.3 Characterization

In this subsection we ask which measures on €2 x S actually are cumulative Palm
measures. The answer will substantially extend Mecke’s famous characterization
of Palm measures and has been derived (essentially) in Gentner and Last [21] in a
different version using Palm pairs and also independently in Kallenberg [31].

We start with the special case where no stationarity or invariance assumptions
are made. In view of Example 4.6 the question reads in this case: Which measures
on 2 xS can be Campbell measures of a given fixed random measure £7 Note that in
contrast to previous sections we do not fix an underlying measure P on (£2,.4) here.
The answer is given by the following general proposition. Note that we neither have
to require a Borel structure on S nor properness or other regularity assumptions on
the operation G — S in part (ii).

Proposition 4.32. (characterization of Campbell measures)

(i) A measure C on Q x S is the Campbell measure of a random measure & with
respect to some underlying o-finite measure on (Q, A) iff C is o-finite, C({{ =
0} xS)=0 and

//fwst £(w, dt)C //fwts (w,d)C(d(w,s))  (4.34)

forany fe(ARS®S),.

(i) If¢ is G-stationary and C' is jointly G-invariant then the same characterization
holds and in addition the corresponding underlying measure P on Q may be
chosen G-invariant.

Proof. (i) First, assume that C' actually is the Campbell measure of ¢ with respect
to some o-finite measure P on 2. As we have seen earlier, every Campbell measure
is o-finite. Further

[ Hew) = 00w, ) = E [ 1{g = 0}e(ds) = 0,
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which yields the second property. To see (4.34) note that

[ 1w 5,08, aCw, ) = [[[ 1w, 5,08, dt)ew, ds)Paw).

Hence it is enough to invoke Fubini’s Theorem and to interchange the roles of s and
t.

To prove the converse assume the three conditions on C'. By o-finiteness we
may choose a measurable function ¢’ > 0 on 2 x S such that C¢’ < oo. Since £ is
measurably o-finite, we may choose by Lemma 2.3 (a) a function § > 0 on Q x S
with 0 < £(§) < oo on {£ # 0}. Now set g := ¢’ A g and h(w, s) := g(w, s)/({g)(w),
where h(w, s) := 0 if {(g) = 0. Define the measure P by

A) = / La(w)h(w, $)C(d(w, 5)), A€ A. (4.35)

By the second assumption we have P(¢ = 0) = 0. Note that w — £(g)(w) is finite
and positive on {£ # 0}. Furthermore,

91 # 0} = [[€o)

As by the second assumption on C' we have P(§ = 0) = 0 it follows that P is o-finite.
It remains to prove that indeed C'is the Campbell measure of ¢ with respect to this
P. We have for f € (A® S) by definition of P

E [ £(6.,0¢(dt) = [[ fw.0h(w, 8)(w, dC(d(w, 5))
=[] f.9)hw, 0w, dC(d(w, ).

where we have used (4.34) to get the second identity. Since C({{ = 0} x S) = 0 this
may be written as

1{{'7&0}0 /gws ,8)) < 0.

J[ 1 # 011w, 5)h(w, DE(w, dNC(A(w, 5))

and since £(h) = 1 on {£ # 0} by definition of A this reduces to C'f (again using the
assumption C({ = 0} x §) = 0).

(ii) It is enough to show that the measure P defined in (4.35) is invariant for
jointly G-invariant C' and G-stationary £. Take f € A, and g € G. By the joint
G-invariance of C'

Ef 06, ://f(ﬁgw)h(w,s)C’(d(w,s))
- / / F@)h(0:w, g715)C(d(w, 5)).

Since C'is the Campbell measure of the G-stationary & with respect to P we may
proceed:

Ef o0, :E/f (0)h(0, ", 97 s)E(ds)
—//f h0, w, $)&(0, w, ds)P(dw) = Ef,

where we have used in the last step that [ (6, w,s)E(6; ' w,ds) = 1 for P-a.e. w
since {£ # 0} is G-invariant and has a complement of P-measure 0. O
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Having characterized Campbell measures which are the cumulative Palm mea-
sures of random measures £ with respect to the trivial operation {e} < S, we may
proceed now with the general case, independently established by Gentner and Last
[21] and Kallenberg [31]. In the transitive special case of Example 4.5 the result
has been derived in [60] and [38]. Note that in order to ensure the existence of the
cumulative Palm measure we have to require S to be Borel and G < S to be proper
now (in contrast to the previous theorem).

Theorem 4.33 (characterization of cumulative Palm measures). Consider the
proper operation G — S where S is Borel together with a fixed measurable system
O = B(S) of orbit representatives. Let £ be a G-stationary random measure on S
and Q a measure on 2 x S. Then Q is the cumulative Palm measure of & with
respect to O and some invariant o-finite measure on (2, A) iff Q satisfies the
stabilizer condition (4.3), is o-finite, satisfies Q({{ = 0} x S) = 0 and for any
feARS®S):

///f<9;1w’6(5)’gflb)A*(5)55(3),5(dg)£(w,ds)@(d(Mb))
- // fw, b, 5)E(w, ds)Q(d(w,b)).  (4.36)

Proof. If Q is the cumulative Palm measure of £ with respect to some O = ((5)
then (4.3) is fulfilled by definition and o-finiteness of Q has been proved in Theorem
4.1.1. Further the third property follows from (4.4) and the G-invariance of {{ = 0}
since

QU = 0x8) = [[ 1{£(6,") = 0}a(oo(dg)w(s)6(ds) = E [ 1{¢ = 0}w(s)¢(ds) = 0.
Equation (4.36) is the special case T := S and vy := 0 := 7 := & of (4.31).

Conversely assume the regularity conditions and (4.36). We need to verify (4.2)
in order to prove that Q is indeed the cumulative Palm measure of £ with respect to

O and some P. In order to show the existence of a o-finite P such that (4.2) holds
we may use Proposition 4.32: Consider the measure

C = [[ 10,0, 9) € IA(dg)QA(w, 1))

which is evidently o-finite by o-finiteness of A and Q. It also satisfies

Cl{g = 0hx5) = [[ 1{&(6,) = 0}A(d9)QUd(w, ) = [[ 1€ = 0}Qd(w, b)) M(dg) =0

by the second property of Q. Hence it remains to show that C' satisfies (4.34) (then
(4.2) follows for some o-finite P by Proposition 4.32). We have by G-stationarity of
¢ and by definition of C'

J] Fess 0@, d)Cldtw, ) = [[[ 100,96 00, N dg)Qd(e, b))
= []] $6,. 9b. g6 (w0, d)Ndg)Qd(w, ).
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Using the stochastic kernel  this last expression can be written as (replacing g by
h for better comparability later)

JJ]] 1010, 00 hgB(®)s0,(dg)6 w0, d)A@R)Q(d 0, ),

and this equals

I £6ng0.1g™ b, hBOIAAR) A g™ 50,0 (0, d) A, b)),

by Fubini’s theorem and the characteristic property (2.1) of the modular function.
Now apply (4.36) to the function (w,s,t) — [ f(0nw, hs, ht)\(dh) to write this as

JJ] £ ht. m)N @), dOQd(w,0)) = [[[ £t BN Buo, dYQ(d (1)),

and by Fubini’s theorem and the definition of C' this is just

/ Flw,t,8)E(dDC(d(w, 5)).

Hence Q satisfies (4.2) and since it also satisfies (4.3) by assumption the uniqueness
from Theorem 4.1 implies that Q must be the Palm measure of £ with respect to O
and P. O

The striking feature of the above Theorem 4.33 is that it is entirely intrinsic, i.e.
no other objects than &, O and QQ are needed in order to check whether @Q is the
cumulative Palm measure of £ with respect to O. In view of (4.2) it seems surprising
at first sight that P does not play a role at all in this characterization. But the fact
that P may be reconstructed in large parts only by means of Q (see Lemma 4.9)
makes it plausible that an intrinsic characterization of Q as above is possible.






Chapter 5

The Mass-Transport Principle

The Mass-Transport Principle (MTP) is a simple (deterministic) statement about
jointly G-invariant measures on a product space S x T and has been successfully
employed in various stationary models in Probability Theory. Early versions have
been used by Liggett [43], Adams [1] and van den Berg and Meester [70]. Haggstrom
[24] was the first who successfully applied it in percolation theory. It then became
an indispensable tool in this field, see [6, 7] and also [44]. Last and Thorisson [39]
and Last [37, 38] derived an MTP for a special class of jointly G-stationary random
measures on G x G by specializing Neveu’s classical ezchange formula in [56] (see
our generalization here in Theorem 4.27). Before introducing it in its greatest gen-
erality in Section 5.2, we will first give motivations in special cases in Section 5.1.
These will clarify necessary ingredients in the fully general (possibly non-transitive
and possibly non-unimodular) case. In Section 5.3 we shall then show how this
deterministic principle may be applied to produce results about random measures
and transports. The final Section 5.4 is devoted to an application of our general
MTP to automorphism-stationary random subgraphs (e.g. subgraphs resulting from
an automorphism invariant percolation model) of possibly non-unimodular and non-
transitive graphs. We shall relate the distributions of various typical clusters with
the distributions of various 0-clusters. Later, in Chapter 7, we shall also give appli-
cations of our new form of the MTP to spatial processes on manifolds and to the
approximation of Borel sets.

5.1 Motivations

In this section we consider a lcsc group G with Haar measure A operating measurably
on a measurable space S and investigate properties of jointly G-invariant measures
on the product space S? = S x S in various special cases before proceeding with
the most general situation in Section 5.2. By Mass-Transport Principle we mean an
equality of the type

M(B x S)=M(S x B), (5.1)

where the intuition of transporting mass comes from the fact that for C,D C S
the quantity M (C' x D) may be interpreted as mass transported out of the region
C into the region D. The reader should convince herself at this point that the
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defining properties of a measure M on a product space really mean nothing but the
physical realizability of a transportation plan where M (C x D) gives the information
how much mass is transported out of C' C S into D C S. It will turn out that
the mass conservation law (5.1), suitably modified if the operating group G is not
unimodular, holds for certain sets B C S as a consequence of the joint G-stationary
by a simple change in the order of summation resp. integration. As this idea becomes
most transparent in the simplest possible setting, namely that of a discrete group
operating on itself, we shall focus our attention on this special case first.

5.1.1 A transitive unimodular case

Consider Z? operating on itself via translation and a jointly Z*-invariant measure
M on Z* x Z?. As we work in a discrete setting the joint Z2-invariance may be
equivalently rephrased by the pointwise property

M{(g+s,g+1t)}=M{(s,t)}, g,st€Z>

This means that the amount of mass transported from s to ¢ is the same as that
transported from g + s to g + ¢ for arbitrary g € Z? (see Figure 5.1).

*\\\\\\i:\\\\\i\ °
T

T

[ o o

Figure 5.1: Identifying the mass transported from s to ¢ by a pointer starting in s and
ending in ¢ the red pointers represent transports with identical masses just as the blue
pointers do. The transported mass represented by a red pointer may differ from that
represented by a blue pointer.

Fixing a point b € Z? the term M (Z* x {b}) then denotes the total mass trans-
ported into b while M ({b} x Z?) represents the total mass transported out of b. Now
we may write M (Z* x {b}) as

> M(z,0)

2€72

and use the joint invariance of M to replace M (z,b) by M (b,2b—z) (simply add b—z
in both components). Since z + 2b — z is clearly a bijection on Z? the sum equals
(changing the order of summation) Y.<z M (b, z). We thus proved the conservation
law

M{b} x Z%) = M(Z2 x {b}), beZ?
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(see Figure 5.2 for an illustration of a more general statement) which clearly extends
to arbitrary subsets B C Z? by o-additivity of M:

M(B x 7Z*) = M(Z* x B), B cCZ*.

Hence for any subset B C Z? the total mass transported out of B equals the total mass
transported into B. Note that no extra requirements on the set B are necessary here.
This changes completely in a non-transitive setting as we shall see in Subsection
5.1.3. In addition it should be clear from the above arguments and Figure 5.2 that
even

M(B x 7% = M(Z* x C), B,C C 72,

whenever |B| = |C|. Note that in this setting | B| is nothing but the width 6(B) of
B defined as in (2.12).

Figure 5.2: The total mass transported out of a point b € Z? equals the total mass
transported into a possibly different point b’ € Z2.

5.1.2 A transitive non-unimodular case

Of particular interest to us are automorphism groups of graphs. Comprehensive
treatments of Graph Theory may be found e.g. in [8, 17]. We only recall very few
basic notions from this realm here with an emphasis on the topological properties
of graph automorphism groups.

A graph is a pair I' := (V, E) where V is any set and E any symmetric subset of
V x V', where symmetry means that (z,y) € F < (y,z) € E. (More precisely these
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are the unoriented or undirected graphs). If V is countable, then I" is also called
countable. An element v € V is called vertex while e € E is called an edge, where we
abbreviate an edge (z,y) by zy. A neighbor of a vertex v is another vertex w € V
such that vw € E. The degree deg(v) of a vertex v is the number of its different
neighbors. A path is a non-empty graph P = (Vp, Ep) of the form

Ve ={xo,21,29,...} and Ep = {zor1,2129,...},

where the x; are all distinct. Paths may have finite of infinite length. We write a
path P of length £ > 1 as P =: xgzy ... T}, i.e. in terms of its sequence of vertices.
A ray is a path which starts in a given vertex = and is infinite in the other direction.
Two rays are equivalent if they share all but finitely many vertices. If

P = (Vp={xo,21,...,21}, E, = {wox1, 1122, .. ., Tp_1T% })

is a path then C' := (Vp, EpU{xpx0}) is called a cycle. A forest is a graph that does
not contain cycles, while a tree is a connected graph without cycles. Two graphs
I'=(V,E)and I'" = (V' E') are called isomorphic if there is a bijection ¢ : V' — V'
satisfying

el & plr)ply) € B

Such a ¢ is called isomorphism between I' and IV. If I' = I" then ¢ is called
automorphism of I'. The set of these automorphisms clearly forms a group which we
denote by Aut(T"). It is easy to see that a map ¢ : V' — V' is a graph automorphism
of I if and only if it is an isometry with respect to the natural discrete metric
d:V xV — [0,00) which measures the distance between z,y € V in terms of the
number of edges a shortest path connecting x and y has.

The automorphism group G := Aut(I') of a countable graph I' = (V, E) is
endowed with the topology of pointwise convergence, where V' is given the discrete
topology. Thus

Goop—p€eG & VreV:p,(x)=p(r) for all but finitely many n € N.

With this topology the stabilizers G, .,z € V, are both open and compact [69, 73]
and the family of (also open and compact) sets G,,,x,y € V. is a (countable)
subbase of the topology on G [69, 73], thus G is second countable. It is easy to
see that this topology is Hausdorff (and totally disconnected). In addition, as any
¢ evidently lies in some G, for suitable z,y € V' the group G is locally compact.
Summarizing, G is lesc with this topology and thus carries a o-finite Haar measure
A. The natural operation of G on V given by

(¢, ) = ()

will be denoted by G — V and is continuous as the preimage of a vertex y € V
under the above map (V' carries the discrete topology) equals

{(p,2) s () =y} = UV(Gz,y x {z})

which is clearly open in G x V. In particular G < V' is measurable. Further since

' ({w}) = Gyuw,v,w € V, is compact also 7, '(K),v € V, is compact for any
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compact (i.e. finite) K C V. Thus G < V is topologically proper, as claimed in
Subsection 2.2.3. In particular it is proper in the wider sense which is also compatible
with Lemma 3.8 since () # G 5 is open and compact and thus 0 < A\(Gs5) < 00,5 €
V.

A countable graph I' is called (vertex) transitive if Aut(I') — V is transitive
and quasi-transitive if there are at most finitely many orbits. Further, I' is called
unimodular if Aut(I") is unimodular.

Turning to the promised example, we denote for n > 2 the up to isomorphy
unique countable tree in which each vertex has degree n by T,, , see Figure 5.3 for
a picture of T3. It is clear from Lemma 3.17 in combination with Lemma 3.13 that
T,, is unimodular. An end of a tree is an equivalence class of rays. The following
construction (essentially) stems from Trofimov [69]. Let n > 3. Given an end ¢ in
the n-regular tree T,, = (V, E) then for each # € V there is clearly a unique ray
ze of the form zzixy... (i.e. starting in z) lying in the equivalence class & (also
drafted in Figure 5.3). In this situation x5 =: {(z) is called £-grandparent of z. Note

L L

Figure 5.3: Scheme of T3 and a ray x¢ € § starting in x.

that in the case of T3 each vertex is the &-grandfather of 4 different vertices which
generalizes to T}, where each vertex is the é-grandfather of (n — 1)? different vertices
(its grandchildren). Adding new edges between £(x) and each of its grandchildren
gives the graph indicated in Figure 5.4 on the left, and repeating this step for each
vertex finally gives the £-grandparent graph on T, (i.e. after adding an edge between
each vertex x and its grandparent £(z)). We call it (T5,) .

Figure 5.4: Left: £(x) connected by an edge with each of its grandchildren, right: £(73).
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It is easy to see that £(7),) is transitive and that each ¢ € Aut(£(7),)) fixes &
in the sense that for each ray p € £ again p(p) € £ (where ¢(p) is defined in the
obvious way). Thus the map

m(s,t) :=1{t =¢&(s)}, s, teV,
is jointly Aut(£(75,))-invariant which is then also true for the measure

= Y 1f(s.t) € J1{t =&(s)}

s,tevV

on V x V (M governs the transport in which each vertex sends mass 1 to its grand-
parent). Here a conservation law of the type (5.1) fails for any subset B C V since
for any vertex o € V/

M{o}x V)= Y 1{t=¢(0)} =1<(n—1)>=> Ho=¢&(s)} = M(V x {o}).

teV seV

This reasoning is taken from [44, p. 206]. The crucial difference to the transitive
unimodular situation in Subsection 5.1.1 is that £(7},) is not unimodular (i.e. the
operating group Aut(£(7},)) is not). This readily follows from Lemma 3.17 in com-
bination with Lemma 3.13, since for any v € V evidently |G,,¢(v)] = 1, while
|Ge(v),¢()v] = 4. In this context, we also note that we shall compute the non-trivial
functions A* with respect to a fixed representative o, and A in Subsection 5.4.2.
As this example shows, the topology of the graph, i.e. that of the operating group
of automorphisms has an effect. As we show in Section 5.2, this effect only stems
from the non-trivial modular function of the operating group and we shall provide a
suitable counterbalancing density that rescues a conservation law even in a possibly
non-unimodular and even a possibly non-transitive setting. The differences arising
from non-transitivity are motivated in the next subsection.

5.1.3 A non-transitive case

Exemplarily we consider here the evidently non-transitive operation SO(2) — R?
where the orbit of a point b € R? is the circle around the origin containing b.
Since SO(2) is compact we may normalize Haar measure on SO(2) to a probability
measure which we call \. We choose an arbitrary but fixed measurable system O
of representatives of the orbits, e.g. O = {(x,0) : > 0}. Then for b € O the
orbital pushforward g, = A o7, ' is the uniform distribution on the circle around
the origin through 6. In this setting the above conservation law fails in general
for arbitrary subsets B € B(R?). Consider for instance the jointly SO(2)-invariant
measure M = j, @ pi, for b, ¢ € R? not lying in the same orbit. Here clearly (since

MSO(2)) =1)
M(BxR*)=MR?*xB) & j(B)=pu(B),

and hence if
M (B x RQ) = M(]R2 X B)
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is to be satisfied for all jointly G-invariant measures M then sending (b, ¢) through
all different pairs of orbit representatives, we get as a necessary condition on B that

#b(B) = MC(B)a b7 ce€O.

Thus, B must be SO(2)-symmetric (recall the examples in Figure 2.1). It turns out
that this necessary condition on B is already sufficient for a mass-conservation law
of the above form (see Corollary 5.4) such that

M(B x R*) = M(R* x B)

holds for all jointly SO(2)-invariant measures M on R? x R? if and only if B is
SO(2)-symmetric.

5.2 The Mass-Transport Principle

In this section we state and prove two forms of the mass-transport principle (MTP)
for possibly non-unimodular operating groups and possibly non-transitive opera-
tions. The first form is given in Subsection 5.2.1 and represents a mass-conservation
law on systems of orbit representatives. This first version is then needed in Subsec-
tion 5.2.2 in the proof of the second, ‘integrated’ version in Theorem 5.2, which we
simply call the Mass-Transport Principle.

5.2.1 MTP on systems of orbit representatives

We consider the proper action of an lcsc group G on a Borel space S and a Borel space
T. Similarly as before we ask for necessary and sufficient conditions on subsets B
and C such that a mass-conservation law (suitably modified in the non-unimodular
case) is fulfilled for all jointly G-invariant o-finite (or s-finite) measures M on S x T'.
Similarly as in the discrete transitive example of Subsection 5.1.1 we first need to
establish an MTP on a system of representatives before integrating it to a version
on G-symmetric sets.

Lemma 5.1 (MTP on representatives). Let G operate properly on the Borel spaces
S and T, let p and v denote G-invariant o-finite measures on S and T respec-

tively, and let v and 0 denote G-invariant s-finite kernels from S to T and T to S
respectively. If

/ / 1{(s,1) € (s, dt)u(ds) = / / 1{(s,) € o(t, ds)w(dt) (5.2)

holds, then we have for any jointly G-invariant function m : S x T'— [0, 00| that

/ / m(s, )3 (b, ds)v* (db) = / / m(b, ) A* (1) (b, dt)* (db). (5.3)



78 Chapter 5: The Mass-Transport Principle

Proof. Choose w : S — (0,00) as in (2.6). Then the left-hand side may be written

[ s, 0136, sy (dv) = [[[ mls, BE)3B), ds)w(t)us(dt)y” (db)
which equals by (2.7)
[ s, B@wIE(E), dsyvar).

Using the inversion kernel s of the operation G < T" we may write this as

// m(s, =) w(t)6(h't, ds) s o (dh)v(dt)
—///m Vs, KM w(t)8(t, ds) e (dh)w(dt).
By the joint invariance of m and (5.2) this reduces to

/mst d(t,ds)v(dt) /mst (s, dt)p(ds).

We now reverse the above steps. Applying (2.7) yields

/ / m(s, Hyw(t)y(s, dt)up(ds) " (db) / / m(gb, )w(t)y(gb, dt)A(dg)u* (db)

and using invariance of v and joint invariance of m we arrive again by (2.6) at

//mbt w(gt)y(b, d)A(dg)p*(db) /mbtut (b, dt)* (db).

This yields the assertion since p;(w) = A*(t) by Lemma 3.12. O

5.2.2 Integrated version

Lemma 5.1 will be needed to derive the following theorem. Recall the definition of
A in (3.12) and its properties from Lemma 3.14.

Theorem 5.2 (Mass-Transport Principle). Let G operate properly on the Borel
spaces S and T and consider non-negative functions k° on S and kT on T. Then

[ RS 6)As M, 1) = [ K ()M (d(s, 1) (5.4)
for all o-finite jointly G-invariant measures M on S x T if and only if
wk® = uk®, be Og,ce€Or. (5.5)
Here the word o-finite may be replaced by s-finite.

Proof. First assume that £, k7 fulfill (5.5) and take a o-finite jointly G-invariant
measure M on S x T'. Then by Theorem 2.16 there exist both an invariant disinte-
gration from S to T’

M(d(s,t)) = (s, dt)u(ds)
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and an invariant disintegration from 7" to S
M (d(s,t)) = d(t,ds)v(dt).
Then (5.4) may be written as

/Astks (s, dt)p /k:T 5(t, ds)w(dt)

and employing (2.7) an equivalent statement is
[ Atgb. 0k (g1 (gb, d)Adg)u (@) = [[] K (9e)s(ge, ds)A(dg)v* (do).
Using invariance of the respective kernels this may be stated equivalently as
J]] Algb, gtk (gb)y1 (b, dN g (dv) = [[[ K7 (ge)oe. ds)A(dg)v* (de).

Since A is jointly G-invariant we may cancel by (5.5) the identical constants k" =
p1ck™ on both sides and arrive, since A(b,t) = A*(t), at (5.3) in its form for m = 1,
which is true by Lemma 5.1.

Conversely, assume (5.4) for all jointly G-invariant M. Consider for fixed b €
Og, ¢ € Or the jointly G-invariant o-finite measure

M= /1{(hb, he) € YA(dh),
which admits the following two disintegrations in opposite directions
M= [[1{(s.90) € i sldg)pm(ds) = [[ 1{(gb,1) € rco(dg)ue(dt)

(this may be checked by direct calculation, each disintegration reduces to the defini-
tion of M by using right Gy ,-invariance of A, i.e. (2.5)). Using the left disintegration
on the left side of (5.4) and the right disintegration on the right side of (5.4) yields

/ k5(5)A(s, gc)kp,s(dg) pp(ds) //k: (1) ket (dg)pe(dt).

While the right side clearly equals u.k”, the left side requires a bit of manipulation.
First

/ kS (s)A(s , 9¢) kb s(dg) pw(ds) // kS ( hb (hb, gc) kb n(dg)A(dh)
- / / kS (W) A (hb, hge)inp(dg)A(dh)
and using joint G-invariance of A this reduces to
,uka/A(b, gc)kpp(dg).
Again by joint G-invariance of A this equals
pok® [ Alg™'b. c)rus(dg),

which clearly reduces to pkSA(b,c). Here A(b,¢) = 1 by (3.13) which yields the
assertion. O
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The special case S = T and k° = kT have been treated in [21] by specializing a
version of the Transport Theorem 4.27 for S = T'. Instead of using the Transport
Theorem 4.27 in order to derive Lemma 5.1 we chose to give direct proofs here
because of the resulting increase of transparency about how the joint invariance is
used. Using G-symmetric sets (i.e. sets B with 0 < uy(B) = pe(B) < 00,b,c € O)
in both spaces S and T' the Mass-Transport Theorem 5.2 may be stated as follows:

Theorem 5.3 (Mass-Transport Principle on sets). Let G operate properly on the
Borel spaces S and T and consider sets B € S and C € T. Then

/ 15(5)A(s, )M (d(s, 1)) = M(S x C) (5.6)

for all o-finite jointly G-invariant measures M on S x T if and only if B and C' are
both G-symmetric and have the same width, i.e.

d(B) =46(C). (5.7)
Here the word o-finite may be replaced by s-finite.

We will mainly use this ‘set formulation” of the MTP and again mainly in the further
specialization S =T, B = C:

Corollary 5.4 (Mass-Transport Principle on one set). Let G operate properly on
the Borel space S and consider a set B € S. Then

/ 15(s)A(s, )M (d(s, 1)) = M(S x B) (5.8)

for all o-finite jointly G-invariant measures M on S x T if and only if B is G-
symmetric. Here the word o-finite may be replaced by s-finite.

5.3 MTP’s for random measures

We will mostly use the above Mass-Transport Principle in order to relate distribu-
tions of certain suitably invariant random elements. In this section we show the
relation between G-stationary random elements and the deterministic MTP.

5.3.1 MTP and stationary random measures

Consider a random measure ¢ on S x 7. Similarly as in the deterministic case, where
we interpreted M (C' x D) as mass transported out of C' into D, we may interpret
((C x D) as random mass transported out of C' into D. Note that the intensity
measure of C'x D, E((C x D), may be interpreted as the expected transported mass
from C to D. Since we introduced random measures as o-finite kernels, E( is s-finite
by Lemma 2.20. If in addition ( is G-stationary, then E( is jointly G-invariant:

]E/fgsgt E/fst (0y,d(s,t)) E/fst d(s,t)), [fe€(ST),.

Here we used G-invariance of P, which we may and will assume without loss of
generality, see Subsection 2.4.2. An application of one direction of the set version
of the deterministic MTP (Theorem 5.3) yields
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Theorem 5.5 (MTP for random transports). Let ¢ denote a G-stationary random
measure on S XT and let B € § and C' € T denote G-symmetric sets with the same
width. Then

IE/ 15(5)A(s, )¢ (d(s, 1)) = EC(S x O). (5.9)
and for any jointly G-invariant m : Q x S x T — [0, 00)
E/lB m(0., s, )¢ 15:/1C m(0,,5,)C(d(s,8).  (5.10)

Proof. The first equation is clear after what has been said above the theorem. To
prove the second we may simply apply (5.9) to the G-stationary random measure

((w,d(s,t)) := m(w, s, t)¢(w,d(s,t)),
and refer to Lemma 2.21 (i). O

Note that if € is a G-stationary random measure on S and v a G-invariant kernel
from 2 x S to T then

((w,) == (@) (W)
is a suitable choice for ¢ in the above theorem. The same remark applies to the

product of a G-stationary random measure n on 1" and a G-invariant kernel ¢ from
QxTtoS. Clearly if £ ® v = n ® ¢ P-a.e. then

E//lB Als, 1)m(6., s, 1)y(s, dt)&(ds) ]E//lc m(0., s, 1)8(t, ds)n(dt).
(5.11)

For random transports ¢ in this form and the special choice of S = T, B = C
Theorem 5.5 has been shown in [21, Theorem 5] by using a special form of the
Transport Theorem 4.27. The next section will clarify the link between MTP and
Transport Formula.

5.3.2 Palm Mass-Transport Principle

There is a close link between the MTP in the form of (5.11) and the Transport
Theorem in the special form of equation (4.31). Equation (5.11) may be rewritten
by means of the cumulative Palm measures of £ and n by applying (4.2) in its
respective form on either of the two sides of (5.11). This yields

[ 1a(gb)A(gb. tym(60. gb. 1128y, gb, d)N(dg)Q (d(o, b))
— [[[ 1ctgtymi@,0. 5, g0)3(0,, gb, ds)A(dg)Q (d(w, b)),

and using invariance of v and 9, joint invariance of m and A and Fubini we arrive

// 15(g0)A(dg) A (b, )m(w, b, t)(w, b, dt)Q (d(w, )
- / / / 1o(gh)A(dg)m(w, 5, b)8(w, b, ds)Q"(d(w, b)).

Canceling the identical constants d(B) = §(C') on both sides yields
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Theorem 5.6 (Palm MTP). Let £ and n denote G-stationary random measures on
S and T respectively and let v and & be G-invariant kernels from € x S to T resp.
Q xT toS such that

// 1{(s,) € -}y(s, dt)E(ds) = // 1{(s,t) € Yo(t,ds)n(dt) P-we.  (5.12)

Then we have for any jointly G-invariant m : Q x S x T — [0, 00) that

/ A*(Eym(w, b, t)y(w, b, d) Q6 (d(w / m(w, 5, b)3(w, b, ds)Q(d(w, b)).
(5.13)

If only the weaker condition

E / / 1{(s,t) € }9(s, dt)e(ds) = E / / 1{(s, 1) € -Yo(t, ds)n(dt) (5.14)

holds, then

/ A (£)y(w, b, dt)QE(d( / §(w, b, ds)Q"(d(w, b)). (5.15)

Remark 5.7. Note that the existence of G-symmetric subsets B and C' is open in
this generality. Theorem 5.6 is still valid as we may repeat the same calculation us-
ing the (existent) functions w® and w” as in (2.6) this time starting with the obvious
variant of (5.11) using symmetric functions instead of sets. Another possibility is to
specialize (4.31). Replacing f := m and using its joint G-invariance clearly imme-
diately yields Theorem 5.6. Thus there is an intimate link between the Transport
Theorem 4.27 and the Mass Transport principle in the form of Theorem 5.6. Instead
of going this shorter way we chose to give the above proof using the MTP since the
intuition of transporting mass behind the MTP is useful in applications.

5.4 Application: Stationary subgraphs

Most results derived from the Mass-Transport Principle are qualitative. As an illus-
tration of how the MTP works in its most general form we decided to work here in a
setting which is not necessarily transitive nor necessarily unimodular. For the time
being, we want our system of orbit representatives O to be compact since then there
are good chances that 0 < (E£)*(O) < oo is fulfilled which according to Subsection
4.3.1 will allow probabilistic interpretations without further modifications (such as
introducing invariant sets with ‘finite height’). Thus a suitable setting certainly is
a quasi-transitive not necessarily unimodular graph I" and a suitable random object
is an Aut(I')-stationary random subgraph, e.g. the result of an Aut(I')-stationary
bond percolation, see e.g. [9, 22]. Such models are discussed in Subsection 5.4.1.
The result obtained there will be made more explicit in a special transitive case,
namely on £(7},) in Subsection 5.4.2.
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5.4.1 Stationary subgraphs in quasi-transitive
graphs

Let I' = (V, E) denote a quasi-transitive possibly non-unimodular graph and G :=
Aut(T") the lesc group of automorphisms (see Subsection 5.1.2) on I' with a fixed
left Haar measure A. We consider the continuous and topologically proper (again
see Subsection 5.1.2) natural operation G — V' given by (¢, v) — ¢(v) and O shall
denote a fixed (finite) complete system of orbit representatives. We denote by = the
set of all nonempty subgraphs of I' and endow = with the o-algebra generated by
the evaluation maps

pp:2—=1{0,1}, p,(H):=1{veV(H)}, vevV,

and
pe: =2 —{0,1}, p(H):=1{e€ E(H)}, ecE.

The operation G — V induces naturally an operation G < = such that we may write
for H = (V', E’) the shifted graph (p(V'), o(E")), where (V') := {p(v) : v € V'}
and @(E") := {p(v1)p(va) : viv2 € E'}, simply as ¢ H. Then a random subgraph ¥ of
" is a random element in = defined on an underlying probability space (2, A, P). As
explained in Subsection 2.4.2 we may model stationarity without loss of generality
by equipping 2 with a flow 6 indexed by Aut(I'), by assuming that P is invariant
with respect to this flow, and by adapting our G-stationary random elements to this
flow. Thus, a random subgraph o of I' is G = Aut(I)-stationary, if

Y(O,w) = pd(w), weQped.

A cluster in a subgraph of I' is a connected component in this graph and we write
C(w,v) for the cluster in ¥(w) that contains v. Let P(v,w) denote the countable set
of all paths in I' connecting the vertices v and w. Since for fixed v € V' the maps

pwoCw)=HweC)}=1{v,weV(©)} sup [[1{ec EW)}, veV,

PeP(v,w) cep

are measurable and since similarly the maps p. o C'(v),e € E, are measurable, we
conclude that C'(v) is a random element in = for each v € V. Thus we may inves-
tigate distributional properties of such clusters. Further |H| denotes the number of
vertices of a subgraph H. Since H — |H| =Y ,cy 1{w € H} is evidently measur-
able we have that |C'(v)| is for each v € V an NU {occ}-valued random variable. We
make the assumption that

E|C(v)] < 00, weV. (5.16)

Remark 5.8. Equation (5.16) is e.g. satisfied if ¥ is the random subgraph resulting
from independent Bernoulli(p)-bond percolation on I" whenever p < 1/(r — 1) where
r = maxX,co deg(v) (see [71, Theorem 6.2]).
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Let Cy denote the space of all finite subgraphs of I', endowed with the o-field
inherited from Z. We assume the existence of a measurable map

T:QAxCr—=V, (w,C)— 7(w,C)
such that
T(w,C) e C, wef,CeCly, (5.17)
and
(0w, pC) = p(m(w,C)), ¢ e G,weQ,C eCy. (5.18)

Since our focus lies on illustrating the use of Theorem 5.6 we shall not be concerned
with the construction of this map in this full generality. Instead we will construct
such a map for the special case of I' = £(T},) in Subsection 5.4.2, as it is readily
available in this special case.

Open problem 5.9. Derive the existence of a map 7 : Q@ x Cy =V satisfying both
(5.17) and (5.18).

We call such a function center function. We shall fix such a function in the following
and interpret for v € V the random vertex w — 7(w, C(w,v)) as the center of C(v)
in configuration w. We abbreviate

7(w,v) = ww, Clw,0)), weQueV.

By n we denote the deterministic counting measure on V', which is clearly G-
invariant since automorphisms are bijections on V. Further we put C(¢) := {C :
C'is a cluster of ¥} and define

= > bn). (5.19)
cec(d)
It is trivial to show that £ is a G-stationary and by (5.17) £ is a simple point process
on V. Evidently £ represents a natural mean to count the clusters of 1. We clearly
have

My = )\(Gbﬁ) Z 50, b e O,
veGD

and thus a suitable function w in (4.4) is w(v) = 1{v € O}/AN(Gpw)pw))- It is easy
to derive from (4.4) (using Fubini, invariance of P and (2.7) for n) or simply from
(4.10) that

Q"=P&®n" (5.20)
Further we note that (4.9) holds for £ as well as for  which implies
1
n'=> ——0. (5.21)
beZO M Ghrp)

The Mass-Transport Principle in the form of Theorem 5.6 yields, suitably applied,
the following result for G-stationary random subgraphs ¥ that contain a.s. all ver-
tices, i.e.

Poed)=1, veW (5.22)
This is e.g. the case for bond percolation models (see [9, 22]).
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Theorem 5.10 (typical clusters). Let 9 denote an Aut(I')-stationary random sub-
graph of a countable quasi-transitive graph T' satisfying (5.22) such that each of its
clusters satisfies (5.16) and let C(w,v) denote the cluster of v € V in J(w), w € Q.
Let further m : Q x C;y — V denote a center function, £ be defined as in (5.19),
n denote counting measure on V and O denote a complete (finite) system of orbit
representatives. Then the equations

[ HCw,b) € 10t (dw. b))

1 1 * -1
- 5 St Gy ) [ e Ol € s ()]
(5.23)
[1UCw,b) € HC(w, b)IQk(d(w, b))
1 * -1
=3 S = A ) [ 1 OO € s (@) G20
/1{c<wbe} Y AT)QE(d(w, b))
veC(w,b)
G L 1 OE0) € Y a@s)] (5.25)
/ H{C(w,b) e-} Z A(Gu)QF(d(w, )
veC(w,b)
= _10 K 7(b)) d .
=SB | [ 1700 € s (@) (526)
hold, where A*(v) = AGuw)  — AGuaBOI ) V', and where all sides of the

, ' MGp(0).8()) G a0).8(0) 01
equations are finite.

Proof. We define the G-invariant kernels v and § from €2 x V' to V respectively via

Y(w, s, ) = Z d(), seViweQ,
veC(w,s)

and
(5(w,t, ) = (Sﬂ(w7t)(-), teV,wel

Then clearly [ 1{t € -}y(w, s, dt)é(w,ds) = n(-), which also means that for w € Q
//1{ s,t) € - }y(w, s, dt)E(w, ds) //1{ m(w,t),t) € - }y(w, s, dt)é(w,ds)
_/1{ w(w,b),t) € n(dt)
- //1{ s,t) € }0(w, t, ds)n(dt).

Thus &,n,v and § satisfy (5.12) and the MTP in the form of Theorem 5.6 yields

/Abt mi(w, b, £)7(w, b, dt)QE (d(w, b)) /mwsb §(w, b, ds)Q"(d(w, b))
(5.27)
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for any jointly G-invariant measurable m : Q x V' x V' — [0, 00]. We note that for
any measurable D C = the map

mp(w, s,8) = AL, s) / 1{o"'C(w, 5) € D}rsss(d)

is jointly G-invariant. Applying (5.27) to such an m yields (omitting D)

[ X [HeClwb) € Jmnlde)Q(dw,b)

veC(w,b)
_/// 1y 'O(w, 5) € FA(D, 8)K(s),s(dp) (e (ds)Q"(d(w, 1))

and thus using covariance of C' and (5.20) the equation

] 16 BI{CE, w,b) € Frn(d) Q8 (d(w, b))
= [[[ 1710w, 5) € FAW, 5)ka00),0(d9) Ty (d5)Q7(A(w, ).
Here the left-hand side reduces to
[ 10 BIHCw,b) € Y (d(w,b)

after replacing [C(w,b)| by |C(0,'w,b)| (= |[¢~'C(w,b)| since ¢ € Gyy) and using
(4.3). The right-hand side may be written by (5.20) as

E [[ 17" Clw,m(w,5)) € FA®, 7w, 1) ka(emnaton ()0’ (db).

Using Fubini and (5.21) yields

L A -1
bg‘M(be)E [A(b,ﬂ(w,b))/l{go C(w, (W, b)) € Yha(n(w))mws) (dp)] -

Thus we proved (5.24) since by Lemma 3.9 A(b, s) = A*(s). Equation (5.23) follows
from a similar calculation, this time using in (5.27) for any measurable D C =

mp(w, s, t) = l/l{gp (w,8) € D}kgs),s(de).
The third equation (5.25) follows from using instead
mo(w,s.t) i= [ 1{g ' Clw,s) € Dyracoo(de),
while the forth equation (5.26) stems from using
mp(w, s, t) |/1{gp (w,8) € D}kps),s(dep).

The assertion about A* is clear in view of Lemma 3.13. We now show the finiteness
of all above terms. As O is finite we may conclude from (4.10) that

P € §)
SQx0) = 00,
Q*(2 x 0) bEZO NG) <
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which shows finiteness of the left side of (5.23). Since by Theorem 4.11

P(-[[6)s = P(- {0} = 1), beO,

it is evident from (5.16) that

/|C’(w, b)[P(dw||€), < 0o

Thus from (4.10) the finiteness of the left side of (5.24) follows. The finiteness of
the right side of (5.25) is evident just as that of the right side of (5.26). O

We now turn to probabilistic interpretations of these results. Fixing in I' a
(finite) complete system O of orbit representatives we denote by Q% the cumulative
Palm measure of £ with respect to O. As 0 < Q%(Q x O) = (E£)*(0O) < oo we may
similarly as in Definition 4.23 put

1

§ .
" Q*(2 % 0)

Qf

where we decided to make the dependence on ¢ rather than the dependence on
I = Q x O (cf. Subsection 4.3.1) explicit. E* denotes integration with respect to
P¢. The finiteness of all expressions in the previous theorem allows us to define the
following probability measures on =.

Definition 5.11 (various typical clusters). In the situation of Theorem 5.10 we
interpret (w,b) +— C(w,b) as a random subgraph of I' defined on the space
(2 x 0, A® P(0),P%). A random subgraph with distribution

(i) P*(C € -) is called typical cluster of 1,

1
(ii) ] / 1{C(w,b) € -}|C(w, b)|P*(d(w, b)) is called cluster-size-weighted typi-

cal cluster of 19,

1
1{C(w,b) € - A*(0)P*(d(w, b)) is called A-cluster-
ssav | HO@D) b3 AR .D)

size-weighted typical cluster of 1.

yiemil

1{C(w,b) € - MGo0)PE(d(w, b)) is called stabilizer-

£ ZUEC )\(GU,U> { ) } vGCZ(;J,b) ( )

cluster-size-weighted typical cluster of 4.

Further, let U be uniformly distributed in O and independent of 1J. Then we call
(v) a random subgraph of I' with the same distribution as

wi— C(w,U(w))

a 0-cluster of ¥,
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(vi) a random subgraph of I' with distribution

E

1 _
10] 2/1{90 'C(w,b) € }rp(a(v)),m(e)(d)
0l i

a centralized 0-cluster of v,

(vii) a random subgraph of I with distribution

E

5 1
_— 1 _10 UJ7 b E K - x d ’
beOS')‘(Gb,b)/ {97 Clw:b) € g 90)]

where S := "o , a stabilizer-weighted-picked centralized 0-cluster of ¥,

_ 1
A(Gh,b)

(viii) a random subgraph of I" with distribution

2 MA* (x(6)) / e 'Cw,b) € '}"v'mw(b))m(b)(ds@)] :

beO

E

where S :=E} o %, a A-weighted-picked centralized 0-cluster of ¥,
(viii) a random subgraph of I" with distribution

L Ax()

’ ZS-A(be) C(0)] /1{901C(W=b)6'}’€ﬂ<w<b>>m<b>(dsa)],

beO

where S = E} o %, a A-weighted-picked centralized size-debiased
0-cluster of 19,

These definitions already indicate the content of the next result, which represents
a simple reformulation of Theorem 5.10.

Corollary 5.12 (probabilistic interpretations). In the situation of Theorem 5.10
let Z denote a typical cluster, Z, a cluster-size-weighted typical cluster, Z® a A-
cluster-size-weighted typical cluster and Z} a stabilizer-cluster-size-weighted typi-
cal cluster. Let further N denote a centralized O-cluster, N\ a stabilizer-weighted-
picked centralized 0-cluster, N5 A-weighted-picked centralized 0-cluster and n> a
A-weighted-picked centralized size-debiased 0-cluster. Then their distributions are
related as follows.

P(Z c-)=Pn5 <€), (5.28)
P(Z, € ) =P(N5 € ), (5.29)
P(Z% c-)=P(N) e ), (5.30)
P(Z}e-)=P(N € ) (5.31)
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and we have the relations

P;%Gis) “Fl5 <ébb> rcg((bb)))ﬂ (5.32)

ES e gg IP;((bGiS) =k _beo m (5.33)

" [Zc A*(”)] Z m - A(Glb,by (5.34)
=[S0 5 S N - (5.35)

All sides of these equations are finite.

Proof. Rewriting all sides of the equations in Theorem 5.10 in terms of the distri-
butions introduced in Definition 5.11 yields the equations

> Gy 29 Zo memiae | B!
Py ;(Z)Gis)IP’(Z €)=E bezow P(N2 € ),
2 | SES PR € - X e e
ES l;x ]’O“g) ((bGEbS)P(ZA Y=P(N € ).

Plugging in = everywhere then yields the relations (5.32), (5.33), (5.34) and (5.35)
and then using these relations with the above equations again finally yields (5.28),
(5.29), (5.30) and (5.31). 0

5.4.2 Transitive possibly non-unimodular graphs

If the underlying graph I' is even transitive, then clearly the formulas in Theorem
5.10 and Corollary 5.12 simplify since the summation over O becomes superfluous
and O-clusters then really arise from fixing a vertex and looking at the cluster in
which the fixed vertex is contained without any further randomization on how this
vertex is chosen. Also, the distributions of the several types of typical clusters
defined in Definition 5.11 simplify as one may identify Q x O = ) x {0} where
o € V is fixed and arbitrary with 2. Further examples of transitive non-unimodular
graphs (other than £(7;,)) may be found in [67, 44]. Also, Lemma 3.13 allows explicit
expressions for A*. We shall carry this through here for £(T},). Clearly, given two
vertices s and t in £(7},) there is a unique youngest common &-ancestor of s and ¢
in T,,. More precisely, in T, the unique rays s¢ € £ and ¢ € § starting in s resp.
t, must, since they are equivalent, intersect in a point £(s,t) and coalesce behind
this point since their remaining parts must coincide with £(s,t)¢, the unique ray
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starting in {(s,?) and lying in . The vertex §(s,t) is what we called above youngest

common §-ancestor. We shall now compute A for £(7},) as well as A* with respect
to an arbitrary fixed vertex o serving as our single orbit representative.

We define
Le(v,w) := d(v,&(v,w)) — d(w,&(v,w)), v,w eV, (5.36)

where d(v, w) denotes the graph distance in 7), (not in (75,)!). Note that L¢(v, w)
measures the relative é-age of v and w. It is reasonable to say that v is older than
w if Le(v,w) > 0, that v is younger than w if L¢(v,w) < 0 and that v and w are of
the same generation if L¢(v,w) = 0. Clearly, L¢ is jointly Aut(£(7,))-invariant.

Lemma 5.13. (A and A* for £(T},)) For Aut(¢(T,)) < V we have
A, w) = (n— 1))y wev, (5.37)
and with respect to a fized vertex o serving as orbit representative
A*(w) = (n— 1)kl eV (5.38)
Here L¢ is defined as in (5.36).

Proof. We first compute A. Equation (3.15) shows that A does not depend on
the choice of our single orbit representative o. Thus we may choose a particular
convenient one in Lemma 3.14. For given v,w € V we choose O = {£{(v,w)} in

Lemma 3.14, where (v, w) is the unique youngest common &-ancestor of v and w.
Thus

- A w
A(/U’ w) — i(’l),w)( )
Af(v,w) (U)
where A7, ) stands for A" with respect to O = {{(v,w)}. By Lemma 3.13
wa Y
Moo = G0
|G om0
Here |Gy €(v,w)| = 1 since any automorphism fixing w must clearly fix any &-

ancestor of w as well. To evaluate the denominator let k denote the length of
the unique path in 7, connecting w and &(v,w). There are evidently (n — 1)* &-
descendants of £(v,w) that are exactly k generations younger than &(v,w). The set
of these descendants equals the set Gy w),¢(v,w)W, since first, the relation ‘s is exactly
k generations younger than ¢’ is jointly Aut(£(7,,))-invariant, and second, any such
two descendants may be mapped to each other by means of a ¢ € Ge(yw) ¢(v,w)- Thus

1 1\ dwgvw)
(n — 1>

AZ(v,w)(w) = (n _ 1)k =

and since an analogues equality holds for v we receive

Av,w) =

~ 1 d(wé(vuw))_d(v’g(v’w))
(n — 1>

and thus (5.37). Equation (5.38) is now a special case. O
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Figure 5.5 shows some values of A* with respect to a fixed o € V. Clearly A*
induces a partial ordering on V' where v < w if and only if v is younger than or of the
same generation as w. This ordering may be used to derive the existence of a center
function in this special case, even as a deterministic function of the configuration
Y(w). Namely, every cluster C' of any subgraph of {(7},) has a unique oldest vertex
7(C), as is easy to see, and clearly w(¢C) = ¢n(C) and n(C) € C. Thus this 7
satisfies (5.17) and (5.18). Clearly, for I' = £(7},) and with respect to this 7= and
O = {o}, both the distributions in (5.28), (5.29),(5.30) and (5.31) as well as the
formulas (5.32), (5.33),(5.34) and (5.35) become completely explicit by using our
formula for A* from (5.38).

Figure 5.5: Some values of A* with respect to the fixed vertex o.






Chapter 6

Ergodic Theory

For historical information on the development of ergodic theory, we refer to [28,
p. 576]. In this chapter we shall not prove a fundamentally new result in ergodic
theory, but yet, we shall adapt two results from this field such that they may serve
for the inspection of either Z%stationary random measures or L-stationary random
measures in R?. More precisely, we consider the actions Z¢ — R? and L — R?
where L is a k-dimensional (0 < k < d) linear subspace of R? and both actions are
via translation. In either case, if G denotes the respective group, we investigate a
G-stationary random measure ¢ on R% and investigate a.s.- and LP-convergence of
random sequences of the form

§(AN B,
M(ANB,)’

where A is a G-invariant set, B,, a sequence of nested increasing G-symmetric sets
and \? denotes d-dimensional Lebesgue measure on R%. This will be done by apply-
ing two classical (multivariate) ergodic theorems, the first obtained by Zygmund [74]
and the second by Wiener [72]. The first case Z¢ — R? will be treated in Section
6.1, while the second case L — R? will be treated in Section 6.2. We fix counting
measure as Haar measure on Z? and u-dimensional Lebesgue measure \; as Haar
measure on L. We recall (see the examples in the end of Subsection 2.2.4) that in
the case Z¢ — R? a Z%-invariant set is derived by taking a certain pattern within the
half-open unit cube and extending this pattern Z?-periodically on all of R?, since the
orbits are given by the translates ¢+7%, ¢ € [0,1)%. On the other hand Z%symmetric
subsets of R? are non-empty finite unions of the translates z + [0,1)¢, z € Z¢. Each
such set B has the property 6(B) € N. In the other case L-invariant subsets of R?
are unions of translates of L while the prime examples of L-symmetric subsets of
R? are unions of translates of L (note that there are many other possibilities to
construct L-symmetric subsets of RY). See Figure 6.1 for illustrations.

Our ergodic theorems will enable us to define analogues of the classical sample
intensity of a completely stationary random measure on R also for G-stationary
random measures, where G is either a finitely generated additive subgroup of R or
any proper linear subspace. These analogues are in fact a family of random measures
indexed by the o-algebra of G-invariant sets, and they come out naturally as limits
of the above described sequences.

After we derived these ergodic theorems for Z?-stationary resp. L-stationary
random measures on R?, we show in Section 6.3 how the cumulative Palm measure

n €N,
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Figure 6.1: Left: Z¢ < R? right: L < R? where L := {(z,0) : 2 € R}

naturally arises in the limit of certain sequences of the above type under an ergodicity
assumption. FErgodicity with respect to an operating group may be defined in a
completely general framework. Consider a G-stationary random element £ in a
measurable space S, defined on an underlying probability space (€2, A, P), where the
group G acts on S in some way. As before, we may assume without loss of generality
the existence of a measurable flow ¢ indexed by GG on 2 and such that

{(fyw) = g§(w), weged.

The symbol Z denotes the o-algebra of G-invariant measurable subsets of S and we
put
I ={{{ € A} : Ae 1}

Now ¢ is called G-ergodic, if Z¢ is P-trivial, i.e.
P e A) e{0,1}, AeTl

The importance of this notion will become clear when we state the two classical
ergodic theorems announced above. B¢ denotes the Borel o-algebra in RY.

6.1 Grid-stationary random measures

We treat the case of Z?-stationary random measures first, since this is easier to
handle than the L-stationary case.

6.1.1 An ergodic theorem for lattice-actions

The aim of this subsection is to provide the necessary tool needed to derive an
ergodic theorem for Z9-stationary random measures on R?. Given a measure j on
a space S, and amap T : S — S, we call T' p-preserving, or, changing perspective,
w T-invariant, if

poT™ =p.
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We further define, given a measure space (S, S, ), the classes

Llog™ () i= { € S, [ f()logZ(1f&))alds) < o f . m >0,

where for a given function g : R — R its positive part g, is defined as =z
max{g(z),0}. Given a o-algebra J on Q, we write E/[-] := E[-|J]. The follow-
ing theorem, literally taken from [28, Theorem 10.12], has been derived by Zyg-
mund [74]. It represents a discrete multivariate ergodic theorem even for possibly
non-commuting transformations.

Theorem 6.1 (Zygmund’s multivariate ergodic theorem). Let & denote a random
element in a space S with distribution u, T1, ..., Ty be p-preserving maps on S with
invariant o-fields Ty, . .., Ty and put Jy, := € 'T,. Then for any f € Llog™™ L(y)
we have as ny,...,Ng —» 00

nl‘l S Y (T TR S BTLRT (), as.

N o<l <ny 0<kg<ng

The convergence holds in LP for a p > 1, whenever f € LP(u).

We now slightly modify this theorem such that it applies to Z%-actions. To this
end consider an operation Z? — S and denote the associated shift operators by
0.,z € Z%. We define a bor B in Z% as a set of the form

B = (—ki, k] x -+ x (—ka, ka] N Z%, k; €N,ie{1,...,d},

and note that a box of this form has 2¢-k; - .. .- kg elements. An increasing sequence
of boxes B, is a sequence of boxes where for all i € {1,...,d} we have k;(n) T oo
for n — oo. Then Zygmund’s ergodic theorem may be used to prove:

Theorem 6.2 (ergodic theorem for Z%-actions). Let & denote a Z%-stationary ran-
dom element in a space S with distribution u and B, an increasing sequence of
bozes. Then for any f € Llog® ' L(u) it holds for n — oo

1
| Bnl

S £(0:€) = E[f(O)|Zd] as.

ZeBn

where I == £, T denoting the o-algebra of Z%-invariant measurable sets in S.
The same convergence holds in LP for a p > 1 whenever f € LP(u).

Proof. Denote by e, the k-th standard unit vector in Z? and let T}, denote the shift
on S induced by e;. Note that these T} are invertible and hence 7}’ makes sense
for all n € Z. By the commutativity of Z? there are unique k;(2), ..., ky(2) for each

2 € 7% such that 0, = le 1) 5 o TC’; d(z), where 0, denotes the shift on S induced
by z € Z. Also, since the T}, commute we have, writing Z;, for the Tj-invariant
o-algebra on S and J, := ¢ 17,

E7 .. BT f(€) = E[f()|Z¢]

by [28, Corollary 10.13], since evidently N, Jr = &' M Ze = £'Z = Zz. Any
d-dimensional orthant of R? will in the following be interpreted as a product of
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length d and of the factors (—oo,0] and (0,00) exclusively to ensure that they
are disjoint. Label each of the 2? d-dimensional orthants by the unique d-tuple
(ay,...,aq), where a; € {—1,1}, lying inside of it. It remains to split each box
into the 2¢ different sections with the disjoint orthants Q1, ..., Q. In the orthant
labeled with (aq,...,as) we may apply Zygmund’s multivariate ergodic theorem to
the transformations 77", ..., T3¢ and the random element Tl(‘“H)/ ’0...0 Téadﬂ)/ ¢
which yields

R | d
B, [0 S ESOE] as ic{l..2h,

and in L” under the respective condition. Here we also used the obvious fact that
E [f (0.€) ’14 —E[f(€)T] as., zeZ°

Finally, since
|B, N Q;|/|B.| =1/2% ie{l,...,2%,

we may proceed via

1 | B, N Q] 1
B, 2 109 = - Bl Bna) ., 109

2€B,, i=1 2€BnNQ;
12

-5 Y g L, [0

z€BRNQ;

and the assertion follows. O

6.1.2 Sample intensity for grid-stationary random
measures

Classically, sample intensities of random measures have been defined for ‘completely’
stationary random measures such as random measures on groups stationary with
respect to the canonical action of the group on itself via left-translations or on ho-
mogeneous spaces. Here we show how to introduce such an object for Z%-stationary
random measures on R%. As it turns out, the relevant object will be a collection of
random variables, indexed by the collection of Z%invariant measurable subsets A
of R? that satisfy the reasonable condition that A4(A N [0,1)¢) > 0. We call such
Z%invariant sets admissible. As usual \? denotes d-dimensional Lebesgue measure
on R? and we define

- _ E[E(AN[0,1)7)|Z]

O M(AN[0,1)4)

for any admissible A. The following theorem shows that we may interpret the
quantity £4(w) as the intensity of the sample &(w) on A.

Theorem 6.3 (sample intensity for Z%-stationary random measures). Let &  de-
note a Z%-stationary random measure on RY, let A be a Z-invariant admissible
measurable subset of R and B,, a sequence of Z*-symmetric subsets of R% such that



6.1 Grid-stationary random measures 97

B, NZ% is an increasing sequence of bozes. Then, if £([0,1)? N A) € Llog® ' L(P),
we have

(AN DB,) =

)\d(AmBn)%fA, a.s.

The same convergence holds in LP for some p > 1 whenever £(AN[0,1)%) € LP.

Proof. Consider the function f: M(S) — RU {oo}, f(v) := v([0,1)? N A). Since by
Z%-invariance of A

MANB,) = |B, NZIYNAN[0,1)%),
some manipulation yields

§(ANB,) 1 1
MANB,) o MAN[0,1)4) |B, NZ4| ZEBanng((z + [0, 1)d) NnA)
1 1 B .
= XAnp ) Banz 2 S0 DTN
1 1 B
T MAN[0, 1)) [B, N Z4 > f07).

2€B,NZ4

Here we may apply Theorem 6.2 to the operation 0,1 = 6! py z € 74, and since the
associated invariant o-algebra Z clearly coincides with Z, i.e. Z; = Z¢, this yields the
respective assertions. [

Remark 6.4. We note that £4(w) is far from being a measure in A - it is not
even finitely additive. Also, the method of the above proof, namely to consider the
induced ZZ-stationary random measure n({z}) = £((z + [0,1)9) N A),z € Z¢, on
Z% raises the question if Zd-ergodicity of ¢ implies that of 1. This is true: since
n = f(&) with Z%covariant (!) f: M(S) — M(S) it follows that Z,, C Z¢ and hence
P-triviality of Z¢ implies that of Z,,.

Remark 6.5. Theorem 6.3 sheds light on the notion of G-ergodicity of a random
measure, as defined in the end of the introduction to this chapter. It says that

§<A N Bn) -
A(ANB,) 4

either a.s. or in LP under respective mild conditions on (A N [0,1)%). Now if £ is
Z%-ergodic, then this limit equals by P-triviality of Z¢

: _ Elg(AN0, 1))
A(AN[0,1)9)

4=
and is thus constant. The important message is the following intuition about G-
ergodicity. While G-stationarity enforces a spatial homogeneity of the random mea-
sure along each orbit, G-ergodicity enforces a uniformity in w € € on every single
orbit (sometimes € is in this context also called phase space with the intuition that
an ergodic process is always in the same phase or modus, while the phases of non-
ergodic processes may change). The above theorem shows that ZZ-ergodicity must
show simultaneously on every single fixed union of Z%orbits. The same intuition
will apply to ergodicity with respect to an operating linear subspace in the next
section.
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6.2 Partly stationary random measures

In this section, we consider L-stationary random measures on R, where L is a
fixed linear subspace of R% that acts on R? via translation. The induced shifts on
M(R?) and the abstract flow on Q are both (abusing notation) denoted by #. The
appropriate ergodic theorem that we will work with will be stated in the following
Subsection 6.2.1 along with some further lemmas that we will need later. We then
derive a result similar to that in Theorem 6.3 in Subsection 6.2.2.

6.2.1 Wiener’s ergodic theorem and further
preparations

For convex sets B C R? we denote by r(B) the inner radius of B, i.e. the radius of
the largest open ball contained in B. We recall the following classical spatial (also
called multivariate) ergodic theorem by Wiener [72]. A convenient reference for a
streamlined and thoroughly worked out proof is again [28, Theorem 10.14].

Theorem 6.6 (spatial ergodic theorem, Wiener). Let £ be a random element in a
measurable space S with distribution p and assume that p is R-invariant, i.e. 0-
invariant. Fix some bounded, convex measurable sets By C By C ... with r(B,) —
0o. Then for any f € S,

SB[ OOX () S EIFQIT] e

If f € LP(u) for some p > 1 then the same convergence holds in LP(u).

Nguyen and Zessin [57] proved the following result on sample intensities of com-

pletely stationary random measures in R%. It may be derived as a consequence of
Theorem 6.6, cf. [28, Corollary 10.19].

Theorem 6.7 (completely stationary case, Nguyen, Zessin). Let & be a stationary
random measure on R? and fix some bounded convex sets By C By C ... with
r(B,) — 0o. Then
(Bn)
A(Bn)

where for some fized C € B¢ with 0 < \(C) < oo

— & as.

_ E[E(0)|Zd
X(C)

The same convergence also holds in LP for some p > 1 whenever £([0,1]¢) € LP.

This also implies that € is well-defined indeed, i.e. does not depend on C' a.s. since
the approximating sequence is independent of C'. We shall also need the following
result on convex sets, taken from [28, Lemma 10.15 (ii)] (but stated there without
proof, which is why we provide one here). For a set K C R? and ¢ > 0 let 9.K
denote the e-neighborhood of 0K, and B¢ the open unit ball in R¢.
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Lemma 6.8 (convex sets). If B C R is convex and bounded with r(B) > 0, then

for any e >0
d
M\ (0.B) <2 ((1 + T(B)> - 1) \(B).

Proof. Fix a convex set B and € > 0 and put 0 B := 0.BN B¢ and d. B := J.BNB.
Then 0.B = 0B U J. B and since B is convex we have

OfB = (B+¢B)\ B.

It is enough to show that

A(9EB) < ((1 + T(;)y - 1) A(B).

The assertion for 9F B may be seen as follows. Take an open ball contained in B
with center x and radius p. Then since z + pB¢ C B it follows that e B C %(B — ).
Thus

M (0FB) = \(B +eB%) — \(B) < X\ <B + ;(B - x)) —\(B)

Y ((1 + ;) B- ;x> —A(B) = (1 + Z)d)\d(B) — X(B)

and we are done. The respective assertion for 0 B then follows from the inequality
M(07B) < M0 B). (6.1)
To prove (6.1), take a 1-Lipschitz measurable map
F:07B—R?

with the property that - B C F(9F B). The existence of such a map will be insured
by the next Lemma 6.9. Since 1-Lipschitz maps cannot increase Lebesgue measure
(which is most easily seen by invoking the well-known equality of Lebesgue measure
with d-dimensional Hausdorff measure up to constant, the advantage being here that
the latter is defined in terms of diameters where the 1-Lipschitz property may be
applied directly) we have

A(0F B) > M(F (0 B)) > X(07 B),
and we are done. O

In the above proof we used the following lemma. The metric projection p(A,x)
of a point x € R? on a closed convex subset A of R? is defined as the unique closest
point in A to x.
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Lemma 6.9 (existence of 1-Lipschitz map with out-in-property). Given a convex
set B and € > 0 the map

F:0/B—RY zw2+2pB,x)—1)=2p(B,z) -,

where p(B, x) denotes the metric projection of x € R on the closure of B, satisfies
- B C F(9! B)
and s 1-Lipschitz.

Proof. To prove the inclusion take z € 0 B = 0.B N B. Let I(z) denote the open
ball with center x and radius d(z,0B) < €. Choose any y € 0B N dI(x) and put
z:=2y—x. Then z =y + (y —x) € 07 B since y € OB, ||y — z|| < e and z € B¢

since B is convex. Clearly p(B, z) = y and hence
F(2)=2p(B,2) — 2z =2y — 2z = .

To prove the 1-Lipschitz continuity fix z,y € R?. Then since the metric projection
onto convex sets itself has this property (cf. [62, Theorem 1.2.2]) we have

lp(B,z) — p(B,y)]] < [|lz —yll.

We put a :=y — p(B,y), b := x — p(B,z) and ¢ := p(B,y) — p(B,z). Then by a
simple geometric consideration involving the two hyperplanes with common normal
vector p(B,x) — p(B,y) through p(B,z) resp. p(B,y) and the above inequality we
find that

(a,c) >0 and (b,c) <O0. (6.2)
Then since

|1F(z) = F)II* = lly — =+ 2(p(B,2) — p(B,y))|* = |la = b — ¢||?
={a—b+c—2c,a—b+c—2c)
={(a—b+c,a—b+c)—4(a—b+ecc)+4?

=le—ylP+4(|lcl> = (a—b+c.c))

it remains to show that ||c[|*> < (a —b+¢,c). But this means nothing but 0 <
(a — b, c) which holds by (6.2). O

Lemma 6.8 leads to the following lemma on special sequences of L-symmetric
convex sets. For any convex set B and a > 0 define B™(a) := B + aB? and
B~ (a) := (B¢ + aB%)".

Lemma 6.10 (vanishing thickening/thinning in the limit). Let By C By C ... de-
note a nested sequence of convex L-symmetric and L*-invariant subsets of R® with

d(By) — 0o. Then for any fized a > 0

0(By (a))

5(By) —1, n— oo
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Proof. Fix a > 0 and let B denote an arbitrary bounded convex set first. Then on
one side

M(B) = X(0.B) _ X(B) = AX"(0;B) _ X(B\9;B) _ X(B~(a)) <1

M (B) - \(B) N \(B) M (B)
and on the other

M(B*(a)) _ A(BU,B) _ A(B)+ \8,B)
'STNam) ST NB) S MB)

Hence Lemma 6.8 yields that for fixed a > 0

M(B*(a))

Ni(B) —1, r(B)— . (6.3)

If B is in addition L-symmetric and L‘-invariant then it is easy to see that BT is
again L-symmetric and since

§(B*) = A\(L N BY)
we may apply the convergence in (6.3) to the space L which yields the lemma. [

We shall also need the following monotonicity properties of convolutions with
respect to thinning and thickening. We recall here that given two functions f, g :
R? — [0, 00|, their convolution is defined as a new function from R? to [0, oo] via

(f * g)(s /fs—t (H)A4(dt) = /f )g(s — )A(dE), s € RY.

Lemma 6.11 (thickening and thinning in convolutions). For  any  measurable
C,D C R* with C C aB? for some a > 0, we have

10*1[) <)\ (C)lD S ]-C*]-D+(a)- (64)

Proof. First, we prove the left inequality. For all z € R?
1o+ 1p / 16(5)1p- (@) (z — 5)\4(ds) < / 1o(5)M(ds) = A(C).

Further, 1f x ¢ D, ie. if z € D¢, then C C 2z — (D°+ aB?) = (z — D7)¢ and hence
CNn(x—D7) = (D. This implies

1o+ 1p( / 16(5) Ly p-()(s)A%(ds) = 0.

To prove the right inequality take x € D. Then C C aB? C x — (D + aB?) =
x — D% (a) and

1o # 1p g /1C Lo (o (5)A(ds) = /1C(S)Ad(ds) _ (),

The case x € D is trivial. O
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In addition, we note the following exchangeability property involving convolu-
tions of subsets of R? with symmetry properties (also see Figure 6.2 for a ‘proof by
a picture’ in dimension 2).

Lemma 6.12 (exchangeability property). Let A C R? be L-invariant and B,C C
R? both L-symmetric and L*-invariant. Then

1AﬂB*1C:1B*1AﬁC- (65)

Proof. The orbital decomposition of A% for O = L+ yields for fixed z € R?
Lanp # 10(2) = [ Lans(s)1e(e = )A(ds) = [[ Lans(s)1o(e = s)m(ds)X" (@)
= [[1a(g+ D) 1n(g + b)1o(w — g — b)Ar(dg) A" (db).
Since A is L-invariant and both B and C' are O = L*-invariant, we have
Lins * 1o(@) = [[ 1a®)1a(9)Le( — g)Au(dg)X" ().

Now there are unique z; € L and 2+ € L+ such that z = 2 + 2. Hence, again by
L*-invariance of C

Lang * Lo(z / 1a(b / 15(9)1e(zr — g)As(dg) N (db) / 1a(b)(1p 1 1o)(zp) N (db),

where %, denotes convolution in L. By the commutativity property of a convolution,
the right-hand side is invariant with respect to interchanging B and C'. Hence this

must also be true for the left-hand side, which gives the assertion. O
B C
NC|
A ANB \
O
t / t
—(ANB)

—{And)

Figure 6.2: A geometric proof of 1405 * 1¢ = 1 * 14n¢ in dimension 2.
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6.2.2 Sample intensity

In the following, we will extend Theorem 6.7 to the case of L-stationary random
measures on RY, where L is a k-dimensional subspace of R?. Let \; denote Haar
measure on L, normalized such that a k-dimensional unit cube has measure 1, i.e.
k-dimensional Lebesgue measure on L. We shall interpret this measure as a measure
on all of R? by putting A, (R¢\ L) := 0. As a measurable system of representatives of
the orbits, we choose O := L+, the advantage being here that O = L+ C R? is also
a group that acts on R? in the natural way. As usual, if v is a o-finite L-invariant
measure on RY, v* denotes the unique measure concentrated on O = L+ satisfying

/f(l‘)V(dfr) = //f(x)ub(dx)u*(db), feB.

For fixed b € O = L+, the measure y, = Ay o7, * is k-dimensional Hausdorff measure
on the affine k-flat L + b. Further, for any measure 4 on R? and U € B? we write

po = p(UN-)

for the restriction of u to the set U. Analogously to the Z?-stationary case we now
define the sample intensity of ¢ on admissible L-invariant subsets A of R?. Here
admissible means that there is an L-symmetric and L*-invariant set B such that
AN B is bounded and A\4(A N B) > 0. In this case, changing perspective, we say
that B is A-regular and we may define

5 ooy . EE(AN B)[Ze)(w)
) =—"Saanp
The following announced generalization of Theorem 6.7 shows that this quantity

does not depend on the choice of B, which justifies as in the Z?stationary case our
notation. We denote by B(0, a) the open ball around the origin with radius a > 0.

weNAeT.

Theorem 6.13 (sample intensity). Let L denote a fized k-dimensional linear sub-
space of R%, where 1 < k < d. Let further & denote an L-stationary random measure

on R?, A C RY an admissible L-invariant set and By C By C ... a nested sequence
of convex L-symmetric and L*-invariant sets in R® with §(B,) — co. Then
E(ANBy,) —
— — .S.
N(ANB,) M

The same convergence also holds in LP for given p > 1 whenever (AN B) € L* for
at least one A-reqular set B.

Proof. We modify the proof given by Kallenberg in [28, Corollary 10.19]. Let B
denote a fixed A-regular subset of R%. Fix a > 0 such that AN B C B(0,a) and for
any C C R? put C* := C + B(0,a) and C~ := (C°+ B(0,a))¢. Then by (6.4)

1AQB*]'B; S)\d<AmB)an§1AﬂB*1B;7 n € N.
and hence (recall that £4 := £(AN)), it follows that

MANB;) éa(lanp * 15-) Ea(Bn)  _ MANBY) &a(lanp * 1)
MANB,) MANB;) AMANB,) ~ MANB,) MNANB;)
(6.6)

< AMANDB)
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Here, using (2.13) and Lemma 6.10

MANBE)  6(BY)
)\d(AﬂBn)_(S(Bn)_)l’ n — 00. (6.7)

Fubini’s Theorem implies for any C, D € B¢
[ 660 @Ns) = [[ et = (N d)Eadn) = allo v 1), (68)
By (6.5), (2.13) and (6.8)

§alanp*1ps)  Ea(lp*1,.pe) 1
MANBE) — MANBE)  M(A)(BE)

—1

J e 0 EDBNs). (69

Here, using the orbital decomposition \(ds) = p,(ds)A*(db), we obtain

[ 07 (BINEs) = [[ 1s € A0 BEHO € (B)n(ds)X ()

ANBZ

= [[Hg+be A g+be BEE 0, ) (B)AL(dg)X" (db)
— [[1{b e A.g € BENO, ) (B)AL(dg)N" (D),

where we used L-invariance of A and L*-invariance of B,, and B. Hence

(07 (BINEs) = 2(4) [ 1g € BEVO, € (B)Au(dg)

From (6.9) we conclude

§a(lanp * 15+) 1 . B 1 »
NN T 5B Jup O O = 5y e, O (BN ()

1

- A(BFN L) /Bf—{mL(eg_lg)(A N B)e(dg)

1
= )\L(BiﬂL)/BimL F(0,76)AL(dg),

where we have put f(u) := u(A N B). Here, we may apply the spatial ergodic
Theorem 6.6 to the flow 8, := 6!,z € Z%, by replacing R? by the k-dimensional
space L and to the above function f, since either of the sequences (BE N L) consists
of bounded, convex subsets of L with the property that r.,(BENL) — oo, rr,(BENL)
denoting the radius of the largest k-dimensional ball contained in BN L. This gives

Ea(Lanp * 15+)
AMAN BE)
In addition, Theorem 6.6 also yields convergence in L? whenever f(§) = £(ANB) €
LP. The inequalities in (6.6) yield together with (6.7) and (6.10) that
§ANB,) | EANBIL] _,
ANANB,) AANB) A

— E[((ANB)|Z], n—o0 a.s. (6.10)

n — oo,

in the respective sense under the corresponding condition. Since the approximating
sequence is independent of B, this also holds for the limit. 0
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6.3 Ergodicity and Cumulative Palm
measure

The aim of this section is to show that the Cumulative Palm measure naturally
arises in the limit of spatial averaging procedures under ergodicity assumptions. To
accomplish that we shall use our two ergodic Theorems 6.3 and 6.13. We shall treat
the case Z? — R? in Subsection 6.3.1 and the case L — R? in Subsection 6.3.2.

6.3.1 The grid-stationary case

For the action of Z¢ on R% we naturally choose the system of orbit representatives
O = [0,1) such that B(x) denotes the fractional part of z € R%. We note that the
inversion kernel k (see Theorem 3.1) of this action is given by

d
Kf(a)a = Oo-pa), & € R

We note that any measurable function h : Q x RY — [0, 00) satisfies condition (3.16)
in this setting, since

/ 1(0, 'w, B(2))Ks(0),0(dg) = B0, 50w, B(x)) < 00, € R%w e Q.

Thus, given a Z?-stationary random measure 1 in R? we may form the h-transform
¢ of n defined as in (3.17) via

§w,)i= [[ 1o € (6, w0, B(2)) raa(dg)n(de)

and note that & reduces to

§w.) = [ Ua € Jh0;2 0. B@)n(da)
Applying Theorem 6.2 to this h-transform yields the following result.

Corollary 6.14. (h-transform convergence for Z?) Let n denote a Z‘-stationary
random measure in R, A a Z%-invariant measurable subset of R? and B,, a sequence
of Z4-symmetric subsets of R such that B, NZ% is an increasing sequence of boxes.
Then, for any measurable h : Q x RY — [0, 00) satisfying

! d—1
/[0,1)dm,4 h(ex—ﬁ(x)’ B(x))n(dx) € Llog® " L(PP)

its holds that a.s.

1 » 1 o
SCAET oo, MO0 SOI)  Srrn | [ O S

for a o-algebra T C T, = {n"'A: A € M(RY)}.

:

Proof. We may apply Theorem 6.3 to the Z?-stationary (see Lemma 3.18) random
measure

§0) = [ 1z € Hh(6; ), Bla) ().
Then it remains to note that Z := 1; is contained in Z,, by Lemma 3.18. U
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This leads to the following ergodic theorem exhibiting integrals with respect to
the Cumulative Palm measure of a Z9-stationary and Z%-ergodic random measure
n in R? as a.s. limits of spatial integrals with respect to 1 over Z?-symmetrically
increasing domains.

Theorem 6.15 (cumulative Palm measure and Z-ergodicity). Let n denote a Z°-
stationary and Z%-ergodic random measure in R?. Then for a set A and a sequence
(By) as in Theorem 6.3 and any measurable h : Q x S — [0,00) as in Corollary
6.1/ it holds that

5(23”) [ PO s Bm(dr) = [ B HLAGQ (A1) as

where 3 and the cumulative Palm measure Q" are both with respect to O = [0,1).

Proof. By the above Corollary 6.14 and (2.13) it holds a.s.

1 [fAm 0.1y2 (0 75(@)77(6&5)‘1-}
A (A)d(B,) /AmB PO, gty Bl de) — M(AN o,1)d)

and since 7 is ergodic, this random limit equals a.s.

1 1
S B Ly MO0y B (a)]

By Lemma 4.13 and the calculation in Example 4.14 we may write this as

Ad(/m RN /hwbl{beA}@( (w,b)),

which yields the assertion after multiplying with A\*(A) = A4(A N[0, 1)4). O

6.3.2 The subspace-stationary case

To emphasize the analogy with the results in the previous section, we decided to
formulate all results and proofs in this subsection in a copy-paste manner. We
consider now the action of a k-dimensional subspace L of R? (0 < k < d) on R? via
translation, and write in short L < RY for this operation. Note that the inversion
kernel x of this operation with respect to any chosen system of orbital representatives
is nothing but
Kp(e)a = Oa-p@), = ERC

Any measurable function h : Q@ xR? — [0, co) satisfies condition (3.16) in this setting
as

/ h(0 'w, B(2)) Rpwya(dg) = M7 yw, B(z) < 00, = €R4w e Q.

Thus, given an L-stationary random measure 1 in R?, we may h-transform 7 into
the L-stationary random measure ¢ defined as in (3.17) via

= [ Uz € CYR(O;", B (dgIn(de),
which reduces to
§C) = [ 1z € CYu(0;2 ), Bla)n(d).

Using this transformation we derive:
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Corollary 6.16. (h-transform convergence for linear subspaces) Consider an L-
stationary random measure n in R:. Then if A C R? is L-invariant and admissible
and B; C By C ... is a nested sequence of convexr L-symmetric and L*-invariant
sets in R? with §(B,) — oo, then for any measurable h : Q x S — [0,00) it holds
a.s.

1 _1 1
MNAN B,) /AmBn Moy Pr())ndr) = e

T

E|[ bl pes()n(de)

for a o-algebra T C T, = {n~'A: A € MR}, where p(x) and p.(x) denote the
orthogonal projections of x on L and L+ respectively.

Proof. We may apply Theorem 6.13 to the L-stationary (see Lemma 3.18) random
measure

&) = [ Ha € Jh0;2 ), Ba)n(da).

Then it remains to note that Z := I is contained in Z, by Lemma 3.18 and that
x— fB(x) = pr(z),r € RY, and f(z) = pp1(z), x € R O

This leads to the following ergodic theorem exhibiting integrals with respect to
the Cumulative Palm measure of an L-stationary ergodic random measure 7 in R?
as a.s. limits of spatial integrals with respect to n over L-symmetrically increasing
domains:

Theorem 6.17 (cumulative Palm measure and subspace-ergodicity). Let n denote
an L-stationary random measure on R? which is ergodic. Then for a set A and a
sequence (By,) as in Theorem 6.13 and any measurable h : Q x S — [0, 00)

5(1;) /Aan BB, o (@)n(dz) > [ h(w,b)1{b € A}Q(d(w,B) a5,

where pr(x) and py.(x) denote the orthogonal projections of x on L and L* respec-
tively.

Proof. By the above Corollary 6.16 and (2.13) we have

1 1 ~
—_ h(g! dr) — —————E {/ h(6! dx)|Z
a.s. and since 7 is ergodic this random limit equals a.s.

E

S Loy MO0 B ()

By Lemma 4.13 and the calculation in Example 4.14 we may write this as

1
A(4)

/ h(w, b)1{b € AYQ(d(w, b)),

which yields the assertion after multiplying with \*(A). O






Chapter 7

On some new models in Stochastic
Geometry

In this chapter we give several applications of the results obtained in Chapters
4, 5 and 6. It should be mentioned at this point that the use of Palm methods
in Stochastic Geometry began with the seminal paper [47] by Joseph Mecke, while
Meijering [49] seems to be the first who investigated a random geometric model under
ergodicity assumptions. He was then followed by others such as Ambartzumian [3, 4],
Miles [50, 51] and Cowan [12, 13]. The mass-transport principle in the form of
Theorem 5.6 has certainly been implicitly used in the transitive unimodular special
case whenever Neveu’s exchange formula was used, but even in this special case the
intuition of transporting mass seems to be new until recently [39]. Also it seems like
it has never been used in its integrated form derived here in Theorems 5.2 and 5.5.

Section 7.1 is on random tessellations, where the central result is Theorem 7.8. It
gives a structurally quite explicit expression for the quasi-distribution of the typical
cell of a Cox-Delaunay mosaic, seen from the center of the unique ball in which all
its vertices are contained. Then, we use the Palm MTP (Theorem 5.6) to identify
suitably defined 0-cells of random partitions on Riemannian manifolds as volume-
weighted versions of suitably defined typical cells in Section 7.2. The use of the inte-
grated version of the MTP (Theorem 5.5) is then illustrated in Section 7.3 where we
give two applications. One is on approximation of Borel sets with random partitions
and the other on the intensity measure of the restriction of k-dimensional Hausdorff
measure to the k-skeleton of a random tessellation. Finally, in the last Section 7.4
of this thesis, we quickly illustrate the use of our results on group ergodic random
measures in Chapter 6 by giving applications.

7.1 Random tessellations

After introducing the relevant object of this section in Subsection 7.1.1, we proceed in
Subsection 7.1.2 with an investigation of several cumulative Palm measures derived
from an arbitrary random tessellation. In Subsection 7.1.3 we consider a simple Cox
process £ in RY that is stationary with respect to a subgroup G of the group of
rigid motions Gy4. This includes e.g. the cases G = SO(d) or G = L where L is a
k-dimensional linear subspace of R where 0 < k < d. Note that here k = d is the
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completely stationary case while u = 0 is the completely non-stationary case. This
Cox process induces a (random) Delaunay tessellation and we shall give an explicit
formula for the distribution of the typical cell of such a Cox-Delaunay tessellation
under all cells lying in a fixed invariant class. Examples of these invariant classes
include the following three: Fixing a G-invariant set A C R? the set of all cells
contained in A does not change under shifts induces by G, just as the set of all
cells having a center in A, or all cells hitting A. These results are the content of
Subsection 7.1.4.

7.1.1 Tessellations

A tessellation or mosaic in R? (cf. [64, Section 10.1]) is a countable system m of
subsets satisfying the conditions

(i) m is a with respect to the Fell topology (see [64, Definition 2.1.1]) locally finite
system of non-empty closed sets.

(ii) The sets K € m are compact, convex and have interior points.

(iii) |J K =R~

Kem
(iv) If K, K’ € m with K # K’, then int K NintK’ = ().

The elements of such a mosaic are also called cells (of m) and they are convex
polytopes ([64, Lemma 10.1.1]). A face of a convex polytope P is the intersection
of P with any of its supporting hyperplanes, and if this intersection is of dimension
k, the face is called k-face. The cells themselves are consistently also called d-faces.
O-faces are also called wertices (identifying {x} with x), 1-faces are the edges while
d — 1-faces are called facets of P. Given a mosaic m and a polytope P € m, we
denote by Fi(P) the set of all k-faces of P and by Fj(m) we denote Upem Fr(P). It
is convenient to write F(P) = Up<p<q Fr(P) and similarly F(m) = Up<p<qg Fr(m).
We call a mosaic m face-to-face if

PNP e (F(P)NnFP))u{d}, P P e€m.

Both the set M of all mosaics and the set M* of all face-to-face mosaics are Borel
subsets in the space of all closed subsets of the space of all closed non-empty subsets
of R? (each time considering the Fell topology), see [64, Lemma 10.1.2]. A particle
process in R? is a point process in the space of all non-empty compact subsets
of R?, where this space is endowed with the trace topology resp. o-field from the
surrounding space of all closed subsets of R%. A random mosaic in RY is now a
particle process X in R? satisfying P(X € M*) = 1. Thus, random mosaics are per
definition a.s. face-to-face.

Given a compact subset C' in RY, we may assign a center to it in a G4-covariant
manner in several ways, where G; denotes the group of rigid motions in R?. E.g. we
may assign to C' the center of the uniquely determined circumball of C' (the smallest
ball containing C'). We may even allow for additional randomness and consider
generalized center functions m: ) x C' — RY satisfying

(0w, p(C)) = p(n(w,C)), Celp€ Gywe.
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Now, given a random mosaic X in R? we may consider for any 0 < k < d the
point process

Ni(w,") = > brwr (), weQ, (7.1)

FeFip(X(w))

of the centers of the k-faces and assume that 7 is such that N} is a.s. simple for each
0 < k < d. In addition, we define the random measure

Mp(w,") == Y HNMFN), weq, (7.2)
FEF(X(w))

where H* denotes the k-dimensional Hausdorff measure in R?. Further, if ¢ is a
point in the relative interior of a k-face F' € Fj(X(w)) in configuration w € Q, we
write 7 (w, t) := m(w, F).

7.1.2 Derived cumulative Palm measures

Given a G-stationary random tessellation X on R¢, where G is some closed unimod-
ular subgroup of the group of rigid motions Gy of R, we will compare the cumulative
Palm measures of My and N, with respect to some fixed measurable system O of
orbit representatives in this subsection. The relation is well-known for completely
stationary random mosaics, see e.g. [5].

Lemma 7.1. (cumulative Palm measures of M, and N) Let X denote a G-
stationary random tessellation of R, where G denotes some closed unimodular sub-
group of Gy. Let further Ny and My, be defined as in (7.1) and (7.2) respectively.
Then the cumulative Palm measures Q™k and QMk with respect to an arbitrary mea-
surable system O of orbit representatives satisfy

[ 1(w,6) € FHH(Cleo, 1)@ (w0, b)) (7.3)
= [ 10 0. Bt .8))) € Frisiny o me o) (d9)Q (e, ),

and

1

S 1165 e Bl 0) € Vst mton ()@ ()

= [ 1{(w.b) € JQ(dlw,b). (7.4

Proof. We notice that

//1{(3,75) € J1{t € C*(w, s)}H"(dt) Ny (ds)
— //1{(7rk(t),t) € J1{t € C*(w, s)}H"(dt) Ny (ds)
- /1{(7rk(t),t) € -} M (dt)
- / / 1{(5,1) € }6, () (ds) M (dt).
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Thus we may put in the Palm MTP (Theorem 5.6) £ = Ny, n = My, y(w,s,:) =
H*(Cr(w,s)N-) and 6(w,t,+) = r, (W (+), and receive

//m(w,b, 11{t € Cilw, b)}H" (d) QY (d(w, b)) = /m(w,wk(w,b), b)YQM* (d(w, b)),

for any jointly G-invariant measurable m : Q x R x R? — [0,00). Choosing here
the jointly G-invariant

m(w, s,t) = /1{(0g_lw,g_ls) € Y s(dg), weQs,teR
yields

][ 146;%0.6) € YHHCuleo, b)) (dg) @ (dw, )
= [ 140, 0, Blma(w, 1)) € iptm o meton (d9) QM (A, ).
Since
H (Crlw, b)) = H" (g7 ' Crl(w, b)) = H"(Cr(0,'w, b)), g€ Gup,b€O,weQ,

the left-hand side reduces by (4.3) to the left-hand side of (7.3)

/1{(w,b) € YH*(Cr(w, b))Q™ (d(w, b)).

Equation (7.4) follows from the same arguments when using instead

(e s.) = L O ) > O s [ 10;0.07'5) € Hrs(da).

where w € Q, s,t € R? (with the usual convention 0 - oo = 0). O

Until the end of this subsection, X denotes a Z9-stationary tessellation. We may
define for any fixed Z-invariant set A with (EN;)*(A) < oo for each i € {0,1,...,d}
the i-cell density on A as

+O(A) := (EN))*(4), i€{0,1,...,d).

We note that, introducing a G-symmetric set B of width §(B) = 1, we may write
by (2.12) ‘
YI(A) =EN;(AnB), ic{0,1,...,d}.

We call
7@ = 4O (R (7.5)

simply the i-cell density of X, and define similarly as in Definition 4.23 the proba-
bility measures

PYi() i = —QNi(:), i€{0,...,d}.
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We further define
Ny = //I{Ci(w,b) C Ci(w, )N (w, d)PY (d(w,b)), i<j,  (7.6)
and
Ry = //1{cj(w,t) C Cylw, b)IN, (w, dt)PY (d(w, b)), >4,  (7.7)

and interpret n;; as the mean number of j-faces containing the typical i-face for
i < j, while for ¢ > j the quantity n;; may be interpreted as the mean number of
j-faces contained in the typical i-face.

The following result about Z9-stationary tessellations X stems from a similar
balancing procedure, using N; and N; for (different) i,j € {0,1,...,d} instead of
balancing Ny and M. It extends aspects of [5, Proposition 2.2] and [42, Theorem
1] to a partially stationary setting.

Lemma 7.2 (mean relations for numbers of i-faces). Let X denote a Z-stationary
random tessellation of RY. Further assume that all v defined in (7.5) are finite,
just as the n;; defined as in (7.6) and (7.7) for fized i,j € {0,1,...,d}. Then

with respect to some fixed measurable system O of orbit representatives.

Proof. By symmetry we may assume without loss of generality that ¢« < j. The
assertion clearly reduces to

[ 1Cuw,b) <Cjle, N (w, dQY (d(w, )
= [[UCi(w.5) € Ci{w, D)}INi(w, ds)Q¥ (d(w, b)),

which is just the Palm MTP 5.6 when using m(w, s,t) = 1{C;(w,s) C Cj(w,t)},
fZN“’}/:N],T]:N]anddle [

In the above proof, intuitively each i-face sends mass 1 to its adjacent j-faces.
The idea in the following result is that each i-face transports its internal angle to
the d-faces in which it is contained. Here, given a polytope P and a face F' of this
polytope, the internal angle of P at F' is defined by

B(F, p) = 2(ConelP, 1) 0 B)

Rdq

where Cone(P, F') is the cone spanned by P at an arbitrary relatively interior point
z of F'. More precisely,

Cone(P, F) ={a(x —2) :x € P,a > 0}.

The following result extends [64, Theorem 10.1.3].



114 Chapter 7: On some new models in Stochastic Geometry

Lemma 7.3 (transporting internal angles). Let X denote a Z4-stationary random
mosaic on R and let g : C' — [0, 00) be Z%-invariant and measurable. Then for any

j€{0,...,d}

19 [ g(Cileo )PV (b)) =@ [ S B(EP)g(F)BY(d(w,b).

FG]'— (C’d(w b

In particular

40) = (@ / S B(F, P)PNY(d(w,b)),

FeF;(Ca(w,b))

and in addition

> (=) =0. (7.9)

Proof. The first equation again follows from the Palm MTP Theorem 5.6, using
E=N,;,vy=Ng,n= Ny, d =N, and

m(w, s, t) = 1{Ci(w, s) C Cy(w,t)}B(Ci(w, s), Ca(w,1))g(C;(w, s)).

The second equation is the special case g = 1, and the last follows from alternatingly
summing up the second equation for j = 0, ..., d and then using Fubini and Gram’s
relation (see [23])

d
(=1 > B(F.P)=0,
=0 FeFi(P)

which holds for any d-dimensional polytope. 0]

Remark 7.4. Equation (7.9) is an Euler type relation for Z4-stationary random
mosaics in R?. In d = 2, we obtain together with (7.8) for (i,5) = (0,2) and
(1,7) = (1,2), the system of linear equations (using nis = 2 and ng; = ng)

(0) (2)

Y Mo2 = YN0
Y02 = 1Py
7O — AW 4 A2 = .
It readily implies
2n02

For a Z2-stationary normal tessellation in R? (where normal means that each vertex
is contained in 3 cells and each edge is contained in 2 cells) we have ngy = 3 and the
result then implies

Nog = 6.

A concrete example is a Zd-stationary Poisson process whose intensity measure is
absolutely continuous with respect to Lebesgue measure.



7.1 Random tessellations 115

7.1.3 Voronoi and Delaunay tessellations

Any locally finite set A C R induces a Voronoi tessellation (or Voronoi mosaic) of
R? defined as the collection of Voronoi cells

C(As):={zeR: ||z —s||<||lz—y|l,y € A}, s€A,

and we put C(A,s) := () if s ¢ A. It is known that if convA = R? (‘conv’ denoting
the convex hull operator) then all Voronoi cells are bounded (the converse fails in
general), see [64, p. 471]. Further, it is known that if all Voronoi cells induced by
a locally finite, non-empty set A are bounded, then the Voronoi tessellation is a
face-to-face mosaic (see Subsection 7.3.2 for definitions and [64, Theorem 10.2.1] for
a proof of this assertion). In addition, if the points of A are in general position, i.e.
no (d+1) of them lie in a d — 1-dimensional affine subspace of R¢, and if any d+ 2 of
them are not located on a sphere, then the Voronoi mosaic is normal. Here, a face-
to-face mosaic is called normal if each of its k-faces is contained in the boundary of
precisely d — k+ 1 cells. If the generating set A is random, e.g. given by the support
of a simple point process &, the induced tessellation is random, too. Random (or
non-random) Voronoi tessellations are of considerable interest both in theory and
application. It is clear that they may be constructed in more general metric spaces.
Comprehensive and detailed overviews on this subject are given in [58, 66, 64, 54].
Earlier contributions in this field are [52, 53, 48] while [55] and [27] ([27] considers
instead of R? the 3-dimensional hyperbolic space) are more recent papers.

If m denotes the Voronoi mosaic generated by some locally finite subset A of R,
then we define for s € Fy(m)

D(s,A) :=conv{z € A:s € Fy(C(A,x))}.

The collection of all these sets, where s ranges over the vertices of m, is called the
Delaunay mosaic generated by A. Again, this mosaic is face-to-face if convA = R?
(see [64, Theorem 10.2.6]). Also, if the points of A are in general position and if
any d + 2 of them are not located on a sphere, then it is simplicial in the sense that
every cell of it has d 4+ 1 vertices (and is thus a d-simplex).

We want to consider random Delaunay mosaics, where the generating set A is
the support of a simple Cox process £. Such random mosaics will be called Cox-
Delaunay mosaics. We need to put a few regularity conditions on the Cox process
¢, namely we shall assume that

(i) € is a.s. simple (which is the case if and only if 7 is a.s. diffuse, as is easy to
see),

(i) convé = R? a.s. (where we identify as usual ¢ with its support),
(iii) the points of £ are a.s. in general position,
(iv) no d + 2 of the points of £ lie on a sphere.

We call a Cox process £ on R? regular, if it satisfies (i)-(iv). These assumptions are
not too restrictive and allow many interesting cases. For instance, any Cox process
¢ driven by a random measure 7 of the form

n(w,”) = /1{5 € Yf(w, s)\U(ds), weQ,
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where f : Q x R? — [c,00) (for some ¢ > 0) is measurable and such that f(w, ) is
continuous for P-a.e. w, is regular. Another regular example is a Cox process driven
by the random measure M;, (for any 0 < k < d) based on any random tessellation
X of R%.

From what has been said, it follows that the Delaunay mosaic X based on a
regular Cox process £ is a random (face-to-face) mosaic, which is a.s. simplicial.

7.1.4 Typical cells of Cox-Delaunay tessellations

Let L denote a fixed k-dimensional linear subspace of R? where 1 < k < d and let &
be a regular Cox process in R? driven by an L-stationary random measure 7 (note
that the completely stationary case k = d is included). X will denote the random
Cox-Delaunay mosaic induced by &. Let A denote the space of all d-dimensional
simplices in R?, endowed with the trace topology and o-algebra inherited from
the space of all closed subsets of R%. We may choose an arbitrary L-covariant
deterministic (!) measurable center function z : A — R? which we assume to be
a function of the d+1 vertices, such that we may write z(K) = z(xy, ..., zq) = 2(z),
putting x = (o, ..., xs). Examples are the center of the unique circumball of a cell
and the center of the unique ball having all the d + 1 vertices of the simplex in
its boundary. Following [64, p. 495] we write for K € A@ its vertices zy =
zo(K),...,xq = x4(K) in lexicographic order and as such as measurable functions
of K. Given such vertices g, ..., x4 we write B%(xy,...,xz4) for the unique open
ball having these vertices in its boundary. It is not difficult to show that the point
process of centers

= > 0.k (7.10)
KeX
is a.s. simple. Given in configuration w a center s € ((w), it is for a.e. configuration
w the center of a unique cell for which we write C(w,s). If s € ((w), we put
Clw,s) = 0.
As the Cox-Delaunay mosaic X is a deterministic function of £, whose distribu-
tion in turn is fully determined by 7, the distributions of all objects derived from &
must also depend on 7 alone. In particular, this must be true for the expression

@é(c(eeab) € ')7
where b : O — O is the identity on O := L*.

Lemma 7.5 (Cox-Delaunay cells). Let L denote a k-dimensional linear subspace
of R* (1 < k < d) and consider its canonical action L — R¢ wvia translation.
Given a Coz-Delaunay mosaic in R? induced by a reqular Cox process driven by an
L-stationary random measure n, we have with the above notations

Q4((C(6.,b),b) € -) = d+1 E/l{ convizo, . .., xa} — 2(2) + B(z(2)), B(2(z))) € -}
X 15 (o(a))e B 0y ),

where Q¢ is the cumulative Palm measure of the center process ( with respect to
O = L* and B is any L-symmetric set with §(B) = 1.
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Proof. Choosing w = 1 in (4.4) yields

Q((C(6.,b).b) € ) = E [[ 1{(g7C(00, 5). 5(5)) € -}rinioo(dg) 1n(s)C(ds),

where we also used L-covariance of C'. Let ¢ denote the regular Cox process driven
by 1. AS Kg(s)s = 0s—p(s), s € R?, the right-hand side equals

1
(d+ 1)

E > 1{(conv{zy,..., x4} — z(x) + B(z(x)), B(z(z)) € -}

(33 :::: CEd)€§(d+1)

x 1(2(2))1{&(B%(x, ..., xq)) = 0},

and using the multivariate Cox formula (4.15), this may be written as

(dil)!E /1{(Conv{$o, o xat — 2(x) + B(2(2)), B(2(x))) € - F1p(2(x))
X 1{§(Bd(x0’ cee 7xd)) = O}Ud+1(d$),

<§ +3 5) (BY(xo,.., 7)) = & (B(xo,..., 74))

(B4(xq,...,24) is open and thus disjoint with its boundary). Here we may use
Lemma 2.23 to write this as

T Mo, = (o) + B(e(). A(0) € H(a(a)
% [ Uu(B o, .. 2a)) = OFP(E € dul)™ (do),

which is the assertion since P(¢ € -|n) is a.s. the law of a Poisson process with
intensity measure 7. 0

Working in R? has the advantage that we may use the group structure of O = L+
as well, to further simplify the above result. Namely, we may look at a centralized
version of C' by considering

Q*(C(fe,b) =b € ),

which, by Lemma 7.5, equals

Remark 7.6 (difference to the graph setting). We note that a similar centraliza-
tion within O is not possible in the setting of typical clusters in a quasi-transitive
graph - there is simply no natural way to map one orbit representative to another
one.
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Further simplifications are possible if the directing random measure 7 of the regular
Cox process € is of the special form

n(w,) = / 1{s € }f(w,s)\ds), weQ, (7.11)

where f : Q x R? — [0, 00) is measurable, jointly L-invariant and such that ¢ is
regular. We may then invoke a spherical Blaschke-Petkantschin type formula. To
state this formula, we denote by o the unique SO(d)-invariant measure on the sphere

T ={zeR’: || =1},

with total mass o(S?1) = d - kg, where kg = A(B?Y). Further, given points
To, . ..,2q € R? we denote by
Ad<I0, e ,.Td)

the d-dimensional volume of the convex hull of these points. A proof of the following
theorem may be found in [64, Theorem 7.3.1] (the proof given there goes back to
[54]). The result appeared first in [52] and a different proof than the one presented
in [64] may be found in Affentranger [2].

Theorem 7.7 (spherical Blaschke-Petkantschin type formula). If f : (R} — R
is a nonnegative measurable function then

/(Rd)d+1f(x0’ e 7$d)()\d)d+1(d($0’ o $d))

—d'/Rd/ ,/Sd 1” Sd— 1fz+ru072+7“ud)
1Ad(uO, oy ug)o(dug) . (dud)dr)\d(dz).

As announced, the result in Lemma 7.5 further simplifies if 7 is of the form
(7.11). In the following result, which extends a classical result on typical cells of
homogeneous Poisson-Delaunay tessellation due to Miles [52], we fix a specific center
function, namely the function z, that assigns to a simplex K = conv{xy,...,zq} the
center of the ball B(xy, ..., z4) through its vertices. We call this center function ball
center function.

Theorem 7.8. (Cox-Delaunay cells for absolutely continuous n) Let in the setting
of Lemma 7.5 the random measure n be of the form (7.11) for a jointly L-invariant
measurable f : Q x RY — [0, 00), then

QC((C(Qe,b) b, b) d+1/ /Sdl. /Sdl Ty UQy -« s Udy ")
PN (g, - . . ug)o(dug) . . . o(dug)dr,

where the center process is defined with respect to the ball center function and where
for fived ug, ... ,uq € St and r > 0 the measure ¥(r, ug, . .., uq, ) equals

/LL 1{(r - conv{ug,...,uq},b) € -}
E [6 MBO) (0o, b4 rug) - .. f(fe, b+ Tud)} Api(db).  (7.12)
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Proof. By Lemma 7.5 and the assumption on 7 we have

Q((C(6.,b) —b,b) € -) = d+1 E/l{ conv{zo, ... xd} — 2(x), B(z(x))) € M p(2(x))
x e B0 T ) £(0 o). (B, za) (A (d).

Applying Fubini and Theorem 7.7 yields

Q4((C(0.,b) — b,b) € ) :(dill)! /R /OOO /SH.../SCH1{(r.conv{u0,...,ud},ﬂ(z)) e}
x 15(2)E [e’"(B(Z””))f(He, z4rug) ... f(0e,z+ Tud)}
x rT Ay (uo, - . ., ug)o(dug) . . . o(dug)drA®(dz).

Another application of Fubini yields

¢ :
Q((C(6.,b) — b, b) d+1/ Lo [ o)
x rT T Ag(uo, . . . ug)o(dug) . .. o(dug)dr,

where we have written ¥ (r, ug, ..., uq, ) for

/Rd 15(2)1{(r - conv{ug,...,uq},5(2)) € -}
E [e—W(B(z,r))f(Qe, z4rug) ... f(0e, 2+ TUd)} )\d(dz)'

Using the orbital decomposition \(dz) = py(dz)M ;L (db) of X with respect to O =
L*, as well as L-invariance of

z—E [e‘"(B(Z’T))f(Qe, z4+r1up) ... f(Oe, 2+ rud)} ,

(which follows by joint L-invariance of f, L-invariance of n and L-invariance of P)
the measure 1(r, ug, . .., uq, ) reduces to its form given in (7.12). O

In order to derive some probabilistic interpretations from Lemma 7.5 (or The-
orem 7.8), we consider particular jointly L-invariant subsets I of Q x RY, namely
those that are of the special form

I=1(A) ={(w,s):0# Cw,s) € A}, (7.13)

where A ¢ A@ is L-invariant with respect to the induced shifts on A@. The
important property that jointly L-invariant subsets of ) x R? of this particular
form have, is that 1; is essentially a function of C'(w,s), rather than of the whole
configuration w and s. Three typical examples are, given an L-invariant set A C R,
the sets

Ay ={DeAY:Dc A}, (7.14)
Ay ={D e AW . 1(D) € A}, (7.15)
I5={DecAY:DNA#}. (7.16)
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For the following notion the reader should recall Definition 4.23 and that for any
jointly L-invariant measurable subset I of Q x R? we have by (4.23)

Q“(1) = (E¢)*(L™).

Definition 7.9 (typical I-cells). Let I denote a jointly L-invariant measurable sub-
set of  x R? and ¢ a process of the centers of the cells, defined as in (7.10). If
0 < Q%(I) < oo, we call
I _ 1 ¢
]P)C(C(eevb) —-be ) - (EC})*(LJ‘) /1{0(967b> —be '}1[(0), b)@ (d(wvb))
the distribution of the I-typical cell. If for a given L-invariant measurable subset A
of R? the set I is of the special form

(1) {(w,s):0# C(w,s) € A},
(i) {(w,s):0#Clw,s) € A},
(iif) {(w,s): 0 # C(w,s) € A},

we call PL(C(6.,b) — b € -) the distribution of the typical cell contained in A, the
distribution of the typical cell with center in A and the distribution of the typical
cell intersecting A, respectively.

Note that, as explained in the introduction of Chapter 4, the word typical has to
be read with care in this generality. We shall only consider probabilistic interpreta-
tions of Theorem 7.8 (Lemma 7.5 may be used analogously under the corresponding
weaker conditions), where we restricted our attention to the ball center function.

Corollary 7.10 (probabilistic interpretations). Let A € A be measurable and

L-invariant and I = I(A) be defined as in (7.13). In the situation of Lemma 7.8
the typical I-cell has distribution

! ! /00/ / 1{r - conv{ }e}
r-conviug,...,u :
ECH)* (LYY d+1Jo Jsar ™" Jganr Oyt
X (r,ug, - - ug)rE T Agluo, - . . ua)o(dup) . .. o(dug)dr,
where Y(r, ug, . .., uq) i given by

/L 1{r-conv{ug, ... ,us}+b € AIE [e‘"(B(b”"))f(Ge, b+rug) ... f(0e,b+ rud)} A (db).
L
Proof. By definition we have for any jointly L-invariant A ¢ A@+1)

W/l{c(ee,b) —be-0+£C0,,b) € A}Q(d(w,b)),

and by Theorem 7.8 the right hand side equals
1 1 00
(EC)"(LY) d + L S s 1 convuo,uid €}
x 1{r - conv{ug, ..., ua} + b € AYE |e POV f(0,, b+ rug) ... f(0c, b+ rug)]
x rT T Ag(ug, . . . ug) Ao (db)o(dug) . . . o (dug)dr,

PHC(fe,b) —b € ) =

This yields the assertion. 0
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Remark 7.11. This corollary extends known results from the special case of a
completely stationary Poisson-Delaunay mosaic, established in [52] and [53], apart
from the explicit computation of the constant

1 0 ~
Ly 5
(B¢ (L )_d+1/o /«s/s/u 1{r - convi{ug, ..., ug} +be A}
x E [e*"(B(b’r))f(Qe, b+ rug)...[f(0.,b+ rud)}
x 1T Ay (u, - . . ug)Ape (db)o(dug) . . . o (dug)dr.

A more detailed analysis of the typical (A-)cell of a Cox Delaunay mosaic and its
k-faces along the lines of Baumstark and Last [5] seems feasible for (even partially)
stationary Cox processes.

7.2 Random partitions

The object of interest in this section are random partitions of some topological space
S that are stationary with respect to an operating group G. Random partitions were
first introduced and inspected by Last [36] in full generality and we shall follow his
approach here. To define a G-stationary random partition, let the lcsc group G
operate on the measurable space S properly. Given a G-stationary simple point
process £ on S we may define a G-stationary partition based on £ as a measurable
mapping 7 : {2 x S — S that satisfies

m(w,s) €{(w), s€ 8 &(w)#0,
m(w,s)=s, se€S5&w)=10

Y

and is G-covariant in the sense that
(0w, gs) = gr(w,s), we R se S ged.
We define
C™(w,s):={te S m(w,t)=s}, weses,

and note that C™(w,s) = () whenever s & {(w) # 0. Note that for w € {{ = 0}
we have C™(w,s) = s,s € S. In addition, we remark that m(w, s) needs not be an
element of C™(w, s) and that

U C™(w,s) =S, &w)#D.

s€€(w)

We refer for s € £(w) to C™(w, s) as the cell with center s in configuration w. Some
of these cells may very well be empty. In addition, we refer to 7(w, s) as the center
of s in configuration w and then

Vi (w,s) = C"(w,m(w,s)), weQ, (7.17)
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is the cell containing s € S. G-covariance of 7 readily implies G-covariance of C™
and V™ in the sense that both

C™(Oyw,gs) = gC"(w,s), g€ G ,weQ sebl,

and
VT (O,w, gs) = gV (w,s), g€ Gwe,seS.

We want to enable us to speak of the distribution of C”™(b) under the cumulative
Palm measure of the center process and of the distribution of V7(¢) for t € S.
In order to avoid larger technical issues we restrict ourselves now to a topological
setting, where S is a lcsc topological space. In this case, we may equip the space of all
closed subsets of S with the topology of closed convergence (also called Fell topology),
see [64, 28]. Instead of looking at C™(w, s),s € S,w € Q, or V™ (w, s),s € S,w € Q,
we may replace them by their closures in S, denoted by C™ (w,s),s € S,w e Q, and
V™(w,s),s € S,w € Q. It is then enough to require that

(w, s) — C_”r(w,s),

is measurable with respect to A ® S and the Borel o-field induced by the Fell
topology on the space of closed subsets of S. A random partition 7 based on a simple
point process & on S satisfying this requirement will be called a random topological
partition. If € is G-stationary, we call m G-stationary as well. The corresponding
measurability of

(w,8) = V™ (w, ),

for a random topological partition then clearly follows from (7.17).

In Subsection 7.2.1 we relate the quasi-distributions of suitably defined v-
weighted O-cells and typical cells for G-stationary random topological partitions,
where v is an arbitrary G-invariant measure on the topological space S. We then
apply these results in Subsection 7.2.2 to the setting of orientable Riemannian mani-
folds, where the operating group is the isometry group and v is the isometry invariant
surface measure, after briefly summarizing the most important definitions. We then
conclude the section by illustrating the theory with some examples in Subsection
7.2.3.

7.2.1 Relations between typical and 0-cells

Our task for this subsection will be to suitably define 0O-cells and typical cells of a
G-stationary random topological partition and to relate their distributions. Note
at this point that we neither require transitivity of the operation nor unimodularity
of the operating group. Given a measure v on S, we write (similar to a notion in

Timar [67])

V() = /1{3 e YA (s)v(ds) (7.18)

and call it the A-weighted v. We start with the following consequence of the Palm
MTP, which in parts extends results of Last [38] to a non-transitive setting.
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Theorem 7.12 (typical cells and 0-cells). Let G operate properly on the lcsc space
S and let ™ denote a G-stationary random topological partition based on the simple
point process £. Let further v denote a G-invariant o-finite measure on S. Then

JE [Ug™ V" (0) € Frstotm.mtn (dg)v (@)
— /1{éﬁ(w,b) e 1A (C™(w,b)QE(d(w, b)), (7.19)
and if ™ is such that 0 < V(C”r(w, s)) < oo,s € &(w),w € Q, then
J B [ AUV € Pt o d) S (@D

- / 1{C™(w,b) € -YQ(d(w, D). (7.20)

Proof. Putting in the Palm MTP (Theorem 5.6) n(w) := v, y(w,s,dt) = 1{t €
C™(w, s)}v(dt) and 6(w,t,ds) := 0 (ds) we note that

[ 1.0 € Yas dneas) = [[ 14(s,6) € J1{t € O (w, ) hw(dt)g(ds)
- // 1{(r(t),t) € }1{t € C™(w, s)}w(dt)E(ds)
and that, using Fubini, the right-hand side reduces to
/1{(7?(w,t),t) e Ju(dl) = //1{(s,t) € Yo(t, ds)v(dt).
Thus Theorem 5.6 yields
[ A" @miew,b, 01t € O (w, )@ (d(w, b))
-~ / m(w, 7(w,b), QN d(w, b)) (7.21)
for arbitrary jointly G-invariant m : Q x S x S — [0, 00). Putting
m(w, s,1) = / 1{g"'C™(w, 5) € D}#g(s).(dg)

for an arbitrary, but fixed measurable subset D of the space of closed subsets of S,
the left-hand side of (7.21) may be written, using Fubini, Gy p-invariance of A* and
G-covariance of C™ and C7, as

][ HCm 07 1w.6) € YA (g7 1Lyt € €7 (8, w, b) () (dg)QF (d(w, ).
where we omitted D. Using G-invariance of v and then (4.3), this reduces to
[ O (w.b) € A (€ (w, b)QF (d(w, b))
On the other hand, the right-hand side of (7.21) may be written by (4.7) as
JE [1{g7'C (b)) € }riateioyacn (dg)v"(db)

This yields (7.19) as C™(7(s)) = V™(s), s € S, w-wise. Equation (7.20) follows from
using in (7.21)

m(w, s, t) = A(t, s)/l{g_lc_’”(w,s) € -}fiﬂ(s),s(dg)m

and a similar calculation. O
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7.2.2 Riemannian manifolds

Theorem 7.12 applies in particular to the setting where S is a k-dimensional ori-
entable Riemannian manifold, G is its isometry group I(S) endowed with the
compact-open topology (see below) and v is any /(S)-invariant measure on S, e.g.
its surface measure, which we denote by pg. An introduction to the subject as well
as definitions of the above notions may be found in [41, 40|, and a discussion of
topological aspects on the isometry group of a Riemannian manifold may be found
in [25]. Here are some more detailed definitions.

If (S, gs) and (7, gr) are Riemannian manifolds with metric tensors gs and gr
respectively, then an isometry between S and T is a diffeomorphism f : S — T
respecting the given metrics in the sense that

(u,v), = <dfp(u)7dfp(v>>f(p) , wveTpSpes,

where T),S denotes the tangent space of S in the point p € S, df,, : 1,5 — Typ)T
the differential of f in the point p € S and (-, ->p and (-, ->f(p) the inner products in p
and f(p) induced by the respective metric tensors. A consequence of the definition
is that isometries indeed preserve distances, i.e.

dS(pa Q) = dT(f(p)a f(Q))v p,q € Sa (722)

where we recall that the distance function ds(p,q) is defined as the infimum over
the lengths of all paths in S connecting p € S and ¢ € S. In fact, given a map
f S — S satisfying (7.22) it can be shown that f is already an isometry in the
sense of our above definition, cf. [25, Theorem 11.1]. If the manifold S is orientable,
there is a unique Riemannian volume form [41], which induces a measure pg on
the Borel g-algebra B(S) on S which we will call surface measure of S. Another
important consequence is, that the surface measure pg of an orientable manifold S
is invariant with respect to G = I(S). The set of isometries on S forms the isometry
group 1(S). Tt is given the compact-open topology generated by all sets of the form

W(C,U):={g€I(S):9(C)CU}

where C' C S is compact and U C S is open. With respect to this topology I(.S)
becomes a locally compact second countable Hausdorff topological group and the
operation of I(S) on S is continous, cf. [25]. Also, I(S) < S is topologically proper
as the following lemma shows.

Lemma 7.13 (isometries act proper). The operation of 1(S) on S is topologically
proper.

Proof. Let K C S be compact and let f,, denote a sequence in 7 '(K). Then f,(s)
is a sequence in K and by compactness of K there is a subsequence fj,) of f, with
fhwy(s) — t for some fixed t € K. Now [25, Theorem 2.2] states that there is a
further subsequence fy(,y and some f € I(S) such that fy,) converges to f in the
compact-open topology. This shows that 7 '(K) is sequentially compact. Since
I(S) is second countable it follows that 77 *(K) is in fact compact. O

It is an important fact that isometry groups of compact manifolds are compact
themselves (and in particular unimodular).
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Lemma 7.14 (compactness). The isometry group I1(S) of a compact Riemannian
manifold is compact.

Proof. Let f, denote a sequence in I(S5) and s € S some fixed point. Then f,(s)
is a sequence in S and by compactness of S there is a subsequence fj,) of f,
with fi(s) — ¢ for some fixed ¢ € S. By [25, Theorem 2.2] there is a further
subsequence fy () and some f € I(S) such that fu(,) converges to f in the compact-
open topology. This shows that I(.5) is sequentially compact. Since I(S) is second-
countable it follows that I(.5) is in fact compact. O

We may use the cumulative Palm measure to define the following random object.

Definition 7.15 (typical cells). Let S denote an orientable Riemannian manifold
with surface measure pg and let O denote a measurable system of orbit represen-
tatives. Let further 7 denote an I(S)-stationary random topological tessellation on
S based on the simple point process . Let A denote an T (S)-invariant measurable
subset of the space of closed subsets of S, define the jointly I(S)-invariant set

I={(w,s) €0 xS:C"(w,s) € A},

and let A be such that 0 < (E&;)*(S) < oo. Then a random closed subset of S with
distribution

1 / — _ -
[ 1{C™(w,b) € }1{C™(w,b) € A}Q*(d(w,b
By [ MO ) € JHC @) € A (e.b)
is called a typical cell of m under all cells with the property A, or in short a typical
A-cell.

Let 7 denote an I(S)-stationary random topological tessellation on the Rieman-
nian manifold S based on the simple point process £, and let O denote a measurable
system of orbit representatives. To omit difficulties arising from boundary effects
when using such I(S)-invariant sets A, we now restrict our attention to the case,
when we may choose A to be the complete space of closed subsets of S, i.e. to the
case when both 0 < (E£)*(S) < oo and 0 < p§(S) < oo. In this case, the typical
cell of 7 is defined as a random closed set with distribution

/1{0%,5) e YPE(d(w, b)),

where we recall that

123

_ 1 e 1
“@@x5)Y " E )

while a volume weighted typical cell of 7 is a random compact set with distribution

1
Eus(C™)

Q*,

JUCT(w,) € Jpus(C™(w, b)) PE(d(w, b)),

whenever 0 < Efug(C™) < co. Similarly, we define the A-volume weighted typical
cell as a random closed set with distribution

s | () € (O )P ),
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whenever 0 < E¢u5(C™) < oo. Further, we call a random closed subset of S with
distribution

5 B[ 170 € oo ot

a centralized 0-cell, while a random closed subset of S with distribution

1 % —1y/m Ak 1
5/E/A (m(6))1{g™ V7 (b) € }Ks(x()).n(r) (d9) -

as (v (o)D)

1

where C' := /]E A*(W(b))m

debiased 0-cell.
What follows is a probabilistic interpretation of Theorem 7.12 in this manifold
setting.

] ps(db) is called a centralized A-picked volume

Corollary 7.16 (probabilistic interpretations). Let S denote an orientable Rie-
mannian manifold and G a closed subgroup of 1(S). Let further m denote a G-
stationary random topological partition of S based on the simple point process & such
that 0 < (E€)*(S) < co. Let N denote a centralized 0-cell, n5 a A-weighted-picked
centralized and size-debiased 0-cell, Z a typical cell and Z> a A-volume weighted
typical cell. Then their distributions are related via

P(N €-)=P(Z> ¢ ), (7.23)
P(ns € ) =P(Z € ), (7.24)
and we have the relations
15(S) =B (1§ (C™ (6., b)) | (BE)*(S) (7.25)
* 1 * _ *
[E [A <w<b>>M] 4 (db) = (EE)'(S). (7.26)

Proof. Rewriting all sides of the equations in Theorem 7.12 in terms of the distri-
butions introduced above the corollary yields the equations

p5(S)P(N € ) = B g (C™ (6, b))| (EE)"(S)P(Z5 € -)
1
ps(V™ (b))

Plugging in the space of all closed subsets of S on either side yields the assertions.[]

[ |a0) |isapes €)= @ Pz e )

7.2.3 Examples

In this subsection we illustrate Corollary 7.16 by giving some examples.

Example 7.17 (Z? — R?). AsZ%is unimodular, the modular function, being iden-
tically 1 (also compare Lemma 3.17), may be omitted in all formulas. We have
prs = A% and

pra = (X9 =200, 1)),
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and the inversion kernel is given by

Kags),s(*) = 0s—p(s) (1) = 015 (+), s € R,

where [s| := ([s1],...,[sq]) is the component wise Gauss bracket, assigning to
a real number its integer part. The centralized 0-cell has then by definition the

distribution B
JRO7(0) = L7(0)] € ) nu(B)X! ()

which is obviously the distribution of a centralized cell, picked by realizing the
random partition 7, independently realizing a uniformly distributed random vector
U in O = [0,1)¢ and then forming the closure of the unique cell V™(U) such that
U e V™(U). Thus (7.23) reduces to the equality

Ve U) £ Z,,

where Z, is a version of the ordinary volume weighted typical cell. Equation (7.24)
simplifies similarly and tells us that the typical cell may be interpreted as a size-
debiased version of the 0-cell. The relations (7.25), (7.26) reduce to

1= E* (O (0., b))| E€([0,1)")

1
/ E lAd(V”(b))] 10.1¢ (D) (db) = E£([0, 1)1).

In particular we have

1 d 1 .
B || saa Hos OV )] = oy = B0

Example 7.18 (infinite cylinder). We consider the non-transitive operation of R
on the infinite cylinder C' := R x S! by shifting the first coordinate. Here S* denotes
the one-dimensional unit circle in R?. Again, since R is unimodular, the modular
function vanishes in all formulas. We have for arbitrary measurable f : C' — [0, o]
the equality

pef = [[ g+ DN (dg)rs: (ab),

and choosing A\' as Haar measure on R and O := {0} x S', we obtain uf = Ag1.
The centralized 0-cell has by definition the distribution

1 _
o= [E [ 1{V7(0) = v € Frogan.an(dn) s (db),

which is obviously the distribution of a centralized cell, picked by realizing the
random partition 7, independently realizing a uniformly distributed random vector
Uin O = {0} x S, and then forming the closure of the unique cell V™(U) such that
U e V™(U) (see Figure 7.2). Thus (7.23) reduces to the equality

d

Vﬂ-(U) - W(U) = Zs,

where Z; is a version of the ordinary volume weighted typical cell. Equation (7.24)
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{0} x St

P

Figure 7.1: Realization of a 0-cell (orange region)

{0} x St

B(m(U) o)
by
é e

Figure 7.2: Centralized version of the above 0-cell

simplifies similarly and tells us that the typical cell may be interpreted as a size-
debiased version of the 0-cell. The relations (7.25), (7.26) reduce to

21 = E* [uc(C™ (0, b))] (E§)*({0} x S*)

[E [M] A (db) = (E€)" ({0} x 5V).

In particular, we have

1 2w . .
E V MAsl(db)] = Epoca oy~ B0y x 51,

Example 7.19 (hyperbolic plane). We give a transitive, but non-unimodular ex-
ample here. We consider the upper half-plane

H? = {(z,y) € R*:y > 0} ~ {z € C : Im(2) > 0},

G:z{(‘g f):y>0,x€R},

with respect to the usual multiplication of matrices, endowed with the metric topol-
ogy of R x Ry with the obvious identification, which is the same as the inherited

and the group
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topology from R*. We let G act on H? (identified with the complex upper half-plane
to avoid conflicts with the notation for matrix-vector multiplication) via

(g 31;> zi=yz+x, zeH:zxeR,y>0.
It is straightforward to convince oneself that this gives an operation indeed, and we

shall denote it by G < H?. We now determine a left Haar measure on G (also see
[19, p. 359]). Identifying the matrix

Yy x

0 1

with the pair (z,y) € H?, we may define the measure

ni= [, )

on (. It is clearly non-zero and locally finite, and it is left-invariant: Let

(a,b),(z,y) € G. Then (a,b) - (x,y) is the product
b a\ (y x\ _ (by bx+a
01 0 1) \o0 1 '
and is thus identified with (bz + a,by) =: T(ap) (2, y), where (4 maps H? to itself.
Then
/ f )) / f ab) €z y b2)\2(d(x,y))

= ‘/Gg<T(a’b)(.T,y>> : bz)‘Z(d(xvy»a

where we have put g(x,y) := f(z,y)/y*. Furthermore, the Jacobian of T(,s) at (z,y)

equals
b 0
0 b))’

and thus the absolute value of its determinant equals b>. Now the transformation
theorem gives

/Gf((a, bzﬂ (%y))AQ(d(x’y)):Lg(x,y)AQ(d($,y))
f(x,y) (o
:/G g V@),

which is the desired left-invariance. Clearly, if A is a left Haar measure, then

Mo=Af), feGs, where flg)=f(97"), 9€G,

defines a right Haar measure. We have (z,y)™' = (—z/y,1/y) =: T(x,y). The
Jacobian of T" at (z,y) is given by
1 T
-1 2
(v )
v

<
—_

)
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whose determinant equals 1/y3 (which is positive, since y > 0). Putting now
g(x,y) := f(x,y)/y, we have

3 = [ TSI o) = [ g0 )

_/ (T(x,y))| det DT (z, y)|N*(d(z, y)),

and thus the transformation theorem yields

3 = [ ate. it = [t ),

To compute the modular function, it is enough to note that from (2.2)

[ A (9)\dg) = [ Fla™)Adg) = [ Flg)A(dg),
which means

[ 2w D) = [ 1Dy,

Then a comparison yields A((x,y)™') = y and thus

A((:c,y)):A((‘g f)):yl, 2R,y > 0.

We fix the imaginary unit ¢ as the ‘origin’ of the upper half-plane and consider the
pushforward of the left Haar measure on GG under the projection 7;. Since

mi((z,y) = (x,y) i =y i+,

we receive

wf =2 om) = [ LEEDat ) = [ peipnts)

Thus p; agrees with the well-known hyperbolic Riemannian surface measure puy.
Since G < H? is an injective and transitive action, we have

Ris = 591.15, ENS HQ,
0 1

wirmaf(s ) ) -a(( ) e

We conclude, that the A-weighted hyperbolic volume measure is given by

pp) = [HEEBED ey = [HEEVE ey, )

‘ y? Y

where ¢; s = (Sy SQC) is the unique element in G shifting i to s = (s,, s,) € H? and
thus
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Figure 7.3: Realization of an euclidean Voronoi tessellation based on a homogeneous
Poisson process in hyperbolic space

Further, with respect to O := {i} we compute

fig2 = i = O;.

Suppose we are given a G-stationary simple point process £ on H? of intensity e,
along with a G-stationary random topological partition m based on £. E.g. £ might
be a Poisson process with intensity measure p;, and 7 such that the closures of
the cells coincide with a Voronoi-mosaic either with respect to the euclidean metric
(see Figure 7.3), or with respect to the hyperbolic metric. Then by definition,
the distribution of the centralized 0-cell (which might be called more accurately
centralized i-cell in this setting) is given by

. ((ﬂg)y wq)x)‘l T e ) b (Wé)ymi) B ZEZ; . ) |

Furthermore, the distribution of the centralized A-picked volume debiased 0-cell is

given by . 1) m(4)
S ECCR i rteo)]

m (i)
where C' =E y]
[Mi(V”(Z))
If 0 < (E£)*(S) < oo the distribution of the typical cell of 7 may be written as
(identifying Q x {i} with Q)

/1{@“(w,z’) e P (dw),
while the A-volume weighted typical cell has distribution

1

W/l{éﬂ(%i) € Juf (C7(w, 1))P4 (dw),
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whenever 0 < E¢u2(C™) < oo, where p? is given by (7.27). Corollary 7.16 applies
to these distributions and gives in particular the relations

B [u(C7(6.)] =
A*(m(i) ] _
- Mw(z))] e

7.3 Applications of the integrated MTP

Two applications of the integrated versions of the MTP in the form of Theorem
5.5, more precisely in the special form from (5.11), are given in this section. The
first result gives an idea on how to approximate Borel sets in an unbiased way,
using a G-stationary random partition. The second gives an interpretation of the
intensity measure of k-dimensional Hausdorff measure restricted to the k-skeleton
of a G-stationary tessellation in R

7.3.1 Unbiased approximation of Borel sets

Consider R? with Lebesgue measure A% It is well known that the group of rigid
motions Gy on R? becomes a locally compact, second-countable Hausdorff group
that operates continuously and topologically properly on R? when endowed with a
suitable topology (see e.g. [64, Theorem 13.2.3]). It is further unimodular as the
proof in [64, Theorem 13.2.10] shows. All these properties (except perhaps for the
unimodularity) are inherited from G by any closed subgroup G of Gy when endowed
with the trace topology also operates topologically properly on R?. We now fix a
closed unimodular subgroup G of Gy.

Examples. (i) G might be a linear subspaces L of R? of dimension k where
0 < k < d, that acts on R? via translation. Orbits of such an operation are all
k-dimensional affine subspaces parallel to L.

(ii) G may be a discrete additive subgroup I' of R? that also act on R? via trans-
lation. These include the additive subgroups of R? generated by finitely many
vectors from R?. The orbits here are the translates of the grid I

(iii) G may equal SO(d) or a lower dimensional rotation group (isomorphic to
SO(k) where 0 < k < d).

Let ¢ denote a G-stationary simple point process on R? 7 : Q x R? — R? a
G-stationary random partition based on £. The letter A denotes a G-invariant
measurable subset of R while B denotes any fixed G-symmetric subset of R?. We
define

C™(w,B) :={z e R?: n(w,z) € B}, (7.28)

i.e. C™(w,B) is the union of all cells with center in B. Note that since we did
not specify a o-algebra on the space of all subsets of R? it would not make sense
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to interpret C™(B) as a random set, or to speak of its distribution. Instead of
introducing such a o-algebra, we consider AY(A N C™(B)) and note that this is by
Fubini’s Theorem a random variable since

A(ANC™(w, B)) = /1{x e A, m(w,z) € BIN(dz), we Q.

Note that in the special case G = R?, i.e. the completely stationary case, the sym-
metry condition on B reduces to the condition A\%(B) > 0. The following theorem
is even new in this special case which extends results of Heveling and Reitzner [26]
from homogeneous Poisson-Voronoi tessellations to general stationary partitions.

Theorem 7.21 (approximation of symmetric sets). Consider the canonical action
of a closed unimodular subgroup G of G4 on RY. Let & denote a G-stationary simple
point process in R and let m denote a G-stationary partition based on &. Further,
let A denote a G-invariant measurable subset of R? and B denote a G-symmetric
subset of RY. Then

E[M(ANCT(B))| = X(ANB), (7.29)
where C™(B) is defined as in (7.28).
Proof. Clearly n(w,-) := A\ is G-stationary and £ is G-stationary by hypothesis.

Defining the evidently G-invariant kernels y(w, s,) = A%(+) and §(w,t,-) = ¢(w, )
we clearly have £ ® v = ® ¢ w-wise such that (5.11) yields for C':= B

IE// 15(8)m(6,, s, )N(dt)E (ds) = E// 1s()ym(8., s, 1)E(ds)A4(dt),

where m is an arbitrary jointly G-invariant non-negative measurable function.
Choosing here the evidently jointly G-invariant

m(w,s,t):=1{t € At € C™(w,s)}, s,teR,weq,
E / 15(s)A(A N C™(5))é(ds) = E / / 15(0)1{t € AN C™(s)}e(ds)A\U(dt).

Here the left-hand side clearly equals the left-hand side of (7.29). And since for any
fixed t € R?

/1{t € ANC™(w,8)}e(w,ds) = 1{t € A}, weQ,
the right-hand side reduces to the right-hand side of (7.29). O

The theorem may be interpreted as follows. If the G-symmetric set B is unknown,
but AY(A N C™(B)) is known from some data, then A%(A N C™(B)) represents an
unbiased estimator for A4(A N B). In the completely stationary case where A = R?
and B may be chosen arbitrary with A4(B) > 0 (which is clearly not essential) the
theorem reduces to

E[M(C™(B))| = M(B),

and thus gives the information that given an arbitrary Borel subset B of R, the
‘approximation’ C™(B) is in mean of the same size as B. The above theorem nat-
urally comprises e.g. random tessellations in R?, as these may be seen as special
(slightly modified) random partitions. These are the object of interest in the next
subsection.
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7.3.2 Intensity measure of a random k-skeleton

Let X denote a G-stationary tessellation of R?, where again G is assumed to be
a closed unimodular subgroup of G;. We may similarly to (7.28) define for any
G-symmetric subset B C R?

C*(B) = U F. (7.30)

FeFi(X)w(F)eB

Clearly, if X is G-stationary, then all the N, and M are also G-stationary. Given
the configuration w and a point s € Ni(w), there is, since N is simple, a unique
k-face F' with m(w, F') = s and we may define

Cr(w,s) = F.

Using the Mass-Transport Principle in the form of Theorem 5.5, more precisely in
the special form from (5.11), yields the following theorem (also see the examples in
the previous subsection).

Theorem 7.22. (intensity measure of My) Consider the canonical action of a closed
subgroup G of G4 on R, Let X denote a G-stationary random mosaic of R and
let ™ denote a (generalized or not) G-covariant center function such that Ny, defined

as in (7.1) is a.s. simple. Further, let My, be defined as in (7.2), let A C R? be
measurable and G-invariant and B C RY be G-symmetric. Then

E[H*(ANCH(B))| = (EMy)(AN B), (7.31)
where C*(B) is defined as in (7.30).
Proof. Putting & := Ng, n := My, v(w,s, ) = Mi(w,-) and 6(w,t,-) = Ng(w,-)
in (5.11) for C' := B yields, using the jointly G-invariant m(w,s,t) = 1{t € AN

Ci(w, s)}, that
]E// 15(s)1{t € AN Cy(w, 8)} My (dt) Ny (ds)
- E// 15(t)1{t € AN Cy(w, 8)} Nu(ds) M (dt).

Here the left-hand side equals the left-hand side of (7.31) and the right-hand side
equals the right-hand side of (7.31) since for fixed w € Q and My, (w,-)-a.a. t € R?

/l{t € AN Cy(w, s)}Nu(ds) = 1{t € A}, O

Note that for £ = d the above theorem gives a version of Theorem 7.21 for tessel-
lations instead of partitions (up to the minor differences concerning the boundaries
of the cells the case k = d in Theorem 7.22 is contained in Theorem 7.21). We
illustrate this case for two different groups G in Figures 7.4 and 7.5.

7.4 Applications of the ergodic theorems

In this last section we quickly illustrate the use of our results in Chapter 6 by
applying the convergence Theorems 6.15 and 6.13.
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Figure 7.5: G = {(z,0) : 2 € R} — R% AN C%uw, B) on the left and its mean on the
right.

7.4.1 Grid-stationary case
The following corollary is a consequence of Theorem 6.15.

Corollary 7.23 (grid-ergodic random tessellations). Let X denote a Z*-stationary
tessellation in R? such that for fired 0 < k < d, the point process Ny, as defined in
(7.1) is Z%-ergodic. Let A denote a Z%-invariant set and B,, denote a sequence of
Z4-symmetric subsets of R such that B, N Z% is an increasing sequence of bozes.
Then, for any measurable and jointly Z3-invariant h : Q x C' — [0, 00) satisfying

| (8. Culw) Neldz) € Llog" " L(P)
[0,1)4NA

it holds that

5(1.;) [, MO C@)Nelda) = [ (e, Culo)1{b € AYQ™(d(w.b)) s

(7.32)

Proof. We may use the joint Z%invariance of h and Z%covariance of Cj, by writing

h(w, Ck(w,x)) = h(@;fﬁ(x)w, Ck(e;lﬁ(x)w, B(x))), x € Ni(w),w e Q.
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The assertion now follows from Theorem 6.15. O

Examples. Possible choices of h are e.g.

(i) N; : Q2 x C"— N, where N;(w, P) is defined as the number of adjacent i-faces
of the k-face P in configuration w, if P is a k-face of X (w) and is 0 otherwise.
This includes the cases ¢ < k and ¢ > k.

(i) V : C' — [0,00) where V(C) = H*(C) if C is a k-dimensional polytope and 0
otherwise.

(iii) Even ‘arbitrarily big’ neighborhoods of the k-faces may be investigates. As
an example, fix n € N and let h(w,C) denote the k-dimensional Hausdorff
measure of the union of all k-faces of graph distance at most n from C, if C'is
a k-face in configuration w, and 0 otherwise. Here, ‘graph distance’ refers to
the usual graph distance in the k-skeleton of X, interpreted as a graph.

Remark 7.25. Dividing both sides of (7.32) by (EN)*(A) = (ENg)(AN[0,1)9)
yields a probabilistic interpretation of the limit. E.g. in two dimensions, we obtain
for A = R?% and if X is such that

/[O o NolCala))Nofdr) € Llog L(P)

that

1
ENy(B, N[0,1)4)

/B  No(Ca(a) Na(d) — / No(Cal(w, 0))P¥2(d(w, b)) a.s.

where the limit may be expressed as

2n02
N2 = —5
Noo — 27

see Remark 7.4.

7.4.2 Subspace-stationary case

As similar result to Corollary 7.23 is the following, which is now a consequence of
Theorem 6.13.

Corollary 7.26 (subspace-ergodic random tessellations). Let X denote an L-
stationary tessellation in R? such that for fized 0 < k < d, the point process N,
as defined in (7.1) is L-ergodic. Let A C R? denote an admissible L-invariant set
and By C By C ... a nested sequence of conver L-symmetric and L*-invariant
sets in R with §(B,) — oo. Then, for any measurable and jointly L-invariant
h:QxC —[0,00) it holds that

1
0(Bn)

/Bm h(Be, Ch(x)) Nu(dx) %/h(w,Ck(w,b))l{beA}QNk(d(w,b)) a.s.
| (7.33)
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Proof. We may use the joint L-invariance of h and L-covariance of C} by writing
h(w, Cx(w, z)) = h(@;fﬁ(x)w, Ck(ﬁ;lﬁ(x)w, B(x))), z € Ni(w),w € Q.
The assertion now follows from Theorem 6.17. U

Remark 7.27. Clearly, the examples given in the previous subsection also apply in
this case. A probabilistic interpretation of the limit may be derived here by dividing
both sides of (7.33) by (ENg)*(A).

Example 7.28. We consider the infinite cylinder C' = R x S ~ R x [0,27) and
consider the action of G = R (with 1-dimensional Lebesgue measure as Haar mea-
sure) by shifting the first component. Given an R-stationary tessellation on C, we
define as in (7.5) the quantities

+@ = (EN;)*(C)

and note that these may be written by means of any G-symmetric set B of width 1
(e.g. B=10,1] x [0,27)) as

79 .= (EN;)(B), i€{0,1,2}.
Exactly as in the proof of Lemma 7.3 one may prove the Euler-type relation
A0 — M 4 £ =,
and as in Lemma 7.2 it holds that
Y =~Dng, 0,5 €{0,1,2},

where the n;; are defined as in (7.6) and (7.7), now interpreted with respect to the
above action. As in Remark 7.4 we conclude that

27102

We may interpret the cylinder as the subset R x [0,27) of R?. Then clearly A = C
is admissible in the sense of the above Corollary and any increasing sequence of R-
symmetric sets of the form B,, = [0, ¢,] x [0, 27) with ¢,, — oo may be replaced by the
sequence B, = [0, ¢,] x R, which consists of convex L-symmetric and L*-invariant
subsets of R? on which we may apply the above Corollary 7.26. We obtain

L N(Cola)) No(da) = mmp = 212

¢, /B, N2 — 2

a.s.






Nomenclature

law of a random element 7

Haar measure on a group

modular function of a group

projection from G to orbit of s € S

shift on S or flow on (2

set of group elements shifting s € Stot € S

pushforward of Haar measure onto the orbit of s € .S
group of rigid motions in R?

group of graph automorphisms of the graph I'

isometry group of the Riemannian manifold M

choice function assigning to s € S the orbit representative
of s

fixed G-symmetric function

orbital weight measure of u, resp. v

width of a G-symmetric set B

Campbell measure of a random measure £

Campbell measure of a pair (£,7) where £ is a random
measure and 7 a random element

intensity measure of the random measure £

Palm (sometimes pseudo-) distribution of 1 with respect to
the random measure £ at point s

(¢ a point process on S) restriction of £ to the non-
diagonal part of S™

inversion kernel

one-parametric version of the inversion kernel

projection of f

projection of the modular function A

two-parametric projection of A on S

o-algebra of G-invariant sets on S

pullback of the o-algebra of G-invariant sets on S on (2 via
3

G-transform of &

cumulative Palm measure (with respect to some G-
stationary random measure £ and some system of orbit
representatives O)

10
11
11
12
12
13
13
13
14

14
15
16
24
24

25
26

26

33
34
40
40
41
42
42

43
48



140 Nomenclature

P! I-averaged Palm probability measure 59
T, regular n-tree 75
&(Ty) &-grandparent graph of the regular n-tree 75
E* conditional expectation given the o-algebra 7 95
€a sample intensity on the invariant set A 96, 103
0K e-neighborhood of 0K 98
HE k-dimensional Hausdorff measure 111
o surface measure of the sphere 118
Ay(zg, ..., 74) volume of the convex hull of g, ..., x4 € R? 118
A modular-weighted version of the measure v 122
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This book is about random measures
stationary (i.e. distributionally invariant)
with respect to a possibly non-transitive
and possibly non-unimodular group

action. It contains new results in Palm

theory, a chapter on a general mass-
transport principle for such random
measures and a chapter on ergodic the-

ory. All these results are closely linked.

The work ends with a discussion of se-
veral new models in Stochastic Geome-
try such as Cox-Delauney mosaics and

isometry-stationary random partitions

on Riemannian manifolds. Our previous

results enable us e.g. to extract typical

objects from certain even partly inho-

mogenous spatial processes. Our treat-

ment of such processes makes crucial

use of our previously developed tools.
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