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  I 

SUMMARY 
 

Studies of plant terpenoid biosynthesis using 13C stable isotope labeling techniques 
Terpenoids (or isoprenoids) are a large group of compounds that possess a wide spectrum of 

biological properties, which have made them widely used (e.g. as flavors, fragrances, pesticides, 

antineoplastic agents, antibacterial drugs, food additive, vitamins, etc.). Some volatile terpenoids 

like isoprene and monoterpenes are extensively studied for their physiological functions in plants, 

their ecosystem impacts, and their effects on the chemical and physical properties of the 

atmosphere. Isoprene and monoterpenes are largely produced and emitted by plants from the 

plastidic 2-C-methylerythritol-4-phosphate (MEP) pathway. Terpenoid biosynthesis is a function of 

genetic factors, environmental constraints, as well as biotic and abiotic stresses.  

This thesis aims to deepen our understanding of plant terpenoid biosynthesis and the regulation 

of the MEP pathway with respect to isoprene and monoterpene biosynthesis. Stable isotope 

techniques offer a useful tool for labeling specific compounds such as organic matter and 

atmospheric gases. In contrast to radioactive isotopes, stable isotopes are harmless to the health. 

Labeled compounds (enriched in heavier isotopes) can be traced and separated from isotopes 

occurring at natural abundance. They can therefore be used to study terpenoid biosynthesis in 

plants, providing information on the carbon (C) sources for terpenoids biosynthesis and C fluxes 

within the MEP pathway at various spatial and temporal scales, as well as giving insight into the 

regulation of enzymes from the MEP pathway.  
 

In this work, 13C stable isotope labeling techniques have been used to answer three pertinent 

plant terpenoid issues, summarized as following: 
 

The first question concerns the monoterpene emission from conifer trees that populate the boreal 

area. What fraction of total monoterpenes emitted by conifers originates directly from de novo 

synthesis in relation to monoterpenes emitted from storage pools? This is at present an important 

topic, since boreal forests are the most extensive forests on our planet and the fraction of 

monoterpenes originating from de novo synthesis is ignored in traditional atmospheric models. 

Because of extensive boreal forest coverage, and the impact of isoprene and monoterpene 

emissions on air quality and climate dynamics, reliable emission estimates are needed for present 

and predicted future climate assessments. 

By applying 13CO2 fumigation and analyzing the isotope label with proton transfer reaction mass 

spectrometry (PTR-MS) and classical gas chromatography mass spectrometry (GC-MS) the 

fractions of de novo synthesized monoterpenes were determined in the four most common 

European boreal/alpine trees species: Pinus sylvestris (58%), Picea abies (33.5%), Larix decidua 

(9.8%) and Betula pendula (98-100%). Application of the observed split between de novo and 

storage pool emissions from P. sylvestris in a hybrid emission algorithm resulted in a better 

description of ecosystem scale monoterpene emissions from a boreal Scots pine forest stand. 

 

The second issue concerns the regulation of the plastidic terpenoid biosynthesis and the 

establishment of a new analytical method. 1-Deoxy-D-xylulose 5-phosphate synthase (DXS) 

catalyzes the first step of the MEP pathway and it is believed to play an important role in 

regulating the metabolic flux of this pathway. The enzymatic product, 1-deoxy-D-xylulose 5-

phosphate (DXP) originates from an acyloin condensation of hydroxyethylthiamine, derived from 
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the decarboxylation of pyruvate (PYR), with the C1-aldehyde group of D-glyceraldehyde 3-

phosphate (GAP). Only recombinant expressed DXS proteins have been functionally 

characterized with the use of radioactive assays and therefore no data are available on DXS 

activity extracted from plants. At present, the lack of sensitive methods is the main obstacle to 

perform plant physiological studies and test the importance of DXS on the MEP pathway. 

By using 13C-labeling, a new sensitive assay was developed. The assay is based on the 

decarboxylation of labeled pyruvate (1-13C)-PYR and detection of 13CO2 by isotope ratio mass 

spectrometry (IRMS). This new method is suitable for the measurement of DXS activity directly 

from plant extracts, i.e. without over-expressing the enzyme in a host organism. It was 

successfully applied to characterize the apparent kinetic properties of the DXS activity in poplar 

leaves. Analysis of DXS activity along the plant axis showed that DXS undergoes developmental 

regulation and positively correlates with the activation of the gene expression of the isoprene 

synthase. The DXS activity was found to be lower in transgenic, non-isoprene-emitting poplars 

compared to the wild-type plants, suggesting that DXS may play an important role in the 

regulation of flux through the MEP pathway. 
 

The third topic concerns the C source for isoprene biosynthesis. Approximately 75% of isoprene 

is synthesized directly from recently fixed carbon (photosynthetic C), whereas the remaining 

fraction originates from other ‘alternative sources’. Part of this fraction is proposed to originate 

from the significant amount of carbon that is translocated within the plant. An aim of the present 

work was therefore to quantify the contribution of this translocated carbon as a C source for 

isoprene biosynthesis in young Grey poplar trees. Mature leaves were either fumigated with 
13CO2, or the plant xylem sap was fed with 13C-glucose. Thus, the emission and 13C incorporation 

into isoprene and respiratory CO2 from different plant organs (i.e. the apical part of the plant, 

young leaves, mature leaves and root system) was measured with ‘PTR-MS’ and ‘tunable diode 

laser absorption spectrometry’ (TDLAS). The combination of TDLAS, PTR-MS and 13C-labeling 

studies allowed non-invasive, high time resolution monitoring of C flux dynamics within poplar 

saplings, from CO2 fixation in source leaves to C allocation in other plant parts, whereas the 

isotopic composition of bulk plant material allowed the final quantification of C allocation. 

In poplar saplings, assimilated 13CO2 became translocated via the phloem down to the roots 

within a few hours. 13C-label was stored in the roots and partially reallocated to the plants’ apical 

part the day after labeling, particularly in the absence of photosynthesis. Deprivation of the plants 

of their root system short-circuited C storage in the roots. The 13C-labeled sugars entering the 

nutrient solution could immediately re-enter the xylem stream and be transported upward, mainly 

to the C sink tissue of the apex. The C loss as isoprene originated mainly (76-78%) from recently 

fixed CO2, and to a minor extent from photosynthetic intermediates (8-11%) with slower turnover 

rates and xylem-transported sugars (7.4-10.8%). Overall, 93-99% of the C sources of isoprene 

formation could be explained. 
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ZUSAMMENFASSUNG 
 
Studie über die Terpenoid-Biosynthese der Pflanzen unter Verwendung der 
Markierungsmethode mit stabilen 13C-Isotopen 
Terpenoide (oder Isoprenoide) stellen eine große Gruppe von Verbindungen dar, die ein weites 

Spektrum von biologischen Eigenschaften besitzen und vielfältige Verwendung beispielsweise als 

Geschmacksstoffe, Duftstoffe, Pestizide, antineoplastische Mittel, antibakterielle Pharmazeutika, 

Essenszusätze wie Vitamine usw. finden. Des Weiteren sind einige flüchtige Terpenoide wie 

Isopren und Monoterpene wegen ihrer physiologischen Funktionen in Pflanzen, ihrer Einflüsse 

auf das Ökosystem und ihrer Effekte auf die chemischen und physikalischen Eigenschaften der 

Atmosphäre, Gegenstand intensiver wissenschaftlichen Untersuchungen. Isopren und 

Monoterpene werden von Pflanzen in großen Mengen emittiert und über den plastidären 2-C-

Methylerythritol-4-Phosphatweg (MEP) produziert. Genetische Faktoren wie auch biotische und 

abiotische Umweltfaktoren kontrollieren die Terpenoid-Biosynthese der Pflanze. 

Diese vorliegende Dissertation trägt wesentlich zu einem vertieften Verständnis über die 

Terpenoid-Biosynthese der Pflanzen und die Regulierung des MEP-Stoffwechsels unter 

besonderer Beachtung der Isopren- und Monoterpenbiosynthese bei, ermöglicht durch moderne 

und neu etablierte Methoden, insbesondere der Verwendung von stabilen Isotopen. Stabile 

Isotope stellen ein nützliches Werkzeug dar, um spezifische Substanzen, wie organische Stoffe 

und atmosphärische Gase, zu markieren. Im Gegensatz zu radioaktiven Isotopen haben stabile 

Isotope den Vorteil, unschädlich zu sein. Die markierten Verbindungen (d.h. angereichert mit 

schwereren Isotopen) können zurückverfolgt und isoliert werden. Somit können stabile Isotope 

genutzt werden, um die Terpenoidbiosynthese in Pflanzen zu studieren, um Informationen zu 

Kohlenstoff-Quellen und -Flüssen innerhalb des MEP-Stoffwechsels in verschiedenem 

räumlichen und zeitlichen Zusammenhang zu untersuchen, sowie um Einblicke in die Regulierung 

der Enzyme des MEP-Stoffwechsels zu erhalten. 

 

Für die vorliegende Doktorarbeit wurde die 13C-Markierungmethode verwendet, um drei die 

pflanzlichen Terpenoide betreffenden Fragen zu beantworten: 

 

Die erste Frage beschäftigte sich mit der Monoterpenemission von Koniferen, die in der borealen 

Zone beheimatet sind. Welcher Anteil der Gesamt-Monoterpenemission von Koniferen kann 

direkt auf die de novo-Synthese zurückgeführt werden im Vergleich zur Emission von 

Monoterpenen aus Speichervorräten? Diese Frage ist von großer Bedeutung: Boreale Wälder 

bedecken eine sehr große Fläche unseres Planeten, und die Fraktion der Monoterpene, welche 

de novo synthetisiert werden, wird in den traditionellen atmosphärischen Modellen ignoriert. 

Wegen der Größe der borealen Waldflächen und des Einflusses ihrer Isopren- und 

Monoterpenemissionen auf die Luftqualität und die Dynamik des Klimas werden verlässliche 

Schätzungen über diese Emissionen für das Vorhersagen des heutigen und des zukünftigen 

Klimas benötigt. 

Unter Begasung mit 13CO2 und der Analyse der Isotopen-Markierung mittels der 

Protonentransferreaktions-Massenspektrometrie (PTR-MS) und der klassischen 

Gaschromatographie-Massenspektrometrie (GC-MS) wurden die de novo synthetisierten 
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Monoterpene der vier am häufigsten vorkommenden europäischen borealen/alpinen 

Baumspezies bestimmt: Pinus sylvestris (58%), Picea abies (33.5%), Larix decidua (9.8%) und 

Betula pendula (98-100%). Die Verwendung der beobachteten Aufteilung zwischen de novo-

Monoterpenbiosynthese und den Emissionen von Speichervorräten von P. sylvestris in einem 

Hybrid-Emissionsalgorithmus ergab eine bessere Beschreibung der Monoterpenemissionen eines 

borealen Schwarzkiefernbestandes. 

 

Die zweite Frage befasste sich mit der Regulierung der Terpenoidbiosynthese und der 

Etablierung einer neuen Methode zu deren Analyse. 1-Deoxy-D-Xylulose 5-Phosphat-Synthase 

(DXS) katalysiert den ersten Schritt des MEP-Stoffwechsels, und es ist anzunehmen, dass dieser 

Schritt eine bedeutende Rolle in der Regulierung des Stoffwechselflusses spielt. Das 

enzymatische Produkt 1-Deoxy-D-Xylulose-5-Phosphat (DOXP) ist zurückzuführen auf eine 

Acyloin-Kondensation von Hydroxyethylthiamin, welches durch Decarboxylierung von Pyruvat 

(PYR) entsteht, mit der C1-Aldehyd-Gruppe des D-Glyceraldehyd-3-Phosphat (GAP). Bis jetzt 

sind allein rekombinant hergestellte DXS-Proteine funktional charakterisiert worden, wobei deren 

Aktivität mittels radioaktiver Methoden bestimmt wurde und das Reaktionsprodukt entweder mit 

Dünnschichtchromatographie (TLC) oder Hochleistungsflüssigkeitschromatographie (HLPC) 

separiert werden musste. 

Die 13C-Markierung wurde dazu verwendet, um eine neue empfindliche Messung, basierend auf 

der Decarboxylierung von markiertem Pyruvat (1-13C)-PYR und der Detektion von 13CO2 durch 

Isotopenverhältnis-Massenspektrometrie (IRMS), zu entwickeln. Diese neue Methode eignet sich 

für die direkte Messung der DXS-Aktivität in Pflanzenextrakten, d.h. für die Charakterisierung der 

biochemischen Eigenschaften muss nicht mehr auf rekombinant hergestellte Enzyme 

zurückgegriffen werden. Diese Technik wurde erfolgreich bei der Charakterisierung der 

kinetischen Eigenschaften der DXS in Blättern von Pappeln angewandt. Die Analyse der DXS-

Aktivität entlang der Pflanzenachse zeigte eine entwicklungsbedingte Regulierung und eine 

positive Korrelation mit der Aktivierung der Genexpression der Isoprensynthase. Schließlich 

wurde herausgefunden, dass die DXS-Aktivität in transgenen, nicht Isopren emittierenden 

Pappeln geringer ist verglichen mit Wildpflanzen. Daraus lässt sich schließen, dass die DXS eine 

wichtige Rolle in der Regulierung des C-Flusses im MEP-Stoffwechsel einnimmt. 

 

Der dritte Fragenkomplex betrachtete die C-Quellen für die Isoprenbiosynthese. Ungefähr 75% 

des Isopren wird direkt aus kurz zuvor gebundenem Kohlenstoff (photosynthetischer Kohlenstoff) 

synthetisiert, während der restliche Anteil des Kohlenstoffs aus „alternativen“ C-Quellen stammt. 

Für einen Teil dieser Fraktion nahm man an, dass er von der beträchtlichen Menge an 

Kohlenstoff, die in der Pflanze verlagert wird, stammt. Das Ziel der vorliegenden Arbeit war es, 

den Beitrag dieses alternativen Kohlenstoffes als C-Quelle zur Isoprenbiosynthese in jungen 

Graupappeln zu quantifizieren. Hierfür wurden entweder ausgewachsene Blätter mit 13CO2 begast 

oder der Xylem-Saft mit 13C-Glucose angereichert. So konnte die Emission und die Einbindung 

von 13C in Isopren mit PTR-MS und in Kohlendioxid (CO2) aus der Atmung mit 

Absorptionsspektrometrie mit einem durchstimmbaren Diodenlaser (TDLAS) in den 

verschiedenen Organen der Pflanze (zum Beispiel im apikalen Teil der Pflanze, in jungen Blättern 

oder ausgewachsenen Blättern und im Wurzelsystem) gemessen werden. TDLAS und PTR-MS 
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wurden miteinander kombiniert, um parallel den Gasaustausch verschiedener Pflanzenteile zu 

erfassen. Die Kombination des TDLAS mit dem PTR-MS und der Untersuchung mit 13C-

Markierung ermöglichten es, nicht-invasiv und mit hoher zeitlicher Auflösung die Dynamik des C-

Flusses in den Pappelsetzlingen von der CO2-Bindung in „Quell“-Blättern bis hin zu der C-

Anreicherung in anderen Pflanzenteilen zu erfassen. Zusätzlich wurde die Isotopen-

Zusammensetzung von verschiedenen Pflanzengeweben mittels Elementaranalyse-(EA)-IRMS 

analysiert, um die endgültige 13C-Anreicherung zu quantifizieren. 

Bei intakten Pflanzen wurde 13C-Markierung über das Phloem innerhalb weniger Stunden zu 

den Wurzeln verlagert. 13C wurde einen Tag nach der Markierung in den Wurzeln sowie teilweise 

in apikalen Pflanzenteilen eingelagert, besonders während der Dunkelphase. Der Verlust der 

Wurzelsysteme führte zu einem Kurzschluss der C-Allokation innerhalb der Pflanze. Die mit 13C 

markierten Zucker, welche über das Phloem in die Nährlösung gelangten, konnten sofort wieder 

über das Xylem aufgenommen und daraufhin aufwärts zu den „Senken“-Geweben transportiert 

werden. 

Zusammenfassend ließ sich feststellen, dass der für die Isoprenbiosynthese verwendete 

Kohlenstoff überwiegend (76-78%) von kurz zuvor gebundenem CO2 stammte und zu einem 

geringeren Ausmaß von photosynthetischen Zwischenprodukten (8-11%) sowie von über das 

Xylem transportierten Zuckern (7.4-10.8%). Insgesamt konnten 93-99% der C-Quellen für die 

Bildung von Isopren aufgeklärt werden. 



  VI 

CONTENTS 
SUMMARY…………………………………………………………………………………...………………..…..…….I 
ZUSAMMENFASSUNG...…………………………………………………...…………………………….…………..III 
CONTENTS………………………………………………………………………………………………………..……VI 
LIST OF ABBREVIATIONS………………………………………………………………………………………….VII 

1. INTRODUCTION…………………………………………………………………………………….3 
1.1. Volatile terpenoids as main biogenic volatile organic compounds………...…………3 

1.1.1. Definition and importance of terpenoids……………………………………………….………....3 
1.1.2. Importance of isoprene and monoterpenes as biogenic volatile organic compounds....5 

 1.1.2.1. Definition of BVOC………………………………………………………………...………..…....5 
 1.1.2.2. Roles in the atmosphere / physiological functions...…………………………...……………..6 
 1.1.2.3. Regulation and driving forces of BVOC emission……………………………...…………......6 

1.1.3. The MEP pathway: source of isoprene and monoterpenes; regulatory steps…...……..8 
1.2. Stable isotopes: principles and instruments................................................................12 

1.2.1. 13C stable isotope labeling techniques as a tool to study terpene biosynthesis ............12 
1.2.2. Proton Transfer Reaction Mass Spectrometer (PTR-MS).............................................13 
1.2.3. Measurements of 13C/12C using LC-IRMS, EA-IRMS and GC-IRMS ............................15 
1.2.4. Tunable Diode Laser Absorption Spectroscopy (TDLAS) .............................................18 

2. AIMS OF THE THESIS..........................................................................................................19 

3. MATERIALS AND METHODS ..............................................................................................21 
3.1. Plant material and growth conditions ...........................................................................23 
3.2. Methods............................................................................................................................24 

3.2.1. Dynamic cuvette system................................................................................................24 
3.2.2. Plant gas-exchange measurements..............................................................................24 
3.2.3. PTR-MS analysis...........................................................................................................24 
3.2.4. Determination of leaf and needle area ..........................................................................26 
3.2.5. Biochemical analysis .....................................................................................................26 
3.2.6. Statistical analysis .........................................................................................................26 

3.3. Experimental design .......................................................................................................27 
3.3.1. Determination of de novo and pool emissions of terpenes ...........................................27 
3.3.2. Determination of DXS activity........................................................................................28 
3.3.3. Tracing the C fluxes within the plant..............................................................................29 

4. RESULTS AND DISCUSSION..............................................................................................33 
4.1. Determination of de novo and pool emissions of terpenes........................................35 

4.1.1. 13CO2-labeling for the quantification of experiments reveal light-dependent 
monoterpene biosynthesis in conifer trees: determination of de novo synthesis ..........35 

4.1.2. Absence of 13C-labeling of endogenous monoterpenes indicates complete split 
between de novo and storage pool emissions ..............................................................38 

4.1.3. Isotopic pattern of isoprene and DMADP reveals the subcellular DMADP pool size ....39 
4.2. Determination of DXS activity ........................................................................................41 

4.2.1. Use of 13C-labeling to determine the DXS activity.........................................................41 
4.2.2. Apparent kinetic properties of DXS and its regulation in the MEP pathway..................42 

4.3. Use of 13C-labeling for tracing the C fluxes within the plant.......................................43 
4.3.1. Role of C-translocation in the ‘alternative C sources’ for terpene biosynthesis ............43 

5. CONCLUSION AND OUTLOOK...........................................................................................45 

6. LITERATURE ........................................................................................................................49 

7. PUBLICATIONS....................................................................................................................61 

8. ACKNOWLEDGEMENTS………………………………………………………………………....63 
 
 



VII   

List of abbreviations 
 

ADP   adenosine diphosphate 

amu   atomic mass unit 

ATP   adenosine triphosphate 

BVOC    biogenic volatile organic compound(s) 

C   carbon 

cps   counts per second 

DMADP  dimethylallyl diphosphate 

CO2    carbon dioxide 

DOXP (or DXP) 1-deoxy-D-xylulose 5-phosphate 

DXR   1-deoxy-D-xylulose 5-phosphate reductoisomerase 

DXS   1-deoxy-D-xylulose 5-phosphate synthase 

FDP    farnesyl diphosphate 

Flash EA-IRMS  flash elemental analyzer-isotope ratio mass spectrometer 

g    gram 

GAP   glyceraldehyde 3-phosphate 

GC   gas chromatography 

GDP    geranyl diphosphate  

GGDP   geranylgeranyl diphosphate 

H   Henry’s law constant 

HDR    1-hydroxy-2-methylbutenyl 4-diphosphate reductase 

HMG-CoA   3-hydroxy-3-methylglutaryl-Coenzyme A 

HPLC   high performance liquid chromatography  

h   hours 

IDI    isopentenyl diphosphate isomerase 

IRMS   isotope ratio mass spectrometer 

IAEA   International Atomic Energy Agency 

Km   Michaelis constant 

L   liter 

LC-IRMS  liquid chromatography isotope ratio mass spectrometry 

LOD   limit of detection 

m    milli (10-3) 

min   minute 

MEP   methylerythritol 4-phosphate 

M    molarity 

MS   mass spectrometry 

MW    molecular weight 

MVA   mevalonate  

m/z    mass-to-charge ratio 



VIII   

micro (10-6) 

n    nano (10-9)

NADPH   nicotinamide adenine dinucleotide phosphate 

NMHC    non-methane hydrocarbons 

ORVOC   oxygenated reactive VOC 

OVOC   oxygenated VOC  

ppbv    parts per billion by volume 

PPFD    photosynthetic photon flux density 

ppmv    parts per million by volume 

pptv    parts per trillion by volume 

PEP   phosphoenolpyruvate 

PYR    pyruvate 

PPTtr   phosphoenolpyruvate translocator 

PTR-MS   proton transfer reaction mass spectrometry 

rTF    relative transmission factor  

s   seconds 

SD   standard deviation 

SE   standard error 

T3P   triose 3-phosphate 

TDLAS tunable diode laser absorption spectroscopy  

TF   transmission factor 

TLC   thin-layer chromatography 

TPP   thiamine pyrophosphate  

TR    transmission factor  

V   volt 

VOC   volatile organic compound(s) 

v/v    volume per volume 

w/v    weight per volume 

WT    wild type 

y    year 
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1. Introduction 

The object of this thesis was the biosynthesis of plant terpenoids, particularly of the volatile 

isoprene and monoterpenes.  
After introducing the importance of terpenoids and biogenic volatile organic compounds in 

general and presenting the biosynthesis pathways of terpenoids, principles of the used stable 

isotope techniques and their application for the present thesis are given. 

 

 

 

1.1. Volatile terpenoids as main biogenic volatile organic 
compounds 
 
1.1.1. Definition and importance of terpenoids 
Terpenoids (or isoprenoids) are a ubiquitous group of compounds occurring in all living organisms 

and the largest group of natural compounds existing in nature with more than 40,000 structures 

(Bohlmann & Keeling, 2008). Terpenoids possess many biological properties, which have made 

them widely used for traditional and modern purposes as pharmaceuticals, flavors, fragrances, 

pesticides, antineoplastic drugs, antibacterial agents, food additives (e.g. vitamins, etc.) 

(Mahmoud & Croteau, 2002; Kintzios, 2006; Bohlmann & Keeling, 2008). Terpenoids, up to now 

mostly synthesized from fossil oil, become very interesting for biotechnology since the production 

of terpenoids for industrial purposes can be largely increased by engineered microorganisms 

(Chang & Keasling, 2006). In plants, terpenoids are essential for metabolism, plant growth and 

development (Bohlmann & Keeling, 2008). Overall, their physiological roles are related to 

photosynthesis (e.g. chlorophyll, carotenoids) or the regulatory activities of plant hormones 

(phytohormones) such as abscisic acid, auxins, cytokinins and gibberellins (Lange & 

Ghassemian, 2003). Other terpenoids are known or assumed to have functions related to defense 

against or symbiosis with other organisms (Gershenzon & Dudareva, 2007). These terpenoids 

include volatile compounds with the function of attractants, repellents, toxins, and antibiotics 

(Pichersky & Gershenzon, 2002; Gershenzon & Dudareva, 2007). 

Terpenoids are derived from the branched C5 skeleton of isoprene. Head-to-tail condensations 

of isopentenyl diphosphate (IDP) with its allylic isomer dimethylallyl diphosphate (DMADP) starter 

unit generate the linear prenyl diphosphate precursors geranyl diphosphate (GDP) (Fig. 1). 
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Figure 1. Schematic representation of the terpene skeleton 
and its formation from head-to-tail C5 condensation. The C5 

units originating from DMADP and from IDP are indicated in 
red and in blue, respectively. 

 

 

The classification of terpenoids is based on the number of isoprene (C5) units (u.): hemi 

terpenoids (1 u.), monoterpenoids (2 u.) sesquiterpenoids (3 u.), diterpenoids, (4 u.), 

sesterterpenoids, (5 u.), triterpenoids (6 u.), tetraterpenoids, (8 u.) and polyterpenoids with a 

larger number of units (Table 1). 

 

 

Table 1. Classification of terpenoids based on number of isoprene units. For each isoprenoid class, the 
isoprenoid precursors, examples and main functions are given. 
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The precursors of terpenoid biosynthesis are synthesized from two independent pathways 

localized in two separate cell compartments: (i) the cytosolic mevalonate (MVA) pathway and (ii) 

the plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway. 

The cytosolic mevalonate (MVA) or 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) pathway was 

discovered earlier (Agranoff et al., 1960) and is responsible for the synthesis of ubiquinone (Disch 

et al., 1998), cytokinins, sesquiterpenes (C15), triterpenes (C30), sterols and brassinosteroids 

(Suzuki et al., 2004). The MVA pathway is found in animals, fungi and phototrophic organisms 

(Chappell et al., 1995). 

Biosynthesis of isoprene and monoterpenes in plants proceeds via the plastid MEP pathway, 

discovered in 1993 by Rohmer and co-workers (for review, Lichtenthaler, 1999). This pathway is 

also present in Eubacteria, green algae and Plasmodium sp. (Eoh et al., 2007; Cassera et al., 

2004; Grauvogel & Petersen, 2007; Okada & Hase, 2005; Massé et al., 2004) and delivers the 

metabolic intermediates for the formation of higher isoprenoids such as carotenoids, phytol, 

tocopherols, phylloquinones (Lichtenthaler, 1999). 

 

 

1.1.2. Importance of isoprene and monoterpenes as BVOC 
1.1.2.1.  Definition of BVOC 
The biogenic volatile organic compounds (BVOC) embrace a large variety of chemicals, including 

alkanes, alkenes, alcohols, ketones, aldehydes, ethers, esters and carboxylic acid (Kesselmeier & 

Staudt, 1999). Some BVOC are volatile terpenoids (isoprene, monoterpenes, sesquiterpenes), 

other compounds are not (e.g. methanol, ethanol, acetaldehyde, formaldehyde etc.). Methane is 

the only biogenic compound emitted, which is not included in the BVOC group [BVOC is 

sometimes referred to as non-methane hydrocarbons (NMHC)]. Although BVOC are emitted by all 

biota, they are largely produced and emitted by plants. BVOC are important in the global C cycle. 

With an atmospheric carbon flux of 1200 Tg C yr-1, BVOC represent circa 1% of the total carbon 

exchanged between biota and the atmosphere (Lal, 1999). The contribution of VOC from 

anthropogenic sources to the total VOC emission accounts for approximately 150 Tg C yr-1, 

indicating that on the global scale biogenic emissions are dominant. 

The most emitted BVOC are isoprene (2-methyl-1,3-butadiene) and monoterpenes (e.g. -

pinene, -pinene, camphor, linalool, etc.). Still, there are large uncertainties associated with the 

global isoprene (250-450 Tg C yr-1) and monoterpene (128-450 Tg C yr-1) emission budgets, 

which are estimated to contribute approximately 40% and 30% to the total BVOC emission, 

respectively (Guenther et al., 1993). The flux of isoprene to the atmosphere is roughly similar to 

that of methane. 
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Table 2. Sources and amount of the most important biogenic volatile organic compounds  
(* oxygenated reactive VOC; ** oxygenated VOC). 
 

 

Sources of the most important  
biogenic volatile organic compounds (BVOC) 

 

BVOCs 
 

Primary natural sources 
 

Estimated 
global emissions  
y-1 [Mt C] 

 

Mean atmos.  
Lifetime [days] 

Isoprene Plants 250-450 0.2 

Monoterpenes Plants 128-450 0.1-0.2 

Dimethylsulfide Marine phytoplankton 15-30 <0.9 

Ethene Plants, Soils, Oceans 8-25 1.9 

ORVOC*  
(e.g. aldehydes, MBO) 

Plants Ca. 260 <1 

OVOC** 
(e.g. MeOH,  

EtOH, acetone, acids) 

Plants, Soils Ca. 260 >1 

 

 

1.1.2.2.  Roles in the atmosphere / physiological functions  
BVOC are reactive molecules and play an important role in air quality and climate dynamics in the 

lower troposphere. In the presence of nitrogen oxides (NOx), BVOC contribute to the formation of 

tropospheric ozone (Thompson, 1992). The dynamics of ozone, hydroxyl radical, carbon 

monoxide, methane formation/breakdown and secondary aerosol formation cannot be explained 

without taking into account the plant-produced reactive compounds (Trainer et al., 1987; 

Chameides et al., 1988; Jacob & Wofsy 1988; Novakov & Penner 1993; Biesenthal et al., 1997; 

Tunved et al., 2006; Kiendler-Scharr et al. 2009). 

Besides their contribution to air chemistry, BVOC play a dominant role in the physiology and 

ecology of plants, as they are used for communication in plant-plant and plant-organism 

interactions (Kegge & Pierik, 2009; Dicke & Baldwin, 2010). 

The physiological function(s) of isoprene is/are still a matter of debate. Different studies showed 

that isoprene can protect plant against transient heat (Sharkey & Singsaas, 1995; Behnke et al., 

2007; 2010) and oxidative stress (Loreto et al., 2001; Loreto & Velikova, 2001). Isoprene 

functions as a metabolic ‘safety valve’ (Rosenstiel et al., 2004), can act as negative cue for 

herbivores (Laothawornkitkul et al., 2009) and interferes with the attraction of plant-protecting 

predators (Loivamäki et al., 2008). Although the physiological function of isoprene is still under 

debate, plants invest a significant amount of fixed C into isoprene, e.g. approximately 2% at 30°C 

relative to net CO2 assimilation, and a dramatically increased amount under stress conditions 

when, for example, photosynthesis is reduced and isoprene is emitted at its highest rate (in poplar 

trees, at circa 36°C, the relative loss of carbon by emitting isoprene reaches 30% of the net CO2 
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fixation rate) (Sharkey & Yeh, 2001). Moreover, isoprene emission costs the plants significant 

amounts of ATP and reducing (NADPH) equivalents (Niinemets et al., 2002). 

Monoterpenes (C10) can be acyclic (such as ocimene, myrcene, linalool) or contain rings (such 

as limonene, menthol, carene, sabinene, pinene, thujene) (Fig. 2). Monoterpenes are known as 

defense molecules against insects, bacteria, fungi, and herbivores. When these compounds are 

volatized, they can attract pollinators and act as signal for herbivores (Dicke & Baldwin, 2010). 

Also, the synthesis can be induced by herbivores and pathogenic attack (Dicke & Baldwin, 2010). 

 

 

Geraniol cis-Ocimene Linalool

3-Carene 4-Caranol

-Pinene -Pinene Verbenone -Thujene Sabinene

Limonene Carvone Menthol

Camphor IsoborneolGeraniol cis-Ocimene Linalool

3-Carene 4-Caranol

-Pinene -Pinene Verbenone -Thujene Sabinene

Limonene Carvone Menthol

Camphor Isoborneol

 
Figure 2. Diversity of monoterpenes (C10) structures. Typical examples of 
acyclic or cyclic and oxygenated or non oxygenated forms. 

 

 

1.1.2.3. Regulation and driving forces of BVOC emission 
BVOC emissions from plants are controlled by different factors: (i) plant species (Kesselmeier & 

Staudt, 1999), environmental conditions such as (ii) temperature, (iii) light (Kesselmeier & Staudt, 

1999), (iv) drought (Brilli et al., 2007), (v) ambient ozone (Loreto & Velikova, 2001), and (vi) CO2 

concentration (Rosenstiel et al., 2003). Plant BVOC emission are also largely induced by both 

abiotic and biotic stresses (for review see Loreto & Schnitzler, 2010; Niinemets, 2009; Holopainen 

& Gershenzon, 2010; Dicke & Baldwin, 2010). Low atmospheric CO2 concentrations are 

associated with high isoprene emission rates (Sanadze, 1964), whereas the high atmospheric 

CO2 concentrations expected in future suppress isoprene emission (Sharkey et al., 1991; 

Rosenstiel et al., 2003; Centritto et al., 2004; Pegoraro et al., 2004; Wilkinson et al., 2009). 

Drought reduces isoprene and monoterpene emissions only when the stress is severe and almost 
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completely inhibits photosynthesis (Sharkey & Loreto, 1993; Brüggemann & Schnitzler, 2002b; 

Fortunati et al., 2008). Temperature strongly influences the activity of the enzymes, which 

catalyze the synthesis of many BVOC (Monson et al., 1992), and increasing light directly 

influences the isoprene and monoterpene emission by enhancing photosynthesis (Sharkey et al., 

2001). Plants produce a diversity of BVOC (e.g. monoterpenes and sesquiterpenes) in response 

to biotic stress, as for example, attack or egg deposition by herbivores for direct defense or to 

attract herbivore enemies (De Moraes et al., 2001; Kessler & Baldwin, 2001; Mumm et al., 2006; 

Fatouros et al., 2008; Dicke et al., 2009; Unsicker et al., 2009). 

Many plants, especially conifers, mints and citrus, accumulate monoterpenes in specialized 

storage tissues, such as ducts, glands, and cavities, and the synthesis is located in cells lining 

these specialized structures (Schürmann et al., 1993). Conversely, some dicotyledon trees such 

as Quercus ilex, Betula pendula etc. do not possess such structures, and monoterpenes are 

immediately emitted after having been synthesized in the mesophyll cells (Loreto and Schnitzler, 

2010). Isoprene is always emitted after synthesis due to its high volatility and absence of 

specialized storages tissues (Niinemets et al., 2004). 

Isoprene and monoterpene emissions from many dicotyledon trees originate from recently fixed 

photosynthetic intermediates by de novo biosynthesis in a light- and temperature-dependent 

manner (Tingey et al., 1980; Loreto et al., 1996, 2000a) when photosynthesis is not impaired by 

environmental stresses (Kreuzwieser et al., 2002; Fortunati et al., 2008; Teuber et al., 2008). 

Monoterpene emissions from the reservoirs are only due to evaporation processes which are 

specific for each monoterpene (due to different volatility), thus, they are only temperature-

dependent (Schürmann et al., 1993). Traditionally, monoterpenes emitted by coniferous trees 

have been assumed to originate only from these evaporation processes (Guenther et al., 1991; 

Grote & Niinemets, 2008). As a result, monoterpene emissions from coniferous trees are 

commonly calculated by temperature-dependent algorithms (Tingey et al., 1980; Guenther et al., 

1991; Guenther et al., 1993). Even though specific storage structures are absent in most 

dicotyledon tree species, the temperature-dependent algorithm is often used also to describe the 

monoterpene emissions from these species as well (e.g. Tarvainen et al., 2007). 

 

 

1.1.3. The MEP pathway: source of isoprene and monoterpenes; regulatory steps 
In the plastidic MEP pathway, D-glyceraldehyde 3-phospate (GAP) and pyruvate are both 

precursors for DMADP (and its isomer IDP). These precursors are central metabolites involved in 

several pathways (glycolysis, gluconeogenesis, the tricarboxylic acid cycle and the pentose 

phosphate pathway) and thus subjected to many layers of regulation. 

The MEP pathway starts with the formation of 1-deoxy-D-xylulose 5-phosphate (DXP) by an 

acyloin condensation of hydroxyethylthiamin derived from the decarboxylation of pyruvate (PYR) 

with the C1-aldehyde group of GAP (Arigoni et al., 1997; Rohmer et al., 1993) (Fig.3). This first 

enzymatic step is catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS, EC number 
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2.2.1.7), an enzyme that is assumed to be important in regulating the metabolic flux within the 

pathway (Estévez et al., 2001; Lois et al., 2000; Walter et al., 2000).  
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Figure 3. Schematic representation of the reaction catalyzed by 1-
deoxy-D-xylulose 5-phosphate synthase (DXS, EC number 2.2.1.7): 
pyruvate (PYR) is decarboxylated and reacts with D-glyceraldehyde 
3-phospate (GAP) to 1-deoxy-D-xylulose 5-phosphate (DXP). 

 

 

DXS is a recently discovered thiamin-dependent transketolase-like enzyme. DXS was genetically 

characterized in E. coli (Lois et al., 1998; Sprenger et al., 1997) and several plant species (Arigoni 

et al., 1997; Lange et al., 1998). The DXS product 1-deoxy-D-xylulose 5-phosphate (DXP or 

DOXP) is converted by the enzyme 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) to 

form MEP (Fig. 4). DOXP is not only the first intermediate of the MEP pathway since it is also 

involved in the thiamine/shikimate pathway (Julliard and Douce, 1991; Belanger et al., 1995). 

Thus, it was supposed that DXR may play the regulatory role in the MEP pathway rather than 

DXS (Mayrhofer et al., 2005). Supporting this idea, Carretero-Paulet et al. (2002; 2006) showed 

that over-expression of the DXR gene in Arabidopsis thaliana increased the concentration of 

isoprenoid end products. By contrast, in poplar the DXR gene expression did not correlate with 

isoprene emission (Mayrhofer et al., 2005), and over-expression of DXS enhanced the production 

of essential oil in transgenic Spike Lavender (Munoz-Bertomeu et al., 2006). The regulatory roles 

of DXS and DXR in the MEP pathway therefore await further studies. The complete sequence of 

genes involved in the following five steps of the MEP pathway until the synthesis of the direct 

isoprenoid precursors IDP and DMADP were identified by Bacher and co-worker (for review see 

Eisenreich et al., 2001) (Fig. 4). The last step in the MEP pathway is catalyzed by the enzyme 1-

hydroxy-2-methylbutenyl 4-diphosphate reductase (HDR) which converts 1-hydroxy-2-methyl-2-

(E)-butenyl 4-diphosphate to DMADP, the immediate precursor of isoprene and of its isomeric 

form IDP, the precursor of higher isoprenoids. IDP can also be isomerized by isopentenyl 

diphosphate isomerase (IDI) to DMADP from which isoprene synthase (ISPS) synthesizes 

isoprene. In order to synthesize higher isoprenoids the two diphosphorylated C5 units, DMADP 

and IDP, condense in a head-to-tail reaction to produce geranyl diphosphate (GDP; C10). The 
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reaction can be repeated to further produce farnesyl diphosphate (FDP, C15) or geranylgeranyl 

diphosphate (GGDP; C20) (Ramos-Valdivia, 1998). 

 

 

DMADP

IDP

GAP DOXP

IDI

DMADP

IDP

GAP DOXP

IDI

 
 

Figure 4. Scheme of the plastidic MEP pathway from the two precursor molecules pyruvate (Pyr) 
and D-glyceraldehyde 3-phosphate (GAP) to the formation of isopentenyl diphosphate (IDP) and 
dimethylallyl diphosphate (DMADP). [Acronyms: DOXP = 1-deoxy-D-xylulose 5-phosphate; MEP = 
2-C-methyl-D-erythritol 4-phosphate; CDP-ME = 4-diphosphocytidyl-2C-methyl-D-erythritol; CDP-
MEP = 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phophate; MEcPP = 2C-methyl-D-erythritol 2,4-
cyclodiphosphate; HMB-PP = 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate; DXS = DOXP 
synthase (EC 2.2.1.7); DXR = DOXP reductoisomerase (EC 1.1.1.267); CMS = MEP 
cytidylyltransferase (EC 2.7.7.60); CMK = CPD-ME kinase (EC 2.7.1.148); MCS = MEcPP synthase 
(EC 4.6.1.12); HDS = HMB-PP synthase (EC 1.17.4.3); HDR = HMB-PP reductase (EC 1.17.1.2); IDI 
= DMADP/IDP isomerase (EC 5.3.3.2)]. 

 

 

In chloroplasts, pyruvate can be imported from the cytosol as phosphoenolpyruvate (PEP) and 

GAP as a triose 3-phosphate (T3P) (Fig. 5). Although DMADP is required in plastids, 

mitochondria and cytosol, only the plastidic DMADP is used for the biosynthesis of isoprene, while 
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cytosolic DMADP is used, for instance, to synthesize vitamins, sesquiterpenes and other 

compounds (Fig. 5). 

 

    

Figure 5. Schematic representation of main regulatory steps of the 
chloroplastic MEP pathway; the main C sources for terpenoid biosynthesis 
(atmospheric CO2 and sugars); cross-talk between MEP and MVA 
pathways (the question mark indicates a hypothetical transfer of cytosolic 
DMADP to the chloroplast; Lichtenthaler, 1999).  

 

 

The close relation between isoprene biosynthesis and photosynthetic activity was demonstrated 

by 13CO2 labeling (Sanadze, 1991): 13C was almost instantaneously (within a few minutes) 

incorporated into isoprene. However, isoprene was not fully 13C-labeled (circa 80% in poplar) and 

this proportion of labeling decreases under stress conditions suggesting that ‘alternative’ C 

sources are used for isoprene biosynthesis. These C sources were proposed first by Karl et al. 

(2002a, 2002b) and Affek and Yakir (2003) as i) chloroplastic degradation of starch occurring 

simultaneously to its biosynthesis, ii) refixation of respiratory C, iii) influx of cytosolic precursors 

(pyruvate/PEP) into the chloroplast. It was demonstrated later by Kreuzwieser et al. (2002) in 

Quercus robur and Schnitzler et al. (2004b) in Grey poplar that xylem-transported sugars are 

additional C sources for isoprene formation. Brilli et al. (2007) showed in Populus alba a larger 

contribution of these alternative C sources to isoprene emission during dramatically limited 

photosynthesis activity caused by drought.  

Volatile isoprenoids can be an important part of the carbon metabolism of a plant, and their 

biosynthesis is subject to various regulations not always understood. To further increase our 

knowledge on the C sources and the regulations of terpenoid biosynthesis, 13C stable isotope 

labeling techniques were employed. 
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1.2. Stable isotopes: principles and instruments 

1.2.1. 13C stable isotope labeling techniques as a tool to study terpene 
biosynthesis 

13C stable isotope analysis is widely used to study physiological, ecological and biogeochemical 

processes related to ecosystems (Dawson et al., 2002).  

The concept is based on the differences in stable C isotope composition in organic compounds 

well defined by physical and biological processes. The carbon in atmospheric CO2 mainly consists 

of 98.892% 12C and 1.108% 13C (Dawson et al., 2002). Plants contain less 13C relative to 12C than 

atmospheric CO2 in their tissues, i.e. plants are isotopically lighter (or depleted in 13C) than 

atmospheric CO2. This is due to the faster diffusion of 12CO2 into the leaves and the faster 

reaction rate of Rubisco with 12C during photosynthesis (Farquhar et al., 1982; Flanagan & 

Ehleringer, 1998). This effect on isotopes differs in various ecosystem processes and it is referred 

to as fractionation (Farquhar, 1989). Fractionation occurs because physical and chemical 

processes influence the partitioning of the isotopes in a particular way due to the difference of 

isotopes masses.  

Isotopic signatures for 13C are commonly noted with delta ( 13C) notation, which is defined by 

the equation: 

 

‰  1000, 1 -
R
R

 = 
VPDB

sample  

 

where R is the molar ratio of 13C/12C and VPDB is the Vienna Pee Dee Belemnite international 

standard (based on carbonate from the Pee Dee formation). Delta values are commonly given in 

“per mil” (‰) due to the small fractional differences in natural abundance (Dawson et al., 2002). 

Negative values stand for depletion versus the standard and positive values for enrichment in the 

heavy isotope. Isotopic discrimination against 13C occurs during diffusion of CO2 into leaves (4.4 

‰, Guy et al., 1993), CO2 fixation by Rubisco (29 ‰; Guy et al., 1993), and during isoprene 

biosynthesis (3 ‰ with respect to photoassimilates, Sharkey et al., 1991). Further discriminations 

occur during biosynthesis of compounds like lipids (Melzer & Schmidt, 1987). 

At natural abundance level stable isotopes are used mainly as natural tracers and integrators, 

allowing ecologists to evaluate the net result of processes, without disrupting the natural flow of 

the elements (Högberg, 1997). The isotopic composition of carbon can provide information at 

different temporal and spatial scales (Miller et al., 2003). For example, ecosystem photosynthesis 

and respiration can be separated, because these two processes have contrasting effects on the 

isotopic ratio of 13C (Flanagan & Ehleringer, 1998). Thus, isotopic measurements can reveal 

climate change by variation of temperature, soil moisture and all other factors that influence 

photosynthesis and respiration (Flanagan et al., 1997). 
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Studying the isotopic composition of atmospheric trace gases is a useful tool to trace sinks and 

sources of these gases and underlying processes (Griffiths, 1998), and using plants as 

biomarkers for large-scale studies of photosynthesis has a great potential (Conte & Weber, 2002). 

The same potential may be associated with the isotopic composition of isoprene or other BVOC 

(Affek & Yakir, 2003). 

In contrast to analysis at natural abundance level, isotope labeling methods involve applying 

specific amounts of an isotopically enriched substance (up to 99 atom% of the heavy isotope, e.g. 
13C) to plants, soil, animals etc. Thus, the flow and the fate of a specific (labeled) compound (e.g. 

gas, 13CO2, sugars, 13C-glucose) can be traced without altering its natural behavior (Schimel, 

1993) and the addition of a labeled compound is a powerful tool for determining rates of biological 

processes within the system (Lajtha & Michener, 1994). For studies with enriched samples, the 

labeled substances usually have an isotopic composition that is largely greater in abundance of 

heavier isotopes than the substance occurring at natural abundance. It is common to use the 

expression ‘atom%’ (Ab) which is defined as: 

 

 % ,
1R

R
 *100

XX
X

 = A
sample

sample

lightheavy

heavy
b  

 
where Xheavy and Xlight are the number of heavy and light atoms present in the samples and Rsamples 

is the isotope ratio of the sample as for natural abundance (see above). Thus, a substance that 

exceeds 1 ‘atom %’ compared to another substance, has a  value of greater than 1000‰. 

Labeling experiments represent a powerful tool since current technology allows labeling C with 

99% of 13C and (depending on the technique used) detecting variations in 13C smaller than 0.0001 

atom% 13C. Thus, enriched compounds can be traced even after manifold dilutions with the non-

enriched species. This represents a useful tool, for example, to study plant physiological 

processes. For instance, feeding plants with 13CO2 allows following the fixation of 13C by 

photosynthesis into its incorporation in biosynthesized plant compounds (e.g. Delwiche & 

Sharkey, 1993; Loreto et al., 1996; Shao et al., 2001). Labeling experiments with 13C can also be 

used for studying the enzymatic properties of an enzyme (Everley et al., 2007). These 

approaches were followed in this thesis using different adapted instruments presented in the 

following sections. 

 

 

1.2.2. Proton Transfer Reaction Mass Spectrometry (PTR-MS)  
A proton transfer reaction mass spectrometer (PTR-MS) uses H3O+ ions to ionize volatile organic 

compounds present in the gas sample to be analyzed. The technique allows simultaneous online 

monitoring and has a detection limit of a few parts per trillion (pptv) (Hansel et al., 1995; Lindinger 

et al., 1998). The instrument is made of three main components: an ion source, a drift tube, and a 

mass analyzer (quadrupole mass spectrometer) in conjunction with an ion detector/amplifier (Fig. 
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6). The PTR-MS produces H3O+ ions at high concentration from pure water vapor by a hollow 

cathode discharge ion source. These ions are called primary ions and they pass into the drift tube 

where they mostly undergo non-dissociative proton transfer to the VOC analyzed. The air 

samples to be analyzed enter the PTR-MS from the inlet into the drift tube (Fig.6). Finally, the ions 

enter the quadrupole (QMS) where they are deflected according to their masses, and the ions are 

detected successively in the secondary electron multiplier (SEM). The instruments’ response time 

is about 100 ms. 

 
 

Figure 6. Schematic overview of PTR-MS main components (source: Ionicon 
Analytik Gesellschaft m.b.H., Innsbruck, Austria). The ion source produces the 
H3O+ ions; in the drift tube the protons are transferred from the H3O+ to the sample 
(e.g. isoprene); the quadrupole (QMS) separates the ions, which are detected with 
the secondary electron multiplier (SEM).  

 

 

The big advantage of a PTR-MS for stable isotopic studies is that it allows measuring online 

isotopologues such as isoprene containing one or more 13C atoms (Schnitzler et al., 2004b; Brilli 

et al., 2007). The mass range of a sensitive PTR-MS is 1-512 atomic mass units (amu) with a 

resolution of < 1 amu. Thus, compounds containing heavier isotopes can be distinguished from 

the lighter ones. For instance, a protonated isoprene molecule (C5H9
+) containing only five 12C 

atoms has a molecular mass of 69 amu. The enrichment of isoprene with 13C leads to an 

incorporation of 1 to 5 13C atoms, with molecular masses ranging from 70 to 74 amu for the 

protonated forms, respectively. Another advantage of PTR-MS is that the VOC samples do not 

need to be prepared before the measurement, thus, in plant cuvette measurements the air 

samples can be directly introduced into the inlet of the PTR-MS. Because the proton affinity (PA) 

of H3O+ (7.2 eV, 166.5 kcal mol-1) is between the proton affinities of the major components 

present in air (i.e. N2, O2 , Ar, CO2, CH4, N2O, CO, He, Ne; 1.8 eV < PA < 6.2 eV, or 42 kcal/mol < 

PA <142 kcal mol-1) and the BVOC (PA > 7.22 eV; PA > approx. 168 kcal mol-1), most of the 

relevant BVOC will undergo a proton transfer reaction with H3O+ ions. Also, the low PA difference 

results in an only slightly exergonic reaction, with the advantage that in most cases the BVOC 

remain undissociated. 
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1.2.3. Measurements of 13C/12C using LC-IRMS, EA-IRMS and GC-IRMS 
The isotopic composition of elements in a sample can be determined by using isotope ratio mass 

spectrometry (IRMS) (Dawson et al., 2002). This requires a very sensitive instrument, due to the 

fact that the differences in isotope abundances of an element to be detected are usually very 

small. The IRMS uses a homogeneous magnetic field to deflect a beam of ionized particles 

according to their molecular masses towards a series of Faraday cups which convert particle 

impacts to electric current. 

The Liquid Chromatography (LC)-IRMS system is an online coupling of a high performance 

liquid chromatography (HPLC) system and an isotope ratio mass spectrometer (Krummen et al., 

2004; Godin, Fay & Hopfgartner, 2007). The instrument allows accurately determining the 13C/12C 

isotope ratios of all organic compounds eluted from an HPLC column, while maintaining the 

chromatographic resolution. The sample detection limit is in the low nanomole range. 

 

 

 

  

Figure 7. Scheme of a LC-IRMS system. A: Needle port; B: sample loop; C: 6-port valve; 
D: T-piece; E: two-head-pump; F: pulse damper; G: oxidation reactor; H: cooler; I: CO2 
separation unit; J: gas dryer; K: open split (Krummen et al., 2004). 

 
 
 
In the reactor chamber all organic samples eluted from HPLC become oxidized to CO2 while the 

samples are still in the aqueous solution. The column eluent is mixed with acid and oxidant (Fig. 7 

D) and completely oxidized when passing through the heated reactor (T = 99.9 °C) (Fig.7 G). The 

reaction mixture is cooled (H) and then the CO2 is removed from the aqueous solution in a 

downstream degassing unit (Fig. 7 I) due to the acidity of the solution. It enters a He stream and 

passes a drying unit (Nafion) (Fig. 7 J), before it reaches the inlet of the isotope mass 
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spectrometer via an open split interface for the quantification of amount and 13C/12C ratios of CO2. 

The liquid phase containing the solute and the oxidant/acid leaves the instrument into a waste 

container. The whole process is quantitative and fractionation does not occur. Assessment of the 

authenticity of products and the determination of their origin is a typical example of LC-IRMS 

application (Krummen et al., 2004). For instance, the adulteration of honey by addition of sugar 

can be assessed by its isotopic signature (Krummen et al., 2004). 

An Elemental Analyzer (EA) coupled to an IRMS analyzes the elemental (e.g. C, N) and the 

isotopic composition of a solid sample (Holt & Hughes, 1955; Brenna et al., 1997). The results of 

this analysis are both qualitative and quantitative. The instrument is based on quantitative high 

temperature oxidation of bulk material at high temperatures (approximately 1000 °C) to CO2 and 

N2. Nitrogen oxides which may be formed during combustion are reduced by Cu to N2. After 

removal of H2O, the CO2 and N2 are separated isothermally on a GC column prior to transfer to 

the ion source of the IRMS (Fig.8). Thus, the 13C/12C and 15N/14N isotope ratios can be measured 

sequentially. 

 

 

 

 
 

Figure 8. The Elemental Analyzer consists of an autosampler, where bulk organic 
material is loaded. The organic sample is rapidly combusted at high temperature 
(Flash combustion) in presence of the oxidant O2 to CO2 and nitrogen oxides, which 
are reduced to N2 by copper in the following reduction oven. Then, the sample is 
moved by the He carrier to the water removal unit and the CO2 and N2 are 
separated isothermally on a GC column. The samples are transferred via an open 
split into the IRMS for the determination of the isotope ratios of the elements. 
(Source: http://www.thermoscientific.com). 
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The gas chromatography (GC) system, coupled to an IRMS, is used for the isotopic 

characterization of gaseous species from air samples. The samples can be as small as 200 nmol 

to 20 mol. The GC system is composed of an autosampler (Fig. 9, n.1), where the air sample is 

placed into glass vials. A two-hole needle of the gas sampling system (Fig. 9, n.2) transfers the 

sample, which passes through a maintenance-free water removal system (Fig. 9, n.3) for the 

complete removal of H2O, via a He carrier stream to the injection system. A loop injector (Fig. 9, 

n.4) injects aliquots of the sample gas into the isothermal gas chromatography column (Fig. 9, 

n.5) where the different gases (e.g. CO2, N2O) are separated. The samples enter the IRMS via an 

open split interface (Fig. 9, n.6). 

Recently, GC-IRMS and EA-IRMS were used to link the ecosystem respiration to C assimilation 

in a deciduous forest (Knohl et al., 2005). Also, Ruehr and co-workers (2009) investigated the 

effect of environment changes on recently assimilated C to the soil from Fagus sylvatica and 

demonstrated that drought significantly affects (reduces) the soil CO2 efflux. Gessler and co-

workers (2009) provided the physiological explanation of the short-term variation of 13C, showing 

the metabolic origin of CO2 respired from leaves, roots and stems of Ricinus communis. 

 

 

 

IRMSIRMS

 

Figure 9. The GC system consists of an autosampler (1), a gas sampling system (2), a 
maintenance-free water removal system (3), a loop injection system (4), an isothermal gas 
chromatograph (5), an open split interface (6). (Source: http://www.thermoscientific.com). 
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1.2.4. Tunable Diode Laser Absorption Spectroscopy (TDLAS) 

Tunable diode laser absorption spectroscopy (TDLAS) is a technique that allows measuring the 

concentration of certain gases such as CO2 and water vapor (Cooper & Martinelli, 1992; Bomse, 

1995; Bahn et al., 2009). The technique is based on light absorption of molecules in the infrared. 

The absorbed wavelengths are characteristic of each molecule. The amount of the light absorbed 

depends on two factors: i) the number of molecules in the light beam, and ii) the characteristics of 

the molecule.  

The TDLAS is able to detect very low gas concentrations in the samples (in the lower ppbv 

range), with high speed and selectivity. Using TDLAS, the concentration and the isotopic 

composition of CO2 can be quantified. Measurement of changes in the light intensity, as it passes 

through the absorption cell, and the use of calibration and reference gases, enables the 

determination of the concentration of the sample gas. The TDLAS uses a diode laser as light 

source for the absorption measurements. The emission wavelength of the laser is tuned over 

characteristic absorption lines of the gas to be measured, e.g. CO2, in the path of the laser beam. 

This causes a reduction of the measured laser signal intensity, which can be detected by a 

photodiode, and then used to determine the gas concentration (Schiff, 1996) (Fig. 10). 

 
 

        

 

Figure 10. Scheme of the main components of a TDLAS instrument (source 
http://www.campbellsci.com). The instrument consists of a tunable diode laser light source, 
transmitting optics, optically accessible absorbing medium, receiving optics and detector/s.  

 

 

 

TDLAS has been used largely in the measurement of trace gases such as N2O, CO2, CF4, C2F6, 

CO (e.g., Schiff, 1996). Its ability to discriminate isotopically different CO2 makes the TDLAS a 

powerful tool in ecology and plant ecosystem studies. For instance, Bahn and co-workers (2009) 

demonstrated the tight coupling of the plant-soil system and the importance of plant 

photosynthesis for soil CO2 efflux in an alpine grassland ecosystem. 
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2. AIMS OF THE THESIS 

 

 

 
This thesis aims at widening our understanding of plant terpenoid biosynthesis and regulation 

using 13C-labeling techniques. The specific aims of the thesis are: 

 

 

 to determine the fraction of monoterpene emissions originating from de novo biosynthesis 

and to separate this from the total emissions originating from the storage pool of four 

common boreal/alpine forest tree species (Pinus sylvestris, Picea abies, Larix decidua 

and Betula pendula); 

 

 

 to develop a new, highly sensitive, biochemical assay for measuring in vitro DXS activity 

from plant extracts in order to characterize the apparent kinetic properties of DXS in Grey 

poplar leaves; to assay DXS activity in developing poplar leaves and to compare DXS 

activity in transgenic, non-isoprene emitting and wild-type poplar plants; 

 

 

 to study the source-to-sink C translocation in young Grey poplar trees and to clarify the 

contribution of this transported C as a C source for isoprene formation. 

 

 

This work includes a cumulative dissertation of previously published articles or data submitted for 

publication, which are enclosed in this doctoral thesis. The following pages give an overview of 

the scientific issues, the applied methods and conducted experiments, and finally the conclusion 

and outlook for future research. 

2. AIMS OF THE THESIS 
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3. MATERIALS AND METHODS 
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3.1. Plant material and growth conditions 
Plants used during the present work are grouped as dicotyledons (broad leaf plants) and conifers 

(needle plants): 

 

Dicotyledons: 

 Hybrid Grey poplar (Populus x canescens, syn. Populus tremula x P. alba) 

o Wild-type  

o Transgenic non-isoprene emitting (Behnke et al., 2007) 

o Transgenic, carrying the reporter genes GUS/GFP under the control of the 

poplar ISPS promoter region (Cinege et al., 2009) 

 Silver birch (Betula pendula L.) 

 Holm oak trees (Quercus ilex L.) 

 

Conifers: 

 European larch (Larix decidua L.) 

 Norway spruce (Picea abies (L.) Karst.) 

 Scots pine (Pinus sylvestris L.) 

 

The poplar plants were 1 to 3 years old. Silver birches were two years old and they were collected 

locally. Holm oaks were 5 years old and they originated from an Italian plant nursery (Balducci, 

Pistoia, Italy). Conifer trees were 2 years old and they were obtained from a pre-alpine plant 

nursery (Pflanzgarten, Laufen, Germany). 

Poplar seedlings were amplified, micro-propagated and cultivated under controlled conditions 

inside a phytochamber (publications I, II, III). At the beginning of 2007 the plants were transferred 

into pots (25 cm diameter, 20 cm high) containing 50% (v/v) perlite (Agriperl Dämmstoff GmbH, 

Dortmund, Germany), 25% (v/v) silica sand (particle size 1-3 mm), 25% (v/v) potting soil 

(Fruhstorfer Einheitserde, Bayerische Gärtnereigenossenschaft, Aschheim, Germany) and 10 g of 

Osmocote and Triabon fertilizer (Scotts International GmbH, Nordhorn, Germany) and watered 

weekly. All the other plant species (publication I) were potted in the same way. Dicotyledon plants 

were exposed to temperatures ranging from 10 to 32°C and 16 h light conditions of 600 - 1600 

PPFD (μmol photons m-2 s-1), and relative humidity of 40 ± 20% in the greenhouse of the IMK-

IFU, whereas the conifer plants were grown outside, in the garden of IMK-IFU at Garmisch-

Partenkirchen throughout the growing season. The institute is located in the German Alps, at 730 

m amsl, next to a forest dominated by Scots pine and Norway spruce trees. Summer 

temperatures ranged from 10 to 30°C, and photosynthetic photon flux density (PPFD) from 100 to 

1500 mol m-2 s-1. 
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3.2. Methods 

3.2.1. Dynamic cuvette system  

Gas exchange and BVOC measurements were performed using four dynamic cuvette systems 

(450 cm3 volume) able to host a poplar leaf, apical bud or conifer twigs (Fig.11a). They included 

Peltier elements to control the chamber temperature, measured with thermocouples (Fig. 11b), 

which could be adjusted dynamically (± 5 Cº in ~120 sec). The light was provided by 15 LEDs 

(DP3-W3-854, Osram, Germany) allowing the light intensity to be increased up to a 

photosynthetic photon flux density (PPFD) of 1300 mol photons m-2 s-1 with low IR content (Fig. 

11c). Lamps and Peltier-elements were cooled with fans. All the parameters were controlled by a 

personal computer and could be programmed for simulating changes in environmental conditions. 

In addition, a bigger perspex cuvette (19 cm inner diameter, 20 cm height; i.e. circa 5670 cm3) 

was used to host the root system of poplar plants potted in a sterile hydroponic solution. 

 
 

(a)                          (b)                            (c) 

 
Figure 11. Views of the cuvette system. Cuvette body for hosting the 
leaf/twig (a); whole cuvette system with Peltier elements and cooling 
system on the top (b); the 15 LEDs light system (c). 

 

 

3.2.2. Plant gas-exchange measurements 

The plant gas-exchange measurements of H2O and CO2 were performed either with a portable 

gas exchange system (GFS-3000, Heinz Walz, Germany) or by TDLAS (TGA100A, Campbell 

Scientific, Inc., Logan, UT, U.S.A.). Net CO2 assimilation rates were calculated according to von 

Caemmerer & Farquhar (1981). 

 

 

3.2.3. PTR-MS analysis  

Emission of isoprene and monoterpenes was measured online using PTR-MS (paragraph 1.2.2.) 

and the dynamic cuvette systems (paragraph 3.2.1.). Also, the quantification of the isoprenoid 

precursors DMADP and GDP and of endogenous monoterpenes was achieved by coupling the 

PTR-MS with a head-space analysis system (Behnke et al., 2007). Inside 2 ml glass vials, 5 mg of 
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leaf material containing the precursors DMADP and GDP were converted to isoprene and linalool 

by the catalyzed acid reaction according to Nogues et al. (2006), using a modified extraction 

protocol of Brüggemann & Schnitzler (2002a) (publication I).  
All the compounds measured were analyzed for their 13/12C isotope ratios. In order to quantify 

the incorporation of 13C into the terpenoids, the PTR-MS was used to detect the protonated 

isotopologue masses of 69 (12C5H9
+), 70 (13C12C4H9

+), 71 (13C2
12C3H9

+), 72 (13C3
12C2H9

+), 73 

(13C4
12C1H9

+), and 74 (13C5H9
+) for isoprene and similarly of 137 (12C10H16

+) to 147 (13C10H16
+) for 

monoterpenes. Then, the 13C and 12C were counted and related to the total C-monoterpene 

emitted (publication I).  
The detection efficiency of the PTR-MS changes according to the molecular mass of the 

compounds (Steinbacher et al., 2004) following a typical transmission factor (TF) curve (Fig. 12). 

For the quantification of the monoterpene isotopologues (i.e. 137-147 amu), which lie in the 

descending part of the TF curve (e.g. Taipale et al., 2008), each isotopologue was quantified 

using a relative transmission factor (rTF) based on the fractionation rate of a monoterpene 

standard and the mass discrimination of the instrument (i.e. TF). 

 

 

 
Figure12. Plot of a typical transmission factor (TF) curve of the PTR-MS 
for the quantification of substances without use of a standard (Hansel et 
al., 1995). Insert: descending part of the TF curve which reflects the 
efficiency of the instruments to detect the monoterpene isotopes.  

 

 

The calibration of the instrument was performed using a standard mixture of 16 VOC in N2 

purchased from Apel-Riemer Environmental (Denver, CO, U.S.A.) with an uncertainty of < 5%. 

This mixture contained both isoprene and monoterpene standards for the direct quantification of 

the samples (Hansel et al., 1995), and also compounds with mass range of 33-197 amu in order 

to calculate the TF of the PTR-MS for the quantification of samples not present in the standard 
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(Hansel et al., 1995). In order to assess the significance of compounds emitted at low quantities, 

the limit of detection (LOD) was calculated for each measurement. The LOD was set to twice the 

standard deviation in counts per second (cps) of the background signal divided by the sensitivity 

(cps ppbv-1). 

 

Further technical details can be found in publications I and III. 
 

3.2.4. Determination of leaf and needle area 

Leaves of branches and plants were counted and numbered from the top to bottom of each plant. 

Because the leaf/needle must be frozen in liquid N2 within a few seconds after sampling, the 

determination of the leaf area was performed before enclosure in the cuvettes. 

For dicotyledon plant species, leaves were traced on blank paper. The leaf area was then 

measured from paper traces using a leaf area scanner (Li-3100, Li-Cor Biosciences, Lincoln, NE, 

U.S.A.). Three replicate measurements were conducted to obtain mean and standard deviation of 

leaf area.  

For coniferous species, the total needle area was calculated using the projected area and the 

cross-sectional shape for each needle-species as described elsewhere (Chen et al., 1997). Total 

needle area was calculated counting the number and measuring the length of the needles before 

the experiment, while the projected area was measured with a leaf area scanner from similar 

needles of other plants. 

 

3.2.5. Biochemical analysis 

All biochemical analyses were performed using frozen leaves/needles and twigs. Plant material 

was ground in liquid N2 with a mortar and pestle. For leaves, the central vein and the petiole were 

removed. Protein extraction and protein determination followed established protocols (Mayrhofer 

et al., 2005). Endogenous monoterpene contents and pattern were measured with gas 

chromatography flame ionization detection (GC-FID) (Fischbach et al., 2002), whereas the 

isotopic distribution of the sample molecules was determined by PTR-MS as described in 

publication I. The amount of the terpenoid precursors DMADP and GDP and the subcellular pool 

determination was determined with PTR-MS by means of 13C-labeling as also described in 

publication I. The enzyme activities of DXS, ISPS and terpenoid synthase (TPS) were assayed by 

the respective protocols that can be found in the publications I, II and III. 
 

3.2.6. Statistical analysis 

All experiments were performed independently with 3 biological replicates. Each analysis was 

assayed with three technical replicates. Statistical analyses (t-test, ANOVA) were performed 

using the Software package Origin (version 7.0; OriginLab, Northampton, MA, U.S.A.). 
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3.3. Experimental design 
Overall, the experimental work has been carried out with a similar approach for both the 

determination of de novo monoterpene emission in boreal trees and the study of C translocation 

in poplar. Both experiments required cuvette measurements for characterizing the gas exchange 

and the BVOC emission under controlled environmental conditions. Then, a series of labeling 

experiments was performed by feeding plants with a 13C-source (e.g. 13CO2, 13C-glucose) and 

measuring online the incorporation of 13C into the volatile terpenoids by PTR-MS and into respired 

CO2 by TDLAS. Once the 13C was incorporated steadily into the terpenoids, different plant parts 

were harvested by freezing them in liquid N2 for further biochemical analysis. The incorporation of 
13C into the terpenoids and their intermediates was then determined by means of online analysis 

and biochemical analysis. 

 

In order to develop a new method for measuring the DXS activity, a different design was needed. 

Assays were prepared in vitro with poplar plant extracts. DXS was fed with labeled substrate 

(13PYR) and the formation of 13CO2 was measured with GC-IRMS. Finally, the enzyme product 
13CO2 was used to calculate the enzyme activity.  

 

 

3.3.1. Determination of de novo and pool emissions of terpenes 

In order to separate monoterpenes formed from recently fixed photoassimilates from the 

monoterpene fractions which evaporate from storage pools, 13CO2-labeling experiments were 

performed in combination with enclosure cuvette measurements. Plants were fed with 13CO2 until 

a steady incorporation of 13C into the terpenoids was reached. The fraction of 13C incorporated 

into monoterpenes was used to assess the fraction of de novo biosynthesis. Because other C 

sources than recently fixed photoassimilates are also supplying the formation of terpenoids in the 

MEP pathway, and because isoprene is always emitted after being synthesized, the incorporation 

of 13C into isoprene was used to determinate these ‘alternative C sources’ that also contribute to 

de novo biosynthesis of monoterpenes. 

 

The three conifer species Larix decidua, Picea abies, Pinus sylvestris and the broad-leaf species 

Betula pendula were chosen as representative of coniferous and dicotyledon trees of the 

boreal/Alps area, respectively. In addition, the dicotyledon species Quercus ilex was also 

investigated and compared to other species, since its emission behavior is well know in literature 

(Loreto et al., 2000a; Fischbach et al., 2002). 

Twigs/leaves of trees were enclosed in the dynamic cuvette systems (paragraph 3.2.1.). The 

gas exchange was measured with a portable gas exchange system (GFS-3000, Heinz Walz, 

Germany), whereas the online quantification of labeled and unlabeled BVOCs was achieved with 

a PTR-MS (paragraph 1.2.2.). Briefly, twigs/leaves were enclosed already the day before labeling 

to avoid overestimation of monoterpene emissions from the storage pool (due to mechanical 
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stress following insertion into the cuvette) and to let the plants acclimatize to their new 

environment with a temperature of 30°C and light flux density of 1000 μmol m-2 s-1 PPFD. 

Cuvettes were continuously flushed with synthetic, VOC-free and constantly humidified 

synthetic air (21% v/v O2, 79% v/v N2), amended with 385 ppmv CO2 with natural abundance of 
13CO2. From the outlet air, 70 mL min-1 was continuously taken by the PTR-MS for VOC online 

measurements, and 133 mL min-1 for 30 min (total of 4 L) was passed through a three-bed-

adsorbent tube (90 mg Carbotrap C, 60 mg Carbotrap, 60 mg Carbopack X, Supelco, Bellafonte, 

PA, U.S.A.). Another 250 mL min-1 of the outlet air from the cuvettes passed the GFS-3000 for 

photosynthetic gas exchange measurements. Tubes were analyzed with gas chromatography 

mass spectrometry (GC-MS; Perkin Elmer, Weiterstadt, Germany) as described by Schnitzler et 

al. (2004a) for the identification of monoterpenes. 
13CO2-labeling was performed in the presence of light (i.e. photosynthesis) until incorporation of 

13C into isoprene and monoterpenes reached a steady state (8 hours for conifers and 5 for 

dicotyledons). Before and during the labeling procedure it was ensured that CO2 assimilation and 

BVOC emissions were stable. 

 

In addition, the endogenous monoterpenes were extracted from coniferous plants by a pentane 

extraction procedure (publication I), and the incorporation of 13C was measured with PTR-MS. By 

this means, it should be investigated whether the storage pools of monoterpenes were influenced 

by the de novo biosynthesis. 

The monoterpene and isoprene precursors GDP and DMADP were measured for the 

determination of precursor pools, and the terpenoid synthase (TPS) activities were assayed to 

prove and quantify the de novo terpene biosynthesis.  

 

Detailed information on the materials and methods can be found in publication I. 
 

 

3.3.2. Determination of DXS activity 

Measuring the DXS enzymatic activity and characterizing its kinetic properties required three 

steps: (i) extracting the enzyme from the plant material; (ii) feeding the enzyme with labeled 

substrate and incubation under different, specific conditions (e.g. with varying substrate amount, 

temperature, pH); (iii) detecting and analyzing the reaction byproduct 13CO2, in relation to reaction 

time and amount of enzyme. 

In order to test the new method, DXS activity was also measured in transgenic non-isoprene 

emitting lines with isoprene synthase (ISPS) knocked down by RNA interference (Behnke et al., 

2007). Due to the knock-down of ISPS downstream the terpenoid pathway and the consequent 

accumulation of the isoprene precursor DMADP, the DXS activity was hypothesized to be down-

regulated (Wolfertz et al., 2004). Moreover, we also worked on transgenic poplars carrying the 

reporter genes GUS/GFP under the control of the poplar ISPS promoter region (Cinege et al., 
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2009) and studied leaves of different developmental stages (starting from the first leaf on the 

apical part of the plant down to leaf n°20) in order to analyze developmental changes of DXS 

activity in relation to the activation of isoprene emission potential (as followed by ISPS promoter 

activity). 

To measure DXS activity in all these cases, the protein extracts (containing DXS) were 

incubated with a reaction mixture containing the two DXS substrates GAP and the labeled 1-13C-

PYR. Because DXS decarboxylates specifically the carboxylate anion (COO-) of pyruvic acid 

(CH3COCOO-), the head-space of the vial contained also the 13CO2 originating from the DXS 

activity. Assays were performed in parallel with the specific DXS inhibitor -fluoropyruvate 

(Eubanks and Poulter, 2003). The assay procedures and the compounds utilized in the reaction 

mixture are described in detail in publication II. The enzyme product 13CO2 was analyzed with a 

Gas Bench II coupled to a DELTA plus XP IRMS (Thermo Fisher Scientific, Bremen, Germany). 

The amount of 13CO2 produced by DXS activity was distinguished from the unspecific formation of 
12CO2 or 13CO2 originating from other sources (e.g. oxidation of organic acid or decarboxylation of 

pyruvate) as described in publication II. 
 

Detailed information about the materials and methods used to develop the DXS assay and to 

characterize the DXS activity in poplar leaves can be found in publication II. 
 

 

3.3.3. Tracing the C fluxes within the plant 

In order to study the C translocation in young wild-type Grey poplar saplings and its contribution 

as C source of isoprene formation, four cuvette systems (paragraph 3.2.1.) were used in parallel. 

One cuvette was fumigated with 13CO2 (99 atom%, 385 ppmv) and the appearance of 13C-label in 

isoprene and respiratory CO2 in the other three cuvettes was monitored online with PTR-MS and 

TDLAS (TGA100A, Campbell Scientific, Inc., Logan, UT, U.S.A.), respectively. Two experiments 

were performed, one with the 4 cuvettes placed at different levels on the same intact plant, and 

one with two cut shoots in parallel, which were either fumigated with 13CO2 via a mature leaf or 

fed with 13C-glucose via the xylem sap. The setup of these two experiments is shown in Fig. 13. 

Experiments were conducted on either intact plants (Fig. 13, insert: ‘intact plant’) in hydroponic 

culture, or shoots (Fig. 13, insert: ‘shoots’) without root system. In order to measure root 

respiration without bacterial interference, poplar plant roots were cleaned of soil carefully 7-10 

days prior to the start of the experiments, and plants were potted into 100% perlite substrate with 

sterilized Long Ashton nutrient solution (Ehlting et al., 2007). In experiments with intact plants, the 

four dynamic cuvettes were run in parallel on one plant to detect exchange of 13C (source/sink) 

between mature leaves, apex and root system: one cuvette enclosed one fully expanded mature 

leaf, which was fumigated with 13CO2.  A second cuvette was attached to the apical bud plus the 

topmost 3-4 leaves. 
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Figure 13. Scheme of the design of the C allocation experiments with Grey poplar. Ten liter per minute 
of synthetic VOC-free air (BASI Schöberl, Germany) were mixed with CO2 (38.000 ppmv) to a final 
concentration of 380 ppmv, passing a 20 L equilibration tank before being completely humidified by 
bubbling the airstream through pure, distilled water. A dew point unit assured a stable humidity level 
before the airflow entered each of the four cuvettes through flow controllers, set at 2 L min-1. One 
cuvette (no. 1) was connected via a 3-port valve to a separate 13CO2 tank (in synthetic air) for 13C-
labeling. The gas was purchased already mixed at 385 ± 7.7 ppmv 13CO2 (Air Liquide, Krefeld, 
Germany), and humidified separately using a Licor portable dew point generator (Li-610, Licor). Inlet 
and outlet of the cuvettes were directed sequentially via electronic, computer-controlled 3-port valves to 
the three gas analyzers [GFS-3000 (1), Heinz Walz, Germany; TDLAS (2); PTR-MS (3)], while the 
excess flow was directed to a vent which was used to monitor a surplus of air as indicator for the gas-
tightness of the whole system. All lines were Teflon tubes sealed with stainless steel nuts and ferrules. 
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The third cuvette monitored a fully expanded leaf between the labeled leaf and the apex (i.e. 

younger than labeled leaf). The last cuvette was enclosing plant roots immersed in the hydroponic 

sterilized solution. For shoot experiments, the root system was cut off the same morning of the 

experiment and the shoots were put into 50-mL flasks containing autoclaved Long Ashton nutrient 

solution with 10 mM unlabeled glucose (12C-glucose). Two shoots were analyzed in parallel, and 

each shoot was followed with two cuvettes: one cuvette enclosing a fully expanded mature leaf, 

the other one enclosing the apical bud plus 2-3 young developing leaves. For labeling, the 12C-

glucose solution of one shoot was exchanged with 13C-glucose solution. The other shoot was 

labeled, like the intact plants, with 13CO2 supplied with the air stream to the mature leaf. The 

solution of the latter shoot was continuously sampled for sugar analysis every 2 h during and after 

labeling. All experiments followed the same sequence with duration of 3 days. Briefly, the day 

before labeling (day 1), plants were adapted to the new environment; on day 2 the plants were 

labeled and on day 3 the plants were stressed by removing the CO2 supply, while the effects of 

the treatments were observed. At the end, all leaves were immediately frozen in liquid N2 and 

stored at -80°C for metabolic analysis. The bulk material of the whole plant was isotopically 

analyzed with EA-IRMS to elucidate where the recently fixed labeled C had been allocated. The 

terpenoid precursor DMADP was quantified according to the method described in paragraph 

3.2.3., and the incorporation of 13C into isoprene was analyzed by PTR-MS. Liquid samples of the 

nutrient solution were collected regularly during and after labeling the mature leaf with 13CO2. The 

concentration of sugars in the solution samples was measured with a phenol-sulfuric acid assay 

(Buysse & Merckx, 1993). The isotopic composition of the nutrient solution of the shoot 

experiment was determined with LC-IRMS (Isolink DELTA V PLUS, Thermo Fisher Scientific, 

Bremen, Germany; Krummen et al., 2004). With this procedure, the source-to-sink 13C-fluxes (as 
13C-enriched transported sugars) from a 13CO2-labeled mature leaf into the nutrient solution 

containing the unlabeled 12C-glucose (where the plant was placed in) were determined.  

 

Detailed information about the materials and methods can be found in publication III. 
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4. RESULTS AND DISCUSSION 
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4.1.1. 13CO2-labeling experiments reveal light-dependent monoterpene biosynthesis 
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4. Results and discussion 
The application of 13C stable isotope labeling techniques with PTR-MS, IRMS and TDLAS allowed 

deepening our understanding on terpenoid biosynthesis and C-fluxes in several tree species. The 

present thesis demonstrated that these techniques were useful to (i) point out and quantify the de 

novo fraction of monoterpene biosynthesis (publication I); (ii) characterize the enzymatic 

properties of DXS (publication II); (iii) trace the C fluxes within poplar saplings and quantify the C-

sources for terpene synthesis (publication III). 
 

 

4.1. Determination of de novo and pool emissions of terpenes 
4.1.1. 13CO2-labeling experiments reveal light-dependent monoterpene biosynthesis in 

conifer trees: determination of de novo synthesis  
In the present work, for the first time an accurate quantification of the fraction of monoterpene 

originating from de novo biosynthesis in respect to the overall monoterpene emission could be 

achieved for four of the most common European boreal/Alps trees species: Pinus sylvestris 

(58%), Picea abies (33.5%), Larix decidua (9.8%) and Betula pendula (98-100%) (publication I). 
13C-labeling was also used in earlier studies (e.g. Delwiche & Sharkey, 1993; Schürmann et al., 

1993; Loreto et al., 1996; Shao et al., 2001). However, a proper quantitative estimation of de novo 

and pool emissions of terpenes was not achieved yet. Feeding plants (conifers and dicotyledons) 

with 13CO2 leads to a 13C incorporation into both monoterpene and isoprene (Fig. 14). As the 

origin of monoterpene emissions from conifer trees are both light-dependent (de novo) and 

temperature-dependent (Fig. 15) (Loreto & Schnitzler, 2010), at constant temperature the dark 

emissions are lower than light emissions (Staudt et al., 1997; Fig.14). However, the quantification 

of the de novo fraction by measuring light and temperature dependencies is difficult, due to the 

influence of the light on the different physicochemical characteristics (e.g. volatility, diffusion 

through phospholipidic membranes) of each monoterpene (Niinemets, et al., 2004). Henry’s law 

constant (H) (equilibrium gas-aqueous phase partitioning coefficient) and octanol-to-water 

partition coefficient (Ko/w) (parameter to assess the hydrophobicity/ hydrophilicity of a substance) 

are strongly temperature-dependent: when temperature increases by 10 °C, H increases about 

1.3- to 1.8-fold and Ko/w decreases about of 1.15- to 1.32-fold (Copolovici & Niinemets, 2005). 

Illumination of leaves/twigs induces the emission of some monoterpenes due to the increase in 

temperature caused by irradiation. The infrared portion of the electromagnetic spectrum heats the 

water part of the plant cell. As a consequence, the changed physical conditions can enhance 

monoterpene emissions. The above-mentioned light effect is not linked to de novo terpene 

biosynthesis and therefore can be easily mistaken when light-to-dark experiments are conducted 

at constant temperature to determine the de novo emission. 
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Consequently, 13C-labeling and PTR-MS represented a more feasible way to determine the de 

novo biosynthesis of monoterpenes. On the other hand, when using 13CO2-labeling and PTR-MS 

other important aspects need to be taken into account. The first aspect is the ‘alternative C 

source’ for isoprenoid biosynthesis (Karl et al., 2002a, 2002b; Kreuzwieser et al., 2002; Affek & 

Yakir, 2003; Schnitzler et al., 2004b). 

 

 

 
 

Figure 14. Isoprene and monoterpene emissions ( ) and 13C-labeling ( ) from conifer trees (A) 
Larix decidua, (B) Picea abies, (C) Pinus sylvestris and from dicotyledon trees (D) Betula pendula 
and (E) Quercus ilex. The labeling 13CO2 was applied at time 0 (vertical dash line). Isoprene shows 
similar incorporation of 13C in both conifer and dicotyledon species, whereas monoterpenes show a 
different behavior between conifers (species specific) and dicotyledons (similar to isoprene). The 
horizontal dot line represents the limit of detection and the light grey square the night phase. Mean of 
3 experiments ± S.E. 
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The incomplete labeling (e.g. at non-stressed condition, circa 75-80% of C are labeled, through 

photosynthesis) of isoprene and monoterpenes in dicotyledon species leaves a remaining 

unlabeled fraction (e.g. 20-25%) which also represents de novo biosynthesis and therefore must 

be accounted for (for details, see publication I). The second important aspect that needs 

consideration is the calibration of the instruments with independent monoterpene isotopologues. 

Heavier monoterpene isotopologues are less detectable than lighter isotopologues, due to the 

mass-specific detection efficiency of the instrument (Steinbacher et al., 2004). For this reason, a 

relative transmission factor was used in this study (paragraph 3.2.3.). The advantage of using the 

PTR-MS for the quantification of monoterpenes compared to traditional GC-MS is, however, that it 

measures the sum of monoterpene isomers. Thus PTR-MS detects the entire group of 

monoterpenes at once without omitting the less abundant monoterpenes as typically done, for 

technical limitations, in many studies with GC-MS (e.g. Steinbrecher 1989; Schürmann et al., 

1993; Staudt et al., 1997; Tarvainen et al., 2007).  

Up to now, neglecting the above discussed factors (incomplete 13C-labeling of terpenes and 

declining instrument sensitivity) had hampered the correct determination of de novo emissions in 

monoterpene-storing plant species. Thus, previous quantifications reported significantly lower 

fractions of de novo biosynthesis within overall monoterpene emissions: for Scots pine, Shao et 

al. (2001) reported 20-30%, whereas Steinbrecher et al. (1999) found 25-37%, in contrast to the 

present experiment where the labeled fraction was 39±7%, but the calculated global de novo 

synthesis amounted to 58±4%. For Norway spruce, the data of Schürmann et al. (1993) showed a 
13C-incorporation of 20-30% against here reported 23±5%, with calculated de novo fraction of 

34±8%. The observed split between de novo and pool emissions from P. sylvestris was applied in 

a hybrid emission algorithm that considers the two origins of monoterpene emissions (publication 

I). The hybrid model was, indeed, able to better describe (in particular the day-to-night variation 

of) ecosystem-scale monoterpene emission data measured at a Scots pine forest (publication I). 
As a conclusion, stable isotope labeling techniques in combination with PTR-MS represent an 

appropriate tool to separate the monoterpene emission originating from de novo biosynthesis 

from emission due to evaporation processes of monoterpene storage pools in conifer trees. 
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4.1.2. Absence of 13C-labeling of endogenous monoterpenes indicates complete split 
between de novo and storage pool emissions 

Recently synthesized monoterpenes were not significantly stored in coniferous mature needles or 

bark (publication I), and the investigated endogenous monoterpenes were not significantly labeled 

after 13CO2 fumigation, with the exception of those in Scots pine needles (1.2 ± 0.4%) (publication 

I).  
 
 

 
 

 

 

Figure 15. Scheme of cellular and tissue-specific biosynthesis of terpenes in conifers. Isoprene and 
monoterpenes are synthesized via the MEP pathway in the chloroplasts of mesophyll cells. Isoprene (C5) 
is immediately emitted due to its high volatility and absence of storage compartments in a light- and 
temperature-dependent manner. The larger, more lipophilic monoterpene (C10) molecules are also directly 
emitted after biosynthesis (de novo) or emitted as a consequence of a temperature-driven evaporation 
process especially from specific storage organs (e.g. resin ducts of conifer needles) or to a minor extent, 
from non-specific storage pools (e.g. membrane’s phospholipids). The cross section of a Norway spruce 
needle shows the autofluorescence of chlorophyll (red) and of phenolic compounds (green) visualized by 
confocal laser scanning microscopy (picture: J.P.Schnitzler; for details see Hutzler et al., 1998).  
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De novo emission bypassed the storage structures and thus must have originated from the 

surrounding tissue of the resin ducts, i.e. the needle mesophyll. This is in agreement with the fact 

that in Norway spruce the secretory cells of the resin ducts die after the growing season of the first 

year (Schürmann et al., 1993) and therefore the pools of endogenous monoterpenes do not receive 

new monoterpenes. In Scots pine, the low amount of label found might be due to minor ‘unspecific 

storage structures’ (Niinemets et al., 2004), like lipophilic compounds of the needle, which 

generally account for 1-3% of total leaf dry mass (Niinemets et al., 2004). These ‘unspecific storage 

structures’ can trap a small amount of monoterpenes, which have lipophilic properties, and were 

also found in leaves of non-coniferous species, such as birch and oak (publication I). The 

‘unspecific storage structures’ explain also very well why the emission of monoterpenes continues 

for longer periods (in general 10-15 min) than isoprene emission (which is sustained only for a few 

seconds by the pool of the precursor DMADP) when photosynthesis is rapidly ceasing after 

darkening (Fig.14). 

The present thesis shows that 13C-labeling experiments allow identifying the metabolic origins of 

monoterpene emission (see scheme Fig.15). Potentially, 13C-labeling provides the information on 

the time courses of monoterpene emissions, as required in recently developed emission models 

(Noe et al., 2010). 

 

 

4.1.3. Isotopic pattern of isoprene and DMADP reveals the subcellular DMADP pool 
size 

13C-labeling experiments allowed splitting the plastidic from the cytosolic DMADP pools, showing 

that approximatively 20-30% of total DMADP is localized in the chloroplasts during light conditions 

(publication I). 
The principle is based on the 13C-labeling pattern of isoprene which reflects the pattern of the 

plastidic DMADP, since (i) fully labeled DMADP is formed in the chloroplast shortly after 13CO2 

fumigation (Loreto et al., 2004), (ii) the formation of DMADP is irreversible (Lichtenthaler, 1999), 

(iii) the cross-talk between chloroplast and cytosol of DMADP and IDP is minimal at short time 

scale (Lichtenthaler, 1999; Laule et al., 2003; Loreto et al., 2004; Wolfertz et al., 2004; Wu et al., 

2006), and (iv) the labeling is kept at steady state conditions. Thus, chloroplastic DMADP 

molecules must have the same 13C labeling pattern as isoprene (due to its high volatility), and the 

chloroplastic DMADP pool can therefore be calculated. The results of the cellular 

compartmentation of DMADP in Picea abies, Pinus sylvestris, Betula pendula and Populus x 

canescens were in good agreement with results obtained with other methods in Quercus ilex and 

Populus tremuloides (e.g. Loreto et al., 2004; Rasulov et al., 2009). Therefore, 13C-labeling 

experiments as demonstrated herein allow determination of chloroplastic DMADP concentrations, 

which in combination with pH, temperature and bivalent cation concentrations in the chloroplast 

stroma are as assumed to be main controlling parameters of actual isoprene synthase activity 

(Zimmer et al., 2003; Magel et al., 2006; Monson et al., 2007). 
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Figure 16. 13C-labeling pattern (  m69;  m70;  m71;  m72;  m73;  m74) of isoprene and 
DMADP allows determination of cytosolic ( ) and plastidic ( ) DMADP pools. The DMADP pools 
(A) are calculated from a mass balance of 13C:12C in total DMADP (B) and in isoprene (C) during 
steady state 13CO2-labeling. Because of marginal exchange of DMADP between cytoplasm and 
plastids, the pattern of 13C incorporated into isoprene (C) reflects the pattern of DMADP in the 
plastids (B), and therefore the amount of plastidic DMADP can be calculated as a subtraction of the 
cytosolic DMADP from the total DMADP (for calculation see publication I) (n=3 ± SD). 
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4.2. Determination of DXS activity 
During this PhD work, a new, highly sensitive biochemical assay for measuring DXS activity in 

plant extracts was developed (publication II). It was motivated by the absence of any technique to 

measure DXS activity in crude protein extracts from plant material. Information of apparent DXS 

activities under various environmental conditions is essential to analyze the assigned regulatory 

role of DXS in the MEP pathway. In most of the studies DXS activity is measured by radioactive 

assays where the reaction product is separated either by thin-layer chromatography (TLC) or 

HPLC (Sprenger et al., 1997; Lange et al., 1998; Lois et al., 1998; Estévez et al., 2000; 

Kuzuyama et al., 2000; Cane et al., 2001). Alternative methods include coupled 

spectrophotometric (Altincicek et al., 2000; Hahn et al., 2001) and fluorometric assays (Querol et 

al., 2001). However, in all of these studies heterologously expressed and purified DXS was used 

for biochemical analysis. 

 

In this part (i) the main results of the development of this new assay, using stable isotope labeling 

with 13C-enriched pyruvate (PYR), (ii) the apparent kinetic properties of DXS in Grey poplar, and 

(iii) the developmental changes of DXS activity and the regulatory role of DXS in the MEP 

pathway are presented and discussed.  

 

Detailed information can be found in publication II. 
 

 

4.2.1. Use of 13C-labeling to determine the DXS activity 
Using stable isotope labeling with 13C-enriched PYR and IRMS analysis, the apparent activity of 

DXS could be determined in protein extracts from poplar leaves (publication II). The analytical 

principle of the enzyme assay is based on the PYR decarboxylation activity of the DXS. 13C-

labeled PYR with the specific label at the C1 atom of PYR (1-13C-PYR) forms labeled 13CO2 and 

DOXP in presence of the second substrate glyceraldehyde 3-phosphate (GAP). The developed 

assay is highly sensitive, and well suitable for the analysis of DXS activity in crude plant extracts. 

The use of the isotopic signature of CO2 was essential to separate the 13CO2 produced by the 

enzymatic activity of DXS from the minor unspecific (not due to DXS activity) formation of CO2 

(13CO2 and/or 12CO2) originating from other sources, such as (i) natural degradation of PYR, (ii) 

decarboxylation of PYR in presence of the cofactor thiamin pyrophosphate (TPP), and (iii) 

oxidation of organic acid of the crude extract.  

Accurate quantification of specific DXS CO2 formation was achieved by use of three groups of 

controls which consider the above mentioned (possible) sources of extra CO2. The calculation 

was based on amount and isotopic signature of produced CO2 as well as on the global carbon 

balance as described in detail in publication II. 
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4.2.2. Apparent kinetic properties of DXS and its regulation in the MEP pathway 
Apparent kinetic properties of DXS extracted from Grey poplar leaves were determined 

(publication II). The temperature dependency of DXS followed a typical Arrhenius type curve with 

maximum activity at 45°C. This temperature optimum of DXS is in line with the temperature 

optima of isoprene emission and other enzymes of the chloroplastidic isoprenoid pathway [e.g. 

prenyltransferases (Tholl et al., 2001)]. Similar to other enzymes localized in the stroma of 

chloroplasts, the poplar DXS has a sharp pH activity optimum at 8.5 - 8.7. The apparent Michaelis 

constants (Km values) of DXS (111 and 158 M for GAP and PYR, respectively) were in the same 

concentration range as described for several other enzymes of the MEP pathway (e.g. Grote et 

al., 2006). All known isoprene synthases (ISPS) have 10- to 100-fold higher Michaelis constants 

for its substrate DMADP [e.g. 2.45 ± 0.1 mM in poplar (Schnitzler et al., 2005) and between 0.5 

and 8 mM in oak (Lehning et al. 1999), velvet bean (Kuzma & Fall 1993), aspen (Silver & Fall, 

1995), and willow (Wildermuth & Fall, 1996)] than monoterpene synthases for GDP [e.g. 10-100 

μM in Quercus ilex (Fischbach et al., 2000), 2.6 μM in Thymus vulgaris (Alonso & Croteau, 1991)] 

and prenyltransferases for IPP and DMAPP [e.g. 9-18 μM in Abies grandis (Tholl et al., 2001)]. It 

is assumed that the low Km of prenyltransferases may control the metabolic flux within the MEP 

pathway because downstream reactions leading to monoterpene and non-volatile terpene 

biosynthesis are favored over isoprene biosynthesis (Loreto & Schnitzler, 2010). Based on this 

finding, it was suggested that isoprene emission occurs only when the plants’ need for essential, 

higher terpenoids [hormones (ABA, gibberellins), tocopherol, phytosterols, and photosynthetic 

pigments] are satisfied (Owen & Peñuelas, 2005). As a consequence for isoprene-emitting 

species, isoprene biosynthesis requires a much higher C flux through the MEP pathway than non-

isoprene emitting plants where under non-stressed conditions only the essential non-volatile 

terpenoids have to be produced (Sharkey et al., 1991). From feeding experiments with 

dideuterated deoxy-xylulose (DOX-d2), bypassing the intrinsic DXP biosynthesis, Wolfertz et al. 

(2004) proposed a strong in vivo feedback control on DXS mediated by DMADP and/or other 

MEP pathway intermediates.  

In the present thesis the role of DXS in the regulation of chloroplastidic terpenoid biosynthesis 

in poplar could be investigated. DXS activity was found lower in poplar leaves of non-isoprene 

emitting plants (Behnke et al., 2007) which accumulate dramatically high amounts of DMADP 

compared to isoprene-emitting wild-type plants. Wolfertz et al. (2004) suggested that 

accumulation of downstream MEP pathway intermediates might have a negative feedback control 

on DXS. This hypothesis could not be tested with the in vitro analysis of DXS activity since it 

excluded a direct allosteric inhibition by DMADP or other metabolites due to the removal of low 

molecular compounds during protein extract preparation. On the other hand, the present result 

opens new ideas on the regulation of DXS, which may be due to post-translational modifications 

or down-regulation of the translation process or protein turnover, since no differences in gene 

expression of DXS between isoprene-emitting and non-emitting poplar lines were detectable 

(publication II). 
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DXS activity in poplar displayed a distinct developmental pattern, which correlated with the 

activation of the ISPS promoter (publication II). The results of the thesis support the idea that DXS 

activity might be a flux-controlling step of the MEP pathway (Munoz-Bertomeu et al., 2006; Lois et 

al., 2000a; Estévez et al., 2001). It gets support from the observation that DXS undergoes a 

similar leaf-age dependent regulation as isoprene emission (Cinege et al., 2009). Leaves with 

highest isoprene emission rates and hence highest requirement of MEP pathway activity 

displayed highest DXS activities. However, DXS activity is already present in very young 

developing leaves, which do not emit isoprene yet but the flux through the MEP pathway may be 

then directed to the biosynthesis of essential non-volatile terpenoids, i.e. photosynthetic pigments 

in developing and growing chloroplasts (Mayrhofer et al., 2005). This assumption agrees with the 

observation of high transcript levels of DXS (Lange et al., 1998) and other plastidic enzymes 

(DXR and phytoene synthase as shown by Mayrhofer et al., 2005) in young peppermint and 

poplar leaves. In summary, all these considerations support the ‘opportunistic hypothesis’ of 

Owen & Peñuelas (2005) that isoprene emission from leaves is limited by the MEP pathway 

capacity at early developmental stages (Zimmer et al., 2003; Magel et al., 2006; Monson et al., 

2007) and hence become maximal when the plants’ need for essential terpenoids is satisfied. 

 

 

4.3. Use of 13C-labeling for tracing the C fluxes within the plant 
During the work for this thesis, 13C-labeling experiments were carried out for tracing the major C 

fluxes within poplar saplings (publication III). PTR-MS and TDLAS were combined in order to 

detect the incorporation of 13C into isoprene and respiratory CO2 for studying (i) isoprene C 

sources and (ii) C translocation in plants.  

 

 

4.3.1. Role of C translocation in the ‘alternative C sources’ for terpene biosynthesis 
The C-sources for isoprene biosynthesis in poplar were identified to 93-99% using 13CO2 and 13C-

glucose (publication III). Isoprene originated mainly (76-78%) from recently fixed CO2, and to a 

minor extent from ‘alternative C sources’ of photosynthetic intermediates with slower turnover 

rates (8-11%) and xylem-transported sugars (7.4-10.8%) (publication III). The contribution of 

these ‘alternative C sources’ to isoprene formation increased during limited net CO2 assimilation 

due to the experimental removal of CO2, and is in good agreement with earlier studies of 

Schnitzler et al. (2004b) and Brilli et al. (2007), aiming to quantify the contribution of different 

carbon sources for isoprene emission in Populus x canescens and Populus alba, respectively. 

Stress conditions such as drought (Brüggemann & Schnitzler, 2002b; Fortunati et al., 2008) and 

salinity (Loreto & Delfine, 2000; Teuber et al., 2008) can reduce photosynthesis dramatically, 

whereas isoprene emission is less affected and can be sustained by ‘alternative C sources’ (Brilli 

et al., 2007). These abiotic stresses on volatile terpenoid synthesis have important implications for 

emission models that are based on the photosynthetic activity of the plant (e.g. Niinemets et al., 
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1999; Zimmer et al., 2003, Grote et al., 2009), which would, for instance, predict a drastic 

reduction of terpene emissions at stress conditions. 

 

Significant amounts of carbon are transported over long distances within the plant (publication III). 
The results from this study agree well with other studies of C supply in plants as from Heizmann 

et al. (2001) in pedunculate oak (Quercus robur L.) and Mayrhofer et al. (2004) in Grey poplar 

(Populus x canescens). Both studies showed that long-distance transport of carbon was an 

important C-source for plants when net CO2 uptake by photosynthesis was reduced. However, in 

order to quantify the C translocation in both studies invasive methods, such as pressure vessel 

technique (Rennenberg et al., 1996) for obtaining xylem sap, were used.  

Mature leaves of intact poplar saplings exported photoassimilates primarily downward to the 

root system via the phloem at a velocity of 9.4  1.3 cm h-1 (publication III). The primary allocation 

of 13C to the root system proves the function of roots as carbohydrate reserves (Loescher et al., 

1990). This C is gradually reallocated to the plants’ apical part via xylem transport, particularly 

under limited net assimilation (publication III). The remobilized C is continuously translocated 

mainly to the apical part of the plant to sustain metabolic processes and serves as an additional C 

source for isoprene biosynthesis (publication III). The results of the C allocation experiments 

agree with an old 14C-study by Larson & Gordon (1969). The speed of relation between plant 

photosynthesis and root respiration agrees with field experiments in a coniferous forest 

ecosystem (Ekblad & Högberg, 2001) and in a deciduous forest (Knohl et al., 2005). 

Performing 13C-labeling experiments and using PTR-MS and TDLAS to detect labeled isoprene 

and respiratory CO2, this thesis shows an alternative non-invasive way to study dynamically and 

with high time resolution C translocation within the plant (publication III). Moreover, online 

analysis allows to describe the dynamics of C translocation and to assess the phloem velocity, 

information, which is scarcely reported in the literature. 

Using 13C-labeling experiments together with PTR-MS and TDLAS, the dynamics of C allocation 

within tree saplings can be successfully studied (publication III). 
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5. CONCLUSION AND OUTLOOK

 

 
The large spectrum of plant terpenoids and their very different roles in plant metabolism, growth 

and development is the result of a very complex regulation of the metabolic fluxes through the 

MVA and MEP pathways providing the central intermediates for specific terpenoid biosynthesis. 

Both pathways are connected to a multitude of plant metabolic networks able to originate a large 

variety of compounds, including the volatile terpenoids. As demonstrated in the present thesis, 

fluxes of carbon, metabolic regulation and C sources for the biosynthesis of isoprene and 

monoterpenes can be investigated in detail using 13C stable isotope labeling techniques. 

 

The biosynthesis of isoprene and monoterpenes, the most commonly emitted volatile terpenoids, 

are closely connected to the photosynthetic net CO2 uptake of mesophyll cells, and are readily 

visible by the rapid appearance of 13C-labeled compounds after the fumigation of plants with 
13CO2 (publications I and III). However, the incorporation of 13C in isoprene and monoterpenes is 

incomplete. Other ‘alternative C sources’ sustain the metabolic flux into terpenoid biosynthesis, 

particularly under stress conditions with limited net CO2 assimilation (publication III). For plant 

species like conifers which possess specific structures for storing monoterpenes, the incomplete 
13C-labeling is also due to the emission of previously stored monoterpenes. The emission of 

monoterpenes from these large storage pools is driven solely by temperature-dependent 

evaporation processes. The fraction of monoterpene emissions originating from de novo 

biosynthesis is also light-dependent, a consequence of the light dependency of photosynthesis 

(publication I). Traditionally, the fraction of newly formed monoterpenes was thought to be small 

with respect to the total monoterpene emission of conifers. Therefore, models of monoterpene 

emissions of conifers were treated as a simple evaporation process from storage pools (Tingey et 

al., 1980; Guenther et al., 1991; Guenther et al., 1993; Arneth et al., 2008). 

In the present thesis, the origin of monoterpene emissions from four common boreal/Alps forest 

tree species was investigated with 13C stable isotope labeling techniques. By this, the fraction of 

monoterpene emissions originating from de novo biosynthesis was accurately determined for the 

first time (publication I). Using 13CO2-labeling and considering the ‘alternative C source’ of 

terpenoid biosynthesis, it could be shown in the present work that a significant fraction of 

monoterpene emissions originate from de novo biosynthesis and that this fraction strongly 

depends on the plant species. Moreover, monoterpene emissions from conifer species are a 

mixture of both emission types, whereas terpenoid emissions from dicotyledonous trees originate 

from immediate biosynthetic activity. Nevertheless, the fraction of de novo monoterpene 

emissions differs between conifer species (in the present case: 58% in Pinus sylvestris, 33.5% in 

Picea abies, and 9.8% in Larix decidua). 

It became evident that monoterpene emissions had to be handled differently in models by 

applying data from P. sylvestris in a hybrid emission algorithm. With different mathematical 

5. CONCLUSION AND OUTLOOK 
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treatments of de novo and pool monoterpene emissions, a more accurate description of 

monoterpene fluxes from a Scots pine forest stand became possible (publication I). Thus, the 

determination of de novo emission fractions has important consequences for developing new 

emission models that are able to assess more realistic monoterpene emissions from areas with 

extensive boreal forest coverage. Also, the monoterpene emission flux estimates (Guenther et al., 

1997) for the boreal area or regions with high proportions of conifers (e.g. the Alps region in 

Central Europe) should be reevaluated. 

However, further investigations are required to determine the fraction of de novo monoterpene 

emissions from conifers undergoing seasonal variations as a consequence of tree phenology. 

Future studies should also focus on to what extent the dynamics of abiotic and biotic stresses 

influence terpenoid emissions (Niinemets, 2009; Holopainen & Gershenzon, 2010; Loreto & 

Schnitzler, 2010). Consequently, the inclusion of specific characteristics of de novo monoterpene 

biosynthesis and terms describing the seasonality of de novo emissions of monoterpenes, as well 

as the influence of abiotic/biotic stresses in semi-empirical (e.g. hybrid method) or process-based 

models, are further steps towards a more realistic assessment of monoterpene emissions from 

conifer forests. Process-based models (Niinemets et al., 2002; Grote et al., 2009), in particular, 

are the ideal starting point for this effort. They are developed on the basis of photosynthetic 

carbon supply, enzyme activities, metabolic pools and phenological data that take into account 

the plant ontogenesis and the rapid acclimation to seasonal fluctuations of temperature and light 

(e.g. Grote et al., 2009). Nevertheless, current process-based models need more detailed 

information about different environmental constraints (e.g. light, temperature, CO2 concentration). 

It is suggested here that the quantification of the plastidic DMADP pool by 13C-labeling (instead of 

the total DMADP pool) could be included in models of isoprene biosynthesis (publication I). 
 

Introducing the activities of those enzymes that are thought to play a key role in the regulation of 

MEP pathway fluxes (e.g. DXS; Lois et al., 2000; Walter et al., 2000; Estévez et al., 2001; 

Wolfertz et al., 2004) would be another important improvement in the models. At present, DXS 

activity at a range of environmental and developmental conditions is unknown due to a lack of 

suitable techniques for the measurement of DXS activity in plant crude extracts. Investigations 

into DXS activity in poplar trees here (publication II) is an important step towards understanding 

the regulatory role of DXS in poplar as well as in other plant species. The kinetic properties of 

poplar DXS were found to be similar to other enzymes of the MEP pathway. Poplar DXS activity 

undergoes developmental changes that correlate with leaf isoprene emission potential 

(publication II). In mature poplar leaves, isoprene emission is the main metabolic sink of plastidic 

terpenoid intermediates (Sharkey et al., 1991). The relatively large flux of carbon needed for 

isoprene synthesis is approximately 100 times the MEP pathway flux needed to synthesize the 

essential non volatile terpenoids in plastids (Sharkey et al., 1991). Thus, the observed lower DXS 

activities in non-isoprene emitting poplar mutants compared to wild type plants are an indication 

of a lower demand for metabolic fluxes within the MEP pathway of non–isoprene-emitting plants 

and confirm the regulatory role of DXS on the MEP pathway. Resolving the controlling step in the 
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MEP pathway is of key importance for enhancing the production of terpenoids for industrial 

purposes (Chang & Keasling, 2006) and for developing new models that are able to simulate the 

terpenoid emissions in plants under different environmental conditions (Monson et al., 2007; 

Grote & Niinemets, 2008).  

 

In a mature poplar leaf, the ‘alternative C sources’ for chloroplastidic terpenoid biosynthesis can 

originate from C imported via xylem sap (publication III). Significant amounts of C are cycled 

within the plant and contribute to isoprene formation and the metabolism of green and non-green 

tissues (publication III). Thus, some recently fixed carbon intermediates might ‘travel’ around the 

plant and thereby have a relatively ‘long life’ before this C is either incorporated into terpenoids, or 

re-emitted as respiratory CO2. Significant amounts of translocated C contribute to the plant 

metabolism (publication III; Heizmann et al., 2001; Mayrhofer et al., 2004) and biosynthesis of 

terpenoids (publication III). The C fluxes within the plant are so far not extensively studied due to 

the lack of appropriate methods. In the present thesis, the combination of PTR-MS and TDLAS 

allowed dynamic, high time-resolution tracing of C fluxes within poplar saplings. Application of 
13C-labeling and the availability of fast, online measurement systems (PTR-MS and TDLAS), as 

well as of off-line instruments for the quantification and isotopic discrimination of 12/13C (EA-IRMS, 

LC-IRMS, GC-IRMS), permitted a comprehensive analysis of the origin and processing of carbon 

within plants from source to sink and with regard to isoprene biosynthesis and emission, C 

allocation, C translocation and the respiratory CO2 emissions (publication III).  
The combination of techniques shown here theoretically allows the quantification of the net C 

uptake of the plant, which is of increasing importance in the context of climate change. This is 

because plants are the main C sink for atmospheric CO2 and their gross uptake is still 15-20 times 

larger than CO2 emissions from anthropogenic sources (Forster et al., 2007). Any accurate 

estimation of a C budget should consider also the substantial part of fixed C which is either re-

emitted as respired CO2, BVOC (not only isoprene), or excreted into the soil as root exudates, 

and henceforth re-emitted into the atmosphere by microbial respiration. It has been shown that 

during severe drought conditions and/or salt stress, the C-uptake capacity of plants is reduced, 

whereas the emission of BVOC may be sustained (Loreto & Centritto, 2004; Rennenberg et al., 

2006). Because half of the soil CO2 efflux might originate from recent photoassimilates (Högberg 

& Read, 2006), the C loss of the plant as root exudates is another important aspect in 

constraining ecosystem C fluxes and C budgets. Thus, the use of techniques for quantification of 

the net (and not the gross) C uptake by plants, in a dynamic way and under changing 

environmental constraints, will improve our understanding of the global carbon cycle in a 

changing world. 
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A fascinating, yet widely unknown aspect of the terpenoid biosynthesis of plants is how they 

achieve a perfect regulation of C flux through the MEP pathway. Depending on their need, 

carotenoids, phytohormones, plant repellents of predators or attractants of pollinators are 

synthesized to varying degrees by plants (Gershenzon & Dudareva, 2007). The quantification of 

metabolic fluxes through the MEP pathway can be mathematically modeled by an experimental 

approach which includes 13C-labeling methods (Rios-Estepa & Lange, 2007). A metabolic model 

incorporates knowledge of gene and protein expression, the kinetic properties of enzymes 

involved in a metabolic pathway and associated networks and transient fluxes of metabolites 

under non-steady-state conditions (Rios-Estepa & Lange, 2007). At least some of these aspects 

are already treated in the process-based emission model SIM-BIM (Zimmer et al., 2000; Grote et 

al., 2009). Metabolic control analysis (Rios-Estepa & Lange, 2007) could be implemented for 

understanding the regulatory step of the MEP pathway. 

Finally, the construction of mathematical models will enable the simulation of terpenoid flux 

under different constraints (e.g. the environmental increase of CO2 concentration or temperature) 

or the rational alteration of metabolic fluxes during the design of specific terpenoid production.  
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