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“We must maintain the principle we laid down
when dealing with astronomy, that our pupils
must not leave their studies incomplete or stop
short of the final objective. They can do this
Just as much in harmonics as they could in
astronomy, by wasting their time on measuring
audible concords and notes.”

“Lord, yes, and pretty silly they look”, he said.
“They tolk about ‘“intervals’ of sound, and listen
as carefully as if they were trying to hear a
conversation next door. And some say they can
distinguish a note between two others, which
gives them a minimum unit of measurement,
while others maintain that there’s no difference
between the notes in question. They are all
using their ears instead of their minds.”

“You mean those people who torment catgut,
and try to wring the truth out of it by twisting
it on pegs.”

PLATO, Fourth Century BC.
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1 Introduction

In this thesis, we consider new types of paraproducts constructed via H°-functional
calculus and develop a T'(1)-Theorem for non-integral operators by combining methods
used in the study of LP theory for non-integral operators and the Kato problem with
the recently developed theory of Hardy and BMO spaces associated to sectorial operators.

Let us first explain the setting and give a short overview of the main results of the thesis
before coming to a more detailed discussion and an explanation of the background.

The underlying space (X,d,u) is a space of homogeneous type as introduced by
Coifman and Weiss in [CWT71]. This is nowadays common practice in harmonic analysis
and widens the scope of the theory for applications in comparison to the Euclidean space
R™ at very little cost. In fact, in this thesis there is only one situation where it makes a
relevant difference, namely in the context of Poincaré inequalities.

We consider a sectorial operator L of order 2m on L?(X) with the following properties:
e L has a bounded holomorphic functional calculus on L?(X);

e The semigroup e~ ‘" generated by L satisfies Davies-Gaffney estimates, also called
L? off-diagonal estimates;

e The semigroup e~/ satisfies an LP? — L? off-diagonal estimate for some 1 < p < 2

and an L? — L9 off-diagonal estimate for some 2 < ¢ < oo.

Under the first two assumptions on L, there was recently developed a theory of Hardy
spaces HY(X) and of a corresponding space BMOp(X) associated to the operator L.
We give a unified presentation of the results, including several characterizations of the
space H}(X) and the duality of the spaces H}(X) and BMOp+(X). Under these as-
sumptions on L, the results are to our knowledge nowhere stated before. Moreover, we
generalize a Fefferman-Stein criterion, describing the connection of Carleson measures
and elements of BMOp(X), and a Calder6n reproducing formula for elements of H} (X)
and BMOp+(X). The basic tool for the whole theory is the bounded holomorphic
functional calculus for L.

The connection of Carleson measures and elements of BMOp(X) sets the stage for a
definition of paraproducts constructed via holomorphic functional calculus.

We show that, under the above three assumptions on L, for every b € BMOp(X) the
paraproduct operator

dt

I : f— /OOO DEL) (2 L)b - Ay(e " Ef)] - (1.1)

is bounded on L?(X), where 1, 1; are taken from the set ¥ consisting of bounded holo-
morphic functions on a sector with decay at zero and infinity, and A; denotes some
averaging operator. The appearance of the operator A; might seem to be surprising,
but this is due to the fact that we do not impose any kernel estimates on the semigroup
etk

Besides, we show that II, extends to a bounded operator from LP(X) to HF(X) for



p € (2,00) and from L>®(X) to BMOp(X). A consideration of paraproducts as bilinear
operators and the examination of differentiability properties of paraproducts complete
the topic.

In a second part, we examine the L?-boundedness of so-called non-integral operators.
In our setting, they present as operators T : D(L) N R(L) — L2 (X) with T* : D(L*) N

loc

R(L*) — L% .(X) such that for functions 1,1, € ¥ with sufficient decay at zero the
following off-diagonal estimates are valid:
dist(By, B2)*™\ "
P01t 2 < € (14 FH T . (12)
" " dist(B1, B 2Zm N\ 7
Tt lingy < © (14 Y Dpagy )

for some v > 0, for all t > 0, all balls By, By with radius r = t!/2™ and all f € L?*(X)
supported in Bj.

On the Euclidean space R" let us denote by G, the Littlewood-Paley-Stein square func-
o0 " I AN
tion associated to L, i.e. let GL(f)(x) := (/ ’tVe_t2 Lf(ac)‘ t) for all x € R™
0

and all f € L?(R™). Then the main result of this thesis, a T(1)-Theorem for non-
integral operators reads as follows:

Theorem Let L be the sectorial operator of order 2m as specified above such that G,
and G« are bounded on L*(R™). Let T be a non-integral operator satisfying (1.2) and
(1.3) for sufficiently large v > 0. Then T is bounded on L*(R™) if and only if

T(1) € BMOL(R™)  and  T*(1) € BMOL-(R").

If the space R”™ is replaced by some arbitrary space X of homogeneous type, we require
in addition the validity of some Poincaré inequality and have to reformulate the bound-
edness of the Littlewood-Paley-Stein square functions.
The assumptions on the non-integral operator T are chosen in such a way that the
boundedness on Hardy spaces Hf (X) is an immediate consequence of the boundedness
on L*(X).
With the same methods used in the proof of this 7°(1)-Theorem, we moreover show a
second version of a T'(1)-Theorem with weaker assumptions in the case that the conser-
vation properties e */(1) = 1 and e~**"(1) = 1 hold.
Under the additional assumption that e~* is bounded on L*°(X) uniformly in ¢ > 0,
we then apply this second version to prove the boundedness of the paraproduct operator
I; on L?(X), where I} is defined by
= % am N —t2m L g2mp e A
o) = [ o@Dy T
for f € L*°(X), g € L*(X) and ¢ € U with sufficient decay at zero and infinity.
We end the thesis with an approach towards a 7'(b)-Theorem.

Let us go into a deeper discussion of the whole topic.



Non-integral operators To understand what a non-integral operator is, let us first
clarify what we mean by an integral operator, or more precisely, a singular integral
operator. The notion of the latter signals two properties of the operators we have in
mind, namely that they are, at least formally, defined as integrals of the form

Tf(z) = / k(. 9)(y) dy.

and that the integral kernel k is in some sense singular. What we postulate in addition,
is an estimate on the behaviour of the singularity of the kernel at x =y, i.e.

|k’(.ﬁ1§',y)| S C ":U - y|_nv

and a Holder-type estimate of the form

J— /5
k(,9) — k)] + [k, 2) — b 2)| < 02— Y1
|z —y|"

for all z,y,y’ € R™ with o # y and 0 < |y —¢/| < 3|z —y|. A weaker version of a
Holder-type estimate on the kernel is of the form

/ k() — k(a,y))| de < C
|z—y|>2[y’ —y|

and is called Hormander-type estimate. The study of singular integral operators dates
back to the beginning of the twentieth century, starting with the prototype of all singular
integrals, the Hilbert transform. While the methods used there depended on techniques
of complex analysis, Calderén and Zygmund systematically studied in the 1950’s sin-
gular integral operators of convolution type, and later on also of non-convolution type,
with the help of real variable methods. This led to an extensive study of this type of
operators, in the literature subsequently also called Calderdn-Zygmund operators. The
theory of such operators has important applications to complex analysis, elliptic partial
differential equations, pseudo-differential operators and many others.

One of the basic examples of Calderén-Zygmund operators are the Riesz transforms
R; = —ia%j(—A)*l/Q, 1 < j < n, on R" in generalization of the Hilbert transform
on R. They arise e.g. in the study of the Neumann problem on the upper half plane
and their boundedness on L?(R") can immediately be dealt with the Fourier transform.
However, the boundedness of R; on LP(R") for p € (1,00) is not at all obvious. It was
the motivating example for Calderén and Zygmund in their treatise of singular integral
operators and reflects one of the most important properties of Calderén-Zygmund oper-
ators: If a Calderén-Zygmund operator is bounded on L2, then it is also bounded on LP?
for all p € (1,00) and satisfies a weak (1,1) estimate.

For a precise definition of Calderén-Zygmund operators and an overview of Calderén-
Zygmund theory we refer to standard textbooks of harmonic analysis such as [Ste93],
[CM97] or [Gra04], cf. also [Chr90b]. Unlike the usual notion, we do not assume a
Calderén-Zygmund operator to be bounded on L2.

Even if in practice many operators fall under the scope of the Calderén-Zygmund theory,
there are still numerous operators of interest that do not. In aim of a uniform treat-
ment of some of these operators, Duong and Mclntosh developed in [DM99] a theory



of so-called singular integral operators with non-smooth kernels, considering classes of
operators, that do not satisfy the Hérmander condition, but are still of weak type (1, 1).
Their result covers a kind of integral operators 7" such that suitable approximation oper-
ators {S; }+>0 satisfy upper Poisson bounds and the composite operator T'(1 —S;) satisfies
a weakened Hormander-type condition. Under the assumption that the operator T is
L?-bounded, they could, in generalization of Calderén-Zygmund theory, show a weak
(1,1) estimate for T'. For concrete examples of such operators, we refer to [DM99]| and
the references given therein.

Blunck and Kunstmann went in [BKO03| a large step further and generalized the result
of Duong and McIntosh to non-integral operators. The authors replaced the weakened
Hoérmander estimate of [DM99] by a maximal estimate in terms of the Hardy-Littlewood
p-maximal operator for some p € [1,2) and used instead of Poisson bounds for the ap-
proximation operators suitable weighted norm estimates. For such operators, the authors
obtained a weak type (p,p) criterion under the assumption that they are bounded on
L?. A simplified version of this result, due to Auscher in [Aus07], reads as follows:

Let p € [1,2). Suppose that T is a sublinear operator of strong type (2,2), and let A,,
r >0, be a family of linear operators acting on L?. Assume that there exists some € > 0
such that for j > 2

1T = Arp) Fll g2y < C27002F 1BI2VP | £l o (1.4)
and for j > 1
HATBfHLQ(Sj(B)) < 02 i(n/2+e) \3!1/2_1/17 ”fHLP(B)
for all balls B with radius rg and all f supported in B. Then T is of weak type (p,p).

Besides, there exists a corresponding result for p > 2, due to Auscher, Coulhon, Duong
and Hofmann in [ACDHO04].

In the context of [BKO03|, and this will be the same how we understand it, the notion
of non-integral operators indicates the following: Most obviously, it signals that the
operators under consideration can no longer be represented by an integral operator with
a Calderon-Zygmund kernel, sometimes even not with any other kernel in a suitable sense
(besides the Schwartz kernel). At the same time, the operators lie beyond Calderén-
Zygmund theory, still - or even more - being “singular” in some sense and generalizing
the concept of Calderén-Zygmund operators. This includes that many ideas used in
the treatise of such operators are generalizations of methods developed in Calder6n-
Zygmund theory. However, the ranges of p, where the operators are bounded on LP,
are often strictly smaller than the usual interval (1,00). At last, the notion of non-
integral operators, as we understand it, implicitly contains some regularity assumptions,
in analogy to the notion of singular integral operators. In absence of pointwise kernel
estimates, such a regularity assumption is given in terms of weigthed norm estimates,
also called off-diagonal estimates.

One of the basic examples is again the Riesz transform, now in the context of more
general elliptic operators. If L is a second order elliptic operators in divergence form,
then for each p < nz—fg and for each p > 2 there exists some L as specified above such that

VL2 is not bounded on LP(R™). The result for p > 2 is due to Kenig and is described
in [AT98], the other one was recently shown by Hofmann, Mayboroda and Mclntosh in



[FIMM10].

However, Blunck and Kunstmann could show in [BK04] (cf. also [CD99] of Coulhon and
Duong and [HMO03| of Hofmann and Martell) by application of the above stated theorem
that even in absence of pointwise Gaussian estimates the Riesz transform V™L~1/2
of an elliptic operator of order 2m in divergence form is bounded on LP(R™) for all

pE (nfgm vV 1,2].

Off-diagonal estimates The main tool in the proof of the above result in [BK04] are
weighted LP — LY estimates of the form

-
< CW’B(ZL',tl/m)ﬁii (1 + d<$7y)) 7

—tL
H]IB(xil/m)e ]lB(yvtl/m)‘ LP—La tl/m

where 1 < p < ¢ < oo and the estimate shall hold for all v > 0. This type is also called
generalized Gaussian estimates, indicating that, in view of a well-known theorem, the
estimates are in the case of (p,q) = (1, 00) equivalent to pointwise Gaussian estimates.
The idea to work with weighted norm estimates, or off-diagonal estimates as we will call
them subsequently, has its origin in the paper [Sch94| of Schreieck and Voigt. They used
an estimate of the form

Hefg'Teg' )

< C(§),

LP—14

where £ € R™" and 1 < p < ¢ < 00, as a substitute for pointwise Gaussian bounds on the
semigroup in the context of LP spectral independence of certain Schrédinger operators.
This is what is often referred to as “box method” and in this case the notion weighted
estimates becomes clearer, as one can rewrite the estimates in terms of norm bounds for
the operator T in weighted spaces.

Estimates of the form

dist(E,F)?

1T (el 2my < Cem o [[fll L2y »

were first formulated by Davies in [Dav92|, rewriting arguments of Gaffney in [Gaf59] in
the context of heat equations on complete Riemannian manifolds. They are nowadays
called Davies-Gaffney estimates and hold for most semigroups generated by elliptic op-
erators, e.g. for elliptic higher order operators with bounded measurable coefficients and
for Schrédinger operators with singular potentials.

In this thesis, off-diagonal estimates provide the main tool for the treatment of non-
integral operators in absence of pointwise kernel estimates. First, we assume Davies-
Gaffney estimates for the semigroup of the sectorial operator L. This is the basis for the
development of the theory of Hardy and BMO spaces associated to operators. In the
theory of paraproducts we need in addition an LP — L? off-diagonal estimate for some
p < 2. This extra assumption is correlated to the use of the Hardy-Littlewood maximal
operator, as the 2-maximal operator is bounded on L? for ¢ > 2, but not on L2

For the non-integral operators T" we have under consideration in the context of our
T'(1)-Theorem, we work with weaker off-diagonal estimates of the form (1.2) and (1.3).
These estimates on approximations of T generalize the usual Héormander condition of
Calder6n-Zygmund operators. Moreover, under the assumption that 7' is bounded on
L?, the estimates self-improve. That is, if e.g. (1.2) is satisfied for 91, then the estimate
is also satisfied for functions ¢ taken from a large class of bounded holomorphic functions.



This property in particular gives way to the application of LP theory for non-integral
operators.

For a detailed discussion of off-diagonal estimates, we refer the reader to the paper [BK05]
of Blunck and Kunstmann and the series of papers [AM07a], [AMO07b], [AMO06], [AMOS8]
of Auscher and Martell, in particular [AMO7b].

T(1)-Theorem The fundamental question for Calderon-Zygmund operators is, whether
they are bounded on L?. For convolution operators, such as the Riesz transforms R;
on R™ this can immediately be shown by application of Fourier theory. But for most
operators considered in applications, this is not at all obvious. Fefferman wrote in [Fef75]
in 1975:

“When neither Plancherel’s theorem nor Cotlar’s lemma applies, L*-boundedness of
singular operators presents very hard problems, each of which must (so far) be dealt
with on its own terms.”

The question remained open until David and Journé presented in [DJ84] a characteriza-
tion of Calderén-Zygmund operators to be bounded on L?(R™). This is what originally
the term 7T'(1)- Theorem denotes. In short, they prove that a Calderon-Zygmund operator
T is bounded on L?(R™) if and only if it is weakly bounded (in some appropriate sense)
and T(1),7*(1) € BMO(R™). Thus, to check the boundedness of T on L?(R™), it is suf-
ficient to check T on smooth, compactly supported test functions for weak boundedness
and in addition, to check T" and T™* on the constant function 1. There exist various types
of weak boundedness properties, a common form is e.g. to assume that for all x € R"
and all ¢ >0

(T™", ™ h)| < Ct",

where ™! (y) = ¢((y — x)/t) and ¢ is a normalized bump function, i.e. ¢ € C®(R"),
supported in B(0,1) and [|¢|/o~ < 1 for some fixed N; and the same for .

What is fascinating about this theorem is that it is both - a deep result of crucial
importance and a theorem that can be formulated in only one sentence.

Many examples of operators, such as the Calder6n commutators and pseudo-differential
operators, can be covered by this result. But to one of the motivating examples for the
development of the theory, the Cauchy integral operator along Lipschitz curves, the T'(1)-
Theorem is not directly applicable. This led to the development of the T'(b)-Theorem of
David, Journé and Semmes in [DJS85] (a first version in this direction is due to McIntosh
and Meyer [MMS85]), where the function 1 is replaced by a para-accretive function b.
There exist numerous variants and generalizations, among them generalizations to spaces
of homogeneous type and non-homogeneous spaces, local T'(b)-Theorems, quadratic 7'(1)-
Theorems, and operator-valued versions. But in all cases one assumes kernel estimates
for the operator T to be valid.

Let us again have a look at our leading example, the Riesz transform VL~
an elliptic second order operator L in divergence form. The discussion before illustrates
that the Riesz transform does in general not fall under the scope of Calderén-Zygmund
operators and is what we call a non-integral operator. Thus, the T'(1)-Theorem of David
and Journé is not applicable for a proof of the boundedness of VL™'/2 on L2. The
question of L?-boundedness for the Riesz transform is part of the Kato problem, which
has been a long-standing conjecture. In [AHLT02], Auscher, Hofmann, Lacey, McIntosh

12 now for



and Tchamitchian solved this problem, that is, they showed that the domain of /L is
the Sobolev space WH2(R™) = {f € L*(R") : Vf € L*(R")} with

VLl 2@y = (V1| 2 gn) -

In particular, the result shows that the Riesz transform VL™'/2 is bounded on L2(R™).
Let us at this point mention that the main technical tool in the proof of the Kato problem
are off-diagonal estimates for the resolvent operator of L.

In view of the above, it therefore seems to be natural to reformulate what Fefferman said
about singular integral operators:

In absence of Calderdn-Zygmund theory, L?-boundedness of non-integral operators
presents very hard problems, each of which must (so far) be dealt with on its own terms.

This of course also imposes the following question, in analogy to what Auscher formulated
in [Aus07] in the context of LP theory:

Is there a general machinery to handle the L? theory of non-integral operators?

For the particular type of non-integral operators under consideration, this thesis gives a
positive answer to the question. That is, for a sectorial operator L, satisfying the three
assumptions specified at the beginning, with L?-bounded Littlewood-Paley-Stein square
functions G, G~ and an associated non-integral operator T satisfying (1.2) and (1.3),
we obtain a characterization of L?-boundedness of 7. And, even more, in analogy to the
T'(1)-Theorem of David and Journé, the characterization can be formulated in terms of
T(1) and T*(1). This is what we call a T'(1)-Theorem for non-integral operators.
Actually, many key elements used in the proof of the T'(1)-Theorem of David and Journé
stay applicable for the proof of our 7T'(1)-Theorem, but now in a more general form.
That is, we work with BMO spaces, Carleson measures, paraproducts and a Calderén
reproducing formula that are constructed via functional calculus and are thus associated
to a sectorial operator L.

The spaces H and BM Oy, The main difference in our T'(1)- Theorem for non-integral
operators in comparison to the T'(1)-Theorem for Calderon-Zygmund operators is the
replacement of the space BMO by the spaces BM Oy, and BMOp«, respectively. As is
well-known, the space BM O, introduced by John and Nirenberg, consists of all functions
f of bounded mean oscillation such that

sgp;, /B (@) — () 5] do < oo,

where the supremum is taken over all balls B in R™. In analogy to the space BM O that
can also be characterized via the Laplacian, the space BM Oy, is associated to a more
general sectorial operator L. It consists of elements f, that need no longer be functions,
such that

1 m
Sup/ [(I — e "B M ()2 dx < oo,
B |Bl /B

where again the supremum is taken over all balls B in R", rg denotes the radius of B
and M € N is chosen sufficiently large. Apparently, the main idea is to substitute the



averaging of f by a more general approximation associated to L. If one chooses L to be
the Laplacian, then the spaces BMO and BM Oy, coincide.

Most important for our applications is the fact that there exists an analogoue of the
“Fefferman-Stein criterion” for the space BMOp. This criterion, as stated in [FS72],
describes the connection of Carleson measures and elements of BMO.

The spaces BM Oy, were first introduced by Duong and Yan in [DY05b]|, where the semi-
group of the operators L under consideration satisfied pointwise Poisson upper bounds.
Hofmann and Mayboroda then gave in [HMa09| a generalization to second order elliptic
operators in divergence form. For sectorial operators L of the form we have in mind, the
theory is due to Duong and Li in [DL09].

What is closely related to - or, better to say, was the starting point for - the theory of
BMOy, spaces, is the theory of Hardy spaces HY associated to L. For the statement of
the T'(1)-Theorem for non-integral operators, these spaces only play a role in the back-
ground, as the space BM Oy, is the dual of H}.. But let us indicate some facts that are
correlated to the LP theory of non-integral operators. Hofmann and Mayboroda gave
in [HMa09] a sufficient condition for an operator to be bounded from Hi to L'. In
combination with an interpolation argument, this result, in a slightly more general form
stated as Proposition 4.39 in the thesis, can be considered as a complement to the above
stated theorem of Blunck and Kunstmann. In situations, where LP-boundedness of non-
integral operators fails, it is often possible to show that they are nevertheless bounded
from some Hardy space H? to LP for p € [1,2). The approximation operators A, in
(1.4) have obviously to be chosen in correlation to L. An example for such an operator
is again the Riesz transform VL2 of a second order elliptic operators in divergence
form. Hofmann, Mayboroda and McIntosh show in [HMM10] that it is actually possible
to characterize Hardy spaces associated to L via Riesz transforms. In particular, for all
those p for which the Riesz transform is bounded on LP itself, one obtains equivalence
of the spaces LP and HY.

For a broader overview and a history of the theory of Hardy and BMO spaces associated
to operators, we refer the reader to Section 4.1.

Paraproducts Paraproducts are a basic tool of harmonic analysis and play a cru-
cial role in the proof of the 7'(1)-Theorem of David and Journé ([DJ84]). There,
given a Calderén-Zygmund operator T, the authors first construct an operator T as
T =T — L — M, where L and M are paraproduct operators. The operators L and M
are chosen such that they are L?(R")-bounded and such that T'(1) = 0 and 7*(1) = 0.
This reduces the original problem to the proof of the L?(R™)-boundedness of T which
is handled via certain approximation operators and the use of the well-known Cotlar-
Knapp-Stein lemma.

In the proof of our T'(1)-Theorem for non-integral operators, the application of para-
products persists to be very helpful, even if they do not reduce the operator T to an
operator T with T(1) = T*(1) = 0. Nevertheless, we can decompose the operator T with
their help into a main part and an error term.

For more details and a discussion of the role of the condition 7(1) = 0, see Section 7.2.

To motivate our definition of paraproducts of the form (1.1), let us have a more detailed
look at the paraproduct used in the proof of the T'(1)-Theorem of David and Journé
(|DJ84]). Given b € BMO(R"™), they define an operator II (in [D.J84] denoted by L) on



L?(R™) via
= [CQl@uen . rere),
0

where P, and @); are convolution operators with P;(1) = 1 and Q¢(1) = 0. Then
they show that II is a Calderén-Zygmund operator, bounded on L?(R™) and satisfy-
ing II(1) = b and II*(1) = 0.

In analogy to that, we define a paraproduct Il associated to the sectorial operator L.
The convolution operator Q; is replaced by ¥(t>™L) for some 1 € ¥, whereas the op-
erator P; is replaced by Ate_tmL . That we add the averaging operator A; and do not
only work with e t*"L itself, which would perhaps be more natural, is due to the fact
that we do not have any kernel estimates of the operators. However, the averaging op-
erator appears also to be quite useful for applications in the proof of our 7°(1)-Theorem
for non-integral operators. We again refer to Section 7.2 for a discussion of the role of Ay.

But presenting paraproducts only as a tool in the context of T'(1)-Theorems is too nar-
rowly considered. Paraproducts emerged in the theory of paradifferential operators, see
e.g. [CMT78] and [Bon81|, and are for themselves operators of interest. There is no
canonical notion of paraproducts in the literature, but they are understood as bilinear
operators of a similiar form to (1.1), representing “half” the product of two functions.
For a short overview of the theory of paraproducts we refer to [BMN10].

In view of the recently developed theory of Hardy and BMO spaces associated to oper-
ators, it seems to be natural to consider also paraproducts associated to operators. In
analogy to the fact that the paraproduct of David and Journé is a Calderén-Zygmund
operator, we can show certain off-diagonal estimates for paraproducts associated to L,
thus they are a prototype for a non-integral operator. This will then also enable us to
extend the operators on certain LP(X) and HT(X) spaces. Moreover, via functional
calculus we can show that there holds a Leibniz-type rule.

Let us finally mention that in some special cases, there also holds IIy(1) = b and
IT; (1) = 0, the latter at least formally.

Functional calculus Last, but not least, let us say a word about holomorphic func-
tional calculus. It was introduced by McIntosh in [McI86], mainly motivated by the
connection to the Kato problem. And indeed, the holomorphic functional calculus was
one of the main tools in the solution of the Kato problem. The same is true for our
setting. Where in the theory of Calder6n-Zygmund operators Fourier analysis and later
on Littlewood-Paley and wavelet theory is used, we work instead with approximation
operators constructed via functional calculus. For example, the decomposition of the
identity operator is done by application of a Calderén reproducing formula. If 1, pew
satisfy [;° V()Y (t) % = 1, then the functional calculus yields that

| wemiens =g
0

for f € L?. In this way, we obtain approximation operators associated to L.



Comments on the 7'(1)-Theorem What seems to be astonishing while working in
the general context of sectorial operators, is the assumption that the Littlewood-Paley-
Stein square function G, is bounded on L?. This is an assumption which is more fitting
for elliptic operators in divergence form. We do not know whether this is only for
technical reasons or this is more intrinsic in the type of non-integral operators under
consideration. We give a short comment on the topic in Section 7.2.

Another question that is only partly answered in the thesis is that of a weak bounded-
ness property for non-integral operators. In the T'(1)-Theorem for Calderén-Zygmund
operators, one only postulates a very weak behaviour on the diagonal. In contrast to
that, the assumptions (1.2) and (1.3) are rather strong, yielding an estimate not only
“off-diagonal”, but also “on-diagonal”. One solution to this problem is given by a ver-
sion with weaker off-diagonal estimates, as stated in Theorem 6.17, in the case that the
conservation properties e /(1) = 1 and e=**" (1) = 1 are valid.

Comparison with a result of Bernicot While this thesis was under final prepara-
tion, we learned of the article [Ber10] of Bernicot, that also considers L2-boundedness
of non-integral operators. His result is a special case of our weak T'(1)-Theorem, Theo-
rem 6.17. The main difference in comparison to our results is the fact that he imposes
pointwise kernel estimates on the semigroup e~ *%. This obviously restricts the operators
L to a much smaller class than ours. Moreover, he only considers non-integral oper-
ators that satisfy off-diagonal estimates of the form (1.2) for some special 1, namely
Y1(2) = z2Me™* for some M € N. And, finally, his proof is completely different to ours.
He takes at various places the pointwise estimates into account, e.g. in the proof of a
Sobolev-type inequality. He himself says that “the pointwise bound seems to be very
important” in his proof and then states as an open question:

“Can we expect a similar T'(1)-Theorem under just off-diagonal decays
for the heat kernel?”

This thesis gives a positive answer to the question. For a more detailed comparison, we
refer to Section 7.1.
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Structure of the thesis

This thesis is organized as follows: In Chapter 2 we present fundamental notations and
preliminaries. We recall the definition of spaces of homogeneous type and give the most
basic facts of maximal functions, holomorphic functional calculus and tent spaces.
Chapter 3 is devoted to the study of off-diagonal estimates. We introduce three different
notions of off-diagonal estimates and examine important properties of those. Moreover,
we fix our assumptions on the operator L and show consequences of the assumed Davies-
Gaffney estimates.

In Chapter 4 we consider the theory of Hardy and BMO spaces associated to the op-
erator L. We give two characterizations of Hardy spaces, one via molecules, the other
one one via square functions, and then show the equivalence of both. In the second part
of the chapter, we introduce the space BMOp. We state a duality result for Hardy and
BMO spaces and - what is important for the theory of paraproducts - the connection of
Carleson measures and BMO functions.

Paraproducts are then the main topic of Chapter 5. We define paraproducts con-
structed via functional calculus and investigate their properties. Besides the most im-
portant property, the L?-boundedness, we also consider the boundedness on L? and H P
spaces and examine differentiability properties.

Chapter 6 presents the 7'(1)-Theorem for non-integral operators. We first fix our as-
sumptions on the non-integral operator 7', clarify how to define T'(1) and show necessary
conditions for T to be bounded on L?. We then give a concise introduction in Poincaré
inequalities on metric spaces and fix the additional assumption on X and L for a Poincaré
inequality to be vaild. The major part of the chapter is devoted to the statement and
proof of the T'(1)-Theorem for non-integral operators, followed by a second version with
weaker assumptions. An application of the second T'(1)-Theorem to paraproduct oper-
ators and an approach towards a T'(b)-Theorem complete the chapter.

Finally, in Chapter 7, we give some concluding remarks, give a more detailed compar-
ison with the result of Bernicot and comment on the role of constants.
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2 Preliminaries

In this chapter, we give some fundamental notation and a definition of spaces of homoge-
neous type. We summarize the most basic facts about maximal operators, holomorphic
functional calculus and tent spaces, that will be used in the sequel.

2.1 Notation

We introduce the following notation.

We denote by N, Z, R and C the natural, integer, real and complex numbers, respectively,
and set in addition Ny := N U {0}.

For a set M, we denote by 1, its characteristic function, i.e. 1p/(z) =1 for all x € M
and 1p/(x) =0 if 2 ¢ M. For a finite set M, we denote by #M the cardinality of M.
We denote by [.] the floor function, i.e. we define [z] := max{k : k € Z, k < z} for
every z € R.

We denote by (X, d, ) a space of homogeneous type as introduced in Section 2.2. By
B(x,r):={y € X : d(x,y) < r}, we denote the open ball in X with center x € X and
radius r > 0. We moreover define V(z,r) := p(B(z,r)), and for any open set Q2 C X we
write V() := u(Q).

We fix some element zyp € X that is henceforth denoted by 0. The ball By := B(0,1) is
then referred to as wunit ball.

For p € [1,00] and an open set 2 C X, we denote by LP(£2) the usual Lebesgue space on
the underlying measure space (2, ). By L} (X) we denote the space of all measurable
functions f with f € LP(B) for all balls B C X.

If Y,Y1,Y, are normed spaces, we denote by B(Y7,Y3) the space of continuous linear
operators from Y7 to Y3 and set B(Y) := B(Y,Y). We use the notation Y’ := B(Y,C)
for the dual space.

We denote by D(S) the domain, by R(S) the range of an unbounded operator S, and
by S* the k-fold composition of S with itself, in the sense of unbounded operators.
Throughout the thesis, the letter “C” will denote (possibly different) positive constants
that are independent of the essential variables. We will frequently write a < b, if there
holds @ < Cb for non-negative quantities a, b.

2.2 Spaces of homogeneous type

In the following we will always assume X to be a space of homogeneous type. More
precisely, we assume that (X, d) is a metric space and p is a nonnegative Borel measure
on X with p(X) = oo which satisfies the doubling condition:

There exists a constant A; > 1 such that for all x € X and all » > 0
V(z,2r) < A1V (x,r) < o0, (2.1)
where we set B(z,r) :={y € X : d(z,y) <r} and V(x,r) := u(B(z,r)).

For example, the space R", endowed with the Euclidean metric and the Lebesgue mea-
sure, or a graph of a Lipschitz function F': R” — R, with the induced Fuclidean metric
and with u(F(FE)) := |E|, the Lebesgue measure of £ C R", are spaces of homogeneous

type.
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Note that the doubling property implies the following strong homogeneity property:
There exists a constant As > 0 and some n > 0 such that for all A > 1, for all x € X
and all » > 0 there holds

Vi(x, Ar) < ANV (z, 7). (2.2)

In an Euclidean space with the Lebesgue measure, the parameter n corresponds to the
dimension of the space.
There also exist constants C' and D, 0 < D < n, so that

r

D
Viy,r)<C <1 + d(m,y)) Vx,r) (2.3)

uniformly for all z,y € X and r > 0. For D = n, this is a direct consequence of (2.2)
and the triangle inequality. If X = R", then D can be chosen to be 0.

For a ball B C X we denote by rp the radius of B and set

So(B):==B and  S;(B):=2'B\27'B forj=1,2,..., (2.4)

where 27 B is the ball with the same center as B and radius 2/rg.

We recall the following construction of an analogue of a dyadic grid on Euclidean spaces
for spaces of homogeneous type. The result is due to David [Da88] in slightly less
generality and due to Christ [Chr90a] in the present formulation.

Lemma 2.1 Let (X,d, ) be a space of homogeneous type. Then there exists a collection
Q= {Qg CX : keZ,ac€ I} of open subsets of X, where Ij is some index set, a
constant 0 € (0,1) and constants Cy,Cy > 0 such that

(i) wW(X\U, Q%) =0 for each fived k and Q% N Qg =0if a#p;
(ii) for any «, B, k,l with | > k, either Qlﬁ CQk or Qlﬁ NQk =0,
(i) for each | < k there is a unique 3 such that Q¥ C Qlﬁ;

(iv) diam(QF) < C16%;
(v) each Q% contains some ball B(zE, Co6%), where 2F € X

For a better understanding of the statement, one can think of QX € Q as being a dyadic
cube with sidelength 6% centered at 2%.
By abuse of notation we will sometimes call the elements of the collection Q “cubes”.

We fix the following notation for further reference. It describes the covering of a dilated
ball 2/ B with elements of Q whose diameters are related to the radius of the ball B.

Notation 2.2 Let B = B(xp,rp) be an arbitrary ball in X. With the notation as in
Lemma 2.1, we define kg € Z to be the integer satisfying

C16% < rp < Okt (2.5)
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and for each j € N we define k; € Z to be the integer satisfying

6k <ol < ghiTL (2.6)
We further define for each j € N the index set M; related to the ball B = B(xp,7g) by
Mj = {B € Iy, : QIZ?O N B(vaclékO_kj_Q) # 0}7 (27)

representing all “cubes” out of Q with “sidelength” approximately equal to rp that have
non-empty intersection with the dilated ball 2/ B. More precisely, we observe that Lemma
2.1 yields - modulo null sets of u - for every j € N the following inclusions:

2B C B(xp,C16" %) C | ] QF C B(wp,2C10% %72) C 57221 B. (28)
BeM;

The first and the fourth inclusions are simple consequences of the definition of kg and

kj, whereas the second one follows from Lemma 2.1 (i) and the third one uses Lemma

2.1 (iv). Further, Lemma 2.1 yields that the sets Qk“ B € Mj, are disjoint and for each

B € Mj there exists some zﬁ € X such that

B(Zﬁ ,cirg) C Qko - B(Zﬁ ,TB) (2.9)
for some ¢; € (0,1) independent of j and 5 due to Lemma 2.1 (v) and (iv).

Remark 2.3 The cardinality of the set M; defined in (2.7) is bounded from above by
a constant times 2/". This fact is in analogy to the case of Euclidean spaces, saying
that for an arbitrary ball B = B(xp,rg) in X, one can cover the dilated ball 2/B =
B(xp,2/rg) by approximately 2/" disjoint “cubes” out of Q of diameter approximately
equal to rp. The argument is a simple modification of the one given in [CWT71], Chapitre
ITI, comparing the constants A; and N, where N denotes the constant specified in
Remark 2.4.

Let B = B(xp,rp) be an arbitrary ball in X and let j € N. To get an estimate for
#M;, observe that by definition of M; and property (iv) of Lemma 2.1, for every 5 € M;
there holds the inclusion B(zp,Ci6*Fi=2) C B(zgo, 30160=%i=2) Thus, the doubling
condition (2.2) and property (v) of Lemma 2.1 yield

#M; - p(Blag, Cr6%7872)) < 3 u(B(zf, 3C18%0H72)
BeM;

< Ay(3C1Cy TR T Y T (B2, Cad™))
/BEM]‘

§A2(301C'2_15_kj_2)"u( U QZO)
,BGJWJ‘

using the disjointness of the sets QZO in the last step. With the help of (2.8) and the
fact that 6% < 27 we further obtain that the above is bounded by

Aa(3C,C5 672" u(Blarg, 20,80~ ))
< AL(6C,C5 122" u(B(x g, Oy 670 Fi2)),
again applying the doubling condition (2.2). Hence,
#M; - p(B(xp, C16™"72)) S 27" u(B(ap, Cr™ M%)
and therefore #M; < 27"
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Remark 2.4 Spaces of homogeneous type were first defined by Coifman and Weiss
in [CWT1], Chapitre III, in a slightly more general way. We shortly remark that the
defining property for spaces of homogeneous type was originally the following, reflecting
the covering property described in Remark 2.3.

“There ezists some N € N such that for every x € X and every r > 0 the ball B(x,r)
contains at most N points x; with d(z;,xj) > 5.7

As can easily be seen, the doubling constant A; and the constant N depend on each
other. For further details and examples of spaces of homogeneous type, we refer to
[CWT1], Chapitre IIT and [Chr90b], Chapter VI.

2.3 Averaging and maximal operators

Let f € L\ _(X). We denote the average of f over an open set U € X by

loc
1
Do = g7 | 1) o)

Averaging operator With the notation as in Lemma 2.1 we define the following
averaging operator on X. It substitutes the dyadic averaging operator on Euclidean
spaces.

Let t > 0. We denote by kg € Z the unique integer satisfying

Crofo <t < ¢kt (2.10)

Then for almost every x € X there exists a unique a € Iy, such that x € QFo. We will
therefore define the uncentered averaging operator A; by

1
V(QR) Joko

Aif(z) == f(y) du(y), for almost all z € X, (2.11)

for every f € LllO (X)), where Q"0 is the uniquely determined open set out of the collection

k .
{Q5 }per,, with x € Qo
Observe that the operator A; is constant on each open set Q. Moreover, there holds

Af =) (Pgrolgro:

aEIkO

where ko is determined by (2.10).
Let us also remark the following pointwise bound: There exists a constant C' > 0 such
that for almost every € X and every f € LL (X)

loc

1
4@ < Oy [ Ul anty), (212)

This follows immediately from Lemma 2.1, observing that whenever z € Q0. then there
holds Q% C B(z,t) C B(zk0,2t) and, due to the doubling condition and (2.10), the
inequality V(y,t) < V(zho,2t) < Ay(2t)"(Cadk0) ™V (2K, Cos*0) S V(QR).
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Maximal operators We denote by M the uncentered Hardy-Littlewood maximal
operator, i.e. for a measurable function f: X — C and a point € X we set

1
Mi@) = s g [ 1) )

yeB(z,r)

Further, for p € [1,00), we denote by M, the p-mazimal operator, i.e. for a measurable
function f: X — C we set

Myf = M.
For the sake of convenience, we state the well-known boundedness properties of Hardy-
Littlewood maximal functions. For a proof of the theorem in the case of p =1 (that is,
for M; = M), we refer to [CWT71]|, Chapitre III. The result for p > 1 is then an easy
consequence.

Theorem 2.5 Let p € [1,00). The sublinear operator M, is bounded on LI(X) for
every q € (p, 0], but not on LP(X).

2.4 Lebesgue differentiation theorem

Let us further recall the well-known Lebesgue differentiation theorem and the notion of
Lebesgue points. Our presentation is taken from |[HK00|. For a proof, we refer to any
standard textbook of harmonic analysis, e.g. [Ste70], Chapter I.1.

For ¢ > 1 and = € X we define F.(z) as the family of all measurable sets £ C X such
that £ C B(z,r) and V(z,r) < ¢V (FE) for some r > 0.

We say that a sequence of nonempty sets { E;}5°, converges to x if there exists a sequence
of radii r; > 0 such that E; C B(z,r;) and r; — 0 as i — oc.

Theorem 2.6 Let f € Llloc(X). For p-almost every x € X there holds
1

i Gy o 0 d0) = ). (213)

Moreover, if we fix ¢ > 1, then for p-almost every v € X and every sequence of sets
{E;}2, C Fe(z) that converges to x we have

. 1
i i L S0 ) = 5@) (214

Given f € L _(X) it is often convenient to identify f with the representative given

everywhere by the formula

f(z) = limsup [ () du(y). (2.15)

ol
r—0 V(x,r) B(z,r)
Theorem 2.6 shows that in this way f is only modified on a set of measure zero.

Definition 2.7 We say that x € X is a Lebesgue point of f, if

1

ey o, 1) S dut) =0,

where f(x) is given by (2.15).
It follows from Theorem 2.6 that almost all points of X are Lebesgue points of f. Observe
that if x € X is a Lebesgue point of f, then both (2.13) and (2.14) are true.
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2.5 Holomorphic functional calculus

One of the fundamental tools in the theory to be developed in the sequel is the holomor-
phic functional calculus introduced by McIntosh in [McI86]. In situations when in the
standard Hardy space and Calderén-Zygmund theory convolution operators (e.g. con-
volution with the Poisson kernel) and Littlewood-Paley theory were used, we now work
with approximation operators constructed by holomorphic functional calculus. These
approximation operators are then associated to a general sectorial operator L instead of
that they are associated to the Laplacian.

We only state the most important definitions and results. For more details on holomor-
phic functional calculi and proofs of the cited results below we refer to [McI86], [ADM96],
[KW04| and [Haa06].

For 0 < w < u < m we define the closed and open sectors in the complex plane C by
Swt = {C € C\{0} : |arg(| < w} U {0},
0= {CeC i ¢ £0,|argC| < i}

We denote by H (EO) the space of all holomorphic functions on EO We further define
the space H OO(ZO) consisting of all bounded holomorphic functlons on 20 and subspaces
\IJUJ(E ) with spec1ﬁed decay at zero and infinity by

H*(2)) = {v € H(Z)) + ¥l g (sg) < 00},

Vor(Z)) = (Y € HZ)) : [9(QI < CI7 (L +[¢|77T) 7 for every ¢ € T3}

for every o,7 > 0. Alternatively, one can say that
0 o] 0 . o -7 0
VeV, (X)) & e HP(E,) and [¥(¢)| < Cinf{|¢|”,[¢|7"} for every ¢ € ;.

Let U(29) := Uy o0 Yor (Z0).

Definition 2.8 Let w € [0,7). A closed operator L on a Hilbert space H is said to be
sectorial of angle w if o(L) C S,y and, for each pu > w, there exists a constant C,, > 0
such that

lCI-D) Y <cCulel™, (¢St

Remark 2.9 Let w € [0,7) and let L be a sectorial operator of angle w on a Hilbert
space H. Then L has dense domain in H. If L is assumed to be injective, then L also
has dense range in H. See e.g. [CDMY96|, Theorem 2.3 and Theorem 3.8.

For a sectorial operator L, a functional calculus on \II(ZB) can be defined as follows.

Definition and Theorem 2.10 Let H be a Hilbert space and L be a sectorial operator
of angle w € [0, 7). Forw <O < p<mand € \11(22) put

O (Y) :=p(L) := % - YN (M — L)L dA. (2.16)

Then @y, : \11(22) — B(H) defines a linear and multiplicative map with the following
properties:
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(i) Let fn,f € H“(Zg) be uniformly bounded and fn,(\) — f(A) for X € 22. Then for
all Y € @(22)
lim @y (f, ) = By(f ) in BH).

n—oo

(i) If p(A) = m with p1, pg ¢ XY, then
W(L) = L] — L) (pol — L),

(i) [P (L) < 5= [os0 [V(N)] % for some positive constant ¢ independent of 1.
0

The integral in (2.16) is well-defined, since on 959 the estimate H()\I - L)_1H < AT

holds. Moreover, an extension of Cauchy’s theorem shows that the definition is indepen-

dent of the choice of 6 € (w, u).

For a proof of the theorem, we refer to [KW04]|, Theorem 9.2.

With the help of the convergence property in Theorem 2.10 (i), one can extend the
functional calculus on \11(22) to functions from H 00(22) in the following way.

Let L be an injective, sectorial operator of angle w € [0,7) and let u € (w,w). Let
fe HOO(Eg) and f, € \II(EB) be uniformly bounded with f,, — f pointwise. We set
Y(2) := z(1 + 2)~2. Theorem 2.10 then yields that

Jim fo(L)($(L)z) = lim (fp - ) (L)z = (f - ) (L)z

for every 2 € H. Moreover, one can show that the operator ¢(L) = L(1 + L)~ 2 is
injective and has dense range in H. Thus, one can define by

F(L) =@ $)(T)
a closed operator on H, that satisfies the following properties.

Definition and Theorem 2.11 Let H be a Hilbert space. If L is an injective, sectorial
operator of angle w € [0,7) in H, and p € (w,m), then we say that L has a bounded
H”(Eg) functional calculus if there exists a constant ¢, > 0 such that for all f €
H> (X)), there holds f(L) € B(H) and

TOIErAT T

For every f € {{00(22) we put ®1,(f) := f(L). If L has a bounded H® (X)) functional
calculus, then ®p : HOO(EIOL) — B(H) is an extension of ®1 and defines a linear and
multiplicative map.

Furthermore, the following convergence lemma, is valid.

Lemma 2.12 Let H be o Hilbert space, let L be an injective, sectorial operator of angle
w e [0,7) in H, and let p € (w, ). If f, fn € H*(X)) with fo(X) — f(X) for X € I,
and { fn(L)}n is uniformly bounded in B(H), then f(L) € B(H), fo(L)x — f(L)x for
all z € H and [[f(L)|| < sup, |[fn(L)]]-

Let us in addition state a characterization for L to have a bounded holomorphic func-
tional calculus. In particular the equivalence of (¢) and (iv) will quite frequently be used
in the sequel.
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Theorem 2.13 Let H be a Hilbert space and L be an injective sectorial operator of angle
w € [0,m). Then the following statements are equivalent:

(i) L has a bounded HOO(E?L) functional calculus for all p € (w, ).
(i) L has a bounded H‘X’(Zg) functional calculus for some p € (w,m).
(iii) For some pu € (w,m) there exists some C > 0 such that for all ¢ € \II(E?L) there
holds [[P(L)|| < Cl[¢[| poe(sg) -

(iv) For some (all) pn € (w, ) and some ) € \P(Ez) \ {0} there exists some C' > 0 such
that for all x € H

_ oo dt
el < [ Iwen)al? § < Clal?.

We end the section by giving a different representation of (L), as defined in (2.16),
whenever ¢ € ¥(X)) for some p € (w,7/2).

Remark 2.14 Let L be a sectorial operator of angle w € [0,7/2) and w < 0 <v < pu <
/2. Ify € \11(22), then ¢ (L) can alternatively be represented in terms of the semigroup
instead of the resolvent as

o) = [ et [ et @) (2.17)
Iy _
where n4 and 7 are defined by
1
ne(z) = 2,/ e *(€) de, zeTly, (2.18)
T Sy

and the paths of integration are given by I'y = RteF(™/2-9) and v, = Rtetiv.

2.6 Tent spaces and Carleson measures

Tent spaces on R"™ were introduced by Coifman, Meyer and Stein in [CMS83|. Various
ideas for tent spaces had been used before, but in [CMS83] they appear for the first time
explicitly. Further development was then done by the same authors in [CMS85]|, where
the most important results for the theory of tent spaces can be found. As was mentioned
there already, tent spaces naturally arise in harmonic analysis and they provide the ap-
propriate setting for the study of square functions, (non-tangential) maximal functions,
Carleson measures and Hardy and BMO spaces and are deeply connected with the the-
ory of singular integrals. And, as can be seen in the sequel, the same also stays true
for the theory of Hardy and BMO spaces associated to operators and the T'(1)-Theorem
presented in Chapter 6.

We recall the most important definitions and properties of tent spaces and Carleson
measures and functions. For more details we refer to [CMS85] and [Ste93], Chapter
IT. As mentioned in [Ste93], the proofs, given there in the case of the Euclidean space
R™, take over to spaces of homogeneous type. For some of the results, we also give the
corresponding reference to a proof in the setting of spaces of homogeneous type.
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For any x € X and any a > 0, we denote by I'*(z) the cone of aperture a with vertex
x, namely

I'*(z) :={(y,t) € X x (0,00) : d(y,x) < at}.

For any closed subset F' C X and any « > 0 we denote by R*(F’) the union of all cones
with vertices in F' (also called “saw-tooth region”), i.e.

= U '“(x)

zeF

For simplicity we will write I'(x) instead of I''(z) and R(F) instead of R (F).
If O is an open subset of X, then the tent over O, denoted by O, is defined as

0 = [R(0°))¢ = {(x,t) € X x (0,00) : dist(z,0%) > t}.

For balls B = B(zp,rp) in X, one can instead of tents alternatively work with cylindrical
tents, defined by

T(B) :={(z,t) € X x (0,00) : x € B, 0 <t <rg}.

Then there holds B C T(B) C 2B.

Definition 2.15 For any measurable function F' on X x (0,00), we define the conical

square function o F by
du(y) at\"?
// 2 1(y) at ’ ze X,
V(z,t) t

and the Carleson function €F by

1/2
CF(x) := sup ( / |F(y,t)? dnly )dt> , e X,

B:xeB

where the supremum is taken over all balls B in X that contain x.
For 0 < p < o0, the tent spaces on X x (0,00) are defined by

TP(X) == {F : X x (0,00) = C measurable; ||F'||pp ) := || F|| [ x) < o0}.
The tent space T (X) is defined by

T>(X) = {F : X x (0,00) — C measurable; | Fllpu () = |EFll oo, < o}
When p € [1,00], the space (T?(X), |- [|7»(x)) is a Banach space.

In [HLM™09]|, Lemma 4.7, the following density result for tent spaces in the case of
spaces of homogeneous type was shown.

Lemma 2.16 If 1 < p < oo, then TP(X) NT?(X) is dense in TP(X).

We recall the following duality results for tent spaces. For a proof, see [CMS85|, Theorem
1 and 2.
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Theorem 2.17 (i) Let 1 < p < oo and ]l) + 1% = 1. There ezists a constant C > 0 such
that for all F € TP(X) and all G € T? (X)) there holds

f&mm)a”G“”MM b<c [ (P)@)(G)a) duta).

Further, there exists a constant C' > 0 such that for all F € T*(X) and all G € T*(X)
there holds

// P, )G, 1) PRI
X%(0,00)

(ii) The pairing

<C [ (@%@ @) duo).

d dt
w6 [[ PGy
X %(0,00) t
realizes TP (X) as equivalent to the dual of TP(X) if 1 < p < 0o and % + 2% =1, and
realizes T (X) as equivalent to the dual of T*(X).

The relation between the functionals &/ and ¥ are given as follows. For a proof, we
again refer to [CMS85], Theorem 3.

Theorem 2.18 (i) Let 0 < p < oo. There exists a constant C > 0 such that for all
measurable functions F on X x (0, 00)

17 (E) | Lo (x) < CNE () Loy -

(1) Let 2 < p < co. There exists a constant C > 0 such that for all measurable functions
F on X x (0,00)
1C N Lox) < C I (F)l o x) -

In particular, whenever 2 < p < oo and F' € T?(X), then ||€(F)| o x) = [[9(F)| 1r(x)-

We now come to the notion of atoms and the atomic decomposition of T'(X) on spaces
of homogeneous type, as defined by Russ in [Rus07| in analogy to the notion of atoms
on R™.

Definition 2.19 A measurable function A on X x (0,00) is said to be a T'(X)-atom,
if there exists a ball B C X such that A is supported in B and

o dp(z)dt 1
//XX(U,OO) Al ) £ = V(B)

Note that a T (X)-atom belongs to T*(X) and its norm is controlled by a constant only
depending on X. This can be seen as follows. If A is supported in B, then (A) is
supported in B by definition of tent regions. Furthermore, the inequality (2.3), which is
a consequence of the doubling property, implies that there exists a constant C' > 0 such
that for all y € X

ct< / V(z,t) tdu(x) < C. (2.19)
(y:1)
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Hence, the Cauchy-Schwarz inequality, Fubini’s theorem and the definition of atoms yield

1/2
4l = [ ( /I s 5’(‘@2)?) au(a)
1/2
_ o du(y) dt .
—[g(//wmw,t)r VWH) )
1/2
1/2 > 2 dply) dt
V(D) (/X L AP g G >)

1/2
* dp(z) du(y)dt
<V(B)? ( |/ ( Lo V(x,t)) Aty 0 t) <c

The proposition below shows that, conversely, any function in 7"(X) has an atomic
decomposition. The result is mainly taken from [Rus07], generalizing the analogous
result of [CMS85] on R™. For the convergence in T?(X), we refer to [DL09], Proposition
3.6.

Proposition 2.20 There exists a constant C' > 0 with the following property: For every
F € TY(X), there exists a numerical sequence {Aj}520 and a sequence of TY(X)-atoms
{A;}52 such that

F = Z)\jAj in TH(X) and a.e. in X x (0,00), (2.20)
j=0
and
D NI ClIFllp ) -
=0

Moreover, if F € TY(X)NT?(X), then the decomposition (2.20) also converges in T?(X).

We finally state the definition of non-tangential maximal functions and Carleson mea-
sures and the corresponding duality result.

Definition 2.21 For any measurable function F' on X x (0,00), the non-tangential
maximal function F™* is defined by

F*(x):= sup [|F(y,t), r e X. (2.21)
(y,t)el(z)

The space N is defined by
N :={F: X x(0,00) = C measurable; ||F| := 1F* g1 x) < o0}

A Carleson measure is a Borel measure v on X X (0,00) such that

|lv||o := sup 1 // |dv| < oo
©T g vV(B) g ’

where the supremum 1s taken over all balls B in X. We define C to be the space of all
Carleson measures.
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The spaces (N, |[|.||xr) and (C,|.||.) are Banach spaces.
Observe that for F' € T°°(X) there holds

du(y)dt

L S [ 22

C
The connection between AN and C is given by the following theorem. It is implicit
already contained in [FS72], a proof is stated in [CMS85|, Proposition 3. The space C is

not exactly the dual space of N. For a precise duality result of non-tangential maximal
functions and Carleson measures in the case of R", we refer to [CMS85|, Proposition 1.

Theorem 2.22 If F € N and v € C, then

/ / F(a,1)] du(z,1) < C|FlLy - ]
X %x(0,00)

For applications, we also need the following corollary. The result has its origin in
[CMS85], Remark (b) on p. 320.

Corollary 2.23 Let 2 < p < co. Let F be a measurable function on X x (0,00) with
F* € LP(X) and let G € T>(X). Then there holds

IE(F - Gl gy < C I gy 1€ G e x)
with a constant C > 0 independent of F and G.

Proof: Let B be an arbitrary ball in X. The assumption G € T°°(X) implies that

|Gy, t)|? M is a Carleson measure. Replacing |F| by |F|*, Theorem 2.22 and (2.22)
then yield that

[ 1Fwor 0P PO < 166iE g [ (- 1pr @)

= [6G 1) [ (PP dn),

by definition of tent regions. Hence, we get for every x € X

1/2
G(F-G)x) = sup (1/(13)// |F(y, 1) |Gy, t)]? dM(i/)Cit)

B:xzeB B

1 ) 1/2
< su /F*z dz) CG| o
s (i @) 166

= Mo(F*) (@) €G] Lo (x) -
Since My is bounded on LP(X) for every p > 2, we obtain

1€(F - Gl o xy S IM2(F) Lo x) 1€Cl oo (x)
SN o x) 1€G oo (x) - O
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3 Off-diagonal estimates and assumptions on the operator

Off-diagonal estimates are the most important technical tool in absence of pointwise ker-
nel estimates. We introduce in this chapter three different types of off-diagonal estimates
and present various features of those. In a second part, we fix our assumptions on the
operator L and show certain self-improving properties of the assumed Davies-Gaffney
estimates.

In the following, m > 1 will be a fixed constant, representing the order of the sectorial
operator L. Later on, the letter m will in addition be used for molecules, but to our
opinion there will not be any chance of confusion.

3.1 Davies-Gaffney and other off-diagonal estimates

For a family of linear operators {S;};~0 acting on L?(X), we describe the notion of
Davies-Gaffney estimates, off-diagonal estimates of a certain order and weak off-diagonal
estimates of a certain order on L?(X).

Davies-Gaffney estimates We say that the family of operators {S;};~¢ satisfies
Davies-Gaffney estimates (L? off-diagonal estimates) if there exist constants C, ¢, 7 > 0
such that for arbitrary open sets E, FF C X

dist(E,F)2™

2m=1
||StfHL2(F) < Ce ( " ) Hf||L2(E) ) (3.1)

for every ¢ > 0 and every f € L?(X) supported in E.

Similarly, we say that a family of operators {SZ}Zezg, p € (0, 3), satisfies Davies-Gaffney
estimates (L? off-diagonal estimates) in z € 22 if the analogue of (3.1) holds with |z| in
place of t on the right-hand side.

Off-diagonal estimates We say that a family of operators {S;};o satisfies L? off-
diagonal estimates of order 7, v > 0, if there exists a constant C' > 0 such that for
arbitrary open sets E, FF C X

dist(E, F)*™\ '
5illagey < € (14 EETEY Dy,

for every t > 0 and every f € L?(X) supported in E.

Weak off-diagonal estimates We say that a family of linear operators {S;}4~¢ sat-
isfies weak L? off-diagonal estimates of order v, v > 0, if there exists a constant C' > 0
such that for every t > 0, arbitrary balls By, By € X with radius 7 = t1/2™ and every
f € L*(X) supported in By

dist(B1, B2)*™\ 7
1810 eqmy < € (14 DY Dy (32)

Unless otherwise specified, we always mean by (weak) off-diagonal estimates the defini-
tion of (weak) L? off-diagonal estimates.

24



We collect some important properties of the different concepts of off-diagonal estimates.

Obviously, Davies-Gaffney estimates imply off-diagonal estimates of any order v > 0 and
off-diagonal estimates of a certain order v > 0 imply weak off-diagonal estimates of the
same order y

Moreover, the next lemma shows that a family of operators that satisfies weak off-
diagonal estimates of any order larger than 5 is uniformly bounded on L?(X). The
uniform boundedness of operator families that satisfy off-diagonal or Davies-Gaffney

estimates on L?(X) follows immediately from the definition by taking E = F = X.

Lemma 3.1 Assume that the family of operators {S;}i~o satisfies weak L? off-diagonal
estimates of order v > 5. Then Sy is bounded on L?(X) uniformly int > 0, i.e. there
exists a constant C' > 0 such that for all f € L*(X) and every t > 0

1Sefllz2(x) < Cllfll2x

Proof: Lett > 0and f,g € L?(X). In order to apply the weak L? off-diagonal estimates
for Sy, we will split X with the help of Lemma 2.1 into “cubes” out of @ with diameter
approximately equal to /2™ and then order them into annuli around one fixed “cube”
to get an estimate for the distance of the “cubes”. With the notation as in Lemma 2.1,
let ko € Z be the integer satisfying C16%0 < ¢1/2m < C16ko—1. In addition, for every
o € Iy, we denote by B, the ball B(z%0,t1/2™) and observe that Lemma 2.1 (iv) and (v)
yield the inclusion Q% C B,. Then there holds by assumptions

sifal< S 3 [

Oéelko Belko

dist(Ba, Bg) -
<3 3 (1 BB s ol

aEIkO ﬁelko

dist(Ba, Bg) IR
< Z Z < t> ”f”L2(Q§O)

aEIkO BEIkO

Stll kofa]l ’fog>‘

1/2

1/2

dist(Ba, Bg) B
T (BB e ] 6

Ozelko ﬁe[ko

using the Cauchy-Schwarz inequality in the last step.
Let o € Iy, be fixed and let j € N. As in Notation 2.2 we define the index set M; related
to the ball B, by

Mj:={B €I}, : QF NB(zk,Crd* M) £ p}.

The inclusions (2.8) from Notation 2.2 yield that if zlgo € Sj(Ba), then 8 € M; and, by
definition of the annulus, dist(Bq, Bg) = 27 t1/2m for every j > 3. We therefore get for
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fixed o € I,

dist(Ba, Bg)?™\ | & dist(Ba, Bg)?™\ "
> (1 <> > (e

BElk, j=0  Bely,
Zg €S;(Ba)
o o
SN (4 2)mr <Y o, (3.4)
j=0 BeM; =0

where we used the result of Remark 2.3 in the last step, saying that the cardinality of
M; is less than a constant times 2in,
On the other hand, the disjointness of the cubes {Q’C‘;O}aelko implies that

> ||f|’i2(Q§o) <1 lZ20x) -

aEIkO

Hence, the expression in the first bracket of (3.3) is bounded by a constant times
I fH%Q( x)- Repeating the same procedure for the second bracket with the roles of @ and
3 interchanged and f replaced by g finally shows that [(S¢f,9)| S [ fllz2(x) 190 12(x)- O

Under the same assumptions as in Lemma 3.1, we can define the action of the operator S;
on L*°(X) in the L2 (X) sense via duality. This will be, for instance, helpful to define
the action of the semigroup {e~**};~0 on L>°(X) for sectorial operators L satisfying
Davies-Gaffney estimates, or to give a meaning to the assumption 7'(1) € BMOp(X) in

Theorem 6.13.

Remark 3.2 (i) Let {S;};~0 be a family of linear operators on L?(X) that satisfies weak
off-diagonal estimates of order v > 5. Then, for every ¢ > 0 and every ball B in X, the
operator S} also acts from L?(B) to L'(X) and one can thus define S; as an operator
from L>®(X) to L2 (X) via duality. This works as follows:

Let f € L®(X) and t > 0. Further, let B = B(zp,t/?") be some ball in X and
¢ € L%(X) with supp ¢ C B. Similar to the proof of Lemma 3.1, we split X into annuli
around B on the basis of Lemma 2.1 and Notation 2.2. That is, we denote by kg the
integer defined in (2.5) and for each j € N by M the set of indices defined in (2.7), so that
2B C UﬁeMj QZO, where each open set QZO is contained in a ball Bg = B(zgo,tlﬂm).
Due to the Cauchy-Schwarz inequality and the weak off-diagonal estimates for S} we
obtain

(1St < 3 Mg FoSiA <Y D lages) 157 €l agro

250€5;(B)
0o 1/2 1/2
(T W) (T el
i=0 \ pely, ’ BE, ’
250 €S;(B) 250€8;(B)
1/2 12
- dist(B, Bg)2™\
Sy [ T v@p] (3 (0 BERE) Tg, )
7=0 ﬂEM]' ﬂEIkO
250€5;(B)

(3.5)
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using that if ZZO € S;(B), then fis in M;. In addition, the disjointness of the open sets
ng, the inclusions in (2.8) and the doubling property (2.2) of p yield

1/2
V@Y | SVEB)YESYPV (B
BeM;

On the other hand, for every j > 3 and every 8 € Iy, with zgo € S;(B) there holds

B € M; and dist(B, Bg) > 27t'/2™. Hence, we observe that the second factor in (3.5) is
for every j > 0 bounded by a constant times (#£M;)Y/2(1 + 27)=2™ [l 2(p)- Taking

into account that #M; < 2/ due to Remark 2.3, we finally end up with

(£, S7 O S 1 lloe ) el oy VI(B)!/2 Y 27 220n/2072ms
=0

S ”fHLoc(X) H<P||L2(B) V(B)1/2,

since we assumed v > 5.
Thus, for every ¢t > 0 we can define S f for f € L*°(X) via duality as

<Stfa 30> = <fa S;(QD%

where ¢ € L?(X) is supported in some ball in X.

(ii) The calculation above yields in particular the following estimate: There exists a
constant C' > 0 such that for all + > 0, for all balls B = B(zp,t/?") and for all
f € L*°(X) there holds

1S:£ 1120y < CV(BY2 || £l oo )

Hence, the average of S;f over a ball B = B(xp, tl/Qm) is bounded by

1
[(Sef) Bl < V(B)/B!Stf(x) du(x) < V(B) 2 118ufll 2 gm) S 1 peex)

We continue with another important observation concerning the previously defined off-
diagonal estimates: All notions of off-diagonal estimates are stable under composition.

Lemma 3.3 If two families of operators {Si}i~0 and {T;}i>0 satisfy Davies-Gaffney
estimates (3.1) with parameter 7 > 0, then so does {SiT;}i>0. Moreover, there exist
constants C,c > 0 such that for arbitrary open sets E, FF C X

dist(E,F)2m

()
1T fll 2y < Ce N =m0 112 -

for all t,s >0 and all f € L*(X) supported in E.

Proof: The case for m = 1 and 7 = 1 is proven in [HMO03], Lemma 2.3. The proof for
arbitrary m and 7 follows along the same lines. Since the proof of Lemma 3.4 uses the
same ideas, we omit the details. O
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We get, the corresponding result also for families of operators that satisfy off-diagonal
estimates of a certain order. The lemma is formulated in a slightly different form to
make it available for the proof of Lemma 6.24.

For a function b € L*°(X), we define the multiplication operator M; by Myf :=b- f for
all measurable functions f : X — C.

Lemma 3.4 Let b€ L®°(X). Let {S:}i~0 and {T;}i>0 be two families of bounded linear
operators on L*>(X) that satisfy off-diagonal estimates of order v and &, respectively.
Then there exists some constant C > 0 such that for arbitrary open sets E, F C X

dist(E, F)*™

— min(y,9)
||ssMthfuLz<F)§0<1+ T ) 150 e 122

for all s,t >0 and all f € L*(X) supported in E.

Proof: We follow the proof of [HMO03|, Lemma 2.3. Let b € L*>°(X) and s,t > 0.
Further, let E, F C X be arbitrary open sets and let f € L?(X) with supp f C E. If
dist(E, F') = 0, then the result follows from the uniform boundedness of the operators
Ss and Ty in L?(X).

Otherwise, let us set p := dist(£,F) and let Gy := {z € X : dist(z,F) < £} and
Gy :={zx € X : dist(z, F) < §}. By construction there holds that G'1, G are open with
dist(E,G1) > § and dist(F, X \ Gg) > .

We split the operator S;MT}; into

SsMth == Ss]légMbT;‘/ + SS]lX\GQMth'

Since Sy is uniformly bounded in L?(X) and T; satisfies off-diagonal estimates of order
0, there holds on the one hand

HSS]l(;QMbﬂfHLg(F) S IMYTf Nl 22y < 10l poo x) 1T S Nl 226

dist(E, G)2m\ ~°
< <1 + (t1)> 100l Lo (xy 111 22

; 2m
< <1 N dist(E, F)

max(s, t)

— min(y,9)
) e e - (36)

On the other hand, since T; is uniformly bounded and S, satisfies off-diagonal estimates
of order v, we obtain

dist(F, X \ Ga)2\ 7
(1 + . IMyTif | 20 x\Go)

ST |, %

3 2m
< (1 N dist(E, F)

— min(v,9)
max(s, t) > Hb||L°°(X) ||f”L2(E) : (3.7)

Combining (3.6) and (3.7) finishes the proof. 0

Before coming to the corresponding result for families of operators that satisfy weak
off-diagonal estimates, we state some auxiliary results.
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Remark 3.5 Let s,t > 0 with ¢t < s and let B be an arbitrary ball in X with radius ¢. As
in Notation 2.2, let kg be the uniquely determined integer satisfying C; 8% < t < Cy6ko—1
and for each 8 € Iy, let Bg := B(zgo,t), where zlgo is given by Lemma 2.1. Further,
suppose that v > n. Then there holds for every ¢ > 0 with y > n+¢

) <1+di$t(B’Bﬂ)>_7:i 3 <1+dist(B,Bﬂ))—7

Belr, J=0  Belx,
250€5;(B)

00 i\ —(nte)
Y (%)

7=0 5€Mj

using the fact that for every j > 3 and all 8 with zg‘) € S;(B) there holds dist(B, Bg) 2

2/t and B € M;, where M; was defined in (2.7). Moreover, Remark 2.3 shows that
#M; < 2J7 therefore the above is bounded by a constant times

00 i\ —(nte) 00
. 27t S\ n+e . . S\ nte
9in (1 < (7) 2jn2—](n+5) < (7) ’

Jj=

since we assumed ¢ < s.
Thus, we finally obtain the following: For every & > 0 there exists a constant C' > 0 such
that for all t < s and every vy > n+¢

> <1 + diSt(f’Bﬁ))w <C (;)n+€, (3.8)

BEIk,

where B is an arbitrary ball in X with radius ¢ and the balls Bg = B(zgo,t) are spec-
ified above. In view of the assumption ¢ < s, one obviously aims at an application of
sufficiently small chosen ¢ > 0.

Fundamental for the proof of Proposition 3.7 is the following lemma. It can be consid-
ered as an analogue of certain estimates for compositions of integral operators, see e.g.
[Gra04], Appendix K.1.

Lemma 3.6 Let s,t > 0 with t < s and let By, Ba be two arbitrary balls in X with
radius t. If v,8 > n, then for every e > 0 there ezists some constant C > 0 such that

2 <1+diSt(BhBﬁ)>_7 <1+(ﬁ5t(3ﬁ732)>_5

S S
PBeElk,

<c(

. — min(v,9)
n+e
S) (1 4 dlSt(Bl,BQ)> : (39)

t 5

where Bg = B(zgo,t), ko € 7 is uniquely determined by C 6% < t < C16%~1 and the

index set I, and zgo are gwen in Lemma 2.1.
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Proof: Let ¢ > 0. We denote by ¥ the left-hand side of (3.9). If w < 3, then
we get, according to (3.8),

: — n . : — min(y.9)

5 < Z (1+d18t(Bl,Bﬁ)) < (f) +E§ (f) +e <1+dlst(B1,Bg)> .
s t t s

Pelk,

If otherwise w > 3, we split the space X into two parts. For this purpose, we

set p := dist(By, B2) and define G := {x € X : dist(x, Ba) < §}. Then there holds for
every 3 € Iy, with zg(’ € G the estimate

1 1 1
diSt(Bl, Bg) > diSt(Bl, G) —t> B diSt(Bl, Bg) — g diSt(Bl, Bz) = 6 diSt(Bl, Bg).

Using (3.8), this yields

2 (H(WMB@)_V <1+‘h5t(36732>>_5

S
BEI,
ko
Zg eG

< <1+ dist(Bl,B2)>7 3 <1+ dist(Bg,Bg)>5

S S
B€lk,
ngEG
n+e ist(B1. B — min(v,6)
< (;) <1 N dist( 51, 2)) . (3.10)

Similarly, if 8 € Iy, with ZEO € X\G, we obtain the estimate dist(B2, Bg) 2 dist(B1, Ba).
Hence, we can argue as before and end up with the same bound as in (3.10) for the sum
over all 5 € Iy, with zgo € X \ G. This finishes the proof. 0

We are now ready to state and prove the desired result that compositions of operator
families with weak off-diagonal estimates do again satisfy weak off-diagonal estimates of
the same order.

Proposition 3.7 Let {Si}i=0 and {T;}>0 be two families of linear operators on L*(X)
that satisfy weak off-diagonal estimates of order v > 5~ and § > 5, respectively.

Then there exists some constant C' > 0 such that for every t > 0 and arbitrary balls
Bi, By € X with radius r = t1/2m

dist(By, By)>m\ ™)
— 12y

Il < € (14

for all f € L?(X) supported in Bj.

Proof: Let t > 0 and let By, By be two balls in X with radius t1/2m  We use Lemma

2.1 to cover the space X with balls of radius ¢1/2™.

Let ky € Z be defined by (2.5), so that C 6% < /2™ < Cy6k—1. Moreover, let I,

be the index set defined in Lemma 2.1 and denote for every 3 € I, by Bg the ball

B(zg“,tl/Qm). Lemma 2.1 then yields in particular that X = [Jzc; Bp (the union is
0

30



not necessarily disjoint).
Since we assumed vy, > %, we can apply Lemma 3.6 (now with t1/2m instead of t) and
get for every f € L?(X) with supp f C B; by assumption on the operators

ST f pogmyy < HSt]lBﬂthHL?(Bz)

BElk,
dist(Ba, Bg)?™\ " dist(Bg, B1)2™\ °
<y (Htﬁ 1 EUER BTN
Belko
. — min(y,d)
dist(By, Bo)?™ g
S 17120 -

In the next remark, we will also give a formulation of weak off-diagonal estimates in
terms of annuli of X centered around a fixed ball.

Remark 3.8 Let {S;};~0 be a family of linear operators on L?(X) that satisfies weak
off-diagonal estimates of order v > 0. Then there exists a constant C' > 0 such that for
an arbitrary ball B € X with radius 7 = t'/?™, for all j € Ny and all f,g € L?(X) with
supp f € B and supp g C S;(B) there holds

. dist(B, S;(B))?™\
isif. ) 5 22 (14 SO D ol @)

The proof works with the same methods as the one of Lemma 3.1. If 57 < 3, the proof
is obvious. Otherwise, we can split the annulus S;(B) with the help of Lemma 2.1 into
“cubes” out of Q with diameter approximately equal to rg = t%/2™. That is, let ko be
defined by (2.5), let M; be the set defined in (2.7) and for every 3 € Iy, denote by Bg
the ball B(zgo,tl/Qm). Then there holds #M; < 2/ and 2/B C UﬁeMj QZO Moreover,

~

denote by M; the set of all 3 € M; such that ng N S;(B) # 0. Then there holds
dist(B, Bg) > dist(B, S;(B)) for all # € M; and we thus obtain

(YIRS S CIRW)

ﬂEMj
dist(B, Bg)*™\ "

< ¥ (145 1512y i

ﬁeMj

dist(B, S;(B))>™\ "
< (14 ES iz 2 ol gty
,BGM]'
The Cauchy-Schwarz inequality now yields that
1/2
N\1/2 2 in/2
> ||g||L2(Q§o) < (#M;) > IIQHLQ(QZO) S 2" gll g2 s, omy) »

,GEM]' BEMJ'
which gives the assertion.

Let us finally remark how one can apply weak off-diagonal estimates for balls with some
radius distinct from the scale of the operator family.
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Remark 3.9 Let {S;};~0 be a family of linear operators on L?(X) that satisfies weak
off-diagonal estimates of order v > 0. Let s,¢ > 0 and let By, B2 be two arbitrary balls
in X with radius s. Then for every f € L?(X) with supp f C By there holds

s \" dist(By, B2)?™\ 7
151y S max {1, (57 ) "} (14 D) g,

For the proof, let f,g € L?(X) with supp f C B; and supp g C By. Without restriction,
let diSt(Bl,Bz) > 2t.

If s > t1/2™ we again use a splitting of X according to Lemma 2.1 into “cubes” out of Q
with diameter approximately equal to t'/2™. That is, let kg be defined by (2.5) and set
Bg := B(zgo,tl/zm) for all B € Iy,. Then there exist index sets My, My C Ij, such that

n
Bi € Unens, @ and By € Ugeps, Q% and, in addition, #M; S (W) for i = 1,2

and dist(By, Bg) 2 dist(By, Be) for o € My, 3 € My. Thus, by assumption on S; in the
first and by application of the Cauchy-Schwarz inequality in the second step, we obtain

dist(Ba, Bs)*™\

|<Stf’g>’ < Z Z <1+ f Hf”LQ(QZO) HgHLQ(QZO)
aeMy BEMs

1/2

dist(B1, B2)*™\ 7
< (1 B Caan 2 [ 3 g

a€e M,
1/2
X (#M2)1/2 Z ||g||iQ(QkO)
BEM> s
s \" dist(By, B2)*™\ 7
S (W) <1 T 11 2By 19l 2By -

The case for s < t1/2™ follows immediately from the definition.

3.2 Assumptions on the operator

We fix our assumptions on the operator L. Unless otherwise specified, we will assume
the following.

(H1) The operator L is an injective, sectorial operator in L?(X) of angle w, where
0 < w < w/2. Further, L has a bounded H 00(22) functional calculus for all
w< <.

(H2) The operator L generates an analytic semigroup {e *'};~o which satisfies the
Davies-Gaffney condition with parameter 7 = 1. That is, there exist constants
C, ¢ > 0 such that for arbitrary open subsets E, F' C X

HeithHLQ(F) < Cexp

1
) ]nfnm) (3.12)

B (dist(E, F)2m

for every t > 0 and every f € L?(X) with supp f C E.
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These two assumptions will be all what we assume on L while developing the theory of
Hardy and BMO spaces associated to L. To show L?(X)-boundedness of the paraprod-
uct, we need one additional assumption. Henceforth, we will explicitly mention whenever
we take into account the following assumption.

(H3) The semigroup {e *'};s¢ satisfies an LP — L? off-diagonal estimate for some p €
(1,2) and an L? — L7 off-diagonal estimate for some § € (2,00), i.e. there exists a
constant C' > 0 and some € > 0 such that for every ¢ > 0, every 5 € Ny and for an
arbitrary ball B in X with radius r = ¢t'/?™ there holds

_i(n 1_1
| 1s,m01] iy < CT7EIVBEE I o, (3.13)

and

[NIES

_ —5( &+ 1_
e g s iy < C2 7T VBT gl (3.14)
for all f € LP(X) and all g € L?(X).

Here, ¢’ is the conjugate exponent of ¢ defined by % + % =1.

Observe that (3.14) is just the dual estimate of (3.13). That is, if L satisfies (3.14) with
exponent ¢, then L* satisfies (3.13) with exponent ¢’ and vice versa.

Remark 3.10 From assumption (H1) follows that L has dense domain and dense range
in L?(X). See e.g. [CDMY96], Theorem 2.3.

Remark 3.11 (i) One can show the following self-improving property of Davies-Gaffney
estimates to be valid:

Assume that (H1) is satisfied. If condition (3.12) holds for all balls By, By in X, then
the assertion is also true for arbitrary open sets E,F of X (in general with different
constants C,c > 0).

The proof is similar to the proof of Lemma 3.1 (cf. also [AMO7b]|, Proposition 3.2(b)).
One splits X into “cubes” out of the collection Q defined in Lemma 2.1, with diameter
approximately equal to dist(F, F). In the case t > dist(F, F)?™, the proof is obvious.
Otherwise, one has to replace estimate (3.4) in the proof of Lemma 3.1 by the following.
For fixed a € I, there holds, with r ~ dist(£, F') and the value of the constant ¢ being
different in each step,

2 1
dist(Ba,Bg)*"" ) 2m—1

Z €_< ct

BEIk,

1
0o [ (@in2m) Tm=T

=0

AN

1
1 i Tm=T
_(r2m>m > dlst(E,F)m”) m-1

9 2m o _<
ot —c22m=1" 5 jn ct
c g e 2" <e

=0

The rest of the proof then works analogously to the one of Lemma 3.1.

In the special case of non-negative self-adjoint operators L and m = 1, Coulhon and
Sikora show in [CS08], Lemma 3.1, that this self-improving property is even true with
the same constants C,c > 0. Their proof is based on a refined Phragmén-Lindelsf
theorem. But it seems to be unclear if - and is more likely to be false that - the same
holds true for general m > 1.
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(ii) With the same Phragmén-Lindel6f theorem, Coulhon and Sikora further show in
[CS08], again in this special case, that condition (3.12) is equivalent to the following:
There exist some constants C,c > 0 such that for arbitrary open sets E, F in X with
w(E) < oo and p(F) < oo and allt >0

dist(E, F)?

(e 1p, 1p)| < Cexp (- o

) W(E) 2 u(F)V2.

This is the form of Davies-Gaffney conditions as they were considered in [Dav92|, for
instance.

Remark 3.12 If there exists a constant C' > 0 such that V(z,r) > Cr" for all z € X
and all » > 0, then (H3) is a consequence of the following estimates:

Let p € (1,2) and § € (2,00). There exist constants C,c > 0 such that for arbitrary
open sets E/, F' C X there holds

1
- ~nl_1 dist(E, F)?m\ 2n-1
He thHLZ(F) < Ct 2m,(p z)exp [— <(ct)> ] HfHLﬁ(E) (3.15)
and
1
- _n(l_1 dist(E, F)?>™\ 2n—1
He tLgHL'?(F) < Ct 3m (2 q)exp [— <(Ct)> ] ||9HL2(E) (3.16)

for every t > 0 and every f € LP(X) and g € L?(X) supported in E.

The proof is obvious. If (3.15) is satisfied, then, in particular, e ' : L?(X) — L?(X) is
bounded for every ¢ > 0. Analogously, if (3.16) is satisfied, then e~* : L2(X) — LI(X)
is bounded for every ¢ > 0. For sufficient conditions for (3.15) to be valid in terms of
off-diagonal estimates of annular type, we refer to [AMO0T7b|, Proposition 3.2.

We refer to [BK05] and [AMO7b] in general for further comparison of these types of
off-diagonal estimates.

3.3 Properties of operators satisfying Davies-Gaffney estimates

We collect some important consequences of the above assumptions.

Proposition 3.13 Assume that the operator L satisfies (H1) and (H2). Then for every
K €N, the family of operators

{(tL) e " Ym0

satisfies the Davies-Gaffney condition (3.1) with parameter 7 = 1.

The proof of Proposition 3.13 can be found in [HLM*09], Prop. 3.1, in the case of
self-adjoint operators L. For sectorial operators L one has to make only minor modifica-
tions, using the following Phragmén-Lindel6f type lemma. It is stated as Lemma 6.18 in
[Ouh05], similar results can also be found in [Dav95|, Lemma 9 and Section 2 of [CS08|.
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Lemma 3.14 Let p € (0,7/2] and assume that F : 22 — C is a holomorphic function
such that ' '
|F(re®)| < a(rcos) =P for all re® € Zg,

and
|F(r)| < arPe”™™"  forall r >0,

where a,b are positive constants, 3 > 0, and 0 < o < 1. Then for every r > 0 and
0 € (—p, 1) )
|F(re®)| < a2°(rcos0) " exp[—?ar*a sin(p — 16])].

Proof (of Proposition 3.13): Let z € C with |arg z| < § — w, where w is the sectori-
ality angle of the operator L assumed in (H1). Then A — e~** belongs to H>(X%) for

all o with w < 0 < § —|arg z|. Thus, for v € (w, ) the bounded H*°-functional calculus

of L assumed in (H1) implies that (e*ZL)ZGEO is analytic with
Ty

(3.17)

v

—zL 0
le™ |l r2xymrox) SCvi 2E€XE
Let E,F C X be arbitrary open sets and let f,g € L?(X) with supp f C E, suppg C F.
We then define for every z € £%

2

v

(;(2)3=:<6ZLle>i=t[;€ZLJKx)‘Qﬂw)dﬂ(w)

—zL)

Since (e » is analytic, G is also analytic on 201,,,- Moreover, the Davies-Gaffney
2

estimates for the semigroup yield for every ¢t > 0

: E. F 2m
‘G(t” < Cexp _ (dlSt(’)

1
2m—1
S Lfm@wwpm

and (3.17) yields for every z € % _
2

v

G < Colfllz2(my N9l 2y -

We apply Lemma 3.14 with o = 52— and 8 = 0. For z = re'® withr > 0 and || < 3 —v

m—1
we get

1 dlSt(E, F)2
< —
|G(z)| < Cexp 22 0 <

cr

W1 g
)7 G == 10| 1y ol
(3.18)

Let us fix now some t > 0. Using the Cauchy formula, we can write for every K € N

Koth (K —r A6
(L) K et = (—1)K g1 /C_t:me e (3.19)

where we choose 7 > 0 so small that B, := {¢ € C : | —t| < nt} is contained in % .
2
This is for example satisfied for = 3 sin 3(% — v).
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Observe that for this choice of 7, we obtain for every z = re € B; the estimates
0] < 3(5 —v) and r < (1+n)t. Hence, the estimate (3.18) above yields that

sup |G(z)] < Cexp
2€B¢

1
Fm—1
c’7t ) ] Hf”L2(E) HgHL2(F) ) (3.20)

B <dist(E F)2m

where the constant ¢’ > 0 only depends on m, v and the constant ¢ given in the assump-
tions. Combining (3.19) and (3.20), we finally end up with

G (O]

K+ltK+1 |d¢]

tL)Ke th <K' /
[(tL)X et f, g)] 27 )i
K' 1
00,B;¢ K+1t2

- (dist(E, F)2m> T

ct

< |G| 2wt

< Cexp

] 1A 22y gl L2y - O

Remark 3.15 (i) The estimate (3.18) in the proof above also shows that if u € (0, §—w),
then the family {G_ZL}zezg satisfies Davies-Gaffney estimates in z with 7 = 1.

(ii) Copying the first lines of the proof with (zL)Xe** K € N, instead of e=*", one can
also observe that the family {(zL)¥ *ZL}Zezo Where p € (0,5 —w), satisfies Davies-
Gaffney estimates in z. Since we do not need the result any further, we omit the details.

Proposition 3.16 Assume that the operator L satisfies (H1) and (H2). Then the fam-
ily of resolvent operators {(I + tL)"'}~o satisfies Davies-Gaffney estimates in t with

parameter T = % That is, there exist constants C,c > 0 such that for arbitrary open

subsets B, FF C X

dist(E, F
4427 gy < Cop (~ B 1

for every t > 0 and every f € L?>(X) with supp f C E.

Proof: We can recover the resolvent from the semigroup (e tF)

transform, i.e. for every t > 0 we write

+~0 via the Laplace

oo
(I4+tL)™ ' = / e e L qu,
0
The Davies-Gaffney estimate for the resolvent is then a direct consequence of the corre-
sponding estimate for the semigroup.

Let E,F C X be two arbitrary open sets and let f,g € L?*(X) with supp f C E and
suppg C F. For every t > 0 we get from the Davies-Gaffney estimates of the semigroup

(T +1L)" .9} = ] [ et rgan

o0 _<dc<EF>2m)2m11
- cut
< Sl ol [ e .
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dist(E,F)?™

2m—1 .
o ) and estimate

To handle the integral, we set p := (

2m—1

(o) — 1 . p 2m - 1 . [e%s)
— — m— J— m— —
/ e UePU dug/ e Pu du+/2ml e “du.
0 0 p 2m

1
The substitution of s = pu 2»=T in the first integral shows that the above is equal to

2m—1 2m 2m— 1
2m S 2m p 2m

o} p2m—1 00 00 2m—1
(2m — 1)/ e ? ds + / e fds<2m [, e *ds=2me "’ " |
p p

which finishes the proof. 0

For further reference, we state another family of operators that satisfies Davies-Gaffney
estimates.

Remark 3.17 Let L satisfy (H1) and (H2). Then, for every N € N, the family of

operators
1/2m _
t §2mN—1 _emp
e ds
0 tN
t>0

satisfies Davies-Gaffney estimates in ¢ > 0 with parameter 7 = 1.

Proof: Let t > 0, let E,F C X be arbitrary open sets and let f,g € L?*(X) with
supp f C E and suppg C F'. Then there holds

t1/2m SQmel omp tl/2m 82mN*1 2m
{ / ¢ Tds ) f.9) é/ N ‘(6_5 f,g>‘ ds
0 0

1
t/2m omN-1 _ dist(E,F)2m | Zm=1
</ e cs2m
~J
0

N ds - ”fHL2(E) HQHL2(F)
dist(E,F)2™ Tm=T omN 1t/ 2™
< e\ N F g2z lgl
= 2mN N, L2(B) 1912 (F)
1 _(disc(E,F)2m>?mlI
ct
T 9mN ¢ ) ||f”L2(E) H9HL2(F) : a

It will often be very useful not only to have Davies-Gaffney estimates for the semigroup
{e7"F}4~0 and the resolvent, but also to have L? off-diagonal estimates of some order o
for the operator family {1(tL)}:~0, where ¢ is a function in \I/(Zg). The order o here
depends on the decay of ¥ at 0.

Proposition 3.18 Let L satisfy (H1) and (H2). Let p € (w,m/2), ¢ € ¥y (X) for
some o,7 >0 and f € H“(Zg). Then the family of operators {1(tL)f(L)}i>0 satisfies
L? off-diagonal estimates of order o, with the constant controlled by 11| oo (03 -

)

The result has its origins in [HMM10|, Lemma 2.28. There, the proof is given for second
order elliptic operators, but it easily carries over to the case of operators satisfying (H1)
and (H2). This is due to the fact that the two main ingredients, the representation for-
mulas (2.17), (2.18) and the Davies-Gaffney estimates for the semigroup {e=*},cq0 |

do also hold in our setting. For convenience of the reader and as we will use the result
quite regularly, we give the proof here.
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Proof: Let ¢ € \I'U,T(Eg), f e HOO(E?L) and let ¢ > 0. To get the Davies-Gaffney
estimates for the semigroup into play, we will apply the representation formulas (2.17),
(2.18) to the function t(tL)f(L). First, we get for every z € I'y = Rte®(7/2-0) the
basic estimate

1 . 1
el = g [ Cueon© ] 55 [ weelisol vl

¥ N

where v+ = RTe™™ and w < 0 < v < p < /2.

This estimate will be sufficient for the case |z| < ¢. If otherwise |z| > t, then we need
a more refined estimate. Thus, we brake n4(z) into two integrals: one over {{ € v :
|€] < 1/t} (called Jy) and the second one over {§ € v+ : €| > 1/t} (called J3). Since
Y € U, ,(X0), we obtain

1 7 1
Wy [ I S ey G21)

By [ eI 1 g
M Jgerlgl<1/t
1 T 1 t\°t
< o [ e dp < U o () 3.22
S el i [ €9 a0 % Hlimesyy () 522

where we used the substitution p = z€ in the second step. For the second part, we use
the assumed decay of v at infinity, which yields

T2 W flliwesyy | 267 [t€] 7 |dg)
gev+:l€[>1/t
¢ o+1 . L
S~y () €77 Jag]
ERRNE] ceveilel>1/t
_1 £\t
S ey () (323
Hence, the combination of (3.21) with (3.22) and (3.23) yields for all z € 'y
1 t O'Jr].
)1 S 7 I lmmpymin 1 () 6. (3.21)

To get the desired off-diagonal estimate for {¢(tL) f(L)}i>0, we will plug in the obtained
bound for 74 into the representation formula (2.17). Let E, F' be two arbitrary closed
sets in X and let g € L?(X) with suppg C E. Then
L E@Ilinier < [ el gy G el + [ e Pl -] 121
+ —

According to Remark 3.15, the semigroup {e=*"} ex0 also satisfies Davies-Gaffney esti-
mates in z € 22. Thus, we further get from (3.24)

_ <dist(E,F)2m ) T
[ e gl oy In ] 421 S lglgzgey [ e ns(2)] Jd2]
'y Iy

_(dt(EF)"’")"‘ml‘l +\°] 1
< N clz| 3 1 JE— — d .
S Wl Dol [ e mm{ () }t !

+
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To handle the last integral, we split it into two parts I; and I, one over all z € ' with
|z| <t and the other over all z € 'y with |z| > ¢. The first part is simply estimated by

_ (dist(E,F)zm
I = / e clzl
z€l4:|z|<t

On the other hand, observe that the second part is equal to

1
is 2m \ 2m—1
7<d t(f“,zFI‘) ) t o+1 1
I = e ) 2 jae.
z€l4:|z|>¢ ’Z‘ t

If t > dist(E, F')>™, we obtain the bound

¢ o+1 1
I, < / <> — |dz| < C.
z€l4:|z|>t |Z| t

Otherwise, if ¢ < dist(FE, F)?™, then we get for every N > 0

N o+1
t 1

L [ () () 1l
z€l4:t<|z|<dist(E,F)2™ dlSt(Ea F) |Z| t

¢ o+1 1
FRNT
€T 4| 2|>dist(E,F)2m \ |?] t

We choose some N > ¢ and integrate the first part over 0 < |z| < dist(E, F)?™ to obtain

1 1
)Qm*I dist(ls,zﬁ)%")?m*I

1 (e
= |dz| <e !
t

1 N t 4
L<(—— ) todist(B, )W)y
2 <dist(E, F)2m> ist(5, F) T\ dist(B, e

t lea
<(—2 ) .
~ <dist(E, F)2m>
The combination of both estimates for I1 and I finally finishes the proof. O

We conclude this section with an almost orthogonality lemma, which is a slightly more
general version than Lemma 4.6 in [HMM10|. The applications of the result will be in
the spirit of the well-known Cotlar-Knapp-Stein lemma.

Lemma 3.19 Let p € (w,5), 0,7 > 0 and ¢ € V(X)) Let further 6 > 0 and

NS H‘X’(Eg) with |p(2)] < ¢|2|° for every z € 22 with |z| <1 and some constant ¢ > 0
independent of z. Then for any a > 0 with a < § and a < 7, there is a family of operators
{Tst}s >0 such that

p(tL)yY(sL) = <t>aTs,t, s,t >0,

S

where {Ts+}+>0 satisfies L? off-diagonal estimates in s of order o +a uniformly int > 0.

Proof: Let ¢, ¢ as given in the assumptions and let s,¢ > 0. For every a > 0 with
a <6 and a < 7 we write

a

stryue) = (£) wnrstnysnroen - (4) 1

S
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with T := (tL)"%p(tL)(sL)*)(sL).
Since we assumed 0 > a and chose ¢ € HOO(ZO) there exists a constant C' > 0 such that
for every z € EO with |z| <1 there holds

2 (2)] < ele[ |2 < ©
and, obviously, for every z € 22 with |z| > 1
|27 %p(2)| < C.
Hence, the function z — z7%p(z), z € 22, belongs to HOO(E?L) with

iglo’ It t‘)HLoo(zg) =C.

As the function z +— 2% (z) is in Wypg - a(Z ), Proposition 3.18 yields that {Ts}s >0
satisfies L? off-diagonal estimates in s of order 0 + a uniformly in ¢ > 0.
For a = 0 the claim follows directly from Proposition 3.18. O

3.4 Quadratic estimates

Remark 3.20 Let w < p < m and ¢ € (X)) \ {0}. Let us first recall the following
fact, that is, according to Theorem 2.13, equivalent to the assumed bounded holomorphic
functional calculus of L in (H1): For every f € L?(X) there holds

| 0D sy F =~ W1

We will subsequently refer to this as quadratic estimates.
Moreover, the operator @y 1., defined for every f € L?*(X) by

(Qw,Lf)(:z’t) = (w(tQmL)f)(l'% (l’,t) € X X (Oa OO),

is bounded from L?(X) to T?(X). This follows from the fact that Fubini’s theorem,
(2.19) and Theorem 2.13 yield for every f € L?(X)

1/2
Q1 Flrs (/ [ e G g e >>

%) »
X 70 B(y,t) t

~ [l 2 x) -

Let us further define the operator my, 1, by
2m d
W¢7LF Ib t L :L' t) T € X,

for every F' € T?(X). The operator is well-defined for all F € T?(X) and bounded from
T?(X) to L*(X), as my 1, is the adjoint of the operator Qy 1+, and vice versa.
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¢
yields the following Calder6n reproducing formula (see e.g. [KWO04], Lemma 9.13): For

every f € L?(X) there holds

If ¢ € \IJ(E?L) is chosen to satisfy [;° Y(t)Y(t) % = 1, then the functional calculus of L

| wernaernng G =5 2,

or, equivalently,
7T¢7LOQ1/~;,L:7T1ZJ,LOQ¢1L:I in L2(X)

Such a function ¢ € (%), that satisfies [ Y()(t) % =1, can e.g. be constructed by
setting ¢ (z) == {157 [ (t)[? %}711“2) for z € X0 If one moreover requires a certain de-

cay at zero or infinity, say 1; € \I/a,g(Zg) for given «, B > 0, then a possible construction
is the following. We choose some N € N with N > max(a, 3) and define py € \IlNyN(Z?L)

N

by pn(z) = (lfw Then there holds ¢ : z — Cn(Z)pn(z) € Uo5(50) with

Joo w()b(t) % =1, where Oy = [ [ (1) pi (1) %

The observations above also yield that for every v, Y e \I/(Zg) the operator Qy 1, © T L
is bounded in T%(X). In [HMM10], Proposition 4.4, and [AMROS8], Theorem 4.9, there
was shown the following extension. The arguments used in the proof are similar to those
of Section 4.3 and do also apply in our more general setting of a sectorial operator L.

Proposition 3.21 Let p € (w,7m/2) and let o > 0, 3 > f-. Then for every ¢ €
\Ifoéﬂ(Eg) and every 1) € \If@a(Zg), the operator Q.1 0w 1 originally defined on T%(X)
extends by continuity to a bounded operator on T*(X).
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4 Hardy and BMO spaces associated to operators

In this chapter, we summarize the most important definitions and results of the recently
developed theory of Hardy and BMO spaces associated to an operator L satisfying (H1)
and (H2). We follow the outlines of [HMa09|, [HMM10] and [DL09|. Since we work with
more general assumptions on the operator L than it is done in these articles, we also
give the proofs of most of the results.

Besides, we show a Calderén reproducing formula for functions from Hi and BMOp«
and a relation between BM Oy, functions and Carleson measures, that are new in this
generality.

Throughout this chapter we assume that the operator L satisfies the assumptions (H1)
and (H2).

Let us denote by D(S) the domain, by R(S) the range of an unbounded operator S, and
by S* the k-fold composition of S with itself, in the sense of unbounded operators.

4.1 Overview of the theory of Hardy and BMO spaces

Hardy and BMO spaces play an important role in harmonic analysis. They are deeply
connected with the theory of singular integrals, give a substitute for the spaces L' and
L°°, which are in many contexts unsuitable, and naturally continue the scale of LP spaces
to the range of p < 1.

The theory of Hardy spaces dates back to the beginning of the last century. Hardy in-
troduced in [Harl5| in 1915 the space HP (D) to characterize boundary values of analytic
functions on the unit disk D. For every 0 < p < oo, he defined HP(D) as the space
consisting of all analytic functions F' on I such that supg,..; f027r I3 (reie)‘p df < oo. It
is well known that this condition is sufficient to guarantee the existence of the boundary
values lim,_; F(re?) almost everywhere. Moreover, if 1 < p < oo, the space H?(D) can
be characterized as the space of all analytic functions on ID whose real parts are Poisson
integrals of a function in LP(0, 27).

At its beginning, the theory of Hardy spaces was deeply connected with the theory of
analytic functions (e.g. the existence of the boundary values was obtained by either of
two methods, both of them reducing the problem from the case of analytic functions to
the case of harmonic functions and then working with either Blaschke products or con-
jugate functions). The study of real variable Hardy spaces in R™ began in 1960 with the
paper of Stein and Weiss [SW60]|. Their basic idea was to adapt the notion of conjugate
harmonic functions to real functions of n variables. A first characterization of Hardy
spaces without the use of the notion of conjugacy was then given by Burkholder, Gundy
and Silverstein [BGS71|, working with non-tangential maximal functions instead. From
then on, many real variable methods have been developed, for instance Fefferman and
Stein gave in [FS72| new characterizations using maximal functions associated with a
general approximate identity (replacing the Poisson kernel). These ideas led to charac-
terizations of Hardy spaces via atomic or molecular decompositions, as it can be found
for instance in [Coi74], [Lat79] and [TW80], which in turn enabled the extension from
the definition of Hardy spaces on Euclidean spaces to the more general setting of spaces
of homogeneous type introduced in [CWT1].

But even if many techniques in the study of Hardy spaces were from then on based on
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real variable methods and the role of the Poisson kernel was less important, the theory
of Hardy spaces has still been intimately connected to properties of harmonic functions
and the Poisson semigroup associated to the Laplacian. In recent years it turned out
that there are situations in which the standard theory of Hardy spaces is not applicable
to problems connected with more general elliptic operators instead of the Laplacian. For
example, if one considers an elliptic second order operator L in divergence form, the cor-
responding Riesz transform VL~/2 needs not to be bounded from H'(R™) to L'(R™).
This led to the developement of a theory of Hardy spaces associated to certain secto-
rial operators. Many important properties of the standard Hardy space theory could be
recovered in this setting, e.g. characterizations via square functions and non-tangential
maximal functions and a molecular decomposition of Hardy spaces. Moreover, the Hardy
spaces associated to the Laplacian coincide with the standard Hardy spaces introduced
by Stein and Weiss.

In the context of Hardy spaces it seems to be natural also to consider the dual space of
H!. Fefferman and Stein proved in [FS72] that the space BMO(R™), first introduced by
John and Nirenberg in [JN61], is the dual space of H!(R"). In the recently developed
theory of Hardy spaces associated to operators one could also show that there is an
analogue of BMO which again is the dual of some Hardy space H'.

An overview of the recent development can be found in [DL09|. At the beginning, in
[ADMO02]|, and [DY05b|, [DY05a|, Auscher, Duong, Mclntosh and Duong and Yan con-
sidered Hardy spaces, and later on also BMO spaces, associated to an operator L, that
has a bounded holomorphic functional calculus on L?(R™) and whose semigroup e~**
has a kernel satisfying pointwise Poisson upper bounds. Then, Auscher, McIntosh and
Russ in [AMRO08]| and Hofmann and Mayboroda in [HMa09] relaxed the assumptions on
the operator L. In particular, they considered settings in which the pointwise bound
on the heat kernel may fail and worked with Davies-Gaffney estimates instead. Further
work was done by Hofmann, Lu, Mitrea, Mitrea and Yan in [HLM™09| for non-negative,
self-adjoint operators L on spaces of homogeneous type and by Hofmann, Mayboroda
and Mclntosh in [HMM10], considering also Hardy spaces HP for p # 1. Finally, Duong
and Li studied in [DL09] Hardy and BMO spaces associated to second order operators
L satisfying the assumptions (H1) and (H2).

4.2 Hardy spaces associated to operators

Similar to the standard Hardy spaces of Stein and Weiss, there are different ways to
define Hardy spaces associated to operators. We will present here two possibilities to
define the Hardy space Hi (X), namely one via molecules and the other one via square
functions, as it is done in [HMa09], [HMM10], [HLM*09| and [DL09]. Afterwards, we
will show under which assumptions they are equivalent.

For other possible definitions of H}(X) we refer to the literature. A characterization of
H}(X) in terms of non-tangential maximal functions is given in [HMa09] and [HLM*09].
Moreover, in the case of non-negative, self-adjoint operators L, the authors of [HLM*09]
obtain an atomic decomposition of Hi(X ). The construction exploits the equivalence
of Davies-Gaffney estimates for the semigroup e~** and the finite speed propagation for
the corresponding wave equation for non-negative, self-adjoint operators. We refer to
[HLM*09] for details.
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Hardy spaces via molecules

To motivate the definition of H}(X) via molecules, let us first recall the definition of the
standard space H!(X) via molecules (see e.g. [CW77] for a definition of molecules on
spaces of homogeneous type).

Let £ > 0 be fixed. A function m € L{ (X) is called an e-molecule associated to a ball
Bin X if

/ m(x)du(z) =0 (4.1)
X
and for every j € Ny

[mll L2(s;(my) < 2795V (2/B) "1/, (4.2)

Then a measurable function f belongs to H'(X) if there exists a decomposition
[e.9]
f= Z Ajm; H-a.e.,
j=0

where m; are e-molecules and \; are coefficients which satisfy Z;io |\j| < co. It can be
shown that the space H'(X) does not depend on € > 0.

Given M € N and ¢ > 0, we describe, in generalization of the above, the notion of a
(1,2, M, e)-molecule associated to an operator L satisfying (H1) and (H2).

Definition 4.1 Let M € N and ¢ > 0. A function m € L*(X) is called a (1,2, M,¢)-
molecule associated to L if there exists a function b € D(LM) and a ball B in X with
radius rg > 0 such that

(i) m = LMp;
(1) For every k =0,1,2,..., M and all j € Ny there holds

[Gakd < PgMoiey (27 B) 12,

L2(S;(B))

For k = M, assumption (ii) is the usual size condition estimate (4.2) for standard
molecules of H'(X). For k = 0,1,...,M — 1 however, assumption (ii) describes the
“L-cancellation” of molecules and gives a quantitive substitute of the vanishing moment
condition (4.1), that is not applicable in many situations when working with a general
sectorial operator L.

Remark 4.2 If m = LMbis a (1,2, M, )-molecule associated to a ball B, then for every
k=0,1,2,..., M the definition of molecules implies that

H(rQBmL)kaLQ(X) < g H(r%mL)kaB(sj(B)) < TQBmMgg—jsv(sz)—l/z

< TQBm]MV(B)_l/Q 22—j5 5 T%mMV(B)_l/Z.
§=0
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In particular, there holds ||m|| 2 x) S V(B)~'/2. Moreover, the definition of molecules
yields that

(e 9]

Imll s, By < > Imll L2, () Vv (2/B)'/?
0 =

Imll ey =
J

8

<> 27FV(2B) PV (21B)? S 1.
=0

Thus, (1,2, M, e)-molecules are elements of L!(X), uniformly bounded by a constant
only depending on € > 0. This implies that the below defined space H} (X) is contained
in L'(X).

The next lemma gives two simple, but essential examples of molecules - one constructed
via the semigroup of L and one via the resolvent of L.
For the construction of more general examples of molecules, we refer to Lemma 4.14.

Lemma 4.3 Assume that L satisfies (H1), (H2) and let M € N and € > 0. Let further
B be an arbitrary ball in X with radius rg > 0 and let ¢ € L*(B) with lell2my = 1-
Then the functions

1 _7,,2m 1 . B
W(I—e 5 My and W([_UJFTQB )My

are, up to a suitable normalizing constant, (1,2, M, e)-molecules associated to B. The
normalizing constant only depends on M, m, the doubling constant Ao and the constants
being implicit in the Davies-Gaffney estimates.

Proof: Let B be some ball in X and let ¢ € L?(B) with loll2p) = 1. For Py =

2mL
/ o-e” L g = 2m/ r2m=1lpe=m""L g

e "B

7‘2m71 F2m

—om (/0 — LdT) (r2L) = 2m(r2"L)S, | (4.3)
B

we write

where we abbreviate

rg ~2m—1
T _2m
Sy 1= e T dr
B 2m
0 B

for convenience. In particular, we see that (I — P,,)Mp € R(LM).
Using (4.3), we get via the binomial formula for every k =0,...,M —1

(TQBmL)_(M_k)(I— P’I‘B)M _ ( 2mL)—(]V[—k)(2m)M—k( QmL)M_kS%_k(I—Py-B)k

= (2m)M~FgM= kZCkz - (4.4)

where C},; are appropriate binomial coefficients.
Observe that P, = e 5"l and S, satisfy Davies-Gaffney estimates in r%" due to the
assumption (H2) on L and Remark 3.17. Lemma 3.3 now yields that the composition
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of powers of S,, and P, and therefore the operator in (4.4) itself satisfies the same
estimates. Thus, we get for every k =0,...,M — 1 and all j € Ny

— m — _ 7,',.2m
V(B) 2 gLy MR - B M|

L2(8;(B))
1
B dist(S;(B), B)*™\ 21
<V(B) 1/2 exp (—( ( j(znz ) ) ) ||90HL2(B)
cry
S, 2_jNV(B)—1/2 S 2_j(N_n/2)V(2jB)_1/2, (4.5)

where N € N can be chosen arbitrarily large and the last step is a consequence of the
doubling property of u.

Analogously, we get for k = M with the help of the binomial formula and the Davies-
Gaffney estimates

V(B)‘UQ H(I _ e—r%mL)M(p‘

M
< V(B) 2 Z HG_M?LLSO‘
k=0

L2(8;(B)) ~ L2(S;(B))
1
_ dist(S;(B), B)>™\ 21
<V(B) e (—( A )nsonp(g)
C?“B
< 9 IWN=2)y (21 B)~1/2, (4.6)

where again NV € N can be chosen arbitrarily large.
The estimates (4.5) and (4.6) now yield that, up to normalization by a constant only
depending on M, m, the doubling constant Ao and the constants being implicit in the

Davies-Gaffney estimates, the function W(I —eTE LMy g a (1,2, M, €)-molecule.

In the same way, one can show that for P., = (I + r2"L)~! the function I —

1
vy
Poy)Mypis a (1,2, M, e)-molecule. To do so, let us write I — Py, as

I—P,=I—(I+r3"L)"!
= (rF"L) [(B" L) (I + 75" L) = 1) +rg"L) "] = (r§"L) Pry-
On the one hand, we observe that again (I — P,,)M¢ € R(LM). By Proposition 3.16,
on the other hand, we can use the Davies-Gaffney estimates for the resolvent instead of
those for the semigroup and proceed as before. O

We now come to the definition of molecular Hardy spaces associated to L.

Definition 4.4 Given M € N, ¢ > 0 and f € L'(X), we say that f = Zj Ajm; is a
molecular (1,2, M, e)-representation of f if Z?io I\j| < o0, each m; is a (1,2, M,¢)-
molecule, and the sum converges in L*(X).

Let € > 0 be fized. We set

Hi,mol,M(X) ={f € LYX) : f has a (1,2, M,e)-representation}
with the norm given by

oo oo
o x) T inf Z I\l o f = Z)\jmj is a (1,2, M, e)-representalion
,mol, ]:0 j:O

£ 12z

L
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The space H} . .(X) is defined to be the completion of HE (X)) with respect to

the norm HfHHi | (x) above.

Remark 4.5 The space H} , . 1,(X) is a Banach space. From the definition above
follows that

HY mointy(X) € H poran, (X)
whenever My, My € N with 1 < M7 < My < .

Hardy spaces via square functions

In analogy to the space H'(X), that can alternatively be defined via square functions
associated to the Laplacian, we present a second possibility to define Hardy spaces as-
sociated to sectorial operators.

Suppose that L satisfies (H1) and (H2) and let ¢ € ¥(X) \ {0}.
For f € L*(X), we consider the square function &/ Qy 1 f associated to L, namely

1/2
%Qw,L(f)(x)_< [ emnsf ;l’(ﬁyz)‘f) Caex

Definition 4.6 Let ¢ € U(X0)\ {0}. We define H}WZ(X) to be the completion of the

space
Hy o (X) :={f € L*(X) : #Qyprf € L'(X)}, (4.7)

with respect to the norm

1A, o) = 19 Qo fllrxy = 1Qu Fllgn () -

4.3 Characterizations of Hardy spaces

In this section we will show that - under certain assumptions on M and ¥ - the above
definitions of Hardy spaces via molecules and square functions are all equivalent. The
exact result is stated in the theorem below, the rest of the section will then be designated
to its proof.

Theorem 4.7 Suppose that M € N with M > [~ and a > 0, f > =. Assume

am am -

either that ¢ € \11(22) \ {0} and {(tL)}+>0 satisfies Davies-Gaffney estimates or that
Y e Wy 5(29)\ {0}, Then
H},,mol,M(X) = H}pL(X)
with
1AWy e = I, x) -
Consequently, the space Hi,mol,M(X) is in fact independent of M, whenever M > ;.

In addition, the space Hz}}’L(X) does not depend on the special choice of the function

¢ € U(X)) \ {0}, whenever ¢ satisfies the assumptions of Theorem 4.7. Hence, we can
define the Hardy space H} (X) as follows.
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Definition 4.8 Let L be an operator satisfying (H1) and (H2). The Hardy space H} (X)
is the space

H%/(X) = Hll/,mol,M(X) - H’L]Z),L(X)7
where M > 4%~ and ¢ € ®(X9) \ {0} as in Theorem 4.7.

We split the proof of Theorem 4.7 into two steps: We first show in Proposition 4.10 and
Corollary 4.13 that the inclusion H} ., (X) C H}p (X)) holds with

HfHH}p’L(X) S ||f||H1 (X)

L,mol,M

for all f € H}:,mol,M(X)- Then, in a second step, we show in Proposition 4.17 that the
reverse inclusion with the reverse inequality also holds. The assertion will then follow
from the fact that H};7mol7M(X) and HL7L(X) are dense in Hi,mol,M(X) and Hi7L(X),
respectively.

We begin with the following lemma, which is stated as Lemma 3.15 in [DL09]. It goes
back to [HMa09], Lemma 3.2 and gives a criterion for an operator to be bounded from
Himol’M(X) to L'(X). Basically, it says that it is enough to test the operator only on
molecules and not on the whole space Himol’M(X).

Lemma 4.9 Let M € N ande > 0. Assume that T is a linear operator or a non-negative
sublinear operator, defined on L*(X) with values in the set of all measurable functions
on X and satisfying a weak-type (2,2) bound, i.e. assume that there exists some constant
C > 0 such that for all f € L*(X) and all n > 0

pfz € X |Tf(@)| > n}) < On7? || fllf2cx)

Assume further that there exists a constant Cp > 0 such that for every (1,2, M,¢)-
molecule m, we have

”TmHLl(X) <Cr. (4.8)
Then T is bounded from HlL,mol,M(X) to L'(X), and

ITFllprxy < Ol flly

L,mol,M (X)

forall f € HlL moi v (X). Consequently, by a standard density argument, T extends to a
bounded operator from Hi’mol’M(X) to L1(X).

Proof: Let f € HlL,mol,M(X) and let f = Zj Ajm; be amolecular (1,2, M, €)-representation

of f. For every N € N, we set fV := Zj>N Ajmy.
The assumption that 7" is linear or non-negative sublinear implies that |T'g — Th| <
|T(g — h)| for any g,h € L*(X) and thus

N N N
IT(H) =Y INHT(my) | < [T = 1T Nimy)| < T =D \my)l = [T(FY)].
=0 =0 =0

(4.9)
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As T is of weak type (2,2), we get from (4.9) that for every n > 0

iz e X 5 (IT(f r—Z\AHTmJ ) > )

<p({zeX :|T (fN)(l")‘ >n}) < O~ HfNHi%X)'

We further observe that limsupy_, ., HfNHiQ(X)

in L?(X) by definition of the molecular representation. Therefore, we have that at almost
every point x € X

= 0, since the sum Zj Ajm; converges

[ee]
)] < INIT(my) ()] -
=0
Together with (4.8), this shows that
o
ITF Ny < D INHITmG | ) < CTZM E
j=0
Recalling the definition of the norm on Hi,mol,M(X) and taking the infimum over all

(1,2, M, e)-representations of f gives the desired conclusion. 0

In view of Lemma 4.9, the inclusion Hy 1, (X) C H}ﬁ’L(X) will be a consequence of
the boundedness of the operator @ Qy 1, on L?(X) (see further Corollary 4.13), as soon
as we can show that (1,2, M, e)-molecules are uniformly bounded in H,, ! (X). This is
what we will do in the next proposition, in analogy to Proposition 3.16 of [DL09.

Recall that for f € L?(X) we defined in Remark 3.20

Qw,Lf(xvt) = w(tQmL)f($>a (xvt) € X X (Ov OO),

and the norm on H&)’L(X) was defined by

1/2
du(y) d
1l o) = 1Qu, L fllgr (x) = |<//F() (2™ L) f(y)|? V?(yg)tt>

LY(X)

Proposition 4.10 Suppose that L satisfies (H1) and (H2). Let M € N with M > 4
and € > 0. Further, let o > 4=, 3> M and let ¢ € Uo5(E0) \ {0}. Then there ewists
some constant C > 0 such that for all (1,2, M, e)-molecules m, we have

Il o) = 1Qu.emllgi(x) < C.

Remark 4.11 A careful inspection of the proof below shows that Proposition 4.10 is also
true for ¢ € \P(Eg) (without the assumptions on the order of decay at zero and infinity),
whenever {1 (tL)}+>0 satisfies Davies-Gaffney estimates. It was shown in Proposition
3.13 that in this case also {(tL)M(tL)};~0 satisfies Davies-Gaffney estimates.
For example, again due to Proposition 3.13, it is possible to take z — ¥(2) = z
arbitrary K € N.

Ke=% for
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Remark 4.12 Let us mention that the arguments used in the proof of Proposition 4.10
are similar to those used in the proof of Proposition 3.21, whose main part is an estimate
of the form

<1
TH(X) ™

HQw,L ° F@,L(A)‘

uniformly for all T!(X)-atoms A. See also Lemma 4.14, where it is shown that, under
certain assumptions on 1/}, T L(A) is a molecule. The proof of Proposition 3.21, given in
[HMM10], Proposition 4.4, and [AMROS], Theorem 4.9, is stated in a less general setting
than ours, but it immediately takes over to our setting.

Proof: Let m be a (1,2, M,e)-molecule associated to a ball B of X with radius r > 0.
In order to estimate ||Qy, LmHT1 x)» we use the following decomposition of X x (0, 00).

We first split X x (0, 00) into annuli Sy, = [28+1B\ 2B x (0, 2"F1r)]U[28 B x (2Fr, 2 F1p)],
so that for all k € N the annulus S, is contained in the tent 25t2B. Then, each annulus
is again divided into three parts (represented by their characteristic functions 7y, 7;, and
1y, see below). For 7, we can work with norm estimates on m and off-diagonal estimates
coming from {4 (tL)}¢~0. For 17}, and ) we do not integrate over (0,7), but over (r, 25 1r)
and (2Fr, 28+17). We therefore use the norm estimates of b and off-diagonal estimates of
{(#tL)M4(tL)}4>0 instead.

We define

Mo = ]12Bx(0,2r)

and for all kK > 1

M = Lok+1\2k B (0,r)5 M = Loks1p\ok B (125417 M = Lok gy (2hr 2k +17)-
We can therefore decompose F' := @), m into
F=nF+Y mF+> nF+>
E>1 E>1 E>1

If we can show that there exist constants C' > 0 and o > 0 such that

(a) 16 F [l 71y < C27 ko for each k > 0,
(b) anFHTl <C27%  foreach k> 1,
(c) || & FHT1 <27 for each k > 1,

then the desired estimate ||F'||z1x) < 1 will be an immediate consequence.
Since each niF, n. F and n)/F is supported in 2’“r 2B, the Cauchy-Schwarz inequality
yields

||77kFHT1(X) < H771<:F||T2(X) V(QkHB)l/Q,

and the analogous estimate for n}, F' and i) F. Therefore, in view of the doubling property,
it is enough to prove that the T%(X) norm of n, F', n,, F and 7} F is bounded by a constant
times 2%V (28 B)~1/2 for some o > 0.

We first show (a). For k = 0 it is enough to estimate the 72(X) norm of F itself. To
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do so, we observe that, according to (2.19), there exists a constant C' > 0 such that for
every y € X

/ V() du(z) < C. (4.10)
B(y.t)
Using Fubini’s theorem, (4.10) and Remark 3.20 (which states that (tL) satisfies

quadratic estimates as we assumed L to have a bounded functional calculus on L?(X)),
we then get

In0F 1) < I1F ey /‘[/ BT L) <>F‘%§f;?mww

< [ [ oo fdmm

S ”mHL2(X) SV(B )

where the last inequality is due to Remark 4.2, which is a direct consequence of the
definition of molecules.

Fix now k > 1. Proposition 3.18 shows that {1)(tL)}~o satisfies off-diagonal estimates
of order a. To apply these estimates, we use an annular decomposition of X, which
yields

o0

" duyyar\ "
F < £2m )1 2 4y
Ik Fllz2gxy < </2k+13\2k3/0 (" L)L, (ym(y))| " >

=0

I
M8
~

1=0
Agsume first that 0 <! < k — 3. Then, using the off-diagonal estimates, the definition
of molecules and the fact that dist(S;(B),2¥*1B\ 2*B) > (28 — 2!)r > 2kr, we get

r : k+1 kp\2m\ 2«
oy S/ (1+ dist(Sy(B), 271 B\ 2 B) > ) dt
0

Il 2y my) +

752m
< 972y (ol g)~lg—dmak /r <f>_4ma dt
~ 0 t t
5 2_2l€V(21B>_12_4ka- (411)

Moreover, the doubling property (2.2) implies that V(2!B)~! < 2"V (2¥B)~1, hence

k=3 k-3
Z Il 5 27k(2ma7n/2)v(2k3)71/2 Z 2715 g 271€(2mozfn/2)v(2].9‘8)71/27
(=0 1=0

which gives the first part of the desired estimate since o > 7.

Assume now that k — 2 <[ < k 4 2. Here, the off-diagonal estimates are of no use, as
this case is the “on-diagonal” part. But since L has a bounded functional calculus on
L?(X), we have by Remark 3.20

mﬂgﬁféwwwmwmmwFW@ﬁ

t
S Imllfes,my S 272V (25B) ™
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again using the definition of molecules and the doubling property in the last line.
Assume finally that | > k£ + 3. With use of the off-diagonal estimates and taking into
account that dist(S;(B), 281 B\ 2¥B) > 2!r, we get in the same manner as in (4.11)

r dist(Sy(B), 25+1 B \ 2k B)2m\ ~** dt
e e I T F

5 2—2lev(2lB)—12—4mal'

Since [ > k + 3, we obtain from the estimate above

0o 0o
Z I, g Z 2715272malv(21B)71/2 g 272makv(2kB)71/2'
I=k+3 I=k+3

This ends the proof of (a).

For the proof of (b), let us write m = LMb for some b € D(LM). In order to compensate
for the integration over (r, 28T1r) instead of (0,7), we use the norm estimates of b instead
of m. Recall that by definition for all [ € Ny

1]l 25,y < M2V (2IB) T2

Inserting m = L™b into F and splitting X into annuli, we have

2k+1p 2 du(y)dt 1/2
2m r\M 2m
7 | 2y = </2k+13\2k3/r (2™ )M (27 L)b(y)| t4mM+1>
>0 2k+1y 1/2
dp(y)dt
< thL Mw tQmL 1 b 2
; </2k+13\2k3/r (L) e(E L) s (W) Stz

=: Z‘]l‘
=0

Observe that we assumed 3 > M, hence we have z — 2Mq)(z) € \I/a+M7g,]v1(22) and
{(tL)M4(tL)}+>0 satisfies off-diagonal estimates of order o+ M due to Proposition 3.18.
Assume first that 0 <! < k — 3. Then, similar to (4.11) we obtain

ok+1, . k+1 kp\2my —2(at+M)
dist(Sy(B), 261 B\ 2+ B
(Jl)2 5/7 (1 + (Si(B) o \ ) >

dt
2
10l Z25,8)) gamarrt

2+ ok \ —Am(at )
2%y dt
AmM o—21 ! —1
S T m 2 €V(2 B) /T\ (t) 7t4mM+l

k1 4
— 2—2l€2—4kav(2lB)—l /2 " QICJ e @
. t t

< 272l527k(4mM7n)V(2kB)71

using the doubling property and a substitution s = in the integral in the last step.

Consequently, there holds

_t
2k

S

-3
J; g 2fk(2mM7n/2)V(2kB)fl/2.

Iy
o
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Assume now k — 2 <1 < k + 2. We first estimate t~#™M in the integral against r—4mM .
Then, as for I;, the functional calculus of L on L?(X), the norm estimate of b and the
doubling property yield

am o m m 2 du(y)dt
(gt [ et g )
—4m 2 —2k k -
S bl sy my S 27V(2PB) T
Agsume finally that [ > k 4+ 3. As before, we get from the off-diagonal estimates, the
fact that dist(S;(B),2*1 B\ 2¥B) > 2! and the definition of molecules

241y op N\ —Am(atA)
2'r 2 dt
(J1)* S/r <t ) 11172(s,(B)) Jamaret

ok+1 —4dma
5 7,,4mM2—2lva(2l‘B)—1T—4mM2—4li/ " (Zir> %
r

g 272[6‘/(2I‘B)71274771]\4l7 (412)

where in the last inequality we estimated 27! against 27% in the integral and used the

substitution s = 21%

Again using the assumption | > k + 3, the above yields

Z J2 g 272kav(2kB)fl/2.
l=k+3

For the proof of (c¢), we write in analogy to (b)

ok+1,. 1/2
2m 2m Qd,LL(y)dt
Pl = ([, [ len oo S0
ok+1,.

1/2
m m d dt
= Z </2k3/2 t2 L Mw(tQ L)lg Si(B )b(y)f tﬁf]%/)ﬂ)

=: ZKZ'
1=0

Let us first assume 0 <[ < k + 1.

Since we now integrate over By instead of 2F*'B\ 2B as in (b), we cannot use the
off-diagonal estimates for small [. But on the other hand, we integrate over (2¥r, 28+1r)
instead of (r, 25T1r), which enables us to estimate t against 2¥r. The bounded functional
calculus of L on L?(X) then yields

(K)? < (25~ 4m /0 /X (27 L) M (12 L)L, yb(v)|

< o dmMky—4mM HbHQL?(Sl(B

2 du(y)dt
t

)

9

S 2—4ka‘2—l£2knv(2k?B)—l

where we used the norm estimate of b and the doubling property in the last line.
Therefore

k+1
ZKI < 9- (2mM— n/2)kv(2kB) 1/2.
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Finally, assume that [ > k + 2. In this case, we have dist(S;(B),2*B) > 2!, hence we
obtain by using the same arguments as in (4.12)

ok+1, l —4m(a+M)
2r dt
9 2
(K)) g/z <t> HbHL?(Sl(B)) HAmM+1

ke

ok+1 —4ma
5 T4mM2—2l5V(QZB)—IT—4mM2—4li/ ' <2lr> ﬂ
2k t t

SJ 2_2lEV(QZB)_12_4li.

This yields

(e.@)
Z Kl g 272kav(2kB)fl/2.
l=k+2

Combining all estimates above gives the desired conclusion. O

As mentioned before, the inclusion H};mol’ u(X) C H%& 1 (X) follows immediately from
Lemma 4.9, Proposition 4.10 and the boundedness of the operator & Qy ;, on L?(X).

Corollary 4.13 Suppose that L satisfies (H1) and (H2). Let M € N with M > -

4m

and € > 0. Further, let o > 4% and 3 > M. Assume either that ¢ € (X)) \ {0} and
{Y(tL)}+>0 satisfies Davies-Gaffney estimates or that ¢ € \I’aﬁ(Zg) \ {0}.
Then HlL,mol,M(X) - H}ﬁ,L(X) and there exists a constant C > 0 such that

||f||H7}b’L(X) <C HfHHi,moz,M(X)

forall f € H}:’mol’M(X).

Proof: The inclusion H};,mol, 4 (X) C L*(X) holds by definition. For the inclusion
HE (X)) C H}p 7 (X) we use Lemma 4.9. The operator &7 Qy 1, is bounded on L*(X),
since for all f € L?(X)

HJZ{Qz/;,LfHLz(X) = ||Q1/)7Lf||T2(X) S ||f||L2(X) )
using that Qy. 1 : L?(X) — T?(X) is bounded due to Remark 3.20 and the assumption
that L has a bounded functional calculus on L*(X).

On the other hand, Proposition 4.10 shows that there exists a constant C' > 0 such that
for all (1,2, M, e)-molecules m we have

17 Qu.Lml 1 xy = Il | x) = C-
Lemma 4.9 then yields that

1Al 0 = 1/ Qe fllacey < C Ml oy

for all f € ]HIIL’mOl’M(X). 0
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We now turn to the second step of the proof of Theorem 4.7, the inclusion H’}ZJ,L(X) -
H}:,moz,M(X)~ Thus, given a function f € HL’L(X), we have to find a molecular
(1,2, M, e)-representation of f (with an appropriate norm estimate). To obtain such
a molecular decomposition, we will map f with the help of @y 1 into the tent space
T'(X). Then, we will take into account the fact that there exists an atomic decom-
position of T!(X), a result which was shown in [CMS85] for Euclidean spaces and in
[Rus07] for spaces of homogeneous type. Having such an atomic decomposition of T*(X)
at hand, we will map these atoms back into L?(X) with the help of ThLo where TjL 18
the dual operator of QJ;,L defined in Remark 3.20 by

dt

—, r € X,
t

mu @) = [ L)@
for F € T*(X) and some 1) € ¥(X9) \ {0}.
The idea of such a reduction to tent spaces is taken from [HLM™ 09| and was also applied
in Lemma 3.18 and Proposition 3.20 of [DL09].

To start with, we observe that 7 ; (X) maps T'(X) atoms into molecules of Hi,mol,M (X).

For convenience, we state the result with 1 instead of 1;, but remark that this function
will in general be different from the one which defines the space H}p L(X).

Lemma 4.14 Let M € N. Let o > - + M and > 0 and let ¢ € \Da’g(zg). Then
there exist a constant C > 0 and an ¢ > 0 such that for every T'(X)-atom A associated
to some ball B C X (or more precisely, to its tent B), the function Clmy L(A) is a
(1,2, M, e)-molecule associated to B.

Remark 4.15 The result is also true for every ¢ € ¥(X)) such that z — 7 May(z) €
(%)) and {(tL)™M)(tL)}¢>o satisfies Davies-Gaffney estimates. This follows imme-
diately from the proof below, observing that the two properties, that are used of the
operator family {(tL)~M(tL)};>0, are quadratic estimates and off-diagonal estimates
of some order larger than -, and Proposition 3.13. In this case, one can also choose
€ > 0 arbitrarily large.

Proof: Fix a ball B and let A be a T%(X)-atom associated to B. Thus,

//XX(O AP W <v(B). (4.13)

Let us write m := my, ,(A) = LMb, where

. > -M 2m . @
b—/o LM L)AL )

If we can show that there exist constants C' > 0 and € > O such that forall k =0,1,..., M
and all I =0,1,2,... the estimate

< c27ley (2l B)~1/? (4.14)

H(T%mL)_(M_k)m‘ L2(Sy(B))

holds, then the conclusion follows.
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Now for any I € Ny, consider h; € L?(S;(B)) such that 1allp2s, gy = 1. For 0 <k <M
the support condition on A, the Cauchy-Schwarz inequality and (4.13) yield

‘ / (rg" L)~ M () () dia()
‘/ ( (rE" L)~ M=) (ML) (A(-, 1)) (2 )d)hl( ) dpu()

// |A(x, t) |‘ ram )~ (M- k)w(t2mL*)hl(:n)‘ d“(?d

12 g (4.15)

where we set

vi= ([[ otz v on| W)/

Observe that by assumption z — z~(M=ky(2) e \Ifa_(M_k,)ﬂ(Eg) foral 0 <k < M.
For [ < 4, we can use quadratic estimates due to Remark 3.20 and the assumption that
L has a bounded functional calculus on L?(X). As ¢t < rp inside the integral, this yields

1/2
J < (/ / ’ tQmL* (M- k)w(tQWL*)h( )‘2 d:u’(f)dt>
S hallp2s ) = 1- (4.16)

For | > 4, we can take into account that {(tL)~(M=®y(tL)};~o satisfies off-diagonal
estimates of order o — (M — k) by Proposition 3.18. Using that dist(B, S;(B)) > 2'r5,
we obtain

J < (/ / ‘ (P2 L)~ (M =R) g (42m [V (o )‘2 du(z )dt>1/2

t
5 /2m~ —2(M—k) —2(a—(M—k)) 1/2
([0 L (G L)
SUL (e 12m ; tlzz(si(m)
r “dme 1/2
< 9—2m(a—(M—k))l / . (LB> dme dt < 9—2m(a—(M—k))l (4.17)

From the combination of (4.15), (4.16) and (4.17), and the doubling property (2.2) of y,
we therefore get

[ oB R dute)
5 272m(a7(M7k))lV(B)71/2 5 27(2m(a7(M7k))fn/2)lV(2lB)71/2

for every h; € L?(S;(B)) with 17all p2(s,(pyy =1 and all I > 0.
If we take the supremum over all such h; and choose for example ¢ := 2m(a — M) — 5
(which is larger than zero, since we assumed o > M + 7-), the desired estimate (4. 14)

follows.

For convenience, we will state the following elementary fact. We will use this to show
that the molecular decomposition of f € Hq}) (X)), we are going to construct, converges
in L?(X) and is therefore indeed a molecular representation of f.
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Lemma 4.16 Let By, By be Banach spaces and let T be a bounded linear operator from
By to By. Suppose thal the sum Z]- F; converges in Bi. Then the sum Z]- fi =
>_; T(F}) converges in Bs.

We are now ready to finish the proof of the inclusion qup,L(X) - H}:7mol7M(X), following
the outline described prior to Lemma 4.14. In contrast to the reverse inclusion, this
inclusion holds for all M € N and all ¢ € \11(22) \ {0} without any further restrictions.

Proposition 4.17 Let M € N and let L satisfy (H1) and (H2). Let ¢ € W(X0) \ {0}.
If f e Héy,L(X) N L2(X), then there exists some ¢ > 0, a family of (1,2, M, e)-molecules
{m;}32y and a sequence of numbers {A\;}32, € 0% such that f can be represented in the
form f = Z;io Ajmj, the sum converges in L2(X), and, for this choice of €,

(X) < CZ ‘)‘j’ <C HfHH}b’L(X) )
j=0

T

mol, M

where the constants C,C" > 0 are independent of f. In particular,
H@lz;,L(X) - HlL,mol,M(X)-
Proof: Let ¢ € (X)) \ {0} and let f € ng),L(X) = H&%L(X) N L?(X). We set

F(x,t) .= Qyrf(x,t) = w(t2mL)f(:13), (x,t) € X x (0,00).

The definiton of HI}}L(X) and the fact that Q.1 : L*(X) — T%(X) is bounded (due to
Remark 3.20) immediately imply that F € T1(X) N T?(X). Further, Proposition 2.20
shows that every function in 7%(X) has an atomic decomposition, hence there exist a
numerical sequence {A;}72, and a sequence of T!(X)-atoms {4,152, such that

F=> X4, (4.18)
j=0

and the sum converges both in 7!(X) and T?(X). The proposition also yields the
existence of a constant C' > 0 with

Z Al <C ”FHTl(X) =C HfHH}bYL(X) : (4.19)
j=0

With the help of Lemma 4.14 we can now construct molecules m; out of the T'(X)-atoms
Aj. For this, we choose some o > = + M, 8 > 0 and a function 1 € \liaﬂ(Eg) \ {0}

with [° D(t)(t) % = 1. Then, due to the functional calculus on L?(X), we have

dt

F= [ oL G = ()

=D ATy (45), (4.20)
=0
where by Lemma 4.16 the sum in the last line converges in L?(X), since oL T?(X) —

L?(X) is bounded due to Remark 3.20 and the sum in (4.18) converges in T2(X).
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Moreover, by Lemma 4.14, there exist a constant C' > 0 and some € > 0 such that for
every j € Np the function m; := C*17T1;7L(Aj) is a (1,2, M, e)-molecule. Consequently,
the sum in (4.20) is a molecular (1,2, M,e)-representation, so that f € H} . (X)),
and from (4.19) follows o

x) SCY N <CNfllm,x)- O
=0

£l

L,mol,M

In principle, we are now done with the proof of Theorem 4.7. Combining Corollary 4.13
and Proposition 4.17, we get the equivalence of the spaces HQ}J,L(X) and Himol’M(X),
provided that M > ;% and v € ‘I/a’g(Eg) \ {0} with a > 7~ and 3 > /-, and e > 0
is chosen as in Lemma 4.14. Therefore, we can define H}(X) as one of these equivalent
spaces, as it is done in Definition 4.8.

To relax the assumption on 8 and to show that it is indeed sufficient to assume 3 > 0
and, moreover, to get rid of the restriction on € > 0, we use an argument given in
[HMM10], Corollary 4.21. What is behind this argument, is the following observation.
The assumption on 3 reflects the order of decay at 0 which is used in Proposition 3.18
to get the desired order of off-diagonal estimates for {¢)(tL)};~9. But if we think of
a function ¢ € W(XY) \ {0} such that {1o(tL)}e>o satisfies Davies-Gaffney estimates,
Theorem 4.7 is also true, even if ¢g tends to 0 very slowly. With the help of a Calderén
reproducing formula 7 Jo.lL © Qo = I we can now get an estimate

HfHHi)’L(X) S ||f”H}p07L(X) 7

using the property that the operator Q. r, o T L 18 defined and bounded on T'(X).
The details of the argument are given below. So the order of decay at 0 turns out to be
rather a technical assumption than a structural one.

Corollary 4.18 Let M € N with M > J-. Let further o > 0, 8 > {- and ¢ €
Uo5(30)\ {0} Then

Hle’L(X) = Hi,mol,M(X)>

with equivalence of norms.

Proof: The inclusion H&;,L(X) C HmeLM(X) follows directly from Proposition 4.17.
Concerning the reverse inclusion, we already know from Corollary 4.13 that Him ol M (X) C
H}pO’L (X), where 99 € \II(EB) is defined by 1 (z) = ze~*. This follows from the fact that
{(tL)e"*"},~¢ satisfies Davies-Gaffney estimates due to Proposition 3.13. Therefore, it
remains to prove the inclusion H}pO,L(X) C H}M(X).

Let us now choose by € \I/(Eg) defined by 1;0(2) = CyzMe*, where the constant Cyy is

chosen such that [j* Yo (t)o(t) % = 1. The Calder6n reproducing formula then yields

that m; ;0 Qyr =1in L*(X). )
Moreover, observe that ¢ € \Pa,g(Eg) \ {0} and ¢y € ‘115704(22) \ {0} for some a > 0
and 3 > ;. Hence, according to Proposition 3.21, the operator @ o Tho.L which was

originally defined on T?(X), extends to a bounded operator on T!(X). This yields that
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for every f € Hwo (X)=H} ,(X)NL*X) there holds

o,L

1Al ) = 192 s ) = |[Qunt 07, 1. © Qs

S HQwo,LfHTl(X) = HfHHiO,L(X) :
Since Ha}bo,L(X) is dense in H,L})07L(X), the assertion follows. O

4.4 BMO spaces associated to operators

To motivate the definition of BMO spaces associated to operators, let us shortly recall
the definition of the space BMO(R") introduced by John and Nirenberg in [JN61]. A
function f € L{ _(R") is said to be in BMO(R™), the space of functions of bounded
mean oscillation, if and only if

where the supremum is taken over all balls B in R".

The idea is now to replace the averaging of f over balls B by a more general approxima-
tion operator associated to L, namely the semigroup operator e~ "E"L. More precisely,
for every M € N one defines a space BMOp, 3/(X) consisting of all elements f € Ey(L),
where Eyy(L) will be defined below, that satisfy

/ (=5 )M @) () < oo, (4.21)

sup

where again the supremum is taken over all balls B in X.
If one chooses L to be the Laplacian, then one regains the standard space BMO(X) (see
[DY05b], Corollary 2.16).

We follow the approach in [HMa09] and [DL09], still assuming that L is an operator
satisfying (H1) and (H2).

In order to define the space BM Oy, (X)), let us first define the space £y/(L). The def-

inition assures that (I — "2 L)M f ¢ L% (X), and therefore the expression in (4.21) is
well-defined. Moreover, the definition is chosen such that one gets a theory that is con-
sistent with the theory of H} (X). That is, one assures that functions from BM Oy, p(X)
interact well with molecules from H}.(X) (see Proposition 4.30), to get a duality result

for H}.(X) and BMOp p(X).

Let us fix some element zy € X that will henceforth be called 0. The ball By := B(0,1)
will then be referred to as unit ball.

Definition 4.19 Let ¢ > 0, M € N and let ¢ € R(LM) C L*(X) with ¢ = LMv for
some v € D(LM). We introduce the norm

295V (2 By) 1/22 HLk ‘ L2(S j(Bo))] ’
0

quHMé,z,Ma( L= sup
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where By is the unit ball centered at 0 with radius 1, and we then set

Mé’Q’M’a(L) = {p e R(LM) : ||¢”M(1]v27M’E(L) < oo}

We denote by (M(l]’Q’M’E(L))’ the dual of Mé’Z’M’S(L).
For any M € N, let Eyr(L) be defined by

Em(L) == [\ (M=M= (L))

e>0

Remark 4.20 We note that if ¢ € M(l)’Q’M’a(L) with norm 1, then ¢ is a (1,2, M, ¢)-
molecule adapted to By. Conversely, if m is a (1,2, M, e)-molecule adapted to any ball
By, then m € M(l)’Q’M’a(L). This follows from the observation that there exist integers
Koy and K;j, depending on rp, and rp, and dist(Bg, B1), such that 250By O By and
2K1 B, D By. One can therefore renormalize the molecule m such that it is a molecule
adapted to the unit ball By.

Lemma 4.21 Let L satisfy (H1), (H2) and let M € N and € > 0. Fort > 0 let P;
denote either e "L or (I 4+ t2™ L)~

Then for every f € (M 1 2 ME(L*))’ and everyt > 0, one can via duality define (I—P;)M f
as an element of LQOC(X). In the same way, (tQmL)Me_tmLf can be defined as an
element of L .(X), too.

Proof: We obtain from Lemma 4.3, with L replaced by L*, and Remark 4.20 the follow-
ing: If ¢ € L?(B) for some ball B of X with radius rg, then (I — P})Myp € Mé’z’M’E(L*)
with

(I = Pf) goHMuMg( o < Crllell 2 s (4.22)

the constant C; > 0 being independent of ¢ (but depending on the constants ¢,rp and
dist(0, B) due to Remark 4.20 and depending on the normalizing constant described in
Lemma 4.3).

The assertion of the lemma is now a simple consequence. Via duality we get

(I = P)M [, 0)| = [(f, (1= PN )]
<O ||f”(Méa27MﬁE(L*))/ ”SOHLQ(B)

where C; > 0 is the constant from (4.22). Since B and ¢ € L?(B) were arbitrary, the
claim follows.
The proof for (£2mL)Me=#*"L f is similar to the above. o

Definition 4.22 Let M € N and let L be an operator satisfying (H1) and (H2). An
element f € Ep(L) is said to belong to BMOp av(X) if

. 1/2
oo, = s (77 [ 0= F 0@ autw)) <00 029)

where the supremum is taken over all balls B in X.

The following proposition gives an equivalent characterization of BM Oy, 37 (X) using the
resolvent in place of the semigroup.
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Proposition 4.23 Let L be an operator satisfying (H1), (H2) and fir M € N. A func-
tional f € Ep(L) belongs to BM Oy, v (X) if and only if

1/2
”fHBMOLJ\/[,res(X) = sup ( / ‘ [—H“ ) Mf ‘ d,u > < 00,

BCX
(4.24)
where the supremum s taken over all balls B in X . Further, there exists a constant ¢ > 0
such that for every f € BMOp y(X)

—1
¢ ||f||BMOL7M,MS(X) < HfHBMOL,M(X) < C”f”BMOL,M,res(X)‘

Before coming to the proof of Proposition 4.23, we add some auxiliary results.

Lemma 4.24 Let f € L*(X). Let {S;}i>0 and {T;}i>0 be two families of linear bounded
operators on L?(X) such that {S;}i~0 satisfies Davies-Gaffney estimates and {T;}i~0
satisfies the estimate

sup V(B)~1/2 ‘
BCX

< 4.2
B) ~ Cfa ( 5)

for some constant Cy > 0, where the supremum is taken over all balls B in X and
rg > 0 denotes the radius of B. Then, for every € > 0 there exists some constant C > 0,
independent of f, such that

sup 279V (2B 1/2
BCXZ "

< CCf (4.26)

and there exists some constant C' > 0, independent of f, such that

sup V(B)~1/? ’
BCX

< !
5 SCCr

where again the supremum is taken over all balls B in X.

Proof: Let f € L?(X) and B C X be an arbitrary ball with radius rg. Moreover, let
{S:}+> and {T}};~0 be as in the assumptions.

Let us denote the left-hand side of (4.26) by X. To estimate ¥ against C'¢, we will cover
the annuli S;(B) with balls of radius rg. To do so, we use Lemma 2.1, which provides
an analogue of the grid of Euclidean dyadic cubes on spaces of homogeneous type. We
use the notation given there and in Notation 2.2.

Given 6 > 0 and C; > 0 as in Lemma 2.1, we denote by kg the integer satisfying C; 6% <
rg < C16%~1 and, for each j € N, by k; the integer satisfying ok < < TR
With xp denoting the center of the ball B, we define for every j € N the index set M;
related to B = B(xp,rp) as in (2.7). Recall that M; represents all “cubes” out of Q
with “sidelength” approximately equal to rp that have non-empty intersection with the
dilated ball 27 B.

Due to Notation 2.2 there holds

2B C B(xp,C1o" %72  C | ] QF C B(wp,2C107 M%) C 5227 B. (4.27)
peM;
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Further, Lemma 2.1 yields that the sets QZO, B € Mj, are disjoint and for each 8 € M;
there exists some zgo € X such that
B(zy, c1rp) € QFF C B(zj,75) (4.28)

for some ¢; € (0,1) independent of j.
Now, if we substitute (4.27) and (4.28) into (4.26), we obtain

i 27V (21 B) 712 ||T,y
=0

L2(S;(B))
- 1/2
<Y 27y (2/B) 2 ‘
e Ben, ,TB))
- 1/2
<Cpy 2 v@B) VA Y ViEs) |, (4.29)
7=0 BeM;

where the last line follows from (4.25).
Further, the doubling property (2.2) of p and (4.28) yield that

V(zgo,rB) < Agcf"V(zZO,cer).
We therefore get from (4.28), (4.27) and the disjointness of the sets Qg", B € Mj, that
V(L re) S D V(QE) < V(ap, 20160 % 2) SV(2B), (4.30)
,BEMJ' G]\/f

again using the doubling property (2.2) in the last step.
Combining (4.29) and (4.30), we can conclude that ¥ < Cf, which finishes the proof of
(4.26).

Let us now turn to the second assertion. By splitting X into annuli around B and
applying the Davies-Gaffney estimates for {S;}¢~0, we obtain

T.QBmTTQBmf 12(B ~
1
dist(S;(B), B)?™\ zm-1
< —
Zex [ ( cr?gm ‘

for arbitrary N € N. The doubling property (2.2) and estimate (4.26) for ¢ = N —n/2
then yield

Tme‘

"B

L2(S;(B))

L2S(B

B) 2|8 0 T ‘ < $ " 2miNgin/2y (21 g) =1/ ‘
V(B) ST . ZO V(2'B) 1| s,
S Cy.
Since the ball B was arbitrary, this finishes the proof. O
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The above lemma implies in particular that the following inclusion of BMO spaces is
valid. In Theorem 4.28 we will moreover show that BM Oy, p(X) = BMOp, n(X) for
every M, N € N with M, N > -

Corollary 4.25 Let N, M € N with M < N. There exists a constant C' > 0 such that
for every f € BMOp y(X)

1A Baor, vx) < Cllf Bro, vx)
and therefore BMOrp v(X) € BMOpL n(X).

Proof (of Proposition 4.23): We follow the outline of the proof of [HMa09], Lemma
8.1 (using a slightly simpler decomposition).
Let f € Em(L) and M € N. We start with the proof of the inequality [|f{/gr0, ,,(x) <

1f | Batos ayves(x)- Observe first that for every ball B in X with radius rp > 0 there
holds

(P )M = (I + 3 LM (I — (I +r3mL)~M

M

_ (z ck,Mw%mL)M-k) (I (1 + gy
k=0

where ),y are the coefficients from the binomial formula.

By abbreviating f := (I — (I +rZ"L)~")M f, we therefore get

Vv (B)~/? H(I _ efr%mL)

M
_ V(B)—l/Q (I - e—r%’"L) (r QmL (Z CkM 2mL)M k) f
k=0 12(B)
M 2m "B 2m K ~
5 ZV —-1/2 — ¢ "B L)Mfk (_/ Oye T LdT> (TZBmL)fkf
k=0 0 L2(B)
SE ot -1/2 || —vrE"L P ‘ 2m\—k
<> Z V(B - dre dr) (r3'L)7Ff o (4.31)
k=0 v= L2(B)

again using the binomial formula in the last step.
By assumption (H2), the semigroup {e~*'};¢ satisfies Davies-Gaffney estimates. Hence,
Remark 3.17 and Lemma 3.3 yield that the operator

—vr2m[, B —72m], g 2m r\—k
B = Ore dr | (rg"L)
0

TB 9 2m—1 k
_2m mT _2m
=e VB L e ldr) =:8.m
2m B
0 B

also satisfies Davies-Gaffney estimates in r%" (except for k = v = 0). If k = v = 0, then
the corresponding expression in (4.31) is equal to I—(I+r3nL)~t (B)

1
v
which obviously is bounded by || f[l a0, 4 e.(x)-

In all other cases we apply Lemma 4.24 with T}2m = (I —(I+r%"L)~HM and constant
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Cr = flproy, uy ea(x)- The assumption (4.25) is satisfied by definition of the norm in
BMOp, i res(X), thus the lemma implies that

Vv (B)~/? H(I B

<
2 B) ~ HfHBJ\/[OLJ\/[’TES(X) °
Since B C X was an arbitrary ball, we get the asserted estimate.

We now come to the inverse inequality || fl|grro, o, ,00x) S Hf||BMOL’M(X). In analogy

to the above, we will write the operator (I — (I + rZ"L)~1)" as the combination of
an operator satisfying Davies-Gaffney estimates and an operator (almost) of the form
(I — e "#"LYM  However, in this case, it needs a little more effort to get the desired
representation.

Let us write the identity as

21/2m,r.B M
I=02mM (7";2’”/ 32m11d3> , (4.32)

B

and, in addition, let us write the integral in (4.32) via the binomial formula as

21/2m

TB
/ 21T ds
rB

21/2777,,’,3 21/2m

:/ §2m(r — sz ds—l—ZCkM/ g2m—le=ks?" L ds, (4.33)
T

B

where C} ps are some constants depending on k and M only. To handle the second
integral in (4.33), observe further that

21/2m7,B ) 21/2m,r,B ) ) )
2m—1 _—ks“™L —ks“™L —krg™ L —2krs™ L

2ka/ s e ds——/ ose ds=e "B~ —¢ B

B B

e—kr%’”L(I _ e—kr%mL)
k-1
—krZmL —rimL —jr¥mL
=e B YI—e"BY)Y e B (4.34)

For convenience, we set
21/2m,,,B
ad _ _ _<2m
T’r‘QBm — 7,,BQM/ SZm 1(]7 P L)M dS,
TB
and for every 1 < k< M
k—1
2'm
Szmk—r 1E€k+3 L

Jj=0

From (4.32), (4.33) and (4.34) we then get the following representation of the identity
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operator:

21/2m,r,B

I= (2m)M <r§2m/ s¥m=l(r — eiSQmL)Mds
B

k—1 M
Z Crmrg ™ (2mkL)™ 1e_l”aBmL(I - e_TZBmL) Z e_jr2mL>

J=0

M
= (Tr%m +(I - _TB Z Ck MmS, 2m k)

k=1
M M
_n2m
= (I —e "B L)M (Z Ck:,M,er%m,k>

k=1

M M—v

+ T Y (Tram)” (Z Coistm(I —e " )ST%%)
v=1

With the help of these two operators we will estimate the BM O, psres(X) norm of f.
We begin with P2m. The definition of F,2m yields

V(B2 - (1 4+ L)
M
S kZ VB) 2 (= (L)) MU e E M| (a6)
By using the identity
(I—(I+rZL)y HrEL) ™ =T +ryL)™!
and the definition of Sr%@k, we can write
k—1
(I = (T + 7" L) ) S,z g, = (I + 75" L)~ Y e (4L (4.37)
j=0

which is an operator that satisfies Davies-Gaffney estimates due to assumption (H2),
Proposition 3.16 and Lemma 3.3. Thus, in view of (4.36) we can apply Lemma 4.24 with
Toom = (I - e "5 IYM which shows that

VB) || = (L) g S W10, 00
as desired.
We now turn to Q,2m. Let us abbreviate S, am 1= S (I - eTE' L) S 2m 1. Then the
definition of @, 2m ylelds
V(B V(1= (473 L) )M Qpy
M ~ ~ ~
<S v H (I +rZ L)_l)M(TT%m)V_l(SrzBm)M_VTrzBm fHLQ(B) . (4.38)
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We first observe the following norm estimate for the operator T r2m- If B is an arbitrary
ball of X with rz = rp, we get by changing the order of integration and using s ~ rjz
and the doubling condition (2.2)

21/2"L,,,B
Bzm/ g2m—1 H(I _
B

5 V( ~)1/2 ||f||BMOL,M(X) . (439)

On the other hand, with use of the binomial formula again, we can write T,,,QBm as

21/2m7.B

M
T am = 7'1_327”/ ™ rds + Z C’k7M7’§2m/
rB

k=1 B

21/2m,,.B )
— _ m
S2m 16 ks LdS.

The first integral in the equation above is equal to ﬁ, whereas the second one inside
the sum can be rewritten with the help of (4.34). Hence, we obtain

T %I + (I _TB ;C’C MmS 2m k

Together with (4.37), this leads to the observation that (I — (I+T%mL)_1)TrzBm is, except
for a multiplicative constant, the sum of the identity operator and an operator satisfying
Davies-Gaffney estimates. In view of (4.37) again, the same is true for the operator
(I —(I+ TQBmL)*l)STQBm and thus also for the operator

(L= (L + 13 L) ™)™ (D)~ (8,) M

occuring in (4.38). Together with (4.38) and (4.39), Lemma 4.24 then yields for Toom =

TT%m the estimate

V(B) —-1/2 H (I +rZmp)—L MQT

< ||f||B]\/[OL]\/[(X) .
This finishes the proof. O

In analogy to [DYO05b], Proposition 2.5 (see also [Mar04|, Proposition 3.1), we can show
that the classical BMO(X) space is included in BM Oy, 3s(X) if and only if e (1) = 1
holds for every ¢ > 0. Recall that in view of Remark 3.2 we can define e */(1) as an
element of L2 _(X) for every fixed ¢ > 0.

Proposition 4.26 Assume that for every t > 0 there holds e *L(1) = 1 in L2 (X).

Then we have BMO(X) C BMOp pm(X) for every M € N, and there ezists a positive
constant C' > 0 such that for every f € BMO(X)

1 Bros, vx) < C Il Brox) - (4.40)

Conversely, if BMO(X) € BMOp1(X), then there holds e='F(1) = 1 in L2 (X) for
every t > 0.
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Proof: In view of Corollary 4.25 it is enough to show the assertion for M = 1.
Let B C X be an arbitrary ball. Due to the assumption e=**(1) = 1 in L (X), there
holds for every f € BMO(X)

(V(lB) /B (1= p)| du<x>)1/2

< (o 150~ 0 @)+ (s [ et ens - nief* ane)
=11 + bs.

1/2

Obviously, I is bounded by HfHBMO(X), whereas for Iy the Davies-Gaffney estimates

for {e=tF};~0 imply

b <3 VEB) ™ e H s ) (D = ),
=0
0 i . 2m ﬁ
<D V(B exp !— <d St(Bc’ii,EB)) ) ] If = (F)Bllr2s, )
=0 B
VB2 (IF = (Dslliage + 1 = (Delieen)

+ V(BTN F = () Bllags, sy
i=

for arbitrary N € N.

Furthermore, for j > 1, one can due to the doubling property (2.2) easily compute that
[(fa2ip = ()8l < Cillfl Baro(x) for some constant C' > 0 only depending on n and the
doubling constant. This yields for every j > 1

If = (N Bllz2@in) <If = (Hepllizeis + (e = (N)Bll2@is)
< V@Bl parowx) + CiV (2 B) 2 £l parocx) -

Putting all estimates together, we therefore obtain due to the doubling condition

e}
I S Ifll Baocx Z(J +1)27NIn/2 g 1l srrox) »
=0

3 n
choosing N > 3.

Finally, observe that the condition e *(1) = 1 is necessary for the inclusion BMO(X) C
BMOp1(X). To see this, consider the constant function f(z) = 1. Since [[1{| gpr0(x) =
0, the inequality (4.40) implies that HlHBMOL1 = 0 and thus, for every t > 0, e t(1) = 1
in LIQOC(X). 0O
For a further comparison of the standard BMO(X) space with the spaces BM Oy, a(X)
associated to some operator L we refer to [DDSY08|. The authors consider operators L
under the agsumption that L is the generator of a semigroup satisfying Gaussian upper
bounds and construct examples of operators for all possible containments of the two
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spaces BMO(X) and BMOy, p(X), that is, examples, where the two spaces are either
equal, one contained in the other or both not contained in the other.

A sufficient criterion for the equivalence of BMO(X) and BMOy, j(X) is given in
[DY05b] in terms of Holder-type estimates on the kernel of the semigroup.

4.5 A Carleson measure estimate

In consistence with the theory of BM O spaces, we can show that elements of BM Oy, 3(X)
are intimately connected with Carleson measures (and tent spaces, respectively). That
means, given a BM Oy, p(X) function, one can construct a Carleson measure, where
the Carleson norm depends in principle only on the norm of the BM Oy, 5/ (X) function.
The exact result is stated in Proposition 4.27 below; it is a generalization of [HMa09],
Lemma 8.3. The corresponding result for the space BMO(R™), in the literature also
called “Fefferman-Stein criterion”, can for instance be found in [FS72].

For the converse result, i.e. the way how to get BM Oy, (X)) functions back from special
Carleson measures, we refer to Theorem 4.34. We postponed this to Section 4.7, since
its proof is based on the duality of Hardy and BMO spaces associated to operators and
the proof of this result in turn uses Proposition 4.27.

Besides the above mentioned duality result of Hardy and BMO spaces, our main appli-
cation of Proposition 4.27 will be in the proof of L?(X)-boundedness of paraproducts.

Proposition 4.27 Let L satisfy (H1), (H2) and let M € N. Let further w < p < /2
and let either 1/1 € \I’ga(z ), where oo >0 and 8> 7=+ M, orlet € \II(EO) be defined
by ¥(z) = 2Me?, 2 € EO Then the operator

feu(mL)f
maps BMOp, p(X) — T*(X), i.e. for every f € BMOp p(X) is

2 du(y) dt

v r = [0t L) f(y)] ;

(4.41)
a Carleson measure and there exists a constant Cy, > 0 such that for all f € BM Oy, 1 (X)
v slle < Co a0, i)

Proof: Let f € BMOp v(X) and ¢ € \IJB’Q(E[BL). We aim to show that for every ball
B in X the estimate

m 2du( )yt /2
< / / (> ™ L) f ()| > S W saro, aix)

is valid. To get an estimate against the BMOp, »(X) norm of f (to be more precise,
against the norm [|. | gpr0, ,, ... (x), Which is equivalent to ||. | gps0, ,,(x) due to Propo-
sition 4.23), we split f into

f= =T +rg L) HMf + = (I = +rg L) H)Mf
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and write

(VB / /BW(tQmL)f( )‘2 d,u(t)dt>1/2

( / [ L) = (I + 75" L) )Y f(y )|2 d“(t)dt>1/2
1/2
- (V(B)/O /BW(meL)[I— (I— (I+T%mL)—1)M]f(y)’2 du(t)dt>
=: Il +12.

For the sake of convenience, we set f := (I — (I +r5"L)~)™ f. We recall the estimate

[e.e]
Y 27V B) N f (s, ) S IFBarog, aren(x) o (4.42)
§=0

which was shown in Lemma 4.24. Obviously, there also holds

V(B)fl/QHJgHL?(zB) S Il Bros aves(x) (4.43)

due to the doubling condition (2.2).

To handle Iy, we decompose X into annuli around B and use off-diagonal estimates
together with quadratic estimates for the on-diagonal part. More precisely, we split Iy

into
n<v(B? </B/ ‘¢(t2mL)]lng(y)‘2 W)m

F> VB ([ [ s mio] Mf)dt)m. (1.44)
=2

Due to assumption (H1) and Remark 3.20, L satisfies quadratic estimates, which gives
us a bound for the first term. In combination with (4.43), we get

B)~1/? (/OTB/B’¢(t2mL)123f(y)‘2 du(f)dtym

SVB) V2 flrees) S 11l Ba10 ap res () -

Since we chose ¢ € Wg,(2)) and assumed (H2), the family of operators {1(tL)}~0
satisfies off-diagonal estimates of order 8 according to Proposition 3.18. We therefore
get for the second term in (4.44)

iV(B)W ([ [ s o] (t)dt>1/2

j=
_ 1/2
o - e (dist(B, S;(B))*™\ 2 dt .
S VB ( [ (B t) 1Pl

J=2
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Taking into account that dist(B,S;(B)) = 2/rp, the substitution of s = é and the
doubling condition (2.2) yield that this again is bounded by a constant times

. L s s\
S V(B) 2o ms) (/0 S s> M laz(syc2y
j:

<D 279V BY TV fll s, 8y S Ml BMoy aren(x)
Jj=2

where we used the norm estimate (4.42) of f together with the fact that (3 > 4 in the
last step.
To estimate I we first observe that

[I—(I—-T+r2"L)y"HM) . (I - (I +r2"L)yH™M (4.45)

M
=I-T+rg L))y ™M-TI=I+0gL) WY -1=) (f) (ry"L)*

k=1
This allows us to handle I in a similar way as I;. If we insert (4.45) into the definition
of I and use the same annular decomposition of X as before, we find

I$ suwp V(B) < / : [ e net oyt — g | duly >dt>”2

1<k<M t

" /
= ver ([ () [ e o ”)

< s v [7 [ Jpemnenn | 00"

1<k<M

1/2
/ £ m m 3 2 d#(y)dt
+1<S;1£MZV 12(/0 < > /‘1#752 L)(t*™L) "4 S,(B )f(?/)‘ .

(4.46)

Since we assumed that ¢ € ¥, a(EO) with 8 > J=+ M, we observe that z — z “ky(z) €
Us_pa(X ) for every 1 < k < M. Thus, we can again apply the quadratic estimates
of {w(tL)(tL) 140 to the on-diagonal part in (4.46) and get the desired estimate as
before.

Coming to the second part, we know from Proposition 3.18 that for every 1 < k < M the
operator family {t(tL)(tL) "%}~ satisfies off-diagonal estimates of order 3 — k. Hence,
the off-diagonal part in (4.46) is bounded by a constant times

98— 1/2
e 2m\2* Qise(B, S;(B))2™\ 2PR) g .
sup ZV /(/ () (F52250) 7 %) Wil

t

1<k<M Lz
1/2
i B —om(B—k)d TB /[ 42m 2k r 2(8—Fk) dt B
< sup ZV( )~ Y/29=2m(B-k) </0 < 2m> (tQBm> 7 11l z2(s;(B))

B

S osup V(27 B)Y/2273CmB=k)=3)|| || 12
1<k<MZ 1 fllz2(s; By

~ Hf||B]\J()L,M,'res()()7
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where we used again the substltutlon s = -= in the last but one step and (4.42) together
with the fact that 2m(8 — k) — 5 > 0 for every 1 <k < M in the last step.

In summary, we obtain Iy < Hf||BMOL Mres(X)? which concludes the proof of the propo-
sition for arbitrary ¢ € \Ifaﬂ(EO).

If ¢ € \I'(Zg) is defined by (z) = Me™?, 2z € 22, then the proof works analogously
to the one above, taking into account that for every 0 < k < M, the operator family
{(tL)*e 1} -0 satisfies Davies-Gaffney estimates due to Proposition 3.13. O

4.6 Duality of Hardy and BMO spaces

In this section we will determine the dual space of H}(X). The result is stated in
Theorem 4.28 and the rest of the section will then be devoted to its proof.

We follow the lines of the proof of [HMM10], Theorem 3.52, which again is a modification
of the proofs of [HMa09|, Theorem 8.2 and Theorem 8.6.

In this context, we will give in Lemma 4.31 an extension of the Calderon reproducing
formula, initially defined on L?(X), to functions from H}(X) and BMOp« 5r(X). This
result is beside its application in Theorem 4.28 also interesting in itself and will further
be used in Theorem 4.34 and Remark 5.9.

Theorem 4.28 Suppose that L is an operator satisfying assumptions (H1) and (H2).
For any M > g~ and any f € BMOp+ 1(X), the linear functional given by

tg) =(f,9) (4.47)

initially defined on the dense subspace of HE(X), consisting of finite linear combina-
tions of (1,2, M,e)-molecules, for some ¢ > 0, and where the pairing is that between
Mé’z’M’E(X) and its dual, has a unique bounded extension to Hi(X) with

HEH (HL (X)) <C Hf”BMOL* Mm(X)>

for some C > 0 independent of f.

Conversely, for every M > ;- every bounded linear functional £ on Hi(X) can be

realized as (4.47), i.e. there exists some f € BMOp- (X)) such that (4.47) holds and

1l Baro . ) < C el a1 0y
for some C > 0 independent of £.

In particular, the theorem yields that the definition of BM Oy, p/(X) is independent of
the choice of M > ;- This leads to the following definition.

Definition 4.29 Let L be an operator satisfying (H1) and (H2). The space BMOp(X)
is defined by

BMOL<X) = BMOLJ\/[(X),
where M € N with M > 7+

We begin our proof of Theorem 4.28 with the observation that one can construct from ev-
ery fixed f € BMOp+ »(X) a continuous linear functional on the space of all (1,2, M, ¢)-
molecules for arbitrary € > 0.

By Remark 4.20, every (1,2, M, ¢)-molecule m is in M1’2’M8( X), hence the expression
(f,m) is well-defined, where the pairing is that between M(l)’Q’ME(X) and its dual.
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Proposition 4.30 Let M € N and € > 0. For any (1,2, M, €)-molecule m associated to
a ball B of X, the mapping

f'_><fam>7 feBMOL*,M(X)7
is a bounded linear functional on BMOp~ p(X).

Proof: Let m be an arbitrary (1,2, M, £)-molecule associated to a ball B of X. We first
observe that

(g LM = (I = (I +rE" L)~ HYMT +rF L)Y
M
=T —(I+rg"L) MY Crom(rg LM, (4.48)

where Cj;, as are the coefficients from the binomial formula.
By definition of molecules, there exists some b € D(LM) with m = LMb. Then, from
(4.48), the Cauchy-Schwarz inequality and an annular decomposition of X, we obtain

[{(fsm)| = 2me (rg"L)"b)]

— (L +rg" L) )M f(2) (g L)M=Hb(2) dpu()

WZZH R 2 R L s (G- ok

k=0 5=0

L2(8(B))
The definition of molecules further yields that for every j € Ny and every 0 < k < M

(G AR < ryMoTiey (21 B) 12,

L2(S;(B))

hence

I(f, |<§:2J%/WB ) = (L + Bl M L
7=0

(S,(B)) - (4.49)

To estimate the remaining expression against the BMOp« ps(X)-norm of f, we use
Lemma 4.24 with Cy = ||| gp0,. ,,,..(x) and Proposition 4.23. We obtain

[(f,m)| < ||f||BMOL*,]W,res(X) S HfHBMOL*,M(X)’

which finishes the proof. O

Next, we will generalize the Calderén reproducing formula, originally given on L?(X)
via functional calculus, to functions f € BMOp+ p(X) and g € Hi(X), that can be
represented as a finite linear combination of molecules. The result is a generalization of
Lemma 8.4 in [HMa09].

Lemma 4.31 Let M € N and suppose that f € Epf(L*) satisfies the “controlled growth
estimate”

/ ( (T — (I + L) )M f(x)| du() < oo (4.50)

x (1 +d(z,0))51V (0,1 + d(x,0))
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for some €1 > 0. Let w < pu < 5. Lety € \Ifﬂl,al(Eg) \ {0} and ¢ € \1152 s (2 )\{ }
for some constants a1, s, (1,02 > 0, with B + P2 > % and fo (t)@ = 1.
Then for every g € HL(X) that can be represented as a finite linear combmatzon of

(1,2, M', €)-molecules, with e > 5, M’ — M > “=1 and oy + ag > M’, we have

dp(z)dt
—

— Jim / / B L) f () (2 L) g )

Remark 4.32 If f € BMOp- p(X), then condition (4.50) is fulfilled for every e; > 0.
This follows immediately from Lemma 4.24 and Proposition 4.23 by splitting the integral
in (4.50) over X into annuli around Bjy.

The proof of the lemma works in most parts analogously to the one of [HMa09]. We
need one lemma in addition, which gives us a primitive of a function v € \11(22). The
idea goes back to N. Kalton, a version of this is cited in [Ha04|, Lemma 2.4.3.

Lemma 4.33 Let € (0,7), a,3 >0 and ¢ € Vg, (30) \ {0}. Then for every | € N
with | > o there exists a function p € Wg (X 0) and some v € C such that

QIZ)(Z) = zgp/(z’) +’Yﬁ, A 22

Proof: Let us define a function G on 22 by setting

G(z) := @Z}EC) d¢, z€X),
V=

where v,(t) := te!®8% ¢ > |z|, is the parametrization of the half-ray with angle arg z

starting at z. By assumption there holds @ = O(I¢|7*1) for |¢] — oo and conse-
quently, G(z) = O(|z|™“) for |z] — oco. By definition of G, we further have

2G'(2) = Y(2), z € Zg.

To get the desired behaviour at 0, one has to do a little more work. We know by

assumption that @ = O(|z]°1) for |z| — 0 and, since 8 > 0, the integral
¥(Q)

L ¢ (4.51)

converges for every 8 € (—pu,p), where Ty(t) := te’?, 0 < t < oco. Using the same
arguments as in [KW04], Remark 9.3, one can show that due to Cauchy’s theorem, the
integral in (4.51) is independent of the angle 0 € (—pu, ).

Therefore, let us set ¢ := fFe @ d( for any 6 € (—p, ). We then obtain

c—G(z) = 7/’(0 d¢, z € 22,
7. ¢

iarg z

where 7, (t) := te , 0 <t <|z|, is the parametrization of the half-ray with angle arg z
starting at 0 and ending at z.
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From the assumption @ = O(|z|°7) for |z| — 0 we now get that ¢ — G(z) = O(|2|%)
for |z| — 0. Therefore, by defining for a given [ € N with [ > «

p(z) == G(z) -

¢
(1+2)V

we obtain the following: By construction there holds ¢(z) = O(|z|%) for |z| — 0 and
o(2) = O(|z| ™) for |z| — co. In addition, a simple calculation shows that
lez

¥(2) = 26(2) = () ~ o

which concludes the proof with v = —lc. 0O

0
zEEM,

Proof (of Lemma 4.31): Without restriction we assume HgHHi(X) < 1. We will fur-

ther assume that g can be represented as a finite linear combination of (1,2, M’ ¢)-
molecules, where all molecules are associated to the unit ball By centered at 0 with
radius 1. As described in Remark 4.20, this is possible due to the fact that for any ball
B in X there exists some constant Kp such that B C 258 By. Hence, it is possible to
renormalize any molecule originally associated to B such that it is associated to By. A
careful inspection of the limiting procedures below shows that we can omit these renor-
malization constants in the following.

For 0 < § < R let us consider

[ [ v @i g M0 - (5 ([Cuernierng®))
=<f,g>—< ( /thmL )Y (t*" L)g dt)> (4.52)

On the one hand, we will write f in the following way. Using the binomial formula, we
obtain

f= (I — I+ L) (I L)Y

—ZCkM (I+ L) HM=k(r L)~y

= ch,M(L*)*k(f— (I+L9"HMy, (4.53)

where C);, )y are the appropriate binomial coefficients.
On the other hand, since ¢ € Hj(X) is a finite linear combination of (1,2, M’,¢)-
molecules associated to By, we know that L~%g is in L?(X) with HL"“gHLQ(X) <

V(Bo)~Y? for every k = 0,...,M’. This allows us to use the Calderén reproducing
formula in L?(X), and with the help of (4.53) we can write the second term of (4.52) as

Zﬁio Cr,m times
R
<(I — I+ L) HMy, <L_kg - /5 Y L)Y (t*™ L)L~ g Cit>>
5
B <” — @+, /0 Y LY L)L it>

R A e Ak S S A
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Let us first estimate integral I». For convenience, we denote by Y the finite quantity in
(4.50). The Cauchy-Schwarz inequality in the first step, an annular decomposition of X
around By in the second step and Minkowski’s inequality in the third step imply

(1 = I+ L) HM ()| -
B (/x (T + (.02 V(0,1 + d(w.0)) %)

. . dt
wtz LYp(t* L)L % g(x )7

2

1/2
(14 d(x,0))**V (0,1 + d(x,0)) dy(x))

1/2
d$>

X sup
0<k<M

ST sup ZZJsl/QV(WB )12 </S-(Bo)
J

0<k<M

| e niernnr @ ¢

<T sup 22151/21/(2”3 )1/2
0<k<]\/[
dt

t2mL 7 tQmL t2mL M/_kL_M, I
<[ Hw( WP L) (L) 9 5,0y O

In the last step we use that (following [HMa09]) molecules “absorb” negative powers (up
to order M') of the operator L. Doing this increases the negative powers of ¢ and delivers
us with the needed decay as R goes to infinity.

Recall that we assumed ) € \I/ghal(zg) and ¢ € U3, as (Eg) and, additionally, M’ <
a1 + ag. Therefore one can easily see that for every 0 < k < M

Uitz (2)d(2)2M TR € g a(R0),

with 8 =081+ B+ M — M and o := o1 + a9 — M'.

On the one hand, this implies the uniform boundedness of the operator family {1 (tL) }+>0
in L2(X). From Proposition 3.18 follows, on the other hand, that {1y (tL)};>o satisfies
L? off-diagonal estimates of order /3.

Having this in mind, we can split L Mg = L x\0i- zBOL_ Mg lgj—2p, L™ M' o for each
j > 3. For the first term we use the rapid decay of LM g away from By, for the sec-
ond we take advantage of the off-diagonal estimate of the operator. More precisely, we
decompose the expression under the sup sign above and estimate it against a constant
times

dt
L2(4By) t2m(M’7k)+1

Vi [ foemnzy

dt
L2(S;(Bo)) 2m(M'—k)+1

+22J81/2v(233 1/2/ Hz/;k t2 ]IX\ZJ-_QBOL_MIQ]‘

dt
L2(S;(Bo)) £2m(M’' —k)+1

+Z2]81/2v(2]B 1/2/ Hw (12", ]12j_2B0L—M'g]’
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1
~ R2m(M'—k)

+¥22351/2V(2JB 1/2HL M’ ‘

V(Bo) 2|17 g

L2(X)

R2m(M’ L2(X\27-2By)
- . -
, . dist(S;(Bo), 272 Bp)*™ dt -M’
Je1/2Y7 (97 B.\1/2 J . M
+ 232 V(2 BO) /R <1 + t2m t2m(M’*k)+1 H g L3 (X) .
]:
(4.54)

Let us first consider the third term in (4.54). Since dist(S;(Bo),2'"2By) ~ 27, we get by
substituting t = 27s,

(|, dist(S;(By), 22 By)*" A dt
R + $2m £2m(M’'—k)+1

00 2mp dt 1 o0 ds
< . r _ : 2Zmpg "2
(4.55)

Next, observe that by definition of 3 there holds 8 > M’'—M and M’'—M > 0. Therefore,
for every g9 > 0 with 8 > M’ — M — &y > 0 we can estimate (4.55) by

L -/00 min(1, s)2m(M'=M=eo) ds

22m(M'—k)j R/2 g2m(M'—k)+1
1 o ds
< : <2—2m(M —M— EO)JR—2m(M k+so)
= 92m(M'—k)j R/2i s2m(M—k+eo)+1 ~

Inserting this into (4.54) and using the doubling property for x4 and the norm estimate
HL‘M : < V(By)~/2, one can see that the third term in (4.54) is bounded by a

constant times

[e.o]

R-2m(M—k-+e0) Z gi(nte1)/29—2m(M'~M—z0)j
j=3
Choosing gy > 0 small enough and taking into account that M’ — M > %, this in turn
is bounded by a constant times R™°2 for some g9 > 0.

To handle the second term of (4.54), we recall that the definition of molecules yields the
estimate

HL_k —l/av(2l/B ) 1/2, v E N07 0 S k S ]\4'/7 (456)

g‘ L2(Sy(Bo)) ™

since g is a finite linear combination of (1,2, M’, &) molecules associated to By.
Splitting X \ 2/72By into annuli around By, this leads to

Z 2j51/2v(2jBO)1/2 HLfM/g
=3

L2(X\29-2By)

<22381/2V(2JB )12 Z HL M

B I z2s. a0
o0 o0
2]81/2v(2]B0)1/2 Z 2 I/&V 2V 1/2 < Z2j81/2 Z 2—VE < 1
j=3 v=j—-2 v=j—2
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for every € > 5. Thus, we observe that the second and, again using (4.56), also the first

term of (4.54) are bounded by a constant times R~2"(M'=k),

In summary, we have the following: There exists some &’ > 0 such that

|II] < T sup [R_Qm(M/_k) + RIm(M'=k) 4 p—e2 < TR
0<k<M

We now come to deal with I;. Denoting f := (I — (I + L*)"1)™ f, this means we have
to estimate

~ 6 ~
B [ naenrte )

for every k=0,..., M.

To get rid of the integral over ¢, we look for a primitive of ¢ - 1. Set { := [ + ag] + 1.
According to Lemma, 4.33, there exists a function ¢ € \D51+/@2’a1+a2(22) and a v € C
such that

VRO = ) g 2 €T

This allows us to write

0
| vernyiernte g

5 1042 _p At % 2 2m \—(i+1) 7~k A
:/O(t ™) (2L gt+'y/(tmL)(I+tmL) Lg%

1 b 2 —k 2
- m _ I m
=3 /0 (p(t™L))L™"gdt 5 17/ o((I + L)L gt
1 2m —k 1 2m 7\ — —
= — LYL™%g — —~[(I+6*"L)~' — I]L7%y.
2ms0(5 JL™%g lev[( 0¥ L)~ =1L~ *g

We first handle the term with ¢(62™L). As in the treatment of I, the Cauchy-Schwarz
inequality, assumption (4.50) and an annular decomposition of X around By yield

r 2m —k < 2m —k 2 €1 12
(Fom L) ST ([ |e@ D)L ()| (1+ d(a,0)7 V0, 1+ d(z,0)) dp(z)

< Tsz/QV(zﬂB )12 ng (62M L)L~ g‘ (4.57)

7=0

L2(S,( Bo))

Since adding extra negative powers of L as we did for I5 does not help here, we need to
split L™%g more carefully. We write L™Fg = ILRjL’kg + ]l(Rj)cL’kg with

R; = 212Dy, if j=0,1,2,
R; =2772By\ 2272B,, if j=3,4,....

Fix some n > 0. For the “on-diagonal” term ]leL_kg, the uniform boundedness of
(6™ L) in L?(X) and (4.56) yield for arbitrary N € N and for all 0 < k < M

i 2]61/2‘/(2]3 1/2 H(p 52mL)

=N S;(Bo))
29512V (27 o) 1/2 | L% 291/27 (23 By) /29795 V/ (29 By) /2.
FZN 9 12 FZN 0) (2/Bo)~

77



Due to the fact that we assumed & := ¢ —£1/2 > 0, we can choose N depending on 7
such that the sum above is bounded by
oo
(z—é)j — 2—éN
j=N

1
— <
1—o=~"

The convergence of (6™ L) — 0 for § — 0 in the strong operator topology and the fact
that L=%g € L?(X) for every 0 < k < M allow us to estimate

< (4.58)

N
> 2792V (27 By) 2 Hw(éQmL)]leL_kg‘ L2(8;(Bo)
J

=0

provided that § > 0 is small enough.

We now come to the “off-diagonal” term of (4.57) with ]l(R].)cL_kg. We know that ¢ is in
VU5, 48,01 +a2 (Eg), hence, according to Proposition 3.18, ¢(3?™L) satisfies off-diagonal
estimates of order 81 + B2. Therefore, using the off-diagonal estimates instead of the
decay of molecules, we obtain for § > 0 as chosen in (4.58)

2j51/2V 2]B 1/2 H 52mL 1 CL_k ‘ 150
Z ( 0) ()D( ) (RJ) g LQ(Sj(BO)) ( )

j=N

™ o i dist(S;(Bo) (R.)c)2m —(B1+62) -
< 2]81/2 27 B 1/2 1 J y Ly ‘L & ) ‘
S Z V(2 By) + S .
j=N

Observe that dist(S;(Bo), (R;)¢) ~ 2J and that we assumed (3; + (B2 > n;fll. In view of

the doubling property, we can choose some N depending on 7 such that the sum above
is bounded by

o0
Z 2j61/2v(2j30)1/22—2m(/31+ﬁ2)j52m(ﬂ1+ﬁz)V(BO)—1/2 <,
j=N
where we estimated & > 0 by some constant.

In the same way as in (4.58), the sum over j = 0,..., N can be bounded by a constant
times 7.

To conclude the proof we have to replace (6™ L) by (I +6%™L)~' — I in (4.57) and do
the same reasoning again. The operator (I + 62™L)~! — I is also uniformly bounded in
L?(X) with the convergence (I +6*"L)~" —I = —L(67*™ 4+ L)~' — 0 for § — 0 in the
strong operator topology. The only thing different is the estimate of the “off-diagonal”
term. Instead of (4.59), we have

S 255/ (20 Bo)V2|[(T + 6P L)~ — 1)1y L]
j=N

L2(S;(Bo))

- i 29%1/2V (21 Bo) /2 |(I + 8" L) (g L

N L?(85(Bo))
> ; dist(S;(By), (R;)°) N
< je1/2 J 1/2 _ J My k
< ];\[2 V(2 By) "/ exp < 5 HL g‘ L2x)’
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due to the fact that S;(By)N(R;)¢ = 0 and the Davies-Gaffney estimate for the resolvent
according to Proposition 3.16. The remaining works as above. O

We now come to the proof of the main result of this section, Theorem 4.28.

Proof (of Theorem 4.28): Let M € N with M > /.
We begin with the inclusion (H} (X)) € BMOps p(X).
Assume that £ is a linear functional on H} (X). Then for every g € H} (X)

| < el ez xyy N9l e ) -

Let € > 0. Theorem 4.7 implies in particular, that there exists a constant C > 0 such
that every (1,2, M,e)-molecule m belongs to H} (X) with ||mHH£(X) < C. Hence,

[e(m)| < Cllell g1 xy - (4.60)
However, due to Remark 4.20, we know that if ¢ € ./\/l(l)’2’M’E(L) with ||¢||M1,2,M,S(L) =1,
0
then ¢ is a (1,2, M, €)-molecule adapted to By. Therefore, by (4.60), ¢ defines a linear
functional on /\/l(l)’z’M’E(L). Since € > 0 was arbitrary, this implies that ¢ € Ey(L*).
Moreover, Lemma 4.3 yields that for every ball B in X and every ¢ € L?(B) such that
[l 2(p) =1, the function
1 ,,,2'mL)M

mp:=———— ([ —¢"B

V(B)1/2 ¥

is a (1,2, M, e)-molecule associated to B. Therefore, via duality, we can realize ¢ as an
element of BMOp« p(X), i.e. there exists some f € BMOp« p(X) such that

1

(I = e M, f) = U(mp),

1 TQBmL*)]Wf> — V(B)

W(% (I—e"

and by taking the supremum over all balls B in X and all ¢ € L?(B), we get from (4.60)
the corresponding norm estimate
1l Baro,« vy S 1l it oy -

Let us now turn to the converse inclusion BMOp- p(X) C (HL (X))
Let f € BMOp« p(X). Via Proposition 4.30 we can initially define the mapping

Li(g) == (f,9)

on a dense subspace of H} (X), namely for all g € H}(X) that are a finite linear combi-
nation of (1,2, M, e)-molecules, where € > 0 is arbitrary. Hence, it is sufficient to show
that there exists some constant C' > 0 such that

[r(g)l < C HfHBMOL*,M(X) g/l g1 (X) (4.61)

L,mol,M

for all g € H} (X) that are a finite linear combination of (1,2, M, e)-molecules. Then ¢;
extends by continuity to a continuous linear functional on Hj (X).

First observe that, in view of Theorem 4.7, it is enough to prove (4.61) for all g € H} (X))
that are a finite linear combination of (1,2, M’, e)-molecules, where ¢ > 0 is arbitrary
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and M’ > M is fixed and chosen such that the assumptions of Lemma 4.31 are fulfilled.
Recall that due to Remark 4.32 the growth estimate (4.50) is satisfied for every e; > 0.
As every (1,2, M’ e)-molecule is also a (1,2, M, e)-molecule, ¢¢(g) is for such a g still
well-defined and Lemma 4.31 yields that the Calder6n reproducing formula

x)dt

: R 2m x\M _—t2™L* 9 —_t2m7], d:u(
() = Car limy [ [ (@M ) P Loy DT

(4.62)

is valid.
To estimate the above expression, we use on the one hand that due to Proposition 4.27
the function F', defined by

F(x,t) = (2"LYMe "L t(2),  (2,t) € X x (0,00),

is in T°°(X) with || Fllpee(x) S 1 flBaso,. 5, (x)- On the other hand, we have by Theorem

4.7 that the function G, defined by G(z,t) := t2mLe """ Lg(z), (z,t) € X x (0,00), is an
element of T?(X). The atomic decomposition of T?(X) stated in Proposition 2.20 then
yields that there exist a numerical sequence {\;}72, and a sequence {4;}32 of T LX)

atoms supported in tents Bj, where B; C X are balls, such that

G( . ,t) = t2mL€_t2ng = Z AjAj
Jj=0

and there exists a constant C' > 0 independent of G with

Z A < ClGlpxy = N9l g (X) -

- L,mol,M
J=0

Hence, as each atom A; is supported in the tent region Ej, we can estimate (4.62) by

S ) > Qm*MeftQ’”L* T (o
!<f,g>!§;0\%!/0 JAGRs £(@)| 1452, )

dp(z)dt
t

< zzjo Nl /X G (F) () (A;) () dpu()

S Z |>\j’ ||FHT°°(X) ||Aj||T1(X)
j=0

=S HgHHi,moz,M(X) HfHBMOL*,M(X) ’

where we have used Theorem 2.17 in the second step, Holder’s inequality in the third
step and the norm estimates on F' and G in the last step, taking into account that the
norm of T'(X) atoms is controlled by a constant only depending on the space X.

This gives us the desired estimate (4.61), the proof is complete. O

4.7 Carleson measures revisited

In this section, we show the converse of Proposition 4.27, which gives the connection
between functions from BMOp(X) and Carleson measures.

For a special choice of 1, namely v(z) = zMe™?, the result is due to [HMa09], Theorem
9.1. In the generality as stated below, the result is new.
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Theorem 4.34 Let M € N, M > -~ and let ¢ € \11/67&(22) \ {0}, where a > 0 and
B> g=. If f € Ex(L) satisfies the controlled growth bound (4.50) (with L in place of
L*) for some €1 > 0, and if

2 dp(y)dt
t

vg.r = |0t L) f(y)] (4.63)

is a Carleson measure, then f € BMOL(X) and

2
1130100000 < Cllvissle

For the proof, we essentially follow the lines of the proof [HMa09|, Theorem 9.1. The
main difference is that we use instead of [HMa09|, Lemma 8.3, the more general Calderén
reproducing formula shown in Lemma 4.31.

Proof: The result relies on the duality of the tent spaces T'(X) and T°°(X) stated
in Theorem 2.17. For f € £y(L) satisfying (4.50) and every g € H;.(X) that can be
represented as a finite linear combination of (1,2, M’,e) molecules for some M’ > -
with M’ — M > "1 and £ > &, we have by Lemma 4.31 that the duality pairing (f, g)
can be represented by

// V(2™ L) f () p(#2m L*) gz )du(tx)dt,
X %x(0,00)

Where for some ap > M', o > 0 the function ¢ € g, 0, (X0

o
5wy & =1
Moreover accordmg to Theorem 2.17, there holds

) is chosen such that

J[ o pemns@ den | 0L
X %x(0,00) :

S / G (" L) f)(x) o (" L*)g)(x) dp(x)
X

<[ E@E L)) ooy Hd P L) )‘

: 4.64
LX) (4.64)

The first term in (4.64) is bounded by ||vy, f”é/ ? by assumption, whereas the second is
bounded by ||gHH1 ) due to Proposition 4.7. Therefore, we have

1/2
(£, S v rlle® gl x)

for every g € H}.(X) that can be represented as a finite linear combination of (1,2, M, )
molecules. Since the space of all these functions is dense in H}(X), we obtain from
Theorem 4.28, that f € BMOp(X) with the desired norm estimate. 0

4.8 The spaces H?(X) and interpolation

Hofmann, Mayboroda and McIntosh have shown in [HMM10| that there is a natural
extension of the Hardy space H} to Hardy spaces HY(X) for all 0 < p < co. They give
certain characterizations of H{(X ) spaces, show duality and interpolation results and
state the relation between LP(X) and H7 (X) spaces. Additional results are presented
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by Duong and Li in [DL09] in the case of 0 < p < 1.

We present here the definition of H? (X) and the main results for the case 1 < p < oo.
As the occasions, where we will apply the theory of Hg(X ) spaces, have a more sup-
plementary character, we omit the proofs. The proofs can be found in [HMM10] in a
slightly less general setting, but they take over with only minor changes.

In addition, we generalize a result of Hofmann and Mayboroda from [HMa09] that gives
sufficient conditions for an operator to be bounded from H; (X) to L'(X).

Let us define v € \I’(Ez) by ¥o(2) := ze %, z € 22, and consider for every f € L?(X)
the square function &7/Qy,. 1 f associated to L, namely

T Quan () = ( /I

Definition 4.35 (i) Let 1 < p < 2. We define H7 (X) to be the completion of the space

1/2
oy —t2mp e, |2 dply) dt
t="Le f(y)’ Ve t) 1 , rveX.

HY.(X) = {f € L*(X) : #Qy,rf € LP(X)},
with respect to the norm

||f||H50 X) = H"(Z{QMJO,LfHLP(X) = ||Qwo,Lf||Tp(X) :

o

(11) Let 2 < p < co. We define
H}(X) = (H}.(X))',

where % =+ 1% =1 and L* is the adjoint operator of L.

Observe that due to Remark 3.20 there holds H?(X) = L?(X).

In both cases, for p < 2 and for p > 2, there is a characterization of H} (X) by general
square functions ¥ € \I/(Zg) with a certain decay at infinity and at zero, respectively.
This generalizes the result of H}(X) stated in Theorem 4.7. For a proof, we refer to
Corollary 4.21 of [HMM10].

Theorem 4.36 Let o > 0 and 3 > . Further, let either 1 <p <2 and ¢ € \I/aﬁ(Ez)
or2<p< oo and € \Pg,a(zg). Define Hf; (X)) to be the completion of the space

HY  (X) = {f € L*(X) + #/Qurf € P(X)},
with respect to the norm

HfHHZ’L(X) = H‘Q{Qw,LfHLP(X) = HQw,LfHTp(X) :
Then HY(X) = Hﬁ} (X)), with equivalence of norms.

In analogy to the standard Hardy spaces HP(X) (which coincide with LP(X) for 1 <
p < o0), the spaces HY (X) form a complex interpolation scale. For a proof, we refer to
[HMM10], Lemma 4.24, where the authors reduce the problem to complex interpolation
of tent spaces.
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Proposition 4.37 Let L be an operator satisfying (H1) and (H2). Let 1 < pg < p1 < o©
and 0 < § < 1. Then there holds

[H}*(X), H (X)]p = H[(X)  where 1/p=(1—0)/po+0/p1,
and
[HP(X), BMOL(X)]g = HY(X)  where 1/p= (1 - ) /po.

Moreover, the Hardy spaces HY (X) also satisfy a Marcinkiewicz-type interpolation the-
orem. For a proof, we refer to [DL09|, Theorem 4.7.

Before stating the theorem, we introduce the following notion.
If T is defined on HY for some p > 1, we say that it is of weak-type (H?,p), provided
that there exists a constant C' > 0 such that

{z e X+ [T(N)(@)] > a} < Ca™[If [}y, (4.65)

for all f € HY(X). The best constant C in (4.65) will be referred to as being the
weak-type norm of T'.

Theorem 4.38 Let L be an operator satisfying (H1) and (H2). Suppose that 1 < p; <
p2 < oo, and let T be a sublinear operator from HY'(X) + H7?(X) into the space of all
measurable functions on X, which is of weak-type (HY",p1) and (HY?,p2) with weak-type
norms C1 and Cy, respectively. If p1 < p < pa, then T is bounded from HY(X) into
LP(X) and for all f € HY(X) there holds

ITF oy < C 1 Flle -

where C' depends only on C1,Co,p1,p2 and p.

As usual, one of the endpoints in applications of Proposition 4.37 and Theorem 4.38 will
often be the space L?(X) = H#(X). To get an estimate on another endpoint, namely
the space Hi(X), the next proposition will be quite helpful. It is a generalization of
[HMa09], Theorem 3.2.

To make it more apparent, where the required decay in the off-diagonal estimates (4.66)
and (4.67), represented by v and M, come into play, we state the proposition in terms
of HimoLM(X) instead of H}(X) and recall that according to Theorem 4.7 there holds
H] it (X) = HE(X) whenever M > L.

Proposition 4.39 Let M € N. Assume that T is a linear or a non-negative sublinear
operator defined on L*(X) such that

T:L*(X) — L*(X)

s bounded and T satisfies the following weak off-diagonal estimates:
n

There exists some v > 5~ and a constant C > 0 such that for every t > 0, arbitrary

balls By, Bo € X with radius r = tY/?"™ and every f € L*(X) supported in By

. dist(By, B)2m\ "

70 = P ) gy < Cr (14 BN Typ o aeo)
_ dist(By, By)>™\ "

HT(tL@ tL)M(f)HL2(B2) S CT (1 + (1752)> Hf||L2(Bl) . (467)
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Then
T: Hi,mol,M(X) - Ll(X)

is bounded and there ezists some C > 0, independent of Cr, such that for all f €
H};,mol,M(X) there holds

HTfHLl(X) < CCr Hf”Hi,mol,M(X) :

Remark 4.40 If one uses off-diagonal estimates instead of weak off-diagonal estimates,
one only requires a decay of order v > 7.

Similar to the Calderéon-Zygmund theory, the application of Proposition 4.39 in our
setting will be as follows. We will be able to show that an operator (e.g. the paraproduct
in Chapter 5 or the operator T defined in Chapter 6) is bounded on L*(X) = H?(X). To
show that it is also bounded from H? (X) to LP(X) for any 1 < p < 2, we first check the
boundedness of the operator from H}(X) to L'(X) and then apply some interpolation
result. Thus, the interpolation on the scale of HY (X) spaces replaces the interpolation
on the scale of LP(X) spaces in the context of Calderén-Zygmund operators. In order
to regain results on LP(X) spaces one can check that for some p the spaces HY (X) and
LP(X) coincide. See Proposition 4.41 below.

In order to make Proposition 4.39 applicable to the kind of operators we are dealing
with in Chapter 6 in the context of the 7'(1)-Theorem, we have generalized the result of
Hofmann and Mayboroda to operators satisfying weak off-diagonal estimates instead of
off-diagonal estimates.

Proof (of Proposition 4.39): We follow the proof of [HMa09]. Let ¢ > 0 and M € N.
Since T is bounded on L?(X), it is according to Lemma 4.9 sufficient to show that there
exists some constant C' > 0 such that for every (1,2, M, e)-molecule m

ITml| 1 xy < CCr.
Then T extends to a bounded operator from Himol’M(X) to L1 (X).
For convenience, we assume that 7" is linear. Let m be a (1,2, M, €)-molecule associated

to some ball B in X with radius rp. Recall that by definition of molecules for all j € Ny
there holds

Il ags, () < 279V (20 B) /2, (4.68)
To get the assumed weak off-diagonal estimates on T into play, we decompose T'm into
Tm =TI —e "5 NYMm 4TI — (I — e 8" 1) M,
We handle the two parts separately, using assumption (4.66) for the first and (4.67) for
the second part.

Let us begin with the first part. We use two annular decompositions of X, one around
B and the other, for fixed j € Ng, around 2’B. Using the Cauchy-Schwarz inequality,
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this yields

HT(I — e_TQBmL)Mm‘

LX)

1M
Me 1M

HT(I - C_T%mL)M(]lSj(B)m)‘

L'(Sk(2/B))

L?(Sk(2B))

o,

<

Il
o
B

Il
=)

. _T2'm
VR B T(1 - e B )M (1, )|

We will apply the weak off-diagonal estimates to the dilated balls 2/ B. Remark 3.9 yields
that this is possible with an additional factor 2/”. Moreover observe that, according to
Remark 3.8, weak off-diagonal estimates imply annular estimates with an extra factor
2kn/2 a5 in (3.11). Hence, the above expression can be estimated by a constant times

> - : ek dist(27 B, Si(27B))*™\ "
CTZZV(2k+JB)1/22] 2k /2 <1+ ( ( )) > ”mHLQ(SJ-(B))

2m
,
§=0 k=0 B

o 2k+j —2mry '
SCpy Y amakn <TB> V(2B [mll 12 s, (3

=0 k=0 "B
0 oo

S CT Z 2—j£2—(2m'y—n)j Z 2—(2m’y—n)k 5 1,
§=0 k=0

using the doubling property (2.2) in the first inequality, (4.68) in the second and the
assumption that v > 5% in the third inequality.
For the second part, observe that the binomial formula yields

M
_p2m _ 2m
I—(I—e TS L)M:§ :Ck,Me krg™L
k=1

with constants Cj pr only depending on £ and M, and that

__Lp2m
sup HTe krp Lm‘
1<k<M

S sup

k k .2m M
T|-—ri"Le M5 L) rZmp)~Mm
LY(X) ™ 1<k<Mm (M B (L)

LX)

We now use the same arguments as before, applied to the operator (%T%}”Le*ﬁ@e L) ,

together with the assumption

(5" L)~ S22V (2B)TY?

MmHL%SJ-(B»

for every j € Ny instead of (4.68). Proceeding as before, we finally get the inequality
|70 = (1 = e 82y |

< C'p, which finishes the proof. 0
LY(X)

We conclude the chapter with a description of the containments of the spaces Hf(X )
and LP(X). Recall that for the standard Hardy spaces, there holds HP(X) = LP(X) for
all 1 < p < 0.

In Remark 4.2, we have shown that H1(X) C L'(X), and in Proposition 4.26 we have
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characterized the containment of the spaces BMO(X) and BMOp, p(X).

For further containments, we cite [HMM10], Proposition 9.1. There, X = R™ and L is
assumed to be a (not necessarily injective) second order elliptic operator in divergence
form with complex bounded measurable coefficients. We refer the reader to [HMM10],
(1.1)-(1.3), for a precise definition of the operator L. We denote by (p_(L),p+(L)) the
interior of the interval of LP-boundedness of the heat semigroup e * and recall that

p—(L) < HQ—fz and py (L) > 2% if n > 2. For every p € [p1(L),0), we define the null

space
Np(L) == {f € LP(R") N W,22(R™) : Lf = 0}.

Proposition 4.41 Let L be the operator defined in [HMM10], (1.1)-(1.3). We have the
following containments and continuous embeddings:

(i) L*(R™") N HL(R") C L*(R") N HY(R"), and
Il @y S lm @y,  f€ LR NHLR").
(ii) L2(R") N HY(R™) € L2(R™) N LP(R"), 1< p < p_(L), and
[ Lo @ny S 1f L2 ey » f e LX(R") N HE(R™).
(iii) LP(R™)\ Np(L) — HE(R"), pa(L) < p < oo, and
1l @y S Uf oy, f € LA®R™) N LP(R™).
Moreover, there holds
(iv) H{(R") = LP(R"), p_(L) <p < p4(L).
() HAR™) £ PR, 1<p<p_ (L) or py(L)<p<oo

For non-negative, self-adjoint operators L of order 2m on L?(X), in [Uhl11] of Uhl the
following result in terms of generalized Gaussian estimates is shown. We refer the reader
to a comparison with assumption (H3).

Proposition 4.42 Let L be a non-negative, self-adjoint operator of order 2m on L?(X).
If for some po € [1,2), there exist constants C,c > 0 such that for all x,y € X and all
t > 0 there holds

—tL
H]IB(LWQ’“)@ Lpy,p/am) LP0(X)—LP0(X)

1
(1 _ 1 2m\ 2m—1
< OV (, 11/2m) 50 exp <_ <d(w) > ) ,
then there holds

H(X)=LF(X), po<p<2
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5 Paraproducts via H*>-functional calculus

In this chapter, we define paraproducts that are constructed via H°-functional calculus
and present various properties of those. The most important property, and this is at the
same time also the only one we need for the proof of our T'(1)-Theorem for non-integral
operators, Theorem 6.13, is its boundedness on L?(X). With similar methods, we can
then show that the paraproducts under consideration extend to bounded operators from
LP(X) to HY(X) for every p € (2,00) and from L*(X) to BMO.(X). With the
help of certain off-diagonal estimates, we moreover obtain boundedness properties for
paraproducts considered as bilinear operators.

5.1 Definition of paraproducts associated to operators

To motivate our definition of paraproducts, let us again recall the paraproduct used in
the proof of the T'(1)-Theorem of David and Journé (|[DJ84]). Given b € BMO(R™), the
authors define an operator IT on L%(R") via

= [T Qd@bnn g fe e, 6.1)

where P, and @Q; are certain convolution operators with P;(1) =1 and Q¢(1) = 0. They
show that II is an L2-bounded Calderén-Zygmund operator with the additional proper-
ties II(1) = b and II*(1) = 0.

We generalize the above construction by replacing the convolution operators with ap-
proximation operators associated to L, that are constructed via functional calculus.

Definition 5.1 Let L satisfy (H1) and let M € N. Let further w < p < 5 and assume
that ¥,y € \11(22). For b€ BMOp y(X) and f € L*(X) we define the paraproduct

dt

=, (5.2)

(1) = [ GEDE b A )
where Ay is the averaging operator defined in (2.11).

For convenience, we do not index Il with the defining functions v and @Z In the context,
it will always become clear what the defining functions are.

5.2 Boundedness of paraproducts on L*(X)

As for the paraproduct defined in [D.J84], the most important property of the paraproduct
I, defined in (5.2) is clearly its boundedness on L?(X).

Theorem 5.2 Assume that L satisfies (H1), (H2) and (3.13) of (H3). Let M € N,
w<p<gzanda>0, > -+ M and assume that ¢ € ‘I’ﬁ,a(Eg) and ¢ € \I/(Eg).
Then the operator 11y, defined in (5.2), is bounded in L*(X) for every b € BMOyp (X)),
i.e. there exists some constant C > 0 such that for every f € L*(X) and every b €
BMOy 1(X)

M (Nl z2x) < C bl aroy, ) 1 llz2(x) -

Remark 5.3 If b € BMOp(X), then it is due to Definition 4.29 sufficient to assume
that 8> - + [7-] + 1.
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That means, we can show the boundedness of the operator II, on L?(X), if we assume
a certain decay of ¢ at 0 and, besides quadratic estimates and the Davies-Gaffney esti-
mates of L, an LP — L? off-diagonal estimate of L for some $ < 2.

These assumptions also reflect the two main elements of the proof. On the one hand,
one needs a Carleson measure estimate of ‘1/1(7527”L)b(y)‘2 M for b € BMOp m(X),
which replaces the Carleson measure estimate of |Q:b(y)|* % for b € BMO(R") in
[DJ84]. This can be done by Proposition 4.27 for appropriate functions ¢ € \I'(Eg).

On the other hand, in analogy to [DJ84], we aim to use Theorem 2.22, which gives the
well-known connection between Carleson measures and non-tangential maximal functions
(see also [CMT78|, Lemma VI.3, where the result used in [DJ84]| is stated, and [CMS85]
for further details on non-tangential maximal functions). In absence of pointwise esti-
mates, we need to replace the non-tangential maximal function, defined in (2.21), by the
following modified version.

Definition 5.4 Given an operator L satisfying (H1) and a function f € L*(X) we define
the non-tangential mazimal operator Ny, 1, associated to the heat semigroup generated by
L via

1/2
Nppf(x):= sup ! / ‘e_ﬂm’:f(z)‘2 du(z) / zeX.
’ wner@ \ V(1) S ’

The additional averaging in the space variable is added (compared to the non-tangential
maximal operator defined in (2.21)) in order to compensate for the lack of pointwise
estimates on the heat semigroup. The idea has its origin in [KP93| and was e.g. recently
applied in [HMa09] to give a characterization of H}(X) via non-tangential maximal
functions.

For the proof of Theorem 5.2, we will first show that A, 1, is bounded on L?(X). This
is done in Lemma 5.5 below, which is basically the analogue of a pointwise estimate of
the non-tangential maximal function in (2.21) against the Hardy-Littlewood maximal
function (see e.g. [Ste93], Proposition 11.2). To get from the pointwise estimate to
the boundedness of N, 1, on L?(X), we use the already mentioned L? — L? off-diagonal
estimate on L from (H3).

To make the result available for further application, we also state it in the more general
setting of LP(X) spaces for p > 2.

Lemma 5.5 (i) Assume that L satisfies (H1) and (3.13) of (H3). Then the operator
N1 is bounded in L?(X), i.e. there ewists a constant C' > 0 such that for every f €
L?(X) there holds

N2l ey < C Il -

(ii) Assume that L satisfies (H1) and (H2). Then the operator Ny, 1, is bounded in LP(X)
for every p € (2,¢].

Proof: (i) We will show a pointwise estimate of N, 1 f against the uncentered maximal
function Mjf, where the index p € (1,2) comes from assumption (H3).
Let f € L?(X) and # € X. To apply the LP — L? off-diagonal estimates for the semigroup,
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we use an annular decomposition of f. This yields

1/2

1 2m 2

Nipf(@) = sup [ et s
t wher@) \ V(1) B(y,t)‘ ‘

> _ _42m
< sup Y V(y,t) 1/2H€ i PN
(wHer@) =

B(y,t))

5 sup 2_J(%+E)V(y,t)_1/i) ||f||L” < (B ‘
(y,t)EF(a:)jZO P(S;(B(y:t)))

By application of the doubling condition (2.2), we further get that the above is bounded
by a constant times

o0

sup sup  » 29T 2By (y, 278) 717 11| Lo (B ey,20))
>0 yeB(x.t) 5=

< MA@ = Mof).

As M is bounded on LP(X) for every p € (p, 00|, the proof is finished.

(ii) First recall that due to Remark 3.2 the operator e~ can be defined via duality as an
operator acting from L>°(X) to L2 (X) for every ¢t > 0. With the same reasoning, one
can also define for every p € (2,00) via duality e ** as an operator acting from LP(X)
to LIQOC(X)
Let p € (2,00] and let f € LP(X). Then, repeating the arguments in (i), but with
the LP — L? off-diagonal estimates replaced by the Davies-Gaffney estimates for the
semigroup, we obtain for every x € X

Nipf@) < sup S V(g t) V2 e g 0 ]
(y:t)el(z) ;o

L2(B(y:t))

B (dist(sj<B<y,t)>,B<y,t>>2m ) =T
S sup ZV (y,t) "% o 1£1 L2

(y,t)el( Bly.2)

[e.9]

<sup  sup ZTﬂ%ﬁ) 272V (y, 276) 72 || £ 12
t>0 yeB(x,t) j=0

S My f(x).

(B(y,27t))

The claim follows from the fact that My is bounded on LP(X) for every p € (2,00]. [

Remark 5.6 The boundedness of NV}, 1+ in L?(X) immediately follows from Lemma 5.5
and the assumptions (H1) and (3.14) of (H3).

To show this, use the fact that L satisfies the L? — L7 off-diagonal estimate (3.14) for
some ¢ > 2 if and only if L* satisfies the LY — L? off-diagonal estimate (3.13) (with p
replaced by ¢’), where ¢ is the conjugate exponent of ¢ defined by % —1—% = 1. The claim
follows from Lemma 5.5 with L replaced by L*.

Together with the Carleson measure estimate in Proposition 4.27 and the quadratic
estimates of L, the above lemma enables us to prove Theorem 5.2.
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Proof (of Theorem 5.2): For f,g € L?(X), the Cauchy-Schwarz inequality implies

[T ae ) e )

)2 d,u(a:)dt) 2

[T (), 9)| =

s( /X » )‘w(tsz)b(ﬂf)-At(etQmLf)(x) ;

1/2
y ( I faemgw)| d“f“’””)
X x(0,00)

The second factor is bounded by a constant times ||| 2(x) according to Remark 3.20,
since L has a bounded holomorphic functional calculus. Recalling the definition of vy,
in (4.41), we see that the first factor is equal to

1/2
< oo [ @] duw,bcc,t)) . (53)

As we assumed § > - + M, Proposition 4.27 yields that vy, is a Carleson mea-

sure with ||y¢,b]é/2 S ||b||BMOL,M(X). On the other hand, observe that by defini-

tion of A; and (2.12) we get for every h € L2 (X) and every y € X the estimate

loc

|Ah(y))? < m fB(y H \h(2)? du(z). With the help of Theorem 2.22, which states the
connection between Carleson measures and non-tangential maximal functions, we can
therefore estimate (5.3) by a constant times

gl ( [ sw
X (y,t)el(z)

1/2
1 2m 2
<o / sup / e EF()| du(z) du(z
|| ||BMOL7]M(X) ( X(yﬂf)el"(x) V(y,t) B(yi)‘ ( )‘ /’L( ) /’L( )

= 16l paroy ar(x) INw,LF L2y S 1Bl Baro, arix) 11 L20x) 5

1/2
2m 2
A f) )| du<x>>

using the boundedness of A}, ;, on L?(X) in the last step. 0

5.3 Boundedness of paraproducts on LP(X)

Since the results of Section 5.2 do not involve any theory of Hardy spaces, we have de-
cided to present them in terms of BMOp (X) instead of BMOp,(X) (whose definition
relies on the duality of H}.(X) and BMOy, p(X)). For simplicity, from now on we will
restrict ourselves to the space BMOp(X) specified in Definition 4.29.

We will show that, in addition to its boundedness on L?(X), the paraproduct IT; extends
to a bounded operator from LP(X) to HY (X) for every p € (2,00) and from L*°(X) to
BMOL(X).

Let us first prove the latter, starting with the remark below, which enables us to define
the action of IT, on L>(X) and gives an appropriate estimate of e =X f for f € L>=(X).
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Remark 5.7 Let L satisfy (H1) and (H2). Let p € (2,00] and f € LP(X). The proof
of Lemma 5.5 (ii) in particular shows that for every ¢ > 0 and every z € X

V(d’lﬂa t) /B(z,t) ’eitQmLf(y)‘ du(y) S Maf(z).

The boundedness of My on LP(X) for every p € (2,00] then implies that

| Rt Y 1 P

A (@) S

uniformly in ¢ > 0.

Via the duality result of Theorem 4.28 and with similar arguments as those used in the
proof of Theorem 4.34 and in Section 8 of [HMa09], we now obtain the following.

Theorem 5.8 Let L satisfy (H1) and (H2). Letw < p < 5 and a >0, B1 > 5=, B2 >
1. Assume that ¢ € Vg, (X0) and ¢ € Vo p6,(50) and let further b € BMOL(X).
Then, the operator I, initially defined on L*(X) in (5.2) extends to a bounded operator
I, : L*(X) — BMOL(X), i.e. there exists some constant C > 0 such that for every
be BMOL(X) and every f € L*>(X) there holds

I () arorx) < C bl garo, (x) 11| Lo (x) -

Proof: Let 1,1 as given in the assumptions and let f € L°(X) and b € BMO(X).
Moreover, let € > 0 and M € N with M > ;- and let g € H}.(X), where H}.(X) =
H}.(X)N L*(X) as defined in (4.7). For every R > 0 let us consider {g defined by

R

tlg) = () VD[ L)b- A ] %g% (54)

where Bg := B(0, R) and the pairing is that between H}.(X) and its dual.
On the one hand, recall that we assumed ¢ € ¥, g, (22) with B2 > ;. Hence, Theorem
4.7 yields that the function G, defined by

Gla,t) = (" L)g(z),  (2,1) € X x (0,00), (5.5)
is an element of T (X) with

Gl x) = 149Gl Ly ) S N9ller, ) - (5.6)
On the other hand, observe that vy, := ‘w(tQmL)b(y)|2 M is a Carleson measure
due to Proposition 4.27 and the assumption ¢ € \I/gha(Zg) with £y > 5. We also

obtain from Proposition 4.27 the estimate ||l/¢,b||(1,’/2 S 18l saso, (x)- Thus, the function
F, defined by

F(z,t) = (" L)b(z) - Ae V"L f(z),  (2,t) € X x (0,00), (5.7)
is an element of 7°°(X) with

[F oo (xy = | €F || oo x)

o sw (G [ [ @Dl e )

B:xeB

t

‘2 du(y)dt> 2

L>(X)

1/2
Sy 10llE S 1y Bl 3310, 3 (5.8)
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where we used Remark 5.7 in the penultimate step.
This estimate also shows that (g € L?(X) for every R > 0, since Minkowski’s inequality,
the uniform boundedness of {¢(tL)};>0 and the Cauchy-Schwarz inequality yield

R dt
S // IEC Ol 2y
L2(X)

1/2

R dp(z)dt
<Cg </ / |F(x,t)? (t) > < CRrV(Bg)'* 1| 0 (x)
0 Br

Therefore, according to Theorem 2.17, we obtain from (5.6) and (5.8)

B om dt
1Rl L2 (x) = AT L)L, F(. 1)
1/R

ao) < [ |- a0

S [ 6@ G dula)
X
S IElpee x) 1Gllzxy S 11l oo 30y 10l Baro, (x) 191l a1, ) -

Since H}.(X) is dense in H}.(X), the above implies that ¢ defines a continuous linear
functional on H}.(X) which can, due to Theorem 4.28, be identified as an element of
BMOp(X) for every R > 0 with

;UP WRHBMOL S ||f||Loo ”bHBMOL(X) : (5.9)

Moreover, in view of the duality of T1(X) and T°°(X) stated in Theorem 2.17, /g
converges pointwise on H:, (X) for R — oo with

R
t(g) = / (0,6 1)

t
H/ .,t))%

- / (LD A PN Lg) L R oo
0

The principle of uniform boundedness then implies that in this sense we can define ITj( f)
as an element of BMOp,(X). The estimate (5.9) finally yields the desired norm estimate
of the operator IIy. 0O

Remark 5.9 Let us for a moment assume that the semigroup satisfies the conservation
property

1) =1 i L3(X)
for every t > 0.
Let 9,9 € \I'(Eg) and let ¢ € H}.(X) be a finite linear combination of (1,2, M’, ¢)-

molecules for some € > 0 and M’ € N such that the assumptions of Lemma 4.31 and
Theorem 5.8 are satisfied.
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If one chooses ¥, 1) € (EO) such that fo (t)(t )— = 1, then Thereom 5.8 implies
that Hb<1) € BMOL( ) with

M(1).g) = [ (Db e, L))
- [ wem e ¢

= (b,9)
due to the reproducing formula of Lemma 4.31. Since g was arbitrarily chosen from a
dense subset of H}.(X), we thus obtain

My(1)=b  in BMOL(X).

For the adjoint operator II} we do not know if it is defined on L>°(X), but at least at a
formal level we also obtain the equality

) = [~ AR G T =

whenever &(tL*)(l) = 0.
The condition ¥(tL*)(1) = 0 in L2 (X) is fulfilled in the case that e '£"(1) = 1 in
Ly (X) and ¢ € Wg o (X)) for some o > 0 and § > {-. This can be seen as follows:

loc
Let B be an arbitrary ball in X. With a similar estimate as in Remark 3.2, one can

show that
HeitLHLQ(B)HLl(X) SVB)

for every t > 0 and every v > 7. Hence, the operator

f s / e—)\te—th dt
0

converges for every A € C with Re A > 0 strongly as operator from L?(B) to L'(X) with
the operator norm bounded by a constant times V(B)Y2|A|7""!. This also implies that
IO+ L) 22y 11 x) S VB2 IAT7 and the operator

HINF = 5 [ SO+ D)7 Fan

where I" is an appropriately chosen path of integration in the right half-plane, converges
strongly as operator from L?(B) to L'(X) whenever 3 > ~. The assumption e ‘%" (1) = 1
then yields that for every f € L?(B) there holds

“1p _ - oM —tL _ [T oM (otL* _ 1
ao+nn = f pan = [Tt )= 500
We finally obtain for ¢)(L*)(1) the equality
BEND.5 = 8 90))
- / SONL A+ 1)) A

_ PN
2772 r A dX

where the last step is due to an extension of Cauchy’s theorem and the assumption
Y e U(xh).

(1, 1) =0,
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One possibility to show that II, also extends to a bounded operator from LP(X) to
HY(X) is the use of the interpolation result for Hardy spaces stated in Proposition 4.37.
We will present a more direct approach, that is similar to the proof of Theorem 5.8.
The idea goes back to Hyténen and Weis, who showed in [HW10] the LP-boundedness
of (differently defined) paraproduct operators in a more general Banach space-valued
setting.

Theorem 5.10 Let p € (2,00). Let L satisfy (H1) and (H2) and let w < p < 5
and a > 0, B > g=. Assume that ¢ € \Ifg,a(Ez) and i) € \Ilaﬂg(Eg) and let further
b€ BMOL(X). Then, the operator Iy, initially defined on L?(X) in (5.2) extends to a
bounded operator 11, : LP(X) — HY (X)), i.e. there exists some constant C' > 0 such that

for every b € BMOL(X) and every f € LP(X) there holds
I ()l e xy < C bl prro, x) 11 Lecx) -

Proof: Let 2 < p < co and p’ the conjugate exponent of p defined by % + 1% = 1. Let

feIP(X),be BMOL(X) and g € HE, (X).
For every R > 0, let /r be defined as in (5.4), where the pairing is now that between
H?(X) and its dual. Further, let G and F be defined as in (5.5) and (5.7). Then, due

to Theorem 4.36 and the assumption ¢ € \Ilaﬁ(Eg) with 3 > 7=, we obtain G' € T (X)
with

1Glle xy = 19 Gl o (x) S HQHHZ'*(X)- (5.10)

Let us now split F into F = H - Fy with H(.,t) := ¢(t2™L)b and Fy(.,t) := Aje "L f.
On the one hand, Proposition 4.27 yields, as in the proof of Theorem 5.2, that there holds
H € T*(X) with [[Hl[pe(x) = |]y¢’b||<1g/2 S 0l garo, (x)- Observe that on the other
hand Fj = Nj 1.f, thus we obtain from Lemma 5.5 that Fjj € LP(X) with HFSHLP(X) <
1/l Lr(x)- Therefore, Corollary 2.23 implies that F' € T?(X) with

1E 7o xy = 1€ (H - Fo)ll 1o x) S I1H oo (x) 16 [ 1o )
< 18l maro, o) 1o - (5.11)
Hence, we get due to Theorem 2.17, Hélder’s inequality and Theorem 2.18

dt

o)l < [ @@ g v e )| &

0
S XW(F)(x)ﬂ(G)(fﬂ) dp(x)
SNCEN o) 19 Gl (x0) S Wl a0, x) 1 Loy 191 o )
where the last step is a consequence of (5.10) and (5.11).

Since HIZ* (X) is dense in Hg* (X) and HY(X) was defined as the dual space of HY.(X),
we can therefore identify ¢ with an element of H?(X). With the same reasoning as
in the proof of Theorem 5.8 and in view of the duality of T?(X) and T* (X), we can
finally define II,(f) as an element of H?(X) and II, as an operator acting from LP(X)
to HY (X) with

s () e (xy < C bl Barog ) 1 e (x) - O
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5.4 Further properties of paraproducts

Throughout the section we will assume that L satisfies (H1), (H2) and also (H3). This
is done to avoid technicalities, even if assumption (H3) will not always be necessary.

To obtain further boundedness properties of the paraproduct II defined in (5.2), we will
consider IT in this section as a bilinear operator, initially defined on L?(X) x BMOp(X)

for 1, € U(X9) by
oo omy o d
W(fg) = [ DBE" Ly A (512)
0
for every f € L?(X) and g € BMOL(X).

In Section 5.2 and Section 5.3, we already showed that II extends to a bounded bilinear
operator

I1: L?(X) x BMOL(X) — L*(X),
I1: IP(X) x BMOL(X) — HY(X), 2<p<oo,
IT: L®°(X) x BMOL(X) — BMOL(X),

~— —

if the defining functions of the paraproduct, v, 1; € W(Eg), have enough decay at 0 and
infinity, respectively.

In addition, we will now show that II extends to a bounded bilinear operator
II: L®(X) x H} (X) — LP(X), 1<p<?2,
IT: L°(X) x L*(X) — L*(X),
IT: L®(X) x LP(X) — HY (X), 2 <p<oo.

We begin with the simplest case, namely the boundedness of I : L®(X) x L?(X) —
L?(X). This is an immediate consequence of quadratic estimates and Remark 5.7.

Lemma 5.11 Let w < p < 5 and let v, € \I/(Eg). Then the operator 11 defined in
(5.12) extends to a bounded operator I : L°(X) x L?*(X) — L?(X). Le. there exists a
constant C > 0 such that for every f € L®(X) and every g € L*(X) there holds

ITI(f, 9)HL2 ) < ¢ HfHLoo X) HQHLZ(X)

Proof: Let f € L*°(X) and g,h € LQ(X). The Cauchy-Schwarz inequality, Remark 5.7
and quadratic estimates for {1)(tL)}+>0 and {¢(tL) }+~0, which hold due to Remark 3.20,
then yield

[(TI(f, 9), M)

& N dt
< [ wer g aet e e | §
00 dt\? [ [ - dt\ /2
< thL A e thL* b
< ([T ewmng-ae el ([ e, F)
Sl oo x) Ngll 2 xy 11l 22 x)
This finishes the proof. O
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Next, we will show that IT extends to a bounded operator IT : L>(X) x H: (X) — L'(X).
To do so, we aim at an application of Proposition 4.39 and will therefore first check that
the off-diagonal estimates (4.66) and (4.67) assumed in the proposition are satisfied.
We remark that one can relax the assumptions on the decay of ¢ and ¥ at 0 and infinity,
if one assumes Davies-Gaffney estimates on {1)(tL)};s0 and {(tL)}+>o, respectively.

Lemma 5.12 Let w < p < T, let a1 > 0 and ag, B1,B2 > 5 and let ¢ € \11517(11(22)
and ¢ € U, 52(2 ). Further let d> 5~ and ¢ € HOO(EQ) with |o(2)| < ¢|z|° for every
z € EO with |z| <1 and some constant ¢ > 0 independent of z.
Then, for every v > 0 with v < min(f,a2) and v < min(fe,0) there exists some
constant C > 0 such that for every f € L°°(X), every t > 0, arbitrary balls By, By € X
with radius t and every g € L?(X) supported in By there holds

m dist(B1, B2)*™\ 7
o@Dy < € (14 D) Nl -

Proof: Let ¢ > 0 and let By, By C X be two arbitrary balls with radius t. Let f €
L*>®(X) and let g € L?(X) supported in Bi. Since we already know by Lemma 5.11
that IT: L>®°(X) x L?(X) — L?(X) is bounded, we can without restriction assume that
dist(By, B) > t.

First, via Minkowski’s inequality, we obtain

@
L2(By) S

o DLy < [ DR g e

We split the integral over s into two parts, one over the interval (0,t), called Ji, and one
over the interval (¢, 00), called Js.

To handle Ji, let us make the following observations. Due to Proposition 3.18, the
operator family {1(sL)}s>o satisfies off-diagonal estimates in s of order ;. Moreover,
since sup;sq ||g0(t-)||Loo(22) = Hcp||Loo(22) < o0, the same proposition also yields that

{o(tL)(sL)}s >0 satisfies off-diagonal estimates in s of order ag. To apply these esti-
mates, we cover X with the help of Lemma 2.1 by balls of radius s > 0, that is, we have
X = Uaelko B, where ko € Z is determined by (2.5), By := B(2%,s) and I,, 2% are
as in Lemma 2.1 and Notation 2.2.

Also taking Remark 5.7 into account to estimate Age=s""L f, we therefore obtain

i< [ 3 e, g At 2
OcEIkO 2
dist(Bz, Ba)?™\ m $2m ds
/ Z( DL o a2
a€ly ¢
dlst (Ba, B,)?™\ % dist(Bg, By)*™ P gs
Z SZm 1+ g2m ?
CVEIk
||f||L°°(X) ||g||L2(B1)‘ (5.13)
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Moreover, since 31, as > 5, Lemma 3.6 yields that

; 2m\ —a2 : 2m\ —P1
Z <1+d1st(3;22,mBa) > <1+d18t(5;3;nBl) >

OéEIkO

<

~

<1 dlst(Bl,Bz)Qm)‘mm(ﬁ“”)

S2m

Since we assumed dist(Bj, B2) > t, we can therefore bound the last integral in (5.13) by
a constant times

/t (1 dlst(B1,Bz)2m>_min(ﬁ1,az) @
0

52m s

_|_
dist(By, By)2m ~ M (Pe2) /t <3)2m-min(ﬁ1,ag) ds
t2m 0 t S

in(B1,02)
dist Bl, BQ 2m> T2 /l u2m-min(ﬂ1,a2) dl
$2m 0

A

AN

Y

u

S

using the substitution v = $ in the last step. We end up with

dist(B:. B om N\ — min(f,a2)
FARS <1 + 18(1’2)>

t2m HfHLOC(X) HgHLQ(Bl) . (514)

Let us now turn to Jo. We again use that {1(sL)}s>¢ satisfies off-diagonal estimates in
s of order B1. On the other hand, we get from Lemma 3.19 that for every a > 0 with
a < 4§ and a < [, there exists a family of operators {T;}s >0 such that

wenyien) = (4) T

where {T+}s+>0 satisfies off-diagonal estimates in s of order as + @ (thus, in particular
of order ay) uniformly in ¢ > 0. Hence, with the same covering of X by balls of radius
s as before and following the same arguments as before, we get

m ds
< 2m 2m 2m ) _s2mJ, ‘ ds
| J2] / Z H@t L)y L)1p, [v(s“™L)g - Ase £ i s
Oéelk
2ma . 9 —as
dlSt(BszO() " 2m $2mJ, dS
/ Z() <1+52m> Y(s™™L)g- Ase™® f‘L2Ba) ;
Oéelk
2ma . om \ — min(81,a2)
t dist(B1, B2) ds
5/t <> (” @ ) C N g Il 2y (5:15)

Recall that we assumed v < min(f31,a2) and v < min(fs,d). Thus, we can fix some
a > v with a < § and a < f2. For such a choice of a we further get in view of the
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assumption dist(Bj, B) > t, similar to the treatment of Ji,
t
s
</ t 2ma dlSt(Bl,BQ)zm - @
- ¢ g2m s
dist(B, B2)*™\ " / £\ ds
S gm ' s s

2m o0 i Zm\ T
<dISt Bl,B2 > / —2m(a ) &% du < <1 + dlSt(Bl’B2)) . (516)
1
(

SZm

< dlSt(Bl,Bg)Qm)_min(’gl’aQ) ds

t2m U t2m
Combining (5.14), (5.15) and (5.16) gives the desired estimate. m)

Let us now apply these off-diagonal estimates in Proposition 4.39 to obtain the bound-
edness of IT : L°(X) x H} (X) — L'(X). Via interpolation and duality we then also get
the remaining boundedness results for p > 1.

Theorem 5.13 Let w < pu < 5, let a1 > 0 and az, B1, B2 > 5

(i) Let p € [1,2]. If ¢ € U, o, (X)) and P e Wa,0 (50, then the operator 11 defined in
(5.12) extends to a bounded operator I : L°(X) x HY (X) — LP(X). Le. there ezists a
constant C' > 0 such that for every f € L®(X) and every g € HY (X) there holds

I D o xy < C Nl pee(x) HgHHf(X)

(7i) Let p € [2,00). If ) € \Ila%@l(zz) and 1 € \Ijﬁl,m(zg); then the operator 11 defined
in (5.12) extends to a bounded operator I1 : L°(X) x LP(X) — HY(X). Le. there exists
a constant C' > 0 such that for every f € L*°(X) and every g € LP(X) there holds

ITI(S, Q)HHQ(X) <C ||f||L°°(X) ||g||LP(X)

Proof: The assertion for p = 2 was proven in Lemma 5.11, since H? (X) = L*(X).

Let f € L*(X). Beginning with the assertion in (i), observe that Lemma 5.12 gives
the needed off-diagonal estimates for Proposition 4.39. To see this, choose some M € N
with M > > and define ¢ € HOO(Eg) by either ¢(z) = (1 — e *)M or p(2) = (ze )M,
In both cases, there holds |¢(z)| < |z for z € 22 with |z| < 1. Thus, we can choose
some vy > 5= with v < min(8, a2) and v < min(82, M) and due to Lemma 5.12 the
operator family {p(t>"L)II(f, g)}¢>o satisfies weak L? off-diagonal estimates of order

with constant C'[| f|[ ey for some C' > 0 independent of f. We therefore obtain from
Proposition 4.39 that H(f, .) extends to a bounded operator from H} (X) to L'(X) with

ITI(f, Q)HLI ) < C HfHLoo X) HgHHi(X)

for all g € H1(X) and some constant C' > 0 independent of f and g.

Hence, II extends to a bounded operator II : L>®(X) x Hi(X) — L'(X). Via complex
interpolation between H}(X) and H#(X), which holds due to Proposition 4.37, and
interpolation between L'(X) and L?(X), we also obtain that IT extends to a bounded
operator IT : L®(X) x HY(X) — LP(X) for every p € (1,2).

The assertion (ii) is now obtained from (i) via duality. If p’ denotes the conjugate
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exponent of p € (2,00), then HY (X) was defined as the dual space of H”.(X). Observe
that the dual operator of TI(f, .) is the operator

b / ) GE" LD LF)h - Are="L f] ﬂ,
0 t

which is according to (i) bounded from Hf;(X) to LP (X) with its operator norm
bounded by a constant times || f|| (- Thus, II(f, .) is bounded from LP(X) to H] (X)
with

||H(f79)HH§(X) <cC HfHLoo(X) HQHLP(X) : U

5.5 Differentiability properties

Let us conclude the chapter with an observation on differentiability properties of para-
products constructed via functional calculus. One of the fundamental properties of
paraproducts, as they were e.g. considered in [Bon81] and [CM78] in the context of
paradifferential operators, is that they satisfy a Leibniz-type rule and “preserve” Sobolev
classes. We will show that there holds a corresponding result for the paraproduct II
defined in Section 5.4, according to the general philosophy, “differentiability” is not mea-
sured in terms of derivatives, but in terms of fractional powers of the operator L.

Let v, 1; € \I/(Zg). Let us recall the paraproduct operator II, now more precisely denoted

by sz as defined in (5.12): For f € L>®(X) and g € L?(X) we set

R om d
g (f0) = [ G DE D A G

Then the following fractional Leibniz-type rule for paraproducts is valid.

Proposition 5.14 Let s > 0, let ¢ € U3a(X) and ¢ € Uop(X0) for some a > 5=
and 3> 0. For f € L®(X) and g € D(L*/*™) there holds

LMy o (f9) =105, (f, L27g),
where s, 1)s are defined by 1g(2) := 25/2™)(2) and hg(2) := z75/2Mip(z).

Moreover, there exists some constant C > 0 such that for all f € L®(X) and all g €
D(L*/?™) there holds

|

Proof: Due to functional calculus, the proposition is a consequence of the simple calcu-
lation

L*/2m11(, g)|

S Wl | 2]

L2(X) L2(X)

- 7 —s/2m m s/2m —t2m dt

LG () = [ L L () DL g e
=10y, . (5, L"),

combined with Lemma 5.11. O
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In view of Theorem 5.13, one can obviously obtain a similar result for the spaces HY (X)
and LP(X), where p # 2. We refer the reader to Section 8.4 of [HMM10] for a discussion
of Hardy-Sobolev spaces associated to a second order elliptic operator L in divergence
form.

A corresponding result for paraproducts constructed via convolution operators is stated
in [Chr90b], Proposition I11.23.

To obtain a fractional Leibniz-type rule for products of functions, again in the sense that
fractional derivatives are replaced by fractional powers of the operator L, let us now in
addition assume that the operator e7* : L®(X) — L*°(X) is bounded uniformly in
t>0.

In this case, we can omit the averaging operator A; in the definition of paraproducts,
which in turn enables us to represent the product of two functions with the help of
paraproducts. That is, via functional calculus we can write (cf. below)

f-9=1L(f,g9) +z(f,9) + (g, f), (5.17)

where II; and Il are appropriately defined paraproduct operators.

With analogous arguments as in Proposition 5.14 we then obtain the following corollary.
It can be understood as a generalization of an inequality of Kato and Ponce [KP8§|,
where fractional derivatives are replaced by fractional powers of the operator L.

Corollary 5.15 Let L satisfy (H1), (H2) and (H3) and assume in addition that e tF :
L>®(X) — L*(X) is bounded uniformly in t > 0. Let s > 0. Then there exists some
constant C' > 0 such that for all f,g € D(L*) N L>°(X)

IL*(F D 2y < C UL Fllzx) 191 Lo x) + C N1l poe ) 179 L2 x) -

Moreover, for p € [1,2) U (2,00), there exists some constant Cp, > 0 such that for all
fr9 € D((Lp)*) N L>(X)

IL* D Loy < ColL fll e ) 90 oo () + Co I oo ey 1E°9 g (xy» 1 <p <2,
IL2(f o)l ar x) < Cp 1L fll oy 191 o 30y + Cp 1f | oo x) 179N oy, 42 <p < 00,

where —L,, denotes the generator of e='t in HY(X) for 1 < p < 2 and in LP(X) for
2 < p < 00, respectively.

Remark 5.16 In the case that H}(X) = LP(X), cf. Proposition 4.41, the above in-
equalities simplify to

LD ey < ColL fll oy 191l oo ) + Cp 1F oo ) 1£°9 1 1o x)

Proof: The main part of the proof is to establish the decomposition (5.17) with appro-
priately chosen paraproducts II; and II;. To do so, let M € N to be chosen later and
define functions ¢, and ¢ € HOO(Zg) by

gz e *(1—e )M, Yz 20 (2) and @:=1-—9¢

Observe that in particular there holds o, v € Uy, M(E ). Moreover, let LZJ c Uy M(Z‘O)

be chosen such that
> ~ o dt
| i =5
0
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and define ¢, € W (X5) by U1(2) = 2/ (2).
We can then represent the product f - g of two functions f,g € L?(X) in the following
way. Via functional calculus and using partial integration in the third step, we obtain

fra= [ denuens G oo+ [Cienuens g s
— / DL (L) ] - o(tL)g) dt — / BB — (L)) - (I — (tL))g) dt

= [ eneun;s - il
+ [T REL)S - (= D)+ (1 = oL S - vitL)a]
By defining
Mi(f,9) = /OOO Ui (tL)[p(tL)f - p(tL)g] %
f0)i= [ SUDBELIS - H(eL)o) T

we then observe that the product of f and g can be represented as the sum of three
paraproducts, i.e.

f-g=1L(f.9) +a(f, 9) + a(g, f)-
Similar to Proposition 5.14, there moreover holds for all f,g € D((Ly)®) N L*=(X)

P(f0) = [ (LG et L)L - oltL)a]
=L (L*f.g),

and analogously

Llf) = [ GL#TELIEL) S vn)Lf L]
=: ﬁg(LSf, 9).

By choosing M € N sufficiently large in comparison to s > 0, we can assure that both
II; and II, are paraproduct operators which satisfy the assumptions of Theorem 5.13.
Observe that omitting the averaging operator A, which appears in Theorem 5.13, is
compensated by the additional assumption that e~* is bounded in L>(X) uniformly
in ¢ > 0. Hence, for j = 1,2 the operator II;( ., g) is bounded from H?(X) to LP(X), if
p € [1,2), and from LP(X) to HY (X), if p € (2, 00), with the operator norm bounded by
some constant times [|g|| ;o x). We therefore obtain for p € [1,2)

122G < [T 1), o + [ 00)],  + [en] o

< HLSfHH{(X) Hg”Loo(X) + HfHLoo(X) HLsg”Hf(X) )

and the corresponding estimate for p € (2,00). The estimate for p = 2 is, in analogy to
Lemma 5.11, an immediate consequence of quadratic estimates. O
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6 A T(1)-Theorem for non-integral operators

This chapter is devoted to the statement and the proof of our main theorem, a T'(1)-
Theorem for non-integral operators. It characterizes the L2-boundedness of operators T
satisfying certain off-diagonal estimates associated to a sectorial operator L.

Before we come to the statement and the proof of our 7'(1)-Theorem, Theorem 6.13,
we first fix our assumptions on the operator 7', clarify how under these assumptions the
expressions 7'(1) and 7*(1) can be defined and give necessary conditions for the bound-
edness of T' on L?(X). Moreover, we discuss Poincaré estimates on metric spaces, that
will be used in the proof of our main result.

After the statement and proof of Theorem 6.13, we also add a second version with weaker
assumptions and apply this version to prove the boundedness of some paraproduct op-
erator on L?(X). We finally present an approach towards a T'(b)-Theorem and explain
how to extend the theory to Hardy spaces H} (X) for p # 2.

Throughout the chapter, we will always assume L to be an operator satisfying (H1),
(H2) and (H3).

6.1 Assumptions on the operator

Let us first fix our main assumptions on the operator 7. These assumptions replace
the kernel estimates of Calderén-Zygmund operators. Instead of a Hélder or Hérman-
der condition on the kernel, we assume weak L? off-diagonal estimates on the operator
families {T¢1(tL) }4>0 and {T*12(tL*) }4>0, where 11,19 are functions from \II(ZS) with
enough decay at 0.

Similar conditions were already used in Theorem 4.39 (which is essentially [HMa09|,
Theorem 3.2), to show the boundedness of operators T : H}(X) — L'(X) under the
assumption that T is bounded on L?(X). The relation of the assumptions on T below
stated and those used in Theorem 4.39 is given by Lemma 6.5 and Corollary 6.6.

Assumption Let p € (w,5), and let « > 1 and 8> ;- + 1] + 1.
Let T : D(L)NR(L) — L% (X) be a linear operator with 7* : D(L*)NR(L*) — L}
which satisfies the following off-diagonal estimates:

(X),

(OD1), There exists a function ¢, € \11/37&(22) \ {0}, some v > 0 and a constant C' > 0
such that (L) is injective and for every ¢ > 0, arbitrary balls By, By € X
with radius = t'/?™ and every f € L?(X) supported in B; there holds

dist(B1, B2)*™\ 7
Tt lingy < © (14 Y Dl o)

OD2)., There exists a function ¢, € W3 (X0 0}, some v > 0 and a constant C' > 0
vy /87 12
such that 9(L*) is injective and for every t > 0, arbitrary balls By, By € X
with radius = t'/2™ and every f € L?(X) supported in B; there holds

. . dist(By, B2)?™\ !
(L) liagy < © (14 S ey (62)
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Whenever we say that a linear operator 71" satisfies (OD1), or (OD2),, we mean that T’
satisfies (6.1) or (6.2), respectively, for u, «, 8,11, 12, C as specified above. The param-
eter v > 0 will be specified in each situation separately.

The assumptions that (L) and ¥9(L*) are injective are only used to define T'(1) and
T*(1) in an appropriate way. If in applications this is clear, then the assumptions can
be omitted.

The assumptions (OD1), and (OD2), will be essential for our 7'(1)-Theorem, Theorem
6.13. They are in some sense rather strong, since they are not only “off-diagonal” as-
sumptions, but also include the “on-diagonal” case, postulating that (6.1) and (6.2) also
hold for dist(Bj, B2) = 0.

In Section 6.6 we will show that it is possible to weaken them in some special cases,
namely whenever the conservation property e~**(1) = 1, and the same for L*, is valid.

6.2 Definition of 7'(1) and T*(1)
(

Before we can state our 7T'(1)-Theorem, we first have to clarify how to understand the
expressions T'(1) and T%(1) for a linear operator T : D(L) N R(L) — LZ (X) with
T* : D(L*)NR(L*) — L2 .(X), that satisfies (OD2)., and (OD1)., respectively, for some
Y>> 5

For convenience, we will only consider the definition of 7*(1). How to define 7'(1) will
then be obvious.

The first observation is a simple consequence of Remark 3.2. If T': D(L) N R(L) —
L2 (X) is a linear operator that satisfies (OD1), for some vy > 5%, then 1 (¢L*)T*(1)

loc
can be defined via duality as an element of L (X)), i.e.

(PrL((L*)T(1), ) == (1, T1(tL)p)

for all ¢ € L?(X) that are supported in some ball B C X.

To motivate our definition of 7%(1), let us first show how one can define 7*(1) under
slightly different assumptions. Instead of the assumption (OD1), on T', let us assume for
a moment that {T(I — (I +tL)~')M}5 satisfies off-diagonal estimates of order v > 5%
and that T actually acts as a linear operator on L?(X). We can then show how to define
T*(1) in BMOp«(X).

We will later on also use the result to establish necessary conditions for non-integral
operators to be bounded on L?(X).

Lemma 6.1 Let T : L*(X) — L*(X) be a linear operator and M € N with M > J-.
If the operator family {T(I — (I +tL)~"YMY,oq satisfies weak off-diagonal estimates of
order v > 5~ then T*(1) can be defined as an element of BMOp-(X) by setting

(T*(1),m) == lim (I — (I + L*)""YMT*(1p,r), I + L)"b) (6.3)

R—o00

for every (1,2, M, e)-molecule m = LMb associated to the unil ball By and arbitrary
e>0.
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Observe that at a formal level, the right-hand side of (6.3) is equal to Rlim (T* (L p(o,r)), m)-

Moreover, let us mention that (6.3) defines 7%(1) as a linear functional on a dense sub-
space of H1(X), consisting of finite linear combinations of (1,2, M, e)-molecules. This
is due to the fact that any (1,2, M, e)-molecule associated to an arbitrary ball B in X
can be renormalized to a molecule associated to the unit ball By, see Remark 4.20.

Proof: Recall that according to Theorem 4.28 and Definition 4.29 the spaces BM Op« p(
are equivalent whenever M € N with M > 7% and that we defined BMOr-(X) to be
one of these equivalent spaces.

Let v > g5~ and M € N with M > ;% as given in the assumptions. We will first show
that there exists some constant Cp > 0 such that for every ball B in X with radius
rp > 0 and every f € L>°(X) there holds

VB) (I = (1 + 0B L) M) oy < O I Nl oo ) - (6.4)

Observe that since {T'(I — (I +tL)~1)M},.( satisfies weak off-diagonal estimates of some
order larger than g, the expression on the left hand side of (6.4) is well-defined via
duality due to Remark 3.2. In addition, Remark 3.8 yields that the assumed weak off-
diagonal estimates imply estimates over annuli of the form (3.11).

Let B be an arbitrary ball in X and let g € L?(X) with suppg C B. We obtain via the

Cauchy-Schwarz inequality and the doubling property (2.2)
(I = T+ 75 L) HMTH(f), )| = [(f, T = T+ L)"H)Mg)]

oo

< ‘<1sj(3)f7T(I - (I+7”129mL)71)M9>‘
§=0
<Nl D VBT — (I +r5" L)) gl 125, ),
j=0
> ; - dlst(B S;(B) -
Sy S VB2 (14 SHE ks =) lalliege
=0 "B
S A o) VB2 Mgl pazy D 2727 2™ S f lpsexy VB2 Mgl 125y » (65)
j=0

again using that v > 5 in the last step. As the ball B and g € L?(B) were arbitrary,
the above estimate implies (6.4).

Let us now show how 7%(1) can be defined as an element of Ep7(L*) = .+, (/\/l1 2ME Y.

Let € > 0. Recall that Mé’2’M’€(L) consists of all m € L?(X) with m = LMb for some
b€ D(LM) and

< 00, (6.6)

M
" . 1/2 k
2°V (2’ Bo) Z::,) HL b‘ LQ(SJ‘(BO))]

where By denotes the unit ball in X centered at 0 as defined in Section 4.4. In addition,
note that

m ,2,M, = Su
| HM(l)? (L) jzlg

IMI-I+L) Y™ M=u+L0)M chMLM k
k=0

104

X)



ie. LM = (I —(I+ L) "")YM(I+ L)M, where Cy s are the coefficients from the binomial
formula.
We define for every R > 0 a linear functional {r on /\/l(l) 2Me

Cr(m) == ((I = (I+ L") )MT*(Lp(o,r)), (I + L)b)
for every m = LMb ¢ Ml 2ME(1). Then there holds

[er(m)| = (I = (I + L") HMT*(Lpo,r)), (1 + L))

(L) by setting

M
S Z ’ (I+ L) HMT* (g R), LM_kb)‘
k=0
M oo
M % M-k
<3S = 0 2T ) s [ s gy
k=0 j=0 At
< 22_j€V(2jB —1/2 H I + L*) )MT (]lB 0,R) HLZ Bo)) ||mHM(1),2,]\4,E(L) .
j=0
(6.7)
Using Lemma 4.24 and (6.4) with f = 1 (g g), the above yields
sup [£(m)| S sup sup V(B) ™2 (1 = (1 + 4" L) YT (Lp(0,0) | o gy Il s v,

R>0 R>0BCX

< Cr HmHMé’Q’M’E(L) .
It remains to show that g converges pointwise for R — oo. Following the estimates
n (6.7) and (6.5), one observes that (¢r(m))r is a Cauchy sequence for every m €
/\/l(l)’Q’M’E(L). Hence, limp_,o0 £r(m) exists.

Since € > 0 was arbitrary, we can thus define T*(1) € &y (L*) by

(T*(1),m) = lim (I = (I + L) "HMT*(Wpo,r), (I + L)"')
for every € > 0 and every m = LMb ¢ Mé’Q’M’e(L).

In a third step, we will show that the linear functional T%(1) of Ey/(L*) can also be
considered as an element of BMOp«(X). Since every m € Ml’z’Mg(L) is, up to nor-
malization, a molecule of H} (X), we can define T*(1) as a linear functional on a dense
subspace of Hi (X). But similar to the proof of Theorem 4.28, it needs some extra work
to show the continuity of 77(1).

We now denote £g by T*(15(,g)). Then (6.4) also shows that T*(1 g(,r)) € BMOp+(X)
with

R0 HT*(]IB(OVR))HBMOL* (x) = O1

where for obvious reason we actually use the equivalent norm || | gps0,. |, .. (x) defined
,M,res

via the resolvent operator; see Proposition 4.23. The duality of H}(X) and BMOp+(X),
proven in Theorem 4.28, now yields that 7% (1 (o r)) is a continuous linear functional on
H}(X) with

b I 0.0 iy oy S 508 17 (0.0 v, oy < O
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By uniform boundedness, we therefore obtain that 7*(1) € (H.(X))" and thus T*(1) €
BMOp-(X) with [[T*(1)| gp0,.(x) < Cr- This finishes the proof. m)

For a similar definition of 7%(1) in the case that (OD1), is assumed instead of off-
diagonal estimates for {T'(I — (I +tL)"')},5¢ and that 7T is defined as an operator
T :D(L)NR(L) — L2 (X), we will modify the above construction. To do so, let us

loc

first define spaces Y¥¢(L) that will replace the spaces Mé’Q’M’S(L).

Definition 6.2 Lete > 0 and let a > 1 and f > £+ [{=]+1. Let ¢ € Ug(X5) \ {0}
such that 1(L) is injective. We define

YYE(L) o= {m = ¢(L)b : be L*(X), lim V(27 Bo)" "2 [[b]| 12, () = O}
j—o0
with the norm given by
Hme,s(L) = ?;118 2j€V(2jBO)1/2 ”b||L2(Sj(B())) :

In addition, we define
Y¥E(L) == {m =¢(L)b € YV<(L) : suppb C B for some ball B C X}
and

EulL) = (YP<(L7))'

e>0

Remark 6.3 For every ¢ € \I’(Zg) as specified in Definition 6.2 and every € > 0, the

space Y¥(L) is a Banach space and Y¥°(L) is a dense subset of Y¥<(L). Moreover,
let us remark the following inclusion.

Let M € N with M > J%. Let further « > 1, 3> 4~ + M and ¢ € ¥g,(X9) \ {0} such
that (L) is injective. Then for every ¢ > 0 with 5= < 8 — (M + J-) there holds

Y¥e(L) € My>ME(L).

The result is also true for functions ¢ € \11(22) with z — 2~ My(2) € H“(Z‘g) such
that the family of operators {(tL) ™M) (tL)}so satisfies Davies-Gaffney estimates. In
this case, the inclusion is valid for all € > 0.

For the proof, let m € Y¥(L), where m = 4 (L)b for some b € L*(X). Since 3 > [~+M,
there obviously holds m € R(LM). In addition, we have to show that HmHMl,z,M.,a(L) <
0

0o (see (6.11) for a definition of the norm). First, observe that a similar calculation as
in Remark 4.2 yields

10l 2(x) < CeV (Bo)™ 2 [[mlly ez (6.8)

for some constant C: > 0 only depending on € > 0. Moreover, observe that for ev-
ery k = 0,1,..., M, the function z +— 2z~ M=Ky(2) is an element of \Ilg,Mﬂ(Eg).
Thus, Proposition 3.18 yields that the operator family {(tL)~(M~=*))(tL)}s~o satisfies
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off-diagonal estimates of order § — M.
Let us now write b = 1g;b+ 1(g;)cb with

R; = 272Dy, if j =0,1,2,
R; = 2712y \ 2272 By, if j=34,....

For every k = 0, ,...,M and all 7 € Ny, we obtain due to the boundedness of
L=(M=Ry(L) on L*(X )

HL—W—’%(L)nR b

J

N6l p2ry S 2795V (20 By) 2 . (6.9
12(8;(Bo)) ™ | HLZ(RJ) N (2'Bo) Imlyv.e(r) (6.9)

where in the last step R; is splitted into four annuli. On the other hand, the off-diagonal
estimates for {(tL)~(M=®)4(tL)}1~0, (6.8) and the doubling property (2.2) yield

(M- . o —(B—M
| LR (L)1, b S (1 + dist(S5(Bo), (R))™™) ™~ 0]l o

L2(S; (Bo))
S 272

< 9—2m(B— M)JQJ”/QV(ZJBO)_1/2 ||m”yw,e(L) . (6.10)

We therefore obtain from (6.9), (6.10) and the assumption 5~ < 8 — (M + g-)
M
||m||M(1),2,1M,s(L) = ?'1210 25V (20 By) /2 Z HL‘(M—k)Qp(L)b‘ L2(Sj(Bo))]
< sup 27¢ (2_]“6 + 2_2m(ﬁ_(M+ﬁ))j) Iy e ry
j=0
< Il oy (611

Since Davies-Gaffney estimates imply off-diagonal estimates of any order, the second
case is then obvious.

Let us now define 7%(1) as an element of £, (L*) in the following way.

Lemma 6.4 Let T : D(L)NR(L) — L2 .(X) be a linear operator that satisfies (OD1).,
for some v > g% Then T*(1) can be defined as an element of £y, (L*) by

(T (1),m) = Jim (62 (L7)T (Lgo.m).b)
for every m € YV (L) with m = 1 (L)b and every e > 0.

Proof: Let v > 5. Repeating the arguments used in (6.5) for the proof of (6.4),
we can show that the assumption (OD1), yields the following estimate: There exists
some constant Cp > 0 such that for every ball B in X with radius rg > 0 and every

f € L*°(X) there holds
V(B) 2 [[r P B LT ()| 2y < Cr Il ooy (6.12)

As mentioned before, the left hand side of (6.12) is well-defined via duality.
With the help of the above estimate, we can now define 7%(1) as an element of £y, (L*) =
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Neso(Y¥15(L)) as follows.
Let e > 0. We define for every R > 0 a linear functional £z on Y¥"(L) by setting

Cr(m) = (Y1 (L) T*(1p(o,r)), b)

for every m = ¢1(L)b € YCM’S(L). Observe that {r(m) is well-defined, since b is sup-
ported in some ball of X and 11 (L*)T*(1g(,p)) is via duality defined as an element of
L2 (X). In analogy to the estimate in (6.7), we obtain from (6.12)

loc
[lr(m)| = [(¥1(LH)T*(Lp0,r)), b)|

<> H%(L*)T*(]lB(o,R))’\Lz(sj(B(])) 161l 225, (o)
=0

<N 27V (20 By) 2 ||y (L*)T*(ﬂB(O,R))HL2(S]-(BO)) Imllyvrery
=0
S Crlimllyvrery (6.13)

where the implicit constants are independent of R > 0. Thus,

sup [(r(m)| S Cr [mllyvre gy -

R>0
With the same arguments used in the proof of Lemma 6.1, we can moreover show that
(Lr(m))g is a Cauchy sequence for every m € YY'(L). Hence, limp_.o0 £r(m) exists.
Since YY°(L) is dense in Y¥*¢(L) and ¢ > 0 was arbitrary, we can now define 7*(1) €
&y, (L) by

(T*(1),m) : (V1 (L) T* (1 po,R)), b)

= lim
R—oo
for every e > 0 and every m € YV°(L) with m = 1 (L)b. 0

In the same way, one can then also define T'(1) as an element of &y,(L) under the
assumption that 7% : D(L*) N R(L*) — L} (X) satisfies (OD2), for some v > 5.

loc

6.3 Necessary conditions

Let T : D(L)NR(L) — L2 .(X) be a linear operator that satisfies the off-diagonal es-
timate (OD1), for some v > 5. We show that if 7" extends to a bounded operator
on L?(X), then T*(1) € BMOy+(X). Analogously, one can show that under the as-
sumption (OD2),, the condition T'(1) € BMOpr,(X) is necessary for 7' to be bounded on
L*(X).

Let us recall what we have shown in Lemma 6.1 already: If for some M € N with
M > [~ the operator family {T'(I — (I +tL)~")M},., satisfies off-diagonal estimates of
order v > 5, then T*(1) can be defined as an element of BMOp«(X). To generalize this
result to off-diagonal estimates on {T(tL)}iso for arbitrary ¢ € ¥(X) \ {0}, we use
the next lemma. It states a certain self-improving property of this kind of off-diagonal
estimates and will later on also be applied in Corollary 6.22 to show the extension of T

from L?(X) to spaces HY (X) for p # 2.
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Lemma 6.5 Let ¢ € \11(22) \ {0} and let T be a linear operator on L*(X) such that
{TY(tL)}s>0 satisfies weak off-diagonal estimates of order v > 5= on L*(X). Let § > v

and let ¢ € HOO(Z?) with |o(2)] < |2|° for |2| < 1. Moreover, assume that {To(tL)}o
is uniformly bounded on L*(X). Then {T@(tL)}i>0 satisfies weak off-diagonal estimates
of order v on L*(X).

The proof is similar to the one of Lemma 5.12, where off-diagonal estimates for para-
products were shown. Again, the key idea in the proof is to represent Tp(tL) with the
help of a Calderén reproducing formula in the form (6.14), which enables us to apply
the assumed weak off-diagonal estimates on T)(tL).

Proof: Let ¢t > 0 and let By, By be arbitrary balls with radius ¢. Let f,g € L?(X) with
supp f € B and suppg C By. Given ¢ € \I/(Zg) \ {0} from the assumptions, we choose

some function v € Uy (X)) with 0,7 > v and fooow(s)z/;(s) ds = 1. The Calderén
reproducing formula then yields

T D10 = [ @E L I L) T (614)

First, due to the Cauchy-Schwarz inequality and quadratic estimates for ¢ and ¥, we
obtain

(Te(t*™L)f,9)|
o 2 2 9 ds
< [ |wemnwen i s
0 S

5 m 2 ds Y2 > m % m s\ |2 ds 2
S (/0 Hw(SQ L)f‘LQ(X) 8) (/0 [ (™ L) (™ L) T g | 5 5>

S ”f”L?(Bl) H‘P(tsz*)T*QHLz(X) < Hf”L?(Bl) H9HL2(32) )

where we used the uniform boundedness of {T¢(tL)};~0 on L?(X) in the last step. If
dist(Bi, B2) < t, this gives the desired estimate.

In the case of dist(By, B2) > t, we break the integral in (6.14) into two parts, one over
(0,t), which is called Jq, and one over (t,00), which is called Js.

We first turn to J;. On the one hand, {T%(sL)}s>0 satisfies weak off-diagonal estimates
of order v > 5. Proposition 3.18, on the other hand, yields that {@(sL)g@(tL)}&bo
satisfies off-diagonal estimates in s of order o, since sup,~ ||¢(t - )HLOO(EB) = HQOHLOC(EB) <

oo. Hence, the composition of the two operators {TW(sL)y(sL)p(tL)}s+0 satisfies weak
off-diagonal estimates in s of order min(y,0) = v > 5% on L*(X) due to Proposition
3.7. Using Remark 3.9 (which provides us with weak off-diagonal estimates in s for balls
of radius ¢ > s), with the roles of s and t interchanged, we therefore get

t ~
Al < [ |reernier e sl ¢

trE\" dist(B1, B2)*™\ "7 ds
< /0 <S> (1 + 82m> 5 HfHL2(Bl) HgHLQ(Bz) )
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Since we assumed y > 5+ and dist(B1, B2) > t, there further holds

/t E n 1+dist(B1,BQ)2m 'Yd8</t E n—2my diSt(Bl,BQ)2m *'Y@
0o \s §2m s — Jo \s t2m s

(BB T [ e (BT
£2m 0 U $2m

using the substitution u = $ in the penultimate step.

We now come to Jo. For the integral over (¢, 00), we again use that {T9(sL)}s0 satisfies
weak off-diagonal estimates in s of order 4. The family of operators {1)(sL)@(tL)}s >0,
in contrast, is handled slightly different. Lemma 3.19 shows that these operators do
not only satisfy off-diagonal estimates in s, but also provides us with an extra factor
(é)a Precisely, Lemma 3.19 shows that for every a > 0 with a < § and a < 7 (where ¢
describes the decay of ¢ at 0 and 7 the decay of 1/; at infinity), there exists a family of

operators {Ts+}s+>0 such that

J(SL)P(tL) = (t)T

s
where {Ts}s >0 satisfies off-diagonal estimates in s of order ¢ + a uniformly in ¢ > 0.
We again combine these operators and get, due to Proposition 3.7, that the family of
operators {1 (sL)Ts}s >0 satisfies weak off-diagonal estimates in s of order min(y, o +

a) = ~. Hence (recall that we can apply weak off-diagonal estimates to smaller balls
without any change),

2l < [ e i e )| ©

< /4 2ma diSt(Bl,Bz)Qm 7 ds
< /t <S> <1 + — a2m 5 HfHL?(Bl) ||gHL2(BQ) )

Since we assumed § > v and 7 > -, we can fix some a > v with ¢ < § and a < 7. For
this choice of a we further get, similar to the treatment of Jy,

[7() (e BB e (YT (B B
t S §2m s T J; s t2m s

_ (DstBy B\ [ ey du () dist(By, Ba)™
£2m L u "~ $2m ’

still assuming that dist(Bi, B2) > t. Combining the estimates of J; and Jo finishes the
proof. O

Let us now apply Lemma 6.5 to some special choices of ¢ € H“(Z‘g).

Corollary 6.6 Let ¢ € W(X0)\ {0} and let T be a linear operator on L*(X) such
that {T"(tL)}i~o satisfies weak off-diagonal estimates of order v > 5. Let further
M € N with M > ~. If the families of operators {T(I — e~**)MY,oo, {T(tLe™**)M} ;-
and {T(I — (I +tL)"Y)YM}i~o are uniformly bounded on L?(X), then they satisfy weak
off-diagonal estimates of order v in L*(X).
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Proof: This is an immediate consequence of Lemma 6.5. We simply observe that the
functions z — (1 —e )M, z— (ze ) and 2z — (1 — (1 +2)"HM = (2(1+2)"HM are
in H>* (X)) with

-\ M M —2\M M —1\M M
(=M <™, e M <M and (1= (1427 )M <z
for every z € 22 with |z| <1 and apply Lemma 6.5 to these functions. O

The above results also imply the following necessary conditions for a non-integral oper-
ator to be bounded on L?(X).

Corollary 6.7 Let T : L?*(X) — L*(X) be a bounded linear operator. If T satisfies
assumption (OD2), with v > 5, then T'(1) € BMOL(X).
Analogously, if T satisfies assumption (OD1), with v > 5, then T*(1) € BMOp-(X).

The proof is a simple combination of Lemma 6.1 and Corollary 6.6, observing that for
every bounded operator 7' on L?(X) the operator families {T'(1 — (I +tL)~")™},~¢ and
{T*(I — (I +tL*)"H)M},~o are uniformly bounded in L?(X).

We remark that it is actually enough to assume uniform boundedness of {7%(I — (I +
tL*)"HYMY o and {T(I—(I+tL)~1)M},o0 on L2(X), respectively, instead of the bound-
edness of T on L?(X), to show that T(1) € BMOp p(X) and T*(1) € BMOpr» p(X).

We have shown in Proposition 4.27 and Theorem 4.34 that elements of BMOp(X) and
BMOp~(X) are intimately connected with Carleson measures. Due to this generalized
Fefferman-Stein criterion, one could also formulate our T'(1)-Theorem in terms of Car-
leson measures instead of elements from BMOp(X) and BMOp+(X). Let us show how
in this case a necessary condition for T to be bounded on L?(X) looks like. This for-
mulation also avoids the discussion how to define 7'(1) and 7%(1), since one can simply
define ¢(tL)T'(1) and 1 (tL*)T*(1) via duality as elements of L2 (X) for fixed ¢ > 0.

Lemma 6.8 Let T be a bounded linear operator on L?(X) and 1) € ‘11(22), If{T*(tL*) }1>0
satisfies weak off-diagonal estimates of order v > 5, then

2 dp(z)dt
t

(" L)T(1)(x)|

is a Carleson measure.
Analogously, if {T(tL)}i>o satisfies weak off-diagonal estimates of order v > 5=, then

2 du(z)dt

[ LT (1)@ =,

is a Carleson measure.
Proof: We only show the first claim, the other one will then be obvious. Thus, we

assume that {T*y(tL*)},~¢ satisfies weak off-diagonal estimates and aim to show that
there exists a constant C' > 0 such that

sup< / / i( (27 )T )|2 d,u(t)dt>1/2 o
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where the supremum is taken over all balls B in X and rg denotes the radius of B.
We denote by B an arbitrary ball in X and split the expression on the left into an on-
and an off-diagonal part by writing 1x = 14p + Lx\4p-

The on-diagonal part is handled with the help of quadratic estimates and the bound-
edness of T on L?(X). Due to Remark 3.20 and the doubling property (2.2), there
holds

TB x 1/2
(V(IB) R GRSl W) S V(B2 T (15 o S 1
(6.15)

For the off-diagonal part, on the other hand, we use the weak off-diagonal estimates
from the assumption (and do no longer need the boundedness of T on L?*(X)). For this
purpose, let g € L?(X) with suppg C B and let 0 < t < rp. Splitting L x\4p into annuli
around B, we obtain

‘<¢(t2mL)T(1X\4B)79>| = ‘<]1X\4BaT*1/1(t2mL*)9>}

< Z) s, (), T"U(t" L")g)|
Z V(2/B)Y/? HT*¢(t2mL*)gHL2(Sj(B)). (6.16)

Since we have assumed 0 < t < rp, Remark 3.9 shows that we get the appropriate weak
off-diagonal estimates with an extra factor (TTB)H Moreover, due to Remark 3.8, we can
apply weak off-diagonal estimates over annuli of the form (3.11). Hence, for every j > 2

and every ¢t < rp there holds

o o n dist(B, S;(B))*™\ "
70 )l sy 52772 ()" (14 FHEZEEE) g

and therefore (6.16) is bounded by a constant times

> N dist(B, S;(B))2™\
ZV QJB 1/29j /2< , ) <1+ ( t27jn( )) > HgHLQ(B)

Jj=2
- 1/2 0 in rg\n 2]7"3 —2my
SV ol 32 (7) (5

—2mry

SVB)2 gl 2 (’”B) ,

where we used the doubling property (2.2) in the first and v > 5 in the second inequal-
ity. This shows that

[0 )T xa)| o gy S VB2 (F

Putting this estimate into the desired Carleson measure estimate, we finally get

rB x 1/2

; 2(2my—n) 1/2 1 1/2
< </ B (t) dt) _ </ 52(2my—n) ds) < 1. (6.17)
o \rp t 0 5
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Combining (6.15) and (6.17) shows that ‘1/)(t2mL)T(1)(:zt)}2 du@)dt §o 5 Carleson mea-

7
sure. 0O

6.4 Poincaré inequalities

Let us add one last assumption we need for our 7'(1)-Theorem associated to sectorial
operators.

For the proof of this T'(1)-Theorem, we require some kind of Poincaré inequality. Since
we have assumed X to be an arbitrary metric space and not only the Euclidean space
R™ or a complete Riemannian manifold, the notion of partial derivatives is meaningless.
Instead, we follow the approach of Hajtasz and Koskela in [HK95] and [HK00]|, who give
generalizations of Poincaré inequalities and Sobolev spaces on metric spaces. Our basic
tool will be the following definition, which is taken from Chapter 2 of [HKO00].

Definition 6.9 Assume that v € Li _(X) and a measurable function g > 0 satisfy the
inequality

1 1 ) 1/p
V(B)/B lu(xz) — (u)B| du(x) < Cprp <V(0B) /UB g(x) du(z)) ) (6.18)

on each ball B in X, where rp is the radius of B and p > 0, 0 > 1, Cp > 0 are fized
constants. We then say that the pair (u,g) satisfies a p-Poincaré inquality.

Remark 6.10 If v € Lip(R"), g = |Vu| and p > 1, then (6.18) is a corollary of the
classical Poincaré inequality

1/p

(V(lB)/B\u(x)— () 5P dx)l/p < Cn.p)rs (V(lB)/B\vu(x)\P dx) (6.19)

It is therefore natural to consider a pair (u,g) that satisfies a p-Poincaré inequality as
a Sobolev function and its gradient. One approach to define Sobolev spaces on metric
spaces is based on these p-Poincaré inequalities. We omit the details, since for us it will
be enough to work with Definition 6.9. We refer to [HK00] for a survey on the topic, in-
cluding a comparison of different definitions of Sobolev spaces on metric spaces, e.g. the
one introduced by Hajlasz in [Haj96], also called Hajtasz-Sobolev space, and examples
of pairs (u, g) on certain metric spaces that satisfy a p-Poincaré inequality.

Let us now formulate the needed assumption.

Assumption Let L satisfy (H1), (H2) and (H3).

(P) Assume that for every f € L?(X) there exists a measurable function g : X x
(0,00) — C such that

(i) for all t > O there holds g := g(.,t) > 0, and the pair (e~*""Lf, g;) satisfies
a p-Poincaré inequality of the form (6.18) for some p < 2 and with constants
o >1, Cp > 0 independent of ¢ and f;

(ii) for all ¢ > 0 there holds g; € L?(X), and there exists a constant C > 0
independent of f with

& dt
| P lalien § < Cliley-
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(P*) Assume that (P) holds with L replaced by L*.

Remark 6.11 The assumptions (P) and (P*) are assumptions on the underlying space
(X, d, p) and the operator L, but not on the operator T itself.

If X is the Euclidean space R™, then the Poincaré inequality is automatically satisfied
for the pairs (e "L f, |Ve "L f|) and (e "L f,|[Ve "L f|), see e.g. [GT83], (7.45).
In this case, (ii) is just the assumption that the Littlewood-Paley-Stein square function
is bounded on L2(R"). For elliptic second order operators in divergence form, this can
easily be shown with the help of the ellipticity condition, see e.g. [Aus07], Section 6.1.
In general, (ii) is fulfilled whenever the Riesz transforms

VLfl/Zm: L2(Rn) _ LZ(Rn)
V(L*)—1/2m . LQ(Rn) N LQ(Rn)

are bounded, since then

[ e
0

and the analogous estimate for L* hold due to quadratic estimates, see Remark 3.20.

2 dt

2
— S NIz Rmy

2 dt_ > —1/2m2m r\1/2m —t>™L
L2(Rn) t _/0 HVL (#7L) e f‘

Let us reformulate the assumptions (P) and (P*) also for another case. Let X be a com-
plete Riemannian manifold, with the Riemannian measure p on X satisfying the doubling
property (2.2), and let V denote the Riemannian gradient. To obtain (i) of (P), it is suf-
ficient to assume that a 2-Poincaré inequality of the form (6.19) holds (with the Lebesgue
measure replaced by ). One can then again choose the pairs (e =" L f, |[Ve "L f|) and
(e P E £, Vet ),

This is due to a certain self-improving property of Poincaré inequalities on Riemannian
manifolds, stating that the interval of all p that satisfy a p-Poincaré inequality, is open.
We refer to [KZ08| for details.

To get (ii), one can assume, as for the Euclidean space, that the mappings f — \VL*1/2mf\
and f — |V(L*)~Y/2™ f| are bounded on L?(X).

We conclude the section with the following theorem that describes a consequence of the
p-Poincaré inequality (6.18). Essentially, it is [HK00|, Theorem 3.2, but in a simplified
form, which will be sufficient for the application in our situation. For a more general
statement and the connection to Hajtasz-Sobolev spaces, we refer to Chapter 3 of [HK00)].

Theorem 6.12 Assume that the pair (u,g) satisfies a p-Poincaré inequality (6.18) for
some p > 0. Then there exists some constant C' > 0 such that

lu(z) —u(y)| < Cd(z,y) (Mpg(z) + Mpg(y))

for almost every x,y € X.

Proof: Let x,y € X be Lebesgue points of u. Recall that the Lebesgue differentiation
theorem, Theorem 2.6, implies that this is true for almost all points.
For every j € Ny we set Bj(z) := B(z,r;) and B;(y) := B(y,r;) with r; := 279d(z, y).
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By Lebesgue’s differentiation theorem there holds (u)p; () — u(z) for j — oo. Thus,
due to the fact that B;yq(z) C Bj(x) and the doubling property (2.2), we obtain

L,

<
I
o

|u(x) = (u) gy ()| ‘<U>Bj<x> — (W B4 (@)

o

u(z) — (u)B;(2)| dp(2)

i)
“ V(Bj+1) JB;11()

<.
I

A
NE

u(z) — (u) B, (2)| dp(2)- (6.20)

5 ),
V(B;) JB;()

<.
Il
o

The assumed p-Poincaré inequality for the pair (u,g) then implies that the above is
bounded by a constant times

N 1/p
1 p
30 (v Ly, 27

<Y 27 d(z, y)IM(P) (@)]VP < d(, y) My (). (6.21)
3=0

In analogy to the above, we also obtain
|u(y) — (W) ()| S dlz, y) My (y). (6.22)
It therefore remains to estimate the term
| () B () = () Bo(y)| < (W) Bo(w) — (W2Bo(@)| + [{W2Bo(@) — (W) Bow)| - (6.23)

By definition of r¢ there holds By(y) C 2By(z), and due to the doubling property (2.3)
and (2.2) we further get

d(x,y)
2d(z,y)

D
V(2Bo(x) = V(. 2d(2.y)) < (1 n ) V(y.2d(z.)) < V(Bo(y)).

Using that By(x) C 2By(z) and By(y) C 2By(z), we can therefore estimate (6.23) with
the help of the p-Poincaré inequality for the pair (u, g) by

2
T P e o / oo 1) = (| )

1/p
1 P
= (va()) 7 W))
S d(z,y) Mpg(). (6.24)

Combining (6.21), (6.22) and (6.24) yields the desired conclusion. O
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6.5 Main theorem

We are now ready to state our main theorem.

For convenience, let us recall that assumptions (H1), (H2) and (H3) were defined in
Section 3.2, assumptions (OD1), and (OD2), in Section 6.1 and assumptions (P) and
(P*) in Section 6.4. Furthermore, (X, d, u) was assumed to be the space of homogeneous
type specified in Section 2.2 and the spaces BMOp(X) and BMOp-(X) were defined in
Sections 4.4 and 4.6.

Theorem 6.13 Let L be an operator satisfying the assumptions (H1), (H2) and (H3).
Additionally, let the assumptions (P) and (P*) be satisfied.

Let T : D(L)NR(L) — L% (X) be a linear operator with T* : D(L*)NR(L*) — L& (X)),
which satisfies the assumptions (OD1), and (OD2), for some vy > MT%H and let T(1) €
BMOL(X), T*(1) € BMOr+(X).

Then T is bounded in L*(X), i.e. there exists a constant C > 0 such that for all
f € L*(X) there holds

ITfl2x) < C Il p2x) -

Let us sketch the two main ideas of the proof.
First, we decompose the operator T for each ¢ > 0, at least formally, in the following
way:

T=T(—e ")+ Te "0
=T(I—e ") 4 [Te " —T(1) - Ae ")+ T(1) - Ae L, (6.25)

This can be understood as a splitting of the operator into the “main term” or “principal
part” Te= "L and the “error term” T(I—- e_tQmL). The main term is then further decom-
posed into the term in the squared brackets, which is handled via Poincaré inequalities
and the term T'(1) - Ate_tmL, which can be estimated by application of the theory of
paraproducts and use of the assumption T(1) € BMOp(X).

The idea of such a decomposition is taken from articles of Axelsson, Keith and Mcln-
tosh, [AKMO06], and Hyténen, McIntosh, Portal, [HMPOS8|; see e.g. (22) of [AKMO06]| or
p.702, before Lemma 6.5, of [HMPO08]. These articles treat perturbed Dirac operators
in generalization of the Kato square root problem and are inspired by the proof of the
Kato square root problem by Auscher, Hofmann, Lacey, McIntosh and Tchamitchian
[AHL102].

The use of paraproduct operators in this context is of course not new, they were already
used in the proof of the T'(1)-Theorem of David and Journé in [DJ84] to reduce the
original problem to the boundedness of an operator satistying 7'(1) = 77%(1) = 0. Even
if this is not the case in our setting, the application of paraproducts persists to be very
helpful.

Secondly, we approximate 1" by operators associated to L, namely, we write with the
help of the Calderén reproducing formula for f,g € L?(X)
dt ds

R N TG AR TR N A
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and then estimate this expression with the help of decomposition (6.25). Here, 1; and
1po are the functions from assumptions (OD1), and (OD2),. These approximation oper-
ators of the form 1 (t*™L) are associated to L and replace the convolution operators P
and @Q; used in [DJ84], which are somehow associated to the Laplacian (one could e.g.
take P; as the convolution with the Poisson kernel).

We begin our proof of Theorem 6.13 with the estimate of the term in the squared
brackets in (6.25). The idea of the proof of the proposition below is taken from [AKMO06],
Proposition 5.5, whose key elements are the following. On the one hand, one makes use of
a Poincaré inequality. In [AKMO06], the authors work with a weighted Poincaré inequality
on R™ we will apply Theorem 6.12 instead. On the other hand, one takes into account
the special form of the averaging operator A;, which enables us to pull the function
e "L f into Sj2m (1), see the proof below for details.

The proposition will be applied for Spm = ¥2(t*"L)T and Spm = T (t*™L) in the
proof of Theorem 6.13.

Proposition 6.14 Assume that (P) holds. Let {S;}i~0 be a family of linear operators
on L%(X) that satisfies weak off-diagonal estimates of order v > ’”27%”, Then there
exists a constant C > 0 such that for all f € L*(X) there holds

LAGOHsﬁme_ﬁmLf—-Sﬂm(n.fge—ﬁmLf] dt

2
2
20 T < O fll2ex) -

Proof: Let f € L?(X). The assumption (i) of (P) yields for every ¢ > 0 the existence of
some function g; € L?(X) such that the pair (e‘tsz f, g¢) satisfies a p-Poincaré inequality
for some p < 2.

If we can show that there exists some C > 0, independent of ¢ and f, such that

_42my, _42my, 2 2
HStQ'me t f - StQm,(].) N Ate t fHLQ(X) S Ct2 HgtHL2(X) ) (626)
then the assertion of the lemma is a consequence of assumption (ii) of (P).

Let t > 0 be fixed and abbreviate u := e*tQmLf. To apply the weak off-diagonal esti-
mates on Sy, we decompose X with the help of Lemma 2.1 into “cubes” of “sidelength”
approximately equal to . That is, with the notation of Lemma 2.1, let kg € Z be defined
by C16%0 <t < C16F~1 and write X = Uaelk Q. where the equality holds modulo
null sets of u. By Lemma 2.1 we further know ghat for every a € I, there exists some
zko € X such that

B(z2, e1t) € QR C B(z0,1) (6.27)

for some ¢; € (0,1) independent of ¢ and o. Moreover, observe that the averaging
operator A; is, by definition, constant on each “cube” Q0. We therefore get

||St2'mu - St27n(1) . AtUH%Q(X)
= Z HSt2mu - St2m(1> : AtuHiQ(QZO)

Otelko

= > |8 (u = ()

[e3
OtEIkO

2

L2(Q%0)
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<22

St?m]leO (u— (u) ko)
5
aGIkO ﬁe]ko

«@

L2(QR0)

dist(Ba, Bg)?™\ "
<Y (Y <1 + Hu (gt | 2 gho (6.28)
a€ly, \BElk, s
Observe that due to (3.8) there holds
dist(By, Bg)*™\ "
sup Z <1 + tzmﬂ> S, (6.29)

aEIk-O ,Belko

since 7 > 5. The Cauchy-Schwarz inequality then yields that the expression in (6.28)
is bounded by

> X <1+diSt(B;3;nBﬁ)2m>—7

Oéelko Bélko

dist(Bq, Bg)*™\ ' 2
" Bezli <1+ t2m Hu_<u>@'fvo 12(Q10)
dlSt Ba,Bg) - 2

aEIkO ﬁGIkO

2

.. is now handled via the assumed p-Poincaré inequality for
0

QI 2(@k)
the pair (u, g¢). Due to the Cauchy—Schwarz inequality and Theorem 6.12 we get

i~
Q) Qe

< [, ( o /  Ju@) = u(y) du(y)>2du(w)
50 / . / . W duly) du()

Mypgi(z) + Mypgi(y))? dp(y) du(). (6.31)

The term Hu —(u)

2
dp(z)

e = () gro u() — {u) o

~

Note that for z € ng and y € Q% there holds d(x,y) < t (1 + dist(Ba, Bg)/t) due to
(6.27). Moreover, the doubling property (2.3) and (6.27) yield that

V(Qy) _ <1+ dist(Ba,Bﬁ)>D
t
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Taking these considerations into account and plugging (6.31) into (6.30), we end up with

|Sy2mt = Sy (1) - Atuné )

$ 3 3 (1 BT gy

CMEIkO ﬁelko

< Z Z < dist( Ba,Bg)>_2m7+2

CYGIkO ﬁelko

2
L2(QF°)

V(QF)
X [ /Q . [Mpge())? () + 7 go) /Q " [Mpgt(y)]zdu(y)]

<2y Y < dist( Ba,Bg)>—2m”+D+2

a€ly, BElL,

X !/ ko [(Mpgi(z )]Qdﬂ( )+ /ko [(Mpgt(y )]Qdﬁ‘( )]
Qg Qa

1) / Mygi( + > / Mg ()] dp(y)

ﬂe]ko OzEIk

2
<2 [ Mpgill 2y S 22 lgtl2a) -

where we used (6.29) with the assumption v > ’”27%4'2, the disjointness of the “cubes”
and the boundedness of M, on L*(X) for p < 2 in the last three inequalities.
This shows (6.26), which again finishes the proof by assumption (ii) of (P). 0

The next lemma gives a certain kind of almost orthogonality for operators constructed via
H*°-functional calculus and replaces the Cotlar-Knapp-Stein lemma used in [DJ84]. In
particular, it enables us to estimate the “error term” T'(1 — e_tsz) of the decomposition
(6.25).

The first part of the lemma is a corollary of Lemma 3.19, whose idea has its origin in
[HMM10|, Lemma 4.6. A special case of this is due to Hofmann, Martell, see the proof
of [HMO03], Lemma 2.2.

Lemma 6.15 Let o, 3 > 0 and let ¢ € \Ilgya(zz). There ezists a constant C' > 0 such
that for every s,t > 0 and every f € L*(X) there holds

min(a,1)
t
=D oy <€ (5) T Illiees

and 5
—tL S
le™ (L) oy < € (5) I lzny
Proof: Let s,t > 0. With § := min(«, 1) we write

)
(1= e huist) = (1) (020 - e L v

S
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Observe that the function z — 27°(1 — e7?) is in H“(Zg) with

0 < oQ.
Leo(20)

= Hz_6(1 —e %)

sup H (tz)70(1 — e %)

>0 Loo(29)

Also the function z — 2%¢(z) belongs to HOO(Z?L) and sup,.q H(sz)‘;w(sz)

From functional calculus we get the first desired estimate.
To show the second estimate, we write

HLoo(zg) < 0o.

e~thap(sL) = (%)ﬁ (sL)Pi(sL)(tL) et

and argue as before: the functions z — 2751 (z) and z — 2%e~* belong to HOO(E?L) and

—tL
(sL)(tL)Pe™ HL2(X)—>L2(X)
a constant independent of s > 0 and ¢t > 0. 0O

is, via functional calculus, bounded by

Let us also recall that due to Lemma 3.1 the assumptions (OD1), and (OD2), im-
mediately imply uniform boundedness of the operators Ty (t2™L) and T*wo(t>™L*),
respectively, whenever v > .

Corollary 6.16 Let T : D(L)NR(L) — L2 .(X) be a linear operator with T* : D(L*) N
R(L*) — L2 (X).

loc

(i) If T satisfies (OD1), for some v > g, then there exists some constant C' > 0
such that

[T (" L) f| 2y < C IF 2
for every f € L?>(X) and every t > 0.

(i) If T satisfies (OD2), for some v > 5, then there exists some constant C' > 0
such that

HT* t2mL* fHL2(X <C HfHL2
for every f € L?>(X) and every t > 0.

Now, we are ready to prove our main theorem.

Proof (of Theorem 6.13): Let f,g € L?(X). Let a > 1, 3 > /%~ + [{~] 4+ 1 and let
P1,1Y9 € \Ifgva(Eg) \ {0} as given in the assumption.
Corresponding to the functions 11,19, we choose functions 1,1y € ‘I/(EO) such that

there holds [ 1 (¢ ) (¢ t) 9 =1 and Jo~ Wt Vo (t )% =1 and decompose both f and
g with the help of the Calderén reproducing formula. That is, we write

dt ds
t s

(Tf.9) / / (o (127 LY Ty (2™ L) (57 L) £, o (12 L) g) &

and show that the right-hand side is bounded by a constant times || f|| ;2 x) 9]l ,2(x)- In

this way, T extends to a bounded operator on L?(X).
For the proof, we split the inner integral into two parts, one over {t € (0,00) : 0 < t < s},
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called J;, and the other one over {t € (0,00) : s <t < 0o}, called Jo. We observe that
for the second part Jo, Fubini’s theorem yields

Jo = /OOO / (LT (P L) (7 L) £, B (27 L) g) L2
_ /Ooo /05<1/~}1 (t2mL)f7 1/11(t2mL*)T*1/}2(82mL*)1/~)2(82mL*)g> -

The last line equals .J; with T replaced by T*, L by L* and the roles of 11,1, and s, ¢s
interchanged. Note that all our assumptions are symmetric with respect to 7,7 and
L, L*. Moreover, instead of the weak off-diagonal estimates for {T%1 (t>™L)};, assumed in
(OD1),, we can take into account the analogous estimates for {T*¢q(t*™L*)}, assumed
n (OD2),. Thus, it will be sufficient only to treat J;. Once we have proven this part,
the estimate for J; will follow by duality.

In the following estimate for Ji, we will always assume that 0 < t < s.

As described in (6.25), we decompose T into the two parts Te """~ and T(I — e~ L)
for every t > 0, which leads to

J = / / tQmL TU} ( QmL)J)l(SQmL)f, Y,ZJQ(tQmL*)g> %%
- / / (o (P L) T Eapn (2™ L)y (s L) f, o (1™ L") ) ?d*
/ / (ot LT = " FYn (" L) (5" L) £, (" L)) %%
= Juy+ JE. (6.32)

Let us first turn to the estimation of the error term Jg, the main term Jy; will be treated
below. In Lemma 6.15 there is shown that for every s,¢ > 0 and every h € L?*(X) there
holds

| = Eyuns

£2m min(a,1)
oS (m) Mo 03

In addition, due to assumption (OD2),, with v > 4%, and Corollary 6.16 we have
ng(tQmL THLQ(X r2x) S < 1 uniformly in £ > 0. The combination of both estimates

yields

2m \ min(a,1)
L2(x) "~ <;m> H¢ L f‘L?(X)'

(6.34)

ng(thL)T(I—e‘tQmL)wl(ssz)@Z) 2mp, f‘
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We can therefore estimate Jg with the help of the Cauchy-Schwarz inequality by

o0 s m _42m m ~ m ~ m T * dt ds
|JE|§/0 /0 (o (PP LYT(I — " 1Yy (s¥™ L)y (s°™ L) f, ho (2 L*) g) —
00 s t2m min(a,1) _ 5 dt ds
< R 2m 2m 1 * b as
~/0 /O(SQm) [orm ], B2, ) TS
i 1/2
_ /00/5 tgl min(a,1) Hd} 2m f‘ dtds /
“\Jo Jo \s*m ! 2(x) t s
1/2
tQm min(a,1) S dS dt
(/ / <52m> sz L g’ L2(X) S t> ’ (6.35)

where we also used Fubini’s theorem in the last step. By substitution of u = g, one easily

St dt ~

observes that / <> v = 6! for every § > 0. Since the operator family {11 (sL)} >0
0 S

satisfies quadratic estimates due to Remark 3.20, the first factor in the last line of (6.35)

can therefore be bounded by

(] ()™ fossmns;

< t\° d
Changing the roles of s and t and using that / <) B _ 5 for every § > 0, we
‘ s s

get the analogous estimate for the second factor in (6.35) and in summary

dtd V2
S
) S Il p2ex) - (6.36)

L2(X) t s

el S ||f||L2(X) ||g||L2(X) : (6.37)

To estimate the main term Jjs, we use the extended decomposition in (6.25) of Te t""L
into the two parts [Te "L — T(1) - Ae™"""L] and T(1) - A" L. At the same time,
we withdraw the decomposition of the function f by the Calderén reproducing formula
at scale s. To do so, we do not consider Jy; itself, but the same expression, now called
JY,, with both paths of integration over the whole interval (0,00). This leads to

J](\)4 — /(;OO /OOO <1/}2 (tQmL)TeitQmL,l/}l ($2mL>’l;1 (Ssz)‘ﬂ 1;2 (tQmL*)g> %%
- /ooo%(t?mL)Te_tQmLf, P (2 L) g) %

= [T g LT() - A (P L)) T
+ [T A a0 §
= Ji + Ji. (6.38)

It now becomes clear why we chose the decomposition of T like we did in (6.25). The
term J2, is exactly the paraproduct defined in (5.2) in Chapter 5, i.e.

JJQ\I = <HT(1)(f)a.g>7
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with the functions ), replaced by @Z)gﬂb Recall that we assumed in (OD2), that
P2 € U o(X)) for some a > 0 and § > 4% + [%]+1, and moreover assumed T(1) to be
an element of BMO[(X). Thus, Iz is bounded on L?(X) due to Theorem 5.2 and
we obtain the estimate

[Tl S NT W a0, ) 11220 N9l 2 x - (6.39)

It remains to find a bound for lew- But the major part of this estimate was already done
in Proposition 6.14 by application of the assumed Poincaré inequalities (P). Thus, if we
set Syzm 1= 12 (t*™L)T and take into account the assumption (OD2), with v > ”+D+2,
then Proposition 6.14, in combination with the Cauchy-Schwarz inequality, yields

= | [ Lz g ) e )

> 2m —t2mL 2m — dt 1/2
< ([ [oatemreemts — waempyray- a5

o 2 ar\'?
QmL* W
8 (/0 sz(t )Q‘H(X) t>
S 220 19022 (6.40)

where we also used quadratic estimates for the operator family {t(tL*)};>0, due to
Remark 3.20, in the last step.

Let us finally observe what we did wrong by considering J9, instead of Jj;. The combi-
nation of (6.39) and (6.40) provides us with the estimate

78] 5 (Il sar0, ) + 1) 11 z20) 9l 2 (6.41)

On the other hand, we have Jy; = JM — Jg, where the remainder term Jpg is defined by
_42m MmN . 9m = o ey At ds

JR = / / Yo (P LYTe ™" Lapy (2™ L)y (™ L) f, o (2" L*) g) e

This term can be handled in analogy to the treatment of Jg, replacing the estimate

(6.33) by
SQm B
e S () Wil

which again holds uniformly for all s,# > 0 and all h € L?*(X) according to Lemma
6.15. Together with the Cauchy-Schwarz inequality and Corollary 6.16, which states the
uniform boundedness of Hw2(1:2mL)THL2(X)—>L2(X)7 the above yields

HeftQmel (SQmL)h‘

el < / i / i (o D) T F (2™ L) (2 L) f, (12 L7)g) %d*
<L) T QmLfH ol TS
om dtds) "’
(/ / (t2m> (% 2(X) ts>
2m [ * 2 ds dt 2
</ /<t2m> ‘%t )g‘m(x) st> | (042
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If we now handle the last line of (6.42) with the same argument as used in (6.35) and
(6.36), we end up with

|JR| < ”f”L2(X) HgHL2(X)‘ (6.43)

By combining (6.37), (6.41) and (6.43), and repeating the same procedure for Jy and
recalling the splitting (T'f,g) = J1 + Jo = Jg + JY; — Jr + J2, we finally obtain

(Tf,9)| < (HT(l)HBMOL(X) + 1T rro,. x) + 1) 1N z2x) N9l p2exy -

This proves the theorem. 0O

6.6 A second version with weaker assumptions

As mentioned already, the assumptions (OD1), and (OD2), of Theorem 6.13 are rather
strong, since they also contain an “on-diagonal” estimate on the operator families
{TY1(tL)}i>0 and {T*2(tL*)}i>0. We will give in this section a second version of
Theorem 6.13 with weaker assumptions, that only requires (on- and off-diagonal)
estimates on the operator families {¢(tL)T¢(tL)}s~o and {p(tL*)T*¢(tL*)}i~0. To
make the application of paraproducts available, we postulate in addition that the
conservation properties e *X(1) = 1 and e (1) = 1 in L2 (X) are valid.

The following result, Theorem 6.17, is in some sense nearer to the assumptions of
the standard T'(1)-Theorem of David and Journé for Calder6n-Zygmund operators,
where one only assumes some weak boundedness of T" on the diagonal. However, we
admit that their assumption is still much weaker than our new ones of Theorem 6.17 are.

In contrast to the assumption of Theorem 6.13, namely that 7" acts as a linear operator
T : D(L)NR(L) — L% (X) with T* : D(L*) N R(L*) — L& .(X), we postulate in
the theorem below that 7 is a weakly continuous operator mapping from L?(X) to
L?(X). This is a stronger assumption, but one thinks of an application to some kind
of “truncations” T. of T with uniform L? bound. See e.g. [Berl0| of Bernicot for an
example. This is also, where the basic idea of the construction is taken from. The proof,

however, is completely different from [Ber10].

Theorem 6.17 Let L be an operator satisfying the assumptions (H1), (H2) and (H3).
Additionally, let the assumptions (P) and (P*) be satisfied. )
Let > 0,0 > &=+ [{=] + 1 and o, ¢ € Ugo(E0) with [~ (t)v(t) 4 — 1 and define
¢ € H*(X)) via
~ dg
=)= | QU 7, zeX,
Yz
where 7, (t) := te' 8%t € (|z|,00). Assume that the operator family {¢(tL)}i~0 satisfies
off-diagonal estimates of order v > n+271731+2 and moreover, assume that there holds

S(tD)(1) = ¢(tL*)(1) =1  in L2 (X) (6.44)

loc

for every t > 0.

Let T : L*(X) — L*X) be a linear, weakly continuous operator such that
{Y(L)TP(tL) }1>0 and {Y(tL*)T*G(tL*)}i>0 salisfy weak off-diagonal estimates of order
v > D2 gnd let T(1) € BMOL(X) and T*(1) € BMOp+(X).

Then T : L*(X) — L*(X) is bounded with a constant independent of the weak continuity
parameters of T.
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Note that one can get off-diagonal estimates for {¢(tL)}s~o in the following way. By
splitting ¢(z) = (¢(z) —e™?) + e % for z € X, one can on the one hand take into
account Davies-Gaffney estimates for the semigroup {e¢ " };~o. On the other hand, it
is clear by definition that ¢(z) —e™* — 0 for |z| — 0 and for |z| — co. Proposition 3.18
then yields the existence of off-diagonal estimates for {¢(tL) — e " }4~0.

With a similar reasoning, one can show that the assumption (6.44) is a consequence of
the property e '2(1) = e7t"(1) = 1 in L2 (X). This is due to the fact that the latter
implies ¢(tL)(1) = ¢(tL*)(1) = 0 in Ll200( ) for every ¢ € W 4(X)) with > - and
a > 0, see Remark 5.9.

The proof of Theorem 6.17 is almost equal to the one of Theorem 6.13. The only
difference is the replacement of the Calderén reproducing formula by the representation
formula (6.45), which is a generalization of a construction in [Berl10].

Proof: Let f,g € L?(X) and 7, ¥, ¢ given as in the assumptions.
We first observe that by definition of ¢ there holds lim; 0 ¢(¢) = 1 and lim;—, ¢(t) = 0.
Since T' is weakly continuous, we thus get by functional calculus

Tf =lim ¢*(tL)T¢*(tL) ],
0= lim ¢*(tL)T¢*(tL)f,

where the limit is interpreted in the weak sense in L?(X). Again by functional calculus,
we obtain from the above as a special form of a Calder6n reproducing formula that
(T'f,g) can be represented as

wha) = [ ([geen| réen « cent || 1) T ©)

Once having handled the first summand in (6.45), in the following called J, the second
one will work in the same way simply by duality. So let us have a more detailed look at
the first part.

By definition of ¢ there holds z¢/(z) = ¢(2)i(z) for z € %0 This yields due to functional
calculus,

| e reen

=2 [ g anseLT L
=2 [T () T (6.46)

where we set ¥;(z) = (2)p(z). We further decompose f with the help of another
Calderon reproducing formula as
d
f= / VL)L) 2 (6.47)

taking into account the assumption [ 1 Y()Y(t) d? = 1. The combination of the two
equations (6.46) and (6.47) then leads to

=2 / / Y LYT G (12 L)y (s*™ L) (s*™ L) f, wl(tQmL*)g>%%. (6.48)
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Similar to the proof of Theorem 6.13, we split the inner integral into two parts, one over
the interval {¢t € (0,00) : 0 < t < s}, called Ji, and the other one over {t € (0,00) :
s <t < oo}, called Jo. In contrast to the proof of Theorem 6.13, for lack of symmetry
in (6.48) we cannot handle Jy simply by duality, but it can be dealt with similar to the
remainder term Jg in Theorem 6.13.

Thus, let us first turn to Jo. The assumed weak off-diagonal estimates on the operator
family {¢(tL)T'¢(tL)}+>0 yield due to Lemma 3.1

[0 (E ™ L)TSE L) 12 (x) - 2x) S 1

uniformly in ¢ > 0. Moreover, observe that by assumption there holds w(¢)<w<<) =

O(|¢) 27 for |¢| — oo and consequently, ¢(z) = O(]z|7>*) for |z| — oo. Replac-
ing e7* by ¢(z) in Lemma 6.15, it is therefore easy to check that there exists some § > 0
such that for all h € L?(X)

5 5 32m 6
6 Dy Ll ey S (S ) Dl
uniformly in s,¢ > 0. With exactly the same arguments as in (6.42), we end up with
2m 2/:2m 2m T(o2m 2m 7 * dt ds
| 2| < Y L)T (" L) (s L)p(s™™ L) f, 1 (7" L7)g) 75

S ”fHLQ(X) ||9||L2(X)
To handle Jy, we apply for every ¢ > 0 the splitting
T¢2 (t2mL) — T¢2 (t2mL)67t2mL + T¢2 (t2mL)(I _ eftQmL),

representing the splitting of J; into the main term Jjs and the error term Jg just as in
(6.32), i.e

h= [ [ nreEn e i i D (L) T
[ [ nr e — et Ly L) 1 (P L) T

= Ju + JE.

The treatment of Jg works analogously to (6.35), using the weak off-diagonal estimates
for {¢(tL)T¢(tL)}+>o instead of assumption (OD2), and the uniform boundedness of
{p(tL) }1=0 in L?(X).

To estimate the main term Jjy, we also aim to apply a paraproduct estimate and therefore
write Jy = JM + Jr with a remainder Jg that can be handled with the same arguments
as in (6.42), and

Bo= [ [ e e i@ i D 10 T

0

d
Lo (L) T

7t2m

+ [Cwernreennw-
0

=:Jy + Jir,
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in analogy to (6.38).

Observe that the operator family {1 (tL)T'¢?(tL)};>0 satisfies weak off-diagonal estimates
of order v > "*27%*2 due to the assumptions and Proposition 3.7. By taking assumption
(P) into account, we can thus apply Proposition 6.14 with S; := ¥ (tL)T¢*(tL), which
yields the desired estimate for J1, just as in (6.40).

We finally note that assumption (6.44) yields

J3 = /0 (WM LYT(1) - Age™""E £ aby (P L¥ ) g) % = (ra)f, 9),

and J2, can therefore be treated by Theorem 5.2 and the assumption T'(1) € BMO(X).
This finishes the proof. O
6.7 Application to paraproducts

In this section, we will present an application of Theorem 6.17 to a different type of
paraproduct operator.

We will do this under more restrictive assumptions on L. Let again L be an operator
satisfying (H1), (H2) and (H3). Additionally, let us assume that the following is valid.

(H4) The operator e~*F : [%°(X) — L>°(X) is bounded uniformly in ¢ > 0.
(H5) For every ¢ > 0 there holds e /(1) = 1 in L>®(X) and e~*£"(1) = 1 in L (X).

Let us remark that we do not assume e *" : L®(X) — L*®(X) to be bounded.
The assumption (H5) in particular implies that there holds (tL*)(1) = 0 in L2

loc

for every t > 0 and every ¢ € \IJ@7Q(22), where 3 > 7 and a > 0, see Remark 5.9.

(X)

Definition 6.18 Let aq, 51, a0, 82 > 0. Assume that 11 € \Ilghal(Zg) \ {0} and 9y €

\Ilg%o@(Eg)\{O} and abbreviate 1 := 1 -1py. For every f € L®°(X) and every g € L*(X)
we define the paraproduct

d
- (6.49)

i} (g) := /0 L) g e ]

We refer the reader to compare the operator II ¢ with the paraproduct operator II(f, .)
defined in (5.12). The boundedness of TI(f, .) on L?(X) is an immediate consequence
of quadratic estimates for the operator families {¢)(tL)}t~0 and {¥(tL)}+>0, see Lemma
5.11. In contrast to that, the boundedness of flf is not obvious. To give a sufficient
criterion for ﬁf to be bounded on L?(X), we apply Theorem 6.17 to approximations of
the newly defined paraproduct. We then obtain the following result.

Theorem 6.19 Let L satisfy (H1)-(H5) and let the assumptions (P) and (P*) be valid.
For every f € L*™°(X) let 1:[f be the operator defined in (6.49) with min(ay, 51, ag, B2) >
max( 7% + [72] + 1, P2E2) . Then there exists some constant C > 0 such that for every
f € L®(X) and every g € L*>(X) there holds

el

< o .
2x) Cllfll (X) H9HL2(X)
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For the proof of Theorem 6.19, let us first define suitable approximations of the para-
product operator.

Let f € L>(X) be fixed. We define for every R > 0 the operator Tg : L*(X) — L?*(X)
by

R 2m 2m dt

Tr(g) := U 1 (P LYo, gy (" L) e " Fg - e f] "

(6.50)

for every g € L?(X).

Remark 6.20 A careful inspection of the proof below shows that it is possible to re-
place e_tmLf in the definition of the paraproduct flf in (6.49) by S f for some different
operator family {S;};~0. One can then again obtain L?(X)-boundedness of the corre-
sponding paraproduct if one makes the following assumptions.

To assure the validity of the off-diagonal estimates in Lemma 6.21 below, one has to as-
sume that S; : L*®(X) — L*°(X) is bounded uniformly in ¢ > 0, whereas the assumption
(H4) is no longer needed.

Moreover, observe that one does not only have off-diagonal estimates for
{Y(tL)Trp(tL)}1>0, but even for {Y(tL)Tr}i>o itself, see again Lemma 6.21 below.
One can therefore apply a variant of Theorem 6.17, such that only the assumption
e *"(1) = 1 and no longer the assumption e **(1) = 1 is required.

Finally, one has to check that (6.51) is satisfied. The second condition in (6.51), i.e. the
uniform boundedness of T%(1) in BMOp«(X) is true due to the uniform boundedness
of the operator family {S;};~0 in L*°(X) instead of (H4). To show the first condition,
i.e. the uniform boundedness of Tr(1) in BM O (X), in the original proof one uses the
assumptions (H4) and e~*L(1) = 1. If one replaces e~ *"""L by S, one does not need any
longer those two assumptions, but has to suppose in addition that Tr(1) € BMOL(X)
uniformly in R > 0.

In summary, one can omit the assumptions (H4) and e**(1) = 1 and replace e t*"L f
by Si;f, whenver one can assure that {S;};~¢ is uniformly bounded in L°°(X) and
Tr(1) € BMOp(X) uniformly in R > 0.

In comparison to Theorem 4.5 of [Ber10|, the above result, Theorem 6.19, is thus appli-
cable to a larger class of operators L than it is considered in [Ber10].

For convenience, let us set ¢ := min(aq, 51, 2, F2). Let ¢ € \115,5(22) and choose ¢ €
H“(Eg) according to the assumptions of Theorem 6.17, such that {¢(tL)}>0 satisfies
off-diagonal estimates of order §. Then the following off-diagonal estimates are valid.

Lemma 6.21 Let f € L>®°(X) and let R > 0. The operator families {¢(tL)Tr}+>0 and
{p(tL)Try)(tL) }i>0 satisfy off-diagonal estimates of order ~ for every 0 <y < 6. More
precisely, there exists some constant C' > 0, independent of R > 0, such that for arbitrary
open sets E.F in X, all g € L*(X) with suppg C E and all f € L>=°(X)

dist(E, F)?™\ 7
(L) Trgl 2y < C (1 T (t)) 11 9l
and
dist(E, F)?™\ "
H¢(tL)TR¢(tL)9HL2(F) <C|1+ — Hf||L°<>(X) ||9||L2(E) :
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We postpone the proof of the lemma to the end of the section and first turn to the proof
of Theorem 6.19.

Proof (of Theorem 6.19): Let f € L*°(X). We apply Theorem 6.17 to the approxi-
mation operators Tg defined in (6.50). First observe that due to the uniform boundedness
of the operator families {41 (tL)}i~0, {¥2(tL)}i>0, {e " }is0 in L2(X) and of {e " };50
in L>°(X), every operator Tk is bounded in L?(X) with the operator norm bounded by
some constant depending on R > 0.

Using Lemma 3.4, we obtain from Lemma 6.21 the required off-diagonal estimates for
the operator families {¢)(tL)Tro(tL)}i>0 and {(tL*)Trp(tL*)}i>0 with constants in-
dependent of R > 0.

It remains to check that

sup ||TR(1)||BMOL(X) < and sup HT}*%(l)HB]V[OL*(X) < 0. (6.51)
R>0 R>0

Starting with the first assertion, let us define for every h € H}.(X) a function H by
H(z,t) == (t*™L*)h(x), (z,t) € X x (0,00).

Since 1 € g, o, (X)) with ag > &, Theorem 4.7 yields that H € T'(X) with
[H 71y = 1Al a1, (x)-

Using that 12 € ¥g, o, (22) with B2 > 7& +[4=] + 1, there holds on the other hand that
the function F', defined by

F(z,t) = o (*"L)e "L f(z),  (z,t) € X x (0, 00),

is according to Proposition 4.27 an element of T°°(X) with ||[F|lrex) < I fllprmo, (x)-

Due to the assumption e~**(1) = 1 and Proposition 4.26, there actually holds L>=(X) C
BMO(X) € BMOL(X) and therefore ||F'l|po(x) S [[f Il oo (x)-

Again taking into account the assumption e **(1) = 1 in L>°(X), we thus obtain
f 2m —t2m —t2™m 2m 7 * dt
T 1) = [ el Dl L (L

R _om oo dt
:/ (Lp(o.my2(t2"L)e "L f,4p (2™ L*)h) =
1/R t

R dt
~ [ on Pl o) T
1/R

The duality of tent spaces, described in Theorem 2.17, then yields that
(TR, M| S F e (x) [1H Nl x) S 11l oo 0y 1ML, ()

where the implicit constants are independent of R > 0. Due to the duality of H}.(X)
and BMOp,(X), see Theorem 4.28, we finally obtain that Tr(1) € BMOL(X) with

sup HTR(1)||B]V[OL(X) S ||f”Loo(X) .
R>0
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Coming to the second assertion in (6.51), observe that the adjoint operator of Ty is given
by

dt

R
Tilg) = [ L (L )g -]

for every g € L*(X).
As already mentioned, there holds ¢7(tL*)(1) = 0 in L2 (X) due to the assumption
e”"(1) =11in L (X). Thus,

dt

R
T = [ R L (I T =0

in L2(X) and therefore also in BMOp+(X). O

Let us now prove that the approximation operators Tr of the paraproduct 1:If satisfy
the required off-diagonal estimates.

Proof (of Lemma 6.21): Let E, F' be two arbitrary open sets in X and let f € L*>(X)
and g € L?(X) with suppg C E. We begin with the estimate

dist(E, F)?™\ 7
(D Trgliagey < € (1+ EEEE) il Tl

Let § = min(aq, (1, a2, F2) as defined before and fix some v > 0 with v < 6. Then for
every s,t > 0 there holds

¢ 1)
JO(EL Y1 (5L |2 ) o) S i (j ) , (6.52)

using the same arguments as e.g. in Remark 6.27. Hence, due to Minkowski’s inequality
and the uniform boundedness of the operator families {12(sL)}s=0, {e*F}s>0 in L?(X)
and {e7*F} 0 in L®(X) we obtain

qu(tQmL)TR(g) HL2(X)

o . 2m d
S/o Hw(tQmL)wl(SQmL)]lB(o,R)%(ssz)[e‘s Lg Lf]‘ s

L2(X) §

e s t\ 2™ ds
$ [T (55 L holliac WMl S Dol 1y

If dist(E, F') < t, the above estimate yields the desired conclusion. Otherwise, let p :=
dist(E,F) > t, and define G1 := {z € X : dist(z,F) < §} and G3 := {z € X :
dist(z, F) < f}. Then there holds that G1,Gy are open with dist(E,Gy) > § and
dist(F, X \ G2) > §. We split X into X = G2 U X \ G2 and obtain

[0 L) Tr()]| o

& m m ds
< 2m 2m s2mp  —s?m[ e
< [ e Epn s o (D e g g
o0 _g2m _g2m ds
+/ Hw(tQWLWl(SQmL)]lB(uR)1/12(82mL)]1X\G2[e Tlg e Lf]‘ o o
0 L2(F) S

=: JGQ + JX\GQ
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The estimate (6.52), the uniform boundedness of {¢3(sL)}s>0 in L?(X) and G2 C G
yield

00 2mé
. S m _g2m _g2m
Jou & [ min (5.5) 7 ooy e g e ”ﬂ)

e s t 2md 2 $2
< min | —, - Hefs L Lf’
0 t s

Since on the one hand, {e~%F}4¢ satisfies Davies-Gaffney estimates and is on the other
hand uniformly bounded in L% (X), we can estimate the above by a constant times

||f||L00(X) ”gHLQ(E) times

/oo ) <s t>2m6< dist( E G1 >_’y ds
min | —, — 1+
0 t s
t 2ms 2m 0 2mé : 2m\ 7
S/ (f) <1+dIStEF > i+ (t) <1+dlst(E2,F) ) ds
o \t s ¢ s §=m s
dist(E, F)?m s\2mo ds [ (P [\ TP ds
< (74 GSUE L) id v v as
~ ( + 2m > [/0 (t) +/t <s> s s

dist(E, F)2m\ 7
§<1+18(t2;n)> ,

L2(X) 8

L2(G1) §

since v < §. Hence, there holds

dist(E, F)?>m™\ 7
Ja, S (1 + tgm> 11l oo () 191l L2y - (6.53)

For the analogous estimate of Jx\g,, we instead use the off-diagonal estimates of the

operator family {¢(tL)1(sL)}s 0. We split Jx\@, into two parts J)l(\é and JX\G )

representing the integration over (0,¢) and (t,00), respectively. Considering J: X\Gyr W
take into account that Lemma 3.19 yields off-diagonal estimates in ¢ of order v for the
operator family {¢)(tL)11(sL)}s >0 with an extra term (£)”. In addition, {t2(sL)}s>0
satisfies off-diagonal estimates in s of order v due to Proposition 3.18. Lemma 3.4 then

yields that

2m 2m —s2m], —s2m], ds
X\G / HdJ (=" L)Y1(s"" L)1 g(o,R) Yo (5™ L)ly\g,le g-e f]’ 2(F) 5
t S 2m’y dlSt(F X \ G2)2m 2m 2m
< < ’ -5 L L
N/O (t) <1+ 2m > He f‘ L2(X) S
dist(E, F)?m\ 7
< (14 Y i gl (654

For the part J)Q(\G , we in turn use that {¢(tL)yn(sL)}s>0 satisfies off-diagonal es-

timates in s of order v; with an extra term (é)%, where v < 1 < 4. With similar
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arguments as in (6.54), we then obtain

m 752m 752777, dS
J)Q(\G </ HdJ L)1 (s*™ L)L (o, r)tha(s™™ )]1X\G2[ Lg-e Lf]‘ L) s
- /oo E 2mm 1 dlSt(F X \ G2)2m _g2my, Q_SQmLf‘ @
~ ' s 82m g L2(X) S
dist(E, F)2m\ 7 0 MENE 8\ TP ds
S (1 B Wl el [ (2)(4) 2
dist(E, F)>™\ "
< (14 ) Wl lolisc - (6.55)
Hence, from the combination of (6.54) and (6.55) we get
dist(E, F)?m\ 7
T = I Ty s (6.56)

and the combination of (6.53) and (6.56) finally yields the desired conclusion. Observe
that all implicit constants in the inequalities are independent of R > 0.
We continue with the estimation of
dist(E,F)Qm -
6L T tgllagey < € (1+ FHEY il ol

By definition of ¢ there holds |¢(z)| = O(|z|°) for |2| — oo. Hence, using similar
arguments as in Lemma 6.15, there holds

S\ 0
I (L) | 2 x) 120 S () (6.57)
and
L £\’
e e s S () (6.58)

We therefore obtain, again using the uniform boundedness of the occuring operator
families in L?(X) and L*°(X), respectively,

[o(*™ L) TRy (™ L)g|| 2 x
< [ o L o (Dl L)y - |
t 2md
< 2m s2mL 2m o —s?mL
S [ G et et ng - i)
+/ He_SMLw(tQmL)g e~
t
2m5
o0 st d
Sl Dol | min (5 ) B Ml Nz

If dist(E, F') < t, the above estimate yields the desired conclusion. Otherwise, with the
notation as before, we split X into X = G U X \ G2. Let us moreover split the integrals

ds

L2(X) §

ds
X) s
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into two parts over (0,¢) and (¢,00). Taking into account the fact that {e L9 (tL)}s =0
satisfies off-diagonal estimates in t of order v and using G2 C G and (6.57), we then
obtain

a2, / | oLy 2mL>nB<o,R>¢z<52mL>n@2[eS”%(t%)g'e82’”Lf]1L2(X)dj
A O e e
< (14 EBEIY T ™ &y olasr
< (14 B e e (6.5

Moreover, for £ = § — v > 0, the operator family {e~$Lt)(tL)}s 0 satisfies off-diagonal
estimates in ¢t of order v with an extra factor (é)a, using that

o) = (L) preten e

together with Proposition 3.18. Thus,

m _g2m ds
I, S/ H¢ 12" L)y (8™ L)1 po,my Y (s D)L g [e " (2 L)g - e~ Lf]‘L?(X) s
o0 —82m m 2m
S [ e roemng ey L S
dist(E, Gq)2™\ 7 £\ 2™ ds
(1 S T )T E e lollisge
t S
dist(E, F)2m\ 77
S (14 BT Wl oz (6.60)

Let us turn to the calculation of Jx\g,. We now use that fore =6 —v >0

S\ €

G(LYG1(sL) = () (LY G(tL)(sL) “r(sL),

therefore {¢(tL)yn1(sL)}s >0 satisfies off-diagonal estimates in ¢ of order v with an extra

factor (%)5 Hence,

T / H¢ (2" L)1 (s L)L p(o,ry Y2 (s L)Ly g, le” 2mL¢(t2mL)g'€_S2mLf]‘Lz(

dist(F. X G2 P t g\ 2me (g
< <1+ ( t2m\ ) ) 111 oo (x) HQHLQ(E)/O <7> s

t s
dist(E, F)?*™
(1 + T pem 11 oo x) 190l L2y - (6.61)

<

~

For the remaining part, we apply (6.58) and off-diagonal estimates of {¢(tL)Y1(SL)}s >0
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in s of order «, which yields

[e’e] m m m _52m m _82m
Ta, < /t |62 Ly (™ L)L, mya (57" L) gy [e™ " (2 L) g - =" f MLQ(X)
o0 dist(F, X \ G2)2™\ 7 /t\*™ ds
< J— PR
</ (1+ A ) I T Py o
dist(E, F)2m\ 77
< <1+(t2m>> 11l 19152 (6.:62)

since § > 7. Combining (6.59) and (6.60) with (6.61) and (6.62) finishes the proof.

6.8 Extension to Hardy spaces HY(X) for p # 2

From now on, let again L be an operator satisfying (H1),(H2) and (H3), but not
necessarily (H4) and (H5).

Once having settled the boundedness on L?(X) for an operator T satisfying off-diagonal
estimates of the form (OD1), and (OD2),, the extension to Hardy spaces H} (X) for
p # 2 is almost immediate. Such a property is similar to the behaviour of Calderon-
Zygmund operators, in respect of the fact that every Calderén-Zygmund operator, that
is bounded on L?(X), is automatically also bounded on LP(X) for all p € (1, c0).

Corollary 6.22 Let L be an operator satisfying the assumptions (H1) and (H2). Let
T : L*(X) — L*(X) be a bounded linear operator that satisfies (OD1), for some v > 5.
Then T extends to a bounded operator

T:HY(X)— LP(X), 1<p<2,
and T extends to a bounded operator

T* : [P(X) — H?.(X), 2 < p < oo,
T* : L(X) — BMOp-(X).

One can obviously obtain the corresponding results for 1" replaced by T and L by L*,
if one uses (OD2), instead of (OD1),.

Proof: To show that T extends to a bounded operator T : Hi(X) — L'(X), one
combines Proposition 4.39 with Corollary 6.6, taking into account that the opera-
tor families {(I — e *)YMY,o0, {(tLe )M}~ and therefore also {T'(I — e '*)M},.,,
{T(tLe )M}, o are uniformly bounded on L?(X).

One then uses the interpolation scales for the spaces LP(X) and H7 (X), see Proposition
4.37, and obtains the boundedness of T': HY (X) — LP(X) for 1 <p < 2.

Since Theorem 4.28 yields that (H} (X)) = BMOp+(X) and the space HY.(X) was
defined as the dual space of Hf/(X) for 2 < p < oo and % + ]% =1 (see Definition 4.35),
one finally gets the remaining assertions of the corollary via duality. O

6.9 Towards a 7'(b)-Theorem

Whenever one states some kind of 7'(1)-Theorem, there naturally arises the question
if there exists a generalization to a T'(b)-Theorem for some accretive function b (see
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Definition 6.23 below for the definition of accretive functions). This is due to the
fact that in many applications the assumption 7(1) € BMO is not directly verifiable.
For the T'(1)-Theorem of David and Journé, the question was positively answered by
David, Journé and Semmes in [DJS85|, who were able to show that one can replace the
condition 7'(1) € BMO by the condition T'(b) € BMO for some para-accretive function
b.

In this section, we will now give a criterion, under which a 7'(b)-Theorem in our setting
holds. Since we are not sure if this criterion is the right one for applications, we only
call this “an approach towards a 7'(b)-Theorem”. For a short discussion of the topic, we
refer to Remark 6.27.

Let us begin with the definition of accretive functions.

Definition 6.23 A function b € L*°(X) is said to be accretive if there exists a constant
co > 0 such that Reb(x) > ¢o for almost all x € X.

Before coming to the statement and proof of the the 7'(b)-Theorem, Theorem 6.28,
we first state two auxiliary results. We make use of both results in the proof of
Theorem 6.28, and they represent the major changes in comparision to the proof of the
T'(1)-Theorem, Theorem 6.13. Their proofs are shifted to the end of the section.

For every b € L*°(X), we denote by M}, the multiplication operator defined by My f := b- f
for all measurable functions f : X — C.

Lemma 6.24 Let L satisfy (H1) and (H2). Let o, > 1, ¢ € W, (X)) and let T :
D(L)NR(L) — L2 (X) be a linear operator such that the operator family {T(tL)}i>o

loc
n

satisfies weak off-diagonal estimates of order v > 5. Moreover, let b € L>®(X) and

2m’

assume that there exist 6 > 0 and 15 € \Ilghal(Zg) for some a1 > a and B1 > B such
that there holds [;° D(t)P(t) 4 =1 and such that there exists some constant C' > 0 with

)
[opmmvany],, < cuin (j, t) Flco IWlmce,  (663)

for all s,t > 0 and all f € L*(X). Additionally, assume that there exists some g¢ € (0,1)
such that g3 > v and (1 —€0)6 > 5=+ 7.

Then the operator family {T Myp(tL)}i>o, originally defined by (6.68), satisfies weak
off-diagonal estimates of order .

Remark 6.25 If one replaces the weak off-diagonal estimates by off-diagonal estimates
in Lemma 6.24, one no longer needs the assumption v > 5-. Also the assumption
(1 —¢€0)0 > 5% 4 reduces to (1 —£g)d > 7.

The proof follows the same lines as the one of Lemma 6.24, replacing the splitting of
X into balls of radius ¢ by a splitting into two complementary sets, as it is done in the

proof of Lemma 3.4 and Lemma 6.26 below.

Lemma 6.26 Let a >0, 3 > £~ + [{-]+1 and ¢ € U (X0). Let b € L™(X) and
assume that there exist & > 8 and ¢ € ‘I/ﬁhal(zﬂ) for some a1 > « and 51 > B such

that there holds [J° V()(t) % = 1 and such that (6.63) is satisfied with b replaced by b.
Additionally, assume that there exists some ¢ € (0,1) with €98 > 7= and (1 —£9)d >

Am
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coB + [4=] + 1.
Then for every f € BMOL(X) is

v = [0 LM ()| LDL

a Carleson measure and there exists a constant Cy, > 0 such that for all f € BMOp(X)
2 2
[vp,£lle < Cp 10l oo (x) 1 I BA1O, () -
Remark 6.27 We admit that it remains unclear if condition (6.63) is the right one for
applications. Let us shortly explain this. If one chooses b = 1, then condition (6.63) is a

continuous version of similar conditions that are usually used in the Cotlar-Knapp-Stein
lemma, and can be proven immediately. In analogy to Lemma 3.19 and Lemma 6.15,

one can show that there holds
s 02
<wn{()"(2)'}
L2(X)—L2(X) t S

with §; = min(a, 81) and J2 = min(aq, 3). To see this e.g. in the case s < t, one writes

|oGsDywier)|

SL)(tL) = (7) (L)L) (L) Y (tL)

and observes that z — 2z 91¢)(z2) € H>(%Y) and z — 219(2) € H>(%) due to the
assumptions on ¢ and . Thus, (6.63) is satisfied with § = min(a, a1, 3, 51).

If we now take b € L*°(X) arbitrary, such an estimate is no longer obvious. Similar
conditions have already been used in generalized Cotlar-Knapp-Stein lemmata in a dis-
crete setting in the context of Calderéon-Zygmund operators, see e.g. the article of Han,
Zhang, [HZ01]. But there the approximation operators, in [HZ01]| e.g. called T}, were
adapted to the function b in such a way that there holds Tj(b) = 0. This is in contrast
to our setting, where the operators (L), that resemble the operators T}, are in general
not adapted to b.

We are now ready to state our 7'(b)-Theorem.

Theorem 6.28 Let L be an operator satisfying the assumptions (H1), (H2) and (H3).
Additionally, let the assumptions (P) and (P*) be satisfied.

Let T : D(L)NR(L) — L2 (X) be a linear operator with T* : D(L*)NR(L*) — L3
such that the assumptions (OD1), and (OD2), are satisfied for some v > "57]%*2.
Let by, by € L°(X) be two accretive functions such that the assumptions of Lemma 6.2/
are satisfied for the operator families {T1(tL)}1>0 with by and for {T*o(tL*)}i~0 with
by and such that the assumptions of Lemma 6.26 are satisfied for the triples 11,by, L*
and ¢27 bg, L.

Moreover, let T(b1) € BMOp(X) and T*(by) € BMOp(X).

Then T is bounded in L*(X), i.e. there exists a constant C > 0 such that for all
f € L3(X) there holds

(X)

ITfllL2x) < ClM L2y -
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Proof (of Theorem 6.28): The proof works analogously to the one of Theorem 6.13.
We will not give the proof in all details, but only state the differences to the one of
Theorem 6.13.

Let f,g € L?(X). Let by,bs € L®(X) be the two accretive functions given in the
assumption with constants c; and g, respectively. Moreover, let o > 1, 3 > f&+[ /-] +1
and let ¢, € \IJ@OC(E?L) \ {0} as given in the assumption. Denote by 11,y € \II(Z?L)
the functions given in the assumptions of Lemma 6.24 and Lemma 6.26 that satisfy
JoS i) (t) % =1 and [ a(t)iba(t) & = 1.

Since by, by are accretive functions, it will be sufficient to estimate My, T' M, instead of T'.
Once it is shown that M, TMp, is bounded on L?(X), one also obtains the boundedness

of T itself on L?(X), since ||b] < ¢yt and ||by < ¢; ! and therefore

1HLoo(X) 1HLoo(X)

(T, )| = | (M T My, My £, Mg, 1)
<07l 15 ol ) < €765 1l ooy

In analogy to the proof of Theorem 6.13, we first decompose both f and g with the help
of the Calderén reproducing formula, which yields

s
t s
(6.64)

(M, TMy, f.g) — /O h /0 " (2 L) My, T My, 1 (2™ L) (™ L) 027 L) g)

The two main differences will be the following. Observe that due to Lemma 6.24 and
the assumption v > 2E2E2 the operator families

2m
{T My, 11(tL)}e>0 and {1 My b2 (tL") b0 (6.65)

satisfy weak off-diagonal estimates of order . Moreover, together with the assumptions
T(by) € BMOL(X) and T*(bg) € BMOp+(X), Lemma 6.26 yields that
m 2d dt S e 2d dt
a2 L) 2, T )P Y g [ 2010 08, T B )| P
(6.66)

are Carleson measures.

As in the proof of Theorem 6.13, it is enough to consider the part Ji, where in the inner
integral of (6.64) one only integrates over the interval {t € (0,00) : 0 < ¢t < s}. Then,
one also uses the first line of the decomposition (6.25), but now applied for the operator
My, T My, instead of T'. The error term Jg is then equal to

To= [ [ B DML TM (1 — R (P L () a7 L)) T
0 0

Due to the weak off-diagonal estimates for the operator family {7 My 12(tL*)}e>0 and
the fact that

| My, (1 = =" By (s L)

) (1= e By (P Ly

L2(x)’

we can simply copy the estimates in (6.33), (6.34), (6.35) and (6.36) and obtain

el S HfHL2(X) ||9||L2(X) :
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To handle the main term Jjs, we now split Mb2TMble—t2mL ‘nto
[MbQTMbleitQML — My, T (by) - AteftQmL] + My, T'(by) - Ae L

Then, following the same procedure as in (6.38), we get J, = Ji, + J3, with
o0 _42m m _42m ~ m T % dt
Ty = [ B DM TM e ] — s B )MLT () - e Do L)g)
0
and
2 > 2m —t2™L ¢ T 42my % dt
Jir = ; (o (87" L) My, T (by) - Age [ b2 (E7L7)g) 7

The term J]{4 can again be estimated by application of Proposition 6.14, with a slight

modification. We set Syem := o (t*™L)M,,T and observe that this operator satisfies

weak off-diagonal estimates of order v > ’”57%“ via (6.65). It remains to check that

the constant function 1 in Proposition 6.14 can be replaced by some arbitrary function
by € L>°(X), i.e. that one can also obtain the estimate

dt

— <O bl Foo ) 11 72(x)

0 _42m _42m 2
/O HStQmele t Lf - Sth(b]_) : Ate t Lf‘ LQ(X) t =

This can easily be seen in the calculations of (6.28), where one can pull the function by
out of the L?-norm in the last step.

The term J12\4 is, up to the multiplication operator My,, a paraproduct. To handle this
term, let us have a short look at the proof of Theorem 5.2, which states the boungigcgae)zcs;

of paraproducts on L?(X). There, one only exploits the fact that ‘w(tQ’"L)b(y)‘ ==

is a Carleson measure whenever b € BMOp(X) and does not explicitly use that b €
BMOp(X). Since we have by assumptions that ‘wg(tsz)MbQT(bl)(y)lz M is a
Carleson measure, see (6.66), we also get the desired estimate for JZ,.
The proof of the remainder term Jg, defined by
R 2m —t2m, 2m T o2m T (42m T * dt ds
T [ [ B DM T M (P L) (L) L (1)) §
S

S

is again handled as in (6.42), with the same changes as those for the treatment of Jg.
This finishes the proof. O

Let us finally give the proofs of Lemma 6.24 and 6.26. The proofs are similar to those of
Lemma 5.12 and Lemma 6.5, again transferring off-diagonal estimates from one operator
to another with the help of a Calderén reproducing formula.

Proof (of Lemma 6.24): Let b € L*>°(X) and let ¢ > 0. Further, let B;, By be two
arbitrary ball in X with radius ¢ and let f,g € L?(X) with supp f C B; and supp g C Bo.
We will show the following estimate:

||b||L<><>(X) ||f||L2(B1) ||g||L2(B2) :
(6.67)

. dist(By, Bo)2m\ ~™in(=0A)
g 5 (1+ SR
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To be able to apply the weak off-diagonal estimates for {T¢(¢L)}~0, we decompose the
expression on the left with the help of the Calderon reproducing formula, which gives

ds

(TMy (" L) f, 9) = /0 )M (P L,y T ) = (6.68)

where 1) is the function taken from the assumptions, satisfying I V(t)Y(t) % =1.

We deduce from Lemma 3.1 that due to the weak off-diagonal estimates of order v >
7% the operator family {T%(¢L)}4~o is uniformly bounded on L?*(X). Together with
assumption (6.63) and the Cauchy-Schwarz inequality, this yields

(TMyp(t*™ L) f, g)| < / Hw s L) My (£ L) f‘ L2(X)

o0 s t\ 7™ ds
S [T (35)7 % Wl 1lagm, Iolzzcn,

S Hb”Loo(X) HfHLQ(Bl) HQHL2(32) ’

ds
gHL2(X) s

Hw 2mL* T*

where we used in the last step the fact that

o0 s t\2™ ds
sup/ min (, > — < Cops
t>0 Jo t's s

for every 6 > 0. This shows (6.67) in the case of dist(B;, Bs) < t.

For dist(By, Ba) > t, we split the integral in (6.68) into two parts, one over (0,t), which

is called Jp, and one over (¢, 00), which is called Js.

To handle Jy, we cover X with the help of Lemma 2.1 by balls of radius ¢t. That is, we

have X = Uaelk B, where kg € Z is determined by C16% < t < C16%~1, the balls are
0

defined by B, := B(z2%,t) and I,, 2% are as in Lemma 2.1 and Notation 2.2.

Applying this decomposition of X and using the Cauchy-Schwarz inequality, we then get

ds

s

1< [ D )2 LT

saezlio/o s

Due to the weak off-diagonal estimates for {¢)(sL*)T™*}s>0 and Remark 3.9, we have for
all s < tand all a € I,

ds

o T

I t\" dist(Bg, B2)*™\ 7
o T gy 5 (5) (1 ) ol 069

On the other hand, as a result of Proposition 3.18, {t)(tL)}+~o and {4 (tL)}s~o sat-
isfy off-diagonal estimates in ¢ of order 8; and (3, respectively. Hence, Lemma 3.4
shows that {1)(sL)My(tL)}s >0 satisfies off-diagonal estimates in max(s,t) of order
B = min(f, #1). Together with assumption (6.63), this yields for all s < ¢ and all o € I,

Hw L) My (127 L f‘

Q(Ba

-3
) dist(B1, By)*™ 5\ 2md
< min { (1 + (75127")> 5 (;) } HbHLoc(X) HfHL2(Bl)

dist(By, B, )2\ " ;s\ (1-e)2ms
S (1 + (t;m)> (;) 10/l oo (x) 1/l 228y » (6.70)
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for every € € (0,1).

Recall that we assumed the existence of some g9 € (0,1) such that g3 > 5% and
(I —eg0)d > 2 + min(gof,7y). Since we also assumed v > gL we therefore have
min(eof,y) > 5. This enables us to apply Lemma 3.6 to get

dist(By, By)?™\ =°° dist(By,, B2)?™\ "
Z L+ t2m L+ S2m

OzGIkO

: (6.71)

~

dist(B:. B om N\ — min(eos,7)
< <1+IS ( o . )

where we estimated the occuring s in (6.71) simply by ¢.
Combining the estimates (6.69) and (6.70) with (6.71), we therefore obtain

VED AT

« IkO

diSt(Bl,BQ)2m —min(efy) ot s\ (1—e0)2mdé—n (s
S (1 + T pem /0 <;) o 100l Lo () 1 £ 22y 11911 22,

. 2m — min(50577)
< <1+ dlSt(Bl,Bg) >

ds

gHLQ(B(,

~ 2m HbHLoo(X) HfHL2(B1) H9HL2(BQ) )

where in the last step we used the fact that the integral is bounded by a constant
independent of s and ¢ due to the assumption (1 —£9)d > 5. Therefore, the last line
gives the desired estimate for Jj.

We now turn to the integral Jy. As before, we cover X with balls of radius ¢ and use the

Cauchy-Schwarz inequality to get

2l < [ G DM L g o L) |

Z/ H¢ (52 L) My (12 L fj

a€ly,

@

e 1T,

On the one hand, we again use the weak off-diagonal estimates for {¢(sL*)T*}s~0 and
get for s > t and a € Iy, (observe that this estimate also works for balls of radius ¢ by
embedding them into larger balls of radius s)

I dist(Bg, B2)*™\ !
o T gy S (14 ) el 672

In analogy to (6.70), on the other hand, we obtain by application of Proposition 3.18,
Lemma 3.4 and assumption (6.63) for every s > ¢ and every a € Ij,

[y

L2(Ba)

dist(B 7_B —eof? t (1—€0)2md
. (1 (1)> <> 1Bl oo x) 1Nl 2281 - (6.73)

§2m S
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Lemma 3.6 in turn yields that for all s > ¢ there holds

: 2m\ —€of : 2m\ —
5 <1+dlst(B1,Ba) ) <1+d13t(Ba,Bg) )

g2m g2m
OéEIkO

(6.74)

~ \t S2m

sy (n+e) dist(By, By)2m ~min(0f)
< (= D St Bt VAN
(2) <1+

for arbitrary € > 0. As above, the combination of (6.72), (6.73) and (6.74) provides us
with

.5 m m T T R\ ds
< S [ ||, T g
OéEIkO t i
e8] : 2m \ — min(eoB,7y) (1—e0)2md—(n+e)
S / (1 " dlSt(BlzinBQ) > <t> @
‘ 5 s 5
X HbHLOO(X) ”f”LQ(Bl) ”9”1:2(32) : (6.75)

Finally observe that the integral in (6.75) can in view of the assumption dist(Bi, Bs) > ¢
be bounded by a constant times

diSt(Bl,BQ)zm — min(eo3,7y) /Oo E —2mmin(g0/8,7) E (1—&0)2mdé—(n+e) %
t2m . s s s

. 2m N\ —min(g03,7)
< (1 + dlSt(Bl, BQ) )

~ t2m I

since we postulated (1 — 9)d — min(eof,y) > %= for sufficiently small € > 0. Thus,

dist(By, By)2m\ ~ mine0A)
()) 1600y 12 19l 2 -

s (14 4B

This finishes the proof. 0O

Proof (of Lemma 6.26): We set M := [{-] + 1. Then there holds BMOL(X) =
BMOp, m(X) according to Definition 4.29.
We follow the proof of Proposition 4.27, replacing the operator family {1(tL)}+>0 by the
operator family {¢)(¢L)Mp}i~o. The corresponding term I can be handled with just the
same methods, once one has checked that with {¢(tL)}4>0 also {1(tL) My}~ satisfies
quadratic estimates and off-diagonal estimates of the same order.
For the term I, it needs a more careful treatment. What is essential for this part is the
fact that the operator family {(tL)(tL) *}4~0, now replaced by {1 (tL)My(tL)™*}i~o,
satisfies off-diagonal estimates of order 3 — k > = for every 1 < k < M. If one can
establish these estimates, the proof for the second part Is can be copied from the one of
Proposition 4.27.
Thus, let us show, in analogy to Lemma 6.24, that {¢(tL)My(tL) %}~ satisfies off-
diagonal estimates of some order larger than ;. Let E, F' be two open sets in X and
let ¢ € D(L7F) with suppg C E, h € L*(X) with supph C F. Via the Calderén
reproducing formula, we write
o0
GEDME"L) g b = [ WE LM LD L) o)
0
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Due to the Cauchy-Schwarz inequality, the uniform boundedness of {¢)(sL)(sL) *}40
and assumption (6.63) we then obtain

(" L) My(227 L) g, 1)
< G e ienul,

00 2mé
s t S ds
< /O mm<t S) )™ % ol gy Ny WAl 2o

S Hb”Loo(X) ”g”LQ(E) ”hHLQ(F) )

o | Fm L My )

where for the case s > ¢t we take into account that 6 > M and therefore § > k for all
1 <k < M. This yields the desired estimate for dist(E, F') < t.

For the case p := dist(F, F) > t, we define the sets G := {z € X : dist(z, F) < £} and
Gy :={zx € X : dist(z, F) < £} and then split X into X G2UX \ Gy. By construction
there holds that Gy, G are open with dist(F,G1) > & and dist(F, X \ G2) > 4. Using
that Gy C Gy, this leads to

(" )My (127 L) ¥ g, )|

<), () emnemiytal g, Wi,
A I T I Ll

= JG1 + Jx\é2

For the term Jx\ ¢, we get via Lemma 3.4, applied to {@Z;(SL*)ME@ZJ(tL*)}&DO, assump-
tion (6.63) and the uniform boundedness of {1(sL)(sL) *}4=0

R dist(F, X \ Go)?™ - s t\2™\ 75\ 2mk ds

< hd 2 =2

Ixé, N/O o ((1 * max(s, t)2m ) ain ts (t) s
X ||bHL°°(X) H9HL2(E) ||h||L2(F) : (6.76)

Since by construction there holds dist(F, X \ Gg) > dist(E, F) > t, we can bound the
integral in (6.76) in a similar way as in the proof of Lemma 6.24 by a constant times

b dist(E, F)*™ B gn2md\ ss\2mk ds
[ (= E0) ™) (0
S dist(E,F)Qm —B t 2mé s\ 2mk (s
dist(E, F)2m\ 7 [t ;s\ 2mk ds
< (74 GSUE )T S as
N< * t2m ) /0 (t) p
dist(E F)2m —c08 roo £\ ~2meoB sy 2m(1—eg)d—2mk ds
(=) [0 () 5
g t S S s

: 2m\ —¢€of
< (1 N dist(E, F) )

t?m

142



for eg € (0,1) as given in the assumptions with (1 —e9)d > g9+ k for all 1 < k < M.
It remains to estimate Jg,. Observe that {1 (sL)(sL) *}ss¢ satisfies off-diagonal esti-
mates of order 5 — k due to Proposition 3.18. With the help of assumption (6.63), we
therefore obtain

o dist(E,Gp)*™ R g g \P s\ 2mk ds
< R S LA Z 2 Z -
Jor = /0 (1 * s2m A <t> s

x ||b||Loo(X) ||9||L2(E) ||h||L2(F) : (6.77)

Using the fact that dist(E, G1) 2 dist(E, F') > t and the assumption 0 > 3, we can show
that the integral in (6.77) is bounded by a constant times

- diSt(E, F)Qm —(B—k) /t <§>2m6 (§>2mk @

t2m o \t t s
dist(E, F)2m\ ~FR) poo ry\ =2m(B=k) 1y N2mI o omk
() 00 e
tem ¢ s s t s

: 2m\ —(B—k)
< (1 N dlst(t]_z;nF) ) .

In summary, the above estimates yield that the operator family {v(tL)M;,(tL)™*}~0

satisfies off-diagonal estimates of order min(3 —k,<03) > 4 for every 1 < k < M. This
finishes the proof. 0O
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7 Concluding remarks

7.1 Comparison with a 7'(1)-Theorem of Bernicot

While this thesis was under final preparation, we learned of an article [Ber10| of Bernicot
with the title “A T(1)-Theorem in relation to a semigroup of operators and applications
to new paraproducts”. Let us compare his results with those of us presented in this the-
sis.

We begin with a comparison of the underlying spaces. Bernicot assumes X to be a
complete Riemannian manifold with a Riemannian measure satisfying the doubling con-
dition, where we instead work in the more general setting of a space of homogeneous
type. The major difference between these assumptions is, that we do not have the notion
of a gradient at hand, as it is the case for Riemannian manifolds. We replace the notion
of gradients by generalizations of Poincaré inequalities on metric spaces and reformulate
the boundedness of Littlewood-Paley-Stein square functions on L?(X), cf. Section 6.4.
The most important difference between Bernicot’s and our result is the assumption on
the operator L. He assumes L to be a sectorial operator on L?(X) of order 2m with the
properties

e L has a bounded holomorphic functional calculus on L?(X).

z

e The semigroup e~*” is given by a kernel a, that satisfies upper Poisson bounds of

the form

1 d(z,y) -
ay(z,y)| <C 1+
() w(B(z, |2]"? L))( |2['/? )

for sufficiently large v > 0.
e There holds L(1) = L*(1) = 0.

We also assume L to be a sectorial operator on L?(X) with a bounded holomorphic
functional calculus. However, the second assumption on L of Bernicot is a fundamental
constraint in comparison to our setting. The Poisson upper bounds in particular imply
that the semigroup is uniformly bounded on L? for all p > 1. We instead do only assume
that e~ satisfies Davies-Gaffney estimates and some LP — L? off-diagonal estimate and
do not impose any kernel estimates on the semigroup. Our results can therefore be ap-
plied to a much larger class of operators, e.g to an elliptic operator whose heat semigroup
fails pointwise bounds.

Then, of course, also the spaces BMOp,(X) are different. Bernicot uses the definition
of BMO spaces associated to operators as introduced by Duong and Yan in [DY05b],
whereas we work with the enlarged class of spaces BMOpr(X) due to Hofmann, May-
boroda, [HMa09|, and, more generally, due to Duong and Li, [DL09|, for operators L
satisfying Davies-Gaffney estimates.

Under the above assumptions, Bernicot states a T'(1)-Theorem associated to the operator
L. His assumptions on the operator 1" are the following:

o T:L*(X)— L*X) is linear and weakly continuous.
e The operator families {(tL)Me " Te Yoo and {(tL*)Me " T e}, satisfy

weak off-diagonal estimates.
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e T(1) € BMO.(X) and T*(1) € BMOp-(X).

In comparison to that, in our 7'(1)-Theorem, Theorem 6.13, we only assume 7" to be a
linear operator acting as T : D(L)NR(L) — L% (X) with T* : D(L*)NR(L*) — L2 (X)
and do not impose any weak continuity on the operator. In some cases, such as for the
application of the T'(1)-Theorem to paraproducts which Bernicot presents, this might be
less important, since one can work with suitable truncations of the operator. But it is
in general not clear how to approximate or truncate the operator T' in absence of kernel
estimates. Moreover, Bernicot omits to define T'(1) in an appropriate way. As can be
seen in Section 6.2, this task is not at all trivial when 7" is assumed to be a non-integral
operator.

The type of off-diagonal estimates Bernicot assumes on the operator 7', is weaker than
ours. In Theorem 6.13, we assume weak off-diagonal estimates on {T9(tL)};~o and
{T*Y(tL*) }4>0 for some ¢ € \11(22) and in the “on-diagonal” case, they might be too
restrictive for some applications. This is the reason why we also stated Theorem 6.17,
where the assumptions on 7" are similar to Bernicot’s T'(1)-Theorem. The formulation
of this theorem was inspired by his result, however, in the formulation of the weak off-
diagonal estimates, we do not restrict ourselves to the special functions 1(z) = zMe™?
and ¢(z) = e™%.

The statements of our T'(1)-Theorems, Theorem 6.13 and Theorem 6.17, and Bernicot’s
T(1)-Theorem are at a formal level similar. Besides the above three assumptions on
T, Bernicot also assumes a Poincaré inequality and the boundedness of the Littlewood-
Paley-Stein square functions on L?(X) to be valid. In our setting, these conditions are
resembled as assumptions (P) and (P*). But in view of the fact that the assumptions
on the operator L are much more restrictive, the scope of Bernicot’s theorem is much
smaller.

Moreover, the proof Bernicot uses is completely different from ours. He follows the
concept of proof due to Coifman and Meyer in [CM86|, which is a simplified version
of David and Journé’s proof of the T(1)-Theorem for Calderén-Zygmund operators in
[DJ84]. Bernicot does not work with paraproducts in the proof as we do, but directly
applies some Carleson measure estimates. Most important, at various points he takes into
account the existence of pointwise bounds for the semigroup e **. He himself says in a
comment in [Ber10], that in his proof, “the pointwise bound seems to be very important”.
In particular, Bernicot uses a kind of Sobolev inequality whose proof heavily relies on
the existence of pointwise bounds for the semigroup.

He then also formulates as an open question:

“Can we expect a similar T'(1)-Theorem under just off-diagonal decays
for the heat kernel?”

This thesis gives a positive answer to his question.

Let us finally make some comments on paraproducts. Bernicot considers paraproduct
operators of the form

dt

i) = [ denwen ot 5

where h € L®(X), ¢(z) = 2Me %(1 — e *), ¢(z) = e and ¢ is either chosen as ¢ = 1)
or ¢ = ¢. In comparison to that, our definition of the paraproduct II in Section 5.4 is
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much more general, since we do not only consider operators @(tL) that are constructed
by the semigroup, but in general via functional calculus. Due to the fact that e *~ is
uniformly bounded on L*°(X), Bernicot does not need any averaging operator as we do
in the definition of II.

If ¢» = 1, the proof of the boundedness of II on L?(X) is a simplified version of our
Lemma 5.11. For the choice ¢ = ¢, Bernicot applies his T'(1)-Theorem to show that II
is bounded on L?(X). We prove in Theorem 6.19 the same result in our more general
setting, but with the additional assumption that e~** is uniformly bounded on L>®(X).
What we do not require, is the uniform boundedness of e7*" on L>(X).

Bernicot then examines various extensions of II to LP spaces, where II is considered
as a bilinear operator. The results he obtains reach on the one hand further, since
he considers the boundedness of paraproducts on a larger scale of LP spaces and on
weighted Lebesgue spaces, but these results are at the same time owed to the more
restrictive assumptions on the operator L. In those cases, where the spaces HY(X)
coincide with LP(X), cf. Proposition 4.41, one can obtain corresponding results for II.

7.2 The role of constants

One of the challenges on the way to a 7'(1)-Theorem associated to sectorial operators
was the question of the role of constants and cancellation conditions. If one examines the
theory of Calderén-Zygmund operators, one observes that constants play an outstanding
role. Let us illustrate their importance on the basis of two examples. First, if T is a
singular integral operator with kernel k and f is a smooth function with compact support
that satisfies the cancellation condition [ f(z)dz = 0, then one can write

Tf(z) = / k(e ) (y) dy = / k() — k(2,9 (4) dy.

For the difference in the squared brackets, it is now possible to apply Hélder or Hérman-
der conditions for Calderén-Zygmund kernels.

Secondly, let us have a short look at the proof of the T'(1)-Theorem of David and Journé
in [DJ84|. There, the original operator 7' is via paraproducts reduced to an operator
T satisfying T'(1) = T*(1) = 0. Under this assumptions, one can construct appropriate
approximation operators T; with T);(1) = T7(1) = 0. The authors then aim to apply the
Cotlar-Knapp-Stein lemma and thus have to check that the condition

15T oy + T TR N e < w(5 — K)

with ), \/w(k) < oo is satisfied. In doing so, one considers the kernel k;; of the
composite operator 77T}, that can be written as

kj,k(xv y) = /kj(zv QT)k?k(Z, y) dz = /kj(zv x)[k:k(za y) - kk(qja y)] dz
in view of the cancellation condition T]*(l) = 0. It is thus again possible to apply Holder
or Hérmander conditions for the kernel of T' and within that, appropriate estimates for

the kernel kj of the approximation operator Tj.

If one now considers operators T' that only satisfy certain off-diagonal estimates, e.g.
the assumptions (OD1), and (OD2),, instead of Calderén-Zygmund kernel estimates,
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cancellation conditions are no longer applicable. In particular, it is in no way easier to
consider operators T' with the additional assumption 7'(1) = 7%(1) = 0. But the para-
product again reduces T' to a simplified operator T. For this operator T, we now work
with a Poincaré inequality instead of Hélder or Hérmander estimates. See the proof of
Theorem 6.13 and the splitting JY, = J1, + J2, in (6.38) for details. The application of
a Poincaré inequality involves the additional assumption (P), that resembles the bound-
edness of the Littlewood-Paley-Stein square function on L?(X).

In this context, also the averaging operator A; comes into play. At first sight, the ap-
plication of the averaging operator A; in our context seems to be a reminiscent of the
theory of standard BMO spaces, as this is just the operator that was replaced in the
theory of the spaces BMOp(X) by an approximation operator associated to L. But it
enables us to estimate paraproduct operators in lack of pointwise bounds for the heat
semigroup and at the same time, appears to be very helpful for the use of the Poincaré
inequality.

It would be interesting to know if one can get rid of the boundedness assumption for
the Littlewood-Paley-Stein square function. One approach in this direction could be to
substitute the usual Poincaré inequality by generalized Poincaré inequalities associated
to L. Such generalized Poincaré inequalities were considered by Yan and Yang in [YYO07],
by Jiménez-del-Toro and Martell in [JM09] and by Badr, Jiménez-del-Toro and Martell
in [BJM10]. The idea of the generalization is just the same as the one for generalized
BMO spaces, namely to replace the averaging operator A; by approximation operators
associated to L. We leave this as an open question.

Let us finally mention that in the construction of Hardy spaces associated to opera-
tors, the lack of cancellation condition for molecules was compensated by quantitative
analogues as described in Definition 4.1.
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