A note on optimal transient growth in turbulent channel flows

Gregory Pujals,1,2 Manuel Garcia-Villalba,3 Carlo Cossu,1 and Sebastien Depardon2
1LabHyX, CNRS-Ecole Polytechnique, F-91128 Palaiseau, France
2PSA Peugeot Citroën, Centre Technique de Velizy, 2 Route de Gisy, 78943 Velizy-Villacoublay Cedex, France
3Institute for Hydromechanics, University of Karlsruhe, D-76128 Karlsruhe, Germany

(Received 13 June 2008; accepted 8 December 2008; published online 29 January 2009)

We compute the optimal transient growth of perturbations sustained by a turbulent channel flow following the same approach recently used by del Álamo and Jiménez [J. Fluid Mech. 559, 205 (2006)]. Contrary to this previous analysis, we use generalized Orr–Sommerfeld and Squire operators consistent with previous investigations of mean flows with variable viscosity. The optimal perturbations are streamwise vortices evolving into streamwise streaks. In accordance with del Álamo and Jiménez, it is found that for very elongated structures and for sufficiently large Reynolds numbers, the optimal energy growth presents a primary peak in the spanwise wavelength, scaling in outer units, and a secondary peak scaling in inner units and corresponding to $\lambda_z^* = 100$. Contrary to the previous results, however, it is found that the maximum energy growth associated with the primary peak increases with the Reynolds number. This growth, in a first approximation, scales linearly with an effective Reynolds number based on the centerline velocity, the channel half width and the maximum eddy viscosity associated. The optimal streaks associated with the primary peak have an optimal spacing of $\lambda_z = 4h$ and scale in outer units in the outer region and in wall units in the near wall region, where they still have up to 50% of their maximum amplitude near $y^+ = 10$. © 2009 American Institute of Physics. [DOI: 10.1063/1.3068760]

I. INTRODUCTION

Streaky structures, i.e., narrow regions where the streamwise velocity is lower or larger than the mean, are very commonly observed in turbulent shear flows. It is well known1,2 that such structures exist in the near wall region of turbulent boundary layers and channel flows where they scale in wall units with a mean spanwise spacing $\lambda_z^* = 100$. There is also evidence of the existence of large coherent streaky structures extending outside the near wall region in the turbulent boundary layer,3,4 the turbulent Couette flow,5 and the turbulent channel flow.6 The size of these structures seems to scale in external units.

In the case of laminar shear flows, it is known that streaks have the potential to be largely amplified from streamwise vortices through the lift-up effect.7–9 The maximum energy growth leading to the most amplified streaks has been computed for virtually all the usual laminar shear flows.10 In the case of the laminar channel flow, it has been found11 that the optimal streaks are streamwise uniform with an optimal spanwise wavelength $\lambda_z = 3h$, where h is the channel half width.

Butler and Farrell12 were the first to compute the optimally amplified streaks in the turbulent channel flow. They used the Reynolds–Tiederman13 turbulent mean profile based on the Cess14 eddy viscosity model but used the molecular viscosity in the linearized equations for the perturbations. They found the same optimal streak spacing as in the laminar case ($\lambda_z = 3h$), but they were able to retrieve the near wall streaks optimal spacing $\lambda_z^* = 100$ only by constraining the optimization time to a fixed eddy turnover time. del Álamo and Jiménez15 repeated the analysis using the eddy viscosity also in the equations for the perturbations. They found, without any constraint on the optimization time that the most amplified structures are elongated in the streamwise direction and that two peaks exist for the most amplified spanwise wavelength: a secondary one scaling in inner units and corresponding to $\lambda_z^* = 100$ and a primary one scaling in outer units and with $\lambda_z = 3h$. However, contrary to the laminar case, the growth associated with this outer peak decreased when the Reynolds number was increased.

Further investigation, related to the computation of the optimal growth supported by a turbulent boundary layer,16 revealed that the linearized equations for the perturbations used in Ref. 15 were not consistent with the ones used in previous linear stability analysis of turbulent mean flows17 and of laminar flows with variable viscosity.18 The scope of the present paper is, therefore, to repeat the analysis of del Álamo and Jiménez15 for the turbulent channel flow using the linear operator consistent with previous investigations of the stability of turbulent and laminar flows with variable viscosity.17,18 We anticipate that we find that the maximum transient growth associated with the outer peak increases with the Reynolds number. These revised results are consistent with experimental evidence that the energy contained in large scale streaky structures increases with the Reynolds number.

II. TURBULENT MEAN FLOW

We consider the statistically steady, parallel, and spanwise uniform turbulent flow of a viscous fluid in a plane channel of half width h. Modeling the turbulent shear stress with a turbulent eddy viscosity ν_t, and defining a total eddy
viscosity \(\nu_T = \nu + \nu_v \) gives in dimensionless units: \(Re_{\tau^*} = \nu_T^* \tau^*/d \eta \), where \(\nu_T^* = \nu_T / \nu \), \(\tau^* = \tau / (\rho u \nu) \), \(Re_{\tau^*} = u \eta / \nu \) is the Reynolds number based on the friction velocity \(u_\tau \) and the half width \(h \) of the channel; \(\eta = y/h \). Cess’s expression \(15,17 \) for the total eddy viscosity is assumed as in previous studies,
\[
\nu_T^*(\eta) = \frac{1}{2} \left[1 + \frac{k^2 Re^2}{9} (1 - \eta^2)^2 (1 + 2 \eta^2) \right] \times \left\{ 1 - \exp\left[\left(\eta - 1 \right) Re_d / A \right] \right\}^{1/2} + \frac{1}{2},
\]
where the same values for the von Kármán constant \(\kappa = 0.426 \) and the constant \(A = 25.4 \) used in Ref. 15 will be used in the following. However, we have to remark that these constants have been fitted to direct numerical simulation (DNS) results \(16 \) for \(Re_d = 2000 \) and that, therefore, the validity of this basic flow profile is dubious at very large \(Re \).

Profiles of \(\nu_T^* \) are displayed in Fig. 1(a). The mean velocity profiles corresponding to the \(\nu_T^* \) reported in Fig. 1(a) are displayed in Fig. 1(b) in inner units.

III. LINEARIZED EQUATIONS

Small perturbations \(u = (u, v, w) \), \(p \) to the turbulent mean flow \(\bar{U} = (U(y), 0, 0) \) satisfy the continuity \(\nabla \cdot u = 0 \) and the linearized momentum equation,
\[
\frac{\partial u}{\partial t} + U \frac{\partial u}{\partial x} + (\nu \frac{\partial U}{\partial y}, 0, 0) = - \nabla p + \nabla \cdot [\nu_T^* \nabla (\nabla u + \nabla u^*)].
\]

Perturbations of the form \(u(x,y,z,t) = \hat{u}(x,y,\beta,t)e^{i(ax+\beta z)} \) are considered due to the homogeneous nature of the mean flow in the horizontal plane, where \(\alpha \) and \(\beta \) are the streamwise and spanwise wavenumbers, respectively. Standard manipulations \(10 \) generalize to include a variable viscosity \(17,18 \) to allow to rewrite the linearized system into the following generalized Orr–Sommerfeld and Squire equations for, respectively, the normal velocity \(\hat{v}(y) \) and vorticity \(\hat{\omega}_y(y) \):
\[
\begin{align*}
D^2 - k^2 & \quad \frac{\partial}{\partial t} \begin{pmatrix} \hat{v} \\ \hat{\omega}_y \end{pmatrix} = \begin{pmatrix} L_{OS} & 0 \\ -i\beta U' & L_{SQ} \end{pmatrix} \begin{pmatrix} \hat{v} \\ \hat{\omega}_y \end{pmatrix},
\end{align*}
\]
with
\[
\begin{align*}
L_{OS} &= -i\alpha[U(D^2 - k^2) - U''] + \nu_T^*(D^2 - k^2)^2 + 2 \nu_T^*(D^3 - k^2D) + \nu_T^*(D^2 + k^2),
\end{align*}
\]
\[
L_{SQ} = -i\alpha U + \nu_T^*(D^2 - k^2) + \nu_T^*D,
\]
where \(D \) and \((\cdot) \) stand for \(\partial / \partial y \) and \(k^2 = \alpha^2 + \beta^2 \).

IV. OPTIMAL GROWTH

The mean velocity profiles displayed in Fig. 1(b) are linearly stable \(15 \) for all \(\alpha \) and \(\beta \) so that infinitesimal perturbations decay after enough time. However, some perturbations can grow before decaying. The ratio \(||\hat{u}(t)||^2 / ||\hat{u}_0||^2 \), where \(|| \cdot || \) stands for the energy norm, quantifies the energy amplification of a perturbation as it evolves in time. The temporal optimal growth \(\hat{G}(\alpha, \beta, t) = \sup_{\hat{u}_0} ||\hat{u}(t)||^2 / ||\hat{u}_0||^2 \) gives the maximum energy amplification of a perturbation optimized over all possible initial conditions \(\hat{u}_0 \). In the following, we focus on the maximum optimal growth \(G_{max}(\alpha, \beta) = \sup_{\hat{u}_0} \hat{G}(\alpha, \beta, t) \) attained at the time \(t_{max} \) using the optimal initial conditions. The methods applied here to compute the maximum growth are the standard ones used in case of laminar flows and are easily extended to flows implying a variable viscosity \(\nu_T^* \). The operators \(L_{OS} \) and \(L_{SQ} \) are discretized using a spectral collocation method involving differentiation matrices \(21 \) based on Chebyshev polynomials on a grid of \(N_e + 1 \) collocation points. The numerical code has been validated in previous studies. \(22 \) The results presented in this paper have been obtained using from 129 to 513 collocation points. We ensured the convergence of the results by checking that they were not modified when the number of collocation points was doubled.

Like in previous studies \(12,15 \), it is found that only structures elongated in the streamwise direction (i.e., with \(\alpha \neq \beta \)) are amplified and that the largest energy amplifications are reached by streamwise uniform (i.e., \(\alpha = 0 \)) structures. We have, therefore, computed the optimal energy growths for several Reynolds numbers ranging from \(Re_d = 500 \) to \(Re_d = 20000 \) considering only streamwise independent perturbations; essentially the same results are found for small streamwise wavenumbers \((\alpha \beta \neq 0.1) \). From Fig. 2, where the curves \(G_{max}(\alpha = 0, \beta) \) are reported for all Reynolds numbers considered, the typical \(15,16 \) inner and outer peaks are readily seen. In accordance with what was found in Ref. 15, for spanwise wavelengths \(\lambda_z \) in between the two peaks, the time on which the maximum amplification is attained is found to be roughly proportional to \(\lambda_z \). However, the maximum growth corre-
sponding to the main peak is found to increase with the Reynolds number, contrary to what was found in Ref. 15. A cross-stream view of the optimal perturbations corresponding to the outer peak is reported in Fig. 3. The optimal initial condition consists in counter-rotating streamwise vortices filling the whole channel and inducing, optimally amplified streamwise velocity streaks of spanwise alternating signs, each streak filling half channel depth. The structures associated with the secondary peaks also consist in optimal initial vortices and final streaks and are in very good agreement with previous results15 and are not reported here.

V. SCALING WITH THE REYNOLDS NUMBER

A. Scaling of the maximum growth

From Fig. 2(b), it is seen that the data obtained at different Reynolds numbers and corresponding to the secondary peak collapse on a single curve if they are scaled in inner units and the Reynolds number is sufficiently large (roughly larger than Re_\text{\text{\varepsilon}} \approx 4000 according to our computations). This is consistent with what was found by de Álamo and Jiménez,15 even if the precise values of the peak slightly differ. In particular, the maximum growth \(G_{\text{\max}}^{(\text{\text{\varepsilon}})} = 2.6 \) (less than the \(\sim 3.5 \) found in Ref. 15) is obtained for \(\beta^* = 0.0683 \), corresponding to a spanwise wavelength of \(\lambda_{\text{\text{\varepsilon}}} = 92 \) wall units. The time \(\tau_{\text{\max}}^* = \tau_{\text{\max}} \beta^* / \nu \) at which the maximum growth is attained roughly ranges from 19 to 16 slightly decreasing with Re_\text{\varepsilon}. The fact that the maximum growth corresponding to inner scaling structures is almost independent of Re_\text{\varepsilon} has been qualitatively explained in Ref. 15 by showing that the Reynolds number typical of these most amplified inner structures is close to constant and very low (of the order of ten).

The primary peak \(G_{\text{\max}}^{(\text{\text{\varepsilon}})} \) is attained, for the considered set of Re_\text{\varepsilon} at \(\beta h = 1.5707 \) corresponding to an optimal spanwise wavelength \(\lambda_{\text{\text{\varepsilon}}} = 4 h \) (a value slightly larger than the \(\sim 3 h \) value found in Refs. 12 and 15). The maximum energy growth is of the order of ten and increases with Re_\text{\varepsilon} (see Fig. 2). In the laminar channel flow case the maximum energy growth scales with the square of the Reynolds number11,23,24 based on the center line velocity \(U_\text{\text{\varepsilon}} \), half-channel width \(h \) and the molecular viscosity. In the present turbulent case, therefore, we try a scaling with an “effective” turbulent Reynolds number Re_\text{\varepsilon} = \text{\text{\varepsilon}} h / \nu_{\text{\max}}^{(\text{\text{\varepsilon}})} based on the outer units \(h, U_\text{\text{\varepsilon}} \) and the maximum total viscosity \(\nu_{\text{\max}}^{(\text{\text{\varepsilon}})} = \text{\text{\varepsilon}} y(\text{\text{\varepsilon}}) \). This outer-unit-effective Reynolds number should not be confused with the effective Reynolds number defined in Ref. 15 associated with inner layer structures and used to interpret the inner peak growth. For the considered mean flow profiles, Re_\text{\varepsilon} ranges from 256 to 368 when Re_\text{\varepsilon} is between 500 and 20 000. The maximum energy amplification \(G_{\text{\max}}^{(\text{\text{\varepsilon}})} \) is seen to scale approximately linearly with Re_\text{\varepsilon}. In Fig. 4(a) \(G_{\text{\max}}^{(\text{\text{\varepsilon}})} \) and its fit 0.037 \text{\text{\varepsilon}} 87 Re, are plotted versus Re_\text{\varepsilon}. The optimal dimensionless time \(\tau_{\text{\max}} U_\text{\text{\varepsilon}} / h \) at which the outer peak optimal is attained increases with the Reynolds number scaling approximately like Re_\text{\varepsilon}^{3/2} [see Fig. 4(b)]. As presently there is no theoretical support for these scalings, they should be considered only as empirical data fits. Furthermore, for large Reynolds numbers (Re_\text{\varepsilon} \approx 10 000) the \(G_{\text{\max}}^{(\text{\text{\varepsilon}})} \) curve begins to deviate from the linear behavior in Re, and it deviates even...
outer peak vs Re. The dashed line is the fit 0.03787 Rekraine, (b) Associated dimensionless time vs Re. The dashed line is the fit Re$^{1.595}$. Further for larger Re, however, we have to remind that the κ and A constants used to fit the eddy viscosity and the mean profile have been calibrated versus DNS at the low Re,=2000, and therefore, probably no conclusions can be drawn at very large Re.

B. Scaling of the optimal perturbations

In Fig. 5, the wall normal velocity component v of the initial vortices and the streamwise velocity component u of the resulting vortices for each Reynolds number are plotted versus, respectively, the wall normal inner (y^+) and outer (η) coordinates. The optimal perturbations are seen to assume a shape almost independent of the Re, when rescaled in proper units, even if this independence is only qualitative, as revealed by a close examination of Fig. 5. Regarding the inner peak, it is observed that the maximum of the optimal initial v, giving the distance from the wall of the optimal initial counter-rotating vortices, is situated approximately at $y^+=15$, while the maximum of the optimal final u is situated near $y^+=10$. As for the outer peak, the maximum of the optimal initial u is located at the channel center $\eta=0$ while the maximum of optimal outer streak is situated near the wall, at $|\eta|=0.80$.

When replotted in inner variables, the amplitudes of the outer optimal streaks collapse on a single curve in the log and near wall regions where they are proportional to the mean flow velocity profile U. This is shown in Fig. 6 where the data already reported in Fig. 5(d) are replotted in inner variables expressing u_{opt} in wall units by using the factor $U^{\prime}(Re)_{\|}/U^{\prime}(5000)$ where Re, =5000 is taken as the reference case. In the same figure, the Re, =5000 mean velocity profile rescaled to have unit amplitude at the position of the maximum of the corresponding streak (where the streak amplitude is also normalized to one) is also reported for comparison. This particular scaling of the optimal streaks allow them to have very large amplitudes inside the near wall region, just like the mean flow: at $y^+=10$, they can still have half of their maximum amplitude.

VI. SUMMARY AND DISCUSSION

The computation of the optimal energy growth in a turbulent channel flow by del Álamo and Jiménez15 has been repeated using a linear operator consistent with previous investigations of laminar16 or turbulent flows with variable eddy viscosity. As in Ref. 15, and consistently with the analogous analysis of a turbulent boundary layer,16 it is found that: (a) only streamwise elongated structures can be transiently amplified; (b) the most amplified perturbations are streamwise uniform and consist in streamwise vortices amplified into streamwise streaks; (c) for sufficiently large Reynolds numbers two different peaks of the optimal growth $G_{max}(\alpha=0, \beta)$ are found, scaling in inner and in outer units, respectively; (d) the maxi-

FIG. 4. (Color online) (a) Maximum growth $G_{max}^{(\text{out})}$ corresponding to the outer peak vs Re. The dashed line is the fit 0.03787 Re$^{\kappa}$. (b) Associated dimensionless time vs Re. The dashed line is the fit Re$^{1.595}$.

FIG. 5. (Color online) [(a) and (c)] Normalized amplitude of the v component of the optimal initial vortices and [(b) and (d)] of the u component of the corresponding optimally amplified streaks for Re,=500, 1000, 2000, 5000, 10,000, and 20,000 (recall that for $\alpha=0$, u and v are real while w is pure imaginary). [(a) and (b)] Corresponding to the secondary peak in Fig. 2, displayed in wall units. [(c) and (d)] Corresponding to the main peak in Fig. 2, displayed in outer units. Same line styles as in Fig. 1.
mum growth associated with the inner peak does not depend on \(Re\), and is obtained for structures having a spanwise wavelength \(\lambda^+\approx 100\); and (e) the time at which the optimals are reached is roughly proportional to their spanwise wavelength \(\lambda^+\).

The optimal spanwise wavenumber (\(\lambda^+ = 92\)) and growth (\(C_{\text{max}}^{(\text{out})} = 2.6\)) corresponding to the peak scaling in inner units are slightly smaller than the ones found in Ref. 15, and the difference must be attributed to the different linear operators used in the analysis. The precise figures of these optimal values should not, however, be overemphasized because of the very crude assumptions made in their derivation and because their value slightly depends also on the choice of the von Kármán \(\kappa\) and \(A\) constants used for the mean flow fits. The selected optimal \(\lambda^+\) are anyway in very good accordance with experimental results\(^1,2\) where the measured mean spacing of near wall streaks ranges from 80 to 110 in an apparently random way.

The most important difference with the results obtained in Ref. 15 is that the maximum growth corresponding to the outer peak increases with the Reynolds number. In a first approximation, the outer optimal growth scales linearly with an effective turbulent Reynolds number based on outer units, similar to what is observed for the turbulent boundary layer.\(^16\) The optimal growth is obtained for structures with a spanwise wavelength \(\lambda^+ \sim 4h\), larger than the laminar optimal, which is also consistent with what is found in the turbulent boundary layer case.\(^16\)

The optimal vortices and streaks corresponding to the two peaks are seen to be approximately self-similar in respective inner and outer units. The optimal streaks corresponding to the outer peak are, however, seen to scale also in inner units in the viscous layer (roughly \(y^+ \approx 150\)), where they are proportional to the local mean velocity. The outer streaks have, therefore, non-negligible amplitudes in all the viscous layer (they have up to 50\% of their maximum amplitude near \(y^+ = 10\)).

The two combined facts that the outer peak \(C_{\text{max}}^{(\text{out})}\) increases with \(Re\) and that the associated optimal streaks strongly protrude into the viscous layer, can be related to experimental and numerical evidence of the influence of outer scales into the inner layers. In particular, it has been observed both in experiments\(^25\) and numerical simulations\(^20\) that the streamwise turbulent intensity \(u_{\text{rms}}\) in the outer layer of wall flows does not collapse in wall units with increasing \(Re\), and that this lack of collapse grows with \(Re\).

Structures almost streamwise uniform (\(\lambda^+ \gg h\)) with \(\lambda^+ \sim 4h\) are observed in DNS of turbulent channel flows\(^6\) even if these structures are not the most energetic ones. The observed most energetic structures are not streamwise uniform but have finite \(\lambda^+\) typical of the order of \(\approx 5-10h\) (corresponding to \(ah \approx 0.5-1\)) and a typical spacing \(\lambda^+ \approx 2-3h\), which corresponds well to the optimal \(\lambda^+\) that would be found for those \(a\) (e.g., for \(ah = 1\) the optimal is \(\lambda^+ = 2.45\)). The fact that the streamwise uniform streaks are not the most energetic ones probably means that these structures are not self-sustained or are only weakly sustained because of a poor feedback to reform the vortices or that they are just passively forced by other self-sustained structures. This is because the amplification of the streaks is only part of more complex processes leading, e.g., to self-sustained cycles. To see these potentially largely amplified structures, one must probably artificially force them as recently done in the turbulent Couette flow.\(^26\) Forcing large amplitude streaks could be interesting to manipulate the flow, as already shown in the case of laminar boundary layers.\(^27,28\)

ACKNOWLEDGMENTS

We are pleased to acknowledge fruitful discussions with J. Jiménez and J. C. del Álamo. G.P. acknowledges partial support from ANRT through a “Conventional CIFRE.” M.G.-V. acknowledges the financial support of the German Research Foundation (DFG) through the project GA1360/2-1.

19In Ref. 15, the eddy viscosity is defined using \(\nu_{\text{eff}}\) defined in the domain \([0,2]\) with \(\nu_{\text{eff}} = \eta + 1\). Even if the correct expression seems to have been used, some misprints appear in Eq. (2.2) of Ref. 15, that should read instead: \(\nu_{\text{eff}}(\eta) = (1/2)[1 + (\kappa^2 R_{\text{e}})^{(1/2)}(2\eta - \eta^{2})^{2} - (\eta^{2} + 2\eta^{2})^{2}(1 - \exp[(\eta - 1)/(R_{\text{e}}/A)])]^{1/2} - (1/2)\).