

 Karlsruhe Reports in Informatics 2011,17
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Density-Constrained Graph Clustering

Robert Görke, Andrea Schumm, and Dorothea Wagner

 2011

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Density-Constrained Graph Clustering?

Robert Görke, Andrea Schumm, and Dorothea Wagner

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany

Abstract. Clusterings of graphs are often constructed and evaluated
with the aid of a quality measure. Numerous such measures exist, some of
which adapt an established measure for graph cuts to clusterings. In this
work we pursue the problem of finding clusterings which simultaneously
feature guaranteed intra- and good intercluster quality. To this end we
systematically assemble a range of cut-based bicriteria measures and,
after showing NP-hardness for some, focus on the classic heuristic of
constrained greedy agglomeration. We identify key behavioral traits of
a measure, (dis-)prove them for each one proposed and show how these
translate to algorithmic efficiency. We close by giving ILP formulations.

1 Introduction

The guiding intuition in the field of graph clustering is “intracluster density
vs. intercluster sparsity”. Mathematical formalizations thereof abound, most of
which, however, incorporate both aspects into a single criterion, which then
serves as a quality measure for graph clusterings. Balance between the two as-
pects is a fine line and treating them separately allows to adjust their tradeoff
as to fit given desiderata. While the recent literature on graph clustering (we
recommend [9,7] for an overview) has mainly been focusing on large data sets
and on single criteria such as Modularity [11], Kannan et al. [10] propose to min-
imize the cut between, subject to a guaranteed conductance within the clusters
and show that this approach avoids the drawbacks of many simpler measures.
This stepping stone in bicriterial graph clustering inspired Flake et al. [6], who
give an algorithm with provable, but interdependent bounds on both intra- and
a variant intercluster expansion. Brandes et al. [3] were the first to use a notion
of intercluster conductance to experimentally evaluate clustering algorithms.

Together with sparsity, expansion and conductance are well-known and in-
disputable measures for quantifying the clarity of a cut, and each one suggests
adaptions to measuring clusterings with respect to both aspects. However, only
very few have so far been coined and used. We systematically assemble such
measures and set our main focus on scrutinizing their behavior in the light of
the question which combinations enable efficient greedy agglomeration, putting
aside other algorithmic approaches [7]. This classic hierarchical technique used
for clustering [7,2,5] starts with singletons and iteratively merges clusters, usu-
ally driven by some objective function, until a stopping criterion is met. We

? This work was partially supported by the DFG under grant WA 654/19-1

2

show that algorithmic efficiency and behavior strongly depends on three traits
of a measure, roughly described as the range of feasible merges in terms of con-
nectedness, the robustness of comparisons between merges and the monotonicity
of a measure. For each established measure we prove or disprove these traits,
leading both to qualitative insights and assertions on time and space complexity.
We further motivate the use of a greedy heuristic by showing NP-hardness for
some of our problem statements and give a brief discussion how the constraints
and objectives we use can be cast into integer linear programs. Systematic ex-
periments evaluating how well these measures conform to human intuition and
how well the proposed algorithms discover existing clusterings are beyond the
scope of this work.

Notation and Preliminaries. Let G = (V,E) be an undirected, unweighted,
and simple graph1. We set |V | =: n, |E| =: m and C = {C1, . . . , Ck} to be a
partition of V . We call C a clustering of G and sets Ci clusters. Note that we
restrict ourselves to disjoint clusters in this work. The cluster containing vertex
v is C(v). A clustering is trivial if either k = 1 (all-clustering), or each cluster
contains only one element (singletons).

(C
2

)
denotes the set of all unordered pairs

of clusters. We identify cluster C with the set of nodes it constitutes and with its
vertex-induced subgraph of G. Then E(C) :=

⋃
C∈C E(C) are called intracluster

edges and E \E(C) intercluster edges. For two subsets A and B of V , mA,B :=
|{{u, v} ∈ E | u ∈ A, v ∈ B}| is the number of edges between A and B, nA := |A|
is the number of vertices in A, mA := |E(A)| is its number of intracluster edges
and xA := mA,V \A the number of intercluster edges incident to A. Further, the
volume vA of A is defined as vA :=

∑
v∈A deg(v). For A 6= B ∈ C, we call {A,B}

a merge and abbreviate AB := A∪B. Then, C{A,B} := C \{A,B}∪{AB} is the
result of this merge. A clustering measure is a function that maps clusterings to
real numbers, thereby assessing the quality of a clustering. We define high quality
to correspond to high (low) values of intracluster (intercluster) measures.

2 Quality Measures for Clusterings

The bicriteria measures we construct and use in this work build upon conduc-
tance, expansion and density. The conductance of a cut (S, T) measures the
bottleneck between S and T , defined as

mS,T

min{vS ,vT } ; expansion substitutes vol-

ume by cardinality:
mS,T

min{nS ,nT } . The density (or sparsity) of a cut is
mS,T

nSnT
, which

equals the uniform minimum-ratio cut ; the density of a graph is m
0.5n(n−1) , and

the conductance of a graph is minS⊆V
mS,V \S

min{vS ,vV \S} (expansion is analogous).

Intracluster measures quantify how well the vertices within a cluster are inter-
connected. For intercluster measures, we distinguish two ways of measuring cuts:
between pairs of clusters (pairwise), or cutting off a cluster (isolating). Hereby,
isolated measures assess how well a cluster is separated from the remainder of
the graph and pairwise measures how well the clusters are separated from one

1 A simple graph in this work is both loopless and has no parallel edges.

3

another. To have these quantities express the quality of an entire clustering, we
can either construct a worst-case measure (minimum/maximum) or an average
measure. Density works analogously, however, it also lends itself to the natural
idea of adding up all values before normalization (global). A simple alternative
is globally counting intercluster edges. For convenience we list the measures thus
constructed in Tables 1 and 2 and henceforth use their abbreviations.

Table 1: Density and counting

intracluster density

global gid
∑

C∈C mC∑
C∈C (nC

2)

minimum mid min
C∈C

mC

(nC
2)

average aid 1
|C|
∑
C∈C

mC

(nC
2)

intercluster density

global gxd
∑

A6=B∈C mA,B∑
A 6=B∈C nAnB

max. pw. mpxd max
A 6=B∈C

mA,B

nAnB

max. is. mixd max
C∈C

xC
nCnV \C

av. pw. apxd
(|C|

2

)−1∑
{A,B}∈(C2)

mA,B

nAnB

av. is. aixd 1
|C|
∑
C∈C

xC
nCnV \C

intercluster edges

global nxe
∑

{A,B}∈(C2)
mA,B

The very evaluation of both the conductance
and the expansion of a graph is NP-hard ([1]
and [8] respectively).While there are many ways
to deal with this, it generally discourages the
use of these functions as intracluster measures.
2 Density, by contrast, is well suited, yielding
gid, mid and aid; we refer to a cluster C’s contri-
bution as id(C) = 2mC

nC(nC−1) . Intercluster cuts,

in turn, are efficiently computable. Thus, in ac-
cordance with the above classification, we define
all twelve resulting intercluster measures (Ta-
bles 1 and 2), plus the two measures with a
global nature: gxd and nxe. Adhering to our ab-
breviations, we denote individual clusters’ con-
tributions by ixd(C) := xC

nCnV \C
, ixc(C) :=

xC

min{vC ,vV \C} and pxd({C,D}) :=
mC,D

nCnD
, further-

more we call the number of intracluster edges
nie := n − nxe. We generally define the intr-
acluster density of a singleton to be 1, and,
analogously, the intercluster quality of the all-
clustering to be maximal. Any other choice is
counterintuitive on trivial examples such as a clique or a clique plus an isolated
vertex.

Qualitative Observations. While all proposed intra- and intercluster mea-
sures are based on the same intuition, there are fundamental differences in the

2 Note that a bottom-up approach cannot use the approximation results used in [10].

Table 2: Intracluster measures based on conductance and expansion

intercluster conductance intercluster expansion

maximum pairwise mpxc maxA 6=B∈C
mA,B

min{vA,vB}
mpxe maxA 6=B∈C

mA,B

min{nA,nB}

maximum isolated mixc max
C∈C

mC,V \C
min{vC ,vC\S}

mixe max
C∈C

mC,V \C
min{nC ,nC\S}

average pairwise apxc 1

(|C|
2)

∑
{A,B}∈(C2)

mA,B

min{vA,vB}
apxe 1

(|C|
2)

∑
{A,B}∈(C2)

mA,B

min{nA,nB}

average isolated aixc 1
|C|
∑
C∈C

mC,V \C
min{vC ,vV \C}

aixe 1
|C|
∑
C∈C

mC,V \C
min{nC ,nV \C}

4

way they assess particular clusterings. One important point is whether balanced
clusterings, i.e., homogeneous cluster sizes, are rewarded or penalized. As an
example aid has a tendency to favor unbalanced clusterings, as singletons de-
generatively yield optimum values and it is easy to compensate the existence
of a large cluster with poor intracluster density with an appropriate number
of singletons. In contrast to that, mid rewards balanced clusterings, as clusters
that are larger than the average are more likely to have low intracluster density
and thus to be the qualitative bottleneck. Gid ranges somewhere between these
extremes. Using the number of intercluster edges to measure intercluster quality
clearly favors unbalanced clusterings, as cutting off small portions of the vertex
set from the remainder of the graph usually cuts far fewer edges than partition-
ing the graphs in two blocks of roughly equal size. To some extent this effect can
be compensated by combining nxe with an appropriate intracluster measure.

In the context of intercluster measures, another interesting aspect is how
vertices that are only loosely connected to the remainder of the graph are han-
dled. For example, singletons with degree one have a low intercluster density
of 1/(|V | − 1) but maximum intercluster conductance of one. Thus, algorithms
minimizing intercluster conductance are prone to put “outsiders” in the clusters
of their neighbors, while algorithms minimizing intercluster density will tend to
consider these vertices as singletons. Both views can be motivated, depending
on the desiderata: If a vertex is linked to just a single vertex of a larger group,
it can be hardly considered as an integral part of this group and should thus be
treated separately. On the other hand, this vertex has no links to other groups
and thus, from its point of view, it clearly has a strong affiliation to the group
of its neighbor.

2.1 Problem Statement

In the following we narrow down the myriad formalizations for combining intra-
and intercluster quality and state the problem we focus on. Not only do these
two aspects capture different properties of a clustering, they even tend to oppose
each other: Fine clusterings easily achieve high intracluster density but poor
intercluster quality, while the converse is true for coarse clusterings. In the light
of a bottom-up strategy, intercluster density aspires a coarse clustering and starts
out poorly, which suggests using it as the driving objective function. By contrast,
intracluster density starts out with optimum quality, which, on the one hand,
discourages using it as the driving force, but, on the other hand, suggests it as
a suitable constraint. We thus formalize our problem statement as follows, an
exemplary instance and its solution are given in Fig. 1.

Problem (Density-Constrained Clustering). Given a graph G = (V,E),
among all clusterings with an intracluster density of no less than α, find a clus-
tering C with optimum intercluster quality.

2.2 Complexity

An exhaustive study of hardness results for all combinations of intra- and inter-
cluster measures is beyond the scope of this work. We exemplarily show NP-

5

Fig. 1: Zachary’s karate club [12] represents a social network and is traditionally used
for a test of feasibility in the graph clustering literature. Groups represent the split of
the network in reality, fill colors depict the optimal solution to our problem statement
using nxe constrained by mid with α = 0.25. Reviewing an optimal solution (see Sect. 4)
helps judging this measure’s usefulness independently of an algorithmic approach. For
comparison, border colors indicate a Modularity-optimal clustering [11]. By contrast,
aid yields the all-clustering with the exception of one singleton vertex (12), pointing
out its undesirable tendency to allow degeneratively imbalanced clusterings.

hardness for Density-Constrained Clustering combining mid, aid or gid
with nxe, but conjecture NP-hardness for all remaining combinations. We use
that, if we set α = 1, the decision variant of our problem is equivalent to the
following problem.

Problem (Min-Cut Clique Partition). Given a graph G = (V,E), is there a
partition C of V into cliques such that nie(C) is at least k?

This problem is similar to both the classic problem Partition into Cliques [8],
which instead minimizes the number of cliques and the edge-maximizing variant
of the Kr-Packing Problem [4], which differs in that it only allows cliques
with bounded size. To the best of our knowledge, Min-Cut Clique Partition
has not yet been investigated. We reduce from Exact Cover by 3-Sets [8].

Problem (Exact Cover by 3-Sets, X3C). Given set X with |X | = 3q and
collection S of 3-element subsets of X . Does S contain an exact cover for X , i.e.,
a subcollection S ′ ⊆ S such that every x ∈ X occurs in exactly one S ∈ S ′?

...

Kn

...

Kn

S1

Sm

VX

vx1

vxn

Fig. 2: Sketch of reduction

We transform an instance I = (X ,S) of X3C
with |X | =: n into a graph G(I) as follows. For
each x ∈ X we add a vertex vx, and interconnect
the resulting set VX into an n-clique. Then, we
map each set S ∈ S to an n-clique Kn(S). For
x ∈ S, we link vx with each vertex in Kn(S). A
sketch of this reduction is given in Fig. 2, clearly,
it is polynomial.

Lemma 1. Let I = (X ,S) be an instance of X3C. Then, I is solvable iff there
exists a partition C of G(I) into cliques such that ixc(C) is at least |S|·

(
n
2

)
+n2+n.

6

Algorithm 1: Generic Greedy Agglomeration

Input : graph G = (V,E), function objective, (constraint-) predicate allowed
Output: clustering C of G
C ← singletons
A ← {{A,B} ∈

(C
2

)
| allowed(CA,B) and objective(CA,B) ≤ objective(C)}

while |C| > 1 and A 6= ∅ do
M ← arg min

M∈A
{objective(CM)}

C ← CM
A ← {{A,B} ∈

(C
2

)
| allowed(CA,B) and objective(CA,B) ≤ objective(C)}

return C

Proof. ⇒: Let S ′ ⊆ S be an exact cover for X . For each set S ∈ S we introduce
a cluster containing Kn(S). If S = {a, b, c} is in S ′, this cluster also contains
the vertices va, vb and vc. As S ′ is an exact cover, the set of these clusters is a
partition C of the vertices in G(I). C partitions the subgraph induced by VX into
triangles, inducing n intracluster edges in this subgraph. With this, it is easy to
see that there are exactly |S| ·

(
n
2

)
+ n2 + n intracluster edges.

⇐: Let C′ be a partition of G(I) into cliques such that the number of in-
tracluster edges is at least |S| ·

(
n
2

)
+ n2 + n. Without loss of generality we

assume that each element in X belongs to at least one set in S. We transform
C′ into a partition C of G(I) into cliques without decreasing nie such that (i)
each Kn(S) is completely contained in a cluster and (ii) each vx is contained
in one of the clusters containing a Kn(S) with x ∈ S. Assume that for a set
S = {a, b, c} Kn(S) is fragmented, i.e., there is more than one cluster C in
C′ with C ∩ Kn(S) 6= ∅. Then, each such C is contained in the larger clique
Kn(S) ∪ {va, vb, vc}. Thus, merging these clusters is valid and clearly increases
nie, which yields (i). A vertex vx that does not share a cluster with any Kn(S)
of an S 3 x can contribute at most |VX \ {vx}| = n− 1 intracluster edges. Thus,
moving vx to any cluster C containing a Kn(S) with x ∈ S increases nie, which
yields (ii). In the transformed clustering C, the cliques Kn(S) contribute |S|·

(
n
2

)
,

and the linkage between them and VX contributes n2 to nie. Thus, the subgraph
G′ induced by VX must contain at least n intracluster edges, implying that the
mean number of intracluster edges a vertex in G′ is incident to is two. Since all
sets contain only three elements, at most three of the vertices in VX can share
a cluster, hence, each vertex is incident to at most two intracluster edges in G′.
It follows that C partitions G′ into disjoint triangles. This means that either all
vertices corresponding to the elements in a subset S share a cluster with Kn(S),
or none of them. Hence, C induces an exact cover of X . ut
Corollary 2. Min-Cut Clique Partitioning is NP-hard.

3 Generic Greedy Agglomeration

The general structure of a greedy merge algorithm based on an objective function
is given in Alg. 1. The idea is to choose from a constrained set of allowed merges

7

the one that improves (w.l.o.g. minimizes) the objective function the most. The
Modularity-based approach [5] fits into this concept if we set the objective func-
tion to be negative Modularity and use no constraint. Recalling our problem
statement, our objective is to minimize intercluster density, subject to the re-
striction that no merge decreases intracluster density below a given threshold
α ≤ 1. If allowed(CA,B) only depends on A and B, in each step of Alg. 1 at most
2n−3 elements are deleted from and at most n−2 new elements are inserted into
A. Together with the condition that elements can be compared in constant time
and that A can be maintained in a heap, using benefits as keys, the time com-
plexity of Alg. 1 is in O(n2 log n). Before we detail this observation (Sect. 3.2),
we first determine whether intercluster measures as objectives efficiently drive
greedy agglomeration, in that they iteratively suggest eligible merges.

3.1 Merge Behavior

An objective function f is said to have unbounded merge behavior if for any
clustering C with at least two clusters, there exist clusters A,B ∈ C, such that
merge {A,B} does not increase f . We elucidate the merge behavior of each
proposed intercluster measure, either by proving its unboundedness or by giving
an example instance which poses a local minimum (summarized in Tab. 3 in
App. C). We defer the proofs of all affirmative observations to App. B, and
summarize them in the following proposition.

Proposition 3. The intercluster measures nxe, gxd, mixc, mixe, aixc, aixe, mixd
and mpxd exhibit unbounded merge behavior.

Roughly speaking, the ingredient common to all proofs on maximum measures
is the fact that, by investigating the adjacencies of the worst cluster B, we
can always identify some worst contributor to B’s value as an eligible partner
for a merge. Likewise, aixc (aixe) allows us to find one or more clusters with
a detrimental contribution, and then identify those adjacent clusters which are
mainly liable for this as candidates for an improving merge. All the proofs are
constructive in that they point out how to find a non-increasing merge.

Bounded Merge Behavior. From our set of fourteen objective functions,
the remaining six do not have unbounded merge behavior, but can instead get
stuck in local minima, such that no further merge is non-increasing. Thus, even
without a constraint, the all-clustering cannot be reached. In Fig. 3 we give
specific instances which are local minima of mpxc and mpxe (a), apxd, apxc and
apxe (b), and of aixd (c). The common intuition for average measures is that
a merge must not reduce the number of beneficial clusters (or pairs thereof)
too dearly. Mpxc and mpxe are prone to local minima near balanced clusterings.
Roughly speaking, this is due to the case distinction in the denominator of their
base measures ruining arguments analogous to those in Proposition 17 for mpxd.

8

(a) mpxc, mpxe (b) apxd, apxc, apxe

4 4

4
4

19

(c) aixd (edges are summarized)

Fig. 3: These instances illustrate bounded merge behavior. Given clustering C (grey),
no further merge is non-increasing for the measures pointed out.

3.2 Impact of Clustering Measures on Running Times

We already gave conditions under which Alg. 1 can be implemented with a time
complexity in O(n2 log n). Here, we first review the constraints’ impact, and then
examine how the stated conditions can be relaxed without losing efficiency.

A

B

Fig. 4

Intra-Density. Using constraints potentially impedes quick
agglomeration, as it does not suffice to determine the merge
that improves the objective function the most. The good news
is that if we use mid as a constraint, the feasibility of a merge
only depends on the density of the merged cluster, which is
clearly independent of the remainder of the clustering, and
thus need only be checked once, incurring no penalty in running time. However,
for gid and aid, this does not hold, as the status of a merge can change from
allowed to disallowed and back again. In Fig. 4, starting from the gray clustering,
merging the path to the left is not allowed if the constraint gid(C) ≥ 0.7 is
used. If singletons A and B are merged, this is allowed again, as the number of
intracluster pairs increases. Figure 8 in App. C shows a similar example for aid.

As a heuristic approach, if it is possible to store all merges in a binary search
tree, sorted by their benefit to the objective function, this tree can be traversed
until we find a feasible merge. This might be more efficient than just searching
through all possible merges, as the number of disallowed merges we encounter
is limited to the number of more beneficial ones. However, in the worst case,
it yields no improvement. We therefore focus our analysis on using mid as the
constraint, supported by its good behavior in preliminary experiments, and leave
a more efficient treatment of gid and aid open.

Locality. Independent of issues concerning the handling of constraints, in the
following we resolve which properties an objective function f has to fulfill such
that a set of feasible merges can efficiently be maintained in a heap. Intuitively, f
should allow us to decide, without knowledge about the remainder of the cluster-
ing, which of two given merges is more beneficial to it. If the benefit exclusively
depends on the participating clusters, as for nxe alone, this is immediate and
decisions never change. For maximum isolated measures, by contrast, a merge

9

A B C D

(a) mpxd, apxd

A B

C

D

(b) mpxc

A

B

C

D

(c) mpxe

A C

B

D

(d) gxd

Fig. 5: Locality counterexamples: The base clustering consists of the gray clusters. In
(a) and (c), if the blue, dashed merge is performed, merge {C,D} is better, if the
red, dotted merge is performed, {A,B} is better. In (b) and (d), in the base clustering,
{C,D} is better than {A,B}, if the red, dotted merge is performed, the opposite holds.

can be non-improving at some point of the algorithm and then become improv-
ing again. The intuition is to require the existence of a relation ≤f that almost
behaves like ordering the set of merges by their benefit for the objective func-
tion but allows for clever tie-breaking. To serve as a comparator in a priority
queue, ≤f should closely resemble a total quasiorder on the set of all possible
merges.3 Informally, we call an objective function local, if it allows for such a
relation. More formally, we get the following definition. Let us denote the set of
all possible merges, i.e., the set of all unordered pairs of subsets of V , as M.

Definition 4. An objective function f on clusterings is local, if there exists a
relation ≤f on M×M such that for any clustering C and for all M1,M2,M3

in M with M1 ∪M2 ∪M3 ⊆ C, the following holds:

M1 ≤f M2 or M2 ≤f M1 ≈ totality

M1 ≤f M2 ∧M2 ≤f M3 =⇒M1 ≤f M3 ≈ transitivity

M1 ≤f M2 =⇒ f(CM1
) ≤ f(CM2

) consistency with f

Based on the above considerations, we will now state sufficient conditions for
both non-locality (Lemma 5) and locality (Lemmas 6,8), thereby resolving lo-
cality for all our objective functions. We exemplarily state the short proof of
Lemma 8, but defer all other proofs to App. C.

Lemma 5. Let f be a clustering measure. If there exists a graph with two clus-
terings C and D both containing two merges M1 and M2 such that f(CM1

) <
f(CM2

) and f(DM1
) > f(DM2

), then f is not local.

For mpxd, apxd, mpxc, mpxe and gxd, Figure 5 shows examples where the pre-
conditions of Lemma 5 hold, implying that these measures are not local. The
rough idea behind the examples in Figs. 5a-5c is that a low pairwise intercluster
quality between two clusters can be improved by merging one of the partners
with a third cluster. Figure 5d exploits that merging large clusters becomes
more attractive if the global intercluster density is low. An instance proving the
nonlocality of apxe and apxc is given in Fig. 9 in App. C.

3 We do not need a proper total quasiorder as we never have to compare pairs of merges
that cannot coexist in a clustering, e.g., because the clusters considered intersect.

10

Lemma 6. Let f be an objective function such that f(C) can be expressed as
f(C) = max

C∈C
f ′(C), with f ′(C) solely depending on C. Then, f is local.

Proof sketch. Let C be a clustering and D = {D1, . . . , Dk} ⊆ C. Then we define
L(D) := (f ′(Di1) ≥ . . . ≥ f ′(Dik)) to be the non-increasing sequence of function
values of all Di ∈ D. Let ≤` be the lexicographical order on sequences of real
numbers. The proof relies on the observation that for arbitrary merges M1 =
{A,B} and M2 = {C,D} ⊆ C, L(CM1

) ≤` L(CM2
) implies f(CM1

) ≤ f(CM2
). We

show that L(CM1
) ≤` L(CM2

) is equivalent to L({f ′(A ∪ B), f ′(C), f ′(D)}) ≤`

L({f ′(C ∪D), f ′(A), f ′(B)}) and that the latter relation satisfies locality.

Corollary 7. Mixd, mixc and mixe are local.

Lemma 8. Let f be an objective function such that f(C) can be expressed as
f(C) = 1

|C|
∑

C∈C f
′(C), with f ′(C) solely depending on C. Then, f is local.

Proof. Let C be an arbitrary clustering containing four clusters A, B, C and D.
Then, f(CA,B) ≤ f(CC,D) implies that

f ′(A ∪B)− f ′(C)− f ′(D)︸ ︷︷ ︸
:=kA,B

≤ f ′(C ∪D)− f ′(C)− f ′(D)︸ ︷︷ ︸
:=kC,D

As for each cluster, f ′ is independent of the remainder of C, this inequation
shows that ≤f := {

(
{A,B}, {C,D}

)
| kA,B ≤ kC,D} is a quasiorder on M×M

such that {A,B} ≤f {C,D} implies f(CA,B) ≤ f(CC,D). Thus, f is local. ut

Corollary 9. Aixd, aixc and aixe are local.

For nxe, it is easy to see that choosing ≤f such that {A,B} ≤f {C,D} is
equivalent to mA,B ≥ mC,D satisfies the definition of locality. We have now
proven or disproven the locality of all intercluster measures (for a summary
see Tab. 3 in App. C). Note that all proofs of locality are constructive in that
they induce comparators which can be used to efficiently maintain the set of
all possible merges considered by Alg. 1 in a priority queue. For the maximum
functions, triples of real numbers can be used as keys, compared as described
in the proof of Lemma 6. Using average functions, it suffices to store the values
kA,B defined in the proof of Lemma 8. All keys as well as the density of a new
cluster can be computed and compared in constant time if, for any two clusters
A and B, the values vA, xA, nA and mA,B are maintained. Summarizing, we
obtain the following corollary.

Corollary 10. Algorithm 1 combining mid with mixd, mixc, mixe, aixd, aixc,
aixe or nxe can be implemented with a running time in O(n2 log n).

Disconnected Merges. Whenever no single edge links two clusters, intuitively,
merging them should not be beneficial to the clustering, or at least, such a merge
should not be the best option. In the light of our bicriterial approach, an objective

11

function which does encourage such a disconnected merge is naturally opposed by
the separate mechanism of a constraint on the intracluster density. Superficially,
this resolves the issue for non-degenerate instances; however, a more accurate
assertion is algorithmically relevant: If we can rule out disconnected merges, it
suffices to maintain only the set of connected merges in the heap (see Alg. 1), of
which there are at most m (instead of Ω(n2)). This implies linear space and—
given locality—O(md log n) time complexity, where d denotes the height of the
dendrogram.4 For sparse graphs (m ∈ O(n)), this bound can be an improve-
ment, since d usually approaches log n (but never exceeds n). This analysis has
initially been observed for Modularity [5], which enforces connected merges. It
uses that, for each level of the dendrogram, only O(m) heap entries are updated.
In the following we resolve the question whether our objective functions enforce
connected merges.

We say an objective function f enforces connected merges if for any pair of
clusters C 6= D ∈ C with mC,D = 0 and f(C)−f(C{C,D}) > 0 (i.e., an improving,
disconnected merge), there exist clusters A 6= B ∈ C such that mA,B > 0 and
f(C{C,D}) > f(C{A,B}) (i.e., a better, connected merge). In fact, only nxe and
gxd enforce connected merges in general (see Tab. 3 in App. C). Both measures
never even benefit at all from disconnected merges: The former does not change,
and the latter even deteriorates. The circumstances under which all other mea-
sures potentially encourage disconnected merges are intuitively illustrated in
Fig. 6. If most clusters are reasonable, merging two clusters with a particularly
ill contribution to the measure can be the best option (Fig. 6a). For all pairwise
measures, this is immediate, and it is also not hard to see for all average mea-
sures, as, roughly speaking, the number of bad contributors decreases. While the
above arguments fail for mixc, mixe and mixd, a disconnected merge of a bad clus-
ter with a very good one can be the best option for them (Fig. 6b and Fig. 10 in
App. C). Note that it is always possible to artificially restrict the set of allowed
merges to connected ones, yielding a modified greedy algorithm. Evaluating the
practical impact of such a restriction shall be subject to an experimental study;
in our preliminary experiments, we observed none. We summarize our positive
observations in the following corollary, which can be extended to also apply to
any local objective function if we restrict ourselves to connected merges.

Corollary 11. Algorithm 1 combining mid with nxe can be implemented with a
running time in O(md log n) and linear space complexity.

4 Integer Linear Programs

In this section we sketch out how the problem statements we deal with can be
cast into integer linear programs. Since an in-depth treatment of this topic is
beyond the scope of this work, we divert details to App. A, which, however, is
still far from exhaustive. The foundation of all our formulations is a set X of
O(n2) binary variables Xuv, which indicate whether vertices u and v share a

4 A dendrogram is a binary forest with singletons as leaves, and inner vertices repre-
senting the merge operations of an agglomerative process.

12

v1 v2

(a) apxc, apxe, apxd, aixc, aixe, aixd, mpxc,
mpxe, mpxd

B

DC

A

(b) mixc, mixe

Fig. 6: Given the gray clusterings, disconnected merges (red, dotted) yield the highest
improvement for the objective functions pointed out. Thus, all objective functions, ex-
cept nxe and gxd, potentially favor disconnected merges (for mixd, see Fig. 10, App. C).

cluster (Xuv = 1) or not (Xuv = 0). Since for a clustering, X constitutes an
equivalence relation on V , O(n3) constraints suffice to ensure transitivity within
X . Based on X , we can model many convenient values, e.g., whether an edge e
is internal to C(v), the number of intercluster edges of C(v), |C(v)| or |C|.

A general obstacle for modeling our measures linearly are the division oper-
ations necessary for almost all variants. We can substitute such operations in a
brute-force manner: We multiply binary indicator variables Jv,P , which equal 1
if and only if C(v) meets properties P , with precomputed intermediate results
for P , and take the sum over all possible configurations of P . We exemplify the
usage of Jv,P with measure aixd. To calculate ixd(C(v)), we need P to contain
nC(v) and xC(v). Thus, we add constraints forcing Jv,x̃,ñ to equal 1 if and only if
ñ = nC(v)∧x̃ = xC(v) (see App. A.1). We can then use these indicators as follows:

Let Av :=
∑m

x̃=0

∑n
ñ=1 Jv,x̃,ñ · x̃

ñ(n−ñ)·ñ , which yields ixd(C(v)) =
∑

w∈C(v)Aw

and thus aixd′ :=
∑

v∈V Av = |C|·aixd(C). We can circumvent a division by |C| by
more subtle means, avoiding an asymptotic increase in complexity: For all pos-
sible values k̃ which |C| can assume, we add constraints aixd(C) ≥ 1

k̃
· aixd′−Mk̃,

with Mk̃ being large if k̃ 6= |C|. When minimizing aixd(C), only the one inequality

using the correct k̃ actually constrains, thus this yields the correct result.

Summing up, we end up with O(n2m) variables, where the number of indica-
tor variables dominates the term. Beyond the O(n3) constraints used for keeping
the base variables X consistent, and the lesser number of constraints for helper
variables, every single indicator variable requires a constant number (roughly 4
for aixd) of constraints, which yields O(n2m) constraints.

Generally, we can use this method to construct ILPs for all our measures,
however, some measures require prohibitively large sets P of properties. For
instance, conductance requires additional properties representing the case dis-
tinction in the denominator and the volume which roughly incurs a factor 2m
in the number of variables (and constraints); all pairwise measures require in-
dicators for pairs of vertices, adding another factor of n2 or even nm. Used as

13

Fig. 7: This graph is a three-month snapshot of the email traffic at KIT’s CS depart-
ment, groups represent chairs, which serve as a ground truth (vertices are scaled by
degree, n = 472,m = 2845). We ran Alg.1 using mid with α = 0.25 and aixc to arrive
at the color-clustering. Border colors indicate a Modularity-based clustering [5].

constraints (not as objective functions), the intracluster measures gid and mid
are simpler to model, while aid again seems to require a construction as above.

5 Concluding Remarks

Established measures for graph cuts lend themselves well for precisely express-
ing desiderata on graph clusterings. Despite the scarce attention this approach
has received from the graph clustering literature so far, existing studies did
indicate its appropriateness. With a focus on finding graph clusterings that fea-
ture guaranteed intra- and high intercluster quality, we revived this ansatz and
systematically formalized bicriteria quality measures based on expansion, con-
ductance and sparsity. The classification of these measures with respect to their
behavior in the context of greedy agglomeration yields conditions that render
this widespread heuristic efficient, namely the locality and the connectedness of
a measure, which we observed to coincide with common intuition about what is
a good cut-based clustering measure. On top of that, we showed that a guaran-
teed density inside each cluster is especially suited to constrain agglomeration
and that most definitions of intercluster quality do not suffer from local minima.
We complemented our findings by exemplarily showing NP-hardness for some
variants of our problem statement and sketching ILPs for all. An experimen-
tal evaluation of density-constrained graph clustering and the adaption to local
greedy optimization and to weighted graphs shall be subject to future work. We
illustrate the outcome of greedy agglomeration combining guaranteed intraclus-
ter density with high average isolated intercluster conductance in Fig. 7.

14

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, and A. Marchetti-Spaccamela.
Complexity and Approximation - Combinatorial Optimization Problems and Their
Approximability Properties. Springer, 2nd edition, 2002.

2. P. Berkhin. A Survey of Clustering Data Mining Techniques. In J. Kogan,
C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent
Advances in Clustering, pages 25–71. Springer, 2006.

3. U. Brandes, M. Gaertler, and D. Wagner. Engineering Graph Clustering: Mod-
els and Experimental Evaluation. ACM Journal of Experimental Algorithmics,
12(1.1):1–26, 2007.

4. F. Chataigner, G. Manic, Y. Wakabayashi, and R. Yuster. Approximation algo-
rithms and hardness results for the clique packing problem. Electronic Notes in
Discrete Mathematics, 29:397–401, 2007.

5. A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in
very large networks. Physical Review E, 70(066111), 2004.

6. G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph Clustering and Minimum
Cut Trees. Internet Mathematics, 1(4):385–408, 2004.

7. S. Fortunato. Community detection in graphs. Physics Reports, 486(3–5):75–174,
2009.

8. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

9. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.
10. R. Kannan, S. Vempala, and A. Vetta. On Clusterings - Good, Bad and Spectral.

In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science (FOCS’00), pages 367–378, 2000.

11. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical Review E, 69(026113), 2004.

12. W. W. Zachary. An Information Flow Model for Conflict and Fission in Small
Groups. Journal of Anthropological Research, 33:452–473, 1977.

A Remarks on ILPs

A.1 Building Blocks for Bicriterial Clustering via ILP

Node-Node-Equivalence Variables Xuv: “is C(u) = C(v)?” To render
our base variables Xuv consistent, we use constraints ensuring their transitiv-
ity (Eq. 12); reflexivity and symmetry are immediate, since Xuv and Xvu are
the same variable and since we can simply set Xvv ≡ 1.

X = {Xuv | {u, v} ∈
(
V

2

)
} with Xuv =

{
1 if C(u) = C(v)

0 otherwise
(1)

Internal-Edge-Indicator Variables Eev: “is e inside C(v)?” Using constraints
for a binary And (Eq. 14), we align Eev with X to behave as follows:

E = {Eev | e ∈ E, v ∈ V } with E{i,j}v = Xiv And Xjv (2)

15

External-Edge-Indicator Variables Lev: “is e an intercluster edge of C(v)?”
Determining e’s end-vertices {i, j}, we align Lev with X by constraints for binary
Xor using Xiv and Xjv (Eq. 15) which ensures the following behavior:

L = {Lev | e = {i, j} ∈ E, v ∈ V } with L{i,j}v = Xiv Xor Xjv (3)

Cluster-Size Variables Zv`: “is |C(v)| = ` ?” For each v ∈ V we can write
|C(v)| :=

∑
u∈V Xuv, and then use constraints for value matching (see Eq. 16)

to align Zv` with X such that the following holds:

Z(V) = {Zv` | v ∈ V, ` ∈ {1, . . . , n}} with Zv` =

{
1 |C(v)| = `

0 otherwise
(4)

Über-Node Variables Üv: “is v über-vertex of C(v)?” We call vertex v =
minu∈C(w){u} the über-vertex of C(w), i.e., the smallest index in a cluster.

Ü(V) = {Üv | v ∈ V } with Üv =

{
1 v = minu∈C(v){u}
0 otherwise

(5)

∀v ∈ V : Üv ≤ 1− 1

n
(
∑
u<v

Xuv) and Üv ≥ 1−
∑
u<v

Xuv (6)

Note that from E , L and Ü , we can obtain the values mC(v), xC(v), vC(v)
and |C|, respectively, and even mC(v),C(u). Building upon the variables above, we
can express all measures discussed in this work, however, with no claim about
minimal complexity. The following example models the constraint mid ≥ α:

∀v ∈ V :
∑
e∈E

Eev − α · (
∑

`∈{1,...,n}

(
`

2

)
· Zv`) ≥ 0 (7)

C(v)-Indicator Variables: “Jv,P = does C(v) meet properties P?” We use
these variables as brute-force building blocks for substituting divisions, which
we require but cannot formulate linearly. In the following we show how to define
appropriate variables Jv,P for aixd. For aixd we require P to contain the variables
necessary to precompute ixd(C(v)), which are xv and nv. Thus we build a variable
for each candidate combination of v, xC(v) and nC(v):

J aixd(V) = {Jv,x̃,ñ | v ∈ V, x̃ ∈ {0, . . . ,m}, ñ ∈ {1, . . . , n}} (8)

with Jv,x̃,ñ =

{
1 if xC(v) = x̃ and nC(v) = ñ (i.e., C(v) meets P)

0 otherwise
(9)

But these two properties can easily be enforced as follows, using binary con-
straints for value matching, as shown in Eq. 16 for general settings, and variables

16

Lev and Xuv as defined above:

0 for wrong x̃: Jv,x̃,ñ ≤ 1− x̃−∑e∈E Lev

m+ 1
, Jv,x̃,ñ ≤ 1−

∑
e∈E Lev − x̃
m+ 1

,

0 for wrong ñ: Jv,x̃,ñ ≤ 1− ñ−∑u∈V Xuv

n
, Jv,x̃,ñ ≤ 1−

∑
u∈V Xuv − ñ

n
,

force the one fitting variable to 1: ∀v ∈ V :

m∑
x̃=0

n∑
ñ=1

Jv,x̃,ñ = 1 (10)

With the set of all variables Jv,x̃,ñ at our disposal, we can now compute the
value ixd(C(v)) =

xC(v)

nC(v)nV \C(v)
as follows (details on how to proceed with aixd are

given in Sect. 4):

ixd(C(v)) =

m∑
x̃=0

n∑
ñ=1

(
Jv,x̃,ñ ·

x̃

ñ(n− ñ)

)
(11)

A.2 Sets of Constraints for Basic Tasks

Transitivity Constraints: “Aab ∧Abc ⇒ Aac”

∀{a, b, c} ∈
(

Set

3

)
:


Aab +Abc −Aac ≤ 1

Aab +Aac −Abc ≤ 1

Aac +Abc −Aab ≤ 1

(12)

Reflexivity and Symmetry Constraints: “Aaa = true” and Aab ⇒ Aba”

∀a ∈ Set : Aaa = true and ∀{a, b} ∈
(

Set

2

)
: Aab = Aba (13)

Binary And Constraints: “T =
∧t

i=1Ai”

T ≤ 1

t

t∑
i=1

Ai and T ≥
t∑

i=1

Ai − (t− 1) (14)

Binary Xor Constraints: “T = Aa Xor Ab”

T ≤ 2−Aa −Ab T ≤ Aa +Ab T ≥ Aa −Ab T ≥ −Aa +Ab (15)

Binary Value-Match Constraints: “Tt` = (t == `)?” We set t to be the
target value, then ` searches t’s range and tries to match it. An example showing
how these constraints can be used for our purposes is given around Eq. 10.

Tt` ≤ 1− 1

|range| (`− t), Tt` ≤ 1− 1

range
(t− `),

∑
`∈range

Tt` = 1 (16)

17

B Proof of Lemma 3 (Unlimited Merge Behavior)

Proof (of Lemma 3). Since this lemma summarizes a number of results, we split
the proof into Lemma 14 for mixc, Lemma 15 for aixc, Lemma 17 for mixd and
mpxd, Corollary 16 for mixe and aixe and Corollary 12 for gxd and nxe. ut

A Vectorial Point of View. For gxd we introduce a convenient point of view

we shall repeatedly use in the following. Gxd is defined as
∑

A 6=B∈C mA,B∑
A6=B∈C nAnB

; if we

identify a fraction with the two-dimensional vector given by using the numerator
and the denominator as the coordinates, we can interpret gxd as the sum of the
vectors given by the individual fractions

mA,B

nAnB
. The crucial observation is, that

there either exists at least one steeper vector
mC,D

nCnD
> gxd(C), or all are equally

steep: ∀A 6= B :
mA,B

nAnB
= gxd(C). For a formal proof, see Lemma 13. In terms of

gxd, merge {C,D} is equivalent to vectorially subtracting from
∑

A 6=B∈C mA,B∑
A6=B∈C nAnB

contributor
mC,D

nCnD
. If we pick {C,D} to be the steepest contributor, we get

gxd(C{C,D}) ≤ gxd(C), a non-increase. Obviously, nxe cannot ever increase and
thus has unbounded merge behavior. Together with Lemma 13 we thus have:

Corollary 12. Nxe and gxd have unbounded merge behavior.

Lemma 13. Given N =
∑k

i=1Ni and D =
∑k

i=1Di with β = N
D and suppose

Ni, Di ≥ 0, D > 0 then exactly one of the following cases holds:

1. ∃`, s ∈ [1, . . . , k] :
N`

D`
> β >

Ns

Ds
(strictly larger/smaller contributors)

2. ∀i ∈ [1, . . . , k] :
Ni

Di
= β (complete equality)

Proof. We rewrite β as a convex com-
bination of its contributors βi := Ni

Di
:

β =
N

D
=

∑k
i=1Ni

D
=

∑k
i=1

Ni

Di
·Di

D

=

∑k
i=1 βi ·Di

D
=

k∑
i=1

βi ·
Di

D

Since
∑k

i=1Di = D, this is in-
deed a convex combination. Thus, if
not all βi equal β, we have β ∈
(mink

s=1 βs,maxk
`=1 β`), which imme-

diately yields the claim. ut

n
u
m
er
a
to
r

denominator

N
D

Ns

Ds

N−Ns

D−Ds

−Ns

Ds

The vectorial point of view of
Lemma 13: In a convex combination,
if not all contributors are equal, at
least one is smaller. The gray vectors
illustrate the effect of subtracting a
less steep contributor.

Lemma 14. Mixc has unbounded merge behavior.

18

Proof. We focus on the worst cluster B = arg maxC∈C ixc(C) (which need not
be unique), and distinguish three cases by vB . W.l.o.g. we assume |C| ≥ 3.

vB ≥ m: We express β := ixc(B) as the vectorial sum of other clusters’

contributions: β = xB

2m−vB =
∑

C 6=B mC,B∑
C 6=B vC

. There must either exist A ∈ C with
mA,B

vA
> β, or we have ∀C 6= B :

mC,B

vC
= β. Since ixc(C) ≥ mC,B

vC
, the former

case yields ixc(A) > β, contradicting our choice of B; for the same reason, the
latter case either also yields such a cluster A, or we have ∀C 6= B : ixc(C) = β.
But then merging any C,D 6= B is non-increasing: ixc(CD) = β.

vB ≤ m and ∀C 6= B : vB +vC ≥ m: For an arbitrary merge {C,B}, by the
above arguments, there must either exist A with ixc(A) > ixc(CB), or we have
∀D 6= C,B : ixc(D) = ixc(CB). In either case merge {C,B} was non-increasing.

∃A 6= B : vA + vB ≤ m: Merge AB yields ixc(AB) = xA+xB

vA+vB
≤ β, since

xA

vA
≤ xB

vB
= β, and thus is a non-increase. ut

Lemma 15. Aixc has unbounded merge behavior.

Proof. For clusters C,D ∈ C with vC + vD ≤ m, we will use that merging them
yields ixc(CD) =

xC+xD−2mC,D

vC+vD
≤ max{ixc(C), ixc(D)}. We will show that for

each clustering C with aixc(C) = β, there exists a merge that does not increase
the objective function. We divide the clusters of an arbitrary clustering D into
“bad” and “good” clusters, BD = {B ∈ D | ixc(B) > β} and GD = {H ∈ D |
ixc(H) ≤ β}, respectively. Note that for each clustering D, it holds that:

|D| · aixc(D) = |D| · β +
∑

B∈BD
(ixc(B)− β)︸ ︷︷ ︸
:=bD

−∑H∈GD (β − ixc(H))︸ ︷︷ ︸
:=gD

From this, it directly follows that aixc(D) ≤ β iff bD ≤ gD. If we find B1 6= B2 ∈
BC with vB1

+ vB2
≤ m, merge {B1, B2} leaves GC untouched and reduces bC by

at least min{ixc(B1)−β, ixc(B2)−β} > 0, and thus improves. Therefore, assume
∀B1 6= B2 ∈ BC : vB1

+ vB2
> m. We distinguish four cases by |BC |:

|BC | ≥ 4 : Since
∑

C∈C vC = 2m, there must exist B1, B2 with vB1
+vB2

≤ m.

|BC | = 3 : We sort BC by ixc(B1) ≥ ixc(B2) ≥ ixc(B3). Merge B1B2 yields

ixc(B1B2) =
xB1B2∑

C 6=B1,B2
vC

=

∑
C 6=B1,B2

mB1B2,C∑
C 6=B1,B2

vC
≤
∑

C 6=B1,B2
xC∑

C 6=B1,B2
vC

< ixc(B3),

which shows that merge {B1, B2} reduces bC , leaving GC untouched.

|BC | = 2 : Analogous to case |BC | = 3, we can see that ixc(B1B2) < β.

|BC | = 1 : If, for any H ∈ GC we have ixc(BH) ≤ β, merge {B,H} is
improving; thus, assume ∀H ∈ GC : ixc(BH) > β (∗). This implies (analogous
to case |BC | = 3) that vB + vH ≤ m for all H ∈ GC . For merge {B,H}, we
denote by ∆b(H) := xB/vB − xBH/vBH the change of bC , and the change of gC
by ∆g(H) := β − xH/vH ; the crucial observation is that any merge {B,H} for

19

which ∆b(H) > ∆g(H) holds, improves; but such a merge must exist:

(|GC |+ 1)β =
∑

H∈GC

(xH
vH

)
+
xB
vB

=
∑

H∈GC

(xH
vH

+
mB,H

vB

)
≤
∑

H∈GC

(xH
vH

+
2mB,H

vB

)
=
∑

H∈GC

(xH
vH

+
xB
vB
− xB − 2mB,H

vB

)
≤
∑

H∈GC

(xH
vH

+
xB
vB
− xB − 2mB,H + xH

vB + vH︸ ︷︷ ︸
=ixc(BH)

)

To see the second inequality, observe the following: By (∗) ixc(BH) > β and
since H ∈ GC , ixc(H) ≤ β; thus the vectorial addition of xH

vH
must have de-

creased
xB−2mB,H

vB
, and thus increases the right hand side. Since we have only

|GC | summands, at least one summand exceeds β:

∃H0 ∈ GC :
xH0

vH0

+
xB
vB
− xB − 2mB,H0 + xH0

vB + vH0

> β ⇒ ∆b(H0) > ∆g(H0) ut

A careful inspection of the proofs of Lemma 14 and Lemma 15 reveals, that if we
substitute any occurrence of volume vC by the size nC of a cluster, the conclu-
sions remain correct, but translate the results from conductance to expansion:

Corollary 16. Mixe and aixe have unbounded merge behavior.

Lemma 17. Mixd and mpxd have unbounded merge behavior.

Proof. We first consider mixd. For a worst cluster B = arg maxC∈C ixd(C) (which
need not be unique) with ixd(B) =: β, we show how to find a non-increasing

merge. Merge CB yields ixd(CB) =
xC+xB−2mC,B

nC(n−nC)+nB(n−nB)−2nCnB
, which is the

vectorial addition of ixd(C), ixd(B) and the correction κC =
2mC,B

2nCnB
. We can

decompose ixd(B) =
∑

C 6=B 2mC,B∑
C 6=B 2nCnB

, into such corrections κC , whence we see that

there must exist A ∈ C with κA ≥ ixd(B). Thus, for merge {A,B}, ixd(AB) is
the vectorial sum of ixd(B) plus ixd(A) (at most as steep) minus κA (at least as
steep), yielding ixd(AB) ≤ β, a non-increase.

No we turn to mpxd. Let {AB} = arg maxM∈M pxd(M), merge {A,B} un-
does β = pxd({A,B}) and cannot cause new, worse values pxd({AB,C}):

∀C 6= AB : pxd({AB,C}) =
mAB,C

nABnC
=

mA,C +mB,C

nAnC + nBnC
≤ max{pxd({A,C}), pxd({B,C})} ≤ β ut

C Additional Proofs and Results

C.1 Proof of Lemma 5 (Sufficient Condition for Non-Locality)

Proof (of Lemma 5). Assume f is local, let ≤f be a relation onM×M satisfying
the definition of locality. From f(CM1) < f(CM2) it follows that M2 ≤f M1 does
not hold and f(DM1) > f(DM2) implies that M1 ≤f M2 does not hold. This
means that M1 and M2 are not comparable, contradicting the choice of ≤f . ut

20

Table 3: Summary of the properties of all intercluster measures

measure abbr. merge beh. enf. conn. merges local

number of intercluster edges nxe unbounded Y Y

global intercluster density gxd unbounded Y N

max. is. intercluster density mixd unbounded N Y

avg. is. intercluster density aixd bounded N Y

max. pw. intercluster density mpxd unbounded N N

avg. pw. intercluster density apxd bounded N N

max. is. intercluster conductance mixc unbounded N Y

avg. is. intercluster conductance aixc unbounded N Y

max. pw. intercluster conductance mpxc bounded N N

avg. pw. intercluster conductance apxc bounded N N

max. is. intercluster expansion mixe unbounded N Y

avg. is. intercluster expansion aixe unbounded N Y

max. pw. intercluster expansion mpxe bounded N N

avg. pw. intercluster expansion apxe bounded N N

C

D
B

A

Fig. 8: Suppose we use objective function nxe, constraint aid and an appropriate value of
α. Starting with singletons, let us start with a merge that yields cluster A. Merge {A,B}
will decrease aid, any further decrease in the number of clusters will worsen this effect.
Suppose we reach clustering C (gray), we even have aid(C{A,B}) < aid(C{C,D},{A,B}),
as two “bad” clusters are summarized into a single one, which mildly lifts aid. Thus, if
we set α to the average of these two values, merge {A,B} is infeasible in C but as soon
as merge {C,D} is performed, regains feasibility. Obviously, it again loses feasibility
as soon as we continue merging other singletons.

21

C.2 Proof of Lemma 6 (Locality of Maximum Isolated Measures)

Proof (of Lemma 6). We prove the claim constructively by defining a relation ≤f

and showing that it fulfills the required properties for the definition of locality.
Let C be a clustering and D = {D1, . . . , Dk} ⊆ C. Then we define L(D) :=

(f ′(Di1) ≥ . . . ≥ f ′(Dik)) to be the non-increasing sequence of function values
of all Di ∈ D. Let ≤` be the lexicographical order on sequences of real numbers.
The first observation we make is that for arbitrary merges M1 and M2 ⊆ C,
L(CM1) ≤` L(CM2) implies f(CM1) ≤ f(CM2). Since the lexicographical order on
sequences of reals is a partial order, ≤` is transitive and reflexive. If we can find
an equivalent relation ≤f on M ×M , i.e., a relation such that M1 ≤f M2 iff
L(CM1

) ≤` L(CM2
), independent of C \ (M1 ∪M2), this yields the locality of f .

The crucial idea is to just consider that part of L(C) which changes if ei-
ther of the two merges M1 = {A,B} and M2 = {C,D} is performed. The
affected entries of L(C) are {f ′(A), f ′(B), f ′(C), f ′(D)}. Performing M1 re-
places these by {f ′(A ∪ B), f ′(C), f ′(D)}, and performing M2 replaces them
by {f ′(A), f ′(B), f ′(C ∪D)}. Since L(C \ {f ′(A), f ′(B), f ′(C), f ′(D)}) remains
unchanged in either case, it suffices to compare the two replacements L({f ′(A∪
B), f ′(C), f ′(D)}) and L({f ′(A), f ′(B), f ′(C ∪ D)}) instead of L(CM1

) and
L(CM2). Thus, if we define ≤f such that {A,B} ≤f {C,D} iff L({f ′(A ∪
B), f ′(C), f ′(D)}) ≤` L({f ′(C ∪ D), f ′(A), f ′(B)}), ≤f is a relation that sat-
isfies the definition of locality. ut

C
D

A B

Fig. 9: Counterexample proving the nonlocality of
apxe and apxc: The base clustering consists of the
gray clusters. If the blue, dashed merge is per-
formed, merge {C,D} is better, if the red, dotted
merge is performed, {A,B} is better. See Fig. 5
for the remaining counterexamples on locality.

B

A

Fig. 10: Given the gray clus-
terings, the disconnected merge
{A,B} (red, dotted) yields the
highest improvement in mixd. For
examples on other measures, see
Fig. 6.

	2011,17_Titelbl..pdf
	bicriterial_TR.pdf
	Density-Constrained Graph Clustering
	1 Introduction
	2 Quality Measures for Clusterings
	2.1 Problem Statement
	2.2 Complexity

	3 Generic Greedy Agglomeration
	3.1 Merge Behavior
	3.2 Impact of Clustering Measures on Running Times

	4 Integer Linear Programs
	5 Concluding Remarks
	A Remarks on ILPs
	A.1 Building Blocks for Bicriterial Clustering via ILP
	A.2 Sets of Constraints for Basic Tasks

	B Proof of Lemma 3 (Unlimited Merge Behavior)
	C Additional Proofs and Results
	C.1 Proof of Lemma 5 (Sufficient Condition for Non-Locality)
	C.2 Proof of Lemma 6 (Locality of Maximum Isolated Measures)

