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Abstract 

The continuously increasing user demands for advanced services lead to the evolution of new multimedia 
standards. As a result the next generation mobile multimedia applications exhibit high complexity and 
consume high energy to fulfill the end-user requirements. This stimulates the need for high-performance 
embedded multimedia systems with low power/energy consumption. Besides the context-aware processing 
in the emerging multimedia standards, the need for user-interactivity introduces a new dimension of run-

time adaptivity to the overall system requirements in order to react to the run-time changing scenarios 
(e.g., quality and performance constraints). 

State-of-the-art multimedia solutions typically employ heterogeneous multimedia Multi-Processor 
System-on-Chip (MPSoC) that integrate several programmable processors, domain-specific weakly 
programmable co-processors, and application-specific hardware accelerators. The selection of cores in an 
MPSoC is determined at design time depending upon the requirements of a certain set of applications. 
Therefore, such an MPSoC does not provide the demanded efficiency when executing applications from 
different domains. Moreover, with a change in the application standard (e.g., a different video encoding) 
the currently-used MPSoC becomes obsolete (as it may not fulfill the required performance and power 
design constraints for the end-product). Therefore, when using state-of-the-art multimedia embedded 
processors, the performance or power constraints may be achieved in a certain context, but the inability to 
react to the above-mentioned uncertainties (i.e., changing standards, unpredictable scenarios, and 
application behavior) and the resulting efficiency issues remain. A more efficient approach to target these 
issues is dynamically reconfigurable processor that embeds a reconfigurable fabric within a core pipeline. 
These processors provide a high adaptivity and flexibility (due to their hardware reconfigurability and 
programmability) combined with the performance and efficiency of dedicated hardware accelerators (by 
exploiting a high degree of parallelism using an embedded FPGA). Previous approaches in reconfigurable 
processors have mainly concentrated on improving the performance by reconfiguring application-specific 
hardware accelerators at run time to meet applications� demands and constraints. This reconfiguration 
process may consume a noticeable amount of energy. Consequently, the major shortcoming of these 
reconfigurable processors is their high energy consumption compared to ASICs and lack of efficient 
energy management features. Moreover, with the evolution of sub-micron fabrication technologies, the 
consideration of leakage power/energy has become imperative in the energy-aware design of 
reconfigurable processors.  

The goals of this thesis are to exploit the available potential of energy reduction and to achieve high 
energy efficiency while meeting the performance constraint and keeping the video quality degradation 
unnoticeable, under run-time varying scenarios (due to changing video properties, available energy 
resources, user-defined constraints etc.). Therefore, adaptive energy management needs to be considered 
jointly at both processor architecture and application architecture levels, such that both hardware and 
software adapt together in order to react to the design-/compile-time unpredictable scenarios. 

In this thesis concept, strategies, and implementations are developed targeting both processor and 
application architectures that enable run-time configurability of energy consumption and video quality for 
adaptive low-power embedded multimedia systems. 

1) Low-power Processor Architecture: In order to enable the run-time adaptivity at the processor level, 
dynamically reconfigurable processors are deployed as the target platform. State-of-the-art low-power 
schemes employ power-shutdown considering the state/usage of the hardware (i.e., a hardware-
oriented shutdown) to reduce the leakage power/energy. When targeting reconfigurable processors, it 
cannot be determined at compile time which parts of the instruction set will be reconfigured on which 
part of the reconfigurable fabric. Therefore, unlike state-of-the-art, the proposed work raises the 
abstraction level of shutdown to the instruction set level. It enables a far higher potential for leakage 
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energy savings. At the processor level, a run-time adaptive energy management scheme is employed 
that performs the following steps. 
a) Determine an Energy Minimizing Instruction Set: A tradeoff between leakage, dynamic, and 

reconfiguration energy is investigated and an energy-minimizing instruction set is selected for a 
dynamically reconfigurable processor under run-time varying performance and area constraints. To 
enable this, a comprehensive power model for the reconfigurable processors was developed, which 
is based on power measurements. The benchmarks for two state-of-the-art reconfigurable 
processors (Molen [PBV07, VWG+04] and RISPP [BSH08b, BSH08c, BSKH07]) demonstrate an 
energy reduction of more than 40% compared to when not using the proposed scheme. 

b) Selective Instruction Set Shutdown: A decision about the shutdown mode is determined for the 
temporarily unused subset of the instruction set by considering the requirements and execution 
lengths of the compute-intensive parts of an application (i.e., the execution context of an 
application). It is determined at run time which subset of instruction set should be put into which 
muting mode at which time by evaluating at run time the possible associated energy benefit (a joint 
function of leakage, dynamic, and reconfiguration energy). In addition to the above-mentioned 
energy savings, a further 30% energy reduction is achieved. 

The information about the actual energy consumption is transmitted to the application layer for 
application-level energy management. 

2) Low-power Application Architecture: Video coding is the key component of the current and 
emerging embedded multimedia systems as it consumes a significant amount of processing time and 
energy. Therefore, at the application level, the adaptivity and energy reduction are demonstrated using 
an advanced video encoder (like H.264). An optimized application architecture is proposed for video 
encoders targeting the reconfigurable processors. To reduce the computation requirements of different 
processing blocks of a low-power video encoder at run time, different algorithms have been developed. 
These algorithms address the following issues: 
• Need for an analysis of spatial and temporal video properties with consideration of important 

Human-Visual System properties to categorize different video frames and their Macroblocks. 
• Adaptive complexity reduction to reduce energy requirements of encoder by excluding improbable 

coding modes from the mode-decision process. It solves the issue of choosing the final coding 
mode out of hundreds of possible combination (without exhaustively searching the design space) by 
considering the spatial and temporal video properties. 

• To adaptively predict the energy quota for the energy-aware Motion Estimation (that may consume 
up to 65% of the total encoding energy). It chooses a certain Motion Estimation configuration for 
different video frames considering the available energy, video frame characteristics, and user-
defined coding constraints while keeping a good video quality.  

The proposed low-power video encoder provides a dynamic energy reduction of more than 60% with 
an insignificant quality loss (0.2dB). For the blocks that are fixed by the standard and adaptivity is not 
possible, low-power hardware accelerators were designed. 

In addition to the above-discussed scientific contribution, following has been developed in the scope of 
this work: 
• A complete power-measurement setup for dynamically reconfigurable processors that consists of a 

power supply board, two oscilloscopes, an FPGA based prototyping board, and a control program 
(running on a PC) for capturing the measurements from the oscilloscopes. 

• A complete H.264 video encoder application with the proposed run-time algorithms and low-
complexity data flow. The in-house developed H.264 encoder is currently executing on an in-house 
dynamically reconfigurable processor prototype, Texas Instruments� multimedia processor, and 
laptop/desktop PCs. 

• A video analysis tool with an easy-to-use graphical user interface for quick and in-depth analysis of 
video sequences. 
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Zusammenfassung 

Die kontinuierlich steigenden Nutzerwünsche nach fortgeschrittenen Diensten führen zur Evolution neuer 
Multimediastandards. Als eine Folge besitzen die mobilen Multimediaanwendungen der nächsten 
Generation eine hohe Komplexität und konsumieren eine große Menge an Energie, um die Anforderungen 
der Endbenutzer zu erfüllen. Dies stimuliert den Bedarf nach hochperformanten eingebetteten 

Multimediasystemen mit geringem Leistungs-/Energiebedarf. Neben den kontextbewussten Berechnungen 
in den aufkommenden Multimediastandards, führt der Bedarf nach Benutzerinteraktivität zu einer neuen 
Dimension von Laufzeitadaptivität für die gesamten Systemanforderungen, um auf Szenarien reagieren zu 
können, die sich zur Laufzeit ändern (z.B. Qualitäts- und Performanzanforderungen). 

Dem Stand der Technik entsprechende Multimedialösungen verwenden heterogene Multimedia-
Mehrkernprozessor Systeme (MPSoC), die mehrere programmierbare Prozessoren, domänenspezifische 
schwach programmierbare Koprozessoren und anwendungsspezifische Hardwarebeschleuniger 
integrieren. Die Auswahl an Kernen in einem MPSoC wird zur Entwurfszeit abhängig von den 
Anforderungen einer gewissen Menge an Anwendungen bestimmt. Deswegen liefert solch ein MPSoC 
nicht die geforderte Effizienz, wenn Anwendungen einer anderen Domäne ausgeführt werden. Des 
Weiteren wird das momentan eingesetzte MPSoC bei einer Änderung des Anwendungsstandards (z.B. 
eine anderen Videokodierung) obsolet (weil es die geforderten Performanz- und 
Leistungsverbrauchsanforderungen des Endprodukts möglicherweise nicht mehr erfüllen kann). 
Deswegen können bei Verwendung von eingebetteten Multimediaprozessoren des Stands der Technik die 
Performanz- oder Leistungsverbrauchsanforderungen vielleicht in einem bestimmten Kontext erreicht 
werden, aber die Unfähigkeit auf die oben genannten Unsicherheiten (d.h. sich ändernde Standards, 
unvorhersagbare Szenarien und Anwendungsverhalten) reagieren zu können und die daraus resultierenden 
Effizienzprobleme bleiben. Ein effizienterer Ansatz um diese Probleme anzugehen ist ein dynamisch 

rekonfigurierbarer Prozessore, der eine rekonfigurierbare Fläche in eine Kernpipeline integriert. Diese 
Prozessoren liefern eine hohe Adaptivität und Flexibilität (durch ihre Hardwarerekonfigurierbarkeit und 
Programmierbarkeit), kombiniert mit der Performanz und Effizienz von dedizierten 
Hardwarebeschleunigern (durch die Ausnutzung eines hohen Grades an Parallelität durch den 
eingebetteten FPGA). Frühere Ansätze bei rekonfigurierbaren Prozessoren haben sich darauf konzentriert, 
die Performanz durch die Rekonfiguration von anwendungsspezifischen Hardwarebeschleunigern zur 
Laufzeit zu erhöhen, um die Bedürfnisse und Anforderungen der Anwendungen zu erfüllen. Diese 
rekonfigurierbaren Prozessoren können eine beachtliche Menge an Energie verbrauchen. Folgerichtig ist 
ein Hauptnachteil dieser rekonfigurierbaren Prozessoren ihr hoher Energieverbrauch im Vergleich zu 
ASICs und ihr Mangel an Energieverwaltungsmöglichkeiten. Des Weiteren ist durch die Evolution von 
sub-micron Herstellungstechnologien die Berücksichtigung von Leckströmen ein Gebot für den 
energiebewussten Entwurf von rekonfigurierbaren Prozessoren geworden.  

Das Ziel dieser Doktorarbeit ist es, das vorhandene Potential zur Energieverbrauchsreduzierung zu 
nutzen und eine hohe Energieeffizienz zu erzielen, während bei Situationen die zur Laufzeit variieren 
(durch sich ändernde Videoeigenschaften, die verfügbaren Energieressourcen und anwenderdefinierte 
Anforderungen etc.) die Performanzanforderung eingehalten und die Verringerung der Videoqualität 
unbemerkbar gehalten wird. Dafür muss eine adaptive Energieverwaltung sowohl bei der Prozessor-, wie 
auch bei der Anwendungsarchitektur berücksichtigt werden, so dass sich Hardware und Software 
gemeinsam anpassen, um auf Situationen zu reagieren, die zur Entwurfs- und Übersetzungszeit nicht 
vorhergesagt werden können. 

In dieser Doktorarbeit werden Konzepte, Strategien und Implementierungen sowohl für die Prozessor- 
wie auch die Anwendungsarchitektur entwickelt, welche die Laufzeitkonfigurierbarkeit von 
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Energieverbrauch und Videoqualität für adaptive low-power eingebettete Multimediasysteme 
ermöglichen. 

1) Low-power Prozessorearchitektur: Um die Laufzeitadaptivität auf der Ebene des Prozessors 
möglich zu machen, werden dynamisch rekonfigurierbare Prozessoren als Zielplattform verwendet. 
Dem Stand der Technik entsprechende low-power Schemata verwenden Power-Abschaltung unter 
Berücksichtigung vom Status und dem Zustand der Hardware (d.h. eine hardwareorientierte 
Abschaltung), um den durch Lechströme verursachten Leistungs-/Energieverbrauch zu verringern. Bei 
rekonfigurierbaren Prozessoren kann nicht zur Übersetzungszeit festgelegt werden, welche Teile des 
Befehlssatzes in welchen Bereich der rekonfigurierbaren Hardware rekonfiguriert werden. Deswegen 
hebt die vorgestellte Arbeit im Gegensatz zum Stand der Technik den Abstraktionsgrad auf ein 
Abschalten auf der Befehlssatzebene. Dies eröffnet ein deutlich größeres Potential zum Reduzieren der 
Leckströme. Auf der Prozessorebene wird ein laufzeitadaptives Energieverwaltungssystem eingesetzt, 
das die folgenden Schritte durchführt. 
c) Bestimmung eines energieminimierenden Befehlssatzes: Ein Kompromiss zwischen Leckströmen, 

dynamischen- und Rekonfigurationsenergieverbrauch wird untersucht und ein 
energieminimierender Befehlssatz wird für einen dynamisch rekonfigurierbaren Prozessor unter 
zur sich zur Laufzeit ändernden Performanz- und Flächenbedingungen ausgewählt. Um dies zu 
ermöglichen wurde ein umfassendes Powermodell für den rekonfigurierbaren Prozessor 
entwickelt, das auf Leistungsverbrauchsmessungen basiert. Die Benchmarks für dem Stand der 
Technik entsprechende rekonfigurierbare Prozessoren (Molen [PBV07, VWG+04] und RISPP 
[BSH08b, BSH08c, BSKH07]) demonstrieren eine Verringerung des Energieverbrauches um mehr 
als 40% im Vergleich zum Betrieb ohne das vorgeschlagene System. 

d) Ausgewählte Befehlssatzabschaltung: Eine Entscheidung über den Abschaltungsmodus wird für 
die temporär nicht benutze Teilmenge des Befehlssatzes getroffen, wobei die Anforderungen und 
die Ausführungslänge der rechenintensiven Teile einer Anwendung berücksichtigt werden (d.h., 
der Ausführungskontext einer Anwendung). Es wird zur Laufzeit bestimmt, welche Teilmenge des 
Befehlssatzes zu welcher Zeit in welchen Abschaltungsmodus versetzt werden soll, indem zur 
Laufzeit die möglichen assoziierten Energievorteile (eine gemeinsame Funktion aus Leckstrom, 
dynamischer- und Rekonfigurationsenergie) evaluiert wird. Zusätzlich zu den oben genannten 
Energieeinsparungen wird eine weitere Energiereduktion um 30% erreicht. 

Die Informationen über den momentanen Energieverbrauch werden für die Energieverwaltung auf der 
Anwendungsschicht in die Anwendungsebene transportiert. 

2) Low-power Anwendungsarchitektur: Videokodierung ist die Schlüsselkomponente für momentane 
und entstehende eingebettete Multimediasysteme, weil sie einen signifikanten Teil der Rechenzeit und 
der Energie verbraucht. Deswegen werden Adaptivität und die Energieeinsparungen auf Seiten der 
Anwendungsarchitektur durch einen fortgeschrittenen Videokodierer (wie H.264) demonstriert. Eine 
optimierte Anwendungsarchitektur für Videokodierer die für rekonfigurierbare Prozessoren ausgelegt 
ist wird vorgeschlagen. Um die Rechenanforderungen der verschiedenen Rechenblöcke eines low-
power Videokodierers zur Laufzeit zu verringern, sind verschiedene Algorithmen entwickelt worden. 
Diese Algorithmen adressieren die folgenden Probleme: 
• Bedarf einer Analyse von räumlichen und zeitlichen Videoeigenschaften unter Berücksichtigung 

der wichtigen Eigenschaften des menschlichen Sehsystems, um verschiedene Videobilder und 
deren Makroblöcke zu kategorisieren. 

• Adaptive Komplexitätsreduzierung, um den Energieverbrauch durch Ausschluss 
unwahrscheinlicher Kodierungsmodi aus dem Modusentscheidungsprozess zu verringern. Dies löst 
das Problem den finalen Kodierungsmodus aus hunderten von möglichen Kombinationen zu 
wählen (ohne den Entwurfsraum erschöpfend zu durchsuchen), indem räumliche und zeitliche 
Videoeigenschaften berücksichtigt werden. 

• Adaptiv das Energiekontingent für die energiebewusste Bewegungsabschätzung (die bis zu 65% der 
Gesamtenergie der Enkodierung brauchen kann) vorherzusagen. Dies wählt eine gewisse 
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Bewegungsabschätzungskonfiguration für verschiedene Videobilder unter Berücksichtigung der 
verfügbaren Energie, der Videobildcharakteristiken und der nutzerdefinierten Kodierungs-
anforderungen aus, wobei eine gute Videoqualität gewahrt wird.  

Der vorgeschlagene low-power Videokodierer bietet bei einem unbedeutenden Qualitätsverlust 
(0,2dB) eine Verringerung des dynamischen Energieverbrauchs um mehr als 60%. Für die Blöcke, die 
durch den Standard festgelegt sind und für die keine Adaptivität möglich ist, wurden low-power 
Hardwarebeschleuniger entworfen. 

Zusätzlich zu dem oben diskutierten wissenschaftlichen Beitrag wurde im Rahmen dieser Doktorarbeit 
Folgendes entwickelt: 
• Eine komplette Umgebung zur Messung des Leistungsverbrauches von dynamisch 

rekonfigurierbaren Prozessoren, das aus einem Stromversorgungsboard, zwei Oszilloskopen, einem 
FPGA basierten Prototypen und einem Kontrollprogramm (auf einem PC ausgeführt, um die 
Messergebnisse der Oszilloskope zu empfangen) besteht. 

• Eine komplette H.264 Videokodieranwendung mit den vorgeschlagenen Laufzeitalgorithmen und 
einem Datenfluss geringer Komplexität. Der intern entwickelte H.264 Kodierer wird momentan auf 
einem intern entwickelten dynamisch rekonfigurierbaren Prozessorprototypen, einem 
Multimediaprozessor von Texas Instruments und auf Laptop/Desktop PCs ausgeführt. 

• Ein Videoanalyse Tool mit einer leicht zu bedienenden grafischen Benutzerschnittstellt für eine 
schnelle und gründliche Analyse von Videosequenzen. 

 





 

xv 

Contents 

 

Acknowledgements .................................................................................................... i 

List of Own Publications Included in This Thesis ................................................ v 

List of Supervised Student Projects that Contributed to the Simulation, 

Prototype, and Encoder Demonstration ........................................... vii 

Abstract  ................................................................................................................ ix 

Zusammenfassung ................................................................................................... xi 

Contents  ............................................................................................................... xv 

List of Figures ........................................................................................................ xxi 

List of Tables ..................................................................................................... xxvii 

List of Algorithms ............................................................................................... xxix 

Abbreviations and Definitions ........................................................................... xxxi 

Chapter 1 Introduction ............................................................................................ 1 

1.1  Trends and Requirements of Advanced Multimedia Systems ..................... 1 

1.2  Trends and Options for Multimedia Processing .......................................... 3 

1.3  Summary of Challenges and Issues ............................................................. 6 

1.4  Thesis Contribution ..................................................................................... 6 

1.5  Thesis Outline .............................................................................................. 8 

Chapter 2 Background and Related Work .......................................................... 11 

2.1  Video Coding: Basics and Terminology ................................................... 11 

2.2  The H.264 Advanced Video Codec: A Low-Power Perspective .............. 12 

2.2.1  Overview of the H.264 Video Encoder and its Functional 

Blocks ............................................................................................. 12 

2.2.2  Low-Power Architectures for H.264/AVC Video Encoder ........... 16 

2.2.3  Adaptive and Low-Power Design of the Key Functional Blocks 

of the H.264 Video Encoder: State-of-the-art and Their 

Limitations ..................................................................................... 17 

2.3  Reconfigurable Processors ......................................................................... 20 

2.3.1  Fine-Grained Reconfigurable Fabric ............................................. 21 

2.3.2  Leakage Power of Fine-Grained Reconfigurable Fabric and the 

Power-Shutdown Infrastructure ..................................................... 22 



Contents 

xvi 

2.3.3  Custom Instructions (CIs): A Reconfigurable Processor 

Perspective ..................................................................................... 23 

2.3.4  Reconfigurable Instruction Set Processors .................................... 24 

2.3.5  Rotating Instruction Set Processing Platform (RISPP) ................. 25 

2.4  Low-Power Approaches in Reconfigurable Processors ........................... 32 

2.5  Summary of Related Work ....................................................................... 33 

Chapter 3 Adaptive Low-Power Architectures for Embedded Multimedia 

Systems ................................................................................................. 35 

3.1  Analyzing the Video Coding Application for Energy Consumption and 

Adaptivity.................................................................................................. 35 

3.1.1  Advanced Video Codecs: Analyzing the Tool Set ........................ 36 

3.1.2  Energy and Adaptivity Related Issues in H.264/AVC Video 

Encoder .......................................................................................... 38 

3.2  Energy- and Adaptivity Related Issues for Dynamically 

Reconfigurable Processors ........................................................................ 40 

3.3  Overview of the Proposed Architectures and Design Steps ..................... 42 

3.4  Power Model for Dynamically Reconfigurable Processors ..................... 45 

3.4.1  Power Consuming Parts of a Computation- and 

Communication-Infrastructure in a Dynamically 

Reconfigurable Processor .............................................................. 46 

3.4.2  The Proposed Power Model .......................................................... 47 

3.5  Summary of Adaptive Low-Power Embedded Multimedia System ........ 48 

Chapter 4 Adaptive Low-Power Video Coding .................................................. 49 

4.1  H.264 Encoder Application Architectural Adaptations for 

Reconfigurable Processors ........................................................................ 49 

4.1.1  Basic Application Architectural Adaptations ................................ 49 

4.1.2  Application Architectural Adaptations for On-Demand 

Interpolation .................................................................................. 51 

4.1.3  Application Architectural Adaptations for Reducing the 

Hardware Pressure ......................................................................... 53 

4.1.4  Data Flow of the H.264 Encoder Application Architecture with 

Reduced Hardware Pressure .......................................................... 55 

4.2  Designing Low-Power Data Paths and Custom Instructions .................... 57 

4.2.1  Designing the Custom Instruction for In-Loop Deblocking 

Filter .............................................................................................. 59 

4.2.2  Designing the Custom Instructions for Motion Estimation .......... 61 

4.2.3  Designing the Custom Instruction for Motion Compensation ...... 61 



Contents 

xvii 

4.2.4  Area Results for the Custom Instruction of H.264 Encoder .......... 62 

4.3  Spatial and Temporal Analysis of Videos Considering Human Visual 

System ........................................................................................................ 63 

4.3.1  HVS-Based Macroblock Categorization ........................................ 67 

4.3.2  QP-Based Thresholding ................................................................. 68 

4.4  An HVS-based Adaptive Complexity Reduction Scheme ........................ 69 

4.4.1  Prognostic Early Mode Exclusion .................................................. 70 

4.4.2  Hierarchical Fast Mode Prediction ................................................ 71 

4.4.3  Sequential RDO Mode Elimination ............................................... 73 

4.4.4  Evaluation of the Complexity Reduction Scheme ......................... 73 

4.5  Energy-Aware Motion Estimation with an Integrated Energy-

Budgeting Scheme ..................................................................................... 77 

4.5.1  Adaptive Motion Estimator with Multiple Processing Stages ....... 78 

4.5.2  enBudget: The Adaptive Predictive Energy-Budgeting Scheme ... 82 

4.5.3  Evaluation of Energy-Aware Motion Estimation with an 

Integrated Energy-Budgeting Scheme ........................................... 87 

4.6  Summary of Low-Power Application Architecture .................................. 90 

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture ....... 93 

5.1  Motivational Scenario and Problem Identification .................................... 93 

5.2  Run-Time Adaptive Energy Management with the Novel Concept of 

Custom Instruction Set Muting .................................................................. 95 

5.2.1  Concept of Muting the Custom Instructions .................................. 95 

5.2.2  Power-Shutdown Infrastructure for the Muted Custom 

Instructions ..................................................................................... 97 

5.2.3  Run-Time Adaptive Energy Management ..................................... 98 

5.3  Determining an Energy-Minimizing Instruction Set ............................... 100 

5.3.1  Formal Problem Modeling and Energy Benefit Function ........... 100 

5.3.2  Algorithm for Choosing CI Implementation Versions ................ 102 

5.3.3  Evaluation and Results for Energy-Minimizing Instruction Set .. 105 

5.4  Selective Instruction Set Muting ............................................................. 110 

5.4.1  Problem Description and Motivational Scenarios ....................... 111 

5.4.2  Operational Flow for Selective Instruction Set Muting ............... 112 

5.4.3  Analyzing the Energy Benefit Function of Muting ..................... 114 

5.4.4  Hot Spot Requirement Prediction: Computing Weighting 

Factors for CIs .............................................................................. 115 

5.4.5  Evaluation of Selective Instruction Set Muting ........................... 116 



Contents 

xviii 

5.5  Summary of Adaptive Low-Power Reconfigurable Processor 

Architecture ............................................................................................. 118 

Chapter 6 Power Measurement of the Reconfigurable Processors ................ 119 

6.1  Power Measurement Setup ..................................................................... 119 

6.2  Measuring the Power of Custom Instructions ........................................ 120 

6.2.1  Flow for Creating the Power Model ............................................ 120 

6.2.2  Test Cases for Power Measurements .......................................... 121 

6.2.3  Results for Power Measurement and Estimation ........................ 123 

6.3  Measuring the Power of the Reconfiguration Process ............................ 124 

6.3.1  Power Consumption of EEPROM .............................................. 124 

6.3.2  Power Consumption of the Reconfiguration via ICAP ............... 125 

6.4  Summary of the Power Measurement of the Reconfigurable Processors125 

Chapter 7 Benchmarks and Results .................................................................. 127 

7.1.1  Simulation Conditions and Fairness of the Comparison ............. 127 

7.2  Adaptive Low-Power Application Architecture ..................................... 128 

7.2.1  Comparing Complexity Reduction Scheme to State-of-the-art 

and the Exhaustive RDO-MD ..................................................... 128 

7.2.2  Comparing the Energy-Aware Motion Estimation with 

Integrated Energy Budgeting Scheme to State-of-the-art ........... 131 

7.3  Adaptive Low-Power Processor Architecture ........................................ 133 

7.3.1  Comparing the Adaptive Energy Management Scheme (without 

Selective Instruction Set Muting) to RISPP with Performance 

Maximization [BSH08c] .............................................................. 133 

7.3.2  Applying the Adaptive Energy Management Scheme (without 

Selective Instruction Set Muting) to Molen [VWG+04] 

Reconfigurable Processor ............................................................ 134 

7.3.3  Comparing the Adaptive Energy Management Scheme (with 

Selective Instruction Set Muting) to State-of-the-Art Hardware-

Oriented Shutdown ...................................................................... 135 

7.4  Summary of the Benchmarks and Comparisons ..................................... 137 

Chapter 8 Conclusion and Outlook ................................................................... 139 

8.1  Thesis Summary ...................................................................................... 139 

8.2  Future Work ............................................................................................ 142 

Appendix A  A Multi-Level Rate Control ....................................................... 145 

A.1  A Rate Control Algorithm ...................................................................... 145 

A.2  The proposed Multi-Level Rate Control ................................................. 146 



Contents 

xix 

A.3  Evaluation and Results ............................................................................ 150 

Appendix B  Simulation Environment the H.264 Video Encoder 

Demonstration ............................................................................. 155 

B.1  Implementation and Simulation Environment ......................................... 155 

B.2  H.264 Video Encoder on the RISPP Hardware Prototype ...................... 157 

B.3  H.264 Video Encoder on the Texas Instruments� DM6437 Digital 

Media Processor ....................................................................................... 158 

Appendix C  The CES Video Analyzer Tool ................................................... 161 

Bibliography ......................................................................................................... 163 
 

 





 

xxi 

List of Figures 

 

Figure 1.1:  (a) Video Services Over Time [Hui10]; (b) Video Complexity Over Time 

[MBNN10] .............................................................................................................2 

Figure 1.2:  (a) Flexibility vs. Efficiency Comparison of Different Architectural 

Options (inspired from [Hen03]); (b) Evolution Trend of Xilinx Virtex 

FPGAs [Xil10a] ......................................................................................................4 

Figure 2.1:  An Overview of the Digital Video Structure (showing Group of Pictures, 

Frame, Slice, MB) and Different Video Resolutions ...........................................12 

Figure 2.2:  Functional Overview of the H.264/AVC Video Encoder ....................................13 

Figure 2.3:  Variable Block Sizes for Inter-Predicted MBs (P-MBs) in H.264/AVC .............13 

Figure 2.4:  A Typical Composition of a Fine-Grained Reconfigurable Fabric with a 

2D-Array of CLBs and PSMs along with the Internal Details of a Spartan-

3 Tile [Te06, Xil08a] ............................................................................................21 

Figure 2.5:  State-of-the-Art in Power-Shutdown Infrastructure (a) by [Ge04] (b) by 

[Te06] ...................................................................................................................22 

Figure 2.6:  (a) Sizing of Thin- & Mid-Oxide Power Gate showing Leakage-Delay 

Tradeoffs [Te06]; (b) Power Consumption for Activating and Deactivating 

a single tile [Te06] ................................................................................................23 

Figure 2.7:  Extending a Standard Processor Pipeline towards RISPP and the Overview 

of the RISPP Run-time System [BSTH07] ..........................................................26 

Figure 2.8:  Hierarchical Composition of Custom Instructions: Multiple 

Implementation Versions Exist per Custom Instruction and Demand Data 

Paths for Realization [BSKH07, BSTH07] ..........................................................27 

Figure 2.9:  Example Control-flow Graph Showing Forecasts and the Corresponding 

Custom Instruction Executions [Bau09] ..............................................................30 

Figure 2.10:  Execution Sequence of Forecast and Custom Instructions with the 

Resulting Error Back Propagation and Fine-tuning [Bau09] ...............................30 

Figure 2.11:  Overview of the Hardware Infrastructure for Computation (Data Path 

Container) and Communication (Bus Connector) showing the Internal 

Composition of a Bus Connector [Bau09] ...........................................................31 

Figure 3.1:  Overview of an H.324 Video Conferencing Application with H.264/AVC 

Codec ....................................................................................................................35 

Figure 3.2:  Processing Time Distribution of Different Functional Blocks in the H.324 

Video Conferencing Application ..........................................................................36 

Figure 3.3:  Percentage Distribution of Energy Consumption of Different Functional 

Blocks in the H.264 Video Encoder .....................................................................39 



List of Figures 

xxii 

Figure 3.4:  Distribution of I-MBs in Slow-to-Very-High Motion Scenes (Test 

Conditions: Group of Pictures=IPPP�, CAVLC, Quantization Parameter 

= 28, 30fps) ...........................................................................................................40 

Figure 3.5:  Overview of the Adaptive Low-Power Application and Processor 

Architectures ........................................................................................................42 

Figure 3.6:  Highlighting Different Steps to be Performed at Design, Compile, and 

Run Time at both Application and Processor Levels ...........................................44 

Figure 3.7:  Power-Relevant Components of the Computation- and Communication 

Infrastructure to Execute CI Implementation Versions [BSH08a].......................46 

Figure 3.8:  Example for a Custom Instruction (CI) Implementation Version ........................46 

Figure 4.1:  Basic Application Architectural Adaptations to Construct the Benchmark 

Application ...........................................................................................................50 

Figure 4.2:  Arrangement of Functional Blocks in the H.264 Encoder Benchmark 

Application ...........................................................................................................51 

Figure 4.3:  Number of Computed vs. Required Interpolated MBs for two Standard 

Test Sequences for Mobile Devices .....................................................................51 

Figure 4.4:  Distribution of Different Interpolation Cases in the Carphone Video 

Sequence ...............................................................................................................52 

Figure 4.5:  H.264 Encoder Application Architecture with Reduced Hardware Pressure.......54 

Figure 4.6:  Data Flow Diagram of the H.264 Encoder Application Architecture with 

Reduced Hardware Pressure .................................................................................55 

Figure 4.7:  Description and Organization of Major Data Structures ......................................56 

Figure 4.8:  Steps to Create Optimized Data Paths from the Standard Formulae ...................58 

Figure 4.9:  Pixel Samples Across a 4x4 Block Horizontal or Vertical Boundary 

[ITU05] .................................................................................................................59 

Figure 4.10:  4-Pixel Edges in one Macroblock [ITU05] ..........................................................59 

Figure 4.11:  Custom Instruction for In-Loop Deblocking Filter with Example Schedule 

and Constituting Data Paths for Filtering Conditions and Filtering 

Operation ..............................................................................................................60 

Figure 4.12:  Custom Instruction for SATD4x4 showing the Transform and SAV Data 

Paths .....................................................................................................................62 

Figure 4.13:  Custom Instruction for Motion Compensation showing Different Data 

Paths .....................................................................................................................62 

Figure 4.14:  Mode Distribution and Video Statistics in the 7th Frame of American 

Football .................................................................................................................64 

Figure 4.15:  Optimal Coding Mode Distribution in Rafting and American Football 

Sequences at different Quantization Parameter (QP) values ................................65 

Figure 4.16:  Directional Groups with respect to the Edge Direction Angle and Notion 

of Spatial and Temporal Neighboring Macroblocks ............................................66 



List of Figures 

xxiii 

Figure 4.17:  Mode Distribution of Frame 4 in Rafting Sequence using the Exhaustive 

RDO-MD for two different QP values: Left: QP = 16 and Right: QP = 38 .........68 

Figure 4.18:  Overview of the Adaptive Computational Complexity Reduction Scheme 

(ACCoReS) showing Different Processing Steps and MB Categorizations ........70 

Figure 4.19:  Processing Flow of the Hierarchical Fast Mode Prediction .................................73 

Figure 4.20:  Percentage Mode Excluded in ACCoReS for Various Video Sequences ............74 

Figure 4.21:  Distribution of Mode Processing for QP=28 ........................................................75 

Figure 4.22:  Comparison of Total SAD Computations for various video sequences ...............75 

Figure 4.23:  Frame-Level in-depth Comparison for Susie Sequence .......................................76 

Figure 4.24:  Frame-Level in-depth evaluation of correct mode prediction ..............................76 

Figure 4.25:  MB-level Mode Comparison with the Exhaustive RDO-MD: Frame 17 of 

American Football. Left: ACCoReS [PSNR=33.28 dB], Right: Exhaustive 

RDO-MD [PSNR=34.52 dB] ...............................................................................76 

Figure 4.26:  Motion Vector Difference Distribution in Foreman Sequence (256 kbps) 

for Various Predictors Compared to the Optimal Motion Vector (obtained 

using the Full Search algorithm) ..........................................................................78 

Figure 4.27:  Predictor Conditions for Motion-Dependent Early Termination .........................79 

Figure 4.28:  Four Search Patterns used in the Adaptive Motion Estimator and the Pixel-

Decimation Patterns for SAD Computation ..........................................................81 

Figure 4.29:  Flow of the enBudget Scheme for Energy-Aware Motion Estimation ................83 

Figure 4.30:  Energy-Quality (EQ) Classes: Energy-Quality Design Space Exploration 

showing various Pareto Points and the Pareto Curve ...........................................84 

Figure 4.31:  SAD vs. Energy Consumption Comparison of different Motion Estimation 

Stages for Foreman Sequence ..............................................................................84 

Figure 4.32:  Energy and Quality Comparison for the Adaptive Motion Estimator With 

and Without the enBudget for Various Video Sequences ....................................88 

Figure 4.33:  Energy and Quality Comparison for the UMHexagonS [CZH02] With and 

Without the enBudget for Various Video Sequences ...........................................88 

Figure 4.34:  Frame-wise Energy Consumption of the Energy-Aware Motion Estimation ......89 

Figure 4.35:  Macroblock-Wise Energy Consumption Map of two Exemplary Frames in 

the SusieTableMix_QCIF Sequence for a 90nm Technology ..............................89 

Figure 4.36:  Energy Consumption of the Energy-Aware Motion Estimation for Various 

FPGA Fabrication Technologies for Various Video Sequences ..........................89 

Figure 5.1:  Simplified Comparison of Energy Consumption, Highlighting the Effects 

of Different Reconfiguration Decisions ...............................................................94 

Figure 5.2:  Infrastructure Necessary to Exert the Proposed CI Muting Technique ................97 

Figure 5.3:  Muting the Temporarily Unused Instruction Set ..................................................97 



List of Figures 

xxiv 

Figure 5.4:  Overview of the Proposed Adaptive Low-Power Reconfigurable Processor 

with Run-Time Adaptive Energy Management along with the Design-, 

Compile-, and Run-Time Steps ............................................................................99 

Figure 5.5:  Search Space of Five CIs with Their Implementation Versions at the 

Corresponding Levels and The Path of the Energy-Minimizing Instruction 

Set .......................................................................................................................103 

Figure 5.6:  Energy-Performance Design Spaces: Evaluation of the Energy 

Minimization Space Using the Adaptive Energy Management Scheme 

under Various Area and Performance Constraints for Four Fabrication 

Technologies for an Encoding of 40 QCIF (176x144) Frames ..........................106 

Figure 5.7:  Comparison of Energy Components in Different Fabrication Technologies 

under Various Area Constraints .........................................................................107 

Figure 5.8:  Comparing Energy-Performance Design Spaces for Different Video 

Resolutions when using the Energy Management Scheme under Various 

Area and Performance Constraints for an Encoding of 60 Video Frames .........108 

Figure 5.9:  CI Execution Results for 30 fps on 65 nm Showing a Detailed Breakdown 

of Energy Components Highlighting the Contribution of Reconfiguration 

and Leakage Energy. The Lower Graph Shows the Detailed Execution 

Pattern of Various CIs Executing in Different Hot Spots of the H.264 

Video Encoder Along With Total Energy Consumption ...................................109 

Figure 5.10:  Comparing the Energy Requirements of Virtually- & Fully-Muted CIs for 

2 Scenarios .........................................................................................................111 

Figure 5.11:  Time-line showing the execution sequence of hot spots and the situation 

for a CI Muting decision ....................................................................................112 

Figure 5.12:  Flow for Selecting a Muting Mode for the Custom Instruction (CI) Set ...........113 

Figure 5.13:  Venn Diagram Showing the Data Path Requirements of Previous, Current, 

Upcoming Hot Spots ..........................................................................................114 

Figure 5.14:  Calculating the Weighting Factor for Custom Instructions w.r.t. the 

Application Context ............................................................................................116 

Figure 5.15:  Summary of Energy Benefit of using Selective Instruction Set Muting ............117 

Figure 6.1:  a) Measurement setup, b) the in-house Developed Power Supply board ...........119 

Figure 6.2:  Flow for Creating the Measurement-based Power Model ..................................120 

Figure 6.3:  Test Case and Setup for Measuring the Power of An Idle (Empty) 

Framework ..........................................................................................................121 

Figure 6.4:  Different Test Cases for Measuring the Power of Different Components of 

a Custom Instruction (CI) Implementation Version ...........................................122 

Figure 6.5:  Connection of FIFO between EEPROM and ICAP ...........................................124 



List of Figures 

xxv 

Figure 6.6:  (a) EEPROM Voltage Drop while Loading one Data Path Bitstream from 

EEPROM to FPGA. (b) VCCINT Voltage Drop for Transferring one Data 

Path Bitstream to ICAP and Performing the Corresponding 

Reconfiguration ..................................................................................................125 

Figure 7.1:  Comparing the Energy Savings and Quality Loss of the ACCoReS with 

Several State-of-the-Art Fast Mode Decision Schemes .....................................129 

Figure 7.2:  Energy Savings and Quality Loss of the ACCoReS compared to the 

Exhaustive RDO-MD for CIF Resolution Video Sequences .............................129 

Figure 7.3:  Energy Savings and Quality Loss of the ACCoReS compared to the 

Exhaustive RDO-MD for QCIF Resolution Video Sequences ..........................130 

Figure 7.4:  Comparing the Rate Distortion Curves for QCIF and CIF Sequences ...............130 

Figure 7.5:  Power Test with a Real Battery using Mobile Sequence ...................................131 

Figure 7.6:  Summary of Energy Savings of the enBudget Scheme Compared to 

Various Fast Adaptive Motion Estimation Schemes ..........................................132 

Figure 7.7:  Comparing Energy Saving and PSNR Loss of the Proposed Energy-Aware 

Motion Estimation and the enBudget Scheme with Various Fast Adaptive 

Motion Estimators [* negative PSNR loss actually shows the PSNR gain 

of the Scheme] ....................................................................................................132 

Figure 7.8:  Energy Comparison of the AEM_FM and RISPP_PerfMax schemes for 65 

nm .......................................................................................................................133 

Figure 7.9:  Average Energy Comparison of the AEM_FM and RISPP_PerfMax for 3 

Technologies .......................................................................................................134 

Figure 7.10:  Percentage energy saving of Molen [VWG+04] plus AEM_FM over 

Molen without AEM_FM for three technologies ...............................................134 

Figure 7.11:  Comparing the Energy Breakdown of the Adaptive Energy Management 

Scheme (with Selective Instruction Set Muting) to [Ge04]-based Pre-VM 

and [MM05]-based Pre-FM ................................................................................135 

Figure 7.12:  Energy Comparison of the Adaptive Energy Management Scheme with 

[Ge04]-based Pre-VM and [MM05]-based Pre-FM Techniques for 

Varying Amount of Reconfigurable Fabric ........................................................136 

Figure 7.13:  Energy Savings of the Adaptive Energy Management Scheme Compared 

to the [Ge04]-based Pre-VM technique ..............................................................137 

Figure A.1:  Comparison of Produced Bits With and Without Rate Control .........................145 

Figure A.2:  The Multi-Level Rate Control Scheme covering GOP, Frame/Slice, & BU 

Levels along with Image and Motion Based Macroblock Prioritization ............147 

Figure A.3:  Critical Ziegler-Nichols-Point for American Football .......................................148 

Figure A.4:  Temporal Distance based QP Calculation for B Frames/Slices .........................149 

Figure A.5:  Basic Unit (BU) Level RC with Texture and Motion Based QP 

Adjustments ........................................................................................................151 



List of Figures 

xxvi 

Figure A.6:  RD-Curves Comparison of the Proposed Multi-Level RC with RC-Mode-

3 for Carphone (QCIF, IPPP) and American Football (SIF, IBBP) ...................152 

Figure A.7:  MBEE Comparison of the Multi-Level RC with Three Different RC 

Modes .................................................................................................................152 

Figure A.8:  Frame-wise Comparison of the Multi-Level RC with RC-Mode-3 for Fast 

Motion Combined CIF Sequences Encoded at 2Mbps@30fps ..........................153 

Figure A.9:  Frame-wise Comparison of the Multi-Level RC with RC-Mode-0 for 

Susie Mixed CIF Sequence (Bright, Dark, Noisy) at 2Mbps@30fps ................153 

Figure A.10:  Evaluating the Image and Motion Based MB Prioritizations (Note: All 

excerpts are 2x zoomed using nearest neighbor interpolation) ..........................153 

Figure B.1:  Simulation Methodology Showing Various Steps of the Simulation 

Procedure [S.3] ...................................................................................................156 

Figure B.2:  Reconfigurable Processor Simulator [BSH09a] with the Extensions 

Implemented in the Scope of this Thesis for Run-Time Adaptive Energy-

Management .......................................................................................................157 

Figure B.3:  (A) H.264 Video Encoder Executing on the RISPP Prototype; (B) 

Floorplan of the RISPP Prototype Implementation on the Xilinx Virtex-4 

LX 160 FPGA [Bau09] ......................................................................................158 

Figure B.4:  H.264 Video Encoder Executing on the TI� DM6437 DSP Board [S.2] ...........159 

Figure B.5:  Flow for porting H.264 Encoder on DM6437 Digital Signal Processor 

[S.2] ....................................................................................................................159 

Figure C.1:  The CES Video Analyzer Tool showing the Research Framework for 

Motion Estimation, Video Merging, and Texture Analysis [D.1] ......................162 

 

 



 

xxvii 

List of Tables 

 

Table 2.1:  High-level Properties of Implementation Version and Custom Instruction 

[Bau09] .................................................................................................................28 

Table 3.1:  Comparing the Coding Tool Set of Various Video Encoding Standards 

[ITU05, ITU09, Joi08, Joi10, KL07, Mic10a, Mic10b, Ric03, Ric10, 

YCW09] ...............................................................................................................37 

Table 4.1:  Custom Instructions and Data Paths for the H.264 Video Encoder .....................58 

Table 4.2:  Implementation Results for Various Data Paths of the H.264 Video 

Encoder .................................................................................................................63 

Table 4.3:  Thresholds and Multiplying Factors Used in ACCoReS .....................................69 

Table 4.4:  Summary of PSNR, Bit Rate, and Speedup Comparison for Various Video 

Sequences (Each encoded using 8 different QPs) ................................................74 

Table 4.5:  Comparing the Video Quality of Different SAD Decimation Patterns for 

Encoding of Susie CIF video sequence (30fps@256 kbps) .................................81 

Table 4.6:  Configuration and Energy Consumption for the chosen Energy-Quality 

(EQ) Classes [*Averaged over various test video sequences for 90 nm 

ASIC] ....................................................................................................................85 

Table 4.7:  Coefficients and Thresholds used by the algorithm of enBudget in 

Algorithm 4.4 .......................................................................................................87 

Table 4.8:  Performance, Area, and Energy Overhead of enBudget ......................................90 

Table 5.1:  Various Custom Instruction (CI) Muting Modes .................................................96 

Table 5.2:  Parameters and Evaluation Conditions with their Corresponding Reference 

Sources * the Virtex-5/6 internal CLB Composition is Different Compared 

to Previous FPGAs .............................................................................................105 

Table 5.3:  Hardware Implementation Results for the Energy Management Scheme on 

the RISPP Prototyping Platform (see Figure 6.1 in Section 6.1) .......................109 

Table 6.1:  Different Placement Combinations of two Transform Data Paths for 

Power Measurement ...........................................................................................122 

Table 6.2:  Measured Power Results for Various Data Paths & HT4x4 

Implementation Versions [* showing the effect of changing 

communication requirements, ** power for a single toggling bus segment; 

many bus segments are used for communication to realize an 

Implementation Version] ....................................................................................123 

Table 6.3:  Parameters of Power Model for the CI Implementation Versions .....................123 

Table 6.4:  Power Consumption and Latencies of Different Implementation Versions 

(using Different Amount of DPCs) for Various Custom Instructions for 65 

nm and 40 nm Technologies ..............................................................................123 

 





 

xxix 

List of Algorithms 

Algorithm 4.1: The Filtering Process for Boundary Strength=4 ...................................................59 

Algorithm 4.2: Pseudo-Code of Group-A for Prognostic Early Mode Exclusion .........................71 

Algorithm 4.3: Pseudo-Code of Group-B for Prognostic Early Mode Exclusion .........................72 

Algorithm 4.4: Pseudo code of the Run-Time Adaptive Predictive Energy-Budgeting 

Scheme .................................................................................................................86 

Algorithm 5.1: Pseudo code of Determining the Energy Minimizing Instruction Set ................104 

Algorithm 5.2: Pseudo Code for Finding a Data Path for Virtually-Muting Mode .....................114 

 

 





 

xxxi 

Abbreviations and Definitions 

ACCoReS Adaptive Computational Complexity Reduction Scheme 

ADI Arbitrary Directional Intra 

ALU Arithmetic Logic Unit 

ASIC Application Specific Integrated Circuit 

ASIP Application Specific Instruction Set Processor 

AVC Advanced Video Coding 

AVS Advanced Visual Systems 

B-MB Bi-directionally predicted åMB (i.e., a prediction is performed from the previous and 
future reference frames) 

BC Bus Connector: Connecting a åDPC to the Computation and Communication 
Infrastructure 

BOPF Buffer Overflow Prevention Factor 

BU Basic Unit, it is a group of åMBs; it defines the granularity at which the rate controller 
computes a new QP value 

CABAC Context-Adaptive Binary Arithmetic Coding 

CAVLC Context-Adaptive Variable Length Coding 

CBR Constant Bit Rate 

CI Custom Instruction 

CIF Common Intermediate Format (Resolution: 352x288) 

CIP Combined Intra Prediction 

cISA core Instruction Set Architecture: the part of the instruction set that is implemented 
using the core processor pipeline (i.e., non-reconfigurable); it can be used to implement 
can be used to implement åCustom Instructions 

CLB Configurable Logic Block: part of an åFPGA, contains multiple åLUTs 

CPU Central Processing Unit 

DCSS Dynamic Clock Supply Stop 

DCT Discrete Cosine Transform 

DPC Data Path Container: a part of the reconfigurable fabric that can be dynamically 
reconfigured to contain a Data Path, i.e., an elementary hardware accelerator 

DVFS Dynamic Voltage and Frequency Scaling 

EAPR Early Access Partial Reconfiguration 

EE Encoding Engine 

EEPROM Electrically Erasable Programmable Read Only Memory 

enBudget The run-time adaptive Energy Budgeting Scheme 

EPZS Enhanced Predictive Zonal Search 

EQ Energy-Quality 
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FI Forecast Instruction: a trigger instruction that indicates a Forecast Block containing a set 
of åCIs with an information of the compile-time analysis (e.g., expected number of 
executions) 

FIFO First-In First-Out buffer 

FIR Finite Impulse Response 

FME Fractional-pixel Motion Estimation 

FMO Flexible Macroblock Ordering 

FM-CI Fully-Muted Custom Instruction 

FPGA Field Programmable Gate Array: a reconfigurable device that is composed as an array of 
åCLBs and switching matrices 

FPS Frames Per Second 

FS Full Search 

GOP Group of Pictures with one I-Frame followed by a series of P- and/or B-Frames 

GPP General Purpose Processor 

HDTV High Definition Television 

HD720p High Definition 720 Lines Progressive Scan (Resolution: 1280 x 720) 

HEVC High Efficiency Video Coding 

HT Hadamard Transform 

HVS Human Visual System 

I-MB Intra-predicted åMB (i.e., a prediction is performed from the reconstructed pixels of 
åMBs from the current frame; it is also called spatial prediction 

I4x4 Macroblock is encoded as Intra with prediction is done at 4x4 block sizes 

I16x16 Macroblock is encoded as Intra where the whole 16x16 block is predicted 

ICAP Internal Configuration Access Port 

IDCT Inverse Discrete Cosine Transform  

IEC International Electrotechnical Commission 

IHT Inverse Hadamard Transform 

ILP Integer Linear Programming 

IME Integer-pixel Motion Estimation 

IP Intellectual Property 

IPred Intra Prediction 

IQ Inverse Quantization 

ISA Instruction Set Architecture 

ISO International Organization for Standardization 

ISS Instruction Set Simulator 

ITU International Telecommunication Union 

JVT Joint Video Team 
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KB Kilo Byte (also KByte): 1024 Byte 

KD Derivative Gain 

KI Integral Gain 

KP Proportional Gain 

LF Loop Filter 

LUT Look-Up Table: smallest element in an åFPGA, part of a åCLB; configurable as logic 
or memory 

MAD Mean of Absolute Differences 

MB Mega Byte (also MByte): 1024 åKB 

MB Macroblock, a 16x16 pixel block of a video frame 

MBEE Mean Bit Estimation Error 

MC Motion Compensation 

MD Mode Decision 

ME Motion Estimation 

MIPS Microprocessor without Interlocked Pipeline Stages 

MPEG Motion Picture Experts Group 

MPSoC Multiprocessor System-on-Chip  

MSE Mean Square Error 

MV Motion Vector 

MVC Multiview Video Coding 

NM-CI Non-Muted Custom Instruction 

NMOS N-type Metal-Oxide-Semiconductor Logic 

P-MB Inter-predicted åMB (i.e., a prediction is performed from the reconstructed pixels of 
åMBs from the previous frame; it is also called temporal prediction 

P8x8 Macroblock is encoded as Inter with sub-block types sizes of 8x8 or below 

P16x16  Macroblock is encoded as Inter where the whole 16x16 block is predicted 

PC Personal Computer 

PID Proportional-Integral-Derivative 

PMOS P-type Metal-Oxide-Semiconductor Logic 

PSM Programmable Switching Matrix 

PSNR Peak signal-to-noise ratio (units: db) 

Q Quantization 

QCIF  Quarter Common Intermediate Format (Resolution: 176 x 144) 

QP Quantization Parameter 

RAM Random Access Memory 

RC Rate Controller 

RD Rate Distortion 
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RDO Rate Distortion Optimization 

REMiS Run-time Adaptive Energy Minimization Scheme 

RFU Reconfigurable Functional Unit: denotes a reconfigurable region that can be 
reconfigured towards a Custom Instruction implementation 

RISPP Rotating Instruction Set Processing Platform 

SAD Sum of Absolute Differences 

SATD Sum of Absolute Transformed Differences 

SI Special Instruction 

SIF Source Input Format (Resolution: 352 x 240) 

SPARC Scalable Processor Architecture: processor family from Sun Microsystems; used for the 
åRISPP prototype 

SQCIF  Sub-quarter Common Intermediate Format (Resolution: 128 x 96) 

SRAM Static Random Access Memory 

SSE Sum of Squared Differences 

TH Threshold 

UMHexagonS Unsymmetrical-cross Multi-Hexagon-grid Search 

VBR Variable Bit Rate 

VCEG Video Coding Experts Group 

VISA Virtual Instrument Software Architecture 

VLC Variable Length Coding: a computational kernel that is used in H-264 video encoder 

VLIW Very Large Instruction Word 

VM-CI Virtually-Muted Custom Instruction 

XML Extensible Markup Language 

XST Xilinx Synthesis Technology 

YUV A video format denoting one Luminance (Luma, Y) and two Chrominance (Chroma, 
UV) Components. A typical resolution given to video encoders is YUV4:20:0, i.e., a 
sampling method where the two chrominance components have just half the resolution 
in vertical and horizontal direction as the luminance component 

Definitions: 

Level define a constraint on key parameters, e.g., specific resolutions and bit rates. 

Profile defines a set of coding tools and algorithms, targeting a specific class of applications. 

Residual Difference of current data to the corresponding prediction data. 

Slice A frame is build up of a number of slices, each containing an integral number of MBs. 
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Chapter 1 Introduction 

The unremittingly increasing user demands and expectations have fueled the gigantic growth for advanced 
multimedia services in mobile devices (i.e., embedded multimedia systems). This led to the emergence of 
high-performance image/video signal processing in such mobile devices that are inherently constrained 
with limited power/energy availability. On the one hand, advanced multimedia services resulted in the 
evolution of new multimedia standards with adaptive processing while providing high quality, increased 
video resolutions, increased user-interactivity, etc. As a result, the next generation applications executing 
on the embedded multimedia systems exhibit high complexity and consume high energy to fulfill the end-
user requirements. On the other hand, the battery capacity in mobile devices is increasing at a significantly 
slow rate, thus posing serious challenges on the realization of next-generation (highly-complex) 
multimedia standards on embedded devices. Further parameters that affect the design of an embedded 
multimedia system are long device charging cycles, cost, short time to market, mass volume production, 
etc. Besides these constraints and parameters, the intense market competition has created a multi-
dimensional pressure on the industry/research to provide innovative hardware/software architectures for 
high-performance embedded multimedia systems with low power/energy consumption. Due to the context-
aware processing in the emerging multimedia standards, the need for user-interactivity, and frequent 
product upgrades (in a short-time-to-market business model) have introduced a new dimension of run-

time adaptivity to the overall requirements of the emerging embedded multimedia systems in order to 
react to the run-time changing scenarios (e.g., quality and performance constraints, changing battery 
levels). 

Besides image and graphic processing, video coding is a primitive application of a mobile multimedia 
system. Advances in video compression standards continue to enable high-end video applications (like 
video conferencing/video calls, personal video recording, digital TV, internet video streaming, etc.) with 
high video quality, bigger video resolutions, and lower bit rates on battery-constrained mobile devices. 
This may lead to a workload of more than 35 Giga operations per second at a power budget of less than 
300mW [Ber09]1

. Advanced video codecs may consume a significant amount of processing time and 
energy due to their adaptive processing to provide better compression. However, encoding effort highly 
depends upon the characteristics of the input video sequence and the target bit rates. Therefore, under 
changing scenarios of input data characteristics and available energy budgets, embedded solutions for 
video encoding need to consider run-time adaptivity. 

1.1 Trends and Requirements of Advanced Multimedia Systems 

Typically, mobile multimedia devices range from Laptops (24-49 W/hr battery) to Tablets (5-10W/hr 
battery) to Pocket mobile devices (3-5W/hr battery) [Tex10a]. According a device survey �the Future 
Image WIRE�[Esp04], the sales growth of camera phones have exploded from 25 to 450 Million units. 
Typical multimedia applications executing on such mobile devices are: 
• Digital Video: video calls/conferencing, personal video recording, video playback, digital TV, video 

pre-/post-processing (like adaptive noise filtering, de-interlacing, edge enhancement), etc. 
• Digital Image: photography, image processing, etc. 
• Digital Audio: voice calls, audio recording, audio playback, etc. 
• Games: game processing, rendering, etc. 
• Display processing: brightness and contrast adjustment, up-/down-scaling, etc. 

The increasing complexity of multimedia applications requires extreme computational capability from the 
underlying hardware platform. Over the last two decades, the video coding standards have evolved from 
MPEG-1 to H.264 to Multiview Video Coding for 3D videos. Moreover, the video resolutions have been 

                                                      
1 Today�s Li-ion batteries provide about 800mAh at 3.7V, or nearly 3Wh [Ber09]. 
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increased from QCIF (Quarter Common Intermediate Format, 176x144) to SD (Standard Definition, 
720x480) to HDTV (High Definition, 1920x1080). A radical increase is foreseen leading towards the 
UDTV (Ultra high-definition resolutions) to Realistic TVs (see Figure 1.1a) requiring a computational 
complexity of approximately 10000x (relative to MPEG-4 QCIF@30fps, see Figure 1.1b) 
[Hui10][MBNN10]. Note, H.264 [ITU05] is one of the latest video coding standards that provides double 
compression compared to previous coding standards (e.g., MPEG-2, H.263, etc.) at the cost of additional 
computational complexity and energy consumption (~10x relative to MPEG-4 advance simple profile 
[OBL+04]). Besides higher resolutions, the key reason of increasing video coding complexity is the 
complex tool set of advanced video encoders. The authors in [MBNN10] state an expected increase in the 
video complexity by 2x every two years. Although, high resolutions are mainly targeted for high-end 
multimedia devices, multiview video conferencing or personal recording at HD (or Quad-HD, 3840x2160 
or 4096×2304) resolution is foreseen within next 5 years on mobile devices [Nok10]. Industrial prototypes 
like [Nok10, WUS+08] have already demonstrated the feasibility of 3D-videos and Multiview Video 
Coding on mobile devices using two views. In short, realization of advanced video coding of high 
resolution videos on the battery-powered mobile devices demands high complexity reduction and low 
power consumption. Moreover, with the evolution of context-aware processing in advanced video coding 
standards, exploitation of parallelism is becoming more and more challenging [CK08, CLZG06]. 
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Figure 1.1: (a) Video Services Over Time [Hui10]; (b) Video Complexity Over Time [MBNN10]  

Besides the above-discussed issues, run-time adaptivity has evolved as an important system attribute to 
facilitate user interaction and to react to the unpredictable scenarios in order to efficiently utilize the 
available energy resources. Moreover, scalability to different video resolutions and coding standards (i.e., 
different video algorithms) is required, which demands for an adaptive architecture for mobile devices. 

Summarizing: The fundamental requirements of the next-generation embedded multimedia systems are: 
• high performance to support bigger video resolution and higher frame rates 
• high video quality at reduced bit rates 
• (ultra) low power consumption 
• adaptivity to the changing scenarios of available power resources, changing user constraints 

(different video resolutions, frame rates, bit rates, etc.) 
• reduced chip area 
• supporting different video format 
• supporting multiple video coding standards 
• programmability to have quick and easy application upgrades/updates 
• reduced cost, (ultra) high production volumes, short time-to-market, and strong market competition 
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Considering the above-discussed design challenges, for a fast design turnaround time without entire 
system redesign, adaptive low-power processor and application architectures (with the support of 
hardware acceleration) for embedded multimedia are highly desirable. 

1.2 Trends and Options for Multimedia Processing 

Figure 1.2 shows traditional embedded approaches like Application Specific Integrated Circuits (ASICs), 
Digital Signal Processors (DSPs), Application-Specific Instruction Set Processors (ASIPs), and multimedia 
Multi-Processor System-on-Chip (MPSoCs). These approaches do not necessarily meet all of the above-
mentioned design challenges. Each of these has its own advantages and disadvantages, hence fails to offer a 
comprehensive solution to next generation complex mobile multimedia applications� requirements. 

ASICs target specific applications where the �performance per area� and �performance per power 

consumption� can be optimized specifically. However, besides a high initial cost, the design process of 
ASICs is lengthy and is not an ideal approach considering short time-to-market. Moreover, ASICs lack 
flexibility (i.e., cannot perform tasks that were not considered while designing that ASIC and 
implementing modifications/enhancements may result in a costly redesign) and adaptivity, thus hard to 
adapt to standard evolutions and market/technology induced changes. Let us consider a scenario of video 
coding as a part of a mobile multimedia system. Advanced video codecs (like H.264 [ITU05], Microsoft 
VC1 [Mic10a, Mic10b], Chinese Audio Video Standard [YCW09]) exhibit a large set of tools to support a 
variety of scenarios and applications (e.g., low bit-rate video conferencing, high-quality personal video 
recording, HDTV, etc.). A generic ASIC for all tools is impractical and will be huge in size. In contrast, 
multiple ASICs for different applications have a longer design time and thus an increased Non-Recurring 
Engineering (NRE) cost. Moreover, when considering multiple applications (video encoder is just one 
application) running on one device, programmability is inevitable (e.g., to support task switching). 
Another use case scenario may be realized when (for example) H.264 video codec is an upgrade to the 
codec (from a previous generation) in a pre-existing video recording system. ASICs � due to lack of 
adaptivity and programmability � may perform inefficient or fail to support such scenarios. Therefore, 
programmable and reconfigurable/adaptive solutions for multimedia (especially video coding) have 
evolved as an attractive design approach. 

Unlike ASICs, DSPs offer high flexibility and a lower design time. Considering a software-based 
multimedia system, compared to General Purpose Processors (GPPs), DSPs provide better �performance 

per area� and �performance per power consumption�. It is because of their specialized assembly, 
specialized functional units, and exploitation of instruction level parallelism by using VLIW (Very Long 
Instruction Word) architecture, i.e., multiple instructions executing in parallel in the same cycle. 
Commercial solutions are from Philips Nexperia (PNX1500, PNX1700, Nexperia media processor 
PNX952x family) [Phi10] and from Texas Instruments (DaVinci and OMAP series) [Tex10a, Tex10b]. 
However, DSPs alone may not satisfy the power and/or performance challenges when considering the 
combination of tight power budgets on battery-powered mobile devices and intricate processing nature of 
next-generation multimedia algorithms. Moreover, DSP performance is limited by the available data 
bandwidth from the external memory [KRD+03, SHS08]. Although stream architecture [KRD+03] 
provides an efficient memory hierarchy to exploit the concurrency and data locality, it exploits a limited 
amount of parallelism (e.g., only data level parallelism) [Ste09]. Therefore, dedicated hardware 
accelerators are inevitable as they provide a high-degree of instruction and data level parallelism to meet 
applications� requirements with a limited power budget. 

ASIPs overcome the shortcomings of DSPs and ASICs, with an application-specific instruction set 
that offers a high flexibility (than ASICs) in conjunction with a better efficiency in terms of �performance 

per area� and �performance per power consumption� (compared to GPP and DSPs). Tool suites and 
architectural IP for embedded customizable processors with different attributes are available from major 
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vendors like Tensilica [Ten], CoWare [CoW], ARC [ARC], Stretch [Str], etc. ASIPs may offer a 
dedicated hardware implementation for each application kernel but this typically requires a large silicon 
footprint. However, for large applications featuring many kernels (instead of a few exposed ones), current 
ASIP concepts struggle. In fact, customization for many kernels may bloat the initial small processor core 
to considerably larger sizes (factors of the original core processor). Moreover, while scrutinizing 
carefully, in complex multimedia applications based on an advanced video codec (like H.264), it was 
noticed that these kernels are not active at the same time (see detailed analysis in Chapter 3). Still, the 
sequential execution pattern of the application execution may only utilize a certain portion of the 
additionally provided hardware accelerators at any time, thus resulting in an inefficient resource 
utilization and may become power inefficient. 

Another trend is heterogeneous Multimedia MPSoCs that integrate several programmable 
processors (GPPs, DSPs), domain-specific weakly programmable coprocessors, and application-specific 
hardware accelerators (ASIPs, ASICs) using an on-chip communication structure to deliver higher 
performance. Commercial vendors have transformed their approaches from pure DSPs to multimedia 
MPSoCs where one or more DSP cores are coupled with programmable ARM cores and/or dedicated 
hardware accelerators. Prominent examples are Philips Nexperia [Phi10], Nomadik multimedia processor 
by STMicroelectronics [STM06], and Texas Instruments� DaVinci technology and OMAP processor 
series [Tex10a, Tex10b]. The selection of cores in an MPSoC is determined at design time depending 
upon the requirements of a certain set of applications. Therefore, such an MPSoC does not provide the 
demanded efficiency when executing applications from different domains. Moreover, with a change in the 
application standard (e.g., a different video coding standard) the currently-used MPSoC becomes obsolete 
(as it may not fulfill the required performance and power design constraints for the end-product). 
Therefore, when using state-of-the-art multimedia embedded processors, the performance or power 
constraints may be achieved in a certain context, but the inability to react to the above-mentioned 
uncertainties (i.e., changing standards, unpredictable scenarios, and application behavior) and the resulting 
efficiency (in terms of power, performance, etc.) issues remain. 
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Figure 1.2: (a) Flexibility vs. Efficiency Comparison of Different Architectural Options (inspired 

from [Hen03]); (b) Evolution Trend of Xilinx Virtex FPGAs [Xil10a] 

Field Programmable Gate Arrays (FPGAs) provide a platform solution with low NRE cost, faster time-
to-market, and longer product lifetime, thus becoming more popular and mainstream [Te06]. With the 
continuing evolution of FPGAs (see Figure 1.2b)2, various architectures have emerged that embed a 
reconfigurable fabric (i.e., an embedded FPGA) within a core processor pipeline (e.g., MIPS, SPARC, 
VLIW) [Ama06, BL00, Bob07, CH02, Har01, HM09, TCW+05, VS07]. These so-called dynamically 

reconfigurable processors bridge the gap between ASICs/ASIPs and DSPs/GPPs by combining the 
performance and efficiency (due to their capability to exploit high degree of parallelism) of dedicated 

                                                      
2 An increase of 20x in the logic density over the last 15 years [Xil10a]. 
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accelerators3 (implemented using an embedded FPGA) with a high degree of adaptivity/flexibility (due to 
their programmability and hardware reconfigurability). The reconfigurable fabric can be reconfigured at 
run time to contain hardware accelerators, thus allowing a new dimension of adaptivity even after the 
fabrication and deployment. The adaptive nature of dynamically reconfigurable processors enables: 

• feature updates of a given multimedia standard, e.g., a video encoder is enhanced with further coding 
tools to improve the compression efficiency, 

• a standard upgrade, e.g., an existing H.263 video encoder is replaced by a newer version of an H.264 
video encoder to provide better compression and quality, 

• product upgrade, e.g., new hardware accelerators are loaded to expedite a new multimedia 
application in the next product release, 

• improved product efficiency, e.g., an application designer can design new hardware accelerators of 
an existing application to expedite more kernels to achieve higher performance or improved video 
quality (like a new post-processing filter) that are determined by the new user market, 

• hardware/software upgrades, e.g., new configuration bitstream of a hardware accelerator may replace 
the older one in order to provide low power and/or high performance, 

• incremental design to cope with time-to-market issues 

This flexibility comes at the cost of increased area and power due to the reconfigurability and the 
structure of an FPGA-like fabric. Besides addressing the inefficient area utilization problem of ASIPs, 
Dynamically reconfigurable processors overcome the increased area issue by reusing the hardware in 
time-multiplex, while still providing a high-degree of parallelism. These processors partition their 
reconfigurable fabric into so-called containers that may load hardware accelerators at run time to 
implement so-called Custom Instructions that are then deployed to actually expedite the application�s 
kernels. After the execution of a kernel is completed, the reconfigurable fabric may be allocated to 
Custom Instructions of other kernels or even to other applications by performing a dynamic 
reconfiguration of the accelerators. However, the process of reconfiguration incurs additional power 
overhead and latency (see details in Chapter 6). Moreover, with the evolution of sub-micron fabrication 
technologies, the consideration of leakage power/energy4 has become imperative in the energy-aware 
design of reconfigurable processors. 

Exploiting high-degree of parallelism allow dynamically reconfigurable processors to run at lower 
operating frequencies, thus providing a mean to low power consumption. Consequently, a high-degree of 
parallelism also corresponds to increased area and power (due to reconfiguration, leakage, and dynamic 
switching) requirements. Moreover, the execution frequency of the accelerators highly depends upon the 
input data that may significantly change at run time. Therefore, a tradeoff between the performance and 
power consumption needs to be evaluated at run time depending upon the system constraints (e.g., 
available hardware area, required application performance, input data, etc.). Furthermore, adaptivity 
provides a mean to react to the changing scenarios in order to efficiently exploit the available energy 
resource (due to changing battery levels). 

State-of-the-art approaches in reconfigurable processors have mainly concentrated on improving the 
performance by reconfiguring application-specific hardware accelerators at run time to meet applications� 
demands and constraints. These processors lack of efficient energy management features. Lately, power 
reduction for reconfigurable fabric (like FPGAs) has become a key research interest as it will be discussed 
in Chapter 2. Similar to the low power approaches in ASICs, hardware shutdown may be performed to 
reduce the leakage energy of reconfigurable processors considering the usage of the reconfigurable 
hardware, i.e., statically determining the parts of a reconfigurable fabric to be shutdown. However, due to 

                                                      
3 These accelerators are similar to those that are deployed by ASIPs. 
4 The key reasons of increased leakage power in the sub-micron fabrication technologies are shorter 

device/transistor dimensions, reduced threshold voltage, high transistor density, etc. 
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the adaptive nature and time-multiplexed usage of the reconfigurable fabric, it cannot be determined at 
compile time which hardware accelerators will be reconfigured on which parts of the reconfigurable 
fabric. Therefore, state-of-the-art hardware shutdown approaches may perform inefficient in such 
scenarios as they suffer from the limitation of inflexibility and are highly dependent upon the underlying 
shutdown policy. This thesis aims at raising the abstraction level of shutdown decision to the instruction 
set level (see details in Chapter 5) that enables a far higher potential for leakage energy savings and opens 
new avenues for researching efficient energy management schemes for dynamically reconfigurable 
processors. 

1.3 Summary of Challenges and Issues 

Multimedia systems with advanced video codecs (H.264, Microsoft VC1, etc.) employ a complex tool set 
to provide better quality/compression at the cost of significantly increased computational processing and 
power requirements (see details in Chapter 2 and Chapter 3). Moreover, rapid standard evolution, users� 
demands for higher video resolution, incremental application upgrades on mobile devices pose additional 
research challenges related to adaptivity and low power consumption. Hence, for designing an adaptive 
low-power multimedia system there is a need to combat the above-discussed issues at all abstraction 
levels. Besides employing a low-power device technology (low-power cell library) and operating-system 
level power management, the low-power and adaptivity related issues need to address at both processor 
architecture and application architecture levels [FHR+10]. There are several scenarios that cannot be 
effectively predicted at design-/compile-time. In such scenarios, if an embedded multimedia system is not 
capable of adapting appropriately, it would give away some of the potential power savings [FHR+10]. 
Therefore, in order to cope with unpredictable scenarios, the next-generation low-power multimedia 
systems need to be able to adapt at run time to efficiently utilize the available energy resources, even 
though adaptivity comes at the cost of a power overhead. A tradeoff between the reconfiguration and 
leakage reduction needs to be evaluated at run time. This instigates the need for processor architectures 
with run-time reconfiguration and adaptation of the application architecture to exploit the low-power 
capabilities of the underlying processor architecture (run-time reconfiguration, high-degree of parallelism, 
higher abstraction level of power-shutdown, etc.). 

This thesis aims at addressing the issues related to adaptivity and low power consumption jointly at 
processor and application levels under run time varying scenarios of available area, available energy 
budget, and user constraints. To support processor level adaptivity dynamically reconfigurable processors 
are used as a target computing platform. 

1.4 Thesis Contribution 

This thesis aims at achieving a high energy efficiency for dynamically reconfigurable processors (and 
reconfigurable computing in general) enabling adaptive embedded multimedia systems with low 

power/energy consumption to provide means for next-generation mobile multimedia applications and 
emerging multimedia standards. The key goals are to exploit the available potential of energy reduction in 
dynamically reconfigurable processors while meeting the performance constraint and keeping the video 
quality degradation unnoticeable, under run-time varying scenarios (due to changing video properties, 
available energy resources, user-defined constraints, etc.). This thesis presents novel techniques for 
adaptive energy management at both processor architecture and application architecture levels, such that 
both hardware and software adapt together in order to minimize the overall energy consumption under 
design-/compile-time unpredictable scenarios. 

The adaptive low-power processor architecture employs the novel concept of Selective Instruction 

Set Muting that allows to shun the leakage energy at the abstraction level of Custom Instructions, i.e., an 
instruction set oriented shutdown. State-of-the-art low-power schemes employ power-shutdown 
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considering the state/usage of the hardware (i.e., a hardware-oriented shutdown) to reduce the leakage 
power/energy. As discussed earlier, when targeting reconfigurable processors, it cannot be determined at 
compile time which parts of the instruction set will be reconfigured on which part of the reconfigurable 
fabric. Therefore, unlike state-of-the-art, the proposed Selective Instruction Set Muting raises the 
abstraction level of shutdown to the instruction set level. Multiple Custom Instruction muting modes are 
introduced each providing a certain tradeoff between leakage energy saving and reconfiguration energy 
overhead. The proposed concept relates leakage energy to the execution context of an application, thus 
enabling a far higher potential for leakage energy savings. The associated potential energy savings have 
not been exploited by state-of-the-art approaches [CHC03, Ge04, MM05, Te06]. This thesis aims at 
exploiting this potential. It is especially beneficial for highly flexible Custom Instruction set architectures 
like in [Bau09, VWG+04]. Moreover, based on the concept of Selective Instruction Set Muting, a run-time 
adaptive energy management scheme investigates the tradeoff between leakage, dynamic, and 
reconfiguration energy for a given performance constraint, thus dynamically moving in the energy-

performance design space. 

The adaptive low-power application architecture employs the novel concept of Energy-Quality 

Classes and video properties dependent adaptive complexity reduction in order to realize the adaptive 

low-power video encoding. The proposed Energy-Quality Classes represent a particular Motion 
Estimation configuration that requires a certain energy while providing a certain video quality. It thereby 
enables a run-time tradeoff between the energy consumption and the resulting video quality. 

In particular the novel contribution of this thesis are: 

1) Adaptive Low-power Video Coding Application Architecture: At the application level, the 
adaptivity and energy reduction are demonstrated using an advanced video encoder (like H.264). An 
optimized application architecture is proposed for video encoders targeting dynamically reconfigurable 
processors. To reduce the energy requirements of different functional blocks of a low-power video 
encoder at run time, different algorithms have been developed as listed below: 
• An analysis of spatial and temporal video properties with consideration of important Human-Visual 

System properties to categorize different video frames and their Macroblocks, such that different 
energy is spent on the encoding of Macroblocks with different texture and motion properties. 

• An adaptive complexity reduction scheme to reduce energy requirements of encoder by excluding 
improbable coding modes from the mode-decision process. It solves the issue of choosing the final 
coding mode out of hundreds of possible combination (without exhaustively searching the design 
space) by considering the spatial and temporal video properties. Unlike state-of-the-art, this scheme 
performs an extensive mode-exclusion before fast Mode Decision and Motion Estimation processes, 
thus providing a significant reduction in the computational complexity and energy consumption. 

• An energy-aware Motion Estimation with integrated energy-budgeting scheme in order to 
adaptively predict the energy quota for the Motion Estimation (that may consume up to 65% of the 
total encoding energy). It employs the novel concept of Energy-Quality Classes in order to realize 
the adaptive low-power video encoding. Each Energy-Quality Class corresponds to a particular 
Motion Estimation configuration that requires a certain energy while providing a certain video 
quality. It thereby enables a run-time tradeoff between the energy consumption and the resulting 
video quality. The energy-budgeting scheme chooses a certain Energy-Quality Class for different 
video frames considering the available energy, video frame characteristics, and user-defined coding 
constraints while keeping a good video quality. 

• For the blocks that are fixed by the standard and adaptivity is not possible, low-power hardware 
accelerators were designed. 

2) Novel Concept of Instruction Set Muting: At processor level, a new way to save energy in 
dynamically reconfigurable processors is proposed in this thesis that allows to shun the leakage energy 
at the abstraction level of Custom Instructions. According to an execution context, the Custom 
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Instruction set of a dynamically reconfigurable processor is selectively 'muted' at run time. It thereby 
relates leakage energy reduction to the execution context of an application, thus enabling a far higher 
potential for energy savings. The concept employs various so-called 'Custom Instruction muting 
modes' each leading to particular leakage energy savings. This enables a dynamic tradeoff between 
�leakage energy saving� and �reconfiguration energy overhead� considering the application execution 
behavior under run-time varying performance and area constraints (e.g., in a multi-tasking 
environment). Raising the abstraction level to instruction set addresses the above-discussed issues of 
hardware-oriented shutdown in dynamically reconfigurable processors where it cannot be determined 
at compile time which parts of the instruction set will be reconfigured on which part of the 
reconfigurable fabric. The key challenge is to determine which of the muting modes are beneficial for 
which part of the Custom Instruction set in a specific execution context. 

3) Adaptive Low-power Reconfigurable Processor Architecture: To exploit the higher potential for 
energy savings due to the novel concept of Instruction Set Muting with multiple muting modes and to 
provide a high adaptivity (as demanded by multimedia applications with highly video data dependent 
processing considering changing scenarios of performance and area constraints, available energy 
resources, etc.), a run-time energy-management system is required. At the processor level, a run-time 
adaptive energy management scheme is employed that performs the following steps. 
a) Determine an energy minimizing instruction set: First, an energy-minimizing instruction set for a 

dynamically reconfigurable processor is determined (considering leakage, dynamic, and 
reconfiguration energy) under run-time varying performance and area constraints. 

b) Perform the selective instruction set muting: After choosing the energy-minimizing instruction set, 
a decision about the Custom Instruction muting mode is determined for the temporarily unused 
subset of the instruction set by considering the requirements and execution lengths of the compute-
intensive parts of an application (i.e., the execution context of an application). It is determined at 
run time which subset of Custom Instructions should be put into which muting mode at which time 
by evaluating at run time the possible associated energy benefit (a joint function of leakage, 
dynamic, and reconfiguration energy). 

For power estimation of dynamically reconfigurable processors, a comprehensive power model is developed, 
which is based on power measurements. Moreover, this thesis presents formal problem description and 
detailed evaluation of the proposed algorithms at processor and application levels. The superiority of the 
presented contribution is demonstrated by a fair comparison with state-of-the-art. In addition to the above-
discussed scientific contribution, following has been developed in the scope of this work: 
• A complete power-measurement setup for dynamically reconfigurable processors that consists of a 

power supply board, two oscilloscopes, an FPGA based prototyping board, and a control program 
(running on a laptop/desktop computer) for capturing the measurements from the oscilloscopes. 

• A complete H.264 video encoder application with the proposed run-time algorithms and low-
complexity data flow. The in-house developed H.264 encoder is currently executing on an in-house 
dynamically reconfigurable processor prototype [Bau09], Texas Instruments� multimedia processor, 
and laptops/desktop computers. 

• A video analysis tool with an easy-to-use graphical user interface for quick and in-depth analysis of 
video sequences. 

1.5 Thesis Outline 

The thesis is outlined as follows: Chapter 2 discusses the background for video coding (especially the 
advanced video codec H.264) and prominent related work on low-power encoder design and 
implementations. Afterwards, the background for (dynamically) reconfigurable processors is presented. 
The RISPP (Rotating Instruction Set Processing Platform) dynamically reconfigurable processor [Bau09] 
is briefly described, which is used for detailed benchmarking of the novel contribution of this thesis. The 
formal model of modular Custom Instructions of RISPP is also discussed that will be used in the 
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subsequent chapters for describing the algorithms of the low-power processor architecture in a clear and 
precise manner. Afterwards, state-of-the-art related work for different low-power techniques for 
reconfigurable computing is discussed. 

Chapter 3 presents the requirement analysis of Video Coding for energy consumption and adaptivity. 
A case study of an H.324 Video Conferencing application is presented highlighting the video coding as 
the most compute-intensive task for mobile multimedia applications. The coding tool set of advanced 
video codecs is analyzed and common coding tools are explored. Different challenges and issues related 
to power consumption and adaptivity are discussed in the light of the H.264 video encoder. Afterwards, 
the overview of the proposed adaptive low-power application and processor architectures is presented 
along with different steps considered at design, compile, and run time. After discussing how the proposed 
concept addresses the challenges, a power model for dynamically reconfigurable processors is proposed in 
the scope of this thesis, which is used by the application and processor level energy management schemes 
that are proposed in Chapter 4 and Chapter 5. 

Chapter 4 presents the first key novel contribution of this thesis in detail, i.e., adaptive low-power video 
coding. First application architectural adaptations for video encoders are discussed targeting reconfigurable 
processors followed by the design of low-power Custom Instructions and hardware accelerators. Afterwards, 
an analysis of spatial and temporal video properties is presented that provides the foundation for adaptive 
complexity reduction and energy-aware Motion Estimation which are the primitive components of an 
adaptive low-power video encoder. The concept of adaptively excluding the less-probable coding modes is 
introduced that significantly reduces the computational requirements of the video encoder, thus saving the 
energy consumption. For the energy-aware Motion Estimation, the concept of Energy-Quality Classes is 
introduced that provides a run-time tradeoff between the energy consumption and the resulting video quality. 
A run-time energy-budgeting scheme is presented that allocates an energy quota for the Motion Estimation 
of different Macroblocks considering their spatial and temporal video properties. 

In Chapter 5 the novel concept of power-shutdown at the instruction set level (i.e., the so-called 
Custom Instruction muting) is introduced. A power-shutdown infrastructure is discussed that supports the 
Custom Instruction muting concept with multiple muting modes. Based on this, an adaptive low-power 
reconfigurable processor architecture is presented that employs a run-time adaptive energy management 
with Selective Instruction Set Muting. It provides a dynamic tradeoff between leakage, dynamic, and 
reconfiguration energy. Different components of this energy management scheme (i.e., run-time selection of 
an energy-minimizing instruction and Custom Instruction muting decisions) are discussed in the subsequent 
sections along with their formal model, algorithms, and evaluation for different fabrication technologies. 

The power measurement setup, test cases for power measurements, and steps for creating the power 
model are explained in Chapter 6. Although the evaluation results for different components are already 
discussed in Chapter 4 and Chapter 5, Chapter 7 provides the detailed comparison of the application and 
processor level energy management with state-of-the-art. Chapter 8 concludes this thesis and provides an 
outlook of the potential future works. 

Appendix A briefly discusses the proposed multi-level rate control, which compensates the quality 
degradations that occurred as a result of the above-mentioned energy-aware adaptations. It provides 
smooth bit allocation which is critical for embedded multimedia systems. Appendix B presents the 
overview of the simulation environment. It further shows the in-house developed H.264 video encoder 
executing on an in-house dynamically reconfigurable processor prototype [Bau09] and Texas Instruments� 
multimedia processor. Appendix C shows the video analysis tool which was used for the analysis of 
spatial and temporal properties in Chapter 4. 
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Chapter 2 Background and Related Work 

This thesis envisions adaptive low-power multimedia systems covering both the application and processor 
perspectives. Besides low power consumption, a special focus is on the support for adaptivity which is 
inevitable when considering the rapid evolution of the multimedia/video standards and high 
unpredictability due to user interactions, input data, and inclusion of adaptive algorithms in advanced 
standards. In order to support adaptivity dynamically reconfigurable processors are considered in this 
thesis. This chapter provides basics and terminology used in video coding and an overview of the H.264 
video encoder which is one of the latest video coding standards. Afterwards, a general background of the 
reconfigurable processors and their low-power infrastructure is discussed in Section 2.3 followed by the 
prominent related work in dynamically reconfigurable processors and low-power approaches for 
reconfigurable computing. Especially, the RISPP processor [Bau09] is presented in detail as it is used for 
detailed benchmarking of the processor-level contribution of this thesis (i.e., adaptive low-power 
processor architecture). 

2.1 Video Coding: Basics and Terminology 

Figure 2.1 provides an overview of the structure of a video sequence. A video is composed of a sequence 
of frames of a scene captured at a certain frame rate (given as fps, frames per second) creating a smooth 
motion perception to the human eye. The basic unit of a video frame is a pixel (also called picture element 
or pel). The size of a video frame is denoted as its resolution, which is given as the number of pixels in 
one line (frame width, W) and number of lines (frame height, H). Different video resolutions can be seen 
in Figure 2.1. Typical resolutions for mobile videos are CIF (Common Intermediate Format) and QCIF 
(Quarter CIF), while for entertainment quality (like in TVs, multimedia TVs, home cinema, etc.), the 
resolutions vary from SD (Standard-Definition) to HD (High-Definition). 

Typically cameras capture a video frame in RGB5 format which is then converted into YUV6 (4:4:4) 
format for video encoding purpose. A video in YUV format consists of one Luminance (Y, also called 
Luma) and two Chrominance (UV, also called Chroma) components. YUV 4:4:4 denotes a full-sized Y, U, 
and V components. Since the human eye is more sensitive to brightness compared to the color, typically the 
Chroma components (U and V) are sub-sampled before encoding to obtain a resolution of YUV 4:2:0 
where the size of Y component is W x H and the size of each of the U and V component is W/2 x H/2. 
Note, the sub-sampling of the color components directly corresponds to a 50% reduction in the video data. 

All the advanced video encoders are block-based encoders, i.e., the basic processing unit for an encoder 
is a 16x16 Luma pixel block which is called a Macroblock (MB). A group of MBs is called a Slice. A frame 
can be partitioned into several variable-sized slices (see Figure 2.1). In an extreme case, one complete frame 
can also be a single slice. Depending upon the prediction direction, a slice/frame can be categorized as: 

• Intra-Predicted (I) Slice/Frame: all MBs of this slice/frame are encoded using the spatial 
prediction, i.e., the prediction is performed using the reconstructed pixels of the neighboring MBs in 
the current slice/frame.  

• Inter-Predicted (P) Slice/Frame: the MBs may be encoded using the spatial prediction or using the 
temporal prediction, i.e., the prediction is performed using the reconstructed pixels of the MBs in the 
previous slice/frame. 

• Bi-Predicted (B) Slice/Frame: the MBs may be encoded using the spatial prediction or the temporal 
prediction from the previous and/or future slices/frames. 

                                                      
5 RGB denotes Red, Green, Blue components of a video frame. 
6 The reason for using YUV space for video coding is its smaller correlation between the color components making 

the independent encoding of these components easier. 
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Although P- and B-Frames provide a higher compression compared to the I-Frames, the I-Frames are 
necessary in periodic intervals in order to provide random access to the video sequence and to avoid the 
propagation of the prediction error. The group of frames between two I-Frames is called Group of 
Pictures. Typically a Group of Pictures defines the order of different frame types and the prediction 
structure. Note: the nomenclature used here is based on the H.264 video coding standard. However, most 
of the terminology is similar in the previous generations of the coding standards. 

 

Figure 2.1: An Overview of the Digital Video Structure (showing Group of Pictures, Frame, Slice, 

MB) and Different Video Resolutions 

2.2 The H.264 Advanced Video Codec: A Low-Power 
Perspective 

The limited power resources of current/emerging mobile devices have led to the evolution of power-
/energy-aware multimedia. Their video encoders demand huge amount of processing and energy from the 
underlying hardware, thus pose a challenge on low-cost/low-power embedded systems. In the following, 
before proceeding the state-of-the-art related work on adaptive and low-power video coding architectures, 
an overview of the H.264 video encoder which is one of the latest video coding standards. 

2.2.1 Overview of the H.264 Video Encoder and its Functional Blocks 

The advanced video coding standard H.264/AVC7 (Advanced Video Coding) [ITU05] was developed by 
the Joint Video Team (JVT) of the ITU-T VCEG and ISO/IEC MPEG to provide a bit rate reduction of 
50% as compared to MPEG-2 with similar subjective visual quality [WSBL03]. However, this 
improvement comes at the cost of significantly increased computational complexity (~10x relative to 
MPEG-4 advance simple profile encoding, ~2x for decoding [OBL+04]), that directly corresponds to high 
energy consumption. This increased computational complexity and energy consumption of H.264 is 
mainly due to its complex prediction, Motion Estimation and Rate Distortion Optimized Mode Decision 
processes that operate on multiple (variable) block sizes (as shown in Figure 2.3). It thereby poses serious 
challenges on the low-power encoder realizations for embedded multimedia systems. 

Figure 2.2 presents the functional overview of the H.264/AVC video encoder. A sequence of 
uncompressed video frames in YUV 4:2:0 format is given as the input. Each frame is split into 
Macroblocks (MBs, i.e., blocks of 16x16 pixels). An MB can be further divided into 16x8, 8x16, or 8x8 
blocks (see Figure 2.3). Each 8x8 block can be further divided into 8x4, 4x8, or 4x4 sub-blocks. 
Altogether, there are 7 different block types. The MBs of a frame are encoded in a raster scan order using 
one of the following three MB Types: 

                                                      
7 Also called MPEG-4 Part-10 (ISO/IEC 14496-10) or MPEG-4 Advanced Video Coding (AVC). 
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• Intra-Predicted (I-MB): the MB is encoded using a spatial prediction in the current frame.  
• Inter-Predicted (P-MB): the MB is encoded using a temporal prediction from the previous frame. 
• Bi-Predicted (B-MB): the MB is encoded using a temporal prediction from the previous & future frames. 

The first frame of a Group of Pictures is called Intra-Frame where all of its MBs are encoded as I-MB. 
Intra Prediction in H.264 has been enhanced with multiple directional prediction modes which minimize 
the predictive error. For the Luminance (Luma, Y) component of an MB, the prediction may be formed 
for each 4x4 sub-block using nine prediction modes or for the complete MB (i.e., 16x16) with four 
prediction modes. Two 8x8 Chrominance (Chroma, UV) components are predicted by the same mode (out 
of 4). Therefore, the total number of Intra mode combinations for a single MB is given as 4 * (9*16 + 4) 
that corresponds to 592 possible mode calculations for only Intra Mode Decision. 

 

 

 

  

 

Figure 2.2: Functional Overview of the H.264/AVC Video Encoder 

 

Figure 2.3: Variable Block Sizes for Inter-Predicted MBs (P-MBs) in H.264/AVC 

Remaining frames of a Group of Pictures are called Inter-Frames where their MBs can be encoded as I-
MB or P-MB depending upon the decision of the Rate Distortion Optimized Mode Decision (RDO-MD). 
For P-MBs, Motion Estimation (ME) is performed for searching the current block in the reference frame 
(see Figure 2.2) in order to find out the best match (i.e., the block with minimum distortion). The search is 
performed in a so-called (pre-defined) search window (a typical size is 33x33 pixels). The ME process 
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consists of two stages: Integer-pixel ME (IME) and Fractional-pixel ME (FME). The IME uses Sum of 
Absolute Differences (SAD, see Eq. 2.1) to calculate the block distortion for an MB in the current frame 
(Ft) with respect to an MB in the reference frame (Ft-1) at integer pixel resolution. 

 
15 15

0 0
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SAD Current x y Reference x y
= =

= −∑∑  (2.1) 

Once the best Integer-pixel Motion Vector (MV) is found, the FME stage refines the search to fractional 
pixel accuracy using Sum of Absolute Transformed Differences (SATD, Eq. 2.2) as the cost function to 
calculate the block distortion. It performs a 2-D Hadamard Transform (HT) on a 4x4 array of difference 
values. Compared to SAD, SATD provides a better MV. However, because of high computational load, 
SATD is only used in the FME stage. 
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HT4x4 is the 2-D 4x4 Hadamard Transform on a matrix D (in case of SATD, it is the differences between 
current and reference pixel values) and it is defined as: 
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Typically ME has to be performed for various block size combinations (altogether 20 different ME 
combinations per MB are evaluated in RDO-MD [GY05]). An example scenario is presented in 
Figure 2.3. As a result, the ME process may consume up to 60% (1 reference frame) and >80% (5 
reference frames) of the total encoding time [CZH02]. High computational load makes the ME module 
not only time consuming but also energy/power demanding [YWV05]. Considering the variable-sized 
blocks in I- and P-MBs, each MB can be predicted using one of the following coding modes8. 
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The exhaustive RDO-MD in H.264 processes all possible P-MB and I-MB mode combinations in all 
possible block sizes. Therefore, RDO-MD is the most critical functional block in H.264, as it determines 
the number of ME iterations which is the most time and energy consuming part. RDO-MD in H.264 
employs a Lagrange-based cost function that minimizes the Distortion (D) for a given Rate (R), as given 
below: 

 ( , , | ) ( , , | ) * ( , , | )ModeJ c r Mode QP D c r Mode QP R c r Mode QPλ= +  (2.5) 

'R' is the number of bits required to code the 'Mode' and 'D' is computed using SATD or SAD with respect 
to the current 'c' and the reference 'r' MBs. Ȝ is the Quantization Parameter (QP)-based Lagrange 
Multiplier, such that: Ȝ = 0.85 * 2 * (QP-12) / 3. The mode that provides the best prediction (i.e., 
minimizes the Eq. 2.5) is chosen as the final coding mode (i.e., the best mode). 

                                                      
8 In this thesis, I8x8 is not considered as it is not used for the mobile devices. However, the contribution of this 

thesis is scalable to I8x8. 
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For the selected best mode, the prediction data is generated according to the MB Type and the 
corresponding coding mode. This prediction data needs to be compliant to the standard specifications as 
the decoder creates an identical prediction for the decoding process. In case of the P-MB the prediction 
data is generated using Motion Compensation. In case the Motion Vector points to a fractional-pixel 
position, first, the samples at half-pixel positions (i.e., between the integer-position samples) in the Luma 
component (Y) of the reference frame are generated using a six-tap filter with weights [1/32, −5/32, 

20/32, 20/32, −5/32, 1/32]. The samples at quarter-pixel positions are generated by Bilinear Interpolation 
using two horizontally and/or vertically adjacent half- or integer-pixel positions. This prediction data is 
subtracted from the current block to calculate the residue. Each 4x4 sub-block of the residue data is then 
transformed using a 4x4 integer-based 2-D Discrete Cosine Transform (DCT, Eq. 2.6). Note, the 4x4 DCT 
in H.264 is an integer transform (all operations can be carried out using integer arithmetic), therefore, it 
ensures zero mismatches between the encoder and the decoder. 
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In case of an I-MB, the 16 DC components of an MB (one for each 4x4 block) are further transformed 
using a 4x4 Hadamard Transform (see Eq. 2.3). In case of Chroma components (U and V), the DC 
coefficients of each 4x4 block of Chroma coefficients are grouped in a 2x2 block (WDC) and are further 
transformed using a 2x2 Hadamard Transform as shown in Eq. 2.7. 
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Afterwards, the transformed coefficients are quantized according to a QP value determined by a Rate 
Controller. The Rate Controller regulates the number of produced bits according to a given bit rate. 
Therefore it determines the QP value which is used for quantization as well as an input to the RDO-MD 
and ME. The quantized transformed coefficients are finally compressed using a lossless entropy coder. 
H.264/AVC employs a Context Adaptive Variable Length Coding (CAVLC) or a Context Adaptive 
Binary Arithmetic Coding (CABAC). In this thesis only CAVLC is considered. 

A video encoder contains a model of the decoding process in order to reconstruct the encoded blocks 
for computing the prediction values for the subsequent blocks and upcoming frames. Therefore, the 
inverse quantization is performed on the quantized coefficients followed by an inverse transformation 
stage. The inverse DCT is given by Eq. 2.8 and it is orthogonal to the forward transform, i.e., T−1(T(X)) = 

X. 
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The inverse Hadamard Transforms are identical to the forward Hadamard Transforms (Eq. 2.3, Eq. 2.7). 
After the inverse transformation, the prediction data is added into the inverse transformed values to obtain 
the reconstructed block. After the complete frame is encoded and reconstructed, H.264/AVC applies an 
in-loop Deblocking Filter on the reconstructed data to reduce blocking distortion by smoothening the 
block edges. The filtered frame serves as the reference frame, which is used for the Motion Estimation 
and Compensation of the upcoming frames. Note, for the Intra Prediction (i.e., in case of I-MBs), the 
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prediction is formed using non-filtered values. Further details on the H.264/AVC standard can be found in 
[Ric03, Ric10, WSBL03]. 

It is worth mentioning that only the H.264/AVC decoder is fixed by the standard in order to ensure the 
compliance of the bitstream and syntax. Therefore, the prediction part, (inverse) transformation, and 
(inverse) quantization, entropy coding, and the Deblocking Filter need to be standard compliant at the 
encoder side. However, this leaves sufficient space for researchers and designers to incorporate their ideas 
in the Motion Estimation, Rate Control, and Mode Decision processes to obtain an efficient encoder 
application in terms of power and performance. 

Now state-of-the-art related work is presented for adaptive and low-power architectures and 
algorithms for the complete H.264/AVC video encoder and its different functional blocks. 

2.2.2 Low-Power Architectures for H.264/AVC Video Encoder 

Majority of H.264 encoding solutions target ASIC implementation with a focus on either low power 
consumption of high resolution system. Few works have also targeted DSP-/ASIP-based and 
reconfigurable solutions. In the following the prominent related work is discussed for the complete H.264 
encoder. 

ASIC-based Encoder Implementations: A hardware design methodology for H.264/AVC video coding 
system is described in [CLC06]. In this methodology, 5 major functions are extracted and mapped 
onto a 4 stage Macroblock (MB) pipelining structure. Reduction in the internal memory size and 
bandwidth is also proposed using a hybrid task-pipelining scheme. However, some functional blocks 
(e.g., Motion Compensation, DCT, and Quantization) are not considered for hardware mapping. The 
approach in [CCH+06] implements an H.264 encoder with a four-stage Macroblock (MB) level 
pipeline scheme, a memory hierarchy, and a dual-buffer entropy encoder. The prototype � 
implemented using UMC 180 nm � requires a relatively large footprint (922.8 KGates and 34.72 KB 
SRAM), thus resulting in a high power consumption of 581mW for D1 and 785mW for HD720p. This 
power consumption is infeasible for mobile applications according to [EY05]. The authors in 
[MSH+08] proposed a H.264 codec with high picture quality for mobile applications. They employed 
a Dynamic Clock Supply Stop (DCSS) system to reduce the power consumption. In order to solve the 
data dependencies between the Intra Prediction and the reconstruction loop tasks, a prediction scheme 
is presented that uses the original image instead of the reconstructed one. However, this approach 
inserts distortion to the final image. For Motion Estimation a SKIP algorithm is supported with SATD 
as the matching criteria. The hardware implementation is able to encode HD720p running at 144MHz 
consuming 64mW with an on-chip memory of 56KB SRAM. In [CCT+09] a low-power H.264 
encoder is proposed for portable devices. However, this work mainly focuses on the Motion 
Estimation and ignores other functional blocks of the encoder. The variable block size Integer-pixel 
Motion Estimation is based on the Four Step search and the Fractional-pixel Motion Estimation 
features the so-called One-Pass algorithm for three block sizes. However, such Motion Estimation 
search algorithms have a high tendency to trap in the local minima [CZH02, Tou02, YZLS05]. The 
proposed architecture encodes real-time (30fps) D1 resolution at 54 MHz consuming 43.5-67.2 mW. 
It uses 452.8 KGates and 16.95 KB SRAM in TSMC 180 nm technology. A partially quality-
adjustable H.264 encoder is presented in [CCW+09] to provide fixed power vs. quality tradeoffs. A 
complete encoder hardware architecture is proposed with a control logic employing four quality 
modes. The design is implemented with TSMC 130 nm requiring 470 KGates and 13.3KB SRAM. 
Although the main claim of this work is the quality vs. power adaptivity, for higher resolutions it falls 
back to the lowest quality mode which is complementary to the system requirements, i.e., high 
resolution encoding typically requires high quality. 
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ASIP-/DSP-based and Reconfigurable Encoder Implementations: In [KLHS06] an ASIP featuring 
Custom Instructions for Deblocking Filter and Intra Prediction are presented. Hardware accelerators 
for Motion Estimation/Compensation and entropy coding are also provided. A performance reduction 
of 20-25% is observed. Moreover, a small search range [-16,+15] is used which provides limited rate-
distortion results for higher resolutions. The proposed implementation requires 76 KGates when 
synthesized using a Samsung SEC 180 nm technology. The authors in [SJJL09, ZWFS07] proposed 
encoding solutions using the TMS320DM642 VLIW processor executing at 600MHz. Based on their 
complexity analysis, a Diamond search algorithm is deployed as the Motion Estimation search 
pattern, which is insufficient to capture high motion. Therefore, it results in a significant quality loss. 
Various DSP specific optimizations are programmed using the DM642 specialized instruction set for 
performance improvement. An energy efficient, instruction cell based, dynamically reconfigurable 
fabric combined with ANSI-C programmability, is presented in [MYN+06]. This architecture claims 
to combine the flexibility and programmability of DSP with the performance of FPGA. In [LK06] the 
authors have presented the XPP-S (Extreme Processing Platform-Samsung), an architecture that is 
enhanced and customized to suit the needs of multimedia application. It introduces a run-time 
reconfigurable architecture PACT-XPP that replaces the concept of instruction sequencing by 
configuration sequencing [May04, XPP02]. In [BKD+05, MVM05, VSWM05] the authors have 
mapped an H.264 decoder onto the ADRES coarse-grained reconfigurable array. In [BKD+05, 
VSWM05] the authors have targeted IDCT and in [MVM05] Motion Compensation optimizations are 
proposed using loop coalescing/merging, loop unrolling, etc. However, at the encoder side the 
scenario is different from that in decoder, because the interpolation for Luma component is performed 
on frame-level. Although the proposed optimizations in [MVM05] expedite the overall interpolation 
process, this approach does not avoid the excessive computations for those MBs that lie on integer-
pixel boundary. A hardware co-processor for real time H.264 video encoding is presented in 
[MMFS06]. It provides only Context Adaptive Binary Arithmetic Coding (CABAC) and Motion 
Estimation in two different co-processors thus offers partial performance improvement. 

Summarizing: the above-discussed encoding approaches primarily target ASIC-based solutions that 
lack flexibility and are not amenable to the standard evolution trends. Moreover, the above-discussed 
related work lack run-time adaptivity when considering varying energy budgets and area/performance 
constraints. One of the key distinctions of the proposed contribution (in this thesis) is to enable the run-
time configurability and tradeoff between the energy consumption and achieved video quality for 
dynamically varying energy budgets and area/performance constraints. 

2.2.3 Adaptive and Low-Power Design of the Key Functional Blocks of the 
H.264 Video Encoder: State-of-the-art and Their Limitations  

A major research effort has been spent on designing individual blocks of the H.264 codec, e.g., Fast Mode 
Decision, Motion Estimation (ME), and Deblocking Filter. The state-of-the-art related work for the key 
functional blocks of the H.264 encoder is discussed in the following, highlighting the prominent work in 
adaptive and low-power algorithms and architectures. 

Fast Mode Decision and Complexity Reduction Schemes: As discussed in Section 2.2.1, the exhaustive 

RDO-MD in H.264 investigates all possible P-MB and I-MB mode combinations in all possible block 
sizes to make a decision about the actual coding mode. Therefore, the exhaustive RDO-MD process is 
extremely compute-intensive and practically infeasible in real-world performance and/or power-
critical embedded multimedia systems. Note, Mode Decision for P-MB modes is far more complex 
than that for I-MB modes due to the compute-intensive ME process. This fact becomes critical when 
after the RDO-MD the final coding mode comes out to be an I-MB mode, thus in this case the 
complete ME comes out to be unnecessary. To address the limitations of the exhaustive RDO-MD, 
fast RDO-MD schemes are employed. The basic idea of fast RDO-MD scheme is to select a set of 
coding mode candidates (which is much smaller than the set of all modes) such that the computational 
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requirements of the RDO-MD process are significantly reduced while keeping the visual quality close 
to that of the exhaustive RDO-MD. State-of-the-art fast RDO-MD schemes can be categorized as fast 
P-MB MD [ADVLN05, GY05, JC04, KC07, LWW+03, PC08, SN06, WSLL07, Yu04], fast SKIP9 
MD [JL03], fast I-MB MD [MAWL03, PLR+05], and the combination of the above [ADVLN05, 
JL03]. These fast RDO-MD schemes either simplify the used cost function or reduce the set of 
candidate modes iteratively depending upon the output of the previous mode computation. The 
authors in [JC04] used Mean Absolute Difference of MB to reduce the number of candidate block 
types in ME. On average, it processes 5 out of 7 block types. The approach in [KC07] uses the RD 
cost of neighboring MBs to predict the possible coding mode for the current MB. Similar approach is 
targeted by [PC08, WSLL07] that use the residue texture or residue of current and previously 
reconstructed MB for fast P-MB Mode Decision. The technique in [Yu04] uses the mode information 
from previous frame to predict the modes of MBs in the current frame. The technique in [SN06] 
provides a fast SKIP and P16x16 prediction as an early predicted mode option. In [GY05], 
smoothness and SAD of the current MB are exploited to extend the SKIP prediction and exclusion of 
smaller block mode types. Even if all conditions are satisfied, still 152 out of 168 modes are 
evaluated, else all modes are evaluated as the exhaustive RDO-MD. The authors in [PLR+05] 
exploited the local edge information by creating an edge map and an edge histogram for fast I-MB 
Mode Decision. Using this information, only a part of available I-MB modes are chosen for RDO, 
more precisely 4 instead of 9 I4x4 and 2 out of the 4 I16x16 are processed. The fast I-MB Mode 
Decision scheme in [MAWL03] uses partial computation of the cost function and selective 
computation of highly probable modes. I4x4 blocks are down sampled and the predicted cost is 
compared to variable thresholds to choose the most probable mode. A limited work has been done that 
jointly performs fast Mode Decision for both I-MB and P-MB. In [AML07], a scalable mode search 
algorithm is developed where the complexity is adapted jointly by parameters that determine the 
aggressiveness of an early stop criteria, the number of re-ordered modes searched, and the accuracy of 
ME steps for the P-MB modes. At the highest complexity point, all P-MB and I-MB modes are 
processed with highest ME accuracy. The authors in [PYL06] proposed a scalable fast RDO-MD for 
H.264 that uses the probability distribution of the coded modes. It prioritizes the MB coding modes 
such that the highly probable modes are tried first, followed by less probable ones. 

Most of these state-of-the-art RDO-MD schemes deploy a similar philosophy as they sequentially 
process mode by mode and exclude the modes depending upon the output of previously evaluated 
modes, i.e., modes are not excluded in the fast RDO-MD until some ME is done. Therefore, these 
approaches suffer from a limitation that � in worst case � all possible coding modes are evaluated. In 
average case, still significant (more than half of all) modes are computed or even in the best case at 
least one mode from both P-MB and I-MB is processed (see [GY05, JC04]). In any case, ME is 
always processed, thus the computational requirements of the state-of-the-art are still far too high, 
which makes them infeasible for low-power embedded multimedia systems. This thesis introduces an 
Adaptive Computational Complexity Reduction Scheme (see Section 4.4, page 69) that addresses these 
issues by adaptively excluding as many coding modes as possible from the candidate mode set at run 
time, even before starting the actual fast RDO-MD and ME processes. It thereby provides a 
significant reduction in the computational complexity and energy consumption of the video encoder. 

Once the coding mode is determined and the type is P-MB, the most energy consuming part of an 
encoder is Motion Estimation. The energy distribution of the encoding process will be discussed in 
Section 3.1 for an optimized video encoder implementation. 

Motion Estimation (ME): The complexity and energy consumption of ME is directly proportional to the 
number of computed SADs to determine the best match (i.e., the MB with the minimum distortion). A 

                                                      
9 For a SKIP Macroblock, encoder does not send any motion and coefficient data and a SKIP Macroblock can be 

completely reconstructed at the decoder side. 
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Full Search ME (i.e., exhaustively searching all possible candidate positions10 in the search window) 
provides the optimal match but requires a huge amount of energy (up to 65-90% of total encoding 
energy [YWV05]). As a result, it is not practicable for real-world applications. Many fast and 
adaptive ME schemes have been proposed to reduce the computational complexity, such as, 
Unsymmetrical-cross Multi-Hexagon-grid Search (UMHexagonS) [CZH02], simple UMHexagonS 

[YZLS05], Enhanced Predictive Zonal Search (EPZS) [Tou02], etc. However, these ME schemes do 
not consider available energy/power resources and only stop the search process when the quality 
constraint is met, thus they always compute a large number of SADs. The computation-aware ME 
schemes [KXVK06, THLW03, YCL05] stop the search process once the allocated computations are 
exhausted. Such approaches incorporate a rate-control like mechanism to determine the number of 
processed SADs and terminate the search once the allocated number of SADs are processed 
irrespective of whether a good match has been found or not. As a result, these approaches may suffer 
from severe quality artifacts. Moreover, these approaches are still energy-unaware. The works in 
[DGHJ05, RB05] provide various VLSI implementations to expedite the process of H.264 ME. Most 
of these hardware implementations are either suited for Full Search or UMHexagonS. An ASIP-based 
approach is considered in [MRS07] but it uses only spatial predictors and does not consider temporal 
information of the motion field. Moreover, it only uses cross and 3x3 square patterns that take longer 
to find the optimal Motion Vector (MV) in case of heavy or angular motions. The approach in [HP07] 
explores fixed and random sub-sampling patterns for computation reduction. The authors in [YWV05] 
presented power modeling for ME and evaluate it for 8 different MEs. Some of the works have 
targeted the low-power issue in ME [SF04, SLIS07, WSK+07] but they focus on reducing the power 
either by changing the SAD formula [KSK06] or by eliminating candidates using partial distortion 
sorting [SLIS07]. Partial distortion sorting is itself an overhead and it excludes only a set of 
candidates from Full Search, which still results in a much larger number of candidates. The authors in 
[WSK+07] presented an ME scheme based on algorithmic noise tolerance. It uses an estimator based 
on input sub-sampling but this approach results in degradation especially in case of videos with small 
objects. Moreover, it uses a 3-step search, which traps in local minima, and for modern Motion 
Estimators it is hard to track motion using sub-sampled input frame. The authors in [CCLR07] 
introduced a technique to reduce power in video communication by reducing the frame rate but it only 
works in case of very low motions. Moreover, it incurs a noticeable degradation in the quality of 
service. The technique in [SF04] exploits input data variations (not the changing levels of available 
energy) to dynamically configure the search-window size of Full Search but does not consider the 
energy/power level variations. Moreover, it targets Full Search which is far more energy consuming 
than state-of-the-art ME schemes. 

State-of-the-art adaptive, fast, low-power, and scalable ME schemes either only consider a fixed 
quality-constrained solution or offer scalability with fixed termination rules that may lead to severe 
quality artifacts. These approaches do not provide run-time adaptivity when considering run-time 
varying energy budgets (i.e., whether there is sufficient energy budget to process the allocated number 
of SADs or not) and input video sequence characteristics. Additionally, these approaches ignore the 
user-defined constraints, e.g., required video quality level or encoding duration. As a result, these 
approaches are less energy-/power-efficient. Varying video sequence characteristics (motion type, 
scene cuts, etc.) and changing status of available energy budgets (due to a changing battery level or 
changing allocated energy in a multi-tasking system) stimulate the need for a run-time adaptive 
energy-aware Motion Estimation scheme while exhibiting minimal loss in video quality. Note, the 
available energy budgets may change according to various application scenarios on mobile devices. 
This thesis introduces an energy-aware Motion Estimation with integrated adaptive energy-budgeting 

scheme (see Section 4.5, page 77) that determines �how much energy budget should be allocated to 

the Motion Estimation of one video frame or even one Macroblock when considering run-time varying 

scenarios� while keeping a good video quality. 

                                                      
10 1089 candidate positions per MB for a search window size of 33x33. 
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The proposed scheme is different from the above-discussed state-of-the-art as it comprehensively 
explores the tradeoff related to the energy consumption and video quality loss while considering the 
run-time varying scenarios. Unlike the above-discussed approaches (like [CCLR07, KSK06, SF04, 
SLIS07, WSK+07]), the proposed ME scheme moves in the energy-quality design space at run-time 
using the novel concept of Energy-Quality Classes, each requiring a different energy consumption and 
providing a different visual quality. These Energy-Quality Classes are selected at run time depending 
upon the available energy and user-defined controls (e.g., frame rate) to enable energy-aware 
adaptivity, that has not been targeted by others before. Moreover, novel search patterns are deployed 
that captures the large angular/irregular motions and further refines the motion search in close vicinity. 

In-Loop Deblocking Filter: As the Deblocking Filter algorithm is fixed by the standard [ITU05], the key 
research focus in the Deblocking Filter is low-power, area-efficient, or high-throughput hardware 
acceleration. The approach in [MC07] uses a 2x4x4 internal buffer and 32x16 internal SRAM for 
buffering the filtering operations with I/O bandwidth of 32-bits. All filtering options are calculated in 
parallel while the filtering conditions are computed in a control unit. This approach uses 1-D 
reconfigurable FIR filter (8 pixels in and 8 pixels out) but does not target the optimizations of actual 
filter Data Path. It requires 232 cycles to filter one MB. The authors in [SCL06] introduced a 5-stage 
pipelined filter using 2 local memories. This approach suffers from the overhead of multiplexers to 
avoid pipeline hazards. It costs 20.9K gate equivalents for 180 nm technology and requires 214-246 
cycles/MB. A fast Deblocking Filter is presented in [PH06] that uses a Data Path, a control unit, an 
address generator, one 384x8 register file, 2 dual port internal SRAMs to store partially filtered pixels, 
and 2 buffers (input and output filtered pixels). The filter Data Path is implemented as a two-stage 
pipeline. The first pipeline stage includes one 12-bit adder and two shifters to perform numerical 
calculations like multiplication and addition. The second pipeline stage includes one 12-bit 
comparator, several two�s complementers and multiplexers to determine conditional branch results. In 
worst case, this technique takes 6144 clock cycles to filter one MB. A pipelined architecture for the 
Deblocking Filter is illustrated in [CC07] that incorporates a modified processing order for filtering 
and simultaneously processes horizontal and vertical filtering. The performance improvement majorly 
comes from the reordering pattern. For 180 nm synthesis this approach costs 20.84K gate equivalents 
and requires 192 (memory) + 160 (processing) cycles. The authors in [AKL+07] mapped the H.264 
Deblocking Filter on the ADRES coarse-grained reconfigurable array [BKD+05, VSWM05]. It 
achieves 1.15x and 3x speedup for overall filtering and kernel processing, respectively. 

The Deblocking Filter (Section 4.2.1) approach proposed in this thesis is different from the above 
approaches because it targets first the optimization of core filtering Data Paths in order to reduce the 
total number of primitive operations in one filtering. In addition to this, all conditions in one Data 
Path are collapsed and two generic conditions are calculated that decide the filtering output. A parallel 
scheme for filtering one 4-pixel edge is incorporated. A latest technique in the Deblocking Filter 
inspired from the proposed approach is presented in [NWKS09]. Similar to the proposed approach, 
the technique of [NWKS09] also performs operation reduction for the area reduction and high 
throughput. It additionally gates the clock of the unused processing units to reduce the dynamic 
power. Since this technique is synthesized using a 180 nm technology, the leakage power factor is not 
considered. 

2.3 Reconfigurable Processors 

In order to enable run-time adaptivity at the processor level, dynamically reconfigurable processors are 
deployed as the target platform in this thesis. These processors embed a reconfigurable fabric within a 
core pipeline (MIPS, SPARC, VLIW, etc.). Depending upon its reconfiguration granularity, a fabric can 
be categorized into coarse- and fine-grained reconfigurable fabric. A coarse-grained reconfigurable fabric 
consists of an array of word-level reconfigurable Arithmetic Logic Units (ALUs). It is amenable to data-
flow dominant application kernels with word-level processing (typically 16 or 32 bit). A fine-grained 
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reconfigurable fabric employs Look-Up Tables (LUTs) with bit-level reconfigurability. A typical example 
of such fabric is Field Programmable Gate Arrays (FPGAs). Fine-grained reconfigurable fabrics are 
amenable to highly-parallel processing of byte-level operations (as typically required in image and video 
processing), state machines (sub-byte level), and bit-level operations (e.g., bit-shuffling, packing and 
merging operations, condition computations, etc.). A detailed discussion on these approaches can be 
found in [VS07]. Detailed surveys and overview of different approaches in reconfigurable computing are 
provided in [Ama06, BL00, Bob07, CH02, Har01, HM09, TCW+05, VS07]. 

In the scope of this thesis, the focus is placed on dynamically reconfigurable processors with a fine-
grained reconfigurable fabric. These processors provide a high adaptivity and flexibility (due to their 
hardware reconfigurability and programmability) combined with the performance and efficiency of 
dedicated hardware accelerators (by exploiting a high degree of parallelism using an embedded FPGA). 
Now the basic structure of a fine-grained reconfigurable fabric will be explained. 

2.3.1 Fine-Grained Reconfigurable Fabric 

Figure 2.4 illustrates the internal structure of a fine-grained reconfigurable fabric that consists of 
Configurable Logic Blocks (CLBs) and Programmable Switching Matrices (PSMs) connected with 
dedicated wires [Te06, Xil08a]. The internal details are shown for a Xilinx Spartan FPGA. A CLB-PSM 
pair is typically referred as a Tile. The CLBs consist of Look-Up Tables (LUTs) and flip flops, while the 
PSMs constitute configurable interconnects and routing multiplexers11. Such a fine-grained reconfigurable 
fabric is efficient in implementing bit-/byte-level operations, control logic (finite state machines), and 
small memories. The fabric can be reconfigured at run time to implement different hardware accelerators. 
A case where only a region of the fabric is reconfigured at run time is referred as partial run-time 

reconfiguration12. In this case, the regions that are not reconfigured remain active and functional. 
Typically a reconfiguration is performed via an on-chip mechanism for accessing the configuration 
memory. In case of Xilinx Virtex FPGAs, it is the Internal Configuration Access Port (ICAP [Xil09]). The 
reconfiguration latency depends upon the size of the configuration data and the reconfiguration bandwidth 
(for a reconfiguration bandwidth of 36 MB/s and a 40 KB configuration data, i.e., Data Path bitstream, the 
reconfiguration latency corresponds to 54,254 cycles at 50 MHz). 

PSM: Programmable Switch Matrix,

CLB: Configurable Logic Block
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Figure 2.4: A Typical Composition of a Fine-Grained Reconfigurable Fabric with a 2D-Array of 

CLBs and PSMs along with the Internal Details of a Spartan-3 Tile [Te06, Xil08a] 

                                                      
11 Further details on the Xilinx internal structure and its usage can be found in [Xil07]. 
12 Most of the architectures use the Xilinx FPGAs and tools [LBM+06] to prototype partial run-time reconfiguration. 
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2.3.2 Leakage Power of Fine-Grained Reconfigurable Fabric and the Power-
Shutdown Infrastructure 

Recently, low-power design, especially the leakage power reduction, has become a key research focus in 
reconfigurable computing. An overview of low-power techniques for FPGAs is presented in [LL08]. A 
detailed analysis of leakage power of the fine-grained reconfigurable fabric in Xilinx FPGAs is performed 
in [TL03], highlighting the significance of leakage reduction in FPGAs especially when considering 
mobile devices. An analysis of dynamic power consumption in Virtex-II FPGAs is presented in [SKB02]. 
An FPGA architecture evaluation framework for power efficiency analysis is presented in [LCHC03] 
predicting leakage to be dominant for future technologies. 

Lately, power-gating (i.e., hardware-oriented power-shutdown) has been introduced in FPGAs to 
reduce the leakage power by switching-off the power supply to the reconfigurable regions with the help of 
high-Vt mid-oxide sleep transistor [Ge04, Te06]. Besides an area overhead, sleep transistors typically 
introduce a performance penalty due to their on-resistance in case the circuit is active and operating. 
Therefore, the granularity of the power-shutdown (i.e., the smallest hardware block that can be 
independently shutdown) is one of the main design decisions. In the following, different power-shutdown 
infrastructures are discussed for the fine-grained reconfigurable fabric. 

The hardware-oriented power-shutdown scheme of [CHC03] uses three sleep transistors for CLBs and 
one for routing resources in order to obtain a fine-grained leakage control. It employs a power-shutdown of 
each independent LUT, flip flop, and routing switch. Such an approach provides a relatively higher power 
saving at the cost of significantly increased area overhead. The approach of [Ge04] targets power-shutdown 
of clusters of several tiles (see Figure 2.5a) that may be controlled by a single sleep transistor in order to 
provide leakage power reduction while keeping the area overhead low [PSB05, Te06]. However, in this case 
the number of powered-off tiles is reduced, as some clusters are 'partially used', i.e., they contain tiles that 
are used (thus need to remain active) and other tiles unused (thus could be powered-off). Therefore, when 
considering a cluster-level power-shutdown, such 'partially used' clusters cannot be shutdown and a 
relatively lower power savings are obtained. To address this issue, the approach of [Ge04] proposes a 
region-constrained placement to increase the number of clusters that be shutdown. 

(b)

Configuration
SRAM

Configurable 
Logic Block (CLB)

Configuration
SRAM

Interconnect 
Switch Matrix

Configuration
SRAM

Sleep Transistor

(a)

Lo
ca
l F
e
e
d
b
a
ck

Interconnect 
Switch 
Matrix

Logic 
Slice

Logic 
Slice

Logic 
Slice

Logic 
Slice

Cin

Cout

Switch

Power Supply Rail
Control Bit

Configurable Logic Block (CLB)

 

Figure 2.5: State-of-the-Art in Power-Shutdown Infrastructure (a) by [Ge04] (b) by [Te06] 

Xilinx research labs introduced the Pika low-power FPGA (90 nm) for battery-powered applications that 
supports voltage scaling, hardware power-shutdown, and a low-leakage Configuration SRAM [Te06]. The 
power-shutdown infrastructure of Pika provides a compromise between [CHC03] and [Ge04] by 
providing sleep transistors at the level of individual tiles (see Figure 2.5b). The authors showed that (on 
average) 25% tiles are idle when evaluated for over 100 benchmarks. NMOS sleep transistors are 
considered in Pika as they provide better speed characteristics compared to the PMOS sleep transistors. 
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Unlike using the thin-oxide high-Vt transistors for power-shutdown [MSM+96] that incurs high leakage at 
90nm (and below) technology nodes, Pika employs mid-oxide sleep transistors. A design space 
exploration is performed in [Te06] to select a transistor size by exploring the power and delay behavior of 
various transistor designs (see Figure 2.6a; each design point denotes a different transistor size). Mid-
oxide sleep transistor has been selected for the Pika FPGA as it provides a leakage reduction by over 
1000x at the cost of 10% performance degradation. Pika incurs an 8% area increase due to their power-
shutdown infrastructure [Te06]. Kindly note that Xilinx has not yet introduced such an infrastructure in 
their commercial products, however, it is envisaged to be in their future product lines. 

Note, the above-presented approaches [CHC03, Ge04, Te06] only shutdown the logic area (i.e., CLBs 
and PSMs) while keeping the Configuration SRAM powered-on to retain the configuration state. These 
approaches consider a low-leakage SRAM with high-Vt transistors. The authors in [LLH07] showed that 
high-Vt transistors for leakage reduction in the Configuration SRAM result in increased SRAM write time 
(i.e., increased reconfiguration time), that leads to a higher reconfiguration energy. The authors in [MM05] 
proposed fine-grained leakage optimization by shutting down the Configuration SRAM of unused LUTs. A 
hardware-oriented power-shutdown technique with four sleep modes (achieved by applying different bias to 
the footer device) is proposed in [Ae06] to provide a tradeoff between wakeup overhead and leakage 
savings. 

In order to activate the circuit, sleep transistors (requiring wakeup time and wakeup energy) are 
switched-on. The Xilinx Pika project demonstrated a study of wakeup characteristics for the mid-oxide 
sleep transistors (see Figure 2.6b) where the wakeup time is given as approximately 100ns. A comparison 
of energy consumption is performed for active and standby modes. This study demonstrates that a circuit 
is beneficial to shutdown if the minimum sleep period is less than 2µs in order to amortize the wakeup 
energy. 

(a) (b)

 

Figure 2.6: (a) Sizing of Thin- & Mid-Oxide Power Gate showing Leakage-Delay Tradeoffs 

[Te06]; (b) Power Consumption for Activating and Deactivating a single tile [Te06] 

2.3.3 Custom Instructions (CIs): A Reconfigurable Processor Perspective 

A Custom Instruction (CI) is an assembly instruction that implements the functionality of a compute-
intensive kernel of an application for its accelerated execution. As discussed earlier, reconfigurable 
processors deploy so-called CIs (composed of hardware accelerators, see Section 2.3.5) in order to 
expedite application�s computational hot spots13. Typically, a tool flow is used for designing hardware 
accelerators and CIs for fine-grained reconfigurable processors, which is similar to that for 
ASIPs/extensible processors. Therefore, the related work for automatic detection and high-level synthesis 
of CIs and hardware accelerators from extensible processors can be used for creating reconfigurable CIs, 

                                                      
13 Throughout this paper, a hot spot denotes a computational hot spot that contains compute-intensive application 

parts (i.e., kernels). 
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too. For example, in case of H.264 video encoder, CIs can be designed to accelerate the Discrete Cosine 

Transform, Sum of Absolute Difference (SAD) for Motion Estimation, In-Loop Deblocking Filter, etc. 

Reconfigurable processors partition their reconfigurable fabric into so-called Reconfigurable 

Functional Units (RFUs, connected to the core processor pipeline) that are reconfigured at run time to (re-
)load CI implementations for a hot spot. After the execution of a hot spot is completed, the reconfigurable 
fabric may be allocated to the CIs of other hot spots, thus demanding a dynamic reconfiguration of the 
RFUs, which may consume a noticeable amount of energy due to the reconfiguration process. Therefore, 
unlike extensible processors that statically provide all CIs, reconfigurable processors use the fine-grained 
reconfigurable fabric in a time-multiplexed manner to dynamically implement CIs of different hot spots of 
an application or even CIs of different applications from diverse domains. To be able to reconfigure any 
CI into any RFU, the interface between the core pipeline and all RFUs is identical. So-called prefetching 
instructions are inserted to trigger the upcoming reconfigurations [LH02]. Further details on 
reconfigurable CIs and the differences between CIs for reconfigurable and extensible processors can be 
found in [Bau09]. 

In the following, prominent state-of-the-art reconfigurable processors are discussed (in chronological 
order) that can benefit from the novel contribution of this thesis. 

2.3.4 Reconfigurable Instruction Set Processors 

The OneChip and OneChip98 projects [WC96], [CC01, JC99] couple RFUs with the core processor 
pipeline for implementing multi-cycle CIs. RFUs may access the main memory, while the core 
processor pipeline continues executing, in order to expedite streaming applications [CC01]. However, 
it may result in memory inconsistencies. The OneChip98 project proposed a hardware support to 
automatically resolve 9 different types of memory inconsistencies. The RFUs provide six 
configuration contexts which are loaded using the direct memory access. 

The CoMPARE processor [SGS98] couples the pipeline with an RFU having four inputs and two outputs. 
The RFU cannot implement a state-machine or data-feedback logic as it does not provide registers or 
latches. Only one CI can be reconfigured in the RFU. Therefore, if more than one CIs are executing 
within a computational hot spot, reconfiguration are performed during their execution. 

The Proteus processor [Dal99, Dal03] couples the core processor pipeline with a fine-grained 
reconfigurable fabric divided into multiple RFUs each containing one CI at a time. The main research 
focus of Proteus is on the Operating System support considering task switching and the opcode 
management for CIs in a multi-tasking environment. Shared CIs among different tasks are assigned 
the same opcode. In case of tasks with disparate processing behavior and insufficient number of 
available RFUs, some CIs execute in software thus resulting in a steep performance degradation. 

The Molen processor [PBV06, PBV07, VWG+04] couples a core processor pipeline with a fine-grained 
reconfigurable fabric via a dual-port register file and an arbiter for shared memory. These dedicated 
exchange registers are used to provide parameters to the CIs. Additional control instructions are 
provided to manage the reconfiguration requests and CI executions. The decision of run-time 
reconfiguration is determined at compile time using these control instructions. A generic instruction is 
used to execute all CIs. The address of the configuration bitstream for the demanded CI is provided to 
this generic instruction. 

Bauer [Bau09] identified three different problems for state-of-the-art reconfigurable processors (e.g., 
Proteus [Dal99, Dal03] and Molen [PBV06, PBV07, VWG+04]). 
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i) Data Path Sharing Problem: The above-mentioned reconfigurable processors employ monolithic 
CIs, i.e., a CI is implemented as a dedicated hardware block using the reconfigurable fabric. These 
CIs may be either entirely loaded onto the reconfigurable fabric or not at all. As a result, sharing of 
common Data Paths is not possible in these reconfigurable processors. The concept of monolithic CIs 
has two additional drawbacks as given below. 

ii) RFU Fragmentation Problem: In order to dynamically reconfigure CI implementations into any 
RFU, all RFUs need to be of equally-sized and share a common connection interface. If an CI 
implementation is smaller than the RFU, the remaining resources within the RFU cannot be used to 
implement another CI. Therefore, it leads to a noticeable fragmentation which potentially results in 
increased area requirements. 

iii) Longer Reconfiguration Time Problem: Although monolithic CIs provide higher performance (due 
to more parallelism), they result in significantly longer reconfiguration time due to more hardware. 
Depending upon the expected number of CI executions and the reconfiguration frequency, the 
reconfiguration overhead may degrade the potential performance improvement. Reconfigurable 
processor typically address this problem by: (a) prefetching CI implementations to start the 
corresponding reconfigurations as early as possible [LH02], and/or (b) using core Instruction Set 
Architecture (cISA) to execute a CI when it is not available in the RFUs. 

Bauer [Bau09] proposed the Rotating Instruction Set Processing Platform (RISPP) that � instead of 
monolithic CIs � employs modular CIs based on a hierarchical composition. These modular CIs are 
composed of elementary Data Paths (as hardware accelerators) and support multiple Implementation 
Versions per CI. It addresses the above-discussed three problems of sharing, fragmentation, and longer 
reconfiguration time. The concept of modular CIs enables an efficient utilization of the reconfigurable 
fabric. It provides the potential for a higher adaptivity and efficiency than monolithic CIs. RISPP 
incorporates a run-time system and a hardware infrastructure (for computation and communication) to 
utilize the potential of modular CIs in order to increase the efficiency and performance. 

Note that monolithic CIs are actually a special case of modular CIs, i.e., they provide exactly one 
implementation per CI which is implemented using one large Data Path. Therefore, in subsequent 
chapters, RISPP is used to motivate and apply adaptive low-power processor and application architectures 
and run-time energy-management. RISPP is a more sophisticated and advanced reconfigurable processor 
compared to previous state-of-the-art (like Molen and Proteus). However, for the evaluation, dynamically 
reconfigurable processors with both modular and monolithic CIs are used, i.e., RISPP and Molen.  

Before discussing the concepts and techniques for low-power approaches in reconfigurable 
computing, in the following, an overview of RISPP is provided to a level of detail necessary to understand 
the novel contribution of this thesis (for further details please refer to Bauer [Bau09]). The details for 
other reconfigurable processors can be found in [Ama06, BL00, Bob07, CH02, Har01, HM09, TCW+05, 
VS07]. 

2.3.5 Rotating Instruction Set Processing Platform (RISPP) 

The RISPP architecture [Bau09] embeds a fine-grained partially and dynamically reconfigurable fabric 
with a 5-stage pipeline RISC processor (e.g., MIPS [ASI] or Sparc-V8 [Aer]) as shown in Figure 2.7 
[BSTH07]. The reconfigurable fabric is connected to the Execution stage as a functional unit. A hardware 
infrastructure is realized for the computation and communication within the reconfigurable fabric (details 
are explained later in this section). The communication part is a set of multiple segmented busses as a 
fixed interconnect structure (i.e., non-reconfigurable). The computation part consists of partially 
reconfigurable regions, i.e., so-called Data Path Containers (DPCs). These DPCs can be dynamically 
reconfigured to contain any particular Data Path on individual basis. 
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Figure 2.7: Extending a Standard Processor Pipeline towards RISPP 

and the Overview of the RISPP Run-time System [BSTH07] 

The principle distinction of RISPP compared to other reconfigurable processors is the concept of 
modular Custom Instructions (CIs) composed of elementary Data Paths and a run-time system to support 
them. These Data Paths can be reconfigured independently and can be shared among different CIs. This 
enables different implementations options per CI (from pure software, i.e., using cISA, to various 
hardware implementations), thus providing different tradeoffs between the reconfigurable fabric area and 
the achieved performance. The RISPP run-time system performs online monitoring of the CI executions, 
dynamically selects one implementation for each CI of the currently executing computational hot spot, 
and schedules the Data Path reconfigurations. In order to avoid potential memory inconsistencies and to 
simplify the memory arbiter implementation, RISPP stalls the pipeline during the execution of a CI. 

Modular Custom Instructions (CIs) with Hierarchical Composition: 

Figure 2.8 presents an overview of the hierarchical composition of modular CIs, consisting of the 
following three levels [BSKH07, BSTH07]: 

Data Path: A Data Path corresponds to an elementary hardware accelerator module that can be 
(re-)loaded onto the reconfigurable fabric at run time. These Data Paths exploit a high level of 
operator parallelism and operator chaining. Data Paths of different types exhibit different 
computational properties, thus different latency and power consumption. A Data Path instance 
corresponds to an instantiation of a Data Path type. A reconfigurable fabric is typically partitioned 
(typically rectangular in shape) into so-called Data Path Containers (DPCs) that can be dynamically 
reconfigure to contain any particular Data Path. A DPC is similar to RFUs but typically smaller in 
size. Note, multiple instances of a certain Data Path type can be available at the same time, i.e., loaded 
into different DPCs. 

Implementation Version: An Implementation Version of a CI is typically composed of multiple 
instances of different Data Paths types. The CI Implementation Versions differ in the amount of 
reconfigurable hardware they need to allocate and their resulting execution time. Therefore, these 
Implementation Versions provide different tradeoff points between performance and reconfiguration 
overhead. An Implementation Version is available if all of its demanded Data Paths are completely 
loaded onto the reconfigurable fabric. A particular Data Path can be shared among different 
Implementation Versions of different CIs (as shown in Figure 2.8) because at most one CI executes at 
a time. The Implementation Versions of a CI feature different energy (leakage, dynamic, and 
reconfiguration) characteristics (as it will be discussed in Chapter 4 supported by actual measurements 
in Chapter 6). For each CI there exists exactly one Implementation Version (the slowest one) that 
executes by using only the cISA, i.e., without any accelerating Data Paths (see Figure 2.8). It is 
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activated by a synchronous exception (trap) that is automatically triggered if the CI shall execute and 
if the required Data Paths are not yet ready to execute (e.g., because of reconfiguration delay). 
Depending upon the available hardware resources, a CI may execute using cISA or on the 
reconfigurable fabric (depending upon what is more efficient and which Data Paths are loaded at a 
certain point in time during the application execution). 

Custom Instruction: A Custom Instruction (CI) is an assembler instruction that is executed to expedite a 
computational hot spot, thus the application execution. After a hot spot has completed its execution, 
the DPCs may be allocated to the CIs of other hot spots, which requires a run-time reconfiguration of 
the DPCs to load new Data Paths. The functionality of a CI is typically composed of several Data 
Paths that are loaded into the DPCs. A modular CI (as in the case of RISPP) has multiple 
Implementation Versions. As soon as a Data Path is completed loading onto a DPC, it may be used to 
execute a faster Implementation Version. This enables the gradual upgrading and downgrading of CIs 
during run time by switching between different Implementation Versions. On the contrary, a 
monolithic CI (as in the case of Molen) has only one Implementation Version (i.e., a specialized case 
of modular CIs) and it may be either entirely loaded onto the reconfigurable fabric or not at all. 

The concept of modular CIs diminishes the above-discussed three problems of sharing, fragmentation, 
and longer reconfiguration time. The sharing problem is alleviated by Data Path sharing among different 
Implementation Versions of the same and/or different CIs. The fragmentation is reduced by using small-
sized Data Paths instead of relatively large-sized monolithic CIs. The maximum fragmentation is limited 
by the size of a DPC, which is typically small. The problem of longer reconfiguration delay is alleviated 
by gradual upgrading, i.e., as soon as one Data Path finished reconfiguration, a faster Implementation 
Version might become available to accelerate the CI execution. Additionally, the concept of modular CIs 
provides enhanced performance and adaptivity by exploiting the tradeoff between performance and 
reconfiguration overhead at run time depending upon the application execution context. In order to enable 
this, a run time system and hardware infrastructure is employed in RISPP which will be explained after 
the formal model of modular CIs. 
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Figure 2.8: Hierarchical Composition of Custom Instructions: Multiple Implementation Versions 

Exist per Custom Instruction and Demand Data Paths for Realization [BSKH07, BSTH07] 

Formal Model of the Modular Custom Instructions: 

The formal model of the hierarchical CI composition is summarized here in order to clearly formulate the 
pseudo-codes in Chapter 4. 

A data structure ( ,  ,  )n ∪ ∩`  is defined such that 
n`  is the set of all Implementation Versions and n  

is the number of different Data Path types. A CI is represented as a set of Implementation Versions. Let 
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,  ,  nm o p∈
G G G `  be Implementation Versions with 0 1 ( , ..., )nm m m −=

G
 where im denotes the amount of 

required instances of Data Path type iA  to implement the Implementation Version (similarly for o
G

 and p
G

). The total number of Data Paths required to implement an Implementation Version m
G

 is given as its 
determinant, i.e., 1

0:   :; i
n n

im m−
=→ = ∑

G` ` . 

The cISA Implementation Version of a CI is represented as : 0m =
G

. The operators ∪  and ∩  are 
used to combine two Implementation Versions (typically of different CIs). The operator ∪  (see Eq. 2.9) 
provides the Implementation Version that contains the Data Paths required to implement both 
Implementation Versions of its input. The operator ∩  (see Eq. 2.10) provides the Implementation 
Version14 with shared Data Paths between the both Implementation Versions of its input. 

 :    : ;    : max{ , };n n n
i i io p m m o p∪ × → ∪ = =

G G G` ` `  (2.9) 

 :    : ;    : min{ , };n n n
i i io p m m o p∩ × → ∩ = =

G G G` ` `  (2.10) 

To express the Data Paths that are additionally required to realize an Implementation Version p
G

 when the 
Data Paths of an Implementation Version o

G
 are already available, the upgrade operator �  is used 

(Eq. 2.11). 

 
- ,   - 0

: ;    : ;    :
       0,  

i i i in n n
i

p o if p o
o p m m

else

≥⎧
× → = = ⎨

⎩

G G G� ` ` ` �  (2.11) 

The comparison relation between two Implementation Versions is defined as o p≤
G G

 (see Eq. 2.12). As the 
relation is reflexive, anti-symmetric, and transitive, ( , )n ≤`  is a partially ordered set. 

 
, if [1, ] :

:
, else               

i itrue i n o p
o p

false

∀ ∈ ≤⎧
≤ = ⎨

⎩

G G
 (2.12) 

Operator for Implementation Version 

m
G

 or Custom Instruction s  
Description 

int  . ( )l m getLatency=
G

 An Implementation Version has certain execution latency (in cycles). 

. ( )s m getCI=
G

 
This function returns the CI of an Implementation Version along with 
the corresponding information. 

. ( )m s getCISAImpV=
G

 
Returns that Implementation Version of a CI that uses the cISA for 
execution. 

 
. ( )m s getFastestAvailImpV a=

G G
 

This function returns the fastest Implementation Version m
G

 of the CI s

that can be implemented with the available Data Paths a
G

 

int  . ( )f s getExpectedExecutions=
 

This function returns the expected number of execution of the CI s  in a 
particular computational hot spot. This frequency depends upon the 
input data and it is estimated by an online-monitoring scheme. 

. ( )s add i
G

 add one instance of the ith Data Path in the vector s
G

. 

. ( )s remove i
G

 remove one instance of the ith Data Path from the vector s
G

. 

Table 2.1: High-level Properties of Implementation Version and Custom Instruction [Bau09] 

In addition to the formal model for modular CIs, additional functions are defined for the ease of 
description of pseudo-codes in Chapter 4. The syntax of these functions is oriented at the object oriented 
programming style, such that an Implementation Version is seen as an object and the function is called for 

                                                      
14 Not necessarily of a particular Custom Instruction, it is rather a representation of the set of Data Paths of two 

Implementation Versions. 
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that particular object. Table 2.1 provides an overview of all these functions with the corresponding high-
level properties with their syntax and an explanation. Additionally, a list 1( ,  ...,  )ndpc dpc dpc=  is 
defined where n is the total number of DPCs in this list and . ()kdpc getLoadedDP  returns the loaded Data 
Path in the kth DPC. Note this dpc list is a software data structure and it is not related to the hardware 
DPCs. It is defined to facilitate the management of different Data Paths and hardware DPCs along with 
their power states. The functions . ( )kdpc add dpc  and . ( )kdpc remove dpc are used to add and remove the 
kth DPC to the dpc list. . ( ). ( )dpc find i location  finds the (first) DPC location corresponding to the ith Data 
Path. 

Run-Time System of RISPP: 

The run-time system (see Figure 2.7) exploits the potential of modular CIs and controls the hardware 
infrastructure to determine the set of Implementation Versions and the corresponding reconfiguration 
decisions as well as to control the CI executions. The goal of algorithms for the run-time system are to 
maximize the performance for a given area of the reconfigurable fabric. The area of the reconfigurable 
fabric (i.e., number of DPCs), the core pipeline, CI formats and free opcode space, and the 
implementation of the run-time system are fixed at design-time. The composition of Implementation 
Versions15, cISA implementations, insertion of forecast instructions, and opcodes for CIs are determined 
at compile-time. 

At compile time, the so-called Forecast Instructions (FI) are inserted in the application binary16 to 
trigger the run-time system. These FI contains the information about the CIs that are expected to be 
executed next, thus triggering the prefetching. However, eventually the run-time system determines the 
reconfiguration decisions for a set of Implementation Versions for the CIs as mentioned in the FIs. An 
offline-profiling is used to predict the execution frequency of a CI, i.e., the so-called Forecast Value (FV) 
of an FI. Since the CI execution frequency may depend on input data, the FV needs to be updated at run 
time to reflect recent CI execution frequencies. The run-time system of RISPP (see Figure 2.7) uses an 
Online-Monitoring and a Prediction scheme to dynamically update the expected CI execution 
frequencies. 

The Decoder triggers the modules of the run-time system when CIs or FIs are encountered in the 
instruction stream. For a CI, the Execution Control manages the execution mode (i.e., using cISA or a 
hardware Implementation Version) and the Online-Monitoring counts the CI executions. The Prediction 
module uses the difference between the initial FV and the monitored executions to adjust the FV for the 
next execution. The predicted CI execution frequency is used by the Selection to determine a set of 
Implementation Versions that maximizes the performance for the given size of the reconfigurable fabric 
(i.e., the number of Data Paths that can be reconfigured onto it at the same time). Afterwards, a set of 
required Data Paths is determined from the selected Implementation Versions and the Scheduling 
determines the reconfiguration sequence of these Data Paths. In case there is no empty DPC available in 
the hardware infrastructure, the Replacement determines which Data Path should be replaced to load the 
new one. In the following, the key parts of the run-time system are explained briefly. 

Online-Monitoring: A fair distribution of the reconfigurable fabric within a computational hot spot 
depends upon the execution frequencies of CIs. An offline-profiling provides average-case FVs (i.e., 
the prediction of expected CI executions) for a particular application. Since the CI execution 
frequency may vary at run time, an online-monitoring in conjunction with an error back-propagation 
scheme (based on Temporal Difference) is used for fine-tuning/updating the FVs. It thereby enables 
the adaptivity to changing CI requirements, e.g., a faster Implementation Version is selected for a CI 

                                                      
15 Which Implementation Versions is used to implement a CI is determined at run time, but the composition of 

individual Implementation Versions are not affected, therefore, they can be prepared at compile time. 
16 FIs and CIs are programmed as inline assembly. The assembler is extended to know about the instruction formats 

and opcodes of all FIs and CIs occurring in the assembly code. 
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which is predicted to be executed more often compared to the previous execution run. Typically the 
FVs of all CIs of a hot spot are indicated as a so-called Forecast Block (FB, i.e., a set of predictions) 
to trigger the run-time system once per hot spot. Figure 2.9 shows an example scenario using two 
Forecast Blocks FB1 and FB2 where FB1 forecasts the execution of the CIA within a hot spot and FB2 
predicts that the hot spot execution is finished and the CIA is no longer required. Figure 2.10 
demonstrates the idea of fine-tuning the FVs by representing the control-flow graph of Figure 2.9 as a 
linear chain of FBs for two iterations of the outer loop. The CI executions between two Forecast 
Blocks FBt and FBt+1 are monitored as M(FBt+1). Whenever the FBt+1 is encountered, the difference 
between FV(FBt) and the monitoring value M(FBt+1) is computed. In addition to this difference, the 
Forecast Block FBt+1 is also considered for computing the error E(FBt+1), as it may also predict some 
executions of that CI to come soon. Eq. 2.13 shows the computation of this error using parameter 

[0,1]γ ∈  to weigh the contribution of FV(FBt+1). Afterwards, the error is back-propagated to the 
preceding FB (see Eq. 2.14) where the parameter [0,1]α∈  is used to control the strength of this back 
propagation. A moderate Į value avoids thrashing and provides smooth variations in the prediction. 
The so-called static prefetching (i.e., no fine-tuning at run time [LH02]) can be realized as a special 
case of this model by using Į=0. Note, fine-tuning the FVs for multiple CIs is done independent of 
each other. 

 
( ) ( ) ( ) ( )1 1 1: �t t t tE FB M FB FV FB FV FBγ+ + += +

 (2.13) 

 
( ) ( ) ( )1:t t tFV FB FV FB E FBα += +

 (2.14) 

 

Figure 2.9: Example Control-flow Graph Showing Forecasts 

and the Corresponding Custom Instruction Executions [Bau09] 

 

Figure 2.10: Execution Sequence of Forecast and Custom Instructions 

with the Resulting Error Back Propagation and Fine-tuning [Bau09] 

Implementation Version Selection: The concept of modular CIs allows RISPP to dynamically determine 
which Implementation Version shall be used to implement a CI, i.e., distributing the reconfigurable 
fabric among different CIs depending on the run-time varying application requirements. The Selection 
is triggered for each computational hot spot by Forecast Instructions. It determines the set of 
Implementation Versions (to implement the forecasted CIs) that maximizes the overall performance 
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while considering the given size of the reconfigurable fabric. RISPP incorporates a greedy algorithm 
for Selection that uses a profit function which considers the CI execution frequency, the latency 
improvement, and the reconfiguration delay of an Implementation Version. The coefficients of the 
profit functions are empirically computed. After the Implementation Versions are selected, the 
reconfiguration sequence for the required Data Paths is determined as only one reconfiguration may 
be performed at a time. 

Reconfiguration-Sequence Scheduling: It determines the sequence in which Data Paths are 
reconfigured. This sequence is important (in terms of performance) as it determines which 
Implementation Versions are available first to expedite the computational hot spot. In RISPP, four 
different strategies are explored. The Highest Efficiency First (HEF) scheduler is finally used due to 
its better performance over other strategies. The HEF scheduler determines the upgrade 
Implementation Version which is the most beneficial one (in terms of performance) on a scheduling 
path while considering the latency improvement, the CI execution frequency, and the amount of 
additionally demanded Data Paths. If a new Data Path is going to be reconfigured and there is no free 
DPC available, some Data Path need to be replaced which is determined by the Replacement. 

Replacement: The run-time system in RISPP employs a Minimum Degradation replacement policy that 
considers the potential performance degradation for CIs when replacing a Data Path. It replaces the 
one that leads to the overall smallest performance degradation for the CIs. This policy aims to keep all 
CIs in a good performance by searching the downgrade step with the smallest performance impact. 

Hardware Infrastructure for Communication and Computation: 

The Hardware Infrastructure (see Figure 2.11) is partitioned into so-called Data Path Containers (DPCs) 
and Bus Connectors (BCs) [Bau09]. The DPCs can be dynamically reconfigured to contain one Data Path 
at a time, without affecting the other parts. Each DPC is connected to a dedicated BC via so-called Bus 
Macros17 [Xil05] such that the communication resources are available during the reconfiguration of the 
DPC (see connection details in [BSH08a]). The BC is connected to the adjacent BCs using unidirectional 
segmented buses (4 buses in each direction) in order to provide high-bandwidth parallel communication 
with low latency (single cycle). 
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Figure 2.11: Overview of the Hardware Infrastructure for Computation (Data Path Container) and 

Communication (Bus Connector) showing the Internal Composition of a Bus Connector [Bau09] 

                                                      
17 Bus Macros are used to establish communication between the partially reconfigurable part (i.e., DPC) and the 

non-reconfigurable part (i.e., BC) 
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Each BC contains two 4x32-bit local storages (1 write and 2 read ports each) to temporarily store the Data 
Path output. A DPC may receive inputs from segmented buses and/or local storages via BC-DPC latched 
input connections18. The data from segmented busses can be directly written to the local storages and 
alternatively the output of a local storage may drive any BC output. The control signals are provided to 
BCs in each cycle using 1024-bit Very Long Control Words (VLCWs) in order to determine the 
connections between different DPCs. This Hardware Infrastructure is connected to the general-purpose 
register file of the core pipeline. Each DPC provides a fixed interface with two 32-bit inputs, two 32-bit 
outputs, a 6-bit control signal (provided in the VLCW), a clock signal and an 8-bit output to notify the 
system about the currently loaded Data Path. Two 128-bit Load/Store Units are used to access two 
independent high-bandwidth memory ports in parallel and the Address Generation Units provide 
addresses to the Load/Store Units. 

2.4 Low-Power Approaches in Reconfigurable Processors 

Previous approaches in reconfigurable processors (like OneChip [WC96], CoMPARE [SGS98], Proteus 
[Dal03], Molen [VWG+04], and RISPP [BSH08b, BSH08c]) have mainly concentrated on improving the 
performance by reconfiguring application-specific hardware accelerators at run time to meet applications� 
demands and constraints. This reconfiguration process may consume a noticeable amount of energy. 
Consequently, the major shortcoming of these reconfigurable processors is their high energy consumption 
compared to ASICs and lack of efficient energy management features [Te06]. Moreover, with the 
evolution of sub-micron fabrication technologies, the consideration of leakage power/energy has become 
imperative in the energy-aware design of reconfigurable processors. A basic shutdown infrastructure is 
required to provide a foundation to exert high-level power and energy management schemes like the one 
proposed in this thesis (Chapter 5). Several academic and industrial research projects have already made 
the case for such shutdown infrastructure (see details in Section 2.3.2). In the following, prominent 
design-, compile-, and run-time low-power related work for FPGAs and reconfigurable processors is 
presented. 

Design-Time Approaches: Several design-time low-power architectural approaches for FPGAs are 
presented in [CWL+05, Te06]. A 90 nm low-power FPGA for battery-powered applications is 
introduced in [Te06]. It supports voltage scaling, power-shutdown, and a low-leakage configuration 
SRAM. The authors in [CWL+05] presented a trace-based timing and power evaluation method for 
device and architecture co-optimization for FPGA power reduction by exploring the design space of 
Vt and Vdd. The approach in [RP04] uses body biasing, multi-Vt logic, and gate biasing to reduce the 
leakage in FPGAs. A fine-grained leakage optimization techniques is presented in [MM05] that 
performs shutdown of the configuration SRAM of the unused LUTs. The authors in [LLH07] showed 
that too-high Vt transistors for leakage reduction in the configuration SRAM result in an increased 
reconfiguration time, thus leading to higher reconfiguration energy. These design-time approaches 
(e.g., [CWL+05, Te06]) provide the infrastructure to enable run-time adaptive energy management 
schemes, the domain in which the contribution of this thesis lies. 

Compile-Time Approaches: Besides design-time approaches, compile-time approaches typically target 
power-aware placement [Ge04], software partitioning and mapping [GE08], co-processor selection 
[Ge07] etc. A region-constrained placement is presented in [Ge04] to reduce leakage energy in 
FPGAs by increasing the number of unused regions to be switched off. An energy-optimal software 
partitioning scheme for heterogeneous multiprocessor systems is presented in [GE08] incorporating a 
resource model considering the time and energy overhead of run-time mode switching. The authors in 
[GE08] optimized the software partitioning at compile-time by formulating it as an Integer Linear 
Programming (ILP) problem. An ILP-based energy-aware co-processor selection for reconfigurable 

                                                      
18 The latch disconnects the Data Path of the DPC from the not-demanded external inputs, thus avoiding 

unnecessary toggles and reducing the dynamic power consumption of the Data Paths 
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processors is proposed in [Ge07]. However, compile-time techniques for power-reduction (placement, 
partitioning, co-processor selection etc.) are not able to react to run-time changing scenarios, thus they 
perform inefficient in that respect. 

Run-Time Approaches: The authors in [Ge04] additionally proposed a time-based power-shutdown 

scheme for run-time leakage minimization. However, [Ge04] does not consider which parts of the 
reconfigurable fabric are beneficial to shutdown at what time when considering partial run-time 

reconfiguration. A run-time approach in [Ne08] incorporates operand isolation and selective context 
fetching to reduce the power in reconfigurable processors. The authors in [PP08] presented a 
methodology for energy-driven application�s self-adaptation using run-time power estimation. 
However, these approaches target reducing dynamic energy and ignore the leakage energy and power-
shutdown. Several approaches in dynamic energy management incorporate Dynamic Voltage and 
Frequency Scaling (DVFS) techniques. The authors in [Qe07] employed configuration pre-fetching 
and configuration parallelism (using multiple configuration controllers) to create excessive system 
idle time and then employs voltage scaling on the configuration process to reduce the configuration 
energy in run-time reconfigurable processors. A low-power version of the Warp Processor [LSV06] is 
proposed in [Lys07]. It performs online profiling and online synthesis to automatically determine and 
synthesize suitable hardware accelerators at run time with a support of DVFS to dynamically reduce 
the power consumption. The approach in [HL07] co-schedules the hardware and software tasks at run-
time by using slack time. The slack time is introduced by reusing hardware task configurations to 
trigger the voltage scaling such that the preceding software tasks consume lesser power. DVFS 
techniques target on finding out the slack time in the execution pattern to reduce voltage and 
frequency. DVFS alone would not solve the problem of energy-minimizing instruction set in 
reconfigurable processors (see Section 5.3, page 100) especially when considering the changing 
execution frequencies of Custom Instructions. The main challenge here is to minimize the overall 
energy under run-time varying constraints while considering the power-shutdown decision at a higher 
abstraction level (as discussed in Chapter 5). Yet, DVFS schemes (e.g., [Qe07, Te06]) may be 
integrated with the proposed contribution to achieve even further energy reduction. 

2.5 Summary of Related Work 

The application-/algorithm-level related work on H.264 encoder either reduce the coding complexity by 
sequentially excluding the improbable candidate coding modes or by employing adaptive fast Motion 
Estimation schemes. However, state-of-the-art adaptive, fast, low-power, and scalable Mode Decision and 
Motion Estimation approaches either only consider a fixed quality-constrained solution or offer scalability 
with fixed termination rules that may lead to severe quality artifacts. These approaches do not provide 
run-time adaptivity when considering run-time varying energy-budgets, input video sequence 
characteristics, and user-defined constraints. As a result, these approaches are less energy-/power-
efficient. 

For designing an adaptive low-power multimedia system there is a need to combat the power and 
adaptivity related issues at both application and processor levels [FHR+10]. Majority of the multimedia 
systems are designed for heterogeneous MPSoCs, where different applications components (like video 
encoder/decoder, audio encoder/decoder, etc.) are implemented as an ASIC or ASIP. The 
programmability is mainly achieved by deploying DSPs, where the flexible parts are executed on the 
DSP. Most of the video encoding solutions (considering the advanced H.264 video encoder which is 10x 
more complex compared to the previous generations of encoding standards) target ASIC implementations 
to achieve low power. However, several works have also considered DSP or ASIP based implementations. 
Moreover, there are several ASIC-based solutions for different functional blocks of the H.264 video 
encoder that exploit pipelining and parallelism. On the one hand, ASIC-based implementations are less 
flexible and are not amenable to the run-time varying constraints and standard evolution trends, especially 
considering short time-to-market. On the other hand, the major shortcoming of multimedia MPSoCs is 
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their design-time selection of cores depending upon an initial set of application requirements. Since the 
cores are optimally selected for a set of initial requirements, these MPSoCs may not fulfill the required 
performance and/or power constraints when there is a change in the application requirements, design 
constraints, standard change, etc. Moreover, such MPSoCs may not handle the advanced multimedia 
standards (that exhibit unpredictable computational behavior and/or subjected to run-time varying 
constraints of available energy) in a power efficient way, especially when considering short time-to-
market and short-term standard evolutions and product upgrades. Furthermore, the previous approaches 
lack run-time adaptivity when considering varying energy budgets and area/performance constraints. 

Dynamically reconfigurable processors provide an alternate solution by exploiting the high degree of 
parallelism along with a high degree of adaptivity. Previous approaches in reconfigurable processors have 
mainly focused on improving the performance by reconfiguring application-specific hardware accelerators 
at run time to meet applications� demands and constraints. However, due to the reconfiguration process 
and the fabric nature to support high configurability, these reconfigurable processors suffer from high 
energy consumption compared to ASICs and lack of efficient energy management features. Recently, 
low-power design, especially the leakage power reduction, has become a key research focus in 
reconfigurable computing. Several academic and industrial research projects have already made the case 
for power-shutdown infrastructure. Such an infrastructure is required to enable run-time adaptive energy 
management schemes, as the one proposed in this thesis. 

State-of-the-art low-power approaches employ a hardware-oriented shutdown based on the state of a 
particular hardware. However, in dynamically reconfigurable processors, such a technique will perform 
inefficient as it cannot be determined at compile time which Custom Instructions will be reconfigured on 
which parts of the reconfigurable fabric. Moreover, state-of-the-art techniques do not evaluate the tradeoff 
between leakage, dynamic, and reconfiguration energy at run time which is inevitable when considering 
design-/compile-time unpredictable scenarios of application execution (changing performance constraints, 
input data, etc.) and available area and energy budgets. 

The low-power and adaptivity concerns for multimedia systems with advanced video codecs 
(subjected to unpredictable scenarios) are addressed by the proposed adaptive low-power reconfigurable 
processor architecture and an energy-aware H.264 video coding application architecture. At the processor 
level the novel concept of Selective Instruction Set Muting (with multiple muting modes) allows to shun 
the leakage energy at the abstraction level of Custom Instructions. This enables a far higher potential for 
leakage energy saving. Furthermore, the proposed adaptive energy-management scheme comprehensively 
explores the tradeoff related to leakage, dynamic, and reconfiguration energy under run-time varying 
performance and area constraints. At the application architecture level, the novel concept of Energy-

Quality Classes enables a run-time tradeoff between the energy consumption and the resulting video 
quality. The concept of Energy-Quality Classes along with an adaptive energy-budgeting scheme provides 
a foundation for energy-aware Motion Estimation. The energy-aware Motion Estimation and an adaptive 
complexity reduction scheme realize an adaptive low-power video encoder application architecture. The 
detailed issues and energy analysis at both application and processor level are discussed in Chapter 3. This 
chapter also provides an overview of the proposed processor and application architectures followed by the 
power model used by both architectures for adaptive energy management. In Chapter 4 the adaptive low-
power video encoding is discussed. Chapter 5 presents the adaptive low-power reconfigurable processor 
architecture with run-time adaptive energy management scheme. The comparison with state-of-the-art is 
presented in Chapter 7. 
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Chapter 3 Adaptive Low-Power Architectures 

for Embedded Multimedia Systems 

In this chapter an overview of the proposed application and processor architectures for embedded 
multimedia systems is presented, highlighting different steps performed at design, compile, and run time. 
The details of these architectures are provided in Chapter 4 and Chapter 5. First, Section 3.1 discusses an 
H.324 video conferencing application and provides the processing time distribution of different 
computational hot spots of various application tasks. In Section 3.1.1, the coding tool set of advanced 
video codecs is analyzed and similarities between different coding standards are highlighted, while 
corroborating the selection of the H.264/AVC video coding standard for this thesis. In Section 3.1.2, 
energy and adaptivity related issues in the H.264 video encoder application are analyzed and discussed. 
Together with these, other issues for dynamically reconfigurable processors are discussed in Section 3.2. 
Afterwards, Section 3.3 presents an overview of the proposed application and processor architectures 
along with different steps to be performed at design, compile, and run time. At the end, the proposed 
power model for dynamically reconfigurable processors is discussed in Section 3.4, highlighting different 
power consuming components from the computation and communication infrastructure of the processor. 

3.1 Analyzing the Video Coding Application for Energy 
Consumption and Adaptivity 

In current and emerging mobile devices, energy/power is a critical design parameter and multimedia is a 
major application domain. These multimedia applications with advanced video encoders � due to their 
huge amount of processing and energy requirements � pose a serious challenge on low-cost/low-power 
embedded systems. In the following a video conferencing application is discussed highlighting the 
dominance of an advanced video encoder with respect to its computational and energy requirements along 
with the inherent adaptivity. The inherent adaptivity will be discussed to highlight issues that can be 
exploited for run-time energy management at both application and processor architecture levels. 

 

Figure 3.1: Overview of an H.324 Video Conferencing Application with H.264/AVC Codec 

Figure 3.1 shows the block diagram of a video conferencing application, which is envisaged to be an 
important application in future mobile devices for video calls. A video conferencing is composed of a 
video encoder/decoder with video pre-/post-processing modules, an audio encoder/decoder, a multiplexer, 
and a communication protocol. In order to achieve a high compression and better video quality, typically 
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an advanced video encoder (like H.264/AVC [ITU05]) is employed. In order to find out the computational 
hot spots and their relative complexity, profiling has been performed. 

Figure 3.2 illustrates the average-case distribution of the processing time (in percentage) of various tasks 
of the video conferencing application. It is noticed that more than 70% computations are consumed by the 
H.264 video codec (encoder consumes >60%). The remaining computational quota is allocated to the video 
pre- and post-processing and the G.723 audio codec. Less than 10% is reserved for the remaining tasks. It 
shows that video coding is the dominant application task in the video conferencing application. This 
statement holds true for various other multimedia applications, like personal video recording, etc. Therefore, 
in the remaining part of this thesis, video encoding is considered as the key application for energy reduction. 
Moreover, unlike video decoding (which is fixed by the standard), video encoding exhibits a great potential 
for energy reduction at the application level due to non-normative parts (e.g., Motion Estimation and Mode 
Decision are not fixed by the standard), as it will be discussed in the remaining sections and Chapter 4. 
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Figure 3.2: Processing Time Distribution of Different Functional Blocks 

in the H.324 Video Conferencing Application 

In the following, the coding tool set of various video coding standards is compared in order to justify the 
selection of H.264/AVC. Afterwards, the energy and adaptivity related issues in the H.264 video encoder 
will be discussed in Section 3.1.2. 

3.1.1 Advanced Video Codecs: Analyzing the Tool Set 

Table 3.1 presents a comparison of the coding tool set of various advanced video encoding standards. The 
Microsoft VC-1 standard and Chinese Audio Video Standard (AVS) belong to the same generation period 
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as of the H.264/AVC. Multiview Video Coding is the latest extension (finalized in 2008 [Joi08]) of H.264 
for 3D-videos where a 3D-scene is captured by multiple cameras. H.265/HEVC (High Efficiency Video 
Coding) belong to the next generation of video codecs and it is expected to be standardized by the end of 
2012 [Joi10]. It is worthy to note that within the same generation, the coding tool set of H.264/AVC is the 
most complex one that also results in a relatively better coding efficiency. As discussed in Chapter 2, 
Motion Estimation and Rate Distortion Optimized Mode Decision are the most critical components of a 
video encoder from computation complexity and energy reduction point of views. It can be noted that 
within the same generation, H.264/AVC offers the highest number of coding mode options (see variable-
block sized Motion Estimation and Intra Prediction modes in Table 3.1). Moreover, the coding options 
offered by AVS and VC-1 are approximately a subset of the coding options of H.264/AVC. Therefore, the 
application-level energy reduction algorithms and the application architecture for adaptive low-power 
video coding are equally applicable to AVS and VC-1. Since Multiview Video Coding is an extension of 
H.264, the proposed contribution can be easily extended towards Multiview Video Coding. Further energy 
reduction can be obtained by extending the analysis to 3D, i.e., by exploiting the extensive correlation 
space of the 3D-neighborhood (see Section 8.2 for future works). 

 ADVANCED VIDEO ENCODING STANDARDS 

Coding Tools 

H.264/AVC 

(Advanced 

Video Coding) 

Audio 

Video 

Standard 

(AVS) 

Microsoft 

VC-1 

Multiview 

Video Coding 

(MVC) 

H.265/HEVC 

(High Efficiency 

Video Coding) 

Frame Type 
I, P, B, 
SP, SI 

I, P, B 
I, P, B, 

BI, Skipped P
I, P, B I, P, B, � 

Variable-block Sized 

Motion Estimation 

16x16, 16x8, 
8x16, 8x8, 4x8, 

8x4, 4x4 

16x16, 
16x8, 

8x16, 8x8

16x16, 16x8, 
8x16, 8x8, 

4x8, 8x4, 4x4

16x16, 16x8, 
8x16, 8x8, 

4x8, 8x4, 4x4

Geometry Block Partitioning
Asymmetric Block Partitioning

Transform Size 4x4, 8x8 8x8 
4x4, 8x8, 
8x4, 4x8 

4x4, 8x8 
Adaptive 

(may also have 8x8) 

Transform 
Integer DCT, 

Hadamard 
Integer 
DCT 

DCT 
Integer DCT,

Hadamard 

Large Transform (16x16-
64x64), Rotational/Mode 

Dependent Directional 
Transform 

Motion Vector 

Resolution 

1/4-pixel (6-tap 
and Bilinear 

filter) 

1/4-pixel
(4-tap 
filter) 

1/4-pixel 
(4-tap filter) 

1/4-pixel 
(6-tap and 

Bilinear filter)

1/8-pixel (separable, non-
separable, or directional 

adaptive interpolation filter), 
adaptive motion vector 

resolution 

SKIP Mode MB-Level MB-Level Frame-Level MB-Level MB-Level 

Maximum number 

of Reference Frames 
16 each way 

2 each 
way 

1 each way 16 each way 
Adaptive Warped 

Reference 

Intra Prediction 

Modes & Block Sizes 

Luma: 16x16 
(4 modes), 4x4 

(9 modes); 
Chroma: 8x8 

(4 modes) 

8x8 (5 
modes for 
Luma and 
4 modes 

for 
Chroma) 

None 

Luma: 16x16 
(4 modes), 

4x4 (9 
modes); 

Chroma: 8x8 
(4 modes) 

Adaptive reference sample 
smoothing, planar or angular 

prediction, arbitrary directional 
Intra (ADI), Combined Intra 

Prediction (CIP) 

Entropy Coding 

Mode 

CAVLC, 
CABAC 

CA-2D-
VLC, 

CABAC 

Adaptive 
VLC 

CAVLC, 
CABAC 

Low-complexity entropy coding 
with VLC codes, high coding 

efficiency with V2V codes  

In-Loop 

Deblocking Filter 
5 strength cases 

3 strength 
cases 

Yes 
5 strength 

cases 
Adaptive post-loop filters, Intra 

planar mode filtering 

Table 3.1: Comparing the Coding Tool Set of Various Video Encoding Standards 

[ITU05, ITU09, Joi08, Joi10, KL07, Mic10a, Mic10b, Ric03, Ric10, YCW09] 
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When considering the evolution of the video coding standards, it can be noticed in Table 3.1, that 
H.265/HEVC extends the computation and coding mode model of H.264 by providing further adaptivity, 
thus further extending the conventional data dominant processing to control dominant processing. High 
adaptivity is planned to be employed in the H.265 standard to achieve 2x higher coding efficiency 
compared to the H.264/AVC coding standard [ITU05]. Since adaptivity is the key property in various 
algorithms employed in different functional blocks of the H.265/HEVC standard, the proposed adaptive 
low-power processor architecture will provide a good foundation for researching energy-efficient 
multimedia solutions. Moreover, the adaptive low-power video coding concepts (as proposed in 
Chapter 4) can also be extended towards further adaptivity, especially the proposed concept of Energy-

Quality Classes for energy-aware Motion Estimation (see details in Section 4.5) will be equally beneficial 
for H.265/HEVC. However, the SAD computation unit need to be replaced according to the new block 
partitioning structure. Furthermore, the Macroblock categorization based on the spatial and temporal 
video properties while considering the Human Visual System (see details in Section 4.3 and Section 4.4) 
will also be beneficial. However, its usage may be adapted depending upon the final set of coding options 
adopted by the standardization committee. 

As corroborated by the above discussion, H.264/AVC is considered for researching the adaptive low-
power video coding which is a primitive component of current and upcoming embedded multimedia 
systems. In the subsequent chapters, the discussion will be more focused towards the H.264/AVC encoding. 

3.1.2 Energy and Adaptivity Related Issues in H.264/AVC Video Encoder 

Video encoding consumes a significant amount of processing time and energy. Encoding effort highly 
depends upon the characteristics of the input video sequence and the target bit rates. Moreover, the 
available energy budgets may change according to various application scenarios on mobile devices. Under 
changing scenarios of input data characteristics and available energy budgets, embedded solutions for 
video encoding require run-time adaptivity. 

The advanced video coding standard H.264/AVC [ITU05] provides double compression compared to 
previous coding standards (MPEG-2, H.263, etc.) [WSBL03] at the cost of additional computational 
complexity (~10x relative to MPEG-4 advance simple profile encoding [OBL+04]). This directly 
corresponds to high energy consumption. This increased energy consumption of H.264 is mainly due to its 
complex Motion Estimation (ME) and Rate Distortion Optimized Mode Decision (RDO-MD) processes. 
It is worthy to note that RDO-MD is the most critical functional block in H.264, as it determines the 
number of ME iterations. Therefore, complexity reduction at the stage of RDO-MD is required first, 
before proceeding to the energy reduction at the ME stage. 

As discussed in Section 2.2.3, many efforts have been made in developing fast Mode Decision 
schemes for H.264 to reduce the complexity of encoding [ADVLN05, GY05, JC04, JL03, KC07, 
LWW+03, MAWL03, PC08, PLR+05, SN06, WSLL07, Yu04]. However, most of these state-of-the-art 
RDO-MD approaches sequentially process and eliminate the modes depending upon the result of the 
previously evaluated modes. Therefore, modes are not excluded in the fast RDO-MD until some ME is 
not done. As a result, these approaches still compute a significant (more than half of all) number of modes 
or even in the best case at least one mode from both P-MB and I-MB is processed (see [GY05, JC04]). 
Since the ME is always processed in any case, the computational requirements of the state-of-the-art are 
still far too high, which makes them infeasible for low-power embedded multimedia systems. Therefore, 
there is a dire need for a complexity reduction scheme that can adaptively exclude as many coding 
modes as possible from the candidate mode set (as used for the Mode Decision process) at run time even 
before starting the actual fast RDO-MD and ME processes. 

Such a scheme is more critical for low-power video encoding solutions as it may avoid the complete 
ME process (the most energy consuming functional block of an encoder, see Figure 3.3). A good 
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complexity reduction scheme needs to predict the possible coding mode with a high accuracy that requires 
an in-depth knowledge of the spatial and temporal properties of the video data. It requires a relationship 
between the video properties and the probable coding mode. A high accuracy of the coding mode 
prediction also requires a joint consideration of the spatial and temporal video properties. For low power 
consumption, an aggressive mode exclusion may be desirable that needs to consider the properties of the 
Human Visual System in order to analyze the subjective impact of the coding modes. It is worthy to note 
that for extracting the spatial and temporal video properties, additional image processing operations are 
required that incur a power and performance overhead. Therefore, the overhead of the extra processing 
must be amortized by the significant complexity and energy reduction offered by the scheme. After a 
coding mode is predicted, the most energy consuming part of an encoder is the Motion Estimation process. 
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Figure 3.3: Percentage Distribution of Energy Consumption of 

Different Functional Blocks in the H.264 Video Encoder 

Figure 3.3 shows the distribution of energy consumption for different functional blocks19 of an H.264 
encoder. Figure 3.3 shows that ME is one of the most compute-intensive and energy demanding functional 
blocks of an H.264 encoder. It can be noticed that ME may consume up to 65% (Integer-pixel-ME = 56%, 
Fractional-pixel ME = 9%) of total encoding energy. The energy consumption of ME is directly 
proportional to the number of computed SADs (Sum of Absolute Differences) to determine the best match 
(i.e., the MB with the minimum distortion). As discussed in Section 2.2.3, state-of-the-art adaptive, fast, 
low-power, and scalable ME schemes provide a fixed quality-constrained solution or alternatively offer 
scalability with fixed termination rules that may lead to severe quality artifacts. These approaches do not 
provide run-time adaptivity when considering the following run-time varying scenarios: 

a) available energy (may change due to a changing battery level or changing allocated energy in a 
multi-tasking system for different application cases) 

b) video sequence characteristics (motion type, scene cuts, etc.) 
c) user-defined coding conditions (duration, quality level, etc.) 

As a result, these approaches are less energy-/power-efficient. Therefore, an energy-aware Motion 

Estimation scheme is desirable that dynamically adapts its configuration considering the above-
mentioned run-time varying scenarios while keeping a good video quality (PSNR). Since the video data 
has diversity (i.e., different frames and/or different MBs in a frame have different spatial and temporal 
properties), such an energy-aware ME needs to provide a tradeoff between the available energy budget 
and resulting video quality. Therefore, the key challenge here is: how much energy budget should be 

allocated to the ME of one video frame or even one MB when considering run-time varying scenarios. 
The number of SAD computations are then determined from the allocated energy-budget of an MB. It 
needs to be considered that more energy should be allocated to a fast moving and highly-textured MB 
compared to a stationary or slow moving MB. Since a less ME effort for a fast moving textured MB may 
                                                      
19 In this experiment the fast adaptive motion estimator UMHexagonS [CZH02] is used to have a realistic distribution. 
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result in noticeable quality degradation, carefully allocating the energy budget to different frames and 

MBs is crucial. Therefore, the energy-aware ME needs to be equipped with an integrated run-time 

adaptive energy-budgeting scheme. 

3.2 Energy- and Adaptivity Related Issues for Dynamically 
Reconfigurable Processors 

In Chapter 1 and Chapter 2, it was motivated that dynamically reconfigurable processors provide means 
for run-time adaptivity at the processor level and they are particularly beneficial in applications with hard-
to-predict behavior where conventional embedded processors operate inefficiently with respect to 
energy/power consumption. However, previous approaches in reconfigurable processors (like OneChip 
[WC96], CoMPARE [SGS98], Proteus [Dal03], Molen [VWG+04], and RISPP [BSH08b, BSH08c]) have 
mainly focused on performance improvement and efficient area utilization while meeting applications� 
demands and constraints. These reconfigurable processors suffer from the overhead of reconfiguration 
energy and high leakage due to their fabric structure. Consequently, the major shortcoming of these 
processors is their high energy consumption (compared to ASICs) and lack of efficient energy 
management features [Te06]. Moreover, with the evolution of sub-micron fabrication technologies, the 
consideration of leakage power/energy has become imperative in the energy-aware design of 
reconfigurable processors. Efficient high-level energy management schemes are required that utilize 
the underlying power shutdown infrastructure (as proposed by [Ge04, MM05, Te06]) to achieve relatively 
higher leakage reduction. When targeting a high-level energy management scheme, it needs to be 
considered that, in reconfigurable processors it cannot be determined at compile time which Custom 
Instruction (CIs) will be reconfigured on which parts of the reconfigurable fabric. This depends upon 
many factors, for instance, due to: 

a) Application-level unpredictability: the execution frequency of CIs of a computational hot spot may 
vary due to the changing input video sequence characteristics (e.g., texture properties, motion type, 
scene cuts) or user-defined coding conditions (e.g., quality level, target bit rate). 

b) Compile-/design-time unpredictable scenarios in a multi-tasking system 
• which task will obtain which share of the reconfigurable fabric 
• what is the task priority (may change at run time) 
• which task will run under which performance constraint, e.g., due to changing user preferences 

(e.g., desired frames per second in case of the H.264 application) 
c) available energy (may change due to a changing battery level or changing allocated energy in a 

multi-tasking system) 
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Let us analyze the case of application level unpredictability in detail using an analytical study of H.264 
video encoder showing the varying computational requirements of the H.264 video encoder application 
(as discussed in Section 3.1.2) due to various coding modes, MB types, and ME configurations. Figure 3.4 
illustrates the analysis for the distribution of MB types for different sequences with diverse motion 
properties. In case of high motion, the ratio of I-MBs is dominant. In case of slow-to-medium motion, the 
number of P-MB is dominant. Kindly note that, such a distribution of I-MB/P-MB cannot be predicted at 
compile time as the input video sequence is typically unknown. It should be noted that the CIs for I-MBs 
and P-MBs require different kinds of Data Paths (i.e., elementary hardware accelerators). Therefore, for 
changing I-MB/P-MB distribution, the corresponding CIs (and Data Paths) will be executed in different 
frequencies. Summarizing, it is hard to predict at design/compile time that which share of available 
reconfigurable fabric will be used to accelerate which CIs and where on the fabric their Data Paths will be 
reconfigured. 

Considering the unpredictability from various sources (as discussed above) and significant 
reconfiguration and leakage power of the reconfigurable processors, several challenging issues should 

be addressed by a high-level energy management scheme at run time, which is the key to realize an 
adaptive low-power reconfigurable processor architecture. These challenging issues are: 

a) Is it beneficial to shutdown regions of the reconfigurable fabric to reduce its leakage (and execute 
CIs using the core Instruction Set Architecture) or to use a larger share of the reconfigurable fabric 
to decrease the application execution time at the cost of a higher reconfiguration energy? 
• This highly depends upon the performance constraints, application characteristics, and the 

input data properties. 
• Therefore, it is not trivial to decide under which circumstances the execution using a 

reconfigurable fabric is energy-efficient or not. 
b) How to predict which set of Custom Instructions (CIs) will minimize the energy consumption of a 

given computational hot spot when considering leakage, reconfiguration, and dynamic energy 
under scenarios of run-time changing performance and/or area constraints? 
• At some point in time leakage energy may dominate, while at some other points in time (e.g., 

due to changed system constraints), reconfiguration energy may dominate. 
• Decisions made solely at design/compile time will therefore with high certainty lead to energy-

inefficient scenarios. 
• Hence, a run-time adaptive scheme is desirable that chooses an energy minimizing set of CIs 

under varying constraints and then apply shutdown to the temporarily unused set of CIs, such 
that the total energy consumption is minimized. 

• A comprehensive power model for dynamically reconfigurable processors is required to 
facilitate an energy management scheme. 

c) At which level the power-shutdown decision should be determined? 
• State-of-the-art approaches (as discussed in Section 2.4) employ a hardware-oriented 

shutdown, i.e., the power-shutdown signal is issued based on the usage/state of a particular 
hardware. However, as discussed above, in dynamically reconfigurable processors such a 
technique will perform inefficient as it cannot be determined at compile time which CIs will be 
reconfigured on which parts of the reconfigurable fabric. 

• Therefore, there is a need to raise the abstract level of the power-shutdown decision to the 
abstraction level of CIs (i.e., an instruction set oriented shutdown) considering the execution 
length of computational hot spots, i.e., the execution context of an application. 

d) Given that the logic and configuration SRAM can be independently shutdown (supported by an 
appropriate shutdown infrastructure, see Section 5.2.2), what kind of different shutdown modes 
can be realized? 
• Given multiple shutdown modes (as it will be discussed in Chapter 5), how to determine which 

shutdown mode is beneficial for which set of CIs at what time under run-time varying 
application contexts? 
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• Which muting (i.e., shutdown) modes for CIs will bring more energy reduction while jointly 
considering the leakage, dynamic, and reconfiguration energy? 

• This decision depends upon the execution length of the computational hot spots during which 
different CIs are used for the application acceleration in different execution frequencies. 

• Moreover, this decision also depends upon the requirements of upcoming hot spot executions 
and the performance constraints (i.e., more or less reconfigurable fabric is required to 
accelerate hot spots). 

• Therefore, a Selective Instruction Set Muting technique is required. 

Chapter 4 and Chapter 5 of this thesis provide algorithms and strategies to address the above-
mentioned challenging issues at the application and processor architecture levels, respectively. In the 
following, a brief overview of the proposed architectures is provided highlighting the design-, compile-, 
and run-time steps and requirements from both application architecture and processor architecture 
perspectives. 

3.3 Overview of the Proposed Architectures and Design Steps 

Figure 3.5 presents an overview of the thesis contribution for adaptive low-power application and 
processor architectures in order to address the above-mentioned challenging issues. Adaptive low-power 

video encoding is realized by incorporating adaptive algorithms at the application level that react to the 
changing battery status, video properties, and user constraints at run time. 

 

Figure 3.5: Overview of the Adaptive Low-Power Application and Processor Architectures 

At the application level the energy reduction is performed by adaptively reducing the computational 
requirements of various algorithms used by different functional blocks in the H.264 video encoder (see 
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Chapter 4 for details). First, application architectural adaptations are performed targeting the 
reconfigurable processors (see Section 4.1) and various low-power Custom Instructions and Data Paths 
are designed (see design in Section 4.2). During the application execution, the complexity reduction is 
performed by adaptively excluding the highly improbable mode options from the candidate coding mode 
set (see Section 4.4) using Human-Visual System based Macroblock categorization (see Section 4.3). 
Quantization Parameter based threshold models are developed to obtain precise categorization depending 
upon the coding configuration. Once the final coding mode candidates are determined, adaptive energy-
budgeting is performed for the Motion Estimation corresponding to each candidate coding mode. The 
predicted energy budget is forwarded to the energy-aware Motion Estimation (see details in Section 4.5) 
to select an appropriate Energy-Quality Class (i.e., the Motion Estimation configuration). Since the 
energy-aware adaptations incur a quality loss as a side-effect, in order to compensate this quality loss, a 
multi-level rate control is designed which determines the Quantization Parameter value for each 
Macroblock considering its spatial and temporal properties (see Appendix A). It allocates more bits to the 
complex Macroblocks and less bits to the less-complex ones. 

At the processor level, the energy reduction is performed by determining an energy-minimizing 
instruction set for given area and performance constraints (see details in Section 5.3). It requires a power-
model for power estimation (see Section 3.4). Afterwards, the temporarily unused set of Custom 
Instructions is muted (i.e., shutdown) to further reduce the leakage energy (see details in Section 5.4). For 
overall processing, low-power Data Paths are reconfigured on the reconfigurable fabric. The consumed 
energy is fed back to the application level algorithms and also to the processor level algorithms for further 
adaptations based on the monitored results (achieved performance, energy consumption, etc.). 

Figure 3.6 shows an overview of the design-, compile-, and run-time steps at both application and 
processor levels. These steps are discussed in the following. 

At the application level, the coding tool set is finalized at design time and different application 
architectural adaptations are performed along with the data structures and the data flow (see Section 
4.1 for details). The finalized application architecture with optimized data flow is implemented. The 
algorithms for extracting the spatial and temporal video properties are analyzed and a set of 
algorithms for important video properties is selected (see Section 4.3). Afterwards, the algorithms for 
different functional blocks of the video encoder are designed and implemented. 

At compile time, the energy consumption analysis of these functional blocks is performed and the 
energy consumption is characterized. Depending upon the chosen Motion Estimation algorithm, 
different patterns and predictor sets are analyzed and selected before exploring the design space of the 
Energy-Quality Classes (see details in Section 4.5). A set of common optimal Energy-Quality Classes 
is obtained by performing the design space exploration for various test video sequences. Based on the 
analysis of the video properties and optimal coding modes for various video sequences, different 
Quantization Parameter based threshold equations are formulated (see Section 4.3.2). Additionally, 
low-power Custom Instructions (CIs) and their composing Data Paths are designed at compile-time 
(see Section 4.2) based on the modular CI composition model of RISPP [Bau09] and opcodes are 
assigned to different CIs. Moreover, each CI is implemented using core Instruction Set Architecture 
(cISA). 

At run time, the Quantization Parameter based threshold equations are used to obtain thresholds that 
are deployed to partition Macroblocks in different categories with consideration of important Human-
Visual System properties (see Section 4.3). The Macroblock categories are used for performing the 
adaptive complexity reduction that excludes improbable coding modes from the mode-decision 
process to avoid unnecessary energy wastage (see details in Section 4.4). Afterwards, the adaptive 
energy-budgeting is performed that provides the predicted energy budget for the Motion Estimation of 
one Macroblock. Depending upon the predicted energy budget an appropriate Energy-Quality Class is 
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selected and the corresponding configuration is forwarded to the energy-aware Motion Estimation 
(see details in Section 4.5). After the Motion Estimation is completed, the energy of Energy-Quality 

Classes is updated depending upon the current video statistics. For the actual encoding, the 
Quantization Parameter is determined by a multi-level rate control algorithm that allocates a bit 
budget to the Group of Pictures and then distributes this budget to different frames within this Group 
of Pictures. It afterwards determines the final Quantization Parameter value for each Macroblock 
inside a frame considering its spatial and temporal properties (see Appendix A). 

 

Figure 3.6: Highlighting Different Steps to be Performed at Design, Compile, and Run Time 

at both Application and Processor Levels 

At the processor level, first the architectural parameters (i.e., the core processor, the area of the 
reconfigurable fabric, connection of the core processor and the reconfigurable fabric, the data memory 
connection of CIs, etc.) are determined at design time. The leakage and dynamic power properties of 
the core processor and the reconfigurable fabric are required for designing the power model. As the 
power model is based on the actual power measurements, the experimental setup is designed and the 
power of various CI Implementation Versions in hardware is measured (see Chapter 6). The design of 
the run-time algorithm is also fixed at the design-time. 

At compile time, the power model is formulated and the parameters of the model are estimated (see 
Section 3.4 and Chapter 6 for details). Furthermore, the key input (i.e., the multiple Implementation 
Versions for each CI with area vs. performance/power tradeoff) for the run-time algorithms is 
prepared automatically at compile time. Note, which Implementation Version for which CI will be 
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used in a given execution scenario cannot be determined at compile time as it depends upon various 
unpredictable factors (changing performance constraints, available reconfigurable fabric area, input 
data properties, etc.), as discussed in Chapter 1 and Section 3.2. However, the composition of an 
Implementation Version (i.e., its schedule of Data Path usages) does not change at run time. 
Afterwards, the average-case power/energy of each CI Implementation Version is estimated by 
considering various placement cases for different Data Paths of the CI on the reconfigurable fabric 
(see Section 3.4 for the details on how the placement of a Data Path may affect the power 
consumption of a CI Implementation Version). The CI Implementation Versions and their 
performance, area, and energy properties are provided to the run-time energy management system. 
These CIs along with the Forecast Instructions (see details in Section 2.3.5) are programmed in the 
application using inline assembly20. 

At run time, an energy minimizing instruction set is chosen depending upon the monitored CI 
execution frequency, performance constraint, and the available area of the reconfigurable fabric (see 
details in Section 5.3). Since the execution frequency of CIs may change at run time (depending upon 
the changing control flow or computational properties of an application or changing performance 
constraints, as analyzed in Section 3.1 and Section 3.2), the number of actual CI execution is 
monitored at run time. After choosing the energy-minimizing instruction set, the temporarily unused 
set of the CIs is determined which is the candidate for muting (i.e., power-shutdown) to reduce the 
leakage energy. Depending upon the Data Path requirements of the currently executing and the 
upcoming computational hot spots, a particular muting mode is determined for each CI (see details in 
Section 5.4). Afterwards, the shutdown signals to the corresponding sleep transistors are issued. The 
Data Paths of the selected CIs are reconfigured on the fabric. Since the actual placement of a Data 
Path of a CI is determined at run time depending upon the reconfiguration scheduling and replacement 
(see Section 2.3.5 and Section 3.4), the actual power consumption is estimated at run time. 

Now, the power model for dynamically reconfigurable processors is presented which is required for 
explaining the key contribution of this thesis. Details of the power measurement setup, steps for creating 
the power model, and different test cases to measure the power of individual components will be 
discussed in Chapter 6. 

3.4 Power Model for Dynamically Reconfigurable Processors 

Diverse efforts have been undertaken in the estimation and modeling of power consumption in FPGAs 
[AN04, CJMP03, HLLW08, PWY05, Ze07]. The authors in [HLLW08] presented a technique for rapid 
estimation of the dynamic power consumption of a hybrid FPGA with coarse-grained and fine-grained 
units. A dynamic power estimation model for an FPGA-based soft-core processor has been presented in 
[Ze07]. The authors in [AN04, PWY05] presented more detailed power models for FPGA. An analysis of 
dynamic power consumption in Virtex-II FPGAs is presented in [CJMP03]. The authors in [BHU03] 
presented power estimation and power consumption for Xilinx Virtex FPGAs, highlighting the tradeoffs 
between measured dynamic power and reconfiguration power of different applications. However, none of 
them comprehensively covers a highly-adaptive reconfigurable processor, i.e., an ASIC-based core 
Instruction Set Architecture (cISA) in conjunction with an embedded FPGA that supports run-time 
choices of multiple Implementation Versions per Custom Instruction (CI). 

In this section a comprehensive power model for a dynamically reconfigurable processor21 
considering modular CIs (like the one discussed in Section 2.3.5) is presented. The main challenge is to 
estimate the power/energy of the modular CIs executing on the reconfigurable fabric considering run-time 

                                                      
20 Note, the assembler is extended to identify the CIs and the Forecast Instructions as it needs to know which 

instruction format and opcode shall be used for the corresponding CI and Forecast Instruction. 
21 An ASIC-based core Instruction Set Architecture with an embedded FPGA. 
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choices of multiple CI Implementation Versions. Before proceeding to the proposed power model, 
different power consuming parts of a typical computation- and communication-infrastructure on a 
dynamically reconfigurable processor (like in [BSH08a]) will be investigated. 

3.4.1 Power Consuming Parts of a Computation- and Communication-
Infrastructure in a Dynamically Reconfigurable Processor 

To estimate the dynamic power consumption of an executing CI (PCI_dyn), its specific realization on the 
reconfigurable fabric (depending on the Implementation Version) needs to be considered. Figure 3.7 
shows an abstract schematic of the hardware infrastructure for computation and communication (see 
details in Section 2.3.5) that partitions the reconfigurable fabric into Data Path Containers (DPCs). Each 
DPC is attached to a Bus Connector with small local storage and connected to segmented buses. 
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Figure 3.7: Power-Relevant Components of the Computation- and Communication Infrastructure 

to Execute CI Implementation Versions [BSH08a] 
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Figure 3.8: Example for a Custom Instruction (CI) Implementation Version 

Figure 3.8 shows the realization of a certain CI Implementation Version using the hardware infrastructure 
for the Hadamard Transform (from the H.264 encoder application) of a 4x4 input array that is loaded 
from the data memory. In addition to the actual transformation (Transform Data Path, implementing a 
butterfly using eight 8-bit additions along with bit-level rewiring), the CI requires a rearrangement of the 
input data and the intermediate results on sub-word level (Repack Data Path). The presented 
Implementation Version in Figure 3.8 uses two instances of each of the Transform Data Path and the 
Repack Data Path, resulting in a CI execution time of 10 cycles. The CI can also be implemented if only 
one instance of Transform and Repack is available (e.g., because the reconfigurations of the other Data 
Paths are not yet completed), resulting in a CI execution time of 15 cycles. The fastest Implementation 
Version for this CI uses four instances of Transform and Repack and executes in 8 cycles. 
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Note: different Data Path types typically differ in their required execution energy (e.g., Repack requires 
less energy than Transform). Furthermore, the Data Paths need to communicate, for instance, in Figure 3.8 
the result of Repack in cycle 3 is the input of Transform in cycle 4. However, the result might not be used 
immediately, for instance, the result of Transform in cycle 5 is only required 2 cycles later, so it needs to 
be temporarily stored. 

Summarizing: to determine the dynamic power consumption of a CI Implementation Version execution, 
the following needs to be considered: 

• The types of Data Paths and how often they are executed. 
• The number of write/read accesses on the local storage. 
• The number of bus segments necessary for communicating the intermediate results. This value 

depends on the relative placement of the communicating Data Paths on the reconfigurable fabric. 

Typically, the computation and communication activities during the execution of an Implementation 
Version vary per cycle: in cycle 3, for instance (see Figure 3.8), two Repack Data Paths are demanded 
whereas in cycle 5 two Transform Data Paths are necessary (similar differences exist for the local storages 
and the bus lines). Now, the details of the proposed power model are presented in the following. 

3.4.2 The Proposed Power Model 

The power of a dynamically reconfigurable processor consists of the following components: 

 PReconfProc = PCI_dyn + ∑PDPC_leak + ∑PDPC_reconf + PcISA_dyn + PcISA_leak (3.1) 

a) Dynamic Power when executing a Custom Instruction (CI) 

To study the effect of different constituting parameters on the power of a CI Implementation Version, 
various measurements using an in-house developed FPGA prototyping platform (see Chapter 6 for details) 
are conducted. As discussed above, the total dynamic power consumption of a CI Implementation Version 
(see Eq. 3.2) comprises the power of computing Data Paths (PDataPath), communicating bus segments 
(PSegBus), and read/write from the local storage (PMemory). Considering these parameters, the dynamic power 
of a CI Implementation Version (PCI_dyn) is modeled as: 

 PCI_dyn = Į*PDataPath + ȕ*PSegBus + Ȗ*PMemory + į (3.2) 

On FPGA running at frequency 'F', the energy consumption of an Implementation Version with a latency 
of 'L' cycles is calculated as: ECI_dyn = PCI_dyn*(L/F). Į, ȕ, Ȗ, į are the model coefficients (see details in 
Section 6.2). į accounts for the measurement noise. PDataPath, PSegBus, and PMemory are explained as below: 

Data Path Power ( _1  ( ) /n
DataPath i DataPath iiP N P L== ∑ ): the average power of Data Paths (for an 

Implementation Version with a latency of L cycles) depends upon the types of Data Paths and how 
often they are executed. Ni is the number of cycles for which the ith Data Path type is used to realize 
the Implementation Version. Due to their distinct processing nature, different Data Path types 
generally differ in their power consumption PDataPath_i (see Section 6.2.3 for the measured power 
results). 

Bus Power (PSegBus = BusSegavg * Pbus): Data Paths communicate with each other over segmented buses 
(see Figure 3.7 and Figure 3.8). The number of bus segments required for communicating the 
intermediate results depends on the relative position of the communicating Data Paths on the 
reconfigurable fabric. BusSegavg is the average number of bus segments employed per cycle and Pbus is 
the average power consumption of one bus segment. 
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Memory Power (PMemory = Memavg * PRW): The output of a Data Path is temporarily stored in the local 
memory of the Bus Connector (see Figure 3.7). Memavg is the average number of local memory 
accesses (read or write) per cycle and PRW is the power consumption of a single read or write 
operation. 

PDataPath_i, Pbus, and PRW are the measured values (see Chapter 6), while the values of Ni, BusSegavg, and 
Memavg depend upon a particular CI Implementation Version. 

b) Leakage Power of Data Path Containers (DPCs) 

PDPC_leak denotes the leakage power of a DPC. Each DPC is treated as a group of Configurable Logic 
Blocks (CLBs) that are powered-off with sleep transistors (power-shutdown infrastructure will be 
discussed in Section 5.2.2). The power shutdown decision depends upon the temporarily unused set of CIs 
(see details in Chapter 5). 

c) Reconfiguration Power 

PDPC_reconf represents the power when reconfiguring a DPC (i.e., a Data Path is loaded onto a DPC). 
Differently sized Data Paths may require different reconfiguration time due to their varying bitstream 
lengths. The reconfiguration energy is given by: EDPC_reconf = Treconf * PDPC_reconf. The procedure for 
measuring the reconfiguration power will be discussed in Section 6.3. 

d) Dynamic and Leakage Power of the core Instruction Set Architecture (cISA) 

PcISA_dyn and PcISA_leak denote the dynamic and leakage power consumption of the so-called core Instruction 
Set Architecture (cISA), respectively. A 5-stage pipeline processor Leon2 with a SPARC V8 instruction 
set is used in the current prototype platform as the cISA. 

3.5 Summary of Adaptive Low-Power Embedded Multimedia 
System 

This chapter has analyzed different issues related to the energy consumption and adaptivity of an 
advanced H.264/AVC video encoder in a video conferencing application from both application and 
processor architecture perspectives. It was identified that the H.264/AVC video codec requires more than 
70% of the total computational load and energy consumption of a video conferencing application. Since 
most of the advanced video encoders share a similar computational model and tool set as of the 
H.264/AVC encoder, it was selected as the target multimedia application in this thesis. Afterwards, the 
energy and adaptivity related issues in the H.264/AVC application were analyzed. It was found that Mode 
Decision and Motion Estimation are the most critical components of a video encoder. Moreover, different 
run-time varying constraints were mentioned. Afterwards, considering the application-level 
unpredictability, other adaptivity and energy related issues were explored for the dynamically 
reconfigurable processors. After the analysis, an overview of the proposed processor and application 
architectures is presented along with the design-, compile-, and run-time steps. At the end, a novel power 
model for dynamically reconfigurable processors is proposed. This power model considers different types 
of Data Paths, their placement on the fabric, and memory accesses to estimate the power of Custom 
Instructions with various Implementation Versions. Moreover, this model considers the leakage and 
dynamic power of the core processor and the reconfigurable fabric along with the power consumed by the 
reconfiguration process. The details of the power measurements and model generation methodology will 
be discussed in Chapter 6. This power model is later on used for energy estimation and run-time energy 
management at both application and processor architecture levels. 
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Chapter 4 Adaptive Low-Power Video Coding 

This chapter presents the novel adaptive low-power application architecture of advanced H.264 video 
encoder. It employs an adaptive complexity reduction scheme and an energy-aware Motion Estimation 
scheme using the novel concept of Energy-Quality Classes to realize adaptive low-power video encoding. 

Section 4.1 presents the H.264 encoder application architectural adaptations for reconfigurable 
processors. First the basic application architectural adaptations are performed (Section 4.1.1) for 
improving the data flow and data structures. Afterwards, adaptations for reduced computations and 
reduced hardware pressure are discussed in Section 4.1.2 and Section 4.1.3, respectively. The detailed 
data flow for the optimized application architecture is discussed in Section 4.1.4. The design of low-power 
Custom Instructions and Data Paths is discussed in Section 4.2. The analysis of spatial temporal video 
properties is explained in Section 4.3. Based on this analysis and relevant Human Visual System 
properties, Macroblock categorization is performed (Section 4.3.1) which employs Quantization 
Parameter based thresholding in order to react to the changing bit rate scenarios (Section 4.3.2). This 
analysis is used by the adaptive computational complexity reduction scheme (Section 4.4) to remove the 
improbable coding modes from the candidate mode set. Section 4.5 presents the energy-aware Motion 
Estimation scheme. First an adaptive Motion Estimator with multiple processing stages is proposed in 
Section 4.5.1. Afterwards, Section 4.5.2 discusses how an energy budget is computed for different 
Macroblocks and how the Energy-Quality Classes are designed and deployed. 

4.1 H.264 Encoder Application Architectural Adaptations for 
Reconfigurable Processors 

4.1.1 Basic Application Architectural Adaptations 

The JM software of the H.264/AVC video encoder [JVT10]contains a large set of tools to support a 
variety of applications (video conferencing to HDTV) and uses complex data structures to facilitate all 
these tools. For that reason, the reference software is not a suitable base for research and development of a 
low-power video encoder. 

Therefore, the application architecture of the JM software [JVT10] is passed through a series of 
following basic application architectural adaptations in order to obtain a good starting point, i.e., a so-
called H.264 encoder Benchmark Application. This Benchmark Application provide a foundation for 
researching the application architectural adaptations amenable to the reconfigurable processors. The 
details of these basic application architectural adaptations are as follows: 

a) First, the reference software is adapted to contain only Baseline-Profile tools (Figure 4.1a) 
considering multimedia applications executing on mobile devices. The Baseline-Profile is further 
truncated/curtailed by excluding Flexible Macroblock Ordering (FMO) and multiple slice (i.e., 
complete video frame is one slice). 

b) Afterwards, the data structure of this application is improved by replacing, for example, multi-
dimensional arrays with one-dimensional arrays to improve the memory accesses (Figure 4.1b). 
The basic data flow of the application is additionally improved and the inner loops are unrolled to 
enhance the compiler optimization space and to reduce the amount of jumps. 

c) The reference software uses a Full Search Motion Estimator which is not practicable in real-world 
applications and it is only used for quality comparison. Therefore, real-world applications 
necessitate a low-complexity Motion Estimator. A low-complexity fast and adaptive Motion 
Estimator called UMHexagonS [CZH02] was used to reduce the processing loads of ME process 
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while keeping the visual quality closer to that of Full Search. Full Search requires on average 
107811 SADs/frame for Carphone QCIF video sequence (256 kbps, 16 Search Range and 16x16 
Mode). On the contrary, UMHexagonS requires on average 4424 SADs/frame. Note, UMHexagonS 
will also be used as a competitor for the proposed energy-aware Motion Estimation scheme in 
Section 4.5 (page 77). 

d) Afterwards, this application is profiled to detect the computational hot spots (Figure 4.1c). Several 
modular Custom Instructions (CIs, according the CI model of RISPP as discussed in Section 2.3.5) 
along with their composing low-power Data Paths (i.e., elementary hardware accelerators) are 
designed and implemented to expedite the hot spots of the H.264 encoder (see details in Section 
4.2, page 57). This adapted and optimized application then serves as the Benchmark Application for 
further architectural adaptations that are amenable to the reconfigurable processors. 
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Transform

//  Horizontal transform
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < 2; i++)
{
i1=3-i;
m5[i]=img->m7[i][j]+img->m7[i1][j];
m5[i1]=img->m7[i][j]-img->m7[i1][j];

}
img->m7[0][j]=(m5[0]+m5[1]);
img->m7[2][j]=(m5[0]-m5[1]);
img->m7[1][j]=m5[3]*2+m5[2];
img->m7[3][j]=m5[3]-m5[2]*2;

}
//  Vertical transform
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < 2; j++)
{
j1=3-j;
m5[j]=img->m7[i][j]+img->m7[i][j1];
m5[j1]=img->m7[i][j]-img->m7[i][j1];

}
img->m7[i][0]=(m5[0]+m5[1]);
img->m7[i][2]=(m5[0]-m5[1]);
img->m7[i][1]=m5[3]*2+m5[2];
img->m7[i][3]=m5[3]-m5[2]*2;

}

Designing a hardware accelerator
for the Discrete Cosine Transform

a) Adapting Reference Software c) Profiling and Designing Custom Instructions 

Figure 4.1: Basic Application Architectural Adaptations to Construct the Benchmark Application

Figure 4.2 shows overview of the hot spots (with various functional blocks) in the Benchmark 
Application. It consists of three main hot spots: 

• Interpolation for Motion Compensation: An upscaled frame with half-pixel and quarter-pixel 
values is generated using a six-tap filter and a bilinear filter (see details in [ITU05]). This 
interpolated frame is then used in the Motion Compensation process. Note, the interpolated data 
may be used by the Motion Estimation process, however, it is not fixed by the standard. 

• Macroblocks (MB) Encoding Loop: the main loop for encoding an MB. It consists of: 
o Motion Estimation (ME) using Sum of Absolute Differences (SAD) and Sum of Absolute 

Transformed Differences (SATD) 
o Motion Compensation (MC) 
o Intra Prediction (IPred), 
o Rate Distortion Optimized Mode Decision (RDO-MD) 
o Discrete Cosine Transform (DCT) and Inverse Discrete Cosine Transform (IDCT) 
o Hadamard Transform (HT) and Inverse Hadamard Transform (IHT) 
o Quantization (Q) and Inverse Quantization (IQ) 
o Context Adaptive Variable Length Coding (CAVLC) 
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• In-Loop Deblocking Filter: the filter for removing the blocking artifacts. 

These functional blocks operate at the MB-level where an MB can be of type Intra (I-MB: uses IPred for 
the spatial prediction) or Inter (P-MB: uses MC for the temporal prediction). 

 

Figure 4.2: Arrangement of Functional Blocks in the H.264 Encoder Benchmark Application 

4.1.2 Application Architectural Adaptations for On-Demand Interpolation 

Figure 4.3 shows a statistical study on different mobile video sequences with low-to-medium motion 
considering the fact that the H.264 encoder Benchmark Application interpolates MBs before entering the 
main MB Encoding Loop (see Figure 4.2). It is noticed that in each frame the number of MBs for which 
an interpolation was actually required to process MC is much less than the number of MBs processed for 
interpolation by the Benchmark Application. After analysis, it was found that the significant gap between 
the processed and the actually required interpolations is due to the stationary background, i.e., the motion 
vector (which determines the need for interpolations) is zero. The interpolation is only required for MBs 
with motion vectors (given by the ME) with fractional-pixel accuracy. Additionally, even for those MBs 
that require an interpolation, only one of the 15 possible interpolation cases is actually required (indeed 
one interpolation case is needed per Block, potentially a sub-part of a MB), which shows the enormous 
saving potential. The last two bits of the motion vector hereby determine the required interpolation case. 

Invited Talk, VLSI Conference, Mumbai, Jan. 9th, 2004
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Figure 4.4 shows the distribution of interpolation cases in the �Carphone� sequence (a standard 
videophone test sequence with the highest interpolation computation load in the QCIF test-suite). 
Figure 4.4 demonstrates that in total 48.78% of the total MBs require one of these interpolation cases (C-1 
to C-15). The case C-16 is for those MBs where the last two bits of the motion vector are zero (i.e., 
integer pixel resolution or stationary) such that no interpolation is required. The I-MBs (for Intra 
Prediction) actually do not require an interpolation either. One of main challenges is to eradicate this 
problem by shifting the process of interpolation after the ME computation. This enables to determine and 
process only the required interpolations, i.e., so-called on-demand interpolation. Figure 4.5 shows the 
application architectural adaptation to reduce the overhead of excessive interpolations. After performing 
the ME, the motion vector is obtained, which allows to perform only the required interpolation. The 
Fractional-pixel ME might additionally require interpolations, but it is avoided in most of the cases (C-16) 
due to the stationary nature of these MBs. The proposed application architecture maintains the flexibility 
for the designer to choose any low-complexity interpolation scheme for Fractional-pixel ME, e.g., [SJ04]. 
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Figure 4.4: Distribution of Different Interpolation Cases in the Carphone Video Sequence  

One of the side effects of shifting the interpolation after ME is that it increases the number of functional 
blocks inside the MB Encoding Loop. It is noted that � besides the interpolation � there are already 
several functional blocks inside the MB Encoding Loop (Figure 4.2). As discussed in Section 2.3, due to 
the significant reconfiguration time, the fabric in the reconfigurable processors is not reconfigured 
between the processing of a hot spot, i.e., within processing of each MB. Therefore, not all Data Paths of 
the CIs in the MB Encoding Loop may be supported in the available reconfigurable fabric (depending 
upon its size). The bigger number of Data Paths required to expedite a computational hot spot corresponds 
to a high hardware pressure inside this hot spot (i.e., a large-sized reconfigurable fabric has to be 
provided to expedite the hot spot). A higher hardware pressure results in: 

• more Data Paths that might be required (for meeting the performance constraint) within a hot spot 
than actually fit into the reconfigurable fabric. Therefore, not all hot spots might be expedited and 
the CIs are executed using the Core Instruction Set Architecture (cISA) instead, and 

• increased reconfiguration overhead (latency, energy), as the reconfiguration time depends on the 
amount of fabric that needs to be reconfigured. 

Both points lead to performance degradations for the reconfigurable processors, depending on the 
magnitude of hardware pressure. This is a drawback for the class of reconfigurable processors and 
therefore further application architectural adaptations are required to counter this drawback. In the 
following, the application architectural adaptations to reduce the hardware pressure inside the MB 
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Encoding Loop are proposed that introduce the concept of decoupling the Motion Estimation and Rate 
Distortion Optimized Mode Decision from the main MB Encoding Loop. 

4.1.3 Application Architectural Adaptations for Reducing the Hardware Pressure 

Although the application architectural adaptation for on-demand interpolation (Section 4.1.2) results in a 
significant reduction of performed interpolations, it further increases the hardware pressure of the MB 
Encoding Loop, as the hardware for the Motion Compensated Interpolation is now shifted inside this loop. 
A higher hardware pressure has a negative impact when the encoder application is executed on a 
reconfigurable processor. This is due to the fact that the amount of hardware required to expedite the MB 
Encoding Loop (i.e., the hardware pressure) is increased and not all Data Paths can be accommodated in 
the available reconfigurable fabric. Moreover, it takes longer until the reconfiguration is completed and 
the hardware is ready to execute. Therefore, in order to reduce the hardware pressure those functional 
blocks are decoupled that may be processed independent of rest of the encoding process. Decoupling of 
these functional blocks is performed with the surety that the encoding process does not deviate from the 
standard specification and a standard compliant bitstream is generated. Motion Estimation (ME) and Rate 
Distortion Optimized Mode Decision (RDO-MD) are decoupled as they are non-normative and standard 
does not fix their implementation. However, this decoupling of functional blocks affects the data flow of 
application (discussed in detail in Section 4.1.4).  

As ME does not depend upon the reconstructed path of encoder, ME can be processed independently 
on the whole frame. Therefore, it is taken out of the MB Encoding Loop (as shown in Figure 4.5) which 
will decouple the hardware for both Integer- and Fractional-pixel ME. Moreover, it is also worthy to note 
that some accelerating Data Paths of SATD (i.e QSub, Repack, Transform) are shared by (I)DCT, 
(I)HT_4x4, and (I)HT_2x2 Custom Instructions (see Table 4.1 in Section 4.2). Therefore, after the ME is 
completed for one frame and the subsequent MB Encoding Loop is started, these reusable Data Paths are 
already available which reduces the reconfiguration overhead (latency and energy). As motion vectors are 
already stored in a full-frame based memory data structure, no additional memory is required when ME is 
decoupled from the MB Encoding Loop. Decoupling ME will also improve the instruction cache usage as 
same instructions are now processed for long time in one loop. A much better data-arrangement 
(depending upon the search patterns) can be performed to improve the data cache usage (i.e., reduced 
number of misses) when processing ME on frame-level due to the increased chances of availability of data 
in the cache. However, when ME executes inside the MB Encoding Loop these data-arrangement 
techniques may not help. This is because subsequent functional blocks (MC, DCT, CAVLC etc.) typically 
replace the data that might be beneficial for the next execution of ME. 

The RDO-MD controls the encoded quality by deciding about the type of an MB (I-MB or P-MB). 
Furthermore, the I-MB/P-MB Mode Decision is also attached with this as an additional RD decision layer. 
The H.264 Benchmark Application employs an exhaustive RDO-MD scheme that computes both I- and P-
MB encoding flows with all possible modes and then chooses the one with the best tradeoff between the 
required bits to encode the MB and the distortion (i.e., video quality) using a Lagrange Scheme, according 
to an adjustable optimization goal (see details in Section 2.2.3 and Section 4.4). The RDO-MD is 
additionally taken out of the MB Encoding Loop (see Figure 4.5) to perform an early decision on MB type 
(I or P) and Mode (for I or P). This will further reduce the hardware pressure in the MB Encoding Loop 
and the total processing load (either I or P computation instead of both). Shifting RD is less efficient in 
terms of bits/MB as compared to the exhaustive RDO-MD scheme as the latter checks all possible 
combinations to make a decision. However, RD outside the MB Encoding Loop is capable to utilize 
intelligent schemes to achieve a near-optimal solution, for instance, Inter-Modes can be predicted using 
homogeneous regions and edge map (see details in Section 4.4). 

The H.264 encoder application architecture with reduced hardware pressure provides a good 
arrangement of processing functions that facilitates an efficient data flow. For multimedia applications, 
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data format/structure and data flow are very important as they greatly influence the resulting performance. 
Therefore, the complete data flow of the encoder will be discussed along with the impact of the proposed 
application architectural adaptations. 

If (MB_Type = P_MB)

Rate Distortion Optimized Mode Decision (RDO-MD)
MB-Type Decision (I or P)

Block-Mode Decision (for I or P)

If (MB_Type = P_MB) DO Motion Estimation (ME)
Integer Pixel ME (uses SAD)

Fractional-Pixel ME (also called Sub-pixel ME) (uses SATD)
- Up to Quarter-Pixel

Rate Controller
Decides about Image-Level Quantization Parameter

Decides about MB-Level Quantization Parameter

Tranform and Quantization (DCT & Q)
Residue Calculation

Luma     : 16 DCT_4x4

Chroma :  8  DCT_4x4
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Quantize all Coefficients 

Motion Compensation (MC)
Luma: 1 out of 15 Interpolation 
Cases is executed on motion vector
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For Luma

If (Block_Mode = 16x16) Then
- Select 1 out of 4 Modes
- Compute the Prediction 
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- Compute the Prediction 

For Chroma
Block_Mode = 8x8

- Select 1 out of 4 Modes
- Compute the Prediction 

Hadamard Transform (HT)
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Quantize all Coefficients 

Inverse Tranform and Inverse 
Quantization (IDCT & IQ)

Inverse Quantize for all Coefficients

Chroma :  2  IHT_2x2

Chroma :  8  IDCT_4x4
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Figure 4.5: H.264 Encoder Application Architecture with Reduced Hardware Pressure 
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4.1.4 Data Flow of the H.264 Encoder Application Architecture with Reduced 
Hardware Pressure 

Figure 4.6 shows the data flow diagram of the H.264 application architecture with reduced hardware 

pressure. The boxes show the process (i.e., the processing function of the encoder) and arrows represent 
the direction of the flow of data structure (i.e., text on these arrows). D1 and D2 are two data stores that 
contain the data structures for current and previous frames. E1 and E2 are two external entities to store the 
coding configuration and encoded bitstream, respectively. The format of these data structures is shown in 
Figure 4.7 along with a short description. 

 

Figure 4.6: Data Flow Diagram of the H.264 Encoder 

Application Architecture with Reduced Hardware Pressure 
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Motion Estimation (1.0, 1.1) takes Quantization Parameter from the Rate Controller (11.0) and Luma 
components of current and previous frames (CurrY, PrevY) from the two data stores D1 and D2 as input. 
It forwards the result (i.e., MV and SAD arrays) to the RDO-MD process (1.2) that selects the type of an 
MB and its expected coding mode. If the selected type of MB is Intra then the mode information (IMode) 
is forwarded to the Intra Prediction (2.1) block that computes the prediction using the reconstructed pixels 
of the neighboring MBs in the current frame (CurrYUV), otherwise PMode is forwarded to the Motion 
Compensation (2.0) that computes the prediction using previous frame (PrevYUV) and MV. The three 
transform processes (3.0-3.2) calculate the residue from using Luma and Chroma prediction results 
(PredYUV) and current frame data (CurrYUV) that is then transformed using 4x4 DCT. In case of Intra 
Luma 16x16 the 16 DC coefficients (TYDC Coeff) are further transformed using 4x4 Hadamard 
Transform (6.0) while in case of Chroma 4 DC coefficients (TUVDC Coeff) are passed to 2x2 Hadamard 
Transform process (5.0). All the transformed coefficients (TCoeff, HTUVDC Coeff, HTYDC Coeff) are 
then quantized (4.0, 5.1, 6.1). The quantized result (QCoeff, QYDC Coeff, QUVDC Coeff) is forwarded 
to CAVLC (9.0) and to the reconstructed/backward path, i.e., inverse quantization (6.3, 5.2, 4.1), inverse 
transform (6.2, 5.3, 7.0-7.2), and reconstruction (8.0). The reconstructed frame is then processed with in-
loop Deblocking Filter (10.0) while the output of CAVLC (i.e., bitstream) is stored in the Bitstream 
Storage (E1). Depending upon the achieved bit rate and coding configuration (E2) the Rate Controller 
(11.0) decides about the Quantization Parameter. 

 

Figure 4.7: Description and Organization of Major Data Structures 

After the proposed adaptation, the size of data structure for interpolation result is much smaller than 
before adaptation. The new PredYUV (Figure 4.7) data structure requires only 384 bytes ((256+128)*8-

bits) for CIF videos, as the prediction result for only one MB is required to be stored. On the contrary, 
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pre-computing all interpolated pixels up to quarter-pixel resolution instead requires a big data structure 
(16*Frame_Size bytes) storage after interpolation and loading for residual calculation. For Quarter 
Common Intermediate Format (QCIF, 176x144) and Common Intermediate Format (CIF, 352x288) 
resolutions, this corresponds to a 1584 (176*144*16/256) and 6336 (352*288*16/256) times bigger 
memory consumption, respectively, compared to the proposed on-demand interpolation. 

Pre-computing all interpolation cases results in non-contiguous memory accesses. The interpolated 
frame is stored in one big memory, i.e., interpolated pixels are placed in between the integer pixel 
location. Due to this reason, when a particular interpolation case is called for Motion Compensation, the 
access to the pixels corresponding to this interpolation case is in a non-contiguous fashion (i.e., one 32-bit 
load will only give one useful 8-bit pixel value). This will ultimately lead to data cache misses as the data 
cache will soon be filled with the interpolated frame, i.e., including those values that were not required. 
Contrarily, the on-demand interpolation stores the interpolated pixels in an intermediate temporary storage 
using a contiguous fashion such that, four interpolated pixels of a particular interpolation case are stored 
contiguously in one 32-bit register. This improves the overall memory access behavior. Adaptations in the 
application architecture change the data flow from one processing function to the other. As the looping 
mechanism is changed, the data flow is changed. On the one hand, performing on-demand interpolation 
increases the probability of instruction cache miss. On the other hand, it improves the data cache by 
offering a smooth data flow between prediction calculation and transform process, i.e., it improves the 
data flow as it directly forwards the interpolated result for residual calculation and then to DCT. Pre-
computation is beneficial in-terms of instruction cache as it processes a similar set of instructions in one 
loop over all MBs. Conversely, on-demand interpolation is beneficial in-terms of data-cache which is 
more critical for data intensive applications (e.g., video encoders). 

For reduced hardware pressure optimization, the Motion Estimation process is decoupled from the 
main MB Encoding Loop. Since now Motion Estimation executes in a one big loop, the instruction cache 
behavior is improved. The rectangular region in Figure 4.6 shows the surrounded data structures whose 
flow is affected by this optimization of reduced hardware pressure. Before optimizing for reduced 
hardware pressure, Motion Estimation was processed on MB-level, therefore MV and SAD arrays were 
passed to the Motion Compensation process in each loop iteration. Since the encoder uses MVs of the 
spatially neighboring MBs for Motion Estimation, the data structure provides the storage for MVs of 
complete video frame (e.g., 396*32-bits for a CIF frame). After optimizing for reduced hardware 

pressure, there is no change in the size of MV and SAD data structures. The MV and SAD arrays of the 
complete video frame are forwarded just once to the Motion Compensation process. 

Additionally, now RDO-MD can be performed by analyzing the neighboring MVs and SADs. The 
type of MB and its prediction mode is stored at frame-level and is passed to the prediction processes. 
Without the proposed adaptations (i.e., when processing Motion Estimation and RDO-MD at MB-level), 
fast Mode Decision schemes cannot use the information of MVs and SADs of the spatially next MBs. On 
the contrary, the proposed application architecture facilitates much intelligent RDO-MD schemes where 
modes can be predicted using the motion properties of spatially next MBs, too (see Section 4.4). 

Summarizing: the proposed application architectural adaptations not only save the excessive 
computations (thus energy) using on-demand interpolation for Motion Compensation and relax the 
hardware pressure in case of reconfigurable processors by decoupling the Motion Estimation and RDO-
MD processes but also improves the data flows and instruction cache behavior. 

4.2 Designing Low-Power Data Paths and Custom Instructions 

For accelerating the hot spots of H.264 encoder application, various modular Custom Instructions (CIs) 
were designed and implemented. Table 4.1 gives the description of the implemented CIs of the H.264 
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video encoder. It is noticeable that some Data Paths (especially Repack and Transform) are used to 
implement different CI types. The measured and estimated power values for these CIs and the Data Paths 
are provided in Section 6.2.3. 

To design CIs, the constraints imposed by the architecture need to be considered (as discussed in 
Section 2.3.3 and Section 2.3.5). A typical Data Path has two 32-bit input, two 32-bit output, an 8-bit 
control signal, a clock, and a reset signal. Moreover the size of an Data Path is limited to approximately 
500 Slices to ensure that it will fit in the so-called Data Path Containers (DPC). Additionally, there are 
special Data Paths containing four inputs and four outputs which are reserved for most commonly used 
functions (e.g., packing, adding values, re-arranging data). To receive the data needed from memory, two 
128-bit Load/Store Units are available. 

Different optimizations are performed to reduce the number of operations in a Data Path that directly 
results in area and power reduction. Figure 4.8 presents the steps to create optimized Data Paths from the 
formulae specified in H.264 standard [ITU05]. First, the standard formulae are transformed into pixel 
processing equations that are then processed for architecture-independent optimizations under a given set 
of optimization rules and constraints. A set of unique equations is extracted followed by optimizations at 
multiple levels to enhance the level of operation reusability. A set of architectural constraints (as 
discussed above) is considered to perform hardware level optimizations resulting in a low power Data 
Path. In the following sections, the design of important CIs from H.264 encoder and their composing Data 
Paths is described. The design for the Deblocking Filter CI in detail along with the proposed 
optimizations. 

Functional 

Component 

Custom 

Instruction 

Description of  

Custom Instructions 
Accelerating Data Paths 

Motion Estimation 

(ME) 

SAD16x16 
Sum of Absolute Differences 

of a 16x16 Macroblock 
SADrow 

SATD4x4 
Sum of Absolute (Hadamard-) Transformed

Differences of a 4x4 sub-block 
QuadSub, Transform, 

Repack, SAV 

Motion Compensation 

(MC)  
MC_Hz_4 

Motion Compensated Interpolation 
for Horizontal case for 4 Pixels 

PointFilter, Repack, Clip3 

Intra Prediction 

(IPred) 

IPred_HDC 16x16 Intra Prediction for Horizontal and DC CollapseAdd, Repack 

IPred_VDC 16x16 Intra Prediction for Vertical and DC CollapseAdd, Repack 

(Inverse) Transform 

(I)DCT4x4 
Residue calculation and (Inverse) Discrete 

Cosine Transform for 4x4 sub-block 
Transform, Repack, 

(QuadSub) 

(I)HT_2x2 
2x2 (Inverse) Hadamard Transform 

of Chroma DC coefficients 
Transform 

(I)HT_4x4 
4x4 (Inverse) Hadamard Transform 

of Intra DC coefficients 
Transform, Repack 

In-loop Deblocking 

Filter (LF) 
LF_BS4 

4-Pixel Edge Filtering for in-loop 
Deblocking Filter with Boundary Strength 4 

Cond, LF_4 

Table 4.1: Custom Instructions and Data Paths for the H.264 Video Encoder 

 

Figure 4.8: Steps to Create Optimized Data Paths from the Standard Formulae 
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4.2.1 Designing the Custom Instruction for In-Loop Deblocking Filter 

The H.264 codec employs an in-loop adaptive Deblocking Filter (after the reconstruction stage) for 
removing the blocking artifacts at 4x4 sub-block boundaries. The filtered image is used for motion-
compensated prediction of future frames. Each boundary of a 4x4 sub-block is called one 4-pixel edge 
onwards as shown in Figure 4.10. Each Macroblock (MB) has 48 (32 for Luma and 16 for Chroma) 4-
pixel edges. The standard specific details of the filtering operation can be found in [ITU05]. 
Algorithm 4.1 shows the filtering conditions and filtering equations for Boundary Strength=4 (as specified 
in [ITU05]) where pi and qi (i = 0, 1, 2, 3) are the pixel values across the block horizontal or vertical 
boundary as shown in Figure 4.9. 

 

Figure 4.9: Pixel Samples Across a 4x4 Block Horizontal or Vertical Boundary [ITU05] 

 

Figure 4.10: 4-Pixel Edges in one Macroblock [ITU05] 

Compute Filtering Conditions and Filtered Pixels for Boundary Strength=4 

1. IF (abs(q0�p0) < α) THEN 

2.     IF (abs(q0-q1) < β) & (abs(p0-p1) < β) THEN 
3.      IF (chromaEdgeFlag==0) THEN 

4.       aq = abs(q0-q2) < β; ap = abs(p0-p2) < β; 
5.      END IF 
6.      IF (Boundary_Strength==4) THEN 

7.       IF (chromaEdgeFlag==0)&(ap < β && Abs(p0 � q0) < ((α >> 2) + 2)) THEN 
8.            p'0 = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3; 
9.            p'1 = (p2 + p1 + p0 + q0 + 2) >> 2; 
10.            p'2 = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3; 
11.       ELSE  
12.            p'0 = (2*p1 + p0 + q1 + 2) >> 2; p'1 = p1; p'2 = p2; 
13.       END IF 

14.       IF (chromaEdgeFlag==0)&(aq < β && Abs(p0 � q0) < ((α >> 2) + 2)) THEN 
15.            q'0 = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4) >> 3; 
16.            q'1 = (p0 + q0 + q1 + q2 + 2) >> 2; 
17.            q'2 = (2*q3 + 3*q2 + q1 + q0 + p0 + 4) >> 3; 
18.       ELSE  
19.            q'0 = (2*q1 + q0 + p1 + 2) >> 2; q'1 = q1; q'2 = q2; 
20.       END IF 
21.      END IF 
22.     END IF 
23. END IF 

Algorithm 4.1: The Filtering Process for Boundary Strength=4 
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Figure 4.11a shows the Deblocking Filter CI (named LF_BS4, Table 4.1) that targets the processing flow 
of Algorithm 4.1. This LF_BS4 CI filters one four-pixel edge, which corresponds to the filtering of four 
rows each with 8 pixels. The LF_BS4 CI constitutes two types of Data Paths: the condition Data Path 
(Cond) computes all the conditions (Figure 4.11c) and the filter Data Path (LF_4) performs the actual 
filtering operation (Figure 4.11d). The LF_BS4 CI requires 4 Data Paths of each type to filter four rows of 
an edge. Threshold values Į and ȕ are packed with P (4-pixel group on left side of the edge; see 
Figure 4.9) and Q (4-pixel group on right side of the edge) type pixels and passed as input to the control 
Data Path. The UV and BS act as control signals to determine the case of Luma-Chroma and Boundary 
Strength, respectively. The condition Data Path outputs two 1-bit flags X1 (for filtering P-type, i.e., pi 
pixels) and X2 (for filtering Q-type, i.e., qi pixels) that act as the control signals of the filter Data Path. 
The two sets of pixels (P and Q type) are passed as input to this Data Path and appropriate filtered pixels 
are chosen depending upon the two control signals. 

 

Figure 4.11: Custom Instruction for In-Loop Deblocking Filter with Example Schedule 

and Constituting Data Paths for Filtering Conditions and Filtering Operation 

Figure 4.11b shows the processing schedule of an Implementation Version of the LF_BS4 CI with two 
instances of each of the condition and filter Data Paths. In first two cycles, two rows are loaded (P and Q 
of one row are loaded together due to the availability of 128-bit memory access22). In cycle 3, two 
condition Data Paths are executed in parallel followed by two parallel filter Data Paths in the cycle 4 to 
get the filtered pixels for 1st and 2nd row of the edge. In the mean time, next two loads are executed. In 
cycle 5 and 6, the filtered pixels of 1st and 2nd rows are stored while condition and filter Data Paths are 
processed in parallel for 3rd and 4th rows. In cycle 7 and 8, the filtered pixels of 3rd and 4th rows are stored. 

                                                      
22 It demonstrates how the available memory bandwidth can affect the design of a Custom Instruction (CI). This 

schedule highly depends upon the two 128-bit ports. In case only one port is available, only two pairs of 
condition-filter Data Paths would be sufficient to exploit the available memory bandwidth 
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Now the two Data Paths are discussed. All of the if-else equations are collapsed in one condition Data 
Path that calculates two outputs to determine the final filtered values for the pixel edge. In hardware, all 
the conditions are processed in parallel and the proposed hardware implementation is 130x faster than the 
software implementation (i.e., running on GPP). It is noticed that the condition Data Path contains sub-
byte and bit-level computations which are amenable to fine-grained reconfigurable fabric. 

Figure 4.11d shows the optimized Data Path to compute the filtered pixels for Luma and Chroma and 
selects the appropriate filtered values depending upon X1 and X2 flags. This Data Path needs fewer 
operations to filter the pixels on block boundaries as compared to the standard equations. This Data Path 
is designed considering the steps shown in Figure 4.8. It exploits the redundancies in the operation 
sequence, re-arranges the operation pattern, and reuses the intermediate results as much as possible. The 
shift operations are realized as bit-level rewiring. Note that the filter Data Path is made more reusable 
using multiplexers, thus both paths are processed in parallel and the output of one part is selected 
depending upon which condition is chosen at run time. It is used to process two cases of Luma and one 
case of Chroma filtering depending upon the filtering conditions. The filtering of a four-pixel edge in 
software (i.e., running on GPP) takes 960 cycles for Boundary Strength=4 case. The proposed CI 
(Figure 4.11a) using these optimized Data Paths (Figure 4.11c and Figure 4.11d) requires only 8 cycles 
(Figure 4.11b), i.e., a speedup of 120x. The measured power results the Data Paths and the estimated 
power of LF_BS4 CI are presented in Section 6.2.3. 

4.2.2 Designing the Custom Instructions for Motion Estimation 

As discussed in Chapter 2, Sum of Absolute Differences (SAD) is used for Integer-Pixel Motion 
Estimation (IME) and Sum of Absolute Transformed Differences (SATD) is used for the Fractional-Pixel 
ME (FME). The CI SAD16x16 computes the SAD of a complete MB that requires 256 subtractions, 256 
absolute operations, 255 additions along with loading of 256 current and 256 reference MB pixels from 
memory. The SAD16x16 CI constitutes two instances of the SADrow Data Path (Table 4.1) that computes 
SAD of 4 pixels of current MB w.r.t. 4 pixels of reference MB. 

The SATD4x4 CI (Figure 4.12) uses four types of Data Paths to perform a complete 4x4 SATD operation. 
• QuadSub performs 4 subtractions; it takes eight unsigned 8-bit pixels Pi, Qi, i = 0...3 and returns 

four 16-bit signed residue outputs, i.e., Ri = Pi - Qi; for i = 0...3. 
• Repack rearranges the 16-bit half-words of its 32-bit inputs by packing two 16-bit LSBs and 

two 16-bit MSBs in two 32-bit outputs. If input1 = X1żX2 and input2 = X3żX4, then output1 = 
X1żX3 and output2 = X2żX4. 

• Transform (Figure 4.12) performs a 4-point butterfly of (Inverse) Discrete Cosine Transform or 
(Inverse) Hadamard Transform. Four Transform Data Paths are used to perform a Hadamard 
Transform along one axis using only additions and subtractions. The second stage of this 
operation performs an additional arithmetical right-shift on the four results. 

• SAV (Figure 4.12) computes the absolute values of its four 16-bit inputs and returns their sum. 
After the SAV Data Path, the four results are accumulated with three additions to complete the 
SATD4x4 CI. 

4.2.3 Designing the Custom Instruction for Motion Compensation 

As discussed in Section 2.2.1, Inter Prediction uses block-based Motion Compensation (MC) that employs 
a six tap Finite Impulse Response (FIR) filter with weights [1/32, −5/32, 20/32, 20/32, −5/32, 1/32] to 
generate the samples at half-pixel location for the Luma component of the reference frame. 

The MC_Hz_4 CI (Figure 4.13) computes the half-pixel interpolated values. It takes two 32-bit input 
values containing eight pixels and applies a six-tap filter. In case of an aligned memory access, Repack 
rearranges the data for the filtering operation. Then the PointFilter Data Path (Figure 4.13) performs the 
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actual six-tap filtering operation. Afterwards, Clip3 Data Path (Figure 4.13) performs the rounding and 
shift operation followed by a clipping between 0 and 255. 

 

Figure 4.12: Custom Instruction for SATD4x4 showing the Transform and SAV Data Paths 

 

Figure 4.13: Custom Instruction for Motion Compensation showing Different Data Paths 

4.2.4 Area Results for the Custom Instruction of H.264 Encoder 

Table 4.2 shows the implementation results for various Data Paths of H.264 encoder synthesized for the 
Xilinx Virtex-II FPGA. The power results and the power measurement procedure will be discussed in 
Section 6.2.3. The critical path ranges from 3.2 ns to 15.1 ns, while the reconfiguration time (Treconf) 
ranges from 0.70 ms to 0.91 ms. 
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 Characteristics 

 # Slices # LUTs Latency [ns] Reconfiguration Time
a
 [ms] 

Clip3 252 413 9.8 0.91 

PointFilter 184 300 15.1 0.86 

LF_4 144 236 11.6 0.80 

Cond 82 132 8.1 0.78 

CollapseAdd 36 58 7.4 0.70 

SADrow 104 185 13.0 0.79 

SAV 58 93 8.4 0.78 

Transform 124 217 7.5 0.82 

QuadSub 20 32 3.2 0.70 

Table 4.2: Implementation Results for Various Data Paths of the H.264 Video Encoder 
a: using 36 MB/s reconfiguration bandwidth; 

4.3 Spatial and Temporal Analysis of Videos Considering 
Human Visual System 

Although the digital image and video processing fields are built on a foundation of mathematical and 
probabilistic formulations, human intuition and analysis play a central role in the choice of one technique 
versus another, and this choice often is made based on subjective, visual judgments [GW02]. Therefore, 
important properties of the Human Visual System (HVS) are considered in this scope of this thesis to 
account for subjective (visual) quality. The luminance samples are represented with the help of 8-bit 
pixels, where '0' represents the darkest pixel (i.e., black) and '255' represents the brightest pixel (i.e., 
white). Some important properties of HVS that are important for image and video compression (as 
inspired from [GW02, Pra01, WOZ02]) are as follows (see [GW02, Pra01, WOZ02] for details): 

a) Human eye is more sensitive to brightness compared to color, therefore, the spatial and temporal 
analysis is performed on the luminance component and the observations can be extrapolated for 
color components. 

• When the eye is properly focused, light from an object outside the eye is imaged on the Retina. 
Pattern vision is afforded by the distribution of discrete light receptors over the surface of the 
Retina. There are two classes of receptors: Cones and Rods. 

• The Cones function under bright light and can perceive the color tone; therefore, at high levels 
(showing better discrimination) vision is the function of Cones. 

• The Rods work under low ambient light and can only extract the luminance information; 
therefore, at low levels of illumination vision is carried out by activity of the Rods. Rods serve 
to give a general, overall picture of the field of view and they are not involved in color vision. 

• Therefore, at low ambient light, color has less importance compared to the luminance. 

b) Perceived color of an illuminating light source depends upon the wavelength range in which it 
emits energy. Green wavelength contributes most to the perceived brightness. There exists a 
secondary processing stage in the HVS, which converts the three color values obtained by the 
Cones into one value that is proportional to the luminance and two other values that are responsible 
for the perception of chrominance, such that Y=∫C(Ȝ)ay(Ȝ)dȜ. C is the radiant intensity distribution 
of a light, Ȝ is the wavelength, and ay(Ȝ) is the relative luminous efficiency function. 

c) The subjective brightness (intensity as perceived by the HVS) is a logarithmic function of the light 
intensity incident on the eye. Since digital images are displayed as a discrete set of intensities, the 
eye�s ability to discriminate between different intensity levels is an important consideration. 
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• The perceived brightness is a function of contrast and light intensity. Visual system tends to 
overshoot and undershoot at the boundary of regions of different intensities as demonstrated by 
Match bands phenomenon. Another phenomenon is simultaneous contrast, where objects appear 
to the eye to become darker as the background gets lighter. 

• Brightness Adaptation: The total range of distinct intensity levels that an eye can discriminate 
simultaneously is rather small when compared with the total adaptation range. Below that level, 
all stimuli are perceived as indistinguishable blacks. 

• Weber Ratio (∆IC /I): where ∆IC is the increment of illumination discriminable 50% of the time 
with background illumination I. The ability of the eye to discriminate between changes in light 
intensity at any specific adaptation level is also of considerable interest. 

• The difference of luminance in a restricted area enhances the subjective importance compared to 
constant intensity regions. 

d) Moving objects capture more attention of the eye compared to the stationary objects. 

Considering the above HVS properties, an extensive investigation of several video sequences [Ari08, 
Xip10] was carried out to subjectively learn the HVS response to different statistics of video frames and 
their corresponding coding modes. Figure 4.14 shows the coding mode distribution (P-MBs in green and 
I-MBs in purple) for the 7th frame of �American Football� sequence encoded with the exhaustive RDO-

MD using JM13.2 software of H.264 video encoder [JVT10]. The MBs with red border show the 
important MBs in the video frame along with their image statistics in the boxes. The players (helmet and 
sharp moving body parts, e.g., legs) are the regions of interest. These areas require better coding mode 
compared to other background objects (e.g., grass). Although the background grass is also thin textured, it 
is relatively less eye-catching. This grass can be characterized by low gradient and low variance and it 
changes only minimal from frame to frame. Therefore, it is highly probable to be encoded as P-MB using 
bigger block sizes, i.e., P16x16, P16x8, P8x16, and P8x8 (see Figure 4.14). Moreover, the changes in 
brightness (measured by contrast) are also categorized as the region of interest. The higher the contrast is, 
the bigger the difference of occurring brightness values is. The helmets, legs, and shirts are indicated by 
high contrast value (compared to the background grass that exhibits low contrast) and thus encoded using 
I4x4 or P8x8 and below (see Figure 4.14). A further measurement for rapid brightness changes is edge 
detection to identify the strength of an edge and the angle of an edge (Figure 4.16). Body parts of the 
players contains significantly prominent edges compared to the stationary grass area. 

 

Figure 4.14: Mode Distribution and Video Statistics in the 7th Frame of American Football 

This analysis revealed that MBs with high texture and fast motion (e.g., fast moving players) are more 
probable to be encoded as I4x4, P8x8, P8x4, P4x8, or P4x4 coding mode. On the contrary, homogeneous 
or low-textured MBs with slow motion (e.g., grassy area) are more probable to be encoded as SKIP, 
P16x16, P16x8, or P8x16 because the Motion Estimation (ME) has high probability to find a good match. 
Similar behavior was found in various other video sequences leading to the conclusion that majority of 
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coding modes of a video frame can be predicted correctly (with high-probability) using spatial and 
temporal statistics of the current and previous video frames. 

Figure 4.15 shows the percentage distribution of the optimal coding in Rafting and American Football 
sequences (i.e., fast motion sequences) at different Quantization Parameter (QP) values. It can be noticed 
in Figure 4.15 that at higher QP values more than 60% modes are either SKIP or P16x16. Considering a 
near-optimal coding mode can be predicted from the spatial and temporal properties of a video sequence, 
significant complexity and energy reduction may be achieved. 
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Figure 4.15: Optimal Coding Mode Distribution in Rafting and American Football Sequences at 

different Quantization Parameter (QP) values 

Above-discussed analysis revealed that five primitive characteristics of a video frame are sufficient to 
categorize an MB, thus to predict a probably-correct coding mode. The decision of which video frame 
property to choose can be made considering the tradeoff between computational overhead and the 
provided precision in the early mode prediction. 

Average Brightness (µMB) is used to categorize an MB as dark or bright. It is the average of luminance 
values I(i,j) of an MB (Eq. 4.1). 
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Contrast (CMB) is the difference in visual properties that makes an object distinguishable from the 
background and other objects. In this thesis � due to its simplicity � a modified version of Michelson 
Contrast [Mic27] is used as shown in Eq. 4.2. 
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Variance (ı2
MB) is a measurement for statistical dispersion (Eq. 4.3), thus it is used as descriptor of 

smoothness or measurement of texture. If all samples have the same brightness, then it is a 
flat/smooth area and the corresponding Variance is zero. 
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Gradient (GMB) is defined as the rate of change of luminance. In this case, it measures the average rate of 
change of luminance over a whole 16x16 MB, vertically (Gx) and horizontally (Gy). Therefore, it is 
regarded as an approximation of texture. The first order Gradient (GMB) along a particular direction is 
approximated by using the difference between two pixel along that direction (Eq. 4.4). 
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Texture and Edges: In addition to Gradient, a more precise edge detection � operating on a finer 
granularity � is required to predict the smaller coding modes more precisely. A Sobel Edge Filter is 
applied to obtain the magnitude and the direction of edges for every 4x4 sub-block. The Sobel Edge 
Filter has the advantage of providing both differencing and smoothing effect. The total edge values 
for a 4x4 sub-block, 8x8 block, and 16x16 MB are computed using Eq. 4.5. The direction angle (in 
degrees) with respect to the x-axis is calculated as Į4x4 = (180º/ʌ) * tan-1(Gy/Gx). It is used to classify 
an edge into one of the following four directional groups (Figure 4.16). 
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The experiments revealed that solely image statistics are not sufficient to form a good prediction of 
possible coding mode. A very high textured MB is well captured by ME if it is stationary or exhibit small 
translational motion. In fact, the best coding mode may even be a SKIP mode if a textured MB is 
stationary. A prediction purely based on image statistics would possibly tend to an Intra mode choice, thus 
wasting a noticeable amount of bits. Therefore, in addition to the spatial properties of video sequences, the 
temporal properties (i.e., motion-field and mode statistics of the previously encoded spatial and temporal 
neighbors) are also evaluated to corroborate the early prediction decision. The following temporal 
properties are considered (considering the notion of neighboring MB as shown in Figure 4.16): 

 

Major Direction Intra 4x4 Direction Angle 

0 4,5,6 -76.7° < Į < -13.3° 
1 1,8 -13.3° < Į < 45° 
2 3,7 45° < Į < 76.7° 
3 0 76.7° < Į < -76.7° 

Figure 4.16: Directional Groups with respect to the Edge Direction Angle and 

Notion of Spatial and Temporal Neighboring Macroblocks 

SAD and MV of the Collocated MB: A high SAD value and long MVs of the collocated MB points to 
the fact that ME could not find a good match, as the MB probably exhibits a hectic motion or it is the 
part of a suddenly revealed/hidden object. In this case I-MB may be a good choice as a coding mode, 
while a short MV and a small SAD value indicate an Inter mode candidate. If the collocated MB was 
predicted to be an I-MB and all P-MB modes were excluded, no ME was executed and therefore no 
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SAD value and MV is available. In this case, only weighted SAD combinations of spatially 
neighboring MBs are exploited. 

SAD and MV of the Spatial and Temporal Neighbors: Similarly, if the SAD value for the neighboring 
MBs is small with a short MV, the current MB tends to occupy only medium-to-slow motion and it is 
probably part of an object with similar characteristics or background. High SAD values point to the 
significant variations in this region, thus I-MB or P-MB with smaller block partitions are the probable 
coding modes. 

Coding Modes of the Neighboring MBs: Another parameter, considered is the correlation of 
neighboring MB coding modes. If several spatial and/or temporal neighboring MB are encoded as I-
MB, the current MB probably belongs to a fast-moving object. Therefore, the probable coding mode 
for this is also I-MB. On the contrary, if all neighboring MBs are coded with P-MB modes, the current 
MB is likely to be coded with a P-MB mode. 

In conclusion, investigating the spatial and temporal properties of MBs reveals very useful information 
about the more-probably coding mode. 

4.3.1 HVS-Based Macroblock Categorization 

The spatial and temporal properties (as discussion in Section 4.3) are used to categorize Macroblocks 
(MBs) in the following categories which will hint towards the probable coding mode for these MBs. 

Video Frame Statistics based Categorization: Depending upon their spatial statistics, MBs can fall in 
one or many of the following categories: 

Average Brightness (µMB) very dark (µVD), dark (µD), bright (µB), very bright (µVB) 

Contrast (CMB) low (CL), high (CH) contrast 

Variance (ı2
MB) very low (VVL), low (VL), high (VH) variance 

Gradient (GMB) very low (GVL), low (GL), high (GH) gradient 

Edge (SMB) low (SL), highly (SH) edged 

Combinations of the above-defined categories are used to predict the MB content characteristics (Eq. 4.6). 
A low gradient and a low variance value are very good indicators for smooth and flat regions. If such MBs 
exhibit slow motion, P16x16 mode is the more probable coding mode. Similarly, smooth steady regions 
are captured by ME using block sizes above P8x8. 
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Directional Statistics: An edge direction is called dominant if the edge sum belonging to an edge 
direction group 'i' (see Figure 4.16) significantly contributes to the total edge sum of this MB. 
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Motion-Field Statistics are obtained using the motion characteristics of the neighboring MBs as follows: 
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Coding-Mode-FieldTotal Statistics are obtained considering the coding modes of the spatial (in the 
current frame Ft) and temporal (in the previous frame Ft-1) neighboring MBs encoded as an I-MB. 
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4.3.2 QP-Based Thresholding 

QP-based thresholds are used for the above-discussed MB categorization (Section 4.3.1) and predicting 
the probable coding mode of MBs considering the above-discussed analysis. For higher QP values, the 
effect of texture and motion becomes blurry due to the increased number of zero coefficients. It follows 
the fact that finding a good prediction is easier for ME, thus the number of injected I-MBs decreases. 
Therefore, with changing QP values, the thresholds (related to the decisions operating on the referenced 
frames) need to be adapted. This observation is illustrated in Figure 4.17, where P-MBs and I-MBs are 
shown in green and purple, respectively. Frame encoded using QP=16 has much higher number of I-MBs 
compared to the same frame encoded using QP=38.  

      

Figure 4.17: Mode Distribution of Frame 4 in Rafting Sequence using the Exhaustive RDO-MD 

for two different QP values: Left: QP = 16 and Right: QP = 38 

Extensive experimentation was performed using different QPs (12 to 40) and several video sequences (only 
a small subset of all sequences used for validation in Section 4.4.4) to evaluate these thresholds. Polynomial 
curve fitting (using MATLAB) was performed to obtain threshold equations as a function of QP, see Eq. 
4.10. Experiments revealed that only the thresholds for SAD, edge sum and motion vector (thus the major 
characteristics for motion and texture detection) that operate on the reconstructed video frame react to the 
changing QPs. Table 4.3 presents the remaining thresholds (which are not affected by changing QPs) and 
other multiplying factors. These QP-based thresholds and the MB categories (Section 4.3.1) based on the 
analysis of spatial and temporal properties of the input video are used by the Adaptive Computational 
Complexity Reduction Scheme (ACCoReS, Section 4.4) to predict the probable coding mode of MBs. 
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Thresholds 

Brightness 

µVD 70 

Variance 

VVL 0.5 

Texture 

Edge 

ThDir 1000 

µD 85 VL 1.25 ThS-Fast 5000 

µB 135 VH 2 ThS-Slow 1350 

µVB 175 

Gradient 

GVL 5 ThS-P16x16 500 

Contrast 
CL 0.2 GL 10 ThS-P8x8 1000 

CH 0.7 GH 15 ThEdge 200 

Intra 

Neighbors 

ThI1 6 Intra 

Neighbors 

ThI4 1 

SKIP 

ThMV-Skip 3 

ThI2 4 ThI5 2 ThSAD-Skip 323 

ThI3 5 Motion ThAvgSAD 2500 ThS-Skip 4096 

Multiplying Factors 

Motion 

į1 0.4 

Motion 

į4 0.6 
Texture 

Edge 

Ȍ 2.5 

į2 0.6 į5 1.4 İ 0.7 

į3 0.5 į6 1 

Table 4.3: Thresholds and Multiplying Factors Used in ACCoReS 

Summary of Spatial and Temporal Analysis of Videos Considering Human Visual System: 

This section illustrated the analysis of spatial and temporal video properties and the relationship of 
different video properties and the optimal coding mode are discussed. Based on this analysis a detailed 
Macroblock categorization is performed, while considering the properties of the Human Visual System. In 
order to react to the run-time varying coding conditions (e.g., bit rates), the thresholds are formulated as a 
function of Quantization Parameter. This analysis is used by the adaptive complexity reduction scheme, 
energy-aware Motion Estimation scheme, and multi-level rate control. 

4.4 An HVS-based Adaptive Complexity Reduction Scheme 

The proposed Adaptive Computational Complexity Reduction Scheme (ACCoReS, Figure 4.18) for 
H.264 encoder predicts the expected Macroblock (MB) type and its coding mode even before processing 
the actual RDO-MD. It uses the spatial and temporal properties of the input video sequence, i.e., image 
statistics, motion field properties, and history-based information of the coding modes. The step-by-step 
procedure is given as follows. 
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Step-1: First, the HVS-based categorization of MBs (Section 4.3.1) is performed using the spatial and 
temporal video statistics and the QP-based thresholds (Section 4.3.2). 

Step-2: Afterwards, a Prognostic Early Mode Exclusion for I-MB and P-MB coding modes is 
incorporated that excludes the highly unlikely modes. It exploits different image statistics, motion-
field properties, and previously computed distortion data (e.g., based on correlation of the modes of 
previously encoded neighboring MBs) to exclude as many I-MB and P-MB coding modes as possible 
before the actual RDO-MD and Motion Estimation while keeping the bit rate and distortion loss 
within an imperceptible range (see Section 4.4.4). In many cases the curtailed set of modes is left with 
either I-MB or P-MB modes, especially for low-motion sequences. As a result it provides a significant 
complexity reduction (thus processing improvement and reduced energy consumption) at the cost of 
an insignificant overhead due to the image statistics calculation. 

Step-3: A second level Hierarchical Fast Mode Prediction analyzes this curtailed set of modes and 
provides a set of candidate coding modes, which are then processed for RDO-MD. 

Step-4: In the last step, Sequential RDO Mode Elimination is done. It processes the candidate coding 
modes one-by-one starting from the bigger partitions. After a mode is processed, it is evaluated for the 
termination condition or to exclude further irrelevant modes. 

 

Figure 4.18: Overview of the Adaptive Computational Complexity Reduction Scheme (ACCoReS) 

showing Different Processing Steps and MB Categorizations 

In the best case, exactly one MB type and only one coding mode corresponding to this MB type (out of 20 
for P and 592 for I) is processed. The principal distinctions of the proposed ACCoReS compared to the 
state-of-the-art approaches are the Prognostic Early Mode Exclusion and the Hierarchical Fast Mode 
Prediction that exclude more than 70% of the possible coding modes even before starting the fast RDO-
MD and ME while keeping the bit rate and distortion loss imperceptible (see Section 4.4.4). Now, the 
different processing stages of ACCoReS will be presented in detail. 

4.4.1 Prognostic Early Mode Exclusion 

The Prognostic Early Mode Exclusion scheme starts with a classification of MBs into the following two 
distinct groups using Eq. 4.11: 

• Group-A: High-textured MB containing medium to fast motion 
• Group B: Flat, homogenous regions with slow motion 

Algorithm 4.2 and Algorithm 4.3 present the pseudo-codes of Prognostic Early Mode Exclusion for both 
Group-A and Group-B, respectively. In case of Group-A, I16x16 is excluded (line 3) due to high texture 
and the best choice would most probably be P8x8 or I4x4. However, exclusion of P16x16 at this point is 
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critical as a wrong exclusion may result in a significantly increased bit rate. Therefore, the exclusion 
decision of P16x16 is performed in the Hierarchical Fast Mode Prediction step. Lines 4-7 and 8-11 check 
for slow motion using the motion statistics of the spatial neighboring MBs and exclude the smaller block 
partitions and I4x4 (line 5, 9). Lines 12-15 detect a high texture and hectic motion region. In this case, 
I4x4 coding mode is selected and all other modes are excluded. 
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 (4.11) 

In case of Group-B, a more sophisticated scheme systematically excludes the most unlikely modes. Lines 
3-5, 6-9, 13-27 check for slow motion, flat and homogenous region, respectively. In these cases, I4x4, 
P8x8 and smaller partition modes are excluded. If a homogenous MB is stationary, P16x16 is predicted to 
be the most probable coding mode; otherwise, I16x16 is additionally processed (line 8). Lines 15-18, 19-
25, 28-31 detect low motion and dark low-to-medium texture to exclude I4x4 mode; otherwise, I4x4 
mode is re-enabled to avoid significant visual quality loss. Lines 33-39 assure that modes with smaller 
block partitions are only excluded if low motion and/or low textured are detected. 

1. GROUP-A: High-textured MB containing medium-to-fast motion 
2. M = {P16x16, P16x8, P8x16, P8x8, P8x4, P4x8, P4x4, I16x16, I4x4}  // Initialize the possible coding 

modes with all modes 
3. M ä M \ {I16x16};  // Exclude I16x16 
4. If (SADMB_Spatial < į3*ThSAD) { 
5.  M ä M \ {P8x8, P8x4, P4x8, P4x4, I4x4};  // Exclude I4x4, P8x8 and below 
6.  return; // Go to Step-3 (Section 4.4.2) 

7. } 
8. If ((PredMV_Spatial < ThMV1) & (SADMB_Spatial < į4*ThSAD)) { 
9.  M ä M \ {I4x4};  // Exclude I4x4 

10.  return; // Go to Step-3 
11. } 
12. If (((INbTemporalTotal > ThI1) & (INbSpatial > ThI2)) || ((PredMV_Spatial > ThMV2) & ((SADMB_Collocated > ThSAD) || 

(INbTotal > ThI3)))) { 
13.  M ä M \ {P8x8, P8x4, P4x8, P4x4};  // Exclude P8x8 and below 
14.  return; // Go to Step-3 

15. } 
16. return; // Go to Step-3   

Algorithm 4.2: Pseudo-Code of Group-A for Prognostic Early Mode Exclusion 

4.4.2 Hierarchical Fast Mode Prediction 

The Hierarchical Fast Mode Prediction (Figure 4.19) performs a more refined second-level mode 
exclusion to obtain a set of candidate coding modes, which is later evaluated by the RDO-MD process 
with an integrated Sequential RDO Mode Elimination mechanism. 

P16x16 Mode Prediction: If all modes except P16x16 are already excluded, then P16x16 is processed 
unless SKIP mode is detected in the last step of Figure 4.19. On the contrary, P16x16 is excluded if 
the MB has fast motion and high texture. 
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1. GROUP-B: Flat, homogenous regions with slow-to-medium motion 
2. M = {P16x16, P16x8, P8x16, P8x8, P8x4, P4x8, P4x4, I16x16, I4x4} // Initialize the possible coding modes 

with all modes 
3. If (SADMB_Spatial <= į1*ThSAD) { 
4.  M ä M \ {P8x8, P8x4, P4x8, P4x4, I4x4}; // Exclude I4x4, P8x8 and below 
5. } 
6. If (VL & GVL & (!SMB_StrongThick) & (!SMB_StrongThin) & (!SMB_ManyThin)) { 
7.  If ((SADMB_Collocated < į3*ThSAD) & (SADMB_Spatial < į2*ThSAD)) { 
8.   M ä M \ {I16x16};  // Exclude I16x16 
9.  } 
10.  M ä M \ {P8x8, P8x4, P4x8, P4x4, I4x4}; // Exclude I4x4, P8x8 and below 
11.  return; // Go to Step-3 
12. } 
13. If (VL & GL & SL) { 
14.  M ä M \ {P8x8, P8x4, P4x8, P4x4, I16x16}; // Exclude I16x16, P8x8 and below 
15.  If ((µD || CL) & (!MBHighTextured)) { 
16.   M ä M \ {I4x4};  // Exclude I4x4 
17.   return; // Go to Step-3 
18.  } 
19.  If ((PredMV_Spatial < ThMV1) & (SADMB_Spatial < į2*ThSAD)) { 
20.   M ä M \ {I4x4};  // Exclude I4x4 
21.  } 
22.  If ((SADMB_Spatial < į5*ThSAD) & ((SADMB_Neighbors < į5*ThSAD) & (!MBHighTextured) & (INbSpatial > ThI4)) { 
23.   M ä M \ {I4x4};  // Exclude I4x4 
24.   return; // Go to Step-3 
25.  } 
26.  return; // Go to Step-3 
27. Else { 
28.  If (µD & GL & (!MBHighTextured)) { 
29.   M ä M \ {I4x4};  // Exclude I4x4 
30.   return; // Go to Step-3 
31.  } 
32.  Exclude I16x16 and Re-enable I4x4 
33.  If ((SADMB_Spatial < į5*ThSAD) & ((SADMB_Neighbors < į5*ThSAD) & (!MBHighTextured) & (INbSpatial > ThI4) 

           || ((PredMV_Spatial < ThMV1) & (isI(MBFt-1_Collocated))) { 
34.   M ä M \ {I4x4};  // Exclude I4x4 
35.  } 
36.  If (PredMV_Spatial > ThMV3) { 
37.   M ä M \ {P8x8, P8x4, P4x8, P4x4 };  // Exclude P8x8 and below 
38.   return; // Go to Step-3 
39.  } 
40.  return; // Go to Step-3 
41. } 

Algorithm 4.3: Pseudo-Code of Group-B for Prognostic Early Mode Exclusion 

P16x16, P16x8, P8x16 and P8x8 Mode Prediction: Based on the assumption �the pixels along the 

direction of local edge exhibit high correlation, and a good prediction could be achieved using those 

neighboring pixels that are in the same direction of the edge�, the main edge direction is investigated 
to split the MB accordingly. Hence, if the main edge direction is determined to be horizontal or 
vertical, P16x8 or P8x16 block type is chosen, respectively. A very small edge sum points out the 
presence of a homogeneous region, so only the P16x16 is processed. 

Sub-P8x8 Mode Prediction: In case the SAD of the neighboring MBs is too high, P4x4 mode is 
predicted. In case the dominating horizontal or vertical edge direction is detected, P8x4 or P4x8 
partition is selected, respectively. 
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Skip Mode Prediction: If SAD of an MB in P16x16 mode is significantly low, a perfect match could be 
very well predicted by ME. Such MBs are highly probable to be SKIP, thus saving complete ME 
computational load. Similarly, if the collocated MB is highly correlated with the current MB, then the 
probability of SKIP is very high, e.g., the complete region is homogeneous. Moreover, if the MB lies 
in a dark region, the human eye cannot perceive small brightness variations. Thus, the insignificant 
distortion introduced by a forceful SKIP is tolerable here. 

 

Figure 4.19: Processing Flow of the Hierarchical Fast Mode Prediction 

4.4.3 Sequential RDO Mode Elimination 

An integrated Sequential RDO Mode Elimination mechanism re-evaluates the candidate coding modes for 
sequential elimination, i.e., after P16x16 is processed, P16x8, P8x16, P8x8, and below are re-evaluated 
for elimination as specified in Figure 4.19. However, for Sequential RDO Mode Elimination, the spatial 
SAD and MV values are replaced by the actual SAD and MV of the previously evaluated mode. 

4.4.4 Evaluation of the Complexity Reduction Scheme 

Table 4.4 provides the comparison (average and maximum) of ACCoReS with the exhaustive RDO-MD 
for distortion, bit rate (a positive ∆Bit Rate shows the bit rate saving) and speedup. Each result for a 
sequence is the summary of 8 encodings using different QP values. The average PSNR loss is 
approximately 3%, which is visually imperceptible. However, ACCoReS provides a significant reduction 
in the computational complexity, i.e., performance improvement of up to 19x (average 10x) compared to 
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the exhaustive RDO-MD. The major speedup comes from slow motion sequences (Susie, Hall, Akiyo, 
Container, etc.) as smaller block partitions and I-MB coding modes are excluded in the Prognostic Early 
Mode Exclusion stage. 

AVERAGE MAXIMUM 

Sequence ∆PSNR ∆Bit Rate Speedup ∆PSNR ∆Bit Rate Speedup 

CIF 

Bus 3.35 6.69 9.07 4.63 12.00 11.56 

Susie 1.87 1.64 11.91 2.47 12.37 14.59 

Football 4.91 2.74 9.65 5.66 3.37 13.05 

Foreman 2.02 4.44 9.97 3.31 16.73 12.70 

Tempete 3.42 10.22 8.47 4.78 14.53 10.75 

Hall 1.82 6.79 12.33 4.34 29.92 14.81 

Rafting 4.29 4.51 9.72 4.84 5.67 12.62 

Mobile 3.38 6.42 8.52 5.05 11.61 10.99 

Am. Football 3.91 7.81 8.76 5.41 10.52 11.61 

QCIF 

Akiyo 0.61 -3.41 12.75 1.24 1.75 17.27 

Carphone 2.44 6.39 10.20 3.19 11.51 12.86 

Coastguard 2.53 4.58 9.35 4.04 11.32 12.53 

Container 1.06 -7.15 13.00 1.57 4.01 19.13 

Husky 4.83 5.73 7.71 6.18 7.44 10.31 

Miss America 0.73 -8.86 12.05 1.72 14.25 14.72 

News 1.77 -3.64 12.21 2.12 0.37 16.71 

Table 4.4: Summary of PSNR, Bit Rate, and Speedup Comparison for Various Video Sequences 

(Each encoded using 8 different QPs) 

Figure 4.20 presents the percentage mode exclusions with respect to the total possible mode combinations 
for a large set of diverse sequences (averaged results for QPs ranging from 12 to 40). In the best case, up 
to 73% (average >50%) coding modes are excluded. Figure 4.20 also shows that the large number of 
modes are excluded in case of slow motion sequences (Susie, Hall, Akiyo, Container, etc.) due to the early 
exclusion of smaller block partitions and I-MB coding modes. Figure 4.21 shows the breakdown of 
different modes used in encoding of various sequences. In case of slow-motion sequences (Akiyo, Susie, 
and Carphone) more modes are excluded because of the correct identification of homogeneous regions. In 
this case more P8x8 and I4x4 are excluded with an insignificant loss in rate and distortion (see Table 4.4). 
On the contrary, more I4x4 modes are processed for Rafting and Bus. 
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Figure 4.20: Percentage Mode Excluded in ACCoReS for Various Video Sequences 

Figure 4.22 shows the number of SAD computed using the ACCoReS scheme and the exhaustive RDO-

MD scheme for various video sequences. ACCoReS computes on average 27% of the SADs computed by 
the exhaustive RDO-MD scheme. The major SAD savings come in case of fast -motion (Football, 
Foreman, and Rafting) and highly textured sequences (Tempete and Mobile) as bigger block partitions are 
excluded in the Prognostic Early Mode Exclusion stage. 
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Figure 4.21: Distribution of Mode Processing for QP=28 
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Figure 4.22: Comparison of Total SAD Computations for various video sequences 

In-Depth Comparison with the Exhaustive RDO-MD 

Figure 4.23 shows the in-depth comparison of ACCoReS with the exhaustive RDO-MD for Susie 
sequence. It shows that ACCoReS suffers from an average PSNR loss of 0.8 dB (max: 1.4 dB, min: 0.19 
dB), which is visually imperceptible (above 40 dB). However, ACCoReS achieves a significant reduction 
in the computational complexity, i.e., ACCoReS processes only 17% of SADs (reduced ME load which is 
the most compute-intensive functional block) compared to the exhaustive RDO-MD. Red circles in the 
Figure 4.23 show the region of sudden motion that causes disturbance in the temporal-field statistics. As a 
result, ACCoReS suffers from a higher PSNR loss but also provides high SAD savings. Moreover, 
ACCoReS maintains a smooth SAD computation curve, which is critical for embedded systems, while the 
exhaustive RDO-MD suffers from excessive SADs. The PSNR curve shows that after frame 70, the mode 
prediction quality of ACCoReS improves due to the stability in the temporal-field statistics. 

Figure 4.24 shows the frame-wise distribution of correct mode selection by ACCoReS for Susie 
sequence at QP=28. On average 74% of MBs are encoded with the correct mode (MB Type and the 
corresponding block size), i.e., as selected by the exhaustive RDO-MD. The correct modes predicted by 
ACCoReS range from 63% to 83%. 

Figure 4.25 illustrates the visual comparison of coded modes using ACCoReS (left-side) and the 
exhaustive RDO-MD (right-side) for the 17th video frame of the American Football sequence (QP=28). 
The grassy region is almost correctly predicted (i.e., mostly P16x16 and partitions above P8x8 are used) 
and no I4x4 are false predicted. ACCoReS predicts nearly in all cases P16x16 for the grassy region, 
because it is quite homogeneous and the motion is low. In overall, the prediction complies with the best 
mode (as predicted by the exhaustive RDO-MD) in most of the cases. Similar observations hold for the 
players at the left and right border side. The main different point is encircled in red, where the exhaustive 

RDO-MD used I4x4 while ACCoReS failed to predict. The movement is slightly below the motion 
threshold, thus is not detected as fast-moving region. Additionally, this area is considered flat as it is 
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blurred and exhibit less texture details. Consequently, these MBs are encoded with P8x8 and above 
modes. On average, wrong decisions in this frame generate a PSNR loss of 1.2 db (33.28 dB vs. 34.52 
dB), while both frames required a similar amount of bits (76672 vs. 77760 bits). On overall, the proposed 
ACCoReS predicts more than 70% of the total modes similar to the exhaustive RDO-MD. 
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Figure 4.23: Frame-Level in-depth Comparison for Susie Sequence 
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Figure 4.24: Frame-Level in-depth evaluation of correct mode prediction 

 

Figure 4.25: MB-level Mode Comparison with the Exhaustive RDO-MD: Frame 17 of American 

Football. Left: ACCoReS [PSNR=33.28 dB], Right: Exhaustive RDO-MD [PSNR=34.52 dB] 

Overhead of Computing Video Sequence Statistics 

The performance gain of ACCoReS comes at the cost of additional computation of spatial and temporal 
video statistics. Experiments demonstrate that the PC-based software implementation of these statistics 
computations are 4.6% of the total encoding time using ACCoReS, which is already up to 19x smaller 
than the encoding time with the exhaustive RDO-MD. Compared to the performance savings of 
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ACCoReS, this overhead is negligible. The additional memory requirements are 
(#statistics)*#MBs*16bits, where #spatial + #temporal statistics = 5 + 2. 

Summary of the HVS-based Adaptive Complexity Reduction Scheme: 

This section presented the adaptive computational complexit reduction scheme that excludes the 
improbable coding modes even before the actual RDO-MD and Motion Estimation processes. This 
scheme uses the HVS-based MB categorization. First the impborable modes are excluded from the 
candidate list in a relaxed prognostic early mode exclusion step. Afterwards, a more aggressive exclusion 
is curtailing of the candidate coding mode set is performed in a hierarchical fast mode prediction step. The 
output of this step is processed using an RDO-MD with consideration of sequential mode exclusion, i.e., 
depending upon the output of an evaluated mode, further modes are excluded from the candidate set. 

4.5 Energy-Aware Motion Estimation with an Integrated 
Energy-Budgeting Scheme 

As discussed in Section 3.1, Motion Estimation (ME) is the most compute-intensive and energy 
demanding functional blocks of an H.264 encoder. Figure 3.3 in Section 3.1.2 illustrated that ME may 
consume up to 65% of the total encoding energy, where the ME energy consumption is directly 
proportional to the number of computed SADs to determine the best match (i.e., the MB with the 
minimum distortion). The available energy budgets may change according to various application 
scenarios on mobile devices. Varying motion types and changing status of available energy budgets 
stimulate the need for a run-time adaptive energy-aware Motion Estimation scheme while exhibiting 
minimal loss in video quality (PSNR). The energy-aware Motion Estimation needs to consider the 
following run-time varying scenarios while keeping a good video quality (PSNR). These scenarios are: 
• available energy (due to a changing battery levels or allocated energy in a multi-tasking system) 
• video sequence characteristics (motion type, scene cuts, etc.) 
• user-defined coding conditions (duration, quality level, etc.) 

The challenge that arises here is: how much energy budget should be allocated to the ME of one 
video frame or even one MB when considering run-time varying scenarios (as argued above). The 
allocated energy-budget to an MB or video frame will determine the number of computed SADs. For a 
fast moving MB more ME effort is required while for a stationary MB less effort is required (i.e., reduced 
number of SADs). A less ME effort for a textured MB with high motion may result in significant PSNR 
loss. Therefore, in order to efficiently exploit the available energy, carefully allocating the energy budget 
to different frames and MBs is crucial. It is obviously not trivial to decide under which circumstances the 
allocated energy budget will be sufficient enough to keep the PSNR loss insignificantly low (compared to 
Full Search ME) when considering run-time varying scenarios. Hence, a run-time adaptive energy-
budgeting scheme for energy-aware Motion Estimation is desirable. 

This section introduces a novel run-time energy-aware Motion Estimation scheme for H.264 that 
adapts at run time according to the available energy level. It consists of different processing stages. The 
Motion Estimator is integrated with a predictive energy-budgeting (enBudget) scheme that predicts the 
energy budget for different video frames and different Macroblocks (MBs) in an adaptive manner 
considering the run-time changing scenarios of available energy, video frame characteristics, and user-
defined coding constraints while keeping a good video quality. This is achieved by so-called Energy-

Quality (EQ) Classes that the enBudget scheme assigns to different video frames and fine-tunes at MB 
level depending upon the predictive energy quota. Each EQ-Class represents a different ME 
configuration. Therefore, these EQ-Classes differ in term of their energy requirements and the resulting 
video quality. The enBudget scheme does not waste energy budget for homogeneous or slow moving parts 
of a video sequence that do not require high ME effort (i.e., more SAD computations). Instead, the saved 
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energy budget in case of slow motion sequences is allocated to the high motion sequences. This enables 
the enBudget scheme to dynamically move in the energy-quality design space at run time using the 
concept of EQ-Classes. 

The enBudget scheme requires an adaptive Motion Estimator with multiple processing stages in order 
to realize EQ-Classes. A novel Motion Estimator is proposed in the scope of this work to facilitate the 
design of EQ-Classes considering different processing stages. 

4.5.1 Adaptive Motion Estimator with Multiple Processing Stages 

Now the constituting processing stages of the proposed adaptive Motion Estimator will be explained. 

a) Initial Search Point Prediction: An adaptive Motion Estimator starts with an Initial Search 

Point Prediction stage that provides a good guess of the vicinity where the best match has a high 
probability to be found. A good predictor provides a good starting point to converge quickly to the 
best match (i.e., near-optimal Motion Vector, MV). Based on the assumption, the blocks of an object 

move together in the direction of the object motion, spatial and temporal neighbors are considered as 
good predictor candidates. Therefore, MV of the current MB is highly correlated with MVs of the 
spatially and temporally adjacent MBs that have been previously calculated. A set of predictors is 
selected by analyzing the MV difference distribution between various predictors (see Eq. 4.12 and 
the predictor set below) and the optimal MV (i.e., obtained by using the Full Search algorithm). 
Figure 4.26 (a-c) shows that spatial median predictor (MedianSpatial, Eq. 4.12) has a higher correlation 
with the optimal MV compared to the temporal median predictors (MedianTemporal1, MedianTemporal2, 
Eq. 4.12). This implies that MedianSpatial needs to be examined first as it has high probability to be the 
True Predictor23 (i.e., to find a near-optimal MV). It is noticed that MedianTemporal1 and MedianTemporal2 
are also highly probable to be the True Predictors especially when the MB is moving vertically or 
horizontally with a constant velocity. 
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Figure 4.26: Motion Vector Difference Distribution in Foreman Sequence (256 kbps) for Various 

Predictors Compared to the Optimal Motion Vector (obtained using the Full Search algorithm) 

Figure 4.26 (d-e) illustrates that the spatial predictors exhibit a higher correlation with the optimal MV 
compared to the temporal predictors. On overall, when considering all of the predictors the probability 

                                                      
23 True Predictor represents the displacement close to the optimal MV obtained by the Full Search algorithm. 
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of finding a near-optimal MV is very high and refinement search stage will provide the best MV 
(MVBest, close to or similar to that of the Full Search algorithm). The final selected predictor set is: 

PredictorsSpatial = {MVZero, MVLeft, MVTop, MVTop-Left, MVTop-Right, MedianSpatial} 

PredictorsTemporal = {MVCollocated, MedianTemporal1, MedianTemporal2} 

MVCollocated is the MV of the collocated MB in the previous frame (Ft-1). 
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After analyzing the predictor correlation in Figure 4.26, a set of conditions is formulated for the early 
termination of the ME process. Figure 4.27 shows the conditions for the predictor set for early 
termination to save energy depending upon the characteristics of motion field. Motion field changes 
with the properties of input video sequence thus results in adaptation at run time. Selected predictors 
are processed for SAD. The predictor with minimum SAD is compared against Thresholdpred (see Eq. 
4.13) for early termination. If early termination is not detected then this predictor serves as the search 
center for the next ME stage. 

 

Figure 4.27: Predictor Conditions for Motion-Dependent Early Termination 

b) Search Patterns: The Initial Search Point Prediction stage is followed by Traversing the Search 

Pattern stage, which takes the best predictor as the search center and evaluates different candidate 
points on the search pattern. The proposed adaptive Motion Estimator incorporates the following four 
different search patterns: 

• Octagonal-Star Search Pattern: This pattern consists of 20 search points and handles large 
irregular motion cases. Figure 4.28 shows an Octagonal-Star search pattern executing at a 
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distance of 8 pixels from the search center. For small-medium motion and CIF/QCIF video 
sequences only one Octagonal-Star search pattern is processed. For heavier motions/high 
resolutions (D-1, HD), multiple Octagonal-Star search patterns may be executed (each extended 
by a pixel distance of 8). The MV with minimum SAD in this step will be chosen as the search 
center of the next search pattern. 

• Polygon and Sparse Polygon Search Patterns: A Polygon search pattern consists of 10 search 
points and narrows the search space after processing of Octagonal-Star search pattern. 
Figure 4.28 shows both Polygon and Sparse Polygon search patterns. This search pattern favors 
horizontal motion over vertical motion, because in typical video scenes horizontal motion is 
dominant as compared to the vertical motion. The MV with minimum SAD after this processing 
stage serves as the center for the next search pattern. 

• Small Diamond Search Pattern: At the end, a 4-point Diamond search pattern is applied to 
refine the motion search. 

If the calculated SAD of a candidate point in a search pattern is less than the current SADBest, then 
SADBest and MVBest are replaced by the calculated SAD and the candidate point. After processing all 
candidates points, the SADBest is checked against a threshold to check the termination criterion. If not 
terminated, MVBest is set as the center for the next search step. 

c) Stopping Criteria: Early termination is integrated in patterns to stop the search in case the current 
SADBest is smaller than a threshold. Early termination results in energy saving but care should be 
taken in consideration to avoid false termination. Two different thresholds are used for early 
termination: Thresholdpred in the Initial Search Point Prediction stage and Thresholdpattern in the 
Search Patterns stage (Eq. 4.13). 
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SADstationaryMB thereby is the SAD for a static MB (i.e., with zero motion). Įpower (Eq. 4.13) is the 
power-scaling factor that provides a tradeoff between reconstructed video quality and energy 
consumption. The value of Įpower is determined dynamically (see Eq. 4.14). EC1 and EC1 are the 
normalized energy values of two consecutive EQ-Classes values. 
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į and Ȗ are modulation factors to provide a tradeoff between reconstructed video quality and search 
speed. Initial values of į and Ȗ are determined by Quantization Parameter (QP; see Eq. 4.15). The 
larger the value of QP is, the larger are the values of į and Ȗ. This is due to the following reason: 
when the quantization step is larger, the quantization noise is also larger and most of the details of the 
reconstructed image are lost and in this case, the difference between the best matching block and the 
sub-optimal matching block becomes blurry. c1 and c2 are user-defined weights to control the effect 
of change in QP value. If ME fails to achieve the time line, i.e., targeted frame rate (FrameRateTarget) 
encoding, then the values of į and Ȗ are increased at the cost of loss in PSNR (Eq. 4.15). 
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A technique to reduce the energy of ME is block matching with pixel decimation. Therefore, for reducing 
the energy of one SAD computation, several pixel decimation patterns are proposed that are discussed in 
the following. 

Matching Criterion (SAD) Decimation Patterns: For block matching, the matching criterion 
(SAD) is evaluated using every pixel of the MB. For one SAD computation, 256 subtractions, 256 
absolute operations, 255 additions are required along with loading of 256 current and 256 reference MB 
pixels from memory. In order to save energy for one SAD computation (reducing memory transfers and 
computation) some pixels from SAD computations may be excluded when the available energy is low. 
Since the block-based ME is based on the assumption that all the pixels in an MB move by the same 

amount, therefore, a good estimation of motion could be obtained by using only a fraction of the pixels in 
an MB. An aggressive decimation will result in an inaccurate ME if the videos contain small objects or 
high texture information. Therefore, the main issue is to find such a scheme for matching pixel decimation 
that will not cause much degradation in visual quality. Figure 4.28 shows four decimation patterns 
considered for evaluation. 

  

Figure 4.28: Four Search Patterns used in the Adaptive Motion Estimator 

and the Pixel-Decimation Patterns for SAD Computation 

AltPixel, AltGroup4, AltRow patterns (Figure 4.28) reduce the number of pixels for SAD computation by 
2, while AltGroup4AltRow reduces by 4 that directly corresponds to an energy reduction (due to reduced 
memory transfers and computations) and still provides an insignificant PSNR loss. An analysis to explore 
the quality impact (PSNR in dB) of these patterns on four benchmark Motion Estimators (see details in 
Section 2.2.3) is shown in Table 4.5. AltGroup4AltRow gives a PSNR loss of 0.2 dB and 0.34 dB for 
EPZS [Tou02] and UMHexagonS [CZH02], respectively. 

 Video Quality of Different SAD Decimation Patterns (PSNR [dB]) 

Motion Estimator Original Alt-Pixel Alt-Group4 Alt-Row AltGroup4-AltRow

Full Search 40.31 40.26 40.26 40.25 40.09 

UMHexagonS 40.24 40.16 40.14 40.16 39.90 

UMHexagonS Simple 40.18 40.06 40.04 40.05 39.80 

EPZS 40.29 40.24 40.25 40.24 40.09 

Table 4.5: Comparing the Video Quality of Different SAD Decimation Patterns 

for Encoding of Susie CIF video sequence (30fps@256 kbps) 

Although AltPixel and AltGroup4 reduce the energy, these are not very beneficial for cache-based 
architectures because the data is already in the cache. On the other hand, AltRow and AltGroup4AltRow 
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are beneficial for cache-based architectures as they skip row by row. Skipping the complete row is not 
advantageous for heavy-textured videos with small objects. Therefore, only AltGroup4AltRow (obtain a 
significant energy reduction even for cache-based architectures) and AltGroup4 (counter the issue of 
heavy-textured videos) are used for designing EQ-Classes as they provide good tradeoff between energy 
saving and PSNR loss. These patterns scale down accordingly for different block modes in H.264. 

Now the enBudget scheme will be presented. It uses the above-mentioned adaptive Motion Estimator 
for designing the EQ-Classes, where each EQ-Class represent a certain ME configuration in terms of 
different ME stages, i.e., a certain combination of settings of Initial Search Point Predictors, Search 

Patterns, and SAD Decimation Patterns. 

4.5.2 enBudget: The Adaptive Predictive Energy-Budgeting Scheme 

Figure 4.29 shows the overview of the enBudget scheme. The proposed scheme has three major phases: 

• Group of Pictures (GOP)-level allocated energy quota computation 
• Frame-level energy budget prediction and Base EQ-Class selection. 
• MB-level EQ-Class refinements and upgrading/downgrading of Base EQ-Class to determine the 

final EQ-Class for each MB. 

The input to the enBudget scheme is available energy (battery status), user constraints (e.g., quality level, 
desired duration of encoding, etc.), compile-time analysis of ME (i.e., average case energy distribution in 
a video encoder, see Figure 3.3 in Section 3.1.2), encoder configuration (e.g., encoding frame rate and 
target bit rate), and video frame properties (Brightness, Texture, SAD, and MV). A set of compile-time 
designed EQ-Classes with average and minimum energy requirements is provided to the enBudget 
scheme. The average energy is estimated through extensive experiments using a wide-range of video 
sequences with diverse properties. However, at run time the average energy is updated considering the 
actual energy consumption of the EQ-Class (that depends upon the currently coded video sequence) using 
a weighted error mechanism. The step-by-step flow of the enBudget scheme is as follows: 

GOP-Level: It may happen that the early GOPs in the video sequence may consume a major portion of 
the total available energy and the later GOPs are left with too less energy budget. This may harm the 
overall PSNR of the video sequence. Therefore, to avoid such scenarios, each GOP is allocated a 
separate energy quota. 

Frame-Level: Available energy status, user-defined constraints, compile-time analysis of ME, and 
encoder configuration are used for computing the allocated energy quota (EQuota) which is same for all 
frames in a GOP. It may happen that the EQuota is more than the actual energy requirements of one 
frame ME. Examples of such scenarios are (a) the battery level is full and user wants a short duration 
encoding, (b) the frame is homogenous and stationary or it exhibits low-to-medium motion, (c) the 
motion properties are amenable to the search pattern of the ME. In this case, the over-estimated EQuota 
is adjusted for computing the predictive energy budget (Epred) of a frame, such that the energy wastage 
due to the unnecessary SAD computations (as possible in above-mentioned a-c cases) is avoided. 
Depending upon the Epred value a frame-level Base EQ-Class is determined. After each frame is 
encoded, Epred of the next video frame is readjusted in a feedback loop considering that consecutive 
video frames exhibit high correlation (except scene cuts). 

Macroblock-Level: Since different MBs of a frame may exhibit diverse texture and motion properties, an 
energy distribution approach is incorporated that gives more energy to the complex MBs (i.e., high 
texture, high motion) and less energy to homogenous or slow-moving MBs. In order to provide a 
consistent control at frame-level, the Base EQ-Class is kept same for all MBs in the frame and 
refinements are computed for each MB. A refinement may be defined as the upgrade or downgrade 
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step to the Base EQ-Class that determines a higher energy class or lower energy class with respect to 
the Base EQ-Class. To avoid the violation of the Epred, a clipping mechanism is integrated. For an 
MB, a final MB-level EQ-Class is then determined and the ME configuration (e.g., Search Pattern, 
SAD Decimation Pattern) for the corresponding EQ-Class is set. Afterwards, the ME is performed for 
an MB and the actual energy consumption (Econsumed), SAD, and MV are monitored. 

After encoding all of the MBs in a video frame, the difference between EQuota and Econsumed is computed 
and the Epred for the next frame is updated in a feedback loop using this error. Moreover, depending upon 
the error between the energy of Base EQ-Class (EBaseClass) before ME and Econsumed, the energy of all EQ-
Classes is re-adjusted (see Figure 4.29). 

 

Figure 4.29: Flow of the enBudget Scheme for Energy-Aware Motion Estimation 

Before moving to the run-time algorithm of the enBudget scheme, the design of EQ-Classes is discussed 
that serve as the foundation to the enBudget scheme and enables it to move in the energy-quality design 
space at run-time. 

Designing Energy-Quality (EQ) Classes 

The enBudget scheme supports the run-time tradeoff between the allocated energy to the ME and the 
resulting visual quality (PSNR) for a given bit rate using the design-time prepared Energy-Quality (EQ) 

Classes. More SAD computations will provide better match (i.e., better PSNR) but at the cost of higher 
energy consumption. These EQ-Classes are designed using various combinations of the Initial Search 
Point Prediction, Search Patterns, and SAD Decimation Pattern of the adaptive ME (as discussed in 
Section 4.5.1). Each EQ-Class provides an energy saving (as it differs in its ME configuration) and suffers 
from a certain PSNR loss. Ideally for computing the energy saving and PSNR loss, EQ-Classes should be 
benchmarked against the Full Search ME as it provides the optimal match. However, as discussed in 
Section 2.2.3, the Full Search ME demands huge amount of energy and it is impracticable in real-world 
applications. Therefore, UMHexagonS (a fast adaptive ME provides almost similar PSNR compared to the 
Full Search ME while providing huge computation reduction [CZH02]) is used as a benchmark for 
computing the energy savings and PSNR loss of different EQ-Classes. 

Figure 4.30 shows the EQ-Class energy-quality design space for Foreman video sequence (CIF@30fps, 
256 kbps). Since the ME configurations form a discrete set of EQ-Classes, the problem of optimal ME 
configuration selection (i.e., EQ-Class selection) can be solved by Pareto analysis [Das99]. In the 
experiments of Figure 4.30, 8 Search Pattern combinations, 4 sets of Initial Search Point Prediction, and 3 
SAD Decimation Patterns (i.e., altogether 96 EQ-Classes) are used. The optimum EQ-Classes are the points 
in the energy-quality design space that form the Pareto Curve (as shown by the line in Figure 4.30). All EQ-
Classes that lie above the Pareto Curve are sub-optimal. It is worthy to note that this Pareto Curve provides 
optimal EQ-Classes for a certain video sequence under certain coding settings. Due to the diverse and 
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unpredictable nature of video sequences and unpredictable demands of end-users (i.e., varying bit rates), it is 
impossible to determine a set of EQ-Classes at design time which provides the optimal ME configuration for 
all possible combinations of diverse video properties and coding configurations. Therefore, an extensive 
energy-quality design space exploration is performed for various video sequences. From this analysis, a set 
of EQ-Classes is carefully selected considering the similarities in the Pareto Curves. 
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Figure 4.30: Energy-Quality (EQ) Classes: Energy-Quality Design Space Exploration 

showing various Pareto Points and the Pareto Curve 
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Figure 4.31: SAD vs. Energy Consumption Comparison of 

different Motion Estimation Stages for Foreman Sequence 

Figure 4.30 shows cases where some EQ-Classes are close to each other on the Pareto Curve, i.e., they 
exhibit only minimal difference in their energy reduction and the corresponding PSNR loss. As each EQ-
Class brings a certain PSNR variation, more EQ-Classes will cause frequent changes in the visual quality, 
thus visually uncomfortable for the user. Moreover, oscillation will result in a random motion field, which 
will disturb the behavior of motion-dependent terminations in the adaptive Motion Estimator. Therefore, a 
subset of EQ-Classes is selected (as shown in Table 4.6 with their corresponding configuration), such that 
at run time the switching between two EQ-Classes provides a significant energy reduction. Moreover, less 
number of EQ-Classes will also reduce the execution time of the enBudget scheme. 

All EQ-Classes use the complete set of predictors because it is the most crucial ME stage. To 
demonstrate this fact, the search efficiency of each ME stage (Section 4.5.1) is investigated for several 
exemplary MBs of Foreman video sequence (see Figure 4.31). The search efficiency of each ME stage is 
defined by the decrease in SAD that it brings at the cost of certain energy consumption. The search 
efficiency of these ME stages may change for different MBs in a video frame. Figure 4.31 shows that 
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among all ME stages, the search efficiency of Initial Search Point Prediction is the highest. Therefore, all 
EQ-Classes use the complete set of Initial Search Point Predictors. The gradient of Pareto Curve is 
defined as ǻPSNR/ǻE. Figure 4.30 shows that the gradient for high energy EQ-Classes is low, while the 
gradient for low energy EQ-Classes is quite high, i.e., ǻPSNRAB/ǻEAB << ǻPSNRCD/ǻECD. Therefore, 
care needs to be taken when downgrading a high-energy EQ-Class to a low-energy EQ-Class. 

Classes Pattern Set 
SAD Decimation 

Pattern 
Avg. Energy [µWs]* Min Energy [µWs]* 

C1 Oct + SPoly +Diamond Full SAD 85.72 5.25 
C2 Poly +Diamond Full SAD 59.47 4.97 
C3 Diamond Full SAD 26.93 2.91 
C4 Diamond AltGroup4 14.52 1.43 
C5 SPoly +Diamond AltGroup4AltRow 10.66 0.67 
C6 Diamond AltGroup4AltRow 5.81 0.59 

Table 4.6: Configuration and Energy Consumption for the chosen Energy-Quality (EQ) Classes 

[*Averaged over various test video sequences for 90 nm ASIC] 

Each EQ-Class is initialized with an average-case energy consumption value. However, due to the 
varying video sequence properties and adaptive early termination (Section 4.5.1), each EQ-Class may 
provide different energy saving for different video sequences. Therefore, the energy of an EQ-Class is 
updated at run-time depending upon the actual energy consumption for the given video sequence 
properties (as discussed later in this section). 

Run-Time Algorithm of the enBudget Scheme 

Algorithm 4.4 shows the pseudo-code of the enBudget scheme. Available energy status (i.e., current 
battery level), user-defined constraints, encoder configuration, compile-time ME analysis, video frame 
properties, and a set of EQ-Classes (Table 4.6) are passed as input to the enBudget scheme (Figure 4.29). 
The flow of algorithm is systematically discussed as follows: 

Step-1: GOP-Level (Lines 4-15): First, Quality Level (QL) as specified by user-defined constraints is 
readjusted depending upon the current battery level (BL) to ensure successful encoding in the 
given BL (line 6). If useQualityLevel is set then, in lines 9-13 the GOP-level energy quota (EQuota) 
is computed depending upon the QL, otherwise the EQuota is computed using the BL and the 
encoding duration required by the user (line 14). This EQuota is then used for predicting the energy 
budget for all frames in the GOP. 

Step-2: Frame-Level (Lines 16-27): The energy budget (Epred) for one frame ME is predicted using the 
EQuota and video frame properties. The energy error from the previous frame is back propagated 
(using a weighting factor ȟ1, which controls the strength of back propagation) for the Epred 
calculation of the next frame (line 17). Since different video frames may have different spatial and 
temporal properties, Epred calculation needs to consider this fact. For example, a scene cut may 
require more energy (as it will be shown in Section 4.5.3) due to a sudden disturbance in the 
temporal properties of a video sequence. Therefore, in order to cope with the unpredictable nature 
of video data, the Epred is scaled using the amount of texture difference (TDiffAVG: computed using 
the Sobel Operator) between two consecutive video frames (lines 18-20). The scaled Epred is used 
to select the frame-level Base EQ-Class. The frame-level Base EQ-Class is readjusted depending 
upon the brightness of the current video frame and the average motion of the previous video frame 
(lines 23-25). As discussed above using Figure 4.30, the gradient for high energy EQ-Classes is 
much less than that of the low energy EQ-Classes, thus care needs to be taken when downgrading 
a high-energy EQ-Class to a low-energy EQ-Class. Therefore, the CDelta is clipped between ±2 in 
line 26. The frame-level Base EQ-Class and the corresponding energy are then passed to the MB-

level EQ-Class selection stage. 
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1. Function enBudget ( )  // For Each Video Frame 
2. // Input: Image and Motion Statistics: Brightness (B), Texture (T, TdiffAvg), 

#
1 ( )MBs

darkMBs iAvg BiN B Th== <∑ , MV, 
SAD, Battery Level (BL), User Constraints (Duration: DE, Quality Level: QL), Encoder Configuration (e.g., fps, 
Target Bit Rate: TBR), Energy-wise sorted list of EQ-Classes C=(C1, �, Cn) (Table 4.6), where C1 is the max 
energy class and Cn is the min energy class, MEratio: ratio of ME energy to the encoding energy 

3. BEGIN 
4. // Step-1: GOP-Level Allocated Energy Quota: Compute once per GOP, this quota is same for all frames 

in the GOP 
5. If (first_Frame_of_GOP) { 
6.  If (BL < ȕ*BTotal)  QLäLow;  // readjust the quality level depending upon the current battery level 
7.  CBaseäØ;  CMBäØ;  // initializes the Frame- and MB-Level EQ-Classes 
8.  EQuota=0;  Econsumed=0;  ErrorClass=0;  ErrorQuota=0;  CDelta=0; 
9.  If (useQualityLevel) { 
10.   If (QL == High)   EQuota=getEnergy(C1); 
11.   Else If (QL == Medium)  EQuota=(getEnergy(C1)+getEnergy(Cn)+1)/2; 
12.   Else If (QL == Low)  EQuota=getEnergy(Cn); 
13.  } 
14.  Else EQuota = min(max(MEratio * BL/DE, getEnergy(Cn)), getEnergy(C1)); 
15. } 
16. // Step-2: Frame-Level: Determine Base EQ-Class 
17. Epred = EQuota + ȟ1 * ErrorQuota 
18. If (TdiffAVG > Ĳ1)  İ = max(min(TdiffAVG / Ĳ1, Ĳ2), Ĳ3); 
19. Else  İ = 1; 
20. Epred = min(max(İ * Epred, getEnergy(Cn)), getEnergy(C1)); 
21. CBase = getClass(Epred);  // get the closest Frame-Level EQ-Class  
22. // Image-/Motion-Based EQ-Class Adjustments 
23. If ((NdarkMBs > Ndark1) & (SADAvg < ThSAD1))  CDelta++; 
24. Else If (SADAvg > ThSAD1)  CDelta� �; // upgrade for high motion 
25. Else CDelta += ((NdarkMBs > Ndark1) + (NdarkMBs > 2*Ndark1) + (SADAvg < ThSAD2)); 
26. CDelta = min(max(CDelta, �2), 2) + (T < Ĳ4); 
27. CBase = min(max(CBase+CDelta, Cn), C1);  EBase = getEnergy(CBase); 
28. // Step-3: MB-Level EQ-Class Refinements 
29. For all Macroblocks { 
30.  CDelta += ((NdarkMBs > Ndark1) & (SADAvg < ThSAD1) & (BMB < ThB));  // Dark MB 
31.  CDelta += ((NdarkMBs > Ndark1 || SADAvg < ThSAD2) & (BMB < ThB)); 
32.  If (BMB ≥ ThB) { 
33.   CDelta += ((SMB < į1*ThS || SADMB_Collocated < į1*ThSAD3) + ((SMB < į2*ThS || SADMB_Collocated < į2*ThSAD3)); 
34.   CDelta � = ((SMB > (į1+į2)*ThS || SADMB_Collocated > (į1+į2)*ThSAD3); 
35.  } 
36.  CDelta = min(max(CDelta + (SADAvg < ThSAD2) + (SADAvg < ThSAD4), �2), 2); 
37.  If (MB == 0 & SADMB_Collocated < ThSAD5) // Stationary MB 
38.   CDelta CDelta += ((SADAvg < į3*TBR) � 2*(SADMB_Collocated > į4*TBR); 
39.  CMB = min(max(CBase + min(max(CDelta, �2), 2)), Cn), C1); 
40.  // Perform Energy-Aware Motion Estimation 
41.  Econsumed = Motion Estimation (CMB)   // (see Class Configuration in Table 4.6)  
42. } 
43. // Step-4: MB-Level EQ-Class Refinements 
44. ErrorClass=Econsumed � EBase;   ErrorQuota=EQuota=0 � Econsumed; 
45. For all EQ-Classes{ 
46.  Energy[Ci] = max(getEnergy(Ci) + ȟ2*ErrorClass, getMinEnergy(Ci)); 
47. } 
48. END 

Algorithm 4.4: Pseudo code of the Run-Time Adaptive Predictive Energy-Budgeting Scheme 

Step-3: MB-Level (Lines 28-42): Since, different MBs of a video frame may have changing texture and 
motion properties, therefore � at MB-level � the goal of the enBudget scheme is to refine the 
frame-level Base EQ-Class for each MB of the frame. It computes the EQ-Class refinement 
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depending upon the MB properties and upgrades or downgrades the Base EQ-Class accordingly. 
Dark homogeneous MBs with slow-medium motion (lines 30-33) or stationary MBs (lines 37-38) 
require less ME effort, therefore the refinement is computed for downgrading. This downgrade 
results in significant energy savings without PSNR loss for low-textured MBs with slow motion. 
Alternatively, for MBs with high texture or high motion, the refinement is computed for 
upgrading (line 34, 38). Clipping in lines 36 and 39 is performed to avoid excessive downgrading 
or upgrading that may result in severe PSNR loss or excessive energy consumption, respectively. 
MB-level EQ-Class is computed (line 39) and the corresponding configuration is forwarded to the 
ME (as specified in Table 4.6). 

Step-4: Error Computation and Readjustments (Lines 43-47): After the ME is completed for all MBs 
of a frame, Econsumed is used to compute the error between Econsumed & Base EQ-Class energy (EBase) 
and Econsumed & EQuota (line 44). ErrorClass is used to readjust the average-case energy of all EQ-
Classes in a weighted manner (lines 45-47) to adapt considering the properties of currently coded 
video frames. EQuota is back propagated to update the Epred of the next video frame (line 17). ȟ1 and 
ȟ2 are two weighting factors that control the strength of error back propagation. 

4.5.3 Evaluation of Energy-Aware Motion Estimation with an Integrated 
Energy-Budgeting Scheme 

Now the enBudget scheme will be integrated in two different Motion Estimators: a) The adaptive Motion 
Estimator as proposed in Section 4.5.1, b) UMHexagonS [CZH02]. The energy and video quality (PSNR) 
comparison will be performed for the adaptive Motion Estimator with and without the enBudget scheme. 
For energy estimation, the proposed power-model (see details in Section 3.4) is used. This section also 
provides the frame-level and MB-level analysis of energy consumption for the energy-aware Motion 
Estimation (i.e., the adaptive Motion Estimator of Section 4.5.1 and the enBudget scheme of Section 
4.5.2). At the end, the enBudget energy consumption will be compared for various fabrication 
technologies. The experimental setup is: search range=16, bit rate=256kbps, frame rate=30fps, Group of 
Pictures=IPPP. Table 4.7 shows the coefficients and thresholds used in the algorithm of the enBudget 
scheme (Algorithm 4.4). These coefficients and thresholds use the similar methodology as discussed in 
Section 4.3.1 and Section 4.3.2. Note, all results include the leakage and dynamic energy consumption 
considering the fact that ME hardware is power-gated after the completion of one frame ME. 

Attribute Value Attribute Value Attribute Value Attribute Value 

Ĳ1 3*#MBs į1 0.9 ThSAD1 900 ȟ1 0.5 

Ĳ2 2 į2 0.7 ThSAD2 500 ȟ2 0.5 

Ĳ3 1.1 į3 1300 ThSAD3 2500 ȕ 0.15 

Ĳ4 3000 į4 2000 ThSAD4 400 Ndark1 #MBs/2 

ThS 13000 ThB 85 ThSAD5 256   

Table 4.7: Coefficients and Thresholds used by the algorithm of enBudget in Algorithm 4.4 

Comparing Adaptive Motion Estimator With and Without the enBudget Scheme 

Figure 4.32 illustrates that compared to the original adaptive Motion Estimator (as proposed in Section 
4.5.1), the adaptive Motion Estimator with enBudget achieves an energy saving of up to 72% (avg. 60%) 
with an insignificant PSNR loss of 0.08 dB. This shows that the benefit of incorporating the enBudget 
scheme in an adaptive Motion Estimator to transform it into an energy-aware Motion Estimation scheme. 
In some cases (Clair, Mobile, Hall), the video quality is even slightly better compared to the original 
adaptive Motion Estimator. It is due to the fact that energy from smooth MBs is saved and more energy is 
provided to the textured MBs which results in a quality improvement in certain regions. This contributes 
to the overall video quality. 
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Comparing UMHexagonS With and Without the enBudget Scheme 

In order to validate the benefit and applicability of the enBudget scheme to other fast adaptive ME 
schemes that have multiple ME stages, the enBudget scheme is additionally integrated with UMHexagonS 
[CZH02]. Figure 4.33 illustrates that compared to the original UMHexagonS, UMHexagonS with 

enBudget achieves an energy saving of up to 80% (avg. 70%) with a slight PSNR loss of 0.11 dB. This 
shows that the enBudget scheme is equally beneficial for other state-of-the-art fast adaptive MEs as well. 
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Figure 4.32: Energy and Quality Comparison for the Adaptive Motion Estimator 

With and Without the enBudget for Various Video Sequences 
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Figure 4.33: Energy and Quality Comparison for the UMHexagonS [CZH02] 

With and Without the enBudget for Various Video Sequences 

Frame-Level and MB-Level Analysis 

Figure 4.34 shows the frame-wise energy consumption (for a 90nm technology) for three QCIF video 
sequences when using the proposed energy-aware Motion Estimation with the enBudget scheme. Label-A 
points to the fact that, for a slow motion sequence (Clair), the energy consumption line is smooth as the 
consecutive frames have high correlation, homogeneous background, and low motion. For Clair sequence 
the energy-aware Motion Estimation converges to the EQ-Classes C5 and C6 (see Table 4.6) depending 
upon the type of MBs (i.e., moving or stationary). For such sequences, the energy-aware Motion 
Estimation provides significant energy savings (see Figure 4.32). 

Label-B points to a more interesting scenario. For validating the robustness, the proposed energy-aware 
Motion Estimation scheme is tested for some mixed video sequences (e.g., SusieTable, alternate 50 frames 
of Susie and Table sequences are merged). Scene cuts and sudden changes in video frame properties can be 
realized in such sequences. Label-B in Figure 4.34 points to the sudden energy consumption peaks, which 
are mainly due to the scene cuts or disturbance in the temporal properties of video frames. In such cases, 
the energy-aware Motion Estimation scheme selects EQ-Classes C1 and C2 for MBs in the scene cuts or 
MBs with high motion. The detailed MB-level energy map for the scene cut corresponding to Label-B is 
shown Figure 4.35. Due to the scene cut there is a texture difference in two consecutive video frames and 
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the motion field is disturbed, as the objects of next frames no longer exist in the previous frame. As in this 
case, the video frame at scene cut is not encoded as Intra picture, ME requires high effort to find matches. 
This fact is visible from the red colored regions (0.3-0.5 µWs) in Frame#100, where MBs required more 
energy for ME. Similar effect is visible in many frames (varying peaks in Figure 4.34). 

Energy Comparison for different Fabrication Technologies 

Figure 4.36 shows the energy consumption of various video sequences for different FPGA fabrication 
technologies. Due to its low-power improvements [Kle10], Virtex-6/-6L-based implementations have less 
energy consumption compared to other FPGAs. 
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Figure 4.34: Frame-wise Energy Consumption of the Energy-Aware Motion Estimation 
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Figure 4.35: Macroblock-Wise Energy Consumption Map of two Exemplary Frames 

in the SusieTableMix_QCIF Sequence for a 90nm Technology 
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Figure 4.36: Energy Consumption of the Energy-Aware Motion Estimation 

for Various FPGA Fabrication Technologies for Various Video Sequences 
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Overhead of enBudget and Hardware Design 

Table 4.8 shows the performance, area, and energy overhead of the enBudget scheme for Xilinx Virtex-4-
vlx160 (90 nm). The complete hardware implementation is in integer arithmetic. The overall energy 
overhead is insignificant as it is 106 times smaller than the energy benefit of the enBudget scheme. The 
memory overhead for storing Texture and Brightness is 2*#MBs*16-bits. Texture and Brightness 
computation for one MB requires 160 and 4 cycles at the cost of 129 and 31 slices. 

 

Virtex-4-vlx160 FF1148 [90 nm] 

Latency Area Energy [nWs] 

[Cycles] Slices [GE] Leakage Dynamic 

Group of Pictures (GOP)-Level 51 1,028 24,967 22.44 21.42 

Frame-Level 75 1,001 24,516 31.50 34.50 

Macroblock (MB)-Level 4 597 14,252 1.04 1.36 

Total [for 1 frame] 
QCIF 472 2,626 63,735 575.24 528.09 

CIF 1660 2,626 63,735 2024.60 1858.65 

Table 4.8: Performance, Area, and Energy Overhead of enBudget 

Summary of the Energy-Aware Motion Estimation and Energy-Budgeting Scheme: 

This section presented the energy-aware Motion Estimation scheme that employs the concept of Energy-

Quality Classes, which enables it to move in the energy-quality design space at run time. First, an 
adaptive Motion Estimator with multiple processing stages is presented that provides a foundation for 
designing the Energy-Quality Classes. The design of these Energy-Quality Classes is explained using a 
fast motion sequence, while highlighting the importance of different processing stages. The Motion 
Estimator is integrated with an adaptive energy-budgeting scheme that predicts the energy budget for 
different video frames and different MBs considering the run-time changing scenarios of available energy, 
video frame characteristics, and user-defined coding constraints while keeping a good video quality. Such 
an energy-aware Motion Estimation scheme is crucial for advanced video encoders when targeting 
battery-powered embedded multimedia systems. Especially, it is beneficial for low-cost battery-powered 
mobile devices where available energy status is changing erratically and energy-aware algorithms decide 
the life-time of the device. 

4.6 Summary of Low-Power Application Architecture 

In order to achieve high energy savings, there is a need to redesign an application considering the 
potential of the underlying hardware platform. Therefore, first the H.264 video encoder application 
architecture is redesigned targeting reconfigurable processors. Several optimizations were performed to 
reduce the hardware pressure, i.e., the fabric requirements of a given computational hot spots. The data 
flow and data structures are discussed in detail along with their impact on the instruction and data caches. 
Afterwards, the design of low-power Custom Instructions (CIs) and Data paths was discussed. It was 
explained that operation reduction is required to reduce the dynamic power the Data Paths. A case was 
explained in detail using the In-Loop Deblocking Filter of the H.264 codec. 

A detailed analysis of the spatial and temporal video properties was presented in Section 4.3. 
Different properties of a Human Visual System (HVS) were discussed. Considering this discussion, 
different relationship between the optimal coding mode and the video properties were analyzed. 
Afterwards, important spatial and temporal video properties were selected. Using these video and HVS 
properties, rules for Macroblock categorizations were formulated. These rules facilitate the design of 
adaptive complexity reduction and energy-aware Motion Estimation schemes. To support various bit 
rates, Quantization Parameter based thresholding is employed for the Macroblock categorization. 
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The HVS-based Macroblock categorization is used by the adaptive computational complexity 
reduction scheme (see Section 4.4) which operates in three main steps. First the improbable coding modes 
are excluded using a relaxed prognostic early mode exclusion. Afterwards, a more aggressive exclusion is 
performed using a hierarchical fast mode prediction. In the third step, Mode Decision process is 
performed, where the candidate modes are processed one by one and the depending upon the output of a 
candidate mode, further improbable modes are excluded. The evaluation of the adaptive complexity 
reduction scheme is provided in Section 4.4.4 that demonstrates that 70% improbable modes are excluded 
with a minimal quality loss. Distribution of different evaluated modes and a frame-wise analysis of the 
correctly predicted modes is presented. Furthermore, a subjective comparison of the predicted modes and 
the optimal modes is performed to highlight the regions of misprediction. 

For each candidate coding mode, an energy budget is computed using a predictive energy-budgeting 
scheme. This scheme is integrated in an adaptive Motion Estimator (see Section 4.5.1) to realize an 
energy-aware Motion Estimation scheme. To provide a run-time adaptivity for varying scenarios of 
available energy, changing user constraints and video properties, different Energy-Quality Classes are 
proposed. Each Energy-Quality Class provides a certain video quality at the cost of a certain energy 
consumption. It thereby enables the Motion Estimation to move in the energy-quality design space at run 
time in order to react to the unpredictable scenarios. The Motion Estimator is evaluated with and without 
adaptive energy-budgeting scheme in order to demonstrate the benefit of budgeting and Energy-Quality 

Classes. Moreover, a frame-level energy consumption analysis is provided to show that the proposed 
budgeting scheme allocates less energy to the homogeneous Macroblocks with slow to medium motion, 
and more energy to the textured Macroblocks with fast motion. 
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Chapter 5 Adaptive Low-Power Reconfigurable 

Processor Architecture 

This chapter presents the novel adaptive low-power reconfigurable processor architecture with a run-time 
adaptive energy management scheme. It exploits the novel concept of Selective Instruction Set Muting 
with multiple muting modes. The first section analyzes different scenarios, while motivating the need for 
run-time energy management. Afterwards, the adaptive energy management scheme with the novel 
concept of Custom Instruction (CI) Set Muting is discussed in Section 5.2. In this section different CI 
muting modes are explained along with the corresponding configuration of sleep transistors for different 
parts of the reconfigurable fabric. Afterwards, the required power-shutdown infrastructure is discussed. In 
Section 5.2.3 an overview of the energy management scheme is provided highlighting different 
requirements and steps considered at design-, compile-, and run-time. 

The energy management scheme operates in two major steps. First it determines the energy 
minimizing instruction set considering the tradeoff related to leakage, dynamic, and run-time energy 
under run-time varying constraints of performance and reconfigurable fabric area (see Section 5.3). 
Afterwards, it determines the temporarily unused set of CIs and determines an appropriate muting mode 
for each CI considering the requirements of the currently executing and the upcoming computational hot 
spots (see Section 5.4). Section 5.4.3 presents how the energy benefit of a muting candidate is computed. 
Section 5.4.4 discusses that how the requirements of the upcoming hot spot are predicted and how the 
weighting factors for different CIs of the upcoming hot spot are computed. 

5.1 Motivational Scenario and Problem Identification 

Besides dynamic and leakage power, reconfigurable processors suffer from the power consumed when 
reconfiguring the instruction set. As discussed earlier in Section 3.4, the energy consumption of a 
reconfigurable processor (e.g., RISPP [Bau09], see Section 2.3.5) consists of the following components: 

 ReconfProc cISA_dyn cISA_leak FPGA_dyn FPGA_leak FPGA_reconfE  = E  + E  + E  + E  + E  (5.1) 

�cISA� and �FPGA� denote the Core Instruction Set Architecture (i.e., the core processor) and the run-time 
reconfigurable FPGA fabric (for Data Paths and CIs), respectively. Note that the energy for performing a 
reconfiguration EFPGA_reconf is actually part of the dynamic energy consumption but for clarity of 
subsequent discussions, it is listed separately. The process of reconfiguration causes the switching of 
configuration bits of the reconfigurable logic (CLBs: Configurable Logic Blocks) and connections 
(switching matrix) in order to realize different Data Paths (i.e., hardware accelerators) within the 
reconfigurable fabric. Therefore, EFPGA_reconf may impose a non-negligible limitation on energy efficiency 
in reconfigurable processors [Te06]. For instance, executing a specific CIi using a reconfigurable fabric 
typically leads to a reduced dynamic energy consumption in comparison to executing that CI using CISA 
(EFPGA_dyn(CIi) < EcISA_dyn(CIi)) due to faster CI execution (achieved by exploiting the inherent data-level 
parallelism). However, providing CIi in the reconfigurable fabric introduces an initial overhead 
EFPGA_reconf(CIi). The total number of executions of CIi is therefore important to determine whether or not it 
is beneficial to execute CIi using the reconfigurable fabric. 

Let us have a deeper look at the problem using the H.264 video encoder application with three major 
hot spots namely Motion Estimation (ME), Encoding Engine (EE), and Loop Filter (LF) that execute 
subsequently for each video frame and require different sets of CIs (see Section 4.2, page 57 for details). 
Figure 5.1a shows a simplified time scale of the execution of these hot spots and their related 
reconfigurations, where EFPGA_reconf represents the major energy component. Figure 5.1b shows a different 
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scenario for the same application where lesser reconfigurations are used (i.e., EFPGA_reconf is smaller) to 
save energy (compared to Figure 5.1a) at the cost of a slower frame encoding time. 

 

Figure 5.1: Simplified Comparison of Energy Consumption, 

Highlighting the Effects of Different Reconfiguration Decisions 

The situation takes another shift when exploring this scenario for 90nm (and below) technology nodes 
where leakage power may be more dominant, thus becoming imperative in the energy-aware design of 
reconfigurable processors [Ge04]. Hardware shutdown may be performed to reduce the leakage power of 
reconfigurable processors by switching-off the power supply to the reconfigurable regions with the help of 
high-Vt mid-oxide sleep transistors. The following components of a reconfigurable fabric can be 
individually shut down: 

• Logic: Configurable Logic Blocks (CLBs) and programmable interconnect switch matrices (i.e., 
the routing resources that connect various CLBs) 

• Configuration SRAM: The SRAM24 cells that store the control bits, which define the 
configuration of the Logic 

Note, shutting down the configuration SRAM of a reconfigurable region results in loss of its configuration 
data (as it is volatile). Therefore, it must be reconfigured again after powering-on, potentially requiring the 
overhead of an additional reconfiguration. 

Then, the challenging question arises: whether to better shut down regions of the reconfigurable 
fabric (and execute the CIs using the CISA instead) to reduce EFPGA_leak or using a larger share of the 
reconfigurable fabric to decrease the application execution time at the cost of a higher EFPGA_reconf. In 
Figure 5.1b lesser CIs are executed on the reconfigurable fabric (smaller EFPGA_dyn) and a bigger portion of 
the reconfigurable fabric can be shut down25 (indicated by the lower heights of the boxes, e.g., ME). 
However, due to a longer execution time of the hot spot, EFPGA_leak in Figure 5.1b is not significantly 
reduced and EcISA_leak + EcISA_dyn grow larger as more CIs are now executed using the CISA. Similar 
scenarios could be drawn for other applications alike, especially when considering multi-tasking systems 
where it cannot be predicted at compile/design time: 

a) which task will obtain which share of the reconfigurable fabric 
b) what is the task priority (may change at run time) 

                                                      
24 In Xilinx FPGAs, 38% of the leakage power is consumed by the configuration SRAMs [TL03]. 
25 At 150 nm, shutting down the currently unused portions of the reconfigurable fabric may not lead to noticeable 
savings and thus EFPGA_reconf may dominate whereas in case of 65 nm it may be vice versa. 
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c) which task will run under which performance constraint, e.g., due to changing user preferences 
(e.g., desired frames per second in case of the H.264 application) 

It is obviously not trivial to decide under which circumstances the execution using a reconfigurable fabric 
is energy-efficient or not especially when the application exhibits characteristics that cannot be predicted 
at design/compile time. 

The problem is that under scenarios of run-time changing performance and/or area budgets, it can 
hardly be predicted at design/compile time which set of CI Implementation Versions will minimize the 
energy consumption when considering leakage, reconfiguration, and dynamic energy. At some point in 
time leakage may dominate, while at some other points in time (e.g., due to changed system constraints), 
reconfiguration energy may dominate. Decisions made solely at design/compile time will therefore with 
high certainty lead to energy-inefficient scenarios. Hence, a technology-independent run-time adaptive 
energy management scheme for reconfigurable processors is desirable. 

Summary of the Motivational Scenario and Problem Identification: 

This section illustrated the need for run-time adaptive energy management with the help of different 
scenarios for H.264 video encoder. It was discussed that in which scenario leakage energy is more critical 
and in which scenario reconfiguration energy is more critical. It is also discussed why there is a need for 
joint consideration of leakage, dynamic, and reconfiguration energy in order to minimize the overall 
energy in dynamically reconfigurable processors. This section also discussed that why this problem 
cannot be solved at compile-time and why there is a need for run-time adaptive energy management. 

5.2 Run-Time Adaptive Energy Management with the Novel 
Concept of Custom Instruction Set Muting 

Section 5.1 provided the motivational scenarios for identifying the energy problem in reconfigurable 
processors highlighting the issues related to leakage and reconfiguration energy under run-time varying 
scenarios. This section will introduce the novel concept of instruction set oriented shutdown (Section 
5.2.1) that enables a far higher potential for leakage energy savings. The proposed concept of instruction 
set muting requires a power-shutdown infrastructure which is described in Section 5.2.2. Section 5.2.3 
illustrates the decisions taken at design-, compile- and run time along with the Run-Time Adaptive Energy 

Management Scheme. The energy management scheme dynamically determines a set of energy-
minimizing CI Implementation Versions for each hot spot considering leakage, dynamic, and 
reconfiguration energy such that these CIs fulfill the given performance and reconfigurable fabric area 
constraints. Afterwards, it decides which subset of CIs shall be muted at what time and in which mode in 
order to minimize the overall energy (considering leakage, dynamic, and reconfiguration energy). The 
details of determining the Energy-Minimizing Instruction Set and the Instruction Set Muting including the 
formal problem description and the algorithms will be discussed in the subsequent sections. 

5.2.1 Concept of Muting the Custom Instructions 

Before proceeding to the run-time adaptive energy management, this section introduces the concept of 
Instruction Set Muting which provides the foundation for the run-time adaptive energy management. 

As discussed in Section 2.4, state-of-the-art low-power approaches in ASICs and FPGAs, deploy 
shutdown schemes that statically determine the parts of a reconfigurable fabric (Logic or Logic + 
Configuration SRAM) that can be powered-off [Ge04, MM05]. These approaches monitor the usage/state 
of a particular hardware and issue the shutdown signal to the hardware, e.g., after the hardware is idle for 
a certain threshold time (e.g., [Ge04]). These approaches mainly focus on hardware-oriented shutdown of 
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the reconfigurable fabric irrespective of the application context (e.g., control flow, application priority 
etc.) and execution length of hot spots. Therefore, idle periods of Custom Instructions (CIs) cannot be 
exploited for the purpose of energy savings. When targeting reconfigurable processors, it is no longer 
efficient to employ the above-mentioned approaches, as it cannot be determined at compile time which 
CIs will be reconfigured on which part of the reconfigurable fabric. As a result, these hardware-oriented 
shutdown schemes suffer from the limitation of inflexibility and are highly dependent upon the underlying 
shutdown policy (see Chapter 2 and Chapter 3). 

A novel technique is proposed in this thesis, that shuns the leakage energy at the abstraction level of 
CIs (i.e., an instruction set oriented shutdown). This concept is named as selectively muting the CIs. The 
proposed technique uses a power-shutdown infrastructure (see Section 5.2.2) in order to define the so-
called CI muting modes (see Table 5.1) each leading to particular leakage energy savings. The proposed 
concept relates leakage energy to the execution context of an application, thus enabling a far higher 
potential for leakage energy savings. The run-time adaptive energy management in Section 5.2.3 aims at 
exploiting this potential. It decides which parts of the CI set shall be muted at what time and in which 
mode in order to minimize the overall energy (considering leakage, dynamic, and reconfiguration energy), 
as discussed in Section 5.2.3. 

Logic Configuration SRAM CI Muting Use-Case for the CI 

ON ON 
I. Non-Muted 
(NM-CI) 

CI is demanded or it is scheduled 
to be reconfigured soon 

ON OFF N/A 
N/A (turning the Logic on but the configuration off 
may lead to undesired system behavior) 

OFF ON 
II. Virtually-Muted 
(VM-CI) 

CI is not demanded, but expected 
to be demanded soon 

OFF OFF 
III. Fully-Muted 
(FM-CI) 

CI is not demanded and it is not scheduled 
to be reconfigured soon 

Table 5.1: Various Custom Instruction (CI) Muting Modes 

A CI may be muted through one of the following muting modes (see Table 5.1): 

Mode I: Non-Muted CI (NM-CI): CI is active and operational. 

Mode II: Virtually-Muted CI (VM-CI): CI cannot be executed due to the powered-off Logic. No 
reconfiguration is required in order to deploy this CI as its Configuration SRAM is kept powered-on. 
Hence, the otherwise necessary reconfiguration energy is not consumed. Therefore, the reduction in 
leakage energy is lower compared to Mode III (below). Mode II is beneficial when a subset of CIs is 
not demanded for a rather short period. 

Mode II: Fully-Muted CI (FM-CI): CI is not operational, as both Logic and Configuration SRAM are 
powered-off. This significantly reduces the leakage energy. However, in order to deploy this CI, a 
reconfiguration is required which costs reconfiguration energy and latency. Mode III is beneficial 
when a subset of CIs is not demanded for a rather long period. 

The challenge is to determine which muting mode of Table 5.1 is beneficial for which set of CIs under 
run-time varying application contexts, i.e., which muting modes for CIs will bring more energy reduction 
while jointly considering the leakage, dynamic, and reconfiguration energy. This decision depends upon 
the execution length of the computational hot spots during which different CIs are used for the application 
acceleration. Moreover, this decision also depends upon the requirements of upcoming hot spot 
executions and the performance constraints (i.e., more or less reconfigurable fabric is required to 
accelerate hot spots). This challenge will be addressed by the proposed Selective Instruction Set Muting 
technique, which will be discussed in detail in Section 5.4. 
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To realize these muting modes, a power-shutdown infrastructure is required, as discussed below. 

5.2.2 Power-Shutdown Infrastructure for the Muted Custom Instructions 

Figure 5.2 provides an overview of the infrastructure needed to apply the CI muting technique for 
reconfigurable processors. Multiple Data Path Containers (DPCs) are connected to a core pipeline. Each 
DPC is composed of multiple reconfigurable tiles and each tile contains Configurable Logic Blocks 
(CLBs) and programmable interconnect switch matrices (i.e., the routing resources that connect different 
CLBs). Control bits define the configuration of logic and routing resources and are stored in local 
Configuration SRAM, as shown in Figure 5.2. 
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Figure 5.2: Infrastructure Necessary to Exert the Proposed CI Muting Technique 
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Figure 5.3: Muting the Temporarily Unused Instruction Set 

In order to realize different CI muting modes (as shown in Table 5.1), the power supply of each DPC is 
connected to two independent sleep transistors, one for the Logic and the other for the Configuration 
SRAM. Note that these two sleep transistors are used for all tiles of a particular DPC, whereas two 
different DPCs use different sleep transistors. The control signal for these sleep transistors for a given 
muting mode is specified in Table 5.1. 

Figure 5.3 shows an example of muting the temporary unused set of CIs. After determining the 
energy-minimizing set of CIs for the current hot spot, the energy management scheme decides the muting 
mode of CIs. In order to set a particular muting mode for a CI, the control signal (as specified in 
Table 5.1) for the sleep transistors are issued to all DPCs of this CI. In Figure 5.3, CI-A is Virtually-
Muted (i.e., only the logic of DPC-1 and DPC-2 is power-gated) and CI-C is Fully-Muted (i.e., the logic 
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and configuration SRAM of the DPC-6, DPC-7, and DPC-8 are power-gated). CI-B is kept in the Non-
Muted mode (i.e., the logic and configuration SRAM of the DPC-3, DPC-4, and DPC-5 are kept powered-
on) as it is used by the current hot spot. 

This power-shutdown infrastructure is currently not available in today�s commercial FPGAs. 
Therefore, previous work in reconfigurable processors has not explored such a leakage energy reduction 
technique at the instruction set level. It is envisioned that that if FPGA vendors would provide this simple 
infrastructure, there would be a great opportunity to exert the proposed CI muting technique. It is 
especially beneficial for highly flexible Custom Instruction set architectures like RISPP [Bau09]. 
Consequently, reconfigurable processors would be far more energy efficient.  

5.2.3 Run-Time Adaptive Energy Management 

Now the run-time adaptive energy management in reconfigurable processors will be explained in detail. 
Figure 5.4 presents an overview of the steps to be done at design, compile, and run time while 
highlighting the proposed run-time adaptive energy management scheme, its main tasks, and its 
connection to the system. At design time, the size of the reconfigurable fabric (i.e., how many DPCs are 
provided for loading Data Paths) and the core processor are fixed for a certain fabrication technology node 
(that determines their corresponding power properties). At compile time, the Data Paths are designed and 
their configuration bitstreams are generated. Additionally, the configuration for various Implementation 
Versions is generated at compile time (using the in-house developed automatic tool chain) considering 
different resource constraints (i.e., different types of Data Paths in varying quantities). The bitstreams of 
Data Paths and the Custom Instruction (CI) Implementation Versions were used to build the power model 
of dynamically reconfigurable processors (as discussed in Section 3.4, page 45). This power model is then 
used to estimate the power at run time. 

At run time, the key tasks of the energy management scheme are: 
a) to dynamically determines a set of energy-minimizing CI Implementation Versions for each hot 

spot considering leakage, dynamic, and reconfiguration energy such that these CIs fulfill the given 
performance and reconfigurable fabric area constraints. 

b) to determine the muting decisions for the temporarily unused subset of the CIs. 

These decisions may depend upon the number of CI executions that may vary at run time due to the 
application level adaptivity (as discussed in Chapter 4), changing input data, performance constraints, and 
the execution length of the hot spot. The online-monitoring and the prediction scheme (as discussed in 
Section 2.3.5) are used to track and dynamically update the CI execution frequencies (i.e., which CI has 
executed how often for a certain hot spot). This is used as an input to the energy management scheme for 
choosing the energy-minimizing set of CI Implementation Versions. 

The power consumption of different CI Implementation Versions is estimated using the proposed 
power model for dynamically reconfigurable processors considering the power used by computations 
(Data Paths), communication (buses), and local memory (as presented in Section 3.4, page 45). The 
estimated power of CI Implementation Versions is forwarded to the energy management scheme. Since 
the placement of a Data Path on the reconfigurable fabric is unknown at the time the energy-minimizing 
set of CIs is determined, an average-case number of bus segments for the communication (see Section 
3.4.1) are considered in the power estimation. 

The estimated power consumption of the CI Implementation Versions and the predicted CI execution 
frequencies are forwarded to the energy management scheme for choosing an energy-minimizing set of 
CI Implementation Versions under varying constraints (details are explained in Section 5.3). Although 
each fabrication technology exhibits distinct leakage and dynamic power properties, the goal is to 
minimize the overall energy consumption (i.e., jointly considering leakage, dynamic, and reconfiguration 
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energy) such that the chosen set of CI Implementation Versions fulfill the given performance and 
reconfigurable fabric area constraints. Therefore, the energy management scheme is beneficial for various 
fabrication technologies and different reconfigurable architectures. It is noted that the performance 
constraint and the amount of available reconfigurable area (i.e., the number of available DPCs) may 
change at run time due to, for example, user requirements, input data properties, changing number of tasks 
and their priorities (see Section 5.1). 

 

Figure 5.4: Overview of the Proposed Adaptive Low-Power Reconfigurable Processor with Run-

Time Adaptive Energy Management along with the Design-, Compile-, and Run-Time Steps 

Depending upon the chosen set of CI Implementation Versions, the energy management scheme 
determines the muting decisions of the temporarily unused set of CIs (details are explained in 
Section 5.4). The proposed technique uses various muting modes that enable leakage energy reduction at 
the abstraction level of CIs. The energy management scheme determines at run time which subset of CIs 
should be put into which muting mode (Table 5.1) at which time by evaluating at run time the possible 
associated energy benefit (a joint function of leakage, dynamic, and reconfiguration energy). Besides the 
requirements of the current and the upcoming hot spots, the weighting factors (see details in 
Section 5.4.4) of different CIs in a hot spot are given as the input to compute the benefit of a particular 
muting mode. The weighting factor of a CI represents the relative contribution of a CI (compared to other 
CIs) for the accelerated execution of a hot spot. The weighting factor of a CI in a hot spot is determined 
by considering the expected execution frequency of CIs, the time from the start of a hot spot until their 
first execution, and the average time between two executions of the same CI (details are explained in 
Section 5.4.4). The energy minimizing set of CIs and CI-level muting enables the energy management 
scheme to dynamically move in the energy-performance design space at run time depending upon the 
varying area and performance constraints. 

Depending on the chosen set of CI Implementation Versions and the CI muting decision, certain Data 
Paths need to be reconfigured in the powered-on DPCs. Dynamically reconfigurable processors employ a 
Data Path Loading Sequencer to schedule the reconfigurations of the Data Paths required by the current 
hot spot [BSKH08]. In case there is no empty DPC, it also determines which Data Path shall be replaced 
to load the required Data Path [BSH09b]. 
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Summary of the Run-Time Adaptive Energy Management and CI Muting: 

In this section, the novel concept of CI muting was introduced that raises the abstraction level of shutdown 
to the instruction set level and provides the foundation for the run-time adaptive energy management. An 
overview of the proposed adaptive low-power reconfigurable processor along with the design-, compile-, 
and run-time steps was discussed in this section. Additionally different components for run-time adaptive 
energy management were introduced. Without these components and various CI muting modes (that enable 
to dynamically move in the energy-performance design space at run time depending upon the varying area 
and performance constraints), overall energy reduction (considering leakage, dynamic, and reconfiguration 
energy) could not be efficiently achieved in an adaptive manner. In the following, the components for run-
time adaptive energy management will be presented in detail along with the formal problem description, 
analysis, developed solutions and algorithms, and their implementation results. 

5.3 Determining an Energy-Minimizing Instruction Set 

The previous section presented the overview of different components of the proposed Run-time Adaptive 

Energy Management Scheme which is the key to realize an adaptive low-power reconfigurable processor 
architecture. As discussed in the overview, the energy management scheme considers leakage, dynamic, 
and reconfiguration energy to determine/choose an energy-minimizing set of Custom Instruction (CI) 
Implementation Versions that fulfill the reconfigurable fabric area and performance constraints. These 
constraints may vary at run time due to changing user requirements, tasks and their priorities, input data 
etc. For choosing the energy-minimizing set of CI Implementation Versions, the following information is 
required as input: (a) CIs that are expected to be executed in the current hot spot, (b) the predicted CI 
execution frequencies (Section 2.3.5, page 25), and (c) the estimated power consumption of different CI 
Implementation Versions (Section 3.4, page 45). The output is exactly one Implementation Version for 
each of the expected CIs. 

5.3.1 Formal Problem Modeling and Energy Benefit Function 

One of the basic tasks of the energy management scheme is to choose a set 'C' of CI Implementation 
Versions to implement the demanded CIs for an upcoming hot spot (as shown in Figure 5.4). The inputs to 
the algorithm for determining 'C' are: 

• the area constraint of the reconfigurable fabric NDPC_avail, 
• the performance constraint LHS_constraint, and 
• a set of CIs expected to be executed in the current hot spot 
• the predicted execution frequency of the expected CIs F[CIi] (i.e., the number of the expected CI 

executions which is obtained by an online-monitoring and prediction of the CI execution within a 
hot spot, Section 2.3.5). 

As discussed earlier in Section 5.2, all of these parameters may change at run time. The following three 
constraints need to be fulfilled as the fundamental requirements: 

Area Constraint: the chosen CI Implementation Versions can be implemented with the given amount of 
DPCs (NDPC_avail, see Eq. 5.2), i.e., the number of Data Paths required to implement the chosen set of 
Implementation Versions should not exceed NDPC_avail. 

 _∈ ≤G
G

∪ DPC availc C c N  (5.2) 

Performance Constraint: a given performance constraint while minimizing the energy consumption. In 
case of the H.264 video encoder (see Section 5.2), the performance constraint is given as the targeted 
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frame rate and the relative performance constraints (in percent) of the three major hot spots, resulting 
in LHS_constraint in cycles, i.e., the performance constraint of a specific hot spot. Furthermore, the 
expected execution time LcISA_HS_expected of all non-CI instructions (i.e., the instructions that are 
executed using the cISA) is given. LcISA_HS_expected is independent from the chosen Implementation 
Versions but it needs to be considered to determine the overall performance. Note, reconfiguration 
latency is not considered in Eq. 5.3 as it depends upon the currently available Data Paths (the term 

G
a  

in Eq. 5.5 corresponds to the currently available Data Paths) and the Reconfiguration Prefetching (see 
Section 2.3.5). It may happen that some of the Data Paths required by the early-executing CIs may 
already be available. In this case, consideration of the reconfiguration latency in the calculation of 
LHS_required may violate the LHS_constraint, thus may lead to a sub-optimal solution. Moreover, the 
algorithms of the Data Path Loading Sequencer (see [Bau09, BSKH08] for further details) also result 
in a performance improvement. Altogether, the currently available Data Paths, the Reconfiguration 

Prefetching, and the performance improvement due to the Data Path Loading Sequencer may already 
hide the reconfiguration latency. For a chosen set of Implementation Versions 'C' the performance 
constraint is evaluated by Eq. 5.3. If the performance constraint cannot be fulfilled then the fastest 
achievable performance is targeted. 

 [ ]( )_ _ _ _: . ( ) * . ( )HS required cISA HS expected HS constraint
c C

L L F c getCI c getLatency L
∈

= + ≤∑G
G G

 (5.3) 

One Implementation Version per CI: for each demanded CI one Implementation Version (potentially 
also the cISA implementation) is chosen (Eq. 5.4). Note, all CIs can be executed using cISA, i.e., 
without any Data Paths (see Section 2.3.5, page 25). 

 : 1ii C CI∀ ∩ =  (5.4) 

When multiple combinations of Implementation Versions fulfill the above three constraints (i.e., Eqs. 5.2, 
5.3, and 5.4) then the goal is to minimize the overall energy consumption of the hot spot considering 
leakage, dynamic, and reconfiguration energy, i.e., minimize Eq. 5.5. There might exist a very low-energy 
implementation of a certain CI. However, in order to minimize the overall energy of a hot spot, all CIs 
executing in this hot spot needs to be considered along with their expected execution frequency (that may 
change at run time). Thus, various CI Implementation Versions jointly contribute towards minimizing the 
overall energy of a hot spot for a given amount of DPCs (NDPC_avail) and performance constraint (LHS_constraint). 
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 (5.5)26 

The first summand in Eq. 5.5 denotes the total dynamic energy of the chosen Implementation Versions. 
Some Implementation Versions use the reconfigurable fabric and the others use cISA for execution (see 
Section 2.3.5). The predicted execution frequency of the CIs (which is independent of a particular 
Implementation Version of the CI) is used to determine the total dynamic energy. For a given amount of 
DPCs, an Implementation Version of a CIA with a much higher execution frequency compared to another 
CIB would consume more dynamic energy compared to an Implementation Version of CIB. When using the 
reconfigurable fabric, the dynamic power consumption � among others � depends on the number of used 
bus segments (see Eq. 3.2, Section 3.4.2), which itself depends on the Data Path positioning (see Section 
3.4, page 45), i.e., the relative position of the communicating Data Paths on the reconfigurable fabric. 

                                                      
26 the reactivation energy for one DPC is 3.5 pWs [Te06] while the energy of a hot spot is typically in multiples of mWs, i.e., 

approximately 109 times bigger (see Section 5.3.3). Therefore, the DPC reactivation energy overhead is not included in Eq. 5.5, as 
it does not affect the selection decision at the abstraction level of computational hot spots. 
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Although the actual Data Path positioning is considered for the power model (Chapter 6) and for simulating 
the energy consumption for results (Section 5.3.3, Section 5.4.5, and Chapter 7), an averaged value is used 
for _ ( )CI dynP c

G
 (that abstracts from the Data Path positioning) in order to be able to choose Implementation 

Versions dynamically at run time (i.e., before their actual Data Path positioning is known). 

The second summand in Eq. 5.5 stands for the leakage energy of the required DPCs and for the hot 
spot execution time (LHS_required see Eq. 5.3). Bigger Implementation Versions may result in reduced 
dynamic energy due to faster execution (by exploiting more parallelism), but they require more Data 
Paths. The increased number of Data Paths to realize bigger Implementation Versions also results in 
increased leakage power. On overall, the total leakage energy also depends upon the LHS_required. Therefore, 
in some cases a bigger Implementation Versions may result in relatively more leakage energy (compared 
to a smaller Implementation Versions) due to increased leakage power of more Data Paths. In some other 
cases a bigger Implementation Versions may result in relatively less leakage energy due to the faster 
execution, i.e., LHS_required. 

The third summand denotes the energy for reconfiguring the currently unavailable Data Paths (the 
term a

G
 in Eq. 5.5 corresponds to the currently available Data Paths). Depending upon the CIs used in the 

previous hot spot, some of the Data Paths required to realize the CI Implementation Versions for the 
current hot spot might already be available. Therefore, in Eq. 5.5, the reconfiguration energy for only the 
additionally required (i.e., currently unavailable) Data Paths is considered. 

5.3.2 Algorithm for Choosing CI Implementation Versions 

When determining the energy minimizing CI set, the run-time nature of the energy management scheme 
needs to be considered. Therefore, the following three means are applied for acceleration: 

a) Efficiently traversing the search space 
b) Simplifying the cost function and incrementally updating the total cost 
c) Early pruning of the search space 

Traversing the search space: Figure 5.5 shows five CIs (x-axis) from a hot spot of the H.264 encoder 
and their corresponding Implementation Versions (y-axis). To distinguish between the CIs and the 
traversing sequence, the term �levels� is used when analyzing the search space. To comply with 
Eq. 5.4, exactly one Implementation Version must be chosen at each level. The red thick line (in 
Figure 5.5) indicates a path through the levels that fulfills Eqs. 5.2, 5.3, and 5.4. The thin lines 
indicate the various alternatives at a certain level. When pruning the design space, it is important to 
determine invalid or suboptimal solutions as early as possible. Therefore, the CIs are sorted in the 
sequence in which the search space is traversed (x-axis) according to their importance imp(CIi), i.e., 
their expected latency improvement27 compared to their respective cISA execution (averaged over all 
Implementation Versions). Compared to the opposite sorting (i.e., the CI with minimal imp(CIi) is 
traversed first) this reduces the average number of cost function calculations by 76.4x (from 36,766 
down to 481) per video frame (in the example of an H.264). This reduction comes from pruning rather 
large parts of the search space (while obtaining the same result). 

 [ ] ( )_( ) : * . ( ) . ( ) /
ij i

i i i cISA ij i
c CI

imp CI F CI c getLatency c getLatency CI
∀ ∈

= −∑G
G G

 (5.6) 

Algorithm 5.1 shows the pseudo code of the algorithm for choosing the set of CI Implementation Versions 
that minimizes the overall energy consumption of a hot spot under given area and performance 
constraints. The pseudo code of the proposed algorithm is explained step-by-step in the following. 

                                                      
27 experiments demonstrate that, in most of the cases, the CI Implementation Version with the fastest execution latency is also the 

one that provides the minimum dynamic energy due to its speedup, especially in case of tighter performance constraints. 
However, in terms of reconfiguration energy it might not always be the best choice. 
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Figure 5.5: Search Space of Five CIs with Their Implementation Versions at the 

Corresponding Levels and The Path of the Energy-Minimizing Instruction Set 

Calculating the Cost Function: The first step is to prepare arrays for the minimum energy consumption 
and the minimum latency of Implementation Versions for each level (lines 3-6). The energy 
consumption of a CI Implementation Version thereby corresponds to an offline-calculated average 
dynamic energy as discussed for Eq. 5.5. In the second step, the sums of the array entries are 
calculated to obtain the fastest possible execution time LHS_Min and the minimum possible dynamic 
Implementation Version energy consumption EHS_CI_DynMin for the hot spot (see lines 7-8), irrespective 
of the area and performance constraints. Whenever a specific Implementation Version is chosen at a 
certain level, these two values are incrementally updated (see lines 17, 33 and 20, 34), i.e., for LHS_Min 
the minimum-latency Implementation Version that was initially used to calculate the sum is replaced 
by the actually chosen Implementation Version at this level (same procedure for EHS_CI_DynMin). 
Therefore, LHS_Min is calculated without the need to iterate through all levels for one calculation. As it 
always represents the fastest possible hot spot execution time at the current level, it is used for 
pruning (similar for EHS_CI_DynMin). 

Pruning Rules: The following three pruning rules are incorporated to determine invalid or suboptimal 
solutions as early as possible: 

a) Pruning Rule 1: Area Constraint: Parts of the search space that require more DPCs than what is 
available are discarded (lines 14-16). 

b) Pruning Rule 2: Performance Constraint: The above-discussed iteratively-updated value LHS_Min can 
directly be used to prune those parts of the search space that cannot fulfill the performance constraint 
(see lines 17-19), as for the not-yet traversed levels the fastest possible Implementation Version 
execution is assumed. Additionally, in line 7 the at-compile-time calculated execution time of the 
cISA is considered. If no valid solution exists within a given area constraint, the energy management 
scheme chooses the set of Implementation Versions that offers the fastest achievable performance. 

c) Pruning Rule 3: Sub-optimal Energy Consumption: Whenever the algorithm finds a valid solution 
(i.e., successfully chooses an Implementation Version for the last level) the energy consumption for 
this solution is then stored for further comparison (EBest in line 29). When searching afterwards for 
alternative valid solutions, their energy consumption is compared against EBest (line 25). Therefore, 
the incrementally updated dynamic Implementation Version energy EHS_CI_DynMin and the leakage 
and reconfiguration energy of DPCs28 need to be considered (see lines 21-24). 

                                                      
28 due to the irreversible nature of the operator ∪  (used in line 21), they cannot be incrementally updated like 
EHS_CI_DynMin. 
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After choosing the energy-minimizing set of CI Implementation Versions, the energy management 
scheme determines the muting decision for the temporarily unused subset of the Custom Instruction Set 

1. // Input: Area Constraint: NDPC_avail; Performance Constraint: LHS_constraint; sorted set of demanded CIs: 
CI[Level]; expected CI execution frequency: F[CIi]; sum of the latencies of all non-CIs in the hot spot: 
LcISA_HS_expected; DPC leakage power: PDPC_leak; Energy for one reconfiguration: EDPC_reconf 

2. // Output: Path of chosen CI Implementation Versions pBest and its Energy EBest 

 

3.   {Levels l∀  // Prepare arrays for the min. energy consumption and the min. latency of 
Implementation Versions for each level 

4.  _ _ [ ] [ [ ]]*MIN{ . () | [ ]};CI Level Min ij ijL l F CI l c getLatency c CI l← ∈
G G

 

5.  _ _ [ ] [ [ ]]*MIN{ . () | [ ]};CI Level DynMin ij ijE l F CI l c getEnergy c CI l← ∈
G G

 

6. }  

7. _ _ _ _ _ [ ];HS Min cISA HS expected CI Level MinLevel lL L L l∀← +∑  // initialize total minimum latency 

8. _ _ _ _ [ ];HS CI DynMin CI Level DynMinLevel lE E l∀←∑  // initialize total minimum energy 

9. ;Bestp ←∅  // initializes best so-far determined path 

10. ;currp ←∅  // initializes currently investigated path 

11. ( )Function  ,  ,  ;curr BestLevel l p pExploreLevel  // starts from Level 1 

12. BEGIN  

13. [ ] {c CI l∀ ∈
G

 // For all Implementation Versions at the current Level 

14.  _ { } ;
currDPC required o p cN o∀ ∈ ∪← G G

G
∪  // compute the total number of DPCs  required to realize 

G
c and all 

Implementation Versions in pcurr 

15.  _ _ ( )DPC required DPC availif N N>  // Pruning Rule 1: Area Constraints  

16.    continue;  

17.  _ _ _ _ [ ] [ [ ]]* . ();HS Temp HS Min CI Level MinL L L l F CI l c getLatency← − +
G

 

18.  _ _ int ( )HS Temp HS constraif L L>  // Pruning Rule 2: Perf. Constraints 

19.    continue;  

20.  _ _ _ _ _ _ [ ] [ [ ]]* . ();HS CI DynTemp HS CI DynMin CI Level DynMinE E E l F CI l c getEnergy← − +
G

 

21.  _ { } ;
currDPC reconf o p cN a o∀ ∈ ∪← G G

G G� ∪  // compute the number of DPCs  that will be reconfigured to realize 
pcurr 

22.  _ _ _ _* ;HS DPC reconf DPC reconf DPC reconfE E N←  // total reconfiguration energy of pcurr 

23.  _ _ _ _ _* * ;HS DPC leak DPC leak DPC required HS TempE P N L←  // total leakage energy of pcurr 

24.  _ _ _ _ _ _ _ _HS CI minTemp HS DPC DynTemp HS DPC reconf HS DPC leakE E E E← + +  

25.  _ _ (   )Best Best HS CI minTempif p E E≠∅ ∧ <  // Pruning Rule 3 

26.   continue;  

27.   ( ) {if l LastLevel=  // valid solution found, i.e., an Implementation  Version is successfully chosen 
28.   ;Best currp p←  

29.   _ _ ;Best HS CI minTempE E←  

30.   ( ,  )return ;Best Bestp E  

31.  }  

32.   // Explore the next level 

33.  _ _ ;HS Min HS TempL L←  // update the overall minimum latency 

34.  _ _ _ _ ;HS CI DynMin HS CI DynTempE E←  // update the overall minimum energy 

35.  ( )( ,  ) 1,  { },  Best Best curr Bestp E l p c p← + ∪ExploreLevel
G

 

36.   // Restore L and E values for further incremental updates 

37.  _ _ _ _ [ ] [ [ ]]* . ();HS Min HS Min CI Level MinL L L l F CI l c getLatency← + −
G

 

38.  _ _ _ _ _ _ [ ] [ [ ]]* . ();HS CI DynMin HS CI DynMin CI Level DynMinE E E l F CI l c getEnergy← + −
G

 

39. }  
40. ( ,  )return ;Best Bestp E  
41. END  

Algorithm 5.1: Pseudo code of Determining the Energy Minimizing Instruction Set 
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(details and algorithm will be discussed in Section 5.4, page 110). Note: the energy management scheme 
performs CI muting at the start of each hot spot to avoid frequent on-off switching of the sleep transistors 
(typically the length of a hot spot is several milliseconds29, see Section 5.3.3). 

5.3.3 Evaluation and Results for Energy-Minimizing Instruction Set 

Now the adaptive energy management scheme will be evaluated for various fabrication technology nodes 
using the H.264 video encoder application (as discussed in Chapter 4). The parameters and their 
corresponding values (for different fabrication technologies) that are used as the basic input in the 
following experiments are presented in Table 5.2 with their corresponding sources of information. 

 
Attributes 

40 nmL** 

(Low Power)
40 nm** 65 nm 90 nm 150 nm Source 

Voltage [V] 0.9 1.0 1.0 1.2 1.5 [Xil10a] 

R
ec

o
n

fi
g

u
ra

b
le

 

F
a
b

ri
c 

FPGA 
Virtex 6 

(-1L) 
Virtex 6

(-1) 
Virtex-5 
xc5vlx85

Virtex-4 
xc4vlx80 

Virtex-II 
xc2v6000 

 

Total Size [CLBs] - - 6480* 8960 8448 [Xil10a] 
Total Leakage Power [W] - - 1.297 0.854 0.068 [Xil10b] 
Min. Dynamic Power [W] - - 0.492 0.48 1.2 [Xil10a] 
Size of 1 DPC [CLBs] 68* 68* 68* 96 96 [BSH08a]
Leakage Power of 1 DPC [mW] 6.99 9.46 13.51 9.15 0.77 [Xil10b] 
Dynamic Power Scaling Factor 0.229 0.287 0.41 0.4 1 [Xil10a] 

cI
S

A
 Size of Leon Core and Run-Time 

Management System [CLBs] 
1980* 1980* 1980* 2816 2816 [BSH08a]

FPGA-to-ASIC: Leakage [mW] 8.201 11.100 15.852 10.736 0.907 [KR07] 
Technology Scaling Factor (0.34) (0.34) (0.445) (0.583) (0.763) [BTM00] 

Table 5.2: Parameters and Evaluation Conditions with their Corresponding Reference Sources 

* the Virtex-5/6 internal CLB Composition is Different Compared to Previous FPGAs 

** the Power Values are Scaled from Virtex-5 according to [Kle10] 

Evaluating the Adaptive Energy Management Scheme on Different Technologies: 

Figure 5.6 shows the energy-performance design spaces in which the Adaptive Energy Management 

Scheme moves at run time � for a certain technology � to achieve the overall minimum energy for a given 
performance and area constraint. In order to show the technology-independent nature of the energy 
management scheme (i.e., it is beneficial for various fabrication technologies), it is evaluated for four 
different technologies under various performance and area constraints. Since leakage energy is dominant 
in 65 nm and 90 nm, the energy management scheme may choose a different set of CI Implementation 
Versions for 65 nm and 90 nm (more variation in regions E-4 and E-7) compared to 150 nm (E-9). 
However, due to low-power optimizations in the new Virtex-6 (40 nm and 40 nmL, [Kle10]) the overall 
leakage energy is significantly reduced, therefore, the energy management scheme makes a different 
decision in choosing the energy minimizing instruction set for 40 nm and 40 nmL (as shown by different 
energy variations in E1-E3). 40 nmL is a version of Virtex-6 that operates at a lower voltage, therefore, 
the overall energy is further reduced compared to 40 nm (E3). 

Figure 5.6 a)-d) contain a flat region showing similar minimum energy points for different 
performance constraints. This is because of two reasons: i) either the area (i.e., reconfigurable fabric) is 
insufficient or ii) the achieved performance is greater than the performance constraint in order to 
minimize the leakage energy that may increase due to the slow execution. Note: the performance 
improvement comes in discrete steps, as a set of CIs collectively results in a speed up of the hot spot. A 
similar behavior can be observed in E-11 for 150 nm. 
                                                      
29  the length of a hot spot is predicted from the latency values of different CIs used in the hot spot and their 
corresponding expected execution frequencies (as predicted by the online-monitoring  Section 2.3.5). 
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There is an interesting scenario that shows the efficiency of the energy management scheme: In E-5, the 
overall energy is very high (as leakage is dominant) because of a longer execution time. As soon as more 
DPCs are available the energy management scheme decides to switch to a faster execution (although not 
required from a performance point of view) thus cutting down the leakage energy significantly (E-6). In short, 
it can indeed be beneficial to pay an additional reconfiguration to reduce the leakage energy. However, the 
scenario is changed for 40 nm and 40 nmL due to device-level leakage optimizations, Figure 5.6 (E1, E3). 
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Figure 5.6: Energy-Performance Design Spaces: Evaluation of the Energy Minimization Space 

Using the Adaptive Energy Management Scheme under Various Area and Performance 

Constraints for Four Fabrication Technologies for an Encoding of 40 QCIF (176x144) Frames 
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Figure 5.7: Comparison of Energy Components in Different Fabrication Technologies 

under Various Area Constraints 

Figure 5.7 presents the breakdown of energy consumption for the four technologies when encoding at 35 
fps with a different amount of DPCs. Figure 5.7 shows that in case of 150 nm dynamic and 
reconfiguration energy make up for the major part of the total energy consumption. When moving from 4 
to 20 DPCs the performance improvement comes at the cost of additional reconfiguration energy. For 65 
nm and 90 nm, when moving from 5 to 6 DPCs there is a decrease in the total energy as for faster 
execution the leakage energy has been reduced significantly (as also shown in E-6 of Figure 5.6). From 7-
20 DPCs, the leakage energy is changing due to each additional powered-on DPC. However, in case of 40 
nm and 40 nmL, the reconfiguration energy and leakage energy are comparable. Here due to reduction of 
leakage energy in 40 nm and 40 nmL, the energy management scheme chooses a different energy-
minimizing set of Implementation Versions compared to the case of 65 nm. 

Evaluating the Adaptive Energy Management Scheme for Encoding of different Resolutions: 

Figure 5.8 presents the energy-performance design spaces for encoding of two different resolutions at 40 
nm technology. The encoding of different video resolutions results in different computational 
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requirements. QCIF resolution (176x144 pixels) has 2x more Macroblocks (MBs) to encode compared to 
SQCIF resolution (128x96 pixels). Therefore, in order to meet same frame per second performance, QCIF 
requires more DPCs compared to SQCIF, which directly corresponds to increased energy. The fact is 
notable in the Figure 5.8 (L4). In case of SQCIF the performance constraint is met with relatively less 
number of DPCs compared to QCIF (see L2). When comparing 40 nm and 40 nmL, the energy-
performance design spaces are almost similar, as the only difference is in the operational voltage that 
reduces both leakage and dynamic power. 

Figure 5.9 shows the breakdown of energy at the time-frame level (each time-frame=0.05 MCycles) 
along with the number of CI executions for QCIF@30 fps using 65 nm. It shows the contribution of 
different energy components at different time instances. At the start of the Motion Estimation (ME) hot 
spot there occur several reconfigurations. Thus, the reconfiguration energy is dominant (Label-A: until 0.2 
MCycles). While reconfiguring the Data Paths for the CIs of ME, the number of CI executions per time 
frame is increasing gradually that also demonstrates a gradual acceleration of the ME hot spot. During the 
execution of the ME hot spot (Label-B: 0.2-1.15 MCycles) the leakage energy is dominant. In 1.15 
MCycles the ME hot spot has finished executing and the Data Paths for the EE (Encoding Engine) hot 
spot start reconfiguring. It is also notable in Figure 5.9 that only few reconfigurations are performed for 
the EE hot spot. It is because of the reason that the CIs in EE hot spot share Data Paths from the previous 
ME hot spot. These shared Data Paths are already available in the DPCs and no additional reconfiguration 
is required. 

Note: the leakage energy in LF hot spot is less compared to that in the ME and EE hot spots due to the 
muting of the temporarily unused set of CIs (details of CI muting will be discussed in Section 5.4). In this 
case, only 2 Data Paths are used and the remaining ones are power-gated to save leakage. Since the time 
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Figure 5.8: Comparing Energy-Performance Design Spaces for Different Video Resolutions when 

using the Energy Management Scheme under Various Area and Performance Constraints for an 

Encoding of 60 Video Frames 
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between LF (Loop Filter) and next frame ME is small, the reconfiguration Energy is dominant (Label-C) 
within this region. A single frame encoding finishes in 1.65 MCycles. 
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Figure 5.9: CI Execution Results for 30 fps on 65 nm Showing a Detailed Breakdown of Energy 

Components Highlighting the Contribution of Reconfiguration and Leakage Energy. The Lower 

Graph Shows the Detailed Execution Pattern of Various CIs Executing in Different Hot Spots of 

the H.264 Video Encoder Along With Total Energy Consumption 

Hardware Implementation: 

Implementation Details 

#Slices 615

#LUTs 883

#MULT18x18 7 

Gate Equivalents 39,7

Clock delay [ns] 10.3

Table 5.3: Hardware Implementation Results for the Energy Management Scheme 

on the RISPP Prototyping Platform (see Figure 6.1 in Section 6.1) 

The adaptive energy management scheme is implemented on a Xilinx Virtex-II based hardware prototype 
(see Figure 6.1 in Section 6.1) that was also used for the power measurements. The recursive call in the 
pseudo code (Algorithm 5.1) is thereby implemented in an iterative way and an array stores the currently 
explored Implementation Version for each level. The logic is implemented in form of a state machine with 
17 states, where 8 states are responsible for calculating the cost function and the pruning conditions. One 
complete calculation of cost function requires on average 12 cycles. The overall average performance 
overhead is 5,772 cycles per video frame (for 481 calls of cost function, as mentioned in Section 5.3), 
which is insignificant. The overall power overhead of the energy management scheme is 42.237 mW (41 
mW dynamic + 1.237 mW leakage) for a Xilinx Virtex-II based hardware prototype. However, the 
hardware for the scheme is only used at the start of each hot spot for choosing the set of CI 
Implementation Versions and during the hot spot execution it is not used. Therefore, the overall energy 
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overhead is insignificant compared to its energy benefit. Moreover, for the final system an ASIC-based 
implementation is foreseen which would result in much lesser power overhead. 

Summary of Energy Minimizing Instruction Set: 

The adaptive energy management scheme chooses an energy-minimizing set of CI Implementation 
Versions for each computation hot spot such that this set fulfils the reconfigurable fabric area and 
performance constraints. The goal is to minimize the overall energy of the hot spot while considering 
leakage, dynamic, and reconfiguration energy along with the predicted CI execution frequency. In order to 
expedite the algorithm (especially when considering its run-time nature), three means are applied. These 
are (a) Efficiently traversing the search space, (b) Simplifying the cost function and incrementally 
updating the total cost, (c) Early pruning of the search space to determine invalid or suboptimal solutions 
as early as possible. Evaluation for various fabrication technologies showed that the proposed scheme 
moves in the energy-performance design space at run time and it is equally beneficial for various 
technologies, various performance constraints, and changing amount of available reconfigurable fabric 
area (i.e., available DPCs). After choosing the energy-minimizing set of CI Implementation Versions, the 
energy management scheme determines the muting decisions for the temporarily unused set of CIs, i.e., 
which muting mode is beneficial for which subset of CIs when considering leakage, dynamic, and 
reconfiguration energy. 

5.4 Selective Instruction Set Muting 

As discussed earlier in Section 5.2.1, the adaptive energy management scheme employs a Selective 

Instruction Set Muting technique that shuns the leakage energy at the abstraction level of Custom 
Instructions (CIs), i.e., an instruction set oriented shutdown. When targeting dynamically reconfigurable 
processors, it is hard to determine at compile time which CIs will be reconfigured on which part of the 
reconfigurable fabric (i.e., in which DPCs). As a result, the hardware-oriented shutdown schemes [Ge04, 
MM05] � that monitor the idle usage/state of a particular hardware to issue the shutdown signal � suffer 
from the limitation of inflexibility and are highly dependent upon the underlying shutdown policy. 
Contrarily, the instruction set oriented shutdown (i.e., CI-level muting) relates leakage energy to the 
execution context30 of an application to enable a far higher potential for leakage energy savings. 
Considering the power-shutdown infrastructure (as discussed in Section 5.2.2), several CI muting modes 
(see Table 5.1 in Section 5.2.1) can be defined, each leading to particular leakage energy savings. These 
muting modes are: 

a) Non-Muted CI (NM-CI): CI is active and operational. 
b) Virtually-Muted CI (VM-CI): CI cannot be executed due to the powered-off Logic. No 

reconfiguration is required in order to deploy this CI as its Configuration SRAM is kept powered-
on. It is beneficial when a subset of CIs is not demanded for a rather short period. 

c) Fully-Muted CI (FM-CI): CI is not operational, as both Logic and Configuration SRAM are 
powered-off. A reconfiguration is required (that costs reconfiguration energy and latency) to deploy 
this CI. It is beneficial when a subset of CIs is not demanded for a rather long period. 

After the energy-minimizing set of CI Implementation Versions is chosen (Section 5.3), the muting modes 
are determined for the temporarily unused subsets of CIs. Then the challenging question arises, which 
subset of the CI set shall be muted at what time and in which mode (VM-CI or FM-CI, see Table 5.1) 
under run-time varying application contexts in order to minimize the overall energy, considering the 
tradeoff between leakage energy saving and reconfiguration energy overhead. This decision depends upon 
the execution length and the requirements of the computational hot spots (during which different CIs are 

                                                      
30 instead of idle hardware state monitoring, idle periods of CI usages (i.e., temporarily unused subset of CIs) are 
exploited for the purpose of energy savings. 
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used for the application acceleration). These parameters may vary at run time depending upon the 
application execution properties, and the area and performance constraints (i.e., more or less 
reconfigurable fabric is required to accelerate hot spots), as it will be motivated in Section 5.4.1. 
Therefore, the CI muting decision cannot be determined at compile-time. 

In the following, the importance of different muting modes (VM-CI and FM-CI) and their relationship 
to the muting duration (i.e., in which scenario which muting mode is beneficial) are discussed with the 
help of simple motivational scenarios in Figure 5.10. 

5.4.1 Problem Description and Motivational Scenarios 

Various challenging questions arise given the three muting modes from above: For instance, whether 
VM-CIs or FM-CIs provide more energy reduction when both leakage energy and reconfiguration energy 
are considered. This is reflected by the following equation (Eq. 5.7) where the decision of a muting mode 
depends upon the execution length of a hot spot (i.e., LHS): 

 _ _ _ _

?
* * ( * )VM CIs HS FM CIs HS DPC reconf DPC reconfP L   P L P T< +∑  (5.7) 

Additionally, it needs to be clarified whether this decision can be determined statically ([Ge04, MM05]) 
or whether it requires a dynamic decision. As it will be shown later on, this depends on a specific run-time 
scenario (i.e., application's execution context). 

 

Figure 5.10: Comparing the Energy Requirements of Virtually- & Fully-Muted CIs for 2 Scenarios 

Figure 5.10 shows three different run-time scenarios and compares the energy requirements of VM- and 
FM-CIs. It is noticeable that the energy requirements of FM-CIs are significantly lower for most of the 
time. However, when a FM-CI is demanded again for executing a hot spot, its muting mode is switched to 
NM-CI. It increases the energy requirements significantly due to the demanded reconfiguration of these 
FM-CIs (see the 2nd addend on the right hand side of Eq. 5.7). This fact is noticeable in Figure 5.10a) 
where the muting duration of FM-CIs is too short to amortize the reconfiguration overhead 
PDPC_reconf * TDPC_reconf. An alternate scenario can also been seen in Figure 5.10a) where the leakage energy 
in VM-CIs is large compared to the reconfiguration energy of FM-CIs. Such a scenario may result due to 
a higher Vdd in order to support a higher clock frequency, which is required to fulfill the performance 
constraints. 

Figure 5.10b) shows the scenario, where the leakage energy of the VM-CIs is higher than that of FM-
CIs as the muting duration is too long (e.g., due to relaxed user constraints). Therefore, the CIs in the 
fully-muting mode amortize the reconfiguration overhead. Actually, the muting duration for CIs varies due 
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to the changing application contexts as a result of (i) varying control flow of the application, (ii) changing 
application priorities in multi-tasking systems (varying the amount of available reconfigurable fabric 
assigned to it), and (iii) changing user preferences (e.g., performance constraints, thus changing hot spots� 
execution length). Hence, it is not possible to predict the energy requirements of VM-CIs at compile time. 

The three scenarios in Figure 5.10 demonstrate that it is typically not possible to decide Eq. 5.7 at 
compile time. Therefore, a run-time Selective Instruction Set Muting technique is desirable for adaptive 
low-power reconfigurable processors. It determines at run time which subset of CIs should be put into 
which muting mode (Table 5.1) at what time. For this, it evaluates the possible associated energy benefit 
(a joint function of leakage, dynamic, and reconfiguration energy) at run time. 

5.4.2 Operational Flow for Selective Instruction Set Muting 

The proposed technique evaluates a possible energy benefit (a function comprising leakage, dynamic, and 
reconfiguration energy, see Section 5.4.3) of different CIs to select an appropriate muting mode for the 
corresponding DPCs at run time31. Figure 5.11 presents a time line showing the execution sequence of 
previous, current, and upcoming hot spots along with the point of time where the CI muting mode is 
selected. 

TIME
Current Hot Spot Upcoming Hot Spot

Determine the CI Muting Decision here

�Previous Hot Spot

The data path requirements of
this hot spot are predicted

The CIs of this hot spot determine 
the available data paths 

 

Figure 5.11: Time-line showing the execution sequence of hot spots 

and the situation for a CI Muting decision 

Figure 5.12 presents the flow of the CI muting technique. It is triggered ahead of a hot spot execution. The 
key inputs are: 

• a list of Data Paths that are available from the previous hot spot ( p
G

) and 
• lists of Data Paths that are required by the current and the upcoming hot spots ( c

G
 and n

G
, see 

Figure 5.13). 

The algorithm returns non-muted, virtually-muted, and fully-muted DPCs for the current hot spot 
(DPCNM, DPCVM, DPCFM). The four major steps are: 

Step-1: The DPCs to fulfill the Data Path requirements of the current hot spot (see Figure 5.13) are kept 
in non-muted mode (DPCNM, i.e., DPCs in active state). Afterwards, the Data Paths required for c

G
 

are checked if they are already available in DPCs (i.e., common Data Paths in c
G

 and p
G

). If yes, 
then these DPCs are added to the DPCNM list. 

Step-2: Afterwards, the requirements of the upcoming hot spot are predicted (see details in Section 5.4.4) 
and virtually-muting DPCs (DPCVM) are determined. At the start of the current hot spot, the Data 
Paths that are available from the previous hot spot are compared to the Data Paths required by the 
upcoming hot spot. 

                                                      
31 as mentioned in Section 5.2.2, in order to set a particular muting mode for a CI, the control signals (as specified in  
Table 5.1) for the sleep transistors (for Logic and the Configuration SRAM) are issued to all DPCs of this CI. 
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o If a Data Path is currently available, not needed for the current hot spot, but needed again for the 
upcoming hot spot, it is a candidate for the virtually-muting mode (Figure 5.13) and it is added to 
the candidate list. 

o Then, the maximum number of virtually-muted Data Paths (DPVM) is computed by considering the 
requirements of the current and the upcoming hot spots and the total number of DPCs. 

o However � depending upon the requirements of the current hot spot � the maximum number of 
DPVM may be smaller than the total number of virtually-muting mode candidates as some of the 
DPCs may need to be reconfigured to fulfill the performance requirements of the hot spot. 
Therefore, the �determineDPVM� function (details in Section 5.4.3) evaluates the energy benefit 
of all candidates for the virtually-muting mode. It then chooses the one that provides the highest 
energy benefit among all candidates. 

o If the energy benefit (no additional reconfiguration required) overcomes the overhead (larger 
leakage) then the DPC of DPVM are added into the DPCVM list. Alternatively, no DPC is put into 
the DPCVM list. 

o The function �determineDPVM� is iteratively executed until maximum number of DPVM is zero. 

Step-3: If some of the Data Paths required by the current hot spot are not available, then more DPCs are 
kept in non-muted mode as they will be reconfigured to fulfill the requirements of the current hot 
spot. These DPCs are added into the DPCNM list. Those DPCs where the non-muted mode is not 
beneficial or which are not needed in the current and the upcoming hot spots are put into the fully-
muted mode (i.e., added to the DPCFM list), as they may be used rather late during the application 
execution flow. 

Step-4: In the last step, DPCNM, DPCVM, DPCFM lists are sent to the Mute-Mode Controller (Section 5.2.2) 
that issues the control signals (see Table 5.1) for the sleep transistors (for Logic and the 
Configuration SRAM). 

DP c∀ ∈
G

 

Figure 5.12: Flow for Selecting a Muting Mode for the Custom Instruction (CI) Set 
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Figure 5.13: Venn Diagram Showing the Data Path Requirements of 

Previous, Current, Upcoming Hot Spots 

Now, the �determineDPVM� (from Figure 5.12) function (which is used for computing the energy benefit 
of muting and for identifying a virtually-muted DPC) is discussed in the following. 

5.4.3 Analyzing the Energy Benefit Function of Muting 

Algorithm 5.2 shows the pseudo code for identifying one Data Path for virtually-muting (DPVM) out of all 
virtually-muting candidates. The key inputs are: virtually-muting candidates ( s

G
), Data Paths required for 

the upcoming hot spot ( n
G

), set of CI Implementation Versions that are expected to be required for the 
upcoming hot spot (CInext), expected execution time of the current hot spot (tExeccurr_HS), and a table of the 
CI weighting factors ( CIω ). 

1. ( )_Function ,  s,  ,  ,  ,  next CI curr HSt n CI tExecωVMdetermineDP
G G G

 

2.  // Input: t
G

: temporary copy of currently required Data Paths, s
G

: virtually-muting candidates, n
G

: Data Paths 

required for the upcoming hot spot, CInext: set of Implementation Versions for CIs that are expected to be required 

for the upcoming hot spot, tExeccurr_HS: expected execution time of the current hot spot, CIω : a table of the CI 

weighting factors (Figure 5.14) 

3.  // Output: DPVM: virtually-muted Data Path 

4. BEGIN  

5.    0;benefitbestE =  // initialize the energy benefit 

6.   ;VMDP NULL←  // initialize virtually muted Data Paths 

7.   {DP s∀ ∈
G

 // determine one Data Path from candidate list 

8.   _ _  * ;ReconfBenefit DPC reconf DPC reconfE P T=  

9.  _ _  ( ,  ) * ( *   );LeakBenefit Benefit DPC leak cISA leakE L t DP P n P= +
G G

 

10.   _ _ _  * ;LeakOverhead curr HS VM DPC leakE tExec P=  

11.     ( ,  );diff diffdynE dynE t DP=
G

  // see Eq. 5.9 

12.    ;Benefit ReconfBenefit LeakBenefit LeakOverhead diffE E E E dynE= + − +  

13.   ( ) {benefit benefitif E bestE>  

14.      ;       ;benefit benefit VMbestE E DP DP= =  

15.   }  

16.  }  

17.  return  ;VMDP  

18. END  

Algorithm 5.2: Pseudo Code for Finding a Data Path for Virtually-Muting Mode 
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Each Data Path in the candidate list s
G

 is evaluated for the energy benefit (line 7-16). The Data Path 
that provides the highest energy benefit among all candidates s

G
 is then chosen as the one DPVM (line 13-

15). There are four parts for the energy evaluation (line 12): 

Reconfiguration Energy Benefit (ERecBenefit, line 8): When a hot spot starts execution, its Data Paths are 
reconfigured into DPCs. In case a Data Path is still available after the execution of the current hot 
spot, one less reconfiguration is required for the upcoming hot spot. Thus, a DPVM provides an energy 
benefit of one saved reconfiguration. Moreover, it also results in a latency improvement of one 
reconfiguration (approximately 0.63 ms) compared to the fully-muted DPC. 

Leakage Energy Benefit (ELeakBenefit, line 9): As the DPVM will be available when the upcoming hot spot 
starts executing, the CIs of that hot spot may execute in a faster Implementation Version compared to 
the case when it is not available. This results in a performance improvement for the upcoming hot spot 
compared to the fully-muted Data Path (see Eq. 5.8). Each DPVM may expedite multiple CIs, where 
each CI has a different weighting factor ( CIω , see Section 5.4.4) depending upon its execution 
frequency and execution pattern in the hot spot. Faster execution of the upcoming hot spot will reduce 
the overall leakage energy of both the core processor and the reconfigurable fabric. Therefore, leakage 
savings are computed for each virtually-muting candidate by considering CIω  of the CIs that are 
accelerated by this candidate. 

 ( )
( . ()) *

( , ) . (). ( ). ()
. (). ( ). ()

ω

∈

⎛ ⎞
⎜ ⎟= −
⎜ ⎟+⎝ ⎠

∑G
G

G G G
G G

next

CI

Benefit

x CI

x CI  
L p DP x CI Fastest p Latency  

x CI Fastest p DP Latency
 (5.8) 

Leakage Energy Overhead (ELeakOverhead, line 10): Leakage occurs in a virtually-muted DPC (due to the 
powered-on Configuration SRAM) for the whole duration of the current hot spot execution. 
Therefore, this overhead needs to be considered for the energy benefit function (line 12). 

Dynamic Energy Difference (dynEdiff, line 11): Different Implementation Versions of a CI vary in their 
dynamic power and energy consumption. Therefore, a DPVM may bring an energy benefit or overhead 
due to a different CI Implementation Version as shown in Eq. 5.9. 
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The computational complexity for calculating the energy benefit is ( ) VMnumMaxDP s
GiO . Figure 5.13 

shows that s
G

 is typically much smaller than the total number of Data Paths that fit onto the 
reconfigurable fabric at a certain time. 

Note: the wakeup energy for virtually-muted and fully-muted DPC are 3.5 and 7.0 pWs (for the sleep 
transistor design of [Te06]), respectively. However, the energy for reconfiguring one DPC is 147 µWs, 
i.e., more than 106 times bigger (see details in Section 6.3, page 124). Therefore, the DPC reactivation 
energy overhead is not included in the cost function, as it does not affect the muting decision. 

5.4.4 Hot Spot Requirement Prediction: Computing Weighting Factors for CIs 

Different CIs of a hot spot may have different execution patterns (see Figure 5.14). These execution 
patterns depend upon the following three parameters: 

• expected execution frequency of CIs 
• the time from the start of a hot spot until their first execution 
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• the average time between two executions of the same CI 

The expected execution frequency is predicted by a light-weight online monitoring scheme (Section 2.3.5, 
page 25), while the other two parameters are obtained using an average case from offline-profiling. 
Depending upon the above three parameters a weighting factor ( CIω ) is computed for each CI. It 
represents the relative contribution of a CI (compared to other CIs) for the accelerated execution of a hot 
spot. To calculate CIω , the time line is partitioned into multiple slots, each equal to the reconfiguration 
time of a Data Path. Since the performance of a CI may only change after a reconfiguration is completed, 
the number of CI executions (#CIExecTSi) is computed for each time slot TSi independently. Similarly, CIs 
executing in the earlier time slots have more weight than the later ones in the same hot spot (denoted by 
FactorTSi). Considering there are �n� time slots, CIω  of a CI �X� can be computed as shown in Eq. 5.10. 

 
1

( ) (# * )ω
=

=∑ n

CI TSi TSi
i

X XExec Factor  (5.10) 

An example can be found in the Motion Estimation hot spot of the H.264 encoder that requires two CIs: 
Sum of Absolute Differences (SAD) and Sum of Absolute Hadamard Transformed Differences (SATD). 
In the control flow, first SAD is required and then SATD, therefore the SAD CI has a higher importance 
for the earlier time slots. SATD becomes important in the later time slots. Let us assume that ME is the 
hot spot that is executed next. If only one DPC shall not be used in the current hot spot, but two virtually-
muting candidates are available (containing Data Paths that are beneficial for the Motion Estimation), then 
it may be more beneficial to maintain the Data Path for SAD (i.e., setting it to virtually-muted mode) 
instead of SATD. 

 

Figure 5.14: Calculating the Weighting Factor for Custom Instructions w.r.t. the Application Context 

The complexity for online computation of the CI weighting factors is (# )CIs n×O  per hot spot (�n� is the 
number of virtually-muting candidates, which is bound by #DPCs) with a memory overhead of (# )CIsO  
to store the monitoring data (three 32-bit words per CI). 

5.4.5 Evaluation of Selective Instruction Set Muting 

Figure 5.15 illustrates the box-plot summary (over 408 different experiments of different performance and 
area constraints) of the benefit of using multiple CI muting modes and Selective Instruction Set Muting. 
The comparison is performed between the energy management scheme with one given muting mode (i.e., 
Fully Muting) and Selective Instruction Set Muting (where the decision of Fully or Virtually muting is 
evaluated at run time). Figure 5.15 shows that Selective Instruction Set Muting provides an energy benefit 
of up to 22% (on average 12%). 

Overhead of the Selective Instruction Set Muting Technique: 

The main compute-intensive part of the CI muting technique is the �determineDPVM� function 
(Algorithm 5.2) that determines the DPVM. The energy benefit calculation (in line 8-15, Algorithm 5.2) 
consumes 8.82 nWs, 11.56 nWs, 21.81 nWs for 40 nm, 65 nm, 90 nm, respectively. For �n� virtually-
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muting candidates there are �n(n-1)� energy benefit calculations. For the H.264 video encoder application 
� in worst case � there are at most four candidates. The overall energy overhead of the CI muting 
technique is 105.89 nWs, 138.71 nWs, 261.68 nWs for 40 nm, 65 nm, 90 nm, respectively. However, the 
energy savings of the proposed technique are in multiples of mWs, i.e., more than 105 times bigger. 
Therefore, the energy overhead is negligible compared to the achieved energy savings. 

The worst-case performance overhead of the CI muting technique is 1,356 cycles for the above-
discussed experiments, which is negligible in comparison to the hot spot execution time (<< 1%, 
depending on performance constraints). The CI muting technique is envisioned as executing on a 
Microblaze processor (a soft core provided by Xilinx) that along with monitoring and the reconfiguration 
controller requires only 5,564 slices in the current Xilinx Virtex-4-lx160 FPGA based prototype of the 
RISPP processor. 

Note: the CI muting technique also requires a power-shutdown infrastructure in FPGAs to realize 
energy-aware adaptive computing that incurs additional area overhead. Pika [Te06] (a Xilinx low power 
FPGA research project) states an 8% area increase due to their power-shutdown infrastructure. However, 
they provide one sleep transistor per CLB, while in the envisioned power-shutdown infrastructure (see 
Section 5.2.2) two sleep transistors per DPC are required. Therefore, a much smaller area overhead is 
envisioned. Currently, such infrastructure is not available in today�s commercial FPGAs. It would be far 
more energy efficient if FPGA vendors would provide a basic infrastructure that is necessary to exert the 
proposed CI muting technique. 
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Figure 5.15: Summary of Energy Benefit of using Selective Instruction Set Muting 

Summary of Selective Instruction Set Muting: 

The Selective Instruction Set Muting technique uses various muting modes (requiring a power-shutdown 
infrastructure) that enable leakage energy reduction at the abstraction level of CIs. The CI muting 
technique selects one out of three muting modes for each CI in the unused subset of CIs considering 
leakage as well as reconfigurable energy under run-time varying situations and constraints. The energy 
benefit function is evaluated at run time for each muting candidate which is a joint function of leakage, 
reconfiguration, and dynamic energy. Besides the execution length and requirements of the current and 
the upcoming hot spots, the weighting factors of different CIs (representing their relative contribution) in 
a hot spot are given as the input to compute the benefit of a particular muting mode. These weighting 
factors are determined by considering the expected execution frequency of CIs, the time from the start of a 
hot spot until their first execution, and the average time between two executions of the same CI. The 
experimental evaluation for various fabrication technology nodes corroborate the potential for far higher 
energy savings of dynamically reconfigurable processors which currently still suffer from a low efficiency 
as far as energy is concerned. 
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5.5 Summary of Adaptive Low-Power Reconfigurable 
Processor Architecture 

Once the energy requirements are reduced at the application/algorithm level, processor level energy 
management scheme needs to further trim the overall energy. First, different motivational scenarios were 
analyzed for different performance constraints of the video encoding application to highlight the energy 
reduction potential. Afterwards, a run-time energy management scheme is introduced. This scheme 
employs the novel concept of instruction set level muting that raises the abstraction level power-shutdown 
to the instruction set architecture. By doing so, it provides a much higher potential for energy reduction. 
Different muting modes are proposed considering a power-shutdown infrastructure that supports the 
independent shutdown control of the Logic and Configuration SRAM of the reconfigurable fabric. In the 
first step, the energy management scheme determines the energy minimizing instruction set while 
exploring the tradeoff related to the leakage, dynamic, and reconfiguration energy under run-time varying 
scenarios of performance and area constraints. It evaluates that for a given scenarios, whether it is 
beneficial to reconfigure more in order to meet the performance constraint, or it is beneficial to mute the 
CIs to reduce leakage. Afterwards, it determines the temporarily unused subset of CIs that are the possible 
muting candidates. Considering the area requirements of the currently executing and upcoming hot spots, 
the energy management scheme uses a Selective Instruction Set Muting technique to determines an 
appropriate muting mode for each CI. The benefits of determining the energy minimizing instruction set 
(i.e., exploiting the tradeoff of leakage, dynamic, and reconfiguration energy) and the Selective Instruction 

Set Muting are individually evaluated in Section 5.3.3 and Section 5.4.5, respectively. The evaluation is 
performed for different performance constraints and resolutions, while considering various fabrication 
technologies in order to demonstrate the technology independent efficiency of the proposed energy 
management scheme. This scheme is the key to realize an adaptive low-power reconfigurable processor 
architecture. 
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Chapter 6 Power Measurement of the 

Reconfigurable Processors 

This chapter presents the details of building the power model described in Section 3.4 (page 45). This 
power model is employed for power estimation, which is then used for the run-time adaptive energy 
management in reconfigurable processors (Chapter 5) and energy estimation for the adaptive low-power 
video encoding (Chapter 4). Section 6.1 presents the power measurement setup. Section 6.2 discusses the 
flow for creating the power model and parameter estimation. It further describes the procedure and 
different test cases for measuring the power of a complete Custom Instruction Implementation Version 
and different constituting components (i.e., computation, communication, and memory). Results for 
different measurements and estimated power are presented in this section. Section 6.3 presents the 
procedure and results for measuring the power of the reconfiguration process. 

6.1 Power Measurement Setup 

Figure 6.1a shows the power measurement environment which is developed in the scope of this thesis. It 
consists of a power supply board (Figure 6.1b), two Agilent oscilloscopes (MSO6032A, and MSO6054A), 
a Xilinx Virtex-II v6000 FPGA (at 50 MHz and 1.5 V VCCINT) based prototyping board (Figure 6.1c), 
and a control program (running on a PC) for capturing the measurements from the oscilloscopes. Two 
oscilloscopes are used to simultaneously measure two different entities (e.g., FPGA and external 
memory). Precise measurement resistors of R=1.0 ȍ are used. The voltage drop is measured across the 
two ends of a resistor using oscilloscopes as V=V2-V1 and the current flowing through this resistor is 
obtained using I=V/R formula. Here V1 is the input voltage to the FPGA. The overall power consumption 
is P=IV1. 

Control 
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Xilinx FPGA
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xc2v6000

Cable for the Triggering and Control 
Signals and the measurement data

Agilent 
MSO6054A 

Oscilloscope

1 Ω

1.5 V

V1V2

Agilent 
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Oscilloscope

(b)(a) (c)
 

Figure 6.1: a) Measurement setup, b) the in-house Developed Power Supply board 

Power supply board: to accurately measure the power consumption of FPGAs, a power supply board 
(Figure 6.1b) is developed that supplies power to the FPGA prototyping board (Figure 6.1c). This power 
board has several functions: 

• The voltage converters transform the input voltage (12V) from the DC source to the desired 
voltages (VCCINT, VCCAUX, VCCI/O for the FPGA and voltages for peripherals) 

• The fuses protect against the high current and the switching relays are activated only when all 
voltages are on 

• The resistors measure the voltage drops at the output plugs 

Agilent Oscilloscopes and VISA interface: The maximum sampling rate of MSO6032A and 
MSO6054A oscilloscopes are 2 and 4 GSamples/sec, respectively, which is sufficient for the 
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measurement. Both oscilloscopes support the VISA interface, which is an API for electronic control 
devices. It allows to send commands to the oscilloscopes and/or to receive data from the oscilloscopes. 
The Agilent IO Library (software) is used to create the control software (using Microsoft .Net 
Framework) for the oscilloscopes. Most of the functions performed with the knobs are also realized via 
VISA. This enables automation of the measurement process. 

6.2 Measuring the Power of Custom Instructions 

In this section, the flow for creating the power model is presented. Different test cases for measuring the 
power of different components are discussed. Afterwards, results for power measurement are presented. 

6.2.1 Flow for Creating the Power Model 

Figure 6.2 shows the flow to build the power model for CI Implementation Version. First, the HDL code 
of different Data Paths and Implementation Versions is synthesized with Xilinx Synthesis Technology 
(XST) [Xil10a]. Afterwards, Mapping, Place & Route, and Assemble are done using Xilinx PlanAhead 
with the Early Access Partial Reconfiguration (EAPR) tool flow [Xil05] to obtain full and partial 
bitstreams. The partial bitstreams are then uploaded on the FPGA and power is measured for different 
Data Paths and Implementation Versions (see details in Section 6.2.2). 

 

Figure 6.2: Flow for Creating the Measurement-based Power Model 

As discussed in Section 3.4 (page 45), to estimate the dynamic power consumption of an executing CI 
Implementation Version (PCI_dyn), the following needs to be considered: 

• The types of Data Paths and how often they are executed. 
• The number of write/read accesses on the local memory. 
• The number of bus segments necessary for communicating the intermediate results 

Based on the analysis (Figure 6.3), the dynamic power of a CI Implementation Version is modeled as: 

 PCI_dyn = Į*PDataPath + ȕ*PSegBus + Ȗ*PMemory + į (6.1) 

Į, ȕ, Ȗ, į are model coefficients. į accounts for the measurement noise. PDataPath, PSegBus, and PMemory are the 
average power consumption of a Data Path, a bus segment, and a single read or write operation, 
respectively (see details in Section 3.4). The model coefficients Į, ȕ, Ȗ, and į are estimated on Matlab 
using the Simulated Annealing algorithm (Tcool = 0.8T, Tstop = 10-12, Eallowable = 5%, and maximum 
consecutive rejections = 104) and trained with a set of measured power values (see Table 6.4 in Section 
6.2.3 for the final estimated values). Tcool is the cooling temperature that determines the temperature of the 



6.2 Measuring the Power of Custom Instructions 

- 121 - 

next iteration of the algorithm. Tstop is the temperature where the algorithm stops iterating and output the 
coefficients. Training is done by minimizing the difference error between the estimated (model-generated) 
and the measured power values of an Implementation Version for a given maximum error Eallowable (5% in 
this case). The finalized model coefficients are then fed into the power model, which is then used for 
estimating the energy consumption of various CI Implementation Versions at run time. 

Since the power can only be measured for the complete FPGA, in order to determine the power of the 
individual parameters (i.e., Data Path, segmented buses, and local memory) and the complete 
Implementation Version, several test cases are devised which are explained in the following. 

6.2.2 Test Cases for Power Measurements 

First, the computation- and communication infrastructure (Figure 3.7, Section 3.4.1) is extended with a 
signal generator to realize a measurement framework. The power consumption of signal generator and 
leakage are surplus to the actual power consumption of an Implementation Version, thus, considered as 
the base offset (see test case 1, Figure 6.3). The buses and the local memory consume energy only in case 
a toggle happens due to, e.g., a Data Path writes a new value into the local memory of its Bus Connector. 

Put Zero 
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Test Case 1) Empty Framework

Data Path 
Container

(reconfigurable)
scaled down for 

clarity

Bus Connector
(non-reconfigurable)

 

Figure 6.3: Test Case and Setup for Measuring the Power of An Idle (Empty) Framework 

Test Case 1) Measuring power of the idle measurement framework (PTestCase1): As discussed above, 
for a base offset, the power of the idle framework (PTestCase1) is measured such that all DPCs contain 
blank bitstreams (i.e., a DPC is reconfigured to do nothing) and �0� value is transmitted on the bus 
segments. No writing to the local memory is performed. In this test case, the power consumption is 
mainly due to leakage and signal generator. 

Test Case 2) Measuring power of a Data Path (PDataPath): The dynamic power of a Data Path depends 
upon its type. To obtain the power of a Data Path, only one DPC is reconfigured to contain a 
particular Data Path and all other DPCs contain blank bitstreams (see Figure 6.4). The output of the 
Data Path is not stored in the local memory. The average power of one Data Path is obtained as: 
PDataPath = PTestCase2 � PTestCase1. Numerous measurements are performed with varying stimulus to 
obtain the power of all Data Paths as used in the final experiments (see Table 6.2 in Section 6.2.3). 

Test Case 3) Measuring power of the Local Memory (PMemory): Two different tests are performed for 
measuring the power consumption of the local memory: 

a) Write to the local memory (see Figure 6.4): this test extends the test case 2 by writing the output 
of a Data Path into the local memory. The power of a write operation into the local memory is: 
PWriteMem = PTestCase3a � PTestCase2 

b) Read from the local memory (see Figure 6.4): This test extends the test case 3a by writing the 
content of the local memory to a bus segment. The power of a read operation from the local 
memory is: PReadMem = PTestCase3b � PTestCase3a 
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Note, reading from a local memory causes toggles in the multiplexers of the Bus Connector and in the 
bus segment to which its contents are written. The power due to both types of toggles is considered as 
the power of one read from the local memory. 

Test Case 4) Measuring power of a Bus Segment (PSegBus): As discussed in Section 3.4, the 
communication power depends upon the number of bus segments, which directly depends on the 
relative placement of the communicating Data Paths on the reconfigurable fabric. In this test, the values 
from the local memory are written to one particular bus segment and �0� value is written to the other 
bus segments towards right to avoid toggles. To get the power of a bus segment, the test case 3b is 
extended such that the placement of a particular Data Path is shifted towards one DPC right and the 
difference of two measurements gives the power of one bus segment as: PBusL2R = (PTestCase3b)DPC_N+1 � 

(PTestCase3b)DPC_N. The average of several tests for different Data Path placements provides a more stable 
power value for a bus segment. 
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Figure 6.4: Different Test Cases for Measuring the Power of Different Components 

of a Custom Instruction (CI) Implementation Version 

The measured power of Data Paths, local memory, and bus segments are used in the power model to 
estimate the power consumption of a CI Implementation Version. However, to tune the coefficients of the 
model and for model verification, several experiments were performed to measure the complete power of 
different Implementation Versions. 

Test Case 5) Measuring power of a complete CI Implementation Version (PCI_ImpVersion): The 
bitstreams of all Data Paths of an Implementation Version are reconfigured and the control signals 
determine the communication between these Data Paths. The power is measured for the complete 
execution of the Implementation Version. For an Implementation Version with latency L, the per cycle 
average power is computed as: PCI_ImpVersion = PTestCase5/L � PTestCase1. Since there are several Data Paths 
processing in parallel, there might exist many Data Path placement combinations, i.e., a Data Path can 
be placed in one out of many DPCs and with increasing number of Data Paths the number of possible 
placement combination increases. An example of two Transform Data Paths is shown in Table 6.1 that 
was used in the measurement experiments. Each combination has different power consumption due to 
different amount of bus segments used. Therefore, different measured power values are used to tune 
the corresponding estimated power values for the same CI Implementation Version. 

1
st
 Transform Data Path at 2

nd
 Transform Data Path at 

DPC 2 DPC 3 DPC 4 DPC 5 DPC 6 DPC 7 

DPC 3  DPC 4 DPC 5 DPC 6 DPC 7 

DPC 4   DPC 5 DPC 6 DPC 7 

DPC 5    DPC 6 DPC 7 

DPC 6     DPC 7 

Table 6.1: Different Placement Combinations of two 

Transform Data Paths for Power Measurement 
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6.2.3 Results for Power Measurement and Estimation 

Table 6.2 shows the measured power results for different Data Paths and Implementation Versions. These 
power values are used for tuning the model coefficients (Į, ȕ, Ȗ, į, see Table 6.3 for finalized values) and 
verification of the power model (Section 3.4, page 45). The reconfiguration power and time is obtained by 
measurements (see Section 6.3 for details of the power measurement procedure). Note, differently sized 
Data Paths may require different reconfiguration time due to their varying bitstream sizes. 

Table 6.4 presents the power consumption and latencies of different Implementation Versions for two 
different cases of total DPCs at 40 nm (Virtex-6) and 65 nm (Virtex-5) technologies. It is notable that the 
power consumption of Implementation Versions on 40 nm is lesser than that on 65 nm due to the low-
power architectural improvements in Virtex-6 [Kle10]. 

Data Path 
Power 

[mW] 

 
Data Path 

Power 

[mW] 

Implementation Version: 

HT4x4 (Repack in DPC0) 

Power 

[mW] 

Clip3 15.9 SADrow 28.2 Transform in DPC2* 178.9 
PointFilter 55.4 SAV 25.1 Transform in DPC4* 180.8 
LF_4 57.9 Transform 64.9 Transform in DPC6* 185.1 
Cond 13.1 QuadSub 24.1 Bus_Power (Pbus)** 3.4 
CollapseAdd 19.7 Repack 14.4 Mem_Power (PRW) 28.3 

Table 6.2: Measured Power Results for Various Data Paths & HT4x4 Implementation Versions 

[* showing the effect of changing communication requirements, ** power for a single toggling bus 

segment; many bus segments are used for communication to realize an Implementation Version] 

 

Attribute Value Attribute Value 

Į 1.2387 į 0.0911

ȕ 0.4699 Ȗ 0.8165

Table 6.3: Parameters of Power Model for the CI Implementation Versions 

 

Functional 

Block 

Custom 

Instruction 

Data 

Paths 

Using 4 DPCs Using 20 DPCs 

Latency 

[Cycles]

Power [mW] Latency 

[Cycles] 

Power [mW] 

40 nm 65 nm 40 nm 65 nm

Motion 

Estimation 

(ME) 

SAD16x16 SADrow 68 47.35 67.21 41 59.76 84.39 

SATD4x4 
QuadSub, Transform,

Repack, SAV 
93 13.87 19.68 29 57.24 81.72 

Motion Compen-

sation (MC) 
MC_Hz_4 

PointFilter, Repack, 
Clip3 

10 52.00 74.00 10 58.75 83.75 

Intra Prediction 

(IPred) 

IPred_HDC CollapseAdd, Repack 130 7.46 10.54 130 7.46 10.54 

IPred_VDC CollapseAdd, Repack 53 4.00 5.28 53 4.00 5.28 

(Inverse) 

Transform 

(I)DCT4x4 
Transform, Repack,

(QuadSub) 
102 9.51 13.43 20 62.00 88.00 

(I)HT_2x2 Transform 2 50.00 70.00 2 50.00 70.00 

(I)HT_4x4 Transform, Repack 16 60.00 85.63 15 64.67 92.00 

In-loop 

Deblocking Filter 

(LF) 

LF_BS4 Cond, LF_4 10 52.00 74.00 10 52.00 74.00 

Table 6.4: Power Consumption and Latencies of Different Implementation Versions (using 

Different Amount of DPCs) for Various Custom Instructions for 65 nm and 40 nm Technologies 
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6.3 Measuring the Power of the Reconfiguration Process 

The smallest reconfigurable unit in a Xilinx FPGA (Virtex family) is a so-called frame [Xil05]. A Data 
Path Containers (DPCs) is composed of multiple frames. Due to technological reasons, DPCs are typically 
of rectangular shapes. The power measurements are performed using a Virtex-II FPGA where a frame 
covers the complete height of the FPGA. Therefore, the DPC consists of multiple Configurable Logic 
Block (CLB) columns32. Before performing a reconfiguration, the configuration data of the corresponding 
frames is read. Afterwards, the parts of the configuration data corresponding to the region(s) under 
reconfiguration are modified accordingly. In the last step, the frames are written back. Doing so assures 
the consistency of the static part and the other un-altered reconfigurable parts within the frames, when 
compared to their previous configuration. 

For reconfiguring the DPCs, a dedicated Reconfiguration Controller IP core is developed ([Bau09]), 
which is connected to the MicroBlaze. It reads the partial bitstreams from an external EEPROM 
(KFG5616 32 MB OneNAND from Samsung [Sam05]), buffers data in a FIFO for burst transfer, and 
streams the data to the Internal Configuration Access Port (ICAP) of the FPGA for reconfiguration. 
Figure 6.5 shows an abstract diagram of this connection. Buffering is done because that the maximum 
data that can be continuously read in the burst read mode is one 1KB memory page, which is much 
smaller than the size of a bitstream. As a result, the bitstream cannot be completely sent to ICAP in a 
burst, which does not comply with the input requirements of the ICAP. The MicroBlaze starts the 
reconfiguration by providing the starting address and length of a particular Data Path�s bitstream in the 
external EEPROM. A checksum of the reconfigured bitstream is returned. After the MicroBlaze triggered 
a reconfiguration, the FIFO is filled with data from the EEPROM (Figure 6.5). When the FIFO contains 
sufficient data to assure a continuous 50 MB/s burst to the ICAP of the FPGA, the data is sent from the 
FIFO to the ICAP port. The ICAP is operated at 50 MHz (same frequency as for the core pipeline and the 
MicroBlaze). The EEPROM delivers the remaining parts to the FIFO in parallel to the running 
reconfiguration. Due to the initial buffering (until sufficient data is available to perform a continuous 50 
MB/s burst afterwards), the effective reconfiguration bandwidth for the whole process is 36 MB/s. 

To measure the power consumption of the EEPROM and the reconfiguration via ICAP, a Data Path 
bitstream of 40 KB size is transferred from EEPROM to ICAP through the Reconfiguration Controller. Both 
oscilloscopes are used to simultaneously measure the power consumption of EEPROM and the FPGA. 

 

Figure 6.5: Connection of FIFO between EEPROM and ICAP 

6.3.1 Power Consumption of EEPROM 

Figure 6.6 (a) shows the measured signals while loading the bitstream of a Data Path from EEPROM to 
the FPGA. The V2 (yellow) and V1 (green) colored analog signals illustrate the voltage before and after a 
measurement resistor (1 Ω), respectively. This measurement resistor is connected with the EEPROM in 
series and thereby its current goes further to the EEPROM. As a result, the value of current through the 
EEPROM and the measurement resistor is identical. The analog signal (line in the purple color) indicating 

                                                      
32 In the latest Virtex families (Virtex-4 and later), a frame does not span over the full FPGA height. 
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the voltage drop across the measurement resistor is computed by taking the difference between the V2 and 
V1 signals. The average value of current flowing through the measurement resistor is: I = 25 mV / 1 Ω = 

25 mA. The input voltage to the EEPROM (i.e., after the resistor) is measured as 3.26 V. Therefore, the 
corresponding power consumption is: P = 3.26 V * 25 mA = 81.6 mW. 

V2

V1

V2 �V1ICAPEn

FIFOWrEn

(a) (b)  

Figure 6.6: (a) EEPROM Voltage Drop while Loading one Data Path Bitstream from EEPROM 

to FPGA. (b) VCCINT Voltage Drop for Transferring one Data Path Bitstream to ICAP 

and Performing the Corresponding Reconfiguration 

6.3.2 Power Consumption of the Reconfiguration via ICAP 

Figure 6.6 (b) illustrates the measured signals for transferring the bitstream of a Data Path to the ICAP 
and performing the corresponding reconfiguration. The analog signals indicate the voltage drop of the 
measurement resistor, which is connected with the FPGA in series. Moreover, the digital signals for the 
write enable of the FIFO (red-line digital signal) and the write enable of the ICAP (blue-line digital 
signal) are also shown in Figure 6.6 (b). The time for loading and reading bitstream from EEPROM is 
indicated by the write enable of FIFO. The ICAP write enable becomes high after sufficient data is loaded 
in the FIFO and it indicates the operating time of ICAP, namely the time for reconfiguration. The average 
voltage drop of the measurement resistor is 375.2 mV and the average current flowing through the 
measurement resistor is: I = 375.2 mV / 1 Ω = 375.2 mA. The input voltage to the FPGA is measured as 
1.43 V, thus the power consumption is: P = 1.43 V * 375.2 mA = 536.5 mW. The power of the idle setup 
is 382 mW; thus, the actual reconfiguration power (PDPC_reconf) is 236 mW (536.5+81.5-382=236). 

6.4 Summary of the Power Measurement of the Reconfigurable 
Processors 

The power model proposed in this thesis (see Section 3.4) is based on power measurements. To perform 
power measurements, a setup is designed and implemented that consists of a power supply board, two 
Agilent oscilloscopes, a Xilinx Virtex-II v6000 FPGA based prototyping board, and a control program for 
capturing the measurements from the oscilloscopes. To build a power model, the HDL code of different 
Data Paths and Implementation Versions was synthesized and implemented using the Xilinx tool chain 
with the Early Access Partial Reconfiguration tool flow. The resulting bitstreams were uploaded to the 
FPGA board and power consumption was measured for various input stimuli. In order to measure the 
power consumption of different components (i.e., Data Paths, communicating buses, local memory 
accesses), various test cases were devised. The measurements are used to train the model and evaluate the 
estimation accuracy. The reconfiguration power is measured by measuring the power consumption of the 
EEPROM (containing the configuration bitstreams) and the Internal Configuration Access Port (ICAP). 
The Data Path bitstream is transferred from the EEPROM to the ICAP through a reconfiguration 
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controller. The reconfiguration energy mainly depends upon the amount of configuration data and the 
reconfiguration bandwidth. To simultaneously measure the power of both EEPROM and the ICAP, two 
oscilloscopes were deployed. The reconfiguration power measured is in the range of 236 mW. 
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Chapter 7 Benchmarks and Results 

In this chapter, the adaptive low-power application and processor architectures are benchmarked. The 
evaluation and analysis of the individual parts of the proposed adaptive low-power application and 
processor architecture are already presented in Chapter 4 and Chapter 5, respectively. The first section 
will provide benchmarks for different algorithms at the Mode Decision and Motion Estimation levels for 
realizing adaptive low-power video coding. These algorithms are compared with different state-of-the-art 
fast and adaptive approaches. This section additionally provides the comparison with the exhaustive Rate 

Distortion Optimized Mode Decision (RDO-MD) and exhaustive search algorithms to benchmark against 
the optimal quality as it is typically done by the related work, too. The second section benchmarks the 
adaptive low-power reconfigurable processor architecture (with energy management scheme) against 
state-of-the-art reconfigurable processor. The following two different types of dynamically reconfigurable 
processor architectures are considered for comparison. 

1. Dynamically reconfigurable processors that target at maximizing the performance for a given amount 
of reconfigurable fabric area. Kindly see Section 7.3.1 for comparison with architectures supporting 
monolithic Custom Instructions (CIs) and see Section 7.3.2 for comparison with architectures 
supporting modular CIs. 

2. Dynamically reconfigurable processors with the support of hardware-oriented shutdown techniques 
for leakage power reduction monolithic CIs (see comparison in Section 7.3.3). 

Both of these approaches are provided with the same set of low-power Custom Instructions (CIs) and 
Data Paths (see Section 4.2, page 57) as they share the same CI model for accelerating the applications. 
For processor level benchmarking the complete H.264 video encoder is used, as the intricate processing 
behavior of the H.264 video encoder represents the increasing complexity of modern embedded 
multimedia applications. It exhibits different computational intensive parts (SAD for Motion Estimation, 
DCT, CAVLC, filters for Motion Compensation and Deblocking, etc.) that supersede the complexity of 
conventional benchmark applications in the benchmark suites (like MiBench [GRE+01] and MediaBench 
[LPMS97]). The evaluation is performed for various fabrication technologies ranging from 40 nm to 150 
nm (considering the reconfigurable fabric structure of Xilinx FPGAs, i.e., Virtex-II, 4, 5, 6). 

7.1.1 Simulation Conditions and Fairness of the Comparison 

For energy estimation, simulations are performed using the RISPP simulator extended with the proposed 
energy-management system (see Chapter 5) and power estimation methodology (see Section 3.4 and 
Chapter 6). Kindly refer to the Appendix B for further details on the simulation environment for the adaptive 
low-power reconfigurable processors. For video quality testing, algorithms� functional verification, and 
checking the standard compliance, the simulations are performed using the JM13.2 software of H.264 video 
encoder [JVT10]. For evaluation and validation of several QCIF and CIF video sequences (low to fast 
motion) [Ari08, Xip10] are encoded with different QPs (12, 16, 20, 24, 28, 32, 36, and 40) and bit rates. 
Common test conditions are: IPPP GOP (Group of Pictures) type, 1 reference frame, search range = 16. 
Note: all energy saving results include the overhead of the corresponding algorithm and the computation of 
video statistics. Moreover, all results include the leakage and dynamic energy consumption. 

State-of-the-art techniques for different functional blocks of the H.264 video encoder were carefully 
implemented and simulated and their results were verified with their corresponding papers. Kindly note 
that several implementations were already available in the JM13.2 software.  

Comparing state-of-the-art with the processor-level contribution is not straightforward. As discussed 
in Chapter 5, state-of-the-art approaches employ hardware-oriented shutdown, which has a different 
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abstraction level for shutdown decision compared to the proposed energy management scheme with the 
Selective Instruction Set Muting technique (i.e., an instruction set oriented shutdown). In order to provide 
a fair comparison, the hardware-oriented shutdown concepts of [Ge04] and [MM05]33 (i.e., 
predetermining the components of DPCs that can be shutdown at run time) were deployed carefully to 
realize two predetermined muting modes as follows: 

a. Predetermined Virtually Muting (Pre-VM) technique based on the hardware-oriented 
shutdown of [Ge04]: it always puts the temporarily unused CIs into virtually-muting mode as the 
hardware-oriented shutdown of [Ge04] only supports switching-off of Logic and it always keeps 
the Configuration SRAM powered-on. 

b. Predetermined Fully Muting (Pre-FM) technique based on the hardware-oriented shutdown of 
[MM05]: it always puts the temporarily unused CIs into fully-muting mode as the hardware-
oriented shutdown of [MM05] supports the combined switching-off of both Logic and 
Configuration SRAM. 

In the following, the energy consumption comparison of the above-mentioned techniques will be 
presented for given performance constraints, such that in these particular scenarios, all techniques meet 
their performance constraints. Different performance constraints correspond to changing application 
contexts (like a change in the frame rate of the video coding). For further fairness of comparison, the same 
set of low-power CIs and Data Paths (see Section 4.2) is provided to all techniques. Therefore, the results 
reflect solely the impact when applying the proposed energy management scheme to realize an adaptive 
low-power reconfigurable processor architecture. 

7.2 Adaptive Low-Power Application Architecture 

In this section the Adaptive Computational Complexity Reduction Scheme (see Section 4.4, page 69) and 
the energy-aware Motion Estimation with the integrated energy-budgeting scheme (see Section 4.5, page 
77) are compared individually with different state-of-the-art to demonstrate their individual energy 
benefit. Note, these two schemes are the key contribution of this thesis to realize an application 
architecture for adaptive low-power video coding. In Section 7.3, the complete H.264 video encoder will 
be deployed as an application to evaluate the adaptive low-power reconfigurable processor architecture. 

7.2.1 Comparing Complexity Reduction Scheme to State-of-the-art and the 
Exhaustive RDO-MD 

The proposed Adaptive Computational Complexity Reduction Scheme (ACCoReS, Section 4.4) is 
compared to several state-of-the-art fast RDO-MD schemes for quality (a positive ∆PSNR shows PSNR 
loss) and energy reduction using similar coding conditions. Figure 7.1 shows that, compared to state-of-
the-art approaches [JC04, KC07, PC08, SN06, Yu04], ACCoReS achieves up to 82% (average 56%) 
higher energy reduction at the cost of an average PSNR loss of 0.66 dB. The maximum energy saving of 
ACCoReS is achieved for the Paris sequence when compared to the approaches of [JC04] and [Yu04]. It 
is due to the fact that the approach of [JC04] processes on average 5 out of 7 block types, while the 
approach of [Yu04] only considers mode correlation in the previous video frame. The significant energy 
saving of ACCoReS comes from the Prognostic Early Mode Exclusion and Hierarchical Fast Mode 
Prediction that curtails the set of candidate coding modes for further evaluation. This energy saving comes 
at the cost of a PSNR loss of up to 1.3dB (average 0.66dB). However, this loss is mainly at the PSNR 

                                                      
33 these approaches [Ge04, MM05] are considered for the comparison as they are the closest to the proposed 

technique in terms of shutdown options for different components of the fabric, thus representing a fair 
comparison. 



7.2 Adaptive Low-Power Application Architecture 

- 129 - 

value of more than 40dB. It is worthy to note that, subjectively a loss of 1dB is hard to be noticed by the 
human eye in case the overall PSNR is more than 40-45 dB [GW02, Pra01, WOZ02].  
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Figure 7.1: Comparing the Energy Savings and Quality Loss of the ACCoReS 

with Several State-of-the-Art Fast Mode Decision Schemes 

Figure 7.2 and Figure 7.3 show the energy savings and the quality loss of ACCoReS compared to the 
exhaustive RDO-MD (that provides the optimal quality) for various bitrates. The quality loss for CIF 
sequences is less than 2.5%, while for QCIF sequences the quality loss is less than 5%. On average, the 
quality loss of ACCoReS is 1.38% and 1% for CIF and QCIF sequences, respectively. However, the average 
energy savings of ACCoReS are 63.27% and 66.74% for CIF and QCIF sequences, respectively. Figure 7.2 
shows that the highest energy savings (more than 70%) are achieved for Susie and Hall sequences which are 
slow motion sequences. In contrast, the lowest energy savings are achieved for the American Football 
sequence which a fast motion sequence. Still, in this case, the energy savings are more than 50%. It is 
worthy to note that, in some QCIF cases (like Akiyo and Container), ACCoReS achieves a better PSNR. It is 
mainly due to the Macroblock based prioritization step in the Rate Control (see Appendix A.2). 
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Figure 7.2: Energy Savings and Quality Loss of the ACCoReS compared to the 

Exhaustive RDO-MD for CIF Resolution Video Sequences 
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Figure 7.4 shows the Rate-Distortion (R-D) curves of ACCoReS and the exhaustive RDO-MD. It 
demonstrates the quality loss of ACCoReS compared to the optimal video quality at a certain given 
bitrate. It can be noticed in Figure 7.4 that for slow to medium motion sequences (Akiyo, Container, and 
Susie) the achieved quality of ACCoReS is close to that of the exhaustive RDO-MD. However, for the fast 
motion sequence (American Football), ACCoReS suffers from a PSNR loss of up to 5.7%. It is worthy to 
note that this PSNR loss occurs at the PSNR values of more than 40-45 dB. As discussed above, these 
discrepancies are insignificant as it is hard for a human eye to subjectively recognize a PSNR loss for the 
encoded videos having PSNR above 40-45 dB [GW02, Pra01, WOZ02]. Mostly, ACCoReS achieves a 
much closer R-D as compared to exhaustive RDO-MD. 
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Figure 7.3: Energy Savings and Quality Loss of the ACCoReS compared to the 

Exhaustive RDO-MD for QCIF Resolution Video Sequences 
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Figure 7.4: Comparing the Rate Distortion Curves for QCIF and CIF Sequences 

Figure 7.5 presents the evaluation of the proposed ACCoReS for a power-aware test on a laptop (Intel 
Core2Duo T5500, 1.66 GHz) using its battery status. The Mobile test video sequence is encoded at 
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512kbps@30fps. Depending upon the current battery status, different states of the ACCoReS (i.e., 
Prognostic Early Mode Exclusion, Section 4.4.1, and Hierarchical Fast Mode Prediction, Section 4.4.2) 
are activated or deactivated. First the battery of the laptop is fully charged and then disconnected from the 
power outlet for the encoding test. Note after every 300 frames, there is a scene cut, where a sudden 
PSNR drop occurs, although relatively more modes are evaluated in this case. Kindly note that most of the 
evaluated modes are Intra modes, thus the number of SAD computations are dropped also in the 
corresponding frames (see red circles in Figure 7.5 corresponding to the scene cuts). The PSNR drop is 
mainly due to the high amount of prediction error even in case of Intra Prediction (i.e., I-MB modes) and 
for a given bitrate this corresponds to a PSNR loss. As the battery level decreases to less than 25%, only 
aggressive exclusions are performed and only one mode per Macroblock is evaluated. When the battery 
status reaches 10%, the battery is charged again for a short time (see Figure 7.5) to demonstrate the quick 
response of ACCoReS. In this case ACCoReS switches to a high quality mode where relaxed decisions 
are taken and the Hierarchical Fast Mode Prediction is deactivated to maintain a good video quality. This 
experiment demonstrates the quality versus energy consumption tradeoff of the ACCoReS scheme. 
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Figure 7.5: Power Test with a Real Battery using Mobile Sequence 

7.2.2 Comparing the Energy-Aware Motion Estimation with Integrated Energy 
Budgeting Scheme to State-of-the-art 

In the following, the proposed energy-aware Motion Estimation with the integrated energy-budgeting 

scheme (see Section 4.5, page 77) is compared to three benchmark Motion Estimators, i.e., 
Unsymmetrical-cross Multi-Hexagon-grid Search (UMHexagonS) [CZH02], simple UMHexagonS 

[YZLS05], and Enhanced Predictive Zonal Search (EPZS) [Tou02] for energy and video quality (PSNR) 
using various video sequences [Ari08, Xip10]. The following experiments are performed using a bitrate of 
256 kbps.  

Summary of Two Battery States: Figure 7.6 shows the summary of the energy saving of the proposed 
energy-aware Motion Estimation compared to the state-of-the-art fast adaptive Motion Estimators. 
The box plot shows the summary of 96 experiments with 12 sequences and two different cases of 
initial battery states (1 Ws and 500 µWs). Figure 7.6 shows that the energy-aware Motion Estimation 
achieves an energy benefit of up to 93%, 93%, 90% (average 88%, 88%, 77%) for UMHexagonS 
[CZH02], UMHexagonS-Simple [YZLS05], EPZS [Tou02], respectively. Even in the worst case, the 
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energy-aware Motion Estimation provides 65% energy savings compared to EPZS. The significant 
energy savings are mainly due to the switching between multiple Energy-Quality Classes depending 
upon the spatial and temporal properties of different Macroblocks (MBs). Although the battery is full, 
the energy is not wasted in case of homogeneous and slow moving MBs, and they are allocated less 
energy quota for the Motion Estimation process. Due to the slow motion properties, the reduced 
Motion Estimation effort and pixel decimation in SAD computation still provides a sufficiently good 
match of the current MB in the reference frame. Therefore, the incurred quality loss for sequences 
with homogeneous and slow moving MBs (see Carphone, Clair, Akiyo in Figure 7.7) is insignificant. 
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Figure 7.6: Summary of Energy Savings of the enBudget Scheme Compared to 

Various Fast Adaptive Motion Estimation Schemes 
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Figure 7.7: Comparing Energy Saving and PSNR Loss of the Proposed Energy-Aware Motion 

Estimation and the enBudget Scheme with Various Fast Adaptive Motion Estimators 

[* negative PSNR loss actually shows the PSNR gain of the Scheme] 

Details for One Battery State (1 Ws): Figure 7.7 presents the detailed energy savings and PSNR loss of 
the energy-aware Motion Estimation compared with state-of-the-art fast adaptive Motion Estimators. 
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The major energy saving comes for low motion sequences (MissAmerica, Akiyo, Clair, and Mobile). 
Note, all the comparison partners are also adaptive Motion Estimators, thus they also react to different 
motion properties using their early termination criteria. However, as discussed earlier, the proposed 
energy-aware Motion Estimation scheme achieves higher energy saving due to the Energy-Quality 

Classes and video properties based downgrade/upgrade of Energy-Quality Classes. In several cases, 
the energy-aware Motion Estimation even achieves higher PSNR due to adaptive energy budget 
allocation, thus more Motion Estimation effort is spent for selective MBs (high texture, high motion). 
In this case, the overall average PSNR is improved. This is visible especially for low motion 
sequences (Clair and Akiyo). Compared to the Full Search Motion Estimator, the energy-aware 
Motion Estimation provides an energy saving of up to 99% at the cost of an average PSNR loss of 
0.29 dB, which is visually insignificant. However, as discussed in Chapter 2 (see Section 2.2.3 on 
page 17), typically the Full Search is only used for video quality comparison. 

7.3 Adaptive Low-Power Processor Architecture 

In this section the Run-Time Adaptive Energy Management Scheme (Section 5.2, page 95) is benchmarked 
which is required to realize an adaptive low-power processor architecture. It determines an energy 

minimizing instruction set (see Section 5.3, page 100) and employs the novel concept of Selective 

Instruction Set Muting (see Section 5.4, page 110). In the following the adaptive energy management 
scheme is compared to different state-of-the-art, considering both with and without Selective Instruction 

Set Muting in order to demonstrate the individual energy benefit of the energy minimizing instruction set 
and Selective Instruction Set Muting. 

7.3.1 Comparing the Adaptive Energy Management Scheme (without Selective 
Instruction Set Muting) to RISPP with Performance Maximization [BSH08c] 
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Figure 7.8: Energy Comparison of the AEM_FM and RISPP_PerfMax schemes for 65 nm 

Figure 7.8 shows the comparison between RISPP (with a performance-maximizing scheme (PerfMax) 34, 
performance is the main optimization goal [BSH08c]) and the proposed adaptive energy management 
scheme when executing the H.264 video encoder at three different performance constraints. In this case, 
the energy management scheme determines an energy minimizing instruction set (that minimizes the 
energy for a given performance constraint) without Selective Instruction Set Muting using various muting 
modes. Rather the muting mode 'Fully Muted CIs' is considered for all unused CIs. Here the purpose is to 
                                                      
34 Note: the power-shutdown is disabled in case of RISPP_PerfMax, as switched-off DPCs lose their configuration data 

and this typically degrades the performance, e.g., when the same Data Paths are needed soon afterwards. Comparison 
with RISPP_PerfMax also demonstrates the performance loss of AEM_FM compared to the peak performance. 
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benchmark the energy management scheme with the energy minimizing instruction set and CI-level 

shutdown in Fully-Muted mode (denoted as AEM_FM for the ease of representation in the figures and the 
corresponding discussion) against the conventional reconfigurable processor approaches that maximize 
the performance. The energy management scheme with Selective Instruction Set Muting using various 
muting modes will be benchmarked in Section 7.3.3 against various hardware-oriented shutdown 
techniques. 

Using the H.264 video encoder application, for 30 fps on 65 nm, AEM_FM achieves an energy saving 
of up to 40.78% (avg. 24.77%) compared to RISPP_PerfMax [BSH08c]. For 35 fps, AEM_FM achieves 
an energy saving of up to 25.06% compared to RISPP_PerfMax. In order to maximize the performance 
RISPP_PerfMax uses more DPCs thus leading to higher leakage and reconfiguration energy (see 
Figure 7.8). However, compared to RISPP_PerfMax, the AEM_FM at 35 fps may suffer from an average 
performance loss of 8%. 

65 nm

200

300

100E
n
e
rg
y

 [m
W
s]

400

90 nm 150 nm

RISPP

PerfMax

AEM_FM

@5fps

0
AEM_FM

@35fps

RISPP

PerfMax

AEM_FM

@5fps

AEM_FM

@35fps

RISPP

PerfMax

AEM_FM

@5fps

AEM_FM

@35fps

Leakage Energy Dynamic Energy

 

Figure 7.9: Average Energy Comparison of the AEM_FM and RISPP_PerfMax for 3 Technologies 

Figure 7.9 shows the breakdown of leakage and dynamic energy averaged over 17 cases of available 
reconfigurable fabric area (i.e., 4-20 DPCs). It can be noted in Figure 7.9 that major savings come from 
leakage energy reduction as a result of the CI-level shutdown. The energy management scheme 
determines the energy minimizing instruction set in such a way that the performance constraint is met, 
while the number of DPCs to be shutdown is also increased to achieve higher leakage reduction. The key 
is to shift the shutdown decision to the CI level such that all temporarily unused CIs are muted (i.e., 
deactivated by an instruction set level shutdown, see Section 5.2.1 and Section 5.2.2). It can be noticed 
that the leakage energy savings at 5 fps is more than that at 35 fps due to an increased number of 
switched-off DPCs.  

7.3.2 Applying the Adaptive Energy Management Scheme (without Selective 
Instruction Set Muting) to Molen [VWG+04] Reconfigurable Processor 
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Figure 7.10: Percentage energy saving of Molen [VWG+04] plus AEM_FM over Molen without 

AEM_FM for three technologies 

In order to validate the applicability and benefits of the proposed adaptive energy management scheme 
with CI-level muting, the energy management scheme has been additionally evaluated for other state-of-
the-art reconfigurable processors (like Molen [VWG+04]) that support the monolithic CI model (see 
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Section 2.3.4). Figure 7.10 shows the energy savings for Molen [VWG+04] with the proposed adaptive 
energy management scheme applied and Molen without the energy management scheme (averaged over 
17 cases of area constraints, i.e., different sizes of the reconfigurable fabric). When compared to Molen 
without the energy management scheme (i.e., maximizing for performance), Molen plus the energy 
management scheme achieves an energy saving of up to 48.65% (average 28.93%) for 30 fps at 65 nm. 
This shows that the proposed adaptive energy management scheme is equally beneficial for various state-
of-the-art reconfigurable processors as well. 

Now, the adaptive energy management scheme with Selective Instruction Set Muting technique (that 
employs various CI muting modes) is benchmarked against different state-of-the-art hardware-oriented 
shutdown techniques. 

7.3.3 Comparing the Adaptive Energy Management Scheme (with Selective 
Instruction Set Muting) to State-of-the-Art Hardware-Oriented Shutdown 

As discussed in Section 7.1.1 and Chapter 5, comparing the proposed energy management scheme with 
state-of-the-art hardware-oriented shutdown techniques [Ge04, MM05] is not straightforward due to a 
different abstraction level of shutdown. Unlike state-of-the-art [Ge04, MM05], the proposed energy 
management scheme employs the Selective Instruction Set Muting technique (i.e., an instruction set 
oriented shutdown). Therefore, for a fair comparison, the hardware-oriented shutdown concepts of [Ge04] 
and [MM05] were deployed carefully to realize two predetermined CI muting techniques: (a) [Ge04]-based 
Predetermined Virtually Muting (Pre-VM) technique, and (b) [MM05]-based Predetermined Fully Muting 
(Pre-FM) technique (see Section 7.1.1 for further details). It is worthy to note that, the components of a 
DPC (i.e., Logic of Configuration SRAM, see Section 2.3.2 and Section 5.2.2) that can be shutdown are 
predetermined at design time in these state-of-the-art [Ge04, MM05], thus the muting mode is fixed for the 
unused CIs. 
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Figure 7.11: Comparing the Energy Breakdown of the Adaptive Energy Management Scheme 

(with Selective Instruction Set Muting) to [Ge04]-based Pre-VM and [MM05]-based Pre-FM 
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Figure 7.11 compares the breakdown of the energy comparison for the proposed energy management 
scheme with Selective Instruction Set Muting and the two predetermined CI muting techniques. Each bar 
is the average value of 170 experiments (17 cases of the reconfigurable fabric area and 10 cases of 
different performance constraints). Figure 7.11 shows that the leakage energy is dominant in the [Ge04]-
based Pre-VM technique due to high SRAM leakage, especially in case of CIF encoding. In contrast to 
this, the [MM05]-based Pre-FM technique reduces the leakage energy by shutting down the SRAM, but 
suffers from significant reconfiguration energy overhead. The proposed adaptive energy management 
overcomes the drawbacks of both of the above techniques by providing multiple CI muting modes and 
selecting an appropriate mode at run time for a temporarily unused subset of CI depending upon their 
predicted muting duration. It overcomes the reconfiguration overhead of Pre-FM by using the virtually-

muting mode for a subset of CIs and eliminates the drawback of Pre-VM by putting the subset of CIs in 
fully-muting mode that are not used for a rather long period (see the details of different muting modes in 
Section 5.2.1 and Section 5.4). Figure 7.11 illustrates that the energy management scheme with multiple 
CI muting modes is superior to both state-of-the-art techniques in all cases. In particular, the benefit of the 
proposed scheme is noticeable in high-resolution encodings due to a rather long muting duration. It is 
worthy to note in Figure 7.11 that the leakage energy of the energy management scheme is slightly lower 
than that of Pre-FM. This is because virtually-muted CIs may bring a leakage reduction due to a faster 
execution35 (as a result of the powered-on Configuration SRAM), which is not the case in the Pre-VM 
technique (see Section 2.3.2). 
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Figure 7.12: Energy Comparison of the Adaptive Energy Management Scheme with [Ge04]-based 

Pre-VM and [MM05]-based Pre-FM Techniques for Varying Amount of Reconfigurable Fabric 

Figure 7.12 shows the energy consumption of the proposed adaptive energy management scheme with 
Selective Instruction Set Muting and the two predetermined CI muting techniques for a varying amount of 
the available reconfigurable fabric (i.e., different number of available DPCs) when encoding QCIF@45fps 
at 65 nm technology. There are two interesting cases in Figure 7.12. The first breakeven point corresponds 
to the 10 DPCs case where the [Ge04]-based Pre-VM technique starts turning noticeably worse than the 
energy management scheme due to the increased leakage of the powered-on Configuration SRAM. The 
second breakeven point corresponds to the 13 DPCs case where the [Ge04]-based Pre-VM technique even 
worsens compared to the [MM05]-based Pre-FM. This shows that the Pre-VM technique is only 
beneficial when rather few DPCs are available. In this case, most of the available DPCs are always used. 
However, in order to meet tighter performance constraints, typically more DPCs are required, and in such 
cases the Pre-VM technique performs inefficiently. In contrast, the proposed energy management scheme 
is beneficial for almost all the cases (see Figure 7.12). The performance constraints and the amount of 

                                                      
35 The larger leakage power does not necessarily lead to larger leakage energy if the execution time is 

correspondingly shorter. 
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available DPCs cannot be predicted at design- and/or compile-time as they depend on run-time specific 
scenarios, like changing application contexts or multi-tasking interactions. 

It is noticeable in Figure 7.12 that the proposed energy management scheme with Selective Instruction 

Set Muting performs always better than the [MM05]-based Pre-FM technique, whereas [Ge04]-based Pre-

VM sometimes performs better. Therefore, Figure 7.13 focuses on further comparisons with Pre-VM, 
showing the energy benefit summary (480 experiments per technology with various combinations of 
available fabric area and performance constraints) of the proposed energy management scheme when 
compared with the Pre-VM technique. Figure 7.13 shows that, compared to the Pre-VM technique, the 
proposed scheme provides on average 41.64%, 43.11%, 33.75%, and 43.52% energy reduction for 40 nm, 
40 nmL, 65 nm, and 90 nm, respectively. When rather few DPCs are available, the Pre-VM technique 
performs better than the proposed scheme as most of the DPCs are always used. However, in most of the 
cases (especially for larger resolutions), the proposed scheme outperforms the Pre-VM technique and 
provides an energy reduction of up to 82%. 
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Figure 7.13: Energy Savings of the Adaptive Energy Management Scheme 

Compared to the [Ge04]-based Pre-VM technique 

It is worthy to note that the adaptive energy management with Selective Instruction Set Muting provides a 
compromise between [Ge04]-based Pre-VM and [MM05]-based Pre-FM techniques. 

7.4 Summary of the Benchmarks and Comparisons 

This chapter presented the benchmarks and evaluation of the proposed adaptive low-power application 
and processor architectures for various video sequences under different coding conditions. The adaptive 
energy management scheme is evaluated for different fabrication technologies under various performance 
and reconfigurable fabric area constraints. Moreover, both application and processor architectures are 
compared to state-of-the-art approaches. 

At the application level, the proposed energy-aware H.264/AVC video encoder is evaluated for 
several video sequences with low to fast motion encoded at different bit rates. The proposed algorithms 
are compared for energy savings and quality degradation. Compared to state-of the-art approaches [JC04, 
KC07, PC08, SN06, Yu04], the proposed adaptive complexity reduction scheme achieves up to 82% 
(average 56%) higher energy reduction at the cost of an average PSNR loss of 0.66 dB. When compared 
to the exhaustive RDO-MD, the proposed complexity reduction scheme provides an average energy 
savings of 63.27% and 66.74% with an average PSNR loss of 1.38% and 1% for CIF and QCIF 
sequences, respectively. The highest energy savings (more than 70%) are obtained for slow motion 
sequences. The proposed energy-aware Motion Estimation with the integrated energy-budgeting scheme 
achieves an energy benefit of up to 93%, 93%, 90% (average 88%, 88%, 77%) for UMHexagonS 
[CZH02], UMHexagonS-Simple [YZLS05], EPZS [Tou02] adaptive Motion Estimators, respectively. The 
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major energy saving comes for low motion sequences (MissAmerica, Akiyo, Clair, Mobile, etc.) due to the 
switching between multiple Energy-Quality Classes depending upon the spatial and temporal properties of 
different Macroblocks. Even at a full battery level, the energy is not wasted for homogeneous and slow 
moving Macroblocks. Alternatively, more energy budget is allocated to the fast moving Macroblocks. 
Due to the slow motion properties, the reduced Motion Estimation effort still provides a sufficiently good 
match of the current Macroblock in the reference frame. Therefore, the incurred quality loss for sequences 
with homogeneous and slow moving Macroblocks is insignificant. 

The proposed adaptive low-power processor architecture with run-time adaptive energy management 
scheme is evaluated for highly flexible Custom Instruction set architectures like in [Bau09, VWG+04]. 
The H.264 encoder is used as the application with various performance constraints and video resolutions. 
Applied to the RISPP architecture with modular CI model, the proposed adaptive energy management 
scheme with CI-level muting achieves an energy saving of up to 40.78% (average 24.77%) for 65 nm at 
the cost of an average performance loss of 8%, when compared to the original RISPP (i.e., having 
performance as the main optimization goal). The proposed adaptive energy management scheme with CI-
level muting is additionally integrated with other state-of-the-art reconfigurable processors (like Molen 
[VWG+04]) with monolithic CI model where it provides an energy saving of up to 48.65% (average 
28.93%) for 30 fps at 65 nm. This shows that the proposed adaptive energy management scheme is 
equally beneficial for various state-of-the-art reconfigurable processors as well. Experiments for different 
fabrication technologies demonstrate the technology independent efficiency of the proposed scheme. The 
adaptive energy management scheme with Selective Instruction Set Muting technique (using multiple CI 
muting modes) is additionally benchmarked against different state-of-the-art hardware-oriented shutdown 
techniques [Ge04, MM05], where it provides on average more than 30% energy savings. 

Overall, the comparison with state-of-the-art and benchmarks for diverse experimental conditions 
demonstrate the superiority of the proposed adaptive low-power processor and application architectures, 
especially under run-time varying scenarios due to changing video properties, available energy resources, 
user-defined constraints, etc. The proposed adaptive energy management scheme with Selective 

Instruction Set Muting is particularly beneficial in applications with hard-to-predict behavior where 
conventional embedded (reconfigurable) processors operate inefficiently with respect to energy/power 
consumption. The results corroborate the potential for far higher energy savings of dynamically 
reconfigurable processors which currently still suffer from a low efficiency as far as energy is concerned. 
At the application level, the novel concept of Energy-Quality Classes and adaptive complexity reduction 
provides a foundation for adaptive low-power video encoding to react to the unpredictable video data in 
an energy-efficient way. Altogether, the proposed processor and application architectures enable adaptive 
embedded multimedia systems with low power/energy consumption to provide means for next-generation 
mobile multimedia applications and emerging multimedia standards. 
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Chapter 8 Conclusion and Outlook 

8.1 Thesis Summary 

This thesis aims at exploiting the available potential of energy reduction in adaptive multimedia systems 
(based on dynamically reconfigurable processors) while meeting the performance and area constraints and 
keeping the video quality degradation unnoticeable, under run-time varying scenarios (due to changing 
video properties, available energy resources, user-defined constraints etc.). To enable this, novel 
techniques for adaptive energy management at both processor architecture and application architecture 

levels are proposed, such that both hardware and software adapt together in order to minimize the overall 
energy consumption under design-/compile-time unpredictable scenarios.  

The key contribution at the processor architecture level is based on the novel concept of Selective 

Instruction Set Muting. Unlike state-of-the-art hardware-oriented shutdown techniques [CHC03, Ge04, 
MM05, Te06], the proposed Selective Instruction Set Muting allows to shun the leakage energy at the 
abstraction level of Custom Instructions (CIs), i.e., an instruction set oriented shutdown. Various so-called 
'CI muting modes' are introduced, each leading to a particular leakage energy saving. This enables a 
dynamic tradeoff between �leakage energy saving� and �reconfiguration energy overhead� considering the 
application execution behavior under run-time varying performance and area constraints (e.g., in a multi-
tasking environment). For dynamically reconfigurable processors, it is hard to predict at compile time 
which parts of the instruction set will be reconfigured on which part of the reconfigurable fabric. 
Therefore, raising the abstraction level of shutdown to the instruction set level provides a new way to save 
energy in dynamically reconfigurable processors by relating leakage energy reduction to the execution 
context of an application. It thereby enables a far higher potential for energy savings that results in a much 
higher energy efficiency for dynamically reconfigurable processors (and reconfigurable computing in 
general). The associated potential energy savings have not been exploited by state-of-the-art approaches 
[CHC03, Ge04, MM05, Te06]. 

Based on the concept of CI muting, an adaptive low-power processor architecture is proposed that 
integrates a novel run-time energy management scheme with dynamically reconfigurable processors. It 
exploits the higher potential for energy savings due to the concept of CI muting with multiple shutdown 
modes and provides a high adaptivity. The energy management scheme investigates the tradeoff between 
leakage, dynamic, and reconfiguration energy for a given performance constraint, thus dynamically 
moving in the energy-performance design space. In the first step, the energy management scheme 
dynamically determines an energy minimizing instruction set under run-time varying performance and 
area constraints considering leakage, dynamic, and reconfiguration energy. Afterwards, it decides which 
subset of CIs shall be muted at what time and in which mode in order to minimize the overall energy. For 
this, the temporarily unused set of the CIs is determined which is the candidate for muting (i.e., power-
shutdown) to reduce the leakage energy. Depending upon the Data Path requirements of the currently 
executing and the upcoming computational hot spots, a particular muting mode is determined for each CI 
by evaluating the possible associated energy benefit (a joint function of leakage, dynamic, and 
reconfiguration energy) at run time. Afterwards, the shutdown signals to the corresponding sleep 
transistors are issued. Note, these decisions may depend upon the number of CI executions that may vary 
at run time due to the application level adaptivity (e.g., changing control flow), changing input data, 
performance constraints, and the execution length of the hot spot. Therefore, the number of actual CI 
executions is monitored at run time. The algorithms for determining the energy minimizing instruction set 
and Selective Instruction Set Muting are explained on a formal basis and evaluated for various fabrication 
technologies. 

To facilitate the adaptive energy management at both processor and application levels, a 

comprehensive power model for dynamically reconfigurable processors (i.e., ASIC-based core Instruction 
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Set Architecture with an embedded FPGA) is developed, which is based on power measurements. The 
proposed power model estimates the power of modular Custom Instructions (CIs) executing on the 
reconfigurable fabric considering run-time choices of multiple CI Implementation Versions. Moreover, it 
can also be used to estimate the power of monolithic CIs that employed by the dynamically reconfigurable 
processors like Molen [VWG+04]. The leakage and dynamic power properties of both the core Instruction 
Set Architecture and the reconfigurable fabric are considered in the power model. The model parameters 
are estimated by performing an optimization using Simulated Annealing for an estimation error of less 
than 5%. The power of a CI Implementation Version depends upon (a) the types of Data Paths and how 
often they are executed, (b) the number of write/read accesses on the local storage, and (c) the number of 
bus segments necessary for communicating the intermediate results; this value depends on the relative 
placement of the communicating Data Paths on the reconfigurable fabric. As the power model is based on 
actual power measurements, a complete power-measurement setup for dynamically reconfigurable 
processors (a power supply board, two oscilloscopes, an FPGA based prototyping board, and a control 
program for capturing the measurements) is implemented and the power of various CI implementation 
versions in hardware is measured. 

The proposed adaptive low-power processor architecture with run-time adaptive energy management 
scheme is evaluated for multiple Custom Instruction set architectures (RISPP [Bau09], Molen 
[VWG+04]) using an in-house developed H.264 encoder application (with various performance 
constraints and video resolutions) and various fabrication technologies. Applied to the RISPP architecture 
that supports the modular CI model, the proposed adaptive energy management scheme with CI-level 
muting achieves an energy saving of up to 40.78% (average 24.77%) for 65 nm at the cost of an average 
performance loss of 8% when compared to the original RISPP (i.e., having performance as the main 
optimization goal). In order to validate the applicability and benefits of the proposed adaptive energy 
management scheme, it has been additionally evaluated for other state-of-the-art reconfigurable 
processors (like Molen [VWG+04]) that support the monolithic CI model. When compared to Molen 
without the energy management scheme (i.e., maximizing for performance), Molen plus the energy 
management scheme achieves an energy saving of up to 48.65% (average 28.93%) for 30 fps at 65 nm. 
This shows that the proposed adaptive energy management scheme is equally beneficial for various state-
of-the-art reconfigurable processors as well. The adaptive energy management scheme with Selective 

Instruction Set Muting technique (that employs multiple CI muting modes) is additionally benchmarked 
against different state-of-the-art hardware-oriented shutdown techniques [Ge04, MM05]. Compared to 
[Ge04]-based technique, the proposed scheme provides on average 41.64%, 43.11%, 33.75%, and 43.52% 
energy reduction for 40 nm, 40 nmL, 65 nm, and 90 nm, respectively. On overall, compared to [Ge04, 
MM05] based techniques, the proposed energy management scheme achieves on average more than 30% 
energy savings. 

At the application architecture level, the adaptivity and energy reduction are demonstrated using an 
advanced video encoder (like H.264/AVC). An optimized application architecture for video encoders 
targeting dynamically reconfigurable processors is proposed. The finalized application architecture is 
implemented with optimized data flow and data structures. Various low-power Custom Instructions and 
Data Paths are designed for the H.264 video encoder. Several algorithms are proposed to realize adaptive 

low-power video encoding. First, an analysis of spatial and temporal video properties is performed with 
consideration of important Human-Visual System properties in order to categorize different video frames 
and their Macroblocks. Quantization Parameter based threshold models are developed to obtain precise 
categorization depending upon the coding configuration. Furthermore, an analysis of the energy 
consumption of different functional blocks of the video encoder is performed. This analysis is used by an 

adaptive complexity reduction scheme to reduce the energy requirements of the H.264/AVC encoder by 
excluding improbable coding modes from the mode-decision process. It solves the issue of choosing the 
final coding mode out of hundreds of possible combinations (without exhaustively searching the design 
space) by considering the spatial and temporal video properties. Unlike state-of-the-art, this scheme 
performs an extensive mode-exclusion before fast Mode Decision and Motion Estimation processes, thus 
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providing a significant reduction in the computational complexity. Once the final set of candidate coding 
modes is determined, an energy-aware Motion Estimation with integrated energy-budgeting scheme is 
employed in order to adaptively predict the energy quota for the Motion Estimation corresponding to each 
candidate coding mode. It employs the novel concept of Energy-Quality Classes in order to realize 
adaptive low-power video encoding. Each Energy-Quality Class represents a particular Motion Estimation 
configuration that requires a certain energy while providing a certain video quality. It thereby enables a 
run-time tradeoff between the energy consumption and the resulting video quality. A set of common 
optimal Energy-Quality Classes is obtained by performing a design space exploration for various test 
video sequences. The adaptive energy-budgeting scheme chooses a certain Energy-Quality Class for 
different video frames considering the available energy, video frame characteristics, and user-defined 
coding constraints while keeping a good video quality. The corresponding Motion Estimation 
configuration (i.e., set of initial search point predictors, search patterns, etc.) is forwarded to the energy-
aware Motion Estimation. After the Motion Estimation is completed, the energy of Energy-Quality 

Classes is updated depending upon the current video statistics. 

The proposed energy-aware H.264/AVC video encoder is evaluated for several QCIF and CIF video 
sequences (low to fast motion) [Ari08, Xip10] encoded at different bit rates, while considering the power 
model proposed in this thesis. The proposed algorithms are compared for quality degradation and energy 
savings. Compared to state-of-the-art approaches [JC04, KC07, PC08, SN06, Yu04], the proposed 
adaptive complexity reduction scheme achieves up to 82% (average 56%) higher energy reduction at the 
cost of an average PSNR loss of 0.66 dB. Compared to the exhaustive rate distortion optimized Mode 
Decision, the proposed adaptive complexity reduction scheme provides average energy savings of 63.27% 
and 66.74% with an average PSNR loss of 1.38% and 1% for CIF and QCIF sequences, respectively. The 
highest energy savings (more than 70%) are obtained for slow motion sequences. The proposed energy-

aware Motion Estimation with the integrated energy-budgeting scheme achieves an energy benefit of up 
to 93%, 93%, 90% (average 88%, 88%, 77%) for UMHexagonS [CZH02], UMHexagonS-Simple 
[YZLS05], EPZS [Tou02] adaptive Motion Estimators, respectively. The proposed energy-budgeting 
scheme is equally beneficial for other state-of-the-art fast adaptive MEs as well. When integrated into 
UMHexagonS [CZH02] Motion Estimator, it provides an energy saving of up to 80% (avg. 70%) with a 
slight PSNR loss of 0.11 dB. Compared to the Full Search, the energy-aware Motion Estimation scheme 
provides an energy saving of up to 99% at the cost of an average PSNR loss of 0.29 dB, which is visually 
insignificant. Note, the comparison with the Full Search is mainly for video quality. The major energy 
saving comes for low motion sequences (MissAmerica, Akiyo, Clair, Mobile, etc.) due to the switching 
between multiple Energy-Quality Classes depending upon the spatial and temporal properties of different 
Macroblocks. Even at a full battery level, the energy is not wasted for homogeneous and slow moving 
Macroblocks. Alternatively, more energy budget is allocated to the fast moving Macroblocks. Due to the 
slow motion properties, the reduced Motion Estimation effort still provides a sufficiently good match of 
the current Macroblock in the reference frame. Therefore, the incurred quality loss for sequences with 
homogeneous and slow moving Macroblocks is insignificant. 

To compensate the quality loss due to the energy-aware adaptations, a multi-level rate control is 
proposed. It allocates a bit budget to the Group of Pictures and then distributes this budget to different 
frames. It afterwards determines the final Quantization Parameter value for each Macroblock inside a 
frame considering its spatial and temporal properties (see Appendix A). It allocates more bits to the 
complex Macroblocks and less bits to the less-complex ones. The complete H.264 video encoder 
application with the proposed run-time algorithms and low-complexity data flow is demonstrated by 
executing it on an in-house RISPP dynamically reconfigurable processor prototype [Bau09], Texas 
Instruments� multimedia processor, and laptop/desktop computers (see Appendix B). A video analysis 
tool with an easy-to-use graphical user interface is developed for quick and in-depth analysis of video 
sequences (see Appendix C). 
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Overall, the comparison with state-of-the-art and benchmarks for diverse experimental conditions 
demonstrate the superiority of the proposed adaptive low-power processor and application architectures, 
especially under run-time varying scenarios due to changing video properties, available energy resources, 
user-defined constraints, etc. The proposed adaptive energy management scheme with Selective 

Instruction Set Muting is particularly beneficial in applications with hard-to-predict behavior where 
conventional embedded (reconfigurable) processors operate inefficiently with respect to energy/power 
consumption. The results corroborate the potential for far higher energy savings of dynamically 
reconfigurable processors which currently still suffer from a low efficiency as far as energy is concerned. 
At the application level, the novel concept of Energy-Quality Classes and adaptive complexity reduction 
provide a foundation for adaptive low-power video encoding to react to the unpredictable video data in an 
energy-efficient way. Altogether, the proposed processor and application architectures enable adaptive 
embedded multimedia systems with low power/energy consumption to provide means for next-generation 
mobile multimedia applications and emerging multimedia standards. 

8.2 Future Work 

The novel conceptual contribution, benchmarking with diverse experimental conditions, and comparison 
with relevant state-of-the-art demonstrate that for designing an adaptive low-power multimedia system, 
there is a dire need to combat the power-related issues at all abstraction levels (i.e., at both processor and 
application levels). Moreover, for the next-generation low-power multimedia systems, both hardware and 
software need to adapt together at run time to efficiently utilize the available energy resources under 
design-/compile-time unpredictable scenarios. The promising results of this research work open new 
research avenues for power-management techniques in dynamically reconfigurable processors, improved 
power efficiency, energy-aware image and video processing, and compile-time automation. These new 
research avenues are summarized in the following. 

Power-management techniques in dynamically reconfigurable processors: Significant energy 
efficiency has been obtained using the novel concept of Selective Instruction Set Muting that raises the 
abstraction level of power-shutdown to the instruction set level. A power-shutdown infrastructure with 
multiple sleep transistors needs to be researched to support multiple muting modes considering the 
area and wakeup overhead. Such an infrastructure should be designed with consideration of 
partitioning of the reconfigurable fabric to support run-time partial reconfiguration (i.e., employing 
Data Path Containers). Design of the power-rail is an additional research challenge in this case. 
Furthermore, other factors like ground bounce noise may be considered while controlling the wakeup 
signals of different Data Path Containers. The proposed energy management scheme can also be 
extended towards multi-tasking systems, where multiple tasks share the same reconfigurable fabric. In 
such a scenario the fabric may be allocated to different tasks. Then the challenging question arises: 
whether it is beneficial to mute the temporarily unused subset of Custom Instructions of a task or 
temporarily re-allocate the corresponding fabric portion to the other tasks to achieve higher energy 
efficiency for them. When considering the sharing of a fabric among different tasks, the design of an 
energy management system becomes an additional research challenge. The contribution of this thesis 
provides an initial foundation for researching such power-related issues. Moreover, the benchmarks 
demonstrated that the provision of Dynamic Voltage and Frequency Scaling (DVFS) techniques may 
provide additional energy savings in cases of lower performance constraints. 

Improved Power Efficiency: The proposed energy management system can be extended to a 
reconfigurable multicore processor where several cores share a centralized reconfigurable fabric. In such 
cases energy management becomes a complicated issue especially when different cores are executing 
tasks of varying complexities and constraints. First there will be a need for a power model for such 
reconfigurable multicore processor. The proposed power model can be considered a starting point for this 
research. Further challenges will be managing the energy consumption of cores and the fabric in a holistic 
way. 
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Energy-aware image and video processing: In the scope of this thesis, an adaptive low-power video 

encoder is proposed that employs the concept of Energy-Quality Classes in order to provide the run-
time configurability for energy consumption and resulting video quality. Such a concept can be 
extended towards video pre- and post-processing where different filter algorithms are provided and a 
selection between different algorithms is performed depending upon the allocated energy budget. 
Moreover, different configurations of such algorithms may be switched at run time. An example can 
be the switching of a 5x5 kernel based filtering to a 3x3 kernel based filtering. Similar extensions may 
be provided for various image processing algorithms like image enhancement with variable sized 
kernels. Moreover, further extensions of the proposed concepts can be realized for upcoming video 
coding standards like Multiview Video Coding and H.265 coding standard. 

Compile-time Automation: In this thesis, the application architecture and low-power Custom 
Instructions and Data Paths were designed manually. In order to reduce the development time, there is 
a need to research new design methodologies and tool chains to automate this process. For Custom 
Instructions a design tool flow similar to that in ASIPs may be considered. However, for Data Paths 
and low-power optimizations, intelligent algorithms and transformation techniques need to be 
investigated. A new research project KAHRISMA [ITI, KBS+10] has started which focuses on 
researching such kind of compile-time tool flow and design methodology. The processor-specific 
adaptations in the application architecture emerge as a more challenging task. A modular design and 
re-targetable compilation methodology may be a suitable choice to investigate. 
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Appendix A A Multi-Level Rate Control 

In this appendix, a multi-level rate control is presented that was developed in the scope of this thesis. The 
proposed rate control algorithm performs a non-linear target bit allocation to handle scene cuts and 
suddenly appearing high motion scenes in video encoding at a vast range of bit rates and resolutions. It 
copes with varying Rate-Distortion (RD) characteristics of different frame types (I, P, B) and different 
Macroblocks (MBs) of the same frame type by categorizing them depending upon their spatial/temporal 
properties. It thereby achieves a better video quality which is required to compensate for the quality loss 
occurred as a result of energy-aware adaptations in Chapter 4. 

A.1 A Rate Control Algorithm 

A rate control algorithm is a functional block of video encoders that fulfills the bandwidth and buffer 
constraints for given channel and application properties at a given target bitrate. Due to the unpredictable 
and varying nature of the input video data, different frames and their different MBs require a different bit 
budget for coding (even for the same coding conditions). In case a rate controller is not used, a possible 
loss of data may occur due to the buffer overflow. Moreover, ignorance of a rate controller may also result 
in significant quality fluctuations that are undesirable for the end user. 

Figure A.1 illustrates the encoding of the Susie test video sequence with a rate controller (blue line, 
100 Kbps @15 fps, it corresponds to an average bit budget of 6.6 Kbits per frame) and without a rate 
controller (brown line, QP=28 provides a similar bit budget in this case). It can be noticed from the figure 
that without the rate controller the fluctuations in the number of the coded bits are significant, especially 
when there is a significant change in the video content due to the rapid motion (in this case it is due to the 
sudden waving of the girl�s head between frames 38 and 70). This results in quality fluctuations and 
unsmooth buffer state (that directly corresponds to a higher buffer cost or alternatively a risk of buffer 
overflow). In contrast to this, when using the rate controller provides reduced fluctuations in the number 
of the coded bits, thus providing a better buffer and quality smoothness. It is especially important in case 
the videos are transmitted over a channel under limited bandwidth constraints. 
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Figure A.1: Comparison of Produced Bits With and Without Rate Control 

A rate controller determines the Quantization Parameter (QP) by considering the varying number of bits 
for each frame due to their diverse spatial and temporal characteristics. A good rate controller prevents 
buffer overflow (frame skipping) and/or underflow (improper bandwidth utilization) and maintains the 
buffer and quality smoothness between frames. It additionally provides a good visual quality within a 
frame (i.e., for different MBs) considering their Rate Distortion (RD) characteristics. Unlike other video 
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coding standards, H.264/AVC [ITU05] exhibits a complex RD-model and a variety of frame type coding 
structures. A large body of research has been conducted in different Rate Control (RC) schemes to 
determine QP at frame and Basic Unit (BU, a group of Macroblocks that share the same QP value) level 
to achieve a target bit rate. Most of these RC schemes use a) QP of P frames to determine the QP of I or B 
frames using (e.g., Mean Absolute Difference based) predicted RD characteristics [LPL+03, LSW04]; b) 
Mean Absolute Difference or variance based QP adjustments at BU level [SZFH08, ZuHNS07]. 
Moreover, these approaches incorporate compute-intensive models (e.g., quadratic model with run-time 
adaptation of model parameters in [LPL+03, LSW04, LT07] and a standard deviation based model at BU 
level in [WAW07]). However, these RCs suffer from several drawbacks. First, the frame level target bits 
estimation ignores the image statistics and motion properties [LPL+03, LSW04], thus a sudden change in 
the frame (e.g., abrupt motion, scene cut) leads to discontinuities in the visual quality. Significantly, more 
bits are allocated for encoding the earlier frames in a Group of Picture (GOP) leaving a smaller bit budget 
for the successive frames. Another problem is the accuracy of Mean Absolute Difference estimation, as a 
linear model is susceptible to high prediction inaccuracy due to the unpredictable nature of the video 
content, e.g., scene cuts. Therefore, the predicted QP is too small (or big) which leads to undesirable 
buffer and visual quality fluctuations. RC-Mode-0 [LPL+03] in H.264 encoder reference software treats 
all frames types in the same way not considering the diverse RD characteristics of different frame types. 
Therefore, it suffers from high buffer and quality fluctuations especially when encoding videos with 
multiple GOPs and multiple frame types at low bit rates. RC-Mode-3 [LT07, LT08] treats I, P, and B 
frames in a different way considering the hierarchical levels. However, this approach does not handle 
those scenarios efficiently where a scene cut may occur at the B frame. Moreover, changing QP for each 
hierarchical level may introduce undesirable quality fluctuations. Another drawback of RC-Mode-3 is that 
it requires a priori knowledge about the content [LT08], which is unlikely in real-world applications due 
to the unpredictable nature of the video content. 

Summarizing: frequently injected I frames, scene cuts, and scenes with hectic motion require more bits 
than normal P and B frames. Under scenarios of varying RD characteristics of different frame types (I, P, 
B) and different MBs in one frame (e.g., bright, textured, static/moving MBs), a low-complexity rate 
control with non-linear bit budgeting is desirable. 

A.2 The proposed Multi-Level Rate Control 

In this thesis, a novel Rate Control (RC) scheme is proposed and employed that covers Group of Pictures 
(GOP), frame/slice, and Basic Unit levels (see Figure A.2). It treats different frame types (I, P, B) in a 
different fashion with consideration of whether they are referenced or non-referenced frames. The 
proposed RC scheme prioritizes Macroblocks (MBs) depending upon their spatial and temporal 
characteristics (considering eye-catching regions) for refined Quantization Parameter (QP) allocation. It 
handles various bit rate scenarios, poorly predicted frames, and videos with dark/bright, blurry/noisy, 
high/low-textured, slow/fast motion properties. The variation in QP is restricted depending upon the target 
bit rate, frame type, and buffer status etc. In the following, different blocks of the RC scheme are 
presented in their corresponding processing sequence. 

GOP Level Rate Control: For ensuring a smooth quality variation in consecutive GOPs, each GOP is 
provided with a separate bit budget. However, this is only beneficial for small-sized GOPs where 
target bits of a GOP serve as a hint for the frame level bit budgeting strategy. For large-sized GOPs 
(e.g., ≥ 100 frames), the target bit budget is not used as the RC scheme ensures buffer and quality 
smoothness at frame level. The target bit budget for the ith GOP (TBGOPi) is determined by: 

 [( 2 *  &  ())  ?  2 *  :  ] * ( / )GOPi buff GOPTB S TBR isVBR TBR TBR N FR= >  (9.1) 
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TBR is the target bit rate, FR is the frame rate, NGOP is the number of frames in a GOP, and Sbuff = mf*TBR 
is the bitstream buffer size. In case of Variable Bit Rate (VBR) and large-sized buffers, a higher bit budget 
is allowed for the GOP. The multiplication factor mf depends upon a) the type of RC, i.e., either Constant 

Bit Rate (CBR) or VBR; and b) channel/encoder delay constraints. The maximum buffer fullness 
constraint is defined as BuffFullnessMax= (1 - BOPF) * Sbuff where the buffer overflow prevention factor 
(BOPF) acts as a factor of safety. Kindly note that, the buffer size affects the transmission delay and the 
overall memory cost of the system. A relatively smaller buffer is cost effective but increases the risk of 
data loss due to overflow. Alternatively, a relatively bigger buffer increases the transmission delay and 
memory requirements. The size of the bitstream buffer may be determined by the provided buffer 
smoothness of a rate controller. 

 

Figure A.2: The Multi-Level Rate Control Scheme covering GOP, Frame/Slice, & BU Levels 

along with Image and Motion Based Macroblock Prioritization 

Non-Linear Target Bit Budgeting: Since different frame types or different Basic Units (BUs) of the 
same frame may exhibit varying RD characteristics, a linear target bit budgeting may lead to 
undesirable/unacceptable quality variations. A scene cut in P or B frames will require more bits than 
the previous P/B frame to avoid sudden PSNR variation. In RC-Mode-0 [LPL+03], the QP for the I 
frames depends upon the target bit rate and resolution. Some RC schemes consider spatial variance of 
frame for linear translation into bits. The RC scheme in [LT08] uses RI=ȖI*RP and RB=ȖB*RP to 
predict the target bits of I and B frames. However, linear functions may lead to quality fluctuations 
due to the unpredictable nature of video data thus they are inefficient in sudden textural changes. 
Therefore, a non-linear target bit budgeting is performed to handle scene cuts, I frames, and high-
textured images. First, the amount of texture difference (EdgeDiffAVG) between two consecutive 
frames is calculated (using Sobel Operator). Afterwards, the target bits for jth frame of ith GOP 
(TBits_Fi,j) are determined as: 
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where İ1, İ2, and İ3 classify the complexity difference of consecutive frames. NGOPi_Rem is the number of 
remaining non-encoded frames in the ith GOP, and BitsTotalUsed is the total amount of bits spent till the last 
encoded frame. If EdgeDiffAVG does not exceed İ1, it is sufficient to perform a linear target bit allocation.  

Frame/Slice Level Rate Control: At frame/slice level, a Normalized PID Controller (see Figure A.2) is 
deployed to compute the ǻQP. The QP of current frame/slice (QPslice) is obtained by adding ǻQP and 
QPprev. The normalized PID controller keeps the buffer occupancy close to the target buffer fullness 
using its three gain factors. 

a) Normalized Proportional Gain (KP') reduces the error between the achieved and target bits. 
b) Normalized Integral Gain (KI') eliminates the steady error effect by considering the accumulated 

error of previously encoded frames. 
c) Normalized Derivative Gain (KD') ameliorates the system stability. 

The ǻQP is calculated by: 
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 (9.3) 

KP, KI, and KD are obtained using the Ziegler-Nichols-Method (ZN-Method) that uses an online 
experiment followed by the use of rules to compute the numerical values of the PID coefficients [JM05]. 
The dynamic vibration behavior of the complete control loop is investigated using the following 
procedure: 

• First, only the P-controller is setup and the I- and D-parts are disable. 
• For small P-coefficient values, the signal will result in a transient oscillation after some disturbance 

at the beginning. With increasing P-coefficient values, the signal will build up and the oscillation 
becomes mixed up. 

• By successive iterations, the goal is to find a P-coefficient value at which the closed control loop 
swings with constant amplitude - the so-called Critical Ziegler-Nichols-Point. The period of this 
oscillation is called TCritical and the proportional boost KP_Critical. Figure A.3 illustrates the case for 
the American Football test video sequence with 1Mbps@15fps, where KP_Critical=0.8 and TCritical=2. 

• These values are utilized in the Ziegler-Nichols-Rules to compute the three PID coefficients: 

 _0.6 * ,  / (0.5 * ),  * (0.125 * )P P Critical I P Critical D P CriticalK K K K T K K T= = =  (9.4) 
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Figure A.3: Critical Ziegler-Nichols-Point for American Football 

The proposed PID controller is different from the related work as it directly outputs the ǻQP after scaling 
(considering the fact that an increase of 6 in QP value doubles the quantization step) of PID gains to 
achieve an embedded translation of PID output into ǻQP. Moreover, the gains of the PID controller are 
normalized to make it generic for a vast range of bit rates (32 Kbps - 4 Mbps). The output of the PID 
controller (i.e., ǻQP) is then clipped between ±ǻQPLimit (to keep a smooth visual quality): 
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Note: ǻQP is calculated in a similar way for all frame types using the normalized PID controller but 
QPprev is calculated in a different way for P and B frames. For P frames QPprev is simply the QP of last 
encoded frame. However, for calculating QPprev in B frames a Temporal Distance (td) based scheme is 
deployed (as shown in Figure A.4) due to their dissimilar RD characteristics compared to P frames. 
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Figure A.4: Temporal Distance based QP Calculation for B Frames/Slices 

The QPprev_Bi for the ith B-frame is calculated using the minimum of i) average QP of previously encoded 
frame, and ii) weighted average of QPs of two referenced frames, as shown below: 
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The RC scheme treats B frames in two categories: �used as referenced frame� and �not used as referenced 

frame�. Due to this reason, it results in a far lesser PSNR variation (see Section A.3) compared to state-of-
the-art. Finally, the QP for a B frame is computed as: 
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After adding ǻQP in the QPprev, the resulting QP is clipped between QPMIN and QPMAX that are determined 
as follows: 
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In case of a buffer management system, the control effort is relaxed or tightened based on buffer status 
and buffer size considering the target bit rate. For VBR and large buffer-sized systems where data is not 
read from the buffer after encoding each frame (rather the reading from buffer is scheduled based on task 
switching considering encoder and buffer as two different tasks), QPMAX is adjusted as: 

 4 (1 ) * 4MAX MAX
Max

BuffFullness
QP QP

BuffFullness

⎢ ⎥
= − + −⎢ ⎥

⎣ ⎦
 (9.9) 

Basic Unit (BU) Level Rate Control: The BU-level rate control reacts to changing image content within 
one video frame and performs refined QP allocations inside a frame depending upon the spatial and 
temporal complexity of the BU. Unlike state-of-the-art approaches (e.g., [LPL+03, SZFH08]), a BU-
level rate control is used for both P and B frames. Since I frames deploy spatial prediction using 



Chapter 8 Conclusion and Outlook 

- 150 - 

neighboring MBs, varying QP at BU-level may lead to an unacceptable PSNR variation. Therefore 
BU-level rate control is disabled for an I frame. Figure A.5 shows the BU-level rate control operating 
in the following three steps. 

Step 1) Refined QPslice Adjustments: In the first step, QPslice is refined by an amount of ǻQPdec which 
depends upon the spatial/temporal properties of the BU. The equation A.5.1 in Figure A.5 
show the computation of ǻQPdec for a dark BU in a dark frame to avoid the white noise 
effects in the darker regions. THBU_QP, THBU_Br, THBU_SAD, and THB_Low control the amount of 
decrement and categorize a BU as dark or bright. Afterwards, equations A.5.2, A.5.3, and 
A.5.4 compute the decrement step for ǻQPdec for bright regions with less texture or slow 
motion to avoid the loss of details. Irrespective of the brightness of a BU, strong quantization 
may distort the slow moving regions therefore it needs to be preserved (see equations A.5.5 
and A.5.6). In case the MB inside a BU is stationary but not skipped, there is a high 
probability that there will be some transformed coefficients that needs to be protected to 
avoid the quantization noise. Therefore, ǻQPdec is adjusted (depending on the SAD and TBR) 
to preserve the transformed coefficients of stationary MBs (see equations A.5.7-A.5.12). 

Step 2) Controlling Target Bit Violations at BU-Level: As image based decision may lead to a target 
bit violation when operating at BU level, the proposed scheme computes ǻQPdec_control to 
adjust ǻQPdec depending upon the error between achieved and target bits till the coded BU 
(e(t)BU). At first, the target bits for one BU (TBU_Bits) and for all coded BUs (TCodedBUs_Bits) are 
computed, where NBU_Coded is the number of already encoded BUs. Afterwards, the bit error is 
computed which is then used to calculate ǻQPdec_control. ABUk_Bits is the number of already 
produced bits for all coded BUs in the current frame/slice. ǻQPdec_control is added in ǻQPdec 
which is then clipped between ±4 to restrict the possible violations of target bit budget and is 
added in QPslice to get QPBU. 

Step 3) Image-/Motion-Based Macroblock Prioritizations: This step is optional for low bit rate 
coding scenarios and performs an image-/motion-based Macroblock Prioritization to capture 
eye-catching regions. The human eye is sensitive to fast motion and highly textured scenes 
that are hard to encode at low bit rates. Therefore, it is beneficial to spend more bits to such 
regions at the cost of a small degradation in stationary background regions. MBs with high 
texture and motion information are prioritized as regions of interest (that capture the attention 
of the human eye) and QPdec is lowered in that case (see equation A.5.13). On the contrary, 
QPdec is increased for homogeneous and stationary MBs, which are not of high user interest 
(see equation A.5.14). Afterwards, QPdec is clipped between ±4 and added in QPBU to get 
QPMB. 

A.3 Evaluation and Results 

The proposed multi-level Rate Control (RC) scheme is compared with various RC modes (especially RC-
Mode-3 [LT08] which is the latest one to handle multiple frame types and offers better quality than other 
RC Modes) of H.264. For a pure video quality comparison following test conditions are considered: 
exhaustive RDO-MD, UMHexagonS, 16 search range, 1 reference frame, GOP=100, CAVLC, using 
different coding structures. The thresholds and test conditions presented in Section 4.3.2 are used for the 
following experiments. Figure A.6 shows the R-D curves for Carphone (QCIF, IPPP) and American 
Football (SIF, IBBP). Figure A.6 shows that the multi-level RC scheme achieves always better PSNR 
(avg. 1dB and 0.5dB) than RC-Mode-3. 

Figure A.7 shows the Mean Bit Estimation Error (MBEE) and the PSNR variation (ıPSNR) for 
encoding various sequences using the multi-level RC and RC-Mode-0,2,3. Each bar is the averaged 
(MBEE, ıPSNR) value over 7 bit rates (64 Kbps � 4 Mbps). 



8.2 Future Work 

- 151 - 

1_ _ _

#
_ _ _0

_ _

( &

& ( )

& )

QP BU BU Avg B Low

BU
i Avg B Low BU darki

Avg Spatial BU SAD

QP TH B TH

B TH N

SAD TH

=

> <

< >∑
>

 

Figure A.5: Basic Unit (BU) Level RC with Texture and Motion Based QP Adjustments 
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Figure A.7 shows that the multi-level RC outperforms all RC modes in terms of the buffer and visual 
quality smoothness and achieves the target bit rate more accurately. Figure A.7 illustrates that the multi-
level RC achieves up to 81.4%, 81.9%, and 77.8% (avg. 61.7%, 62.3%, and 63.9%) reduced MBEE 
compared to RC-Mode-0,2,3, respectively. Moreover, the multi-level RC provides up to 86%, 87.9%, and 
95.9% (avg. 61.9%, 62%, and 72.4%) reduced ıPSNR compared to RC-Mode-0,2,3, respectively. 

Figure A.8 compares the PSNR and Rate of the multi-level RC with RC-Mode-3 on frame-basis when 
encoding a combination of Rafting and Football CIF sequences. This fast motion sequence contains scene 
cuts at every 50th frame. Compared to RC-Mode-3, the multi-level RC achieves on average 67% less ıPSNR 
and 65.46% reduced MBEE. At the start, RC-Mode-3 performs well but requires a much higher amount 
(≈ 2x) of bits, therefore the overall RD ratio is similar to the multi-level RC. As soon as scene cuts occur, 
the quality of the RC-Mode-3 decreases. After 100 frames, RC-Mode-3 is already worse than the multi-
level RC and after 150 frames, the quality of the RC-Mode-3 degrades severely. After 15-20 frames the 
multi-level RC achieves a smooth buffer fullness and less ıPSNR. After 100 frames, it achieves an always 
better PSNR. 
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Figure A.6: RD-Curves Comparison of the Proposed Multi-Level RC with RC-Mode-3 for 

Carphone (QCIF, IPPP) and American Football (SIF, IBBP) 
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Figure A.7: MBEE Comparison of the Multi-Level RC with Three Different RC Modes 

Figure A.9 presents frame-wise PSNR and Rate comparison of the multi-level RC scheme with RC-
Mode-0 for encoding the adapted Susie sequence for checking the robustness of RCs. During the first 60 
frames, the multi-level RC achieves a slightly better PSNR while requiring almost the same amount of 
bits. From frame 61 onwards, the frames contain heavy noise. The multi-level RC scheme recognizes this 



8.2 Future Work 

- 153 - 

fact and adjusts faster to the target bit budget without wasting extra bits. On the contrary, RC-Mode-0 
adjusts itself slower (frames 60-75) to the target bit budget when facing the transitions from dark-to-noisy 
frames. As a result, RC-Mode-0 suffers from lower PSNR in the subsequent frames and gives high ıPSNR. 
Overall, RC-Mode-0 achieves an average PSNR of 38.21dB while the multi-level RC achieves 41.18dB 
(i.e., a gain of 2.97dB). 
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Figure A.8: Frame-wise Comparison of the Multi-Level RC with RC-Mode-3 for Fast Motion 

Combined CIF Sequences Encoded at 2Mbps@30fps 
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Figure A.9: Frame-wise Comparison of the Multi-Level RC with RC-Mode-0 for 

Susie Mixed CIF Sequence (Bright, Dark, Noisy) at 2Mbps@30fps 
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Figure A.10: Evaluating the Image and Motion Based MB Prioritizations 

(Note: All excerpts are 2x zoomed using nearest neighbor interpolation) 
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The efficiency of image-statistics and motion based Macroblock Prioritizations can be seen in Figure A.10 
that shows the 14th reconstructed frame of American Football when encoded with the multi-level RC 
(Left) and RC-Mode-0 (Right). The multi-level RC encodes the moving helmets and arms of the players 
(eye-catching regions) with better quality compared to RC-Mode-0 while blurring the grassy background, 
which is less important than the players. Therefore, the proposed multi-level RC scheme is superior in 
terms of user interests. 

Complexity: On Intel Core2Duo T5500 (1.66 GHz), on average, the multi-level RC requires 0.54 
MCycles while RC-Mode-0 requires 9 MCycles for encoding one frame, i.e., the multi-level RC is 16.6x 
faster than RC-Mode-0. 
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Appendix B Simulation Environment the H.264 

Video Encoder Demonstration 

This appendix presents the simulation environment (used in this thesis) and the demonstration of the in-
house developed H.264 video encoder (in the scope of this thesis) on RISPP dynamically reconfigurable 
processor and Texas Instruments� DM6437 Digital Media Processor. For researching the adaptive low-
power reconfigurable processor architectures, the simulator for dynamically reconfigurable processors 
[Bau09] was extended with run-time energy management modules. Before moving to the details of the 
video encoder demonstration, the simulation methodology is described in the following. 

B.1 Implementation and Simulation Environment 

The implementation and simulation environment consists of (a) ArchC-Simulator for a SPARC-V8 
architecture [ARB+05] in order to generate a branch trace of the application and functional testing on the 
core processor, (b) Simulator for dynamically reconfigurable processors (in this case it is a RISPP 

Simulator [Bau09]), (c) Xilinx ISE for implementing the Data Paths and ModelSim for simulations in 
order to perform functional testing, (d) gcc compiler on a Linux machine for PC-based evaluation. The 
simulation methodology is partitioned into four phases, (i) Design phase, (ii) Implementation phase, (iii) 
Power Measurement and Estimation phase, and (iv) Simulation phase. 

In the design phase, first the application is executed in the ArchC-Simulator and the output is 
compared with the output of the original PC-based execution (i.e., using the original target platform of the 
application). When compiling for the ArchC-Simulator several modifications might be required, e.g., it is 
not possible to use the same name for global variables and methods twice. Afterwards, the application is 
executed in the ArchC-Simulator, to verify the correct output. For designing the Custom Instructions 
(CIs), information about the computational hot spot(s) of the application is required. This is obtained by 
profiling the application using the �valgrind tool suite� [Net04a, Net04b]. After gathering this information 
CIs for the hot spots are designed, while considering the constraints predetermined by the architecture 
(i.e., RISPP [Bau09] in this case). 

In the implementation phase, the ArchC-Simulator and the RISPP Simulator are made aware of the 
new CIs (by adding, e.g., name and opcode to an XML-file containing the information about all CIs). The 
CIs are programmed as assembly instructions in the application and the data structures are adapted 
accordingly for integrating the CIs. Furthermore, the behavior of CIs is added to the ArchC-Simulator for 
functional correctness and valid output generation. The modified application is tested on the extended 
simulator and in order to assure correct functionality the output of the original and modified applications 
are compared. Moreover, the Data Paths are implemented in VHDL. The behavior of Data Paths is 
simulated and finally the VHDL-Code is synthesized using the Xilinx ISE tool chain in order to provide 
information about the hardware requirements (number of flip flops, slices, frequency, etc.). This 
information is added to the XML-file which is provided to the RISPP Simulator. Additionally the 
functionality of the complete CI and the composing Data Paths is implemented in software (i.e., using the 
core instruction set architecture, cISA) and the execution times are measured. In the next step, the CI 
graph is generated showing the Data Paths as nodes connected with edges (representing the connections). 
This graph is also fed as an input to the RISPP Simulator. An in-house developed tool automatically 
generates schedules for various Implementation Versions considering different area constraints (i.e., 
different number of given Data Path Containers, DPCs). The information is stored in the data structures 
internal to the RISPP Simulator. 

The power estimation and measurement phase is explained in Chapter 6 and Section 3.4. The 
measured power of the Data Paths is added to the XML-file that contains the area and latency information 
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of each Data Path. Moreover, the average power and energy consumption of different Implementation 
Versions is estimated using the proposed power model (see details in Section 3.4), which is later on stored 
in the Custom Instructions data structure of the RISPP Simulator. 

 

Figure B.1: Simulation Methodology Showing Various Steps of the Simulation Procedure [S.3] 

In the simulation phase, the application is simulated using the ArchC-Simulator which provides output 
files (e.g., branch trace) that serves as the input to the RISPP Simulator that provides an estimate of the 
energy consumption and performance of the application. At the end the results (energy consumption, 
performance, etc.) are analyzed. To investigate the concepts and algorithms for run-time energy 
management with CI-level muting (as proposed in the scope of this thesis), the RISPP Simulator 
[BSH09a] is extended with several new modules. These modules are (a) Run-Time Energy Management, 
(b) Power-Estimation, and (c) Muting Manager (see Figure B.2). Besides the application binary, branch 
trace, and the core instruction set architecture (cISA), the power model for dynamically reconfigurable 
processors (see details in Section 3.4) is passed as input. Figure B.2 shows the extended simulator as a 
UML class diagram that consists of three major parts: 

• the pipeline of the core processor and the run-time system with energy management scheme; it 
simulates the pipeline behavior and manages the executions, energy management, power 
estimation, reconfigurations, etc. 

• the Custom Instructions (CIs) with their composing Data Paths and various Implementation 
Versions; it is represented by a data structure containing the performance and energy properties of 
different Data Paths and Implementation Versions, etc., and 

• the FPGA with various DPCs with management of the Data Paths loaded in the DPCs, the muting 
mode of different DPCs, etc. 

The information about the CIs, Implementation Versions (like name, CI opcode and instruction format, 
latency and average power consumption, etc.) and their composing Data Paths is fed through an XML-file 
(as discussed above). Moreover, the area and power information about the Data Paths is also provided in 
this XML-file. The pipeline simulates the application binary and the branch trace is considered to imitate 
the control flow of the application. In the current setup, the model of a SPARC-V8 architecture is 
modeled with 5 pipeline stages. Note that the register file contents and the data memory accesses are not 
simulated in the RISPP Simulator (see further details in [Bau09]). Each load and store instruction requires 
two cycles considering a 100% cache hit. 

When a Forecast Instruction is encountered to hint about the upcoming CIs, the run-time energy 
management scheme is triggered that determines the energy minimizing instruction set and the 
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appropriate muting modes for the set of temporarily unused CIs. The information about the execution 
frequency of CIs is obtained from the Online Monitoring and Prediction module. The corresponding 
muting mode is then sent to the Muting Manager module that issues the shutdown signals to the Logic 
and/or Configuration SRAM of the DPCs corresponding to the muted CIs. The energy consumption of the 
application is estimated at run time at different time intervals, between two Forecast Blocks, or after the 
complete application execution. After the muting mode is configured, the Data Paths to be reconfigured 
are pushed into the Data Path Loading Queue (see Figure B.2) and the reconfiguration sequence is 
determined. The CI Execution Unit controls the execution of CIs using cISA or using the available 
Implementation Versions. 

getMinEnergyAvailableIV()

Custom Instruction

getRequiredDataPath()

Implementation Version

isAvailableOnFPGA()

isOn()

Data Path

manageCIexec()

CI Execution UnitCore Pipeline

Application 

Binary

Online Monitoring and Prediction

input

Instruction 

Set Arch.

Branch 

trace

pushNextDataPath()

Data Path Loading Queue

FPGAData Path Container

2.. 1.. 0..

0,1

1

1

1

1

1

11

1

0..

1

1

Defines the CIs (including 
instruction format, parameters, 
etc.), Implementation Versions, 

and Data Paths

XML-file
has manyŹ

currently containsŹ
Ż is available on FPGA

1

0..

Ż knows

triggers Ź
Ż stalls

Ż observes

asks Ź

Żreconfigures

1..

Pipeline & Run-Time System

CI Management

FPGA Management

0..

... ...
...

...

...

1

UML Legend: association: aggregation: composition:

determineEnergyMinImplVersion()

determineMutingModes()

determineReconfSchedule()

Runtime Energy Management

triggers
ź

reportEachTimeframe()

Power Estimation

1

1

switch_on/off_Container()

MutingManager

1

1

1

1

1

1

......

instructs
ź

fills Ź

requires
multiple

Ź

contains

Ż

in
pu

t

Power

Model

1 1

reports

ź

triggers
ź

Ż is powered-on

 

Figure B.2: Reconfigurable Processor Simulator [BSH09a] with the Extensions Implemented in 

the Scope of this Thesis for Run-Time Adaptive Energy-Management 

B.2 H.264 Video Encoder on the RISPP Hardware Prototype 

Figure B.3(A) shows the H.264 video encoder (developed in the scope of this thesis) executing on the 
RISPP hardware prototype (based on an Avnet Xilinx Virtex-4 LX160 Development Kit; �ADS-XLX-
V4LX-DEV160-G�, [Avn09]) 36. The internal floorplan (after place & route) of the RISPP processor 
prototype (executing at 50 MHz) with the video preprocessing IP-core is provided in Figure B.3(B) 
[Bau09]. First the raw (RGB) video in an interlaced format is obtained from the camera. The video 
preprocessing core performs the de-interlacing, format conversion (RGB to YUV 4:4:4), and color sub-
sampling (YUV 4:4:4 to YUV 4:2:0). A triple circular buffer mechanism is implemented that provides 
storage for the current and reference video frames along with the next frame written by the camera (while 
the current frame is being encoded). The CIs (e.g., for Motion Estimation) access the current and the 
reference frame buffers using one 128-bit port for each buffer. After the current frame is encoded and 
overwritten by the reconstructed Macroblocks data, the buffer rotation is performed, i.e., the next frame 

                                                      
36 this board contains a Xilinx Virtex-4 XC4VLX160-FF1513 FPGA [Xil08b] 
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becomes the current, the current frame becomes the reference, and the reference frame buffer becomes the 
next frame in which the camera writes the new data. Note, this rotation is performed in hardware in order 
to simplify the software implementation [Bau09]. The address of the current and reference frames are 
unchanged. The reference frame is displayed via a VGA output periphery module. The main encoder 
program is executing on the core processor (in this case Leon2 core pipeline), while the Data Paths for the 
Custom Instructions (CIs) are loaded on the DPCs. It can be noticed in Figure B.3(B) that there are 
currently 10 DPCs connected with Bus Connectors. The run-time system executes on the MicroBlaze. 
Further details on the RISPP prototype can be found in [Bau09]. 
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Figure B.3: (A) H.264 Video Encoder Executing on the RISPP Prototype; (B) Floorplan of the 

RISPP Prototype Implementation on the Xilinx Virtex-4 LX 160 FPGA [Bau09] 

B.3 H.264 Video Encoder on the Texas Instruments� DM6437 
Digital Media Processor 

Figure B.4 demonstrates the H.264 video encoder (developed in the scope of this thesis) executing on the 
Texas Instruments� (TI) DM6437 Digital Video Development Platform (TMDSVDP6437) [Ins08a] with 
TMS320DM6437 Digital Media Processor [Ins08b]. Figure B.5 illustrates the processing flow of different 
functional blocks (video capture, format and resolution conversion, encoding, and video display) of the 
video recording system executing on the TMDSVDP6437 platform. The step-by-step flow is explained in 
the following. 

• The video data from charge-coupled device (CCD) is obtained by the Video Processing Front End 
(VPFE) driver using an on-board tvp5146 decoder. The format of the captured video is YUV 4:2:2 
interleaved with a resolution of 720x576 (D1, PAL). 

• To support various video resolutions, down-scaling is performed as an optional step using the 
Resizer module of VPFE. For instance, in the demonstration of Figure B.4, the input video is down-
scaled from 720x576 to 352x288 (Common Intermediate Format, CIF) resolution. The resizer is a 
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hardware implemented poly-phase filter for image scaling operations with a capability of scaling up 
to four times. Note, the choice of the filter type (4-phase 7-tap filter or 8-phase 4-tap filter) is done 
automatically by the hardware based on the scaling ratio and it is not changeable by the software. 
The resizer can operate on either YUV 4:2:2 interleaved format or separated single color plane.  

• The video encoders typically require videos in YUV 4:2:0 format. Therefore, the format of the 
input video is converted to YUV 4:2:0 planar using EDMA3 (Enhanced Direct Memory Access) 
module. EDMA3 provides user-programmed data transfers between two memory-mapped slave 
endpoints on the device. 

• Afterwards, the video encoder (executing on the core DM6437 processor with C64x+ instruction 
set and DaVinci video technology) processes the video frame for encoding. Various modules are 
optimized using the specialized assembly with operations of sub-word level processing. 

• The reconstructed video is displayed on the TFT LCD monitor. For displaying, the format of the 
reconstructed video is converted from YUV 4:2:0 planar to YUV 4:2:2 interleave using the 
EDMA3 module. This format is required by the Video Processing Back End (VPBE). Afterwards, 
the video is up-scaled to 720x576 (D1, PAL) and sent to display using the VPBE driver. 

 

Figure B.4: H.264 Video Encoder Executing on the TI� DM6437 DSP Board [S.2] 

 

Figure B.5: Flow for porting H.264 Encoder on DM6437 Digital Signal Processor [S.2] 
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Appendix C The CES Video Analyzer Tool 

In the scope of this thesis, a video analysis tool (Figure C.1) has been developed named �CES Video 
Analyzer� in order to analyze the subjective quality of various algorithms. Moreover, it is also used to 
subjectively learn about the relationship between the optimal coding modes and various video properties. 
The CES Video Analyzer tool has various features like playback of raw YUV video files, computing and 
displaying spatial and temporal video properties, a framework for researching new Motion Estimators. 
The fetures of the CES Video Analyzer tool are described in the following. 

• Playback of raw YUV video files of different resolutions with different frame rates (see Label | in 
Figure C.1) 
o possibility to view separate components of video frames Y, U and V 
o open and playback of multiple video files for comparison in a frame-wise synchronized fashion 

• Extract, display, and output the properties of a video (Gradient, Variance, Texture, Brightness, 
Contrast, etc.) at frame and/or Macroblock levels (see Label §) 
o display the edges in different colors or threshold based edge coloring 
o display the edge maps for texture analysis of various edge-detection algorithms (see Label ⁄) 

• Coding mode distribution analysis (see Label ƒ) 
• A framework for researching and evaluating different Motion Estimators (see Label ~) 

o multiple Motion Estimation stages can be defined with Initial Search Point Prediction and 
pattern types 

o different patterns can be easily configured and compared 
o search range can be configured 
o the final configuration can be stored in the list of pre-stored Motion Estimators 

• Comparing different Motion Estimators 
o plotting the motion vectors for subjective motion analysis (see Label ¡) 
o color of motion vectors can be selected 
o different standard Motion Estimation algorithms are provided for comparison (Full Search, 

Spiral Search, Three Step Search, and UMHexagonS) 
o output the information about the motion vectors in a text file (comma separated format) 

• Computing the Peak Signal-to-Noise Ratio (PSNR) at frame or video level (see Label ¤) 
• Create new test video sequences with different brightness, noise, blur factors 

o save the complete video file or a specified set of frames 
• Create new test video sequences by merging different video sequences in order to realize scene cuts 

and videos with diverse properties within a given frame (see Label ¢) 
o a border between the video frames can be added (see Label £) 
o the color and size of the border between the frames can be selected 
o the video after the last frame can be stopped or replayed from the start in case videos with 

different number of frames are merged with each other 
• Zoom/Upscale using different filters 
• Save individual frames in different formats (Bitmap, Jpeg, Png, Gif, Tiff or Windows Metafile) 

Kindly note that this tool is actively used in further research projects. It is developed to help the research 
community (researchers, developers, students, etc.) of embedded multimedia systems in their research and 
educational projects (i.e., to perform quick analysis/evaluation of videos and different algorithms). Further 
extensions of this tool are to support the playback and analysis of multiview video sequence and analyzing 
various video pre- and post-processing filters for video quality enhancement and restoration. 
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Figure C.1: The CES Video Analyzer Tool showing the Research Framework for 

Motion Estimation, Video Merging, and Texture Analysis [D.1] 
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