

Architectures for Adaptive Low-Power

Embedded Multimedia Systems

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik

Karlsruhe Institute of Technology (KIT)

(The cooperation of the Universität Fridericiana zu Karlsruhe (TH)

and the national research center of the Helmholtz-Gemeinschaft)

genehmigte

Dissertation

von

Muhammad Shafique

Tag der mündlichen Prüfung: 31.01.2011

Referent: Prof. Dr.-Ing. Jörg Henkel, Karlsruhe Institute of Technology (KIT),

Fakultät für Informatik, Lehrstuhl für Eingebettete Systeme (CES)

Korreferent: Prof. Dr. Samarjit Chakraborty, Technische Universität München (TUM),

Fakultät für Elektrotechnik und Informationtechnik, Lehrstuhl für Realzeit-

Computersysteme (RCS)

Muhammad Shafique
Adlerstr. 3a
76133 Karlsruhe

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbständig verfasst
habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben
habe und dass ich die Stellen der Arbeit � einschließlich Tabellen, Karten und Abbildungen � die
anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden
Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

 M u h a m m a d S h a f i q u e

i

Acknowledgements

I would like to present my cordial gratitude to my advisor Prof. Dr. Jörg Henkel for his erudite and
invaluable supervision with sustained inspirations and incessant motivation. He guided me to explore the
challenging research problems while giving me the complete flexibility, which provided the rationale to
unleash my ingenuity and creativity along with an in-depth exploration of various research issues. His
encouragement and meticulous feedback wrapped in constructive criticism helped me to keep the impetus
and to remain streamlined on the road of research that resulted in the triumphant completion of this work.

I am also grateful to my co-advisor Prof. Dr. Samarjit Chakraborty for his erudite feedback and
profound discussion on my research work. Furthermore, I will present my gratitude to (in alphabetical
order) Dr. Jian-Jia Chen, Prof. Dr. Ralf H. Reussner, Prof. Dr. Peter Sanders, Prof. Dr. Mehdi B. Tahoori,
and Prof. Dr. Walter F. Tichy for their valuable feedback during the Professorenrunde phase.

I will present my special thanks to my colleague and project partner Dr. Lars Bauer for his technical
discussions on various reconfigurable computing aspects and continuous support during the paper
submissions. He has always been very critical with me in scrutinizing the research issues to deliver a
thorough and quality work. Without him, the work of this quality would have been exceptionally difficult.

I would like to pay my thanks to all of the colleagues from the Chair for Embedded Systems (CES)
for their discussions and feedback. In particular, I want to thank (in alphabetical order): Waheed Ahmed,
Mohammad Abdullah Al Faruque, Lars Bauer, Talal Bonny, Thomas Ebi, Artjom Grudnitsky, Florian
Kaiser, Semeen Rehman, and Bruno Zatt. In the last six months of my thesis writing, especially Semeen
Rehman and Bruno Zatt provided consistent support in managing my workload and sharing their food,
that was a great help in keeping me focused to timely finish my thesis. I also want to thank my Master
students (especially Bastian Molkenthin and Florian Kriebel) whom I supervised in the scope of this
thesis. Furthermore, I want to acknowledge the support of secretaries and technicians to provide a good
working environment.

I am also grateful to the Higher Education Commission of Pakistan (HEC) and Deutscher
Akademischer Austausch Dienst (DAAD) for financially supporting my research work.

My utmost gratitude to Mr. Azeemullah who motivated and encouragement me throughout my Ph.D.
studies. At the time of each failure, he was there to fuel my energies to perform and deliver even much
better than earlier and to constantly improve my work.

Finally, I would like to pay my deepest gratitude to my parents (Muhammad Siddique Wahlah and
Razia Sultana) and my siblings (Anwar-us-Saeed, Riffat Shahid, Tasneem Kauser, Muhammad Aqeel
Wahlah, Naseem Kauser) for their unconditional love, never-ending support, sincere prayers, and
exceptional sacrifices throughout my Ph.D. studies and since ever. My father saw the dream of my Ph.D.
and I am grateful to my ex-team lead Dr. Jamil Raza who ignited the fire inside me (during my job at
Streaming Networks Pvt. Ltd.) to make this dream come true.

I dedicate this thesis to all of my family members and my advisor Prof. Jörg Henkel.

iii

 �Great things cast shadows.

Imagination and creativity are the essence of research.�

Jörg Henkel

v

List of Own Publications Included in This Thesis

Transactions/Journals (blind peer reviewed)

[T.1] M. Shafique, L. Bauer, J. Henkel, �Optimizing the H.264/AVC Video Encoder Application

Structure for Reconfigurable and Application-Specific Platforms�, Journal of Signal Processing

Systems (JSPS), volume 60, issue 2, pp. 183-210, August 2010 (online-published November 2008).

Conferences (double-blind/blind peer reviewed)

[C.1] M. Shafique, L. Bauer, J. Henkel, �Selective Instruction Set Muting for Energy-Aware Adaptive

Processors�, IEEE/ACM 28th International Conference on Computer-Aided Design (ICCAD´10),

San Jose, California, USA, November 2010. Nominated for the IEEE/ACM WILLIAM J.

MCCALLA ICCAD Best Paper Award 2010.

[C.2] M. Shafique, L. Bauer, J. Henkel, �enBudget: A Run-Time Adaptive Predictive Energy-

Budgeting Scheme for Energy-Aware Motion Estimation in H.264/MPEG-4 AVC Video

Encoder�, IEEE/ACM 13th Design Automation and Test in Europe Conference (DATE´10),

Dresden, Germany, pp. 1725-1730, March 2010.

[C.3] M. Shafique, B. Molkenthin, J. Henkel, �An HVS-based Adaptive Computational Complexity

Reduction Scheme for H.264/AVC Video Encoder using Prognostic Early Mode Exclusion�,

IEEE/ACM 13th Design Automation and Test in Europe Conference (DATE´10), Dresden,

Germany, pp. 1713-1718, March 2010.

[C.4] M. Shafique, L. Bauer, J. Henkel, �REMiS: Run-time Energy Minimization Scheme in a

Reconfigurable Processor with Dynamic Power-Gated Instruction Set�, IEEE/ACM 27th

International Conference on Computer-Aided Design (ICCAD´09), San Jose, California, USA,

pp. 55-62, November 2009.

[C.5] M. Shafique, B. Molkenthin, J. Henkel, �Non-Linear Rate Control for H.264/AVC Video Encoder

with Multiple Picture Types using Image-Statistics and Motion-Based Macroblock Prioritization�,

IEEE 16th International Conference on Image Processing (ICIP´09), Cairo, Egypt, pp. 3429-3432,

November 2009.

[C.6] M. Shafique, L. Bauer, J. Henkel, �A Parallel Approach for High Performance Hardware Design

of Intra Prediction in H.264/AVC Video Codec�, IEEE/ACM 12th Design Automation and Test in

Europe Conference (DATE´09), Nice, France, pp. 1434-1439, April 2009.

[C.7] M. Shafique, L. Bauer, J. Henkel, �3-Tier Dynamically Adaptive Power-Aware Motion Estimator

for H.264/AVC Video Encoding�, ACM/IEEE International Symposium on Low Power

Electronics and Design (ISLPED´08), Bangalore, India, pp. 147-152, August 2008.

Workshops (blind peer reviewed)

[W.1] M. Shafique, L. Bauer, J. Henkel, �An Optimized Application Architecture of the H.264 Video

Encoder for Application Specific Platforms�, 5th IEEE Workshop on Embedded Systems for Real-

Time Multimedia (ESTIMedia´07), Salzburg, Austria, pp. 119-124, October 2007.

vii

List of Supervised Student Projects that

Contributed to the Simulation, Prototype, and

Encoder Demonstration

Master Theses (Diplomarbeiten)

[D.1] Bastian Molkenthin �Development of a Power-Aware Rate Controller for H.264 Video Encoder�.

(Received the Forschungszentrum Informatik Award for Best Master Thesis)

[D.2] Weiwei Cheng �Simulation und Messung des Energieverbrauchs eines Rekonfigurierbaren

Eingebetteten Prozessors�.

Semester Theses (Studienarbeiten)

[S.1] Orcun Tüfek, �Developing Entropy Coding Framework and Optimized Hardware Accelerators for

CAVLC in H.264 Video Encoder�.

[S.2] Saraswathi Devi Thupakula �Porting and Optimizing the Functional Blocks of H.264 Video

Encoder on a VLIW-based Digital Signal Processor�.

[S.3] Florian Kriebel �Developing Special Instructions and Hardware Accelerators for Multimedia and

Communication Application Suites Targeting Dynamically Reconfigurable Processors�.

ix

Abstract

The continuously increasing user demands for advanced services lead to the evolution of new multimedia
standards. As a result the next generation mobile multimedia applications exhibit high complexity and
consume high energy to fulfill the end-user requirements. This stimulates the need for high-performance
embedded multimedia systems with low power/energy consumption. Besides the context-aware processing
in the emerging multimedia standards, the need for user-interactivity introduces a new dimension of run-

time adaptivity to the overall system requirements in order to react to the run-time changing scenarios
(e.g., quality and performance constraints).

State-of-the-art multimedia solutions typically employ heterogeneous multimedia Multi-Processor
System-on-Chip (MPSoC) that integrate several programmable processors, domain-specific weakly
programmable co-processors, and application-specific hardware accelerators. The selection of cores in an
MPSoC is determined at design time depending upon the requirements of a certain set of applications.
Therefore, such an MPSoC does not provide the demanded efficiency when executing applications from
different domains. Moreover, with a change in the application standard (e.g., a different video encoding)
the currently-used MPSoC becomes obsolete (as it may not fulfill the required performance and power
design constraints for the end-product). Therefore, when using state-of-the-art multimedia embedded
processors, the performance or power constraints may be achieved in a certain context, but the inability to
react to the above-mentioned uncertainties (i.e., changing standards, unpredictable scenarios, and
application behavior) and the resulting efficiency issues remain. A more efficient approach to target these
issues is dynamically reconfigurable processor that embeds a reconfigurable fabric within a core pipeline.
These processors provide a high adaptivity and flexibility (due to their hardware reconfigurability and
programmability) combined with the performance and efficiency of dedicated hardware accelerators (by
exploiting a high degree of parallelism using an embedded FPGA). Previous approaches in reconfigurable
processors have mainly concentrated on improving the performance by reconfiguring application-specific
hardware accelerators at run time to meet applications� demands and constraints. This reconfiguration
process may consume a noticeable amount of energy. Consequently, the major shortcoming of these
reconfigurable processors is their high energy consumption compared to ASICs and lack of efficient
energy management features. Moreover, with the evolution of sub-micron fabrication technologies, the
consideration of leakage power/energy has become imperative in the energy-aware design of
reconfigurable processors.

The goals of this thesis are to exploit the available potential of energy reduction and to achieve high
energy efficiency while meeting the performance constraint and keeping the video quality degradation
unnoticeable, under run-time varying scenarios (due to changing video properties, available energy
resources, user-defined constraints etc.). Therefore, adaptive energy management needs to be considered
jointly at both processor architecture and application architecture levels, such that both hardware and
software adapt together in order to react to the design-/compile-time unpredictable scenarios.

In this thesis concept, strategies, and implementations are developed targeting both processor and
application architectures that enable run-time configurability of energy consumption and video quality for
adaptive low-power embedded multimedia systems.

1) Low-power Processor Architecture: In order to enable the run-time adaptivity at the processor level,
dynamically reconfigurable processors are deployed as the target platform. State-of-the-art low-power
schemes employ power-shutdown considering the state/usage of the hardware (i.e., a hardware-
oriented shutdown) to reduce the leakage power/energy. When targeting reconfigurable processors, it
cannot be determined at compile time which parts of the instruction set will be reconfigured on which
part of the reconfigurable fabric. Therefore, unlike state-of-the-art, the proposed work raises the
abstraction level of shutdown to the instruction set level. It enables a far higher potential for leakage

Abstract

x

energy savings. At the processor level, a run-time adaptive energy management scheme is employed
that performs the following steps.
a) Determine an Energy Minimizing Instruction Set: A tradeoff between leakage, dynamic, and

reconfiguration energy is investigated and an energy-minimizing instruction set is selected for a
dynamically reconfigurable processor under run-time varying performance and area constraints. To
enable this, a comprehensive power model for the reconfigurable processors was developed, which
is based on power measurements. The benchmarks for two state-of-the-art reconfigurable
processors (Molen [PBV07, VWG+04] and RISPP [BSH08b, BSH08c, BSKH07]) demonstrate an
energy reduction of more than 40% compared to when not using the proposed scheme.

b) Selective Instruction Set Shutdown: A decision about the shutdown mode is determined for the
temporarily unused subset of the instruction set by considering the requirements and execution
lengths of the compute-intensive parts of an application (i.e., the execution context of an
application). It is determined at run time which subset of instruction set should be put into which
muting mode at which time by evaluating at run time the possible associated energy benefit (a joint
function of leakage, dynamic, and reconfiguration energy). In addition to the above-mentioned
energy savings, a further 30% energy reduction is achieved.

The information about the actual energy consumption is transmitted to the application layer for
application-level energy management.

2) Low-power Application Architecture: Video coding is the key component of the current and
emerging embedded multimedia systems as it consumes a significant amount of processing time and
energy. Therefore, at the application level, the adaptivity and energy reduction are demonstrated using
an advanced video encoder (like H.264). An optimized application architecture is proposed for video
encoders targeting the reconfigurable processors. To reduce the computation requirements of different
processing blocks of a low-power video encoder at run time, different algorithms have been developed.
These algorithms address the following issues:
• Need for an analysis of spatial and temporal video properties with consideration of important

Human-Visual System properties to categorize different video frames and their Macroblocks.
• Adaptive complexity reduction to reduce energy requirements of encoder by excluding improbable

coding modes from the mode-decision process. It solves the issue of choosing the final coding
mode out of hundreds of possible combination (without exhaustively searching the design space) by
considering the spatial and temporal video properties.

• To adaptively predict the energy quota for the energy-aware Motion Estimation (that may consume
up to 65% of the total encoding energy). It chooses a certain Motion Estimation configuration for
different video frames considering the available energy, video frame characteristics, and user-
defined coding constraints while keeping a good video quality.

The proposed low-power video encoder provides a dynamic energy reduction of more than 60% with
an insignificant quality loss (0.2dB). For the blocks that are fixed by the standard and adaptivity is not
possible, low-power hardware accelerators were designed.

In addition to the above-discussed scientific contribution, following has been developed in the scope of
this work:
• A complete power-measurement setup for dynamically reconfigurable processors that consists of a

power supply board, two oscilloscopes, an FPGA based prototyping board, and a control program
(running on a PC) for capturing the measurements from the oscilloscopes.

• A complete H.264 video encoder application with the proposed run-time algorithms and low-
complexity data flow. The in-house developed H.264 encoder is currently executing on an in-house
dynamically reconfigurable processor prototype, Texas Instruments� multimedia processor, and
laptop/desktop PCs.

• A video analysis tool with an easy-to-use graphical user interface for quick and in-depth analysis of
video sequences.

xi

Zusammenfassung

Die kontinuierlich steigenden Nutzerwünsche nach fortgeschrittenen Diensten führen zur Evolution neuer
Multimediastandards. Als eine Folge besitzen die mobilen Multimediaanwendungen der nächsten
Generation eine hohe Komplexität und konsumieren eine große Menge an Energie, um die Anforderungen
der Endbenutzer zu erfüllen. Dies stimuliert den Bedarf nach hochperformanten eingebetteten

Multimediasystemen mit geringem Leistungs-/Energiebedarf. Neben den kontextbewussten Berechnungen
in den aufkommenden Multimediastandards, führt der Bedarf nach Benutzerinteraktivität zu einer neuen
Dimension von Laufzeitadaptivität für die gesamten Systemanforderungen, um auf Szenarien reagieren zu
können, die sich zur Laufzeit ändern (z.B. Qualitäts- und Performanzanforderungen).

Dem Stand der Technik entsprechende Multimedialösungen verwenden heterogene Multimedia-
Mehrkernprozessor Systeme (MPSoC), die mehrere programmierbare Prozessoren, domänenspezifische
schwach programmierbare Koprozessoren und anwendungsspezifische Hardwarebeschleuniger
integrieren. Die Auswahl an Kernen in einem MPSoC wird zur Entwurfszeit abhängig von den
Anforderungen einer gewissen Menge an Anwendungen bestimmt. Deswegen liefert solch ein MPSoC
nicht die geforderte Effizienz, wenn Anwendungen einer anderen Domäne ausgeführt werden. Des
Weiteren wird das momentan eingesetzte MPSoC bei einer Änderung des Anwendungsstandards (z.B.
eine anderen Videokodierung) obsolet (weil es die geforderten Performanz- und
Leistungsverbrauchsanforderungen des Endprodukts möglicherweise nicht mehr erfüllen kann).
Deswegen können bei Verwendung von eingebetteten Multimediaprozessoren des Stands der Technik die
Performanz- oder Leistungsverbrauchsanforderungen vielleicht in einem bestimmten Kontext erreicht
werden, aber die Unfähigkeit auf die oben genannten Unsicherheiten (d.h. sich ändernde Standards,
unvorhersagbare Szenarien und Anwendungsverhalten) reagieren zu können und die daraus resultierenden
Effizienzprobleme bleiben. Ein effizienterer Ansatz um diese Probleme anzugehen ist ein dynamisch

rekonfigurierbarer Prozessore, der eine rekonfigurierbare Fläche in eine Kernpipeline integriert. Diese
Prozessoren liefern eine hohe Adaptivität und Flexibilität (durch ihre Hardwarerekonfigurierbarkeit und
Programmierbarkeit), kombiniert mit der Performanz und Effizienz von dedizierten
Hardwarebeschleunigern (durch die Ausnutzung eines hohen Grades an Parallelität durch den
eingebetteten FPGA). Frühere Ansätze bei rekonfigurierbaren Prozessoren haben sich darauf konzentriert,
die Performanz durch die Rekonfiguration von anwendungsspezifischen Hardwarebeschleunigern zur
Laufzeit zu erhöhen, um die Bedürfnisse und Anforderungen der Anwendungen zu erfüllen. Diese
rekonfigurierbaren Prozessoren können eine beachtliche Menge an Energie verbrauchen. Folgerichtig ist
ein Hauptnachteil dieser rekonfigurierbaren Prozessoren ihr hoher Energieverbrauch im Vergleich zu
ASICs und ihr Mangel an Energieverwaltungsmöglichkeiten. Des Weiteren ist durch die Evolution von
sub-micron Herstellungstechnologien die Berücksichtigung von Leckströmen ein Gebot für den
energiebewussten Entwurf von rekonfigurierbaren Prozessoren geworden.

Das Ziel dieser Doktorarbeit ist es, das vorhandene Potential zur Energieverbrauchsreduzierung zu
nutzen und eine hohe Energieeffizienz zu erzielen, während bei Situationen die zur Laufzeit variieren
(durch sich ändernde Videoeigenschaften, die verfügbaren Energieressourcen und anwenderdefinierte
Anforderungen etc.) die Performanzanforderung eingehalten und die Verringerung der Videoqualität
unbemerkbar gehalten wird. Dafür muss eine adaptive Energieverwaltung sowohl bei der Prozessor-, wie
auch bei der Anwendungsarchitektur berücksichtigt werden, so dass sich Hardware und Software
gemeinsam anpassen, um auf Situationen zu reagieren, die zur Entwurfs- und Übersetzungszeit nicht
vorhergesagt werden können.

In dieser Doktorarbeit werden Konzepte, Strategien und Implementierungen sowohl für die Prozessor-
wie auch die Anwendungsarchitektur entwickelt, welche die Laufzeitkonfigurierbarkeit von

Zusammenfassung

xii

Energieverbrauch und Videoqualität für adaptive low-power eingebettete Multimediasysteme
ermöglichen.

1) Low-power Prozessorearchitektur: Um die Laufzeitadaptivität auf der Ebene des Prozessors
möglich zu machen, werden dynamisch rekonfigurierbare Prozessoren als Zielplattform verwendet.
Dem Stand der Technik entsprechende low-power Schemata verwenden Power-Abschaltung unter
Berücksichtigung vom Status und dem Zustand der Hardware (d.h. eine hardwareorientierte
Abschaltung), um den durch Lechströme verursachten Leistungs-/Energieverbrauch zu verringern. Bei
rekonfigurierbaren Prozessoren kann nicht zur Übersetzungszeit festgelegt werden, welche Teile des
Befehlssatzes in welchen Bereich der rekonfigurierbaren Hardware rekonfiguriert werden. Deswegen
hebt die vorgestellte Arbeit im Gegensatz zum Stand der Technik den Abstraktionsgrad auf ein
Abschalten auf der Befehlssatzebene. Dies eröffnet ein deutlich größeres Potential zum Reduzieren der
Leckströme. Auf der Prozessorebene wird ein laufzeitadaptives Energieverwaltungssystem eingesetzt,
das die folgenden Schritte durchführt.
c) Bestimmung eines energieminimierenden Befehlssatzes: Ein Kompromiss zwischen Leckströmen,

dynamischen- und Rekonfigurationsenergieverbrauch wird untersucht und ein
energieminimierender Befehlssatz wird für einen dynamisch rekonfigurierbaren Prozessor unter
zur sich zur Laufzeit ändernden Performanz- und Flächenbedingungen ausgewählt. Um dies zu
ermöglichen wurde ein umfassendes Powermodell für den rekonfigurierbaren Prozessor
entwickelt, das auf Leistungsverbrauchsmessungen basiert. Die Benchmarks für dem Stand der
Technik entsprechende rekonfigurierbare Prozessoren (Molen [PBV07, VWG+04] und RISPP
[BSH08b, BSH08c, BSKH07]) demonstrieren eine Verringerung des Energieverbrauches um mehr
als 40% im Vergleich zum Betrieb ohne das vorgeschlagene System.

d) Ausgewählte Befehlssatzabschaltung: Eine Entscheidung über den Abschaltungsmodus wird für
die temporär nicht benutze Teilmenge des Befehlssatzes getroffen, wobei die Anforderungen und
die Ausführungslänge der rechenintensiven Teile einer Anwendung berücksichtigt werden (d.h.,
der Ausführungskontext einer Anwendung). Es wird zur Laufzeit bestimmt, welche Teilmenge des
Befehlssatzes zu welcher Zeit in welchen Abschaltungsmodus versetzt werden soll, indem zur
Laufzeit die möglichen assoziierten Energievorteile (eine gemeinsame Funktion aus Leckstrom,
dynamischer- und Rekonfigurationsenergie) evaluiert wird. Zusätzlich zu den oben genannten
Energieeinsparungen wird eine weitere Energiereduktion um 30% erreicht.

Die Informationen über den momentanen Energieverbrauch werden für die Energieverwaltung auf der
Anwendungsschicht in die Anwendungsebene transportiert.

2) Low-power Anwendungsarchitektur: Videokodierung ist die Schlüsselkomponente für momentane
und entstehende eingebettete Multimediasysteme, weil sie einen signifikanten Teil der Rechenzeit und
der Energie verbraucht. Deswegen werden Adaptivität und die Energieeinsparungen auf Seiten der
Anwendungsarchitektur durch einen fortgeschrittenen Videokodierer (wie H.264) demonstriert. Eine
optimierte Anwendungsarchitektur für Videokodierer die für rekonfigurierbare Prozessoren ausgelegt
ist wird vorgeschlagen. Um die Rechenanforderungen der verschiedenen Rechenblöcke eines low-
power Videokodierers zur Laufzeit zu verringern, sind verschiedene Algorithmen entwickelt worden.
Diese Algorithmen adressieren die folgenden Probleme:
• Bedarf einer Analyse von räumlichen und zeitlichen Videoeigenschaften unter Berücksichtigung

der wichtigen Eigenschaften des menschlichen Sehsystems, um verschiedene Videobilder und
deren Makroblöcke zu kategorisieren.

• Adaptive Komplexitätsreduzierung, um den Energieverbrauch durch Ausschluss
unwahrscheinlicher Kodierungsmodi aus dem Modusentscheidungsprozess zu verringern. Dies löst
das Problem den finalen Kodierungsmodus aus hunderten von möglichen Kombinationen zu
wählen (ohne den Entwurfsraum erschöpfend zu durchsuchen), indem räumliche und zeitliche
Videoeigenschaften berücksichtigt werden.

• Adaptiv das Energiekontingent für die energiebewusste Bewegungsabschätzung (die bis zu 65% der
Gesamtenergie der Enkodierung brauchen kann) vorherzusagen. Dies wählt eine gewisse

Zusammenfassung

xiii

Bewegungsabschätzungskonfiguration für verschiedene Videobilder unter Berücksichtigung der
verfügbaren Energie, der Videobildcharakteristiken und der nutzerdefinierten Kodierungs-
anforderungen aus, wobei eine gute Videoqualität gewahrt wird.

Der vorgeschlagene low-power Videokodierer bietet bei einem unbedeutenden Qualitätsverlust
(0,2dB) eine Verringerung des dynamischen Energieverbrauchs um mehr als 60%. Für die Blöcke, die
durch den Standard festgelegt sind und für die keine Adaptivität möglich ist, wurden low-power
Hardwarebeschleuniger entworfen.

Zusätzlich zu dem oben diskutierten wissenschaftlichen Beitrag wurde im Rahmen dieser Doktorarbeit
Folgendes entwickelt:
• Eine komplette Umgebung zur Messung des Leistungsverbrauches von dynamisch

rekonfigurierbaren Prozessoren, das aus einem Stromversorgungsboard, zwei Oszilloskopen, einem
FPGA basierten Prototypen und einem Kontrollprogramm (auf einem PC ausgeführt, um die
Messergebnisse der Oszilloskope zu empfangen) besteht.

• Eine komplette H.264 Videokodieranwendung mit den vorgeschlagenen Laufzeitalgorithmen und
einem Datenfluss geringer Komplexität. Der intern entwickelte H.264 Kodierer wird momentan auf
einem intern entwickelten dynamisch rekonfigurierbaren Prozessorprototypen, einem
Multimediaprozessor von Texas Instruments und auf Laptop/Desktop PCs ausgeführt.

• Ein Videoanalyse Tool mit einer leicht zu bedienenden grafischen Benutzerschnittstellt für eine
schnelle und gründliche Analyse von Videosequenzen.

xv

Contents

Acknowledgements .. i

List of Own Publications Included in This Thesis .. v

List of Supervised Student Projects that Contributed to the Simulation,

Prototype, and Encoder Demonstration ... vii

Abstract .. ix

Zusammenfassung ... xi

Contents ... xv

List of Figures .. xxi

List of Tables ... xxvii

List of Algorithms ... xxix

Abbreviations and Definitions ... xxxi

Chapter 1 Introduction .. 1

1.1 Trends and Requirements of Advanced Multimedia Systems 1

1.2 Trends and Options for Multimedia Processing .. 3

1.3 Summary of Challenges and Issues ... 6

1.4 Thesis Contribution ... 6

1.5 Thesis Outline .. 8

Chapter 2 Background and Related Work .. 11

2.1 Video Coding: Basics and Terminology ... 11

2.2 The H.264 Advanced Video Codec: A Low-Power Perspective 12

2.2.1 Overview of the H.264 Video Encoder and its Functional

Blocks ... 12

2.2.2 Low-Power Architectures for H.264/AVC Video Encoder 16

2.2.3 Adaptive and Low-Power Design of the Key Functional Blocks

of the H.264 Video Encoder: State-of-the-art and Their

Limitations ... 17

2.3 Reconfigurable Processors ... 20

2.3.1 Fine-Grained Reconfigurable Fabric ... 21

2.3.2 Leakage Power of Fine-Grained Reconfigurable Fabric and the

Power-Shutdown Infrastructure ... 22

Contents

xvi

2.3.3 Custom Instructions (CIs): A Reconfigurable Processor

Perspective ... 23

2.3.4 Reconfigurable Instruction Set Processors 24

2.3.5 Rotating Instruction Set Processing Platform (RISPP) 25

2.4 Low-Power Approaches in Reconfigurable Processors 32

2.5 Summary of Related Work ... 33

Chapter 3 Adaptive Low-Power Architectures for Embedded Multimedia

Systems ... 35

3.1 Analyzing the Video Coding Application for Energy Consumption and

Adaptivity.. 35

3.1.1 Advanced Video Codecs: Analyzing the Tool Set 36

3.1.2 Energy and Adaptivity Related Issues in H.264/AVC Video

Encoder .. 38

3.2 Energy- and Adaptivity Related Issues for Dynamically

Reconfigurable Processors .. 40

3.3 Overview of the Proposed Architectures and Design Steps 42

3.4 Power Model for Dynamically Reconfigurable Processors 45

3.4.1 Power Consuming Parts of a Computation- and

Communication-Infrastructure in a Dynamically

Reconfigurable Processor .. 46

3.4.2 The Proposed Power Model .. 47

3.5 Summary of Adaptive Low-Power Embedded Multimedia System 48

Chapter 4 Adaptive Low-Power Video Coding .. 49

4.1 H.264 Encoder Application Architectural Adaptations for

Reconfigurable Processors .. 49

4.1.1 Basic Application Architectural Adaptations 49

4.1.2 Application Architectural Adaptations for On-Demand

Interpolation .. 51

4.1.3 Application Architectural Adaptations for Reducing the

Hardware Pressure ... 53

4.1.4 Data Flow of the H.264 Encoder Application Architecture with

Reduced Hardware Pressure .. 55

4.2 Designing Low-Power Data Paths and Custom Instructions 57

4.2.1 Designing the Custom Instruction for In-Loop Deblocking

Filter .. 59

4.2.2 Designing the Custom Instructions for Motion Estimation 61

4.2.3 Designing the Custom Instruction for Motion Compensation 61

Contents

xvii

4.2.4 Area Results for the Custom Instruction of H.264 Encoder 62

4.3 Spatial and Temporal Analysis of Videos Considering Human Visual

System .. 63

4.3.1 HVS-Based Macroblock Categorization .. 67

4.3.2 QP-Based Thresholding ... 68

4.4 An HVS-based Adaptive Complexity Reduction Scheme 69

4.4.1 Prognostic Early Mode Exclusion .. 70

4.4.2 Hierarchical Fast Mode Prediction .. 71

4.4.3 Sequential RDO Mode Elimination ... 73

4.4.4 Evaluation of the Complexity Reduction Scheme 73

4.5 Energy-Aware Motion Estimation with an Integrated Energy-

Budgeting Scheme ... 77

4.5.1 Adaptive Motion Estimator with Multiple Processing Stages 78

4.5.2 enBudget: The Adaptive Predictive Energy-Budgeting Scheme ... 82

4.5.3 Evaluation of Energy-Aware Motion Estimation with an

Integrated Energy-Budgeting Scheme ... 87

4.6 Summary of Low-Power Application Architecture 90

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture 93

5.1 Motivational Scenario and Problem Identification 93

5.2 Run-Time Adaptive Energy Management with the Novel Concept of

Custom Instruction Set Muting .. 95

5.2.1 Concept of Muting the Custom Instructions 95

5.2.2 Power-Shutdown Infrastructure for the Muted Custom

Instructions ... 97

5.2.3 Run-Time Adaptive Energy Management 98

5.3 Determining an Energy-Minimizing Instruction Set 100

5.3.1 Formal Problem Modeling and Energy Benefit Function 100

5.3.2 Algorithm for Choosing CI Implementation Versions 102

5.3.3 Evaluation and Results for Energy-Minimizing Instruction Set .. 105

5.4 Selective Instruction Set Muting ... 110

5.4.1 Problem Description and Motivational Scenarios 111

5.4.2 Operational Flow for Selective Instruction Set Muting 112

5.4.3 Analyzing the Energy Benefit Function of Muting 114

5.4.4 Hot Spot Requirement Prediction: Computing Weighting

Factors for CIs .. 115

5.4.5 Evaluation of Selective Instruction Set Muting 116

Contents

xviii

5.5 Summary of Adaptive Low-Power Reconfigurable Processor

Architecture ... 118

Chapter 6 Power Measurement of the Reconfigurable Processors 119

6.1 Power Measurement Setup ... 119

6.2 Measuring the Power of Custom Instructions .. 120

6.2.1 Flow for Creating the Power Model .. 120

6.2.2 Test Cases for Power Measurements .. 121

6.2.3 Results for Power Measurement and Estimation 123

6.3 Measuring the Power of the Reconfiguration Process 124

6.3.1 Power Consumption of EEPROM .. 124

6.3.2 Power Consumption of the Reconfiguration via ICAP 125

6.4 Summary of the Power Measurement of the Reconfigurable Processors125

Chapter 7 Benchmarks and Results .. 127

7.1.1 Simulation Conditions and Fairness of the Comparison 127

7.2 Adaptive Low-Power Application Architecture 128

7.2.1 Comparing Complexity Reduction Scheme to State-of-the-art

and the Exhaustive RDO-MD ... 128

7.2.2 Comparing the Energy-Aware Motion Estimation with

Integrated Energy Budgeting Scheme to State-of-the-art 131

7.3 Adaptive Low-Power Processor Architecture .. 133

7.3.1 Comparing the Adaptive Energy Management Scheme (without

Selective Instruction Set Muting) to RISPP with Performance

Maximization [BSH08c] .. 133

7.3.2 Applying the Adaptive Energy Management Scheme (without

Selective Instruction Set Muting) to Molen [VWG+04]

Reconfigurable Processor .. 134

7.3.3 Comparing the Adaptive Energy Management Scheme (with

Selective Instruction Set Muting) to State-of-the-Art Hardware-

Oriented Shutdown .. 135

7.4 Summary of the Benchmarks and Comparisons 137

Chapter 8 Conclusion and Outlook ... 139

8.1 Thesis Summary .. 139

8.2 Future Work .. 142

Appendix A A Multi-Level Rate Control ... 145

A.1 A Rate Control Algorithm .. 145

A.2 The proposed Multi-Level Rate Control ... 146

Contents

xix

A.3 Evaluation and Results .. 150

Appendix B Simulation Environment the H.264 Video Encoder

Demonstration ... 155

B.1 Implementation and Simulation Environment ... 155

B.2 H.264 Video Encoder on the RISPP Hardware Prototype 157

B.3 H.264 Video Encoder on the Texas Instruments� DM6437 Digital

Media Processor ... 158

Appendix C The CES Video Analyzer Tool ... 161

Bibliography ... 163

xxi

List of Figures

Figure 1.1: (a) Video Services Over Time [Hui10]; (b) Video Complexity Over Time

[MBNN10] ...2

Figure 1.2: (a) Flexibility vs. Efficiency Comparison of Different Architectural

Options (inspired from [Hen03]); (b) Evolution Trend of Xilinx Virtex

FPGAs [Xil10a] ..4

Figure 2.1: An Overview of the Digital Video Structure (showing Group of Pictures,

Frame, Slice, MB) and Different Video Resolutions ...12

Figure 2.2: Functional Overview of the H.264/AVC Video Encoder13

Figure 2.3: Variable Block Sizes for Inter-Predicted MBs (P-MBs) in H.264/AVC13

Figure 2.4: A Typical Composition of a Fine-Grained Reconfigurable Fabric with a

2D-Array of CLBs and PSMs along with the Internal Details of a Spartan-

3 Tile [Te06, Xil08a] ..21

Figure 2.5: State-of-the-Art in Power-Shutdown Infrastructure (a) by [Ge04] (b) by

[Te06] ...22

Figure 2.6: (a) Sizing of Thin- & Mid-Oxide Power Gate showing Leakage-Delay

Tradeoffs [Te06]; (b) Power Consumption for Activating and Deactivating

a single tile [Te06] ..23

Figure 2.7: Extending a Standard Processor Pipeline towards RISPP and the Overview

of the RISPP Run-time System [BSTH07] ..26

Figure 2.8: Hierarchical Composition of Custom Instructions: Multiple

Implementation Versions Exist per Custom Instruction and Demand Data

Paths for Realization [BSKH07, BSTH07] ..27

Figure 2.9: Example Control-flow Graph Showing Forecasts and the Corresponding

Custom Instruction Executions [Bau09] ..30

Figure 2.10: Execution Sequence of Forecast and Custom Instructions with the

Resulting Error Back Propagation and Fine-tuning [Bau09]30

Figure 2.11: Overview of the Hardware Infrastructure for Computation (Data Path

Container) and Communication (Bus Connector) showing the Internal

Composition of a Bus Connector [Bau09] ...31

Figure 3.1: Overview of an H.324 Video Conferencing Application with H.264/AVC

Codec ..35

Figure 3.2: Processing Time Distribution of Different Functional Blocks in the H.324

Video Conferencing Application ..36

Figure 3.3: Percentage Distribution of Energy Consumption of Different Functional

Blocks in the H.264 Video Encoder ...39

List of Figures

xxii

Figure 3.4: Distribution of I-MBs in Slow-to-Very-High Motion Scenes (Test

Conditions: Group of Pictures=IPPP�, CAVLC, Quantization Parameter

= 28, 30fps) ...40

Figure 3.5: Overview of the Adaptive Low-Power Application and Processor

Architectures ..42

Figure 3.6: Highlighting Different Steps to be Performed at Design, Compile, and

Run Time at both Application and Processor Levels ...44

Figure 3.7: Power-Relevant Components of the Computation- and Communication

Infrastructure to Execute CI Implementation Versions [BSH08a].......................46

Figure 3.8: Example for a Custom Instruction (CI) Implementation Version46

Figure 4.1: Basic Application Architectural Adaptations to Construct the Benchmark

Application ...50

Figure 4.2: Arrangement of Functional Blocks in the H.264 Encoder Benchmark

Application ...51

Figure 4.3: Number of Computed vs. Required Interpolated MBs for two Standard

Test Sequences for Mobile Devices ...51

Figure 4.4: Distribution of Different Interpolation Cases in the Carphone Video

Sequence ...52

Figure 4.5: H.264 Encoder Application Architecture with Reduced Hardware Pressure.......54

Figure 4.6: Data Flow Diagram of the H.264 Encoder Application Architecture with

Reduced Hardware Pressure ...55

Figure 4.7: Description and Organization of Major Data Structures56

Figure 4.8: Steps to Create Optimized Data Paths from the Standard Formulae58

Figure 4.9: Pixel Samples Across a 4x4 Block Horizontal or Vertical Boundary

[ITU05] ...59

Figure 4.10: 4-Pixel Edges in one Macroblock [ITU05] ..59

Figure 4.11: Custom Instruction for In-Loop Deblocking Filter with Example Schedule

and Constituting Data Paths for Filtering Conditions and Filtering

Operation ..60

Figure 4.12: Custom Instruction for SATD4x4 showing the Transform and SAV Data

Paths ...62

Figure 4.13: Custom Instruction for Motion Compensation showing Different Data

Paths ...62

Figure 4.14: Mode Distribution and Video Statistics in the 7th Frame of American

Football ...64

Figure 4.15: Optimal Coding Mode Distribution in Rafting and American Football

Sequences at different Quantization Parameter (QP) values65

Figure 4.16: Directional Groups with respect to the Edge Direction Angle and Notion

of Spatial and Temporal Neighboring Macroblocks ..66

List of Figures

xxiii

Figure 4.17: Mode Distribution of Frame 4 in Rafting Sequence using the Exhaustive

RDO-MD for two different QP values: Left: QP = 16 and Right: QP = 3868

Figure 4.18: Overview of the Adaptive Computational Complexity Reduction Scheme

(ACCoReS) showing Different Processing Steps and MB Categorizations70

Figure 4.19: Processing Flow of the Hierarchical Fast Mode Prediction73

Figure 4.20: Percentage Mode Excluded in ACCoReS for Various Video Sequences74

Figure 4.21: Distribution of Mode Processing for QP=28 ..75

Figure 4.22: Comparison of Total SAD Computations for various video sequences75

Figure 4.23: Frame-Level in-depth Comparison for Susie Sequence76

Figure 4.24: Frame-Level in-depth evaluation of correct mode prediction76

Figure 4.25: MB-level Mode Comparison with the Exhaustive RDO-MD: Frame 17 of

American Football. Left: ACCoReS [PSNR=33.28 dB], Right: Exhaustive

RDO-MD [PSNR=34.52 dB] ...76

Figure 4.26: Motion Vector Difference Distribution in Foreman Sequence (256 kbps)

for Various Predictors Compared to the Optimal Motion Vector (obtained

using the Full Search algorithm) ..78

Figure 4.27: Predictor Conditions for Motion-Dependent Early Termination79

Figure 4.28: Four Search Patterns used in the Adaptive Motion Estimator and the Pixel-

Decimation Patterns for SAD Computation ..81

Figure 4.29: Flow of the enBudget Scheme for Energy-Aware Motion Estimation83

Figure 4.30: Energy-Quality (EQ) Classes: Energy-Quality Design Space Exploration

showing various Pareto Points and the Pareto Curve ...84

Figure 4.31: SAD vs. Energy Consumption Comparison of different Motion Estimation

Stages for Foreman Sequence ..84

Figure 4.32: Energy and Quality Comparison for the Adaptive Motion Estimator With

and Without the enBudget for Various Video Sequences88

Figure 4.33: Energy and Quality Comparison for the UMHexagonS [CZH02] With and

Without the enBudget for Various Video Sequences ...88

Figure 4.34: Frame-wise Energy Consumption of the Energy-Aware Motion Estimation89

Figure 4.35: Macroblock-Wise Energy Consumption Map of two Exemplary Frames in

the SusieTableMix_QCIF Sequence for a 90nm Technology89

Figure 4.36: Energy Consumption of the Energy-Aware Motion Estimation for Various

FPGA Fabrication Technologies for Various Video Sequences89

Figure 5.1: Simplified Comparison of Energy Consumption, Highlighting the Effects

of Different Reconfiguration Decisions ...94

Figure 5.2: Infrastructure Necessary to Exert the Proposed CI Muting Technique97

Figure 5.3: Muting the Temporarily Unused Instruction Set ..97

List of Figures

xxiv

Figure 5.4: Overview of the Proposed Adaptive Low-Power Reconfigurable Processor

with Run-Time Adaptive Energy Management along with the Design-,

Compile-, and Run-Time Steps ..99

Figure 5.5: Search Space of Five CIs with Their Implementation Versions at the

Corresponding Levels and The Path of the Energy-Minimizing Instruction

Set ...103

Figure 5.6: Energy-Performance Design Spaces: Evaluation of the Energy

Minimization Space Using the Adaptive Energy Management Scheme

under Various Area and Performance Constraints for Four Fabrication

Technologies for an Encoding of 40 QCIF (176x144) Frames106

Figure 5.7: Comparison of Energy Components in Different Fabrication Technologies

under Various Area Constraints ...107

Figure 5.8: Comparing Energy-Performance Design Spaces for Different Video

Resolutions when using the Energy Management Scheme under Various

Area and Performance Constraints for an Encoding of 60 Video Frames108

Figure 5.9: CI Execution Results for 30 fps on 65 nm Showing a Detailed Breakdown

of Energy Components Highlighting the Contribution of Reconfiguration

and Leakage Energy. The Lower Graph Shows the Detailed Execution

Pattern of Various CIs Executing in Different Hot Spots of the H.264

Video Encoder Along With Total Energy Consumption109

Figure 5.10: Comparing the Energy Requirements of Virtually- & Fully-Muted CIs for

2 Scenarios ...111

Figure 5.11: Time-line showing the execution sequence of hot spots and the situation

for a CI Muting decision ..112

Figure 5.12: Flow for Selecting a Muting Mode for the Custom Instruction (CI) Set113

Figure 5.13: Venn Diagram Showing the Data Path Requirements of Previous, Current,

Upcoming Hot Spots ..114

Figure 5.14: Calculating the Weighting Factor for Custom Instructions w.r.t. the

Application Context ..116

Figure 5.15: Summary of Energy Benefit of using Selective Instruction Set Muting117

Figure 6.1: a) Measurement setup, b) the in-house Developed Power Supply board119

Figure 6.2: Flow for Creating the Measurement-based Power Model120

Figure 6.3: Test Case and Setup for Measuring the Power of An Idle (Empty)

Framework ..121

Figure 6.4: Different Test Cases for Measuring the Power of Different Components of

a Custom Instruction (CI) Implementation Version ...122

Figure 6.5: Connection of FIFO between EEPROM and ICAP ...124

List of Figures

xxv

Figure 6.6: (a) EEPROM Voltage Drop while Loading one Data Path Bitstream from

EEPROM to FPGA. (b) VCCINT Voltage Drop for Transferring one Data

Path Bitstream to ICAP and Performing the Corresponding

Reconfiguration ..125

Figure 7.1: Comparing the Energy Savings and Quality Loss of the ACCoReS with

Several State-of-the-Art Fast Mode Decision Schemes129

Figure 7.2: Energy Savings and Quality Loss of the ACCoReS compared to the

Exhaustive RDO-MD for CIF Resolution Video Sequences129

Figure 7.3: Energy Savings and Quality Loss of the ACCoReS compared to the

Exhaustive RDO-MD for QCIF Resolution Video Sequences130

Figure 7.4: Comparing the Rate Distortion Curves for QCIF and CIF Sequences130

Figure 7.5: Power Test with a Real Battery using Mobile Sequence131

Figure 7.6: Summary of Energy Savings of the enBudget Scheme Compared to

Various Fast Adaptive Motion Estimation Schemes ..132

Figure 7.7: Comparing Energy Saving and PSNR Loss of the Proposed Energy-Aware

Motion Estimation and the enBudget Scheme with Various Fast Adaptive

Motion Estimators [* negative PSNR loss actually shows the PSNR gain

of the Scheme] ..132

Figure 7.8: Energy Comparison of the AEM_FM and RISPP_PerfMax schemes for 65

nm ...133

Figure 7.9: Average Energy Comparison of the AEM_FM and RISPP_PerfMax for 3

Technologies ...134

Figure 7.10: Percentage energy saving of Molen [VWG+04] plus AEM_FM over

Molen without AEM_FM for three technologies ...134

Figure 7.11: Comparing the Energy Breakdown of the Adaptive Energy Management

Scheme (with Selective Instruction Set Muting) to [Ge04]-based Pre-VM

and [MM05]-based Pre-FM ..135

Figure 7.12: Energy Comparison of the Adaptive Energy Management Scheme with

[Ge04]-based Pre-VM and [MM05]-based Pre-FM Techniques for

Varying Amount of Reconfigurable Fabric ..136

Figure 7.13: Energy Savings of the Adaptive Energy Management Scheme Compared

to the [Ge04]-based Pre-VM technique ..137

Figure A.1: Comparison of Produced Bits With and Without Rate Control145

Figure A.2: The Multi-Level Rate Control Scheme covering GOP, Frame/Slice, & BU

Levels along with Image and Motion Based Macroblock Prioritization147

Figure A.3: Critical Ziegler-Nichols-Point for American Football148

Figure A.4: Temporal Distance based QP Calculation for B Frames/Slices149

Figure A.5: Basic Unit (BU) Level RC with Texture and Motion Based QP

Adjustments ..151

List of Figures

xxvi

Figure A.6: RD-Curves Comparison of the Proposed Multi-Level RC with RC-Mode-

3 for Carphone (QCIF, IPPP) and American Football (SIF, IBBP)152

Figure A.7: MBEE Comparison of the Multi-Level RC with Three Different RC

Modes ...152

Figure A.8: Frame-wise Comparison of the Multi-Level RC with RC-Mode-3 for Fast

Motion Combined CIF Sequences Encoded at 2Mbps@30fps153

Figure A.9: Frame-wise Comparison of the Multi-Level RC with RC-Mode-0 for

Susie Mixed CIF Sequence (Bright, Dark, Noisy) at 2Mbps@30fps153

Figure A.10: Evaluating the Image and Motion Based MB Prioritizations (Note: All

excerpts are 2x zoomed using nearest neighbor interpolation)153

Figure B.1: Simulation Methodology Showing Various Steps of the Simulation

Procedure [S.3] ...156

Figure B.2: Reconfigurable Processor Simulator [BSH09a] with the Extensions

Implemented in the Scope of this Thesis for Run-Time Adaptive Energy-

Management ...157

Figure B.3: (A) H.264 Video Encoder Executing on the RISPP Prototype; (B)

Floorplan of the RISPP Prototype Implementation on the Xilinx Virtex-4

LX 160 FPGA [Bau09] ..158

Figure B.4: H.264 Video Encoder Executing on the TI� DM6437 DSP Board [S.2]159

Figure B.5: Flow for porting H.264 Encoder on DM6437 Digital Signal Processor

[S.2] ..159

Figure C.1: The CES Video Analyzer Tool showing the Research Framework for

Motion Estimation, Video Merging, and Texture Analysis [D.1]162

xxvii

List of Tables

Table 2.1: High-level Properties of Implementation Version and Custom Instruction

[Bau09] ...28

Table 3.1: Comparing the Coding Tool Set of Various Video Encoding Standards

[ITU05, ITU09, Joi08, Joi10, KL07, Mic10a, Mic10b, Ric03, Ric10,

YCW09] ...37

Table 4.1: Custom Instructions and Data Paths for the H.264 Video Encoder58

Table 4.2: Implementation Results for Various Data Paths of the H.264 Video

Encoder ...63

Table 4.3: Thresholds and Multiplying Factors Used in ACCoReS69

Table 4.4: Summary of PSNR, Bit Rate, and Speedup Comparison for Various Video

Sequences (Each encoded using 8 different QPs) ..74

Table 4.5: Comparing the Video Quality of Different SAD Decimation Patterns for

Encoding of Susie CIF video sequence (30fps@256 kbps)81

Table 4.6: Configuration and Energy Consumption for the chosen Energy-Quality

(EQ) Classes [*Averaged over various test video sequences for 90 nm

ASIC] ..85

Table 4.7: Coefficients and Thresholds used by the algorithm of enBudget in

Algorithm 4.4 ...87

Table 4.8: Performance, Area, and Energy Overhead of enBudget90

Table 5.1: Various Custom Instruction (CI) Muting Modes ...96

Table 5.2: Parameters and Evaluation Conditions with their Corresponding Reference

Sources * the Virtex-5/6 internal CLB Composition is Different Compared

to Previous FPGAs ...105

Table 5.3: Hardware Implementation Results for the Energy Management Scheme on

the RISPP Prototyping Platform (see Figure 6.1 in Section 6.1)109

Table 6.1: Different Placement Combinations of two Transform Data Paths for

Power Measurement ...122

Table 6.2: Measured Power Results for Various Data Paths & HT4x4

Implementation Versions [* showing the effect of changing

communication requirements, ** power for a single toggling bus segment;

many bus segments are used for communication to realize an

Implementation Version] ..123

Table 6.3: Parameters of Power Model for the CI Implementation Versions123

Table 6.4: Power Consumption and Latencies of Different Implementation Versions

(using Different Amount of DPCs) for Various Custom Instructions for 65

nm and 40 nm Technologies ..123

xxix

List of Algorithms

Algorithm 4.1: The Filtering Process for Boundary Strength=4 ...59

Algorithm 4.2: Pseudo-Code of Group-A for Prognostic Early Mode Exclusion71

Algorithm 4.3: Pseudo-Code of Group-B for Prognostic Early Mode Exclusion72

Algorithm 4.4: Pseudo code of the Run-Time Adaptive Predictive Energy-Budgeting

Scheme ...86

Algorithm 5.1: Pseudo code of Determining the Energy Minimizing Instruction Set104

Algorithm 5.2: Pseudo Code for Finding a Data Path for Virtually-Muting Mode114

xxxi

Abbreviations and Definitions

ACCoReS Adaptive Computational Complexity Reduction Scheme

ADI Arbitrary Directional Intra

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction Set Processor

AVC Advanced Video Coding

AVS Advanced Visual Systems

B-MB Bi-directionally predicted åMB (i.e., a prediction is performed from the previous and
future reference frames)

BC Bus Connector: Connecting a åDPC to the Computation and Communication
Infrastructure

BOPF Buffer Overflow Prevention Factor

BU Basic Unit, it is a group of åMBs; it defines the granularity at which the rate controller
computes a new QP value

CABAC Context-Adaptive Binary Arithmetic Coding

CAVLC Context-Adaptive Variable Length Coding

CBR Constant Bit Rate

CI Custom Instruction

CIF Common Intermediate Format (Resolution: 352x288)

CIP Combined Intra Prediction

cISA core Instruction Set Architecture: the part of the instruction set that is implemented
using the core processor pipeline (i.e., non-reconfigurable); it can be used to implement
can be used to implement åCustom Instructions

CLB Configurable Logic Block: part of an åFPGA, contains multiple åLUTs

CPU Central Processing Unit

DCSS Dynamic Clock Supply Stop

DCT Discrete Cosine Transform

DPC Data Path Container: a part of the reconfigurable fabric that can be dynamically
reconfigured to contain a Data Path, i.e., an elementary hardware accelerator

DVFS Dynamic Voltage and Frequency Scaling

EAPR Early Access Partial Reconfiguration

EE Encoding Engine

EEPROM Electrically Erasable Programmable Read Only Memory

enBudget The run-time adaptive Energy Budgeting Scheme

EPZS Enhanced Predictive Zonal Search

EQ Energy-Quality

Abbreviations and Definitions

xxxii

FI Forecast Instruction: a trigger instruction that indicates a Forecast Block containing a set
of åCIs with an information of the compile-time analysis (e.g., expected number of
executions)

FIFO First-In First-Out buffer

FIR Finite Impulse Response

FME Fractional-pixel Motion Estimation

FMO Flexible Macroblock Ordering

FM-CI Fully-Muted Custom Instruction

FPGA Field Programmable Gate Array: a reconfigurable device that is composed as an array of
åCLBs and switching matrices

FPS Frames Per Second

FS Full Search

GOP Group of Pictures with one I-Frame followed by a series of P- and/or B-Frames

GPP General Purpose Processor

HDTV High Definition Television

HD720p High Definition 720 Lines Progressive Scan (Resolution: 1280 x 720)

HEVC High Efficiency Video Coding

HT Hadamard Transform

HVS Human Visual System

I-MB Intra-predicted åMB (i.e., a prediction is performed from the reconstructed pixels of
åMBs from the current frame; it is also called spatial prediction

I4x4 Macroblock is encoded as Intra with prediction is done at 4x4 block sizes

I16x16 Macroblock is encoded as Intra where the whole 16x16 block is predicted

ICAP Internal Configuration Access Port

IDCT Inverse Discrete Cosine Transform

IEC International Electrotechnical Commission

IHT Inverse Hadamard Transform

ILP Integer Linear Programming

IME Integer-pixel Motion Estimation

IP Intellectual Property

IPred Intra Prediction

IQ Inverse Quantization

ISA Instruction Set Architecture

ISO International Organization for Standardization

ISS Instruction Set Simulator

ITU International Telecommunication Union

JVT Joint Video Team

Abbreviations and Definitions

xxxiii

KB Kilo Byte (also KByte): 1024 Byte

KD Derivative Gain

KI Integral Gain

KP Proportional Gain

LF Loop Filter

LUT Look-Up Table: smallest element in an åFPGA, part of a åCLB; configurable as logic
or memory

MAD Mean of Absolute Differences

MB Mega Byte (also MByte): 1024 åKB

MB Macroblock, a 16x16 pixel block of a video frame

MBEE Mean Bit Estimation Error

MC Motion Compensation

MD Mode Decision

ME Motion Estimation

MIPS Microprocessor without Interlocked Pipeline Stages

MPEG Motion Picture Experts Group

MPSoC Multiprocessor System-on-Chip

MSE Mean Square Error

MV Motion Vector

MVC Multiview Video Coding

NM-CI Non-Muted Custom Instruction

NMOS N-type Metal-Oxide-Semiconductor Logic

P-MB Inter-predicted åMB (i.e., a prediction is performed from the reconstructed pixels of
åMBs from the previous frame; it is also called temporal prediction

P8x8 Macroblock is encoded as Inter with sub-block types sizes of 8x8 or below

P16x16 Macroblock is encoded as Inter where the whole 16x16 block is predicted

PC Personal Computer

PID Proportional-Integral-Derivative

PMOS P-type Metal-Oxide-Semiconductor Logic

PSM Programmable Switching Matrix

PSNR Peak signal-to-noise ratio (units: db)

Q Quantization

QCIF Quarter Common Intermediate Format (Resolution: 176 x 144)

QP Quantization Parameter

RAM Random Access Memory

RC Rate Controller

RD Rate Distortion

Abbreviations and Definitions

xxxiv

RDO Rate Distortion Optimization

REMiS Run-time Adaptive Energy Minimization Scheme

RFU Reconfigurable Functional Unit: denotes a reconfigurable region that can be
reconfigured towards a Custom Instruction implementation

RISPP Rotating Instruction Set Processing Platform

SAD Sum of Absolute Differences

SATD Sum of Absolute Transformed Differences

SI Special Instruction

SIF Source Input Format (Resolution: 352 x 240)

SPARC Scalable Processor Architecture: processor family from Sun Microsystems; used for the
åRISPP prototype

SQCIF Sub-quarter Common Intermediate Format (Resolution: 128 x 96)

SRAM Static Random Access Memory

SSE Sum of Squared Differences

TH Threshold

UMHexagonS Unsymmetrical-cross Multi-Hexagon-grid Search

VBR Variable Bit Rate

VCEG Video Coding Experts Group

VISA Virtual Instrument Software Architecture

VLC Variable Length Coding: a computational kernel that is used in H-264 video encoder

VLIW Very Large Instruction Word

VM-CI Virtually-Muted Custom Instruction

XML Extensible Markup Language

XST Xilinx Synthesis Technology

YUV A video format denoting one Luminance (Luma, Y) and two Chrominance (Chroma,
UV) Components. A typical resolution given to video encoders is YUV4:20:0, i.e., a
sampling method where the two chrominance components have just half the resolution
in vertical and horizontal direction as the luminance component

Definitions:

Level define a constraint on key parameters, e.g., specific resolutions and bit rates.

Profile defines a set of coding tools and algorithms, targeting a specific class of applications.

Residual Difference of current data to the corresponding prediction data.

Slice A frame is build up of a number of slices, each containing an integral number of MBs.

- 1 -

Chapter 1 Introduction

The unremittingly increasing user demands and expectations have fueled the gigantic growth for advanced
multimedia services in mobile devices (i.e., embedded multimedia systems). This led to the emergence of
high-performance image/video signal processing in such mobile devices that are inherently constrained
with limited power/energy availability. On the one hand, advanced multimedia services resulted in the
evolution of new multimedia standards with adaptive processing while providing high quality, increased
video resolutions, increased user-interactivity, etc. As a result, the next generation applications executing
on the embedded multimedia systems exhibit high complexity and consume high energy to fulfill the end-
user requirements. On the other hand, the battery capacity in mobile devices is increasing at a significantly
slow rate, thus posing serious challenges on the realization of next-generation (highly-complex)
multimedia standards on embedded devices. Further parameters that affect the design of an embedded
multimedia system are long device charging cycles, cost, short time to market, mass volume production,
etc. Besides these constraints and parameters, the intense market competition has created a multi-
dimensional pressure on the industry/research to provide innovative hardware/software architectures for
high-performance embedded multimedia systems with low power/energy consumption. Due to the context-
aware processing in the emerging multimedia standards, the need for user-interactivity, and frequent
product upgrades (in a short-time-to-market business model) have introduced a new dimension of run-

time adaptivity to the overall requirements of the emerging embedded multimedia systems in order to
react to the run-time changing scenarios (e.g., quality and performance constraints, changing battery
levels).

Besides image and graphic processing, video coding is a primitive application of a mobile multimedia
system. Advances in video compression standards continue to enable high-end video applications (like
video conferencing/video calls, personal video recording, digital TV, internet video streaming, etc.) with
high video quality, bigger video resolutions, and lower bit rates on battery-constrained mobile devices.
This may lead to a workload of more than 35 Giga operations per second at a power budget of less than
300mW [Ber09]1

. Advanced video codecs may consume a significant amount of processing time and
energy due to their adaptive processing to provide better compression. However, encoding effort highly
depends upon the characteristics of the input video sequence and the target bit rates. Therefore, under
changing scenarios of input data characteristics and available energy budgets, embedded solutions for
video encoding need to consider run-time adaptivity.

1.1 Trends and Requirements of Advanced Multimedia Systems

Typically, mobile multimedia devices range from Laptops (24-49 W/hr battery) to Tablets (5-10W/hr
battery) to Pocket mobile devices (3-5W/hr battery) [Tex10a]. According a device survey �the Future
Image WIRE�[Esp04], the sales growth of camera phones have exploded from 25 to 450 Million units.
Typical multimedia applications executing on such mobile devices are:
• Digital Video: video calls/conferencing, personal video recording, video playback, digital TV, video

pre-/post-processing (like adaptive noise filtering, de-interlacing, edge enhancement), etc.
• Digital Image: photography, image processing, etc.
• Digital Audio: voice calls, audio recording, audio playback, etc.
• Games: game processing, rendering, etc.
• Display processing: brightness and contrast adjustment, up-/down-scaling, etc.

The increasing complexity of multimedia applications requires extreme computational capability from the
underlying hardware platform. Over the last two decades, the video coding standards have evolved from
MPEG-1 to H.264 to Multiview Video Coding for 3D videos. Moreover, the video resolutions have been

1 Today�s Li-ion batteries provide about 800mAh at 3.7V, or nearly 3Wh [Ber09].

Chapter 1 Introduction

- 2 -

increased from QCIF (Quarter Common Intermediate Format, 176x144) to SD (Standard Definition,
720x480) to HDTV (High Definition, 1920x1080). A radical increase is foreseen leading towards the
UDTV (Ultra high-definition resolutions) to Realistic TVs (see Figure 1.1a) requiring a computational
complexity of approximately 10000x (relative to MPEG-4 QCIF@30fps, see Figure 1.1b)
[Hui10][MBNN10]. Note, H.264 [ITU05] is one of the latest video coding standards that provides double
compression compared to previous coding standards (e.g., MPEG-2, H.263, etc.) at the cost of additional
computational complexity and energy consumption (~10x relative to MPEG-4 advance simple profile
[OBL+04]). Besides higher resolutions, the key reason of increasing video coding complexity is the
complex tool set of advanced video encoders. The authors in [MBNN10] state an expected increase in the
video complexity by 2x every two years. Although, high resolutions are mainly targeted for high-end
multimedia devices, multiview video conferencing or personal recording at HD (or Quad-HD, 3840x2160
or 4096×2304) resolution is foreseen within next 5 years on mobile devices [Nok10]. Industrial prototypes
like [Nok10, WUS+08] have already demonstrated the feasibility of 3D-videos and Multiview Video
Coding on mobile devices using two views. In short, realization of advanced video coding of high
resolution videos on the battery-powered mobile devices demands high complexity reduction and low
power consumption. Moreover, with the evolution of context-aware processing in advanced video coding
standards, exploitation of parallelism is becoming more and more challenging [CK08, CLZG06].

1

10

100

1000

10000

2004 2005 2006 2007 2008 2009 2010 2011 2013 2015 2017 2020

Overall Complexity

Resolution Complexity

Codec Complexity (x10)

R
e
a
li
st
ic
T
V

T
V

A
u
d
io

Simple Viewing Selective Customized Creative

Radio

Internet
Broadcast

Digital Audio
Broadcasting

Black&White
TV

Color TV

High
Definition TV

Internet
TV

Digital
Multimedia
Broadcast

Video on
Demand

Internet
Protocol TV

Intelligent High
Definition TV

Ultra High
Definition TV

Stereoscopic
3DTV

Mobile Internet
Protocol TV

Multiview
3DTV

Realistic
TV~2012

~2020

10000

1000

100

10

1
2004 2006 2008 2010 2015 2020

R
e
la

ti
v
e
 C

o
m

p
le

x
it

y

Complexity Relative to
MPEGͲ4 QCIF 30fps

Portal TV

~2006

Figure 1.1: (a) Video Services Over Time [Hui10]; (b) Video Complexity Over Time [MBNN10]

Besides the above-discussed issues, run-time adaptivity has evolved as an important system attribute to
facilitate user interaction and to react to the unpredictable scenarios in order to efficiently utilize the
available energy resources. Moreover, scalability to different video resolutions and coding standards (i.e.,
different video algorithms) is required, which demands for an adaptive architecture for mobile devices.

Summarizing: The fundamental requirements of the next-generation embedded multimedia systems are:
• high performance to support bigger video resolution and higher frame rates
• high video quality at reduced bit rates
• (ultra) low power consumption
• adaptivity to the changing scenarios of available power resources, changing user constraints

(different video resolutions, frame rates, bit rates, etc.)
• reduced chip area
• supporting different video format
• supporting multiple video coding standards
• programmability to have quick and easy application upgrades/updates
• reduced cost, (ultra) high production volumes, short time-to-market, and strong market competition

1.2 Trends and Options for Multimedia Processing

- 3 -

Considering the above-discussed design challenges, for a fast design turnaround time without entire
system redesign, adaptive low-power processor and application architectures (with the support of
hardware acceleration) for embedded multimedia are highly desirable.

1.2 Trends and Options for Multimedia Processing

Figure 1.2 shows traditional embedded approaches like Application Specific Integrated Circuits (ASICs),
Digital Signal Processors (DSPs), Application-Specific Instruction Set Processors (ASIPs), and multimedia
Multi-Processor System-on-Chip (MPSoCs). These approaches do not necessarily meet all of the above-
mentioned design challenges. Each of these has its own advantages and disadvantages, hence fails to offer a
comprehensive solution to next generation complex mobile multimedia applications� requirements.

ASICs target specific applications where the �performance per area� and �performance per power

consumption� can be optimized specifically. However, besides a high initial cost, the design process of
ASICs is lengthy and is not an ideal approach considering short time-to-market. Moreover, ASICs lack
flexibility (i.e., cannot perform tasks that were not considered while designing that ASIC and
implementing modifications/enhancements may result in a costly redesign) and adaptivity, thus hard to
adapt to standard evolutions and market/technology induced changes. Let us consider a scenario of video
coding as a part of a mobile multimedia system. Advanced video codecs (like H.264 [ITU05], Microsoft
VC1 [Mic10a, Mic10b], Chinese Audio Video Standard [YCW09]) exhibit a large set of tools to support a
variety of scenarios and applications (e.g., low bit-rate video conferencing, high-quality personal video
recording, HDTV, etc.). A generic ASIC for all tools is impractical and will be huge in size. In contrast,
multiple ASICs for different applications have a longer design time and thus an increased Non-Recurring
Engineering (NRE) cost. Moreover, when considering multiple applications (video encoder is just one
application) running on one device, programmability is inevitable (e.g., to support task switching).
Another use case scenario may be realized when (for example) H.264 video codec is an upgrade to the
codec (from a previous generation) in a pre-existing video recording system. ASICs � due to lack of
adaptivity and programmability � may perform inefficient or fail to support such scenarios. Therefore,
programmable and reconfigurable/adaptive solutions for multimedia (especially video coding) have
evolved as an attractive design approach.

Unlike ASICs, DSPs offer high flexibility and a lower design time. Considering a software-based
multimedia system, compared to General Purpose Processors (GPPs), DSPs provide better �performance

per area� and �performance per power consumption�. It is because of their specialized assembly,
specialized functional units, and exploitation of instruction level parallelism by using VLIW (Very Long
Instruction Word) architecture, i.e., multiple instructions executing in parallel in the same cycle.
Commercial solutions are from Philips Nexperia (PNX1500, PNX1700, Nexperia media processor
PNX952x family) [Phi10] and from Texas Instruments (DaVinci and OMAP series) [Tex10a, Tex10b].
However, DSPs alone may not satisfy the power and/or performance challenges when considering the
combination of tight power budgets on battery-powered mobile devices and intricate processing nature of
next-generation multimedia algorithms. Moreover, DSP performance is limited by the available data
bandwidth from the external memory [KRD+03, SHS08]. Although stream architecture [KRD+03]
provides an efficient memory hierarchy to exploit the concurrency and data locality, it exploits a limited
amount of parallelism (e.g., only data level parallelism) [Ste09]. Therefore, dedicated hardware
accelerators are inevitable as they provide a high-degree of instruction and data level parallelism to meet
applications� requirements with a limited power budget.

ASIPs overcome the shortcomings of DSPs and ASICs, with an application-specific instruction set
that offers a high flexibility (than ASICs) in conjunction with a better efficiency in terms of �performance

per area� and �performance per power consumption� (compared to GPP and DSPs). Tool suites and
architectural IP for embedded customizable processors with different attributes are available from major

Chapter 1 Introduction

- 4 -

vendors like Tensilica [Ten], CoWare [CoW], ARC [ARC], Stretch [Str], etc. ASIPs may offer a
dedicated hardware implementation for each application kernel but this typically requires a large silicon
footprint. However, for large applications featuring many kernels (instead of a few exposed ones), current
ASIP concepts struggle. In fact, customization for many kernels may bloat the initial small processor core
to considerably larger sizes (factors of the original core processor). Moreover, while scrutinizing
carefully, in complex multimedia applications based on an advanced video codec (like H.264), it was
noticed that these kernels are not active at the same time (see detailed analysis in Chapter 3). Still, the
sequential execution pattern of the application execution may only utilize a certain portion of the
additionally provided hardware accelerators at any time, thus resulting in an inefficient resource
utilization and may become power inefficient.

Another trend is heterogeneous Multimedia MPSoCs that integrate several programmable
processors (GPPs, DSPs), domain-specific weakly programmable coprocessors, and application-specific
hardware accelerators (ASIPs, ASICs) using an on-chip communication structure to deliver higher
performance. Commercial vendors have transformed their approaches from pure DSPs to multimedia
MPSoCs where one or more DSP cores are coupled with programmable ARM cores and/or dedicated
hardware accelerators. Prominent examples are Philips Nexperia [Phi10], Nomadik multimedia processor
by STMicroelectronics [STM06], and Texas Instruments� DaVinci technology and OMAP processor
series [Tex10a, Tex10b]. The selection of cores in an MPSoC is determined at design time depending
upon the requirements of a certain set of applications. Therefore, such an MPSoC does not provide the
demanded efficiency when executing applications from different domains. Moreover, with a change in the
application standard (e.g., a different video coding standard) the currently-used MPSoC becomes obsolete
(as it may not fulfill the required performance and power design constraints for the end-product).
Therefore, when using state-of-the-art multimedia embedded processors, the performance or power
constraints may be achieved in a certain context, but the inability to react to the above-mentioned
uncertainties (i.e., changing standards, unpredictable scenarios, and application behavior) and the resulting
efficiency (in terms of power, performance, etc.) issues remain.

Flexibility, 1/time-to-market, �

E
ff
ic

ie
n
cy

:
M

ip
s/

$
,

M
H

z/
m

W
,

M
ip

s/
a
re

a
,

� �Hardware Solution�

�Software

Solution�

DSPs
- programmable,
- DSP ISA, VLIW

GPPs

ASIPs
- ISA extension,
- parameterization

ASICs
- Non-programmable,
- highly specialized

Multimedia MPSoCs
- DSP+ASIC+ASIP,
- Design-time selection

Reconfigurable
Computing
- adaptive,
- hardware accelerators

�System Requirement�

Adaptive and Low-Power

Multimedia

0

500.000

1.000.000

1.500.000

2.000.000

1000

1500

0

500S
iz

e
 (

L
o

g
ic

C
e
ll

s
)

[K
]

2000

V
(220)

(2.5)

VͲE
(180)

(1.8)

VͲII
(150)

(1.5)

VͲIIP
(130)

(1.5)

VͲ4
(90)

(1.2)

VͲ5
(65)

(1.0)

VͲ6
(40)

(1.0)

VͲ7
(28)

(1.0)

Technology (nm)

Voltage (V)

Figure 1.2: (a) Flexibility vs. Efficiency Comparison of Different Architectural Options (inspired

from [Hen03]); (b) Evolution Trend of Xilinx Virtex FPGAs [Xil10a]

Field Programmable Gate Arrays (FPGAs) provide a platform solution with low NRE cost, faster time-
to-market, and longer product lifetime, thus becoming more popular and mainstream [Te06]. With the
continuing evolution of FPGAs (see Figure 1.2b)2, various architectures have emerged that embed a
reconfigurable fabric (i.e., an embedded FPGA) within a core processor pipeline (e.g., MIPS, SPARC,
VLIW) [Ama06, BL00, Bob07, CH02, Har01, HM09, TCW+05, VS07]. These so-called dynamically

reconfigurable processors bridge the gap between ASICs/ASIPs and DSPs/GPPs by combining the
performance and efficiency (due to their capability to exploit high degree of parallelism) of dedicated

2 An increase of 20x in the logic density over the last 15 years [Xil10a].

1.2 Trends and Options for Multimedia Processing

- 5 -

accelerators3 (implemented using an embedded FPGA) with a high degree of adaptivity/flexibility (due to
their programmability and hardware reconfigurability). The reconfigurable fabric can be reconfigured at
run time to contain hardware accelerators, thus allowing a new dimension of adaptivity even after the
fabrication and deployment. The adaptive nature of dynamically reconfigurable processors enables:

• feature updates of a given multimedia standard, e.g., a video encoder is enhanced with further coding
tools to improve the compression efficiency,

• a standard upgrade, e.g., an existing H.263 video encoder is replaced by a newer version of an H.264
video encoder to provide better compression and quality,

• product upgrade, e.g., new hardware accelerators are loaded to expedite a new multimedia
application in the next product release,

• improved product efficiency, e.g., an application designer can design new hardware accelerators of
an existing application to expedite more kernels to achieve higher performance or improved video
quality (like a new post-processing filter) that are determined by the new user market,

• hardware/software upgrades, e.g., new configuration bitstream of a hardware accelerator may replace
the older one in order to provide low power and/or high performance,

• incremental design to cope with time-to-market issues

This flexibility comes at the cost of increased area and power due to the reconfigurability and the
structure of an FPGA-like fabric. Besides addressing the inefficient area utilization problem of ASIPs,
Dynamically reconfigurable processors overcome the increased area issue by reusing the hardware in
time-multiplex, while still providing a high-degree of parallelism. These processors partition their
reconfigurable fabric into so-called containers that may load hardware accelerators at run time to
implement so-called Custom Instructions that are then deployed to actually expedite the application�s
kernels. After the execution of a kernel is completed, the reconfigurable fabric may be allocated to
Custom Instructions of other kernels or even to other applications by performing a dynamic
reconfiguration of the accelerators. However, the process of reconfiguration incurs additional power
overhead and latency (see details in Chapter 6). Moreover, with the evolution of sub-micron fabrication
technologies, the consideration of leakage power/energy4 has become imperative in the energy-aware
design of reconfigurable processors.

Exploiting high-degree of parallelism allow dynamically reconfigurable processors to run at lower
operating frequencies, thus providing a mean to low power consumption. Consequently, a high-degree of
parallelism also corresponds to increased area and power (due to reconfiguration, leakage, and dynamic
switching) requirements. Moreover, the execution frequency of the accelerators highly depends upon the
input data that may significantly change at run time. Therefore, a tradeoff between the performance and
power consumption needs to be evaluated at run time depending upon the system constraints (e.g.,
available hardware area, required application performance, input data, etc.). Furthermore, adaptivity
provides a mean to react to the changing scenarios in order to efficiently exploit the available energy
resource (due to changing battery levels).

State-of-the-art approaches in reconfigurable processors have mainly concentrated on improving the
performance by reconfiguring application-specific hardware accelerators at run time to meet applications�
demands and constraints. These processors lack of efficient energy management features. Lately, power
reduction for reconfigurable fabric (like FPGAs) has become a key research interest as it will be discussed
in Chapter 2. Similar to the low power approaches in ASICs, hardware shutdown may be performed to
reduce the leakage energy of reconfigurable processors considering the usage of the reconfigurable
hardware, i.e., statically determining the parts of a reconfigurable fabric to be shutdown. However, due to

3 These accelerators are similar to those that are deployed by ASIPs.
4 The key reasons of increased leakage power in the sub-micron fabrication technologies are shorter

device/transistor dimensions, reduced threshold voltage, high transistor density, etc.

Chapter 1 Introduction

- 6 -

the adaptive nature and time-multiplexed usage of the reconfigurable fabric, it cannot be determined at
compile time which hardware accelerators will be reconfigured on which parts of the reconfigurable
fabric. Therefore, state-of-the-art hardware shutdown approaches may perform inefficient in such
scenarios as they suffer from the limitation of inflexibility and are highly dependent upon the underlying
shutdown policy. This thesis aims at raising the abstraction level of shutdown decision to the instruction
set level (see details in Chapter 5) that enables a far higher potential for leakage energy savings and opens
new avenues for researching efficient energy management schemes for dynamically reconfigurable
processors.

1.3 Summary of Challenges and Issues

Multimedia systems with advanced video codecs (H.264, Microsoft VC1, etc.) employ a complex tool set
to provide better quality/compression at the cost of significantly increased computational processing and
power requirements (see details in Chapter 2 and Chapter 3). Moreover, rapid standard evolution, users�
demands for higher video resolution, incremental application upgrades on mobile devices pose additional
research challenges related to adaptivity and low power consumption. Hence, for designing an adaptive
low-power multimedia system there is a need to combat the above-discussed issues at all abstraction
levels. Besides employing a low-power device technology (low-power cell library) and operating-system
level power management, the low-power and adaptivity related issues need to address at both processor
architecture and application architecture levels [FHR+10]. There are several scenarios that cannot be
effectively predicted at design-/compile-time. In such scenarios, if an embedded multimedia system is not
capable of adapting appropriately, it would give away some of the potential power savings [FHR+10].
Therefore, in order to cope with unpredictable scenarios, the next-generation low-power multimedia
systems need to be able to adapt at run time to efficiently utilize the available energy resources, even
though adaptivity comes at the cost of a power overhead. A tradeoff between the reconfiguration and
leakage reduction needs to be evaluated at run time. This instigates the need for processor architectures
with run-time reconfiguration and adaptation of the application architecture to exploit the low-power
capabilities of the underlying processor architecture (run-time reconfiguration, high-degree of parallelism,
higher abstraction level of power-shutdown, etc.).

This thesis aims at addressing the issues related to adaptivity and low power consumption jointly at
processor and application levels under run time varying scenarios of available area, available energy
budget, and user constraints. To support processor level adaptivity dynamically reconfigurable processors
are used as a target computing platform.

1.4 Thesis Contribution

This thesis aims at achieving a high energy efficiency for dynamically reconfigurable processors (and
reconfigurable computing in general) enabling adaptive embedded multimedia systems with low

power/energy consumption to provide means for next-generation mobile multimedia applications and
emerging multimedia standards. The key goals are to exploit the available potential of energy reduction in
dynamically reconfigurable processors while meeting the performance constraint and keeping the video
quality degradation unnoticeable, under run-time varying scenarios (due to changing video properties,
available energy resources, user-defined constraints, etc.). This thesis presents novel techniques for
adaptive energy management at both processor architecture and application architecture levels, such that
both hardware and software adapt together in order to minimize the overall energy consumption under
design-/compile-time unpredictable scenarios.

The adaptive low-power processor architecture employs the novel concept of Selective Instruction

Set Muting that allows to shun the leakage energy at the abstraction level of Custom Instructions, i.e., an
instruction set oriented shutdown. State-of-the-art low-power schemes employ power-shutdown

1.4 Thesis Contribution

- 7 -

considering the state/usage of the hardware (i.e., a hardware-oriented shutdown) to reduce the leakage
power/energy. As discussed earlier, when targeting reconfigurable processors, it cannot be determined at
compile time which parts of the instruction set will be reconfigured on which part of the reconfigurable
fabric. Therefore, unlike state-of-the-art, the proposed Selective Instruction Set Muting raises the
abstraction level of shutdown to the instruction set level. Multiple Custom Instruction muting modes are
introduced each providing a certain tradeoff between leakage energy saving and reconfiguration energy
overhead. The proposed concept relates leakage energy to the execution context of an application, thus
enabling a far higher potential for leakage energy savings. The associated potential energy savings have
not been exploited by state-of-the-art approaches [CHC03, Ge04, MM05, Te06]. This thesis aims at
exploiting this potential. It is especially beneficial for highly flexible Custom Instruction set architectures
like in [Bau09, VWG+04]. Moreover, based on the concept of Selective Instruction Set Muting, a run-time
adaptive energy management scheme investigates the tradeoff between leakage, dynamic, and
reconfiguration energy for a given performance constraint, thus dynamically moving in the energy-

performance design space.

The adaptive low-power application architecture employs the novel concept of Energy-Quality

Classes and video properties dependent adaptive complexity reduction in order to realize the adaptive

low-power video encoding. The proposed Energy-Quality Classes represent a particular Motion
Estimation configuration that requires a certain energy while providing a certain video quality. It thereby
enables a run-time tradeoff between the energy consumption and the resulting video quality.

In particular the novel contribution of this thesis are:

1) Adaptive Low-power Video Coding Application Architecture: At the application level, the
adaptivity and energy reduction are demonstrated using an advanced video encoder (like H.264). An
optimized application architecture is proposed for video encoders targeting dynamically reconfigurable
processors. To reduce the energy requirements of different functional blocks of a low-power video
encoder at run time, different algorithms have been developed as listed below:
• An analysis of spatial and temporal video properties with consideration of important Human-Visual

System properties to categorize different video frames and their Macroblocks, such that different
energy is spent on the encoding of Macroblocks with different texture and motion properties.

• An adaptive complexity reduction scheme to reduce energy requirements of encoder by excluding
improbable coding modes from the mode-decision process. It solves the issue of choosing the final
coding mode out of hundreds of possible combination (without exhaustively searching the design
space) by considering the spatial and temporal video properties. Unlike state-of-the-art, this scheme
performs an extensive mode-exclusion before fast Mode Decision and Motion Estimation processes,
thus providing a significant reduction in the computational complexity and energy consumption.

• An energy-aware Motion Estimation with integrated energy-budgeting scheme in order to
adaptively predict the energy quota for the Motion Estimation (that may consume up to 65% of the
total encoding energy). It employs the novel concept of Energy-Quality Classes in order to realize
the adaptive low-power video encoding. Each Energy-Quality Class corresponds to a particular
Motion Estimation configuration that requires a certain energy while providing a certain video
quality. It thereby enables a run-time tradeoff between the energy consumption and the resulting
video quality. The energy-budgeting scheme chooses a certain Energy-Quality Class for different
video frames considering the available energy, video frame characteristics, and user-defined coding
constraints while keeping a good video quality.

• For the blocks that are fixed by the standard and adaptivity is not possible, low-power hardware
accelerators were designed.

2) Novel Concept of Instruction Set Muting: At processor level, a new way to save energy in
dynamically reconfigurable processors is proposed in this thesis that allows to shun the leakage energy
at the abstraction level of Custom Instructions. According to an execution context, the Custom

Chapter 1 Introduction

- 8 -

Instruction set of a dynamically reconfigurable processor is selectively 'muted' at run time. It thereby
relates leakage energy reduction to the execution context of an application, thus enabling a far higher
potential for energy savings. The concept employs various so-called 'Custom Instruction muting
modes' each leading to particular leakage energy savings. This enables a dynamic tradeoff between
�leakage energy saving� and �reconfiguration energy overhead� considering the application execution
behavior under run-time varying performance and area constraints (e.g., in a multi-tasking
environment). Raising the abstraction level to instruction set addresses the above-discussed issues of
hardware-oriented shutdown in dynamically reconfigurable processors where it cannot be determined
at compile time which parts of the instruction set will be reconfigured on which part of the
reconfigurable fabric. The key challenge is to determine which of the muting modes are beneficial for
which part of the Custom Instruction set in a specific execution context.

3) Adaptive Low-power Reconfigurable Processor Architecture: To exploit the higher potential for
energy savings due to the novel concept of Instruction Set Muting with multiple muting modes and to
provide a high adaptivity (as demanded by multimedia applications with highly video data dependent
processing considering changing scenarios of performance and area constraints, available energy
resources, etc.), a run-time energy-management system is required. At the processor level, a run-time
adaptive energy management scheme is employed that performs the following steps.
a) Determine an energy minimizing instruction set: First, an energy-minimizing instruction set for a

dynamically reconfigurable processor is determined (considering leakage, dynamic, and
reconfiguration energy) under run-time varying performance and area constraints.

b) Perform the selective instruction set muting: After choosing the energy-minimizing instruction set,
a decision about the Custom Instruction muting mode is determined for the temporarily unused
subset of the instruction set by considering the requirements and execution lengths of the compute-
intensive parts of an application (i.e., the execution context of an application). It is determined at
run time which subset of Custom Instructions should be put into which muting mode at which time
by evaluating at run time the possible associated energy benefit (a joint function of leakage,
dynamic, and reconfiguration energy).

For power estimation of dynamically reconfigurable processors, a comprehensive power model is developed,
which is based on power measurements. Moreover, this thesis presents formal problem description and
detailed evaluation of the proposed algorithms at processor and application levels. The superiority of the
presented contribution is demonstrated by a fair comparison with state-of-the-art. In addition to the above-
discussed scientific contribution, following has been developed in the scope of this work:
• A complete power-measurement setup for dynamically reconfigurable processors that consists of a

power supply board, two oscilloscopes, an FPGA based prototyping board, and a control program
(running on a laptop/desktop computer) for capturing the measurements from the oscilloscopes.

• A complete H.264 video encoder application with the proposed run-time algorithms and low-
complexity data flow. The in-house developed H.264 encoder is currently executing on an in-house
dynamically reconfigurable processor prototype [Bau09], Texas Instruments� multimedia processor,
and laptops/desktop computers.

• A video analysis tool with an easy-to-use graphical user interface for quick and in-depth analysis of
video sequences.

1.5 Thesis Outline

The thesis is outlined as follows: Chapter 2 discusses the background for video coding (especially the
advanced video codec H.264) and prominent related work on low-power encoder design and
implementations. Afterwards, the background for (dynamically) reconfigurable processors is presented.
The RISPP (Rotating Instruction Set Processing Platform) dynamically reconfigurable processor [Bau09]
is briefly described, which is used for detailed benchmarking of the novel contribution of this thesis. The
formal model of modular Custom Instructions of RISPP is also discussed that will be used in the

1.5 Thesis Outline

- 9 -

subsequent chapters for describing the algorithms of the low-power processor architecture in a clear and
precise manner. Afterwards, state-of-the-art related work for different low-power techniques for
reconfigurable computing is discussed.

Chapter 3 presents the requirement analysis of Video Coding for energy consumption and adaptivity.
A case study of an H.324 Video Conferencing application is presented highlighting the video coding as
the most compute-intensive task for mobile multimedia applications. The coding tool set of advanced
video codecs is analyzed and common coding tools are explored. Different challenges and issues related
to power consumption and adaptivity are discussed in the light of the H.264 video encoder. Afterwards,
the overview of the proposed adaptive low-power application and processor architectures is presented
along with different steps considered at design, compile, and run time. After discussing how the proposed
concept addresses the challenges, a power model for dynamically reconfigurable processors is proposed in
the scope of this thesis, which is used by the application and processor level energy management schemes
that are proposed in Chapter 4 and Chapter 5.

Chapter 4 presents the first key novel contribution of this thesis in detail, i.e., adaptive low-power video
coding. First application architectural adaptations for video encoders are discussed targeting reconfigurable
processors followed by the design of low-power Custom Instructions and hardware accelerators. Afterwards,
an analysis of spatial and temporal video properties is presented that provides the foundation for adaptive
complexity reduction and energy-aware Motion Estimation which are the primitive components of an
adaptive low-power video encoder. The concept of adaptively excluding the less-probable coding modes is
introduced that significantly reduces the computational requirements of the video encoder, thus saving the
energy consumption. For the energy-aware Motion Estimation, the concept of Energy-Quality Classes is
introduced that provides a run-time tradeoff between the energy consumption and the resulting video quality.
A run-time energy-budgeting scheme is presented that allocates an energy quota for the Motion Estimation
of different Macroblocks considering their spatial and temporal video properties.

In Chapter 5 the novel concept of power-shutdown at the instruction set level (i.e., the so-called
Custom Instruction muting) is introduced. A power-shutdown infrastructure is discussed that supports the
Custom Instruction muting concept with multiple muting modes. Based on this, an adaptive low-power
reconfigurable processor architecture is presented that employs a run-time adaptive energy management
with Selective Instruction Set Muting. It provides a dynamic tradeoff between leakage, dynamic, and
reconfiguration energy. Different components of this energy management scheme (i.e., run-time selection of
an energy-minimizing instruction and Custom Instruction muting decisions) are discussed in the subsequent
sections along with their formal model, algorithms, and evaluation for different fabrication technologies.

The power measurement setup, test cases for power measurements, and steps for creating the power
model are explained in Chapter 6. Although the evaluation results for different components are already
discussed in Chapter 4 and Chapter 5, Chapter 7 provides the detailed comparison of the application and
processor level energy management with state-of-the-art. Chapter 8 concludes this thesis and provides an
outlook of the potential future works.

Appendix A briefly discusses the proposed multi-level rate control, which compensates the quality
degradations that occurred as a result of the above-mentioned energy-aware adaptations. It provides
smooth bit allocation which is critical for embedded multimedia systems. Appendix B presents the
overview of the simulation environment. It further shows the in-house developed H.264 video encoder
executing on an in-house dynamically reconfigurable processor prototype [Bau09] and Texas Instruments�
multimedia processor. Appendix C shows the video analysis tool which was used for the analysis of
spatial and temporal properties in Chapter 4.

- 11 -

Chapter 2 Background and Related Work

This thesis envisions adaptive low-power multimedia systems covering both the application and processor
perspectives. Besides low power consumption, a special focus is on the support for adaptivity which is
inevitable when considering the rapid evolution of the multimedia/video standards and high
unpredictability due to user interactions, input data, and inclusion of adaptive algorithms in advanced
standards. In order to support adaptivity dynamically reconfigurable processors are considered in this
thesis. This chapter provides basics and terminology used in video coding and an overview of the H.264
video encoder which is one of the latest video coding standards. Afterwards, a general background of the
reconfigurable processors and their low-power infrastructure is discussed in Section 2.3 followed by the
prominent related work in dynamically reconfigurable processors and low-power approaches for
reconfigurable computing. Especially, the RISPP processor [Bau09] is presented in detail as it is used for
detailed benchmarking of the processor-level contribution of this thesis (i.e., adaptive low-power
processor architecture).

2.1 Video Coding: Basics and Terminology

Figure 2.1 provides an overview of the structure of a video sequence. A video is composed of a sequence
of frames of a scene captured at a certain frame rate (given as fps, frames per second) creating a smooth
motion perception to the human eye. The basic unit of a video frame is a pixel (also called picture element
or pel). The size of a video frame is denoted as its resolution, which is given as the number of pixels in
one line (frame width, W) and number of lines (frame height, H). Different video resolutions can be seen
in Figure 2.1. Typical resolutions for mobile videos are CIF (Common Intermediate Format) and QCIF
(Quarter CIF), while for entertainment quality (like in TVs, multimedia TVs, home cinema, etc.), the
resolutions vary from SD (Standard-Definition) to HD (High-Definition).

Typically cameras capture a video frame in RGB5 format which is then converted into YUV6 (4:4:4)
format for video encoding purpose. A video in YUV format consists of one Luminance (Y, also called
Luma) and two Chrominance (UV, also called Chroma) components. YUV 4:4:4 denotes a full-sized Y, U,
and V components. Since the human eye is more sensitive to brightness compared to the color, typically the
Chroma components (U and V) are sub-sampled before encoding to obtain a resolution of YUV 4:2:0
where the size of Y component is W x H and the size of each of the U and V component is W/2 x H/2.
Note, the sub-sampling of the color components directly corresponds to a 50% reduction in the video data.

All the advanced video encoders are block-based encoders, i.e., the basic processing unit for an encoder
is a 16x16 Luma pixel block which is called a Macroblock (MB). A group of MBs is called a Slice. A frame
can be partitioned into several variable-sized slices (see Figure 2.1). In an extreme case, one complete frame
can also be a single slice. Depending upon the prediction direction, a slice/frame can be categorized as:

• Intra-Predicted (I) Slice/Frame: all MBs of this slice/frame are encoded using the spatial
prediction, i.e., the prediction is performed using the reconstructed pixels of the neighboring MBs in
the current slice/frame.

• Inter-Predicted (P) Slice/Frame: the MBs may be encoded using the spatial prediction or using the
temporal prediction, i.e., the prediction is performed using the reconstructed pixels of the MBs in the
previous slice/frame.

• Bi-Predicted (B) Slice/Frame: the MBs may be encoded using the spatial prediction or the temporal
prediction from the previous and/or future slices/frames.

5 RGB denotes Red, Green, Blue components of a video frame.
6 The reason for using YUV space for video coding is its smaller correlation between the color components making

the independent encoding of these components easier.

Chapter 2 Background and Related Work

- 12 -

Although P- and B-Frames provide a higher compression compared to the I-Frames, the I-Frames are
necessary in periodic intervals in order to provide random access to the video sequence and to avoid the
propagation of the prediction error. The group of frames between two I-Frames is called Group of
Pictures. Typically a Group of Pictures defines the order of different frame types and the prediction
structure. Note: the nomenclature used here is based on the H.264 video coding standard. However, most
of the terminology is similar in the previous generations of the coding standards.

Figure 2.1: An Overview of the Digital Video Structure (showing Group of Pictures, Frame, Slice,

MB) and Different Video Resolutions

2.2 The H.264 Advanced Video Codec: A Low-Power
Perspective

The limited power resources of current/emerging mobile devices have led to the evolution of power-
/energy-aware multimedia. Their video encoders demand huge amount of processing and energy from the
underlying hardware, thus pose a challenge on low-cost/low-power embedded systems. In the following,
before proceeding the state-of-the-art related work on adaptive and low-power video coding architectures,
an overview of the H.264 video encoder which is one of the latest video coding standards.

2.2.1 Overview of the H.264 Video Encoder and its Functional Blocks

The advanced video coding standard H.264/AVC7 (Advanced Video Coding) [ITU05] was developed by
the Joint Video Team (JVT) of the ITU-T VCEG and ISO/IEC MPEG to provide a bit rate reduction of
50% as compared to MPEG-2 with similar subjective visual quality [WSBL03]. However, this
improvement comes at the cost of significantly increased computational complexity (~10x relative to
MPEG-4 advance simple profile encoding, ~2x for decoding [OBL+04]), that directly corresponds to high
energy consumption. This increased computational complexity and energy consumption of H.264 is
mainly due to its complex prediction, Motion Estimation and Rate Distortion Optimized Mode Decision
processes that operate on multiple (variable) block sizes (as shown in Figure 2.3). It thereby poses serious
challenges on the low-power encoder realizations for embedded multimedia systems.

Figure 2.2 presents the functional overview of the H.264/AVC video encoder. A sequence of
uncompressed video frames in YUV 4:2:0 format is given as the input. Each frame is split into
Macroblocks (MBs, i.e., blocks of 16x16 pixels). An MB can be further divided into 16x8, 8x16, or 8x8
blocks (see Figure 2.3). Each 8x8 block can be further divided into 8x4, 4x8, or 4x4 sub-blocks.
Altogether, there are 7 different block types. The MBs of a frame are encoded in a raster scan order using
one of the following three MB Types:

7 Also called MPEG-4 Part-10 (ISO/IEC 14496-10) or MPEG-4 Advanced Video Coding (AVC).

2.2 The H.264 Advanced Video Codec: A Low-Power Perspective

- 13 -

• Intra-Predicted (I-MB): the MB is encoded using a spatial prediction in the current frame.
• Inter-Predicted (P-MB): the MB is encoded using a temporal prediction from the previous frame.
• Bi-Predicted (B-MB): the MB is encoded using a temporal prediction from the previous & future frames.

The first frame of a Group of Pictures is called Intra-Frame where all of its MBs are encoded as I-MB.
Intra Prediction in H.264 has been enhanced with multiple directional prediction modes which minimize
the predictive error. For the Luminance (Luma, Y) component of an MB, the prediction may be formed
for each 4x4 sub-block using nine prediction modes or for the complete MB (i.e., 16x16) with four
prediction modes. Two 8x8 Chrominance (Chroma, UV) components are predicted by the same mode (out
of 4). Therefore, the total number of Intra mode combinations for a single MB is given as 4 * (9*16 + 4)
that corresponds to 592 possible mode calculations for only Intra Mode Decision.

Figure 2.2: Functional Overview of the H.264/AVC Video Encoder

Figure 2.3: Variable Block Sizes for Inter-Predicted MBs (P-MBs) in H.264/AVC

Remaining frames of a Group of Pictures are called Inter-Frames where their MBs can be encoded as I-
MB or P-MB depending upon the decision of the Rate Distortion Optimized Mode Decision (RDO-MD).
For P-MBs, Motion Estimation (ME) is performed for searching the current block in the reference frame
(see Figure 2.2) in order to find out the best match (i.e., the block with minimum distortion). The search is
performed in a so-called (pre-defined) search window (a typical size is 33x33 pixels). The ME process

Chapter 2 Background and Related Work

- 14 -

consists of two stages: Integer-pixel ME (IME) and Fractional-pixel ME (FME). The IME uses Sum of
Absolute Differences (SAD, see Eq. 2.1) to calculate the block distortion for an MB in the current frame
(Ft) with respect to an MB in the reference frame (Ft-1) at integer pixel resolution.

15 15

0 0

(,) (,)
y x

SAD Current x y Reference x y
= =

= −∑∑ (2.1)

Once the best Integer-pixel Motion Vector (MV) is found, the FME stage refines the search to fractional
pixel accuracy using Sum of Absolute Transformed Differences (SATD, Eq. 2.2) as the cost function to
calculate the block distortion. It performs a 2-D Hadamard Transform (HT) on a 4x4 array of difference
values. Compared to SAD, SATD provides a better MV. However, because of high computational load,
SATD is only used in the FME stage.

4 4

4 4

0 0

{ (,) (,)}x

y x

SATD HT Current x y Reference x y
= =

= −∑∑ (2.2)

HT4x4 is the 2-D 4x4 Hadamard Transform on a matrix D (in case of SATD, it is the differences between
current and reference pixel values) and it is defined as:

 []4 4

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
/ 2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

xHT D

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥− − − −⎜ ⎟⎢ ⎥ ⎢ ⎥= ⎜ ⎟⎢ ⎥ ⎢ ⎥− − − −
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟− − − −⎣ ⎦ ⎣ ⎦⎝ ⎠

 (2.3)

Typically ME has to be performed for various block size combinations (altogether 20 different ME
combinations per MB are evaluated in RDO-MD [GY05]). An example scenario is presented in
Figure 2.3. As a result, the ME process may consume up to 60% (1 reference frame) and >80% (5
reference frames) of the total encoding time [CZH02]. High computational load makes the ME module
not only time consuming but also energy/power demanding [YWV05]. Considering the variable-sized
blocks in I- and P-MBs, each MB can be predicted using one of the following coding modes8.

{ , 16 16, 16 8, 8 16, 8 8, 8 4, 4 8, 4 4}

{ 16 16, 4 4}

P MB

I MB

Mode SKIP P P P P P P P

Mode I I

−

−

∈ × × × × × × ×
∈ × ×

 (2.4)

The exhaustive RDO-MD in H.264 processes all possible P-MB and I-MB mode combinations in all
possible block sizes. Therefore, RDO-MD is the most critical functional block in H.264, as it determines
the number of ME iterations which is the most time and energy consuming part. RDO-MD in H.264
employs a Lagrange-based cost function that minimizes the Distortion (D) for a given Rate (R), as given
below:

 (, , |) (, , |) * (, , |)ModeJ c r Mode QP D c r Mode QP R c r Mode QPλ= + (2.5)

'R' is the number of bits required to code the 'Mode' and 'D' is computed using SATD or SAD with respect
to the current 'c' and the reference 'r' MBs. Ȝ is the Quantization Parameter (QP)-based Lagrange
Multiplier, such that: Ȝ = 0.85 * 2 * (QP-12) / 3. The mode that provides the best prediction (i.e.,
minimizes the Eq. 2.5) is chosen as the final coding mode (i.e., the best mode).

8 In this thesis, I8x8 is not considered as it is not used for the mobile devices. However, the contribution of this

thesis is scalable to I8x8.

2.2 The H.264 Advanced Video Codec: A Low-Power Perspective

- 15 -

For the selected best mode, the prediction data is generated according to the MB Type and the
corresponding coding mode. This prediction data needs to be compliant to the standard specifications as
the decoder creates an identical prediction for the decoding process. In case of the P-MB the prediction
data is generated using Motion Compensation. In case the Motion Vector points to a fractional-pixel
position, first, the samples at half-pixel positions (i.e., between the integer-position samples) in the Luma
component (Y) of the reference frame are generated using a six-tap filter with weights [1/32, −5/32,

20/32, 20/32, −5/32, 1/32]. The samples at quarter-pixel positions are generated by Bilinear Interpolation
using two horizontally and/or vertically adjacent half- or integer-pixel positions. This prediction data is
subtracted from the current block to calculate the residue. Each 4x4 sub-block of the residue data is then
transformed using a 4x4 integer-based 2-D Discrete Cosine Transform (DCT, Eq. 2.6). Note, the 4x4 DCT
in H.264 is an integer transform (all operations can be carried out using integer arithmetic), therefore, it
ensures zero mismatches between the encoder and the decoder.

 []4 4

1 1 1 1 1 2 1 1

2 1 1 2 1 1 1 2

1 1 1 1 1 1 1 2

1 2 2 1 1 2 1 1

T
xDCT CXC X

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥− − − −⎜ ⎟⎢ ⎥ ⎢ ⎥= = ⎜ ⎟⎢ ⎥ ⎢ ⎥− − − −
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟− − − −⎣ ⎦ ⎣ ⎦⎝ ⎠

 (2.6)

In case of an I-MB, the 16 DC components of an MB (one for each 4x4 block) are further transformed
using a 4x4 Hadamard Transform (see Eq. 2.3). In case of Chroma components (U and V), the DC
coefficients of each 4x4 block of Chroma coefficients are grouped in a 2x2 block (WDC) and are further
transformed using a 2x2 Hadamard Transform as shown in Eq. 2.7.

 []2 2

1 1 1 1

1 1 1 1
x DCHT W

⎛ ⎞⎡ ⎤ ⎡ ⎤
= ⎜ ⎟⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎝ ⎠

 (2.7)

Afterwards, the transformed coefficients are quantized according to a QP value determined by a Rate
Controller. The Rate Controller regulates the number of produced bits according to a given bit rate.
Therefore it determines the QP value which is used for quantization as well as an input to the RDO-MD
and ME. The quantized transformed coefficients are finally compressed using a lossless entropy coder.
H.264/AVC employs a Context Adaptive Variable Length Coding (CAVLC) or a Context Adaptive
Binary Arithmetic Coding (CABAC). In this thesis only CAVLC is considered.

A video encoder contains a model of the decoding process in order to reconstruct the encoded blocks
for computing the prediction values for the subsequent blocks and upcoming frames. Therefore, the
inverse quantization is performed on the quantized coefficients followed by an inverse transformation
stage. The inverse DCT is given by Eq. 2.8 and it is orthogonal to the forward transform, i.e., T−1(T(X)) =

X.

 []4 4

1 1 1 1 / 2 1 1 1 1

1 1 / 2 1 1 1 1 / 2 1 / 2 1

1 1 / 2 1 1 1 1 1 1

1 1 1 1 / 2 1 / 2 1 1 1 / 2

xIDCT X

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥− − − −⎜ ⎟⎢ ⎥ ⎢ ⎥= ⎜ ⎟⎢ ⎥ ⎢ ⎥− − − −
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟− − − −⎣ ⎦ ⎣ ⎦⎝ ⎠

 (2.8)

The inverse Hadamard Transforms are identical to the forward Hadamard Transforms (Eq. 2.3, Eq. 2.7).
After the inverse transformation, the prediction data is added into the inverse transformed values to obtain
the reconstructed block. After the complete frame is encoded and reconstructed, H.264/AVC applies an
in-loop Deblocking Filter on the reconstructed data to reduce blocking distortion by smoothening the
block edges. The filtered frame serves as the reference frame, which is used for the Motion Estimation
and Compensation of the upcoming frames. Note, for the Intra Prediction (i.e., in case of I-MBs), the

Chapter 2 Background and Related Work

- 16 -

prediction is formed using non-filtered values. Further details on the H.264/AVC standard can be found in
[Ric03, Ric10, WSBL03].

It is worth mentioning that only the H.264/AVC decoder is fixed by the standard in order to ensure the
compliance of the bitstream and syntax. Therefore, the prediction part, (inverse) transformation, and
(inverse) quantization, entropy coding, and the Deblocking Filter need to be standard compliant at the
encoder side. However, this leaves sufficient space for researchers and designers to incorporate their ideas
in the Motion Estimation, Rate Control, and Mode Decision processes to obtain an efficient encoder
application in terms of power and performance.

Now state-of-the-art related work is presented for adaptive and low-power architectures and
algorithms for the complete H.264/AVC video encoder and its different functional blocks.

2.2.2 Low-Power Architectures for H.264/AVC Video Encoder

Majority of H.264 encoding solutions target ASIC implementation with a focus on either low power
consumption of high resolution system. Few works have also targeted DSP-/ASIP-based and
reconfigurable solutions. In the following the prominent related work is discussed for the complete H.264
encoder.

ASIC-based Encoder Implementations: A hardware design methodology for H.264/AVC video coding
system is described in [CLC06]. In this methodology, 5 major functions are extracted and mapped
onto a 4 stage Macroblock (MB) pipelining structure. Reduction in the internal memory size and
bandwidth is also proposed using a hybrid task-pipelining scheme. However, some functional blocks
(e.g., Motion Compensation, DCT, and Quantization) are not considered for hardware mapping. The
approach in [CCH+06] implements an H.264 encoder with a four-stage Macroblock (MB) level
pipeline scheme, a memory hierarchy, and a dual-buffer entropy encoder. The prototype �
implemented using UMC 180 nm � requires a relatively large footprint (922.8 KGates and 34.72 KB
SRAM), thus resulting in a high power consumption of 581mW for D1 and 785mW for HD720p. This
power consumption is infeasible for mobile applications according to [EY05]. The authors in
[MSH+08] proposed a H.264 codec with high picture quality for mobile applications. They employed
a Dynamic Clock Supply Stop (DCSS) system to reduce the power consumption. In order to solve the
data dependencies between the Intra Prediction and the reconstruction loop tasks, a prediction scheme
is presented that uses the original image instead of the reconstructed one. However, this approach
inserts distortion to the final image. For Motion Estimation a SKIP algorithm is supported with SATD
as the matching criteria. The hardware implementation is able to encode HD720p running at 144MHz
consuming 64mW with an on-chip memory of 56KB SRAM. In [CCT+09] a low-power H.264
encoder is proposed for portable devices. However, this work mainly focuses on the Motion
Estimation and ignores other functional blocks of the encoder. The variable block size Integer-pixel
Motion Estimation is based on the Four Step search and the Fractional-pixel Motion Estimation
features the so-called One-Pass algorithm for three block sizes. However, such Motion Estimation
search algorithms have a high tendency to trap in the local minima [CZH02, Tou02, YZLS05]. The
proposed architecture encodes real-time (30fps) D1 resolution at 54 MHz consuming 43.5-67.2 mW.
It uses 452.8 KGates and 16.95 KB SRAM in TSMC 180 nm technology. A partially quality-
adjustable H.264 encoder is presented in [CCW+09] to provide fixed power vs. quality tradeoffs. A
complete encoder hardware architecture is proposed with a control logic employing four quality
modes. The design is implemented with TSMC 130 nm requiring 470 KGates and 13.3KB SRAM.
Although the main claim of this work is the quality vs. power adaptivity, for higher resolutions it falls
back to the lowest quality mode which is complementary to the system requirements, i.e., high
resolution encoding typically requires high quality.

2.2 The H.264 Advanced Video Codec: A Low-Power Perspective

- 17 -

ASIP-/DSP-based and Reconfigurable Encoder Implementations: In [KLHS06] an ASIP featuring
Custom Instructions for Deblocking Filter and Intra Prediction are presented. Hardware accelerators
for Motion Estimation/Compensation and entropy coding are also provided. A performance reduction
of 20-25% is observed. Moreover, a small search range [-16,+15] is used which provides limited rate-
distortion results for higher resolutions. The proposed implementation requires 76 KGates when
synthesized using a Samsung SEC 180 nm technology. The authors in [SJJL09, ZWFS07] proposed
encoding solutions using the TMS320DM642 VLIW processor executing at 600MHz. Based on their
complexity analysis, a Diamond search algorithm is deployed as the Motion Estimation search
pattern, which is insufficient to capture high motion. Therefore, it results in a significant quality loss.
Various DSP specific optimizations are programmed using the DM642 specialized instruction set for
performance improvement. An energy efficient, instruction cell based, dynamically reconfigurable
fabric combined with ANSI-C programmability, is presented in [MYN+06]. This architecture claims
to combine the flexibility and programmability of DSP with the performance of FPGA. In [LK06] the
authors have presented the XPP-S (Extreme Processing Platform-Samsung), an architecture that is
enhanced and customized to suit the needs of multimedia application. It introduces a run-time
reconfigurable architecture PACT-XPP that replaces the concept of instruction sequencing by
configuration sequencing [May04, XPP02]. In [BKD+05, MVM05, VSWM05] the authors have
mapped an H.264 decoder onto the ADRES coarse-grained reconfigurable array. In [BKD+05,
VSWM05] the authors have targeted IDCT and in [MVM05] Motion Compensation optimizations are
proposed using loop coalescing/merging, loop unrolling, etc. However, at the encoder side the
scenario is different from that in decoder, because the interpolation for Luma component is performed
on frame-level. Although the proposed optimizations in [MVM05] expedite the overall interpolation
process, this approach does not avoid the excessive computations for those MBs that lie on integer-
pixel boundary. A hardware co-processor for real time H.264 video encoding is presented in
[MMFS06]. It provides only Context Adaptive Binary Arithmetic Coding (CABAC) and Motion
Estimation in two different co-processors thus offers partial performance improvement.

Summarizing: the above-discussed encoding approaches primarily target ASIC-based solutions that
lack flexibility and are not amenable to the standard evolution trends. Moreover, the above-discussed
related work lack run-time adaptivity when considering varying energy budgets and area/performance
constraints. One of the key distinctions of the proposed contribution (in this thesis) is to enable the run-
time configurability and tradeoff between the energy consumption and achieved video quality for
dynamically varying energy budgets and area/performance constraints.

2.2.3 Adaptive and Low-Power Design of the Key Functional Blocks of the
H.264 Video Encoder: State-of-the-art and Their Limitations

A major research effort has been spent on designing individual blocks of the H.264 codec, e.g., Fast Mode
Decision, Motion Estimation (ME), and Deblocking Filter. The state-of-the-art related work for the key
functional blocks of the H.264 encoder is discussed in the following, highlighting the prominent work in
adaptive and low-power algorithms and architectures.

Fast Mode Decision and Complexity Reduction Schemes: As discussed in Section 2.2.1, the exhaustive

RDO-MD in H.264 investigates all possible P-MB and I-MB mode combinations in all possible block
sizes to make a decision about the actual coding mode. Therefore, the exhaustive RDO-MD process is
extremely compute-intensive and practically infeasible in real-world performance and/or power-
critical embedded multimedia systems. Note, Mode Decision for P-MB modes is far more complex
than that for I-MB modes due to the compute-intensive ME process. This fact becomes critical when
after the RDO-MD the final coding mode comes out to be an I-MB mode, thus in this case the
complete ME comes out to be unnecessary. To address the limitations of the exhaustive RDO-MD,
fast RDO-MD schemes are employed. The basic idea of fast RDO-MD scheme is to select a set of
coding mode candidates (which is much smaller than the set of all modes) such that the computational

Chapter 2 Background and Related Work

- 18 -

requirements of the RDO-MD process are significantly reduced while keeping the visual quality close
to that of the exhaustive RDO-MD. State-of-the-art fast RDO-MD schemes can be categorized as fast
P-MB MD [ADVLN05, GY05, JC04, KC07, LWW+03, PC08, SN06, WSLL07, Yu04], fast SKIP9
MD [JL03], fast I-MB MD [MAWL03, PLR+05], and the combination of the above [ADVLN05,
JL03]. These fast RDO-MD schemes either simplify the used cost function or reduce the set of
candidate modes iteratively depending upon the output of the previous mode computation. The
authors in [JC04] used Mean Absolute Difference of MB to reduce the number of candidate block
types in ME. On average, it processes 5 out of 7 block types. The approach in [KC07] uses the RD
cost of neighboring MBs to predict the possible coding mode for the current MB. Similar approach is
targeted by [PC08, WSLL07] that use the residue texture or residue of current and previously
reconstructed MB for fast P-MB Mode Decision. The technique in [Yu04] uses the mode information
from previous frame to predict the modes of MBs in the current frame. The technique in [SN06]
provides a fast SKIP and P16x16 prediction as an early predicted mode option. In [GY05],
smoothness and SAD of the current MB are exploited to extend the SKIP prediction and exclusion of
smaller block mode types. Even if all conditions are satisfied, still 152 out of 168 modes are
evaluated, else all modes are evaluated as the exhaustive RDO-MD. The authors in [PLR+05]
exploited the local edge information by creating an edge map and an edge histogram for fast I-MB
Mode Decision. Using this information, only a part of available I-MB modes are chosen for RDO,
more precisely 4 instead of 9 I4x4 and 2 out of the 4 I16x16 are processed. The fast I-MB Mode
Decision scheme in [MAWL03] uses partial computation of the cost function and selective
computation of highly probable modes. I4x4 blocks are down sampled and the predicted cost is
compared to variable thresholds to choose the most probable mode. A limited work has been done that
jointly performs fast Mode Decision for both I-MB and P-MB. In [AML07], a scalable mode search
algorithm is developed where the complexity is adapted jointly by parameters that determine the
aggressiveness of an early stop criteria, the number of re-ordered modes searched, and the accuracy of
ME steps for the P-MB modes. At the highest complexity point, all P-MB and I-MB modes are
processed with highest ME accuracy. The authors in [PYL06] proposed a scalable fast RDO-MD for
H.264 that uses the probability distribution of the coded modes. It prioritizes the MB coding modes
such that the highly probable modes are tried first, followed by less probable ones.

Most of these state-of-the-art RDO-MD schemes deploy a similar philosophy as they sequentially
process mode by mode and exclude the modes depending upon the output of previously evaluated
modes, i.e., modes are not excluded in the fast RDO-MD until some ME is done. Therefore, these
approaches suffer from a limitation that � in worst case � all possible coding modes are evaluated. In
average case, still significant (more than half of all) modes are computed or even in the best case at
least one mode from both P-MB and I-MB is processed (see [GY05, JC04]). In any case, ME is
always processed, thus the computational requirements of the state-of-the-art are still far too high,
which makes them infeasible for low-power embedded multimedia systems. This thesis introduces an
Adaptive Computational Complexity Reduction Scheme (see Section 4.4, page 69) that addresses these
issues by adaptively excluding as many coding modes as possible from the candidate mode set at run
time, even before starting the actual fast RDO-MD and ME processes. It thereby provides a
significant reduction in the computational complexity and energy consumption of the video encoder.

Once the coding mode is determined and the type is P-MB, the most energy consuming part of an
encoder is Motion Estimation. The energy distribution of the encoding process will be discussed in
Section 3.1 for an optimized video encoder implementation.

Motion Estimation (ME): The complexity and energy consumption of ME is directly proportional to the
number of computed SADs to determine the best match (i.e., the MB with the minimum distortion). A

9 For a SKIP Macroblock, encoder does not send any motion and coefficient data and a SKIP Macroblock can be

completely reconstructed at the decoder side.

2.2 The H.264 Advanced Video Codec: A Low-Power Perspective

- 19 -

Full Search ME (i.e., exhaustively searching all possible candidate positions10 in the search window)
provides the optimal match but requires a huge amount of energy (up to 65-90% of total encoding
energy [YWV05]). As a result, it is not practicable for real-world applications. Many fast and
adaptive ME schemes have been proposed to reduce the computational complexity, such as,
Unsymmetrical-cross Multi-Hexagon-grid Search (UMHexagonS) [CZH02], simple UMHexagonS

[YZLS05], Enhanced Predictive Zonal Search (EPZS) [Tou02], etc. However, these ME schemes do
not consider available energy/power resources and only stop the search process when the quality
constraint is met, thus they always compute a large number of SADs. The computation-aware ME
schemes [KXVK06, THLW03, YCL05] stop the search process once the allocated computations are
exhausted. Such approaches incorporate a rate-control like mechanism to determine the number of
processed SADs and terminate the search once the allocated number of SADs are processed
irrespective of whether a good match has been found or not. As a result, these approaches may suffer
from severe quality artifacts. Moreover, these approaches are still energy-unaware. The works in
[DGHJ05, RB05] provide various VLSI implementations to expedite the process of H.264 ME. Most
of these hardware implementations are either suited for Full Search or UMHexagonS. An ASIP-based
approach is considered in [MRS07] but it uses only spatial predictors and does not consider temporal
information of the motion field. Moreover, it only uses cross and 3x3 square patterns that take longer
to find the optimal Motion Vector (MV) in case of heavy or angular motions. The approach in [HP07]
explores fixed and random sub-sampling patterns for computation reduction. The authors in [YWV05]
presented power modeling for ME and evaluate it for 8 different MEs. Some of the works have
targeted the low-power issue in ME [SF04, SLIS07, WSK+07] but they focus on reducing the power
either by changing the SAD formula [KSK06] or by eliminating candidates using partial distortion
sorting [SLIS07]. Partial distortion sorting is itself an overhead and it excludes only a set of
candidates from Full Search, which still results in a much larger number of candidates. The authors in
[WSK+07] presented an ME scheme based on algorithmic noise tolerance. It uses an estimator based
on input sub-sampling but this approach results in degradation especially in case of videos with small
objects. Moreover, it uses a 3-step search, which traps in local minima, and for modern Motion
Estimators it is hard to track motion using sub-sampled input frame. The authors in [CCLR07]
introduced a technique to reduce power in video communication by reducing the frame rate but it only
works in case of very low motions. Moreover, it incurs a noticeable degradation in the quality of
service. The technique in [SF04] exploits input data variations (not the changing levels of available
energy) to dynamically configure the search-window size of Full Search but does not consider the
energy/power level variations. Moreover, it targets Full Search which is far more energy consuming
than state-of-the-art ME schemes.

State-of-the-art adaptive, fast, low-power, and scalable ME schemes either only consider a fixed
quality-constrained solution or offer scalability with fixed termination rules that may lead to severe
quality artifacts. These approaches do not provide run-time adaptivity when considering run-time
varying energy budgets (i.e., whether there is sufficient energy budget to process the allocated number
of SADs or not) and input video sequence characteristics. Additionally, these approaches ignore the
user-defined constraints, e.g., required video quality level or encoding duration. As a result, these
approaches are less energy-/power-efficient. Varying video sequence characteristics (motion type,
scene cuts, etc.) and changing status of available energy budgets (due to a changing battery level or
changing allocated energy in a multi-tasking system) stimulate the need for a run-time adaptive
energy-aware Motion Estimation scheme while exhibiting minimal loss in video quality. Note, the
available energy budgets may change according to various application scenarios on mobile devices.
This thesis introduces an energy-aware Motion Estimation with integrated adaptive energy-budgeting

scheme (see Section 4.5, page 77) that determines �how much energy budget should be allocated to

the Motion Estimation of one video frame or even one Macroblock when considering run-time varying

scenarios� while keeping a good video quality.

10 1089 candidate positions per MB for a search window size of 33x33.

Chapter 2 Background and Related Work

- 20 -

The proposed scheme is different from the above-discussed state-of-the-art as it comprehensively
explores the tradeoff related to the energy consumption and video quality loss while considering the
run-time varying scenarios. Unlike the above-discussed approaches (like [CCLR07, KSK06, SF04,
SLIS07, WSK+07]), the proposed ME scheme moves in the energy-quality design space at run-time
using the novel concept of Energy-Quality Classes, each requiring a different energy consumption and
providing a different visual quality. These Energy-Quality Classes are selected at run time depending
upon the available energy and user-defined controls (e.g., frame rate) to enable energy-aware
adaptivity, that has not been targeted by others before. Moreover, novel search patterns are deployed
that captures the large angular/irregular motions and further refines the motion search in close vicinity.

In-Loop Deblocking Filter: As the Deblocking Filter algorithm is fixed by the standard [ITU05], the key
research focus in the Deblocking Filter is low-power, area-efficient, or high-throughput hardware
acceleration. The approach in [MC07] uses a 2x4x4 internal buffer and 32x16 internal SRAM for
buffering the filtering operations with I/O bandwidth of 32-bits. All filtering options are calculated in
parallel while the filtering conditions are computed in a control unit. This approach uses 1-D
reconfigurable FIR filter (8 pixels in and 8 pixels out) but does not target the optimizations of actual
filter Data Path. It requires 232 cycles to filter one MB. The authors in [SCL06] introduced a 5-stage
pipelined filter using 2 local memories. This approach suffers from the overhead of multiplexers to
avoid pipeline hazards. It costs 20.9K gate equivalents for 180 nm technology and requires 214-246
cycles/MB. A fast Deblocking Filter is presented in [PH06] that uses a Data Path, a control unit, an
address generator, one 384x8 register file, 2 dual port internal SRAMs to store partially filtered pixels,
and 2 buffers (input and output filtered pixels). The filter Data Path is implemented as a two-stage
pipeline. The first pipeline stage includes one 12-bit adder and two shifters to perform numerical
calculations like multiplication and addition. The second pipeline stage includes one 12-bit
comparator, several two�s complementers and multiplexers to determine conditional branch results. In
worst case, this technique takes 6144 clock cycles to filter one MB. A pipelined architecture for the
Deblocking Filter is illustrated in [CC07] that incorporates a modified processing order for filtering
and simultaneously processes horizontal and vertical filtering. The performance improvement majorly
comes from the reordering pattern. For 180 nm synthesis this approach costs 20.84K gate equivalents
and requires 192 (memory) + 160 (processing) cycles. The authors in [AKL+07] mapped the H.264
Deblocking Filter on the ADRES coarse-grained reconfigurable array [BKD+05, VSWM05]. It
achieves 1.15x and 3x speedup for overall filtering and kernel processing, respectively.

The Deblocking Filter (Section 4.2.1) approach proposed in this thesis is different from the above
approaches because it targets first the optimization of core filtering Data Paths in order to reduce the
total number of primitive operations in one filtering. In addition to this, all conditions in one Data
Path are collapsed and two generic conditions are calculated that decide the filtering output. A parallel
scheme for filtering one 4-pixel edge is incorporated. A latest technique in the Deblocking Filter
inspired from the proposed approach is presented in [NWKS09]. Similar to the proposed approach,
the technique of [NWKS09] also performs operation reduction for the area reduction and high
throughput. It additionally gates the clock of the unused processing units to reduce the dynamic
power. Since this technique is synthesized using a 180 nm technology, the leakage power factor is not
considered.

2.3 Reconfigurable Processors

In order to enable run-time adaptivity at the processor level, dynamically reconfigurable processors are
deployed as the target platform in this thesis. These processors embed a reconfigurable fabric within a
core pipeline (MIPS, SPARC, VLIW, etc.). Depending upon its reconfiguration granularity, a fabric can
be categorized into coarse- and fine-grained reconfigurable fabric. A coarse-grained reconfigurable fabric
consists of an array of word-level reconfigurable Arithmetic Logic Units (ALUs). It is amenable to data-
flow dominant application kernels with word-level processing (typically 16 or 32 bit). A fine-grained

2.3 Reconfigurable Processors

- 21 -

reconfigurable fabric employs Look-Up Tables (LUTs) with bit-level reconfigurability. A typical example
of such fabric is Field Programmable Gate Arrays (FPGAs). Fine-grained reconfigurable fabrics are
amenable to highly-parallel processing of byte-level operations (as typically required in image and video
processing), state machines (sub-byte level), and bit-level operations (e.g., bit-shuffling, packing and
merging operations, condition computations, etc.). A detailed discussion on these approaches can be
found in [VS07]. Detailed surveys and overview of different approaches in reconfigurable computing are
provided in [Ama06, BL00, Bob07, CH02, Har01, HM09, TCW+05, VS07].

In the scope of this thesis, the focus is placed on dynamically reconfigurable processors with a fine-
grained reconfigurable fabric. These processors provide a high adaptivity and flexibility (due to their
hardware reconfigurability and programmability) combined with the performance and efficiency of
dedicated hardware accelerators (by exploiting a high degree of parallelism using an embedded FPGA).
Now the basic structure of a fine-grained reconfigurable fabric will be explained.

2.3.1 Fine-Grained Reconfigurable Fabric

Figure 2.4 illustrates the internal structure of a fine-grained reconfigurable fabric that consists of
Configurable Logic Blocks (CLBs) and Programmable Switching Matrices (PSMs) connected with
dedicated wires [Te06, Xil08a]. The internal details are shown for a Xilinx Spartan FPGA. A CLB-PSM
pair is typically referred as a Tile. The CLBs consist of Look-Up Tables (LUTs) and flip flops, while the
PSMs constitute configurable interconnects and routing multiplexers11. Such a fine-grained reconfigurable
fabric is efficient in implementing bit-/byte-level operations, control logic (finite state machines), and
small memories. The fabric can be reconfigured at run time to implement different hardware accelerators.
A case where only a region of the fabric is reconfigured at run time is referred as partial run-time

reconfiguration12. In this case, the regions that are not reconfigured remain active and functional.
Typically a reconfiguration is performed via an on-chip mechanism for accessing the configuration
memory. In case of Xilinx Virtex FPGAs, it is the Internal Configuration Access Port (ICAP [Xil09]). The
reconfiguration latency depends upon the size of the configuration data and the reconfiguration bandwidth
(for a reconfiguration bandwidth of 36 MB/s and a 40 KB configuration data, i.e., Data Path bitstream, the
reconfiguration latency corresponds to 54,254 cycles at 50 MHz).

PSM: Programmable Switch Matrix,

CLB: Configurable Logic Block

Configurable Logic

Block (CLB)

L
o

g
ic

 S
li
c
e

4
L

U
T

4
L

U
T

4
L

U
T

4
L

U
T

4
L

U
T

4
L

U
T

4
L

U
T

4
L

U
T

Figure 2.4: A Typical Composition of a Fine-Grained Reconfigurable Fabric with a 2D-Array of

CLBs and PSMs along with the Internal Details of a Spartan-3 Tile [Te06, Xil08a]

11 Further details on the Xilinx internal structure and its usage can be found in [Xil07].
12 Most of the architectures use the Xilinx FPGAs and tools [LBM+06] to prototype partial run-time reconfiguration.

Chapter 2 Background and Related Work

- 22 -

2.3.2 Leakage Power of Fine-Grained Reconfigurable Fabric and the Power-
Shutdown Infrastructure

Recently, low-power design, especially the leakage power reduction, has become a key research focus in
reconfigurable computing. An overview of low-power techniques for FPGAs is presented in [LL08]. A
detailed analysis of leakage power of the fine-grained reconfigurable fabric in Xilinx FPGAs is performed
in [TL03], highlighting the significance of leakage reduction in FPGAs especially when considering
mobile devices. An analysis of dynamic power consumption in Virtex-II FPGAs is presented in [SKB02].
An FPGA architecture evaluation framework for power efficiency analysis is presented in [LCHC03]
predicting leakage to be dominant for future technologies.

Lately, power-gating (i.e., hardware-oriented power-shutdown) has been introduced in FPGAs to
reduce the leakage power by switching-off the power supply to the reconfigurable regions with the help of
high-Vt mid-oxide sleep transistor [Ge04, Te06]. Besides an area overhead, sleep transistors typically
introduce a performance penalty due to their on-resistance in case the circuit is active and operating.
Therefore, the granularity of the power-shutdown (i.e., the smallest hardware block that can be
independently shutdown) is one of the main design decisions. In the following, different power-shutdown
infrastructures are discussed for the fine-grained reconfigurable fabric.

The hardware-oriented power-shutdown scheme of [CHC03] uses three sleep transistors for CLBs and
one for routing resources in order to obtain a fine-grained leakage control. It employs a power-shutdown of
each independent LUT, flip flop, and routing switch. Such an approach provides a relatively higher power
saving at the cost of significantly increased area overhead. The approach of [Ge04] targets power-shutdown
of clusters of several tiles (see Figure 2.5a) that may be controlled by a single sleep transistor in order to
provide leakage power reduction while keeping the area overhead low [PSB05, Te06]. However, in this case
the number of powered-off tiles is reduced, as some clusters are 'partially used', i.e., they contain tiles that
are used (thus need to remain active) and other tiles unused (thus could be powered-off). Therefore, when
considering a cluster-level power-shutdown, such 'partially used' clusters cannot be shutdown and a
relatively lower power savings are obtained. To address this issue, the approach of [Ge04] proposes a
region-constrained placement to increase the number of clusters that be shutdown.

(b)

Configuration
SRAM

Configurable
Logic Block (CLB)

Configuration
SRAM

Interconnect
Switch Matrix

Configuration
SRAM

Sleep Transistor

(a)

Lo
ca
l F
e
e
d
b
a
ck

Interconnect
Switch
Matrix

Logic
Slice

Logic
Slice

Logic
Slice

Logic
Slice

Cin

Cout

Switch

Power Supply Rail
Control Bit

Configurable Logic Block (CLB)

Figure 2.5: State-of-the-Art in Power-Shutdown Infrastructure (a) by [Ge04] (b) by [Te06]

Xilinx research labs introduced the Pika low-power FPGA (90 nm) for battery-powered applications that
supports voltage scaling, hardware power-shutdown, and a low-leakage Configuration SRAM [Te06]. The
power-shutdown infrastructure of Pika provides a compromise between [CHC03] and [Ge04] by
providing sleep transistors at the level of individual tiles (see Figure 2.5b). The authors showed that (on
average) 25% tiles are idle when evaluated for over 100 benchmarks. NMOS sleep transistors are
considered in Pika as they provide better speed characteristics compared to the PMOS sleep transistors.

2.3 Reconfigurable Processors

- 23 -

Unlike using the thin-oxide high-Vt transistors for power-shutdown [MSM+96] that incurs high leakage at
90nm (and below) technology nodes, Pika employs mid-oxide sleep transistors. A design space
exploration is performed in [Te06] to select a transistor size by exploring the power and delay behavior of
various transistor designs (see Figure 2.6a; each design point denotes a different transistor size). Mid-
oxide sleep transistor has been selected for the Pika FPGA as it provides a leakage reduction by over
1000x at the cost of 10% performance degradation. Pika incurs an 8% area increase due to their power-
shutdown infrastructure [Te06]. Kindly note that Xilinx has not yet introduced such an infrastructure in
their commercial products, however, it is envisaged to be in their future product lines.

Note, the above-presented approaches [CHC03, Ge04, Te06] only shutdown the logic area (i.e., CLBs
and PSMs) while keeping the Configuration SRAM powered-on to retain the configuration state. These
approaches consider a low-leakage SRAM with high-Vt transistors. The authors in [LLH07] showed that
high-Vt transistors for leakage reduction in the Configuration SRAM result in increased SRAM write time
(i.e., increased reconfiguration time), that leads to a higher reconfiguration energy. The authors in [MM05]
proposed fine-grained leakage optimization by shutting down the Configuration SRAM of unused LUTs. A
hardware-oriented power-shutdown technique with four sleep modes (achieved by applying different bias to
the footer device) is proposed in [Ae06] to provide a tradeoff between wakeup overhead and leakage
savings.

In order to activate the circuit, sleep transistors (requiring wakeup time and wakeup energy) are
switched-on. The Xilinx Pika project demonstrated a study of wakeup characteristics for the mid-oxide
sleep transistors (see Figure 2.6b) where the wakeup time is given as approximately 100ns. A comparison
of energy consumption is performed for active and standby modes. This study demonstrates that a circuit
is beneficial to shutdown if the minimum sleep period is less than 2µs in order to amortize the wakeup
energy.

(a) (b)

Figure 2.6: (a) Sizing of Thin- & Mid-Oxide Power Gate showing Leakage-Delay Tradeoffs

[Te06]; (b) Power Consumption for Activating and Deactivating a single tile [Te06]

2.3.3 Custom Instructions (CIs): A Reconfigurable Processor Perspective

A Custom Instruction (CI) is an assembly instruction that implements the functionality of a compute-
intensive kernel of an application for its accelerated execution. As discussed earlier, reconfigurable
processors deploy so-called CIs (composed of hardware accelerators, see Section 2.3.5) in order to
expedite application�s computational hot spots13. Typically, a tool flow is used for designing hardware
accelerators and CIs for fine-grained reconfigurable processors, which is similar to that for
ASIPs/extensible processors. Therefore, the related work for automatic detection and high-level synthesis
of CIs and hardware accelerators from extensible processors can be used for creating reconfigurable CIs,

13 Throughout this paper, a hot spot denotes a computational hot spot that contains compute-intensive application

parts (i.e., kernels).

Chapter 2 Background and Related Work

- 24 -

too. For example, in case of H.264 video encoder, CIs can be designed to accelerate the Discrete Cosine

Transform, Sum of Absolute Difference (SAD) for Motion Estimation, In-Loop Deblocking Filter, etc.

Reconfigurable processors partition their reconfigurable fabric into so-called Reconfigurable

Functional Units (RFUs, connected to the core processor pipeline) that are reconfigured at run time to (re-
)load CI implementations for a hot spot. After the execution of a hot spot is completed, the reconfigurable
fabric may be allocated to the CIs of other hot spots, thus demanding a dynamic reconfiguration of the
RFUs, which may consume a noticeable amount of energy due to the reconfiguration process. Therefore,
unlike extensible processors that statically provide all CIs, reconfigurable processors use the fine-grained
reconfigurable fabric in a time-multiplexed manner to dynamically implement CIs of different hot spots of
an application or even CIs of different applications from diverse domains. To be able to reconfigure any
CI into any RFU, the interface between the core pipeline and all RFUs is identical. So-called prefetching
instructions are inserted to trigger the upcoming reconfigurations [LH02]. Further details on
reconfigurable CIs and the differences between CIs for reconfigurable and extensible processors can be
found in [Bau09].

In the following, prominent state-of-the-art reconfigurable processors are discussed (in chronological
order) that can benefit from the novel contribution of this thesis.

2.3.4 Reconfigurable Instruction Set Processors

The OneChip and OneChip98 projects [WC96], [CC01, JC99] couple RFUs with the core processor
pipeline for implementing multi-cycle CIs. RFUs may access the main memory, while the core
processor pipeline continues executing, in order to expedite streaming applications [CC01]. However,
it may result in memory inconsistencies. The OneChip98 project proposed a hardware support to
automatically resolve 9 different types of memory inconsistencies. The RFUs provide six
configuration contexts which are loaded using the direct memory access.

The CoMPARE processor [SGS98] couples the pipeline with an RFU having four inputs and two outputs.
The RFU cannot implement a state-machine or data-feedback logic as it does not provide registers or
latches. Only one CI can be reconfigured in the RFU. Therefore, if more than one CIs are executing
within a computational hot spot, reconfiguration are performed during their execution.

The Proteus processor [Dal99, Dal03] couples the core processor pipeline with a fine-grained
reconfigurable fabric divided into multiple RFUs each containing one CI at a time. The main research
focus of Proteus is on the Operating System support considering task switching and the opcode
management for CIs in a multi-tasking environment. Shared CIs among different tasks are assigned
the same opcode. In case of tasks with disparate processing behavior and insufficient number of
available RFUs, some CIs execute in software thus resulting in a steep performance degradation.

The Molen processor [PBV06, PBV07, VWG+04] couples a core processor pipeline with a fine-grained
reconfigurable fabric via a dual-port register file and an arbiter for shared memory. These dedicated
exchange registers are used to provide parameters to the CIs. Additional control instructions are
provided to manage the reconfiguration requests and CI executions. The decision of run-time
reconfiguration is determined at compile time using these control instructions. A generic instruction is
used to execute all CIs. The address of the configuration bitstream for the demanded CI is provided to
this generic instruction.

Bauer [Bau09] identified three different problems for state-of-the-art reconfigurable processors (e.g.,
Proteus [Dal99, Dal03] and Molen [PBV06, PBV07, VWG+04]).

2.3 Reconfigurable Processors

- 25 -

i) Data Path Sharing Problem: The above-mentioned reconfigurable processors employ monolithic
CIs, i.e., a CI is implemented as a dedicated hardware block using the reconfigurable fabric. These
CIs may be either entirely loaded onto the reconfigurable fabric or not at all. As a result, sharing of
common Data Paths is not possible in these reconfigurable processors. The concept of monolithic CIs
has two additional drawbacks as given below.

ii) RFU Fragmentation Problem: In order to dynamically reconfigure CI implementations into any
RFU, all RFUs need to be of equally-sized and share a common connection interface. If an CI
implementation is smaller than the RFU, the remaining resources within the RFU cannot be used to
implement another CI. Therefore, it leads to a noticeable fragmentation which potentially results in
increased area requirements.

iii) Longer Reconfiguration Time Problem: Although monolithic CIs provide higher performance (due
to more parallelism), they result in significantly longer reconfiguration time due to more hardware.
Depending upon the expected number of CI executions and the reconfiguration frequency, the
reconfiguration overhead may degrade the potential performance improvement. Reconfigurable
processor typically address this problem by: (a) prefetching CI implementations to start the
corresponding reconfigurations as early as possible [LH02], and/or (b) using core Instruction Set
Architecture (cISA) to execute a CI when it is not available in the RFUs.

Bauer [Bau09] proposed the Rotating Instruction Set Processing Platform (RISPP) that � instead of
monolithic CIs � employs modular CIs based on a hierarchical composition. These modular CIs are
composed of elementary Data Paths (as hardware accelerators) and support multiple Implementation
Versions per CI. It addresses the above-discussed three problems of sharing, fragmentation, and longer
reconfiguration time. The concept of modular CIs enables an efficient utilization of the reconfigurable
fabric. It provides the potential for a higher adaptivity and efficiency than monolithic CIs. RISPP
incorporates a run-time system and a hardware infrastructure (for computation and communication) to
utilize the potential of modular CIs in order to increase the efficiency and performance.

Note that monolithic CIs are actually a special case of modular CIs, i.e., they provide exactly one
implementation per CI which is implemented using one large Data Path. Therefore, in subsequent
chapters, RISPP is used to motivate and apply adaptive low-power processor and application architectures
and run-time energy-management. RISPP is a more sophisticated and advanced reconfigurable processor
compared to previous state-of-the-art (like Molen and Proteus). However, for the evaluation, dynamically
reconfigurable processors with both modular and monolithic CIs are used, i.e., RISPP and Molen.

Before discussing the concepts and techniques for low-power approaches in reconfigurable
computing, in the following, an overview of RISPP is provided to a level of detail necessary to understand
the novel contribution of this thesis (for further details please refer to Bauer [Bau09]). The details for
other reconfigurable processors can be found in [Ama06, BL00, Bob07, CH02, Har01, HM09, TCW+05,
VS07].

2.3.5 Rotating Instruction Set Processing Platform (RISPP)

The RISPP architecture [Bau09] embeds a fine-grained partially and dynamically reconfigurable fabric
with a 5-stage pipeline RISC processor (e.g., MIPS [ASI] or Sparc-V8 [Aer]) as shown in Figure 2.7
[BSTH07]. The reconfigurable fabric is connected to the Execution stage as a functional unit. A hardware
infrastructure is realized for the computation and communication within the reconfigurable fabric (details
are explained later in this section). The communication part is a set of multiple segmented busses as a
fixed interconnect structure (i.e., non-reconfigurable). The computation part consists of partially
reconfigurable regions, i.e., so-called Data Path Containers (DPCs). These DPCs can be dynamically
reconfigured to contain any particular Data Path on individual basis.

Chapter 2 Background and Related Work

- 26 -

Figure 2.7: Extending a Standard Processor Pipeline towards RISPP

and the Overview of the RISPP Run-time System [BSTH07]

The principle distinction of RISPP compared to other reconfigurable processors is the concept of
modular Custom Instructions (CIs) composed of elementary Data Paths and a run-time system to support
them. These Data Paths can be reconfigured independently and can be shared among different CIs. This
enables different implementations options per CI (from pure software, i.e., using cISA, to various
hardware implementations), thus providing different tradeoffs between the reconfigurable fabric area and
the achieved performance. The RISPP run-time system performs online monitoring of the CI executions,
dynamically selects one implementation for each CI of the currently executing computational hot spot,
and schedules the Data Path reconfigurations. In order to avoid potential memory inconsistencies and to
simplify the memory arbiter implementation, RISPP stalls the pipeline during the execution of a CI.

Modular Custom Instructions (CIs) with Hierarchical Composition:

Figure 2.8 presents an overview of the hierarchical composition of modular CIs, consisting of the
following three levels [BSKH07, BSTH07]:

Data Path: A Data Path corresponds to an elementary hardware accelerator module that can be
(re-)loaded onto the reconfigurable fabric at run time. These Data Paths exploit a high level of
operator parallelism and operator chaining. Data Paths of different types exhibit different
computational properties, thus different latency and power consumption. A Data Path instance
corresponds to an instantiation of a Data Path type. A reconfigurable fabric is typically partitioned
(typically rectangular in shape) into so-called Data Path Containers (DPCs) that can be dynamically
reconfigure to contain any particular Data Path. A DPC is similar to RFUs but typically smaller in
size. Note, multiple instances of a certain Data Path type can be available at the same time, i.e., loaded
into different DPCs.

Implementation Version: An Implementation Version of a CI is typically composed of multiple
instances of different Data Paths types. The CI Implementation Versions differ in the amount of
reconfigurable hardware they need to allocate and their resulting execution time. Therefore, these
Implementation Versions provide different tradeoff points between performance and reconfiguration
overhead. An Implementation Version is available if all of its demanded Data Paths are completely
loaded onto the reconfigurable fabric. A particular Data Path can be shared among different
Implementation Versions of different CIs (as shown in Figure 2.8) because at most one CI executes at
a time. The Implementation Versions of a CI feature different energy (leakage, dynamic, and
reconfiguration) characteristics (as it will be discussed in Chapter 4 supported by actual measurements
in Chapter 6). For each CI there exists exactly one Implementation Version (the slowest one) that
executes by using only the cISA, i.e., without any accelerating Data Paths (see Figure 2.8). It is

2.3 Reconfigurable Processors

- 27 -

activated by a synchronous exception (trap) that is automatically triggered if the CI shall execute and
if the required Data Paths are not yet ready to execute (e.g., because of reconfiguration delay).
Depending upon the available hardware resources, a CI may execute using cISA or on the
reconfigurable fabric (depending upon what is more efficient and which Data Paths are loaded at a
certain point in time during the application execution).

Custom Instruction: A Custom Instruction (CI) is an assembler instruction that is executed to expedite a
computational hot spot, thus the application execution. After a hot spot has completed its execution,
the DPCs may be allocated to the CIs of other hot spots, which requires a run-time reconfiguration of
the DPCs to load new Data Paths. The functionality of a CI is typically composed of several Data
Paths that are loaded into the DPCs. A modular CI (as in the case of RISPP) has multiple
Implementation Versions. As soon as a Data Path is completed loading onto a DPC, it may be used to
execute a faster Implementation Version. This enables the gradual upgrading and downgrading of CIs
during run time by switching between different Implementation Versions. On the contrary, a
monolithic CI (as in the case of Molen) has only one Implementation Version (i.e., a specialized case
of modular CIs) and it may be either entirely loaded onto the reconfigurable fabric or not at all.

The concept of modular CIs diminishes the above-discussed three problems of sharing, fragmentation,
and longer reconfiguration time. The sharing problem is alleviated by Data Path sharing among different
Implementation Versions of the same and/or different CIs. The fragmentation is reduced by using small-
sized Data Paths instead of relatively large-sized monolithic CIs. The maximum fragmentation is limited
by the size of a DPC, which is typically small. The problem of longer reconfiguration delay is alleviated
by gradual upgrading, i.e., as soon as one Data Path finished reconfiguration, a faster Implementation
Version might become available to accelerate the CI execution. Additionally, the concept of modular CIs
provides enhanced performance and adaptivity by exploiting the tradeoff between performance and
reconfiguration overhead at run time depending upon the application execution context. In order to enable
this, a run time system and hardware infrastructure is employed in RISPP which will be explained after
the formal model of modular CIs.

CI A CI B CI C

A1 A2 A3 Ac IS A

1
2

2

Data

Path 2

Data

Path 1

B1 B2 Bc I SA C1 CcISA

Data

Path 3

1
2

C2

CUSTOM
INSTRUCTIONS
(CIs)

IMPLEMENATION

VERSIONS

DATA PATHS

2

1
1 1

1

2

Data

Path 4

Data

Path 6

Data

Path 5

1
2

1
22

11
2

(the numbers
denote: #Data
Path-instances
required for this
Implementation
Version)

1

(a CI can be
implemented
by any of its
Implementation
Versions)

an implementation
without hardware

acceleration

Figure 2.8: Hierarchical Composition of Custom Instructions: Multiple Implementation Versions

Exist per Custom Instruction and Demand Data Paths for Realization [BSKH07, BSTH07]

Formal Model of the Modular Custom Instructions:

The formal model of the hierarchical CI composition is summarized here in order to clearly formulate the
pseudo-codes in Chapter 4.

A data structure (, ,)n ∪ ∩` is defined such that
n` is the set of all Implementation Versions and n

is the number of different Data Path types. A CI is represented as a set of Implementation Versions. Let

Chapter 2 Background and Related Work

- 28 -

, , nm o p∈
G G G ` be Implementation Versions with 0 1 (, ...,)nm m m −=

G
 where im denotes the amount of

required instances of Data Path type iA to implement the Implementation Version (similarly for o
G

 and p
G

). The total number of Data Paths required to implement an Implementation Version m
G

 is given as its
determinant, i.e., 1

0: :; i
n n

im m−
=→ = ∑

G` ` .

The cISA Implementation Version of a CI is represented as : 0m =
G

. The operators ∪ and ∩ are
used to combine two Implementation Versions (typically of different CIs). The operator ∪ (see Eq. 2.9)
provides the Implementation Version that contains the Data Paths required to implement both
Implementation Versions of its input. The operator ∩ (see Eq. 2.10) provides the Implementation
Version14 with shared Data Paths between the both Implementation Versions of its input.

 : : ; : max{ , };n n n
i i io p m m o p∪ × → ∪ = =

G G G` ` ` (2.9)

 : : ; : min{ , };n n n
i i io p m m o p∩ × → ∩ = =

G G G` ` ` (2.10)

To express the Data Paths that are additionally required to realize an Implementation Version p
G

 when the
Data Paths of an Implementation Version o

G
 are already available, the upgrade operator � is used

(Eq. 2.11).

- , - 0

: ; : ; :
 0,

i i i in n n
i

p o if p o
o p m m

else

≥⎧
× → = = ⎨

⎩

G G G� ` ` ` � (2.11)

The comparison relation between two Implementation Versions is defined as o p≤
G G

 (see Eq. 2.12). As the
relation is reflexive, anti-symmetric, and transitive, (,)n ≤` is a partially ordered set.

, if [1,] :

:
, else

i itrue i n o p
o p

false

∀ ∈ ≤⎧
≤ = ⎨

⎩

G G
 (2.12)

Operator for Implementation Version

m
G

 or Custom Instruction s
Description

int . ()l m getLatency=
G

 An Implementation Version has certain execution latency (in cycles).

. ()s m getCI=
G

This function returns the CI of an Implementation Version along with
the corresponding information.

. ()m s getCISAImpV=
G

Returns that Implementation Version of a CI that uses the cISA for
execution.

. ()m s getFastestAvailImpV a=

G G

This function returns the fastest Implementation Version m
G

 of the CI s

that can be implemented with the available Data Paths a
G

int . ()f s getExpectedExecutions=

This function returns the expected number of execution of the CI s in a
particular computational hot spot. This frequency depends upon the
input data and it is estimated by an online-monitoring scheme.

. ()s add i
G

 add one instance of the ith Data Path in the vector s
G

.

. ()s remove i
G

 remove one instance of the ith Data Path from the vector s
G

.

Table 2.1: High-level Properties of Implementation Version and Custom Instruction [Bau09]

In addition to the formal model for modular CIs, additional functions are defined for the ease of
description of pseudo-codes in Chapter 4. The syntax of these functions is oriented at the object oriented
programming style, such that an Implementation Version is seen as an object and the function is called for

14 Not necessarily of a particular Custom Instruction, it is rather a representation of the set of Data Paths of two

Implementation Versions.

2.3 Reconfigurable Processors

- 29 -

that particular object. Table 2.1 provides an overview of all these functions with the corresponding high-
level properties with their syntax and an explanation. Additionally, a list 1(, ...,)ndpc dpc dpc= is
defined where n is the total number of DPCs in this list and . ()kdpc getLoadedDP returns the loaded Data
Path in the kth DPC. Note this dpc list is a software data structure and it is not related to the hardware
DPCs. It is defined to facilitate the management of different Data Paths and hardware DPCs along with
their power states. The functions . ()kdpc add dpc and . ()kdpc remove dpc are used to add and remove the
kth DPC to the dpc list. . (). ()dpc find i location finds the (first) DPC location corresponding to the ith Data
Path.

Run-Time System of RISPP:

The run-time system (see Figure 2.7) exploits the potential of modular CIs and controls the hardware
infrastructure to determine the set of Implementation Versions and the corresponding reconfiguration
decisions as well as to control the CI executions. The goal of algorithms for the run-time system are to
maximize the performance for a given area of the reconfigurable fabric. The area of the reconfigurable
fabric (i.e., number of DPCs), the core pipeline, CI formats and free opcode space, and the
implementation of the run-time system are fixed at design-time. The composition of Implementation
Versions15, cISA implementations, insertion of forecast instructions, and opcodes for CIs are determined
at compile-time.

At compile time, the so-called Forecast Instructions (FI) are inserted in the application binary16 to
trigger the run-time system. These FI contains the information about the CIs that are expected to be
executed next, thus triggering the prefetching. However, eventually the run-time system determines the
reconfiguration decisions for a set of Implementation Versions for the CIs as mentioned in the FIs. An
offline-profiling is used to predict the execution frequency of a CI, i.e., the so-called Forecast Value (FV)
of an FI. Since the CI execution frequency may depend on input data, the FV needs to be updated at run
time to reflect recent CI execution frequencies. The run-time system of RISPP (see Figure 2.7) uses an
Online-Monitoring and a Prediction scheme to dynamically update the expected CI execution
frequencies.

The Decoder triggers the modules of the run-time system when CIs or FIs are encountered in the
instruction stream. For a CI, the Execution Control manages the execution mode (i.e., using cISA or a
hardware Implementation Version) and the Online-Monitoring counts the CI executions. The Prediction
module uses the difference between the initial FV and the monitored executions to adjust the FV for the
next execution. The predicted CI execution frequency is used by the Selection to determine a set of
Implementation Versions that maximizes the performance for the given size of the reconfigurable fabric
(i.e., the number of Data Paths that can be reconfigured onto it at the same time). Afterwards, a set of
required Data Paths is determined from the selected Implementation Versions and the Scheduling
determines the reconfiguration sequence of these Data Paths. In case there is no empty DPC available in
the hardware infrastructure, the Replacement determines which Data Path should be replaced to load the
new one. In the following, the key parts of the run-time system are explained briefly.

Online-Monitoring: A fair distribution of the reconfigurable fabric within a computational hot spot
depends upon the execution frequencies of CIs. An offline-profiling provides average-case FVs (i.e.,
the prediction of expected CI executions) for a particular application. Since the CI execution
frequency may vary at run time, an online-monitoring in conjunction with an error back-propagation
scheme (based on Temporal Difference) is used for fine-tuning/updating the FVs. It thereby enables
the adaptivity to changing CI requirements, e.g., a faster Implementation Version is selected for a CI

15 Which Implementation Versions is used to implement a CI is determined at run time, but the composition of

individual Implementation Versions are not affected, therefore, they can be prepared at compile time.
16 FIs and CIs are programmed as inline assembly. The assembler is extended to know about the instruction formats

and opcodes of all FIs and CIs occurring in the assembly code.

Chapter 2 Background and Related Work

- 30 -

which is predicted to be executed more often compared to the previous execution run. Typically the
FVs of all CIs of a hot spot are indicated as a so-called Forecast Block (FB, i.e., a set of predictions)
to trigger the run-time system once per hot spot. Figure 2.9 shows an example scenario using two
Forecast Blocks FB1 and FB2 where FB1 forecasts the execution of the CIA within a hot spot and FB2
predicts that the hot spot execution is finished and the CIA is no longer required. Figure 2.10
demonstrates the idea of fine-tuning the FVs by representing the control-flow graph of Figure 2.9 as a
linear chain of FBs for two iterations of the outer loop. The CI executions between two Forecast
Blocks FBt and FBt+1 are monitored as M(FBt+1). Whenever the FBt+1 is encountered, the difference
between FV(FBt) and the monitoring value M(FBt+1) is computed. In addition to this difference, the
Forecast Block FBt+1 is also considered for computing the error E(FBt+1), as it may also predict some
executions of that CI to come soon. Eq. 2.13 shows the computation of this error using parameter

[0,1]γ ∈ to weigh the contribution of FV(FBt+1). Afterwards, the error is back-propagated to the
preceding FB (see Eq. 2.14) where the parameter [0,1]α∈ is used to control the strength of this back
propagation. A moderate Į value avoids thrashing and provides smooth variations in the prediction.
The so-called static prefetching (i.e., no fine-tuning at run time [LH02]) can be realized as a special
case of this model by using Į=0. Note, fine-tuning the FVs for multiple CIs is done independent of
each other.

() () () ()1 1 1: �t t t tE FB M FB FV FB FV FBγ+ + += +

 (2.13)

() () ()1:t t tFV FB FV FB E FBα += +

 (2.14)

Figure 2.9: Example Control-flow Graph Showing Forecasts

and the Corresponding Custom Instruction Executions [Bau09]

Figure 2.10: Execution Sequence of Forecast and Custom Instructions

with the Resulting Error Back Propagation and Fine-tuning [Bau09]

Implementation Version Selection: The concept of modular CIs allows RISPP to dynamically determine
which Implementation Version shall be used to implement a CI, i.e., distributing the reconfigurable
fabric among different CIs depending on the run-time varying application requirements. The Selection
is triggered for each computational hot spot by Forecast Instructions. It determines the set of
Implementation Versions (to implement the forecasted CIs) that maximizes the overall performance

2.3 Reconfigurable Processors

- 31 -

while considering the given size of the reconfigurable fabric. RISPP incorporates a greedy algorithm
for Selection that uses a profit function which considers the CI execution frequency, the latency
improvement, and the reconfiguration delay of an Implementation Version. The coefficients of the
profit functions are empirically computed. After the Implementation Versions are selected, the
reconfiguration sequence for the required Data Paths is determined as only one reconfiguration may
be performed at a time.

Reconfiguration-Sequence Scheduling: It determines the sequence in which Data Paths are
reconfigured. This sequence is important (in terms of performance) as it determines which
Implementation Versions are available first to expedite the computational hot spot. In RISPP, four
different strategies are explored. The Highest Efficiency First (HEF) scheduler is finally used due to
its better performance over other strategies. The HEF scheduler determines the upgrade
Implementation Version which is the most beneficial one (in terms of performance) on a scheduling
path while considering the latency improvement, the CI execution frequency, and the amount of
additionally demanded Data Paths. If a new Data Path is going to be reconfigured and there is no free
DPC available, some Data Path need to be replaced which is determined by the Replacement.

Replacement: The run-time system in RISPP employs a Minimum Degradation replacement policy that
considers the potential performance degradation for CIs when replacing a Data Path. It replaces the
one that leads to the overall smallest performance degradation for the CIs. This policy aims to keep all
CIs in a good performance by searching the downgrade step with the smallest performance impact.

Hardware Infrastructure for Communication and Computation:

The Hardware Infrastructure (see Figure 2.11) is partitioned into so-called Data Path Containers (DPCs)
and Bus Connectors (BCs) [Bau09]. The DPCs can be dynamically reconfigured to contain one Data Path
at a time, without affecting the other parts. Each DPC is connected to a dedicated BC via so-called Bus
Macros17 [Xil05] such that the communication resources are available during the reconfiguration of the
DPC (see connection details in [BSH08a]). The BC is connected to the adjacent BCs using unidirectional
segmented buses (4 buses in each direction) in order to provide high-bandwidth parallel communication
with low latency (single cycle).

Memory Controller

C
o
re

 P
ip

e
lin

e

IF

ID

MEM

WB

EXE

D
a
ta

 P
a
th

C

o
n

ta
in

e
r

Bus
Conn-
ector

D
a
ta

 P
a
th

C

o
n

ta
in

e
r

Bus
Conn-
ector

…

…

4 registers
input

2 registers
output L

o
a
d

/S
to

re

U
n
it
s
 a

n
d

A
G

U
s

Bus
Conn-
ector Data Path

Container

Bus Connector

Figure 2.11: Overview of the Hardware Infrastructure for Computation (Data Path Container) and

Communication (Bus Connector) showing the Internal Composition of a Bus Connector [Bau09]

17 Bus Macros are used to establish communication between the partially reconfigurable part (i.e., DPC) and the

non-reconfigurable part (i.e., BC)

Chapter 2 Background and Related Work

- 32 -

Each BC contains two 4x32-bit local storages (1 write and 2 read ports each) to temporarily store the Data
Path output. A DPC may receive inputs from segmented buses and/or local storages via BC-DPC latched
input connections18. The data from segmented busses can be directly written to the local storages and
alternatively the output of a local storage may drive any BC output. The control signals are provided to
BCs in each cycle using 1024-bit Very Long Control Words (VLCWs) in order to determine the
connections between different DPCs. This Hardware Infrastructure is connected to the general-purpose
register file of the core pipeline. Each DPC provides a fixed interface with two 32-bit inputs, two 32-bit
outputs, a 6-bit control signal (provided in the VLCW), a clock signal and an 8-bit output to notify the
system about the currently loaded Data Path. Two 128-bit Load/Store Units are used to access two
independent high-bandwidth memory ports in parallel and the Address Generation Units provide
addresses to the Load/Store Units.

2.4 Low-Power Approaches in Reconfigurable Processors

Previous approaches in reconfigurable processors (like OneChip [WC96], CoMPARE [SGS98], Proteus
[Dal03], Molen [VWG+04], and RISPP [BSH08b, BSH08c]) have mainly concentrated on improving the
performance by reconfiguring application-specific hardware accelerators at run time to meet applications�
demands and constraints. This reconfiguration process may consume a noticeable amount of energy.
Consequently, the major shortcoming of these reconfigurable processors is their high energy consumption
compared to ASICs and lack of efficient energy management features [Te06]. Moreover, with the
evolution of sub-micron fabrication technologies, the consideration of leakage power/energy has become
imperative in the energy-aware design of reconfigurable processors. A basic shutdown infrastructure is
required to provide a foundation to exert high-level power and energy management schemes like the one
proposed in this thesis (Chapter 5). Several academic and industrial research projects have already made
the case for such shutdown infrastructure (see details in Section 2.3.2). In the following, prominent
design-, compile-, and run-time low-power related work for FPGAs and reconfigurable processors is
presented.

Design-Time Approaches: Several design-time low-power architectural approaches for FPGAs are
presented in [CWL+05, Te06]. A 90 nm low-power FPGA for battery-powered applications is
introduced in [Te06]. It supports voltage scaling, power-shutdown, and a low-leakage configuration
SRAM. The authors in [CWL+05] presented a trace-based timing and power evaluation method for
device and architecture co-optimization for FPGA power reduction by exploring the design space of
Vt and Vdd. The approach in [RP04] uses body biasing, multi-Vt logic, and gate biasing to reduce the
leakage in FPGAs. A fine-grained leakage optimization techniques is presented in [MM05] that
performs shutdown of the configuration SRAM of the unused LUTs. The authors in [LLH07] showed
that too-high Vt transistors for leakage reduction in the configuration SRAM result in an increased
reconfiguration time, thus leading to higher reconfiguration energy. These design-time approaches
(e.g., [CWL+05, Te06]) provide the infrastructure to enable run-time adaptive energy management
schemes, the domain in which the contribution of this thesis lies.

Compile-Time Approaches: Besides design-time approaches, compile-time approaches typically target
power-aware placement [Ge04], software partitioning and mapping [GE08], co-processor selection
[Ge07] etc. A region-constrained placement is presented in [Ge04] to reduce leakage energy in
FPGAs by increasing the number of unused regions to be switched off. An energy-optimal software
partitioning scheme for heterogeneous multiprocessor systems is presented in [GE08] incorporating a
resource model considering the time and energy overhead of run-time mode switching. The authors in
[GE08] optimized the software partitioning at compile-time by formulating it as an Integer Linear
Programming (ILP) problem. An ILP-based energy-aware co-processor selection for reconfigurable

18 The latch disconnects the Data Path of the DPC from the not-demanded external inputs, thus avoiding

unnecessary toggles and reducing the dynamic power consumption of the Data Paths

2.5 Summary of Related Work

- 33 -

processors is proposed in [Ge07]. However, compile-time techniques for power-reduction (placement,
partitioning, co-processor selection etc.) are not able to react to run-time changing scenarios, thus they
perform inefficient in that respect.

Run-Time Approaches: The authors in [Ge04] additionally proposed a time-based power-shutdown

scheme for run-time leakage minimization. However, [Ge04] does not consider which parts of the
reconfigurable fabric are beneficial to shutdown at what time when considering partial run-time

reconfiguration. A run-time approach in [Ne08] incorporates operand isolation and selective context
fetching to reduce the power in reconfigurable processors. The authors in [PP08] presented a
methodology for energy-driven application�s self-adaptation using run-time power estimation.
However, these approaches target reducing dynamic energy and ignore the leakage energy and power-
shutdown. Several approaches in dynamic energy management incorporate Dynamic Voltage and
Frequency Scaling (DVFS) techniques. The authors in [Qe07] employed configuration pre-fetching
and configuration parallelism (using multiple configuration controllers) to create excessive system
idle time and then employs voltage scaling on the configuration process to reduce the configuration
energy in run-time reconfigurable processors. A low-power version of the Warp Processor [LSV06] is
proposed in [Lys07]. It performs online profiling and online synthesis to automatically determine and
synthesize suitable hardware accelerators at run time with a support of DVFS to dynamically reduce
the power consumption. The approach in [HL07] co-schedules the hardware and software tasks at run-
time by using slack time. The slack time is introduced by reusing hardware task configurations to
trigger the voltage scaling such that the preceding software tasks consume lesser power. DVFS
techniques target on finding out the slack time in the execution pattern to reduce voltage and
frequency. DVFS alone would not solve the problem of energy-minimizing instruction set in
reconfigurable processors (see Section 5.3, page 100) especially when considering the changing
execution frequencies of Custom Instructions. The main challenge here is to minimize the overall
energy under run-time varying constraints while considering the power-shutdown decision at a higher
abstraction level (as discussed in Chapter 5). Yet, DVFS schemes (e.g., [Qe07, Te06]) may be
integrated with the proposed contribution to achieve even further energy reduction.

2.5 Summary of Related Work

The application-/algorithm-level related work on H.264 encoder either reduce the coding complexity by
sequentially excluding the improbable candidate coding modes or by employing adaptive fast Motion
Estimation schemes. However, state-of-the-art adaptive, fast, low-power, and scalable Mode Decision and
Motion Estimation approaches either only consider a fixed quality-constrained solution or offer scalability
with fixed termination rules that may lead to severe quality artifacts. These approaches do not provide
run-time adaptivity when considering run-time varying energy-budgets, input video sequence
characteristics, and user-defined constraints. As a result, these approaches are less energy-/power-
efficient.

For designing an adaptive low-power multimedia system there is a need to combat the power and
adaptivity related issues at both application and processor levels [FHR+10]. Majority of the multimedia
systems are designed for heterogeneous MPSoCs, where different applications components (like video
encoder/decoder, audio encoder/decoder, etc.) are implemented as an ASIC or ASIP. The
programmability is mainly achieved by deploying DSPs, where the flexible parts are executed on the
DSP. Most of the video encoding solutions (considering the advanced H.264 video encoder which is 10x
more complex compared to the previous generations of encoding standards) target ASIC implementations
to achieve low power. However, several works have also considered DSP or ASIP based implementations.
Moreover, there are several ASIC-based solutions for different functional blocks of the H.264 video
encoder that exploit pipelining and parallelism. On the one hand, ASIC-based implementations are less
flexible and are not amenable to the run-time varying constraints and standard evolution trends, especially
considering short time-to-market. On the other hand, the major shortcoming of multimedia MPSoCs is

Chapter 2 Background and Related Work

- 34 -

their design-time selection of cores depending upon an initial set of application requirements. Since the
cores are optimally selected for a set of initial requirements, these MPSoCs may not fulfill the required
performance and/or power constraints when there is a change in the application requirements, design
constraints, standard change, etc. Moreover, such MPSoCs may not handle the advanced multimedia
standards (that exhibit unpredictable computational behavior and/or subjected to run-time varying
constraints of available energy) in a power efficient way, especially when considering short time-to-
market and short-term standard evolutions and product upgrades. Furthermore, the previous approaches
lack run-time adaptivity when considering varying energy budgets and area/performance constraints.

Dynamically reconfigurable processors provide an alternate solution by exploiting the high degree of
parallelism along with a high degree of adaptivity. Previous approaches in reconfigurable processors have
mainly focused on improving the performance by reconfiguring application-specific hardware accelerators
at run time to meet applications� demands and constraints. However, due to the reconfiguration process
and the fabric nature to support high configurability, these reconfigurable processors suffer from high
energy consumption compared to ASICs and lack of efficient energy management features. Recently,
low-power design, especially the leakage power reduction, has become a key research focus in
reconfigurable computing. Several academic and industrial research projects have already made the case
for power-shutdown infrastructure. Such an infrastructure is required to enable run-time adaptive energy
management schemes, as the one proposed in this thesis.

State-of-the-art low-power approaches employ a hardware-oriented shutdown based on the state of a
particular hardware. However, in dynamically reconfigurable processors, such a technique will perform
inefficient as it cannot be determined at compile time which Custom Instructions will be reconfigured on
which parts of the reconfigurable fabric. Moreover, state-of-the-art techniques do not evaluate the tradeoff
between leakage, dynamic, and reconfiguration energy at run time which is inevitable when considering
design-/compile-time unpredictable scenarios of application execution (changing performance constraints,
input data, etc.) and available area and energy budgets.

The low-power and adaptivity concerns for multimedia systems with advanced video codecs
(subjected to unpredictable scenarios) are addressed by the proposed adaptive low-power reconfigurable
processor architecture and an energy-aware H.264 video coding application architecture. At the processor
level the novel concept of Selective Instruction Set Muting (with multiple muting modes) allows to shun
the leakage energy at the abstraction level of Custom Instructions. This enables a far higher potential for
leakage energy saving. Furthermore, the proposed adaptive energy-management scheme comprehensively
explores the tradeoff related to leakage, dynamic, and reconfiguration energy under run-time varying
performance and area constraints. At the application architecture level, the novel concept of Energy-

Quality Classes enables a run-time tradeoff between the energy consumption and the resulting video
quality. The concept of Energy-Quality Classes along with an adaptive energy-budgeting scheme provides
a foundation for energy-aware Motion Estimation. The energy-aware Motion Estimation and an adaptive
complexity reduction scheme realize an adaptive low-power video encoder application architecture. The
detailed issues and energy analysis at both application and processor level are discussed in Chapter 3. This
chapter also provides an overview of the proposed processor and application architectures followed by the
power model used by both architectures for adaptive energy management. In Chapter 4 the adaptive low-
power video encoding is discussed. Chapter 5 presents the adaptive low-power reconfigurable processor
architecture with run-time adaptive energy management scheme. The comparison with state-of-the-art is
presented in Chapter 7.

- 35 -

Chapter 3 Adaptive Low-Power Architectures

for Embedded Multimedia Systems

In this chapter an overview of the proposed application and processor architectures for embedded
multimedia systems is presented, highlighting different steps performed at design, compile, and run time.
The details of these architectures are provided in Chapter 4 and Chapter 5. First, Section 3.1 discusses an
H.324 video conferencing application and provides the processing time distribution of different
computational hot spots of various application tasks. In Section 3.1.1, the coding tool set of advanced
video codecs is analyzed and similarities between different coding standards are highlighted, while
corroborating the selection of the H.264/AVC video coding standard for this thesis. In Section 3.1.2,
energy and adaptivity related issues in the H.264 video encoder application are analyzed and discussed.
Together with these, other issues for dynamically reconfigurable processors are discussed in Section 3.2.
Afterwards, Section 3.3 presents an overview of the proposed application and processor architectures
along with different steps to be performed at design, compile, and run time. At the end, the proposed
power model for dynamically reconfigurable processors is discussed in Section 3.4, highlighting different
power consuming components from the computation and communication infrastructure of the processor.

3.1 Analyzing the Video Coding Application for Energy
Consumption and Adaptivity

In current and emerging mobile devices, energy/power is a critical design parameter and multimedia is a
major application domain. These multimedia applications with advanced video encoders � due to their
huge amount of processing and energy requirements � pose a serious challenge on low-cost/low-power
embedded systems. In the following a video conferencing application is discussed highlighting the
dominance of an advanced video encoder with respect to its computational and energy requirements along
with the inherent adaptivity. The inherent adaptivity will be discussed to highlight issues that can be
exploited for run-time energy management at both application and processor architecture levels.

Figure 3.1: Overview of an H.324 Video Conferencing Application with H.264/AVC Codec

Figure 3.1 shows the block diagram of a video conferencing application, which is envisaged to be an
important application in future mobile devices for video calls. A video conferencing is composed of a
video encoder/decoder with video pre-/post-processing modules, an audio encoder/decoder, a multiplexer,
and a communication protocol. In order to achieve a high compression and better video quality, typically

Chapter 3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

- 36 -

an advanced video encoder (like H.264/AVC [ITU05]) is employed. In order to find out the computational
hot spots and their relative complexity, profiling has been performed.

Figure 3.2 illustrates the average-case distribution of the processing time (in percentage) of various tasks
of the video conferencing application. It is noticed that more than 70% computations are consumed by the
H.264 video codec (encoder consumes >60%). The remaining computational quota is allocated to the video
pre- and post-processing and the G.723 audio codec. Less than 10% is reserved for the remaining tasks. It
shows that video coding is the dominant application task in the video conferencing application. This
statement holds true for various other multimedia applications, like personal video recording, etc. Therefore,
in the remaining part of this thesis, video encoding is considered as the key application for energy reduction.
Moreover, unlike video decoding (which is fixed by the standard), video encoding exhibits a great potential
for energy reduction at the application level due to non-normative parts (e.g., Motion Estimation and Mode
Decision are not fixed by the standard), as it will be discussed in the remaining sections and Chapter 4.

0

2

4

6

8

10

12

14

16

18

20

P
ro

c
e
s
s
in

g
 T

im
e
 [
%

]

Processing Functions

Video Codec is the most time
consuming component

å >70% of total quota

H.264 Video
Encoder

H.264 Video
Decoder

G.723 Audio
Codec

Pre- and Post
Processing

Miscellaneous

L
E
G
E
N
D

IME: IntegerͲpixel_MotionEstimation

FME: FractionalͲpixel_MotionEstimation

PMV: PredictiveMotionVector

TQ_PL: TransformQuantization_Luma_PMB

TQ_IL: TransformQuantization_Luma_IMB

TQ_C: TransformQuantization_Chroma

LF: DeblockingFilter

MC_L: MotionCompensation_Luma

MC_C: MotionCompensation_Chroma

IP_L16: IntraPrediction_Luma_16x16

MD_I4: ModeDecision_Intra_4x4

CAVLC: Context Adaptive VLC
DecMB: DecodeOneMB

getPos : Get the coordinates of the MB

IDQ_PL: InvQuantization_Luma_PMB

CAVLC_d : CAVLC_Decode

FM: FrequencyModulation

Q: Quantization

UP: UpͲscaling
Enc: Audio Encoding
Qt : Quantization

Pred_0 : Prediction

Reconst : Reconstruction

ED : EdgeDetection

BC : Brightness Calculation

TC : Texture Calculation

BA : Brightness Adjustment

CS : Contrast Stretching

NF: Noise Filtering

LPF: LowͲPass Filtering
HPF: HighͲPass Filtering
EE: Edge Enhancement

Dt: Dithering

FGA: Film Grain Addition
NF: Noise Filtering

H245_C: H.245 Control
H223_M: H.223 Multiplexing

H223_DM: H.223 Demultiplexing

V34Mod: V.34 Modem

USB: USB interface
MAC: MAC interface

Figure 3.2: Processing Time Distribution of Different Functional Blocks

in the H.324 Video Conferencing Application

In the following, the coding tool set of various video coding standards is compared in order to justify the
selection of H.264/AVC. Afterwards, the energy and adaptivity related issues in the H.264 video encoder
will be discussed in Section 3.1.2.

3.1.1 Advanced Video Codecs: Analyzing the Tool Set

Table 3.1 presents a comparison of the coding tool set of various advanced video encoding standards. The
Microsoft VC-1 standard and Chinese Audio Video Standard (AVS) belong to the same generation period

3.1 Analyzing the Video Coding Application for Energy Consumption and Adaptivity

- 37 -

as of the H.264/AVC. Multiview Video Coding is the latest extension (finalized in 2008 [Joi08]) of H.264
for 3D-videos where a 3D-scene is captured by multiple cameras. H.265/HEVC (High Efficiency Video
Coding) belong to the next generation of video codecs and it is expected to be standardized by the end of
2012 [Joi10]. It is worthy to note that within the same generation, the coding tool set of H.264/AVC is the
most complex one that also results in a relatively better coding efficiency. As discussed in Chapter 2,
Motion Estimation and Rate Distortion Optimized Mode Decision are the most critical components of a
video encoder from computation complexity and energy reduction point of views. It can be noted that
within the same generation, H.264/AVC offers the highest number of coding mode options (see variable-
block sized Motion Estimation and Intra Prediction modes in Table 3.1). Moreover, the coding options
offered by AVS and VC-1 are approximately a subset of the coding options of H.264/AVC. Therefore, the
application-level energy reduction algorithms and the application architecture for adaptive low-power
video coding are equally applicable to AVS and VC-1. Since Multiview Video Coding is an extension of
H.264, the proposed contribution can be easily extended towards Multiview Video Coding. Further energy
reduction can be obtained by extending the analysis to 3D, i.e., by exploiting the extensive correlation
space of the 3D-neighborhood (see Section 8.2 for future works).

 ADVANCED VIDEO ENCODING STANDARDS

Coding Tools

H.264/AVC

(Advanced

Video Coding)

Audio

Video

Standard

(AVS)

Microsoft

VC-1

Multiview

Video Coding

(MVC)

H.265/HEVC

(High Efficiency

Video Coding)

Frame Type
I, P, B,
SP, SI

I, P, B
I, P, B,

BI, Skipped P
I, P, B I, P, B, �

Variable-block Sized

Motion Estimation

16x16, 16x8,
8x16, 8x8, 4x8,

8x4, 4x4

16x16,
16x8,

8x16, 8x8

16x16, 16x8,
8x16, 8x8,

4x8, 8x4, 4x4

16x16, 16x8,
8x16, 8x8,

4x8, 8x4, 4x4

Geometry Block Partitioning
Asymmetric Block Partitioning

Transform Size 4x4, 8x8 8x8
4x4, 8x8,
8x4, 4x8

4x4, 8x8
Adaptive

(may also have 8x8)

Transform
Integer DCT,

Hadamard
Integer
DCT

DCT
Integer DCT,

Hadamard

Large Transform (16x16-
64x64), Rotational/Mode

Dependent Directional
Transform

Motion Vector

Resolution

1/4-pixel (6-tap
and Bilinear

filter)

1/4-pixel
(4-tap
filter)

1/4-pixel
(4-tap filter)

1/4-pixel
(6-tap and

Bilinear filter)

1/8-pixel (separable, non-
separable, or directional

adaptive interpolation filter),
adaptive motion vector

resolution

SKIP Mode MB-Level MB-Level Frame-Level MB-Level MB-Level

Maximum number

of Reference Frames
16 each way

2 each
way

1 each way 16 each way
Adaptive Warped

Reference

Intra Prediction

Modes & Block Sizes

Luma: 16x16
(4 modes), 4x4

(9 modes);
Chroma: 8x8

(4 modes)

8x8 (5
modes for
Luma and
4 modes

for
Chroma)

None

Luma: 16x16
(4 modes),

4x4 (9
modes);

Chroma: 8x8
(4 modes)

Adaptive reference sample
smoothing, planar or angular

prediction, arbitrary directional
Intra (ADI), Combined Intra

Prediction (CIP)

Entropy Coding

Mode

CAVLC,
CABAC

CA-2D-
VLC,

CABAC

Adaptive
VLC

CAVLC,
CABAC

Low-complexity entropy coding
with VLC codes, high coding

efficiency with V2V codes

In-Loop

Deblocking Filter
5 strength cases

3 strength
cases

Yes
5 strength

cases
Adaptive post-loop filters, Intra

planar mode filtering

Table 3.1: Comparing the Coding Tool Set of Various Video Encoding Standards

[ITU05, ITU09, Joi08, Joi10, KL07, Mic10a, Mic10b, Ric03, Ric10, YCW09]

Chapter 3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

- 38 -

When considering the evolution of the video coding standards, it can be noticed in Table 3.1, that
H.265/HEVC extends the computation and coding mode model of H.264 by providing further adaptivity,
thus further extending the conventional data dominant processing to control dominant processing. High
adaptivity is planned to be employed in the H.265 standard to achieve 2x higher coding efficiency
compared to the H.264/AVC coding standard [ITU05]. Since adaptivity is the key property in various
algorithms employed in different functional blocks of the H.265/HEVC standard, the proposed adaptive
low-power processor architecture will provide a good foundation for researching energy-efficient
multimedia solutions. Moreover, the adaptive low-power video coding concepts (as proposed in
Chapter 4) can also be extended towards further adaptivity, especially the proposed concept of Energy-

Quality Classes for energy-aware Motion Estimation (see details in Section 4.5) will be equally beneficial
for H.265/HEVC. However, the SAD computation unit need to be replaced according to the new block
partitioning structure. Furthermore, the Macroblock categorization based on the spatial and temporal
video properties while considering the Human Visual System (see details in Section 4.3 and Section 4.4)
will also be beneficial. However, its usage may be adapted depending upon the final set of coding options
adopted by the standardization committee.

As corroborated by the above discussion, H.264/AVC is considered for researching the adaptive low-
power video coding which is a primitive component of current and upcoming embedded multimedia
systems. In the subsequent chapters, the discussion will be more focused towards the H.264/AVC encoding.

3.1.2 Energy and Adaptivity Related Issues in H.264/AVC Video Encoder

Video encoding consumes a significant amount of processing time and energy. Encoding effort highly
depends upon the characteristics of the input video sequence and the target bit rates. Moreover, the
available energy budgets may change according to various application scenarios on mobile devices. Under
changing scenarios of input data characteristics and available energy budgets, embedded solutions for
video encoding require run-time adaptivity.

The advanced video coding standard H.264/AVC [ITU05] provides double compression compared to
previous coding standards (MPEG-2, H.263, etc.) [WSBL03] at the cost of additional computational
complexity (~10x relative to MPEG-4 advance simple profile encoding [OBL+04]). This directly
corresponds to high energy consumption. This increased energy consumption of H.264 is mainly due to its
complex Motion Estimation (ME) and Rate Distortion Optimized Mode Decision (RDO-MD) processes.
It is worthy to note that RDO-MD is the most critical functional block in H.264, as it determines the
number of ME iterations. Therefore, complexity reduction at the stage of RDO-MD is required first,
before proceeding to the energy reduction at the ME stage.

As discussed in Section 2.2.3, many efforts have been made in developing fast Mode Decision
schemes for H.264 to reduce the complexity of encoding [ADVLN05, GY05, JC04, JL03, KC07,
LWW+03, MAWL03, PC08, PLR+05, SN06, WSLL07, Yu04]. However, most of these state-of-the-art
RDO-MD approaches sequentially process and eliminate the modes depending upon the result of the
previously evaluated modes. Therefore, modes are not excluded in the fast RDO-MD until some ME is
not done. As a result, these approaches still compute a significant (more than half of all) number of modes
or even in the best case at least one mode from both P-MB and I-MB is processed (see [GY05, JC04]).
Since the ME is always processed in any case, the computational requirements of the state-of-the-art are
still far too high, which makes them infeasible for low-power embedded multimedia systems. Therefore,
there is a dire need for a complexity reduction scheme that can adaptively exclude as many coding
modes as possible from the candidate mode set (as used for the Mode Decision process) at run time even
before starting the actual fast RDO-MD and ME processes.

Such a scheme is more critical for low-power video encoding solutions as it may avoid the complete
ME process (the most energy consuming functional block of an encoder, see Figure 3.3). A good

3.1 Analyzing the Video Coding Application for Energy Consumption and Adaptivity

- 39 -

complexity reduction scheme needs to predict the possible coding mode with a high accuracy that requires
an in-depth knowledge of the spatial and temporal properties of the video data. It requires a relationship
between the video properties and the probable coding mode. A high accuracy of the coding mode
prediction also requires a joint consideration of the spatial and temporal video properties. For low power
consumption, an aggressive mode exclusion may be desirable that needs to consider the properties of the
Human Visual System in order to analyze the subjective impact of the coding modes. It is worthy to note
that for extracting the spatial and temporal video properties, additional image processing operations are
required that incur a power and performance overhead. Therefore, the overhead of the extra processing
must be amortized by the significant complexity and energy reduction offered by the scheme. After a
coding mode is predicted, the most energy consuming part of an encoder is the Motion Estimation process.

56.74

9.12 0.19 4.55 0.58

0.71

0.7

5.7

0.51

0.16

IntegerͲpixel_MotionEstimation

FractionalͲpixel_MotionEstimation

PredictiveMotionVector

TransformQuantization

DeblockingFilter

MotionCompensation

IntraPrediction

Mode_Decision

CAVLC

Others

Figure 3.3: Percentage Distribution of Energy Consumption of

Different Functional Blocks in the H.264 Video Encoder

Figure 3.3 shows the distribution of energy consumption for different functional blocks19 of an H.264
encoder. Figure 3.3 shows that ME is one of the most compute-intensive and energy demanding functional
blocks of an H.264 encoder. It can be noticed that ME may consume up to 65% (Integer-pixel-ME = 56%,
Fractional-pixel ME = 9%) of total encoding energy. The energy consumption of ME is directly
proportional to the number of computed SADs (Sum of Absolute Differences) to determine the best match
(i.e., the MB with the minimum distortion). As discussed in Section 2.2.3, state-of-the-art adaptive, fast,
low-power, and scalable ME schemes provide a fixed quality-constrained solution or alternatively offer
scalability with fixed termination rules that may lead to severe quality artifacts. These approaches do not
provide run-time adaptivity when considering the following run-time varying scenarios:

a) available energy (may change due to a changing battery level or changing allocated energy in a
multi-tasking system for different application cases)

b) video sequence characteristics (motion type, scene cuts, etc.)
c) user-defined coding conditions (duration, quality level, etc.)

As a result, these approaches are less energy-/power-efficient. Therefore, an energy-aware Motion

Estimation scheme is desirable that dynamically adapts its configuration considering the above-
mentioned run-time varying scenarios while keeping a good video quality (PSNR). Since the video data
has diversity (i.e., different frames and/or different MBs in a frame have different spatial and temporal
properties), such an energy-aware ME needs to provide a tradeoff between the available energy budget
and resulting video quality. Therefore, the key challenge here is: how much energy budget should be

allocated to the ME of one video frame or even one MB when considering run-time varying scenarios.
The number of SAD computations are then determined from the allocated energy-budget of an MB. It
needs to be considered that more energy should be allocated to a fast moving and highly-textured MB
compared to a stationary or slow moving MB. Since a less ME effort for a fast moving textured MB may

19 In this experiment the fast adaptive motion estimator UMHexagonS [CZH02] is used to have a realistic distribution.

Chapter 3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

- 40 -

result in noticeable quality degradation, carefully allocating the energy budget to different frames and

MBs is crucial. Therefore, the energy-aware ME needs to be equipped with an integrated run-time

adaptive energy-budgeting scheme.

3.2 Energy- and Adaptivity Related Issues for Dynamically
Reconfigurable Processors

In Chapter 1 and Chapter 2, it was motivated that dynamically reconfigurable processors provide means
for run-time adaptivity at the processor level and they are particularly beneficial in applications with hard-
to-predict behavior where conventional embedded processors operate inefficiently with respect to
energy/power consumption. However, previous approaches in reconfigurable processors (like OneChip
[WC96], CoMPARE [SGS98], Proteus [Dal03], Molen [VWG+04], and RISPP [BSH08b, BSH08c]) have
mainly focused on performance improvement and efficient area utilization while meeting applications�
demands and constraints. These reconfigurable processors suffer from the overhead of reconfiguration
energy and high leakage due to their fabric structure. Consequently, the major shortcoming of these
processors is their high energy consumption (compared to ASICs) and lack of efficient energy
management features [Te06]. Moreover, with the evolution of sub-micron fabrication technologies, the
consideration of leakage power/energy has become imperative in the energy-aware design of
reconfigurable processors. Efficient high-level energy management schemes are required that utilize
the underlying power shutdown infrastructure (as proposed by [Ge04, MM05, Te06]) to achieve relatively
higher leakage reduction. When targeting a high-level energy management scheme, it needs to be
considered that, in reconfigurable processors it cannot be determined at compile time which Custom
Instruction (CIs) will be reconfigured on which parts of the reconfigurable fabric. This depends upon
many factors, for instance, due to:

a) Application-level unpredictability: the execution frequency of CIs of a computational hot spot may
vary due to the changing input video sequence characteristics (e.g., texture properties, motion type,
scene cuts) or user-defined coding conditions (e.g., quality level, target bit rate).

b) Compile-/design-time unpredictable scenarios in a multi-tasking system
• which task will obtain which share of the reconfigurable fabric
• what is the task priority (may change at run time)
• which task will run under which performance constraint, e.g., due to changing user preferences

(e.g., desired frames per second in case of the H.264 application)
c) available energy (may change due to a changing battery level or changing allocated energy in a

multi-tasking system)

0%

20%

40%

60%

80%

100%

1 31 61 91 121 151 181 211 241 271 301

Scene with Very
High Motion

Scene with HighͲtoͲ
Medium Motion

Rafting Rugby Football

Scene with MediumͲ
toͲSlow Motion

IN
T
R
A

 M
B

 in
 a

 F
ra
m
e

 [%
]

Frame Number

Figure 3.4: Distribution of I-MBs in Slow-to-Very-High Motion Scenes

(Test Conditions: Group of Pictures=IPPP�, CAVLC, Quantization Parameter = 28, 30fps)

3.2 Energy- and Adaptivity Related Issues for Dynamically Reconfigurable Processors

- 41 -

Let us analyze the case of application level unpredictability in detail using an analytical study of H.264
video encoder showing the varying computational requirements of the H.264 video encoder application
(as discussed in Section 3.1.2) due to various coding modes, MB types, and ME configurations. Figure 3.4
illustrates the analysis for the distribution of MB types for different sequences with diverse motion
properties. In case of high motion, the ratio of I-MBs is dominant. In case of slow-to-medium motion, the
number of P-MB is dominant. Kindly note that, such a distribution of I-MB/P-MB cannot be predicted at
compile time as the input video sequence is typically unknown. It should be noted that the CIs for I-MBs
and P-MBs require different kinds of Data Paths (i.e., elementary hardware accelerators). Therefore, for
changing I-MB/P-MB distribution, the corresponding CIs (and Data Paths) will be executed in different
frequencies. Summarizing, it is hard to predict at design/compile time that which share of available
reconfigurable fabric will be used to accelerate which CIs and where on the fabric their Data Paths will be
reconfigured.

Considering the unpredictability from various sources (as discussed above) and significant
reconfiguration and leakage power of the reconfigurable processors, several challenging issues should

be addressed by a high-level energy management scheme at run time, which is the key to realize an
adaptive low-power reconfigurable processor architecture. These challenging issues are:

a) Is it beneficial to shutdown regions of the reconfigurable fabric to reduce its leakage (and execute
CIs using the core Instruction Set Architecture) or to use a larger share of the reconfigurable fabric
to decrease the application execution time at the cost of a higher reconfiguration energy?
• This highly depends upon the performance constraints, application characteristics, and the

input data properties.
• Therefore, it is not trivial to decide under which circumstances the execution using a

reconfigurable fabric is energy-efficient or not.
b) How to predict which set of Custom Instructions (CIs) will minimize the energy consumption of a

given computational hot spot when considering leakage, reconfiguration, and dynamic energy
under scenarios of run-time changing performance and/or area constraints?
• At some point in time leakage energy may dominate, while at some other points in time (e.g.,

due to changed system constraints), reconfiguration energy may dominate.
• Decisions made solely at design/compile time will therefore with high certainty lead to energy-

inefficient scenarios.
• Hence, a run-time adaptive scheme is desirable that chooses an energy minimizing set of CIs

under varying constraints and then apply shutdown to the temporarily unused set of CIs, such
that the total energy consumption is minimized.

• A comprehensive power model for dynamically reconfigurable processors is required to
facilitate an energy management scheme.

c) At which level the power-shutdown decision should be determined?
• State-of-the-art approaches (as discussed in Section 2.4) employ a hardware-oriented

shutdown, i.e., the power-shutdown signal is issued based on the usage/state of a particular
hardware. However, as discussed above, in dynamically reconfigurable processors such a
technique will perform inefficient as it cannot be determined at compile time which CIs will be
reconfigured on which parts of the reconfigurable fabric.

• Therefore, there is a need to raise the abstract level of the power-shutdown decision to the
abstraction level of CIs (i.e., an instruction set oriented shutdown) considering the execution
length of computational hot spots, i.e., the execution context of an application.

d) Given that the logic and configuration SRAM can be independently shutdown (supported by an
appropriate shutdown infrastructure, see Section 5.2.2), what kind of different shutdown modes
can be realized?
• Given multiple shutdown modes (as it will be discussed in Chapter 5), how to determine which

shutdown mode is beneficial for which set of CIs at what time under run-time varying
application contexts?

Chapter 3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

- 42 -

• Which muting (i.e., shutdown) modes for CIs will bring more energy reduction while jointly
considering the leakage, dynamic, and reconfiguration energy?

• This decision depends upon the execution length of the computational hot spots during which
different CIs are used for the application acceleration in different execution frequencies.

• Moreover, this decision also depends upon the requirements of upcoming hot spot executions
and the performance constraints (i.e., more or less reconfigurable fabric is required to
accelerate hot spots).

• Therefore, a Selective Instruction Set Muting technique is required.

Chapter 4 and Chapter 5 of this thesis provide algorithms and strategies to address the above-
mentioned challenging issues at the application and processor architecture levels, respectively. In the
following, a brief overview of the proposed architectures is provided highlighting the design-, compile-,
and run-time steps and requirements from both application architecture and processor architecture
perspectives.

3.3 Overview of the Proposed Architectures and Design Steps

Figure 3.5 presents an overview of the thesis contribution for adaptive low-power application and
processor architectures in order to address the above-mentioned challenging issues. Adaptive low-power

video encoding is realized by incorporating adaptive algorithms at the application level that react to the
changing battery status, video properties, and user constraints at run time.

Figure 3.5: Overview of the Adaptive Low-Power Application and Processor Architectures

At the application level the energy reduction is performed by adaptively reducing the computational
requirements of various algorithms used by different functional blocks in the H.264 video encoder (see

3.3 Overview of the Proposed Architectures and Design Steps

- 43 -

Chapter 4 for details). First, application architectural adaptations are performed targeting the
reconfigurable processors (see Section 4.1) and various low-power Custom Instructions and Data Paths
are designed (see design in Section 4.2). During the application execution, the complexity reduction is
performed by adaptively excluding the highly improbable mode options from the candidate coding mode
set (see Section 4.4) using Human-Visual System based Macroblock categorization (see Section 4.3).
Quantization Parameter based threshold models are developed to obtain precise categorization depending
upon the coding configuration. Once the final coding mode candidates are determined, adaptive energy-
budgeting is performed for the Motion Estimation corresponding to each candidate coding mode. The
predicted energy budget is forwarded to the energy-aware Motion Estimation (see details in Section 4.5)
to select an appropriate Energy-Quality Class (i.e., the Motion Estimation configuration). Since the
energy-aware adaptations incur a quality loss as a side-effect, in order to compensate this quality loss, a
multi-level rate control is designed which determines the Quantization Parameter value for each
Macroblock considering its spatial and temporal properties (see Appendix A). It allocates more bits to the
complex Macroblocks and less bits to the less-complex ones.

At the processor level, the energy reduction is performed by determining an energy-minimizing
instruction set for given area and performance constraints (see details in Section 5.3). It requires a power-
model for power estimation (see Section 3.4). Afterwards, the temporarily unused set of Custom
Instructions is muted (i.e., shutdown) to further reduce the leakage energy (see details in Section 5.4). For
overall processing, low-power Data Paths are reconfigured on the reconfigurable fabric. The consumed
energy is fed back to the application level algorithms and also to the processor level algorithms for further
adaptations based on the monitored results (achieved performance, energy consumption, etc.).

Figure 3.6 shows an overview of the design-, compile-, and run-time steps at both application and
processor levels. These steps are discussed in the following.

At the application level, the coding tool set is finalized at design time and different application
architectural adaptations are performed along with the data structures and the data flow (see Section
4.1 for details). The finalized application architecture with optimized data flow is implemented. The
algorithms for extracting the spatial and temporal video properties are analyzed and a set of
algorithms for important video properties is selected (see Section 4.3). Afterwards, the algorithms for
different functional blocks of the video encoder are designed and implemented.

At compile time, the energy consumption analysis of these functional blocks is performed and the
energy consumption is characterized. Depending upon the chosen Motion Estimation algorithm,
different patterns and predictor sets are analyzed and selected before exploring the design space of the
Energy-Quality Classes (see details in Section 4.5). A set of common optimal Energy-Quality Classes
is obtained by performing the design space exploration for various test video sequences. Based on the
analysis of the video properties and optimal coding modes for various video sequences, different
Quantization Parameter based threshold equations are formulated (see Section 4.3.2). Additionally,
low-power Custom Instructions (CIs) and their composing Data Paths are designed at compile-time
(see Section 4.2) based on the modular CI composition model of RISPP [Bau09] and opcodes are
assigned to different CIs. Moreover, each CI is implemented using core Instruction Set Architecture
(cISA).

At run time, the Quantization Parameter based threshold equations are used to obtain thresholds that
are deployed to partition Macroblocks in different categories with consideration of important Human-
Visual System properties (see Section 4.3). The Macroblock categories are used for performing the
adaptive complexity reduction that excludes improbable coding modes from the mode-decision
process to avoid unnecessary energy wastage (see details in Section 4.4). Afterwards, the adaptive
energy-budgeting is performed that provides the predicted energy budget for the Motion Estimation of
one Macroblock. Depending upon the predicted energy budget an appropriate Energy-Quality Class is

Chapter 3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

- 44 -

selected and the corresponding configuration is forwarded to the energy-aware Motion Estimation
(see details in Section 4.5). After the Motion Estimation is completed, the energy of Energy-Quality

Classes is updated depending upon the current video statistics. For the actual encoding, the
Quantization Parameter is determined by a multi-level rate control algorithm that allocates a bit
budget to the Group of Pictures and then distributes this budget to different frames within this Group
of Pictures. It afterwards determines the final Quantization Parameter value for each Macroblock
inside a frame considering its spatial and temporal properties (see Appendix A).

Figure 3.6: Highlighting Different Steps to be Performed at Design, Compile, and Run Time

at both Application and Processor Levels

At the processor level, first the architectural parameters (i.e., the core processor, the area of the
reconfigurable fabric, connection of the core processor and the reconfigurable fabric, the data memory
connection of CIs, etc.) are determined at design time. The leakage and dynamic power properties of
the core processor and the reconfigurable fabric are required for designing the power model. As the
power model is based on the actual power measurements, the experimental setup is designed and the
power of various CI Implementation Versions in hardware is measured (see Chapter 6). The design of
the run-time algorithm is also fixed at the design-time.

At compile time, the power model is formulated and the parameters of the model are estimated (see
Section 3.4 and Chapter 6 for details). Furthermore, the key input (i.e., the multiple Implementation
Versions for each CI with area vs. performance/power tradeoff) for the run-time algorithms is
prepared automatically at compile time. Note, which Implementation Version for which CI will be

3.4 Power Model for Dynamically Reconfigurable Processors

- 45 -

used in a given execution scenario cannot be determined at compile time as it depends upon various
unpredictable factors (changing performance constraints, available reconfigurable fabric area, input
data properties, etc.), as discussed in Chapter 1 and Section 3.2. However, the composition of an
Implementation Version (i.e., its schedule of Data Path usages) does not change at run time.
Afterwards, the average-case power/energy of each CI Implementation Version is estimated by
considering various placement cases for different Data Paths of the CI on the reconfigurable fabric
(see Section 3.4 for the details on how the placement of a Data Path may affect the power
consumption of a CI Implementation Version). The CI Implementation Versions and their
performance, area, and energy properties are provided to the run-time energy management system.
These CIs along with the Forecast Instructions (see details in Section 2.3.5) are programmed in the
application using inline assembly20.

At run time, an energy minimizing instruction set is chosen depending upon the monitored CI
execution frequency, performance constraint, and the available area of the reconfigurable fabric (see
details in Section 5.3). Since the execution frequency of CIs may change at run time (depending upon
the changing control flow or computational properties of an application or changing performance
constraints, as analyzed in Section 3.1 and Section 3.2), the number of actual CI execution is
monitored at run time. After choosing the energy-minimizing instruction set, the temporarily unused
set of the CIs is determined which is the candidate for muting (i.e., power-shutdown) to reduce the
leakage energy. Depending upon the Data Path requirements of the currently executing and the
upcoming computational hot spots, a particular muting mode is determined for each CI (see details in
Section 5.4). Afterwards, the shutdown signals to the corresponding sleep transistors are issued. The
Data Paths of the selected CIs are reconfigured on the fabric. Since the actual placement of a Data
Path of a CI is determined at run time depending upon the reconfiguration scheduling and replacement
(see Section 2.3.5 and Section 3.4), the actual power consumption is estimated at run time.

Now, the power model for dynamically reconfigurable processors is presented which is required for
explaining the key contribution of this thesis. Details of the power measurement setup, steps for creating
the power model, and different test cases to measure the power of individual components will be
discussed in Chapter 6.

3.4 Power Model for Dynamically Reconfigurable Processors

Diverse efforts have been undertaken in the estimation and modeling of power consumption in FPGAs
[AN04, CJMP03, HLLW08, PWY05, Ze07]. The authors in [HLLW08] presented a technique for rapid
estimation of the dynamic power consumption of a hybrid FPGA with coarse-grained and fine-grained
units. A dynamic power estimation model for an FPGA-based soft-core processor has been presented in
[Ze07]. The authors in [AN04, PWY05] presented more detailed power models for FPGA. An analysis of
dynamic power consumption in Virtex-II FPGAs is presented in [CJMP03]. The authors in [BHU03]
presented power estimation and power consumption for Xilinx Virtex FPGAs, highlighting the tradeoffs
between measured dynamic power and reconfiguration power of different applications. However, none of
them comprehensively covers a highly-adaptive reconfigurable processor, i.e., an ASIC-based core
Instruction Set Architecture (cISA) in conjunction with an embedded FPGA that supports run-time
choices of multiple Implementation Versions per Custom Instruction (CI).

In this section a comprehensive power model for a dynamically reconfigurable processor21
considering modular CIs (like the one discussed in Section 2.3.5) is presented. The main challenge is to
estimate the power/energy of the modular CIs executing on the reconfigurable fabric considering run-time

20 Note, the assembler is extended to identify the CIs and the Forecast Instructions as it needs to know which

instruction format and opcode shall be used for the corresponding CI and Forecast Instruction.
21 An ASIC-based core Instruction Set Architecture with an embedded FPGA.

Chapter 3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

- 46 -

choices of multiple CI Implementation Versions. Before proceeding to the proposed power model,
different power consuming parts of a typical computation- and communication-infrastructure on a
dynamically reconfigurable processor (like in [BSH08a]) will be investigated.

3.4.1 Power Consuming Parts of a Computation- and Communication-
Infrastructure in a Dynamically Reconfigurable Processor

To estimate the dynamic power consumption of an executing CI (PCI_dyn), its specific realization on the
reconfigurable fabric (depending on the Implementation Version) needs to be considered. Figure 3.7
shows an abstract schematic of the hardware infrastructure for computation and communication (see
details in Section 2.3.5) that partitions the reconfigurable fabric into Data Path Containers (DPCs). Each
DPC is attached to a Bus Connector with small local storage and connected to segmented buses.

Data Path Container
(reconfigurable)

scaled down for clarity
In

p
u

t
O

u
tp

u
t

Bus Connector
(non-reconfigurable)

Figure 3.7: Power-Relevant Components of the Computation- and Communication Infrastructure

to Execute CI Implementation Versions [BSH08a]

Communication (using
Bus Segments between

DPC 1 and DPC 3

Computation
(using the Data
Path inside the

DPC)

Content of DPC 0:
Repack Data Path

storing temporary results
in the Local Memory

Figure 3.8: Example for a Custom Instruction (CI) Implementation Version

Figure 3.8 shows the realization of a certain CI Implementation Version using the hardware infrastructure
for the Hadamard Transform (from the H.264 encoder application) of a 4x4 input array that is loaded
from the data memory. In addition to the actual transformation (Transform Data Path, implementing a
butterfly using eight 8-bit additions along with bit-level rewiring), the CI requires a rearrangement of the
input data and the intermediate results on sub-word level (Repack Data Path). The presented
Implementation Version in Figure 3.8 uses two instances of each of the Transform Data Path and the
Repack Data Path, resulting in a CI execution time of 10 cycles. The CI can also be implemented if only
one instance of Transform and Repack is available (e.g., because the reconfigurations of the other Data
Paths are not yet completed), resulting in a CI execution time of 15 cycles. The fastest Implementation
Version for this CI uses four instances of Transform and Repack and executes in 8 cycles.

3.4 Power Model for Dynamically Reconfigurable Processors

- 47 -

Note: different Data Path types typically differ in their required execution energy (e.g., Repack requires
less energy than Transform). Furthermore, the Data Paths need to communicate, for instance, in Figure 3.8
the result of Repack in cycle 3 is the input of Transform in cycle 4. However, the result might not be used
immediately, for instance, the result of Transform in cycle 5 is only required 2 cycles later, so it needs to
be temporarily stored.

Summarizing: to determine the dynamic power consumption of a CI Implementation Version execution,
the following needs to be considered:

• The types of Data Paths and how often they are executed.
• The number of write/read accesses on the local storage.
• The number of bus segments necessary for communicating the intermediate results. This value

depends on the relative placement of the communicating Data Paths on the reconfigurable fabric.

Typically, the computation and communication activities during the execution of an Implementation
Version vary per cycle: in cycle 3, for instance (see Figure 3.8), two Repack Data Paths are demanded
whereas in cycle 5 two Transform Data Paths are necessary (similar differences exist for the local storages
and the bus lines). Now, the details of the proposed power model are presented in the following.

3.4.2 The Proposed Power Model

The power of a dynamically reconfigurable processor consists of the following components:

 PReconfProc = PCI_dyn + ∑PDPC_leak + ∑PDPC_reconf + PcISA_dyn + PcISA_leak (3.1)

a) Dynamic Power when executing a Custom Instruction (CI)

To study the effect of different constituting parameters on the power of a CI Implementation Version,
various measurements using an in-house developed FPGA prototyping platform (see Chapter 6 for details)
are conducted. As discussed above, the total dynamic power consumption of a CI Implementation Version
(see Eq. 3.2) comprises the power of computing Data Paths (PDataPath), communicating bus segments
(PSegBus), and read/write from the local storage (PMemory). Considering these parameters, the dynamic power
of a CI Implementation Version (PCI_dyn) is modeled as:

 PCI_dyn = Į*PDataPath + ȕ*PSegBus + Ȗ*PMemory + į (3.2)

On FPGA running at frequency 'F', the energy consumption of an Implementation Version with a latency
of 'L' cycles is calculated as: ECI_dyn = PCI_dyn*(L/F). Į, ȕ, Ȗ, į are the model coefficients (see details in
Section 6.2). į accounts for the measurement noise. PDataPath, PSegBus, and PMemory are explained as below:

Data Path Power (_1 () /n
DataPath i DataPath iiP N P L== ∑): the average power of Data Paths (for an

Implementation Version with a latency of L cycles) depends upon the types of Data Paths and how
often they are executed. Ni is the number of cycles for which the ith Data Path type is used to realize
the Implementation Version. Due to their distinct processing nature, different Data Path types
generally differ in their power consumption PDataPath_i (see Section 6.2.3 for the measured power
results).

Bus Power (PSegBus = BusSegavg * Pbus): Data Paths communicate with each other over segmented buses
(see Figure 3.7 and Figure 3.8). The number of bus segments required for communicating the
intermediate results depends on the relative position of the communicating Data Paths on the
reconfigurable fabric. BusSegavg is the average number of bus segments employed per cycle and Pbus is
the average power consumption of one bus segment.

Chapter 3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

- 48 -

Memory Power (PMemory = Memavg * PRW): The output of a Data Path is temporarily stored in the local
memory of the Bus Connector (see Figure 3.7). Memavg is the average number of local memory
accesses (read or write) per cycle and PRW is the power consumption of a single read or write
operation.

PDataPath_i, Pbus, and PRW are the measured values (see Chapter 6), while the values of Ni, BusSegavg, and
Memavg depend upon a particular CI Implementation Version.

b) Leakage Power of Data Path Containers (DPCs)

PDPC_leak denotes the leakage power of a DPC. Each DPC is treated as a group of Configurable Logic
Blocks (CLBs) that are powered-off with sleep transistors (power-shutdown infrastructure will be
discussed in Section 5.2.2). The power shutdown decision depends upon the temporarily unused set of CIs
(see details in Chapter 5).

c) Reconfiguration Power

PDPC_reconf represents the power when reconfiguring a DPC (i.e., a Data Path is loaded onto a DPC).
Differently sized Data Paths may require different reconfiguration time due to their varying bitstream
lengths. The reconfiguration energy is given by: EDPC_reconf = Treconf * PDPC_reconf. The procedure for
measuring the reconfiguration power will be discussed in Section 6.3.

d) Dynamic and Leakage Power of the core Instruction Set Architecture (cISA)

PcISA_dyn and PcISA_leak denote the dynamic and leakage power consumption of the so-called core Instruction
Set Architecture (cISA), respectively. A 5-stage pipeline processor Leon2 with a SPARC V8 instruction
set is used in the current prototype platform as the cISA.

3.5 Summary of Adaptive Low-Power Embedded Multimedia
System

This chapter has analyzed different issues related to the energy consumption and adaptivity of an
advanced H.264/AVC video encoder in a video conferencing application from both application and
processor architecture perspectives. It was identified that the H.264/AVC video codec requires more than
70% of the total computational load and energy consumption of a video conferencing application. Since
most of the advanced video encoders share a similar computational model and tool set as of the
H.264/AVC encoder, it was selected as the target multimedia application in this thesis. Afterwards, the
energy and adaptivity related issues in the H.264/AVC application were analyzed. It was found that Mode
Decision and Motion Estimation are the most critical components of a video encoder. Moreover, different
run-time varying constraints were mentioned. Afterwards, considering the application-level
unpredictability, other adaptivity and energy related issues were explored for the dynamically
reconfigurable processors. After the analysis, an overview of the proposed processor and application
architectures is presented along with the design-, compile-, and run-time steps. At the end, a novel power
model for dynamically reconfigurable processors is proposed. This power model considers different types
of Data Paths, their placement on the fabric, and memory accesses to estimate the power of Custom
Instructions with various Implementation Versions. Moreover, this model considers the leakage and
dynamic power of the core processor and the reconfigurable fabric along with the power consumed by the
reconfiguration process. The details of the power measurements and model generation methodology will
be discussed in Chapter 6. This power model is later on used for energy estimation and run-time energy
management at both application and processor architecture levels.

- 49 -

Chapter 4 Adaptive Low-Power Video Coding

This chapter presents the novel adaptive low-power application architecture of advanced H.264 video
encoder. It employs an adaptive complexity reduction scheme and an energy-aware Motion Estimation
scheme using the novel concept of Energy-Quality Classes to realize adaptive low-power video encoding.

Section 4.1 presents the H.264 encoder application architectural adaptations for reconfigurable
processors. First the basic application architectural adaptations are performed (Section 4.1.1) for
improving the data flow and data structures. Afterwards, adaptations for reduced computations and
reduced hardware pressure are discussed in Section 4.1.2 and Section 4.1.3, respectively. The detailed
data flow for the optimized application architecture is discussed in Section 4.1.4. The design of low-power
Custom Instructions and Data Paths is discussed in Section 4.2. The analysis of spatial temporal video
properties is explained in Section 4.3. Based on this analysis and relevant Human Visual System
properties, Macroblock categorization is performed (Section 4.3.1) which employs Quantization
Parameter based thresholding in order to react to the changing bit rate scenarios (Section 4.3.2). This
analysis is used by the adaptive computational complexity reduction scheme (Section 4.4) to remove the
improbable coding modes from the candidate mode set. Section 4.5 presents the energy-aware Motion
Estimation scheme. First an adaptive Motion Estimator with multiple processing stages is proposed in
Section 4.5.1. Afterwards, Section 4.5.2 discusses how an energy budget is computed for different
Macroblocks and how the Energy-Quality Classes are designed and deployed.

4.1 H.264 Encoder Application Architectural Adaptations for
Reconfigurable Processors

4.1.1 Basic Application Architectural Adaptations

The JM software of the H.264/AVC video encoder [JVT10]contains a large set of tools to support a
variety of applications (video conferencing to HDTV) and uses complex data structures to facilitate all
these tools. For that reason, the reference software is not a suitable base for research and development of a
low-power video encoder.

Therefore, the application architecture of the JM software [JVT10] is passed through a series of
following basic application architectural adaptations in order to obtain a good starting point, i.e., a so-
called H.264 encoder Benchmark Application. This Benchmark Application provide a foundation for
researching the application architectural adaptations amenable to the reconfigurable processors. The
details of these basic application architectural adaptations are as follows:

a) First, the reference software is adapted to contain only Baseline-Profile tools (Figure 4.1a)
considering multimedia applications executing on mobile devices. The Baseline-Profile is further
truncated/curtailed by excluding Flexible Macroblock Ordering (FMO) and multiple slice (i.e.,
complete video frame is one slice).

b) Afterwards, the data structure of this application is improved by replacing, for example, multi-
dimensional arrays with one-dimensional arrays to improve the memory accesses (Figure 4.1b).
The basic data flow of the application is additionally improved and the inner loops are unrolled to
enhance the compiler optimization space and to reduce the amount of jumps.

c) The reference software uses a Full Search Motion Estimator which is not practicable in real-world
applications and it is only used for quality comparison. Therefore, real-world applications
necessitate a low-complexity Motion Estimator. A low-complexity fast and adaptive Motion
Estimator called UMHexagonS [CZH02] was used to reduce the processing loads of ME process

Chapter 4 Adaptive Low-Power Video Coding

- 50 -

while keeping the visual quality closer to that of Full Search. Full Search requires on average
107811 SADs/frame for Carphone QCIF video sequence (256 kbps, 16 Search Range and 16x16
Mode). On the contrary, UMHexagonS requires on average 4424 SADs/frame. Note, UMHexagonS
will also be used as a competitor for the proposed energy-aware Motion Estimation scheme in
Section 4.5 (page 77).

d) Afterwards, this application is profiled to detect the computational hot spots (Figure 4.1c). Several
modular Custom Instructions (CIs, according the CI model of RISPP as discussed in Section 2.3.5)
along with their composing low-power Data Paths (i.e., elementary hardware accelerators) are
designed and implemented to expedite the hot spots of the H.264 encoder (see details in Section
4.2, page 57). This adapted and optimized application then serves as the Benchmark Application for
further architectural adaptations that are amenable to the reconfigurable processors.

Invited Talk, VLSI Conference, Mumbai, Jan. 9th, 2004

CAVLCSlice Groups

and ASO

Redundant

Slices

I-Slices

P-Slices

B-Slices

CABAC

Weighted

Prediction

Interlace

SP & SI Slices

Data Partitioning

Baseline
Profile

Main
Profile

Extended
Profile

CAVLC

Slices
I-Slices

P-Slices

Truncated
Baseline Profile

The most prominant
tools of Baseline
Profile are selected
that are typically
used in mobile
devices.

For simplicity, the Arbitrary Slice Ordering (ASO),
multiple slices in 1 video frame, and Flexible
Macroblock Ordering (FMO) are ignored

Invited Talk, VLSI Conference, Mumbai, Jan. 9th, 2004

Level-1 Level-2 Level-3 1-D Mem

Multi-Dimensional Arrays are converted
into One-Dimensional Arrays to improve

the memory access pattern

b) Improving Data Structure

Invited Talk, VLSI Conference, Mumbai, Jan. 9th, 2004

Transform

// Horizontal transform
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < 2; i++)
{
i1=3-i;
m5[i]=img->m7[i][j]+img->m7[i1][j];
m5[i1]=img->m7[i][j]-img->m7[i1][j];

}
img->m7[0][j]=(m5[0]+m5[1]);
img->m7[2][j]=(m5[0]-m5[1]);
img->m7[1][j]=m5[3]*2+m5[2];
img->m7[3][j]=m5[3]-m5[2]*2;

}
// Vertical transform
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < 2; j++)
{
j1=3-j;
m5[j]=img->m7[i][j]+img->m7[i][j1];
m5[j1]=img->m7[i][j]-img->m7[i][j1];

}
img->m7[i][0]=(m5[0]+m5[1]);
img->m7[i][2]=(m5[0]-m5[1]);
img->m7[i][1]=m5[3]*2+m5[2];
img->m7[i][3]=m5[3]-m5[2]*2;

}

Designing a hardware accelerator
for the Discrete Cosine Transform

a) Adapting Reference Software c) Profiling and Designing Custom Instructions

Figure 4.1: Basic Application Architectural Adaptations to Construct the Benchmark Application

Figure 4.2 shows overview of the hot spots (with various functional blocks) in the Benchmark
Application. It consists of three main hot spots:

• Interpolation for Motion Compensation: An upscaled frame with half-pixel and quarter-pixel
values is generated using a six-tap filter and a bilinear filter (see details in [ITU05]). This
interpolated frame is then used in the Motion Compensation process. Note, the interpolated data
may be used by the Motion Estimation process, however, it is not fixed by the standard.

• Macroblocks (MB) Encoding Loop: the main loop for encoding an MB. It consists of:
o Motion Estimation (ME) using Sum of Absolute Differences (SAD) and Sum of Absolute

Transformed Differences (SATD)
o Motion Compensation (MC)
o Intra Prediction (IPred),
o Rate Distortion Optimized Mode Decision (RDO-MD)
o Discrete Cosine Transform (DCT) and Inverse Discrete Cosine Transform (IDCT)
o Hadamard Transform (HT) and Inverse Hadamard Transform (IHT)
o Quantization (Q) and Inverse Quantization (IQ)
o Context Adaptive Variable Length Coding (CAVLC)

4.1 H.264 Encoder Application Architectural Adaptations for Reconfigurable Processors

- 51 -

• In-Loop Deblocking Filter: the filter for removing the blocking artifacts.

These functional blocks operate at the MB-level where an MB can be of type Intra (I-MB: uses IPred for
the spatial prediction) or Inter (P-MB: uses MC for the temporal prediction).

Figure 4.2: Arrangement of Functional Blocks in the H.264 Encoder Benchmark Application

4.1.2 Application Architectural Adaptations for On-Demand Interpolation

Figure 4.3 shows a statistical study on different mobile video sequences with low-to-medium motion
considering the fact that the H.264 encoder Benchmark Application interpolates MBs before entering the
main MB Encoding Loop (see Figure 4.2). It is noticed that in each frame the number of MBs for which
an interpolation was actually required to process MC is much less than the number of MBs processed for
interpolation by the Benchmark Application. After analysis, it was found that the significant gap between
the processed and the actually required interpolations is due to the stationary background, i.e., the motion
vector (which determines the need for interpolations) is zero. The interpolation is only required for MBs
with motion vectors (given by the ME) with fractional-pixel accuracy. Additionally, even for those MBs
that require an interpolation, only one of the 15 possible interpolation cases is actually required (indeed
one interpolation case is needed per Block, potentially a sub-part of a MB), which shows the enormous
saving potential. The last two bits of the motion vector hereby determine the required interpolation case.

Invited Talk, VLSI Conference, Mumbai, Jan. 9th, 2004

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

e
r

o
f

in
te

rp
o

la
te

d
 M

B
s

Frame Number

MB Interpolations for QCIF (99 MBs) Video Sequences

Number of MBs that are interpolated in the Benchmark Application (video

independent)

Number of actually required interpolated MBs in 'Trevor' video sequence

Number of actually required interpolated MBs in 'Claire' video sequence

Figure 4.3: Number of Computed vs. Required Interpolated MBs for

two Standard Test Sequences for Mobile Devices

Chapter 4 Adaptive Low-Power Video Coding

- 52 -

Figure 4.4 shows the distribution of interpolation cases in the �Carphone� sequence (a standard
videophone test sequence with the highest interpolation computation load in the QCIF test-suite).
Figure 4.4 demonstrates that in total 48.78% of the total MBs require one of these interpolation cases (C-1
to C-15). The case C-16 is for those MBs where the last two bits of the motion vector are zero (i.e.,
integer pixel resolution or stationary) such that no interpolation is required. The I-MBs (for Intra
Prediction) actually do not require an interpolation either. One of main challenges is to eradicate this
problem by shifting the process of interpolation after the ME computation. This enables to determine and
process only the required interpolations, i.e., so-called on-demand interpolation. Figure 4.5 shows the
application architectural adaptation to reduce the overhead of excessive interpolations. After performing
the ME, the motion vector is obtained, which allows to perform only the required interpolation. The
Fractional-pixel ME might additionally require interpolations, but it is avoided in most of the cases (C-16)
due to the stationary nature of these MBs. The proposed application architecture maintains the flexibility
for the designer to choose any low-complexity interpolation scheme for Fractional-pixel ME, e.g., [SJ04].

49.2

2.0
3.74.03.73.32.61.82.31.7

5.44.94.03.32.13.32.6

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

C
-1

C
-2

C
-3

C
-4

C
-5

C
-6

C
-7

C
-8

C
-9

C
-1

0

C
-1

1

C
-1

2

C
-1

3

C
-1

4

C
-1

5

C
-1

6

I
M

B

C-1: ½x, y

C-2: x, ½y

C-3: ½x, ½y

C-4: ¼x, y

C-5: ¾x, y

C-6: x, ¼y

C-7: x, ¾y

C-8: ¼x, ½y

C-9: ¾x, ½y

C-10: ½x, ¼y

C-11: ½x, ¾y

C-12: ¼x, ¼y

C-13: ¼x, ¾y

C-14: ¾x, ¼y

C-15: ¾x, ¾y

C-16: x, y (no

interpolation

required)

Figure 4.4: Distribution of Different Interpolation Cases in the Carphone Video Sequence

One of the side effects of shifting the interpolation after ME is that it increases the number of functional
blocks inside the MB Encoding Loop. It is noted that � besides the interpolation � there are already
several functional blocks inside the MB Encoding Loop (Figure 4.2). As discussed in Section 2.3, due to
the significant reconfiguration time, the fabric in the reconfigurable processors is not reconfigured
between the processing of a hot spot, i.e., within processing of each MB. Therefore, not all Data Paths of
the CIs in the MB Encoding Loop may be supported in the available reconfigurable fabric (depending
upon its size). The bigger number of Data Paths required to expedite a computational hot spot corresponds
to a high hardware pressure inside this hot spot (i.e., a large-sized reconfigurable fabric has to be
provided to expedite the hot spot). A higher hardware pressure results in:

• more Data Paths that might be required (for meeting the performance constraint) within a hot spot
than actually fit into the reconfigurable fabric. Therefore, not all hot spots might be expedited and
the CIs are executed using the Core Instruction Set Architecture (cISA) instead, and

• increased reconfiguration overhead (latency, energy), as the reconfiguration time depends on the
amount of fabric that needs to be reconfigured.

Both points lead to performance degradations for the reconfigurable processors, depending on the
magnitude of hardware pressure. This is a drawback for the class of reconfigurable processors and
therefore further application architectural adaptations are required to counter this drawback. In the
following, the application architectural adaptations to reduce the hardware pressure inside the MB

4.1 H.264 Encoder Application Architectural Adaptations for Reconfigurable Processors

- 53 -

Encoding Loop are proposed that introduce the concept of decoupling the Motion Estimation and Rate
Distortion Optimized Mode Decision from the main MB Encoding Loop.

4.1.3 Application Architectural Adaptations for Reducing the Hardware Pressure

Although the application architectural adaptation for on-demand interpolation (Section 4.1.2) results in a
significant reduction of performed interpolations, it further increases the hardware pressure of the MB
Encoding Loop, as the hardware for the Motion Compensated Interpolation is now shifted inside this loop.
A higher hardware pressure has a negative impact when the encoder application is executed on a
reconfigurable processor. This is due to the fact that the amount of hardware required to expedite the MB
Encoding Loop (i.e., the hardware pressure) is increased and not all Data Paths can be accommodated in
the available reconfigurable fabric. Moreover, it takes longer until the reconfiguration is completed and
the hardware is ready to execute. Therefore, in order to reduce the hardware pressure those functional
blocks are decoupled that may be processed independent of rest of the encoding process. Decoupling of
these functional blocks is performed with the surety that the encoding process does not deviate from the
standard specification and a standard compliant bitstream is generated. Motion Estimation (ME) and Rate
Distortion Optimized Mode Decision (RDO-MD) are decoupled as they are non-normative and standard
does not fix their implementation. However, this decoupling of functional blocks affects the data flow of
application (discussed in detail in Section 4.1.4).

As ME does not depend upon the reconstructed path of encoder, ME can be processed independently
on the whole frame. Therefore, it is taken out of the MB Encoding Loop (as shown in Figure 4.5) which
will decouple the hardware for both Integer- and Fractional-pixel ME. Moreover, it is also worthy to note
that some accelerating Data Paths of SATD (i.e QSub, Repack, Transform) are shared by (I)DCT,
(I)HT_4x4, and (I)HT_2x2 Custom Instructions (see Table 4.1 in Section 4.2). Therefore, after the ME is
completed for one frame and the subsequent MB Encoding Loop is started, these reusable Data Paths are
already available which reduces the reconfiguration overhead (latency and energy). As motion vectors are
already stored in a full-frame based memory data structure, no additional memory is required when ME is
decoupled from the MB Encoding Loop. Decoupling ME will also improve the instruction cache usage as
same instructions are now processed for long time in one loop. A much better data-arrangement
(depending upon the search patterns) can be performed to improve the data cache usage (i.e., reduced
number of misses) when processing ME on frame-level due to the increased chances of availability of data
in the cache. However, when ME executes inside the MB Encoding Loop these data-arrangement
techniques may not help. This is because subsequent functional blocks (MC, DCT, CAVLC etc.) typically
replace the data that might be beneficial for the next execution of ME.

The RDO-MD controls the encoded quality by deciding about the type of an MB (I-MB or P-MB).
Furthermore, the I-MB/P-MB Mode Decision is also attached with this as an additional RD decision layer.
The H.264 Benchmark Application employs an exhaustive RDO-MD scheme that computes both I- and P-
MB encoding flows with all possible modes and then chooses the one with the best tradeoff between the
required bits to encode the MB and the distortion (i.e., video quality) using a Lagrange Scheme, according
to an adjustable optimization goal (see details in Section 2.2.3 and Section 4.4). The RDO-MD is
additionally taken out of the MB Encoding Loop (see Figure 4.5) to perform an early decision on MB type
(I or P) and Mode (for I or P). This will further reduce the hardware pressure in the MB Encoding Loop
and the total processing load (either I or P computation instead of both). Shifting RD is less efficient in
terms of bits/MB as compared to the exhaustive RDO-MD scheme as the latter checks all possible
combinations to make a decision. However, RD outside the MB Encoding Loop is capable to utilize
intelligent schemes to achieve a near-optimal solution, for instance, Inter-Modes can be predicted using
homogeneous regions and edge map (see details in Section 4.4).

The H.264 encoder application architecture with reduced hardware pressure provides a good
arrangement of processing functions that facilitates an efficient data flow. For multimedia applications,

Chapter 4 Adaptive Low-Power Video Coding

- 54 -

data format/structure and data flow are very important as they greatly influence the resulting performance.
Therefore, the complete data flow of the encoder will be discussed along with the impact of the proposed
application architectural adaptations.

If (MB_Type = P_MB)

Rate Distortion Optimized Mode Decision (RDO-MD)
MB-Type Decision (I or P)

Block-Mode Decision (for I or P)

If (MB_Type = P_MB) DO Motion Estimation (ME)
Integer Pixel ME (uses SAD)

Fractional-Pixel ME (also called Sub-pixel ME) (uses SATD)
- Up to Quarter-Pixel

Rate Controller
Decides about Image-Level Quantization Parameter

Decides about MB-Level Quantization Parameter

Tranform and Quantization (DCT & Q)
Residue Calculation

Luma : 16 DCT_4x4

Chroma : 8 DCT_4x4

Chroma : 2 HT_2x2

Quantize all Coefficients

Motion Compensation (MC)
Luma: 1 out of 15 Interpolation
Cases is executed on motion vector

Chroma: Weighted Average

Intra Prediction (IPRED)
For Luma

If (Block_Mode = 16x16) Then
- Select 1 out of 4 Modes
- Compute the Prediction

If (Block_Mode = 4x4) Then
- Select 1 out of 9 Modes
- Compute the Prediction

For Chroma
Block_Mode = 8x8

- Select 1 out of 4 Modes
- Compute the Prediction

Hadamard Transform (HT)
Luma : 1 HT_4x4

Quantize all Coefficients

Inverse Tranform and Inverse
Quantization (IDCT & IQ)

Inverse Quantize for all Coefficients

Chroma : 2 IHT_2x2

Chroma : 8 IDCT_4x4

Luma : 16 IDCT_4x4

Reconstruction

Inverse Hadamard Transform (IHT)
Luma : 1 IHT_4x4

Inverse Quantize for all Coefficients

E
n

tr
o

p
y
 C

o
d

in
g

E
n

c
o

d
e
 M

B
 H

e
a
d

e
r

w
it

h
 E

x
p

-G
o

lo
m

b
 C

o
d

in
g

E
n

c
o

d
e
 Q

u
a
n

it
z
e
d

 C
o

e
ff

ic
ie

n
ts

 a
n

d
 M

o
ti

o
n

V

e
c
to

rs
 w

it
h

 C
o

n
te

x
t

A
d

a
p

ti
v
e
 V

a
ri

a
b

le

L
e
n

g
th

 C
o

d
in

g
 (

C
A

V
L

C
)

B
it

s
tr

e
a
m

 G
e
n

e
ra

ti
o

n

In-Loop

Deblocking Filter

Bitstream

Storage

If (MB_Type = P_MB)

thenelse

then

else

Reference

Frame

Memory

L
o

o
p

 O
v
e
r

F
ra

m
e
s

MB Encoding

Loop

Loop Over MBs

L
o

o
p

 O
v
e
r

M
B

s

L
o

o
p

 O
v
e
r

M
B

s

Figure 4.5: H.264 Encoder Application Architecture with Reduced Hardware Pressure

4.1 H.264 Encoder Application Architectural Adaptations for Reconfigurable Processors

- 55 -

4.1.4 Data Flow of the H.264 Encoder Application Architecture with Reduced
Hardware Pressure

Figure 4.6 shows the data flow diagram of the H.264 application architecture with reduced hardware

pressure. The boxes show the process (i.e., the processing function of the encoder) and arrows represent
the direction of the flow of data structure (i.e., text on these arrows). D1 and D2 are two data stores that
contain the data structures for current and previous frames. E1 and E2 are two external entities to store the
coding configuration and encoded bitstream, respectively. The format of these data structures is shown in
Figure 4.7 along with a short description.

Figure 4.6: Data Flow Diagram of the H.264 Encoder

Application Architecture with Reduced Hardware Pressure

Chapter 4 Adaptive Low-Power Video Coding

- 56 -

Motion Estimation (1.0, 1.1) takes Quantization Parameter from the Rate Controller (11.0) and Luma
components of current and previous frames (CurrY, PrevY) from the two data stores D1 and D2 as input.
It forwards the result (i.e., MV and SAD arrays) to the RDO-MD process (1.2) that selects the type of an
MB and its expected coding mode. If the selected type of MB is Intra then the mode information (IMode)
is forwarded to the Intra Prediction (2.1) block that computes the prediction using the reconstructed pixels
of the neighboring MBs in the current frame (CurrYUV), otherwise PMode is forwarded to the Motion
Compensation (2.0) that computes the prediction using previous frame (PrevYUV) and MV. The three
transform processes (3.0-3.2) calculate the residue from using Luma and Chroma prediction results
(PredYUV) and current frame data (CurrYUV) that is then transformed using 4x4 DCT. In case of Intra
Luma 16x16 the 16 DC coefficients (TYDC Coeff) are further transformed using 4x4 Hadamard
Transform (6.0) while in case of Chroma 4 DC coefficients (TUVDC Coeff) are passed to 2x2 Hadamard
Transform process (5.0). All the transformed coefficients (TCoeff, HTUVDC Coeff, HTYDC Coeff) are
then quantized (4.0, 5.1, 6.1). The quantized result (QCoeff, QYDC Coeff, QUVDC Coeff) is forwarded
to CAVLC (9.0) and to the reconstructed/backward path, i.e., inverse quantization (6.3, 5.2, 4.1), inverse
transform (6.2, 5.3, 7.0-7.2), and reconstruction (8.0). The reconstructed frame is then processed with in-
loop Deblocking Filter (10.0) while the output of CAVLC (i.e., bitstream) is stored in the Bitstream
Storage (E1). Depending upon the achieved bit rate and coding configuration (E2) the Rate Controller
(11.0) decides about the Quantization Parameter.

Figure 4.7: Description and Organization of Major Data Structures

After the proposed adaptation, the size of data structure for interpolation result is much smaller than
before adaptation. The new PredYUV (Figure 4.7) data structure requires only 384 bytes ((256+128)*8-

bits) for CIF videos, as the prediction result for only one MB is required to be stored. On the contrary,

4.2 Designing Low-Power Data Paths and Custom Instructions

- 57 -

pre-computing all interpolated pixels up to quarter-pixel resolution instead requires a big data structure
(16*Frame_Size bytes) storage after interpolation and loading for residual calculation. For Quarter
Common Intermediate Format (QCIF, 176x144) and Common Intermediate Format (CIF, 352x288)
resolutions, this corresponds to a 1584 (176*144*16/256) and 6336 (352*288*16/256) times bigger
memory consumption, respectively, compared to the proposed on-demand interpolation.

Pre-computing all interpolation cases results in non-contiguous memory accesses. The interpolated
frame is stored in one big memory, i.e., interpolated pixels are placed in between the integer pixel
location. Due to this reason, when a particular interpolation case is called for Motion Compensation, the
access to the pixels corresponding to this interpolation case is in a non-contiguous fashion (i.e., one 32-bit
load will only give one useful 8-bit pixel value). This will ultimately lead to data cache misses as the data
cache will soon be filled with the interpolated frame, i.e., including those values that were not required.
Contrarily, the on-demand interpolation stores the interpolated pixels in an intermediate temporary storage
using a contiguous fashion such that, four interpolated pixels of a particular interpolation case are stored
contiguously in one 32-bit register. This improves the overall memory access behavior. Adaptations in the
application architecture change the data flow from one processing function to the other. As the looping
mechanism is changed, the data flow is changed. On the one hand, performing on-demand interpolation
increases the probability of instruction cache miss. On the other hand, it improves the data cache by
offering a smooth data flow between prediction calculation and transform process, i.e., it improves the
data flow as it directly forwards the interpolated result for residual calculation and then to DCT. Pre-
computation is beneficial in-terms of instruction cache as it processes a similar set of instructions in one
loop over all MBs. Conversely, on-demand interpolation is beneficial in-terms of data-cache which is
more critical for data intensive applications (e.g., video encoders).

For reduced hardware pressure optimization, the Motion Estimation process is decoupled from the
main MB Encoding Loop. Since now Motion Estimation executes in a one big loop, the instruction cache
behavior is improved. The rectangular region in Figure 4.6 shows the surrounded data structures whose
flow is affected by this optimization of reduced hardware pressure. Before optimizing for reduced
hardware pressure, Motion Estimation was processed on MB-level, therefore MV and SAD arrays were
passed to the Motion Compensation process in each loop iteration. Since the encoder uses MVs of the
spatially neighboring MBs for Motion Estimation, the data structure provides the storage for MVs of
complete video frame (e.g., 396*32-bits for a CIF frame). After optimizing for reduced hardware

pressure, there is no change in the size of MV and SAD data structures. The MV and SAD arrays of the
complete video frame are forwarded just once to the Motion Compensation process.

Additionally, now RDO-MD can be performed by analyzing the neighboring MVs and SADs. The
type of MB and its prediction mode is stored at frame-level and is passed to the prediction processes.
Without the proposed adaptations (i.e., when processing Motion Estimation and RDO-MD at MB-level),
fast Mode Decision schemes cannot use the information of MVs and SADs of the spatially next MBs. On
the contrary, the proposed application architecture facilitates much intelligent RDO-MD schemes where
modes can be predicted using the motion properties of spatially next MBs, too (see Section 4.4).

Summarizing: the proposed application architectural adaptations not only save the excessive
computations (thus energy) using on-demand interpolation for Motion Compensation and relax the
hardware pressure in case of reconfigurable processors by decoupling the Motion Estimation and RDO-
MD processes but also improves the data flows and instruction cache behavior.

4.2 Designing Low-Power Data Paths and Custom Instructions

For accelerating the hot spots of H.264 encoder application, various modular Custom Instructions (CIs)
were designed and implemented. Table 4.1 gives the description of the implemented CIs of the H.264

Chapter 4 Adaptive Low-Power Video Coding

- 58 -

video encoder. It is noticeable that some Data Paths (especially Repack and Transform) are used to
implement different CI types. The measured and estimated power values for these CIs and the Data Paths
are provided in Section 6.2.3.

To design CIs, the constraints imposed by the architecture need to be considered (as discussed in
Section 2.3.3 and Section 2.3.5). A typical Data Path has two 32-bit input, two 32-bit output, an 8-bit
control signal, a clock, and a reset signal. Moreover the size of an Data Path is limited to approximately
500 Slices to ensure that it will fit in the so-called Data Path Containers (DPC). Additionally, there are
special Data Paths containing four inputs and four outputs which are reserved for most commonly used
functions (e.g., packing, adding values, re-arranging data). To receive the data needed from memory, two
128-bit Load/Store Units are available.

Different optimizations are performed to reduce the number of operations in a Data Path that directly
results in area and power reduction. Figure 4.8 presents the steps to create optimized Data Paths from the
formulae specified in H.264 standard [ITU05]. First, the standard formulae are transformed into pixel
processing equations that are then processed for architecture-independent optimizations under a given set
of optimization rules and constraints. A set of unique equations is extracted followed by optimizations at
multiple levels to enhance the level of operation reusability. A set of architectural constraints (as
discussed above) is considered to perform hardware level optimizations resulting in a low power Data
Path. In the following sections, the design of important CIs from H.264 encoder and their composing Data
Paths is described. The design for the Deblocking Filter CI in detail along with the proposed
optimizations.

Functional

Component

Custom

Instruction

Description of

Custom Instructions
Accelerating Data Paths

Motion Estimation

(ME)

SAD16x16
Sum of Absolute Differences

of a 16x16 Macroblock
SADrow

SATD4x4
Sum of Absolute (Hadamard-) Transformed

Differences of a 4x4 sub-block
QuadSub, Transform,

Repack, SAV

Motion Compensation

(MC)
MC_Hz_4

Motion Compensated Interpolation
for Horizontal case for 4 Pixels

PointFilter, Repack, Clip3

Intra Prediction

(IPred)

IPred_HDC 16x16 Intra Prediction for Horizontal and DC CollapseAdd, Repack

IPred_VDC 16x16 Intra Prediction for Vertical and DC CollapseAdd, Repack

(Inverse) Transform

(I)DCT4x4
Residue calculation and (Inverse) Discrete

Cosine Transform for 4x4 sub-block
Transform, Repack,

(QuadSub)

(I)HT_2x2
2x2 (Inverse) Hadamard Transform

of Chroma DC coefficients
Transform

(I)HT_4x4
4x4 (Inverse) Hadamard Transform

of Intra DC coefficients
Transform, Repack

In-loop Deblocking

Filter (LF)
LF_BS4

4-Pixel Edge Filtering for in-loop
Deblocking Filter with Boundary Strength 4

Cond, LF_4

Table 4.1: Custom Instructions and Data Paths for the H.264 Video Encoder

Figure 4.8: Steps to Create Optimized Data Paths from the Standard Formulae

4.2 Designing Low-Power Data Paths and Custom Instructions

- 59 -

4.2.1 Designing the Custom Instruction for In-Loop Deblocking Filter

The H.264 codec employs an in-loop adaptive Deblocking Filter (after the reconstruction stage) for
removing the blocking artifacts at 4x4 sub-block boundaries. The filtered image is used for motion-
compensated prediction of future frames. Each boundary of a 4x4 sub-block is called one 4-pixel edge
onwards as shown in Figure 4.10. Each Macroblock (MB) has 48 (32 for Luma and 16 for Chroma) 4-
pixel edges. The standard specific details of the filtering operation can be found in [ITU05].
Algorithm 4.1 shows the filtering conditions and filtering equations for Boundary Strength=4 (as specified
in [ITU05]) where pi and qi (i = 0, 1, 2, 3) are the pixel values across the block horizontal or vertical
boundary as shown in Figure 4.9.

Figure 4.9: Pixel Samples Across a 4x4 Block Horizontal or Vertical Boundary [ITU05]

Figure 4.10: 4-Pixel Edges in one Macroblock [ITU05]

Compute Filtering Conditions and Filtered Pixels for Boundary Strength=4

1. IF (abs(q0�p0) < α) THEN

2. IF (abs(q0-q1) < β) & (abs(p0-p1) < β) THEN
3. IF (chromaEdgeFlag==0) THEN

4. aq = abs(q0-q2) < β; ap = abs(p0-p2) < β;
5. END IF
6. IF (Boundary_Strength==4) THEN

7. IF (chromaEdgeFlag==0)&(ap < β && Abs(p0 � q0) < ((α >> 2) + 2)) THEN
8. p'0 = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3;
9. p'1 = (p2 + p1 + p0 + q0 + 2) >> 2;
10. p'2 = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3;
11. ELSE
12. p'0 = (2*p1 + p0 + q1 + 2) >> 2; p'1 = p1; p'2 = p2;
13. END IF

14. IF (chromaEdgeFlag==0)&(aq < β && Abs(p0 � q0) < ((α >> 2) + 2)) THEN
15. q'0 = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4) >> 3;
16. q'1 = (p0 + q0 + q1 + q2 + 2) >> 2;
17. q'2 = (2*q3 + 3*q2 + q1 + q0 + p0 + 4) >> 3;
18. ELSE
19. q'0 = (2*q1 + q0 + p1 + 2) >> 2; q'1 = q1; q'2 = q2;
20. END IF
21. END IF
22. END IF
23. END IF

Algorithm 4.1: The Filtering Process for Boundary Strength=4

Chapter 4 Adaptive Low-Power Video Coding

- 60 -

Figure 4.11a shows the Deblocking Filter CI (named LF_BS4, Table 4.1) that targets the processing flow
of Algorithm 4.1. This LF_BS4 CI filters one four-pixel edge, which corresponds to the filtering of four
rows each with 8 pixels. The LF_BS4 CI constitutes two types of Data Paths: the condition Data Path
(Cond) computes all the conditions (Figure 4.11c) and the filter Data Path (LF_4) performs the actual
filtering operation (Figure 4.11d). The LF_BS4 CI requires 4 Data Paths of each type to filter four rows of
an edge. Threshold values Į and ȕ are packed with P (4-pixel group on left side of the edge; see
Figure 4.9) and Q (4-pixel group on right side of the edge) type pixels and passed as input to the control
Data Path. The UV and BS act as control signals to determine the case of Luma-Chroma and Boundary
Strength, respectively. The condition Data Path outputs two 1-bit flags X1 (for filtering P-type, i.e., pi
pixels) and X2 (for filtering Q-type, i.e., qi pixels) that act as the control signals of the filter Data Path.
The two sets of pixels (P and Q type) are passed as input to this Data Path and appropriate filtered pixels
are chosen depending upon the two control signals.

Figure 4.11: Custom Instruction for In-Loop Deblocking Filter with Example Schedule

and Constituting Data Paths for Filtering Conditions and Filtering Operation

Figure 4.11b shows the processing schedule of an Implementation Version of the LF_BS4 CI with two
instances of each of the condition and filter Data Paths. In first two cycles, two rows are loaded (P and Q
of one row are loaded together due to the availability of 128-bit memory access22). In cycle 3, two
condition Data Paths are executed in parallel followed by two parallel filter Data Paths in the cycle 4 to
get the filtered pixels for 1st and 2nd row of the edge. In the mean time, next two loads are executed. In
cycle 5 and 6, the filtered pixels of 1st and 2nd rows are stored while condition and filter Data Paths are
processed in parallel for 3rd and 4th rows. In cycle 7 and 8, the filtered pixels of 3rd and 4th rows are stored.

22 It demonstrates how the available memory bandwidth can affect the design of a Custom Instruction (CI). This

schedule highly depends upon the two 128-bit ports. In case only one port is available, only two pairs of
condition-filter Data Paths would be sufficient to exploit the available memory bandwidth

4.2 Designing Low-Power Data Paths and Custom Instructions

- 61 -

Now the two Data Paths are discussed. All of the if-else equations are collapsed in one condition Data
Path that calculates two outputs to determine the final filtered values for the pixel edge. In hardware, all
the conditions are processed in parallel and the proposed hardware implementation is 130x faster than the
software implementation (i.e., running on GPP). It is noticed that the condition Data Path contains sub-
byte and bit-level computations which are amenable to fine-grained reconfigurable fabric.

Figure 4.11d shows the optimized Data Path to compute the filtered pixels for Luma and Chroma and
selects the appropriate filtered values depending upon X1 and X2 flags. This Data Path needs fewer
operations to filter the pixels on block boundaries as compared to the standard equations. This Data Path
is designed considering the steps shown in Figure 4.8. It exploits the redundancies in the operation
sequence, re-arranges the operation pattern, and reuses the intermediate results as much as possible. The
shift operations are realized as bit-level rewiring. Note that the filter Data Path is made more reusable
using multiplexers, thus both paths are processed in parallel and the output of one part is selected
depending upon which condition is chosen at run time. It is used to process two cases of Luma and one
case of Chroma filtering depending upon the filtering conditions. The filtering of a four-pixel edge in
software (i.e., running on GPP) takes 960 cycles for Boundary Strength=4 case. The proposed CI
(Figure 4.11a) using these optimized Data Paths (Figure 4.11c and Figure 4.11d) requires only 8 cycles
(Figure 4.11b), i.e., a speedup of 120x. The measured power results the Data Paths and the estimated
power of LF_BS4 CI are presented in Section 6.2.3.

4.2.2 Designing the Custom Instructions for Motion Estimation

As discussed in Chapter 2, Sum of Absolute Differences (SAD) is used for Integer-Pixel Motion
Estimation (IME) and Sum of Absolute Transformed Differences (SATD) is used for the Fractional-Pixel
ME (FME). The CI SAD16x16 computes the SAD of a complete MB that requires 256 subtractions, 256
absolute operations, 255 additions along with loading of 256 current and 256 reference MB pixels from
memory. The SAD16x16 CI constitutes two instances of the SADrow Data Path (Table 4.1) that computes
SAD of 4 pixels of current MB w.r.t. 4 pixels of reference MB.

The SATD4x4 CI (Figure 4.12) uses four types of Data Paths to perform a complete 4x4 SATD operation.
• QuadSub performs 4 subtractions; it takes eight unsigned 8-bit pixels Pi, Qi, i = 0...3 and returns

four 16-bit signed residue outputs, i.e., Ri = Pi - Qi; for i = 0...3.
• Repack rearranges the 16-bit half-words of its 32-bit inputs by packing two 16-bit LSBs and

two 16-bit MSBs in two 32-bit outputs. If input1 = X1żX2 and input2 = X3żX4, then output1 =
X1żX3 and output2 = X2żX4.

• Transform (Figure 4.12) performs a 4-point butterfly of (Inverse) Discrete Cosine Transform or
(Inverse) Hadamard Transform. Four Transform Data Paths are used to perform a Hadamard
Transform along one axis using only additions and subtractions. The second stage of this
operation performs an additional arithmetical right-shift on the four results.

• SAV (Figure 4.12) computes the absolute values of its four 16-bit inputs and returns their sum.
After the SAV Data Path, the four results are accumulated with three additions to complete the
SATD4x4 CI.

4.2.3 Designing the Custom Instruction for Motion Compensation

As discussed in Section 2.2.1, Inter Prediction uses block-based Motion Compensation (MC) that employs
a six tap Finite Impulse Response (FIR) filter with weights [1/32, −5/32, 20/32, 20/32, −5/32, 1/32] to
generate the samples at half-pixel location for the Luma component of the reference frame.

The MC_Hz_4 CI (Figure 4.13) computes the half-pixel interpolated values. It takes two 32-bit input
values containing eight pixels and applies a six-tap filter. In case of an aligned memory access, Repack
rearranges the data for the filtering operation. Then the PointFilter Data Path (Figure 4.13) performs the

Chapter 4 Adaptive Low-Power Video Coding

- 62 -

actual six-tap filtering operation. Afterwards, Clip3 Data Path (Figure 4.13) performs the rounding and
shift operation followed by a clipping between 0 and 255.

Figure 4.12: Custom Instruction for SATD4x4 showing the Transform and SAV Data Paths

Figure 4.13: Custom Instruction for Motion Compensation showing Different Data Paths

4.2.4 Area Results for the Custom Instruction of H.264 Encoder

Table 4.2 shows the implementation results for various Data Paths of H.264 encoder synthesized for the
Xilinx Virtex-II FPGA. The power results and the power measurement procedure will be discussed in
Section 6.2.3. The critical path ranges from 3.2 ns to 15.1 ns, while the reconfiguration time (Treconf)
ranges from 0.70 ms to 0.91 ms.

4.3 Spatial and Temporal Analysis of Videos Considering Human Visual System

- 63 -

 Characteristics

 # Slices # LUTs Latency [ns] Reconfiguration Time
a
 [ms]

Clip3 252 413 9.8 0.91

PointFilter 184 300 15.1 0.86

LF_4 144 236 11.6 0.80

Cond 82 132 8.1 0.78

CollapseAdd 36 58 7.4 0.70

SADrow 104 185 13.0 0.79

SAV 58 93 8.4 0.78

Transform 124 217 7.5 0.82

QuadSub 20 32 3.2 0.70

Table 4.2: Implementation Results for Various Data Paths of the H.264 Video Encoder
a: using 36 MB/s reconfiguration bandwidth;

4.3 Spatial and Temporal Analysis of Videos Considering
Human Visual System

Although the digital image and video processing fields are built on a foundation of mathematical and
probabilistic formulations, human intuition and analysis play a central role in the choice of one technique
versus another, and this choice often is made based on subjective, visual judgments [GW02]. Therefore,
important properties of the Human Visual System (HVS) are considered in this scope of this thesis to
account for subjective (visual) quality. The luminance samples are represented with the help of 8-bit
pixels, where '0' represents the darkest pixel (i.e., black) and '255' represents the brightest pixel (i.e.,
white). Some important properties of HVS that are important for image and video compression (as
inspired from [GW02, Pra01, WOZ02]) are as follows (see [GW02, Pra01, WOZ02] for details):

a) Human eye is more sensitive to brightness compared to color, therefore, the spatial and temporal
analysis is performed on the luminance component and the observations can be extrapolated for
color components.

• When the eye is properly focused, light from an object outside the eye is imaged on the Retina.
Pattern vision is afforded by the distribution of discrete light receptors over the surface of the
Retina. There are two classes of receptors: Cones and Rods.

• The Cones function under bright light and can perceive the color tone; therefore, at high levels
(showing better discrimination) vision is the function of Cones.

• The Rods work under low ambient light and can only extract the luminance information;
therefore, at low levels of illumination vision is carried out by activity of the Rods. Rods serve
to give a general, overall picture of the field of view and they are not involved in color vision.

• Therefore, at low ambient light, color has less importance compared to the luminance.

b) Perceived color of an illuminating light source depends upon the wavelength range in which it
emits energy. Green wavelength contributes most to the perceived brightness. There exists a
secondary processing stage in the HVS, which converts the three color values obtained by the
Cones into one value that is proportional to the luminance and two other values that are responsible
for the perception of chrominance, such that Y=∫C(Ȝ)ay(Ȝ)dȜ. C is the radiant intensity distribution
of a light, Ȝ is the wavelength, and ay(Ȝ) is the relative luminous efficiency function.

c) The subjective brightness (intensity as perceived by the HVS) is a logarithmic function of the light
intensity incident on the eye. Since digital images are displayed as a discrete set of intensities, the
eye�s ability to discriminate between different intensity levels is an important consideration.

Chapter 4 Adaptive Low-Power Video Coding

- 64 -

• The perceived brightness is a function of contrast and light intensity. Visual system tends to
overshoot and undershoot at the boundary of regions of different intensities as demonstrated by
Match bands phenomenon. Another phenomenon is simultaneous contrast, where objects appear
to the eye to become darker as the background gets lighter.

• Brightness Adaptation: The total range of distinct intensity levels that an eye can discriminate
simultaneously is rather small when compared with the total adaptation range. Below that level,
all stimuli are perceived as indistinguishable blacks.

• Weber Ratio (∆IC /I): where ∆IC is the increment of illumination discriminable 50% of the time
with background illumination I. The ability of the eye to discriminate between changes in light
intensity at any specific adaptation level is also of considerable interest.

• The difference of luminance in a restricted area enhances the subjective importance compared to
constant intensity regions.

d) Moving objects capture more attention of the eye compared to the stationary objects.

Considering the above HVS properties, an extensive investigation of several video sequences [Ari08,
Xip10] was carried out to subjectively learn the HVS response to different statistics of video frames and
their corresponding coding modes. Figure 4.14 shows the coding mode distribution (P-MBs in green and
I-MBs in purple) for the 7th frame of �American Football� sequence encoded with the exhaustive RDO-

MD using JM13.2 software of H.264 video encoder [JVT10]. The MBs with red border show the
important MBs in the video frame along with their image statistics in the boxes. The players (helmet and
sharp moving body parts, e.g., legs) are the regions of interest. These areas require better coding mode
compared to other background objects (e.g., grass). Although the background grass is also thin textured, it
is relatively less eye-catching. This grass can be characterized by low gradient and low variance and it
changes only minimal from frame to frame. Therefore, it is highly probable to be encoded as P-MB using
bigger block sizes, i.e., P16x16, P16x8, P8x16, and P8x8 (see Figure 4.14). Moreover, the changes in
brightness (measured by contrast) are also categorized as the region of interest. The higher the contrast is,
the bigger the difference of occurring brightness values is. The helmets, legs, and shirts are indicated by
high contrast value (compared to the background grass that exhibits low contrast) and thus encoded using
I4x4 or P8x8 and below (see Figure 4.14). A further measurement for rapid brightness changes is edge
detection to identify the strength of an edge and the angle of an edge (Figure 4.16). Body parts of the
players contains significantly prominent edges compared to the stationary grass area.

Figure 4.14: Mode Distribution and Video Statistics in the 7th Frame of American Football

This analysis revealed that MBs with high texture and fast motion (e.g., fast moving players) are more
probable to be encoded as I4x4, P8x8, P8x4, P4x8, or P4x4 coding mode. On the contrary, homogeneous
or low-textured MBs with slow motion (e.g., grassy area) are more probable to be encoded as SKIP,
P16x16, P16x8, or P8x16 because the Motion Estimation (ME) has high probability to find a good match.
Similar behavior was found in various other video sequences leading to the conclusion that majority of

4.3 Spatial and Temporal Analysis of Videos Considering Human Visual System

- 65 -

coding modes of a video frame can be predicted correctly (with high-probability) using spatial and
temporal statistics of the current and previous video frames.

Figure 4.15 shows the percentage distribution of the optimal coding in Rafting and American Football
sequences (i.e., fast motion sequences) at different Quantization Parameter (QP) values. It can be noticed
in Figure 4.15 that at higher QP values more than 60% modes are either SKIP or P16x16. Considering a
near-optimal coding mode can be predicted from the spatial and temporal properties of a video sequence,
significant complexity and energy reduction may be achieved.

0

20

40

60

80

100

0

20

40

60

80

100
QPͲ12 QPͲ16 QPͲ20 QPͲ24
QPͲ28 QPͲ32 QPͲ36 QPͲ40

Rafting

P
e
rc
e
n
ta
g
e

 M
o
d
e

D
is
tr
ib
u
ti
o
n

American Football

Skip Inter
16x16

Inter
16x8

Inter
8x16

Inter 8x8
or below

Intra
4x4

Intra
16x16

Skip Inter
16x16

Inter
16x8

Inter
8x16

Inter 8x8
or below

Intra
4x4

Intra
16x16

Figure 4.15: Optimal Coding Mode Distribution in Rafting and American Football Sequences at

different Quantization Parameter (QP) values

Above-discussed analysis revealed that five primitive characteristics of a video frame are sufficient to
categorize an MB, thus to predict a probably-correct coding mode. The decision of which video frame
property to choose can be made considering the tradeoff between computational overhead and the
provided precision in the early mode prediction.

Average Brightness (µMB) is used to categorize an MB as dark or bright. It is the average of luminance
values I(i,j) of an MB (Eq. 4.1).

15 15

0 0
(((,)) 128) 8MB

i j

I i jμ
= =

= + >>∑ ∑ (4.1)

Contrast (CMB) is the difference in visual properties that makes an object distinguishable from the
background and other objects. In this thesis � due to its simplicity � a modified version of Michelson
Contrast [Mic27] is used as shown in Eq. 4.2.

0 (,) 160 (,) 16

max (,) min (,) 8MB
i ji j

C I i j I i j
< << <

⎡ ⎤= − >>⎢ ⎥⎣ ⎦
 (4.2)

Variance (ı2
MB) is a measurement for statistical dispersion (Eq. 4.3), thus it is used as descriptor of

smoothness or measurement of texture. If all samples have the same brightness, then it is a
flat/smooth area and the corresponding Variance is zero.

15 15

2 2

0 0
((,))

MB
MB

i j

I i jσ μ
= =

= −∑ ∑ (4.3)

Gradient (GMB) is defined as the rate of change of luminance. In this case, it measures the average rate of
change of luminance over a whole 16x16 MB, vertically (Gx) and horizontally (Gy). Therefore, it is
regarded as an approximation of texture. The first order Gradient (GMB) along a particular direction is
approximated by using the difference between two pixel along that direction (Eq. 4.4).

Chapter 4 Adaptive Low-Power Video Coding

- 66 -

15 15

0 0

15 15

0 0

(128) 8 , (,) (1,)

(128) 8, (,) (, 1)

(1) / 2

x
i j

y
i j

MB x y

f f
G I i j I i j

x x

f f
G I i j I i j

y y

G G G

= =

= =

∂ ∂= + >> = − −∑ ∑ ∂ ∂

∂ ∂= + >> = − −∑ ∑ ∂ ∂

= + +

 (4.4)

Texture and Edges: In addition to Gradient, a more precise edge detection � operating on a finer
granularity � is required to predict the smaller coding modes more precisely. A Sobel Edge Filter is
applied to obtain the magnitude and the direction of edges for every 4x4 sub-block. The Sobel Edge
Filter has the advantage of providing both differencing and smoothing effect. The total edge values
for a 4x4 sub-block, 8x8 block, and 16x16 MB are computed using Eq. 4.5. The direction angle (in
degrees) with respect to the x-axis is calculated as Į4x4 = (180º/ʌ) * tan-1(Gy/Gx). It is used to classify
an edge into one of the following four directional groups (Figure 4.16).

3 3

0 0

3 3

0 0

3
4 4 8 8 4 4 160

(1, 1) 2 (1,) (1, 1)
(

(1, 1) 2 (1,) (1, 1)

(1, 1) 2 (, 1) (1, 1)
(

(1, 1) 2 (, 1) (1, 1)

; ;

x
i j

y
i j

k
x x y x xk

I i j I i j I i j
S

I i j I i j I i j

I i j I i j I i j
S

I i j I i j I i j

S S S S S S

= =

= =

=

+ − + + + + +⎛ ⎞
= ∑ ∑ ⎜ ⎟− − − − − − − +⎝ ⎠

− + + + + + +⎛ ⎞
= ∑ ∑ ⎜ ⎟− − − − − − + −⎝ ⎠

= + = ∑ 3
16 8 80

k
x xk S== ∑

 (4.5)

The experiments revealed that solely image statistics are not sufficient to form a good prediction of
possible coding mode. A very high textured MB is well captured by ME if it is stationary or exhibit small
translational motion. In fact, the best coding mode may even be a SKIP mode if a textured MB is
stationary. A prediction purely based on image statistics would possibly tend to an Intra mode choice, thus
wasting a noticeable amount of bits. Therefore, in addition to the spatial properties of video sequences, the
temporal properties (i.e., motion-field and mode statistics of the previously encoded spatial and temporal
neighbors) are also evaluated to corroborate the early prediction decision. The following temporal
properties are considered (considering the notion of neighboring MB as shown in Figure 4.16):

Major Direction Intra 4x4 Direction Angle

0 4,5,6 -76.7° < Į < -13.3°
1 1,8 -13.3° < Į < 45°
2 3,7 45° < Į < 76.7°
3 0 76.7° < Į < -76.7°

Figure 4.16: Directional Groups with respect to the Edge Direction Angle and

Notion of Spatial and Temporal Neighboring Macroblocks

SAD and MV of the Collocated MB: A high SAD value and long MVs of the collocated MB points to
the fact that ME could not find a good match, as the MB probably exhibits a hectic motion or it is the
part of a suddenly revealed/hidden object. In this case I-MB may be a good choice as a coding mode,
while a short MV and a small SAD value indicate an Inter mode candidate. If the collocated MB was
predicted to be an I-MB and all P-MB modes were excluded, no ME was executed and therefore no

4.3 Spatial and Temporal Analysis of Videos Considering Human Visual System

- 67 -

SAD value and MV is available. In this case, only weighted SAD combinations of spatially
neighboring MBs are exploited.

SAD and MV of the Spatial and Temporal Neighbors: Similarly, if the SAD value for the neighboring
MBs is small with a short MV, the current MB tends to occupy only medium-to-slow motion and it is
probably part of an object with similar characteristics or background. High SAD values point to the
significant variations in this region, thus I-MB or P-MB with smaller block partitions are the probable
coding modes.

Coding Modes of the Neighboring MBs: Another parameter, considered is the correlation of
neighboring MB coding modes. If several spatial and/or temporal neighboring MB are encoded as I-
MB, the current MB probably belongs to a fast-moving object. Therefore, the probable coding mode
for this is also I-MB. On the contrary, if all neighboring MBs are coded with P-MB modes, the current
MB is likely to be coded with a P-MB mode.

In conclusion, investigating the spatial and temporal properties of MBs reveals very useful information
about the more-probably coding mode.

4.3.1 HVS-Based Macroblock Categorization

The spatial and temporal properties (as discussion in Section 4.3) are used to categorize Macroblocks
(MBs) in the following categories which will hint towards the probable coding mode for these MBs.

Video Frame Statistics based Categorization: Depending upon their spatial statistics, MBs can fall in
one or many of the following categories:

Average Brightness (µMB) very dark (µVD), dark (µD), bright (µB), very bright (µVB)

Contrast (CMB) low (CL), high (CH) contrast

Variance (ı2
MB) very low (VVL), low (VL), high (VH) variance

Gradient (GMB) very low (GVL), low (GL), high (GH) gradient

Edge (SMB) low (SL), highly (SH) edged

Combinations of the above-defined categories are used to predict the MB content characteristics (Eq. 4.6).
A low gradient and a low variance value are very good indicators for smooth and flat regions. If such MBs
exhibit slow motion, P16x16 mode is the more probable coding mode. Similarly, smooth steady regions
are captured by ME using block sizes above P8x8.

_

_

_

(&) (&) (&)

! & & &

 =! & & & (

|| ||

&

!)

 = & &

HighTextured

MB StrongThick

M

H H H H H H

H H B H

B H HB StrongThin

MB ManyTh B Hi Hn

D

H

S V S G G V

V S G

G V

S G V

MB

S

S

S

μ
μ μ

μ

=

=
 (4.6)

Directional Statistics: An edge direction is called dominant if the edge sum belonging to an edge
direction group 'i' (see Figure 4.16) significantly contributes to the total edge sum of this MB.

_

3 0_ _ 1 0

* ; {0,1, 2,1,

0,

3}

0.5 * 0.5 *

MB Dominant

MB Vt MB

i B

H

M

z

EDir
Otherwise

EDir EDi

S S i

S S r S S

ε>⎧
= ⎨

= >

∈

⎩
= >

 (4.7)

Chapter 4 Adaptive Low-Power Video Coding

- 68 -

Motion-Field Statistics are obtained using the motion characteristics of the neighboring MBs as follows:

_

_ _

() / 3

() / 4

MB Spatial

MB Neighbor

L TL T

s MB CollL T TR ocated

SAD SAD SAD

SAD SAD

SA

SAD

D

SAD SAD

+ +

+

=

= + +
 (4.8)

Coding-Mode-FieldTotal Statistics are obtained considering the coding modes of the spatial (in the
current frame Ft) and temporal (in the previous frame Ft-1) neighboring MBs encoded as an I-MB.

_ _ _ _

1 _ 1 _ 1 _ 1 _

1 _

1 _ 1 _ 1

(, , ,)

(, , ,)

()

 (, ,

Spatial Ft L Ft T Ft TL Ft TR

Temporal Ft R Ft DR Ft D Ft DL

TemporalTotal Temporal Ft Collocated

Ft L Ft T Ft

INb isI MB MB MB MB

INb isI MB MB MB MB

INb INb isI MB

isI MB MB MB

− − − −

−

− − −

=

=

= +

+ _ 1 _

1 _

,)

()

TL Ft TR

Total Spatial Temporal Ft Collocated

MB

INb INb INb isI MB

−

−= + +

 (4.9)

4.3.2 QP-Based Thresholding

QP-based thresholds are used for the above-discussed MB categorization (Section 4.3.1) and predicting
the probable coding mode of MBs considering the above-discussed analysis. For higher QP values, the
effect of texture and motion becomes blurry due to the increased number of zero coefficients. It follows
the fact that finding a good prediction is easier for ME, thus the number of injected I-MBs decreases.
Therefore, with changing QP values, the thresholds (related to the decisions operating on the referenced
frames) need to be adapted. This observation is illustrated in Figure 4.17, where P-MBs and I-MBs are
shown in green and purple, respectively. Frame encoded using QP=16 has much higher number of I-MBs
compared to the same frame encoded using QP=38.

Figure 4.17: Mode Distribution of Frame 4 in Rafting Sequence using the Exhaustive RDO-MD

for two different QP values: Left: QP = 16 and Right: QP = 38

Extensive experimentation was performed using different QPs (12 to 40) and several video sequences (only
a small subset of all sequences used for validation in Section 4.4.4) to evaluate these thresholds. Polynomial
curve fitting (using MATLAB) was performed to obtain threshold equations as a function of QP, see Eq.
4.10. Experiments revealed that only the thresholds for SAD, edge sum and motion vector (thus the major
characteristics for motion and texture detection) that operate on the reconstructed video frame react to the
changing QPs. Table 4.3 presents the remaining thresholds (which are not affected by changing QPs) and
other multiplying factors. These QP-based thresholds and the MB categories (Section 4.3.1) based on the
analysis of spatial and temporal properties of the input video are used by the Adaptive Computational
Complexity Reduction Scheme (ACCoReS, Section 4.4) to predict the probable coding mode of MBs.

4.4 An HVS-based Adaptive Complexity Reduction Scheme

- 69 -

3 2

_

2

_

2500, 20

9000, 40

0.3 38.3 115.9 11897,

10000, 20

13000, 28

31.25 1875 15000,

8000,

prev

SAD prev

prev prev prev

prev

E High prev

prev prev

E Low

QP

TH QP

QP QP QP Otherwise

QP

TH QP

QP QP Otherwise

QP

TH

⎧ <
⎪⎪= ≥⎨
⎪
− + − +⎪⎩
⎧ <
⎪⎪= ≥⎨
⎪
− + −⎪⎩

=

(1, 2, 3)

20

10000, 24

500 200,

(20, 45,30), 28

(30,55, 40), 36

1.25 (15,10,5),

prev

prev

prev

prev

MV MV MV prev

prev

QP

QP Otherwise

QP

TH QP

QP Otherwise

<⎧
⎪ ≥⎨
⎪ −⎩

≤⎧
⎪= ≥⎨
⎪ −⎩

 (4.10)

Thresholds

Brightness

µVD 70

Variance

VVL 0.5

Texture

Edge

ThDir 1000

µD 85 VL 1.25 ThS-Fast 5000

µB 135 VH 2 ThS-Slow 1350

µVB 175

Gradient

GVL 5 ThS-P16x16 500

Contrast
CL 0.2 GL 10 ThS-P8x8 1000

CH 0.7 GH 15 ThEdge 200

Intra

Neighbors

ThI1 6 Intra

Neighbors

ThI4 1

SKIP

ThMV-Skip 3

ThI2 4 ThI5 2 ThSAD-Skip 323

ThI3 5 Motion ThAvgSAD 2500 ThS-Skip 4096

Multiplying Factors

Motion

į1 0.4

Motion

į4 0.6
Texture

Edge

Ȍ 2.5

į2 0.6 į5 1.4 İ 0.7

į3 0.5 į6 1

Table 4.3: Thresholds and Multiplying Factors Used in ACCoReS

Summary of Spatial and Temporal Analysis of Videos Considering Human Visual System:

This section illustrated the analysis of spatial and temporal video properties and the relationship of
different video properties and the optimal coding mode are discussed. Based on this analysis a detailed
Macroblock categorization is performed, while considering the properties of the Human Visual System. In
order to react to the run-time varying coding conditions (e.g., bit rates), the thresholds are formulated as a
function of Quantization Parameter. This analysis is used by the adaptive complexity reduction scheme,
energy-aware Motion Estimation scheme, and multi-level rate control.

4.4 An HVS-based Adaptive Complexity Reduction Scheme

The proposed Adaptive Computational Complexity Reduction Scheme (ACCoReS, Figure 4.18) for
H.264 encoder predicts the expected Macroblock (MB) type and its coding mode even before processing
the actual RDO-MD. It uses the spatial and temporal properties of the input video sequence, i.e., image
statistics, motion field properties, and history-based information of the coding modes. The step-by-step
procedure is given as follows.

Chapter 4 Adaptive Low-Power Video Coding

- 70 -

Step-1: First, the HVS-based categorization of MBs (Section 4.3.1) is performed using the spatial and
temporal video statistics and the QP-based thresholds (Section 4.3.2).

Step-2: Afterwards, a Prognostic Early Mode Exclusion for I-MB and P-MB coding modes is
incorporated that excludes the highly unlikely modes. It exploits different image statistics, motion-
field properties, and previously computed distortion data (e.g., based on correlation of the modes of
previously encoded neighboring MBs) to exclude as many I-MB and P-MB coding modes as possible
before the actual RDO-MD and Motion Estimation while keeping the bit rate and distortion loss
within an imperceptible range (see Section 4.4.4). In many cases the curtailed set of modes is left with
either I-MB or P-MB modes, especially for low-motion sequences. As a result it provides a significant
complexity reduction (thus processing improvement and reduced energy consumption) at the cost of
an insignificant overhead due to the image statistics calculation.

Step-3: A second level Hierarchical Fast Mode Prediction analyzes this curtailed set of modes and
provides a set of candidate coding modes, which are then processed for RDO-MD.

Step-4: In the last step, Sequential RDO Mode Elimination is done. It processes the candidate coding
modes one-by-one starting from the bigger partitions. After a mode is processed, it is evaluated for the
termination condition or to exclude further irrelevant modes.

Figure 4.18: Overview of the Adaptive Computational Complexity Reduction Scheme (ACCoReS)

showing Different Processing Steps and MB Categorizations

In the best case, exactly one MB type and only one coding mode corresponding to this MB type (out of 20
for P and 592 for I) is processed. The principal distinctions of the proposed ACCoReS compared to the
state-of-the-art approaches are the Prognostic Early Mode Exclusion and the Hierarchical Fast Mode
Prediction that exclude more than 70% of the possible coding modes even before starting the fast RDO-
MD and ME while keeping the bit rate and distortion loss imperceptible (see Section 4.4.4). Now, the
different processing stages of ACCoReS will be presented in detail.

4.4.1 Prognostic Early Mode Exclusion

The Prognostic Early Mode Exclusion scheme starts with a classification of MBs into the following two
distinct groups using Eq. 4.11:

• Group-A: High-textured MB containing medium to fast motion
• Group B: Flat, homogenous regions with slow motion

Algorithm 4.2 and Algorithm 4.3 present the pseudo-codes of Prognostic Early Mode Exclusion for both
Group-A and Group-B, respectively. In case of Group-A, I16x16 is excluded (line 3) due to high texture
and the best choice would most probably be P8x8 or I4x4. However, exclusion of P16x16 at this point is

4.4 An HVS-based Adaptive Complexity Reduction Scheme

- 71 -

critical as a wrong exclusion may result in a significantly increased bit rate. Therefore, the exclusion
decision of P16x16 is performed in the Hierarchical Fast Mode Prediction step. Lines 4-7 and 8-11 check
for slow motion using the motion statistics of the spatial neighboring MBs and exclude the smaller block
partitions and I4x4 (line 5, 9). Lines 12-15 detect a high texture and hectic motion region. In this case,
I4x4 coding mode is selected and all other modes are excluded.

_

_ _ _

_

4

||)) || ||

 || || ||

 ||))

, (& (

()

|| (&)

|| (() & (! & (!))

| ((|

HighTextured MB Dominant

MB StrongThick MB StrongThin MB ManyThin

HighTextured MB Collocat

B H

ed
MB

Total I

S

H

SAD

VB L L

A MB EDir

S S S

MB SAD
Group

INb T

C V

T

G

N

V

I

h

h

b

μ

μ
=

>

>

4 16 16) & ())

,

patial I x EdgeTh S Th

B Otherwise

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪ > >
⎪
⎪⎩

 (4.11)

In case of Group-B, a more sophisticated scheme systematically excludes the most unlikely modes. Lines
3-5, 6-9, 13-27 check for slow motion, flat and homogenous region, respectively. In these cases, I4x4,
P8x8 and smaller partition modes are excluded. If a homogenous MB is stationary, P16x16 is predicted to
be the most probable coding mode; otherwise, I16x16 is additionally processed (line 8). Lines 15-18, 19-
25, 28-31 detect low motion and dark low-to-medium texture to exclude I4x4 mode; otherwise, I4x4
mode is re-enabled to avoid significant visual quality loss. Lines 33-39 assure that modes with smaller
block partitions are only excluded if low motion and/or low textured are detected.

1. GROUP-A: High-textured MB containing medium-to-fast motion
2. M = {P16x16, P16x8, P8x16, P8x8, P8x4, P4x8, P4x4, I16x16, I4x4} // Initialize the possible coding

modes with all modes
3. M ä M \ {I16x16}; // Exclude I16x16
4. If (SADMB_Spatial < į3*ThSAD) {
5. M ä M \ {P8x8, P8x4, P4x8, P4x4, I4x4}; // Exclude I4x4, P8x8 and below
6. return; // Go to Step-3 (Section 4.4.2)

7. }
8. If ((PredMV_Spatial < ThMV1) & (SADMB_Spatial < į4*ThSAD)) {
9. M ä M \ {I4x4}; // Exclude I4x4

10. return; // Go to Step-3
11. }
12. If (((INbTemporalTotal > ThI1) & (INbSpatial > ThI2)) || ((PredMV_Spatial > ThMV2) & ((SADMB_Collocated > ThSAD) ||

(INbTotal > ThI3)))) {
13. M ä M \ {P8x8, P8x4, P4x8, P4x4}; // Exclude P8x8 and below
14. return; // Go to Step-3

15. }
16. return; // Go to Step-3

Algorithm 4.2: Pseudo-Code of Group-A for Prognostic Early Mode Exclusion

4.4.2 Hierarchical Fast Mode Prediction

The Hierarchical Fast Mode Prediction (Figure 4.19) performs a more refined second-level mode
exclusion to obtain a set of candidate coding modes, which is later evaluated by the RDO-MD process
with an integrated Sequential RDO Mode Elimination mechanism.

P16x16 Mode Prediction: If all modes except P16x16 are already excluded, then P16x16 is processed
unless SKIP mode is detected in the last step of Figure 4.19. On the contrary, P16x16 is excluded if
the MB has fast motion and high texture.

Chapter 4 Adaptive Low-Power Video Coding

- 72 -

1. GROUP-B: Flat, homogenous regions with slow-to-medium motion
2. M = {P16x16, P16x8, P8x16, P8x8, P8x4, P4x8, P4x4, I16x16, I4x4} // Initialize the possible coding modes

with all modes
3. If (SADMB_Spatial <= į1*ThSAD) {
4. M ä M \ {P8x8, P8x4, P4x8, P4x4, I4x4}; // Exclude I4x4, P8x8 and below
5. }
6. If (VL & GVL & (!SMB_StrongThick) & (!SMB_StrongThin) & (!SMB_ManyThin)) {
7. If ((SADMB_Collocated < į3*ThSAD) & (SADMB_Spatial < į2*ThSAD)) {
8. M ä M \ {I16x16}; // Exclude I16x16
9. }
10. M ä M \ {P8x8, P8x4, P4x8, P4x4, I4x4}; // Exclude I4x4, P8x8 and below
11. return; // Go to Step-3
12. }
13. If (VL & GL & SL) {
14. M ä M \ {P8x8, P8x4, P4x8, P4x4, I16x16}; // Exclude I16x16, P8x8 and below
15. If ((µD || CL) & (!MBHighTextured)) {
16. M ä M \ {I4x4}; // Exclude I4x4
17. return; // Go to Step-3
18. }
19. If ((PredMV_Spatial < ThMV1) & (SADMB_Spatial < į2*ThSAD)) {
20. M ä M \ {I4x4}; // Exclude I4x4
21. }
22. If ((SADMB_Spatial < į5*ThSAD) & ((SADMB_Neighbors < į5*ThSAD) & (!MBHighTextured) & (INbSpatial > ThI4)) {
23. M ä M \ {I4x4}; // Exclude I4x4
24. return; // Go to Step-3
25. }
26. return; // Go to Step-3
27. Else {
28. If (µD & GL & (!MBHighTextured)) {
29. M ä M \ {I4x4}; // Exclude I4x4
30. return; // Go to Step-3
31. }
32. Exclude I16x16 and Re-enable I4x4
33. If ((SADMB_Spatial < į5*ThSAD) & ((SADMB_Neighbors < į5*ThSAD) & (!MBHighTextured) & (INbSpatial > ThI4)

 || ((PredMV_Spatial < ThMV1) & (isI(MBFt-1_Collocated))) {
34. M ä M \ {I4x4}; // Exclude I4x4
35. }
36. If (PredMV_Spatial > ThMV3) {
37. M ä M \ {P8x8, P8x4, P4x8, P4x4 }; // Exclude P8x8 and below
38. return; // Go to Step-3
39. }
40. return; // Go to Step-3
41. }

Algorithm 4.3: Pseudo-Code of Group-B for Prognostic Early Mode Exclusion

P16x16, P16x8, P8x16 and P8x8 Mode Prediction: Based on the assumption �the pixels along the

direction of local edge exhibit high correlation, and a good prediction could be achieved using those

neighboring pixels that are in the same direction of the edge�, the main edge direction is investigated
to split the MB accordingly. Hence, if the main edge direction is determined to be horizontal or
vertical, P16x8 or P8x16 block type is chosen, respectively. A very small edge sum points out the
presence of a homogeneous region, so only the P16x16 is processed.

Sub-P8x8 Mode Prediction: In case the SAD of the neighboring MBs is too high, P4x4 mode is
predicted. In case the dominating horizontal or vertical edge direction is detected, P8x4 or P4x8
partition is selected, respectively.

4.4 An HVS-based Adaptive Complexity Reduction Scheme

- 73 -

Skip Mode Prediction: If SAD of an MB in P16x16 mode is significantly low, a perfect match could be
very well predicted by ME. Such MBs are highly probable to be SKIP, thus saving complete ME
computational load. Similarly, if the collocated MB is highly correlated with the current MB, then the
probability of SKIP is very high, e.g., the complete region is homogeneous. Moreover, if the MB lies
in a dark region, the human eye cannot perceive small brightness variations. Thus, the insignificant
distortion introduced by a forceful SKIP is tolerable here.

Figure 4.19: Processing Flow of the Hierarchical Fast Mode Prediction

4.4.3 Sequential RDO Mode Elimination

An integrated Sequential RDO Mode Elimination mechanism re-evaluates the candidate coding modes for
sequential elimination, i.e., after P16x16 is processed, P16x8, P8x16, P8x8, and below are re-evaluated
for elimination as specified in Figure 4.19. However, for Sequential RDO Mode Elimination, the spatial
SAD and MV values are replaced by the actual SAD and MV of the previously evaluated mode.

4.4.4 Evaluation of the Complexity Reduction Scheme

Table 4.4 provides the comparison (average and maximum) of ACCoReS with the exhaustive RDO-MD
for distortion, bit rate (a positive ∆Bit Rate shows the bit rate saving) and speedup. Each result for a
sequence is the summary of 8 encodings using different QP values. The average PSNR loss is
approximately 3%, which is visually imperceptible. However, ACCoReS provides a significant reduction
in the computational complexity, i.e., performance improvement of up to 19x (average 10x) compared to

Chapter 4 Adaptive Low-Power Video Coding

- 74 -

the exhaustive RDO-MD. The major speedup comes from slow motion sequences (Susie, Hall, Akiyo,
Container, etc.) as smaller block partitions and I-MB coding modes are excluded in the Prognostic Early
Mode Exclusion stage.

AVERAGE MAXIMUM

Sequence ∆PSNR ∆Bit Rate Speedup ∆PSNR ∆Bit Rate Speedup

CIF

Bus 3.35 6.69 9.07 4.63 12.00 11.56

Susie 1.87 1.64 11.91 2.47 12.37 14.59

Football 4.91 2.74 9.65 5.66 3.37 13.05

Foreman 2.02 4.44 9.97 3.31 16.73 12.70

Tempete 3.42 10.22 8.47 4.78 14.53 10.75

Hall 1.82 6.79 12.33 4.34 29.92 14.81

Rafting 4.29 4.51 9.72 4.84 5.67 12.62

Mobile 3.38 6.42 8.52 5.05 11.61 10.99

Am. Football 3.91 7.81 8.76 5.41 10.52 11.61

QCIF

Akiyo 0.61 -3.41 12.75 1.24 1.75 17.27

Carphone 2.44 6.39 10.20 3.19 11.51 12.86

Coastguard 2.53 4.58 9.35 4.04 11.32 12.53

Container 1.06 -7.15 13.00 1.57 4.01 19.13

Husky 4.83 5.73 7.71 6.18 7.44 10.31

Miss America 0.73 -8.86 12.05 1.72 14.25 14.72

News 1.77 -3.64 12.21 2.12 0.37 16.71

Table 4.4: Summary of PSNR, Bit Rate, and Speedup Comparison for Various Video Sequences

(Each encoded using 8 different QPs)

Figure 4.20 presents the percentage mode exclusions with respect to the total possible mode combinations
for a large set of diverse sequences (averaged results for QPs ranging from 12 to 40). In the best case, up
to 73% (average >50%) coding modes are excluded. Figure 4.20 also shows that the large number of
modes are excluded in case of slow motion sequences (Susie, Hall, Akiyo, Container, etc.) due to the early
exclusion of smaller block partitions and I-MB coding modes. Figure 4.21 shows the breakdown of
different modes used in encoding of various sequences. In case of slow-motion sequences (Akiyo, Susie,
and Carphone) more modes are excluded because of the correct identification of homogeneous regions. In
this case more P8x8 and I4x4 are excluded with an insignificant loss in rate and distortion (see Table 4.4).
On the contrary, more I4x4 modes are processed for Rafting and Bus.

0

20

40

60

80

E
xc
lu
d
e
d
M
o
d
e
s [
%
] Each Bar is averaged over 8 QP values

Figure 4.20: Percentage Mode Excluded in ACCoReS for Various Video Sequences

Figure 4.22 shows the number of SAD computed using the ACCoReS scheme and the exhaustive RDO-

MD scheme for various video sequences. ACCoReS computes on average 27% of the SADs computed by
the exhaustive RDO-MD scheme. The major SAD savings come in case of fast -motion (Football,
Foreman, and Rafting) and highly textured sequences (Tempete and Mobile) as bigger block partitions are
excluded in the Prognostic Early Mode Exclusion stage.

4.4 An HVS-based Adaptive Complexity Reduction Scheme

- 75 -

0

20000

40000

60000

80000

100000

120000

Akiyo Carphone Rafting Bus Susie

P16x16, P16x8, P8x16
P8x8 & Below
I16x16

I4x4

Figure 4.21: Distribution of Mode Processing for QP=28

0

20

40

60

80

100

120

140

N
u

m
b

e
r

o
f

S
A

D

[i
n

 M
il
li
o

n
s
]

Exhaustive RDOͲMD

ACCoReS

On Average, only

7% of all SADs

are computed

compared to RD

on Mode

Figure 4.22: Comparison of Total SAD Computations for various video sequences

In-Depth Comparison with the Exhaustive RDO-MD

Figure 4.23 shows the in-depth comparison of ACCoReS with the exhaustive RDO-MD for Susie
sequence. It shows that ACCoReS suffers from an average PSNR loss of 0.8 dB (max: 1.4 dB, min: 0.19
dB), which is visually imperceptible (above 40 dB). However, ACCoReS achieves a significant reduction
in the computational complexity, i.e., ACCoReS processes only 17% of SADs (reduced ME load which is
the most compute-intensive functional block) compared to the exhaustive RDO-MD. Red circles in the
Figure 4.23 show the region of sudden motion that causes disturbance in the temporal-field statistics. As a
result, ACCoReS suffers from a higher PSNR loss but also provides high SAD savings. Moreover,
ACCoReS maintains a smooth SAD computation curve, which is critical for embedded systems, while the
exhaustive RDO-MD suffers from excessive SADs. The PSNR curve shows that after frame 70, the mode
prediction quality of ACCoReS improves due to the stability in the temporal-field statistics.

Figure 4.24 shows the frame-wise distribution of correct mode selection by ACCoReS for Susie
sequence at QP=28. On average 74% of MBs are encoded with the correct mode (MB Type and the
corresponding block size), i.e., as selected by the exhaustive RDO-MD. The correct modes predicted by
ACCoReS range from 63% to 83%.

Figure 4.25 illustrates the visual comparison of coded modes using ACCoReS (left-side) and the
exhaustive RDO-MD (right-side) for the 17th video frame of the American Football sequence (QP=28).
The grassy region is almost correctly predicted (i.e., mostly P16x16 and partitions above P8x8 are used)
and no I4x4 are false predicted. ACCoReS predicts nearly in all cases P16x16 for the grassy region,
because it is quite homogeneous and the motion is low. In overall, the prediction complies with the best
mode (as predicted by the exhaustive RDO-MD) in most of the cases. Similar observations hold for the
players at the left and right border side. The main different point is encircled in red, where the exhaustive

RDO-MD used I4x4 while ACCoReS failed to predict. The movement is slightly below the motion
threshold, thus is not detected as fast-moving region. Additionally, this area is considered flat as it is

Chapter 4 Adaptive Low-Power Video Coding

- 76 -

blurred and exhibit less texture details. Consequently, these MBs are encoded with P8x8 and above
modes. On average, wrong decisions in this frame generate a PSNR loss of 1.2 db (33.28 dB vs. 34.52
dB), while both frames required a similar amount of bits (76672 vs. 77760 bits). On overall, the proposed
ACCoReS predicts more than 70% of the total modes similar to the exhaustive RDO-MD.

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

37

38

39

40

41

42

43

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

First I-Frame

no SAD

computation

Sudden motion!

Heavy P8x8 ME

Max. Error: 1.4db
Exhaustive RDOͲMD

ACCoReS

P
S

N
R

S
A

D
 [

x
1

0
3
]

Changing number of SADs

due to adaptivity of UM-

HexagonS Motion Estimator

for exhaustive RDO-MD

Figure 4.23: Frame-Level in-depth Comparison for Susie Sequence

40%
50%
60%
70%
80%
90%

0 20 40 60 80 100 120 140

Average:73.7 %

Frames

C
o

rr
e

c
t

M
o

d
e

s

Figure 4.24: Frame-Level in-depth evaluation of correct mode prediction

Figure 4.25: MB-level Mode Comparison with the Exhaustive RDO-MD: Frame 17 of American

Football. Left: ACCoReS [PSNR=33.28 dB], Right: Exhaustive RDO-MD [PSNR=34.52 dB]

Overhead of Computing Video Sequence Statistics

The performance gain of ACCoReS comes at the cost of additional computation of spatial and temporal
video statistics. Experiments demonstrate that the PC-based software implementation of these statistics
computations are 4.6% of the total encoding time using ACCoReS, which is already up to 19x smaller
than the encoding time with the exhaustive RDO-MD. Compared to the performance savings of

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

- 77 -

ACCoReS, this overhead is negligible. The additional memory requirements are
(#statistics)*#MBs*16bits, where #spatial + #temporal statistics = 5 + 2.

Summary of the HVS-based Adaptive Complexity Reduction Scheme:

This section presented the adaptive computational complexit reduction scheme that excludes the
improbable coding modes even before the actual RDO-MD and Motion Estimation processes. This
scheme uses the HVS-based MB categorization. First the impborable modes are excluded from the
candidate list in a relaxed prognostic early mode exclusion step. Afterwards, a more aggressive exclusion
is curtailing of the candidate coding mode set is performed in a hierarchical fast mode prediction step. The
output of this step is processed using an RDO-MD with consideration of sequential mode exclusion, i.e.,
depending upon the output of an evaluated mode, further modes are excluded from the candidate set.

4.5 Energy-Aware Motion Estimation with an Integrated
Energy-Budgeting Scheme

As discussed in Section 3.1, Motion Estimation (ME) is the most compute-intensive and energy
demanding functional blocks of an H.264 encoder. Figure 3.3 in Section 3.1.2 illustrated that ME may
consume up to 65% of the total encoding energy, where the ME energy consumption is directly
proportional to the number of computed SADs to determine the best match (i.e., the MB with the
minimum distortion). The available energy budgets may change according to various application
scenarios on mobile devices. Varying motion types and changing status of available energy budgets
stimulate the need for a run-time adaptive energy-aware Motion Estimation scheme while exhibiting
minimal loss in video quality (PSNR). The energy-aware Motion Estimation needs to consider the
following run-time varying scenarios while keeping a good video quality (PSNR). These scenarios are:
• available energy (due to a changing battery levels or allocated energy in a multi-tasking system)
• video sequence characteristics (motion type, scene cuts, etc.)
• user-defined coding conditions (duration, quality level, etc.)

The challenge that arises here is: how much energy budget should be allocated to the ME of one
video frame or even one MB when considering run-time varying scenarios (as argued above). The
allocated energy-budget to an MB or video frame will determine the number of computed SADs. For a
fast moving MB more ME effort is required while for a stationary MB less effort is required (i.e., reduced
number of SADs). A less ME effort for a textured MB with high motion may result in significant PSNR
loss. Therefore, in order to efficiently exploit the available energy, carefully allocating the energy budget
to different frames and MBs is crucial. It is obviously not trivial to decide under which circumstances the
allocated energy budget will be sufficient enough to keep the PSNR loss insignificantly low (compared to
Full Search ME) when considering run-time varying scenarios. Hence, a run-time adaptive energy-
budgeting scheme for energy-aware Motion Estimation is desirable.

This section introduces a novel run-time energy-aware Motion Estimation scheme for H.264 that
adapts at run time according to the available energy level. It consists of different processing stages. The
Motion Estimator is integrated with a predictive energy-budgeting (enBudget) scheme that predicts the
energy budget for different video frames and different Macroblocks (MBs) in an adaptive manner
considering the run-time changing scenarios of available energy, video frame characteristics, and user-
defined coding constraints while keeping a good video quality. This is achieved by so-called Energy-

Quality (EQ) Classes that the enBudget scheme assigns to different video frames and fine-tunes at MB
level depending upon the predictive energy quota. Each EQ-Class represents a different ME
configuration. Therefore, these EQ-Classes differ in term of their energy requirements and the resulting
video quality. The enBudget scheme does not waste energy budget for homogeneous or slow moving parts
of a video sequence that do not require high ME effort (i.e., more SAD computations). Instead, the saved

Chapter 4 Adaptive Low-Power Video Coding

- 78 -

energy budget in case of slow motion sequences is allocated to the high motion sequences. This enables
the enBudget scheme to dynamically move in the energy-quality design space at run time using the
concept of EQ-Classes.

The enBudget scheme requires an adaptive Motion Estimator with multiple processing stages in order
to realize EQ-Classes. A novel Motion Estimator is proposed in the scope of this work to facilitate the
design of EQ-Classes considering different processing stages.

4.5.1 Adaptive Motion Estimator with Multiple Processing Stages

Now the constituting processing stages of the proposed adaptive Motion Estimator will be explained.

a) Initial Search Point Prediction: An adaptive Motion Estimator starts with an Initial Search

Point Prediction stage that provides a good guess of the vicinity where the best match has a high
probability to be found. A good predictor provides a good starting point to converge quickly to the
best match (i.e., near-optimal Motion Vector, MV). Based on the assumption, the blocks of an object

move together in the direction of the object motion, spatial and temporal neighbors are considered as
good predictor candidates. Therefore, MV of the current MB is highly correlated with MVs of the
spatially and temporally adjacent MBs that have been previously calculated. A set of predictors is
selected by analyzing the MV difference distribution between various predictors (see Eq. 4.12 and
the predictor set below) and the optimal MV (i.e., obtained by using the Full Search algorithm).
Figure 4.26 (a-c) shows that spatial median predictor (MedianSpatial, Eq. 4.12) has a higher correlation
with the optimal MV compared to the temporal median predictors (MedianTemporal1, MedianTemporal2,
Eq. 4.12). This implies that MedianSpatial needs to be examined first as it has high probability to be the
True Predictor23 (i.e., to find a near-optimal MV). It is noticed that MedianTemporal1 and MedianTemporal2
are also highly probable to be the True Predictors especially when the MB is moving vertically or
horizontally with a constant velocity.

103

10

2

6

0

Ͳ44

0
4

Ͳ4

103

10

2

6

0

Ͳ44

0
4

Ͳ4

104

1

2

0

Ͳ44

0
4

Ͳ4

104

2

1

0

Ͳ44

0
4

Ͳ4

104

5

1

3

0

Ͳ44

0
4

Ͳ4

104

1

3

0

Ͳ44

0
4

Ͳ4

5

a) Spatial Median b) Temporal Median 1 c) Temporal Median 2

d) All Spatial e) All Temporal f) All Predictors

Figure 4.26: Motion Vector Difference Distribution in Foreman Sequence (256 kbps) for Various

Predictors Compared to the Optimal Motion Vector (obtained using the Full Search algorithm)

Figure 4.26 (d-e) illustrates that the spatial predictors exhibit a higher correlation with the optimal MV
compared to the temporal predictors. On overall, when considering all of the predictors the probability

23 True Predictor represents the displacement close to the optimal MV obtained by the Full Search algorithm.

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

- 79 -

of finding a near-optimal MV is very high and refinement search stage will provide the best MV
(MVBest, close to or similar to that of the Full Search algorithm). The final selected predictor set is:

PredictorsSpatial = {MVZero, MVLeft, MVTop, MVTop-Left, MVTop-Right, MedianSpatial}

PredictorsTemporal = {MVCollocated, MedianTemporal1, MedianTemporal2}

MVCollocated is the MV of the collocated MB in the previous frame (Ft-1).

 (, ,)

 (, ,)

 (, ,)

t

t 1

t 1

Spatial Left Top Top Right F

Temporal1 Left Top Top Right F

Temporal 2 Right Down Down Right F

Median median MV MV MV

Median median MV MV MV

Median median MV MV MV

−

−

−

−

−

=

=

=

 (4.12)

After analyzing the predictor correlation in Figure 4.26, a set of conditions is formulated for the early
termination of the ME process. Figure 4.27 shows the conditions for the predictor set for early
termination to save energy depending upon the characteristics of motion field. Motion field changes
with the properties of input video sequence thus results in adaptation at run time. Selected predictors
are processed for SAD. The predictor with minimum SAD is compared against Thresholdpred (see Eq.
4.13) for early termination. If early termination is not detected then this predictor serves as the search
center for the next ME stage.

Figure 4.27: Predictor Conditions for Motion-Dependent Early Termination

b) Search Patterns: The Initial Search Point Prediction stage is followed by Traversing the Search

Pattern stage, which takes the best predictor as the search center and evaluates different candidate
points on the search pattern. The proposed adaptive Motion Estimator incorporates the following four
different search patterns:

• Octagonal-Star Search Pattern: This pattern consists of 20 search points and handles large
irregular motion cases. Figure 4.28 shows an Octagonal-Star search pattern executing at a

Chapter 4 Adaptive Low-Power Video Coding

- 80 -

distance of 8 pixels from the search center. For small-medium motion and CIF/QCIF video
sequences only one Octagonal-Star search pattern is processed. For heavier motions/high
resolutions (D-1, HD), multiple Octagonal-Star search patterns may be executed (each extended
by a pixel distance of 8). The MV with minimum SAD in this step will be chosen as the search
center of the next search pattern.

• Polygon and Sparse Polygon Search Patterns: A Polygon search pattern consists of 10 search
points and narrows the search space after processing of Octagonal-Star search pattern.
Figure 4.28 shows both Polygon and Sparse Polygon search patterns. This search pattern favors
horizontal motion over vertical motion, because in typical video scenes horizontal motion is
dominant as compared to the vertical motion. The MV with minimum SAD after this processing
stage serves as the center for the next search pattern.

• Small Diamond Search Pattern: At the end, a 4-point Diamond search pattern is applied to
refine the motion search.

If the calculated SAD of a candidate point in a search pattern is less than the current SADBest, then
SADBest and MVBest are replaced by the calculated SAD and the candidate point. After processing all
candidates points, the SADBest is checked against a threshold to check the termination criterion. If not
terminated, MVBest is set as the center for the next search step.

c) Stopping Criteria: Early termination is integrated in patterns to stop the search in case the current
SADBest is smaller than a threshold. Early termination results in energy saving but care should be
taken in consideration to avoid false termination. Two different thresholds are used for early
termination: Thresholdpred in the Initial Search Point Prediction stage and Thresholdpattern in the
Search Patterns stage (Eq. 4.13).

 * (1) *

 * (1) *

pred stationaryMB power

pattern stationaryMB power

Threshold SAD

Threshold SAD

δ α
γ α

= +

= +
 (4.13)

SADstationaryMB thereby is the SAD for a static MB (i.e., with zero motion). Įpower (Eq. 4.13) is the
power-scaling factor that provides a tradeoff between reconstructed video quality and energy
consumption. The value of Įpower is determined dynamically (see Eq. 4.14). EC1 and EC1 are the
normalized energy values of two consecutive EQ-Classes values.

1 2

1.0; For the highest Energy EQ-Class

(); Else
power

power C CE E
α

α
⎧

= ⎨ + −⎩
 (4.14)

į and Ȗ are modulation factors to provide a tradeoff between reconstructed video quality and search
speed. Initial values of į and Ȗ are determined by Quantization Parameter (QP; see Eq. 4.15). The
larger the value of QP is, the larger are the values of į and Ȗ. This is due to the following reason:
when the quantization step is larger, the quantization noise is also larger and most of the details of the
reconstructed image are lost and in this case, the difference between the best matching block and the
sub-optimal matching block becomes blurry. c1 and c2 are user-defined weights to control the effect
of change in QP value. If ME fails to achieve the time line, i.e., targeted frame rate (FrameRateTarget)
encoding, then the values of į and Ȗ are increased at the cost of loss in PSNR (Eq. 4.15).

1

2

 * (20? 20 : 0)

 + () / (2 *)

 * (20? 20 : 0)

 + () /

Target Achieved Target

Target Achieved Target

c QP QP

FrameRate FrameRate FrameRate

c QP QP

FrameRate FrameRate FrameRate

δ
δ
γ
γ

= > −
= −

= > −
= −

 (4.15)

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

- 81 -

A technique to reduce the energy of ME is block matching with pixel decimation. Therefore, for reducing
the energy of one SAD computation, several pixel decimation patterns are proposed that are discussed in
the following.

Matching Criterion (SAD) Decimation Patterns: For block matching, the matching criterion
(SAD) is evaluated using every pixel of the MB. For one SAD computation, 256 subtractions, 256
absolute operations, 255 additions are required along with loading of 256 current and 256 reference MB
pixels from memory. In order to save energy for one SAD computation (reducing memory transfers and
computation) some pixels from SAD computations may be excluded when the available energy is low.
Since the block-based ME is based on the assumption that all the pixels in an MB move by the same

amount, therefore, a good estimation of motion could be obtained by using only a fraction of the pixels in
an MB. An aggressive decimation will result in an inaccurate ME if the videos contain small objects or
high texture information. Therefore, the main issue is to find such a scheme for matching pixel decimation
that will not cause much degradation in visual quality. Figure 4.28 shows four decimation patterns
considered for evaluation.

Figure 4.28: Four Search Patterns used in the Adaptive Motion Estimator

and the Pixel-Decimation Patterns for SAD Computation

AltPixel, AltGroup4, AltRow patterns (Figure 4.28) reduce the number of pixels for SAD computation by
2, while AltGroup4AltRow reduces by 4 that directly corresponds to an energy reduction (due to reduced
memory transfers and computations) and still provides an insignificant PSNR loss. An analysis to explore
the quality impact (PSNR in dB) of these patterns on four benchmark Motion Estimators (see details in
Section 2.2.3) is shown in Table 4.5. AltGroup4AltRow gives a PSNR loss of 0.2 dB and 0.34 dB for
EPZS [Tou02] and UMHexagonS [CZH02], respectively.

 Video Quality of Different SAD Decimation Patterns (PSNR [dB])

Motion Estimator Original Alt-Pixel Alt-Group4 Alt-Row AltGroup4-AltRow

Full Search 40.31 40.26 40.26 40.25 40.09

UMHexagonS 40.24 40.16 40.14 40.16 39.90

UMHexagonS Simple 40.18 40.06 40.04 40.05 39.80

EPZS 40.29 40.24 40.25 40.24 40.09

Table 4.5: Comparing the Video Quality of Different SAD Decimation Patterns

for Encoding of Susie CIF video sequence (30fps@256 kbps)

Although AltPixel and AltGroup4 reduce the energy, these are not very beneficial for cache-based
architectures because the data is already in the cache. On the other hand, AltRow and AltGroup4AltRow

Chapter 4 Adaptive Low-Power Video Coding

- 82 -

are beneficial for cache-based architectures as they skip row by row. Skipping the complete row is not
advantageous for heavy-textured videos with small objects. Therefore, only AltGroup4AltRow (obtain a
significant energy reduction even for cache-based architectures) and AltGroup4 (counter the issue of
heavy-textured videos) are used for designing EQ-Classes as they provide good tradeoff between energy
saving and PSNR loss. These patterns scale down accordingly for different block modes in H.264.

Now the enBudget scheme will be presented. It uses the above-mentioned adaptive Motion Estimator
for designing the EQ-Classes, where each EQ-Class represent a certain ME configuration in terms of
different ME stages, i.e., a certain combination of settings of Initial Search Point Predictors, Search

Patterns, and SAD Decimation Patterns.

4.5.2 enBudget: The Adaptive Predictive Energy-Budgeting Scheme

Figure 4.29 shows the overview of the enBudget scheme. The proposed scheme has three major phases:

• Group of Pictures (GOP)-level allocated energy quota computation
• Frame-level energy budget prediction and Base EQ-Class selection.
• MB-level EQ-Class refinements and upgrading/downgrading of Base EQ-Class to determine the

final EQ-Class for each MB.

The input to the enBudget scheme is available energy (battery status), user constraints (e.g., quality level,
desired duration of encoding, etc.), compile-time analysis of ME (i.e., average case energy distribution in
a video encoder, see Figure 3.3 in Section 3.1.2), encoder configuration (e.g., encoding frame rate and
target bit rate), and video frame properties (Brightness, Texture, SAD, and MV). A set of compile-time
designed EQ-Classes with average and minimum energy requirements is provided to the enBudget
scheme. The average energy is estimated through extensive experiments using a wide-range of video
sequences with diverse properties. However, at run time the average energy is updated considering the
actual energy consumption of the EQ-Class (that depends upon the currently coded video sequence) using
a weighted error mechanism. The step-by-step flow of the enBudget scheme is as follows:

GOP-Level: It may happen that the early GOPs in the video sequence may consume a major portion of
the total available energy and the later GOPs are left with too less energy budget. This may harm the
overall PSNR of the video sequence. Therefore, to avoid such scenarios, each GOP is allocated a
separate energy quota.

Frame-Level: Available energy status, user-defined constraints, compile-time analysis of ME, and
encoder configuration are used for computing the allocated energy quota (EQuota) which is same for all
frames in a GOP. It may happen that the EQuota is more than the actual energy requirements of one
frame ME. Examples of such scenarios are (a) the battery level is full and user wants a short duration
encoding, (b) the frame is homogenous and stationary or it exhibits low-to-medium motion, (c) the
motion properties are amenable to the search pattern of the ME. In this case, the over-estimated EQuota
is adjusted for computing the predictive energy budget (Epred) of a frame, such that the energy wastage
due to the unnecessary SAD computations (as possible in above-mentioned a-c cases) is avoided.
Depending upon the Epred value a frame-level Base EQ-Class is determined. After each frame is
encoded, Epred of the next video frame is readjusted in a feedback loop considering that consecutive
video frames exhibit high correlation (except scene cuts).

Macroblock-Level: Since different MBs of a frame may exhibit diverse texture and motion properties, an
energy distribution approach is incorporated that gives more energy to the complex MBs (i.e., high
texture, high motion) and less energy to homogenous or slow-moving MBs. In order to provide a
consistent control at frame-level, the Base EQ-Class is kept same for all MBs in the frame and
refinements are computed for each MB. A refinement may be defined as the upgrade or downgrade

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

- 83 -

step to the Base EQ-Class that determines a higher energy class or lower energy class with respect to
the Base EQ-Class. To avoid the violation of the Epred, a clipping mechanism is integrated. For an
MB, a final MB-level EQ-Class is then determined and the ME configuration (e.g., Search Pattern,
SAD Decimation Pattern) for the corresponding EQ-Class is set. Afterwards, the ME is performed for
an MB and the actual energy consumption (Econsumed), SAD, and MV are monitored.

After encoding all of the MBs in a video frame, the difference between EQuota and Econsumed is computed
and the Epred for the next frame is updated in a feedback loop using this error. Moreover, depending upon
the error between the energy of Base EQ-Class (EBaseClass) before ME and Econsumed, the energy of all EQ-
Classes is re-adjusted (see Figure 4.29).

Figure 4.29: Flow of the enBudget Scheme for Energy-Aware Motion Estimation

Before moving to the run-time algorithm of the enBudget scheme, the design of EQ-Classes is discussed
that serve as the foundation to the enBudget scheme and enables it to move in the energy-quality design
space at run-time.

Designing Energy-Quality (EQ) Classes

The enBudget scheme supports the run-time tradeoff between the allocated energy to the ME and the
resulting visual quality (PSNR) for a given bit rate using the design-time prepared Energy-Quality (EQ)

Classes. More SAD computations will provide better match (i.e., better PSNR) but at the cost of higher
energy consumption. These EQ-Classes are designed using various combinations of the Initial Search
Point Prediction, Search Patterns, and SAD Decimation Pattern of the adaptive ME (as discussed in
Section 4.5.1). Each EQ-Class provides an energy saving (as it differs in its ME configuration) and suffers
from a certain PSNR loss. Ideally for computing the energy saving and PSNR loss, EQ-Classes should be
benchmarked against the Full Search ME as it provides the optimal match. However, as discussed in
Section 2.2.3, the Full Search ME demands huge amount of energy and it is impracticable in real-world
applications. Therefore, UMHexagonS (a fast adaptive ME provides almost similar PSNR compared to the
Full Search ME while providing huge computation reduction [CZH02]) is used as a benchmark for
computing the energy savings and PSNR loss of different EQ-Classes.

Figure 4.30 shows the EQ-Class energy-quality design space for Foreman video sequence (CIF@30fps,
256 kbps). Since the ME configurations form a discrete set of EQ-Classes, the problem of optimal ME
configuration selection (i.e., EQ-Class selection) can be solved by Pareto analysis [Das99]. In the
experiments of Figure 4.30, 8 Search Pattern combinations, 4 sets of Initial Search Point Prediction, and 3
SAD Decimation Patterns (i.e., altogether 96 EQ-Classes) are used. The optimum EQ-Classes are the points
in the energy-quality design space that form the Pareto Curve (as shown by the line in Figure 4.30). All EQ-
Classes that lie above the Pareto Curve are sub-optimal. It is worthy to note that this Pareto Curve provides
optimal EQ-Classes for a certain video sequence under certain coding settings. Due to the diverse and

Chapter 4 Adaptive Low-Power Video Coding

- 84 -

unpredictable nature of video sequences and unpredictable demands of end-users (i.e., varying bit rates), it is
impossible to determine a set of EQ-Classes at design time which provides the optimal ME configuration for
all possible combinations of diverse video properties and coding configurations. Therefore, an extensive
energy-quality design space exploration is performed for various video sequences. From this analysis, a set
of EQ-Classes is carefully selected considering the similarities in the Pareto Curves.

0

1

2

3

4

5

6

7

50 55 60 65 70 75 80 85 90 95 100

P
S
N
R

 L
o
ss

[%
]

Energy Saving [%]

ParetoPoints

ParetoCurve

Class D

Class C

ѐPSNR

ѐE

Class A Class B

Sloop of the Pareto Curve is
Steep for Low Energy Classes

Sloop of the Pareto Curve is
low/mild for High Quality Classes

SubͲOptimal
EQͲClasses

Figure 4.30: Energy-Quality (EQ) Classes: Energy-Quality Design Space Exploration

showing various Pareto Points and the Pareto Curve

S
A
D

0

50

100

150

200

250

300

350

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6

Energy SAD_MB1

SAD_MB2 SAD_MB3

SAD_MB4 SAD_MB5

E
n
e
rg
y
[n
W
s]

Spatial

Predictor

Spatial

Neighbor

Predictor

Temporal

Predictor

Octagon

Star

Search

Sparse

Polygon

Search

Diamond

Search

Initial
SearchPoint
Prediction

Figure 4.31: SAD vs. Energy Consumption Comparison of

different Motion Estimation Stages for Foreman Sequence

Figure 4.30 shows cases where some EQ-Classes are close to each other on the Pareto Curve, i.e., they
exhibit only minimal difference in their energy reduction and the corresponding PSNR loss. As each EQ-
Class brings a certain PSNR variation, more EQ-Classes will cause frequent changes in the visual quality,
thus visually uncomfortable for the user. Moreover, oscillation will result in a random motion field, which
will disturb the behavior of motion-dependent terminations in the adaptive Motion Estimator. Therefore, a
subset of EQ-Classes is selected (as shown in Table 4.6 with their corresponding configuration), such that
at run time the switching between two EQ-Classes provides a significant energy reduction. Moreover, less
number of EQ-Classes will also reduce the execution time of the enBudget scheme.

All EQ-Classes use the complete set of predictors because it is the most crucial ME stage. To
demonstrate this fact, the search efficiency of each ME stage (Section 4.5.1) is investigated for several
exemplary MBs of Foreman video sequence (see Figure 4.31). The search efficiency of each ME stage is
defined by the decrease in SAD that it brings at the cost of certain energy consumption. The search
efficiency of these ME stages may change for different MBs in a video frame. Figure 4.31 shows that

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

- 85 -

among all ME stages, the search efficiency of Initial Search Point Prediction is the highest. Therefore, all
EQ-Classes use the complete set of Initial Search Point Predictors. The gradient of Pareto Curve is
defined as ǻPSNR/ǻE. Figure 4.30 shows that the gradient for high energy EQ-Classes is low, while the
gradient for low energy EQ-Classes is quite high, i.e., ǻPSNRAB/ǻEAB << ǻPSNRCD/ǻECD. Therefore,
care needs to be taken when downgrading a high-energy EQ-Class to a low-energy EQ-Class.

Classes Pattern Set
SAD Decimation

Pattern
Avg. Energy [µWs]* Min Energy [µWs]*

C1 Oct + SPoly +Diamond Full SAD 85.72 5.25
C2 Poly +Diamond Full SAD 59.47 4.97
C3 Diamond Full SAD 26.93 2.91
C4 Diamond AltGroup4 14.52 1.43
C5 SPoly +Diamond AltGroup4AltRow 10.66 0.67
C6 Diamond AltGroup4AltRow 5.81 0.59

Table 4.6: Configuration and Energy Consumption for the chosen Energy-Quality (EQ) Classes

[*Averaged over various test video sequences for 90 nm ASIC]

Each EQ-Class is initialized with an average-case energy consumption value. However, due to the
varying video sequence properties and adaptive early termination (Section 4.5.1), each EQ-Class may
provide different energy saving for different video sequences. Therefore, the energy of an EQ-Class is
updated at run-time depending upon the actual energy consumption for the given video sequence
properties (as discussed later in this section).

Run-Time Algorithm of the enBudget Scheme

Algorithm 4.4 shows the pseudo-code of the enBudget scheme. Available energy status (i.e., current
battery level), user-defined constraints, encoder configuration, compile-time ME analysis, video frame
properties, and a set of EQ-Classes (Table 4.6) are passed as input to the enBudget scheme (Figure 4.29).
The flow of algorithm is systematically discussed as follows:

Step-1: GOP-Level (Lines 4-15): First, Quality Level (QL) as specified by user-defined constraints is
readjusted depending upon the current battery level (BL) to ensure successful encoding in the
given BL (line 6). If useQualityLevel is set then, in lines 9-13 the GOP-level energy quota (EQuota)
is computed depending upon the QL, otherwise the EQuota is computed using the BL and the
encoding duration required by the user (line 14). This EQuota is then used for predicting the energy
budget for all frames in the GOP.

Step-2: Frame-Level (Lines 16-27): The energy budget (Epred) for one frame ME is predicted using the
EQuota and video frame properties. The energy error from the previous frame is back propagated
(using a weighting factor ȟ1, which controls the strength of back propagation) for the Epred
calculation of the next frame (line 17). Since different video frames may have different spatial and
temporal properties, Epred calculation needs to consider this fact. For example, a scene cut may
require more energy (as it will be shown in Section 4.5.3) due to a sudden disturbance in the
temporal properties of a video sequence. Therefore, in order to cope with the unpredictable nature
of video data, the Epred is scaled using the amount of texture difference (TDiffAVG: computed using
the Sobel Operator) between two consecutive video frames (lines 18-20). The scaled Epred is used
to select the frame-level Base EQ-Class. The frame-level Base EQ-Class is readjusted depending
upon the brightness of the current video frame and the average motion of the previous video frame
(lines 23-25). As discussed above using Figure 4.30, the gradient for high energy EQ-Classes is
much less than that of the low energy EQ-Classes, thus care needs to be taken when downgrading
a high-energy EQ-Class to a low-energy EQ-Class. Therefore, the CDelta is clipped between ±2 in
line 26. The frame-level Base EQ-Class and the corresponding energy are then passed to the MB-

level EQ-Class selection stage.

Chapter 4 Adaptive Low-Power Video Coding

- 86 -

1. Function enBudget () // For Each Video Frame
2. // Input: Image and Motion Statistics: Brightness (B), Texture (T, TdiffAvg),

#
1 ()MBs

darkMBs iAvg BiN B Th== <∑ , MV,
SAD, Battery Level (BL), User Constraints (Duration: DE, Quality Level: QL), Encoder Configuration (e.g., fps,
Target Bit Rate: TBR), Energy-wise sorted list of EQ-Classes C=(C1, �, Cn) (Table 4.6), where C1 is the max
energy class and Cn is the min energy class, MEratio: ratio of ME energy to the encoding energy

3. BEGIN
4. // Step-1: GOP-Level Allocated Energy Quota: Compute once per GOP, this quota is same for all frames

in the GOP
5. If (first_Frame_of_GOP) {
6. If (BL < ȕ*BTotal) QLäLow; // readjust the quality level depending upon the current battery level
7. CBaseäØ; CMBäØ; // initializes the Frame- and MB-Level EQ-Classes
8. EQuota=0; Econsumed=0; ErrorClass=0; ErrorQuota=0; CDelta=0;
9. If (useQualityLevel) {
10. If (QL == High) EQuota=getEnergy(C1);
11. Else If (QL == Medium) EQuota=(getEnergy(C1)+getEnergy(Cn)+1)/2;
12. Else If (QL == Low) EQuota=getEnergy(Cn);
13. }
14. Else EQuota = min(max(MEratio * BL/DE, getEnergy(Cn)), getEnergy(C1));
15. }
16. // Step-2: Frame-Level: Determine Base EQ-Class
17. Epred = EQuota + ȟ1 * ErrorQuota
18. If (TdiffAVG > Ĳ1) İ = max(min(TdiffAVG / Ĳ1, Ĳ2), Ĳ3);
19. Else İ = 1;
20. Epred = min(max(İ * Epred, getEnergy(Cn)), getEnergy(C1));
21. CBase = getClass(Epred); // get the closest Frame-Level EQ-Class
22. // Image-/Motion-Based EQ-Class Adjustments
23. If ((NdarkMBs > Ndark1) & (SADAvg < ThSAD1)) CDelta++;
24. Else If (SADAvg > ThSAD1) CDelta� �; // upgrade for high motion
25. Else CDelta += ((NdarkMBs > Ndark1) + (NdarkMBs > 2*Ndark1) + (SADAvg < ThSAD2));
26. CDelta = min(max(CDelta, �2), 2) + (T < Ĳ4);
27. CBase = min(max(CBase+CDelta, Cn), C1); EBase = getEnergy(CBase);
28. // Step-3: MB-Level EQ-Class Refinements
29. For all Macroblocks {
30. CDelta += ((NdarkMBs > Ndark1) & (SADAvg < ThSAD1) & (BMB < ThB)); // Dark MB
31. CDelta += ((NdarkMBs > Ndark1 || SADAvg < ThSAD2) & (BMB < ThB));
32. If (BMB ≥ ThB) {
33. CDelta += ((SMB < į1*ThS || SADMB_Collocated < į1*ThSAD3) + ((SMB < į2*ThS || SADMB_Collocated < į2*ThSAD3));
34. CDelta � = ((SMB > (į1+į2)*ThS || SADMB_Collocated > (į1+į2)*ThSAD3);
35. }
36. CDelta = min(max(CDelta + (SADAvg < ThSAD2) + (SADAvg < ThSAD4), �2), 2);
37. If (MB == 0 & SADMB_Collocated < ThSAD5) // Stationary MB
38. CDelta CDelta += ((SADAvg < į3*TBR) � 2*(SADMB_Collocated > į4*TBR);
39. CMB = min(max(CBase + min(max(CDelta, �2), 2)), Cn), C1);
40. // Perform Energy-Aware Motion Estimation
41. Econsumed = Motion Estimation (CMB) // (see Class Configuration in Table 4.6)
42. }
43. // Step-4: MB-Level EQ-Class Refinements
44. ErrorClass=Econsumed � EBase; ErrorQuota=EQuota=0 � Econsumed;
45. For all EQ-Classes{
46. Energy[Ci] = max(getEnergy(Ci) + ȟ2*ErrorClass, getMinEnergy(Ci));
47. }
48. END

Algorithm 4.4: Pseudo code of the Run-Time Adaptive Predictive Energy-Budgeting Scheme

Step-3: MB-Level (Lines 28-42): Since, different MBs of a video frame may have changing texture and
motion properties, therefore � at MB-level � the goal of the enBudget scheme is to refine the
frame-level Base EQ-Class for each MB of the frame. It computes the EQ-Class refinement

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

- 87 -

depending upon the MB properties and upgrades or downgrades the Base EQ-Class accordingly.
Dark homogeneous MBs with slow-medium motion (lines 30-33) or stationary MBs (lines 37-38)
require less ME effort, therefore the refinement is computed for downgrading. This downgrade
results in significant energy savings without PSNR loss for low-textured MBs with slow motion.
Alternatively, for MBs with high texture or high motion, the refinement is computed for
upgrading (line 34, 38). Clipping in lines 36 and 39 is performed to avoid excessive downgrading
or upgrading that may result in severe PSNR loss or excessive energy consumption, respectively.
MB-level EQ-Class is computed (line 39) and the corresponding configuration is forwarded to the
ME (as specified in Table 4.6).

Step-4: Error Computation and Readjustments (Lines 43-47): After the ME is completed for all MBs
of a frame, Econsumed is used to compute the error between Econsumed & Base EQ-Class energy (EBase)
and Econsumed & EQuota (line 44). ErrorClass is used to readjust the average-case energy of all EQ-
Classes in a weighted manner (lines 45-47) to adapt considering the properties of currently coded
video frames. EQuota is back propagated to update the Epred of the next video frame (line 17). ȟ1 and
ȟ2 are two weighting factors that control the strength of error back propagation.

4.5.3 Evaluation of Energy-Aware Motion Estimation with an Integrated
Energy-Budgeting Scheme

Now the enBudget scheme will be integrated in two different Motion Estimators: a) The adaptive Motion
Estimator as proposed in Section 4.5.1, b) UMHexagonS [CZH02]. The energy and video quality (PSNR)
comparison will be performed for the adaptive Motion Estimator with and without the enBudget scheme.
For energy estimation, the proposed power-model (see details in Section 3.4) is used. This section also
provides the frame-level and MB-level analysis of energy consumption for the energy-aware Motion
Estimation (i.e., the adaptive Motion Estimator of Section 4.5.1 and the enBudget scheme of Section
4.5.2). At the end, the enBudget energy consumption will be compared for various fabrication
technologies. The experimental setup is: search range=16, bit rate=256kbps, frame rate=30fps, Group of
Pictures=IPPP. Table 4.7 shows the coefficients and thresholds used in the algorithm of the enBudget
scheme (Algorithm 4.4). These coefficients and thresholds use the similar methodology as discussed in
Section 4.3.1 and Section 4.3.2. Note, all results include the leakage and dynamic energy consumption
considering the fact that ME hardware is power-gated after the completion of one frame ME.

Attribute Value Attribute Value Attribute Value Attribute Value

Ĳ1 3*#MBs į1 0.9 ThSAD1 900 ȟ1 0.5

Ĳ2 2 į2 0.7 ThSAD2 500 ȟ2 0.5

Ĳ3 1.1 į3 1300 ThSAD3 2500 ȕ 0.15

Ĳ4 3000 į4 2000 ThSAD4 400 Ndark1 #MBs/2

ThS 13000 ThB 85 ThSAD5 256

Table 4.7: Coefficients and Thresholds used by the algorithm of enBudget in Algorithm 4.4

Comparing Adaptive Motion Estimator With and Without the enBudget Scheme

Figure 4.32 illustrates that compared to the original adaptive Motion Estimator (as proposed in Section
4.5.1), the adaptive Motion Estimator with enBudget achieves an energy saving of up to 72% (avg. 60%)
with an insignificant PSNR loss of 0.08 dB. This shows that the benefit of incorporating the enBudget
scheme in an adaptive Motion Estimator to transform it into an energy-aware Motion Estimation scheme.
In some cases (Clair, Mobile, Hall), the video quality is even slightly better compared to the original
adaptive Motion Estimator. It is due to the fact that energy from smooth MBs is saved and more energy is
provided to the textured MBs which results in a quality improvement in certain regions. This contributes
to the overall video quality.

Chapter 4 Adaptive Low-Power Video Coding

- 88 -

Comparing UMHexagonS With and Without the enBudget Scheme

In order to validate the benefit and applicability of the enBudget scheme to other fast adaptive ME
schemes that have multiple ME stages, the enBudget scheme is additionally integrated with UMHexagonS
[CZH02]. Figure 4.33 illustrates that compared to the original UMHexagonS, UMHexagonS with

enBudget achieves an energy saving of up to 80% (avg. 70%) with a slight PSNR loss of 0.11 dB. This
shows that the enBudget scheme is equally beneficial for other state-of-the-art fast adaptive MEs as well.

E
n
e
rg
y

 Sa
v
in
g

 [
%
]

Ͳ0,2

0,0

0,2

0,4

0,6

0,8

0

20

40

60

80

100 EnergySaving PSNR Loss

Ͳ0.2

0.0

0.2

0.4

0.6

0.8

P
S
N
R

 Lo
ss

 [d
B
]

Up to 72% Energy Saving

Figure 4.32: Energy and Quality Comparison for the Adaptive Motion Estimator

With and Without the enBudget for Various Video Sequences

E
n
e
rg
y

 Sa
v
in
g

 [
%
]

Ͳ0,2

0,0

0,2

0,4

0,6

0,8

0

20

40

60

80

100 EnergySaving PSNR Loss

Ͳ0.2

0.0

0.2

0.4

0.6

0.8

P
S
N
R

 Lo
ss

 [d
B
]

Up to 80% Energy Saving

Figure 4.33: Energy and Quality Comparison for the UMHexagonS [CZH02]

With and Without the enBudget for Various Video Sequences

Frame-Level and MB-Level Analysis

Figure 4.34 shows the frame-wise energy consumption (for a 90nm technology) for three QCIF video
sequences when using the proposed energy-aware Motion Estimation with the enBudget scheme. Label-A
points to the fact that, for a slow motion sequence (Clair), the energy consumption line is smooth as the
consecutive frames have high correlation, homogeneous background, and low motion. For Clair sequence
the energy-aware Motion Estimation converges to the EQ-Classes C5 and C6 (see Table 4.6) depending
upon the type of MBs (i.e., moving or stationary). For such sequences, the energy-aware Motion
Estimation provides significant energy savings (see Figure 4.32).

Label-B points to a more interesting scenario. For validating the robustness, the proposed energy-aware
Motion Estimation scheme is tested for some mixed video sequences (e.g., SusieTable, alternate 50 frames
of Susie and Table sequences are merged). Scene cuts and sudden changes in video frame properties can be
realized in such sequences. Label-B in Figure 4.34 points to the sudden energy consumption peaks, which
are mainly due to the scene cuts or disturbance in the temporal properties of video frames. In such cases,
the energy-aware Motion Estimation scheme selects EQ-Classes C1 and C2 for MBs in the scene cuts or
MBs with high motion. The detailed MB-level energy map for the scene cut corresponding to Label-B is
shown Figure 4.35. Due to the scene cut there is a texture difference in two consecutive video frames and

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

- 89 -

the motion field is disturbed, as the objects of next frames no longer exist in the previous frame. As in this
case, the video frame at scene cut is not encoded as Intra picture, ME requires high effort to find matches.
This fact is visible from the red colored regions (0.3-0.5 µWs) in Frame#100, where MBs required more
energy for ME. Similar effect is visible in many frames (varying peaks in Figure 4.34).

Energy Comparison for different Fabrication Technologies

Figure 4.36 shows the energy consumption of various video sequences for different FPGA fabrication
technologies. Due to its low-power improvements [Kle10], Virtex-6/-6L-based implementations have less
energy consumption compared to other FPGAs.

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140

Carphone_QCIF

Clair_QCIF

SusieTable_QCIF

Label B: Sudden peaks are due to the scene cuts.
enBudget allocates more energy to scene cuts

Label A: Slow Motion
scene has smooth

energy consumption

Frame Number

E
n
e
rg
y

 C
o
n
su
m
p
ti
o
n

 [µ
W
s]

Figure 4.34: Frame-wise Energy Consumption of the Energy-Aware Motion Estimation

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11
MB_X MB_X

1 2 3 4 5 6 7 8 9 10 11

Frame#99 Frame#100

M
B
_
Y

0.4Ͳ0.5µWs

0.3Ͳ0.4µWs

0.2Ͳ0.3µWs

0.1Ͳ0.2µWs

0.0Ͳ0.1µWs

High energy budget
allocated to these MBs
due to high texture

different, i.e. scene cut

Figure 4.35: Macroblock-Wise Energy Consumption Map of two Exemplary Frames

in the SusieTableMix_QCIF Sequence for a 90nm Technology

1

10

100
VirtexͲ4 VirtexͲ5

VirtexͲ6 VirtexͲ6L

E
n
e
rg
y

 C
o
n
su
m
p
ti
o
n

 [m
W
s]

(L
o
g

 S
ca
le
)

Figure 4.36: Energy Consumption of the Energy-Aware Motion Estimation

for Various FPGA Fabrication Technologies for Various Video Sequences

Chapter 4 Adaptive Low-Power Video Coding

- 90 -

Overhead of enBudget and Hardware Design

Table 4.8 shows the performance, area, and energy overhead of the enBudget scheme for Xilinx Virtex-4-
vlx160 (90 nm). The complete hardware implementation is in integer arithmetic. The overall energy
overhead is insignificant as it is 106 times smaller than the energy benefit of the enBudget scheme. The
memory overhead for storing Texture and Brightness is 2*#MBs*16-bits. Texture and Brightness
computation for one MB requires 160 and 4 cycles at the cost of 129 and 31 slices.

Virtex-4-vlx160 FF1148 [90 nm]

Latency Area Energy [nWs]

[Cycles] Slices [GE] Leakage Dynamic

Group of Pictures (GOP)-Level 51 1,028 24,967 22.44 21.42

Frame-Level 75 1,001 24,516 31.50 34.50

Macroblock (MB)-Level 4 597 14,252 1.04 1.36

Total [for 1 frame]
QCIF 472 2,626 63,735 575.24 528.09

CIF 1660 2,626 63,735 2024.60 1858.65

Table 4.8: Performance, Area, and Energy Overhead of enBudget

Summary of the Energy-Aware Motion Estimation and Energy-Budgeting Scheme:

This section presented the energy-aware Motion Estimation scheme that employs the concept of Energy-

Quality Classes, which enables it to move in the energy-quality design space at run time. First, an
adaptive Motion Estimator with multiple processing stages is presented that provides a foundation for
designing the Energy-Quality Classes. The design of these Energy-Quality Classes is explained using a
fast motion sequence, while highlighting the importance of different processing stages. The Motion
Estimator is integrated with an adaptive energy-budgeting scheme that predicts the energy budget for
different video frames and different MBs considering the run-time changing scenarios of available energy,
video frame characteristics, and user-defined coding constraints while keeping a good video quality. Such
an energy-aware Motion Estimation scheme is crucial for advanced video encoders when targeting
battery-powered embedded multimedia systems. Especially, it is beneficial for low-cost battery-powered
mobile devices where available energy status is changing erratically and energy-aware algorithms decide
the life-time of the device.

4.6 Summary of Low-Power Application Architecture

In order to achieve high energy savings, there is a need to redesign an application considering the
potential of the underlying hardware platform. Therefore, first the H.264 video encoder application
architecture is redesigned targeting reconfigurable processors. Several optimizations were performed to
reduce the hardware pressure, i.e., the fabric requirements of a given computational hot spots. The data
flow and data structures are discussed in detail along with their impact on the instruction and data caches.
Afterwards, the design of low-power Custom Instructions (CIs) and Data paths was discussed. It was
explained that operation reduction is required to reduce the dynamic power the Data Paths. A case was
explained in detail using the In-Loop Deblocking Filter of the H.264 codec.

A detailed analysis of the spatial and temporal video properties was presented in Section 4.3.
Different properties of a Human Visual System (HVS) were discussed. Considering this discussion,
different relationship between the optimal coding mode and the video properties were analyzed.
Afterwards, important spatial and temporal video properties were selected. Using these video and HVS
properties, rules for Macroblock categorizations were formulated. These rules facilitate the design of
adaptive complexity reduction and energy-aware Motion Estimation schemes. To support various bit
rates, Quantization Parameter based thresholding is employed for the Macroblock categorization.

4.6 Summary of Low-Power Application Architecture

- 91 -

The HVS-based Macroblock categorization is used by the adaptive computational complexity
reduction scheme (see Section 4.4) which operates in three main steps. First the improbable coding modes
are excluded using a relaxed prognostic early mode exclusion. Afterwards, a more aggressive exclusion is
performed using a hierarchical fast mode prediction. In the third step, Mode Decision process is
performed, where the candidate modes are processed one by one and the depending upon the output of a
candidate mode, further improbable modes are excluded. The evaluation of the adaptive complexity
reduction scheme is provided in Section 4.4.4 that demonstrates that 70% improbable modes are excluded
with a minimal quality loss. Distribution of different evaluated modes and a frame-wise analysis of the
correctly predicted modes is presented. Furthermore, a subjective comparison of the predicted modes and
the optimal modes is performed to highlight the regions of misprediction.

For each candidate coding mode, an energy budget is computed using a predictive energy-budgeting
scheme. This scheme is integrated in an adaptive Motion Estimator (see Section 4.5.1) to realize an
energy-aware Motion Estimation scheme. To provide a run-time adaptivity for varying scenarios of
available energy, changing user constraints and video properties, different Energy-Quality Classes are
proposed. Each Energy-Quality Class provides a certain video quality at the cost of a certain energy
consumption. It thereby enables the Motion Estimation to move in the energy-quality design space at run
time in order to react to the unpredictable scenarios. The Motion Estimator is evaluated with and without
adaptive energy-budgeting scheme in order to demonstrate the benefit of budgeting and Energy-Quality

Classes. Moreover, a frame-level energy consumption analysis is provided to show that the proposed
budgeting scheme allocates less energy to the homogeneous Macroblocks with slow to medium motion,
and more energy to the textured Macroblocks with fast motion.

- 93 -

Chapter 5 Adaptive Low-Power Reconfigurable

Processor Architecture

This chapter presents the novel adaptive low-power reconfigurable processor architecture with a run-time
adaptive energy management scheme. It exploits the novel concept of Selective Instruction Set Muting
with multiple muting modes. The first section analyzes different scenarios, while motivating the need for
run-time energy management. Afterwards, the adaptive energy management scheme with the novel
concept of Custom Instruction (CI) Set Muting is discussed in Section 5.2. In this section different CI
muting modes are explained along with the corresponding configuration of sleep transistors for different
parts of the reconfigurable fabric. Afterwards, the required power-shutdown infrastructure is discussed. In
Section 5.2.3 an overview of the energy management scheme is provided highlighting different
requirements and steps considered at design-, compile-, and run-time.

The energy management scheme operates in two major steps. First it determines the energy
minimizing instruction set considering the tradeoff related to leakage, dynamic, and run-time energy
under run-time varying constraints of performance and reconfigurable fabric area (see Section 5.3).
Afterwards, it determines the temporarily unused set of CIs and determines an appropriate muting mode
for each CI considering the requirements of the currently executing and the upcoming computational hot
spots (see Section 5.4). Section 5.4.3 presents how the energy benefit of a muting candidate is computed.
Section 5.4.4 discusses that how the requirements of the upcoming hot spot are predicted and how the
weighting factors for different CIs of the upcoming hot spot are computed.

5.1 Motivational Scenario and Problem Identification

Besides dynamic and leakage power, reconfigurable processors suffer from the power consumed when
reconfiguring the instruction set. As discussed earlier in Section 3.4, the energy consumption of a
reconfigurable processor (e.g., RISPP [Bau09], see Section 2.3.5) consists of the following components:

 ReconfProc cISA_dyn cISA_leak FPGA_dyn FPGA_leak FPGA_reconfE = E + E + E + E + E (5.1)

�cISA� and �FPGA� denote the Core Instruction Set Architecture (i.e., the core processor) and the run-time
reconfigurable FPGA fabric (for Data Paths and CIs), respectively. Note that the energy for performing a
reconfiguration EFPGA_reconf is actually part of the dynamic energy consumption but for clarity of
subsequent discussions, it is listed separately. The process of reconfiguration causes the switching of
configuration bits of the reconfigurable logic (CLBs: Configurable Logic Blocks) and connections
(switching matrix) in order to realize different Data Paths (i.e., hardware accelerators) within the
reconfigurable fabric. Therefore, EFPGA_reconf may impose a non-negligible limitation on energy efficiency
in reconfigurable processors [Te06]. For instance, executing a specific CIi using a reconfigurable fabric
typically leads to a reduced dynamic energy consumption in comparison to executing that CI using CISA
(EFPGA_dyn(CIi) < EcISA_dyn(CIi)) due to faster CI execution (achieved by exploiting the inherent data-level
parallelism). However, providing CIi in the reconfigurable fabric introduces an initial overhead
EFPGA_reconf(CIi). The total number of executions of CIi is therefore important to determine whether or not it
is beneficial to execute CIi using the reconfigurable fabric.

Let us have a deeper look at the problem using the H.264 video encoder application with three major
hot spots namely Motion Estimation (ME), Encoding Engine (EE), and Loop Filter (LF) that execute
subsequently for each video frame and require different sets of CIs (see Section 4.2, page 57 for details).
Figure 5.1a shows a simplified time scale of the execution of these hot spots and their related
reconfigurations, where EFPGA_reconf represents the major energy component. Figure 5.1b shows a different

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 94 -

scenario for the same application where lesser reconfigurations are used (i.e., EFPGA_reconf is smaller) to
save energy (compared to Figure 5.1a) at the cost of a slower frame encoding time.

Figure 5.1: Simplified Comparison of Energy Consumption,

Highlighting the Effects of Different Reconfiguration Decisions

The situation takes another shift when exploring this scenario for 90nm (and below) technology nodes
where leakage power may be more dominant, thus becoming imperative in the energy-aware design of
reconfigurable processors [Ge04]. Hardware shutdown may be performed to reduce the leakage power of
reconfigurable processors by switching-off the power supply to the reconfigurable regions with the help of
high-Vt mid-oxide sleep transistors. The following components of a reconfigurable fabric can be
individually shut down:

• Logic: Configurable Logic Blocks (CLBs) and programmable interconnect switch matrices (i.e.,
the routing resources that connect various CLBs)

• Configuration SRAM: The SRAM24 cells that store the control bits, which define the
configuration of the Logic

Note, shutting down the configuration SRAM of a reconfigurable region results in loss of its configuration
data (as it is volatile). Therefore, it must be reconfigured again after powering-on, potentially requiring the
overhead of an additional reconfiguration.

Then, the challenging question arises: whether to better shut down regions of the reconfigurable
fabric (and execute the CIs using the CISA instead) to reduce EFPGA_leak or using a larger share of the
reconfigurable fabric to decrease the application execution time at the cost of a higher EFPGA_reconf. In
Figure 5.1b lesser CIs are executed on the reconfigurable fabric (smaller EFPGA_dyn) and a bigger portion of
the reconfigurable fabric can be shut down25 (indicated by the lower heights of the boxes, e.g., ME).
However, due to a longer execution time of the hot spot, EFPGA_leak in Figure 5.1b is not significantly
reduced and EcISA_leak + EcISA_dyn grow larger as more CIs are now executed using the CISA. Similar
scenarios could be drawn for other applications alike, especially when considering multi-tasking systems
where it cannot be predicted at compile/design time:

a) which task will obtain which share of the reconfigurable fabric
b) what is the task priority (may change at run time)

24 In Xilinx FPGAs, 38% of the leakage power is consumed by the configuration SRAMs [TL03].
25 At 150 nm, shutting down the currently unused portions of the reconfigurable fabric may not lead to noticeable
savings and thus EFPGA_reconf may dominate whereas in case of 65 nm it may be vice versa.

5.2 Run-Time Adaptive Energy Management with the Novel Concept of Custom Instruction Set Muting

- 95 -

c) which task will run under which performance constraint, e.g., due to changing user preferences
(e.g., desired frames per second in case of the H.264 application)

It is obviously not trivial to decide under which circumstances the execution using a reconfigurable fabric
is energy-efficient or not especially when the application exhibits characteristics that cannot be predicted
at design/compile time.

The problem is that under scenarios of run-time changing performance and/or area budgets, it can
hardly be predicted at design/compile time which set of CI Implementation Versions will minimize the
energy consumption when considering leakage, reconfiguration, and dynamic energy. At some point in
time leakage may dominate, while at some other points in time (e.g., due to changed system constraints),
reconfiguration energy may dominate. Decisions made solely at design/compile time will therefore with
high certainty lead to energy-inefficient scenarios. Hence, a technology-independent run-time adaptive
energy management scheme for reconfigurable processors is desirable.

Summary of the Motivational Scenario and Problem Identification:

This section illustrated the need for run-time adaptive energy management with the help of different
scenarios for H.264 video encoder. It was discussed that in which scenario leakage energy is more critical
and in which scenario reconfiguration energy is more critical. It is also discussed why there is a need for
joint consideration of leakage, dynamic, and reconfiguration energy in order to minimize the overall
energy in dynamically reconfigurable processors. This section also discussed that why this problem
cannot be solved at compile-time and why there is a need for run-time adaptive energy management.

5.2 Run-Time Adaptive Energy Management with the Novel
Concept of Custom Instruction Set Muting

Section 5.1 provided the motivational scenarios for identifying the energy problem in reconfigurable
processors highlighting the issues related to leakage and reconfiguration energy under run-time varying
scenarios. This section will introduce the novel concept of instruction set oriented shutdown (Section
5.2.1) that enables a far higher potential for leakage energy savings. The proposed concept of instruction
set muting requires a power-shutdown infrastructure which is described in Section 5.2.2. Section 5.2.3
illustrates the decisions taken at design-, compile- and run time along with the Run-Time Adaptive Energy

Management Scheme. The energy management scheme dynamically determines a set of energy-
minimizing CI Implementation Versions for each hot spot considering leakage, dynamic, and
reconfiguration energy such that these CIs fulfill the given performance and reconfigurable fabric area
constraints. Afterwards, it decides which subset of CIs shall be muted at what time and in which mode in
order to minimize the overall energy (considering leakage, dynamic, and reconfiguration energy). The
details of determining the Energy-Minimizing Instruction Set and the Instruction Set Muting including the
formal problem description and the algorithms will be discussed in the subsequent sections.

5.2.1 Concept of Muting the Custom Instructions

Before proceeding to the run-time adaptive energy management, this section introduces the concept of
Instruction Set Muting which provides the foundation for the run-time adaptive energy management.

As discussed in Section 2.4, state-of-the-art low-power approaches in ASICs and FPGAs, deploy
shutdown schemes that statically determine the parts of a reconfigurable fabric (Logic or Logic +
Configuration SRAM) that can be powered-off [Ge04, MM05]. These approaches monitor the usage/state
of a particular hardware and issue the shutdown signal to the hardware, e.g., after the hardware is idle for
a certain threshold time (e.g., [Ge04]). These approaches mainly focus on hardware-oriented shutdown of

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 96 -

the reconfigurable fabric irrespective of the application context (e.g., control flow, application priority
etc.) and execution length of hot spots. Therefore, idle periods of Custom Instructions (CIs) cannot be
exploited for the purpose of energy savings. When targeting reconfigurable processors, it is no longer
efficient to employ the above-mentioned approaches, as it cannot be determined at compile time which
CIs will be reconfigured on which part of the reconfigurable fabric. As a result, these hardware-oriented
shutdown schemes suffer from the limitation of inflexibility and are highly dependent upon the underlying
shutdown policy (see Chapter 2 and Chapter 3).

A novel technique is proposed in this thesis, that shuns the leakage energy at the abstraction level of
CIs (i.e., an instruction set oriented shutdown). This concept is named as selectively muting the CIs. The
proposed technique uses a power-shutdown infrastructure (see Section 5.2.2) in order to define the so-
called CI muting modes (see Table 5.1) each leading to particular leakage energy savings. The proposed
concept relates leakage energy to the execution context of an application, thus enabling a far higher
potential for leakage energy savings. The run-time adaptive energy management in Section 5.2.3 aims at
exploiting this potential. It decides which parts of the CI set shall be muted at what time and in which
mode in order to minimize the overall energy (considering leakage, dynamic, and reconfiguration energy),
as discussed in Section 5.2.3.

Logic Configuration SRAM CI Muting Use-Case for the CI

ON ON
I. Non-Muted
(NM-CI)

CI is demanded or it is scheduled
to be reconfigured soon

ON OFF N/A
N/A (turning the Logic on but the configuration off
may lead to undesired system behavior)

OFF ON
II. Virtually-Muted
(VM-CI)

CI is not demanded, but expected
to be demanded soon

OFF OFF
III. Fully-Muted
(FM-CI)

CI is not demanded and it is not scheduled
to be reconfigured soon

Table 5.1: Various Custom Instruction (CI) Muting Modes

A CI may be muted through one of the following muting modes (see Table 5.1):

Mode I: Non-Muted CI (NM-CI): CI is active and operational.

Mode II: Virtually-Muted CI (VM-CI): CI cannot be executed due to the powered-off Logic. No
reconfiguration is required in order to deploy this CI as its Configuration SRAM is kept powered-on.
Hence, the otherwise necessary reconfiguration energy is not consumed. Therefore, the reduction in
leakage energy is lower compared to Mode III (below). Mode II is beneficial when a subset of CIs is
not demanded for a rather short period.

Mode II: Fully-Muted CI (FM-CI): CI is not operational, as both Logic and Configuration SRAM are
powered-off. This significantly reduces the leakage energy. However, in order to deploy this CI, a
reconfiguration is required which costs reconfiguration energy and latency. Mode III is beneficial
when a subset of CIs is not demanded for a rather long period.

The challenge is to determine which muting mode of Table 5.1 is beneficial for which set of CIs under
run-time varying application contexts, i.e., which muting modes for CIs will bring more energy reduction
while jointly considering the leakage, dynamic, and reconfiguration energy. This decision depends upon
the execution length of the computational hot spots during which different CIs are used for the application
acceleration. Moreover, this decision also depends upon the requirements of upcoming hot spot
executions and the performance constraints (i.e., more or less reconfigurable fabric is required to
accelerate hot spots). This challenge will be addressed by the proposed Selective Instruction Set Muting
technique, which will be discussed in detail in Section 5.4.

5.2 Run-Time Adaptive Energy Management with the Novel Concept of Custom Instruction Set Muting

- 97 -

To realize these muting modes, a power-shutdown infrastructure is required, as discussed below.

5.2.2 Power-Shutdown Infrastructure for the Muted Custom Instructions

Figure 5.2 provides an overview of the infrastructure needed to apply the CI muting technique for
reconfigurable processors. Multiple Data Path Containers (DPCs) are connected to a core pipeline. Each
DPC is composed of multiple reconfigurable tiles and each tile contains Configurable Logic Blocks
(CLBs) and programmable interconnect switch matrices (i.e., the routing resources that connect different
CLBs). Control bits define the configuration of logic and routing resources and are stored in local
Configuration SRAM, as shown in Figure 5.2.

C
o
re

 P
ip
e
li
n
e

InterͲ
connect
Switch
Matrix

Configurable
Logic Block
(CLB)

Power Rail

TILE

Sleep
Transistor
for Logic

M
u
te

ͲM
o
d
e

 C
o
n
tr
o
ll
e
r�

�
ctrl

ctrl

Sleep
Transistor
for Config

�

Legend

Tile

Data Path Container
(DPC)

Core Pipeline
(scaled down)

Communication
System

Configuration
SRAMs

Figure 5.2: Infrastructure Necessary to Exert the Proposed CI Muting Technique

C
o
re

 P
ip
e
li
n
e

D
P
C

Ͳ1
D
P
C

Ͳ2
D
P
C

Ͳ3
D
P
C

Ͳ4
D
P
C

Ͳ5

C
o
re

 P
ip
e
li
n
e

D
P
C

Ͳ3
D
P
C

Ͳ4
D
P
C

Ͳ5

� DPCͲ3 is shared by both CIͲA and CIͲB
� CIͲA is muted in VMͲCI mode and CIͲC is muted in FMͲCI mode

� CIͲB is kept in NMͲCI mode

� PowerͲRail is not shown here for simplicity

a) Befor CI Muting b) After CI Muting

CIͲB
CIͲA

Shutdown only the Logic of DPCͲ1 and DPCͲ2CIͲC

D
P
C

Ͳ6
D
P
C

Ͳ7
D
P
C

Ͳ8

Shutdown both the Logic and
Configuration SRAM of DPCͲ

6, DPCͲ7, and DPCͲ8

Legend

DPC with PoweredͲOff
Logic and Cofiguration
SRAM

DPC with PoweredͲOff
Logic and PoweredͲOn
Cofiguration SRAM

Core Pipeline
(scaled down)

Communication
System

Figure 5.3: Muting the Temporarily Unused Instruction Set

In order to realize different CI muting modes (as shown in Table 5.1), the power supply of each DPC is
connected to two independent sleep transistors, one for the Logic and the other for the Configuration
SRAM. Note that these two sleep transistors are used for all tiles of a particular DPC, whereas two
different DPCs use different sleep transistors. The control signal for these sleep transistors for a given
muting mode is specified in Table 5.1.

Figure 5.3 shows an example of muting the temporary unused set of CIs. After determining the
energy-minimizing set of CIs for the current hot spot, the energy management scheme decides the muting
mode of CIs. In order to set a particular muting mode for a CI, the control signal (as specified in
Table 5.1) for the sleep transistors are issued to all DPCs of this CI. In Figure 5.3, CI-A is Virtually-
Muted (i.e., only the logic of DPC-1 and DPC-2 is power-gated) and CI-C is Fully-Muted (i.e., the logic

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 98 -

and configuration SRAM of the DPC-6, DPC-7, and DPC-8 are power-gated). CI-B is kept in the Non-
Muted mode (i.e., the logic and configuration SRAM of the DPC-3, DPC-4, and DPC-5 are kept powered-
on) as it is used by the current hot spot.

This power-shutdown infrastructure is currently not available in today�s commercial FPGAs.
Therefore, previous work in reconfigurable processors has not explored such a leakage energy reduction
technique at the instruction set level. It is envisioned that that if FPGA vendors would provide this simple
infrastructure, there would be a great opportunity to exert the proposed CI muting technique. It is
especially beneficial for highly flexible Custom Instruction set architectures like RISPP [Bau09].
Consequently, reconfigurable processors would be far more energy efficient.

5.2.3 Run-Time Adaptive Energy Management

Now the run-time adaptive energy management in reconfigurable processors will be explained in detail.
Figure 5.4 presents an overview of the steps to be done at design, compile, and run time while
highlighting the proposed run-time adaptive energy management scheme, its main tasks, and its
connection to the system. At design time, the size of the reconfigurable fabric (i.e., how many DPCs are
provided for loading Data Paths) and the core processor are fixed for a certain fabrication technology node
(that determines their corresponding power properties). At compile time, the Data Paths are designed and
their configuration bitstreams are generated. Additionally, the configuration for various Implementation
Versions is generated at compile time (using the in-house developed automatic tool chain) considering
different resource constraints (i.e., different types of Data Paths in varying quantities). The bitstreams of
Data Paths and the Custom Instruction (CI) Implementation Versions were used to build the power model
of dynamically reconfigurable processors (as discussed in Section 3.4, page 45). This power model is then
used to estimate the power at run time.

At run time, the key tasks of the energy management scheme are:
a) to dynamically determines a set of energy-minimizing CI Implementation Versions for each hot

spot considering leakage, dynamic, and reconfiguration energy such that these CIs fulfill the given
performance and reconfigurable fabric area constraints.

b) to determine the muting decisions for the temporarily unused subset of the CIs.

These decisions may depend upon the number of CI executions that may vary at run time due to the
application level adaptivity (as discussed in Chapter 4), changing input data, performance constraints, and
the execution length of the hot spot. The online-monitoring and the prediction scheme (as discussed in
Section 2.3.5) are used to track and dynamically update the CI execution frequencies (i.e., which CI has
executed how often for a certain hot spot). This is used as an input to the energy management scheme for
choosing the energy-minimizing set of CI Implementation Versions.

The power consumption of different CI Implementation Versions is estimated using the proposed
power model for dynamically reconfigurable processors considering the power used by computations
(Data Paths), communication (buses), and local memory (as presented in Section 3.4, page 45). The
estimated power of CI Implementation Versions is forwarded to the energy management scheme. Since
the placement of a Data Path on the reconfigurable fabric is unknown at the time the energy-minimizing
set of CIs is determined, an average-case number of bus segments for the communication (see Section
3.4.1) are considered in the power estimation.

The estimated power consumption of the CI Implementation Versions and the predicted CI execution
frequencies are forwarded to the energy management scheme for choosing an energy-minimizing set of
CI Implementation Versions under varying constraints (details are explained in Section 5.3). Although
each fabrication technology exhibits distinct leakage and dynamic power properties, the goal is to
minimize the overall energy consumption (i.e., jointly considering leakage, dynamic, and reconfiguration

5.2 Run-Time Adaptive Energy Management with the Novel Concept of Custom Instruction Set Muting

- 99 -

energy) such that the chosen set of CI Implementation Versions fulfill the given performance and
reconfigurable fabric area constraints. Therefore, the energy management scheme is beneficial for various
fabrication technologies and different reconfigurable architectures. It is noted that the performance
constraint and the amount of available reconfigurable area (i.e., the number of available DPCs) may
change at run time due to, for example, user requirements, input data properties, changing number of tasks
and their priorities (see Section 5.1).

Figure 5.4: Overview of the Proposed Adaptive Low-Power Reconfigurable Processor with Run-

Time Adaptive Energy Management along with the Design-, Compile-, and Run-Time Steps

Depending upon the chosen set of CI Implementation Versions, the energy management scheme
determines the muting decisions of the temporarily unused set of CIs (details are explained in
Section 5.4). The proposed technique uses various muting modes that enable leakage energy reduction at
the abstraction level of CIs. The energy management scheme determines at run time which subset of CIs
should be put into which muting mode (Table 5.1) at which time by evaluating at run time the possible
associated energy benefit (a joint function of leakage, dynamic, and reconfiguration energy). Besides the
requirements of the current and the upcoming hot spots, the weighting factors (see details in
Section 5.4.4) of different CIs in a hot spot are given as the input to compute the benefit of a particular
muting mode. The weighting factor of a CI represents the relative contribution of a CI (compared to other
CIs) for the accelerated execution of a hot spot. The weighting factor of a CI in a hot spot is determined
by considering the expected execution frequency of CIs, the time from the start of a hot spot until their
first execution, and the average time between two executions of the same CI (details are explained in
Section 5.4.4). The energy minimizing set of CIs and CI-level muting enables the energy management
scheme to dynamically move in the energy-performance design space at run time depending upon the
varying area and performance constraints.

Depending on the chosen set of CI Implementation Versions and the CI muting decision, certain Data
Paths need to be reconfigured in the powered-on DPCs. Dynamically reconfigurable processors employ a
Data Path Loading Sequencer to schedule the reconfigurations of the Data Paths required by the current
hot spot [BSKH08]. In case there is no empty DPC, it also determines which Data Path shall be replaced
to load the required Data Path [BSH09b].

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 100 -

Summary of the Run-Time Adaptive Energy Management and CI Muting:

In this section, the novel concept of CI muting was introduced that raises the abstraction level of shutdown
to the instruction set level and provides the foundation for the run-time adaptive energy management. An
overview of the proposed adaptive low-power reconfigurable processor along with the design-, compile-,
and run-time steps was discussed in this section. Additionally different components for run-time adaptive
energy management were introduced. Without these components and various CI muting modes (that enable
to dynamically move in the energy-performance design space at run time depending upon the varying area
and performance constraints), overall energy reduction (considering leakage, dynamic, and reconfiguration
energy) could not be efficiently achieved in an adaptive manner. In the following, the components for run-
time adaptive energy management will be presented in detail along with the formal problem description,
analysis, developed solutions and algorithms, and their implementation results.

5.3 Determining an Energy-Minimizing Instruction Set

The previous section presented the overview of different components of the proposed Run-time Adaptive

Energy Management Scheme which is the key to realize an adaptive low-power reconfigurable processor
architecture. As discussed in the overview, the energy management scheme considers leakage, dynamic,
and reconfiguration energy to determine/choose an energy-minimizing set of Custom Instruction (CI)
Implementation Versions that fulfill the reconfigurable fabric area and performance constraints. These
constraints may vary at run time due to changing user requirements, tasks and their priorities, input data
etc. For choosing the energy-minimizing set of CI Implementation Versions, the following information is
required as input: (a) CIs that are expected to be executed in the current hot spot, (b) the predicted CI
execution frequencies (Section 2.3.5, page 25), and (c) the estimated power consumption of different CI
Implementation Versions (Section 3.4, page 45). The output is exactly one Implementation Version for
each of the expected CIs.

5.3.1 Formal Problem Modeling and Energy Benefit Function

One of the basic tasks of the energy management scheme is to choose a set 'C' of CI Implementation
Versions to implement the demanded CIs for an upcoming hot spot (as shown in Figure 5.4). The inputs to
the algorithm for determining 'C' are:

• the area constraint of the reconfigurable fabric NDPC_avail,
• the performance constraint LHS_constraint, and
• a set of CIs expected to be executed in the current hot spot
• the predicted execution frequency of the expected CIs F[CIi] (i.e., the number of the expected CI

executions which is obtained by an online-monitoring and prediction of the CI execution within a
hot spot, Section 2.3.5).

As discussed earlier in Section 5.2, all of these parameters may change at run time. The following three
constraints need to be fulfilled as the fundamental requirements:

Area Constraint: the chosen CI Implementation Versions can be implemented with the given amount of
DPCs (NDPC_avail, see Eq. 5.2), i.e., the number of Data Paths required to implement the chosen set of
Implementation Versions should not exceed NDPC_avail.

 _∈ ≤G
G

∪ DPC availc C c N (5.2)

Performance Constraint: a given performance constraint while minimizing the energy consumption. In
case of the H.264 video encoder (see Section 5.2), the performance constraint is given as the targeted

5.3 Determining an Energy-Minimizing Instruction Set

- 101 -

frame rate and the relative performance constraints (in percent) of the three major hot spots, resulting
in LHS_constraint in cycles, i.e., the performance constraint of a specific hot spot. Furthermore, the
expected execution time LcISA_HS_expected of all non-CI instructions (i.e., the instructions that are
executed using the cISA) is given. LcISA_HS_expected is independent from the chosen Implementation
Versions but it needs to be considered to determine the overall performance. Note, reconfiguration
latency is not considered in Eq. 5.3 as it depends upon the currently available Data Paths (the term

G
a

in Eq. 5.5 corresponds to the currently available Data Paths) and the Reconfiguration Prefetching (see
Section 2.3.5). It may happen that some of the Data Paths required by the early-executing CIs may
already be available. In this case, consideration of the reconfiguration latency in the calculation of
LHS_required may violate the LHS_constraint, thus may lead to a sub-optimal solution. Moreover, the
algorithms of the Data Path Loading Sequencer (see [Bau09, BSKH08] for further details) also result
in a performance improvement. Altogether, the currently available Data Paths, the Reconfiguration

Prefetching, and the performance improvement due to the Data Path Loading Sequencer may already
hide the reconfiguration latency. For a chosen set of Implementation Versions 'C' the performance
constraint is evaluated by Eq. 5.3. If the performance constraint cannot be fulfilled then the fastest
achievable performance is targeted.

 []()_ _ _ _: . () * . ()HS required cISA HS expected HS constraint
c C

L L F c getCI c getLatency L
∈

= + ≤∑G
G G

 (5.3)

One Implementation Version per CI: for each demanded CI one Implementation Version (potentially
also the cISA implementation) is chosen (Eq. 5.4). Note, all CIs can be executed using cISA, i.e.,
without any Data Paths (see Section 2.3.5, page 25).

 : 1ii C CI∀ ∩ = (5.4)

When multiple combinations of Implementation Versions fulfill the above three constraints (i.e., Eqs. 5.2,
5.3, and 5.4) then the goal is to minimize the overall energy consumption of the hot spot considering
leakage, dynamic, and reconfiguration energy, i.e., minimize Eq. 5.5. There might exist a very low-energy
implementation of a certain CI. However, in order to minimize the overall energy of a hot spot, all CIs
executing in this hot spot needs to be considered along with their expected execution frequency (that may
change at run time). Thus, various CI Implementation Versions jointly contribute towards minimizing the
overall energy of a hot spot for a given amount of DPCs (NDPC_avail) and performance constraint (LHS_constraint).

[] ()()_

_ _

_ _ _

. () * . () *

=
* * *

CI dyn
c C

CI HS Total

DPC leak HS required DPC reconf
c C c C

F c getCI c getLatency P c

E

P c L E a c

∈

∀ ∈ ∀ ∈

∑

+ +

G

G G

G G G

G G G�∪ ∪
 (5.5)26

The first summand in Eq. 5.5 denotes the total dynamic energy of the chosen Implementation Versions.
Some Implementation Versions use the reconfigurable fabric and the others use cISA for execution (see
Section 2.3.5). The predicted execution frequency of the CIs (which is independent of a particular
Implementation Version of the CI) is used to determine the total dynamic energy. For a given amount of
DPCs, an Implementation Version of a CIA with a much higher execution frequency compared to another
CIB would consume more dynamic energy compared to an Implementation Version of CIB. When using the
reconfigurable fabric, the dynamic power consumption � among others � depends on the number of used
bus segments (see Eq. 3.2, Section 3.4.2), which itself depends on the Data Path positioning (see Section
3.4, page 45), i.e., the relative position of the communicating Data Paths on the reconfigurable fabric.

26 the reactivation energy for one DPC is 3.5 pWs [Te06] while the energy of a hot spot is typically in multiples of mWs, i.e.,

approximately 109 times bigger (see Section 5.3.3). Therefore, the DPC reactivation energy overhead is not included in Eq. 5.5, as
it does not affect the selection decision at the abstraction level of computational hot spots.

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 102 -

Although the actual Data Path positioning is considered for the power model (Chapter 6) and for simulating
the energy consumption for results (Section 5.3.3, Section 5.4.5, and Chapter 7), an averaged value is used
for _ ()CI dynP c

G
 (that abstracts from the Data Path positioning) in order to be able to choose Implementation

Versions dynamically at run time (i.e., before their actual Data Path positioning is known).

The second summand in Eq. 5.5 stands for the leakage energy of the required DPCs and for the hot
spot execution time (LHS_required see Eq. 5.3). Bigger Implementation Versions may result in reduced
dynamic energy due to faster execution (by exploiting more parallelism), but they require more Data
Paths. The increased number of Data Paths to realize bigger Implementation Versions also results in
increased leakage power. On overall, the total leakage energy also depends upon the LHS_required. Therefore,
in some cases a bigger Implementation Versions may result in relatively more leakage energy (compared
to a smaller Implementation Versions) due to increased leakage power of more Data Paths. In some other
cases a bigger Implementation Versions may result in relatively less leakage energy due to the faster
execution, i.e., LHS_required.

The third summand denotes the energy for reconfiguring the currently unavailable Data Paths (the
term a

G
 in Eq. 5.5 corresponds to the currently available Data Paths). Depending upon the CIs used in the

previous hot spot, some of the Data Paths required to realize the CI Implementation Versions for the
current hot spot might already be available. Therefore, in Eq. 5.5, the reconfiguration energy for only the
additionally required (i.e., currently unavailable) Data Paths is considered.

5.3.2 Algorithm for Choosing CI Implementation Versions

When determining the energy minimizing CI set, the run-time nature of the energy management scheme
needs to be considered. Therefore, the following three means are applied for acceleration:

a) Efficiently traversing the search space
b) Simplifying the cost function and incrementally updating the total cost
c) Early pruning of the search space

Traversing the search space: Figure 5.5 shows five CIs (x-axis) from a hot spot of the H.264 encoder
and their corresponding Implementation Versions (y-axis). To distinguish between the CIs and the
traversing sequence, the term �levels� is used when analyzing the search space. To comply with
Eq. 5.4, exactly one Implementation Version must be chosen at each level. The red thick line (in
Figure 5.5) indicates a path through the levels that fulfills Eqs. 5.2, 5.3, and 5.4. The thin lines
indicate the various alternatives at a certain level. When pruning the design space, it is important to
determine invalid or suboptimal solutions as early as possible. Therefore, the CIs are sorted in the
sequence in which the search space is traversed (x-axis) according to their importance imp(CIi), i.e.,
their expected latency improvement27 compared to their respective cISA execution (averaged over all
Implementation Versions). Compared to the opposite sorting (i.e., the CI with minimal imp(CIi) is
traversed first) this reduces the average number of cost function calculations by 76.4x (from 36,766
down to 481) per video frame (in the example of an H.264). This reduction comes from pruning rather
large parts of the search space (while obtaining the same result).

 [] ()_() : * . () . () /
ij i

i i i cISA ij i
c CI

imp CI F CI c getLatency c getLatency CI
∀ ∈

= −∑G
G G

 (5.6)

Algorithm 5.1 shows the pseudo code of the algorithm for choosing the set of CI Implementation Versions
that minimizes the overall energy consumption of a hot spot under given area and performance
constraints. The pseudo code of the proposed algorithm is explained step-by-step in the following.

27 experiments demonstrate that, in most of the cases, the CI Implementation Version with the fastest execution latency is also the

one that provides the minimum dynamic energy due to its speedup, especially in case of tighter performance constraints.
However, in terms of reconfiguration energy it might not always be the best choice.

5.3 Determining an Energy-Minimizing Instruction Set

- 103 -

Figure 5.5: Search Space of Five CIs with Their Implementation Versions at the

Corresponding Levels and The Path of the Energy-Minimizing Instruction Set

Calculating the Cost Function: The first step is to prepare arrays for the minimum energy consumption
and the minimum latency of Implementation Versions for each level (lines 3-6). The energy
consumption of a CI Implementation Version thereby corresponds to an offline-calculated average
dynamic energy as discussed for Eq. 5.5. In the second step, the sums of the array entries are
calculated to obtain the fastest possible execution time LHS_Min and the minimum possible dynamic
Implementation Version energy consumption EHS_CI_DynMin for the hot spot (see lines 7-8), irrespective
of the area and performance constraints. Whenever a specific Implementation Version is chosen at a
certain level, these two values are incrementally updated (see lines 17, 33 and 20, 34), i.e., for LHS_Min
the minimum-latency Implementation Version that was initially used to calculate the sum is replaced
by the actually chosen Implementation Version at this level (same procedure for EHS_CI_DynMin).
Therefore, LHS_Min is calculated without the need to iterate through all levels for one calculation. As it
always represents the fastest possible hot spot execution time at the current level, it is used for
pruning (similar for EHS_CI_DynMin).

Pruning Rules: The following three pruning rules are incorporated to determine invalid or suboptimal
solutions as early as possible:

a) Pruning Rule 1: Area Constraint: Parts of the search space that require more DPCs than what is
available are discarded (lines 14-16).

b) Pruning Rule 2: Performance Constraint: The above-discussed iteratively-updated value LHS_Min can
directly be used to prune those parts of the search space that cannot fulfill the performance constraint
(see lines 17-19), as for the not-yet traversed levels the fastest possible Implementation Version
execution is assumed. Additionally, in line 7 the at-compile-time calculated execution time of the
cISA is considered. If no valid solution exists within a given area constraint, the energy management
scheme chooses the set of Implementation Versions that offers the fastest achievable performance.

c) Pruning Rule 3: Sub-optimal Energy Consumption: Whenever the algorithm finds a valid solution
(i.e., successfully chooses an Implementation Version for the last level) the energy consumption for
this solution is then stored for further comparison (EBest in line 29). When searching afterwards for
alternative valid solutions, their energy consumption is compared against EBest (line 25). Therefore,
the incrementally updated dynamic Implementation Version energy EHS_CI_DynMin and the leakage
and reconfiguration energy of DPCs28 need to be considered (see lines 21-24).

28 due to the irreversible nature of the operator ∪ (used in line 21), they cannot be incrementally updated like
EHS_CI_DynMin.

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 104 -

After choosing the energy-minimizing set of CI Implementation Versions, the energy management
scheme determines the muting decision for the temporarily unused subset of the Custom Instruction Set

1. // Input: Area Constraint: NDPC_avail; Performance Constraint: LHS_constraint; sorted set of demanded CIs:
CI[Level]; expected CI execution frequency: F[CIi]; sum of the latencies of all non-CIs in the hot spot:
LcISA_HS_expected; DPC leakage power: PDPC_leak; Energy for one reconfiguration: EDPC_reconf

2. // Output: Path of chosen CI Implementation Versions pBest and its Energy EBest

3. {Levels l∀ // Prepare arrays for the min. energy consumption and the min. latency of
Implementation Versions for each level

4. _ _ [] [[]]*MIN{ . () | []};CI Level Min ij ijL l F CI l c getLatency c CI l← ∈
G G

5. _ _ [] [[]]*MIN{ . () | []};CI Level DynMin ij ijE l F CI l c getEnergy c CI l← ∈
G G

6. }

7. _ _ _ _ _ [];HS Min cISA HS expected CI Level MinLevel lL L L l∀← +∑ // initialize total minimum latency

8. _ _ _ _ [];HS CI DynMin CI Level DynMinLevel lE E l∀←∑ // initialize total minimum energy

9. ;Bestp ←∅ // initializes best so-far determined path

10. ;currp ←∅ // initializes currently investigated path

11. ()Function , , ;curr BestLevel l p pExploreLevel // starts from Level 1

12. BEGIN

13. [] {c CI l∀ ∈
G

 // For all Implementation Versions at the current Level

14. _ { } ;
currDPC required o p cN o∀ ∈ ∪← G G

G
∪ // compute the total number of DPCs required to realize

G
c and all

Implementation Versions in pcurr

15. _ _ ()DPC required DPC availif N N> // Pruning Rule 1: Area Constraints

16. continue;

17. _ _ _ _ [] [[]]* . ();HS Temp HS Min CI Level MinL L L l F CI l c getLatency← − +
G

18. _ _ int ()HS Temp HS constraif L L> // Pruning Rule 2: Perf. Constraints

19. continue;

20. _ _ _ _ _ _ [] [[]]* . ();HS CI DynTemp HS CI DynMin CI Level DynMinE E E l F CI l c getEnergy← − +
G

21. _ { } ;
currDPC reconf o p cN a o∀ ∈ ∪← G G

G G� ∪ // compute the number of DPCs that will be reconfigured to realize
pcurr

22. _ _ _ _* ;HS DPC reconf DPC reconf DPC reconfE E N← // total reconfiguration energy of pcurr

23. _ _ _ _ _* * ;HS DPC leak DPC leak DPC required HS TempE P N L← // total leakage energy of pcurr

24. _ _ _ _ _ _ _ _HS CI minTemp HS DPC DynTemp HS DPC reconf HS DPC leakE E E E← + +

25. _ _ ()Best Best HS CI minTempif p E E≠∅ ∧ < // Pruning Rule 3

26. continue;

27. () {if l LastLevel= // valid solution found, i.e., an Implementation Version is successfully chosen
28. ;Best currp p←

29. _ _ ;Best HS CI minTempE E←

30. (,)return ;Best Bestp E

31. }

32. // Explore the next level

33. _ _ ;HS Min HS TempL L← // update the overall minimum latency

34. _ _ _ _ ;HS CI DynMin HS CI DynTempE E← // update the overall minimum energy

35. ()(,) 1, { }, Best Best curr Bestp E l p c p← + ∪ExploreLevel
G

36. // Restore L and E values for further incremental updates

37. _ _ _ _ [] [[]]* . ();HS Min HS Min CI Level MinL L L l F CI l c getLatency← + −
G

38. _ _ _ _ _ _ [] [[]]* . ();HS CI DynMin HS CI DynMin CI Level DynMinE E E l F CI l c getEnergy← + −
G

39. }
40. (,)return ;Best Bestp E
41. END

Algorithm 5.1: Pseudo code of Determining the Energy Minimizing Instruction Set

5.3 Determining an Energy-Minimizing Instruction Set

- 105 -

(details and algorithm will be discussed in Section 5.4, page 110). Note: the energy management scheme
performs CI muting at the start of each hot spot to avoid frequent on-off switching of the sleep transistors
(typically the length of a hot spot is several milliseconds29, see Section 5.3.3).

5.3.3 Evaluation and Results for Energy-Minimizing Instruction Set

Now the adaptive energy management scheme will be evaluated for various fabrication technology nodes
using the H.264 video encoder application (as discussed in Chapter 4). The parameters and their
corresponding values (for different fabrication technologies) that are used as the basic input in the
following experiments are presented in Table 5.2 with their corresponding sources of information.

Attributes

40 nmL**

(Low Power)
40 nm** 65 nm 90 nm 150 nm Source

Voltage [V] 0.9 1.0 1.0 1.2 1.5 [Xil10a]

R
ec

o
n

fi
g

u
ra

b
le

F
a
b

ri
c

FPGA
Virtex 6

(-1L)
Virtex 6

(-1)
Virtex-5
xc5vlx85

Virtex-4
xc4vlx80

Virtex-II
xc2v6000

Total Size [CLBs] - - 6480* 8960 8448 [Xil10a]
Total Leakage Power [W] - - 1.297 0.854 0.068 [Xil10b]
Min. Dynamic Power [W] - - 0.492 0.48 1.2 [Xil10a]
Size of 1 DPC [CLBs] 68* 68* 68* 96 96 [BSH08a]
Leakage Power of 1 DPC [mW] 6.99 9.46 13.51 9.15 0.77 [Xil10b]
Dynamic Power Scaling Factor 0.229 0.287 0.41 0.4 1 [Xil10a]

cI
S

A
 Size of Leon Core and Run-Time

Management System [CLBs]
1980* 1980* 1980* 2816 2816 [BSH08a]

FPGA-to-ASIC: Leakage [mW] 8.201 11.100 15.852 10.736 0.907 [KR07]
Technology Scaling Factor (0.34) (0.34) (0.445) (0.583) (0.763) [BTM00]

Table 5.2: Parameters and Evaluation Conditions with their Corresponding Reference Sources

* the Virtex-5/6 internal CLB Composition is Different Compared to Previous FPGAs

** the Power Values are Scaled from Virtex-5 according to [Kle10]

Evaluating the Adaptive Energy Management Scheme on Different Technologies:

Figure 5.6 shows the energy-performance design spaces in which the Adaptive Energy Management

Scheme moves at run time � for a certain technology � to achieve the overall minimum energy for a given
performance and area constraint. In order to show the technology-independent nature of the energy
management scheme (i.e., it is beneficial for various fabrication technologies), it is evaluated for four
different technologies under various performance and area constraints. Since leakage energy is dominant
in 65 nm and 90 nm, the energy management scheme may choose a different set of CI Implementation
Versions for 65 nm and 90 nm (more variation in regions E-4 and E-7) compared to 150 nm (E-9).
However, due to low-power optimizations in the new Virtex-6 (40 nm and 40 nmL, [Kle10]) the overall
leakage energy is significantly reduced, therefore, the energy management scheme makes a different
decision in choosing the energy minimizing instruction set for 40 nm and 40 nmL (as shown by different
energy variations in E1-E3). 40 nmL is a version of Virtex-6 that operates at a lower voltage, therefore,
the overall energy is further reduced compared to 40 nm (E3).

Figure 5.6 a)-d) contain a flat region showing similar minimum energy points for different
performance constraints. This is because of two reasons: i) either the area (i.e., reconfigurable fabric) is
insufficient or ii) the achieved performance is greater than the performance constraint in order to
minimize the leakage energy that may increase due to the slow execution. Note: the performance
improvement comes in discrete steps, as a set of CIs collectively results in a speed up of the hot spot. A
similar behavior can be observed in E-11 for 150 nm.

29 the length of a hot spot is predicted from the latency values of different CIs used in the hot spot and their
corresponding expected execution frequencies (as predicted by the online-monitoring Section 2.3.5).

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 106 -

There is an interesting scenario that shows the efficiency of the energy management scheme: In E-5, the
overall energy is very high (as leakage is dominant) because of a longer execution time. As soon as more
DPCs are available the energy management scheme decides to switch to a faster execution (although not
required from a performance point of view) thus cutting down the leakage energy significantly (E-6). In short,
it can indeed be beneficial to pay an additional reconfiguration to reduce the leakage energy. However, the
scenario is changed for 40 nm and 40 nmL due to device-level leakage optimizations, Figure 5.6 (E1, E3).

4
6

8
10

12
14

16
18

20

120

150

180

210

240

270

300

330

360

5
15

25
35

45

E
n
e
rg
y

 [m
W
s]

EͲ1: Reduced energy due
to lowͲpower

optimizations of VirtexͲ6

EͲ2: Energy Steps
are changed in

VirtexͲ6

4
6

8
10

12
14

16
18

20

120

150

180

210

240

270

300

330

360

5
15

25
35

45

E
n
e
rg
y

 [m
W
s]

EͲ3: Further reduction in
leakage energy due to
lowͲvoltage operational

mode VirtexͲ6L

a) 40 nm b) 40 nmL

468101214161820

120

150

180

210

240

270

300

330

360

5

10

15

20

25

30

35
40

E
n
e
rg
y

 [m
W
s]

EͲ5: High leakage energy
due to slow execution

EͲ4:More energy variations
due to the effect of bigger

leakage energy

468101214161820

120

150

180

210

240

270

300

330

360

5

10

15

20

25

30

35
40

E
n
e
rg
y

 [m
W
s]

EͲ8: Dynamic energy is
dominant in this part
and lesser than 150 nm

EͲ7: The effect of leakage
energy is lesser than that of
65 nm but more than 150 nm

c) 65 nm d) 90 nm

468101214161820

120

150

180

210

240

270

300

330

360

5

10

15

20

25

30
35
40

E
n
e
rg
y

 [m
W
s]

EͲ12: Fine change in energy
due to CI Implementation
Versions' power variation

EͲ9: Increase in energy due
to more reconfigurations EͲ10: Performance

constraint not met
due to area limitation

EͲ11: PowerͲ
Gating the DPCs

e) 150 nm

Figure 5.6: Energy-Performance Design Spaces: Evaluation of the Energy Minimization Space

Using the Adaptive Energy Management Scheme under Various Area and Performance

Constraints for Four Fabrication Technologies for an Encoding of 40 QCIF (176x144) Frames

5.3 Determining an Energy-Minimizing Instruction Set

- 107 -

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

200

250

300

350

4000

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

CISA_leak DPC_leak

CISA_dyn Reconf_dyn

CI_dyn

E
n
e
rg
y

 [m
W
s]

Area [#DPCs]

150 nm

90 nm

65 nm

40 nm

40 nm L

Leakage Energy of reconfiguͲ
rable fabric is dominant in 90
nm compared to 150 nm & is

even bigger in 65 nm

Reconfiguration Energy is

increasing to achieve faster
execution

Dynamic Energy of reconfiguͲ
rable fabric is dominant in
150 nm compared to other
fabrication technologies

Leakage Energy of reconfiguͲ
rable fabric is decreasing in

40 nm due to low power

optimizations of VirtexͲ6

250
200
150
100

50
0

250
200
150
100

50
0

300

250
200
150
100

50
0

300
350

400

200
150
100

50
0

250
200
150
100

50
0

300
350

400

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 5.7: Comparison of Energy Components in Different Fabrication Technologies

under Various Area Constraints

Figure 5.7 presents the breakdown of energy consumption for the four technologies when encoding at 35
fps with a different amount of DPCs. Figure 5.7 shows that in case of 150 nm dynamic and
reconfiguration energy make up for the major part of the total energy consumption. When moving from 4
to 20 DPCs the performance improvement comes at the cost of additional reconfiguration energy. For 65
nm and 90 nm, when moving from 5 to 6 DPCs there is a decrease in the total energy as for faster
execution the leakage energy has been reduced significantly (as also shown in E-6 of Figure 5.6). From 7-
20 DPCs, the leakage energy is changing due to each additional powered-on DPC. However, in case of 40
nm and 40 nmL, the reconfiguration energy and leakage energy are comparable. Here due to reduction of
leakage energy in 40 nm and 40 nmL, the energy management scheme chooses a different energy-
minimizing set of Implementation Versions compared to the case of 65 nm.

Evaluating the Adaptive Energy Management Scheme for Encoding of different Resolutions:

Figure 5.8 presents the energy-performance design spaces for encoding of two different resolutions at 40
nm technology. The encoding of different video resolutions results in different computational

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 108 -

requirements. QCIF resolution (176x144 pixels) has 2x more Macroblocks (MBs) to encode compared to
SQCIF resolution (128x96 pixels). Therefore, in order to meet same frame per second performance, QCIF
requires more DPCs compared to SQCIF, which directly corresponds to increased energy. The fact is
notable in the Figure 5.8 (L4). In case of SQCIF the performance constraint is met with relatively less
number of DPCs compared to QCIF (see L2). When comparing 40 nm and 40 nmL, the energy-
performance design spaces are almost similar, as the only difference is in the operational voltage that
reduces both leakage and dynamic power.

Figure 5.9 shows the breakdown of energy at the time-frame level (each time-frame=0.05 MCycles)
along with the number of CI executions for QCIF@30 fps using 65 nm. It shows the contribution of
different energy components at different time instances. At the start of the Motion Estimation (ME) hot
spot there occur several reconfigurations. Thus, the reconfiguration energy is dominant (Label-A: until 0.2
MCycles). While reconfiguring the Data Paths for the CIs of ME, the number of CI executions per time
frame is increasing gradually that also demonstrates a gradual acceleration of the ME hot spot. During the
execution of the ME hot spot (Label-B: 0.2-1.15 MCycles) the leakage energy is dominant. In 1.15
MCycles the ME hot spot has finished executing and the Data Paths for the EE (Encoding Engine) hot
spot start reconfiguring. It is also notable in Figure 5.9 that only few reconfigurations are performed for
the EE hot spot. It is because of the reason that the CIs in EE hot spot share Data Paths from the previous
ME hot spot. These shared Data Paths are already available in the DPCs and no additional reconfiguration
is required.

Note: the leakage energy in LF hot spot is less compared to that in the ME and EE hot spots due to the
muting of the temporarily unused set of CIs (details of CI muting will be discussed in Section 5.4). In this
case, only 2 Data Paths are used and the remaining ones are power-gated to save leakage. Since the time

4
6

8
10

12
14

16
18

20

120

150

180

210

240

270

300

330

360

5
15

25
35

45

E
n
e
rg
y

 [m
W
s]

LͲ1: For less area,
energy is high due
to slow executionLͲ2: For More area: Flat

region due to reduced
computational requirements

of SQCIF resolution

4
6

8
10

12
14

16
18

20

120

150

180

210

240

270

300

330

360

5
15

25
35

45

E
n
e
rg
y

 [m
W
s]

LͲ3: Reduced
energy compared
to VirtexͲ6 (40nm)

a) 40 nm � SQCIF (128x96) d) 40 nm L � SQCIF (128x96)

4
6

8
10

12
14

16
18

20

120

150

180

210

240

270

300

330

360

5
15

25
35

45

E
n
e
rg
y

 [m
W
s]

LͲ4: High Energy variations
due to high computational

requirements of QCIF

4
6

8
10

12
14

16
18

20

120

150

180

210

240

270

300

330

360

5
15

25
35

45

E
n
e
rg
y

 [m
W
s]

LͲ5: Energy Variation pattern is same as
in VirtexͲ6 (40nm), but energy is

reduced due to lowͲoperational voltage

b) 40 nm � QCIF (176x144) e) 40 nm L � QCIF (176x144)

Figure 5.8: Comparing Energy-Performance Design Spaces for Different Video Resolutions when

using the Energy Management Scheme under Various Area and Performance Constraints for an

Encoding of 60 Video Frames

5.3 Determining an Energy-Minimizing Instruction Set

- 109 -

between LF (Loop Filter) and next frame ME is small, the reconfiguration Energy is dominant (Label-C)
within this region. A single frame encoding finishes in 1.65 MCycles.

0

0,1

0,2

0,3

0,4

0,5

0,6

0

500

1000

1500

2000

2500

3000

0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 12 12,5 13 13,5 14 14,5 15 15,5 16 16,5 17 17,5 18 18,5 19 19,5 20

lfbsfour dctfour

mchzfour httwo

satdfour sadsixteen

Energy per TF

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 12 12,5 13 13,5 14 14,5 15 15,5 16 16,5 17 17,5 18 18,5 19 19,5 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

E
n
e
rg
y

 [m
W
s]

ME EE LF ME

LabelͲB: Leakage is
dominant during
ME Execution

LabelͲC: Reconfigurations
for ME Hot Spot

LabelͲA: Points of
Reconfiguration

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Time [MCycles]

0

500

1000

1500

2000

2500

3000

N
u
m
b
e
r o

f C
I E
x
e
ci
ti
o
n
(B
a
rs
)

0

0.1

0.2

0.3

0.4

0.5

0.6

E
n
e
rg
y

 [m
W
s]

 (L
in
e
)

CISA_leak DPC_leak

CISA_dyn Reconf_dyn

CI_dyn

Figure 5.9: CI Execution Results for 30 fps on 65 nm Showing a Detailed Breakdown of Energy

Components Highlighting the Contribution of Reconfiguration and Leakage Energy. The Lower

Graph Shows the Detailed Execution Pattern of Various CIs Executing in Different Hot Spots of

the H.264 Video Encoder Along With Total Energy Consumption

Hardware Implementation:

Implementation Details

#Slices 615

#LUTs 883

#MULT18x18 7

Gate Equivalents 39,7

Clock delay [ns] 10.3

Table 5.3: Hardware Implementation Results for the Energy Management Scheme

on the RISPP Prototyping Platform (see Figure 6.1 in Section 6.1)

The adaptive energy management scheme is implemented on a Xilinx Virtex-II based hardware prototype
(see Figure 6.1 in Section 6.1) that was also used for the power measurements. The recursive call in the
pseudo code (Algorithm 5.1) is thereby implemented in an iterative way and an array stores the currently
explored Implementation Version for each level. The logic is implemented in form of a state machine with
17 states, where 8 states are responsible for calculating the cost function and the pruning conditions. One
complete calculation of cost function requires on average 12 cycles. The overall average performance
overhead is 5,772 cycles per video frame (for 481 calls of cost function, as mentioned in Section 5.3),
which is insignificant. The overall power overhead of the energy management scheme is 42.237 mW (41
mW dynamic + 1.237 mW leakage) for a Xilinx Virtex-II based hardware prototype. However, the
hardware for the scheme is only used at the start of each hot spot for choosing the set of CI
Implementation Versions and during the hot spot execution it is not used. Therefore, the overall energy

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 110 -

overhead is insignificant compared to its energy benefit. Moreover, for the final system an ASIC-based
implementation is foreseen which would result in much lesser power overhead.

Summary of Energy Minimizing Instruction Set:

The adaptive energy management scheme chooses an energy-minimizing set of CI Implementation
Versions for each computation hot spot such that this set fulfils the reconfigurable fabric area and
performance constraints. The goal is to minimize the overall energy of the hot spot while considering
leakage, dynamic, and reconfiguration energy along with the predicted CI execution frequency. In order to
expedite the algorithm (especially when considering its run-time nature), three means are applied. These
are (a) Efficiently traversing the search space, (b) Simplifying the cost function and incrementally
updating the total cost, (c) Early pruning of the search space to determine invalid or suboptimal solutions
as early as possible. Evaluation for various fabrication technologies showed that the proposed scheme
moves in the energy-performance design space at run time and it is equally beneficial for various
technologies, various performance constraints, and changing amount of available reconfigurable fabric
area (i.e., available DPCs). After choosing the energy-minimizing set of CI Implementation Versions, the
energy management scheme determines the muting decisions for the temporarily unused set of CIs, i.e.,
which muting mode is beneficial for which subset of CIs when considering leakage, dynamic, and
reconfiguration energy.

5.4 Selective Instruction Set Muting

As discussed earlier in Section 5.2.1, the adaptive energy management scheme employs a Selective

Instruction Set Muting technique that shuns the leakage energy at the abstraction level of Custom
Instructions (CIs), i.e., an instruction set oriented shutdown. When targeting dynamically reconfigurable
processors, it is hard to determine at compile time which CIs will be reconfigured on which part of the
reconfigurable fabric (i.e., in which DPCs). As a result, the hardware-oriented shutdown schemes [Ge04,
MM05] � that monitor the idle usage/state of a particular hardware to issue the shutdown signal � suffer
from the limitation of inflexibility and are highly dependent upon the underlying shutdown policy.
Contrarily, the instruction set oriented shutdown (i.e., CI-level muting) relates leakage energy to the
execution context30 of an application to enable a far higher potential for leakage energy savings.
Considering the power-shutdown infrastructure (as discussed in Section 5.2.2), several CI muting modes
(see Table 5.1 in Section 5.2.1) can be defined, each leading to particular leakage energy savings. These
muting modes are:

a) Non-Muted CI (NM-CI): CI is active and operational.
b) Virtually-Muted CI (VM-CI): CI cannot be executed due to the powered-off Logic. No

reconfiguration is required in order to deploy this CI as its Configuration SRAM is kept powered-
on. It is beneficial when a subset of CIs is not demanded for a rather short period.

c) Fully-Muted CI (FM-CI): CI is not operational, as both Logic and Configuration SRAM are
powered-off. A reconfiguration is required (that costs reconfiguration energy and latency) to deploy
this CI. It is beneficial when a subset of CIs is not demanded for a rather long period.

After the energy-minimizing set of CI Implementation Versions is chosen (Section 5.3), the muting modes
are determined for the temporarily unused subsets of CIs. Then the challenging question arises, which
subset of the CI set shall be muted at what time and in which mode (VM-CI or FM-CI, see Table 5.1)
under run-time varying application contexts in order to minimize the overall energy, considering the
tradeoff between leakage energy saving and reconfiguration energy overhead. This decision depends upon
the execution length and the requirements of the computational hot spots (during which different CIs are

30 instead of idle hardware state monitoring, idle periods of CI usages (i.e., temporarily unused subset of CIs) are
exploited for the purpose of energy savings.

5.4 Selective Instruction Set Muting

- 111 -

used for the application acceleration). These parameters may vary at run time depending upon the
application execution properties, and the area and performance constraints (i.e., more or less
reconfigurable fabric is required to accelerate hot spots), as it will be motivated in Section 5.4.1.
Therefore, the CI muting decision cannot be determined at compile-time.

In the following, the importance of different muting modes (VM-CI and FM-CI) and their relationship
to the muting duration (i.e., in which scenario which muting mode is beneficial) are discussed with the
help of simple motivational scenarios in Figure 5.10.

5.4.1 Problem Description and Motivational Scenarios

Various challenging questions arise given the three muting modes from above: For instance, whether
VM-CIs or FM-CIs provide more energy reduction when both leakage energy and reconfiguration energy
are considered. This is reflected by the following equation (Eq. 5.7) where the decision of a muting mode
depends upon the execution length of a hot spot (i.e., LHS):

 _ _ _ _

?
* * (*)VM CIs HS FM CIs HS DPC reconf DPC reconfP L P L P T< +∑ (5.7)

Additionally, it needs to be clarified whether this decision can be determined statically ([Ge04, MM05])
or whether it requires a dynamic decision. As it will be shown later on, this depends on a specific run-time
scenario (i.e., application's execution context).

Figure 5.10: Comparing the Energy Requirements of Virtually- & Fully-Muted CIs for 2 Scenarios

Figure 5.10 shows three different run-time scenarios and compares the energy requirements of VM- and
FM-CIs. It is noticeable that the energy requirements of FM-CIs are significantly lower for most of the
time. However, when a FM-CI is demanded again for executing a hot spot, its muting mode is switched to
NM-CI. It increases the energy requirements significantly due to the demanded reconfiguration of these
FM-CIs (see the 2nd addend on the right hand side of Eq. 5.7). This fact is noticeable in Figure 5.10a)
where the muting duration of FM-CIs is too short to amortize the reconfiguration overhead
PDPC_reconf * TDPC_reconf. An alternate scenario can also been seen in Figure 5.10a) where the leakage energy
in VM-CIs is large compared to the reconfiguration energy of FM-CIs. Such a scenario may result due to
a higher Vdd in order to support a higher clock frequency, which is required to fulfill the performance
constraints.

Figure 5.10b) shows the scenario, where the leakage energy of the VM-CIs is higher than that of FM-
CIs as the muting duration is too long (e.g., due to relaxed user constraints). Therefore, the CIs in the
fully-muting mode amortize the reconfiguration overhead. Actually, the muting duration for CIs varies due

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 112 -

to the changing application contexts as a result of (i) varying control flow of the application, (ii) changing
application priorities in multi-tasking systems (varying the amount of available reconfigurable fabric
assigned to it), and (iii) changing user preferences (e.g., performance constraints, thus changing hot spots�
execution length). Hence, it is not possible to predict the energy requirements of VM-CIs at compile time.

The three scenarios in Figure 5.10 demonstrate that it is typically not possible to decide Eq. 5.7 at
compile time. Therefore, a run-time Selective Instruction Set Muting technique is desirable for adaptive
low-power reconfigurable processors. It determines at run time which subset of CIs should be put into
which muting mode (Table 5.1) at what time. For this, it evaluates the possible associated energy benefit
(a joint function of leakage, dynamic, and reconfiguration energy) at run time.

5.4.2 Operational Flow for Selective Instruction Set Muting

The proposed technique evaluates a possible energy benefit (a function comprising leakage, dynamic, and
reconfiguration energy, see Section 5.4.3) of different CIs to select an appropriate muting mode for the
corresponding DPCs at run time31. Figure 5.11 presents a time line showing the execution sequence of
previous, current, and upcoming hot spots along with the point of time where the CI muting mode is
selected.

TIME
Current Hot Spot Upcoming Hot Spot

Determine the CI Muting Decision here

�Previous Hot Spot

The data path requirements of
this hot spot are predicted

The CIs of this hot spot determine
the available data paths

Figure 5.11: Time-line showing the execution sequence of hot spots

and the situation for a CI Muting decision

Figure 5.12 presents the flow of the CI muting technique. It is triggered ahead of a hot spot execution. The
key inputs are:

• a list of Data Paths that are available from the previous hot spot (p
G

) and
• lists of Data Paths that are required by the current and the upcoming hot spots (c

G
 and n

G
, see

Figure 5.13).

The algorithm returns non-muted, virtually-muted, and fully-muted DPCs for the current hot spot
(DPCNM, DPCVM, DPCFM). The four major steps are:

Step-1: The DPCs to fulfill the Data Path requirements of the current hot spot (see Figure 5.13) are kept
in non-muted mode (DPCNM, i.e., DPCs in active state). Afterwards, the Data Paths required for c

G

are checked if they are already available in DPCs (i.e., common Data Paths in c
G

 and p
G

). If yes,
then these DPCs are added to the DPCNM list.

Step-2: Afterwards, the requirements of the upcoming hot spot are predicted (see details in Section 5.4.4)
and virtually-muting DPCs (DPCVM) are determined. At the start of the current hot spot, the Data
Paths that are available from the previous hot spot are compared to the Data Paths required by the
upcoming hot spot.

31 as mentioned in Section 5.2.2, in order to set a particular muting mode for a CI, the control signals (as specified in
Table 5.1) for the sleep transistors (for Logic and the Configuration SRAM) are issued to all DPCs of this CI.

5.4 Selective Instruction Set Muting

- 113 -

o If a Data Path is currently available, not needed for the current hot spot, but needed again for the
upcoming hot spot, it is a candidate for the virtually-muting mode (Figure 5.13) and it is added to
the candidate list.

o Then, the maximum number of virtually-muted Data Paths (DPVM) is computed by considering the
requirements of the current and the upcoming hot spots and the total number of DPCs.

o However � depending upon the requirements of the current hot spot � the maximum number of
DPVM may be smaller than the total number of virtually-muting mode candidates as some of the
DPCs may need to be reconfigured to fulfill the performance requirements of the hot spot.
Therefore, the �determineDPVM� function (details in Section 5.4.3) evaluates the energy benefit
of all candidates for the virtually-muting mode. It then chooses the one that provides the highest
energy benefit among all candidates.

o If the energy benefit (no additional reconfiguration required) overcomes the overhead (larger
leakage) then the DPC of DPVM are added into the DPCVM list. Alternatively, no DPC is put into
the DPCVM list.

o The function �determineDPVM� is iteratively executed until maximum number of DPVM is zero.

Step-3: If some of the Data Paths required by the current hot spot are not available, then more DPCs are
kept in non-muted mode as they will be reconfigured to fulfill the requirements of the current hot
spot. These DPCs are added into the DPCNM list. Those DPCs where the non-muted mode is not
beneficial or which are not needed in the current and the upcoming hot spots are put into the fully-
muted mode (i.e., added to the DPCFM list), as they may be used rather late during the application
execution flow.

Step-4: In the last step, DPCNM, DPCVM, DPCFM lists are sent to the Mute-Mode Controller (Section 5.2.2)
that issues the control signals (see Table 5.1) for the sleep transistors (for Logic and the
Configuration SRAM).

DP c∀ ∈
G

Figure 5.12: Flow for Selecting a Muting Mode for the Custom Instruction (CI) Set

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 114 -

p
Gc

G

n
G G

s

Figure 5.13: Venn Diagram Showing the Data Path Requirements of

Previous, Current, Upcoming Hot Spots

Now, the �determineDPVM� (from Figure 5.12) function (which is used for computing the energy benefit
of muting and for identifying a virtually-muted DPC) is discussed in the following.

5.4.3 Analyzing the Energy Benefit Function of Muting

Algorithm 5.2 shows the pseudo code for identifying one Data Path for virtually-muting (DPVM) out of all
virtually-muting candidates. The key inputs are: virtually-muting candidates (s

G
), Data Paths required for

the upcoming hot spot (n
G

), set of CI Implementation Versions that are expected to be required for the
upcoming hot spot (CInext), expected execution time of the current hot spot (tExeccurr_HS), and a table of the
CI weighting factors (CIω).

1. ()_Function , s, , , , next CI curr HSt n CI tExecωVMdetermineDP
G G G

2. // Input: t
G

: temporary copy of currently required Data Paths, s
G

: virtually-muting candidates, n
G

: Data Paths

required for the upcoming hot spot, CInext: set of Implementation Versions for CIs that are expected to be required

for the upcoming hot spot, tExeccurr_HS: expected execution time of the current hot spot, CIω : a table of the CI

weighting factors (Figure 5.14)

3. // Output: DPVM: virtually-muted Data Path

4. BEGIN

5. 0;benefitbestE = // initialize the energy benefit

6. ;VMDP NULL← // initialize virtually muted Data Paths

7. {DP s∀ ∈
G

 // determine one Data Path from candidate list

8. _ _ * ;ReconfBenefit DPC reconf DPC reconfE P T=

9. _ _ (,) * (*);LeakBenefit Benefit DPC leak cISA leakE L t DP P n P= +
G G

10. _ _ _ * ;LeakOverhead curr HS VM DPC leakE tExec P=

11. (,);diff diffdynE dynE t DP=
G

 // see Eq. 5.9

12. ;Benefit ReconfBenefit LeakBenefit LeakOverhead diffE E E E dynE= + − +

13. () {benefit benefitif E bestE>

14. ; ;benefit benefit VMbestE E DP DP= =

15. }

16. }

17. return ;VMDP

18. END

Algorithm 5.2: Pseudo Code for Finding a Data Path for Virtually-Muting Mode

5.4 Selective Instruction Set Muting

- 115 -

Each Data Path in the candidate list s
G

 is evaluated for the energy benefit (line 7-16). The Data Path
that provides the highest energy benefit among all candidates s

G
 is then chosen as the one DPVM (line 13-

15). There are four parts for the energy evaluation (line 12):

Reconfiguration Energy Benefit (ERecBenefit, line 8): When a hot spot starts execution, its Data Paths are
reconfigured into DPCs. In case a Data Path is still available after the execution of the current hot
spot, one less reconfiguration is required for the upcoming hot spot. Thus, a DPVM provides an energy
benefit of one saved reconfiguration. Moreover, it also results in a latency improvement of one
reconfiguration (approximately 0.63 ms) compared to the fully-muted DPC.

Leakage Energy Benefit (ELeakBenefit, line 9): As the DPVM will be available when the upcoming hot spot
starts executing, the CIs of that hot spot may execute in a faster Implementation Version compared to
the case when it is not available. This results in a performance improvement for the upcoming hot spot
compared to the fully-muted Data Path (see Eq. 5.8). Each DPVM may expedite multiple CIs, where
each CI has a different weighting factor (CIω , see Section 5.4.4) depending upon its execution
frequency and execution pattern in the hot spot. Faster execution of the upcoming hot spot will reduce
the overall leakage energy of both the core processor and the reconfigurable fabric. Therefore, leakage
savings are computed for each virtually-muting candidate by considering CIω of the CIs that are
accelerated by this candidate.

 ()
(. ()) *

(,) . (). (). ()
. (). (). ()

ω

∈

⎛ ⎞
⎜ ⎟= −
⎜ ⎟+⎝ ⎠

∑G
G

G G G
G G

next

CI

Benefit

x CI

x CI
L p DP x CI Fastest p Latency

x CI Fastest p DP Latency
 (5.8)

Leakage Energy Overhead (ELeakOverhead, line 10): Leakage occurs in a virtually-muted DPC (due to the
powered-on Configuration SRAM) for the whole duration of the current hot spot execution.
Therefore, this overhead needs to be considered for the energy benefit function (line 12).

Dynamic Energy Difference (dynEdiff, line 11): Different Implementation Versions of a CI vary in their
dynamic power and energy consumption. Therefore, a DPVM may bring an energy benefit or overhead
due to a different CI Implementation Version as shown in Eq. 5.9.

 ()
(. ()) *

(,) . (). (). ()
. (). (). ()

ω

∈

⎛ ⎞
⎜ ⎟= −
⎜ ⎟+⎝ ⎠

∑G
G

G G G
G G

next

CI

diff

x CI

x CI
dynE p DP x CI Fastest p E

x CI Fastest p DP E
 (5.9)

The computational complexity for calculating the energy benefit is () VMnumMaxDP s
GiO . Figure 5.13

shows that s
G

 is typically much smaller than the total number of Data Paths that fit onto the
reconfigurable fabric at a certain time.

Note: the wakeup energy for virtually-muted and fully-muted DPC are 3.5 and 7.0 pWs (for the sleep
transistor design of [Te06]), respectively. However, the energy for reconfiguring one DPC is 147 µWs,
i.e., more than 106 times bigger (see details in Section 6.3, page 124). Therefore, the DPC reactivation
energy overhead is not included in the cost function, as it does not affect the muting decision.

5.4.4 Hot Spot Requirement Prediction: Computing Weighting Factors for CIs

Different CIs of a hot spot may have different execution patterns (see Figure 5.14). These execution
patterns depend upon the following three parameters:

• expected execution frequency of CIs
• the time from the start of a hot spot until their first execution

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 116 -

• the average time between two executions of the same CI

The expected execution frequency is predicted by a light-weight online monitoring scheme (Section 2.3.5,
page 25), while the other two parameters are obtained using an average case from offline-profiling.
Depending upon the above three parameters a weighting factor (CIω) is computed for each CI. It
represents the relative contribution of a CI (compared to other CIs) for the accelerated execution of a hot
spot. To calculate CIω , the time line is partitioned into multiple slots, each equal to the reconfiguration
time of a Data Path. Since the performance of a CI may only change after a reconfiguration is completed,
the number of CI executions (#CIExecTSi) is computed for each time slot TSi independently. Similarly, CIs
executing in the earlier time slots have more weight than the later ones in the same hot spot (denoted by
FactorTSi). Considering there are �n� time slots, CIω of a CI �X� can be computed as shown in Eq. 5.10.

1

() (# *)ω
=

=∑ n

CI TSi TSi
i

X XExec Factor (5.10)

An example can be found in the Motion Estimation hot spot of the H.264 encoder that requires two CIs:
Sum of Absolute Differences (SAD) and Sum of Absolute Hadamard Transformed Differences (SATD).
In the control flow, first SAD is required and then SATD, therefore the SAD CI has a higher importance
for the earlier time slots. SATD becomes important in the later time slots. Let us assume that ME is the
hot spot that is executed next. If only one DPC shall not be used in the current hot spot, but two virtually-
muting candidates are available (containing Data Paths that are beneficial for the Motion Estimation), then
it may be more beneficial to maintain the Data Path for SAD (i.e., setting it to virtually-muted mode)
instead of SATD.

Figure 5.14: Calculating the Weighting Factor for Custom Instructions w.r.t. the Application Context

The complexity for online computation of the CI weighting factors is (#)CIs n×O per hot spot (�n� is the
number of virtually-muting candidates, which is bound by #DPCs) with a memory overhead of (#)CIsO
to store the monitoring data (three 32-bit words per CI).

5.4.5 Evaluation of Selective Instruction Set Muting

Figure 5.15 illustrates the box-plot summary (over 408 different experiments of different performance and
area constraints) of the benefit of using multiple CI muting modes and Selective Instruction Set Muting.
The comparison is performed between the energy management scheme with one given muting mode (i.e.,
Fully Muting) and Selective Instruction Set Muting (where the decision of Fully or Virtually muting is
evaluated at run time). Figure 5.15 shows that Selective Instruction Set Muting provides an energy benefit
of up to 22% (on average 12%).

Overhead of the Selective Instruction Set Muting Technique:

The main compute-intensive part of the CI muting technique is the �determineDPVM� function
(Algorithm 5.2) that determines the DPVM. The energy benefit calculation (in line 8-15, Algorithm 5.2)
consumes 8.82 nWs, 11.56 nWs, 21.81 nWs for 40 nm, 65 nm, 90 nm, respectively. For �n� virtually-

5.4 Selective Instruction Set Muting

- 117 -

muting candidates there are �n(n-1)� energy benefit calculations. For the H.264 video encoder application
� in worst case � there are at most four candidates. The overall energy overhead of the CI muting
technique is 105.89 nWs, 138.71 nWs, 261.68 nWs for 40 nm, 65 nm, 90 nm, respectively. However, the
energy savings of the proposed technique are in multiples of mWs, i.e., more than 105 times bigger.
Therefore, the energy overhead is negligible compared to the achieved energy savings.

The worst-case performance overhead of the CI muting technique is 1,356 cycles for the above-
discussed experiments, which is negligible in comparison to the hot spot execution time (<< 1%,
depending on performance constraints). The CI muting technique is envisioned as executing on a
Microblaze processor (a soft core provided by Xilinx) that along with monitoring and the reconfiguration
controller requires only 5,564 slices in the current Xilinx Virtex-4-lx160 FPGA based prototype of the
RISPP processor.

Note: the CI muting technique also requires a power-shutdown infrastructure in FPGAs to realize
energy-aware adaptive computing that incurs additional area overhead. Pika [Te06] (a Xilinx low power
FPGA research project) states an 8% area increase due to their power-shutdown infrastructure. However,
they provide one sleep transistor per CLB, while in the envisioned power-shutdown infrastructure (see
Section 5.2.2) two sleep transistors per DPC are required. Therefore, a much smaller area overhead is
envisioned. Currently, such infrastructure is not available in today�s commercial FPGAs. It would be far
more energy efficient if FPGA vendors would provide a basic infrastructure that is necessary to exert the
proposed CI muting technique.

0

5

10

15

20

25

E
n
e
rg
y

 R
e
d
u
ct
io
n

 [%
]

40 nm 40 nmL 65 nm

Up to 22% Energy Reduction due to
Selective Instruction Set Muting

Summary of 408 experiments
per fabrication technology

90 nm
Fabrication Technology

100%ͲQuartile
(Maximum)

75%ͲQuartile (75% of
the values are smaller)

50%ͲQuartile
(Median)

Average

25%ͲQuartile (25% of
the values are smaller)

0%ͲQuartile
(Minimum)

Figure 5.15: Summary of Energy Benefit of using Selective Instruction Set Muting

Summary of Selective Instruction Set Muting:

The Selective Instruction Set Muting technique uses various muting modes (requiring a power-shutdown
infrastructure) that enable leakage energy reduction at the abstraction level of CIs. The CI muting
technique selects one out of three muting modes for each CI in the unused subset of CIs considering
leakage as well as reconfigurable energy under run-time varying situations and constraints. The energy
benefit function is evaluated at run time for each muting candidate which is a joint function of leakage,
reconfiguration, and dynamic energy. Besides the execution length and requirements of the current and
the upcoming hot spots, the weighting factors of different CIs (representing their relative contribution) in
a hot spot are given as the input to compute the benefit of a particular muting mode. These weighting
factors are determined by considering the expected execution frequency of CIs, the time from the start of a
hot spot until their first execution, and the average time between two executions of the same CI. The
experimental evaluation for various fabrication technology nodes corroborate the potential for far higher
energy savings of dynamically reconfigurable processors which currently still suffer from a low efficiency
as far as energy is concerned.

Chapter 5 Adaptive Low-Power Reconfigurable Processor Architecture

- 118 -

5.5 Summary of Adaptive Low-Power Reconfigurable
Processor Architecture

Once the energy requirements are reduced at the application/algorithm level, processor level energy
management scheme needs to further trim the overall energy. First, different motivational scenarios were
analyzed for different performance constraints of the video encoding application to highlight the energy
reduction potential. Afterwards, a run-time energy management scheme is introduced. This scheme
employs the novel concept of instruction set level muting that raises the abstraction level power-shutdown
to the instruction set architecture. By doing so, it provides a much higher potential for energy reduction.
Different muting modes are proposed considering a power-shutdown infrastructure that supports the
independent shutdown control of the Logic and Configuration SRAM of the reconfigurable fabric. In the
first step, the energy management scheme determines the energy minimizing instruction set while
exploring the tradeoff related to the leakage, dynamic, and reconfiguration energy under run-time varying
scenarios of performance and area constraints. It evaluates that for a given scenarios, whether it is
beneficial to reconfigure more in order to meet the performance constraint, or it is beneficial to mute the
CIs to reduce leakage. Afterwards, it determines the temporarily unused subset of CIs that are the possible
muting candidates. Considering the area requirements of the currently executing and upcoming hot spots,
the energy management scheme uses a Selective Instruction Set Muting technique to determines an
appropriate muting mode for each CI. The benefits of determining the energy minimizing instruction set
(i.e., exploiting the tradeoff of leakage, dynamic, and reconfiguration energy) and the Selective Instruction

Set Muting are individually evaluated in Section 5.3.3 and Section 5.4.5, respectively. The evaluation is
performed for different performance constraints and resolutions, while considering various fabrication
technologies in order to demonstrate the technology independent efficiency of the proposed energy
management scheme. This scheme is the key to realize an adaptive low-power reconfigurable processor
architecture.

- 119 -

Chapter 6 Power Measurement of the

Reconfigurable Processors

This chapter presents the details of building the power model described in Section 3.4 (page 45). This
power model is employed for power estimation, which is then used for the run-time adaptive energy
management in reconfigurable processors (Chapter 5) and energy estimation for the adaptive low-power
video encoding (Chapter 4). Section 6.1 presents the power measurement setup. Section 6.2 discusses the
flow for creating the power model and parameter estimation. It further describes the procedure and
different test cases for measuring the power of a complete Custom Instruction Implementation Version
and different constituting components (i.e., computation, communication, and memory). Results for
different measurements and estimated power are presented in this section. Section 6.3 presents the
procedure and results for measuring the power of the reconfiguration process.

6.1 Power Measurement Setup

Figure 6.1a shows the power measurement environment which is developed in the scope of this thesis. It
consists of a power supply board (Figure 6.1b), two Agilent oscilloscopes (MSO6032A, and MSO6054A),
a Xilinx Virtex-II v6000 FPGA (at 50 MHz and 1.5 V VCCINT) based prototyping board (Figure 6.1c),
and a control program (running on a PC) for capturing the measurements from the oscilloscopes. Two
oscilloscopes are used to simultaneously measure two different entities (e.g., FPGA and external
memory). Precise measurement resistors of R=1.0 ȍ are used. The voltage drop is measured across the
two ends of a resistor using oscilloscopes as V=V2-V1 and the current flowing through this resistor is
obtained using I=V/R formula. Here V1 is the input voltage to the FPGA. The overall power consumption
is P=IV1.

Control
Program

Xilinx FPGA
Virtex II

xc2v6000

Cable for the Triggering and Control
Signals and the measurement data

Agilent
MSO6054A

Oscilloscope

1 Ω

1.5 V

V1V2

Agilent
MSO6032A

Oscilloscope

(b)(a) (c)

Figure 6.1: a) Measurement setup, b) the in-house Developed Power Supply board

Power supply board: to accurately measure the power consumption of FPGAs, a power supply board
(Figure 6.1b) is developed that supplies power to the FPGA prototyping board (Figure 6.1c). This power
board has several functions:

• The voltage converters transform the input voltage (12V) from the DC source to the desired
voltages (VCCINT, VCCAUX, VCCI/O for the FPGA and voltages for peripherals)

• The fuses protect against the high current and the switching relays are activated only when all
voltages are on

• The resistors measure the voltage drops at the output plugs

Agilent Oscilloscopes and VISA interface: The maximum sampling rate of MSO6032A and
MSO6054A oscilloscopes are 2 and 4 GSamples/sec, respectively, which is sufficient for the

Chapter 6 Power Measurement of the Reconfigurable Processors

- 120 -

measurement. Both oscilloscopes support the VISA interface, which is an API for electronic control
devices. It allows to send commands to the oscilloscopes and/or to receive data from the oscilloscopes.
The Agilent IO Library (software) is used to create the control software (using Microsoft .Net
Framework) for the oscilloscopes. Most of the functions performed with the knobs are also realized via
VISA. This enables automation of the measurement process.

6.2 Measuring the Power of Custom Instructions

In this section, the flow for creating the power model is presented. Different test cases for measuring the
power of different components are discussed. Afterwards, results for power measurement are presented.

6.2.1 Flow for Creating the Power Model

Figure 6.2 shows the flow to build the power model for CI Implementation Version. First, the HDL code
of different Data Paths and Implementation Versions is synthesized with Xilinx Synthesis Technology
(XST) [Xil10a]. Afterwards, Mapping, Place & Route, and Assemble are done using Xilinx PlanAhead
with the Early Access Partial Reconfiguration (EAPR) tool flow [Xil05] to obtain full and partial
bitstreams. The partial bitstreams are then uploaded on the FPGA and power is measured for different
Data Paths and Implementation Versions (see details in Section 6.2.2).

Figure 6.2: Flow for Creating the Measurement-based Power Model

As discussed in Section 3.4 (page 45), to estimate the dynamic power consumption of an executing CI
Implementation Version (PCI_dyn), the following needs to be considered:

• The types of Data Paths and how often they are executed.
• The number of write/read accesses on the local memory.
• The number of bus segments necessary for communicating the intermediate results

Based on the analysis (Figure 6.3), the dynamic power of a CI Implementation Version is modeled as:

 PCI_dyn = Į*PDataPath + ȕ*PSegBus + Ȗ*PMemory + į (6.1)

Į, ȕ, Ȗ, į are model coefficients. į accounts for the measurement noise. PDataPath, PSegBus, and PMemory are the
average power consumption of a Data Path, a bus segment, and a single read or write operation,
respectively (see details in Section 3.4). The model coefficients Į, ȕ, Ȗ, and į are estimated on Matlab
using the Simulated Annealing algorithm (Tcool = 0.8T, Tstop = 10-12, Eallowable = 5%, and maximum
consecutive rejections = 104) and trained with a set of measured power values (see Table 6.4 in Section
6.2.3 for the final estimated values). Tcool is the cooling temperature that determines the temperature of the

6.2 Measuring the Power of Custom Instructions

- 121 -

next iteration of the algorithm. Tstop is the temperature where the algorithm stops iterating and output the
coefficients. Training is done by minimizing the difference error between the estimated (model-generated)
and the measured power values of an Implementation Version for a given maximum error Eallowable (5% in
this case). The finalized model coefficients are then fed into the power model, which is then used for
estimating the energy consumption of various CI Implementation Versions at run time.

Since the power can only be measured for the complete FPGA, in order to determine the power of the
individual parameters (i.e., Data Path, segmented buses, and local memory) and the complete
Implementation Version, several test cases are devised which are explained in the following.

6.2.2 Test Cases for Power Measurements

First, the computation- and communication infrastructure (Figure 3.7, Section 3.4.1) is extended with a
signal generator to realize a measurement framework. The power consumption of signal generator and
leakage are surplus to the actual power consumption of an Implementation Version, thus, considered as
the base offset (see test case 1, Figure 6.3). The buses and the local memory consume energy only in case
a toggle happens due to, e.g., a Data Path writes a new value into the local memory of its Bus Connector.

Put Zero
on the
Buses

Test Case 1) Empty Framework

Data Path
Container

(reconfigurable)
scaled down for

clarity

Bus Connector
(non-reconfigurable)

Figure 6.3: Test Case and Setup for Measuring the Power of An Idle (Empty) Framework

Test Case 1) Measuring power of the idle measurement framework (PTestCase1): As discussed above,
for a base offset, the power of the idle framework (PTestCase1) is measured such that all DPCs contain
blank bitstreams (i.e., a DPC is reconfigured to do nothing) and �0� value is transmitted on the bus
segments. No writing to the local memory is performed. In this test case, the power consumption is
mainly due to leakage and signal generator.

Test Case 2) Measuring power of a Data Path (PDataPath): The dynamic power of a Data Path depends
upon its type. To obtain the power of a Data Path, only one DPC is reconfigured to contain a
particular Data Path and all other DPCs contain blank bitstreams (see Figure 6.4). The output of the
Data Path is not stored in the local memory. The average power of one Data Path is obtained as:
PDataPath = PTestCase2 � PTestCase1. Numerous measurements are performed with varying stimulus to
obtain the power of all Data Paths as used in the final experiments (see Table 6.2 in Section 6.2.3).

Test Case 3) Measuring power of the Local Memory (PMemory): Two different tests are performed for
measuring the power consumption of the local memory:

a) Write to the local memory (see Figure 6.4): this test extends the test case 2 by writing the output
of a Data Path into the local memory. The power of a write operation into the local memory is:
PWriteMem = PTestCase3a � PTestCase2

b) Read from the local memory (see Figure 6.4): This test extends the test case 3a by writing the
content of the local memory to a bus segment. The power of a read operation from the local
memory is: PReadMem = PTestCase3b � PTestCase3a

Chapter 6 Power Measurement of the Reconfigurable Processors

- 122 -

Note, reading from a local memory causes toggles in the multiplexers of the Bus Connector and in the
bus segment to which its contents are written. The power due to both types of toggles is considered as
the power of one read from the local memory.

Test Case 4) Measuring power of a Bus Segment (PSegBus): As discussed in Section 3.4, the
communication power depends upon the number of bus segments, which directly depends on the
relative placement of the communicating Data Paths on the reconfigurable fabric. In this test, the values
from the local memory are written to one particular bus segment and �0� value is written to the other
bus segments towards right to avoid toggles. To get the power of a bus segment, the test case 3b is
extended such that the placement of a particular Data Path is shifted towards one DPC right and the
difference of two measurements gives the power of one bus segment as: PBusL2R = (PTestCase3b)DPC_N+1 �

(PTestCase3b)DPC_N. The average of several tests for different Data Path placements provides a more stable
power value for a bus segment.

Local
memory

Bus Segments

Bus Segments

Transform

Data Path

In
p

u
t

Input values
on the Buses

Zero values
on the Buses

O
u

tp
u

t

O
u

tp
u

t

Test Case 2) Measure

Power of a Data Path

Test Case 3a) Measure Power

of Write into the Local Memory
Test Case 3b) Measure Power of

Read from the Local Memory

Figure 6.4: Different Test Cases for Measuring the Power of Different Components

of a Custom Instruction (CI) Implementation Version

The measured power of Data Paths, local memory, and bus segments are used in the power model to
estimate the power consumption of a CI Implementation Version. However, to tune the coefficients of the
model and for model verification, several experiments were performed to measure the complete power of
different Implementation Versions.

Test Case 5) Measuring power of a complete CI Implementation Version (PCI_ImpVersion): The
bitstreams of all Data Paths of an Implementation Version are reconfigured and the control signals
determine the communication between these Data Paths. The power is measured for the complete
execution of the Implementation Version. For an Implementation Version with latency L, the per cycle
average power is computed as: PCI_ImpVersion = PTestCase5/L � PTestCase1. Since there are several Data Paths
processing in parallel, there might exist many Data Path placement combinations, i.e., a Data Path can
be placed in one out of many DPCs and with increasing number of Data Paths the number of possible
placement combination increases. An example of two Transform Data Paths is shown in Table 6.1 that
was used in the measurement experiments. Each combination has different power consumption due to
different amount of bus segments used. Therefore, different measured power values are used to tune
the corresponding estimated power values for the same CI Implementation Version.

1
st
 Transform Data Path at 2

nd
 Transform Data Path at

DPC 2 DPC 3 DPC 4 DPC 5 DPC 6 DPC 7

DPC 3 DPC 4 DPC 5 DPC 6 DPC 7

DPC 4 DPC 5 DPC 6 DPC 7

DPC 5 DPC 6 DPC 7

DPC 6 DPC 7

Table 6.1: Different Placement Combinations of two

Transform Data Paths for Power Measurement

6.2 Measuring the Power of Custom Instructions

- 123 -

6.2.3 Results for Power Measurement and Estimation

Table 6.2 shows the measured power results for different Data Paths and Implementation Versions. These
power values are used for tuning the model coefficients (Į, ȕ, Ȗ, į, see Table 6.3 for finalized values) and
verification of the power model (Section 3.4, page 45). The reconfiguration power and time is obtained by
measurements (see Section 6.3 for details of the power measurement procedure). Note, differently sized
Data Paths may require different reconfiguration time due to their varying bitstream sizes.

Table 6.4 presents the power consumption and latencies of different Implementation Versions for two
different cases of total DPCs at 40 nm (Virtex-6) and 65 nm (Virtex-5) technologies. It is notable that the
power consumption of Implementation Versions on 40 nm is lesser than that on 65 nm due to the low-
power architectural improvements in Virtex-6 [Kle10].

Data Path
Power

[mW]

Data Path

Power

[mW]

Implementation Version:

HT4x4 (Repack in DPC0)

Power

[mW]

Clip3 15.9 SADrow 28.2 Transform in DPC2* 178.9
PointFilter 55.4 SAV 25.1 Transform in DPC4* 180.8
LF_4 57.9 Transform 64.9 Transform in DPC6* 185.1
Cond 13.1 QuadSub 24.1 Bus_Power (Pbus)** 3.4
CollapseAdd 19.7 Repack 14.4 Mem_Power (PRW) 28.3

Table 6.2: Measured Power Results for Various Data Paths & HT4x4 Implementation Versions

[* showing the effect of changing communication requirements, ** power for a single toggling bus

segment; many bus segments are used for communication to realize an Implementation Version]

Attribute Value Attribute Value

Į 1.2387 į 0.0911

ȕ 0.4699 Ȗ 0.8165

Table 6.3: Parameters of Power Model for the CI Implementation Versions

Functional

Block

Custom

Instruction

Data

Paths

Using 4 DPCs Using 20 DPCs

Latency

[Cycles]

Power [mW] Latency

[Cycles]

Power [mW]

40 nm 65 nm 40 nm 65 nm

Motion

Estimation

(ME)

SAD16x16 SADrow 68 47.35 67.21 41 59.76 84.39

SATD4x4
QuadSub, Transform,

Repack, SAV
93 13.87 19.68 29 57.24 81.72

Motion Compen-

sation (MC)
MC_Hz_4

PointFilter, Repack,
Clip3

10 52.00 74.00 10 58.75 83.75

Intra Prediction

(IPred)

IPred_HDC CollapseAdd, Repack 130 7.46 10.54 130 7.46 10.54

IPred_VDC CollapseAdd, Repack 53 4.00 5.28 53 4.00 5.28

(Inverse)

Transform

(I)DCT4x4
Transform, Repack,

(QuadSub)
102 9.51 13.43 20 62.00 88.00

(I)HT_2x2 Transform 2 50.00 70.00 2 50.00 70.00

(I)HT_4x4 Transform, Repack 16 60.00 85.63 15 64.67 92.00

In-loop

Deblocking Filter

(LF)

LF_BS4 Cond, LF_4 10 52.00 74.00 10 52.00 74.00

Table 6.4: Power Consumption and Latencies of Different Implementation Versions (using

Different Amount of DPCs) for Various Custom Instructions for 65 nm and 40 nm Technologies

Chapter 6 Power Measurement of the Reconfigurable Processors

- 124 -

6.3 Measuring the Power of the Reconfiguration Process

The smallest reconfigurable unit in a Xilinx FPGA (Virtex family) is a so-called frame [Xil05]. A Data
Path Containers (DPCs) is composed of multiple frames. Due to technological reasons, DPCs are typically
of rectangular shapes. The power measurements are performed using a Virtex-II FPGA where a frame
covers the complete height of the FPGA. Therefore, the DPC consists of multiple Configurable Logic
Block (CLB) columns32. Before performing a reconfiguration, the configuration data of the corresponding
frames is read. Afterwards, the parts of the configuration data corresponding to the region(s) under
reconfiguration are modified accordingly. In the last step, the frames are written back. Doing so assures
the consistency of the static part and the other un-altered reconfigurable parts within the frames, when
compared to their previous configuration.

For reconfiguring the DPCs, a dedicated Reconfiguration Controller IP core is developed ([Bau09]),
which is connected to the MicroBlaze. It reads the partial bitstreams from an external EEPROM
(KFG5616 32 MB OneNAND from Samsung [Sam05]), buffers data in a FIFO for burst transfer, and
streams the data to the Internal Configuration Access Port (ICAP) of the FPGA for reconfiguration.
Figure 6.5 shows an abstract diagram of this connection. Buffering is done because that the maximum
data that can be continuously read in the burst read mode is one 1KB memory page, which is much
smaller than the size of a bitstream. As a result, the bitstream cannot be completely sent to ICAP in a
burst, which does not comply with the input requirements of the ICAP. The MicroBlaze starts the
reconfiguration by providing the starting address and length of a particular Data Path�s bitstream in the
external EEPROM. A checksum of the reconfigured bitstream is returned. After the MicroBlaze triggered
a reconfiguration, the FIFO is filled with data from the EEPROM (Figure 6.5). When the FIFO contains
sufficient data to assure a continuous 50 MB/s burst to the ICAP of the FPGA, the data is sent from the
FIFO to the ICAP port. The ICAP is operated at 50 MHz (same frequency as for the core pipeline and the
MicroBlaze). The EEPROM delivers the remaining parts to the FIFO in parallel to the running
reconfiguration. Due to the initial buffering (until sufficient data is available to perform a continuous 50
MB/s burst afterwards), the effective reconfiguration bandwidth for the whole process is 36 MB/s.

To measure the power consumption of the EEPROM and the reconfiguration via ICAP, a Data Path
bitstream of 40 KB size is transferred from EEPROM to ICAP through the Reconfiguration Controller. Both
oscilloscopes are used to simultaneously measure the power consumption of EEPROM and the FPGA.

Figure 6.5: Connection of FIFO between EEPROM and ICAP

6.3.1 Power Consumption of EEPROM

Figure 6.6 (a) shows the measured signals while loading the bitstream of a Data Path from EEPROM to
the FPGA. The V2 (yellow) and V1 (green) colored analog signals illustrate the voltage before and after a
measurement resistor (1 Ω), respectively. This measurement resistor is connected with the EEPROM in
series and thereby its current goes further to the EEPROM. As a result, the value of current through the
EEPROM and the measurement resistor is identical. The analog signal (line in the purple color) indicating

32 In the latest Virtex families (Virtex-4 and later), a frame does not span over the full FPGA height.

6.4 Summary of the Power Measurement of the Reconfigurable Processors

- 125 -

the voltage drop across the measurement resistor is computed by taking the difference between the V2 and
V1 signals. The average value of current flowing through the measurement resistor is: I = 25 mV / 1 Ω =

25 mA. The input voltage to the EEPROM (i.e., after the resistor) is measured as 3.26 V. Therefore, the
corresponding power consumption is: P = 3.26 V * 25 mA = 81.6 mW.

V2

V1

V2 �V1ICAPEn

FIFOWrEn

(a) (b)

Figure 6.6: (a) EEPROM Voltage Drop while Loading one Data Path Bitstream from EEPROM

to FPGA. (b) VCCINT Voltage Drop for Transferring one Data Path Bitstream to ICAP

and Performing the Corresponding Reconfiguration

6.3.2 Power Consumption of the Reconfiguration via ICAP

Figure 6.6 (b) illustrates the measured signals for transferring the bitstream of a Data Path to the ICAP
and performing the corresponding reconfiguration. The analog signals indicate the voltage drop of the
measurement resistor, which is connected with the FPGA in series. Moreover, the digital signals for the
write enable of the FIFO (red-line digital signal) and the write enable of the ICAP (blue-line digital
signal) are also shown in Figure 6.6 (b). The time for loading and reading bitstream from EEPROM is
indicated by the write enable of FIFO. The ICAP write enable becomes high after sufficient data is loaded
in the FIFO and it indicates the operating time of ICAP, namely the time for reconfiguration. The average
voltage drop of the measurement resistor is 375.2 mV and the average current flowing through the
measurement resistor is: I = 375.2 mV / 1 Ω = 375.2 mA. The input voltage to the FPGA is measured as
1.43 V, thus the power consumption is: P = 1.43 V * 375.2 mA = 536.5 mW. The power of the idle setup
is 382 mW; thus, the actual reconfiguration power (PDPC_reconf) is 236 mW (536.5+81.5-382=236).

6.4 Summary of the Power Measurement of the Reconfigurable
Processors

The power model proposed in this thesis (see Section 3.4) is based on power measurements. To perform
power measurements, a setup is designed and implemented that consists of a power supply board, two
Agilent oscilloscopes, a Xilinx Virtex-II v6000 FPGA based prototyping board, and a control program for
capturing the measurements from the oscilloscopes. To build a power model, the HDL code of different
Data Paths and Implementation Versions was synthesized and implemented using the Xilinx tool chain
with the Early Access Partial Reconfiguration tool flow. The resulting bitstreams were uploaded to the
FPGA board and power consumption was measured for various input stimuli. In order to measure the
power consumption of different components (i.e., Data Paths, communicating buses, local memory
accesses), various test cases were devised. The measurements are used to train the model and evaluate the
estimation accuracy. The reconfiguration power is measured by measuring the power consumption of the
EEPROM (containing the configuration bitstreams) and the Internal Configuration Access Port (ICAP).
The Data Path bitstream is transferred from the EEPROM to the ICAP through a reconfiguration

Chapter 6 Power Measurement of the Reconfigurable Processors

- 126 -

controller. The reconfiguration energy mainly depends upon the amount of configuration data and the
reconfiguration bandwidth. To simultaneously measure the power of both EEPROM and the ICAP, two
oscilloscopes were deployed. The reconfiguration power measured is in the range of 236 mW.

- 127 -

Chapter 7 Benchmarks and Results

In this chapter, the adaptive low-power application and processor architectures are benchmarked. The
evaluation and analysis of the individual parts of the proposed adaptive low-power application and
processor architecture are already presented in Chapter 4 and Chapter 5, respectively. The first section
will provide benchmarks for different algorithms at the Mode Decision and Motion Estimation levels for
realizing adaptive low-power video coding. These algorithms are compared with different state-of-the-art
fast and adaptive approaches. This section additionally provides the comparison with the exhaustive Rate

Distortion Optimized Mode Decision (RDO-MD) and exhaustive search algorithms to benchmark against
the optimal quality as it is typically done by the related work, too. The second section benchmarks the
adaptive low-power reconfigurable processor architecture (with energy management scheme) against
state-of-the-art reconfigurable processor. The following two different types of dynamically reconfigurable
processor architectures are considered for comparison.

1. Dynamically reconfigurable processors that target at maximizing the performance for a given amount
of reconfigurable fabric area. Kindly see Section 7.3.1 for comparison with architectures supporting
monolithic Custom Instructions (CIs) and see Section 7.3.2 for comparison with architectures
supporting modular CIs.

2. Dynamically reconfigurable processors with the support of hardware-oriented shutdown techniques
for leakage power reduction monolithic CIs (see comparison in Section 7.3.3).

Both of these approaches are provided with the same set of low-power Custom Instructions (CIs) and
Data Paths (see Section 4.2, page 57) as they share the same CI model for accelerating the applications.
For processor level benchmarking the complete H.264 video encoder is used, as the intricate processing
behavior of the H.264 video encoder represents the increasing complexity of modern embedded
multimedia applications. It exhibits different computational intensive parts (SAD for Motion Estimation,
DCT, CAVLC, filters for Motion Compensation and Deblocking, etc.) that supersede the complexity of
conventional benchmark applications in the benchmark suites (like MiBench [GRE+01] and MediaBench
[LPMS97]). The evaluation is performed for various fabrication technologies ranging from 40 nm to 150
nm (considering the reconfigurable fabric structure of Xilinx FPGAs, i.e., Virtex-II, 4, 5, 6).

7.1.1 Simulation Conditions and Fairness of the Comparison

For energy estimation, simulations are performed using the RISPP simulator extended with the proposed
energy-management system (see Chapter 5) and power estimation methodology (see Section 3.4 and
Chapter 6). Kindly refer to the Appendix B for further details on the simulation environment for the adaptive
low-power reconfigurable processors. For video quality testing, algorithms� functional verification, and
checking the standard compliance, the simulations are performed using the JM13.2 software of H.264 video
encoder [JVT10]. For evaluation and validation of several QCIF and CIF video sequences (low to fast
motion) [Ari08, Xip10] are encoded with different QPs (12, 16, 20, 24, 28, 32, 36, and 40) and bit rates.
Common test conditions are: IPPP GOP (Group of Pictures) type, 1 reference frame, search range = 16.
Note: all energy saving results include the overhead of the corresponding algorithm and the computation of
video statistics. Moreover, all results include the leakage and dynamic energy consumption.

State-of-the-art techniques for different functional blocks of the H.264 video encoder were carefully
implemented and simulated and their results were verified with their corresponding papers. Kindly note
that several implementations were already available in the JM13.2 software.

Comparing state-of-the-art with the processor-level contribution is not straightforward. As discussed
in Chapter 5, state-of-the-art approaches employ hardware-oriented shutdown, which has a different

Chapter 7 Benchmarks and Results

- 128 -

abstraction level for shutdown decision compared to the proposed energy management scheme with the
Selective Instruction Set Muting technique (i.e., an instruction set oriented shutdown). In order to provide
a fair comparison, the hardware-oriented shutdown concepts of [Ge04] and [MM05]33 (i.e.,
predetermining the components of DPCs that can be shutdown at run time) were deployed carefully to
realize two predetermined muting modes as follows:

a. Predetermined Virtually Muting (Pre-VM) technique based on the hardware-oriented
shutdown of [Ge04]: it always puts the temporarily unused CIs into virtually-muting mode as the
hardware-oriented shutdown of [Ge04] only supports switching-off of Logic and it always keeps
the Configuration SRAM powered-on.

b. Predetermined Fully Muting (Pre-FM) technique based on the hardware-oriented shutdown of
[MM05]: it always puts the temporarily unused CIs into fully-muting mode as the hardware-
oriented shutdown of [MM05] supports the combined switching-off of both Logic and
Configuration SRAM.

In the following, the energy consumption comparison of the above-mentioned techniques will be
presented for given performance constraints, such that in these particular scenarios, all techniques meet
their performance constraints. Different performance constraints correspond to changing application
contexts (like a change in the frame rate of the video coding). For further fairness of comparison, the same
set of low-power CIs and Data Paths (see Section 4.2) is provided to all techniques. Therefore, the results
reflect solely the impact when applying the proposed energy management scheme to realize an adaptive
low-power reconfigurable processor architecture.

7.2 Adaptive Low-Power Application Architecture

In this section the Adaptive Computational Complexity Reduction Scheme (see Section 4.4, page 69) and
the energy-aware Motion Estimation with the integrated energy-budgeting scheme (see Section 4.5, page
77) are compared individually with different state-of-the-art to demonstrate their individual energy
benefit. Note, these two schemes are the key contribution of this thesis to realize an application
architecture for adaptive low-power video coding. In Section 7.3, the complete H.264 video encoder will
be deployed as an application to evaluate the adaptive low-power reconfigurable processor architecture.

7.2.1 Comparing Complexity Reduction Scheme to State-of-the-art and the
Exhaustive RDO-MD

The proposed Adaptive Computational Complexity Reduction Scheme (ACCoReS, Section 4.4) is
compared to several state-of-the-art fast RDO-MD schemes for quality (a positive ∆PSNR shows PSNR
loss) and energy reduction using similar coding conditions. Figure 7.1 shows that, compared to state-of-
the-art approaches [JC04, KC07, PC08, SN06, Yu04], ACCoReS achieves up to 82% (average 56%)
higher energy reduction at the cost of an average PSNR loss of 0.66 dB. The maximum energy saving of
ACCoReS is achieved for the Paris sequence when compared to the approaches of [JC04] and [Yu04]. It
is due to the fact that the approach of [JC04] processes on average 5 out of 7 block types, while the
approach of [Yu04] only considers mode correlation in the previous video frame. The significant energy
saving of ACCoReS comes from the Prognostic Early Mode Exclusion and Hierarchical Fast Mode
Prediction that curtails the set of candidate coding modes for further evaluation. This energy saving comes
at the cost of a PSNR loss of up to 1.3dB (average 0.66dB). However, this loss is mainly at the PSNR

33 these approaches [Ge04, MM05] are considered for the comparison as they are the closest to the proposed

technique in terms of shutdown options for different components of the fabric, thus representing a fair
comparison.

7.2 Adaptive Low-Power Application Architecture

- 129 -

value of more than 40dB. It is worthy to note that, subjectively a loss of 1dB is hard to be noticed by the
human eye in case the overall PSNR is more than 40-45 dB [GW02, Pra01, WOZ02].

40

60

80

0

20

E
n
e
rg
y

 S
a
v
in
g
s [
%
]

100

Mobile Paris
Sequence

0.4

0.6

1.2

0

0.2

ǻ
P
S
N
R

 [d
B
]

Foreman

1.4

0.8

1.0

Jing'04

Salgado'06

Kim'07

Park'08

Yu'04

Proposed
ACCoReS

Figure 7.1: Comparing the Energy Savings and Quality Loss of the ACCoReS

with Several State-of-the-Art Fast Mode Decision Schemes

Figure 7.2 and Figure 7.3 show the energy savings and the quality loss of ACCoReS compared to the
exhaustive RDO-MD (that provides the optimal quality) for various bitrates. The quality loss for CIF
sequences is less than 2.5%, while for QCIF sequences the quality loss is less than 5%. On average, the
quality loss of ACCoReS is 1.38% and 1% for CIF and QCIF sequences, respectively. However, the average
energy savings of ACCoReS are 63.27% and 66.74% for CIF and QCIF sequences, respectively. Figure 7.2
shows that the highest energy savings (more than 70%) are achieved for Susie and Hall sequences which are
slow motion sequences. In contrast, the lowest energy savings are achieved for the American Football
sequence which a fast motion sequence. Still, in this case, the energy savings are more than 50%. It is
worthy to note that, in some QCIF cases (like Akiyo and Container), ACCoReS achieves a better PSNR. It is
mainly due to the Macroblock based prioritization step in the Rate Control (see Appendix A.2).

Sequence

2

1ǻ
P
S
N
R

 [%
]

3

0

Sequence

40

60

0

20

E
n
e
rg
y

 S
a
v
in
g
s [
%
]

80

Container [300]
Container [300]
Container [300]
Akiyo [300]
Akiyo [300]
Akiyo [300]
Carphone [382]
Carphone [382]
Carphone [382]
Coastguard [300]
Coastguard [300]
Coastguard [300]
Husky [250]
Husky [250]
Husky [250]
M. America [300]
M. America [300]
M. America [300]

AmFootball@64kbps
AmFootball@128kbps
AmFootball@256kbps
Hall@32kbps
Hall@64kbps
Hall@128kbps
Tempete@32kbps
Tempete@64kbps
Tempete@128kbps
Susie@64kbps
Susie@128kbps
Susie@256kbps
Mobile@64kbps
Mobile@128kbps
Mobile@256kbps
Foreman@64kbps
Foreman@128kbps
Foreman@256kbps

Figure 7.2: Energy Savings and Quality Loss of the ACCoReS compared to the

Exhaustive RDO-MD for CIF Resolution Video Sequences

Chapter 7 Benchmarks and Results

- 130 -

Figure 7.4 shows the Rate-Distortion (R-D) curves of ACCoReS and the exhaustive RDO-MD. It
demonstrates the quality loss of ACCoReS compared to the optimal video quality at a certain given
bitrate. It can be noticed in Figure 7.4 that for slow to medium motion sequences (Akiyo, Container, and
Susie) the achieved quality of ACCoReS is close to that of the exhaustive RDO-MD. However, for the fast
motion sequence (American Football), ACCoReS suffers from a PSNR loss of up to 5.7%. It is worthy to
note that this PSNR loss occurs at the PSNR values of more than 40-45 dB. As discussed above, these
discrepancies are insignificant as it is hard for a human eye to subjectively recognize a PSNR loss for the
encoded videos having PSNR above 40-45 dB [GW02, Pra01, WOZ02]. Mostly, ACCoReS achieves a
much closer R-D as compared to exhaustive RDO-MD.

Sequence

2

4

Ͳ2

0ǻ
P
S
N
R

 [%
]

5

Ͳ1

Ͳ3

1

3

Sequence

40

60

0

20E
n
e
rg
y

 S
a
v
in
g
s
[%

]

80

Container [300]
Container [300]
Container [300]
Akiyo [300]
Akiyo [300]
Akiyo [300]
Carphone [382]
Carphone [382]
Carphone [382]
Coastguard [300]
Coastguard [300]
Coastguard [300]
Husky [250]
Husky [250]
Husky [250]
M. America [300]
M. America [300]
M. America [300]

Container@64kbps
Container@128kbps
Container@256kbps
Akiyo@32kbps
Akiyo@64kbps
Akiyo@128kbps
Carphone@32kbps
Carphone@64kbps
Carphone@128kbps
Coastguard@64kbps
Coastguard@128kbps
Coastguard@256kbps
Husky@64kbps
Husky@128kbps
Husky@256kbps
MissAmerica@64kbps
MissAmerica@128kbps
MissAmerica@256kbps

Figure 7.3: Energy Savings and Quality Loss of the ACCoReS compared to the

Exhaustive RDO-MD for QCIF Resolution Video Sequences

20

25

30

35

40

45

50

0 500000 1000000 1500000 2000000 2500000 3000000

Exhaustive RDO ACCoReS

20

25

30

35

40

45

50

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000

20

25

30

35

40

45

50

0 10000000 20000000 30000000 40000000 50000000

American

Football (CIF)

Rate [Mbits]

0

P
S

N
R

 [
d

B
]

10 20 30 40 50
20

25

30

35

40

45

50

0 2000000 4000000 6000000 8000000 10000000 12000000 14000000

Rate [Mbits]

0 2 4 8 10 126 14

Susie (CIF)

Akiyo (QCIF)

Rate [Mbits]

0

P
S

N
R

 [
d

B
]

0.5 1 1.5 2 3

Rate [Mbits]

0 1 2 4 6 73 8

Container (CIF)

2.5 5

Figure 7.4: Comparing the Rate Distortion Curves for QCIF and CIF Sequences

Figure 7.5 presents the evaluation of the proposed ACCoReS for a power-aware test on a laptop (Intel
Core2Duo T5500, 1.66 GHz) using its battery status. The Mobile test video sequence is encoded at

7.2 Adaptive Low-Power Application Architecture

- 131 -

512kbps@30fps. Depending upon the current battery status, different states of the ACCoReS (i.e.,
Prognostic Early Mode Exclusion, Section 4.4.1, and Hierarchical Fast Mode Prediction, Section 4.4.2)
are activated or deactivated. First the battery of the laptop is fully charged and then disconnected from the
power outlet for the encoding test. Note after every 300 frames, there is a scene cut, where a sudden
PSNR drop occurs, although relatively more modes are evaluated in this case. Kindly note that most of the
evaluated modes are Intra modes, thus the number of SAD computations are dropped also in the
corresponding frames (see red circles in Figure 7.5 corresponding to the scene cuts). The PSNR drop is
mainly due to the high amount of prediction error even in case of Intra Prediction (i.e., I-MB modes) and
for a given bitrate this corresponds to a PSNR loss. As the battery level decreases to less than 25%, only
aggressive exclusions are performed and only one mode per Macroblock is evaluated. When the battery
status reaches 10%, the battery is charged again for a short time (see Figure 7.5) to demonstrate the quick
response of ACCoReS. In this case ACCoReS switches to a high quality mode where relaxed decisions
are taken and the Hierarchical Fast Mode Prediction is deactivated to maintain a good video quality. This
experiment demonstrates the quality versus energy consumption tradeoff of the ACCoReS scheme.

23

25

27

29

31
PNSR

0

100

200

300

400

500
#SADs

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

350

550

750 #Modes

N
u

m
b

e
r

o
f

E
v
a

lu
a
te

d

M
o

d
e
s

N
u

m
b

e
r

o
f

C
o

m
p

u
te

d

S
A

D
s

[x
1

0
3
]

P
S

N
R

[d
B

]

Frames

Charging!

Scene Cuts

Figure 7.5: Power Test with a Real Battery using Mobile Sequence

7.2.2 Comparing the Energy-Aware Motion Estimation with Integrated Energy
Budgeting Scheme to State-of-the-art

In the following, the proposed energy-aware Motion Estimation with the integrated energy-budgeting

scheme (see Section 4.5, page 77) is compared to three benchmark Motion Estimators, i.e.,
Unsymmetrical-cross Multi-Hexagon-grid Search (UMHexagonS) [CZH02], simple UMHexagonS

[YZLS05], and Enhanced Predictive Zonal Search (EPZS) [Tou02] for energy and video quality (PSNR)
using various video sequences [Ari08, Xip10]. The following experiments are performed using a bitrate of
256 kbps.

Summary of Two Battery States: Figure 7.6 shows the summary of the energy saving of the proposed
energy-aware Motion Estimation compared to the state-of-the-art fast adaptive Motion Estimators.
The box plot shows the summary of 96 experiments with 12 sequences and two different cases of
initial battery states (1 Ws and 500 µWs). Figure 7.6 shows that the energy-aware Motion Estimation
achieves an energy benefit of up to 93%, 93%, 90% (average 88%, 88%, 77%) for UMHexagonS
[CZH02], UMHexagonS-Simple [YZLS05], EPZS [Tou02], respectively. Even in the worst case, the

Chapter 7 Benchmarks and Results

- 132 -

energy-aware Motion Estimation provides 65% energy savings compared to EPZS. The significant
energy savings are mainly due to the switching between multiple Energy-Quality Classes depending
upon the spatial and temporal properties of different Macroblocks (MBs). Although the battery is full,
the energy is not wasted in case of homogeneous and slow moving MBs, and they are allocated less
energy quota for the Motion Estimation process. Due to the slow motion properties, the reduced
Motion Estimation effort and pixel decimation in SAD computation still provides a sufficiently good
match of the current MB in the reference frame. Therefore, the incurred quality loss for sequences
with homogeneous and slow moving MBs (see Carphone, Clair, Akiyo in Figure 7.7) is insignificant.

20

40

60

80

100

E
n
e
rg
y

 S
a
v
in
g

 [%
]

UMHexagonS UMHexagonS Simple EPZS

In worst case at least
65% Energy Reduction

Summary of 96
experiments

Up to 93% Energy Reduction

Fast Adaptive Motion Estimators

100%ͲQuartile (Maximum)

75%ͲQuartile (75% of the
values are smaller)

50%ͲQuartile (Median)

Average

25%ͲQuartile (25% of the
values are smaller)

0%ͲQuartile (Minimum)

Figure 7.6: Summary of Energy Savings of the enBudget Scheme Compared to

Various Fast Adaptive Motion Estimation Schemes

80

90

60

70E
n
e
rg
y

 S
a
v
in
g
s
[%

]

100

0.2

Ͳ0.2

0.0ǻ
P
S
N
R

 [d
B
]

0.6

0.4

80

90

60

70E
n
e
rg
y

 S
a
v
in
g
s
[%

]

100

0.2

Ͳ0.2

0.0ǻ
P
S
N
R

 [d
B
]

0.6

0.4

80

90

60

70

E
n
e
rg
y

 S
a
v
in
g
s
[%

]

100

0.2

Ͳ0.2

0.0ǻ
P
S
N
R

 [d
B
]

0.6

0.4

QCIF CIF Average

C
a
rp
h
o
n
e

C
la
ir

M
. A

m
e
ri
ca

S
u
si
e
+
Ta
b
le

A
ll

 Q
C
IF

 M
ix

A
k
iy
o

Fo
re
m
a
n

H
a
ll

M
o
b
il
e

S
u
si
e

A
ve
ra
g
e

U
M

H
e
x
a
g

o
n

S
U

M
H

e
x
a

g
o

n
S

 S
im

p
le

E
P

Z
S

C
a
rp
h
o
n
e

C
la
ir

M
. A

m
e
ri
ca

S
u
si
e
+
Ta
b
le

A
ll

 Q
C
IF

 M
ix

A
k
iy
o

Fo
re
m
a
n

H
a
ll

M
o
b
il
e

S
u
si
e

A
ve
ra
g
e

Figure 7.7: Comparing Energy Saving and PSNR Loss of the Proposed Energy-Aware Motion

Estimation and the enBudget Scheme with Various Fast Adaptive Motion Estimators

[* negative PSNR loss actually shows the PSNR gain of the Scheme]

Details for One Battery State (1 Ws): Figure 7.7 presents the detailed energy savings and PSNR loss of
the energy-aware Motion Estimation compared with state-of-the-art fast adaptive Motion Estimators.

7.3 Adaptive Low-Power Processor Architecture

- 133 -

The major energy saving comes for low motion sequences (MissAmerica, Akiyo, Clair, and Mobile).
Note, all the comparison partners are also adaptive Motion Estimators, thus they also react to different
motion properties using their early termination criteria. However, as discussed earlier, the proposed
energy-aware Motion Estimation scheme achieves higher energy saving due to the Energy-Quality

Classes and video properties based downgrade/upgrade of Energy-Quality Classes. In several cases,
the energy-aware Motion Estimation even achieves higher PSNR due to adaptive energy budget
allocation, thus more Motion Estimation effort is spent for selective MBs (high texture, high motion).
In this case, the overall average PSNR is improved. This is visible especially for low motion
sequences (Clair and Akiyo). Compared to the Full Search Motion Estimator, the energy-aware
Motion Estimation provides an energy saving of up to 99% at the cost of an average PSNR loss of
0.29 dB, which is visually insignificant. However, as discussed in Chapter 2 (see Section 2.2.3 on
page 17), typically the Full Search is only used for video quality comparison.

7.3 Adaptive Low-Power Processor Architecture

In this section the Run-Time Adaptive Energy Management Scheme (Section 5.2, page 95) is benchmarked
which is required to realize an adaptive low-power processor architecture. It determines an energy

minimizing instruction set (see Section 5.3, page 100) and employs the novel concept of Selective

Instruction Set Muting (see Section 5.4, page 110). In the following the adaptive energy management
scheme is compared to different state-of-the-art, considering both with and without Selective Instruction

Set Muting in order to demonstrate the individual energy benefit of the energy minimizing instruction set
and Selective Instruction Set Muting.

7.3.1 Comparing the Adaptive Energy Management Scheme (without Selective
Instruction Set Muting) to RISPP with Performance Maximization [BSH08c]

200

250

300

350

400

450

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RISPP_PerfMax [BSH08c]

AEM_FM@35fps

AEM_FM@32fps

AEM_FM@30fps

Diff=35.34%

Diff=42.76%

Diff=25.06%

Area [#DPCs]

E
n
e
rg
y

 [m
W
s]

Leakage Energy is
more, as more DPCs
are used to maximize
the performance

The goal of RISPP_PerfMax is to achieve high performance by using all DPCs

Figure 7.8: Energy Comparison of the AEM_FM and RISPP_PerfMax schemes for 65 nm

Figure 7.8 shows the comparison between RISPP (with a performance-maximizing scheme (PerfMax) 34,
performance is the main optimization goal [BSH08c]) and the proposed adaptive energy management
scheme when executing the H.264 video encoder at three different performance constraints. In this case,
the energy management scheme determines an energy minimizing instruction set (that minimizes the
energy for a given performance constraint) without Selective Instruction Set Muting using various muting
modes. Rather the muting mode 'Fully Muted CIs' is considered for all unused CIs. Here the purpose is to

34 Note: the power-shutdown is disabled in case of RISPP_PerfMax, as switched-off DPCs lose their configuration data

and this typically degrades the performance, e.g., when the same Data Paths are needed soon afterwards. Comparison
with RISPP_PerfMax also demonstrates the performance loss of AEM_FM compared to the peak performance.

Chapter 7 Benchmarks and Results

- 134 -

benchmark the energy management scheme with the energy minimizing instruction set and CI-level

shutdown in Fully-Muted mode (denoted as AEM_FM for the ease of representation in the figures and the
corresponding discussion) against the conventional reconfigurable processor approaches that maximize
the performance. The energy management scheme with Selective Instruction Set Muting using various
muting modes will be benchmarked in Section 7.3.3 against various hardware-oriented shutdown
techniques.

Using the H.264 video encoder application, for 30 fps on 65 nm, AEM_FM achieves an energy saving
of up to 40.78% (avg. 24.77%) compared to RISPP_PerfMax [BSH08c]. For 35 fps, AEM_FM achieves
an energy saving of up to 25.06% compared to RISPP_PerfMax. In order to maximize the performance
RISPP_PerfMax uses more DPCs thus leading to higher leakage and reconfiguration energy (see
Figure 7.8). However, compared to RISPP_PerfMax, the AEM_FM at 35 fps may suffer from an average
performance loss of 8%.

65 nm

200

300

100E
n
e
rg
y

 [m
W
s]

400

90 nm 150 nm

RISPP

PerfMax

AEM_FM

@5fps

0
AEM_FM

@35fps

RISPP

PerfMax

AEM_FM

@5fps

AEM_FM

@35fps

RISPP

PerfMax

AEM_FM

@5fps

AEM_FM

@35fps

Leakage Energy Dynamic Energy

Figure 7.9: Average Energy Comparison of the AEM_FM and RISPP_PerfMax for 3 Technologies

Figure 7.9 shows the breakdown of leakage and dynamic energy averaged over 17 cases of available
reconfigurable fabric area (i.e., 4-20 DPCs). It can be noted in Figure 7.9 that major savings come from
leakage energy reduction as a result of the CI-level shutdown. The energy management scheme
determines the energy minimizing instruction set in such a way that the performance constraint is met,
while the number of DPCs to be shutdown is also increased to achieve higher leakage reduction. The key
is to shift the shutdown decision to the CI level such that all temporarily unused CIs are muted (i.e.,
deactivated by an instruction set level shutdown, see Section 5.2.1 and Section 5.2.2). It can be noticed
that the leakage energy savings at 5 fps is more than that at 35 fps due to an increased number of
switched-off DPCs.

7.3.2 Applying the Adaptive Energy Management Scheme (without Selective
Instruction Set Muting) to Molen [VWG+04] Reconfigurable Processor

5 fps 30 fps

20

30

0

10

ǻ
E

 [%
]

40 fps

40

Average Maximum

5 fps 30 fps 40 fps 5 fps 30 fps 40 fps

65 nm 90 nm 150 nm
50

60

Figure 7.10: Percentage energy saving of Molen [VWG+04] plus AEM_FM over Molen without

AEM_FM for three technologies

In order to validate the applicability and benefits of the proposed adaptive energy management scheme
with CI-level muting, the energy management scheme has been additionally evaluated for other state-of-
the-art reconfigurable processors (like Molen [VWG+04]) that support the monolithic CI model (see

7.3 Adaptive Low-Power Processor Architecture

- 135 -

Section 2.3.4). Figure 7.10 shows the energy savings for Molen [VWG+04] with the proposed adaptive
energy management scheme applied and Molen without the energy management scheme (averaged over
17 cases of area constraints, i.e., different sizes of the reconfigurable fabric). When compared to Molen
without the energy management scheme (i.e., maximizing for performance), Molen plus the energy
management scheme achieves an energy saving of up to 48.65% (average 28.93%) for 30 fps at 65 nm.
This shows that the proposed adaptive energy management scheme is equally beneficial for various state-
of-the-art reconfigurable processors as well.

Now, the adaptive energy management scheme with Selective Instruction Set Muting technique (that
employs various CI muting modes) is benchmarked against different state-of-the-art hardware-oriented
shutdown techniques.

7.3.3 Comparing the Adaptive Energy Management Scheme (with Selective
Instruction Set Muting) to State-of-the-Art Hardware-Oriented Shutdown

As discussed in Section 7.1.1 and Chapter 5, comparing the proposed energy management scheme with
state-of-the-art hardware-oriented shutdown techniques [Ge04, MM05] is not straightforward due to a
different abstraction level of shutdown. Unlike state-of-the-art [Ge04, MM05], the proposed energy
management scheme employs the Selective Instruction Set Muting technique (i.e., an instruction set
oriented shutdown). Therefore, for a fair comparison, the hardware-oriented shutdown concepts of [Ge04]
and [MM05] were deployed carefully to realize two predetermined CI muting techniques: (a) [Ge04]-based
Predetermined Virtually Muting (Pre-VM) technique, and (b) [MM05]-based Predetermined Fully Muting
(Pre-FM) technique (see Section 7.1.1 for further details). It is worthy to note that, the components of a
DPC (i.e., Logic of Configuration SRAM, see Section 2.3.2 and Section 5.2.2) that can be shutdown are
predetermined at design time in these state-of-the-art [Ge04, MM05], thus the muting mode is fixed for the
unused CIs.

0

50

100

150

200

250

300

4
0
n
m
L

4
0
n
m

6
5
n
m

9
0
n
m

4
0
n
m
L

4
0
n
m

6
5
n
m

9
0
n
m

4
0
n
m
L

4
0
n
m

6
5
n
m

9
0
n
m

E
n
e
rg
y

 [m
W
s]

Energy_FPGA_Reconf

Energy_FPGA_Leak

Energy_FPGA_Dyn

SQCIF resolutionQCIF resolutionCIF resolution

[G
e
0
4
]Ͳb

a
se
d

P
re
d
e
te
rm

in
e
d

V
ir
tu
a
ll
y

 M
u
ti
n
g

[M
M
0
5
]Ͳb

a
se
d

P
re
d
e
te
rm

in
e
d

F
u
ll
y

 M
u
ti
n
g

A
d
a
p
ti
v
e

 E
n
e
rg
y

M
a
n
a
g
e
m
e
n
t

S
ch
e
m
e

 w
it
h

S
e
le
ct
iv
e

 C
I M

u
ti
n
g

Test Conditions
1) Number of

Encoded Frames:
60

2) Resolutions:
CIF, QCIF, SQCIF

3) Fabrication
Technologies:
90, 65, 40, 40L nm

4) Each bar is an
average of 170
different
experiments

5) 170 different
experiments
correspond to 17
area (i.e., different
amount of DPCs)
and 10
performance
constraints

0

50

100

150

200

250

300

E
n
e
rg
y

 [m
W
s]

0

100

200

300

400

500

600

E
n
e
rg
y

 [m
W
s]

Figure 7.11: Comparing the Energy Breakdown of the Adaptive Energy Management Scheme

(with Selective Instruction Set Muting) to [Ge04]-based Pre-VM and [MM05]-based Pre-FM

Chapter 7 Benchmarks and Results

- 136 -

Figure 7.11 compares the breakdown of the energy comparison for the proposed energy management
scheme with Selective Instruction Set Muting and the two predetermined CI muting techniques. Each bar
is the average value of 170 experiments (17 cases of the reconfigurable fabric area and 10 cases of
different performance constraints). Figure 7.11 shows that the leakage energy is dominant in the [Ge04]-
based Pre-VM technique due to high SRAM leakage, especially in case of CIF encoding. In contrast to
this, the [MM05]-based Pre-FM technique reduces the leakage energy by shutting down the SRAM, but
suffers from significant reconfiguration energy overhead. The proposed adaptive energy management
overcomes the drawbacks of both of the above techniques by providing multiple CI muting modes and
selecting an appropriate mode at run time for a temporarily unused subset of CI depending upon their
predicted muting duration. It overcomes the reconfiguration overhead of Pre-FM by using the virtually-

muting mode for a subset of CIs and eliminates the drawback of Pre-VM by putting the subset of CIs in
fully-muting mode that are not used for a rather long period (see the details of different muting modes in
Section 5.2.1 and Section 5.4). Figure 7.11 illustrates that the energy management scheme with multiple
CI muting modes is superior to both state-of-the-art techniques in all cases. In particular, the benefit of the
proposed scheme is noticeable in high-resolution encodings due to a rather long muting duration. It is
worthy to note in Figure 7.11 that the leakage energy of the energy management scheme is slightly lower
than that of Pre-FM. This is because virtually-muted CIs may bring a leakage reduction due to a faster
execution35 (as a result of the powered-on Configuration SRAM), which is not the case in the Pre-VM
technique (see Section 2.3.2).

100

150

200

250

300

350

400

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Reconfigurable Fabric Area [PRCs]

E
n
e
rg
y

 [m
W
s]

Breakeven PointͲ1: When providing more
than 10 PRCs, SRAM leakage dominates in
PreͲVM technique, thus it becomes worse

than the proposed scheme

Breakeven PointͲ2:
PreͲVM is getting
worse than PreͲFM

PreͲVM is slightly better when rather few
PRCs are available. However, more PRCs are

required for performance constraint

Adaptive Energy
Management with
Selective CI Muting

[MM05]Ͳbased
Predetermined
Fully Muting

[Ge04]Ͳbased
Predetermined
Virtually Muting

QCIF@45fps at 65 nm

Figure 7.12: Energy Comparison of the Adaptive Energy Management Scheme with [Ge04]-based

Pre-VM and [MM05]-based Pre-FM Techniques for Varying Amount of Reconfigurable Fabric

Figure 7.12 shows the energy consumption of the proposed adaptive energy management scheme with
Selective Instruction Set Muting and the two predetermined CI muting techniques for a varying amount of
the available reconfigurable fabric (i.e., different number of available DPCs) when encoding QCIF@45fps
at 65 nm technology. There are two interesting cases in Figure 7.12. The first breakeven point corresponds
to the 10 DPCs case where the [Ge04]-based Pre-VM technique starts turning noticeably worse than the
energy management scheme due to the increased leakage of the powered-on Configuration SRAM. The
second breakeven point corresponds to the 13 DPCs case where the [Ge04]-based Pre-VM technique even
worsens compared to the [MM05]-based Pre-FM. This shows that the Pre-VM technique is only
beneficial when rather few DPCs are available. In this case, most of the available DPCs are always used.
However, in order to meet tighter performance constraints, typically more DPCs are required, and in such
cases the Pre-VM technique performs inefficiently. In contrast, the proposed energy management scheme
is beneficial for almost all the cases (see Figure 7.12). The performance constraints and the amount of

35 The larger leakage power does not necessarily lead to larger leakage energy if the execution time is

correspondingly shorter.

7.4 Summary of the Benchmarks and Comparisons

- 137 -

available DPCs cannot be predicted at design- and/or compile-time as they depend on run-time specific
scenarios, like changing application contexts or multi-tasking interactions.

It is noticeable in Figure 7.12 that the proposed energy management scheme with Selective Instruction

Set Muting performs always better than the [MM05]-based Pre-FM technique, whereas [Ge04]-based Pre-

VM sometimes performs better. Therefore, Figure 7.13 focuses on further comparisons with Pre-VM,
showing the energy benefit summary (480 experiments per technology with various combinations of
available fabric area and performance constraints) of the proposed energy management scheme when
compared with the Pre-VM technique. Figure 7.13 shows that, compared to the Pre-VM technique, the
proposed scheme provides on average 41.64%, 43.11%, 33.75%, and 43.52% energy reduction for 40 nm,
40 nmL, 65 nm, and 90 nm, respectively. When rather few DPCs are available, the Pre-VM technique
performs better than the proposed scheme as most of the DPCs are always used. However, in most of the
cases (especially for larger resolutions), the proposed scheme outperforms the Pre-VM technique and
provides an energy reduction of up to 82%.

Ͳ20

0

20

40

60

80

100

E
n
e
rg
y

 R
e
d
u
ct
io
n

 [%
]

40 nm 40 nmL 65 nm 90 nm

Up to 82% Energy
Reduction

Fabrication Technology

100%ͲQuartile
(Maximum)

75%ͲQuartile
(75% of the values
are smaller)

50%ͲQuartile
(Median)

Average

25%ͲQuartile
(25% of the values
are smaller)

0%ͲQuartile
(Minimum)

Figure 7.13: Energy Savings of the Adaptive Energy Management Scheme

Compared to the [Ge04]-based Pre-VM technique

It is worthy to note that the adaptive energy management with Selective Instruction Set Muting provides a
compromise between [Ge04]-based Pre-VM and [MM05]-based Pre-FM techniques.

7.4 Summary of the Benchmarks and Comparisons

This chapter presented the benchmarks and evaluation of the proposed adaptive low-power application
and processor architectures for various video sequences under different coding conditions. The adaptive
energy management scheme is evaluated for different fabrication technologies under various performance
and reconfigurable fabric area constraints. Moreover, both application and processor architectures are
compared to state-of-the-art approaches.

At the application level, the proposed energy-aware H.264/AVC video encoder is evaluated for
several video sequences with low to fast motion encoded at different bit rates. The proposed algorithms
are compared for energy savings and quality degradation. Compared to state-of the-art approaches [JC04,
KC07, PC08, SN06, Yu04], the proposed adaptive complexity reduction scheme achieves up to 82%
(average 56%) higher energy reduction at the cost of an average PSNR loss of 0.66 dB. When compared
to the exhaustive RDO-MD, the proposed complexity reduction scheme provides an average energy
savings of 63.27% and 66.74% with an average PSNR loss of 1.38% and 1% for CIF and QCIF
sequences, respectively. The highest energy savings (more than 70%) are obtained for slow motion
sequences. The proposed energy-aware Motion Estimation with the integrated energy-budgeting scheme
achieves an energy benefit of up to 93%, 93%, 90% (average 88%, 88%, 77%) for UMHexagonS
[CZH02], UMHexagonS-Simple [YZLS05], EPZS [Tou02] adaptive Motion Estimators, respectively. The

Chapter 7 Benchmarks and Results

- 138 -

major energy saving comes for low motion sequences (MissAmerica, Akiyo, Clair, Mobile, etc.) due to the
switching between multiple Energy-Quality Classes depending upon the spatial and temporal properties of
different Macroblocks. Even at a full battery level, the energy is not wasted for homogeneous and slow
moving Macroblocks. Alternatively, more energy budget is allocated to the fast moving Macroblocks.
Due to the slow motion properties, the reduced Motion Estimation effort still provides a sufficiently good
match of the current Macroblock in the reference frame. Therefore, the incurred quality loss for sequences
with homogeneous and slow moving Macroblocks is insignificant.

The proposed adaptive low-power processor architecture with run-time adaptive energy management
scheme is evaluated for highly flexible Custom Instruction set architectures like in [Bau09, VWG+04].
The H.264 encoder is used as the application with various performance constraints and video resolutions.
Applied to the RISPP architecture with modular CI model, the proposed adaptive energy management
scheme with CI-level muting achieves an energy saving of up to 40.78% (average 24.77%) for 65 nm at
the cost of an average performance loss of 8%, when compared to the original RISPP (i.e., having
performance as the main optimization goal). The proposed adaptive energy management scheme with CI-
level muting is additionally integrated with other state-of-the-art reconfigurable processors (like Molen
[VWG+04]) with monolithic CI model where it provides an energy saving of up to 48.65% (average
28.93%) for 30 fps at 65 nm. This shows that the proposed adaptive energy management scheme is
equally beneficial for various state-of-the-art reconfigurable processors as well. Experiments for different
fabrication technologies demonstrate the technology independent efficiency of the proposed scheme. The
adaptive energy management scheme with Selective Instruction Set Muting technique (using multiple CI
muting modes) is additionally benchmarked against different state-of-the-art hardware-oriented shutdown
techniques [Ge04, MM05], where it provides on average more than 30% energy savings.

Overall, the comparison with state-of-the-art and benchmarks for diverse experimental conditions
demonstrate the superiority of the proposed adaptive low-power processor and application architectures,
especially under run-time varying scenarios due to changing video properties, available energy resources,
user-defined constraints, etc. The proposed adaptive energy management scheme with Selective

Instruction Set Muting is particularly beneficial in applications with hard-to-predict behavior where
conventional embedded (reconfigurable) processors operate inefficiently with respect to energy/power
consumption. The results corroborate the potential for far higher energy savings of dynamically
reconfigurable processors which currently still suffer from a low efficiency as far as energy is concerned.
At the application level, the novel concept of Energy-Quality Classes and adaptive complexity reduction
provides a foundation for adaptive low-power video encoding to react to the unpredictable video data in
an energy-efficient way. Altogether, the proposed processor and application architectures enable adaptive
embedded multimedia systems with low power/energy consumption to provide means for next-generation
mobile multimedia applications and emerging multimedia standards.

- 139 -

Chapter 8 Conclusion and Outlook

8.1 Thesis Summary

This thesis aims at exploiting the available potential of energy reduction in adaptive multimedia systems
(based on dynamically reconfigurable processors) while meeting the performance and area constraints and
keeping the video quality degradation unnoticeable, under run-time varying scenarios (due to changing
video properties, available energy resources, user-defined constraints etc.). To enable this, novel
techniques for adaptive energy management at both processor architecture and application architecture

levels are proposed, such that both hardware and software adapt together in order to minimize the overall
energy consumption under design-/compile-time unpredictable scenarios.

The key contribution at the processor architecture level is based on the novel concept of Selective

Instruction Set Muting. Unlike state-of-the-art hardware-oriented shutdown techniques [CHC03, Ge04,
MM05, Te06], the proposed Selective Instruction Set Muting allows to shun the leakage energy at the
abstraction level of Custom Instructions (CIs), i.e., an instruction set oriented shutdown. Various so-called
'CI muting modes' are introduced, each leading to a particular leakage energy saving. This enables a
dynamic tradeoff between �leakage energy saving� and �reconfiguration energy overhead� considering the
application execution behavior under run-time varying performance and area constraints (e.g., in a multi-
tasking environment). For dynamically reconfigurable processors, it is hard to predict at compile time
which parts of the instruction set will be reconfigured on which part of the reconfigurable fabric.
Therefore, raising the abstraction level of shutdown to the instruction set level provides a new way to save
energy in dynamically reconfigurable processors by relating leakage energy reduction to the execution
context of an application. It thereby enables a far higher potential for energy savings that results in a much
higher energy efficiency for dynamically reconfigurable processors (and reconfigurable computing in
general). The associated potential energy savings have not been exploited by state-of-the-art approaches
[CHC03, Ge04, MM05, Te06].

Based on the concept of CI muting, an adaptive low-power processor architecture is proposed that
integrates a novel run-time energy management scheme with dynamically reconfigurable processors. It
exploits the higher potential for energy savings due to the concept of CI muting with multiple shutdown
modes and provides a high adaptivity. The energy management scheme investigates the tradeoff between
leakage, dynamic, and reconfiguration energy for a given performance constraint, thus dynamically
moving in the energy-performance design space. In the first step, the energy management scheme
dynamically determines an energy minimizing instruction set under run-time varying performance and
area constraints considering leakage, dynamic, and reconfiguration energy. Afterwards, it decides which
subset of CIs shall be muted at what time and in which mode in order to minimize the overall energy. For
this, the temporarily unused set of the CIs is determined which is the candidate for muting (i.e., power-
shutdown) to reduce the leakage energy. Depending upon the Data Path requirements of the currently
executing and the upcoming computational hot spots, a particular muting mode is determined for each CI
by evaluating the possible associated energy benefit (a joint function of leakage, dynamic, and
reconfiguration energy) at run time. Afterwards, the shutdown signals to the corresponding sleep
transistors are issued. Note, these decisions may depend upon the number of CI executions that may vary
at run time due to the application level adaptivity (e.g., changing control flow), changing input data,
performance constraints, and the execution length of the hot spot. Therefore, the number of actual CI
executions is monitored at run time. The algorithms for determining the energy minimizing instruction set
and Selective Instruction Set Muting are explained on a formal basis and evaluated for various fabrication
technologies.

To facilitate the adaptive energy management at both processor and application levels, a

comprehensive power model for dynamically reconfigurable processors (i.e., ASIC-based core Instruction

Chapter 8 Conclusion and Outlook

- 140 -

Set Architecture with an embedded FPGA) is developed, which is based on power measurements. The
proposed power model estimates the power of modular Custom Instructions (CIs) executing on the
reconfigurable fabric considering run-time choices of multiple CI Implementation Versions. Moreover, it
can also be used to estimate the power of monolithic CIs that employed by the dynamically reconfigurable
processors like Molen [VWG+04]. The leakage and dynamic power properties of both the core Instruction
Set Architecture and the reconfigurable fabric are considered in the power model. The model parameters
are estimated by performing an optimization using Simulated Annealing for an estimation error of less
than 5%. The power of a CI Implementation Version depends upon (a) the types of Data Paths and how
often they are executed, (b) the number of write/read accesses on the local storage, and (c) the number of
bus segments necessary for communicating the intermediate results; this value depends on the relative
placement of the communicating Data Paths on the reconfigurable fabric. As the power model is based on
actual power measurements, a complete power-measurement setup for dynamically reconfigurable
processors (a power supply board, two oscilloscopes, an FPGA based prototyping board, and a control
program for capturing the measurements) is implemented and the power of various CI implementation
versions in hardware is measured.

The proposed adaptive low-power processor architecture with run-time adaptive energy management
scheme is evaluated for multiple Custom Instruction set architectures (RISPP [Bau09], Molen
[VWG+04]) using an in-house developed H.264 encoder application (with various performance
constraints and video resolutions) and various fabrication technologies. Applied to the RISPP architecture
that supports the modular CI model, the proposed adaptive energy management scheme with CI-level
muting achieves an energy saving of up to 40.78% (average 24.77%) for 65 nm at the cost of an average
performance loss of 8% when compared to the original RISPP (i.e., having performance as the main
optimization goal). In order to validate the applicability and benefits of the proposed adaptive energy
management scheme, it has been additionally evaluated for other state-of-the-art reconfigurable
processors (like Molen [VWG+04]) that support the monolithic CI model. When compared to Molen
without the energy management scheme (i.e., maximizing for performance), Molen plus the energy
management scheme achieves an energy saving of up to 48.65% (average 28.93%) for 30 fps at 65 nm.
This shows that the proposed adaptive energy management scheme is equally beneficial for various state-
of-the-art reconfigurable processors as well. The adaptive energy management scheme with Selective

Instruction Set Muting technique (that employs multiple CI muting modes) is additionally benchmarked
against different state-of-the-art hardware-oriented shutdown techniques [Ge04, MM05]. Compared to
[Ge04]-based technique, the proposed scheme provides on average 41.64%, 43.11%, 33.75%, and 43.52%
energy reduction for 40 nm, 40 nmL, 65 nm, and 90 nm, respectively. On overall, compared to [Ge04,
MM05] based techniques, the proposed energy management scheme achieves on average more than 30%
energy savings.

At the application architecture level, the adaptivity and energy reduction are demonstrated using an
advanced video encoder (like H.264/AVC). An optimized application architecture for video encoders
targeting dynamically reconfigurable processors is proposed. The finalized application architecture is
implemented with optimized data flow and data structures. Various low-power Custom Instructions and
Data Paths are designed for the H.264 video encoder. Several algorithms are proposed to realize adaptive

low-power video encoding. First, an analysis of spatial and temporal video properties is performed with
consideration of important Human-Visual System properties in order to categorize different video frames
and their Macroblocks. Quantization Parameter based threshold models are developed to obtain precise
categorization depending upon the coding configuration. Furthermore, an analysis of the energy
consumption of different functional blocks of the video encoder is performed. This analysis is used by an

adaptive complexity reduction scheme to reduce the energy requirements of the H.264/AVC encoder by
excluding improbable coding modes from the mode-decision process. It solves the issue of choosing the
final coding mode out of hundreds of possible combinations (without exhaustively searching the design
space) by considering the spatial and temporal video properties. Unlike state-of-the-art, this scheme
performs an extensive mode-exclusion before fast Mode Decision and Motion Estimation processes, thus

8.1 Thesis Summary

- 141 -

providing a significant reduction in the computational complexity. Once the final set of candidate coding
modes is determined, an energy-aware Motion Estimation with integrated energy-budgeting scheme is
employed in order to adaptively predict the energy quota for the Motion Estimation corresponding to each
candidate coding mode. It employs the novel concept of Energy-Quality Classes in order to realize
adaptive low-power video encoding. Each Energy-Quality Class represents a particular Motion Estimation
configuration that requires a certain energy while providing a certain video quality. It thereby enables a
run-time tradeoff between the energy consumption and the resulting video quality. A set of common
optimal Energy-Quality Classes is obtained by performing a design space exploration for various test
video sequences. The adaptive energy-budgeting scheme chooses a certain Energy-Quality Class for
different video frames considering the available energy, video frame characteristics, and user-defined
coding constraints while keeping a good video quality. The corresponding Motion Estimation
configuration (i.e., set of initial search point predictors, search patterns, etc.) is forwarded to the energy-
aware Motion Estimation. After the Motion Estimation is completed, the energy of Energy-Quality

Classes is updated depending upon the current video statistics.

The proposed energy-aware H.264/AVC video encoder is evaluated for several QCIF and CIF video
sequences (low to fast motion) [Ari08, Xip10] encoded at different bit rates, while considering the power
model proposed in this thesis. The proposed algorithms are compared for quality degradation and energy
savings. Compared to state-of-the-art approaches [JC04, KC07, PC08, SN06, Yu04], the proposed
adaptive complexity reduction scheme achieves up to 82% (average 56%) higher energy reduction at the
cost of an average PSNR loss of 0.66 dB. Compared to the exhaustive rate distortion optimized Mode
Decision, the proposed adaptive complexity reduction scheme provides average energy savings of 63.27%
and 66.74% with an average PSNR loss of 1.38% and 1% for CIF and QCIF sequences, respectively. The
highest energy savings (more than 70%) are obtained for slow motion sequences. The proposed energy-

aware Motion Estimation with the integrated energy-budgeting scheme achieves an energy benefit of up
to 93%, 93%, 90% (average 88%, 88%, 77%) for UMHexagonS [CZH02], UMHexagonS-Simple
[YZLS05], EPZS [Tou02] adaptive Motion Estimators, respectively. The proposed energy-budgeting
scheme is equally beneficial for other state-of-the-art fast adaptive MEs as well. When integrated into
UMHexagonS [CZH02] Motion Estimator, it provides an energy saving of up to 80% (avg. 70%) with a
slight PSNR loss of 0.11 dB. Compared to the Full Search, the energy-aware Motion Estimation scheme
provides an energy saving of up to 99% at the cost of an average PSNR loss of 0.29 dB, which is visually
insignificant. Note, the comparison with the Full Search is mainly for video quality. The major energy
saving comes for low motion sequences (MissAmerica, Akiyo, Clair, Mobile, etc.) due to the switching
between multiple Energy-Quality Classes depending upon the spatial and temporal properties of different
Macroblocks. Even at a full battery level, the energy is not wasted for homogeneous and slow moving
Macroblocks. Alternatively, more energy budget is allocated to the fast moving Macroblocks. Due to the
slow motion properties, the reduced Motion Estimation effort still provides a sufficiently good match of
the current Macroblock in the reference frame. Therefore, the incurred quality loss for sequences with
homogeneous and slow moving Macroblocks is insignificant.

To compensate the quality loss due to the energy-aware adaptations, a multi-level rate control is
proposed. It allocates a bit budget to the Group of Pictures and then distributes this budget to different
frames. It afterwards determines the final Quantization Parameter value for each Macroblock inside a
frame considering its spatial and temporal properties (see Appendix A). It allocates more bits to the
complex Macroblocks and less bits to the less-complex ones. The complete H.264 video encoder
application with the proposed run-time algorithms and low-complexity data flow is demonstrated by
executing it on an in-house RISPP dynamically reconfigurable processor prototype [Bau09], Texas
Instruments� multimedia processor, and laptop/desktop computers (see Appendix B). A video analysis
tool with an easy-to-use graphical user interface is developed for quick and in-depth analysis of video
sequences (see Appendix C).

Chapter 8 Conclusion and Outlook

- 142 -

Overall, the comparison with state-of-the-art and benchmarks for diverse experimental conditions
demonstrate the superiority of the proposed adaptive low-power processor and application architectures,
especially under run-time varying scenarios due to changing video properties, available energy resources,
user-defined constraints, etc. The proposed adaptive energy management scheme with Selective

Instruction Set Muting is particularly beneficial in applications with hard-to-predict behavior where
conventional embedded (reconfigurable) processors operate inefficiently with respect to energy/power
consumption. The results corroborate the potential for far higher energy savings of dynamically
reconfigurable processors which currently still suffer from a low efficiency as far as energy is concerned.
At the application level, the novel concept of Energy-Quality Classes and adaptive complexity reduction
provide a foundation for adaptive low-power video encoding to react to the unpredictable video data in an
energy-efficient way. Altogether, the proposed processor and application architectures enable adaptive
embedded multimedia systems with low power/energy consumption to provide means for next-generation
mobile multimedia applications and emerging multimedia standards.

8.2 Future Work

The novel conceptual contribution, benchmarking with diverse experimental conditions, and comparison
with relevant state-of-the-art demonstrate that for designing an adaptive low-power multimedia system,
there is a dire need to combat the power-related issues at all abstraction levels (i.e., at both processor and
application levels). Moreover, for the next-generation low-power multimedia systems, both hardware and
software need to adapt together at run time to efficiently utilize the available energy resources under
design-/compile-time unpredictable scenarios. The promising results of this research work open new
research avenues for power-management techniques in dynamically reconfigurable processors, improved
power efficiency, energy-aware image and video processing, and compile-time automation. These new
research avenues are summarized in the following.

Power-management techniques in dynamically reconfigurable processors: Significant energy
efficiency has been obtained using the novel concept of Selective Instruction Set Muting that raises the
abstraction level of power-shutdown to the instruction set level. A power-shutdown infrastructure with
multiple sleep transistors needs to be researched to support multiple muting modes considering the
area and wakeup overhead. Such an infrastructure should be designed with consideration of
partitioning of the reconfigurable fabric to support run-time partial reconfiguration (i.e., employing
Data Path Containers). Design of the power-rail is an additional research challenge in this case.
Furthermore, other factors like ground bounce noise may be considered while controlling the wakeup
signals of different Data Path Containers. The proposed energy management scheme can also be
extended towards multi-tasking systems, where multiple tasks share the same reconfigurable fabric. In
such a scenario the fabric may be allocated to different tasks. Then the challenging question arises:
whether it is beneficial to mute the temporarily unused subset of Custom Instructions of a task or
temporarily re-allocate the corresponding fabric portion to the other tasks to achieve higher energy
efficiency for them. When considering the sharing of a fabric among different tasks, the design of an
energy management system becomes an additional research challenge. The contribution of this thesis
provides an initial foundation for researching such power-related issues. Moreover, the benchmarks
demonstrated that the provision of Dynamic Voltage and Frequency Scaling (DVFS) techniques may
provide additional energy savings in cases of lower performance constraints.

Improved Power Efficiency: The proposed energy management system can be extended to a
reconfigurable multicore processor where several cores share a centralized reconfigurable fabric. In such
cases energy management becomes a complicated issue especially when different cores are executing
tasks of varying complexities and constraints. First there will be a need for a power model for such
reconfigurable multicore processor. The proposed power model can be considered a starting point for this
research. Further challenges will be managing the energy consumption of cores and the fabric in a holistic
way.

8.2 Future Work

- 143 -

Energy-aware image and video processing: In the scope of this thesis, an adaptive low-power video

encoder is proposed that employs the concept of Energy-Quality Classes in order to provide the run-
time configurability for energy consumption and resulting video quality. Such a concept can be
extended towards video pre- and post-processing where different filter algorithms are provided and a
selection between different algorithms is performed depending upon the allocated energy budget.
Moreover, different configurations of such algorithms may be switched at run time. An example can
be the switching of a 5x5 kernel based filtering to a 3x3 kernel based filtering. Similar extensions may
be provided for various image processing algorithms like image enhancement with variable sized
kernels. Moreover, further extensions of the proposed concepts can be realized for upcoming video
coding standards like Multiview Video Coding and H.265 coding standard.

Compile-time Automation: In this thesis, the application architecture and low-power Custom
Instructions and Data Paths were designed manually. In order to reduce the development time, there is
a need to research new design methodologies and tool chains to automate this process. For Custom
Instructions a design tool flow similar to that in ASIPs may be considered. However, for Data Paths
and low-power optimizations, intelligent algorithms and transformation techniques need to be
investigated. A new research project KAHRISMA [ITI, KBS+10] has started which focuses on
researching such kind of compile-time tool flow and design methodology. The processor-specific
adaptations in the application architecture emerge as a more challenging task. A modular design and
re-targetable compilation methodology may be a suitable choice to investigate.

- 145 -

Appendix A A Multi-Level Rate Control

In this appendix, a multi-level rate control is presented that was developed in the scope of this thesis. The
proposed rate control algorithm performs a non-linear target bit allocation to handle scene cuts and
suddenly appearing high motion scenes in video encoding at a vast range of bit rates and resolutions. It
copes with varying Rate-Distortion (RD) characteristics of different frame types (I, P, B) and different
Macroblocks (MBs) of the same frame type by categorizing them depending upon their spatial/temporal
properties. It thereby achieves a better video quality which is required to compensate for the quality loss
occurred as a result of energy-aware adaptations in Chapter 4.

A.1 A Rate Control Algorithm

A rate control algorithm is a functional block of video encoders that fulfills the bandwidth and buffer
constraints for given channel and application properties at a given target bitrate. Due to the unpredictable
and varying nature of the input video data, different frames and their different MBs require a different bit
budget for coding (even for the same coding conditions). In case a rate controller is not used, a possible
loss of data may occur due to the buffer overflow. Moreover, ignorance of a rate controller may also result
in significant quality fluctuations that are undesirable for the end user.

Figure A.1 illustrates the encoding of the Susie test video sequence with a rate controller (blue line,
100 Kbps @15 fps, it corresponds to an average bit budget of 6.6 Kbits per frame) and without a rate
controller (brown line, QP=28 provides a similar bit budget in this case). It can be noticed from the figure
that without the rate controller the fluctuations in the number of the coded bits are significant, especially
when there is a significant change in the video content due to the rapid motion (in this case it is due to the
sudden waving of the girl�s head between frames 38 and 70). This results in quality fluctuations and
unsmooth buffer state (that directly corresponds to a higher buffer cost or alternatively a risk of buffer
overflow). In contrast to this, when using the rate controller provides reduced fluctuations in the number
of the coded bits, thus providing a better buffer and quality smoothness. It is especially important in case
the videos are transmitted over a channel under limited bandwidth constraints.

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

With RC

Without RC

Frames

B
it

s
 [

K
b

it
s

]

Sudden motion!

Bits shoot up from 3600 to 15300

(raised by 4.25x)

Figure A.1: Comparison of Produced Bits With and Without Rate Control

A rate controller determines the Quantization Parameter (QP) by considering the varying number of bits
for each frame due to their diverse spatial and temporal characteristics. A good rate controller prevents
buffer overflow (frame skipping) and/or underflow (improper bandwidth utilization) and maintains the
buffer and quality smoothness between frames. It additionally provides a good visual quality within a
frame (i.e., for different MBs) considering their Rate Distortion (RD) characteristics. Unlike other video

Chapter 8 Conclusion and Outlook

- 146 -

coding standards, H.264/AVC [ITU05] exhibits a complex RD-model and a variety of frame type coding
structures. A large body of research has been conducted in different Rate Control (RC) schemes to
determine QP at frame and Basic Unit (BU, a group of Macroblocks that share the same QP value) level
to achieve a target bit rate. Most of these RC schemes use a) QP of P frames to determine the QP of I or B
frames using (e.g., Mean Absolute Difference based) predicted RD characteristics [LPL+03, LSW04]; b)
Mean Absolute Difference or variance based QP adjustments at BU level [SZFH08, ZuHNS07].
Moreover, these approaches incorporate compute-intensive models (e.g., quadratic model with run-time
adaptation of model parameters in [LPL+03, LSW04, LT07] and a standard deviation based model at BU
level in [WAW07]). However, these RCs suffer from several drawbacks. First, the frame level target bits
estimation ignores the image statistics and motion properties [LPL+03, LSW04], thus a sudden change in
the frame (e.g., abrupt motion, scene cut) leads to discontinuities in the visual quality. Significantly, more
bits are allocated for encoding the earlier frames in a Group of Picture (GOP) leaving a smaller bit budget
for the successive frames. Another problem is the accuracy of Mean Absolute Difference estimation, as a
linear model is susceptible to high prediction inaccuracy due to the unpredictable nature of the video
content, e.g., scene cuts. Therefore, the predicted QP is too small (or big) which leads to undesirable
buffer and visual quality fluctuations. RC-Mode-0 [LPL+03] in H.264 encoder reference software treats
all frames types in the same way not considering the diverse RD characteristics of different frame types.
Therefore, it suffers from high buffer and quality fluctuations especially when encoding videos with
multiple GOPs and multiple frame types at low bit rates. RC-Mode-3 [LT07, LT08] treats I, P, and B
frames in a different way considering the hierarchical levels. However, this approach does not handle
those scenarios efficiently where a scene cut may occur at the B frame. Moreover, changing QP for each
hierarchical level may introduce undesirable quality fluctuations. Another drawback of RC-Mode-3 is that
it requires a priori knowledge about the content [LT08], which is unlikely in real-world applications due
to the unpredictable nature of the video content.

Summarizing: frequently injected I frames, scene cuts, and scenes with hectic motion require more bits
than normal P and B frames. Under scenarios of varying RD characteristics of different frame types (I, P,
B) and different MBs in one frame (e.g., bright, textured, static/moving MBs), a low-complexity rate
control with non-linear bit budgeting is desirable.

A.2 The proposed Multi-Level Rate Control

In this thesis, a novel Rate Control (RC) scheme is proposed and employed that covers Group of Pictures
(GOP), frame/slice, and Basic Unit levels (see Figure A.2). It treats different frame types (I, P, B) in a
different fashion with consideration of whether they are referenced or non-referenced frames. The
proposed RC scheme prioritizes Macroblocks (MBs) depending upon their spatial and temporal
characteristics (considering eye-catching regions) for refined Quantization Parameter (QP) allocation. It
handles various bit rate scenarios, poorly predicted frames, and videos with dark/bright, blurry/noisy,
high/low-textured, slow/fast motion properties. The variation in QP is restricted depending upon the target
bit rate, frame type, and buffer status etc. In the following, different blocks of the RC scheme are
presented in their corresponding processing sequence.

GOP Level Rate Control: For ensuring a smooth quality variation in consecutive GOPs, each GOP is
provided with a separate bit budget. However, this is only beneficial for small-sized GOPs where
target bits of a GOP serve as a hint for the frame level bit budgeting strategy. For large-sized GOPs
(e.g., ≥ 100 frames), the target bit budget is not used as the RC scheme ensures buffer and quality
smoothness at frame level. The target bit budget for the ith GOP (TBGOPi) is determined by:

 [(2 * & ()) ? 2 * :] * (/)GOPi buff GOPTB S TBR isVBR TBR TBR N FR= > (9.1)

8.2 Future Work

- 147 -

TBR is the target bit rate, FR is the frame rate, NGOP is the number of frames in a GOP, and Sbuff = mf*TBR
is the bitstream buffer size. In case of Variable Bit Rate (VBR) and large-sized buffers, a higher bit budget
is allowed for the GOP. The multiplication factor mf depends upon a) the type of RC, i.e., either Constant

Bit Rate (CBR) or VBR; and b) channel/encoder delay constraints. The maximum buffer fullness
constraint is defined as BuffFullnessMax= (1 - BOPF) * Sbuff where the buffer overflow prevention factor
(BOPF) acts as a factor of safety. Kindly note that, the buffer size affects the transmission delay and the
overall memory cost of the system. A relatively smaller buffer is cost effective but increases the risk of
data loss due to overflow. Alternatively, a relatively bigger buffer increases the transmission delay and
memory requirements. The size of the bitstream buffer may be determined by the provided buffer
smoothness of a rate controller.

Figure A.2: The Multi-Level Rate Control Scheme covering GOP, Frame/Slice, & BU Levels

along with Image and Motion Based Macroblock Prioritization

Non-Linear Target Bit Budgeting: Since different frame types or different Basic Units (BUs) of the
same frame may exhibit varying RD characteristics, a linear target bit budgeting may lead to
undesirable/unacceptable quality variations. A scene cut in P or B frames will require more bits than
the previous P/B frame to avoid sudden PSNR variation. In RC-Mode-0 [LPL+03], the QP for the I
frames depends upon the target bit rate and resolution. Some RC schemes consider spatial variance of
frame for linear translation into bits. The RC scheme in [LT08] uses RI=ȖI*RP and RB=ȖB*RP to
predict the target bits of I and B frames. However, linear functions may lead to quality fluctuations
due to the unpredictable nature of video data thus they are inefficient in sudden textural changes.
Therefore, a non-linear target bit budgeting is performed to handle scene cuts, I frames, and high-
textured images. First, the amount of texture difference (EdgeDiffAVG) between two consecutive
frames is calculated (using Sobel Operator). Afterwards, the target bits for jth frame of ith GOP
(TBits_Fi,j) are determined as:

1

1 2 3

, _

#
0

(_ () ())

 [max(min(/ ,),)] 1

*[((* /) -) /]

 - /

AVG

AVG

BitsFi j GOPi GOP TotalUsed GOPi Rem

MBs
AVG Fcurri Fprevii

IF EdgeDiff or isI Slice or isSceneCut

EdgeDiff ELSE

T TB N FR Bits N

EdgeDiff Edge Edge

ε
ξ ε ε ε ξ

ξ

=

>
= =

=

= ∑ # MBs

 (9.2)

Chapter 8 Conclusion and Outlook

- 148 -

where İ1, İ2, and İ3 classify the complexity difference of consecutive frames. NGOPi_Rem is the number of
remaining non-encoded frames in the ith GOP, and BitsTotalUsed is the total amount of bits spent till the last
encoded frame. If EdgeDiffAVG does not exceed İ1, it is sufficient to perform a linear target bit allocation.

Frame/Slice Level Rate Control: At frame/slice level, a Normalized PID Controller (see Figure A.2) is
deployed to compute the ǻQP. The QP of current frame/slice (QPslice) is obtained by adding ǻQP and
QPprev. The normalized PID controller keeps the buffer occupancy close to the target buffer fullness
using its three gain factors.

a) Normalized Proportional Gain (KP') reduces the error between the achieved and target bits.
b) Normalized Integral Gain (KI') eliminates the steady error effect by considering the accumulated

error of previously encoded frames.
c) Normalized Derivative Gain (KD') ameliorates the system stability.

The ǻQP is calculated by:

' ' '

, , ' ' '

* () * () *[() (1)]

() , { , , } { , , } /

P I D

BitsFi j BitsFi j P I D P I D

QP K e t K e t K e t e t

e t A T K K K K K K TBR

Δ = + + − −∑
= − =

 (9.3)

KP, KI, and KD are obtained using the Ziegler-Nichols-Method (ZN-Method) that uses an online
experiment followed by the use of rules to compute the numerical values of the PID coefficients [JM05].
The dynamic vibration behavior of the complete control loop is investigated using the following
procedure:

• First, only the P-controller is setup and the I- and D-parts are disable.
• For small P-coefficient values, the signal will result in a transient oscillation after some disturbance

at the beginning. With increasing P-coefficient values, the signal will build up and the oscillation
becomes mixed up.

• By successive iterations, the goal is to find a P-coefficient value at which the closed control loop
swings with constant amplitude - the so-called Critical Ziegler-Nichols-Point. The period of this
oscillation is called TCritical and the proportional boost KP_Critical. Figure A.3 illustrates the case for
the American Football test video sequence with 1Mbps@15fps, where KP_Critical=0.8 and TCritical=2.

• These values are utilized in the Ziegler-Nichols-Rules to compute the three PID coefficients:

 _0.6 * , / (0.5 *), * (0.125 *)P P Critical I P Critical D P CriticalK K K K T K K T= = = (9.4)

0

50

100

150

200

250

300

0 20 40 60 80

kP = 0.8

kI = 0

kD = 0

B
it

s
 (

in
 t

h
o

u
s
a
n

d
s
)

Frames

ȉcritical = 2
Approximately constant

amplitude

Figure A.3: Critical Ziegler-Nichols-Point for American Football

The proposed PID controller is different from the related work as it directly outputs the ǻQP after scaling
(considering the fact that an increase of 6 in QP value doubles the quantization step) of PID gains to
achieve an embedded translation of PID output into ǻQP. Moreover, the gains of the PID controller are
normalized to make it generic for a vast range of bit rates (32 Kbps - 4 Mbps). The output of the PID
controller (i.e., ǻQP) is then clipped between ±ǻQPLimit (to keep a smooth visual quality):

8.2 Future Work

- 149 -

_ _(36 0) ((35, 3), 5)

 3

Fprev Avg Limit Fprev Avg

Limit

IF QP QP MIN MAX QP

ELSE QP

− ≥ Δ = −

Δ =
 (9.5)

Note: ǻQP is calculated in a similar way for all frame types using the normalized PID controller but
QPprev is calculated in a different way for P and B frames. For P frames QPprev is simply the QP of last
encoded frame. However, for calculating QPprev in B frames a Temporal Distance (td) based scheme is
deployed (as shown in Figure A.4) due to their dissimilar RD characteristics compared to P frames.

2 1 1 2
2_

1 2

(* *)

()

D D
B w A v g

D D

t Q P t Q P
Q P

t t

+
=

+

Figure A.4: Temporal Distance based QP Calculation for B Frames/Slices

The QPprev_Bi for the ith B-frame is calculated using the minimum of i) average QP of previously encoded
frame, and ii) weighted average of QPs of two referenced frames, as shown below:

_ 2 1 1 2 1 2

#
_ _ _0

(* *) ()

(, / #)

Bi wAvg ref ref ref ref ref ref

MBs
Bi prev Bi wAvg Fi previ

QP td QP td QP td td

QP MIN QP QP MBs=

= + +

= ∑
 (9.6)

The RC scheme treats B frames in two categories: �used as referenced frame� and �not used as referenced

frame�. Due to this reason, it results in a far lesser PSNR variation (see Section A.3) compared to state-of-
the-art. Finally, the QP for a B frame is computed as:

_ _ (! ()) (() & ())

(()) 0, 2 1, 1

Bi slice Bi prevQP QP QP isRef isRef isHighTexture

IF isSceneCut ELSE

α β
α β α β

= + Δ + −

= = = =
 (9.7)

After adding ǻQP in the QPprev, the resulting QP is clipped between QPMIN and QPMAX that are determined
as follows:

12 (in bps 2650 * #) * 2

42 (in bps 165 * #) * 3

MIN

MAX

QP TBR MBs

QP TBR MBs

= − >
= + <

 (9.8)

In case of a buffer management system, the control effort is relaxed or tightened based on buffer status
and buffer size considering the target bit rate. For VBR and large buffer-sized systems where data is not
read from the buffer after encoding each frame (rather the reading from buffer is scheduled based on task
switching considering encoder and buffer as two different tasks), QPMAX is adjusted as:

 4 (1) * 4MAX MAX
Max

BuffFullness
QP QP

BuffFullness

⎢ ⎥
= − + −⎢ ⎥

⎣ ⎦
 (9.9)

Basic Unit (BU) Level Rate Control: The BU-level rate control reacts to changing image content within
one video frame and performs refined QP allocations inside a frame depending upon the spatial and
temporal complexity of the BU. Unlike state-of-the-art approaches (e.g., [LPL+03, SZFH08]), a BU-
level rate control is used for both P and B frames. Since I frames deploy spatial prediction using

Chapter 8 Conclusion and Outlook

- 150 -

neighboring MBs, varying QP at BU-level may lead to an unacceptable PSNR variation. Therefore
BU-level rate control is disabled for an I frame. Figure A.5 shows the BU-level rate control operating
in the following three steps.

Step 1) Refined QPslice Adjustments: In the first step, QPslice is refined by an amount of ǻQPdec which
depends upon the spatial/temporal properties of the BU. The equation A.5.1 in Figure A.5
show the computation of ǻQPdec for a dark BU in a dark frame to avoid the white noise
effects in the darker regions. THBU_QP, THBU_Br, THBU_SAD, and THB_Low control the amount of
decrement and categorize a BU as dark or bright. Afterwards, equations A.5.2, A.5.3, and
A.5.4 compute the decrement step for ǻQPdec for bright regions with less texture or slow
motion to avoid the loss of details. Irrespective of the brightness of a BU, strong quantization
may distort the slow moving regions therefore it needs to be preserved (see equations A.5.5
and A.5.6). In case the MB inside a BU is stationary but not skipped, there is a high
probability that there will be some transformed coefficients that needs to be protected to
avoid the quantization noise. Therefore, ǻQPdec is adjusted (depending on the SAD and TBR)
to preserve the transformed coefficients of stationary MBs (see equations A.5.7-A.5.12).

Step 2) Controlling Target Bit Violations at BU-Level: As image based decision may lead to a target
bit violation when operating at BU level, the proposed scheme computes ǻQPdec_control to
adjust ǻQPdec depending upon the error between achieved and target bits till the coded BU
(e(t)BU). At first, the target bits for one BU (TBU_Bits) and for all coded BUs (TCodedBUs_Bits) are
computed, where NBU_Coded is the number of already encoded BUs. Afterwards, the bit error is
computed which is then used to calculate ǻQPdec_control. ABUk_Bits is the number of already
produced bits for all coded BUs in the current frame/slice. ǻQPdec_control is added in ǻQPdec
which is then clipped between ±4 to restrict the possible violations of target bit budget and is
added in QPslice to get QPBU.

Step 3) Image-/Motion-Based Macroblock Prioritizations: This step is optional for low bit rate
coding scenarios and performs an image-/motion-based Macroblock Prioritization to capture
eye-catching regions. The human eye is sensitive to fast motion and highly textured scenes
that are hard to encode at low bit rates. Therefore, it is beneficial to spend more bits to such
regions at the cost of a small degradation in stationary background regions. MBs with high
texture and motion information are prioritized as regions of interest (that capture the attention
of the human eye) and QPdec is lowered in that case (see equation A.5.13). On the contrary,
QPdec is increased for homogeneous and stationary MBs, which are not of high user interest
(see equation A.5.14). Afterwards, QPdec is clipped between ±4 and added in QPBU to get
QPMB.

A.3 Evaluation and Results

The proposed multi-level Rate Control (RC) scheme is compared with various RC modes (especially RC-
Mode-3 [LT08] which is the latest one to handle multiple frame types and offers better quality than other
RC Modes) of H.264. For a pure video quality comparison following test conditions are considered:
exhaustive RDO-MD, UMHexagonS, 16 search range, 1 reference frame, GOP=100, CAVLC, using
different coding structures. The thresholds and test conditions presented in Section 4.3.2 are used for the
following experiments. Figure A.6 shows the R-D curves for Carphone (QCIF, IPPP) and American
Football (SIF, IBBP). Figure A.6 shows that the multi-level RC scheme achieves always better PSNR
(avg. 1dB and 0.5dB) than RC-Mode-3.

Figure A.7 shows the Mean Bit Estimation Error (MBEE) and the PSNR variation (ıPSNR) for
encoding various sequences using the multi-level RC and RC-Mode-0,2,3. Each bar is the averaged
(MBEE, ıPSNR) value over 7 bit rates (64 Kbps � 4 Mbps).

8.2 Future Work

- 151 -

1_ _ _

#
_ _ _0

_ _

(&

& ()

&)

QP BU BU Avg B Low

BU
i Avg B Low BU darki

Avg Spatial BU SAD

QP TH B TH

B TH N

SAD TH

=

> <

< >∑
>

Figure A.5: Basic Unit (BU) Level RC with Texture and Motion Based QP Adjustments

Chapter 8 Conclusion and Outlook

- 152 -

Figure A.7 shows that the multi-level RC outperforms all RC modes in terms of the buffer and visual
quality smoothness and achieves the target bit rate more accurately. Figure A.7 illustrates that the multi-
level RC achieves up to 81.4%, 81.9%, and 77.8% (avg. 61.7%, 62.3%, and 63.9%) reduced MBEE
compared to RC-Mode-0,2,3, respectively. Moreover, the multi-level RC provides up to 86%, 87.9%, and
95.9% (avg. 61.9%, 62%, and 72.4%) reduced ıPSNR compared to RC-Mode-0,2,3, respectively.

Figure A.8 compares the PSNR and Rate of the multi-level RC with RC-Mode-3 on frame-basis when
encoding a combination of Rafting and Football CIF sequences. This fast motion sequence contains scene
cuts at every 50th frame. Compared to RC-Mode-3, the multi-level RC achieves on average 67% less ıPSNR
and 65.46% reduced MBEE. At the start, RC-Mode-3 performs well but requires a much higher amount
(≈ 2x) of bits, therefore the overall RD ratio is similar to the multi-level RC. As soon as scene cuts occur,
the quality of the RC-Mode-3 decreases. After 100 frames, RC-Mode-3 is already worse than the multi-
level RC and after 150 frames, the quality of the RC-Mode-3 degrades severely. After 15-20 frames the
multi-level RC achieves a smooth buffer fullness and less ıPSNR. After 100 frames, it achieves an always
better PSNR.

29

31

33

35

37

39

41

43

45

0 2000000 4000000 6000000 8000000

RC_ModeͲ3
RC_OUR

Rate [Kbits]

P
S

N
R

 [
d

B
]

Carphone

20

22

24

26

28

30

32

34

36

0 2000000 4000000 6000000 8000000 100000

RCͲModeͲ3
RC_OUR

American Football

0 2000 4000 6000 8000 0 2000 4000 6000 8000 104

Rate [Kbits]

PSNRAvgGain = 0.5dB

Proposed RC

PSNRAvgGain = 1dB
Proposed RC

RC-Mode-3

RC-Mode-3

Figure A.6: RD-Curves Comparison of the Proposed Multi-Level RC with RC-Mode-3 for

Carphone (QCIF, IPPP) and American Football (SIF, IBBP)

0

0,2

0,4

0,6

0,8

1

Akiyo

(QCIF)

Carphone

(QCIF)

Husky

(QCIF)

Mobile

(CIF)

Rafting

(CIF)

Susie

(CIF)

AmFoot

(SIF)

0.0

0.6

0.8

0.2

0.4

Sequence

M
B

E
E

0

5

10

15

20

25

RCͲModeͲ0 RCͲModeͲ2
RCͲModeͲ3 RC_OUR

1

0
[()]/#

−

=

−
= ∑

Bits BitsFrames
i i

Bits
i i

T A
MBEE Frames

T

1
2

0
[()]/#

−

=
= −∑

Frames

PSNR i AVG

i

PSNR PSNR Framesσ

ı P
S

N
R

[d
B

2
]

1.0

RC-Mode-0

RC-Mode-3

RC-Mode-2

Proposed RC

IBBBP Coding Structure

Figure A.7: MBEE Comparison of the Multi-Level RC with Three Different RC Modes

Figure A.9 presents frame-wise PSNR and Rate comparison of the multi-level RC scheme with RC-
Mode-0 for encoding the adapted Susie sequence for checking the robustness of RCs. During the first 60
frames, the multi-level RC achieves a slightly better PSNR while requiring almost the same amount of
bits. From frame 61 onwards, the frames contain heavy noise. The multi-level RC scheme recognizes this

8.2 Future Work

- 153 -

fact and adjusts faster to the target bit budget without wasting extra bits. On the contrary, RC-Mode-0
adjusts itself slower (frames 60-75) to the target bit budget when facing the transitions from dark-to-noisy
frames. As a result, RC-Mode-0 suffers from lower PSNR in the subsequent frames and gives high ıPSNR.
Overall, RC-Mode-0 achieves an average PSNR of 38.21dB while the multi-level RC achieves 41.18dB
(i.e., a gain of 2.97dB).

0

50000

100000

150000

200000

250000

0 25 50 75 100 125 150 175

20

25

30

35

40

45 RCͲModeͲ3
RC_OUR

50

0

100

150

250

200

R
a
te

 [
K

b
it

s
]

Frame Number

P
S

N
R

 [
d

B
] IBBBP Coding Structure, GOP Size=100

RC-Mode-3

Proposed RC

Figure A.8: Frame-wise Comparison of the Multi-Level RC with RC-Mode-3 for Fast Motion

Combined CIF Sequences Encoded at 2Mbps@30fps

200

2000

20000

200000

0 30 60 90 120

RCͲModeͲ0

RC_Our

10

20

30

40

50

P
S

N
R

 [
d

B
]

R
a

te
 [

B
it

s
]

Frame Number

IPPP Coding Structure, GOP Size=30

RC-Mode-3

Proposed RC

Figure A.9: Frame-wise Comparison of the Multi-Level RC with RC-Mode-0 for

Susie Mixed CIF Sequence (Bright, Dark, Noisy) at 2Mbps@30fps

MultiͲLevel
RC Scheme

RC
ModeͲ0

Figure A.10: Evaluating the Image and Motion Based MB Prioritizations

(Note: All excerpts are 2x zoomed using nearest neighbor interpolation)

Chapter 8 Conclusion and Outlook

- 154 -

The efficiency of image-statistics and motion based Macroblock Prioritizations can be seen in Figure A.10
that shows the 14th reconstructed frame of American Football when encoded with the multi-level RC
(Left) and RC-Mode-0 (Right). The multi-level RC encodes the moving helmets and arms of the players
(eye-catching regions) with better quality compared to RC-Mode-0 while blurring the grassy background,
which is less important than the players. Therefore, the proposed multi-level RC scheme is superior in
terms of user interests.

Complexity: On Intel Core2Duo T5500 (1.66 GHz), on average, the multi-level RC requires 0.54
MCycles while RC-Mode-0 requires 9 MCycles for encoding one frame, i.e., the multi-level RC is 16.6x
faster than RC-Mode-0.

- 155 -

Appendix B Simulation Environment the H.264

Video Encoder Demonstration

This appendix presents the simulation environment (used in this thesis) and the demonstration of the in-
house developed H.264 video encoder (in the scope of this thesis) on RISPP dynamically reconfigurable
processor and Texas Instruments� DM6437 Digital Media Processor. For researching the adaptive low-
power reconfigurable processor architectures, the simulator for dynamically reconfigurable processors
[Bau09] was extended with run-time energy management modules. Before moving to the details of the
video encoder demonstration, the simulation methodology is described in the following.

B.1 Implementation and Simulation Environment

The implementation and simulation environment consists of (a) ArchC-Simulator for a SPARC-V8
architecture [ARB+05] in order to generate a branch trace of the application and functional testing on the
core processor, (b) Simulator for dynamically reconfigurable processors (in this case it is a RISPP

Simulator [Bau09]), (c) Xilinx ISE for implementing the Data Paths and ModelSim for simulations in
order to perform functional testing, (d) gcc compiler on a Linux machine for PC-based evaluation. The
simulation methodology is partitioned into four phases, (i) Design phase, (ii) Implementation phase, (iii)
Power Measurement and Estimation phase, and (iv) Simulation phase.

In the design phase, first the application is executed in the ArchC-Simulator and the output is
compared with the output of the original PC-based execution (i.e., using the original target platform of the
application). When compiling for the ArchC-Simulator several modifications might be required, e.g., it is
not possible to use the same name for global variables and methods twice. Afterwards, the application is
executed in the ArchC-Simulator, to verify the correct output. For designing the Custom Instructions
(CIs), information about the computational hot spot(s) of the application is required. This is obtained by
profiling the application using the �valgrind tool suite� [Net04a, Net04b]. After gathering this information
CIs for the hot spots are designed, while considering the constraints predetermined by the architecture
(i.e., RISPP [Bau09] in this case).

In the implementation phase, the ArchC-Simulator and the RISPP Simulator are made aware of the
new CIs (by adding, e.g., name and opcode to an XML-file containing the information about all CIs). The
CIs are programmed as assembly instructions in the application and the data structures are adapted
accordingly for integrating the CIs. Furthermore, the behavior of CIs is added to the ArchC-Simulator for
functional correctness and valid output generation. The modified application is tested on the extended
simulator and in order to assure correct functionality the output of the original and modified applications
are compared. Moreover, the Data Paths are implemented in VHDL. The behavior of Data Paths is
simulated and finally the VHDL-Code is synthesized using the Xilinx ISE tool chain in order to provide
information about the hardware requirements (number of flip flops, slices, frequency, etc.). This
information is added to the XML-file which is provided to the RISPP Simulator. Additionally the
functionality of the complete CI and the composing Data Paths is implemented in software (i.e., using the
core instruction set architecture, cISA) and the execution times are measured. In the next step, the CI
graph is generated showing the Data Paths as nodes connected with edges (representing the connections).
This graph is also fed as an input to the RISPP Simulator. An in-house developed tool automatically
generates schedules for various Implementation Versions considering different area constraints (i.e.,
different number of given Data Path Containers, DPCs). The information is stored in the data structures
internal to the RISPP Simulator.

The power estimation and measurement phase is explained in Chapter 6 and Section 3.4. The
measured power of the Data Paths is added to the XML-file that contains the area and latency information

Chapter 8 Conclusion and Outlook

- 156 -

of each Data Path. Moreover, the average power and energy consumption of different Implementation
Versions is estimated using the proposed power model (see details in Section 3.4), which is later on stored
in the Custom Instructions data structure of the RISPP Simulator.

Figure B.1: Simulation Methodology Showing Various Steps of the Simulation Procedure [S.3]

In the simulation phase, the application is simulated using the ArchC-Simulator which provides output
files (e.g., branch trace) that serves as the input to the RISPP Simulator that provides an estimate of the
energy consumption and performance of the application. At the end the results (energy consumption,
performance, etc.) are analyzed. To investigate the concepts and algorithms for run-time energy
management with CI-level muting (as proposed in the scope of this thesis), the RISPP Simulator
[BSH09a] is extended with several new modules. These modules are (a) Run-Time Energy Management,
(b) Power-Estimation, and (c) Muting Manager (see Figure B.2). Besides the application binary, branch
trace, and the core instruction set architecture (cISA), the power model for dynamically reconfigurable
processors (see details in Section 3.4) is passed as input. Figure B.2 shows the extended simulator as a
UML class diagram that consists of three major parts:

• the pipeline of the core processor and the run-time system with energy management scheme; it
simulates the pipeline behavior and manages the executions, energy management, power
estimation, reconfigurations, etc.

• the Custom Instructions (CIs) with their composing Data Paths and various Implementation
Versions; it is represented by a data structure containing the performance and energy properties of
different Data Paths and Implementation Versions, etc., and

• the FPGA with various DPCs with management of the Data Paths loaded in the DPCs, the muting
mode of different DPCs, etc.

The information about the CIs, Implementation Versions (like name, CI opcode and instruction format,
latency and average power consumption, etc.) and their composing Data Paths is fed through an XML-file
(as discussed above). Moreover, the area and power information about the Data Paths is also provided in
this XML-file. The pipeline simulates the application binary and the branch trace is considered to imitate
the control flow of the application. In the current setup, the model of a SPARC-V8 architecture is
modeled with 5 pipeline stages. Note that the register file contents and the data memory accesses are not
simulated in the RISPP Simulator (see further details in [Bau09]). Each load and store instruction requires
two cycles considering a 100% cache hit.

When a Forecast Instruction is encountered to hint about the upcoming CIs, the run-time energy
management scheme is triggered that determines the energy minimizing instruction set and the

8.2 Future Work

- 157 -

appropriate muting modes for the set of temporarily unused CIs. The information about the execution
frequency of CIs is obtained from the Online Monitoring and Prediction module. The corresponding
muting mode is then sent to the Muting Manager module that issues the shutdown signals to the Logic
and/or Configuration SRAM of the DPCs corresponding to the muted CIs. The energy consumption of the
application is estimated at run time at different time intervals, between two Forecast Blocks, or after the
complete application execution. After the muting mode is configured, the Data Paths to be reconfigured
are pushed into the Data Path Loading Queue (see Figure B.2) and the reconfiguration sequence is
determined. The CI Execution Unit controls the execution of CIs using cISA or using the available
Implementation Versions.

getMinEnergyAvailableIV()

Custom Instruction

getRequiredDataPath()

Implementation Version

isAvailableOnFPGA()

isOn()

Data Path

manageCIexec()

CI Execution UnitCore Pipeline

Application

Binary

Online Monitoring and Prediction

input

Instruction

Set Arch.

Branch

trace

pushNextDataPath()

Data Path Loading Queue

FPGAData Path Container

2.. 1.. 0..

0,1

1

1

1

1

1

11

1

0..

1

1

Defines the CIs (including
instruction format, parameters,
etc.), Implementation Versions,

and Data Paths

XML-file
has manyŹ

currently containsŹ
Ż is available on FPGA

1

0..

Ż knows

triggers Ź
Ż stalls

Ż observes

asks Ź

Żreconfigures

1..

Pipeline & Run-Time System

CI Management

FPGA Management

0..

... ...
...

...

...

1

UML Legend: association: aggregation: composition:

determineEnergyMinImplVersion()

determineMutingModes()

determineReconfSchedule()

Runtime Energy Management

triggers
ź

reportEachTimeframe()

Power Estimation

1

1

switch_on/off_Container()

MutingManager

1

1

1

1

1

1

......

instructs
ź

fills Ź

requires
multiple

Ź

contains

Ż

in
pu

t

Power

Model

1 1

reports

ź

triggers
ź

Ż is powered-on

Figure B.2: Reconfigurable Processor Simulator [BSH09a] with the Extensions Implemented in

the Scope of this Thesis for Run-Time Adaptive Energy-Management

B.2 H.264 Video Encoder on the RISPP Hardware Prototype

Figure B.3(A) shows the H.264 video encoder (developed in the scope of this thesis) executing on the
RISPP hardware prototype (based on an Avnet Xilinx Virtex-4 LX160 Development Kit; �ADS-XLX-
V4LX-DEV160-G�, [Avn09]) 36. The internal floorplan (after place & route) of the RISPP processor
prototype (executing at 50 MHz) with the video preprocessing IP-core is provided in Figure B.3(B)
[Bau09]. First the raw (RGB) video in an interlaced format is obtained from the camera. The video
preprocessing core performs the de-interlacing, format conversion (RGB to YUV 4:4:4), and color sub-
sampling (YUV 4:4:4 to YUV 4:2:0). A triple circular buffer mechanism is implemented that provides
storage for the current and reference video frames along with the next frame written by the camera (while
the current frame is being encoded). The CIs (e.g., for Motion Estimation) access the current and the
reference frame buffers using one 128-bit port for each buffer. After the current frame is encoded and
overwritten by the reconstructed Macroblocks data, the buffer rotation is performed, i.e., the next frame

36 this board contains a Xilinx Virtex-4 XC4VLX160-FF1513 FPGA [Xil08b]

Chapter 8 Conclusion and Outlook

- 158 -

becomes the current, the current frame becomes the reference, and the reference frame buffer becomes the
next frame in which the camera writes the new data. Note, this rotation is performed in hardware in order
to simplify the software implementation [Bau09]. The address of the current and reference frames are
unchanged. The reference frame is displayed via a VGA output periphery module. The main encoder
program is executing on the core processor (in this case Leon2 core pipeline), while the Data Paths for the
Custom Instructions (CIs) are loaded on the DPCs. It can be noticed in Figure B.3(B) that there are
currently 10 DPCs connected with Bus Connectors. The run-time system executes on the MicroBlaze.
Further details on the RISPP prototype can be found in [Bau09].

Leon2 core
Instruction Set
Architecture

Data Path
Containers

Periphery IPͲCore
for VideoͲIn and
VideoͲOut. AdditiͲ
onally providing
video buffers and
memoryͲmapped
interface to access

the buffers

Periphery IPͲCore
for I2C (touchͲ
screen LCD)

ICAP Controller:
external EEPROM
å FIFO å ICAP

Memory
Controller

Bus Connectors
and static Repack
Data Paths; parts of
the Infrastructure

MicroBlaze (for
runͲtime system)
and Peripherals

Load/Store Unit 1

Load/Store Unit 0

Address
Generation Units

Bus Macros

Figure B.3: (A) H.264 Video Encoder Executing on the RISPP Prototype; (B) Floorplan of the

RISPP Prototype Implementation on the Xilinx Virtex-4 LX 160 FPGA [Bau09]

B.3 H.264 Video Encoder on the Texas Instruments� DM6437
Digital Media Processor

Figure B.4 demonstrates the H.264 video encoder (developed in the scope of this thesis) executing on the
Texas Instruments� (TI) DM6437 Digital Video Development Platform (TMDSVDP6437) [Ins08a] with
TMS320DM6437 Digital Media Processor [Ins08b]. Figure B.5 illustrates the processing flow of different
functional blocks (video capture, format and resolution conversion, encoding, and video display) of the
video recording system executing on the TMDSVDP6437 platform. The step-by-step flow is explained in
the following.

• The video data from charge-coupled device (CCD) is obtained by the Video Processing Front End
(VPFE) driver using an on-board tvp5146 decoder. The format of the captured video is YUV 4:2:2
interleaved with a resolution of 720x576 (D1, PAL).

• To support various video resolutions, down-scaling is performed as an optional step using the
Resizer module of VPFE. For instance, in the demonstration of Figure B.4, the input video is down-
scaled from 720x576 to 352x288 (Common Intermediate Format, CIF) resolution. The resizer is a

8.2 Future Work

- 159 -

hardware implemented poly-phase filter for image scaling operations with a capability of scaling up
to four times. Note, the choice of the filter type (4-phase 7-tap filter or 8-phase 4-tap filter) is done
automatically by the hardware based on the scaling ratio and it is not changeable by the software.
The resizer can operate on either YUV 4:2:2 interleaved format or separated single color plane.

• The video encoders typically require videos in YUV 4:2:0 format. Therefore, the format of the
input video is converted to YUV 4:2:0 planar using EDMA3 (Enhanced Direct Memory Access)
module. EDMA3 provides user-programmed data transfers between two memory-mapped slave
endpoints on the device.

• Afterwards, the video encoder (executing on the core DM6437 processor with C64x+ instruction
set and DaVinci video technology) processes the video frame for encoding. Various modules are
optimized using the specialized assembly with operations of sub-word level processing.

• The reconstructed video is displayed on the TFT LCD monitor. For displaying, the format of the
reconstructed video is converted from YUV 4:2:0 planar to YUV 4:2:2 interleave using the
EDMA3 module. This format is required by the Video Processing Back End (VPBE). Afterwards,
the video is up-scaled to 720x576 (D1, PAL) and sent to display using the VPBE driver.

Figure B.4: H.264 Video Encoder Executing on the TI� DM6437 DSP Board [S.2]

Figure B.5: Flow for porting H.264 Encoder on DM6437 Digital Signal Processor [S.2]

- 161 -

Appendix C The CES Video Analyzer Tool

In the scope of this thesis, a video analysis tool (Figure C.1) has been developed named �CES Video
Analyzer� in order to analyze the subjective quality of various algorithms. Moreover, it is also used to
subjectively learn about the relationship between the optimal coding modes and various video properties.
The CES Video Analyzer tool has various features like playback of raw YUV video files, computing and
displaying spatial and temporal video properties, a framework for researching new Motion Estimators.
The fetures of the CES Video Analyzer tool are described in the following.

• Playback of raw YUV video files of different resolutions with different frame rates (see Label | in
Figure C.1)
o possibility to view separate components of video frames Y, U and V
o open and playback of multiple video files for comparison in a frame-wise synchronized fashion

• Extract, display, and output the properties of a video (Gradient, Variance, Texture, Brightness,
Contrast, etc.) at frame and/or Macroblock levels (see Label §)
o display the edges in different colors or threshold based edge coloring
o display the edge maps for texture analysis of various edge-detection algorithms (see Label ⁄)

• Coding mode distribution analysis (see Label ƒ)
• A framework for researching and evaluating different Motion Estimators (see Label ~)

o multiple Motion Estimation stages can be defined with Initial Search Point Prediction and
pattern types

o different patterns can be easily configured and compared
o search range can be configured
o the final configuration can be stored in the list of pre-stored Motion Estimators

• Comparing different Motion Estimators
o plotting the motion vectors for subjective motion analysis (see Label ¡)
o color of motion vectors can be selected
o different standard Motion Estimation algorithms are provided for comparison (Full Search,

Spiral Search, Three Step Search, and UMHexagonS)
o output the information about the motion vectors in a text file (comma separated format)

• Computing the Peak Signal-to-Noise Ratio (PSNR) at frame or video level (see Label ¤)
• Create new test video sequences with different brightness, noise, blur factors

o save the complete video file or a specified set of frames
• Create new test video sequences by merging different video sequences in order to realize scene cuts

and videos with diverse properties within a given frame (see Label ¢)
o a border between the video frames can be added (see Label £)
o the color and size of the border between the frames can be selected
o the video after the last frame can be stopped or replayed from the start in case videos with

different number of frames are merged with each other
• Zoom/Upscale using different filters
• Save individual frames in different formats (Bitmap, Jpeg, Png, Gif, Tiff or Windows Metafile)

Kindly note that this tool is actively used in further research projects. It is developed to help the research
community (researchers, developers, students, etc.) of embedded multimedia systems in their research and
educational projects (i.e., to perform quick analysis/evaluation of videos and different algorithms). Further
extensions of this tool are to support the playback and analysis of multiview video sequence and analyzing
various video pre- and post-processing filters for video quality enhancement and restoration.

Chapter 8 Conclusion and Outlook

- 162 -

1

2

3

6

5

4

9
7

8

Figure C.1: The CES Video Analyzer Tool showing the Research Framework for

Motion Estimation, Video Merging, and Texture Analysis [D.1]

- 163 -

Bibliography

[ADVLN05] E. Arsura, L. Del Vecchio, R. Lancini, and L. Nisti, �Fast macroblock intra and inter modes
selection for h.264/avc�, in Proceedings of the 2005 International Conference on

Multimedia and Expo (ICME), July 2005, pp. 378�381.

[Ae06] K. Agarwal and et, �Power gating with multiple sleep modes�, in IEEE International

Symposium on Quality Electronic Design (ISQED), 2006, pp. 633�637.

[Aer] Aeroflex Gaisler, �Homepage of the Leon processor�, http://www.gaisler.com/-
leonmain.html.

[AKL+07] C. Arbelo, A. Kanstein, S. Lopez, J. F. Lopez, M. Berekovic, R. Sarmiento, and J.-Y.
Mignolet, �Mapping control-intensive video kernels onto a coarse-grain reconfigurable
architecture: the h.264/avc deblocking filter�, in Proceedings of the 10th conference on

Design, Automation and Test in Europe (DATE), April 2007, pp. 1�6.

[Ama06] H. Amano, �A survey on dynamically reconfigurable processors�, IEICE Transaction on

Communication, vol. E89-B, no. 12, pp. 3179�3187, December 2006.

[AML07] E. Akyol, D. Mukherjee, and Y. Liu, �Complexity control for real-time video coding�, in
Proceedings of the 2007 International Conference on Image Processing (ICIP), October
2007, pp. I�77�I�80.

[AN04] J. H. Anderson and F. N. Najm, �Power estimation techniques for fpgas�, IEEE

Transaction on Very Large Scale Integration(TVLSI), vol. 12, no. 10, pp. 1015�1027, 2004.

[ARB+05] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo, C. Araujo, and E. Barros, �The ArchC
architecture description language and tools�, International Journal of Parallel

Programming, vol. 33, no. 5, pp. 453�484, October 2005.

[ARC] ARC International, �ARCtangent processor�, http://www.arc.com/configurables/.

[Ari08] Arizona State University, �Video Traces Research Group�, http://trace.eas.asu.edu/yuv/-
index.html, 2008.

[ASI] ASIP Solutions, Inc., �Homepage of ASIP Meister�, http://asip-solutions.com/.

[Avn09] Avnet, Inc., �Avnet electronics marketing�, http://avnetexpress.avnet.com, 2009.

[Bau09] L. Bauer, �Rispp: A run-time adaptive reconfigurable embedded processor�, in PhD

Dissertation, University of Karlsruhe, Germany, December 2009.

[Ber09] C. V. Berkel, �Multi-core for mobile phones�, in Proceedings of the 12th conference on

Design, Automation and Test in Europe (DATE), April 2009, pp. 1260 �1265.

[BHU03] J. Becker, M. Huebner, and M. Ullmann, �Power estimation and power measurement of
xilinx virtex fpgas: Trade-offs and limitations�, in Symposium on Integrated Circuits and

Systems Design(SBCCI), 2003, pp. 283�288.

[BKD+05] M. Berekovic, A. Kanstein, D. Desmet, A. Bartic, B. Mei, and J. Mignolet, �Mapping of
video compression algorithms on the adres coarse-grain reconfigurable array�, in Workshop

on Multimedia and Stream Processors, November 2005.

[BL00] F. Barat and R. Lauwereins, �Reconfigurable instruction set processors: A survey�, in
Proceedings of the 11th IEEE International Workshop on Rapid System Prototyping (RSP),
June 2000, pp. 168�173.

0 Bibliography

- 164 -

[Bob07] C. Bobda, Introduction to Reconfigurable Computing: Architectures, Algorithms, and

Applications. Springer Publishing Company, Incorporated, June 2007.

[BSH08a] L. Bauer, M. Shafique, and J. Henkel, �A computation- and communication- infrastructure
for modular special instructions in a dynamically reconfigurable processor�, in 18th

International Conference on Field Programmable Logic and Applications (FPL),
September 2008, pp. 203�208.

[BSH08b] L. Bauer, M. Shafique, and J. Henkel, �Efficient resource utilization for an extensible
processor through dynamic instruction set adaptation�, IEEE Transactions on Very Large

Scale Integration Systems (TVLSI), Special Section on Application-Specific Processors,
vol. 16, no. 10, pp. 1295�1308, October 2008.

[BSH08c] L. Bauer, M. Shafique, and J. Henkel, �Run-time instruction set selection in a transmutable
embedded processor�, in Proceedings of the 45th annual Conference on Design Automation

(DAC), June 2008, pp. 56�61.

[BSH09a] L. Bauer, M. Shafique, and J. Henkel, �Cross-architectural design space exploration tool for
reconfigurable processors�, in Proceedings of the 12th conference on Design, Automation

and Test in Europe (DATE), April 2009, pp. 958�963.

[BSH09b] L. Bauer, M. Shafique, and J. Henkel, �Mindeg: A performance-guided replacement policy
for run-time reconfigurable accelerators�, in IEEE International Conference on Hardware-

Software Codesign and System Synthesis (CODES+ISSS), October 2009, pp. 335�342.

[BSKH07] L. Bauer, M. Shafique, S. Kramer, and J. Henkel, �RISPP: Rotating Instruction Set
Processing Platform�, in Proceedings of the 44th annual Conference on Design Automation

(DAC), June 2007, pp. 791�796.

[BSKH08] L. Bauer, M. Shafique, S. Kreutz, and J. Henkel, �Run-time system for an extensible
embedded processor with dynamic instruction set�, in Proceedings of the conference on

Design, Automation and Test in Europe (DATE), March 2008, pp. 752�757.

[BSTH07] L. Bauer, M. Shafique, D. Teufel, and J. Henkel, �A self-adaptive extensible embedded
processor�, in First International Conference on Self-Adaptive and Self-Organizing Systems

(SASO), July 2007, pp. 344�347.

[BTM00] D. Brooks, V. Tiwari, and M. Martonosi, �Wattch: a framework for architectural-level
power analysis and optimizations�, in International Symposium on Computer

Architecture(ISCA), 2000, pp. 83�94.

[CC01] J. E. Carrillo and P. Chow, �The effect of reconfigurable units in superscalar processors�, in
Proceedings of the ACM/SIGDA eighth international symposium on Field Programmable

Gate Arrays (FPGA), February 2001, pp. 141�150.

[CC07] C.-M. Chen and C.-H. Chen, �An efficient pipeline architecture for deblocking filter in
h.264/avc�, IEICE Transactions on Information and Systems, vol. E90-D, no. 1, pp. 99�
107, 2007.

[CCH+06] T.-C. Chen, S.-Y. Chien, Y.-W. Huang, C.-H. Tsai, C.-Y. Chen, T.-W. Chen, and L.-G.
Chen, �Analysis and architecture design of an hdtv720p 30 frames/s h.264/avc encoder�,
IEEE Transactions on Circuits and Systems for Video Technology(TCSVT), vol. 16, no. 6,
pp. 673�688, 2006.

[CCLR07] N. Cherniavsky, A. C. Cavender, R. E. Ladner, and E. A. Riskin, �Variable frame rate for
low power mobile sign language communication�, in Proceedings of the 2007 ACM

SIGACCESS Conference on Computers and Accessibility (ASSETS), October 2007, pp.
163�170.

Bibliography

- 165 -

[CCT+09] Y.-H. Chen, T.-C. Chen, C.-Y. Tsai, S.-F. Tsai, and L.-G. Chen, �Algorithm and
architecture design of power-oriented h.264/avc baseline profile encoder for portable
devices�, IEEE Transactions on Circuits and Systems for Video Technology(TCSVT),
vol. 19, no. 8, pp. 1118�1128, 2009.

[CCW+09] H.-C. Chang, J.-W. Chen, B.-T. Wu, C.-L. Su, J.-S. Wang, and J.-I. Guo, �A dynamic
quality-adjustable h.264 video encoder for power-aware video applications�, IEEE

Transactions on Circuits and Systems for Video Technology(TCSVT), vol. 19, no. 12, pp.
1739�1754, 2009.

[CH02] K. Compton and S. Hauck, �Reconfigurable computing: a survey of systems and software�,
ACM Computing Surveys (CSUR), vol. 34, no. 2, pp. 171�210, June 2002.

[CHC03] B. Calhoun, F. Honore, and A. Chandrakasan, �Design methodology for fine-grained
leakage control in mtcmos�, in Proceedings of the 2003 International Symposium on Low

Power Electronics and Design (ISLPED), August 2003, pp. 104�109.

[CJMP03] S. Choi, J.-W. Jang, S. Mohanty, and V. K. Prasanna, �Domain-specific modeling for rapid
energy estimation of reconfigurable architectures�, The Journal of Supercomputing, vol. 26,
pp. 256�281, 2003.

[CK08] Y.-K. Chen and S. Y. Kung, �Trend and challenge on system-on-a-chip designs�, Journal

of VLSI Signal Processing Systems (JSPS), vol. 53, no. 1-2, pp. 217�229, 2008.

[CLC06] T. C. Chen, C. J. Lian, and L. G. Chen, �Hardware architecture design of an h.264/avc
video codec�, in Asia and South Pacific Conference on Design Automation (ASP-DAC),
2006, pp. 750�757.

[CLZG06] Y.-K. Chen, E. Q. Li, X. Zhou, and S. L. Ge, �Implementation of h.264 encoder and
decoder on personal computers�, Journal of Visual Communications and Image

Representations (JVCIR), vol. 17, no. 2, pp. 509�532, April 2006.

[CoW] CoWare Inc., �LISATek�, http://www.coware.com/.

[CWL+05] L. Cheng, P. Wong, F. Li, Y. Lin, and L. He, �Device and architecture co-optimization for
fpga power reduction�, in Proceedings of 42nd ACM IEEE Design Automation

Conference(DAC), 2005, pp. 915�920.

[CZH02] Z. Chen, P. Zhou, and Y. He, �Fast integer pel and fractional pel motion estimation for jvt�,
in Joint Video Team (JVT) of ISO/IECMPEG & ITU-T VCEG 6th Meeting, December
2002, pp. Document JVT�F017.

[Dal99] M. Dales, �The Proteus processor � a conventional cpu with reconfigurable functionality�,
in Proceedings of the 9th International Workshop on Field-Programmable Logic and

Applications (FPL), August 1999, pp. 431�437.

[Dal03] M. Dales, �Managing a reconfigurable processor in a general purpose workstation
environment�, in Design, Automation and Test in Europe Conference and Exhibition

(DATE), March 2003, pp. 980�985.

[Das99] I. Das, �On characterizing the �knee� of the pareto curve based on normal-boundary
intersection�, Structural and Multidisciplinary Optimization, vol. 13, no. 3, pp. 107�115,
1999.

[DGHJ05] L. Deng, W. Gao, M. Hu, and Z. Z. Ji, �An efficient hardware implementation for motion
estimation of avc standard�, IEEE Transactions on Consumer Electronics (TCE), vol. 51,
no. 4, pp. 1360�1366, November 2005.

[Esp04] M. Esponda, �Trends in hardware architecture for mobile devices�, in Institut für

Informatik, Freie Universität Berlin, November 2004.

0 Bibliography

- 166 -

[EY05] M. Etoh and T. Yoshimura, �Advances in wireless video delivery�, Proceedings of the

IEEE, vol. 93, no. 1, pp. 111�122, 2005.

[FHR+10] G. Frantz, J. Henkel, J. Rabaey, T. Schneider, M. Wolf, and U. Batur, �Ultra-low power
signal processing�, IEEE Signal Processing Magazine, vol. 27, no. 2, pp. 149�154, 2010.

[Ge04] A. Gayasen and et, �Reducing leakage energy in fpgas using region-constrained
placement�, in ACM Internaltional Symposium on Field Programmable Gate

Arrays(FPGA), 2004, pp. 51�58.

[Ge07] A. H. Gholamipour and etAl, �Energy-aware co-processor selection for embedded
processors on fpgas�, in International Conference on Computer DDesign (ICCD), 2007, pp.
158�163.

[GE08] M. Goraczko and EtAl, �Energy-optimal software partitioning in heterogeneous
multiprocessor embedded systems�, in Proceedings of 45th ACM IEEE Design Automation

Conference(DAC), 2008, pp. 191�196.

[GRE+01] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown, �MiBench: A
free, commercially representative embedded benchmark suite�, in Annual IEEE

International Workshop Workload Characterization (WWC), December 2001, pp. 3�14.

[GW02] R. C. Gonzales and R. E. Woods, Digital Image Processing. Upper Saddle River, New
Jersey, USA: Prentice-Hall Inc., 2002.

[GY05] C. Grecos and M. Y. Yang, �Fast inter mode prediction for p slices in the h264 video
coding standard�, IEEE Transactions on Broadcadting(TB), pp. 256�263, 2005.

[Har01] R. Hartenstein, �A decade of reconfigurable computing: a visionary retrospective�, in
Proceedings of the conference on Design, Automation and Test in Europe (DATE), March
2001, pp. 642�649.

[Hen03] J. Henkel, �Closing the soc design gap�, IEEE Computers, vol. 36, no. 9, pp. 119�121,
September 2003.

[HL07] P.-A. Hsiung and C.-W. Liu, �Exploiting hardware and software low power techniques for
energy efficient co-scheduling in dynamically reconfigurable systems�, in 17th

International Conference on Field Programmable Logic and Applications (FPL), 2007, pp.
165�170.

[HLLW08] C. H. Ho, P. H. W. Leong, W. Luk, and S. J. E. Wilton, �Rapid estimation of power
consumption for hybrid fpgas�, in 18th International Conference on Field Programmable

Logic and Applications (FPL), 2008, pp. 227�232.

[HM09] H. P. Huynh and T. Mitra, �Runtime adaptive extensible embedded processors � a survey�,
in Proceedings of the 9th International Workshop on Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS), July 2009, pp. 215�225.

[HP07] H.Alzoubi and W. D. Pan, �Efficient global motion estimation using fixed and random
subsampling patterns�, in Proceedings of the 2007 International Conference on Image

Processing (ICIP), October 2007, pp. I�477�I�480.

[Hui10] Hui Yong Kim, �Next generation video coding standardization�, http://www.itforum.kr/-
board/include/download.php?no=144&db=board3&fileno=2, 2010.

[Ins08a] T. Instruments, �TMDSVDP6437: DM6437 Digital Video Development Platform�, http://-
focus.ti.com/docs/toolsw/folders/print/tmdsvdp6437.html, 2008.

[Ins08b] T. Instruments, �TMS320DM6437 Digital Media Processor�, http://focus.ti.com/docs/-
prod/folders/print/tms320dm6437.html, 2008.

Bibliography

- 167 -

[ITI] ITIV & CES, �KAHRISMA: KArlsruhe�s Hypermorphic Reconfigurable-Instruction-Set
Multi-grained-Array processor�, http://www.kahrisma.org/.

[ITU05] ITU-T Rec. H.264 and ISO/IEC 14496-10:2005 (E) (MPEG-4 AVC), �Advanced video
coding for generic audiovisual services�, 2005.

[ITU09] ITU-T Rec. H.264 and ISO/IEC 14496-10:2005 (E) (MPEG-4 AVC), �Advanced video
coding for generic audiovisual services�, 2009.

[JC99] J. A. Jacob and P. Chow, �Memory interfacing and instruction specification for
reconfigurable processors�, in Proceedings of the ACM/SIGDA 7th international

symposium on Field Programmable Gate Arrays (FPGA), February 1999, pp. 145�154.

[JC04] X. Jing and L.-P. Chau, �Fast approach for h.264 inter mode decision�, in Electronic

Letters, 2004, pp. 1050�1052.

[JL03] B. W. Jeon and J. Y. Lee, �Fast mode decision for h.264�, in Joint Video Team (JVT) of

ISO/IECMPEG & ITU-T VCEG 8th Meeting, 2003, pp. Document JVT�J033.

[JM05] M. A. Johnson and M. H. Moradi, PID Control: New Identification and Design Methods.
New York, NY, USA: Springer-Verlag New York, Inc., 2005.

[Joi08] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, �JVT-AB204: Joint draft 8.0
on multiview video coding�, 2008.

[Joi10] Joint Collaborative Team (JCT) on Video Coding Standard Development, �H.265: High
efficiency video coding�, http://www.h265.net/2010/01/final-call-for-proposals-on-hngvc-
hvc-issued-jointly-by-vceg-and-mpeg.html, 2010.

[JVT10] JVT, �H.264 codec�, http://iphome.hhi.de/suehring/tml/index.htm, 2010.

[KBS+10] R. König, L. Bauer, T. Stripf, M. Shafique, W. Ahmed, J. Becker, and J. Henkel,
�KAHRISMA: A novel hypermorphic reconfigurable-instruction-set multi-grained-array
architecture�, in Proceedings of the conference on Design, Automation and Test in Europe

(DATE), March 2010, pp. 819�824.

[KC07] B.-G. Kim and C.-S. Cho, �A fast inter-mode decision algorithm based on macro-block
tracking for p slices in the h.264/avc video standard�, in Proceedings of the 2007

International Conference on Image Processing (ICIP), October 2007, pp. V�301�V�304.

[KL07] H. Kalva and J.-B. Lee, �The vc-1 video coding standard�, IEEE Transactions on

Multimedia (TM), vol. 14, no. 4, pp. 88�91, October-December 2007.

[Kle10] M. Klein, �Wp298: Power consumption at 40 and 45 nm�, http://www.xilinx.com/support/-
documentation, 2010.

[KLHS06] S. D. Kim, J. H. Lee, C. J. Hyun, and M. H. Sunwoo, �Asip approach for implementation of
h.264/avc�, in Asia and South Pacific Conference on Design Automation (ASP-DAC), Jan
2006, pp. 758�764.

[KR07] I. Kuon and J. Rose, �Measuring the gap between fpgas and asics�, IEEE Transaction on

Computer-Aided Design of Integrated Circuits and Systems(TCAD), vol. 26, no. 2, pp. 203�
215, 2007.

[KRD+03] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and J. D. Owens,
�Programmable stream processors�, IEEE Transaction on Computer (TC), vol. 3, no. 8, pp.
54�62, 2003.

0 Bibliography

- 168 -

[KSK06] M. G. Koziri, G. I. Stamoulis, and I. X. Katsavounidis, �Power reduction in an h.264
encoder through algorithmic and logic transformations�, in Proceedings of the 2006

ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED),
October 2006, pp. 107�112.

[KXVK06] C. Kim, J. Xin, A. Vetro, and C.-C. J. Kuo, �Complexity scalable motion estimation for
h.264/avc�, in Proceedings of the 2006 SPIE Visual Communications and Image

Processing (VCIP), January 2006, pp. 109�120.

[LBM+06] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, �Enhanced architectures,
design methodologies and CAD tools for dynamic reconfiguration of Xilinx FPGAs�, in
Proceedings of the 16th International Conference on Field-Programmable Logic and

Applications (FPL), August 2006, pp. 1�6.

[LCHC03] F. Li, D. Chen, L. He, and J. Cong, �Architecture evaluation for power-efficient fpgas�, in
ACM Internaltional Symposium on Field Programmable Gate Arrays(FPGA), 2003, pp.
175�184.

[LH02] Z. Li and S. Hauck, �Configuration prefetching techniques for partial reconfigurable
coprocessor with relocation and defragmentation�, in Proceedings of 8th international

symposium on Field Programmable Gate Arrays (FPGA), February 2002, pp. 187�195.

[LK06] W. H. Lee and J. H. Kim, �H.264 implementation with embedded reconfigurable
architecture�, in IEEE International Conference on Computer and Information Technology

(CIT), 2006, pp. 247�251.

[LL08] J. Lamoureux and W. Luk, �An overview of low-power techniques for field-programmable
gate arrays�, in IEEE NASA/ESA Conference on Adaptive Hardware and Systems, 2008, pp.
338�345.

[LLH07] F. Li, Y. Lin, and L. He, �Field programmability of supply voltages for fpga power
reduction�, IEEE Transaction on Computer-Aided Design of Integrated Circuits and

Systems(TCAD), vol. 26, no. 4, pp. 752�764, 2007.

[LPL+03] Z. G. Li, F. Pan, K. P. Lim, G. Feng, X. Lin, and S. Rahardja, �Adaptive unit layer rate
control for jvt�, in Joint Video Team (JVT) of ISO/IECMPEG & ITU-T VCEG 7th Meeting,
March 2003, pp. Document JVT�G012r1.

[LPMS97] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, �MediaBench: A tool for evaluating and
synthesizing multimedia and communications systems�, in Proceedings of the 36th annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), December 1997, pp.
330�335.

[LSV06] R. Lysecky, G. Stitt, and F. Vahid, �Warp processors�, ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 11, no. 3, pp. 659�681, June 2006.

[LSW04] K.-P. Lim, G. Sullivan, and T. Wiegand, �Text description of joint model refer methods and
decoding concealment methods�, in Joint Video Team (JVT) of ISO/IECMPEG & ITU-T

VCEG Meeting, March 2004, pp. Document JVT�K049.

[LT07] A. Leontaris and A. M. Tourapis, �Rate control reorganization in the jm (joint model)
reference software�, in Joint Video Team (JVT) of ISO/IECMPEG & ITU-T VCEG 23rd

Meeting, April 2007, pp. Document JVT�W042.

[LT08] A. Leontaris and A. M. Tourapis, �Rate control for video coding with slice type
dependencies�, in Proceedings of the 2008 International Conference on Image Processing

(ICIP), October 2008, pp. 2792�2795.

Bibliography

- 169 -

[LWW+03] K. P. Lim, S. Wu, D. J. Wu, S. Rahardja, X. Lin, F. Pan, and Z. G. Li, �Fast inter mode
selection�, in Joint Video Team (JVT) of ISO/IECMPEG & ITU-T VCEG 9th Meeting,
2003, pp. Document JVT�I020.

[Lys07] R. Lysecky, �Low-power warp processors for power efficient high-performance embedded
systems�, in Proceedings of the 10th conference on Design, Automation and Test in Europe

(DATE), 2007, pp. 141�146.

[MAWL03] B. Meng, O. Au, C.-W. Wong, and H.-K. Lam, �Efficient intra-prediction mode selection
for 4x4 blocks in h.264�, in Proceedings of the 2003 International Conference on

Multimedia and Expo (ICME), July 2003, pp. III�521�III�524.

[May04] F. May, �Pact xpp virtual platform based on axys maxsim 5.0�, in PACT Corporation,
Revision 0.3 2004, pp. 12�12.

[MBNN10] J. Meehan, S. Busch, J. Noel, and F. Noraz, �Multimedia ip architecture trends in the
mobile multimedia consumer device�, Elsevier Signal Processing: Image Communication

(SPIC), vol. 25, no. 5, pp. 317�324, 2010.

[MC07] K.-Y. Min and J.-W. Chong, �A memory and performance optimized architecture of
deblocking filter in h.264/avc�, in International Conference on Multimedia and Ubiquitous

Engineering (MUE), 2007, pp. 220�225.

[Mic27] A. Michelson, Studies in Optics. Chicago, IL, USA: University of Chicago Press, 1927.

[Mic10a] Microsoft, �Audio video standard�, http://www.avs.org.cn/en/, 2010.

[Mic10b] Microsoft, �The vc1 video coding standard�, http://www.microsoft.com/windows/-
windowsmedia/howto/articles/vc1techoverview.aspx, 2010.

[MM05] S. Mondal and S. Memik, �Fine-grain leakage optimization in sram based fpgas�, in IEEE

Great Lakes Symposium on VLSI(GLSVLSI), 2005, pp. 238�243.

[MMFS06] M. Martina, G. Masera, L. Fanucci, and S. Saponara, �Hardware co-processors for real-time
and high-quality h.264/avc video coding�, in 14th European Signal Processing Conference

(EUSIPCO), 2006, pp. 200�204.

[MRS07] S. Momcilovic, N. Roma, and L. Sousa, �An asip approach for adaptive avc motion
estimation�, in Proceedings of the IEEE Conference on Ph.D. Research in Microelectronics

and Electronics (PRIME), July 2007, pp. 165�168.

[MSH+08] S. Mochizuki, T. Shibayama, M. Hase, F. Izuhara, K. Akie, M. Nobori, R. Imaoka,
H. Ueda, K. Ishikawa, and H. Watanabe, �A 64 mw high picture quality h.264/mpeg-4
video codec ip for hd mobile applications in 90 nm cmos�, IEEE Journal of Solid-State

Circuits (JSSC), vol. 43, no. 11, pp. 2354�2362, 2008.

[MSM+96] S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda, and J. Yamada, �A 1v multi-threshold
voltage cmos dsp with an efficient power management technique for mobile phone
application�, in 42nd IEEE International Solid-State Circuits Conference(ISSCC), 1996,
pp. 168�169.

[MVM05] B. Mei, F. J. Veredas, and B. Masschelein, �Mapping an h.264/avc decoder onto the adres
reconfigurable architecture�, in 15th International Conference on Field Programmable

Logic and Applications (FPL), 2005, pp. 622�625.

[MYN+06] A. Major, Y. Yi, I. Nousias, M. Milward, S. Khawam, and T. Arslan, �H.264 decoder
implementation on a dynamically reconfigurable instruction cell based architecture�, in
IEEE International SOC Conference, 2006, pp. 49�52.

0 Bibliography

- 170 -

[Ne08] T. Nishimura and etAl, �Power reduction techniques for dynamically reconfigurable
processor arrays�, in 18th International Conference on Field Programmable Logic and

Applications (FPL), 2008, pp. 305�310.

[Net04a] N. Nethercote, �Dynamic binary analysis and instrumentation�, in PhD Dissertation,

University of Cambridge, November 2004.

[Net04b] N. Nethercote, �Valgrind Tool Suite�, http://valgrind.org, 2004.

[Nok10] Nokia Research Center, �Mobile 3d video�, http://research.nokia.com/page/4988, 2010.

[NWKS09] M. Nadeem, S. Wong, G. Kuzmanov, and A. Shabbir, �A high-throughput, area-efficient
hardware accelerator for adaptive deblocking filter in h.264/avc�, in IEEE/ACM/IFIP 7th

Workshop on Embedded Systems for Real-Time Multimedia ESTIMedia, October 2009, pp.
18�27.

[OBL+04] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer,
and T. Wedi, �Video coding with H.264/AVC: Tools, performance, and complexity�, IEEE

Circuits and Systems Magazine, vol. 4, no. 1, pp. 7�28, 2004.

[PBV06] E. M. Panainte, K. Bertels, and S. Vassiliadis, �Compiler-driven FPGA-area allocation for
reconfigurable computing�, in Proceedings of the conference on Design, Automation and

Test in Europe (DATE), March 2006, pp. 369�374.

[PBV07] E. M. Panainte, K. Bertels, and S. Vassiliadis, �The Molen compiler for reconfigurable
processors�, ACM Transactions on Embedded Computing Systems (TECS), vol. 6, no. 1,
February 2007.

[PC08] I. Park and D. W. Capson, �Improved inter mode decision based on residue in h.264/avc�,
in Proceedings of the 2008 International Conference on Multimedia and Expo (ICME),
2008, pp. 709�712.

[PH06] M. Parlak and I. Hamzaoglu, �An efficient hardware architecture for h.264 adaptive
deblocking filter algorithm�, in First NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), 2006, pp. 381�385.

[Phi10] Philips Nexperia, Inc., �Nexperia documentation�, http://www.nxp.com, 2010.

[PLR+05] F. Pan, X. Lin, S. Rahardja, K. Lim, Z. Li, D. Wu, and S. Wu, �Fast mode decision
algorithm for intraprediction in h.264/avc video coding�, IEEE Transactions on Circuits

and Systems for Video Technology(TCSVT), vol. 15, no. 7, pp. 813�822, 2005.

[PP08] J. Peddersen and S. Parameswaren, �Energy driven application self-adaptations at run-
time�, Journal of Computers(JC), vol. 3, no. 3, pp. 14�24, 2008.

[Pra01] W. K. Pratt, Digital Image Processing. Los Altos, California, USA: John Willy & Sons
Inc., 2001.

[PSB05] R. Puri, L. Stok, and S. Bhattacharya, �Keeping hot chips cool�, in Proceedings of 42nd

ACM IEEE Design Automation Conference (DAC), 2005, pp. 285�288.

[PWY05] K. K. W. Poon, S. J. E. Wilton, and A. Yan, �A detailed power model for field-
programmable gate arrays�, ACM Transaction on Design Automation of Electronic

Systems(TODAES), vol. 10, no. 2, pp. 279�302, 2005.

[PYL06] F. Pan, H. Yu, and Z. Lin, �Scalable fast rate-distortion optimization for h.264-avc�,
EURASIP Journal on Applied Signal Processing (EURASIP), pp. 117�117, January 2006.

[Qe07] Y. Qu and etAl, �Using dynamic voltage scaling to reduce the configuration energy of run
time reconfigurable devices�, in Proceedings of the 10th conference on Design, Automation

and Test in Europe (DATE), 2007, pp. 1�6.

Bibliography

- 171 -

[RB05] C. A. Rahman and W. Badawy, �Umhexagons algorithm based motion estimation
architecture for h.264/avc�, in Proceedings of the 5th International Workshop on System-

on-Chip for Real-Time Applications, July 2005, pp. 207�210.

[Ric03] I. E. Richardson, H.264 and MPEG-4 Video Compression. John Wiley & Sons, 2003.

[Ric10] I. E. Richardson, The H.264 Advanced Video Compression Standard. John Wiley & Sons,
2010.

[RP04] A. Rahman and V. Polavarapuv, �Evaluation of low leakage design techniques for field
programmable gate arrays�, in ACM Internaltional Symposium on Field Programmable

Gate Arrays(FPGA), 2004, pp. 23�30.

[Sam05] Samsung Electronics Company, Ltd, �OneNAND specification�, http://-
origin2.samsung.com/global/system/business/semiconductor/product/2007/6/11/-
OneNAND/256Mbit/KFG5616Q1A/ds_kfg5616x1a_66mhz_rev12.pdf, 2005.

[SCL06] S. Y. Shih, C. R. Chang, and Y. L. Lin, �A near optimal deblocking filter for h.264
advanced video coding�, in Asia and South Pacific Conference on Design Automation

(ASP-DAC), 2006, pp. 170�175.

[SF04] S. Saponara and L. Fanucci, �Data-adaptive motion estimation algorithm and vlsi
architecture design for low-power video systems�, IEE Computers and Digital Techniques,
vol. 151, no. 1, pp. 51�59, January 2004.

[SGS98] S. Sawitzki, A. Gratz, and R. G. Spallek, �CoMPARE: A simple reconfigurable processor
architecture exploiting instruction level parallelism�, in 5th Australasian Conference on

Parallel and Real-Time Systems (PART), September 1998, pp. 213�224.

[SHS08] M. Z. S. Hu, Z. Zhang and T. Sheng, �Optimization of memory allocation for h.264 video
decoder on digital signal processors�, Congress on Image and Signal Processing (CISP),
vol. 2, pp. 71�75, 2008.

[SJ04] J. W. Suh and J. Jeong, �Fast sub-pixel motion estimation techniques having lower
computational complexity�, IEEE Transactions on Consumer Electronics(TCE), vol. 50,
no. 3, pp. 968�973, 2004.

[SJJL09] D. Schneider, M. Jeub, Z. Jun, and S. Li, �Advanced h.264/avc encoder optimizations on a
tms320dm642 digital signal processor�, in DSP�09: Proceedings of the 16th international

conference on Digital Signal Processing, 2009, pp. 1187�1190.

[SKB02] L. Shang, A. S. Kaviani, and K. Bathala, �Dynamic power consumption in virtex[tm]-ii
fpga family�, in ACM Internaltional Symposium on Field Programmable Gate

Arrays(FPGA), 2002, pp. 157�164.

[SLIS07] Y. Song, Z. Liu, T. Ikenaga, and S.Goto, �Low-power partial distortion sorting fast motion
estimation algorithms and vlsi implementations�, IEIEC Transactions on Information and

Systems (IETISY), vol. E90-D, no. 1, pp. 108�117, January 2007.

[SN06] L. Salgado and M. Nieto, �Sequence independent very fast mode decision algorithm on
h.264/avc baseline profile�, in Proceedings of the 2006 International Conference on Image

Processing (ICIP), October 2006, pp. 41�44.

[Ste09] G. R. Stewart, �Implementing video compression algorithms on reconfigurable devices�, in
PhD Dissertation, University of Glasgow, United Kingdom, June 2009.

[STM06] STMicroelectronics, Inc., �Stmicroelectronics: Nomadik mobile multimedia application
processor�, http://www.alldatasheet.com/datasheet-pdf/pdf/134714/-
STMICROELECTRONICS/STN8815.html, 2006.

0 Bibliography

- 172 -

[Str] Stretch Inc., �S6000 family software configurable processors�, http://www.stretchinc.com/-
products/s6000.php.

[SZFH08] Y. Sun, Y. Zhou, Z. Feng, and Z. He, �A novel incremental scheme for h.264 video
coding�, in Proceedings of the 2008 International Conference on Image Processing (ICIP),
October 2008, pp. 1612�1615.

[TCW+05] T. Todman, G. Constantinides, S. Wilton, O. Mencer, W. Luk, and P. Cheung,
�Reconfigurable computing: architectures and design methods�, IEE Proceedings

Computers & Digital Techniques, vol. 152, no. 2, pp. 193�207, March 2005.

[Te06] T. Tuan and et, �A 90nm low-power fpga for battery-powered applications�, in ACM

Internaltional Symposium on Field Programmable Gate Arrays(FPGA), 2006, pp. 3�11.

[Ten] Tensilica Inc., �Tensilica: Customizable processor cores for the dataplane�, http://-
www.tensilica.com/.

[Tex10a] Texas Instruments, Inc., �Omap_tm technology�, http://focus.ti.com/general/docs/-
gencontent.tsp?contentId=46946&DCMP=WTBU&HQS=Other+OT+omap, 2010.

[Tex10b] Texas Instruments, Inc., �Ti documentation�, http://www.ti.com/, 2010.

[THLW03] P.-L. Tai, S.-Y. Huang, C.-T. Liu, and J.-S. Wang, �Computation-aware scheme for
software-based block motion estimation�, IEEE Transactions on Circuits and Systems for

Video Technology(TCSVT), vol. 13, no. 9, pp. 901�913, September 2003.

[TL03] T. Tuan and B. Lai, �Leakage power analysis of a 90nm fpga�, in IEEE Custom Integrated

Circuits Conference, 2003, pp. 57�60.

[Tou02] A. M. Tourapis, �Enhanced predictive zonal search for single and multiple frame motion
estimation�, in Proceedings of the 2002 SPIE Visual Communications and Image

Processing (VCIP), January 2002, pp. 1069�1079.

[VS07] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Reconfigurable Computing.
Springer Publishing Company, Incorporated, 2007.

[VSWM05] F. J. Veredas, M. Scheppler, and B. M. W. Moffat, �Custom implementation of the coarse-
grained reconfigurable adres architecture for multimedia purposes�, in 15th International

Conference on Field Programmable Logic and Applications (FPL), 2005, pp. 106�11.

[VWG+04] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. Panainte, �The
MOLEN polymorphic processor�, IEEE Transactions on Computers (TC), vol. 53, no. 11,
pp. 1363�1375, November 2004.

[WAW07] C.-W. Wong, O. C. Au, and R. C.-W. Wong, �Advanced real-time rate control in h.264�, in
Proceedings of the 2007 International Conference on Image Processing (ICIP), October
2007, pp. I�69�I�72.

[WC96] R. Wittig and P. Chow, �OneChip: an FPGA processor with reconfigurable logic�, in IEEE

Symposium on FPGAs for Custom Computing Machines, April 1996, pp. 126�135.

[WOZ02] Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing And Communications. Upper
Saddle River, New Jersey, USA: Prentice-Hall Inc., 2002.

[WSBL03] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra, �Overview of the h.264/avc
video coding standard�, IEEE Transactions on Circuits and Systems for Video

Technology(TCSVT), vol. 13, no. 7, pp. 560�576, 2003.

Bibliography

- 173 -

[WSK+07] J.-H. Woo, J.-H. Sohn, H. Kim, J. Jeong, E. Jeong, S. J. Lee, and H.-J. Yoo, �A low power
multimedia soc with fully programmable 3d graphics and mpeg4/h.264/jpeg for mobile
devices�, in Proceedings of the 2006 ACM/IEEE International Symposium on Low Power

Electronics and Design (ISLPED), 2007, pp. 238�243.

[WSLL07] X. Wang, J. Sun, Y. Liu, and R. Li, �Fast mode decision for h.264 video encoder based on
mb motion characteristic�, in Proceedings of the 2007 International Conference on

Multimedia and Expo (ICME), July 2007, pp. 372�375.

[WUS+08] K. Willner, K. Ugur, M. Salmimaa, A. Hallapuro, and J. Lainema, �Mobile 3d video using
mvc and n800 internet tablet�, in 3DTV Conference: The True Vision - Capture,

Transmission and Display of 3D Video, May 2008, pp. 69 �72.

[Xil05] Xilinx, Inc., �Xilinx development system: Partial reconfiguration�, http://-
toolbox.xilinx.com/docsan/xilinx8/de/dev/partial.pdf, April 2005.

[Xil07] Xilinx, Inc., �Virtex-II platform FPGA user guide, v2.2�, http://www.xilinx.com/support/-
documentation/user_guides/ug002.pdf, November 2007.

[Xil08a] Xilinx, Inc., �Spartan and Spartan-XL FPGA families data sheet, v1.8�, http://-
www.xilinx.com/support/documentation/data_sheets/ds060.pdf, June 2008.

[Xil08b] Xilinx Inc., �Virtex-4 FPGA user guide, v2.6�, http://www.xilinx.com/support/-
documentation/user_guides/ug070.pdf, December 2008.

[Xil09] Xilinx, Inc., �Virtex-4 FPGA configuration user guide, v1.11�, http://www.xilinx.com/-
support/documentation/user_guides/ug071.pdf, June 2009.

[Xil10a] Xilinx, Inc., �Xilinx documentation�, http://www.xilinx.com/support/documentation, 2010.

[Xil10b] Xilinx, Inc., �Xilinxpowersolutions�, http://www.xilinx.com/products/design_resources/-
power_central, 2010.

[Xip10] Xiph.org, �Test Media, Video Sequences�, http://media.xiph.org/video/derf, 2010.

[XPP02] XPP_Team, �The xpp white paper�, in PACT Corporation, Release 2.1 2002, pp. 1�4.

[YCL05] Z. Yang, H. Cai, and J. Li, �A framework for fine-granular computational-complexity
scalable motion estimation�, in Proceedings of the 2005 IEEE International Symposium on

Circuits and Systems (ISCAS), May 2005, pp. 5473�5476.

[YCW09] L. Yu, S. Chen, and J. Wang, �Overview of avs-video coding standards�, Signal

Processing: Image Communication, Special Issue on AVS and its Application, vol. 24,
no. 4, pp. 247�262, April 2009.

[Yu04] A. C. Yu, �Efficient block-size selection algorithm for inter-frame coding in h.264/mpeg-4
avc�, in Proceedings of the 2004 International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), May 2004, pp. III169�III172.

[YWV05] S. Yang, W. Wolf, and N. Vijaykrishnan, �Power and performance analysis of motion
estimation based on hardware and software realizations�, IEEE Transactions on

Computers(TC), vol. 54, no. 6, pp. 714�726, June 2005.

[YZLS05] X. Yi, J. Zhang, N. Ling, and W. Shang, �Improved and simplified motion estimation for
jm�, in Joint Video Team (JVT) of ISO/IECMPEG & ITU-T VCEG 16th Meeting, July
2005, pp. Document JVT�P021.

[Ze07] P. Zipf and etAl, �A power estimation model for an fpga-based softcore processor�, in 17th

International Conference on Field Programmable Logic and Applications (FPL), 2007, pp.
171�176.

0 Bibliography

- 174 -

[ZuHNS07] S. M. Ziauddin, I. ul Haq, M. Nadeem, and M. Shafique, �Method for providing low cost
robust operational control for video encoders (US Patent))�, Patent Pub. No. US-2007-
0206674-A1, Class: 375240050 (USPTO), 2007.

[ZWFS07] L. Zhuo, Q. Wang, D. D. Feng, and L. Shen, �Optimization and implementation of h.264
encoder on dsp platform�, in IEEE International Conference on Multimedia and Expo

(ICME), July 2007, pp. 232�235.

