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Abstract

Time series analysis is still a very wide field of research from both a theoretical point of

view as well as amongst practitioners. Among the very first tasks in the analysis proce-

dure is the estimation of long-term trends, that is, the separation of this generally slowly

evolving component from any short-term fluctuations. Usually, the trend curve, which in

most cases is expected to be smooth, can be extracted by a variety of different methods.

However, in many application scenarios the trend must also account for sudden changes.

These sudden changes comprise of not only jumps, but also other phenomena like steep

slopes and valleys. This challenge constitutes an on-going problem for traditional trend

estimation methods. While established filtering techniques either fail to capture these

sudden changes accurately or are sensitive to high-amplitude fluctuations, the applica-

tion of parametric methods is challenging due to the generally unknown trend and the

innumerable shapes that these sudden changes can assume.

This thesis proposes a trend extraction approach based on wavelet methods. The new

algorithm, named local linear scaling approximation (LLSA), is developed by analyzing

specific wavelet coefficient step response structures and by transferring these structures

onto real signals. This procedure enables the analyst to extract a trend whose smooth-

ness is comparable to the output of linear filtering techniques, while at the same time

capturing the details of sudden changes with arbitrary shapes, an area in which usu-

ally most nonlinear filters excel. Therefore, LLSA can be seen as a novel approach to

bridge the gap between linear and nonlinear filters. The algorithm was developed to be

applicable on homogeneous time series without any further requirements on these, and

to work with only two additional input parameters, which can also be set in a heuristic

manner, yielding a directly implementable and usable method.
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Moreover, the algorithm’s properties are shown, namely its computational complexity,

its local linearity, and its impulse and step response. The robustness of LLSA is first

shown analytically, and then substantiated by several analyses performed on simulated

signals as well as on empirical data. LLSA’s performance is further evaluated in two

separate application scenarios, that are, price volatility estimation and value at risk.

The algorithm’s superior performance in relation to two benchmark filtering techniques

is shown for a considerable number of cases, and several aspects (i. e., possibilities and

limitations) of LLSA’s general application are discussed.
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Chapter 1.

Introduction

Time series analysis is still a very wide field of research from both a theoretical point of

view as well as amongst practitioners. Time series often do not contain one driving force

only but consist of several components that furthermore superimpose each other. These

components are in the majority of cases categorized into trends, seasonalities, and noise,

which are additionally related to long-, medium- and short-term time periods. Trends are

usually linked to long-term periods, seasonalities can be either long-, medium-, or short-

term, and noise is often thought of as short-term varying fluctuations. However, other

associations are also possible, depending on the respective time series. Note that though

this thesis refers mostly to time series, nearly all arguments can be carried over directly

to any one-dimensional discrete signal. Therefore, both terms are used analogously.

For many analytical purposes and models it is more convenient or even mandatory

to examine the above mentioned components separately. However, as there is only one

control variable (i. e., time) and the components are (additively) superimposed, this

information is not readily available. It is therefore necessary to divide the time series

into its several components, that is, to extract the trend and estimate the seasonalities

and short-term variations. In this thesis the focus lies on the trend extraction, which is

usually the first step undertaken.

The goal of trend extraction (also: trend estimation) is to determine a smooth trend

that depicts the long-term evolution of the time series or its respective underlying system,

1



Chapter 1. Introduction

where smooth must be seen in relation to the whole time series and its interfering noise.

However, it is commonly recognized that this notion of smooth trends is only sufficient

for certain time series, and that in many practical applications trends must also account

for sudden changes like jumps. These are usually caused by singular events like the

financial crisis that started in 2007, and exhibit significantly larger amplitudes than the

regular surrounding noise than they could otherwise be attributed to. Therefore, these

rarely occurring sudden changes form an integral part of the otherwise slowly evolving

trend. The key challenge is to derive a trend that on the one hand captures these sudden

changes with a high resolution, but is relatively smooth otherwise. This is made even

more challenging when the trend exhibits not only pure jumps but also steep slopes and

valleys, which unlike jumps have no predetermined structure. As will be outlined, the

problem lies in the fact that the methods that do provide a sufficiently smooth trend tend

to blur out the details of sudden changes, and that methods that capture these changes

well are relatively sensitive to high levels of noise. Therefore, this thesis is oriented to

bridge this gap.

The above descriptions consider time series in their usual domain, that is, time. An-

other very useful point of view is to look at time series from the frequency domain.

As a time series can be divided into long-, medium-, and short-term components, this

division is made even more clear in terms of frequency ranges, that is, the components

are categorized into low and high frequencies. For example, the trend falls into the for-

mer category, while the noise usually belongs to the latter. However, sudden changes in

the trend again complicate a well-defined division. Jumps, for example, differ from the

ordinary short-term fluctuations only in the height of their amplitudes while being lo-

cated in the same high frequency ranges. Therefore, given the presence of sudden change

phenomena, trend extraction methods that rely on the separation of a given signal into

components located in different frequency ranges will also not perform well. They are

only able to provide either a smooth trend, or capture the details of sudden changes,

but not both at the same time. Hence, today’s most established methods often rely on

parametric approaches, and thus, make additional assumptions and/or explicitly require

information about the trend or the noise structure, or are essentially a tradeoff between

trend smoothness and the accurate display of sudden changes.

2



1.1. Requirements and Research Questions

In this thesis the focus lies on economic and financial time series, specifically high-

frequency stock price data, particularly as this kind of data is known to exhibit the

kind of trends discussed above. Due to the advances in information technology, today

these time series are measured in higher frequencies, that are, in hourly and minutely

intervals. This new availability of huge amounts of frequently generated, measured and

stored data brings up new challenges to their processing techniques. Ordinary approaches

that model such time series on a daily basis need to be revised, structures of the noise

distributions must be investigated again. Therefore, not many assumptions about these

high-frequency time series are generally available, nor do all traditional requirements

hold. Furthermore, the rapid increase in the sheer amount of data to be processed,

and the potential involvement of time-critical applications require that the effort to

extract the trend cannot be disproportionately high, that is, the method used must be

computationally tractable. In addition to this, as often high (monetary) values may be

at stake, it must be ensured that the trend estimation error is bounded, that is, the

results provided by the method must be reliable up to a certain degree without any

further explicit verification.

1.1. Requirements and Research Questions

Based upon the above discussion, new approaches are needed that account for these

challenges. Therefore, in this thesis a algorithm shall be developed that suffices all

aspects mentioned above. The first and at the same time key aspect is that the algorithm

should be capable of providing a smooth trend estimation and a good resolution of details

in the areas of sudden changes. Furthermore, in this thesis, no additional assumptions

about the time series and/or its noise are made, that is, the new approach should be

applicable on all kinds of discrete signals without requiring any further input parameters

based on the signal’s structure.

Specifically when working with financial high-frequency data, the aspect of different

frequency levels becomes more important, that is, there may be information about the

different frequencies contained in the data. Therefore, the algorithm should provide a

functionality to use this information, that is, which frequency ranges should be blocked or

3



Chapter 1. Introduction

be contained in the output, though this is not regarded as a mandatory input parameter.

In order to ensure the algorithm’s applicability in real scenarios, its computing time

should be comparable to established methods, while, as mentioned above, it is essential

to have upper bounds on the estimation errors. Thus, the following requirements that

have to be met by the algorithm that is to be developed in this thesis, can be stated

directly and explicitly as follows.

R1) Deliver a smooth trend (i. e., if possible without any ripples) that at the same

time preserves the details of jumps, slopes, and so on.

R2) The output should be manageable a priori in terms of frequencies.

R3) The algorithm should be applicable to a wide range of time series, without any

specific requirements about their noise or other components.

R4) The algorithm should be computationally tractable, that is, its computing time

should be in the same complexity class as comparable filters.

R5) The algorithm should be robust in the sense that it delivers deterministic, reliable

results, independent of the time series at hand or specific parameter sets.

The development of an algorithm that conjointly fulfills the above stated require-

ments is the challenging task of this thesis. The research questions that are of relevance

regarding this development are as follows.

RQ 1) How can a trend estimation algorithm be designed that fulfills Requirements

R1 to R5? Is it possible to fulfill all requirements at the same time or only

partially to a certain degree? Specifically, how can the seemingly conflicting

Requirements R1 and R2 be brought in line?

RQ 2) What are the characteristics of such an algorithm, that is, concerning Require-

ments R3 to R5, what are its application requirements and its properties that

can be stated explicitly?

RQ 3) How does the new algorithm presented in this thesis perform with respect to

4



1.2. Contributions of this Thesis

alternative benchmarks, also taking RQ 2 into account? What benefits in time

series analysis can be expected in what kind of applications, and what are the

limitations?

1.2. Contributions of this Thesis

In this thesis a new algorithm for the trend estimation of one-dimensional discrete sig-

nals will be developed. Given specific requirements on the algorithm and the trend that

is to be extracted, today’s available methods will be analyzed regarding their suitability

and the need for a new approach will be shown. It will also be reasoned why wavelet

methods are a promising starting point for the development of this new approach.

The developed algorithm will be analyzed regarding its fulfillment of the above named

requirements. Furthermore, its unique properties that in conjunction differentiate it

from alternative methods will be shown. By answering the above research questions the

overall benefit of the algorithm’s application will be demonstrated and the contribution

to today’s state-of-the-art trend estimation methods highlighted. In detail, these are:

• The development of a new trend estimation algorithm that fulfills (almost) all

requirements R1 to R5 at the same time.

• An analytical proof of the algorithm’s properties, namely its computational com-

plexity, local linear filtering property, and its nonlinear impulse and step response.

• A threefold evaluation of the algorithm’s behavior, that is, two of another indepen-

dent robustness studies (one via simulations and the other using empirical data)

as well as an analysis of the algorithm’s applicability and benefits with respect to

practical questions. Additionally, concrete advantages (i. e., more accurate results)

of the algorithm’s application in the areas of volatility estimation and value at risk

are pointed out and discussed.

5



Chapter 1. Introduction

1.3. Structure

The structure of this thesis is as follows: In Chapter 2 an overview over today’s

most common methods and algorithms for trend extraction in time series is given. The

methods being close to the algorithm (with respect to their requirements as well as their

functionality) will be outlined in detail and thus can serve as potential benchmarks.

Significant advantages and disadvantages that led to the idea of the algorithm proposed

in this thesis are discussed. Chapter 3 introduces wavelet methods and points out their

favorable properties that are important for the novel approach presented in this thesis.

Chapter 4 is concerned with the algorithm itself. First, the methodology is presented

that leads to the algorithm’s mathematical formulation. Then, several properties are

proven. In Chapter 5 the algorithm’s robustness is analyzed in different settings, that

is, via simulations as well as using empirical data. Furthermore, concrete benefits of its

application are shown. The contribution of this work is summed up in Chapter 6, where

additionally the most interesting directions for future research are outlined.

6



1.3. Structure

Figure 1.1.: Structure
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Chapter 2.

Methods of Trend Extraction

This chapter outlines the classic and today’s established methods for trend extraction

in time series analysis. Section 2.1 first gives a short overview over the most important

works in the area of time series analysis itself and highlights the crucial significance of an

accurate trend estimation. It also sketches the different approaches and a respective clas-

sification of these. Based on this classification the focus of this work on nonparametric

methods (i. e., linear and nonlinear filters) is justified, and their potential and limits are

examined in Sections 2.2 and 2.3, respectively. In Section 2.4 a review over the literature

of research that has been done particularly in the area of jump detection and modeling

is given. Moreover, for the sake of completeness, today’s used most established methods

in practice are depicted, with their preferential domains and limits of application.

2.1. Time Series Analysis and Trend Extraction

As time series analysis has become a very wide field of research, there are already many

textbooks available that can be considered standard references in this area. Among

them, providing a thorough introduction on the general topic of time series analysis

are [18,20–23,28,43,50]. The content of these books covers all basic aspects and advanced

concepts from time series. Where not indicated otherwise, all the following topics in this

section can be found in the references cited above.

9



Chapter 2. Methods of Trend Extraction

Motivation and practical problems

The motivation for time series analysis is mostly the same among all authors, that is

the understanding of the underlying system, past events and probably the prediction of

future development. However, depending on the particular time series at hand different

problems and challenges arise. For example, while for certain systems the inherent

noise structure is a priori known, for other time series it is a challenging task just to

make the time series stationary, due to the quantity of additional layers (e. g., seasonal

deterministic together with long- and short-term stochastic fluctuations in economic time

series). The exact nature of these challenges derived from practical applications usually

determines the focus of the authors’ research contribution.

Univariate and multivariate time series and their characteristics

As multivariate time series are a generalization of univariate time series, the methods

applied there usually carry over to the unidimensional case. However, as the latter at

the same time imposes more restrictive assumptions, it also leads to stronger results, for

example, more efficient (specifically tailored) algorithms or theorems. In this work the

focus lies on time series with not more than one control variable (i. e., time). Although

there exist multivariate versions or extensions of the basic models, in many cases the

transfer of univariate methods to the multidimensional case is not straightforward. As

mentioned in the introduction, there is no reason to exclude other univariate signals

whose control variable does not necessarily denote time, as technically time series are

only a specific instance of these. Yet, considering the above cited literature, the majority

of unidimensional signals is measured over time.

Fundamentals and general concepts

The fundamentals discussed in the above cited literature and of most relevance to this

thesis are the following.

Stochastic processes and probability distributions. Stochastic processes are often derived

from a measured time series and used to model these or outline explanatory factors.

Stochastic processes themselves comprise deterministic as well as purely stochastic com-

ponents. Estimating and verifying these is part of the model derivation. Whether a time
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series is described by either a stochastic processes or simply probability distributions de-

pends also on the analysis’ goal. For example, for derivative price calculation stochastic

processes are preferred (see [14]), while other applications, like value at risk (VaR), just

prefer the notion of probability distributions (see [38]).

Time and frequency domains. Sometimes it becomes advantageous to consider time

series not only in their time domain, but rather in their frequency domain. Today’s

most common tool for this task is certainly the Fourier analysis and transformation (see

Section 2.2.2), which represents the respective frequency components contained in the

signal. However, as these components are analyzed over the whole signal at once, any

time-related information is thus lost. In case this aspect is mandatory, wavelet methods

(see Chapter 3) have become the first choice, as they were specifically developed for

time-frequency analysis (i. e., they regard both aspects at the same time) of a signal

that is decomposed on different scales.

Spectral and correlation analyses. Closely related to the two above concepts are spectral

density estimation and correlation analysis. While the former estimates not only the

signal’s inherent probability distributions but also their evolution over time, correlation

determines the interrelationship and dependencies either between different time series

or the time series to itself (i. e., autocorrelation). If, for example, a time series exhibits

significant long lags in its autocorrelation structure, the time series is said to have a

long-term memory effect. This is particularly the case in many financial time series, see,

for example, [71].

Time series transformation

This area is mostly concerned with extracting the relevant features of a time series

and make them presentable for human comprehension. Among these methods are:

Aggregation and decomposition. Aggregation of the information contained in time series

can take several forms. For example, it can either denote the process of aggregating

raw data to make a time series homogenous (see below and Section 5.1.3 for further

details), or extract the relevant information by discarding the irrelevant data points

and thus, achieve fewer aggregated information points for further processing. A related
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complementary task is to decompose the time series into its several components, that

is, its long-term trend, seasonalities, and other stochastic processes. Considering each

of these components separately enables an easier interpretation of the time series, as its

behavior is fully described by these elements.

Filtration and approximation. Filtration connotes the removal of undesired elements

from the time series. While linear filters can be associated either with time or frequency

domains, this does not generally hold for other filters, particularly nonlinear filters,

which have no frequency representation. Approximation, on the other hand, denotes

the attempt to best represent a certain component of the time series by neglecting

the other contained elements. Though sometimes both methods reach the same ends,

they always have different points of view: While with traditional filtration generally

no explicit underlying structure is assumed, approximation often tends to capture the

desired output by representing it via a specific structure (e. g., trigonometric or spline

functions).

Smoothing and denoising. Both terms are closely related to the above terms of filtration

and approximation and are even used by some authors synonymously. Smoothing denotes

the removal of jagged details (e. g., sharks’ fins) and thus yields a ”smooth” version

of the original time series. This can be achieved, for example, either by filtration or

approximation. Denoising, however, specifically targets the removal of noise (e. g., short-

term variations with relatively low amplitudes or energy) from the time series, which

does not necessarily lead to a smooth signal, as the output may still contain, for example,

short-term seasonalities (see also Section 3.3).

General time series models and methods

There are different views on time series models and their related methods. The ones

relevant for the understanding of this thesis are as follows.

Stationary and nonstationary. It is important to distinguish between stationary and

nonstationary time series (models). For the former it holds that its statistical properties,

like the mean and variance, do not change over time, that is they are independent of the

only control variable t and, thus, remain constant. Many analytical tools and methods
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require a stationary time series. Although lately there has been extensive research in the

set up of nonstationary time series models (like the ARIMA model or the Kalman filter),

today’s most common approaches still model stationary time series only. Therefore, the

process of making a time series stationary (i. e., transform it into one) is among the

first and most important tasks in time series analysis. This usually includes the removal

of seasonalities as well as the extraction of any long-term trends, that is, to separate

and discard the information belonging to different frequency ranges. This denotes the

primary task considered in this thesis.

Linear and nonlinear. Since the outstanding work of [18], linear time series models

became very famous and were successfully employed by many practitioners. The most

prominent approaches are autoregressive (AR), moving average (MA), and the combined

ARMA and ARIMA models, where (only) the latter can be applied directly on nonsta-

tionary time series. However, in many applications these approaches have proven not

to be flexible enough to fully capture the time series characteristics, and initiated the

development of nonlinear models. The most notable ones are the autoregressive condi-

tional heteroscedastic (ARCH) model (introduced by [39]) and its generalized GARCH

version (see [17, 112]). The notion of linear and nonlinear also holds for other aspects,

like filtration and approximation methods. For example, if the long-term trend of a time

series is assumed to be linear, it can be approximated (and is reasonable to do so) with a

linear function as well. However, these kind of assumptions hold only for very few time

series in practice. Other nonlinear approximation approaches, like splines (see [40,114]),

have proven to provide better results than too simplistic models. Linear and nonlinear

filters are discussed in detail in Sections 2.2 and 2.3.

Parametric and nonparametric. When modeling a time series or a particular part

of it (i. e., trends, seasonalities, or other components like jumps), one usually has to

choose between a parametric and a nonparametric approach. One can state, that while

nonparametric models are much more general (applicable) than their parametric coun-

terparts, they usually do not achieve the same overall quality (i. e., accuracy) if the part

to be modeled fits the parametric assumptions. On the other hand, this means that

if the parametric model is chosen badly, it can lead to a poor estimation of the model

13



Chapter 2. Methods of Trend Extraction

parameters and, subsequently, the model itself. In extreme cases this may even yield

highly misleading results. Nonparametric models usually do not expose themselves to

this risk as they omit any such particular assumptions, though of course these mod-

els have defining parameters, but do not determine themselves on a particular model

structure. For further details about this topic, please refer to [43] and the references

therein.

Model derivation

Model derivation in time series analysis can generally be subdivided into the following

three steps.

Identification and selection. The first step usually is to set up an appropriate model

that best represents the time series and its properties. This choice mainly depends on

what is already known from the measured sample about the time series and its underlying

system, and is to a good part based on reason. For example, seasonal models are assumed

if it can be observed that the time series is (directly) correlated with human work or

recreation cycles (see, for example, [62, 121]), or there exist electricity usage cycles in

summer and winter seasons (see, for example, [72,104]). Similarly, some methods like the

Kalman filter (see Section 2.4.2 below) require explicit knowledge of the interrelations

from one state of the system to another (i. e., the state transfer functions must be

known). This can yield very efficient and accurate state space models, which, on the

other hand, may be sensitive to precise estimates or measures of the initial conditions.

Other approaches, like regression methods, may even in the ideal case not deliver such

accurate results, but are in most cases more robust considering other input factors and

control variables. Therefore, model selection itself (taking also into consideration above

specifications) can easily be identified as to be one of the most crucial steps.

Fitting (i. e., parameter estimation). Independently of the particular time series model

used, the parameters that determine the model need to be estimated. Common proce-

dures in the literature are maximum likelihood estimation, least-squares approximation,

and Bayesian methods.

Verification and validation. After having estimated the parameters of the selected
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model, it is mandatory to verify whether the now completely derived model in fact

represents the empirical time series. This can be done, for example, by considering

several measures, like goodness-of-fit tests, or by analyzing the deviations of the values

predicted by the model to empirical (historical) samples, i. e., backtesting.

Forecasting and prediction

The analysis of signals or time series is usually not done as an end in itself but yields

a deeper understanding of the underlying drivers of the system the time series is derived

from, which in turn is used to predict or forecast future events. Note that in this

thesis the terms forecast and prediction are used synonymously. As these methods are

usually at the end of the chain of time series analysis methods (unless they are based on

recursive procedures used for further a posteriori calibration), their accuracy depend on

the accuracy of all prior undertaken steps.

Steps in Time Series Analysis

Above depicted framework permits the statement that time series analysis is indeed

a very wide field and raises challenges to researches as well as practitioners from the

most distinct fields. As already remarked, in this work focus lies on the very particular

aspect of trend extraction that is integrated in the steps taken in each complete time

series analysis. These are usually as follows:

1. Time Series Measurement

The very first task is to collect and store the data itself in an appropriate format.

While data collection and measurement depend on the system that the time series

is derived from, the choice of where and how to store the raw data should be made

dependent on the goal of the analysis itself, the tools involved, and which of the

next steps must be undertaken.

2. Raw Data Preprocessing

In this step the raw data is cleansed from obvious outliers (which might be due

to measurement errors) and adequately prepared for being able to undertake the
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next steps. This includes, for example, making the data homogenous if the raw

data is irregularly spaced or if data points are missing, or transform the time series

to be handled into the desired domain. This might cover aspects such as looking

at return series instead of price data, or log transforms to stabilize the time series’

variance (see, for example, [31] or [73] for a specific treatment of this topic in

high-frequency finance).

3. Transform to Stationary Time Series

For many analyses this is the most important step, as otherwise many succeeding

results would be falsified. Making a time series stationary means to extract all

(deterministic) features such that its statistical properties (like mean and variance

as well as correlations) become independent over time, that is, they are constant.

This includes the following two sub-steps (which sometimes may also be done

simultaneously, see, for example, 2.4.2):

a) Trend Extraction (Detrending)

This step is concerned with removing the non-periodic trend(s) from the time

series. Being the basic topic of this thesis and the main motivation for devel-

oping the algorithm, this will discussed in detail below.

b) Seasonality Extraction

In this step all deterministic periodic functions are extracted from the series.

This may include cycles of different period lengths. For example, in economic

and financial time series one can expect seasonalities with periods of one

year (or longer), as well as monthly, weekly and daily cycles, depending on

the time series itself, its underlying system, and the measurement frequency.

This notion also includes seasonal effects, for example, passenger counts in

the airline industry, which vary deterministically according to each season.

4. Final Analysis

The final analysis is carried out according to the goals of the whole time series
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analysis itself. This might be, for example, an analysis of variance (ANOVA),

analyses of special or irregular patterns, the estimation, calibration and application

of time series models and stochastic processes, as well as the succeeding forecasting.

Note that for some of these procedures not necessarily all previous steps must be

undertaken and can sometimes be omitted.

The Notion of Trends with Sudden Changes

In this work the focus lies on sub-step 3a, that is, the extraction of trends of already

preprocessed time series data. While there is no universal definition of trend which ap-

plies to all fields of application, it is generally accepted that a trend is a slowly evolving

component that is the main driving force for long-term development beneath the sys-

tem. [90] characterizes trend as being limited to certain low frequencies. This notion

excludes any noisy influences and fluctuations from higher frequency levels. However,

this notion of trends is not satisfactory for many time series encountered in practice.

Though theoretical models (like the Black-Scholes model developed by [16], or the Black

76 model in [15]) do not incorporate aspects like seasonalities or even jumps, they are

still widely used today in practice, assuming perfect division between the trend and

stochastic fluctuations. Yet, this is insufficient for many time series measured today:

Especially when considering trends over longer periods (i. e., years or decades for eco-

nomic and financial data), there appear significant jumps or steep slopes which cannot

be be attributed to be a part of the persistent stochastic noise, but are caused by ex-

ternal factors like the financial crisis, which began in the year 2007. Another example

comes from electricity markets, where it has been found that jumps occur on such a

regular basis that it became reasonable to model these by specific stochastic processes,

see [104]. Although these patterns contradict the slow evolving characteristic and the

low frequency notion generally associated with trends, nevertheless nowadays they are

considered to be an inherent part of these.

A basic time series model (amongst others proposed by [43]) is stated as follows. Given

a time series Xt, t ≥ 0, this series can be decomposed into

Xt = ϑt + st + Yt, (2.1)
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where ϑt represents a slowly varying function known as the trend component, st a single

of combination of periodic functions (i. e., seasonal components) and Yt the stochastic

component, assumed to be stationary.

For the empirical parts of this work the main focus is on high-frequency financial time

series data, where jumps occurring in these have the following perception. As pointed out

by, for example, [113], jumps in financial time series, and particularly in high-frequency

data, are attributed to external events, like the increase or drop in interest rates by

some governmental financial institution. These events can be considered to happen only

occasionally, and are very sparse in relation to the frequency the data is measured,

that is, for the majority of the measured data there do not occur any jumps or similar

patterns at all. In the field of high-frequency financial data analysis, jumps are thus

assumed to be extreme events that happen with low probability, but form nevertheless

part of the stochastic distribution and must be considered to be modeled there. Thus,

Y will be modeled either by stochastic processes including jump components (see, for

example, [104]) or by a distribution itself, depending on the model. Such a distribution

for high-frequency financial data has then found to be heavy-tailed, that is, jumps happen

with enough regularity that they cannot simply be discarded as non-recurring events,

see, for example, [94]. However, as these extreme events can have an enormous impact

on the stochastic variance analysis and its succeeding usage, and furthermore could

lead to misleading results in the regions of the signal without any jumps, for certain

analysis purposes it may be preferred to rather include such sudden changes into the

trend component ϑ than to attribute them to the stochastic component Y .

In, for example, [115], a definition of an α-cusp in a continuous function f at x0 is

given, that is, if there exists an ǫ > 0 so that

|f(x0 + h)− f(x0)| ≥ C|h|α

holds for all h ∈ [x0 − ǫ, x0 + ǫ] and some constant C. For α = 0, f is said to have a

jump at x0. Though to the author’s best knowledge there exists no precise definition for

the discrete case, it is commonly agreed that the jump should significantly differ from

the other fluctuations (i. e., the noise) in the signal. As said above, jumps are just one
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particular pattern of extreme events one usually is interested in. Others are steep slopes,

roofs and valleys, which in [64] are defined by having a jump in the first-order derivative

of the regression curve.

Other extreme events frequently occurring in many practical applications are spikes

and outliers. However, these are usually undesirable features that should not be included

in the trend or affect it by any means. This is due to the following reasons. First, in

many cases these outliers or spikes consist only of one or very few points often caused

by measurement errors, and it is obvious that they were caused by some factor that

plays no vital role in the ongoing time series analysis (unless the focus is on what caused

these outliers). Second, while jumps imply a permanent change in the whole time series,

outliers do not contribute to this. While the distinction between a few (adjacent) outliers

and roofs/valleys may not be precise, from the context of the time series in most cases

it is evident whether an occurrence should be considered as an outlier that is to be

neglected or a significant feature to be included in the trend. Summarizing the above

pointed out aspects, the notion of trends relevant for this thesis is given in the following

definition.

Definition 2.1. A trend is a mostly slow (with respect to the noise) evolving pattern in a

time series, with its driving force not being attributed to any noise present in the signal.

Trends may also exhibit edged frontiers (i. e., jumps and sudden regime changes) as well

as steep slopes, roofs and valleys (see [64]), as long as these patterns can be contributed

to the long-term dynamics of the time series and do not stem from any seasonalities or

the noise component responsible for short-term variations.

It is important to note that trend must always be interpreted with respect to the time

series at hand (i. e., the period coverage of the data) and the goal of the data analysis,

that is, on which scale the trend and the noise are relevant.

Remark 2.2. In this work any distinction between long-, intermediate-, and short-term

trends and/or seasonalities is omitted, as these usually depend on the context of the

time series. For example, financial markets time series can have, for example, secular

and daily trends, as well as weekly cycles. Though besides the intermediate and short-
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term seasonalities and cycles there may be according (e. g., weekly and daily) trends

observable, the for this thesis relevant description is the one given in Definition 2.1.

Note that in this work only additive noise as in Equation (2.1) is considered. Though

is it not explicitly excluded that the approach presented in this thesis also works with

other kinds of noise (e. g., multiplicative noise, for which edge enhancing methods exist,

see [103], the implicitly stated assumption is that the underlying trend, disregarding any

jumps or steep slopes, can be estimated or approximated by some sort of basic averaging

or ranking within an over the signal moving window.

Trend Estimation Model Aspects

The time series considered in this work are homogeneous. However, particularly in

Sections 5.1.3 and 5.2, where the consistency and application benefits of the algorithm on

empirical high-frequency financial time series data will be analyzed, this data is initially

irregularly spaced. Homogeneity in this context means that for a given series all time

steps are equally spaced. This is not always the case for empirical time series, especially

in the area of financial high frequency data. In this case it is necessary to preprocess the

inhomogeneous (i. e., irregularly spaced) time series by interpolation methods in order

to regularize the raw data (see Section 5.2). Though there exist models that can handle

inhomogeneous time series directly (see [31], but they also remark that most today’s

models are suited for regularly spaced time series only), all time series are assumed

to be homogeneous ones. This is because the approach of this thesis being based on

weighted moving averages, which are not compliant to irregular spaced data.

An additional requirement is that the method used for trend extraction should be

robust, that is, the results are reliable and the error can be estimated or is at least

bounded in some way. In many cases (see, for example, [35]) the robustness of a method

is shown by proving its asymptotic consistency, that is, its convergence towards a certain

value for certain parameters tending towards infinity. It should be remarked that the

robustness should be independent of the time series itself and/or any specific algorithm

parameter sets, in order to be applicable in practice. Of course this does not disregard

specific assumptions on the time series that must be met or parameter ranges for which
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the algorithm is defined.

In this work the focus lies on nonparametric methods for trend extraction. This is

due to the reason that in most time series analyzed in this work one cannot reasonably

assume any model for the underlying trend. Yet, as noted in the framework above, in

case such assumptions hold it can be expected that those models perform better than

nonparametric models, since they are able to exploit information that nonparametric

approaches cannot. Furthermore, the commitment to certain parametric time series

or trend models can be seen as a restriction when considering the general case, and

which may lead even to misleading results in case the trend does not match model,

as certain patterns might not be captured or considered by the model itself. This can

easily be seen at a most basic example, in case a linear trend is expected, which in

most cases will only be a poor estimator for any nonlinear trend curve. In this case

nonparametric approaches are less restrictive and can more generally be applied, while

of course not delivering the same accuracy as parametric models which exactly match

the underlying trend, with only their parameters to be calibrated. If, for example, the

trend follows sinusoidal curve, a sinusoidal curve with its parameters being estimated

by the least-squares method will almost surely provide a better accuracy than any other

nonparametric approach. On the other hand, if the underlying trend is linear or contains

even only marginal deviations from a perfect sinusoidal curve, a parametric sinusoidal

fit can lead to confusing results and conclusions.

Therefore, as one cannot reasonably assume any model for time series in general, in

this work only nonparametric approaches are considered. Within these approaches there

are two main branches for trend extraction: Linear and nonlinear filters. This is due

to the reason that linear filters are known and have proven to deliver a very smooth

trend (given the filtering window size is large enough), while nonlinear filters excel at

preserving characteristic patterns in a time series, i. e., especially jumps. Both methods

in general require only very few (or none at all) information about the underlying data,

besides their configuration of weights and calibration parameters (see Sections 2.2 and

2.3), and are thus applicable to a wide range of time series, independent of the field the

data was measured in.
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Though there exists a variety of other nonparametric methods, most of these already

rely on specific assumptions or choices of parameters which in general cannot easily be

derived for any time series data or different analysis goals. Nevertheless, for the sake of

completeness, in Section 2.4.2 there are listed some alternative methods, also including

parametric approaches, which have been applied in economic, financial or related time

series data.

2.2. Linear Filters

Linear filters are probably the most common and well known filters used for trend

extraction and additive noise removal.1 First, a most general notion of this filter class is

provided in Section 2.2.1, followed by two viewpoints of linear filters and how they can

be charcaterized in Section 2.2.2. While this characterization on the one hand is one

of the most distinguishable advantages of linear filters, on the other hand at the same

time it leads to the exact problem faced in this work, that is, the representation of sharp

edges in otherwise smooth trends.

2.2.1. General Formulation

The filtered output depends linearly from the time series input. Using the notation

of [43], a linear filter of length 2h+ 1 can be defined as

X̂t =

h∑

i=−h

wiXt+i, (2.2)

with X̂t the filtered output and wi the filter weights. These kind of filters are also known

as (discrete) convolution filters, as the outcome is the convolution of the input signal

with a discrete weight function. Thus, for every data point Xt the filtered output X̂t

is the result of weighted summation of data points around t. Applied for the whole

time series this results in weighted average window of size L = 2h + 1 which is moved

throughout the series. The size of this window is also called the bandwidth of the filter.

1For a detailed discussion about the differences between signal approximation and denoising please refer
to Section 3.3
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The probably best known linear filter is the mean filter, with wi = 2h+ 1, that is, all

filter weights are uniformly distributed. A more general viewpoint is given by the notion

of kernel filters. Given a kernel function w. l. o. g. with support [−1, 1], this function

assigns the weights according to

wi =
K(i/h)

∑h
j=−hK(j/h)

.

Commonly used examples are the Epanechnikov kernel

KE(u) =
3

4
(1− u2)+,

the Gaussian kernel

KG(u) =
1√
2π

exp(
−u2
2

),

and the symmetric Beta family

KB
γ (u) =

1

B(1/2, γ + 1)
(1− u2)γI|u|≤1.

For the values γ ∈ {0, 1, 2, 3} the kernel KB
γ (u) corresponds to the uniform, Epanech-

nikov, biweight and triweight kernel functions, respectively.

As will be outlined in Sections 3.1 and 3.2, wavelets are also linear filters and their

respective transform and the resulting signal decomposition can be interpreted as a

cascade of linear filters with different bandwidths.

2.2.2. Transfer Functions: Time vs. Frequency Domain

The previous section depicts the linear filtering method in the time domain, that is,

the time series Xt and its respective filtered output X̂t evolve over time t. Another

perception can be given by taking the frequency domain into account. For all linear

filters there cannot only be given the definition as in Equation (2.2), but also another

one with respect to the frequencies the filters let pass. This notion can be derived as

follows.
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While the sequence of filter weights wi, also called impulse response sequence, deter-

mines the filtered output in the time domain (or equivalent: are the linear filter’s time

domain representation), via the discrete Fourier transform (DFT) one can derive the

transfer function

W(f) =

∞∑

j=−∞

wje
−i2πfj , (2.3)

which denotes its counterpart in the frequency domain, also called frequency response

function. Alternatively, if this formulation is given in the first place, one can also derive

the weights via the inverse transform

wj =

∫ 1/2

−1/2
W(f)ei2πfj df.

Obviously, these two formulations are equivalent, as one can be derived from the other,

and vice versa. By considering the transfer function’s polar representation

W(f) = |W(f)|eiθ(f),

with |W(f)| the gain function. The magnitude in gain |W(f)| (or the in wavelet analysis

more common squared gain function |W(f)|2, see [88] and Section 3.2) describes the

linear filters behavior in the frequency domain, that is, what kind of frequencies and

their respective proportions will be let passed or be blocked. Usually it satisfies to

distinguish between high- and low-pass filters, that is, filters that let pass either the high

frequencies and block the lower ones, or vice versa. In addition to this, other filter types

exist, for example, by combining high- and low-pass filters (e. g., in a filter cascade)

one can derive band-pass and -stop filters, so that the frequency domain output will be

located only in a certain frequency range. In this work the specific interest is in low-pass

filters, as they block the high frequency noise and the remaining output consists of the

generally low frequency trend.

In case the weights wj are real valued, one can show (see, for example, [88]) that

W(−f) = W∗(f), and, with |W∗(f)| = |W(f)|, it follows that |W(−f)| = |W(f)|.
Therefore, the transfer functions are symmetric around zero. Due to its periodicity,
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it suffices to consider W(f) only on an interval of unit length. For convenience, this

interval is often taken to be [−1/2, 1/2], i. e., |f | ≤ 1/2. Therefore, with above depicted

symmetry, it suffices to consider f ∈ [0, 1/2] in order to fully specify the transfer function.

While stating that certain frequencies are blocked and others are passed, this holds

only approximately true, since the design of such exact frequency filters is not possible,

since there is always a transition between the blocked and passing frequencies. The goal

of many linear filters is either to minimize these transitions (i. e., the range of by this

affected frequencies), which, on the other hand, inevitably causes ripples in the other

frequencies, that is, they are not any longer blocked or let passed completely (see [12]

and the references therein for further details about this topic).

As was pointed out above, linear filters can be designed either from a time or a

frequency perspective. The time domain usually focuses on putting weights on the

surrounding events (i. e., events that recently before or occurred shortly after) and thus,

gives an (economic) interpretation similar to the, for example, ARMA and GARCH

models. On the contrary, the frequency domain is based on the point of view that

certain disturbances are (almost) exclusively located in a certain frequency range, and

are, thus, isolated from the rest of the signal. Also, the slowly evolving trend can be

seen to occupy only the lower frequency ranges. Thus, the (economic) meaning lies here

in the frequency of events, see, for example, [31].

Although linear filters can be designed to block or let pass certain frequencies nearly

optimally, at the same time this poses a severe problem when facing trends that exhibit

jumps or slopes. As these events are also located in the same (or in case of slopes: the

adjacent) frequency range as the high frequency noise, this has the effect that jumps

and edged frontiers are blurred out, while steep slopes mostly are captured with poor

precision only. Hence, from a frequency perspective, a smooth trend and edge preserva-

tion are two conflicting goals. This is as the linear filters are not capable to distinguish

between the persistent noise and single events that, while located in the same frequency

range, usually have a higher energy and thus, significantly larger amplitude. Thus, the

same filtering rule is applied throughout the whole signal, without any adaption. Note,

however, that linear filters still give some weight to undesirable events like outliers, due
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to their moving average nature. Thus, while some significant features like jumps are not

displayed in enough detail, other unwanted patterns, like spikes, still partially carry over

to the filtered output. Therefore, it is easy to see that the Requirements R3 to R5 are

usually met by most linear filters, but due to above reasons they must fail at fulfilling

R1, which is considered to be the primary task in this thesis. To overcome all these

drawbacks for that kind of trends or signals, besides the class of linear filters the class

of nonlinear filters has been developed.

2.3. Nonlinear Filters

As was shown, linear filters tend to blur out edges and other details even though these

may form an elementary part of the time series’ trend. In order to avoid this, a wide

range of nonlinear filters has been developed which on one hand preserve those details,

while on the other try to smooth out as much of the noise as possible. Nonlinear filters

are not only applied on time series, but they were in many cases developed specifically for

the denoising of two-dimensional signals, specifically images, where the original image,

probably corrupted by noise during data transmission, consists mainly of edges, which

form the image.

2.3.1. General Perception

While linear filters generally provide a very smooth trend achieved through averaging,

two characteristics pose a problem for this class of filters:

• Outliers and Spikes

Single, extreme outliers and spikes can cause the whole long term trend to deviate

in the same direction, though they obviously do not constitute a part of it.

• Jumps, Slopes and Regime Changes

Whenever there occurs a sudden external event in the underlying main driving

force, it causes the trend to jump, that is, contrary to spikes it changes permanently

onto another plane. While slopes are not that extreme, they also show a similar
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behavior as they decay or rise with an for the trend unusual degree.

The reasons for the deviation sensitivity to these events is given by one of the most

favorable linear filters’ characteristics themselves: It follows directly from them being

characterizable in terms of frequency passbands (explained in Section 2.2.2) that all

frequencies are treated the same (i. e., filtered according to the same rule) throughout

the whole signal. This means that no distinction is made (and cannot even be made)

between the noise and sudden change patterns, as they are located in approximately

the same frequency range. Technically, as long as an outlier or a jump is contained in

the weighted moving average filtering window, also a weight is assigned to these outlier

data points or the points before and after the jump. Nonlinear filtering procedures try

to avoid this by using a different approach, for example, by considering a single value

only (instead of multiple weighted ones) that was selected from an ordered (i. e., ranked)

permutation of the original values located in the filtering window.

Though nonlinear filters cannot be characterized in the same way as linear filters (i. e.,

by transfer functions), according to [86] it is possible divide the whole class of these filters

into several subclasses that share the same or similar approaches. Among them, there

are stack filters, weighted median filters, polynomial filters and order statistic filters. [9]

provide two different taxonomies for further classification, though they remark that

these divisions are not unique. In their work, they extensively show how those different

filters behave (i. e., their characteristics) when applied onto different benchmark signals

with respect to the mean absolute error (MAE) and mean squared error (MSE) error

measures.

The behavior of nonlinear filters is generally characterized by their impulse and step

response, that is, the filtered output when the input consists of a single impulse or step

only. These impulses generally are given by the sequence [. . . , 0, 0, 0, a, 0, 0, 0, . . .] and

[. . . , 0, 0, 0, a, a, a, . . .], respectively, with a 6= 0. Though in most cases no analytical

result can be given, these characteristics assist to understand how the nonlinear filter

behaves with respect to those patterns, for which the linear filters generally fail to deliver

adequate results.
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Despite their undoubtedly good ability to preserve outstanding features in a time

series while extracting the trend, nonlinear filters also suffer some drawbacks, that is,

1. Insufficient Smoothness

Though most nonlinear filters try to deliver a smooth trend and a good resolution

of edged frontiers, by experimenting with several nonlinear filters (taken from [9])

one finds that beyond the jumps’ surrounding regions they fail to deliver a smooth

trend as accurately as even a simple linear filter (e. g., the mean filter) provides.

Yet, by applying further smoothing procedures (e. g., by recursive filters or some

kind of linear filtering on the nonlinear output, with a smaller bandwidth, as most

of the noise is already smoothed out) comes at the price that the prior preserved

details of jumps or slopes tend to be lost again.

This effect is even aggravated when the high frequency noise present in the signal

has a high volatility, that is, the trend which evolves besides the jumps quite slowly,

is dominated by a noise with extremely large amplitudes. An example is given in

Example 2.4. Though certain filters may exist that try to counter this effect, these

filters either

• provide only a tradeoff between an overall smooth signal and poor jump res-

olution, or a trend with preserved edges but still exhibiting ripples, or

• rely on further information about the time series itself, that is, the noise

component and its structure, the jumps or the trend itself.

This is due to the problem, that most filtering rules are applied throughout the

whole signal, that is, they do not adapt themselves sufficiently fast when the filter-

ing window approaches a jump. An overview of these and other nonlinear filters’

performance is given in [9], proving again the well known insight that there cannot

exist one solution that performs optimal for all cases. Though the authors also

report some approaches that try to incorporate that behavior, these filters pro-

vide only dissatisfactory results (see the examples below in Section 2.3.2). Yet, in

Section 4.1.1 an analog procedure is the key concept of the algorithm’s derivation,
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that is, to apply a different filtering rule on whether or not any jump is contained

in the filtering window.

2. Lack of Frequency Control

Another feature nonlinear filters lack is the ability to regulate the filtered output

in terms of frequency passbands, as linear filters do. Since [90] defines the trend

in terms of frequency bands and [98, 99] points out that frequency analysis is an

important aspect in financial time series, so is frequency control. Though not

necessary for all applications, the ability to a priori control and regulate the filters

output (in contrast to an only a posteriori frequency analysis of the filtered result)

may be useful when one wants to ensure that certain frequencies are not contained

in the output. That can be the case when certain information about the noise

frequencies is at hand, and therefore, the analyst can decide before the actual

filtering process (and thus, without any try and error procedures) what frequency

parts should be filtered out. Although a nonlinear filter can also provide the

same or a similar result, no theoretical results or statements are available before

the filtering procedure has been carried out completely. This incapacity of the

nonlinear filter follows directly from the fact that nonlinear filters do not rely on

frequency passbands, as they must be able to handle time series components like

noise and jumps, even though these are located in nearly the same frequency range.

Remark 2.3. As [9] classifies linear filters to be a subclass of the class of nonlinear

filters, the above statement does not exactly hold true, that is, it would mean that a

subclass of nonlinear filters can be characterized by their transfer function and frequency

output. In this thesis however, the classes of linear and nonlinear filters are separated

according to whether or not a filter can be described by a transfer function, which marks

a strict division between these two classes.

Example 2.4. The data in Figure 2.1 represents the hourly measured English Wikipedia

server requests measured from January 2007.2 It can be seen that the trend provided by

the linear mean filter in Figure 2.1a is not even very smooth, due to the high amplitudes

2available at http://dammit.lt/wikistats/, last accessed on the 22th of November 2010.
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(a) Original Data with Mean Filtering
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(b) Original Data with Median Filtering

Figure 2.1.: Hourly Wikipedia server requests and filtered trends

of daily fluctuations. In order to extract a trend of acceptable smoothness the band-

width is set to 29. Choosing a larger bandwidth than this value would probably provide

a smoother trend, but also fail to capture accurately the steep slope around summer

holiday season as well as the valley around Christmas and New Year’s Eve (roughly

between data points 4000 to 5000, and 8000 to 9000, respectively). On the other hand,

the nonlinear median filter (applied with the same bandwidth as the mean filter) con-

tains even more ripples while seemingly not capturing the extreme areas named above

significantly better.

2.3.2. Filter Examples

To illustrate the different procedures of nonlinear filters, in this section several exam-

ples of above named subclasses are outlined. As this list cannot be exhaustive by any

means, of course, filters that already rely on specific assumptions of the systems beneath

the time series themselves, are not taken into account.
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Trimmed Mean Filter

This filter works essentially as the mean filter, with the difference, that the extreme

values of the ordered series X(i)
3 are trimmed. Therefore, an (r, s)-fold trimmed mean

filter is given by

1

N − r − s

N−s∑

i=r+1

X(i).

A special case is the choice of r = s. A further modification of the trimmed mean filter

is not to discard the ordered values beyond X(r) and X(s), but instead replace them by

X(r+1) and X(s+1) themselves. This is the Winsorized mean filter

1

N

(
r ·X(r+1)

N−s∑

i=r+1

X(i) + s ·X(N−s)

)
.

In these methods the (r, s) tuple is dependent on the data itself. Other filters consider

to make these values independent from the data or dependent from the central sample

itself, i. e., nearest neighbor techniques. All those filters have in common, that they

discard all samples from the ordered series being too far away (respectively) according

to some measure.

L-Filters and Weighted Median

L-filters (also called order statistics filters) make a compromise between the weighted

moving averages of linear filters and the nonlinear ordering operation. The idea is that

the filtered output is generated by weighted averages over the ordered samples, that is,

N∑

i=1

wiX(i),

with wi the weights analog as in Equation (2.2). A similar notion is given by weighted

median filters, where the weights are assigned to the time ordered sample Xt, and where

the weights denote a duplication operation, i. e., wi ◦Xt = Xt, 1, . . . , Xt, wi
. The output

3Index t is omitted here as the order is no longer in concordance with time.
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is then given by

median{w1 ◦X1, . . . , wN ◦XN}.

Ranked and Weighted Order Statistic Filters

A rth ranked order statistic filter is simply given by taking X(r) as the filter output.

Examples are the median, the maximum (r = N), and the minimum (r = 1) operation.

This can also be combined with weights as depicted above, that is,

rth order statistic{w1 ◦X1, . . . , wN ◦XN}.

Hybrid Filters

Another approach is the design of nonlinear filters consisting of filter cascades, that

is, the repeated application of different filters on the respective outputs. A general

formulation is, for example, given by

rth order statistic{F1(X1, . . . , Xn), . . . , FM (X1, . . . , Xn)},

where F1, . . . , FM can denote any other filtering procedure. A concrete example is the

median hybrid filter that combines a prior linear filtering procedure with a succeeding

median ordering operation, that is,

median{(1/k)
k∑

i=1

Xi, Xk+1, (1/k)

N∑

i=k+2

Xi}.

Selective Filters

An interesting approach is given by the principle of switching between different output

rules depending on some selection rule. For example, based on the fact that the mean

filter delivers a larger (smaller) output than the median filter when the filtering window

approaches an upward (downward) jump, a selection rule could be given by

mean{X1, . . . , XN} ≥ median{X1, . . . , XN}.
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A certain drawback of this selection rule is that it is onesided, that is, it considers only

the first half of the region around the jump. This is due to the fact that the mean

for the second half, after the jump has occurred, is generally smaller (larger) than the

median. Other rules can include thresholds and aim at deciding whether a jump has

actually occurred or if there was an impulse in the signal that was not caused by the

noise distribution, but happened due to some other explanatory effect.

Local Polynomial Smoothing

Local polynomial smoothing is a generalization of the idea to approximate the trend

via local constant or local linear functions. In these methods it is assumed that the trend

ϑt is represented by

Xt+i ≈ ft + ϑt+i or Xt+i ≈ ft + f ′t(t− i) + ϑt for |t− i| ≤ h,

respectively. Using one of the weighting kernels from Section 2.2.1, the trend is then

estimated by ϑ̂t = (2h+ 1)−1
∑h

t=−hXt+i or by minimizing

T∑

t=1

(Xt − a− b(t− i))2Kh(t− i),

respectively. A general formulation for polynomial fitting is given in [41]. The general

idea is to fit a polynomial function at every data point to the data weighted via the kernel

function. However, this method also lacks the same drawbacks as the other methods,

that is, since the same rule is applied throughout the whole signal, the filtered output

does not adapt itself fast enough to sudden changes.

Summary

Above depicted examples of nonlinear filters should give the reader an overview over

the most common methods applied in practice. For detailed information about each fil-

ter’s characteristics, their advantages and drawbacks the reader is referred to [9], where

there are also the references to the original works to be found. Yet, basically most of

these filters rely on some ordered statistics, with their input or output modified prior

33



Chapter 2. Methods of Trend Extraction

or afterwards, respectively. Since this basic principle applies to most filters not directly

dependent on some specific characteristic or assuming a certain structure of the original

series to be filtered, the different methods pointed out above can be combined in numer-

ous ways. In many cases, however, even though only the basic nonparametric methods

(which, however, are also the ones most established in practice) are portrayed here, one

notes that almost all of them already incorporate an implicit or explicit choice of addi-

tional parameters besides the filter bandwidth, either by weights, rules, or thresholds.

These choices introduce further biases into the filtering process. Though some of these

parameters can chosen to be optimal in some sense (i. e., minimize a certain distance

measure, for example, the MSE for the L-filters) they lack the concrete meaning of linear

filter weights (see Section 2.2.2) and, specifically, wavelets, which are derived according

to additional characteristics (see [32] for details).

Above discussion yields the conclusion that jumps and other sudden changes are usu-

ally captured well by nonlinear filters. However, practical applications (see Example

2.4) show that these filters usually do not deliver a smooth trend once any noise with

high amplitudes is present. Hence, in these cases Requirement R1 is not met. Also, to

the author’s best knowledge, Requirement R2 is not fulfilled by any nonlinear filter in

today’s available literature. As practical applicability is an important issue during the

development of nonlinear filters in general, the remaining requirements can be seen as

fulfilled.

2.4. Further Related Methods

In this section further related methods are listed that are concerned with the estima-

tion of long-term trends exhibiting edged frontiers, i. e., jumps and/or steep slopes. In

Section 2.4.1 methods are reviewed that were explicitly developed either only for the de-

tection of jumps in a signal corrupted by noise, or approaches that also include capturing

(i. e., modeling) those very jumps. The advantages and limits of applications of these

methods are shown, highlighting in which aspects further research is still necessary. This

chapter is then concluded by listing some of the most in practice well-known methods

in Section 2.4.2. It is explained in what way these approaches differ too much (with
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respect to their requirements as well as their outputs) as they could be applied to the

general scenarios considered in this thesis.

2.4.1. Algorithms for Jump Detection and Modeling

The issue of detecting and modeling jumps in time series has been recognized as an

essential task in time series analysis and therefore, has already been considered exten-

sively in the literature. Though wavelet methods are introduced in the next chapter

only, the works based on these methods are listed here as well without going into details.

It is only noted that wavelets, based on their characteristics, make excellent tools for

jump and spike detection, as it is this what they were developed for in the first place

(see [81]). Generally, the most appreciated procedures in the recent literature can be

seen as two different general approaches. One is via wavelets, while the other uses local

(linear) estimators and derivatives.

One of the first approaches using wavelets for jump detection in time series, besides the

classical wavelet literature, for example, [75], was given by Wang in [115, 116]. He uses

wavelets together with certain data-dependent thresholds in order to determine where in

the signal jumps have happened and whether they are significantly different from short-

varying fluctuations, and additionally provides several benchmark signals. Assumptions

about the noise structure were made according to [35], that is, the approach is applicable

for white (i. e., uncorrelated) Gaussian noise only. This work was extended by [96] to

include even more general cusp definitions. More recent contributions extend these

works to stationary noise (see [122]), other distributions (see [97]), and also provide

theoretical results about asymptotic consistency. A further application specifically on

high-frequency data is given by [42].

The other line is stated by Qiu in [93], who estimates jumps using local polynomial

estimators. This work is continued in [92] where jumps are not only detected but also

represented in the extracted time series.4 Gijbels et al [45] further refine these results

by establishing a compromise between a smooth estimation for the continuous parts of

a curve, and a good resolution of jumps. Again, this work is limited to pure jumps

4This is analog to the wavelet procedure named above.
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only, and, since it uses local linear estimators as the main method, has no frequency

interpretation available. [64] and [107] use derivatives to test the signal for jumps and

to represent them.

A completely different approach is presented in [67]: A purely graphical tool for

the recognition of probable jumps (and also: areas where almost certainly no jumps

occurred). Yet, the authors confess that their work is only to be seen as a complementary

approach, and refer to [26] for further thorough investigation.

The above review shows that there exists already a good body of work about how

to detect (i. e., estimate their location), and even how to model jumps (i. e., estimate

their height), though most works are bounded by strict requirements on the noise or

the trend model. However, although most models will also automatically include the

detection of steep slopes, they fail at modeling the slope itself. While a jump can

easily be presented (either by indicator functions or any other methods used in the cited

works above), matters are different with slopes: Since there can be given no general

formulation or model of the exact shape of a slope, any parametric approach will fail or

deliver only a poor approximation if the model does not fit the occurred slope. Examples

of such different kinds of slopes are innumerous: Sine, exponential or logarithmic decay

are only the most basic forms to approximate such events, which in practical examples

rarely follow such idealized curves. Naturally, only nonparametric approaches will adapt

themselves to the true shape of the underlying trend but generally suffer the same

drawbacks as all linear and nonlinear methods pointed out above, that is, they always

have to balance a tradeoff between bias and signal fidelity.

Although it is difficult to generalize over all models named above, one can grant

Requirement R1 to be sufficiently met (though often only pure jumps are considered,

and no other kinds of edged frontiers), at the cost of additional information about the

time series, which conflicts with Requirement R3. As all approaches were motivated by

practical issues and not purely theoretical grounds, Requirements R4 and R5 are also

met. However, for none of these algorithms that include the modeling of jumps holds

Requirement R2, that is, we have no a priori frequency control.
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2.4.2. Alternative Methods for Trend Estimation

This section is concluded by outlining today’s most popular and established filter-

ing methods. These methods are only stated for the readers convenience and are not

mandatory for comprehension of this thesis’ contribution.

General Least-squares Approaches

The most general approach can be seen by setting up a parameterized model and

calibrating this model afterwards, generally using some minimization procedure with

respect to some error measure. This can be seen as a straightforward approach, requiring

only the initialization of an appropriate model and choice of error measure.

An example from the energy market is given by [72,104], who set up a trigonometric

model in conjunction with indicator functions and minimize the squared error for each

time step in order to estimate the deterministic trend as well as values for different

seasons and days. Though they find that their model works well in practice, for general

cases it might be difficult to set up an appropriate model, especially when there is no

information about the trend, its seasonal cycles and other (deterministic or stochastic)

influences, since, for example, the data set covers only a short period of time. In this case

it is also hard to reason, why a specific model and its estimated trend are appropriate for

the respective time series. This requires either a rigorous a priori analysis of the series

itself or further information about the external factors (i. e., the system the time series

is derived from) and their interaction. In addition to this, the estimation can never be

better than the model and to which accuracy it approximates the true trend.

Two other probably critical issues arise when using indicator functions in combination

with least-squares estimation. First, usage of indicator functions confines the model to

jumps only, that is, slopes or similar phenomena cannot be captured by that approach,

as the indicator functions automatically introduce jumps in the trend component. Thus,

indicator functions excel at modeling jumps, but perform poorly with other types of

sudden changes. Second, for this approach it is extremely important to determine the

location of the jump as exact as possible, as otherwise the estimated trend in this area

may be highly inaccurate.
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It is therefore dubious, whether such parametric approaches are appropriate to handle

economic and financial time series, though they will perform very well, if their require-

ments are met. Regarding the requirements for this thesis trend extraction task, it is

easy to see that generally Requirement R2 is not met, while Requirement R1 and R5

depend heavily on the correct model estimation. Requirement R3 usually holds, while

Requirement R4 depends on the actual implementation.

Smoothing Splines

Smoothing splines, though also utilizing the least squares methods, on the contrary

do not rely on a specific model assumption. Instead, they penalize the regression spline

with respect to its roughness, i. e.,

min
m

N∑

t=1

(
Xt −m(t)

)2
+ ω

∫ (
m′′(x)

)2
dx.

It follows directly from this definition, that for ω = 0 this yields an interpolation, while

for ω → ∞ the resulting solution m will approximate a linear regression.

In practice, there emerges another difficulty: In many cases, the (optimal) choice of

the smoothing (or penalizing) parameter ω remains unclear. Although there exist several

works that have established some data dependent rules for this, in many cases, when

the assumptions about the noise do not hold or the time series incorporates additional

deterministic (e. g., cycles) or stochastic components (e. g., outliers that are part of the

system and not due to measurement or other errors), the choice of ω is a challenging

task that has been and is still undergoing extensive research, see [25, 58, 60, 69, 82]. A

particular method that also plays a role in similar wavelet procedures (see Section 3.3) is

the cross-validation method that is used to determine the optimal smoothing parameters,

see [46]. Furthermore, though ω is eventually responsible for the degree of smoothness

(i. e., on which scale or level the trend shall be estimated), one can hardly neither impose

nor derive any additional meaning on or from this parameter. For smoothing splines it

can be said that likewise the linear and nonlinear filters Requirement R1 only holds

insufficiently. Requirement R2 is certainly not met, while the remaining requirements
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usually seem to be fulfilled.

The Hodrick-Prescott Filter

The Hodrick-Prescott (HP) filter was first introduced by [70] and later became popular

due to the advanced works of [55]. In order to extract the trend τ = [τ0, . . . , τN+1] from

a given time series X, this trend is derived by solving

min
τ

N∑

t=1

(Xt − τt)
2 + ω

(
(τt+1 − τt)− (τt − τt−1)

)2
.

Besides from not using a spline basis for approximation this approach can be seen as

a discretized formulation of the smoothing spline. The smoothing parameter ω plays

the same role, while the penalized smoothness measure is the discretized version of the

second derivative. Thus, though several authors propose explicit rules (of thumb) for

choosing ω (see, for example, [34, 100, 102]), some researchers like [52], also recognize

that in some way this choice still remains kind of arbitrary or problematic for many

time series that cannot be associated with the same terms. Regarding the fulfillment of

the this thesis’ requirements the same statements as for smoothing splines hold.

The Kalman Filter

Another sophisticated filter was developed by [66]. It is a state-space system specifi-

cally designed to handle unobserved components models, and can be used to either filter

past events from noise as well as for forecasting. A good introduction to the Kalman

filter can be found in [117], and a thorough discussion in [53].

The basic Kalman filter assumes that the state x ∈ R
n of the underlying process in a

time series can be described by a linear stochastic difference equation

xt = Axt−1 +But−1 + zt−1,

with A the state transition model, that relates in conjunction with the (optional) control

input model B, the respective (external) control input ut, and the noise component zt

the previous state to the next. In above equation A and B are assumed to be constant,
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but generally may also change over time. Of this model (i. e., the true state xt) only

yk = Hxk + vk

can be observed. Both noise components are assumed to be independent of one another

and to be distributed according to

z ∼ N(0, Q) and v ∼ N(0, R).

With A, B, Q, and R assumed to be known, the filter predicts the next state xt based

on xt−1 and also provides an estimate of the accuracy of the actual prediction.

Since its first development, the Kalman filter has become popular in many areas, see,

for example, [47, 78]. However, a serious drawback of this procedure is that many real

world systems do not fit the assumptions of the model, for example, the above require-

ment of a linear underlying system is often not met. Although there exist extensions

for nonlinear systems (see, for example, [65]), there still exists the problem that one or

more of the required parameters are unknown. While for many technical systems (e. g.,

car or missile tracking systems) based on physical laws the state transition model A is

exactly known, this becomes a difficult issue in many other application areas, including

finance. Additionally, as [79] notes, the performance of the Kalman filter can be very

sensitive to initial conditions of the unobserved components and their variances, while at

the same time it requires an elaborate procedure of model selection. He also notes that

in macroeconomic time series the Kalman filter does not work with annual data. There-

fore, while the Kalman filter unquestionably delivers excellent results in many areas (and

has also been applied for financial time series as well, though not without critique), its

usage is not convenient for the general cases of high-frequency data considered in this

work, as it requires more assumptions and knowledge about the underlying model than

available. Thus, regarding the stated requirements, it can be said that dependent on the

state transition model the Kalman filter actually might met Requirement R1 quite well,

and also R4 holds. However, using the Kalman filter, the output cannot directly be con-

trolled in terms of frequencies, hence Requirement R2 is not met. Also, as this method
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requires the state transition matrix A to be stated explicitly, this limits its application

as this information might not always be available. Thus, Requirement R3 is generally

not met. Furthermore, since the filter is sensitive to the correct and estimation of A and

the initial conditions x0, Requirement R5 does not unconditionally hold.

Other Filters and Literature

Above examples state only the most common and established filtering procedures used

in academia and practice. Of course, such a list cannot be exhaustive by any means.

Yet, for the sake of completeness, some further literature is sketched that also treats this

topic.

[13] conduct a comparison of other filters for trend estimation, namely the GLAS,

Henderson, Lowess, Kalman filters, and smoothing splines. In their work, they focus

on the detection and modeling of turning points in the trend at the boundaries (i. e.,

events that only recently happened). Their results, based on an empirical analysis of

the M4 flows series of the Bank of England, show that in this case weighted moving

average filters perform worst, which can be explained by the fact that this kind of filters

suffers from boundary distortions near the beginning and the end of the signal (see also

Sections 3.2 and 5.2.1).

In [79] the HP filter is extended in order to handle stochastic trends and cycles and

is evaluated at the GDP series of several European countries. Long-term trends with

shorter (medium business) cycles are also considered in [54], where the authors compare

the performances of different methods, also including the HP filter, which has become

widely spread for application in economic time series.

[89] develops square-wave filters for detrending economic time series. Yet, while these

filters are found to perform superior to the in the paper considered alternatives (e. g.,

the HP filter), they also belong to the class of linear filters, which makes them suffer the

same drawbacks when jumps in the trend occur.
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2.5. Summary

In this chapter different methods and approaches were reviewed that might be suitable

for the task of extracting the trend of a time series where there is none or very little

information about the series, the noise, and other deterministic or stochastic structures,

besides that the trend is expected to be slowly evolving, with occasional jumps or slopes.

From a frequency point of view it is known that the extraction of this kind of trends

contains two conflicting goals, mainly because the noise and the significant jump features

are located in the same frequency range.

This fact already disqualifies the whole class of linear filters: Though they provide

a very smooth trend in general, their incapacity to adapt themselves to these sudden

changes results in a poor resolution of these. Nonlinear filters, on the other hand, capture

such occurrences pretty good, but in most cases do not deliver a smooth output as their

linear counterpart, that is, the result still contains many remains from the noise, which

are reflected in ripples throughout the whole trend, and are undesirable, as they also

denote an inaccurate approximation in general. Furthermore, by using nonlinear filters,

one cannot control the output a priori in terms of frequency passbands, which is desirable

in many applications, where the trend is located in a certain frequency range only, with

exception of the jumps.

Other methods here presented rely either on parametric approaches, where the model

selection itself can be challenging and where the optimal result is bounded by the model

itself, or additionally require the choice of specific input parameters, which might not

be known. Any inaccuracy in these very first steps will result in worse approximations

of the underlying trend, while for every time series the parameters have to be adapted

or selected again, which makes these approaches hard to apply for different scenarios,

especially when there are not many information about these time series, for example, in

case they stem from newly established markets.

Although specifically for the task of jump estimation in trends there exists a bulk of

work in the literature, all of these require information about the structure of the noise

within, and fail to model all diverse kind of slopes, even if we admit that Requirement R1
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2.5. Summary

Table 2.1.: Today’s algorithms’ requirement fulfillment

R1 R2 R3 R4 R5

Linear filters #     

Nonlinear filters G# #    

Dedicated jump models  # G#   

General least-squares models G# # G# G# G#

Smoothing splines & HP filter G# #    

Kalman filter  # G#  G#

is met. The conclusions that can be drawn by the analysis of above presented methods

is that Requirement R2 is only met with linear filters, and Requirement R1 mostly holds

only if there are additional requirements on the time series itself or if a parametric model

is available. The latter case can lead to instable solutions (and limits the fulfillment of

Requirement R3) if the model selection has even slight deviations, and thus, denotes a

violation of Requirement R5. Therefore, today’s models, while they may excel in specific

tasks, are not suitable to met all the stated requirements at the same time, where R1

and R2 seem to be the most critical to be fulfilled conjointly, as they represent opposing

goals. This is summarized in Table 2.1.
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Chapter 3.

Wavelets and Their Transforms

Wavelets and their respective transforms have become important and approved tools

in signal analysis since the pioneering works of Daubechies and Mallat [32, 74]. In

this section, the specific characteristics that make wavelets such useful tools utilized in

the most distinct application areas are outlined. The notion of wavelets themselves is

introduced in Section 3.1, followed by their respective transforms in Section 3.2. Practical

considerations of their application to the purpose of trend extraction are discussed in

Section 3.3. Since wavelet theory has become a large field, the material provided in

these sections can only give a most basic overview and states the most necessary facts

for general understanding of the wavelet concept, while enabling the reader to classify

the novel approach presented in this thesis. Unless specifically mentioned otherwise,

further reading with a more thorough treatment of almost all topics discussed in this

chapter can be found in [32,88].

3.1. Wavelets

Wavelets were originally developed to analyze spikes and abrupt changes in sonic

wave signals from geophysics applications, that is, to discover and estimate oil fields

(see [81]). Fourier analysis, the most traditional signal frequency analysis at that time,

was not suitable for this task as these spikes were not isolated, but their signal and

frequency contribution distributed over time, due to the non-localization of the trigono-
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metric Fourier bases.

Essentially, wavelets are bases of L2(Rd) and are usually denoted by ψ. As this work

is restricted to unidimensional time series, d = 1 always holds. The name wavelet

stems from the fact that additional conditions are imposed on these bases to give them

certain desirable properties which are pointed out below. Among the most important

requirements are the so-called admissibility condition (Psi denotes the Fourier transform

of the wavelet psi) ∫ ∞

−∞

|Ψ(ω)|2
|ω| dω <∞,

the normalization ∫ ∞

−∞
ψ2(u) du = 1, (3.1)

and ∫ ∞

−∞
ψ(u) du = 0. (3.2)

The latter condition signifies that ψ oscillates around zero, hence the name wavelet.

What makes wavelet bases so remarkable is that contrary to most traditional frequency

analysis tools, like Fourier analysis, they provide a localized time-frequency analysis on

different scales. Similar to Equation (2.3) the discrete Fourier transform of a given signal

Xt of length N is given by

X (f) =

N∑

t=1

Xte
−i2πft.

As the bases of the Fourier transform are the trigonometric sine and cosine functions

eit = cos(t)+i sin(t) which have no compact support, it is easy to see that changing Xt at

even one data point only, will result in a completely different Fourier transform. In order

to avoid this problem one would need either bases that outside a certain interval decay

sufficiently (e. g., exponentially) fast towards zero (this would not solve the problem but

at least reduce its effect) or bases with compact support. There exist wavelets types for

either.

The very first wavelet was introduced by Haar in [49], though wavelet theory and the
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term wavelet itself had not yet been established at that time. Today it is called the Haar

wavelet and is given in its continuous form by

ψHaar(t) =





1 for 0 ≤ t < 1/2,

−1 for 1/2 ≤ t < 1,

0 otherwise.

(3.3)

Naturally this wavelet already has compact support but is not very smooth, as it is not

even differentiable. While any signal can still be represented with such a basis, as the

shape of the extracted trend depends on the shape of the wavelet itself, this wavelet

will lead to a rather blocky structure of the estimated trend. Yet, among practitioners

the Haar wavelet has become one of the most well known and applied wavelets in time

series analysis, mainly due to its simplicity and its very good localization, that is, its

very small support.

The for the Haar wavelet exemplarily depicted formulation in Equation (3.3) is also

referred to as the mother wavelet. In order to analyze a signal on different scales λ > 0

and over time t it is necessary to adapt the mother wavelet ψ as follows. ψλ, t denotes

the by λ scaled (also: dilated) and by t shifted version, that is,

ψλ, t(·) =
1√
λ
ψ

( · − t

λ

)
. (3.4)

That is, the wavelet basis is derived through dilation and translation of the mother

wavelet.

In wavelet analysis, the mother wavelet ψ is always accompanied by the scaling func-

tion ϕ. To be more exact, the wavelet itself is derived from this function (since in practice

ϕ is easier to determine). For example, the Haar scaling function is given by

ϕHaar(t) =




1 for 0 ≤ t < 1,

0 otherwise.
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Together, ψ and ϕ form a multiresolution analysis (MRA), that is, a sequence of nested

subspaces

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · , (3.5)

for which ⋃

j∈Z

Vj = L2(R) and
⋂

j∈Z

Vj = {0}

holds. The spaces Vj are called approximation spaces, and are nested via dyadic scaling,

that is, f ∈ Vj holds if and only if f(2·) ∈ Vj+1.
1 Thus, with λj = 2j and ϕ forming a

basis of V0, ϕλj , t is a basis of Vj , i. e.,

Vj = span{ϕλj , k(·) : k ∈ Z}. (3.6)

Remark 3.1. Through Equations (3.5) and (3.6) one can derive the following two-scale

relationship

ϕ(t) =
√
2

∞∑

l=−∞

glϕ(2t− l). (3.7)

Though especially for higher dimensions (e. g., image decomposition and analysis) there

exists a body of work in the literature considering usage of non-dyadic grids (see, for

example, [91]), this thesis is confined to dyadic lattices. This may be seem restrictive,

but is commonly accepted in practice and considered to be sufficient to handle most

time series adequately. In this case Equation (3.7) generalizes to

ϕ(t) =
√

|detM |
∑

l∈Zd

glϕ(Mt− l).

Both ψ and ϕ are now linked in the following way. Wj ⊂ Vj+1 denotes the orthogonal

complement of Vj in Vj+1, also called the detail space, and ψλj , t a basis of Wj. It can

be shown that ⊕

j∈Z

Wj = L2(R)

1Dependent on dimension d other meshes are also commonly used, yet for d = 1 the dyadic scaling is
the one most applied in practice.
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and thus, wavelets indeed form an orthogonal basis, which is due to their construction

using the scaling function. Thus, in an MRA the scaling function ϕ provides the repre-

sentation of the original signal in approximation spaces with different resolutions which

are in a dyadic relation to one another. The wavelets ψ provide their respective com-

plement, that is, the complementary differences from one approximation space to the

next. Thus, the very basic idea behind wavelet analysis is, while scaling functions are

associated with coarse resolutions (one could also say: an averaging or aggregating view-

point) of the original signal, wavelets are concerned with the differences between those

resolutions. This very short overview depicts only the intuition behind the motivation

of wavelet analysis, and is exhaustively discussed, for example, in [74].

The first wavelet ever constructed that had sufficient smoothness (it was even infinitely

differentiable) was the Meyer wavelet, see [76,77], yet it had no compact support. Among

all the other wavelets that followed, the ones most noticed and generally applied are the

Daubechies wavelets, which are associated with specific smoothness spaces in respect to

their order. The wavelet of the lowest order, usually denoted by D2, coincides with the

Haar wavelet depicted above.

The above continuous formulation of wavelets and scaling functions is convenient

for many theoretical aspects and analyses using the continuous wavelet transform (see

Section 3.2). Yet, for this thesis’ research purpose (that is, the motivation of extracting

a trend of a time series described in discrete time spots) it is not conducive. For the

discrete transform and application, through the two scale relationship one can derive

for every wavelet and scaling functions the discrete filter coefficients, which equal the

weights of a moving average filter as in Equation (2.2).

For example, the Haar wavelet and scaling filter coefficients, usually denoted by hi

and gi, respectively, are given by

h0 = −h1 = 1/
√
2 and g0 = g1 = 1/

√
2.

The scaling filter coefficients can be derived by analyzing the two-scale relationship for
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the scaling function, which is based on the nested subspace structure in Equation (3.4):

ϕ(t) =
√
2 =

∑

k∈Z

gkϕ(2t − k). (3.8)

For the wavelet function one has the similar relationship

ψ(t) =
√
2 =

∑

k∈Z

hkϕ(2t − k).

The wavelet filter coefficients are then given through

hk = (−1)kg1−k−L, (3.9)

with L the filter length, that is, the amount of non-zero scaling (and thus, wavelet)

coefficients. Thus, in general for the discrete wavelet transforms one has the filter banks

h0, . . . , hL−1 and g0, . . . , gL−1. For discrete wavelet filters the conditions

L−1∑

l=0

hl = 0 (3.10)

and
L−1∑

l=0

h2l = 1 and

L−1∑

l=0

hlhl+2n = 0 (3.11)

must hold for all n ∈ N
∗. These conditions are the discrete counterpart to the oscillation

and orthonormality conditions on the continuous wavelet functions, Equations (3.2) and

(3.1). Due to the relation between the scaling and wavelet filter coefficients in Equation

(3.9) analog conditions (must) hold also for the scaling filter bank, that is

∣∣∣∣
L−1∑

l=0

gl

∣∣∣∣ =
√
2
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and
L−1∑

l=0

g2l = 1 and

L−1∑

l=0

glgl+2n = 0.

Further specific details about wavelets’ characteristics and desiderata which play a role

during the wavelet construction process can be found in [32]. In this work the focus lies on

the wavelets most applied in practice, namely the Haar, the Daubechies D4 and the least

asymmetric LA8 wavelet. These wavelets are subject to different construction criteria

and at the same time are the ones of their type with the smallest support. Note that the

conditions in Equations (3.10) and (3.11) are necessary, but not sufficient to construct

reasonable high- and low-pass filters, which require further regularity conditions. In this

work none of these details about the construction of wavelets are discussed. Instead, the

focus is now on their utilization in the respective wavelet transforms.

3.2. Wavelet Transforms

As with wavelets, their respective transforms can be basically separated into the con-

tinuous wavelet transform (CWT) and several further subdivided discrete wavelet trans-

forms (DWTs). Both kinds of transform have in common that in regard to the scaling

function filter, the scaling coefficients are associated with averages on a certain scale

(a general notation used in the literature is λ for the CWT, and j for the DWTs),

while wavelet coefficients are associated with the differences between those averages on

these scales. This makes wavelets suitable for detecting specific features in a signal, like

spikes or jumps, that is, in case the wavelet coefficients are small, from the viewpoint of

this scale the signal is relatively smooth, while high coefficients indicate a rather jagged

patterns. Thus, wavelets are a tool to estimate, determine and characterize signals in re-

spect to their degree of smoothness on a certain scale, and also, due to their localization,

serve to detect rapid changes. This already hints at why wavelets can be considered to

be suitable for the task at hand.
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The Continuous Wavelet Transform

Given a continuous signal X(t) and the continuous formulation of any mother wavelet

ψ, the wavelet coefficients given through

W (λ, t) =

∫ ∞

−∞
X(u)ψλ, t(u) du (3.12)

span over the entire real time axis t. In this way one can see how wavelets implement

the idea of differences between weighted moving averages, with the bandwidth given by

supp(ψλ, t). For the practical application of the CWT the coefficients are evaluated on

certain points of a predefined mesh consisting of the intersection points along the scale

and the time axes. However, while the time axis and the mesh on it is naturally limited

by the length of the measured signal and the amount of registered data points, there

is no obvious restriction or choice for the grid in respect to the scale λ. This results

in conveying the analysis of a one dimensional signal to the analysis of a two dimen-

sional image, which besides that, is analytically more challenging to handle. Though the

picture depicted by the wavelet coefficients (i. e., each point’s brightness is correlated

with the wavelet coefficient’s value) easily reveals to the human eye certain structures

or outstanding events and their evolution across different scales, further processing is

not straightforward. This makes the direct application of the CWT not suitable for this

thesis’ purpose.

The Discrete Wavelet Transform

Contrary to the CWT, the discrete wavelet transform, as its name suggests, relies on

an initial discrete decomposition of a signal Xt defined at discrete time spots t. Further-

more, while for λ in Equation (3.12) there is no obvious upper bound, the maximum

(reasonable) decomposition scale denoted by J , can be derived by the signal’s length.

A DWT of level J performs a decomposition of a given signal X into one scaling

coefficient vector VJ and J wavelet coefficient vectors Wj, 1 ≤ j ≤ J . The length of each

vector is given by

Wj ∈ R
N/2j and VJ ∈ R

N/2J . (3.13)
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Applying on these vectors the inverse DWT yields an additive decomposition of the

original signal, that is

X = SJ +
J∑

j=1

Dj , (3.14)

in which SJ is the scaling approximation and Dj stands for the different detail vectors.

The scaling approximation is the outcome of a weighted moving average filter applied on

X, with the weights determined by the wavelet and the filtering bandwidth determined

by J . Though mathematically this bandwidth also depends on the wavelet and its basic

filter length Lwvlt, the filter is associated with a bandwidth of 2J for practical reasons

and, therefore, independent of Lwvlt. Also, the relation

S
J̃−1

= SJ +

J∑

j=J̃

Dj , (3.15)

holds, that is, the detail vectors represent the details lost at every coarser approximation

level, yielding a dyadic multiscale decomposition. Thus, the intuition behind this decom-

position is that one successively applies each time on level j a low-pass (i. e., the scaling)

filter on each preceding scaling approximation of the next lower level j − 1, rendering a

filter cascade. The separated differences between those two approximation levels of dif-

ferent coarse resolutions are then the outcome of the respective high-pass (i. e., wavelet)

filter on the same lower level approximation Sj−1. Though every scaling approximation

Sj, 1 ≤ j < J can be reconstructed, based on the vectors given in Equation (3.14)

usually one is interested only in those vectors named there.

As was seen in Section 3.1, different wavelets have supports of different lengths, hence

the scaling approximations Sj are associated with different effective filter lengths (i. e.,

moving window filter sizes). For every wavelet these window sizes on scale j are given by

Lwvlt
j = (2j − 1)(Lwvlt − 1) + 1. However, this is not of much relevance in practice, since

many of the scaling filtering coefficients gi near the borders g0 and gL−1 are very close to

zero, they are not of much relevance to the filtered outcome. Thus, for practical purposes

it suffices to ignore the length of the wavelet filter, and assume instead for every scale j

the scaling approximation Sj (or the scaling coefficient vector Vj) to be associated with
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(weighted) moving averages over λj = 2j . A similar argumentation holds for the wavelet

filter coefficients hi, for which Dj andWj are associated with (weighted) differences over

τj = 2j−1.

The calculation and derivation of W = [W1, . . . , WJ ] and VJ as well as Dj and SJ

can be done via the matrix-vector multiplication

W = WX and X = W⊤W,

with W = [W1, . . . , WJ , VJ ] determined by the wavelet and scaling filter banks. How-

ever, as this is computationally inefficient, the by [74] introduced pyramid algorithm is

used instead, which has a computational complexity of O(N).

Although the DWT has been used in many applications to detect cusps or jumps (see

also Section 2.4.1) it proved to be unsuitable for the here developed approach. This is

due to the fact that the by the DWT provided SJ and Dj series are not associated with

zero phase filters. That means, when circularly shifting the original time series X by a

certain amount, the decomposition output will not simply be the series shifted by that

same amount, but rather a series of a completely different shape. A very simple and

intuitive example of this is given in [88]. Thus, the multiresolution analysis’ series are

sensitive to the point where the measurement of the time series itself begun. This, in

addition to the DWT’s wavelet coefficient vectors being of different lengths as stated in

Equation (3.13), renders the DWT not convenient for the new approach, as will be seen

in Section 4.1.1. Though the possibility that the realization of a similar approach or

extension that will be presented in the next chapter may also be feasible for the DWT

is not excluded explicitly, for certain procedures it does not see fit, as will be outlined

at the respective steps of the algorithmic solution proposed in this thesis.

The Maxmimal Overlap Discrete Wavelet Transform

The MODWT2, upon which the algorithm is based, has already been considered ex-

tensively in the literature, see [88] and the references therein.

2In the literature this discrete wavelet transform is also known under the name undecimated, non-
decimated, shift invariant, translation invariant, time invariant, and stationary DWT.
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As for the DWT, the MODWT of level J performs a decomposition of a given signal

X according to Equations (3.14) and (3.15). However, unlike for the DWT, all wavelet

and scaling coefficient vectors yielded by the MODWT are in R
N , with N the length

of signal X. The reason for choosing the redundant MODWT over the ordinary one-

to-one DWT is due to the fact that the former transform is associated with zero phase

filters, that is, its filtered output detail and approximation series are shift-invariant.

Roughly speaking, if the signal X is shifted by ∆t, unlike in the DWT, the MODWT

generated VJ , Wj, SJ and Dj series will shift by ∆t as well. As the in the next chapter

developed algorithm depends on local detail reconstruction, this feature is vital. Due

to the inherent redundance, the price to pay is a higher computational complexity of

O(N log2N) compared to O(N) of the DWT. Yet, this complexity class is the same as

one has for the fast Fourier transform (FFT), see [19].

Principally, the MODWT wavelet and scaling filter banks, denoted by h̃l and g̃l re-

spectively, can be calculated analogously as they were derived for the DWT. However,

an easier way is to derive them directly from the DWT filter banks through the following

relationships, that is

h̃l = hl/
√
2 and g̃l = gl/

√
2. (3.16)

Note that the MODWT is no longer an orthogonal transform like the DWT. This may

be a drawback for certain applications in practice, but it has no effect on the analyses

of time series at hand. The most important effect this has is that with an orthogonal

transform white (i. e., uncorrelated) noise will also yield uncorrelated wavelet coefficients

carrying the information of the noise, that is, the white property carries over from the

signal domain to the wavelet coefficient vectors. Nevertheless, denoising schemes that

build upon, for example, white Gaussian noise, remain still applicable for the MODWT,

though with slight adaptations.

Common Remarks

The vectors provided by both the DWT and the MODWT depend on the wavelet

used, though the dependence in case of the MODWT is much less than for the DWT.

Different wavelets are thus used for different reasons: While the Haar wavelet has very
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small support and forms jumps and edges very well, wavelets of higher orders, such as

the Daubechies (D4) and the least asymmetric (LA8), are bases of higher smoothness

spaces but have also bigger support. This ensures a smoother shape of Sj, 1 ≤ j ≤ J ,

at the expense that each wavelet and scaling coefficient carries more information due to

the increased filter width, and is thus not as local as wavelets of lower orders. Although

the algorithm proposed in this thesis has been designed to work with any wavelet, the

representation of jumps or sudden regime changes in an otherwise smooth trend is the

main intention here. Therefore, in this work the focus lies on the wavelets named above,

being the ones most applied in practice.

As with other filters, wavelet transforms can be classified into the two classes of infinite

and finite impulse response filters, commonly denoted by IIR and FIR, respectively.

Given a signal (either continuous or discrete) that consists of a single impulse only and

is zero otherwise, filters can be classified whether their impulse response, that is the

filtered output of this impulse signal, is either finite (i. e., has compact support) or not.

It is easy to see, that in terms of moving windows filters an IIR filter corresponds to

a filter with an infinite window size, that is the filter function or filter coefficient series

has no compact support. Thus, they are also said to have infinite memory, as regardless

of where the moving filter window is centered, the impulse still has some effect on the

output. Analogously, FIR filters are characterized by a finite window size, as is common

with the (non) linear filters presented in Sections 2.2 and 2.3.

From the above discussion it is easy to see that discrete wavelet transforms (either

DWT or MODWT) are always finite impulse response filters for wavelets with compact

support. That is, for each of these transforms the impulse response also has compact

support. Infinite impulse response filters are also possible for both the CWT and DWTs

using wavelets with infinite support. Though these wavelets are still localized (while

decaying sufficiently fast towards zero), they always maintain some part in each im-

pulse response coefficient calculation, as the filtering windows size is also infinite. This,

of course, holds only for theoretical analyses. In numerical implementations the filter-

ing window size must be limited for reasons of computational feasibility, and thus, the

wavelet cut off beyond a certain threshold.
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Note that in this work the scales are denoted by 1 ≤ j ≤ J , with J wavelet coefficient

vectors Wj and detail series Dj , and one scaling coefficient vector VJ and the corre-

sponding scaling approximation series SJ . In this case, for the highest scale J the series

SJ is the coarsest approximation in the multiresolution analysis. That means that the

lowest scale j = 1 contains the highest frequencies.

In summary, discrete wavelets can be interpreted as moving weighted average filters

and thus, linear filters. What makes their usage favorable is the multiscale analysis they

yield, while remaining computationally efficient. Furthermore, the coefficient vectors

allow to analyze and compare distinct features on different scales at the same time,

analyzing probable relations. A very thorough mathematical treatment of the above

topics is provided in [118].

Wavelet Transfer and Squared Gain Functions

The discrete wavelet transform is essentially a linear filter and, therefore, it can also

determined a priori how frequencies in the signal X will be attenuated, that is, to

what degree they will pass to the final detail and approximation vectors Dj and SJ ,

respectively. However, unlike the ordinary linear filters introduced in Section 2.2, there

is not only one low-pass filter that blocks the higher frequencies in a certain range, but

rather, due to the multiscale decomposition, there are a series of high- and band-pass

filters that are linked to the wavelet filters and their respective coefficient and detail

vectors. Additionally, there is one low-pass filter that refers to the scaling filter and its

approximation SJ . These functions are in relation to one another as follows.

Given the basic wavelet and scaling filter coefficients (i. e., the weights) as in Equation

(2.2), one can derive their transfer functions (see Equation (2.3)) H and G as usual via

the discrete Fourier transform, that is

H(f) =
L−1∑

j=0

hje
−i2πfj and G(f) =

L−1∑

j=0

gje
−i2πfj ,

where hj and gj are the respective wavelet and scaling weights, i. e., filter coefficients. As

each decomposition level corresponds to a filter cascade (i. e., a sequence or concatenation
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of filters) the transfer functions for each level 2 ≤ j ≤ J are given through

Gj(f) =

j−1∏

i=0

G(2if)

and

Hj(f) = H(2j−1f)Gj−1(f) = H(2j−1f)

j−2∏

i=0

G(2if). (3.17)

From these functions the according squared gain functions can be derived, which de-

termine how frequencies are attenuated for each scale. Equation (3.17) also provides a

clear notion that each scaling approximation on level j is a concatenation of the previous

1, . . . , j−1 scaling filters, while the wavelet filter Hj results from applying the next lower

level filter Hj−1 onto the scaling approximation of the very same level. As remarked in

Section 2.2.2 there exist no exact frequency stops, which holds for wavelet transforms

being linear filters, as well. For practical issues the low-pass scaling filter related to any

Daubechies high- and band-pass wavelet filters are associated with frequency pass-bands

0 ≤ |f | ≤ 1/2J+1 and 1/2J+1 ≤ |f | ≤ 1/2j ,

respectively. This association is independent of any specific wavelet chosen, and is thus

only to be considered to be a practical convenience, though following standard engineer-

ing practice.

The reason why in wavelet analysis one often refers to the squared gain function and

not only to the gain function is due to the wavelets construction process. One can derive

a condition on this squared gain function that is equivalent to Equations (3.10) and

(3.11), that is,

H(f) +H(f +
1

2
) = 2 or alternatively G(f) + G(f +

1

2
) = 2

for all f . Due to the direct dependence between the scaling and wavelet filters (see
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3.2. Wavelet Transforms

Equation (3.9)), this condition can alternatively be formulated as

G(f) + G(f +
1

2
) = 2 or G(f) +H(f) = 2.

Above statements hold for all DWT transfer and squared gain functions. As in Equa-

tion (3.16) their MODWT counterparts are also related to the DWT ones through

H̃(·) = H(·)/
√
2 and G̃(·) = G(·)/

√
2, (3.18)

which leads to analog conditions for the MODWT.

Example 3.2. In Figures 3.1 and 3.2 the Haar and D4 squared gain functions for both

the DWT and the MODWT are depicted, with the scaling level set to J = 2.3 For

both transforms the squared gain functions differ only in magnitude, but not in shape.

This is in accordance to the scaling of filter coefficients in Equations (3.16) and (3.18).

Furthermore, it can be seen clearly how G1 is always a low-pass filter, H1 a high-pass

filter, and H2 a band-pass filter. For higher decomposition levels, i. e., J > 2, the wavelet

filters for j > 1 form additional band-pass filters. However, from the perspective of the

level itself, i. e., Gj−1, Gj is always a low-pass, and Hj always a high-pass filter.

Handling Boundary Distortions

As with all moving window filters, the question arises how to handle, i. e., to filter, the

data points at the extreme ends of the signal, when the window passes over the signal’s

natural (i. e., measured) length. In this case, there are several alternatives the analyst

can choose from.

1. One possibility would be to ignore these points completely, that is, if LW denotes

the moving window size, the signal is only filtered until the window reaches the

boundaries of X. Thus, instead of a filtered output X̂1, . . . , X̂N for the whole

signal, this yields only X̂LW /2, . . . , X̂N−LW /2. This shortened signal may not be

3These figures were plotted using the WMTSA Wavelet Toolkit for MATLAB, available at http://

www.atmos.washington.edu/~wmtsa/, last accessed on the 22th of November 2010.
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satisfying if one is interested in the end points of the signal as well, even if they

are biased in some way.

2. As the moving window approaches the end of X, one can also cut the window

(i. e., shorten its length) and adapt the weights of the filter accordingly. Though

no bias is introduced in this way, several properties of the filter (e. g., its frequency

attenuation, see Section 2.2.2) change or probably do not hold any longer.

3. Another approach is to not ignore the extreme filtered points but to extend the

signal artificially beyond its measured extremes by methods that try to minimize

the bias introduced by this extension. The most common methods in practice are

as follows.

a) The most simple method is to set the required data points X−LW /2, . . . , X0

and XN+1, . . . , XN+LW /2 to zero. This, of course, is not a reasonable choice

in most applications and thus this trivial method should only be used in

exceptions, for example, when the following alternatives are not reasonable

due to some reason.

b) The missing data points are estimated according to an extension of the original

signal via a linear, polynomial or spline regression curve through the latest

data points of X at both ends, see [24] for further details on these procedures.

Depending on the model, in many cases this approach delivers reasonable

results, but can also introduce an additional bias, if the model was chosen

badly.

c) The procedure favored in this thesis and which is applied throughout this

work for LLSA as well as the benchmarks compared to it, is the one of cir-

cular extension, that is, the respective first (last) points of X substitute the

required unknown points at the other end. Though this method must be used

with caution and usually only on signals where it is reasonable (i. e., where

circularity can be assumed in some way) it works well in practice.
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Chapter 3. Wavelets and Their Transforms

Since any of the methods in 3b and 3c introduce an unknown bias, the choice should

depend on the signal itself and/or the analysts preferences. However, circular extension

is certainly less computationally extensive than the other non-trivial methods.

Remark 3.3. The reader is urged not to confound the circular boundary extensions

with the circular shifts that will be introduced in Section 4.1.1. While above circular

boundary extensions enable to filter a signal X at its borders where the window exceeds

the end of the measured signal, the later introduced circular shifts serve only to align

the different coefficient vectors in time.4

3.3. Wavelet Trend Extraction and Denoising Methods

The vector SJ is the trend estimation of a wavelet transform from the perspective of

the wavelet used. As was mentioned, the output from the DWT is much more dependent

on the choice of wavelet than the MODWT. From a practical point of view this already

favors usage of the MODWT, as the result will generally be more robust, that is, in this

case independent of the particular choice of wavelet. Furthermore, the estimated trends

of the DWT reflect the structure of the wavelet (i. e., a blocky structure for the Haar

wavelet, shark fins for the D4, and so on), which renders the result being biased (i. e., the

time series itself is not the only main decisive factor) by the wavelet choice and makes it

difficult to compare the output and its performance to other benchmarks (consisting of

either other wavelets or distinct filtering methods). For example, the DWT employing

the Haar wavelet estimates a trend consisting only of jumps itself.

Furthermore, as the focus of the here considered analysis is on the recognition and

representation of singular, isolated events in a time series, these events should also be

captured with a high accuracy. The DWT is also not robust in this case: As the shape of

the estimated trend as well as the detail series are dependent on the relative starting point

of the time series, measuring the same time series from slightly different starting points

will usually lead to different coefficient vectors and output series. This is unfavorable,

as it means that even for the same wavelet and the same time series one cannot rely on

4This displacement in time happens during the transformation into wavelet coefficient vectors, using
the pyramid algorithm.
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3.3. Wavelet Trend Extraction and Denoising Methods

these results, that is, for different starting points also different jumps and slopes might

be estimated.

Thus, the non-robustness of the DWT with respect to the choice of wavelets as well as

the starting measurement point makes it unfavorable for the purpose of jump analysis.

The MODWT, however, is insensitive to these to factors, that is, since the MODWT

can always be associated with a zero phase filter, analyzing the by m shifted time series

T mX will simply result in equivalently shifted vectors T mDj and T mSJ . The scaling

and wavelet coefficient vectors are also shifted accordingly (i. e., they are shifted versions

of the original vectors), though the amount of shift depends on the wavelet as well as on

the scale j (q. v., Section 4.1.1).

Regarding the wavelet, though there is still a difference in the filtered output SJ

dependent on the choice of wavelet, it is insignificant. One only has to consider that,

due to the different supports each wavelet possesses, there might be larger differences

near the boundaries, as the moving window size depends on the scale as well as on the

wavelet’s support. However, this is the same issue with the other (non) linear filters

presented in Sections 2.2 and 2.3.

Yet, the choice of wavelet still remains an important issue in the MODWT analysis due

to their different transfer (and thus, squared gain) functions, as they provide different

frequency passbands. Also, when considering the primary goal, though the differences

for each wavelet in SJ are negligible, the representation of jumps and steep slopes in

long-term trends is carried out with different performance and effects. This topic is

further discussed in Sections 5.1.2 and 5.2.1.

When considering nonlinear wavelet transforms or the manipulation of wavelet co-

efficient vectors as LLSA does for detail reconstruction, readers proficient in the area

of wavelets may think about the well-known works of [35–37] and the many applica-

tions building upon their framework. They propose several thresholding and shrinkage

methods dependent on the signal’s inherent noise (given that it can be measured or

estimated), to obtain a signal without this noise.

The idea behind these approaches is that if a deterministic signal is corrupted by

63



Chapter 3. Wavelets and Their Transforms

(additive) noise as in Equation (2.1), the relevant information, that is, the information

that contains information about the signal itself but not the noise, is carried mainly

in the wavelet coefficients exceeding a certain threshold δ. All coefficients below this

threshold δ can be contributed to noise. Several techniques have been proposed to handle

(i. e., adjust) these low value coefficients and their transition to the ones exceeding the

threshold. The most common methods are hard and soft thresholding. Hard thresholding

simply sets all coefficients below δ to zero, that is, for all 1 ≤ j ≤ J holds

Wj, t =




Wj, t for |Wj, t| > δ

0 otherwise.
(3.19)

Further employed thresholding techniques are soft, mid and firm thresholding. They dif-

fer from hard thresholding in the way that coefficients not exceeding a certain threshold

(not necessarily δ). Additionally to thresholding there exists the akin concept of shrink-

age. Shrinkage, by definition, can differ from thresholding in the sense that nonzero

coefficients are always scaled to nonzero values.

Above cited works rely on specific kinds of noises, mostly additive white (i. e., inde-

pendent and identically distributed) Gaussian noise, for which these rules can be shown

to be asymptotically optimal or optimal in other senses or measures. Additionally, these

works and have been extended to other noise settings like non-Gaussian and correlated

noise, also including level dependent thresholds, see [6, 63,85].

Though these denoising and signal estimation schemes and thresholds were originally

developed for the DWT only, with slight modifications (due to the strong connections

between the filter coefficients in both transforms) they can be applied to the MODWT

as well, and thus, are also a promising candidate. Therefore, in the literature there

have been considered several kinds of thresholding, denoising and shrinkage rules for the

original as well as the undecimated DWTs.

All above cited denoising techniques, though they have shown to perform (asymptot-

ically) optimal under certain assumptions and requirements, suffer certain drawbacks:

First of all, they assume that the noise structure (e. g., white or correlated Gaussian
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3.3. Wavelet Trend Extraction and Denoising Methods

noise) and its variance (or the respective threshold) are known or can be estimated

through various techniques like cross-validation (see [83]) or via Stein’s unbiased risk

estimator (SURE) (see [106]). Progressing works generalize these works even more, that

is, they weaken these requirements, and extend the notion of thresholding and shrinkage

to, for example, non-necessarily Gaussian noise [10, 11]. Yet, all these approaches base

their method on the assumption that some kind of stochastic noise is present. However,

this does not include the notion of, for example, medium- and short-term deterministic

business cycles or fluctuations that follow a regular pattern. These kind of phenomena

would still be included if one uses denoising techniques not for signal, but for trend

estimation. Furthermore, this procedure leaves it unclear where to classify jumps, which

also can be seen as coming from a noise distribution with heavy tails, which has been

elaborated, for example, in the financial sector, see [94,95].

Though both approaches can be considered similar at first glance, they fundamentally

differ from each other: As [99] already observed, there is a distinct difference between

the complementary approaches of denoising (as it is done in above references) and noise

smoothing, which is this thesis’ method for trend estimation. While denoising assumes

some kind of well-defined noise present in the signal and attempts to separate one from

another, noise smoothing often assumes that the noise (being of some kind maybe not

more explicitly specified, including stochastic as well as deterministic components) can

be extracted by some form of averaging over the signal, which usually tends to smooth

out sharp features of the underlying signal. Note that in case of, for example, addi-

tive Gaussian noise, one can expect both methodologies to approximately deliver equal

results, as averaging over normally distributed noise should render the same effect as

removing it, given an appropriate filtering window size.

Thus, the latter method of smoothing implicitly contains the basic assumption that

the signal itself, which is corrupted by noise, is smooth. This of course does not hold for

this work, where a signal containing sudden changes as the final result of the smoothing

process is explicitly expected. Hence, in this particular case, the notion of trend estima-

tion via smoothing weighted averages, as it is also seen from a wavelet perspective, is

not appropriate and cannot applied any longer as this. The algorithm developed in the
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Chapter 3. Wavelets and Their Transforms

next chapter tries to achieve both: A filtered signal that captures the signal’s features

like sharp jumps and steep slopes, and is smooth otherwise.

3.4. Summary

In this chapter wavelets and their several transforms were introduced. In the discrete

setting wavelets are usually seen as filter banks that decompose via the discrete wavelet

transform a given signal into several scales. Their characteristics (e. g., linearity and

locality) and their already established application fields in jump detection, signal ap-

proximation, and noise reduction indicate the wavelets’ suitability to serve as a base for

a new approach that satisfactorily handles the tasks stated in Section 2.1, and at the

same time fulfills the requirements in Section 2.5.
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Chapter 4.

The Local Linear Scaling Approximation

In this chapter the main contribution of this thesis is given. The algorithm is introduced

in Section 4.1, comprising its derivation, a mathematical subsumption and remarks, as

well as its usage. The algorithm’s properties, that are, its computational complexity,

the local linear filtering property, as well as its impulse and step response function, are

shown in Section 4.2.

4.1. Methodology and Implementation

This section discusses the algorithm itself. In Section 4.1.1 the local linear scaling

approximation (LLSA) is derived. Section 4.1.2 summarizes the algorithm and states

additional remarks. Section 4.1.3 contains further information about implementation

issues and the concrete usage of LLSA.

4.1.1. Derivation

Nonlinear filters often combine nonlinear with subsequent linear operations to further

smooth out details having passed the nonlinear edge preserving filtering procedure. The

MODWT multiscale decomposition enables the development of an algorithm that follows

a different approach. The main idea is to start with the very coarse approximation SJ

and reconstruct the lost details near the jumps that have been smoothed out, by using

the information contained in the detail series Dj . The main difference, contrary to
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Chapter 4. The Local Linear Scaling Approximation

many methods presented in Sections 2.2 to 2.4, is that the algorithm does not apply the

same filtering rule throughout the whole time series (this is only done for achieving the

starting series SJ). Instead, the final nonlinear filtering rule, consisting of the primary

linear filtering process and the nonlinear reconstruction of details, adapts itself according

to the data. This data dependent approach is thus, localized like the wavelets themselves.

The basic procedure of LLSA is as follows. Based on what was discussed in Chapter

2, it can easily be seen that the approach must start with a linear filter, as otherwise

Requirement R2 could hardly be fulfilled anymore. Therefore, this linear filter (i. e., the

MODWT) is then extended into a nonlinear procedure that allows for a more accurate

display of sudden changes, thus, satisfying Requirement R1. The algorithm then detects

these sudden changes in order of their significance employing a heuristic rule that also

might be exchanged, depending on the information available on the time series (see Sec-

tion 6.2). However, as will be seen, this detection is interweaved with the reconstruction

of details. This step is the most crucial one of the algorithm, as it determines whether

in the modified output signal all details of jumps and other phenomena are captured,

and if breaks occur between the smooth and refined areas of the output signal.

In its very basic design, the LLSA algorithm requires that in addition to the scaling

level J and the wavelet, the expected amount of jumpsK to be stated, along with 0 ≤ Λ ≤
J , which determines up to which scale details should be reconstructed. These minimal

additional input parameters that can bet set heuristically ensure that the proposed

algorithm is still applicable on all discrete signals the MODWT can be applied onto, in

this way attending Requirement R3. Then, LLSA automatically detects the regions to

be refined and restores details, thus improving the shape of jumps and slopes that are

blurred in SJ .

The main intuition behind LLSA is to analyze the abstract jump wavelet coefficient

structure one has in Wj and to carry this structure over to the actual signal. As depend-

ing on the respective nature of the sudden change, the heights of this structure might

change as well. The idea is that these structures can still be determined through their

change of signs that are also independent of the respective scale j, but nonetheless de-

pend on the wavelet used. Thus, considering the necessary change of signs on the wavelet
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coefficient plane to capture a pure jump without any noise, this also (approximately)

holds for a noisy time series. Using this observation complete sudden phenomena can

be captured without adding unnecessary details to the output series.

Note that in this section the terms reconstruction and refinement are used analo-

gously. From the viewpoint of a moving window filter the procedure of LLSA equals the

narrowing of the bandwidth of the filter, that is, the window size. However, from the

viewpoint of the time series itself and its multidecomposition, it is a reconstruction of

details lost on scale J .

In the following, the algorithm is stated in detail, by deriving it step by step. As

the computations for each scale j depend on the results derived on scale j + 1, first the

wavelet coefficient vectors have to be aligned. Then, the algorithm’s rule of detecting the

first jump on scale J is explained, followed by the determination of the area in which lost

details should be reconstructed. After that, by applying the same rules, the algorithm

successively determines the remaining K − 1 jumps and their areas. Having determined

all jumps on scale J , a modified rule is applied on the lower scales 1 ≤ j < J . Finally,

the lost jump details are reconstructed.

Aligning the Wavelet Coefficient Vectors

When applying the MODWT onto X, J wavelet coefficient vectors W j are yielded,

which, as derived through the computationally efficient MODWT pyramid algorithm

(first introduced for the DWT by [74]), are not exactly aligned with the events inX. Yet,

as the reconstruction of jump details on lower scales depends on the local information

derived on the higher scales, LLSA is sensitive to coefficient vectors not aligned correctly.

The correctly aligned vectors Wj are derived by circularly shifting eachW j by −Lwvlt
j /2,

that is,

Wj = T −Lwvlt
j /2W j , (4.1)

with T −1 the circular left shift operator

T −1W = T −1[w1, w2, . . . , wN−1, wN ] = [w2, w3, . . . , wN−1, wN , w1]
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and

T −nW = T −n+1T −1W, n ∈ N

defined successively. The right shift operator T n is defined analogously. Lwvlt
j denotes

the effective wavelet filter width

Lwvlt
j = (2j − 1)(Lwvlt − 1) + 1

for each scale j and Lwvlt the basic filter length as stated in Table 4.1. Note that the

alignment shift in Equation (4.1) holds only for the wavelets named in Section 3.2. For

others, the shift-amount might change dependent on the order and type of the wavelet

(see [88] for further details).

First Jump Detection

In Section 2.4.1 a number of references that consider jump detection were already

cited. In this thesis, a simple rule of determining jump locations is considered, which,

however, can be substituted or combined with any other of these methods, as is depicted

in Chapter 6. The methodology of LLSA is based on the observation that the wavelet

coefficients on scale J denote the differences between the weighted moving averages in

SJ . Thus, as one is usually interested in refining successively only those jumps containing

the highest potential of improvement for SJ , the first index indicating the biggest jump

is determined by

lW := argmaxt(|WJ, t|).

This provides the first sudden change with the highest irregularity from the point of view

of the original smoothed signal SJ , ignoring the wavelet coefficient vectors Wj associated

with higher frequencies on the lower scales 1 ≤ j < J . Note that this step is not directly

dependent on the wavelet used (though the wavelet coefficient vector WJ is).

First Reconstruction Boundary Determination

Having determined the first jump, the boundaries around it (in which the details shall

be restored) have to be fixed. It is presupposed that these boundaries are set accordingly

to ensure that
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• The complete jump should be captured,

• No unnecessary details beyond the jump should be added, and

• The transition between the modified sections and the original output SJ should be

smooth (i. e., with no artificial jumps being added).

The heuristic rule to be derived, coping these requirements by determining the bound-

aries to each side of the jump, depends on the wavelet. The intuition behind this rule

is the observation that with respect to jumps the general structure of the wavelet coef-

ficients remains the same, whether any noise is present or not. This is due to the fact

that higher scales almost only contain low frequencies and are, thus, hardly affected by

high-frequency noise. Therefore, if one analyzes the jump wavelet coefficient structure1

for a particular wavelet and transfers it to the real signal, this will approximately capture

the noisy jump there as well. The following definition states the relevant parameters for

this procedure.

Definition 4.1. Be Xs a signal containing a single step (and being constant otherwise),

and be W s
j , 1 ≤ j ≤ J the wavelet coefficient vectors of the MODWT applied on Xs.

With

lsj := argmaxt(|W s
j, t|)

and

lsmin, j := min{t | t ∈ supp(W s
j )}, (4.2)

lsmax, j := max{t | t ∈ supp(W s
j )}, (4.3)

1Another naming convention would be wavelet coefficient step response, see Section 4.2.3
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Table 4.1.: nα, nβ and Lwvlt for different wavelets

Wavelet nα nβ Lwvlt

Haar 1 1 2
D4 2 4 4
LA8 5 4 8

one defines

nwvlt
α, j :=

lsj−1∑

t=lsmin, j

| signW s
j, t+1 − signW s

j, t|
2

, (4.4)

nwvlt
β, j :=

lsmax, j∑

t=lsj+1

| signW s
j, t−1 − signW s

j, t|
2

. (4.5)

As the general shape of this jump wavelet coefficient structure in supp(W s
j ) remains

the same for all 1 ≤ j ≤ J and all wavelets considered in this work, one may write

nwvlt
α = nwvlt

α, j ,

nwvlt
β = nwvlt

β, j

for all 1 ≤ j ≤ J . In Figure 4.1 theW s
j for the Haar and D4 wavelets are depicted. Also,

keeping in mind that nwvlt
α and nwvlt

β depend on the wavelet (because the W s
j vectors

themselves depend on the wavelet used in the transform), the identifier for the wavelet

can be omitted and simply written as nα and nβ. For the Haar, D4 and LA8 wavelet

these values are stated in Table 4.1.

Remark 4.2. Theoretically this approach only works for wavelets with compact support,

as otherwise in Equations (4.2) and (4.3) would always yield

lsmin, j = −∞, lsmax, j = ∞
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Figure 4.1.: Wavelet coefficient structure for step functions

and nα = nβ = ∞. Yet, in practical applications, as the wavelets themselves decay

exponentially, their small coefficients can be cut off, with an assessable loss of precision.

In order to reconstruct the whole jump in X the left boundary α is set to be the

maximal index so that at least nα change of signs occur between α and lW . Also,

the right boundary β is set the to nβ according minimal index. Thus, the boundaries

satisfying above requirements are given by

α = max

{
l ∈ [1, lW − 1]

∣∣∣∣
lW−1∑

t=l

| signWJ, t+1 − signWJ, t|
2

≥ nα

}
(4.6)

β = min

{
l ∈ [lW + 1, N ]

∣∣∣∣
l∑

t=lW+1

| signWJ, t−1 − signWJ, t|
2

≥ nβ

}
. (4.7)

This area around the jump is denoted by ΩW := [α, β].

The here depicted procedure distinguishes LLSA from other alternative filtering pro-

cedures. As LLSA essentially enables a refinement that could also be achieved by nar-

rowing any other filter’s bandwidth, only the above heuristic employs the possibility
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to automatically determine these refinement sections without requiring any additional

thresholds to determine their limits.

kth Jump Detection and Boundary Determination on Scale J

Detecting further jumps follows the same procedure as above, with the difference that

the algorithm has to exclude already detected jumps and their surrounding areas. For

this, it suffices to define

ΩW
1 := ΩW

and subsequently, for detecting the kth jump, 1 < k ≤ K, to determine

lWk := argmaxt
(
|WJ, t|

∖ ⋃

i=1, ..., k−1

ΩW
i

)
. (4.8)

As above, the corresponding ΩW
k := [αk, βk] are set accordingly, whereas in Equations

(4.6) and (4.7) lW is substituted by lWk .

kth Jump Detection and Boundary Determination on Scales j < J

The above procedure yields ΩW
k , 1 ≤ k ≤ K for the wavelet coefficients on scale J .

For the lower scales J − Λ ≤ j < J the parameters lWj, k are determined by

lWj, k := argmaxt
(
|Wj, t|

∣∣ t ∈ ΩW
j+1, k

)
.

If one would determine the initial refining points according to Equation (4.8), other

jump locations than the ones in WJ could be detected, as the jumps would be detected

according to the point of view of the higher frequencies on the lower scales j < J . The

regions

ΩW
j,k := [αj, k, βj, k]

covering the jumps are determined as above.
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Detail Reconstruction

Once all areas ΩW
j,k have been determined, for 1 ≤ j ≤ J are set

W̃j, t =





Wj, t for t ∈ ⋃
j=J−Λ, ..., J
k=1, ...,K

ΩW
j,k,

0 otherwise.

(4.9)

This way, only the wavelet coefficients containing information about the jump details

are kept, and all other coefficients are discarded by setting them to zero. Applying the

inverse MODWT onto the modified circularly backshifted wavelet coefficient vectors

W̃ j = T Lwvlt
j /2W̃j

yields the modified detail vectors D̃j , now containing only the details near the jumps up

to scale J − Λ. The adapted approximation is given by

SLLSA
J = SJ +

J∑

j=1

D̃j = SJ +

J∑

j=J−Λ

D̃j . (4.10)

Therefore, the algorithm can now be formulated as follows:

4.1.2. Final Formulation and Remarks

Given the input (J, K, Λ) together with the wavelet, the algorithm LLSA(J, K, Λ)

determines for every 1 ≤ k ≤ K and J − Λ ≤ j ≤ J

ΩW
j,k := [αj, k, βj, k] (4.11)
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Chapter 4. The Local Linear Scaling Approximation

with

αj, k := max

{
l ∈ [1, lWj, k − 1]

∣∣∣∣
lW
j, k

−1∑

t=l

| signWj, t+1 − signWj, t|
2

≥ nα

}
, (4.12)

βj, k := min

{
l ∈ [lWj, k + 1, N ]

∣∣∣∣
l∑

t=lW
j, k

+1

| signWj, t−1 − signWj, t|
2

≥ nβ

}
, (4.13)

and

lWJ, k := argmaxt
(
|WJ, t|

∖ ⋃

i=1, ..., k−1

ΩW
J, i

)
, (4.14)

lWj, k := argmaxt
(
|Wj, t|

∣∣ t ∈ ΩW
j+1, k

)
for J − Λ ≤ j < J. (4.15)

After that, the modified wavelet coefficient sectors are set as in Equation (4.9), onto

which the inverse MODWT is then applied, with the final output signal given as in

Equation (4.10).

This section is concluded with the following remarks (these were collected here in

order not to distract from the algorithm’s derivation, to which they are not vital).

Boundary Distortions

It is important to note that in Definition 4.1 it is assumed that Xs is large enough, so

that the coefficients in supp(W s
j ) are not affected by any boundary distortions, i. e.,

∀ t ∈ supp(W
s
j) holds t /∈ [1, . . . , min{Lwvlt

j − 1, N}]

with W
s
j the backshifted (i. e., unaligned) wavelet coefficient vector.
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Simplification for Haar Wavelets

In case of the Haar wavelet, due to its simple jump coefficient structure (see Figure

4.1a), Equations (4.12) and (4.13) simplify to

αj, k = max
{
l ∈ [1, lIj, k − 1]

∣∣ signWj(l) 6= signWj(l
I
j, k)

}
,

βj, k = min
{
l ∈ [lIj, k + 1, N ]

∣∣ signWj(l) 6= signWj(l
I
j, k)

}
.

Change of Sign for Coefficients Being Zero

The above definitions of αj, k and βj, k in Equations (4.12) and (4.13) also accounts for

wavelet coefficients being zero. These coefficients, with their sign being zero as well, are

negligible, as they do not contain any information, that is, they do not add any further

details to D̃j . A repeated change from a positive (negative) sign to coefficients being

zero and back is treated equal to a change between opposite signs.

Neglected Selection of Outliers

Note that, fortunately, outliers do not very much affect wavelet coefficients on higher

scales and therefore will usually not be selected for refinement before any significant

jumps by the rule in Equation (4.14).

Generalization of K and Λ

With the formulation of the algorithm as above K sections are detected and each

of them is refined up to Λ scales. By interpreting this as a K-vector (Λ, . . . , Λ) this

notion can be generalized by considering the K-vector (Λ1, . . . , ΛK) and refine, either

in their order of detection or their occurrence in time, the respective section up to Λk,

1 ≤ k ≤ K. By substituting Λ through Λk in Equation (4.15) the formulation of the

algorithm remains exactly the same. This is also how the implementation in MATLAB

for evaluation of LLSA in this thesis was done, see Section 4.1.3.

Extreme values for αj, k and βj, k

Naturally, the extreme values for αj, k and βj, k are given by 1 and N , respectively.

The disadvantage is that one cannot state any bounds on these prior to any further
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analysis of the multiresolution analysis itself. On the other hand, if the extreme values

are reached, this is still in complete concordance with the algorithm, as it means that

from the perspective of the wavelet coefficients on that respective scale the jump is not

yet captured completely. However, the empirical studies (see Sections 5.1.3 and 5.2) lead

to the conclusion that these extreme cases usually do not happen in practice, unless the

jump itself is near the limits of the time series itself. This possibility was excluded in

this implementation, as the jump detection for wavelet coefficients affected by boundary

conditions was excluded as well.

Limited Transition Possibility to the DWT

Considering Equations (4.12) to (4.15) it is clear why only the MODWT is suitable

for this approach while the DWT can be seen to be an insufficient starting point. As

mentioned in Section 3.2 the length of the DWT generated wavelet coefficient vectors

is not equal to N but with N/2j limits the signal length of X to be a multiple of 2J .

Furthermore, the quantity of wavelet coefficients depends on scale J , that is, for higher

levels there is only a sparser representation that also causes the approximation and

detail series to be particularly dependent on the shape of the wavelet. Specifically this

sparse representation is it what makes the DWT not suitable for LLSA, as the algorithm

requires the step wavelet coefficient structure to be consistent over all scales. For the

DWT, there does not even exist a consistent shape due to the sparse (but non-redundant)

representation, while additionally the wavelet coefficients differ in shape even if the whole

signal X is only circularly shifted. Therefore, it can be concluded that the DWT is not

suitable for this approach based on consistent wavelet coefficient structures.

4.1.3. Implementation and Usage

The algorithm was implemented in MATLAB using the WMTSA Wavelet Toolkit

for MATLAB2. LLSA’s MATLAB code is freely available3 and requires, besides above

named package, no further components. It is directly usable without any further instal-

lation process and is used as follows.

2http://www.atmos.washington.edu/~wmtsa/, last accessed on the 22th of November 2010.
3To obtain it please contact the author of this work.
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Table 4.2.: LLSA default input parameters

Parameters Values Default

wavelet ’haar’, ’d4’, ’la8’ ’haar’

J 0 ≤ J ≤ log2(1.5N) log2(
N

L−1 + 1)

K 0 ≤ K ≤ N 1
Lambda 0 ≤ Lambda ≤ J J

Basic Usage

The function call is given by

[SJt llsa, SJt modwt] = llsa(data, wavelet, J, zeros(K,1) + Lambda);.

The output consists of the LLSA’s and the MODWT’s signal approximation vectors

SLLSA
J and SJ , SJt llsa and SJt modwt, respectively. data denotes the univariate time

series vector (either row or column). This is the only mandatory parameter. All other

input parameters, if not specified, are set to the defaults shown in Table 4.2. wavelet

specifies the wavelet filter to be used in the MODWT and its LLSA extension. Though

the MODWT works with a variety of other wavelets not considered in this work, for now

its usage is restricted to the ones listed in Table 4.1, since LLSA requires the according

nα and nβ parameters. Scale J is restricted to be a positive integer with an upper

bound derived through the length N of the input data. Although theoretically J can

be chosen to be arbitrarily high, [88] explains the reasonable upper bound (e. g., at least

one coefficient in VJ must remain unaffected by boundary distortions) set as the default

value. Naturally, K, the number of sections to be refined, must be a positive integer as

well and is bounded by N , too. For the refinement scale Lambda the case is similar, but

it is bounded by the initial approximation scale J.

Advanced Usage

Further optional input and output parameters are implemented and serve for a better

understanding of LLSA’s procedure, that is, in order to avoid a black box impression.
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The following additional parameters are specified and can be accessed as follows.4 The

input parameters are now given by

(data, wavelet, J, Lambda vec, ind sec, not ind sec).

While data, wavelet, and J remain as above, a generalization of the zeros(K,1) +

Lambda parameter is now given through Lambda vec. This is the parameter stated in

the respective remark in Section 4.1.2, that is, instead of refining all sections up to

the same scale Lambda, the kth section is now refined according to the kth entry in

vector Lambda vec. Lambda vec(k) may either refer to the kth discovered section as in

Equation (4.14) or the afterwards chronologically sorted regions. In this implementation

the latter method is used. Note that the vector Lambda vec already contains implicitly

the information about the K sections to refine. Furthermore, the double column vectors

ind sec and not ind sec are stated. The former indicates sections where the LLSA

algorithm is forced to determine the initial points for refinement lWJ, k, while the latter

prohibits the automatic detection (outside of ind sec) for any of these in the specified

intervals. For the output parameters there are

[SJt llsa, SJt modwt, fin part, DJt modwt, DJt llsa, WJt modwt, WJt llsa].

Besides the above explained LLSA and MODWT approximation vectors, fin-part pro-

vides the final partition of LLSA’s detected refineable regions ΩW
j,k for all J−Λk ≤ j < J ,

that is, a matrix of dimensions (K, 2, max(Lambda vec)). Additionally, to monitor which

and how many details were reconstructed at each level, the original detail series and

wavelet coefficient vectors, DJt modwt and WJt modwt, respectively, are provided, as well

as the according adapted output from LLSA, DJt llsa (for D̃j) and WJt llsa (for W̃j).

A simple example for the input parameters can be given as follows.

...= llsa(data, ’d4’, 7, [4 2], [450 550], [101 200; 301 400]);.

This conducts a level 7 MODWT on the data with a D4 wavelet. LLSA will refine

the first section (ordered in time, independent whether it was the first or second to be

4The naming convention was chosen freely by the author and may be adapted in MATLAB according
to the user’s preferences.
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discovered) by 4 scales, the second one by 2. The first section that is discovered is forced

to be in the interval [450 550], i. e., lWJ, 1 ∈ [450 550], and lWJ, 2 is excluded to be neither in

[101 200] nor [301 400].

4.2. Properties

In this section several properties of the LLSA algorithm are shown, namely its com-

putational complexity (Section 4.2.1), the local linear filtering property (Section 4.2.2),

and its impulse and step response (Section 4.2.3).

4.2.1. Computational Complexity

The computational complexity of the LLSA algorithm is proven in the following corol-

lary.

Corollary 4.3. The computational complexity of LLSA is given by O(N log2N).

Proof. As stated in [88] the computational complexity of the MODWT on which LLSA

is built upon, is given by O(N log2N). Determination of αj, k and βj, k defined as in

Theorem 4.4, can be done by at most N comparisons for every j = 1, . . . , J − Λ and

k = 1, . . . , K. Furthermore, manipulation of the wavelet coefficients requires also at

mostN additional operations for each of all J levels. Thus, the computational complexity

of O(N log2N) is preserved.

This proves that the LLSA extension of the MODWT does not increase its computa-

tional complexity, which shows that in this respect there are no restrictions in LLSA’s

applicability, and thus, the algorithm satisfies Requirement R4.

4.2.2. Local Linearity

Though LLSA belongs to the class of nonlinear filters, it still retains the properties of

a linear filter on certain subintervals, as the reconstruction of prior lost details affects

only the extracted trend in the immediate proximity of the jump. Thus, outside of

these regions, the output from LLSA coincides with the output of the linear MODWT
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it extends, and therefore can be controlled a priori in terms of frequency passbands.

Theorem 4.4. Be X a signal of length N to be filtered and SLLSA
J the output generated

by LLSA(J, K, Λ). Then, the subintervals, which can be interpreted as the output of a

linear filter, are given by

SLLSA
J

∖ ⋃

j=J−Λ, ..., J
k=1, ..., K

ΩS
j, k, (4.16)

with

ΩS
j, k :=[max{1, αj, k − Lwvlt

j + 1}, αj, k + Lwvlt
j ]

∪ [βj, k − Lwvlt
j , min{βj, k + Lwvlt

j − 1, N}].
(4.17)

Proof. The subintervals of SLLSA
J , which can be interpreted as the output of a linear

filter, are those sections affected only by either the wavelet coefficients retained or by

either the ones set to zero. Thus, for every refined section k = 1, . . . , K and every

level j = J − Λ, . . . , J the indices of D̃j have to be determined that are affected by

both coefficient types at the same time. For each jump, the first coefficients of W̃j set

to zero are given by αj, k and βj, k on the left and right-hand side, respectively. With

Lwvlt
j denoting the respective wavelet filter lengths, the indices of D̃j affected by both

retained and discarded wavelet coefficients are given by [αj, k−Lwvlt
j +1, αj, k+L

wvlt
j ] and

[βj, k −Lwvlt
j , βj, k +Lwvlt

j − 1]. When including the natural boundaries [1, N ], this leads

to Equation (4.17). For the reconstructed signal SLLSA
J in Equation (4.10), mutually

excluding all ΩS
j, k yields Equation (4.16).

In practical applications one can relax Equation (4.17) as follows: Following the same

argumentation as in Section 3.2 and brought forward by [88], it can be stated that the

strict view of having filters with a width Lwvlt
j can be neglected, since generally the

coefficients characterizing each wavelet are very small at the ends. Thus, the filters on

each scale j have rather a width of 2j . This yields

Ω̂S
j, k := [max{1, αj, k − 2j + 1}, αj, k + 2j ] ∪ [βj, k − 2j , min{βj, k + 2j − 1, N}].
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The author’s observations for several benchmark plots support this interpretation, that

is, the differences between SJ and SLLSA
J for the regions

⋃

j=J−Λ, ..., J
k=1, ...,K

ΩS
j, k

∖ ⋃

j=J−Λ, ..., J
k=1, ...,K

Ω̂S
j, k

are negligible. However, SLLSA
J (t) = SJ(t) holds only for all t /∈ ΩS

j, k.

Hence, the sections specified through Equation (4.16) can a priori be controlled in

terms of frequencies as in the MODWT. However, note that one cannot make any state-

ment about exact proportions of frequencies contained in ΩS
j, k. Yet, there still exists a

lower bound of frequencies not contained in there. As any detail levels beyond J − Λ

are not included, this bound can easily be derived by analyzing the transfer functions

of the linear MODWT for scales 1, . . . , J − Λ − 1. This is useful for practical applica-

tions, for which one might only be interested to ensure that certain high-frequencies (like

daily fluctuations) are not contained in the trend in order not to compromise succeed-

ing volatility analyses that aims exactly at estimating the structure in these frequency

ranges. Thus, the above depicted property satisfies Requirement R2 at least partially.

4.2.3. Impulse and Step Response

With LLSA being a nonlinear filter, as in [9], one is interested in its characterizing

impulse and the step response.5 Note that this impulse response function is the same

as its counterpart for linear filters (i. e., a characterization in time), as explained in

Section 2.2, with the difference that for nonlinear filters one cannot state any filter

weight sequence wi. Since LLSA is a discrete filter and as only wavelets with compact

support are used, it follows directly that LLSA must be an FIR filter (see Section 3.2).

First, the filter’s output is analyzed for the case when the input consists just of a single

impulse or step. In the absence of any other characteristics in the signal this area will

be selected automatically by LLSA for refinement. As the algorithm depends on the

parameter triple (J, K, Λ), one is primarily interested in what happens when K and

Λ are varied, while J is kept fixed (changing the latter would only result in a finer or

5While a step is equivalent to a jump, this naming convention has become more common.
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coarser resolution, but would not change the characteristic of the output).

For all wavelets, in order to restore a single step, it suffices to set K = 1, as it would

be expected due to LLSA’s reconstruction procedure depending on the step wavelet

coefficient structure itself. The output then depends on the choice of Λ. For Λ = 0

the output equals SJ since no reconstruction has taken place. Λ = J will provide the

unfiltered signal X as, in this case, all details of the jump are reconstructed. For any

other 0 < Λ < J the output is in-between the two extreme cases. As there are no other

details in the signal present, the step response of LLSA(J, 1, Λ) equals a MODWT

scaling approximation SJ−Λ. The Haar and D4 step response functions are depicted in

Figures 4.2a and 4.2b, respectively.

Contrary to the step response, the impulse response does not depend only on the

wavelet but also on the choice of K. By analyzing the structure of the wavelet coefficients

for a single impulse, one finds that, for example, when using the Haar wavelet one has to

set KHaar = 2 in order to capture the whole impulse (see Figure 4.3b) as it is interpreted

as two consecutive steps. Choosing K = 1 results in the impulse only being partially

refined, see Figure 4.3a. This is unlike, for example, the D4 wavelet where it suffices

to set KD4 = 1 in order to fully reconstruct the impulse’s details, and setting K = 2

does not lead to any significant changes, see Figure 4.4. For other wavelets, one needs to

analyze its respective impulse wavelet coefficient structure in order to determine Kwvlt.

As above, the output depends on Λ. Similar to the step response, it can be concluded that

the impulse response of LLSA(J, Kwvlt, Λ) equals a MODWT scaling approximation of

level J − Λ for any wavelet and the proper choice of Kwvlt. This shows that the LLSA

extension preserves the finite impulse response property of the MODWT (for wavelets

with bounded support).

4.3. Summary

In this chapter the main contribution of this work was stated. The algorithm based

on discrete wavelet transform was derived in Section 4.1.1. It was shown that this

approach enables the local refinement, that is, the reconstruction of during the linear
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Figure 4.2.: LLSA(Haar & D4) step response functions, K = 1
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Figure 4.3.: LLSA(Haar) impulse response with different K
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Figure 4.4.: LLSA(D4) impulse response with different K

filtering process blurred out details, while leaving the rest of the filtered signal mainly

untouched. The final mathematical formulation and complementary remarks were given

in Section 4.1.2, while in Section 4.1.3 LLSA’s usage for its MATLAB implementation

was reported, including several extensions to allow for more flexible possible uses.

The novelty of the proposed algorithm lies in its ability to transfer the wavelet co-

efficient step response onto the signal from which the trend is to be extracted. All

technical details of the algorithm’s stages were thoroughly discussed and enable a direct

implementation. Requirements R1 to R3 had a direct impact on how the algorithm was

designed, while Requirement R4 was shown to be fulfilled as well. LLSA extends the

established MODWT, requiring only minimal additional input parameters that can also

be set in a heuristic manner. The algorithm preserves all of the MODWT favorable

characteristics (i. e., a smooth trend and a priori frequency control) in the areas where

no sudden changes occur. However, in the near proximity of these phenomena, lower

bounds for frequency control can still be provided, and the lost details are reconstructed

according to the degree specified by the user. To the author’s best knowledge no other

algorithm exists that conjointly fulfills these requirements as LLSA does. Requirement

R5 will be discussed in Section 5.1.
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Evaluation and Application

In this chapter the algorithm that was proposed in Chapter 4 is evaluated with respect

to its consistency and its application possibilities. Proving the algorithm’s consistency

means to show its robustness in the sense that output results provided by LLSA are

reliable. Therefore, in Section 5.1 it will be shown that the trend estimation error of

LLSA is bounded and that its application on simulated and empirical data can lead to

more accurate results, that is, in a considerable number of scenarios and use cases the

long-term trend derived by LLSA follows the real trend more closely than the alternative

benchmarks. The implications on the eventual applications are discussed in Section 5.2.

After pointing out two real data examples, which show the algorithm’s behavior, two

concrete applications are highlighted, namely, price volatility estimation and value at

risk.

5.1. Robustness and Performance Studies

In this section the robustness and the general performance (in respect to other bench-

mark algorithms) of the LLSA algorithm is investigated. It is shown that independent

of the choice of wavelets and the (J, K, Λ) LLSA parameters, the results of this new

approach are consistent, that is, the errors from the optimal solution are bounded and

converge asymptotically. The purpose of this section is to show that Requirement R5

holds.
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After an analytical proof of LLSA’s bounded estimation error and asymptotical conver-

gence in Section 5.1.1, a robustness and performance study on synthetic (i. e., artificially

constructed) signals is conducted in Section 5.1.2. There, LLSA’s performance is mea-

sured in relation to two benchmark filtering techniques of which each one serves as a

representative for the (non)linear filtering class. This is followed by an empirical robust-

ness study using real data in Section 5.1.3. While for the simulation study the optimal

solution is known and the error can easily be calculated using certain error measures,

this does not hold for the empirical (stock price) data. In this case, in order to estimate

how closely the unknown trend is followed by LLSA and the other benchmarks’ output,

four distance measures that relate the estimated trend to the empirical distribution are

used.

5.1.1. Analytical Consistency

First an analytical proof is given that LLSA’s trend estimation error is bounded and

that the filtered output converges asymptotically towards the MODWT.

Theorem 5.1. Be given any signal X of length N with the trend ϑ(X). Then, the error

of LLSA’s estimated SLLSA
J is bounded, that is, for any choice of (J, K, Λ) there exists

a constant A > 0 so that
N∑

t=1

|ϑt(X)− SLLSA
J, t | < A (5.1)

holds. Furthermore, for K fixed and N → ∞ holds

lim
N→∞

1

N

N∑

t=1

|SMODWT
J, t − SLLSA

J, t | = 0, (5.2)

i. e., LLSA converges asymptotically towards the estimated trend of the MODWT.

Proof. Let J be fixed. Considering 0 ≤ Λ ≤ J and 0 ≤ K ≤ N1, by setting either

Λ = 0 or K = 0 this yields SLLSA
J = SMODWT

J . For any other choice of K and Λ more

details will be added to the estimator SLLSA
J , according to ΩW

j,k. After the reconstruction

1This upper bound is given naturally, as there cannot be more critical sections than signal data points.
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(see Equation (4.10)) these additional details correspond to the estimator SMODWT
J−Λ and

are therefore bounded as well. Unfortunately, as during the refinement process several

wavelet coefficients are set to zero, this match only holds approximately, i. e., no exact

description of SLLSA
J, t is available, since this procedure causes the information contained

in the wavelet coefficients on different levels to be intermixed. However, knowing that

the MODWT approximation of any level is bounded by the signal itself, one can set up

an ǫ-tube around the initially estimated trend by

ǫ := |max
t
Xt −min

t
Xt| (5.3)

As

min
t
Xt ≤ SMODWT

J, t ≤ max
t
Xt

holds for all 1 ≤ j ≤ J , and therefore

|ϑt(X) − SMODWT
J, t | ≤ ǫ,

this must also hold for LLSA, i. e.,

min
t
Xt ≤ SLLSA

J, t ≤ max
t
Xt and |ϑt(X)− SLLSA

J, t | ≤ ǫ.

Thus, one can estimate an upper bound for the error by A = N · ǫ, which suffices

Equation (5.1). To prove the asymptotic consistency it can be assumed that for a fixed

K the ΩW
j,k are ordered in time, that is

αj, k+1 ≥ βj, k

for all 1 ≤ j ≤ J and 1 ≤ k ≤ K − 1. Hence, after

tK := max
t, j

{t ∈ ΩS
j,K}

SLLSA
J, t = SMODWT

J, t holds for all t > tK . As the prior deviations between both estimators
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were bounded, e. g., by the same ǫ as in Equation (5.3), for all N

N∑

t=1

|SMODWT
J, t − SLLSA

J, t | =
tK∑

t=1

|SMODWT
J, t − SLLSA

J, t | ≤ tK · ǫ,

holds, which proves Equation (5.2).

The bounds stated in Equation (5.3) are very generous, that is, they consider the

most extreme case. Due to the moving average nature of LLSA and the MODWT the

bound A will never be reached (disregarding trivial, e. g., constant, signals). However,

without any further specific assumptions or information about the signal, its trend and

noise components, no smaller bound can be stated. As bounds for the error and its

asymptotic consistency given in Theorem 5.1 do not provide any further insights about

LLSA’s behavior in practice, further investigation is required. This is the subject of

the following Sections 5.1.2 and 5.1.3, where further robustness analyses are conducted,

using artificial signals and empirical data, respectively.

5.1.2. Simulated Signals

In order to test for the robustness of the LLSA algorithm, a signal of length 210 is set

up. Though in this thesis no specific trend and signal patterns are analyzed separately,

the setup of the simulation is carried out analogously to [5, 42]. Jump occurrences in

this signal were uniformly distributed (thus, coinciding with a Poisson arrival rate being

observed in many systems), with their height being a random number drawn from a

normal distribution with mean 0 and variance 1. The signal is constant between the

jumps, which should render a very smooth trend in the output. As usual in this kind of

simulations, white Gaussian noise was added afterwards. Note, as this synthetic signal

comprises pure jumps only, it should be optimal for the median filter, and a very hard

case for moving average filters. The simulation was run with different setups, varying the

amount of jumps K̃, the noise variance σ, and the wavelets. Each setup was run 29 times,

with m different time series generated for the mth run, yielding 131, 328 different time

series generated in total. This amount has proven to be sufficient to get clear results.

For each run the mean squared and the mean absolute error were aggregated over all m
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outcomes and compared to the errors of the linear MODWT and the nonlinear median

filter that were applied onto the same series. The advantage of using such a simulation

setting is that the optimal solution is known, hence the mean squared error (MSE) and

the mean absolute error (MAE) for every single run can be measured.

Remark 5.2. Considering the rich amount of available linear and nonlinear filters it

might certainly be questioned whether these filters are the best benchmarks. It can be

stated almost surely that no filter is generally the best choice for all time series at the

same time. That is, for example, a trigonometric filter will almost surely in most cases

provide the best results and outperform any other filter, if the underlying signal is of a

sine form. Similar holds for linear regression methods when the trend is strictly linear.

Choosing more advanced filters will introduce the bias of choosing weights, thresholds,

or other parameters. Thus, this study is restricted to two benchmark filters, which can

be seen as the most basic version for the respective filter class. The median filter thus

represents the class of non-linear filters, while the MODWT acts as the prototype for

the class of linear filters. Though the very first prototype for this class could be seen

as the mean filter, the MODWT was chosen, since it is extended by LLSA and also

have proven to provide a very good performance in several application areas (see, for

example, [30, 48,51,84,87,119]).2

For all three filters the same bandwidth 2J = 27 was selected, as providing a smooth

trend for all noise variances stated below. First, it is assumed that the amount of jumps

is known to LLSA, i. e., K = K̃. Further, Λ = 3 was chosen independently of the noise

variance. Note that these parameter choices are certainly not optimal for all different

setups, but nevertheless allow the comparison of the robustness and performance of the

algorithm to the alternative filters without giving any specific data-dependent input

other than K.

Though the choice of the wavelet is not as important for the MODWT as for the DWT

(see [88]), the robustness of LLSA is tested with the above introduced wavelets (i. e.,

2One additional reason the mean filter was not chosen is that fluctuations with high amplitudes still
lead to disturbances in the mean filtered trend, where the MODWT performs better, see Examples
2.4 and 5.3
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Figure 5.1.: Robustness test signal with different noise levels

Haar, D4 and LA8) being the most utilized ones in practice. The wavelet dependent

parameters necessary for LLSA are stated in Table 4.1. It was set σ ∈ [0.01, 0.5, 1, 2, 5]

as the input set for the noise variance. While 0.01 signifies that the signal is almost noise

free, the jumps and the noise share the same distribution for variance 1. Given a noise

variance of 5 or higher, the jumps are hardly discernible any more (see Figure 5.1b), i. e.,

the signal is completely dominated by the noise. The amount of jumps K̃ was fixed for

all 512 simulation runs and selected from the set [5, 10]. These are reasonable parameter

sets for the algorithm, as they imply that the constructed signals exhibit smooth trends

with occasional jumps and slopes, that is, the simulation represents the problem class

depicted in the Introduction and Chapter 2.

In Tables 5.1 and 5.2, the mean of the MSE, MAE, and their corresponding sample

variances (in brackets below the error) over all 512 runs is reported. Although not

scale-invariant, these two error measures are common to investigate and compare the

performance of different (non)linear filters (see [9]) in case the optimal solution is known.

Since the simulated time series are all on the same scale, these two measures are sufficient.

For a further discussion about alternative error measures, their pitfalls and applicability,

please refer to [27,59].
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It can be observed that for all simulations after at certain number of runs, the measured

errors of the different algorithms are strictly higher (lower, respectively) than the others

(exemplarily depicted in Figures 5.2 and 5.3). Furthermore, the errors of all algorithms

increase with a higher noise variance. Independent of the choice of the wavelet, for

σ ∈ {0.01, 0.5, 1, 2} LLSA always outperforms the MODWT (utilizing the same wavelet).

This does not hold for σ = 5, for which the error of LLSA is larger. Analyzing several

output results, this leads to the conclusion that in case of such high noise levels, LLSA

tends to restore details in areas where actually no jump has occurred. In this way, LLSA

reconstructs jumps that deviate from the ones of the original signal, thus leading to a

higher error in contrast to the MODWT, which simply ignores those jumps caused by

noise. Also, for a very low noise level σ = 0.01, the median filter performs better (in

respect to the MAE, but not the MSE) than both LLSA(D4) and LLSA(LA8). Almost

the same holds for very high noise σ = 5 for which their MSE/MAE are higher than the

ones of the median filter. In this case, LLSA(LA8) slightly outperforms LLSA(D4). This

is surprising, as in all other cases the contrary, that is, LLSA(LA8) is outperformed by

LLSA(D4), can be observed. In all other cases, LLSA yielded lower errors, independent

of the wavelet utilized.

One finds that the variances of the errors of LLSA are lower than the ones of the

other algorithms, with the exception of the LA8 wavelet for σ = 1. Also, between the

different wavelets in LLSA, the Haar wavelets yielded the lowest variance of the error,

followed by the D4 wavelet. Again, an exception can be seen for σ = 5. Also note that

the convergence of the error variances is much faster for the LLSA algorithm than for

the alternatives. Figures 5.2 and 5.3 depict exemplarily some plots of both the errors

and the variances.3 The results for a higher number of jumps K̃ = 10 are similar and

lead to the same conclusions.

As pointed out above, a high noise level dominating the signal and the inherent jumps

can yield a higher error for LLSA. A similar case may happen if the number of ex-

pected jumps K exceeds (or simply deviates from) the number of jumps K̃ that ac-

3Plots from other configuration settings are completely analog, which is why they are omitted here.
They are available upon request.
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Table 5.1.: MSE mean and variance, 5 jumps

σ = 0.01 σ = 0.5 σ = 1 σ = 2 σ = 5

LLSA(Haar) 0.0142 0.0239 0.0333 0.0521 0.1089
(2.39 · 10−6) (4.17 · 10−6) (4.48 · 10−6) (7.78 · 10−6) (1.41 · 10−4)

MODWT(Haar) 0.0974 0.1003 0.1033 0.1082 0.1245
(1.54 · 10−4) (1.85 · 10−4) (2.82 · 10−4) (3.32 · 10−4) (0.0013)

LLSA(D4) 0.0177 0.0316 0.0459 0.0746 0.1611
(4.61 · 10−6) (1.99 · 10−5) (2.08 · 10−5) (1.08 · 10−5) (4.95 · 10−5)

MODWT(D4) 0.0922 0.0949 0.0982 0.1045 0.1232
(2.58 · 10−4) (4.93 · 10−4) (2.50 · 10−4) (1.54 · 10−4) (1.56 · 10−4)

LLSA(LA8) 0.0321 0.0443 0.0561 0.0789 0.1474
(3.35 · 10−5) (4.27 · 10−5) (1.16 · 10−4) (4.48 · 10−5) (1.92 · 10−4)

MODWT(LA8) 0.0923 0.0957 0.0991 0.1062 0.1259
(1.55 · 10−4) (1.55 · 10−4) (4.14 · 10−4) (7.23 · 10−4) (2.93 · 10−4)

Median filter 0.0270 0.0669 0.0819 0.0997 0.1411
(1.94 · 10−4) (7.51 · 10−5) (9.79 · 10−5) (1.22 · 10−4) (0.0012)

Table 5.2.: MAE mean and variance, 5 jumps

σ = 0.01 σ = 0.5 σ = 1 σ = 2 σ = 5

LLSA(Haar) 0.0380 0.0924 0.1202 0.1605 0.2429
(4.85 · 10−6) (6.06 · 10−6) (1.47 · 10−5) (2.13 · 10−5) (1.07 · 10−4)

MODWT(Haar) 0.1710 0.1866 0.1956 0.2094 0.2414
(1.42 · 10−4) (2.85 · 10−4) (1.95 · 10−4) (2.33 · 10−4) (0.0010)

LLSA(D4) 0.0512 0.1145 0.1486 0.1980 0.2979
(1.01 · 10−5) (3.17 · 10−5) (4.20 · 10−5) (2.11 · 10−5) (5.19 · 10−5)

MODWT(D4) 0.1676 0.1814 0.1918 0.2075 0.2430
(2.62 · 10−4) (4.20 · 10−4) (2.67 · 10−4) (1.09 · 10−4) (1.28 · 10−4)

LLSA(LA8) 0.0821 0.1300 0.1576 0.1976 0.2804
(5.68 · 10−5) (4.28 · 10−5) (1.18 · 10−4) (4.15 · 10−5) (2.5 · 10−4)

MODWT(LA8) 0.1728 0.1859 0.1960 0.2120 0.2481
(1.47 · 10−4) (1.23 · 10−4) (4.60 · 10−4) (3.71 · 10−4) (2.15 · 10−4)

Median filter 0.0495 0.1521 0.1794 0.2119 0.2734
(3.51 · 10−5) (1.15 · 10−4) (6.76 · 10−5) (1.17 · 10−4) (7.94 · 10−4)
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Figure 5.2.: MAE/MSE for the Haar wavelet with 5 jumps and σ = 1.
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Figure 5.3.: MAE/MSE variances for the Haar wavelet with 5 jumps and σ = 1.
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Table 5.3.: MSE mean and variance, 10 jumps, σ = 1

p = 0.3 p = 0.5 p = 1

LLSA(Haar) 0.0606 0.0607 0.1128
(1.84 · 10−5) (3.40 · 10−5) (0.0032)

MODWT(Haar) 0.2133 0.2139 0.2146
(5.10 · 10−4) (7.09 · 10−4) (5.30 · 10−4)

LLSA(D4) 0.0829 0.0712 0.1318
(7.82 · 10−5) (2.76 · 10−5) (8.76 · 10−4)

MODWT(D4) 0.2055 0.2056 0.2051
(6.94 · 10−4) (5.16 · 10−4) (6.06 · 10−4)

Median filter 0.1706 0.1705 0.1710
(3.37 · 10−4) (4.14 · 10−4) (3.56 · 10−4)

tually occurred. Therefore, additional simulations are run in which K was allowed to

vary, i. e., K was chosen to be a uniformly distributed random integer from the interval

[(1 − p)K̃, (1 + p)K̃] with p the percentaged deviation. For example, for p = 1, the

interval ranges from 0 (thus, being equivalent to the MODWT) up to twice as much as

K̃ being restored. The results are summarized in Tables 5.3 and 5.4. For p = 0.3 and

p = 0.5, it can be observed that the algorithm still performs better than the alternatives,

in respect to errors as well as the variance. For the very large deviation p = 1 one finds

that in respect to mean errors LLSA still performs better, but this time has a higher

variance.

The conclusion that can be drawn is that the LLSA algorithm is stable (i. e., its

results are reliable in the way that for a growing number of signals the errors converge

to a certain value and the error variances diminish) in every case, though it may be

outperformed by alternative algorithms for certain choices of wavelets and extreme (i. e.,

very high and low) noise levels. Additionally, LLSA remains stable and performs better,

even if K deviates from the actual number of jumps in the signal. It seems that in

practical applications, the Haar and the D4 wavelets are the best choice for LLSA.

The above described simulations only comprise signals with either pure jumps or spikes

96



5.1. Robustness and Performance Studies

Table 5.4.: MAE mean and variance, 10 jumps, σ = 1

p = 0.3 p = 0.5 p = 1

LLSA(Haar) 0.1644 0.1639 0.2030
(2.35 · 10−5) (4.91 · 10−5) (0.0013)

MODWT(Haar) 0.3098 0.3100 0.3104
(2.58 · 10−4) (4.48 · 10−4) (3.55 · 10−4)

LLSA(D4) 0.1921 0.1805 0.2255
(7.37 · 10−5) (3.19 · 10−5) (4.65 · 10−4)

MODWT(D4) 0.3017 0.3016 0.3014
(4.30 · 10−4) (2.98 · 10−4) (4.29 · 10−4)

Median filter 0.2673 0.2670 0.2673
(1.69 · 10−4) (1.97 · 10−4) (1.72 · 10−4)

(in case of two consecutive jumps in different directions). This is due to the fact that

steep slopes and valleys are difficult to simulate without predefining a parametric func-

tion that represents these features. In order to be able to analyze the LLSA algorithm’s

performance in respect to these phenomena an empirical study is conducted, which is

reported in the next section.

5.1.3. Empirical Results

In the empirical study, the performance of the local linear scaling approach with

respect to the robustness of the algorithm is investigated. The analysis is performed

for the trend extraction of the German DAX stock prices4 based on four goodness of

fit criteria: the Kolmogorov-Smirnov distance, the Anderson-Darling (AD) distance, the

Kuiper (K) distance, and the Cramér-von Mises (CVM) distance. In this empirical study,

LLSA is tested for homogeneous (i. e., equally spaced) high-frequency time series data

aggregated by the linear interpolation method at the sampling frequency of 60 minutes.

By applying the algorithm on several moving window subsamples, its robustness is shown

and its performance is analyzed by taking into account several statistical measures. Also,

statistical significance tests based on bootstrapping are conducted to further emphasize

4Obtained from the German Karlsruher Kapitalmarktdatabank (KKMDB).

97



Chapter 5. Evaluation and Application

the above claim.

The Data

The algorithm is performed for trend extraction with the German DAX stock prices

data for the whole year of 2008.5 The raw data is inhomogeneous, i. e., irregularly spaced.

In this thesis, linear interpolation was chosen as a regularizing operation to aggregate

the raw data to homogeneous data. The inhomogeneous series with times ti is given by

x(ti). The target homogeneous time series x̃ shall be defined at times τj := t0 + j∆t,

j ∈ N, with ∆t > 0 fixed. As every regular τj is bounded by two times of the irregularly

spaced series, i. e.,

tIj ≤ τj < tIj+1,

with

Ij := max{i | ti ≤ τj},

data point τj is interpolated between tIj and tIj+1 by

x̃(τj) = xIj +
τj − tIj
tIj+1 − tIj

(xIj+1 − xIj).

Goodness-of-fit tests

As the real trend for the empirical data series x is unknown, one cannot measure the

MSE/MAE as was done in Section 5.1.2. Instead, this analysis follows [108] and uses the

minimum distance estimation approach with the Kolmogorov-Smirnov (KS), Anderson-

Darling (AD), Kuiper (K), and the Cramér-von Mises (CVM) distances as estimators

and a criterion for the goodness-of-fit testing between the distribution of the original

5As the EON data was incomplete, it was replaced with the EPCOS stock price data instead
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data and the estimated trend. These distances are defined as follows:

KS := sup
x∈R

|Fn(x)− F (x)|,

AD := sup
x∈R

|Fn(x)− F (x)|√
F (x)(1 − F (x))

,

K := sup
x∈R

(
Fn(x)− F (x)

)
+ sup

x∈R

(
F (x)− Fn(x)

)
, and

CVM :=

∫ ∞

−∞

(
Fn(x)− F (x)

)2
dF (x).

Fn(x) denotes the empirical sample distribution of x and F (x) is the distribution function

of the estimated trend. Thus, the smaller the distance, the better the estimated trend

on scale J preserves the distribution of x.

As both the KS and the K distance focus on deviations around the median of the

distribution, they tend to be more sensitive near the center of the distribution than at

the tails. On the contrary, the AD distance puts more weight on discrepancies in the tails

(see [108] for more details), while CVM measures the sensitivity of dispersion between

the empirical data and its trend in respect to the changing LLSA trend estimator. By

including these different distances in this robustness study, the reliability of the results

will increase.

The Methodology

In this first study, the performance of LLSA is compared against the MODWT. The

median filter is not considered, as the filtered output signal for the same scale still

contained too many ripples and showed a larger number of fluctuations than to be

considered as an appropriate long-term trend. Though the choice of wavelet does not

play a major role in the MODWT, yielding always similar smooth curves, significant

differences were noted in above simulated robustness analysis for LLSA. Hence, one
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wavelet was fixed for the empirical study. The Haar wavelet was chosen due to the

following reasons: First, based on the results of the robustness study in 5.1.2, regarding

the MSE/MAE as well as the corresponding variances, in most (i. e., non-extreme) cases

it outperformed the other tested wavelets. Second, as the Haar wavelet is the one with

the smallest support, it also yields the smallest regions around the jumps, which must

be considered to be the output from a nonlinear filter also introducing less ripples in

the whole trend. Additionally, this minimizes the boundary distortions. Furthermore,

several plots (see also the impulse and step response function in Figures 4.2 and 4.3,

respectively) indicated that the sections refined by the D4 and LA8 wavelets tend to

exhibit the Gibbs phenomenon (see, for example, [61, 105]), especially when there is a

real jump in the data and not just a slope.6

For the 60 minute data an approximation level J = 7 was selected, as this provides

a very smooth trend of the data without almost any ripples. This choice is based on

subjective judgment and might have to be changed in practice due to the eventual goal

of the analysis. The estimated trend is thus associated with a weighted average of

bandwidth of 27 · 60 minutes, that is, roughly five days. Furthermore, the refinement

level was set to Λ = 2. This provides some improvement compared to the MODWT

output, while not introducing too many ripples near any occurring jumps. In order

to analyze whether any improvement can be expected even when LLSA is configured

to provide marginal changes only, for every stock, the algorithm was set to detect one

jump, i. e., K = 1. This choice of (Λ, K) is certainly not optimal for all stocks at the

same time and should be chosen separately dependent on each stock data for practical

purposes.

Empirical Robustness Results

In order to get valid results, the whole time series was filtered not only once, but

a window of κ times the filter size was set up, i. e., κ · 2J . Furthermore, to achieve a

sufficient number of subsamples, κ was set heuristically to κ ∈ {4, . . . , 10}, which was

advanced successively over each time series. The smallest value of κ provides a sample

6This can be explained by the fact that the D4 and LA8 wavelets are associated with higher smoothness
spaces and thus, cannot adapt as fast to sudden jumps as, for example, the Haar wavelet.
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large enough to contain a sufficient number of data points not affected by boundary

distortions (see Section 5.2), while κ = 10 ensures enough samples to derive significant

results. This choice yields N − κ · 2J subsamples to validate the robustness of LLSA. In

the following, the results for the extreme values κ = 4 and κ = 10 are analyzed in detail.

These tables can be found in Appendix A.1. The tables for the remaining values of κ

are in-between and available upon request.

It is observed that the mean as well as the median of LLSA outperforms the MODWT

for all distances. Regarding the variance, note that especially for the KS, AD, and K

distances around two thirds of the samples are higher for LLSA (and only 2 for CVM).

Analyzing the respective data and their plots, this leads to the conclusion that these

higher variances are caused by the distances for LLSA dropping to a very low level and

changing back afterwards. Also, besides a few exceptions in the K and CVM distance,

the minimum and maximum distance values are always lower for LLSA. This holds for

all frequencies. By setting the moving windows size to κ = 10 it is found that there is

no longer a clear improvement of LLSA’s performance over the MODWT for all stocks.

Finally, to further emphasize the robustness of the algorithm, since any specific as-

sumptions about the distance measures (like being normally distributed) do not hold and,

thus, following [109], further significance tests were conducted by bootstrapping (see [33]

for further details about the methods and its applicability). Out of all moving window

subsamples, 50.000 samples were drawn and the 99% (i. e., α = 0.01) confidence intervals

for the mean difference between LLSA and MODWT were calculated. Therefore, if for

both the lower and the upper confidence bounds (LCB and UCB, respectively) LCB < 0

and UCB < 0 holds, there is a significant improvement of LLSA over the MODWT. For

LCB > 0 (and thus, UCB > 0) the MODWT performs significantly better. In the case

of LCB ≤ 0 and UCB ≥ 0 there is no statistically significant conclusion. The results

for κ ∈ {4, . . . , 10} are reported in Tables A.9 to A.15. Analyzing the results of the

significance analysis in Table A.15 one sees that the distances most affected are the KS

and K distances, followed by one case for CVM. Again, for the AD distance it can be

confirmed that LLSA always performs significantly better. However, one must also note

a worse performance of LLSA in a number of stocks for the other distances. Besides
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the fact that the previous results are shown to be significant in most cases, again it is

noted that the highest improvements are listed for the AD and CVM distances. This

is reasonable as the AD distance puts more weight on heavy-tailed distributions, while

CVM mainly focuses on the fidelity of the estimated trend to the empirical time series

around sudden changes in the trend. This is in accordance to the intuition that LLSA

filters high-frequency noise while preserving jumps and slopes, which cause heavy-tails

in the distribution of the data. Thus, in some particular cases the MODWT is still to be

preferred. However, note that LLSA has proven to be significantly stable for all different

settings of frequencies, stocks, and moving window sizes.

The above findings confirm that LLSA is not only robust, but also that (in the majority

of cases) it outperforms the MODWT when applied on high-frequency data with regime

changes (i. e., significant jumps besides the daily fluctuations) in the long-term trends.

Note that in this study the input parameters (Λ, K) were not even calibrated separately

for every stock data, as is recommended to do in practice (either by a priori or a posteriori

analysis). In this case this certainly led to suboptimal results.

5.2. Applications

While in the previous Sections 5.1 and 5.1.3 the robustness and consistency of the

algorithm itself was analyzed and its performance in relation to the benchmark filter-

ing techniques was shown as a mere byproduct, this section focusses on the benefit of

applying LLSA instead of the regular methods for time series’ decomposition.

5.2.1. General Application and Examples

What can be expected from a more accurate decomposition of a time series into its

components? Considering the process depicted in Section 2.1 one would expect that

all or at least some of the detrending process succeeding steps improve in accuracy as

well, or at least do not perform worse. This, however, cannot be guaranteed. Simple

examples can be found (e. g., a step function with additive white Gaussian noise) where

the noise distribution estimation succeeding the MODWT yield more accurate results

than the ones following the LLSA procedure, though the MODWT delivers an overall
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worse estimation of the trend than LLSA. This can be explained by the simple fact that

errors in the trend estimation of the former method are symmetric, that is, they even

out another in the estimation afterwards. Thus, a more accurate trend estimation does

not necessarily lead to a better estimation of seasonalities or the noise distribution.

The application possibilities of LLSA are manifold. They are, however, restricted

to homogenous (i. e., regularly spaced) time series, which must always be considered,

and, if necessary, the data must be preprocessed. Specifically, considering economic

and financial applications in general, a better trend estimation with accurately depicted

jumps, steep slopes and valleys provides essential information about leads in any case

to a better understanding of the time series long-term development itself. Accurately

captured sudden changes help to identify their responsible external explanatory factors

and influence of these factors, specifically in case of valleys and slopes where, contrary

to jumps, it is initially not evident at which points they exactly begin and end. This

information can also be provided by LLSA. On the other hand, an overall smoothness

prevents the confusion of short-term influences in the long-term aspect. This depicts the

direct advantageous usage of the trend extracted by LLSA. Positive secondary effects can

then be expected with methods that use either this trend and/or any of the remaining

components. These can be either analysis that are interested the specific components

themselves or particular applications like value at risk.

The following example revises the in Section 2.3 given Wikipedia example and shows

the improvements that can be achieved by LLSA and the aspects when using different

wavelets.

Example 5.3. Example 2.4 is revised to analyze, whether one can achieve better results

with the MODWT and its LLSA extension. Both methods are applied with the same

bandwidth 29 as in the other example. In Figure 5.4 the effects for different choices of

K are depicted, that is, the aftermost part of the valley around Christmas is partially

refined, then the slope around summer holidays, and then the foremost part of the same

valley. It can be seen that the last refinement interacts with the first one (due to the

wavelets effective filter length, which exceeds the borders determined by LLSA, i. e.,

Equation (4.11)), thus, improving the overall shape of the whole section.
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For the D4 wavelet in Figures 5.5a and 5.5b one sees that one refinement section

is sufficient to capture the whole valley, with the second one taking care of the slope,

though the result contains significantly more ripples than with the Haar wavelet. The

same holds also for the LA8 wavelet, but it can be noticed on first glance that the

reconstructed details already contain too many fluctuations that could be contributed

to the ordinary trend (see Figure 5.6), which leads to the conclusion that the Haar and

D4 wavelets are to be preferred in practice.

In this example the direct benefit is given through the information provided by LLSA

at which points the summer holiday and Christmas seasons affect the usage patterns.

In addition to a more accurate trend curve, LLSA can directly provide the concrete

locations of these regions by ΩS
J, k. Furthermore, a better estimation of the weekly and

daily seasonalities, as well as the remaining noise can be expected.

The next example illustrates usage of LLSA on empirical financial data that will also

be used for an application case in the next section.

Example 5.4. The trend of the SAP 60 minute frequency stock prize data is to be

extracted. The bandwidth, as in Section 5.1.3 is chosen to be 27, and the refinement

scale Λ set to 2. In Figure 5.7 the results are depicted for the MODWT and the median

filter. It can be seen that the MODWT delivers a slightly smoother trend, while the

output of the median filter follows somewhat closer to the trend. The extreme jump

between data points 1700 and 1800 is captured much more accurately by the latter

method. In this example the median filter performs quite well, as the short-varying

fluctuations have only relatively low amplitudes. Based on the results of Example 5.3

the LA8 wavelet is not considered here and LLSA is restricted to usage of the Haar and

D4 wavelets.

Figure 5.8 shows that for K = 1, MODWT lost details are reconstructed so that

it can be qualitatively compared to the output of the median filter, yet maintaining a

smoother trend otherwise. Application with K = 2 results in a better representation of

an adjacent valley.

The results for the D4 wavelet are depicted in Figure 5.9. For K = 1 the reconstructed
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(b) K = 2
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(c) K = 3
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(d) K = 4

Figure 5.4.: Wikipedia refinement using the Haar wavelet
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(a) K = 1
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(b) K = 2

Figure 5.5.: Wikipedia refinement with D4 wavelets

0 2000 4000 6000 8000 10000 12000
3

4

5

6

7

8

9

10

11

12

13
x 10

6

time

 

 
Original Signal
MODWT Scaling Approximation
LLSA (la8)

(a) K = 1
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(b) K = 2

Figure 5.6.: Wikipedia refinement with LA8 wavelets
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Figure 5.7.: Filtered trend of the SAP stock data

details of the filtered output are comparable to the one for the Haar wavelet with K = 2.

Regarding the output for K = 2 considerable more details are added.

Setting K = 3 for both cases the added details are not that significant, see Figure

5.10. It is noteworthy that the order in which the sections for reconstruction are selected

by LLSA do not remain the same for the Haar and D4 wavelet.

A Note on Wavelets and Forecasting

Though the usefulness and applications exemplarily outlined in the next section will

not be anticipated here, the author feels obliged to note what wavelet transforms are not

appropriate to be used for. Since the advent of wavelets outside the pure mathematical

research field, which can be mainly attributed to the pioneering work of Daubechies [32],

wavelets have become a popular tool in most research areas that are connected to signal

analysis in one form or another. However, considering specifically the general area of

forecasting, in the literature there seem to be a discordance whether wavelets are the

right tool for this. As outlined in Section 3.2 in order to handle the ends of the signal

one has to extend it with the aim to minimize the boundary distortions. Therefore,

by choosing this method, an additional bias is involuntarily introduced even before the
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(b) K = 2

Figure 5.8.: LLSA(Haar) filtered trend of the SAP stock data
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Figure 5.9.: LLSA(D4) filtered trend of the SAP stock data
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Figure 5.10.: LLSA(Haar and D4) filtered trend of the SAP stock data, K = 3

multiresolution decomposition is conducted. As this bias has the largest impact at the

very ends of the signal, which at the same time are the most critical points for any

forecasting method, it may at least be questioned whether wavelet transforms are an

appropriate tool. However, many practitioners seem to ignore or neglect this fact. For

example, they perform with either the DWT or the MODWT a multiresolution analysis

of a given signal, and perform a forecasting method (e. g., ARIMA) on each of the

subseries SJ and Dj (or VJ andWj , respectively) to finally derive the prediction through

Equation (3.14), see [29, 101, 120]. Even though some authors require stationarity, this

does not satisfy the possibility to disregard the boundary aspect completely.

The above argumentation is also strengthened by the fact that not even one of the

undoubtedly most important works and reviews about the application of wavelet trans-

forms (see [1, 4, 88]), even mentions the topic of forecasting/prediction. Note that this

argumentation only aims at wavelet transforms themselves and not wavelet methods in

general. Indeed there exists the possibility to forecast signals with wavelet methods that

do not rely on wavelet transforms only, but instead derive a function based on wavelet

bases, that is, a wavelet process that mimics the original signals characteristics (see, for

example, [44]).

109



Chapter 5. Evaluation and Application

5.2.2. Price Volatility Estimation

Now the usefulness of applying LLSA on empirical high-frequency financial time series

data is evaluated. The same data as in Section 5.1.3 is used.

Evaluation Methodology

Analogously to Section 5.1 the MODWT and the median filter are chosen as bench-

marks for the algorithms’ performance, though one does not expect the median filter to

deliver a sufficient smooth trend, that is, without any ripples. As in Section 5.1.3 this

study is conducted using the Haar wavelet only, due to the same reasons. Since the data

is the same, the same configurations are carried out, that is, the initial and refinement

scale are set to J = 7 and Λ = 2, respectively. However, as this time the performance of

LLSA with respect to the number of refinement sections is to be analyzed, the algorithm

is configured to detect from one jump only up to three, i. e., K ∈ {1, 2, 3}. It is stressed
again that this choice of (Λ, K) is certainly not optimal for all stocks and should be

chosen separately dependent on each stock data for practical purposes.

In order to increase the statistical significance, the filters were applied on the whole

time series not only once, but successively in a window of κ times the filter size, i. e.,

κ · 2J , with κ = 7. The choice of κ = 7 was done based on the robustness and perfor-

mance results of Section 5.1.3, as a moving window filter size too high yielded a worse

performance of LLSA in comparison to the MODWT. However, the smallest value κ = 4

was not chosen though it would seem the most preferable choice, as in this application

scenario it is important to consider only samples not affected by boundary distortions,

as noted in Section 5.2.1. Since it is well known that the kind of filters considered here

do not perform well at the boundaries of the signal (see also Section 3.2), for each es-

timated trend in the moving window the first and the last 2J data points are ignored

in order to avoid this phenomenon. Hence, the effective filtering window size equals

28% of the total signal length, and equals an 5 · 2J sized sample that is unbiased at its

ends, that is, the moving window size is the same as in the Section 5.1.3. To compare

the performance of the algorithms, an ARMA(R, M) model is derived to calculate the

conditional expected value for the one-step-ahead forecasting. For (R,M) the feasible
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sets (R, M) ∈ [(1, 1), (2, 1)] are determined, which are also often used in practice.7

Additionally, for each algorithm the remaining historical noise distribution of the

detrended signal is used to derive the upper and lower percentile bounds for γ = 0.05 for

each time spot (LBt and UBt, respectively) for the next-step forecasting at t + 1. The

mean dB width between the percentile bounds is compared, that is, the mean over

dB, t = UBt − LBt.

In this way it can be analyzed which algorithm provides the best base for the combined

trend extraction and succeeding noise distribution estimation.

The reader is reminded that in this case the interim forecasting results are only used as

an evaluation tool to verify each algorithm’s accuracy in trend and variance estimation

and in practice would and should not be used for actual forecasting (see Section 5.2.1),

due to the boundary distortions which are common among all moving window filters.

Note that this kind of procedure can be seen in analogy to the usage of the Black-Scholes

formula (see [16]) in practice. While the formula was originally designed to calculate the

unique prices for derivatives on financial markets, many traders ”misuse” the formula to

reversely derive from the empirical prices the stochastic volatility of the underlying price

processes, which normally have to be estimated (see [57]). In this way, the forecasting

is misused, that is, the conditional mean and the deviations from the percentile bounds,

which however, only delivers reliable results when not affected by boundary distortions.

This is in contrast to the procedure in Section 5.1.3, where, though it could also have been

applied in the same manner, was not essential to validate the results. This was due to the

reason that the boundary distortions affected the several goodness-of-fit tests in the same

way and, hence, the robustness of the method was shown incorporating these distortions.

The reader is reminded that this procedure does not mean to generally exclude LLSA’s

or the benchmarks’ application in forecasting scenarios, but that the necessary boundary

7Other settings like (R, M) = (1, 2) were also considered, but led constantly to errors in the calculation,
as for the detrended series they did not fit and no solution was available. The above chosen parameter
settings for (R, M) are also in agreement with the autocorrelation plots analyzed for different samples,
which exhibited a high autocorrelation.
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handling methods need to be chosen carefully, as they depend critically on the concrete

setting. Therefore, in this thesis, the above procedure is followed in order to avoid the

introduction of any additional biases.

Results

The results for the conditional mean forecasting for K ∈ {1, 2, 3} are reported in

Tables B.1 to B.3. In the first four columns the mean of dt is stated for all three filtering

methods and ARMA(1,1) itself, and in the subsequent four columns the analog results

for ARMA(2,1). It can be seen that for the majority of the stock data for higher K

the LLSA algorithm performs better than the ARMA and MODWT filter models. Also,

by comparing the results column by column, one notices that there is no significant

difference between the two conditional mean models. Therefore, in Tables B.4 to B.6

using the same bootstrapping method as in Section 5.1.3 with 50.000 samples uniformly

drawn from the empirical results, and α = 0.058. For K = 1 there is LCB ≤ 0 and UCB

≥ 0 for almost all stocks and, thus, cannot conclude on any significant improvement

nor worse performance of LLSA. For K ∈ {2, 3} note that the number of stocks for

which there is a significant improvement increases, while the few stocks for which LLSA

performs significantly worse is reduced to three (the BAS, EPC, and SDF stocks filtered

by the median filter). Analyzing these particular stocks it is found that the reason is

that these stocks exhibit one or more extremely high pure jumps, which are captured

better by the median filter. To reach a better performance of LLSA, the algorithm would

have to be set up with a larger Λ that could capture this edge but would lead inevitably

to more overall ripples and a Gibbs phenomenon like effect near the jumps.

In Tables B.7 to B.9 in the first three columns the total amount of percentile deviations

(i. e., exceedances) is stated, that is, how often for each algorithm’s estimated distribution

the real value is outside the [γ, 1 − γ] percentile bounds. Though in several cases the

MODWT and median filter have a smaller total amount than LLSA and are nearer to

the expected 5% mark, the next columns show that particularly with higher K for almost

all of the tested data LLSA provides percentile bounds with a narrower width. Analog

as above the bootstrapping method is used to show the significance of these results and

8This parameter was set to be in concordance with γ.
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Table 5.5.: LLSA inferior performance amount in percentile exceedances

MODWT Median

K = 1 13 (43%) 16 (53%)
K = 2 12 (40%) 16 (53%)
K = 3 8 (27%) 12 (40%)

report them in Table B.10. The total amount over all stocks of how often LLSA was

outperformed by the MODWT and the median filter is given in Table 5.5. One notices

an overall better performance for a higher choice of K, with LLSA outperforming the

two alternative algorithms in at least 60% of all analyzed stock price time series for

K = 3. Though the overall results clearly state that a better overall performance of

LLSA can be achieved by raising K, one must take care as this must not to lead to

any misleading conclusions. By analyzing Tables B.7 to B.9 in detail, it can be seen

that for a higher choice of K, LLSA’s performance for some stocks improves, while it

gets worse for others. This can be explained by the fact that in case the number of

expected sudden changes K is set or estimated too high, LLSA begins to reconstruct

details in areas where no such outstanding phenomena actually occurred. Therefore, a

careful choice of K (and also Λ) is essential in order to get the best results.

Again, for the SAP stock data, this is exemplarily depicted in Figure 5.11. It can be

seen that particularly after a significant jump occurred (e. g., around data point 1000)

the MODWT percentile estimations are much larger than necessary.

The interpretation of these results is straightforward. While the conditional mean

states that in more than 50% the algorithm estimates a better overall distribution,

the remaining columns show that it particularly estimates the distribution better at

its tails. It is important to note that LLSA achieves a smaller number of exceptions

beyond the percentile while estimating these percentiles with a higher accuracy, that

is, a smaller mean distance dB . This is in concordance with the intuition that LLSA

focuses on estimating jumps and steep slopes that are usually located at the end of each

distribution and can lead there to an overestimation, if not removed previously.
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Figure 5.11.: SAP stock price percentile deviations, K = 2.

5.2.3. Estimating Value at Risk of High-Frequency Data

While in the previous section the benefits of LLSA’s application for volatility estima-

tion of stock price data were discussed, in this section the focus lies on the results one

can achieve for value at risk (VaR). The proceedings in this section follow closely [38],

which is recommended for reference and discussion of further details omitted here. Value

at risk denotes essentially a risk measure that provides a worst case estimation of how

much can be expected to be lost inside a certain time interval up to a specific confidence

level. Therefore, as was done in for the volatility estimation, percentiles are calculated

using the empirical data set as in the previous sections. However, VaR requires to work

on the profit/loss data, which can easily be derived via P/Lt = Pt − Pt−1, where P/Lt

denotes the profit/loss at time t, and Pt the respective stock price.9

Evaluation Methodology

The same evaluation methodology as in Section 5.2.2 is followed, that is, a moving

window of size 7 · 2J is used, while the boundary regions at its ends are disregarded.

The stock price data was detrended by the respective algorithms (i. e., LLSA, MODWT,

and the median filter) and the remaining series transformed into P/L data. Though the

9Interim payments are ignored in this case.
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detrending process results results in ”negative” prices, this aspect does not effect the

eventual P/L series which is different for every algorithm.10 Using this series the 5th

and 95th percentiles were calculated for the one-step-ahead VaR estimation. This study

focusses on nonparametric VaR estimation models, since due to remaining irregularities

no parametric model for the P/L data can reasonably be assumed.

In this work two independent VaR measures were calculated. As the ordinary VaR

measure (i. e., the lower percentile bound) was criticized due to its simplicity and prob-

able misleading implications (see, for example, [56,110,111]), the authors in [7,8] argue

to use a more coherent approach, that is, the risk measure is subject to an additional

set of axioms, like monotonicity and subadditivity. The expected shortfall (ES) model

proposed by [2, 3] is one risk measure that satisfies these stated coherent risk measure

properties. The ES model does not simply consider a single quantile, but instead an

average over the worst 100(1 − γ)% losses. In this discrete setting, this was done by

averaging over M percentiles, with γM = γ − (m − 1) · (0.05/M), m = 1 . . . , M . For

the here considered data it was found that setting M = 50 was sufficient to yield ac-

curate results, that is, setting M > 50 did not lead to any notable changes or different

implications. In addition to the value at risk estimation using the detrended P/L data,

also the VaR and ES were calculated using the original P/L series. As was done for

the volatility estimation, the number of exceedances is measured. As the percentiles are

calculated according to γ = 0.05, any percentaged deviation that lies closer to 5% can

be considered as more accurate.

Furthermore, the method of [68] is used to verify the reliability and accuracy of the

estimated models. This method, which is widely used in practice, is a two-sided basic

frequency (also: binomial) test, that is, the 95% confidence intervals for either the

absolute or the percentaged number of exceedances are calculated in order to decide

whether to accept or to reject the model.

10This is also the reason why return series were not used in this approach, since the return calculations
cannot handle negative prices directly and would require further transformation of the detrended
data.

115



Chapter 5. Evaluation and Application

Results

The results of the above evaluation for the detrended series are reported in Tables B.11

to B.13 for K ∈ {1, 2, 3}. First, it can be seen that the exceedances of the ordinary VaR

model are always considerably higher than their ES model counterparts. Furthermore,

for all K the performance of the LLSA VaR estimation in relation to the MODWT and

the median filter remains nearly the same, that is, in about one third (half, respectively)

of the cases, the MODWT (median filter, respectively) performs better. However, for

all algorithms the percentaged exceedances are too large as they could be accepted as

a viable model. The (analog) results of LLSA’s performance in relation to the original

VaR model are stated in Table B.14.

For the ES model the amount of percentaged exceedances lies much closer to the

expected 5% mark. In fact, using the above named model verification method, all

estimated models were accepted but one (LLSA for the LIN stock price data). Analyzing

Table B.15, it can be verified that this also holds for the ES model applied on the original

(i. e., not detrended) P/L data. In Table 5.6 LLSA’s performance with respect to the

MODWT and the median filter, as well as the original VaR and ES model, is summarized

(i. e., the numbers reported state the amount of cases where LLSA is outperformed by

the alternative algorithms). One can note that for K = 3 LLSA achieves the best results,

that is, the ES model estimation is more accurate in at least 60% of all cases, which is

in complete concordance with the results in the Section 5.2.2. Analog to these results,

LLSA’s performance on specific stock data improves or worsens dependent on the choice

of K. However, contrary to the results pointed out there, the worst overall results in

VaR estimation are achieved for K = 2. Summarizing these insights, this stresses the

importance of selecting K appropriately and separately for each time series.

5.3. Summary

In this chapter an evaluation of LLSA’s consistency was given and the benefits of

its application was discussed. After an analytical proof the robustness analysis was

conducted via different simulation settings (Section 5.1) as well as using empirical data
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Table 5.6.: LLSA inferior performance amount in VaR and ES estimation

VaR ES

VaR MODWT Median ES MODWT Median

K = 1 13 (40%) 12 (40%) 15 (50%) 10 (33%) 14 (47%) 12 (40%)
K = 2 12 (43%) 10 (33%) 15 (50%) 12 (40%) 17 (57%) 13 (43%)
K = 3 10 (33%) 11 (37%) 13 (43%) 9 (30%) 12 (40%) 11 (37%)

with four distance measures (Section 5.1.3). It was concluded that LLSA is robust

independently from specific parameter choices and performs significantly better than

the linear and nonlinear benchmark filters. In Section 5.2 the limitations and possible

benefits of the algorithms application to financial high-frequency data were discussed.

LLSA seems to be particulary useful where occasional sharp changes need to be extracted

simultaneously along with the trend in order not to falsify any succeeding analysis and

estimation methods. In this thesis the better performance of estimating the time series’

noise distribution was shown using empirical data.

The reported results prove that the application of the LLSA approach can lead to

significant better results in the distribution estimation, particularly at its tails (note

that this results is completely consistent with the findings in Section 5.1.3), which is an

important issue specifically in the analysis of financial high-frequency data. Please note

again that the (Λ, K) tuple should be selected according to the actual data in order to

yield optimal results.

It can therefore be concluded that the application of LLSA may be beneficial specif-

ically for the succeeding steps after the trend extraction, that are, the estimation of

seasonalities and the noise distribution, as well as any further application using this

information. Though there is no guarantee that a better trend estimation will also auto-

matically lead to improvements in these areas (as, for example, errors of bad estimations

may balance out each other), this has proven to be the case in many different settings

provided in this thesis. Such more accurate results will usually lead to a better un-

derstanding of the time series’ underlying systems and their development, and is also
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advantageous for concrete applications, like value at risk (see [57]). As this method relies

heavily on an accurate noise distribution estimation specifically at its tails, the applica-

tion of LLSA can lead to significant improvements in that particular area. Note again,

that in practice LLSA is not suitable for forecasting and other real-time applications

without prior selecting an appropriate method (dependent on the specific time series) in

order to handle any boundary distortions.
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Conclusion and Outlook

In this chapter, the answers to the research questions raised in the introduction are

discussed and the contributions of this thesis are summarized in Section 6.1. Possible

future research directions are outlined in Section 6.2. The latter will be subdivided into

extensions of the algorithm itself and its potential further applications.

6.1. Summary

Having proposed the algorithm and shown its several properties, consistency and ap-

plication possibilities, it will now be analyzed which of the requirements in Section 1.1

have been met, and how the research questions stated in the same section can be an-

swered. Furthermore, the contributions of this thesis are summarized in Section 6.1.2.

6.1.1. Requirement Satisfaction and Research Questions

Requirement Satisfaction

Since LLSA builds on the MODWT and its reconstruction of details is limited to the

near proximity of jumps, it can be stated that Requirement R1 is mostly met. Mostly,

since a perfect solution may in reality not be available (and has not yet been discovered

among the class of nonlinear filters). As the class of linear filters can wholly be excluded

to solve this task, LLSA, extending the principles of linear filtering, certainly provides

an improvement, as was shown in Sections 5.1 and 5.2. However, while the local linear
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output that matches the MODWT is an advantage on one side, it is also a drawback on

the other, as outliers still affect the trend in these areas.

Requirement R2 is also met in the way that in the areas where local linearity still holds

(i. e., the output of LLSAmatches the one of the MODWT) the low-pass filter frequencies

are completely determined (i. e., controlled) by the initial scale J . Additionally, in the

near proximities of jumps, where this property does not hold any longer, one still has

an explicit control over the frequencies, in terms of that one can state an upper bound

(by choosing Λ appropriately) which frequencies shall not pass. Due to the mixture of

adjusted wavelet coefficients (i. e., set to zero) no statements can be made about the

analytical composition and proportion of frequencies in these areas. Where the cones

of influence from different wavelet coefficients (i. e., set to zero or left untouched) do

not overlap for different scales (see Theorem 4.4) the output equals to the one of the

MODWT, even in the near proximity of jumps. Thus, while LLSA does not provide a

complete frequency control throughout the whole signal, but only lower bounds near the

proximity of edged frontiers, Requirement R2 is at least partially fulfilled, which can be

considered to be a commendable achievement for a nonlinear filter.

Regarding Requirement R3, since LLSA does not rely on any specific assumptions on

the time series itself (besides homogeneity) nor its inherent noise structure, it can be

stated that this requirement is fully met as with any of the other linear and nonlinear

filters and therefore, the novel algorithm is as easily applicable as these. Though many

approaches, in order to improve the performance compared to those traditional methods,

impose additional assumptions and requirements on the time series and its noise, it was

decided against this approach1 in order not to restrict LLSA’s usage. However, this

does not deny or exclude the possibility of further enhancing LLSA’s performance by

including such further assumptions. This is discussed in the Section 6.2, where possible

extensions and future work for LLSA are presented, which particularly regard specific

noise structures and to these related works in the field of wavelets.

In Corollary 4.3 the computation tractability of LLSA was analyzed, and it was shown

that the complexity of the MODWT, O(N log2N), is preserved. Though not as good as

1In this way, setting (K, Λ) may seem heuristic, but avoids biases for specific samples.
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the DWT with O(N) it is still on the same level with the fast Fourier transform (FFT)

that is oftentimes applied for global frequency analysis, and many other nonlinear filters,

which must first order the whole sample located in the moving window (in case they are

based on some order or ranking criteria). This satisfies Requirement R4.

In Theorem 5.1 it was proved that a boundary on the error for the trend estimation

can be derived and that LLSA converges asymptotically towards the MODWT. As the

found boundaries are very generously estimated, the reliability and consistency of the

algorithm were extensively examined in simulations and empirical samples in the suc-

ceeding Sections 5.1.2 and 5.1.3, respectively. The results show that LLSA is robust and

independent of the specific choice of wavelet or (K, Λ). Thus, Requirement R5 is also

satisfied.

Though it was found that LLSA does not perform better in all scenarios2, for the pur-

poses it was designed for it performed better in the majority of the cases (though still

depending on (K, Λ)). Though, as pointed out in Section 5.2, this does not lead neces-

sarily to better results, the tests in Sections 5.1 and 5.2 strengthen the argumentation

that LLSA is a promising contribution to enrich the class of nonlinear filters and, due

to its local linear properties, can be seen as bridging the gap between these two classes

of linear and nonlinear filters. A comparison to the alternative methods discussed in

Chapter 2 is provided in Table 6.1.

Considering the framework in Section 2.1, LLSA can be characterized as a nonparamet-

ric, nonlinear filter used for the approximation of the long-term trends in nonstationary,

univariate time series, and can be associated with time as well as with the frequency do-

main. As the otherwise extracted trend will (by design) exhibit sharp changes it cannot

be classified as a traditional smoothing approach, neither is it a pure denoising method,

since it also aims at the removal of other (deterministic) components. It is stressed that

LLSA cannot directly be used for forecasting/prediction, due to the boundary distor-

tions which are common to all moving window filters. Instead, as was shown in Section

5.2.2, one can expect (but not guarantee) LLSA to yield a better signal decomposition,

which in turn will lead to more accurate results in the succeeding steps, like volatility es-

2Any other statement would be dubious, as no single method can serve as a best solution for all cases.
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Table 6.1.: Today’s algorithms’ and LLSA’s requirement fulfillment

R1 R2 R3 R4 R5

Linear filters #     

Nonlinear filters G# #    

Dedicated jump models  # G#   

General least-squares models G# # G# G# G#

Smoothing splines & HP filter G# #    

Kalman filter  # G#  G#

LLSA  G#    

timation, and thus, provide a better understanding of the time series and the underlying

system itself. This can be used as an input to, for example, other forecasting methods

that do not suffer from these boundary restrictions.

Research Questions

Taking the above findings into account, the research questions stated at the beginning

of this thesis can be answered as follows.

As was seen, since nonlinear filters generally do not account for any a priori frequency

control that fulfills Requirement R2, only linear filters provide that desired feature, which

designated them to serve as a starting point of the new algorithm’s development. They

also fulfill Requirement R1 with respect to the smooth trend, which lead to the idea

of reconstructing lost details. Of the class of linear filters, wavelets (and their discrete

transforms) were chosen due to two facts: First, their excellent localized properties

seemed favorable for the task of handling single marked-off phenomena like jumps, and,

second, the multiresolution analysis the transforms provide can be exploited in the sense

that during the transformation no information is lost, but preserved on different scales.

The approach proposed in this thesis is surely not the only feasible one, but was favored

here and has proven to work as expected.
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As can be seen in Table 6.1 LLSAmeets all requirements but R2, which is only partially

fulfilled. Though it cannot be excluded that a filter might be developed that enables

complete frequency control of the whole signal it is a questionable ambition, due to the

contradiction of eliminating and preserving details located in the same frequency range,

that differ only in their magnitude. The approach presented in this thesis manages to

provide an in-between solution, that is, complete frequency control over the areas of the

signal where the trend is smooth, and lower bounds in the proximity of sudden changes.

This answers research question RQ 1.

The characteristics and properties of the algorithm were proven in Section 4.2. LLSA

has the same computational complexity as the MODWT it is based upon and further-

more can be applied without any restrictions on all time series as comparable moving

window filters. The algorithm’s robustness was shown in several ways (analytically,

via simulations, and by using empirical data) in Section 5.1. In comparison to the

MODWT, LLSA additionally needs only the parameter tuple (Λ, K), that is, the degree

of refinement and the number of sections to be refined. Both parameters can either be

determined heuristically or, for Λ, by using any additional information about the fre-

quencies contained in the signal, while the optimal choice of K can be made using any

method mentioned in Section 2.4.1, depending on the setting and the information that

is available. It was also seen that these additional parameters depend on the choice of

wavelet, though, based on the results of Section 5.1, in most cases LLSA is recommended

to be used with either the Haar or the D4 wavelet. Along with LLSA’s explicitly stated

properties, that are, local linearity, the algorithm’s impulse and step response, as well

as its bounded approximation error and asymptotic convergence towards the MODWT,

this answers research question RQ 2.

Several analyses were conducted in this thesis to prove in which cases LLSA performs

superior in relation to other benchmark filters. The simulations in Section 5.1.2 have

shown that LLSA performs always better in non-extreme settings (i. e., very high or

low noise), regardless of the choice of wavelet and even for bad estimations of K. The

succeeding empirical studies clearly demonstrate that LLSA is a valuable addition to

today’s established filters, also, as it can be thought of being in-between the linear

123



Chapter 6. Conclusion and Outlook

and nonlinear filter classes. Though, of course, LLSA will not perform superior in all

scenarios, for the data sets evaluated in this thesis it did so in a considerable number

of cases. As LLSA is based on a moving window filter, as with all filters of that kind,

its applicability in forecasting is limited, but not impossible, given the right handling of

boundary conditions. The main benefit of this algorithm’s application can be seen in

that it usually leads to a more accurate estimation of the components remaining in the

time series, that are, seasonalities and noise, though no guarantee can be given for that

as well. However, the case studies and their evaluations presented in this thesis admit

the conclusion that this is in fact the case even if (Λ, K) are not calibrated optimally.

Thus, research question RQ 3 is also answered positively.

6.1.2. Contributions

Although jump detection can today be considered to be a task well understood and

realized by different methods, the LLSA approach goes beyond that. While other ap-

proaches focus mainly on the detection and representation of jumps, LLSA incorporates

a more general notion, by not considering jumps only, but also extreme regions con-

taining other occurrences like steep slopes, roofs and valleys. While a jump may easily

be represented or parametrically modeled (e. g., via indicator functions) this does not

hold for the other sudden phenomena, for which it is challenging to assume certain para-

metric models in general. LLSA’s nonparametric detail reconstruction approach treats

this task while maintaining the flexibility to be adjustable over different scales. The

nonlinear characteristic is mandatory to include high-frequency events in the otherwise

low-frequency trend. However, in contrast to other nonlinear filters, the approach pro-

posed in this thesis still preserves the properties of linear filters outside those critical

regions and thus, enables the analyst to maintain frequency control over the output.

Summarizing, it can be said that LLSA enriches the class of nonlinear filters by provid-

ing a bridge from them to their linear counterparts, especially in respect of frequency

analysis. The contributions of this thesis can thus be summarized as follows:

• A new algorithm was developed that handles the task of the trend extraction from

one-dimensional discrete signals that occasionally exhibit sudden changes. How-

ever, this approach is not limited to jumps only, but also takes other phenomena
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like steep slopes and valleys into account, which differentiates itself from alterna-

tive filtering methods with comparable application requirements. Furthermore, to

the author’s best knowledge, the LLSA algorithm is today’s only available method

that fulfills requirements R1 to R5 conjointly to this degree.

• To foster the algorithm’s applicability in other scenarios and research fields, its

general properties were shown. The algorithm, characterized by these properties,

has proven that it is generally neither disadvantaged nor inferior with respect to

alternative filtering methods.

• The limitations as well as the benefits that can be expected from LLSA’s applica-

tion in real scenarios have been discussed and its superior performance has been

shown in a number of cases, using simulations as well as real data. Though the

eventual performance still depends on the analysis and the succeeding methods

itself, the algorithm can be considered to be applicable to all kinds of signals in

the most diverse research and application areas, as long as its (few) requirements

are met.

6.2. Future Research Directions

In this section, several possible future research directions are discussed, which were

not considered in this work or only touched on. These directions are divided into two

subtopics, namely further research considering the LLSA algorithm itself, and applica-

tion scenarios being enabled by LLSA’s usage.

6.2.1. Algorithmic Extensions

Another variation of discrete wavelet transforms not explicitly mentioned (as they play

no further role in this thesis) in Section 3.2 are the discrete wavelet packet transform

(DWPT) and its MODWT counterpart, the maximal overlap discrete wavelet packet

transform (MODWPT). The pointed out differences between the DWT and the MODWT

hold also for the DWPT and the MODWPT. The basic idea behind these transforms

is that through the multiresolution analysis one does not receive only one scaling co-
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(a) DWT (b) DWPT

Figure 6.1.: Flow diagram of wavelet transforms

efficient vector VJ and J wavelet coefficient vectors, which are related as in Equation

(3.15). Instead, one gets a full decomposition, that is, for each Vj and Wj there are

one succeeding scaling approximation and detail vector each, see Figure 6.1 (adapted

from [88]). This by far more redundant decomposition enables time series representa-

tion with best basis selection (where best depends on the metric used) and thus, provides

much more representations of the time series from different viewpoints. In combination

with an appropriate basis, these viewpoints would offer additional representation pos-

sibilities that provide more flexibility for choosing how to best reconstruct lost details

of jumps. That is, the algorithm would not be restricted to the Wj , 1 ≤ j ≤ J , but

have access to a variety (i. e.,
∑J

j=1 2
j + 1) of different detail combinations. As this

new multiresolution decomposition also incorporates the original decomposition vectors

of the DWT (or MODWT, respectively), clearly the possibility of an even better trend

representation via the additional vectors is given.

Improvement for White Gaussian Noise

In this work, no information concerning the noise structure was used at all or only

implicitly, by setting J and Λ accordingly. In case of white Gaussian noise, information

about its variance σ may be used to improve the performance of the LLSA algorithm:
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According to [35] all wavelet coefficients below the threshold

δσ =
√

2σ2 log(N)

are dominated by noise and can thus be discarded. This would also affect the definition of

nα and nβ in Equations (4.4) and (4.5). As for |Wj| < δσ these coefficients hardly contain

any information about the signal itself, Equations (4.2) and (4.3) may be redefined to

lsmin, j := min
{
t
∣∣ |W s

j, t| ≥ δσ
}
,

lsmax, j := max
{
t
∣∣ |W s

j, t| ≥ δσ
}
.

This will usually lead to smaller nα and nβ. If Equations (4.11), (4.12) and (4.13) are

further modified to

ΩW,δσ
j, k := [αδσ

j, k, β
δσ
j, k],

and

αδσ
j, k := max

{
l ∈ [αj, k, l

W
j, k − 1]

∣∣ ∀ t ∈ [l, lWj, k − 1] holds |Wj, t| < δσ
}
,

βδσj, k := min
{
l ∈ [lWj, k + 1, βj, k]

∣∣ ∀ t ∈ [lWj, k + 1, l] holds |Wj, t| < δσ
}
,

all wavelet coefficients below the threshold δσ are cut off, yielding an even more localized

detail restoration. Furthermore, one can investigate the effect of additionally setting all

retained wavelet coefficients to zero that fall below that threshold, that is, for Equation

(4.9) one has

W̃ s
j, t =





Wj, t for t ∈ ⋃
j=J−Λ, ..., J
k=1, ...,K

ΩW
j,k ∧ |Wj, t| ≥ δσ ,

0 otherwise.

The above equations can be associated with hard thresholding. The flexibility of LLSA

also allows for the application of other thresholding rules (i. e., soft, mid and firm) and

scale dependent thresholds, that is, δσ, j , Λ − J ≤ j ≤ J (see [1] and the references

therein for further details).
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Furthermore, if there is any information about the noise and its structure, and, thus,

one can derive a threshold δ̂σ to determine whether a jump is significant (i. e., whether

or not it can be contributed to daily fluctuations, see Section 2.4.1), due to LLSA’s basic

procedure and convertibility, K can be determined by

K̂ = max{k | lWJ, k ≥ δ̂σ}

Alternative Initial Jump Detection

In Section 4.1.1 a rule was presented for determining lWJ, k, k = 1, . . . , K, that is, the

locations of jumps and slopes. By evaluating single filtered time series it was noticed

that sometimes the jumps and slopes recognized and restored by LLSA were not the

ones that should have been reconstructed in the first place (i. e., they were not the most

obvious ones). Hence, this rule may also be replaced or combined with any of the other

methods referred to in Section 2.4.1. This can be achieved by setting the initial LLSA

jump estimation lWJ, k in Equation (4.14) according to one of these proposed methods.

However, note that Equation (4.15) still remains unchanged.

Alternative Jump Detection on Different Scales

The formulation in Equation (4.15) ensures that always the same critical section is

refined on every scale. Thus, in case there exist several occurrences of minor jumps

on the finer scales, it is ensured that once LLSA opts for the refinement of one critical

section via the rules in Equations (4.14) and (4.15), on the next lower levels only the

details of the very same jump get further reconstructed. This rule is necessary, since the

critical sections from the perspective of a particular scale will not be the same as the

ones from the next higher or lower one. However, it is possible to state another slightly

different formulation

lIj, k := argmaxt
(
|Wj, t|

∣∣t ∈ ΩW
J, k

)
.

In this way, the only restriction is that the refined jump at each scale J − Λ ≤ j < J

must be detected inside the one from the original perspective at scale J . The further

investigation of these rules and the impact on LLSA and its applications may be the
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subject of future works.

Multivariate Extension

In this work there were only considered time series or discrete univariate signals. But

since wavelet transforms are not limited to one dimension, and furthermore denoising

and edge preservation are an important part also in multivariate analyses, specifically

two-dimensional images, the following paragraph will outline how this thesis’ approach

can be extended to multiple dimensions (with the focus here on images).

First note that jumps are not unambiguously defined any more as in univariate set-

tings. This becomes specifically important as LLSA is built upon the wavelet coefficient

step response structure, see Definition 4.1, which need to be carried over to two dimen-

sions. While an impulse is clearly defined, that is a single nonzero value, for the step

response there is either a pure step or an edge like structure (or anything in-between),

see Figure 6.2. Additionally, while in the univariate case one could transfer the wavelet

coefficient step response onto the measured signal X by considering its change of signs

(see Equations (4.4) and (4.5)), now there must be used contours instead. Furthermore,

the multivariate case is not confined to dyadic scaling as in Equation 3.8, but instead

has

ϕ(t) =
√

|det(M)| =
∑

k∈Z

gkϕ(Mt− k),

where M is the scaling matrix, which can take on several forms depending on the actual

mesh (e. g., the quincunx or the twin dragon) used for the multiresolution analysis (see

[80] for details).

Considering above points, it can be seen that there are still numerous open research

questions to further develop LLSA and explore its optimal application scenarios.

6.2.2. Further Applications

There was already depicted one possible application in Section 5.2, that is, a higher

accuracy in distribution estimation. It was shown how the usage of LLSA as the very first

step of trend extraction can lead to better results. Generally said, the more accurately
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Figure 6.2.: Two-dimensional response structures

the trend is extracted, the more accurately one can expect any succeeding steps to

perform. This holds for business cycle and variance estimation, as well as any further

analyses and models using this information.

However, the usage of LLSA also provides other advantages in applications from other

perspectives. The first issue is a phenomenon called oversmoothing, that is, if too many

significant details of the trend are lost during the filtering process. This is, of course,

related to the main issue of this work that edges and jumps are blurred out, but on a

different scale, that is, oversmoothing is generally associated with a wrong choice of the

appropriate initial approximation level, i. e., J is chosen to high. As [1] notes the choice

of J may be a daunting task, eventually equivalent to the choice of bandwidth for (non)

linear filters. While [88] notes that this choice must depend on the data and the noise

at hand, for the same measured time series, different choices of J may be appropriate,

dependent on the final aim of the analysis (e. g., extract trends over different periods of

length, i. e., mid- and long-term). Though some approaches (like cross-validation) exist

to support the analyst in this task (before the actual analysis), they are generally not

error free. Though this will not be changed by LLSA, this approach adds an interesting

aspect to this. In case J was chosen too high, LLSA still can provide a very good
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(a) Counteract oversmoothing
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(b) Diminish boundary distortions

Figure 6.3.: Further applications

approximation of the trend including an accurate resolution of its details, see Figure

6.3a. However, in this case, as the initial coarse resolution of the jump covers a much

larger proportion of the filtered signal, the areas that can be considered as the output

of a linear filter, will generally be significantly smaller or vanish at all.

Another aspect is LLSA’s capability to diminish boundary distortions. As noted in

Section 3.2 for all kinds of moving window filters, there are data points missing at the

beginning and at the end of the signal, that is, where the filtering window exceeds

the measured data points. In order to still conduct the filtering process, missing data

points need to be substituted by one of the methods named in Section 3.2. Nevertheless,

the areas around the signals boundaries will always be biased, independent of which

method is used. As the filtered output in these regions are distorted anyway, one can

not take them as a input for further valid statements and uses. However, what can be

done intuitively, is to switch to the next lower scale which effectively halves the window

length each time. In this way more details are added to the trend at the boundaries,

but distortions are avoided. Though this idea is not exclusive to LLSA (it can also be

achieved with the MODWT or any other moving window filter) an exemplary application

is depicted in Figure 6.3b.
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Appendix A.

Empirical Robustness Study

A.1. Statistical Ratios Tables

The tables provided in this appendix show several statistics for our empirical robust-

ness study in Section 5.1.3 for the 60 minute frequency data. Only the tables for the

extreme window sizes κ = 4 and κ = 10 are stated. The tables are to read as follows.

In each table caption is given the goodness-of-fit distances (i. e., Kolmogorov-Smirnov,

Anderson-Darling, Kuiper, and Cramér-von Mises, that is, one table for each test), to-

gether with the multiplier κ of the filtering window size J = 27.

The statistics provided are the mean, median, variance, minimum and maximum of

the by LLSA (subscript L) and MODWT (subscript M) of the resulting moving window

trend estimation time series.
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Table A.1.: Kolmogorov-Smirnov distance statistics, κ = 4

meanL meanM medianL medianM varL varM minL minM maxL maxM

ADS 0.1962 0.2240 0.1914 0.2168 0.0021 0.0017 0.1172 0.1563 0.3281 0.3887
ALV 0.2045 0.2557 0.2109 0.2402 0.0018 0.0022 0.1074 0.1582 0.3281 0.3945
BAS 0.2148 0.2594 0.2090 0.2539 0.0018 0.0025 0.0957 0.1621 0.3105 0.3770
BAY 0.1805 0.2512 0.1797 0.2500 0.0039 0.0025 0.0801 0.1699 0.3184 0.3926
BEI 0.2205 0.2830 0.2168 0.2832 0.0021 0.0042 0.1055 0.1465 0.3281 0.4141
BMW 0.2225 0.2857 0.2266 0.2910 0.0028 0.0025 0.1172 0.1660 0.3965 0.4219
CBK 0.1929 0.2149 0.1914 0.2168 0.0019 0.0009 0.0859 0.1641 0.2891 0.2891
DAI 0.2120 0.2665 0.2148 0.2715 0.0016 0.0020 0.1309 0.1758 0.3125 0.3652
DBK 0.1916 0.2187 0.1875 0.2227 0.0023 0.0021 0.0820 0.1504 0.3027 0.3398
DB1 0.2298 0.2792 0.2344 0.2734 0.0034 0.0039 0.1113 0.1738 0.4082 0.4082
DPB 0.2014 0.2404 0.1914 0.2285 0.0033 0.0024 0.1016 0.1719 0.3418 0.3945
DPW 0.1689 0.2271 0.1641 0.2168 0.0015 0.0023 0.0820 0.1602 0.3203 0.3750
DTE 0.2341 0.2702 0.2217 0.2441 0.0070 0.0048 0.0898 0.1641 0.4141 0.4141
EPC 0.2478 0.2893 0.2422 0.2910 0.0043 0.0042 0.1035 0.1680 0.4336 0.4395
FME 0.2179 0.2607 0.2266 0.2441 0.0048 0.0042 0.0879 0.1777 0.3711 0.4414
LHA 0.2205 0.2595 0.2129 0.2539 0.0023 0.0032 0.1426 0.1523 0.3496 0.3691
HNK 0.1751 0.2512 0.1738 0.2363 0.0022 0.0041 0.0879 0.1289 0.3008 0.3730
IFX 0.1767 0.2236 0.1836 0.2129 0.0026 0.0010 0.0898 0.1699 0.2871 0.3359
SDF 0.2204 0.2711 0.2227 0.2461 0.0018 0.0039 0.1191 0.1875 0.3613 0.4531
LIN 0.2432 0.2680 0.2383 0.2734 0.0023 0.0017 0.1621 0.1680 0.3906 0.3906
MAN 0.2149 0.2426 0.2168 0.2324 0.0035 0.0021 0.1152 0.1641 0.3770 0.3770
MRC 0.2238 0.2625 0.2090 0.2637 0.0048 0.0039 0.1152 0.1660 0.4453 0.4453
MEO 0.2064 0.2689 0.2109 0.2529 0.0025 0.0030 0.0879 0.1777 0.3223 0.3906
MUV 0.2226 0.2782 0.2188 0.2793 0.0058 0.0051 0.0898 0.1563 0.4199 0.4375
RWE 0.2155 0.2497 0.2090 0.2344 0.0022 0.0042 0.1016 0.1699 0.3535 0.4395
SZG 0.2020 0.2478 0.1973 0.2461 0.0027 0.0031 0.1211 0.1758 0.3457 0.4277
SAP 0.2078 0.2783 0.2109 0.2871 0.0046 0.0031 0.0996 0.1660 0.3594 0.3809
SIE 0.1885 0.2354 0.1875 0.2285 0.0021 0.0013 0.1152 0.1797 0.2852 0.3574
TKA 0.2003 0.2357 0.1992 0.2246 0.0022 0.0021 0.0918 0.1699 0.2988 0.3848
VOW 0.2329 0.2809 0.2383 0.2852 0.0045 0.0026 0.0918 0.1973 0.4043 0.4277
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Table A.2.: Anderson-Darling distance statistics, κ = 4

meanL meanM medianL medianM varL varM minL minM maxL maxM

ADS 4.3728 5.0268 4.2468 4.8661 1.0748 0.8900 2.6100 3.4063 7.3876 8.7590
ALV 4.4107 5.7474 4.4680 5.3970 1.1723 1.1146 2.2119 3.4063 7.3876 8.8917
BAS 4.5771 5.5015 4.4680 5.5297 1.2633 1.1437 2.1234 3.6275 6.9453 8.4936
BAY 4.0186 5.6449 4.0256 5.6181 1.9988 1.3016 1.7695 3.8044 7.1665 8.8475
BEI 4.5707 6.3642 4.6892 6.3702 1.2130 2.1380 2.3446 3.2736 7.3876 9.3341
BMW 4.6300 6.4250 4.9104 6.5471 1.8544 1.2716 1.9464 3.7159 8.9360 9.5110
CBK 4.3080 4.8116 4.2910 4.8661 1.0360 0.4755 1.5483 3.4505 6.5029 6.5029
DAI 4.6732 5.9950 4.5565 6.1048 0.8464 1.0273 2.8754 3.9371 7.0337 8.2282
DBK 4.2666 4.9085 4.1141 4.9988 1.2208 1.0581 1.8137 3.3620 6.8126 7.6531
DB1 5.0744 6.2789 5.1315 6.1490 1.6852 2.0162 2.4773 3.8929 9.2014 9.2014
DPB 4.4668 5.3995 4.2468 5.1315 1.6159 1.2518 2.2561 3.8487 7.6973 8.8917
DPW 3.6805 5.0969 3.6717 4.8661 0.6191 1.1661 1.8137 3.5832 7.2107 8.4493
DTE 5.2068 6.0723 4.9104 5.4854 3.6170 2.4669 1.9907 3.6717 9.3341 9.3341
EPC 4.7023 6.1521 4.4237 6.1490 1.9315 2.1137 2.3003 3.2736 8.9360 9.9092
FME 4.6422 5.8598 4.7776 5.4854 2.3357 2.1471 1.7695 3.9814 8.3609 9.9534
LHA 4.8847 5.8323 4.6007 5.7066 1.1677 1.6204 3.1851 3.4063 7.8743 8.3166
HNK 3.7805 5.6450 3.4948 5.3085 0.9890 2.1281 1.9464 2.8754 6.7683 8.4051
IFX 3.9458 5.0193 4.1141 4.7776 1.3037 0.5279 1.9907 3.8044 6.4587 7.5646
SDF 4.8044 5.8466 4.6007 5.4854 0.9909 1.4031 2.6542 4.2026 8.1397 10.2188
LIN 5.4175 6.0239 5.3085 6.1490 1.2305 0.8812 3.6275 3.7602 8.8032 8.8032
MAN 4.7831 5.4252 4.7776 5.2200 1.7693 1.1198 2.5658 3.6717 8.4936 8.4936
MRC 4.9799 5.9005 4.6449 5.9278 2.4579 1.9920 2.5658 3.7159 10.0419 10.0419
MEO 4.3344 6.0470 4.1804 5.6845 1.8542 1.5517 1.6810 3.9814 7.2549 8.8032
MUV 4.7897 6.2541 4.5565 6.2817 3.2454 2.6491 1.9907 3.4948 9.4668 9.8649
RWE 4.6534 5.6013 4.6449 5.2643 1.0064 2.1814 2.2561 3.8044 7.9627 9.9092
SZG 4.4842 5.5682 4.4237 5.5297 1.3857 1.5915 2.6985 3.9371 7.7858 9.6438
SAP 4.5258 6.2560 4.4680 6.4587 2.3813 1.6163 2.2119 3.3620 8.0954 8.5821
SIE 4.0871 5.2875 3.8044 5.1315 1.2227 0.6690 2.5658 4.0256 6.4144 8.0512
TKA 4.4622 5.2931 4.3795 5.0431 1.1177 1.0637 2.0349 3.7159 6.7241 8.6705
VOW 4.9097 6.2783 4.9988 6.2375 2.7922 1.3203 1.9907 4.4237 9.1129 9.6438
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Table A.3.: Kuiper distance statistics, κ = 4

meanL meanM medianL medianM varL varM minL minM maxL maxM

ADS 0.3318 0.4056 0.3379 0.3887 0.0054 0.0045 0.1875 0.2734 0.4824 0.6328
ALV 0.3372 0.4482 0.3398 0.4473 0.0043 0.0051 0.2070 0.3086 0.5078 0.7031
BAS 0.3633 0.4504 0.3613 0.4316 0.0051 0.0089 0.1641 0.1816 0.5410 0.6660
BAY 0.3040 0.4480 0.2988 0.4512 0.0089 0.0058 0.1328 0.3047 0.5059 0.6172
BEI 0.3748 0.4886 0.3633 0.4805 0.0061 0.0117 0.1797 0.2676 0.5508 0.7305
BMW 0.3807 0.4978 0.3779 0.4844 0.0067 0.0088 0.2188 0.3301 0.6797 0.7891
CBK 0.3303 0.4026 0.3359 0.3945 0.0058 0.0030 0.1563 0.2773 0.5020 0.5527
DAI 0.3548 0.4693 0.3496 0.4629 0.0031 0.0056 0.2461 0.3398 0.5254 0.6543
DBK 0.3232 0.3912 0.3301 0.3984 0.0054 0.0041 0.1641 0.2754 0.4512 0.5293
DB1 0.3910 0.4943 0.3984 0.4785 0.0081 0.0096 0.2051 0.3008 0.6055 0.7441
DPB 0.3380 0.4283 0.3301 0.4258 0.0061 0.0041 0.1875 0.2988 0.4961 0.5918
DPW 0.2930 0.4031 0.2871 0.3867 0.0032 0.0040 0.1563 0.2773 0.5215 0.5742
DTE 0.3977 0.4893 0.3789 0.4463 0.0181 0.0139 0.1621 0.2969 0.6426 0.7188
EPC 0.3905 0.4768 0.3984 0.4902 0.0081 0.0092 0.1777 0.2500 0.6094 0.6660
FME 0.3728 0.4776 0.3594 0.4395 0.0148 0.0147 0.1680 0.3262 0.6387 0.8340
LHA 0.3643 0.4504 0.3594 0.4590 0.0034 0.0048 0.2500 0.2949 0.5391 0.5918
HNK 0.3086 0.4233 0.3047 0.4053 0.0072 0.0079 0.1660 0.2520 0.5156 0.5996
IFX 0.3095 0.4068 0.3027 0.3984 0.0068 0.0030 0.1328 0.2676 0.5059 0.5605
SDF 0.3684 0.4595 0.3594 0.4375 0.0043 0.0072 0.2168 0.2520 0.5137 0.6836
LIN 0.3929 0.4686 0.3984 0.4688 0.0044 0.0033 0.2559 0.3340 0.5469 0.5957
MAN 0.3572 0.4332 0.3535 0.4258 0.0069 0.0040 0.1895 0.2969 0.5645 0.6172
MRC 0.3673 0.4546 0.3652 0.4688 0.0084 0.0076 0.1641 0.2734 0.6133 0.6797
MEO 0.3608 0.4639 0.3633 0.4492 0.0060 0.0059 0.1738 0.3203 0.5332 0.6797
MUV 0.3487 0.4725 0.3672 0.4961 0.0093 0.0072 0.1582 0.2715 0.5898 0.6758
RWE 0.3550 0.4375 0.3555 0.4277 0.0034 0.0067 0.1953 0.2969 0.4902 0.6699
SZG 0.3452 0.4346 0.3398 0.4395 0.0052 0.0055 0.1914 0.2773 0.5586 0.5957
SAP 0.3584 0.4907 0.3535 0.4883 0.0094 0.0092 0.1973 0.3164 0.6328 0.7422
SIE 0.3304 0.4314 0.3066 0.4219 0.0055 0.0032 0.2070 0.2988 0.4922 0.5547
TKA 0.3441 0.4232 0.3320 0.4082 0.0054 0.0058 0.1641 0.2559 0.5488 0.6406
VOW 0.3620 0.4551 0.3633 0.4707 0.0069 0.0059 0.1367 0.2988 0.5313 0.5977
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Table A.4.: Cramér-von Mises distance statistics, κ = 4

meanL meanM medianL medianM varL varM minL minM maxL maxM

ADS 1.9900 2.9263 1.9240 2.7096 1.3150 2.0979 0.4096 0.9308 4.6052 8.9510
ALV 2.2924 3.7933 2.0247 3.4767 1.0203 2.3436 0.9035 1.4396 6.5855 10.0982
BAS 3.0622 5.1559 2.7577 4.2652 3.7797 9.7155 0.5551 1.1444 8.0198 11.8742
BAY 2.0292 3.6645 1.7201 3.1484 2.0263 3.2628 0.1698 0.8734 5.8303 7.9427
BEI 2.9864 4.7521 2.6469 4.0014 2.8104 7.8879 0.2663 0.9055 7.7610 11.5922
BMW 3.2591 4.9492 2.9248 4.6733 3.1040 4.6457 0.9487 1.6839 10.5268 12.2826
CBK 1.9459 2.6666 1.9292 2.7669 0.8374 0.7738 0.3393 0.8373 4.4482 4.6790
DAI 2.3984 3.9715 2.3124 3.8662 0.6146 1.5491 0.9151 1.8636 5.0276 7.7329
DBK 1.9260 2.7193 1.9491 2.6215 0.7517 0.9334 0.2702 0.7075 3.6061 4.5656
DB1 3.2885 4.7827 3.0085 3.5228 3.9448 8.4037 0.6810 1.1609 8.6280 10.8132
DPB 2.3378 3.4329 2.0212 3.1424 2.0061 2.7053 0.3698 0.9812 6.3294 7.2588
DPW 1.6011 2.8359 1.4346 2.8982 0.6808 1.3990 0.2179 0.6362 4.8430 6.5450
DTE 3.5237 4.6729 2.4662 3.4324 7.5915 8.8771 0.3016 0.8445 9.5931 10.9201
EPC 3.9282 5.8675 3.4159 4.9286 6.7179 12.7121 0.4060 1.1332 12.0084 15.4798
FME 3.0452 4.4035 2.2603 3.3016 5.0773 9.8786 0.2566 1.1002 9.8324 15.3188
LHA 2.4325 3.6323 2.3730 3.4537 1.2788 2.9123 0.7199 1.0579 6.8867 8.0270
HNK 1.8603 3.1743 1.5039 2.3163 1.6125 4.5147 0.2849 0.5122 5.5362 8.5479
IFX 1.5997 2.6832 1.4412 2.4124 0.8113 1.2863 0.2677 0.7840 3.5972 5.1547
SDF 2.8674 4.9245 2.4860 3.3857 2.7092 14.8020 0.8045 1.4769 9.0228 16.4116
LIN 3.1025 4.1409 3.0251 4.3117 1.5734 1.5906 0.8326 1.3577 6.5804 6.7663
MAN 2.4841 3.3613 2.4237 3.4183 1.6634 1.9588 0.3353 0.9861 6.3633 8.1436
MRC 2.8571 4.1293 2.4160 3.8410 3.6555 4.7198 0.3085 0.7492 9.2614 9.9076
MEO 2.5108 4.1335 2.1746 3.2182 1.7954 4.3799 0.7795 1.4692 6.7141 10.1256
MUV 2.9740 4.5075 2.6191 4.4043 3.9772 5.9180 0.3625 0.8194 9.7890 10.3614
RWE 2.6080 3.5067 2.3967 2.9646 1.9630 5.1336 0.3348 0.8611 6.3691 10.0379
SZG 2.0581 3.4635 1.9780 3.4403 1.2851 2.9043 0.3936 0.8300 6.0652 8.6990
SAP 2.8540 5.3589 2.3501 5.2255 3.1035 5.6411 0.2384 0.9699 7.7538 10.8198
SIE 1.9888 3.3271 1.8373 3.2710 1.0886 1.9108 0.5235 1.2356 4.5689 6.3632
TKA 2.1740 3.3279 2.0225 2.8800 1.4548 3.1846 0.2703 0.8359 5.3359 8.2879
VOW 3.1540 4.8168 3.0321 4.6548 2.7556 4.4986 0.4879 1.4977 8.0505 10.6447
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Table A.5.: Kolmogorov-Smirnov distance statistics, κ = 10

KSLLSA
mean

KSMODWT
mean

KSLLSA
med

KSMODWT
med

KSLLSA
var

KSMODWT
var

KSLLSA
min

KSMODWT
min

KSLLSA
max

KSMODWT
max

ADS 0.1122 0.1159 0.1090 0.1094 0.0005 0.0005 0.0797 0.0797 0.1719 0.1766
ALV 0.1299 0.1421 0.1289 0.1406 0.0003 0.0004 0.0844 0.1031 0.1773 0.1781
BAS 0.1010 0.1224 0.0992 0.1219 0.0002 0.0001 0.0820 0.0992 0.1430 0.1539
BAY 0.1539 0.1664 0.1617 0.1656 0.0006 0.0008 0.0992 0.0883 0.2000 0.2148
BEI 0.1350 0.1567 0.1297 0.1656 0.0007 0.0003 0.1063 0.1086 0.1773 0.1773
BMW 0.1494 0.1458 0.1410 0.1414 0.0004 0.0012 0.1266 0.0922 0.2164 0.2430
CBK 0.1089 0.1193 0.1070 0.1172 0.0005 0.0005 0.0766 0.0867 0.1711 0.1789
DAI 0.1232 0.1360 0.1266 0.1281 0.0004 0.0003 0.0930 0.1094 0.2008 0.2070
DBK 0.1217 0.1258 0.1203 0.1211 0.0005 0.0005 0.0711 0.0766 0.1906 0.1906
DB1 0.1303 0.1365 0.1320 0.1336 0.0003 0.0005 0.0953 0.0977 0.1859 0.1859
DPB 0.1051 0.1101 0.0961 0.1023 0.0005 0.0005 0.0687 0.0805 0.1680 0.1680
DPW 0.1195 0.1200 0.1188 0.1211 0.0002 0.0005 0.0914 0.0945 0.1539 0.1898
DTE 0.1559 0.1596 0.1594 0.1602 0.0026 0.0024 0.0953 0.0953 0.2508 0.2508
EPC 0.1305 0.1395 0.1266 0.1367 0.0003 0.0003 0.1078 0.1078 0.1734 0.1758
FME 0.1216 0.1226 0.1227 0.1180 0.0003 0.0003 0.0805 0.0930 0.1891 0.1891
LHA 0.1380 0.1338 0.1391 0.1301 0.0009 0.0012 0.0859 0.0828 0.2180 0.2180
HNK 0.1231 0.1458 0.1141 0.1469 0.0008 0.0006 0.0813 0.0859 0.1883 0.2016
IFX 0.1180 0.1251 0.1086 0.1086 0.0005 0.0007 0.0953 0.0953 0.1914 0.1914
SDF 0.0986 0.1271 0.0977 0.1289 0.0003 0.0004 0.0797 0.0797 0.1414 0.1781
LIN 0.1084 0.1123 0.1094 0.1094 0.0002 0.0001 0.0867 0.0930 0.1539 0.1539
MAN 0.1000 0.0998 0.0945 0.0938 0.0003 0.0003 0.0773 0.0773 0.1523 0.1523
MRC 0.1283 0.1292 0.1281 0.1281 0.0002 0.0002 0.0812 0.0813 0.1727 0.1727
MEO 0.1413 0.1405 0.1453 0.1414 0.0005 0.0006 0.0977 0.0977 0.2117 0.2227
MUV 0.1113 0.1126 0.1062 0.1063 0.0004 0.0004 0.0836 0.0797 0.1703 0.1703
RWE 0.1007 0.1036 0.0859 0.0887 0.0010 0.0010 0.0727 0.0727 0.1844 0.1844
SZG 0.1033 0.1080 0.1008 0.1102 0.0002 0.0003 0.0773 0.0742 0.1437 0.1539
SAP 0.1070 0.1273 0.1086 0.1148 0.0011 0.0003 0.0586 0.1086 0.1625 0.1625
SIE 0.1103 0.1427 0.1016 0.1367 0.0005 0.0016 0.0898 0.1016 0.1820 0.2570
TKA 0.1002 0.1051 0.1031 0.1039 0.0001 0.0005 0.0680 0.0695 0.1281 0.1477
VOW 0.1288 0.1315 0.1273 0.1273 0.0003 0.0003 0.0938 0.0938 0.1914 0.1914
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Table A.6.: Anderson-Darling distance statistics, κ = 10

ADLLSA
mean

ADMODWT
mean

ADLLSA
med

ADMODWT
med

ADLLSA
var

ADMODWT
var

ADLLSA
min

ADMODWT
min

ADLLSA
max

ADMODWT
max

ADS 2.5760 3.1952 2.3488 3.1177 0.7399 0.6676 1.9014 2.3488 5.3407 5.4525
ALV 3.7212 3.9592 3.6910 3.9146 0.5301 0.4271 2.3208 2.8241 5.7042 5.7601
BAS 3.3448 3.5922 3.3834 3.4393 0.4400 0.5927 2.0132 2.3208 5.0890 5.4805
BAY 4.7216 5.7437 5.3687 5.8999 2.1760 1.2306 2.4886 2.5445 7.0743 7.6615
BEI 4.6340 5.5789 4.4739 5.8999 1.2807 0.4069 2.4606 3.8587 6.3194 6.3194
BMW 4.3886 4.9962 4.2782 4.3341 1.2976 1.7107 2.1531 2.5445 7.4099 8.6682
CBK 3.2847 3.7551 3.0758 3.5511 0.7572 0.8833 2.6004 2.6004 6.0957 6.3753
DAI 3.8982 4.4428 3.8587 4.5578 0.6513 0.8571 2.6284 2.6284 7.1582 7.3819
DBK 3.1774 3.7711 3.0758 3.5791 1.3420 0.9796 1.9014 2.1810 6.7947 6.7947
DB1 3.8932 4.5582 3.6630 4.5857 0.9675 1.1654 2.7403 2.7403 6.6269 6.6269
DPB 3.5326 3.6775 3.2436 3.3834 0.6314 0.4908 2.1810 2.6564 5.9838 5.9838
DPW 3.1674 3.6946 2.9360 3.2156 0.6307 1.2149 2.3488 2.3488 5.3407 6.7667
DTE 3.9811 4.6879 2.8661 3.9426 5.3599 4.4219 2.0132 2.8241 8.9478 8.9478
EPC 3.8125 4.4071 3.7469 4.6556 1.0493 0.8839 2.0132 2.6004 5.8160 6.2634
FME 3.6808 3.9984 3.7748 3.7748 0.5814 0.5967 1.9014 2.6284 6.7388 6.7388
LHA 3.4206 3.6089 2.8801 3.1317 1.3163 1.2273 2.0132 2.3736 7.7734 7.7734
HNK 3.3717 3.8750 3.0199 3.6350 1.3053 1.6451 1.8175 2.1531 6.7108 7.1862
IFX 3.9865 4.3033 3.8587 3.8587 0.7860 0.9203 1.6813 2.5166 6.8227 6.8227
SDF 3.4548 3.8602 3.4113 3.7748 0.3569 0.5850 2.8241 2.8241 5.0331 6.3473
LIN 3.8289 3.9685 3.8867 3.8867 0.2445 0.1387 3.0758 3.1038 5.4805 5.4805
MAN 3.4073 3.4710 3.2995 3.2995 0.4444 0.3846 2.3208 2.7123 5.4246 5.4246
MRC 4.5629 4.5980 4.5578 4.5578 0.2818 0.2457 2.7403 2.8801 6.1516 6.1516
MEO 4.0170 4.2243 3.5232 3.7469 1.2725 1.3644 2.5166 2.5166 7.5497 7.9411
MUV 3.7423 3.8947 3.7189 3.7748 0.4347 0.4806 2.6004 2.6843 5.2568 5.8440
RWE 3.2690 3.3739 2.6843 2.9919 0.7886 0.7311 2.5725 2.5725 6.0677 6.0677
SZG 3.2754 3.5224 3.2995 3.4393 0.4472 0.5663 2.5166 2.5166 5.1170 5.4805
SAP 3.5931 4.5221 3.8587 4.0824 1.7480 0.4245 1.7336 3.8587 5.7881 5.7881
SIE 3.2970 4.9462 3.5232 3.8867 0.4041 2.2411 2.2369 3.3554 5.1450 9.1715
TKA 3.2957 3.7238 3.3275 3.6910 0.3081 0.6615 2.0412 2.4606 4.5578 5.2568
VOW 4.5227 4.6391 4.5298 4.5298 0.4239 0.4125 3.2995 3.3275 6.8227 6.8227
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Table A.7.: Kuiper distance statistics, κ = 10

KLLSA
mean

KMODWT
mean

KLLSA
med

KMODWT
med

KLLSA
var

KMODWT
var

KLLSA
min

KMODWT
min

KLLSA
max

KMODWT
max

ADS 0.2038 0.2151 0.1977 0.2070 0.0013 0.0016 0.1500 0.1492 0.3055 0.3164
ALV 0.2243 0.2404 0.2180 0.2332 0.0006 0.0005 0.1656 0.2055 0.3367 0.3023
BAS 0.1823 0.2280 0.1820 0.2211 0.0003 0.0005 0.1523 0.1875 0.2273 0.2969
BAY 0.2538 0.2634 0.2625 0.2680 0.0013 0.0014 0.1719 0.1625 0.3242 0.3391
BEI 0.2249 0.2468 0.2125 0.2539 0.0011 0.0006 0.1742 0.1992 0.2781 0.2781
BMW 0.2561 0.2509 0.2547 0.2656 0.0005 0.0019 0.2156 0.1836 0.3117 0.3445
CBK 0.1900 0.2106 0.1895 0.2141 0.0009 0.0009 0.1375 0.1508 0.2742 0.2883
DAI 0.2270 0.2429 0.2430 0.2383 0.0013 0.0007 0.1648 0.1992 0.3242 0.3219
DBK 0.1977 0.2041 0.2031 0.2070 0.0007 0.0006 0.1297 0.1477 0.2578 0.2578
DB1 0.2218 0.2323 0.2191 0.2258 0.0007 0.0010 0.1672 0.1781 0.2875 0.2875
DPB 0.1875 0.1977 0.1781 0.1867 0.0010 0.0010 0.1367 0.1516 0.2547 0.2891
DPW 0.1964 0.2126 0.1930 0.2039 0.0002 0.0007 0.1680 0.1883 0.2414 0.2852
DTE 0.2720 0.2860 0.3000 0.3102 0.0076 0.0071 0.1406 0.1664 0.4172 0.4297
EPC 0.2279 0.2483 0.2242 0.2574 0.0019 0.0018 0.1656 0.1836 0.3133 0.3195
FME 0.2190 0.2229 0.2211 0.2191 0.0005 0.0004 0.1547 0.1625 0.2797 0.2734
LHA 0.2205 0.2219 0.2281 0.2344 0.0009 0.0016 0.1672 0.1570 0.2805 0.2820
HNK 0.2189 0.2553 0.1852 0.2523 0.0032 0.0019 0.1555 0.1648 0.3438 0.3563
IFX 0.2115 0.2190 0.2039 0.2039 0.0011 0.0013 0.1531 0.1531 0.3000 0.3000
SDF 0.1757 0.2088 0.1773 0.2125 0.0004 0.0005 0.1242 0.1422 0.2211 0.2578
LIN 0.1871 0.2016 0.1836 0.2016 0.0006 0.0005 0.1477 0.1602 0.2492 0.2492
MAN 0.1679 0.1806 0.1641 0.1742 0.0004 0.0004 0.1336 0.1539 0.2336 0.2484
MRC 0.2214 0.2241 0.2078 0.2164 0.0012 0.0012 0.1563 0.1594 0.3281 0.3281
MEO 0.2401 0.2584 0.2383 0.2719 0.0013 0.0016 0.1797 0.1797 0.3727 0.3727
MUV 0.1964 0.1959 0.1937 0.1867 0.0011 0.0014 0.1453 0.1422 0.2914 0.3344
RWE 0.1699 0.1852 0.1598 0.1672 0.0020 0.0016 0.1102 0.1406 0.2656 0.2758
SZG 0.1836 0.1938 0.1773 0.1945 0.0005 0.0005 0.1484 0.1461 0.2414 0.2414
SAP 0.1800 0.2251 0.1711 0.2207 0.0023 0.0010 0.1141 0.1656 0.2734 0.2844
SIE 0.1901 0.2352 0.1773 0.2414 0.0015 0.0034 0.1328 0.1625 0.3117 0.4094
TKA 0.1767 0.1831 0.1828 0.1883 0.0004 0.0006 0.1273 0.1297 0.2234 0.2211
VOW 0.2038 0.2105 0.1996 0.2141 0.0014 0.0015 0.1242 0.1344 0.2898 0.3188
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Table A.8.: Cramér-von Mises distance statistics, κ = 10

CVMLLSA
mean

CVMMODWT
mean

CVMLLSA
med

CVMMODWT
med

CVMLLSA
var

CVMMODWT
var

CVMLLSA
min

CVMMODWT
min

CVMLLSA
max

CVMMODWT
max

ADS 1.6023 1.8725 1.3734 1.5451 0.5301 0.9003 0.8603 0.8175 3.4871 4.1002
ALV 2.2108 2.6050 2.1495 2.5484 0.3016 0.3432 1.5070 1.7115 3.9617 4.0419
BAS 1.4007 2.4928 1.2990 2.2356 0.1317 0.5465 0.9156 1.4335 2.3814 4.4473
BAY 2.9299 3.5374 3.0868 3.6893 0.6462 0.9362 1.0460 1.1650 4.0542 5.0689
BEI 1.5425 1.8889 1.4240 1.8155 0.2619 0.2088 0.8271 1.0070 2.3981 2.5958
BMW 2.4866 2.6261 2.0654 1.9039 0.6870 1.5262 1.5098 1.5445 5.0463 5.7958
CBK 1.5560 2.0001 1.4035 2.0610 0.3130 0.3450 0.6735 0.9874 2.4977 2.9621
DAI 1.8386 1.9640 2.0092 1.9510 0.3907 0.3268 0.6759 0.9955 3.7742 3.5241
DBK 1.6524 1.9174 1.6588 1.7513 0.2158 0.2637 0.7157 1.0852 3.0638 3.0334
DB1 1.9844 2.0972 1.9403 2.1657 0.2236 0.2202 0.9018 1.1662 3.2791 3.2773
DPB 1.4584 1.7228 1.2278 1.3826 0.3540 0.6580 0.7618 0.9326 3.2430 5.4548
DPW 1.2689 1.4792 1.1615 1.3727 0.0833 0.0830 0.7725 0.9956 2.3754 2.0991
DTE 4.0107 4.6933 4.1092 4.8525 8.2181 8.6321 0.8881 1.2169 9.9054 10.5692
EPC 2.2320 2.7803 1.8415 2.3784 0.6069 0.8972 1.4478 1.6411 4.0743 4.8274
FME 1.9651 2.3324 1.9096 2.2998 0.2638 0.2501 0.6542 0.9440 3.1199 3.3070
LHA 2.0948 2.1261 2.3686 2.3334 0.6858 0.9808 0.7587 0.5179 3.7214 4.0386
HNK 1.9493 2.4047 1.6330 2.4064 0.5413 0.5487 0.6396 0.8237 3.3423 3.7620
IFX 1.3766 2.0177 1.1767 1.7449 0.4594 0.5460 0.4566 0.8796 2.8289 3.4133
SDF 1.2396 2.1715 1.2235 2.2826 0.3865 0.6565 0.4014 0.6637 2.2590 3.3071
LIN 1.4346 1.6300 1.4157 1.5258 0.1201 0.1297 0.8874 1.1051 2.0593 2.7268
MAN 0.9525 1.0180 0.8730 0.9292 0.1014 0.1051 0.4752 0.6922 2.2755 2.5951
MRC 1.7641 1.7009 1.5254 1.4165 0.4146 0.7344 1.1562 1.0489 4.2429 4.8630
MEO 1.9812 2.3684 2.0327 2.7488 0.2680 0.6628 1.1732 1.1227 3.8870 4.4996
MUV 1.3975 1.5217 1.2283 1.2181 0.6161 0.9613 0.4821 0.6354 4.2219 4.8244
RWE 1.3506 1.4231 0.9888 1.1321 0.8387 0.8155 0.2019 0.3365 3.0602 3.2511
SZG 1.0258 1.2044 0.9489 1.1415 0.0933 0.1210 0.5076 0.6948 1.6018 1.8991
SAP 1.3345 1.9280 1.2724 1.8617 0.5237 0.3715 0.4621 0.9814 3.1157 3.2203
SIE 1.8317 2.7669 1.4351 2.4768 1.1815 3.5547 0.7454 0.9277 5.1597 8.7686
TKA 0.9706 1.0649 0.9123 1.1290 0.0391 0.1239 0.6076 0.5169 1.5593 1.7836
VOW 1.8550 1.9917 1.8337 1.8789 0.2643 0.4745 0.8096 0.8870 3.2854 4.4124
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Appendix A. Empirical Robustness Study

A.2. Bootstrap Confidence Interval Tables

The following tables state the bootstrap confidence intervals for the mean difference

of the LLSA and MODWT result series of Appendix A.1. The 99% confidence intervals

are stated, that is, α = 0.01, achieved by 50000 bootstrapping samples. The tables are

stated for all moving window sizes, i. e., κ = 4 to κ = 10.
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A.2. Bootstrap Confidence Interval Tables

Table A.9.: Mean difference bootstrap confidence intervals, κ = 4)

KS AD K CVM

ADS (-0.0298, -0.0259) (-0.7036, -0.6086) (-0.0765, -0.0711) (-0.9844, -0.8931)
ALV (-0.0537, -0.0487) (-1.4060, -1.2666) (-0.1151, -0.1071) (-1.5600, -1.4428)
BAS (-0.0470, -0.0424) (-0.9885, -0.8635) (-0.0906, -0.0837) (-2.1967, -1.9967)
BAY (-0.0735, -0.0678) (-1.6909, -1.5610) (-0.1479, -0.1402) (-1.6827, -1.5878)
BEI (-0.0660, -0.0591) (-1.9035, -1.6879) (-0.1187, -0.1090) (-1.8538, -1.6795)
BMW (-0.0655, -0.0608) (-1.8675, -1.7225) (-0.1211, -0.1129) (-1.7558, -1.6247)
CBK (-0.0237, -0.0204) (-0.5435, -0.4668) (-0.0751, -0.0695) (-0.7497, -0.6927)
DAI (-0.0567, -0.0523) (-1.3783, -1.2667) (-0.1185, -0.1107) (-1.6184, -1.5288)
DBK (-0.0287, -0.0255) (-0.6795, -0.6050) (-0.0705, -0.0655) (-0.8257, -0.7601)
DB1 (-0.0518, -0.0470) (-1.2675, -1.1428) (-0.1062, -0.1004) (-1.5713, -1.4201)
DPB (-0.0412, -0.0369) (-0.9901, -0.8798) (-0.0928, -0.0878) (-1.1314, -1.0611)
DPW (-0.0599, -0.0566) (-1.4625, -1.3708) (-0.1124, -0.1079) (-1.2736, -1.1959)
DTE (-0.0383, -0.0341) (-0.9206, -0.8134) (-0.0950, -0.0882) (-1.2007, -1.1007)
EPC (-0.0437, -0.0394) (-1.5305, -1.3708) (-0.0891, -0.0834) (-2.0126, -1.8672)
FME (-0.0454, -0.0402) (-1.3025, -1.1363) (-0.1087, -0.1011) (-1.4496, -1.2726)
LHA (-0.0408, -0.0373) (-0.9937, -0.9020) (-0.0890, -0.0831) (-1.2612, -1.1389)
HNK (-0.0788, -0.0733) (-1.9352, -1.7947) (-0.1176, -0.1119) (-1.3773, -1.2528)
IFX (-0.0497, -0.0443) (-1.1346, -1.0141) (-0.1014, -0.0934) (-1.1262, -1.0411)
SDF (-0.0534, -0.0480) (-1.1081, -0.9781) (-0.0946, -0.0875) (-2.2143, -1.9124)
LIN (-0.0268, -0.0229) (-0.6567, -0.5590) (-0.0783, -0.0732) (-1.0861, -0.9918)
MAN (-0.0298, -0.0257) (-0.6912, -0.5961) (-0.0793, -0.0727) (-0.9229, -0.8314)
MRC (-0.0412, -0.0362) (-0.9811, -0.8609) (-0.0908, -0.0839) (-1.3315, -1.2163)
MEO (-0.0654, -0.0596) (-1.7990, -1.6270) (-0.1065, -0.0996) (-1.6897, -1.5593)
MUV (-0.0590, -0.0524) (-1.5614, -1.3704) (-0.1279, -0.1196) (-1.6180, -1.4519)
RWE (-0.0372, -0.0314) (-1.0381, -0.8645) (-0.0867, -0.0784) (-0.9772, -0.8260)
SZG (-0.0480, -0.0437) (-1.1378, -1.0325) (-0.0924, -0.0865) (-1.4562, -1.3557)
SAP (-0.0727, -0.0683) (-1.7971, -1.6674) (-0.1355, -0.1292) (-2.5810, -2.4284)
SIE (-0.0496, -0.0445) (-1.2704, -1.1332) (-0.1052, -0.0967) (-1.3889, -1.2898)
TKA (-0.0373, -0.0335) (-0.8787, -0.7844) (-0.0819, -0.0763) (-1.2057, -1.1037)
VOW (-0.0511, -0.0449) (-1.4658, -1.2736) (-0.0981, -0.0880) (-1.7342, -1.5900)
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Appendix A. Empirical Robustness Study

Table A.10.: Mean difference bootstrap confidence intervals, κ = 5)

KS AD K CVM

ADS (-0.0215, -0.0187) (-0.6499, -0.5657) (-0.0452, -0.0399) (-0.7247, -0.6382)
ALV (-0.0422, -0.0380) (-1.1755, -1.0534) (-0.0884, -0.0824) (-1.2242, -1.1211)
BAS (-0.0355, -0.0317) (-0.8064, -0.6904) (-0.0716, -0.0655) (-1.7113, -1.5522)
BAY (-0.0601, -0.0547) (-1.7110, -1.5488) (-0.1206, -0.1128) (-1.6641, -1.5555)
BEI (-0.0499, -0.0441) (-1.8136, -1.5901) (-0.0781, -0.0703) (-1.7182, -1.5470)
BMW (-0.0378, -0.0344) (-1.2419, -1.1105) (-0.0774, -0.0709) (-1.1095, -1.0076)
CBK (-0.0140, -0.0109) (-0.3969, -0.3179) (-0.0509, -0.0467) (-0.5055, -0.4378)
DAI (-0.0389, -0.0350) (-1.0367, -0.9243) (-0.0779, -0.0722) (-1.2236, -1.1227)
DBK (-0.0217, -0.0182) (-0.6069, -0.5253) (-0.0479, -0.0427) (-0.6604, -0.6023)
DB1 (-0.0295, -0.0258) (-0.9655, -0.8482) (-0.0567, -0.0509) (-1.0137, -0.9085)
DPB (-0.0359, -0.0316) (-0.9814, -0.8590) (-0.0686, -0.0639) (-0.9787, -0.8987)
DPW (-0.0536, -0.0513) (-1.5345, -1.4505) (-0.0912, -0.0877) (-1.1341, -1.0456)
DTE (-0.0238, -0.0203) (-0.6101, -0.5222) (-0.0622, -0.0556) (-0.6990, -0.6009)
EPC (-0.0231, -0.0196) (-0.9809, -0.8293) (-0.0539, -0.0488) (-1.4818, -1.3664)
FME (-0.0288, -0.0248) (-0.9682, -0.8189) (-0.0712, -0.0651) (-0.9176, -0.7961)
LHA (-0.0272, -0.0241) (-0.7931, -0.7011) (-0.0482, -0.0436) (-0.7834, -0.7094)
HNK (-0.0648, -0.0604) (-1.9274, -1.8018) (-0.0885, -0.0840) (-1.0883, -1.0101)
IFX (-0.0351, -0.0307) (-0.9384, -0.8179) (-0.0883, -0.0823) (-0.8487, -0.7926)
SDF (-0.0416, -0.0370) (-0.8314, -0.7191) (-0.0692, -0.0631) (-1.8279, -1.5895)
LIN (-0.0187, -0.0159) (-0.5293, -0.4438) (-0.0537, -0.0488) (-0.6891, -0.6240)
MAN (-0.0194, -0.0156) (-0.6115, -0.5048) (-0.0586, -0.0532) (-0.6533, -0.5811)
MRC (-0.0275, -0.0236) (-0.7255, -0.6191) (-0.0562, -0.0506) (-0.7538, -0.6907)
MEO (-0.0463, -0.0417) (-1.6868, -1.4852) (-0.0774, -0.0707) (-1.3028, -1.1596)
MUV (-0.0363, -0.0311) (-1.1307, -0.9611) (-0.0810, -0.0732) (-1.0218, -0.9040)
RWE (-0.0108, -0.0079) (-0.4422, -0.3279) (-0.0326, -0.0274) (-0.4358, -0.3188)
SZG (-0.0298, -0.0267) (-0.7927, -0.7080) (-0.0600, -0.0556) (-1.0025, -0.9292)
SAP (-0.0551, -0.0502) (-1.5135, -1.3710) (-0.1018, -0.0945) (-2.0300, -1.9004)
SIE (-0.0337, -0.0299) (-1.0075, -0.8894) (-0.0715, -0.0650) (-1.1262, -1.0343)
TKA (-0.0290, -0.0257) (-0.7751, -0.6848) (-0.0627, -0.0585) (-0.8768, -0.8102)
VOW (-0.0357, -0.0302) (-1.1604, -0.9767) (-0.0668, -0.0576) (-1.0404, -0.9221)

144



A.2. Bootstrap Confidence Interval Tables

Table A.11.: Mean difference bootstrap confidence intervals, κ = 6)

KS AD K CVM

ADS (-0.0181, -0.0156) (-0.5750, -0.4970) (-0.0362, -0.0305) (-0.6214, -0.5385)
ALV (-0.0319, -0.0287) (-0.8840, -0.7853) (-0.0694, -0.0641) (-0.9610, -0.8873)
BAS (-0.0246, -0.0212) (-0.5973, -0.4898) (-0.0582, -0.0522) (-1.4226, -1.2868)
BAY (-0.0458, -0.0413) (-1.7433, -1.5603) (-0.0824, -0.0762) (-1.4612, -1.3398)
BEI (-0.0419, -0.0366) (-1.9304, -1.6875) (-0.0721, -0.0628) (-1.4247, -1.2825)
BMW (-0.0236, -0.0204) (-0.8729, -0.7558) (-0.0480, -0.0419) (-0.7831, -0.6629)
CBK (-0.0075, -0.0059) (-0.2420, -0.2030) (-0.0376, -0.0344) (-0.4019, -0.3641)
DAI (-0.0280, -0.0247) (-0.7601, -0.6625) (-0.0513, -0.0468) (-0.8418, -0.7672)
DBK (-0.0146, -0.0124) (-0.5020, -0.4360) (-0.0358, -0.0317) (-0.6787, -0.6070)
DB1 (-0.0149, -0.0113) (-0.6205, -0.5041) (-0.0408, -0.0350) (-0.5648, -0.4776)
DPB (-0.0218, -0.0187) (-0.6662, -0.5531) (-0.0461, -0.0413) (-0.8594, -0.7603)
DPW (-0.0424, -0.0398) (-1.3555, -1.2742) (-0.0671, -0.0632) (-0.8988, -0.8287)
DTE (-0.0218, -0.0187) (-0.6066, -0.5129) (-0.0407, -0.0341) (-0.4730, -0.3821)
EPC (-0.0165, -0.0136) (-0.7733, -0.6442) (-0.0401, -0.0359) (-1.0703, -0.9987)
FME (-0.0114, -0.0087) (-0.5141, -0.3984) (-0.0317, -0.0269) (-0.4491, -0.3541)
LHA (-0.0154, -0.0124) (-0.5493, -0.4620) (-0.0249, -0.0209) (-0.4914, -0.4185)
HNK (-0.0513, -0.0467) (-1.6755, -1.5476) (-0.0780, -0.0719) (-0.8435, -0.7662)
IFX (-0.0267, -0.0235) (-0.9673, -0.8380) (-0.0629, -0.0580) (-0.8101, -0.7232)
SDF (-0.0379, -0.0338) (-0.7539, -0.6438) (-0.0592, -0.0539) (-1.5847, -1.4000)
LIN (-0.0134, -0.0109) (-0.4051, -0.3318) (-0.0419, -0.0375) (-0.5210, -0.4751)
MAN (-0.0155, -0.0127) (-0.5768, -0.4785) (-0.0440, -0.0402) (-0.5263, -0.4730)
MRC (-0.0170, -0.0136) (-0.5290, -0.4322) (-0.0384, -0.0328) (-0.4178, -0.3588)
MEO (-0.0363, -0.0328) (-1.6031, -1.3930) (-0.0599, -0.0544) (-1.1135, -0.9833)
MUV (-0.0244, -0.0204) (-0.9017, -0.7467) (-0.0512, -0.0442) (-0.6723, -0.5879)
RWE (-0.0038, -0.0018) (-0.2053, -0.1547) (-0.0177, -0.0142) (-0.1799, -0.1221)
SZG (-0.0185, -0.0163) (-0.5134, -0.4508) (-0.0375, -0.0341) (-0.6275, -0.5707)
SAP (-0.0428, -0.0381) (-1.3274, -1.1552) (-0.0766, -0.0684) (-1.5663, -1.4235)
SIE (-0.0300, -0.0267) (-1.1918, -1.0726) (-0.0568, -0.0514) (-1.1488, -1.0342)
TKA (-0.0229, -0.0203) (-0.6509, -0.5738) (-0.0485, -0.0446) (-0.5538, -0.5051)
VOW (-0.0298, -0.0256) (-1.0420, -0.8696) (-0.0472, -0.0397) (-0.6786, -0.6028)
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Appendix A. Empirical Robustness Study

Table A.12.: Mean difference bootstrap confidence intervals, κ = 7)

KS AD K CVM

ADS (-0.0119, -0.0095) (-0.6228, -0.5231) (-0.0169, -0.0130) (-0.4736, -0.4147)
ALV (-0.0318, -0.0285) (-1.1493, -1.0108) (-0.0476, -0.0441) (-0.8772, -0.8174)
BAS (-0.0266, -0.0233) (-0.6160, -0.4979) (-0.0516, -0.0466) (-1.2962, -1.1933)
BAY (-0.0344, -0.0309) (-1.5354, -1.3662) (-0.0560, -0.0498) (-1.3373, -1.2226)
BEI (-0.0314, -0.0264) (-1.6704, -1.4113) (-0.0608, -0.0519) (-1.0168, -0.8968)
BMW (-0.0129, -0.0093) (-0.6700, -0.5705) (-0.0285, -0.0225) (-0.5875, -0.4587)
CBK (-0.0125, -0.0103) (-0.5355, -0.4400) (-0.0231, -0.0207) (-0.5343, -0.4873)
DAI (-0.0209, -0.0178) (-0.6495, -0.5599) (-0.0400, -0.0353) (-0.5726, -0.5016)
DBK (-0.0110, -0.0092) (-0.5651, -0.4727) (-0.0290, -0.0258) (-0.6453, -0.5771)
DB1 (-0.0112, -0.0073) (-0.7732, -0.6374) (-0.0311, -0.0254) (-0.3893, -0.3177)
DPB (-0.0201, -0.0173) (-0.7835, -0.6570) (-0.0345, -0.0310) (-0.7701, -0.6908)
DPW (-0.0315, -0.0285) (-1.1344, -1.0305) (-0.0486, -0.0446) (-0.6989, -0.6378)
DTE (-0.0210, -0.0180) (-0.6936, -0.5716) (-0.0341, -0.0286) (-0.6378, -0.5432)
EPC (-0.0088, -0.0071) (-0.4668, -0.3829) (-0.0293, -0.0260) (-0.8633, -0.8065)
FME (-0.0087, -0.0063) (-0.4877, -0.3708) (-0.0120, -0.0073) (-0.3282, -0.2344)
LHA (-0.0068, -0.0040) (-0.3723, -0.2968) (-0.0162, -0.0126) (-0.3322, -0.2661)
HNK (-0.0380, -0.0335) (-1.4059, -1.2784) (-0.0627, -0.0564) (-0.7763, -0.6923)
IFX (-0.0256, -0.0219) (-1.0558, -0.8877) (-0.0435, -0.0393) (-0.8003, -0.7143)
SDF (-0.0338, -0.0298) (-0.6068, -0.5031) (-0.0500, -0.0453) (-1.3781, -1.2317)
LIN (-0.0163, -0.0140) (-0.5487, -0.4636) (-0.0331, -0.0288) (-0.4197, -0.3793)
MAN (-0.0100, -0.0083) (-0.3414, -0.2807) (-0.0315, -0.0288) (-0.3269, -0.2969)
MRC (-0.0142, -0.0111) (-0.4648, -0.3665) (-0.0230, -0.0181) (-0.1848, -0.1275)
MEO (-0.0292, -0.0257) (-1.2707, -1.0696) (-0.0486, -0.0436) (-0.9271, -0.8128)
MUV (-0.0190, -0.0155) (-0.7894, -0.6339) (-0.0294, -0.0236) (-0.4381, -0.3681)
RWE (-0.0118, -0.0089) (-0.4178, -0.3187) (-0.0271, -0.0237) (-0.2871, -0.2356)
SZG (-0.0170, -0.0144) (-0.5333, -0.4454) (-0.0292, -0.0257) (-0.5151, -0.4648)
SAP (-0.0272, -0.0232) (-1.0127, -0.8443) (-0.0600, -0.0528) (-1.1021, -0.9996)
SIE (-0.0272, -0.0237) (-1.4204, -1.2517) (-0.0509, -0.0457) (-1.2821, -1.1430)
TKA (-0.0207, -0.0175) (-0.6375, -0.5288) (-0.0366, -0.0328) (-0.4169, -0.3803)
VOW (-0.0243, -0.0205) (-0.9068, -0.7407) (-0.0419, -0.0353) (-0.6004, -0.5264)
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A.2. Bootstrap Confidence Interval Tables

Table A.13.: Mean difference bootstrap confidence intervals, κ = 8)

KS AD K CVM

ADS (-0.0111, -0.0085) (-0.7221, -0.5980) (-0.0134, -0.0101) (-0.3891, -0.3373)
ALV (-0.0237, -0.0206) (-0.9036, -0.7564) (-0.0329, -0.0297) (-0.7475, -0.6874)
BAS (-0.0296, -0.0268) (-0.5662, -0.4543) (-0.0491, -0.0448) (-1.2263, -1.1404)
BAY (-0.0336, -0.0304) (-1.5848, -1.3869) (-0.0446, -0.0396) (-1.2180, -1.1154)
BEI (-0.0248, -0.0202) (-1.2109, -0.9787) (-0.0402, -0.0330) (-0.6589, -0.5673)
BMW (-0.0017, 0.0025) (-0.5353, -0.4349) (-0.0160, -0.0101) (-0.4210, -0.2908)
CBK (-0.0136, -0.0114) (-0.6639, -0.5578) (-0.0236, -0.0209) (-0.5982, -0.5438)
DAI (-0.0173, -0.0144) (-0.5840, -0.4953) (-0.0314, -0.0271) (-0.3777, -0.3205)
DBK (-0.0067, -0.0046) (-0.5005, -0.4114) (-0.0199, -0.0165) (-0.4919, -0.4171)
DB1 (-0.0060, -0.0021) (-0.6836, -0.5670) (-0.0231, -0.0178) (-0.2776, -0.2087)
DPB (-0.0121, -0.0101) (-0.4548, -0.3776) (-0.0192, -0.0165) (-0.5230, -0.4646)
DPW (-0.0221, -0.0189) (-0.8599, -0.7484) (-0.0333, -0.0288) (-0.4809, -0.4363)
DTE (-0.0107, -0.0084) (-0.7266, -0.5857) (-0.0272, -0.0234) (-0.8717, -0.8109)
EPC (-0.0072, -0.0056) (-0.4965, -0.4007) (-0.0211, -0.0174) (-0.7067, -0.6540)
FME (-0.0032, -0.0007) (-0.3934, -0.2754) (0.0027, 0.0066) (-0.3122, -0.2207)
LHA (0.0003, 0.0027) (-0.2373, -0.1758) (-0.0061, -0.0028) (-0.1968, -0.1268)
HNK (-0.0338, -0.0299) (-1.1651, -1.0400) (-0.0508, -0.0450) (-0.6753, -0.6088)
IFX (-0.0198, -0.0167) (-0.9284, -0.7611) (-0.0300, -0.0268) (-0.9710, -0.9039)
SDF (-0.0322, -0.0287) (-0.4709, -0.3659) (-0.0409, -0.0368) (-1.2378, -1.1255)
LIN (-0.0101, -0.0083) (-0.3534, -0.2928) (-0.0235, -0.0208) (-0.3235, -0.2898)
MAN (-0.0070, -0.0055) (-0.2709, -0.2166) (-0.0203, -0.0177) (-0.1835, -0.1589)
MRC (-0.0071, -0.0050) (-0.2520, -0.1797) (-0.0087, -0.0052) (-0.0162, 0.0292)
MEO (-0.0206, -0.0176) (-0.9618, -0.7676) (-0.0372, -0.0330) (-0.7671, -0.6621)
MUV (-0.0108, -0.0080) (-0.4921, -0.3529) (-0.0163, -0.0117) (-0.3081, -0.2420)
RWE (-0.0140, -0.0115) (-0.3893, -0.2962) (-0.0306, -0.0276) (-0.3478, -0.3070)
SZG (-0.0177, -0.0147) (-0.6064, -0.5120) (-0.0258, -0.0218) (-0.4178, -0.3686)
SAP (-0.0231, -0.0195) (-1.0911, -0.9119) (-0.0536, -0.0478) (-0.8317, -0.7590)
SIE (-0.0306, -0.0263) (-1.5726, -1.3678) (-0.0458, -0.0410) (-1.1055, -0.9762)
TKA (-0.0122, -0.0099) (-0.4235, -0.3440) (-0.0218, -0.0187) (-0.2666, -0.2374)
VOW (-0.0159, -0.0129) (-0.6098, -0.4720) (-0.0316, -0.0259) (-0.4701, -0.4056)
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Appendix A. Empirical Robustness Study

Table A.14.: Mean difference bootstrap confidence intervals, κ = 9)

KS AD K CVM

ADS (-0.0076, -0.0055) (-0.6659, -0.5549) (-0.0130, -0.0102) (-0.3944, -0.3217)
ALV (-0.0166, -0.0135) (-0.6087, -0.4798) (-0.0225, -0.0191) (-0.5863, -0.5266)
BAS (-0.0283, -0.0254) (-0.4777, -0.3628) (-0.0474, -0.0433) (-1.2281, -1.1375)
BAY (-0.0262, -0.0224) (-1.4129, -1.1909) (-0.0268, -0.0216) (-0.8877, -0.7919)
BEI (-0.0228, -0.0183) (-1.0099, -0.8078) (-0.0270, -0.0220) (-0.4464, -0.3881)
BMW (0.0019, 0.0059) (-0.5041, -0.4027) (-0.0055, 0.0001) (-0.2766, -0.1664)
CBK (-0.0089, -0.0079) (-0.4350, -0.3696) (-0.0216, -0.0197) (-0.5338, -0.4896)
DAI (-0.0157, -0.0128) (-0.6429, -0.5570) (-0.0257, -0.0216) (-0.2461, -0.1916)
DBK (-0.0053, -0.0030) (-0.5673, -0.4591) (-0.0122, -0.0092) (-0.3860, -0.3163)
DB1 (-0.0069, -0.0027) (-0.7425, -0.6256) (-0.0190, -0.0141) (-0.2080, -0.1469)
DPB (-0.0097, -0.0077) (-0.4209, -0.3119) (-0.0133, -0.0110) (-0.4652, -0.3754)
DPW (-0.0116, -0.0079) (-0.7202, -0.6072) (-0.0218, -0.0174) (-0.3194, -0.2879)
DTE (-0.0063, -0.0043) (-0.7999, -0.6559) (-0.0220, -0.0197) (-0.7785, -0.7440)
EPC (-0.0093, -0.0076) (-0.5012, -0.4082) (-0.0221, -0.0194) (-0.6211, -0.5784)
FME (0.0024, 0.0044) (-0.2353, -0.1669) (0.0054, 0.0082) (-0.3342, -0.2553)
LHA (0.0031, 0.0054) (-0.2004, -0.1377) (-0.0036, -0.0005) (-0.0860, -0.0360)
HNK (-0.0278, -0.0240) (-0.7429, -0.6421) (-0.0427, -0.0368) (-0.5420, -0.4925)
IFX (-0.0154, -0.0125) (-0.5769, -0.4533) (-0.0182, -0.0150) (-0.8526, -0.8029)
SDF (-0.0315, -0.0283) (-0.5238, -0.4120) (-0.0392, -0.0358) (-1.1033, -1.0235)
LIN (-0.0040, -0.0027) (-0.1474, -0.1049) (-0.0189, -0.0169) (-0.2103, -0.1890)
MAN (-0.0040, -0.0027) (-0.2070, -0.1547) (-0.0165, -0.0145) (-0.1217, -0.1007)
MRC (-0.0019, -0.0013) (-0.0677, -0.0449) (-0.0042, -0.0018) (0.0468, 0.0904)
MEO (-0.0122, -0.0092) (-0.7039, -0.5329) (-0.0290, -0.0257) (-0.6254, -0.5323)
MUV (-0.0027, -0.0012) (-0.1779, -0.1048) (-0.0035, -0.0004) (-0.2377, -0.1764)
RWE (-0.0076, -0.0059) (-0.2421, -0.1726) (-0.0210, -0.0185) (-0.2098, -0.1728)
SZG (-0.0075, -0.0058) (-0.3038, -0.2638) (-0.0129, -0.0106) (-0.2463, -0.2025)
SAP (-0.0215, -0.0181) (-1.0864, -0.9026) (-0.0485, -0.0437) (-0.7371, -0.6689)
SIE (-0.0337, -0.0288) (-1.7014, -1.4690) (-0.0494, -0.0433) (-1.0040, -0.8756)
TKA (-0.0074, -0.0049) (-0.4285, -0.3459) (-0.0114, -0.0077) (-0.1681, -0.1299)
VOW (-0.0084, -0.0061) (-0.3768, -0.2701) (-0.0179, -0.0137) (-0.3218, -0.2635)
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A.2. Bootstrap Confidence Interval Tables

Table A.15.: Mean difference bootstrap confidence intervals, κ = 10)

KS AD K CVM

ADS (-0.0044, -0.0032) (-0.6755, -0.5674) (-0.0126, -0.0100) (-0.2962, -0.2440)
ALV (-0.0136, -0.0108) (-0.2770, -0.2043) (-0.0177, -0.0144) (-0.4223, -0.3649)
BAS (-0.0225, -0.0202) (-0.2928, -0.2077) (-0.0472, -0.0443) (-1.1348, -1.0512)
BAY (-0.0139, -0.0111) (-1.1433, -0.9061) (-0.0121, -0.0073) (-0.6503, -0.5629)
BEI (-0.0239, -0.0194) (-1.0453, -0.8487) (-0.0243, -0.0197) (-0.3688, -0.3248)
BMW (0.0018, 0.0052) (-0.6626, -0.5546) (0.0026, 0.0078) (-0.1898, -0.0908)
CBK (-0.0113, -0.0096) (-0.5231, -0.4239) (-0.0217, -0.0195) (-0.4664, -0.4233)
DAI (-0.0143, -0.0113) (-0.5953, -0.4942) (-0.0178, -0.0141) (-0.1513, -0.1008)
DBK (-0.0051, -0.0029) (-0.6512, -0.5401) (-0.0078, -0.0050) (-0.2957, -0.2328)
DB1 (-0.0080, -0.0043) (-0.7362, -0.5983) (-0.0128, -0.0081) (-0.1399, -0.0857)
DPB (-0.0057, -0.0044) (-0.1647, -0.1270) (-0.0113, -0.0093) (-0.2911, -0.2427)
DPW (-0.0023, 0.0012) (-0.5807, -0.4758) (-0.0184, -0.0140) (-0.2208, -0.1989)
DTE (-0.0046, -0.0030) (-0.7758, -0.6406) (-0.0154, -0.0126) (-0.7153, -0.6549)
EPC (-0.0097, -0.0082) (-0.6603, -0.5336) (-0.0217, -0.0192) (-0.5649, -0.5314)
FME (-0.0021, 0.0001) (-0.3617, -0.2775) (-0.0053, -0.0024) (-0.4113, -0.3240)
LHA (0.0027, 0.0057) (-0.2242, -0.1575) (-0.0033, 0.0003) (-0.0620, -0.0001)
HNK (-0.0244, -0.0210) (-0.5426, -0.4657) (-0.0391, -0.0336) (-0.4749, -0.4347)
IFX (-0.0082, -0.0061) (-0.3796, -0.2632) (-0.0087, -0.0066) (-0.6541, -0.6280)
SDF (-0.0300, -0.0271) (-0.4666, -0.3505) (-0.0343, -0.0319) (-0.9545, -0.9080)
LIN (-0.0046, -0.0033) (-0.1645, -0.1174) (-0.0155, -0.0136) (-0.2117, -0.1807)
MAN (-0.0000, 0.0003) (-0.0805, -0.0500) (-0.0133, -0.0120) (-0.0741, -0.0573)
MRC (-0.0012, -0.0007) (-0.0443, -0.0272) (-0.0035, -0.0018) (0.0399, 0.0835)
MEO (0.0001, 0.0013) (-0.2416, -0.1775) (-0.0197, -0.0168) (-0.4218, -0.3533)
MUV (-0.0017, -0.0008) (-0.1856, -0.1246) (-0.0009, 0.0020) (-0.1478, -0.1025)
RWE (-0.0033, -0.0025) (-0.1193, -0.0919) (-0.0164, -0.0141) (-0.0865, -0.0589)
SZG (-0.0056, -0.0038) (-0.2691, -0.2260) (-0.0114, -0.0090) (-0.1973, -0.1589)
SAP (-0.0221, -0.0185) (-1.0128, -0.8478) (-0.0473, -0.0430) (-0.6137, -0.5730)
SIE (-0.0352, -0.0296) (-1.7842, -1.5185) (-0.0485, -0.0419) (-1.0133, -0.8618)
TKA (-0.0066, -0.0032) (-0.4857, -0.3746) (-0.0087, -0.0040) (-0.1169, -0.0716)
VOW (-0.0033, -0.0022) (-0.1403, -0.0958) (-0.0082, -0.0052) (-0.1598, -0.1164)
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Appendix B.

Empirical One-step-ahead Forecasting

B.1. Conditional Mean One-step-ahead Forecasting

The tables in this appendix denote the results for the one-step-ahead forecasting with

a moving window for 60 minutes frequency data. They are to read as follows. The

first (second) four columns denote the conditional mean calculated according to the

ARMA(1,1) (ARMA(2,1)) model for LLSA, ARMA itself, the MODWT, and the median

filter. All values are stated for the unit 10−3. In Tables B.4 to B.6 the 5% (i. e., α = 0.05)

bootstrapped confidence intervals for the ARMA(1,1) model are stated forK ∈ {1, 2, 3},
respectively.
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Appendix B. Empirical One-step-ahead Forecasting

Table B.1.: Conditional mean one-step-ahead price forecasting, K = 1

ARMA(1,1) ARMA(2,1)

LLSA ARMA MODWT Median LLSA ARMA MODWT Median

ADS 4.6480 4.7065 4.6686 4.6559 4.6605 4.7184 4.6802 4.6674
ALV 5.5858 5.6365 5.5802 5.5726 5.5914 5.6449 5.5856 5.5801
BAS 3.2772 3.1121 3.2536 2.9046 3.3228 3.1405 3.2907 2.9110
BAY 5.5455 5.5681 5.5118 5.5217 5.5544 5.5851 5.5196 5.5316
BEI 4.8267 4.8995 4.8577 4.8363 4.8346 4.9071 4.8632 4.8384
BMW 5.3135 5.3926 5.3154 5.3137 5.3277 5.4022 5.3307 5.3244
CBK 6.5162 6.5465 6.5074 6.5227 6.5199 6.5489 6.5082 6.5239
DAI 4.4306 4.4670 4.4181 4.4288 4.4450 4.4804 4.4324 4.4488
DBK 5.0453 5.0580 5.0493 5.0333 5.0662 5.0764 5.0702 5.0548
DB1 4.8311 4.8664 4.8323 4.8112 4.8345 4.8677 4.8357 4.8161
DPB 5.7655 5.8179 5.7769 5.7774 5.7870 5.8355 5.7988 5.8021
DPW 4.2808 4.3376 4.2913 4.2812 4.2877 4.3453 4.2951 4.2882
DTE 4.1490 4.1589 4.1439 4.1392 4.1417 4.1497 4.1352 4.1298
EPC 6.5854 6.3896 6.4594 6.2202 6.6043 6.3953 6.4948 6.2495
FME 5.3449 5.4701 5.3830 5.3974 5.3460 5.4727 5.3839 5.3994
LHA 5.5580 5.6198 5.5626 5.5545 5.5668 5.6302 5.5725 5.5647
HNK 4.5328 4.6289 4.5526 4.5415 4.5386 4.6329 4.5590 4.5452
IFX 6.1535 6.1612 6.1283 6.1133 6.1791 6.1735 6.1496 6.1371
SDF 10.784 10.568 10.787 10.084 10.841 10.571 10.818 10.107
LIN 5.1221 5.2036 5.1392 5.1296 5.1300 5.2106 5.1460 5.1388
MAN 4.5561 4.6030 4.5460 4.5337 4.5609 4.6072 4.5522 4.5408
MRC 4.6282 4.6606 4.6142 4.6035 4.6497 4.6892 4.6431 4.6274
MEO 4.1639 4.1858 4.1553 4.1426 4.1696 4.1936 4.1637 4.1477
MUV 5.4272 5.4674 5.4321 5.4307 5.4363 5.4871 5.4441 5.4411
RWE 4.3271 4.3702 4.3530 4.3428 4.3364 4.3779 4.3606 4.3510
SZG 7.4782 7.5078 7.4401 7.4290 7.4594 7.4984 7.4139 7.4085
SAP 5.4023 5.4742 5.4308 5.3974 5.4040 5.4765 5.4360 5.4035
SIE 4.4264 4.4748 4.4356 4.4179 4.4405 4.4883 4.4511 4.4277
TKA 6.0097 6.0612 6.0066 5.9927 6.0142 6.0605 6.0081 5.9933
VOW 29.335 28.638 29.075 29.029 30.139 29.644 30.078 29.987
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B.1. Conditional Mean One-step-ahead Forecasting

Table B.2.: Conditional mean one-step-ahead price forecasting, K = 2

ARMA(1,1) ARMA(2,1)

LLSA ARMA MODWT Median LLSA ARMA MODWT Median

ADS 4.6336 4.7065 4.6686 4.6559 4.6463 4.7184 4.6802 4.6674
ALV 5.5592 5.6365 5.5802 5.5726 5.5634 5.6449 5.5856 5.5801
BAS 3.2277 3.1121 3.2536 2.9046 3.2689 3.1405 3.2907 2.9110
BAY 5.5284 5.5681 5.5118 5.5217 5.5354 5.5851 5.5196 5.5316
BEI 4.8253 4.8995 4.8577 4.8363 4.8318 4.9071 4.8632 4.8384
BMW 5.3064 5.3926 5.3154 5.3137 5.3225 5.4022 5.3307 5.3244
CBK 6.4548 6.5465 6.5074 6.5227 6.4616 6.5489 6.5082 6.5239
DAI 4.4341 4.4670 4.4181 4.4288 4.4541 4.4804 4.4324 4.4488
DBK 5.0156 5.0580 5.0493 5.0333 5.0349 5.0764 5.0702 5.0548
DB1 4.8133 4.8664 4.8323 4.8112 4.8173 4.8677 4.8357 4.8161
DPB 5.7766 5.8179 5.7769 5.7774 5.7978 5.8355 5.7988 5.8021
DPW 4.2821 4.3376 4.2913 4.2812 4.2891 4.3453 4.2951 4.2882
DTE 4.1344 4.1589 4.1439 4.1392 4.1276 4.1497 4.1352 4.1298
EPC 6.4799 6.3896 6.4594 6.2202 6.4943 6.3953 6.4948 6.2495
FME 5.3449 5.4701 5.3830 5.3974 5.3463 5.4727 5.3839 5.3994
LHA 5.5176 5.6198 5.5626 5.5545 5.5257 5.6302 5.5725 5.5647
HNK 4.5224 4.6289 4.5526 4.5415 4.5265 4.6329 4.5590 4.5452
IFX 6.1300 6.1612 6.1283 6.1133 6.1569 6.1735 6.1496 6.1371
SDF 10.887 10.568 10.787 10.084 10.934 10.571 10.818 1.0107
LIN 5.1198 5.2036 5.1392 5.1296 5.1274 5.2106 5.1460 5.1388
MAN 4.4896 4.6030 4.5460 4.5337 4.4928 4.6072 4.5522 4.5408
MRC 4.6040 4.6606 4.6142 4.6035 4.6247 4.6892 4.6431 4.6274
MEO 4.1452 4.1858 4.1553 4.1426 4.1510 4.1936 4.1637 4.1477
MUV 5.4027 5.4674 5.4321 5.4307 5.4129 5.4871 5.4441 5.4411
RWE 4.3368 4.3702 4.3530 4.3428 4.3448 4.3779 4.3606 4.3510
SZG 7.3843 7.5078 7.4401 7.4290 7.3606 7.4984 7.4139 7.4085
SAP 5.4033 5.4742 5.4308 5.3974 5.3990 5.4765 5.4360 5.4035
SIE 4.4273 4.4748 4.4356 4.4179 4.4404 4.4883 4.4511 4.4277
TKA 5.9789 6.0612 6.0066 5.9927 5.9836 6.0605 6.0081 5.9933
VOW 29.042 28.638 29.075 29.029 29.912 29.644 30.078 29.987
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Appendix B. Empirical One-step-ahead Forecasting

Table B.3.: Conditional mean one-step-ahead price forecasting, K = 3

ARMA(1,1) ARMA(2,1)

LLSA ARMA MODWT Median LLSA ARMA MODWT Median

ADS 4.6521 4.7065 4.6686 4.6559 4.6678 4.7184 4.6802 4.6674
ALV 5.5344 5.6365 5.5802 5.5726 5.5366 5.6449 5.5856 5.5801
BAS 3.2150 3.1121 3.2536 2.9046 3.2557 3.1405 3.2907 2.9110
BAY 5.5213 5.5681 5.5118 5.5217 5.5284 5.5851 5.5196 5.5316
BEI 4.8154 4.8995 4.8577 4.8363 4.8211 4.9071 4.8632 4.8384
BMW 5.2897 5.3926 5.3154 5.3137 5.3079 5.4022 5.3307 5.3244
CBK 6.4670 6.5465 6.5074 6.5227 6.4751 6.5489 6.5082 6.5239
DAI 4.3993 4.4670 4.4181 4.4288 4.4185 4.4804 4.4324 4.4488
DBK 5.0036 5.0580 5.0493 5.0333 5.0243 5.0764 5.0702 5.0548
DB1 4.8197 4.8664 4.8323 4.8112 4.8250 4.8677 4.8357 4.8161
DPB 5.7720 5.8179 5.7769 5.7774 5.7937 5.8355 5.7988 5.8021
DPW 4.2488 4.3376 4.2913 4.2812 4.2584 4.3453 4.2951 4.2882
DTE 4.1188 4.1589 4.1439 4.1392 4.1102 4.1497 4.1352 4.1298
EPC 6.4219 6.3896 6.4594 6.2202 6.4333 6.3953 6.4948 6.2495
FME 5.3275 5.4701 5.3830 5.3974 5.3294 5.4727 5.3839 5.3994
LHA 5.5098 5.6198 5.5626 5.5545 5.5172 5.6302 5.5725 5.5647
HNK 4.5181 4.6289 4.5526 4.5415 4.5221 4.6329 4.5590 4.5452
IFX 6.0622 6.1612 6.1283 6.1133 6.0820 6.1735 6.1496 6.1371
SDF 10.942 10.568 10.787 10.084 10.981 10.571 10.818 10.107
LIN 5.0932 5.2036 5.1392 5.1296 5.0982 5.2106 5.1460 5.1388
MAN 4.4920 4.6030 4.5460 4.5337 4.4967 4.6072 4.5522 4.5408
MRC 4.5936 4.6606 4.6142 4.6035 4.6144 4.6892 4.6431 4.6274
MEO 4.1041 4.1858 4.1553 4.1426 4.1095 4.1936 4.1637 4.1477
MUV 5.4008 5.4674 5.4321 5.4307 5.4081 5.4871 5.4441 5.4411
RWE 4.3429 4.3702 4.3530 4.3428 4.3499 4.3779 4.3606 4.3510
SZG 7.4048 7.5078 7.4401 7.4290 7.3803 7.4984 7.4139 7.4085
SAP 5.3560 5.4742 5.4308 5.3974 5.3501 5.4765 5.4360 5.4035
SIE 4.3988 4.4748 4.4356 4.4179 4.4081 4.4883 4.4511 4.4277
TKA 5.9659 6.0612 6.0066 5.9927 5.9675 6.0605 6.0081 5.9933
VOW 28.897 28.638 29.075 29.029 29.702 29.644 30.078 29.987
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B.1. Conditional Mean One-step-ahead Forecasting

Table B.4.: Conditional mean confidence intervals, K = 1

ARMA(1,1) MODWT Median

ADS (-1.0987·10−4 , -6.5164·10−6) (-4.1559·10−5 , -1.2934·10−7) (-3.2547·10−5 , 1.6430·10−5)
ALV (-1.3359·10−4 , 3.2454·10−5) (-2.5553·10−5 , 3.6524·10−5) (-1.8620·10−5 , 4.4960·10−5)
BAS (2.5376·10−5, 3.3885·10−4) (-7.0152·10−5 , 1.3313·10−4) (2.5139·10−4, 5.7444·10−4)
BAY (-1.1038·10−4 , 6.5452·10−5) (-4.3983·10−6 , 7.1443·10−5) (-3.1509·10−6 , 5.1136·10−5)
BEI (-1.2687·10−4 , -1.8431·10−5) (-5.7376·10−5 , -4.5630·10−6) (-3.5125·10−5 , 1.5630·10−5)
BMW (-1.4541·10−4 , -1.3716·10−5) (-2.4248·10−5 , 2.0962·10−5) (-2.8320·10−5 , 2.8312·10−5)
CBK (-1.1719·10−4 , 5.6821·10−5) (-1.7524·10−5 , 3.5674·10−5) (-3.8866·10−5 , 2.5397·10−5)
DAI (-9.3305·10−5 , 1.9730·10−5) (-1.2928·10−5 , 3.7345·10−5) (-1.9004·10−5 , 2.2793·10−5)
DBK (-8.0700·10−5 , 5.5135·10−5) (-3.2218·10−5 , 2.3894·10−5) (-1.5829·10−5 , 3.9539·10−5)
DB1 (-9.0143·10−5 , 1.8789·10−5) (-1.9851·10−5 , 1.7063·10−5) (-5.4207·10−6 , 4.5244·10−5)
DPB (-1.3217·10−4 , 2.6619·10−5) (-4.2457·10−5 , 1.9140·10−5) (-4.0607·10−5 , 1.7043·10−5)
DPW (-1.1923·10−4 , 5.5089·10−6) (-3.8453·10−5 , 1.6935·10−5) (-3.0063·10−5 , 2.8159·10−5)
DTE (-4.6306·10−5 , 2.6422·10−5) (-1.0307·10−5 , 2.0793·10−5) (-1.5194·10−5 , 3.5176·10−5)
EPC (9.4795·10−5, 3.0593·10−4) (5.4875·10−5, 2.0219·10−4) (2.6255·10−4, 4.7722·10−4)
FME (-1.7817·10−4 , -7.2412·10−5) (-5.8829·10−5 , -1.7668·10−5) (-7.8320·10−5 , -2.7410·10−5)
LHA (-1.2644·10−4 , 2.4499·10−6) (-3.2310·10−5 , 2.2760·10−5) (-2.4077·10−5 , 3.0585·10−5)
HNK (-1.4939·10−4 , -4.2150·10−5) (-3.8802·10−5 , -3.6817·10−7) (-3.1628·10−5 , 1.3786·10−5)
IFX (-8.1251·10−5 , 6.6116·10−5) (-6.0892·10−6 , 5.6608·10−5) (-2.6405·10−6 , 8.2660·10−5)
SDF (-8.2175·10−5 , 5.8055·10−4) (-2.1120·10−4 , 2.4278·10−4) (4.5159·10−4, 1.0509·10−3)
LIN (-1.4931·10−4 , -1.4012·10−5) (-4.8114·10−5 , 1.4089·10−5) (-2.9499·10−5 , 1.4585·10−5)
MAN (-1.1425·10−4 , 2.0143·10−5) (-1.6058·10−5 , 3.6291·10−5) (-4.5776·10−6 , 4.8784·10−5)
MRC (-1.0185·10−4 , 3.5153·10−5) (-1.6093·10−5 , 4.4479·10−5) (-5.9270·10−7 , 5.0203·10−5)
MEO (-7.8359·10−5 , 3.3172·10−5) (-1.4676·10−5 , 3.1336·10−5) (-1.1219·10−5 , 5.3704·10−5)
MUV (-1.0055·10−4 , 1.9968·10−5) (-3.2201·10−5 , 2.2138·10−5) (-3.5350·10−5 , 2.8628·10−5)
RWE (-8.6084·10−5 , -4.0651·10−7) (-4.7550·10−5 , -4.4687·10−6) (-4.0077·10−5 , 8.4678·10−6)
SZG (-1.3650·10−4 , 7.5183·10−5) (-1.1580·10−5 , 8.8742·10−5) (-1.2955·10−5 , 1.1100·10−4)
SAP (-1.5777·10−4 , 1.3552·10−5) (-8.2440·10−5 , 2.6255·10−5) (-2.5559·10−5 , 3.4329·10−5)
SIE (-1.0978·10−4 , 1.3043·10−5) (-3.9026·10−5 , 2.1138·10−5) (-2.0722·10−5 , 3.7655·10−5)
TKA (-1.3202·10−4 , 2.9975·10−5) (-3.1074·10−5 , 3.6934·10−5) (-2.5284·10−5 , 5.8494·10−5)
VOW (-8.4255·10−5 , 1.5600·10−3) (-2.4172·10−4 , 6.8169·10−4) (-2.7627·10−4 , 7.9332·10−4)
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Appendix B. Empirical One-step-ahead Forecasting

Table B.5.: Conditional mean confidence intervals, K = 2

ARMA(1,1) MODWT Median

ADS (-1.2901·10−4 , -1.7187·10−5) (-6.3628·10−5 , -6.7372·10−6) (-4.6527·10−5 , 1.9998·10−6)
ALV (-1.5831·10−4 , 5.8871·10−6) (-5.6367·10−5 , 1.4802·10−5) (-4.4056·10−5 , 1.6845·10−5)
BAS (-2.4795·10−5 , 2.9426·10−4) (-1.2298·10−4 , 9.2152·10−5) (1.9922·10−4, 5.2513·10−4)
BAY (-1.2768·10−4 , 4.8181·10−5) (-2.6490·10−5 , 5.9989·10−5) (-2.5152·10−5 , 3.8733·10−5)
BEI (-1.3993·10−4 , -6.9474·10−6) (-6.8522·10−5 , 4.4309·10−6) (-4.1185·10−5 , 1.9323·10−5)
BMW (-1.5599·10−4 , -1.7052·10−5) (-4.2676·10−5 , 2.5501·10−5) (-4.3495·10−5 , 2.8980·10−5)
CBK (-1.7824·10−4 , -3.5578·10−6) (-8.6374·10−5 , -1.8677·10−5) (-1.0155·10−4 , -3.4527·10−5)
DAI (-9.9344·10−5 , 3.3239·10−5) (-1.8374·10−5 , 5.0088·10−5) (-1.9681·10−5 , 3.0650·10−5)
DBK (-1.1392·10−4 , 2.8494·10−5) (-6.7330·10−5 , -5.2833·10−7) (-4.7471·10−5 , 1.2256·10−5)
DB1 (-1.1430·10−4 , 8.0454·10−6) (-5.1366·10−5 , 1.3334·10−5) (-3.0087·10−5 , 3.4580·10−5)
DPB (-1.3102·10−4 , 4.7933·10−5) (-3.7751·10−5 , 3.7234·10−5) (-3.1467·10−5 , 2.9999·10−5)
DPW (-1.2579·10−4 , 1.3486·10−5) (-4.8438·10−5 , 2.9342·10−5) (-3.4648·10−5 , 3.6546·10−5)
DTE (-6.6895·10−5 , 1.7962·10−5) (-3.4109·10−5 , 1.5143·10−5) (-3.1393·10−5 , 2.1597·10−5)
EPC (-2.6542·10−5 , 2.1546·10−4) (-6.4562·10−5 , 1.0899·10−4) (1.4517·10−4, 3.8364·10−4)
FME (-1.9148·10−4 , -5.8355·10−5) (-7.0977·10−5 , -4.9842·10−6) (-8.6573·10−5 , -1.8174·10−5)
LHA (-1.6710·10−4 , -3.7589·10−5) (-7.6565·10−5 , -1.2670·10−5) (-6.6562·10−5 , -6.6079·10−6)
HNK (-1.6629·10−4 , -4.7915·10−5) (-5.9203·10−5 , -1.2718·10−6) (-4.6882·10−5 , 8.2688·10−6)
IFX (-1.1417·10−4 , 5.1968·10−5) (-4.3721·10−5 , 4.7448·10−5) (-1.6581·10−5 , 5.0290·10−5)
SDF (-2.1101·10−5 , 7.5377·10−4) (-1.3111·10−4 , 3.9320·10−4) (5.1990·10−4, 1.2027·10−3)
LIN (-1.5575·10−4 , -1.0381·10−5) (-5.7122·10−5 , 1.8089·10−5) (-4.1054·10−5 , 2.1127·10−5)
MAN (-1.7815·10−4 , -4.9085·10−5) (-8.9263·10−5 , -2.3597·10−5) (-7.3823·10−5 , -1.4497·10−5)
MRC (-1.2598·10−4 , 1.2731·10−5) (-4.4113·10−5 , 2.3793·10−5) (-2.5309·10−5 , 2.6327·10−5)
MEO (-9.8458·10−5 , 1.6971·10−5) (-4.1664·10−5 , 2.0853·10−5) (-3.5342·10−5 , 3.9627·10−5)
MUV (-1.3490·10−4 , 5.7960·10−6) (-6.7602·10−5 , 8.2486·10−6) (-6.5081·10−5 , 8.9499·10−6)
RWE (-9.1539·10−5 , 2.3843·10−5) (-4.8356·10−5 , 1.5472·10−5) (-3.3179·10−5 , 2.1259·10−5)
SZG (-2.3448·10−4 , -1.1867·10−5) (-1.1558·10−4 , 4.4985·10−6) (-9.4075·10−5 , 3.7149·10−6)
SAP (-1.6353·10−4 , 1.9296·10−5) (-8.8755·10−5 , 3.3352·10−5) (-3.1377·10−5 , 4.2362·10−5)
SIE (-1.2074·10−4 , 2.4902·10−5) (-4.6889·10−5 , 3.0838·10−5) (-1.9475·10−5 , 3.7896·10−5)
TKA (-1.7755·10−4 , 1.2147·10−5) (-7.7639·10−5 , 2.1766·10−5) (-4.9404·10−5 , 2.1442·10−5)
VOW (-4.0769·10−4 , 1.2410·10−3) (-5.9620·10−4 , 4.1000·10−4) (-6.3425·10−4 , 5.3453·10−4)
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B.1. Conditional Mean One-step-ahead Forecasting

Table B.6.: Conditional mean confidence intervals, K = 3

ARMA(1,1) MODWT Median

ADS (-1.2017·10−4 , 1.0971·10−5) (-5.3445·10−5 , 2.0884·10−5) (-3.3611·10−5 , 2.6052·10−5)
ALV (-1.8529·10−4 , -1.8372·10−5) (-8.9334·10−5 , -2.2265·10−6) (-7.3317·10−5 , -3.6709·10−6)
BAS (-4.1194·10−5 , 2.8400·10−4) (-1.3991·10−4 , 8.6170·10−5) (1.8395·10−4, 5.1887·10−4)
BAY (-1.4357·10−4 , 4.8931·10−5) (-4.3382·10−5 , 6.1821·10−5) (-3.9913·10−5 , 3.9318·10−5)
BEI (-1.5214·10−4 , -1.6000·10−5) (-8.0347·10−5 , -3.9298·10−6) (-5.1379·10−5 , 8.7515·10−6)
BMW (-1.7774·10−4 , -2.7971·10−5) (-6.2053·10−5 , 1.1071·10−5) (-5.8537·10−5 , 1.0461·10−5)
CBK (-1.7097·10−4 , 1.3516·10−5) (-8.2126·10−5 , 8.0914·10−7) (-9.5471·10−5 , -1.6079·10−5)
DAI (-1.3600·10−4 , -9.9539·10−8) (-5.7396·10−5 , 1.9246·10−5) (-6.0499·10−5 , 2.1392·10−6)
DBK (-1.2648·10−4 , 1.9365·10−5) (-8.1058·10−5 , -1.0216·10−5) (-5.9613·10−5 , 3.1555·10−7)
DB1 (-1.1547·10−4 , 2.2676·10−5) (-5.3390·10−5 , 2.8307·10−5) (-2.7245·10−5 , 4.4681·10−5)
DPB (-1.4067·10−4 , 4.9191·10−5) (-5.1885·10−5 , 4.1175·10−5) (-4.3524·10−5 , 3.3529·10−5)
DPW (-1.5606·10−4 , -2.1025·10−5) (-8.2517·10−5 , -1.9029·10−6) (-6.8018·10−5 , 2.7543·10−6)
DTE (-8.4991·10−5 , 5.5073·10−6) (-5.3948·10−5 , 4.3354·10−6) (-4.7837·10−5 , 6.6054·10−6)
EPC (-1.0477·10−4 , 1.8097·10−4) (-1.3599·10−4 , 6.6042·10−5) (7.4811·10−5, 3.3871·10−4)
FME (-2.1460·10−4 , -7.0072·10−5) (-9.7120·10−5 , -1.4143·10−5) (-1.0929·10−4 , -2.9558·10−5)
LHA (-1.8132·10−4 , -4.0410·10−5) (-8.8052·10−5 , -1.7291·10−5) (-7.6597·10−5 , -1.3048·10−5)
HNK (-1.8036·10−4 , -4.1685·10−5) (-7.1299·10−5 , 2.6617·10−6) (-5.4211·10−5 , 7.3353·10−6)
IFX (-1.8686·10−4 , -1.1909·10−5) (-1.1906·10−4 , -1.3058·10−5) (-9.1969·10−5 , -9.8860·10−6)
SDF (4.1617·10−6, 8.4910·10−4) (-1.1921·10−4 , 4.9759·10−4) (5.4606·10−4, 1.3099·10−3)
LIN (-1.8333·10−4 , -3.8088·10−5) (-8.7956·10−5 , -4.1482·10−6) (-7.2376·10−5 , -4.8773·10−7)
MAN (-1.8051·10−4 , -4.1856·10−5) (-9.1908·10−5 , -1.6247·10−5) (-7.5299·10−5 , -8.7700·10−6)
MRC (-1.4299·10−4 , 8.3117·10−6) (-6.2323·10−5 , 2.1227·10−5) (-3.8067·10−5 , 1.8146·10−5)
MEO (-1.4245·10−4 , -2.0231·10−5) (-8.7598·10−5 , -1.5892·10−5) (-7.4360·10−5 , -3.5839·10−6)
MUV (-1.4063·10−4 , 6.5612·10−6) (-7.6464·10−5 , 1.3664·10−5) (-6.6590·10−5 , 7.3064·10−6)
RWE (-9.6742·10−5 , 4.2168·10−5) (-5.4034·10−5 , 3.3013·10−5) (-3.3719·10−5 , 3.3891·10−5)
SZG (-2.2680·10−4 , 1.9869·10−5) (-1.1316·10−4 , 4.2228·10−5) (-7.6106·10−5 , 2.6795·10−5)
SAP (-2.1526·10−4 , -2.2932·10−5) (-1.4205·10−4 , -7.0666·10−6) (-8.1043·10−5 , -7.6877·10−7)
SIE (-1.5697·10−4 , 4.7665·10−6) (-8.3742·10−5 , 1.1349·10−5) (-5.4912·10−5 , 1.6464·10−5)
TKA (-1.9739·10−4 , 6.1221·10−6) (-1.0163·10−4 , 1.8512·10−5) (-6.5287·10−5 , 1.1408·10−5)
VOW (-6.1696·10−4 , 1.1954·10−3) (-8.2940·10−4 , 3.4982·10−4) (-8.7023·10−4 , 4.7163·10−4)
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Appendix B. Empirical One-step-ahead Forecasting

B.2. Empirical Percentiles

In the following Tables the 5% (i. e., γ = 0.05) percentile deviation results are reported.

They are calculated from the historical distribution of the via LLSA, MODWT, and

median filter detrended series. In Tables B.7 to B.9 the first three columns denote the

absolute number of deviations, followed by the respective percentage (in brackets). Due

to above choice of γ, a value closer to 5% means a more accurate model. Columns 4 to 6

state the mean width dB of the estimated percentile range. In Table B.10 the 5% (i. e.,

α = 0.05) bootstrapped confidence intervals are given for these mean widths. Tables

B.11 to B.13 contain the percentile exceedances, including their percentaged amount of

deviations, for the detrended VaR and ES models. The results for the comparison of

LLSA to the VaR and ES estimation on the original P/L data are reported in Tables

B.14 and B.15.
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B.2. Empirical Percentiles

Table B.7.: Empirical percentiles (Price), K = 1

Exceedances Mean percentile width dB

LLSA MODWT Median LLSA MODWT Median

ADS 165 (11.90%) 199 (14.35%) 221 (15.93%) 0.0584 0.0655 0.0533
ALV 232 (16.73%) 198 (14.28%) 200 (14.42%) 0.0641 0.0787 0.0673
BAS 235 (16.94%) 248 (17.88%) 153 (11.03%) 0.0342 0.1351 0.0286
BAY 245 (17.66%) 188 (13.55%) 213 (15.36%) 0.0516 0.0622 0.0509
BEI 168 (12.11%) 205 (14.78%) 196 (14.13%) 0.0520 0.0588 0.0555
CBK 174 (12.55%) 148 (10.67%) 160 (11.54%) 0.0919 0.1027 0.1084
DAI 189 (13.63%) 204 (14.71%) 193 (13.91%) 0.0629 0.0710 0.0592
DBK 235 (16.94%) 225 (16.22%) 198 (14.28%) 0.0621 0.0709 0.0662
DB1 197 (14.20%) 186 (13.41%) 189 (13.63%) 0.0657 0.0718 0.0626
DPB 176 (12.69%) 159 (11.46%) 180 (12.98%) 0.0693 0.0820 0.0692
DPW 186 (13.41%) 199 (14.35%) 185 (13.34%) 0.0500 0.0596 0.0505
DTE 245 (17.66%) 211 (15.21%) 232 (16.73%) 0.0495 0.0564 0.0497
EPC 189 (13.63%) 238 (17.16%) 149 (10.74%) 0.0899 0.1506 0.0686
FME 178 (12.83%) 213 (15.36%) 238 (17.16%) 0.0519 0.0570 0.0541
LHA 150 (10.81%) 170 (12.26%) 177 (12.76%) 0.0719 0.0810 0.0744
HNK 186 (13.41%) 202 (14.56%) 201 (14.49%) 0.0557 0.0631 0.0542
IFX 179 (12.91%) 154 (11.10%) 158 (11.39%) 0.0877 0.1049 0.0866
SDF 99 (7.14%) 192 (13.84%) 112 (8.07%) 0.1897 0.5268 0.1623
LIN 226 (16.29%) 267 (19.25%) 232 (16.73%) 0.0561 0.0674 0.0599
MAN 227 (16.37%) 176 (12.69%) 166 (11.97%) 0.0543 0.0659 0.0569
MRC 217 (15.65%) 197 (14.20%) 209 (15.07%) 0.0569 0.0683 0.0514
MEO 226 (16.29%) 222 (16.01%) 169 (12.18%) 0.0517 0.0641 0.0528
MUV 200 (14.42%) 207 (14.92%) 193 (13.91%) 0.0613 0.0709 0.0633
RWE 156 (11.25%) 233 (16.80%) 222 (16.01%) 0.0462 0.0535 0.0422
SZG 241 (17.38%) 187 (13.48%) 184 (13.27%) 0.0963 0.1152 0.0869
SAP 188 (13.55%) 236 (17.02%) 210 (15.14%) 0.0607 0.0857 0.0583
SIE 181 (13.05%) 224 (16.15%) 205 (14.78%) 0.0489 0.0615 0.0463
TKA 165 (11.90%) 163 (11.75%) 176 (12.69%) 0.0776 0.0915 0.0662
VOW 319 (23.00%) 331 (23.86%) 317 (22.86%) 0.2209 0.3641 0.3407
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Appendix B. Empirical One-step-ahead Forecasting

Table B.8.: Empirical percentiles (Price), K = 2

Exceedances Mean percentile width dB

LLSA MODWT Median LLSA MODWT Median

ADS 158 (11.39%) 199 (14.35%) 221 (15.93%) 0.0509 0.0655 0.0533
ALV 210 (15.14%) 198 (14.28%) 200 (14.42%) 0.0597 0.0787 0.0673
BAS 186 (13.41%) 248 (17.88%) 153 (11.03%) 0.0288 0.1351 0.0286
BAY 212 (15.28%) 188 (13.55%) 213 (15.36%) 0.0477 0.0622 0.0509
BEI 212 (15.28%) 205 (14.78%) 196 (14.13%) 0.0456 0.0588 0.0555
CBK 159 (11.46%) 148 (10.67%) 160 (11.54%) 0.0847 0.1027 0.1084
DAI 207 (14.92%) 204 (14.71%) 193 (13.91%) 0.0538 0.0710 0.0592
DBK 208 (15.00%) 225 (16.22%) 198 (14.28%) 0.0567 0.0709 0.0662
DB1 187 (13.48%) 186 (13.41%) 189 (13.63%) 0.0598 0.0718 0.0626
DPB 208 (15.00%) 159 (11.46%) 180 (12.98%) 0.0643 0.0820 0.0692
DPW 222 (16.01%) 199 (14.35%) 185 (13.34%) 0.0441 0.0596 0.0505
DTE 243 (17.52%) 211 (15.21%) 232 (16.73%) 0.0434 0.0564 0.0497
EPC 182 (13.12%) 238 (17.16%) 149 (10.74%) 0.0740 0.1506 0.0686
FME 259 (18.67%) 213 (15.36%) 238 (17.16%) 0.0443 0.0570 0.0541
LHA 106 (7.64%) 170 (12.26%) 177 (12.76%) 0.0666 0.0810 0.0744
HNK 172 (12.40%) 202 (14.56%) 201 (14.49%) 0.0502 0.0631 0.0542
IFX 178 (12.83%) 154 (11.10%) 158 (11.39%) 0.0794 0.1049 0.0866
SDF 127 (9.16%) 192 (13.84%) 112 (8.07%) 0.1617 0.5268 0.1623
LIN 235 (16.94%) 267 (19.25%) 232 (16.73%) 0.0507 0.0674 0.0599
MAN 125 (9.01%) 176 (12.69%) 166 (11.97%) 0.0496 0.0659 0.0569
MRC 185 (13.34%) 197 (14.20%) 209 (15.07%) 0.0507 0.0683 0.0514
MEO 185 (13.34%) 222 (16.01%) 169 (12.18%) 0.0460 0.0641 0.0528
MUV 162 (11.68%) 207 (14.92%) 193 (13.91%) 0.0550 0.0709 0.0633
RWE 229 (16.51%) 233 (16.80%) 222 (16.01%) 0.0399 0.0535 0.0422
SZG 171 (12.33%) 187 (13.48%) 184 (13.27%) 0.0832 0.1152 0.0869
SAP 224 (16.15%) 236 (17.02%) 210 (15.14%) 0.0519 0.0857 0.0583
SIE 194 (13.99%) 224 (16.15%) 205 (14.78%) 0.0456 0.0615 0.0463
TKA 173 (12.47%) 163 (11.75%) 176 (12.69%) 0.0655 0.0915 0.0662
VOW 312 (22.49%) 331 (23.86%) 317 (22.86%) 0.1912 0.3641 0.3407

160



B.2. Empirical Percentiles

Table B.9.: Empirical percentiles (Price), K = 3

Exceedances Mean percentile width dB

LLSA MODWT Median LLSA MODWT Median

ADS 220 (15.86%) 199 (14.35%) 221 (15.93%) 0.0453 0.0655 0.0533
ALV 175 (12.62%) 198 (14.28%) 200 (14.42%) 0.0567 0.0787 0.0673
BAS 162 (11.68%) 248 (17.88%) 153 (11.03%) 0.0264 0.1351 0.0286
BAY 226 (16.29%) 188 (13.55%) 213 (15.36%) 0.0447 0.0622 0.0509
BEI 186 (13.41%) 205 (14.78%) 196 (14.13%) 0.0433 0.0588 0.0555
CBK 183 (13.19%) 148 (10.67%) 160 (11.54%) 0.0795 0.1027 0.1084
DAI 203 (14.64%) 204 (14.71%) 193 (13.91%) 0.0458 0.0710 0.0592
DBK 164 (11.82%) 225 (16.22%) 198 (14.28%) 0.0538 0.0709 0.0662
DB1 183 (13.19%) 186 (13.41%) 189 (13.63%) 0.0558 0.0718 0.0626
DPB 202 (14.56%) 159 (11.46%) 180 (12.98%) 0.0612 0.0820 0.0692
DPW 170 (12.26%) 199 (14.35%) 185 (13.34%) 0.0402 0.0596 0.0505
DTE 191 (13.77%) 211 (15.21%) 232 (16.73%) 0.0407 0.0564 0.0497
EPC 202 (14.56%) 238 (17.16%) 149 (10.74%) 0.0652 0.1506 0.0686
FME 264 (19.03%) 213 (15.36%) 238 (17.16%) 0.0404 0.0570 0.0541
LHA 126 (9.08%) 170 (12.26%) 177 (12.76%) 0.0605 0.0810 0.0744
HNK 180 (12.98%) 202 (14.56%) 201 (14.49%) 0.0447 0.0631 0.0542
IFX 160 (11.54%) 154 (11.10%) 158 (11.39%) 0.0707 0.1049 0.0866
SDF 122 (8.80%) 192 (13.84%) 112 (8.07%) 0.1442 0.5268 0.1623
LIN 208 (15.00%) 267 (19.25%) 232 (16.73%) 0.0467 0.0674 0.0599
MAN 145 (10.45%) 176 (12.69%) 166 (11.97%) 0.0464 0.0659 0.0569
MRC 193 (13.91%) 197 (14.20%) 209 (15.07%) 0.0459 0.0683 0.0514
MEO 165 (11.90%) 222 (16.01%) 169 (12.18%) 0.0407 0.0641 0.0528
MUV 174 (12.55%) 207 (14.92%) 193 (13.91%) 0.0502 0.0709 0.0633
RWE 237 (17.09%) 233 (16.80%) 222 (16.01%) 0.0363 0.0535 0.0422
SZG 186 (13.41%) 187 (13.48%) 184 (13.27%) 0.0748 0.1152 0.0869
SAP 191 (13.77%) 236 (17.02%) 210 (15.14%) 0.0493 0.0857 0.0583
SIE 205 (14.78%) 224 (16.15%) 205 (14.78%) 0.0410 0.0615 0.0463
TKA 183 (13.19%) 163 (11.75%) 176 (12.69%) 0.0586 0.0915 0.0662
VOW 274 (19.75%) 331 (23.86%) 317 (22.86%) 0.1769 0.3641 0.3407

161



A
p
p
en

d
ix

B
.
E
m
p
ir
ic
a
l
O
n
e-
st
ep

-a
h
ea
d
F
o
re
ca
st
in
g

Table B.10.: Mean percentile width confidence intervals

K = 1 K = 2 K = 3

MODWT Median MODWT Median MODWT Median

ADS (-0.0073, -0.0069) (0.0048, 0.0056) (-0.0150, -0.0143) (-0.0028, -0.0019) (-0.0205, -0.0200) (-0.0083, -0.0076)
ALV (-0.0151, -0.0141) (-0.0036, -0.0026) (-0.0196, -0.0185) (-0.0079, -0.0072) (-0.0226, -0.0215) (-0.0110, -0.0102)
BAS (-0.1060, -0.0957) (0.0052, 0.0060) (-0.1114, -0.1012) (-0.0002, 0.0007) (-0.1139, -0.1036) (-0.0026, -0.0018)
BAY (-0.0111, -0.0102) (0.0004, 0.0008) (-0.0149, -0.0140) (-0.0034, -0.0030) (-0.0180, -0.0171) (-0.0065, -0.0061)
BEI (-0.0071, -0.0065) (-0.0036, -0.0033) (-0.0136, -0.0128) (-0.0100, -0.0096) (-0.0160, -0.0151) (-0.0124, -0.0120)
BMW (-0.0065, -0.0060) (-0.0041, -0.0031) (-0.0146, -0.0137) (-0.0122, -0.0109) (-0.0222, -0.0214) (-0.0198, -0.0185)
CBK (-0.0113, -0.0105) (-0.0169, -0.0161) (-0.0184, -0.0177) (-0.0242, -0.0232) (-0.0238, -0.0227) (-0.0295, -0.0283)
DAI (-0.0084, -0.0078) (0.0032, 0.0040) (-0.0176, -0.0167) (-0.0059, -0.0049) (-0.0256, -0.0246) (-0.0140, -0.0129)
DBK (-0.0092, -0.0085) (-0.0045, -0.0037) (-0.0146, -0.0137) (-0.0099, -0.0090) (-0.0176, -0.0167) (-0.0128, -0.0120)
DB1 (-0.0064, -0.0058) (0.0028, 0.0033) (-0.0124, -0.0117) (-0.0031, -0.0026) (-0.0163, -0.0157) (-0.0070, -0.0066)
DPB (-0.0131, -0.0123) (-0.0004, 0.0005) (-0.0181, -0.0174) (-0.0052, -0.0046) (-0.0213, -0.0204) (-0.0083, -0.0077)
DPW (-0.0099, -0.0093) (-0.0008, -0.0001) (-0.0159, -0.0152) (-0.0068, -0.0060) (-0.0198, -0.0191) (-0.0106, -0.0101)
DTE (-0.0071, -0.0067) (-0.0008, 0.0004) (-0.0134, -0.0127) (-0.0071, -0.0056) (-0.0160, -0.0154) (-0.0098, -0.0083)
EPC (-0.0635, -0.0580) (0.0203, 0.0222) (-0.0793, -0.0739) (0.0045, 0.0063) (-0.0879, -0.0828) (-0.0045, -0.0024)
FME (-0.0053, -0.0049) (-0.0025, -0.0019) (-0.0131, -0.0123) (-0.0104, -0.0092) (-0.0170, -0.0163) (-0.0143, -0.0132)
LHA (-0.0095, -0.0088) (-0.0028, -0.0022) (-0.0148, -0.0141) (-0.0082, -0.0075) (-0.0209, -0.0201) (-0.0142, -0.0136)
HNK (-0.0076, -0.0073) (0.0012, 0.0018) (-0.0132, -0.0126) (-0.0043, -0.0036) (-0.0187, -0.0182) (-0.0099, -0.0091)
IFX (-0.0175, -0.0169) (0.0007, 0.0015) (-0.0258, -0.0252) (-0.0077, -0.0067) (-0.0346, -0.0338) (-0.0164, -0.0155)
SDF (-0.3548, -0.3200) (0.0262, 0.0286) (-0.3827, -0.3474) (-0.0013, 0.0003) (-0.4007, -0.3647) (-0.0188, -0.0174)
LIN (-0.0118, -0.0107) (-0.0040, -0.0036) (-0.0173, -0.0161) (-0.0095, -0.0090) (-0.0214, -0.0198) (-0.0136, -0.0127)
MAN (-0.0119, -0.0113) (-0.0030, -0.0023) (-0.0166, -0.0160) (-0.0077, -0.0069) (-0.0199, -0.0193) (-0.0111, -0.0101)
MRC (-0.0118, -0.0111) (0.0051, 0.0058) (-0.0180, -0.0174) (-0.0011, -0.0005) (-0.0227, -0.0221) (-0.0058, -0.0052)
MEO (-0.0129, -0.0120) (-0.0016, -0.0006) (-0.0188, -0.0175) (-0.0075, -0.0062) (-0.0241, -0.0228) (-0.0128, -0.0114)
MUV (-0.0099, -0.0091) (-0.0022, -0.0017) (-0.0163, -0.0155) (-0.0086, -0.0081) (-0.0211, -0.0202) (-0.0136, -0.0127)
RWE (-0.0076, -0.0069) (0.0037, 0.0044) (-0.0140, -0.0132) (-0.0027, -0.0019) (-0.0177, -0.0168) (-0.0063, -0.0056)
SZG (-0.0195, -0.0183) (0.0087, 0.0101) (-0.0325, -0.0315) (-0.0042, -0.0031) (-0.0408, -0.0400) (-0.0126, -0.0115)
SAP (-0.0266, -0.0235) (0.0021, 0.0028) (-0.0354, -0.0321) (-0.0068, -0.0059) (-0.0381, -0.0347) (-0.0094, -0.0085)
SIE (-0.0132, -0.0120) (0.0023, 0.0029) (-0.0165, -0.0154) (-0.0009, -0.0005) (-0.0211, -0.0200) (-0.0056, -0.0050)
TKA (-0.0142, -0.0135) (0.0109, 0.0120) (-0.0262, -0.0257) (-0.0011, -0.0003) (-0.0332, -0.0326) (-0.0079, -0.0074)
VOW (-0.1565, -0.1307) (-0.1339, -0.1065) (-0.1873, -0.1595) (-0.1647, -0.1351) (-0.2025, -0.1729) (-0.1797, -0.1485)
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Table B.11.: Empirical percentiles (P/L), K = 1

Exceedances (VaR) Exceedances (ES)

LLSA MODWT Median LLSA MODWT Median

ADS 173 (12.47%) 179 (12.91%) 185 (13.34%) 75 (5.41%) 77 (5.55%) 78 (5.62%)
ALV 179 (12.91%) 181 (13.05%) 184 (13.27%) 80 (5.77%) 79 (5.70%) 80 (5.77%)
BAS 154 (11.10%) 143 (10.31%) 145 (10.45%) 51 (3.68%) 44 (3.17%) 52 (3.75%)
BAY 187 (13.48%) 188 (13.55%) 191 (13.77%) 77 (5.55%) 74 (5.34%) 75 (5.41%)
BEI 168 (12.11%) 166 (11.97%) 163 (11.75%) 76 (5.48%) 77 (5.55%) 76 (5.48%)
BMW 174 (12.55%) 177 (12.76%) 172 (12.40%) 69 (4.97%) 70 (5.05%) 67 (4.83%)
CBK 164 (11.82%) 164 (11.82%) 165 (11.90%) 68 (4.90%) 66 (4.76%) 64 (4.61%)
DAI 187 (13.48%) 183 (13.19%) 181 (13.05%) 72 (5.19%) 71 (5.12%) 71 (5.12%)
DBK 170 (12.26%) 165 (11.90%) 175 (12.62%) 69 (4.97%) 69 (4.97%) 70 (5.05%)
DB1 153 (11.03%) 152 (10.96%) 149 (10.74%) 51 (3.68%) 50 (3.60%) 52 (3.75%)
DPB 143 (10.31%) 146 (10.53%) 149 (10.74%) 60 (4.33%) 61 (4.40%) 58 (4.18%)
DPW 178 (12.83%) 178 (12.83%) 180 (12.98%) 61 (4.40%) 64 (4.61%) 69 (4.97%)
DTE 193 (13.91%) 186 (13.41%) 186 (13.41%) 76 (5.48%) 75 (5.41%) 81 (5.84%)
EPC 205 (14.78%) 215 (15.50%) 207 (14.92%) 76 (5.48%) 81 (5.84%) 79 (5.70%)
FME 211 (15.21%) 209 (15.07%) 212 (15.28%) 93 (6.71%) 91 (6.56%) 91 (6.56%)
LHA 160 (11.54%) 156 (11.25%) 160 (11.54%) 61 (4.40%) 59 (4.25%) 61 (4.40%)
HNK 177 (12.76%) 178 (12.83%) 173 (12.47%) 79 (5.70%) 86 (6.20%) 84 (6.06%)
IFX 158 (11.39%) 158 (11.39%) 150 (10.81%) 59 (4.25%) 59 (4.25%) 58 (4.18%)
SDF 118 (8.51%) 107 (7.71%) 113 (8.15%) 41 (2.96%) 43 (3.10%) 43 (3.10%)
LIN 193 (13.91%) 196 (14.13%) 193 (13.91%) 87 (6.27%) 86 (6.20%) 84 (6.06%)
MAN 150 (10.81%) 154 (11.10%) 150 (10.81%) 56 (4.04%) 58 (4.18%) 60 (4.33%)
MRC 172 (12.40%) 171 (12.33%) 170 (12.26%) 67 (4.83%) 66 (4.76%) 69 (4.97%)
MEO 168 (12.11%) 174 (12.55%) 173 (12.47%) 73 (5.26%) 76 (5.48%) 70 (5.05%)
MUV 217 (15.65%) 215 (15.50%) 211 (15.21%) 78 (5.62%) 80 (5.77%) 81 (5.84%)
RWE 209 (15.07%) 216 (15.57%) 206 (14.85%) 83 (5.98%) 81 (5.84%) 84 (6.06%)
SZG 146 (10.53%) 143 (10.31%) 142 (10.24%) 60 (4.33%) 60 (4.33%) 60 (4.33%)
SAP 193 (13.91%) 194 (13.99%) 196 (14.13%) 78 (5.62%) 76 (5.48%) 79 (5.70%)
SIE 186 (13.41%) 189 (13.63%) 180 (12.98%) 70 (5.05%) 66 (4.76%) 71 (5.12%)
TKA 152 (10.96%) 156 (11.25%) 150 (10.81%) 66 (4.76%) 69 (4.97%) 69 (4.97%)
VOW 288 (20.76%) 292 (21.05%) 292 (21.05%) 130 (9.37%) 129 (9.30%) 130 (9.37%)163
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Table B.12.: Empirical percentiles (P/L), K = 2

Exceedances (VaR) Exceedances (ES)

LLSA MODWT Median LLSA MODWT Median

ADS 179 (12.91%) 179 (12.91%) 185 (13.34%) 73 (5.26%) 77 (5.55%) 78 (5.62%)
ALV 180 (12.98%) 181 (13.05%) 184 (13.27%) 81 (5.84%) 79 (5.70%) 80 (5.77%)
BAS 150 (10.81%) 143 (10.31%) 145 (10.45%) 53 (3.82%) 44 (3.17%) 52 (3.75%)
BAY 192 (13.84%) 188 (13.55%) 191 (13.77%) 76 (5.48%) 74 (5.34%) 75 (5.41%)
BEI 168 (12.11%) 166 (11.97%) 163 (11.75%) 75 (5.41%) 77 (5.55%) 76 (5.48%)
BMW 176 (12.69%) 177 (12.76%) 172 (12.40%) 71 (5.12%) 70 (5.05%) 67 (4.83%)
CBK 163 (11.75%) 164 (11.82%) 165 (11.90%) 69 (4.97%) 66 (4.76%) 64 (4.61%)
DAI 186 (13.41%) 183 (13.19%) 181 (13.05%) 72 (5.19%) 71 (5.12%) 71 (5.12%)
DBK 168 (12.11%) 165 (11.90%) 175 (12.62%) 69 (4.97%) 69 (4.97%) 70 (5.05%)
DB1 154 (11.10%) 152 (10.96%) 149 (10.74%) 52 (3.75%) 50 (3.60%) 52 (3.75%)
DPB 143 (10.31%) 146 (10.53%) 149 (10.74%) 58 (4.18%) 61 (4.40%) 58 (4.18%)
DPW 177 (12.76%) 178 (12.83%) 180 (12.98%) 62 (4.47%) 64 (4.61%) 69 (4.97%)
DTE 190 (13.70%) 186 (13.41%) 186 (13.41%) 76 (5.48%) 75 (5.41%) 81 (5.84%)
EPC 201 (14.49%) 215 (15.50%) 207 (14.92%) 77 (5.55%) 81 (5.84%) 79 (5.70%)
FME 210 (15.14%) 209 (15.07%) 212 (15.28%) 93 (6.71%) 91 (6.56%) 91 (6.56%)
LHA 159 (11.46%) 156 (11.25%) 160 (11.54%) 58 (4.18%) 59 (4.25%) 61 (4.40%)
HNK 178 (12.83%) 178 (12.83%) 173 (12.47%) 80 (5.77%) 86 (6.20%) 84 (6.06%)
IFX 151 (10.89%) 158 (11.39%) 150 (10.81%) 62 (4.47%) 59 (4.25%) 58 (4.18%)
SDF 118 (8.51%) 107 (7.71%) 113 (8.15%) 41 (2.96%) 43 (3.10%) 43 (3.10%)
LIN 192 (13.84%) 196 (14.13%) 193 (13.91%) 87 (6.27%) 86 (6.20%) 84 (6.06%)
MAN 148 (10.67%) 154 (11.10%) 150 (10.81%) 56 (4.04%) 58 (4.18%) 60 (4.33%)
MRC 170 (12.26%) 171 (12.33%) 170 (12.26%) 66 (4.76%) 66 (4.76%) 69 (4.97%)
MEO 172 (12.40%) 174 (12.55%) 173 (12.47%) 74 (5.34%) 76 (5.48%) 70 (5.05%)
MUV 213 (15.36%) 215 (15.50%) 211 (15.21%) 78 (5.62%) 80 (5.77%) 81 (5.84%)
RWE 208 (15.00%) 216 (15.57%) 206 (14.85%) 84 (6.06%) 81 (5.84%) 84 (6.06%)
SZG 143 (10.31%) 143 (10.31%) 142 (10.24%) 59 (4.25%) 60 (4.33%) 60 (4.33%)
SAP 190 (13.70%) 194 (13.99%) 196 (14.13%) 78 (5.62%) 76 (5.48%) 79 (5.70%)
SIE 184 (13.27%) 189 (13.63%) 180 (12.98%) 69 (4.97%) 66 (4.76%) 71 (5.12%)
TKA 153 (11.03%) 156 (11.25%) 150 (10.81%) 65 (4.69%) 69 (4.97%) 69 (4.97%)
VOW 290 (20.91%) 292 (21.05%) 292 (21.05%) 130 (9.37%) 129 (9.30%) 130 (9.37%)
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Table B.13.: Empirical percentiles (P/L), K = 3

Exceedances (VaR) Exceedances (ES)

LLSA MODWT Median LLSA MODWT Median

ADS 182 (13.12%) 179 (12.91%) 185 (13.34%) 73 (5.26%) 77 (5.55%) 78 (5.62%)
ALV 181 (13.05%) 181 (13.05%) 184 (13.27%) 79 (5.70%) 79 (5.70%) 80 (5.77%)
BAS 155 (11.18%) 143 (10.31%) 145 (10.45%) 53 (3.82%) 44 (3.17%) 52 (3.75%)
BAY 192 (13.84%) 188 (13.55%) 191 (13.77%) 76 (5.48%) 74 (5.34%) 75 (5.41%)
BEI 168 (12.11%) 166 (11.97%) 163 (11.75%) 76 (5.48%) 77 (5.55%) 76 (5.48%)
BMW 175 (12.62%) 177 (12.76%) 172 (12.40%) 71 (5.12%) 70 (5.05%) 67 (4.83%)
CBK 166 (11.97%) 164 (11.82%) 165 (11.90%) 70 (5.05%) 66 (4.76%) 64 (4.61%)
DAI 188 (13.55%) 183 (13.19%) 181 (13.05%) 70 (5.05%) 71 (5.12%) 71 (5.12%)
DBK 167 (12.04%) 165 (11.90%) 175 (12.62%) 67 (4.83%) 69 (4.97%) 70 (5.05%)
DB1 152 (10.96%) 152 (10.96%) 149 (10.74%) 52 (3.75%) 50 (3.60%) 52 (3.75%)
DPB 142 (10.24%) 146 (10.53%) 149 (10.74%) 58 (4.18%) 61 (4.40%) 58 (4.18%)
DPW 177 (12.76%) 178 (12.83%) 180 (12.98%) 62 (4.47%) 64 (4.61%) 69 (4.97%)
DTE 188 (13.55%) 186 (13.41%) 186 (13.41%) 73 (5.26%) 75 (5.41%) 81 (5.84%)
EPC 201 (14.49%) 215 (15.50%) 207 (14.92%) 78 (5.62%) 81 (5.84%) 79 (5.70%)
FME 207 (14.92%) 209 (15.07%) 212 (15.28%) 90 (6.49%) 91 (6.56%) 91 (6.56%)
LHA 159 (11.46%) 156 (11.25%) 160 (11.54%) 60 (4.33%) 59 (4.25%) 61 (4.40%)
HNK 177 (12.76%) 178 (12.83%) 173 (12.47%) 81 (5.84%) 86 (6.20%) 84 (6.06%)
IFX 155 (11.18%) 158 (11.39%) 150 (10.81%) 61 (4.40%) 59 (4.25%) 58 (4.18%)
SDF 118 (8.51%) 107 (7.71%) 113 (8.15%) 41 (2.96%) 43 (3.10%) 43 (3.10%)
LIN 189 (13.63%) 196 (14.13%) 193 (13.91%) 87 (6.27%) 86 (6.20%) 84 (6.06%)
MAN 149 (10.74%) 154 (11.10%) 150 (10.81%) 56 (4.04%) 58 (4.18%) 60 (4.33%)
MRC 167 (12.04%) 171 (12.33%) 170 (12.26%) 66 (4.76%) 66 (4.76%) 69 (4.97%)
MEO 169 (12.18%) 174 (12.55%) 173 (12.47%) 74 (5.34%) 76 (5.48%) 70 (5.05%)
MUV 212 (15.28%) 215 (15.50%) 211 (15.21%) 79 (5.70%) 80 (5.77%) 81 (5.84%)
RWE 212 (15.28%) 216 (15.57%) 206 (14.85%) 84 (6.06%) 81 (5.84%) 84 (6.06%)
SZG 140 (10.09%) 143 (10.31%) 142 (10.24%) 59 (4.25%) 60 (4.33%) 60 (4.33%)
SAP 191 (13.77%) 194 (13.99%) 196 (14.13%) 76 (5.48%) 76 (5.48%) 79 (5.70%)
SIE 184 (13.27%) 189 (13.63%) 180 (12.98%) 69 (4.97%) 66 (4.76%) 71 (5.12%)
TKA 150 (10.81%) 156 (11.25%) 150 (10.81%) 66 (4.76%) 69 (4.97%) 69 (4.97%)
VOW 293 (21.12%) 292 (21.05%) 292 (21.05%) 130 (9.37%) 129 (9.30%) 130 (9.37%)165
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Table B.14.: VaR percentile exceedances (P/L)

K = 1 K = 2 K = 3

VaR LLSA VaR LLSA VaR LLSA

ADS 182 (13.12%) 173 (12.47%) 182 (13.12%) 179 (12.91%) 182 (13.12%) 182 (13.12%)
ALV 178 (12.83%) 179 (12.91%) 178 (12.83%) 180 (12.98%) 178 (12.83%) 181 (13.05%)
BAS 141 (10.17%) 154 (11.10%) 141 (10.17%) 150 (10.81%) 141 (10.17%) 155 (11.18%)
BAY 186 (13.41%) 187 (13.48%) 186 (13.41%) 192 (13.84%) 186 (13.41%) 192 (13.84%)
BEI 166 (11.97%) 168 (12.11%) 166 (11.97%) 168 (12.11%) 166 (11.97%) 168 (12.11%)
BMW 177 (12.76%) 174 (12.55%) 177 (12.76%) 176 (12.69%) 177 (12.76%) 175 (12.62%)
CBK 162 (11.68%) 164 (11.82%) 162 (11.68%) 163 (11.75%) 162 (11.68%) 166 (11.97%)
DAI 183 (13.19%) 187 (13.48%) 183 (13.19%) 186 (13.41%) 183 (13.19%) 188 (13.55%)
DBK 169 (12.18%) 170 (12.26%) 169 (12.18%) 168 (12.11%) 169 (12.18%) 167 (12.04%)
DB1 153 (11.03%) 153 (11.03%) 153 (11.03%) 154 (11.10%) 153 (11.03%) 152 (10.96%)
DPB 146 (10.53%) 143 (10.31%) 146 (10.53%) 143 (10.31%) 146 (10.53%) 142 (10.24%)
DPW 181 (13.05%) 178 (12.83%) 181 (13.05%) 177 (12.76%) 181 (13.05%) 177 (12.76%)
DTE 187 (13.48%) 193 (13.91%) 187 (13.48%) 190 (13.70%) 187 (13.48%) 188 (13.55%)
EPC 208 (15.00%) 205 (14.78%) 208 (15.00%) 201 (14.49%) 208 (15.00%) 201 (14.49%)
FME 207 (14.92%) 211 (15.21%) 207 (14.92%) 210 (15.14%) 207 (14.92%) 207 (14.92%)
LHA 159 (11.46%) 160 (11.54%) 159 (11.46%) 159 (11.46%) 159 (11.46%) 159 (11.46%)
HNK 179 (12.91%) 177 (12.76%) 179 (12.91%) 178 (12.83%) 179 (12.91%) 177 (12.76%)
IFX 163 (11.75%) 158 (11.39%) 163 (11.75%) 151 (10.89%) 163 (11.75%) 155 (11.18%)
SDF 112 (8.07%) 118 (8.51%) 112 (8.07%) 118 (8.51%) 112 (8.07%) 118 (8.51%)
LIN 194 (13.99%) 193 (13.91%) 194 (13.99%) 192 (13.84%) 194 (13.99%) 189 (13.63%)
MAN 150 (10.81%) 150 (10.81%) 150 (10.81%) 148 (10.67%) 150 (10.81%) 149 (10.74%)
MRC 172 (12.40%) 172 (12.40%) 172 (12.40%) 170 (12.26%) 172 (12.40%) 167 (12.04%)
MEO 172 (12.40%) 168 (12.11%) 172 (12.40%) 172 (12.40%) 172 (12.40%) 169 (12.18%)
MUV 215 (15.50%) 217 (15.65%) 215 (15.50%) 213 (15.36%) 215 (15.50%) 212 (15.28%)
RWE 209 (15.07%) 209 (15.07%) 209 (15.07%) 208 (15.00%) 209 (15.07%) 212 (15.28%)
SZG 151 (10.89%) 146 (10.53%) 151 (10.89%) 143 (10.31%) 151 (10.89%) 140 (10.09%)
SAP 197 (14.20%) 193 (13.91%) 197 (14.20%) 190 (13.70%) 197 (14.20%) 191 (13.77%)
SIE 191 (13.77%) 186 (13.41%) 191 (13.77%) 184 (13.27%) 191 (13.77%) 184 (13.27%)
TKA 152 (10.96%) 152 (10.96%) 152 (10.96%) 153 (11.03%) 152 (10.96%) 150 (10.81%)
VOW 274 (19.75%) 288 (20.76%) 274 (19.75%) 290 (20.91%) 274 (19.75%) 293 (21.12%)
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Table B.15.: ES percentile exceedances (P/L)

K = 1 K = 2 K = 3

ES LLSA ES LLSA ES LLSA

ADS 76 (5.48%) 75 (5.41%) 76 (5.48%) 73 (5.26%) 76 (5.48%) 73 (5.26%)
ALV 79 (5.70%) 80 (5.77%) 79 (5.70%) 81 (5.84%) 79 (5.70%) 79 (5.70%)
BAS 46 (3.32%) 51 (3.68%) 46 (3.32%) 53 (3.82%) 46 (3.32%) 53 (3.82%)
BAY 76 (5.48%) 77 (5.55%) 76 (5.48%) 76 (5.48%) 76 (5.48%) 76 (5.48%)
BEI 76 (5.48%) 76 (5.48%) 76 (5.48%) 75 (5.41%) 76 (5.48%) 76 (5.48%)
BMW 67 (4.83%) 69 (4.97%) 67 (4.83%) 71 (5.12%) 67 (4.83%) 71 (5.12%)
CBK 66 (4.76%) 68 (4.90%) 66 (4.76%) 69 (4.97%) 66 (4.76%) 70 (5.05%)
DAI 75 (5.41%) 72 (5.19%) 75 (5.41%) 72 (5.19%) 75 (5.41%) 70 (5.05%)
DBK 72 (5.19%) 69 (4.97%) 72 (5.19%) 69 (4.97%) 72 (5.19%) 67 (4.83%)
DB1 50 (3.60%) 51 (3.68%) 50 (3.60%) 52 (3.75%) 50 (3.60%) 52 (3.75%)
DPB 58 (4.18%) 60 (4.33%) 58 (4.18%) 58 (4.18%) 58 (4.18%) 58 (4.18%)
DPW 66 (4.76%) 61 (4.40%) 66 (4.76%) 62 (4.47%) 66 (4.76%) 62 (4.47%)
DTE 78 (5.62%) 76 (5.48%) 78 (5.62%) 76 (5.48%) 78 (5.62%) 73 (5.26%)
EPC 76 (5.48%) 76 (5.48%) 76 (5.48%) 77 (5.55%) 76 (5.48%) 78 (5.62%)
FME 91 (6.56%) 93 (6.71%) 91 (6.56%) 93 (6.71%) 91 (6.56%) 90 (6.49%)
LHA 61 (4.40%) 61 (4.40%) 61 (4.40%) 58 (4.18%) 61 (4.40%) 60 (4.33%)
HNK 79 (5.70%) 79 (5.70%) 79 (5.70%) 80 (5.77%) 79 (5.70%) 81 (5.84%)
IFX 60 (4.33%) 59 (4.25%) 60 (4.33%) 62 (4.47%) 60 (4.33%) 61 (4.40%)
SDF 40 (2.88%) 41 (2.96%) 40 (2.88%) 41 (2.96%) 40 (2.88%) 41 (2.96%)
LIN 82 (5.91%) 87 (6.27%) 82 (5.91%) 87 (6.27%) 82 (5.91%) 87 (6.27%)
MAN 59 (4.25%) 56 (4.04%) 59 (4.25%) 56 (4.04%) 59 (4.25%) 56 (4.04%)
MRC 62 (4.47%) 67 (4.83%) 62 (4.47%) 66 (4.76%) 62 (4.47%) 66 (4.76%)
MEO 75 (5.41%) 73 (5.26%) 75 (5.41%) 74 (5.34%) 75 (5.41%) 74 (5.34%)
MUV 83 (5.98%) 78 (5.62%) 83 (5.98%) 78 (5.62%) 83 (5.98%) 79 (5.70%)
RWE 83 (5.98%) 83 (5.98%) 83 (5.98%) 84 (6.06%) 83 (5.98%) 84 (6.06%)
SZG 61 (4.40%) 60 (4.33%) 61 (4.40%) 59 (4.25%) 61 (4.40%) 59 (4.25%)
SAP 76 (5.48%) 78 (5.62%) 76 (5.48%) 78 (5.62%) 76 (5.48%) 76 (5.48%)
SIE 67 (4.83%) 70 (5.05%) 67 (4.83%) 69 (4.97%) 67 (4.83%) 69 (4.97%)
TKA 64 (4.61%) 66 (4.76%) 64 (4.61%) 65 (4.69%) 64 (4.61%) 66 (4.76%)
VOW 128 (9.23%) 130 (9.37%) 128 (9.23%) 130 (9.37%) 128 (9.23%) 130 (9.37%)167
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