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Introduction

Light was among the very �rst things created by God in Christian mythology, followed by mankind and
the assignment to `subdue the earth',1 and scientists have made vast progress since then to `subdue'
light: The discovery of Maxwell's equations [1] provided the basis for a full understanding of classical
electromagnetic wave propagation, the introduction of the photon by Einstein [2] lay ground to the
development of the quantum theory of light which in turn made the invention of the laser possible.
These tools and the advancements in creating structures on the micrometer and nanometer scale in a
controlled fashion paved the way for the emerging �eld of photonics: scientists no longer depend merely
on utilizing the optical properties of natural materials, but actively create and tailor arti�cial materials
with novel and unprecedented e�ects on light propagation.
One notable milestone in this respect was the introduction of the concept of photonic crystals (PC)

by John [3] and Yablonovitch [4]. These are periodic arrangements of dielectric materials, where the
basic building blocks�the unit cells of the crystals�are repeated periodically in one, two or three
dimensions. Examples of real structures are shown in Fig. 0.1. The combination of light scattering at
the single constituents and Bragg scattering due to the underlying lattice gives rise to a band structure
in the multi-branch dispersion relation for light propagating through these crystals. This, in turn, o�ers
the possibility to open stop bands which are frequency ranges that prohibit light propagation along
certain directions. By carefully adjusting the fabricational parameters (refractive index of constituent
materials, lattice symmetry, geometry of one unit cell), one can get these stop bands to overlap, thus
forming complete photonic band gaps (PBG). In those frequency ranges, wave propagation is forbidden
regardless of the propagation direction. Thus, PBG materials can act as insulators for light.

(a) Bragg stack. Copyright Wiley-VCH
Verlag GmbH & Co. KGaA. Reproduced
with kind permission from [5].

(b) PC slab. Courtesy of The
Optical Society. Reproduced
with kind permission from [6].

(c) Woodpile structure.
Reprinted by kind permission
from Macmillan Publishers Ltd:
Nature Materials [7], copyright
(2004).

Figure 0.1: Micrographs of photonic crystals with periodicities in (a) 1D, (b) 2D, and (c) 3D.

Purposely designed defect structures in PCs break the translational symmetry and introduce strongly
localized light modes in the band gaps. Their mode pro�les penetrate the surrounding PC only a few

1Genesis 1, 28, The Bible (King James Version).
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Introduction

lattice constants. This o�ers a new guiding mechanism for light besides index guiding in �bres,2 enabling
the construction of low loss sharp-bend waveguides, resonators with high Q-factors and complex photonic
circuitry. These functional elements rely on the existence of the band gap which in turn derives from the
Bragg scattering of light on the periodic structures. Since the lowest Bragg order corresponds to a lattice
constant of roughly half the wavelength, photonic devices that manipulate light with wavelengths of
about 1 µm in this way (exploiting the band gap) must feature lattice constants and unit cell dimensions
of the order of 0.5 µm.3 This length scale is realized in the structures of Fig. 0.1 and it is also the order
of telecommunication wavelengths, where a wavelength of 1.5 µm is currently employed in �bre networks
[8]. Such �bre networks are in broad use today for data transmission over long distances (e. g., Internet
data transmission) as well as short distances (e. g., local area networks). Optical �bres o�er much
higher data rates than electric signals can carry.4 However, for signal routing the optical signals still
have to be converted to electrical signals, processed by electronic devices, and converted back to optical
signals. This constitutes a bottle-neck, e�ectively reducing the high data rates. Therefore, the vision
of all-optical signal processing emerged, eliminating the detour via electronic devices. Photonic crystals
may provide the basis for photonic devices realizing this vision. Examples for the desired functionality
photonic devices should provide are shown in Fig. 0.2. The ability to fabricate such integrated photonic
circuitry would have the same revolutionary impact on the modern information society as the invention
of transistors and integrated electronic circuits had, which �nally made the development of computers
and the world wide web possible.

Figure 0.2: Examples for signal processing components needed in integrated photonic circuitry for
all-optical data processing and connection to electronic circuits. Reprinted by kind permission from
Macmillan Publishers Ltd: Nature Photonics [10], copyright (2007).

The potential usefulness of PCs in optical signal processing relies on the complete PBG. Since natural
materials do not show a magnetic response for optical frequencies (i. e. visible light and the near infrared),
we may set the magnetic permeability µ to one throughout this thesis. The e�ects of photonic crystals

2Light con�nement in optical glass �bres is achieved by total internal re�ection which relies on layers of di�erent refractive
indices.

3This is in contrast to metamaterials which are also periodic nanostructures. However, the lattice constant employed in
that case is much smaller than the wavelength of light. For this reason, the dominant optical e�ects of metamaterials
are described by e�ective constant values for the permittivity and permeability instead of a band structure for light.
These e�ective parameters can be tailored to take on unusual values, e. g., an e�ective permeability not equal to one
and even negative values are possible.

4In 2009, Alcatel-Lucent Bell Labs reported a data rate of 100 Petabit per second and kilometer which is `equivalent to
sending 400 DVDs per second over transoceanic cable' [9].

viii



are then fully described by their position dependent, periodic electric permittivity distribution ε(r).
The experimental challenge consists in fabricating structures with a particular desired permittivity
distribution that has complete photonic band gaps. However, only three-dimensional PCs localize light
for all spatial directions by this e�ect. Great e�ort is put today to fabricate three-dimensional structures,
but research also focused on simpler two-dimensional structures, the PC slabs. These are sheets of
dielectrics that are periodically structured in one plane which provides the band gap. In the third
dimension, localization of light is provided by index guiding. For technical applications as mentioned
above, defect structures have to be designed and incorporated into these slabs. This in turn has not
only desired e�ects, since the stop band in the third dimension is missing, allowing light scattered on
defects to couple to leaky modes of the surrounding vacuum and get lost. Thus, the functionality
of defect structures is also accompanied by a new loss mechanism. However, these are experimental
and fabricational problems. The idealization of PC slabs to actual two-dimensional PCs yields model
systems that are easier to study (neglecting out-of-plane loss mechanisms). In particular, the vectorial
wave equations decouple in this case and wave propagation is governed by two simpler, scalar equations.
These equations describe two distinct polarization states, the H-polarized and the E-polarized waves.
They are completely determined by specifying the z-component Hz of the magnetic �eld�called H-
polarized, also transverse electric (TE) polarization�or the z-component Ez of the electric �eld�called
E-polarized, also transverse magnetic (TM) polarization.
These model systems provide insight to the principal working mechanisms and the functionality of

optical devices, but exact analytical solutions to Maxwell's equations are rare in these systems. Due
to the many possibilities to design PCs and the countless defect con�gurations, a numerical analysis
of light propagation in PCs is vital to rate and also optimize the desired functionality. The focus of
this thesis lies in the study of these two-dimensional PCs and the numerical analysis of the localized
defect states therein. The model systems employed in this thesis consist of two-dimensional square and
triangular lattices of cylindrical air holes in silicon, respectively, which are widely studied in the photonics
community. Inspired by experimental advances in local pore in�ltration [11�13], the defect types treated
in this thesis are restricted to holes in�ltrated with isotropic and anisotropic dielectrics, changing the
permittivity locally and preserving the hole geometry [14]. This allows the design of actively tunable
defect structures and to control the optical properties of the defects, instead of relying only on passively
tuned designs by adjusting fabricational parameters.

The Wannier Function Approach: For �nding numerical solutions to Maxwell's equations, a number
of all-purpose as well as specially adapted methods are available [15]. One of the most popular methods
is the �nite-di�erence time-domain method which computes the time evolution of electromagnetic �elds
directly from speci�ed sources or initial �eld distributions [16]. However, the analysis of circuits in PCs
requires to model rather large systems with low group velocities of the waves, resulting in long simulation
times. Additionally, suppressing re�ections at the boundaries of the computational domains is not easy
in PCs. For obtaining stationary states of a de�nite frequency, the plane-wave expansion and plane-wave
based supercell method are widely used [17, 18], but they are also not feasible to describe systems larger
than 10 lattice constants in each direction. This is because the localized defect modes in the band gap are
expanded in a basis of spatially extended functions. For special systems containing highly symmetric
scatterers, particularly adapted and highly accurate methods such as the multiple multipole method
based on cylindrical [19] or vector spherical harmonics [20] are available. Further methods employed are
the �nite-element [21] and related discontinuous Galerkin [22, 23] methods. However, these methods
either neglect the periodicity of the underlying PC, the localized nature of the defect modes one is
interested in, or unit cell geometries other than cylinders and spheres.

ix



Introduction

So the idea came up to expand the wave equations into a set of basis functions that share as many
properties as possible with the desired defect states in order to obtain a fast and memory e�cient numer-
ical scheme. This is similar to perturbative approaches, where states for weak perturbations resemble
the eigenstates of the unperturbed systems which then constitute good expansion bases. However, in
the case of defect structures in PCs, the exponentially localized defect modes hardly resemble the eigen-
modes of the unperturbed PCs, which are in�nitely extended Bloch modes (the same reason also limits
the applicability of the supercell approach). With this observation in mind, localized Hermite-Gaussian
functions are quite successful in the description of PC �bres [24, 25]. Even more adapted to the peri-
odicity of the PC and the localized nature of defect modes in the band gap are the Wannier functions
(WF). They have been introduced by Wannier [26] in 1937 and used in the description of localized elec-
tronic states in solid state theory. They are de�ned via a lattice Fourier transform of the Bloch modes
of the unperturbed periodic system and can, in principle, be chosen to be exponentially localized [27].
However, they have seen little use in numerical calculations because they are not uniquely determined
and constitute rather a class of functions than a particular set of functions. Nevertheless, in 1993, Leung
[28] suggested a numerical scheme that employed photonic WFs also in the computation of localized
defect states in PCs. The interest in developing numerical methods based on WFs rose again with the
publications of two ground breaking papers by Marzari and Vanderbilt [29] and Souza et al. [30]. They
proposed an iteration method to compute maximally localized electronic WFs from the Bloch modes of a
crystal. Their method was quickly adapted to also compute photonic WFs for one- and two-dimensional
PCs [31�34].

Generation of Photonic Wannier Functions: In the Photonics Group of Prof. Busch, the Souza-
Marzari-Vanderbilt algorithm was extended to the bottom-up approach to generate arbitrarily many
photonic WFs mainly by Schillinger [35]. His implementation of this algorithm treats two-dimensional
photonic WFs and requires a couple of input parameters from a user. These parameters were mostly
determined by a trial-and-error process, substantially slowing down the generation time for a particular
set of WFs. In order to determine these parameters in a more systematic fashion, he stated a set of
selection rules5 based on empirical observations in the generation of the �rst 38 WFs of one of the
triangular model systems employed in the present thesis. These rules related the symmetry of some
of the Bloch modes with the anticipated symmetry of the resulting WFs, rediscovering results from
Cloizeaux [36] and Krüger [37, 38]. In the course of the present thesis, it became clear that more WFs
were needed for obtaining accurate results in defect computations. Therefore, the connection between
Bloch mode symmetries and WFs symmetries was studied in more depth, resulting in the complete set
of symmetry selection rules for the model systems in Tabs. 2.1 and 2.2. These tables and subsequent
examples for their application to the construction of WFs are one of the major results of this thesis.

Auxiliary Basis Functions: The anticipated numerical e�ciency of the WFs was con�rmed in the
TM case, where only a few electric �eld WFs were su�cient to obtain accurate results for many defect
con�gurations [32]. Subsequently, many methods for the computation of localized cavity defect modes,
waveguide dispersions and transmission characteristics of functional elements have been adapted for
the photonic WF method. However, obtaining the same level of accuracy for TE modes remained
problematic [34]. The reason for this di�erent behavior of the two polarizations derives from the fact
that the magnetic �eld WFs fail to describe one property of the anticipated magnetic �eld defect modes.
As Takeda et al. [39] pointed out, the discontinuous jumps in the permittivity distribution of PCs causes
discontinuities in general electric �elds and, hence, the derivatives of general magnetic �elds (visible as

5Rules aiding in the selection of WF construction parameters.
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kinks in �eld pro�les). However, in the special case of TM polarization, the electric �elds are indeed
smooth (i. e., continuously di�erentiable), whereas the kinks in the magnetic �elds for TE polarization
persist. For the magnetic �eld in PCs, the ratio of the derivatives on both sides of a dielectric boundary
depends on the ratio of permittivities involved. Thus, the WFs inherit this ratio from the Bloch modes
they were constructed from and pass it on to any linear combination approximating the defect modes,
whose kinks may have a di�erent shape. For low-index defects, the accuracy is still su�cient to model
complex defect designs [40]. For high-index defects, such as non-etched holes (that are the most widely
studied among experimentalists), the accuracy of WF based computations deteriorates quickly.

In [39], it was proposed to modify the electric �eld WFs based on the particular defect structures
they should be able to describe. However, the aim of this thesis is to describe a whole class of defect
structures comprising holes in�ltrated with low-index and high-index isotropic materials, as well as
anisotropic materials. Therefore, a new suggestion is presented here. The properties of the WF basis
should be preserved, i. e. localization, orthonormality and, in prospect of future vectorial computations,
the divergenceless of the magnetic �eld WFs, which is a necessary restriction of the wave equations.
The basis is thereby augmented by additional auxiliary basis functions that are capable of modelling
the proper continuity conditions of the magnetic �eld defect modes across dielectric boundaries. Several
sets of these auxiliary basis functions are proposed and their wide applicability is shown by computing
eigenstates of complex cavity defect setups and waveguides incorporating both isotropic and anisotropic
materials with varying parameters. Furthermore, this approach increases the numerical e�ort only
slightly and is easily extendable to three-dimensional vectorial computations as well. These sets of
auxiliary basis functions as well as the quanti�cation of their usefulness to overcome the problems of the
pure WF basis is the second major result presented in this work.

Numerical Considerations: Physical equations are usually stated as di�erential equations, relating
continuous quantities with each other: instances of time, positions in space, �eld values and permittivity
distributions. However, a computer can only process discrete values of these quantities, described by
sequences consisting of the basic discrete states 0 and 1. In order to model continuous operations like
di�erentiation and integration suitable for a computer to apply in a numerical solution scheme, all
continuous quantities have to be expressed by discrete ones. This process is called 'discretization' and
there is no unique way to achieve this. Therefore, di�erent discretization methods (or schemes) exist,
that facilitate this transition, usually depending on additional parameters. Each method has inherent
advantages and drawbacks, e. g., the accuracy with which the exact continuous quantities are modeled
or the time consumption of applying a di�erentiation/integration. The particular properties of various
discretization schemes have to be kept in mind when comparing the e�ciency and accuracy of numerical
methods among each other. Therefore, great care has been taken to obtain accurate reference solutions
to compare the WF and auxiliary function based solutions with. The in�uence of the discretization
parameters on the construction of WFs and their accuracy in subsequent defect computations has been
investigated and documented. That way, errors due to discretization schemes and parameters were kept
to a minimum and the dominant source of errors was shown to be the lack of auxiliary basis functions
in the pure Wannier function computations.

Most of all, the discretization method for the permittivity distribution has great in�uence on the
accuracy of numerical electrodynamics [41, 42]. Therefore, the in�uence of the permittivity discretization
on the errors in the Wannier approach is also investigated in this work. Finally, the results justify the
usage of a simpler discretization scheme than what is usually proposed for high-accuracy computations.
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Introduction

Outline: The thesis starts with a derivation of the basic wave equations in Chap. 1 that have to be
solved. In particular, symmetry arguments are used to justify the Bloch theorem and the allowed form
of a tensorial permittivity that allows to treat two-dimensional PCs in TE and TM polarization. That
chapter summarizes the basic physical properties of PCs and defect modes. Furthermore, it reviews the
localization properties of WFs and de�nes the model systems.
In Chap. 2, the group representation theory of symmorphic plane groups is reviewed. It provides the

theoretical foundation for the site symmetry analysis which determines the WF symmetries from the
underlying Bloch mode symmetries. It is accompanied by App. F, where many additional tables for the
actual application of the results to the WF generation are assembled.
Chap. 3 brie�y summarizes the WF generation algorithms and features many examples of the applica-

tion of the site symmetry analysis. The in�uence of the various construction parameters is documented
and interpreted. Based on these observations, several suggestions to improve the Wannier generation in
the future are given.
In Chap. 4, a detailed derivation of the numerical methods based on the WF expansion used in this

thesis is provided. This comprises the computation of localized cavity defect modes, supercell and on-
shell waveguide dispersions. The detailed derivation of scattering matrix computations for transmission
calculations of photonic circuits has been omitted and is found elsewhere [43].
Chap. 5 investigates the in�uence of various construction parameters on the accuracy of the discretized

WFs which are a numerical approximation to the exact WFs. Some statistics on the operator matrices
occurring in the Wannier approach are also documented.
In Chap. 6, the sets of auxiliary basis functions are introduced and their improvements of the accuracy

of defect computations are documented thoroughly.
Chap. 7 analyzes the possibilities to reduce the number of basis functions used in computations and

the accuracies that can be expected then.
Chap. 8 investigates the improvements due to the usage of highly symmetric WFs in defect computa-

tions.
Finally, the thesis is concluded with a summary of the main results in Chap. 9.
The appendices feature more information on various topics and document the numerical parame-

ters used in the computations. App. A features properties of Fourier transforms and WFs, as well as
de�nitions regarding the error plots presented in this work.
App. B summarizes the discretization schemes that are employed and compared in this thesis.
App. C documents the parameters used to obtain accurate reference modes by the MIT photonic

bands (MPB) package.
App. D lists all relevant numerical parameters that were used for particular computations, like the

construction of WFs and defect computations, for reference and reproducibility.
App. E shows more defect computations involving auxiliary basis functions. These results are sum-

marized in Chap. 6.
In App. F, additional data and tables are assembled that accompany the site symmetry approach of

Chaps. 2 and 3.
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1 Chapter 1

Classical Electromagnetism in Photonic
Crystals

In this chapter, we de�ne the model photonic crystals investigated in this work. Starting from Maxwell's
equations, we derive the wave equations governing light propagation (i. e., electromagnetic waves at
optical frequencies) in these systems. For two-dimensional structures, the vectorial wave equations
can be separated into two simpler, independent scalar wave equations. The form of an anisotropic
permittivity tensor that allows this decoupling is derived based on symmetry considerations.
We discuss the consequences of the translational symmetry of photonic crystals, leading to a band

structure for light and possible band gaps. Defects breaking the symmetry of photonic crystals can
introduce strongly localized defect modes with frequencies in the band gap. We introduce the defect
class of in�ltrated holes, allowing to build resonators, waveguides and complex functional elements in
the model systems.
Finally, the possibility of calculating the localized defect modes numerically by an expansion into local-

ized photonic Wannier function is discussed. Therefore, a brief review on Wannier function localization
is provided.
Some symmetry related terminology is already used in this chapter which will be introduced in greater

detail in Chap. 2.
A basic introduction to classical electromagnetism can be found in Gri�ths [44], a comprehensive

standard reference is the text book by Jackson [45]. A thorough theoretical survey on optical phenomena
in media is provided by Römer [46]. Nice introductions to the physics of photonic crystals are the text
books by Joannopoulos et al. [47] and Sakoda [48]. A comprehensive survey on photonic crystals and
their technical applications is given by Inoue [49].

1.1 Dielectrics in the Optical Regime

The time evolution of classical electromagnetic �elds in arbitrary media is generally given by Maxwell's
equations in matter in International System (SI) units:

∇ ·D(r, t) = ρfree(r, t) , (1.1a)

∇×E(r, t) = −∂tB(r, t) , (1.1b)

∇ ·B(r, t) = 0 , (1.1c)

∇×H(r, t) = jfree(r, t) + ∂tD(r, t) . (1.1d)

1



1 Classical Electromagnetism in Photonic Crystals

They feature the electric �eld E, the electric displacement D, the magnetic induction B and the magnetic
�eld H which are all vectorial functions of space and time. The free charge density ρfree as well as the
free current density jfree are responsible for the creation of these �elds. In this form, Maxwell's equations
describe the macroscopically averaged �elds, where �eld �uctuations and molecular/atomic distributions
of matter on the microscopic scale are neglected (Fig. 1.1). In dielectric (non-conducting) media, the

Figure 1.1: Left: Various wavelength regimes and description of dielectric media. Wavelengths are
not to scale. (1) Short wavelengths of the order of atomic extents lead to atomic scattering. (2) For
longer wavelengths, one oscillation cycle comprises many atoms. This case can be treated by position
dependent macroscopic material parameters, like the permittivity ε. (3) For wavelengths much larger
than the variation length of the material parameters, the medium looks homogeneous with an e�ective
constant permittivity εe�. Right: Orders of magnitude for various types of electromagnetic radiation
after [44]. Optical frequencies are those in the visible regime and its vicinity, the near-infrared.
Current �ber communication networks employ wavelengths around 1.5 µm.

�elds E and B exert forces on the charge carriers making up the matter (negatively charged electrons and
positively charged nuclei), leading to complicated rearrangements and induction of electric and magnetic
dipole moments.1 These polarization e�ects can be rather complicated in general which is expressed in
a functional relation between the �elds E,B and D,H, the constitutive relations

D ≡ D[E,B] , (1.2)

H ≡ H[E,B] . (1.3)

Potential e�ects include [46]

non-locality: The spatial derivatives of the �elds become relevant (e. g. natural optical activity),

1Higher order multipole moments are usually negligibly small and do not contribute signi�cantly to the macroscopic
physics [45, 46] .
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1.1 Dielectrics in the Optical Regime

non-Markovian e�ects (non-locality in time): The �eld values of all earlier instances of time be-
come relevant (e. g. dispersion),

non-linearity: Not only linear terms |E| contribute, but also higher orders |E|2, |E|3 (e. g. frequency
conversion e�ects),

anisotropy: The vectorial character of E and B becomes relevant (e. g. birefringence),

bi-(an)isotropy: B in�uences D, E in�uences H.

We restrict ourselves to optical frequencies, for which the magnetic response is practically absent in
bulk dielectrics, since the microscopic magnetic dipoles just cannot respond to the rapidly oscillating
�elds [45].2

Furthermore, we are mainly concerned with air and silicon as dielectrics, for which we may also neglect
dispersion and losses for optical frequencies.
Finally, we are interested in linear e�ects only which all leads to

D(E) = ε0εE , H(B) =
1
µ0

B , (1.4)

where ε0 and µ0 are the permittivity and permeability of free space, respectively. This form of constitu-
tive relations that will be used throughout this thesis. However, we allow the relative tensor permittivity
ε to be a function of position r and further parameters that can be governed by external static electric
and magnetic �elds Eext and Bext, respectively. This way, we can model tunable birefringence of liquid
crystals and tunable magneto-optical activity. We also work exclusively with relative permittivities and
drop the term 'relative' from now on to shorten the notation.
We are concerned with the propagation of waves only which is why we set ρfree = 0 and jfree = 0 in

(1.1). Now that we have stated our �nal constitutive relations, we can substitute the D and B �elds in
(1.1) by (1.4) and write down the source-free Maxwell's equations for linear dielectrics:

∇ · (εE) = 0 , (1.5a)

∇×E = −µ0∂tH , (1.5b)

∇ ·H = 0 , (1.5c)

∇×H = ε0ε∂tE . (1.5d)

We could have expressed these equations in terms of E and B as well, but we stick to this convention
with E and H. We can derive wave equations by substituting Maxwell's equations among each other.
Multiplying (1.5d) from the left with ε−1, taking the curl again, and plugging in (1.5b), yields time-
domain wave equation

∇× (ε−1 ·∇×H) +
1
c2

0

∂2
tH = 0 (1.6)

for the magnetic �eld. Here, we introduced the vacuum speed of light c0 which obeys ε0µ0 = 1/c2
0. On

the other hand, curling (1.5b) and inserting (1.5d) yields the electric �eld wave equation

∇× (∇×E) +
1
c2

0

ε∂2
tE = 0 , (1.7)

2However, great e�ort has been put recently into constructing arti�cial metamaterials with a magnetic response at optical
frequencies. This allows to achieve a negative refractive index [50, 51], making it possible to construct perfect lenses
[52] and cloaking devices [53, 54].
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1 Classical Electromagnetism in Photonic Crystals

in time-domain.
These equations have to be solved for the geometries and materials making up a particular system

which enter the equations in the form of a spatially varying ε(r). The two wave equations are redundant,
as either of them describes the full electromagnetic response of a system. However, it is sometimes
preferable to solve the magnetic wave equations, since they feature a Hermitian di�erential operator.
Furthermore, the divergence constraint (1.5c) can be ful�lled regardless of the particular permittivity
distribution ε which is favorable for some numerical methods and also for the Wannier function approach.
In this work, we examine linear material responses only. This enables us to examine the wave equations

in frequency-domain which is convenient for characterizing the optical properties of linear systems in
stationary states, i. e., light states with a de�nite frequency ω [55]. The frequency representation is
obtained by assuming a harmonic time dependence of the electromagnetic �elds, generally written as

E(r, t) = e−iωtE(r, ω) , H(r, t) = e−iωtH(r, ω) . (1.8)

This is basically a Fourier transform in time. Expressing the time-domain wave equations with this
ansatz yields

∇×
(
∇×E

)
− ω2

c2
0

ε ·E = 0 , ∇ · (ε ·E) = 0 ,

∇×
(
η ·∇×H

)
− ω2

c2
0

H = 0 , ∇ ·H = 0 .

3D Vectorial Wave Equations in Frequency Domain

(1.9a)

(1.9b)

These wave equations constitute a generalized eigenvalue problem (1.9a) and a regular eigenvalue prob-
lem (1.9b), respectively. Note that the equations are only complete with their corresponding divergence
conditions which the physical solutions have to obey. Here we have also introduced the commonly used
inverse permittivity

η(r) := ε−1(r) (1.10)

for the matrix inverse of the tensor permittivity. We will refer to both these functions generally as the
dielectric function.
For various choices of the dielectric function distributions ε(r), we will solve these partial di�erential

eigenvalue equations numerically for the �elds E(r, ω) or H(r, ω) and the corresponding eigenfrequencies
ω. The combination of such a spatial �eld distribution and the corresponding eigenfrequency is called
an eigenmode or just mode for short.
From now on, we work exclusively in the frequency domain and therefore drop the frequency depen-

dence in the notation for the �elds.

1.2 Photonic Crystals

A PC is a spatially periodic dielectric heterostructure. The periodicity justi�es the physical term `crys-
tal', while `photonic' denotes that we investigate light propagation in this periodic structure. This
distinguishes the photonic crystal from electronic crystals made of periodic arrangements of atoms that
are traditionally investigated in solid state physics. Additionally, 'photonic' also refers to the wave-
length regime, for which the typical optical e�ects in PCs can be observed. By wavelength we mean
the corresponding wavelength of a plane wave in vacuum of the same frequency as the light mode under
consideration (cf. Fig. 1.1, 2).
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(a) 1D (b) 2D (c) 3D

Figure 1.2: Schematic illustrations of photonic crystals with periodicities in various dimensions.

The dielectric function εPC(r) of a d-dimensional PC is periodic with respect to translations R from
a discrete and in�nite set of spatial vectors LPC ⊂ Rd which is called the lattice:

εPC(r + R) = εPC(r) , ∀R ∈ LPC , (1.11)

LPC := {
∑d

i=1 ziai : zi ∈ Z} . (1.12)

Here, we have introduced the primitive lattice translations ai ∈ Rd whose integral linear combinations
build up the whole lattice. Examples are shown in Fig. 1.2. The position vectors R of the set LPC are
also called the lattice sites.

1.2.1 Lattice and Reciprocal Lattice

The whole PC can be built from εPC(r) given on one unit cell and shifted periodically in space by
lattice vectors R ∈ LPC (see Fig. 1.3a). A primitive unit cell is the spatial domain de�ned by the
parallelepiped with sides ai. More convenient for theoretical considerations is the Wigner-Seitz cell
(WSC), which comprises all points around a particular lattice site closer to that site than to any other.
Its volume VWSC is the same as that of the primitive unit cell. A supercell is a unit cell that is larger
than a primitive unit cell and that can also build the whole crystal when shifted by lattice vectors S
from a periodic superlattice Lper ⊂ LPC.
The reciprocal lattice L∗PC also plays a crucial role for the understanding of wave propagation in

periodic media. Its primitive lattice translations bi are built from the primitive lattice translations ai
of the direct lattice LPC as follows:

VWSC = | (a1 × a2) · a3|, (1.13)

bi :=
2π

VWSC
aj × ak (ijk is an even permutation of 123), (1.14)

L∗PC := {
∑d

i=1 zibi : zi ∈ Z} . (1.15)

The primitive lattice translations have the important orthogonality property

ai · bj = 2πδij . (1.16)
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1 Classical Electromagnetism in Photonic Crystals

(a) Direct lattice and photonic crystal (b) Reciprocal lattice and Bril-
louin zone

Figure 1.3: (a) Example for a two dimensional (2D) PC de�ned on a triangular lattice LPC of
cylindrical air holes. The Wigner-Seitz cell (WSC) along with other cells is also shown. (b) The
reciprocal lattice L∗PC with the Brillouin zone (BZ) and the irreducible wedge of the Brillouin zone
(IBZ), as well as the high symmetry points.

Here, δij is the Kronecker delta.
The WSC of the reciprocal lattice is called the Brillouin zone (see Fig. 1.3b).3 The corners and lines

of the irreducible wedge of the Brillouin zone (IBZ) lying on the boundary of the Brillouin zone (BZ)
are labeled by capital Latin letters, whereas the point and lines in the interior of the BZ are labeled by
capital Greek letters (see also Figs. 1.8b and 1.8d). These are the so-called high symmetry points and
lines, respectively.

1.2.2 Bloch Theorem

The Bloch theorem determines some analytic properties of the eigenmodes ψ(r) of position dependent
di�erential operators Ĥ(r) which are periodic under translations R on a given lattice Lper. It is ubiq-
uitous and well known in those areas of solid state theory which deal with periodic structures such
as crystals. Proofs can be found in [47, 56]. Another justi�cation based on group theory is given in
Sec. 2.5.1.
The periodicity stated above for a di�erential operator Ĥ(r) means

Ĥ(r + R) = Ĥ(r) ∀R ∈ Lper . (1.17)

This operator shall have the eigenmodes ψ(r) with eigenvalues Λ:

Ĥ(r)ψ(r) = Λψ(r) . (1.18)

The Bloch theorem states that in this case the eigenfunctions ψ(r) can in fact be written as

ψ(r) ≡ ψnk(r) , (1.19a)

ψnk(r) = eikr unk(r) , (1.19b)

unk(r + R) = unk(r) ∀R ∈ Lper . (1.19c)

3In fact, it is the �rst Brillouin zone, but higher zones are rarely used, hence we use the short name.
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1.2 Photonic Crystals

Here, unk(r) is the lattice periodic part of the eigenmode, k is a vector from the BZ of the reciprocal
lattice L∗per, and n ∈ N is the band index4 distinguishing the in�nitely many eigenmodes for any given
k. We refer to the ψnk also as Bloch modes because they are eigenmodes of an operator with the Bloch
property

ψnk(r−R) = e−ikRψnk(r) (1.20)

under translations.
The set of all eigenvalues Λnk of an operator form continuous intervals, the bands. The set of these

intervals is called band structure, but we also use that name for the set of eigenvalues Λnk. We also
refer to the set of Bloch modes ψnk for a given n as a band.5 Summing up, this terminology is often
used in a sloppy way.

1.2.3 Scale Invariance and Dimensionless Units

Maxwell's equations (1.1) and the wave equations derived thereof do not depend on a particular length
or energy scale. This enables us to actually compute whole solution classes for a particular choice of the
dielectric function ε(r) at once.
Suppose for a dielectric function ε(r) we are given the eigenmodes ψ(r) with eigenfrequencies ω.

Then the corresponding solutions ψ′(r) with frequencies ω′ for the system enlarged by a factor α can
be obtained via

ε′(r) := ε(r/α) , ψ′(r) := ψ(r/α) , ω′ := ω/α . (1.21)

These relations are easily checked by inserting them into the wave equations (1.9).
The spatial scaling law (1.21) suggests to present all frequencies and wave vectors in plots and results

for photonic crystals as dimensionless quantities ω′ and k′ that are independent of the actual lattice
constant a. The corresponding quantities in SI units can then be obtained by

ω =
2πc0

a
ω′ , λ =

a

ω′
, k =

2π

a
k′ . (1.22)

Again, λ is the wave length of a plane wave in vacuum with the same frequency ω as the eigenmode ψ.

1.2.4 Scalar Wave Equations in 2D

As pointed out in [47], wave propagation in two dimensional (2D) PC for scalar ε(r) can be described
by two independent scalar equations if we have:

Homogeneity of the dielectric function along the z-direction: Then the PC structure is sym-
metric with respect to a re�ection σz : z 7→ −z for all planes parallel to the xy-plane.

In-plane propagation: This means, we are only concerned with waves having wave vectors kq =
(kx, ky) in the xy-plane.

Both conditions together imply that the wave equations are invariant under mirror re�ections σz
for all planes parallel to the xy-plane. In-plane propagation and existence of only one such re�ection
plane means that the modes are either even or odd under this particular re�ection (i. e., they have
eigenvalues ±1 as eigenmodes of the re�ection operator). This situation occurs in photonic crystal
slabs (see Fig. 1.4a). In the notation of Sec. 2.4.5 this means that each mode in a PC slab belongs to

4More precisely, it should be called band function index or band branch index.
5In some publications, the term band function is also used.

7



1 Classical Electromagnetism in Photonic Crystals

an irreducible representation with the character (coincides with the eigenvalue under mirror re�ections
σz) χ(σz) being either +1 or −1. In the −1 case, from the transformation law for rank-1-functions
(2.11) follows that the z-component ψz(r) of the mode is necessarily 0 in the xy-plane. Applying this
observation to the electric �eld E for eigenvalue −1 means that Ez(r) = 0 in the xy-plane. In the
+1 case, the magnetic �eld component Hz(r) is necessarily 0 in the xy-plane. Using these cases as
restrictions to the solutions, it is then possible to solve the wave equation either just for the one or just
for the other type of eigenmodes.

(a) Finite PC slab (b) In�nite PC slab

Figure 1.4: (a) PC slab of �nite thickness with one σz mirror plane (dashed line). (b) In�nite PC
slab with in�nitely many σz mirror planes.

Then again if in�nitely many of these re�ection planes parallel to each other exist, the same argument
is true for each single one of these planes, not only the xy-plane at z = 0. Then follows that the
electric �eld eigenmodes must either have Ez ≡ const (for eigenvalue +1) or Ez ≡ 0 (for eigenvalue -1)
everywhere, not just one single plane. In either case we have

∂zEnkq = 0 , (1.23)

i. e., z-derivatives do not occur at all in the wave equations. Inserting this property and ∂zεPC = 0
into the vectorial wave equations, one obtains two independent scalar wave equations for two di�erent
polarization states similar to the two irreducible representation states in the PC slab (shown in Eq. (1.29)
and Fig. 1.5). This concludes the discussion for scalar permittivities ε.
Now we want to �nd the allowed form of the tensorial dielectric function εPC(r) that still leads to

this scalar decoupling. By the same argument as in the scalar case, the tensor εPC has to be symmetric
under mirror re�ections of all possible planes parallel to the xy-plane. We will assume a 2D PC which
is homogeneous in z-direction and in�nitely extended in z-direction (see Fig. 1.4b), i. e.,

∂zεPC(r) = 0 , (1.24)

such that the �rst requirement mentioned above is still ful�lled in the special case of an isotropic
permittivity ε ≡ ε1. The transform matrix R(σz) of the re�ection in Cartesian coordinates is given by

R(σz) =

1 0 0
0 1 0
0 0 −1

 = R−1(σz) , (1.25)
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1.2 Photonic Crystals

and the dielectric function transforms like a rank-2-tensor (2.12), i. e., the tensor ε′PC(r) of the re�ected
structure is given by

ε′ij(r) =
∑
i′j′

Rii′Rjj′εi′j′(R−1r) . (1.26)

By (1.24) the entries εi′j′ are constant along the z-direction, so

εi′j′(x, y,−z)
(1.24)

= εi′j′(x, y, z) . (1.27)

Thus the entries are essentially a function of x and y only. By carrying out the transformation (1.26)

Figure 1.5: Orientation of �eld vectors for H-polarized and E-polarized waves propagating with
k ⊥ ẑ in 2DPC. The �eld components lie either in the xy-plane or are oriented along the z-direction.

and enforcing the invariance of εPC we obtain the necessary conditionεxx εxy εxz
εyx εyy εyz
εxz εyz εzz

 !=

 εxx εxy −εxz
εyx εyy −εyz
−εxz −εyz εzz

 =⇒ εPC(rq) =

εxx(rq) εxy(rq) 0
εyx(rq) εyy(rq) 0

0 0 εzz(rq)

 , (1.28)

where we used the notation rq = (x, y) for a position vector in the xy-plane. This re�ection property holds
for any z which is the necessary property for the desired decoupling as explained above. That means,
for dielectric tensors of the form (1.28) (as long as an eventual anisotropy contains no z-component
other than εzz), a wave with electric �eld E(r) and magnetic �eld H(r) propagating with k ⊥ ẑ can be
decomposed as (Fig. 1.5)

E = Ezẑ︸︷︷︸
E-pol.

+ ETE︸︷︷︸
H-pol.

, H = HTM︸ ︷︷ ︸
E-pol.

+ Hzẑ︸︷︷︸
H-pol.

. (1.29)

ETE ⊥ ẑ can be calculated from Hz and HTM ⊥ ẑ can be calculated from Ez. These two scalar
components evolve independently and the partial waves are said to be E-polarized or H-polarized. The
terms TM waves for E-polarization and TE waves for H-polarization are also common.6 After inserting
these polarizations by choosing H(r) = Hz(rq)ẑ and E(r) = Ez(rq)ẑ into the vectorial wave equations

6However, sometimes they are de�ned just the other way round, like in [57]
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1 Classical Electromagnetism in Photonic Crystals

(1.9) for the tensor (1.28) and considering (1.23), we get

[
∂2
x + ∂2

y

]
Ez +

ω2

c2
0

εzzEz =0 ,(
∂y
−∂x

)
·
[
ηq ·

(
∂y
−∂x

)
·Hz

]
+
ω2

c2
0

Hz =0 ,

ηq(rq) :=

(
ηxx(rq) ηxy(rq)
ηyx(rq) ηyy(rq)

)
.

2D Scalar Wave Equations in Frequency Domain

(1.30a)

(1.30b)

(1.30c)

1.2.5 Birefringence of Liquid Crystals

A liquid crystal (LC) is a substance sharing liquid and crystalline properties. Usually it exhibits an
anisotropic dielectric tensor ε. Most LCs consist of long molecules which can move around freely like
in a liquid, but show long range orientational and/or positional order in equilibrium like in an ordinary
crystal. In fact, of all the various types of LCs we want to consider only nematic LCs here. The structure
of this particular type of LC is schematically shown in Fig. 1.6. The molecule axes are not perfectly
aligned, but in average they all point along a direction n̂ called the (nematic) director of the LC. In a
nematic LC the molecules do not have special equilibrium positions in space.

Figure 1.6: LCs aligned along static homogeneous electric �elds Estat. The individual molecules are
on average aligned along the nematic director n̂, the director angle θ describes the tilt of n̂ against
the x-axis. The birefringence property of each individual molecule then averages to the macroscopic
values of the ordinary and extraordinary dielectric constant εor and εex, respectively.

The advantage in utilizing LCs for optical devices consists in the great variety of ways to alter the
optical properties of these crystals, most important among those is the �eld induced reorientation of the
molecules. Static electric �elds can force the molecules to align themselves along new axes as shown in
Fig. 1.6. Thus it is possible to actively tune direction-dependent optical properties of systems containing
LCs.
In a coordinate system whose axes coincide with the molecule axes, the dielectric tensor of such a
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1.2 Photonic Crystals

crystal becomes diagonal:

εlcdiag =

εex 0 0
0 εor 0
0 0 εor

 . (1.31)

Usually there are only two di�erent dielectric constants, depending on the polarization of the light
mode. The extraordinary axis with extraordinary dielectric constant εex coincides with the director
n̂. Electromagnetic waves whose electric components are polarized in the plane perpendicular to n̂ are
in�uenced by the ordinary dielectric constant εor. The electric component parallel to n̂ then `sees' the
dielectric constant εex.
We want to restrict ourselves to anisotropies in the xy-plane of a 2D PC, i. e., we only consider directors

n̂ lying in the xy-plane of wave propagation. Then we can fully describe the anisotropic e�ects in TE
polarization and we may discard the irrelevant dielectric constant along the z-axis (this was discussed
in Sec. 1.2.4). The diagonal dielectric tensor for such a 2D system is then given by

εlcdiag =

(
εex 0
0 εor

)
. (1.32)

When working in TE polarization, we will also be in need of the inverse η of the dielectric tensor which
is given as

ηlcdiag :=
[
εlcdiag

]−1
=

(
1
εex

0
0 1

εor

)
. (1.33)

The orientation of the molecules can now be described by the director angle θ between the director n̂
and the x-axis (see Fig. 1.6). An arbitrarily oriented crystal then has the dielectric tensor

εlc(θ) = R(θ) · εlcdiag ·RT(θ), (1.34)

where R(θ) denotes the rotation matrix around the z-axis:

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, RT (θ) =

(
cos θ sin θ
− sin θ cos θ

)
. (1.35)

The inverse ηlc of the general dielectric tensor becomes

ηlc(θ) :=
[
εlc(θ)

]−1
(1.36)

(1.34)
=

[
RT(θ)

]−1
·
[
εlcdiag

]−1
·
[
R(θ)

]−1
(1.37)

(1.33)
= R(θ) ·

(
1
εex

0
0 1

εor

)
·RT(θ) (1.38)

(1.33)
= R(θ) · ηlcdiag ·RT(θ) . (1.39)

Here we exploited the orthogonality property R−1 = RT of rotation matrices.
Real LCs have a microscopic structure that is in general more complicated than the one we have

assumed above. Nematic liquid crystal director �elds n̂(r) usually are neither homogeneous nor con-
strained to the xy-plane in general [58]. An orientation model coming closest to our assumptions would
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1 Classical Electromagnetism in Photonic Crystals

Figure 1.7: LC alignments. The linear alignment is unphysical but can be regarded as an approxi-
mation of the physical planar polar alignment in cylindrical holes. The principal axes εex and εor of
the tensor dielectric function are shown schematically as mutually perpendicular ellipsoids. These
axes are oriented homogeneously over the cylinder for linear alignment, but vary in space for planar
polar alignment. The values of n̂, εex and εor used when working with the linear alignment model
have to be understood to be macroscopically averaged values for the LC from the planar polar case.

be the planar polar model as shown in Fig. 1.7. Applying static electric �elds can still force the molecules
to point into a new direction in the xy-plane. By approximating the total LC by e�ective mean values
of (a homogeneous and isotropic) n̂, εex, and εor, we may nevertheless get accurate results, even if we do
not take the full microscopic details into account [59, 60]. This approximation is frequently used for the
sake of numerical simplicity [61]. The Wannier function approach to numerically investigate the optical
properties of such defects is in principle also capable of taking these details into account (but that has
not been implemented so far).

1.2.6 Gyrotropy

In materials with magneto-optic response, a static magnetic �eld Hstat can also alter the dielectric
permittivity tensor. Note that this is not a contradiction to setting µ(ω) ≡ 0 for optical frequencies
because we treat the e�ects of static magnetic �elds now.
The physical origin of this e�ect lies in the fact that the bound charges in a dielectric cannot only

oscillate/be displaced by electric �elds, but also rotate under the in�uence of a magnetic �eld. This
breaks the reciprocity in the wave equations, where reciprocity means the following [62]:

A source at point A creates the same �eld (amplitude and phase) at a point B, as that source placed
at B would create at point A.

We already restricted ourselves to source-free wave propagation. The breaking of reciprocity then man-
ifests as itself as waves that do not return to their origin when the propagation direction of these waves
is reversed. This allows the construction of optical isolators that can guide back-scattered waves into
another direction than the one the waves originally came from [63].
According to [46], the magneto-optic permittivity tensor εmo in �rst order of Hstat has the form

εmo(Hstat) = εmo
diag + iεmo

o�-diag(Hstat) , (1.40)
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1.2 Photonic Crystals

where εmo
diag is symmetric and εmo

o�-diag is anti-symmetric, making εmo a Hermitian tensor. The electric
displacement D after (1.4) can then be written in the form

D = ε0ε
mo
diagE + iE× g , (1.41)

where the gyration vector g up to �rst order in Hstat is given by

g = ε0χmagHstat . (1.42)

Here, χmag is the magnetic susceptibility tensor which in turn reduces to a scalar χmag in the isotropic

case.7 If we still want to treat our 2D systems in TE and TM polarization with the scalar wave
equations (1.30), then the only allowed gyrotropy may be created by a static external magnetic �eld in
the z-direction leading to

εmo =

εdiag +igz 0
−igz εdiag 0

0 0 εdiag

 . (1.43)

The vector g (and, hence, the component gz) is usually much smaller than εdiag. Comparing the form
(1.43) with (1.30c) we see that incorporating magneto-optic e�ects in the 2D scalar treatment is only
possible in TE polarization.

1.2.7 Model Systems

The 2D model systems investigated in this work are cylindrical air holes in silicon arranged in a triangular
lattice and a square lattice, respectively (see Fig. 1.8). The square lattice of silicon rods arranged in
air is reviewed brie�y for comparison in Sec. 6. The radii of these cylinders are denoted by r. The TE
polarized case is most interesting because of the large band gaps that are possible then (cf. Fig. 1.10).
We use the values εair = 1 and εSi = 12.
The scalar dielectric functions εPC(r) for these PCs are given as piecewise continuous step functions,

de�ned in closed form as

εPC(r) = εback + (εcyl − εback)
∑

R∈LPC

Θcyl(r−R) . (1.44)

Here, the scalar background and cylinder permittivities εback and εcyl are used. The indicator function8

Θcyl takes on the value 1 inside a cylinder of radius r and 0 otherwise.9 It can be expressed in terms of
the Heaviside step function Θ(r) as

Θcyl(r−R) := Θ(r − |r−R|) . (1.45)

1.2.8 Bloch Modes and Band Structure

We summarize the consequences of the Bloch theorem for a perfect PC with periodic dielectric function
(1.11) for the model systems. The wave equations (1.9) can be cast in the common form

Ĥ(r)ψ(r) =
ω2

c2
0

ψ(r) . (1.46)

7Isotropic in the magnetic response, the dielectric permittivity is still a non-trivial tensor.
8Indicates whether the position r is inside a cylinder.
9Other hole geometries are possible [64], but not investigated here.
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Here, ψ stands for either the magnetic or electric �eld with the position dependent di�erential operators
Ĥ acting on the �elds ψ as

Ĥel(r)ψ(r) := ε−1
PC(r) ·∇×

(
∇×ψ(r)

)
, (1.47)

Ĥmag(r)ψ(r) := ∇×
(
ε−1
PC(r) ·∇×ψ(r)

)
, (1.48)

These di�erential operators are invariant under lattice translations

r 7→ r′ := r + R for R ∈ LPC (1.49)

because of the periodicity of the dielectric function and spatial derivatives:

εPC(r′) = εPC(r + R)
(1.11)

= εPC(r) , (1.50)

dr′i = dri ⇒∇′× = ∇× . (1.51)

Therefore, Ĥ(r′) = Ĥ(r), in which case the solutions ψ take on the particular form of the Bloch
theorem stated in (1.19).

(a) Square lattice (b) BZ of the square
lattice

(c) Triangular lattice (d) BZ of the trian-
gular lattice

Figure 1.8: Cylindrical air holes in silicon arranged in a square and triangular lattice. The WSC,
primitive lattice translations ai, the lattice constant a = |ai|, and hole radius r are shown.

Some typical band structures for the 2DPC model systems of Sec. 1.2.7 with scalar permittivity are
shown in Fig. 1.9. Low frequencies correspond to long wavelengths, where the PC looks e�ectively
homogeneous and features a linear dispersion relation (this corresponds to case 3 of Fig. 1.1). With
higher frequencies, the band structure becomes non-trivial with possible band gaps opening. In these
regions, for given ω no real-valued solutions for k can be found. Thus, these modes do not propagate
but decay exponentially in space. At a PC surface, light with these frequencies is perfectly re�ected,
inside the PC it is trapped.
Fig. 1.10 displays gap maps for the two TE model systems. They reveal which radii r yield the largest

band gaps for the H- and E-polarized modes. Only the triangular system (for cylindrically shaped air
holes) shows a large gap overlap for both polarizations which is of great technical importance in order to
control the light �ow in these PCs. The radius r = 0.45a is the best compromise between experimental
accessibility and large band gaps for both polarizations. This is why the triangular system with that
particular radius is preferred for the investigation of functional elements, whereas the square lattice
modes are easier to plot and comprehend and are therefore used to illustrate the theory.
The wave vector k also labels the irreducible representation of the translation group which the Bloch

mode belong to. This is explained and discussed in Sec. 2.5.1. Additionally, the Bloch modes can
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also be labeled by the irreducible representations of the point groups of the symmetry group of the
PC (cf. Sec. 2.5.2) which has been shown in Figs. F.6 and F.7. These labels become important in the
construction of exponentially localized Wannier functions later on which is explained in greater detail
in Chap. 2.

1.2.9 Bloch Mode Orthonormality and Scalar Products

For the Bloch modes ψnk, we now introduce the compact Dirac notation |nk〉. Then we may write the
standard scalar product in d dimensions as we know it from quantum mechanics as

〈ψn′k′ |ψnk〉 :=
∫

ddr ψ∗n′k′(r) ·ψnk(r) , (1.52)

〈ψn′k′ |Ô|ψnk〉 :=
∫

ddr ψ∗n′k′(r) ·
(
Ôψnk(r)

)
. (1.53)

where Ô stands for an arbitrary operator acting on the �elds.

(a) Square lattice (b) Triangular lattice

Figure 1.9: Exemplary band structures for the 2DPC made of cylindrical air holes in silicon (εair =
1, εSi = 12) from Fig. 1.8 for a radius ratio r/a = 0.45. Shaded regions denote band gaps.

In the magnetic �eld case, Ĥmag is a Hermitian operator with respect to the standard scalar product
and its Bloch modes can therefore be chosen to be orthogonalized. This is not true for the electric �eld
case, but the electric �eld Bloch modes are orthogonal for a modi�ed scalar product that features the
permittivity tensor as integration kernel (see App. A.5). Many algorithms introduced in this work rely
on the orthonormality of the �elds. In order to treat electric �eld and magnetic �eld equations in the
same fashion, we introduce a polarization independent scalar product 〈〈·‖·〉〉 by

〈〈ψn′k′‖ψnk〉〉 :=

〈ψn′k′ |ψnk〉 : magnetic �eld,

〈ψn′k′ |εPC|ψnk〉 : electric �eld,
(1.54)

(1.52)(1.53)
=


∫

ddr ψ∗n′k′(r) ·ψnk(r) : magnetic �eld,∫
ddr ψ∗n′k′(r) · εPC(r) ·ψnk(r) : electric �eld,

(1.55)

= δn′nδ
(d)(k′ − k) . (1.56)
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Here, δn′n denotes the Kronecker delta and δ(d)(k′−k) the Dirac delta function in d dimensions. Matrix
elements for E-polarization are meant to be computed as

〈〈E‖Ô‖E′〉〉 :=
∫

ddr E∗ · ε · (ÔE) . (1.57)

Furthermore, this also de�nes a norm in the magnetic and electric function spaces by

‖ψ‖2 :=
√
〈〈ψ‖ψ〉〉 . (1.58)

(a) Square lattice (b) Triangular lattice

Figure 1.10: The band gaps for the systems de�ned by Fig. 1.8 for various radii r/a. The band
gaps for TE (H-polarization) and TM (E-polarization) modes have large overlap in the triangular
lattice.

1.2.10 Defect Structures in Photonic Crystals

The existence of a band structure and, hence, the band gaps, is a direct consequence of the Bloch theorem
which itself derives from the periodicity of the perfect PC. When this periodicity is broken on purpose,
we may expect new behavior for optical modes, in particular for those newly introduced in the band gap.
Examples for point defect structures are shown in Fig. 1.11. Due to the etching processes used for the
realization of this type of PC, most of such structures were restricted to changes in the geometry, like
resizing [65, 66] or relocating the air holes [67, 68]. Recent advances in single pore in�ltration techniques
[11�13] and tuning of the dielectric constant of defects [69, 70] open way more possibilities to in�uence
the optical behavior of defects.
Arising from the broken symmetry, there may now be eigenmodes with frequencies ω in the band

gap (Fig. 1.12). In the vicinity of such point defects, the light �eld is subject to the periodic part of
the PC, forcing the mode pro�le to decay exponentially as explained in section Sec. 1.2.8. This decay
behavior is shown for a single non-etched hole in Fig. 1.13. Such structures can act as resonators and
optical �lters [49], whose operating frequencies can be tuned by adjusting the geometry or in�ltrating
materials with various permittivities ε and, e. g., can be used to enhance light matter interaction in
quantum electrodynamical processes [71]. By using actively tunable materials like liquid crystals or
magneto-optic materials, one could actively tune the resonator frequencies by applying static electric or
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Figure 1.11: Selected types of point defects. While surface roughness is due to imperfections in the
production process and should be avoided, the other defects shown here are introduced on purpose
and used to deliberately alter and tune the optical response of the system.

Figure 1.12: H-�eld defect mode frequencies in the band gap of the triangular TE model system for
a single in�ltrated hole. Bulk PC band frequency regions are denoted by grey shaded areas. The mode
pro�les are shown for the case of a non-etched hole, including the irreducible representations of the
point group C6v they form (cf. Tab. F.8). The numerical data was obtained by an MPB supercell
calculation for 11× 11 unit cells.

magnetic �elds, respectively. This is in contrast to passively tuned cavities, whose resonance frequencies
remain �xed after production.
If just a single hole is in�ltrated, the structure looses its lattice periodicity but retains the rotational

symmetries of the former PC around the center of the in�ltrated hole. Thus, by Sec. 2.4.5, the eigen-
modes shown can be classi�ed as the irreducible representations of the point group C6v (see Tab. F.8).

17



1 Classical Electromagnetism in Photonic Crystals

(a) Defect mode pro�les (b) Logarithmic cuts along dashed arrows

Figure 1.13: Cuts along localized defect mode pro�les in the band gap of the model system for a
non-etched hole. The numerical data was obtained by an MPB supercell calculation for 11× 11 unit
cells.

(a) W1-1, in�ltrated (b) W1-1, non-etched (c) W1-2, non-etched (d) W2-1, non-etched

Figure 1.14: Schematic illustrations of waveguides in photonic crystals.

One can as well design defect structures that still retain some translational symmetry such as line
defects (Fig. 1.14). In this case, extended propagating modes in the direction of periodicity are allowed
due to the Bloch-Floquet theorem (Fig. 1.15), whereas in perpendicular directions the mode pro�les
again decay exponentially (Fig. 1.16). Thus, the modes are con�ned to and propagate along the defect
line which forms a waveguide then. Such a waveguide can be regarded as a 1D PC, whose band structure
is one-dimensional as well and is referred to as the waveguide dispersion (Fig. 1.15a). Its eigenmodes
form irreducible representations of the point group C1h with σ = σy (cf. Tab. F.8), thus the eigenmodes
can be classi�ed as being even under a mirror re�ection in the xz-plane (A, eigenvalue χ(σy) = +1)
or odd (B, eigenvalue χ(σy) = −1). Since the two branches shown in Fig. 1.15a belong to di�erent
representations, they may cross each other.
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1.2 Photonic Crystals

(a) Waveguide dispersion (b) Waveguide mode pro�les ReHz(rq)

Figure 1.15: Waveguide dispersion ω(kx) and corresponding magnetic �eld TE mode pro�les for
a W1-1 waveguide of in�ltrated pores with εdef = 2.89. The wave number kx, for which the mode
pro�les are shown, are denoted by crosses. The modes are either even or odd under σy mirror
re�ections.

Figure 1.16: Analogous to localized defect modes, the guided modes in a waveguide decay exponen-
tially into the PC-region (h > 0).
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1 Classical Electromagnetism in Photonic Crystals

1.2.11 Functional Elements

Defect clusters connected via waveguides form circuits out of functional elements. Some examples for
such functional elements based on in�ltrated pores are shown in Fig. 1.17. As the name suggests,
they serve a special function in optical signal processing. A waveguide bend couples modes from one
incoming waveguide to another outgoing waveguide, hereby changing the direction of the modes. A
Y-splitter distributes incoming waves from one arm to all three arms, since some part of the waves is
always re�ected back. The naive design for an add-drop �lter employs a tunable LC resonator between
two waveguides, allowing waves at the resonance frequency to be switched between the waveguides.

(a) Bend (b) Y-Splitter (c) Add-drop �lter

Figure 1.17: Schematic illustrations of devices in photonic crystals based on single pore in�ltration.

Further examples for functional elements designed by single pore in�ltration are found in [14, 40, 72].
In order to be useful in actual photonic devices, such designs have to be optimized, e. g., to reduce
re�ections or tune the working frequencies at which they are supposed to operate. For this task, an
accurate and e�cient numerical method is needed. The scattering matrix approach based on the localized
basis expansion is such a method. It will be reviewed brie�y in Sec. 4.6.

1.2.12 The Wannier Function Approach

In order to describe the localized defect mode pro�les numerically, one can expand the wave equations
in a localized orthonormal set of basis functions and solve the equations within that basis. For this task,
the photonic WFs are a natural choice. The aim of this thesis is to analyze and increase the accuracy of
this Wannier expansion. Therefore, a brief summary of Wannier function properties is given here.
The WFs WnR(r) have been introduced by Wannier [26] as a lattice Fourier transform of the Bloch

modes ψnk(r) of a crystal for the electronic case:

WnR(r) =
1

Nk-res

∑
k∈BZ

e−ikR ψnk(r) . (1.59)

Here, Nk-res is the total number of k-vectors in the BZ. The WFs were assumed to be localized at the
crystal unit cell at lattice site R and used for the description of localized (electronic) states. However,
the explicit construction of these functions from Bloch modes was not trivial, since the Bloch modes are
only de�ned up to a complex phase factor exp(iφn(k)). The phase angle φn(k) can be chosen di�erently

20



1.2 Photonic Crystals

at each k-point for each band n, leading to di�erent sets of WFs with di�erent localization properties
and function pro�les.
Nonetheless did the WFs' success in electronic crystal theory spark the interest to also describe lo-

calized light modes, as they occur in PC functional devices (cf. Figs. 1.13, 1.16), in a localized basis of
vectorial photonic WFs WnR(r) [28, 32, 73]. This method to solve for localized defect states of the wave
equations (1.9) in PCs is based on an expansion of the unknown �elds ψ(r) into WFs WnR(r) obtained
from the vectorial electromagnetic Bloch modes ψnk(r),

ψ(r) =
∑
nR

cnRWnR(r) , (1.60)

where the expansion coe�cients cnR ∈ C are the new unknowns to solve for. We apply this ansatz only
in the scalar 2D case and work with scalar photonic WFs WnR(r). By this expansion, the di�erential
operators in the wave equations are expressed in the Wannier basis as matrices (analogous to quantum
mechanical computations). These matrices can be diagonalized by a computer, yielding numerical
approximations of the cnR as eigenvectors and the frequencies as approximations to the eigenvalues. This
procedure as well as the computation of transmission/re�ection characteristics of functional elements in
the Wannier function approach is explained in detail in Chap. 4. The resulting matrix elements decay
fast with increasing separation distance between the WFs which is a direct consequence of their high
degree of localization.
Hence, in order for numerical methods based on an expansion into localized WFs to work e�ciently,

the WFs actually have to be available and to be as localized as possible. Therefore, a brief review about
the localization properties of WFs is given here.
Kohn [74] showed for a one dimensional (1D) crystal that the Bloch mode phases φn(k) can be adjusted

to yield exponentially localized WFsWn(x). These are purely real functions and their localization center
lies within the WSC at the origin, either in the center or the edge of that cell. They are either symmetric
or antisymmetric with respect to point re�ections. These symmetry properties of WFs are generalized
to two dimensions in Chap. 2. These localized WFs decay like exp(−|x|hn), actually meaning that

lim
x→∞

Wn(x) exp(−|x|q) =

0 : q < hn,

∞ : q > hn,
(1.61)

where hn > 0 is a real constant characteristic for each WF band n. This parameter hn is determined
by the analytic continuation of the band structure ωnk for complex values of k ∈ C (which is easier to
study for 1D crystals). It denotes the size of the smallest strip around the real k-axis, where the band
structure ωnk is an analytic function until branch points appear. An example band structure illustrating
the location of these branch points for a 1D PC is shown in Fig. 1.18. Examples for complex 2D band
structures are found in [75, 76].
The authors He and Vanderbilt [27] studied this decay property and proved the more precise decay

law in 1D to be
Wn(x) ≈ |x|−3/4 exp(−|x|hn) . (1.62)

They also con�rmed this decay law empirically by actually constructing 2D and three dimensional (3D)
WFs. In order to judge the decay behavior of the WFs presented in this work, we either show a pure
exponential function exp(−|x|) or |x|−3/4 exp(−|x|h) as a guide to the eye in the WF plots, similar to
Fig. 1.13.
The sizes hn can be estimated by the size of the band gaps between the bands on the real k-axis.

Thus, the closer two bands are, the less localized their WFs become. Consequently, when the bands
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1 Classical Electromagnetism in Photonic Crystals

(a) Real wave numbers (b) Imaginary wave numbers

Figure 1.18: Photonic band structure for a silicon Bragg stack in air (Fig. 1.2a) with parameters
dA = dB = a/2 and εA = 12, εB = 1. The band structure was obtained by solving the corresponding
exact transcendental equations numerically [77]. Imaginary parts Im(k) only occur for Re(k) = 0 or
Re(k) = ±π/a. The branch points where the band structure ω(k) becomes a double-valued function
for complex k are denoted by black arrows. The corresponding values for k determine the decay
parameters hn in (1.61) and (1.62) and can be estimated by the size of the band gaps [78].

intersect each other, the WFs can become totally delocalized, which requires a modi�ed de�nition, the
generalized WFs

WnR(r) =
1

Nk-res

∑
k∈BZ

e−ikR
∑
m

ψmk(r)Umn(k) . (1.63)

They are no longer constructed from a single band of Bloch modes, but by a unitary transform U(k)
among the Bloch modes for each k. Cloizeaux [36] and Krüger [37, 38] extensively studied the localization
properties of WFs for this case. They stated the restrictions for the unitary transforms U(k) based on the
symmetries of the Bloch modes that �nally yield localized WFs. Their investigations are based on group
representation theory of crystals with 2D plane groups and 3D space groups. In order to understand and
apply their results, the necessary group theory is summarized in Chap. 2 and applied to the numerical
construction of WFs in Chap. 3.
A method for the numerical construction of maximally localized WFs, that does not yet take the

symmetry considerations into account was published by Marzari and Vanderbilt [29] and Souza et al.
[30]. Their algorithms construct maximally localized WFs that are found by minimizing the real space
extent of the WFs. Their method does not need the WFs explicitly to judge the degree of localization
and works with the Bloch modes only. It was extended to the bottom-up approach by Schillinger [35]
(for the scalar 2D case) which theoretically allows to construct arbitrarily many WFs bands n. That
work and the improved and optimized implementation of the bottom-up method by Wol� [79] is the
basis of the present thesis.
The magnetic �eld WFs are anticipated to be a good expansion basis for defect modes in 3D, since

they already ful�ll the divergence constraint of (1.9b) which avoids unphysical zero-frequency solutions.10

However, as is going to be discussed in Chap. 6, they are unable to model the continuity conditions of
defect modes across dielectric boundaries properly. That is why the WF basis must be augmented

10A problem that every method based on function expansions has to face, e. g. the �nite element method [21].
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by additional localized auxiliary basis functions for accurate defect mode frequency solutions. This
approach is discussed thoroughly in Chap. 6.

1.3 Summary

We derived the wave equations for electromagnetic wave propagation in dielectric media at optical
frequencies. The only material parameter entering the equations is a position dependent (possibly
anisotropic) dielectric permittivity distribution ε(r). Photonic crystals have been introduced as periodic
arrangements of dielectric materials. For in-plane propagation in two-dimensional photonic crystals, the
vectorial wave equations may be separated into two independent scalar equations describing just the
scalar z-component of the E-�eld and the H-�eld, respectively. The form of the anisotropic permittivity
tensor allowing this decoupling was derived based on symmetry considerations. Such a permittivity
tensor is found in nematic liquid crystals and some magneto-optic materials. Their optical properties
can be tuned by external static electric and magnetic �elds, respectively. Two-dimensional photonic
crystals provide test systems, for which many e�ects also occurring in real photonic crystal slabs can be
studied.
The periodicity of photonic crystals can be described in terms of lattices and light wave propagation is

described with the help of the Brillouin zone. It provides the allowed wave vectors, playing the same role
as for the propagation of electron waves in the solid state theory of electronic crystals. The well known
Bloch theorem is applicable to light waves in photonic crystals as well, explaining the formation of a
band structure. The band structures of the two-dimensional model systems were discussed, documenting
the design parameters that lead to band gaps in these band structures.
The e�ect of defect structures breaking the translational symmetry of the photonic crystal was re-

viewed. Point defects introduce eigenmodes with frequencies in the band gaps, whose mode pro�les
decay exponentially in space. Line defects form waveguides, whose guided modes are spatially con�ned
to the waveguide region. Perpendicular to the waveguide, the mode pro�les also decay exponentially in
space. The light con�nement is rather strong, and mode pro�les decay to 1 % of their maximum value
usually after three to six lattice constants a. Their possibility to con�ne light to small volumes and
the wide range of fabricational parameters for tuning the optical response quali�es photonic crystals as
building blocks for novel integrated devices in optical signal processing.
The wave equations can be solved by an expansion into a complete orthonormal function system.

This yields an e�cient numerical method if as many properties of the desired solutions are already
present in the expansion basis. Due to the strong localization of the defect modes, an expansion of the
wave equations into localized photonic Wannier functions was suggested by some authors for an e�cient
numerical scheme to analyze optical circuitry in photonic crystals. This idea, known in electronic solid
state physics for decades, requires the numerical construction of localized Wannier functions WnR(r)
from the Bloch modes of the perfectly periodic crystal. Therefore, the constraints leading to localized
Wannier functions were reviewed. In the best case, these functions decay like |r|−3/4 exp(−h|r|), in
the worst case like 1/|r|. The decay behavior and symmetries of the Wannier functions are directly
connected to the symmetries of the Bloch modes from which they were constructed. This connection is
studied in more detail in the next chapter.
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2 Chapter 2

Group Representation Theory

In this chapter, the consequences of rotational, translational and mirror symmetries of PCs are discussed.
The main result consists in the observation that the eigenstates of a di�erential operator form irreducible
representations of all the groups of symmetry transforms which commute with that di�erential operator.
The consequences of this fundamental theorem include the Bloch-Floquet theorem, the de�nition of
the Brillouin zone, the classi�cation of spatial symmetries of eigenmodes (for Bloch modes and defect
states), and the possibility to treat two separate scalar wave equations in 2D, one for TE and one for TM
polarization, respectively. Last but not least, a justi�cation for the de�nition of Wannier functions as
a lattice Fourier transform of Bloch modes is given and the connection of Bloch mode symmetries with
Wannier function symmetries and their localization properties is established. Unfortunately, in order
to reproduce the results based on this chapter, extensive de�nitions, tables and notational overhead are
necessary, many of which have been moved to App. F.
The theory presented here is simpli�ed for the case of symmorphic plane groups in d = 2 dimensions.

A full introduction comprising also non-symmorphic plane (2D) and space (3D) groups with all mathe-
matical rigor would go way beyond the scope of this work. Therefore, the interested reader may resort
to the following text books.
General introductions to the theory of plane groups in solid state physics and group representation

theory can be found in Cornwell [80] and Lax [81]. A thorough and well readable treatment is found in
Dresselhaus et al. [82]. The connection between the symmetry of Bloch modes and Wannier functions
via the site symmetry approach is explained in detail in Evarestov [83].
A less mathematical introduction with examples on the symmetries of photonic crystals can be found

in Joannopoulos et al. [47]. Many examples for the application of group theory to photonic crystals are
also compiled in Sakoda [48].
A basic introduction to crystallography as needed for this chapter is found in Borchardt-Ott [84],

whereas the standard reference on that subject are the International Tables of Crystallography [85].

2.1 Groups

A set G together with a multiplication between its elements for g1, g2 ∈ G is called a group if

(closure condition) g1g2 is an element of G for every g1, g2 ∈ G,

(existence of identity element) there is one unique e ∈ G such that for every g ∈ G the relation
ge = eg = g holds,
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2 Group Representation Theory

(existence of inverse element) every g ∈ G has one unique g−1 ∈ G with gg−1 = g−1g = e,

(associative law) (g1g2)g3=g1(g2g3).

A group is called Abelian,1 if the commutative law also holds: g1g2 = g2g1.
The order nG of a group is the number of its distinct elements. A �nite group is one of �nite order.

We only deal with �nite groups here. A minimal set is one with the smallest order (least number of
elements) possible, such that a particular condition holds.
The generators of a group G are a minimal subset gi of elements of G such that any arbitrary element

g can be expressed as a multiplication of �nitely many gi and their inverses in arbitrary combinations.
Thus, the gi generate any element of G by means of the group multiplication.
A cyclic group is generated by the powers gn of a single element g. Cyclic groups are necessarily

Abelian. The generator g of a �nite cyclic group necessarily produces the identity e for n = nG , the
order of the �nite cyclic group.
A subgroup H ⊂ G is a subset of elements g ∈ G such that any of its products are still contained in

H (the closure relation is ful�lled).
A group homomorphism2 Φ is a mapping Φ : G → G′ between two groups G and G′ that preserves

the multiplicative group structure, meaning that

Φ(g1g2) = Φ(g1)Φ(g2) ∀g1, g2 ∈ G . (2.1)

A group homomorphism maps the identity and inverse elements of G to those of G′. The simplest group
homomorphism is Φ(g) ≡ e ∈ G′ ∀g ∈ G. A bijective homomorphism is called a group isomorphism.3

If there exists any isomorphism between two groups G and G′, the groups are said to be isomorphic:
G ∼= G′. Since a group G is readily de�ned by its abstract multiplication rules, an isomorphic group G′

whose elements can be attributed a particular meaning (e. g., geometric transformations) is also called
a realization of G. For instance, we are going to encounter various di�erent realizations of one and the
same point group as the site symmetry groups of spatial positions in a crystal later on.
Two elements g1, g2 ∈ G are said to be conjugate if there is a g ∈ G such that the relation gg1g

−1 = g2

holds.4 The subsets of conjugate elements in G are called (conjugacy) classes. The conjugacy relation
is mathematically an equivalence relation, thus any element g ∈ G belongs to exactly one class and G is
partitioned into disjoint conjugacy (equivalence) classes, or just classes for short. Any member of a class
is its representative, as it de�nes the whole class unambiguously. In an Abelian group, each element
forms its own conjugacy class. A function f : G → S (S being an arbitrary destination set) which has
the same values for all members of the same class, is called a class function.

Remark: Another possibility of partitioning a group G into subsets is the construction of cosets for
one of its subgroups H. This de�nition is important for the mathematical theory, but the results stated
in the chapter abstract above can be understood without it. Therefore, to shorten the presentation here,
it has been omitted.

1In honor of the Norwegian mathematician Niels Abel.
2Greek, `of similar shape'
3Greek, `of equal shape'
4In linear algebra, this is the same as the similarity of matrices. The elements g depend on the various gi and are not
unique for a class.
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2.2 Transform Operators

2.2 Transform Operators

We de�ne the geometric operations to transform functions (such as �elds and permittivity distributions)
in space by translations, rotations, re�ections, and combinations thereof. These operations g are elements
of a group acting on position vectors r. These actions are used to de�ne transform operators D̂(g) on a
function space mapping functions onto their geometrically transformed functions.
The Euclidean space R2 has the Euclidean metric

||r− r′||2 =
[ 2∑
i=1

(ri − r′i)2
] 1

2 (2.2)

in Cartesian coordinates. It de�nes the distance between two points r, r′ ∈ R2. An isometry5 on R2 is
a mapping Φ : R2 → R2 that leaves the Euclidean metric invariant:

||Φ(r)− Φ(r′)|| = ||r− r′|| . (2.3)

The Euclidean group E(2) of all possible isometries is the symmetry group of the Euclidean space. This
group has in�nite order, since it is a continuous group (its elements are parametrized by continuous
parameters, like real rotation angles and real shifting distances).
Its elements can be written as {R|t}, where R is an orthogonal matrix6 and t is a vector of R2, de�ning

a translation. The action of such an isometry on a vector r ∈ R2 is

{R|t}r := Rr + t . (2.4)

The identity element is {E|0} with E being the two-dimensional unit matrix. The composition of two
isometries is

{R1|t1}{R2|t2}r = {R1|t1}(R2r + t2) (2.5)

= R1R2r +R1t2 + t1 . (2.6)

The inverse of an isometry is
{R|t}−1 = {R−1| −R−1t} . (2.7)

A pure translation is described by {E|t}, a pure generalized rotation (rotations and re�ections) keeping
the the origin �xed is described by {R|0}. Combinations of these elements describe rotations around
arbitrary origins and angles, re�ections along arbitrary lines and pure translations.7

A rank-0-tensor-valued8 function f : R2 → C can also be shifted and rotated by means of an isometry
{R|t} ∈ E(2). The transformed function f ′(r) under {R|t} is obtained via a linear operator D̂({R|t})
acting on the space of these functions (cf. Fig. 2.1) by

f ′(r) = [D̂({R|t})f ](r) (2.8)

:= f({R|t}−1r) (2.9)
(2.7)
= f(R−1(r− t)) . (2.10)

5Greek, `of equal measure'
6That means R ∈ O(2), where O(2) is the group of all matrices with determinants det(R) = ±1.
7In three dimensions, screw-axes, roto-re�ections and space-inversions are added.
8Commonly referred to as a scalar. I deliberately chose this term because physicists immediately tend to think of
pseudo-scalars as well, but this notion is introduced later on when treating representations and bases thereof. The
transformation law introduced here knows nothing about being `true' or `pseudo' in the sense used in physics.
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(a) f is rotated left (counter-clockwise) by 90◦ (b) f is mirrored at the y-axis

Figure 2.1: Action of the transformation operator D̂(g) on (a) a rank-0-valued function f(r)
(g = C4) and a (b) rank-1-valued function f(r) (g = σx). Note how the full transformation law of
(2.11) is needed for rotating the function f properly. For symmetry notation, see Tab. F.2.

The mapping D̂ from the group of isometries g = {R|t} ∈ E(2) to the group of operators D̂(g) is
a group homomorphism. Rank-1-tensor-valued and rank-2-tensor-valued functions fi(r) and fij(r) are
transformed as

f ′i(r) =
∑
i′

Rii′fi′(R−1(r− t)) , (2.11)

f ′ij(r) =
∑
i′j′

Rii′Rjj′fi′j′(R−1(r− t)) . (2.12)

As an example, the electric �eld E(r) and the magnetic �eld H(r) are to be transformed by (2.11).

2.3 Plane Groups

We introduce the group of all geometric transformations (translations, rotations, re�ections and combi-
nations thereof) that leave a photonic crystal invariant. This group is the space group (in 3D) or the
plane group (in 2D) of that crystal. We consider two-dimensional photonic crystals only and say that
the crystal is symmetric under the operations of its plane group. These statements are formulated more
rigorously in the following.
A two-dimensional photonic crystal is invariant under operations of some discrete subgroup G ⊂ E(2).

Being invariant means that the permittivity distribution εPC(r) does not change under applications of
the isometries {R|t} ∈ G, extending the relation (1.11) to

[D̂({R|t})εPC](r) = εPC(R−1(r− t)) (2.13)

= εPC(r) . (2.14)

The invariance condition is analogous for tensorial permittivities εPC which have to be transformed by
(2.12) and are investigated in Sec. 1.2.4. This group G is called the plane group of the PC. The term
wallpaper group is also used. In 3D, we speak of space groups.
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For any plane group G with elements {R|t} we de�ne the point group G0 of the plane group as the
set of all orthogonal transforms R that occur at all in G (regardless of the translation t):

G0 :=
{
{R|0} : ∃{R|t} ∈ G

}
. (2.15)

This point group G0 need not be a subgroup of G, but for symmorphic plane groups it always is. The
plane group G is said to be symmorphic if all the translation vectors t are restricted to lattice vectors
R of the underlying crystal lattice L = LPC of (1.12) only. If also fractional lattice translations t 6∈ L
occur, it is called non-symmorphic. The group T (L) of pure lattice translations is de�ned by

T (L) :=
{
{E|R} : R ∈ L

}
. (2.16)

The group theory presented here is particularly well-behaved for symmorphic plane groups G because
the full plane group is the semi-direct product of the point group G0 and the translational group T (L).
In particular, this means that any arbitrary element {R|R} ∈ G of a symmorphic plane group G can
be written as the product of a pure translation and a pure rotation, i. e.

{R|R} = {E|R} · {R|0} , {E|R} ∈ T (L) , {R|0} ∈ G0 . (2.17)

We only deal with symmorphic plane groups because we are going to apply the results of this chapter
only to the two symmorphic model systems introduced in Sec. 1.2.7.9

For the numerical construction of Wannier functions we have to discretize an integral over the Brillouin
zone by a sum over �nitely many k-points. This implicitly establishes the connection to the �nite model
of crystals,10 which we are going to introduce now.
We consider a �nite parallelogram supercell of the crystal extending Ni unit cells in each lattice

direction ai. This is called the main region and comprises the �nite set of lattice sites

Lmain := {
∑2

i=1 ziai : zi = 0, 1, . . . , Ni − 1} . (2.18)

In this picture, the in�nite crystal is approximated by an in�nite periodic tiling of these main regions
that are physically identical. Shifting this crystal by Ni primitive lattice translations ai not only keeps
the crystal invariant, but also reproduces it identically which is represented by the �nite set of lattice
translations T (Lmain) generated by the generators {E|ai} with the property(

{E|ai}
)Ni

= {E|0} . (2.19)

Thus, the �nite T (Lmain) is a cyclical group in contrast to the in�nite translation group T (L).

2.4 Representations

A representation D of a group G is the special case of a matrix-valued group homomorphism, with non-
singular square matrices.11 These matrices D(g) ∈ Cµ×µ ∀g ∈ G are the images of the µ-dimensional
representation D : G → Cµ×µ and form themselves a group with the usual matrix-matrix multiplication.
We follow the suggestion of [83] and write rep as a shorthand notation for representation. If µ = 1, we
also say the rep is non-degenerate. In the case µ ≥ 2, we say the rep is degenerate.
9And because the theory presented here is much easier then.
10in solid state physics, this model is usually invoked when the Bloch modes ψnk(r) are subject to Born-von Kármán

boundary conditions.
11The matrices have to be square and non-singular such that the inverses of each element exist.
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2.4.1 Characters

In order to characterize the properties of a rep D independently from the particular matrix elements
Dij(g), one can de�ne the character χ ∈ C of a rep matrix D(g) as the trace of this matrix:

χ(g) := TrD(g) =
∑
ii

Dii(g) . (2.20)

The trace is invariant under matrix similarity transforms. This implies that the character χ(g) is the
same for all g in the same conjugacy class. It is thus a class function as de�ned above. The character χ(e)
of the identity element is always equal to the dimension µ of the rep, since D(e) is always the identity
matrix of dimension µ. This follows from D being a group homomorphism, where the identity element
of the group Cµ×µ is the µ×µ unit matrix. The set of characters χ(g) characterizes the homomorphism
D without the need to specify the particular matrix elements Dij(g).

2.4.2 Bases of Representations

We restrict ourselves to rank-0-tensor-valued functions here. A basis of a rep D of dimension µ is a
set of µ linearly independent functions fi(r) for i = 1, . . . , µ, that are transformed via (2.10) into linear
combinations of each other. The coe�cients of this linear combination are the rep matrix elements
Dij(g) for g = {R|t} (note the ordering of indices):

D̂(g)fj(r) =
∑
i

fi(r)Dij(g) . (2.21)

Thus, the operator D̂(g) on the function space is represented by the complex numbersDij . The functions
are said to transform like this rep for short.12 This simply means that the new rotated/re�ected functions
fi(g−1r) can be expressed as linear combinations of the former functions fj(r) (see Fig. 2.2). Several
distinct orthogonal sets of functions can transform like the same rep D which is covered in the next
section. The de�nition (2.21) may seem strange due to the unusual index ordering, however this is
sensible since it ensures that the mapping from operator D̂ de�ned via (2.10) onto reps D is a group
homomorphism with respect to the standard matrix-matrix multiplication13.
If the basis functions fi are orthonormal with respect to each other, the representation matrices D(g)

in (2.21) can be obtained by computing the matrix elements of the transformation operators D̂(g) via

Dij(g) = 〈〈fi‖D̂(g)‖fj〉〉 . (2.22)

2.4.3 Reducible Representations

A rep D is said to be unitary if all the matrices D(g) are unitary. Given a rep D for a group G, the
similarity transformed matrices D′(g) := A ·D(g) ·A−1 for any non-singular square matrix A form a so
called equivalent rep of G (see Fig. 2.3). Any rep of a �nite group is equivalent to a unitary one [80], and
by Sec. 2.4.1 all equivalent reps have the same set of characters χ(g). The characters thus summarize
the essential properties of equivalent reps which can all be studied for the simple case of unitary reps.
Thus, we are only concerned with unitary reps and from now on, all reps are assumed to be unitary
ones.
12Combining these functions to a row vector, this would read (f1, . . . , fd)·D(g) with the usual matrix-matrix multiplication.
13This statement is proven in App. F.1
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D̂(C4)

︸ ︷︷ ︸
f1

︸ ︷︷ ︸
f2

 =

︸ ︷︷ ︸
f2

︸ ︷︷ ︸
−f1



=

︸ ︷︷ ︸
f1

︸ ︷︷ ︸
f2

 ·
(

0 −1
1 0

)
︸ ︷︷ ︸

=D(C4)

.

Figure 2.2: Example for basis functions f1 and f2 of a degenerate representation of dimension
µ = 2 according to (2.21).


 =


 ·

√3
2 −1

2
1
2

√
3

2


︸ ︷︷ ︸

=U†

Figure 2.3: Example for two sets of basis functions f1 and f2 of a degenerate representation of
dimension µ = 2 that are related by a unitary transform U . If the right hand side functions are
bases for a rep D, then the left hand side functions are bases for the equivalent rep with matrices
D′(g) = UD(g)U †. Note that the right hand side functions look more symmetric because the rep
matrices D(g) are either diagonal or have a simple o�-diagonal structure for the (arbitrarily chosen)
generators C4 and σx.

If the linear space14 Cµ on which the matricesD(g) act contains any invariant subspaces (i. e., invariant
for all g), the rep D is said to be reducible. This means D is equivalent to a rep D′, whose matrices
D′(g) all share the same block-diagonal structure, where the submatrix of each block operates within
the invariant subspaces. That means, there exists one single unitary matrix U such that all the matrices
D(g) can be transformed via

D′(g) = UD(g)U † =


D(1)(g) 0 0

0 D(2)(g) 0

0 0
. . .

 . (2.23)

The matrices D(α)(g) form reps of dimension µ(α) < µ. The space Cµ is then the direct sum of the
invariant subspaces and the reduced rep D′ is the direct sum of the reps D(α):

D′ =
⊕
α

D(α) . (2.24)

14In German, this is called a Vektorraum.
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Figure 2.4: Example for a reduction procedure by (2.23). The reduced rep matrices D′ all have
the same block diagonal structure for all point transforms of C4v. Here, the rep D is reduced to the
irreps A1, B1, E of C4v, i. e., D is equivalent to D′ = A1 +B1 + E.

Eq. (2.23) can be considered to be the de�nition of the notation (2.24). However, regular plus signs +
and a multiplicative notation are also common (see Fig. 2.4). The examples later on will clarify this
notation. If no invariant subspaces and hence no such matrix U exist, the rep D is called an irreducible
representation. We write irrep for short. Naturally, the following question arises:

What matrices (up to equivalence) form the set of all possible irreducible representations of
a given group G and which dimensions µ do they have?

Burnside's Theorem states that there are exactly as many non-equivalent irreps of a group as it has
conjugacy classes. These irreps can be characterized by their character sets

{(g, χ(g)) : g is an arbitrary representative of each conjugacy class} . (2.25)

A list of characters for the conjugacy classes and each possible irrep is called a character table and is an
important tool in the analysis of reps and the study of symmetries in crystals (see Tabs. F.3 and F.8).
There is a simple test to decide whether a rep D is reducible or not. One can compute

1
nG

∑
g∈G
|χ(g)|2 =

1 : D is irreducible,

6= 1 : D is reducible.
(2.26)

If the dimension µ of a repD is larger than the largest possible dimension of the irreps of G, it is certainly
reducible. In other cases it might be either reducible or be a degenerate irrep of G. In order to decide
which irreps D(α) are contained in the reduction (2.23) of a rep D, one can compute the multiplicity15

λ(α) by

λ(α) :=
1
nG

∑
g∈G

χ∗(g)χ(α)(g) , (2.27)

where ∗ means complex conjugation, χ(g) is the character of D(g) and χ(α)(g) the character of the irrep
matrix D(α)(g). The reduced form D′ of D in (2.27) contains then λ(α) submatrices for the irreducible
representation D(α).

15Also called frequencies, de�ning how frequent a rep occurs.
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2.4.4 Projection Operators

An arbitrary function f can be decomposed into sets of functions transforming like the di�erent irreps
D(α) of a plane group G. Thus, one can disassemble the function f according to di�erent symmetries.
The projection operator

P̂ (α) :=
µ(α)

nG

∑
g∈G

χ(α)∗(g)D̂(g) (2.28)

projects out that part of a function f that transforms like the rep D(α) of G. Here, nG is the order
of the group G, µ(α) is the dimension of the irrep, χ(α)(g) its characters and D̂(g) the transformation
operator (2.10) and ∗ denotes the complex conjugate. For a given function f , one can obtain one basis
function P̂ (α)f for each rep D(α) contained in f . A full orthonormalized basis set can then be obtained
by applying the transformations g and the Gram-Schmidt orthogonalization procedure (see Fig. 2.5).
The rep matrices D(α), in turn, can then be obtained by (2.22). Thus, a single function f can generate
several irreps (i. e., the actual matrix elements D(α)

ij ) of a group G from their set of characters.

Figure 2.5: Generation of basis functions of irreps D(α) by applying the projection operators P̂ (α)

of (2.28). In this example, the irreps of group C4v (cf. Tab. F.3) are generated. Note that the
projection operator only creates one basis function for each rep.

2.4.5 The Group of an Operator

If an operator Ĥ commutes with the transformation operators D̂(g) of some group G, i. e.([·, ·] being
the commutator)

[Ĥ, D̂(g)] = 0 ∀g ∈ G , (2.29)

then the eigenstates of Ĥ form bases of the irreps of G [82]. The full set of all those operations that
commute with Ĥ is called the group of Ĥ. The consequences of this fundamental theorem are ubiquitous
in physics (cf. the text-books mentioned in the chapter abstract): conservation of linear and angular
momentum, selection rules in radiative atomic transitions, vibrational spectra of molecules, compatibility
relations in band structure theory, spin-orbit coupling, with applications in particle physics and possible
�eld theories, just to name a few.
We need this theorem to classify the Bloch modes and defect modes in a PC by their symmetry

properties, i. e., we label the modes (additionally to their band index n) by those irreps D(α) which they
are basis functions of.

2.4.6 Subduced Representations

There are two basic mechanisms, how irreps of one group can create new (generally reducible) reps in
another group:
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by subduction: A group G passes its irreps down to one of its smaller subgroups H ⊂ G,

by induction: A subgroup H ⊂ G passes its irreps up to the larger supergroup G.

The reps obtained by these procedures are in general reducible in the new group. For generating localized
and symmetric Wannier functions, the relation between the characters and the explicit reduction and
induction procedures involved are of relevance.
The subduction procedure is the simpler one and shall be discussed �rst. Given a rep D of G with

matrices D(g) for g ∈ G, one can simply de�ne the subduced rep D′ on H by reusing the matrices for
the elements g ∈ H:

D′(g) := D(g) ∀g ∈ H . (2.30)

This is possible because H is a subgroup of G and all symmetry operations of H are also contained
in G. The characters are unchanged (the traces of the matrices are still the same), there are just less
characters than before because H has less conjugacy classes. A common notation for subduced reps is
D′ = D ↓ H. When the particular supergroup G used shall be stressed, we also write16 D′ = D(G) ↓ H.
If D was irreducible in G, the subduced D′ may be in general reducible, e. g. if a degenerate irrep is
subduced to a subgroup containing only non-degenerate irreps.
The reducibility of the subduced reps can be easily checked with (2.26) with the help of the characters

of the irreps of both groups, i. e., the actual rep matrices D are not needed at all.
The reduction of a subduced representation results in a unitary transform which brings the former

rep matrices D(g) for g ∈ H into block-diagonal form. The transformed basis functions fi for that
equivalent rep are then also basis functions for the irreps occurring in the reduction (see Fig. 2.6).

Figure 2.6: Basis functions of a degenerate rep E of the point group C4v that can be unitarily
transformed to basis functions of irreps A and B of subgroups C1h of C4v. Thus, the subduced two-
dimensional rep E(C4v) ↓ C1h is reducible as A(C1h) + B(C1h). In this example, degenerate Bloch
modes at the Γ-point are reduced with respect to the little co-groups of the Σ and ∆ lines in a square
lattice. Note that the particular realization of C1h as G0∆ or G0Σ determines the actual pro�les of
the new basis functions. See also App. F for a list of high symmetry points and little co-groups.

As was discussed in the previous section, the symmetries of the basis functions under transformations
g determine the rep unambiguously. Thus, a set of basis functions fi for irreps of G de�nes the subduced
reps in H equally well.

16This is admittedly a sloppy notation, since D(G) is technically the whole set of rep matrices D(g).
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2.5 Representations of Plane groups

2.4.7 Induced Representations

We now take the basis functions for an irrep D of a subgroup H and construct a larger set of basis
functions transforming according to all g ∈ G and forming a new representation D′ for the supergroup
G ⊃ H. The key to this construction is the fact that for the µ basis functions fi of the µ-dimensional
rep D for H the transformed D̂(g)fi transform like (and de�ne) some D′ of G with dimension µ′ > µ.
This is the induced rep D′ = D ↑ G (see Fig. 2.7). However, the new functions form in general not
an orthogonal set and are therefore not a basis of the induced rep. The proper construction of the
induced reps makes use of characters and cosets only. This involves some clumsy de�nitions which are
not repeated here and the interested reader is referred to the literature cited in the chapter abstract.

Figure 2.7: Example for a basis function of the non-degenerate rep A1(C2v) that is used to construct
the basis functions of the degenerate induced rep A1(C2v) ↑ C4v. This induced rep is reducible in C2v,
thus there is a unitary transform generating basis functions for the irreps A1(C4v) and B1(C4v).

Fortunately, since we deal with Wannier functions in the end, all new functions D̂(g)fi that we
encounter in the following indeed are orthonormal (and are therefore bases of the induced rep) which is
why we are allowed to introduce this simpler de�nition of the induced rep D′. By (2.22) the rep matrices
D′(g)∀g ∈ G can be obtained by using an arbitrary orthonormal subset of the new functions D̂(g)fi,
since some functions appear more than once with phase factors (±1 in our cases).

2.4.8 The Frobenius Reciprocity Theorem

For the groups H ⊂ G, the following relation holds for the irreps D(α)(G) and D(β)(H): The number
of times that D(α)(G) is contained in D(β)(H) ↑ G is equal to the number of times that D(β)(H) is
contained in D(α)(G) ↓ H.
This theorem relates the complicated induction procedure with the simpler subduction procedure. It

is implicitly used for the construction of the Tabs. 2.1 and 2.2.

2.5 Representations of Plane groups

We review the possible reps of plane groups here. This part is simpli�ed for symmorphic plane groups.
For non-symmorphic plane groups, some de�nitions and theorems become more complicated and should
therefore be looked up in the literature cited in the chapter abstract for maximal rigor.

35



2 Group Representation Theory

General remark on the notation used: We introduce some subgroups of the plane group G in the
following that are distinguished by subscript vectors: Gk, Gq ⊂ G. These groups are understood
to consist of elements {R|R} with non-trivial lattice vectors R. Secondly we deal with subgroups
G0k, G0q ⊂ G0 of the point group (2.15) that always comprise only elements {R|0} which is denoted by
the subscript number 0.

2.5.1 Translation Groups

In the following, we need to de�ne shifts by lattice vectors R ∈ Lmain more precisely by their lattice
coordinates ni as

{E|an} := {E|n1a1 + n2a2} , ni ∈ Z . (2.31)

The subgroup T (Lmain) of pure translations in the cyclic model of a photonic crystal is an Abelian
group and therefore has N1N2 irreps distinguished by integers p1 and p2 with possible values pi =
0, . . . , Ni − 1. The characters of these irreps are

χ(p1,p2)({E|n1a1 + n2a2}) = exp
(
− 2πi(p1n1/N1 + p2n2/N2)

)
, ni ∈ Z . (2.32)

For the �nite lattice Lmain one de�nes a set of allowed wave vectors

kp =
p1

N1
b1 +

p2

N2
b2 , (2.33)

which can be used to label the various irreps of T (Lmain) and the characters can then be expressed as

χ(k)({E|an}) = exp(−ik · an) , (2.34)

for any allowed wave vector k of which there are in�nitely many up to this point. Any reciprocal lattice
vector K ∈ L∗PC can be added to k without a�ecting the characters χ(k) = χ(k+K), hence k + K labels
the very same rep and k + K is called an equivalent wave vector. Therefore, the allowed wave vectors k
from the parallelepiped shaped unit cell (2.33) of the reciprocal lattice label all possible di�erent irreps
of the translation group. In physics, it is customary to choose the wave vectors from the more symmetric
Brillouin zone (which is constructed like the WSC, only in the reciprocal lattice) to label the translation
group irreps (cf. Sec. 1.2.1). However, in the numerical construction of WFs we resort to parallelogram
shaped domains again (cf. Fig. B.7) which are not identical to (2.33).
The basis functions transforming like the irrep k of the translation group T (Lmain) are called Bloch

functions.17 By Sec. 2.4.5, the eigenstates of the wave equation for a perfect PC can be labeled by the
particular wave vector as |nk〉 which characterizes their transformation behavior under translations. The
band index n distinguishes di�erent basis functions transforming like the same irrep k. Moreover, when
also applying an orthogonal transformation R, we get a new Bloch function transforming according to
the irrep Rk. The full transformation law is found in [37, 83]. Thus, the Bloch-Floquet theorem of
Sec. 1.2.2 is the direct consequence of the wave equation being invariant under translations T (L) and
the transformation behavior (2.21) with characters (and one-dimensional rep matrices) exp(−ikR) of
its group irreps k.

17Note that we reserved the word mode for eigenstates of the wave equation. Therefore, the eigenmodes are Bloch functions,
the so called Bloch modes.
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2.5.2 Point Groups

In 2D, the point group (2.15) comprises rotations and re�ections only.18 It is in general not Abelian,
hence there are usually only a few di�erent irreps. The irreps of the point groups for square and
triangular lattices are labeled by Latin letters A and B for non-degenerate irreps and E for degenerate
irreps by convention (cf. Tab. F.3 and Tab. F.8). The characters for these cases are always real and in
the non-degenerate case, they can be understood to be the eigenvalues of the operators D̂(g) for the
particular eigenmodes of the wave equation.19

In symmorphic plane groups, the reciprocal lattice is invariant under the pure orthogonal transforma-
tions {R|0} ∈ G0. It is used to construct the whole BZ from the IBZ by20 (cf. Fig. 1.8)

BZ =
⋃
g∈G0

g · IBZ , (2.35)

where the action of g = {R|0} on a vector k from reciprocal space is meant to be

gk = {R|0}k = R · k . (2.36)

Given a wave vector k from the BZ one can construct the subgroup G0k ⊂ G0 which transforms k
into itself or an equivalent vector k + G. This is the so called little co-group of k (whereas little point
group of k would be a more sensible nomenclature).
In the BZ the points of symmetry and highest symmetry are of special interest. In the in�nite model

of a crystal (Ni →∞), the BZ is a dense set with boundary. A high symmetry point21 kHS has higher
symmetry than any other k in a small domain around kHS. That means, G0k ⊂ G0kHS is always a proper
subgroup with less elements nG0k

than the order of G0kHS . Such points typically lie on the boundary
and in the center of the BZ, (like Γ, X,M in the square lattice and Γ,M,K in the triangular lattice).
Lines of symmetry are de�ned by points on lines with the same group G0k. Examples in the square
lattice are ΓX, XM and MΓ. However if G0k consists of the identity element only, then k is called a
general point in the BZ.
Given a Bloch mode |nk〉 of wave vector k which is invariant under some point group G0k, the Bloch

mode can be classi�ed by the irreps of that point group, additionally to the irrep k of the translational
group. Examples are shown in Figs. F.6 and F.7. This is necessary to de�ne the full irreps of the full
plane group.
Looking at the high symmetry points of the Brillouin zones of Figs. F.4 and F.13, we see that some high

symmetry points also lie on high symmetry lines, e. g. the Γ-point in the square lattice is also a ∆-point as
well as a Σ-point. That means, Bloch modes at Γ with k = (0, 0) can therefore be unitarily transformed
to be basis functions for the little co-groups of these high-symmetry lines with lower symmetry (not
at the same time, of course) and then continuously connected with Bloch modes of these neighboring
k-vectors. The irreps that are possible to connect to are given by the subduction of the irreps for the
higher symmetry k-point to the irreps to the k-point of lower symmetry. The multiplicities of irreps in
the subduced reps are known as compatibility relations. Examples can be found in Figs. 2.6, F.6, and
F.7.
18A full inversion in 2D is just a rotation by 180◦.
19Compare, e. g., Tab. F.3 with the basis functions of Figs. F.8 and F.9 for the square lattice.
20This statement does not hold for the general case of non-symmorphic plane groups.
21In the notation of Krüger [37, 38], they are labeled kΣ (not to confuse with the Σ-point of the BZ). In [83], these are just

called points of symmetry. The lines and planes of symmetry of [83] are the ordinary points of symmetry in Krüger
[37, 38].
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2.5.3 Full Plane Groups

The irreps of a symmorphic plane group G are constructed in a straightforward fashion from the irreps
of its underlying translation group T (L) and point group G0. This simplicity is a direct consequence of
the multiplicative property (2.17).
The subgroup Gk ⊂ G is called the little group of k, and contains all possible plane group elements

that involve the point transforms of the little co-group G0k:22

Gk :=
{
{R|R} : {R|0} ∈ G0k, {E|R} ∈ T (Lmain)

}
. (2.37)

The star of k is the set ∗k of t = nG/nGk
non-equivalent wave vectors k that can be generated by

means of the little-co group, i. e.

∗k := {gk : g ∈ G0k} . (2.38)

Examples are shown in Figs. F.4 and F.13.
We summarize now the construction of possible irreps of a little group Gk for symmorphic plane

groups. The full construction for non-symmorphic plane groups is described in [83]. Given an irrep23

D(α) of the point group G0k, with matrices D(α)(R) for the discrete orthogonal transformations R, one
can build the full irreps D(kα) of the plane group Gk via24

D(kα)({R|R}) := exp(−ik ·R)D(α)(R) . (2.39)

The eigenmodes |nk〉 of the wave equation for a �xed k form sets of bases for these irreps D(kα). Their
translational behavior is determined by k and their rotational behavior by the particular α. If there are
µ(α) Bloch modes and t inequivalent elements in the star ∗k, one can use the tµ(α) basis functions to
induce the full irrep D(∗kα) for the full plane group G:25

D(∗kα) = D(kα)(Gk) ↑ G . (2.40)

By the induction procedure discussed above, this simply means applying all possible rotations to the
given Bloch basis functions of D(kα), see Fig. 2.8.
Any element {R|R} = g ∈ G transforms a basis function of D(∗kα) of wave vector k either

1. into one with non-equivalent wave vector Rk, either with an additional phase factor or being the
unitary transform of other basis functions with wave vector Rk (if µ(α) > 1), or

2. into one with equivalent wave vector k + K (that is essentially k), either with an additional phase
factor or being the unitary transform of other basis functions of the rep D(kα) (if µ(α) > 1).

If D(α) is one-dimensional, then there is always only a phase factor involved in the transformation rather
than a whole matrix.

22For non-symmorphic plane groups, one has to consider also the fractional translations.
23For our cases later on, these are mostly one-dimensional reps. Some two-dimensional also occur.
24According to [83] and [37], this is always true for symmorphic but not for non-symmorphic groups.
25This simple statement is only valid in symmorphic plane groups.
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Figure 2.8: Construction of an irrep D(∗kα) of a full plane group G by induction of an irrep D(kα)

of a little co-group G0k. In this example, basis functions for the Σ point in the square lattice are
used.

2.5.4 Site Symmetry Groups

In this section, a review of the site symmetry analysis procedure is given. It was introduced in [36]
and determines the �natural� symmetries the exponentially localized generalized Wannier functions may
have according to the symmetries of the Bloch modes from which they were constructed. We follow the
description of [83].
Site symmetry groups Gq and their point groups G0q for direct space are similar (but not identical)

to the notions of Gk and G0k for reciprocal space. Given an arbitrary position q in the main region of
the cyclic crystal, all possible points gq for g ∈ G form the crystallographic orbit26 of q. In analogy to
(2.38) we denote the crystallographic orbit by the set

Gq := {gq : g ∈ G} . (2.41)

There are at most nG di�erent points in the crystallographic orbit, one for each possible g, but there
may be less if q is invariant under some operations g. The set of all g ∈ G leaving the point q invariant
in space is denoted by Gq and called the site symmetry group:

g ∈ Gq :⇔ gq = q . (2.42)

In that case, the crystallographic orbit contains only nG/nGq di�erent points in total. The site symmetry
group Gq is isomorphous to the point group G0q which consists of the pure generalized rotations of Gq

by removing the translational parts:

G0q :=
{
{R|0} : ∃{R|R} ∈ Gq

}
. (2.43)

Due to the isomorphy Gq
∼= G0q, we can use the irrep labels of the point groups of Tabs. F.3 and F.8

to classify the basis function of irreps of Gq (see Fig. 2.9).
If g ∈ G transforms q to a point q′ in the orbit, then their site symmetry groups are related by

Gq′ = gGqg
−1 . (2.44)

Then Gq′ is also isomorphic to G0q and great care has to be taken not to confuse the irrep labels for
actual computations. This is one of the reasons for the elaborate App. F.
26In [36] the generating point q was denoted by M0 and the crystallographic orbit was called general lattice L.
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Figure 2.9: Basis functions for an irrep of a point group and a site symmetry group. The cross
denotes the center of rotations for orthogonal transforms. In this example, the site symmetry group
G0q is chosen for the Wycko� position c. This demonstrates, how the irreps of G0q are connected
with the ones of G0q.

On the other hand, all those points q and q′ belong to the same Wycko� position if their site symmetry
group (that leave these points invariant, respectively) are conjugate to each other, i. e., they obey (2.44).
The Wycko� positions are labeled by small roman letters. They are shown in Figs. F.3 and F.12. The
term 'position' is a bit misleading here, since some positions of the coordinates of these positions contain
one or more free parameters, de�ning in fact lines and planes of points with conjugate site symmetry
groups.
The irreps of site symmetry groups can be used to classify Wannier functions and localized defect

modes. If a defect (like an in�ltrated hole in Fig. 1.12) breaks the translational symmetry of the crystal,
then the crystal with defect is invariant under the smaller site symmetry group of the defect (i. e.,
operations g of the full crystal plane group G leaving the defect invariant). Since the site symmetry
group is isomorphous to a point group, defect states are classi�ed by the irrep labels of that point group
(see Fig. 2.9).

2.5.5 Generalized Wannier Functions

In the previous section we have seen how the irreps D(kα) of little groups Gk induced the irreps D(∗kα)

of the full space group G:

D(∗kα) = D(kα)(Gk) ↑ G . (2.45)

Now we will investigate which reps are induced by irreps D(qβ) = D(β)(Gq) of the site symmetry groups
Gq, i. e., we consider D(qβ) ↑ G and its reductions into irreps D(∗kα) of G. This is �nally going to lead
to the lattice Fourier transform of Bloch modes de�ning the Wannier functions.
We consider a position q and a basis functionW (r) := V (r−q) for an irrep D(qβ) of the site symmetry

group Gq. V (r) shall be a basis function for the corresponding irrep of the point group G0q, localized
at the origin. Hence, W (r) is localized at q (see Fig. 2.9).
Performing the induction procedure according to Sec. 2.4.7 by applying all possible g ∈ G (translations

and rotations), we obtain the set of functions {D̂(g)W : g ∈ G}. Each of these functions is now localized
at one point in the crystallographic orbit Gq of q. We assume now that these functions form an
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orthonormal set.27 Thus, they are a basis of the induced rep

D(Gqβ) = D(qβ) ↑ G . (2.46)

The Bloch modes (eigenstates of the PC wave equation) of the perfect PC are basis functions of the
irreps D(∗kα) of G, thus the induced rep D(Gqβ) can be reduced in terms of the irreps of the Bloch
modes. However, we obtain Bloch functions ψ̃k (irreps of the translation group) �rst which can be
further reduced to Bloch modes ψnk (eigenmodes of the wave equation) by taking also the rotational
symmetries into account.
In order to determine which Bloch functions and plane group irreps D(∗kα) are contained in D(Gqβ),

one can apply the projection operators (2.28) to the W (r). We do this in the two steps alluded to above
for didactic purposes and start with the translational part:

ψ̃k(r) = P̂kW (r) (2.47)
(2.28)

=
1

N1N2

∑
{E|R}∈T (Lmain)

[
χ(k)({E|R})

]∗
D̂({E|R})W (r) (2.48)

(2.34)(2.10)
=

1
N1N2

∑
R∈Lmain

exp(ik ·R)W (r−R) . (2.49)

By the inverse relation (A.8), this means that

W (r) =
∑
k∈BZ

exp(−ik ·R)ψ̃k , (2.50)

which is the discretized version of the de�nition of generalized WFsbecause ψ̃k(r) so far is just a Bloch
function, that is some basis function for the rep k of the translational group T (Lmain). There is no
connection yet to the eigenmodes of the wave equation. This can be established by projecting the Bloch
functions28 ψ̃k onto the eigenmodes ψnk of the PC and de�ning coe�cients U as

Um(k) := 〈〈ψmk‖ψ̃k〉〉 . (2.51)

Now we justify a posteriori the assumption of D̂(g)W being all orthonormal to each other. When
we use orthonormalized eigenmodes ψnk of the wave equation of the perfectly periodic PC as Bloch
functions and require the transformation matrices Umn that build new generalized Bloch modes to be
unitary,

ψ̃nk :=
∑
m

ψmkUmn , (2.52)

then the generalized Wannier functions constructed from Eqs. (2.52) and (2.50) will be orthogonal
(cf. Sec. A.2.2). Thus we are allowed to de�ne the induced representations above the way we did.

2.5.6 Wannier Function Symmetries and Localization

We want to use the WFs as a localized basis for an expansion of the wave equations because the defect
mode solutions in the band gap (which we are interested in) are exponentially localized (cf. Figs. 1.13

27Arbitrary localized functions do not have this property, but WFs W are orthonormalized. We justify this a posteriori
below.

28In the Wannier related literature of solid state physics, they are often referred to as generalized Bloch modes.
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and 1.16). We review brie�y the connection between Bloch mode symmetries and WFs symmetries and
localization properties that have been investigated by Des Cloizeaux [36, 86, 87] and Krüger [37, 38].
When evaluating (2.50) numerically for Bloch modes from standard band structure codes, one does

in general not obtain well localized, exponentially decreasing WFs, but functions that show a rather
erratic behavior and decay like 1/|r| at best which is too slow for e�cient calculations (cf. Figs. 3.7, 3.9
and 3.10). This is illustrated and discussed in more detail in Chap. 3. One source of this behavior is an
inconsistent phase choice in the Bloch modes. As eigenmodes of the wave equation, they are de�ned up
to an arbitrary complex phase factor exp(iφ(k)) that can change drastically between k-points.
To summarize the �ndings of the papers cited above, one has to ensure the following properties for

constructing localized and symmetric WFs:

• When constructing single band WFs by (2.50), the phase choices of the Bloch modes in the BZ
have to be such that they are continuous functions in k within the BZ and over the boundary of
the BZ (cf. Figs. 3.9, 3.10 and 3.14).

• When constructing multibandWFs after (2.52), the continuity condition implies certain restrictions
on the unitary transforms U(k) that take into account the information about the plane group irreps
of the Bloch modes. This implies certain symmetries and localization centers for the corresponding
exponentially localized WFs, i. e., the possible Wycko� positions and irreps of the site symmetry
group for that position are restricted to few choices.29 This is illustrated in the examples below.

Figure 2.10: Schematic of the site symmetry analysis for the construction of localized Wannier
functions with particular symmetries (i. e., forming a particular irrep of the site symmetry group
for Wycko� position q). The labels α and β for the representations D(qα) and D(kHSβ) are given in
Tabs. 2.1 and 2.2. Examples for the D(kHSβ) for a whole band are given in Figs. F.6 and F.7.

Construction of exponentially localized WFs that are basis functions for a particular site symmetry
irrepD(qβ) is only possible if the available Bloch modes are bases of those irrepsD(∗kα) of the plane group
29Mostly, but not always, they are uniquely determined.

42



2.5 Representations of Plane groups

G which occur in the reduction of the full plane group rep D(Gqβ) induced by D(qβ) [36]. Fortunately,
all the information needed to determine these irreps D(∗kα) is already contained in the point group
irreps D(kα) that induced D(∗kα) for the Bloch modes at the high symmetry points k = kHS of the
BZ. That means, knowing the point group irreps D(kHSβ) of Bloch modes at Γ, X,M for the square
lattice or Γ,M,K for the triangular lattice enables one to predict the possible allowed symmetries of
exponentially localized WFs built from the corresponding Bloch mode bands. The reduction procedure
can be carried out with the help of the Frobenius reciprocity theorem (Sec. 2.4.8), and the multiplicities
of the reps involved can be computed by (2.27). Fortunately, there exists the freely usable program
SITESYM [88] provided online by the Bilbao Crystallographic Server [89, 90] that accomplishes this. It
uses crystallographic notation which is why we have to explicitly and thoroughly de�ne all particular
choices for Wycko�-positions, irrep labels and high symmetry points in the BZ in crystallographic and
our notation. The necessary tables and �gures are listed in App. F.
Carrying out the reduction procedure by [88], one obtains the reduction tables Tab. 2.1 for the square

lattice and Tab. 2.2 for the triangular lattice. They show the reduction procedure denoted by the
dashed arrow in Fig. 2.10. The tables are rather complicated and densely packed with information. In
the �rst column, the possible site symmetry representation D(qβ) for the exponentially localized WFs
at the Wycko� position q of the second row are shown. The particular Wycko� position used (from the
crystallographic orbit Gq) to obtain the data is given in ITA and PLT coordinates (cf. App. F). The
particular choice for de�nite coordinates of a Wycko� position a�ects the labeling of the irreps (see also
Fig. F.8). Therefore, extensive care has to be taken in the assembly of these tables. Columns 3�5 list
the Bloch mode irreps D(∗kHSα) of the little co-groups G0kHS . The particular choice of coordinates for
the high symmetry point kHS from the star ∗kHS is also given in ITA and PLT coordinates. It a�ects
the labeling of irreps in the same fashion as the Wycko� positions.
The tables are used as follows. Given a set of Bloch modes (single band or multiband), one determines

the set of irreps they form at the high symmetry points kHS of the BZ.30 Then one can read o� the site
symmetry group irreps of the corresponding exponentially localized WFs in the �rst column from the
allowed combinations of Bloch mode irreps.

Example 1: Consider the second band of the square lattice model system (Sec. 3.4.1). The Bloch modes
at the high symmetry points kHS belong to irreps A1(Γ), B2(X) and B2(M) (Tab. 3.1 and Fig. 3.6).
By Tab. 2.1, the exponentially localized WFs for this band have the symmetry A1(b) (see Fig. 3.7b).
Note that one can indeed use di�erent phase choices for the Bloch modes, leading to WFs transforming
like other site symmetry group irreps. However, these WFs decay like 1/|r| in some directions, since the
continuity condition mentioned above is not met then (see Figs. 3.7b and 3.10).

Example 2: Bands 2�7 of the square lattice model system have the band rep shown in Tab. 3.3. By
Tab. 2.1, this leads to allowed WF site symmetry group irreps E(a), A1(b), B1(b), E(b), but also to
E(a), A(f) (Fig. 3.15). The four-fold degenerate A(f) irrep is obtained, when the four basis functions
A1(b), B1(b), E(b) hybridize (i. e., transform unitarily to basis functions of the new rep). This means,
the site symmetry analysis need not yield unique combinations of WF symmetries, but usually restricts
them to a few. The WFs obtained still di�er in their degree of localization. In that case, the more
localized versions are usually better suited for expansion method introduced in Chap. 4.

The entries of these tables are not independent from each other which helps in �nding typos. The site
symmetry groups of Wycko� positions Q can have subgroups of site symmetry groups for other Wycko�

30This set is sometimes referred to as the band rep in the literature.
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positions q. This is the case, e. g.if the the choice of general coordinates x lead to coordinates of another
Wycko� position in the tables. This is exactly same principle responsible for the compatibility relations
in the classi�cation of Bloch modes symmetries in the band structure.

Example: In Tab. 2.1, all positions in the WSC with primitive lattice translation (PLT) coordinates
(0, x) belong to Wycko� position e. Choosing x = 0 yields Wycko� position a. This means, the irreps of
e can be reduced to irreps of a, e. g. A(e) = A1(a) +B1(a) +E(a). Then the reduction of A(e) into the
irreps of D(kHSα) must equal the sum of those reductions for A1(a), B1(a), E(a) for each high symmetry
point kHS.

2.6 Summary

We introduced the concepts of irreducible representations (irreps) of groups. The eigenmodes of the wave
equations form basis functions of the plane group irreps of the system under investigation. For perfectly
periodic crystals, the eigenmodes have Bloch form: Their translational properties are determined by
the wave vector k from the Brillouin zone (label for the irrep of the translation subgroup) and their
rotational properties by the particular irrep of the point group (the little co-group of k) they belong to.
The construction of Wannier functions as lattice Fourier transforms of generalized Bloch modes is

justi�ed by group theoretical considerations. Hereby, the lattice Fourier transform arises naturally from
the characters of the translation irreps of the Bloch modes. The symmetries of Wannier functions are
classi�ed by the irreps of the site symmetry group of their localization centers. This group is the maximal
set of plane group operations which leave the localization center invariant. The possible localization
centers are labeled by the Wycko� letters.
The main result of this chapter consists in the tables 2.1 and 2.2. They contain those combinations of

Bloch mode symmetries that lead to the allowed site symmetry group irreps and localization centers of
the corresponding Wannier functions that can be exponentially localized. These tables help to determine
the best starting points for the minimization algorithms used to generate these exponentially localized
Wannier functions, and they aid in choosing the band sets that have to be grouped together for this
task. The following chapter contains many examples for the application of these tables.
The generalization of this approach to 3D PC is not easy, since the systems most promising for 3D

applications are non-symmorphic crystals, e. g., the silicon woodpile structure [91]. In that case, the site
symmetry analysis becomes more complicated.
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D(kHSα)

D(qβ) q kHS = Γ kHS = X kHS = M
0, 0 (ITA) −1/2, 0 (ITA) −1/2, 1/2 (ITA)
0, 0 (PLT) 0, 1/2 (PLT) 1/2, 1/2 (PLT)

A1 a A1 A1 A1

A2 0, 0 (ITA) A2 A2 A2

B1 0, 0 (PLT) B1 A1 B1

B2 B2 A2 B2

E E B1 +B2 E

A1 b A1 B2 B2

A2 1/2, 1/2 (ITA) A2 B1 B1

B1 1/2, 1/2 (PLT) B1 B2 A2

B2 B2 B1 A1

E E A1 +A2 E

A1 2c A1 +B1 A1 +B2 E
A2 1/2, 0 (ITA) A2 +B2 A2 +B1 E
B1 0, 1/2 (PLT) E A2 +B2 A2 +B2

B2 E A1 +B1 A1 +B1

A 4d A1 +B2 + E A1 +B1 +A2 +B2 A1 +B2 + E
B −x, x (ITA) A2 +B1 + E A1 +B1 +A2 +B2 A2 +B1 + E

x, x (PLT)

A 4e A1 +B1 + E 2A1 +B1 +B2 A1 +B1 + E
B −x, 0 (ITA) A2 +B2 + E 2A2 +B1 +B2 A2 +B2 + E

0, x (PLT)

A 4f A1 +B1 + E A1 +A2 + 2B2 A2 +B2 + E
B 1/2, x (ITA) A2 +B2 + E A1 +A2 + 2B1 A1 +B1 + E

x, 1/2 (PLT)

A 8g A1 +A2 +B1 2A1 + 2A2 A1 +A2 +B1

−x, y (ITA) +B2 + 2E +2B1 + 2B2 +B2 + 2E
x, y (PLT)

Table 2.1: Reduction multiplicities of induced reps D(Gqβ) ↓ G into irreps D(∗kα) of the plane
group G for the square lattice. D(Gqβ) is fully determined and labeled by the irreps of D(qβ), D(∗kα)

is fully determined and labeled by the irreps D(kHSα). The Wycko� positions from Tab. F.4 and high
symmetry points in the BZ from Fig. F.6 were used and given with their multiplicities in a WSC.
The �dictionary� Tab. F.5 was used in the interpretation of the SITESYM output and compilation
of this table.
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D(kHSα)

D(qβ) q kHS = Γ kHS = M kHS = K
0, 0 (ITA) −1/2, 0 (ITA) −2/3, 1/3 (ITA)
0, 0 (PLT) 0, 1/2 (PLT) 1/3, 1/3 (PLT)

A1 a A1 A1 A1

A2 0, 0 (ITA) A2 A2 A2

B1 0, 0 (PLT) B1 B1 A1

B2 B2 B2 A2

E1 E1 B1 +B2 E
E2 E2 A1 +A2 E

A1 2b A1 +B2 A1 +B2 E
A2 1/3, 2/3 (ITA) A2 +B1 A2 +B1 E
E 1/3, 2/3 (PLT) E1 + E2 A1 +A2 +B1 +B2 A1 +A2 + E

A1 3c A1 + E2 A1 +B1 +B2 A1 + E
A2 0, 1/2 (ITA) A2 + E2 A2 +B1 +B2 A2 + E
B1 1/2, 0 (PLT) B1 + E1 A1 +A2 +B1 A1 + E
B2 B2 + E1 A1 +A2 +B2 A2 + E

A 6d A1 +B1 + E1 + E2 2A1 +A2 + 2B1 +B2 2A1 + 2E
B 0, x (ITA) A2 +B2 + E1 + E2 A1 + 2A2 +B1 + 2B2 2A2 + 2E

x, 0 (PLT)

A 6e A1 +B2 + E1 + E2 2A1 +A2 +B1 + 2B2 A1 +A2 + 2E
B −2x,−x (ITA) A2 +B1 + E1 + E2 A1 + 2A2 + 2B1 +B2 A1 +A2 + 2E

x, 2x (PLT)

A 12f A1 +A2 +B1 3A1 + 3A2 + 3B1 + 3B2 2A1 + 2A2 + 4E
+B2 + 2E1 + 2E2

Table 2.2: Reduction multiplicities of induced reps D(Gqβ) ↓ G into irreps D(∗kα) of the plane
group G for the triangular lattice. D(Gqβ) is fully determined and labeled by the irreps of D(qβ),
D(∗kα) is fully determined and labeled by the irreps D(kHSα). The Wycko� positions from Tab. F.10
and high symmetry points in the BZ from Fig. F.11 were used and given with their multiplicities
in a WSC. The �dictionary� Tab. F.9 was used in the interpretation of the SITESYM output and
compilation of this table.
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3 Chapter 3

Wannier Function Generation

The generation of maximally localized Wannier functions described here follows the publications of
Marzari and Vanderbilt [29] and Souza et al. [30] and their adaption to the photonic case after Schillinger
[35] and Wol� [79]. These algorithms are reviewed here, along with a discussion of their shortcomings.
In order to generate maximally localized generalized Wannier functions from Bloch modes, the unitary
transform matrices U(k) creating the generalized Bloch modes, which in turn build the Wannier func-
tions, must be determined. Therefore, a measure for the real space extent of the Wannier functions is
de�ned. It depends on the number of bands in a set that are allowed to transform to new generalized
Bloch modes by the unitary transform matrices U(k), and on these transform matrices themselves. The
sum of the extents of all Wannier functions constructed from a given set of Bloch modes is the spread
functional Ω. The maximally localized WFs are found by searching for the smallest spread by a com-
bined steepest descent and conjugate-gradient minimization procedure which yields the �nal transform
matrices U(k) as solutions. The Wannier functions are not required explicitly for the minimization
procedures. They are only constructed at the end once a suitable set of unitary matrices U(k) has been
found. Instead, all quantities needed for that minimization can be expressed by the scalar products
between the periodic parts of the Bloch modes.
The generation procedure is discussed and illustrated by many examples. The behavior of the min-

imization procedures is interpreted taking the results of the site symmetry analysis of Chap. 2 into
account. This will explain which symmetries are present in the �nal Wannier functions and why they
cannot be constructed symmetric and localized at all in some cases, thus solving a long standing mys-
tery. We investigate the improvements that can be expected if the theoretical results of Chap. 2 are
also incorporated into the generation procedure. Therefore, some improvements for these algorithms are
proposed, that can be formulated based on a few precomputed matrices that avoid carrying out time
consuming scalar products between �elds over and over again.
Finally, some possible sets of Wannier functions obtained with this approach are documented. The

Wannier functions are not uniquely determined and the performance of di�erent sets in subsequent
computations is investigated in Chaps. 5 and 6. This will help to determine if one choice of construction
parameters should be favored over others.
The natural number d is used for the spatial dimension in this chapter.

3.1 Definition and Properties of Wannier Functions

The Wannier functions originally introduced by Wannier [26] were de�ned for the proper Bloch modes
ψnk, i. e., the eigenmodes of a lattice periodic wave operator. As we have seen in seen in Sec. 2.5.6,
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3 Wannier Function Generation

exponentially localized Wannier functions are only obtained by de�ning them via generalized Bloch
modes, i. e., unitary transforms among the proper Bloch modes. These de�nitions then read1

|WnR〉 :=
1
VBZ

∫
BZ

ddk e−ikR |ψ̃nk〉 , (3.1)

with generalized Bloch modes
|ψ̃nk〉 :=

∑
m

|ψmk〉Umn(k) , (3.2)

where at each k a di�erent unitary transformation matrix Umn(k) is used. In the single band case (when
the summation index m comprises only one single band) this matrix reduces to the simplest unitary
transform possible, a multiplication with a k-dependent phase factor exp(iφn(k)). The band index n is
inherited from the Bloch bands, from which the corresponding WF was constructed.
The sum over m does not have to run over all in�nitely many bands, but can be a subset thereof. The

procedures described in the following for constructing maximally localized WFs determine the lower and
upper bounds for the summation index m (i. e., the set of bands used to construct a set of WFs) and the
matrices Umn(k) that lead to maximally localized WFs. The index n is then an arbitrary numbering to
distinguish the di�erent WFs. The ordering of the matrix indices m and n is kept in compliance with
[29, 35].
The most notable properties of the WFs are their behavior under translations

D̂({E|R′|)}|WnR〉 = |WnR−R′〉 , (3.3)

⇒WnR(r) = Wn0(r−R) , (3.4)

and their orthogonality

〈〈Wn′R′‖WnR〉〉 =
1
VBZ

δn′nδR′R . (3.5)

The discretized WFs are normalized after their construction such that they indeed orthonormalized in
the end. Both relations are proven Sec. A.2.

3.2 Localization Properties Of Wannier Basis

In order to judge the degree of localization in space of the WFs, we look at the spread
(
∆r
)2 of one WF

with band index n. For the de�nition we need the �rst and second moment of the position operator r,
de�ned as expectation values of r and r2:

〈r〉n = 〈〈Wn0‖r‖Wn0〉〉 , (3.6)

〈r2〉n = 〈〈Wn0‖r2‖Wn0〉〉 . (3.7)

The mean value of r is hereby de�ned componentwise as

〈r〉n :=
∑
i

êi〈ri〉n . (3.8)

We can restrict ourselves to the expectation values of WFs belonging to the origin cell R = 0 here
because the �nal expression (3.9) for the real space extent is independent of the particular cell. This is
obvious, since the spatial extent of a function is invariant under translations of that function.
1Note that the WFs are orthogonal, but not normalized by this de�nition. See Sec. A.2.2 for details.
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(a) Spread de�nition by (3.9) (b) Closed sets of bands in the sense of Sec. 3.3.1

Figure 3.1: (a) Example for the spread de�nition of (3.9). The broad function f1 has a spread
Ω1 = 24, whereas the narrow function f2 has Ω2 = 0.033. (b) Examples for closed sets of bands in
the sense of Sec. 3.3.1. The bands of each set cross each other, but none of the bands of other closed
sets. The respective band ranges are shown on the right side margin. The inset is shown close-up in
Fig. 3.2.

With these values at hand, we can de�ne a measure for the real space extent of a WF by(
∆rn

)2 :=
〈

(r− 〈r〉n)2
〉
n

(3.9)

= 〈r2〉n − 〈r〉2n . (3.10)

As alluded to above, the spread
(
∆rn

)2 is independent of the lattice site index R. For notational
consistency, we also write

Ωn :=
(
∆rn

)2 (3.11)

for the individual spread of a WF with band label n.
In the magnetic �eld case, the interpretation of the spread as the real space extent of the function

is straightforward and illustrated in Fig. 3.1a. In the electric �eld case, the scalar product (1.56) also
contains the periodic permittivity distribution which pronounces �eld values in the high index region
of the PC. Then the spread (3.9) is no longer a direct measure for spatial localization, but still takes
on small values for highly localized functions. That means, minimizing this value still leads to very
well localized functions that tend to be more localized in the low index regions due to the permittivity
function in the scalar product. Using the proper scalar product is important, since the algorithms
reviewed in the following rely on the use of orthogonal Bloch modes.
For the numerical construction of the Wannier functions, the continuous de�nition (3.1) has to be

discretized by (A.8), where we only have to construct a WF for R = 0 for each band and construct the
WFs for all other lattice vectors by exploiting their translational behavior (3.4). Then we arrive at an
expression similar to (2.50),

|Wn0〉 =
1

Nk-res

∑
k

|ψ̃nk〉 , (3.12)

which is easily interpreted. The WF for the generalized Bloch mode band n is just the averaged Bloch
mode pro�le over all Nk-res available wave vectors k (depending on the particular discretization). The
WF |Wn0〉 will be localized if
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1. the �eld values of |ψ̃nk〉 sum up to their maximum at one position in space (the localization center),

2. cancel out at positions far o� the localization center, facilitating the rapid decay.

As an example, Fig. 3.2 shows the absolute values of the pro�les of proper Bloch modes along the high
symmetry lines of the BZ. The green and blue bands continuously exchange their mode pro�les, whereas
the red band passes unchanged through the former. This means, simply rearranging the frequency
ordered labeling for n,

ωn ≤ ωn+1 , (3.13)

and adjusting the phases exp(iφn(k)) is not enough to meet the two conditions above for highly localized
WFs. The green and blue bands are called entangled and only a non-trivial unitary transform U(k)
among the two bands can separate the mode information into generalized Bloch bands in a way that
yields highly localized WFs. Finding these transforms is the purpose of the Souza-Marzari-Vanderbilt
algorithm.
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Figure 3.2: Avoided crossing and crossings of bands with equal and di�erent spatial symmetries,
respectively. The band structure inset of Fig. 3.1b is shown along with the little co-group irreps of the
Bloch modes. The absolute values |Hnk(r)| of proper Bloch modes for the TE square model system
are arranged according to their frequency and wave vector. While the red band passes unaltered
through the other two, the blue and green bands exchange their mode pro�les continuously along the
k-space path ΓX. Thus, one single value n of the frequency ordered numbering scheme (shown in
the band structure inset) labels bands with di�erent mode pro�les.
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3.3 Review Of Spread Minimization Procedure

The choice of (3.9) for measuring the real space extent of WFs allows to derive a minimization scheme
for the combined spread Ω of several WFs which is by (3.2) a function of the particular choices of
transformation matrices U(k) used to construct the generalized Bloch modes:

Ω[U ] :=
∑
n

Ωn[U ] . (3.14)

The sum runs over those contiguous band indices that generate the NWF WFs in the end.
The task is now to �nd those sets of transformation matrices that minimize the spread functional Ω

and yield highly localized WFs then. We will brie�y summarize the main ideas of these algorithms here.
Note that the knowledge of Chap. 2 is not incorporated in the algorithms presented here, but some

results can be understood and explained by a symmetry analysis.

3.3.1 Marzari-Vanderbilt Spread Minimization

In the case of a closed set of bands, the spread minimization algorithm proposed by [29] can be used to
determine the desired Umn(k). It is an iterative procedure that starts from initial transforms U (0)

mn(k)
and in each step i constructs new U

(i)
mn(k) leading to a smaller combined spread Ω[U ], until the smallest

spread value is obtained. Sets of bands are called closed if the bands belonging to the set are possibly
degenerate among each other, but not with bands of higher or lower lying sets. Examples for such closed
sets of bands are depicted in Fig. 3.1b. Unions of closed sets are also closed.
Since at some point the integration (3.1) in reciprocal space has to be carried out, we discretize the

BZ by a mesh of uniformly spaced nodes k assembled in a Monkhorst-Pack mesh (cf. Sec. B.5) which is
known to ease k-space integration [92]. Examples are shown in Figs. 3.8 and B.7.
Now one starts with initial guesses U (0)

mn(k) for each k in the Monkhorst-Pack (MP) mesh which yield
WFs with combined spread Ω(0). The crucial point here is that one does not need to compute the spread
functional (3.14) by evaluating Eqs. (3.1), (3.2) and (3.9) explicitly which would be a time consuming
task and an unfeasible procedure for each iteration step. The discretized generalized WFs according to
(3.12) are then given in terms of the proper Bloch modes |ψmk〉 by

|Wn0〉 =
1

Nk-res

∑
m,k

Umn(k)|ψmk〉 . (3.15)

This sum has to be evaluated only after the �nal unitary transforms U have been found.
The main idea is to express the position operator in reciprocal space as r = i∇k. It turns out that

one can express all relevant quantities by the overlap matrices of the periodic parts of the initial proper
Bloch modes as

M (0)
mn(k,b) := 〈〈umk‖unk+b〉〉 , (3.16)

where the vectors b point to the neighbors of k in the chosen mesh and facilitate a �nite di�erence
discretization of the reciprocal space gradient ∇k by:

∇kf(k) ≈
∑
b

wbb[f(k + b)− f(k)] . (3.17)

The weight factors wb are directly linked yet not identical with the ones given in Sec. B.3.1. The spread
(3.9) can be expressed in terms of ∇k which in turn introduces the overlap matrices (3.16).
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3.3 Review Of Spread Minimization Procedure

Noting that the unitary transform matrices U(k) can be expressed by anti-Hermitian matricesW (k) =
−W †(k) as U(k) = exp(W (k)), an iterative update scheme for the matrices can be established via

U (i+1)(k) = U (i)(k) exp
(

∆W (i)(k)
)
, (3.18)

M (i+1)(k,b) = U (i+1)†(k)M (0)U (i+1)(k,b) . (3.19)

The discretized expectation values of the moments of the position operator (3.6) for the WFs are given
for each iteration step i in terms of the Bloch modes as

〈r〉(i)n =
i

Nk-res

∑
k,b

wbb[M (i)
nn(k,b)− 1] , (3.20)

〈r2〉(i)n =
1

Nk-res

∑
k,b

wb[2− 2 ReM (i)
nn(k,b)] . (3.21)

With these values at hand, the localization centers 〈r〉(i)n of the WFs, the individual spreads Ω(i)
n and

also the combined spread Ω(i) are known at each step i.
In [29, 35], the anti-unitary update matrices ∆W (i)(k) in the ith iteration step are obtained by a

steepest descent step in the direction of smaller values for the spread functional Ω, however the imple-
mentation by Christian Wol� [79] using a conjugate gradient (CG) minimization drastically improved
the convergence speed and made the construction of the �nal 101 WFs possible in the �rst place.
The gradient matrices ∂Ω(i)/∂Wmn(k) required at each node k can be expressed solely in terms

of the matrix elements M (i)
mn(k,b) given by the previous iteration step. We only aim at a principal

understanding of the algorithm, so the full expressions have been omitted here.

3.3.2 Choice Of Initial Transform Matrices

The minimization being an iteration procedure, its convergence rate and sometimes also the minimum
found depend on the initial choice of transforms U (0)(k). By (3.1) and (3.2), this corresponds to a
particular choice of initial WFs |W (0)

nR〉.
One could simply start with a unit matrix, but a choice that yields initial functions which already

resemble the anticipated �nal WFs can yield better starting points. The trial function based initialization
is a procedure to construct initial transforms U (0)(k) from a set of such trial functions |Tn〉. The basic
idea is to construct initial generalized Bloch modes |ψ̃(0)

nk 〉 such that the initial WFs |W (0)
nR〉 are the best

approximation to the trial functions |Tn〉 in a least squares sense. Hence that part of the trial functions
that can be represented in terms of a lattice Fourier transform of the chosen bands has to be determined
by a projection into the space of given Bloch modes. This procedure leads to the de�nition of possibly
non-unitarian initial transforms A(k) by applying the projection operator |ψmk〉〈ψmk|:

|φnk〉 =
∑
m

|ψmk〉 〈〈ψmk‖Tn〉〉︸ ︷︷ ︸
=:Amn(k)

. (3.22)

If we allow non-orthogonal trial functions, then the A(k) will not be unitary and the |φnk〉 are also not
orthogonal and not a valid initial guess for generalized Bloch modes. We have to apply an orthogo-
nalization procedure to those functions then. The Gram-Schmidt procedure would be ill-suited in this
case because it can change the functions drastically and they may di�er strongly from their initial shape
|φnk〉. In our case, we want the orthogonalized |ψ̃(0)

nk 〉 to deviate as little as possible from their previous
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3 Wannier Function Generation

shape |φnk〉, so that the initial WFs deviate as little as possible from the chosen trial functions |Tn〉.
Therefore, Löwdin's symmetric orthogonalization procedure is used. It constructs new orthogonalized
functions |ψ̃(0)

nk 〉, whose combined mean square deviation from the original functions |φnk〉 is minimal
[93]. Performing this procedure leads to the de�nitions

U (0)(k) := A(k)S−
1
2 (k) , (3.23)

where S(k) := A†(k)A(k) are the overlap matrices of the non-orthogonal |φnk〉:

Smn(k) := 〈〈φmk‖φnk〉〉 . (3.24)

Their inverse square roots are computed by diagonalizing them, taking the inverse square roots of the
diagonal elements and transforming them back. If the functions were orthogonal right from the start,
the S(k) would just be unit matrices.
If only one band is involved, then by choosing appropriate trial functions (under consideration of

the symmetry relations of Sec. 2.5.6) the construction of initial WFs can already yield the maximally
localized WFs without any further minimization step [87]. This is rarely the case but can be used to
construct WFs with desired symmetry properties, as will be investigated in Sec. 3.4. For sets containing
more than one band, the choice of trial functions with the proper symmetry after the tables of Sec. 2.5.6
can reduce the minimization time and even avoid false minima, i. e., terminated iterations that yield
asymmetric or delocalized WFs.
Judging from (3.12) again, one can deduce that the Bloch modes at the Γ-point of the BZ are well

suited as trial functions [35]. This can be seen as follows. If WFs for the lowest possible resolution
Nk-res,i = 1 are constructed, the corresponding MP mesh contains just k = 0 and the numerical WF
for that case is just the Bloch mode at the Γ-point. Successively increasing the resolution Nk-res,i

will continuously generate better approximations to the proper WF. In practice, we use Γ-point Bloch
modes and unitary transforms thereof that are cropped to one WSC-shape domain which is located at
one of the Wycko� positions of the center cell. The transforms and positions to use are governed by
the site symmetry analysis Sec. 2.5.6. Before any knowledge about symmetries was available, randomly
positioned Gaussian functions were also used. Their performance is investigated in the examples starting
with Sec. 3.4.

3.3.3 Souza Subspace Optimization

If no closed sets of bands are available or the closed set available has so many bands that the Marzari-
Vanderbilt spread minimization is no longer feasible, an arti�cially closed set of generalized bands has
to be constructed. This is accomplished by the Souza subspace optimization which is designed to create
such an arti�cial set of the periodic parts |ũnk〉 of generalized band functions, for which the Marzari-
Vanderbilt algorithm can be applied later on. Additionally it can also be used to increase the localization
WFs by relieving the delocalization e�ects of avoided crossings between closed sets of bands.
Mathematically speaking, in order to construct NWF WFs, the Marzari-Vanderbilt algorithm expects

a linear space S(k) at each node k in the MP mesh, spanned by NWF functions |ũnk〉. For closed sets of
bands, the periodic parts |unk〉 of proper Bloch modes could readily be used as those |ũnk〉. The key idea
for the treatment of entangled bands lies in the fact that by the entanglement some mode information
is carried away out of these spaces S(k). This information has to be put back somehow into the desired
spaces S(k) while removing unwanted Bloch mode pro�les that destroy the localization of the WFs.
This idea leads to a procedure creating subspaces S(k) which are a similar as possible in a sense to be
de�ned in the following. This is schematically illustrated in Fig. 3.3.
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3.3 Review Of Spread Minimization Procedure

Figure 3.3: Schematic for the Souza subspace optimization with frequency windows. In this exam-
ple, NWF = 3 WFs shall be constructed from the Bloch modes belonging to the black dotted bands.
They form NWF-dimensional subspaces S(k), which may interchange Bloch modes with the grey
dotted bands lying within the outer window de�ned by ωouter. This de�nes the larger spaces F(k),
with NF(k) = 5 in this example. The bands within the inner frequency window ωinner may not leave
the subspaces S(k). Figuratively speaking, one can think of frozen bands that may not change, and
hot bands, whose mode information is lique�ed such that the wanted information settles down (into
S(k)) and the the unwanted pro�les �oat up like slag in a blast-furnace.

Therefore, at each k node in the MP mesh, one looks at linear spaces F(k) spanned by more proper
periodic parts |unk〉 than are needed to construct just NWF WFs. From these spaces F(k), one picks a
basis of exactly NWF generalized periodic parts |ũnk〉 that form the arti�cial generalized bands spanning
S(k). The subspace optimization procedure now picks those NWF basis functions (forming the optimized
subspaces S(k)) that lead to optimal localization of the WFs constructed from the unitary transforms
U(k) found by the Marzari-Vanderbilt algorithm afterwards.
The basis for this procedure is the fact that the spread functional Ω is actually the sum

Ω = ΩI + ΩD + ΩOD , (3.25)

where ΩD and ΩOD depend on the diagonal and o�-diagonal elements of the overlap matrices M(k,b),
respectively, and ΩI is invariant under unitary transforms U(k) within the subspaces S(k). Thus, the
choice of subspaces S(k) a�ects the lower boundary ΩI ≤ Ω, which has to be minimized now.
It turns out that ΩI becomes smaller if all the neighboring subspaces S(k + b) di�er as little as

possible from each S(k). Thus ΩI measures the 'global smoothness of connection' between the spaces
S(k) in the whole BZ, vanishing when they all become identical. By this procedure, a prerequisite for
meeting the continuity condition of Sec. 2.5.6 is facilitated in this step. The task of �nding the optimal
spaces is expressed as a self-consistent iteration scheme, where the mismatch between each new subspace
S(i+1)(k) and its neighboring spaces S(i)(k,b) from the previous iteration step is minimized.
This ansatz leads to the de�nition of projection operators

P̂ (i)(k) :=
∑
n

|ũ(i)
nk〉〈ũ

(i)
nk| , (3.26)

that project onto the space spanned by the NF(k) periodic parts of the generalized Bloch modes from
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3 Wannier Function Generation

the ith iteration step. Then the eigenvalue problem for each of the operators

Ẑ(i)(k) :=
∑
b

wbP̂
(i)(k + b) , (3.27)

Ẑ(i)(k)|ũ(i+1)
nk 〉 = λnk|ũ

(i+1)
nk 〉 (3.28)

has to be solved at each k, where the NWF eigenvectors with largest eigenvalues λnk form the new
optimal subspace S(i+1)(k) because spaces spanned by these functions have largest overlap and are
therefore most similar. In the implementation of the algorithm, the operators Ẑ(i)(k) can be expressed
by the overlap matrices M (i)(k,b), for which the explicit update scheme has been omitted here.

3.3.4 Frequency Windows

In order to have some rudimentary control over which mode information is allowed to leave and enter
the spaces S(k), one could explicitly de�ne which periodic parts |unk〉 must stay in S(k) which ones are
allowed to leave S(k) and which ones are allowed to enter from the larger spaces F(k). For the sake
of simplicity, this is done by de�ning contiguous frequency intervals (frequency windows) of cold/frozen
and hot/molten functions |unk〉 that are prohibited or allowed to take part in the subspace optimization
procedure, respectively. These �gures of speech mean that frozen bands do not change at all, while the
mode information in molten bands is allowed to leave the spaces S(k) and can be switched with other
bands de�ned in F(k). All Bloch modes |unk〉 with frequencies ωnk below the inner frequency ωinner are
frozen, while those with frequencies between ωinner and the outer frequency window ωouter take part in
the optimization and exchange mode information with each other.
The actual choices of these frequencies can alter the �nal WFs drastically, up to the point where the

algorithm gets unstable and cannot �nd the proper maximally localized WFs any more. The symmetry
considerations of Sec. 2.5.6 however can guide the choice, as will be investigated in the examples.

3.3.5 Choice of Initial Subspaces

One has to construct the initial subspaces S(0)(k) under the frequency window constraints: all Bloch
modes |ψnk〉 with frequencies below ωinner must be included, while the other Bloch modes are allowed
to form new basis states of the rest of the space F(k). This is again done by specifying NWF trial
functions |Tn〉 and constructing that many generalized Bloch |ψ̃nk〉 modes by (3.23). Then one de�nes
the projection operators P̂F(k) onto the full F(k) and P̂inner that projects on the space of �xed Bloch
modes in the inner frequency window:

P̂F(k) :=
∑
n

|ψ̃nk〉〈ψ̃nk| , (3.29)

P̂inner(k) :=
∑

n:ωnk<ωinner

|ψnk〉〈ψnk| . (3.30)

For P̂F(k), the generalized WFs |ψ̃nk〉 for the exceeding bands n that have no trials speci�ed are just
taken to be the proper Bloch function |ψnk〉. The operator

Q̂inner(k) := 1̂− P̂inner(k) (3.31)

projects onto that subspace of F(k), where the basis functions are allowed to change and �nally one
solves the eigenvalue equation

Q̂inner(k)P̂F(k)(k)Q̂inner(k)|λnk〉 = λnk|λnk〉 . (3.32)

56



3.3 Review Of Spread Minimization Procedure

The eigenfunctions |λnk〉 with largest eigenvalues are used to extend the �xed basis to NWF basis
functions of S(0)(k). These basis functions have the largest overlap with the chosen trial functions,
approximating them best within the subspaces S(0)(k).
A schematic illustration of the full Souza-Marzari-Vanderbilt spread minimization procedure with

initialization of the subspaces and basis functions is shown in Fig. 3.4.

Figure 3.4: Schematic illustration of the full Souza-Marzari algorithm. Subspaces S(k) for adjacent
nodes k are shown as planes (two-dimensional linear spaces) embedded in three-dimensional spaces
F(k). The generalized Bloch functions |ψ̃nk〉 are depicted as orthogonal basis vectors spanning the
planes. After choosing initial subspaces (1), the Souza algorithm minimizes the invariant part ΩI by
aligning the spaces as well as possible (2). The particular choice of basis functions is not relevant.
After the spaces S(k) have been �xed, the trial functions provide a rough guess for aligning the basis
functions (3). Their alignment is further optimized by minimizing the spread functional Ω, yielding
generalized Bloch modes |ψ̃nk〉 that are as smooth in k as is possible, yielding localized WFs (4).

3.3.6 Bottom-Up Approach

So far, eventual Bloch mode pro�les have been moved to higher generalized Bloch bands by the Souza
subspace optimization. These generalized Bloch modes outside the subspaces S(k) have to be used for
the construction of WFs for higher bands by repeating the steps of the full Souza-Marzari-Vanderbilt
(SMV) algorithm of Fig. 3.4. This iterated procedure is referred to as the bottom-up approach and allows
to produce an unlimited number of WFs in theory, starting from the �rst band of the band structure.
Thus, a large unitary transform matrix U(k) in (3.2) is successively built from smaller transform matrices
obtained for each chose band set and frequency windows. Some examples for �nal WFs are shown in
Fig. 3.44 with corresponding parameters listed in Tab. D.1b.
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3 Wannier Function Generation

3.4 Discussion of Spread Minimization Procedure: Square Lattice

We discuss the various steps of the spread minimization procedures and the parameter choices for the
TE square model system because the modes are easier to visualize than in the triangular case.

3.4.1 Single Bands 1 and 2

The �rst two bands of Fig. 3.1b are separated by band gaps and thus form two closed sets of bands.
Hence, one can construct one WF for each band. The site symmetry analysis by Tab. 2.1 is shown in
Tab. 3.1 and yields two unique solutions for symmetric WFs: A1(a) for band 1 and A1(b) for band 2.
As mentioned in Sec. 3.3.2, the choice of proper trial functions (i. e., having the spatial symmetry and

Γ X M WF irrep

A1 A1 A1 A1(a)

(a) Band 1

Γ X M WF irrep

A1 B2 B2 A1(b)

(b) Band 2

Table 3.1: Symmetry of Bloch modes for the closed bands 1 and 2. They yield unique representations
for the WFs.

localization center of the anticipated WF), will make the initial WF also the �nal maximally localized
WFs. No further minimization step is necessary then.
Various choices of truncated Γ-point Bloch modes as trial functions and the resulting initial WFs

along with their spread
(
∆r
)2 are shown in Figs. 3.5 and 3.6. The trial functions are cropped around

the Wycko� positions a, b, c. These positions su�ce, since further possible site symmetry representations
for WFs can be constructed from them (see Sec. 3.8.1).
The WF pro�les have been plotted along the dashed cut directions in Fig. 3.7. As mentioned in [37],

only the proper choice of symmetries after Sec. 2.5.6 ensures exponential decay of the WFs, otherwise
they decay like 1/r in some directions.
To illustrate the meaning of the proper phase choices exp(iφn(k)) in the single band case, the phase

distribution for the two bands has been plotted in Figs. 3.9 and 3.10. In particular, Fig. 3.10 shows that
one has some direct control over the localization of the WF within the center cell by adjusting the global
phase factors of the Bloch modes [37].
In Fig. 3.11, the Marzari-Vanderbilt spread minimization has been carried out for the various choices

of trial functions from Figs. 3.5 and 3.6. The number of iteration steps before termination are shown
in the legends. One can see that choosing the trial functions according to the symmetry considerations
of Sec. 2.5.6, no further improvement in the localization can be achieved. Moreover, the trial choice for
band 2 strongly a�ects the �nal WF obtained. For all three choices other than the one predicted by
symmetry analysis, the minimization algorithm got stuck in local minima and yielded unsymmetric WFs,
that are worse localized. Even in this simple case, the outcome of the Marzari-Vanderbilt procedure
strongly depends on the choice of initial parameters provided by the user.
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a b c random Gaussian
(a) Trial functions |Tn〉

Ωn = 0.20 Ωn = 1.44 Ωn = 0.82 Ωn = 0.21
(b) Initial WFs |W (0)

n0 〉

Figure 3.5: Trial functions and corresponding initial (non-minimized) WFs with individual spreads
Ωn for band n = 1. The �rst three trial functions are the Γ-point (k = 0) Bloch modes |nk〉 of the
�rst band, truncated on a WSC centered around the annotated Wycko� positions.
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3 Wannier Function Generation

a b c random Gaussian
(a) Trial functions |Tn〉

Ωn = 1.48 Ωn = 0.21 Ωn = 0.84 Ωn = 1.10
(b) Initial WFs |W (0)

n0 〉

Figure 3.6: Trial functions and corresponding initial (non-minimized) WFs with spreads Ωn for
band n = 2. See also caption of Fig. 3.5.

(a) Band n = 1 (b) Band n = 2

Figure 3.7: Wannier function pro�les along the dashed cut directions of Figs. 3.5 and 3.6.

60



3.4 Discussion of Spread Minimization Procedure: Square Lattice

Figure 3.8: The MP mesh discretization of the BZ with resolution Nk-res,i = 11 used to construct
the WFs in this chapter after (3.12).

Figure 3.9: Absolute values, phase distributions and real parts of the Bloch modes on a WSC before
and after the trial function projection, plotted at each k of the MP mesh shown in Fig. 3.8. On the
right, the resulting WFs for these choices of Bloch modes are shown. This illustrates the necessary
continuity in k of the Bloch modes, in order to produce localized WFs. Note also the symmetric
phase distribution and the resulting symmetry of the WF.
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3 Wannier Function Generation

Figure 3.10: For explanation, see caption of Fig. 3.9. The localization center within the WSC
can be shifted by ρ ∈ Rd, when multiplying the phase distribution by the k-dependent phase factor
exp(ikρ).

(a) Band n = 1 (b) Band n = 2

Figure 3.11: Spreads in the Marzari-Vanderbilt minimization procedure and the �nal WFs obtained
for the various choices of trial functions of Figs. 3.5 and 3.6. Legend also shows number of iteration
steps before the minimization terminated. Note that the trial function choice by the anticipated
symmetry and localization already yielded the maximally localized WFs, while arbitrary choices led
to false minima and unsymmetric and worse localized WFs.
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3.4 Discussion of Spread Minimization Procedure: Square Lattice

3.4.2 Closed Set of Bands 3–7

Bands 3�7 of Fig. 3.1b form a closed set and the site symmetry analysis predicts the unique site symmetry
irreps E(a), E(b) and B1(b) for the WFs, shown in Tab. 3.2.

Γ B1 E E
X B2 A1 A2 B1 B2

M A2 E E

WF irreps B1(b) E(b) E(a)

Table 3.2: Symmetry of Bloch modes for the closed set of bands 3�7. They yield unique site
symmetry irreps for the WFs after Tab. 2.1.

E(b) E(b) B1(b) E(a) E(a)
(a) Trial functions |Tn〉

Ωn = 0.13 Ωn = 0.13 Ωn = 0.11 Ωn = 0.30 Ωn = 0.30
(b) Initial WFs |W (0)

n0 〉

Ωn = 0.067 Ωn = 0.067 Ωn = 0.064 Ωn = 0.233 Ωn = 0.233
(c) Minimized WFs |Wn0〉

Figure 3.12: Trial functions, corresponding initial (non-minimized) and �nal (spread minimized)
WFs with individual spreads Ωn for bands 3�7.

The cropped Γ-point trials and initial as well as �nal (spread minimized) WFs are shown in Fig. 3.12.
Though the individual spreads are reduced by the Marzari-Vanderbilt minimization procedure, the WFs
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3 Wannier Function Generation

obtained are strangely distorted and do not resemble the anticipated symmetry. However, this result can
still be understood with Tab. 2.1. The �rst three functions localized in the vicinity of Wycko� position b
look quite similar to basis functions of the site symmetry irrep A(f) in Fig. F.9. Apparently the spread
minimization tries to hybridize three functions to this four-dimensional irrep A(f) which produces better
localized but unsymmetric WFs, since the fourth function is missing. There are three possible solutions:

1. One could work with the already well localized initial WFs.

2. One could enforce the desired irreps by forcing some constraints on the unitary transforms U(k)
[37, 38]. This would require a substantial adaption of the Marzari-Vanderbilt algorithm.

3. One could use a larger closed set of bands, in the hope that the new bands introduce the symmetries
needed to establish the A(f) representation.

Item 1 would require the least work, item 2 is possible and a systematic approach to obtain the best
localization possible. Item 3 depends on the particular band structure and whether a band with the
desired symmetries exists in the vicinity of the band set 3�7. Fortunately, this rare situation is the case
here and investigated in Sec. 3.4.3.
Let us brie�y review the continuity condition for the generalized Bloch modes in this example. Fig. 3.14

shows the absolute values of the complex Bloch modes before and after the trial function projection and
the WFs they produce. One can see, how the band structure is disentangled by the trial function
projection which puts similar mode pro�les into the same generalized Bloch mode bands |ψ̃nk〉.

(a) E(b) (b) B1(b) (c) E(a)

Figure 3.13: Overlaps |〈〈ψmk‖W
(0)
n0 〉〉|2 (as symbol size) along the high symmetry lines of the BZ,

illustrating the distribution of the generalized Bloch mode pro�les that yield maximally localized WFs
among the entangled bands. m = 3, . . . , 7 labels the bands in black. For explanation, see text.

As a further illustration for the wild distribution of the generalized Bloch mode information which leads
to exponentially localized WFs, the contributions |〈〈ψmk‖W

(0)
n0 〉〉|2 of the Bloch modes to the particular

WFs is plotted in Fig. 3.13. The Bloch mode irrep labels according to the little co-group G0k are also
shown. The B1(b) WF (Fig. 3.13b), e. g., needs B1(Γ), B2(X) and A2(M) Bloch modes according to
Tab. 2.1. Fig. 3.13b illustrates this nicely, as the highest contributions for this WF come from the Bloch
mode band 5 at Γ. Then the contribution is continuously transferred along the ΓX-direction between
bands 5 and 7 as an anticrossing (because these bands transform like the same irreps A). Afterwards
it passes through the X-point, where the Bloch modes form the irrep B2(X), stays in band 7 until the
M -point, where the mode information again is transferred continuously into band 5. The degenerate
WF irreps can be visualized in the same fashion (Figs. 3.13a and 3.13c), but all WFs of the irrep have
to be considered. The WF information is split up among several Bloch bands here.
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3.4 Discussion of Spread Minimization Procedure: Square Lattice

Figure 3.14: Absolute values of the Bloch modes before and generalized Bloch bands after the
trial function projection, plotted at each k-point of the MP mesh of Fig. 3.8. The disentanglement
achieved for |ψ̃nk〉, whose pro�les are continuous in k now, is clearly visible.
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3.4.3 Closed Set of Bands 2–7

As hinted to in Sec. 3.4.2, an alternative closed set of bands can be considered for the Marzari-Vanderbilt
spread minimization. The Bloch mode irreps of Bands 2�7 are shown in Tab. 3.3, yielding two possible
sets of WFs site symmetry irreps after Tab. 2.1. One possible choice is A1(b), E(b), B1(b) and E(a),
another choice is A(f) and E(a), where the four functions for A1(b), E(b), B1(b) hybridized to four
functions of A(f). As it turns out, the hybridized versions have lower spread Ω and are therefore favored
by the Marzari-Vanderbilt spread minimization. This is illustrated in Fig. 3.15.

Γ A1 B1 E E
X B2 B2 A1 A2 B1 B2

M B2 A2 E E

WF irreps A1(b) B1(b) E(b) E(a)
A(f) E(a)

Table 3.3: Symmetry of Bloch modes for the closed set of bands 2�7. Two sets of WF site symmetry
irreps are allowed now (see text).

In this case (as opposed to using bands 3�7), the Marzari-Vanderbilt spread minimization yielded the
predicted site symmetry irreps for the WFs. But what if band 2 had not given the desired combination
of Bloch mode symmetries? Then we would really have to resort to the initial WFs |W (0)

n0 〉 that may not
be as well localized as would be possible after a symmetry enforced spread minimization.
Choosing the proper trial functions for this band set is again crucial for the shape of the �nal spread

minimized WFs as well as for the number of iteration steps. In Fig. 3.16 the spread Ω(i) in the ith
iteration step is shown for various choices of trial functions. The legend labels the following choices of
trial functions:

• The Wycko� letters a, b, c stand for the WSC-cropped Γ-point Bloch modes for bands 3�7,

• `ant center' means Γ-point Bloch modes cropped to a WSC that is centered around the anticipated
Wycko� positions a and b according to the predicted site symmetry irreps (b was chosen to model
the irrep A(f)),

• `ant rep' stands for the trial functions shown in Fig. 3.15a that have also been unitarily transformed
such that they are already basis functions for the predicted site symmetry irreps,

• random Gaussians as trial functions have also been investigated for comparison.

Both sets of trial functions were used in two procedures:

• A steepest descent minimization which terminated for a relative spread change of 10−4 and was
followed by a CG minimization (Fig. 3.16a), and

• a pure CG minimization (Fig. 3.16b).

The legend shows the total number of iteration steps i performed until the iteration terminated.
Both plots show that the in�uence of the trial functions on the outcome is tremendous. In Fig. 3.16a,

the combined use of both minimization techniques yielded the �nal WFs of Fig. 3.15c in any case, but
the number of iteration steps needed varies between 185 and 1055. Apparently, the trial functions that
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3.4 Discussion of Spread Minimization Procedure: Square Lattice

A(f) A(f) A(f) A(f) E(a) E(a)
(a) Trial functions |Tn〉

Ωn = 0.09 Ωn = 0.09 Ωn = 0.09 Ωn = 0.09 Ωn = 0.32 Ωn = 0.32
(b) Initial WFs |W (0)

n0 〉

Ωn = 0.065 Ωn = 0.065 Ωn = 0.065 Ωn = 0.065 Ωn = 0.247 Ωn = 0.247
(c) Minimized WFs |Wn0〉

Figure 3.15: Trial functions, corresponding initial (non-minimized) and �nal (spread minimized)
WFs with spreads Ωn for bands 2�7. The Γ-point trials have been unitarily transformed to the
anticipated site symmetry irreps predicted by Tab. 3.3. Note the striking similarity of the Γ-point
trials and the initial WFs.

already form bases of the anticipated site symmetry irreps resemble the �nal WFs the most and yielded
the fastest spread minimization procedure. In Fig. 3.16b, only three choices (ant rep, ant center, c) of
trial functions led to the WFs of Fig. 3.15c at all. The other choices caused the minimization to get stuck
in false local spread minima. Again, the ant rep versions performed best, yielding the spread minimized
WFs with the fewest number of iteration steps. This outcome is as expected, since the CG minimization
algorithm only works well for good starting points near a local minimum, but then it converges very
fast.

In order to decide, whether the WFs obtained are symmetric or not, one usually has to assemble the
WFs in real space by evaluating (3.12). Then the symmetry of the resulting WFs can be investigated.
Depending on the total number of k points Nk-res and the real space resolution Nres,i of the Bloch
modes, this consumes a lot of time and can easily dominate the whole minimization process. However,
the localization centers 〈r〉n after (3.6) are a byproduct of the spread minimization and available even
before the WFs are assembled. In order that the WFs form site symmetry irreps, a necessary condition
is that their localization centers should add up to integer multiples of half a lattice vector (accounting
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3 Wannier Function Generation

(a) Steepest Descent followed by Conjugate Gradient (b) Conjugate Gradient only

Figure 3.16: Spreads Ω(i) after i iteration steps for the Marzari-Vanderbilt minimization using

various choices of trial functions (i. e., initial WFs |W (0)
n0 〉). For explanation, see text. Black ar-

rows denote instabilities in the minimization algorithm, where the spread suddenly grows instead of
becoming smaller.

for the allowed Wycko� positions b and c), otherwise their centers would be distorted. That means∑
n

〈r〉n
!= s1a1 + s2a2 , si ∈ {0,±0.5,±1, . . .} . (3.33)

If this condition is violated, the WFs are surely unsymmetric and need not be plotted. This also holds
for the electric �eld case, even if 〈r〉n is not exactly the localization center. Due to the full symmetry
of εPC(r), the sum

∑
n〈r〉n still has to ful�ll condition (3.33). An example for this quantity is found in

Tab. 3.5.
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3.5 Entangled Bands

3.5 Entangled Bands

In this section, the Souza subspace optimization is demonstrated by an example.

3.5.1 Bands 12–15

As seen in the previous sections, the proper choice of trial functions is vital for the rate and success of
convergence of the Marzari algorithm. Therefore, we usually want to include as much knowledge about
the �nal WFs as possible into the trial functions. For entangled bands (i. e., a subset of bands from
a closed set of bands), the symmetry analysis according to Sec. 2.5.6 cannot be applied. Furthermore,
the arti�cially closed set of bands generated by the Souza subspace optimization cannot be analyzed in
terms of irreps of little co-groups G0k, since the generalized Bloch modes are some linear combination
of the proper Bloch modes and, hence, do no longer form de�nite irreps with de�nite symmetries.
However, we may still take a look at the available proper Bloch mode symmetries and assemble a

list of the most probable anticipated WFs symmetries and localization centers. This will help us in
constructing the trial functions from the Γ-point Bloch modes.
We consider bands 12�15 of the closed set 12�19 for didactical purposes, since 12�19 is still small

enough to be processed with the Marzari-Vanderbilt spread minimization algorithm.

Figure 3.17: Bands 12�19 of the TE square model system with little co-group irrep labels. We want
to construct four WFs. However, the lowest four bands (12�15, green) do not form a closed set,
since they are degenerate with a higher band at the M -point (denoted by the arrow).

Marzari-Vanderbilt Spread Minimization

The Bloch mode symmetries from Fig. 3.17 for the bands 12�15 are shown in Tab. 3.4. The bands do
not form a closed set now, with the consequence that only one of two degenerate E irrep Bloch modes
is available at the M -point. However, this band 15 belongs to irreps B(Z) along XM and A(Σ) along
MΓ. By the compatibility relations, these modes could as well end in a B2 irrep at the M -point (as
band 17 does). In the MP mesh of Fig. 3.8 that is used for constructing the WFs of this chapters, the
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3 Wannier Function Generation

M -point is not included. That means, judging by symmetry alone, the numerical WFs do not �know�
if there is an E or B2 mode at the M -point. In the latter case, the site symmetry analysis by Tab. 2.1
allows the WFs irreps B1(a), A1(b) and B1(c). Indeed, these WFs symmetries are obtained from the
Marzari-Vanderbilt spread minimization regardless of the particular trial functions used. Furthermore,
as Fig. 3.19c shows, the contributions to the B1(c) WFs also come from the Bloch modes belonging to
band 15 around the M -point, supporting the interpretation of the single E(M) Bloch modes as B2(M).

Γ B1 A1 E
X A1 B2 A2 B2

M B1 B2 A2 (E,B2)

WF irreps B1(a) A1(b) B1(c)

Table 3.4: Symmetry of Bloch modes for the set of bands 12�15. At M only one of two degenerate
E modes is available for this band set. However, by the compatibility relations, this mode may also
appear as having B2 symmetry. For explanation, see text.

The connection between Bloch mode symmetries and �nal WFs can also be seen from the overlap
data of Fig. 3.19. The overlaps |〈〈ψmk‖W

(0)
n0 〉〉|2 illustrate which Bloch modes m in the band structure

contribute to the �nal spread minimized WFs n at each k. One can clearly see that the bands with
the proper symmetry predicted by the site symmetry analysis of Tab. 2.1 contribute the most to a WF
forming a particular site symmetry irrep. This observation corresponds well to the plot of the overlaps
|〈〈ψmk‖Tn〉〉|2 of Bloch modes m with the trial functions n chosen in Fig. 3.18a. The similarity between
the plots shows that the overlap of the Γ-point Bloch modes used as trial functions yields a very good
estimate for the expected contributions of Bloch modes to the �nal WFs. Additionally, as Fig. 3.18b
shows, using these trials already gives initial WFs W (0)

n0 that are very close to the spread minimized �nal
WFs. The degenerate individual spread Ωn indicates that the initial WFs are more symmetric than the
�nal spread minimized ones. Thus, the minimization procedure tends to distort the WFs. All in all,
these results illustrate nicely the ability of properly chosen symmetry adapted Γ-point trials to give a
very good estimate of the �nal maximally localized symmetric WFs.
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3.5 Entangled Bands

B1(a),Ωn =
0.24

A1(b),Ωn =
0.10

B1(c),Ωn =
0.17

B1(c),Ωn =
0.17

(a) Trial functions |Tn〉 for Marzari spread minimization

Ωn = 0.56 Ωn = 0.17 Ωn = 0.64 Ωn = 0.64
(b) Initial WFs |W (0)

n0 〉 before Marzari spread minimization

Ωn = 0.56 Ωn = 0.20 Ωn = 0.54 Ωn = 0.65
(c) Minimized WFs |Wn0〉 after Marzari spread minimization

Figure 3.18: Trial functions, corresponding initial WFs and �nal WFs after Marzari spread min-
imization (no Souza subspace optimization was carried out) for the bands 12�15 of Fig. 3.17. The
anticipated site symmetry irreps constructed from the Γ-point Bloch modes were used as trials. Judg-
ing from the non-degenerate individual spread Ωn, the degenerate B1(c) modes are still a bit distorted,
though they look perfectly symmetric. The initial WFs are again very similar to the Γ-point trial
functions used.
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3 Wannier Function Generation

(a) B1(a), WF/Bloch mode over-
lap

(b) A1(b), WF/Bloch mode over-
lap

(c) B1(c), WF/Bloch mode over-
lap

(d) B1(a), Trial/Bloch mode over-
lap

(e) A1(b), Trial/Bloch mode over-
lap

(f) B1(c), Trial/Bloch mode over-
lap

Figure 3.19: Bloch mode overlaps (as symbol size) (a)�(c) |〈〈ψmk‖W
(0)
n0 〉〉|2 with �nal WFs

(Fig. 3.18c) and (d)�(f) |〈〈ψmk‖Tn〉〉|2 with trial functions (Fig. 3.18a) along the high symmetry
lines of the BZ, illustrating the entanglement of the Bloch mode information that yield maximally
localized WFs. m = 12, . . . , 19 labels the bands in black. For explanation, see text.
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3.5 Entangled Bands

Souza Subspace Optimization

Now we want to see which WFs can be created from the Souza subspace optimization using the chosen
band set. To this end, we vary the frequency windows and trial functions and investigate the symmetries
and spreads of the resulting �nal WFs. For the sake of simplicity, we use the same sets of trials for both
the Souza and Marzari-Vanderbilt initialization.

B1(a) A1(a) E(a) E(a)
(a) Trial functions |Tn〉

Ωn = 0.64 Ωn = 3.13 Ωn = 2.29 Ωn = 2.29
(b) Initial WFs |W (0)

n0 〉 after Souza subspace optimization

Ωn = 0.60 Ωn = 0.28 Ωn = 0.61 Ωn = 0.48
(c) Minimized WFs |Wn0〉 after Marzari spread minimization

Figure 3.20: Trial functions (Γ-point trials cropped around Wycko� position a) and corresponding
initial WFs after Souza subspace optimization (ωinner = 0.0, ωouter = 1.1) and after Marzari spread
minimization.

First of all, we keep the outer frequency ωouter = 1.1 �xed and do not use an inner frequency, e�ectively
setting ωinner = 0.0. This allows the mode information of band 16 (�rst black band in Fig. 3.17) to be
incorporated into the WFs. The Γ-point trials cropped to a WSC around Wycko� position a were used
in Fig. 3.20 and yielded strongly distorted WFs. Random Gaussians (Fig. 3.22) gave similar results. The
use of trials cropped around Wycko� position b, however, gave four symmetric and highly localized A(f)
WFs with degenerate individual spreads (Fig. 3.21). There are two possible unitary transforms to create
trial functions transforming like the irrep A(f) from Γ-point Bloch modes. Both choices lead to the same
�nal WFs with the combined Souza-Marzari-Vanderbilt algorithm. They are shown in Figs. 3.23 and
3.24, where the similarity between the trials and the �nal spread minimized WFs is striking. Comparing
the spreads of initial and �nal WFs, it seems that the trial function combination with lower initial
spread determines the shape of the �nal WFs, but this conjecture is based merely on the investigation
of this single case. However, the information about the initial WF spread is readily available before any
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3 Wannier Function Generation

iteration procedure and can be used to aid in the choice of appropriate trials before any time consuming
minimization or WF assembly step has been carried out.

B1(b) A1(b) E(b) E(b)
(a) Trial functions |Tn〉

Ωn = 0.41 Ωn = 0.14 Ωn = 0.55 Ωn = 0.55
(b) Initial WFs |W (0)

n0 〉 after Souza subspace optimization

Ωn = 0.386 Ωn = 0.386 Ωn = 0.386 Ωn = 0.386
(c) Minimized WFs |Wn0〉 after Marzari spread minimization

Figure 3.21: Trial functions (Γ-point Bloch modes cropped around Wycko� position b) and corre-
sponding initial WFs after Souza subspace optimization and after Marzari spread minimization.

The importance of choosing proper trial function combinations can be seen from Fig. 3.25, most of all
Fig. 3.25a. There we see that the trial choices of a, c and random Gaussians yield a smaller invariant
spread ΩI as the choices c, A(f) variant 1 and A(f) variant 2 do. However, only the latter three give
symmetric and localized WFs with smallest �nal spread Ω. Additionally, the anticipated A(f) irrep
trials of variant 1 yield the �nal WFs after the smallest number of iteration steps. Thus, it is not the
global minimum of ΩI that leads to maximally localized �nal WFs, but the local minimum which is
determined by the proper choice of trial functions.
The degree of distortion of the WFs from the anticipated irreps can be estimated before carrying out

the time consuming assembly procedure (3.15) and then plotting the WFs. By (3.33), we can determine
the deviation from symmetric versions of the WFs in each iteration step by evaluating the sum of their
localization centers according to (3.20). Tab. 3.5 lists the sum of centers for the �nal WFs of this section.
Note how centers sum up according to (3.33) for the symmetric WFs in the plots.
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3.5 Entangled Bands

A(g) A(g) A(g) A(g)
(a) Trial functions |Tn〉

Ωn = 0.67 Ωn = 0.77 Ωn = 1.21 Ωn = 0.61
(b) Initial WFs |W (0)

n0 〉 after Souza subspace optimization

Ωn = 0.58 Ωn = 0.42 Ωn = 0.21 Ωn = 0.46
(c) Minimized WFs |Wn0〉 after Marzari spread minimization

Figure 3.22: Trial functions (random Gaussians) and corresponding initial WFs after Souza sub-
space optimization and after Marzari spread minimization.

Trial function set |Tn〉
∣∣∣2∑n〈r〉n −Rnearest

∣∣∣2
WSC a (Fig. 3.20) 1.05× 10−1

WSC b (Fig. 3.21) 2.90× 10−16

WSC c (no plots) 7.70× 10−4

Rnd. Gaussians (Fig. 3.22) 4.02× 10−1

ant. rep 1 (Fig. 3.24) 1.30× 10−15

ant. rep 2 (Fig. 3.23) 5.50× 10−17

Table 3.5: Deviation of (twice the) sum of centers (3.20) from the nearest lattice vector Rnearest for
the spread minimized WFs obtained with the combined SMV spread minimization for bands 12�15,
depending on the chosen trial functions. Note how the small deviations from (3.33) are correlated
with the symmetric WFs.
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3 Wannier Function Generation

A(f),Ωn =
0.095

A(f),Ωn =
0.095

A(f),Ωn =
0.095

A(f),Ωn =
0.095

(a) Trial functions |Tn〉

Ωn = 0.41 Ωn = 0.41 Ωn = 0.41 Ωn = 0.41
(b) Initial WFs |W (0)

n0 〉 after Souza subspace optimization

Ωn = 0.386 Ωn = 0.386 Ωn = 0.386 Ωn = 0.386
(c) Minimized WFs |Wn0〉 after Marzari spread minimization

Figure 3.23: Trial functions and corresponding initial WFs after Souza subspace optimization and
after Marzari spread minimization. These trial functions are referred to as anticipated A(f) irrep 2.
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3.5 Entangled Bands

A(f),Ωn =
0.08

A(f),Ωn =
0.08

A(f),Ωn =
0.08

A(f),Ωn =
0.08

(a) Trial functions |Tn〉

Ωn = 0.393 Ωn = 0.393 Ωn = 0.393 Ωn = 0.393
(b) Initial WFs |W (0)

n0 〉 after Souza subspace optimization

Ωn = 0.386 Ωn = 0.386 Ωn = 0.386 Ωn = 0.386
(c) Minimized WFs |Wn0〉 after Marzari spread minimization

Figure 3.24: Trial functions and corresponding initial WFs after Souza subspace optimization and
after Marzari spread minimization. These trial functions are referred to as anticipated A(f) irrep 1.
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3 Wannier Function Generation

(a) ΩI convergence for various trial functions

(b) Ω convergence for various trial functions

Figure 3.25: Convergence of ΩI for the Souza subspace optimization and the �nal combined spread
Ω for the subsequent Marzari-Vanderbilt spread minimization for various choices of trial functions
shown in Figs. 3.20 to 3.24. Trials used were Γ-point Bloch modes cropped to a WSC around Wycko�
position a (Fig. 3.20), b (Fig. 3.21), c (functions not plotted), random Gaussians (Fig. 3.22), and
the anticipated A(f) irreps by the site symmetry analysis, in variant 1 of Fig. 3.24 and variant 2 of
Fig. 3.23. Note the fast convergence and lack of instabilities (increasing spread causing peaks) when
using b, irrep variant 1 and irrep variant 2.
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3.5 Entangled Bands

Outer Frequency Window ωouter and Wannier Function Localization

Now we want to investigate the in�uence of the frequency windows on the localization of the �nal WFs.
We use the A(f) trial functions of Fig. 3.24 for both the Souza and Marzari-Vanderbilt initialization.
Therefore, the trial function overlap |〈〈ψmk‖Tn〉〉|2 is plotted along with the �nal spread achieved in
Fig. 3.26. The trial function overlap gives a rough estimate which Bloch bands will contribute signi�-

Figure 3.26: Left: Individual spreads Ωn of �nal WF band n = 12 for various upper frequency values
ωouter (no Souza means, only the subspace initialization but no Souza iteration step was carried out).
The inset pictures are annotated with the particular values for spread and ωouter. Right: Overlaps∑

n |〈〈ψmk‖Tn〉〉|2 for the anticipated site symmetry irreps A(f) trial functions of Fig. 3.24a for each
Bloch band m = 12, . . . , 19. For explanation, see text.

cantly to the �nal WFs. In the spread plot (Ω achieved for outer frequency ωouter), the inset WFs shown
were obtained with and without running the Souza subspace optimization, but with initializing the sub-
spaces using varying upper frequencies ωouter after Sec. 3.3.5. The WF for ωouter = 0.0 was obtained by
using the pure Marzari-Vanderbilt minimization only, the results of which are shown in Fig. 3.27. This
gives an impression on the e�ect of the Souza subspace optimization procedure and its in�uence on the
spread of the �nal WFs.
As soon as the Souza optimization is used (ωouter = 1.1), the individual spread Ωn drops to less

than half the previous value. This corresponds with the trial function overlap of band 16, in particular
along XM and the missing overlap of band 14. The unnecessary mode information of band 14 may
leave the subspace while the mode information of band 16 now enters the subspace forming the �nal
WFs (cf. Fig. 3.3). With increasing ωouter the individual spread Ωn drops continuously with a knee at
ωouter = 1.124. The reason for this behavior is not fully clear.
The read curve in Fig. 3.26 shows the spreads obtained for just carrying out the subspace initialization

procedure without any further Souza iteration step optimization. These WFs show no uni�ed behavior.
Their spread rises and falls, showing that one cannot neglect the subspace optimization if one is interested
in obtaining localized WFs.
The correspondence between trial function overlap and localization of WFs again nicely illustrates the

power of the site symmetry analysis. The �nal A(f) WFs are almost supported by bands 12�15 alone
(green bands in Fig. 3.17): instead of the B1 Bloch mode irrep at M , this would require the two E
modes at M . But this information is only available when the frequency windows mentioned above are
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3 Wannier Function Generation

used and the unwanted B1 Bloch modes around M may leave the subspace.
We compare the �nal WFs and �nal spreads obtained by the Souza subspace optimization with the

ones obtained by using the Marzari-Vanderbilt minimization only, as in the previous section. This time,
however, we use the A(f) version 1 trial functions which is shown in Fig. 3.27.

A(f),Ωn =
0.08

A(f),Ωn =
0.08

A(f),Ωn =
0.08

A(f),Ωn =
0.08

(a) Trial functions |Tn〉 for Marzari spread minimization

Ωn = 0.78 Ωn = 0.78 Ωn = 0.78 Ωn = 0.78
(b) Initial WFs |W (0)

n0 〉 before Marzari spread minimization

Ωn = 0.73 Ωn = 0.81 Ωn = 0.79 Ωn = 0.71
(c) Minimized WFs |Wn0〉 after Marzari spread minimization

Figure 3.27: Trial functions, corresponding initial WFs and �nal WFs after Marzari spread min-
imization (no Souza subspace optimization was carried out) for the bands 12�15 of Fig. 3.17. The
anticipated site symmetry irreps constructed from the Γ-point Bloch modes were used as trials. How-
ever, the �nal WFs are slightly distorted which can also be seen from their non-degenerate individual
spreads.

Though it is possible, to construct initial WFs with the desired symmetry (which was also possible
for the bands 1 and 2, cf. Figs. 3.5 and 3.6), the individual spread of Ωn = 0.78 is still large, and in fact,
larger than the combined spread of the WFs obtained in the previous section considering the proper
site symmetry analysis of the set of bands 12�15. The Marzari-Vanderbilt spread minimization does not
improve the spread signi�cantly here, but it distorts the symmetric initial WFs.

80



3.5 Entangled Bands

(a) Marzari spread minimization without frequency
windows

(b) Band grouping 12�15 with frequency windows

Figure 3.28: Real space decay behavior of WF band n = 12 obtained with the various methods
discussed in this section (no Souza means, only the subspace initialization but no Souza iteration step
was carried out). For distance r from the center 〈r〉 of the WF the value maxr:|r−〈r〉|=r |Wn0(r−〈r〉)|
has been plotted (maximal WF value on circles around the localization center). The functions decay
fast within three unit cells around the localization center 〈r〉, but still retain rather high values between
10−2 and 10−3 of the maximal function value for larger distances.

Ωn = 0.25 Ωn = 0.25 Ωn = 0.25 Ωn = 0.25
(a) A(f)

Ωn = 0.22
(b) B2(a)

Ωn = 0.57
(c) A2(b)

Ωn = 0.87 Ωn = 0.87
(d) A1(c)

Figure 3.29: Final WFs for closed set 12�19 obtained with Marzari-Spread minimization. The
WF irreps obtained agree with the available Bloch mode irreps Fig. 3.17 and the allowed irreps of
Tab. 2.1.
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3.6 Discussion of Spread Minimization Procedure: Triangular Lattice

The band structure for the lowest 9 bands of the triangular model system is shown in Fig. 3.30. The

(a) Band 1 (b) Bands 2�9

Figure 3.30: Band structure with irreps of Bloch modes along the high symmetry lines of the
triangular model system. The frequency range 0.88�1.12 is shown as the orange rectangle.

resulting possible combinations of WF irreps for the closed sets of bands according to Tab. 2.2 are shown
in Tab. 3.6. Some WFs of the combinations suggested in Tab. 3.6 are shown in Fig. 3.31. Bands 2�5
form a closed set with de�nite irreps (Fig. 3.31b), and so do bands 8�9, though they are rather extended
with large spread Ω (Fig. 3.31d). For the set 6�7, no irrep is predicted at all. Therefore, it is more
promising to look at the band set 2�9.
For the closed set of bands 2�9, the Marzari-Vanderbilt spread minimization yields distorted functions,

even though Tab. 3.6 predicted de�nite site symmetry irreps for this this set. This case is similar to
Fig. 3.12, where the predicted irreps were not obtained because unsymmetric combinations yielded an
even smaller combined spread Ω. The reason here is that the band gap between bands 9 and 10 is quite
small which allows those bands to swap mode information of bands 8 and 9 with higher bands.2

A symmetry enforcing variant of the Marzari-Vanderbilt algorithm could help here, but is not yet
available. However, using the Souza subspace optimization with the parameters of Fig. 3.31f gathers the
WF contributions from the higher bands and creates symmetric WFs.
Though the dipoles E1(a) from the set 2�5 and 2�9 (symmetric SMV versions) look quite similar, they

di�er drastically in their decay behavior (Fig. 3.32). While the closed set versions decay exponentially,
the SMV versions decay like 1/|r| after about three lattice sites distance from the localization center.
Thus, the Souza subspace optimization destroys the theoretically expected exponential localization of
the WFs, and it is desirable to use the Marzari-Vanderbilt (MV) spread minimization for closed sets
whenever possible. We will address this problem again later.

3.7 Instabilities of Souza Subspace Optimization

Unfortunately, the Souza subspace optimization is quite sensitive to changes in the MP mesh resolution
Nk-res,i. Here is an example from the triangular lattice for the bands 10�17 of the triangular model
2The smaller the gap between closed sets of bands, the less localized the resulting WFs are. This is discussed by Kohn
[74] and He and Vanderbilt [27].
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Γ A1

M A1

K A1

WF irrep A1(a)

(a) Band 1

Γ E1 A1 B2

M B1 B2 A1 B2

K E E

WF irrep E1(a) A1(b)

(b) Bands 2�5

Γ E2

M A1 A2

K A1 A2

WF irrep n.a. n.a.

(c) Bands 6�7 (no de�-
nite WF irreps available)

Γ E1

M B1 B2

K E

WF irrep E1(a)

(d) Bands 8�9

Γ E1 E2

M A1 A2 B1 B2

K A1 A2 E

WF irrep E(b)

(e) Bands 6�9

Γ E1 A1 B2 E1 E2

M B1 B2 A1 A1 A2 B1 B2 B2

K E A1 A2 E E

WF irreps E1(a) A(e)

(f) Bands 2�9

Table 3.6: Symmetry of Bloch modes for the closed sets of Fig. 3.30 and WF site symmetry irreps
they allow. Not all combinations yield de�nite WF irreps. Some site symmetry irreps are not unique;
only one possible combination is shown then.

system.
For a MP mesh resolution of Nk-res,i = 11 and the parameters ωinner = 1.3 and ωouter = 1.49 the WFs

of Fig. 3.35a were obtained. By the symmetries of the Bloch modes in Tab. 3.7, the WFs irreps E2(a)
and A(e) would be allowed if at K one A1 irrep were switched with the missing E basis function in the
higher bands (arrow in Fig. 3.33). This is the task of the Souza subspace optimization: allowing the
contaminating contributions of the A1 Bloch modes to di�use to higher bands and letting the wanted
contributions from the full E irrep enter the subspace that builds the WFs.

Γ E2 A1 B2 E1 E2

M A1 A2 A1 A1 A2 B1 B2 B2

K E A1 A2 E (E) A1

WF irreps E2(a) �A(e)�

Table 3.7: Symmetry of Bloch modes for the bands 10�17 of Fig. 3.33. The E irrep at the M -point
in parentheses means that only one of the two basis functions is included in this band set choice.
The A(e) irrep is not complete and therefore put in quotation marks.

This works well for Nk-res = 11, but constructing the same WFs with the same frequency windows
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3 Wannier Function Generation

A1(a)
(a) Band 1, MV

E1(a) E1(a) A1(b) A1(b)
(b) Bands 2�5, MV

no irrep no irrep
(c) Bands 6�7, MV

E1(a) E1(a)
(d) Bands 8�9, MV

�E1(a)� �E1(a)� �A(e)� �A(e)� �A(e)�
(e) Bands 2�9, MV (distorted)

E1(a) E1(a) A(e) A(e) A(e)
(f) Bands 2�9, Souza (ωinner = 0.88, ωouter = 1.12) and MV (symmetric)

Figure 3.31: WFs for some of the combinations of Tab. 3.6 obtained by (a)�(e) the Marzari-
Vanderbilt spread minimization and (f) the full Souza-Marzari-Vanderbilt algorithm (with the fre-
quency windows shown in Fig. 3.30). The WFs shown in (a), (c), (d) and (b) have the predicted
symmetries of Tab. 3.6. The WFs in (e) show slight deviations from these symmetries similar to
Fig. 3.12c. Instead of choosing a larger band set (as in Fig. 3.15c), the Souza algorithm has been
used here to create the more symmetric WFs of (f).

fails for the higher MP mesh resolution Nk-res,i = 25 and yields distorted WFs (Fig. 3.35b), even though
the WFs obtained from the lower resolution were used as trials (and as such, the best possible starting
con�guration for the spread minimization procedure).
One can ask now, what if the frequency windows have been chosen too large such that the Souza sub-

space optimizer gets confused and creates undesired subspaces (that yield distorted functions)? In order
to choose di�erent, specially adapted frequency windows, we have a look at the overlaps |〈〈ψmk‖Wn0〉〉|2
for the WFs obtained with the lower MP mesh resolution (Nk-res,i = 11) along the high symmetry lines
of the PC again in Fig. 3.34. The upper orange rectangle denotes the frequency window used for con-
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3.7 Instabilities of Souza Subspace Optimization

(a) Decay of band 2 (b) Decay of band 4

Figure 3.32: Real space decay behavior of WF from Figs. 3.31b and 3.31f. For distance r from
the center 〈r〉 of the WF the value maxr:|r−〈r〉|=r |Wn0(r − 〈r〉)| has been plotted (maximal WF
value on circles around the localization center). The Marzari-Vanderbilt spread minimized WFs for
closed band sets (Fig. 3.31b) are exponentially localized, whereas the Souza subspace optimization
(Fig. 3.31f) destroys the exponential localization. Note the equal individual spreads Ωn in (a).

Figure 3.33: Bands 10�17 (green) with little co-group irrep labels. Note that only one of the two
E irrep basis functions at the M -point (arrow) is included in this choice of band set 10�17.

structing the WFs of Fig. 3.35. First of all, the overlaps of WFs and Bloch modes become small very
fast for higher frequencies, indicating that the higher bands below ωouter = 1.49 do not contribute at
all to the WFs. Therefore, two new, lower frequencies ωouter = 1.395 and ωouter = 1.44 are tried with
the same new inner frequency ωinner = 1.31 (cyan rectangles). This new inner frequency freezes a larger
portion of band 15 with large overlaps for the E2(a) WFs. These Bloch modes are not altered by the
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3 Wannier Function Generation

(a) Overlaps of A(e) WFs (b) Overlaps of E2(a) WFs

Figure 3.34: Overlaps |〈〈ψmk‖Wn0〉〉|2 (as symbol size) for the �nal WFs bands n = 10, . . . , 17
(Fig. 3.35a) obtained with the full Souza-Marzari-Vanderbilt spread minimization with frequencies
ωinner = 1.3 and ωouter = 1.44 (upper orange rectangle) and MP mesh resolution Nk-res,i = 11
(cf. Fig. B.7b). The Bloch bands m = 10, . . . , 17 are shown as fat green lines. The lower orange
rectangle denotes the frequency window ωinner = 0.88 and ωouter = 1.12 for the computation of
the preceding WF set of Fig. 3.31f. The turquoise rectangles denote the frequency windows with
ωinner = 1.31 and ωouter = 1.395 and ωouter = 1.44, respectively. The black arrow denotes the region
around the M -point, where the mismatching A1 Bloch modes should be switched with the E-modes
of the higher bands by the Souza subspace optimization. For further explanation, see text.

Souza subspace optimization. For comparison, also a much lower inner window ωinner = 1.28 is used.
However, no resulting WFs are satisfyingly symmetric (Fig. 3.36).
A possible explanation is given in Fig. 3.37 by further de�ning the type of entanglement between bands.

This de�nition was formed by the author based on the observations presented in this chapter. Bands are
trivially entangled3 if they are actually simple overlays of closed groups of bands (Fig. 3.37a), for which
the site symmetry analysis of Sec. 2.5.6 was applicable. In that case, the Souza subspace optimization
may in principle be able to separate the Bloch mode information and symmetry to arti�cially separate
the sets such that they support WFs for the predicted irreps.
If the entanglement is not such a simple overlay (Fig. 3.37b), the site symmetry analysis is not appli-

cable and it may not be possible at all to separate the mode information in a way as to create symmetric
WFs.
Note how in both examples band combinations with the same degeneracy points occur, but in

Fig. 3.37a the branches at K along KΓ continuously meet again at Γ, whereas they drift apart in
Fig. 3.37b. The latter situation also occurs for bands 10�17 in Fig. 3.33 (denoted by black arrow).
However, this is a mere empirical observation, since a general theory concerning entangled bands is

lacking. Most of all, a thorough analysis should provide rigorous de�nitions, whether one is talking about
frequency ordered, symmetry ordered or continuously ordered (i. e., continuous in k) band branches.
To back up this hypothesis about trivially and non-trivially entangled bands, we can ask if the pre-

dicted WFs irreps are at least obtained if we treat a larger closed band set with the MV spread minimiza-
tion only. Luckily, the band set 10�26 is closed. Therefore, we have a look at the WFs for Nk-res,i = 25

3Coincidentally, there is also a rigorous mathematical term, the trivial vector bundle, connected with the localization of
generalized WFs [94, 95]. Thanks to Christian Wol� for bringing my attention to this.
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A(e) A(e) A(e) E2(a) E2(a)
(a) Nk-res,i = 11

�A(e)� �A(e)� �A(e)� �E2(a)� �E2(a)�
(b) Nk-res,i = 25

Figure 3.35: The WFs obtained for Bands 10�17, with Souza (ωinner = 1.3, ωouter = 1.49) and
MV spread minimization for two di�erent MP mesh resolution Nk-res,i. The higher Nres,i yielded
distorted WFswhich is why the irrep labels have been put in quotation marks.

obtained in this way by using the WFs for Nk-res,i = 11 (shown in Fig. 3.44) as trial functions.
Fig. 3.38 shows these MV WFs for the closed set 10�26. Some WFs form clearly identi�able irreps,

while four functions seem distorted. However, these are hybridized versions of the former E2(a), B1(a),
and B2(a) irreps obtained for Nk-res,i = 11. Basis functions for these irreps can be retrieved by applying
the projection operator P̂ (α) (2.28) on the hybridized WFs. In order to see which irreps are contained
in these hybridized functions, ‖P̂ (α)Wn0‖22 is shown in Fig. 3.39 for the site symmetry irreps of Wycko�
position a. This quantity is a measure of the contribution of a particular irrep to the distorted hybridized
WFs of Fig. 3.38.
The irrep contribution plot reveals that the former irreps are contained in these hybridized functions,

along with some contamination from A1(a), A2(a) and E1(a) irreps. In order to get rid of these contami-
nation we can project out the E2(a), B1(a), and B2(a) irreps and use these symmetric functions, forming
the anticipated irreps, as new trial functions |Tn〉. A second run of the spread minimization would again
lead to the hybridized WFs. Therefore, we only construct the initial WFs by (3.22) and (3.23) using
the spread minimized (Fig. 3.38) and projected WFs from the former minimization run. This yields the
WFs of Fig. 3.40 which have larger individual spreads Ωn than the prior hybridized versions. The initial
WFs are shown here because the MV spread minimization would tend to produce the hybridized WFs
with lower spread again. The contamination of the E1(a) irreps is still present in Fig. 3.39b, which may
still be due to avoided crossings between the upper bands of the closed set with higher bands. This
contamination may also stem from the other trials of the closed set which have not been symmetrized.
Due to the symmetrization procedure (3.23), slight distortions in one subset of the trials may a�ect the
initial WFs for other subsets. Another possible source of asymmetry could be asymmetries in the Bloch
modes themselves as they are output by MPB which has a hard time separating mode information (and
their respective symmetries) for near degenerate bands.
Finally, this discussion gave an overview over the problems of the Souza subspace optimization and

how the results can be interpreted with the help of the site symmetry analysis.

87



3 Wannier Function Generation

�A(e)� �A(e)� �A(e)� �E2(a)� �E2(a)�
(a) ωinner = 1.31, ωouter = 1.44

�A(e)� �A(e)� �A(e)� �E2(a)� �E2(a)�
(b) ωinner = 1.31, ωouter = 1.395

�A(e)� �A(e)� �A(e)� �E2(a)� �E2(a)�
(c) ωinner = 1.28, ωouter = 1.395

Figure 3.36: The WFs obtained for Bands 10�17 for Nk-res,i = 25, with Souza and MV spread
minimization. The Souza frequency windows based on the overlap analysis of Fig. 3.34 are used
here. Some WFs become more symmetric than Fig. 3.35b, but are still not yet satisfying.
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3.7 Instabilities of Souza Subspace Optimization

(a) Trivial entanglement (b) Non-trivial entanglement

Figure 3.37: Types of band entanglement. Orange rectangles show suggested frequency windows
for the Souza subspace optimization. Green highlighted parts show the lowest two frequency ordered
bands. This example deals with two cases of two bands which are degenerate at Γ and K. (a) Trivial
entanglement which is basically the overlay of closed sets of bands. Left: The example band structure.
Middle: The two closed sets of bands making up this sample band structure, arrows denote degen-
eracies (deg.). Right: Suggested Souza frequency window that should allow for the mode information
in the branches marked with arrows to switch such that WFs for the single and the double set can
be created separately. The degenerate parts leave K and meet again at Γ along KΓ. (b) Nontrivial
entanglement, where Souza algorithm cannot arti�cially separate closed sets because the entangle-
ment is not a result of a simple set overlay. Left: arrows denote degeneracies as in (a). However,
this band structure is not the result of a simple overlay. Right: Suggested Souza frequency window
allows the left peak (arrow) to enter the Wannier subspace, but the other branch (red, denoted with
question mark), is neither fully incorporated nor fully excluded: the degenerate parts leave K and
split up, not joining again in the same degenerate band at Γ along KΓ.

A(e) A(e) A1(a)

n = 16,Ωn =
0.28

n = 26,Ωn =
0.25

n = 17,Ωn =
0.33

n = 25,Ωn =
0.30

Figure 3.38: The WFs obtained from the MV spread minimization for the closed set of bands
10�26 with Nk-res,i = 25, using the SMV WFs for 10�26 from Fig. 3.44 (with Nk-res,i = 11) as
trials. The upper WFs form de�nite site symmetry irreps (the A(e) functions are six-fold degenerate,
respectively; only one function for each set is shown here), while the lower WFs hybridized.
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3 Wannier Function Generation

(a) Unsymmetric MV minimized WFs |Wn0〉 (b) Initial WFs |W (0)
n0 〉 from symmetrized trials

Figure 3.39: Irrep contribution ‖P̂ (α)Wn0‖22 for the (a) hybridized WFs of Fig. 3.38 and (b) initial
WFs constructed from the symmetrized versions of Fig. 3.38.

A(e) A(e) A1(a)

E2(a),Ωn =
0.31

E2(a),Ωn =
0.31

B1(a),Ωn =
0.41

B2(a),Ωn =
0.33

Figure 3.40: The initial WFs |W (0)
n0 〉 for Nk-res,i = 25 obtained when using the irrep projections of

the distorted WFs Fig. 3.38 as trial functions. The individual spreads are larger than those of the
hybridized functions.
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3.8 Enforcing Symmetry

The discussion so far showed that the choice of trial functions a�ects the symmetries and shapes of the
�nal WFs. Furthermore, even if the best possible trial functions (e. g., WFs from a former minimization
procedure) are used, the spread minimized WFs can still be distorted and may not form their anticipated
irreps predicted by the site symmetry analysis. Therefore, suggestions for enforcing these symmetries in
the WFs in the construction process are given in this section.

3.8.1 Choosing Appropriate Trial Functions

We have seen that the proper choice of trial functions |Tn〉 has a tremendous impact on the �nal WFs in
both the Marzari-Vanderbilt and Souza algorithm. It was shown that Γ-point Bloch modes which have
been cropped to one WSC around the Wycko� positions of a unit cell, yield the spread minimized WFs
with the fewest iteration steps. If the anticipated WFs were higher dimensional site symmetry irreps,
the transformed and cropped Γ-point Bloch modes forming bases of those anticipated irreps yielded the
best initial WFs for both iteration procedures.
However, computing the trial function matrices A in (3.22) (used for initializing both the Marzari-

Vanderbilt and Souza minimization) requires time consuming evaluations of the overlap integrals of trials
with Bloch modes. Usually one computes one full matrix A(k) for all available Bloch bands and k-points
for one set of trial functions. However, the anticipated symmetries are not always known in full detail
right from the start (before any WFs have been generated at all) because the choice for band sets that
are used for the minimization procedures, evolves in the course of the generation process. One uses a
band combination (with frequency windows) that yielded a set of localized WFs, and afterwards the next
possible band set is investigated. Therefore, it would be helpful to change and try out di�erent choices
for irreps of the trial functions with as little e�ort as possible. This can be accomplished as follows.
For each lattice, one constructs the WSC-cropped Γ-point trials |T (Q)

n 〉 at the relevant Wycko� po-
sitions Q. The relevant Wycko� positions in this respect are a, b, c1, c2 for the square lattice and
a, b2, b2, c1, c2, c3 for the triangular lattice. Basis functions of site symmetry irreps for the other Wyck-
o� positions q can be generated from these relevant Q, because the site symmetry groups for q are
subgroups of those for Q (cf. Figs. F.3 and F.12).
The trials can be transformed by a unitary matrix V (qα) to form bases |T (qα)

n 〉 for the anticipated
WF site symmetry irreps D(qα) (as has been done in Figs. 3.23 and 3.24). Since the necessary trials
|T (Q)
n 〉 forming bases of irreps D(qα) are usually not consecutively ordered, one sums over the �nite set
N (qα) ⊂ N of the needed trial function band indices of a given set of bands to create WFs from:

|T (qα)
n 〉 =

∑
n′∈N (qα)

|T (Q(q))
n′ 〉V (qα)

n′n , (3.34)

where α labels the irrep of the site symmetry group of the Wycko� position q and Q(q) is the necessary
Wycko� position of the smaller set of relevant positions. The matrix elements of A(qα)(k) for a chosen
site symmetry irrep are then simply given by

A(qα)
mn (k)

(3.22)
= 〈〈ψmk‖T (Q(q)α)

n 〉〉 (3.35)
(3.34)

=
∑

n′∈N (qα)

〈〈ψmk‖T
(Q(q))
n′ 〉〉︸ ︷︷ ︸

=:A
(Q(q))
mn (k)

V
(qα)
n′n (3.36)

The combinations of trials cropped around the relevant Q yielding all possible irreps at any Wycko�
position Q are listed in Tab. 3.8.
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3 Wannier Function Generation

q(Q) Q

a a
b b
2c c1, c2

4d 4a or 4b
4e 4a or 2c1, 2c2

4f 4b or 2c1, 2c2

(a) Square lattice

q(Q) Q

a a
2b b1, b2
3c c1, c2, c3

6d 6a or 2c1, 2c2, 2c3

6e 6a or 3b1, 3b2

(b) Triangular lattice

Table 3.8: Relevant Wycko� positions, from whose irreps all other site symmetry irreps can be
generated. The positions are listed in Figs. F.3 and F.12. This shows that the possible mappings
from Q to q are are not unique. However, one usually just needs one combination for obtaining

good initial WFs |W (0)
n0 〉 for the iteration procedures.

Example: In the square lattice, Tab. 3.8a tells us that all four basis functions for any irrep of the
site symmetry group of Wycko� position f can be obtained by unitarily transforming either four basis
functions of b irreps or two c1 irreps together with two c2 irreps. Fig. 3.41 shows one example for A(f)
basis functions obtained from b basis functions.

A(f)︷ ︸︸ ︷


=

︸ ︷︷ ︸
A1(b)

︸ ︷︷ ︸
E(b)

︸ ︷︷ ︸
B1(b)

 ·


1
2

1
2

1
2

1
2

− 1√
2

0 1√
2

0
0 1√

2
0 − 1√

2
1
2 −1

2
1
2 −1

2


︸ ︷︷ ︸

=V (q)

Figure 3.41: Example of (3.34) for constructing four A(f) basis functions |T (q)
n 〉 (left hand side)

from trials |T (Q)
n 〉 for Wycko� position Q ≡ b (right hand side) by a unitary transform matrix V (q).

Thus, from a small set of precomputed matrices A(Q)(k) one can construct a huge variety of di�erent
trial matrices A(qα) by fast linear operations. The best initial guesses are those combinations that
yield the smallest combined spread Ω which can be computed very quickly from the matrices without
performing any minimization steps.
This �rst guess of WFs can still be made better. Instead of cropping the �elds on a WSC, one can as

well multiply the periodically extended Γ-point Bloch modes by a Gaussian function centered around
the respective Wycko� position. This would resemble the �nal, exponentially localized WFs even more
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and the procedure for creating the matrices A(qα) outlined above is still applicable.

3.8.2 Symmetry Adapted Construction

As Krüger [37, 38] showed, the anticipated irreps of the WFs can also be taken into account when
constructing the transform matrices U(k) under special constraints. He speci�ed these constraints
explicitly using the representation matrices of the little co-group irreps of the Bloch modes in the IBZ.
Incorporating his suggestions would require substantial modi�cations of the present code that was used to
obtain all the WFs of this chapter. However, since the transform matrices U(k) are fully determined for k
from the IBZ already, the spread minimization procedure could be carried out on 1/8 of the k-points for
the square lattice and 1/12 of the k-points of the triangular lattice. Hybridizations as were encountered
in Fig. 3.12 could also be avoided then. In 2D computations, however, the spread minimization procedure
is already quite fast and the assembly procedure (3.15) is the most time consuming part. Furthermore,
for this ansatz to work, all the Bloch modes used in this case should also transform perfectly like their
respective little co-group irreps. Otherwise, any numerical deviation would then also be found in the
overlap matrices Mmn(k,b) which would violate the conditions to apply Krüger's method.

3.8.3 A Posteriori Symmetrization

If the WFs are just slightly distorted, one can apply the projection operators P̂ (qα) of (2.47) for the site
symmetry irreps D(qα) which discards any contributions in the WFs that do not transform as the irrep
they are supposed to be basis functions of. Afterwards the projected WFs are extended periodically
on a larger supercell and cropped to a super WSC of the same volume as the support domain of the
former WFs given on a parallelogram. This procedure ensures that the discretized WFs and the matrix
operator elements computed thereof are as symmetric as possible. The discretized curls of the WFs are
taken before the �elds are cropped to a super WSC in order to avoid sharp �eld discontinuities which in
turn would introduce errors as described in Sec. B.3. Of course, since some small amount of WFs �eld
information is discarded by the projection, one has to make sure that the bene�ts from symmetrization
outweigh this newly introduced error. The symmetrized WFs should still be able to describe the band
structure of the PC within reasonable accuracy. This is investigated in Sec. 5.2.2.

The actual symmetrization procedure is carried out as follows. For one-dimensional irreps, just the
corresponding projection operator has to be applied and the WF has to be cropped to a super WSC
afterwards. For degenerate irreps, symmetrization requires more e�ort. If the WFs can be rotated such
that they are aligned in one direction (as in Fig. 3.42a), one has to adjust the phases and add up all the
WFs. This is because one does not know, how the WFs are distorted that is why taking the averaged
of the WF pro�les treats all available WFs equally. This sum of WFs can now be projected, normalized
and rotated back, forming a perfect set of basis functions for the respective rep.

If the WFs are degenerate but cannot be aligned by rotations (Fig. 3.42b), then we pick just one
single basis function and discard the others. This single WF is now projected onto its respective irrep
(which discards any distorting contributions) and is used to generate the remaining basis functions of
the respective irrep as follows. We apply a rotation, that generates a linearly independent new function
which is orthonormalized by the Gram-Schmidt procedure. The resulting WFs are now basis functions
of the respective irrep.
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(a) Symmetrization procedure

(b) Symmetrization procedure

Figure 3.42: Schematic of the symmetrization procedures for WFs. If the WFs can be averaged
after adjusting their phases as in (a), one projects the averaged part and creates the remaining ba-
sis functions by applying the proper rotations. In the other case (b), one picks one single function
and applies the projection operator for the respective irrep. Afterwards one creates a linearly inde-
pendent set by applying a rotation. Orthonormalization by the Gram-Schmidt procedure yields the
symmetrized basis functions. Finally, the pure functions and their curls are cropped to a super WSC
(square shaped domain for the square lattice, hexagonal shaped domain for the triangular lattice).

3.9 Final Wannier Functions

As we have seen in the previous sections, one can create many di�erent sets of WFs from a set of given
Bloch modes. Some WFs are more symmetric than others, some are more localized. Some of these
sets could be generated quickly, others needed substantial tuning of the minimization input parameters.
In order to judge the performance of di�erent sets of WFs in subsequent computations, three choices
of parameters are �nally presented here. Their ability to reproduce the band structure of the PC and
model localized defect states is investigated in the following chapters. For historical reasons, the WFs
set 1�38 is investigated and compared to the set 1�101 because the former set was the one available from
the previous work of Schillinger [35] and Hermann [43]. Therefore, documenting the improvements by
using more WFs is essential to decide, whether the e�ort of generating a particular set of or just more
WFs is justi�ed.

94



3.9 Final Wannier Functions

3.9.1 Fully Hybridized Wannier Functions 1–38 (WF38-MV)

As we have seen, applying the MV spread minimization to closed sets of bands yields the best localized
WFs. The natural consequence would be to choose the closed set as large as possible and obtain WFs
that are as highly localized as possible. This has been done for the closed set of bands 1�38 in Fig. 3.43.
Some sets form complete site symmetry irreps (13�38), others are symmetric but provide only half of the
necessary basis functions to be a site symmetry irrep of their localization center (1�12). The superior
localization is shown and compared to a more symmetric choice of WFs in Fig. 3.45. However, these
WFs are nevertheless not suited to describe the defect states in PC properly (cf. Fig. 6.13).

Figure 3.43: WFs obtained by the Marzari-Vanderbilt spread minimization for the closed set 1�38.
They are referred to as WF38-MV. Note that the A(e) irreps 15�20 may look similar to 21�26, but
they are orthogonal sets. The incomplete irreps are given in quotation marks. The construction
parameters are the same as in Tab. D.1a.

3.9.2 Souza-Marzari-Vanderbilt Wannier Functions 1–101 (WF101-SMV)

These WFs have been computed with the full SMV algorithm with the parameters of Tab. D.2. Their
real space decay behavior is shown in Fig. 3.45. Though some of them decay like 1/|r| a few lattice sites
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away from their localization center, they all form bases for irreps of the respective site symmetry groups.
Their ability to model defect states in PC is investigated in Chap. 6.

Figure 3.44: WFs created from the parameters of Tab. D.2. This WF set is referred to as WF38-
SMV and WF101-SMV for the number of WFs used. When no ambiguities arise, they are abbreviated
by WF38 and WF101.
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(a) WFs localized in holes (b) WFs localized between holes

Figure 3.45: Real space decay behavior of WFs 1�38 from Figs. 3.43 (Fully hybridized) and 3.44
(SMV WFs). For distance r from the center 〈r〉 of the WF the value maxr:|r−〈r〉|=r |Wn0(r − 〈r〉)|
has been plotted (maximal WF value on circles around the localization center). (a) shows the decay
of WF localized inside holes (1�12 of Fig. 3.43 and 1,2,3,16,17,24,25,26,33,34,35,36 of Fig. 3.44).
(b) shows the decay of the remaining WFs among the �rst 38.

3.9.3 Symmetrized Souza-Marzari-Vanderbilt Wannier Functions 1–38 (WF38-sym)

Symmetrizing the �nal WFs from Fig. 3.44 with the symmetrization procedure of Sec. 3.8.3 requires
little e�ort. Therefore, the WFs 1�38 have been symmetrized to yield the set referred to as WF38-sym
in the remainder of this work. Some examples of the symmetrized functions are shown in Fig. 3.46.

3.10 Summary

We have given a review of the bottom-up approach to compute maximally localized generalized photonic
Wannier functions with the combined Souza-Marzari-Vanderbilt spread minimization. This procedure
iteratively constructs a set of unitary transform matrices U(k) by minimizing the combined real space
extent of the resulting set of Wannier functions, the so-called spread functional Ω. These minimization
procedures require some parameters that have to be provided by a user: the particular sets of Bloch
bands building the WFs, a frequency window allowing the exchange of Bloch mode pro�les with higher
bands, and a set of trial functions, from which initial Wannier functions for the iteration procedure are
constructed. These parameters have been chosen by trial and error in previous works.
We applied the site symmetry analysis of Chap. 2 to construct WFs for both model systems of

Sec. 1.2.7 and interpreted the resulting WFs in view of their symmetries and the symmetries of the
underlying Bloch modes. We have seen that the number of iteration steps needed to obtain the spread
minimized WFs and their shape depend on the trial functions used. The strong resemblance between
Γ-point Bloch mode pro�les and WF pro�les was pointed out and optimal unitary transforms according
to the anticipated WF irreps were suggested based on the site symmetry analysis. These are the best
trial functions in the sense that they give the best initial WFs if WFs are generated from scratch. In
particular, the Souza subspace optimization was very sensitive to the choice of trial functions, since the
smallest invariant spread ΩI does not necessarily lead to the smallest overall spread Ω. Thus, determining
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3 Wannier Function Generation

Figure 3.46: A posteriori symmetrized WFs from bands 1�38 of Fig. 3.44. They are referred to
as WF38-sym. Logarithmic density plots show the pro�les before (left) and after the symmetrization
(right). Black arrows denote exemplary regions, where the symmetry of the WF pro�les improved
signi�cantly.

the optimal starting point for the spread minimization is sometimes crucial. Additionally it was shown
that the Souza subspace optimization can lead to a 1/|r| decay law of WFs that principally support
exponential decay when constructed with the Marzari-Vanderbilt spread minimization for closed sets of
bands.
The overlap of Wannier functions with the Bloch modes of the band structure was compared to the

overlap of the anticipated trial functions (forming the same irreps as the �nal WFs) with the Bloch
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modes. The similarity was striking and may help to determine good frequency windows for the Souza
subspace optimization for future computations.
The site symmetry analysis is only applicable to closed sets of bands. Nevertheless, it does help in the

interpretation of the resulting WFs obtained from the Souza subspace optimization for entangled bands.
The conjecture that for trivially entangled bands the site symmetry analysis may still be a good guide
to the anticipated WFs irreps was stated.
An e�cient procedure to easily choose various trial combinations from a few precomputed overlap

matrices A(Q) for a spread minimization run was suggested. If the site symmetry analysis does not yield
unique sets of possible trial functions, it was suggested to use those combinations that yield initial WFs
with the lowest spread. After the spread minimization, deviations of the �nal WFs from their anticipated
irreps can be estimated before actually performing the time consuming assembly procedure from Bloch
modes. The sum of the localization centers of the WFs was shown to be a good measure for this task.
If twice the sum adds up to a lattice vector, then the resulting WFs are symmetric. Additionally, a
procedure for symmetrizing distorted WFs based on projection operators was proposed.
Finally, three sets of maximally localized WFs were presented. These sets are used to reproduce the

band structure and compute defect mode frequencies in the following chapters. The results will help to
judge if some Wannier function construction parameters should be favored over others.
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4 Chapter 4

Wannier Function Expansion

In this chapter, we expand the wave equations into the localized WF basis which yields an e�ective
lattice model for the description of localized defect modes. This procedure transforms the di�erential
operator eigenvalue equations into generalized matrix eigenvalue equations that can be solved by a
computer. The diagonalization of these matrices yield frequencies as eigenvalues and mode expansion
coe�cients in terms of WFs as eigenvectors. The matrices for a particular defect setup can be assembled
from a few precomputed matrices describing the pure overlap of WFs, the periodic background of a PC,
and individual reference defects. Isotropic as well as anisotropic defects according to the permittivity
tensor of Sec. 1.2.4 are incorporated. The Wannier approach allows to compute localized defect cavity
modes, supercell waveguide dispersions ω(k) and on-shell waveguide dispersions k(ω). Furthermore,
transmission/re�ection characteristics of functional elements can be computed by determining their
scattering matrix, which is brie�y summarized.

4.1 Wannier Matrix Elements

We will abbreviate the combined index pair (n,R) by Greek letters α and β now and denote a WF by
|α〉 ≡ |nR〉.

4.1.1 Wave Equations

We will expand the electromagnetic �elds in the basis of their respective WFs now, i. e., we set

E(r) =
∑
β

cβWel
β (r) , H(r) =

∑
β

cβW
mag
β (r) . (4.1)

The Wannier expansion coe�cients cβ ∈ C are the new unknowns and have to be solved for.

Magnetic Field

We insert the expansion (4.1) into the magnetic �eld wave equation (1.9b) and project on 〈α|· from the
left: ∑

β

[
〈α|∇× η ·∇× |β〉 − ω2

c2
0

〈α|β〉
]
cβ = 0 . (4.2)
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4 Wannier Function Expansion

The �rst term can be recast as

〈α|∇× η ·∇× |β〉 =
∫

dV W∗
α (r) ·∇×

(
η(r) ·∇×Wβ(r)

)
(4.3)

(A.29)
=

∫
dV

(
∇×Wα(r)

)∗
· η(r) ·

(
∇×Wβ(r)

)
, (4.4)

where we performed an integration by parts. The dielectric function can always be written as the sum
of the periodic part and the deviations introduced by the defect structures, so we can write

η(r) = ηper(r) + ∆η(r) . (4.5)

Plugging this into (4.4) yields the following matrix de�nitions:

Aαβ :=
∫

dV W∗
α (r) ·Wβ(r) ,

Bαβ[∆η] :=
∫

dV
(
∇×Wα(r)

)∗
·∆η(r) ·

(
∇×Wβ(r)

)
,

Cαβ[ηper] :=
∫

dV
(
∇×Wα(r)

)∗
· ηper(r) ·

(
∇×Wβ(r)

)
.

3D Vectorial Magnetic Operator Matrices

(4.6a)

(4.6b)

(4.6c)

The matrix A has been included in this list for the sake of completeness, and we further de�ne a
function

Λmag(ω) :=
ω2

c2
0

, (4.7)

such that we can write the magnetic �eld wave equation (4.2) as∑
β

[
Cαβ +Bαβ − Λmag(ω)Aαβ

]
cβ = 0 . (4.8)

This is an in�nite generalized matrix eigenvalue equation, whose eigenvalues yield the frequencies ω by
(4.7) and whose eigenvectors yield the Wannier expansion coe�cients for assembling the actual magnetic
�elds by (4.1).

Electric Field

The derivation of the electric �eld matrix eigenvalue equation is analogous to the magnetic �eld case.
Plugging the expansion (4.1) into the electric �eld wave equation (1.9a) yields

∑
β

[
〈α|∇×∇× |β〉 − ω2

c2
0

〈α|ε|β〉
]
cβ = 0 . (4.9)

The �rst term can again be written as an integral over just �rst derivatives as in (4.4), and the second
term can be split into two after noting that

ε(r) = ε per(r) + ∆ε(r) . (4.10)
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4.1 Wannier Matrix Elements

This leads to the following matrix de�nitions for the electric �eld case:

Aαβ :=
∫

dV
(
∇×Wα(r)

)∗
·
(
∇×Wβ(r)

)
,

Bαβ[∆ε] :=
∫

dV W∗
α (r) ·∆ε(r) ·Wβ(r) ,

Cαβ[ε per] :=
∫

dV W∗
α (r) · ε per(r) ·Wβ(r) .

3D Vectorial Electric Operator Matrices

(4.11a)

(4.11b)

(4.11c)

Together with the de�nition

Λel(ω) :=
c2

0

ω2
, (4.12)

we can write (4.9) in terms of the above de�ned matrices as∑
β

[
Cαβ +Bαβ − Λel(ω)Aαβ

]
cβ = 0 . (4.13)

This corresponds to dividing (4.9) by −ω2

c20
. This matrix equation now has the same form as (4.8) with

di�erent matrix de�nitions. This means that the whole solution process is essentially the same in terms
of the operator matrices A, B, and C and the eigenvalues Λ(ω) for the electric and magnetic �eld.

Operator Matrices for E- and H-Polarization in 2D

In these cases the �elds are described by their z-components Ez(rq) and Hz(rq), where the corresponding
scalar WFs are assembled from these scalar �elds. The curl of such a WF W(rq) de�ned in the xy-plane
with just a z-component is

W(rq) =

 0
0

W (rq)

 , ∇×W(rq) =

∂x∂y
∂z

×
 0

0
W (rq)

 =

 ∂yW (rq)
−∂xW (rq)

0

 . (4.14)

Plugging (4.14) into the vectorial E-�eld equations (4.11) gives the electric �eld operator matrices in
E-polarization:

Aαβ =
∫

d2r
(
∂xWα(rq)

)∗(
∂xWβ(rq)

)
+
(
∂yWα(rq)

)∗(
∂yWβ(rq)

)
,

Bαβ[∆εzz] =
∫

d2r W ∗α (rq)∆εzz(rq)Wβ(rq) ,

Cαβ[εper,zz] =
∫

d2r W ∗α (rq)εper,zz(rq)Wβ(rq) .

2D Electric Operator Matrices (E-polarization)

(4.15a)

(4.15b)

(4.15c)

Again, we see that anisotropic e�ects cannot be investigated in pure E-polarization, since only the scalar
zz-component of the dielectric function enters the equations (1.30a).
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4 Wannier Function Expansion

In the same fashion, combining (4.14) with the vectorial H-�eld equations (4.6) gives the magnetic
�eld operator matrices in H-polarization:

Aαβ =
∫

d2r W ∗α (rq)Wβ(rq) ,

Bαβ[∆η] =
∫

d2r

(
∂yW

∗
α (rq)

−∂xW ∗α (rq)

)
·∆η(rq) ·

(
∂yWβ(rq)
−∂xWβ(rq)

)
,

Cαβ[ηper] =
∫

d2r

(
∂yW

∗
α (rq)

−∂xW ∗α (rq)

)
· ηper(rq) ·

(
∂yWβ(rq)
−∂xWβ(rq)

)
.

2D Magnetic Operator Matrices (H-polarization)

(4.16a)

(4.16b)

(4.16c)

The tensors used here are lossless (Hermitian) 2× 2 tensors:

η =

(
ηxx ηxy
η∗xy ηyy

)
. (4.17)

The scalar variants of the matrix operators are obtained by setting ηxy = 0 and are not written out
explicitly here.

4.1.2 Complex Defect Structures in Photonic Crystals

The splittings (4.5) and (4.10) of the dielectric functions into periodic parts and deviations thereof may
just seem as a trick to write the matrix equations for the electric and magnetic �elds in the same form.
However, they actually allow to further decompose defect contributions into smaller, more basic matrices
B.

= +

Figure 4.1: Splitting of the dielectric function of a complex defect cluster into periodic and defect
parts by (4.5) and (4.10).

We restrict ourselves to cases, where the full deviation ∆ε(r) can be written as the sum of various
basic contributions ∆εm(r) associated with a particular home unit cell, but not necessarily constricted
to it. These basic contributions can occur multiple times, located at various unit cells Rm such that the
full deviation is given by

∆ε(r) =
∑
m

∆εm(r−Rm) . (4.18)

When the same basic deviation functions occur shifted at various lattice sites, we can exploit the linearity
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4.1 Wannier Matrix Elements

= + +

Figure 4.2: The full deviation ∆ε(r) is a sum of basic contributions ∆εm(r) located at di�erent
lattice sites Rm.

of the integral to assemble the full defect operator matrices Bfull
n′R′,nR := BnR,n′R′ [∆ε] by shifting around

matrices B(m)
nR,n′R′ which only depend on the recurring basic defect functions ∆εm(r):

Bfull
n′R′,nR =

∑
m

B
(m)
n′R′−Rm,nR−Rm

, (4.19)

B
(m)
n′R′,nR := Bn′R′,nR[∆εm] . (4.20)

The functional form of ∆εm(r) can still be rather arbitrary. In practical computations however, some
special cases are in the center of interest, allowing to describe a whole class of deviations with just a
single or a couple of reference matrices.

Infiltrated Hole, Isotropic Case

For just a single isotropically in�ltrated hole, the functional form of ∆εm(r) is the product of a simple
constant ∆εm ∈ R and a form factor Θhole(r) de�ning the shape of the hole. The scalar inverse
permittivity ∆ηm(r) can be described in the same way:

∆εm(r) = ∆εmΘhole(r) , (4.21)

∆ηm(r) = ∆ηmΘhole(r) , (4.22)

Θhole(r) =

1 for r inside the hole,

0 otherwise.
(4.23)

By Eqs. (4.5) and (4.10), the choice of these factors is such that the former value εper of the hole is
compensated and a new scalar εm for the defect is set, i. e.

∆εm = εm − εper , (4.24)

∆ηm = 1/εm − 1/εper . (4.25)

Then the value of the full dielectric function inside the defect hole is given by εm or ηm = 1/εm,
respectively.
After de�ning a reference defect matrix Bref that just depends on the form factor Θhole(r), the full

defect matrices Bfull for a cluster of such isotropically in�ltrated holes are due to the linearity of the
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4 Wannier Function Expansion

integrals given by

Bref
n′R′,nR := Bn′R′,nR[Θhole] , (4.26)

Bfull,el
n′R′,nR =

∑
m

∆εmB
ref,el
n′R′−Rm,nR−Rm

, (4.27)

Bfull,mag
n′R′,nR =

∑
m

∆ηmB
ref,mag
n′R′−Rm,nR−Rm

. (4.28)

However, in real computations one usually chooses an isotropic reference defect with scalar values εref
not equal to unity. This way, the errors introduced by a particular choice of real space discretizations of
the dielectric function are kept as small as possible (see Sec. B.4 for more information on discretization
schemes). Once the reference matrix Bref has been computed for a reference defect hole with εref, the
proper defect operator matrices for a hole in�ltrated with εm are assembled with a modi�ed scaling
factor ξm ∈ R as

Bfull
n′R′,nR =

∑
m

ξmB
ref
n′R′−Rm,nR−Rm

,

ξm =


εm − εper
εref − εper

: electric case,

εref(εm − εper)
εm(εref − εper)

: magnetic case.

Scaling Factors for Isotropic Defects

(4.29a)

(4.29b)

This procedure is also used when the reference defect has been discretized with the sub-pixel smoothing
(SPS) methods of Sec. B.4. That means, we usually choose a non-etched hole as reference, compute the
discretized version of ∆η from the discretized periodic parts and defect �elds and rescale the resulting
matrices with scaling factors for a non-etched hole.

Infiltrated Hole, Birefringent Case

In Sec. 1.2.5 we saw that the H-polarization allows to incorporate in-plane anisotropies de�ned by three
real parameters εex, εor and θ. We will derive the basic defect operator matrices to describe holes that
have been in�ltrated with such a material, e. g. liquid crystals.
As in the previous section, the deviation ∆η(r) is the product of a constant tensor ∆η and the form

factor of the hole:

∆η(r) = ∆ηΘhole(r) , (4.30)

where the constant defect contribution to the dielectric function is given by

∆η
(4.5)
= η − ηper · 1 (4.31)

(1.39)
= R(θ) · ηlcdiag ·RT(θ)−

1
εper
· 1 (4.32)

(1.33)
= R(θ) · (εlcdiag)−1 ·RT(θ)− 1

εper
· 1 . (4.33)
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4.1 Wannier Matrix Elements

Here, we have introduced the unit tensor 1. We can factor out the rotation matrices by exploiting their
orthogonality, i. e., R ·RT = 1 and RT = R−1, yielding

∆η = R(θ) ·
[
(εlcdiag)

−1 − 1
εper
· 1
]
·RT (θ) (4.34)

(1.33)
= R(θ) ·

(
1/εex − 1/εper 0

0 1/εor − 1/εper

)
·RT (θ) (4.35)

=

(
∆ηex cos2 θ + ∆ηor sin2 θ (∆ηex −∆ηor) sin θ cos θ
(∆ηex −∆ηor) sin θ cos θ ∆ηex sin2 θ + ∆ηor cos2 θ

)
. (4.36)

Here, we have introduced the deviations of the diagonalized inverse permittivity tensor with diagonal
elements

∆ηex = 1/εex − 1/εper , ∆ηor = 1/εor − 1/εper . (4.37)

When computing the matrix B of (4.16b) for ∆η of (4.36), one obtains the de�nitions of three Her-
mitian defect operator matrices involving only x-derivatives, only y-derivatives or mixed derivatives,
respectively. Given a single isotropic reference defect with ηref = 1/εref, these matrices are de�ned as

Bxx,ref
αβ :=

∫
d2r ∂xW

∗
α (rq) ·∆ηref(rq) · ∂xWβ(rq) ,

Byy,ref
αβ :=

∫
d2r ∂yW

∗
α (rq) ·∆ηref(rq) · ∂yWβ(rq) ,

B
{x,y},ref
αβ :=

∫
d2r ∆ηref(rq) ·

[
∂yW

∗
α (rq) · ∂xWβ(rq) + ∂xW

∗
α (rq) · ∂yWβ(rq)

]
.

2D Birefringent Defect Matrices (H-polarization)

(4.38a)

(4.38b)

(4.38c)

Once these matrices have been computed, one can assemble the full defect operator matrix Bfull for a
hole in�ltrated with a birefringent material with extra-ordinary permittivity εex, ordinary permittivity
εor and director angle θ as

Bfull
αβ = ξxxBxx,ref + ξyyByy,ref + ξ{x,y}B{x,y},ref ,

ξxx = ξex cos2 θ + ξor sin2 θ ,

ξyy = ξex sin2 θ + ξor cos2 θ ,

ξ{x,y} = (ξex − ξor) sin θ cos θ ,

ξex/or =
εref(εex/or − εper)
εex/or(εref − εper)

.

2D Birefringent Defect Scaling Factors (H-polarization)

(4.39a)

(4.39b)

(4.39c)

(4.39d)

(4.39e)

In�ltrated holes at di�erent lattice sites Rm can be described by shifting these matrix elements to the
desired lattice sites as in (4.29a).

Infiltrated Hole, Gyrotropic Case

As in the previous sections, we treat one hole that has been in�ltrated with a gyrotropic material.
Analogously to (4.30), we have to determine the expression for the constant ∆η for the in�ltrated hole.
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4 Wannier Function Expansion

Just like for (4.30), we start again with the deviation from the previous isotropic periodic �lling:

∆η = (εmo)−1 − 1
εper
· 1 (4.40)

=
1

ε2
diag − g2

z

(
εdiag −igz
+igz εdiag

)
− 1
εper
· 1 (4.41)

=

(
r − 1/εper −irgz/εdiag

+irgz/εdiag r − 1/εper

)
, (4.42)

with

r :=
εdiag

ε2
diag − g2

z

. (4.43)

As for (4.39), we evaluate (4.16b) for ∆η of (4.42) now and obtain the same Hermitian reference matrices
Bxx and Byy. Additionally, for the o�-diagonal part we obtain the de�nition for an anti-Hermitian
matrix B[x,y]:

B
[x,y],ref
αβ :=

∫
d2r ∆ηref(rq) ·

[
∂xW

∗
α (rq) · ∂yWβ(rq)− ∂yW ∗α (rq) · ∂xWβ(rq)

]
.

2D Gyrotropic Defect Matrices (H-polarization)

(4.44a)

The full defect matrices Bfull are assembled from this matrix and Eqs. (4.38a) and (4.38b) as follows
(note the position of the factor −i):

Bfull
αβ = ξdiag(Bxx,ref

αβ +Byy,ref
αβ )− iξo�-diagB[x,y],ref

αβ ,

ξdiag =
εref

εper − εref
·
( εper
ε2
diag − g2

z

· εdiag − 1
)
,

ξo�-diag =
εref

εper − εref
· εper
ε2
diag − g2

z

· gz .

2D Magneto-optic Defect Scaling Factors (H-polarization)

(4.45a)

(4.45b)

(4.45c)

Further Defect Types

When separating the periodic and defect parts in the permittivity by (4.10), one is not restricted to the
same defect geometries as the unit cells of the PC. Shifted holes or varying radii [72] as in Fig. 1.11 can
be modeled as well by (4.29), where the scaling factor is simply chosen as ξm = 1 such that the full
reference defect is used in subsequent computations. Radius defects have been investigated by Hermann
[43] and in [72].
In Wannier function based time domain simulations, appropriately adjusted defect matrices can model

absorbing boundary conditions [96].

Properties of the Operator Matrices

The operator matrices A, B, C for the electric and magnetic �elds describe similar parts of the cal-
culation. The A matrices depend solely on the WFs, the C matrices describe the underlying periodic
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(a) AnR,n′R′ (b) CnR,n′R′ (c) Bfull
nR,n′R′ (d) Bref

nR,n′R′

Figure 4.3: Schematic illustration of the integration domains for the respective operator matrix
elements (dark orange regions). The numerical WFs have compact support.

PC structure and the B matrices describe the defects (cf. Fig. 4.3). We assume Hermitian dielectric
tensors which means we work in lossless dielectric media. Under this premise, the matrices incorporating
these tensors become Hermitian as well, as will be shown explicitly for the electric defect matrix Bel in
Sec. A.3.1. This proof obviously also holds for the A matrices (which feature no dielectric function at
all) and the B and C matrices for Hermitian dielectric tensors.
Furthermore, the A and C matrices are invariant under shifts by arbitrary lattice vectors ρ ∈ LPC, as

is shown for the electric C matrix as an example in Sec. A.3.2. This property holds for the electric and
magnetic A and C matrices.
In summary, a matrix Gn′R′,nR in Wannier computations can have these properties:

Translational invariance (A,C): The matrix depends only on the relative distance R′ − R rather
than the absolute values of R′ and R, i. e.

Gn′R′,nR = Gn′0,nR−R′ (4.46)

= Gn′R′−R,n0 . (4.47)

Hermiticity (A,C,B,Bxx,Byy,B{x,y}): The matrix elements obey

Gn′R′,nR = G∗nR,n′R′ . (4.48)

Anti-Hermiticity (B[x,y]): The matrix elements obey

Gn′R′,nR = −G∗nR,n′R′ . (4.49)

Hermiticity and translational invariance (A,C): If the matrix G has both properties, then

Gn′R′,nR = Gn′0,nR−R′ (4.50)

= Gn′R′−R,n0 (4.51)

= G∗n0,n′R′−R (4.52)

= G∗nR−R′,n′0 . (4.53)

Exploiting these properties can drastically reduce the memory needed to store the matrix elements.
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4.2 Truncated Index Domains

So far, all summations were performed over all in�nitely many indices α = (nR) in theory. In practise
however, only �nite sized index domains, i. e., the sets P containing the allowed or available index
elements α, can be used for the following reasons:

• Only a �nite number of numerical WF bands n are available.

• The numerical WFs have �nite support which limits the sensible choices of R′ and R, since the
matrix entries become 0 for vanishing overlap between WFs as |R′ −R| exceeds a certain limit.

• Even if many bands n and lattice sites R are available, one usually wants to restrict the maximal
values to save memory and computation time due to the usage of smaller matrices.

Of course, extensive convergence investigations and reference comparison studies have to be conducted
in order to be sure to work within su�cient accuracy. For a parameter Rmax ∈ N0, we de�ne the

Rmax 0 1 2 3 4 5 6 7 8 9 10

Lsqu,par(Rmax),Lhex,par(Rmax) 1 9 25 49 81 121 169 225 289 361 441
Lshell
squ,par(Rmax),Lshell

hex,par(Rmax) 1 8 16 24 32 40 48 56 64 72 80

Lsqu(Rmax) 1 5 13 29 49 81 113 149 197 253 317
Lshell
squ (Rmax) 1 4 8 16 20 32 32 36 48 56 64

Lhex(Rmax) 1 7 19 37 61 91 127 187 241 301 367
Lshell
hex (Rmax) 1 6 12 18 24 30 36 60 54 60 66

Table 4.1: Number of lattice sites for lattice site domains of Fig. 4.4 with parameter Rmax.

(a) Lsqu(Rmax) (b) Lsqu,par(Rmax) (c) Lhex(Rmax) (d) Lhex,par(Rmax)

Figure 4.4: Schematic illustrations of lattice site domains for various Rmax (shown in legend).
The shells of each de�nition are shown in di�erent colors and symbols shapes. The number of lattice
sites of these sets is shown in Tab. 4.1.

following sets of lattice sites:

Lsqu(Rmax), Lhex(Rmax): All lattice sites within distance Rmaxa from the origin for the square and
triangular lattice, respectively, i. e., {R : |R| ≤ Rmaxa}.
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Lsqu,par(Rmax), Lhex,par(Rmax): All lattice sites within a parallelogram extending 2Rmax + 1 lattice

sites in each lattice direction for the square and triangular lattice, respectively, i. e.,
{∑

i ziai :

zi ∈ {−Rmax,−Rmax + 1, . . . , Rmax}
}
.

Lshell
squ (Rmax), Lshell

hex (Rmax): All lattice sites in the di�erence sets Lsqu(Rmax)/Lsqu(Rmax − 1) (for the
triangular lattice analogous).

Lshell
squ,par(Rmax), Lshell

hex,par(Rmax): All lattice sites in the di�erence sets Lsqu,par(Rmax)/Lsqu,par(Rmax−1)
(for the triangular lattice analogous).

The lattice site domains yielded by these de�nitions are visualized in Fig. 4.4. The number of lattice
sites used in each set are shown in Tab. 4.1.
Note that there are two distinct usages for the lattice site domains L here:

The computational domain Lcomp: This domain de�nes at which lattice sites R the WFs are located
and taken into account for the expansion (4.1). This determines the absolute size of the �nal
matrices that have to be diagonalized for computations, e. g. in (4.54).

The coupling domain Lcoupling: This domain determines for which lattice sites R and R −R′ the
operator matrices (4.6), (4.11), (4.15), and (4.16) are calculated. The coupling domain determines
the sparsity of the �nal matrices that have to be diagonalized, setting elements that are too far
away (in terms of lattice sites) to 0. The more localized the WFs are, the better this approximation
becomes.

4.3 Cavity Modes

We want to determine the eigenfrequencies ω and the expansion coe�cients cβ for defect modes occurring
in isolated defect clusters in the PC as in Fig. 4.1. We restrict ourselves to defect con�gurations that
can be described by (4.18) and the corresponding cavity defect operator matrix Bcav from (4.19). By
Sec. 4.1.1, the wave equation for the magnetic and electric �eld treatment, as well as for the 2D H-
polarized and E-polarized case, can be written as

∑
β

[
Cαβ +Bcav

αβ − Λ(ω)Aαβ
]
cβ = 0 .

Eigenmode Computation

(4.54)

This a generalized matrix eigenvalue problem with eigenvalue Λ(ω), from which the corresponding
eigenfrequencies ω of the modes can be obtained under consideration of the de�nitions (4.7) or (4.12)
of Λ appropriate for the corresponding electric or magnetic �eld case. After the Wannier expansion
coe�cients cβ have been computed, the mode pro�les can be obtained by carrying out the sum (4.1).
By truncating the in�nite matrices to lattice site domains discussed in Sec. 4.2, one implicitly imposes

metallic boundary conditions on the defect modes, meaning that the �elds are forced to become 0
at the boundaries of the computational domain (where the WF become 0 as well). This is a sensible
approximation when describing defect modes with frequencies in the band gap of the PC where the modes
decay exponentially into the PC domain, thus their �eld strengths decay rapidly to 0 (cf. Fig. 1.13).
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4 Wannier Function Expansion

4.4 Dispersion Relations ω(k)

We derive the matrix equations for the computation of band structures, supercell calculations and
waveguide dispersions ω(k) for given wave vector k. The modes are calculated with periodic boundary
conditions which enter the equations by construction. For the sake of simplicity, we restrict ourselves
to scalar dielectric functions for the derivation, since the resulting matrix equations are independent of
the tensorial properties.
We treat dielectric functions which are periodic with respect to a subset Lper ⊆ LPC of lattice vectors

S (Fig. 4.5):
ε(r + S) = ε(r) ∀S ∈ Lper . (4.55)

The lattice vectors Lper de�ne a superlattice in LPC, with supercells consisting of the relative lattice

(a) Cavity supercell (b) PC cell (c) Waveguide supercell

Figure 4.5: Schematic examples for supercells (dashed outlines) used in dispersion relation com-
putations with WFs. Exemplary intra-supercell lattice vectors ρ ∈ Lsup (orange) and inter-supercell
lattice vectors S ∈ Lper are shown.

sites ρ from a �nite subset Lsup ⊂ LPC such that

LPC = Lper ⊕ Lsup . (4.56)

That means, any general lattice site R ∈ LPC of the PC can be written as R = S + ρ, where S ∈ Lper

and ρ ∈ Lsup are uniquely determined.
Similar to (4.10), the full dielectric function ε can be split into the part εPC describing the PC and

the deviation ∆εper within all supercells, giving

ε(r) = εPC(r) + ∆εper(r) , (4.57)

where the parts are periodic with respect to the corresponding sets of lattice sites:

εPC(r + R) = εPC(r) ∀R ∈ LPC , (4.58)

∆εper(r + S) = ∆εper(r) ∀S ∈ Lper . (4.59)

The periodic deviation ∆εper is fully determined by the various local basic defects (4.18), where Rm =
S + ρm according to (4.56), which then yields

∆εper(r) =
∑

S∈Lper

∑
m

∆εm(r− S− ρm) , ρm ∈ Lsup . (4.60)
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4.4 Dispersion Relations ω(k)

By (4.55) and the Bloch theorem (1.19), an electromagnetic eigenmode ψk(r) (denoting the electric
or magnetic �eld) of the wave equations with wave vector k obeys

ψk(r + S) = eikSψk(r) ∀S ∈ Lper . (4.61)

The expansion (4.1) in terms of the electric or magnetic �eld WFs WnR(r) is generally written as

ψk(r) =
∑
nR

cnRWnR(r) . (4.62)

The expansion coe�cients cnR inherit the Bloch phase (4.61) under translations because

ψk(r + S)
(4.62)

=
∑
nR

cnRWnR(r + S) (4.63)

(A.15)
=

∑
nR

cnRWnR−S(r) (4.64)

=
∑
nR

cnR+SWnR(r) . (sum over all R ∈ LPC) (4.65)

On the other hand, by (4.61) and (4.62) we have that

ψk(r + S) =
∑
nR

eikScnRWnR(r) . (4.66)

Comparing the coe�cients of the last two equations above shows that for Bloch-periodic modes the
Wannier expansion coe�cients obey

cnR+S = eikScnR . (4.67)

With this relation and (4.56) we can write the expansion (4.62), where R runs over LPC, as

ψk(r)
(4.67)

=
∑

S∈Lper

∑
ρ∈Lsup

∑
n

eikScnρWnS+ρ(r) . (4.68)

Analogous to Sec. 4.1.1, we write |nS+ρ〉 now for the WFs, insert the above expansion into the magnetic
�eld wave equation and project from the left on 〈n′S′ + ρ′|· which gives∑

S∈Lper

∑
ρ∈Lsup

∑
n

[
〈n′S′ + ρ′|∇× η ·∇× |nS + ρ〉

− Λmag(ω)〈n′S′ + ρ′|nS + ρ〉
]
eikScnρ = 0 .

(4.69)

Using the de�nitions from (4.6), this projection is written as the matrix eigenvalue equation with �xed
k and S′∑

n

∑
ρ∈Lsup

∑
S∈Lper

eikS
[
Cn′S′+ρ′,nS+ρ +Bn′S′+ρ′,nS+ρ − Λmag(ω)An′S′+ρ′,nS+ρ

]
cnρ = 0 , (4.70)

where the matrix B = B[∆εper] models the whole in�nitely extended defect distribution (4.60). This
means, all these matrices are translationally invariant by shifts S′ ∈ Lper, so by (4.46) and G standing
for any of the above matrices we have

Gn′S′+ρ′,nS+ρ = Gn′ρ′,nS−S′+ρ , for G = A,C,B . (4.71)
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4 Wannier Function Expansion

The summation in (4.70) is performed over all superlattice vectors S ∈ Lper. After a shift of the
summation vectors S by the �xed S′, it is (under consideration of the aforementioned translational
invariance) equivalent to∑

n

∑
ρ∈Lsup

∑
S∈Lper

eikS
[
Cn′ρ′,nS+ρ +Bn′ρ′,nS+ρ − Λmag(ω)An′ρ′,nS+ρ

]
cnρ = 0 , (4.72)

where the additional constant global phase factor eikS′ has been absorbed into the complex coe�cients
cnρ. The matrix B can now be assembled from precalculated matrices B(m) similar to (4.19) from basic
defects as

Bn′ρ′,nS+ρ
(4.19)(4.60)

=
∑

S′∈Lper

∑
m

B
(m)
n′ρ′−S′−ρm,nS+ρ−S′−ρm

, ρm ∈ Lsup . (4.73)

Introducing contracted Hermitian matrices G̃, we can write the �nal generalized eigenvalue problem as

∑
n

∑
ρ∈Lsup

[
C̃n′ρ′,nρ + B̃n′ρ′,nρ − Λ(ω)Ãn′ρ′,nρ

]
cnρ = 0 .

G̃n′ρ′,nρ :=
∑

S∈Lper

eikSGn′ρ′,nρ+S ,

Supercell calculations in Wannier basis

(4.74a)

(4.74b)

This form is valid for the electric and magnetic wave equation in 3D and the scalar versions in 2D.
For given k ∈ L∗per, the solution of this matrix eigenvalue equation yields ω(k) from the corresponding
eigenvalue Λ(ω) by (4.7) and (4.12) and the Wannier expansion coe�cients cnρ on one supercell for the
modes. They can be assembled from WFs by (4.68).
The band structure of the PC can be expressed in the Wannier basis by choosing B = 0 (no defects)

and Lper = LPC. Then one can compute the dispersion relation along the high symmetry lines or on the
MP mesh that was used for constructing the WFs which is an important consistency check.
Waveguides are periodic in one dimension, where for the other dimensions the quasi-metallic boundary

conditions discussed in Sec. 4.3 are implicitly imposed by using numerically truncated WFs on �nite sized
supercell domains Lsup.

4.5 On-shell Waveguide Dispersion k(ω)

Starting from the wave equation in terms of WFs for given ω, we will assemble a transfer matrix T (ω)
which will relate the Wannier expansion coe�cients cnR of the waveguide modes with each other. The
eigenvalues of this transfer matrix will then yield the phase factors in (4.61) and its eigenvectors will
correspond to the eigenmodes. This technique will yield guided and evanescent waveguide modes alike
which are needed for the scattering matrix formalism to work properly.

4.5.1 Wave Equation

The wave equation in its general form (4.54) which is valid for 3D vectorial and 2D scalar electric and
magnetic �elds, reads ∑

nR

[
Cn′R′,nR +Bn′R′,nR − Λ(ω)An′R′,nR

]
cnR = 0 . (4.75)

Here, B is given by (4.73) for the particular defect con�guration (4.60) within the supercells.
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4.5 On-shell Waveguide Dispersion k(ω)

As stated in (4.71), B is periodic with respect to translations by all superlattice vectors S ∈ Lper.
The matrices A and C are by construction translationally invariant under shifts by any lattice vector
R ∈ LPC, including Lper. We add up these matrices to the system matrix M(ω) given by

Mn′R′,nR(ω) := Cn′R′,nR +Bn′R′,nR − Λ(ω)An′R′,nR , (4.76)

which inherits the translational invariance by S ∈ Lper.
The wave equation in terms of WFs then reads∑

nR

Mn′R′,nR(ω)cnR = 0 , (4.77)

with MnR+S,n′R′+S = Mn′R′,nR ∀S ∈ Lper , (4.78)

where the frequency ω is a given parameter now. This is no longer an eigenvalue problem, but an in�nite
system of linear equations. Before we can assemble the transfer matrix, we have to rewrite (4.77) in a
more suitable form that takes advantage of the translational invariance (4.78).
In the case of an isolated cavity defect it was convenient to think of the Wannier expansion coe�cients

attached to a single unit cell of the PC. Here it is more convenient to think of the Wannier expansion
coe�cients attached to the supercells (we do this in anticipation of (4.95)). We recast (4.77) which is
given in terms of unit cells now in terms of a supervector C of Wannier expansion coe�cients. This
supervector is a set of vectors of those expansion coe�cients, where coe�cients belonging to the same
supercell placed at S ∈ Lper are grouped together in a vector CS:

CS := (cn,S+ρ : ρ ∈ Lsup) , (4.79)

C := (CS : S ∈ Lper) (4.80)

This implies a partitioning of the matrixM into smaller submatricesMS′,S which couple the coe�cients
of the supercell at S to those in the supercell at S′:

MS′,S := (Mn′ρ′+S′,nρ+S : ρ,ρ′ ∈ Lsup) , (4.81)

MS′−S := MS′−S,0
(4.78)

= MS′,S . (4.82)

The last equation stems from the translational invariance property of the system matrix, so (4.77) now
reads: ∑

S∈Lper

MS′−S(ω) · CS = 0 ∀S′ ∈ Lper . (4.83)

The product here is an ordinary matrix-vector product. Eq. (4.83) is in fact a series of in�nitely many
identical equations: It describes the relation between Wannier expansion coe�cients on the supercell at
S with those on the supercell at S′, and this relation is always the same for the same relative distance
S′ − S between supercells. So we can choose an arbitrary origin supercell (i. e., choose a �xed S′ = S′0)
and solve the resulting matrix equation.

4.5.2 Transfer Matrix For Waveguide Dispersions

So far, the treatment of the wave equation is correct and we just have recast (4.77) into the new form
(4.83) which is valid for all cases shown in Fig. 4.5. Now we want to compute k(ω) for a waveguide as in
Fig. 4.5c and specialize (4.83) for that case. Such a waveguide is characterized by a periodic dielectric
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function (4.55) with periodicity in only one dimension. The set of lattice vectors Lper de�ning the
superlattice is then explicitly given by

Lper := {iswg : i ∈ Z} (4.84)

for a primitive waveguide translation swg ∈ LPC. We allow |swg| = na for n ∈ N and the lattice constant a
of the underlying 2D PC structure. That way, we are able to describe ordinary W1, W2, etc., waveguides
as well as coupled-resonator optical wave guides (CROW), examples of which are shown in Fig. 1.14.
However, Wx waveguides with some fractional value x /∈ N cannot be treated in this formalism. We also
call the supercells in the waveguide problem slices because of their obvious shape.

(a) Slice coupling (b) Transfer matrix domain

Figure 4.6: Schematic illustrations of waveguide slice domains Lsup (dashed outline) containing one
defect site. The periodic repetition of the slices along swg spans the whole lattice LPC of the photonic
crystal. The orange regions denote the position of the slice expansion coe�cients Cj. (a) The
matrices ML−j couple the expansion coe�cients of slice j to the ones at slice L. (b) The domain on
which the transfer matrix T couples 2L slice coe�cients with each other.

By choosing a particular swg, we can label the Wannier expansion coe�cients (4.79) on a slice by
integers:

Ci := (cn,iswg+ρ : ρ ∈ Lslice) , (4.85)

C := (Ci : i ∈ Z) . (4.86)

The partitioning (4.81) of the matrix M into smaller submatricesMi,j which couple the coe�cients
of slice j to those in slice i, is de�ned by

Mi,j := (Mnρ+iswg,n′ρ′+jswg : ρ,ρ′ ∈ Lslice) , (4.87)

Mi−j := Mi−j,0 =Mi,j . (4.88)

The lattice site domains for the indices i and j for these constructions are shown in Fig. 4.6a.
The wave equation (4.83) for a waveguide in a PC in terms of slices then reads∑

j

Mi−j(ω) · Cj = 0 ∀i ∈ Z . (4.89)
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Finally, we have to truncate the in�nite problem in order to compute numerical solutions with a
computer. This is justi�ed again by the localization properties of the Wannier functions. The matrix
entries of Mi−j decay rapidly for increasing coupling distances |i − j|, and we treat coupling matrices
for distances larger than a long range interaction parameter L to be 0. In practical computations, we
usually choose L ≤ 4. The matrix elements become 0 anyway in the numerical computation because
the numerically available Wannier functions exist only on a �nite support with �nite Rmax. This means,
only L ≤ Rmax is sensible in numerical computations, since the results cannot be made better with
larger L � there is simply no additional data available. When L is chosen, we have 2L + 1 non-zero
matrices Mi−j at our disposal and �x i = L. This choice determines the allowed values of j = 0, . . . , 2L
and we may formally solve (4.89) for C0, giving

C0 = −M−1
L ·

2L∑
j=1

ML−j · Cj . (4.90)

Here we see that a long range interaction parameter L greater than Rmax would lead to ML containing
only zeros (because the slices cannot couple due to the �nal support of the numerical WFs), thus it could
not be inverted. De�ning the matrices

T1,j := −M−1
L · ML−j for j = 1, . . . , 2L (4.91)

the relation (4.90) between the slice expansion coe�cients can be written as

C0

C1
...
...

C2L−1


=



T1,1 T1,2 . . . . . . T1,2L

1 0 . . . . . . 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 . . . 0 1 0


·


C1

C2
...

C2L−1

C2L

 , (4.92)

where 1 denotes the unit matrix. The lattice site domain for which the transfer matrix T is de�ned is
shown in Fig. 4.6b.
Finally, we get to exploit the Bloch theorem (4.67) for S = swg for the Wannier expansion coe�cients

which transforms this matrix-vector equation into a matrix eigenvalue problem:

Ci−1
(4.85)

= (cn,Si+ρ−swg) (4.93)
(4.67)

= e−ikswg(cn,Si+ρ) (4.94)
(4.85)

= e−ikswgCi . (4.95)

Adjusting the left hand side of (4.92) by this result yields

T · C = e−ikswgC , (4.96)

where we labeled the full transfer matrix from (4.92) as T and used the numerically truncated supervector
C = (C1, . . . , C2L). This transfer matrix T has eigenvectors C(`) and eigenvalues φ(`), from which the
corresponding wavenumbers k in direction of the waveguide (kswg = k|swg|) can be obtained via

k(`) =
i
|swg|

ln(φ(`)) . (4.97)
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The wavenumbers obtained are in general complex numbers, where vanishing imaginary parts belong
to the propagating modes of the waveguide and the non-vanishing parts describe the evanescent modes.
These evanescent modes are necessary for the scattering matrix formalism to work. The waveguide mode
is fully determined by the Wannier coe�cients C1, and the other slice coe�cients can be obtained by
iteratively applying (4.95).

4.5.3 Properties of the System Matrix

The system matrix M from (4.77) is stated in terms of Wannier functions and as long as the dielectric
tensors involved are Hermitian (meaning a lossless medium), the system matrix itself is also Hermitian.
This reduces the number of di�erent matricesMi needed to compute to L+ 1, as will be shown now.
By the de�nition (4.87), we have that

Mi,j
(4.87)

= (MnSi+ρ,n′Sj+ρ′) (4.98)

= (M∗n′Sj+ρ′,nSi+ρ) (Hermitian system matrix) (4.99)

(4.87)
= M†j,i . (4.100)

With (4.88) we obtain

Mi−j = Mi,j (4.101)

= M†j,i (4.102)

= M†j−i . (4.103)

This means that the matricesM1 toML can be deduced from the matricesM−1 toM−L for Hermitian
dielectric functions. Together with the Hermitian M0 this makes L + 1 di�erent matrices needed to
assemble the transfer matrix T .

4.6 Scattering Matrix Formalism

This is a brief summary of the Wannier based S-matrix (scattering matrix) formalism developed by
Hermann [43]. It illustrates the ability of the localized function expansion to compute amplitude trans-
mission and re�ection coe�cients of individual functional elements and large scale PC circuits assembled
from functional elements (see Fig. 4.7). Large in this respect means many lattice constants a. The device
of interest is connected to waveguides, where incoming guided modes of one waveguide enter the device
region Ldev on one side and get scattered by the device. This excites a number of outgoing guided modes
in all attached waveguides. The amplitudes of these waveguide modes are denoted by a` for incoming
modes and b` for outgoing modes. The natural index ` consecutively labels all possible waveguide modes
in all waveguides. The e�ect of the device can then be described by its S-matrix S(ω) which relates the
amplitudes of incoming and outgoing guided modes in the waveguides via

b` =
∑
`′

S``′(ω)a`′ . (4.104)

The elements of S(ω) can be computed by solving the wave equation in the form of (4.77) as a system
of linear equations. However, the solutions are subject to boundary conditions that require the �elds
in the waveguide to have a special form. The incoming amplitude a` of one single guided mode in a
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Figure 4.7: Schematic illustration of the lattice site domains for a photonic device, Ldev, attached
to waveguides Lwg,i. The amplitudes of incoming (aell) and outgoing (b`) waveguide modes are also
shown.

dedicated waveguide is set to 1 and all other incoming amplitudes to 0. The solution of the system of
linear equations of (4.77) is then expressed in terms of all possible outgoing waveguide modes which
yields the amplitudes b`. From these amplitudes, the S-matrix can be constructed. The guided and
evanescent waveguide modes obtained from a previous on-shell computation according to Sec. 4.5.2 have
to be used for this expansion. Finally, only the S-matrix elements relating guided modes are retained,
yielding very small reduced S-matrices.
The S-matrix of a large scale circuit assembled from a number of devices connected by waveguides

can then be expressed as the product of the reduced S-matrices for each constituent (waveguides are
also expressed in terms of an S-matrix). This approximation of using only the reduced S-matrices was
justi�ed and shown to give correct results in [43].
Thus, the transmission and re�ection coe�cients of a large PC circuit can be obtained by simple

matrix-matrix products of small S-matrices.

4.7 Summary

We expressed the eigenmodes of the wave equations in terms of Wannier functions, thus rewriting
the di�erential operator eigenproblems as generalized matrix eigenvalue problems. The matrices for a
particular defect setup can be assembled from a few precomputed matrices describing the pure overlap of
WFs, the periodic part of the underlying PC, and a single reference defect. For isotropic reference defects,
a single Hermitian reference defect matrix is needed which can be computed from scalar or tensorial
discretization schemes for the reference permittivity. This reference matrix is used to assemble the �nal
defect matrices describing complex clusters of defects with varying strength. For the anisotropic defects
of Secs. 1.2.5 and 1.2.6, Hermitian and antihermitian reference matrices describing pure x-derivatives,
pure y-derivatives, and mixed derivatives of the WFs are needed. These reference matrices have to be
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computed using a scalar permittivity discretization. Therefore, the numerical accuracy of the scalar
discretization has be investigated carefully and compared to the tensorial discretization scheme in the
following chapters.
Exploiting the translational invariance and Hermiticity of the operator matrices reduces computational

time, storage space and memory consumption considerably. De�nitions for various sets of lattice sites
were given that de�ne the allowed positions of the basis functions in computations. The in�uence of
these lattice sites on the accuracy of band structure and defect computations is examined in subsequent
chapters.
The matrix equations for the computation of localized defect cavity modes, supercell waveguide dis-

persions and on-shell waveguide dispersions were derived. In this matrix form, the wave equation can be
solved numerically by a computer, employing standard matrix diagonalization routines. The supercell
approach diagonalizes a small matrix and computes the real-valued frequencies ω of guided modes for a
given wave vector k. The on-shell approach diagonalizes a large transfer matrix and yields all complex-
valued components k of the wave vector k along the given waveguide direction ŝwg for a given frequency
ω. Real-valued wave numbers k correspond to guided modes, while non-vanishing imaginary parts of
k describe evanescent modes in the waveguide. In transmission calculations of functional elements, a
large system of linear equations has to be solved. The corresponding matrices are assembled from the
operator matrices. The eigenmodes of the setup are computed under the constraints of one incoming
guided mode that is scattered by the functional element into outgoing guided and evanescent modes.
This yields amplitude transmission and re�ection coe�cients as solutions of the system of linear equa-
tions. These complex coe�cients describe amplitude and phase of the outgoing waves and constitute
the scattering matrix of the device. Finally, transmission coe�cients of large scale photonic circuits can
be computed from assembling the full circuit scattering matrix. This matrix is given by products of the
small scattering matrices of the individual functional elements in the circuit.
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5 Chapter 5

Wannier Function Parameters

In this chapter, we are going to investigate which numerical parameters we have to choose in order
to reproduce the band structure with WFs of the PC from which they were constructed. This is an
important consistency check and allows to estimate the accuracy of the defect mode frequencies which
we can expect from WF computations.
Furthermore, localization properties of WFs and sparsity of operator matrices are investigated de-

pending on di�erent sets of WFs. These sets di�er in the spread minimization algorithm used (combined
Souza-Marzari-Vanderbilt or Marzari-Vanderbilt only). The arti�cially a posteriori symmetrized WFs
have been considered as well.

5.1 Choice of Resolutions

In the discretization of all quantities, we have several types of resolutions to handle. There is the real
space resolution Nres,i (cf. App. B) for Bloch modes and WFs, a�ecting the accuracy of derivatives and
operator matrix integrals. We also have to specify the MP mesh resolution Nk-res,i, which a�ects the
approximation quality of the in�nitely extended WFs by their discretized periodic versions with �nite
support.

5.1.1 Wannier Functions

The lowest �ve WFs of Figs. 3.31a and 3.31b are investigated in this section because they can be
generated consistently for various real space and MP mesh resolutions. They are shown in Fig. 5.1a.
Fig. 5.1b shows numerical noise of the order of 10−6 (maximal �eld values are normalized to 1) in the

directions a1 and a2, but not a1 + a2, as could be expected from the triangular symmetry. It is not yet
clear, whether this asymmetry is due to the choice of the MP mesh (Fig. B.7b) which is parallelogram
shaped and may violate the triangular symmetry.

5.1.2 Real Space Decay Behavior of Wannier Functions

The decay behavior along the cut direction of Fig. 5.1 with varying MP mesh resolution Nk-res,i is shown
in Fig. 5.2. One can clearly see the exponential decay and that the mode pro�les are converged for
Nk-res,i = 21 in the relevant region of 9 lattice sites around the origin. Further away from the origin,
there is numerical noise of the order of 10−7 of the maximal WF value. The noise is not reduced
when increasing the MP mesh resolution any further. Based on that evidence, we may not expect any
signi�cant improvements on other quantities computed from these WFs for higher MP mesh resolutions.
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(a) Wannier functions with cut directions (b) Logarithmic plots of Wannier functions (Nk-res,i = 23)

Figure 5.1: The WFs of Figs. 3.31a and 3.31b with cut directions (dashed arrows) for pro�le plots.
The origin is denoted by a black X.

5.1.3 Convergence of Operator Matrix Elements

From the WFs of Fig. 5.1 the operator matrices (4.16)

An′0,n∆R, Cn′0,n∆R, Bn′R′,nR (5.1)

for the PCs and a non-etched hole have been computed for various MP mesh resolutions Nk-res,i =
3, 5, . . . , 41 and a �xed real space resolution of Nres,i = 96 if not stated otherwise.
In Fig. 5.3a, the error of the discretized orthogonality relation is plotted. It shows the maximal

o�-diagonal elements
max
α,β
|Aαβ − δαβ| (5.2)

of the pure overlap matrices (4.16a) for various MP mesh resolutions Nk-res,i, with the Kronecker delta
δαβ . In theory, (5.2) should be zero. The plot reveals that the orthogonality of the WFs does not improve
for Nk-res,i > 25 any more.
Fig. 5.3b shows the maximum-norm convergence (A.43) of the C-matrix. For Nk-res,i > 31, no im-

provement is observed and the matrix elements can be considered converged. The same is true for the
maximum-norm convergence of the B-matrix in Fig. 5.3c.

5.1.4 Decay and Sparsity of Operator Matrix Elements

The sparsity of the matrices (5.1) is shown in Figs. 5.4a and 5.4b. The sparsity does not change for MP
mesh resolutions Nk-res,i > 11.
Figs. 5.4c and 5.4d show the decay of the matrix elements. The elements decay exponentially with

increasing separation distance R−R′ between the WFs.

5.1.5 Band Structure Accuracy

Fig. 5.5 shows the errors in the reconstructed band structures after (4.74). In Fig. 5.5a, the band
structure frequencies ωnk have been computed for the very same k-points on the MP mesh that were
used to construct the WFs. This measures the accuracy of the numerical WFs and the discretized Fourier
lattice transform. Two discretization methods for the permittivity distribution and derivatives of WFs
are compared as well:
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(a) A1(a), n = 1

(b) E1(a), n = 2

(c) A1(b), n = 5

Figure 5.2: Logarithmic plots (in powers of 10) of WF real space decay behavior along the cut
directions of Fig. 5.1 for various MP mesh resolutions Nk-res,i. The WF pro�les can be considered
fully converged with the choice of Nk-res,i = 21. In a distance of 9 cells from the origin, the WF
pro�les do not decay further, but show numerical noise of the order of 10−7.

FFT-tensor: The tensor SPS (B.23) with discretized spectral derivatives (Sec. B.3.2).

FDS-scalar: The scalar SPS (B.21) with 4th-order �nite di�erence stencils (Fig. B.3b).

Though the FFT-tensor version is more accurate, the FDS-scalar discretization method produces a mean
relative error below 0.1 %, proving that this method is capable of computing the proper band structure.
Furthermore, all errors do not improve any further for Nk-res,i > 9.
Fig. 5.5b shows the errors of the band structure ωnk computed for k-points on a MP mesh with highest

resolution of Nk-res,i = 41. This demonstrates the ability of the WFs to interpolate the band structure for
k-points that were not included in the numerical evaluation of (3.12). The mean errors do not improve
beyond Nk-res,i > 13, while the maximal errors do not improve any further for Nk-res,i > 17. If the WFs
should be used for high accuracy interpolation of the band structure,1 the latter MP mesh resolution
combined with the FFT-tensor discretization should be used. On the other hand, the mean FFT-tensor
and FDS-scalar results do not di�er much. Thus, the FDS-scalar discretization can be considered valid.

1The photonic WFs are used for that task in [97].
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5 Wannier Function Parameters

(a) Orthogonality of WFs, ∆R ∈ Lhex(
Nk-res,i−1

2
)

(b) Maximum-norm error of C-matrix, ∆R ∈ Lhex(3) (c) Maximum-norm error of B-matrix, R′,R ∈ Lhex(3)

Figure 5.3: Convergence of operator matrix elements with increasing MP mesh resolutions Nk-res,i

obtained from the WFs of Fig. 5.1 with real space resolution Nres,i = 96. For explanations, see text.

Finally, Fig. 5.6 shows the maximal and mean errors in the band structures for �xed MP mesh reso-
lution Nk-res,i = 5 (for both the construction of WFs and the reconstruction of the band structure) but
varying real space resolution Nres,i for the WFs. The MPB band structures computed with the same
spatial resolution were used as reference. The FDS-scalar and FFT-tensor discretizations yield band
structures with similar deviations from the reference frequencies. Moreover, the error decreases only
linearly with increasing resolution Nres,i for both discretization methods. Thus, there is no di�erence
in the accuracy of the WF computations regardless of the discretization schemes used to numerically
evaluate the operator matrix elements. This justi�es the use of the FDS-scalar methods for subsequent
defect computations.
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5.1 Choice of Resolutions

(a) Sparsity of C-matrix, ∆R ∈ Lhex(2),Lhex(3) (b) Sparsity of B-matrix, R′,R ∈ Lhex(2),Lhex(3)

(c) Decay of C-matrix elements for ∆R ∈ Lshell
hex (Rmax) (d) Decay of B-matrix elements for R′ ∈

Lhex(Rmax),R ∈ Lshell
hex (Rmax)

Figure 5.4: Sparsity and decay behavior of operator matrix elements. (a) and (b) show the number
of matrix elements (ordinate) with absolute values greater than a threshold de�ned by a fraction of
the maximal matrix element (abscissa). These elements were counted on two lattice site domains.
The number of elements stored in each matrix of (5.1) is shown after the colon behind the respective
lattice domain. As an example, there are approximately 200 C-matrix elements and 1,500 B-matrix
elements greater than 10−3 of the respective maximal matrix element. (c) and (d) show the maximal
ratio of matrix elements on a shell of lattice sites (cf. Fig. 4.4) to the maximal matrix element at
all. The eyeball �t shows exponential decay with parameter h = 0.68.

125



5 Wannier Function Parameters

(a) Reconstructed full band structure (b) Interpolated full band structure

Figure 5.5: Relative errors in band structure frequencies for the WFs of Fig. 5.1 for various MP
mesh resolutions and �xed real space resolution Nres,i = 96. (a) shows the mean and maximal relative
error for band structures computed on a MP mesh of the same resolution as the WFs. In (b), the
band structure was always computed on a MP mesh of resolution 41.

Figure 5.6: Accuracy of reproduced band structure frequencies obtained from the �rst �ve WFs on
a MP mesh with �xed resolution Nk-res,i = 5 with increasing real space resolution Nres,i.
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5.2 Operator Matrices of Final Wannier Functions

5.2 Operator Matrices of Final Wannier Functions

Based on the convergence investigations of the previous section, a real space resolution of Nk-res,i = 96
and a MP mesh resolution of Nk-res,i = 11 was chosen as a good compromise for the construction of the
WFs of Fig. 3.44 (referred to as WF101-SMV and WF38-SMV2 from here on) and Fig. 3.43 (referred
to as WF38-MV3) as well as the symmetrized versions of Fig. 3.46 (referred to as WF38-sym). The
operator matrices have been computed for the PC and a single non-etched hole as defect.
It is not a priori clear, whether the asymmetric WF38-MV WFs are better or worse suited for sub-

sequent computations than the nicely looking WF38-SMV. The hybridized WF38-MV versions were
computed with the pure Marzari-Vanderbilt spread minimization for a large closed set of bands. By this
construction, they needed no further parameters from the user, thus they were much faster found and
assembled than the WF38-SMV. It is therefore natural to ask if there is any bene�t from spending the
time to �nd the more symmetric versions.
First of all, the Wannier functions should be able to reproduce the band structure from the discretized

matrix operator elements. Additionally, some statistics of the operator matrices are also given in order to
�nd out if the better localization properties of the hybridized WF38-MV functions (as seen in Fig. 3.45)
yield any bene�ts. In Sec. 6, their ability to model defect modes is investigated.

5.2.1 Statistics of Operator Matrices

The orthogonality of the WF sets is shown in Fig. 5.7a. The WF38-MV are more localized and therefore
the pure overlaps are smaller than for the other sets of WFs, but the plot has the same principal shape
as for the less localized WF38/101-SMV versions. Furthermore, the principal shape of the plots is also
the same for both the 38 and 101 WFs, which must be a property of the MP mesh resolution then.
Fig. 5.7b shows the decay of the the C-matrix elements (normalized to the maximum element) for

increasing separation distance between the WFs, where the better localization of the WF38-MV is barely
visible. The decay of the defect B-matrix elements (normalized to the maximum matrix element) is the
same for all sets.
Figs. 5.7d and 5.7e show the sparsity of the C- and B-matrices, respectively. The better localization of

the WF38-MV does not improve the sparsity of the B-matrix drastically compared to the WF38-SMV.
The in�uence of the sparsity on defect computations is investigated in Chap. 7.
Based on the data presented here, no substantial advantage of the better localized WF38-MV WFs

over the WF38-SMV has been observed.

2They were constructed with the full Souza-Marzari-Vanderbilt algorithm.
3These were constructed from the pure Marzari-Vanderbilt spread minimization.
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5 Wannier Function Parameters

(a) Orthogonality for ∆R ∈ Lshell
hex (Rmax)

(b) Decay of C-matrix elements for ∆R ∈ Lshell
hex (Rmax) (c) Decay of B-matrix elements for R′ ∈

Lhex(Rmax),R ∈ Lshell
hex (Rmax)

(d) Sparsity of C-matrix, ∆R ∈ Lhex(5) (e) Sparsity of B-matrix, R′,R ∈ Lhex(5)

Figure 5.7: Operator matrix statistics for the WFs of Fig. 3.44 (WF38-SMV and WF101-SMV)
and the hybridized WFs of Fig. 3.43 (WF38-MV). The plots are analogous to Figs. 5.3 and 5.4.
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5.2.2 Band Structure Reconstruction

We are going to investigate the ability of the various sets of WFs to model the band structure which
is an important consistency check. The two discretization schemes FFT-tensor and FDS-scalar are also
compared again: for the reconstruction of band structures on the MP mesh of Nk-res,i = 11 and on
50 discretization points along the path of high symmetry lines ΓMKΓ. The maximal and mean errors
obtained are shown in Fig. 5.8.
The FFT-tensor discretization yields smaller mean errors for the WF38-SMV and WF38-MV sets,

where the latter one produced the smallest errors of all sets investigated. However, they interpolate the
band structure (on the high symmetry lines) just as good as the WF38-SMV. However, all sets of WFs
and discretization methods give reasonable mean errors around 0.5 % or below, meaning in particular
that no information was lost in the symmetrization process for the WF38-sym. As an example, the
reconstructed band structure along the high symmetry lines for WF38-MV is shown in Fig. 5.8a. So far,
neither a particular WF set nor a discretization method has to be discarded based on that evidence.

(a) Reproduced band structure (b) Errors of band structure reproductions

Figure 5.8: (a) Reproduced band structure based on (4.74) for the set WF38-MV of Fig. 3.43.
(b) Accuracies of reproduced band structures on a MP mesh (Nk-res,i = 11) and the high symmetry
lines ΓMKΓ of the PC for various sets of WFs and discretization methods.

5.3 Summary

We investigated the in�uence of the numerical parameters that have to be speci�ed in the creation of
the discretized WFs. These are the real space resolution Nres,i of the �elds and the MP mesh resolution
Nk-res,i used in the discretization of the reciprocal space integral for generating the WFs from the Bloch
modes. Only the �rst �ve bands generated by the MV spread minimization for closed groups have
been considered here. The WF pro�les were found not to change any more for MP mesh resolutions
Nk-res,i > 21. The exponential decay of the discretized WF pro�les was observed. The sparsity of the
operator matrices was una�ected for choices of Nk-res,i > 11, as well as the mean error of reproduced
and interpolated band structures. Both the FFT-tensor and FDS-scalar discretization methods yielded
small mean errors below 0.1 % in the band structure computations for Nk-res = 11 and a real space
resolution of Nres,i = 96. These resolutions were therefore picked for the remainder of this thesis.
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5 Wannier Function Parameters

For these resolution choices, several sets of WFs with di�erent construction parameters for the spread
minimization algorithms have been generated: 38 WFs with the combined Souza-Marzari-Vanderbilt
minimization, the a posteriori symmetrized variants of the same 38 WFs, 38 WFs generated from a
closed set with the pure Marzari-Vanderbilt minimization and 101 WFs with the SMV minimization.
All of these sets were able to reproduce their respective band structures with reasonable mean accuracy.
The set WF38-MV yielded particularly small mean errors of 0.03 % for the reproduced band structure,
but also a quite large maximal error (1 %) in the interpolated band structure, both in combination
with the FFT-tensor discretization. Overall, the FDS-scalar discretization scheme did not perform
signi�cantly worse (the maximal error in the latter case was actually better with 0.2 %), which justi�es
its usage for subsequent defect computations.
Based on the evidence presented in this chapter, the WF38-MV performed better in the reproduction

of the band structure than the WF38-SMV versions. This is an astonishing result, since the WF38-MV
set of functions was also much easier and faster obtained than the SMV versions, where the frequency
windows for the Souza subspace optimization had to be tediously determined by trial and error.
The structure of the operator matrices (regarding sparsity and decay of the matrix elements) was

similar for all of the examined sets, though the WF38-MV decay faster than the SMV versions, as
Sec. 3.9 showed.

Parameter Value

Nres, i 96
Nk-res, i 11

Discretization FDS-scalar
SMV parameters �

Table 5.1: WFs construction parameters used for the remainder of this thesis. These yielded
mean errors of the reproduced band structure frequencies between 0.1 % and 0.3 %. SMV parameters
denotes the band set and frequency window choices for the construction of WFs by the combined
Souza-Marzari-Vanderbilt spread minimization. The results of this chapter did not favor a particular
choice.

Finally, the choice of parameters in Tab. 5.1 is justi�ed on the basis of the correct band structure
reproduction. The results of this chapter do not favor a particular choice of SMV construction parameters
(band set choices and frequency windows).
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6 Chapter 6

Auxiliary Basis Functions

So far, localization and symmetry properties of WFs were discussed. Now we will investigate the ability
of WFs to model localized defect modes in PC defect structures. This chapter starts with a review of the
continuity conditions of the electric and magnetic �elds across dielectric boundaries. We are going to
review early results for E-polarized light, where the WFs performed as e�ciently as was anticipated. For
H-polarized �elds, however, we are going to show that the magnetic �eld WFs are incapable of modeling
the correct continuity conditions for defect modes, seriously limiting the accuracy of the defect mode
frequencies.
We try to ameliorate this drawback by incorporating auxiliary basis functions into the expansion basis

that retain the localization of the pure Wannier basis and can be used within the Wannier framework
of Chap. 4. The idea of choosing basis functions that are adapted to the problem one wants to solve is
found in various parts of computational physics such as quantum chemistry [98].
Three suggestions for auxiliary basis sets are given and their ability to produce more accurate results

than the proper WFs alone is investigated. This chapter closes with extensive convergence studies
for simple and complex defect structures involving isotropic and anisotropic materials introduced in
Secs. 1.2.5 and 1.2.6.
The error plots present the individual errors of each defect mode and the maximal errors over all

defect modes for each defect strength. Multiple sets of auxiliary basis functions are shown in each error
plot. For clarity, these plots have been shifted a bit to the right but present data only for integer
values of defect permittivities. The numerical parameters for reference modes computed with MPB are
documented in App. C.
In this work, only permittivity defects made from in�ltrated holes are treated. Radius defects and

auxiliary functions have been investigated in a previous thesis by Hermann [43].

6.1 Boundary Conditions

We chose the H-�eld WFs to describe defect states in PCs, because they share many properties of the
defect states we are interested in. In particular, they have the following nice properties:

• The divergence condition ∇ ·H = 0 is always satis�ed for any solution obtained with WFs since
each WF has vanishing divergence and so does any linear combination of WFs. In 1D and 2D, this
property is always trivially ful�lled.

• The WFs are a complete orthonormal set, thus forming a basis in the function space of solutions
of the wave equation.
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• The WFs can be chosen to be highly localized. Thus defect computations can be treated in terms
of sparse matrices.

• The WFs resemble the lattice symmetry just as the defect states do.

These are the properties, on which the numerical e�ciency of the WF method relies. Though this
numerical e�ciency has been shown in the 2D E-polarized polarized case [31, 99] and is reviewed here in
Sec. 6.1.1, where very few electric �eld WFs have been used for converged defect mode and waveguide
dispersion computations, they have the following shortcomings:

• For the 2D H-polarized case (i. e., magnetic �eld WFs) and the general 3D case (E �eld and H �eld
formulation), they cannot model the correct boundary conditions for the electric and magnetic
�elds at dielectric boundaries.

• In order to describe all defect modes properly, the necessary symmetries have to be present in the
WF basis used.

The latter problem is obvious: e. g.if there is no WF with dipole symmetry in a given basis set, it is
hard (if not even impossible) to describe the �eld of a defect dipole by a linear combination of the given
basis functions. This problem can be solved by generating more WFs with the bottom-up approach [35],
until WFs with the desired symmetries and �eld distributions are found.
The former problem is of more fundamental nature and we are going to state it analytically now,

following the analysis of [39].

E-Field Formulation

By (1.9a), the solutions E(r) of the electric �eld wave equation have to obey

∇ ·
[
ε(r)E(r)

]
!= 0. (6.1)

This is a problem for the 3D vectorial electric �eld WFs which are constructed from Bloch modes
obeying (6.1) for the unperturbed PC, and so do the WFs. The electric �eld WFs and any linear
combinations of these then obey

∇ ·
[
εPC(r)Wel(r)

]
= 0, (6.2)

whereas the proper solutions for the electric �elds of the defect modes ful�ll (6.1) with ε(r) = εPC(r) +
∆ε(r) instead of εPC. Thus, the vectorial electric �eld WFs Wel are not able to reproduce the correct
divergence conditions for defect modes in the presence of a defect.
In the 2D TM polarized case, we have E(r) ≡ Ez(rq)ẑ, so (6.1) simpli�es to

∂z

[
ε(rq)Ez(rq)

]
!= 0. (6.3)

This equation is trivially ful�lled in 2D TM polarization, since the prerequisites for this polarization
case implied ∂zε(rq) = 0 and ∂zEz(rq) = 0 by Sec. 1.2.4.
The E-�eld WFsW el(rq) in TM polarization are constructed from the Bloch modes of the unperturbed

PC, i. e., for ε(rq) = εPC(rq). By the same argument as above, for scalar ε(rq) containing also defects,
we have that

∂z

[
ε(rq)W el(rq)

]
= 0 (6.4)

always holds, regardless of the actual defect structure contained in ε(rq) (as long as it still allows
to separate the problem into two independent scalar TE and TM wave equations). Thus any linear
combination of WFs also satis�es (6.3). An exemplary test system demonstrating the e�ciency of 2D
TM WFs is discussed in Sec. 6.1.1.
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H-Field Formulation

For the H-�eld WFs Wmag(rq), this problem is already apparent in the 2D case. Though the divergence
condition (1.9b) is always ful�lled, the derivatives of the WFs cannot model the proper continuity
conditions. As discussed in [39], for any H-�eld solution of the magnetic �eld wave equation the following
expression is continuous across dielectric boundaries, where η(r) changes values discontinuously:

n̂(r)×
[
η(r)∇×Wmag(r)

]
. (6.5)

Here, n̂(r) is the normal vector of the dielectric interface1 (see also Fig. B.5a). In 3D, the Bloch modes
and, hence, also the magnetic �eld WFs satisfy equation (6.5) for the periodic PC, i. e., for η(r) = ηPC(r),
whereas the defect states ful�ll (6.5) for the full defect con�guration, i. e., for η(r) = ηPC(r) + ∆η(r).
Since any �nite linear combination of the magnetic �eld WFs also inherits their continuity properties,
they are incapable of modelling the correct boundary conditions of defect states.
In the 2D TE polarized case, we have H(r) ≡ Hz(rq)ẑ, hence (6.5) simpli�es to the continuity of the

following expression for any solution of the TE wave equation:

η(rq)
(
n̂q(rq) ·∇q

)
Hz(rq). (6.6)

Here, n̂q ·∇q is the derivative in the direction of n̂q. As argued above, any �nite linear combination of
WFs inherits their continuity properties (6.6) for η(rq) = ηPC(rq), whereas defect states obey (6.6) for
η(rq) = ηPC(rq) + ∆η(rq). This is one of the reasons, why the convergence of the WF solutions gets
worse with increased defect strength, as can be seen clearly in Fig. 6.5.

6.1.1 2D TM Modes

We review the convergence of WFs-based defect mode computations for E-polarized light. The PC under
consideration consists of a square lattice of silicon rods in air. The parameters for the computation of
the Bloch modes is shown in Tab. D.3a, the band structure is depicted in Fig. 6.2. This system features
a relatively large band gap from ω = 0.2892πc0

a to ω = 0.4412πc0
a .

From these Bloch modes, a total of 23 WFs has been generated with the Souza-Marzari spread
generation process discussed in Chap. 3 with the parameter choices of Tab. D.3b. The operator matrix
elements (4.11) have been computed from these WFs with the parameters from Tab. D.3c. The cavity
defect modes have been obtained from these operator matrices by assembling and diagonalizing the
eigenvalue problem (4.54) under consideration of (4.29). Finally, the reference solutions have been
obtained by a supercell computation with MPB and the parameter choices of Tab. D.3d. These numerical
parameter choices have been taken from appendix App. C, where an accuracy below 0.1 % has been
achieved for the reference modes.
Figs. 6.3a and 6.3b show that the WFs are able to compute the defect mode frequencies of a single

defect rod with permittivities εA in the huge range [1, 80] to accuracies below 0.5 %. Not all 23 WFs
available are needed for this accuracy. The monopole and dipole modes for εA < 50, e. g., can be
described within the same accuracy with only the �rst 6 WFs [31]. This result drastically demonstrated
the high e�ciency of the WF-method and sparked hope to describe H-polarized modes and 3D problems
equally well.
Fig. 6.4 further illustrates the reasons for the ability of the WF to describe the defect modes properly.

The WFs and defect modes already have very similar mode pro�les and the same exponential decay
1Only the direction is important, but not whether n̂ is pointing inward or outward, since this is irrelevant for the continuity
condition.
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6 Auxiliary Basis Functions

Figure 6.1: 2D TM WFs obtained with the parameters of Tab. D.3. Note the various localization
centers of the WFs.

Figure 6.2: TM band structure of the square lattice silicon rod system.

behavior discussed in Sec. 1.2.10. The mode pro�les computed by WFs and MPB practically coincide
(Fig. 6.4b). Most of all, one can clearly see that the TM WFs and MPB reference modes are smooth
(continuously di�erentiable) across all dielectric boundaries.
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(a) Defect modes (b) Relative errors

Figure 6.3: (a) Defect mode frequencies in the band gap for a single defect rod with varying permit-
tivity εA. The results obtained with the WFs from Fig. 6.1 are compared to the reference solutions
obtained with MPB. (a) The relative errors of WF results compared to the reference solutions. The
agreement between both methods is better than 0.5 % over a wide range of defect strengths εA.

(a) Slice cuts trough WFs (b) Slice cuts through defect modes

Figure 6.4: Slice cuts along the y-direction through (a) WFs and (b) defect mode pro�les. The TM
WFs and defect modes are already quite similar and they are both continuously di�erentiable across
each dielectric boundary. In (b), defect mode pro�les obtained with the WF approach by (4.1) are
compared to MPB results. Di�erences cannot be made out by eye.
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6.1.2 2D TE Modes

This system is of great technical importance as discussed in Chap. 1. It consists of a triangular lattice
of cylindrical air holes in silicon with radii r = 0.45a (see Figs. 1.9b and 1.8c). The Bloch mode
construction parameters are shown in Tab. D.2a. The WFs made thereof are depicted in Fig. 3.44,
where the parameters from Tab. D.1 have been used.
For historical reasons, the results for 38 WFs are shown here, since only these were available from the

previous work of Schillinger [35] when this thesis started. In the course of this work, up to 101 WFs
were constructed. Their e�ect on the defect mode convergence is discussed in the subsequent sections
of this chapter.
The operator matrices of Sec. 4.1 were computed with the parameters from Tab. D.2b. All reference

modes, with which the WF results are compared, have been computed with MPB with the parameters
of Tab. D.2c. By App. C, these parameters are known to yield converged reference frequencies.
The continuity of expression (6.6) and its consequences are visualized in Fig. 6.5. Fig. 6.5a shows the

WFswhich obey the same boundary conditions as the Bloch modes for the perfectly periodic εPC. The
steep slopes in the high index regions (silicon) and slight slopes in the low index regions (air) are clearly
visible. Figs. 6.5b and 6.5c show that the kinks of the WFs are still present in the WF solutions, but
not the reference solutions. Additionally, Fig. 6.5c shows the importance of the proper WF pro�les. In
the regions between the holes, the WF approximation lacks contributions from WFs centered at Wycko�
positions c and e.2 Fig. 3.44 reveals that these WFs occur mostly after the �rst 38 WFs. Thus one needs
more basis functions that

• model the correct boundary conditions at dielectric interfaces, and

• contribute to the defect mode pro�les at the right positions in the PC.

In the following sections, several sets of additional basis functions are introduced and their ability to
correct �aws are quantitatively and qualitatively investigated.

2The rigorous proof for this hypothesis is given in Sec. 7.1.3 and can also be seen in Fig. 6.11b.
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(a) Slice cuts trough WFs

(b) Slice cuts trough dipole defect modes (c) Slice cuts through hexapole defect modes

Figure 6.5: Slice cuts along the x-direction and y-direction of TE WFs and defect modes obtained
from them. In (a), one can clearly see the di�erent slopes of the WFs in the low index (air) and
high index (silicon) region which is expressed in the continuity of the expression (6.6). The arrows
in (b) and (c) denote the kink in the defect mode pro�les obtained from the �rst 38 WFs of Fig. 3.44
which is not present in the reference solutions. In (c) one can also see that pro�le contributions
from WFs centered at Wycko� positions c and e are missing to describe this reference defect mode
properly (dashed arrow).
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6.2 Sets of Auxiliary Basis Functions

Takeda et al. [39] suggested modi�cations to the WFs for each new defect distribution ∆ε to ameliorate
for the drawbacks identi�ed in Sec. 6.1.2. In their approach, a plane wave base supercell problem
has to be solved for each new �eld ∆ε in order to determine the necessary (and rather complicated)
modi�cation.
For the 2D TE case, we propose to incorporate (in the best case just a few) additional basis functions

into the WF basis, that have the following properties:

• They should be easily integrated into the WF formalism, i. e., yield several functions n at di�erent
lattice sites R with the same translational properties (A.15) as the WFs.

• They should share the convenient properties of WFs, i. e., they should be highly localized, respect
the lattice symmetry, and be divergenceless.

• They should �x the problems of the WFs, i. e., introduce the proper boundary conditions at
dielectric interfaces for defects and contribute �eld values where they are needed in the defect
modes.

• They must not introduce any spurious modes which are numerical solutions that do not correspond
to real physical solutions of Maxwell's Equations.

We will investigate various possible choices of such additional basis functions in the following and quantify
their ability to describe defect mode pro�les and waveguide dispersions.

6.2.1 More Wannier Functions

As alluded to earlier, in the beginning of this thesis only WFs constructed from the �rst 38 bands of the
PC were available. In the course of this work, up to 101 WFs from Fig. 3.44 have been constructed. We
will refer to these WFs as proper Wannier functions to distinguish them from the WFs of the inverse
system introduced below. We will see in Sec. 6.3.1 that they improve the accuracy of the pure WF defect
mode calculations a bit, but the continuity problem still persists. However, these many functions are
still needed in addition to the auxiliary basis functions introduced below, as we will see in the following
sections.
On the other hand, it is not practical to keep generating more and more higher-band WFs since the

e�ciency of the WF expansion relies on the usage of few basis functions. That is why it is desirable to
use additional auxiliary basis functions, whose construction is based on di�erent methods.

6.2.2 Supercell Defect Modes

The defect modes for a single non-etched hole (cf. Fig. 1.12) are localized, model the proper boundary
conditions for the 'worst case' of a non-etched hole (strong deviation from periodicity), respect the lattice
symmetry, and are divergenceless. Though they are not orthogonal when shifted to di�erent lattice sites,
their overlap is still small. Furthermore, they can be systematically computed by a supercell approach.
The basic idea is to use just n = 6 of these functions at lattice sites R with an in�ltrated hole to
interpolate the boundary conditions for all intermediary defect strengths from no defect to non-etched
hole.
The advantage of using supercell defect modes lies in the fact that this approach could easily be ported

to 3D computations, as long as supercell computations are feasible.
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6.2 Sets of Auxiliary Basis Functions

6.2.3 Fourier-Bessel Functions

As brie�y mentioned in Jackson [45], Fourier-Bessel functions (FBF) are well suited for expansions of
functions that vanish on the surface of a circle. Since WFs obey the correct PC boundary conditions
outside any defect region, one can think of the defect mode H-�eld that is missing in the pure WF
solution as a small perturbation that vanishes on the surface of the defect holes. Thus the FBFs are just
needed in the defect region to correct the pure WF defect mode solution. This is only possible, when
we restrict ourselves to cylindrical defects of the same radius as the PC holes, namely in�ltrated holes.

Figure 6.6: Fourier-Bessel functions obtained by (6.7). The label n is shown in the plots for
discrimination, but the numbering is rather arbitrary.

The FBFsW ′nR depicted in Figs. 6.6 and 6.7 are de�ned in 2D polar coordinates (ρ, φ) centered around
the hole at R, i. e., ρ = |rq−R|:

W ′nR := Jm(xm,νρ/r)×

{
sin(kφ)
cos(kφ)

}
, ρ ∈ [0, r]. (6.7)

Here, Jm is the Bessel function of the �rst kind with m ∈ N0, xm,ν the νth zero thereof, r the radius of
the PC holes, and k ∈ N0. The index n ∈ N labels the various combinations of m, ν, k and whether sin
or cos are used for the angular modulation: i. e., n ≡ (m, ν, k, sin / cos). In practise, these functions are
normalized in the L2-norm by the numerical normalization routines. The incorporation of the zeroes
xm,ν ensures that these functions indeed take on the value 0 for ρ = r, i. e. on the surface of the defect
hole.
The choice of these functions was guided by the defect geometry of in�ltrated cylindrical holes with

�xed radius r, so it is not directly applicable to other geometries. Furthermore, in 2D calculations all
functions are intrinsically divergence-free and it is not straightforward to generalize this function system
to divergenceless vectorial for 3D computations.
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6 Auxiliary Basis Functions

Figure 6.7: Slice cuts through the FBFs of Fig. 6.6. Note that the support of these functions is
restricted to a single hole.

6.2.4 Inverse System Wannier Functions

In order to correct the boundary conditions of the WFs one could introduce functions with opposite
ratios of slopes across the hole-background boundaries. This is most easily accomplished when computing
WFs for the opposite distribution of dielectric media in the PC, i. e., to switch the permittivities of holes
and background.

Figure 6.8: The inverse system Wannier functions (IWF) for the triangular silicon rods in air
system. Note the similarity of the pro�les to the FBFs of Fig. 6.6. Some IWFs are quite extended
which stems from ignoring their natural symmetry and enforcing Wycko� position a as the localiza-
tion center (1,2,14,15,16).

The WFs constructed for this inverse silicon rods in air system (with the otherwise same parameters
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as the air holes in silicon system) are the inverse system Wannier functions (IWF). These functions were
created before the in�uence of symmetry and centers on localization (Chap. 3) were fully understood
by the author. This is why only the initial IWFs from rod centered�i. e., Wycko� position a�trials of
Γ-point Bloch modes have been constructed here, meaning that no spread minimization was carried out.

Figure 6.9: Slice cuts through the IWFs of Fig. 6.1. These functions have steep slopes in those
areas, where the WFs of Fig. 6.5a have �at slopes and vice versa.

Fig. 6.8 shows the lowest few IWFs constructed in this fashion, where a total of 66 IWFs have been
used as auxiliary basis functions. Some of these functions are not optimally localized, since their natural
symmetry has been ignored and the localization center was forced to be Wycko� position a (center of
a rod/hole). Fig. 6.9 reveals that the slopes of the IWFs show the opposite behavior than that of the
WFs of Fig. 6.5a.
This approach could easily be extended to 3D PCs since the IWFs are also divergence-free and can

be systematically constructed after a symmetry analysis of the resulting PC. However, they describe a
totally di�erent band structure which may introduce spurious modes to the defect mode calculations. A
careful analysis has to be performed, in order to rule out the possibilities of false, unphysical solutions
to the wave equations.
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6 Auxiliary Basis Functions

6.3 Cavity Defect Modes Convergence

Now we will investigate the performance of the auxiliary basis functions introduced in the previous
section for cavity mode computations after (4.54).

Defect Setup Notation: We investigate localized cavity defects and waveguides consisting of point-like
defects (Fig. 1.11) in our model system. We consider single air pores that are in�ltrated with various
materials having di�erent relative permittivities and are therefore described by a variety of dielectric
functions: isotropic materials are described by a scalar permittivity, birefringent materials (e. g., liquid
crystals) have a real symmetric tensorial epsilon tensor and magneto-optic materials are described by a
complex Hermitian tensor.

Letter Meaning

i In�ltration with isotropic material
b In�ltration with birefringent material
m In�ltration with magneto-optic material

Table 6.1: Nomenclature de�nitions of types of point defects.

In order to describe which pores are substituted by which kind of defect, we introduce the following
nomenclature to distinguish the various cavity defect setups. The position of the pores is denoted by
the capital Latin letters A�G de�ned in Fig. 6.10 and Tab. 6.2, the type of defect by a lowercase Latin
letter summarized in Tab. 6.1.

Letter Relative position

A RA = (0, 0)
B RB = (1, 0)
C RC = (1, 1)
D RD = (0, 1)
E RE = (−1, 0)
F RF = (−1,−1)
G RG = (0,−1)

Figure 6.10: Nomenclature de�nitions of
relative point defect positions for cavities and
waveguide slices.

Table 6.2: The relative point defect positions
in lattice coordinates.

A cavity defect can thus be described by the positions of a particular point defect type followed by the
type identi�er, e. g. ABEi refers to isotropically in�ltrated holes forming a line along the a1 direction,
where no information about the particular value of relative defect permittivities εA, εB or εE is explicitly
given (cf. Fig. 6.20c).

Basis Function Set Notation: The legends of the plots denote the sets of basis functions that have
been used as well as the discretization methods for the permittivity distribution. They include informa-
tion on
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6.3 Cavity Defect Modes Convergence

• the number of proper WFs,

• whether and which set of auxiliary basis functions (ABF) has been used,

• on which lattice sites of the computational domain these functions were included,

• whether the ABF were orthogonalized with respect to the proper WFs,

• the permittivity and derivative discretization used.

The in�uence of all these parameters on the defect mode frequency errors is documented in this chapter.
Therefore, the legends use the following notation to denote which combination of parameters has been
used in a particular computation:

[WF set]-[domain size]-[ABF set]-[domain size]-[orthogonalized?]-[discretization]

The WFs sets used are

WF38,WF101,WF38-SMV, WF101-SMV: the WFs of Fig. 3.44 obtained by the bottom-up ap-
proach with the combined SMV spread minimization,

WF38-MV: the WFs of Fig. 3.43,

WF38-sym: the a posteriori symmetrized WFs of Fig. 3.46.

In order to distinguish these WFs from the IWF they are called proper WF in the following.
The auxiliary basis functions (ABF) sets used are

SMD6: the MPB supercell defect modes for a non-etched hole,

FBF36: the Fourier-Bessel functions with compact support,

IWF66: the initial Wannier functions of irreps for Wycko� position a for the inverse system, i. e., silicon
rods in air.

These are usually used only at defect sites and are orthogonalized with respect to the proper WFs. For
comparison, results for non-orthogonal ABFs and ABFs used at all lattice sites are sometimes shown.
The discretization methods used are

FFT-tensor: the spectral derivative discretization of Sec. B.3.2 and the tensor sub-pixel smoothing for
the permittivity of (B.23),

FDS-scalar: the �nite-di�erence derivative discretization of Sec. B.3.1 and the scalar sub-pixel smooth-
ing from (B.20).

These discretization methods have to be compared because the reference modes of MPB are obtained
by the FFT-tensor discretization, for which quadratic convergence with the real space resolution was
proven [41, 57, 100]. We have to make sure that no additional errors are introduced when using a
di�erent discretization scheme.
The domain sizes denote the Rmax parameter of the `basic' symmetric lattice site domains Lhex(Rmax)

(cf. Sec. 4.2) for cavity computations and slice domains Lslice(Rmax) for waveguide computations. For
defect clusters, these basic domains are shifted to each defect site, generating the whole computational
domain Lcomp for the defect cluster computation. The construction of the full computational domain
Lcomp for proper WFs and ABF used in this scheme is explained in more detail in Sec. 7.1.1.
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Examples: WF38-sym-R4d-FFT-tensor denotes the a posteriori symmetrized 38 proper WFs on a com-
putational domain Lcomp = Lhex(4), where the operator matrix elements have been evaluated with the
FFT-tensor discretization schemes. WF101-R4d-DM6-R0d-noortho-FDS-scalar denotes the 101 proper
WFs on the same computational domain with additionally taking the 6 MPB defect modes into account
at the defect sites (Lhex(0) contains only the origin site). These auxiliary functions are not orthogonal-
ized.

6.3.1 Cavity Setup Ai

We investigate the accuracy of defect modes for a single isotropically in�ltrated hole with permittivity
εA.

Wannier Functions Only

We use 38 and 101 WFs (Fig. 3.44, constructed with parameters from Tab. D.2) and compare results
obtained for di�erent combinations of discretizations for derivatives and permittivity distributions in-
troduced in App. B. This is necessary because the reference frequencies are obtained by MPB supercell
computations which employs spectral derivatives (Sec. B.3.2) and the tensorial discretization scheme
(B.23) for isotropic permittivities and the scheme (B.26) for anisotropic permittivities. Therefore, we
have to make sure no additional errors due to the discretization methods used are introduced.

(a) Defect mode frequencies (b) Relative errors

Figure 6.11: Defect mode frequencies and relative errors compared to MPB reference modes com-
puted with the parameters from App. C.

In the Wannier framework we are free to choose between �nite-di�erence stencils or spectral derivatives
for the discretization of derivatives. For the treatment of isotropic defects, the same e�ective tensor
discretization as in MPB calculation can be used. However, for the treatment of anisotropic defects by
Eqs. (4.38) and (4.44), only scalar permittivity distributions can be used, since one cannot separate the
contributions of the various derivatives then. So it is favorable to use a scalar discretization scheme for
the Wannier defect computations.
We have to submit the computations to a careful examination in order to attribute deviations from

the reference frequencies by MPB to either di�erent discretizations or de�ciencies in the (auxiliary) basis
functions used.
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6.3 Cavity Defect Modes Convergence

(a) Dipole mode (b) Hexapole mode

Figure 6.12: Defect mode pro�les for εA = 12 (non-etched hole). The kinks in the proper WF
solutions are still visible (straight black arrows). In (b), the use of more WFs (centered at Wycko�
positions c and e) �attened out the oscillations (dashed arrow).

Fig. 6.11 shows the defect mode frequencies for these sets of operator matrices: The error plots in
Fig. 6.11b reveal two things. First, the use of a scalar permittivity discretization with �nite-di�erence
stencils performs slightly better, so we may use this approach for both isotropic and anisotropic defect
computations. Second, 38 proper WFs are su�cient to describe defect strengths up to εA = 5 with an
accuracy below 0.8 %, and 101 WFs extend the defect range for this accuracy to εA = 7. In particular,
the upper defect mode frequencies (monopole and hexapole of Fig. 1.12) improve drastically. However,
for the most extreme case of a non-etched hole (εA = 12), the errors still range from 0.7 % to 2.2 %. The
reasons for this behavior can be seen from the defect mode pro�les in Fig. 6.12 obtained via (4.1). The
straight black arrows denote the kink in the WF solutions for a non-etched hole. That kink is absent in
the smooth reference solutions. The use of more WF relieves the error a bit, but this feature of the WF
solution does not vanish entirely. Fig. 6.11b shows the relevance of the higher WF bands after the �rst
38 bands. The WFs centered at Wycko� positions c and e �atten out the oscillations outside the defect
area, denoted by the dashed black arrow.

In Sec. 3.9 we have introduced several di�erent sets of 38 WFs which reproduced the band structures
of the PC equally well. However, while this is an important consistency check, it does not imply that
these WFs are also suited well to describe defect states in the PC. Therefore, defect mode frequencies
obtained by these sets are shown in Fig. 6.13.

We see that the symmetrized WFs from Fig. 3.46 yield the same defect mode frequencies as the
unprocessed WFs of Fig. 3.44. The highly localized hybridized versions of Fig. 3.43 as well yield the
same defect mode frequencies, but also lots of spurious modes which renders them useless. This may be
due to the high degree of localization of the A(f) WFs of Fig. 3.43 which cannot be resolved properly
by the spatial resolution Nres,i chosen and may introduce errors in the discretized derivatives. Another
possible source of errors could consist in the incomplete irreps that lack some basis functions for these
irreps. Thus, the source of the spurious modes is not fully clear, yet.
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Figure 6.13: Defect mode frequencies for alternate sets of the �rst 38 proper WFs from Sec. 3.9.
The symmetrized WFs of Fig. 3.46 yield the very same frequencies as the unprocessed ones of
Fig. 3.44, as do the hybridized ones from Fig. 3.43. However, the latter set also introduces lots
of spurious modes.

Bessel-Fourier Functions

The 36 FBF from Fig. 6.6 were added to 38 WFs and 101 WFs, respectively. Fig. 6.14a shows the
defect mode frequencies obtained. The additional basis functions were used on the whole computational
domain and only at the defect site for comparison. The FBF are not orthogonalized in this example.
The use of spectral derivatives introduced spurious modes, probably due to the inability of the Fourier

transform to treat the sharp kinks of the FBFs on the hole surface properly (cf. Fig. B.4). On the other
hand, �nite-di�erence stencils and scalar SPS featured very well.

(a) Defect mode frequencies (b) Relative errors

Figure 6.14: Defect mode frequencies and relative errors compared to MPB reference modes com-
puted with the parameters from App. C.

For 38 proper WFs adding the FBFs increased the accuracy of the dipole and monopole modes, but the
quadrupole modes got only slightly better and the hexapole modes are practically unchanged compared

146



6.3 Cavity Defect Modes Convergence

to Fig. 6.11.
When adding the FBFs to 101 WFs, we achieved accuracies below 0.5 % for all modes over the whole

defect range εA = 2 . . . 12. Spurious modes were not found when using the auxiliary basis functions on
the full domain. It is su�cient, to only include the FBFs at the defect site to obtain this accuracy. Note
that this increases the total number of basis functions needed only slightly.

(a) Dipole mode (b) Hexapole mode

Figure 6.15: Defect mode pro�les for εA = 12 (non-etched hole). Black arrows denote the kinks in
the solutions for 38 WFs and 36 FBFs. These kinks are absent when using 101 WFs together with
36 FBFs.

The pro�le cuts of Fig. 6.15 show, how the FBF reduce the kinks of the pure WFs solutions to an
amount that is barely visible in the plots. The mode pro�les obtained lie practically on the reference
pro�les by MPB, proving the necessity to introduce the proper boundary conditions into the basis
functions used to improve the overall accuracy.

Supercell Defect Modes

The 6 supercell defect modes computed by MPB for a non-etched hole from Fig. 1.12 have been added
to 38 WFs and 101 WFs, respectively. The defect mode frequencies obtained by the Wannier approach
are shown in Fig. 6.16. The auxiliary functions were orthogonalized by a Gram-Schmidt procedure
with respect to all proper WFs. For 38 WFs this was not necessary, but in conjunction with 101 WFs
a plethora of spurious modes were found with the non-orthogonalized auxiliary functions. After the
orthogonalization procedure, these spurious modes were absent.
The periodic Gram-Schmidt orthogonalization procedure applied is shown schematically in Fig. 6.17.

The WFs are given on a parallelepiped shaped support, on the edges of which the function values
drop sharply to 0. A naive approach introduced numerical artifacts on the �elds which in turn led
to signi�cant errors when computing derivatives. Therefore, a periodic orthogonalization scheme has
been used as follows. The normalized WFs and the normalized auxiliary functions to orthogonalize
had to be extended periodically in all directions. The scalar product for the Gram-Schmidt procedure
was computed between the single WF and the periodically extended auxiliary function. Afterwards
the periodically extended WF was subtracted from the auxiliary function. Finally, a single auxiliary
function was cropped from the periodically extended version. The resulting orthogonalized auxiliary
function showed no artifacts any more.
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(a) Defect mode frequencies (b) Relative errors

Figure 6.16: Defect mode frequencies and relative errors compared to MPB reference modes com-
puted with the parameters from App. C.

From the error plot Fig. 6.16b we see that the use of �nite-di�erence stencils and a scalar permittivity
discretization yields errors below 0.5 % for 101 WFs over a wide range of defect strengths. For the case
of 38 WFs, errors below 0.9 % could be achieved. Note that these are considerably less basis functions
which speeds up the computations dramatically.
For comparison, the performance of the non-orthogonalized auxiliary functions alone (without any

proper WFs) is also shown. They are insu�cient to describe a wider range of defect strengths, proving
that the proper WFs are indeed necessary.
These results were unaltered when using the auxiliary functions only at the defect site (error plots

are not shown). In that cased, the total number of basis functions used (compared to 38 WFs and 101
WFs) increased insigni�cantly.

Inverse System Wannier Functions

Fig. 6.18 shows the defect mode frequencies for using 66 IWF as auxiliary basis functions in addition
to 101 proper WFs. The IWFs were orthogonalized by the periodic Gram-Schmidt procedure shown in
Fig. 6.17.
The plots show results obtained by taking the auxiliary functions into account only at the defect site

RA as well as on the full computational domain.
Taking the auxiliary functions into account on the full computational domain gave defect mode fre-

quencies with an accuracy better than 0.5 % for all defect strengths from 2 to 12. The particular choice
of derivative and permittivity discretizations had no e�ect on the frequencies obtained. No spurious
modes occurred; on the contrary, all of the 8 defect modes for εA = 12 were found (Fig. 6.18a) in that
case, including the higher order dipoles modes near the upper band edge. However, using 167 bands on
61 lattice sites equals 10187 basis functions in total which is an unfeasible number for subsequent, more
complex computations.
The results for including the auxiliary functions just at the defect site show that in conjunction with

101 proper WFs all defect mode frequencies obtained have an accuracy better than 0.8 % for all defect
strengths from 2 to 12. Only the lower 6 defect modes were found to lie in the band gap for εA = 12.
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Figure 6.17: Periodic and non-periodic Gram-Schmidt orthogonalization. The WFs are given on
a parallelogram shaped support domain. Black arrows denote artifacts from the parallelogram edges
that introduce errors in the numerical derivatives as explained in Fig. B.4. These artifacts are absent
in the periodic orthogonalization scheme.

However, they higher order dipole modes lie very close at the band edge and it is quite hard to obtain the
frequencies to an accuracy such that the numerical frequencies lie in the band gap as well. One should
bear in mind that including the 66 auxiliary functions on the full domain increases the computational
e�ort tremendously compared to only including them on the defect site which corresponds to 6227 basis
functions in total.

6.4 Comparison of all Auxiliary Basis Functions

We have seen that each set of auxiliary basis functions introduced is capable to increase the accuracy
of defect mode frequencies for a non-etched hole signi�cantly compared to just using 101 proper WFs.
Here, we compare the relative errors to the reference frequencies of the sets of auxiliary functions with
each other.
All ABFs used decreased the errors for the high-index defects signi�cantly, where the FBFs showed

the best performance with the least error over all defect strengths investigated. All ABF sets yielded
maximal errors below 0.8 % and increased the total number of basis functions only insigni�cantly. In
particular, the 38 WFs with 6 defect modes used very few basis functions to obtain errors below 1 %.
However, this basis set was highly adapted to the single-pore setup Ai. In order to be relevant for
practical computations, complex defect clusters consisting of more than one defect site and waveguide
dispersions have to be modeled equally well. This is investigated in the following sections.
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(a) Defect mode frequencies for IWFs used on full do-
main

(b) Rel. errors of (a)

(c) Defect mode frequencies for IWFs used on defect
site only

(d) Rel. errors of (c)

Figure 6.18: Defect mode frequencies and relative errors compared to MPB reference modes com-
puted with the parameters from App. C. Note that in (a) all 8 modes for εA = 12 are found.
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Figure 6.19: Relative errors of Ai cavity modes for all auxiliary functions introduced in this section.
The 101 proper WFs were used on Lhex(4), the ABFs were only used at the defect site. The legend
also displays the total number of basis functions and expansion coe�cients Nec used.
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6.5 Complex Isotropic Defect Clusters

Modeling a single in�ltrated hole properly is only the �rst step. Real functional elements in PC circuits
consist of whole clusters of in�ltrated holes.3 Therefore, we have to quantify the ability of those auxiliary
functions that featured well so far to describe defect modes of defect clusters. We treat isotropically
in�ltrated holes here, the anisotropic defects are investigated in subsequent sections. A summary of the
errors for the various defect setups from Fig. 6.20 is given in Tab. 6.3. The nomenclature is explained
in Fig. 6.10 and Tab. 6.2. The full study can be found in Sec. E.1.

(a) ABi (b) BEi (c) ABEi (d) BCDEFGi

Figure 6.20: Cavity setups investigated in this section. Green defect strengths are set to 12, while
the red defect strengths run from 1 to 12.

The results of Tab. 6.3 show that the FBFs perform best of all chosen sets of auxiliary basis functions.
Mean and maximal errors were below 1 % for the defect clusters investigated.
The supercell defect modes (SDM) only have a slight advantage when describing a single in�ltrated

hole (for which they were speci�cally designed) and in�ltrated holes that are separated by at least one
air hole. The latter case can be understood by the weak coupling of separated defect holes. The resulting
defect modes can then be described well by a superposition of auxiliary defect modes for isolated defects.
The IWFs perform not as good the two sets mentioned above, but they also do not yield frequencies

that are utterly wrong. This result sparks hope to be transferred to 3D computations if auxiliary defect
modes are not su�cient and an educated guess based on the defect geometry (as the FBFs were) is not
available.

3And maybe other point-like defects which are not investigated here.
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Basis set N N2 mean error max error

WF38-DM6-R4d-ortho-FDS-scalar 2684 7.2× 106 2.2× 10−3 8.5× 10−3

WF101-DM6-R4d-ortho-FDS-scalar 6527 4.2× 107 1.0× 10−3 5.0× 10−3

WF101-R4d-BF36-R0d-ortho-FDS-scalar 6197 3.8× 107 2.8× 10−3 4.7× 10−3

WF101-R4d-IWF66-R0d-ortho-FDS-scalar 6227 3.8× 107 4.3× 10−3 7.9× 10−3

(a) Setup Ai with εA = 2, . . . , 12.

Basis set N N2 mean error max error

WF38-DM6-R4d-ortho-FDS-scalar 3080 9.5× 106 5.4× 10−3 2.1× 10−2

WF101-DM6-R4d-ortho-FDS-scalar 7490 5.6× 107 2.4× 10−3 7.4× 10−3

WF101-R4d-BF36-R0d-ortho-FDS-scalar 7142 5.1× 107 2.2× 10−3 7.3× 10−3

WF101-R4d-IWF66-R0d-ortho-FDS-scalar 7202 5.2× 107 5.6× 10−3 1.0× 10−2

(b) Setup ABi with εB = 12, εA = 2, . . . , 12.

Basis set N N2 mean error max error

WF38-SDM6-R4d-ortho-FDS-scalar 3476 1.2× 107 1.7× 10−3 1.1× 10−2

WF101-SDM6-R4d-ortho-FDS-scalar 8453 7.1× 107 1.1× 10−3 5.6× 10−3

WF101-R4d-FBF36-R0d-ortho-FDS-scalar 8087 6.5× 107 1.7× 10−3 3.4× 10−3

WF101-R4d-IWF66-R0d-ortho-FDS-scalar 8177 6.6× 107 4.9× 10−3 7.8× 10−3

(c) Setup BEi with εB = 12, εE = 2, . . . , 12.

Basis set N N2 mean error max error

WF38-SDM6-R4d-ortho-FDS-scalar 3476 1.2× 107 7.1× 10−3 2.7× 10−2

WF101-SDM6-R4d-ortho-FDS-scalar 8453 7.1× 107 3.2× 10−3 9.8× 10−3

WF101-R4d-FBF36-R0d-ortho-FDS-scalar 8087 6.5× 107 2.6× 10−3 7.9× 10−3

WF101-R4d-IWF66-R0d-ortho-FDS-scalar 8177 6.6× 107 6.2× 10−3 1.0× 10−2

(d) Setup ABEi with εB = 12, εE = 12, εA = 2, . . . , 12.

Basis set N N2 mean error max error

WF38-SDM6-R4d-ortho-FDS-scalar 4004 1.6× 107 7.9× 10−3 3.5× 10−2

WF101-SDM6-R4d-ortho-FDS-scalar 9737 9.5× 107 3.1× 10−3 9.1× 10−3

WF101-R4d-FBF36-R0d-ortho-FDS-scalar 9407 8.8× 107 1.9× 10−3 6.8× 10−3

WF101-R4d-IWF66-R0d-ortho-FDS-scalar 9587 9.1× 107 3.5× 10−3 1.3× 10−2

(e) Setup BCDEFGi with εdef = 2, . . . , 12.

Table 6.3: Errors and matrix sizes for various sets of auxiliary basis functions. Best values are
highlighted green, second best values are highlighted orange. Largest errors are highlighted in red.
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6.6 Anisotropic Defects

Here we will investigate the ability of WFs combined with auxiliary functions to describe the defect
modes of a single hole in�ltrated with birefringent and magneto-optical materials, respectively. The
operator matrices (4.38) and (4.44) needed for the Wannier approach are computed by using �nite-
di�erence stencils (Sec. B.3.1) and a scalar permittivity discretization (B.6a). However, the reference
modes obtained by MPB are computed by utilizing spectral derivatives (Sec. B.3.2) and a tensorial per-
mittivity discretization for anisotropic permittivity distributions (B.6b). So we cannot simply conclude
from the isotropic results of the previous sections that anisotropic defects are modeled equally well by
the auxiliary functions. In order to demonstrate the performance of the auxiliary functions with as few

(a) Defect frequencies for Ab (b) Relative errors for Ab

Figure 6.21: Defect setup Ab with �xed extra-ordinary permittivity εex = 12 and director angle
θ = 30◦. The ordinary permittivity runs from εor = 2 to εor = 12.

plots and di�erent systems as possible, extreme values for the permittivities have been chosen that do
not occur in natural materials. However, this impressively demonstrates the applicability of the Wannier
approach combined with auxiliary functions over a broad range of computational parameters.

Fig. 6.21 shows a single hole in�ltrated with a liquid crystal with extra-ordinary permittivity εex = 12
and �xed director angle θ = 30◦. The ordinary permittivity εor runs from 2 to 12. As the error plot
Fig. 6.21 shows, the FBFs frequencies have errors below 0.4 % and perform best of the auxiliary function
sets. The IWFs are still able to describe the defect mode frequencies within 0.8 % accuracy. The SDM
with 38 proper WFs yield errors below 0.5 % only for the high index region εor ≥ 8 and up to 2 % error
for the low index region εor ∼ 2. The performance of the SDM with 101 proper WFs is much better,
with maximal errors below 1 % for all values of εor in the given range.

Fig. 6.22 shows defect mode frequencies for a single hole in�ltrated with a magneto-optical material
with εdiag = 12. The o�-diagonal component gz runs from 10−3 × εdiag to 100 × εdiag. The error plot
Fig. 6.22 reveals, that the FBFs are able to describe the frequencies with errors below 0.4 % over the
physically sensible region for gz (i. e., gz � εdiag) and 0.7 % over the remaining parameter region.
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6.7 Isotropic Waveguide Dispersion, W1-1

(a) Defect frequencies for Am (b) Relative errors for Am

Figure 6.22: Defect setup Am with �xed diagonal permittivity εdiag = 12. The ratio gz/εdiag runs
from 10−3 to 1.

6.7 Isotropic Waveguide Dispersion, W1-1

Here we investigate the ability of the auxiliary functions to describe waveguide dispersions by the super-
cell approach (4.74) and the on-shell technique (Sec. 4.5.2). We look at a W1-1 waveguide formed by a
non-etched hole (Fig. 1.14b), the more complex waveguide designs of Fig. 1.14 including also anisotropic
defects are treated in subsequent sections. Furthermore, we compare the supercell results with the on-
shell computations. Only a small portion of computations is shown here for brevity; the full series of
computations is found in Sec. E.2.

Fig. 6.23 shows the supercell results for pure WFs only and for WFs combined with auxiliary functions.
While the pure WFs are only able to model the principal characteristics of the dispersion, the FBFs
(together with 101 WFs) describe most branches with frequency accuracies below 1.0 %. The error plot
Fig. 6.23d reveals that the accuracy of the dispersion frequencies increases tremendously when adding
the ABFs. In particular, the use of the FBFs yields the most accurate dispersion, with maximal frequency
errors between 0.5 % and 1.0 %. Only this set of ABFs has been considered for the comparison with the
on-shell waveguide dispersion. It is shown in Fig. 6.24a for two choices of the long range parameter L.
The size of the transfer matrix in (4.92) grows fast with L, as does the time needed to diagonalize that
matrix. The on-shell dispersion is now given as k(ω), whereas the MPB reference dispersion is given as
ω(k). Computing the errors is not straightforward then and the yellow envelopes around the reference
dispersion are used here to estimate the errors. This envelope denotes the region of ±1 % deviation from
the reference dispersion. For L = 3, many branches of the dispersion are modeled within 1 % accuracy,
and the overall agreement is very good. Only the branches near the upper band edge have larger errors.
However, for technical applications, the mono-modal branch is preferred which is described better than
1 % already. Increasing the long range interaction to L = 5 increases the overall accuracy only slightly.

Summarizing, the low errors from the supercell calculations are also found in the on-shell approach.
More extensive convergence investigations are found in Chap. 7.
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6 Auxiliary Basis Functions

(a) WFs only (b) Auxiliary defect modes

(c) FBFs and IWFs (d) Max. errors

Figure 6.23: Supercell W1-1 waveguide dispersions after Eq. (4.74) made from one row of in�ltrated
holes with εA (Fig. 1.14b). Yellow/white shaded envelopes denote ±1 % errors around reference
frequencies. Only branches with yellow error region have been taken into account for computing
relative errors in (d). Note that many branches are described much better than the maximal error
(cf. Fig. 7.7). The use of auxiliary functions increased the accuracy tremendously.

6.8 Complex Isotropic Waveguides

Here, the W1-2 (Fig. 1.14c) and W2-1 (Fig. 1.14d) waveguides made of non-etched holes are explored.
For the W2-1 it was necessary to orthogonalize also the FBFs by the periodic Gram-Schmidt procedure
shown in Fig. 1.14d. Only then were the computations stable. The results are shown in Fig. 6.26. The
accuracy of the FBFs auxiliary functions is still below 1.0 % for most of the branches. The other sets
yield larger errors, but reproduce the essential shape of all the branches very well.
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6.8 Complex Isotropic Waveguides

(a) On-shell dispersion

Figure 6.24: (a) On-shell dispersion of a W1-1 waveguide made from non-etched holes for 101
WFs and 36 FBFs and di�erent long range interaction parameters L. For L = 3, many branches of
the dispersion are modeled with an accuracy better than 1.0 %. Using L = 5 increases the accuracy,
but also the computational e�ort.

(a) Auxiliary defect modes (b) FBFs and IWFs

Figure 6.25: Supercell waveguide dispersions for a W2-1 made from non-etched holes (Fig. 1.14d).
For legend explanation, see caption of Fig. 6.23.
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(a) Auxiliary defect modes (b) FBFs and IWFs

Figure 6.26: Supercell waveguide dispersions for a W1-2 made from non-etched holes (Fig. 1.14c).
For legend explanation, see caption of Fig. 6.23.
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6.9 Anisotropic Waveguides

6.9 Anisotropic Waveguides

Finally, the ability of the auxiliary functions to describe W1-1 waveguides in�ltrated with anisotropic
materials is investigated. Only the FBF have been considered for brevity here, because they featured
best of all the sets investigated so far.
Fig. 6.27 shows a W1-1 in�ltrated with a magneto-optic material with the extreme unphysical param-

eters εdiag = 12 and gz = 6.

Figure 6.27: Waveguide dispersions for W1-1, Am, εdiag = 12, gz = 6 (Fig. 1.14a).

Fig. 6.28 features a W1-1 made of holes in�ltrated with a birefringent material with parameters
εex = 12 and εor = 2. The director angle theta was set to 0◦, 30◦, 60◦ and 90◦ successively in the
plots. This demonstrates the ability of the auxiliary functions, to model tunable waveguide dispersions
properly. The errors in most of the branches are again below 1.0 %. The dispersions are in excellent
agreement with the MPB reference, featuring accuracies much better than 1 % for most of the branches.

6.10 Summary

We reviewed the continuity conditions of the electric and magnetic �elds in E-polarization and H-
polarization across dielectric boundaries in 2D systems, respectively. E-polarized �elds are continuously
di�erentiable whereas the derivatives of H-polarized �elds are discontinuous which is visible as kinks in
the �eld pro�les. The accuracy of Wannier based defect mode computations in the TM square lattice
of cylindrical silicon rods in air was reviewed, where the method works very e�ciently. A few WFs are
su�cient to describe the localized defect modes of a single defect rod with permittivities ranging over
values from 1 to 80 with accuracies below 0.5 %. Two reasons were identi�ed for this behavior. Firstly,
the WF pro�les strongly resembled the defect mode pro�les already. Secondly, both the defect modes
and the WFs were continuously di�erentiable across dielectric boundaries between silicon and air, and
in particular between the defect rod and air.
For the TE triangular lattice of cylindrical air holes in silicon, it was shown that the kinks in the

magnetic �elds are responsible for the poor convergence of defect mode frequencies. This was demon-
strated on various slice cuts through WFs and defect modes. These cuts also revealed how increasing
the number of WFs helps in modelling the correct defect modes. WFs with localization centers between
air holes are equally important as those localized in the center of air holes. This qualitative observation
is quanti�ed in Chap. 7.
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6 Auxiliary Basis Functions

(a) W1-1, Ab, θ = 0◦ (b) W1-1, Ab, θ = 30◦

(c) W1-1, Ab, θ = 60◦ (d) W1-1, Ab, θ = 90◦

Figure 6.28: Waveguide dispersions for W1-1, Ab with εex = 12 and εor = 2 for various director
angles θ.

Based on these observations, three sets of additional basis functions to augment the WF basis were
suggested that should help the WFs to model the correct continuity conditions of defect modes. Among
these suggestions were the Fourier-Bessel functions, which were obtained from a closed expression and an
educated guess based on the �xed geometry of the defect class of in�ltrated holes. The supercell defect
modes were obtained from an MPB supercell calculation of a non-etched hole which was the case with
largest errors for the pure WFs. These auxiliary functions model the continuity of non-etched hole defect
modes perfectly. The idea of this set of ABFs was that they should be able to interpolate the defect
modes for medium index defects in conjunction with the WFs. Finally, inverse system Wannier functions
for the triangular lattice of silicon rods in air were proposed. Their kinks have the opposite direction of
those of the proper WFs. All of these ABF had to be orthonormalized by the Gram-Schmidt procedure
in order to suppress spurious modes in the calculations. A periodic orthonormalization procedure was
described that reduces artifacts in the basis �eld pro�les to reduce errors of the discretized derivatives.

All of the ABF sets in conjunction with 101 proper WFs reduced the errors to the order of or below
1 % for the cavity computations. This is a drastic improvement compared to using only the proper
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WFs. Isotropically as well as anisotropically in�ltrated holes were described su�ciently well with the
FDS-scalar discretization scheme. It yielded the same errors as the FFT-tensor scheme which justi�es
the usage of the scalar discretization for both the description of isotropic as well as anisotropic defects.
The FBFs yielded the least errors of all sets, in the cavity as well as in the waveguide dispersion

computations. However, the FBFs were particularly adapted to the 2D cylindrical hole geometry, where
the scalar basis functions are always divergence-free. Thus, this ansatz cannot be applied to general 3D
PC systems in a straightforward fashion. The other two sets investigated, however, can be generated
in the same fashion for any geometry in 3D PC as vectorial �elds. They are always divergence-free by
construction.
Additionally, the Ai defect mode frequencies obtained from the three sets of proper WFs introduced

in Sec. 3.9 were compared. The symmetrized variants WF38-sym yield the same frequencies as the
unprocessed WF38-SMV versions. The WF38-MV versions also yielded the same frequencies, but with
a large number of additional spurious modes. The reason for this behavior is not yet clear. However if
the spurious modes can be suppressed in the future, this set of WFs is preferable over the WF38-SMV
set because the construction of the latter took some weeks, in order to �nd the proper parameters for the
SMV spread minimizations in the bottom-up approach. The symmetrization of the WF38-SMV set to
yield the WF38-sym set did not introduce new errors. Exploiting the perfect symmetry of the resulting
matrix elements could help in accelerating some computations in the future, e. g., the determination of
scattering matrices according to Sec. 4.6.
Summarizing, the accuracy of the pure Wannier based computations has been improved drastically by

the use of auxiliary basis functions. At the same time, the total number of basis functions used increased
only marginally, since it was su�cient to incorporate the ABFs only at the few defect sites. This allows
to treat defect structures containing non-etched holes now in the localized basis expansion which was
not possible with using only the proper WFs before.
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7 Chapter 7

Defect Mode Convergence

So far we have shown that the ABFs are in principle able to describe defect clusters of non-etched holes in
the triangular model system. Here we will investigate which of the basis functions at which lattice sites
in the computational domain are needed to obtain a particular accuracy. Reducing the total number
of basis functions reduces the total number of expansion coe�cients cnR to describe defect modes and
thus leads to smaller matrices and faster computations. Furthermore, the V-parameter, measuring the
signi�cance of the Wannier function bands for a particular defect mode [31], is reviewed and its de�nition
is adjusted for degenerate WFs.

7.1 Cavity Defect Clusters

We investigate the cavity defect setups Ai and BCDEFGi. When NWF WFs are used at all Ncd lattice
sites of the computational domain, then

Nec := NWFNcd (7.1)

expansion coe�cients have to be computed from matrices with N2
ec = N2

WFN
2
cd complex entries. Thus,

by Tab. 4.1 one can save large amounts of memory in computation when using smaller computational
domains and less proper WFs.
We will use the 101 proper WFs at all lattice sites of the computational domain Lcomp and the ABFs

only at sites containing defects. Therefore, the ABFs do not contribute many coe�cients and the order
of magnitude of Nec is de�ned in good approximation by the 101 proper WFs on the Ncd lattice sites.

7.1.1 Computational Domain Size

The parameter Rmax ∈ N is used to de�ne a symmetric domain Lhex(Rmax) around the origin R = (0, 0)
that is shifted to each defect site Rm building up the full computational domain as

Lcomp :=
⋃
m

(
Lhex(Rmax) + Rm

)
, (7.2)

where the sum of a set and a lattice site is de�ned in the usual way as

Lhex(Rmax) + Rm := {R + Rm : R ∈ Lhex(Rmax)} . (7.3)

Examples for the cavity setups Ai and BCDEFGi are shown in Fig. 7.1a.
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7 Defect Mode Convergence

(a) Cavity domains (b) Slice domains

Figure 7.1: Example for computational lattice site domains Lcomp. (a) The assembly of computa-
tional domains Lcomp after (7.2). The origin is denoted by a cross, the defect sites are located at the
Rm. (b) Waveguide slice domains Lslice(Rslice) for various parameters Rslice.

For waveguide dispersions, the number of cladding cells Rslice ∈ N in a waveguide slice is used de�ne
slice domain Lslice. This computational domain is given by Rslice lattice sites above and below the center
site at the origin (0, 0). Such a lattice site domain is denoted by Lslice(Rslice) and contains 2Rslice + 1
lattice sites. Examples are shown in Fig. 7.1b.

(a) WF101-DM6 (b) WF101-BF36

Figure 7.2: Maximal relative errors for a non-etched hole compared to MPB reference values for
using di�erent Rmax in (7.2).

For the setup Ai, the errors obtained for various defect strengths and increasing Rmax are shown in
Fig. 7.2. For the set WF101-DM6, the largest errors are found for εdef = 7.0, whereas for WF101-BF36
the largest errors are obtained for a non-etched hole with εdef = 12.0. Therefore, in Fig. 7.3a these setups
have been investigated for the respective ABF. Fig. 7.3 shows again that the WF101-FBF36 gives the
least errors which do not decrease signi�cantly for Rmax > 3. Thus, Rmax = 3 is su�cient for this set to
obtain errors of about 1 % and less.
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7.1 Cavity Defect Clusters

(a) Cavity setup Ai (b) Cavity setup BCDEFGi

Figure 7.3: Maximal relative errors for increasing parameter Rmax of the computational domain
Lhex(Rmax) around each defect hole compared to MPB reference values. The total number of ex-
pansion coe�cients cnR used is shown as well for each Rmax. (a) shows the maximal errors over
all defect modes and defect strengths εdef ranging over values from 2 to 12. (b) shows the maximal
errors over all 36 defect modes for the ring of 6 non-etched holes of Fig. 6.20d (with εdef = 12.0 for
all ABF sets, since that setup yields the maximal errors).

7.1.2 Sparsity

One could skip time consuming test computations if there was a criterion that told the user from the
matrices themselves, whether the basis functions are relevant or not. Judging from the sparsity of the
defect matrices for a non-etched hole (Fig. 5.7e), one could save a lot of memory and also accelerate
computations at the same time when taking only matrix elements larger than some threshold into
account. However, in the current state of the code used to compute the defect mode frequencies, it is
not possible to exploit this kind of sparsity. If a matrix element for an index (nR) is larger than the
chosen threshold, any matrix elements with index pairs (n′R′, nR) have to be included as well.
The resulting errors in defect mode frequencies compared to the case when all available basis functions

were used, are shown in Fig. 7.4. The number of basis functions (which is the number Nec of expansion
coe�cients) is shown in the plot as well.
Compared to Fig. 7.3a, where the computational domain around each defect was enlarged, the ratio

between maximal error and number of coe�cients used is worse. Thus, it is better to judge the relevance
of a basis function by its distance from the defect rather than its contribution to the defect matrix B.
However, since there are many norms to classify the 'largeness' of matrix entries, other techniques more
suitable for diagonalization could yield better estimates for the contribution to the �nal eigenvalues.

7.1.3 Relevant Basis Functions

In order to judge the relevance of a particular band n of orthonormal WFs to model a given defect mode,
one can introduce the band contribution parameter Vn as the square sum of expansion coe�cients cnR
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7 Defect Mode Convergence

Figure 7.4: Maximal relative errors of Ai defect mode frequencies when taking matrix elements
above a certain threshold into account. The threshold is normalized to the maximal matrix element
in the defect matrix. Arrows denote the number Nec of expansion coe�cients that were used.

from (4.1),
Vn :=

∑
R

|cnR|2 . (7.4)

We will now demonstrate the signi�cance of this quantity. We employ the notation (1.54) for a given
eigenmode |ψ〉 of the wave equation which is expanded into electric or magnetic �eld WFs as in (4.1):

|ψ〉 =
∑
nR

cnR|nR〉 . (7.5)

Then the squared norm with respect to the scalar product is given by

〈〈ψ‖ψ〉〉 =
∑
nR

∑
n′R′

c∗nRcn′R′〈〈nR‖n′R′〉〉 (7.6)

(1.54)
=

∑
n

∑
R

|cnR|2︸ ︷︷ ︸
=Vn

(7.7)

(7.4)
=

∑
n

Vn . (7.8)

Thus, the quantity Vn determines how much the WF band n contributes to a given defect mode. Note
that this parameter de�ned by (7.4) only makes sense for orthonormalized basis functions.
In the case of degenerate basis functions (e. g., WF bands n = 4, . . . , 9 in Fig. 3.44), the combined

contribution V deg
n for the whole set of degenerate functions is more relevant and de�ned as follows. Let

Ddeg
n be the set of all band indices n′ for a set of ν-fold degenerate sets of WFs, i. e.

Ddeg
n := {n, n+ 1, . . . , n+ ν} . (7.9)

Then we de�ne the combined contribution of the degenerate set of WFs as

V deg
n :=

∑
n′∈Ddeg

n

Vn′ . (7.10)

This takes the contribution of whole sets of WFs with equal shapes into account.
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7.1 Cavity Defect Clusters

101 WFs

The plots in Fig. 7.5 show the signi�cance of the combined contribution V deg
n for the defect mode

frequencies that are obtained when the corresponding bands are not used in the Wannier expansion.
Therefore, for each band label n denoting the �rst WFs in the degenerate set, the relative frequency
change

∆ωrel,n :=
ωn − ωref
ωref

(7.11)

has been plotted, where the reference frequency ωref is the one obtained by using all available basis
functions and ωn is the frequency obtained by omitting the (possibly degenerate) bands with indexes in
Ddeg
n .
From Fig. 7.5e we can deduce by an eyeball �t that the relative frequency change

∆ωrel,n ≈ 2
(
V deg
n

) 1√
2 (7.12)

is a good estimate for the in�uence of a degenerate band set n on the accuracy of the defect mode
frequencies. This �t allows to estimate the frequency change when omitting WFs with certain contribu-
tions. As an example, in order to obtain the same frequencies within 0.1 % accuracy, one could ignore
all band sets n with an in�uence parameter V deg

n less than

(1
2
· 10−3

)√2
= 2.1× 10−5 . (7.13)

However, only the WF with n = 94 of Fig. 3.44 is below that threshold for each of the six defect modes of
a non-etched hole. If one is interested only in a particular defect mode for some application, however, an
analysis of the in�uence parameter immediately gives an estimate of the WFs that have to be included
in a computation for a desired accuracy.

101 WFs, 36 FBFs

When using any auxiliary basis functions, are we allowed to omit some of the proper WFs and still
get su�ciently accurate results? To answer this question, we must not use the orthogonalized auxiliary
functions because in this case the WFs and the auxiliary functions would contribute mutually exclusive
information to the defect modes. Then we may not use the degenerate contribution parameter (7.10)
which was introduced for orthonormal functions only. We have to resort to the maximal frequency
change (7.11) to judge the importance of the basis functions. In Fig. 7.6, the non-etched hole defect
mode frequencies are investigated, where the maximal frequency error (compared to using all basis
functions) over all defect modes is shown.
Choosing the relative threshold 10−3, we could easily omit the proper WFs 41,42,58,80-85,92,93,94,96-

101, and some of the FBFs. Since we used the auxiliary functions at defect sites only anyway, the saving
in memory when omitting the 18 WF bands is much more bene�cial. This reduces the total number of
expansion coe�cients by almost 20 %. However, these results are obtained from one single test system
only. When looking at more complex defect clusters, the WFs that contribute little to the non-etched
hole results may become more important then.
Such investigations can also be carried out in principle for the 66 IWFs, which has been omitted here.

When using the 6 SDMs, omitting any of these would make no sense, since they were particularly chosen
to model the respective defect modes in the Wannier approach with high accuracy.
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(a) Dipoles (b) Quadrupoles

(c) Monopole (d) Hexapole

(e) Eyeball-Fit for relation between
degenerate contribution V deg

n and rel-
ative frequency change

Figure 7.5: (a)�(d) Degenerate contribution parameter V deg
n and relative frequency changes after

(7.11) for the defect modes of a non-etched hole computed by 101 WFs. (e) Estimate of the relation
between the two parameters. Frequency changes have been set to 1 if no frequency within the band
gap was obtained.

7.2 Waveguide Dispersions

The accuracy of waveguide dispersions for both the supercell and the on-shell approach are discussed
here. It depends on the parameters Rslice and the long range interaction parameter L.
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Figure 7.6: Maximal frequency change for the defect modes of the non-etched hole when omitting
some of non-orthogonalized basis functions of the set WF101-BF36. If a particular defect mode was
not found in the band gap, the relative error was set to 1. Proper WFs with contributions less than
10−3 are denoted by arrows. The 101 proper WFs were used on a computational domain Lhex(4),
the 36 FBFs only at the defect site.

7.2.1 Supercell Computations

The case that is hardest to describe by WFs is a waveguide made of non-etched holes. Only the set
WF101-FBF36 has been used here because Sec. 6.7 shows that this set yields the most accurate results.
Fig. 7.7 shows the errors of the dispersion frequencies in the supercell approach for a W1-1 waveguide
made from a row of non-etched holes for various choices of Rslice of the slice domain (cf. Fig. 7.1b). As for
the cavity setups Ai and BCDEFGi, a parameter Rslice = 3 is su�cient and larger values do not decrease
the errors signi�cantly. In particular, the monomode branch between ω = 0.3252πc0

a and ω = 0.3552πc0
a

is described better than 0.5 % even with Rslice = 2. This branch is interesting for monomode photonic
devices in possible applications.

7.2.2 On-Shell Computations

As the previous Sec. 7.2.1 shows, Rslice = 3 yields su�ciently converged dispersion results. Again, only
the set WF101-FBF36 is investigated here. The on-shell computations feature a long range interaction
parameter L determining the size of the transfer matrix (4.92) which has to be diagonalized. Only the
monomode branch has been investigated in detail because the computation time increases drastically
for L = 5. As Fig. 7.8b shows, the dispersion for on-shell computations of the monomode branch can be
described with frequency accuracies below 0.5 % with L = 3. Larger values for L improve the accuracy
slightly, but the computation time and memory consumption increases drastically.

7.3 Summary

The in�uence of various numerical parameters on the accuracy of the Wannier approach with ABFs has
been investigated. This comprised the size of the computational domain, the basis functions which are
actually needed, and for on-shell waveguide dispersions, the long range interaction parameter L.
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7 Defect Mode Convergence

(a) Supercell waveguide dispersion (b) Errors

Figure 7.7: (a) Supercell waveguide dispersions by (4.74) for a non-etched W1-1 (Ai, εdef = 12,
Fig. 1.14b) for 101 WFs and 36 orthogonalized FBFs. The slice extent Rslice ranges from 1 to
5. Only the branches in the yellow regions have been used for computing the errors. (b) Maximal
errors in waveguide dispersion compared to the MPB reference dispersion. For Rslice = 2 and 5, the
individual errors of each branch are also shown. The �lled symbols show the errors for the monomode
branch between ω = 0.3252πc0

a and ω = 0.3552πc0
a .

(a) On-shell waveguide dispersion (b) Closeup of (a)

Figure 7.8: (a) On-shell waveguide dispersions after Sec. 4.5.2 for 101 WFs with 36 FBFs for
various values of the long range interaction (LRI) parameter L. Rslice was set to 3. (b) Closeup of
the mono-mode branch of (a). For L ≥ 3 the on-shell dispersion is within 0.5 % accuracy compared
to the MPB reference dispersion.

For cavity defect modes, the degenerate contribution parameter was introduced that allows to estimate
the contribution of a particular basis function to the eigenmode frequency. It can be computed from the
expansion coe�cients of a defect mode in terms of the localized basis functions and is only applicable for
orthonormalized bases. For the non-orthonormalized set WF101-BF36, it was shown that about 20 % of
basis functions can be omitted without diminishing the accuracy of the Ai defect modes severely. This
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result cannot easily be transferred to complex defect clusters, since the omitted basis functions may
become important then to model the more complex defect mode pro�les properly. Their contribution
would have to be evaluated anew for each defect con�guration. However, if a series of computations is
restricted to a certain frequency range (as is often the case for transmission computations [40]), some
basis functions may indeed be omitted without a�ecting the overall accuracy much. The techniques to
judge the basis function contribution may help then.
Omission of basis functions to reduce matrix sizes based on the sparsity of defect matrices yielded no

conclusive results.

Parameter Value

Rmax (cavities) 3
Rslice (waveguides) 3
L (on-shell dispersion) 3

Table 7.1: Numerical parameters for the Wannier approach that yield frequency errors of 1 % or
below.

Finally, the numerical parameters of Tab. 7.1 have been shown to yield su�ciently converged results
with maximal frequency errors of 1 % or below.
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8 Chapter 8

Symmetric Wannier Functions

In this brief chapter, the e�ect of using the symmetrizedWF set WF38-sym from Fig. 3.46 is documented.
One would expect perfectly degenerate frequencies for respective defect modes, as well as identical
solutions for waveguides pointing in di�erent directions. However, the systems investigated show no
systematic improvements in this respect whatsoever. This behavior is not yet clear and may indicate a
minor bug in the implementation of the matrix computations of Chap. 4 that does not a�ect the overall
performance, as the good agreement of the defect mode frequencies in previous chapters showed.

8.1 Degeneracy of Cavity Defect Modes

The cavity setup Ai in the triangular model system supports two doubly-degenerate dipole modes of
symmetry E1(a) and two doubly-degenerate quadrupole modes of symmetry E2(a), as seen in Fig. 1.12.
The resulting defect mode frequencies obtained with the basis sets WF38-SMV and WF38-sym are
shown in Fig. 6.13. However, the degeneracy of the frequencies is not visible in those plots. Therefore,
analogous to (C.3), the frequency asymmetry

∆ωas :=
ωmax − ωmin

ωmax + ωmin
(8.1)

for the two sets of basis functions is calculated and shown in Fig. 8.1. The lower this value, the better
the degeneracy of the defect mode frequencies, where ∆ωas = 0 denotes identical frequencies. As the plot
reveals, the use of the symmetrized set WF38-sym does not improve the degeneracy of the frequencies.
On the contrary, for some defect strengths εA, the asymmetry is even larger than for the unprocessed
set WF38-SMV. The sources for this behavior are not yet clear.

8.2 Symmetry of Waveguide Modes

Here, the degeneracy of frequencies and wave numbers of waveguide modes from the supercell and on-
shell method are investigated. The waveguide slice de�nitions used are shown in Fig. 8.2. In theory, the
very same frequencies and wavenumbers should be obtained regardless of the orientation of the waveguide
slices. The dispersion relation obtained for a W1-1 waveguide made of in�ltrated pores of εdef = 2.89
are shown in Fig. 8.3 for the sets WF38-sym and WF38-SMV. Results for all orientations of Fig. 8.3 are
shown simultaneously. These plots show, that no additional errors due to the symmetrization procedure
for the WF38-sym set have been introduced. Both sets of basis functions yield the same dispersion
relations. The asymmetries of frequencies for the supercell method (8.1) are shown in Fig. 8.4a.
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8 Symmetric Wannier Functions

Figure 8.1: Asymmetries of frequencies for the degenerate dipole and quadrupole defect modes of
the Ai cavity setup from Fig. 6.13.

Figure 8.2: Computational domain Lcomp for waveguide slices oriented along various directions.

The asymmetries in the wave numbers k for the guided modes of the on-shell method are shown
in Fig. 8.4b. In the supercell method, the asymmetries for both sets of basis functions are practically
identical. The wave number asymmetry of the WF38-sym set from the on-shell approach is lower for some
frequencies, but also higher for some other frequencies compared to the unprocessed set WF38-SMV. A
systematic improvement is not visible.

8.3 Summary

The potential bene�ts of using highly symmetric WFs was investigated. Therefore, the asymmetry of
degenerate defect mode frequencies and wave numbers for identical rotated waveguides was investigated.
No substantial or systematic improvements were found. However, for a full analysis, one should also
investigate the symmetry of scattering matrices in further transmission computations. This has not been
done in this thesis and remains as an outlook for further investigations.
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(a) Supercell dispersion (b) On-shell dispersion

Figure 8.3: Waveguide dispersions of a W1-1 made from isotropically in�ltrated holes with εdef =
2.89. The plots show results for all orientations of Fig. 8.2.

(a) Supercell asymmetry (b) On-shell asymmetry

Figure 8.4: Asymmetries of (a) frequency ω and (b) wavenumbers k along the waveguide directions
of 0◦, 60◦ and 120◦.
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9 Chapter 9

Summary and Outlook

Photonic crystal based integrated optical circuitry may constitute a key technology to revolutionize
optical signal processing. The analysis and optimization of functional elements in such systems requires
fast and e�cient numerical methods. In the present thesis, the lattice model obtained by an expansion of
the wave equations into a localized basis comprising photonic Wannier functions was investigated for this
task. Therefore, an existing Wannier function construction algorithm was reviewed and improved based
on group theoretical considerations. Additionally, convergence problems in this method were thoroughly
analyzed and the augmentation of the pure Wannier basis by auxiliary basis functions was shown to
enhance the accuracy of numerical computations drastically. This enables the accurate treatment of
high-index defect structures that were previously inaccessible by the pure Wannier approach.

9.1 Summary

Photonic crystals are periodic arrangements of dielectric materials exhibiting a band structure for light.
Carefully chosen fabricational parameters can give rise to frequency ranges, where light propagation is
prohibited regardless of direction, the so-called complete photonic band gaps. Purposely designed defects,
breaking the translational invariance, introduce localized light modes with frequencies in the band gap.
In order to compute such localized eigenmodes numerically, an expansion of the wave equations into a
set of suitable basis functions can be used. Such a method is expected to be very e�cient if as many
properties of the desired defect states as possible are already present in the expansion basis. For magnetic
�eld defect states in three-dimensional photonic crystals (PC), these properties are the high degree of
mode localization, the vanishing divergence of the �elds, and symmetries dictated by the underlying
crystal structure. Photonic Wannier functions (WF) were recognized to have all these desired properties
and were used as an expansion basis in this scheme in previous works.
Two-dimensional PCs allow the separation of the vectorial equations into two independent scalar

equations, where defect modes and basis functions are inherently divergence-free. In the transverse
magnetic (TM) case, the expansion into a basis of pure electric �eld WFs proved to be as e�cient as
anticipated, and very few basis functions yield defect modes with high accuracies. In the transverse
electric (TE) case, however, the magnetic �eld WFs fail to model an additional aspect of defect modes,
namely the continuity conditions of magnetic �elds across dielectric boundaries. The more the defect
permittivity deviates from the former permittivity of the periodic PC, the larger the errors become.
In this thesis, the augmentation of the pure Wannier basis by auxiliary basis functions (ABF) was

proposed to reduce errors. These ABFs were chosen in view of their ability to model the correct continuity
conditions of magnetic �eld defect modes in two-dimensional PC in TE polarization. Three sets of ABFs
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9 Summary and Outlook

were proposed, the Fourier-Bessel functions (FBF), the inverse system Wannier functions (IWF), and
supercell defect modes (SDM) from a plane-wave based computation with the MIT photonic bands
(MPB) software. To distinguish the IWFs from the WFs, the latter were referred to as proper WFs,
because they are able to describe the band structure of the host PC perfectly. All of these ABFs
reduced the errors in localized cavity defect mode, supercell waveguide dispersion and on-shell waveguide
dispersion computations drastically compared to using only the basis of proper WFs. Maximal errors
of 1 % for a wide range of isotropic and anisotropic defect strengths were achieved, both for simple and
complex defect designs. Hereby, the total number of basis functions needed increases only marginally,
since the ABF only have to be incorporated at the defect sites. The FBFs performed best in this
respect and should be used in subsequent Wannier based scattering matrix computations for high-index
defect structures. However, they are an educated guess depending on the cylindrical geometry and are
only applicable in two-dimensional PCs. The SDMs and IWFs, on the other hand, can also be used in
general two- and three-dimensional computations, meeting all of the requirements for magnetic �elds
stated above. These �ndings were accompanied by extensive investigations about the in�uence of various
numerical parameters on the accuracy of the localized basis expansion. These are intended as a reference
for future computations.
In order to reach satisfactory accuracies, more WFs than provided by previous works had to be

generated. For the computation of these functions, the bottom-up approach after Schillinger [35] was
used. This is an implementation of the Souza-Marzari-Vanderbilt algorithm, that constructs maximally
localized WFs by minimizing their real space spread in an iteration procedure. This method requires a
couple of parameters from the user: the band sets of Bloch modes to construct generalized WFs from,
the trial functions acting as initial WFs for the spread minimization process, and a frequency window
that allows the exchange of Bloch mode pro�les with higher bands. The choice of these parameters was
based mostly on trial-and-error in the past, with only a few rules of thumb available. This made the WF
construction a tedious and time consuming process. Therefore, an in-depth investigation of the in�uence
of these parameters on the �nal WFs has been conducted in this thesis. It is intended as a reference
for future computations. The importance of the proper choice of trial functions was pointed out. These
provide the initial WFs, which are the starting point for the iteration procedure. Suboptimal choices can
lead to more iteration steps and strongly distorted �nal WFs, that are not optimally localized. Based on a
thorough group theoretical analysis, a connection between Bloch mode symmetries and WF symmetries
and localization was established. This site symmetry analysis culminated in the Tabs. 2.1 and 2.2,
completing the set of selection rules stated by Schillinger [35] based on empirical evidence. These tables
determine the symmetries and localization centers of the maximally localized WFs from the symmetries
of the Bloch modes. This helps to determine optimal trial functions with the anticipated properties of
the WFs. The trial functions suggested in this work consist of Γ-point Bloch modes that are cropped
on a Wigner-Seitz cell, centered around the anticipated localization center of the WFs. Furthermore,
these trials are unitarily transformed to be basis functions for the anticipated site symmetry irreps of
the WFs. The improvements of these group theory based choices were documented by many examples.
Also, the e�cient incorporation of these rules based on a few precomputed matrices (instead of time
consuming scalar products between �elds) was proposed. Additionally, a method to estimate good
frequency windows by investigating the scalar products between trial functions and Bloch modes was
suggested. Finally, this provided much insight in the WF construction process and will help to drastically
reduce the time to obtain WFs in the future.
The Wannier basis for the localized basis expansion is not uniquely determined. Di�erent choices in

construction parameters yield di�erent sets of WFs. Therefore, three sets of WFs have been investigated
considering their ability to model the PC band structure and defect modes. The WF38-SMV were
WFs generated by the combined Souza-Marzari-Vanderbilt (SMV) procedure. They all formed the
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anticipated irreps according to the site symmetry analysis. The WF38-MV set was constructed from
the pure Marzari-Vanderbilt (MV) for a single closed set of Bloch bands and much faster constructed
than the WF38-SMV versions.1 Finally, the WF38-sym set was obtained by applying a symmetrization
procedure to the WF38-SMV set to yield perfectly symmetric WFs. Though all of these sets were
highly localized, only the WF38-MV set showed the anticipated decay behavior of |r|−3/4 exp(−h|r|),
whereas the other two sets decayed like 1/|r|. They all reproduced the band structure as expected.
However, the WF38-MV set yielded many spurious modes in defect computations, justifying the time
consuming construction process to obtain the WF38-SMV set. The symmetrized variants WF38-sym
provided no substantial improvements, but the symmetrization process also introduced no additional
errors. However, based on the evidence in this work, no advantages of using a highly symmetrized basis
are apparent yet.

9.2 Outlook

The bene�ts of using highly symmetric basis functions in future scattering matrix computations remains
to be seen. However, exploiting the perfect symmetry may allow optimizations and reduction of compu-
tational time. Nevertheless, the foundations for obtaining a highly symmetric basis set are documented
in this work.
The site symmetry analysis as presented in Chap. 2 is directly applicable to the generation of vec-

torial photonic WFs in PC slabs for TE and TM polarization, as long as the underlying plane groups
are symmorphic. Only the case of symmorphic plane groups has been covered in the present thesis.
Three-dimensional PC studies today focus mainly on the woodpile structure, whose space group is non-
symmorphic. In that case, the site symmetry analysis is more complicated but nevertheless possible and
valid.
The sets of ABFs reduced computational errors but did not increase the computational e�ort. However,

the small errors also depend on the usage of 101 WFs, which is considerably more than the 6 WFs that
were su�cient in TM computations of [32]. By using the methods of Sec. 7, it may be possible to reduce
the number of basis functions if one is restricted to a small frequency range. Photonic circuits including
non-etched holes can nevertheless now be treated with reasonable accuracy. This is of great importance,
since this class of defects is in wide use in experiments at the moment.

1The WF38-SMV WFs were one of the major results of the dissertation [35].
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A Appendix A

Definitions and Proofs

This appendix features calculations proving some statements or de�ning additional quantities for refer-
ence.

A.1 Fourier Transforms

We summarize the mathematical properties of Fourier transforms as far as they are needed in this thesis.
We employ the in�nite as well as the cyclic model of crystals with Ni cells per lattice direction ai. In
the �nite case, the set of lattice vectors Lper contains N =

∏d
i Ni lattice sites in direct space and the

corresponding Brillouin zone (BZ) L∗per contains N k-vectors. This compilation of identities is taken
from Ashcroft and Mermin [56].

A.1.1 Lattice Periodic Functions in Direct Space

Let f be a lattice periodic function in direct space, i. e.

f(r + R) = f(r) ∀R ∈ Lper. (A.1)

Then f can be expanded into plane waves for reciprocal lattice vectors K ∈ L∗per as

f̃K :=
1

VPUC

∫
PUC

ddr e−iKrf(r) , (A.2)

⇒ f(r) =
∑

K∈L∗per

f̃KeiKr . (A.3)

Note that the integration is performed over the primitive unit cell of the lattice Lper which may be a
supercell of the photonic crystal unit cells LPC. If only �nitely many K are available, the remaining
coe�cients f̃K are implicitly taken to be 0 and the resulting f(r) in (A.3) is an approximation to the
full one in (A.2).

A.1.2 Lattice Periodic Functions in Reciprocal Space

This is the same relation as in the previous section, now written for lattice periodic functions φ in
reciprocal space of the PC, i. e.

φ(k + K) = φ(k) ∀K ∈ L∗PC (A.4)
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Then φ can be expanded into plane waves for direct lattice vectors R ∈ LPC as

φ̃R :=
1
VBZ

∫
BZ

ddk e−ikRφ(k) , (A.5)

⇒ φ(k) =
∑

R∈LPC

φ̃ReikR . (A.6)

If φ(k) is only given for N discrete wave vectors in the BZ of a �nite cyclic PC, then by (B.11) we
have to substitute1

1
VBZ

∫
BZ
7→ 1

N

∑
k

, (A.7)

such that (A.5) changes to

φ̃R :=
1
N

∑
k∈BZ

e−ikRφ(k) , (A.8)

and the sum in (A.6) runs over the N direct lattice vectors R of the main region Lmain of the cyclic
crystal.

A.1.3 Fourier Sum Identities

In the cyclic crystal with a total of N direct lattice vectors R ∈ Lmain and a total of N allowed wave
vectors k of (2.33) in the corresponding discrete BZ, we have the identities

∑
R∈Lmain

eikR = Nδk,0 , (A.9)

∑
k∈BZ

eikR = NδR,0 . (A.10)

In the continuous case, the lattice site sum extends over the in�nitely many sites of LPC, and the k-
points in the corresponding BZ are a dense set. Then we can apply (A.7), making the sum (A.10) an
integral

1
VBZ

∫
BZ

ddk eik(R′−R) = δR′R . (A.11)

A.2 Wannier Function Properties

Some properties of WFs are summarized here.

1This is basically an application of (B.11).
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A.2 Wannier Function Properties

A.2.1 Translational Properties

This is a proof of (3.4). The action of a shift by a lattice vector R′ is given by

D̂({E|R′})Wn,R(r) =
1
VBZ

∫
BZ

ddk e−ikRD̂({E|R′})ψ̃nk(r) (by (3.1) and (2.10)) (A.12)

=
1
VBZ

∫
BZ

ddk e−ikRψ̃nk(r−R′) (by (2.10)) (A.13)

=
1
VBZ

∫
BZ

ddk e−ik(R+R′)ψ̃nk(r) (by (1.19)) (A.14)

= Wn,R+R′(r) . (A.15)

Therefore, it is su�cient to just compute Wn,0(r), because the WFs associated with lattice site R ∈ LPC

is obtained via
Wn,R(r) = Wn,0(r−R) . (A.16)

A.2.2 Orthonormality

The generalized Bloch modes ψ̃ are orthonormal, since they are obtained as unitary transforms from
the orthonormalized proper Bloch modes. We write down the corresponding proof for the electric �eld
case. For the magnetic �eld, the proof is analogous but does not feature the permittivity εPC:

〈〈Wn′R′‖WnR〉〉 =
∫

ddr W∗
n′R′ · εPC ·WnR (by (1.54)) (A.17)

=
1
V 2
BZ

∫
BZ

ddk′
∫

BZ

ddk eik′R′e−ikR

∫
ddr ψ̃

∗
n′k′ · εPC · ψ̃nk (by (3.1)) (A.18)

=
1
V 2
BZ

δn′n

∫
BZ

ddk′
∫

BZ

ddk eik′R′e−ikRδ(d)(k′ − k) (by (1.56)) (A.19)

=
1
V 2
BZ

δn′n

∫
BZ

ddk′ eik′(R′−R) (ddk ) (A.20)

=
1
VBZ

δn′nδR′R . (by (A.11)) (A.21)

By the de�nition (3.1), the WFs are not normalized, but they can be normalized after construction by
the Marzari-Vanderbilt algorithm. This corresponds to the alternative de�nition

|WnR〉 :=
1√
VBZ

∫
BZ

ddk e−ikR |ψ̃nk〉 , (A.22)

where the generalized Bloch modes are obtained back again via (A.6) from

|ψ̃nk〉 =
1√
VBZ

∑
R

eikR |WnR〉 . (A.23)
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A.2.3 Integration by Parts

Let the vectorial functions a(r) and b(r) decay su�ciently fast to 0 for |r| → ∞ as the Wannier functions
do. We employ the Levi-Civita symbol εijk and get

∫
dV a · (∇× b) =

∑
ijk

∫
dV εijkai(∂jbk) (def. of curl) (A.24)

= −
∑
ijk

∫
dV εijk(∂jai)bk (int. by parts) (A.25)

=
∑
ijk

∫
dV εkjibk(∂jai) (total antisymmetry) (A.26)

=
∑
ijk

∫
dV εijkbi(∂jak) (index switch: i↔ k) (A.27)

=
∫

dV b · (∇× a) (by (A.24)) (A.28)

=
∫

dV (∇× a) · b . (A.29)

The boundary values of the integration by parts vanish due to the localization properties of the functions
a and b.

A.3 Operator Matrix Properties

Some properties from Sec. 4.1.2 of the operator matrices (4.6), (4.11), (4.15), and (4.16) are proven here.

A.3.1 Hermiticity

The Hermiticity of the defect matrices for Hermitian permittivity tensors is shown here for one example.
This proof also applies to the pure overlap matrices.

Bel
n′R′,nR

(4.11b)
=

∫
dV W∗

n′R′(r) ·∆ε(r) ·WnR(r) (A.30)

=
∫

dV
(
Wn′R′(r) ·∆ε∗(r) ·W∗

nR(r)
)∗

(complex conjugation) (A.31)

=
∫

dV
(
W∗

nR(r) ·∆ε(r) ·Wn′R′(r)
)∗

(Hermitian tensor) (A.32)

= Bel∗
nR,n′R′ . (by (A.30)) (A.33)
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A.3.2 Translational Invariance

The translational properties of the A- and C-matrix are proven here.

Cel
n′R′+ρ,nR+ρ

(4.11c)
=

∫
dV W∗

n′R′+ρ(r) · εper(r) ·WnR+ρ(r) (A.34)

(A.15)
=

∫
dV W∗

n′R′(r− ρ) · εper(r) ·WnR(r− ρ) (A.35)

=
∫

dV W∗
n′R′(r) · εper(r + ρ) ·WnR(r) (int. over all space) (A.36)

=
∫

dV W∗
n′R′(r) · εper(r) ·WnR(r) (per. dielectric) (A.37)

= Cel
n′R′,nR . (A.38)

A.4 Relative Errors

Numerical results can usually be made more accurate by increasing one or more parameters, e. g. resolu-
tions and supercell sizes for band structure and supercell calculations. In order to measure the accuracy
of the relevant quantities obtained in such computations (mostly eigenfrequencies), one would have to
compare the numerically obtained quantities with analytically exact reference values. Unfortunately
such exact reference values are mostly not available, even for the simplest physical setups possible. In
such a case one can at least compare the numerical results with each other, when computing numerical
solutions with the largest parameters that are computationally accessible which is supposed to yield the
most accurate approximation to the real solution of the analytical problem.

A.4.1 Relative Errors

The relative error ∆frel(p) of a quantity f(p) depending on a parameter p is de�ned as

∆frel(p) :=
|f(p)− fref|
|fref|

. (A.39)

When lacking an analytical reference solution, we usually use the value f(pmax) obtained for the maxi-
mally possible parameter p as reference fref.
If we have a whole sequence of the quantities fn(p) with reference values fref,n depending on an

additional parameter n, we also get a sequence of relative errors ∆frel,n. In order to quantify the quality
of the whole computation we can de�ne the maximal relative error

∆fmaxrel(p) := max
n

∆frel,n(p) , (A.40)

and the (arithmetic) mean relative error2

∆fmeanrel(p) :=
1
N

N∑
n=1

∆frel,n(p) . (A.41)

Here, N is the number of reference values fref,n.

2Also known as mean percentage error in statistics.
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A.4.2 Comparing Matrices

When comparing the elements Mij(p) of matrices M(p) that depend on a parameter p, the relative
error of each individual matrix element is usually not a good measure for convergence. For if some of
the reference matrix elements Mij,ref are near 0 (numerically modeling true values of 0), the individual
relative errors

∆Mrel,ij(p) =
|Mij(p)−Mij,ref|

|Mij,ref|
(A.42)

can become large and bias the mean or maximal values computed thereof.

In such a case it is better to compare the maximum-norms (also called ∞-norms) of the matrices, i. e.

∆Mmax-norm(p) :=
||M(p)−Mref||∞
||Mref||∞

(A.43)

=
maxij |Mij(p)−Mij,ref|

maxij |Mij,ref|
. (A.44)

Such an error can be used to compare di�erent computational schemes with each other. It is employed
in this thesis when quantifying the convergence of operator matrix elements.

A.4.3 Orders Of Convergence

In computational schemes where the quantities f computed depend on the resolution of a discretization
of some region of space (e. g., eigenfrequencies computed by MPB), one can also quantify the rate
of convergence when increasing the resolution. In that case, the parameter p is the spacing distance
1/Nres between the discretized points in space. The relative errors ∆frel(p) often decrease like a power
pt, with t being the order of convergence. Then we say that the relative error is of order t and write
∆frel(p) ∼ O(pt). This order can be visualized in double logarithmic plots as the slope of linear functions.
In the case p = 1, we speak of linear convergence, for p = 2 we have quadratic convergence.

A.5 Scalar Product for Electrical Fields

We will show that the electric �eld wave equation (1.9a) in the standard eigenvalue form

ε−1 ·∇×
(
∇×E

)
− ω2

c2
0

·E = 0 (A.45)

features a Hermitian di�erential operator

Ĥel := ε−1 ·∇×
(
∇× ·

)
, (A.46)

186



A.5 Scalar Product for Electrical Fields

where application of the curls is intended from the right to left. Given two electric �elds E and E′, this
operator Ĥel is Hermitian with respect to the scalar product 〈〈·‖·〉〉 of Eq. (1.54):3

〈〈E‖ĤelE′〉〉 =
∫

dV E∗ εε−1︸︷︷︸
=1

·∇× (∇×E′) (by (1.54)) (A.47)

=
∫

dV (∇×E∗) · (∇×E′) (by (A.29) (A.48)

=
∫

dV ∇× (∇×E∗) · ε−1ε︸︷︷︸
=1

·E′ (by (A.29) (A.49)

=
∫

dV
[
(ε−1)T ·∇× (∇×E∗)

]
· ε ·E′ (A.50)

=
∫

dV
[
(ε−1)T ∗︸ ︷︷ ︸

ε−1

·∇× (∇×E)
]∗
· ε ·E′ (A.51)

=
∫

dV
[
ε−1 ·∇× (∇×E)

]∗
· ε ·E′ (Hermitian ε−1) (A.52)

=
∫

dV
[
ĤelE

]∗
· ε ·E′ (A.53)

= 〈〈ĤelE‖E′〉〉 . (A.54)

Boundary terms from an integration by parts vanish due to periodicity (for Bloch waves) or localization
(defect modes). Thus, Ĥel is Hermitian with respect to the scalar product 〈〈·‖·〉〉 and the electric �eld
eigenmodes can be chosen orthonormalized for that particular scalar product.

3Thanks to Martin Köhl, who pointed this proof out to me.
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B Appendix B

Discretizations

A computer can only operate on discrete values in memory, therefore all mathematical objects and
actions de�ned continuously have to be represented in a discrete way. The particular method to obtain
this discrete representation is called the discretization scheme or discretization for short. However, the
term discretization is also used for the set of discretized values.

B.1 Fields

Functions f : Rd 7→ Cd′ such as scalar/vectorial electric/magnetic �elds (Bloch modes and Wannier
functions), scalar or tensor dielectric functions, can be represented in a nodal fashion. This means, a
�nite domain of the real space Rd is represented by a uniform mesh (or grid) of points rz, the nodes of
the mesh

rz :=
d∑
i=1

zi
ai

Nres,i
, zi ∈

{
−
Nnodes,i

2
,−

Nnodes,i

2
+ 1, . . . , 0, . . . ,

Nnodes,i

2
− 1
}
. (B.1)

The ai are the primitive lattice translations and zi are integers with the total number of nodes Nnodes,i

per lattice direction. At these nodes, the continuous �elds are represented by their values fz := f(rz).
In this work, we only deal with �elds de�ned on unit cells or supercells of periodic structures. Therefore,
the resolution Nres,i always denotes the number of nodes per lattice direction i in one unit cell, while
Ncells,i de�nes the number of unit cells per lattice direction i in the supercell. The total number Nnodes,i

of nodes per direction of the �eld representation is then given by the product

Nnodes,i = Ncells,iNres,i . (B.2)

The total number Ncells of unit cells and number of nodes Nnodes in the supercell is correspondingly
given by

Ncells =
∏
i

Ncells,i , Nnodes =
∏
i

Nnodes,i . (B.3)

In a modal representation, instead of �eld values fz one stores a set of expansion coe�cients ci with
respect to a given set of basis functions φi such that

f(r) :=
∑
i

ciφi(r) . (B.4)
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B Discretizations

(a) Nodal �eld discretization (b) Nodal �eld integration

Figure B.1: Discretization schemes for �elds and �eld integration. (a) De�nition of real space
resolution Nres,i, nodal discretization rz and neighbors hj for the lattices de�ned by (B.5) and (B.6).
(b) Discretized integration over one unit cell in one dimension for a periodic function f , discretized
by its values fi = f(ri). The area under the function is approximated by

∑
i fih =

∑
i fia/Nres. The

node fNres/2 is not taken into account hereby, since it would be counted twice.

Examples for such basis functions φi are Wannier functions or plane waves, where for the latter the ci
are the Fourier coe�cients of the �eld f . Technically, the nodal representation can be considered to be
a modal representation with a basis of localized step functions.
For a given discretized position node rz one can de�ne a set of vectors hj that point to the neighboring

nodes, where it is convenient to start the numbering with h0 = 0.
There are various possible choices for primitive lattice translations, in this work the following are

exclusively used (with lattice constant a):

a1 = ax̂ ,

a2 = aŷ ,

2D Square Lattice PLTs

(B.5)
a1 = ax̂ ,

a2 = a
(
−1

2
x̂ +
√

3
2

ŷ
)
.

2D Triangular Lattice PLTs

(B.6)

Examples for the nodal discretization and the neighbors hj are shown in Fig. B.1a.

B.2 Integration

Given a nodal discretization fz which can be regarded as a step function approximation to f(r), a
common approximation of the integral over f is the integral of a step function with piecewise constant
values fz, de�ned as ∫

ddr f(r) ≈
∑
z

fz vold {ai/Nres,i} . (B.7)

190



B.3 Derivatives

Here, vol {ai/Nres,i} is the volume of a cuboid spanned by the vectors ai/Nres,i, in various dimensions
given by

vol1 {a1/Nres,1} =
1

Nres,1
|a1| , (B.8)

vol2 {a1/Nres,1,a2/Nres,2} =
1

Nres,1Nres,2
|a1 × a2| , (B.9)

vol3 {a1/Nres,1,a2/Nres,2,a3/Nres,3} =
1

Nres,1Nres,2Nres,3
|a1 · (a2 × a3)| . (B.10)

With Nres =
∏
iNres,i these volumes are equal to VWSC/Nres in each respective dimension such that

(B.7) can be written as

1
VWSC

∫
dV f(r) ≈ 1

Nres

∑
z

fz (B.11)

Note that the integration domain is not restricted to a single unit cell here and that Nres is the total
number of nodes within the Wigner-Seitz cell (WSC). If any other supercell volume Vcell is used as a
prefactor, then the total number of nodes Nnodes in that cell has to be used, regardless of the actual
integration domain (which only a�ects the subset of z to sum over):

1
Vcell

∫
dV f(r) ≈ 1

Nnodes

∑
z

fz (B.12)

This form of the integration approximation is well known and widely used in solid state physics. Its
advantage lies in the fast evaluation scheme for scalar products of the type 〈f1, f2〉, for which any
implementation of the fast BLAS libraries can be used in practice. For reciprocal space integration
VWSC has to be substituted by the volume VBZ of the BZ.

B.3 Derivatives

There are two types of discretization schemes for derivatives used and compared in this work.

B.3.1 Finite Differences

In this method, the continuous limits in the de�nition of the derivative are approximated by �nite
di�erences. In the most simple one-dimensional case by forward di�erences

d
dx
f(x) := lim

h→0

1
h

(
f(x+ h)− f(x)

)
≈ 1
h

(
f(x+ h)− f(x)

)
for small h. (B.13)

This discretization yields the exact derivatives up to �rst order in h and is quite a crude approximation.
It can be made more accurate as follows. For meshes on arbitrary lattices and arbitrary dimensions d,
the �nite di�erence stencils of order p ∈ N are given by weights wj ∈ Rd for the neighbors hj such that
the Cartesian gradient ∇ is approximated by

∇f(rz) =
∑

j wjf(rz + hj) +O(hp) . (B.14)
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The hj are given by the lattice and the weights wj are determined by a Taylor series expansion up to
order p:

f(rz + hj) = f(rz) +
p∑

n=1

1
n!

(
hj∇

)n
f(rz) +O(hp+1) . (B.15)

For a given set of hj , this is a system of linear equations for the partial derivatives ∂xf, ∂yf, ∂zf, ∂x∂yf, . . .,
at a given node r = rz. Solving for the desired derivatives, one obtains the weights wj for (B.14).
Increasing the number of neighbors hj (nearest neighbors, next-to-nearest neighbors, etc.) increases the
possible orders p one can obtain and thus makes the approximation better. The weight factors for the
lattices de�ned by (B.5) and (B.6) are shown in Figs. B.2 and B.3.

(a) p = 2 (b) p = 4

Figure B.2: Finite di�erence stencils for a uniform mesh in the 2D square lattice. The distance
between nearest neighbors for each direction is h = |hj |. As an example, in (a) the weights wj have
values (± 1

2h , 0) for ∂x and (0,± 1
2h) for ∂y.

(a) p = 2 (b) p = 4

Figure B.3: Finite di�erence stencils for a uniform mesh in the 2D triangular lattice. See also the
caption of Fig. B.2.
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B.4 Dielectric Function

B.3.2 Spectral Derivatives

This discretization is based on a discrete Fourier transform of the nodal �eld discretization and can be
implemented using the fast routines of the FFTW library.
By (A.3), the derivatives of lattice periodic scalar functions f(r) and vectorial functions f(r) can be

expressed by their Fourier coe�cients f̃K and f̃K as

∇f(r) =
∑

K∈L∗PC

iKf̃KeiKr , ∇× f(r) =
∑

K∈L∗PC

iK× f̃KeiKr . (B.16)

For nodal discretizations fz and fz of the �elds, there is only a �nite set of allowed reciprocal lattice
vectors Kw =

∑
iwibi. Furthermore, the integrals (A.2) have to be evaluated by the scheme (B.12),

leading to the discretized Fourier coe�cients

f̃w := f̃Kw ≈
1

Nnodes

∑
z

e−iKwrzfz , (B.17)

where by the de�nition of (B.1) for rz and Kw the exponential is equal to

exp(−iKwrz) = exp
(
−2πi

∑
i

wizi
Nres,i

)
. (B.18)

B.3.3 Problems of Discretized Derivatives

The discretizations introduced converge to the exact derivatives only for continuously di�erentiable
functions. If the functions have kinks (as the magnetic �eld eigenmodes do), then the approximation
becomes worse in the vicinity of these kinks. An example for these errors is shown in Fig. B.4.

Figure B.4: Example of derivative discretization schemes for a function f that is not continuously
di�erentiable at x = 0.

B.4 Dielectric Function

The discontinuous permittivity (1.44) leads to kinks in the magnetic �eld which by Fig. B.4 poses prob-
lems for the discretized derivatives. It is known that the discontinuities in the permittivity worsen the
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convergence of numerical methods to solve the wave equations [57, 100, 101]. Therefore, various schemes
to discretize this permittivity have been suggested in the literature for computational electrodynamics
to improve convergence. They are shown in Fig. B.5a.

(a) Discretization schemes (b) Discretized scalar permittivities

Figure B.5: (a) Examples for the various permittivity discretization schemes. (b) E�ective dis-
cretized values for the inverse permittivity η at dielectric interfaces for the scalar permittivity dis-
cretizations.

The most simple nodal discretization εz that neglects any further treatment of this problem, is the
stair-case approximation. Here the nodes are just assigned the values of the step function at the positions
rz:

εz := ε(rz) .

Staircase Approximation

(B.19)

This discretization leads to linear convergence of the frequencies with increasing real space resolution
Nres,i (cf. Fig. C.3).
The scalar sub-pixel smoothing assigns εz averaged function values 〈ε〉z that are averaged over the

nodes of a smaller mesh of resolution NSPS,i with NSPS =
∏
iNSPS,i:

εz := 〈ε〉z =
1

NSPS

∑
j

ε(rz + vj) .

Scalar Sub-pixel Smoothing (Permittivity)

(B.20)

This method is known to improve convergence for E-polarization but slow down convergence for H-
polarization [57].
Obviously, (B.19) yields values di�erent from (B.20) only in the vicinity of dielectric boundaries.

However, in most numerical schemes the inverse permittivity function η(r) = 1/ε(r) is needed which
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can be discretized in the same fashion

ηz := 〈1/ε〉z =
1

NSPS

∑
j

1
ε(rz + vj)

⇐⇒ εz =
1

〈1/ε〉z
6= 〈ε〉z .

Scalar Sub-pixel Smoothing (Inverse Permittivity)

(B.21)

(B.22)

At the dielectric boundaries, this yields di�erent values for ε than (B.20). Opposite to (B.20), this
scheme improves convergence for H-polarization and slows down convergence for E-polarization [57].
As described in [41, 57, 100], a sensible discretization for obtaining second order convergence for

both polarizations and general vectorial computations is the use of an e�ective tensor permittivity, that
combines the scalar sub-pixel smoothing (SPS) for ε and η by using tensorial values de�ned by

ηz := 〈1/ε〉zP (n̂z) +
1
〈ε〉z

(
1− P (n̂z)

)Tensorial Sub-pixel Smoothing (Isotropic)

(B.23)

Here,

P (n̂) := n̂⊗ n̂ (B.24)

⇐⇒
Pij = ninj (B.25)

is a projection matrix that projects the electric �eld vector E(r) ∈ Cd on the surface normal n̂(r) of
the boundary between two dielectrics, creating E‖(r) = P · E(r). The tangential component E⊥(r) =
(1−P )·E(r) is orthogonal to n̂. In practice, an averaged normal vector n̂z associated with the discretized
position rz is used, since rz itself does in general not coincide with the boundary. The second order
convergence of frequencies using this discretization scheme is also demonstrated in Fig. C.3.
For the sake of completeness it should also be mentioned that in [41] a tensorial SPS scheme was

suggested that also deals with the description of anisotropic materials. With {·, ·} being the anticom-
mutator, they use

ηz :=
1
2

[{
〈ε−1〉z, P (n̂z)

}
+
{

(〈ε〉z)−1, (1− P (n̂z))
}]

.

Tensorial Sub-pixel Smoothing (Anisotropic)

(B.26)

This is the discretization scheme that MPB uses to obtain the reference solutions for this work. For
isotropic media, it reduces to (B.23).
In Fig. B.6, examples for the various discretization schemes are shown for a 2D permittivity.

B.5 Brillouin Zone

The primitive lattice translations bi for the reciprocal lattice L∗per of a real space lattice Lper are de-
termined via (1.14) by our choice of real space primitive lattice translation (PLT) (B.27) and (B.28)
as
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B Discretizations

η(rz): Staircase
Approximation
(=̂NSPS,i = 1)

η(rz): Scalar SPS
(NSPS,i = 8)

(a) Scalar inverse permittivities η(r)

ηxx(rz) ηxy(rz) ηyy(rz)
(b) Tensor inverse permittivity η(r) (NSPS,i = 8)

Figure B.6: Examples for the discretized dielectric functions ηz and ηz on a unit cell in the square

lattice of cylindrical air holes in silicon. (a) show the discretizations (B.19) and (B.20). (b) shows
the entries of η

z
by the discretization (B.23).

b1 =
2π

a
x̂ ,

b2 =
2π

a
ŷ ,

2D Square Lattice

(B.27)
b1 =

2π

a

(
x̂ +
√

3
3

ŷ
)
,

b2 =
2π

a

(2
√

3
3

ŷ
)
.

2D Triangular Lattice

(B.28)

The Bloch modes ψnk are periodic in the parameter k, like (A.4). For brevity we call such functions
K-periodic. For discretizations (3.12) of k-space integrations (3.1) of such K-periodic functions, the
Monkhorst-Pack mesh [92] is known to be a better choice for a BZ discretization than the mesh introduced
in (2.33). The Monkhorst-Pack (MP) mesh de�nes a discrete set of BZ wave vectors kp for resolutions
Nk-res,i as

kp :=
∑
i

κi(pi)bi , (B.29)

κi(pi) :=
1

2Nk-res,i
(2pi −Nk-res,i − 1) , for pi = 1, 2, . . . , Nk-res,i . (B.30)
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B.5 Brillouin Zone

We choose odd values for Nk-res,i such that the Γ point kp = 0 is included in the MP mesh.

(a) 2D Square lattice, Nk-res,i = 5 (b) 2D triangular lattice, Nk-res,i = 11

Figure B.7: Monkhorst-Pack meshes discretizing the primitive unit cell of 2D reciprocal lattices.
The nodes kp are consecutively numbered, where the Γ-point kp = 0 has the number (1+

∏
iNk-res,i)/2

for odd values of Nk-res,i.
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C Appendix C

Reference Modes

The WF defect mode calculations in this work are all compared to the reference solutions by MPB
which is a freely available implementation of the supercell method [102]. The SPS discretization for the
e�ective dielectric tensor by (B.23) has been used for these computations. In the following, the accuracy
and dependence on numerical parameters of these reference solutions is documented. Furthermore, the
convergence order of frequencies depending on the permittivity discretizations of Sec. B.4 is presented.

C.1 Numerical Parameters

This is a brief summary of the numerical parameters in supercell calculations that a�ect the accuracy
of the defect mode frequencies obtained.

C.1.1 Tolerance

MPB features the parameter tolerance that de�nes a termination condition for its iteration procedure.
Therefore, the choice of this parameter a�ects the accuracy of the �nal eigenmode frequencies.

C.1.2 Sub-Pixel Smoothing Mesh Size NSPS,i

MPB uses the tensorial SPS (B.26) for anisotropic dielectrics that reduces to the tensorial SPS (B.23) in
the isotropic case. The actual values 〈ε〉z of the discretized permittivity depend on the chosen resolution
NSPS,i of the sub-pixel mesh in Fig. B.5a. This is the parameter mesh-size in MPB control �les. It is
not a priori clear, how the choice of this parameter a�ects the frequencies of eigenmodes.

C.1.3 Real Space Resolution Nres,i

As explained in Sec. B.3, the quality of numerical derivatives and thus defect mode frequencies becomes
better with higher resolutions. By increasing the real space resolution Nres,i, the frequencies obtained
by MPB will approach their �nal values for Nres,i =∞. Since the exact defect mode frequencies for the
test system are not known, we compare the frequencies to the best approximation we can achieve that
is the results for the maximal resolutions available.

C.1.4 Supercell Size Ncells,i

In supercell calculations with periodic boundary conditions, the computational domains are taken to
be periodically extended in all lattice directions for cavity defect modes and waveguide dispersions
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C Reference Modes

(Fig. C.1). Therefore, a wave vector k from the corresponding BZ has to be provided, for which the
defect modes are calculated. The exact cavity defect modes should be independent of k since they are
non-propagating modes. However, the numerical results di�er with k for small supercells, since they are
a�ected by the in�uence of the neighboring supercells. Therefore, one has to make sure that the supercell
size is chosen su�ciently large such that the numerical solutions become e�ectively independent of the
chosen k-vector.

(a) Supercells (b) Defect band

Figure C.1: (b) Computational domains (orange) and number of unit cells per supercell direction
Ncells,i. Supercells used for cavity defect modes (left) and waveguide dispersions (right) are shown.
In the supercell method, the computational domains are implicitly taken to be periodic in each lattice
direction. One unit cell is discretized as described in Fig. B.1a. (b) The de�nitions for the maximal
and minimal frequencies ωmax and ωmin, the middle frequency ωmid and the frequency splitting ∆ω
for a defect band obtained from a supercell calculation for varying k.

In defect cavity mode computations, whole defect bands are obtained for varying k with upper frequen-
cies ωmax and lower frequencies ωmin. If these bands become straight lines, the results can be considered
converged. One measure for convergence then is the splitting ratio ∆ωsr (similar to the gap-to-midgap
ratio for band gaps), i. e., the ratio between the di�erence ∆ω and the mean value ωmid of the obtained
extremal frequencies (see Fig. C.1b):

ωmid :=
1
2

(ωmax + ωmin) , (C.1)

∆ω :=
1
2

(ωmax − ωmin) , (C.2)

∆ωsr :=
∆ω
ωmid

=
ωmax − ωmin

ωmax + ωmin
. (C.3)

When ∆ωsr(Ncells, i) becomes small, the frequency can be considered independent of k.
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C.2 Reference Frequencies and Parameters

C.2.1 Band Structure in Triangular Model System

First, we look at the sub-pixel mesh resolution NSPS,i. Therefore, the maximal relative error in the
discretized scalar permittivities εz after (B.20) is plotted in Fig. C.2a, i. e.

maximal relative error := max
z

|〈ε〉z(NSPS,i)− 〈ε〉z(NSPS,max)|
|〈ε〉z(NSPS,max)|

. (C.4)

The plot suggests that there are quite large errors in the actual discretized values 〈ε〉z, depending on the
choice of NSPS,i. However, Fig. C.3 shows that the actual value of NSPS,i does not a�ect the eigenmode
frequencies, as long as it is not set to 1.

(a) Permittivity convergence (b) In�uence of parameter tolerance

Figure C.2: (a) The maximal relative error (C.4) in the discretized scalar permittivities εz according
to (B.20) of one unit cell of the triangular model system, depending on the chosen sub-pixel mesh
resolution NSPS,i. Two real space resolutions have been investigated. (b) Maximal relative error of
the �rst 15 Bloch bands in the triangular model system for various values of the MPB parameter
tolerance (NSPS,i = 8 and Nres,i = 64). For values ≤ 10−8, the relative error was exactly 0 (MPB
frequencies are output with 6 decimal digits). Reference frequencies were those obtained for minimal
tolerance of 10−14.

In Fig. C.3a, the absolute Bloch mode frequencies for bands 2�9 are shown for increasing real space
resolution Nres,i. The plot proves that the �nal eigenmode frequencies for largest real space resolutions
Nres,i do not change when the sub-pixel smoothing is activated. The accuracy of the frequencies for lower
resolutions, however, is improved drastically, as Fig. C.3b shows. With activated SPS the frequencies
converge quadratically instead of linearly with deactivated SPS. There is practically no di�erence between
using a mesh resolution NSPS,i = 8 or NSPS,i = 128. Thus we can conclude that the actual value is
not important and NSPS,i = 8 yields converged results that cannot improved further by adjusting this
parameter.
The in�uence of the MPB parameter tolerance is shown in Fig. C.2b, where the maximal relative

error of the �rst 15 Bloch bands in the triangular model system is shown. A tolerance value of 10−7 is
su�cient for converged results, as the MPB user's guide also suggests [102].
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(a) Bloch mode frequencies (b) Bloch mode frequency convergence

Figure C.3: Frequencies and convergence of frequencies for the �rst 9 bands of the triangular
model system for various values of the sub-pixel mesh resolution NSPS,i. Reference values for the
convergence plot were the frequencies obtained for maximal real space resolution Nres,i = 2048.

Finally, the parameter choices NSPS,i = 8, Nres,i = 128 and a tolerance of 10−7 are su�cient to
compute band structure frequencies below an accuracy of 0.1 %.
For the sake of completeness the lower and upper edges of the �rst band gap in the triangular model

system are given in Tab. C.1. These are reference values that should also be reproduced by WF com-
putations.

Nres,i l. edge u. edge error in l. edge error in u. edge

8 0.31181 0.47673 4.5× 10−2 3.2× 10−2

16 0.30090 0.48781 8.5× 10−3 9.3× 10−3

32 0.29929 0.49128 3.1× 10−3 2.2× 10−3

64 0.29884 0.49193 1.6× 10−3 9.3× 10−4

128 0.29851 0.49212 5.1× 10−4 5.4× 10−4

256 0.29843 0.49230 2.5× 10−4 1.7× 10−4

512 0.29838 0.49236 6.1× 10−5 5.6× 10−5

1024 0.29836 0.49238 � �

Table C.1: Lower (l.) and upper (u.) band edges obtained by MPB for various real space resolutions
Nres,i and errors compared to the computation with largest real space resolution. NSPS,i = 8 and a
tolerance of 10−7 were used in the computations.

202



C.2 Reference Frequencies and Parameters

C.2.2 Non-Etched Hole in Triangular Model System

The cavity setup Ai for εdef = 12 is computed with MPB. The SPS resolutionNSPS,i = 8 and a tolerance
parameter of 10−7 according to Sec. C.2.1 is used here. The frequencies for the lowest six defect modes
from Fig. 1.12 for a computation with Ncells,i = 7 are shown in Fig. C.4a. The SPS yields a convergence
order between between 1 and 2, as can be seen from Fig. C.4b. Each frequency error is below 0.1 % for
real space resolutions Nres,i = 64. For the sake of completeness, the defect mode frequencies obtained
for the various real space resolutions are documented in Tab. C.2.

(a) Absolute frequencies (b) Rel. error

Figure C.4: (a) Absolute frequencies ω obtained by MPB for a 7×7 supercell calculation. (b) Rela-
tive error ∆ω/ωref with increasing resolution, where the frequency obtained for Nres = 1024 is taken
as the reference frequency ωref.

(a) Defect bands (b) Supercell convergence

Figure C.5: (a) The defect mode frequencies obtained by MPB for various supercell sizes and
variations at di�erent k-points(Nres,i = 64, NSPS,i = 8). (b) Convergence of mean frequencies ωmid

as compared to 11 cells (squares) and frequency splitting ratios ∆ωsr (crosses) for the six lowest
defect modes with increasing supercell sizes.
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dipoles quadrupoles

Nres ω ∆ω/ωref ω ∆ω/ωref

16 0.306648 2.7× 10−3 0.387243 2.4× 10−3

32 0.306127 1.0× 10−3 0.386631 8.5× 10−4

64 0.306013 6.3× 10−4 0.386430 3.2× 10−4

128 0.305874 1.7× 10−4 0.386340 9.5× 10−5

256 0.305848 9.1× 10−5 0.386322 4.9× 10−5

512 0.305827 2.3× 10−5 0.386308 1.3× 10−5

1024 ωref = 0.305820 n.a. ωref = 0.386303 n.a.

monopole hexapole

Nres ω ∆ω/ωref ω ∆ω/ωref

16 0.410358 2.5× 10−4 0.446950 3.0× 10−3

32 0.410544 2.0× 10−4 0.446206 1.3× 10−4

64 0.410533 1.7× 10−4 0.445648 8.1× 10−5

128 0.410471 2.4× 10−5 0.445576 8.1× 10−5

256 0.410476 3.7× 10−5 0.445619 1.6× 10−5

512 0.410464 7.3× 10−5 0.445616 9.0× 10−6

1024 ωref = 0.410461 n.a. ωref = 0.445612 n.a.

Table C.2: MPB defect mode frequencies ω and relative error from ωref for the non-etched hole in
a 7× 7 supercell and activated sub-pixel smoothing after (B.23) ('n.a.' means 'not available').

The in�uence of the supercell size on the frequencies is shown in Fig. C.5. For Ncells,i = 6 unit cells
per lattice direction, the maximal error over all six defect mode frequencies is ≤ 0.1 %.

Finally, in order to compute reference solutions with accuracy of at least 0.1 % for the non-etched hole
with MPB, the parameters of Tab. C.3a were used. The parameters were chosen slightly larger than
necessary. The corresponding frequencies are shown in Tab. C.3b.

Parameter value

tolerance 10−7

Nres,i 96
NSPS,i 8
Ncells,i 7

(a) Non-etched hole
reference parameters

mode frequency ω

dipoles 0.305(8)
quadrupoles 0.386(4)
monopole 0.410(5)
hexapole 0.445(6)

(b) Non-etched hole reference
frequencies

Table C.3: (a) MPB parameters for obtaining the non-etched hole reference frequencies with ac-
curacies below 0.1 %. (b) Defect mode frequencies obtained with MPB for a non-etched hole for the
numerical parameters of (a). The last digit in parentheses is uncertain.
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C.2.3 Ring of Six Non-Etched Holes in Triangular Model System

The convergence of the 36 defect modes in the BCDEFGi cavity setup of Fig. 6.20d for εdef = 12 is
investigated in Fig. C.6.

(a) Convergence (real space resolution) (b) Convergence (supercell size)

Figure C.6: Defect mode frequency convergence with supercell size and real space resolution. The
SPS mesh resolution parameter NSPS,i = 8 is used. In (a), the maximal and mean relative errors of
the 36 modes are shown, where the reference frequencies used were the ones obtained with the highest
real space resolution of Nres,i = 512. The cell size for these computations were Ncells,i = 7. In (b),
a real space resolution of Nres,i = 32 was used.

For accuracies below 0.1 %, the parameters Ncells,i = 8 and Nres,i = 32 have to be used, corresponding
to 65, 000 degrees of freedom per mode in total (total number of discretization points). For accuracies
comparable to 101 WFs with 36 FBFs (0.68 % after Tab. 6.3e), Ncells,i = 5 and Nres,i = 16 is su�cient
which means 6, 400 degrees of freedom.
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C.2.4 W1-1 Waveguide of Non-Etched Holes in Triangular Model System

According to Figs. C.4b and C.6a, a real space resolution of Nres,i = 64 is su�cient for accuracies below
0.1 % which is used for the computations here. The accuracy of the waveguide frequencies with increasing
number of unit cells Ncells per waveguide slice (cf. Fig. 7.1b) is shown in Fig. C.7. For accuracies below
0.1 %, one has to use Ncells = 10.

Figure C.7: Convergence of dispersion branches for real space resolution Nres,i = 64 . Reference
frequencies were those obtained for 11 cells.

Finally, the reference values for waveguide dispersions have been computed with MPB with Nres,i = 64
and Rslice = 5 cladding cells around the defects in the waveguide domain, resulting in Ncells = 11 unit
cells for a W1-1 (cf.Fig. 7.1b).
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Numerical Parameters

This appendix features a series of tables containing numerical parameters for various computations in
this thesis. The captions refer to the �gures and results obtained with the parameters.

Parameter Value

Lattice Triangular
r 0.45a
εcyl εair = 1
εback εSi = 12

Polarization TE
Method MPB

Permittivity discretization tensor SPS
tolerance 10−9

NSPS,i 8
Nres,i 96
Nk-res,i 11
NWF 101

(a) Bloch mode construction parameters

First band Last band ωinner ωouter

1 1 0 0
2 9 0.88 1.12
10 17 1.3 1.49
18 26 1.6 1.75
27 38 0 0

39 57 0 2.5
58 73 0 2.93
74 101 0 3.32

(b) WF generation parameters

Table D.1: Numerical parameters and methods used for creating the WFs of Fig. 3.44. For ωinner =
ωouter = 0, only the Marzari-Vanderbilt spread minimization for closed sets of bands was carried out.
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D Numerical Parameters

Parameter Value

Lattice Triangular, (B.6)
r 0.45a
εcyl εair = 1
εback εSi = 12

Polarization TE
Method MPB, [41]

Permittivity discretization tensor SPS, (B.23)
Nres,i 96
Nk-res,i 11
NWF 101

(a) Bloch mode construction parameters

Parameter Value

Permittivity discretization tensor SPS (B.23), scalar SPS (B.20)
reference defect missing hole εref = 12
Rmax (coupling and domain) 5
Derivative discretization FDS (Sec. B.3.1), SD (Sec. B.3.2)

(b) Operator matrix parameters

Parameter Value

Permittivity discretization tensor SPS, (B.23)
Nres,i 96
k (0, 0) =̂ Γ-point
Ncells,i 7
Tolerance 10−9

(c) MPB supercell reference modes

Table D.2: Numerical parameters and methods used to obtain the TE WFs results of Sec. 6.1.2.
The corresponding WFs are depicted in Fig. 3.44. WF generation parameters are shown in Tab. D.1.
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Parameter Value

Lattice Square, (B.5)
r 0.18a
εcyl εSi = 12
εback εair = 1

Polarization TM
Method plane wave expansion (PWE), [103]

Permittivity discretization Ho-Chan-Soukoulis (HCS), [18]
NK 1,600

Nk-res,i 11
NWF 23

(a) Bloch mode construction parameters

First band Last band ωinner ωouter

1 1 0 0
2 4 0 0
5 9 0.947 1.365
10 16 1.39 1.75
17 23 1.75 2.10

(b) WF generation parameters

Parameter Value

Permittivity discretization scalar SPS
reference defect missing rod εref = 1
Rmax (coupling and domain) 5
Derivative discretization �nite di�erence stencil (FDS), 4th order

(c) Operator matrix parameters

Parameter Value

Permittivity discretization tensor SPS
Nres,i 96
k (0, 0) =̂ Γ-point
Ncells,i 7
Tolerance 10−9

(d) MPB supercell reference modes

Table D.3: Numerical parameters and methods used to obtain the TM WFs results of Sec. 6.1.1.
The corresponding WFs are depicted in Fig. 6.1.
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E Appendix E

Auxiliary Basis Functions

This appendix lists further cavity cluster and waveguide computations with the ABF sets introduced in
Chap. 6. All ABFs have been orthogonalized with respect to proper WFs used in the sets. Proper WFs
were used on a computational domain according to (7.2) with Rmax = 4, whereas auxiliary functions have
only been used at the defect sites. This is denoted in the plot legends as �R4d� and �R0d�, respectively.
The FDS-scalar discretization scheme was used and is also denoted also in the legends (cf. Sec. 5.1.5).

E.1 Comparison of Various Auxiliary Basis Function Sets

The defect modes of the defect cluster setups of Fig. 6.20 for the sets of auxiliary basis functions inves-
tigated in Sec. 6.5 are gathered beginning on page 212.

E.2 Waveguides W1-1

This is a collection of W1-1 waveguide dispersions computed with proper WFs only and the WF101-
FBF36 set, respectively. It shows the accuracies, with which the di�erent branches of the dispersion can
be modeled by the proper WFs only. The collection starts on page 214.
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E Auxiliary Basis Functions

(a) Defect frequencies (b) Relative errors

Figure E.1: Cavity setup ABi (Fig. 6.20a) for εB = 12.

(a) Defect frequencies (b) Relative errors

Figure E.2: Cavity setup BEi (Fig. 6.20b) for εB = 12.
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E.2 Waveguides W1-1

(a) Defect frequencies (b) Relative errors

Figure E.3: Cavity setup ABEi (Fig. 6.20c) for εB = 12 and εE = 12.

(a) Defect frequencies (b) Relative errors

Figure E.4: Cavity setup BCDEFGi (Fig. 6.20d).
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E Auxiliary Basis Functions

(a) εA = 2 (b) εA = 3

(c) εA = 4 (d) εA = 5

(e) εA = 6 (f) εA = 7

Figure E.5: W1-1 waveguide dispersions made from one row of in�ltrated holes with εA. Results are
obtained by the WFs supercell approach (4.74). Yellow regions denote ±1 % errors around reference
frequencies.
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E.2 Waveguides W1-1

(a) εA = 8 (b) εA = 9

(c) εA = 10 (d) εA = 11

(e) εA = 12

Figure E.6: W1-1 waveguide dispersions made from one row of in�ltrated holes with εA. Results are
obtained by the WFs supercell approach (4.74). Yellow regions denote ±1 % errors around reference
frequencies.
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E Auxiliary Basis Functions

(a) εA = 2 (b) εA = 3

(c) εA = 4 (d) εA = 5

(e) εA = 6 (f) εA = 7

Figure E.7: W1-1 waveguide dispersions made from one row of in�ltrated holes with εA. Results are
obtained by the WFs supercell approach (4.74). Yellow regions denote ±1 % errors around reference
frequencies.
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E.2 Waveguides W1-1

(a) εA = 8 (b) εA = 9

(c) εA = 10 (d) εA = 11

(e) εA = 12

Figure E.8: W1-1 waveguide dispersions made from one row of in�ltrated holes with εA. Results are
obtained by the WFs supercell approach (4.74). Yellow regions denote ±1 % errors around reference
frequencies.
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F Appendix F

Group Representation Theory

This is a collection of proofs and tables regarding the representation theory and crystallographic notation.

F.1 Index Ordering of (2.21)

The order of the subscript indices ensures the consistency of the de�nition for products g2g1 of plane
group elements as in (2.5) such that �rst transforming by g1 and then by g2 leads to

D̂(g2)D̂(g1)fj = D̂(g2)
(∑

i′

fi′Di′j(g1)
)

(by (2.21)) (F.1)

=
∑
i′

D̂(g2)fi′Di′j(g1) (D̂ is linear operator) (F.2)

=
∑
i′

∑
i

fiDii′(g2)Di′j(g1) (by (2.21)) (F.3)

=
∑
i

fi

(∑
i′

Dii′(g2)Di′j(g1)
)

︸ ︷︷ ︸
=D(g2)·D(g1)

(reorder summation) (F.4)

=
∑
i

fiDij(g2g1) (F.5)

= D̂(g2g1)fj (by (F.1)) . (F.6)

Hence, the mapping from the group G to the group of rep matrices D(g) is a group homomorphism (2.1)
with respect to the standard matrix-matrix product:

D(g2g1) = D(g2) ·D(g1) . (F.7)

The coordinates c with ci ∈ C in the function space spanned by the fi are transformed by the matrices
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F Group Representation Theory

D(g) in the usual way, i. e., for f =
∑

i ci · fi we have

f ′ = D̂(g)f (F.8)

=
∑
j

cj · D̂(g)fj (by (2.21)) (F.9)

=
∑
i

fi

(∑
j

Dij(g)cj
)

︸ ︷︷ ︸
=:c′i

(reorder summation) . (F.10)

which is compactly written as a matrix vector product

c′ = D(g) · c . (F.11)

F.2 Cell Diagram Notation

Elements Meaning

a center of rotation of order two (2π
2 ≡ 180◦)

a center of rotation of order three (2π
3 ≡ 120◦)

a center of rotation of order four (2π
4 ≡ 90◦)

a center of rotation of order six (2π
6 ≡ 60◦)

an axis of re�ection
an axis of glide re�ection

Table F.1: Symmetry items in cell structure diagrams.

F.3 Square Lattice: P4mm (C4v)

This is the plane group P4mm (99, international notation) which consists of translations along the
primitive lattice translations (B.5) and the orthogonal transforms of the point group C4v (Schön�ies
notation, see Fig. F.1b).
Unfortunately, the physicist's choice of coordinates (B.5) (denoted here by primitive lattice translations

a1,a2, PLT) and the crystallographer's choice (used in the International Tables of Crystallography, ITA)

a = −aŷ , b = ax̂ , (F.12)

does not coincide. The methods for transforming coordinates will be explained here. We need transfor-
mation matrices

MITA←PLT :=

(
0 −1
1 0

)
, MPLT←ITA := M−1

ITA←PLT =

(
0 1
−1 0

)
, (F.13)
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F.3 Square Lattice: P4mm (C4v)

From the Wycko� positions (x, y)ITA in ITA coordinates, we can compute the corresponding coordinates
in PLT as

MPLT←ITA ·

(
x
y

)
ITA

=

(
−y
x

)
PLT

, (F.14)

meaning that xa + yb = −ya1 + xa2. The notation for the symmetry operations from PLT to ITA is
converted, e. g. via

MITA←PLT ·R(σx) ·MPLT←ITA ·

(
x
y

)
ITA

=

(
x
−y

)
ITA

≡ x,−y . (F.15)

Note that any equivalent Wycko� position (shifted by any lattice vector) has the same site symmetry
group and, therefore, the same irreps. These matrices have been used to construct Tab. F.2 and Tab. F.4.
The reciprocal lattice vectors bi in PLT and a∗,b∗ in ITA coordinates are de�ned via

bi ∝ aj × ak , (F.16a)

a∗ = b× c , (F.16b)

b∗ = c× a , (F.16c)

where we set implicitly c = a3 = aẑ. Since the directions of the primitive lattice translations in direct
and reciprocal coincide for both the PLT and ITA bases, one can use the same conversion matrices
(F.13) also for conversion of reciprocal lattice coordinates. This has been used to construct Tab. F.6.

(a) Crystallographic cell diagram (b) Point transformations of C4v

Figure F.1: (a) Crystallographic cell diagram of the P4mm space group with ITA coordinate vectors.
The hole is located in the corners of the cell. (b) Point transforms of C4v with origin in the center
of a hole with PLT coordinates.
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F Group Representation Theory

Class Symbol ITA Meaning

E E x, y Identity
C2 C2 −x,−y Rotation of 2π

2 ≡ 180◦

2C4 C4 −y, x Rotation of 2π
4 ≡ 90◦

2C4 C−4 y,−x Rotation of 2π
−4 ≡ −90◦

2σv σx x,−y Re�ection with normal ŷ
2σv σy −x, y Re�ection with normal x̂
2σd σd −y,−x Re�ection with normal 1√

2
(x̂ + ŷ)

2σd σd′ y, x Re�ection with normal 1√
2
(−x̂ + ŷ)

σ σ One of σx, σy, σd, σd′ .
Depends on the particular realization.

Table F.2: List of symmetry operations of the point group C4v. The number before the class denotes
the number of representatives in that class. ITA means notation by [85].

C4v E C2 2C4 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 -1 -1
B1 1 1 -1 1 -1
B2 1 1 -1 -1 1
E 2 -2 0 0 0

C2v E C2 σy σx

A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

C1h E σ

A 1 1
B 1 -1

C1 E

A 1

Table F.3: Character tables for the conjugacy classes and irreducible representations of the point
group C4v and its subgroups. The elements are de�ned by Tab. F.2 and Fig. F.1b. The geometric
transform associated with σ depends on the actual realization of the abstract group C1h.

The interpretation of the SITESYM output requires great care, since the notation is not identical to
the one used in this work. First of all, mx = σy and my = σx for the C2v (2mm) site symmetry character
table for Wycko� position c1 of Tab. F.4.1 This leads to B2 (SITESYM) being B1 (this work) and vice
versa for the site symmetry irreps of C2v. The space group irreps for SITESYM are induced by the little
co-group irreps of the respective k-point coordinates (Tab. F.6) used. They are labeled by SITESYM
with an arbitrary chosen label A as ∗A1, ∗A2, etc., where the corresponding irrep in our notation can
be deciphered with the use of the symmetry operations Tab. F.2 and the characters Tab. F.3. The
ambiguous relations have been compiled in Tab. F.5, all others are straightforward. With the help of
this �dictionary�, Tab. 2.1 was assembled.

1This is because Schön�ies and Hermann-Maugin notation are mixed here and de�ned di�erently.
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F.3 Square Lattice: P4mm (C4v)

Figure F.2: The orthogonal transformation matrices for C4v in the basis of the primitive lattice
translations ai.

(a) Wigner-Seitz cell (b) Wycko� positions

Figure F.3: The Wigner-Seitz cell of the square lattice and its Wycko� positions. The labeling with
roman letters is standardized, the numbering is arbitrary. A particular position can be denoted by
letter and number, e. g. d2 for the upper left Wycko� position d. Note that the Wycko� positions
are actually points as well as whole lines with the same site symmetry group. Site symmetry groups
of the same roman letter but di�erent number are isomorphic by (2.44).
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F Group Representation Theory

(a) Brillouin Zone (b) Stars of k

Figure F.4: The BZ and irreducible wedge of the Brillouin zone (IBZ) together with the possible
stars of vectors k ∈ IBZ. The numbers denote di�erent wave vectors in the stars. Equivalent
positions di�er by a reciprocal lattice translation and have not been plotted.
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F.3 Square Lattice: P4mm (C4v)

Wycko� letter label ITA ITA PLT label PLT G0q
∼=

1a a1 0, 0 0, 0 a1 ← C4v

1b b1 1/2, 1/2 1/2, 1/2 b1 ← C4v

2c c1 1/2, 0 0, 1/2 c1 ← C2v

c2 0, 1/2 −1/2, 0 c2

4d d1 x, x x,−x d4

d2 −x,−x −x, x d2

d3 −x, x x, x d1 ← C1h, σ = σd
d4 x,−x −x,−x d3

4e e1 x, 0 0,−x e3

e2 −x, 0 0, x e1 ← C1h, σ = σx
e3 0, x x, 0 e4

e4 0,−x −x, 0 e2

4f f1 x, 1/2 −1/2,−x f4

f2 −x, 1/2 −1/2, x f3

f3 1/2, x x, 1/2 f1 ← C1h, σ = σy
f4 1/2,−x −x, 1/2 f2

8g g x, y �

Table F.4: Wycko� positions in ITA and PLT coordinates and labeling. The arrows ← denote
the particular positions whose site symmetry group irreps were used to label the Wannier function
symmetries of Figs. F.8 and F.9.

this work (C2v, Tab. F.3) A1 A2 B2 B1

SITESYM (2mm) A1 A2 B1 B2

(a) Notation for C2v (2mm) irreps

little co-group irrep (C4v, Tab. F.3) A1 B1 B2 A2 E
induces in SITESYM ∗GM1 ∗GM2 ∗GM3 ∗GM4 ∗GM5

(b) Notation for Γ-point and M -point irreps of space group

little co-group irrep (C2v, Tab. F.3) A1 A2 B1 B2

induces in SITESYM ∗X1 ∗X2 ∗X3 ∗X4

(c) Notation for X-point irreps of space group

Table F.5: Relations between SITESYM notation and the notation used in this work. For expla-
nation, see text.
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F Group Representation Theory

Figure F.5: Nomenclature and numbering scheme for ITA (�rst) and PLT (second) coordinates.
Primed labels are the Wycko� positions of Fig. F.3b shifted by a lattice translation.
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F.3 Square Lattice: P4mm (C4v)

Letter ITA PLT

Γ 0, 0 0, 0
X −1/2, 0 0, 1/2
M −1/2, 1/2 1/2, 1/2

kHS G0kHS

Γ, M C4v

X C2v, σx = σx, σy = σy
∆ C1h, σ = σx
Y C1h, σ = σy
Σ C1h, σ = σd

Table F.6: High symmetry points in the BZ in PLT and ITA reciprocal lattice vectors. The little
co-groups G0kHS for the particular choices of high symmetry point coordinates are given as well.
Equations denote the connection between classes of Tab. F.3 (left hand sides) and transforms of
Fig. F.1 (right hand sides) that have been used to construct Tab. 2.1. Example: At Σ, class σ of
C1h has the meaning σd to identify the irreps of the Bloch modes (cf. Figs. F.6 and F.7).
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F Group Representation Theory

(a) Band 1

(b) Band 2

Figure F.6: Plots and little co-group irreps D(kα) of Bloch modes (real parts) in the square lattice
model system.
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F.3 Square Lattice: P4mm (C4v)

(a) Band 3

(b) Band 4 (starting with the 4th frequency ordered Bloch mode at Γ)

Figure F.7: Plots and little co-group irreps D(kα) of Bloch modes (real parts) in the square lattice
model system. Note that starting in Γ and following the Bloch modes continuously along ΓX in band
4 may not lead to the same Bloch modes at the Γ-point.
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F.3.1 Possible Site Symmetry Group Representations D(qβ)

(a) Wycko� site a (b) Wycko� site b

(c) Wycko� site c

Figure F.8: Examples for the possible Wannier function symmetries based on the irreps D(qβ) of
the site symmetry groups Gq for the Wycko� sets in one WSC from Fig. F.3b. The degenerate E
reps have been plotted in two orientations for illustrative reasons, i. e., they show two equivalent reps.
Basis functions belonging to the same degenerate rep are framed by a dashed box. The centers of the
functions have been chosen to coincide with the convention from Fig. F.3b. The functions at position
q1 have been used to label the irrep and induce the other functions of the basis set. As an example if
c′2 had been used instead of c1 to label the irreps, the labels B1(c) and B2(c) were interchanged. To
avoid this confusion, the extensive de�nitions of this appendix were necessary.
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F.3 Square Lattice: P4mm (C4v)

(a) Wycko� site d

(b) Wycko� site e (c) Wycko� site f

(d) Wycko� site g

Figure F.9: See caption of Fig. F.8 for explanation. For Wycko� site d, two separate sets of basis
functions have been shown. They are not related by a unitary transform.
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F.4 Triangular Lattice: P6mm (C6v)

This is the space group P6mm (183, international notation) which consists of translations along the
primitive lattice translations (B.6) and the orthogonal transforms of the point group C6v (see Fig. F.10b).
Analogously to Sec. F.3, we need transformation matrices between the PLT coordinates ai (B.6) and

the ITA coordinates

a = −1
2
x̂−
√

3
2

ŷ , b = ax̂ , (F.17)

By (F.16), this leads to the reciprocal primitive lattice translations in ITA coordinates,

a∗ = −ŷ , b∗ =
√

3
2

x̂− 1
2
ŷ , (F.18)

The direct space coordinates are transformed via

MITA←PLT :=

(
0 −1
1 −1

)
, MPLT←ITA := M−1

ITA←PLT =

(
−1 1
−1 0

)
, (F.19)

and the reciprocal space coordinates are transformed via

MITA←PLT :=

(
−1 −1
1 0

)
, MPLT←ITA := M−1

ITA←PLT =

(
0 1
−1 −1

)
. (F.20)

These matrices have been used to construct Tabs. F.7, F.10 and F.11.

Class Symbol ITA Meaning

E E x, y Identity
C2 C2 −x,−y Rotation of 2π

2 ≡ 180◦

2C3 C3 −y, x− y Rotation of 2π
3 ≡ 120◦

2C3 C−3 −x+ y,−x Rotation of 2π
−3 ≡ −120◦

2C6 C6 x− y, x Rotation of 2π
6 ≡ 60◦

2C6 C−6 y,−x+ y Rotation of 2π
−6 ≡ −60◦

3σx σx x, x− y Re�ection with normal a1

3σx σx′ −y,−x Re�ection with normal a2

3σx σx′′ −x+ y, y Re�ection with normal a1 + a2

3σy σy −x,−x+ y Re�ection with normal a1 + 2a2

3σy σy′ y, x Re�ection with normal 2a1 + a2

3σy σy′′ x− y,−y Re�ection with normal −a1 + a2

σ One of σx, σx′ , σx′′ , σy, σy′ , σy′′ .
Depends on the particular realization.

Table F.7: List of symmetry operations of the group C6v and its subgroups. The number before the
class denotes the number of representatives in that class.

The interpretation of the SITESYM output has to be interpreted correctly as in the square lattice
case. The di�erences in notation between the SITESYM output and the notation used in this work is
listed in Tab. F.9.
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F.4 Triangular Lattice: P6mm (C6v)

(a) Crystallographic cell diagram (b) Point transformations of C6v

Figure F.10: (a) Crystallographic cell diagram of the P6mm space group with ITA coordinate
vectors. The hole is located in the corners of the cell. (b) Point transforms of C6v with origin in the
center of a hole with PLT coordinates.

C6v E 2C6 2C3 C2 3σy 3σx

A1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1
B1 1 -1 1 -1 1 -1
B2 1 -1 1 -1 -1 1
E1 2 1 -1 -2 0 0
E2 2 -1 -1 2 0 0

C2v E C2 σy σx

A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

C3v E 2C3 3σ

A1 1 1 1
A2 1 1 -1
E 2 -1 0

C1h E σ

A 1 1
B 1 -1

C1 E

A 1

Table F.8: Character tables for the conjugacy classes and irreducible representations of the point
group C6v and its subgroups. The elements are de�ned by Tab. F.2 and Fig. F.1b. The geometric
transform associated with σ depends on the actual realization of the abstract group C1h.
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Figure F.11: The orthogonal transformation matrices for C6v in the basis of the primitive lattice
translations ai.

234



F.4 Triangular Lattice: P6mm (C6v)

(a) Wigner-Seitz cell (b) Wycko� positions

Figure F.12: The Wigner-Seitz cell of the triangular lattice and its Wycko� positions. See also
caption of Fig. F.3.

this work (C2v, Tab. F.8) A1 A2 B2 B1

SITESYM (2mm) A1 A2 B1 B2

(a) Notation for C2v (2mm) irreps

little co-group irrep (C6v, Tab. F.3) A1 A2 B2 B1 E2 E1

induces in SITESYM ∗GM1 ∗GM2 ∗GM3 ∗GM4 ∗GM5 ∗GM6

(b) Notation for Γ-point irreps of space group

little co-group irrep (C2v, Tab. F.8) A1 A2 B1 B2

induces in SITESYM ∗M1 ∗M2 ∗M3 ∗M4

(c) Notation for M -point irreps of space group

little co-group irrep (C3v, Tab. F.8) A1 A2 E
induces in SITESYM ∗K1 ∗K2 ∗K3

(d) Notation for K-point irreps of space group

Table F.9: Relations between SITESYM notation and the notation used in this work. For expla-
nation, see text.
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(a) Brillouin Zone (b) Stars of k

Figure F.13: The BZ and irreducible wedge of the Brillouin zone (IBZ) together with the possible
stars of vectors k ∈ IBZ. The numbers denote di�erent wave vectors in the stars. Equivalent
positions di�er by a reciprocal lattice translation and have not been plotted.
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F.4 Triangular Lattice: P6mm (C6v)

Wycko� letter label ITA ITA PLT label PLT G0q
∼=

1a a1 0, 0 0, 0 a1 ← C6v

2b b1 1/3, 2/3 1/3,−1/3 b1 ← C3v, 3σ = 3σx
b2 2/3, 1/3 −1/3,−2/3 b2

3c c1 1/2, 0 −1/2,−1/2 c1

c2 0, 1/2 1/2, 0 c3 ← C2v

c3 1/2, 1/2 0,−1/2 c2

6d d1 x, 0 −x,−x d4

d2 0, x x, 0 d6 ← C1h, σ = σy
d3 −x,−x 0, x d2

d4 −x, 0 x, x d1

d5 0,−x −x, 0 d3

d6 x, x 0,−x d5

6e e1 x,−x −2x,−x e3

e2 x, 2x x,−x e5

e3 −2x,−x x, 2x e1 ← C1h, σ = σx
e4 −x, x 2x, x e6

e5 −x,−2x −x, x e2

e6 2x, x −x,−2x e4

12f f x, y �

Table F.10: Wycko� positions in ITA and PLT coordinates and labeling. The arrows ← denote
the particular positions whose site symmetry group irreps were used to label the Wannier function
symmetries of Figs. F.15, F.16, and F.17.

Letter ITA PLT

Γ 0, 0 0, 0
M −1/2, 0 0, 1/2
K −2/3, 1/3 1/3, 1/3

kHS G0kHS

Γ C6v

M C2v, σx = σx, σy = σy
K C3v, 3σ = 3σy
Σ C1h, σ = σx
T C1h, σ = σy
Λ C1h, σ = σy′′

Table F.11: High symmetry points in the BZ in PLT and ITA reciprocal lattice vectors. The little
co-groups G0kHS for the particular choices of high symmetry point coordinates are given as well. See
also caption of Tab. F.11.
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F Group Representation Theory

Figure F.14: Nomenclature and numbering scheme for ITA (�rst) and PLT (second) coordinates.
Primed labels are the Wycko� positions of Fig. F.12b shifted by a lattice translation.
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F.4 Triangular Lattice: P6mm (C6v)

F.4.1 Possible Site Symmetry Group Representations D(qβ)

(a) Wycko� site a

(b) Wycko� site b

Figure F.15: Examples for the possible Wannier function symmetries based on the irreps D(qβ) of
the site symmetry groups Gq for the Wycko� sets in one WSC from Fig. F.12b. The degenerate E
reps have been plotted in two (three) orientations for illustrative reasons, i. e., they show two (three)
equivalent reps. Basis functions belonging to the same degenerate rep are framed by a dashed box.
The centers of the functions have been chosen to coincide with the convention from Fig. F.3b.
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(a) Wycko� site c

(b) Wycko� site d

Figure F.16: See caption of Fig. F.15.
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F.4 Triangular Lattice: P6mm (C6v)

(a) Wycko� site e

(b) Wycko� site e (alternative irreps)

Figure F.17: Here, two di�erent sets of basis functions for the same representations are shown.
See also caption of Fig. F.15.
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(a) Wycko� site f

Figure F.18: See caption of Fig. F.15.
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List of Acronyms

ABF auxiliary basis function, 143, 149, 155, 159�161, 163, 164, 169, 177, 179, 211

BZ Brillouin zone, 5, 6, 20, 37, 42�44, 50, 52, 54, 55, 58, 64, 70, 181, 182, 191, 196, 199, 221, 222, 232

CG conjugate gradient, 53, 66

CROW coupled-resonator optical wave guide, 115

FBF Fourier-Bessel function, 138, 139, 145�147, 149, 152, 154, 155, 159, 161, 167�169, 177, 205

FDS �nite di�erence stencil, 207

HCS Ho-Chan-Soukoulis, 207

IBZ irreducible wedge of the Brillouin zone, 5, 37, 93, 221, 232

IWF inverse system Wannier function, 139�141, 143, 148, 152, 154, 167, 177

LC liquid crystal, 10, 11, 20

MP Monkhorst-Pack, 52, 54, 58, 65, 69, 82�84, 114, 121�123, 127, 129, 196

MPB MIT photonic bands, xii, 16, 87, 123, 131, 133, 136, 143, 144, 147, 154, 155, 159, 163, 164, 168,
177, 195, 199, 201�204, 206, 207

MV Marzari-Vanderbilt, 82�84, 86, 87, 94, 129, 178

1D one dimensional, 21

PBG photonic band gap, vii, viii

PC photonic crystal, vii�xi, 4, 5, 7�9, 11, 13�17, 21, 25, 28, 33, 36, 41, 44, 49, 84, 93�95, 101, 108, 111,
112, 114�116, 118, 119, 121, 122, 127, 129, 131�133, 136, 138, 139, 141, 145, 152, 161, 177�179,
181, 182

PLT primitive lattice translation, 44, 195

PWE plane wave expansion, 207

SDM supercell defect mode, 152, 154, 167, 177

SI International System, 1, 7

SMV Souza-Marzari-Vanderbilt, 57, 74, 86, 95, 129, 130, 143, 161, 178

SPS sub-pixel smoothing, 106, 122, 123, 146, 195, 199, 201, 203, 204, 207
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List of Acronyms

TE transverse electric, viii, x, xi, 9, 11, 13, 14, 16, 17, 25, 50, 58, 69, 132, 133, 136, 138, 159, 177, 179,
207

3D three dimensional, 21, 22, 44, 114, 138, 139, 141, 152, 161

TM transverse magnetic, viii, x, xi, 9, 13, 25, 132, 133, 159, 177, 179, 207

2D two dimensional, 5, 7�9, 13�15, 21, 22, 93, 111, 114, 115, 138, 139, 159, 161

WF Wannier function, ix�xii, 20�22, 36, 40�43, 47�50, 52�54, 56�58, 63, 64, 66�70, 73, 74, 79, 80,
82�84, 86, 87, 91�99, 101, 103, 108, 110�115, 117, 119, 121�123, 127, 129�133, 136, 138�149, 154,
155, 159�161, 163, 165�169, 173, 174, 177�179, 182, 183, 199, 202, 205, 207, 211, 214

WSC Wigner-Seitz cell, 5, 14, 21, 36, 44, 54, 58, 66, 73, 74, 91�93, 191, 230, 239
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