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Chapter 1Introdu
tion

Joseph N. Niép
e, Point de vue duGras (1826)

For sure, Joseph Ni
éphore Niép
e did not thinkabout nano-s
ale physi
s when he made the �rstpermanent photograph of nature with a 
ameraobs
ura in 1826. A layer of bitumen on a metalplate was exposed to light for several hours,hardening in the illuminated regions. When theplate was washed with lavender oil, only thehardened image area remained. Nevertheless,this te
hnique resembles � at least in its basi
ideas � modern litographi
 methods that are veryimportant for today's mass produ
tion of mi-
ro
hips. In 1971 the Intel Corporation releasedthe �rst 
ommer
ially available mi
ropro
essor,the Intel 4004, whi
h integrates about 2300 transistors on a die with stru
tures of asize of ∼ 10µm. Forty years later, it is roughly 106 times more transistors, while thewidth of stru
tures is redu
ed to∼ 40nm. The lower limit to this present evolution ison the atomi
 s
ale. Re
ently, in s
ienti�
 setups, experiments with single mole
ules
oupled to ele
trodes have been 
arried out where the reversible rearrangement ofthe mole
ular 
on�guration has been demonstrated as a future possibility to storeinformation [1�3℄.Besides the 
ommer
ial motivation of further miniaturisation there also exists avital interest in the investigation of nanostru
tures in basi
 resear
h. On the s
aleof only a few atoms, quantum me
hani
al e�e
ts strongly dominate the behaviourof a physi
al system. Furthermore, s
reening e�e
ts that allow for an e�e
tive singleparti
le des
ription in bulk materials are suppressed, whi
h may lead to strong
orrelation e�e
ts. If the system additionally is driven out of equilibrium, as forexample by adding gradients of temperature or of the ele
tro-
hemi
al potential,the theoreti
al des
ription and the predi
tion of physi
ally relevant quantities is ademanding task.In this work we treat ele
troni
 properties of nanostru
tures 
oupled to ele
trodes.The list of realisations of this kind of physi
al system in
ludes, for example, quantumdots in a two-dimensional ele
tron gas [4�9℄, 
arbon nanotubes [10, 11℄, and theexample given above, where the stru
ture 
onsists of a single mole
ule [1, 2, 12�15℄.1



Chapter 1 Introdu
tionThe experimentalist has a

ess to various 
ontrollable parameters, like the ele
troni
potential in a gate ele
trode [11, 16, 17℄ or the minimal distan
e in a me
hani
ally
ontrollable break jun
tion [15, 18℄.The quantity of 
entral interest in the present work is the response of the systemto a bias voltage whi
h manifests in a 
urrent of 
harge 
arriers. Landauer [19, 20℄and Büttiker [21℄ developed a formalism that allows the 
omputation of the 
urrentthrough a �nite region 
onne
ted to reservoirs, based on transmission 
oe�
ients,as well as the distribution fun
tions of the reservoirs. However, this approa
h doesnot in
lude intera
tion whi
h limits its appli
ability in the given 
ontext � in smallor low-dimensional stru
tures, s
reening-e�e
ts are suppressed, therefore ele
tron-ele
tron intera
tions 
an no longer be negle
ted. For strongly intera
ting nanostru
-tures, several methods to 
al
ulate the linear response 
ondu
tan
e at vanishing biasvoltage have been developed re
ently. One 
lass of approa
hes 
onsists in extra
tingthe 
ondu
tan
e from an equilibrium quantity that is easier to 
al
ulate, as for exam-ple from a persistent 
urrent 
al
ulation [22�26℄, from phase shifts in NRG 
al
ula-tions [27℄, or from approximations based on the tunneling density of states [28℄. Al-ternatively one 
an evaluate the Kubo formula within Monte-Carlo simulations [29℄,or from density matrix renormalisation group (DMRG) 
al
ulations [30�32℄. Linear
ondu
tan
e has also been investigated using Fun
tional Renormalization Groupstudies [33℄, or by diagonalizing small 
lusters and atta
hing them to leads via aDyson equation [34℄.For the 
omputation of �nite bias 
ondu
tan
e, Meir and Wingreen found a formalsolution using Keldysh Green's fun
tions [35℄. However, the evaluation of theseformulas for intera
ting systems is generally based on approximations su
h as realtime Keldysh RG [36℄. Within the framework of time-dependent density fun
tionaltheory (td-DFT) and Keldysh Green's fun
tions Stefanu

i and Almbladh [37, 38℄dis
uss the extra
tion of 
ondu
tion from real time simulations. The restri
tionto �nite sized systems for 
al
ulating transport within td-DFT was also dis
ussedby Di Ventra and Todorov [39℄. In Ref. [40℄, Bushong, Sai, and Di Ventra dis
ussthe extra
tion of a �nite bias 
urrent in the framework of td-DFT. Weiss, E
kel,Thorwart and Egger [41℄ dis
uss an iterative method based on the summation ofreal-time path integrals (ISPI) in order to address quantum transport problems outof equilibrium. Han and Heary [42℄ dis
uss strongly 
orrelated transport in theKondo regime using imaginary time Quantum Monte Carlo te
hniques.The extra
tion of �nite bias 
ondu
tan
e of nanostru
tures based on real-timesimulations has also been dis
ussed for various situations [43�60℄ in the frameworkof DMRG [61�66℄. This 
on
ept provides a uni�ed des
ription of strong and weakintera
tions and works in the linear and �nite bias regime, as long as �nite size e�e
tsare treated properly. In this approa
h, the many-parti
le wave fun
tion is dire
tly
omputed, whi
h allows the in
orporation of even exoti
 ex
itations. The methodwas su

essfully applied to obtain results for the �nite bias 
ondu
tan
e in theintera
ting resonant level model (IRLM), showing perfe
t agreement with analyti
almethods based on the Bethe ansatz [56℄. I�V-
hara
teristi
s have been obtainedfor the single-impurity Anderson model using the adaptive td-DMRG-method [57℄.2



1.1 Stru
ture of this workFinite size e�e
ts and espe
ially the impa
t of the possible 
ombinations of tightbinding leads with an even or odd number of sites 
oupled to the stru
ture have beenstudied in detail in [58℄ for a single impurity and for three quantum dots. Re
ently[67℄ we showed that �nite size e�e
ts 
an be dire
tly related to the distribution ofthe single-parti
le energy-levels in non-intera
ting systems.The great su

ess in obtaining �nite bias 
ondu
tan
e of intera
ting nanostru
-tures that has been a
hieved based on time-evolution simulations gave reason to raisethe bar. The study of 
urrent �u
tuations in nanodevi
es is 
onne
ted with impor-tant physi
al questions, in
luding the nature of fundamental ex
itations in stronglyintera
ting ele
troni
 systems [68�71℄, the possibility of �u
tuation theorems out ofequilibrium [72℄, and the time evolution of many-body entanglement [73, 74℄. Ex-perimental progress in this area has been swift � se
ond and third 
umulants havebeen measured in several systems [75, 76℄, shot noise of single hydrogen mole
uleshas been measured [14℄, and even the full 
ounting statisti
s has been obtained insemi-
ondu
tor quantum dots [8,9℄. On the theory side, the free 
ase has given riseto a lot of analyti
al studies [73, 74, 77, 78℄, but progress on the most interestingsituations � far from equilibrium and with strong intera
tions � has been di�
ult(see [79℄ for a review). Over the years, extensions of the Bethe ansatz to study trans-port properties have been proposed [80�83℄, whi
h might open the road to importantprogress.One of the major goals of this work is to investigate a numeri
al method to 
om-pute zero temperature noise (shot noise) of the 
urrent through a strongly intera
tingregion. In order to obtain the time-dependent 
urrent 
orrelations we therefore ex-tend the time evolution s
heme based on the DMRG that was su

essfully used toobtain the I-V-
hara
teristi
s for the IRLM before [56℄. The main problem turns outto be the �nite size e�e
ts of the results of the non-equilibrium 
orrelation fun
tionsfor �nite systems, whi
h in part 
an be 
ontrolled by analyti
al reasoning, and inpart 
an be removed by linear extrapolation to the thermodynami
 limit [84℄. Weprovide numeri
al results for the shot noise in the self-dual IRLM, where we �ndex
ellent agreement with analyti
al results based on the Bethe ansatz [85℄.1.1 Stru
ture of this workThis work is organized as follows: The �rst three 
hapters are intended to givean introdu
tion to the �eld of resear
h, while the main results are presented in
hapters 4 and 5. Additional information, as for example analyti
 results providedby 
ollaborators, is given in the appendix.In 
hapter 2, the introdu
tory part of this work is 
omplemented quantitatively bydis
ussing simple models that are appropriate to des
ribe the physi
s of the afore-mentioned systems. The fo
us of 
hapter 3 is to give an overview of the numeri
almethods that build the foundation for the 
omputation of the main results, wherewe also hint at possible appli
ations that have not been 
arried out for this work.3



Chapter 1 Introdu
tionWe then investigate spe
tral properties of an intera
ting nanostru
ture in 
hapter 4before dis
ussing 
ondu
tan
e and shot noise � the latter being the 
entral result ofthis work � for a non-equilibrium transport setup in 
hapter 5. A spe
ial emphasisthroughout 
hapters 4 and 5 is set on removing e�e
ts from the �nite size of thesimulated systems, yielding results for the thermodynami
 limit. Please note, thatthe results on the spe
tral properties are still work in progress. The main fo
ushere is to demonstrate an approa
h based on the expansion of the impurity Green'sfun
tion in orthogonal polynomials.1.2 List of publi
ationsThe 
ontent of 
hapter 5 has been published inA. Brans
hädel, T. Ulbri
ht, and P. S
hmitte
kert, Condu
tan
e of CorrelatedNanostru
tures, in: High Performan
e Computing in S
ien
e and Engineering'09, edited by W.E. Nagel, D. Kröner, and M.M. Res
h, (Springer, Berlin,2009), pp. 123-135 [53℄A. Brans
hädel and P. S
hmitte
kert, Condu
tan
e and Noise Correlations ofCorrelated Nanostru
tures, in: High Performan
e Computing in S
ien
e andEngineering '10, edited by W.E. Nagel, D. Kröner, and M.M. Res
h, (Springer,Berlin, 2010), pp. 169-179 [54℄A. Brans
hädel, E. Boulat, H. Saleur, and P. S
hmitte
kert, Numeri
al eval-uation of shot noise using real-time simulations, Phys. Rev. B 82, 205414(2010) [84℄A. Brans
hädel, E. Boulat, H. Saleur, and P. S
hmitte
kert, Shot Noise in theSelf-Dual Intera
ting Resonant Level Model, Phys. Rev. Lett. 105, 146805(2010) [85℄A. Brans
hädel, G. S
hneider, and P. S
hmitte
kert, Condu
tan
e of inho-mogenous systems: Real-time dynami
s, Ann. Phys. (Berlin) 522, 657 (2010)[67℄There is a publi
ation in preparation for the 
ontent of 
hapter 4.Unrelated work:A. Brans
hädel and T. Gasenzer, 2PI nonequilibrium versus transport equa-tions for an ultra
old Bose gas, J. Phys. B: At. Mol. Opt. Phys. 41, 135302(2008)
4



Chapter 2Physi
al Models

Figure 2.1 Sket
h of the sys-tem we want to 
onsider. An in-tera
ting nanostru
ture is 
ou-pled to two leads.

The system we want to des
ribe 
onsists of a nanos-tru
ture that is atta
hed to leads, Fig. 2.1. The leadsmay 
onsist of a two-dimensional ele
tron gas, or ofmetalli
 wires, for example. The assumption of theleads being su�
iently big allows the representationof the ele
trons as free parti
les, sin
e the ele
tron-ele
tron intera
tion 
an be assumed to be s
reened.On the other hand, due to the small size of the nanos-tru
ture, one there 
an not bene�t from s
reeninge�e
ts that o

ur in the leads. Instead, ele
tron-ele
tron intera
tion has to be taken into a

ount.For the numeri
al treatment of the physi
al ques-tions we are interested in, the huge number of de-grees of freedom this 
omposite system of stru
tureand leads 
onsists of enfor
es us to 
hoose the modelfor des
ribing the system 
arefully. For a su�
ientlysmall stru
ture only a single transport 
hannel may 
ouple to the leads, whi
hrenders the des
ription e�e
tively one-dimensional. Also, the numeri
al methodwe use for the 
omputations, based on the density matrix renormalisation group(DMRG) as dis
ussed in 
hapter 3, works best for one-dimensional models. Wetherefore represent the leads as 1D tight-binding 
hains. The main results of thiswork, and espe
ially the results for the shot noise, will be derived for a very simplemodel, the intera
ting resonant level model (IRLM) as de�ned below. There areessentially two reasons for investigating quantum �u
tuations in this model: �rst,for the 
urrent-voltage 
hara
teristi
s, there is a negative di�erential 
ondu
tan
e(NDC) with a power-law de
ay of the 
urrent in the high-voltage limit, as soon asele
tron-ele
tron intera
tion is taken into a

ount. The presen
e of this unexpe
tedbehaviour motivates us to take a 
loser look at this system. Se
ond, for the IRLM,there are exa
t analyti
al solutions to the problem, if the parameters are 
hosen ap-propriately [56, 85℄. This allows us to 
he
k the reliability of the numeri
al methodwe apply here.Throughout the text we represent an ele
troni
 many-parti
le system in se
ondquantisation language. For x denoting a set of degrees of freedom (as, for exam-5



Chapter 2 Physi
al Modelsple, band index, spin, momentum, et
.), we represent 
reation- and annihilation-operators as
ĉ†x, ĉx, (2.1)whi
h obey the usual fermioni
 anti-
ommutator relations

{ĉx, ĉ†y} = δx,y, {ĉx, ĉy} = {ĉ†x, ĉ†y} = 0. (2.2)2.1 Des
ription of the systemIntera
ting Nanostru
ture As pointed out in the introdu
tory 
hapter, a nanos-tru
ture 
an be many di�erent things, as for example a single mole
ule of varying
omplexity, or an array of quantum dots, de�ned by gate ele
trodes on top of aheterostru
ture. The most general Hamiltonian that in
ludes tunneling of ele
tronsbetween di�erent orbitals (labelled by ν, µ, κ and ρ), as well as ele
tron-ele
tronintera
tion, reads
ĤS =

∑

νµ,σ

Hνµĉ
†
νσ ĉµσ +

∑

νµκρ,σσ′

Vνµκρĉ
†
νσ ĉ

†
µσ′ ĉκσ′ ĉρσ, (2.3)

H∗
νµ = Hµν , V ∗

νµκρ = Vρκµν . (2.4)For the numeri
al studies presented in the following 
hapters we make some simpli-fying assumptions. In fa
t, we aim at redu
ing the 
omplexity of the model in orderto make a treatment based on the available methods possible. On the other hand,we keep a 
ertain level of 
omplexity in order to preserve interesting e�e
ts, as forexample, a negative di�erential 
ondu
tan
e. The basi
 idea behind this approa
his to �nd a minimalisti
 model that still in
ludes the relevant physi
al properties,and then to treat this model rigorously.The system we want to 
onsider is a linear 
hain of single orbitals, labelled x =
1 . . .MS, ea
h 
onne
ted to its next neighbour via a tunneling matrix element JS.The energy of an ele
tron o

upying a 
ertain orbital is given by Vg, whi
h we 
alla lo
al gate potential, sin
e in the 
ase of a quantum dot, the energy levels 
an beshifted by means of gate ele
trodes. Furthermore, we only 
onsider lo
al density-density intera
tion US, in
luding intera
tion of ele
trons o

upying neighbouringorbitals. The Hamiltonian then 
an be rewritten as

Ĥ t.b.
S = −

MS−1∑

σ,x=1

JS,x(ĉ
†
x,σĉx+1,σ + ĉ†x+1,σĉx,σ) +

MS∑

σ,x=1

Vg,xn̂xσ

+

MS∑

x=1

U0
S,xn̂x↑n̂x↓ +

MS−1∑

σσ′,x=1

U1
S,xn̂x,σn̂x+1,σ′. (2.5)This model is a tight-binding 
hain of �nite length, with MS latti
e sites, where theoperators

n̂xσ = ĉ†xσĉxσ (2.6)6



2.1 Des
ription of the system
ount the number of ele
trons with spin σ o

upying a latti
e site x. If we 
onsidera situation with x-independent parameters JS, Vg and US, and additionally negle
tthe next-neighbour intera
tion U1 ≡ 0, we arrive at the Hubbard model for a �nite
hain.Further simpli�
ation 
an be a
hieved by assuming polarisation of the system. Ifwe set the number of, say, spin ↓ parti
les to zero, we arrive at the tight binding
hain of spinless fermions
Ĥ t.b.

S,↑ = −
MS−1∑

x=1

JS,x(ĉ
†
xĉx+1 + ĉ†x+1ĉx) +

MS∑

x=1

Vg,xn̂x +

MS−1∑

x=1

US,xn̂xn̂x+1. (2.7)Here, the spin index σ has been omitted, together with the lo
al intera
tion 
ontri-bution U0
S n̂↑n̂↓, while we repla
e U1

S → US for the next-neighbour intera
tion.Leads For the des
ription of the leads we assume that the ele
tron-ele
tron in-tera
tion is 
ompletely s
reened. If the ele
troni
 dispersion relation of the bulkmaterial is known, the Hamiltonian for the ele
tron dynami
s in an isolated leadwith label α then reads
Ĥα =

∑

nk,σ

εαnkĉ
†
αnkσ ĉαnkσ. (2.8)Here, the band index is labelled n and the ele
tron spin is labelled σ ≡↑, ↓. Sin
e fortransport 
al
ulations at low temperature only the partially �lled bands 
ontributeto the ele
tron 
urrent, we omit the band index based on the assumption that thereis only a single band with partial �lling,

Ĥα =
∑

k,σ

εαkĉ
†
αkσ ĉαkσ. (2.9)Coupling of nanostru
ture to leads The setup we 
onsider here involves a stru
-ture whi
h is 
onne
ted to two leads, labelled α = L,R, for the �left� and the �right�lead. This stru
ture�lead 
oupling is assumed to be lo
al in spa
e, whi
h rendersthe availability of a real-spa
e representation of the lead Hamiltonian desirable. Avery simple model of a lead is a one-dimensional semi-in�nite tight-binding 
hain,de�ned by the Hamiltonian

Ĥ t.b.
α = −J

∞∑

σ,x=1

(ĉ†x,ασ ĉx+1,ασ + ĉ†x+1,ασĉx,ασ). (2.10)If we bring this Hamiltonian to diagonal form (2.9), we obtain a 
osine dispersionrelation
εk = −2J cos k, (2.11)with the band width 4J . Assuming that the 1D nanostru
ture, modeled by a Hamil-tonian of the form (2.5), is 
oupled to the end of the semi-in�nite 
hains L and R,7



Chapter 2 Physi
al Models
Figure 2.2 Intera
ting nanostru
ture 
oupled to two non-intera
ting semi-in�nite leads(�nite intera
tion UC with the �rst lead site allowed). The system is represented as alinear tight-binding 
hain.we introdu
e a 
oupling Hamiltonian

ĤC,L = − JC,L

∑

σ

(ĉ†1,σ ĉ1,Lσ + ĉ†1,Lσ ĉ1,σ) +
∑

σσ′

UC,Ln̂1,σn̂1,Lσ′ , (2.12)
ĤC,R = − JC,R

∑

σ

(ĉ†MS,σĉ1,Rσ + ĉ†1,Rσ ĉMS,σ) +
∑

σσ′

UC,Rn̂MS,σn̂1,Rσ′ , (2.13)in
luding an ele
tron-ele
tron intera
tion of the ele
trons on the �tip� of the leadsand on the �tip� of the stru
ture. Together with Eqns. (2.5,2.10), the overall setupnow 
an be des
ribed by the Hamiltonian
Ĥ t.b. = Ĥ t.b.

L + ĤC,L + Ĥ t.b.
S + ĤC,R + Ĥ t.b.

R , (2.14)sket
hed in Fig. 2.2.2.2 Intera
ting Resonant Level ModelA very minimalisti
 transport setup with a nanostru
ture 
oupled to two leads is astru
ture whi
h 
an be modelled by only one orbital (the dot). We arrive there byassumingMS = 1 in Eq. (2.5). Negle
ting the intera
tion on the 
onta
t link UC = 0results in a tight-binding version of the single impurity Anderson model [86℄.An even more inno
ent looking model 
an be obtained by again assuming thestrong polarisation limit where only one spin orientation persists. The lo
al ele
tron-ele
tron intera
tion on the dot then is suppressed, the only remaining intera
tione�e
t is the interation on the 
onta
t link UC. The result is 
alled the intera
tingresonant level model (IRLM). The term resonant refers to the fa
t that for a veryspe
i�
 energy range, ele
trons tunnel through the dot from one lead to the otherwith probability 1 (resonant tunneling), even for very weak 
oupling of the dot tothe leads, JC/J ≪ 1. Sin
e in this work we 
on
entrate on the investigation of the8



2.3 Representation on a 
omputerproperties of the IRLM, we on
e more write down the Hamiltonian for this system
Ĥ IRLM = −J

∞∑

x=1

(ĉ†xĉx+1 + ĉ†x+1ĉx + ĉ†−xĉ−x−1 + ĉ†−x−1ĉ−x) + Vgn̂0

− JC(ĉ†0ĉ1 + ĉ†1ĉ0 + ĉ†0ĉ−1 + ĉ†−1ĉ0) + UC

[

(n̂−1 −
1

2
)(n̂0 −

1

2
) + (n̂0 −

1

2
)(n̂1 −

1

2
)
]

.(2.15)Note, that we slightly 
hange the notation in order to simplify the expression; thedot level is now labelled 0, while we refer to the left (right) lead using negative(positive) indi
es. Furthermore, for the 
onsiderations in the following 
hapters, we
hoose the dot�lead 
oupling as well as the dot�lead intera
tion symmetri
. Shiftingthe density operator in the intera
tion 
ontribution by −1/2 
orresponds to addinga lo
al potential −UC(n̂−1 + n̂0 + n̂1)/2. In doing so we guarantee, that for vanishinggate voltage Vg ≡ 0, the probability for an in
oming parti
le from one lead (L), toget s
attered at the dot to the other lead (R), is maximal, if the energy of the parti
leis equivalent to the 
enter of the 
osine band. If we assume a �metalli
� situationwith a half �lled band, this 
orresponds to resonant tunneling at the Fermi level.2.3 Representation on a 
omputerIn the next 
hapter we will dis
uss methods to numeri
ally 
ompute various prop-erties of the models introdu
ed above, in
luding the impurity Green's fun
tion forthe ground state of the system, and the time evolution of a non-equilibrium initialstate. The methods in question altogether rely on the representation of the system'sHamiltonian on a �nite 
omputer, posing a very strong limitation on the models that
an be 
onsidered: the Hamiltonian of the system needs to be �nite. This meansin pra
ti
e that the real-spa
e representation of the semi-in�nite leads as des
ribedby Eq. (2.10) has to be 
ut to �nite length, resulting in �nite leads with Mα latti
esites. The most obvious e�e
t of the �nite size of the system is the dis
retisation ofthe energy spe
trum, limiting the energy resolution of the numeri
al 
omputations(
f. also Fig. A.1 in the appendix). Furthermore, the time evolution of a non-equilibrium state shows e�e
ts from re�e
tions at the boundaries. An ex
itationthat travels along the leads starting from the nanostru
ture will �nally be re�e
tedat its boundaries, whi
h will eventually disturb the simulation of the quantities ofinterest, su
h as for example, the 
urrent through the stru
ture.The dis
ussion of �nite size e�e
ts and their impa
t on numeri
al results will bedeferred to 
hapters 4 and 5 where we also present our main results. The purpose ofthe present se
tion is to rewrite the in�nite-latti
e models, trun
ating the leads to�nite length ML and MR, thus providing a uni�ed representation for the dis
ussionof the numeri
al results.A

ording to the sket
h in Fig. 2.3 we 
hange the labelling of the individual latti
e9



Chapter 2 Physi
al Modelssites again. Rewriting the Hamiltonian (2.5,2.10,2.12-2.14) then leads to
Ĥ�nite

S = −
ML+MS−2∑

σ,x=ML

JS,x(ĉ
†
x,σĉx+1,σ + ĉ†x+1,σĉx,σ) +

ML+MS−1∑

σ,x=ML

Vg,xn̂xσ

+

ML+MS−1∑

x=ML

U0
S,xn̂x↑n̂x↓ +

ML+MS−2∑

σσ′,x=ML

U1
S,xn̂x,σn̂x+1,σ′, (2.16)

Ĥ�nite
C,L = −JC,L

∑

σ

(ĉ†σ,ML−1ĉσ,ML
+ ĉ†σ,ML

ĉσ,ML−1) +
∑

σσ′

UC,Ln̂σ,ML−1n̂σ′,ML
, (2.17)

Ĥ�nite
C,R = −JC,R

∑

σ

(ĉ†σ,ML+MS−1ĉσ,ML+MS
+ H.
.) +

∑

σσ′

UC,Rn̂σ,ML+MS−1n̂σ′,ML+MS
,(2.18)

Ĥ�nite
L = −J

ML−2∑

σ,x=0

(ĉ†σxĉσx+1 + ĉ†σx+1ĉσx), Ĥ�nite
R = −J

M−2∑

x=ML+MS
σ

(ĉ†σxĉσx+1 + ĉ†σx+1ĉσx),(2.19)
Ĥ�nite = Ĥ�nite

L + Ĥ�nite
C,L + Ĥ�nite

S + Ĥ�nite
C,R + Ĥ�nite

R , (2.20)with ML (MR) latti
e sites on the left (right) lead and MS latti
e sites on thestru
ture. The system then 
onsists of M = ML + MS + MR latti
e sites in total.For the IRLM, the Hamiltonian (2.15) 
an be 
orrespondingly rewritten as
Ĥ�niteIRLM = −J

ML−2∑

x=0

(ĉ†xĉx+1 + ĉ†x+1ĉx) − J
M−2∑

x=ML+1

(ĉ†xĉx+1 + ĉ†x+1ĉx) + Vgn̂ML

− JC(ĉ†ML−1ĉML
+ ĉ†ML

ĉML−1 + ĉ†ML
ĉML+1 + ĉ†ML+1ĉML

)

+ UC

[

(n̂ML−1 −
1

2
)(n̂ML

− 1

2
) + (n̂ML

− 1

2
)(n̂ML+1 −

1

2
)
]

. (2.21)�Improved� boundary 
onditions The problems due to the �nite size of the sys-tem 
an be ta
kled in part by adopting an adjusted dis
retisation s
heme for theenergy levels in the leads. For example, for the 
omputation of the response of thesystem to a small bias voltage, it is ne
essary to obtain a high energy resolutionat the Fermi level. The setup we will 
onsider later on involves a system des
ribedby one of the �nite Hamiltonians introdu
ed in this se
tion with M latti
e sites intotal, and a �nite and 
onstant number N of ele
trons in this system. Sin
e we wantto 
onsider metalli
 leads, we will adjust N to arrive at (
lose to) half �lling1 of the1There are situations where the condition of half filling can not be met strictly. For example,
for a system of spinless electrons with an odd number M of lattice sites, N = M/2 is not an
integer number of electrons. For a discussion in more details see chapter 5.10



2.3 Representation on a 
omputer
Figure 2.3 Intera
ting nanostru
ture 
oupled to two non-intera
ting �nite leads. Thesystem is represented as a linear tight-binding 
hain with an overall number of M =
ML + MS + MR latti
e sites, with ML (MR) latti
e sites in the left (right) lead and MSlatti
e sites on the stru
ture.leads for the system in its ground state. This means that the Fermi level is at the
enter of the 
osine band (2.11),

εF = 0, (2.22)but unfortunately, this is exa
tly where the energy resolution is lowest. The levelspa
ing for the single-parti
le energy levels of a �nite, isolated tight binding leadwith Mα latti
e sites, as de�ned in Eq. (2.19), 
an be dedu
ed from the dispersionrelation (2.11) and approa
hes its maximum value ∆ε ∼ 2πJ/(Mα+1) at the middleof the 
osine band, 
f. appendix A.For an overview of the di�erent methods that have been applied to adjust thelevel dis
retisation see for example Ref. [87℄. In a real-spa
e representation of theleads as in Eq. (2.19), a rearrangement of the dis
rete energy levels translates toa modi�
ation of the hopping matrix elements, whi
h be
ome position-dependent,
J → Jx. In this work we will use damped boundary 
onditions (DBC) that haverepeatedly been applied before [30, 60℄ in order to in
rease the energy resolution atthe Fermi level εF, while keeping the overall number of latti
e sites M �xed. Wetherefore modify the lead Hamiltonian2 (2.19),

ĤDBC
L = −

MΛ−2∑

σ,x=0

Λ−[MΛ−(x−MB+2)]/2J(ĉ†σxĉσx+1 + ĉ†σx+1ĉσx)

− J

ML−2∑

σ,x=MΛ−1

(ĉ†σxĉσx+1 + ĉ†σx+1ĉσx), (2.23)
orresponding to the sket
h in Fig. 2.4. The damping towards the boundaries expo-nentially redu
es the level splitting at εF at half �lling.3 In 
hapter 5 we will studythe enhan
ed energy resolution and give an interpretation in terms of an e�e
tively2Remark: We only show the modification for the left lead. The right lead has to be modified
correspondingly.3In fact, exponential damping is one of several possibilities to increase the energy resolution.
Alternatively, smooth boundary conditions [59, 88] can be used to mimic the thermodynamic
limit. 11
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Figure 2.4 Damped boundary 
onditions (here: in the left lead). While keeping theoverall number of latti
e sites in the leads 
onstant, the hopping matrix elements aredamped towards the boundaries of the leads, with a damping parameter Λ > 1.in
reased system size. The impa
t on �nite size e�e
ts will be dis
ussed in somedetail, where we will fo
us on the e�e
t on the time evolution of the system at �nitebias voltage.

12



Chapter 3Numeri
al MethodsThis 
hapter is intended to give an overview of the numeri
al methods that buildthe basis for the 
omputations, the results of whi
h are presented in the remainingpart of this work. In the light of the many di�erent te
hniques that are in use wethereby have to 
on
entrate on the basi
 prin
iples, referring the interested readerto the literature for the details, for example Refs. [61,62,64�66,89�96℄. Of 
ourse, allthe topi
s dis
ussed in this 
hapter have been studied before. However, we believethat in order to make this work self-
ontained, it is appropriate to address 
ertainissues at this pla
e due to their fundamental relevan
e in this 
ontext.When investigating �nite latti
e models of ele
troni
 systems, the 
orrespondingHamiltonian (in fa
t, all operators that are relevant) 
an be represented in terms ofmatri
es of �nite dimension with 
omplex entries, while quantum me
hani
al states
an be represented as ve
tors with �nite dimension. Many problems 
an be 
on-sidered as solved when the eigenvalues and the 
orresponding eigenstates of a givenHamiltonian are known, being often su�
ient to know only a few of them, su
h asthe ground state of the system. Therefore numeri
al diagonalisation te
hniques playan important role, 
f. se
tion 3.1. However, the numeri
ally exa
t diagonalisationis limited to very small systems of only a few latti
e sites sin
e the dimension ofthe underlying Hilbert spa
e is growing very fast. Therefore, one may resort toiterative proje
tive s
hemes that keep the dimension of the Hilbert spa
e 
onstantwhile repeatedly enlarging the system by adding (blo
ks of) latti
e sites. A promi-nent example is the numeri
al renormalisation group (NRG) whi
h is based on aniterative res
aling of the energy s
ale while keeping only the low lying energy eigen-states [97, 98℄. Be
ause of the spe
i�
 
hoi
e of states kept at ea
h iteration stepthis method is tailor-made for problems whi
h show a 
lear separation of energys
ales, while it is not 
lear whether in a non-equilibrium situation the seperationof energy s
ales persists. Instead, we use the density matrix renormalisation group(DMRG) [61, 62, 64�66℄, 
f. se
tion 3.2, whi
h is also based on iteratively enlargingthe system size, but trun
ates the Hilbert spa
e using a di�erent sele
tion 
riterion:only those states are kept whi
h span a trun
ated Hilbert spa
e that allows us toapproximately represent an arbitrary set of states optimally in a 
ertain sense, aswill be dis
ussed below. Given an initial non-equilibrium state it is then possible to
ompute the time evolution of the system. For this purpose di�erent s
hemes havebeen developed [43�48,55℄. In our 
ase we use a method based on Krylov subspa
e13



Chapter 3 Numeri
al Methodste
hniques [99℄ to obtain �nite bias 
urrent and shot noise in 
hapter 5, whi
h was�rst applied to ele
tron transport in a 1D latti
e on the basis of DMRG by S
hmit-te
kert [47℄. The s
heme preserves unitarity and 
an be a

urate up to numeri
alpre
ision (see se
tion 3.3). Finally we investigate appli
ations of orthogonal poly-nomials [89,96℄ in the 
ontext of DMRG, highlighting some interesting features dueto the possibility of expanding fun
tions into a 
omplete basis of polynomials, 
f.se
tion 3.4.3.1 Appli
ations of Exa
t DiagonalisationThe term �exa
t diagonalisation� in general refers to methods that yield numeri
allyexa
t results for a �nite latti
e system by dire
tly diagonalising the matrix represen-tation of the system's Hamiltonian [64℄. This in
ludes the 
omplete diagonalisationof the matrix, whi
h is either given in a many parti
le basis or whi
h may resultfrom a single parti
le de
omposition as dis
ussed below, but also iterative methodswhi
h make the ground state (as well as a few low lying ex
ited states) available.Unfortunately, for many-parti
le systems, the dimension of the underlying Hilbertspa
e grows very fast with the size of the 
onsidered system. The des
ription of anisolated ele
troni
 system that 
onserves parti
le number N and total magnetisation
Sztot = N↑ −N↓, where the number of spin up (spin down) ele
trons is given by N↑(N↓), 
an be divided into parts with 
onstant N and 
onstant Sztot. The Hilbertspa
e V(N, Sztot) for a given value of parti
le number and total magnetisation thenhas dimension

dim(V(N, Sztot)) =

(

M

N↑

)(

M

N↓

)

=

(

M

(N + Sztot)/2)( M

(N − Sztot)/2) . (3.1)Storing the 
omplete matrix for a latti
e with M = 10 latti
e sites, N↑ = 5, and
N↓ = 5, in double pre
ision, will o

upy about 15GB of RAM!1Given that only the extremal eigenstates are relevant, one 
an resort to the Lan
-zos or the Davidson method [64, 91℄. By repeatedly applying the Hamiltonian on agiven initial ve
tor, a set of states {|ϕn〉} is generated, whi
h will eventually allow
omputation of the extremal eigenstates one is looking for. Sin
e only the a
tion ofthe Hamiltonian on a given state is 
omputed, there is no need to store the whole ma-trix representation. Instead only the states |ϕn〉, whi
h amount to dim(V(N, Sztot))numbers in double pre
ision, have to be stored. Still, for a system withM = 18 and
N↑ = N↓ = 9, 18GB of RAM must be available per ve
tor.In the framework of the DMRG (
f. se
tion 3.2), both, the 
omplete as well asthe iterative diagonalisation, are used. The proje
tion of the many parti
le Hilbertspa
e onto a subspa
e with a largely redu
ed dimension allows treatment of systems1For many practical applications, as for example tight binding chains, only a small number of the

matrix elements is different from 0. Therefore, sparse matrix techniques can be used to cut the
memory footprint to a much smaller value.14



3.1 Appli
ations of Exa
t Diagonalisationwith M & 100 latti
e sites. While low lying eigenstates of the Hamiltonian inthe proje
ted subspa
e have to be 
omputed using iterative algorithms, 
ompletediagonalisation is applied to obtain the 
omplete eigenvalue spe
trum of the redu
eddensity matrix for a part of the system.Single parti
le de
omposition By 
ontrast, for systems des
ribed by a Hamilto-nian of the form2
Ĥ =

M∑

x,y=1

Hxyĉ
†
xĉy, H∗

xy = Hyx, (3.2)a single parti
le representation 
an be obtained, whi
h in 
ontrast to the full Nparti
le des
ription allows treatment of systems with several thousand latti
e sites.In the remainder of this se
tion we will derive formulas for 
omputing expe
tationvalues of 
ertain time-dependent operators. For the dis
ussion of simulations of thetime evolution in 
hapter 5 this is important, sin
e it allows us to look for e�e
tsthat result from the �nite size of the system. Furthermore, the method des
ribedhere allows us to 
he
k numeri
al results obtained by using other, more ambitiouste
hniques, as for example the DMRG.To begin with, we derive a single parti
le representation for the expe
tation valueof the operator ĉ†x(t)ĉy(t), whi
h is a prerequisite for 
al
ulating the time-dependent
urrent in a non-equilibrium state. The fermioni
 operator ĉ†x 
reates a parti
leat the latti
e site x, while the Hermitian 
onjugate removes a parti
le from thesystem. Therefore the parti
le number 
onserving operator ĉ†xĉy 
an be referred toas a hopping operator . Let |ϕN〉 be a 
omplete set of eigenstates for an N -parti
lesystem, where EN |ϕN〉 = Ĥ|ϕN〉 =
∑

κ ǫκnκ[ϕN ]|ϕN〉, with the one-parti
le energies
ǫκ and the o

upation number nκ[ϕN ] ∈ {0, 1} of the single parti
le level κ in thestate |ϕN〉. Now, for a time-independent Hamiltonian Ĥ , the time evolution operator
exp(−iĤt/~) 
an be represented as

e−iĤt/~ =

M∑

N=0

∑

ϕN

e−i
P

κ ǫκnκ[ϕN ]t/~ |ϕN〉〈ϕN |, (3.3)where the sum extends over the full Fo
k spa
e basis with dimension 2M in the 
aseof spinless ele
trons on a latti
e whith M latti
e sites. This allows us to express thetime evolved hopping operator as
eiĤt/~ĉ†xĉye

−iĤt/~ =
∑

N,ϕ′
N

,ϕN

ei
P

κ ǫκ{nκ[ϕ′
N

]−nκ[ϕN ]}t/~ |ϕ′
N〉〈ϕ′

N |ĉ†xĉy|ϕN〉〈ϕN |. (3.4)If we �nally introdu
e an appropriate unitary transformation Uxα that diagonal-izes the matrix Hxy by ǫαδαβ =
∑

xy U
†
αxHxyUyβ , yielding the diagonal form of the2Example: The resonant level model, described by the Hamiltonian (2.21), with UC ≡ 0, is of the

form (3.2). 15



Chapter 3 Numeri
al MethodsHamiltonian (3.2),
Ĥ =

∑

α

ǫαĉ
†
αĉα, ĉα =

∑

x

U †
αxĉx, ĉ†α =

∑

x

ĉ†xUxα, (3.5)we arrive at a representation that does not 
ontain a summation over the full Fo
kspa
e basis anymore, but only over the single parti
le levels
eiĤt/~ĉ†xĉye

−iĤt/~ =
∑

αβ

U †
αxUyβ ei(ǫα−ǫβ)t/~ ĉ†αĉβ =

∑

x′y′

ĉ†x′U †(t)x′xU(t)yy′ ĉy′, (3.6)with the time evolution operator in the single parti
le representation3
U(t) =

[
∑

β

Uyβe−iǫβt/~U †
βy′

]

= e−iHt/~. (3.7)The matrix U 
an be obtained either by evaluating the sum (3.7), or dire
tly from thematrix Hxy by means of a matrix exponential fun
tion, 
f. Refs. [93�95℄, removingthe need to expli
itly 
ompute the unitary transform Uxα.For an arbitrary initial state |Ψ0〉, de�ned by the o

upation numbers ñν [Ψ0] ∈
{0, 1} of an arbitrary 
omplete set of orthogonal single parti
le states, we now 
anexpress the expe
tation value 〈Ψ0|ĉ†x(t)ĉy(t)|Ψ0〉 in terms of this single parti
le basis.Therefore we �rst introdu
e a se
ond unitary transform U0 that 
onne
ts the anni-hilation and the 
reation operators ĉx, ĉ†x with an additional set of operators ĉ0ν , ĉ0†ν ,where the latter 
onstitute the o

upation number operators of the aforementionedsingle parti
le basis by ĉ0†ν ĉ0ν |Ψ0〉 = ñν [Ψ0]|Ψ0〉

ĉ0ν =
∑

x

U0†
νxĉx, ĉ0†ν =

∑

x

ĉ†xU
0
xν . (3.8)In 
ombination with Eq. (3.6), this �nally leads to

〈Ψ0|ĉ†x(t)ĉy(t)|Ψ0〉 =
∑

x′y′νµ

〈Ψ0|ĉ0†ν ĉ0µ|Ψ0〉U0†
νx′U †(t)x′xU(t)yy′U0

y′µ (3.9)
=
∑

x′y′ν

U(t)yy′U0
y′ν ñν [Ψ0]U

0†
νx′U †(t)x′x =

∑

x′y′

U(t)yy′Ψy′x′

0 U †(t)x′x, (3.10)
Ψy′x′

0 =
∑

ν

U0
y′νñν [Ψ0]U

0†
νx′. (3.11)Eq. (3.10) is an important result of this se
tion. In order to de�ne the initial state

|Ψ0〉, we will later (
f. 
hapter 5) obtain the ground state of a Hamiltonian Ĥ0 6= Ĥ ,whi
h has the same form as given in Eq. (3.2) with a hermitian M × M matrix
H0,xy, by setting the o

upation numbers ñν of the N lowest single parti
le energy3The matrix H has to be distinguished from the Hamiltonian Ĥ , cf. Eq. (3.2).16



3.2 Density Matrix Renormalisation Group (DMRG)eigenstates to 1, and of the M − N upper eigenstates to 0. The unitary transform
U0 
an be obtained by diagonalising H0,xy 
orresponding to Eq. (3.5).Sin
e we also want to 
ompute shot noise, we need to evaluate the expe
tationvalue of operators of the form ĉ†x(t)ĉy(t)ĉ

†
x′(t′)ĉy′(t′). After applying some 
ommuta-tor algebra, the generalisation of Eq. (3.10) is straightforward and amounts to

〈Ψ0|ĉ†x(t)ĉy(t)ĉ†x′(t
′)ĉy′(t

′)|Ψ0〉
=
∑

x̄ȳx̆y̆

{

U(t)yȳΨ
ȳx̄
0 U †(t)x̄x U(t′)y′y̆Ψ

y̆x̆
0 U †(t′)x̆x′

− U(t′)y′y̆Ψ
y̆x̄
0 U †(t)x̄xU(t)yȳ

(
Ψȳx̆

0 − δȳx̆

)
U †(t′)x̆x′

}

. (3.12)Finally we want to dire
t the readers attention to Ref. [100℄. There, for non-intera
ting ele
trons in a one-dimensional tight-binding model the full 
ountingstatisti
s is evaluated numeri
ally, whi
h in prin
iple allows for the extra
tion of
urrent, noise as well as higher order 
umulants.3.2 Density Matrix Renormalisation Group(DMRG)In general, the problem of diagonalising the Hamiltonian 
an not be redu
ed to asingle parti
le pi
ture. Instead, the full many-parti
le problem has to be 
onsidered.As already dis
ussed in the previous se
tion, the main di�
ulty here results from thedimension of the Hilbert spa
e V growing very fast with the number M of latti
esites. In this se
tion we will des
ribe the density matrix renormalisation group(DMRG) method, whi
h essentially redu
es the dimension of the Hilbert spa
e V byproje
ting onto a small subspa
e V
ut. The 
riterion for generating the proje
tions
heme is based on minimizing the dis
arded weight of the redu
ed density matrix
ρ̂x of a part of the system, where the dis
arded weight is the sum of all eigenvaluesof ρ̂x whi
h get lost during the proje
tion onto V
ut.The DMRG was introdu
ed by Steven White in 1992 [61℄ in order to over
omeproblems with boundary errors that appear when Wilson's NRG [97℄ is applied toreal spa
e latti
e problems. In keeping only the low-lying energy eigenstates, theNRG method fails to 
hoose an appropriate set of basis states whi
h 
an be usedto represent the low lying states in a system of in
reased size. This is illustrated inFig. 3.1 for the ground state of a parti
le on a latti
e in a 1D box. For a dis
ussionin more details see Ref. [101℄.White applied the new method to 1D Heisenberg antiferromagneti
 spin 
hainsat zero temperature. Sin
e then the method has been generalized to a numberof problems, in
luding �nite temperature 
al
ulations [102, 103℄, 2D systems (forexample [104℄; for a more extensive list of referen
es see [65℄), and time evolutionsimulations of non-equilibrium states [43�48℄, the latter being fundamental to the17



Chapter 3 Numeri
al Methods Figure 3.1Ground state of a parti
le in a box on a dis
retelatti
e. The bla
k dots represent the latti
e,whi
h 
onsists of M = 8 or M ′ = 2 · M = 16sites. An algorithm that looks for the groundstate of the system by iteratively (a) looking forthe low lying states in a Hilbert spa
e V for asystem of size M , (b) 
onstru
ting a trun
atedHilbert spa
e V ′ for a system of in
reased size
M ′ using the low lying states in V only, and (
)
M ′ → M , V ′ → V, will fail sin
e the groundstate in V ′ 
an not be represented 
orre
tly. 1 8 9 16results of the present work. The method was also the topi
 of a number of reviewsthat have appeared in the last years [64�66℄.3.2.1 Optimally trun
ated wave fun
tionTo de�ne the trun
ation s
heme that redu
es the dimension of a given Hilbert spa
e
V, we start with the following assumptions:1. A number of states4 |χ〉 ∈ M = {|Ψ〉, |Φ〉, |Θ〉, . . .} of the many parti
le systemwith √〈χ|χ〉 = Nχ is given in a produ
t basis,5

|χ〉 =

DA−1∑

i=0

DB−1∑

j=0

cijχ |ξi
A〉 ⊗ |ξj

B〉, (3.13)with |ξi
A〉 a basis in VA and |ξj

B〉 a basis in VB, where V = VA ⊗ VB, with
DA = dim(VA) and DB = dim(VB),2. the trun
ation is 
arried out separately in VA and VB,3. the trun
ated states |χ
ut〉 must minimise
∑

χ∈M

‖|χ〉 − |χ
ut〉‖2/N 2
χ

= ‖|Ψ〉 − |Ψ
ut〉‖2/N 2
Ψ + ‖|Φ〉 − |Φ
ut〉‖2/N 2

Φ + ‖|Θ〉 − |Θ
ut〉‖2/N 2
Θ + . . .(3.14)If we de�ne a density operator for the states |χ〉 ∈ M

ρ̂ =
∑

χ∈M

1

N 2
χ

|χ〉〈χ|, (3.15)4Example: for the time evolution of an initial non-equilibrium state |Ψ0〉 vectors |Ψ(tn)〉 =
exp(−iĤ∆t/~)n|Ψ0〉 have to be computed, forming the set M.5The reason for this requirement will become clear in the following sections.18



3.2 Density Matrix Renormalisation Group (DMRG)Figure 3.2Trun
ation s
heme. A wave fun
tion |Ψ〉 thatis given in a produ
t basis for subsystems Aand B as des
ribed in Eq. (3.13) is trun
atedto a small subspa
e a

ording to the minimality
ondition Eq. (3.14). The �lled areas 
or-respond to the full Hilbert spa
e VA and VB,whereas the framed areas 
orrespond to theHilbert spa
e VA,
ut and VB,
ut with redu
eddimension. The resulting wave fun
tion |Ψ
ut〉approximates the original one.it turns out that the minimality 
ondition (3.14) is ful�lled for a trun
ation thatkeeps those of the basis states in the subsystems A and B that are eigenstates ofthe redu
ed density operators ρ̂A and ρ̂B of ρ̂ with the largest eigenvalues:The redu
ed density operator ρ̂A (ρ̂B) for the state of the subsystem A (B) isgiven as the tra
e over the disjoint subsystem
ρ̂A = TrB ρ̂ =

DB−1∑

k=0

DA−1∑

l,m=0

|ξl
A〉
[

〈ξl
A| ⊗ 〈ξk

B|
]

ρ̂
[

|ξm
A 〉 ⊗ |ξk

B〉
]

〈ξm
A |, (3.16)and

ρ̂B = TrAρ̂ =

DA−1∑

k=0

DB−1∑

l,m=0

|ξl
B〉
[

〈ξk
A| ⊗ 〈ξl

B|
]

ρ̂
[

|ξk
A〉 ⊗ |ξm

B 〉
]

〈ξm
B |, (3.17)respe
tively. The matrix elements then are given as

ρkl
A =

∑

χ∈M

1

N 2
χ

∑

i

cki
χ (cliχ)∗ and ρkl

B =
∑

χ∈M

1

N 2
χ

∑

i

cikχ (cilχ)∗. (3.18)For the subsystem A, we introdu
e a new orthonormal basis set |ξ̃α
A〉 with

|ξ̃α
A〉 =

∑

i

uαi|ξi
A〉. (3.19)A trun
ation |χ
ut〉 of the states |χ〉 ∈ M into a subspa
e V
ut = VA,
ut ⊗ VB ⊆ Vwith N
ut = dim(VA,
ut) ≤ DA is now given by

|χ
ut〉 =
N
ut−1∑

α=0

∑

j

aαj
χ |ξ̃α

A〉 ⊗ |ξj
B〉. (3.20)

19



Chapter 3 Numeri
al MethodsThis trun
ation is optimal, if the minimality 
ondition (3.14) is ful�lled, whi
h we
an rewrite as
1−2Re

[
∑

χ∈M

1

N 2
χ

N
ut−1∑

α=0

∑

ij

(cijχ )∗aαj
χ uαi

]

+
∑

χ∈M

1

N 2
χ

N
ut−1∑

α=0

∑

j

∣
∣aαj

χ

∣
∣
2 minimal. (3.21)A ne
essary 
ondition is stationarity of Eq. (3.21) with referen
e to the 
oe�
ients

aαj
χ

⇒ aαj
χ

!
=
∑

i

cijχ (uαi)
∗. (3.22)Putting this into Eq. (3.21) we �nd

1 − 2Re

[
∑

χ∈M

1

N 2
χ

N
ut−1∑

α=0

∑

ij

(cijχ )∗aαj
χ uαi

]

+
∑

χ∈M

1

N 2
χ

N
ut−1∑

α=0

∑

j

∣
∣aαj

χ

∣
∣
2

= 1 −
∑

χαii′j

1

N 2
χ

(uαi)
∗cijχ (ci

′j
χ )∗uαi′

(3.18)
= 1 −

∑

αii′

(uαi)
∗ρii′

A uαi′ (3.23)(3.19)
= 1 −

N
ut−1∑

α=0

〈ξ̃α
A|ρ̂A|ξ̃α

A〉 minimal. (3.24)Finally, we have to �x the basis |ξ̃α
A〉. Now, minimality requires stationarity with ref-eren
e to the |ξ̃α

A〉. A

ording to the Rayleigh-Ritz variational prin
iple, 〈ξ̃α
A|ρ̂A|ξ̃α

A〉is stationary for the basis states |ξ̃α
A〉 being the eigenve
tors of the density operator

ρ̂A. In order to obtain this basis and the 
orresponding eigenvalues it is ne
essaryto apply a 
omplete diagonalisation to the density operator. If we denote by wα
A theeigenvalues of ρ̂A, we �nd the minimality 
ondition ful�lled if

1 −
N
ut−1∑

α=0

〈ξ̃α
A|ρ̂A|ξ̃α

A〉 = 1 −
N
ut−1∑

α=0

wα
A ≡ εA (3.25)only 
ontains the N
ut biggest eigenvalues of the density operator. The error of thistrun
ation is 
ontrolled by the trun
ation error εA, whi
h we will in general denoteas the dis
arded weight εdis
. The same argument holds true for the density operator

ρ̂B of the subsystem B.In order to 
onstru
t an optimally trun
ated Hilbert spa
e V
ut = ṼA,
ut ⊗ ṼB,
ut(optimal in the sense des
ribed before), we therefore have to �nd a unitary transform
|ξl

A〉 → |ξ̃α
A〉 and |ξm

B 〉 → |ξ̃β
B〉 that diagonalises the redu
ed density operators ρ̂Aand ρ̂B. Then, the new basis has to be trun
ated to those states with the biggesteigenvalues wα

A and wβ
B.20



3.2 Density Matrix Renormalisation Group (DMRG)Entanglement The entanglement entropy for the subsystem x = A,B, whi
his a measure for the entanglement of the two subsystems, 
an be de�ned as thevon Neumann entropy of a redu
ed density matrix
Sx = −Trρ̂x log2 ρ̂x. (3.26)For example, if we think of a totally disentangled state |Ψ〉 = |ΨA〉 ⊗ |ΨB〉, theredu
ed density operator ρ̂x for the subsystem x = A,B is given as ρx = |Ψx〉〈Ψx|.The entropy then equals to zero. In general any state that has the form given inEq. (3.13) 
an be written as6

|χ〉 =

DA−1∑

i=0

DB−1∑

j=0

cijχ |ξi
A〉 ⊗ |ξj

B〉 (3.27)
=

∑

ij

DA−1∑

α=0

DB−1∑

β=0

[

UiαΣαβ
χ V †

βj

]

|ξi
A〉 ⊗ |ξj

B〉 (3.28)
=

D∗−1∑

α=0

Σαα
χ |ξ̄α

A〉 ⊗ |ξ̄α
B〉, D∗ = min(DA, DB). (3.29)The matrix elements of the redu
ed density operator then read

ραβ
A = ραβ

B =
1

Nχ

(Σαα
χ )2δαβ

!
= wα

χδαβ, (3.30)identifying Σαβ
χ ≡√Nχwα

χδαβ . Additionally, based on the equivalen
e of the eigen-value spe
trum of the redu
ed density matri
es for the two subsystems it may be
on
luded that7
S ≡ SA ≡ SB. (3.31)The trun
ation s
heme des
ribed above, applied to a pure state |χ〉, therefore leadsto a state |χ
ut〉 with redu
ed entanglement (N
ut ≤ D∗)

|χ
ut〉 =

N
ut−1∑

α=0

Σαα
χ |ξ̄α

A〉 ⊗ |ξ̄α
B〉, S
ut = −

N
ut−1∑

α=0

wα
χ log2w

α
χ ≡ S − Sdis
, (3.32)where we de�ne the dis
arded entropy as

Sdis
 = −
D∗−1∑

α=N
ut wα
χ log2w

α
χ , (3.33)the latter a measure for the information that is lost due to the trun
ation of thestate. The minimality 
ondition (3.14) guarantees that the loss of information Sdis
for a pure state that entangles the both subsystems also is minimised.6Using a singular value decomposition, the DA × DB matrix cij

χ can be expressed as cij
χ =

∑

αβ UiαΣαβ
χ V †

βj , with unitary matrices U and V and a diagonal DA × DB matrix Σχ with
real, non-negative entries.7It is well known that entropy is maximised if wα = 1/D∗. Therefore a pure state with maximum

entanglement entropy can be written as |Ψ〉 =
∑D∗−1

α=0 |ξ̄α
A〉 ⊗ |ξ̄α

B〉/
√

D∗. 21



Chapter 3 Numeri
al MethodsErrors During the DMRG iteration s
heme, whi
h will be des
ribed below, thistrun
ation pro
edure is repeatedly applied to subsystems A and B of varying sizewhi
h leads to an iterative a

umulation of dis
arded weight εdis
. The resultingapproximation is optimal in the sense of a least squares approximation, as lined outabove. A big value of εdis
 leads to a big mismat
h of the proje
ted states |χ
ut〉 as
ompared to the original ones. Therefore it is 
ru
ial that the ordered weights wα
xof the redu
ed density matrix ρ̂x de
ay to zero fast.8 On the other hand, sin
e the
omplete spe
trum of the redu
ed density matri
es is 
omputed in ea
h iterationstep, the trun
ation error 
an be steadily observed. The number of kept states N
utthen is an appropriate parameter to 
ontrol εdis
.The entanglement entropy re
ently has attra
ted a lot of interest [105℄. For 1Dsystems, the s
aling of S with respe
t to the length l of a subsystem x has beeninvestigated. The entanglement entropy s
ales as

S(l) ∼ 
onst + log l∗. (3.34)In the 
ase of a gapped system, l∗ is equivalent to the 
orrelation length ξ, andhen
e independent of the size l of the subsystem x. In the 
ase of an ungappedsystem, l∗ is equivalent to the length l of the subsystem itself. For the present work,the latter 
ase is relevant, sin
e the models we want to study are gapless. Thetrun
ation pro
edure therefore leads to logarithmi
 growth of the disarded entropyfor �xed N
ut. In
reasing the dimension of the system > 1 leads to a modi�
ationof the s
aling behaviour. For a gapped system, S s
ales linearly with the numberof 
onta
t links A between the subsystem and the environment (area law; 
f. alsoRef. [105℄).9For time evolution simulations, we have to take into a

ount that the evolutionof an initial non-equilibrium state leads to the produ
tion of entanglement entropy.For a DC-biased quantum point 
onta
t, for example, it has been shown [74, 106℄that the produ
tion rate is 
onstant, ∂S/∂t = 
onst, in the long-time limit.3.2.2 DMRG iteration s
heme: in�nite latti
e algorithmWe are now ready to des
ribe the algorithm that iteratively builds up a trun
atedHilbert spa
e together with the relevant wave fun
tions, starting from a small sys-tem, by adding more and more latti
e sites to the system [61℄. The key ingredienthere is to apply the trun
ation s
heme des
ribed above subsequent to adding latti
esites in order to keep the dimension of the Hilbert spa
e suitable.1. Initially the system is divided into two equal subsystems (blo
ks) A and Bwhi
h are 
omposed of only a few (lA = M0,A, lB = M0,B) latti
e sites. Theparti
le number in the 
oupled subsystems 
an vary, therefore the dimension of8A maximally entangled state, cf. footnote 7, will always lead to a bad approximation, if the
discussed projection scheme is applied.9For this reason it is favourable to represent the leads as 1D tight-binding chains, cf. chapter 2.22



3.2 Density Matrix Renormalisation Group (DMRG)Figure 3.3DMRG in�nite latti
e algorithm.Starting from a small system (here:3 sites in blo
k A and B), the re-du
ed Hilbert spa
e is 
onstru
tediteratively by adding latti
e sites(A → A•, B → •B) and subse-quently trun
ating the subspa
es tothe desired dimension N
ut (A• →
A, •B → B). Fig. 3.2. The trun-
ated blo
ks must be stored forlater usage during appli
ation of the�nite size algorithm.the Hilbert spa
e of ea
h of the subsystems x = A,B is Dx = dM0,x , providedthat ea
h latti
e site has dimension d. Let us denote the 
omplete basis ofea
h subsystem as {|mx〉}. The �rst iteration then starts2. by adding a latti
e site to both blo
ks, resulting in new blo
ks A• and •B. Theadditional sites are represented by a lo
al basis {|σx〉}, the new basis of theenlarged blo
ks is equivalent to the set of produ
t states, {|Mx〉 = |mx〉⊗|σx〉},whi
h has dimension D′

x = Dx · d. For the enlarged system one now hasto �nd the ground state |Ψ0〉 (and the low lying ex
ited states, if desired)of the 
orresponding Hamiltonian by means of exa
t diagonalisation, whi
h
an be done using an iterative method, 
f. the previous se
tion. The fullmatrix representation of the Hamiltonian in the produ
t basis {|MA〉⊗ |MB〉}has (D′
A · D′

B)2 entries; note, however, that this number 
an be 
onsiderablyredu
ed by employing restri
tions like the overall 
onserved parti
le numberand the total magnetisation, permitting to dis
ard basis states of the produ
tbasis that do not mat
h the restri
tion.3. Then apply operators Ô to |Ψ0〉 to obtain additional states |Φ〉 = Ô|Ψ0〉, where
Ô 
an be any observable, 
reation / annihilation operator, time evolutionoperator, et
. At this point, expe
tation values 
an also be 
al
ulated.104. The ground state |Ψ0〉 (as well as the low lying ex
ited states) and, if available,the states |Φ〉 from the previous step, are represented in the produ
t basis
{|MA〉⊗|MB〉} by 
onstru
tion. From this set of states form a density operator
ρ̂, as well as the redu
ed density operators ρ̂A• and ρ̂•B . For x = A• and
x = •B,a) diagonalise ρ̂x to obtain a basis of eigenve
tors |wα

x〉 with eigenvalues wα
x ,10This step can be omitted and only be applied during the finite lattice algorithm, cf. section

3.2.3. 23



Chapter 3 Numeri
al Methodsb) keep only N
ut basis states with the biggest weights wα
x and transform allstates and operators to this redu
ed basis.This now 
orresponds to �nding the optimally trun
ated basis as outlined inthe previous se
tion. The full matrix representation of the redu
ed densityoperators ρ̂x has D′2

x entries. Again, 
onserved quantities 
an be employedto realize that the matrix has blo
k diagonal stru
ture, where ea
h blo
k islabelled by a 
orresponding set of 
onserved quantum numbers (as, for exam-ple, parti
le number in blo
k x), removing the need to store all of the matrixelements.5. Repla
e A• → A and •B → B, in
reasing the size of the blo
ks lx → lx + 1,and start the next iteration (→ 2. . . . )This s
heme is illustrated in Fig. 3.3. The iteration is stopped when the desiredsystem size is rea
hed.3.2.3 DMRG iteration s
heme: �nite latti
e algorithmThe in�nite latti
e algorithm has one major drawba
k. The proje
tion to a smallsubspa
e dis
ards a large number of states, whi
h 
an lead to poor pre
ision if someof the dis
arded states be
ome important again at a later stage of the iterationpro
edure. Finding the ground state of a given system then is impossible sin
e therelevant portion of the Hilbert spa
e has been proje
ted away in previous iterations.For the in�nite latti
e algorithm, the dis
arded states are lost forever. This 
anbe 
ured to a great extent using the �nite latti
e algorithm after the �nal systemsize has been approa
hed. The main di�eren
e to the in�nite latti
e algorithm is
onstituted in shrinking of one of the blo
ks (say, B) while the other one (say, A)grows further � the overall system size is kept �xed. It is important to note thatthe properties of the shrinked blo
k have been obtained before, either during thein�nite latti
e algorithm or during a pre
eeding �nite latti
e algorithm iterationstep. As illustrated in Figs. 3.3, 3.4, the blo
ks of redu
ed size have been stored(as indi
ated by ) and 
an now be restored during the �nite size iterations. Thetrun
ation s
heme here is applied only for the growing blo
k, whi
h has rea
hed itsmaximum size when the shrinking blo
k 
an be 
omputed exa
tly (
f. Fig. 3.4). Atthis point, a sweep has been 
ompleted. The dire
tion of growth and shrinking thenhas to be reversed. The sweeps should be repeated until the results (for examplethe expe
tation values of operators) have 
onverged. This may take several sweeps,experien
e tells us to perform at least 5 sweeps.1111For obtaining the ground state of a system, we typically use 11 sweeps, while for the time
evolution simulations in chapter 5, this number may be increased by an order of magnitude.24



3.3 Time Evolution: the Krylov Subspa
e Method
Figure 3.4DMRG �nite latti
e algorithm. In
ontrast to the in�nite latti
e algo-rithm, the overall system size is �xed.indi
ates either that data for the
orresponding blo
k has been 
om-puted before and 
an now be re-stored for further pro
essing, or thatre
ently 
omputed data has to bestored for pro
essing during a subse-quent iteration step.

3.3 Time Evolution: the Krylov Subspa
e MethodThe dynami
s of a quantum me
hani
al system is des
ribed by the time-dependentS
hrödinger equation [107℄. For a time-independent Hamiltonian Ĥ, this equation
an formally be solved by introdu
ing a time evolution operator Û(t) = exp(−iĤt/~),whi
h then a
ts on an initial state |Ψ〉 to generate a time evolved state
|Ψ(t)〉 = Û(t)|Ψ〉. (3.35)This time evolved state then 
an be used to 
ompute the expe
tation value of time-dependent observables Â(t) via

〈Â(t)〉 = 〈Ψ|Û †(t)ÂÛ(t)|Ψ〉, 〈Â(t′)Â(t)〉 = 〈Ψ|Û †(t′)ÂÛ(t′ − t)ÂÛ(t)|Ψ〉, (3.36)et
. The numeri
al 
omputation of the results of the time evolution simulationsof 
urrent in intera
ting nanostru
tures presented in 
hapter 5 therefore dependson the availability of a method to obtain the a
tion of an operator fun
tion (here:the time evolution operator) on a given state |Ψ〉. A very simple method 
onsistsin taylor-expanding the fun
tion f up to a 
ertain order n, yielding an order npolynomial, whi
h allows us to obtain f(Â)|Ψ〉 approximately by knowledge of theexpansion 
oe�
ients. However, this approximation leads to poor pre
ision (or vi
eversa the need for a very high order n). Instead, it is desirable to implement amethod that looks for a �better� polynomial approximation.The Krylov subspa
e method [99℄ in 
ombination with an orthogonalization s
hemeis a powerful tool to obtain a small subspa
e K of a given ve
tor spa
e V, that 
on-tains the �most important� portion of the full spa
e for a given problem. This25



Chapter 3 Numeri
al Methodsproje
tion then 
an be used to obtain the quantity of interest e�
iently, due to itsredu
ed dimension.Sin
e we are looking for the a
tion of a matrix fun
tion f(Â) on a given ve
tor
|Ψ〉, it is reasonable to ask for

|Ψ〉 ∈ K. (3.37)The de�nition of a matrix fun
tion in terms of the power series f(z) =
∑∞

j=0 cjz
jalso suggests

Âj |Ψ〉 ∈ K. (3.38)The formal de�nition of the Krylov subspa
e KÂ,Ψ
r ⊆ V with dim(KÂ,Ψ

r ) = r ≤
dim(V) = d,12 generated by the operator Â and the ve
tor |Ψ〉, reads

KÂ,Ψ
r = span{|Ψ〉, Â|Ψ〉, Â2|Ψ〉, . . . , Âr−1|Ψ〉}. (3.39)Therefore, any polynomial pr−1(z) =

∑r−1
j=0 bjz

j of order r − 1 generates an elementof KÂ,Ψ
r by

pr−1(Â)|Ψ〉 ∈ KÂ,Ψ
r . (3.40)An orthogonal basis |j〉 in the subspa
e KÂ,Ψ

r 
an be 
onstru
ted using an Arnolditype algorithm [92℄, whi
h also gives the matrix elements Aij of Â in this basis:1. Initialize: Compute |0〉 = |Ψ〉/
√

〈Ψ|Ψ〉2. Iterate: For basis state |j〉 with j = 0 . . . r − 1 repeata) Compute |φ〉 := Â|j〉b) Iterate: Orthogonalize |φ〉 on |i〉 with i = 0 . . . j by repeatingi. Compute Aij := 〈i|φ〉 = 〈i|Â|j〉ii. Compute |φ〉 := |φ〉 − Aij|i〉
) Compute Aj+1,j :=
√

〈φ|φ〉 and |j + 1〉 = |φ〉/Aj+1,j.This algorithm 
onstru
ts an r × r upper Hessenberg matrix (tridiagonal matrix)
Aij for arbitrary (hermitian) operators Â, plus an additional Ar,r−1. Also, an or-thonormal basis {|0〉, |1〉, . . . , |r−1〉} of KÂ,Ψ

r is 
omputed, plus an additional ve
tor
|r〉. Sin
e Â|j〉 ∈ KÂ,Ψ

j+2 ⊆ KÂ,Ψ
r , where KÂ,Ψ

j+2 = span{|0〉, |1〉, . . . , |j + 1〉}, we knowthat
〈i|Â|j〉 = 0 ∀ i > j + 1. (3.41)Therefore

Â|j〉 =

j+1∑

i=0

|i〉〈i|Â|j〉 =
r∑

i=0

|i〉〈i|Â|j〉 =
r−1∑

i=0

|i〉Aij + |r〉Arj (3.42)where 〈i|Â|j〉 = Aij and Arj = Ar,r−1δj,r−1. Now, the matrix Aij represents theproje
tion of the operator Â onto the Krylov subspa
e KÂ,Ψ
r with respe
t to the12If V decomposes into invariant subspaces w.r.t. Â, then dim(KÂ,Ψ

r ) ≤ r.26



3.4 Polynomial Expansiongiven basis. If we denote the d × r matrix 
ontaining the r basis ve
tors |j〉 as
olumns as B = [|0〉, |1〉, . . . , |r − 1〉], Eq. (3.42) translates to
ÂB = BA+ |r〉〈r|ÂB ⇒ A = B†ÂB. (3.43)The proje
tion operator of V on KÂ,Ψ

r is given as BB†. If the 
onsidered fun
tion fis a polynomial of order r − 1,
f(z) = pr−1(z) =

r−1∑

k=0

ckz
k, (3.44)the appli
ation of the 
orresponding matrix fun
tion evaluates to (β =

√

〈Ψ|Ψ〉)
pr−1(Â)|Ψ〉 = β

r−1∑

k=0

ckÂ
k|0〉

︸ ︷︷ ︸

∈KÂ,Ψ
r

= β
r−1∑

k=0

ckBB
†ÂkBB†|0〉 (3.45)

= β

r−1∑

k=0

ckB(B†ÂB)kB†|0〉 = βB

r−1∑

k=0

ckA
kB†|0〉 (3.46)

= βBpr−1(A)B†|0〉, (3.47)where the equality B†ÂkBB†|0〉 = (B†ÂB)kB†|0〉 is valid sin
e Âk|0〉 ∈ KÂ,Ψ
r−1 for all

k ≤ r − 1.13For a general matrix fun
tion, given by an in�nite power series f(z) =
∑∞

k=0 ckz
k,we now take the expression

f(Â)|Ψ〉 ≈ βBf(A)B†|0〉 (3.48)as an approximation to the exa
t value f(Â)|Ψ〉. The interested reader may �nd aformal proof of the validity for the matrix exponential fun
tion in Ref. [92℄ wherealso error estimates are given. For pra
ti
al 
omputations espe
ially the a posteriorierror estimates matter sin
e they allow us to determine �on the �y� whether theKrylov iteration 
an be stopped. The evaluation of the full matrix fun
tion f(A)for the proje
ted representation A of the operator Â has to be 
arried out by meansof other te
hniques, where we resort to the Padé approximation for the 
omputationof the matrix exponential [93�95℄.3.4 Polynomial ExpansionAn alternative approa
h to evaluating the expe
tation value of operator fun
tions isbased on the expansion in terms of orthogonal polynomials. In 
ontrast to the Krylov13Note: B†|0〉 = (1, 0, 0, . . . , 0). 27



Chapter 3 Numeri
al Methodsmethod, the expe
tation value is not evaluated dire
tly during the DMRG pro
edurebut only as a se
ond step, where the polynomial moments in 
ombination with theexpansion 
oe�
ients have to be summed up to 
onstitute a spe
i�
 fun
tion. The
omputationally expensive operations, as for example matrix-ve
tor produ
ts, whi
hbuild the basis for both the Krylov method as well as the evaluation of the polynomialmoments, have to be 
arried out only on
e for di�erent fun
tion parameters and evenfor di�erent fun
tions in the latter 
ase, whi
h 
an lead to a signi�
ant advantageover the Krylov approa
h.In this se
tion we want to dis
uss the appli
ation of the trun
ated series expansionof 
ertain fun
tions: the exponential fun
tions exp(−ixt) and exp(−βx), as well as
1/(z−x) with x ∈ R, Im(z) 6= 0. While the exponential fun
tion is suitable for timeevolution simulations, or, in 
ase of real-valued exponents, for the 
omputation ofthermodynami
 quantities, 1/(z − x) 
an be used to evaluate resolvent expressions.Closely related to the polynomial expansion is the so-
alled kernel polynomialmethod (KPM), whi
h aims at eliminating Gibbs os
illations that o

ur when ap-proximating non-
ontinuous fun
tions, su
h as the step fun
tion or the δ fun
tion,by trun
ated polynomial series [96℄. Espe
ially when 
omputing the spe
tral den-sity of a physi
al system whi
h is represented by a �nite matrix (
f. 
hapter 4),this is an important issue. Basi
ally, the KPM modi�es the expansion 
oe�
ientsof the polynomial expansion of a given fun
tion, where the modi�
ation dependson the trun
ation order of the expansion. This is equivalent to a 
onvolution ofthe fun
tion with an appropriate kernel. In the 
ase of Green's fun
tions, the KPM
an be used to guarantee 
ertain properties of the trun
ated series expansion, su
has the poles being situated in the upper (lower) half of the 
omplex plane for aretarded (advan
ed) Green's fun
tion. However, we 
hoose another path to 
om-pute the spe
tral density. As pointed out before, resolvent expressions of the form
(E0 − Ĥ ± ~(ω + iη))−1, η > 0, 
an be represented by 1/(z − x) when repla
ing
z → ±~(ω + iη), x → Ĥ − E0. In the limit η → 0+, the spe
tral density of theoperator Ĥ is re
overed by taking the imaginary part of this fun
tion � remember
δ(ω−x) = −1/π limη→0+ Im(ω+ iη−x)−1. On the other hand, leaving η at a �nitevalue 
orresponds to 
onvoluting the δ-fun
tion with a Lorentzian, removing thedis
ontinuity at ω = x. Sin
e we seek the broadened Green's fun
tion for reasonsdis
ussed later,14 we do not rely on kernel polynomials but 
an apply the �pure�polynomial approximation, whi
h yields a spe
tral fun
tion of whi
h the broadeningis well 
ontrolled by the parameter η.Let us �rst re
all the basi
 properties of expansions in orthogonal polynomials.For w(x) being a positive weight fun
tion on the interval [l, r], we de�ne a s
alar14The broadened Green’s function also suffers from the Gibbs oscillation problem. However, in

contrast to the δ function, here we can give a truncation criterion for the series expansion that
allows us to suppress the Gibbs oscillations in a controlled way. See below.28



3.4 Polynomial Expansionprodu
t,
(f, g) =

r∫

l

dx w(x)f(x)g(x), (3.49)where f, g : [l, r] → R integrable. There is a 
omplete set of polynomials pn(x) withthe properties
(pn, pm) = δnm/hn, hn = 1/(pn, pn). (3.50)This now allows for an expansion of a given fun
tion f in terms of the pn

f(x) =
∞∑

n=0

αnpn(x), αn = (pn, f)hn. (3.51)The series expansion may then be used to determine the expe
tation value of oper-ator fun
tions
〈Ψ|f(Ô)|Ψ〉 =

∞∑

n=0

αnµn, µn = 〈Ψ|n〉, |n〉 = pn(Ô)|Ψ〉, (3.52)for operators Ô with a spe
trum on the interval (l, r), where the ve
tors |n〉 
an beobtained in linear time due to the re
ursion relations [89℄ for orthogonal polynomials
a1

npn+1(x) = (a2
n + a3

nx)pn(x) − a4
npn−1(x)

⇒ a1
n|n+ 1〉 = a2

n|n〉 + a3
nÔ|n〉 − a4

n|n− 1〉, (3.53)with numbers a1
n, a2

n, a3
n and a4

n. The sequen
e (3.53) has the initial 
onditions
|0〉 = p0|Ψ〉, |1〉 = p1(Ô)|Ψ〉. (3.54)The weight fun
tion w(x), the normalisations hn and the re
urren
e relation givenby the p0, p1(x) and ai

n are spe
i�
 for the type of polynomials and de�ne themuniquely; 
ompare also table 3.1 and Ref. [89℄. While the polynomial moments µnhave to be evaluated during the DMRG pro
edure based on the re
urren
e relation(3.53), the expe
tation value (3.52) of a fun
tion f is 
omputed afterwards based onthe expansion 
oe�
ients αn as well as the µn, where the αn have to be determinedfor the spe
i�
 fun
tion f .3.4.1 Properties of Chebyshev and Laguerre PolynomialsChebyshev polynomials turn out to be the best 
hoi
e for many appli
ations [96℄.However, numeri
al instabilities 
an lead to a limitation of the pre
ision, as will bedis
ussed later for the example of the real-valued exponential fun
tion exp(−βx).Therefore we also in
lude the Laguerre polynomials in our dis
ussion. While lessfavourable in terms of 
onvergen
e of the expansion 
oe�
ients, we still obtain betterresults based on the Laguerre expansion as 
ompared to the Chebyshev expansion.29
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pn(x) [l, r] w(x) hn p0 p1 a1

n a2
n a3

n a4
n

Lα
n(x) [0,∞] e−xxα n!

Γ(α + n+ 1)
1 1 + α− x n + 1 2n+ α + 1 −1 n + α

Tn(x)

[−1, 1]

1

π
√

1 − x2

2

1 + δn,0

1 x

1 0 2 1

Un(x) π
√

1 − x2
2

π2
1 2xTable 3.1 Integration limits, weight fun
tions, normalisations and 
oe�
ients for the re
urren
e relation(3.53) for the generalized Laguerre polynomials (Lα
n) and the Chebyshev polynomials of �rst (Tn) and se
ondkind (Un). For a more 
omplete list for di�erent other types of orthogonal polynomials see Ref. [89℄.Chebyshev Polynomials The Chebyshev polynomials 
an be expressed in termsof trigonometri
 fun
tions

Tn(cos θ) = cosnθ, Un(cos θ) =
sin[(n + 1)θ]

sin θ
. (3.55)For the Tn this yields the unique feature that on the interval [−1, 1] all of the extremahave values that are either 1 or −1, thus

|Tn(x)| ≤ 1 ∀ x ∈ [−1, 1]. (3.56)Similarly, for the Un one �nds
|Un(x)| ≤ n + 1 ∀ x ∈ [−1, 1]. (3.57)There are several interrelations between di�erent sets of orthogonal polynomials [89℄,where we will later on use
Tn(x) = Un(x) − xUn−1(x), (3.58)

Tn+1(x) = xUn(x) − Un−1(x), (3.59)
⇒ Un(x) =

1

1 − x2
[Tn(x) − xTn+1(x)]. (3.60)In order to apply the series expansion to operator fun
tions (3.52), it is ne
essaryto res
ale the spe
trum of the operator Ô to the interval [−1, 1] via

Õ = (Ô − b) · a, (3.61)where
a = (2 − ε)/(λmax − λmin), (3.62)
b = (λmax + λmin)/2 (3.63)30



3.4 Polynomial Expansionwith the extremal eigenvalues λmin and λmax of the operator Ô as well as a smallpositive number ε of the order of the numeri
al pre
ision. Then
〈Ψ|f(Ô)|Ψ〉 = 〈Ψ|f(Õ/a+ b)|Ψ〉 = 〈Ψ|f̃(Õ)|Ψ〉, (3.64)where f̃(x̃) = f̃((x− b) · a) = f(x). The αn and µn now have to be obtained for theres
aled fun
tion f̃ and the res
aled operator Õ.A very ni
e property of the expe
tation values µn = 〈Ψ|Tn(Õ)|Ψ〉 for Chebyshevpolynomials of the �rst kind is

−1 ≤ µn ≤ 1, (3.65)as long as |Ψ〉 is normalised to 〈Ψ|Ψ〉 = 1. This 
an be derived from the property(3.56), whi
h leads to
µn = 〈Ψ|Tn(Õ)|Ψ〉 =

∑

k

Tn(λk)〈Ψ|k〉〈k|Ψ〉
(3.56)
≤
∑

k

〈Ψ|k〉〈k|Ψ〉 = 1, (3.66)
µn = 〈Ψ|Tn(Õ)|Ψ〉 =

∑

k

Tn(λk)〈Ψ|k〉〈k|Ψ〉 ≥ −
∑

k

〈Ψ|k〉〈k|Ψ〉 = −1, (3.67)with eigenvalues λk and eigenve
tors |k〉 of the operator Õ. Again, for the µn =
〈Ψ|Un(Õ)|Ψ〉, we �nd

−n− 1 ≤ µn ≤ n + 1. (3.68)Laguerre Polynomials In order to apply the series expansion to operator fun
tions(3.52), it is ne
essary to shift the spe
trum of the operator Ô to the interval [0,∞]via
Õ = Ô − λmin, (3.69)with the smallest eigenvalue λmin of the operator Ô. Res
aling λmax − λmin is notne
essary in this 
ase. Then

〈Ψ|f(Ô)|Ψ〉 = 〈Ψ|f(Õ + λmin)|Ψ〉 = 〈Ψ|f̃(Õ)|Ψ〉, (3.70)where f̃(x̃) = f̃(x− λmin) = f(x). The αn and µn now have to be obtained for theres
aled fun
tion f̃ and the res
aled operator Õ.NNNIn the remaining se
tions of this 
haper we will dis
uss possible appli
ations of thepolynomial expansion. Due to the fa
t that our investigations of the method as wellas the implementation are in an early stage at this point, only the results for spe
tralproperties presented in 
hapter 4 are based on the methods des
ribed here, whilethe time evolution simulations for intera
ting nanostru
tures presented in 
hapter 5are based on the Krylov subspa
e method. However, due to the versatility of theapproa
h and with regard to future appli
ations, we also in
lude the dis
ussion ofthe numeri
al 
omputation of time evolution simulations and of thermodynami
properties, together with some simple examples. 31



Chapter 3 Numeri
al Methods3.4.2 The Exponential Fun
tionTime evolution To motivate the following dis
ussion of the expansion of the ex-ponential fun
tion in terms of Chebyshev polynomials, we mention three exampleappli
ations.1. For |Ψ〉 being the initial state of a system whi
h is des
ribed by a Hamiltonian
Ĥ, the overlap of the time evolved state |Ψ, t〉 = exp(−iĤt/~)|Ψ〉 with theinitial state is

〈Ψ|Ψ, t〉 = 〈Ψ|e−iĤt/~|Ψ〉. (3.71)2. The time-dependent Green's fun
tion of a system in its ground state |Ψ0〉 (withenergy E0) 
an be obtained by 
omputing the expe
tation value of
〈Ψ0|Â e−i(Ĥ−E0)t/~B̂|Ψ0〉 (3.72)and similar expressions. We want to note that the numeri
al data that hasto be obtained for this 
omputation 
an also be used to derive results for theGreen's fun
tion in frequen
y spa
e without the need for a numeri
al Fouriertransformation of the results of Eq. (3.72). This will be
ome 
lear in se
tion3.4.3.3. The simulation of the time-dependent behaviour of observables Ô, as for exam-ple 
urrent in a non-equilibrium state, amounts to the evaluation of expressionsof the form
〈Ψ|eiĤt/~Ôe−iĤt/~|Ψ〉. (3.73)Chebyshev expansion The expansion 
oe�
ients in (3.51) for the exponentialfun
tion f(x) = e−ixt are given as [89, 108℄

αn =
2

1 + δn,0

1∫

−1

dx
Tn(x)e−ixt

π
√

1 − x2
=

2 · (−i)n

1 + δn,0
Jn(t) (3.74)with the Bessel fun
tions of �rst kind Jn and the Chebyshev polynomials of the�rst kind Tn. Here, the weight fun
tion reads w(x) = 1/(π
√

1 − x2) and the nor-malisation hn = 2/(1 + δn,0). Assuming that the Bessel fun
tion 
an be 
al
ulatedto arbitrary numeri
al pre
ision, the numeri
al pre
ision of the expe
tation values(3.71-3.73) is determined by the pre
ision ε of the matrix elements µn (3.52). Theasymptoti
 behaviour of the Bessel fun
tions is
Jn(t) ≈

{

(t/2)n/n! if 0 < t≪
√
n+ 1,

√

2/(πt) cos(t− nπ
2
− π

4
) if t≫ n2.

(3.75)Sin
e for orders n ≪
√
t for �xed t the values of Jn all are of the same order ofmagnitude up to a 
ertain 
uto�, 
f. also Fig. 3.5, and −1 < µn < 1, the absolute32
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Figure 3.5 Order of magnitude of the Bessel fun
tions Jn(t) as fun
tion of the order nfor di�erent values of t.numeri
al pre
ision of the result is limited by ε ·maxn≥0(|µn| ·Jn) ≈ ε ·maxn≥0(Jn) <
ε. For large n, the asymptoti
s for small t 
an be further simpli�ed using the Stirlingformula

Jn(t) ≈
(t/2)n

√
2πn

n−nen =

(
e1 · t
2n

)n
1√
2πn

. (3.76)The Jn(t) rapidly de
ay to 0 for �xed t. Fig. 3.5 shows the order of magnitudeof Jn as a fun
tion of n for di�erent values of t. This shows graphi
ally that theChebyshev series 
an be trun
ated already for orders on the s
ale of n & t.In order to demonstrate the e�e
t of the trun
ation of the series (3.52) at a�nite order n = N we evaluate Eq. (3.71) for a simple 
ase, where we assume
Ĥ|Ψ〉 = E|Ψ〉, E = ~ω. Then 〈Ψ|Ψ(t)〉 = e−iωt. A

ording to table 3.1, the or-thogonality relation (3.49) is ful�lled on the interval [l, r] = [−1, 1] for Chebyshevpolynomials. Therefore, in order to use the Hamiltonian Ĥ for the iterative 
on-stru
tion of Chebyshev moments µn, 
f. Eqns. (3.52) and (3.53), a res
aled version
H̃ of Ĥ has to be 
omputed a

ording to Eqns. (3.61-3.63). The extremal eigenval-ues λmin = E0, λmax = Emax of Ĥ have to be 
omputed by means of other te
hniques;
f. se
tion 3.1. Then, with Eqns. (3.52), (3.64) and (3.74),

〈Ψ|e−iĤt/~|Ψ〉 = 〈Ψ|e−i(H̃/a+b)t/~|Ψ〉 (3.77)
= 〈Ψ|e−iH̃t̃|Ψ〉e−ibt/~ ≈ e−ibt/~

N∑

n=0

2 · (−i)n

1 + δn,0
Jn(t̃)µn[H̃], (3.78)where

t̃ = t/(~a). (3.79)For the given example we want to 
ompute the series expansion for we still have tores
ale ω̃ = (~ω−b)·a. The Chebyshev moments then simply ful�ll µn = Tn(ω̃). Thereal part of the series expansion is displayed in Fig. 3.6. Note, that for �real world�problems the res
aling of the time parameter represents a strong limitation to theapproa
h. Assuming that the di�eren
e Emax−E0 s
ales approximately proportional33
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Figure 3.6 Real part of e−iωt, 
omputed using the trun
ated Chebyshev series expansionfor di�erent trun
ation orders N (= 800, 400, 200) and for di�erent res
aling fa
tors a(= 0.01, 0.005). ω = 2π/T = 2, b = 0. Note, that for �real world� problems, the res
alingfa
tor a and the shift b are determined by the spe
trum of the given Hamiltonian. Themaximum time is proportional to N and to a.with the size L of the 
onsidered system, we �nd t̃ ∝ L for a �xed t. Then, in orderto enfor
e a 
ertain trun
ation error, one has to s
ale the trun
ation order N ∝ L.Con
erning the example appli
ation Eq. (3.73) for the time-dependent expe
tationvalue of an observable we �nally have to add, that the expression 
an be 
omputedby expanding the two time evolution operators seperately. This amounts to repla
ingEq. 3.52 by
〈Ψ|eiĤt/~Ôe−iĤt/~|Ψ〉 ≈

N∑

n,m

αnαmµnm, (3.80)
µnm = 〈n|Ôm〉, |n〉 = Tn(H̃)|Ψ〉, |Ôm〉 = Ô|m〉. (3.81)While the numeri
al e�ort for 
omputing the expe
tation value from a given setof Chebyshev moments µnm and expansion 
oe�
ients αn s
ales quadrati
ally withthe trun
ation order N in this 
ase, the main e�ort 
onsists of the matrix-ve
tormultipli
ations for 
omputing the states |n〉. The need for the additional states

|Ôm〉 only doubles the number of matrix-ve
tor multipli
ations.Temperature evolution / imaginary time evolution For the 
al
ulation of ther-modynami
 properties, it 
an be useful to obtain the expe
tation values
〈Ψ|e−βĤ|Ψ〉, and in general 〈Ψ|Ĥke−βĤ |Ψ〉 = (−1)k ∂

k

∂βk
〈Ψ|e−βĤ|Ψ〉, (3.82)with the temperature β−1 = kBT .34



3.4 Polynomial ExpansionChebyshev expansion The previous 
onsiderations for the time evolution of astate |Ψ〉 suggest to simply repla
e the time t in (3.71) by the �imaginary� time
−iβ and, via analyti
 
ontinuation to the 
omplex plane, to obtain the Chebyshev
oe�
ients αn from (3.74) as

αn =
2 · (−i)n

1 + δn,0

Jn(−iβ) =
2 · (−1)n

1 + δn,0

In(β), (3.83)with the modi�ed Bessel fun
tions of �rst kind In. To obtain the derivatives w.r.t.the inverse temperature, the modi�ed Bessel fun
tions have to be repla
ed with theirrespe
tive derivatives. The asymptoti
s [89℄ of the In(β) for small arguments β as
ompared to the order n
In(β) ≈ e

√
n2+β2

√
2πn

βn

(2n)n
(3.84)suggests the validity of this approa
h, sin
e the expansion 
oe�
ients get suppressedfor n≫ β rapidly. However, the asymptoti
s for the opposite 
ase, n≪ β, where

In(β) ≈ eβ

√
2πβ

, (3.85)shows that the approa
h does not work for numeri
al 
omputations if β is 
hosen bigin a 
ertain sense; to be pre
ise, if ε is the pre
ision of the numeri
al 
omputationof the Chebyshev moments µn, then the terms ∝ In(β)µn of the sum (3.52) area�i
ted with a numeri
al error of the order of δ, provided β & ln(δ/ε). Sin
e inpra
ti
al 
al
ulations an error of the order ε ≈ 10−5 has to be expe
ted for themoments, δ ≈ 0.1 for β & 10; given that the spe
trum of the Hamiltonian Ĥ has tobe res
aled a

ording to (3.61), repla
ing β → β̃ = β/a, the available range for theinverse temperature is further redu
ed by a fa
tor a.The expansion to the Chebyshev polynomials of the se
ond kind su�ers fromsimilar problems as 
an be shown using relation (3.60).Laguerre expansion Alternatively, the exponential fun
tion 
an be expressed interms of an expansion in generalized Laguerre polynomials L(α)
n (x) with α > −1.The 
orresponding 
oe�
ients read

αn =
βn

(1 + β)n+1+α
= (1 + 1/β)−nα0, α0 =

1

(1 + β)1+α
. (3.86)The expansion is 
onvergent if (and only if) Reβ > −1/2. Again, the expe
tationvalue of Ĥk exp(−βĤ) 
an be obtained by repla
ing the 
oe�
ients αn with their
orresponding derivatives w.r.t. β. For positive β, the 
oe�
ients de
ay exponen-tially with the order n. However, as 
an be dedu
ed from the above formula, forgrowing β the de
ay slows down, whi
h enfor
es an in
rease of the trun
ation order

N of the polynomial approximation in order to keep the trun
ation error 
onstant.This problem 
an be 
ured by res
aling the Hamiltonian. Sin
e the upper limit of35
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Figure 3.7 Relative trun
ation error of the Laguerre series expansion expN of the ex-ponential fun
tion exp with trun
ation order N , as 
ompared to the exa
t value, 
om-puted using the Laguerre series expansion (α = 0 for L
(α)
n ) for di�erent trun
ation orders(N = 200, 1000) and for di�erent res
aling fa
tors a (= 1, 5, 10). E = 0.01, 
orrespondingto realisti
 values for the �nite size energy gap of low lying ex
ited states (in dimensionlessunits) in a system with ∼ 100 latti
e sites.the integral in Eq. (3.49) is in�nite in the 
ase of Laguerre polynomials, we 
anintrodu
e a res
aling Ĥ → H̃ = a · Ĥ with a > 1, resulting in a res
aling of thetemperature β → β̃ = β/a.To summarize this se
tion, again we dis
uss a simple example where we assume

Ĥ|Ψ〉 = E|Ψ〉. The 
omputation of the Laguerre moments then amounts to µn =

L
(α)
n (E). To demonstrate the trun
ation error we plot the error of the trun
atedLaguerre expansion in Fig. 3.7 for di�erent values of the trun
ation order N andfor a res
aled energy s
ale. Sin
e for the 
omputation of the µn in general matrixve
tor multipli
ations are involved, it may be numeri
ally 
heaper to res
ale theHamiltonian by a fa
tor a > 1 as 
ompared to in
reasing the trun
ation order N .3.4.3 Resolvent ExpressionsThe 
omputation of Green's fun
tions in the frequen
y representation is the lasttopi
 that will be dis
ussed in the 
ontext of polynomial expansions. The evaluationof expressions of the form
G±

Â,B̂
(z) = 〈Ψ|Â(E0 − Ĥ ± z)−1B̂|Ψ〉, z = ~(ω + iη), ω ∈ R, η > 0 (3.87)
an be tra
ed ba
k to the expansion of the fun
tion

f±
z (x) =

1

±z − x
⇒ G±

Â,B̂
(z) = 〈Ψ|Âf±

z (Ĥ −E0)B̂|Ψ〉 (3.88)in terms of Chebyshev polynomials. Sin
e the frequen
y-dependent Green's fun
-tion (3.87) 
an be derived from the time-dependent 
ounterpart (3.72) by means of36



3.4 Polynomial Expansiona Fourier transform, we now may bene�t from the dis
ussion of the Chebyshev ex-pansion of the time-dependent exponential fun
tion in se
tion 3.4.2. After res
alingthe operator Ĥ − E0 → H̃ to �t its spe
trum into the interval [−1, 1], the fun
tion
f̃±

z̃ (x̃) 
an be rewritten as
1

±z̃ − x̃
= −i

±∞∫

0

dt ei(±z̃−x̃)t, (3.89)whi
h yields the 
oe�
ients for the expansion in terms of Chebyshev polynomialsof the �rst kind (
f. Eq. (3.51) and table 3.1)
α±

n (z̃) = (Tn, f̃
±
z̃ )hn =

2/π

1 + δn,0

1∫

−1

dx
Tn(x)√
1 − x2

1

±z̃ − x
(3.90)

=
−2i/π

1 + δn,0

±∞∫

0

dt e±iz̃t

1∫

−1

dx
Tn(x)√
1 − x2

e−ix̃t =
2(−i)n+1

1 + δn,0

±∞∫

0

dt e±iz̃tJn(t) (3.91)
=

2/(1 + δn,0)

(±z̃)n+1(1 +
√
z̃2
√
z̃2 − 1/z̃2)n

√

1 − 1/z̃2
, (3.92)where we expli
itly want to emphasize the relation to the Bessel fun
tions of the�rst kind Jn(t) in Eq. (3.91). Taking the 
orre
t res
aling into a

ount, the Greens'sfun
tion then is re
overed as

G±

Â,B̂
(ω) = a

∞∑

n=0

α±
n

(
a(~(ω + iη) ∓ b)

)
µn, (3.93)where the Chebyshev moments µn are given as15

µn = 〈Ψ|ÂTn(a(Ĥ − E0 − b))B̂|Ψ〉. (3.94)It is now important to determine a suitable value for the trun
ation order N inorder to obtain reliable numbers. From Eq. (3.65) we know that −N 2 ≤ µn ≤ N 2,where N 2 = 〈Ψ|ÂB̂|Ψ〉. Therefore it is again su�
ient to study the behaviour ofthe 
oe�
ients α±
n (z) for values of z in the desired range. A very simple estimate
an be given by looking at the derivation of the α±

n , and espe
ially by 
onsideringthe properties of the Bessel fun
tion in Eq. (3.91): For n > |t|, Jn(t) drops rapidlyto zero, as already dis
ussed before, relating the maximum time |t| to N , so that
N & |t|. The maximum time, on the other hand, is determined by Imz̃, the latterexponentially 
utting of the in�nite integration range of the time integration in15Note, that for the computation of the time-dependent and of the frequency-dependent Green’s

function the same momenta µn have to be computed, while the expansion coefficients αn are
different, cf. example 2 in section 3.4.2. 37



Chapter 3 Numeri
al MethodsEq. (3.91). Therefore, we get an estimate t ≈ 1/Imz̃, whi
h �nally leads us to theexpression
N &

1

a~η
. (3.95)This estimate also shows the limitation of the approa
h. Sin
e a is proportional tothe inverse di�eren
e of the extremal eigenvalues of the Hamiltonian of the system,

1/a grows with the system size (provided a 
orresponding s
aling of the spe
trum of
Ĥ), and hen
e the number of moments µn that has to be 
omputed.16 On the otherhand, resolving narrow stru
tures in the spe
trum requires η to be 
hosen small as
ompared to the width of the spe
tral stru
ture of interest.

16If investigating bosonic degrees of freedom as for example in a 1D waveguide, this limitation is
not so important if the number of photons (and hence the relevant energy spectrum) is kept
independent of the size of the system.38



Chapter 4Green's fun
tions in the ResolventRepresentationDespite its simpli
ity, the intera
ting resonant level model (2.15) shows some in-teresting, if not surprising, features. For �nite bias transport, a regime of negativedi�erential 
ondu
tan
e (NDC) has been found for �nite ele
tron-ele
tron intera
-tion UC on the 
onta
t link [56℄. Furthermore, the system shows non-monotoni
behaviour when in
reasing UC [31, 109℄. The linear 
ondu
tan
e as a fun
tion ofthe gate voltage Vg has Lorentzian shape, the width of whi
h grows up to a 
ertainvalue of UC = 2J . By further in
reasing the intera
tion the width of the Lorentzianshrinks again [31℄. In the present 
hapter we now pose the question how these ef-fe
ts are re�e
ted in the spe
tral fun
tion of the intera
ting level. We will re
overthe Lorentzian shape for the spe
trum, the width of whi
h grows with in
reasingintera
tion UC. However, in 
ontrast to the linear 
ondu
tan
e, the width does notde
rease again for values of UC > 2J . Instead, there are peaks showing up forenergies outside the 
ondu
tion band.As a pre
ondition to obtain the spe
tral fun
tion, we need to 
ompute the singleparti
le Green's fun
tion of the resonant level in frequen
y spa
e. We therefore makeuse of the Chebyshev expansion of the fun
tion (±z − x)−1 as dis
ussed in se
tion3.4.3. The limitation of the numeri
al implementation of the treatment of systemswith �nite size, 
f. se
tion 2.3, leads to a �nite energy level dis
retisation. In orderto 
ure this short
oming we �rst introdu
e a �nite level broadening to average overa few dis
rete energy levels. Then we apply a quadrati
 extrapolation of the self-energy to zero broadening to obtain the Green's fun
tion for the thermodynami
limit.
Figure 4.1 Sket
h of the IRLM. The intera
ting level is 
oupled to two non-intera
tingleads.
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Chapter 4 Green's fun
tions in the Resolvent Representation4.1 Green's fun
tions in time- and frequen
yrepresentationThe time-dependent lesser (greater) Green's fun
tions G< (G>) and the retarded(advan
ed) Green's fun
tions Gr (Ga) are de�ned [110℄ by1
G>

Â,B̂
(t, t′) = −i〈Â(t)B̂(t′)〉, G<

Â,B̂
(t, t′) = −iζB̂(t′)Â(t), (4.1)

Gr
Â,B̂

(t, t′) = −iΘ(t− t′)〈[Â(t), B̂(t′)]−ζ〉 (4.2)
= Θ(t− t′)[G>

Â,B̂
(t, t′) −G<

Â,B̂
(t, t′)], (4.3)

Ga
Â,B̂

(t, t′) = iΘ(t′ − t)〈[Â(t), B̂(t′)]−ζ〉 (4.4)
= Θ(t′ − t)[G<

Â,B̂
(t, t′) −G>

Â,B̂
(t, t′)], (4.5)with arbitrary time-dependent operators Â(t) and B̂(t).2 The square bra
kets

[Â, B̂]−ζ = ÂB̂ − ζB̂Â denote the 
ommon fermioni
 (ζ = −1) and bosoni
 (ζ = 1)
ommutator. The expe
tation value is de�ned for an arbitrary pure quantum-me
hani
al state |Ψ〉
〈. . .〉 = 〈Ψ| . . . |Ψ〉. (4.6)In order to simplify the notation we furthermore introdu
e the Green's fun
tions

G+

Â,B̂
(t, t′) = −iΘ(t− t′)〈Â(t)B̂(t′)〉, G−

Â,B̂
(t, t′) = iΘ(t− t′)〈Â(t′)B̂(t)〉. (4.7)This allows rewriting

G>
Â,B̂

(t, t′) = G+

Â,B̂
(t, t′) −G−

Â,B̂
(t′, t), (4.8)

G<
Â,B̂

(t, t′) = ζ [G+

B̂,Â
(t′, t) −G−

B̂,Â
(t, t′)], (4.9)

Gr
Â,B̂

(t, t′) = G+

Â,B̂
(t, t′) + ζG−

B̂,Â
(t, t′), (4.10)

Ga
Â,B̂

(t, t′) = ζG+

B̂,Â
(t′, t) +G−

Â,B̂
(t′, t). (4.11)Sin
e throughout this work we are interested in properties of steady states,3 weassume translational invarian
e with respe
t to time. Hen
e, the Green's fun
tionsonly depend on t− t′, whi
h allows the shift t′ → 0.The frequen
y-dependent Green's fun
tions G(ω) are de�ned by means of theFourier transform of their time-dependent 
ounterpart. For the following dis
ussionof the impurity Green's fun
tion of the IRLM, we now assume that the state |Ψ〉1We largely follow the notation used in [87].2Throughout this work, we always assume the Hamiltonian Ĥ, that is driving the time-evolution

of the system, to be independent of time. Then, for any operator Ô, the time evolution is given

by Ô(t) = eiĤt/~Ôe−iĤt/~.3In this chapter, we assume |Ψ〉 to be the ground-state of the system, while in chapter 5 we
assume |Ψ〉 to be a non-equilibrium steady state where the expectation value of time-dependent
operators Ô(t) is independent of t, 〈Ψ|Ô(t)|Ψ〉 = const.40



4.1 Green's fun
tions in time- and frequen
y representationis equivalent to the ground state of the system, with Ĥ|Ψ〉 = E0|Ψ〉, E0 the 
orre-sponding energy. Due to the de�nition of G±, the G(ω) then 
an be represented interms of
G+

Â,B̂
(ω + iη) =

1

~

∞∫

−∞

dt ei(ω+iη)tG+

Â,B̂
(t, 0) = − i

~

∞∫

0

dt ei(ω+iη)t〈Â(t)B̂(0)〉 (4.12)
= − i

~

∞∫

0

dt 〈Ψ|Âei[(E0−Ĥ)/~+ω+iη]tB̂|Ψ〉 = 〈Ψ|Â 1

E0 − Ĥ + ~(ω + iη)
B̂|Ψ〉,(4.13)

G−

Â,B̂
(ω + iη) =

1

~

∞∫

−∞

dt ei(ω+iη)tG−

Â,B̂
(t, 0) = 〈Ψ|Â 1

E0 − Ĥ − ~(ω + iη)
B̂|Ψ〉,(4.14)with a 
onvergen
e generating fa
tor η = 0+. For the numeri
al 
omputation of G±,we later will 
hoose η to be �nite in order to average over some dis
rete energy levelsof the �nite system. Based on the de
omposition in + and − part, the retarted andthe advan
ed Greens's fun
tion in frequen
y representation read

Gr
Â,B̂

(ω) = G+

Â,B̂
(ω) + ζG−

B̂,Â
(ω), (4.15)

Ga
Â,B̂

(ω) = ζG+

B̂,Â
(ω) + G−

Â,B̂
(ω). (4.16)Numeri
al 
omputation For the numeri
al 
omputation we use the method dis-
ussed in se
tion 3.4.3, whi
h is based on the expansion of the fun
tion f±

z (x) =
(±z − x)−1 in terms of Chebyshev polynomials, allowing to express the Green'sfun
tions as G±

Â,B̂
(ω) = 〈Ψ|f±

~(ω+iη)(Ĥ − E0)|Ψ〉. With the expansion 
oe�
ients of
f±

z

α±
n (z) =

2/(1 + δn,0)

(±z)n+1(1 +
√
z2
√
z2 − 1/z2)n

√

1 − 1/z2
, (4.17)it is then possible to rewrite the Green's fun
tion as

G±

Â,B̂
(ω + iη) = a

∞∑

n=0

α±
n (a(~(ω + iη) ± b))µn, (4.18)where µn = 〈Ψ|ÂTn(a(Ĥ − E0 − b))B̂|Ψ〉 with the Chebyshev polynomials of the�rst kind Tn. The Chebyshev moments µn 
an be 
onstru
ted iteratively using therelation Tn+1(x) = 2xTn(x)−Tn−1(x). The res
aling a and the shift b of the spe
trumof the Hamiltonian Ĥ into the interval (−1, 1) has to be performed in order to meetthe orthogonality relations for the Chebyshev polynomials. For a dis
ussion in moredetails see se
tion 3.4. 41



Chapter 4 Green's fun
tions in the Resolvent Representation4.2 Single-parti
le spe
trumWe de�ne the spe
tral operator Â for a system des
ribed by a Hamiltonian Ĥ as
Â(ε) = δ

(
ε− (Ĥ −E0)

)
. (4.19)For a given state |ϕ〉 it measures the 
ontribution of eigenstates with energy ε to

|ϕ〉. Here, E0 is the energy of the ground state |Ψ〉 of the system. The single-parti
lespe
tral fun
tion then has to be 
omputed for states |ϕ+〉 = ĉ†|Ψ〉 and |ϕ−〉 = ĉ|Ψ〉,and is given by
A(ε) = 〈Ψ|ĉ†Â(ε) ĉ|Ψ〉 + ζ〈Ψ|ĉ Â(ε) ĉ†|Ψ〉. (4.20)If we represent the δ-distribution by a Lorentzian in the limit of vanishing width η,

δ(ε− x) =
1

π
lim

η→0+

η

(ε− x)2 + η2
= ∓1

π
lim

η→0+
Im

1

ε− x± iη
, (4.21)we understand that the single-parti
le spe
tral fun
tion is related to the retardedGreen's fun
tion4 Gr

ĉĉ† by
A(ε = ~ω) = −1

π
lim

η→0+
ImGr

ĉĉ†(ω + iη). (4.22)4.2.1 Numeri
al 
omputationGiven that |Ψ〉 is the ground state of the system, A(ε) quanti�es the ex
itation of aneigenstate with energy ε when a parti
le ĉ† or hole ĉ is added to the system. For asystem with 
ontinuous spe
trum, A(ε) will be a 
ontinuous fun
tion of the energy,while for a system with a dis
rete spe
trum, A will show sharp δ-peaks for thedis
rete eigen-energies of the system. Now, the models we want to 
onsider des
ribea nanostru
ture 
oupled to in�nite leads, the latter providing for a 
ontinuous single-parti
le spe
trum. In 
ontrast, the models we implement the numeri
al simulationfor are �nite, with an overall number of M latti
e sites, leading to a dis
retisationof the energy spe
trum. In order to obtain an approximation to the thermodynami
limit, we therefore 
hoose the 
onvergen
e generating fa
tor η to be �nite, whi
hleads to averaging over a few dis
rete energy levels. In the real-time representation,an ex
itation that is generated on the stru
ture at an initial time will de
ay to theleads, generating a wave pa
ket that runs towards the boundaries of the system. A�nite value of η then 
auses the 
ontributions to the integrals in Eqns. (4.12-4.14)to be damped exponentially for t → ∞ with exp(−ηt). A wave pa
ket that getsre�e
ted at the boundaries of the �nite system will therefore be damped away beforereturning to the stru
ture, if η is 
hosen su�
iently big. For a system with an overallnumber of M = ML +MS +MR latti
e sites, and with leads of (
lose to) equal size
ML ≈MR, an estimate for the minimum value for η therefore is given by

η &
vF

M
, (4.23)4A similar relation holds for the advanced Green’s function.42



4.2 Single-parti
le spe
trumwith the Fermi velo
ity vF in the leads. By means of the interpretation of the
onvergen
e generating fa
tor η as a damping fa
tor that removes e�e
ts resultingfrom re�e
tions at the boundaries of the system we understand that this way weindeed 
an obtain results for the spe
tral fun
tion in the thermodynami
 limit froma �nite system. However, the broadening of the dis
rete energy levels also leads toa broadening of the spe
tral fun
tion A as a whole, whi
h to over
ome is desirable.Poor man's de
onvolution 2.0 In [87℄, a method to remove the broadening ofthe Green's fun
tion 
aused by a �nite value of the 
onvergen
e generating fa
tor ηwas introdu
ed. Based on the assumption that the self-energy Σ(ω), de�ned by
Gr(ω) =

1

~ω − Σ(ω) + i · 0+
, (4.24)is shifted by iη for the situation with �ninte broadening η, Ση(ω) = ~ω + i0+ −

[Gr(ω+iη)]−1 !
= Σ(ω)− i~η, a sharpened Green's fun
tion 
an be 
omputed dire
tly.This was su

esfully 
he
ked for the energy eigenstates of a tight binding 
hain offree fermions, where the relation holds exa
tly.In general, the broadened self-energy will depend on η in a more 
ompli
ated way,whi
h 
an spoil the approa
h. For example, for the impurity Green's fun
tion of theresonant level model with tight binding leads, the self-energy depends non-linearlyon the broadening η � in
luding the real part of Ση. Therefore we generalize theassumption where we now take the self-energy as a fun
tion of the broadening,

Ση(ω) = Σ(0)(ω) + Σ(1)(ω)η + Σ(2)(ω)η2 + . . . , (4.25)allowing for an extrapolation to η = 0 from numeri
al data with �nite broad-ening. The self energy for the thermodynami
 limit then 
an be identi�ed as
Σ(ω) ≡ Σ(0)(ω), whi
h, in turn, yields the value for the Green's fun
tion in thethermodynami
 limit

Gr(ω) =
1

~ω − Σ(0)(ω) + i · 0+
. (4.26)4.2.2 Impurity Green's fun
tion for the intera
ting resonantlevel modelThe IRLM with tight binding leads is de�ned a

ording to the Hamiltonian inEq. (2.15). Sin
e the numeri
al 
omputation is performed on a 
ompuer we arerestri
ted to a �nite version of the model as given in Eq. (2.21). The Hamiltonianof the system then reads

Ĥ ≡ Ĥ�niteIRLM = − J

ML−2∑

x=0

(ĉ†xĉx+1 + ĉ†x+1ĉx) − J

M−2∑

x=ML+1

(ĉ†xĉx+1 + ĉ†x+1ĉx) + Vgn̂ML

− JC(ĉ†ML−1ĉML
+ ĉ†ML

ĉML−1 + ĉ†ML
ĉML+1 + ĉ†ML+1ĉML

)

+ UC

[

(n̂ML−1 −
1

2
)(n̂ML

− 1

2
) + (n̂ML

− 1

2
)(n̂ML+1 −

1

2
)
]

. (4.27)43



Chapter 4 Green's fun
tions in the Resolvent RepresentationThe number of latti
e sites in the left lead is given by ML, the overall system size is
M = ML+MR+1, where we assume the stru
ture to be situated in the middle of thesystem (ML ≈ MR). A sket
h of the model 
an be found in Fig. 4.1. The 
ouplingof the stru
ture to the leads is given by JC, while the density-density intera
tion ofthe stru
ture with the �rst lead site reads UC. For the dis
ussion of the spe
trumwe assume the level of the stru
ture to be on resonan
e with the Fermi level andtherefore set Vg ≡ 0 in this 
hapter. Furthermore, we set the ratio of parti
le number
N and number of latti
e sitesM (the �lling fa
tor) to 1/2, 
orresponding to metalli
leads.The initial state |Ψ〉 is obtained by means of a ground state DMRG. This meansthat for ea
h DMRG step, 
f. se
tion 3.2, the ground state is obtained in the trun-
ated Hilbert spa
e via a Davidson algorithm. Sin
e we want to obtain the impurityGreen's fun
tion, we furthermore 
ompute |Φ0〉 = ĉ†ML

|Ψ〉. To be able to 
al
ulatethe Chebyshev moments µn we add |Φn〉 = Tn(H̃)|Φ0〉, with the res
aled Hamilto-nian H̃ = a(Ĥ − E0 − b).5 Then µn = 〈Φ0|Φn〉. For the numeri
al 
al
ulation, weset an upper bound to the dimension of the Hilbert spa
e of the DMRG blo
ks, with
N
ut ≤ 7000 at the maximum. Additionally we applied an upper bound to the dis-
arded entropy Sdis
 < 10−5, whi
h allows the software to 
hoose N
ut dynami
allywithin the given bounds. The 
onsumption of 
omputer memory is largely deter-mined by the dimension of the trun
ated Hilbert spa
e, whi
h strongly depends onthe simulated system due to this dynami
 approa
h. For the systems with the mostunfavorable behaviour,6 we needed to use 
omputers with up to 48GB of RAM.In Fig. 4.2 we now demonstrate the approa
h. For the nonintera
ting RLM with
UC = 0, at half �lling, the retarded Green's fun
tion with �nite η was 
omputedbased on the evaluation of G+ and G−.7 The data has been obtained based on theChebyshev expansion of the resolvent up to order N = 4000; 
f. also se
tion 3.4.The two panels (a, b) show the imaginary and the real part of the self-energy asde�ned in Eq. (4.24), for di�erent values of the 
onvergen
e generating fa
tor η, aswell as Σ(0) as de�ned in Eq. (4.25), resulting from a quadrati
 �t to Ση. In orderto visualize the dis
retisation of the single parti
le energy levels due to the �nitesize of the system, we in
lude values for η = 0.03 on panel (a). However, for the�t pro
edure only those values of η are in
luded that do not exhibit the �nite sizedis
retisation. The inset shows −(Ση + iη) for two di�erent values of ω, where the
olours of the lines are asso
iated with the respe
tive imaginary or real part of Ση,
f. also the arrows on panels (a, b) of the �gure. It 
an 
learly be seen, that both,the real and the imaginary part of the broadened self-energy, depend non-linearly5For the computation of the rescaling factor a and the shift b, a ground state DMRG calculation

has to be carried out seperately in order to determine the ground state energy E0 and the
Energy Emax of the maximally excited state. Then a . 2/(Emax + E0), ab . 1, where it has to
be guaranteed that the spectrum of H̃ is on the interval (−1, 1).6For this work, we simulated systems according to Eq. (4.27), with M = 48, 96 and 168 lattice
sites in total and with interaction UC = 0.0 . . .4.0J . For the bigger systems, and for stronger
interaction UC, the required size of the Hilbert space grows.7In fact, due to symmetry reasons, we can ommit the computation of G−.44



4.2 Single-parti
le spe
trum
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Figure 4.2(a) Imaginary and (b) real partof the broadening-dependent self-energy for di�erent values of the
onvergen
e generating fa
tor η.The thi
k lines represent Σ(0) asde�ned in Eq. (4.25), for a �t up toquadrati
 order. The system 
on-sist of M = 48 latti
e sites in to-tal, the impurity is 
oupled to theleads via JC = 0.4J . For ImΣwe in
lude values for η = 0.03 inorder to demonstrate the e�e
t ofthe dis
retisation of the lead lev-els. The inset shows ReΣη and
−(ImΣη+η) as fun
tion of η for se-le
ted values of ω, 
ompare the ver-ti
al arrows in the main plot. Onpanel (
) we show the η-broadenedspe
tral fun
tion Aη(~ω), in
lud-ing the �nal A(~ω) after extrapo-lation η → 0.on η. The lines are quadrati
 �ts to the data points, while the self-energy for

η → 0 is extra
ted from Eq. (4.25) as Σ(0). On panel (
), we show the η-broadenedspe
tral fun
tion Aη for the 
orresponding values of η, as well as the �nal result
A(~ω), obtained from Eq. (4.24) using Σ(0)(ω) for the self-energy. In appendix B weprovide an analyti
 expression for the spe
tral fun
tion, 
f. Eq. (B.13), whi
h allowsus to 
he
k the numeri
al result for the nonintera
ting RLM. However we do notin
lude it into the plot sin
e it 
an not be dis
riminated from the numeri
al resultby the eye.We now turn to the behaviour of the spe
tral fun
tion, depending on the intera
-tion UC. Using the method des
ribed above we 
ompute A(ε) in the thermodynami
limit for values in the range of UC = 0 . . . 4.0J . In Fig. 4.3 we show results for twodi�erent 
ouplings JC = 0.2J and JC = 0.15J .8 In
reasing UC has two e�e
ts: �rst,the 
entral peak of the spe
tral fun
tion gets broadened. For values of UC . 2J ,the peak survives while for UC = 4.0J , it seems to disappear 
ompletely. Redu
ingthe 
oupling JC = 0.2J → 0.15J leads to an in
reased height and a redu
ed widthof the 
entral peak, whi
h leads us to the assumption that in the limit of very small8The results have been obtained based on N = 500 (N = 800) Chebyshev moments for the system

with JC = 0.2J and M = 96 (JC = 0.15J and M = 168) lattice sites. 45



Chapter 4 Green's fun
tions in the Resolvent Representation
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Figure 4.3 Spe
tral fun
tion A for the IRLM, on resonan
e (Vg = 0), for di�erent valuesof the intera
tion UC = 0 . . . 4.0J . The system 
onsists of M = 96 (M = 168) latti
e sitesin total, the impurity is 
oupled to the leads via JC = 0.2J (JC = 0.15J). In
reasing UCleads to broadening of A, while for UC & 2.0J , additional peaks appear, lo
ated outsidethe band.
JC, the 
entral peak 
ould survive for values of UC > 4J . The position of the sidepeaks seems not to be in�uen
ed by JC, whi
h leads us to the 
on
lusion that theiremergen
e is due to the �nite band width 4J .The broadening of the 
entral peak is represented in Fig. 4.4. On the left panel, weshow the 
entral peak of the spe
tral fun
tion A, normalised to the maximum value
A(ε = 0), for values of the intera
tion UC = 0 . . . 3J .9 The red 
urves 
orrespond toa Lorentzian,

A0(ε) =
1

π

Γ

Γ2 + ε2
. (4.28)For the nonintera
ting RLM, UC = 0, this expression 
orresponds to the wide-bandlimit of the spe
tral fun
tion A, whi
h 
an be obtained from Eq. (B.13) for JC ≪ J .In this 
ase, the width Γ ≡ Γ0 = 2J2

C/J is determined by the 
oupling JC. We now�t this expression to the 
entral peak of the numeri
al data for A(ε) in order toobtain its width Γ. In the non-intera
ting 
ase a, we �nd good agreement of thenumeri
al data and the wide-band limit A0, indi
ating that for the pre
ise value ofthe 
oupling (JC = 0.15J), band 
urvature e�e
ts do not play a major role, at leastfor vanishing intera
tion. The same still holds true for �nite, in
reasing intera
tion,as long as UC ≪ 1J . For values of UC & 1J , we �nd strong deviations from theLorentzian shape; 
f. also Fig. 4.3. Nevertheless, the width Γ is still well de�ned fora small region at the Fermi level. However, for values of the intera
tion UC > 3J , asdis
ussed before, the 
entral peak vanishes 
ompletly, rendering the width illde�ned.The behaviour of the width Γ depending on the intera
tion UC, normalised to thewidth Γ0 = 2J2
C/J of the nonintera
ting RLM, is represented on the right panel.We 
learly �nd monotonous growth of Γ until the point where the 
entral peak9To be precise, in this case (M = 168 lattice sites, JC = 0.15J), we did not compute A for

the noninteracting case a UC = 0. Instead, the curve a was computed based on the analytic
expression (B.13).46



4.2 Single-parti
le spe
trum
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Figure 4.4 Left panel: Central peak of the spe
tral fun
tion for the IRLM, on resonan
e(Vg = 0), normalized to the value for frequen
y ε = 0, for di�erent values of the intera
tion
UC. The system 
onsists of M = 168 latti
e sites in total, the dot is 
oupled to the leads via
JC = 0.15J . The red lines 
orrespond to a �t of the non-intera
ting wide-band limit A0(ε)to the numeri
al data (bla
k lines). Right panel: Γ as fun
tion of UC, for two di�erentvalues of the 
oupling JC, normalized to the width in the wide-band limit. In
reasing UCleads to monotonous growth of Γ. Lines are guides to the eye.vanishes. Interestingly, Γ does not show any noti
eable behaviour when passingthe self-dual point UC = 2J , where 
ertain non-equilibrium problems 
an be solvedanalyti
ally [56, 85℄, and where the linear 
ondu
tan
e obtains its maximum width[31℄. Unfortunately, the plot for Γ(UC) 
an not be 
ontinued beyond UC ≈ 3Jbased on the available data due to the vanishing 
entral peak. In order to do so,it will probably be ne
essary to further redu
e JC and at the same time to in
reasethe energy resolution. This will then allow us to de
ide wether the vanishing ofthe 
entral peak is an e�e
t due to the poor energy resolution, or if it is an e�e
tinherent to the system.Summary and OutlookIn this 
hapter we have presented a method to extra
t the impurity Green's fun
-tion of the IRLM by means of an expansion by orthogonal polynomials. We have
ompared the resulting spe
tral fun
tion for the situation with no ele
tron-ele
tronintera
tion with analyti
al results and �nd good agreement, even though the numer-i
al data have been extra
ted from the simulation of a system with �nite size, whilethe analyti
al 
al
ulation has been 
arried out for the thermodynami
 limit. In orderto remove the �nite size broadening η, we applied a quadrati
 extrapolation of theself-energy for η → 0, generalizing on the pres
ription dis
ussed in [87℄ (poor man'sde
onvolution). We found the width of the 
entral peak of the spe
tral fun
tion togrow monotoni
ally, even for values of the intera
tion UC > 2J , beyond the self-dualpoint � in 
ontrast, the linear 
ondu
tan
e has been shown to grow in width up to47



Chapter 4 Green's fun
tions in the Resolvent Representationthis point, and then to start shrinking again [31℄. However, for values of UC > 3J ,the 
entral peak disappears 
ompletely, whi
h might be attributed to the poor en-ergy resolution in the middle of the band. Improved boundary 
onditions [87℄ 
ouldhelp to de
ide wether this is an e�e
t due to the poor energy resolution, or possiblya property that is inherent in the system, 
onne
ted with the ratio of the 
oupling
JC and band width 4J . Remarkably, for growing intera
tion, additional peaks showup, lo
ated outside the band. Sin
e their positions seem to be independent of the
oupling JC, we 
on
lude that these peaks must be related to the �nite band width.Finally we have to add that the results presented here are 
onsidered preliminary� more investigations have to be 
arried out to de
ide the open questions sket
hedabove. Also, we did not yet 
arry out an error analysis. The Chebyshev moments µn,
omputed using the DMRG, 
ontain a trun
ation error, related to the �nite valueof N
ut; 
f. se
tion 3.2. For the moment, we do not know if the results presented inthis 
hapter show qualitative errors related to the trun
ation pro
edure.Of 
ourse, this method is also appli
able to other kinds of systems. For example,we are 
urrently 
omputing the lo
al density of states for the 1D Hubbard model.Also, bulk Green's fun
tions 
an be 
omputed.A great advantage over the 
orre
tion ve
tor method [30,111℄ 
onsists in the fa
tthat the polynomial moments µn have to be 
omputed only on
e, while the Green'sfun
tion then 
an be evaluated for the whole range of values ω and η. Also, analyti
manipulations 
an be in
orporated on the level of the expansion 
oe�
ients αn,whi
h allows 
omputation of the time-dependent 
orrelation fun
tion 〈ĉ†(t)ĉ(t = 0)〉from the same set of numeri
al data, for example. The disadvantages of the methodhave also been dis
ussed: the number of moments that has to be 
al
ulated fora given value of η s
ales proportional to the system size, and also proportional to
1/η (
f. se
tion 3.4 and espe
ially Eq. (3.95)). For resolving narrow stru
tures inthe spe
trum, this method therefore might be inappli
able, or at least relativelyexpensive in terms of 
omputation resour
es.Non-equilibrium Green's fun
tions A generalisation to non-equilibrium Green'sfun
tions is straightforward. In view of the dis
ussion of the extra
tion of 
urrent-voltage 
hara
teristi
s from real-time simulations in the next 
hapter, this wouldprovide an alternative approa
h to the 
omputation of 
urrent in a steady state,based on the dire
t evaluation of the Meir�Wingreen formula within the frameworkof DMRG. However, we did not yet implement the numeri
s that is ne
essary to
ompute the relevant polynomial moments, therefore we 
an not provide any resultsat this point. Instead, we 
ontend ourselves with the dis
ussion of the 
orrespondingformulas, leaving the appli
ation to physi
al problems for future investigation.Analogous to Eqns. (4.13, 4.14), we de�ne (η1, η2 > 0, η = η1 + η2)
G+

Â,B̂
(ω + iη) =

i~

2π

∞∫

−∞

dω ′ 〈Ψ| 1

Ĥ + ~(ω′ + iη2)
Â

1

~(ω − ω′ + iη1) − Ĥ
B̂|Ψ〉, (4.29)
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4.2 Single-parti
le spe
trum
G−

Â,B̂
(ω+iη) = − i~

2π

∞∫

−∞

dω ′ 〈Ψ|Â 1

Ĥ + ~(ω′ + iη2)
B̂

1

~(ω − ω′ + iη1) − Ĥ
|Ψ〉, (4.30)for a non-equilibrium steady state |Ψ〉. Herefore we have made use of the relation

1

2π

∞∫

−∞

dω e−iωt i

x+ ω + iη
=

1

2
ei(x+iη)|t|[1 + sgn(t)], x, t ∈ R, η > 0. (4.31)Similar to Eqns. (3.80, 3.81) we may now apply a polynomial expansion to bothoperator fun
tions,

f+
~(ω′+iη2)(−Ĥ) =

1

Ĥ + ~(ω′ + iη2)
, f+

~(ω−ω′+iη1)
(Ĥ) =

1

~(ω − ω′ + iη1) − Ĥ
, (4.32)separately, 
f. Eq. (3.88). If we de�ne the Chebyshev moments µmn as

µ+
mn = 〈Ψ|Tm(H̃)ÂTn(H̃)B̂|Ψ〉, µ−

mn = 〈Ψ|ÂTm(H̃)B̂Tn(H̃)|Ψ〉, (4.33)we 
an rewrite the Green's fun
tion as
G±

Â,B̂
(ω + iη) = ± i~

2π

∑

m,n

µ±
mn

∞∫

−∞

dω ′ α+
m

(
a(~(ω′ + iη2) + b)

)
×

× α+
n

(
a(~(ω − ω′ + iη1) + b)

)
, (4.34)with appropriate res
aling a and shift b, 
orresponding to a 
onvolution of the ex-pansion 
oe�
ients α+

n as de�ned in Eq. (3.92).
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Chapter 5Non-Equilibrium TransportSimulations in Impurity ModelsThe numeri
al 
omputation of the time evolution of an initial non-equilibrium stateof a system that is 
omposed of an intera
ting nanostru
ture 
oupled to nonintera
t-ing leads is the 
entral subje
t of this work. In 
hapter 2 we shortly dis
ussed howto 
ast the system in an appropriate model, while in 
hapter 3, we gave an overviewof the numeri
al methods we used to obtain the time evolution of strongly 
orrelatedmany-parti
le systems, based on the DMRG method. In the present 
hapter, we nowturn to the appli
ation of the s
heme to a situation, where a �nite, time-dependent
urrent is �owing through the nanostru
ture, driven by a bias voltage. The 
hapteris divided in two parts: First we dis
uss the 
on
ept of 
al
ulating the �nite bias 
on-du
tan
e of nanostru
tures based on real time simulations [43�49, 51�53, 55�60, 67℄within the framework of the DMRG [61, 62, 64�66℄, with a strong fo
us on the ef-fe
ts resulting from the �nite size of the model's Hamiltonian. Then we extend theapproa
h to the evaluation of shot noise [84, 85℄.In a �rst approa
h of time-dependent dynami
s within DMRG, the time-dependentS
hrödinger equation was integrated in the Hilbert spa
e obtained in a �nite lat-ti
e ground state DMRG 
al
ulation [43℄. Sin
e this approa
h does not in
lude thedensity matrix for the time evolved states, its appli
ability is very limited. Thisproblem was 
ured by extending the density matrix with the 
ontributions of thewave fun
tion at intermediate time steps [44℄, while the DMRG was restri
ted tothe in�nite latti
e algorithm. The 
al
ulations have been 
onsiderably improved byrepla
ing the integration of the time-dependent S
hrödinger equation with the eval-uation of the time evolution operator using a Krylov subspa
e method for matrixexponentials and by using the full �nite latti
e algorithm [47℄. An introdu
tion tothis approa
h has been given in 
hapter 3.An alternative approa
h is based on wave fun
tion predi
tion [63℄. There, one �rst
al
ulates an initial state with a stati
 DMRG. One iteratively evolves this state by
ombining the wave fun
tion predi
tion with a time evolution s
heme. In 
ontrast tothe aforementioned full td-DMRG, one only keeps the wave fun
tions for two timesteps in ea
h DMRG step. Di�erent time evolution s
hemes have been implementedin the past using approximations like the Trotter de
omposition, [45, 46, 55℄, or theRunge-Kutta method [48℄. The idea of the adaptive DMRG method was 
ombined50



with the dire
t evaluation of the time evolution operator via a matrix exponentialusing Krylov te
hniques as des
ribed in Ref. [47℄. Therefore the method involves noTrotter approximations, the time evolution is unitary by 
onstru
tion, and it 
an beapplied to models beyond nearest-neighbour hopping.In the �rst part of this 
hapter, we dis
uss the setup we use for the simulation insome detail. This in
ludes a dis
ussion of several possibilities to implement a �nitebias voltage, the extra
tion of the 
urrent-voltage 
hara
teristi
s from numeri
aldata that are strongly a�e
ted by �nite-size e�e
ts, as well as a review of the resultsthat have been obtained for a multi-level stru
ture [49, 67℄. Con
erning �nite-sizee�e
ts, damped boundary 
onditions (DBC) have been applied in order to obtainan in
reased e�e
tive system size in the regime of small bias voltage [30, 59, 60, 88℄,where an improved s
heme for linear 
ondu
tan
e was presented in [31℄. In the non-intera
ting 
ase, this enhan
ed system size in the 
ase of the DBC 
an be tra
edba
k to a shift of the dis
rete single parti
le energy levels of the system towardsthe 
enter of the band. We demonstrate that this pro
edure 
an also be used whenapplying a bias voltage of the order of magnitude of the band width when handled
arefully.In the se
ond part of this 
hapter (
f. se
tion 5.6) we dis
uss a method to deter-mine out-of-equilibrium shot noise in quantum systems from knowledge of their timeevolution [84℄. The main issues for the numeri
al 
omputation do not depend onintera
tion e�e
ts. Therefore we �rst 
on
entrate on the single resonant level modelwithout intera
tion, where we obtain a 
omplete 
hara
terisation of �nite size e�e
tsat zero frequen
y. We �nd that the �nite size 
orre
tions s
ale ∝ G2, where G is thedi�erential 
ondu
tan
e. We also dis
uss �nite frequen
y noise, as well as the e�e
tsof DBC. For the intera
ting resonant level model, we show results at its self-dualpoint, where 
omparison with analyti
 
al
ulations is possible [85℄, as well as forother values of the intera
tion. Finally we dis
uss the limitations of the method.Intera
ting Nanostru
ture The Hamiltonian for an intera
ting nanostru
ture
oupled to two leads is given by Eqns. (2.16-2.20). For a sket
h of the setup 
omparealso Fig. 2.3. Sin
e we 
on
entrate on spinless fermions, we arrive at (stru
ture: ĤS,
oupling: ĤC,L/R, leads: ĤL/R)
ĤS = −

ML+MS−2∑

x=ML

JS,x(ĉ
†
xĉx+1 + H.
.) +

ML+MS−1∑

x=ML

Vg,xn̂x +

ML+MS−2∑

x=ML

US,x(n̂x −
1

2
)(n̂x+1 −

1

2
), (5.1)

ĤC,L = −JC(ĉ†ML−1ĉML
+ ĉ†ML

ĉML−1) + UC(n̂ML−1 − 1/2)(n̂ML
− 1/2),

ĤC,R = −JC(ĉ†ML+MS−1ĉML+MS
+ H.
.) + UC(n̂ML+MS−1 −

1

2
)(n̂ML+MS

− 1

2
), (5.2)

ĤL = −J
ML−2∑

x=0

(ĉ†xĉx+1 + ĉ†x+1ĉx), ĤR = −J
M−2∑

x=ML+MS

(ĉ†xĉx+1 + ĉ†x+1ĉx), (5.3)
Ĥ = ĤL + ĤC,L + ĤS + ĤC,R + ĤR. (5.4)51



Chapter 5 Non-Equilibrium Transport Simulations in Impurity ModelsThe number of latti
e sites in the leads (on the stru
ture) is given by ML/R (MS),the stru
ture is 
oupled symmetri
ally to the leads (JC ≡ JC,L = JC,R, the samefor the ele
tron-ele
tron intera
tion UC). We on
e more want to note that due tonegle
ting the spin degree of freedom, only nearest-neighbour intera
tion 
an bein
luded, sin
e an orbital 
an be o

upied only on
e due to the Fermi statisti
s ofthe parti
les. The individual latti
e sites are labelled a

ording to Fig. 5.1.Current The 
urrent operator Îx at an arbitrary bond x 
an be derived from the
harge operator Q̂x = −eN̂x using a 
ontinuity equation ∂tQ̂x = −Îx, where forany one-dimensional tight-binding Hamiltonian the total parti
le number N̂x in thesubsystem �left of� a 
ertain latti
e site x is well de�ned by
N̂x =

x∑

x′=0

n̂x′ (5.5)with the parti
le number n̂x′ on latti
e site x′. In the Heisenberg pi
ture this amountsto the equation of motion
Îx ≡ − d

dt
Q̂x = − i

~
[Ĥ, Q̂x]. (5.6)For the tight-binding Hamiltonian (5.4), the 
urrent operator and its expe
tationvalue with respe
t to a state |Ψ〉 take the form

Îx = i
e

~
Jx

[
ĉ†xĉx+1 − ĉ†x+1ĉx

]
⇒ Ix = −2e

~
Jx Im〈Ψ(t)|ĉ†xĉx+1|Ψ(t)〉. (5.7)We de�ne the 
urrent through the nanostru
ture as an average over the 
urrent inthe left and right 
onta
ts to the nanostru
ture

I(t) = [IML−1(t) + IML+MS−1(t)]/2. (5.8)Shot Noise Shot noise is de�ned as the zero-temperature 
ontribution to noise ina transport state. To obtain the noise power spe
trum from a real time simulation,the 
urrent-
urrent 
orrelations in the time domain
S(t, t′) =

1

2
〈∆Î(t)∆Î(t′) + ∆Î(t′)∆Î(t)〉 (5.9)

= Re〈∆Î(t)∆Î(t′)〉 (5.10)have to be 
al
ulated in a non-equilibrium zero-temperature state, where ∆Î(t) =
Î(t) − 〈Î(t)〉 [112, 113℄. Therefore, the time-dependent expe
tation value

〈∆Î(t)∆Î(t′)〉 = 〈Ψ|eiĤt/~∆Îe−iĤ(t−t′)/~∆Îe−iĤt′/~|Ψ〉 (5.11)has to be evaluated. In a steady state with 
onstant 
urrent the 
orrelation fun
tionmust ful�l S(t, t′) ≡ S(t − t′). Then the noise power 
an be de�ned as the Fouriertransform
2πδ(ω + ω′)S(ω) = 〈∆Î(ω)∆Î(ω′) + ∆Î(ω′)∆Î(ω)〉, (5.12)52



5.1 Initial 
onditions and time evolutionwhere
S(ω) = 2

∞∫

−∞

dt eiωtS(t, t′ = 0) = 4Re

∞∫

0

dt eiωtS(t, t′ = 0). (5.13)The right-hand side of the equation a

ounts for the symmetry S(t− t′) = S(t′− t).In a steady state, of 
ourse, this expression should be independent of the 
hoi
e ofthe time t′
S = 4Re

∞∫

t′

dt eiω(t−t′)S(t, t′) ∀ t′. (5.14)In the zero-frequen
y limit ω = 0 this expression simpli�es to
S ≡ S(ω = 0) = 4

∞∫

t′

dt S(t, t′) = 4

∞∫

t′

dt Re〈∆Î(t)∆Î(t′)〉. (5.15)Shot noise of the ground state We now assume that the expe
tation value 〈·〉is obtained for the ground state |Ψ0〉 of the system. Based on general arguments it
an be proven that in this 
ase,
S(ω = 0) = 0. (5.16)For a proof, 
f. se
tion B.3. In se
tion 5.6 we investigate shot noise for systemsin a steady non-equilibrium state at �nite bias voltage, where we fo
us on zero-frequen
y noise. For small values of the voltage we will �nd strong �nite size e�e
ts,leading to non-zero shot noise even at zero bias voltage. For temperature T = 0,zero bias voltage is equivalent to the system being in its ground state, whi
h meansthat there is a 
ontradi
tion to Eq. (5.16). Under 
ertain 
onditions it turns out tobe possible to remove this �nite size e�e
t. In order to 
he
k the reliability of thenumeri
al results, relation (5.16) therefore is very important in the 
ontext of thiswork.5.1 Initial 
onditions and time evolutionThe preparation of a stri
tly steady non-equilibrium state with 
onstant �nite 
ur-rent is possible only in the 
ase of in�nite leads. The �swit
hing on� of the voltage,be it quen
hing of the leads by an additional 
hemi
al potential or 
onne
ting theinitially isolated stru
ture to leads with di�erent potential, then is sent to the in�-nite past in analyti
 
al
ulations in order to damp e�e
ts due to the voltage beingswit
hed. Instead, for the numeri
al simulation of the full time evolution of the
omplete system (in
luding the stru
ture and the leads), one is restri
ted to sys-tems of �nite size, as for example given by Eqns. (5.1-5.4). Then, stri
tly speaking,a steady non-equilibrium state is impossible. An ex
itation that is generated in thevi
inity of the stru
ture of interest will travel towards the boundaries of the system53



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models

Figure 5.1 Intera
ting nanostru
ture atta
hed to non-intera
ting leads and s
hemati
density pro�le (green solid line) of the N -parti
le wavepa
ket at initial time t = 0. Thedensity pro�le 
orresponds to the N -parti
le ground state of the Hamiltonian Ĥ + ĤSD, 
f.Eq. (5.17), where the bias voltage enters as a lo
al 
hemi
al potential VSD (bla
k dottedline).where it gets re�e
ted, disturbing the measurement at the stru
ture. This imposesa maximum simulation time tR, the transit time, whi
h prohibits the initial time tobe sent to the in�nite past. On the other hand, after swit
hing on the voltage atsome initial time, the initial os
illating behaviour due to the swit
hing will not de
aybefore a 
ertain settling time tS. Knowing this, one has to restri
t the measurementto a 
ertain time interval [tS, tR]. The time s
ales of this type of �nite size e�e
t willbe dis
ussed in the following se
tions.With that in mind, we now dis
uss several possible ways to generate a 
harge im-balan
e at initial time, imposing a voltage drop a
ross the nanostru
ture. Followingthe pres
ription implemented in [47, 52℄ we add an external bias potential, namelythe 
harge operator,
ĤSD =

VSD

2
(N̂L − N̂R), N̂L =

ML−1∑

x=0

n̂x, N̂R =

M−1∑

x=ML+MS

n̂x (5.17)to the unperturbed Hamiltonian Ĥ, Eq. (5.4), and take the ground state |Ψ0〉 =
|Ψ(t = 0)〉 of Ĥ+ĤSD, obtained by a standard �nite latti
e DMRG 
al
ulation, as theinitial state at time t = 0 [47℄. If the ele
tron-ele
ton intera
tion UC, US is negle
tedin Eqns. (5.1,5.2), one may instead resort to exa
t diagonalisation te
hniques asdes
ribed in se
tion 3.1. The minimization of the energy of the system leads toa 
harge imbalan
e in the right (sour
e) and the left (drain) lead 
orrespondingto VSD, as sket
hed in Figs. 5.1, 5.2 (a). Alternatively, the bias voltage also 
an54



5.1 Initial 
onditions and time evolution

Figure 5.2 Di�erent initial 
onditions, 
orresponding to (a) Ĥinit. = Ĥ +VSD(N̂L−N̂R)/2and (b) Ĥinit. = Ĥ. The band width for the 
osine band is 4J . Assuming a single parti
lepi
ture, we understand that in 
ase (a), in
reasing the bias voltage VSD to a value greaterthan the band width qualitatively does not 
hange the initial state, sin
e all parti
lespopulate only one of the two leads, while for 
ase (b), quen
hing the leads to di�erentenergies at the initial time prevents some parti
les (holes) from tunneling from one lead tothe other be
ause of energy 
onservation. For this reason there is no 
urrent �ow in theextreme 
ase of VSD > 4J , 
f. Fig. 5.4.be added to the time evolution. The initial state |Ψ0〉 then has to be obtained asthe ground state of the unperturbed Hamiltonian Ĥ , while the time evolution isperformed using Ĥ + ĤSD, 
f. also Figs. 5.2 (b).5.1.1 Numeri
al time evolutionStarting from |Ψ0〉, the time evolution of the system results from the time evolutionoperator Û(t) with
|Ψ(t)〉 = Û(t)|Ψ0〉, (5.18)whi
h leads to �ow of the extended wave pa
ket through the whole system until itis re�e
ted at the hard wall boundaries as des
ribed in [47℄. Corresponding to thetwo di�erent s
hemes introdu
ed before, Û is given as either(a) Û(t) = e−iĤt/~ or (b) Û(t) = e−i(Ĥ+ĤSD)t/~. (5.19)The time-dependent DMRG now 
omputes a series of states |Ψ(n∆t)〉, n ∈ N, start-ing from the initial state |Ψ0〉, by repeatedly applying the time evolution operatorfor �nite, but small time steps ∆t

|Ψ((n+ 1)∆t)〉 = U(∆t)|Ψ(n∆t)〉, (5.20)55



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsusing the Krylov subspa
e method des
ribed in se
tion 3.3. Typi
ally, we 
hoose ∆ton the time s
ale determined by the hopping in the leads, ∆t ≈ 0.5~/J , resultingin ∼ 10 . . . 20 Krylov iterations until the Krylov approximation has 
onverged. Thetime-dependent 
urrent as de�ned in Eq. (5.7) then is evaluated as
Ix(t) = 〈Ψ0|U †(t)ÎxU(t)|Ψ0〉 = 〈Ψ(t)|Îx|Ψ(t)〉, t = n∆t. (5.21)Alternatively, for the non-intera
ting 
ase, with US = UC ≡ 0 in Eqns. (5.1-5.4),we 
an apply single-parti
le de
omposition as dis
ussed in se
tion 3.1, sin
e thenthe Hamiltonian of the system 
an be written in the form of Eq. (3.2). The timeevolution of the 
urrent operator Îx 
an be expressed in terms of Eqns. (3.9-3.11),

〈Ψ0|ĉ†x(t)ĉx+1(t)|Ψ0〉 =
∑

x′y′

U(t)x+1,y′Ψy′x′

0 U †(t)x′,x, Ψy′x′

0 =
∑

ν

U0
y′νñν [Ψ0]U

0†
νx′.(5.22)The time evolution here is given by U(t), the single-parti
le time evolution operator,
onstru
ted from the 
orresponding square form Hxy as de�ned in Eq. (3.2). Theinitial state enters in form of the matrix Ψy′x′

0 . The unitary transform U0 diago-nalises the square form of the Hamiltonian the ground state of whi
h serves as theinitial state |Ψ0〉 of the 
al
ulation. Finally, nν [Ψ0] denotes the o

upation numberof the single parti
le states at zero temperature for the eigenstates of the initialHamiltonian.5.1.2 Analysis of the di�erent time evolution s
hemesThe sudden swit
hing of the bias voltage at initial time results in a ringing of the
urrent in a transient time regime [114℄, see also Fig. 5.3 (a). Here we show theshort time behaviour of the 
urrent through a single impurity 
oupled to two leadsin a system with M = 120 latti
e sites in total. This transient behaviour with its
hara
teristi
 os
illations de
ays to a quasi-stationary state on the time s
ale tS ∝ Γ,where Γ is the width of the 
ondu
tan
e peak. By smearing out the voltage dropover a few latti
e sites one may redu
e this e�e
t. Furthermore, the �nite size of thesystem leads to re�e
tion of wave pa
kets at the boundaries, 
f. Fig. 5.3 (b). A wavepa
ket travelling with Fermi velo
ity vF from the impurity towards the boundarieswill return to the impurity after a transit time given by tR ∝ M/vF, whi
h is the
hara
teristi
 time s
ale for �nite size e�e
ts appearing in the expe
tation value oftime-dependent observables.To 
ompare the approa
hes (a) and (b), we show a 
urrent-voltage 
hara
teris-ti
s in Fig. 5.4 for the resonant level model with a single impurity (MS = 1, 
f.Fig. 5.1) 
oupled to two leads via the hopping matrix element JC = 0.4J and thegate voltage as well as the intera
tion set to UC = Vg = 0. The dots 
orrespond toresults obtained numeri
ally using exa
t diagonalisation, while the lines 
orrespondto analyti
 
al
ulations in
luded for 
omparison. Here, the straight line shows the
urrent assuming linear s
aling with VSD with linear 
ondu
tan
e g = e2/h, whilethe 
urved line overlaid by the numeri
al results for approa
h (a) has been obtained56
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Figure 5.3 Time-dependent 
urrent through a single non-intera
ting impurity 
oupled tononintera
ting 1D leads for vanishing gate voltage Vg = 0. The system 
onsists of M latti
esites and N parti
les at nominal �lling N/M = 0.5. We �nd three time domains: 1. aninitial transient regime with de
aying os
illations, 2. a pseudo stationary 
urrent plateauand 3. �nite size re�e
tions. (a) Shortly after the initial swit
hing of the bias voltage thetime-dependent behaviour is dominated by os
illations whi
h de
ay to a 
onstant 
urrentplateau on the time s
ale tS (here: JC = 0.3J , M = 120). (b) The �nite size of the systemleads to re�e
tions at the boundaries. A wave pa
ket that runs through the system startingat the impurity will be re�e
ted at the boundaries and returns to the impurity after time
tR. This results in the typi
al pattern with re
urrent sign 
hanges of the 
urrent (here:
JC = 0.5J , M = 60).
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ILB Figure 5.4I�V-
hara
teristi
s for the resonant levelmodel with JC = 0.4J and Vg = UC = 0.The linear 
ondu
tan
e is g = e2/h. Theplot shows results for two di�erent timeevolution s
hemes: (a) the initial state
|Ψ0〉 of the system is the ground stateof the Hamiltonian Ĥ + ĤSD, while thetime evolution is performed as |Ψ(t)〉 =
exp(−iĤt/~)|Ψ0〉. (b) |Ψ0〉 is the groundstate of Ĥ, time evolution is performedas |Ψ(t)〉 = exp[−i(Ĥ + ĤSD)t/~]|Ψ0〉.For further dis
ussion see Fig. 5.2 andthe text.using the Landauer�Büttiker approa
h, 
f. also se
tion B.1 in the appendix, taking
osine-dispersion into a

ount.The pro
edure of extra
ting the 
urrent from the numeri
al data will be des
ribedin the next se
tion. Here we want to emphasize the di�erent results we get for the I�57



Chapter 5 Non-Equilibrium Transport Simulations in Impurity ModelsV-
urve for the two di�erent 
ases. For the tight-binding Hamiltonian the dispersionrelation is given by εk = −2J cos k, with a �nite band width 4J . For the approa
h(a), in the non-intera
ting 
ase, this leads to a saturation of I(VSD) for all valuesof the bias voltage VSD ≥ 4J . Further in
reasing VSD beyond the band edge doesnot 
hange the initial o

upation of energy levels. In 
ontrast, for the 
ase (b), theparti
les will be distributed equally over the left and the right lead in the initial state
|Ψ0〉, whereas the voltage enters in the time evolution operator. For small values of
VSD we �nd a good agreement for I(VSD) for (a) and (b), while for VSD & 2J thereis a mismat
h whi
h �nds its expression in a 
urrent maximum for 0 < VSD < 4Jwith a subsequent break down to I = 0 for VSD > 4J . This behaviour has beenpredi
ted in [115℄ and 
an be understood from Fig. 5.2 (b), whi
h explains howenergy 
onservation prevents parti
les (holes) to tunnel from one lead to the otherwhi
h removes 
ontributions to the 
urrent. More re
ently, a detailed analysis of thenegative di�erential 
ondu
tan
e for the situation (b) has been 
arried out [116℄. Inthis work, it has been realised that the density of states in the leads adds a major
ontribution to the breakdown of the 
urrent. Note that (a) 
orresponds to thesituation of wide band metalli
 leads. Sin
e our emphasis lies on the des
ription ofnanostru
tures atta
hed to metalli
 leads we prefer to work in this approa
h. Whendes
ribing situations with band gap materials as leads one should refer to approa
h(b).Moreover, there are other approa
hes to how the initial state and the time evolu-tion 
an be de�ned. For example, in addition to pres
ription (a), the 
oupling JCand the intera
tion UC 
an be set to zero for the 
al
ulation of |Ψ0〉. In this 
ase (
),both leads as well as the stru
ture are totally independent systems, and there is avery intuitive 
onne
tion of VSD and the di�eren
e of the parti
le number in the leftand the right lead, be
ause the isolated leads 
an be des
ribed in a single parti
lepi
ture. The drawba
k of this approa
h, whi
h adds a sudden swit
hing of JC and
UC in addition to the swit
hing of VSD at initial time t = 0, is an enhan
ed transientregime and therefore a redu
ed plateau of 
onstant 
urrent that we need to extra
tthe I�V-
urve from. In Fig. 5.5 we 
ompare the time-dependent 
urrent obtainedusing the di�erent initial 
onditions (a) and (
) for a single impurity 
oupled to twoleads via JC = 0.4J , in
luding a �nite density-density intera
tion UC = 2.0J , fordi�erent values of VSD. To evaluate the time evolution of a system with �nite inter-a
tion numeri
ally, we used the td-DMRG method, with parameters as des
ribed inthe �gure 
aption of Fig. 5.5. For both approa
hes (a) and (
), we �nd a time regimeof (quasi) 
onstant 
urrent. However, approa
h (a) has several advantages over (
):the 
urrent plateau is more 
onsistent, whi
h simpli�es analysis, and to keep thedis
arded entropy Sdis
 in the td-DMRG 
al
ulation below a prede�ned threshold,the number of states, whi
h have to be kept in the DMRG, is 
onsiderably higher for(
) as 
ompared to (a), making approa
h (
) 
omputationally mu
h more expensive.The latter point is illustrated in Fig. 5.6, where we 
ompare the maximum dimen-sion Ncut of the DMRG proje
tion s
heme that is ne
essary to keep Sdis
 . 10−3, fordi�erent values of the bias voltage VSD, of the gate voltage Vg and of the intera
tion
UC. We always �nd a mu
h smaller value of Ncut for (a) as 
ompared to (
).58
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Figure 5.5Time-dependent 
urrent through a single im-purity 
oupled to nonintera
ting 1D leadswith JC = 0.4J and UC = 2.0J for di�er-ent values of VSD and vanishing gate voltage
Vg = 0. The system 
onsists of M = 48 lat-ti
e sites and N parti
les at nominal �lling
N/M = 0.5. The 
urrent is obtained from atd-DMRG 
al
ulation by performing the timeevolution on an initial non equilibrium state,using a DMRG proje
tion s
heme with a vari-able number of kept states 100 ≤ Ncut ≤
5600 with the dis
arded entropy Sdis
 keptbelow a 
ertain value (here: Sdis
 . 10−3;
f. also Fig. 5.6). (a) The initial state
|Ψ0〉 
orresponds to the situation sket
hedin Fig. 5.2(a) where |Ψ0〉 is obtained as theground state of Ĥinit = Ĥ + ĤSD, (
) The ini-tial state |Ψ0〉 is obtained as the ground stateof Ĥinit∣∣JC=0,UC=0

. The 
urrent plateau weare looking for 
an be obtained more reliablewhen using pres
ription (a).
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Figure 5.6 Maximum dimension Ncut of the DMRG proje
tion s
heme for an I�V-
al
ulation ne
essary to keep the dis
arded entropy Sdis
 below a 
ertain value (here:
Sdis
 . 10−3) for di�erent 
on�gurations I to IV and di�erent values of the bias volt-age VSD, where we used 100 ≤ Ncut ≤ 5600 states as a se
ond limitation. Here, the 
urrentthrough the 
onta
t links to a single impurity with JC = 0.4J is obtained for 70 time steps(∆t = 0.4~/J) in a system with M = 48 latti
es sites at half �lling. (a) The initial state
|Ψ0〉 is the ground state of Ĥinit = Ĥ + ĤSD, (
) |Ψ0〉 is obtained as the ground state of
Ĥinit∣∣JC=0,UC=0

.
59



Chapter 5 Non-Equilibrium Transport Simulations in Impurity ModelsAnother problem of approa
h (
) is the dis
retization of the I�V-
urve into stepsresulting from the dis
rete single parti
le energy levels of the initial state; whenin
reasing the voltage, the parti
les get transferred from one lead to the other oneby one, as long as leads and stru
ture are de
oupled, whereas a �nite 
oupling atinitial time allows for 
ontinous 
harge transfer in between the leads. This 
ouldprobably be handled using a pro
edure similar to the one des
ribed in se
tion 5.3.2.For these reasons we will use approa
h (a) throughout the remainder of this 
hap-ter.5.2 Di�erential and linear 
ondu
tan
eFor the 
al
ulation of the DC-
ondu
tan
e through the nanostru
ture the time evo-lution has to be 
arried out for su�
iently long times until a quasi-stationary stateis rea
hed and the steady state 
urrent I 
an be 
al
ulated. If the stationary state
orresponds to a well-de�ned applied external potential VSD, the di�erential 
ondu
-tan
e is given by G(VSD) = e ∂I(VSD)/∂VSD. In the limit of a small applied potential,
VSD → 0, the linear 
ondu
tan
e is given by g(VSD) = eI(VSD)/VSD.To dis
uss the general behaviour of the time evolution from an initial non-equilib-rium state we �rst 
onsider the most simple 
ase we 
an think of: transport througha single impurity. The 
urrent rises from zero and settles into a quasi-stationarystate, Fig. 5.3 (a). After the wavepa
kets have traveled to the boundaries of thesystem and ba
k to the nanostru
ture, the 
urrent falls ba
k to zero and 
hangessign, 
f. Fig. 5.3 (b). Additionally there is a third type of �nite size os
illations,Fig. 5.7. Here we show the time-dependent 
urrent for di�erent 
on�gurations, fromthe leads to the impurity on a single (left or right) 
onta
t link, and through theimpurity as de�ned in Eq. (5.8). After the initial os
illations have de
ayed on thetime s
ale tS, the 
urrent through a single 
onta
t link shows remaining os
illations,with an amplitude depending on VSD and Vg, and proportional to the inverse of thesystem size 1/M . The latter is demonstrated in Fig. 5.8. The period of the os
illationdepends on the applied bias voltage, 
ompare Fig. 5.7 (b, 
), but is independent ofthe system size, Fig. 5.7 (b-d), and of the gate potential, Fig. 5.9, and is given by
tJ = 2π~/|VSD|. In the resonant tunneling 
ase (Fig. 5.7 (a), Vg = 0), the os
illationson the left and the right 
onta
t link 
an
el in the 
urrent average Eq. (5.8) due to adi�erent sign in the amplitude of the os
illations ĨJ, whi
h does not hold in general(Fig. 5.7 (b-d), Vg 6= 0), where the amplitude of the os
illations as a fun
tion of thegate potential Vg varies di�erently on the individual 
onta
t links, Fig. 5.9.In Fig. 5.9 we plot the �t of the os
illation frequen
y ω̃J = 2π/t̃J as a fun
tion ofthe gate potential Vg for a �xed value of VSD, where we �nd ω̃J to be independentof the gate potential. To be pre
ise, the �t ni
ely 
on�rms the above relation of
VSD and os
illation period. This periodi
 
ontribution to the 
urrent is reminis
entof the Josephson 
ontribution in the tunneling Hamiltonian, obtained by gaugetransforming the voltage into a time-dependent 
oupling J̃C(t) = JC exp(iVSDt/~)[49, 110℄. Like in a tunnel barrier in a super
ondu
tor, we have a phase 
oherent60



5.2 Di�erential and linear 
ondu
tan
e
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Figure 5.7 Current through a single impurity (MS = 1) with JC = 0.3J at nominal �lling
N/M = 0.5 obtained from exa
t numeri
al diagonalization (a-
), or DMRG in
ludingintera
tion (d), respe
tively � (a) for di�erent system sizes M at bias voltage VSD = 0.1Jand gate voltage Vg = 0. The bla
k dashed line 
orresponds to the mean value of the�t values Ĩ for the left and right 
onta
t link, for M = 60 latti
e sites. The �t intervalhas to be 
hosen 
arefully � initial os
illations from the bias voltage swit
hing and the�nite transit time have to be taken into a

ount. Even though the period of the �nite sizeos
illations 
onsiderably ex
eed the system size M = 60 for VSD = 0.1J , the �t 
urrent Ĩis in ni
e agreement with the 
urrent plateau of the M = 120 system. However, �nite sizee�e
ts still have to be addressed (b, Vg = 0.3J , VSD = 0.1J , and 
, Vg = 0.3J , VSD = 0.4J)sin
e in general the �t 
urrent 
an strongly depend on the system size � in parti
ular, anon-zero gate voltage 
hanges the parti
le number density in the leads when the overallparti
le number is �xed. The same �t pro
edure 
an be applied to intera
ting systems (d,
UC = 2.0J , VSD = 0.4J , Vg = 0.3J). 61



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsquantum system, namely the ground state at zero temperature. Instead of thesuper
ondu
ting gap we have a �nite size gap resulting from the �nite nature of theleads. Therefore the amplitude of this residual wiggling vanishes proportional to the�nite size gap provided by the leads.The stationary 
urrent is given by a �t to Ĩ + ĨJ cos(2πt/tJ + ϕ̃) with the �t-parameters tagged by a tilde, where we do not �t the os
illation period tJ be
auseit is known. In general, the density in the leads, and therefore also the 
urrent,depends on the system size and a �nite size analysis has to be 
arried out in orderto extra
t quantitative results (Fig. 5.7 (b,
), see also dis
ussion of Fig. 5.17). Onlyin spe
ial 
ases (parti
le-hole symmetry, half �lled leads, and zero gate potential)the stationary 
urrent is independent of the system size, 
f.Fig. 5.7 (a).5.3 Finite size e�e
tsFinite size e�e
ts su
h as the �nite transit time of a wave pa
ket travelling throughthe system and the periodi
 
ontribution to the 
urrent make it di�
ult to ob-tain a pseudo-stationary state where a 
onstant 
urrent 
an be extra
ted from thetime evolution. This problem 
an be treated by a �t pro
edure as dis
ussed in theprevious se
tion. However, in the small bias regime, where the amplitude of theos
illations is bigger than the (expe
ted) 
urrent and the os
illation time tJ ex
eedsthe transit time, this approa
h is unreliable. In se
tion 5.5 we dis
uss the possibilityof e�e
tively enlarging the system using damped boundary 
onditions (DBC) whilekeeping the system size M 
onstant (
f. Fig. 2.4). Furthermore, the time evolutionof the 
urrent strongly depends on the number of latti
e sites of the leads being evenor odd, Figs. 5.10, 5.12. In Fig. 5.10 we 
ompare this e�e
t for a non-intera
ting two-dot stru
ture for di�erent system sizes in the regime of very small voltage VSD ≪ J ,where we 
onsider three qualitatively di�erent 
ases, (a) tR ≪ tJ, (b) tR ≈ tJ and (
)
tR ≫ tJ, where tR, tJ denote the transit time and os
illation period respe
tively, asdis
ussed in se
tion 5.1. Sin
e the number of single parti
le energy levels is equal tothe number of latti
e sites, these relations are 
onne
ted to VSD and the level spa
ing
∆ε as, (a) ∆ε ≫ VSD, (b) ∆ε ≈ VSD and (
) ∆ε ≪ VSD. Intuitively one would expe
tthat the level dis
retisation must be small 
ompared to the energy s
ales of interest,and indeed we �nd, that on the time s
ale t < tR the numeri
al simulation �ts bestwith the analyti
 result ILB obtained from the Landauer�Büttiker approa
h in 
ase(
) (see Fig. 5.10; 
f. also se
tion B.1 in the appendix). However, in all 
ases, thetime evolution of the 
urrent depends on the di�erent 
on�gurations of the leadswith even or odd number of latti
e sites. Two aspe
ts must be distinguished: (1) thequalitative di�eren
e in the time evolution depending on whether the number of leadsites is equal (as for the e2e and the o2o 
on�guration), or unequal (as for the e2oand the o2e 
on�guration), is 
learly demonstrated in the �gure. For the two-dotstru
ture, this holds true even for tR ≫ tJ, Fig. 5.10 (
). For the o2o and the e2e
on�gurations we �nd a behaviour where the 
urrent suddenly in
reases by a fa
torof ∼ 2 after the transit time tR has passed, as opposed to the �expe
ted� behaviour62



5.3 Finite size e�e
ts
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Ĩ J
[e

J
/h

]

1/M

Vsd = 0.1J
Vsd = 0.4J
Vsd = 1.0J
Vsd = 2.0J
Vsd = 3.0J

Figure 5.8Os
illation amplitude ĨJ from�ts as shown in Fig. 5.7, as fun
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urrentthrough a single 
onta
t link toa single impurity, with JC =
0.5J and Vg = 0.
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tFigure 5.9 Fit of the os
illation frequen
y ω̃J = 2π/t̃J of the Josephson os
illations ina system with M = 120 latti
e sites and a single resonant level with JC = 0.3J at abias voltage VSD = 0.4J . The os
illation period extra
ted from the time evolution of the
urrent is in ex
ellent agreement with the analyti
al expression ωJ = |VSD|/~. The kinksthat appear in ω̃J 
an be tra
ed ba
k to the fa
t that the amplitude of the os
illations
ĨJ vanishes for Vg ≈ ±VSD/2 at either the left or the right 
onta
t link. The residualwiggling (its amplitude as well as its frequen
y) depends on the size and the position ofthe �t interval, [tmin, tmax], and is therefore 
onsistent with a �nite �tting interval in timedomain.with a sign 
hange, seen for the o2e and the e2o 
on�guration. (2) An overall oddnumber of latti
e sites M (the o2e and the e2o 
on�gurations, for example) shiftsthe �lling fa
tor in the leads away from 0.5 due to their �nite size. A similar ef-fe
t results from applying a gate voltage Vg 6= 0, whi
h imposes a problem to theextra
tion of the linear 
ondu
tan
e. A possible solution is dis
ussed in Se
. 5.3.2.63



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models5.3.1 Even-odd e�e
tIn [58℄, a detailed analysis of �nite size e�e
ts resulting from an even or odd numberof latti
e sites in the leads for a single-dot and for a three-dot stru
ture with on-siteintera
tion in
luding the spin degree of freedom has been 
arried out. The behaviourof the time dependen
e of the 
urrent resulting from the type of the lead (even orodd number of sites) has been tra
ed ba
k to the di�erent magneti
 moment ofthe system whi
h is Sz
total = 1/2 for an overall odd number M of latti
e sites and

Sz
total = 0 for M being even. The redu
tion of the 
urrent in a situation wherethe leads both 
onsist of an even number of sites (ene) as 
ompared to the otherpossible 
ombinations (one, ono) has been explained by the a

umulation of spinon the stru
ture in the �rst 
ase 
orresponding to the e�e
t of applying an externalmagneti
 �eld.We already �nd parity e�e
ts in the time dependen
e of nonintera
ting spinlessfermions in a system with a single-dot or a two-dot stru
ture, Figs. 5.10, 5.12. Inthe following we will tra
e the parity e�e
ts ba
k to the level stru
ture in the leads.The single parti
le levels εk of an un
oupled, nonintera
ting lead with Mα sites(α = L,R) are given by εk = −2J cos[πk/(Mα + 1)], k = 1, . . . ,Mα. The energy ofa parti
le residing on a de
oupled single dot stru
ture (JC = 0) is simply given bythe gate voltage εd = Vg, whi
h is at the Fermi edge for Vg = 0. For a de
oupled
MS-dot stru
ture one gets εd,j = −2JS cos[πj/(MS + 1)]+Vg, j = 1, . . . ,MS. For anequal number of sites on both leads (as for example eMSe or oMSo) there is a twofolddegenera
y of the single parti
le lead levels whi
h does not exist ifML = MR±1. Inthe degenerate 
ase, single parti
le eigenfun
tions 
an be 
onstru
ted with a fullydelo
alized parti
le density while for ML = MR ± 1, the density pro�le of the singleparti
le wave fun
tions shows an alternating 
on�nement of the parti
le on eitherthe left or the right lead. The same holds true for the energy levels of the stru
ture:if degenerate with a lead level, the single parti
le wave fun
tion 
an be distributedover the whole lead while it is lo
alized on the stru
ture otherwise. In the e1e 
ase,the single-dot level is not degenerate with the lead levels when εd = 0. As a result, asingle parti
le o

upying the dot level generates a sharp peak in the density pro�le(as well as the spin pro�le). For the o1o 
ase on the other hand, both leads have oneenergy level in the middle of the band, whi
h together with the dot level generatesa threefold degenera
y. For �nite 
oupling JC > 0, the degenera
y of the lead levelsand of the levels of the stru
ture with the lead levels gets lifted. The single parti
lewave fun
tions must be divided equally on both leads, when ML = MR, while thealternating 
on�nement is preserved for ML = MR ± 1. Con
erning the energy levelof the dot, the threefold degenera
y in the un
oupled o1o 
ase results in two levelswith strong lo
alization on the dot, one lifted above the Fermi edge and one pushedbelow, and a third level with vanishing parti
le density on the dot, remaining onthe Fermi edge. Compare also appendix A.In a system with an odd number of latti
e sites M and spinless ele
trons, half�lling 
an not be realized stri
tly sin
eN = M/2 is not an integer. Adding spin shiftsthe parti
le number at half �lling to N = M but leaves a total spin Sz

tot = ±1/2,64
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Figure 5.10Current through the 
onta
t link of astru
ture with two dots (JS = J), 
ou-pled to leads with a �nite number ofsites M and JC = 0.5J (
ompare alsoFig. 5.1), at nominal half �lling N/M =
0.5 obtained from exa
t numeri
al diag-onalization for bias voltage VSD = 0.05J .The horizontal dotted lines represent theanalyti
al result ILB obtained from theLandauer�Büttiker approa
h. The 
ur-rent is measured on the left link to thestru
ture. The time axis is normalizedto the transit time tR = M~/(2J). Here,the fo
us is on �nite size e�e
ts in thelow voltage regime. We distinguish three
ases: the system size is very small in
ase (a) where M = 60+x with x = 0 (29latti
e sites on the left and right whi
h isan odd number in both 
ases o2o), x = 1(now 30 sites on the left whi
h is an evennumber e2o), x = 2 (e2e) and x = 3(o2e). Here, the single parti
le level spa
-ing ∆ε is mu
h bigger than VSD, whilethe period of the Josephson os
illations
tJ = 2π~/|VSD| is mu
h bigger than thetransit time tR. Case (b) shows an in-termediate situation with M = 252 + xlatti
e sites (∆ε ≈ VSD, tJ ≈ tR). (
)
M = 1200 + x (∆ε < VSD, tJ < tR). Forthe e2o and the o2e 
ase one has to do adensity shift 
orre
tion of the result sin
ethe total number of parti
les N 6= M/2,
f. Se
. 5.3.2.whi
h will o

upy the highest single parti
le level. Sin
e for the doubly o

upiedlevels the spin adds up to 0, the level at the Fermi edge determines the spin densitypro�le whi
h then explains the density peak on the dot in the e1e 
ase and theabsen
e of a peak in the o1o 
ase. The time-dependent behaviour of the 
urrent
an now be tra
ed ba
k to the single parti
le energy levels being 
on�ned in a singlelead (fully delo
alized) in the 
ase of di�erent numbers of latti
e sites ML = MR ±1(equal number of latti
e sites ML = MR). For the eMSo and oMSe 
on�gurations,applying a bias voltage as in Eq. (5.17) leads to an alternating o

upation of theenergy levels 
orresponding to the alternating 
on�nement of the single parti
le wavefun
tions in the left or the right lead. In 
ontrast we �nd an o

upation number65



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsof 1/2 in the energy range −VSD/2 . . . VSD/2 when ML = MR, 
orresponding to thefully delo
alized single parti
le wave fun
tions. We demonstrate this behaviour forthe non-intera
ting resonant level model (RLM) in Fig. 5.11.So far, we have a 
onne
tion of the degenera
y of the single parti
le energy levelsfor the situation where the impurity is de
oupled from the leads with the respe
tive
lass of the system (eMSo / oMSe, oMSo, eMSe). The situation 
hanges when addinga 
onstant lo
al potential
∆V̂ = ∆VLN̂L + ∆VRN̂R (5.23)to both, the initial and the time evolution Hamiltonian. To obtain the data ofthe dotted lines in Fig. 5.12 we 
al
ulated the single parti
le energy levels for asystem with an even (odd) number of latti
e sites in the leads and then applied arelative shift of the lead levels with ∆VL = −∆VR ∈ {∆ε/4,∆ε/2} for the two-dotstru
ture and ∆VL ∈ {±∆ε/2}, ∆VR = 0 for the single dot stru
ture, where ∆ε isthe energy gap to the �rst uno

upied energy level. This allows us to 
hange thelevel stru
ture of a 
ertain lead 
on�guration in a way that it resembles one of theother 
on�gurations in the vi
inity of the Fermi edge without 
hanging the numberof latti
e sites in the leads. In Fig. 5.12 we see that the time-dependent behaviourof the system on the time s
ale t < tR is only given by the stru
ture of the singleparti
le energy levels that 
ontribute to the 
urrent, and the bias voltage VSD, atleast as long as we do not in
lude intera
tion. We therefore 
on
lude that oMSo as

VSD [J ]

EnergyLevel
sε k[J] level o

upation

0 2 4
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Figure 5.11 Initial o

upation of the single parti
le energy levels in the non-intera
tingRLM (JC = 0.4J) at half �lling. The number of latti
e sites is M = ML + MR + 1 withthe number of latti
e sites in the left (right) lead ML (MR). (a) ML + 1 = MR = 30.The alternating o

upation 
an be tra
ed ba
k to the alternating 
onstraint of the singleparti
le wave fun
tions in either the left or the right lead. (b) ML = MR = 30. In theun
oupled 
ase (JC = 0), the energy levels of the leads are degenerate. Therefore theenergy levels 
an not be asso
iated with only one lead.66



5.3 Finite size e�e
ts
0

0.04

0.08

0 10 20 30

I
[e

J
/h

]

(a)
Time t [~/J ]

0 10 20 30 40

0

0.004

0.008(b)o2oe2oe2eo2e e1ee1oo1o
Figure 5.12 Current through a stru
ture 
oupled to two leads (mean value of left andright 
onta
t link) with an overall �nite system size M at half �lling obtained from exa
tdiagonalization. The �gure demonstrates the in�uen
e of the number of latti
e sites in theleads (even or odd) on the 
urrent for a bias voltage VSD smaller than the single parti
lelevel spa
ing. The dotted lines represent a situation where an additional 
onstant voltage
∆V is applied to both leads (a) or to the left lead (b), respe
tively. ∆V 6= 0 results in ashift of the single parti
le levels in the un
oupled leads whi
h 
an be used to �mimi
� thedi�erent 
ombinations of leads with an even or odd number of latti
e sites. (a) M = 60+x,
x = 0 (o2o), 1 (e2o), 2 (e2e) and 3 (o2e) where the number of ele
trons is N = 30 for
M = 60, 61 and N = 31 for M = 62, 63. The dotted lines all together are generated usinga system with M = 60 latti
e sites, with ∆V 6= 0. The di�erent situations e2o and o2e 
anbe re
overed by 
hanging the parti
le number from N = 30 to N = 31, 
f. se
tion 5.3.2.(b) M = 61 + x, x = 0 (e1e), 1 (o1e) and 2 (o1o) where the parti
le number is �xed to
N = 31. Here, the green (red) dotted line is generated from the e1e (o1o) system.well as eMSe 
on�gurations also 
an be used to study the I�V-
hara
teristi
s in thelow voltage regime. This may be interesting when investigating stru
tures with aneven number of latti
e sites on the stru
ture, when the 
onstraint N = M/2 has tobe ful�lled stri
tly.5.3.2 Density shift in the leads resulting from �nite systemsizeFor the single resonant level model (RLM) the 
ondition of half �lling is easilyful�lled by setting the parti
le number N = M/2 as long as the dot level resides inthe middle of the band. Then the overall parti
le number density is N/M = 1/2in the equilibrium 
ase. This 
an 
hange for di�erent reasons: for example, for amodel with two latti
e sites in the stru
ture and an overall odd number of latti
esites as dis
ussed before half �lling is not realisable, sin
e M/2 is not an integer.But even for the RLM, applying a gate voltage Vg 6= 0 
hanges the parti
le numberon the stru
ture by ∆NS while 
hanging the parti
le number per site in the leadsby −∆NS/(M − 1) whi
h shifts the lead �lling away from 1/2 as long as the system67



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelssize M is �nite. In this se
tion we will 
on
entrate on the latter 
ase.The impa
t on the 
urrent 
an be quite large, 
ompare Figs. 5.13, 5.14. The totalnumber of parti
les must therefore be 
orre
ted in su
h a way that NLeads/(M−1) =
1/2 where NLeads = N−NS is the parti
le number in the leads. Thus an initial state
|Ψi〉 has to be a mixture of states with di�erent parti
le numbers |ΨN〉 and |ΨN+1〉,or |ΨN−1〉, respe
tively, depending on the sign of ∆NS

|Ψi〉 = α|ΨN〉 + β|ΨN±1〉, (5.24)so that
〈Ψi|N̂Leads|Ψi〉 =

M − 1

2
. (5.25)For parti
le number 
onserving operators Ô the expe
tation value reads

〈Ψi|Ô|Ψi〉 = |α|2〈ΨN |Ô|ΨN〉 + |β|2〈ΨN±1|Ô|ΨN±1〉 (5.26)whi
h leads to the 
ondition
|α|2〈ΨN |N̂Leads|ΨN〉+|β|2〈ΨN±1|N̂Leads|ΨN±1〉 =

M − 1

2
, |α|2+|β|2 = 1. (5.27)Sin
e the 
urrent operator Îx also is parti
le number 
onserving, the resulting time-dependent 
urrent expe
tation value is an interpolation of the results for N and for
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N = M/2linear envelope
N = M/2 − 1interpolationanalyti
 result

Figure 5.13 Current through a single impurity with an applied gate voltage Vg = 0.21Jfor VSD = 0.5J , 
oupled to two leads (JC = 0.3J), as a fun
tion of the system size. Theanalyti
 result is obtained using the Landauer�Büttiker formula. While for di�erent �llings(N = M/2 and N = M/2 − 1) there is a systemati
 deviation from the analyti
 result,the interpolation results in a substantial improvement. The linear envelope is plotted tohighlight the 1/M -dependen
y of the �nite size e�e
ts. For an explanation of the sinusoidalos
illations see also Fig. 5.14 and the text.
68



5.3 Finite size e�e
ts
N ± 1 parti
les in the system

Ix(t) = |α|2Ix(t;N) + (1 − |α|2)Ix(t;N ± 1). (5.28)In Fig. 5.13 we show the dependen
y of the 
urrent through a single impurity
oupled to two leads on the system size for di�erent �llings N = M/2 as well as
N = M/2− 1, for a 
onstant value of the bias voltage VSD and the gate voltage Vg.Furthermore we in
lude the interpolated value, following the pro
edure des
ribedbefore. We �nd that the interpolated results are 
entered around the analyti
 value,in 
ontrast to the 
ase with �xed parti
le number. However a distribution with anamplitude ∝ 1/M remains. A potential relation of the sinusoidal os
illations in theoriginal data to the relative position of VSD/2 to the single parti
le energy levels isillustrated in Fig. 5.14. Here, we show the 
urrent as a fun
tion of VSD with Vg 6= 0,where we also apply the interpolation pro
edure. We 
ompare the analyti
al resultobtained using the Landauer�Büttiker approa
h with numeri
al data for the 
urrentthrough a single impurity 
oupled to two leads with a system size of M = 62 latti
esites in total. In order to interpolate the 
urrent as des
ribed before, Eq. (5.28),we simulated the time evolution of the 
urrent expe
tation value with N = 30 and
N = 31 parti
les in the system. In 
omparison to Fig. 5.13 we 
on
lude that one
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Figure 5.14 Current through a single impurity with an applied gate voltage Vg = 0.21J ,
oupled to two leads (JC = 0.3J), as a fun
tion of the voltage VSD. The verti
al linesrepresent the single parti
le energies of a system with un
oupled leads (JC = 0.0); we �ndthat the interpolated value of the 
urrent �ts best with the analyti
al result if the biasvoltage is 
hosen as the mean value of two neighbouring energy levels (a). However, this
ondition restri
ts the bias voltage to only a few values. The restri
tion 
an be 
ir
um-vented by either in
reasing the number of latti
e sites M or by using damped boundary
onditions. The latter was used to obtain the values (b) without 
hanging M � see se
tion5.5.3 for dis
ussion.
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Figure 5.15 Current and di�erential 
ondu
tan
e as fun
tion of applied potential througha single impurity with Vg = 0 and half �lled leads: N/M = 0.5. Cir
les (squares) showresults for JC = 0.5J (0.35J). System size was M = 48 (M = 96) and Ncut = 200 (400)states were kept in the DMRG. Lines are exa
t diagonalization results for M = 512.has to 
hoose the system size in relation to the bias voltage 
arefully to get thedesired relation of VSD and the single parti
le levels. More pre
isely, the data points(a), that �t ni
ely with the analyti
 
urve, 
orrespond to the interpolated 
urrentobtained for a bias voltage where VSD/2 has been 
hosen as the mean value of twoneighbouring energy levels of the un
oupled (JC = 0) system. Another possibilityis the use of damped boundary 
onditions to shift the single parti
le levels, whi
hyields the data points (b). This idea will be dis
ussed in Se
tion 5.5.3.A generalisation of this 
on
ept to systems with stru
tures of MS > 1 sites with a
orresponding number of energy levels is straightforward. A varying gate voltage will
hange the o

upation of the stru
ture in a range NS ∈ [0,MS] with a 
orresponding
hange of the parti
le number in the leads. To get reliable results for the 
urrent athalf �lling in the leads it is then ne
essary to perform an interpolation of 
urrentswith appropriate parti
le numbers. Results for the linear 
ondu
tan
e of a 7-sitestru
ture are dis
ussed in the next se
tion.5.4 Results for the 
ondu
tan
eThe result1 for the di�erential 
ondu
tan
e through a single impurity in Fig. 5.15is in ex
ellent quantitative agreement with exa
t diagonalization results alreadyfor moderate system sizes and DMRG 
uto�s. A

urate 
al
ulations for extendedsystems with intera
tions are more di�
ult, mainly be
ause the numeri
al e�ortrequired for our approa
h depends 
ru
ially on the time to rea
h a quasi-stationarystate. For the single impurity, the quasi-stationary state is rea
hed on a times
ale1The results of this section have been presented in [49] for the first time. In order to demonstrate
the reliability of the methods discussed before, we include these results at this point.70



5.4 Results for the 
ondu
tan
e

Figure 5.16 Di�erential 
ondu
tan
e as a fun
tion of bias voltage through a 7 site nanos-tru
ture with nearest neighbour intera
tion. Parameters are JC = 0.5J , JS = 0.8J ,and N/M=0.5. Squares (
ir
les) denote weak (strong) intera
tion with US/JS = 1 (3)(here: UC = 0.0). Lines are �ts to a Lorentzian with an energy-dependent self-energy
Σ = iη0 + iη1µ

2. Dashed lines: η1 = 0. System size is M = 144 (M = 192) and 600 (800)states were kept in the DMRG.proportional to the inverse of the width of the 
ondu
tan
e resonan
e, J/(2J2
C),in agreement with the result in Ref. [114℄. In general, extended stru
tures withintera
tions will take longer to rea
h a quasi-stationary state, and the time evolutionhas to be 
arried out to 
orrespondingly longer times.In Fig. 5.16 we show results for the �rst di�erential 
ondu
tan
e peak of an inter-a
ting MS = 7-site nanostru
ture. Careful analysis of the data shows, that in orderto reprodu
e the line shape a

urately, one has to introdu
e an energy-dependentself-energy for US/JS = 3. Sin
e the e�e
t is small, we approximate it by a 
or-re
tion quadrati
 in the bias voltage di�eren
e µ = VSD − Vpeak. It is important tonote that for the strongly intera
ting nanostru
ture, US/JS = 3, the 
ondu
tan
epeaks are very well separated. Therefore the line shape does not overlap with theneighbouring peaks, and the �t is very robust. Performing the same analysis for anon-intera
ting nanostru
ture with a 
omparable resonan
e width, we obtain negli-gible 
orre
tions to η1 in the self-energy, indi
ating that the 
hange of the line shapeis due to 
orrelation e�e
ts.The linear 
ondu
tan
e as a fun
tion of applied gate potential 
an be 
al
ulatedin the same manner, if a su�
iently small external potential is used. We study thesame 7-site nanostru
ture as before, with intera
tion US = 0, and use a bias voltageof VSD = 2 · 10−4J . For half �lled leads, the result for the linear 
ondu
tan
e 
al
u-lated with a �xed number of fermions, N/M = 0.5, is qualitatively 
orre
t, but the
ondu
tan
e peaks are shifted to higher energies relative to the expe
ted peak posi-tions at the energy levels of the non-intera
ting system (Fig. 5.17). Varying the gate71
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Figure 5.17 Transport through a non-intera
ting 7-site nanostru
ture with JC = 0.5J and
JS = 0.8J . The energy levels of the nanostru
ture are indi
ated by dashed verti
al lines.(a) Linear 
ondu
tan
e for di�erent N . The result after applying �nite size 
orre
tionsis shown as straight line (see text for details). (b) Number of fermions on the 7-sitenanostru
ture. (
) Density ρ = (N − NS)/(M − MS) in the leads. The system size is
M = 96 and the number of states kept in the DMRG is Ncut = 400.potential Vg in
reases the 
harge on the nanostru
ture by unity whenever an energylevel of the nanostru
ture moves through the Fermi level, 
f. Fig. 5.17 (b). The den-sity in the leads varies a

ordingly, 
f. Fig. 5.17 (
). Sin
e the number of fermionsin the system is restri
ted to integer values, dire
t 
al
ulation of the linear 
ondu
-tan
e at 
onstant parti
le density ρ in the leads is not possible and one must resortto interpolation. Using linear interpolation in ρ(N, Vg) for N = 44 . . . 48 yields our�nal result for the linear 
ondu
tan
e at half �lling, 
f. Fig. 5.17 (a). The agreementin the peak positions is well within the expe
ted a

ura
y for a 96 site 
al
ulation.Our results for the 
ondu
tan
e through an intera
ting extended nanostru
ture arepresented in Fig. 5.18. The 
al
ulation for the weakly intera
ting system requiresroughly the same numeri
al e�ort as the non-intera
ting system. In the stronglyintera
ting 
ase, where the nanostru
ture is now in the 
harge density wave regime,the time to rea
h a quasi-stationary state is longer, and a 
orrespondingly largersystem size was used in the 
al
ulation. In both 
ases we obtain peak heights forthe 
entral and �rst 
ondu
tan
e resonan
e to within 1% of the 
ondu
tan
e for a72
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Figure 5.18 Linear 
ondu
tan
e through an intera
ting 7 site system with JC = 0.5Jand JS = 0.8J for weak (squares) and strong (
ir
les) intera
tion. System size is M = 96(M = 192) and 400 (600) states were kept in the DMRG. Finite size 
orre
tions have beenin
luded. Lines are guides to the eye.single 
hannel.5.5 Exponential dampingIn this se
tion we study the e�e
ts and potential appli
ations of damped bound-ary 
onditions (DBC). DBC have been introdu
ed into DMRG 
al
ulations before,in order to redu
e �nite size e�e
ts [30, 59, 60, 88℄. Here we would like to redu
ethe limitations arising from a �nite transit time tR and Josephson wiggling, whi
hespe
ially in the low voltage regime spoils the a

ura
y of 
urrent measurements.We have already seen how to exploit the voltage dependen
y of the �nite size wig-gling by using a �t pro
edure, whi
h allows for the 
al
ulation of 
urrent-voltage
hara
teristi
s even with an applied gate voltage. We now dis
uss the possibilityof 
ombining the �t pro
edure with DBC, where the damping e�e
tively in
reasesthe system size. Furthermore we want to use DBC to adjust the single parti
leenergy levels in order to in
rease the resolution with respe
t to VSD when Vg 6= 0,
f. Fig. 5.14.5.5.1 Estimate for Transit Time in a system with DBC athalf �llingIn Fig. 5.19 we show the time-dependent 
urrent through a single impurity with
Vg = 0, for di�erent values of the bias voltage VSD, from the initial transient regime,until after the �rst �nite size re�e
tion. We 
ompare two di�erent system sizeswith M = 120 and M = 240 latti
e sites, and apply exponentially DBC in orderto demonstrate the in
reased e�e
tive system size. The hopping matrix elementis damped towards the boundaries of the system using a damping 
onstant Λ as73
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Figure 5.19 Time-dependent 
urrent through a single impurity with JC = 0.3J , Vg =
UC = 0, at nominal half �lling N/M = 0.5, obtained from exa
t numeri
al diagonalizationfor di�erent bias voltages VSD and di�erent damping 
onditions. For small bias voltage,�nite size re�e
tions from hard wall boundary 
onditions (HWBC, a) 
an be suppressedsigni�
antly using damped boundary 
onditions (DBC). Using an exponential dampingwith Λ−1/2 = 0.93, M = 120 and MΛ = 50 (b) yields a plateau of 
onstant 
urrent for
VSD = 0.4J 
onsiderably bigger than in the undamped 
ase. However, with in
reasing biasvoltage, the 
urrent plateau starts to de
ay before the estimated transit time a

ording toEq. (5.30) is rea
hed (here: tR ≈ 670). Redu
ing the damping (
, d) 
an lead to goodagreement with the estimate (tR(c) ≈ 178, tR(d) ≈ 123).sket
hed in Fig. 2.4, over a range of MΛ latti
e sites. The total number of latti
esites is left un
hanged (here: M = 120, 240). In most 
ases, we �nd an enhan
edsize of the 
urrent plateaus, however, under 
ertain 
onditions, the damping 
analso lead to an early breakdown of the 
urrent.An estimate for the transit time of a wave pa
ket travelling in undamped leads ofsize M 
an be obtained from the Fermi velo
ity vF = 2J/~, whi
h leads to

tR ≈ M

vF
=
M~

2J
. (5.29)Assuming a lo
al Fermi velo
ity vF(x) = 2J(x)/~ in damped leads with damping74
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ase. Allvalues are plotted as fun
tions of the damped lead size MΛ. The top panels show the singleparti
le level density for the energy given by the bias voltage, in units of the level densityfor the undamped 
ase. (See text for details)
Λ > 1 leads to an expression of the form

tR ≈ M~

2J

(

1 − 2MΛ

M

)

+
2~

J ln Λ

(
ΛMΛ/2 − 1

) (5.30)where MΛ is the size of the damped leads. Eq. (5.30) 
an then be used to estimatean e�e
tive system size
Meff ≈ M − 2MΛ +

4

ln Λ

(
ΛMΛ/2 − 1

)
, (5.31)in agreement with the results for the pseudo-steady 
urrent found for the noninter-a
ting 
ase, Fig. 5.19. For a quantitative test of the expression for tR, we 
omparethe transit time, extra
ted from a 
urrent measurement, to the estimate given by75
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retisation in a �nite system(M = 120) with a single impurity, 
ou-pled to leads (JC = 0.3J) as fun
tion ofthe damping rate Λ−1/2 (a, b), as well asfun
tion of the size MΛ of the dampedleads (
). The damping lead size is set to(a) MΛ = 30 and (b) MΛ = 50, while for(
) the damping rate is set to Λ−1/2 =
0.98. The implementation of dampedleads in 
ombination with leads des
ribedby a uniform tight binding 
hain 
an beused to in
rease the level density in thevi
inity of the Fermi edge while allowingfor dire
t a

ess to real spa
e quantitieslike the 
urrent at a spe
i�
 latti
e site,as for example the impurity.
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Eq. (5.30); 
f. Fig. 5.20. We use two di�erent 
riteria: (a) the time t(a)R where İ(t)be
omes negative at the end of the �rst plateau (
rosses), and (b) the time t(b)
R wherethe 
urrent 
hanges sign after one round trip (squares). The bla
k dotted lines show

t
(a)
R and t

(b)
R for the undamped 
ase. For values of Λ−1/2 
lose to 1 we �nd goodagreement between Eq. (5.30) and the simulations over a wide range of values of

MΛ for both 
onditions, (a) and (b), and even for large bias voltages. The growth of
t
(a,b)
R /tR 
an be explained by di�erent ex
itation velo
ities for |VSD| > 0. However,the estimate be
omes less a

urate and even wrong for small bias voltages and smallvalues ofMΛ, provided Λ−1/2 be
omes too small. For ea
h 
ase, the top panels showthe relative single parti
le level density at energy VSD/2. As 
an be expe
ted, 
f.Fig. 5.21, the level density grows with MΛ until a maximum is rea
hed. The posi-tion of the maximum is determined by the bias voltage. It 
an 
learly be seen that,using 
ondition (a), the position of the maximum, in 
ombination with the valuesof t(a)R /tR, gives a strong indi
ation if a 
urrent plateau is still well de�ned for timeson the order of the estimate of tR, sin
e t(a)R /tR ≃ 1 for values of MΛ on the leftside of the maximum of the single parti
le level density. In 
omparison, 
ondition(b) is a weak 
riterion, sin
e for strong damping the 
urrent plateau starts de
ayingfor times mu
h shorter than tR, 
f. Fig. 5.19. In Fig. 5.21, we show the singleparti
le energy levels of a system with M = 120 latti
e sites with a single impurity,as fun
tion of the damping 
onstant Λ−1/2 and of the size of the damped leads MΛ.The plot demonstrates the growth of the level density on the s
ale Λ−MΛ/2, whi
hin 
onjun
tion with Fig. 5.20 allows for an estimate of the maximum value of VSDup to whi
h a 
urrent plateau 
an be expe
ted in a system with DBC.76



5.5 Exponential damping5.5.2 Fit Pro
edureAs already mentioned in Se
. 5.3, the �tting pro
edure be
omes unreliable when theos
illation time tJ substantially ex
eeds the range [tS, tR]. We now demonstrate howto use the estimate for the transit time to implement damping 
onditions in order tosu�
iently in
rease the e�e
tive system size, enfor
ing tJ ≃ tR − tS. As an example,we simulate the time evolution of a system with M latti
e sites and a single, non-intera
ting impurity with Vg = 0, and apply a small bias voltage VSD > 0. An
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Figure 5.22 Current through a single impurity with JC = 0.3J and Vg = UC = 0. Thetime axis is normalized to the os
illation period tJ = 2π~/VSD, with (a) VSD = 0.02J and(b) VSD = 0.1J . For VSD = 0.02J (a), the os
illation period is tJ = 314~/J . To obtain a
urrent plateau 
ontaining at least one Josephson os
illation one has to simulate the timeevolution of a system with M & 630, whi
h is very di�
ult on present days 
omputerswhen intera
tion is in
luded. Here, we apply DBC on a system with M = 96 (M = 192)to e�e
tively in
rease the system size using (i) Λ ≈ 0.903, MΛ = 32 (ii, Λ ≈ 0.969,
MΛ = 84). A

identally, the �t value agrees with the analyti
 value nearly perfe
tly for
on�guration (i). For VSD = 0.1J (b), tJ = 63~/J ⇒ M & 126. The damping 
onditionsare 
hara
terized by (iii) Λ ≈ 0.93,MΛ = 20 and (iv) Λ ≈ 0.900,MΛ = 20, respe
tively.77
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tive transit time teffR ≈ tJ 
an be obtained using DBC, a

ording to Eqns. (5.30,5.31).The result is presented in Fig. 5.22, where we show the time-dependent 
urrentthrough one of the 
onta
t links of a single impurity for di�erent damping 
onditionsand two di�erent values of VSD. Again, we �t Ĩ+ ĨJ cos(VSDt/~+ϕ̃) to the os
illatingpart of the 
urrent expe
tation value. The extra
ted 
urrent Ĩ for the 
al
ulationsin
luding DBC agrees with the analyti
 result within ∼ 1%, whi
h is of the sameorder of magnitude as the mean value extra
ted from the very small plateau regimethat 
an be found for the system with hard wall boundary 
onditions. We 
on
ludethat DBC 
an be used to obtain a �rst guess, but for high pre
ision measurements,hard wall boundary 
onditions together with an in
reased system size have to beused, 
.f. M = 180 in Fig. 5.22(b). The failure of DBC for short leads 
an alsobe understood as an inverse tsunami e�e
t, 
ompare [87℄. Due to the exponentiallyredu
ed hopping elements the leads fail to provide a stru
tureless bath of parti
les.
5.5.3 Corre
tion of the single parti
le energy levels usingDBCIn Se
tion 5.3.2 we found that the e�e
ts resulting from a �nite density shift in theleads when applying a gate voltage 
an be signi�
antly suppressed when extra
tingthe 
urrent only for 
ertain values of VSD determined by the single parti
le levelspa
ing. Sin
e these �nite size e�e
ts parti
ularly arise in the middle of the bandwhere the density of single parti
le levels is the lowest � and where the 
urrent hasto be extra
ted for the 
al
ulation of the linear 
ondu
tan
e � one would like tosomehow shift the single parti
le levels towards the 
enter of the band. This 
anbe a
hieved by in
reasing the number of latti
e sites, but at the same time alsoin
reases the numeri
al e�ort.Applying DBC also results in a shift of the single parti
le energy levels in the leadstowards the 
enter of the band, 
f. Fig. 5.21. We therefore ask the question if the
riterion for the relation of bias voltage and single parti
le energy levels formulatedin Se
. 5.3.2 still holds for DBC. The result is shown in Fig. 5.14 (data set (b),pluses). To obtain the additional data points (b), we used damping 
onditions withvalues of Λ−1/2 = 0.91 . . . 0.98 andMΛ = 15, 20, 23. We 
al
ulated the single parti
leenergy levels for the de
oupled leads and obtained the 
urrent for values of the biasvoltage with VSD/2 in the middle of two neighbouring energy levels. To in
reasethe resolution for the high voltage regime only moderate damping 
onditions arerequired (Λ−1/2 = 0.98, MΛ = 15, 20), while strong damping is required to a
hievehigh resolution in the low voltage regime. For VSD approa
hing the band edge,however, DBC have to be avoided for the reasons dis
ussed earlier.78



5.6 Shot Noise in the Resonant Level Model5.6 Shot Noise in the Resonant Level ModelIt seems reasonable to expe
t that time-dependent DMRG 
an also be used todetermine 
urrent �u
tuations, whi
h 
ould also, in some setups, be determinedanalyti
ally [117℄. In order to rea
h this goal, it is 
ru
ial to be able to extra
t
umulants � in parti
ular the shot noise � from real time simulation methods. Inthis se
tion we dis
uss a method to do this, in
luding results for the IRLM.The main problem in the determination of noise is the �nite size analysis of theresults of non-equilibrium 
orrelation fun
tions for �nite systems. To 
on
entrateon this aspe
t, we �rst dis
uss results for the non-intera
ting resonant level model(RLM) where the numeri
al data 
an be obtained using exa
t diagonalisation (ED)te
hniques [84℄; 
f. also se
tion 3.1. Sin
e in this spe
i�
 
ase there are straight-forward analyti
al solutions of the problem, we 
an 
he
k the reliability of our ap-proa
h in great detail. As a main result of this work we then pro
eed to presentresults for shot noise in the IRLM with �nite intera
tion, at the self-dual point of themodel, where we 
an 
ompare to analyti
 results based on the thermodynami
 Betheansatz [85℄. To show the general appli
ability and the limitations of the s
heme, wealso in
lude results for other values of the intera
tion.We note that prior to our work, a numeri
al study of the full 
ounting statisti
sfor another non-intera
ting model appeared in [100℄. The method used there ishowever tailored to the free 
ase and uses intermediate analyti
al results from [77℄.Our approa
h, in 
ontrast, is based dire
tly on the `experimentally' measured time-dependent 
orrelation of the 
urrent. It is also not spe
i�
 to fermioni
 systems andmay be applied to the study of light-matter intera
tion in wave-guiding stru
tures[118℄.To make things 
on
rete, we start by giving the Hamiltonian of our test system.For the thermodynami
 limit, it is equivalent to Eq. (2.15). Of 
ourse, for thenumeri
al simulation, we have to restri
t the overall system size to a �nite numberof latti
e sites M = ML + MR + 1 again, 
orresponding to the nomen
lature ofEqns. (5.1-5.4), where we now pla
e the impurity in the 
enter of the system. In theremainder of this se
tion we 
on
entrate on the resonant 
ase at zero gate voltage
Vg = 0 and half �lling. We then arrive at

ĤC =
∑

x=0,1

[

− JC(ĉ†ML−1+xĉML+x + ĉ†ML+xĉML−1+x)

+ UC(n̂ML−1+x −
1

2
)(n̂ML+x −

1

2
)
]

, (5.32)
ĤL = −J

ML−2∑

x=0

(ĉ†xĉx+1 + ĉ†x+1ĉx), ĤR = −J
M−2∑

x=ML+1

(ĉ†xĉx+1 + ĉ†x+1ĉx), (5.33)
Ĥ ≡ Ĥ�niteIRLM = ĤL + ĤC + ĤR. (5.34)Shot noise is the 
ontribution to 
urrent �u
tuations at zero temperature � andhen
e a pure 
harge dis
retisation e�e
t. To prepare the system in a state with �nite79
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urrent through the stru
ture, we therefore use the re
ipe des
ribed in se
tion 5.1,adding a 
harge imbalan
e operator ĤSD = VSD[N̂L − N̂R]/2 to the Hamiltonian and
al
ulating the initial state as the ground state |Ψ(t = 0)〉 = |Ψ0〉 of Ĥ+ ĤSD. Here,
N̂L (N̂R) 
ounts the parti
le number in the left (right) lead. We then perform thetime evolution using the time evolution operator Û(t) = exp(−iĤt/~).5.6.1 Numeri
al 
omputation of 
urrent �u
tuationsThe following dis
ussion is based on the numeri
al 
omputation of time-dependent
urrent �u
tuations as de�ned in Eq. (5.10),

S(t, t′) = Re〈∆Î(t)∆Î(t′)〉 = Re〈Ψ0|∆Î(t)∆Î(t′)|Ψ0〉. (5.35)For strongly 
orrelated systems, we use the time-dependent DMRG to perform thetime evolution. Similar to the dis
ussion in se
tion 5.1.1, we have to obtain the timeevolution of the initial non-equilibrium state |Ψ0〉, for a set of time steps t = n∆t,
n ∈ N, and t′ = n′∆t, n′ ∈ N, based on the Krylov subspa
e method; 
f. se
tion 3.3.The evaluation of expressions of the form 〈∆Î(t)∆Î(t′)〉 = 〈Ψ0|∆Î(t)∆Î(t′)|Ψ0〉 thenamounts to the 
omputation of states
|Ψ(t′)〉 = U(t′)|Ψ0〉, |Ψ(t)〉 = U(t− t′)|Ψ(t′)〉, (5.36)
|ΨI(t

′)〉 = ∆Î|Ψ(t′)〉 =
[
Î − 〈Ψ(t′)| Î |Ψ(t′)〉

]
|Ψ(t′)〉, the same for |ΨI(t)〉, (5.37)

|ΦI(t
′ → t)〉 = U(t− t′)|ΨI(t

′)〉, (5.38)
⇒ 〈∆Î(t)∆Î(t′)〉 = 〈ΨI(t)|ΦI(t

′ → t)〉. (5.39)For details of the DMRG time evolution proto
ol and the use of Krylov subspa
emethods for the time evolution operator see se
tions 3.2, 3.3 and Ref. [47℄.Again, in the nonintera
ting 
ase with UC ≡ 0, we 
an apply the single-parti
lede
omposition method as des
ribed in se
tion 3.1; 
f. also se
tion 5.1.1. The Hamil-tonian of the IRLM, Eqns. (5.32-5.34), 
an be expressed by a square form as inEq. (3.2), whi
h allows evaluation of the time-dependent 
urrent-
urrent 
orrela-tions (5.35) by means of Eq. (3.12).5.6.2 Finite size e�e
ts study in the non-intera
ting 
aseSin
e we want to 
ompare the numeri
al data with analyti
al results, we restri
tourselves to the non-intera
ting 
ase with UC = 0 for the moment. The expe
tationvalue of Î(t), measured symmetri
ally on both 
onta
t links (
f. Eq. (5.8)), in theRLM for JC = 0.4J and for some values of VSD is shown in the upper part ofFig. 5.23, while in the lower part, the 
urrent-
urrent 
orrelation fun
tion S(t, tmin)
an be found, for t > tmin, and for a 
ertain value of tmin. E�e
ts like the �nitesettling time tS and the �nite transit time tR as well as the I-VSD-
hara
teristi
shave been already dis
ussed in this 
hapter in great detail.80
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urrent I(t), and 
urrent 
orrelation fun
tion S(t, tmin) with
tmin = 12, in the non-intera
ting resonant level model RLM, with tight-binding leads anda �nite system size of M = 60 latti
e sites, for di�erent values of the bias voltage VSD. The
I(t) 
urves show the three time regimes given by the settling time tS and the transit time
tR. The highlighted time domain indi
ates the integration range [tmin, tmax]. The insetdemonstrates an additional subtlety: the 
orrelation fun
tion shows �nite size re�e
tione�e
ts on the time s
ale t − tmin & tR/2, whi
h imposes an additional restri
tion on tmax.
At the beginning of this 
hapter we de�ned the noise power spe
trum as theFourier transform of the time-dependent 
urrent �u
tuations, 
f. Eqns. (5.9-5.15).We now want to see whether the noise 
an be reliably obtained in a real-time simu-lation based on these formulas. There are of 
ourse many obsta
les. The �rst 
omesfrom the 
al
ulation of a non-equilibrium 
orrelation fun
tion in the time domainfrom a real-time simulation. Be
ause we are restri
ted to a �nite system with Mlatti
e sites and hard walls, a steady transport state is not well de�ned. Instead, wemake the attempt to 
al
ulate the time evolution from the initial non-equilibriumstate |Ψ(t = 0)〉 as des
ribed before and look for a quasi-stationary time regime.The �swit
hing on� of a �nite sour
e-drain voltage VSD at the initial time 
auses aringing of the 
urrent [114℄, 
f. also Fig. 5.23, whi
h de
ays exponentially within asettling time tS. The 
urrent �nally enters a plateau regime, where the size of theplateau is given by the transit time tR whi
h is �nite due to the �nite size of thesystem [67℄, Fig. 5.23.Having performed the time evolution of the system in order to bring it �
lose� toa steady state, we now have to evaluate the integral (5.15) in a limited time range81



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsin order to obtain the low-frequen
y limit of the noise power spe
trum
Snum = 4

tmax∫

tmin

dt Re〈Ψ0|∆Î(t)∆Î(tmin)|Ψ0〉 (5.40)where tmin > tS and tmax < tR. Note, that tmax has to be 
hosen 
arefully, sin
e�nite size e�e
ts for the 
urrent-
urrent 
orrelations already o

ur on the time s
ale
t−tmin ≥ tR/2; 
f. also the inset of Fig. 5.23. The symmetri
 de�nition of S(t, tmin) =
S(tmin, t), 
f. Eq. (5.9), allows us to skip the integration over the time-range t < tmin,whi
h enables us to put tmin to the early period of 
onstant 
urrent. In a hypotheti
alsituation with a system of in�nite size where tR → ∞ the 
ontribution of

∞∫

tmax

dt Re〈Ψ0|∆Î(t)∆Î(tmin)|Ψ0〉
an be negle
ted if Re〈∆Î(t)∆Î(tmin)〉 is small for t > tmax as 
ompared to the meanvalue in the range tmin < t < tmax. One therefore has to 
hoose the size of thesystem to be big enough to ensure the 
orrelation fun
tion drops to zero within thetransit time. This seems to be the 
ase for the example given in Fig. 5.23, at leastfor values of the bias voltage VSD & J .The �nite transit time tR introdu
es a �nite 
uto� frequen
y
ω
ut = 2π/tR ∝ 1/M. (5.41)This is the main problem we en
ounter. In 
ontrast to the situation of in�niteleads, where zero frequen
y noise vanishes without applied voltage, we now �nda 
ontribution to the zero voltage shot noise of the order of S(ω
ut). The lowfrequen
y domain is the most interesting for the kind of problems we wish to study:low frequen
y is low energy and thus strong 
oupling between impurity and leads.The magnitude of the �nite size e�e
ts for the type of systems that 
an be stud-ied on the basis of the numeri
al 
omputation resour
es available today is far fromnegligible. On Fig. 5.24 we give results for the shot noise Snum obtained for di�erentsystem sizes ofM latti
e sites, as well as the expe
ted result S in the thermodynami
limit obtained from the Landauer�Büttiker approa
h (this is dis
ussed in more de-tails in the appendix). While the results measured for �nite size and the asymptoti
results agree at large voltages, there is a marked di�eren
e at small voltages, withan o�set at vanishing VSD. In the �gure, we also represent the �nite size 
orre
tion
∆Snum = Snum − S (5.42)res
aled by the system size M . For di�erent values of M the res
aled �nite size 
or-re
tions M × ∆Snum 
ollapse very well on a single 
urve, indi
ating that the main�nite size e�e
ts s
ale linearly with 1/M in the 
onsidered parameter regime. One82
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Figure 5.24 Noise S and squared di�erential 
ondu
tan
e G2 for JC = 0.4J . The bluelines represent the analyti
 values obtained using the Landauer�Büttiker approa
h. The�nite size of the system introdu
es an additional noise proportional to G2/M .may expe
t that the 
ut o� given by the �nite size of the leads 
orresponds to an ef-fe
tive �nite temperature ∼M−1 resulting in a low voltage o�set ∼ G/M . However,we �nd ∆Snum ∝ G2 with the di�erential 
ondu
tan
e G(VSD) = ∂I(VSD)/∂VSD.To understand the behaviour of ∆Snum, we 
onsider the full frequen
y dependen
eof the shot noise. It 
an be obtained analyti
ally in the wide band limit � see theappendix, Eq. (B.24). For values of JC/J ≪ 1, the numeri
al results obtained forthe model with 
osine dispersion relation should be 
onsistent with the analyti
alresult as long as the 
onsidered frequen
y is small 
ompared to the band width.This is illustrated in Fig. 5.25. There, the frequen
y-dependent noise is obtainedvia
Snum(ω) = 4Re

tmax∫
tmin dt eiω(t−tmin)S(t, tmin) (5.43)for di�erent values of the bias voltage VSD. For big values of ω, the e�e
ts of theband 
urvature are quite marked � as 
an be seen by the departure of the variousguide lines from the dotted lines representing the analyti
 wide band limit results.To understand the voltage dependen
y of the �nite size 
orre
tions, we 
onsiderthe low frequen
y behaviour of the analyti
al results in the wide band limit

S(ω > 0, VSD) = S(0, VSD) + ∆S(ω, VSD) + O(ω2) (5.44)with the 
orre
tion2 in �rst order with respe
t to ω
∆S(ω, VSD) ∝ G2(VSD)ω. (5.45)2The low-frequency approximation, including the first order in ω, has been provided by E. Boulat

and H. Saleur; cf. also Ref. [84]. 83
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Figure 5.25 Noise S(ω) vs. frequen
y ω, both res
aled with respe
t to the width of the
ondu
tan
e peak Γ = 4J2
C/J , for di�erent values of the bias voltage. The lines goingthrough the numeri
al values (represented by 
rosses) are just guides for the eye. Thedotted lines 
orrespond to the analyti
al result for the wide band limit.For the system with �nite band width, we have 
he
ked this expression by extra
tingthe slope ∂S(ω, VSD)/∂ω in the limit ω → 0+ from the numeri
al data. Again we�nd good agreement with G2 in a voltage regime where �nite size e�e
ts 
an benegle
ted, Fig. 5.26.Inserting the 
uto� frequen
y now leads to the expression

∆S(ω
ut, VSD) ∝ 1

M
G2(VSD) (5.46)whi
h is in good agreement with ∆Snum(VSD), 
f. Fig. 5.24.Using our knowledge of the �nite size 
orre
tion, we 
an now 
ontrol the extrap-olation of numeri
al data: in Fig. 5.28 we show the results obtained using linearextrapolation 1/M → 0 for JC = 0.3J and JC = 0.4J . We �nd indeed very goodagreement with the analyti
al result.Damped boundary 
onditions The non-intera
ting 
ase is of 
ourse very sim-ple to 
al
ulate numeri
ally (regardless of the possibility of the Landauer�Büttikertreatment). The numeri
al main e�ort 
onsists in the exa
t diagonalisation of the

M ×M Hamiltonian matri
es as well as the 
al
ulation of the time evolution whi
hinvolves the multipli
ation of M × M matri
es. In
luding intera
tion spoils thisapproa
h. Instead, one has to resort to approximative time evolution s
hemes us-ing methods for 
orrelated ele
trons � in the next se
tion we will do so based onthe time-dependent DMRG. While for the ED-based approa
h in the 
ontext of anon-intera
ting system it is no problem to obtain numeri
al results for M ∼ 1000latti
e sites, the DMRG based approa
h is limited to the simulation of systems with84
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Figure 5.26 Slope of the frequen
y-dependent shot noise in the limit ω → 0+, res
aled to�t with G2, for di�erent system sizes. In the low voltage regime we �nd �nite size e�e
ts.
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Figure 5.27 Noise S and squared di�erential 
ondu
tan
e G2 for JC = 0.4J . The bluelines represent the analyti
 values obtained using the Landauer�Büttiker approa
h. Thesystem size is �xed to M = 60 latti
e sites, while at the boundaries, the hopping matrixelements are exponentially damped with the damping 
onstant Λ−1/2 on MΛ links. Thisresults in an e�e
tively enlarged system with Me� latti
e sites. The �nite size 
orre
tion
∆Snum, here res
aled by Me�, again 
ollapses on a single 
urve for di�erent Me�, and isstill proportional to G2.
M ∼ 50 . . . 100 latti
e sites. Wilson leads, or damped boundary 
onditions (DBC),in
rease the energy resolution 
lose to the Fermi surfa
e and allow for a high reso-lution in linear transport 
al
ulations, see [30,31℄. In se
tion 5.5 (
f. also Ref. [67℄)85



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelswe showed that using DBC with a weak damping 
onstant allows us to e�e
tivelyin
rease the system size to Me� > M latti
e sites without 
hanging M , where arough estimate for Me� has been given as a fun
tion of the damping 
onstant Λ andthe length of the damped leads MΛ

Me� ≈ M − 2MΛ +
4

lnΛ

(
ΛMΛ/2 − 1

)
. (5.47)We now use this estimate to perform the linear extrapolation to in�nite systemsize, where we additionally adjust the estimate by �xing the extrapolated value toanalyti
 results (
f. Ref. [119℄, for example, or se
tion B.3 in the appendix)

S(VSD = 0) = 0. (5.48)To verify this approa
h we performed 
al
ulations for a non-intera
ting system with
M = 60 latti
e sites and DBC, for JC = 0.4J . For the damped leads we useddi�erent 
ombinations of Λ andMΛ, where we used values for the damping 
onstantin the range Λ−1/2 ∈ [0.93, 1.0] for damped leads ofMΛ = 0 . . . 26 latti
e sites (whilekeeping the total number of latti
e sites M �xed!). The estimate for the e�e
tivesystem size, Eq. (5.47), is 
he
ked by looking at the s
aling behaviour of the �nitesize 
orre
tion ∆Snum, where we now �nd linear s
aling ∝ 1/Me�, 
f. Fig. 5.27.The result is shown in Fig. 5.28. We �nd remarkably good agreement with theanalyti
al result, while we have to point out that, for values of the bias voltage inthe order of the band width, the approa
h fails, whi
h has to be expe
ted sin
ethe estimate of the system size only works in a limited voltage range, 
omparese
tion 5.5. Additionally we �nd the numeri
al data to be very noisy depending onthe respe
tive 
on�guration of the damping 
onditions.The 
on
ept is not restri
ted to non-intera
ting fermions and 
an be implementedusing numeri
al methods for intera
ting quantum systems. In this 
ase as well, weexpe
t the �nite size 
orre
tions to go as 1/M be
ause the 
uto� frequen
y ω
ut hasthe same dependen
e. We note however that the prefa
tor might not be G2(VSD)exa
tly. [120, 121℄5.6.3 Finite intera
tion: the self-dual point of the IRLMIn the pre
eeding se
tion we studied the in�uen
e of the �nite size of the modelsystem on the low-frequen
y shot noise of the 
urrent through the nanostru
ture.Sin
e we made the assumption that ele
tron-ele
tron intera
tion 
an be suppressedon the stru
ture, UC ≡ 0, we have been able to apply a single-parti
le de
ompositionapproa
h and to handle the numeri
al simulation by means of exa
t diagonalisation.We now want to apply the approa
h to the intera
ting resonant level model (IRLM),with �nite intera
tion UC > 0. The 
omputation of the time-dependent 
urrent-
urrent 
orrelation therefore now is based on the time-dependent DMRG [47℄, asdes
ribed in se
tion 5.6.1.86



5.6 Shot Noise in the Resonant Level ModelHere, we set UC = 2.0J , and the 
oupling to JC = 0.4J , while we still operatein the resonant tunneling regime Vg = 0. The IRLM bears a duality symmetryex
hanging large and small intera
tions UC. For an intermediate value of UC themodel is self-dual, whi
h in our des
ription exa
tly 
orresponds to the value UC =
2.0J [56, 85℄. Furthermore, there is an exa
t analyti
 solution to the problem forpre
isely the self-dual point, in the wide-band limit, whi
h again allows us to 
he
kthe numeri
al data; 
f. also appendix B.2.The total number of latti
e sites in the numeri
al 
al
ulation varies from M = 48to 72 latti
e sites, with MR = ML + 1. Di�erent other setups have been 
onsidered,in
luding the e�e
tive enlargement of the system using damped boundary 
onditionsas dis
ussed before, whi
h will not be presented here. For the numeri
al simulationwithin the DMRG proje
tion s
heme we set an upper bound to the dimension ofthe Hilbert spa
e for ea
h DMRG blo
k to N
ut = 4000 states.As a �rst result we 
ompare the numeri
al data for di�erent system sizes to theanalyti
al result in Fig. 5.29, where we show zero-frequen
y shot noise as well asthe �nite size error of the numeri
al data, res
aled by the system size. As dis
ussedin the pre
eeding se
tion, in the low frequen
y limit, strong �nite size e�e
ts haveto be expe
ted, that get mostly pronoun
ed for small values of the voltage. Sin
ethe res
aled �nite size error happens to 
ollapse on a single 
urve in the low voltage
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Figure 5.28 Shot Noise S as fun
tion of the bias voltage VSD in the non-intera
tingresonant level model. The analyti
al result was obtained using the Landauer�Büttikerapproa
h, Eq. (B.10) in the appendix, while the numeri
al result is 
omputed for systemsof di�erent �nite sizes of M = 120...180 latti
e sites with a subsequent linear extrapolationof 1/M → 0. The two 
urves 
orrespond to di�erent 
ouplings JC of the impurity to theleads. Furthermore, we used DBC in order to e�e
tively in
rease the system size. Here,the system size was �xed to M = 60 latti
e sites. For weak damping and for not too bigvalues of VSD, we �nd very good agreement with the undamped 
ase.
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsregime, the numeri
al data 
an be linearly extrapolated to in�nite system size inorder to obtain results for the thermodynami
 limit. Also we verify the analyti
alestimate for the �nite size error Snum. − Sanalyt. ∝ G2/M with G the di�erential
ondu
tan
e; 
f. appendix B.2 for an analyti
 expression for G in the self-dualIRLM. The strong deviations in the high voltage regime from this relation may betra
ed ba
k to di�erent sour
es: the 
uto� error introdu
ed by the approximativetime-dependent DMRG s
heme gets espe
ially pronoun
ed for values of the voltageof the order of the bandwidth. Furthermore, to keep the numeri
al simulationfeasible, one has to resort to small systems introdu
ing �nite size e�e
ts beyond thelinear s
aling.Nevertheless, the numeri
al results shown in Fig. 5.30, where we obtained datafor the low voltage regime using linear extrapolation, show very ni
e agreement withthe analyti
al results given by Eq. (B.22) in the appendix.The ba
k-s
attering Fano fa
tor for the ba
k-s
attering 
urrent Ibs,
Fbs(VSD) =

S(VSD)

Ibs(VSD)
, Ibs(VSD) = gVSD/e− I(VSD), (5.49)with the linear 
ondu
tan
e g (g = e2/h in the resonant tunneling situation), 
analso be obtained from the numeri
al data, Fig. 5.31, where we use the analyti
al
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Figure 5.29 Finite size error of noise. The blue lines represent the analyti
al result, 
f.appendix B.2. The numeri
al data have been obtained for systems with 
oupling JC = 0.4Jand density-density intera
tion UC = 2.0J using td-DMRG. The system size varies from
M = 48 to M = 72 latti
e sites. The di�eren
e of numeri
al and analyti
al data in thelow voltage regime is proportional to the squared di�erential 
ondu
tan
e G2 and s
aleslinearly with the inverse system size 1/M .
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5.6 Shot Noise in the Resonant Level Model
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Figure 5.30 Linear extrapolation of the numeri
al shot noise data. The linear s
aling ofthe low voltage �nite size error is exploited to perform a linear extrapolation 1/M → 0.We �nd ni
e agreement of numeri
al and analyti
al results.
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Figure 5.31 Ba
k s
attering Fano fa
tor as a fun
tion of the ba
k s
attered 
urrent. Thenumeri
al data points have been obtained using the numeri
al shot noise data divided bythe analyti
al ba
k s
attered 
urrent. The �nite size error of the numeri
al results for shotnoise leads to a diverging Fano fa
tor. The situation improves for the linearly extrapolateddata, while we �nd a ni
e agreement of the analyti
al result with the G2-
orre
ted data.For 
omparison we show the Fano fa
tor in the non-intera
ting 
ase.result in order to obtain the ba
k-s
attering 
urrent Ibs [56℄; 
f. also appendix B.2.It �ts ni
ely with the analyti
al result for Fbs as long as �nite size e�e
ts 
an benegle
ted � whi
h means in the limit of large values of Ibs, 
orresponding to values of89



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelsthe bias voltage beyond the linear regime. However, the �nite size o�set at Ibs → 0leads to a strongly diverging Fano fa
tor, when no �nite size 
orre
tions are applied.In 
ontrast, Fbs remains �nite even for very small values of Ibs, when obtained fromthe linearly extrapolated shot noise data. The deviations from the analyti
al resultat small Ibs 
an be tra
ed ba
k to small absolute errors that get blown up in the limit
Ibs → 0. The very ni
e agreement of analyti
al result and G2-
orre
ted data, evenin the regime of very small Ibs, indi
ates that in
reasing the system size and addingmore data points to the extrapolation pro
edure should improve the extrapolatedresult.If we assume q to be the elementary 
harge in a system, where the parti
les tunnelindependent of ea
h other � and hen
e the probability for the tunneling of n parti
lesin a 
ertain time interval 
omplies with Poissonian statisti
s � the Fano fa
tor forthe parti
le 
urrent fbs

jbs = Ibs/q ⇒ s = S/q2, and hen
e fbs = jbs/s ⇒ Fbs = q · fbs (5.50)is equal to 1, sin
e in this 
ase, s = jbs. Presuming Poissonian statisti
s for theself-dual IRLM, we therefore 
an extra
t the elementary 
harge q = 2e for the low-voltage limit from Fig. 5.31. If this assumption is justi�ed is another question, whi
hto de
ide would a�ord to 
ompute the full 
ounting statisti
s of the system.5.6.4 Beyond the self-dual pointSo far we have dis
ussed results for shot noise in the IRLM for UC = 0 and UC = 2J ,based on the numeri
al 
omputation of the time evolution of a �nite system, wherewe have been able to remove �nite size e�e
ts by means of analyti
al reasoning andby a linear extrapolation to in�nite system size. We 
ould 
he
k the reliability ofthe approa
h, sin
e for both 
ases, there are analyti
 solutions to the problem aswell. We now turn to a situation with values of the intera
tion UC di�erent frombefore, where we are not aware of any exa
t analyti
al method that would provideresults for the �nite bias shot noise.The question wether the 
urrent-
urrent 
orrelations S(t, t′) de
ay to zero withinthe time interval [tmin, tmax] is 
ru
ial to the appli
ability of the approa
h, as dis-
ussed before. In Fig. 5.32 we show S(t, tmin) for a system with M = 88 latti
esites, at bias voltage VSD = 0.2J , for two di�erent values of UC = 1.0J, 3.0J . Asargued before, the maximum time that is available for the extra
tion of the noisepower spe
trum is given by tmax − tmin = tR/2 = M/4[~/J ], whi
h 
orresponds tothe time window that is represented in the �gure. A system of the given size 
learlyranges at the top limit that 
an be handled on present days 
omputers, based onthe numeri
al method we use. The s
aling pro
edure for the linear extrapolation toin�nite system size therefore depends on the availability of reliable numeri
al datafor systems mu
h smaller than the given 88 latti
e sites. As 
an be 
on
luded fromthe left panel in Fig. 5.32, this restri
tion will not pose a big problem to the extra
-tion of the zero-frequen
y noise in the 
ase of UC = 1J . The 
orrelations S(t, tmin)90
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Figure 5.32 Time-dependent 
urrent-
urrent 
orrelations in the regime of steady 
urrentfor a system with M = 88 latti
e sites, and bias voltage VSD = 0.2J , for two di�erentvalues of the intera
tion UC. The right panel visualizes the reason why the method failsfor values of the intera
tion UC > 2J : the 
orrelations de
ay more and more slowly,for growing UC, rendering the approximation for the low-frequen
y noise in Eq. (5.40)ina

urate � espe
ially when in
luding results for systems with only M ∼ 50 latti
e sitesfor the extrapolation pro
edure. � The bla
k dashed lines interpolate S with 
ubi
 splines.rapidly de
ay to zero, whi
h still holds, if the system size is redu
ed to, say, M = 48latti
e sites, for example.This statement is not true for the 
ase UC = 3J , see the right panel of the �gure.Even at the upper limit of the time window, there are still �nite wiggles to be found,whi
h is of 
ourse mu
h worse, if the system size is redu
ed to M = 48 latti
e sites.For �nite values of the bias voltage above a 
ertain threshold this possibly doesnot matter, si
e the �nite 
uto� error then adds to a �nite noise value. The sameholds for �nite frequen
y noise for ω > ωcut, as dis
ussed before; 
f. Eq. (5.41). In
ontrast, for VSD → 0 and ω → 0, where the shot noise is expe
ted to vanish to 0,the 
uto� error 
an not be negle
ted, but even worse, it does not s
ale linearly with
1/M for systems with a size in the a

essible range. For in
reasing values of theintera
tion the 
orrelations de
ay more and more slowly (not shown here), whi
h iswhy we do not in
lude results for shot noise for values of UC > 2J in this work.Still, we do in
lude results for UC = 1J , where we fo
us on the low-voltage limit inorder to extra
t the Fano fa
tor. In Fig. 5.33 we show shot noise for small values ofthe bias voltage, where the �nite size e�e
ts are very strong, in the thermodynami
limit, after liner extrapolation to 1/M → 0, extra
ted from numeri
al data forsystems with M = 48, 64 and 88. On panel (a) we in
lude the ba
k-s
attering
urrent Ibs, while on panel (b), we represent S as fun
tion of Ibs. For the biasvoltage VSD → 0, the shot noise vanishes, in 
omplian
e with relation (5.16).Just dividing the numeri
al data for S and Ibs leads to very noisy results, sin
e91
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Figure 5.33 (a) Ba
k-s
attering 
urrent Ibs and shot noise S as fun
tion of the bias voltage
VSD. The solid lines both are a �t to the given fun
tions. For Ibs, we �t the parameters
κ and ν, while for S we only �t the prefa
tor Fbs. The exponent strongly depends onthe �t range, while Fbs varies on the order of magnitude of 10%. For the given �gure,the �t range was 
hosen to be VSD = 0 . . . 0.7J . (b) Plotting shot noise as fun
tion of theba
k-s
attering 
urrent does not give a

ess to the exponent; however, we now have to �tonly one parameter (Fbs), in
reasing the pre
ision for the Fano fa
tor about one order ofmagnitude. � UC = 1.0J , M = 48, 64 and 88 latti
e sites, JC = 0.4J . Shot noise S hasbeen extrapolated to the 
ontinuum limit 1/M → 0. The bla
k dashed line interpolates Swith 
ubi
 splines.this approa
h essentially means dividing zeros. Instead we extra
t the value for theFano fa
tor at zero voltage from a �t to a power law, where we assume for the shotnoise as well as for the ba
k-s
attering 
urrent

Ibs(VSD) ≈ κV ν
SD, and S(VSD) ≈ Fbs · Ibs(VSD). (5.51)This ad-ho
 assumption is motivated by the fa
t that in the non-intera
ting 
aseas well as at the self-dual point, for the resonant tunneling situation, Ibs as well as

S ful�ll this pre
ise relations for VSD → 0, with the exponent ν = 3 for UC = 0and ν = 7 for UC = 2J ; 
f. also appendix B. However, this approa
h still isvery unstable. For a varying �t range VSD = 0 . . . Vmax, Vmax ∈ [0.5J, 0.9J ], the �tvalue for Fbs varies on the order of 10 . . . 15%, while the exponent even �u
tuatesby a fa
tor of ∼ 2. Alternatively, Fbs ≈ 1.32e 
an be extra
ted from S(Ibs), 
f.Fig. 5.33 (b), with a mu
h better pre
ision of ∼ 10−2. Moreover, this representationreveals the range of values for Ibs, where S(Ibs) ∝ Ibs, whi
h in turn allows us to
hoose Vmax in order to extra
t the exponent more reliably. We �nd ν ≈ 4 . . . 5.Summary and OutlookIn this 
hapter, we dis
ussed numeri
al methods to 
ompute quantities like �nitebias 
urrent and shot noise. We therefore used the time-dependent density ma-trix renormalisation group (DMRG) method, whi
h is 
apable of simulating the92



5.6 Shot Noise in the Resonant Level Modeltime evolution of a quantum me
hani
al many-parti
le system in a non-equilibriumstate. To 
he
k the reliability of the methods in use, we also applied exa
t diagonal-isation (ED) te
hniques in 
ombination with a single-parti
le de
omposition whi
his available for systems with suppressed ele
tron-ele
tron intera
tion only; on theother hand, ED is mu
h 
heaper than DMRG in terms of 
omputation resour
es,whi
h allows us to study mu
h bigger systems.A severe problem that is related to the numeri
al methods in use 
onsists in the�nite size of the simulated systems. Sin
e we 
an not send the system size to in�nitywe have to deal with strong �nite size e�e
ts whi
h interfere with the �bare� resultfor the thermodynami
 limit. Also, the �nite size of the system renders a stri
tlysteady state impossible; instead one has to seek for a quasi-steady state by lookingfor (more or less) time-independent expe
tation values of the observable of interest� whi
h is, in our 
ase, the 
urrent through the nanostru
ture � starting from aninitial state that is generated by quen
hing the system out of equilibrium.For these reasons, we dis
ussed how to remove �nite size e�e
ts in the �rst partof this 
hapter in great detail, where we also 
ompared di�erent ways of generatingthe initial non-equilibrium state. We showed how to extra
t �nite bias 
ondu
tan
efrom a quasi-stationary, os
illating 
urrent. The amplitude of the os
illations 
ouldbe tra
ed ba
k to the �nite size energy gap of the model, while the frequen
y turnedout to be equivalent to the bias voltage, allowing for an interpretation as Josephson
urrent. The e�e
ts related to the leads being 
omposed of an even or odd numberof latti
e sites (even-odd e�e
t), whi
h strongly a�e
t the time-dependent 
urrentparti
ularly at low bias voltage, appear to be 
onne
ted to the stru
ture of thesingle-parti
le energy levels in the leads. This knowledge 
ould be used to removethe even-odd e�e
t by adding a potential energy of the order of the �nite size gap tothe leads, shifting the levels of the two leads relative to ea
h other. We furthermoreshowed how to remove e�e
ts due to the density shift in the leads whi
h also resultsfrom the �nite size of the system. Finally we dis
ussed results for the di�erentialand linear 
ondu
tan
e of an intera
ting 7-site stru
ture.In the following se
tion we investigated the appli
ability of damped boundary
onditions in order to redu
e �nite size e�e
ts. While frequently used before inorder to enhan
e the energy resolution at the Fermi level for the 
omputation oflow-energy properties, we analysed the te
hnique for the 
omputation of �nite-bias
urrent-voltage 
hara
teristi
s, where we interpreted the enhan
ed energy resolutionas an e�e
tively in
reased system size whi
h allows for a 
orrespondingly longerperiod of a steady 
urrent.The most important topi
 of this 
hapter was the 
omputation of shot noise at �-nite bias. In the last se
tion, we introdu
ed a new way of extra
ting noise from timeevolution 
al
ulations. We thereby 
ould pro�t from the te
hniques that had beenused before to extra
t the �nite bias 
ondu
tan
e. The presented method is inde-pendent of the underlying numeri
al simulation of the time evolution; while for thetreatment of the non-intera
ting RLM we applied exa
t diagonalisation te
hniques,the results for the IRLM have been obtained using the time-dependent DMRG.93



Chapter 5 Non-Equilibrium Transport Simulations in Impurity ModelsHowever, the results for the low-frequen
y noise again turned out to be plagued bystrong �nite size e�e
ts. The availability of analyti
al results for spe
ial situations �the RLM without intera
tion and the IRLM at its self-dual point � provided a greatservi
e in analysing the nature of the �nite size e�e
ts. In the zero frequen
y regime,we 
ould show that the �nite size error s
ales G2-dependent, with the di�erential
ondu
tan
e G. For su�
iently large systems we furthermore found the error tos
ale proportional to the inverse system size, whi
h �nally allowed to remove the�nite size error by means of a linear extrapolation to in�nite system size. Based onthis �nite size analysis we were able to obtain numeri
al results whi
h 
orrenspondvery ni
ely to the analyti
 results for the non-intera
ting 
ase as well as for the IRLMin the self-dual point, where analyti
al solutions based on the thermodynami
 Betheansatz have been presented in [85℄. Moreover we have been providing results for theshot noise in a regime of the intera
tion where we are not aware of exa
t analyti
methods to treat the problem. Most strikingly our results show an enhan
ement ofthe ba
k s
attered Fano fa
tor due to intera
tion e�e
ts.Finally we also explored the limitations of the method. In
reasing the intera
-tion beyond the self-dual point leads to a growth of time-dependent 
urrent-
urrent
orrelations, whi
h enfor
es us to in
rease the size of the simulated system. Thepresently available 
omputing resour
es � in terms of 
omputing time and in termsof memory � prevented us doing so. Therefore the appli
ation of this approa
h onsituations with slowly de
aying 
orrelations is left for future resear
h.The results presented for the shot noise have been obtained by a time evolutionsimulation, with a subsequent Fourier transform to the frequen
y spa
e. Alterna-tively, we 
an also imagine to apply a 
ombined approa
h of time evolution simula-tion in order to obtain a steady 
urrent as an initial state, and then to obtain thenoise power spe
trum by means of a polynomial expansion for a resolvent expressionas outlined in the summary of 
hapter 4 for non-equilibrium Green's fun
ions. Thiswould provide a

ess to a di�erent method for the treatment of �nite size errors,based on �nite 
onvergen
e generating fa
tors, as dis
ussed in 
hapter 4.Despite its limitations, the method of real-time evolution based on the time-dependent DMRG has been su

essfully applied to a number of problems, in
ludingthe extra
tion of �nite-bias 
urrent-voltage 
hara
teristi
s for various models, andnow shot noise in the intera
ting resonant level model. This evolution suggests asa next step to extend the method to higher order 
orrelations, or even to the full
ounting statisti
s. First e�orts in this dire
tion are en
ouraging.
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Con
lusionsThe aim of the present work was to investigate numeri
al methods suitable forthe 
omputation of transport properties for the ele
tron transport in intera
tingnanostru
tures. A method whi
h is 
apable of handling the full many-parti
le wavefun
tion, even for non-equilibrium situations, is the density matrix renormalisationgroup (DMRG) approa
h. It is based on a sophisti
ated proje
tion s
heme in 
om-bination with the iterative in
rease of the system size and therefore allows for thetreatment of systems whi
h are not a

essible by exa
t diagonalisation. For our 
on-siderations, the DMRG therefore 
an be 
onsidered the �ba
kbone� of the numeri
alsimulations.On top of this, we developed an expansion s
heme based on Chebyshev polyno-mials, whi
h allows to evaluate Green's fun
tions. Here, we applied this s
heme toobtain the single parti
le spe
trum of the intera
ting resonant level model (IRLM).In 
ontrast to the 
orre
tion ve
tor method, this expansion does not show any 
on-vergen
e problems and allows to extra
t the full frequen
y dependen
y of the Green'sfun
tion from a single set of numeri
al data. Furthermore, the expli
it in
lusion ofa broadening fa
tor allows for a reliable extrapolation to the thermodynami
 limitfrom data of �nite systems. For the present problem, we 
ould show that the methodyields results in good agreement with analyti
 
al
ulations for the free fermion 
ase.Furthermore we obtained results for �nite values of the intera
tion. This methodis very general and 
an be applied to any model that is treatable by DMRG. Themain restri
tion 
onsists in the fa
t, that the expansion order grows linearly withthe desired energy resolution, whi
h makes the method inappropriate for resolvingnarrow stru
tures in the spe
trum.For the 
omputation of the 
urrent-voltage 
hara
teristi
s and �nite-bias shotnoise in the IRLM, we applied the time-dependent DMRG approa
h, whi
h is 
apa-ble of simulating the time evolution of a quantum me
hani
al many-parti
le systemin a non-equilibrium state. We introdu
ed a new way of extra
ting noise from timeevolution 
al
ulations. Similar to the �nite size e�e
ts for the time-dependent 
ur-rent, we found the shot noise to be strongly a�e
ted by �nite size e�e
ts. Theavailability of analyti
al results for spe
ial situations � the RLM without intera
-tion and the IRLM at its self-dual point � provided a great servi
e in analysing thenature of the �nite size e�e
ts. In the zero frequen
y regime, we 
ould show thatthe �nite size error s
ales G2-dependent, with the di�erential 
ondu
tan
e G. Forsu�
iently large systems we furthermore found the error to s
ale proportional to theinverse system size, with a voltage-independent s
ale fa
tor, whi
h �nally allowedto remove the �nite size error by means of a linear extrapolation to in�nite systemsize. Based on this �nite size analysis we were able to obtain numeri
al results95



Chapter 5 Non-Equilibrium Transport Simulations in Impurity Modelswhi
h 
orrenspond very ni
ely to the analyti
 results for the non-intera
ting 
ase aswell as for the IRLM at the self-dual point, where analyti
al solutions based on thethermodynami
 Bethe ansatz have been presented in [85℄. Moreover we have beenproviding results for the shot noise in a regime of the intera
tion where we are notaware of exa
t analyti
 methods to treat the problem. Most strikingly our resultsshow an enhan
ement of the ba
k s
attered Fano fa
tor due to intera
tion e�e
ts.At the self-dual point of the model, the Fano fa
tor approa
hes a value of 2 ele
tron
harges.
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Appendix ALevel Dis
retisation E�e
tsThe single parti
le levels εk of an un
oupled, nonintera
ting tight-binding lead with
Mα sites (α = L,R)

Ĥα = −J
Mα−1∑

x=1

(ĉ†α,xĉα,x+1 + ĉ†α,x+1ĉα,x) (A.1)are given by
εj = −2J cos[πj/(Mα + 1)] = −2J cos kj, (A.2)

j = 1, . . . ,Mα, see Fig. A.1. The energy of a parti
le residing on a de
oupled singledot stru
ture (JC = 0)
Ĥd = Vg ĉ

†
dĉd (A.3)is simply given by the gate voltage ǫd = Vg, whi
h is at the Fermi edge for Vg = 0.1For an equal number of sites on both leads (as for example oMSo, Fig. A.2(a) oreMSe, Fig. A.2(
)) there is a twofold degenera
y of the single parti
le lead levelswhi
h does not exist if ML = MR ± 1, Fig. A.2(b). In the degenerate 
ase, singleparti
le eigenfun
tions 
an be 
onstru
ted with a fully delo
alized parti
le density1For a decoupled MS-dot structure one gets ǫd,j = −2JS cos[πj/(MS + 1)] + Vg, j = 1, . . . , MS.

-2-1.5-1-0.500.51
1.52

π/4 3π/4singleparti
l
eenergyε(k)

[J
]

π/2

(a) M = 12

∆ǫ

π/4 π/2 3π/4 k

(b) M = 13

Figure A.1 Single parti
le energy levels of 1D tight binding 
hains. For an even numberof latti
e sites (a), there are two dis
rete levels at energies ε = ±∆ε/2, but there is nolevel at ε = 0, in 
ontrast to a situation with an odd number of latti
e sites (b).98



Figure A.2 Degenera
y of single parti
le energy levels of a single dot 
oupled to two leadswith di�erent 
on�gurationswhile for ML = MR ± 1, the density pro�le of the single parti
le wave fun
tionsshows an alternating 
on�nement of the parti
le on either the left or the right lead.The same holds true for the energy levels of the stru
ture: if degenerate with a leadlevel, the single parti
le wave fun
tion 
an be distributed over the whole lead whileit is lo
alized on the stru
ture otherwise. Therefore, in the e1e 
ase, the single-dotlevel is not degenerate with the lead levels when ǫd = 0. As a result, a single parti
leo

upying the dot level generates a sharp peak in the density pro�le (as well as thespin pro�le). For the o1o 
ase on the other hand, both leads have one energy levelin the middle of the band, whi
h together with the dot level generates a threefolddegenera
y. For �nite 
oupling JC > 0,
Ĥ = Ĥ0 + Ĥ1, Ĥ0 = ĤL + ĤR + Ĥd, (A.4)
Ĥ1 = −JC(ĉ†dĉL,1 + ĉ†dĉR,1 + H.
.), (A.5)the degenera
y of the lead levels and of the levels of the stru
ture with the lead levelsgets lifted. The single parti
le wave fun
tions must be divided equally on both leads,when ML = MR, while the alternating 
on�nement is preserved for ML = MR ± 1.Con
erning the energy level of the dot, the threefold degenera
y in the un
oupledo1o 
ase results in two levels with strong lo
alization on the dot, one lifted above theFermi edge and one pushed below, and a third level with vanishing parti
le densityon the dot, remaining on the Fermi edge (Fig. A.2(a)).Perturbation Theory for a Stru
ture 
oupled to 1D Tight Binding Leads This
an be demonstrated by 
al
ulating the single parti
le energy levels at the Fermiedge as well as the 
orresponding wave fun
tions for �nite 
oupling JC using �rstorder perturbation theory. Starting from the unperturbed system with JC = 0, the99



Appendix A Level Dis
retisation E�e
tssingle parti
le wave fun
tions read (α = L,R ; ML = MR odd)
|α, k〉 =

1√Nk

Mα∑

x=1

sin(kx)ĉ†α,x|〉, |d〉 = ĉ†d|〉. (A.6)For Vg = 0 and k = π/2, the perturbation Ĥ1 
an be diagonalized using
|ν, π

2
〉 =

1√
2

(

sin(
νπ

4
)|L, π

2
〉 + sin(

νπ

2
)|d〉 + sin(

3νπ

4
)|R, π

2
〉
)

, ν ∈ {1, 2, 3},(A.7)and the �rst order 
orre
tion of the energy levels reads
∆ǫν = 〈ν, π

2
|Ĥ1|ν,

π

2
〉 = − JC

√
Nπ/2

(

sin(
νπ

4
) + sin(

3νπ

4
)

)

sin(
νπ

2
)

= −JC
2 cos(νπ/4)
√

Nπ/2

(A.8)with normalisation Nπ/2 = (Mα + 1)/2. We �nd ∆ǫ1 = −JC

√
2/Nπ/2 = −∆ǫ3, aswell as ∆ǫ2 = 0. In addition, Eq. (A.7) shows that the wave fun
tion |ν = 2, π/2〉 issuppressed on the dot while it is strongly 
on
entrated there for ν = 1 or ν = 3.
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Appendix BAnalyti
 Results for Current andShot NoiseB.1 Non-Intera
ting modelsThe Landauer�Büttiker method [19�21, 119℄ 
an be used to obtain the �nite bias
ondu
tan
e and shot noise for the 
urrent through a mesos
opi
 region, if theintera
tion of the 
onstituent parti
les 
an be negle
ted. From the knowledge ofthe transmission amplitude of an in
oming parti
le, that is s
attered from one leadthrough the mesos
opi
 region into the other lead (
f. Fig. B.1), the transmissionprobability 
an be 
omputed, whi
h then allows the 
omputation of 
urrent and shotnoise by means of integration over the o

upied states. In 
hapter 5 we make use ofthis analyti
 approa
h to 
he
k the reliability of the numeri
al methods we use inthe 
ase of the resonant level model as well as in the 
ase of a model with a two-dotstru
ture, 
oupled to two 1D leads. We therefore provide the analyti
 expressionsthat have been used there.The basi
 idea is to make an ansatz for a s
attering state, whi
h is assumed tobe an eigen-state of the Hamiltonian of the system. This state has several unknownparameters, to be pre
ise, the re�e
tion amplitude r, the transmission amplitude tas well as several 
ontributions of the degerees of freedom of the stru
ture. The freeparameters then have to be �xed by means of the eigen-state assumption.The resulting transmission probability T = |t|2 then has to be plugged into the
Figure B.1 S
attering states and Landauer�Büttiker formula. We assume that for thetransport through a non-intera
ting mesos
opi
 stru
ture 
oupled to two 1D leads, thetransport properties of the system 
an be obtained using s
attering states. In
omingparti
les are represented as plain waves, whi
h are re�e
ted ba
k as a plain wave withamplitude r, and transmitted to the other lead with amplitude t. 101



Appendix B Analyti
 Results for Current and Shot NoiseLandauer�Büttiker formulas for single-
hannel 
urrent I and zero-frequen
y shotnoise S. Sin
e we always 
onsider zero-temperature transport for a model with
osine dispersion εk = −2J cos k, where we assume half �lling ⇒ kF = π/2, εF = 0,it is reasonable to introdu
e the sour
e-drain voltage VSD symmetri
ally around thestru
ture. The expressions for 
urrent and shot noise then read
I(VSD) =

e

h

VSD/2∫

−VSD/2

dε T (ε) and S(VSD) =
2e2

h

VSD/2∫

−VSD/2

dε [1 − T (ε)]T (ε). (B.1)For details on the derivation see, for example, Ref. [119℄. The di�erential 
ondu
-tan
e G 
an be obtained from I(VSD) by
G(VSD) = e

∂I(VSD)

∂VSD
=
e2

2h
[T (VSD/2) + T (−VSD/2)]. (B.2)Resonant Level Model The ansatz s
attering-state for the resonant level modelwith 1D leads looks as follows. Sin
e there is only one level on the stru
ture, weneed only one parameter d to represent the dot level (x = 0). The re�e
tion of theparti
le ba
k to the �in
oming� lead (x = −∞ . . .− 1) is represented by r, while thetransmission to the �outgoing� lead (x = 1 . . .∞) is represented by t. Then

ĉ†k =

−1∑

x=−∞

(eikx + re−ikx)ĉ†x + dĉ†0 + t

∞∑

x=1

eikxĉ†x. (B.3)The Hamiltonian for the resonant level model without intera
tion is given by
ĤRLM = −J

∞∑

x=1

(ĉ†xĉx+1+ĉ
†
x+1ĉx + ĉ†−xĉ−x−1 + ĉ†−x−1ĉ−x) + Vgn̂0

− JC(ĉ†0ĉ1 + ĉ†1ĉ0 + ĉ†0ĉ−1 + ĉ†−1ĉ0) (B.4)whi
h 
an be obtained from (2.15) by setting UC ≡ 0. The energy of the system isin
reased by εk by adding a parti
le ĉ†k, therefore
[ĤRLM, ĉ

†
k] = εkĉ

†
k. (B.5)This relation generates a set of equations for the unknown parameters εk, d, r and

t, whi
h 
an be used to obtain the dispersion relation
εk = −2J cos k (B.6)and the transmission amplitude

t =
2i sin k

(εk − Vg)J/J
2
C + 2eik

. (B.7)102



B.1 Non-Intera
ting modelsas well as the transmission probability
T = |t|2 =

4J2 − ε2
k

[εk((J/JC)2 − 1) − Vg(J/JC)2]2 + 4J2 − ε2
k

. (B.8)The evaluation of Eq. (B.1), for the resonant 
ase with the gate voltage set to zero
Vg = 0, �nally leads to (ηC ≡ JC/J , vSD ≡ VSD/J)
I(VSD) =

η2
C

√

1 − 2η2
C

3

{

4(1 − η2
C)2 arctan

(

vSD

√

1 − 2η2
C

4η2
C

)

− η2
C

√

1 − 2η2
C · vSD

}(B.9)and
S(VSD) =

J

2

(

1 +
η4

C

1 − 2η2
C

)
{

4η2
C

√

1 − 2η2
C

[

1 + 3
η4

C

1 − 2η2
C

]

×

× arctan

(

vSD

√

1 − 2η2
C

4η2
C

)

− vSD
1 + 3η4

C/(1 − 2η2
C) + v2

SD/8

1 + (vSD

√

1 − η2
C/4η

2
C)2

}

. (B.10)In the limit of small bias voltage, the expansion with respe
t to VSD yields
S(VSD) ∝ V 3

SD. (B.11)For �nite values of Vg the 
orresponding expressions be
ome quite 
ompli
ated. Onthe other hand, Eq. (B.1) 
an be 
omputed by numeri
al integration. We therefore
ontend ourselves by giving the above results for the on-resonan
e situation.Remarks on the 
onne
tion to the equilibrium single-parti
le spe
tral fun
tionof the dot In 
hapter 4, we 
ompute the single-parti
le spe
tral fun
tion of thedot numeri
ally. Here, we provide an analyti
 expression for the spe
tral fun
tionof the nonintera
ting RLM for 
omparison.For symmetri
 
oupling JC to the left and the right lead, the retarded Green'sfun
tion Gr 
an be related to the transmission probability [35℄ as
T (εk) = t∗t = −Im[Γ(εk)Gr(εk)]. (B.12)Here, Γ(εk) = 2πρ(εk)Vk V

∗
k , where ρ is the density of states in the tight-binding
hain with 
osine dispersion, ρ(εk) = (J sin k)−1, and Vk is the 
oupling of the dotlevel to the momentum modes in the semi-in�nite 
hains, Vk = −JC sin k/

√
π. Then

A(εk) = −1

π
ImGr(εk) =

T (εk)

πΓ(εk)
=

T (εk)

π sin k

J

2J2
C

. (B.13)
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Appendix B Analyti
 Results for Current and Shot NoiseStru
ture with two latti
e sites For the system with MS = 2 latti
e sites on thestru
ture, we provide the transmission probability T (ε). The Hamiltonian is givenby
ĤRLM = −J

∞∑

x=1

(ĉ†xĉx+1 + ĉ†x+1ĉx + ĉ†−xĉ−x−1 + ĉ†−x−1ĉ−x)

− JC(ĉ†0Rĉ1 + ĉ†1ĉ0R + ĉ†0Lĉ−1 + ĉ†−1ĉ0L) − JS(ĉ
†
0Lĉ0R + ĉ†0Rĉ0L) (B.14)For simpli
ity we do not in
lude a gate voltage. Here, we denote the 
oupling of thetwo latti
e sites on the stru
ture JS, as well as the 
oupling of the stru
ture to theleads JC. The ansatz s
attering states read

ĉ†k =
−1∑

x=−∞

(eikx + re−ikx)ĉ†x + dLĉ
†
0L + dRĉ

†
0R + t

∞∑

x=1

eikxĉ†x. (B.15)The pro
edure outlined before yields the dispersion relation εk = −2J cos k again,the transmission probability reads (ηC = JC/J , ηS = JS/J)
T =

η2
Sη

4
C(4 − ε2

k/J
2)

F− · F+
, F± =

[εk

J

(
1 − η2

C

2

)
± ηS

]2
+
η4

C

4

(
4 − ε2

k

J2

)
. (B.16)B.2 Wide-band limit and the self-dual point of theIRLMIn [56, 85℄, E. Boulat and H. Saleur provided analyti
 results for 
urrent and shotnoise for the self-dual IRLM in the wide-band limit, based on a 
ontinuum �eld-theoreti
 des
ription of the model,

Ĥ = Ĥ0 + ĤB, Ĥ0 = −i
∑

α=L,R

∞∫

−∞

dx ψ̂†
α(x)∂xψ̂α(x), (B.17)

ĤB = γ

{
[
ψ̂†

L(0) + ψ̂†
R(0)

]
d̂+ d̂†

[
ψ̂L(0) + ψ̂R(0)

]
}

+ U
[

: ψ̂†
L(0)ψ̂L(0) : + : ψ̂†

R(0)ψ̂R(0) :
]
(d̂†d̂− 1/2), (B.18)with symmetri
 
oupling γ and the dot level d̂ on resonan
e (the 
ontribution Vgd̂

†d̂vanishes). In this 
ontinuum des
ription, the self-dual point 
orresponds to a valueof U = π. At temperature T = 0, the 
urrent-voltage 
hara
teristi
s then is givenas [56℄
I0(VSD) = VSD

∞∑

n=0

(−1)n

4
√
π

(4n)!

n!Γ[3(n + 1/2)]
V̄ 6n

SD for V̄SD < e∆, (B.19)
I0(VSD) = VSD

∞∑

n=1

(−1)n+1

4
√
π

Γ(1 + n/4)

n!Γ[3/2 − 3n/4]
V̄

−3n/2
SD for V̄SD > e∆, (B.20)
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B.3 Low-frequen
y shot noise in the ground statewith e∆ =
√

3/42/3 and the natural expansion variable
V̄SD =

Γ(1/6)

4
√
πΓ(2/3)

VSD

Tb . (B.21)Furthermore, the shot noise is related to the 
urrent as [85℄
S(VSD) =

1

3

[

I0(VSD) − VSD · ∂I0(VSD)

∂VSD

]

. (B.22)
Tb is a s
ale. Note, that I0/Tb, as well as S/Tb, depends on V̄SD only. Mat
hing thenumeri
al results presented in se
tion 5.6.1 on the analyti
 results therefore requiresa single res
aling of I0 and VSD. The low-voltage expansion of the shot-noise 
an bededu
ed from Eqns. (B.19) and (B.22) and ful�lls

S(VSD) ∝ V 7
SD. (B.23)Frequen
y-dependent noise for UC = 0 Furthermore, the frequen
y-dependentshot noise for the non-intera
ting RLM has been provided by E. Boulat and H.Saleur in the wide-band limit in [84℄. It reads

S(ω, VSD, Tb) =
Tb
4

Θ(VSD − |ω|)
{[

arctan
(VSD

Tb )+ arctan
(VSD − 2|ω|

Tb )]

+
Tb
4

{

arctan
(VSD + 2|ω|

Tb )

− arctan
(VSD − 2|ω|

Tb )}

+
Tb
2ω

ln
(T 2b + (VSD − 2|ω|)2

T 2b + VSD
2

)}

, (B.24)where the s
ale is now given by Tb = 4J2
C/J , for JC ≪ J .B.3 Low-frequen
y shot noise in the ground stateThe noise power spe
trum S(ω) is de�ned by the Fourier transform of the 
urrent-
urrent 
orrelations, 
f. Eq. (5.13). We now assume that the expe
tation value 〈·〉is obtained for the ground state |Ψ0〉 of the system.1 Based on general argumentswe now show that in this 
ase,

S(ω = 0) = 0. (B.25)In order to prove this relation, we �rst of all want to note that in the ground state,there is no 
urrent �ow 〈Ψ0|Î|Ψ0〉 = 0, whi
h implies ∆Î = Î. Starting from1For the ground state energy E0 being degenerate, we randomly choose a state that holds Ĥ|Ψ0〉 =
E0|Ψ0〉. 105



Appendix B Analyti
 Results for Current and Shot NoiseEq. (5.13), we then �nd
S(ω+) = 2Re

∞∫

0

dt eiω+t 〈Ψ0|
[

Î(t)Î(0) + Î(0)Î(t)
]

|Ψ0〉

= 2Re

∞∫

0

dt eiω+t 〈Ψ0|Î
[

ei(E0−Ĥ)t/~ + e−i(E0−Ĥ)t/~

]

Î|Ψ0〉

= −2Im〈Ψ0|Î
[ 1

(E0 − Ĥ)/~ + ω+
+

1

−(E0 − Ĥ)/~ + ω+

]

Î|Ψ0〉, (B.26)where ω+ 
ontains a 
onvergen
e generating fa
tor, Imω+ = η → 0+. To pro
eed,we insert a 
omplete basis of eigenstates {|Ψn〉} of the Hamiltonian of the system,with energy En|Ψn〉 = Ĥ|Ψn〉. The above expression then translates to
−2Im

∑

n

′
〈Ψ0|Î|Ψn〉〈Ψn|

[ 1

(E0 −En)/~ + ω+
− 1

(E0 − En)/~ − ω+

]

Î|Ψ0〉, (B.27)where the dashed symbol for the sum∑′ indi
ates, that we ex
lude the (degenerate)ground state from the sum. This is allowed for the following reason: we are free to
hoose the basis {|Ψn〉} in su
h a way that the 
urrent operator Î is diagonal in thesubspa
e of the degenerate ground state. For En = E0 then 〈Ψ0|Î|Ψn〉 = 0. Theremaining 
ontributions then ful�ll ∆n ≡ (E0 −En)/~ 6= 0, leading to
1

∆n + ω+
− 1

∆n − ω+
=

∆n + ω − iη

(∆n + ω)2 + η2
− ∆n − ω + iη

(∆n − ω)2 + η2

ω→0−→ −2iη

∆2
n + η2

η→0+

−→ −2πiδ(∆n). (B.28)Sin
e we ex
luded the (degenerate) ground state, the sum vanishes identi
ally, prov-ing the relation (B.25).
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