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Chapter 1

Introduction

For sure, Joseph Nicéphore Niépce did not think
about nano-scale physics when he made the first
permanent photograph of nature with a camera
obscura in 1826. A layer of bitumen on a metal
plate was exposed to light for several hours,
hardening in the illuminated regions. When the
plate was washed with lavender oil, only the
hardened image area remained. Nevertheless,
this technique resembles — at least in its basic
ideas —modern litographic methods that are very
important for today’s mass production of mi-
crochips. In 1971 the Intel Corporation released
the first commercially available microprocessor,
the Intel 4004, which integrates about 2300 transistors on a die with structures of a
size of ~ 10um. Forty years later, it is roughly 10® times more transistors, while the
width of structures is reduced to ~ 40nm. The lower limit to this present evolution is
on the atomic scale. Recently, in scientific setups, experiments with single molecules
coupled to electrodes have been carried out where the reversible rearrangement of
the molecular configuration has been demonstrated as a future possibility to store
information [1-3].

Besides the commercial motivation of further miniaturisation there also exists a
vital interest in the investigation of nanostructures in basic research. On the scale
of only a few atoms, quantum mechanical effects strongly dominate the behaviour
of a physical system. Furthermore, screening effects that allow for an effective single
particle description in bulk materials are suppressed, which may lead to strong
correlation effects. If the system additionally is driven out of equilibrium, as for
example by adding gradients of temperature or of the electro-chemical potential,
the theoretical description and the prediction of physically relevant quantities is a
demanding task.

v

Joseph N. Niépce, Point de vue du
Gras (1826)

In this work we treat electronic properties of nanostructures coupled to electrodes.
The list of realisations of this kind of physical system includes, for example, quantum
dots in a two-dimensional electron gas [4-9], carbon nanotubes [10,11], and the
example given above, where the structure consists of a single molecule [1,2,12-15].
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The experimentalist has access to various controllable parameters, like the electronic
potential in a gate electrode [11,16,17] or the minimal distance in a mechanically
controllable break junction [15,18].

The quantity of central interest in the present work is the response of the system
to a bias voltage which manifests in a current of charge carriers. Landauer [19,20]
and Biittiker [21] developed a formalism that allows the computation of the current
through a finite region connected to reservoirs, based on transmission coefficients,
as well as the distribution functions of the reservoirs. However, this approach does
not include interaction which limits its applicability in the given context — in small
or low-dimensional structures, screening-effects are suppressed, therefore electron-
electron interactions can no longer be neglected. For strongly interacting nanostruc-
tures, several methods to calculate the linear response conductance at vanishing bias
voltage have been developed recently. One class of approaches consists in extracting
the conductance from an equilibrium quantity that is easier to calculate, as for exam-
ple from a persistent current calculation [22-26], from phase shifts in NRG calcula-
tions [27], or from approximations based on the tunneling density of states [28]. Al-
ternatively one can evaluate the Kubo formula within Monte-Carlo simulations [29],
or from density matrix renormalisation group (DMRG) calculations [30-32]. Linear
conductance has also been investigated using Functional Renormalization Group
studies [33|, or by diagonalizing small clusters and attaching them to leads via a
Dyson equation [34].

For the computation of finite bias conductance, Meir and Wingreen found a formal
solution using Keldysh Green’s functions [35]. However, the evaluation of these
formulas for interacting systems is generally based on approximations such as real
time Keldysh RG [36]. Within the framework of time-dependent density functional
theory (td-DFT) and Keldysh Green’s functions Stefanucci and Almbladh [37, 38|
discuss the extraction of conduction from real time simulations. The restriction
to finite sized systems for calculating transport within td-DFT was also discussed
by Di Ventra and Todorov [39]. In Ref. [40], Bushong, Sai, and Di Ventra discuss
the extraction of a finite bias current in the framework of td-DFT. Weiss, Eckel,
Thorwart and Egger [41] discuss an iterative method based on the summation of
real-time path integrals (ISPI) in order to address quantum transport problems out
of equilibrium. Han and Heary [42] discuss strongly correlated transport in the
Kondo regime using imaginary time Quantum Monte Carlo techniques.

The extraction of finite bias conductance of nanostructures based on real-time
simulations has also been discussed for various situations [43-60] in the framework
of DMRG [61-66]. This concept provides a unified description of strong and weak
interactions and works in the linear and finite bias regime, as long as finite size effects
are treated properly. In this approach, the many-particle wave function is directly
computed, which allows the incorporation of even exotic excitations. The method
was successfully applied to obtain results for the finite bias conductance in the
interacting resonant level model (IRLM), showing perfect agreement with analytical
methods based on the Bethe ansatz [56]. I-V-characteristics have been obtained
for the single-impurity Anderson model using the adaptive td-DMRG-method [57].
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Finite size effects and especially the impact of the possible combinations of tight
binding leads with an even or odd number of sites coupled to the structure have been
studied in detail in [58] for a single impurity and for three quantum dots. Recently
[67] we showed that finite size effects can be directly related to the distribution of
the single-particle energy-levels in non-interacting systems.

The great success in obtaining finite bias conductance of interacting nanostruc-
tures that has been achieved based on time-evolution simulations gave reason to raise
the bar. The study of current fluctuations in nanodevices is connected with impor-
tant physical questions, including the nature of fundamental excitations in strongly
interacting electronic systems [68-71|, the possibility of fluctuation theorems out of
equilibrium [72], and the time evolution of many-body entanglement [73,74|. Ex-
perimental progress in this area has been swift — second and third cumulants have
been measured in several systems |75, 76|, shot noise of single hydrogen molecules
has been measured [14], and even the full counting statistics has been obtained in
semi-conductor quantum dots [8,9]. On the theory side, the free case has given rise
to a lot of analytical studies [73,74,77,78|, but progress on the most interesting
situations — far from equilibrium and with strong interactions — has been difficult
(see [79] for a review). Over the years, extensions of the Bethe ansatz to study trans-
port properties have been proposed [80-83], which might open the road to important
progress.

One of the major goals of this work is to investigate a numerical method to com-
pute zero temperature noise (shot noise) of the current through a strongly interacting
region. In order to obtain the time-dependent current correlations we therefore ex-
tend the time evolution scheme based on the DMRG that was successfully used to
obtain the I-V-characteristics for the IRLM before [56]. The main problem turns out
to be the finite size effects of the results of the non-equilibrium correlation functions
for finite systems, which in part can be controlled by analytical reasoning, and in
part can be removed by linear extrapolation to the thermodynamic limit [84]. We
provide numerical results for the shot noise in the self-dual IRLM, where we find
excellent agreement with analytical results based on the Bethe ansatz [85].

1.1 Structure of this work

This work is organized as follows: The first three chapters are intended to give
an introduction to the field of research, while the main results are presented in
chapters 4 and 5. Additional information, as for example analytic results provided
by collaborators, is given in the appendix.

In chapter 2, the introductory part of this work is complemented quantitatively by
discussing simple models that are appropriate to describe the physics of the afore-
mentioned systems. The focus of chapter 3 is to give an overview of the numerical
methods that build the foundation for the computation of the main results, where
we also hint at possible applications that have not been carried out for this work.
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We then investigate spectral properties of an interacting nanostructure in chapter 4
before discussing conductance and shot noise — the latter being the central result of
this work — for a non-equilibrium transport setup in chapter 5. A special emphasis
throughout chapters 4 and 5 is set on removing effects from the finite size of the
simulated systems, yielding results for the thermodynamic limit. Please note, that
the results on the spectral properties are still work in progress. The main focus
here is to demonstrate an approach based on the expansion of the impurity Green’s
function in orthogonal polynomials.

1.2 List of publications

The content of chapter 5 has been published in

A. Branschidel, T. Ulbricht, and P. Schmitteckert, Conductance of Correlated
Nanostructures, in: High Performance Computing in Science and Engineering
'09, edited by W.E. Nagel, D. Kroner, and M.M. Resch, (Springer, Berlin,
2009), pp. 123-135 [53]

A. Branschéidel and P. Schmitteckert, Conductance and Noise Correlations of
Correlated Nanostructures, in: High Performance Computing in Science and
Engineering '10, edited by W.E. Nagel, D. Kroner, and M.M. Resch, (Springer,
Berlin, 2010), pp. 169-179 [54]

A. Branschidel, E. Boulat, H. Saleur, and P. Schmitteckert, Numerical eval-
uation of shot noise using real-time simulations, Phys. Rev. B 82, 205414
(2010) [84]

A. Branschédel, E. Boulat, H. Saleur, and P. Schmitteckert, Shot Noise in the
Self-Dual Interacting Resonant Level Model, Phys. Rev. Lett. 105, 146805
(2010) [85]

A. Branschiddel, G. Schneider, and P. Schmitteckert, Conductance of inho-
mogenous systems: Real-time dynamics, Ann. Phys. (Berlin) 522, 657 (2010)
[67]

There is a publication in preparation for the content of chapter 4.

Unrelated work:

A. Branschidel and T. Gasenzer, 2PI nonequilibrium versus transport equa-
tions for an ultracold Bose gas, J. Phys. B: At. Mol. Opt. Phys. 41, 135302
(2008)



Chapter 2
Physical Models

The system we want to describe consists of a nanos-
tructure that is attached to leads, Fig. 2.1. The leads 1,0ad L, Lead R
may consist of a two-dimensional electron gas, or of
metallic wires, for example. The assumption of the
lefad}rf beling suﬂicier}tly big alli)ws the relilreselntation Structure
of the electrons as free particles, since the electron-
electron interaction can be assumed to be screened. -
On the other hand, due to the small size of the nanos-
tructure, one there can not benefit from screening
effects that occur in the leads. Instead, electron-
electron interaction has to be taken into account.
For the numerical treatment of the physical ques- Figure 2.1 Sketch of the sys-
tions we are interested in, the huge number of de- tem we want to consider. An in-
grees of freedom this composite system of structure teracting nanostructure is cou-
and leads consists of enforces us to choose the model pled to two leads.
for describing the system carefully. For a sufficiently
small structure only a single transport channel may couple to the leads, which
renders the description effectively one-dimensional. Also, the numerical method
we use for the computations, based on the density matrix renormalisation group
(DMRG) as discussed in chapter 3, works best for one-dimensional models. We
therefore represent the leads as 1D tight-binding chains. The main results of this
work, and especially the results for the shot noise, will be derived for a very simple
model, the interacting resonant level model (IRLM) as defined below. There are
essentially two reasons for investigating quantum fluctuations in this model: first,
for the current-voltage characteristics, there is a negative differential conductance
(NDC) with a power-law decay of the current in the high-voltage limit, as soon as
electron-electron interaction is taken into account. The presence of this unexpected
behaviour motivates us to take a closer look at this system. Second, for the IRLM,
there are exact analytical solutions to the problem, if the parameters are chosen ap-
propriately [56,85]. This allows us to check the reliability of the numerical method
we apply here.

Throughout the text we represent an electronic many-particle system in second
quantisation language. For x denoting a set of degrees of freedom (as, for exam-
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ple, band index, spin, momentum, etc.), we represent creation- and annihilation-
operators as

IR (2.1)
which obey the usual fermionic anti-commutator relations
(e} =0xy. {eag ) ={c.d}=0. (2.2)

2.1 Description of the system

Interacting Nanostructure As pointed out in the introductory chapter, a nanos-
tructure can be many different things, as for example a single molecule of varying
complexity, or an array of quantum dots, defined by gate electrodes on top of a
heterostructure. The most general Hamiltonian that includes tunneling of electrons
between different orbitals (labelled by v, u, £ and p), as well as electron-electron
interaction, reads

ZHVMCVU ,u,o + Z VVMEPCVJ uo’ Iio’leU’ (23)
VLo vukp,oo’
H:,u = H;un V]/*/J,/{p = Vpn,uu- (24)

For the numerical studies presented in the following chapters we make some simpli-
fying assumptions. In fact, we aim at reducing the complexity of the model in order
to make a treatment based on the available methods possible. On the other hand,
we keep a certain level of complexity in order to preserve interesting effects, as for
example, a negative differential conductance. The basic idea behind this approach
is to find a minimalistic model that still includes the relevant physical properties,
and then to treat this model rigorously.

The system we want to consider is a linear chain of single orbitals, labelled z =
1...Msg, each connected to its next neighbour via a tunneling matrix element Js.
The energy of an electron occupying a certain orbital is given by V, which we call
a local gate potential, since in the case of a quantum dot, the energy levels can be
shifted by means of gate electrodes. Furthermore, we only consider local density-
density interaction Us, including interaction of electrons occupying neighbouring
orbitals. The Hamiltonian then can be rewritten as

Mg—1
rrt.b. At A K R R
HS - Z JSvI(CL,UC?H‘LU + cﬂﬁ—f—l,acmp) + E V,znza
o=l o,x=1
Mg—1
+ Z US xnxTnxl + § : US xnx Jnar—I—l o’ (25)
z=1 oo’ x=1

This model is a tight-binding chain of finite length, with Mg lattice sites, where the
operators
Ny = C ¢ (2.6)
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count the number of electrons with spin ¢ occupying a lattice site x. If we consider
a situation with z-independent parameters Jg, V, and Ug, and additionally neglect
the next-neighbour interaction U! = 0, we arrive at the Hubbard model for a finite
chain.

Further simplification can be achieved by assuming polarisation of the system. If
we set the number of, say, spin | particles to zero, we arrive at the tight binding
chain of spinless fermions

Mg—1 Mg Mg—1
HY == Jsalele,y + 060 +) Veaha + > Usyiigiigsr. (2.7)
r=1 =1 r=1

Here, the spin index ¢ has been omitted, together with the local interaction contri-
bution U{n# |, while we replace U} — Us for the next-neighbour interaction.

Leads For the description of the leads we assume that the electron-electron in-
teraction is completely screened. If the electronic dispersion relation of the bulk
material is known, the Hamiltonian for the electron dynamics in an isolated lead
with label « then reads )

Ho = CanklhroConto- (2.8)

nk,o

Here, the band index is labelled n and the electron spin is labelled o =T, |. Since for
transport calculations at low temperature only the partially filled bands contribute
to the electron current, we omit the band index based on the assumption that there
is only a single band with partial filling,

Ho = fallynlors (2.9)
k,o

Coupling of nanostructure to leads The setup we consider here involves a struc-
ture which is connected to two leads, labelled o = L, R, for the “left” and the “right”
lead. This structure—lead coupling is assumed to be local in space, which renders
the availability of a real-space representation of the lead Hamiltonian desirable. A
very simple model of a lead is a one-dimensional semi-infinite tight-binding chain,
defined by the Hamiltonian

S
H:;b- =—J Z (él,aaéx-‘rl,aa + é;-{—l,aaém,aa)' (210)

o,x=1

If we bring this Hamiltonian to diagonal form (2.9), we obtain a cosine dispersion
relation
e = —2J cosk, (2.11)

with the band width 4.J. Assuming that the 1D nanostructure, modeled by a Hamil-
tonian of the form (2.5), is coupled to the end of the semi-infinite chains L and R,



Chapter 2 Physical Models

Lead Structure Lead

Figure 2.2 Interacting nanostructure @ coupled to two non-interacting semi-infinite leads
@ (finite interaction Uc with the first lead site ® allowed). The system is represented as a
linear tight-binding chain.

we introduce a coupling Hamiltonian

~ B U At R N A
Hop == Jon Y (6 oei, + & 1,b10) + D Ui i o, (212)
o oo’
Hop =— Ji (e oCime + 0 polar o) Y UcrNng of (2.13)
C,R frng C,R CMs,O'CLRO' CLRO'CMS7O' C7RnMS70'n17RO'” .
o oo’

including an electron-electron interaction of the electrons on the “tip” of the leads
and on the “tip” of the structure. Together with Eqns. (2.5,2.10), the overall setup
now can be described by the Hamiltonian

A = {9 4 Hep + AY 4 Hog + A (2.14)

sketched in Fig. 2.2.

2.2 Interacting Resonant Level Model

A very minimalistic transport setup with a nanostructure coupled to two leads is a
structure which can be modelled by only one orbital (the dot). We arrive there by
assuming Mg = 1 in Eq. (2.5). Neglecting the interaction on the contact link Uz = 0
results in a tight-binding version of the single impurity Anderson model [86].

An even more innocent looking model can be obtained by again assuming the
strong polarisation limit where only one spin orientation persists. The local electron-
electron interaction on the dot then is suppressed, the only remaining interaction
effect is the interation on the contact link Ug. The result is called the interacting
resonant level model (IRLM). The term resonant refers to the fact that for a very
specific energy range, electrons tunnel through the dot from one lead to the other
with probability 1 (resonant tunneling), even for very weak coupling of the dot to
the leads, Jo/J < 1. Since in this work we concentrate on the investigation of the
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properties of the IRLM, we once more write down the Hamiltonian for this system

(o]
Hirivm = —J Z(élézﬂ vl e, vete  ret e, 4 Vg

=1
e U, T . 1., 1 . 1., 1
— Jo(eher + el + el s+ &1) + Uo | (s = 5) (0 = 5) + (o — 5) (i = 5)]
(2.15)

Note, that we slightly change the notation in order to simplify the expression; the
dot level is now labelled 0, while we refer to the left (right) lead using negative
(positive) indices. Furthermore, for the considerations in the following chapters, we
choose the dot-lead coupling as well as the dot-lead interaction symmetric. Shifting
the density operator in the interaction contribution by —1/2 corresponds to adding
a local potential —Uc(n_1+no+n1)/2. In doing so we guarantee, that for vanishing
gate voltage V; = 0, the probability for an incoming particle from one lead (L), to
get scattered at the dot to the other lead (R), is maximal, if the energy of the particle
is equivalent to the center of the cosine band. If we assume a “metallic” situation
with a half filled band, this corresponds to resonant tunneling at the Fermi level.

2.3 Representation on a computer

In the next chapter we will discuss methods to numerically compute various prop-
erties of the models introduced above, including the impurity Green’s function for
the ground state of the system, and the time evolution of a non-equilibrium initial
state. The methods in question altogether rely on the representation of the system’s
Hamiltonian on a finite computer, posing a very strong limitation on the models that
can be considered: the Hamiltonian of the system needs to be finite. This means
in practice that the real-space representation of the semi-infinite leads as described
by Eq. (2.10) has to be cut to finite length, resulting in finite leads with M, lattice
sites. The most obvious effect of the finite size of the system is the discretisation of
the energy spectrum, limiting the energy resolution of the numerical computations
(cf. also Fig. A.1 in the appendix). Furthermore, the time evolution of a non-
equilibrium state shows effects from reflections at the boundaries. An excitation
that travels along the leads starting from the nanostructure will finally be reflected
at its boundaries, which will eventually disturb the simulation of the quantities of
interest, such as for example, the current through the structure.

The discussion of finite size effects and their impact on numerical results will be
deferred to chapters 4 and 5 where we also present our main results. The purpose of
the present section is to rewrite the infinite-lattice models, truncating the leads to
finite length My, and Mg, thus providing a unified representation for the discussion
of the numerical results.

According to the sketch in Fig. 2.3 we change the labelling of the individual lattice
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sites again. Rewriting the Hamiltonian (2.5,2.10,2.12-2.14) then leads to

My, +Ms—2 My, +Mg—1
Frfinite __ At oA N A N
5 - Z JS7$(C$7‘7€$+1,U + Cﬂﬁ—l—l,acar,a) + E V,xna:o
o,x=M, o,x=Mj,
Myp+Ms—1 My, +Mg—2
0 ~ = 1 - ~
+ E US,xnITnIl + § : US,xniv,UnIJrLUU (216)
z=DMr, oo’ ,x=M,

Frfinite Af A AT A o 2
cL —Jor E (CU,ML—ch,ML +CU,MLCU,ML—l) + E Uc Lo, My —17067 My, (2.17)

o oo
rrfinite AT A N ~
CR — _JQR E (CO',ML+M3—1CO',ML+MS + H-C-) + E Ucano'vML+MS_1nUI7ML+MS7
o oo
(2.18)
My, —2 M—2
rfinite N ~t ~ rfinite N NI ~
HL =—J § (Caxcaaz—l—l + Caa:—l—lcax)? HR =—J § : (Caxcaaz—l—l + Cax—l—lcax)?
o,x=0 r=Mr,+Msg
o
(2.19)
rfinite __ frfinite rrfinite rfinite rrfinite rrfinite

with My, (Mg) lattice sites on the left (right) lead and Mg lattice sites on the
structure. The system then consists of M = My, + Mg + Mg lattice sites in total.
For the IRLM, the Hamiltonian (2.15) can be correspondingly rewritten as

My, —2 M—-2
Higiy = —J Z (e +éhe,)—J Z (1,0 +eli18,) + Vi,
=0 r=My,+1
— Jo(éh, ey + e ey e ey o+ L)
C\Crr,—1%np, My, M, —1 My, "M, +1 My +1%My,
. 1., 1 R 1. . 1
+ U (a1 = 5) (s, = 5) + (as, = 5) (ana = 5)| - (2:21)

“Improved” boundary conditions The problems due to the finite size of the sys-
tem can be tackled in part by adopting an adjusted discretisation scheme for the
energy levels in the leads. For example, for the computation of the response of the
system to a small bias voltage, it is necessary to obtain a high energy resolution
at the Fermi level. The setup we will consider later on involves a system described
by one of the finite Hamiltonians introduced in this section with M lattice sites in
total, and a finite and constant number N of electrons in this system. Since we want
to consider metallic leads, we will adjust N to arrive at (close to) half filling' of the

!There are situations where the condition of half filling can not be met strictly. For example,
for a system of spinless electrons with an odd number M of lattice sites, N = M/2 is not an
integer number of electrons. For a discussion in more details see chapter 5.

10
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0o 1 .. M -1 M; +Mg M-1
o—O0—-O0—-O0—10O0—10O0—O0—10O0 000 OO OO0
Lead Structure Lead

Figure 2.3 Interacting nanostructure coupled to two non-interacting finite leads. The
system is represented as a linear tight-binding chain with an overall number of M =
My, + Mg + Mg lattice sites, with My, (Mpg) lattice sites in the left (right) lead and Mg
lattice sites on the structure.

leads for the system in its ground state. This means that the Fermi level is at the
center of the cosine band (2.11),
ep = 0, (2.22)

but unfortunately, this is exactly where the energy resolution is lowest. The level
spacing for the single-particle energy levels of a finite, isolated tight binding lead
with M, lattice sites, as defined in Eq. (2.19), can be deduced from the dispersion
relation (2.11) and approaches its maximum value Ae ~ 27.J/(M,+1) at the middle
of the cosine band, cf. appendix A.

For an overview of the different methods that have been applied to adjust the
level discretisation see for example Ref. [87]. In a real-space representation of the
leads as in Eq. (2.19), a rearrangement of the discrete energy levels translates to
a modification of the hopping matrix elements, which become position-dependent,
J — J,. In this work we will use damped boundary conditions (DBC) that have
repeatedly been applied before [30,60] in order to increase the energy resolution at
the Fermi level ep, while keeping the overall number of lattice sites M fixed. We
therefore modify the lead Hamiltonian? (2.19),

Mp—2
HI]?BC = Z A Ma= (e MB+2)]/2J(CL$CJ£B+1 + Cj;zlecaaz)
o,x=0
My, —2
—J Z (cazcax-l—l + cj;*ar—i—lcoa:)? (223)
ox=My—1

corresponding to the sketch in Fig. 2.4. The damping towards the boundaries expo-
nentially reduces the level splitting at ep at half filling.> In chapter 5 we will study
the enhanced energy resolution and give an interpretation in terms of an effectively

2Remark: We only show the modification for the left lead. The right lead has to be modified
correspondingly.

3In fact, exponential damping is one of several possibilities to increase the energy resolution.
Alternatively, smooth boundary conditions [59,88] can be used to mimic the thermodynamic
limit.
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Chapter 2 Physical Models

left Lead Structure
0 1 .. Mp—1 M; -1
o o6 06—-0—"10O—0C—"O06—710C—"10—0C—0C—0—0@— -
NN S S A S R S
exponential i constant
damping i hopping

Figure 2.4 Damped boundary conditions (here: in the left lead). While keeping the
overall number of lattice sites in the leads constant, the hopping matrix elements are

damped towards the boundaries of the leads, with a damping parameter A > 1.

increased system size. The impact on finite size effects will be discussed in some
detail, where we will focus on the effect on the time evolution of the system at finite

bias voltage.

12



Chapter 3

Numerical Methods

This chapter is intended to give an overview of the numerical methods that build
the basis for the computations, the results of which are presented in the remaining
part of this work. In the light of the many different techniques that are in use we
thereby have to concentrate on the basic principles, referring the interested reader
to the literature for the details, for example Refs. [61,62,64-66,89-96]. Of course, all
the topics discussed in this chapter have been studied before. However, we believe
that in order to make this work self-contained, it is appropriate to address certain
issues at this place due to their fundamental relevance in this context.

When investigating finite lattice models of electronic systems, the corresponding
Hamiltonian (in fact, all operators that are relevant) can be represented in terms of
matrices of finite dimension with complex entries, while quantum mechanical states
can be represented as vectors with finite dimension. Many problems can be con-
sidered as solved when the eigenvalues and the corresponding eigenstates of a given
Hamiltonian are known, being often sufficient to know only a few of them, such as
the ground state of the system. Therefore numerical diagonalisation techniques play
an important role, cf. section 3.1. However, the numerically exact diagonalisation
is limited to very small systems of only a few lattice sites since the dimension of
the underlying Hilbert space is growing very fast. Therefore, one may resort to
iterative projective schemes that keep the dimension of the Hilbert space constant
while repeatedly enlarging the system by adding (blocks of) lattice sites. A promi-
nent example is the numerical renormalisation group (NRG) which is based on an
iterative rescaling of the energy scale while keeping only the low lying energy eigen-
states [97,98]. Because of the specific choice of states kept at each iteration step
this method is tailor-made for problems which show a clear separation of energy
scales, while it is not clear whether in a non-equilibrium situation the seperation
of energy scales persists. Instead, we use the density matrix renormalisation group
(DMRG) [61,62,64-66], cf. section 3.2, which is also based on iteratively enlarging
the system size, but truncates the Hilbert space using a different selection criterion:
only those states are kept which span a truncated Hilbert space that allows us to
approximately represent an arbitrary set of states optimally in a certain sense, as
will be discussed below. Given an initial non-equilibrium state it is then possible to
compute the time evolution of the system. For this purpose different schemes have
been developed [43-48,55]. In our case we use a method based on Krylov subspace
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Chapter 3 Numerical Methods

techniques [99] to obtain finite bias current and shot noise in chapter 5, which was
first applied to electron transport in a 1D lattice on the basis of DMRG by Schmit-
teckert [47]. The scheme preserves unitarity and can be accurate up to numerical
precision (see section 3.3). Finally we investigate applications of orthogonal poly-
nomials [89,96] in the context of DMRG, highlighting some interesting features due
to the possibility of expanding functions into a complete basis of polynomials, cf.
section 3.4.

3.1 Applications of Exact Diagonalisation

The term “exact diagonalisation” in general refers to methods that yield numerically
exact results for a finite lattice system by directly diagonalising the matrix represen-
tation of the system’s Hamiltonian [64]. This includes the complete diagonalisation
of the matrix, which is either given in a many particle basis or which may result
from a single particle decomposition as discussed below, but also iterative methods
which make the ground state (as well as a few low lying excited states) available.

Unfortunately, for many-particle systems, the dimension of the underlying Hilbert
space grows very fast with the size of the considered system. The description of an
isolated electronic system that conserves particle number /N and total magnetisation
Sg. = Ny — N|, where the number of spin up (spin down) electrons is given by N;
(Ny), can be divided into parts with constant N and constant SZ,. The Hilbert
space V(NN, SZ,) for a given value of particle number and total magnetisation then
has dimension

| Lo (M (M) M M
BV, Sia)) = (M) (M) - <<N+S:ot>/2> ((N—S:oa/z)' (31)

Storing the complete matrix for a lattice with M = 10 lattice sites, N; = 5, and
N, =5, in double precision, will occupy about 15GB of RAM!!

Given that only the extremal eigenstates are relevant, one can resort to the Lanc-
zos or the Davidson method [64,91]. By repeatedly applying the Hamiltonian on a
given initial vector, a set of states {|¢,)} is generated, which will eventually allow
computation of the extremal eigenstates one is looking for. Since only the action of
the Hamiltonian on a given state is computed, there is no need to store the whole ma-
trix representation. Instead only the states |, ), which amount to dim(V(N, SE,))
numbers in double precision, have to be stored. Still, for a system with M = 18 and
Ny =N =9, 18GB of RAM must be available per vector.

In the framework of the DMRG (cf. section 3.2), both, the complete as well as
the iterative diagonalisation, are used. The projection of the many particle Hilbert
space onto a subspace with a largely reduced dimension allows treatment of systems

!For many practical applications, as for example tight binding chains, only a small number of the
matrix elements is different from 0. Therefore, sparse matrix techniques can be used to cut the
memory footprint to a much smaller value.
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3.1 Applications of Exact Diagonalisation

with M = 100 lattice sites. While low lying eigenstates of the Hamiltonian in
the projected subspace have to be computed using iterative algorithms, complete
diagonalisation is applied to obtain the complete eigenvalue spectrum of the reduced
density matrix for a part of the system.

Single particle decomposition By contrast, for systems described by a Hamilto-
nian of the form?

H= Z H,éle,, Hi, = Hy, (3.2)

z,y=1

a single particle representation can be obtained, which in contrast to the full N
particle description allows treatment of systems with several thousand lattice sites.

In the remainder of this section we will derive formulas for computing expectation
values of certain time-dependent operators. For the discussion of simulations of the
time evolution in chapter 5 this is important, since it allows us to look for effects
that result from the finite size of the system. Furthermore, the method described
here allows us to check numerical results obtained by using other, more ambitious
techniques, as for example the DMRG.

To begin with, we derive a single particle representation for the expectation value
of the operator éf,(¢)¢,(t), which is a prerequisite for calculating the time-dependent
current in a non-equilibrium state. The fermionic operator ¢l creates a particle
at the lattice site x, while the Hermitian conjugate removes a particle from the
system. Therefore the particle number conserving operator éléy can be referred to
as a hopping operator. Let |@n) be a complete set of eigenstates for an N-particle
system, where Ey|on) = H|on) = 3, €xni[on]|@n), with the one-particle energies
¢, and the occupation number n,[py]| € {0,1} of the single particle level x in the
state |@n). Now, for a time-independent Hamiltonian H, the time evolution operator
exp(—iHt/h) can be represented as

,1Ht/h Zze i>, exnn @N]t/hho ><()0N‘7 (33)

N=0 ¢n

where the sum extends over the full Fock space basis with dimension 2" in the case
of spinless electrons on a lattice whith M lattice sites. This allows us to express the
time evolved hopping operator as

et = 37 dReertmleilmneloal g (g fele, o) (onl - (3.4)

N7¢9V7‘PN

If we finally introduce an appropriate unitary transformation U,, that diagonal-

izes the matrix H,, by €,003 = ny Ul H, U,g, yielding the diagonal form of the

2Example: The resonant level model, described by the Hamiltonian (2.21), with Uc = 0, is of the
form (3.2).
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Chapter 3 Numerical Methods

Hamiltonian (3.2),
FI = Zeaéjxéa7 Z azCr> é:rx = ZéLUmom (35)

we arrive at a representation that does not contain a summation over the full Fock
space basis anymore, but only over the single particle levels

eiﬁt/hé;éye—iﬁt/h _ Z Uotnyg ollea—eg)t/h éL% — Z @LUT(t)x/xU(t)yy'Cy/, (3.6)
:B/y/

with the time evolution operator in the single particle representation®

Ut) = e /R (3.7)

—iegt/hy7t
> Uyge MUt
B

The matrix U can be obtained either by evaluating the sum (3.7), or directly from the
matrix H,, by means of a matrix exponential function, cf. Refs. [93-95|, removing
the need to explicitly compute the unitary transform U,,.

For an arbitrary initial state |¥g), defined by the occupation numbers 71, [¥¢] €
{0,1} of an arbitrary complete set of orthogonal single particle states, we now can
express the expectation value (Wo|éf ()¢, (t)|Wo) in terms of this single particle basis.
Therefore we first introduce a second un1tary transform UV that connects the anni-
hilation and the creation operators ¢, ¢! with an additional set of operators ¢?, ¢97,
where the latter constitute the occupatlon number operators of the aforementloned
single particle basis by ¢2¢%|Wg) = 71, [¥o]| Vo)

&= Ule, &r=> éuy,. (3.8)

x T

In combination with Eq. (3.6), this finally leads to

(Woleh(t)e, (| Wo) = D (Wolel & | Wo)UpLU  (8)arald (£ Uy, (3.9)
z'y'vu
= 2 U TULU 0 = U WU e (310
z'y'v
oy = ZU nV\IIOUT (3.11)

Eq. (3.10) is an important result of this section. In order to define the initial state
|W,), we will later (cf. chapter 5) obtain the ground state of a Hamiltonian Hy # H,
which has the same form as given in Eq. (3.2) with a hermitian M x M matrix
Hy 4y, by setting the occupation numbers 7, of the IV lowest single particle energy

3The matrix H has to be distinguished from the Hamiltonian H, cf. Eq. (3.2).
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eigenstates to 1, and of the M — N upper eigenstates to 0. The unitary transform
U° can be obtained by diagonalising Hy ., corresponding to Eq. (3.5).

Since we also want to compute shot noise, we need to evaluate the expectation
value of operators of the form é;(t)éy(t)él/(t’ )¢, (t'). After applying some commuta-
tor algebra, the generalisation of Eq. (3.10) is straightforward and amounts to

Uy VU ()l (1) (W — U (V) }. (312)

Finally we want to direct the readers attention to Ref. [100]. There, for non-
interacting electrons in a one-dimensional tight-binding model the full counting
statistics is evaluated numerically, which in principle allows for the extraction of
current, noise as well as higher order cumulants.

3.2 Density Matrix Renormalisation Group
(DMRG)

In general, the problem of diagonalising the Hamiltonian can not be reduced to a
single particle picture. Instead, the full many-particle problem has to be considered.
As already discussed in the previous section, the main difficulty here results from the
dimension of the Hilbert space V growing very fast with the number M of lattice
sites. In this section we will describe the density matrix renormalisation group
(DMRG) method, which essentially reduces the dimension of the Hilbert space V by
projecting onto a small subspace V... The criterion for generating the projection
scheme is based on minimizing the discarded weight of the reduced density matrix
p. of a part of the system, where the discarded weight is the sum of all eigenvalues
of p, which get lost during the projection onto V.

The DMRG was introduced by Steven White in 1992 [61] in order to overcome
problems with boundary errors that appear when Wilson’s NRG [97] is applied to
real space lattice problems. In keeping only the low-lying energy eigenstates, the
NRG method fails to choose an appropriate set of basis states which can be used
to represent the low lying states in a system of increased size. This is illustrated in
Fig. 3.1 for the ground state of a particle on a lattice in a 1D box. For a discussion
in more details see Ref. [101].

White applied the new method to 1D Heisenberg antiferromagnetic spin chains
at zero temperature. Since then the method has been generalized to a number
of problems, including finite temperature calculations [102,103|, 2D systems (for
example [104]; for a more extensive list of references see [65]), and time evolution
simulations of non-equilibrium states [43-48], the latter being fundamental to the
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Chapter 3 Numerical Methods

Figure 3.1
Ground state of a particle in a box on a discrete
lattice. The black dots represent the lattice,
which consists of M = 8 or M/ =2- M = 16
sites. An algorithm that looks for the ground
state of the system by iteratively (a) looking for
the low lying states in a Hilbert space V for a
system of size M, (b) constructing a truncated
Hilbert space V' for a system of increased size
M’ using the low lying states in V only, and (c)
M — M,V — V, will fail since the ground
state in V' can not be represented correctly.

+ X + + X+
X X

cooo0oo0o000o000000 09
1 89 16

results of the present work. The method was also the topic of a number of reviews

that have appeared in the last years [64-66].

3.2.1 Optimally truncated wave function

To define the truncation scheme that reduces the dimension of a given Hilbert space

V), we start with the following assumptions:

1. A number of states* |x) € M = {|¥), |®),|0),...} of the many particle system
with /(x|x) = N, is given in a product basis,®

Ds—1Dp—1

= > > g @léh), (3.13)

i=0  j=0

with [€%) a basis in V4 and |€}) a basis in Vg, where V = V4 ® Vg, with

Dy =dim(Va) and Dg = dim(Vg),

2. the truncation is carried out separately in V4 and Vg,

3. the truncated states |ycut) must minimise

DI = Ixeud 1P/

XEM
= [[1%) = [Weut) /NG + 112) = [Peun) [I/Ng + 110) = [Ocuc) [I*/NG +
(3.14)
If we define a density operator for the states |x) € M
. 1
p= 2 xEhi, (3.15)
X

xXEM

“Example: for the time evolution of an initial non-equilibrium state |¥o) vectors [¥(t,)) =
exp(—1HAt/h)™|¥o) have to be computed, forming the set M.
5The reason for this requirement will become clear in the following sections.
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3.2 Density Matrix Renormalisation Group (DMRG)

A B

Truncation scheme. A wave function |¥) that

is given in a product basis for subsystems A

/\__/M- and B as described in Eq. (3.13) is truncated
) to a small subspace according to the minimality

truncation condition Eq. (3.14). The filled areas ® .o
respond to the full Hilbert space V4 and Vg,

whereas the framed areas O correspond to the

{ H [ Hilbert space V4 cut and Vp ey with reduced

dimension. The resulting wave function |Weyy)
approximates the original one.

it turns out that the minimality condition (3.14) is fulfilled for a truncation that
keeps those of the basis states in the subsystems A and B that are eigenstates of
the reduced density operators p4 and pp of p with the largest eigenvalues:

The reduced density operator p4 (pg) for the state of the subsystem A (B) is
given as the trace over the disjoint subsystem

Dp—1Djy—1

pa=Tesp= > 3 leh i€kl @ (ehl] o[l @ e (exl, (3.16)

k=0 1,m=0
and

Ds—1Dp—1

pp=Trap= > D le[tekl® (el o [I€h) @ lep|(en, (3.17)

k=0 I,m=0

respectively. The matrix elements then are given as

1 i iy 1 ik ( Ly *
= Z chi ()" and plff = Z mzcxk(cxl) : (3.18)

XEM ™ X XEM ™ X

For the subsystem A, we introduce a new orthonormal basis set [£5) with
€5 =D uail€h). (3.19)

A truncation |xcu) of the states |y) € M into a subspace Vo = Vacur ® Vg CV
with Ney, = dim(Vacur) < D4 is now given by

Ncut -1

Xewt) = Y Y _aIE5) @ [€5). (3.20)
a=0 J

19



Chapter 3 Numerical Methods

This truncation is optimal, if the minimality condition (3.14) is fulfilled, which we
can rewrite as

Ncut 1 Ncut 1

1—2Re Z Z Z ) O‘]um +Z Z Z}a“]} minimal. (3.21)

XGM xeM

A necessary condition is stationarity of Eq. (3.21) with reference to the coefficients
a®d
X

aj ! 17 *
as) = Zcxj(um) : (3.22)

Putting this into Eq. (3.21) we find

Neut—1 Neut—1
e[ S S 3 S e
xEM xEM -
1 .
= 1— Z‘A—/’g(uai)*cgg(c;])*uai (3 18) 1— Z(Um)*,Oﬁ Ugi (323)
3.19 ;‘“‘til - -
o) 1—- Z (€%1pal€}) minimal. (3.24)
a=0

Finally, we have to fix the basis \éj). Now, minimality requires stationarity with ref-
erence to the |€%). According to the Rayleigh-Ritz variational principle, (€%]5.4]€%)
is stationary for the basis states |£4) being the eigenvectors of the density operator
pa. In order to obtain this basis and the corresponding eigenvalues it is necessary
to apply a complete diagonalisation to the density operator. If we denote by w9 the
eigenvalues of p4, we find the minimality condition fulfilled if

Ncut 1 N(‘ut 1
— ) (€ilpaléd) =1- Z wh =4 (3.25)
a=0

only contains the Ny biggest eigenvalues of the density operator. The error of this
truncation is controlled by the truncation error €4, which we will in general denote
as the discarded weight €g4is.. The same argument holds true for the density operator
pp of the subsystem B.

In order to construct an optimally truncated Hilbert space V., = 17,470“ ® l>Bmt
(optimal in the sense described before), we therefore have to find a unitary transform
€LY — |€9) and |€2) — |€2) that diagonalises the reduced density operators ja
and pp. Then, the new basis has to be truncated to those states with the biggest
eigenvalues wS and w?,.
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3.2 Density Matrix Renormalisation Group (DMRG)

Entanglement The entanglement entropy for the subsystem x = A, B, which
is a measure for the entanglement of the two subsystems, can be defined as the
von Neumann entropy of a reduced density matrix

S, = —Trp, log, pe. (3.26)

For example, if we think of a totally disentangled state |¥) = |¥,) ® |¥Up), the
reduced density operator p, for the subsystem =z = A, B is given as p, = |V,)(V,|.
The entropy then equals to zero. In general any state that has the form given in
Eq. (3.13) can be written as®

Ds—1Dg—1
o= Y Y dlEy @l (3.27)
i=0  j=0
Ds—1Dg—1 ‘
DI I LRI PANALY SN (3.28)
ij a=0 B=0
D*—1 ) )
= Y SelEn @€y, DT =min(Da, Dp). (3.29)
a=0
The matrix elements of the reduced density operator then read
o a 1 ao LY
Pl = p% = (= )260p = W6ag, (3.30)
X
identifying Z;ﬁ =, /wa;’ééaﬁ. Additionally, based on the equivalence of the eigen-
value spectrum of the reduced density matrices for the two subsystems it may be
concluded that”
§=8.=5n (3.31)
The truncation scheme described above, applied to a pure state |x), therefore leads
to a state |xeu) With reduced entanglement (Ney < D*)

Ncut_l ]cht_1
Xeu) = Y BCNEL) ®1E8), Seww=— Y wllogyws =8 — Sise,  (3.32)
a=0 a=0
where we define the discarded entropy as
D*—1
Stise = — Y wlogyw?, (3.33)
a=Neut

the latter a measure for the information that is lost due to the truncation of the
state. The minimality condition (3.14) guarantees that the loss of information Sgisc
for a pure state that entangles the both subsystems also is minimised.

6Using a singular value decomposition, the Dy x Dp matrix c;g can be expressed as C;J =

zaﬁ UiaEiﬁng, with unitary matrices U and V and a diagonal Dy x Dp matrix ¥, with
real, non-negative entries.

"It is well known that entropy is maximised if w® = 1/D*. Therefore a pure state with maximum
entanglement entropy can be written as |¥) = Zf:al 1€3) ® |€%)/V/D*.
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Errors During the DMRG iteration scheme, which will be described below, this
truncation procedure is repeatedly applied to subsystems A and B of varying size
which leads to an iterative accumulation of discarded weight £4isc. The resulting
approximation is optimal in the sense of a least squares approximation, as lined out
above. A big value of eg4i5c leads to a big mismatch of the projected states |xcut) as
compared to the original ones. Therefore it is crucial that the ordered weights w?
of the reduced density matrix p, decay to zero fast.® On the other hand, since the
complete spectrum of the reduced density matrices is computed in each iteration
step, the truncation error can be steadily observed. The number of kept states Ny
then is an appropriate parameter to control €gjsc.

The entanglement entropy recently has attracted a lot of interest [105]. For 1D
systems, the scaling of & with respect to the length [ of a subsystem x has been
investigated. The entanglement entropy scales as

S(1) ~ const + log I*. (3.34)

In the case of a gapped system, [* is equivalent to the correlation length &, and
hence independent of the size [ of the subsystem z. In the case of an ungapped
system, [* is equivalent to the length [ of the subsystem itself. For the present work,
the latter case is relevant, since the models we want to study are gapless. The
truncation procedure therefore leads to logarithmic growth of the disarded entropy
for fixed N.u . Increasing the dimension of the system > 1 leads to a modification
of the scaling behaviour. For a gapped system, S scales linearly with the number
of contact links A between the subsystem and the environment (area law; cf. also
Ref. [105]).°

For time evolution simulations, we have to take into account that the evolution
of an initial non-equilibrium state leads to the production of entanglement entropy.
For a DC-biased quantum point contact, for example, it has been shown |74, 106]
that the production rate is constant, dS/Jt = const, in the long-time limit.

3.2.2 DMRG iteration scheme: infinite lattice algorithm

We are now ready to describe the algorithm that iteratively builds up a truncated
Hilbert space together with the relevant wave functions, starting from a small sys-
tem, by adding more and more lattice sites to the system [61|. The key ingredient
here is to apply the truncation scheme described above subsequent to adding lattice
sites in order to keep the dimension of the Hilbert space suitable.

1. Initially the system is divided into two equal subsystems (blocks) A and B
which are composed of only a few (14 = My 4, g = M g) lattice sites. The
particle number in the coupled subsystems can vary, therefore the dimension of

8 A maximally entangled state, cf. footnote 7, will always lead to a bad approximation, if the
discussed projection scheme is applied.
9For this reason it is favourable to represent the leads as 1D tight-binding chains, cf. chapter 2.
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A . B Figure 3.3
o000 000 DMRG infinite lattice algorithm.

Starting from a small system (here:

0000000 3 sites in block A and B), the re-
th‘O‘O‘O‘H‘O‘O‘O‘Olﬁ duced Hilbert space is constructed
= =

iteratively by adding lattice sites

COOO@0000] (4 — Ao b — ol and s

quently truncating the subspaces to

—~ -
= |O'O'O'O'O'H'O'O'O'O'O| &  the desired dimension Ny (Ae —
M A, eB — B). Fig. 3.2. The trun-
: cated blocks must be stored & for
@“){-O-O-O-O-QH-O-O-O-O-O{("‘@ later usage during application of the

finite size algorithm.

the Hilbert space of each of the subsystems x = A, B is D, = d™o=, provided
that each lattice site has dimension d. Let us denote the complete basis of
each subsystem as {|m,)}. The first iteration then starts

2. by adding a lattice site to both blocks, resulting in new blocks Ae and eB. The
additional sites are represented by a local basis {|o,)}, the new basis of the
enlarged blocks is equivalent to the set of product states, {|M,) = |m,)®|o.)},
which has dimension D! = D, - d. For the enlarged system one now has
to find the ground state |¥y) (and the low lying excited states, if desired)
of the corresponding Hamiltonian by means of exact diagonalisation, which
can be done using an iterative method, cf. the previous section. The full
matrix representation of the Hamiltonian in the product basis {|M4) ® |Mg)}
has (D’; - D’;)? entries; note, however, that this number can be considerably
reduced by employing restrictions like the overall conserved particle number
and the total magnetisation, permitting to discard basis states of the product
basis that do not match the restriction.

3. Then apply operators O to |¥;) to obtain additional states |®) = O|¥,), where
O can be any observable, creation / annihilation operator, time evolution
operator, etc. At this point, expectation values can also be calculated.'®

4. The ground state |¥g) (as well as the low lying excited states) and, if available,
the states |®) from the previous step, are represented in the product basis
{|MA)®|Mpg)} by construction. From this set of states form a density operator
p, as well as the reduced density operators ps, and peg. For z = Ae and
r=eD,

a) diagonalise p, to obtain a basis of eigenvectors |w?) with eigenvalues w?,

I0This step can be omitted and only be applied during the finite lattice algorithm, cf. section
3.2.3.
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b) keep only N, basis states with the biggest weights w$ and transform all
states and operators to this reduced basis.

This now corresponds to finding the optimally truncated basis as outlined in
the previous section. The full matrix representation of the reduced density
operators p, has D? entries. Again, conserved quantities can be employed
to realize that the matrix has block diagonal structure, where each block is
labelled by a corresponding set of conserved quantum numbers (as, for exam-
ple, particle number in block z), removing the need to store all of the matrix
elements.

5. Replace Ae — A and eB — B, increasing the size of the blocks [, — [, + 1,
and start the next iteration (— 2. ...)

This scheme is illustrated in Fig. 3.3. The iteration is stopped when the desired
system size is reached.

3.2.3 DMRG iteration scheme: finite lattice algorithm

The infinite lattice algorithm has one major drawback. The projection to a small
subspace discards a large number of states, which can lead to poor precision if some
of the discarded states become important again at a later stage of the iteration
procedure. Finding the ground state of a given system then is impossible since the
relevant portion of the Hilbert space has been projected away in previous iterations.

For the infinite lattice algorithm, the discarded states are lost forever. This can
be cured to a great extent using the finite lattice algorithm after the final system
size has been approached. The main difference to the infinite lattice algorithm is
constituted in shrinking of one of the blocks (say, B) while the other one (say, A)
grows further — the overall system size is kept fixed. It is important to note that
the properties of the shrinked block have been obtained before, either during the
infinite lattice algorithm or during a preceeding finite lattice algorithm iteration
step. As illustrated in Figs. 3.3, 3.4, the blocks of reduced size have been stored
(as indicated by &3) and can now be restored during the finite size iterations. The
truncation scheme here is applied only for the growing block, which has reached its
maximum size when the shrinking block can be computed exactly (cf. Fig. 3.4). At
this point, a sweep has been completed. The direction of growth and shrinking then
has to be reversed. The sweeps should be repeated until the results (for example
the expectation values of operators) have converged. This may take several sweeps,
experience tells us to perform at least 5 sweeps.!!

HUFor obtaining the ground state of a system, we typically use 11 sweeps, while for the time
evolution simulations in chapter 5, this number may be increased by an order of magnitude.
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3.3 Time Evolution: the Krylov Subspace Method

A B
: e~
YO-O-O-Ole-e{0-0-00| "=
S HO-O-0-0-OH{0-0-00]
. Figure 3.4
){'O'O'O'O'O‘l‘.‘.m DMRG finite lattice algorithm. In
—~ contrast to the infinite lattice algo-
= W rithm, the overall system size is fixed.
YO-O-O-O-O0-Off0-O-00| "= & indicates either that data for the

corresponding block has been com-

@AM puted before and can now be re-
— stored for further processing, or that
){'O'O'O'O‘".‘I‘O‘O‘O‘O‘Ol = recently computed data has to be
@"‘)'LO_O_O.I.......}O_O_O_O_Ol stored for processing during a subse-
) - quent iteration step.
XO-O-Ole{0-0-0-0-00| "=

="0Ole-e{0-0-0-0-00]

3.3 Time Evolution: the Krylov Subspace Method

The dynamics of a quantum mechanical system is described by the time-dependent
Schrodinger equation [107]|. For a time-independent Hamiltonian H , this equation
can formally be solved by introducing a time evolution operator U(t) = exp(—iHt/h),
which then acts on an initial state |¥) to generate a time evolved state

(1)) =U®)). (3.35)

This time evolved state then can be used to compute the expectation value of time-

A

dependent observables A(t) via
(A) = (LTI (AT @) ¥),  (AW)A®) = (LU (¢)AT (Y — ) AU (1) ¥), (3.36)

etc. The numerical computation of the results of the time evolution simulations
of current in interacting nanostructures presented in chapter 5 therefore depends
on the availability of a method to obtain the action of an operator function (here:
the time evolution operator) on a given state |¥). A very simple method consists
in taylor-expanding the function f up to a certain order n, yielding an order n
polynomial, which allows us to obtain f (A)|\I/> approximately by knowledge of the
expansion coefficients. However, this approximation leads to poor precision (or vice
versa the need for a very high order n). Instead, it is desirable to implement a
method that looks for a “better” polynomial approximation.

The Krylov subspace method [99] in combination with an orthogonalization scheme
is a powerful tool to obtain a small subspace I of a given vector space V, that con-
tains the “most important” portion of the full space for a given problem. This
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Chapter 3 Numerical Methods

projection then can be used to obtain the quantity of interest efficiently, due to its
reduced dimension.

Since we are looking for the action of a matrix function f (fl) on a given vector
|W), it is reasonable to ask for

D) € K. (3.37)

The definition of a matrix function in terms of the power series f(2) = 377 ¢;2/

also suggests N
A0 € K. (3.38

The formal definition of the Krylov subspace KAY C Y with dim(KAY) = » <
dim(V) = d,'? generated by the operator A and the vector |¥), reads

~—

K = span{| W), A[w), A 9), ..., A7)}, (3.39)

Therefore, any polynomial p,_1(z) = Z;;é b;z7 of order r — 1 generates an element
of KAV by A
pr_1(A)| W) € KT, (3.40)

An orthogonal basis [j) in the subspace Kfm’ can be constructed using an Arnoldi
type algorithm [92], which also gives the matrix elements A;; of A in this basis:

1. Initialize: Compute |0) = |¥)//(V|T)

2. Iterate: For basis state |j) with j =0...r — 1 repeat
a) Compute |¢) := Alj)
b) Iterate: Orthogonalize |¢) on |i) with ¢ = 0...j by repeating
i. Compute A;; := (i|¢) = (i|Alj)
ii. Compute |¢) := |p) — A;jli)
c) Compute A;i1;:= /(¢[¢) and [j + 1) = [¢) /A; 1.

This algorithm constructs an r X r upper Hessenberg matrix (tridiagonal matrix)
A;; for arbitrary (hermitian) operators A, plus an additional A,,_;. Also, an or-

thonormal basis {|0), [1),...,|r—1)} of IC;,f‘v‘I’ is computed, plus an additional vector
7). Since Alj) € K55 € KAY, where K53 = span{|0),[1),...,[s + 1)}, we know
that

(lAlj) =0 Yi>j+1. (3.41)
Therefore
J+1 r r—1
Ay =Y 1AL = Y 1AL = > 1) Ay + [r) Ay (3.42)
=0 =0 =0

where <z\fl|j> = A;; and A,; = A,,_10;,-1. Now, the matrix A;; represents the
projection of the operator A onto the Krylov subspace KA¥ with respect to the

12]f V decomposes into invariant subspaces w.r.t. A, then dim(KAY) < r.
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3.4 Polynomial Expansion

given basis. If we denote the d x r matrix containing the r basis vectors |j) as
columns as B = [|0), |1),...,|r — 1)], Eq. (3.42) translates to

AB = BA+|r)(rl]AB = A=B'AB. (3.43)

The projection operator of )V on le"I’ is given as BBT. If the considered function f
is a polynomial of order r — 1,

r—1
F(2) =pralz) = Dt (3.44)
k=0
the application of the corresponding matrix function evaluates to (8 = /(V|¥))
r—1 r—1
pra(A)Y) = By adb0) = BY aBB'A*BB0) (3.45)
k=0 k=0
e
r—1 r—1
= BY aB(B'AB)*B0) = BB cA*Bl0)  (3.46)
k=0 k=0
= ﬁBpr—l(A)B”O)a (347)

where the equality Bt A*BBT|0) = (BT AB)*Bt|0) is valid since A¥|0) € K7 for all
E<r—1.1

For a general matrix function, given by an infinite power series f(z) = > o 2",
we now take the expression

FA)|W) ~ BBf(A)B0) (3.48)

~

as an approzimation to the exact value f(A)|¥). The interested reader may find a
formal proof of the validity for the matrix exponential function in Ref. [92] where
also error estimates are given. For practical computations especially the a posteriori
error estimates matter since they allow us to determine “on the fly” whether the
Krylov iteration can be stopped. The evaluation of the full matrix function f(A)
for the projected representation A of the operator A has to be carried out by means
of other techniques, where we resort to the Padé approximation for the computation
of the matrix exponential [93-95].

3.4 Polynomial Expansion

An alternative approach to evaluating the expectation value of operator functions is
based on the expansion in terms of orthogonal polynomials. In contrast to the Krylov

3Note: Bt|0) = (1,0,0,...,0).
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Chapter 3 Numerical Methods

method, the expectation value is not evaluated directly during the DMRG procedure
but only as a second step, where the polynomial moments in combination with the
expansion coefficients have to be summed up to constitute a specific function. The
computationally expensive operations, as for example matrix-vector products, which
build the basis for both the Krylov method as well as the evaluation of the polynomial
moments, have to be carried out only once for different function parameters and even
for different functions in the latter case, which can lead to a significant advantage
over the Krylov approach.

In this section we want to discuss the application of the truncated series expansion
of certain functions: the exponential functions exp(—ixt) and exp(—pfx), as well as
1/(z—x) with € R, Im(z) # 0. While the exponential function is suitable for time
evolution simulations, or, in case of real-valued exponents, for the computation of
thermodynamic quantities, 1/(z — ) can be used to evaluate resolvent expressions.

Closely related to the polynomial expansion is the so-called kernel polynomial
method (KPM), which aims at eliminating Gibbs oscillations that occur when ap-
proximating non-continuous functions, such as the step function or the § function,
by truncated polynomial series [96]. Especially when computing the spectral den-
sity of a physical system which is represented by a finite matrix (cf. chapter 4),
this is an important issue. Basically, the KPM modifies the expansion coefficients
of the polynomial expansion of a given function, where the modification depends
on the truncation order of the expansion. This is equivalent to a convolution of
the function with an appropriate kernel. In the case of Green’s functions, the KPM
can be used to guarantee certain properties of the truncated series expansion, such
as the poles being situated in the upper (lower) half of the complex plane for a
retarded (advanced) Green’s function. However, we choose another path to com-
pute the spectral density. As pointed out before, resolvent expressions of the form
(Ey — H + h(w +1in))™, n > 0, can be represented by 1/(z — ) when replacing
z — th(w +in), z — H — Ey. In the limit n — 071, the spectral density of the
operator H is recovered by taking the imaginary part of this function — remember
d(w—=) = —1/m lim, o+ Im(w +1in — z)~*. On the other hand, leaving 7 at a finite
value corresponds to convoluting the d-function with a Lorentzian, removing the
discontinuity at w = x. Since we seek the broadened Green’s function for reasons
discussed later,'* we do not rely on kernel polynomials but can apply the “pure”
polynomial approximation, which yields a spectral function of which the broadening
is well controlled by the parameter 7.

Let us first recall the basic properties of expansions in orthogonal polynomials.
For w(x) being a positive weight function on the interval [I,7], we define a scalar

" The broadened Green’s function also suffers from the Gibbs oscillation problem. However, in
contrast to the ¢ function, here we can give a truncation criterion for the series expansion that
allows us to suppress the Gibbs oscillations in a controlled way. See below.
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3.4 Polynomial Expansion

product,

(f.9) = / dz w(z) f(x)g(2), (3.49)

where f, g : [l,r] — R integrable. There is a complete set of polynomials p,,(x) with
the properties

(Pns Pm) = O /Py, Iy =1/ (pn, D). (3.50)

This now allows for an expansion of a given function f in terms of the p,

f(x) =) anpal@),  an = (pn, [)hn. (3.51)

The series expansion may then be used to determine the expectation value of oper-
ator functions

(WIFONE) =D anpin, = (¥n),  |n) = pa(O)|¥), (3.52)

for operators O with a spectrum on the interval (I, r), where the vectors |n) can be
obtained in linear time due to the recursion relations [89] for orthogonal polynomials

P (%) = (ay + @, 7)Pa(2) — appoi(2)

= alln+1) =da?|n) +d30n) —alln — 1), (3.53)
with numbers a;,, a2, a® and a;. The sequence (3.53) has the initial conditions
0) = pol®), 1) = p1(O)] W), (3:54)

The weight function w(z), the normalisations h,, and the recurrence relation given
by the pg, pi(z) and a! are specific for the type of polynomials and define them
uniquely; compare also table 3.1 and Ref. [89]. While the polynomial moments g,
have to be evaluated during the DMRG procedure based on the recurrence relation
(3.53), the expectation value (3.52) of a function f is computed afterwards based on
the expansion coefficients «,, as well as the pu,, where the a,, have to be determined
for the specific function f.

3.4.1 Properties of Chebyshev and Laguerre Polynomials

Chebyshev polynomials turn out to be the best choice for many applications [96].
However, numerical instabilities can lead to a limitation of the precision, as will be
discussed later for the example of the real-valued exponential function exp(—/px).
Therefore we also include the Laguerre polynomials in our discussion. While less
favourable in terms of convergence of the expansion coefficients, we still obtain better
results based on the Laguerre expansion as compared to the Chebyshev expansion.
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Chapter 3 Numerical Methods

pa(r) (L] w(x) fin P n a, a, ay, ay,
|
L%(z) 0,00 e Tz F(a—i—n;z—i—l) 1 14—z n+1 2n+a+1 -1 n+
1 2
T, (x) 1 x
V1—a? 1+,
.............. [_1’1] W1x+20 1 0 2 1

Table 3.1 Integration limits, weight functions, normalisations and coefficients for the recurrence relation
(3.53) for the generalized Laguerre polynomials (L) and the Chebyshev polynomials of first (7},) and second
kind (U,,). For a more complete list for different other types of orthogonal polynomials see Ref. [89].

Chebyshev Polynomials The Chebyshev polynomials can be expressed in terms
of trigonometric functions

sin[(n + 1)6]
sinf

T, (cos#) = cosnb, Up(cos) = (3.55)

For the T, this yields the unique feature that on the interval [—1, 1] all of the extrema
have values that are either 1 or —1, thus

T (x)| <1V xe[-1,1]. (3.56)
Similarly, for the U,, one finds
\Up(z)| <n+1Vzel[-1,1]. (3.57)

There are several interrelations between different sets of orthogonal polynomials [89],
where we will later on use

T (z) = Uy(z) — 22U,y (), (3.58)
Toi1(z) = 2U,(x) — Upy(z), (3.59)
S Upe) = %ﬂm(@«) T (). (3.60)

In order to apply the series expansion to operator functions (3.52), it is necessary
to rescale the spectrum of the operator O to the interval [—1, 1] via

~

O=(0-b)-a, (3.61)

where
a=(2-¢)/(Amax — Amin), (3.62)
b= ()‘max + )\min)/z (363)
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3.4 Polynomial Expansion

with the extremal eigenvalues \.;, and A, of the operator O as well as a small
positive number ¢ of the order of the numerical precision. Then

(T f(O)|¥) = (V] f(O/a +b)|¥) = (¥|f(O)|), (3.64)

where f(Z) = f((x —b)-a) = f(z). The o, and p, now have to be obtained for the
rescaled function f and the rescaled operator O.

A very nice property of the expectation values , = (¥|T,,(O)|¥) for Chebyshey
polynomials of the first kind is

—1 <, <1, (3.65)

as long as |W¥) is normalised to (V|W) = 1. This can be derived from the property
(3.56), which leads to

fin = (U|T,(0) ZT (M) (U | k) (k| ) < Z\m (k|[¥) =1,  (3.66)
pn = (¥|T,,(0) ZT ) (W1k) ([ 0) > = (W|k) (k| T) = =1, (3.67)
k

with eigenvalues )\, and eigenvectors |k) of the operator O. Again, for the p, =
(V|U,(O)|¥), we find
—n—1<p, <n+1 (3.68)

Laguerre Polynomials In order to apply the series expansion to operator functions
(3.52), it is necessary to shift the spectrum of the operator O to the interval [0, co]
via

0 =0 — A\uin, (3.69)
with the smallest eigenvalue A, of the operator 0. Rescaling Apnax — Amin 18 not
necessary in this case. Then

(UIF(O)W) = (W] (O + Auin)[¥) = (V| F(O)| W), (3.70)

where f(Z) = f(z — Amim) = f(z). The o, and {1, now have to be obtained for the
rescaled function f and the rescaled operator O.

kskok

In the remaining sections of this chaper we will discuss possible applications of the
polynomial expansion. Due to the fact that our investigations of the method as well
as the implementation are in an early stage at this point, only the results for spectral
properties presented in chapter 4 are based on the methods described here, while
the time evolution simulations for interacting nanostructures presented in chapter 5
are based on the Krylov subspace method. However, due to the versatility of the
approach and with regard to future applications, we also include the discussion of
the numerical computation of time evolution simulations and of thermodynamic
properties, together with some simple examples.
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Chapter 3 Numerical Methods

3.4.2 The Exponential Function

Time evolution To motivate the following discussion of the expansion of the ex-
ponential function in terms of Chebyshev polynomials, we mention three example
applications.

1. For |¥) being the initial state of a system which is described by a Hamiltonian
H, the overlap of the time evolved state |U,¢) = exp(—iHt/k)|¥) with the
initial state is R

(U, t) = (U] H/R @), (3.71)

2. The time-dependent Green’s function of a system in its ground state |¥q) (with
energy FEy) can be obtained by computing the expectation value of

(Wo| A e {H-Fo)t/h By ) (3.72)

and similar expressions. We want to note that the numerical data that has
to be obtained for this computation can also be used to derive results for the
Green’s function in frequency space without the need for a numerical Fourier
transformation of the results of Eq. (3.72). This will become clear in section
3.4.3.

3. The simulation of the time-dependent behaviour of observables O, as for exam-
ple current in a non-equilibrium state, amounts to the evaluation of expressions

of the form o
(U ROe /R ) (3.73)

Chebyshev expansion The expansion coefficients in (3.51) for the exponential
function f(x) = e *" are given as [89,108|

w =TT 5no m il (3.74)
with the Bessel functions of first kind .J, and the Chebyshev polynomials of the
first kind 7,,. Here, the weight function reads w(x) = 1/(wv/1 — 22) and the nor-
malisation h, = 2/(1 + d,0). Assuming that the Bessel function can be calculated
to arbitrary numerical precision, the numerical precision of the expectation values
(3.71-3.73) is determined by the precision ¢ of the matrix elements p,, (3.52). The
asymptotic behaviour of the Bessel functions is

Jo(t) ~ (t/2)"/n! if 0 <t<vn+1,
" V2/(mt)cos(t — B — ) if t > n?.

Since for orders n < +/t for fixed t the values of J,, all are of the same order of
magnitude up to a certain cutoff, cf. also Fig. 3.5, and —1 < p,, < 1, the absolute

(3.75)
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Figure 3.5 Order of magnitude of the Bessel functions J,(¢) as function of the order n
for different values of ¢.

numerical precision of the result is limited by - max,>o(|in| - Jn) = €-max,>o(J,) <
e. For large n, the asymptotics for small ¢ can be further simplified using the Stirling

formula (t/2)" LA
n.n S
In(t) =~ \/ﬁn e = ( 5 ) Norrh (3.76)
The J,(t) rapidly decay to 0 for fixed ¢. Fig. 3.5 shows the order of magnitude
of J, as a function of n for different values of . This shows graphically that the
Chebyshev series can be truncated already for orders on the scale of n = t.

In order to demonstrate the effect of the truncation of the series (3.52) at a
finite order n = N we evaluate Eq. (3.71) for a simple case, where we assume
H|V) = E|¥), E = hw. Then (¥|¥(t)) = ! According to table 3.1, the or-
thogonality relation (3.49) is fulfilled on the interval [I,r] = [—1, 1] for Chebyshev
polynomials. Therefore, in order to use the Hamiltonian H for the iterative con-
struction of Chebyshev moments f,, cf. Eqns. (3.52) and (3.53), a rescaled version
H of H has to be computed according to Eqns. (3.61-3.63). The extremal eigenval-
ues Amin = Fo, Amax = Fmax of H have to be computed by means of other techniques;
cf. section 3.1. Then, with Eqns. (3.52), (3.64) and (3.74),

<\I,|efth/h|\I,> _ <\I,|efi(H/a+b)t/h|\I,> (377)
gy ih i n 2 ()
= (U|e H W) e M e 1bt/hzﬁJn(t)Mn[H], (3.78)
n=0 n,0
where
t =t/(ha). (3.79)

For the given example we want to compute the series expansion for we still have to
rescale © = (lw—>b)-a. The Chebyshev moments then simply fulfill 41, = 7,,(©). The
real part of the series expansion is displayed in Fig. 3.6. Note, that for “real world”
problems the rescaling of the time parameter represents a strong limitation to the
approach. Assuming that the difference F,,,x — Eq scales approximately proportional
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Figure 3.6 Real part of e7“!, computed using the truncated Chebyshev series expansion
for different truncation orders N (= 800,400,200) and for different rescaling factors a
(=0.01,0.005). w =27/T =2, b= 0. Note, that for “real world” problems, the rescaling
factor a and the shift b are determined by the spectrum of the given Hamiltonian. The

maximum time is proportional to N and to a.

with the size L of the considered system, we find ¢ oc L for a fixed t. Then, in order
to enforce a certain truncation error, one has to scale the truncation order N o L.

Concerning the example application Eq. (3.73) for the time-dependent expectation
value of an observable we finally have to add, that the expression can be computed
by expanding the two time evolution operators seperately. This amounts to replacing
Eq. 3.52 by

N
(WO HYR 5 Zanamunm, (3.80)
pom = (n|Om),  |n) = T,(H)|¥),  |Om) = Olm). (3.81)

While the numerical effort for computing the expectation value from a given set
of Chebyshev moments ,,,,, and expansion coefficients v, scales quadratically with
the truncation order N in this case, the main effort consists of the matrix-vector
multiplications for computing the states [n). The need for the additional states
|Om) only doubles the number of matrix-vector multiplications.

Temperature evolution / imaginary time evolution For the calculation of ther-
modynamic properties, it can be useful to obtain the expectation values

(Ule P | W), and in general (W|H"e PH|¥) = (—1)kaa—w(\ll\eﬁH|\I’>, (3.82)

with the temperature 5! = kgT.
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3.4 Polynomial Expansion

Chebyshev expansion The previous considerations for the time evolution of a
state | W) suggest to simply replace the time ¢ in (3.71) by the “imaginary” time
—if and, via analytic continuation to the complex plane, to obtain the Chebyshev
coefficients a, from (3.74) as

2 (_l)n[ (3), (3.83)

2- (—i)nJ (—iﬁ) — T(;O .

On = ——( dJn
1+ 4,0

with the modified Bessel functions of first kind I,,. To obtain the derivatives w.r.t.
the inverse temperature, the modified Bessel functions have to be replaced with their
respective derivatives. The asymptotics [89] of the I,,(/3) for small arguments [ as

compared to the order n
eV n*+p? ik

suggests the validity of this approach, since the expansion coefficients get suppressed
for n > ( rapidly. However, the asymptotics for the opposite case, n < 3, where

(3.84)

of
shows that the approach does not work for numerical computations if 3 is chosen big
in a certain sense; to be precise, if ¢ is the precision of the numerical computation
of the Chebyshev moments p,, then the terms o I,,(5)u, of the sum (3.52) are
afflicted with a numerical error of the order of §, provided § 2 In(d/e). Since in
practical calculations an error of the order ¢ ~ 107> has to be expected for the
moments, § ~ 0.1 for # 2 10; given that the spectrum of the Hamiltonian H has to
be rescaled according to (3.61), replacing 8 — g = B/a, the available range for the
inverse temperature is further reduced by a factor a.

The expansion to the Chebyshev polynomials of the second kind suffers from
similar problems as can be shown using relation (3.60).

Laguerre expansion Alternatively, the exponential function can be expressed in
terms of an expansion in generalized Laguerre polynomials L (x) with a > —1.
The corresponding coefficients read

g 1

T3 grrra = LH YA "0, a0 =5 (3.86)

oy =

The expansion is convergent if (and only if) Reg > —1/2. Again, the expectation
value of H* exp(—ﬁﬁ) can be obtained by replacing the coefficients «,, with their
corresponding derivatives w.r.t. (. For positive 3, the coefficients decay exponen-
tially with the order n. However, as can be deduced from the above formula, for
growing 3 the decay slows down, which enforces an increase of the truncation order
N of the polynomial approximation in order to keep the truncation error constant.
This problem can be cured by rescaling the Hamiltonian. Since the upper limit of
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Figure 3.7 Relative truncation error of the Laguerre series expansion exp, of the ex-
ponential function exp with truncation order NN, as compared to the exact value, com-
puted using the Laguerre series expansion (o = 0 for L,(f‘)) for different truncation orders
(N = 200,1000) and for different rescaling factors a (= 1,5,10). E = 0.01, corresponding
to realistic values for the finite size energy gap of low lying excited states (in dimensionless

units) in a system with ~ 100 lattice sites.

the integral in Eq. (3.49) is infinite in the case of Laguerre polynomials, we can
introduce a rescaling H— H=a- -Hwitha > 1, resulting in a rescaling of the
temperature 3 — [ = (/a.

To summarize this section, again we discuss a simple example where we assume
H|U) = E|U). The computation of the Laguerre moments then amounts to i, =
Lﬁla)(E). To demonstrate the truncation error we plot the error of the truncated
Laguerre expansion in Fig. 3.7 for different values of the truncation order N and
for a rescaled energy scale. Since for the computation of the pu, in general matrix
vector multiplications are involved, it may be numerically cheaper to rescale the
Hamiltonian by a factor a > 1 as compared to increasing the truncation order V.

3.4.3 Resolvent Expressions

The computation of Green’s functions in the frequency representation is the last
topic that will be discussed in the context of polynomial expansions. The evaluation
of expressions of the form

G p(2) = (VIA(Ey — HE2)7'B|Y),  2=h(w+in), weR, n>0 (3.87)
can be traced back to the expansion of the function
1 N N .
£ + _ +
)= = G0 = (WA - B)BY)  (389)

in terms of Chebyshev polynomials. Since the frequency-dependent Green’s func-
tion (3.87) can be derived from the time-dependent counterpart (3.72) by means of
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3.4 Polynomial Expansion

a Fourier transform, we now may benefit from the discussion of the Chebyshev ex-
pansion of the time-dependent exponential function in section 3.4.2. After rescaling
the operator H — Ey — H to fit its spectrum into the interval [—1, 1], the function
f£(%) can be rewritten as

+oo

1 o
= / dt el*=2)t, (3.89)
0

which yields the coefficients for the expansion in terms of Chebyshev polynomials
of the first kind (cf. Eq. (3.51) and table 3.1)

2/ 1d To(z) 1

H(2) = (T, fH)hy, = '
0 (2) = (T i, = o [ ar 2l (390
-1
9 400 1 e o( i)+l +oo
_ = i/ /dt e:l:iét/dl, ﬂe—iit: i/dt eiiétjn(t) (3.91)
1+ dn0 V1—a? L+ 0ng
0 -1 0
2/(1+9,
/(14 dnp) (3.92)

T ()1 VEVE 1) /I 12

where we explicitly want to emphasize the relation to the Bessel functions of the
first kind J,,(¢) in Eq. (3.91). Taking the correct rescaling into account, the Greens’s
function then is recovered as

w)=a Z iy (a(h(w +in) F b)) fin, (3.93)

where the Chebyshev moments u,, are given as'®

tin = (U|AT,,(a(H — Ey — b)) B|T). (3.94)

It is now important to determine a suitable value for the truncation order N in
order to obtain reliable numbers. From Eq. (3.65) we know that —N? < p,, < NV?,
where N? = <\I’|AB\\II) Therefore it is again sufficient to study the behaviour of
the coefficients ot (z) for values of z in the desired range. A very simple estimate
can be given by lookmg at the derivation of the o, and especially by considering
the properties of the Bessel function in Eq. (3.91): For n > |t|, J,(t) drops rapidly
to zero, as already discussed before, relating the maximum time |¢| to N, so that
N 2 |t|. The maximum time, on the other hand, is determined by Imz, the latter
exponentially cutting of the infinite integration range of the time integration in

15Note, that for the computation of the time-dependent and of the frequency-dependent Green’s
function the same momenta pu, have to be computed, while the expansion coefficients «, are
different, cf. example 2 in section 3.4.2.
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Chapter 3 Numerical Methods

Eq. (3.91). Therefore, we get an estimate ¢t ~ 1/ImZ, which finally leads us to the

expression
1

N > g (3.95)
This estimate also shows the limitation of the approach. Since a is proportional to
the inverse difference of the extremal eigenvalues of the Hamiltonian of the system,
1/a grows with the system size (provided a corresponding scaling of the spectrum of
FI), and hence the number of moments i, that has to be computed.'® On the other
hand, resolving narrow structures in the spectrum requires 7 to be chosen small as

compared to the width of the spectral structure of interest.

I6Tf investigating bosonic degrees of freedom as for example in a 1D waveguide, this limitation is
not so important if the number of photons (and hence the relevant energy spectrum) is kept
independent of the size of the system.
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Chapter 4

Green’s functions in the Resolvent
Representation

Despite its simplicity, the interacting resonant level model (2.15) shows some in-
teresting, if not surprising, features. For finite bias transport, a regime of negative
differential conductance (NDC) has been found for finite electron-electron interac-
tion Ug on the contact link [56]. Furthermore, the system shows non-monotonic
behaviour when increasing Uc [31,109]. The linear conductance as a function of
the gate voltage V, has Lorentzian shape, the width of which grows up to a certain
value of Us = 2J. By further increasing the interaction the width of the Lorentzian
shrinks again [31]. In the present chapter we now pose the question how these ef-
fects are reflected in the spectral function of the interacting level. We will recover
the Lorentzian shape for the spectrum, the width of which grows with increasing
interaction Uz. However, in contrast to the linear conductance, the width does not
decrease again for values of Us > 2J. Instead, there are peaks showing up for
energies outside the conduction band.

As a precondition to obtain the spectral function, we need to compute the single
particle Green’s function of the resonant level in frequency space. We therefore make
use of the Chebyshev expansion of the function (&2 — x)~! as discussed in section
3.4.3. The limitation of the numerical implementation of the treatment of systems
with finite size, cf. section 2.3, leads to a finite energy level discretisation. In order
to cure this shortcoming we first introduce a finite level broadening to average over
a few discrete energy levels. Then we apply a quadratic extrapolation of the self-
energy to zero broadening to obtain the Green’s function for the thermodynamic
limit.

UC UC

J oJ J J J J J J J JdoJdo J J J J J J J J

Figure 4.1 Sketch of the IRLM. The interacting level is coupled to two non-interacting
leads.
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Chapter 4 Green’s functions in the Resolvent Representation
4.1 Green's functions in time- and frequency

representation

The time-dependent lesser (greater) Green’s functions G< (G”) and the retarded
(advanced) Green’s functions G* (G?) are defined [110] by

G (1) = —AW@B(Y), G5 4t t) = —iCB()A(t), (4.1)
G 5t 1) = —i0(t — ¢)([A(®), B( t'))-¢) (4.2)
=0t - )G 5(t.1) = G 5 (L, 1)), (4.3)

G (6, t") = 10(1 = t)([A(1), B(t')] ) (4.4)
= O(t' = )G 5(t.1) = G 5L, 1)), (4.5)

with arbitrary time-dependent operators A(t) and B(t).2 The square brackets
[A, B]_¢ = AB — (BA denote the common fermionic (( = —1) and bosonic ({ = 1)
commutator. The expectation value is defined for an arbitrary pure quantum-
mechanical state |U)

In order to simplify the notation we furthermore introduce the Green’s functions
=+ AN : / A > (4! — N / AN D
Gh p(tt) = =10t =) (AW B(Y). G 4(t.) =10(t — ) (AW)B(1).  (4.7)

This allows rewriting

G 5t t) = G (1) = G L (E 1), (4.8)
G;B(t,t’) = g[ L) =G A(t ], (4.9)
Gt t) = (t ) + (G 4t 1), (4.10)
GZB(t,t’) = (t t+G; ( t). (4.11)

Since throughout this work we are interested in properties of steady states,® we
assume translational invariance with respect to time. Hence, the Green’s functions
only depend on t — ¢/, which allows the shift ¢ — 0.

The frequency-dependent Green’s functions G(w) are defined by means of the
Fourier transform of their time-dependent counterpart. For the following discussion
of the impurity Green’s function of the IRLM, we now assume that the state |¥)

"We largely follow the notation used in [87].

2Throughout this work, we always assume the Hamiltonian H , that is driving the time-evolution
of the system, to be independent of time. Then, for any operator O, the time evolution is given
by O(t) — eth/hOe_th/h.

3In this chapter, we assume |¥) to be the ground-state of the system, while in chapter 5 we
assume |\Il> to be a non-equilibrium steady state where the expectation value of time-dependent
operators O(t) is independent of t, (¥|O(t)|¥) = const.
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4.1 Green’s functions in time- and frequency representation

is equivalent to the ground state of the system, with H |W) = Eo|V), Ey the corre-
sponding energy. Due to the definition of G*, the G(w) then can be represented in
terms of

: 1 i i(w-+i 1 [ i(wi A >
Q:{B(w +in) = - /dt el +’7)tGJA§7B(t,O) =z /dt @HML A B(0))  (4.12)
oo 0
. o0 o . ) . N 1 N
S / dt (U] AellFPo—H)/Mtetint By — (| A . B|D),
ho Ey— H + h(w +in)
(4.13)
G (w+in) = 1 ]odt e@Hmtg— (¢.0) = (U]A 1 B|D)
A.B h A8 Ey— H — h(w +1n) ’
(4.14)

with a convergence generating factor n = 0%. For the numerical computation of G+,
we later will choose 7 to be finite in order to average over some discrete energy levels
of the finite system. Based on the decomposition in 4+ and — part, the retarted and
the advanced Greens’s function in frequency representation read

g;i,B(w) = gzg(w) + Cgl;;‘(w), (4.15)
0% () = €T} () + G 4(w) (.16

Numerical computation For the numerical computation we use the method dis-
cussed in section 3.4.3, which is based on the expansion of the function f*(x) =
(2 — z)7! in terms of Chebyshev polynomials, allowing to express the Green’s
functions as Qjé(w) = (\If|f}§w+in)(H — Ep)|¥). With the expansion coefficients of
fi

2/(1+ dno)

oy (2) = , (4.17)
(F2)m (1 + V2222 = 1/22)m /1 1/22
it is then possible to rewrite the Green’s function as
G} plw+in) =a)  ag(a(h(w+in) £ b)), (4.18)
n=0

where p,, = (U|AT,(a(H — Ey — b))B|¥) with the Chebyshev polynomials of the
first kind 7;,. The Chebyshev moments p, can be constructed iteratively using the
relation T,,,1(x) = 22T, () —T,_1(x). The rescaling a and the shift b of the spectrum
of the Hamiltonian H into the interval (—1,1) has to be performed in order to meet
the orthogonality relations for the Chebyshev polynomials. For a discussion in more
details see section 3.4.
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Chapter 4 Green’s functions in the Resolvent Representation

4.2 Single-particle spectrum

We define the spectral operator A for a system described by a Hamiltonian H as
A(e) = 6(c — (H — Ey)). (4.19)

For a given state |p) it measures the contribution of eigenstates with energy ¢ to
|©). Here, Ey is the energy of the ground state |¥) of the system. The single-particle
spectral function then has to be computed for states |¢*) = &T|¥) and |p~) = ¢|¥),
and is given by

A(e) = (T|cTA(e) ¢]) + ¢(T[e Ae) | D). (4.20)
If we represent the d-distribution by a Lorentzian in the limit of vanishing width 7,
Se—2)= 2 tim — 1 = (4.21)

T n—0t+ (6 — )2 + n? T -0t e€—x+in

we understand that the single-particle spectral function is related to the retarded
Green’s function® Gi.; by

Ale = hw) = ! lim Im G4 (w + in). (4.22)

T n—0+

4.2.1 Numerical computation

Given that |¥) is the ground state of the system, A(¢) quantifies the excitation of an
eigenstate with energy € when a particle ¢ or hole ¢ is added to the system. For a
system with continuous spectrum, A(e) will be a continuous function of the energy,
while for a system with a discrete spectrum, A will show sharp J-peaks for the
discrete eigen-energies of the system. Now, the models we want to consider describe
a nanostructure coupled to infinite leads, the latter providing for a continuous single-
particle spectrum. In contrast, the models we implement the numerical simulation
for are finite, with an overall number of M lattice sites, leading to a discretisation
of the energy spectrum. In order to obtain an approximation to the thermodynamic
limit, we therefore choose the convergence generating factor n to be finite, which
leads to averaging over a few discrete energy levels. In the real-time representation,
an excitation that is generated on the structure at an initial time will decay to the
leads, generating a wave packet that runs towards the boundaries of the system. A
finite value of 1 then causes the contributions to the integrals in Eqns. (4.12-4.14)
to be damped exponentially for ¢ — oo with exp(—nt). A wave packet that gets
reflected at the boundaries of the finite system will therefore be damped away before
returning to the structure, if n is chosen sufficiently big. For a system with an overall
number of M = My, + Mg + My lattice sites, and with leads of (close to) equal size
My, =~ Mg, an estimate for the minimum value for n therefore is given by
Ur
nz A

4 A similar relation holds for the advanced Green’s function.

(4.23)

42



4.2 Single-particle spectrum

with the Fermi velocity vg in the leads. By means of the interpretation of the
convergence generating factor n as a damping factor that removes effects resulting
from reflections at the boundaries of the system we understand that this way we
indeed can obtain results for the spectral function in the thermodynamic limit from
a finite system. However, the broadening of the discrete energy levels also leads to
a broadening of the spectral function A as a whole, which to overcome is desirable.

Poor man’s deconvolution 2.0 In [87]|, a method to remove the broadening of
the Green’s function caused by a finite value of the convergence generating factor n
was introduced. Based on the assumption that the self-energy ¥ (w), defined by

. 1
G = TR o

is shifted by in for the situation with fininte broadening 7, ¥,(w) = hw + 10" —

(4.24)

G (w+in)] ™t = Y (w) —ihn, a sharpened Green’s function can be computed directly.
This was succesfully checked for the energy eigenstates of a tight binding chain of
free fermions, where the relation holds exactly.

In general, the broadened self-energy will depend on 7 in a more complicated way,
which can spoil the approach. For example, for the impurity Green’s function of the
resonant level model with tight binding leads, the self-energy depends non-linearly
on the broadening n — including the real part of X,. Therefore we generalize the
assumption where we now take the self-energy as a function of the broadening,

2, (w) = Z2OW) + 3V (w)n + 5@ (W) + .., (4.25)

allowing for an extrapolation to n = 0 from numerical data with finite broad-
ening. The self energy for the thermodynamic limit then can be identified as
Y(w) = O (w), which, in turn, yields the value for the Green’s function in the

thermodynamic limit
1

9 = e TS0y F 107

(4.26)

4.2.2 Impurity Green’s function for the interacting resonant
level model

The IRLM with tight binding leads is defined according to the Hamiltonian in
Eq. (2.15). Since the numerical computation is performed on a compuer we are
restricted to a finite version of the model as given in Eq. (2.21). The Hamiltonian
of the system then reads

My—2 M—2
H=Higy =—J Z (e +éhe,) —J Z (hey1 + Ehae,) + Ve,
=0 $:ML+1
T SN ST S S S S S
S\ —1CMy, T O O, —1 T O, Cnip 41 T Chap 4180y,
. 1. . 1 . 1. 1
+ U (s 1 = ) (s, = 5)+ (ag, = 5) Gigsa = 5)] - (4:27)
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Chapter 4 Green’s functions in the Resolvent Representation

The number of lattice sites in the left lead is given by Mj,, the overall system size is
M = My, + Mgr+1, where we assume the structure to be situated in the middle of the
system (My, ~ Mg). A sketch of the model can be found in Fig. 4.1. The coupling
of the structure to the leads is given by Jg, while the density-density interaction of
the structure with the first lead site reads Ug. For the discussion of the spectrum
we assume the level of the structure to be on resonance with the Fermi level and
therefore set V, = 0 in this chapter. Furthermore, we set the ratio of particle number
N and number of lattice sites M (the filling factor) to 1/2, corresponding to metallic
leads.

The initial state |¥) is obtained by means of a ground state DMRG. This means
that for each DMRG step, cf. section 3.2, the ground state is obtained in the trun-
cated Hilbert space via a Davidson algorithm. Since we want to obtain the impurity
Green’s function, we furthermore compute [®9) = ¢;, |¥). To be able to calculate

the Chebyshev moments p,, we add |®,) = T,,(H)|®,), with the rescaled Hamilto-
nian H = a(H — Ey — b).> Then u, = ($y|®,). For the numerical calculation, we
set, an upper bound to the dimension of the Hilbert space of the DMRG blocks, with
Newt < 7000 at the maximum. Additionally we applied an upper bound to the dis-
carded entropy Sgise < 107, which allows the software to choose N, dynamically
within the given bounds. The consumption of computer memory is largely deter-
mined by the dimension of the truncated Hilbert space, which strongly depends on
the simulated system due to this dynamic approach. For the systems with the most
unfavorable behaviour,® we needed to use computers with up to 48GB of RAM.

In Fig. 4.2 we now demonstrate the approach. For the noninteracting RLM with
Uc = 0, at half filling, the retarded Green’s function with finite 1 was computed
based on the evaluation of Gt and G~.” The data has been obtained based on the
Chebyshev expansion of the resolvent up to order N = 4000; cf. also section 3.4.
The two panels (a, b) show the imaginary and the real part of the self-energy as
defined in Eq. (4.24), for different values of the convergence generating factor 7, as
well as 3@ as defined in Eq. (4.25), resulting from a quadratic fit to %,. In order
to visualize the discretisation of the single particle energy levels due to the finite
size of the system, we include values for n = 0.03 on panel (a). However, for the
fit procedure only those values of 7 are included that do not exhibit the finite size
discretisation. The inset shows —(%, + in) for two different values of w, where the
colours of the lines are associated with the respective imaginary or real part of ¥,
cf. also the arrows on panels (a, b) of the figure. It can clearly be seen, that both,
the real and the imaginary part of the broadened self-energy, depend non-linearly

5For the computation of the rescaling factor @ and the shift b, a ground state DMRG calculation
has to be carried out seperately in order to determine the ground state energy Fy and the
Energy Epax of the maximally excited state. Then a < 2/(Emax + Eo), ab < 1, where it has to
be guaranteed that the spectrum of H is on the interval (—1,1).

6For this work, we simulated systems according to Eq. (4.27), with M = 48, 96 and 168 lattice
sites in total and with interaction Uc = 0.0...4.0J. For the bigger systems, and for stronger
interaction Ug, the required size of the Hilbert space grows.

"In fact, due to symmetry reasons, we can ommit the computation of G~.
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4.2 Single-particle spectrum

 (a) extrapolated

0.8 L =0.8 | Figure 4.2

(a) Imaginary and (b) real part
=04 of the broadening-dependent self-
f —02 energy for different values of the
' ' 1 0.3 — 0.03]| convergence generating factor 7.
0B : ; , The thick lines represent () as
0.9 \ 0.2 n=0.2 | defined in Eq. (4.25), for a fit up to
] quadratic order. The system con-
sist of M = 48 lattice sites in to-
tal, the impurity is coupled to the
leads via Jo = 0.4J. For ImX
we include values for n = 0.03 in
order to demonstrate the effect of
the discretisation of the lead lev-
els. The inset shows ReX, and
—(ImX,,+n) as function of 7 for se-
lected values of w, compare the ver-
tical arrows in the main plot. On
panel (c) we show the n-broadened
spectral function A,(hw), includ-
ing the final A(Aw) after extrapo-

lation n — 0.

0.4

IS, (w) [J]

*
e

ReSS, (w) [J]

Ay (hw) [1/J]

on 7. The lines are quadratic fits to the data points, while the self-energy for
n — 0 is extracted from Eq. (4.25) as £(©. On panel (c), we show the n-broadened
spectral function A, for the corresponding values of 7, as well as the final result
A(hw), obtained from Eq. (4.24) using X(*)(w) for the self-energy. In appendix B we
provide an analytic expression for the spectral function, cf. Eq. (B.13), which allows
us to check the numerical result for the noninteracting RLM. However we do not
include it into the plot since it can not be discriminated from the numerical result
by the eye.

We now turn to the behaviour of the spectral function, depending on the interac-
tion Uc. Using the method described above we compute A(¢) in the thermodynamic
limit for values in the range of Us = 0...4.0J. In Fig. 4.3 we show results for two
different couplings Jo = 0.2J and Jo = 0.15J.8 Increasing Uc has two effects: first,
the central peak of the spectral function gets broadened. For values of Ug < 2J,
the peak survives while for Us = 4.0, it seems to disappear completely. Reducing
the coupling Jo = 0.2J — 0.15J leads to an increased height and a reduced width
of the central peak, which leads us to the assumption that in the limit of very small

8The results have been obtained based on N = 500 (N = 800) Chebyshev moments for the system
with Jo = 0.2J and M =96 (Jo = 0.15J and M = 168) lattice sites.

45



Chapter 4 Green’s functions in the Resolvent Representation
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Figure 4.3 Spectral function A for the IRLM, on resonance (V,; = 0), for different values
of the interaction Uc = 0...4.0J. The system consists of M = 96 (M = 168) lattice sites
in total, the impurity is coupled to the leads via Jo = 0.2J (Jc = 0.15J). Increasing Uc
leads to broadening of A, while for Uc 2 2.0J, additional peaks appear, located outside
the band.

Jo, the central peak could survive for values of Ug > 4J. The position of the side
peaks seems not to be influenced by Jc, which leads us to the conclusion that their
emergence is due to the finite band width 4.J.

The broadening of the central peak is represented in Fig. 4.4. On the left panel, we
show the central peak of the spectral function A, normalised to the maximum value
A(e = 0), for values of the interaction Ug = 0...3J.7 The red curves correspond to
a Lorentzian,

1 T

w242
For the noninteracting RLM, Us = 0, this expression corresponds to the wide-band
limit of the spectral function A, which can be obtained from Eq. (B.13) for Jo < J.
In this case, the width T' =Ty = 2J&/J is determined by the coupling Jc. We now
fit this expression to the central peak of the numerical data for A(e) in order to
obtain its width I". In the non-interacting case a, we find good agreement of the
numerical data and the wide-band limit Ay, indicating that for the precise value of
the coupling (Jo = 0.15J), band curvature effects do not play a major role, at least
for vanishing interaction. The same still holds true for finite, increasing interaction,
as long as Uc < 1J. For values of Uz 2 1J, we find strong deviations from the
Lorentzian shape; cf. also Fig. 4.3. Nevertheless, the width I' is still well defined for
a small region at the Fermi level. However, for values of the interaction Us > 3.J, as
discussed before, the central peak vanishes completly, rendering the width illdefined.

The behaviour of the width I depending on the interaction Ug, normalised to the
width Ty = 2J2/J of the noninteracting RLM, is represented on the right panel.
We clearly find monotonous growth of I' until the point where the central peak

Ao(e) = (4.28)

9To be precise, in this case (M = 168 lattice sites, Jo = 0.15.J), we did not compute A for
the noninteracting case a Uc = 0. Instead, the curve a was computed based on the analytic
expression (B.13).
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Figure 4.4 Left panel: Central peak of the spectral function for the IRLM, on resonance
(Vg = 0), normalized to the value for frequency e = 0, for different values of the interaction
Uc. The system consists of M = 168 lattice sites in total, the dot is coupled to the leads via
Jo = 0.15J. The red lines correspond to a fit of the non-interacting wide-band limit .4y(e)
to the numerical data (black lines). Right panel: I' as function of Ug, for two different
values of the coupling Jg, normalized to the width in the wide-band limit. Increasing Uc
leads to monotonous growth of I". Lines are guides to the eye.

vanishes. Interestingly, I' does not show any noticeable behaviour when passing
the self-dual point Us = 2J, where certain non-equilibrium problems can be solved
analytically [56,85], and where the linear conductance obtains its maximum width
[31]. Unfortunately, the plot for I'(Uc) can not be continued beyond Ug ~ 3.J
based on the available data due to the vanishing central peak. In order to do so,
it will probably be necessary to further reduce Jg and at the same time to increase
the energy resolution. This will then allow us to decide wether the vanishing of
the central peak is an effect due to the poor energy resolution, or if it is an effect
inherent to the system.

Summary and Outlook

In this chapter we have presented a method to extract the impurity Green’s func-
tion of the IRLM by means of an expansion by orthogonal polynomials. We have
compared the resulting spectral function for the situation with no electron-electron
interaction with analytical results and find good agreement, even though the numer-
ical data have been extracted from the simulation of a system with finite size, while
the analytical calculation has been carried out for the thermodynamic limit. In order
to remove the finite size broadening 7, we applied a quadratic extrapolation of the
self-energy for n — 0, generalizing on the prescription discussed in [87| (poor man’s
deconvolution). We found the width of the central peak of the spectral function to
grow monotonically, even for values of the interaction Uz > 2.J, beyond the self-dual
point — in contrast, the linear conductance has been shown to grow in width up to
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Chapter 4 Green’s functions in the Resolvent Representation

this point, and then to start shrinking again [31]. However, for values of Us > 3J,
the central peak disappears completely, which might be attributed to the poor en-
ergy resolution in the middle of the band. Improved boundary conditions [87] could
help to decide wether this is an effect due to the poor energy resolution, or possibly
a property that is inherent in the system, connected with the ratio of the coupling
Jc and band width 4J. Remarkably, for growing interaction, additional peaks show
up, located outside the band. Since their positions seem to be independent of the
coupling J¢, we conclude that these peaks must be related to the finite band width.

Finally we have to add that the results presented here are considered preliminary
— more investigations have to be carried out to decide the open questions sketched
above. Also, we did not yet carry out an error analysis. The Chebyshev moments i,
computed using the DMRG, contain a truncation error, related to the finite value
of Neyut; cf. section 3.2. For the moment, we do not know if the results presented in
this chapter show qualitative errors related to the truncation procedure.

Of course, this method is also applicable to other kinds of systems. For example,
we are currently computing the local density of states for the 1D Hubbard model.
Also, bulk Green’s functions can be computed.

A great advantage over the correction vector method [30,111] consists in the fact
that the polynomial moments p,, have to be computed only once, while the Green’s
function then can be evaluated for the whole range of values w and 7. Also, analytic
manipulations can be incorporated on the level of the expansion coefficients «,,,
which allows computation of the time-dependent correlation function (&(¢)é(t = 0))
from the same set of numerical data, for example. The disadvantages of the method
have also been discussed: the number of moments that has to be calculated for
a given value of 7 scales proportional to the system size, and also proportional to
1/n (cf. section 3.4 and especially Eq. (3.95)). For resolving narrow structures in
the spectrum, this method therefore might be inapplicable, or at least relatively
expensive in terms of computation resources.

Non-equilibrium Green's functions A generalisation to non-equilibrium Green’s
functions is straightforward. In view of the discussion of the extraction of current-
voltage characteristics from real-time simulations in the next chapter, this would
provide an alternative approach to the computation of current in a steady state,
based on the direct evaluation of the Meir-Wingreen formula within the framework
of DMRG. However, we did not yet implement the numerics that is necessary to
compute the relevant polynomial moments, therefore we can not provide any results
at this point. Instead, we contend ourselves with the discussion of the corresponding
formulas, leaving the application to physical problems for future investigation.
Analogous to Eqns. (4.13, 4.14), we define (51,12 > 0, =11 + 12)

ih [ 1 i 1 .
Gt (w+i :—/dw'\IIA A _B|T), (4.29
AB( ) 27 < ‘H+h(w’+in2) hMw—w +im) — H 9, (4.29)
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4.2 Single-particle spectrum

1 - 1
G (w+in) = —— / (v A— B —|U), (4.30
AB( ) vl H+ W +in) hlw—w' +in) — V), (4.30)

for a non-equilibrium steady state |W). Herefore we have made use of the relation
|

— [ d ———— =~ t teR, >0 (431

/ oo M S sgn(e), nt € R >0, (431)

Similar to Eqns. (3.80, 3.81) we may now apply a polynomial expansion to both
operator functions,

. 1 ; 1
+ YA —H = A )] + 113 H = Fr? 432

separately, cf. Eq. (3.88). If we define the Chebyshev moments fi,,, as
piobhn = (O| T (H)AT, (H)B|Y),  p,, = (V|AT,(H)BT,(H)|¥), (4.33)
we can rewrite the Green’s function as
gi slw+in) :i: Z o / dw o} (a(h(w' 4 in2) + b)) ¥

—00

x af (a(h(w — ' +1im) +b)), (4.34)

with appropriate rescaling a and shift b, corresponding to a convolution of the ex-
pansion coefficients «; as defined in Eq. (3.92).
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Chapter 5

Non-Equilibrium Transport
Simulations in Impurity Models

The numerical computation of the time evolution of an initial non-equilibrium state
of a system that is composed of an interacting nanostructure coupled to noninteract-
ing leads is the central subject of this work. In chapter 2 we shortly discussed how
to cast the system in an appropriate model, while in chapter 3, we gave an overview
of the numerical methods we used to obtain the time evolution of strongly correlated
many-particle systems, based on the DMRG method. In the present chapter, we now
turn to the application of the scheme to a situation, where a finite, time-dependent
current is flowing through the nanostructure, driven by a bias voltage. The chapter
is divided in two parts: First we discuss the concept of calculating the finite bias con-
ductance of nanostructures based on real time simulations [43-49,51-53,55-60, 67]
within the framework of the DMRG [61, 62,64-66|, with a strong focus on the ef-
fects resulting from the finite size of the model’s Hamiltonian. Then we extend the
approach to the evaluation of shot noise [84,85].

In a first approach of time-dependent dynamics within DMRG, the time-dependent
Schrodinger equation was integrated in the Hilbert space obtained in a finite lat-
tice ground state DMRG calculation [43]. Since this approach does not include the
density matrix for the time evolved states, its applicability is very limited. This
problem was cured by extending the density matrix with the contributions of the
wave function at intermediate time steps [44]|, while the DMRG was restricted to
the infinite lattice algorithm. The calculations have been considerably improved by
replacing the integration of the time-dependent Schrodinger equation with the eval-
uation of the time evolution operator using a Krylov subspace method for matrix
exponentials and by using the full finite lattice algorithm [47]. An introduction to
this approach has been given in chapter 3.

An alternative approach is based on wave function prediction [63]. There, one first
calculates an initial state with a static DMRG. One iteratively evolves this state by
combining the wave function prediction with a time evolution scheme. In contrast to
the aforementioned full td-DMRG, one only keeps the wave functions for two time
steps in each DMRG step. Different time evolution schemes have been implemented
in the past using approximations like the Trotter decomposition, [45,46,55], or the
Runge-Kutta method [48]. The idea of the adaptive DMRG method was combined
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with the direct evaluation of the time evolution operator via a matrix exponential
using Krylov techniques as described in Ref. [47]. Therefore the method involves no
Trotter approximations, the time evolution is unitary by construction, and it can be
applied to models beyond nearest-neighbour hopping.

In the first part of this chapter, we discuss the setup we use for the simulation in
some detail. This includes a discussion of several possibilities to implement a finite
bias voltage, the extraction of the current-voltage characteristics from numerical
data that are strongly affected by finite-size effects, as well as a review of the results
that have been obtained for a multi-level structure [49,67]. Concerning finite-size
effects, damped boundary conditions (DBC) have been applied in order to obtain
an increased effective system size in the regime of small bias voltage 30,59, 60, 88|,
where an improved scheme for linear conductance was presented in [31]. In the non-
interacting case, this enhanced system size in the case of the DBC can be traced
back to a shift of the discrete single particle energy levels of the system towards
the center of the band. We demonstrate that this procedure can also be used when
applying a bias voltage of the order of magnitude of the band width when handled
carefully.

In the second part of this chapter (cf. section 5.6) we discuss a method to deter-
mine out-of-equilibrium shot noise in quantum systems from knowledge of their time
evolution [84]. The main issues for the numerical computation do not depend on
interaction effects. Therefore we first concentrate on the single resonant level model
without interaction, where we obtain a complete characterisation of finite size effects
at zero frequency. We find that the finite size corrections scale oc G2, where G is the
differential conductance. We also discuss finite frequency noise, as well as the effects
of DBC. For the interacting resonant level model, we show results at its self-dual
point, where comparison with analytic calculations is possible [85], as well as for
other values of the interaction. Finally we discuss the limitations of the method.

Interacting Nanostructure The Hamiltonian for an interacting nanostructure
coupled to two leads is given by Eqns. (2.16-2.20). For a sketch of the setup compare
also Fig. 2.3. Since we concentrate on spinless fermions, we arrive at (structure: f]s,
coupling: }AIC,L/R, leads: I;TL/R)

A Mp,+Mg—2 My, +Mg—1 M +Mg—2 1 1
Hs ==Y Jsa(ele, g + He) 4 Veoite +) _ Us ot — Sz = 5), (5.1)
$:ML $:ML :L‘:ML

HC,L = _Jc<é']'lefléML + é}-WLéMLfl) _'_ UC<TA."ML*1 - ]‘/2><,ﬁ'ML - 1/2)7
1 1

FIC,R = _JC(é]JL\/[LjLMS—léMLjLMS + H-C-) + UC(ﬁML+MS_1 - 5)(ﬁ’ML+MS - 5), (5-2)
My, —2 M—2
HL =—J Z (é;éxﬂ + éi+1éx)a ﬁR =—J Z (élzéa:—i—l + él+1ém)> (5-3)
=0 z=Mp,+Msg
H=Hy + Hop + Hs + Hog + Hg. (5.4)
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models

The number of lattice sites in the leads (on the structure) is given by My g (Ms),
the structure is coupled symmetrically to the leads (Jo = Je1, = Jog, the same
for the electron-electron interaction Ug). We once more want to note that due to
neglecting the spin degree of freedom, only nearest-neighbour interaction can be
included, since an orbital can be occupied only once due to the Fermi statistics of
the particles. The individual lattice sites are labelled according to Fig. 5.1.

Current The current operator I, at an arbitrary bond x can be derived from the
charge operator QI = —eN, using a continuity equation 8tQI = [I, where for
any one-dimensional tight-binding Hamiltonian the total particle number N, in the
subsystem “left of” a certain lattice site x is well defined by

N, = zx: i (5.5)

with the particle number 7,/ on lattice site 2’. In the Heisenberg picture this amounts
to the equation of motion

A . i A

For the tight-binding Hamiltonian (5.4), the current operator and its expectation
value with respect to a state |U) take the form

A . e ”\T " ”\T N 26 A.I. ~

I, = 1ﬁJx lele, o —ele,] = L= —%JJC Im (W (t)|cle,. 1 |P(L)). (5.7)

We define the current through the nanostructure as an average over the current in
the left and right contacts to the nanostructure

I(t) = a2 (1) + Ty s -1 ()]/2- (5.8)

Shot Noise Shot noise is defined as the zero-temperature contribution to noise in
a transport state. To obtain the noise power spectrum from a real time simulation,
the current-current correlations in the time domain

S(t,t") = %(Af(t)Af(t’) + AI(t)AI(t)) (5.9)
= Re(AI(H)AI(t') (5.10)

have to be calculated in a non-equilibrium zero-temperature state, where Af(t) =
I(t) — (I(t)) [112,113]. Therefore, the time-dependent expectation value

(A(OAT(E)) = (W[ PN Te HE/EA foiHE /) (5.11)

has to be evaluated. In a steady state with constant current the correlation function
must fulfil S(¢,¢") = S(t — t'). Then the noise power can be defined as the Fourier
transform

216 (w + w')S(w)

I
>
=
£
>
=
E\
+
>
=
E\
>
=
&

(5.12)
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5.1 Initial conditions and time evolution

where . .
S(w) =2 / dt e“'S(t,t' =0) = 4Re/dt “S(t, ¢ =0). (5.13)
—00 0

The right-hand side of the equation accounts for the symmetry S(t —¢') = S(t' —t).
In a steady state, of course, this expression should be independent of the choice of
the time ¢’

S = 4Re/dt =St V. (5.14)
t/
In the zero-frequency limit w = 0 this expression simplifies to

S=Sw=0)=4 / dt S(t,t') = 4 / dt Re(AI(t)AI(t)). (5.15)

t t

Shot noise of the ground state We now assume that the expectation value ()
is obtained for the ground state |¥) of the system. Based on general arguments it
can be proven that in this case,

S(w=0) =0. (5.16)

For a proof, cf. section B.3. In section 5.6 we investigate shot noise for systems
in a steady non-equilibrium state at finite bias voltage, where we focus on zero-
frequency noise. For small values of the voltage we will find strong finite size effects,
leading to non-zero shot noise even at zero bias voltage. For temperature T = 0,
zero bias voltage is equivalent to the system being in its ground state, which means
that there is a contradiction to Eq. (5.16). Under certain conditions it turns out to
be possible to remove this finite size effect. In order to check the reliability of the
numerical results, relation (5.16) therefore is very important in the context of this
work.

5.1 Initial conditions and time evolution

The preparation of a strictly steady non-equilibrium state with constant finite cur-
rent is possible only in the case of infinite leads. The “switching on” of the voltage,
be it quenching of the leads by an additional chemical potential or connecting the
initially isolated structure to leads with different potential, then is sent to the infi-
nite past in analytic calculations in order to damp effects due to the voltage being
switched. Instead, for the numerical simulation of the full time evolution of the
complete system (including the structure and the leads), one is restricted to sys-
tems of finite size, as for example given by Eqns. (5.1-5.4). Then, strictly speaking,
a steady non-equilibrium state is impossible. An excitation that is generated in the
vicinity of the structure of interest will travel towards the boundaries of the system
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models

| |
I} 1]
K ¢
0 1 .. M -1 M, + My M-1

L

particle number density n

Figure 5.1 Interacting nanostructure attached to non-interacting leads and schematic
density profile (green solid line) of the N-particle wavepacket at initial time ¢ = 0. The
density profile corresponds to the N-particle ground state of the Hamiltonian H+ I:ISD, cf.
Eq. (5.17), where the bias voltage enters as a local chemical potential Vsp (black dotted
line).

where it gets reflected, disturbing the measurement at the structure. This imposes
a maximum simulation time tg, the transit time, which prohibits the initial time to
be sent to the infinite past. On the other hand, after switching on the voltage at
some initial time, the initial oscillating behaviour due to the switching will not decay
before a certain settling time ts. Knowing this, one has to restrict the measurement
to a certain time interval [ts, tr]. The time scales of this type of finite size effect will
be discussed in the following sections.

With that in mind, we now discuss several possible ways to generate a charge im-
balance at initial time, imposing a voltage drop across the nanostructure. Following
the prescription implemented in [47,52] we add an external bias potential, namely
the charge operator,

v My —1 M—1
Hgp = ﬂ(NL — Ng), N = Z Mg, Nr = Z TNy (5.17)
=0

2
x=Mi,+ Mg

to the unperturbed Hamiltonian H, Eq. (5.4), and take the ground state |¥y) =
|U(t = 0)) of H+Hgp, obtained by a standard finite lattice DMRG calculation, as the
initial state at time ¢t = 0 [47]. If the electron-electon interaction Ug, Us is neglected
in Eqns. (5.1,5.2), one may instead resort to exact diagonalisation techniques as
described in section 3.1. The minimization of the energy of the system leads to
a charge imbalance in the right (source) and the left (drain) lead corresponding
to Vsp, as sketched in Figs. 5.1, 5.2 (a). Alternatively, the bias voltage also can
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5.1 Initial conditions and time evolution

17 c—>0

Yy

Figure 5.2 Different initial conditions, corresponding to (a) Hinie. = H+Vip (NL — NR) /2
and (b) Hipie. = H. The band width for the cosine band is 4.J. Assuming a single particle
picture, we understand that in case (a), increasing the bias voltage Vsp to a value greater
than the band width qualitatively does not change the initial state, since all particles
populate only one of the two leads, while for case (b), quenching the leads to different
energies at the initial time prevents some particles (holes) from tunneling from one lead to
the other because of energy conservation. For this reason there is no current flow in the
extreme case of Vgp > 4J, cf. Fig. 5.4.

be added to the time evolution. The initial state [Wp) then has to be obtained as
the ground state of the unperturbed Hamiltonian H, while the time evolution is
performed using H + Hgp, cf. also Figs. 5.2 (b).

5.1.1 Numerical time evolution

Starting from W), the time evolution of the system results from the time evolution
operator U(t) with
V(1)) = U)|Wo), (5.18)

which leads to flow of the extended wave packet through the whole system until it
is reflected at the hard wall boundaries as described in [47]. Corresponding to the
two different schemes introduced before, U is given as either

A~

(a) U(t) = e /" or (b) U(t) = e I(H+HsD)I/R, (5.19)

The time-dependent DMRG now computes a series of states |¥(nAt)), n € N, start-
ing from the initial state |Wy), by repeatedly applying the time evolution operator
for finite, but small time steps At

U ((n + 1)At)) = U(AL)|T(nAt)), (5.20)
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models

using the Krylov subspace method described in section 3.3. Typically, we choose At
on the time scale determined by the hopping in the leads, At ~ 0.5h/J, resulting
in ~ 10...20 Krylov iterations until the Krylov approximation has converged. The
time-dependent current as defined in Eq. (5.7) then is evaluated as

L) = (WU (O LU0 W) = (COILILW), t=nAt.  (5.21)

Alternatively, for the non-interacting case, with Us = Uc = 0 in Eqns. (5.1-5.4),
we can apply single-particle decomposition as discussed in section 3.1, since then
the Hamiltonian of the system can be written in the form of Eq. (3.2). The time
evolution of the current operator I, can be expressed in terms of Eqns. (3.9-3.11),

<\I,0‘C ( ) z+1( ‘\IIO Zu z+1 y’\p Z/{ ( )z/,za \Ilg/x ZU n,, \I’O (]Jr
x'y’

(5.22)
The time evolution here is given by U(t), the single-particle time evolution operator,
constructed from the corresponding square form H,, as defined in Eq. (3.2). The
initial state enters in form of the matrix WY, The unitary transform U° diago-
nalises the square form of the Hamiltonian the ground state of which serves as the
initial state |Wy) of the calculation. Finally, n,[V,] denotes the occupation number
of the single particle states at zero temperature for the eigenstates of the initial
Hamiltonian.

5.1.2 Analysis of the different time evolution schemes

The sudden switching of the bias voltage at initial time results in a ringing of the
current in a transient time regime [114], see also Fig. 5.3 (a). Here we show the
short time behaviour of the current through a single impurity coupled to two leads
in a system with M = 120 lattice sites in total. This transient behaviour with its
characteristic oscillations decays to a quasi-stationary state on the time scale tg o< I,
where I' is the width of the conductance peak. By smearing out the voltage drop
over a few lattice sites one may reduce this effect. Furthermore, the finite size of the
system leads to reflection of wave packets at the boundaries, cf. Fig. 5.3 (b). A wave
packet travelling with Fermi velocity vg from the impurity towards the boundaries
will return to the impurity after a transit time given by tg o< M /vg, which is the
characteristic time scale for finite size effects appearing in the expectation value of
time-dependent observables.

To compare the approaches (a) and (b), we show a current-voltage characteris-
tics in Fig. 5.4 for the resonant level model with a single impurity (Mg = 1, cf.
Fig. 5.1) coupled to two leads via the hopping matrix element Jo = 0.4J and the
gate voltage as well as the interaction set to Uc = V; = 0. The dots correspond to
results obtained numerically using exact diagonalisation, while the lines correspond
to analytic calculations included for comparison. Here, the straight line shows the
current assuming linear scaling with Vgp with linear conductance g = €?/h, while
the curved line overlaid by the numerical results for approach (a) has been obtained
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5.1 Initial conditions and time evolution

(a) (b)
o 1L " Vap =1.0J, Jo = 0.5J -
Vsp = 2.0J, Jo =0.3J
< 05 \\
)\
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0 10 20 30 40 50 60 0 40 80 120 160
time ¢ [h/J]

Figure 5.8 'Time-dependent current through a single non-interacting impurity coupled to
noninteracting 1D leads for vanishing gate voltage Vy = 0. The system consists of M lattice
sites and N particles at nominal filling N/M = 0.5. We find three time domains: 1. an
initial transient regime with decaying oscillations, 2. a pseudo stationary current plateau
and 3. finite size reflections. (a) Shortly after the initial switching of the bias voltage the
time-dependent behaviour is dominated by oscillations which decay to a constant current
plateau on the time scale tg (here: Jo = 0.3J, M = 120). (b) The finite size of the system
leads to reflections at the boundaries. A wave packet that runs through the system starting
at the impurity will be reflected at the boundaries and returns to the impurity after time
tr. This results in the typical pattern with recurrent sign changes of the current (here:
Jo =0.5J, M = 60).

T T T T T
|

Figure 5.4

0.5

I [e/h]

[-V-characteristics for the resonant level
model with Jo = 0.4J and V; = U = 0.
The linear conductance is g = e?/h. The
plot shows results for two different time
evolution schemes: (a) the initial state
|Wo) of the system is the ground state
of the Hamiltonian H + I:[SD, while the
time evolution is performed as |¥U(t)) =
exp(—iHt/h)|Wo). (b) |Wo) is the ground
state of H , time evolgtion s performed
as |W(t)) = exp[—i(H + Hgsp)t/h)| Vo).
For further discussion see Fig. 5.2 and
the text.

using the Landauer—Biittiker approach, cf. also section B.1 in the appendix, taking
cosine-dispersion into account.

The procedure of extracting the current from the numerical data will be described
in the next section. Here we want to emphasize the different results we get for the I-
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models

V-curve for the two different cases. For the tight-binding Hamiltonian the dispersion
relation is given by ¢, = —2.J cos k, with a finite band width 4.J. For the approach
(a), in the non-interacting case, this leads to a saturation of I(Vsp) for all values
of the bias voltage Vsp > 4J. Further increasing Vsp beyond the band edge does
not change the initial occupation of energy levels. In contrast, for the case (b), the
particles will be distributed equally over the left and the right lead in the initial state
|Wo), whereas the voltage enters in the time evolution operator. For small values of
Vsp we find a good agreement for I(Vgp) for (a) and (b), while for Vsp = 2.J there
is a mismatch which finds its expression in a current maximum for 0 < Vgp < 4.J
with a subsequent break down to I = 0 for Vgp > 4J. This behaviour has been
predicted in [115] and can be understood from Fig. 5.2 (b), which explains how
energy conservation prevents particles (holes) to tunnel from one lead to the other
which removes contributions to the current. More recently, a detailed analysis of the
negative differential conductance for the situation (b) has been carried out [116]. In
this work, it has been realised that the density of states in the leads adds a major
contribution to the breakdown of the current. Note that (a) corresponds to the
situation of wide band metallic leads. Since our emphasis lies on the description of
nanostructures attached to metallic leads we prefer to work in this approach. When
describing situations with band gap materials as leads one should refer to approach
(b).

Moreover, there are other approaches to how the initial state and the time evolu-
tion can be defined. For example, in addition to prescription (a), the coupling J¢
and the interaction Ug can be set to zero for the calculation of |¥g). In this case (c),
both leads as well as the structure are totally independent systems, and there is a
very intuitive connection of Vgp and the difference of the particle number in the left
and the right lead, because the isolated leads can be described in a single particle
picture. The drawback of this approach, which adds a sudden switching of J and
Ug in addition to the switching of Vsp at initial time ¢ = 0, is an enhanced transient
regime and therefore a reduced plateau of constant current that we need to extract
the I-V-curve from. In Fig. 5.5 we compare the time-dependent current obtained
using the different initial conditions (a) and (c) for a single impurity coupled to two
leads via Jo = 0.4J, including a finite density-density interaction Uz = 2.0.J, for
different values of Vgp. To evaluate the time evolution of a system with finite inter-
action numerically, we used the td-DMRG method, with parameters as described in
the figure caption of Fig. 5.5. For both approaches (a) and (c), we find a time regime
of (quasi) constant current. However, approach (a) has several advantages over (c):
the current plateau is more consistent, which simplifies analysis, and to keep the
discarded entropy Sgisc in the td-DMRG calculation below a predefined threshold,
the number of states, which have to be kept in the DMRG, is considerably higher for
(c) as compared to (a), making approach (c¢) computationally much more expensive.
The latter point is illustrated in Fig. 5.6, where we compare the maximum dimen-
sion N of the DMRG projection scheme that is necessary to keep Syise < 1073, for
different values of the bias voltage Vsp, of the gate voltage V; and of the interaction
Uc. We always find a much smaller value of N for (a) as compared to (c).
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5.1 Initial conditions and time evolution
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Figure 5.6 Maximum dimension Ng, of the DMRG projection scheme for an [-V-
calculation necessary to keep the discarded entropy Sgisc below a certain value (here:
Saise < 1073) for different configurations I to IV and different values of the bias volt-
age Vgp, where we used 100 < Ny < 5600 states as a second limitation. Here, the current
through the contact links to a single impurity with Jo = 0.4J is obtained for 70 time steps
(At = 0.4h/J) in a system with M = 48 lattices sites at half filling. (a) The initial state
|\I/0) is the ground state of Hinit = H + Hsp, (c) |¥g) is obtained as the ground state of

1mt|Jc =0,Uc=0"
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Another problem of approach (c) is the discretization of the I-V-curve into steps
resulting from the discrete single particle energy levels of the initial state; when
increasing the voltage, the particles get transferred from one lead to the other one
by one, as long as leads and structure are decoupled, whereas a finite coupling at
initial time allows for continous charge transfer in between the leads. This could
probably be handled using a procedure similar to the one described in section 5.3.2.

For these reasons we will use approach (a) throughout the remainder of this chap-
ter.

5.2 Differential and linear conductance

For the calculation of the DC-conductance through the nanostructure the time evo-
lution has to be carried out for sufficiently long times until a quasi-stationary state
is reached and the steady state current I can be calculated. If the stationary state
corresponds to a well-defined applied external potential Vgp, the differential conduc-
tance is given by G(Vsp) = € 91(Vsp)/OVsp. In the limit of a small applied potential,
Vsp — 0, the linear conductance is given by ¢g(Vsp) = el(Vsp)/Vsp.

To discuss the general behaviour of the time evolution from an initial non-equilib-
rium state we first consider the most simple case we can think of: transport through
a single impurity. The current rises from zero and settles into a quasi-stationary
state, Fig. 5.3 (a). After the wavepackets have traveled to the boundaries of the
system and back to the nanostructure, the current falls back to zero and changes
sign, cf. Fig. 5.3 (b). Additionally there is a third type of finite size oscillations,
Fig. 5.7. Here we show the time-dependent current for different configurations, from
the leads to the impurity on a single (left or right) contact link, and through the
impurity as defined in Eq. (5.8). After the initial oscillations have decayed on the
time scale tg, the current through a single contact link shows remaining oscillations,
with an amplitude depending on Vsp and V4, and proportional to the inverse of the
system size 1 /M. The latter is demonstrated in Fig. 5.8. The period of the oscillation
depends on the applied bias voltage, compare Fig. 5.7 (b, ¢), but is independent of
the system size, Fig. 5.7 (b-d), and of the gate potential, Fig. 5.9, and is given by
t; = 2wh/|Vsp|. In the resonant tunneling case (Fig. 5.7 (a), V; = 0), the oscillations
on the left and the right contact link cancel in the current average Eq. (5.8) due to a
different sign in the amplitude of the oscillations I;, which does not hold in general
(Fig. 5.7 (b-d), V; # 0), where the amplitude of the oscillations as a function of the
gate potential V; varies differently on the individual contact links, Fig. 5.9.

In Fig. 5.9 we plot the fit of the oscillation frequency &y = 27 /f; as a function of
the gate potential V; for a fixed value of Vgp, where we find w; to be independent
of the gate potential. To be precise, the fit nicely confirms the above relation of
Vsp and oscillation period. This periodic contribution to the current is reminiscent
of the Josephson contribution in the tunneling Hamiltonian, obtained by gauge
transforming the voltage into a time-dependent coupling Je(t) = Jo exp(iVipt/h)
[49,110]. Like in a tunnel barrier in a superconductor, we have a phase coherent
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I [eJ/h)
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A data, right link - fit value I of the current
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Figure 5.7 Current through a single impurity (Mg = 1) with Jc = 0.3J at nominal filling
N/M = 0.5 obtained from exact numerical diagonalization (a-c), or DMRG including
interaction (d), respectively — (a) for different system sizes M at bias voltage Vsp = 0.1J
and gate voltage V, = 0. The black dashed line corresponds to the mean value of the
fit values I for the left and right contact link, for M = 60 lattice sites. The fit interval
has to be chosen carefully — initial oscillations from the bias voltage switching and the
finite transit time have to be taken into account. Even though the period of the finite size
oscillations considerably exceed the system size M = 60 for Vgp = 0.1J, the fit current I
is in nice agreement with the current plateau of the M = 120 system. However, finite size
effects still have to be addressed (b, V; = 0.3J, Vsp = 0.1J, and ¢, V, = 0.3J, Vsp = 0.4J)
since in general the fit current can strongly depend on the system size — in particular, a
non-zero gate voltage changes the particle number density in the leads when the overall
particle number is fixed. The same fit procedure can be applied to interacting systems (d,
Uc =2.0J, Vsp = 0.4J, V; = 0.3J).
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quantum system, namely the ground state at zero temperature. Instead of the
superconducting gap we have a finite size gap resulting from the finite nature of the
leads. Therefore the amplitude of this residual wiggling vanishes proportional to the
finite size gap provided by the leads.

The stationary current is given by a fit to I 4 Ijcos(2nt/ty + @) with the fit-
parameters tagged by a tilde, where we do not fit the oscillation period ¢; because
it is known. In general, the density in the leads, and therefore also the current,
depends on the system size and a finite size analysis has to be carried out in order
to extract quantitative results (Fig. 5.7 (b,c), see also discussion of Fig. 5.17). Only
in special cases (particle-hole symmetry, half filled leads, and zero gate potential)
the stationary current is independent of the system size, cf.Fig. 5.7 (a).

5.3 Finite size effects

Finite size effects such as the finite transit time of a wave packet travelling through
the system and the periodic contribution to the current make it difficult to ob-
tain a pseudo-stationary state where a constant current can be extracted from the
time evolution. This problem can be treated by a fit procedure as discussed in the
previous section. However, in the small bias regime, where the amplitude of the
oscillations is bigger than the (expected) current and the oscillation time t; exceeds
the transit time, this approach is unreliable. In section 5.5 we discuss the possibility
of effectively enlarging the system using damped boundary conditions (DBC) while
keeping the system size M constant (cf. Fig. 2.4). Furthermore, the time evolution
of the current strongly depends on the number of lattice sites of the leads being even
or odd, Figs. 5.10, 5.12. In Fig. 5.10 we compare this effect for a non-interacting two-
dot structure for different system sizes in the regime of very small voltage Vsp < J,
where we consider three qualitatively different cases, (a) tr < tj, (b) tg & t; and (c)
tr > tj, where tg, tj denote the transit time and oscillation period respectively, as
discussed in section 5.1. Since the number of single particle energy levels is equal to
the number of lattice sites, these relations are connected to Vsp and the level spacing
Ac as, (a) Ae > Vgp, (b) Ae = Vsp and (c) Ae < Vip. Intuitively one would expect
that the level discretisation must be small compared to the energy scales of interest,
and indeed we find, that on the time scale ¢ < tg the numerical simulation fits best
with the analytic result Iy g obtained from the Landauer—Biittiker approach in case
(c) (see Fig. 5.10; cf. also section B.1 in the appendix). However, in all cases, the
time evolution of the current depends on the different configurations of the leads
with even or odd number of lattice sites. Two aspects must be distinguished: (1) the
qualitative difference in the time evolution depending on whether the number of lead
sites is equal (as for the e2e and the 020 configuration), or unequal (as for the e2o
and the o2e configuration), is clearly demonstrated in the figure. For the two-dot
structure, this holds true even for tg > t¢;, Fig. 5.10 (c). For the 020 and the e2e
configurations we find a behaviour where the current suddenly increases by a factor
of ~ 2 after the transit time g has passed, as opposed to the “expected” behaviour
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Figure 5.9 Fit of the oscillation frequency &y = 2m/t; of the Josephson oscillations in
a system with M = 120 lattice sites and a single resonant level with Jo = 0.3J at a
bias voltage Vgp = 0.4J. The oscillation period extracted from the time evolution of the
current is in excellent agreement with the analytical expression wy = |Vsp|/h. The kinks
that appear in wj can be traced back to the fact that the amplitude of the oscillations
Iy vanishes for Ve ~ £Vgp/2 at either the left or the right contact link. The residual
wiggling (its amplitude as well as its frequency) depends on the size and the position of
the fit interval, [tmin, tmax], and is therefore consistent with a finite fitting interval in time
domain.

with a sign change, seen for the o2e and the e20 configuration. (2) An overall odd
number of lattice sites M (the o2e and the e2o configurations, for example) shifts
the filling factor in the leads away from 0.5 due to their finite size. A similar ef-
fect results from applying a gate voltage V; # 0, which imposes a problem to the
extraction of the linear conductance. A possible solution is discussed in Sec. 5.3.2.
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5.3.1 Even-odd effect

In [58], a detailed analysis of finite size effects resulting from an even or odd number
of lattice sites in the leads for a single-dot and for a three-dot structure with on-site
interaction including the spin degree of freedom has been carried out. The behaviour
of the time dependence of the current resulting from the type of the lead (even or
odd number of sites) has been traced back to the different magnetic moment of
the system which is SZ,,; = 1/2 for an overall odd number M of lattice sites and

c i = 0 for M being even. The reduction of the current in a situation where
the leads both consist of an even number of sites (ene) as compared to the other
possible combinations (one, ono) has been explained by the accumulation of spin
on the structure in the first case corresponding to the effect of applying an external
magnetic field.

We already find parity effects in the time dependence of noninteracting spinless
fermions in a system with a single-dot or a two-dot structure, Figs. 5.10, 5.12. In
the following we will trace the parity effects back to the level structure in the leads.
The single particle levels €, of an uncoupled, noninteracting lead with M, sites
(o = L,R) are given by ¢, = —2J cos[wk/(M, +1)], k =1,..., M,. The energy of
a particle residing on a decoupled single dot structure (Jo = 0) is simply given by
the gate voltage eq = Vg, which is at the Fermi edge for V, = 0. For a decoupled
Ms-dot structure one gets eq; = —2Jgcos[nj/(Ms+1)|+ Vg, j =1,..., Mg. For an
equal number of sites on both leads (as for example eMge or 0Mg0) there is a twofold
degeneracy of the single particle lead levels which does not exist if My, = Mgr+1. In
the degenerate case, single particle eigenfunctions can be constructed with a fully
delocalized particle density while for My, = Mg 4 1, the density profile of the single
particle wave functions shows an alternating confinement of the particle on either
the left or the right lead. The same holds true for the energy levels of the structure:
if degenerate with a lead level, the single particle wave function can be distributed
over the whole lead while it is localized on the structure otherwise. In the ele case,
the single-dot level is not degenerate with the lead levels when £4 = 0. As a result, a
single particle occupying the dot level generates a sharp peak in the density profile
(as well as the spin profile). For the olo case on the other hand, both leads have one
energy level in the middle of the band, which together with the dot level generates
a threefold degeneracy. For finite coupling Jo > 0, the degeneracy of the lead levels
and of the levels of the structure with the lead levels gets lifted. The single particle
wave functions must be divided equally on both leads, when M}, = Mg, while the
alternating confinement is preserved for M, = Mg £ 1. Concerning the energy level
of the dot, the threefold degeneracy in the uncoupled olo case results in two levels
with strong localization on the dot, one lifted above the Fermi edge and one pushed
below, and a third level with vanishing particle density on the dot, remaining on
the Fermi edge. Compare also appendix A.

In a system with an odd number of lattice sites M and spinless electrons, half
filling can not be realized strictly since N = M /2 is not an integer. Adding spin shifts
the particle number at half filling to N = M but leaves a total spin S7, = £1/2,
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5.3 Finite size effects

Figure 5.10

Current through the contact link of a
structure with two dots (Jg = J), cou-
pled to leads with a finite number of
sites M and Jc = 0.5J (compare also
Fig. 5.1), at nominal half filling N/M =
0.5 obtained from exact numerical diag-
onalization for bias voltage Vsp = 0.05J.
The horizontal dotted lines represent the
analytical result Irg obtained from the
Landauer—Biittiker approach. The cur-
rent is measured on the left link to the
structure. The time axis is normalized
to the transit time tg = MA/(2J). Here,
the focus is on finite size effects in the
low voltage regime. We distinguish three
cases: the system size is very small in
case (a) where M = 60+x with x = 0 (29
lattice sites on the left and right which is
an odd number in both cases 020), x =1
(now 30 sites on the left which is an even
number e20), x = 2 (e2e) and x = 3
(02e). Here, the single particle level spac-
ing Ae is much bigger than Vgp, while
the period of the Josephson oscillations
ty = 2wh/|Vsp| is much bigger than the
transit time tg. Case (b) shows an in-
termediate situation with M = 252 + x
lattice sites (Ae ~ Vgp, tj = tr). (c)
M = 1200 + z (Ae < Vgp, tj < tr). For
the e20 and the o2e case one has to do a
density shift correction of the result since
the total number of particles N # M/2,
cf. Sec. 5.3.2.

which will occupy the highest single particle level. Since for the doubly occupied
levels the spin adds up to 0, the level at the Fermi edge determines the spin density
profile which then explains the density peak on the dot in the ele case and the
absence of a peak in the olo case. The time-dependent behaviour of the current
can now be traced back to the single particle energy levels being confined in a single
lead (fully delocalized) in the case of different numbers of lattice sites My, = Mg £+ 1
(equal number of lattice sites My, = Mg). For the eMgo and oMge configurations,
applying a bias voltage as in Eq. (5.17) leads to an alternating occupation of the
energy levels corresponding to the alternating confinement of the single particle wave
functions in the left or the right lead. In contrast we find an occupation number
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of 1/2 in the energy range —Vsp/2...Vsp/2 when M|, = Mg, corresponding to the
fully delocalized single particle wave functions. We demonstrate this behaviour for
the non-interacting resonant level model (RLM) in Fig. 5.11.

So far, we have a connection of the degeneracy of the single particle energy levels
for the situation where the impurity is decoupled from the leads with the respective
class of the system (eMgo / oMse, 0Mso, eMge). The situation changes when adding
a constant local potential

AV = AVL Ny, + AV Ny (5.23)

to both, the initial and the time evolution Hamiltonian. To obtain the data of
the dotted lines in Fig. 5.12 we calculated the single particle energy levels for a
system with an even (odd) number of lattice sites in the leads and then applied a
relative shift of the lead levels with AV}, = —AVg € {Ae/4, Ae/2} for the two-dot
structure and AVy, € {£Ae/2}, AVr = 0 for the single dot structure, where Ac is
the energy gap to the first unoccupied energy level. This allows us to change the
level structure of a certain lead configuration in a way that it resembles one of the
other configurations in the vicinity of the Fermi edge without changing the number
of lattice sites in the leads. In Fig. 5.12 we see that the time-dependent behaviour
of the system on the time scale t < ¢y is only given by the structure of the single
particle energy levels that contribute to the current, and the bias voltage Vgsp, at
least as long as we do not include interaction. We therefore conclude that oMgo as

level occupation s

0 0.2 0.4 0.6 0.8 1

\V)

Energy Levels ¢ [J]
[a)

Vsp [J]

Figure 5.11 Initial occupation of the single particle energy levels in the non-interacting
RLM (Jc = 0.4J) at half filling. The number of lattice sites is M = My, + My + 1 with
the number of lattice sites in the left (right) lead My, (Mr). (a) My +1 = Mg = 30.
The alternating occupation can be traced back to the alternating constraint of the single
particle wave functions in either the left or the right lead. (b) M, = Mgi = 30. In the
uncoupled case (Jo = 0), the energy levels of the leads are degenerate. Therefore the
energy levels can not be associated with only one lead.
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Figure 5.12 Current through a structure coupled to two leads (mean value of left and
right contact link) with an overall finite system size M at half filling obtained from exact
diagonalization. The figure demonstrates the influence of the number of lattice sites in the
leads (even or odd) on the current for a bias voltage Vsp smaller than the single particle
level spacing. The dotted lines represent a situation where an additional constant voltage
AV is applied to both leads (a) or to the left lead (b), respectively. AV # 0 results in a
shift of the single particle levels in the uncoupled leads which can be used to “mimic” the
different combinations of leads with an even or odd number of lattice sites. (a) M = 60+,
x = 0 (020), 1 (e20), 2 (e2e) and 3 (02e) where the number of electrons is N = 30 for
M = 60,61 and N = 31 for M = 62,63. The dotted lines all together are generated using
a system with M = 60 lattice sites, with AV # 0. The different situations e20 and 02e can
be recovered by changing the particle number from N = 30 to N = 31, cf. section 5.3.2.
(b) M =61+ x, =0 (ele), 1 (ole) and 2 (olo) where the particle number is fixed to
N = 31. Here, the green (red) dotted line is generated from the ele (olo) system.

well as eMge configurations also can be used to study the I-V-characteristics in the
low voltage regime. This may be interesting when investigating structures with an
even number of lattice sites on the structure, when the constraint N = M /2 has to
be fulfilled strictly.

5.3.2 Density shift in the leads resulting from finite system
size

For the single resonant level model (RLM) the condition of half filling is easily
fulfilled by setting the particle number N = M/2 as long as the dot level resides in
the middle of the band. Then the overall particle number density is N/M = 1/2
in the equilibrium case. This can change for different reasons: for example, for a
model with two lattice sites in the structure and an overall odd number of lattice
sites as discussed before half filling is not realisable, since M/2 is not an integer.
But even for the RLM, applying a gate voltage V,; # 0 changes the particle number
on the structure by ANg while changing the particle number per site in the leads
by —ANg/(M — 1) which shifts the lead filling away from 1/2 as long as the system
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size M is finite. In this section we will concentrate on the latter case.

The impact on the current can be quite large, compare Figs. 5.13, 5.14. The total
number of particles must therefore be corrected in such a way that Nyeuqs/(M —1) =
1/2 where Nieaqs = N — Ng is the particle number in the leads. Thus an initial state
|W;) has to be a mixture of states with different particle numbers |V y) and |V ),
or |Wy_1), respectively, depending on the sign of ANg

[U;) = al¥Un) + B|¥ns1), (5.24)
so that M_1
(Ui| Nieags | Vi) = 5 (5.25)
For particle number conserving operators O the expectation value reads
(Wi|O|W;) = |af*(Wn|O[Un) + [BI(¥ni1 |O[Wysn) (5.26)
which leads to the condition
M —

|0‘|2<‘I’N|NLeads|‘I’N>+|5|2<‘I’Ni1|NLeads|‘PNil> = la*+|8]* = 1. (5.27)

2 )
Since the current operator I, also is particle number conserving, the resulting time-
dependent current expectation value is an interpolation of the results for N and for

« N=M/2
i linear envelope

o interpolation
...................... analytic result

0.3
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Figure 5.13 Current through a single impurity with an applied gate voltage Vy = 0.21J
for Vgp = 0.5J, coupled to two leads (Jo = 0.3.J), as a function of the system size. The
analytic result is obtained using the Landauer-Biittiker formula. While for different fillings
(N = M/2 and N = M/2 — 1) there is a systematic deviation from the analytic result,
the interpolation results in a substantial improvement. The linear envelope is plotted to
highlight the 1/M-dependency of the finite size effects. For an explanation of the sinusoidal
oscillations see also Fig. 5.14 and the text.
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N =+ 1 particles in the system

L(t) = |af* L(t; N) + (1 — |o|*) L.(t; N £1). (5.28)

In Fig. 5.13 we show the dependency of the current through a single impurity
coupled to two leads on the system size for different fillings N = M /2 as well as
N = M/2 — 1, for a constant value of the bias voltage Vgp and the gate voltage V.
Furthermore we include the interpolated value, following the procedure described
before. We find that the interpolated results are centered around the analytic value,
in contrast to the case with fixed particle number. However a distribution with an
amplitude oc 1/M remains. A potential relation of the sinusoidal oscillations in the
original data to the relative position of Vsp/2 to the single particle energy levels is
illustrated in Fig. 5.14. Here, we show the current as a function of Vgp with V, # 0,
where we also apply the interpolation procedure. We compare the analytical result
obtained using the Landauer—Biittiker approach with numerical data for the current
through a single impurity coupled to two leads with a system size of M = 62 lattice
sites in total. In order to interpolate the current as described before, Eq. (5.28),
we simulated the time evolution of the current expectation value with N = 30 and
N = 31 particles in the system. In comparison to Fig. 5.13 we conclude that one

0.6 -

energyl levels
N =31
N =30

interpolated particle number
analytic result ~

I [eJ/h]

system size

04
Vap/2 [J]

0.3 0.5 0.6

Figure 5.14 Current through a single impurity with an applied gate voltage Vy = 0.21J,
coupled to two leads (Jo = 0.3.J), as a function of the voltage Vsp. The vertical lines
represent the single particle energies of a system with uncoupled leads (Jc = 0.0); we find
that the interpolated value of the current fits best with the analytical result if the bias
voltage is chosen as the mean value of two neighbouring energy levels (a). However, this
condition restricts the bias voltage to only a few values. The restriction can be circum-
vented by either increasing the number of lattice sites M or by using damped boundary
conditions. The latter was used to obtain the values (b) without changing M — see section
5.5.3 for discussion.
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Figure 5.15 Current and differential conductance as function of applied potential through
a single impurity with V; = 0 and half filled leads: N/M = 0.5. Circles (squares) show
results for Jo = 0.5J (0.35J). System size was M = 48 (M = 96) and N = 200 (400)
states were kept in the DMRG. Lines are exact diagonalization results for M = 512.

has to choose the system size in relation to the bias voltage carefully to get the
desired relation of Vsp and the single particle levels. More precisely, the data points
(a), that fit nicely with the analytic curve, correspond to the interpolated current
obtained for a bias voltage where Vsp/2 has been chosen as the mean value of two
neighbouring energy levels of the uncoupled (Jo = 0) system. Another possibility
is the use of damped boundary conditions to shift the single particle levels, which
yields the data points (b). This idea will be discussed in Section 5.5.3.

A generalisation of this concept to systems with structures of Mg > 1 sites with a
corresponding number of energy levels is straightforward. A varying gate voltage will
change the occupation of the structure in a range Ng € [0, Ms] with a corresponding
change of the particle number in the leads. To get reliable results for the current at
half filling in the leads it is then necessary to perform an interpolation of currents
with appropriate particle numbers. Results for the linear conductance of a 7-site
structure are discussed in the next section.

5.4 Results for the conductance

The result! for the differential conductance through a single impurity in Fig. 5.15
is in excellent quantitative agreement with exact diagonalization results already
for moderate system sizes and DMRG cutoffs. Accurate calculations for extended
systems with interactions are more difficult, mainly because the numerical effort
required for our approach depends crucially on the time to reach a quasi-stationary
state. For the single impurity, the quasi-stationary state is reached on a timescale

! The results of this section have been presented in [49] for the first time. In order to demonstrate
the reliability of the methods discussed before, we include these results at this point.
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Ve, [J]

SD

Figure 5.16 Differential conductance as a function of bias voltage through a 7 site nanos-
tructure with nearest neighbour interaction. Parameters are Jo = 0.5J, Jg = 0.8J,
and N/M=0.5. Squares (circles) denote weak (strong) interaction with Us/Js = 1 (3)
(here: Uc = 0.0). Lines are fits to a Lorentzian with an energy-dependent self-energy
¥ = ing + imp?. Dashed lines: n; = 0. System size is M = 144 (M = 192) and 600 (800)
states were kept in the DMRG.

proportional to the inverse of the width of the conductance resonance, J/(2J3),
in agreement with the result in Ref. [114]. In general, extended structures with
interactions will take longer to reach a quasi-stationary state, and the time evolution
has to be carried out to correspondingly longer times.

In Fig. 5.16 we show results for the first differential conductance peak of an inter-
acting Mg = 7-site nanostructure. Careful analysis of the data shows, that in order
to reproduce the line shape accurately, one has to introduce an energy-dependent
self-energy for Us/Js = 3. Since the effect is small, we approximate it by a cor-
rection quadratic in the bias voltage difference p1 = Vgp — Vpeax. It is important to
note that for the strongly interacting nanostructure, Us/Js = 3, the conductance
peaks are very well separated. Therefore the line shape does not overlap with the
neighbouring peaks, and the fit is very robust. Performing the same analysis for a
non-interacting nanostructure with a comparable resonance width, we obtain negli-
gible corrections to n; in the self-energy, indicating that the change of the line shape
is due to correlation effects.

The linear conductance as a function of applied gate potential can be calculated
in the same manner, if a sufficiently small external potential is used. We study the
same 7-site nanostructure as before, with interaction Us = 0, and use a bias voltage
of Vgp = 2-107*J. For half filled leads, the result for the linear conductance calcu-
lated with a fixed number of fermions, N/M = 0.5, is qualitatively correct, but the
conductance peaks are shifted to higher energies relative to the expected peak posi-
tions at the energy levels of the non-interacting system (Fig. 5.17). Varying the gate
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Figure 5.17 Transport through a non-interacting 7-site nanostructure with Jo = 0.5J and
Js = 0.8J. The energy levels of the nanostructure are indicated by dashed vertical lines.
(a) Linear conductance for different N. The result after applying finite size corrections
is shown as straight line (see text for details). (b) Number of fermions on the 7-site
nanostructure. (c) Density p = (N — Ng)/(M — Msg) in the leads. The system size is
M = 96 and the number of states kept in the DMRG is N, = 400.

potential V, increases the charge on the nanostructure by unity whenever an energy
level of the nanostructure moves through the Fermi level, cf. Fig. 5.17 (b). The den-
sity in the leads varies accordingly, cf. Fig. 5.17 (c). Since the number of fermions
in the system is restricted to integer values, direct calculation of the linear conduc-
tance at constant particle density p in the leads is not possible and one must resort
to interpolation. Using linear interpolation in p(N, V) for N = 44 ...48 yields our
final result for the linear conductance at half filling, cf. Fig. 5.17 (a). The agreement
in the peak positions is well within the expected accuracy for a 96 site calculation.
Our results for the conductance through an interacting extended nanostructure are
presented in Fig. 5.18. The calculation for the weakly interacting system requires
roughly the same numerical effort as the non-interacting system. In the strongly
interacting case, where the nanostructure is now in the charge density wave regime,
the time to reach a quasi-stationary state is longer, and a correspondingly larger
system size was used in the calculation. In both cases we obtain peak heights for
the central and first conductance resonance to within 1% of the conductance for a
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Figure 5.18 Linear conductance through an interacting 7 site system with Jo = 0.5J
and Jg = 0.8J for weak (squares) and strong (circles) interaction. System size is M = 96
(M = 192) and 400 (600) states were kept in the DMRG. Finite size corrections have been
included. Lines are guides to the eye.

single channel.

5.5 Exponential damping

In this section we study the effects and potential applications of damped bound-
ary conditions (DBC). DBC have been introduced into DMRG calculations before,
in order to reduce finite size effects [30, 59,60, 88]. Here we would like to reduce
the limitations arising from a finite transit time tg and Josephson wiggling, which
especially in the low voltage regime spoils the accuracy of current measurements.
We have already seen how to exploit the voltage dependency of the finite size wig-
gling by using a fit procedure, which allows for the calculation of current-voltage
characteristics even with an applied gate voltage. We now discuss the possibility
of combining the fit procedure with DBC, where the damping effectively increases
the system size. Furthermore we want to use DBC to adjust the single particle
energy levels in order to increase the resolution with respect to Vep when V; # 0,
cf. Fig. 5.14.

5.5.1 Estimate for Transit Time in a system with DBC at
half filling

In Fig. 5.19 we show the time-dependent current through a single impurity with
Ve = 0, for different values of the bias voltage Vsp, from the initial transient regime,
until after the first finite size reflection. We compare two different system sizes
with M = 120 and M = 240 lattice sites, and apply exponentially DBC in order
to demonstrate the increased effective system size. The hopping matrix element
is damped towards the boundaries of the system using a damping constant A as
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Figure 5.19 Time-dependent current through a single impurity with Jo = 0.3J, V,; =
Uc = 0, at nominal half filling N/M = 0.5, obtained from exact numerical diagonalization
for different bias voltages Vsp and different damping conditions. For small bias voltage,
finite size reflections from hard wall boundary conditions (HWBC, a) can be suppressed
significantly using damped boundary conditions (DBC). Using an exponential damping
with A=%/2 = 0.93, M = 120 and M, = 50 (b) yields a plateau of constant current for
Vsp = 0.4J considerably bigger than in the undamped case. However, with increasing bias
voltage, the current plateau starts to decay before the estimated transit time according to
Eq. (5.30) is reached (here: tg ~ 670). Reducing the damping (c, d) can lead to good
agreement with the estimate (tg(c) ~ 178, tgr(d) ~ 123).

sketched in Fig. 2.4, over a range of M, lattice sites. The total number of lattice
sites is left unchanged (here: M = 120, 240). In most cases, we find an enhanced
size of the current plateaus, however, under certain conditions, the damping can
also lead to an early breakdown of the current.

An estimate for the transit time of a wave packet travelling in undamped leads of
size M can be obtained from the Fermi velocity vg = 2.J/h, which leads to

M Mh

2

th ~ —

Assuming a local Fermi velocity vp(z) = 2J(z)/h in damped leads with damping
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Figure 5.20 Test for the transit time estimate tg of the current through a single impurity
at half filling, Eqns. (5.29, 5.30), where the black dotted line is the undamped case. All
values are plotted as functions of the damped lead size M. The top panels show the single
particle level density for the energy given by the bias voltage, in units of the level density
for the undamped case. (See text for details)

A > 1 leads to an expression of the form

_ Mhn 2M NN
tr & 5~ (1 i )+J1HA(A 1) (5.30)

where M, is the size of the damped leads. Eq. (5.30) can then be used to estimate
an effective system size

4
Mg~ M — 2My + — (AMr/2 1 5.31
fF A+1nA( ), ( )

in agreement with the results for the pseudo-steady current found for the noninter-
acting case, Fig. 5.19. For a quantitative test of the expression for tg, we compare
the transit time, extracted from a current measurement, to the estimate given by
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models

Figure 5.21
Level discretisation in a finite system
(M = 120) with a single impurity, cou-
pled to leads (Jc = 0.3J) as function of 0
the damping rate A=1/2 (a, b), as well as
function of the size Mj of the damped
leads (c). The damping lead size is set to
(a) My =30 and (b) M = 50, while for
(c) the damping rate is set to A=1/2 =
0.98. The implementation of damped
leads in combination with leads described
by a uniform tight binding chain can be
used to increase the level density in the
vicinity of the Fermi edge while allowing 1
for direct access to real space quantities
like the current at a specific lattice site,
as for example the impurity.

Energy Levels e [J]
(e

20

< il
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]
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Eq. (5.30); cf. Fig. 5.20. We use two different criteria: (a) the time tg) where I(t)

becomes negative at the end of the first plateau (crosses), and (b) the time tgf) where
the current changes sign after one round trip (squares). The black dotted lines show
t}(S) and tg) for the undamped case. For values of A='/2 close to 1 we find good
agreement between Eq. (5.30) and the simulations over a wide range of values of
M, for both conditions, (a) and (b), and even for large bias voltages. The growth of
t}(;"b) /tr can be explained by different excitation velocities for |[Vsp| > 0. However,
the estimate becomes less accurate and even wrong for small bias voltages and small
values of My, provided A~'/2 becomes too small. For each case, the top panels show
the relative single particle level density at energy Vsp/2. As can be expected, cf.
Fig. 5.21, the level density grows with M, until a maximum is reached. The posi-
tion of the maximum is determined by the bias voltage. It can clearly be seen that,
using condition (a), the position of the maximum, in combination with the values
of tg) /tr, gives a strong indication if a current plateau is still well defined for times
on the order of the estimate of ¢y, since tg)/tR ~ 1 for values of M, on the left
side of the maximum of the single particle level density. In comparison, condition
(b) is a weak criterion, since for strong damping the current plateau starts decaying
for times much shorter than tg, cf. Fig. 5.19. In Fig. 5.21, we show the single
particle energy levels of a system with M = 120 lattice sites with a single impurity,
as function of the damping constant A~/2 and of the size of the damped leads Mj,.
The plot demonstrates the growth of the level density on the scale A=MA/2 which
in conjunction with Fig. 5.20 allows for an estimate of the maximum value of Vsp
up to which a current plateau can be expected in a system with DBC.
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5.5 Exponential damping

5.5.2 Fit Procedure

As already mentioned in Sec. 5.3, the fitting procedure becomes unreliable when the
oscillation time ¢; substantially exceeds the range [ts, tr]. We now demonstrate how
to use the estimate for the transit time to implement damping conditions in order to
sufficiently increase the effective system size, enforcing t; ~ tr —ts. As an example,
we simulate the time evolution of a system with M lattice sites and a single, non-
interacting impurity with V, = 0, and apply a small bias voltage Vgp > 0. An

M =192

_ 23 P a
0.021 | lM = 96 (i) M = 96, Mog ~ 600 ] @)

E‘EE‘

0.02

§ W (ii) M = 192, Mog ~ 900 |
Q) “es ' . . . . ‘ :
— 011 (iii) M = GO,Meff (b)
0.1
0.09 % - e 2“ "
P g (iv? M = 60, Mg ~ 180 Yo
0 0.5 1 1.5
time ¢ [ts]
Analytic value Iy - current, mean left /right, HWBC o
fit value 1 - current, left link, DBC o

Figure 5.22 Current through a single impurity with Jo = 0.3J and Vy; = Uc = 0. The
time axis is normalized to the oscillation period t; = 2wh/Vsp, with (a) Vsp = 0.02J and
(b) Vsp = 0.1J. For Vgp = 0.02J (a), the oscillation period is t; = 314h/J. To obtain a
current plateau containing at least one Josephson oscillation one has to simulate the time
evolution of a system with M 2 630, which is very difficult on present days computers
when interaction is included. Here, we apply DBC on a system with M = 96 (M = 192)
to effectively increase the system size using (i) A ~ 0.903, My = 32 (ii, A =~ 0.969,
My = 84). Accidentally, the fit value agrees with the analytic value nearly perfectly for
configuration (i). For Vgp = 0.1J (b), t; = 63h/J = M = 126. The damping conditions
are characterized by (iii) A ~ 0.93, My = 20 and (iv) A ~ 0.900, M = 20, respectively.
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models

effective transit time ¢$ ~ t; can be obtained using DBC, according to Eqns. (5.30,
5.31).

The result is presented in Fig. 5.22, where we show the time-dependent current
through one of the contact links of a single impurity for different damping conditions
and two different values of Vp. Again, we fit [+ I cos(Vapt/hi+ @) to the oscillating
part of the current expectation value. The extracted current I for the calculations
including DBC agrees with the analytic result within ~ 1%, which is of the same
order of magnitude as the mean value extracted from the very small plateau regime
that can be found for the system with hard wall boundary conditions. We conclude
that DBC can be used to obtain a first guess, but for high precision measurements,
hard wall boundary conditions together with an increased system size have to be
used, c.f. M = 180 in Fig. 5.22(b). The failure of DBC for short leads can also
be understood as an inverse tsunami effect, compare [87]. Due to the exponentially
reduced hopping elements the leads fail to provide a structureless bath of particles.

5.5.3 Correction of the single particle energy levels using
DBC

In Section 5.3.2 we found that the effects resulting from a finite density shift in the
leads when applying a gate voltage can be significantly suppressed when extracting
the current only for certain values of Vgp determined by the single particle level
spacing. Since these finite size effects particularly arise in the middle of the band
where the density of single particle levels is the lowest — and where the current has
to be extracted for the calculation of the linear conductance — one would like to
somehow shift the single particle levels towards the center of the band. This can
be achieved by increasing the number of lattice sites, but at the same time also
increases the numerical effort.

Applying DBC also results in a shift of the single particle energy levels in the leads
towards the center of the band, cf. Fig. 5.21. We therefore ask the question if the
criterion for the relation of bias voltage and single particle energy levels formulated
in Sec. 5.3.2 still holds for DBC. The result is shown in Fig. 5.14 (data set (b),
pluses). To obtain the additional data points (b), we used damping conditions with
values of A='/2 = 0.91...0.98 and M, = 15,20, 23. We calculated the single particle
energy levels for the decoupled leads and obtained the current for values of the bias
voltage with Vsp/2 in the middle of two neighbouring energy levels. To increase
the resolution for the high voltage regime only moderate damping conditions are
required (A~Y2 = 0.98, M, = 15,20), while strong damping is required to achieve
high resolution in the low voltage regime. For Vsp approaching the band edge,
however, DBC have to be avoided for the reasons discussed earlier.
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5.6 Shot Noise in the Resonant Level Model

5.6 Shot Noise in the Resonant Level Model

It seems reasonable to expect that time-dependent DMRG can also be used to
determine current fluctuations, which could also, in some setups, be determined
analytically [117]. In order to reach this goal, it is crucial to be able to extract
cumulants — in particular the shot noise — from real time simulation methods. In
this section we discuss a method to do this, including results for the IRLM.

The main problem in the determination of noise is the finite size analysis of the
results of non-equilibrium correlation functions for finite systems. To concentrate
on this aspect, we first discuss results for the non-interacting resonant level model
(RLM) where the numerical data can be obtained using exact diagonalisation (ED)
techniques [84]; cf. also section 3.1. Since in this specific case there are straight-
forward analytical solutions of the problem, we can check the reliability of our ap-
proach in great detail. As a main result of this work we then proceed to present
results for shot noise in the IRLM with finite interaction, at the self-dual point of the
model, where we can compare to analytic results based on the thermodynamic Bethe
ansatz [85]. To show the general applicability and the limitations of the scheme, we
also include results for other values of the interaction.

We note that prior to our work, a numerical study of the full counting statistics
for another non-interacting model appeared in [100]. The method used there is
however tailored to the free case and uses intermediate analytical results from [77].
Our approach, in contrast, is based directly on the ‘experimentally’ measured time-
dependent correlation of the current. It is also not specific to fermionic systems and
may be applied to the study of light-matter interaction in wave-guiding structures
[118].

To make things concrete, we start by giving the Hamiltonian of our test system.
For the thermodynamic limit, it is equivalent to Eq. (2.15). Of course, for the
numerical simulation, we have to restrict the overall system size to a finite number
of lattice sites M = My, + Mg + 1 again, corresponding to the nomenclature of
Eqns. (5.1-5.4), where we now place the impurity in the center of the system. In the
remainder of this section we concentrate on the resonant case at zero gate voltage
Ve = 0 and half filling. We then arrive at

A~

-y ot . R
HC - |: - JC(CML71+{L‘CML+IL‘ + CML+:BCML71+:B)

z=0,1
R | I 1
o+ Uo(an, 12 = 5) (i a = 5)] (5.32)
My, —2 M—2
H,=—J Y (e +ebne), Ha=—J) (e, +,.e,), (5.33)
=0 r=Miy,+1
]:IE f{{gﬁ& :IA{L+]:I(3+]:IR. (534)

Shot noise is the contribution to current fluctuations at zero temperature — and
hence a pure charge discretisation effect. To prepare the system in a state with finite
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Chapter 5 Non-Equilibrium Transport Simulations in Impurity Models

current through the structure, we therefore use the recipe described in section 5.1,
adding a charge imbalance operator Hgp = Vip[Ni, — Ng]/2 to the Hamiltonian and
calculating the initial state as the ground state |¥(t = 0)) = |¥,) of H + Hgp. Here,
Ni (Ng) counts the particle number in the left (right) lead. We then perform the
time evolution using the time evolution operator U(t) = exp(—iHt/h).

5.6.1 Numerical computation of current fluctuations

The following discussion is based on the numerical computation of time-dependent
current fluctuations as defined in Eq. (5.10),

S(t,t") = Re(AI()AI(t)) = Re(Wo| AT(#)AI()| D). (5.35)

For strongly correlated systems, we use the time-dependent DMRG to perform the
time evolution. Similar to the discussion in section 5.1.1, we have to obtain the time
evolution of the initial non-equilibrium state |Wy), for a set of time steps ¢t = nAt,
n € N, and ¢’ = n’At, n’ € N, based on the Krylov subspace method; cf. section 3.3.
The evaluation of expressions of the form (AI(t)AI(t)) = (Uo|AI(t)AI(t')| W) then
amounts to the computation of states

(U(t')) = U{X)[Wo), [¥(t))=U(t—t)|w()), (5.36)
W, (t)) = ATJO(t)) = [I — (W) I |W(E)]|¥ (), the same for [T;(1)), (5.37)
1D, (t' — 1)) = U(t — )| (t)), (5.38)

(5.39)

)
= (AIQ)AL()) = (¥ ()| 2/ (1" — 1)).
For details of the DMRG time evolution protocol and the use of Krylov subspace
methods for the time evolution operator see sections 3.2, 3.3 and Ref. [47].

Again, in the noninteracting case with Uz = 0, we can apply the single-particle
decomposition method as described in section 3.1; cf. also section 5.1.1. The Hamil-
tonian of the IRLM, Eqns. (5.32-5.34), can be expressed by a square form as in
Eq. (3.2), which allows evaluation of the time-dependent current-current correla-
tions (5.35) by means of Eq. (3.12).

5.6.2 Finite size effects study in the non-interacting case

Since we want to compare the numerical data with analytical results, we restrict
ourselves to the non-interacting case with Us = 0 for the moment. The expectation
value of I(t), measured symmetrically on both contact links (cf. Eq. (5.8)), in the
RLM for Jo = 0.4J and for some values of Vgp is shown in the upper part of
Fig. 5.23, while in the lower part, the current-current correlation function S(¢, tyin)
can be found, for ¢t > t.;,, and for a certain value of t,;,. Effects like the finite
settling time tg and the finite transit time tg as well as the [-Vgp-characteristics
have been already discussed in this chapter in great detail.
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Figure 5.23 Time-dependent current I(t), and current correlation function S(¢, tmin) with
tmin = 12, in the non-interacting resonant level model RLM, with tight-binding leads and
a finite system size of M = 60 lattice sites, for different values of the bias voltage Vsp. The
I(t) curves show the three time regimes given by the settling time tg and the transit time
tr. The highlighted time domain indicates the integration range [tmin, tmax]. The inset
demonstrates an additional subtlety: the correlation function shows finite size reflection
effects on the time scale ¢t — ty,in 2 tr/2, which imposes an additional restriction on #yax.

At the beginning of this chapter we defined the noise power spectrum as the
Fourier transform of the time-dependent current fluctuations, cf. Eqns. (5.9-5.15).
We now want to see whether the noise can be reliably obtained in a real-time simu-
lation based on these formulas. There are of course many obstacles. The first comes
from the calculation of a non-equilibrium correlation function in the time domain
from a real-time simulation. Because we are restricted to a finite system with M
lattice sites and hard walls, a steady transport state is not well defined. Instead, we
make the attempt to calculate the time evolution from the initial non-equilibrium
state |U(¢ = 0)) as described before and look for a quasi-stationary time regime.
The “switching on” of a finite source-drain voltage Vsp at the initial time causes a
ringing of the current [114], cf. also Fig. 5.23, which decays exponentially within a
settling time ts. The current finally enters a plateau regime, where the size of the
plateau is given by the transit time ¢tg which is finite due to the finite size of the
system [67], Fig. 5.23.

Having performed the time evolution of the system in order to bring it “close” to
a steady state, we now have to evaluate the integral (5.15) in a limited time range
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in order to obtain the low-frequency limit of the noise power spectrum

tmax
Spum = 4 / dt Re(Wo|AL(H)AL (tmin)|To) (5.40)

tmin

where t,;n > ts and tn. < tr. Note, that f,., has to be chosen carefully, since
finite size effects for the current-current correlations already occur on the time scale
t—tmin > tr/2; cf. also the inset of Fig. 5.23. The symmetric definition of S(, tyin) =
S(tmin, t), cf. Eq. (5.9), allows us to skip the integration over the time-range ¢t < ¢,
which enables us to put t,,;, to the early period of constant current. In a hypothetical
situation with a system of infinite size where tg — oo the contribution of

[ Relol AT (1) )

tmax

can be neglected if Re(AI(t)Al(tym)) is small for ¢ > t,., as compared to the mean
value in the range ., < t < tnax. One therefore has to choose the size of the
system to be big enough to ensure the correlation function drops to zero within the
transit time. This seems to be the case for the example given in Fig. 5.23, at least
for values of the bias voltage Vsp 2 J.

The finite transit time ¢ introduces a finite cutoff frequency
Weus = 27 /tg o< 1/M. (5.41)

This is the main problem we encounter. In contrast to the situation of infinite
leads, where zero frequency noise vanishes without applied voltage, we now find
a contribution to the zero voltage shot noise of the order of S(wey). The low
frequency domain is the most interesting for the kind of problems we wish to study:
low frequency is low energy and thus strong coupling between impurity and leads.
The magnitude of the finite size effects for the type of systems that can be stud-
ied on the basis of the numerical computation resources available today is far from
negligible. On Fig. 5.24 we give results for the shot noise S,um obtained for different
system sizes of M lattice sites, as well as the expected result S in the thermodynamic
limit obtained from the Landauer-Biittiker approach (this is discussed in more de-
tails in the appendix). While the results measured for finite size and the asymptotic
results agree at large voltages, there is a marked difference at small voltages, with
an offset at vanishing Vgp. In the figure, we also represent the finite size correction

ASnum = Snum -5 (542)

rescaled by the system size M. For different values of M the rescaled finite size cor-
rections M X AS,,m collapse very well on a single curve, indicating that the main
finite size effects scale linearly with 1/M in the considered parameter regime. One
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Figure 5.24 Noise S and squared differential conductance G? for Jo = 0.4J. The blue
lines represent the analytic values obtained using the Landauer—Biittiker approach. The
finite size of the system introduces an additional noise proportional to G2/M.

may expect that the cut off given by the finite size of the leads corresponds to an ef-
fective finite temperature ~ M~! resulting in a low voltage offset ~ G /M. However,
we find ASyum o< G? with the differential conductance G(Vsp) = 01(Vsp)/OVsp.

To understand the behaviour of AS,,m, we consider the full frequency dependence
of the shot noise. It can be obtained analytically in the wide band limit — see the
appendix, Eq. (B.24). For values of Jo/J < 1, the numerical results obtained for
the model with cosine dispersion relation should be consistent with the analytical
result as long as the considered frequency is small compared to the band width.
This is illustrated in Fig. 5.25. There, the frequency-dependent noise is obtained
via

tmax
Shum (w) = 4Re / dt ei“(t_tmi“)S(t,tmin) (5.43)
tmin
for different values of the bias voltage Vsp. For big values of w, the effects of the
band curvature are quite marked — as can be seen by the departure of the various
guide lines from the dotted lines representing the analytic wide band limit results.

To understand the voltage dependency of the finite size corrections, we consider
the low frequency behaviour of the analytical results in the wide band limit

S(w > 0,Vgp) = S(0, Vsp) + AS(w, Vap) + O(w?) (5.44)
with the correction? in first order with respect to w

AS(w, Vsp) o< G*(Vip w. (5.45)

2The low-frequency approximation, including the first order in w, has been provided by E. Boulat
and H. Saleur; cf. also Ref. [84].
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Figure 5.25 Noise S(w) vs. frequency w, both rescaled with respect to the width of the
conductance peak I' = 4J2/J, for different values of the bias voltage. The lines going
through the numerical values (represented by crosses) are just guides for the eye. The
dotted lines correspond to the analytical result for the wide band limit.

For the system with finite band width, we have checked this expression by extracting
the slope 9S(w, Vsp)/Ow in the limit w — 07 from the numerical data. Again we
find good agreement with G? in a voltage regime where finite size effects can be
neglected, Fig. 5.26.

Inserting the cutoff frequency now leads to the expression

1
AS(Weut, Vap) X MGQ(VSD) (5.46)

which is in good agreement with AS,,m(Vsp), cf. Fig. 5.24.

Using our knowledge of the finite size correction, we can now control the extrap-
olation of numerical data: in Fig. 5.28 we show the results obtained using linear
extrapolation 1/M — 0 for Jo = 0.3J and Jc = 0.4J. We find indeed very good
agreement with the analytical result.

Damped boundary conditions The non-interacting case is of course very sim-
ple to calculate numerically (regardless of the possibility of the Landauer—Biittiker
treatment). The numerical main effort consists in the exact diagonalisation of the
M x M Hamiltonian matrices as well as the calculation of the time evolution which
involves the multiplication of M x M matrices. Including interaction spoils this
approach. Instead, one has to resort to approximative time evolution schemes us-
ing methods for correlated electrons — in the next section we will do so based on
the time-dependent DMRG. While for the ED-based approach in the context of a
non-interacting system it is no problem to obtain numerical results for M ~ 1000
lattice sites, the DMRG based approach is limited to the simulation of systems with
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Figure 5.26 Slope of the frequency-dependent shot noise in the limit w — 07, rescaled to
fit with G?, for different system sizes. In the low voltage regime we find finite size effects.
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Figure 5.27 Noise S and squared differential conductance G? for Jo = 0.4J. The blue
lines represent the analytic values obtained using the Landauer—Biittiker approach. The
system size is fixed to M = 60 lattice sites, while at the boundaries, the hopping matrix
elements are exponentially damped with the damping constant A~%/2 on M, links. This
results in an effectively enlarged system with Mg lattice sites. The finite size correction
AShum, here rescaled by Meg, again collapses on a single curve for different Mg, and is
still proportional to G2.

M ~ 50...100 lattice sites. Wilson leads, or damped boundary conditions (DBC),
increase the energy resolution close to the Fermi surface and allow for a high reso-
lution in linear transport calculations, see [30,31]. In section 5.5 (cf. also Ref. [67])
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we showed that using DBC with a weak damping constant allows us to effectively
increase the system size to Mg > M lattice sites without changing M, where a
rough estimate for Mg has been given as a function of the damping constant A and
the length of the damped leads My

4
Mg = M — 2My + ——(AMA/2 1), 5.47
eff At lnA( ) (547)
We now use this estimate to perform the linear extrapolation to infinite system
size, where we additionally adjust the estimate by fixing the extrapolated value to

analytic results (cf. Ref. [119], for example, or section B.3 in the appendix)
S(Vsp = 0) = 0. (5.48)

To verify this approach we performed calculations for a non-interacting system with
M = 60 lattice sites and DBC, for Jo = 0.4J. For the damped leads we used
different combinations of A and M, , where we used values for the damping constant
in the range A='/2 € [0.93,1.0] for damped leads of M, = 0...26 lattice sites (while
keeping the total number of lattice sites M fixed!). The estimate for the effective
system size, Eq. (5.47), is checked by looking at the scaling behaviour of the finite
size correction ASy,m, where we now find linear scaling o< 1/M,g, cf. Fig. 5.27.

The result is shown in Fig. 5.28. We find remarkably good agreement with the
analytical result, while we have to point out that, for values of the bias voltage in
the order of the band width, the approach fails, which has to be expected since
the estimate of the system size only works in a limited voltage range, compare
section 5.5. Additionally we find the numerical data to be very noisy depending on
the respective configuration of the damping conditions.

The concept is not restricted to non-interacting fermions and can be implemented
using numerical methods for interacting quantum systems. In this case as well, we
expect the finite size corrections to go as 1/M because the cutoff frequency we,; has
the same dependence. We note however that the prefactor might not be G?(Vsp)
exactly. [120,121]

5.6.3 Finite interaction: the self-dual point of the IRLM

In the preceeding section we studied the influence of the finite size of the model
system on the low-frequency shot noise of the current through the nanostructure.
Since we made the assumption that electron-electron interaction can be suppressed
on the structure, Us = 0, we have been able to apply a single-particle decomposition
approach and to handle the numerical simulation by means of exact diagonalisation.
We now want to apply the approach to the interacting resonant level model (IRLM),
with finite interaction Ug > 0. The computation of the time-dependent current-
current correlation therefore now is based on the time-dependent DMRG [47|, as
described in section 5.6.1.
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Here, we set Uz = 2.0J, and the coupling to Jo = 0.4J, while we still operate
in the resonant tunneling regime V, = 0. The IRLM bears a duality symmetry
exchanging large and small interactions Ug. For an intermediate value of U the
model is self-dual, which in our description exactly corresponds to the value Uc =
2.0J [56,85]. Furthermore, there is an exact analytic solution to the problem for
precisely the self-dual point, in the wide-band limit, which again allows us to check
the numerical data; cf. also appendix B.2.

The total number of lattice sites in the numerical calculation varies from M = 48
to 72 lattice sites, with Myr = Mj, + 1. Different other setups have been considered,
including the effective enlargement of the system using damped boundary conditions
as discussed before, which will not be presented here. For the numerical simulation
within the DMRG projection scheme we set an upper bound to the dimension of
the Hilbert space for each DMRG block to N.,; = 4000 states.

As a first result we compare the numerical data for different system sizes to the
analytical result in Fig. 5.29, where we show zero-frequency shot noise as well as
the finite size error of the numerical data, rescaled by the system size. As discussed
in the preceeding section, in the low frequency limit, strong finite size effects have
to be expected, that get mostly pronounced for small values of the voltage. Since
the rescaled finite size error happens to collapse on a single curve in the low voltage

0-5F Alnalytical Result

+  ED, extrapolated to M — oo
04+ [ ED, extrapolated using Wilson leads ]

<
<
o 03
L
2
éi 0.2
N

0.1

OF |||||||
0 0.5 1 1.5 2 2.5 3
Veo [J]

Figure 5.28 Shot Noise S as function of the bias voltage Vgp in the non-interacting
resonant level model. The analytical result was obtained using the Landauer—Biittiker
approach, Eq. (B.10) in the appendix, while the numerical result is computed for systems
of different finite sizes of M = 120...180 lattice sites with a subsequent linear extrapolation
of 1/M — 0. The two curves correspond to different couplings Jc of the impurity to the
leads. Furthermore, we used DBC in order to effectively increase the system size. Here,
the system size was fixed to M = 60 lattice sites. For weak damping and for not too big
values of Vgp, we find very good agreement with the undamped case.
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regime, the numerical data can be linearly extrapolated to infinite system size in
order to obtain results for the thermodynamic limit. Also we verify the analytical
estimate for the finite size error Syym. — Sanalyt. X G?/M with G the differential
conductance; cf. appendix B.2 for an analytic expression for GG in the self-dual
IRLM. The strong deviations in the high voltage regime from this relation may be
traced back to different sources: the cutoff error introduced by the approximative
time-dependent DMRG scheme gets especially pronounced for values of the voltage
of the order of the bandwidth. Furthermore, to keep the numerical simulation
feasible, one has to resort to small systems introducing finite size effects beyond the
linear scaling.

Nevertheless, the numerical results shown in Fig. 5.30, where we obtained data
for the low voltage regime using linear extrapolation, show very nice agreement with
the analytical results given by Eq. (B.22) in the appendix.

The back-scattering Fano factor for the back-scattering current I,

S(Vsp)

FBS(VSD> = mv

[BS<VSD) = gVSD/e — [(VSD)7 (549)

with the linear conductance g (g = €?/h in the resonant tunneling situation), can
also be obtained from the numerical data, Fig. 5.31, where we use the analytical
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Figure 5.29 Finite size error of noise. The blue lines represent the analytical result, cf.
appendix B.2. The numerical data have been obtained for systems with coupling Jc = 0.4J
and density-density interaction Uc = 2.0J using td-DMRG. The system size varies from
M = 48 to M = 72 lattice sites. The difference of numerical and analytical data in the
low voltage regime is proportional to the squared differential conductance G2 and scales
linearly with the inverse system size 1/M.
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Figure 5.30 Linear extrapolation of the numerical shot noise data. The linear scaling of
the low voltage finite size error is exploited to perform a linear extrapolation 1/M — 0.
We find nice agreement of numerical and analytical results.
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Figure 5.31 Back scattering Fano factor as a function of the back scattered current. The
numerical data points have been obtained using the numerical shot noise data divided by
the analytical back scattered current. The finite size error of the numerical results for shot
noise leads to a diverging Fano factor. The situation improves for the linearly extrapolated
data, while we find a nice agreement of the analytical result with the G?-corrected data.
For comparison we show the Fano factor in the non-interacting case.

result in order to obtain the back-scattering current I [56]; cf. also appendix B.2.
It fits nicely with the analytical result for Fys as long as finite size effects can be
neglected — which means in the limit of large values of I, corresponding to values of
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the bias voltage beyond the linear regime. However, the finite size offset at I3 — 0
leads to a strongly diverging Fano factor, when no finite size corrections are applied.
In contrast, I, remains finite even for very small values of I, when obtained from
the linearly extrapolated shot noise data. The deviations from the analytical result
at small I35 can be traced back to small absolute errors that get blown up in the limit
I,s — 0. The very nice agreement of analytical result and G2-corrected data, even
in the regime of very small I,4, indicates that increasing the system size and adding
more data points to the extrapolation procedure should improve the extrapolated
result.

If we assume ¢ to be the elementary charge in a system, where the particles tunnel
independent of each other —and hence the probability for the tunneling of n particles
in a certain time interval complies with Poissonian statistics — the Fano factor for
the particle current fpuq

Jus = Ins/q = s=2S5/¢% andhence fus=jus/s = Fus=q-fas (5.50)

is equal to 1, since in this case, s = jzs. Presuming Poissonian statistics for the
self-dual IRLM, we therefore can extract the elementary charge g = 2e for the low-
voltage limit from Fig. 5.31. If this assumption is justified is another question, which
to decide would afford to compute the full counting statistics of the system.

5.6.4 Beyond the self-dual point

So far we have discussed results for shot noise in the IRLM for Uz = 0 and Ug = 2J,
based on the numerical computation of the time evolution of a finite system, where
we have been able to remove finite size effects by means of analytical reasoning and
by a linear extrapolation to infinite system size. We could check the reliability of
the approach, since for both cases, there are analytic solutions to the problem as
well. We now turn to a situation with values of the interaction Ug different from
before, where we are not aware of any exact analytical method that would provide
results for the finite bias shot noise.

The question wether the current-current correlations S(t,t') decay to zero within
the time interval [tyin, tmax] 18 crucial to the applicability of the approach, as dis-
cussed before. In Fig. 5.32 we show S(¢,¢;,) for a system with M = 88 lattice
sites, at bias voltage Vsp = 0.2J, for two different values of Us = 1.0J, 3.0J. As
argued before, the maximum time that is available for the extraction of the noise
power spectrum is given by tuax — tmin = tr/2 = M /4[h/J], which corresponds to
the time window that is represented in the figure. A system of the given size clearly
ranges at the top limit that can be handled on present days computers, based on
the numerical method we use. The scaling procedure for the linear extrapolation to
infinite system size therefore depends on the availability of reliable numerical data
for systems much smaller than the given 88 lattice sites. As can be concluded from
the left panel in Fig. 5.32, this restriction will not pose a big problem to the extrac-
tion of the zero-frequency noise in the case of Us = 1J. The correlations S(¢, timin)
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Figure 5.82 Time-dependent current-current correlations in the regime of steady current
for a system with M = 88 lattice sites, and bias voltage Vgp = 0.2J, for two different
values of the interaction Ug. The right panel visualizes the reason why the method fails
for values of the interaction Ug > 2J: the correlations decay more and more slowly,
for growing Uc, rendering the approximation for the low-frequency noise in Eq. (5.40)
inaccurate — especially when including results for systems with only M ~ 50 lattice sites
for the extrapolation procedure. — The black dashed lines interpolate .S with cubic splines.

rapidly decay to zero, which still holds, if the system size is reduced to, say, M = 48
lattice sites, for example.

This statement is not true for the case Us = 3.J, see the right panel of the figure.
Even at the upper limit of the time window, there are still finite wiggles to be found,
which is of course much worse, if the system size is reduced to M = 48 lattice sites.
For finite values of the bias voltage above a certain threshold this possibly does
not matter, sice the finite cutoff error then adds to a finite noise value. The same
holds for finite frequency noise for w > wqy, as discussed before; cf. Eq. (5.41). In
contrast, for Vsp — 0 and w — 0, where the shot noise is expected to vanish to 0,
the cutoff error can not be neglected, but even worse, it does not scale linearly with
1/M for systems with a size in the accessible range. For increasing values of the
interaction the correlations decay more and more slowly (not shown here), which is
why we do not include results for shot noise for values of Uz > 2J in this work.

Still, we do include results for Uz = 1.J, where we focus on the low-voltage limit in
order to extract the Fano factor. In Fig. 5.33 we show shot noise for small values of
the bias voltage, where the finite size effects are very strong, in the thermodynamic
limit, after liner extrapolation to 1/M — 0, extracted from numerical data for
systems with M = 48, 64 and 88. On panel (a) we include the back-scattering
current [z, while on panel (b), we represent S as function of Iys. For the bias
voltage Vop — 0, the shot noise vanishes, in compliance with relation (5.16).

Just dividing the numerical data for S and I, leads to very noisy results, since
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Figure 5.33 (a) Back-scattering current Izs and shot noise S as function of the bias voltage
Vsp. The solid lines both are a fit to the given functions. For Is, we fit the parameters
k and v, while for S we only fit the prefactor Fzs. The exponent strongly depends on
the fit range, while Fyq varies on the order of magnitude of 10%. For the given figure,
the fit range was chosen to be Vep = 0...0.7J. (b) Plotting shot noise as function of the
back-scattering current does not give access to the exponent; however, we now have to fit
only one parameter (Fygs), increasing the precision for the Fano factor about one order of
magnitude. — Ugc = 1.0J, M = 48, 64 and 88 lattice sites, Jo = 0.4J. Shot noise S has
been extrapolated to the continuum limit 1/M — 0. The black dashed line interpolates S
with cubic splines.

this approach essentially means dividing zeros. Instead we extract the value for the
Fano factor at zero voltage from a fit to a power law, where we assume for the shot
noise as well as for the back-scattering current

[BS<VSD) ~ '%vslba and S(VSD> ~ FBS : [BS(VSD>' (551)

This ad-hoc assumption is motivated by the fact that in the non-interacting case
as well as at the self-dual point, for the resonant tunneling situation, I35 as well as
S fulfill this precise relations for Vgp — 0, with the exponent v = 3 for Ug = 0
and v = 7 for Us = 2J; cf. also appendix B. However, this approach still is
very unstable. For a varying fit range Vsp = 0. .. Vipax, Vinax € [0.5J,0.9J], the fit
value for Fys varies on the order of 10...15%, while the exponent even fluctuates
by a factor of ~ 2. Alternatively, F,s ~ 1.32e can be extracted from S(/g), cf.
Fig. 5.33 (b), with a much better precision of ~ 1072 Moreover, this representation
reveals the range of values for I,g, where S(Iss) o< I4s, which in turn allows us to
choose V. in order to extract the exponent more reliably. We find v ~ 4...5.

Summary and Outlook

In this chapter, we discussed numerical methods to compute quantities like finite
bias current and shot noise. We therefore used the time-dependent density ma-
trix renormalisation group (DMRG) method, which is capable of simulating the
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time evolution of a quantum mechanical many-particle system in a non-equilibrium
state. To check the reliability of the methods in use, we also applied exact diagonal-
isation (ED) techniques in combination with a single-particle decomposition which
is available for systems with suppressed electron-electron interaction only; on the
other hand, ED is much cheaper than DMRG in terms of computation resources,
which allows us to study much bigger systems.

A severe problem that is related to the numerical methods in use consists in the
finite size of the simulated systems. Since we can not send the system size to infinity
we have to deal with strong finite size effects which interfere with the “bare” result
for the thermodynamic limit. Also, the finite size of the system renders a strictly
steady state impossible; instead one has to seek for a quasi-steady state by looking
for (more or less) time-independent expectation values of the observable of interest
— which is, in our case, the current through the nanostructure — starting from an
initial state that is generated by quenching the system out of equilibrium.

For these reasons, we discussed how to remove finite size effects in the first part
of this chapter in great detail, where we also compared different ways of generating
the initial non-equilibrium state. We showed how to extract finite bias conductance
from a quasi-stationary, oscillating current. The amplitude of the oscillations could
be traced back to the finite size energy gap of the model, while the frequency turned
out to be equivalent to the bias voltage, allowing for an interpretation as Josephson
current. The effects related to the leads being composed of an even or odd number
of lattice sites (even-odd effect), which strongly affect the time-dependent current
particularly at low bias voltage, appear to be connected to the structure of the
single-particle energy levels in the leads. This knowledge could be used to remove
the even-odd effect by adding a potential energy of the order of the finite size gap to
the leads, shifting the levels of the two leads relative to each other. We furthermore
showed how to remove effects due to the density shift in the leads which also results
from the finite size of the system. Finally we discussed results for the differential
and linear conductance of an interacting 7-site structure.

In the following section we investigated the applicability of damped boundary
conditions in order to reduce finite size effects. While frequently used before in
order to enhance the energy resolution at the Fermi level for the computation of
low-energy properties, we analysed the technique for the computation of finite-bias
current-voltage characteristics, where we interpreted the enhanced energy resolution
as an effectively increased system size which allows for a correspondingly longer
period of a steady current.

The most important topic of this chapter was the computation of shot noise at fi-
nite bias. In the last section, we introduced a new way of extracting noise from time
evolution calculations. We thereby could profit from the techniques that had been
used before to extract the finite bias conductance. The presented method is inde-
pendent of the underlying numerical simulation of the time evolution; while for the
treatment of the non-interacting RLM we applied exact diagonalisation techniques,
the results for the IRLM have been obtained using the time-dependent DMRG.
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However, the results for the low-frequency noise again turned out to be plagued by
strong finite size effects. The availability of analytical results for special situations —
the RLM without interaction and the IRLM at its self-dual point — provided a great
service in analysing the nature of the finite size effects. In the zero frequency regime,
we could show that the finite size error scales G*-dependent, with the differential
conductance G. For sufficiently large systems we furthermore found the error to
scale proportional to the inverse system size, which finally allowed to remove the
finite size error by means of a linear extrapolation to infinite system size. Based on
this finite size analysis we were able to obtain numerical results which correnspond
very nicely to the analytic results for the non-interacting case as well as for the IRLM
in the self-dual point, where analytical solutions based on the thermodynamic Bethe
ansatz have been presented in [85]. Moreover we have been providing results for the
shot noise in a regime of the interaction where we are not aware of exact analytic
methods to treat the problem. Most strikingly our results show an enhancement of
the back scattered Fano factor due to interaction effects.

Finally we also explored the limitations of the method. Increasing the interac-
tion beyond the self-dual point leads to a growth of time-dependent current-current
correlations, which enforces us to increase the size of the simulated system. The
presently available computing resources — in terms of computing time and in terms
of memory — prevented us doing so. Therefore the application of this approach on
situations with slowly decaying correlations is left for future research.

The results presented for the shot noise have been obtained by a time evolution
simulation, with a subsequent Fourier transform to the frequency space. Alterna-
tively, we can also imagine to apply a combined approach of time evolution simula-
tion in order to obtain a steady current as an initial state, and then to obtain the
noise power spectrum by means of a polynomial expansion for a resolvent expression
as outlined in the summary of chapter 4 for non-equilibrium Green’s funcions. This
would provide access to a different method for the treatment of finite size errors,
based on finite convergence generating factors, as discussed in chapter 4.

Despite its limitations, the method of real-time evolution based on the time-
dependent DMRG has been successfully applied to a number of problems, including
the extraction of finite-bias current-voltage characteristics for various models, and
now shot noise in the interacting resonant level model. This evolution suggests as
a next step to extend the method to higher order correlations, or even to the full
counting statistics. First efforts in this direction are encouraging.
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Conclusions

The aim of the present work was to investigate numerical methods suitable for
the computation of transport properties for the electron transport in interacting
nanostructures. A method which is capable of handling the full many-particle wave
function, even for non-equilibrium situations, is the density matrix renormalisation
group (DMRG) approach. It is based on a sophisticated projection scheme in com-
bination with the iterative increase of the system size and therefore allows for the
treatment of systems which are not accessible by exact diagonalisation. For our con-
siderations, the DMRG therefore can be considered the “backbone” of the numerical
simulations.

On top of this, we developed an expansion scheme based on Chebyshev polyno-
mials, which allows to evaluate Green’s functions. Here, we applied this scheme to
obtain the single particle spectrum of the interacting resonant level model (IRLM).
In contrast to the correction vector method, this expansion does not show any con-
vergence problems and allows to extract the full frequency dependency of the Green’s
function from a single set of numerical data. Furthermore, the explicit inclusion of
a broadening factor allows for a reliable extrapolation to the thermodynamic limit
from data of finite systems. For the present problem, we could show that the method
yields results in good agreement with analytic calculations for the free fermion case.
Furthermore we obtained results for finite values of the interaction. This method
is very general and can be applied to any model that is treatable by DMRG. The
main restriction consists in the fact, that the expansion order grows linearly with
the desired energy resolution, which makes the method inappropriate for resolving
narrow structures in the spectrum.

For the computation of the current-voltage characteristics and finite-bias shot
noise in the IRLM, we applied the time-dependent DMRG approach, which is capa-
ble of simulating the time evolution of a quantum mechanical many-particle system
in a non-equilibrium state. We introduced a new way of extracting noise from time
evolution calculations. Similar to the finite size effects for the time-dependent cur-
rent, we found the shot noise to be strongly affected by finite size effects. The
availability of analytical results for special situations — the RLM without interac-
tion and the IRLM at its self-dual point — provided a great service in analysing the
nature of the finite size effects. In the zero frequency regime, we could show that
the finite size error scales G?-dependent, with the differential conductance G. For
sufficiently large systems we furthermore found the error to scale proportional to the
inverse system size, with a voltage-independent scale factor, which finally allowed
to remove the finite size error by means of a linear extrapolation to infinite system
size. Based on this finite size analysis we were able to obtain numerical results
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which correnspond very nicely to the analytic results for the non-interacting case as
well as for the IRLM at the self-dual point, where analytical solutions based on the
thermodynamic Bethe ansatz have been presented in [85]. Moreover we have been
providing results for the shot noise in a regime of the interaction where we are not
aware of exact analytic methods to treat the problem. Most strikingly our results
show an enhancement of the back scattered Fano factor due to interaction effects.
At the self-dual point of the model, the Fano factor approaches a value of 2 electron
charges.
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Appendix A

| evel Discretisation Effects

The single particle levels ¢ of an uncoupled, noninteracting tight-binding lead with
M, sites (« = L, R)

Mo—1
f{a =—J Z (éiz,xéa,anl + éiz,:v+1éa7$> (Al)
r=1
are given by
g; = —2Jcos[rj/(My + 1)] = —2J cos k;, (A.2)

j=1,..., M,, see Fig. A.1. The energy of a particle residing on a decoupled single
dot structure (Jo = 0) R
Hq =V, cle, (A.3)

is simply given by the gate voltage eq = Vj, which is at the Fermi edge for V, = 0.!
For an equal number of sites on both leads (as for example oMgo, Fig. A.2(a) or
eMsge, Fig. A.2(c)) there is a twofold degeneracy of the single particle lead levels
which does not exist if My, = Mg + 1, Fig. A.2(b). In the degenerate case, single
particle eigenfunctions can be constructed with a fully delocalized particle density

'For a decoupled Ms-dot structure one gets eq,; = —2Jscos[rj/(Ms + 1))+ Vg, 5 =1,..., Ms.

2% (a) M =12

t(b) M =13

k) [J]

single particle energy &(

Figure A.1 Single particle energy levels of 1D tight binding chains. For an even number
of lattice sites (a), there are two discrete levels at energies ¢ = +Ae/2, but there is no
level at € = 0, in contrast to a situation with an odd number of lattice sites (b).
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Figure A.2 Degeneracy of single particle energy levels of a single dot coupled to two leads
with different configurations

while for M, = Mg 4+ 1, the density profile of the single particle wave functions
shows an alternating confinement of the particle on either the left or the right lead.
The same holds true for the energy levels of the structure: if degenerate with a lead
level, the single particle wave function can be distributed over the whole lead while
it is localized on the structure otherwise. Therefore, in the ele case, the single-dot
level is not degenerate with the lead levels when ¢ = 0. As a result, a single particle
occupying the dot level generates a sharp peak in the density profile (as well as the
spin profile). For the olo case on the other hand, both leads have one energy level
in the middle of the band, which together with the dot level generates a threefold
degeneracy. For finite coupling Jo > 0,

H = Hy+ H, Hy = Hy, + Hg + H,y, (A.4)
Hy = —Jo(eheyy + éleg, + Hae), (A.5)

the degeneracy of the lead levels and of the levels of the structure with the lead levels
gets lifted. The single particle wave functions must be divided equally on both leads,
when Mj, = Mg, while the alternating confinement is preserved for My, = Mg + 1.
Concerning the energy level of the dot, the threefold degeneracy in the uncoupled
olo case results in two levels with strong localization on the dot, one lifted above the
Fermi edge and one pushed below, and a third level with vanishing particle density
on the dot, remaining on the Fermi edge (Fig. A.2(a)).

Perturbation Theory for a Structure coupled to 1D Tight Binding Leads This
can be demonstrated by calculating the single particle energy levels at the Fermi
edge as well as the corresponding wave functions for finite coupling J¢ using first
order perturbation theory. Starting from the unperturbed system with Jo = 0, the
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single particle wave functions read (o = L, R ; M}, = Mg odd)

Ma

« = ! sin(kx)él = ¢l
o, k) \/MZ (kx)ell), |d) = ¢il).

r=1

For Vy, = 0 and k = /2, the perturbation H, can be diagonalized using

and the first order correction of the energy levels reads

. J 3
ey = (1 S, ) = = (s )+ ) s 5)
_ _JCQCOS(WT/ZL)
w/2

|y,—):—(sm( )L, >+s1n( )|d>+sm( )\R >), ved{l,?2,

3},

(A7)

(A.8)

with normalisation N = (M, +1)/2. We find Aey = —Jc\/2/Nzj2 = —Aes, as
well as Aes = 0. In addition, Eq. (A.7) shows that the wave function |v = 2,7/2) is
suppressed on the dot while it is strongly concentrated there for v =1 or v = 3.
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Analytic Results for Current and
Shot Noise

B.1 Non-Interacting models

The Landauer-Biittiker method [19-21,119] can be used to obtain the finite bias
conductance and shot noise for the current through a mesoscopic region, if the
interaction of the constituent particles can be neglected. From the knowledge of
the transmission amplitude of an incoming particle, that is scattered from one lead
through the mesoscopic region into the other lead (cf. Fig. B.1), the transmission
probability can be computed, which then allows the computation of current and shot
noise by means of integration over the occupied states. In chapter 5 we make use of
this analytic approach to check the reliability of the numerical methods we use in
the case of the resonant level model as well as in the case of a model with a two-dot
structure, coupled to two 1D leads. We therefore provide the analytic expressions
that have been used there.

The basic idea is to make an ansatz for a scattering state, which is assumed to
be an eigen-state of the Hamiltonian of the system. This state has several unknown
parameters, to be precise, the reflection amplitude r, the transmission amplitude ¢
as well as several contributions of the degerees of freedom of the structure. The free
parameters then have to be fixed by means of the eigen-state assumption.

The resulting transmission probability 7' = |¢|* then has to be plugged into the

nanostructure

left Lead € right Lead

Figure B.1 Scattering states and Landauer—Biittiker formula. We assume that for the
transport through a mon-interacting mesoscopic structure coupled to two 1D leads, the
transport properties of the system can be obtained using scattering states. Incoming
particles are represented as plain waves, which are reflected back as a plain wave with
amplitude r, and transmitted to the other lead with amplitude ¢.
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Landauer-Biittiker formulas for single-channel current [ and zero-frequency shot
noise S. Since we always consider zero-temperature transport for a model with
cosine dispersion €, = —2.J cos k, where we assume half filling = kp = 7/2, ep = 0,
it is reasonable to introduce the source-drain voltage Vsp symmetrically around the
structure. The expressions for current and shot noise then read

VSD/2 ) VSD/2
2
I(Ven) = 7 / 4=T(E) and  S(Vap) = - / de [1 - T()T(). (B.A)
*VSD/2 *VSD/2

For details on the derivation see, for example, Ref. [119]. The differential conduc-
tance G can be obtained from I(Vsp) by

oI (Vep) €

ey 25 L (Ven/2) +T(=Vn/2)]. (B.2)

Resonant Level Model The ansatz scattering-state for the resonant level model
with 1D leads looks as follows. Since there is only one level on the structure, we
need only one parameter d to represent the dot level (z = 0). The reflection of the
particle back to the “incoming” lead (z = —oo...— 1) is represented by r, while the
transmission to the “outgoing” lead (z = 1...00) is represented by ¢. Then

—1 00
=" (@ re el 4 del +1) el (B.3)

r=—00 r=1

The Hamiltonian for the resonant level model without interaction is given by

e}
Huon = —J Y (@t e, + e, +el, 18,) + Veng
=1

— Jo(@e, +éle, +ele  +e ) (B.4)

which can be obtained from (2.15) by setting Uz = 0. The energy of the system is
increased by ¢, by adding a particle éL, therefore

[Hrin, €] = ). (B.5)

This relation generates a set of equations for the unknown parameters ¢y, d, r and
t, which can be used to obtain the dispersion relation

e = —2J cosk (B.6)

and the transmission amplitude

2isin k
t= — B.7
(ex — Vg)J/J% + 2elk (B.7)
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B.1 Non-Interacting models

as well as the transmission probability

4J* — &2

T = = C TP =D -V i =2

(B.8)

The evaluation of Eq. (B.1), for the resonant case with the gate voltage set to zero
Vg = 0, finally leads to (nc = Jc/J, vsp = Vsp/J)

¢ V1= 212
I(Vsp) = (oS 4(1 — n2)*arctan UsbV © — 2lc | n2/1 — 2n2 - vsp
23 C 4 2 C C
Vv1—2ng "c
(B.9)

S(VSD):£<1+ L ){ ¢ [1+3 s }x

L—=2ng/ | \/1—2n2 1— 22

X arctan USD— V1_2n(23 — 1 _'_ 377%/(1 — 2?7%) _'_ U%D/S (B 10)
2 SD 2 1122 [ '
4ng 1+ (vspy/1 — ng/4n¢)

In the limit of small bias voltage, the expansion with respect to Vsp yields

S(Vsp) o< V. (B.11)

For finite values of V, the corresponding expressions become quite complicated. On
the other hand, Eq. (B.1) can be computed by numerical integration. We therefore
contend ourselves by giving the above results for the on-resonance situation.

Remarks on the connection to the equilibrium single-particle spectral function
of the dot In chapter 4, we compute the single-particle spectral function of the
dot numerically. Here, we provide an analytic expression for the spectral function
of the noninteracting RLM for comparison.

For symmetric coupling J¢ to the left and the right lead, the retarded Green’s
function G" can be related to the transmission probability [35] as

Here, I'(ex) = 2mp(er)V,. V)5, where p is the density of states in the tight-binding

chain with cosine dispersion, p(e;,) = (Jsink)™!, and V}, is the coupling of the dot
level to the momentum modes in the semi-infinite chains, V, = —Jcsink//m. Then

(B.13)

oo = L) Tl J
Alew) = =26 () = Try = mem k272
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Appendix B Analytic Results for Current and Shot Noise

Structure with two lattice sites For the system with Mg = 2 lattice sites on the

structure, we provide the transmission probability 7'(¢). The Hamiltonian is given
by

o0
Hpp = —J Y (el +ele,+eé,e ,  +é, e,
r=1
— Jo(Ehpey + eléon + ebpe g + el yég) — Js(Eéon + Ehpéoy)  (B.14)

For simplicity we do not include a gate voltage. Here, we denote the coupling of the
two lattice sites on the structure Js, as well as the coupling of the structure to the
leads Jc. The ansatz scattering states read

-1 00
=) (@ 4 re ™)l duely, + dréfy +t ) e*el. (B.15)
T=—00 r=1
The procedure outlined before yields the dispersion relation ¢, = —2.J cos k again,

the transmission probability reads (nc = Jo/J, ns = Js/J)

nsne(4 —ex/J?) Sk (q T 2 N0, Ek
o BT g By e g e

B.2 Wide-band limit and the self-dual point of the
IRLM

In [56, 85|, E. Boulat and H. Saleur provided analytic results for current and shot
noise for the self-dual IRLM in the wide-band limit, based on a continuum field-
theoretic description of the model,

H= o+, Ho=—i 3 / dz O ()90 (@), (B.17)

a=L,R 7 _
iy v{ [04.(0) + P4 (0)] d + d! [41.(0) + G (0)] }
F U 0)8(0) : + 2 9 (0)dbR(0) : ](dTd —1/2),  (B.18)

with symmetric coupling v and the dot level d on resonance (the contribution ngTd
vanishes). In this continuum description, the self-dual point corresponds to a value
of U = m. At temperature T = 0, the current-voltage characteristics then is given
as [56]

e N CO

oo ( - R
1 = f B.1
0o(Vsp) = Vsp nEO IVr nTB(n + 1/2) Sh or Vgp < e~ (B.19)

(D™ T +n/4) oo S
[O(VSD) = VSD Zl 4ﬁ n'F[3/2 — 371/4] VSD / for VSD > eA, (BQO)
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B.3 Low-frequency shot noise in the ground state

with e® = v/3/4%/% and the natural expansion variable

7 I'(1/6) Vsp
= . B.21
S0 4 /ml(2/3) T, (B.21)
Furthermore, the shot noise is related to the current as [85]
1 01y (Vs
S(Vsp) = 7 |1o(Vsp) — Vsp - h(Vsn)7 (B.22)
3 9Vsp

Ty, is a scale. Note, that I,/T}, as well as S/T;, depends on Vsp only. Matching the
numerical results presented in section 5.6.1 on the analytic results therefore requires

a single rescaling of Iy and Vsp. The low-voltage expansion of the shot-noise can be
deduced from Eqns. (B.19) and (B.22) and fulfills

S(Vsp) o< V. (B.23)

Frequency-dependent noise for Uz = 0 Furthermore, the frequency-dependent
shot noise for the non-interacting RLM has been provided by E. Boulat and H.
Saleur in the wide-band limit in [84]. Tt reads

S(w,Vsp, Ty) = %@(VSD — |w|){ [arctan (‘;ﬁf) + arctan (VSD%BZ“”)]

Ty Vs 2 Voap — 2
+ —{ arctan <M) — arctan (M>}

4 TB TB
T T? — 2|wl)?

+—ln< n (Voo — 2lw)) )} (B.24)
2w TB2 + VSD

where the scale is now given by Ty, = 4J2&/J, for Jo < J.

B.3 Low-frequency shot noise in the ground state

The noise power spectrum S(w) is defined by the Fourier transform of the current-
current correlations, cf. Eq. (5.13). We now assume that the expectation value ()
is obtained for the ground state |¥g) of the system.! Based on general arguments
we now show that in this case,

S(w =0) = 0. (B.25)

In order to prove this relation, we first of all want to note that in the ground state,
there is no current flow (Wy|/|¥y) = 0, which implies Al = I. Starting from

IFor the ground state energy Fy being degenerate, we randomly choose a state that holds H |[To) =
Eo|Wo).
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Eq. (5.13), we then find

S(w™) = 2Re [ dt e (W] [i(t)i(@) + f(())f(t)} W)

— 9Re [ dt et <\I]0|f|:ei(E0—ﬁ)t/h I efi(EofI:I)t/h]f‘\I,@

/
/

1 1
= + =
(Bo— H)/h+wt  —(By— H)/h+wt

= 2T (¥ 1 |iwe),  (B.26)

where w™ contains a convergence generating factor, Imw®™ = n — 0%. To proceed,
we insert a complete basis of eigenstates {|V,)} of the Hamiltonian of the system,
with energy E,|V,) = H|V,). The above expression then translates to

1 1
(Bo— E))/h+wt  (Ey— Ey,)/h—wt

—2m Y (W19, (0, | |i1we). (B27)

where the dashed symbol for the sum 3" indicates, that we ezclude the (degenerate)
ground state from the sum. This is allowed for the following reason: we are free to
choose the basis {|¥,,)} in such a way that the current operator I is diagonal in the
subspace of the degenerate ground state. For E, = Ej then (Uo|I|¥,) = 0. The
remaining contributions then fulfill A, = (Ey — E,)/h # 0, leading to

1 1 A tw—in A, —w+in
Ap+wt Ap—wt (A H+w)?2En? (A, —w)? 2
w—> _2 —
w20 A 200 oris(A,). (B.28)

A2 +n?

Since we excluded the (degenerate) ground state, the sum vanishes identically, prov-
ing the relation (B.25).
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