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1 Introduction

The quantum theory of magnetism with its richness of related phenomena has always
been a fascinating subject in condensed matter physics. Starting from the microscopic
picture of localized magnetic moments arranged in some kind of lattice, a lot of inter-
esting physics emanates from correlation effects mediated by the interaction. In this
context, a fundamental and extensively studied system is the Heisenberg model, de-
scribing isotropic two-body exchange interactions between moments on nearest neighbor
sites (or, in its generalized version also between sites being further apart). Despite the
simplifying assumption that only the spin degree of freedom is relevant while the charge
is frozen, the physics contained in the family of Heisenberg models is of enormous va-
riety and opens the door to a wide range of applications as described below. The most
interesting situation is encountered in the extreme quantum limit where the magnetic
moments carry spin-1/2 and, moreover, in the case of antiferromagnetic interactions
since such systems are strongly affected by quantum fluctuations at low temperatures,
giving rise to exotic quantum states. Together with the effect of frustration in the form
of competing spin interactions this is the general setup for the investigations in this
thesis.

While Heisenberg models have often been in the focus of condensed matter theory, par-
tially in very different contexts, the motivation for studying these systems has changed
considerably during the past decades. Proposed in 1928 by Heisenberg [55] and Dirac
the exchange interaction represented a new mechanism to describe the correlations in
ferromagnetic materials, which was not possible on the basis of magnetic dipole-dipole
interactions as they are several magnitudes too small to explain the observed Curie
temperatures. Although the Heisenberg model is not directly applicable to itinerant
ferromagnets like Fe, Co, Ni, the underlying idea of exchange interactions proved to be
correct. In fact, in the early 60’s some magnetic, isolating rare earth and transition-metal
compounds such as EuO [77] and RbMnF3 [133] turned out to be perfect realizations of
the nearest-neighbor Heisenberg model.

After the discovery of high-Tc superconductivity in 1986 [17, 37] the Heisenberg model
gained renewed interest. The two-dimensional CuO-planes, which represent a typical
feature of all cuprate superconductors, are in fact well described by a nearest-neighbor
spin-1/2 Heisenberg model explaining the antiferromagnetic state of the undoped parent
compound. When a small concentration of holes is doped into the CuO-planes, mag-
netic order is rapidly destroyed, giving way to a non-magnetic pseudo-gap state and,
upon further doping, to superconductivity [68, 134]. Early theories on high-Tc supercon-
ductivity have been strongly influenced by the physics of pure spin models: Anderson
proposed that a non-magnetic resonating valence-bond (RVB) state, which has first been
introduced in the context of two-dimensional antiferromagnetic Heisenberg models [8],
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1 Introduction

forms the fundamental basis on which the theory of high-Tc superconductivity should
be built [9]. It is argued that there is a direct correspondence between the singlet pairs
of the insulating state and the charged superconducting pairs when the insulator is suf-
ficiently doped. Although this idea has been considered by many authors since then,
there is no conclusive answer to the question of the role of a spin liquid state for high-Tc

superconductivity. Today, there is at least general agreement that the physics behind
the phase diagram of the cuprates is the physics of the doping of a Mott insulator which
is believed to be captured by the t-J model. The latter in turn reduces to the Heisenberg
model at half filling.

These early studies have raised the question, however, under which conditions quan-
tum fluctuations are strong enough to destroy long-range order in Heisenberg systems.
Thermal fluctuations are important as well, especially since they suppress long-range
order in two dimensions at any finite temperature, but their role is relatively well un-
derstood. By contrast, quantum fluctuations operate in a much more complex way:
They may suppress long-range order, but may at the same time lead to novel ground
states known under the labels “spin liquid” (as the aforementioned RVB state) and
“valence-bond solid” (VBS). The time after the discovery of high-Tc superconductiv-
ity was characterized by a huge number of studies on many different two-dimensional
Heisenberg-like systems, some of which are also investigated in this thesis. Frustration
effects, either by competing spin interactions or due to special geometric arrangements
have always been of particular interest, especially as it turned out that upon tuning
the interactions or the lattice anisotropy many systems may be driven into a phase
without magnetic long-range order. Very often, such discoveries came along with new
methodological developments of both, analytical and numerical type. Nevertheless, the
adequate treatment of spin systems in the thermodynamic limit remains a complicated
task such that until now each approach suffers from some kind of drawback. Especially
the identification of the nature of non-magnetic phases turned out to be very challeng-
ing: While for some systems a valence-bond solid ground state, i.e., a state with hidden
long-range order in the form of some type of dimerization, is clearly favored [48, 74, 84],
a disordered spin liquid has not yet been detected in a completely unbiased way.

In the 90’s, accompanied by the progress in the understanding of Heisenberg models,
also the theory of quantum phase-transitions has experienced renewed interest [104].
Even more recently, the notion of “deconfined quantum criticality” [110, 111] gained
much attention as a mechanism to explain how two differently ordered phases may
be connected by a continuous phase transition, which would contradict the common
Ginzburg-Landau-Wilson paradigm.

Another fascinating perspective in the context of quantum spin systems concerns
topological quantum computation, which has recently become a new field in condensed
matter theory. By means of two-dimensional excitations called anyons (i.e., particles
which are neither fermions nor bosons) as topologically non-trivial quasiparticles whose
worldlines form a braid, a realization of quantum memory has been proposed which is
protected from decoherence [70]. Although the spin systems that are known to possess
anyonic excitations involve anisotropic spin couplings or even four-body interactions and
are therefore not of Heisenberg type, a related system will also be studied in this thesis,
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1 Introduction

see Section 7.6.
From our viewpoint there are several reasons to study Heisenberg models: As many

aspects of our approach presented in this thesis are associated with new developments, a
first motivation is of purely methodological type. Secondly, as the next step, we like to
contribute to the search for novel non-magnetic ground states in highly frustrated spin
models, which has been a long-standing problem for so many years. Finally, in order to
make contact to actual experiments we aim to investigate models for materials which
are of current interest (see Sections 7.3, 7.4 and 7.6).

In this thesis we develop new analytical and numerical methods for calculating ground-
state properties of a large class of spin models on the basis of infinite resummations of
perturbation theory in the couplings. To this end we use a representation of the spin
operators in terms of pseudo fermions [1]. One motivation for using a fermionic represen-
tation rather than a bosonic representation is the available experience in describing spin
liquids or dimerized spin-singlet states with fermions, mainly within large-N and mean-
field approaches (see e.g. Refs. [3, 10, 22, 101]). On the other hand, pseudo-fermion
representations have hardly been used to study magnetic ordering phenomena [61]. Al-
though a large body of results of numerical studies of these models is available, analytical
approaches starting from a microscopic Hamiltonian are rare. We use a newly developed
implementation of the functional renormalization group (FRG) method [67, 107] applied
to interacting quantum spin models. Auxiliary particle representations of spin operators
are sometimes viewed with suspicion, as they are conceived to be fraught with uncon-
trolled approximations regarding the projection unto the physical sector of the Hilbert
space necessary in those spin representations. Here we are using an exact method of
projection onto the physical part of Hilbert space that works even on the lattice.

Applying our method to frustrated spin systems, we show that the FRG based on
pseudo fermions is capable of giving results in very good agreement with results obtained
mainly by purely numerical means. Furthermore, we demonstrate that the approach is
able to (i) treat large system sizes of O(200) sites, (ii) is applicable to arbitrary frustrated
lattice geometries and two-body bare interactions, (iii) naturally allows to compute the
magnetic susceptibility as the canonical outcome of the RG, and (iv) hence provides an
unbiased calculation from first principles that allows comparison to experiment.

This thesis is organized in the following way: Chapter 2 introduces the J1-J2 Heisen-
berg model which provides a suitable testing ground for various approximation schemes
applied in the subsequent chapters. The auxiliary-fermion representation and the pro-
jection schemes onto the physical Hilbert space are presented in Chapter 3. Simple
mean-field approximations are discussed in Chapter 4 where we demonstrate that these
approaches are not able to capture frustration effects but rather reproduce classical re-
sults. To this end in Chapter 5, we introduce a phenomenological pseudo-particle
lifetime that mimics quantum fluctuations. The results on the magnetization, suscepti-
bility, dynamical spin-structure factor and spatial spin correlations show that in a certain
parameter range for this lifetime, the correct phase diagram is obtained.

After these preliminary considerations the main methodological part of the thesis,
given by Chapter 6, is devoted to FRG. This method enables us to calculate the auxil-
iary particle damping rather than treating it as an input of the approximation. To start
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1 Introduction

with, we give a brief review of the FRG approach in general, especially its derivation
in the Feynman path integral formalism. Thereafter, in Section 6.2, the FRG imple-
mentation specific to Heisenberg spin systems is presented. All new developments that
are required to describe spin systems within FRG are contained in this section. After a
brief discussion of static FRG schemes in Section 6.3, the non-trivial issue of how the
hierarchy of FRG equations should be truncated is discussed in the next two sections:
In Section 6.4 it turns out that within a pure one-loop formulation, quantum fluctu-
ations are not sufficiently accounted for, such that on application to the J1-J2 model
the expected non-magnetic intermediate phase is not found. We trace this deficiency of
the one-loop approximation to the neglect of higher order contributions, with the conse-
quence that not even the dressed RPA scheme is reproduced. As shown by Katanin [67]
the latter problem may be remedied by using a modified single-scale propagator, thus
including certain three-particle correlations with non-overlapping loops. Section 6.5
demonstrates that upon using the Katanin truncation scheme we find a phase diagram
in good agreement with results from numerical methods. The chapter closes with the
discussion of a scheme that allows to estimate dimer fluctuations in paramagnetic phases,
see Section 6.6.

Subsequent to Chapter 6, which has been mainly devoted to technical issues, Chap-
ter 7 presents the FRG results for further spin systems. We demonstrate that the
FRG with pseudo fermions in conjunction with the Katanin truncation is not only
capable to describe the J1-J2 model but also gives correct results for more compli-
cated systems like the J1-J2-J3 square lattice model (Section 7.1), the Heisenberg model
on a checkerboard- (Section 7.2), anisotropic triangular- (Section 7.3), Kagome- (Sec-
tion 7.4) and honeycomb-lattice (Section 7.5) and finally the Kitaev-Heisenberg model
(Section 7.6).

The next three chapters briefly present certain extensions of the FRG approach as
it has been applied so far: In Chapter 8 we modify the FRG such that SU(2) broken
flows under the influence of external magnetic fields may be studied. On a pure mean-
field level our results are in agreement with the general notion of symmetry breaking or
linear response, see Section 8.2. While symmetry breaking by small magnetic fields is
also well described within the full FRG scheme, the unbiased detection of non-magnetic
phases turns out to be rather difficult on the basis of that approach. The FRG at finite
temperatures is discussed in Chapter 9 where we show that well controlled calculations
can be performed at least at high enough temperatures. Since that approach allows
us to measure the fulfillment of the pseudo-fermion constraint directly, we obtain the
important result that the average projection used within our zero-temperature FRG
scheme has been justified, see Section 9.2. Chapter 10 contains a discussion on zero-
and one-dimensional spin systems. There we illustrate that due to an overestimation of
magnetic order in lower dimensions our method is most suitable for 2D spin systems.
Finally, in the concluding Chapter 11 our results are collected.
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2 The J1-J2 Heisenberg Model

A prototype for a frustrated spin system is the antiferromagnetic spin-1/2 J1-J2-Heisen-
berg model on a two-dimensional square lattice. This model, in the following briefly
called J1-J2 model, has been extensively studied for more than 20 years in order to
understand the effect of competing spin interactions. In addition to the nearest neighbor
interaction J1, this model features a next nearest-neighbor interaction J2, such that the
Hamiltonian of the system is given by

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj . (2.1)

Here the first term denotes a sum over all nearest-neighbor sites i, j and the second term
is a sum over all next nearest-neighbor pairs i, j of the underlying two-dimensional square
lattice, see Fig. 2.1. Since we are interested in the antiferromagnetic model only, both
coupling constants are assumed to be positive, J1, J2 > 0. The only tuning parameter
of the model is the ratio of these interactions which we define as g = J2

J1
. There are

still plenty of open questions concerning the ground-state phases and the corresponding
phase transitions.

We begin the discussion of the ground-state properties in the classical large spin limit
(S → ∞), i.e., we consider the variables Si as (classical) vectors with a fixed length. The
phase diagram is then easily determined: For J2 = 0, J1 > 0 the spins are Néel-ordered
(↑↓↑↓) which is energetically favored up to g = 0.5. However, in the opposite limit
J1 = 0, J2 > 0 (g → ∞) the two sublattices of the square lattice decouple such that
on each sublattice the spins arrange in a Néel pattern. This is the so called collinear
order configuration which ranges down to g = 0.5 where it meets the Néel phase in a
first-order phase transition. As long as we consider the large spin limit, there is still
the freedom to choose the angle between the interpenetrating Néel configurations of the
collinear phase, which results in a large degeneracy of the classical ground state. In
other words, one can rotate the two sublattices against each other. As a consequence of
the classical character, the local magnetic moments in both phases are always given by
their saturation values.

This situation changes when we turn to the spin-1/2 quantum case. The system is now
influenced by quantum fluctuations which govern the relevant physics. It is a long known
fact that for the bare nearest neighbor Heisenberg model (g = 0) quantum fluctuations
reduce the Néel magnetization to about 60% of the saturation value [94]. Due to the
equivalence of the cases g = 0 and g → ∞ the same value for the magnetization also
holds in the latter limit. Early on it has been found by spin-wave calculations, that the
frustration further reduces the magnetic long-range order, especially near the classical
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2 The J1-J2 Heisenberg Model

J1

J2

Figure 2.1: The J1-J2-
Heisenberg model. Dots indi-
cate the spins of the model.

transition point g = 0.5, even leading to a small parameter window without any magnetic
order [36, 45]. Ever since, it has been the subject of a huge number of works using a
variety of different methods to confirm this observation. However, even more than 20
years after the first studies of the J1-J2 model a clear statement about the exact positions
of the transition points as well as a rigorous proof of the existence of this paramagnetic
intermediate phase is still missing. Nevertheless, there is agreement that this phase
approximately exists in a region 0.4 . J1/J2 . 0.65 between the two ordered states [43,
46, 62, 109, 123, 131]. Another quantum effect concerns the collinear phase whose
degeneracy is lifted compared to the classical large-spin limit: Quantum fluctuations
fix the possible angles between the Néel configurations on the two sublattices such that
they are either parallel or antiparallel [35]. Accordingly, the ground state in this phase
is twofold degenerate: The alignment of parallel spins along rows and antiparallel spins
along columns (corresponding to a magnetic wave vector Q = (0, π)) or vice versa
(corresponding to Q = (π, 0)). This reduction of classical degeneracy due to quantum
fluctuation is known as “order from disorder” [57].

Of more physical relevance than the exact positions of the transition points is the
question of the nature of the non-magnetic intermediate phase which turned out to be a
puzzling issue. Already in the early works there was disagreement about this phase either
being a homogeneous spin liquid [36] or some kind of valence-bond solid (VBS) [41, 93].
In the latter case the spins form pairwise singlets which are spontaneously dimerized
and therefore break e.g. lattice translation or lattice rotational symmetry. Also later
when field-theory methods [93, 132], exact diagonalization [28, 30, 74, 46, 109], coupled
cluster method [19, 43], series expansion [50, 123, 125, 131] and quantum Monte Carlo
methods [27, 30] entered the field there was still no concensus about this question. One
group claimed a VBS with a columnar dimerization [50, 123, 125, 131], the other group
found a VBS with a dimerization that takes place on units of 2×2 plaquettes [30, 62, 131,
146], while a spin liquid could still not be ruled out [27, 126]. However the most recent
mainly numerical work [43, 62, 125] clearly favors a VBS over a spin liquid. Evidence for
a VBS has also been found in studies [116, 127] of a model of coupled spin chains [87],
when the results are extrapolated to the isotropic J1-J2 model in the plane.

The question of the order of the quantum phase-transition has also attracted much
attention. By now there seems to be agreement that the transition from the paramag-
netic phase to the collinear configuration is of first order [43, 62, 123, 125, 131]. On
the other hand the properties of the transition from the Néel phase to the paramagnetic
phase are still highly controversial. Recent studies point to either a first order [125] or
a second order transition [43, 62]. The latter scenario is the reason for a renewed in-
terest in the J1-J2 model as it generally raises the question how two differently ordered

6



2 The J1-J2 Heisenberg Model

phases may be connected by a continuous second order phase transition. If one assumes
the non-magnetic phase to be a VBS which breaks rotational or translation symme-
tries but preserves the SU(2) symmetry, then a second-order transition to the Néel state
which breaks the SU(2) and the translation symmetry but preserves the fourfold rotation
symmetry is in contradiction to the usual Ginzburg-Landau-Wilson paradigm of phase
transitions. In this case one would either expect a first-order critical point or a second-
order transition that has to be described in terms of spinons as fractional excitations. As
these spinons become deconfined at the critical point, this scenario is generally known
as “deconfined quantum criticality” [110, 111].

The importance of the J1-J2 model is not only based on the theoretical issues stated
above. It has also some relation to the cuprate superconductors where a small con-
centration of holes doped into the CuO-planes suffices to destroy the antiferromagnetic
long-range order of the undoped system. The J1-J2 model as a simplified system for
doped CuO-planes [60] describes the destruction of Néel order and therefore sheds light
on the general question under which conditions long-range magnetic order may be de-
stroyed.

Recently, this model has also found use for the vanadate compounds Li2VOSiO4 and
Li2VOGeO4 which have been suggested as realizations of the J1-J2 model [32, 78]. For
the former of these materials it is known that the next nearest-neighbor interaction is
rather strong [32], i.e., g ≈ 1. Indeed, experiments [78] reveal a collinear ordered ground
state.

Even more recently the J1-J2 model has been invoked to account for the reduced
magnitude of the ordered moment in the iron pnictides [42, 114, 115]. The undoped
parent compound LaOFeAs described in terms of the J1-J2 model features a parameter
ratio g > 0.5 [114] and correspondingly it has been shown in elastic neutron-scattering
experiments that the system is collinear ordered. The frustration effects in conjunction
with electron or hole doping further suppress the magnetic order and lead to the su-
perconducting phase. The universally observed linear temperature dependence of the
static, uniform magnetic susceptibility of these compounds has also been addressed in
the framework of the J1-J2 model [145].

In summary, the J1-J2 model captures the main effects of competing spin interactions
and at the same time features a relatively rich phase diagram comprising two magnet-
ically ordered phases (Néel and collinear order) separated by a non-magnetic phase.
Furthermore, the latter poses the challenging question of its precise nature. Therefore
we consider the J1-J2 model as a good system to test different approximation schemes
against each other [98]. In Chapter 7, however, we also turn to other frustrated spin
systems.

7



2 The J1-J2 Heisenberg Model

8



3 Auxiliary Fermions

Auxiliary-particle techniques are widely used in the field of spin systems [13]. All ap-
proaches have in common that the spin operators are rewritten in terms of bosons or
fermions which are easier to handle due to their canonical commutation relations. How-
ever, such spin representations are often accompanied with drawbacks of different kinds
as they either require a complicated auxiliary-particle structure or are valid only in con-
junction with particle-number constraints. In this chapter we present a brief overview of
different auxiliary-particle techniques and introduce the Abrikosov pseudo-fermions in
detail, since they form the basis of all approximations for frustrated spin systems in the
following chapters. Furthermore, it is explained how the difficulties mentioned above
are resolved in our approach.

Certainly, the most common auxiliary-particle approach is spin-wave theory [7, 75].
Starting from the bosonic Holstein-Primakov representation of spin operators, the essen-
tial step of approximation is the linearization of the representation which corresponds
to the leading order in a 1/S expansion. Despite the fact that this scheme implements
the large spin limit, spin-1/2 systems are often described surprisingly well on a qualita-
tive level. For magnetically ordered phases this scheme has the advantage that in the
linearized version the bosonic operators describe deviations from a spin-polarized state
and are therefore directly associated to the magnons as the elementary excitations. As
already pointed out, spin-wave theory is able to detect the paramagnetic phase in the
J1-J2 model [36, 45] even though the method has a clear bias towards magnetically
ordered phases.

In order to treat spin systems from the opposite viewpoint of non-magnetic valence-
bond solids the bond-operator method has been developed [105]. Given a specific dimer
covering of the lattice, the spin operators are expressed in terms of bosons which create
(or annihilate) singlet and triplet states on these bonds. The corresponding Hamiltonian
can then be diagonalized e.g. on mean-field level. However, the fact that only one
singlet or triplet state exists on a bond imposes a local particle-number constraint on
the bosons. This approach is particularly valuable for systems where the lattice structure
itself suggests a certain dimer covering, e.g. the bilayer Heisenberg model [143].

Regarding the two-dimensional Hilbert space of a single spin one is tempted to use
fermions for a spin representation. This can be done with a Jordan-Wigner transforma-
tion [138] where a spin-raising operator S+ (spin-lowering operator S−) is identified with
a fermionic creation (annihilation) operator. The problem that these fermions do not
satisfy the correct (bosonic) commutation relation of spin operators on different lattice
sites is resolved by the introduction of an additional phase factor in the spin represen-
tation. This phase in turn requires the existence of an oriented path through the lattice
and therefore the method cannot be straightforwardly extended to systems with dimen-
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3 Auxiliary Fermions

sions higher than one. In this way the Jordan-Wigner transformation demonstrates the
mapping of spin-chain models to spinless fermions in one dimension and hence consti-
tutes an example that within the concept of auxiliary particles also exact calculations
may be performed.

In this thesis we rewrite the spin operators in terms of Abrikosov auxiliary-fermions [1,
23, 24]. This representation requires two fermionic operators f↑ and f↓ for each lattice
site,

Sµ
i =

1

2

∑

αβ

f †
iασ

µ
αβfiβ . (3.1)

Here σµ (µ = x, y, z) are Pauli matrices, α, β =↑, ↓ are spin indices and i is the site
index. Throughout the thesis we use units with ~ = kB ≡ 1. An important advan-
tage of this representation compared e.g. to the Holstein-Primakov description is the
simple quadratic form of (3.1) which allows for the application of Feynman-diagram
techniques [86, 100]. By construction, the representation (3.1) satisfies the correct com-
mutation relation of spin operators,

[Sµ, Sν ] = iǫµνηS
η . (3.2)

However, the introduction of auxiliary fermions comes along with an enlargement of the
Hilbert space: The basis set for a single site is now spanned by four instead of two states.
In second quantization these states are given by,

|0, 0〉 , |0, 1〉 , |1, 0〉 , |1, 1〉 . (3.3)

The numbers denote the occupation numbers of the “up” and “down” fermions, respec-
tively. Applying the operator (3.1) to these states, one can easily show that the singly
occupied states correspond to the usual spin-1/2 |↑〉 and |↓〉 states while empty or doubly
occupied sites are unphysical (they have spin zero, S = 0). Therefore, the representation
(3.1) is valid only in conjunction with the auxiliary-particle constraint

Qi =
∑

α

f †
iαfiα = 1 . (3.4)

A convenient approximate approach is to replace the constraint Qi = 1 by its thermo-
dynamic average, 〈Qi〉 = 1 . For a translation invariant state the latter conditions are
identical at each site, such that only a single condition remains. Since the constraint
amounts to removing two of the four states per site, it is on average equivalent to half-
filling of the system, which in case of particle-hole symmetry is effected by applying a
chemical potential µ = 0 to the pseudo-fermion system.

An exact treatment of Eq. (3.4) is difficult because the constraint requires the fermion
number to be fixed to 1 at each lattice site i individually. A simple projection scheme
can be performed exactly in models like the Anderson impurity and Kondo model [2, 40]
where only a single site carries a spin of the form (3.1). This scheme introduces a
chemical potential λi for the site i. Taking the derivative of a physical observable with
respect to the fugacity and performing the limitation λi → ∞, the contribution in the
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3 Auxiliary Fermions

physical subspace is projected out. However, since this method requires the limitations
λi to be performed for each site independently, it is not applicable for lattice models.

By now the only method to handle the constraint exactly even for lattice systems
has been proposed by Popov and Fedotov [91]. It amounts to applying a homogeneous,
imaginary-valued chemical potential µppv = − iπT

2
, where T is the temperature. Thus,

within this scheme, the Hamiltonian H is replaced by

H −→ Hppv = H − µppv
∑

i

Qi . (3.5)

Note that H denotes the Hamiltonian (2.1) using the representation of spin operators
(3.1). Given a physical operator O (i.e., an arbitrary sum or product of spin operators)
it can be shown (see appendix A) that the expectation value 〈O〉ppv, calculated with
Hppv and the entire Hilbert space, is identical to the physical expectation value 〈O〉,
where the average is performed with the original Hamiltonian H . The projection works
by virtue of a mutual cancellation of the unphysical contributions of the sectors Qi = 0
and Qi = 2, at each site. It should be emphasized that although the Hamiltonian Hppv is
no longer hermitian, the quantity 〈O〉ppv comes out real-valued. If on the other hand O
is unphysical in the sense that it is non-zero in the unphysical sector, e.g., the operator
O = Qi, the expectation value 〈Qi〉ppv is meaningless and one has 〈Qi〉 6= 〈Qi〉ppv.

This approach is applicable to spin models [44, 69] but cannot be extended to cases
away from half filling. Although µppv vanishes in the limit T → 0, in principle, the exact
projection with µ = µppv and the average projection with µ = 0 are not equivalent at
T = 0. This is due to the fact that the computation of an average 〈. . . 〉ppv does not
necessarily commute with the limit T → 0. Nevertheless it can be expected that in
the model considered here both projection schemes are identical at T = 0. This can
be understood with the following argument: Starting from the physical (“true”) ground
state, a fluctuation of the pseudo-fermion number results in two sites with unphysical
occupation numbers, one with no and one with two fermions. Since these sites carry
spin zero the sector of the Hamiltonian with that occupation is identical to the physical
Hamiltonian where the two sites are effectively missing. Thus a fluctuation from the
ground state into this sector costs the binding energy of the two sites which is of the
order of the exchange coupling, even in the case of strong frustration. Negative binding
energies are a generic property of spin systems since the ground state energy per site
found in numerical studies is always negative (for the J1-J2 model see e.g. Refs. [43,
62, 123, 125, 146]). Consequently, at T = 0 pseudo-fermion number fluctuations are not
allowed and it is sufficient to use the simpler average projection with µ = 0. In most
calculations we restrict ourself to this method. However, we again emphasize that at
T > 0 both schemes will certainly differ.

Since the discovery of high-Tc superconductivity in 1986 [17, 37] the pseudo-fermion
representation (3.1) has been extensively used mainly to study spin liquids or dimerized
spin-singlet states in the t-J model within large N and mean-field approaches [3, 10, 16,
22, 76, 101, 135]. A special focus has been on the interplay between different ordered
phases corresponding to different types of order parameters and mean-field decouplings
of the Hamiltonian. Such mean-field amplitudes are given by the expectation values

11



3 Auxiliary Fermions

〈f †
iαfjα〉 and 〈fi↑fj↓〉 where the first gives rise to the so called resonating valence bond [9]

(RVB) or flux phase [3, 76, 135] while the latter leads to d-wave paired states [102, 135]
and to superconductivity. These works aimed to understand to role of a spin-liquid in
high-Tc superconductors at small doping. In contrast the pseudo-fermion representation
has hardly been used to study magnetic ordering phenomena [61]. Unlike linear spin-
wave approaches the pseudo fermions appear quadratic in (3.1) and therefore they are
not directly associated with magnons as the elementary excitations in magnetic phases.
Thus, it is a priori not clear how magnetic order may be detected with pseudo fermions
in general. However, in recent years some experience concerning this issue has been
obtained [23, 24]. In this thesis we aim to describe both, the ordering tendencies which
are generally present in Heisenberg models as well as disorder effects which we generate
through frustrating interactions.

The spin representation (3.1) also holds if the fermions are replaced by bosons (so
called Schwinger bosons [12, 14]). One motivation for using the fermionic description
rather than the bosonic representation is the aforementioned experience in describing
spin liquids. Additionally, for a bosonic scheme the physical subspace forms a smaller
sector of the total Hilbert space making the fulfillment of the constraint more compli-
cated.

In the following we will formulate approximations in terms of resummed perturbation
theory in the exchange couplings J1, J2 . The basic building blocks are the four-fermion
interactions and the bare fermion Green’s function in real space. Inserting the spin
representation (3.1) into a Heisenberg Hamiltonian such as Eq. (2.1), a Hamiltonian
quartic in the fermions is obtained. Due to the absence of quadratic terms, the bare
Green’s function in real space is given by

G0
ij,αβ(iω) =

1

iω + µ
δijδαβ , µ = −iπT

2
or µ = 0 . (3.6)

without any self-energy contributions in the denominator. ω = (2n + 1)πT are the
fermionic Matsubara-frequencies. Note that in diagrammatic expansions the Green’s
functions remain strictly local, i.e., Gij,αβ = δijGi,αβ. The momentum dependence in
correlators like the susceptibility is generated by the non-local exchange couplings.

In the next chapter we start with simple calculations on a mean-field level in order to
demonstrate how in general magnetic long-range order is described within our pseudo-
fermion representation.
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4 Mean-Field Theory

4.1 Hartree Approximation

The most elementary approximation for a spin model is mean-field theory on the basis
of spin operators. In our fermionic description it corresponds to the Hartree approxi-
mation shown in Fig. 4.1. The closed loop of the renormalized propagator represents
the local magnetic moment which is proportional to the mean field, i.e., the Hartree
self-energy. This self energy renormalizes the propagator which in turn feeds back to the
local magnetic moment and thereby closes the self consistency.

Note that the Fock term is exactly zero, since the non-local exchange coupling con-
nects two points of the same fermion line. The auxiliary-particle constraint forbids such
terms because it assures that the fermion lines are local. Dropping the requirement
of exact projection, one may allow for fermion hopping and make a mean-field ansatz
with a non-vanishing Fock self-energy and non-local propagators. The corresponding
symmetry-broken phase is the so called resonating valence bond (RVB) [9] or the flux
phase [3, 76, 135] and the mean-field amplitude is given by the expectation value 〈f †

iαfjα〉
already mentioned in Chapter 3. In principle one might also set up an approximation
scheme using the pairing amplitude 〈fi↑fj↓〉 as mean-field parameter. This leads to su-
perconducting d-wave paired states of the fermions [102, 135] and requires anomalous
Green’s functions in a diagrammatic treatment. In the undoped case considered here it
can be shown that both mean-field schemes are equivalent due to particle-hole symme-
try [4]. As already pointed out above, in the framework of Heisenberg systems, the flux
and paired state order parameters are unphysical because they ignore the particle con-
straint. Hence, the corresponding broken symmetry is not a symmetry of the physical
Heisenberg Hamiltonian but rather a broken gauge invariance of the auxiliary fermions.
The respective phase transitions have to be interpreted as crossovers. In this thesis we
will not consider mean-field amplitudes violating the auxiliary particle constraint.

By contrast, the magnetic order parameter 〈Si〉 = 1
2

∑

αβ〈f
†
iασαβfiβ〉 that appears in

the Hartree approximation is a physical quantity. A finite magnetization corresponds to
a real broken symmetry (the SU(2) symmetry of the original Heisenberg Hamiltonian)
and the onset of magnetic order indicates a true phase transition.

Before we start with the calculations we summarize the Feynman rules needed in the
following:

• Bare fermion propagators are given by

G0
ij,αβ(iω) =

1

iω + µ
δijδαβ with µ =

{

0 average projection

− iπ
2β

Popov-Fedotov method
.
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4 Mean-Field Theory

= +

Figure 4.1: Diagrammatic representation of
the Hartree approximation. The full line is
the bare Green’s function G0, Eq. (3.6), the
double-stroke line is the self consistent one.
The dashed line represents the interaction J1

or J2 and the dots are Pauli matrices×1/2.

In diagrams they are represented by full lines with an arrow.

• Exchange interactions between the sites i and j contribute a factor −Jij and are
illustrated by dashed lines.

• Bare vertices which are depicted by dots correspond to a factor 1
2
σµ

αβ .

• Closed fermion lines carry a factor −1.

• There are sums over all internal indices, i.e., all Matsubara frequencies (fermionic
1
β

∑

iω · · · or bosonic 1
β

∑

iν · · · ), site indices i, spin variables α and spatial coordi-
nates µ. A closed loop requires a trace in spin space.

Sums over Matsubara frequencies are evaluated using the theorem of residues,

1

β

∑

iω

F (iω) =
∑

n

Res
z=zn

(F (z)f(z)) , (4.1a)

1

β

∑

iν

B(iν) = −
∑

n

Res
z=zn

(B(z)g(z)) . (4.1b)

Here f(z) = 1
eβz+1

and g(z) = 1
eβz−1

denote the Fermi- and Bosefunction, respectively. zn

are the poles of the functions F (z) or B(z). We use the convention of writing fermionic
Matsubara frequencies as iω and bosonic Matsubara frequencies as iν.

In order to calculate ground-state properties it turns out to be convenient first to
consider finite temperatures and performing the limit T ≡ 1

β
→ 0 in the end. Dyson’s

equation in Fig. 4.1 reads

Ḡi(iω) = [(iω + µ)1− Σ̄i(iω)]−1 , (4.2)

where Ḡ, Σ̄ and 1 are matrices in spin space. The self energy is coupled back to the
renormalized Green’s function by

Σ̄i(iω) =
1

4

∑

j

Jij

3
∑

µ=1

σµ 1

β

∑

iω′

Tr[σµḠj(iω
′)]eiω′δ . (4.3)

The coupling Jij equals J1 if i, j are nearest neighbors, and J2 if i, j are next-nearest
neighbors. The factor eiωδ, with an infinitesimal δ > 0, is needed for the convergence of
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4.1 Hartree Approximation

the Matsubara sum. If we assume magnetism along the z-direction, the self energy has
the form

Σ̄i(iω) = σzmi . (4.4)

To describe Néel- and collinear order we split the lattice up into two sublattices A and
B. In case of Néel order A and B form a staggered pattern while for collinear order they
form rows (or equivalently columns). Furthermore we require

m ≡ mi∈A = −mi∈B . (4.5)

Inserting Eq. (4.2) into Eq. (4.3) and using Eq. (4.4) one obtains

mi =
1

4

∑

j

Jij

1

β

∑

iω

∑

ζ=±1

ζ

iω + µ− ζmj

eiωδ . (4.6)

Using 1
β

∑

iω
eiωδ

iω−z
= f(z) and f(z − µppv) = 1

ieβz+1
(f is the Fermi function) one finds

the following self-consistent equations for m for both types of order and both projection
schemes,

Néel-order: m =

{

(J1 − J2) tanh(mβ

2
) for µ = 0

(J1 − J2) tanh(mβ) for µ = µppv
, (4.7a)

collinear-order: m =

{

J2 tanh(mβ

2
) for µ = 0

J2 tanh(mβ) for µ = µppv
. (4.7b)

The spin polarization or, in short, magnetization Mi is given by the bubble of a single
renormalized propagator,

Mi = 〈Sz
i 〉 =

1

2

1

β

∑

iω

Tr[σzḠi(iω)]eiωδ . (4.8)

From the comparison of Eq. (4.3) and Eq. (4.8) and using Mi∈A = −Mi∈B one finds a
relation between mi and Mi,

mi =
1

2

∑

j

JijMj =

{

2Mi(J2 − J1) for Néel-order

−2MiJ2 for collinear order
. (4.9)

From Eqs. (4.7a) and (4.7b) the critical temperatures TNéel
c and TCol

c can be determined.
The instability with the larger transition temperature controls the type of order at a
given g = J2

J1
. This leads to (see also Fig. 4.2)

0 ≤ g ≤ 1

2
: Tc = TNéel

c =

{

J1

2
(1 − g) for µ = 0

J1(1 − g) for µ = µppv
, (4.10a)

g ≥ 1

2
: Tc = TCol

c =

{

J1

2
g for µ = 0

J1g for µ = µppv
. (4.10b)
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Figure 4.2: Phase diagram
in the g-T -plane using the
Hartree-approximation. The
full lines are the phase bound-
aries with µ = 0, the dashed
lines use µ = − iπ

2β
.

Apparently, within this approximation, no non-magnetic phase is found at T = 0.
Instead there is a first order transition from Néel to collinear order at g = 1

2
. For

β → ∞ the Eqs. (4.7a) and (4.7b) lead to |m| = J1 − J2 (|m| = J2) in the Néel
case (collinear case). The magnetization M = |Mi| which can now be obtained from
Eq. (4.9) obviously reaches the saturation value M = 1

2
at T = 0, and the classical large

spin behavior is reproduced. This was expected since in a mean-field treatment quantum
fluctuations are neglected such that the system behaves classically. While at T = 0 the
magnetization is the same for both projection schemes, this is no longer the case for
T > 0. The contribution of unphysical states with S = 0 leads to a reduction of the
magnetization in the average projection scheme. Also the critical temperatures come
out by a factor of two smaller, see Fig. 4.2. The self-consistent equations for µ = µppv

are identical to those obtained within the conventional mean-field theory in terms of
spin operators, confirming that the cancellation of the unphysical states works correctly
in this approximation.

In summary, the simple mean-field theory leads to a Néel phase at g < 1
2

and a
collinear-ordered phase g > 1

2
but is insufficient to describe the effect of frustration in

destroying magnetic order in the regime g ≈ 1
2
. Nevertheless, we stick a bit longer to

the mean-field scheme to learn about the dynamical properties of magnetically ordered
phases.

4.2 Random-Phase Approximation

The Hartree scheme applied in the previous section computes the magnetization as a
natural outcome of the self-consistency equations. In order to calculate response func-
tions such as the susceptibility or excitation spectra within a mean-field treatment, we
now employ the random-phase approximation (RPA). Fig. 4.3 displays the approxima-
tion in diagrammatic form. Since the RPA scheme can be obtained from the Hartree
approximation by taking the derivative with respect to the self consistent field, phase
transitions are located at the same point in both approaches. An important aspect of
such a scheme is that RPA in conjunction with the Hartree self-energy is a conserving
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4.2 Random-Phase Approximation

χ = + χ

Π =

Figure 4.3: Self-consistent RPA equa-
tion for the susceptibility χ in diagram-
matic representation. Π denotes a sin-
gle bubble.

approximation in the sense of Baym and Kadanoff. We emphasize that the auxiliary-
particle constraint is meaningful only if particle number conservation is guaranteed. We
now compute the RPA susceptibility χ in order to find the excitation spectrum at T = 0.
The RPA equation in real space reads

χµµ′

ij = Πµµ′

ij − (ΠJχ)µµ′

ij , (4.11)

with Π being the fermion bubble shown in Fig. 4.3. We note that the propagators that
enter Π are those containing the Hartree self-energy, i.e., the renormalized propagators
from Fig. 4.1. Of course Πµµ′

ij = Πµµ′

i δij is a local quantity but in non-uniform magnetic
phases the Hartree self-energy still leads to a dependence on the sublattice A,B ∋ i.
Applying the Feynman rules, Π has the form

Πµµ′

i (iν) = −1

4

1

β

∑

iω

Tr[σµḠi(iω + iν)σµ′

Ḡi(iω)] . (4.12)

Inserting Eq. (4.2) with Eq. (4.4) into Eq. (4.12) and performing the Matsubara sum
and the trace yields the expressions

Πxx
i (iν) = Πyy

i (iν) =
mi

(2mi)2 − (iν)2
×
{

tanh
(

βmi

2

)

for µ = 0

tanh(βmi) for µ = µppv
, (4.13a)

Πxy
i (iν) = −Πyx

i (iν) =
1

2i

iν

(2mi)2 − (iν)2
×
{

tanh
(

βmi

2

)

for µ = 0

tanh(βmi) for µ = µppv
, (4.13b)

and Πxx
B = Πxx

A , Πxy
B = −Πxy

A . For brevity we omit the frequency arguments in the
following. All components with indices “xz” or “yz” vanish. Moreover, Πzz and χzz

are of no relevance here because in the limit T → 0 where all spins are maximally
polarized, the longitudinal response decreases exponentally. Eq. (4.11) can be solved by
Fourier transform. Due to the spatial dependence of Πi the susceptibility χij is not just
a function of the distance vector Ri − Rj. The Fourier transform of Πij and χij hence
involves two wave vectors,

Πµ
ij =

1

N2

∑

kk′

ei(kRi−k′Rj)Πµµ′

(k,k′) , (4.14a)

χµ
ij =

1

N2

∑

kk′

ei(kRi−k′Rj)χµµ′

(k,k′) , (4.14b)
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4 Mean-Field Theory

while Jij = J(Ri −Rj) is a function of the distance and hence

Jij =
1

N

∑

k

eik(Ri−Rj)J(k) (4.15)

with

J(k) = 2J1[cos(kx) + cos(ky)] + 4J2 cos(kx) cos(ky) . (4.16)

Transforming Eq. (4.11) into Fourier space we obtain

χµµ′

(k,k′) = Πµµ′

(k,k′) − 1

N

∑

q

(Π(k,q)J(q)χ(q,k′))µµ′

. (4.17)

The diagonal components Πxx
i and Πyy

i do not depend on the sublattice whereas the
off-diagonal components Πxy

i and Πyx
i have opposite sign on sublattices A and B. Thus

the transverse subspace of Πµµ′

(k,k′) has the form

Πµµ′

(k,k′)
∣

∣

∣

µ,µ′=x,y
= N

(

Πxx
A δk,k′ Πxy

A δk,k′±Q

−Πxy
A δk,k′±Q Πxx

A δk,k′

)

, (4.18)

with the ordering vector Q given by QNéel = (π, π) in the Néel phase and QCol,1 = (π, 0)
or QCol,2 = (0, π) in the collinear phase. Furthermore we assume e±iQRi = +1,−1 for
Ri ∈ A,B, respectively. Multiplying two of such bubbles yields

1

N

∑

q

N

(

Πxx
A δk,q Πxy

A δk,q±Q

−Πxy
A δk,q±Q Πxx

A δk,q

)

N

(

Πxx
A δq,k′ Πxy

A δq,k′±Q

−Πxy
A δq,k′±Q Πxx

A δq,k′

)

= N

(

[(Πxx
A )2 − (Πxy

A )2]δk,k′ 2Πxx
A Πxy

A δk,k′±Q

−2Πxx
A Πxy

A δk,k′±Q [(Πxx
A )2 − (Πxy

A )2]δk,k′

)

(4.19)

with the same form as a single bubble. Hence, building up the RPA bubble chain, the
momentum dependence of Π is retained and the susceptibility χ can be written as

χµµ′

(k,k′)
∣

∣

∣

µ,µ′=x,y
= N

(

χxx(k)δk,k′ χxy(k)δk,k′±Q

−χxy(k)δk,k′±Q χxx(k)δk,k′

)

. (4.20)

Indeed, this ansatz together with Eq. (4.18) solves Eq. (4.17) yielding the matrix relation

(

1 + Πxx
A J(k) −Πxy

A J(k ±Q)
Πxy

A J(k) 1 + Πxx
A J(k ±Q)

)(

χxx(k)
χxy(k ± Q)

)

=

(

Πxx
A

Πxy
A

)

. (4.21)

Inverting the matrix we obtain an expression for the transverse susceptibility χxx(k),

χxx(k) =
Πxx

A + [(Πxx
A )2 + (Πxy

A )2]J(k ± Q)

(1 + Πxx
A J(k))(1 + Πxx

A J(k ± Q)) + (Πxy
A )2J(k)J(k ± Q)

. (4.22)
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Figure 4.4: Dispersion of the spin excitations in the Néel phase (a) and in the
collinear phase (b) within an RPA scheme. Shown are the excitation energies for a
path along lines of high symmetry in the Brillouin zone.

Finally we perform the limitation β → ∞ in the Eqs. (4.13a) and (4.13b). We use
Eq. (4.9) withM = 1

2
and insert the resulting expressions for Πxx and Πxy into Eq. (4.22).

It follows

χxx
Néel(k) =

J1 − J2 + J(k ± QNéel)/4

2ENéel(k)

(

1

ENéel(k) − iν
+

1

ENéel(k) + iν

)

with

ENéel(k) =

√

1

4
(4J1 + J(k))(4J1 + J(k ±QNéel)) − J2(8J1 − 4J2 + J(k) + J(k ±QNéel))

(4.23)

in the case of Néel order and

χxx
Col,1(k) =

J2 + J(k ±QCol,1)/4

2ECol,1(k)

(

1

ECol,1(k) − iν
+

1

ECol,1(k) + iν

)

with

ECol,1(k) =
1

2

√

(4J2 + J(k))(4J2 + J(k ± QCol,1)) , (4.24)

for collinear order (with ordering vector QCol,1 = (π, 0)). In order to obtain a physical
quantity we perform an analytic continuation to the real axis simply by replacing iν →
ω + iδ. The magnon spectral-function is then given by 1

π
Imχxx(k, ω + iδ). The identity

Im 1
E−ω±iδ

= ∓δ(ω−E) converts the terms in the brackets of Eqs. (4.23) and (4.24) into
δ-functions indicating excitations in the form of undamped spin waves. Their dispersion
is simply given by

ωNéel/Col,1 = ENéel/Col,1(k) . (4.25)

Fig. 4.4 shows the dispersion of the spin waves in the Néel phase, 0 ≤ g ≤ 0.5, and in
the collinear phase, 0.5 ≤ g ≤ 1. In case of Néel order, see Fig. 4.4a, two wave vectors
with vanishing excitation energy can be identified, k = (0, 0) and k = (π, π), where
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4 Mean-Field Theory

the latter is the Goldstone mode. According to the Goldstone theorem broken SU(2)
symmetry in the form of long-range magnetic order must be accompanied with such a
mode at the respective ordering vector Q. In contrast, the mode with k = (0, 0) is no
Goldstone mode, which can be seen from the first line of Eq. (4.23) where the spectral
weight given by the factor outside the bracket vanishes at k = (0, 0). In general, the
excitation energies and the spin-wave velocity decrease with increasing frustration g until
in the limit of maximal frustration g = 0.5 the excitation energy vanishes along the path
k = (0, 0) → (π, 0) → (π, π) indicating the large degeneracy in the classical model.

Evidence for the first order transition at g = 0.5 arises from a comparison to Fig. 4.4b
where the collinear phase is studied. The dispersion changes discontinuously once the
magnetic order switches from Néel to collinear. Now the Goldstone mode resides at the
ordering vector Q = (π, 0) while other wave vectors with vanishing excitation energy,
i.e., k = (0, 0) and k = (π, π), have no spectral weight. With increasing g the degeneracy
at g = 0.5 on the line between k = (π, 0) and k = (π, π) is lifted and the spin-wave
velocity rises.

These results demonstrate that even on a mean-field level magnetic order is described
qualitatively correct as long as a single kind of magnetic order is considered. On the other
hand, frustration effects such as the melting of long range order induced by competing
interactions are beyond the scope of a simple mean-field treatment. In order to overcome
this problem we extend the mean-field scheme in the next chapter.
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5 Finite Pseudo-Fermion Lifetime

In the mean-field approximation of the previous chapter, the effect of fermion scattering
in generating a finite lifetime of the pseudo fermions has not been taken into account.
The most natural way to include such effects is to approximate the self energy by some
set of diagrammatic contributions. However, as will be discussed in Section 5.3, find-
ing a reasonable approximative scheme is a non-trivial issue. This can be understood
if one realizes that a small expansion parameter is absent in our Hamiltonian. Hence,
approximations require infinite resummations of perturbation theory in the couplings
J1 and J2. In Sections 5.1 and 5.2 we put forward a different and somehow simpler
route. Instead of calculating the self energy Σ we make an ansatz that corresponds to
an exponential decay of the propagator with the pseudo-fermion lifetime τ as a phe-
nomenological parameter. Of course there is still the problem of finding a numerical
value for this parameter τ , however, it will turn out that even on a phenomenological
level this scheme captures the essential aspects of competing spin interactions.

We model the retarded Green’s function by,

GR(ω) =
1

ω + iγ
, Σ = −iγ with γ =

1

τ
. (5.1)

In real-time representation this propagator exhibits an exponential decay,

GR(t− t′) =
Θ(t− t′)

i
e−

t−t′

τ . (5.2)

The spectral function ρ(ω) has the form of a Lorentzian with the (finite) width γ,

ρ(ω) = −1

π
Im GR(ω) =

γ

π

1

ω2 + γ2
. (5.3)

It proved to be convenient to perform calculations on the imaginary Matsubara axis.
According to Eq. (5.1) the self energy Σ is constant for frequencies slightly above the
real axis. Thus the analytic continuation to the upper complex half plane is trivial and
provides

Σ(z) = −iγ for Im z > 0 . (5.4)

A second statement about the self energy on the Matsubara axis can be made regarding
the spectral representation G(iω) =

∫∞
−∞

ρ(ǫ)
iω−ǫ

dǫ. Due to particle-hole symmetry, ρ(ω)
must be an even function. It follows immediately that G(iω) is an odd function with
vanishing real part along the Matsubara axis. Because of Dyson’s equation G(iω) =
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1
iω−Σ(iω)

the same properties also hold for Σ(iω). These statements completely determine

G(iω) and Σ(iω),

G(iω) =
1

iω + iγ sgn(ω)
, Σ(iω) = −iγ sgn(ω) . (5.5)

The damping parameter γ has the dimension of an energy. To proceed, we need to
specify its dependence on the couplings J1 and J2. For J2 = 0, we put γ in the form
γ = γ̃J1, where γ̃ is a dimensionless parameter. A similar situation is encountered for
J1 → 0 and J2 > 0, where the system is split up into two square lattices, each only with
nearest-neighbor couplings J2. Therefore, in this limit, the relation γ = γ̃J2 holds. To
interpolate between both limiting cases, we assume

γ(J1, J2) = γ̃J1

√

1 + g2 . (5.6)

Later we will see that the precise choice of the interpolation function is of minor relevance
for the results.

5.1 Hartree Approximation

In order to calculate the ground-state magnetization we now repeat the Hartree approx-
imation of Section 4.1 but with the bare Green’s function replaced by Eq. (5.5). In
the limit T → 0, using 1

β

∑

iω → 1
2π

∫

dω, Eq. (4.6) translates into the new mean-field
equation given by

mi =
1

4

∑

j

Jij

1

2π

∫ ∞

−∞
dω
∑

ζ=±1

ζ

iω + iγ sgn(ω) − ζmj

. (5.7)

Here it is obvious that the two projection schemes are identical because a shift of the
Matsubara frequencies by µppv = − iπ

2β
becomes irrelevant in the limit T → 0, provided

that the Green’s function, or equivalently the fermion spectral-function, is regular at
ω = 0. The integral in Eq. (5.7) is straightforwardly evaluated. Using Eq. (4.9) we
obtain the following self-consistent equations for the Néel- and collinear magnetizations,

MNéel =
1

π
arctan

[

2MNéel(J1 − J2)

γ

]

, (5.8a)

MCol =
1

π
arctan

(

2MColJ2

γ

)

. (5.8b)

The solutions of these equations (using the interpolation in Eq. (5.6)) are shown in
Fig. 5.1 for different parameters γ̃. The case γ̃ = 0 represents the Hartree approximation
from Section 4.1. An increase in γ̃ reduces the magnetizations, especially in the region
of high frustration. In particular, for small γ̃, there is still a direct first-order transition
between the two types of order at g = 1

2
, while for sufficiently large γ̃ a non-magnetic
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Figure 5.1: Magnetizations
MNéel and MCol versus g within a
Hartree approximation assuming
a finite pseudo-fermion lifetime τ .
The dependence of γ = 1

τ
on the

couplings J1 and J2 is chosen ac-
cording to Eq. (5.6). Shown are
different values for γ̃.
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    1+g2 Figure 5.2: Phase diagram in

the γ-g-plane. The dotted line
shows the g-dependence of γ ac-
cording to Eq. (5.6) for γ̃ = 0.36.

phase emerges. It appears that a broadening of the pseudo-fermion levels captures
much of the effect of frustration expected to reduce or destroy magnetic order. In
contrast to the simple mean-field theory, one now finds second order phase transitions
and a mean-field critical exponent β = 1

2
of the magnetization. From the self-consistent

equations, a phase diagram in the γ-g-plane can be drawn, see Fig. 5.2. This diagram
demonstrates that the form of the interpolation function γ(J1, J2) has an effect mainly
on how symmetric the non-magnetic phase is located around g = 0.5. Additionally,
it shows only a narrow parameter range for γ where the theory provides meaningful
values for the phase boundaries. This illustrates that it will be difficult to determine the
damping parameter in approximative schemes. For example γ̃ = 0.36 leads to transitions
at gc1 ≈ 0.39, gc2 ≈ 0.69 and also a realistic value for the magnetization at g = 0, i.e.,
MNéel ≈ 0.35. This value of the width parameter γ̃ will be used in the following section
to study the properties of the non-magnetic phase.
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Figure 5.3: Static susceptibility
for wave vectors (π, π) and (π, 0)
within an RPA scheme employing
a finite damping parameter γ̃ =
0.36. The dashed lines visualize
the phase boundaries.

5.2 Random-Phase Approximation

With the scheme introduced in the previous section we have a method at hand that
generates a non-magnetic phase, provided that the damping γ is adjusted correctly.
It has been shown that this parameter controls the extent of the ground-state phases.
This gives us the opportunity to calculate the properties of the paramagnetic phase in
more detail. A suitable quantity to study is the spin susceptibility as it also leads to
related observables such as the dynamic structure factor, the correlation function and
the correlation length. Our approach is similar to Section 4.2. We employ the RPA
scheme, see Fig. 4.3, but use the Green’s function introduced in Eq. (5.5). As long as
we consider the paramagnetic phase, SU(2) symmetry is conserved, i.e., Πµµ′

= Πδµµ′ ,
χµµ′

= χδµµ′ and all quantities are translation invariant, Πij = Πδij , χij = χ(Ri − Rj).
This simplifies the calculation of Section 4.2 considerably because the Fourier transform
of Eq. (4.11) can be performed straightforwardly, yielding

χ(k, iν) =
1

[Π(iν)]−1 + J(k)
. (5.9)

First we shall calculate the static susceptibility. We need the bubble Π(iν = 0) using
the propagator from Eq. (5.5). This quantity is found as

Π(iν = 0) ≡ Πzz(iν = 0) = −1

4

1

2π

∫

dw

(

1

iω + iγ sgn(ω)

)2

Tr
[

(σz)2
]

=
1

2πγ
. (5.10)

The susceptibility in Eq. (5.9) together with Eqs. (4.16), (5.6) and (5.10) is evaluated
for k = (π, π) and k = (π, 0), the relevant wave vectors in the case of Néel- and collinear
order, respectively. The results for γ̃ = 0.36 are shown in Fig. 5.3. As expected for
continuous phase transitions, the susceptibility with wave vector k = (π, π) (k = (0, π))
diverges in the limit gc → gc1 + 0 (gc → gc2 − 0).

Dynamical properties of the paramagnetic phase may also be obtained within an
analytical treatment. For the dynamical susceptibility χ(k, iν) we need Eq. (5.10) at
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finite frequencies. Evaluating the integral, we obtain

Π(iν) = −1

4

1

2π

∫

dw
1

[iω + iν + iγ sgn(ω + ν)] [iω + iγ sgn(ω)]
Tr
[

(σz)2
]

=
γ ln

(

1 + ν
γ

)

πν(2γ + ν)
. (5.11)

Inserting this quantity into Eq. (5.9) we gain an expression for the dynamical suscepti-
bility. The analytic continuation is performed by replacing ν → −iω. We note that an
infinitesimal damping δ ≪ J1, J2 is not needed in this replacement because it becomes
irrelevant compared to the large damping γ ≈ J1, J2.

The dynamical spin-structure factor

S(k, ω) =
1

π

1

1 − e−
ω
T

Im χ(k, ω) (5.12)

is an important quantity since it is the canonical outcome of neutron-scattering exper-
iments and a measure for the dynamics of spin fluctuations. At zero temperature the
factor 1

1−e
−

ω
T

is unity for ω > 0 and zero otherwise. Evaluating Eq. (5.12) we end up

with

S(k, ω) =
γω
[

ω arctan(ω
γ
) + γ ln

(

1 + (ω
γ
)2
)]

[

1
2
J(k)γ ln

(

1 + (ω
γ
)2
)

− πω2
]2

+
[

J(k)γ arctan(ω
γ
) + 2πγω

]2 (5.13)

In order to illustrate this function we plot it for different frustrations g and momenta
k on the line from k = (π, π) to k = (π, 0), see Fig. 5.4. At the transition point
between the Néel- and the paramagnetic phase, i.e., at g = gc1 the emerging Goldstone
mode manifests itself as a divergence of the (π, π) component at ω = 0. For momenta
away from the Néel ordering vector this divergence is regularized and peaks at finite
frequency appear, indicating damped spinwaves. Approaching the collinear ordering
vector k = (π, 0) the maxima shift towards higher frequencies, the height decreases
and a larger width is acquired. The peak position gives an indication of the dispersion
of the damped magnons. When we go further inside the paramagnetic phase, e.g. to
g = 0.45, the divergence of the (π, π) component disappears. Moreover, the dispersion
becomes flatter. This trend continues for an approach to g = 0.5 where the dispersion
is completely flat along the line of considered momenta. Here, all curves lie exactly on
top of each other. Hence, it demonstrates the high degeneracy of low lying excitations
at large frustration. Obviously, the point g = 0.5 has still a unique character in our
approximation scheme. Increasing g beyond g = 0.5 collinear fluctuations become the
dominant ones. In this frustration regime the spin dynamics resemble those below g =
0.5 but with interchanged roles of k = (π, π) and k = (π, 0). Finally at g = gc2 the
divergence of the (π, 0) component indicates the Goldstone mode of the collinear ordered
phase. Throughout the paramagnetic phase the peak corresponding to the dominant
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Figure 5.4: Dynamical spin structure factor in the paramagnetic phase for various
frustrations g. The black, red, blue and green curve represent momenta on the line
from k = (π, π) to k = (π, 0) in steps of π

3
, respectively (see the picture in the lower

right corner).

spin-wave momentum resides at a frequency smaller than 0.1J1, representing a rather
small energy scale.

Finally, we discuss the static correlation function χ(R, iν = 0), which is obtained by
transforming the susceptibility from Eq. (5.9) into real space,

χ(R, iν = 0) =
1

(2π)2

∫ π

−π

dkx

∫ π

−π

dky

eikR

[Π(iν = 0)]−1 + J(k)
. (5.14)

Evaluating Eq. (5.14) numerically with γ̃ = 0.36 for distances R along a lattice direction,
Rµ = Reµ, µ = x, y, leads to the behavior shown in Fig. 5.5. For g slightly above the
lower critical value gc1 (upper panel) the signature of the Néel phase is clearly seen.
The correlation function forms a staggered pattern and the envelopes for positive and
negative data points only differ by a sign. At large enough distances R the correlations
are well fitted by an exponential decay while at small distances the decrease is faster.
Inside the paramagnetic phase the envelopes are no longer symmetric around χ(R) = 0.
For g slightly below the upper critical point gc2 (lower panel) the correlation function still
exhibits a staggered sign but the correlation between spins with an odd distance seems
to vanish on approaching the critical point. Again, for large R an exponential function
can be fitted to both branches and the correlation length is identical for even and odd
distances. The asymmetry of the two envelopes can be understood by the fact that for
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collinear fluctuations, two degenerate patterns exist, the alignment of spins along rows
and along columns. Thus, near the upper critical point correlations are a superposition
of both,

χ(R) = (−1)Ra1e
−R

ξ + a2e
−R

ξ (5.15)

with (almost) identical weights a1 = a2. Obviously this suppresses correlations for odd
distances. Here ξ denotes the correlation length. Away from the upper critical point
Néel-like fluctuations emerge and we have a1 > a2. Eventually at the lower critical point
a2 vanishes.

The correlation length ξ is plotted in Fig. 5.6. The data indicate divergences at the
phase boundaries but ξ gets rather small in the vicinity of g = 0.4, i.e., down to ξ ≈ 1.5.
Remarkably, the smallest values for the correlation length are not reached at g = 0.5
where one would classically expect the strongest frustration.

In conclusion, the phenomenological theory presented in this chapter suggests that a
broadening of the fermions’ spectral function controls the phase diagram and the behav-
ior of many physical quantities like the magnetization, the susceptibility and the spatial
correlation function. It leads to a qualitatively correct description of the paramagnetic
phase in terms of these observables. However, a statement about the nature of the
paramagnetic phase (columnar dimer or plaquette order) cannot be made. Also critical
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Figure 5.7: Dyson’s equation
for the renormalized propagator
(double-stroke line) using the bare
second-order self energy (a) or the
completely renormalized second-
order self energy (b). Full lines
present bare propagators.

behavior beyond mean-field is not accessible. In order to obtain quantitatively correct
transition points, the tuning parameter γ̃ has to be fixed to γ̃ ≈ 0.36. However, this
phenomenological parameter cannot be determined within the theory and there is no
simple way to calculate it. This problem will be briefly discussed in the next section.

5.3 The Spectral Width in Diagrammatic

Approximations

We emphasize again that a small expansion parameter is absent in the models consid-
ered here because we operate in the strong coupling limit. Consequently there is no
justification for a perturbative treatment in finite order. Instead diagram classes have
to be summed up to infinite order in a self consistent way. A well elaborated resum-
mation scheme is given by the concept of a conserving approximation already applied
in Chapter 4 in the form of a RPA + Hartree scheme. Also the finite-lifetime approach
in Sections 5.1 and 5.2 was a conserving approximation but with a redefinition of the
bare propagator. However, from a numerical point of view it turns out to be very chal-
lenging to calculate a conserving scheme beyond RPA + Hartree. For this reason it
is very difficult to gain a reasonable value for the damping parameter γ by summing
up diagrammatic contributions of the Green’s function [23, 24]. Away from conserving
schemes this problem manifests itself in the fact that results might vary a lot depending
on the choice of diagrams. To exemplify this behavior we have calculated the spectral
function of the renormalized propagators in Fig. 5.7. In a first scheme we approximate
the self energy by the second order term, see Fig. 5.7a, which is the lowest order of a
non-vanishing contribution. (Note that the Hartree term is of first order in the couplings
but it is finite only if SU(2) symmetry breaking is assumed self consistently.) Calculating
the spectral function of the renormalized propagator using the average projection with
µ = 0 one obtains

ρ(ω) =
1

2
[δ(ω − ∆) + δ(ω + ∆)] (5.16)

with

∆ =

√

3

8
(J2

1 + J2
2 ) . (5.17)

Inserting the renormalized propagator of Fig. 4.1 into the Hartree scheme of Fig. 5.7a
leads to a destruction of magnetic order in the whole parameter regime g ≥ 0. This
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behavior can be traced back to the spectral width γ ∼ ∆ which apparently comes
out much too large to allow for magnetic phases. On the other hand the big impact
of the bare second-order self energy is again removed if one considers the fully self
consistent second-order scheme shown in Fig. 5.7b. An analytical argument shows that
the corresponding spectral function of the renormalized propagator exhibits a singularity
at zero frequency, i.e., ρ(ω) ∝ |ω|− 1

2 for small ω, while numerical evaluation indicates a
strong drop at large frequencies. This in turn evidences a spectral width much too small
to generate a paramagnetic phase. Hence there is no simple way to control the fermion
spectrum such that the approximation is well balanced between ordering and disordering
effects. In order to cope with these difficulties we apply the FRG method in the following
chapters since it sums up diagrammatic contributions in different interaction channels
(either favoring order or disorder tendencies) in a systematic and self consistent way.
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6 The Functional Renormalization
Group: Implementation for Spin
Systems

Studying interacting fermion systems forms the core of todays condensed matter physics.
Important representatives of such systems are the Hubbard or the t-J model which are
widely believed to capture the relevant physics of high-Tc superconductivity. Also the
fields of quantum dots, Kondo physics and Luttinger liquids fall into the class of problems
described by interacting fermions. The general setup of these models is always given by a
Hamiltonian H consisting of a kinetic term H0 which is quadratic in the fermions and an
interaction term Hint quartic in the fermions, H = H0+Hint. The progress in theoretical
physics strongly depends on how accurately and reliably such systems can be calculated
either analytically or numerically. Of special interest is the regime where Hint is not
assumed small compared to H0 giving rise to strong coupling phenomena. However, it is
of course this regime which is not directly accessible using straightforward perturbation
theory in Hint. The functional renormalization group (FRG) method [54, 80, 106, 142] is
designed to handle interacting fermion systems beyond a simple perturbative expansion
and helps to account for the interplay of different types of correlations controlling the
physics of these models. The central concept of the FRG in general is a mapping of the
initial Hamiltonian to a succession of Hamiltonians with gradually removed low energy
degrees of freedem. This is realized by the introduction of a frequency cutoff Λ in the
fermion propagator suppressing all modes with energies smaller than Λ. The initial
Hamiltonian is reached in the limit Λ → 0. Formulated in terms of an infinite hierarchy
of differential equations for them-particle vertex functions the FRG successively includes
continuous energy modes during the flow of decreasing Λ and captures the related physics
at that scale, until at the end of the flow (Λ = 0) the original model with its full dynamics
is recovered. In principle the flow equations for the vertex functions generated by the
FRG are exact but their numerical evaluation requires some truncation procedure which
reduces the infinite hierarchy of equations to a finite set. However, even in truncated
forms FRG includes systematic infinite order resummations of diagrams in different
interaction channels as well as vertex corrections between them. In this way FRG is
more powerful than straightforward renormalized perturbation theory since divergences
that might occur in single channels are regularized. As a consequence FRG is in principle
not restricted to small interaction strengths. So far, the range of applications comprises
systems such as the two-dimensional Hubbard model [53, 58, 80, 95], Luttinger liquids
with impurities [5, 6, 80], electron transport through correlated quantum dots [65],
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the single impurity Anderson model [54, 66] and the Kondo dot model [108]. In the
remaining part of this thesis we like to demonstrate that FRG is not only applicable to
fermionic models but also to Heisenberg spin-systems. The essential ingredient for their
implementation is again the pseudo-fermion representation introduced in Chapter 3.

This chapter is organized as follows: Section 6.1 presents the basic FRG formalism
and sketches the derivation of the flow equations in the general form. The special im-
plementation of the FRG for Heisenberg systems using pseudo fermions is then given in
Section 6.2. After a brief discussion of a static FRG scheme in Section 6.3, the non-trivial
problem of the truncation procedure of flow equations is discussed in Sections 6.4 and 6.5
where two different schemes are presented. Finally, Section 6.6 introduces a method that
allows to characterize paramagnetic phases with respect to possible valence-bond dimer-
izations. In Sections 6.3, 6.4, 6.5 and 6.6 the approximation schemes under consideration
are also applied to the J1-J2 model [98] in order to figure out their applicability.

6.1 General FRG Formalism

In this section we present the FRG formalism in its general form. The derivation of the
flow equations is most conveniently formulated in the framework of generating function-
als using the Feynman path-integral formalism. For a more detailed description we refer
the reader to Refs. [54, 80, 106, 142]. The starting point is the path integral representa-
tion for the partition function of an interacting fermionic many-particle system

Z =
1

Z0

∫

D[ψ̄, ψ] exp[(ψ̄, [G0]−1ψ) −Hint(ψ̄, ψ)] . (6.1)

Here ψ̄ and ψ denote Grassmann fields associated with fermionic creation and anni-
hilation operators. The corresponding Hamiltonian (expressed in terms of Grassmann
fields) consists of a kinetic part

H0(ψ̄, ψ) =
∑

k′,k

ξk′,kψ̄k′ψk (6.2)

which defines the free propagator G0, and an interaction part

Hint(ψ̄, ψ) =
∑

k′
1,k′

2,k1,k2

Vk′
1,k′

2,k1,k2
ψ̄k′

1
ψ̄k′

2
ψk2ψk1 . (6.3)

Correspondingly, the non-interacting partition function is defined as

Z0 =

∫

D[ψ̄, ψ] exp[(ψ̄, [G0]−1ψ)] . (6.4)

All variables k
(′)
i are understood as combined indices including the Matsubara frequencies

and the quantum numbers in which the problem is formulated. In addition, we use the
short hand notation

(ψ̄, [G0]−1ψ) =
∑

k′,k

ψ̄k′ [G0]−1
k′,kψk . (6.5)
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Note that due to energy conservation G0 is diagonal in the Matsubara frequencies but
not necessarily diagonal in the quantum numbers as they are kept unspecified here.
We obtain the generating functional for the dressed, disconnected m-particle Green’s
functions by adding source terms in the exponent,

W (η̄, η) =
1

Z0

∫

D[ψ̄, ψ] exp[(ψ̄, [G0]−1ψ) −Hint(ψ̄, ψ) − (ψ̄, η) − (η̄, ψ)] . (6.6)

Taking the logarithm we gain the generating functional for connected m-particle Green’s
functions,

W c(η̄, η) = ln[W (η̄, η)] . (6.7)

The connected Green’s functions themselves are generated by applying functional deriva-
tives,

Gc
m(k′1, . . . , k

′
m; k1, . . . , km) =

δm

δη̄k′
1
· · · δη̄k′

m

δm

δηkm
· · · δηk1

W c(η̄, η)

∣

∣

∣

∣

η̄=η=0

. (6.8)

Introducing new Grassmann fields

φ = −δW
c(η̄, η)

δη̄
and φ̄ =

δW c(η̄, η)

δη
(6.9)

and performing a Legendre transformation, we obtain the generating functional for the
one-particle irreducible (1PI) vertex functions

Γ(φ̄, φ) = −W c(η̄, η) − (φ̄, η) − (η̄, φ) + (φ̄, [G0]−1φ) . (6.10)

For the vertex functions γm an expression similar to Eq. (6.8) holds,

γm(k′1, . . . , k
′
m; k1, . . . , km) =

δm

δφ̄k′
1
· · · δφ̄k′

m

δm

δφkm
· · · δφk1

Γ(φ̄, φ)

∣

∣

∣

∣

∣

φ̄=φ=0

. (6.11)

These are the basic objects of the one-particle irreducible version of FRG. For the deriva-
tion of the flow equations we need a relation between the second derivatives of W c and
Γ. Simple algebra yields

(

δ2W c

δη̄δη
− δ2W c

δη̄δη̄

− δ2W c

δηδη
δ2W c

δηδη̄

)

=

(

δ2Γ
δφ̄δφ

+ [G0]−1 δ2Γ
δφ̄δφ̄

δ2Γ
δφδφ

δ2Γ
δφδφ̄

− [[G0]−1]T

)−1

. (6.12)

From this identity the physical meaning of γ1 can be extracted. Putting all source fields
to zero and assuming that the system is not in a symmetry-broken phase (i.e., terms of
the form δ2W c

δηδη
vanish) the upper left element of Eq. (6.12) reads

G ≡ G1 =
δ2W c

δη̄δη

∣

∣

∣

∣

η̄=η=0

=

[

δ2Γ

δφ̄δφ

∣

∣

∣

∣

φ̄=φ=0

+ [G0]−1

]−1

= [γ1 + [G0]−1]−1 . (6.13)
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A comparison with Dyson’s equation G = [[G0]−1 −Σ]−1 shows that γ1 is related to the
self energy Σ via

γ1 = −Σ . (6.14)

As already pointed out, the FRG procedure amounts to introducing a (Matsubara-)
frequency cutoff in the bare Green’s function,

G0Λ(ω) = Θ(|ω| − Λ)G0(ω) , (6.15)

which suppresses all modes below the energy scale Λ. In principle, the cutoff procedure
may also be performed in momentum space, however, as will be explained in the next
section, for an application to spin systems a frequency cutoff is more suitable. There is
also some freedom concerning the explicit form of the cutoff function. The only restric-
tion is that G0Λ ≡ 0 in the limit Λ → ∞ and G0Λ = G0 at Λ = 0. In Eq. 6.15 and also
in the following sections we choose a sharp cutoff function which has the advantage that
internal frequency integrations are canceled in the flow equations. There are, however,
situations where a broadened cutoff might be a better choice, e.g. at finite temperatures,
see Chapter 9.

The FRG formulates differential equations for the 1PI vertex functions under the flow
of Λ. In the following we will derive these equations. The starting point is the generating
functional for the connected Green’s functions W c which becomes Λ-dependent upon
replacing G0 by G0Λ. We calculate its Λ-derivative,

d

dΛ
W cΛ = −Tr[QΛG0Λ] + Tr

[

QΛ δ
2W cΛ

δη̄δη

]

−
(

δW cΛ

δη
,QΛ δW

cΛ

δη̄

)

, (6.16)

where we defined

QΛ =
d

dΛ
[G0Λ]−1 . (6.17)

We are actually interested in the Λ-derivative of the generating functional for the 1PI
vertex function ΓΛ. Using Eqs. (6.10) and (6.16) and taking notice of the fact that φ̄
and φ are the fundamental variables of ΓΛ we arrive at

d

dΛ
ΓΛ = Tr[QΛG0Λ] − Tr

[

QΛ δ2W c

δη̄ΛδηΛ

]

. (6.18)

We emphasize that due to the change of variables in the Legendre transformation the
old variables η̄ and η acquire a Λ-dependence. Employing Eq. (6.12) we are now able to
eliminate W c in the above differential equation,

d

dΛ
ΓΛ = Tr[QΛG0Λ] − Tr[GΛQΛR11] . (6.19)

Here R11 denotes the upper left matrix element of

R =

[

1−
(

−GΛ 0
0 [GΛ]T

)

(

U δ2ΓΛ

δφ̄δφ̄
δ2ΓΛ

δφδφ
−UT

)]−1

(6.20)
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with

U =
δ2ΓΛ

δφ̄δφ
− γΛ

1 . (6.21)

The final step in our derivation is the expansion of ΓΛ in powers of φ̄ and φ,

ΓΛ(φ̄, φ) =
∞
∑

m=0

(−1)m

(m!)2

∑

k′
1,...,k′

m

∑

k1,...,km

γΛ
m(k′1, . . . , k

′
m; k1, . . . , km)φ̄k′

1
· · · φ̄k′

m
φkm

· · ·φk1 .

(6.22)
Expanding R from Eq. (6.20) in a geometric series and comparing the coefficients of the
fields φ̄ and φ on both sides of Eq. (6.19) we finally obtain the flow equations for γΛ

i .
We write down the equations for γΛ

1 and γΛ
2 ,

d

dΛ
γΛ

1 (k′1, k1) =
1

β

∑

k′
2,k2

γΛ
2 (k′1, k

′
2; k1, k2)S

Λ(k2, k
′
2) , (6.23a)

d

dΛ
γΛ

2 (k′1, k
′
2; k1, k2) =

1

β

∑

k′
3,k3

γΛ
3 (k′1, k

′
2, k

′
3; k1, k2, k3)S

Λ(k3, k
′
3)

+
1

β

∑

k′
3,k3

∑

k′
4,k4

[γΛ
2 (k′1, k

′
2; k3, k4)γ

Λ
2 (k′3, k

′
4, k1, k2)

− γΛ
2 (k′1, k

′
4; k1, k3)γ

Λ
2 (k′3, k

′
2; k4, k2) − (k′3 ↔ k′4, k3 ↔ k4)

+ γΛ
2 (k′2, k

′
4; k1, k3)γ

Λ
2 (k′3, k

′
1; k4, k2) + (k′3 ↔ k′4, k3 ↔ k4)]

×GΛ(k3, k
′
3)S

Λ(k4, k
′
4) . (6.23b)

In this representation we explicitly wrote the traces as sums. The prefactors 1
β

= T
are associated with Matsubara sums. Due to energy conservation only one Matsubara
sum remains on the right hand side. Furthermore we have introduced the so-called
single-scale propagator

SΛ = GΛQΛGΛ . (6.24)

Eqs. (6.23a) and (6.23b) show that the flow of γΛ
1 is determined by γΛ

2 and γΛ
1 , where

the dependence on the latter is included in the Green’s function. In turn, the flow of γΛ
2

depends on γΛ
3 , γΛ

2 and γΛ
1 . This scheme applies to arbitrary γΛ

i : The flow equation for
γΛ

i contains all γΛ
j with j ≤ i+ 1 such that the hierarchy of equations never closes.

In Fig. 6.1 these equations are depicted in diagrammatic form. The right hand side of
the flow equation for the two-particle vertex γΛ

2 consists of six terms (which appear in
the same order as in Eq. (6.23b)): The first one is the contribution of the three particle
vertex. All approximation schemes used in the following apply to this term. The second
is the so-called particle-particle graph while the remaining four terms are referred to as
particle-hole graphs. Concerning these four diagrams one again distinguishes between
the direct particle-hole terms (third and fourth term) and the crossed particle-hole terms
(fifth and sixth term).

We still have to specify the initial conditions which can be deduced within a simple
argument. In the limit Λ → ∞ the Green’s function G0Λ vanishes and consequently

35



6 The Functional Renormalization Group: Implementation for Spin Systems

d

dΛ ���
���
���
���
���
���

���
���
���
���
���
���

1’1 =

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

11

2

d

dΛ ����
����
����
����
����
����
����

����
����
����
����
����
����
����2 2’

1 1’
=

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

1’1

3
2 2’ +

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����2

1

4

3

2’

1’
−

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����2 2’

4 3

1 1’

−

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

1 1’

3 4

2 2’

+

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

1 2’

4 3

2 1’

+

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

2’1

3 4

2 1’

Figure 6.1: FRG equations for γΛ
1 (first line) and γΛ

2 (second line). The line with
an arrow is the full Green’s function GΛ(ω) and the line with an arrow and a slash
denotes the single-scale propagator SΛ(ω). All variables are presented as numbers.

particle propagation is turned off. Hence, in diagrammatic expressions only the bare
vertices remain such that the initial conditions are given by

γΛ→∞
1 (k′, k) = − Σ(k′, k) = −ξk′,k , (6.25a)

γΛ→∞
2 (k′1, k

′
2; k1, k2) = Vk′

1,k′
2,k1,k2

, (6.25b)

γΛ→∞
m (k′1, . . . , k

′
m; k1, . . . , km) = 0 for m ≥ 3 . (6.25c)

The single-particle potential ξk′,k and the two-particle interaction Vk′
1,k′

2,k1,k2
have been

introduced in Eqs. (6.2) and (6.3), respectively. For the third condition (6.25c) we
assumed that the Hamiltonian does not contain any higher interactions than two-particle
scattering terms. At the end of the flow at Λ = 0 when the theory is cutoff free, the
exact vertex functions are obtained.

So far we have presented the most general form of the FRG formalism. All steps of
implementation specific to spin systems are considered in the next section.

6.2 FRG and its Implementation for Heisenberg Systems

An FRG scheme for spin systems using pseudo fermions necessitates some basic method-
ological modifications compared to the standard electronic many-particle systems men-
tioned at the beginning of this chapter. Unlike conventional FRG approaches, our start-
ing point is not given by the bare excitations of the system but is rather based on
auxiliary degrees of freedom. In the spin representation (3.1) the pseudo fermions carry
quantum numbers in the form of a site index i and a spin index α. Most naturally, the
FRG is formulated in terms of these variables because in real-space representation all
propagators are local entities. We like to stress that this is actually the first time FRG
is applied in real space.

In principle, in order to describe RG flows into long-range ordered phases it is nec-
essary to include small symmetry breaking fields in the Hamiltonian. In this chapter
we constrain ourselves to non-magnetic phases and defer consideration of the flow of
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the magnetic order parameter to Chapter 8. This has the advantage that for the spin
structure of the vertex functions only rotation invariant forms have to be taken into
account. Note that although within this scheme, the magnetic phases are not directly
accessible, magnetic instabilities may be detected as a breakdown of the flow.

From these considerations one may write Eqs. (6.23a) and (6.23b) in a more convenient
form,

d

dΛ
ΣΛ(ω1) = − 1

2π

∑

2

ΓΛ(1, 2; 1, 2)SΛ(ω2) , (6.26a)

d

dΛ
ΓΛ(1′, 2′; 1, 2) =

1

2π

∑

3,4

[ΓΛ(1′, 2′; 3, 4)ΓΛ(3, 4; 1, 2)

− ΓΛ(1′, 4; 1, 3)ΓΛ(3, 2′; 4, 2) − (3 ↔ 4)

+ ΓΛ(2′, 4; 1, 3)ΓΛ(3, 1′; 4, 2) + (3 ↔ 4)]GΛ(ω3)S
Λ(ω4) . (6.26b)

To shorten the notation with respect to the indices, here and in the following we write the
two-particle vertex as ΓΛ instead of γΛ

2 (this should not be confused with the generating
functional ΓΛ(φ̄, φ)). Also the first flow equation is formulated for the self energy ΣΛ

rather than γΛ
1 = −ΣΛ. The numbers are shorthand notations for the frequency, the

site index and the spin index, that is, 1 = {ω1, i1, α1}. In the following we omit the
imaginary unit i in frequency arguments of propagators and vertex functions; they are
always understood as Matsubara frequencies. Furthermore, we use that ΣΛ, GΛ and SΛ

are local in real space and proportional to the unity matrix in spin space. If we assume
that all lattice sites are equivalent (as it is the case for all models considered in this
thesis) the one-particle quantities ΣΛ, GΛ and SΛ do not carry a site index. That is, we
may write

ΣΛ(1, 1′) = ΣΛ(ω1)δ(ω1 − ω1′)δi1i1′
δα1,α1′

, (6.27)

and similarly for GΛ and SΛ. Using these relations some summations on the right hand
side of Eq. (6.26b) cancel. In Eqs. (6.26a) and (6.26b) the limit T → 0 has already been
performed, converting the discrete Matsubara sums into integrals and the factors 1

β
into

dω
2π

. That is, Σ1 stands for an integral over ω1 and sums over i1 and α1.

It will turn out that the truncation procedure of the flow equations is a non-trivial
problem in our case. In order to obtain a closed and finite set of equations we either
neglect the three-particle vertex γΛ

3 completely (see the conventional FRG scheme in
Section 6.4) or keep particular contributions of it (see the Katanin scheme in Section 6.5).
However, in the latter scheme it is possible to absorb the contribution of γΛ

3 into a
redefined single-scale propagator SΛ. In either case, one may write the second flow
equation in the form of Eq. (6.26b) where γΛ

3 does not explicitly appear.

It is an unusual property of our FRG scheme that a kinetic term is absent in the
Hamiltonian which implies that we operate in the strong-coupling limit. Nevertheless
the derivation of the flow equations presented in the previous section is also valid in our
case and one can apply the FRG scheme in the usual way. The bare, scale dependent
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Green’s function is given by

G0Λ(ω) =
Θ(|ω| − Λ)

iω + µ
. (6.28)

If not stated otherwise we employ the average projection scheme and set µ = 0. However,
it is not too difficult to implement the exact projection scheme [91], which increases the
numerical effort by roughly a factor of 16. Although the self energy ΣΛ(ω) vanishes
in the initial conditions, it becomes finite during the flow. Hence, the full propagator
GΛ(ω) reads

GΛ(ω) =
Θ(|ω| − Λ)

iω − ΣΛ(ω)
. (6.29)

Using a sharp cutoff function a technical difficulty arises regarding the single-scale prop-
agator,

SΛ(ω) =
(

GΛ(ω)
)2 d

dΛ

(

G0Λ(ω)
)−1

. (6.30)

This expression contains the step function Θ(|ω| − Λ) as well as the δ-peak δ(|ω| −
Λ) (which is generated by the Λ-derivative). Since both functions are non-analytic at
the same points ω = ±Λ such an expression seems to be ambiguous at a first glance.
However, this ambiguity can be resolved using broadened functions δǫ and Θǫ with the
broadening parameter ǫ and subsequently considering the limit ǫ → 0. In this way an
identity introduced by Morris [82] may be proved,

δǫ(x− Λ)f(Θǫ(x− Λ)) → δ(x− Λ)

∫ 1

0

f(t)dt , (6.31)

where f is an arbitrary continuous function. Using this identity the right hand side of
Eq. (6.30) may be evaluated, yielding

SΛ(ω) =
δ(|ω| − Λ)

iω − ΣΛ(ω)
. (6.32)

Now the advantage of a sharp cutoff becomes obvious: The δ-function removes the
frequency integrations on the right hand sides of Eqs. (6.26a) and (6.26b) such that (at
least for the conventional truncation scheme) no integrations remain in the first two flow
equations.

Initial Conditions
Next we specify the initial conditions at Λ → ∞. We have already stated that the self
energy vanishes in this limit,

ΣΛ→∞ ≡ 0 . (6.33)

For the initial conditions of the two-particle vertex we have to take into account that
due to the anti-commutativity of the fermions, the vertex ΓΛ(1′, 2′; 1, 2) changes sign
under an exchange of the variables 1 ↔ 2 or 1′ ↔ 2′. Thus, the bare interaction in
antisymmetrized form is given by

ΓΛ→∞(1′, 2′; 1, 2) = Ji1i2

1

2
σµ

α1′α1

1

2
σµ

α2′α2
δi1′ i1δi2′ i2 − Ji1i2

1

2
σµ

α1′α2

1

2
σµ

α2′α1
δi1′ i2δi2′ i1 . (6.34)
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Here the factors 1
2
σµ

αβ originate from the spin representation (3.1) and the Kronecker δ
ensure that there is no fermion hopping on the lattice.

Parametrization of the Vertices
In order to proceed, the vertex functions ΣΛ and ΓΛ have to be parametrized. Firstly
we know that the self energy is a local quantity proportional to the unity matrix in spin
space. As a consequence of particle-hole symmetry and time-reversal symmetry, the self
energy is an odd function with vanishing real part along the imaginary Matsubara axis,
as already pointed out after Eq. (5.4). In analogy to Eq. (5.4) we write

ΣΛ(ω) = −iγΛ(ω) . (6.35)

Since the rotational invariance in spin space of the initial conditions is conserved during
the flow, the two-particle vertex at finite Λ is parametrized by spin-interaction terms ∝
σµ

αβσ
µ
γδ and density-interaction terms ∝ δαβδγδ. These are the only matrix combinations

in spin space which preserve rotational invariance. At first, it is not obvious why density-
interaction terms should be relevant in pure spin models. Nevertheless, these terms play
an important role in our FRG scheme. Since the propagators are local, the site index
of an ingoing leg has to be identical to the site index of the corresponding outgoing leg,
which results in a total dependence on only two sites, i.e., i1 and i2. To be more precise,
translation invariance of the underlying lattice further reduces the site dependence only
to the separation |Ri1 − Ri2| (we note that in the case of non-Bravais like lattices as
discussed in Sections 7.2, 7.4, 7.5 and 7.6 a closer investigation of the site-dependence
of the two-particle vertex is necessary, see the discussion in Section 7.2). Taking into
account the antisymmetry in all variables the two-particle vertex can now be represented
as

ΓΛ(1′, 2′; 1, 2)=
{

[ΓΛ
s i1i2

(ω1′ , ω2′;ω1, ω2)σ
µ
α1′α1

σµ
α2′α2

+ΓΛ
d i1i2

(ω1′ , ω2′;ω1, ω2)δα1′α1δα2′α2 ]

× δi1′ i1δi2′ i2

− [ΓΛ
s i1i2

(ω1′ , ω2′;ω2, ω1)σ
µ
α1′α2

σµ
α2′α1

+ΓΛ
d i1i2

(ω1′, ω2′ ;ω2, ω1)δα1′α2δα2′α1 ]

× δi1′ i2δi2′ i1
}

δ(ω1 + ω2 − ω1′ − ω2′) . (6.36)

The indices s/d correspond to spin and density interactions, respectively. The δ-function
δ(ω1 + ω2 − ω1′ − ω2′) ensures the fulfillment of energy conservation.

Explicit Flow Equations
We are now prepared to calculate the flow equations for γΛ, ΓΛ

s and ΓΛ
d . We start with

the equation for the self energy γΛ. Inserting Eqs. (6.32), (6.35) and (6.36) and into
Eq. (6.26a) and performing the ω2-integration and the spin sums we arrive at

d

dΛ
γΛ(ω1) =

1

2π

∑

ω2=±Λ

[

−2
∑

i2

ΓΛ
d i1i2

(ω1, ω2;ω1, ω2) + 3ΓΛ
s i1i1

(ω1, ω2;ω2, ω1)

+ ΓΛ
d i1i1

(ω1, ω2;ω2, ω1)

]

1

ω2 + γΛ(ω2)
. (6.37)

39



6 The Functional Renormalization Group: Implementation for Spin Systems

Later it will turn out that regarding the second flow equation some symmetries in the
frequencies may be exploited if one transforms the frequency arguments of ΓΛ

s and ΓΛ
d

as follows,

ΓΛ
s/d i1i2

(ω1, ω2;ω3, ω4) → ΓΛ
s/d i1i2

(ω1 + ω2, ω1 − ω3, ω1 − ω4) . (6.38)

Note that due to energy conservation three frequency variables are sufficient. Especially
for the external frequencies ω1, ω1′, ω2, ω2′ we introduce the invariant variables s, t, u
defined by

s = ω1′ + ω2′ , t = ω1′ − ω1 , u = ω1′ − ω2 . (6.39)

Rewriting Eq. (6.37) in terms of these new variables and using γΛ(ω) = −γΛ(−ω) we
obtain our final version of the first flow equation,

d

dΛ
γΛ(ω) =

1

2π

[

− 2
∑

j

(

ΓΛ
d ij(ω + Λ, 0, ω − Λ) − ΓΛ

d ij(ω − Λ, 0, ω + Λ)
)

+3
(

ΓΛ
s ii (ω + Λ, ω − Λ, 0) − ΓΛ

s ii(ω − Λ, ω + Λ, 0)
)

+ΓΛ
d ii(ω + Λ, ω − Λ, 0) − ΓΛ

d ii(ω − Λ, ω + Λ, 0)
] 1

Λ + γΛ(Λ)
.

(6.40)

We emphasize that this equation holds for an arbitrary reference site i.
Next we sketch the derivation of the differential equations for ΓΛ

s and ΓΛ
d . For the sake

of brevity we use the notation

ΓΛ(1′, 2′; 1, 2) = ΓΛ
= i1i2

(1′, 2′; 1, 2)δi1′ i1δi2′ i2 − ΓΛ
× i1i2

(1′, 2′; 1, 2)δi1′ i2δi2′ i1 , (6.41)

where in correspondence to Eq. (6.36) ΓΛ
= and ΓΛ

× are defined by

ΓΛ
= i1i2

(1′, 2′; 1, 2) =
[

ΓΛ
s i1i2

(ω1′, ω2′ ;ω1, ω2)σ
µ
α1′α1

σµ
α2′α2

+ΓΛ
d i1i2

(ω1′, ω2′;ω1, ω2)δα1′α1δα2′α2

]

× δ(ω1 + ω2 − ω1′ − ω2′) , (6.42a)

ΓΛ
× i1i2

(1′, 2′; 1, 2) =
[

ΓΛ
s i1i2

(ω1′, ω2′ ;ω2, ω1)σ
µ
α1′α2

σµ
α2′α1

+ΓΛ
d i1i2

(ω1′, ω2′;ω2, ω1)δα1′α2δα2′α1

]

× δ(ω1 + ω2 − ω1′ − ω2′) . (6.42b)

These quantities indicate the two possibilities of connecting the external fermion lines
of the two-particle vertex. In diagrammatic representation this may be displayed as

ΓΛ
= i1i2

(1′, 2′; 1, 2) =
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

1

2 2’

1’

, ΓΛ
× i1i2

(1′, 2′; 1, 2) =
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

1

2 2’

1’

, (6.43)

where the thick fermion lines are again understood as lines of constant lattice site. Note
that the arguments of ΓΛ

= and ΓΛ
× indicated by numbers are composite indices comprising

only frequency and spin, i.e., 1 = {ω1, α1}. There is a simple relation between ΓΛ
= and

ΓΛ
×,

ΓΛ
= i1i2

(1′, 2′; 1, 2) = ΓΛ
× i2i1

(1′, 2′; 2, 1) . (6.44)
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Figure 6.2: The contributions to the right hand side of Eq. (6.45). Thick fermion
propagators represent lines of constant lattice site. Diagram (a) is the particle-
particle term, (b), (c) and (d) are direct particle-hole terms and (e) is the crossed
particle-hole term. The order of terms is the same as in Eq. (6.45).
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Figure 6.3: The contributions to the self
energy, see Eq. (6.40). Diagram (a) repre-
sents the Hartree term, (b) the Fock term.

Rewriting Eq. (6.26b) in terms of ΓΛ
= and ΓΛ

× the site summations can be easily per-
formed. Comparing the coefficients of δi1′ i1δi2′ i2 on both sides of this equation and using
Eq. (6.44) a differential equation for ΓΛ

= is obtained,

d

dΛ
ΓΛ

= i1i2
(1′, 2′; 1, 2) =

1

2π

∫ ∞

−∞
dω4

∫ ∞

−∞
dω3

∑

α3α4
[

ΓΛ
= i1i2

(1′, 2′; 3, 4)ΓΛ
= i1i2

(3, 4; 1, 2) + (3 ↔ 4)

+
∑

j

ΓΛ
= i1j(1

′, 4; 1, 3)ΓΛ
= ji2

(3, 2′; 4, 2) + (3 ↔ 4)

−ΓΛ
= i1i2

(1′, 4; 1, 3)ΓΛ
= i2i2

(3, 2′; 2, 4) − (3 ↔ 4)

−ΓΛ
= i1i1

(1′, 4; 3, 1)ΓΛ
= i1i2

(3, 2′; 4, 2) − (3 ↔ 4)

+ΓΛ
= i2i1

(2′, 4; 3, 1)ΓΛ
= i2i1

(3, 1′; 2, 4) + (3 ↔ 4)
]

×GΛ(ω3)S
Λ(ω4) . (6.45)

The five terms in Eq. (6.45) have a graphical representation shown in Fig. 6.2. The first
term (a) is the particle-particle term generating ladder-like diagrams with fermion lines
of the same direction. The three contributions (b), (c) and (d) are the so-called direct
particle-hole terms while the last term (e) is the crossed particle-hole graph generating
ladder-like diagrams with fermion lines of the opposite orientation. A special role plays
the term (b) because it is the only contribution that exhibits a closed internal fermion
loop. This bubble can be located on an arbitrary lattice site leading to the site sum-
mation in the second line of Eq. (6.45). Consequently, this is the only term for which a
vertex with a given spatial distance Ri1 −Ri2 on the left hand side of Eq. (6.45) couples
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6 The Functional Renormalization Group: Implementation for Spin Systems

to vertices with all possible distance vectors on the right hand side. For all other terms
the vertex on the left hand side only couples to vertices with the same lattice indices (or
in case of diagrams (c) and (d) also to the on-site vertex). It is the mutual coupling of all
vertices generated by term (b) which makes this contribution essential for spin models
because this property allows to describe spin fluctuations throughout the lattice possibly
leading to collective, long-range ordering phenomena. On the other hand, the remaining
terms (a), (c), (d) and (e) are not able to induce long-range order. Since the bubble
structure of term (b) generates RPA-like diagrams, we refer to it as the RPA-term.

Similar pictures may be drawn for the right hand side of the first flow equation (6.40),
see Fig. 6.3. Here the sum term in the first line of Eq. (6.40) can be identified with the
Hartree term in Fig. 6.3a. The on-site vertices in the other lines correspond to the Fock
graph (b).

The last steps of derivation towards flow equations for ΓΛ
s and ΓΛ

d amount to inserting
Eq. (6.42a) into Eq. (6.45). The final version of the equations is presented in appendix B.
In the following we study some characteristics of the flow equations (6.40), (B.1) and
(B.2) and describe the numerical implementation. At this stage we leave the trunca-
tion scheme unspecified since the two procedures considered in this thesis only affect
the definition of the single-scale propagator: Within the conventional truncation, see
Section 6.4 where the three-particle vertex is completely discarded the standard defini-
tion (6.32) holds while within the Katanin scheme the single-scale propagator appearing
in the second flow equation (6.45) acquires an extra term that contains the derivative
of the self energy, d

dΛ
γΛ, see Section 6.5. Here we also state the initial conditions for γΛ,

ΓΛ
s and ΓΛ

d which are deduced comparing Eqs. (6.34) and (6.36),

γΛ→∞(ω) = 0 ,

ΓΛ→∞
s i1i2

(s, t, u) = 1
4
Ji1i2 , ΓΛ→∞

d i1i2
(s, t, u) = 0 . (6.46)

Approximating the Spatial Dependence
In general, we are dealing with infinite lattices leading to an infinitely large set of equa-
tions for ΓΛ

s i1i2
and ΓΛ

d i1i2
with all possible indices i1 and i2. Since the numerical solution

requires a finite set, the spatial dependence has to be approximated keeping two-particle
vertices only up to a finite distance between i1 and i2 and discarding longer vertices.
The term in Fig. 6.3a as well as the term in Fig. 6.2b contain site summations (also
seen in Eqs. (6.40), (B.1) and (B.2)) which will also be affected by the real-space cutoff
scheme. We discuss three different ways of implementing such a scheme and comment
on their advantages and disadvantages:

(1) Hard-wall boundary conditions: In principle one might consider finite systems
with hard-wall boundary conditions. However, this complicates the numerical ef-
fort enormously as compared to schemes where translation invariance is intact.
The loss of translational invariance means that the self energy carries a site index
and consequently Eq. (6.40) has to be calculated for each site separately. Addi-
tionally, in such a scheme the two-particle vertex would depend on two site indices
i1 and i2 individually instead of just the distance vector between them, leading to
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6.2 FRG and its Implementation for Heisenberg Systems

i2

i1

Figure 6.4: Array of 7 × 7 sites to illus-
trate different approximation schemes for
the spatial dependence of ΓΛ

s/d i1i2
. For de-

tails, see text.

equations for all combinations of pairs (i1, i2) in the finite system (lattice symme-
tries may, however, reduce the effort a bit). For these reasons we will not consider
finite systems, but rather turn to schemes that preserve translation invariance.

(2) Periodic boundary conditions: Such an approach satisfies translation invari-
ance. Consider for example a square lattice that consists of 7 × 7 sites as shown
in Fig. 6.4 (the following discussion can also be generalized to more complicated
lattices). Periodic boundary conditions imply that sites outside the array can be
identified with sites located inside. For the following consideration we marked a
reference site i1 in the center of the array. This site is of course arbitrary. Note
that in such a system the distance of a two-particle vertex is limited to a maxi-
mum of 3 lattice constants in each direction. Longer ones can be identified with
vertices within this limitation. The site summation in the first flow equation, see
Fig. 6.3a, is simply performed by keeping the reference site i1 fixed and adding
up all vertices ΓΛ

d i1i2
when i2 runs over the 7 × 7 site-array. The other site sum-

mation in the RPA term of the second flow equation (see Fig. 6.2b or the sum
term in Eq. (6.45)) is handled as follows: Imagine that on the left hand side of
the equation we consider the flow of the vertex with site indices i1 and i2 (dotted
line in Fig. 6.4). The RPA term exhibits a site summation (with index j) over two
vertices, the first one connecting i1 and j and the second one connecting j and i2.
Then the sum

∑

j runs over all 7 × 7 sites. There are however sites j for which
the vertex between j and i2 seems to be longer than the maximum of 3 lattice
constants in each direction (those sites outside the dashed box in Fig. 6.4) but due
to periodic boundary conditions such a vertex can be related to a vertex within
this limitation. Compared to the hard-wall boundary conditions this scheme has
the advantage that translation invariance is guaranteed and that surface effects do
not occur. On the other hand it has the disadvantage that it still treats a finite
system and that the site summation

∑

j is rather large. The scheme presented
next leads to an improvement in these aspects.

(3) Infinite system with spatially limited vertices: This approach assumes an
infinitely large system but two-particle vertices are only taken into account if their
distance vector R = Ri1 −Ri2 does not exceed a maximal length in each direction.
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In other words R has to satisfy the condition

Max(|Rx|, |Ry|) ≤ L (6.47)

with a given integer L. Longer vertices are treated as zero for all Λ. If L is
chosen as L = 3 then the set of the included vertices is formed by the bonds
from the center site i1 to all other sites of the array in Fig. 6.4. The sum in the
first flow equation is performed as for periodic boundary conditions: The site i1
is kept fixed while i2 runs over all 7 × 7 surrounding sites. In contrast, the sum
over j in the RPA term (assuming again that the flow of the vertex ΓΛ

s/d i1i2
is

considered) only runs over the sites inside the dashed box because only for these
sites the condition Max(|Rx|, |Ry|) ≤ 3 is satisfied for both, the vertex between
i1 and j as well as the vertex between j and i2. Consequently, compared to
periodic boundary conditions this scheme has the advantage that the summation
range of

∑

j is reduced, speeding up the numerics. Furthermore, the system size
within this scheme is in principle infinitely large. The condition (6.47) is of course
an approximation for the spatial dependence of the two-particle vertex but not
in the sense that it implements a finite system. In all our numerics we use this
approach. However, in order to have a measure for the system size (for example for
comparison to other methods considering finite systems) one may relate a system
with a given L to a lattice consisting of (2L+ 1)2 sites, due to the similarities to
periodic boundary conditions.

Treatment of the Frequency Dependences
Having discussed the spatial properties of the flow equations in detail we now turn to the
frequency dependences. A first glance at Eqs. (B.1) and (B.2) reveals a weird frequency
structure but some important features are visible. Each two-particle vertex ΓΛ

s or ΓΛ
d

appearing on the right hand side has exactly one of the invariant frequencies s, t, u
in its arguments. From this one may distinguish the different channels: The particle-
particle channel belongs to the frequency s, the direct particle-hole channel to t and the
crossed particle-hole channel to u. The quantities s, t, u, are the frequencies running
along the internal fermion bubbles formed by GΛ and SΛ. Hence, they are also referred
to as transfer energies. The use of s, t, u as arguments has the advantage that the
vertex ΓΛ

s/d i1i2
(s, t, u) is invariant under each of the transformations s → −s, t → −t

and u → −u. Additionally ΓΛ
s i1i2

(s, t, u) is invariant under s ↔ u and ΓΛ
d i1i2

(s, t, u)
changes sign under s ↔ u. These four symmetries reduce the numerical computation
time by a factor of 24 = 16 because only 1/16 of the space spanned by s, t, u needs to be
considered. The use of these symmetries is essential in order to keep the computation
times tolerable. They are proved in appendix C.

For our numerics we need to approximate the frequency dependences. A finite set of
equations is obtained only if all continuous frequency arguments are discretized. Typi-
cally we use a combination of a linear and a logarithmic mesh symmetrically arranged
around zero frequency (the zero-frequency component itself is not included in the mesh
because vertex functions might be non-analytic there). The linear behavior applies to
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the highest frequencies of the mesh while the logarithmic part assures that the physics
at small energy scales is sufficiently resolved. For all frequency arguments of γΛ and
ΓΛ

s/d the same mesh is used. In general, regarding the first FRG equation, Eq. (6.40), for
each discrete frequency ω one flow equation is obtained, similarly applying to the second
FRG equation: Each set of discrete values s, t, u and each distance vector Ri1 − Ri2 is
associated with one differential equation for ΓΛ

s i1i2
(s, t, u) and ΓΛ

d i1i2
(s, t, u). Because of

the lattice sums and the irregular structure of the frequency arguments these equations
are highly coupled to each other.

In the general case the frequency arguments ω, ω1, ω2, ω3 appearing in γΛ(ω) and
ΓΛ

s/d i1i2
(ω1, ω2, ω3) on the right hand sides of the flow equations do not coincide with

discrete mesh points (however, as already pointed out, one of the frequencies ω1, ω2, ω3

is always given by an external frequency s, t or u and is therefore part of the mesh).
Hence, we need a scheme that associates arbitrary γΛ(ω) and ΓΛ

s/d i1i2
(ω1, ω2, ω3) with

components γΛ(ωn) and ΓΛ
s/d i1i2

(ωn1, ωn2, ωn3), respectively, where the frequencies with
an index n(i) are understood as discrete mesh values. The simplest method is to choose
the nearest discrete mesh point in the frequency space. However, since frequency argu-
ments typically change continuously during the Λ-flow, the nearest mesh point will often
jump to another value leading to an uncontrolled flow behavior. We do not employ this
scheme in our numerics. Instead we use a linear interpolation between mesh points, that
is, for an arbitrary frequency ω the self energy γΛ(ω) is evaluated as

γΛ(ω) =
[

γΛ(ω<)(ω> − ω) + γΛ(ω>)(ω − ω<)
] 1

ω> − ω<

, (6.48)

where ω< is the nearest mesh point smaller than ω and ω> is the nearest mesh point
larger than ω. This scheme is straightforwardly extended to higher dimensions. For
example, a vertex of the form ΓΛ

s/d i1i2
(ω1, ω2, u) as it appears in the crossed particle-hole

channel is approximated by

ΓΛ
s/d i1i2

(ω1, ω2, u) =
[

ΓΛ
s/d i1i2

(ω1<, ω2<, u)(ω1> − ω1)(ω2> − ω2)

+ΓΛ
s/d i1i2

(ω1<, ω2>, u)(ω1> − ω1)(ω2 − ω2<)

+ΓΛ
s/d i1i2

(ω1>, ω2<, u)(ω1 − ω1<)(ω2> − ω2)

+ΓΛ
s/d i1i2

(ω1>, ω2>, u)(ω1 − ω1<)(ω2 − ω2<)
]

× 1

(ω1> − ω1<)(ω2> − ω2<)
. (6.49)

Here u is assumed to coincide with a mesh point. Despite the numerical effort associated
with the evaluation of such an expression it is worth to implement this scheme since it
smooths the flow considerably.
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Numerical Solution of the Flow Equation
The solutions of the equations (6.40), (B.1) and (B.2) at a given Λ0 are found by inte-
grating both sides,

γΛ0(ω) = γΛ→∞ −
∫ ∞

Λ0

dΛ [r.h.s. of Eq. (6.40)] ,

ΓΛ0

s/d i1i2
(s, t, u) = ΓΛ→∞

s/d i1i2
(s, t, u) −

∫ ∞

Λ0

dΛ [r.h.s. of Eq. (B.1)/(B.2)] . (6.50)

It turned out that the Euler method for solving ordinary differential equations is suffi-
cient, i.e., in order to evaluate the integrals numerically, the integration range [Λ0,∞] is
split up into small intervals [Λ0,Λ1], [Λ1,Λ2], . . ., [Λm−1,Λm] and the boundary Λ = ∞
is replaced by some large but finite value Λm. Each interval [Λn,Λn+1] constitutes one

RG step which yields numerical values for γΛn and ΓΛn

s/d. For the integration
∫ Λn+1

Λn
dΛ . . .

being performed in this step all self energies and two-particle vertices appearing in the
integrand are taken from the preceding RG step, i.e., γΛn−1 and Γ

Λn−1

s/d , and are assumed
to be constant in Λ within the interval. The remaining explicit Λ-dependence of the
integrand may be treated by analytical integration. In this way the equations are solved
for arbitrary energy scales Λ0. Of special interest is of course the cutoff-free case Λ0 = 0
where the physical model is recovered. However, for the numerical solution the step size
needs to be reduced during the flow such that the limit Λ = 0 is never reached exactly.
We typically stop the flow at scales several magnitudes below the coupling strength, i.e.,
in an energy regime where no relevant change in the physics is expected.

Spin-Correlation Function and Susceptibility
Primarily, we are less interested in the vertex functions γΛ and ΓΛ

s/d but rather in physical
observables. A quantity that measures the magnetic properties and that is accessible
within our approach is the spin-correlation function χij(iν) defined by

χij(iν) =

∫ ∞

0

dτeiντ 〈Tτ{Sz
i (τ)S

z
j (0)}〉 . (6.51)

Expressing the spins in terms of pseudo fermions and expanding the expectation value
diagrammatically, this object may be related to vertex functions as follows,

χΛ
ij = i j δij +

����
����
����
����
����
����
����

����
����
����
����
����
����
����

i j . (6.52)

In explicit form this equation reads,

χΛ
ij(iν) = −1

2

1

2π

∫

dω GΛ(ω)GΛ(ω + ν) δij

−1

4

(

1

2π

)2 ∫ ∫

dωdω′GΛ(ω)GΛ(ω + ν)GΛ(ω′)GΛ(ω′ + ν)

×
∑

α1′α2′α1α2

ΓΛ(1′, 2′; 1, 2)σz
α1α1′

σz
α2α2′

, (6.53)
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where we already generalized χij(iν) to χΛ
ij(iν) by decorating each flowing object with

an index Λ. The propagators GΛ are the dressed ones defined in Eq. (6.29). Remind the
notation 1 = {ω1, i1, α1}. In Eq. (6.53) we have i1 = i1′ = i, i2 = i2′ = j and ω1′ = ω+ν,
ω2′ = ω′, ω1 = ω, ω2 = ω′ + ν. Since rotational invariance is assumed, the direction of
the spin correlations can be chosen arbitrarily (in our case the z-direction). Inserting
the parametrization (6.36) and using the transfer frequencies, we find

χΛ
ij(iν) = − 1

4π

∫

dωGΛ(ω)GΛ(ω + ν) δij

− 1

8π2

∫ ∫

dωdω′GΛ(ω)GΛ(ω + ν)GΛ(ω′)GΛ(ω′ + ν)

×
[

2ΓΛ
s ij(ω + ω′ + ν, ν, ω − ω′) + ΓΛ

s ii(ω + ω′ + ν, ω − ω′, ν)δij

−ΓΛ
d ii(ω + ω′ + ν, ω − ω′, ν)δij

]

. (6.54)

In each RG step we evaluate this equation for all possible distances Ri − Rj. The
frequency integrations have to be performed numerically. Primarily, we are interested in
the static correlation function χΛ

ij(iν = 0) but in principle the dynamics is accessible as
well. A quantity measurable in experiment is the magnetic susceptibility χ(k, iν) which
is defined in analogy to Eq. (6.51),

χ(k, iν) =

∫ ∞

0

dτeiντ 〈Tτ{Sz(−k, τ)Sz(k, 0)}〉 , (6.55)

with

Sz(k, τ) =
1√
N

∑

i

e−ikRiSz
i . (6.56)

Inserting Eq. (6.56) into Eq. (6.55) (and adding the label Λ for flowing quantities) we
obtain

χΛ(k, iν) =
∑

j

eik(Ri−Rj)χΛ
ij(iν) , (6.57)

where (at least for lattices with a monoatomic unit cell) the site i can be chosen arbitrar-
ily. That is, the k-space resolved susceptibility is the Fourier transform of the correlation
function in real space. Typically, for a given spin model we study the behavior of the
susceptibility χΛ(k) for different wave vectors k during the Λ-flow.

6.3 Static FRG Approach

The numerical treatment of the frequency dependences requires a lot of computational
effort. Hence, it is tempting a use a scheme that neglects these dependences. Before we
consider the general case including all frequencies we briefly discuss the feasibility of a
static approximation which takes into account only the zero-frequency components of the
vertex functions. Such a scheme leads to a huge reduction of the complexity of the flow
equations. However, putting all frequency arguments in the first flow equation (6.40) to

47



6 The Functional Renormalization Group: Implementation for Spin Systems

zero, the right hand side vanishes and the self energy remains zero during the flow. This
can be traced back to the self energy being an odd function in the frequency. As stated
in Chapter 4, the effect of frustration in destroying magnetic order cannot be described
without the influence of the self energy. Therefore, in order to allow for a broadening of
the spectrum we again assume the discontinuous form ΣΛ = −iγΛ sgn(ω), see Eq. (5.5).
However, inserting this form together with the static two-particle vertex into the first

flow equation (6.40) leads again to a vanishing flow, dγΛ

dΛ
≡ 0. It is not possible to obtain

a finite flow for γΛ within a static scheme. Hence, γΛ has to be considered again as a
given phenomenological parameter that is independent of Λ.

We emphasize that in some way the truncation of the flow equations gets simpler
within such a scheme: The conventional truncation and the Katanin truncation discussed
in the next two sections are identical because the extra term in the single-scale propagator
generated by the Katanin scheme contains the derivative of the self energy, d

dΛ
γΛ, which

vanishes here. Since an explicit flow of the three-particle vertex in not considered, the
two-particle vertex is the only flowing quantity.

Flow equations for the zero-frequency components of ΓΛ
s i1i2

and ΓΛ
d i1i2

are obtained
by putting s, t and u equal to zero in Eqs. (B.1) and (B.2). Thereafter, the right hand
sides still contain finite-frequency components which are approximated by the static
ones. Note that the frequency dependence of Σ = −iγ sgn(ω) only affects the internal
integration. We obtain static flow equations of the form

d

dΛ
ΓΛ

s i1i2
=

2

π

1

(Λ + γ)2

[

∑

j

ΓΛ
s i1jΓ

Λ
s j i2

− 2
(

ΓΛ
s i1i2

)2
+ ΓΛ

s i1i2

(

ΓΛ
s i1i1

− ΓΛ
d i1i1

)

]

, (6.58a)

d

dΛ
ΓΛ

d i1i2
=

2

π

1

(Λ + γ)2

[

∑

j

ΓΛ
d i1jΓ

Λ
d j i2

− ΓΛ
d i1i2

(

3ΓΛ
s i1i1

+ ΓΛ
d i1i1

)

]

, (6.58b)

with the initial conditions

ΓΛ→∞
s i1i2

=
1

4
Ji1i2 , (6.59a)

ΓΛ→∞
d i1i2

=0 . (6.59b)

Obviously, Eqs. (6.58b) and (6.59b) are trivially fulfilled by ΓΛ
d i1i2

≡ 0, such that only
Eq. (6.58a) has to be solved numerically. The spatial dependence of this equation is
treated as described in the previous section, i.e., vertices exceeding a certain distance
are neglected. A flow towards finite values for Λ → 0 indicates a paramagnetic phase
while a diverging flow is a sign of a magnetic instability. The type of order can be ex-
tracted by transforming ΓΛ

s i1i2
into Fourier-space and identifying the fastest momentum

component. Applying such a scheme to the J1-J2 model one can draw a phase diagram
in the γ-g-plane, see Fig. 6.5. The figure compares the phase boundaries with the re-
sults from the finite-lifetime theory in Chapter 5. Note that both approaches are closely
related because the FRG includes an RPA contribution in the form of the diagram in
Fig. 6.2b, representing the direct particle-particle channel. Correspondingly, the two
phase diagrams look rather similarly. Again the boundaries are given by straight lines,
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Figure 6.5: Phase diagram in
the γ-g-plane for a static FRG ap-
proximation with a phenomeno-
logical parameter γ (full line).
The dotted line shows the phase
boundaries of the finite-lifetime
ansatz from Fig. 5.2.

but the value of the frustration g for which the paramagnetic phase has its largest extent
moved from g = 0.5 to g ≈ 0.62. This demonstrates that the RPA term is the dominant
one because it is responsible for the formation of magnetic order. On the other hand,
the remaining contributions, i.e., Fig. 6.2a, 6.2c, 6.2d and 6.2e, are only corrections that
do not modify the phase diagram qualitatively.

If we neglect these remaining terms, we can in fact show that the RPA results of the
finite-lifetime approach of Chapter 5 are reproduced. Singling out the direct particle-hole
channel, i.e., the sum term in Eq. (6.58a) we obtain

d

dΛ
ΓΛ

s i1i2
=

2

π

1

(Λ + γ)2

∑

j

ΓΛ
s i1jΓ

Λ
s ji2

. (6.60)

With the numerical solution for ΓΛ
s i1i2

, the correlation function χΛ
ij(iν = 0) can be

computed using Eq. (6.54) which in our case simplifies to

χΛ
ij(iν = 0) =

1

2π(Λ + γ)
δij −

1

π2

1

(Λ + γ)2
ΓΛ

s ij . (6.61)

In fact, if the RPA term is considered individually, as in Eq. (6.60), the restriction
to static vertices is not an approximation because the zero-frequency component does
not couple to finite frequencies. The results are shown in Fig. 6.6 where in accordance
with Fig. 5.3 the damping parameter is chosen as γ = 0.36J1

√

1 + g2. In the ordered
regimes 0 ≤ g . 0.39 and 0.69 . g the corresponding ordering-vector component of
the susceptibility runs into a divergence while in the intermediate paramagnetic regime
finite values are obtained in the limit Λ → 0. It is also shown that these endpoints
indeed coincide with the RPA-susceptibility data from Fig. 5.3.

As an application of this scheme in a different context, exact mean-field results for
the reduced BCS model of superconductors have been reproduced [107]. In particular,
in conjunction with a small symmetry-breaking external field it has been shown that
symmetry-broken phases are accessible (see Refs. [51, 52, 107] and Chapter 8).

In summary, the considerations in this section led to the conclusion that a static
approximation of the FRG equations does not allow to calculate the central quantity
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Figure 6.6: Flowing susceptibility for an static FRG scheme in the RPA channel.
(a) displays the Néel susceptibility and (b) the collinear susceptibility. The phe-
nomenological damping parameter is chosen as γ = 0.36J1

√

1 + g2, with different
values for g. The inset shows the susceptibilities of Fig. 5.3 together with the end-
points of the flow taken from the two main figures (circles). It is seen that both
approaches yield the same results.

governing the destruction of long-range order: the pseudo-fermion spectral width γ.
On the basis of a static FRG approach that treats the damping as a phenomenological
input, we find that the RPA term is the dominant contribution while the other terms
are corrections. Moreover, we have shown that within an FRG scheme in the direct
particle-hole channel the RPA results of Chapter 5 are reproduced. In general, it is
rather difficult to neglect frequency dependences but keeping the effect on the solution
small. Thus, in the remaining part of this thesis we treat the FRG equations in full
complexity, including the dynamics of all frequency dependences. This will lead to a
finite spectral broadening without further assumptions. However, once the damping γ
is considered as a flowing quantity, the truncation scheme requires a closer inspection,
see the discussion in the next two sections.

6.4 Conventional Truncation Scheme

While the approximations concerning the frequency discretization, the spatial truncation
or the finite RG step size, as discussed in Section 6.2 are relatively easy to handle, the
truncation of the FRG equations poses a severe problem. Most FRG studies truncate
the hierarchy by completely neglecting the three-particle contribution. For models with
small or moderate interaction strength this scheme may be well controlled because the
three-particle vertex is at least of third order in the couplings. However, in the strong
coupling limit considered in this thesis it might be insufficient. Nevertheless, in a first
test of our implementation we apply this scheme, which we refer to as the conventional
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Figure 6.7: Flow of the static Néel susceptibility (a) and collinear susceptibility
(b) for different frustrations g within the conventional truncation scheme.

truncation scheme.

Within this approach, the single-scale propagator is defined in the usual way, see
Eq. (6.32). Due to its δ-singularity, the internal frequency integrations in the correspond-
ing flow equations (6.40), (B.1) and (B.2) can be performed analytically,

∫∞
−∞ dω′δ(|ω′|−

Λ) . . . =
∑

ω′=±Λ . . ., simplifying the numerics considerably. In particular, in order to
account for the influence of a spectral broadening it is essential to include the feedback
of the self energy into the flow of the two-particle vertex. The flow equations (6.40),
(B.1) and (B.2) are solved for the J1-J2 model using different frustration parameters
g = J2

J1
as described in Section 6.2. In each RG step the magnetic susceptibilities with

momenta k = (π, π) and k = (π, 0) are calculated, corresponding to Néel order and
collinear order, respectively. Since the two-particle vertex depends on three frequencies
the computational effort grows with the third power of the number of discrete frequen-
cies. Regarding the truncation in real space the computing time grows with the fourth
power of the linear dimension L, see Eq. (6.47), because two spatial dimensions lead to
a quadratic dependence and the internal site summation provides two extra powers.

The results are plotted in Fig. 6.7. It is seen that during the flow the Néel susceptibil-
ity exhibits a divergence for all g . 0.55. On the other hand the collinear susceptibility
appears to diverge for all g & 0.55. In particular, there is no parameter region without
a magnetic instability such that the flow never reaches Λ = 0. In the present approxi-
mation the paramagnetic phase is obviously missing. The abrupt stop of the flow of the
susceptibilities for g ≥ 0.6 in Fig. 6.7a and g ≤ 0.55 in Fig. 6.7b can be traced to the
divergence of the respective other susceptibility. For g at the transition, i.e., between
0.55 and 0.6, the divergence is clearly indicated at the smallest accessible Λ.

The absence of an intermediate non-magnetic phase is quite unsatisfactory. In general,
the flow behavior of the two-particle vertex is strongly influenced by the term 1

Λ+γΛ(Λ)

which is part of the internal fermion bubble PΛ in the differential equations (B.1) and
(B.2). As long as the self energy is not too large, this term increases with decreasing
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Λ and generates the strong rise of the leading susceptibility component. Since the two-
particle vertex couples to the first flow equation, also the self energy undergoes a strong
increase. Hence, on an approach to the instabilities seen in Fig. 6.7, we obtain a diverging
solution of both, the two-particle vertex and the self energy. This behavior is remarkable:
Although a large self energy regularizes the pole of 1

Λ+γΛ(Λ)
the feedback of the self energy

into the two-particle vertex described by that term seems to be too weak to stop the
divergence of the two-particle vertex. In other words, the mechanism of Chapter 5
demonstrating that a large self energy, i.e., pseudo-fermion damping generates disorder
fluctuations obviously fails here. This can be traced back to the fact that within the
conventional truncation scheme the dressed RPA (i.e., the RPA including renormalized
Green’s functions) is not recovered (see next section). We emphasize that on the other
hand, within an approximation scheme that includes the dressed RPA and hence ensures
a proper feedback of the self energy into the two-particle vertex, the behavior observed
here cannot occur: A large self energy would generate strong damping effects which
stop the divergence of the susceptibility, as shown in Chapter 5. An improvement of
such kind will be discussed in the next section. The drawback reported here is actually
of general type: Even for a model consisting of two coupled spins, H = JS1S2, the
correlation function χΛ

12 between the sites diverges during the flow, demonstrating that
magnetic instabilities occur systematically within this scheme. Indeed, in some way, the
conventional truncation reproduces the solution of a bare RPA scheme which generates
magnetic order regardless of the dimension.

In summary, the conventional truncation scheme proved to be insufficient to describe
the melting of long-range order as a result of quantum fluctuations. We identify this
drawback as a consequence of an insufficient feedback of the self energy into the two-
particle vertex. In fact, it turns out that this feedback is so weak that our solutions
resemble the results of a bare RPA scheme where the self energy is completely neglected.
An improvement is discussed in the next section where we consider a modified truncation
scheme.

6.5 Katanin Truncation Scheme

In general, truncating the infinite hierarchy of FRG flow equations is not consistent
with the fulfillment of conservation laws, expressed in terms of Ward identities. For
the conventional one-loop truncation scheme it can be shown [67] that Ward identities
are only fulfilled up to terms of third power in the two-particle vertex. Guided by
the idea of an improved preservation of Ward identities, Katanin recently formulated
a modified scheme [67]. In its original version this approach is based on the two-loop
FRG equations, which include the flow of the three-particle vertex. For these three-
particle contributions one distinguishes between vertex-correction terms and self-energy
correction terms, see [67]. Modifying the flow of the two-loop self-energy corrections in a
certain way it is shown that the fulfillment of Ward identities is improved in the sense that
they are violated only by terms with overlapping loops of fourth order in the two-particle
vertex (instead of a violation by overlapping and non-overlapping loop terms in the
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Figure 6.8: Three-particle contribution to the two-particle vertex flow (left) and
an example for an extra term generated within the Katanin truncation (right). The
diagram on the right is constructed by replacing the single-scale propagator in the
particle-particle channel by a self-energy correction. Similar diagrams exist for the
other channels. Comparison shows that both terms are of the same type (the three-
particle vertices are marked with dashed lines).

unmodified two-loop equations). As a matter of fact, due to the two-loop contributions,
the numerical solution of such a scheme is very challenging. Thus, the full Katanin
regularization has again been modified such that it became amenable to applications.
It is this second version that is now known as the Katanin truncation. Despite its
simplifications it still leads to essential improvements compared to the conventional
truncation, as demonstrated below.

Starting from the one-loop equation (6.26b) the basic change is the substitution of
the single-scale propagator as it is defined in Eq. (6.30) by the total derivative of −GΛ

with respect to Λ,

SΛ(ω) → − d

dΛ
GΛ(ω) = SΛ(ω) −

(

GΛ(ω)
)2 d

dΛ
ΣΛ(ω) . (6.62)

In the expression on the right side the first term stems from the derivative of the cutoff
function and reproduces the standard single-scale propagator while the second term takes
into account the flow of the self energy. We emphasize that the replacement (6.62) is
only made in the second flow equation (6.26b) but not in the first flow equation (6.26a).
In diagrammatic representation the substitution may be displayed as

−→ − d

dΛ
= − ����

����
����
����
����
����

����
����
����
����
����
����

, (6.63)

where the first flow equation (6.26a) has been used for the derivative of the self energy.
The second contribution on right side of Eq. (6.63) generates extra terms if inserted in
the flow equation for the two-particle vertex. An example of such an additional term
is presented in Fig. 6.8. Comparison to the previously neglected diagram shows that
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the extra terms indeed contribute to the three-particle vertex flow. These special three-
particle terms play a crucial role since they assure that the dressed RPA resummation
is recovered as a diagram subset. This issue will be exemplified below.

Katanin Truncation and RPA
As already indicated in the previous section, the property of the Katanin truncation-
scheme to recover the dressed RPA [107] leads to a substantial improvement compared
to the conventional one-loop truncation: It ensures that the coupling between the self-
energy flow and the two-particle vertex flow is strong enough such that the self energy is
able to destroy magnetic order (however, it does not yet ensure that the damping indeed
has the right size to generate the correct phase diagram, see the discussion below). In the
following we discuss this property of the Katanin truncation in some detail. As pointed
out earlier, the RPA contribution is generated by the direct particle-hole channel, i.e.,
by the diagram in Fig. 6.2b containing a site summation. Singling out this term in the
flow equation (B.6), we are left with

d

dΛ
ΓΛ

s i1i2
(s, t, u) =

1

π

∫ ∞

−∞
dω′
∑

j

ΓΛ
s i1j(ω1′ + ω′, t, ω1 − ω′)ΓΛ

s ji2
(ω2 + ω′, t,−ω2′ + ω′)

×
[

PΛ(ω′, t+ ω′) + PΛ(t+ ω′, ω′)
]

, (6.64)

where PΛ denotes the internal fermion loop consisting of the single-scale propagator (as
it is defined within the Katanin scheme) and the Green’s function,

PΛ(ω1, ω2) = −SΛ(ω1)G
Λ(ω2) =

[

d

dΛ
GΛ(ω1)

]

GΛ(ω2) , (6.65)

see also Eq. (B.5). Note that the RPA contribution in the density-interaction sector,
Eq. (B.7), does not develop a finite flow because it is zero in the initial conditions.
The right hand side of Eq. (6.64) includes the transfer frequencies s and u only in the
arguments of Γs. As long as the initial conditions for Γs are independent of s and u, these
frequency dependences may also be omitted at finite Λ. On the other hand, the variable
t explicitly appears in the fermion loop. Consequently, Eq. (6.64) can be written as

d

dΛ
ΓΛ

s i1i2
(t) =

1

π

∑

j

ΓΛ
s i1j(t)Γ

Λ
s ji2

(t)

∫ ∞

−∞
dω′ d

dΛ

[

GΛ(ω′)GΛ(t+ ω′)
]

. (6.66)

This equation has a unique solution which satisfies

ΓΛ
s i1i2

(t) = ΓΛ→∞
s i1i2

+
1

π

∑

j

ΓΛ→∞
s i1j ΓΛ

s ji2
(t)

∫ ∞

−∞
dω′GΛ(ω′)GΛ(t+ ω′) . (6.67)

Due to GΛ→∞(ω) = 0 the initial conditions are correctly incorporated in this equation.
In order to motivate this identity we show a diagrammatic proof in Fig. 6.9. In principle,
Eq. (6.67) can be traced back to the fact that the Katanin truncation includes a total
derivative of the fermion bubble as indicated in Eq. (6.66). Indeed, Eq. (6.67) or Fig. 6.9a
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Figure 6.9: Diagrammatic proof of Eq. (6.66) using the identity (6.67). Dots
and dotted lines indicate Λ-derivatives. Note that the dotted lines denote total
derivatives of the dressed fermion loop. The equation (a) corresponds to Eq. (6.67).
(b) represents the derivative of (a). The right hand side of (b) is obtained by
inserting the bare vertex in (a) into the first graph of the middle part in (b). The
equation (b) is equivalent to equation (c) which directly leads to Eq. (6.66) and to
its diagrammatic analog (d).

are representations of the RPA bubble-chain which proves that the Katanin truncation
reproduces the dressed RPA.

Moreover, using Eq. (6.67), it can be shown that on the single-particle level the Hartree
self-energy is recovered (if it is finite). In Fig. 6.10 we present the corresponding dia-
grammatic proof. Together with Fig. 6.9 it is now obvious that the full RPA + Hartree
resummation is included in the Katanin scheme. Within the present SU(2)-invariant for-
mulation, however, the Hartree self-energy vanishes. In Chapter 8, where we explicitly
take into account symmetry breaking in the form of a small magnetic field in the initial
conditions, the Hartree term is finite and plays a crucial role when the flow approaches
ordered phases.

The above considerations may be straightforwardly extended to other interaction chan-
nels. In particular, it can be shown that the full (dressed) particle-particle ladder as well
as the crossed particle-hole ladder contribute to the approximation. On the level of self
energies the crossed particle-hole ladder ensures the inclusion of the Fock graph while
the particle-particle ladder generates a Fock self-energy with an anomalous propagator.
However, both self-energy contributions vanish because the pseudo-fermion constraint
forbids hopping processes. Nonetheless, the inclusion of the ladder diagrams is essential
in our scheme. We emphasize that the RPA bubble-chain forms the leading contribution
in a 1

S
expansion, where S is the spin length. In a classical system with S → ∞ the bare

RPA becomes exact such that paramagnetic phases are suppressed. Hence, the RPA is
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Figure 6.10: The Hartree resummation within the Katanin scheme. Note that
the single-scale propagator in its conventional form, see Eq. (6.30), is given by a
slashed line whereas total derivatives are represented by dots. The first equation is
the FRG flow equation for the self energy. In the second step the right hand side
of the equation in Fig. 6.9a is inserted. In the third step the first flow equation is
used again. The last step finally corresponds to Eq. (6.63). Integrating the whole
equation immediately leads to the Hartree self-energy.

biased in the sense that it overestimates ordering tendencies. The ladder diagrams on
the other hand compensate for these effects. In particular, the particle-hole ladder can
be considered as the leading contribution in a 1

N
expansion, with N being the dimension

of the symmetry group of the spins. The generalization from SU(2) to SU(N) requires
an extra quantum number attached to the pseudo fermions. In the limit N → ∞ the
results of an RVB mean-field theory are recovered yielding spin liquid behavior [3, 76].
Thus, the inclusion of both, the RPA graph and the crossed particle-hole graph enables
us to adequately account for the competition of magnetic order and disorder in an unbi-
ased fashion. In addition to the bare resummations in the different channels, FRG also
includes mixed contributions, representing subleading orders in the respective limitation
scheme.

Katanin Truncation Applied to the J1-J2 Model

From a numerical point of view, a significant disadvantage of the Katanin truncation is
the fact that the second term of the redefined single-scale propagator, see Eq. (6.62),
does not contain a δ-function that cancels the internal frequency integration. Hence,
the loop integration has to be evaluated numerically by summing up small trapezoidal
elements. Apart from the numerical integration, the implementation of the FRG scheme
follows the explanations in Section 6.2. The two-particle vertex has three frequency
arguments resulting in computation times that grow with the third power of the number
of frequencies. Moreover, due to the one-dimensional internal frequency integration the
computation time depends on the number of integration mesh-points. Concerning the
spatial dependence the computational effort again grows with the fourth power of the
length of the longest two-particle vertex. Typically, we use 64 frequencies and discard
all two-particle vertices with a spatial extent longer than seven lattice spacings, i.e., we
have L = 7 in Eq. (6.47). Exploiting lattice symmetries we end up with approximately
2.5 · 106 coupled differential equations. The numerically determined coupling functions
and self energies are inserted into Eq. (6.54) to calculate the susceptibilities.

The numerical solution is shown in Fig. 6.11. In the course of the flow, the Néel
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Figure 6.11: Flow of the static
susceptibility within the Katanin
truncation scheme for the wave
vectors k = (π, π) and k = (π, 0)
and different parameters g, (a)
g = 0.2, (b) g = 0.55, (c) g = 0.8.

susceptibility for g = 0.2 shows a pronounced increase while the collinear one stays
very small, see Fig. 6.11a. Obviously, at that degree of frustration, the system is in the
Néel phase. At g = 0.8 (see Fig. 6.11c) the behavior is analogous but with interchanged
roles: The collinear susceptibility exhibits a strong rise while the Néel one remains small.
Evidently, the collinear phase can be identified here. So far the results are similar to
those obtained within the conventional truncation. A difference is seen in Fig. 6.11b at
g = 0.55 where both susceptibilities approach finite values for Λ → 0, demonstrating the
existence of a phase with neither Néel nor collinear long-range order. Small oscillations
are a consequence of the discrete frequency mesh and the linear interpolation of the
vertices between adjacent mesh points. Usually, they are suppressed for a denser mesh
but cannot be avoided entirely. Typically, the flow is stopped at Λ ≈ 0.01J1 but can be
easily extrapolated to Λ = 0 since no relevant processes are expected below that scale.

We emphasize that in magnetic phases we never observe real divergences of the dom-
inant susceptibility. When Λ gets too small, the increase in the susceptibility suddenly
stops and the flow exhibits an unstable and wiggly behavior. The data in Fig. 6.11a
and 6.11c only represents the smooth part of the flow whereas Fig. 6.12 also shows the
unstable flow. In fact, we should not expect diverging susceptibilities. Remind that the
generic outcome of our FRG scheme are the spin-spin correlations in real space. A single
correlator of two spins with a specified distance should not diverge on an approach to
a magnetic phase. Divergences in ordered regimes occur because the correlations do
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Figure 6.12: Flow of the
static Néel susceptibility within
the Katanin truncation scheme for
g = 0.1 showing also the unphysi-
cal part of the flow.

not decay to zero in the limit of long distances. Hence, only for infinitely large systems
the Fourier transform of the correlation function diverges at the corresponding order-
ing vector. On the other hand, we keep only a limited range of spin-spin correlations
and consequently the Fourier transform includes a finite site summation that cannot di-
verge. Nevertheless in magnetic phases the flow enters a regime where typical ordering
length-scales become larger than the extent of the longest correlations. As illustrated
in Fig. 6.12, below that Λ-scale the flow is unphysical (in Fig. 6.12 below Λ ≈ 0.45):
Here the susceptibilities depend very sensitively on the discretization of the frequencies,
leading to large oscillations. A different mesh changes the flow behavior considerably.
Interestingly the characteristic step at Λ ≈ 0.45 is smoothened if one omits small fre-
quencies in the mesh. In that case the Goldstone mode is insufficiently resolved such
that critical behavior is suppressed. Furthermore finite size effects are not negligible.
Considering larger system sizes one can follow the flow to larger susceptibilities and finds
a steeper increase before the breakdown. These observations demonstrate that the flow
is badly converged below the critical Λ-scale which is consistent with an ordering insta-
bility. However, in the thermodynamic limit and with a sufficient number of discrete
frequencies we expect a smooth diverging solution.

We also note that within the conventional truncation of Section 6.4 we obtain real
divergences of the susceptibilities. Even though this is the behavior one would naively
expect on an approach to a magnetic instability, it is an unphysical artefact of the
improper approximation because there the spin-spin correlations diverge individually.
The oscillations in the flow which are a consequence of the frequency discretization
and the interpolation between the mesh points may be considered as a measure for the
stability of the solution and hence also for the size of the magnetic fluctuations. In fact,
far away from ordered phases, i.e., at g ≈ 0.55, the oscillations are the smallest.

In order to further investigate the properties of the paramagnetic phase, we have
calculated the susceptibilities at additional parameter values. The results in the physical
limit Λ = 0 are shown in Fig. 6.13. Deep inside the paramagnetic phase our results
are well-converged. With increasing g we observe a decreasing Néel susceptibility and
an increasing collinear susceptibility. The point where Néel-like fluctuations loose out
compared to collinear fluctuations lies at g ≈ 0.6 in correspondence with the results
of the static FRG approach in Section 6.3, i.e., clearly higher than the classical value
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g = 0.5. Near the phase boundary to collinear order, which turns out to be in the
range gc2 ≈ 0.66 . . . 0.68, the collinear susceptibility shows a pronounced increase until
at g & gc2 a characteristic step as in Fig. 6.12 emerges. In that parameter regime we
need large system sizes, in order to obtain well-converged results. A finite size scaling
(see thin red lines in Fig. 6.13) considerably enhances the collinear susceptibility such
that a beginning divergence is visible. The situation is very different near the phase
boundary to Néel order. A divergence of the Néel susceptibility is not seen and finite-
size effects play a minor role. Approaching the paramagnetic phase from below the
step-like instability breakdown smooths continuously without any significant change in
the susceptibility at Λ = 0. Therefore, it seems to be difficult to access the critical
region and to obtain reliable data, see the dotted part of the blue line in Fig. 6.13. An
estimation of the phase boundary leads to the parameter region gc1 ≈ 0.4 . . . 0.45. Both
transition points are in good agreement with previous studies [43, 46, 62, 109, 123, 131].
So far we notice that the behavior of the system near the two phase boundaries is very
different. To draw a conclusion concerning the order of the transitions, however, the
present investigation is not sufficient.

Even though the damping γΛ is no physical observable, it is interesting to study this
quantity, especially in comparison with the phenomenological spectral broadening from
Chapter 5. The damping which is related to the self energy via Eq. (6.35) is directly
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6 The Functional Renormalization Group: Implementation for Spin Systems

generated by the first flow equation. Fig. 6.14 shows the FRG solution γΛ=0(ω) together
with the frequency-independent damping γ = 0.36J1

√

1 + g2 used previously. The FRG
result falls off with increasing frequency (typically as 1

ω
for large enough frequencies),

however, in the non-magnetic phase at g = 0.55 we find that both quantities compare
quite well at relevant energy scales ω ∼ J .

To conclude, in this section we demonstrated that the inclusion of certain higher-
order terms in the RG equation for Γ as depicted in Fig. 6.8 turns out to be essential
for the competition between order and disorder. The damping has indeed just the
right size to reproduce the phase diagram found in previous studies. We repeat the
mechanism that leads to the correct results: Unlike the conventional truncation, the
Katanin scheme assures a sufficient feedback of the self energy into the two-particle
vertex. This is achieved by the extra term in the single-scale propagator, see Eq. (6.62),
which guarantees that the dressed RPA is generated during the flow. According to the
discussion in Chapter 5, in that case, the damping controls the disorder fluctuations of
the system. However, the RPA considered separately is finite only in the spin-interaction
sector but not in the density-interaction sector. Hence, it does not generate a finite
self energy if coupled back into the Hartree term of the first flow equation. To say
this in other words, the RPA + Hartree approximation is the leading term in a 1

S

expansion and therefore overestimates order tendencies. The other graphs such as the
Fock term of the first flow equation as well as the crossed particle-hole and particle-
particle terms of the second flow equation compensate for this bias since they produce
a finite damping. Especially, the crossed particle-hole ladder which is the leading order
in a 1

N
expansion can be viewed as the counterpart of the RPA term because it favors

spin-liquid behavior. Concerning both contributions, the full, dressed diagram series
are included which assures that order and disorder are treated on equal footing. This
generates the correct pseudo-fermion damping.

6.6 Dimer and Plaquette Order

Before we turn to the discussion of further spin systems, in this section we present a
technique that allows us to characterize the nature of paramagnetic phases. Even if a
system is magnetically disordered there might still be some kind of hidden long-range
order in the form of a spontaneous dimerization with a certain singlet-bond pattern.
Concerning the J1-J2 model, several states are currently debated: Firstly, a VBS with
a columnar dimer arrangement which breaks translation invariance along one lattice
direction as well as rotation symmetry and secondly a plaquette VBS for which the
dimerization takes place on units of 2 × 2 plaquettes. The latter breaks translation
symmetry in both directions while the rotation symmetry is intact. However, as a third
alternative, the system might also be in a spin-liquid ground state that does not exhibit
any kind of broken symmetries. Until now, there is remarkable disagreement in the
literature concerning these three possibilities.

In order to probe the paramagnetic phase with respect to these states we add a small
dimer-field perturbation to the Hamiltonian and investigate the response [28, 30, 43,
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(a) (b) Figure 6.15: Patterns for (a)
columnar dimerization and (b)
plaquette dimerization. Red
bonds correspond to strengthened
and green bonds to weakened in-
teractions in the Hamiltonian H+
Fd or H + Fp
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62, 125, 131, 132]. In the context of FRG this concept has already been applied in
Refs. [51, 107]. The fields can be chosen as

Fd = δ
∑

i,j

(−1)iSi,jSi+1,j ,

Fp = δ
∑

i,j

[

(−1)iSi,jSi+1,j + (−1)jSi,jSi,j+1

]

, (6.68)

for the columnar dimer and plaquette order, respectively. Here i, j are components
of the position vector and δ is an energy much smaller than J1 and J2. Note that
the expectation values 〈Fd〉 and 〈Fp〉 are the order parameters of these states. Fd (see
Refs. [28, 30, 43, 62, 125, 131, 132]) and Fp (see Refs. [43, 62]) break the above-mentioned
lattice symmetries and generate the two dimerization patterns shown in Fig. 6.15. Pos-
sible instabilities should be visible as divergences in the corresponding equal-time corre-

lation functions χd/p =
d〈Fd/p〉

dδ
|δ=0.

A perturbation in the form of two-body spin fields as shown in Eq. (6.68) amounts to a
slight strengthening or weakening of the interactions in the initial conditions, according
to the dimerization patterns. In the course of the flow we calculate the correlations
of strengthened and weakened bonds and its relative difference. We define equal time
dimer and plaquette correlation functions by

χΛ
d/p =

J1

δ

∣

∣

∣

(

〈〈Si,j,Si+1,j〉〉Λd/p − 〈〈Si+1,j,Si+2,j〉〉Λd/p

)
∣

∣

∣

(

〈〈Si,j,Si+1,j〉〉Λd/p + 〈〈Si+1,j,Si+2,j〉〉Λd/p

) . (6.69)
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6 The Functional Renormalization Group: Implementation for Spin Systems

Here the index d/p indicates that the correlator 〈〈. . .〉〉 is calculated with the Hamiltonian
H + Fd/p. The factor δ in the denominator eliminates the dependence on the strength
of the perturbation such that the flow of χΛ

d/p starts with the initial value χΛ=∞
d/p = 1.

An increase (decrease) during the flow shows that the system supports (rejects) the
perturbation. Note that we again apply Katanin’s truncation scheme.

The columnar dimer correlation χΛ
d is plotted in Fig. 6.16. It is seen that this quantity

increases considerably during the flow. At g = 0.55 the perturbation is enhanced by a
factor of ≈ 3.8 in the limit Λ → 0 but a divergence does not occur. Even larger
responses are obtained with increasing g, see the inset of Fig. 6.16. Remarkably we
obtain plaquette correlations χΛ

p with the same strength. Hence, the FRG scheme is
apparently not able to distinguish between dimer and plaquette correlations. We do
not exclude instabilities for this types of order: In fact, an unambiguous detection of a
valence-bond dimerization requires the explicit inclusion of dimer susceptibilities in the
form of the four-particle vertex. This is, however, beyond the scope of the present FRG
formulation. On the basis of our approach we can at least distinguish between regimes
of different dimer-fluctuation strengths and test different patterns against each other.

In conclusion we presented a method that allows to estimate dimer fluctuations in
paramagnetic phases. Applied to the J1-J2 model we find enhanced columnar dimer and
plaquette responses of equal strength. Especially near the transition to the collinear
ordered phase a dimerization is favored. However, a clear detection of such instabilities
requires further diagrammatic contributions. In Section 7.5 we revisit this scheme in the
context of the Heisenberg model on the honeycomb lattice.
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Our findings in the previous chapter led to the conclusion that FRG with pseudo fermions
in conjunction with the Katanin truncation scheme is capable of reproducing the correct
phase diagram of the J1-J2 Heisenberg model. We demonstrated that the competition
between order and disorder is properly described, yielding reasonable values for the
transition points. In the present chapter we will answer the question if our method
is equally powerful when applied to other spin models with different arrangements of
the interactions or different underlying lattices. In principle, a generalization of such
kind may be implemented straightforwardly since a modification of the interactions only
requires an adjustment of the initial conditions. The implementation of a different lattice
amounts to rearranging the internal site summations. Below, we consider models of very
different kind, exhibiting rich phase diagrams, but all these models have in common that
order and disorder tendencies compete against each other such that paramagnetic phases
are obtained. A first generalization of the J1-J2 model, known as the J1-J2-J3 model,
is investigated in Section 7.1 where we add a third-nearest neighbor interaction. In
Section 7.2, we consider the Heisenberg model on a checkerboard lattice which is similar
to the J1-J2 model but with an arrangement of interactions that enlarges the unit cell.
After these discussions of square-lattice models it appears to be natural to address
systems on a triangular lattice. Firstly, in Section 7.3 we study the Heisenberg model
on a bare triangular lattice, also allowing for anisotropic interactions in real space. We
continue examining non-Bravais like lattices in the following two sections: The Kagome
lattice, see Section 7.4, is constructed by omitting certain sites of the triangular lattice
which enhances frustration effects. Thereafter, the honeycomb lattice with interactions
up to the third-nearest neighbors is considered in Section 7.5. Finally, Section 7.6
investigates a generalization of the Heisenberg model on the honeycomb lattice which also
includes ferromagnetic interactions and anisotropies in spin space. This model is known
as the Kitaev-Heisenberg model. In particular, the systems described in Sections 7.3,
7.4 and 7.6 are interesting also from an experimentalists point of view as there exist
materials or at least promising candidates for such model Hamiltonians.

7.1 The J1-J2-J3 Heisenberg Model

One approach to shed additional light on the phase diagram of the J1-J2 model is to
embed its analysis into a larger parameter space. In this context the J1-J2-J3 model [99]

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj + J3

∑

〈〈〈i,j〉〉〉
Si · Sj (7.1)
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has become of renewed interest recently. The spin operators are located on the sites of
the planar square lattice shown in Fig. 7.1, and J1,2,3 ≥ 0 are antiferromagnetic exchange
couplings ranging from first, i.e. 〈i, j〉, up to third-nearest neighbors, i.e. 〈〈〈i, j〉〉〉. The
J1-J2 model is obviously recovered in the case J3 = 0. In the following we set J1 = 1.

Classically, the J1-J2-J3 model allows for four ordered phases [33, 47], comprising a
Néel, a collinear, and two types of spiral states which are depicted in Fig. 7.1. Except for
the transition from the diagonal (q, q)-spiral to the (π, q)-spiral state, which is first order,
all remaining transitions are continuous. Early analysis of quantum fluctuations [47]
found the Néel phase to be stabilized by J3 > 0, with the end-point of the classical
critical line J3 = 1/4 − J2/2 at J2 = 0 shifted to substantially larger values of J3. First
indications of non-classical behavior for finite J3 > 0 where obtained at J2 = 0. A “spin-
Peierls state” was found in exact diagonalization (ED) studies in the vicinity of J3 ∼ 0.7,
between the Néel phase and the diagonal spiral [72]. Monte-Carlo and 1/N expansion
resulted in a succession of a VBS and a Z2 spin-liquid in this region [29]. Quantum
paramagnetic behavior was also conjectured at finite J2, J3, along the line J2 = 2J3 using
Schwinger-Bosons [33]. More recent analysis, based on ED and short-range valence-bond
methods found an s-wave plaquette VBS, breaking only translational symmetry, along
the line J2 + J3 = 1/2, up to J2 . 0.25 [74]. This VBS’s region of stability was then
studied by series expansion in the (J2, J3) plane [11]. Results from projected entangled
pair states (PEPS) at J2 = 0 supported the notion of an s-wave plaquette along the
J3-axis [85]. However, the symmetry of the non-magnetic state remains under scrutiny,
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Figure 7.3: Brackets: wave
vector (kx, ky) in units of π
at the maximum of the static
susceptibility from FRG.
Solid lines indicate the clas-
sical critical lines. Blue, red
and green frames around the
brackets correspond to Néel,
collinear, and spiral states,
respectively. Thin frames
mark regions of uncertain
flow behavior.

since a truncated quantum-dimer model [92] indicates that the potential plaquette VBS
has a subleading columnar dimer admixture in the vicinity of J2 ≈ J3 ≈ 0.25, similar to
ED studies [119]. This implies broken translation and rotation symmetry. On the other
hand, for J2 & 0.5, ED shows strong columnar dimer correlations [119]. Finally, the
order of the transitions from the quantum paramagnetic into the semiclassical phases,
and in particular to the diagonal spiral, remain an open issue.

Using FRG in conjunction with the Katanin truncation in the way described in Sec-
tions 6.2 and 6.5, we intend to further clarify the extent of the paramagnetic region. The
phase diagram has been calculated in the J2-J3-plane with steps of 0.1 for 0 ≤ J2,3 ≤ 1.
Due to the two-dimensional parameter space a large computational effort is required to
locate the phase boundaries with sufficient accuracy. For the present calculation we have
used 46 frequency points. The spatial dependence of the spin-correlation function was
kept up to lattice vectors R satisfying Max(|Rx|, |Ry|) ≤ 5 and the correlations were
put to zero beyond that range. This proved to be sufficient for a first exploration of the
phase diagram. As described in Section 6.5, in magnetic phases we see a pronounced sus-
ceptibility peak in momentum space that rapidly grows during the Λ-flow. At a certain
Λ the onset of spontaneous long-range order is signalled by a sudden stop of the smooth
increase and the onset of an unstable, oscillating flow behavior. On the other hand, in
non-magnetic phases a smooth flow and broad susceptibility peaks are obtained. This
distinction allows us to draw the phase diagram of the model, which is shown in Fig. 7.2.
Regarding the error bars in Fig. 7.2 we note that bars of size 0.1 into the J3-direction
do not reflect errors of the FRG, but are only due to the finite (J2, J3)-spacing and, in
principle, apply also to the J2-direction. However, especially near the phase boundary
between the spiral ordered and the disordered phase, at large J3, we encounter enhanced
uncertainties. Here (J2, J3)-regions occur where it is not clear if the behavior of the flow
should be interpreted as magnetic or non-magnetic, because the characteristic step-like
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Figure 7.4: Static susceptibility for wave vectors kx, ky ∈ [0, π] for various values
J2 and constant J3 = 0.4. The black dots mark the positions of the maxima.

instability breakdown is not as pronounced as in Fig. 6.12. In Fig. 7.2 these regions lead
to error bars larger than 0.1. Despite these uncertainties FRG reproduces the results of
previous studies (as series expansion [11], see also Fig. 7.2) quite well.

Since FRG evaluates the static susceptibility over the complete Brillouin zone, it allows
to determine the wave vector kmax of the dominant short-range magnetic correlations or
the pitch vector of the magnetic order parameter. These wave vectors are depicted in
Fig. 7.3 together with the quantum phases discussed already in Fig. 7.2. Both, in the
ordered as well as in the paramagnetic phase we find the wave vectors at the maximum
of the susceptibility to agree approximately with those obtained for the purely classical
model in Fig. 7.1. This is particularly interesting with respect to the (π, q)-spiral state,
which seems to exist only in the form of short range correlations in Fig. 7.3.

In order to illustrate how the dominant fluctuations in the disordered phase change
with varying couplings, in Fig. 7.4 we show results for the static susceptibility as a
function of the k-vector in the Brillouin zone with kx, ky ∈ [0, π] at fixed J3 = 0.4 for
various values of J2. For J2 = 0 we see a broadened peak at a (q, q)-position which
has already moved away from the Néel-point k = (π, π). This peak further moves
along the Brillouin-zone diagonal for increasing J2. For J2 & 0.6 it is seen that the
peak smoothly deforms into an arc and that the weight at the Brillouin-zone boundary
increases. Between J2 = 0.7 and J2 = 0.8, close to the classical first-order transition,
the ridge has constant weight and the maximum jumps to a (π, q)-position to then
further evolve towards the collinear points k = (0, π), k = (π, 0) and to acquire more
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J1

J’2

Figure 7.5: The checkerboard
lattice. Dots indicate the spins
of the Heisenberg model.

prominence. Therefore, remnants of the classical correlations survive into the non-
magnetic regime.

In conclusion, we find a phase diagram of the J1-J2-J3 model with a large paramagnetic
region, which is in good agreement with previous studies. This demonstrates that the
FRG is capable to describe the interplay of different phases even if more complicated
types of order such as spiral order are involved. Moreover, it is shown that the k-
space resolved susceptibility allows to identify the dominant order fluctuations in the
paramagnetic phase. These fluctuations are found to be remnants of the classical order.

7.2 The Heisenberg Model on a Checkerboard Lattice

Instead of adding further exchange couplings as done in the previous section for the J1-J2-
J3 model we now consider a different modification of the J1-J2 model, referred to as the
checkerboard lattice. Compared to the J1-J2 model, in one half of the square plaquettes
the diagonal couplings J2 are omitted such that empty plaquettes and plaquettes with
diagonal interactions form a checkerboard pattern, see Fig 7.5. In the literature this
system is also called the planar pyrochlore or the crossed chain model. The Heisenberg
Hamiltonian of the system is given by

H = J1

∑

〈i,j〉
Si · Sj + J ′

2

∑

〈〈i,j〉〉′
Si · Sj , (7.2)

where the sum
∑

〈i,j〉 runs over the usual nearest-neighbor pairs on a square lattice while

〈〈i, j〉〉′ denotes next-nearest pairs on one half of the square plaquettes as indicated in

Fig. 7.5. The dimensionless parameter g′ =
J ′
2

J1
spans the phase diagram of the system.

One motivation for studying this model comes from materials such as Na2Ti2Sb2O
and Na2Ti2As2O for which the Hamiltonian (7.2) is believed to give an appropriate
description [122]. The oxygen atoms form a square lattice and the titanium atoms sit
at the bond centers such that they are also arranged in a square lattice. The spin-half
magnetic moments are provided by the titanium atoms. A direct overlap between the
titanium orbitals yields nearest neighbor couplings J1 while an interaction mediated by
the oxygen orbitals results in the couplings J ′

2.
The theoretical interest in the model stems from the fact that the frustrating ar-

rangement of the interactions leads to a melting of magnetic order. It is well known
that the system features a Néel phase for small g′, similar to the J1-J2 model. How-
ever, due to the smaller number of diagonal couplings, a larger J ′

2 is needed to melt
the magnetic order. Both, spin-wave theory [26, 122] and exact diagonalization [117]
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consistently find that the Néel order survives up to a critical coupling g′c ≈ 0.75. There
is general agreement that beyond that value the system is in a non-magnetic valence
bond solid phase with a large spin gap to triplet excitations of the order of the exchange
couplings [18, 21, 26, 48, 89, 117]. It is reported that this valence-bond ground state may
be well approximated by a product of disconnected singlet plaquettes on one half of the
non-crossed unit squares [18, 21, 26, 48, 117]. The spin gap itself is filled with a large
number of singlet states [21, 48, 89], which, however, do not form a continuum above
the ground state. There is indication that also the singlet excitations are gapped [48].
According to exact diagonalization the valence-bond solid phase includes the isotropic
point g′ = 1 [117]. This point is of special importance as explained below. As one further
increases g′, the diagonal J ′

2-bonds effectively form crossed spin chains which are weakly
coupled by the frustrating interaction J1. The limit g′ → ∞ where the chains are com-
pletely decoupled is well understood: Each spin chain is in an ungapped, non-dimerized
spin-liquid state with deconfined spinons as the elementary excitations. However, for a
small but finite interchain coupling J1 the situation is less clear. Early random phase
approximation (RPA) [130] and exact diagonalization studies [117] conclude that the 1D
spin-liquid behavior remains intact when a small J1 is switched on. They consider the
checkerboard lattice as a good candidate for a 2D system which retains 1D Luttinger
physics and call the corresponding phase the “sliding Luttinger liquid phase”. Exact
diagonalization finds a rather large extent of this state, i.e., down to g′ ≈ 1.25 where it
contacts the aforementioned valence-bond solid [117]. In contrast, quite recent studies
based on the renormalization group method and one-dimensional bosonization come to a
different conclusion. They find a dimerized state in the large g′-regime with a crosswise
arrangement of singlets in the unit squares with diagonal interactions [129].

The isotropic point g′ = 1 is of special interest since frustration effects are expected
to be exceptionally strong there. At this point the system can be considered as the 2D
version of the pyrochlore lattice which is built up of corner sharing tetrahedra forming
a 3D lattice altogether. Despite the difficulties in the numerical treatment of 3D spin
models it is a good candidate for a quantum spin liquid. The checkerboard model at
g′ = 1 has often been perceived as a simplified system for the pyrochlore lattice since
its main features are retained: Firstly, the unit squares with diagonal J ′

2-bonds have the
connectivity of tetrahedra and secondly, these tetrahedra are only linked at their corners
such that the local environment of each site is the same as in the pyrochlore lattice. We
emphasize that systems with triangular building blocks (i.e., triangles or tetrahedra)
coupled in a corner sharing fashion generally exhibit large frustration effects. Note that
the Kagome lattice that will be studied in Section 7.4 also falls into this class of systems.

We mention that the corner sharing property has an interesting implication on the
corresponding classical large-spin model. Generally, on these lattices the Hamiltonian
can be rewritten as the sum of the squares of the total spin of corner sharing units α,

H = J
∑

〈i,j〉
Si · Sj =

J

2

∑

α

S2
α + const. , (7.3)

where Sα is the total spin in the unit α. Thus, whenever Sα = 0 for each α, a classical
ground state is obtained, resulting in a macroscopic classical degeneracy. However,
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Figure 7.6: Flow of the static
Néel susceptibility in the checker-
board model for g′ = 0.7 and for
the isotropic case g′ = 1.

as pointed out in Ref. [48], this degeneracy is lifted in the quantum case and is not
a sufficient condition for a continuum of singlet states in the corresponding quantum
model.

In our FRG study presented below we concentrate on the regime where g′ is not too
large, i.e., 0 ≤ g′ ≤ 2. The weakly coupled chain limit g′ ≫ 1 is hardly accessible within
our approach as will be exemplified in Chapter 10. Concerning the method, we again
follow the route described in Sections 6.2 and 6.5 with the only exception that we have
to account for the polyatomic unit cell of the lattice (the checkerboard lattice has a
two-atomic unit cell). In this case the two-particle vertex is not uniquely determined
by the distance vector Ri1 − Ri2 and moreover it is no longer an even function in the
transfer frequencies s and u, see the considerations in appendix C. Instead the two-
particle vertex is invariant under the combined transformations s → −s, i1 ↔ i2 and
u → −u, i1 ↔ i2 (the invariances under t → −t and s ↔ u remain valid). Since our
FRG algorithm uses only positive frequencies s, t, u, the transformation of a two-particle
vertex into this sector possibly requires an exchange of the sites, i.e., i1 ↔ i2. However,
this operation can be easily implemented in our computer code.

Furthermore, the two-atomic unit cell has to be accounted for when we calculate the
k-space resolved susceptibility χΛ(k). Inserting Eq. (6.56) into the definition of χΛ(k),
Eq. (6.55), we now obtain

χΛ(k, iν) =
1

2

∑

i∈α

∑

j

eik(Ri−Rj)χΛ
ij(iν) , (7.4)

where the sum
∑

i∈α runs over all sites of an arbitrary unit cell α. The prefactor 1
2

is the inverse of the number of sites in a unit cell. Note that χΛ(k) is not periodic
with respect to the first Brillouin zone of the lattice but rather with respect to the
extended Brillouin zone. The latter is constructed using the reciprocal lattice vectors
of the underlying square lattice, i.e., in our convention Néel order still corresponds to a
wave vector k = (π, π). In order to show the full information contained in k space we
always depict the extended Brillouin zone in the following.

As we sweep through the phase diagram, beginning at small g′, we first observe the
expected Néel state which manifests itself in a strong rise of the static susceptibility in
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Figure 7.7: Static susceptibility for wave vectors kx, ky ∈ [0, π] in the extended
Brillouin zone upon varying g′ across the transition point g′ ≈ 0.75 and the isotropic
limit g′ = 1. Note that the plot for g′ = 0.7 shows the susceptibility just before
the breakdown of the flow (i.e., at Λ ≈ 0.27) while the other plots display the case
Λ = 0.

the corresponding (π, π)-channel, and eventually in a sudden breakdown of the smooth
flow. Even for a rather large parameter g′ = 0.7 this behavior is still visible in the
blue curve of Fig. 7.6. However, due to the sizeable frustration in that regime, the
breakdown and the step-like behavior is not as pronounced as for smaller g′. Also the
Λ-scale of the breakdown is reduced (for g′ = 0.7 this scale is found as Λ ≈ 0.27). In a
k-space plot of the first quadrant of the extended Brillouin zone the frustration effects
manifest itself in a broadened peak at k = (π, π), see the upper left plot in Fig. 7.7
which displays the susceptibility at Λ ≈ 0.27, i.e., just before the breakdown of the
flow. (We emphasize that even in an unfrustrated system it cannot be expected that
the susceptibility possesses sharp δ-peaks as the notion of magnetic long-range order
would imply. On the one hand, this is certainly a consequence of the finite size of the
correlation area. On the other hand, also the discrete frequency meshes smear out the
response peaks.)

In fact, between g′ = 0.7 and g′ = 0.8 the breakdown of the flow smoothes such
that we can pinpoint the phase transition to g′ ≈ 0.75, which agrees well with spin-
wave theory [26, 122] and exact diagonalization [117]. Note that a phase transition
manifests itself in the flow behavior rather than in the peak structure in k-space. Inside
the paramagnetic phase (g′ & 0.75) the peak at k = (π, π) further broadens until
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in the isotropic limit g′ = 1 the susceptibility has (almost) constant weight at the
boundaries of the Brillouin zone, see Fig. 7.7 (all plots in Fig. 7.7 except the one for
g′ = 0.7 show the susceptibility at Λ = 0). At this point one cannot even identify
residual magnetic fluctuations because any peak structure has completely disappeared,
i.e., Néel- and collinear fluctuations are almost equally strong. In other words, the spin-
spin correlations are of very short-range type as one would expect for a system with a
large spin gap. Correspondingly, the susceptibility shows a very smooth flow without
any sign of a magnetic instability, see Fig. 7.6. The isotropic limit g′ = 1 is in fact a
special point in the phase diagram as seen in Fig. 7.7: For g′ > 1 the susceptibility at
k = (π, π) rapidly decreases, leaving behind residual peaks in the collinear susceptibility-
channel. However, the course of the susceptibility flow in those parameter regimes gives
no indication for an instability of this kind.

We did not yet calculate dimer responses for the checkerboard lattice which we defer
to future works. On the basis of our spin-susceptibility data we can at least say that
there is no qualitative change as we cross the value g′ ≈ 1.25 where the plaquette order
is expected to break down [117].

In conclusion our FRG calculation reproduces the correct transition point between
the Néel phase and the paramagnetic phase. Above this point we obtain reasonable
fluctuation profiles that do not favor any specific k-vector at the maximally frustrated
point g′ = 1 but show tendencies for collinear fluctuations when g′ > 1.

7.3 The Anisotropic Triangular Heisenberg Model

The antiferromagnetic Heisenberg model on a triangular lattice [97] represents a proto-
type of a geometrically frustrated quantum many-body system. Due to the geometry
of the lattice, frustration is generated even if no next-nearest neighbor interactions are
present. In this section we consider the Heisenberg model on a triangular lattice with
spatially anisotropic interactions (ATLHM), however, special emphasis will be laid on
the isotropic case. The ATLHM attracted considerable attention in recent years as an
experimentally accessible testing ground for quantum-magnetism disorder phenomena.
The Hamiltonian is given as

HATLHM = J
∑

〈i,j〉∨

Si · Sj + J ′
∑

〈i,j〉−

Si · Sj, (7.5)

where the coupling J ′ applies to the bonds along (horizontal) one-dimensional chains
and J is the coupling between them, forming a triangular lattice altogether (Fig. 7.8a).
We define ξ = J ′/J as a parameter to interpolate between the effective square-lattice
limit ξ = 0 and the disordered isolated chain limit ξ → ∞.

Experiments on Cs2CuCl4 (ξ ∼ 2.94) provide an excellent testing ground of discussing
various features of spin-liquid behavior [39]. (Influences such as Dzyaloshinskij-Moriya
interactions complicate the experimental picture.) The formation of a magnetically
ordered state for smaller ξ opposed to disorder tendencies for larger ξ can be nicely
studied for the organic κ− (BEDT−TTF)2X family. While X = Cu2[N(CN)2]Cl shows
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Figure 7.8: a) The triangular lattice structure. The red, horizontal bonds corre-
spond to couplings J ′ the others to couplings J . b) Schematic plot of the hexagonal
Brillouin zone. Different magnetic order resides at different points (shown: AFM
Néel order, 120◦ Néel order, collinear AFM order (C-AFM)). The open circles relate
to the filled circles by reciprocal lattice vectors, i.e., AFM order corresponds to two
points in the Brillouin zone, collinear AFM to four points, and 120◦ Néel order to
six points.

an AFM transition of TN = 27K with estimated ξ = 0.55, the X = Cu2(CN)3 compound,
estimated to be nearby the symmetric triangular regime ξ = 1.15, does not show mag-
netic order down to very low temperatures [113]. Similar findings are obtained [63] for
EtMe3Sb[Pd(dmit)2]2, which is located around ξ = 1.1.

Details of the phase diagram of the ATLHM are still of current debate. It is an estab-
lished fact that the system is AFM Néel-ordered for small ξ, changing to incommensurate
spiral order for larger ξ < 1 to then smoothly evolve into the well known commensurate
120◦-Néel order as the isotropic triangular limit ξ = 1 is reached [20, 90, 112, 141].
The latter is characterized by an angle of 120◦ between spins on neighboring sites while
next-nearest neighbor sites have the same spin orientation. However, different meth-
ods provide differing indication about the nature and position of the transition between
those phases: An intermediate disordered phase, analogous to the J1-J2 model, has been
proposed in the literature [140], while most other works assume a direct transition, but
cannot classify the transition to be of first or second order [20, 112]. Compared to the
classical transition located at ξ = 0.5 these studies find a shift of the critical coupling
up to ξ ≈ 0.59 [112] or even up to ξ ≈ 0.8 [20, 141]. The regime beyond ξ = 1 attracts
considerable interest because for large ξ one encounters a system of one-dimensional
spin chains which are weakly coupled in a frustrated fashion, similar to the large g′-
region in the checkerboard lattice. Whether or not the magnetic order persists to the
isolated-chain limit is still an open issue. Some works claim a melting of the spiral or-
der at a critical coupling ξ > 1 and the onset of a non-dimerized spin-liquid extending
to the ξ → ∞ limit [141, 144]. It has also been proposed that this phase is subdi-
vided into a gapped and a gapless spin liquid (with increasing ξ) [144]. However, other
works indicate collinear antiferromagnetic (C-AFM) ordering even in the high anisotropy
regime [20, 90, 128], which corresponds to Néel order along the strongly and one weakly
coupled lattice direction and ferromagnetic order along the other weakly coupled direc-
tion. This is an interesting observation since the classical estimate would be spiral order
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Figure 7.9: Static magnetic susceptibility resolved for the whole Brillouin zone,
varying ξ = J ′/J from the effective square lattice ξ = 0 to the triangular lattice
ξ = 1. The plots refer to the respective Λ-scales at which the magnetic instabilities
occur. The peak positions for the different types of order are shown in Fig. 7.8b.

in that regime, implying that the quantum fluctuations lead to a different ordering.

Addressing this problem with FRG we sweep through the parameter space of ξ from
the square lattice to the isotropic triangular lattice and compute the k-space resolved
static magnetic susceptibility shown in Fig. 7.9. The peak positions for different types of
long-range order are depicted in Fig. 7.8b. For the present calculation we used 64 discrete
frequencies and included spin-spin correlations up to a distance of 7 lattice constants
(note that in contrast to the quadratic correlation array as depicted in Fig. 6.4, this
area is now a hexagon). Throughout this parameter regime, we observe a characteristic
breakdown of the flow, indicating ordering instabilities rather than a disordered phase.
One can nicely observe how the susceptibility evolves as we increase ξ. As shown in
Fig. 7.9, we find that as a consequence of increasing frustration the previous Néel peak
first broadens along kx. This is followed by a splitting into two peaks which then
evolve along the Brillouin-zone boundary. Simultaneously, the spectral weight at the
corners of the Brillouin zone increases. Note that as a consequence of the periodicity
in momentum space, the emerging peak structure at ky = 0 presents the tails of the
broadened Néel peak. Increasing ξ further towards the isotropic triangular point the
split peaks move towards the corner position until at ξ = 1 the hexagonal symmetry of
the susceptibility is reached. As the susceptibility evolves completely smooth through
the transition, we find it to be of second order, while an extremely weak first order
transition (corresponding to a slight jump of the leading susceptibility channel) cannot
be excluded as a matter of principle. We identify the wave vector of the corresponding
long-range ordered phases with the position of the maximal susceptibility. From this we
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Figure 7.10: Susceptibility flow in the Néel order and 120◦-Néel order channel for
ξ = 0 (left) and ξ = 1 (right). For ξ = 0 we observe that the AFM vertices start
to diverge, signalling a magnetic instability. On the other hand for ξ = 1 the rise of
the 120◦-Néel channel is seen. Compared to the flow at ξ = 0, the rise takes place at
a much lower scale of Λ, indicating a lower ordering scale for the triangular lattice.

locate the transition point at such ξ where the peak splits and above which the order
becomes incommensurate. A closer investigation using the above-mentioned system size
and frequency mesh reveals a transition at ξ ≈ 0.61. However, due to the magnetic
order in that regime the flow still significantly depends on the calculation parameters.
Larger sizes and more frequencies generally result in higher and sharper peaks and
also in an additional shift of the transition point towards larger ξ. On the basis of
data using different system sizes and frequency meshes we estimate the transition to be
approximately centered between ξ = 0.6 and ξ = 0.7. In accordance with Refs. [20, 112,
141], the system influenced by quantum fluctuation favors AFM fluctuations over spiral
fluctuations, since the classical transition at ξ = 0.5 is shifted to higher ξ.

Examples for the flow behavior at ξ = 0 and ξ = 1 can be found in Fig. 7.10. At the
isotropic triangular point ξ = 1 where additional lattice symmetries enable us even to
consider systems beyond 250 sites, finite size effects can be studied in more detail, see
the discussion below.

Our results for the magnetic susceptibility at ξ ≥ 1 are shown in Fig. 7.11. As depicted,
we observe a strong drop in the magnetic susceptibility above the isotropic point, i.e.,
in the regime ξc2 & 1.1. From here, no ordering instability is found in the RG flow
and the susceptibility rapidly looses the 120◦-Néel order signature. While the 120◦-Néel
order peaks die out quickly, the leading susceptibility moves towards an incommensurate
k-space position to then smoothly evolve into AFM stripe fluctuation signatures (at
points of the Brillouin zone according to Fig. 7.8). The transition where the 120◦-Néel
order melts appears to be of first order according to a pronounced drop in the maximal
susceptibility upon varying ξ. While we do not find a breakdown of the flow that would
indicate magnetic ordering, we still obtain strong collinear AFM stripe fluctuations (in
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Figure 7.11: Static magnetic susceptibility, varying ξ from the isotropic triangular
lattice ξ = 1 towards the 1D chain limit.

agreement with Ref. [128]) signalled by an unstable RG flow that develops oscillations
sensitively depending on the frequency discretization. These fluctuation tendencies are
also seen at higher ξ where the peak structure is still visible along the kx-direction.
However, the peaks are strongly broadened along the ky-axis, i.e., smeared between
the two C-AFM ordering-vector positions. This indicates a fast exponential decay of
spin correlations between the J ′-chains. Since for ξ > 1.1 the susceptibility evolves
completely smooth, we do not find any indication for the proposals in the literature that
the (supposedly) disordered regime splits into two different spin liquid phases [144].

Due to the special importance of the isotropic point ξ = 1 we shall discuss this case in
more detail. The antiferromagnetic triangular lattice with nearest neighbor interactions
is a system with a long history of controversy. For a long time, the central question
was whether or not the system possesses long-range order in the form of the 120◦-Néel
state. The discussion was strongly influenced by an early work by Anderson [8] where
he proposed the stabilization of a resonating valence-bond (RVB) ground state, i.e., a
disordered spin liquid. In fact, two decades later some numerical studies such as exact
diagonalization [73] seemed to support this conjecture but the issue was still far from
being clarified [120]. However, over the following years more and more works claimed
an ordered ground state, such that today there is general agreement that the system
is in a 120◦-Néel state with a magnetization of only 41% of the classical system [31].
Concerning the exact value of the magnetization there is still an ongoing debate [81].

In view of the challenge this system posed over so many years it is interesting to
study how the ground state is described within FRG. As already stated above, the
120◦-Néel order instability is clearly resolved during the flow. To make this statement
more precise we repeated the calculation for ξ = 1, this time with more frequencies
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Figure 7.12: 120◦-Néel susceptibility at the isotropic triangular point ξ = 1, loga-
rithmically plotted as a function of Λ (left) and the k-space resolved susceptibility
at the instability scale Λ ≈ 0.0008J (right). The calculation uses 90 frequency
mesh-points and 9 lattice constants for the longest spin-spin correlations.

(90 mesh points) and a larger system size (the longest correlation extends over 9 lattice
spacings, i.e., the total correlation area includes 271 sites). The computational effort
at ξ = 1 is reduced by the fact that additional lattice symmetries may be exploited.
Fig. 7.12 shows the 120◦-Néel susceptibility flow for various magnitudes of Λ. It is seen
that already for larger Λ magnetic fluctuations destabilize the flow and generate an
oscillatory behavior. The magnetic instability eventually occurs at Λ ≈ 0.0008J , i.e.,
much below the instability scale of the Heisenberg model on a square lattice (where the
breakdown scale is Λ ≈ 0.45J). This observation is consistent with the (supposedly)
reduced magnetization of the system. Moreover, finite-size effects and the influence of
denser frequency meshes can be nicely studied for this system. The k-space resolved
susceptibility at the instability scale is plotted on the right side of Fig. 7.12. Compared
to the corresponding plot in Fig. 7.11, it is seen that the response peaks have gained
much more height, while the susceptibility profile away from the peaks remained rather
unchanged (note that the relative scale of the vertical and the horizontal axes is the
same in both plots). Both, the enhanced system size as well as the denser frequency
mesh contribute to this effect. The former generates additional terms in the sum of the
Fourier transform from real space to k-space and the latter leads to a better description
of the Goldstone mode. On the other hand, the shift of the instability scale under these
modifications is comparably small.

In conclusion we find that upon variation of the anisotropy parameter ξ the system is
divided into three phases: Néel order, spiral order and a disordered phase with C-AFM
fluctuations. The transition between the first two of these phases is located at ξ ≈ 0.65
with indication to be of second order while the transition between the last two phases
occurs right above the isotropic point, i.e., in the vicinity of ξ = 1.1 and is probably of
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first order.

7.4 The Heisenberg Model on a Kagome Lattice

The antiferromagnetic Heisenberg model on a Kagome lattice (see Fig. 7.13) is among
the most extreme examples of frustrated spin systems realized with nearest-neighbor
interactions. Similar to the checkerboard lattice, both, the frustrated triangular build-
ing blocks and the rather loose corner sharing arrangement of these units suppress the
tendency towards magnetic long-range order. However, in contrast to the checkerboard
lattice the Kagome antiferromagnet continues to hide the true nature of its ground state,
despite the huge number of studies on that system. There are only very few statements
which seem to have reached general agreement today. It is widely accepted that the
ground state of the Kagome model is magnetically disordered [64, 121, 136] and that
a large number of singlet excitations (possibly forming a gapless continuum above the
ground state) exist at low energies [64, 118, 136]. The interpretation of this singlet con-
tinuum provides a great challenge to theorists, especially since there is no obvious type of
broken symmetry. Numerical calculations suggest that triplet excitations are separated
from the ground state by a small gap of about 0.05J [64, 136], although its existence
is still being debated [118]. A lot of possible ground-state phases have been discussed
in recent years but a rigorous statement cannot yet be made. Among these suggestions
there are valence-bond solids with complex dimerization patterns and large unit cells of
36 sites [121]. Also non-dimerized spin liquids either with short range correlations [64]
or with algebraic correlations [103] have been proposed. The latter is an interesting
candidate in the case that the triplet gap vanishes. In fact, exact diagonalization [118]
does not find any intrinsic energy scale and it is concluded that the system is critical or
at least located near criticality. The Kagome model attracts a lot of interest also on the
experimental side since materials such as herbertsmithite ZnCu3(OH)6Cl2 provide very
accurate realizations of this system. In fact, experiments on herbertsmithite show that
this material is non-magnetic down to very small temperatures [56].

We performed an FRG study for the Kagome antiferromagnet and computed the
static susceptibility in the extended Brillouin zone, see Fig. 7.13. Given the spin-spin
correlations in real space, the susceptibility is calculated similarly to Eq. (7.4), i.e.,

χΛ(k, iν) =
1

3

∑

i∈α

∑

j

eik(Ri−Rj)χΛ
ij(iν) , (7.6)

where
∑

i∈α denotes a sum over the three sites of an arbitrary unit cell. This quantity has
the periodicity of the extended Brillouin zone but not of the first Brillouin zone. Hence,
susceptibilities are always presented in the former. The construction of this zone uses the
lattice vectors of the bare triangular lattice such that the susceptibility profile in Fig. 7.13
can be directly compared with the k-space resolved plots in Section 7.3. Although our
FRG approach in its present version is not capable to give a detailed description of the
ground state, especially if complex dimerization patterns are involved, the susceptibility
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Figure 7.13: Left: The Kagome lattice. Dots indicate the locations of the spins.
Right: Static susceptibility in the extended Brillouin zone using 64 frequencies and
9 lattice spacings for the longest correlations.

provides valuable information about the magnetic properties. Compared to the suscep-
tibility of the triangular Heisenberg model in Fig. 7.12 it is remarkable that the response
peaks have almost completely disappeared. The remaining small peaks have no signif-
icant dependence on the system size and the frequency discretization-mesh. Therefore
we can exclude magnetic long range order. The susceptibility profile is in nice corre-
spondence with exact diagonalization [71] with the only exception that Refs. [64, 71] find
residual peaks in the middles of the edges of the hexagon while our calculation favors
small peaks at the 120◦-Néel order positions, see Fig. 7.13. As far as we can see, these
small maxima decrease slightly with increasing system size and density of the frequency
mesh, such that in the limit of convergence the susceptibility is possibly constant at the
borders of the extended Brillouin zone. Since the response is mainly distributed along
these boundary regions one may expect spin-spin correlations of very short range kind.
In fact, an analysis of our real space data reveals a correlation length of ξ ≈ 0.96 lat-
tice spacings which agrees well with ξ = 0.8 found by a density matrix renormalization
group (DMRG) study [64]. We may therefore conclude that the large frustration of the
Kagome lattice is well captured by our FRG approach.

7.5 The Heisenberg Model on a Honeycomb Lattice

The search for quantum spin liquid phases ever since has been a complicated task. From
a theorists point of view the difficulty arises from the fact that long-range correlations
of any kind of operator have to be excluded. Furthermore, studies of a plethora of
spin Hamiltonians on different lattices tell us that many frustrated systems tend to
establish valence-bond solids which might indicate that such phases represent the generic
situation in the case of magnetically disordered regimes. The remarkable numerical
studies by Meng et al. [79] are a fortunate exception. In their work, they report on the
first unambiguous discovery of a genuine spin-liquid phase from a generic microscopic
model. They consider the Hubbard model on the honeycomb lattice by Monte Carlo
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methods, which is possible for half filling where the sign problem which would generically
emerge for such a system can be circumvented. At U/t = 4.3 they find a spin-gapped
phase which shows no long-range correlations of any kind, neither charge density wave,
superconductivity or even spin solid-type correlations such as that of a valence-bond
solid formation. Even more importantly the study finds a clear excitation gap and no
symmetry breaking of any lattice symmetry or parity P and time-reversal T , which
already excludes chiral spin liquids and algebraic spin liquids.

Motivated by their work we have performed an FRG calculation for the Gutzwiller-
projected version of this model, i.e., the Heisenberg model on a honeycomb lattice [96], in
order to investigate which aspects of possible quantum phases may be explained through
spin fluctuations only and which may necessitate the effect of charge fluctuations. The
Hamiltonian is given by

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj + J3

∑

〈〈〈i,j〉〉〉
Si · Sj , (7.7)

where we consider interactions up to third nearest neighbors, see Fig. 7.14a, i.e., the
first (second, third) sum extends over next (second, third) nearest neighbors. The phase
diagram is parametrized by J2 and J3 given in units of J1. The honeycomb lattice is
bipartite and possesses a coordination number z = 3. As such, it has a lower effective
dimension than the square lattice. The solution of the classical analog of the J1-J2-
J3 model is well known [49], see Fig. 7.14b. Being classical, it systematically orders
for sufficiently small temperatures. For small J2 the system is Néel-ordered, which is
commensurate with the honeycomb lattice and preserves the sublattice 120◦ degrees
rotational symmetry. For sufficiently low J3 and beyond a threshold of J2, the system
minimizes the similarly important J1 and J2 terms and resides in a spiral phase. For high
J2 and J3, it is energetically preferred to order in a collinear phase where spins along
zigzag chains align ferromagnetically while neighboring zigzag chains exhibit antiparallel
spin orientation (there are three degenerate collinear configurations).

Concerning the quantum version of the model, recent studies mainly focus on the
case where J3 = 0. It is well known that on this axis quantum fluctuations destroy the
classical spiral order very effectively, leaving behind a (supposedly) large paramagnetic
phase [38, 49, 83, 84]. However, the extent of this intermediate regime still needs to be
clarified. Regarding the transition point where the Néel order melts there is remarkable
disagreement: While variational Monte Carlo [38] predicts a critical point at 0.08J2
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Fig. 7.16).

(that is, much below the classical transition at 1/6J2), exact diagonalization [83] tends
towards a value of ∼ 0.2J2. Moreover, the upper boundary of the paramagnetic phase
where spiral order sets in, poses an even greater problem to numerics since the frustrated
120◦-Néel order which exists independently on both sublattices in the limit J2 → ∞
becomes itself frustrated by a finite J2. Up to now the literature does not contain any
statement about the location of this transition. There is some body of evidence that the
paramagnetic phase splits up into two regimes [38, 49, 83] where the upper one is reported
to be a valence-bond solid, possibly with a staggered dimerization [83, 84]. Concerning
the lower part of the intermediate phase, some works point to a spin liquid [38, 49] while
others find a plaquette-valence bond solid [83]. The full J1-J2-J3 model has rarely been
studied and a corresponding quantum phase diagram has not yet been published. A
statement about the extent of the paramagnetic phase at finite J3 is given in Ref. [25]
where the line J2 = J3 is considered. There it is found that the paramagnetic regime on
this line approximately ranges from J2 = 0.4 to J2 = 0.6, giving way to collinear order
above J2 = 0.6.

For the present study our FRG algorithm internally deals with spin-spin correlations
up to a length of 9 lattice constants which proved to be sufficient for a proper description
of the system. Fig. 7.15 shows the quantum phase diagram of our model (7.7). In
the momentum-resolved magnetic susceptibility χ(k), the different magnetic ordering
patterns manifest as peaks in the extended Brillouin zone as depicted in Fig. 7.16. For
dominant J1 the system displays AFM order which persists longer against J2 for finite
J3 as J3 generally cooperates with J1. Increasing J2 (for not too large J3) we clearly
observe a melting of the order and the appearance of a rather large paramagnetic region.
Above J2 ≈ 0.6 the system is characterized by presumably weak magnetic order and
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Figure 7.16: The Heisenberg-honeycomb model along the J3 = 0 axis. Shown is a
J2-sweep of the static k-space resolved susceptibility. In magnetic phases (J2 = 0.1)
the susceptibility is depicted just before the instability breakdown, otherwise the
physical case Λ = 0 is displayed. Susceptibilities are always given in units of 1

J1
.

Lower right corner: Wave-vector positions for different types of magnetic order in
the extended Brillouin zone. The inner hexagon marks the first Brillouin zone.

very small ordering-instability scales which are hard to resolve numerically. However,
as we enter this region by increasing J2, at some point we observe the appearance of
magnetic response peaks at discrete wave vectors k which we interpret as the onset
of weak magnetic order. From the peak positions in k-space we divide this region
into a collinear ordered phase for large J3 and a spiral ordered phase for smaller J3.
The spiral phase is very close to 120◦-Néel order on both sublattices of the honeycomb
lattice except for a small region near the J2-axis where the wave vector deviates from
commensurability. Classically, deviations from the commensurate 120◦-Néel sublattice
order (full blue squares in the Brillouin-zone plot in Fig. 7.16) occur throughout the
spiral phase. Since quantum effects generally favor those points of high symmetry in
the Brillouin zone only the classical deviations on the J3 = 0 axis are strong enough
to survive the effect of quantum fluctuations. We interpret this behavior as an “order
by disorder” mechanism. In this respect, unlike models such as the J1-J2-J3 model
on a square lattice, the honeycomb model constitutes an example for a system with
significant differences in the order vector between a classical and a quantum mechanical
treatment. However, as also described below, the behavior on the J3 = 0 axis is in
agreement with the classical model and large-S calculations. Concerning the regime
at large J3, a pronounced jump of the leading susceptibility wave-vector is seen as we
cross the transition between AFM and C-AFM order, pointing to a first order transition.
This observation is consistent with the classical spin model except for the fact that the
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Figure 7.17: Dimer responses in the paramagnetic phase along different lines. (a)
shows the staggered and plaquette responses along the J3 = 0 axes and (b) the
staggered response along the J2 = 0.5 and J2 = 0.6 lines. The dimerization patterns
are depicted in (a).

transition between AFM and C-AFM order is shifted towards higher J2,c ≈ 0.58 as
compared to J2,c = 0.5 for the classical model which is due to the quantum corrections
included in our calculation. On the other hand, the location of the transition line between
spiral order on collinear order is not effected by quantum effects.

In order to discuss these observations in more detail, we now focus on selected lines
in the quantum phase diagram. We first investigate how the fluctuation profile changes
along the J3 = 0 line which is depicted in Fig. 7.16. For small J2 AFM order manifests
itself in peaks at the corners of the extended Brillouin zone (see the peak positions in
the schematic Brillouin-zone plot in Fig. 7.16) and the characteristic instability break-
down of the flow. As we increase J2 the AFM peaks rapidly decrease and from the
disappearance of unstable flow behavior we estimate the transition to be at J2 ≈ 0.15.
Inside the paramagnetic phase, e.g. at J2 = 0.3 no clear peak structure is visible and
the susceptibility flow remains stable as we approach the physical limit Λ → 0. Around
J2 ≈ 0.6 spiral order peaks emerge at wave vectors slightly shifted from the commensu-
rate positions towards larger |k|. This feature is consistent with a large-S expansion [84]
which allows to select specific wave vectors out of a classical manifold of degenerate mo-
menta. Upon further increasing J2, the peak positions approach commensurability, i.e.,
the sublattices effectively decouple and exhibit 120◦-Néel order individually. During the
flow, these susceptibility peaks emerge at very small Λ-scales and the instability scales
are expected to be even smaller. This gives us indication of a very weak magnetization.
While the transition between paramagnetism and spiral order is a bit smeared out at
small J3 the onset of response peaks occurs more abruptly at larger J3. To resolve more
information about the correlations in the disordered phase, we have computed the stag-
gered and the plaquette dimer responses, i.e., the (dimensionless) factor of amplification
of an external dimer-field perturbation exerted on system, see Eq. (6.69). With such a
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Figure 7.18: J3-sweep of the susceptibility for J2 = 0.5 (upper line) and J2 = 0.6
(lower line).

perturbation-response-scheme we can distinguish between parameter regimes of different
dimer fluctuation strength. For an unambiguous detection of valence-bond instabilities,
however, we need to include explicit dimer susceptibilities in the form of the four-particle
vertex, which is beyond the scope of our present FRG formulation. A more detailed dis-
cussion on the approximation scheme for dimer responses is contained in Section 6.6. As
we sweep through the paramagnetic phase at J3 = 0 we find that the staggered dimer
response is dominant for higher J2 while plaquette and staggered dimerizations compete
for lower J2, see Fig. 7.17. The absolute amplitudes are smaller for lower J2. This is
in qualitative agreement with a recent variational Monte Carlo study [38]. It supports
the estimate that if at all the system will tend to form a spin liquid phase around this
domain which is also the parameter regime related to the honeycomb Hubbard model
from a strong coupling expansion. There, charge fluctuations which are neglected in
(7.7) may be sufficient to destroy the comparably low dimer ordering tendency.

In addition, we investigate parameter lines varying J3 for intermediate J2 through the
disordered regime. The fluctuation profiles for the paramagnetic regime at finite J3 are
shown in Fig. 7.18. There we see that at small J3 the fluctuation profiles for J2 = 0.5
and J2 = 0.6 are very similar but differ more with increasing J3 until eventually the
J2 = 0.5 line leads into the AFM ordered phase while collinear order emerges on the
J2 = 0.6 line. As we cross the transition between these two phases from J2 = 0.5 to
J2 = 0.6, e.g. at J3 = 0.8, the AFM peaks decrease while the C-AFM peaks increase
such that at some point the dominant susceptibility jumps to the C-AFM wave-vector
position, which characterizes the transition to be of first order. For smaller J3 ≤ 0.6
the paramagnetic phase shows rather complicated susceptibility profiles which have lost
most signature of order fluctuations. A typical feature is the ringlike shape as seen e.g.
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at J2 = 0.6, J3 = 0.5. An intuitive reason for a quantum disordered phase is already
given from the classical limit where the point J2 = J3 = 0.5 is tricritical with three
competing ordering tendencies. Concerning the staggered dimer responses along the
two lines (see Fig. 7.17), with increasing J3 there is growing indication for the formation
of two regimes in the paramagnetic phase because the difference of the responses between
J2 = 0.5 and J2 = 0.6 gets significantly larger. This leads us to the conjecture that along
its full J3-extent, the paramagnetic phase might be divided into two different phases,
one being a staggered dimerized state.

In conclusion, we have studied the phase diagram of the honeycomb-Heisenberg model
in the J2-J3 plane. We find a rather large paramagnetic phase at intermediate couplings
J2 if J3 is not too large. Dimer responses give some indication that part of this phase
(at larger J2) might exhibit a staggered dimerization. Above J2 ≈ 0.6 we observe the
onset of weak magnetization in the form of spiral and collinear order. A possible analog
to the spin liquid found in the honeycomb-Hubbard model should emerge at smaller J2,
i.e., near the transition where the Néel order melts.

7.6 The Kitaev-Heisenberg Model

The knowledge about the ground-state properties of the spin systems considered in the
last sections mainly comes from extensive numerical studies using a variety of methods.
On the other hand, exact statements based on analytical calculations are rare in 2D
systems. However, the exactly solvable Kitaev model [70] is a prominent exception.
Its Hamiltonian consists of ferromagnetic nearest-neighbor couplings on the honeycomb
lattice which are of xx, yy or zz-type, depending on the bond direction, see Fig. 7.19a.
Although each of these bonds carry Ising-like interactions the ground state is non-trivial
and highly frustrated. Note that the frustration does not stem from the lattice geometry
or competing nearest and next-nearest neighbor interactions but rather from competing
spin-anisotropy directions of the different links. In the general form of the Kitaev model
the couplings corresponding to the three bond types may be different in strength. Us-
ing Majorana fermions the Hamiltonian can be reduced to a quadratic form which then
allows for an exact solution [70]. In the entire parameter space spanned by the three cou-
plings the system is in a disordered spin-liquid ground state where only nearest-neighbor
spins are correlated and, moreover, for a given nearest-neighbor bond only the compo-
nents of the correlator matching the bond type are non-vanishing [15]. Interestingly,
these properties do not only hold for equal-time correlators but also for arbitrary time
arguments. Depending on the parameter choice the system is either gapped or gapless.
The Kitaev model also attracts interest because it exhibits anyonic excitations of both,
Abelian and non-Abelian type. In the context of quantum computing the excitations
have been proposed as robust qubits since they are protected from decoherence due to
their topological nature [70].

In the following we study a certain modification of the Kitaev model. Firstly, we
restrict ourselves to the case where the three couplings corresponding to the different
anisotropy directions are equal. Secondly, we add further couplings to the Hamiltonian
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in the form of antiferromagnetic, isotropic nearest-neighbor interactions. We call this
system the Kitaev-Heisenberg model and write its Hamiltonian as

H =
∑

〈i,j〉

(

J1Si · Sj − J ′Sγ
i S

γ
j

)

. (7.8)

The first term represents the isotropic Heisenberg part while the second term is the
Kitaev Hamiltonian with anisotropies γ ≡ γij = x, y, z depending on the bond direction.
Again 〈i, j〉 denotes a sum over nearest neighbors on the honeycomb lattice. Both cou-
pling constants are positive, J1, J

′ ≥ 0. In order to interpolate between the Néel ordered
Heisenberg limit J ′ = 0 and the exactly solvable Kitaev limit J1 = 0 we parametrize
the exchange couplings as J1 = 1 − α and J ′ = 2α and consider the whole parameter
space 0 ≤ α ≤ 1. The phase diagram of this model is already known [34]: For small α
the system is robust against anisotropic perturbations and remains in the Néel ordered
state. Similarly, near the Kitaev point α = 1 the system is stable against isotropic in-
teractions and forms a spin-liquid phase. Remarkably a third phase, the so called stripy
antiferromagnetic state, see Fig. 7.19b, emerges in the vicinity of the point α = 1

2
. This

becomes evident as one considers the system in a rotated spin basis [34]. Surprisingly,
the stripy antiferromagnetic state is the exact solution at α = 1

2
, i.e., despite of being

antiferromagnetic, this point exhibits fluctuation-free classical order. Exact diagonaliza-
tion [34] finds the transitions between the AF state, the stripy AF state and the spin
liquid to be at α ≈ 0.4 and α ≈ 0.8, respectively. Classically, the transition between
AF order and stripy AF order is located at α = 1

3
and is shifted upwards by quantum

fluctuations [34].

Concerning experimental realizations of this model, iridium oxides such as A2IrO3 have
been proposed as possible candidates. Ongoing experimental studies [124] indicate that
Na2IrO3 is a Mott insulator that undergoes a transition into an AF ordered state below
TN = 15K. The observed antiferromagnetism already rules out that the system is near
the Kitaev limit but rather in the vicinity of α = 0. On the other hand, a large negative
(antiferromagnetic) frustration parameter f , i.e., a large ratio between the Curie Weiss
temperature TCW and the Néel temperature TN of f ≈ −7.7 suggests strong frustration
effects. With our FRG study presented below we intend to clarify whether these large
quantum fluctuations are consistent with the Kitaev-Heisenberg model.
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Figure 7.20: α-sweep of the static magnetic susceptibility. The response refers to
a magnetic field in the anisotropy direction of a horizontal bond, i.e., according to
Fig. 7.19 along the x-axis.

Aside from these experimental questions, the Kitaev-Heisenberg model is an inter-
esting system to be studied with FRG: Firstly, the above-mentioned exact statements
render it a suitable testing ground for the accuracy of our approach. Secondly, in contrast
to the models considered before, it is characterized by a different frustration mechanism
and (at least partially) by ferromagnetic interactions. Thirdly, it enables us to test the
FRG in the case of anisotropic interactions. As a consequence of the last point, it is no
longer sufficient to parametrize the two-particle vertex in the form shown in Eq. (6.36).
The spin part of the two-particle vertex Γs splits up into components Γs,x, Γs,y and Γs,z

such that the flow equations have to be reformulated in terms of these quantities. Apart
from the fact that the resulting equations are more complex leading to longer compu-
tation times the generalization of our FRG approach to anisotropic interactions is not
associated with any further difficulties.

Our FRG results for the static susceptibility are plotted in Fig. 7.20. We use the
same convention for k-space plots as in the previous section, i.e., the depicted region is
the extended (second) Brillouin zone. Due to the anisotropic interactions, the diagonal
elements of the susceptibility tensor are no longer equal such that we have to specify
a direction of the magnetic field for which we calculate the response (of course, we
do not really apply a magnetic field to our system but calculate the susceptibility via
Kubo’s formula). In Fig. 7.20 we have chosen the x-direction which corresponds to the
anisotropy of horizontal bonds, see Fig. 7.19. Accordingly, the susceptibility is invariant
under kx → −kx and ky → −ky but has lost its 120◦-rotation symmetry. Rotating the
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susceptibility through 120◦ in k-space is equivalent to choosing a different (cartesian)
axis for the field direction. However, as seen in Fig. 7.20 even for α = 0.3 the anisotropies
have a rather small effect on the system and the instability breakdown of the flow as
well as the peak structure show a clear Néel-order signature. Upon further increasing α
the weight between the peaks at finite ky rapidly rises such that at a certain value of α
the wave vector in the middle between the Néel peaks becomes the leading susceptibility
component. From a fine tuning of α we find this value to be α = 0.37 . . . 0.38 which we
interpret as the point where the Néel order breaks down. The jump of the dominant
wave vector to the new peak position occurs within a very small α-interval, indicating
that in accordance with exact diagonalization [34] the transition might be of first order.
Even close to criticality we find a characteristic instability breakdown that rules out the
existence of an intermediate disordered phase. The peak at k = (0, 2π√

3
) ≈ (0, 3.63) is

in fact the ordering signature of the stripy AF state. Above the transition, this peak
rises quickly until at α = 0.5 (where the stripy order becomes the exact solution) the
maximal height is reached. Although in the present FRG formulation we have no direct
measure of the order parameter the comparably sharp peak gives some indication for
strong (classical) order.

At α = 0.5 (and partially in the plots for α = 0.4 and α = 0.7) another small peak is
seen at wave vectors k = (±2π

3
, 0) ≈ (±2.09, 0). In fact, it turns out that in the extended

Brillouin zone the large peak alone is not sufficient to describe the stipy AF order. To
motivate this property we consider the spin-spin correlation function of this state in real
space: Starting from an arbitrary site, the correlation function of spins in the direction
of one of the three bond orientations can be +1

4
or −1

4
(for parallel and antiparallel spin

alignment) but at certain integer multiples of the nearest-neighbor lattice constant there
are vacancies where the correlation can be viewed as zero. Including the vacancies the
correlation function can only be fitted using two harmonics which correspond to the two
different peaks. This feature is of course an artefact of our Brillouin zone convention: If
we fold back the extended Brillouin zone to the first, the two peak positions coincide.
In accordance with analytical considerations we obtain a ratio of the peak heights of 4.

Increasing α beyond 0.5 we observe a strong drop of the stripy AF response. Between
α = 0.7 and α = 0.9 the peaks die out almost completely and the instability breakdown
of the flow smoothly disappears, indicating the onset of paramagnetic behavior. In that
regime we can only give a rough estimate of α ≈ 0.7 . . . 0.8 for the transition point. Ap-
proaching the Kitaev limit α = 1 the susceptibility becomes constant in ky direction and
has a cosine shape in kx direction which is precisely the Fourier transform of correlated
nearest-neighbor spins on x-type bonds. The exactly vanishing spin correlations beyond
nearest neighbors are also seen in the real-space correlation function, demonstrating that
our FRG approach is indeed able to resolve the Kitaev spin liquid. Interestingly, during
the course of the Λ-flow, the value of the nearest-neighbor correlator is rather small
above Λ ≈ 0.1 but shows a pronounced rise below that scale which might refer to a large
number of low lying states. This would be in agreement with the fact that the system
is in a gapless state.

In analogy to the FRG scale Λ, also finite temperatures act as an infrared frequency
cutoff. Since ordering instabilities typically occur at finite Λ-scales, it is evident already
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7 Application to Further Models

from the results using the zero-temperature FRG scheme that the Mermin-Wagner the-
orem cannot be fulfilled. Despite this methodological drawback, however, our results
represent the generic experimental situation: Layered materials always possess small
interplane couplings which generate finite (albeit small) ordering temperatures seen in
experiments. On the other hand, the high-temperature physics of spin systems is gov-
erned by Curie-Weiss behavior of the uniform susceptibility,

χ(k = 0) ∝ 1

T − TCW

. (7.9)

For ferromagnetic (antiferromagnetic) materials the Curie-Weiss temperature TCW is
positive (negative). A comparison of the ordering temperature Tc and the Curie-Weiss
temperature TCW allows to determine the strength of fluctuation and frustration effects:
On a classical mean-field level the frustration parameter f defined as the ratio f = TCW

Tc
is

one for the ferromagnet and minus one for the antiferromagnet. Switching on quantum
fluctuations and/or frustrating interactions leaves the high-temperature physics such
as TCW unchanged but reduces the ordering temperature Tc, resulting in a frustration
parameter |f | larger than one. In the following we use the fact that both, the flow
parameter Λ and the temperature T act as an infrared frequency cutoff. While the
former is a sharp cutoff in the continuous frequency space, the latter allows a description
in terms of discrete Matsubara frequencies, where the smallest mesh point sets a lower
bound of the energy resolution. Even though the precise cutoff procedures associated
with Λ and T are quite different, we expect that their effect is rather similar. Hence,
we treat Λ like a temperature in order to be able to calculate the frustration parameter
within the present FRG formulation. Indeed, it will turn out that the behavior at finite
Λ and finite T is similar not only on a qualitative level but also quantitatively.

In Fig. 7.21a we present the Λ-instability scale as a function of α. A precise de-
termination of this scale is complicated by the fact that the flow behavior near the
breakdown is influenced by the discrete frequency mesh-points. The present calculation
uses 46 frequencies. Those frequencies lying in the interesting Λ regime are depicted in
Fig. 7.21a. It is seen that the instability scale Λc tends to avoid the values of the mesh.
Interestingly, the transition between AF order and stripy AF order manifests itself in a
pronounced kink at α = 0.37 . . . 0.38. Above α ≈ 0.7 the breakdown becomes smeared
out which makes it difficult to observe the drop of the instability scale as we approach
the spin-liquid phase.

The Curie-Weiss scale ΛCW representing the physics at high energies is plotted in
Fig. 7.21b. This quantity can be determined with high accuracy since over a large energy
range our susceptibility data is nicely fitted by a function of the form ∼ 1

Λ−ΛCW
. The α-

dependence of ΛCW does not show any indication of the phase transitions but is more or
less given by a linear function. At α ≈ 0.7 the Curie-Weiss scale changes sign suggesting
that ferromagnetic and antiferromagnetic interactions compensate each other. Curie-
Weiss behavior allows to compare the effect of Λ and T within a simple consideration:
Since both, ΛCW and TCW describe the system at high energies, quantum fluctuations
will have minor effects on these quantities. Therefore it is sufficient to compare ΛCW

with the classical mean-field result for TCW. In fact, the curve in Fig. 7.21b is in good
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Figure 7.21: (a) Instability
scale Λc as a function of α. The
dashed lines indicate the val-
ues of discrete frequencies. (b)
Curie-Weiss scale ΛCW. (c) Frus-
tration parameter f = ΛCW

Λc
.

quantitative agreement with the classical result for TCW(α), which is a linear function
obeying TCW(0) = −0.75 and TCW(0.6) = 0. This demonstrates that the cutoff Λ in fact
behaves as a temperature and justifies our assumption that Λ can be used to obtain a
finite temperature phase diagram of the Kitaev-Heisenberg model.

The frustration parameter as the ratio between both Λ-scales, f = ΛCW

Λc
, is shown in

Fig. 7.21c. Classically, in the AF ordered phase we would find f = −1 but quantum
fluctuations reduce this value to f = −2. As soon as the stripy AF order sets in,
fluctuations fall off such that at α = 0.5 we obtain f = −1 which is the correct value
in the case of classical order of antiferromagnetic type. The increase of f for α > 0.5
can be assigned to the growing influence of ferromagnetic interactions. We emphasize
again that a frustration parameter of f = 0 does not correspond to vanishing quantum
fluctuations but is rather a sign of compensating ferromagnetic and antiferromagnetic
interactions. Since ferromagnetic couplings dominate in the spin liquid we expect that
f diverges towards plus infinity on an approach to the phase transition. As mentioned
above, the critical regime is poorly resolved such that reliable data for f can only be
obtained for α . 0.7. Most importantly, however, we find that in the entire parameter
regime f is by far larger than −7.7 which is the experimentally observed frustration
parameter of Na2IrO3 [124]. Therefore, we suppose that the Kitaev-Heisenberg model
is not sufficient to describe this material, possibly because interactions beyond nearest
neighbors are not negligibly small or charge fluctuations play a significant role.

In summary, we find a phase diagram of the Kitaev-Heisenberg model in good agree-
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7 Application to Further Models

ment with Ref. [34]. Especially, the transition between AF order and stripy AF order
at α = 0.37 . . . 0.38 compares well with their result α ≈ 0.4. For the onset of the Ki-
taev spin liquid we can give at least a rough estimate of α = 0.7 . . . 0.8. The classical
stripy order manifests itself in a very sharp response peak and in a frustration parameter
of f = −1. Furthermore, the Kitaev spin liquid is correctly described since spin-spin
correlations vanish beyond nearest-neighbor distances. However, regarding the material
Na2IrO3 it seems that the Kitaev-Heisenberg model cannot explain the observed strong
quantum fluctuations.
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8 Pseudo-Fermion FRG Including
Magnetic Fields

So far we have applied our FRG scheme only in an SU(2) invariant formulation. Although
we were able to detect magnetic long-range order, a controlled flow into the energy
regime below the instability scale was not possible and the magnetic order parameter
could not be calculated. In the present chapter we discuss if this disadvantage can
be overcome within an FRG approach that explicitly includes small magnetic fields.
Basically, we treat these SU(2) breaking fields as perturbations in the initial conditions
and investigate their evolution as the infrared cutoff-scale Λ is lowered. In magnetically
ordered phases we expect that fields matching the site dependence of the order parameter
undergo a sharp increase at the critical scale and approach a finite value for Λ → 0. The
notion of symmetry breaking implies that this value does not tend to zero even if the
perturbation becomes infinitesimally small. On the other hand, in disordered phases
a magnetic perturbation should always result in a linear response, provided that the
external fields are sufficiently small. The inclusion of magnetic fields comes along with
some basic modifications of the FRG which will be presented in Section 8.1. Thereafter,
in Section 8.2, as a first test of the finite-field scheme, we perform an RPA + Hartree
calculation for the J1-J2 model where only the Hartree term of the first flow equation
and the RPA term of the second flow equation is kept. Finally, Section 8.3 applies the
symmetry breaking FRG scheme on the full one-loop level (i.e., including all interaction
channels) and discusses the results for the J1-J2 model.

8.1 Modifications of the Formalism

In general, an external magnetic field modifies the parametrization of the self energy,
see Eqs. (6.27) and (6.35). If we assume a field orientation in z-direction, the self energy
may be written as

Σ(1, 1′) =
(

−iγΛ
i1
(ω1)δα1′α1 +mΛ

i1
(ω1)σ

z
α1′α1

)

δi1i1′
δ(ω1 − ω1′) , (8.1)

where the first term in the bracket represents the SU(2) invariant auxiliary-fermion
damping while the second term includes the magnetic field mΛ. Both, γΛ and mΛ are
considered as flowing quantities. The latter may have a dependence on the real space
coordinate i1 which, in principle can also generate a site dependence of the damping
γΛ. In the most general form, mΛ carries a frequency argument, however, the physical
external field B which represents the limit B = mΛ→∞ will be chosen as constant in
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8 Pseudo-Fermion FRG Including Magnetic Fields

ω. Nonetheless, the frequency argument is kept since a dependence on ω is usually
generated during the flow.

In the SU(2) invariant case the two-particle vertex has been parametrized in terms
of ΓΛ

s describing a spin interaction ∼ σµ
α1′α1

σµ
α2′α2

and ΓΛ
d describing a density interac-

tion ∼ δα1′α1δα2′α2 , see Eq. (6.36). The inclusion of a magnetic field complicates this
representation considerably. In order to label the different two-particle components, we
change the notation as follows: An interaction with the spin structure σµ

α1′α1
σµ′

α2′α2
where

µ, µ′ = 1, 2, 3, 4 and σ1 ≡ σx, σ2 ≡ σy, σ3 ≡ σz, σ4 ≡ δ is now denoted as ΓΛ
µµ′ (i.e., the

relation to the old notation is given by ΓΛ
s ≡ ΓΛ

11 = ΓΛ
22 = ΓΛ

33 and ΓΛ
d ≡ ΓΛ

44). Firstly,
the symmetry breaking in z-direction splits up ΓΛ

s such that the flow of ΓΛ
33 is described

by a separate equation, while the remaining rotation symmetry in the x-y-plane implies
ΓΛ

11 = ΓΛ
22. Secondly, unlike in the case of anisotropic easy-axis spin interactions where

the SU(2) symmetry is broken down to Z2 symmetry, here, we also have to deal with
off-diagonal components. It turns out that ΓΛ

12, ΓΛ
21, ΓΛ

34 and ΓΛ
43 are finite while the other

terms vanish. Using the rotation symmetry in the x-y-plane it follows that ΓΛ
12 = −ΓΛ

21.
We emphasize that a similar relation does not hold for ΓΛ

34 and ΓΛ
43. In total, we have

six independent flowing components, ΓΛ
11, ΓΛ

12, ΓΛ
33, ΓΛ

34, ΓΛ
43 and ΓΛ

44 which parametrize
the two-particle vertex as follows,

ΓΛ(1′, 2′; 1, 2) =
[

ΓΛ
11 i1i2

(ω1′, ω2′ ;ω1, ω2)
(

σx
α1′α1

σx
α2′α2

+ σy
α1′α1

σy
α2′α2

)

+ΓΛ
12 i1i2

(ω1′, ω2′ ;ω1, ω2)
(

σx
α1′α1

σy
α2′α2

− σy
α1′α1

σx
α2′α2

)

+ΓΛ
33 i1i2

(ω1′, ω2′ ;ω1, ω2) σ
z
α1′α1

σz
α2′α2

+
1

i
ΓΛ

34 i1i2
(ω1′, ω2′;ω1, ω2) σ

z
α1′α1

δα2′α2

+
1

i
ΓΛ

43 i1i2
(ω1′, ω2′;ω1, ω2) δα1′α1σ

z
α2′α2

+ΓΛ
44 i1i2

(ω1′, ω2′ ;ω1, ω2) δα1′α1δα2′α2

]

× δ(ω1′ + ω2′ − ω1 − ω2) δi1i1′
δi2i2′

− (ω1 ↔ ω2 , i1 ↔ i2 , α1 ↔ α2) , (8.2)

Inserting Eqs. (8.1) and (8.2) into Eqs. (6.26a) and (6.26b) the flow equations can be
derived straightforwardly. The Katanin truncation scheme and its extra terms are im-
plemented in analogy to Section 6.5. Furthermore, using Eq. (6.53) the susceptibility
which has longitudinal (χΛ zz), transverse (χΛ xx = χΛ yy) and off-diagonal components
(χΛ xy = −χΛ yx) is obtained. Compared to the SU(2) invariant case, the flow equations
are much more complex and will not be presented here. The initial conditions include
the external magnetic field Bi and the bare couplings Ji1i2 ,

γΛ→∞
i = 0 , mΛ→∞

i = Bi

ΓΛ→∞
11 i1i2

= ΓΛ→∞
33 i1i2

= 1
4
Ji1i2 , ΓΛ→∞

12 i1i2
= ΓΛ→∞

34 i1i2
= ΓΛ→∞

43 i1i2
= ΓΛ→∞

44 i1i2
= 0 . (8.3)

The central quantity of interest in this chapter, i.e., the flowing magnetization or mag-
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s→ −s, i1 ↔ i2 t→ −t
ΓΛ

11 i1i2
(s, t, u) = ΓΛ

11 i2i1
(−s, t, u) ΓΛ

11 i1i2
(s, t, u) = ΓΛ

11 i1i2
(s,−t, u)

ΓΛ
12 i1i2

(s, t, u) = ΓΛ
12 i2i1

(−s, t, u) ΓΛ
12 i1i2

(s, t, u) = −ΓΛ
12 i1i2

(s,−t, u)
ΓΛ

33 i1i2
(s, t, u) = ΓΛ

33 i2i1
(−s, t, u) ΓΛ

33 i1i2
(s, t, u) = ΓΛ

33 i1i2
(s,−t, u)

ΓΛ
34 i1i2

(s, t, u) = −ΓΛ
43 i2i1

(−s, t, u) ΓΛ
34 i1i2

(s, t, u) = ΓΛ
34 i1i2

(s,−t, u)
ΓΛ

44 i1i2
(s, t, u) = ΓΛ

44 i2i1
(−s, t, u) ΓΛ

43 i1i2
(s, t, u) = ΓΛ

43 i1i2
(s,−t, u)

ΓΛ
44 i1i2

(s, t, u) = ΓΛ
44 i1i2

(s,−t, u)

u→ −u, i1 ↔ i2 s↔ u

ΓΛ
11 i1i2

(s, t, u) = ΓΛ
11 i2i1

(s, t,−u) ΓΛ
11 i1i2

(s, t, u) = ΓΛ
11 i1i2

(u, t, s)

ΓΛ
12 i1i2

(s, t, u) = ΓΛ
12 i2i1

(s, t,−u) ΓΛ
12 i1i2

(s, t, u) = ΓΛ
12 i1i2

(u, t, s)

ΓΛ
33 i1i2

(s, t, u) = ΓΛ
33 i2i1

(s, t,−u) ΓΛ
33 i1i2

(s, t, u) = ΓΛ
33 i1i2

(u, t, s)

ΓΛ
34 i1i2

(s, t, u) = ΓΛ
43 i2i1

(s, t,−u) ΓΛ
34 i1i2

(s, t, u) = −ΓΛ
34 i1i2

(u, t, s)

ΓΛ
44 i1i2

(s, t, u) = ΓΛ
44 i2i1

(s, t,−u) ΓΛ
43 i1i2

(s, t, u) = ΓΛ
43 i1i2

(u, t, s)

ΓΛ
44 i1i2

(s, t, u) = −ΓΛ
44 i1i2

(u, t, s)

Table 8.1: Symmetries of the two-particle vertex components under frequency and
site transformations.

netic order parameter MΛ, is given by the dressed fermion bubble,

MΛz
i = = −1

2

1

2π

∫

dωTr[σzGΛ
i (ω)] =

1

π

∫ ∞

Λ

dω
mΛ

i (ω)

(ω + γΛ
i (ω))

2
+ (mΛ

i (ω))
2 . (8.4)

Here the index i refers to the site dependence and z denotes the direction of the external
field.

Before we apply the finite-field scheme to the J1-J2 model in the next two sections, we
briefly state some properties and symmetries of the vertices which reduce the numerical
effort considerably. Firstly, the quantities γΛ, mΛ, ΓΛ

11, ΓΛ
12, ΓΛ

33, ΓΛ
34, ΓΛ

43, ΓΛ
44 introduced

in Eqs. (8.1) and (8.2) are defined such that they are all real. Secondly, the damping is
an odd function and the magnetic field is an even function in their frequency argument,
γΛ(ω) = −γΛ(−ω) and mΛ(ω) = mΛ(−ω). Interestingly, invariances of the two-particle
vertex under the transformations (1) s→ −s, i1 ↔ i2, (2) t→ −t, (3) u→ −u, i1 ↔ i2
and (4) s↔ u may also be formulated in the SU(2) broken case. Tab. (8.1) summarizes
these symmetries for each component of the two-particle vertex. There it is seen that the
symmetries of ΓΛ

s and ΓΛ
d in the SU(2) invariant scheme remain valid. The corresponding

proofs are analogous to those presented in appendix C. Thirdly, for an application to
the J1-J2 model we are interested in field configurations with Bi = ±B where the two
signs correspond to two sublattices A and B which are either of Néel or of collinear type.
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8 Pseudo-Fermion FRG Including Magnetic Fields

ΓΛ
11 i1∈A,i2∈A = ΓΛ

11 i1′∈B,i2′∈B ΓΛ
11 i1∈A,i2∈B = ΓΛ

11 i1′∈B,i2′∈A

ΓΛ
12 i1∈A,i2∈A = −ΓΛ

12 i1′∈B,i2′∈B ΓΛ
12 i1∈A,i2∈B = −ΓΛ

12 i1′∈B,i2′∈A

ΓΛ
33 i1∈A,i2∈A = ΓΛ

33 i1′∈B,i2′∈B ΓΛ
33 i1∈A,i2∈B = ΓΛ

33 i1′∈B,i2′∈A

ΓΛ
34 i1∈A,i2∈A = −ΓΛ

34 i1′∈B,i2′∈B ΓΛ
34 i1∈A,i2∈B = −ΓΛ

34 i1′∈B,i2′∈A

ΓΛ
43 i1∈A,i2∈A = −ΓΛ

43 i1′∈B,i2′∈B ΓΛ
43 i1∈A,i2∈B = −ΓΛ

43 i1′∈B,i2′∈A

ΓΛ
44 i1∈A,i2∈A = ΓΛ

44 i1′∈B,i2′∈B ΓΛ
44 i1∈A,i2∈B = ΓΛ

44 i1′∈B,i2′∈A

Table 8.2: Symmetries of the two-particle vertex components under lattice trans-
lations. A and B denote two equivalent sublattices. The relations are valid if
Ri1 −Ri2 = Ri1′

−Ri2′
. All frequency arguments are omitted.

Due to the equivalence of the sublattices the relations γΛ
i∈A = γΛ

i∈B and mΛ
i∈A = −mΛ

i∈B

hold. Similar identities are found for the two-particle vertex, see Tab. (8.2). After these
methodological considerations we now present applications to the J1-J2 model.

8.2 Hartree- and Random Phase Approximation

Before we turn to the full one-loop magnetic FRG scheme in the next section, we briefly
discuss the special case where only the Hartree (Fig. 6.3a) and RPA (Fig. 6.2b) terms
are kept in the first and second flow equation, respectively. As demonstrated in Sec-
tion 6.5, in conjunction with the Katanin truncation such a scheme is equivalent to the
conserving RPA + Hartree approximation. This equivalence has already been shown
in the paramagnetic phase of the J1-J2 model, see Fig. 6.6. However, without SU(2)
symmetry breaking fields the magnetic phases have not been accessible. Using the for-
malism sketched in the last section this can now be accomplished. In this respect, our
approach resembles the studies in Refs. [52, 107] where symmetry broken FRG flows
into charge-density wave phases and superconducting phases are considered. In order to
model the effect of quantum fluctuations and to make the solution less trivial we again
include a phenomenological pseudo-fermion damping γ as defined in Eqs. (5.5) and (5.6)
which is kept constant during the flow.

The restriction to the RPA and Hartree channels is accompanied with enormous sim-
plifications of the flow equations. Most importantly, the FRG flow does not generate
dependences on the transfer frequencies s and u. Similarly, as long as the external mag-
netic field B = mΛ→∞ is constant in ω, it remains constant during the flow. On the
other hand, the two-particle vertex carries a dependence on t, however, flow equations
corresponding to different t-arguments are decoupled such that the static component
may be considered individually. Moreover, the spin components of the two-particle ver-
tex are independent of each other and it turns out that only ΓΛ

11 and ΓΛ
33 are non-zero.

Here, we concentrate on the flow of ΓΛ
33, from which the longitudinal susceptibility χΛ zz

is obtained. Taking into account all these simplifications one ends up with the following
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Figure 8.1: RPA + Hartree approximation for the J1-J2 model within FRG: Néel
magnetization MΛ = |MΛ

i | and longitudinal Néel susceptibility χΛ zz as a function of
Λ for various values of the external magnetic field B = |Bi|. The damping is chosen
according to Eq. (5.6) with γ̃ = 0.36. The upper row shows the flow into the Néel
ordered phase at g = 0 while the lower row represents the paramagnetic phase at
g = 0.55.

equations for the flowing magnetic field mΛ
i , the longitudinal two-particle vertex ΓΛ

33 i1i2
,

the local magnetic order parameter MΛ
i and the longitudinal spin-spin correlator χΛ zz

i1i2
,

d

dΛ
mΛ

i1
=

2

π

∑

i2

ΓΛ
33 i1i2

mΛ
i1i2

(Λ + γ)2 + (mΛ
i2
)2
, (8.5)

d

dΛ
ΓΛ

33 i1i2
=

2

π

∑

j

ΓΛ
33 i1jΓ

Λ
33 ji2

(Λ + γ)2 − (mΛ
j )2 + 2(Λ + γ)mΛ

j
d

dΛ
mΛ

j

((Λ + γ)2 + (mΛ
j )2)2

, (8.6)

MΛ
i =

1

π
arctan

(

mΛ
i

Λ + γ

)

, (8.7)

χΛ zz
i1i2

=
1

2π

Λ + γ

(Λ + γ)2 + (mΛ
i1
)2
δi1i2 −

1

π2
ΓΛ

33 i1i2

(Λ + γ)2

((Λ + γ)2 + (mΛ
i1
)2)((Λ + γ)2 + (mΛ

i2
)2)

.

(8.8)
Note that all quantities represent static components. The initial conditions for mΛ

i

and ΓΛ
33 i1i2

have already been stated in Eq. (8.3). These equations are most effectively
solved in k-space where the flow of different wave-vector components decouples. We
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8 Pseudo-Fermion FRG Including Magnetic Fields

assume a Néel-like modulation of the magnetic field Bi and calculate the response in
the form of the Néel magnetization MΛ = |MΛ

i | ∈ [0, 0.5] and the staggered longitudinal
susceptibility χΛ zz(k = (π, π)). The damping parameter γ̃ = 0.36 (see Eq. (5.6)) is
chosen such that the paramagnetic phase has the correct extent.

Fig. 8.1 shows the results of the calculation. It is seen that in the Néel phase at g = 0
the magnetic moment M behaves as if Λ was a temperature: With decreasing magnetic
field the rise at Λ ≈ 0.28, signalling the symmetry breaking, gets sharper and the
magnetization at zero Λ-scale converges towards the mean-field order parameter shown
in Fig. 5.1. Regarding the longitudinal susceptibility, the divergence occurring at zero
field is regularized as the magnetic field is switched on. The peak height is proportional
to the reciprocal of B and the peak position is shifted towards larger Λ with increasing
field. A finite coupling J2 lowers the instability scale and weakens the magnetization.
Finally, when the paramagnetic regime is reached (see the plots for g = 0.5) the B-field
perturbation generates a linear response, i.e., the magnetization vanishes linearly with
the magnetic field and the susceptibility rapidly converges towards the zero-field limit.

8.3 Full One-Loop FRG Scheme

In this section we tackle the full magnetic FRG scheme considering all one-loop interac-
tion channels as well as the Katanin scheme. Due to the additional non-vanishing spin
components of the two-particle vertex and the more complicated structure of the flow
equations, the solution requires a lot of computational effort. In the case that a Néel-
like external magnetic field is imposed on the J1-J2 Heisenberg system the computing
times are approximately 18 times longer compared to the SU(2) invariant scheme. This
becomes even worse if we apply a magnetic field with a collinear ordering pattern: The
broken 90◦-rotation symmetry results in an additional factor of two in the computation
times. Hence, we will not consider collinear order in the following but restrict ourselves
to Néel-like perturbations. In our calculations we use 46 frequency mesh-points and
include correlations up to a length of 5 lattice spacings.

The results of such calculations are shown in Fig. 8.2. For g = 0 we obtain a similar
behavior as compared to the RPA + Hartree scheme of the last section: The rise of
the magnetization becomes more and more pronounced as the magnetic field is lowered.
Generally, we are not able to apply arbitrarily small external fields. For B . 0.01J1

we could not reach the intersting Λ-regime below Λ ≈ 0.5 due to a sudden breakdown
of the flow. This may be explained by the fact that the energy scale given by the field
falls below the lowest discrete frequency mesh-point. For the smallest accessible fields
we obtain a magnetization of MΛ→∞ ≈ 0.42, i.e., clearly larger than M = 0.3 found by
Monte Carlo [94]. Regarding the longitudinal susceptibility the instability breakdown
that would occur at Λ ≈ 0.45J1 is regularized by a finite field such that we do not
observe unstable oscillatory flow behavior below that scale. Altogether, our results at
finite fields clearly support the notion of Néel order in the nearest-neighbor Heisenberg
model.

However, the flow behavior becomes ambiguous if we consider the paramagnetic regime
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8.3 Full One-Loop FRG Scheme
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Figure 8.2: Magnetic FRG scheme including all interaction channels: Néel mag-
netization MΛ = |MΛ

i | and longitudinal Néel susceptibility χΛ zz as a function of Λ
for various values of the external magnetic field B = |Bi|. The upper row shows
the flow into the Néel ordered phase at g = 0 while the lower row represents the
paramagnetic phase at g = 0.55.

at g = 0.55. Even at rather small fields we obtain large magnetizations that would point
to the existence of Néel order. (For the smallest field B = 0.003J1 a stable flow could only
be obtained above Λ ≈ 0.05J1.) By contrast, the susceptibility data at g = 0.55 implies
that at small enough magnetic fields the curves converge towards the SU(2) invariant
solution, which would correspond to a linear response. Unfortunately, the numerically
accessible settings for the frequency discretization and the external field do not allow to
clarify this issue.

We emphasize that except for the case of a conserving approximation (which fulfills
Ward identities exactly) the phase boundaries detected by the susceptibility at zero field
are not necessarily identical to those found by the onset of non-linear response to a small
perturbation. Within a conserving scheme the susceptibility diagrams are generated by
the derivative of magnetization diagrams (bubbles of a single fermion propagator) with
respect to the magnetic field. This assures that the two methods of detecting phase
transitions yield the same results. However, if one spoils Ward identities as we do,
susceptibility diagrams obtained by the derivative of the magnetization are not identical
to those generated during the RG flow, leading to ambiguities in the phase diagram
when a magnetic field is applied. We suppose that this is the origin of the unclear flow
behavior in the paramagnetic phase.
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8 Pseudo-Fermion FRG Including Magnetic Fields

In conclusion, an FRG scheme reproducing the results of an RPA + Hartree approx-
imation demonstrates that in view of the flow behavior of the magnetization and the
susceptibility, the cutoff Λ may be regarded as a temperature. Our findings within the
RPA + Hartree scheme agree qualitatively well as compared to the full one-loop cal-
culation, at least in ordered phases. However, the intermediate regime is sensitive to
external Néel perturbations such that the magnetic properties at g = 0.55 under the
influence of small fields remain ambiguous. Therefore, we conclude that within an FRG
scheme that does not fulfill Ward identities exactly the response to small magnetic fields
is not a good criterion to identify different phases of the J1-J2 model.
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9 FRG at Finite Temperatures

As the FRG is typically formulated in the framework of the Matsubara technique, it
is of course not restricted to zero temperature. In this chapter, we first present the
modifications of our FRG approach which are necessary to allow for finite temperatures.
Secondly, we apply this scheme to the J1-J2 model and discuss the results. In particular,
since the chemical potential used within the Popov scheme µppv = − iπT

2
becomes finite,

it can be explicitly included in our numerics which enables us to test the fulfillment of
the pseudo-particle constraint.

9.1 Modifications of the Formalism

The most obvious consequence of finite temperatures is that the Matsubara frequencies
are discrete, i.e., ωn = (2n+ 1)πT for fermionic and νn = 2nπT for bosonic frequencies
(n ∈ Z). This means that the internal integrations become sums. Since only a finite
number of these frequencies may be treated numerically, we have to choose a set of
indices ni. Most naturally, below some index n0 all frequencies are included while with
increasing |n| > n0 more and more integers are omitted. In order to generate such a set
we use a function of the form

ni = round

(

z sinh

(

i

z

))

with i = −i0,−i0 + 1, . . . , i0 , (9.1)

where the parameter z determines the value of n0 (for a symmetric set of fermionic
Matsubara frequencies we have to use a slightly different formula). For the evaluation
of vertex functions at frequency arguments that do not correspond to integers included
in the set, we perform a linear interpolation between adjacent mesh points as described
in Section 6.2.

The legs of the m-particle vertex functions all carry fermionic frequencies, implying
that the transfer frequencies of the two-particle vertex s, t, u are bosonic. If we write the
frequencies on the legs of the two-particle vertex as ωx = (2nωx

+1)πT with x = 1, 1′, 2, 2′

and the transfer frequencies as y = 2nyπT with y = s, t, u then the relations in Eq. (6.39)
transform into the following rules

ns = nω1′
+ nω2′

+ 1 , nt = nω1′
− nω1 , nu = nω1′

− nω2 . (9.2)

These equations have an interesting implication: While nω1 , nω1′
, nω2 take all integer

values independently (nω2′
is fixed by energy conservation), the numbers ns, nt, nu are

dependent of each other. It turns out that either one or three of them are odd while the
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9 FRG at Finite Temperatures

others are even. In other words, the possible values for ns, nt, nu form a face-centered
cubic lattice. If we now thin out this lattice at higher frequencies in order to obtain
a numerically treatable mesh, we are faced with the non-trivial problem of finding a
scheme that interpolates between the remaining points. However, we avoid this difficulty
by parametrizing the two-particle vertex by nω1 , nω1′

, nω2 instead of ns, nt, nu. Since
nω1 , nω1′

, nω2 form a simple cubic lattice, the linear interpolation is straightforwardly
performed using Eq. (6.49).

At least within the average projection scheme where µ = 0, the flow equations at
finite temperatures are again invariant under the transformations ns → −ns, nt → −nt,
nu → −nu and ns ↔ nu. Despite our new parametrization of the two-particle vertex
we employ these symmetries and restrict the flow equations to frequency indices nω1 ,
nω1′

, nω2 that correspond to positive ns, nt, nu. (In the case that the right side of a flow
equation exhibits a vertex at frequencies belonging to negative ns, nt, nu we identify it
with the vertex carrying the transfer frequencies |ns|, |nt|, |nu|.) Note that the Popov
scheme effectively shifts all Matsubara frequencies by one quarter of their distance such
that they are no longer symmetric around zero. Hence, the above-mentioned symmetries
are all violated and we have to deal with the full (depleted) mesh spanned by nω1, nω1′

,
nω2 , resulting in an additional factor of 16 in the computation times.

A further modification concerns the infrared frequency cutoff: The sharp function
Θ(|ωn| − Λ) is not compatible with discrete Matsubara sums

∑

ωn
since the single-scale

propagator SΛ ∝ δ(|ωn| −Λ) gives an (infinite) contribution only if the scale Λ matches
a Matsubara frequency. Hence, a sharp cutoff does not generate continuous RG flows.
In the following we use a cutoff function of the form

χΛ(ωn) =
ω2

n

ω2
n + Λ2

, (9.3)

see e.g. Ref. [59], with a width of the “step” at ωn ≈ ±Λ that increases with Λ.
We emphasize that there is no unique choice for this function. In fact, many other
possibilities are found in the literature [58, 66]. Using χΛ(ωn) as defined in Eq. (9.3) the
Green’s function and the single-scale propagator are given by

GΛ(ωn) =
1

i

ωnη

ω2
n + ωnγΛ(ωn)η + Λ2

, (9.4)

SΛ(ωn) =
1

i

1

(ω2
n + ωnγΛ(ωn)η + Λ2)2

(

2Λωnη + ω2
nη

2 d

dΛ
γΛ(ωn)

)

, (9.5)

where η is defined as η = 1 for the average projection scheme and η = 1/(1− πT
2ωn

) for the

Popov scheme. The term with the derivative of γΛ is the Katanin part of the single-scale
propagator. Due to the broadened cutoff, both terms in the single-scale propagator re-
quire a frequency summation. Taking into account all these modifications, our computer
code has to be changed fundamentally as compared to the zero-temperature scheme.
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Figure 9.1: Néel-susceptibility
flow within the finite tempera-
ture FRG scheme at the nearest-
neighbor Heisenberg point g = 0
using the average projection with
µ = 0.

9.2 Results for the J1-J2 model

To begin with, we discuss the typical susceptibility flow-behavior at finite temperatures.
As an example Fig. 9.1 depicts the Néel susceptibility at g = 0 within the average pro-
jection scheme for T = J1 and T = 2J1. The qualitative behavior is not changed by the
Popov scheme or different choices of the frustration g. The data show an inflection point
at a Λ-scale proportional to the temperature. At this scale the temperature becomes the
relevant energy cutoff in the system such that with decreasing Λ the gradient falls off.
Furthermore, it is seen that at these (rather large) temperatures the Néel instability is
entirely regularized, leaving no sign of any oscillatory flow behavior down to the smallest
scales.

In order to discuss the temperature dependence of the susceptibility, Fig. 9.2 shows
the results in the physical limit Λ → 0 and compares the two projection schemes. In fact,
we cannot reach arbitrarily small temperatures for the following reason: As Λ is lowered,
the cutoff gets sharper such that the internal Matsubara sum runs over a single-scale
propagator with a small peak width. For a proper evaluation of this sum our mesh needs
to include all Matsubara frequencies at that scale. Therefore, at small temperatures,
well converged results require many frequency mesh-points (it is tempting to avoid this
problem by choosing a cutoff function with a constant width of the step but this leads
to an insufficient regularization of the propagators in the infrared limit).

For g = 0 we obtain converged results down to temperatures T ≈ 0.25J1 while be-
low the effects of the finite frequency grid and especially of the finite system size are
too strong. However, at the smallest accessible temperatures a steep increase of the
susceptibility is seen, which is in agreement with the existence of Néel order in that
parameter regime. By contrast, at g = 0.55, smaller finite-size effects enable us to reach
temperatures of the order of T ≈ 0.05J1, at least within the average projection (calcula-
tions within the Popov scheme at such small temperatures require too much numerical
resources). We stress that in general, different cutoff functions do not necessarily yield
the same solution in the limit Λ → 0 which is why we cannot expect to reproduce our
zero-temperature results within the present scheme. Nevertheless, on the basis of our
susceptibility data, it seems that with decreasing temperature our ground-state result,
marked with a black diamond, is reached.
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Figure 9.2: Néel susceptibility in the physical limit Λ → 0 as a function of the
temperature using the average (µ = 0, red) and the exact projection scheme (µ =
µppv = − iπT

2
, blue). The insets show the ratios of the susceptibilities for µ = µppv

and µ = 0. The left plot represents the Néel phase at g = 0 and the right plot the
paramagnetic phase at g = 0.55. The black diamond on the T = 0-axis of the right
plot marks the solution of the zero temperature FRG scheme.

As a generic feature we obtain smaller susceptibilities within the average projection as
compared to the Popov scheme. This can be explained by the fact that at non-zero tem-
peratures the average scheme generally allows for sites with unphysical auxiliary-particle
occupations. Since these sites do not carry spins they reduce the magnetic susceptibility.
The insets show the ratio of the susceptibilities obtained within both projection schemes.
It is seen that with decreasing temperature this ratio approaches one, which supports
our argument that in the zero-temperature limit the average projection is sufficient to
fulfill the constraint exactly.

In order to detect Curie-Weiss behavior of the homogeneous susceptibility, more data
points are needed. As shown in Section 7.6, the physics at high energies such as Curie-
Weiss behavior is most effectively studied on the basis of the Λ-flow within the zero-
temperature scheme, because only one calculation is necessary to scan all energy scales.
In view of our finite-temperature data we can at least say that with increasing T the
fermion-bubble contribution to the susceptibility, i.e., the first term on the right side of
Eq. (6.52), becomes dominant as compared to the remaining two-particle vertex term.
This means that the system behaves more and more like a non-interacting system. In
turn, with increasing T the influence of the self energy on the fermion bubble becomes
irrelevant such that in the limit T → 0 the susceptibility effectively reduces to the bare
(unrenormalized) bubble Π0, which can be easily calculated,

Π0(ω = 0) =

{

1
8T

for µ = 0
1

4T
for µ = µppv

. (9.6)

This is obviously the contribution that generates the Curie- 1
T
-behavior. From this equa-
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9.2 Results for the J1-J2 model

tion it is also seen that the susceptibility ratio of the two projection schemes converges
towards two in the limit T → ∞.

In conclusion, the finite temperature FRG scheme provides further indication for the
existence of Néel order at g = 0 and magnetic disorder at g = 0.55. However, since small
temperatures are out of the reach of the present formulation, for an unambiguous detec-
tion of different phases the ground-state FRG scheme is more suitable. Concerning the
auxiliary-particle constraint our results clearly support the argument that the average
projection is sufficient for an exact fulfillment at zero temperature.
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10 Limitations of the FRG: Lower
Dimensions

While our results for the two-dimensional spin models presented in Chapters 6 and 7
are in good agreement with other studies, real numerical tests of our approach aside
from the determination of critical couplings could not be performed because almost no
exact results are available in two dimensions. By contrast, a lot of analytical statements
exist for one- (or even zero-) dimensional models and, moreover, these systems can be
studied within shorter computation times. However, it seems to be a generic property of
the spin FRG that magnetic ordering tendencies are overestimated in lower dimensions.
This will be exemplified in the following.

A one-dimensional spin system containing interesting physics is the J1-J2 Heisenberg
model on a chain with nearest-neighbor interactions J1 and next-nearest neighbor inter-
actions J2. Below a critical coupling J2,c = 0.2411J1 the system features a spin liquid
with algebraically decaying correlations, while above the system is dimerized, gapped
and short-range correlated [88]. The point J2

J1
= 0.5, also known as the Majumdar-

Ghosh point, is special because its ground state has a simple form: It is the product of
spin singlets between nearest-neighbor sites, i.e., the fully dimerized state is the exact
solution. Within our FRG approach we obtain the susceptibilities shown in Fig. 10.1.
It is seen that in the nearest-neighbor limit J2 = 0 the Néel susceptibility features an
unstable, oscillatory behavior below Λ ≈ 0.3J1, which would imply magnetic long-range
order. Indeed, the breakdown is not as pronounced as in the two-dimensional case, see
Fig. 6.12 but would still be consistent with a small magnetization. As J2 is increased
towards the Majumdar-Ghosh point, the susceptibility does not undergo any significant
change (except for the fact that the maximum in k-space moves away from k = π). At
J2

J1
= 0.5 the wiggly behavior is smoother but still visible. Especially, regarding the spin

correlations, which are exponentially decaying throughout the parameter space, we can-
not resolve the transition at J2

J1
= 0.2411. Altogether, the changes in the susceptibility

upon variation of the couplings are not as pronounced as in two dimensions.
Next, we go even further and consider the two-site Heisenberg molecule, H = JS1S2,

as an example for a system with a finite Hilbert space. Diagonalizing the Hamiltonian,
it is easily found that for J > 0 the ground state is a spin singlet with a static spin-
spin correlator χij = 〈〈Sz

i S
z
j 〉〉 of χ11 = χ22 = 1

2J
and χ12 = χ21 = − 1

2J
. Regarding

these values the FRG provides reasonable results, i.e., χFRG
11 ≈ 0.61 1

J
, χFRG

12 ≈ −0.36 1
J

and, in particular, a smooth flow behavior down to Λ → 0 is obtained. However,
the overestimation of magnetic order is again seen: Within FRG the auxiliary-particle
damping γΛ→0(ω) comes out much smaller than the exact solution γ(ω) = 9J2

16ω
, especially

at small frequencies where the FRG result approaches zero while the exact solution
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diverges, see Fig. 10.2. As demonstrated in Chapter 5 the damping mimics quantum
fluctuations such that the system is biased towards magnetic order if γ is too small.

Although the lack of quantum fluctuations is not sufficient to generate an instability
breakdown during the flow of the two-site molecule, its effect can be explicitly seen in
related spin systems. We studied the bilayer-Heisenberg model that possesses nearest-
neighbor couplings J1 within the square-lattice planes and interlayer couplings J⊥ that
connect neighboring sites between the layers. Starting from the isolated plane limit
J1 = 0, with increasing J⊥, the formation of interlayer spin singlets becomes more and
more favored until at a certain point the Néel order breaks down. Numerical studies, in
particular quantum Monte Carlo, which is not affected by the sign problem, determine
the critical point with high accuracy. They find J⊥,c ≈ 2.5J1 [137, 139]. By contrast,
the FRG still shows a clear Néel instability at J⊥

J1
= 2.5 because the pseudo-fermion

damping generated by the bond formation is too weak to destroy the order. Instead,
FRG predicts the transition to be at J⊥

J1
≈ 4.5 . . . 5.

The systematic overestimation of magnetic order in dimensions lower than two can
probably be traced back to the graphs included in the FRG. The only diagrammatic
contribution that is able to describe correlations of arbitrary distance is the RPA. How-
ever, this term alone corresponds to the classical mean-field theory which is known to
give reasonable results at high enough dimensions but overestimates magnetic order in
lower dimensions. This means that in 1D and 0D the balance between diagrams favoring
order and those favoring disorder is no longer guaranteed. Therefore, we suppose that
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10 Limitations of the FRG: Lower Dimensions

in order to describe the physics of spin chains or point-like objects correctly, further
“long-range diagrams” of two-loop type have to be included. Of course, this poses a
severe problem to numerics and will not be considered here.

To summarize, in this chapter we illustrated that due to the restriction to one-loop
diagrams (with the exception of the Katanin terms), the spin FRG tends to overestimate
magnetic order in dimensions lower than two. This problem also occurs when objects
of small dimensionality are imbedded in a system of higher dimension, as in the case of
the bilayer-Heisenberg model. Since, on the other hand, the investigation of 3D systems
requires a lot of computational resources, the real power of our approach lies in two
dimensions.
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11 Conclusion and Outlook

The aim of this work is the development of new methods to calculate magnetic properties
of frustrated two-dimensional quantum spin models. The starting point of our approach
is perturbation theory in the exchange couplings, summed to infinite order. In order to
be able to use standard many-body techniques and to perform diagrammatic expansions,
we have applied the auxiliary-fermion representation of spin operators. To enforce the
auxiliary-particle constraint, two different projection schemes have been employed: (i)
enforcement of the constraint on the average (which, however, becomes exact at zero
temperature), and (ii) exact projection using an imaginary chemical potential [91].

In a first exploratory study we use the bare RPA + Hartree approximation to access
the ground-state properties. We find that on a simple mean-field level the suppression of
magnetic order as an effect of frustration cannot be described. Therefore, we introduce a
phenomenological damping term in the bare pseudo-fermion Green’s function to account
for scattering processes of the fermions which leads to a finite lifetime and a spectral
broadening. We show that this damping can be tuned such that the magnetization,
the susceptibility and hence the overall phase diagram of a frustrated quantum spin
model come out as expected, which is demonstrated in Chapter 5 using the J1-J2 model.
Hence, as an important result for the subsequent chapter we find that the pseudo-fermion
damping is the central quantity to control the competition between order and disorder
fluctuations. However, it is demonstrated that the microscopic derivation of the pseudo-
fermion damping is beyond the reach of simple diagrammatic resummations.

A more systematic approach is considered in the main part of the thesis: the func-
tional renormalization group (FRG) method. In Chapter 6 we develop a formulation in
terms of auxiliary fermions and derive differential equations for the one- and two-particle
irreducible vertex functions under the flow of a sharp frequency cutoff Λ. This method
effectively sums up large diagram classes in a systematic way and reaches therefore far
beyond the mean-field theory. It turns out that a truncation of the hierarchy of flow
equations neglecting all two-loop contributions is not sufficient to adequately describe
the competition between order and disorder fluctuations. An improved scheme suggested
by Katanin [67] includes certain two-loop terms in the form of self-energy corrections.
The latter approach assures that the full (dressed) RPA terms as well as the full particle-
particle and particle-hole ladders are contained in the approximation. This proved to be
the central requirement to obtain the correct pseudo-fermion damping: While the RPA-
diagrams (as the leading term in a 1/S expansion) support order tendencies, the ladder
diagrams (as the leading term in a 1/N expansion, with N being the dimension of the
symmetry group SU(N)) favor disorder fluctuations such that altogether the approach
allows to treat order and disorder on an equal footing. As a first test, an application to
the J1-J2 model in fact shows that this approach reproduces the correct phase diagram
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that has also been obtained by other methods.
Most of the results within that scheme are collected in Chapter 7, where we consider

more complicated spin systems. Aside from models based on a square lattice such as
the J1-J2-J3 model or the checkerboard model we investigate triangular lattices with
real-space anisotropies. Moreover, in order to treat non-Bravais lattices we consider
the Heisenberg model on a Kagome- and a honeycomb lattice and finally the Kitaev-
Heisenberg model. The latter opens the door to an even larger class of systems as it also
involves anisotropies in spin space and ferromagnetic interactions. These systems are
adequately described within our FRG method yielding quantum phase-diagrams in good
agreement with other numerical studies. While a breakdown of the RG flow of the static
k-dependent susceptibility signals magnetic order with wave vector k, the existence of a
stable solution indicates the absence of long-range order. This allows us to distinguish
between magnetic and non-magnetic phases. Furthermore, unlike other methods, by
investigating the k-space resolved susceptibility as the generic outcome of the FRG we
can identify the wave vector and the strength of the leading magnetic fluctuations in
disordered phases.

To some extent our method allows to characterize the nature of non-magnetic phases:
Imposing a small dimer-field perturbation on the system we can calculate the response
as a measure for the propensity to form a valence-bond solid. This way we identify
parameter regimes of different dimer-fluctuation strength and test different valence-bond
patterns against each other, see the corresponding discussions in Sections 6.6 and 7.5.
However, for an unambiguous detection of dimer instabilities we need to include the
four-particle vertex as the diagrammatic representation of dimer susceptibilities into our
RG flow, which turns out to be far beyond the reach of the present formulation.

The natural generalization of our FRG approach to SU(2) broken vertex flows is
discussed in Chapter 8. A small external magnetic field breaks the SU(2) symmetry
and enables us to calculate the flowing magnetic order parameter. On the basis of an
RPA + Hartree approximation the magnetic field regularizes ordering instabilities such
that the flow continues into magnetic regimes. Similar findings are obtained in ordered
phases using the full one-loop (plus Katanin) scheme. On the other hand, studying the
response to external magnetic fields, it turns out to be difficult to detect non-magnetic
phases within approximation schemes which do not fulfill conserving properties exactly.

A further generalization of the FRG scheme concerns the implementation of finite
temperatures, see Chapter 9. As long as the temperature is not too small we obtain
well converged results which give at least a rough indication of the ground-state phase
diagram. At finite temperatures it is necessary to employ the Popov-Fedotov scheme
to effect exact projection. Comparing the solutions within the exact and the average
projection, we obtain the important result that with decreasing temperature the two
schemes indeed approach each other which supports our argument that the use of the
average projection is justified at zero temperature.

Chapter 10 contains a discussion on zero- and one-dimensional spin systems. It is
illustrated that ordering tendencies are overestimated in dimensions lower than two
which we regard as a consequence of missing two-loop long-range correlation diagrams.
Thus, we conclude that our approach is most powerful in two dimensions.
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To summarize, the work reported here shows that in spite of the fact that quantum
spin models are in the strong coupling regime by definition, partial resummations of
perturbation theory appear to capture the physics of frustrated magnets. We provide a
large body of evidence that our FRG approach is capable (i) of distinguishing between
magnetically ordered and disordered phases, (ii) of determining the magnetic wave vector
in ordered regimes and the fluctuation profile in disordered regimes and (iii) of estimat-
ing and comparing the propensity for the formation of different types of valence-bond
solids. In particular, we do not make any assumption on the ground state or perform an
expansion around any presumed state. Our starting point of free fermions without dis-
persion is completely featureless. The resummations, done here in the framework of the
FRG method, account in a controlled and systematic way for all two-particle interaction
processes, including all couplings between the different channels.

In order to reveal further properties of the systems investigated here it would be most
desirable to calculate the magnetic excitation spectrum. However, since our present
FRG formulation is based on imaginary Matsubara frequencies, this requires an analytic
continuation to the real frequency axis which is known to be an ill-posed problem. Our
data on that issue is not yet conclusive enough to be presented in this thesis. Hence,
in order to circumvent this problem in future studies, it might be helpful to consider
an FRG scheme on the real frequency axis. Another interesting perspective of the spin
FRG would be a formulation away from half filling including a finite hopping amplitude
of the fermions, i.e., an implementation of the t-J model. We suggest that from both,
the methodological as well as from the numerical side such a scheme represents a great
challenge. On the other hand, it could provide important insights into the physics of
the t-J model, in particular in the context of superconductivity.
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A The Popov-Fedotov Technique

At first glance it is not obvious how the Popov-Fedotov method with its imaginary valued
chemical potential projects out the unphysical occupations. In this appendix we want
to clarify this issue.

We define Qi as the operator of the total fermion number on site i. First we note
that within the Popov-Fedotov method (i.e, using the Hamiltonian Hppv, see Eq. (3.5))
each particle number Qi is a conserved quantity. Furthermore, since all particle-number
operators mutually commute, an eigenstate of Hppv can be characterized by a set of
quantum numbers {n, q1, q2, . . .}. Here qi = 0, 1, 2 denotes the eigenvalues of the particle-
number operator Qi while n is some set of “physical” quantum numbers in the sectors
with all qi being fixed. The corresponding eigenenergies E(n, q1, q2, . . .) are defined by

H|n, q1, q2, . . .〉 = E(n, q1, q2, . . .)|n, q1, q2, . . .〉 . (A.1)

Note again thatH is a Heisenberg Hamiltonian with the spin representation (3.1) already
inserted. The physical subspace of H is characterized by the charge configuration with
q1 = 1 for all lattice sites i. In this subspace we define the physical eigenenergies by

E(n, q1 = 1, q2 = 1, . . .) = En . (A.2)

A site i with an unphysical occupation carries spin zero. Accordingly a spin operator Si

annihilates such states,

Si|n, q1, q2, . . .〉 = 0 for qi = 0 or qi = 2 . (A.3)

As a consequence, in a subspace with an unphysical auxiliary-particle number at some
site i (qi = 0 or qi = 2) the spin at this site is effectively missing in the Hamiltonian H .
Therefore, the eigenenergies for qi = 0 and qi = 2 are the same (all other qi are arbitrary
but fixed),

E(n, q1, q2, . . .)|qi=0 = E(n, q1, q2, . . .)|qi=2 . (A.4)

Now we consider a physical operator O. By “physical” we mean that O is an arbitrary
sum or product of spin operators involving a certain set {j} of lattice sites. In the
following we show that the expectation value 〈O〉ppv, calculated with Hppv in the entire
Hilbert space is identical to the physical expectation value 〈O〉 where the average is
performed with the original Hamiltonian H and the physical subspace. The expectation
value 〈O〉ppv is given by

〈O〉ppv =
Trf [e−βHppvO]

Trf [e−βHppv ]
. (A.5)
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The index f specifies that the trace runs over the enlarged (full) Hilbert space of
the fermions. First, we evaluate the partition function Zppv, i.e., the denominator of
Eq. (A.5),

Zppv = Trf [e−βHppv

]

=
∑

n

∑

q1,q2,...

〈n, q1, q2, . . . |e−βHppv|n, q1, q2, . . .〉

=
∑

n

∑

q1,q2,...

e−βE(n,q1,q2,...)e−i π
2
q1e−i π

2
q2 · · · . (A.6)

Here we used the form of Hppv from Eq. (3.5) with µppv = − iπ
2β

and the definition of the

eigenenergies, Eq. (A.1). Now we consider the sum over qi = 0, 1, 2 on some site i, while
all other particle numbers are fixed: From Eq. (A.4) we know that the contribution of
the factor e−βE(n,q1,q2,...) is the same for qi = 0 and qi = 2, such that the sum

∑

qi=0,2

contributes a factor
∑

qi=0,2

e−i π
2
qi = (1 + e−iπ) = 0 (A.7)

to the trace, i.e., the unphysical contributions cancel due to the imaginary chemical
potential µppv. This works for all sites independently, such that only the physical occu-
pation configuration remains,

Zppv =
∑

n

e−βE(n,q1=1,q2=1,...)
(

e−i π
2

)N
=
∑

n

e−βEn(−i)N = (−i)NZ . (A.8)

Here N is the total number of lattice sites. That is, up to a constant prefactor, the
partition function in the enlarged Hilbert space is the physical one.

Now we evaluate the numerator of Eq. (A.5). In addition to the terms in the last line
of Eq. (A.6) also the expectation value of the operator O appears,

Trf [e−βHppvO] =
∑

n

∑

q1,q2,...

e−βE(n,q1,q2,...)e−i π
2
q1e−i π

2
q2〈n, q1, q2, . . . |O|n, q1, q2, . . .〉 .

(A.9)
For a sum over qi on a site i which does not belong to the set {j} of sites included in
O, the argument of Eq. (A.7) holds: The Boltzmann factor as well as the expectation
value 〈n, q1, q2, . . . |O|n, q1, q2, . . .〉 are the same for qi = 0 and qi = 2, restricting the sum
to qi = 1. For a sum over qi on a site i which belongs to the set {j} the restriction to
qi = 1 is obvious because due to Eq. (A.3) the expectation value vanishes for qi = 0 and
qi = 2. In all cases only physical particle-number contributions remain,

Trf [e−βHppvO] = (−i)N
∑

n

e−βEn〈n, q1 = 1, q2 = 1, . . . |O|n, q1 = 1, q2 = 1, . . .〉 . (A.10)

The factor (−i)N appearing in the numerator (A.10) and denominator (A.8) cancels
such that the identity 〈O〉ppv = 〈O〉 is proven.

Finally we emphasize that the projection also works for propagators 〈O(τ)O(0)〉 where
the operator acts at different times τ , as long as O is physical in the sense mentioned
above.
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B Flow Equations for the Two-Particle
Vertex

In this appendix we present the FRG flow-equations for ΓΛ
s and ΓΛ

d . After inserting
Eq. (6.42a) into Eq. (6.45) and performing the spin sums over α3 and α4, we compare
the contributions corresponding to spin interactions (proportional to σµ

α1′α1
σµ

α2′α2
) and

density interactions (proportional to δα1′α1δα2′α2) on both sides. Furthermore, we use
the frequency parametrization introduced in Eqs. (6.38) and (6.39). This leads to the
following equations,

d

dΛ
ΓΛ

s i1i2
(s, t, u) =

1

2π

∫ ∞

−∞
dω′
{

[

− 2ΓΛ
s i1i2

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
s i1i2

(s, ω2 + ω′, ω1 + ω′)

+ΓΛ
s i1i2

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
d i1i2

(s, ω2 + ω′, ω1 + ω′)

+ΓΛ
d i1i2

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
s i1i2

(s, ω2 + ω′, ω1 + ω′)

−2ΓΛ
s i1i2

(s, ω1′ + ω′,−ω2′ − ω′)ΓΛ
s i1i2

(s,−ω1 − ω′,−ω2 − ω′)

+ΓΛ
s i1i2

(s, ω1′ + ω′,−ω2′ − ω′)ΓΛ
d i1i2

(s,−ω1 − ω′,−ω2 − ω′)

+ΓΛ
d i1i2

(s, ω1′ + ω′,−ω2′ − ω′)ΓΛ
s i1i2

(s,−ω1 − ω′,−ω2 − ω′)
]

× PΛ(ω′, s+ ω′)

+
[

2
∑

j

ΓΛ
s i1j(ω1′ + ω′, t, ω1 − ω′)ΓΛ

s ji2
(ω2 + ω′, t,−ω2′ + ω′)

+2
∑

j

ΓΛ
s i1j(ω1 − ω′, t, ω1′ + ω′)ΓΛ

s ji2
(ω2′ − ω′, t,−ω2 − ω′)

+ΓΛ
s i1i2

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
s i2i2

(ω2 + ω′,−ω2′ + ω′, t)

−ΓΛ
s i1i2

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
d i2i2

(ω2 + ω′,−ω2′ + ω′, t)

+ΓΛ
s i1i2

(ω1 − ω′, t, ω1′ + ω′)ΓΛ
s i2i2

(ω2′ − ω′,−ω2 − ω′, t)

−ΓΛ
s i1i2

(ω1 − ω′, t, ω1′ + ω′)ΓΛ
d i2i2

(ω2′ − ω′,−ω2 − ω′, t)

+ΓΛ
s i1i1

(ω1′ + ω′, ω1 − ω′, t)ΓΛ
s i1i2

(ω2 + ω′, t,−ω2′ + ω′)

−ΓΛ
d i1i1

(ω1′ + ω′, ω1 − ω′, t)ΓΛ
s i1i2

(ω2 + ω′, t,−ω2′ + ω′)

+ΓΛ
s i1ii

(ω1 − ω′, ω1′ + ω′, t)ΓΛ
s i1i2

(ω2′ − ω′, t,−ω2 − ω′)

−ΓΛ
d i1ii

(ω1 − ω′, ω1′ + ω′, t)ΓΛ
s i1i2

(ω2′ − ω′, t,−ω2 − ω′)
]

× PΛ(ω′, t+ ω′)
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−
[

2ΓΛ
s i1i2

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
s i1i2

(ω2 − ω′, ω1′ + ω′, u)

+ΓΛ
s i1i2

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
d i1i2

(ω2 − ω′, ω1′ + ω′, u)

+ΓΛ
d i1i2

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
s i1i2

(ω2 − ω′, ω1′ + ω′, u)

+2ΓΛ
s i1i2

(ω1 + ω′,−ω2′ + ω′, u)ΓΛ
s i1i2

(ω1′ + ω′, ω2 − ω′, u)

+ΓΛ
s i1i2

(ω1 + ω′,−ω2′ + ω′, u)ΓΛ
d i1i2

(ω1′ + ω′, ω2 − ω′, u)

+ΓΛ
d i1i2

(ω1 + ω′,−ω2′ + ω′, u)ΓΛ
s i1i2

(ω1′ + ω′, ω2 − ω′, u)
]

× PΛ(ω′, u+ ω′)
}

, (B.1)

d

dΛ
ΓΛ

d i1i2
(s, t, u) =

1

2π

∫ ∞

−∞
dω′
{

[

3ΓΛ
s i1i2

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
s i1i2

(s, ω2 + ω′, ω1 + ω′)

+ΓΛ
d i1i2

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
d i1i2

(s, ω2 + ω′, ω1 + ω′)

+3ΓΛ
s i1i2

(s, ω1′ + ω′,−ω2′ − ω′)ΓΛ
s i1i2

(s,−ω1 − ω′,−ω2 − ω′)

+ΓΛ
d i1i2

(s, ω1′ + ω′,−ω2′ − ω′)ΓΛ
d i1i2

(s,−ω1 − ω′,−ω2 − ω′)
]

× PΛ(ω′, s+ ω′)

+
[

2
∑

j

ΓΛ
d i1j(ω1′ + ω′, t, ω1 − ω′)ΓΛ

d ji2
(ω2 + ω′, t,−ω2′ + ω′)

+2
∑

j

ΓΛ
d i1j(ω1 − ω′, t, ω1′ + ω′)ΓΛ

d ji2
(ω2′ − ω′, t,−ω2 − ω′)

−3ΓΛ
d i1i2

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
s i2i2

(ω2 + ω′,−ω2′ + ω′, t)

−ΓΛ
d i1i2

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
d i2i2

(ω2 + ω′,−ω2′ + ω′, t)

−3ΓΛ
d i1i2

(ω1 − ω′, t, ω1′ + ω′)ΓΛ
s i2i2

(ω2′ − ω′,−ω2 − ω′, t)

−ΓΛ
d i1i2

(ω1 − ω′, t, ω1′ + ω′)ΓΛ
d i2i2

(ω2′ − ω′,−ω2 − ω′, t)

−3ΓΛ
s i1i1

(ω1′ + ω′, ω1 − ω′, t)ΓΛ
d i1i2

(ω2 + ω′, t,−ω2′ + ω′)

−ΓΛ
d i1i1

(ω1′ + ω′, ω1 − ω′, t)ΓΛ
d i1i2

(ω2 + ω′, t,−ω2′ + ω′)

−3ΓΛ
s i1i1

(ω1 − ω′, ω1′ + ω′, t)ΓΛ
d i1i2

(ω2′ − ω′, t,−ω2 − ω′)

−ΓΛ
d i1i1

(ω1 − ω′, ω1′ + ω′, t)ΓΛ
d i1i2

(ω2′ − ω′, t,−ω2 − ω′)
]

× PΛ(ω′, t+ ω′)

−
[

3ΓΛ
s i1i2

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
s i1i2

(ω2 − ω′, ω1′ + ω′, u)

+ΓΛ
d i1i2

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
d i1i2

(ω2 − ω′, ω1′ + ω′, u)

+3ΓΛ
s i1i2

(ω1 + ω′,−ω2′ + ω′, u)ΓΛ
s i1i2

(ω1′ + ω′, ω2 − ω′, u)

+ΓΛ
d i1i2

(ω1 + ω′,−ω2′ + ω′, u)ΓΛ
d i1i2

(ω1′ + ω′, ω2 − ω′, u)
]

× PΛ(ω′, u+ ω′)
}

. (B.2)
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The frequencies ω1′ , ω2′, ω1, ω2 on the right hand sides are related to the transfer
frequencies via

ω1′ = 1
2
(s+ t+ u) , ω2′ = 1

2
(s− t− u) ,

ω1 = 1
2
(s− t+ u) , ω2 = 1

2
(s+ t− u) . (B.3)

The definition of PΛ(ω1, ω2) which denotes a bubble of GΛ and SΛ depends on the trun-
cation scheme of the FRG equations. Within the conventional truncation of Section 6.4
the three-particle vertex is completely neglected such that the Green’s function GΛ and
the single-scale propagator SΛ are given by the standard definitions (6.29) and (6.32),
respectively. In this scheme PΛ(ω1, ω2) has the form

PΛ(ω1, ω2) → PΛ
con(ω1, ω2) =

δ(|ω1| − Λ)

ω1 + γΛ(ω1)

Θ(|ω2| − Λ)

ω2 + γΛ(ω2)
, (B.4)

and the internal integration
∫

dω′ . . . simplifies to
∑

ω′=±Λ . . .. Within the Katanin
truncation-scheme considered in Section 6.5 the single-scale propagator (as it is used in
the second flow equation) acquires an extra term, see Eq. (6.62). In this case we get a
more complicated expression,

PΛ(ω1, ω2) → PΛ
Kat(ω1, ω2) =

δ(|ω1| − Λ)

ω1 + γΛ(ω1)

Θ(|ω2| − Λ)

ω2 + γΛ(ω2)

+

(

d

dΛ
γΛ(ω1)

)

Θ(|ω1| − Λ)

(ω1 + γΛ(ω1))2

Θ(|ω2| − Λ)

ω2 + γΛ(ω2)
. (B.5)

In both schemes PΛ(ω1, ω2) is an odd function in ω1 and ω2 separately. The equa-
tions (B.1) and (B.2) may still be simplified as the following consideration shows:
Eq. (6.45) can be rewritten such that the terms “(3 ↔ 4)” do not appear, if simul-
taneously the last line is replaced by “×(GΛ(ω3)S

Λ(ω4) + GΛ(ω4)S
Λ(ω3))”. Using this

modified form of Eq. (6.45) we end up with the equations

d

dΛ
ΓΛ

s i1i2
(s, t, u) =

1

2π

∫ ∞

−∞
dω′
{

[

− 2ΓΛ
s i1i2

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
s i1i2

(s, ω2 + ω′, ω1 + ω′)

+ΓΛ
s i1i2

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
d i1i2

(s, ω2 + ω′, ω1 + ω′)

+ΓΛ
d i1i2

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
s i1i2

(s, ω2 + ω′, ω1 + ω′)
]

×
[

PΛ(ω′, s+ ω′) + PΛ(s+ ω′, ω′)
]
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+
[

2
∑

j

ΓΛ
s i1j(ω1′ + ω′, t, ω1 − ω′)ΓΛ

s j i2
(ω2 + ω′, t,−ω2′ + ω′)

+ΓΛ
s i1i2

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
s i1i1

(ω2 + ω′,−ω2′ + ω′, t)

−ΓΛ
s i1i2

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
d i1i1

(ω2 + ω′,−ω2′ + ω′, t)

+ΓΛ
s i1i1

(ω1′ + ω′, ω1 − ω′, t)ΓΛ
s i1i2

(ω2 + ω′, t,−ω2′ + ω′)

−ΓΛ
d i1i1

(ω1′ + ω′, ω1 − ω′, t)ΓΛ
s i1i2

(ω2 + ω′, t,−ω2′ + ω′)
]

×
[

PΛ(ω′, t+ ω′) + PΛ(t+ ω′, ω′)
]

−
[

2ΓΛ
s i1i2

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
s i1i2

(ω2 − ω′, ω1′ + ω′, u)

+ΓΛ
s i1i2

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
d i1i2

(ω2 − ω′, ω1′ + ω′, u)

+ΓΛ
d i1i2

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
s i1i2

(ω2 − ω′, ω1′ + ω′, u)
]

×
[

PΛ(ω′, u+ ω′) + PΛ(u+ ω′, ω′)
]

}

, (B.6)

d

dΛ
ΓΛ

d i1i2
(s, t, u) =

1

2π

∫ ∞

−∞
dω′
{

[

3ΓΛ
s i1i2

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
s i1i2

(s, ω2 + ω′, ω1 + ω′)

+ΓΛ
d i1i2

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
d i1i2

(s, ω2 + ω′, ω1 + ω′)
]

×
[

PΛ(ω′, s+ ω′) + PΛ(s+ ω′, ω′)
]

+
[

2
∑

j

ΓΛ
d i1j(ω1′ + ω′, t, ω1 − ω′)ΓΛ

d j i2
(ω2 + ω′, t,−ω2′ + ω′)

−3ΓΛ
d i1i2

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
s i1i1

(ω2 + ω′,−ω2′ + ω′, t)

−ΓΛ
d i1i2

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
d i1i1

(ω2 + ω′,−ω2′ + ω′, t)

−3ΓΛ
s i1i1

(ω1′ + ω′, ω1 − ω′, t)ΓΛ
d i1i2

(ω2 + ω′, t,−ω2′ + ω′)

−ΓΛ
d i1i1

(ω1′ + ω′, ω1 − ω′, t)ΓΛ
d i1i2

(ω2 + ω′, t,−ω2′ + ω′)
]

×
[

PΛ(ω′, t+ ω′) + PΛ(t+ ω′, ω′)
]

−
[

3ΓΛ
s i1i2

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
s i1i2

(ω2 − ω′, ω1′ + ω′, u)

+ΓΛ
d i1i2

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
d i1i2

(ω2 − ω′, ω1′ + ω′, u)
]

×
[

PΛ(ω′, u+ ω′) + PΛ(u+ ω′, ω′)
]

}

. (B.7)

Finally, we state the initial conditions which are obtained by comparing Eqs. (6.34) and
(6.36),

γΛ→∞(ω) = 0 ,

ΓΛ→∞
s i1i2

(s, t, u) = 1
4
Ji1i2 , ΓΛ→∞

d i1i2
(s, t, u) = 0 . (B.8)
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C Symmetries of the Two-Particle
Vertex in the Transfer Frequencies

We now prove the following symmetries of the two-particle vertex in the SU(2) invariant
FRG formulation:
ΓΛ

s i1i2
(s, t, u) and ΓΛ

d i1i2
(s, t, u) are both invariant under each of the transformations

(1) s→ −s, i1 ↔ i2,

(2) t→ −t,

(3) u→ −u, i1 ↔ i2,

ΓΛ
s i1i2

(s, t, u) is invariant and ΓΛ
d i1i2

(s, t, u) changes sign under

(4) s↔ u.

The transformations (1) and (3) contain an exchange of the sites, i1 ↔ i2. For lattices
with a monoatomic unit cell (as for example in the case of the J1-J2 model), the symmetry
under i1 ↔ i2 is trivially fulfilled and vertices are invariant under s→ −s and u→ −u,
individually. For polyatomic lattices (as for example the Kagome lattice) i1 and i2 might
correspond to different sites in their respective unit cells such that the invariance under
i1 ↔ i2 is not fulfilled. However, as shown in the following, the invariance under the
combined transformations (1) and (3) is intact.

Our starting point is Eq. (6.26b) in integrated form,

ΓΛ(1′, 2′; 1, 2) = ΓΛ→∞(1′, 2′; 1, 2) −
∫ ∞

Λ

dΛ′ [r.h.s. of Eq. (6.26b)] . (C.1)

Generally, a solution of such an equation can be found in an iterative scheme: An
initial “guess” ΓΛ

0 (1′, 2′; 1, 2) (typically the initial condition) is inserted on the right side.
Evaluating the integral, a first approximation ΓΛ

1 (1′, 2′; 1, 2) is obtained which will in turn
be coupled back to the right side, and so on. The approximations ΓΛ

n(1′, 2′; 1, 2) converge
towards the exact solution, i.e., ΓΛ(1′, 2′; 1, 2) = ΓΛ

n→∞(1′, 2′; 1, 2). Hence, we can prove
the above symmetries by complete induction: Assuming that a particular symmetry
holds for all vertices on the right side (corresponding to the nth iteration step) we have
to show that it is also fulfilled for the vertex on the left side (corresponding to the
(n + 1)th iteration step), provided that the symmetry is already satisfied in the initial
solution, i.e., in the initial conditions. This is obviously the case, because ΓΛ→∞

s i1i2
(s, t, u)

is constant in all frequencies and ΓΛ→∞
d i1i2

(s, t, u) vanishes. Since FRG treats the variables
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1(′) and 2(′) on an equal footing, the two-particle vertex remains unchanged under 1 ↔ 2
and 1′ ↔ 2′, i.e., ΓΛ

m(1′, 2′; 1, 2) = ΓΛ
m(2′, 1′; 2, 1) for all m. This identity is often used in

the following.

(1) s → −s, i1 ↔ i2

Using the frequencies ω1′ , ω2′, ω1, ω2 the transformation s → −s corresponds to ω1′ →
−ω2′ , ω2′ → −ω1′ , ω1 → −ω2, ω2 → −ω1. We introduce the notation −1 = {−ω1, i1, α1}
and show that ΓΛ

n+1(1
′, 2′; 1, 2) = ΓΛ

n+1(−2′,−1′;−2,−1), assuming that this identity
holds in the nth step. For the initial vertex ΓΛ→∞(1′, 2′; 1, 2) appearing on the right side
of Eq. (C.1) all symmetries are trivially fulfilled. We will not display this term is the
following,

ΓΛ
n+1(−2′,−1′;−2,−1) =

∫ ∞

Λ

dΛ′ 1

2π

∑

3,4

[ΓΛ′

n (−2′,−1′; 3, 4)ΓΛ′

n (3, 4;−2,−1)

− ΓΛ′

n (−2′, 4;−2, 3)ΓΛ′

n (3,−1′; 4,−1) − (3 ↔ 4)

+ ΓΛ′

n (−1′, 4;−2, 3)ΓΛ′

n (3,−2′; 4,−1) + (3 ↔ 4)]GΛ(ω3)S
Λ(ω4)

(I)
=

∫ ∞

Λ

dΛ′ 1

2π

∑

3,4

[ΓΛ′

n (1′, 2′;−4,−3)ΓΛ′

n (−4,−3; 1, 2)

− ΓΛ′

n (−4, 2′;−3, 2)ΓΛ′

n (1′,−3; 1,−4) − (3 ↔ 4)

+ ΓΛ′

n (−4, 1′;−3, 2)ΓΛ′

n (2′,−3; 1,−4) + (3 ↔ 4)]GΛ(ω3)S
Λ(ω4)

(II)
=

∫ ∞

Λ

dΛ′ 1

2π

∑

3,4

[ΓΛ′

n (1′, 2′; 4, 3)ΓΛ′

n (4, 3; 1, 2)

− ΓΛ′

n (4, 2′; 3, 2)ΓΛ′

n (1′, 3; 1, 4) − (3 ↔ 4)

+ ΓΛ′

n (4, 1′; 3, 2)ΓΛ′

n (2′, 3; 1, 4) + (3 ↔ 4)]GΛ(ω3)S
Λ(ω4)

(III)
=

∫ ∞

Λ

dΛ′ 1

2π

∑

3,4

[ΓΛ′

n (2′, 1′; 3, 4)ΓΛ′

n (3, 4; 2, 1)

− ΓΛ′

n (2′, 4; 2, 3)ΓΛ′

n (3, 1′; 4, 1) − (3 ↔ 4)

+ ΓΛ′

n (1′, 4; 2, 3)ΓΛ′

n (3, 2′; 4, 1) + (3 ↔ 4)]GΛ(ω3)S
Λ(ω4)

(IV)
= ΓΛ

n+1(2
′, 1′; 2, 1)

(V)
=ΓΛ

n+1(1
′, 2′; 1, 2) . (C.2)

Step (I) uses the invariance of ΓΛ
n(1′, 2′; 1, 2) under s → −s. In step (II) the fre-

quency integrations are transformed by ω3 → −ω3, ω4 → −ω4 and the properties
GΛ(−ω) = −GΛ(ω) and SΛ(−ω) = −SΛ(ω) are employed. The identity ΓΛ(1′, 2′; 1, 2) =
ΓΛ(2′, 1′; 2, 1) is used in steps (III) and (V).

Now we have proven that the solution fulfills ΓΛ(1′, 2′; 1, 2) = ΓΛ(−2′,−1′;−2,−1).
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Using the parametrization (6.36) this identity reads

{

[ΓΛ
s i1i2

(ω1′ , ω2′;ω1, ω2)σ
µ
α1′α1

σµ
α2′α2

+ ΓΛ
d i1i2

(ω1′ , ω2′;ω1, ω2)δα1′α1δα2′α2 ]

× δi1′ i1δi2′ i2

− [ΓΛ
s i1i2

(ω1′, ω2′;ω2, ω1)σ
µ
α1′α2

σµ
α2′α1

+ ΓΛ
d i1i2

(ω1′, ω2′ ;ω2, ω1)δα1′α2δα2′α1 ]

× δi1′ i2δi2′ i1
}

δ(ω1 + ω2 − ω1′ − ω2′)

=
{

[ΓΛ
s i2i1

(−ω2′ ,−ω1′ ;−ω2,−ω1)σ
µ
α2′α2

σµ
α1′α1

+ ΓΛ
d i2i1

(−ω2′ ,−ω1′ ;−ω2,−ω1)δα2′α2δα1′α1 ]

× δi2′ i2δi1′ i1

− [ΓΛ
s i2i1

(−ω2′ ,−ω1′;−ω1,−ω2)σ
µ
α2′α1

σµ
α1′α2

+ ΓΛ
d i2i1

(−ω2′ ,−ω1′ ;−ω1,−ω2)δα2′α1δα1′α2 ]

× δi2′ i1δi1′ i2
}

δ(ω1 + ω2 − ω1′ − ω2′) . (C.3)

A comparison of terms leads to ΓΛ
s/d i1i2

(ω1′, ω2′ ;ω1, ω2) = ΓΛ
s/d i2i1

(−ω2′ ,−ω1′ ;−ω2,−ω1).

Introducing transfer frequencies, the identity ΓΛ
s/d i1i2

(s, t, u) = ΓΛ
s/d i2i1

(−s, t, u) is proven.

(2) t → −t

The transformation t → −t corresponds to ω1′ ↔ ω1 and ω2′ ↔ ω2. We show that
ΓΛ

n+1(1
′, 2′; 1, 2) = ΓΛ

n+1(1, 2; 1′, 2′), assuming that this relation holds in the nth iteration
step,

ΓΛ
n+1(1, 2; 1′, 2′) =

∫ ∞

Λ

dΛ′ 1

2π

∑

3,4

[ΓΛ′

n (1, 2; 3, 4)ΓΛ′

n (3, 4; 1′, 2′)

− ΓΛ′

n (1, 4; 1′, 3)ΓΛ′

n (3, 2; 4, 2′) − (3 ↔ 4)

+ ΓΛ′

n (2, 4; 1′, 3)ΓΛ′

n (3, 1; 4, 2′) + (3 ↔ 4)]GΛ(ω3)S
Λ(ω4)

(I)
=

∫ ∞

Λ

dΛ′ 1

2π

∑

3,4

[ΓΛ′

n (1′, 2′; 3, 4)ΓΛ′

n (3, 4; 1, 2)

− ΓΛ′

n (1′, 3; 1, 4)ΓΛ′

n (4, 2′; 3, 2) − (3 ↔ 4)

+ ΓΛ′

n (4, 2′; 3, 1)ΓΛ′

n (1′, 3; 2, 4) + (3 ↔ 4)]GΛ(ω3)S
Λ(ω4)

(II)
=

∫ ∞

Λ

dΛ′ 1

2π

∑

3,4

[ΓΛ′

n (1′, 2′; 3, 4)ΓΛ′

n (3, 4; 1, 2)

− ΓΛ′

n (1′, 4; 1, 3)ΓΛ′

n (3, 2′; 4, 2) − (3 ↔ 4)

+ ΓΛ′

n (2′, 4; 1, 3)ΓΛ′

n (3, 1′; 4, 2) + (3 ↔ 4)]GΛ(ω3)S
Λ(ω4)

=ΓΛ
n+1(1

′, 2′; 1, 2) . (C.4)

Step (I) uses ΓΛ
n(1′, 2′; 1, 2) = ΓΛ

n(1, 2; 1′, 2′) and interchanges the order of some fac-
tors. In step (II) the identity ΓΛ(1′, 2′; 1, 2) = ΓΛ(2′, 1′; 2, 1) is employed in the crossed
particle-hole channel. Using the parametrization (6.36) the relation ΓΛ(1′, 2′; 1, 2) =
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ΓΛ(1, 2; 1′, 2′) becomes
{

[ΓΛ
s i1i2

(ω1′ , ω2′;ω1, ω2)σ
µ
α1′α1

σµ
α2′α2

+ ΓΛ
d i1i2

(ω1′ , ω2′;ω1, ω2)δα1′α1δα2′α2 ]

× δi1′ i1δi2′ i2

− [ΓΛ
s i1i2

(ω1′, ω2′;ω2, ω1)σ
µ
α1′α2

σµ
α2′α1

+ ΓΛ
d i1i2

(ω1′, ω2′ ;ω2, ω1)δα1′α2δα2′α1 ]

× δi1′ i2δi2′ i1
}

δ(ω1 + ω2 − ω1′ − ω2′)

=
{

[ΓΛ
s i1i2

(ω1, ω2;ω1′, ω2′)σ
µ
α1α1′

σµ
α2α2′

+ ΓΛ
d i1i2

(ω1, ω2;ω1′ , ω2′)δα1α1′
δα2α2′

]

× δi1i1′
δi2i2′

− [ΓΛ
s i1i2

(ω1, ω2;ω2′, ω1′)σ
µ
α1α2′

σµ
α2α1′

+ ΓΛ
d i1i2

(ω1, ω2;ω2′, ω1′)δα1α2′
δα2α1′

]

× δi1i2′
δi2i1′

}

δ(ω1 + ω2 − ω1′ − ω2′) . (C.5)

Due to σµ
α1α1′

σµ
α2α2′

= σµ
α1′α1

σµ
α2′α2

the coefficients can also be compared in the spin sec-

tor, which finally yields ΓΛ
s/d i1i2

(ω1′ , ω2′;ω1, ω2) = ΓΛ
s i1i2

(ω1, ω2;ω1′ , ω2′) or equivalently

ΓΛ
s/d i1i2

(s, t, u) = ΓΛ
s/d i1i2

(s,−t, u).

(3) u → −u, i1 ↔ i2
This symmetry is easily proven because we already know that the two-particle vertex is
invariant under the exchange of both particles, i.e., ΓΛ(1′, 2′; 1, 2) = ΓΛ(2′, 1′; 2, 1). This
corresponds to an invariance of ΓΛ

s and ΓΛ
d under the combined transformation t→ −t,

u→ −u, i1 ↔ i2. Regarding t→ −t the invariance has already been proven in (2) such
that the remaining symmetry under u→ −u, i1 ↔ i2 is obvious.

(4) s ↔ u
To prove this invariance we consider the version (6.45) of the second flow equation. For
the definition of ΓΛ

= see Eq. (6.42a). First we introduce the following notation,

ΓΛ
= i1i2

(−1′, 2′; 1, 2) =
[

ΓΛ
s i1i2

(−ω1′ , ω2′;ω1, ω2)σ
y
α1′β

σµ
βα1

σµ
α2′α2

+ΓΛ
d i1i2

(−ω1′ , ω2′;ω1, ω2)σ
y
α1′β

δβα1δα2′α2

]

δ(ω1 + ω2 + ω1′ − ω2′) .

(C.6)

Here, the numbers are composite indices of frequency and spin. Equivalently, the expres-
sion ΓΛ

= i1i2
(1′,−2′; 1, 2) corresponds to the replacements ω2′ → −ω2′ , σ

µ
α2′α2

→ σy
α2′β

σµ
βα2

and δα2′α2 → σy
α2′β

δβα2 . When the minus sign applies to the third or fourth argument,
we use a different convention,

ΓΛ
= i1i2

(1′, 2′;−1, 2) =
[

ΓΛ
s i1i2

(ω1′ , ω2′;−ω1, ω2)σ
µ
α1′β

σy
βα1

σµ
α2′α2

+ΓΛ
d i1i2

(ω1′, ω2′;−ω1, ω2)δα1′β
σy

βα1
δα2′α2

]

δ(−ω1 + ω2 − ω1′ − ω2′) ,

(C.7)

and analog for ΓΛ
= i1i2

(1′, 2′; 1,−2). Due to σyσy = 1 this notation is consistent with
ΓΛ

= i1i2
(−(−1′), 2′; 1, 2) = ΓΛ

= i1i2
(1′, 2′; 1, 2). We now prove the identity

ΓΛ
= i1i2

(1′, 2′; 1, 2) = −ΓΛ
= i1i2

(1′,−2; 1,−2′) . (C.8)
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Again we employ the property that the two-particle vertex in invariant under the ex-
change of both particles, i.e., ΓΛ

= i1i2
(1′, 2′; 1, 2) = ΓΛ

= i2i1
(2′, 1′; 2, 1). The proof is similar

as compared to the above invariances. However, to shorten the notation we omit the in-
dices indicating the iteration step. We treat the different terms of Eq. (6.45) individually
and start with the particle-particle channel and the crossed particle-hole channel. For the
sum of these channels we use the notation ΓΛ a+e

= i1i2
(1′, 2′; 1, 2) (where the index “a+e” refers

to the labels in Fig. 6.2). For brevity the combination 1
2π

∫∞
Λ
dΛ′ ∫∞

−∞ dω4

∫∞
−∞ dω3

∑

α3α4

appearing in the integrated version of Eq. (6.45) is written as ˜∑. We transform the
quantity ΓΛ a+e

= i1i2
(1′,−2; 1,−2′) as follows,

ΓΛ a+e
= i1i2

(1′,−2; 1,−2′) = ˜∑[ΓΛ′

= i1i2
(1′,−2; 3, 4)ΓΛ′

= i1i2
(3, 4; 1,−2′) + (3 ↔ 4) (C.9a)

+ ΓΛ′

= i2i1
(−2, 4; 3, 1)ΓΛ′

= i2i1
(3, 1′;−2′, 4) + (3 ↔ 4)]GΛ(ω3)S

Λ(ω4)

(I)
= ˜∑[ΓΛ′

= i1i2
(1′,−2; 3, 4)ΓΛ′

= i1i2
(3, 4; 1,−2′) + (3 ↔ 4) (C.9b)

+ ΓΛ′

= i1i2
(4,−2; 1, 3)ΓΛ′

= i1i2
(1′, 3; 4,−2′) + (3 ↔ 4)]GΛ(ω3)S

Λ(ω4)

(II)
= ˜∑[ΓΛ′

= i1i2
(1′,−4; 3, 2)ΓΛ′

= i1i2
(3, 2′; 1,−4) + (3 ↔ 4) (C.9c)

+ ΓΛ′

= i1i2
(4,−3; 1, 2)ΓΛ′

= i1i2
(1′, 2′; 4,−3) + (3 ↔ 4)]GΛ(ω3)S

Λ(ω4)

(III)
= − ˜∑[ΓΛ′

= i1i2
(1′, 4; 3, 2)ΓΛ′

= i1i2
(3, 2′; 1, 4) + (3 ↔ 4) (C.9d)

+ ΓΛ′

= i1i2
(4, 3; 1, 2)ΓΛ′

= i1i2
(1′, 2′; 4, 3) + (3 ↔ 4)]GΛ(ω3)S

Λ(ω4)

(IV)
= − ˜∑[ΓΛ′

= i2i1
(4, 1′; 2, 3)ΓΛ′

= i2i1
(2′, 3; 4, 1) + (3 ↔ 4) (C.9e)

+ ΓΛ′

= i1i2
(4, 3; 1, 2)ΓΛ′

= i1i2
(1′, 2′; 4, 3) + (3 ↔ 4)]GΛ(ω3)S

Λ(ω4)

= − ΓΛ a+e
= i1i2

(1′, 2′; 1, 2) ,

demonstrating that s↔ u interchanges the roles of the particle-particle and the crossed
particle-hole channel. In step (I) we exchange particles in the second line of (C.9a) and in
(II) we use the assumption (C.8). Thereafter, step (III) transforms variables according
to −3 → 3 (in the second line of (C.9c)) and −4 → 4 (in the first line of (C.9c)).
The minus sign appearing in (C.9d) comes from the propagators being odd under these
transformations. Finally, in (IV) particles are exchanged in the first line of (C.9d).

Next, we prove the identity (C.8) for the term in Fig. 6.2c,

ΓΛ c
= i1i2

(1′,−2; 1,−2′)

= − ˜∑[ΓΛ′

= i1i2
(1′, 4; 1, 3)ΓΛ′

= i2i2
(3,−2;−2′, 4) + (3 ↔ 4)]GΛ(ω3)S

Λ(ω4)

(I)
= − ˜∑[ΓΛ′

= i1i2
(1′,−3; 1,−4)ΓΛ′

= i2i2
(3,−4;−2′, 2) + (3 ↔ 4)]GΛ(ω3)S

Λ(ω4)

(II)
= − ˜∑[ΓΛ′

= i1i2
(1′,−3; 1,−4)ΓΛ′

= i2i2
(−4, 3; 2,−2′) + (3 ↔ 4)]GΛ(ω3)S

Λ(ω4)

(III)
= ˜∑[ΓΛ′

= i1i2
(1′,−3; 1,−4)ΓΛ′

= i2i2
(−4, 2′; 2,−3) + (3 ↔ 4)]GΛ(ω3)S

Λ(ω4)

(IV)
= ˜∑[ΓΛ′

= i1i2
(1′, 3; 1, 4)ΓΛ′

= i2i2
(4, 2′; 2, 3) + (3 ↔ 4)]GΛ(ω3)S

Λ(ω4)

= − ΓΛ c
= i1i2

(1′, 2′; 1, 2) , (C.10)
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where we apply the assumption (C.8) to both factors in (I) and to the right factor in
(III). In step (II) particles are exchanged and in (IV) we perform the transformations
−3 → 3 and −4 → 4 simultaneously.

Finally, the terms in Fig. 6.2b and 6.2d are treated as follows,

ΓΛ b+d
= i1i2

(1′,−2; 1,−2′) = ˜∑[
∑

jΓ
Λ′

= i1j(1
′, 4; 1, 3)ΓΛ′

= ji2
(3,−2; 4,−2′) + (3 ↔ 4)

− ΓΛ′

= i1i1
(1′, 4; 3, 1)ΓΛ′

= i1i2
(3,−2; 4,−2′) − (3 ↔ 4)]GΛ(ω3)S

Λ(ω4)

= − ˜∑[
∑

jΓ
Λ′

= i1j(1
′, 4; 1, 3)ΓΛ′

= ji2
(3, 2′; 4, 2) + (3 ↔ 4)

− ΓΛ′

= i1i1
(1′, 4; 3, 1)ΓΛ′

= i1i2
(3, 2′; 4, 2) − (3 ↔ 4)]GΛ(ω3)S

Λ(ω4)

= − ΓΛ b+d
= i1i2

(1′, 2′; 1, 2) . (C.11)

Here, we only employed the assumption (C.8). Having considered all contributions,
Eq. (C.8) is now proved. Using the definition (6.42a) together with the Pauli-matrix
relations σyσxσy = −σx, σyσzσy = −σz, (σx)T = σx, (σy)T = −σy and (σz)T = σz

Eq. (C.8) is transformed to

[

ΓΛ
s i1i2

(ω1′, ω2′;ω1, ω2)σ
µ
α1′α1

σµ
α2′α2

+ ΓΛ
d i1i2

(ω1′ , ω2′;ω1, ω2)δα1′α1δα2′α2

]

× δ(ω1 + ω2 − ω1′ − ω2′)

= −
[

−ΓΛ
s i1i2

(ω1′ ,−ω2;ω1,−ω2′)σ
µ
α1′α1

σµ
α2′α2

+ ΓΛ
d i1i2

(ω1′,−ω2;ω1,−ω2′)δα1′α1δα2′α2

]

× δ(ω1 + ω2 − ω1′ − ω2′) . (C.12)

Comparing the coefficients we obtain

ΓΛ
s i1i2

(ω1′ , ω2′;ω1, ω2) = ΓΛ
s i1i2

(ω1′,−ω2;ω1,−ω2′) , (C.13a)

ΓΛ
d i1i2

(ω1′ , ω2′;ω1, ω2) = −ΓΛ
d i1i2

(ω1′,−ω2;ω1,−ω2′) , (C.13b)

or expressed in terms of transfer frequencies,

ΓΛ
s i1i2

(s, t, u) = ΓΛ
s i1i2

(u, t, s) , (C.14a)

ΓΛ
d i1i2

(s, t, u) = −ΓΛ
d i1i2

(u, t, s) . (C.14b)

This proves the invariance under the transformation (4).
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