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Abstract. In this paper, we introduce a new GARCH model with an infinitely divisi-

ble distributed innovation, referred to as the rapidly decreasing tempered stable (RDTS)

GARCH model. This model allows the description of some stylized empirical facts ob-

served for stock and index returns, such as volatility clustering, the non-zero skewness

and excess kurtosis for the residual distribution. Furthermore, we review the classi-

cal tempered stable (CTS) GARCH model, which has similar statistical properties. By

considering a proper density transformation between infinitely divisible random vari-

ables, these GARCH models allow to find the risk-neutral price process, and hence they

can be applied to option pricing. We propose algorithms to generate scenario based on

GARCH models with CTS and RDTS innovation. To investigate the performance of

these GARCH models, we report a parameters estimation for Dow Jones Industrial Av-

erage (DJIA) index and stocks included in this index, and furthermore to demonstrate

their advantages, we calculate option prices based on these models. It should be noted

that only historical data on the underlying asset and on the riskfree rate are taken into

account to evaluate option prices.

Keywords: tempered infinitely divisible distribution, tempered stable distribution, rapidly

decreasing tempered stable distribution, GARCH model option pricing.
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1 Introduction

The autoregressive conditional heteroskedastic (ARCH) and the generalized ARCH

(GARCH) models introduced by Engle (1982) and Bollerslev (1986), respectively, and

applied to option pricing by Duan (1995), have become a standard framework to explain

the volatility clustering of return processes and volatility smile effect of option prices.

However, empirical studies based on GARCH models show that the hypothesis that the

distribution of residuals is normally distributed is often rejected (see Duan (1999), and

Menn and Rachev (2005a, 2005b)). Duan et al. (2006) enhanced the classical GARCH

model by adding jumps to the innovation process. Subsequently, Menn and Rachev

(2005a, 2005b) introduced both an enhanced GARCH and a nonlinear GARCH model

(NGARCH) with innovations which follow the smoothly truncated stable (STS) distri-

bution. Recently, the tempered stable distributions were applied to modeling the residual

distribution. For example Kim et al. (2008a,2008c) used the tempered stable distribu-

tions for fitting residuals of the GARCH model. However, since the convexity correc-

tion, which is defined by the log Laplace transform of the innovation distribution, is

defined only on a bounded interval, the variance process is artificially restricted.

In this paper, we focus on two different distributional assumptions, the classical

tempered stable (CTS) and the rapidly decreasing tempered stable (RDTS). The former

belongs to the class proposed by Rosiński (2007) and has been already applied to option

pricing with volatility clustering by Kim et al. (2008a), the latter belongs to the class

proposed by Bianchi et al. (2008).

The first objective of the paper is to present this new infinitely divisible (ID) distribu-

tion referred to as the RDTS distribution, and to study its mathematical properties. The

RDTS distribution is obtained by taking an α-stable law and multiplying the Lévy mea-

sure by a moment-generating function of a normal distribution onto each half of the real

axis. It has asymmetric properties and fatter tails than the normal distribution. Moreover,

its Laplace transform is defined on the entire real line. By following the approach used

in Kim et al. (2008a), we review an asset price model based on the GARCH model with

2



CTS distributed innovation, introduce a similar model with RDTS distributed innova-

tion, and compare it with the normal-GARCH case. These non-normal models explain

the time-varying property of volatility in asset returns, and describe properties of the

empirical residual distribution which cannot be described by the normal distribution in-

cluding skewness and fat-tail properties. Furthermore, a large scale empirical analysis

is considered on the Dow Jones Industrial Average (DJIA) index and stocks included in

this index, in order to assess the goodness of fit.

The second objective of the paper is to test the option pricing performance of this

approach based on non-normal distributions. Recently, a general idea has been that for

the purpose of option valuation, parameters estimated from option prices are preferable

to parameters estimated from the underlying returns, see Chernov and Ghysels (2000).

Alternatively, the most recent results are based on a different approach. Both historical

asset prices and option prices are considered to assess the model performance. Para-

metric models by Christoffersen et al. (2008), Kim et al. (2008a), Stentoft (2008), and a

nonparametric one by Barone-Adesi et al. (2008) have been proposed by connecting the

statistical with the risk-neutral measure. Instead of imposing conditions on preferences

of investors or the Esscher transform as in Christoffersen et al. (2008), by using a density

transformation between ID random variables, we can then develop a method for pricing

options based on these GARCH models, see also Kim et al. (2008a,2008c). It should

be noted that only historical data on the underlying asset and on the risk-free rate are

considered in obtaining the parameters to be used in option valuation. Instead, to con-

sider a trader approach, in which one wants to estimate parameters by using only option

prices, we follow the so called fundamental approach, that is we calculate option prices

by using parameters estimated by fitting the underlying asset process together with a

suitable change of measure. Pricing errors on DJIA European call options (DJX) will

be computed, in order to analyze the effect of conditional leptokurtosis and skewness on

option pricing.

The remainder of this paper is organized as follows. Section 2 reviews the classical
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tempered stable distribution. The RDTS distribution and its mathematical properties

are presented in Section 3. The GARCH model with ID innovations and its CTS and

RDTS subclasses are discussed in Section 4. Simulation algorithms for the GARCH

models are given in Section 5. The empirical results are reported in Section 6. Section 7

summarizes the principal conclusions of the paper and the appendix contains the proofs

of the main theoretical results.

2 Classical tempered stable distribution

Before introducing the RDTS distribution, let us review the CTS distribution. This

distribution has been studied under different names including: the truncated Lévy flight

by Koponen (1995), the tempered stable by both Barndorff-Nielsen and Shephard (2001)

and Cont and Tankov (2004), the KoBoL distribution by Boyarchenko and Levendorskiı̆

(2000), and the CGMY by Carr et al. (2002). The KR distribution of Kim et al. (2008b)

is an extension of the CTS distribution. Rosiński (2007) generalized the CTS distribu-

tion referring to it as the tempered stable distribution.

The CTS distribution is defined as follows:

Definition 2.1. An infinitely divisible random variable X is said to follow the CTS dis-

tribution if its Lévy triplet (σ2, ν, γ) is given by σ = 0,

ν(dx) =
(
C+e

−λ+x1x>0 + C−e
−λ−|x|1x<0

) dx

|x|α+1
,

and

γ = m−
∫

|x|>1

xν(dx),

where C+, C−, λ+, λ− > 0, α ∈ (0, 2) and m ∈ R, and we denote X ∼ CTS(α, C+,

C−, λ+, λ−, m). A Lévy process induced from the CTS distribution is called a CTS

process with parameters (α, C+, C−, λ+, λ−, m).
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The characteristic function of X ∼ CTS(α, C+, C−, λ+, λ−, m) is given by

φ(u;α,C+, C−, λ+, λ−,m) = exp(ium− iuΓ(1 − α)(C+λ
α−1
+ − C−λ

α−1
− )(2.1)

+ C+Γ(−α)((λ+ − iu)α − λ+
α)

+ C−Γ(−α)((λ− + iu)α − λ−
α))).

Moreover, φ can be extended via analytic continuation to the region {z ∈ C : Im(z) ∈

[−λ−, λ+]}. The proof can be found in Carr et al. (2002) and Cont and Tankov (2004).

Using the characteristic function, we can obtain cumulants

cn(X) :=
1

in
dn

dun
logE[eiuX ]

∣∣
u=0

of the CTS distributed random variable X such that

c1(X) = m, for n = 1

cn(X) = Γ(n− α)
(
C+λ

α−n
+ + (−1)nC−λ

α−n
−

)
, for n = 2, 3, · · · .

If we substitute

C = C+ = C− =
(
Γ(2 − α)(λ+

α−2 + λ−
α−2)

)−1

then X ∼ CTS(α, C, C, λ+, λ−, 0) has zero mean and unit variance. In this case,

X is called the standard CTS distribution with parameters (α,λ+,λ−) and denoted by

X ∼ stdCTS(α, λ+, λ−). The log-Laplace transform logE[exp(uX)] of the random

variable X ∼ stdCTS(α, λ+, λ−) is denoted by LCTS(u;α, λ+, λ−). The function

LCTS(u;α, λ+, λ−) is defined on u ∈ [−λ−, λ+] and we can obtain

LCTS(u;α, λ+, λ−)(2.2)

=
(λ+ − u)α − λ+

α + (λ− + u)α − λ−
α

α(α− 1)(λ+
α−2 + λ−

α−2)
− u(λ+

α−1 − λ−
α−1)

(1 − α)(λ+
α−2 + λ−

α−2)
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by the characteristic function (2.1).

We can make use of the following proposition proven in Kim and Lee (2006) to find

an equivalent measure for CTS processes.

Proposition 2.2. Suppose (Xt)t∈[0,T ] is the CTS process with parameters (α, C+, C−,

λ+, λ−,m) under P and the CTS process with parameters (α̃, C̃+, C̃−, λ̃+, λ̃−, m̃) under

Q. Then P|Ft
and Q|Ft

are equivalent for all t > 0 if and only if α = α̃, C+ = C̃+,

C− = C̃−, and

m̃−m = Γ(1 − α)(C+(λ̃α−1
+ − λα−1

+ ) − C−(λ̃α−1
− − λα−1

− )).

When P and Q are equivalent, the Radon-Nikodym derivative is dQ
dP

∣∣
Ft

= eUt where

(Ut,P) is a Lévy process with Lévy triplets (σ2
U , νU , γU) given by

σ2
U = 0, νU = ν ◦ ψ−1, γU = −

∫ ∞

−∞

(ey − 1 − y1|y|≤1)(ν ◦ ψ−1)(dy)(2.3)

where ψ(x) = (λ+ − λ̃+)x1x>0 − (λ− − λ̃−)x1x<0.

Applying Proposition 2.2 to CTS distributed random variables, we obtain the fol-

lowing corollary.

Corollary 2.3. (a) Let X ∼ CTS(α, C+, C−, λ+, λ−, m) under a measure P, and

X ∼ CTS(α̃, C̃+, C̃−, λ̃+, λ̃−, m̃) under a measure Q. Then P and Q are equivalent if

and only if α = α̃, C+ = C̃+, C− = C̃−, and

m̃−m = Γ(1 − α)(C+λ̃
α−1
+ − C−λ̃

α−1
− − C+λ

α−1
+ + C−λ

α−1
− ).

(b) Let X ∼ stdCTS(α, λ+, λ−) under a measure P, and (X+k) ∼ stdCTS(α̃, λ̃+, λ̃−)
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under a measure Q for a constant k ∈ R. Then P and Q are equivalent if and only if

(2.4)





α = α̃,

λ+
α−2 + λ−

α−2 = λ̃α−2
+ + λ̃α−2

− ,

k =
λ+

α−1 − λ−
α−1 − λ̃α−1

+ + λ̃α−1
−

(1 − α)
(
λ+

α−2 + λ−
α−2
) .

2.1 Simulation of the CTS distribution

CTS distributed random numbers can be generated using the subordination method

developed by Poirot and Tankov (2006). Here, we will apply the series representa-

tion presented by Rosiński (2007) to the CTS distribution instead of the subordination

method, see also Asmussen and Glynn (2007).

Consider α ∈ (0, 2), C > 0, and λ+, λ− > 0. Let {vj} be an independent and

identically distributed (i.i.d.) sequence of random variables in {λ+, λ−} with P (vj =

λ+) = P (vj = −λ−) = 1/2. Let {uj} be an i.i.d. sequence of uniform random variables

on (0, 1) and let {ej} and {e′j} be i.i.d. sequences of exponential random variables with

parameters 1. Furthermore, we assume that {vj}, {uj}, {ej}, and {e′j} are independent.

We consider γj = e′1+ . . .+e′j and, by definition of {e′j}, {γj} is a Poisson point process

on (0,∞) with Lebesgue intensity measure. Based on these assumption, we can prove

the next theorem.

Theorem 2.4. Suppose that all the above assumptions are fulfilled. If α ∈ (0, 2) \ {1},

the series

(2.5) S =
∞∑

j=1

((
αγj
C

)−1/α

∧ eju1/α
j |vj|−1

)
vj
|vj|

− Γ(1 − α)C(λα−1
+ − λα−1

− )

converges a.s. Furthermore, we have that S ∼ CTS(α,C,C, λ+, λ−, 0)

If α = 1, the series

(2.6) S =
∞∑

j=1

((
αγj
C

)−1

∧ ejuj|vj|−1

)
vj
|vj|

− C log

(
λ+

λ−

)
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converges a.s. and we have S ∼ CTS(1, C, C, λ+, λ−, 0).

Proof. This is a particular case of Theorem 5.1 in Rosiński (2007).

3 Rapidly decreasing tempered stable distribution

In this section, we present an ID distribution which we refer to as the RDTS distri-

bution. This distribution is defined as follows:

Definition 3.1. Let m ∈ R, C+, C−, λ+, λ− > 0, α ∈ (0, 2), and α 6= 1. An infinitely

divisible distribution is called a RDTS distribution with parameter (α, C+, C−, λ+, λ−,

m) if its Lévy triplet (σ2, ν, γ) is given by σ = 0,

ν(dx) = (C+e
−λ2

+
x2/21x>0 + C−e

−λ2
−|x|2/21x<0)

dx

|x|α+1
,

and

(3.1) γ = m−
∫

|x|>1

xν(dx).

If a random variable X follows the RDTS distribution, then we denote X ∼ RDTS(α,

C+, C−, λ+, λ−, m).

Remark 3.2. RDTS distributions are not included in the generalized class of tempered

stable distributions by Rosiński (2007), but included in the class of the tempered in-

finitely divisible distribution (Bianchi et al. (2008)).

The characteristic function of the RDTS distribution is found in the following propo-

sition and its proof is presented in Appendix A.

Proposition 3.3. Let

G(x;α, λ) := 2−
α
2
−1λαΓ

(
−α

2

)(
M

(
−α

2
,
1

2
;
x2

2λ2

)
− 1

)

+ 2−
α
2
− 1

2λα−1xΓ

(
1 − α

2

)(
M

(
1 − α

2
,
3

2
;
x2

2λ2

)
− 1

)
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where M is the confluent hypergeometric function1. The characteristic function of the

RDTS distribution with parameter (α, C+, C−, λ+, λ−, m) becomes

(3.2) φ(u) = exp (ium+ C+G(iu;α, λ+) + C−G(−iu;α, λ−))

for some m ∈ R. Moreover, φ(u) is expandable to an entire function on C.

Although the Laplace transform of the CTS distribution is defined on a bounded

interval, in the case of the RDTS distribution the Laplace transform is defined on the

entire real line.

Proposition 3.4. Let X ∼ RDTS(α, C+, C−, λ+, λ−, m). Then the Laplace transform

E[eθX ] < ∞ for all θ ∈ R. Moreover, the explicit formula of the Laplace transform is

given by

E[eθX ] = exp (θm+ C+G(θ;α, λ+) + C−G(−θ;α, λ−)) .

Using the characteristic function (3.2), we can get cumulants of the RDTS distribu-

tion.

Proposition 3.5. The cumulants of X ∼ RDTS(α, C+, C−, λ+, λ−, m) are given by

c1(X) = m and

(3.3) cn(X) = 2
n−α−2

2 Γ

(
n− α

2

)(
C+λ

α−n
+ + (−1)nC−λ

α−n
−

)
,

for n = 2, 3, · · · .

Proof. Since we have

G(±iu;α, λ±) =
∞∑

n=2

1

n!
(±iu)n1

2

(
λ±√

2

)α−n
Γ

(
n− α

2

)
,

we deduce
1

i

d

du
G(±iu;α, λ±)

∣∣
u=0

= 0
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and
1

in
dn

dun
G(±iu;α, λ±)

∣∣
u=0

=
1

2

(
λ±√

2

)α−n
Γ

(
n− α

2

)
(−i)n,

if n = 2, 3, · · · . Hence we obtain the formula (3.3).

Moreover, we obtain the mean, variance, skewness, and excess kurtosis using the

cumulants as given below:

E[X] = c1(X) = m

Var(X) = c2(X) = 2−
α
2 Γ
(
1 − α

2

) (
C+λ

α−2
+ + C−λ

α−2
−

)

s(X) =
c3(X)

c2(X)
3

2

= 2
α
4
+ 1

2

Γ
(

3−α
2

) (
C+λ

α−3
+ − C−λ

α−3
−

)

(
Γ
(
1 − α

2

) (
C+λ

α−2
+ + C−λ

α−2
−

)) 3

2

k(X) =
c4(X)

c2(X)2
= 2

α
2
+1 Γ

(
4−α

2

) (
C+λ

α−4
+ + C−λ

α−4
−

)
(
Γ
(
1 − α

2

) (
C+λ

α−2
+ + C−λ

α−2
−

))2 .

The parameters λ+ and λ− control the rate of decay on the positive and negative tails,

respectively. If λ+ > λ− (λ+ < λ−), then the distribution is skewed to the left (right).

Moreover, if λ+ = λ−, then it is symmetric. If we substitute

C = C+ = C− = 2
α
2

(
Γ
(
1 − α

2

) (
λα−2

+ + λα−2
−

))−1

then X ∼ RDTS(α,C,C, λ+, λ−, 0) has zero mean and unit variance. In this case, X

is called the standard RDTS distribution and denoted by X ∼ stdRDTS(α, λ+, λ−).

Moreover, the log-Laplace transform of X is denoted by LRDTS(x; α, λ+, λ−). By

Proposition 3.4, the function LRDTS(x; α, λ+, λ−) is finite for all x ∈ R, and we have

LRDTS(x;α, λ+, λ−) = CG(x;α, λ+) + CG(−x;α, λ−).(3.4)

Since the RDTS distribution is infinitely divisible, we can generate a Lévy process

called the RDTS process.

Definition 3.6. A Lévy process X = (Xt)t≥0 is said to be a RDTS process with param-
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eters (α,C+, C−, λ+, λ−,m) if X1 ∼ RDTS(α,C+, C−, λ+, λ−,m).

The parameter α determines the path behavior; that is, the RDTS process has finite

variation if α < 1 and infinite variation if α > 1. The following proposition (which we

prove in Appendix A) will be used for determining the equivalent martingale measure.

Proposition 3.7. Suppose (Xt)t∈[0,T ] is the RDTS process with parameters (α, C+, C−,

λ+, λ−, m) under P, and the RDTS process with parameters (α̃, C̃+, C̃−, λ̃+, λ̃−, m̃)

under Q. Then P|Ft
and Q|Ft

are equivalent for all t > 0 if and only if α = α̃, C+ = C̃+,

C− = C̃−, and

m̃−m = 2−
α+1

2 Γ

(
1 − α

2

)(
C+(λ̃α−1

+ − λα−1
+ ) − C−(λ̃α−1

− − λα−1
− )

)
.

When P and Q are equivalent, the Radon-Nikodym derivative is dQ
dP

∣∣
Ft

= eUt where

(Ut,P) is a Lévy process with Lévy triplet (σ2
U , νU , γU) given by

σ2
U = 0, νU = ν ◦ ψ−1, γU = −

∫ ∞

−∞

(ey − 1 − y1|y|≤1)(ν ◦ ψ−1)(dy)(3.5)

where ψ(x) = x2

2
(λ+ − λ̃+)1x>0 + x2

2
(λ− − λ̃−)1x<0.

Applying Proposition 3.7 to RDTS distributed random variables, we can obtain the

following corollary.

Corollary 3.8. (a) Let X ∼ RDTS(α, C+, C−, λ+, λ−, m) under a measure P, and

X ∼ RDTS(α̃, C̃+, C̃−, λ̃+, λ̃−, m̃) under a measure Q. Then P and Q are equivalent

if and only if α = α̃, C+ = C̃+, C− = C̃−, and

m̃−m = 2−
α+1

2 Γ

(
1 − α

2

)(
C+(λ̃α−1

+ − λα−1
+ ) − C−(λ̃α−1

− − λα−1
− )

)
.

(b) Let X ∼ stdRDTS(α, λ+, λ−) under a measure P, and (X + k) ∼ stdRDTS(α̃, λ̃+,

λ̃−) under a measure Q for a constant k ∈ R. Then P and Q are equivalent if and only

11



if

(3.6)





α = α̃,

λα−2
+ + λα−2

− = λ̃α−2
+ + λ̃α−2

− ,

k =
Γ
(

1−α
2

) (
λα−1

+ − λα−1
− − λ̃α−1

+ + λ̃α−1
−

)

√
2Γ
(
1 − α

2

) (
λ̃α−2

+ + λ̃α−2
−

) .

3.1 Simulation of the RDTS distribution

The RDTS distribution is included in the class of TID distributions. The general

method of generating TID distributed random numbers can be found in Bianchi et al.

(2008) and we summarize it below.

Consider α ∈ (0, 2) \ {1}, C > 0, and λ+, λ− > 0. Let {vj} be an i.i.d. sequence of

random variables in {λ+, λ−} with P (vj = λ+) = P (vj = −λ−) = 1/2. Let {uj} be

an i.i.d. sequence of uniform random variables on (0, 1) and let {ej} and {e′j} be i.i.d.

sequences of exponential random variables with parameters 1 and 1/2, respectively.

Furthermore, we assume that {vj}, {uj}, {ej}, and {e′j} are independent. We consider

γj = e′1 + . . .+ e′j .

Using Theorems 4.2 and 4.3 of Bianchi et al. (2008), we can obtain the following

theorem.

Theorem 3.9. Suppose that all the above assumptions are fulfilled. If α ∈ (0, 2) \ {1},

the series

X =
∞∑

j=1

((
αγj
C

)−1/α

∧
√

2e
1/2
j u

1/α
j |vj|−1

)
vj
|vj|

− CΓ
(

1−α
2

)

2
α+1

2

(λα−1
+ − λα−1

− )(3.7)

converges a.s.. Furthermore, we have that X ∼ RDTS(α,C,C, λ+, λ−, 0).

3.2 Tail properties

Let’s look at the probability tails of the CTS and RDTS distributions. Although

the exact asymptotic behavior of its tails is difficult to obtain unlike those of the stable
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distribution, it is possible to calculate the upper and lower bounds.

Proposition 3.10. If X ∼ CTS(α,C+, C−, λ+, λ−,m), then the following inequality is

fulfilled

k
e−2λ̄y

λ̄yα+1
≤ P(|X −m| ≥ y) ≤ K

y2

as y → ∞, where k and K do not depend on y and λ̄ = min(λ+, λ−).

Proposition 3.11. If X ∼ RDTS(α,C+, C−, λ+, λ−,m), then the following inequality

is fulfilled

k
e−2λ̄2y2

λ̄2yα+2
≤ P(|X −m| ≥ y) ≤ K

y2

as y → ∞, where k and K do not depend on y and λ̄ = min(λ+, λ−).

4 GARCH model with infinitely divisible distributed in-

novations

Our objective in this section is twofold. First, we review the infinitely divisible

GARCH (ID-GARCH) model and the CTS-GARCH model which is a subclass of the

ID-GARCH model. Second, we construct a new subclass of the ID-GARCH model

with standard RDTS distributed innovation. Some details and proofs for the ID-GARCH

model and CTS-GARCH model can be found in Kim et al. (2008a).

The ID-GARCH stock price model is defined over a filtered probability space (Ω, F,

(Ft)t∈N, P) which is constructed as follows. Consider a sequence (εt)t∈N of i.i.d. real

random variables on a sequence of probability spaces (Ωt,Pt)t∈N, such that εt is an ID

distributed random variable with zero mean and unit variance on (Ωt,Pt), and assume

that E[exεt ] < ∞ where x ∈ I for some real interval I containing zero. Now we define

Ω :=
∏

t∈N Ωt, Ft := ⊗t
k=1σ(εk) ⊗ F0 ⊗ F0 · · · , F := σ (∪t∈NFt) , and P := ⊗t∈NPt,

where F0 = {∅,Ω} and σ(εk) means the σ-algebra generated by εk on Ωk.
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We first propose the following stock price dynamic:

(4.1) log

(
St
St−1

)
= rt − dt + λtσt − L(σt) + σtεt, t ∈ N,

where St is the stock price at time t, rt, and dt denote the risk-free and dividend rate

for the period [t − 1, t], respectively, and λt is a Ft−1 measurable random variable. S0

is the currently observed price. The function L(x) is the log-Laplace-transform of εt,

i.e, L(x) = log(E[exεt ]). If L(x) is defined on the whole real line, then the one-period

ahead conditional variance σ2
t follows a GARCH(1,1) process, i.e,

σ2
t = (α0 + α1σ

2
t−1ε

2
t−1 + β1σ

2
t−1), t ∈ N, ε0 = 0.(4.2)

where α0, α1, and β1 are non-negative, α1 +β1 < 1, and α0 > 0. If L(x) is defined only

on a closed interval [−a, b] with a, b > 0, then σ2
t follows a GARCH(1,1) process with a

restriction 0 < σt ≤ b, i.e,

σ2
t = (α0 + α1σ

2
t−1ε

2
t−1 + β1σ

2
t−1) ∧ ρ, t ∈ N, ε0 = 0,(4.3)

where 0 < ρ ≤ b2. Clearly, the process (σt)t∈N is predictable. In “the normal-GARCH

model” introduced by Duan (1995), for example, the Laplace transform of εt is defined

for every real number and hence σ2
t follows (4.2).

4.1 CTS-GARCH Model

Consider the ID-GARCH model with the sequence (εt)t∈N of i.i.d. random variables

with εt ∼ stdCTS(α, λ+, λ−) for all t ∈ N. This ID-GARCH model has been introduced

by Kim et al. (2008a) under the name CTS-GARCH model. Since E[exεt ] < ∞ if x ∈

[−λ−, λ+], ρ has to be in the interval (0, λ+
2], and σt follows equation (4.3).

By Corollary 2.3 (b), we can prove the following proposition.

Proposition 4.1. Consider the CTS-GARCH model. Let T ∈ N be a time horizon, and
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t a natural number such that t ≤ T . Suppose λ̃+(t) and λ̃−(t) satisfy the following

conditions:

(4.4)





λ̃+(t)2 ≥ ρ

λ̃+(t)α−2 + λ̃−(t)α−2 = λ+
α−2 + λ−

α−2

λ+
α−1 − λ−

α−1 − λ̃+(t)α−1 + λ̃−(t)α−1

(1 − α)(λ+
α−2 + λ−

α−2)

= λt +
1

σt
(LCTS(σt;α, λ̃+(t), λ̃−(t)) − LCTS(σt;α, λ+, λ−))

.

Then there is a measure Qt equivalent to Pt such that εt+kt ∼ stdCTS(α, λ̃+(t), λ̃−(t))

on the measure Qt where kt is the Ft−1 measurable random variable given by

(4.5) kt = λt +
1

σt
(LCTS(σt;α, λ̃+(t), λ̃−(t)) − LCTS(σt;α, λ+, λ−)).

Suppose λ̃+(t) and λ̃−(t) satisfy the condition (4.4) in each time t ≤ T . We have

the stock price dynamic

log

(
St
St−1

)
= rt − dt − LCTS(σt;α, λ̃+(t), λ̃−(t)) + σt(εt + kt)

where kt is given by equation (4.5). By Proposition 4.1, there is a measure Qt equivalent

to Pt such that εt + kt ∼ stdCTS(α, λ̃+(t), λ̃−(t)) on the measure Qt, and hence we

obtain a risk-neutral stock price dynamic

(4.6)






log

(
St
St−1

)
= rt − dt − LCTS(σt;α, λ̃+(t), λ̃−(t)) + σtξt

ξt ∼ stdCTS(α, λ̃+(t), λ̃−(t))

, t ≤ T

having the following variance process

σ2
t = (α0 + α1σ

2
t−1(ξt−1 − kt−1)

2 + β1σ
2
t−1) ∧ ρ.(4.7)

The risk-neutral stock price dynamic is called the CTS-GARCH option pricing model.
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Under the CTS-GARCH option pricing model, the stock price St at time t > 0 is

given by

St = S0 exp

(
t∑

j=1

(
rj − dj − LCTS(σj;α, λ̃+(j), λ̃−(j)) + σjξj

))
.

4.2 RDTS-GARCH Model

Consider the ID-GARCH model with the sequence (εt)t∈N of i.i.d. random variables

with εt ∼ stdRDTS(α, λ+, λ−) for all t ∈ N. We will call the ID-GARCH model the

RDTS-GARCH model. Since E[exεt ] <∞ for all real number x, the variance process is

not artificially restricted; that is, σt follows (4.2).

By Corollary 3.8 (b), we can prove the following proposition.

Proposition 4.2. Consider the RDTS-GARCH model. Let T ∈ N be a time horizon,

and t a natural number such that t ≤ T . Suppose λ̃+(t) and λ̃−(t) satisfy the following

conditions:

(4.8)





λ̃+(t)α−2 + λ̃−(t)α−2 = λα−2
+ + λα−2

−

Γ
(

1−α
2

) (
λα−1

+ − λα−1
− − λ̃+(t)α−1 + λ̃−(t)α−1

)

√
2Γ
(
1 − α

2

) (
λα−2

+ + λα−2
−

)

= λt +
1

σt
(LRDTS(σt;α, λ̃+(t), λ̃−(t)) − LRDTS(σt;α, λ+, λ−))

.

Then there is a measure Qt equivalent to Pt such that εt+kt∼stdRDTS(α, λ̃+(t), λ̃−(t))

on the measure Qt where kt is the Ft−1 measurable random variable given by

(4.9) kt = λt +
1

σt
(LRDTS(σt;α, λ̃+(t), λ̃−(t)) − LRDTS(σt;α, λ+, λ−)).

Suppose λ̃+(t) and λ̃−(t) satisfy condition (4.8) in each time t ≤ T . We would then
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have the stock price dynamic

log

(
St
St−1

)
= rt − dt + λtσt − LRDTS(σt;α, λ+, λ−) + σtεt

= rt − dt − LRDTS(σt;α, λ̃+(t), λ̃−(t)) + σt(εt + kt)

where kt is given by equation (4.9). By Proposition 4.2, there is a measure Qt equivalent

to Pt such that εt + kt ∼ stdRDTS(α, λ̃+(t), λ̃−(t)) on the measure Qt, and hence

log

(
St
St−1

)
= rt − dt − LRDTS(σt;α, λ̃+(t), λ̃−(t)) + σtξt

where ξt ∼ stdRDTS(α, λ̃+(t), λ̃−(t)). Since λtσt disappears in the dynamic on Qt, λt

can be interpreted as the market price of risk. Consequently, we deduce the following

risk-neutral stock price dynamic from Proposition 4.2

(4.10)






log

(
St
St−1

)
= rt − dt − LRDTS(σt;α, λ̃+(t), λ̃−(t)) + σtξt

ξt ∼ stdRDTS(α, λ̃+(t), λ̃−(t))

, t ≤ T

having the following variance process

σ2
t = (α0 + α1σ

2
t−1(ξt−1 − kt−1)

2 + β1σ
2
t−1).(4.11)

The risk-neutral stock price dynamic is called the RDTS-GARCH option pricing model.

Under the RDTS-GARCH option pricing model, the stock price St at time t > 0 is given

by

St = S0 exp

(
t∑

j=1

(
rj − dj − LRDTS(σj;α, λ̃+(j), λ̃−(j)) + σjξj

))
.

4.3 Simulation of the risk-neutral stock price processes

Assume that the GARCH parameters (α0, α1, and β1), the standard CTS and standard

RDTS parameters (α, λ+, and λ−), the constant market price of risk λt = λ, and the
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conditional variance σ2
t0

of the initial time t0 are estimated from historical data. Then

we can generate the risk-neutral process for the CTS-GARCH option pricing model by

the following algorithm:

1. Initialize t := t0.

2. Find the parameters λ̃+(t) and λ̃−(t) satisfying condition (4.4).

3. Generate random number ξt ∼ stdCTS(α, λ̃+(t), λ̃−(t)) using Theorem 2.4.

4. Let log
(

St

St−1

)
be equal to equation (4.6).

5. Let kt be equal to equation (4.5).

6. Set t = t+ 1 and then substitute

σ2
t = (α0 + α1σ

2
t−1(ξt−1 − kt−1)

2 + β1σ
2
t−1) ∧ ρ.

7. Repeat 2 through 6 until t > T .

We can generate the risk-neutral process for the RDTS-GARCH option pricing model

by modifying the above algorithm as follows:

2′. Find the parameters λ̃+(t) and λ̃−(t) satisfying condition (4.8).

3′. Generate random number ξt ∼ stdRDTS(α, λ̃+(t), λ̃−(t)) using Theorem 3.9.

4′. Let log
(

St

St−1

)
be equal to equation (4.10).

5′. Let kt be equal to equation (4.9).

6′. Set t = t+ 1 and then substitute

σ2
t = α0 + α1σ

2
t−1(ξt−1 − kt−1)

2 + β1σ
2
t−1.

5 Market parameter estimation

In this section, we report the maximum likelihood estimation (MLE) of the normal-

GARCH, CTS-GARCH, and RDTS-GARCH models using data obtained from Option

Metrics’s IvyDB in the Wharton Research Data Services. In our empirical study, we use

historical prices of the Dow Jones Industrial Average (DJIA) and 29 of its 30-component
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stocks2 as of October 2008. First, we consider the time series of the stock prices for the

DJIA component companies from October 1, 1997 to December 31, 2006. Then in order

to analyze the model performance during that time and to evaluate DJX index options,

we consider also the time series of the DJIA index in the time window from January 2,

1996 to June 6, 2007. The analysis of the 29 stocks is totally independent of the analysis

of the DJIA and DJX. That is, we study the model performances on stocks, then on the

DJIA index together with the corresponding option prices. Since the index composition

changes periodically, we prefer to perform the analysis on the current DJIA component

stocks. For the daily risk-free rate, we select the appropriate zero-coupon rate obtained

from the Ivy DB.

To simplify the estimation, we impose a constant market price of risk λ. We use the

total returns data by Ivy DB to estimate the market parameters with the MLE. The total

returns are obtained by adjusting prices of indexes and stocks for all applicable splits and

dividend distributions. For this reason, we modify the stock price dynamic as follows

(5.1) log

(
Ŝt

Ŝt−1

)
= rt + λtσt − L(σt) + σtεt, t ∈ N,

where Ŝt is the adjusted-closing prices.

Our estimation procedure is as follows. First, we estimate the parameters α0, α1,

β1, and the constant market price of risk λ from the normal-GARCH model. Second,

we fix α0, α1, β1, and λ as parameters estimated in the first step and then estimate

α, λ+, and λ− from the CTS-GARCH and RDTS-GARCH models under the assump-

tion of σ2
0 = α0/(1 − α1 − β1). For the CTS-GARCH model, we set ρ = max{σ2

t :

t is the observed date}. We report the estimated GARCH parameters in Table 1, and the

parameters for the two standard tempered stable distributions in Table 2 for the DJIA

index and 29 component companies.

For the assessment of the goodness-of-fit, we utilize the Kolmogrov-Smirnov (KS)

test. We also calculate the Anderson-Darling (AD) statistic to better evaluate the tail fit.

We define the null hypotheses as follows:
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H0(Normal-GARCH): The residuals follow the standard normal distribution.

H0(CTS-GARCH): The residuals follow the standard CTS distribution.

H0(RDTS-GARCH): The residuals follow the standard RDTS distribution.

Table 3 provides the KS statistic and its p-values. The p-values of the KS statistic are

calculated using the calculator designed by Marsaglia et al. (2003). Based on the results

reported in the table, we conclude that

1. H0(Normal-GARCH) is rejected at the 5% significance level for 22 of the 29

stocks.

2. H0(CTS-GARCH) is rejected at the 5% significance level for one stock, DuPont.

3. H0(RDTS-GARCH) is rejected at the 5% significance level for one stock, DuPont.

4. AD statistic for both CTS-GARCH and RDTS-GARCH are significantly smaller

than the AD statistic of the normal-GARCH model.

Furthermore, in order to analyze the model performance during the time, we report

the MLE estimate of the normal-GARCH, CTS-GARCH, and RDTS-GARCH models

for the DJIA, by considering any Wednesday between January 4, 2006 to June 6, 2007.

We consider 75 different time series with daily observations starting from January 2,

1996 and ending on any Wednesday in the time window considered above. This esti-

mations will be also used in the next section for the purpose of option valuation. We

report in Table 4 and Figure 1 the normal-GARCH parameters, and in Table 5 and in

Figure 2 the market parameters of the innovation processes for the CTS-GARCH and

RDTS-GARCH models. In Table 6 and Figure 3, we show the KS, the AD, and the χ2

statistic with the relative p-value. The empirical study shows that the two non-normal

GARCH models largely improve the classical normal-GARCH model. Furthermore,

Figure 2 shows that the estimated parameters of the CTS and RDTS innovations do not

present large deviations in a time window of more than one year, and, in particular, the

RDTS model parameters seem to be more stable.
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6 Option prices with GARCH models

In this part of the empirical analysis, we evaluate option prices written on the DJIA

(DJX) with different strike prices and maturities. Now, we want to study the effect on

option prices when the underlying distribution is skewed and leptokurtic, and compare

these models to the normal-GARCH model, which constitute a natural benchmark. Eu-

ropean call data on 17 selected Wednesdays (one per month) between January 4, 2006

and May 9, 2007 are considered for a total of 2, 670 option prices. Here, options with a

time to maturity more than 250 days are discarded. Option prices and the risk-free rate,

calculated from the U.S. Treasury yield curve, are provided by Ivy DB.

Market parameters estimated in the previous section are taken into account in this

analysis in order to calculate option prices. We consider the market estimation based

on the time series from January 2, 1996 to any corresponding Wednesday in which the

European call option is quoted. That is, to price an option quoted on January 11, 2006,

we consider the MLE estimated parameters from the time series from January 2, 1996

to January 11, 2006, together with the algorithms in Section 4.3. By repeating the same

procedure, we price options for any selected Wednesday, until May 9, 2007.

The Monte Carlo procedure is based on algorithms in Section 4.3 with empirical

martingale simulation. This simulation technique, introduced in Duan and Simonato

(1998), is a simple way to reduce the variance of the simulated sample and to preserve

the martingale property of the simulated risk-neutral process as well, which is in general

lost with a crude Monte Carlo method. We point out that for each time step and for each

simulated path, we have to solve a nonlinear system, as described in Section 4.3, to find

risk-neutral parameters. That is, each random number may have different parameters,

which does not occur in the normal case. For this reason, the running time ranges from

10 minutes for the normal case to 42 hours for the RDTS case to simulate 20,000 paths,

by using Matlab R2007b on a Xeon Precision at 3.0 GHz with 3GB RAM. Anyway, if

one can compute with a cluster, the running time is of minor concern, since the structure

of the problem allows one to simulate paths separately. Furthermore, we have to also
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consider some memory allocation feature in working with an office personal computer

such as a Xeon Precision at 3.0 GHz. This is the reason why we consider only 17

Wednesday, one per month, and not all 75 Wednesday as in the market estimation.

To measure the performance of the option pricing model, we consider four statistics

(see Schoutens (2003)), described as follows. Let us consider a given market model and

observed prices Ci of call options with maturities τi and strikes Ki, i ∈ {1, . . . , N},

where N is the number of options on a given Wednesday. Let Ci be the mean of options

prices Ci and Ĉi be the model price, then we evaluate

1. the average absolute error as a percentage of the mean price (denoted APE)

APE =
1

Ci

N∑

i=1

|Ci − Ĉi|
N

,

2. the average absolute error (denoted AAE)

AAE =
N∑

i=1

|Ci − Ĉi|
N

,

3. the root mean square error (denoted RMSE)

RMSE =

√√√√
N∑

i=1

(Ci − Ĉi)2

N
,

4. the average relative percentage error (denoted ARPE)

ARPE =
1

N

N∑

i=1

|Ci − Ĉi|
Ci

.

Table 7 reports the performance of different option pricing model: the normal-

GARCH performs worst than the two others models, as the CTS-GARCH and RDTS-

GARCH models have smaller pricing errors.
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7 Conclusion

In this paper, we introduce the RDTS distribution. It has statistical properties similar

to the CTS distribution, even if the RDTS distribution has finite exponential moment

of any order, while the CTS has only some finite exponential moment. Furthermore,

we present a discrete time model for stock price log returns driven by a non-normal

random variable, that is the RDTS-GARCH model, which allows fat tails, skewness,

and volatility clustering. We compare this model to the classical normal-GARCH model

and with the CTS-GARCH model, that was introduced by Kim et al. (2008a).

Discrete time markets with a continuous return distribution fail to be complete. Con-

sequently, based on a similar argument as in the CTS case as per Kim et al. (2008a), the

problem of the appropriate choice of the equivalent martingale for the discounted asset

price process is solved considering the RDTS innovation assumption. A density trans-

formation between ID random variables allows us to choice a suitable equivalent martin-

gale measure. By the discrete time nature of this setting, the risk-neutral distribution is

not always the same for the entire time window, but on each time step it is governed by

different parameters. Unfortunately, this approach does not provide analytical solutions

to price European options and hence numerical procedures have to be considered. For

this reason, algorithms for simulating CTS and RDTS distributions are studied and used

to obtain option prices. The use of non-normal GARCH models combined with Monte

Carlo simulation methods allows one to obtain very promising results.

For the stocks, the index, and the option prices we analyzed and for the time period

studied, the CTS-GARCH and RDTS-GARCH seem to be satisfactory in both market

and option analysis, compared to the normal-GARCH model. Consequently, the CTS-

GARCH and RDTS-GARCH models explain both the asset price behavior and European

option prices better than the normal-GARCH model. Thus, we can say that the skew-

ness and fat-tail properties of the innovation are also important for pricing of European

options.
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A Appendix

A.1 Proof of Proposition 3.3

Lemma A.1. If λ > 0, then

(A.1)
∫ ∞

0

xn
e−λ

2x2/2

xα+1
dx =

1

2

(
λ2

2

)α−n
2

Γ

(
n− α

2

)
, n ∈ N.

Proof. By the change of variables, we have

(A.2)
∫ ∞

0

xn
e−yx

2

xα+1
dx =

y(α−n)/2

2
Γ

(
n− α

2

)
, n ∈ N, y > 0.

If we substitute y = λ2/2 in (A.2), then we obtain the result.

Lemma A.2. Let α ∈ (0, 2), α 6= 1. Then we have

∞∑

n=0

1

n!
Γ

(
n− α

2

)
xn = Γ

(
−α

2

)
M

(
−α

2
,
1

2
;
(x

2

)2
)

(A.3)

+ xΓ

(
1 − α

2

)
M

(
1 − α

2
,
3

2
;
(x

2

)2
)
.

where M is the confluent hypergeometric function Andrews (1998).

Proof. We have

∞∑

n=0

1

n!
Γ

(
n− α

2

)
xn =

∞∑

n=0

1

(2n)!
Γ
(
n− α

2

)
x2n

+
∞∑

n=0

1

(2n+ 1)!
Γ

(
n+

1 − α

2

)
x2n+1.

By the facts that

(2n)! = n!22n

(
1

2

)

n

, (2n+ 1)! = n!22n

(
3

2

)

n

,
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and

Γ(n+ y) = (y)nΓ(y),

we obtain

∞∑

n=0

1

n!
Γ

(
n− α

2

)
xn

= Γ
(
−α

2

) ∞∑

n=0

(
−α

2

)
n

n!22n
(

1
2

)
n

x2n + xΓ

(
1 − α

2

) ∞∑

n=0

(
1−α

2

)
n

n!22n
(

3
2

)
n

x2n

= Γ
(
−α

2

)
M

(
−α

2
,
1

2
;
(x

2

)2
)

+ xΓ

(
1 − α

2

)
M

(
1 − α

2
,
3

2
;
(x

2

)2
)

Proof of Proposition 3.3. We have

∫ ∞

−∞

(eiux − 1 − iux1|x|≤1)ν(dx)

= iu

∫

|x|>1

xν(dx) +

∫ ∞

0

(eiux − 1 − iux)ν(dx) +

∫ 0

−∞

(eiux − 1 − iux)ν(dx)

= iu

∫

|x|>1

xν(dx)

+ C+

∞∑

n=2

1

n!
(iu)n

∫ ∞

0

xn
e−λ

2
+
x2/2

xα+1
dx+ C−

∞∑

n=2

1

n!
(−iu)n

∫ ∞

0

xn
e−λ

2
−x

2/2

xα+1
dx

By (A.1) and (A.3), we have

∞∑

n=2

1

n!
(±iu)n

∫ ∞

0

xn
e−λ

2
±x

2/2

xα+1
dx

=
∞∑

n=0

1

n!

1

2

(
λ±√

2

)α−n
Γ

(
n− α

2

)
(±iu)n

∓ iu
1

2

(
λ±√

2

)α−1

Γ

(
1 − α

2

)
− 1

2

(
λ±√

2

)α
Γ

(−α
2

)

= 2−
α
2
−1λα±

[
Γ
(
−α

2

)(
M

(
−α

2
,
1

2
;
(±iu)2

2λ2
±

)
− 1

)

+
±
√

2iu

λ±
Γ

(
1 − α

2

)(
M

(
1 − α

2
,
3

2
;
(±iu)2

2λ2
±

)
− 1

)]
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By Lévy-Khintchine formula and (3.1) in Definition 3.1, we obtain the characteristic

function. Moreover, φ(u) can be extended via analytic continuation to the complex field

C.

A.2 Proof of Proposition 3.7

In this section, we review a general result of equivalence of measures presented by

Sato (1999) and then apply it to the RDTS process.

Theorem A.3 (Sato (1999) Theorem 33.1 and 33.2.). Let (Xt,P) and (Xt,Q) be a

Lévy processes on R with Lévy triplets (σ2, ν, γ) and (σ̃2, ν̃, γ̃) respectively. Then P|Ft

and Q|Ft
are equivalent for all t > 0 if and only if the Lévy triplets satisfy

(A.4) σ2 = σ̃2,

(A.5)
∫ ∞

−∞

(eψ(x)/2 − 1)2ν(dx) <∞

with the function ψ(x) = ln
(
ν̃(dx)
ν(dx)

)
and if σ2 = 0 then

(A.6) γ̃ − γ =

∫

|x|≤1

x(ν̃ − ν)(dx).

When P and Q are equivalent, the Radon-Nikodym derivative is

(A.7)
dQ

dP

∣∣∣
Ft

= eUt

where (Ut,P) is a Lévy process in which the Lévy triplet (σ2
U , νU , γU) of (Ut)t∈[0,T ] is

given by

σ2
U = σ2η2, νU = ν ◦ ψ−1, γU = −σ

2η2

2
−
∫ ∞

−∞

(ey − 1 − y1|y|≤1)νU(dy)(A.8)
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Here η is such that

γ̃ − γ −
∫

|x|≤1

x(ν̃ − ν)(dx) = σ2η

if σ > 0 and zero if σ = 0.

Since RDTS distributions are infinitely divisible, we can apply Theorem A.3 to ob-

tain the change of measure.

Proof of Proposition 3.7. Let (0, ν, γ) and (0, ν̃, γ̃) be Lévy triplets of (Xt,P) and (Xt,Q),

respectively. Since the diffusion coefficients of RDTS processes are zero, (A.4) is satis-

fied. From the definition of Lévy measure ν̃ and ν, ψ(x) in the condition (A.5) is equal

to

ψ(x) =

(
ln

(
C̃+x

−α̃

C+x−α

)
+
x2

2
(λ+ − λ̃+)

)
1x>0

+

(
ln

(
C̃−|x|−α̃
C−|x|−α

)
+
x2

2
(λ− − λ̃−)

)
1x<0.

Let k(x) =
λ2
+
x2

2
1x>0 +

λ2
−x

2

2
1x<0 and k̃(x) =

λ̃2
+
x2

2
1x>0 +

λ̃2
−x

2

2
1x<0. If α < α̃, then we

have

lim
x→0+





√
C̃+e

−k̃(x)/2

x(α̃+1)/2
−

√
C+e

−k(x)/2

x(α+1)/2





2

/( 1

xα̃+1

)
= C̃+.

If α = α̃ but C+ 6= C̃+, then we have

lim
x→0+





√
C̃+e

−k̃(x)/2

x(α̃+1)/2
−

√
C+e

−k(x)/2

x(α+1)/2





2

/( 1

xα̃+1

)
= (

√
C̃+ −

√
C+)2.

Hence if α < α̃ or α = α̃ but C+ 6= C̃+ then

∫ ∞

0

(
eψ(x)/2 − 1

)2
ν(dx) =

∫ ∞

0





√
C̃+e

−k̃(x)/2

x(α+1)/2
−

√
C+e

−k(x)/2

x(α+1)/2





2

dx(A.9)

≥ K+

∫ 1

0

1

xα̃+1
dx = ∞
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for some K+ ∈ R. Using similar arguments, we can prove that if α < α̃ or α = α̃ but

C− 6= C̃− then

(A.10)
∫ 0

−∞

(
eψ(x)/2 − 1

)2
ν(dx) = ∞.

By (A.9) and (A.10), ∫ ∞

−∞

(
eψ(x)/2 − 1

)2
ν(dx) = ∞.

Hence the condition (A.5) does not hold. Similarly, we can show that the condition (A.5)

does not hold if α > α̃.

Suppose α = α̃, C+ = C̃+ and, C− = C̃−. Then we have

ψ(x) =
x2

2
(λ2

+ − λ̃2
+)1x>0 +

x2

2
(λ2

− − λ̃2
−)1x<0,

and hence

∫ ∞

0

(eψ(x)/2 − 1)2ν(dx) = C+

∫ ∞

0

(
e−

λ̃2
+

x2

2 − e−
λ2
+

x2

2

)2

xα+1
dx.

We can show that the right side of the above equation is finite. Using similar arguments,

we can prove
∫ 0

−∞
(eψ(x)/2 − 1)2ν(dx) < ∞. Thus, condition (A.5) holds if and only if

α = α̃, C+ = C̃+ and, C− = C̃−.

Condition (A.6) holds if and only if

∫

|x|≤1

x(ν̃ − ν)(dx) = m̃−
∫

|x|>1

x ν̃(dx) −m+

∫

|x|>1

x ν(dx),

or

m̃−m =

∫ ∞

−∞

x(ν̃ − ν)(dx)

= 2−
α+1

2 Γ

(
1 − α

2

)(
C+(λ̃α−1

+ − λα−1
+ ) − C−(λ̃α−1

− − λα−1
− )

)
.
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Hence, P and Q are equivalent if and only if α = α̃, C+ = C̃+, C− = C̃− and

m̃−m = 2−
α+1

2 Γ

(
1 − α

2

)(
C+(λ̃α−1

+ − λα−1
+ ) − C−(λ̃α−1

− − λα−1
− )

)
.

The Lévy triplet (3.5) can be obtained from (A.8) in Theorem A.3 with η = 0.

A.3 Proof of Proposition 3.10 and Proposition 3.11

Lemma A.4. For a ∈ R+, the following equality holds

(A.11)
∫ ∞

β

s−a−1e−sds = β−a−1e−β + o(β−a−1e−β)

and

(A.12)
∫ ∞

β

s−a−1e−
s2

2 ds = β−a−2e−
β2

2 + o(β−a−2e−
β2

2 )

as β → ∞.

Proof. By integration by parts, if β > 0, we obtain

∫ ∞

β

s−a−1e−sds = β−a−1e−β − (a+ 1)

∫ ∞

β

s−a−2e−sds ≤ β−a−1e−β

and

∫ ∞

β

s−a−1e−sds = β−a−1e−β − (a+ 1)β−a−2e−β + (a+ 1)(a+ 2)

∫ ∞

β

s−a−3e−sds

≥ β−a−1e−β − (a+ 1)β−a−2e−β,

when β → ∞, the first result is proved. By integration by parts again, if β > 0, we

obtain

∫ ∞

β

s−a−1e−
s2

2 ds = β−a−2e−
β2

2 − (a+ 2)

∫ ∞

β

s−a−3e−
s2

2 ds ≤ β−a−2e−
β2

2
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and

∫ ∞

β

s−a−1e−
s2

2 ds

= β−a−2e−
β2

2 − (a+ 2)β−a−4e−
β2

2 + (a+ 2)(a+ 4)

∫ ∞

β

s−a−5e−
s2

2 ds

≥ β−a−2e−
β2

2 − (a+ 2)β−a−4e−
β2

2 ,

when β → ∞, the second result is proved.

We consider the following result:

Proposition A.5. LetX be an infinitely divisible random variable in R, with Lévy triplet

(γ, 0, ν). Then we have

(A.13) P(|X −m| ≥ λ) ≥ 1

4
(1 − exp(−ν(u ∈ R : |u| ≥ 2λ))), λ > 0.

for all m ∈ R.

Proof. See Lemma 5.4 of Breton et al. (2007).

Taking into account Proposition A.5 and Lemma A.4, we can prove Proposition 3.10

and Proposition 3.11.

Proof of Proposition 3.10. By Chebyshev’s Inequality, the upper bound part can be proved.

Applying the following elementary fact

1 − exp(−z) ∼ z, z → 0

and according to (A.13), we obtain

P(|X −m| ≥ λ) ≥ 1

4

(
1 − exp

[
− C+

∫ ∞

2y

x−α−1e−λ+xdx− C−

∫ ∞

2y

x−α−1e−λ−xdx

])

∼ 1

4

[
C+

∫ ∞

2y

x−α−1e−λ+xdx+ C−

∫ ∞

2y

x−α−1e−λ−xdx

]
|x|α+1e−

2λ
|x|R(dx),
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as y → ∞. By using (A.11) of Lemma A.4, we have

∫ ∞

2y

x−α−1e−λxdx ∼ (2y)−α−1λ−1e−2λy.

Hence we obtain

P(|X −m| ≥ λ) ≥ K(2y)−α−1λ−1e−2λy

for some constant K independent of y and λ̄ = min{λ+, λ−} as y → ∞

Proof of Proposition 3.11. Using the same method in the proof of Proposition 3.10 with

(A.12) of Lemma A.4, we can obtain the result.
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Notes

1 See Andrews (1998).

2 Kraft Foods (KFT) is excluded because the time series we employ begins in 1997 but this company

was listed on 2001.
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Table 1: Estimated normal-GARCH parameters from October 1, 1997 to December 31,
2006 for 29 component companies of the DJIA index.

ticker β1 α1 α0 λ

Alcoa Incorporated AA 0.9599 0.0338 2.6293E − 6 0.0410
American Express Company AXP 0.9224 0.0731 2.1441E − 6 0.0732
Boeing Corporation BA 0.9325 0.0572 5.1542E − 6 0.0603
Bank of America Corporation BAC 0.9550 0.0416 1.2013E − 6 0.0656
Citigroup Incorporated C 0.9577 0.0402 8.3005E − 7 0.0795
Caterpillar Incorporated CAT 0.9824 0.0152 8.9119E − 7 0.0626
Chevron CVX 0.9216 0.0625 3.9714E − 6 0.0540
DuPont DD 0.9686 0.0293 5.6971E − 7 0.0324
Walt Disney Company DIS 0.9041 0.0852 6.6607E − 6 0.0471
General Electric Company GE 0.9606 0.0370 5.6093E − 7 0.0627
General Motors Corporation GM 0.9228 0.0585 9.5254E − 6 0.0275
Home Depot Incorporated HD 0.9620 0.0362 9.7257E − 7 0.0675
Hewlett-Packard Company HPQ 0.9869 0.0111 1.4125E − 6 0.0405
International Business Machines IBM 0.9179 0.0794 2.8849E − 6 0.0658
Intel Corporation INTC 0.9699 0.0268 2.2101E − 6 0.0529
Johnson&Johnson JNJ 0.9181 0.0742 2.2397E − 6 0.0548
JPMorgan Chase & Company JPM 0.9432 0.0543 1.0285E − 6 0.0617
Coca-Cola Company KO 0.9528 0.0439 9.0481E − 7 0.0362
McDonald’s Corporation MCD 0.9538 0.0407 1.8980E − 6 0.0329
3M Company MMM 0.8478 0.1034 1.3852E − 5 0.0566
Merck & Company, Incorpoarated MRK 0.9063 0.0221 2.6409E − 5 0.0240
Microsoft Corporation MSFT 0.9348 0.0619 1.6078E − 6 0.0644
Pfizer Incorporated PFE 0.8869 0.0887 1.0399E − 5 0.0326
Procter and Gamble Company PG 0.9625 0.0360 3.0415E − 7 0.0673
AT&T Incorporated T 0.9356 0.0607 2.2891E − 6 0.0253
United Technologies UTX 0.8934 0.0994 4.5332E − 6 0.1027
Verizon Company VZ 0.9352 0.0614 1.4839E − 6 0.0352
Wal-Mart Stores Incorporated WMT 0.9650 0.0335 4.8725E − 7 0.0458
Exxon Mobil Corporation XOM 0.9336 0.0559 2.5577E − 6 0.0602
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Table 2: Estimated parameters of the innovation processes for the CTS-GARCH and
RDTS-GARCH models from October 1, 1997 to December 31, 2006 for 29 component
companies of the DJIA index.

CTS RDTS
Ticker α λ+ λ− α λ+ λ−

AA 1.8499 0.3146 7.5000 1.8887 0.2024 10.5721
AXP 1.7500 0.3805 9.7309 1.8803 0.2833 10.0845
BA 1.7329 0.1753 0.5522 1.7461 0.1608 0.4295

BAC 1.7441 0.6178 0.4130 1.7325 0.4828 0.3444
C 1.7376 0.2255 0.9701 1.7430 0.1736 0.6844

CAT 1.7325 0.2531 1.7459 1.7325 0.2305 1.0083
CVX 1.7637 0.6729 2.0788 1.7512 0.4769 1.1658
DD 1.9220 0.0359 7.4336 1.9322 0.1916 11.2821
DIS 1.7325 0.1691 1.0917 1.7325 0.1580 0.7457
GE 1.8965 0.4004 7.5000 1.9195 0.2970 7.5151
GM 1.8545 0.0497 2.8984 1.7336 0.1302 1.2418
HD 1.7500 0.2357 4.6684 1.7752 0.1910 1.8216

HPQ 1.7325 0.0751 0.4124 1.7325 0.0762 0.3574
IBM 1.7325 0.1098 0.5483 1.7325 0.1098 0.4406
INTC 1.8234 0.2091 9.9281 1.9999 0.1784 9.9591
JNJ 1.8322 0.2714 4.2282 1.7689 0.2309 1.4297
JPM 1.7473 0.5283 3.0839 1.7325 0.3847 1.2420
KO 1.7535 0.2020 7.8378 1.7812 0.1566 5.7200

MCD 1.7325 0.1670 0.5328 1.7325 0.1654 0.4167
MMM 1.7325 0.1249 0.7565 1.7325 0.1230 0.5714
MRK 1.7325 0.1158 0.1265 1.7325 0.1163 0.1257
MSFT 1.8710 0.1293 6.0573 1.8547 0.1427 2.5893
PFE 1.7402 0.3854 1.6620 1.7591 0.3072 1.0720
PG 1.7325 0.2770 1.2074 1.7340 0.2530 0.7940
T 1.7325 0.1619 0.4918 1.7325 0.1582 0.3912

UTX 1.8077 0.1455 2.3654 1.7500 0.1931 1.2059
VZ 1.8338 0.2310 5.5116 1.8431 0.1926 3.0450

WMT 1.7325 0.4049 1.7809 1.7327 0.3118 1.0097
XOM 1.7632 0.4682 0.8831 1.8285 0.2816 0.5421
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Table 3: Statistic of the goodness of fit tests

Ticker Model KS p-value AD
AA Normal-GARCH 0.0285 0.0340 1.3952

CTS-GARCH 0.0230 0.1408 0.1938
RDTS-GARCH 0.0230 0.1402 0.1948

AXP Normal-GARCH 0.0249 0.0886 84.0733
CTS-GARCH 0.0144 0.6748 0.1090
RDTS-GARCH 0.0145 0.6655 0.2233

BA Normal-GARCH 0.0308 0.0173 15.6383
CTS-GARCH 0.0202 0.2575 0.0698
RDTS-GARCH 0.0196 0.2884 0.0850

BAC Normal-GARCH 0.0266 0.0240 0.3805
CTS-GARCH 0.0144 0.5390 0.0359
RDTS-GARCH 0.0138 0.5918 0.0639

C Normal-GARCH 0.0298 0.0073 160.1880
CTS-GARCH 0.0205 0.1400 0.1798
RDTS-GARCH 0.0215 0.1072 0.4389

CAT Normal-GARCH 0.0319 0.0124 1.9053
CTS-GARCH 0.0248 0.0914 0.1492
RDTS-GARCH 0.0245 0.0995 0.1406

CVX Normal-GARCH 0.0177 0.4113 0.1066
CTS-GARCH 0.0143 0.6843 0.0950
RDTS-GARCH 0.0135 0.7535 0.0970

DD Normal-GARCH 0.0354 0.0037 1.4710
CTS-GARCH 0.0284 0.0347 0.1104
RDTS-GARCH 0.0344 0.0053 0.1773

DIS Normal-GARCH 0.0381 0.0014 281.9976
CTS-GARCH 0.0265 0.0592 0.1241
RDTS-GARCH 0.0262 0.0649 0.2034

GE Normal-GARCH 0.0243 0.1033 0.3035
CTS-GARCH 0.0187 0.3436 0.1701
RDTS-GARCH 0.0188 0.3364 0.1782

GM Normal-GARCH 0.0428 0.0002 17852.7859
CTS-GARCH 0.0197 0.2837 0.1788
RDTS-GARCH 0.0211 0.2131 0.1993

HD Normal-GARCH 0.0338 0.0066 1.2829
CTS-GARCH 0.0126 0.8194 0.1547
RDTS-GARCH 0.0120 0.8620 0.1452

HPQ Normal-GARCH 0.0506 0.0000 3476.9698
CTS-GARCH 0.0205 0.2438 0.0810
RDTS-GARCH 0.0213 0.2072 0.0986

IBM Normal-GARCH 0.0554 0.0000 99.1506
CTS-GARCH 0.0219 0.1797 0.0962
RDTS-GARCH 0.0222 0.1682 0.0940

INTC Normal-GARCH 0.0266 0.0579 17.7457
CTS-GARCH 0.0160 0.5435 0.1512
RDTS-GARCH 0.0266 0.0580 5.7968
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(Continue)
Ticker Model KS p-value AD
JNJ Normal-GARCH 0.0405 0.0005 0.7086

CTS-GARCH 0.0262 0.0647 0.1181
RDTS-GARCH 0.0201 0.2626 0.1180

JPM Normal-GARCH 0.0323 0.0009 1.3883
CTS-GARCH 0.0191 0.1363 0.1826
RDTS-GARCH 0.0182 0.1727 0.1733

KO Normal-GARCH 0.0379 0.0015 1.2765
CTS-GARCH 0.0146 0.6633 0.1520
RDTS-GARCH 0.0151 0.6168 0.1476

MCD Normal-GARCH 0.0403 0.0006 5.9558
CTS-GARCH 0.0110 0.9215 0.0577
RDTS-GARCH 0.0119 0.8678 0.0765

MMM Normal-GARCH 0.0503 0.0000 1.1493
CTS-GARCH 0.0165 0.5057 0.0861
RDTS-GARCH 0.0167 0.4876 0.0918

MRK Normal-GARCH 0.0535 0.0000 1334.3847
CTS-GARCH 0.0147 0.6519 0.0354
RDTS-GARCH 0.0146 0.6606 0.0394

MSFT Normal-GARCH 0.0379 0.0015 2.2925
CTS-GARCH 0.0210 0.2170 0.2039
RDTS-GARCH 0.0198 0.2786 0.2402

PFE Normal-GARCH 0.0233 0.1328 0.9711
CTS-GARCH 0.0161 0.5332 0.1184
RDTS-GARCH 0.0162 0.5262 0.1326

PG Normal-GARCH 0.0277 0.0428 1.6565
CTS-GARCH 0.0115 0.8959 0.1423
RDTS-GARCH 0.0116 0.8873 0.1601

T Normal-GARCH 0.0341 0.0000 36014.5914
CTS-GARCH 0.0121 0.4690 0.1089
RDTS-GARCH 0.0128 0.3976 0.2522

UTX Normal-GARCH 0.0456 0.0001 0.0990
CTS-GARCH 0.0209 0.2240 0.0640
RDTS-GARCH 0.0193 0.3109 0.0535

VZ Normal-GARCH 0.0383 0.0013 0.3669
CTS-GARCH 0.0219 0.1807 0.1478
RDTS-GARCH 0.0215 0.1973 0.1528

WMT Normal-GARCH 0.0257 0.0729 0.2594
CTS-GARCH 0.0121 0.8568 0.0650
RDTS-GARCH 0.0116 0.8878 0.0657

XOM Normal-GARCH 0.0232 0.1361 0.5962
CTS-GARCH 0.0122 0.8508 0.0611
RDTS-GARCH 0.0122 0.8500 0.0593
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Table 4: DJIA index estimated normal-GARCH parameters from January 2, 1996 to
any Wednesday from January 4, 2006 to June 6, 2007. Dates are in the form yyyymmdd.

Date β1 α1 α0 λ

20060104 0.903133393 0.085430921 0.000001560 0.060129047
20060111 0.903899223 0.085094959 0.000001501 0.061413483
20060118 0.904257327 0.084812044 0.000001490 0.060306713
20060125 0.903934244 0.084314520 0.000001584 0.058942811
20060201 0.904144067 0.084163556 0.000001572 0.059975492
20060208 0.904345327 0.083994304 0.000001567 0.059315554
20060215 0.904623506 0.083762386 0.000001555 0.060203581
20060222 0.904872184 0.083650176 0.000001533 0.060626208
20060301 0.904926629 0.083600987 0.000001528 0.060042349
20060308 0.904991033 0.083821527 0.000001497 0.059438035
20060315 0.905403570 0.083536155 0.000001476 0.060515481
20060322 0.905665145 0.083491712 0.000001444 0.061302821
20060329 0.905868280 0.083414634 0.000001428 0.060638761
20060405 0.905466068 0.083870138 0.000001420 0.060896764
20060412 0.906315853 0.083252675 0.000001387 0.059510284
20060419 0.905440562 0.083505992 0.000001473 0.061118625
20060426 0.906571170 0.082599797 0.000001423 0.060935127
20060503 0.907238968 0.082327226 0.000001375 0.061185589
20060510 0.907541644 0.082041724 0.000001369 0.062400962
20060517 0.905627280 0.083107200 0.000001487 0.059829448
20060524 0.907225942 0.081906920 0.000001426 0.059112607
20060531 0.906909700 0.082078405 0.000001450 0.059121953
20060607 0.906945963 0.082005507 0.000001458 0.058054978
20060614 0.907287348 0.081730294 0.000001444 0.057353045
20060621 0.907149109 0.081668771 0.000001462 0.058230227
20060628 0.907412084 0.081433349 0.000001450 0.057809489
20060705 0.907567297 0.081424284 0.000001449 0.058474573
20060712 0.907882902 0.081144161 0.000001437 0.057810391
20060719 0.907207521 0.081558251 0.000001479 0.057789919
20060726 0.907983981 0.081017279 0.000001446 0.058371012
20060802 0.908077524 0.080940851 0.000001437 0.058321366
20060809 0.907363364 0.081494704 0.000001453 0.058200539
20060816 0.907353197 0.081329080 0.000001464 0.058310165
20060823 0.907132183 0.081788698 0.000001433 0.058839002
20060830 0.905911773 0.082806522 0.000001449 0.059615938
20060906 0.905876432 0.083177981 0.000001421 0.059604668
20060913 0.906141835 0.082952224 0.000001412 0.060016695
20060920 0.905911312 0.083431383 0.000001387 0.060114661
20060927 0.906337830 0.083096664 0.000001370 0.060719289
20061004 0.906392666 0.083068975 0.000001365 0.061431208
20061011 0.906898792 0.082916270 0.000001321 0.061530415
20061018 0.906977589 0.082981544 0.000001307 0.061819964
20061025 0.907535726 0.082680552 0.000001269 0.063199949
20061101 0.907964439 0.082471880 0.000001238 0.063083118
20061108 0.908256665 0.082214211 0.000001230 0.063403110
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(Continue)

20061115 0.908603981 0.082163206 0.000001200 0.063636590
20061122 0.909216905 0.082012625 0.000001145 0.064181416
20061129 0.908643826 0.081862611 0.000001223 0.063137579
20061206 0.909327202 0.081524806 0.000001185 0.063215486
20061213 0.910077129 0.081194900 0.000001129 0.063372442
20061220 0.910395984 0.081110766 0.000001101 0.064276960
20061227 0.910170083 0.081188649 0.000001118 0.064276967
20070103 0.910728597 0.080880770 0.000001086 0.064049842
20070110 0.911259701 0.080646861 0.000001049 0.063648369
20070117 0.911677497 0.080467826 0.000001019 0.064199176
20070124 0.911109046 0.080910692 0.000001041 0.063985713
20070131 0.911345423 0.080545067 0.000001045 0.064172538
20070207 0.912454661 0.079996173 0.000000978 0.064213568
20070214 0.912293093 0.080054217 0.000000989 0.064578837
20070221 0.912878969 0.079749900 0.000000955 0.063792703
20070228 0.907712192 0.080889040 0.000001417 0.062291435
20070307 0.908990823 0.079857765 0.000001381 0.061764192
20070314 0.909243931 0.079590626 0.000001385 0.061167423
20070321 0.909385517 0.079234126 0.000001386 0.061954361
20070328 0.909744245 0.079098044 0.000001365 0.061544456
20070404 0.909621305 0.079172161 0.000001362 0.062314976
20070411 0.909290646 0.079480096 0.000001362 0.062107768
20070418 0.908848424 0.079885589 0.000001364 0.063504981
20070425 0.909236929 0.079510540 0.000001361 0.064247765
20070502 0.909228228 0.079572615 0.000001349 0.065073633
20070509 0.908949832 0.080007948 0.000001331 0.065964853
20070516 0.909345811 0.079531912 0.000001338 0.065845470
20070523 0.909494162 0.079563098 0.000001314 0.066272392
20070530 0.909527828 0.079539061 0.000001312 0.066581613
20070606 0.909457567 0.079615742 0.000001313 0.065829470

Average 0.907736375 0.081812917 0.000001351 0.061523578
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Table 5: DJIA market parameters of the innovation processes for the CTS-GARCH and
RDTS-GARCH models. The DJIA time series from January 2, 1996 to any Wednesday
from January 4, 2006 to June 6, 2007 are considered.

CTS RDTS
Date C λ

−
λ+ α C λ+ λ

−
α

20060104 0.1145 0.3314 1.0346 1.7613 0.0786 0.9436 0.2905 1.8193
20060111 0.1160 0.3354 1.0466 1.7588 0.0792 0.9518 0.2922 1.8180
20060118 0.1135 0.3293 1.0361 1.7634 0.0781 0.9453 0.2894 1.8206
20060125 0.1248 0.3523 1.0329 1.7400 0.0836 0.9349 0.2996 1.8062
20060201 0.1232 0.3474 1.0461 1.7436 0.0831 0.9473 0.2982 1.8076
20060208 0.1203 0.3402 1.0428 1.7493 0.0819 0.9472 0.2952 1.8106
20060215 0.1204 0.3403 1.0448 1.7491 0.0821 0.9489 0.2954 1.8103
20060222 0.1207 0.3407 1.0474 1.7486 0.0822 0.9511 0.2956 1.8100
20060301 0.1200 0.3395 1.0497 1.7500 0.0818 0.9529 0.2949 1.8111
20060308 0.1210 0.3417 1.0419 1.7477 0.0823 0.9459 0.2958 1.8096
20060315 0.1196 0.3378 1.0546 1.7508 0.0818 0.9574 0.2945 1.8110
20060322 0.1201 0.3393 1.0611 1.7501 0.0820 0.9619 0.2953 1.8106
20060329 0.1190 0.3369 1.0600 1.7524 0.0815 0.9619 0.2943 1.8120
20060405 0.1193 0.3381 1.0629 1.7519 0.0816 0.9636 0.2948 1.8119
20060412 0.1185 0.3361 1.0631 1.7535 0.0811 0.9640 0.2937 1.8130
20060419 0.1235 0.3530 0.9878 1.7417 0.0822 0.8984 0.2979 1.8092
20060426 0.1239 0.3544 0.9930 1.7411 0.0822 0.9011 0.2981 1.8092
20060503 0.1247 0.3561 0.9909 1.7394 0.0826 0.8990 0.2988 1.8081
20060510 0.1250 0.3568 0.9920 1.7389 0.0827 0.8999 0.2990 1.8079
20060517 0.1338 0.3801 1.0156 1.7222 0.0860 0.9094 0.3091 1.7996
20060524 0.1341 0.3801 1.0057 1.7212 0.0861 0.9016 0.3084 1.7991
20060531 0.1370 0.3873 1.0295 1.7164 0.0872 0.9173 0.3117 1.7968
20060607 0.1390 0.3930 1.0357 1.7127 0.0879 0.9201 0.3141 1.7951
20060614 0.1360 0.3857 1.0310 1.7185 0.0867 0.9191 0.3113 1.7980
20060621 0.1346 0.3829 1.0280 1.7212 0.0862 0.9182 0.3103 1.7993
20060628 0.1341 0.3820 1.0246 1.7222 0.0859 0.9154 0.3095 1.8002
20060705 0.1327 0.3795 1.0093 1.7243 0.0854 0.9049 0.3084 1.8013
20060712 0.1319 0.3781 1.0119 1.7263 0.0848 0.9071 0.3075 1.8028
20060719 0.1301 0.3753 1.0079 1.7297 0.0840 0.9054 0.3063 1.8050
20060726 0.1282 0.3706 1.0054 1.7336 0.0833 0.9055 0.3047 1.8068
20060802 0.1283 0.3702 1.0047 1.7333 0.0834 0.9051 0.3045 1.8064
20060809 0.1288 0.3721 0.9934 1.7319 0.0835 0.8960 0.3050 1.8060
20060816 0.1278 0.3683 0.9996 1.7341 0.0833 0.9020 0.3039 1.8065
20060823 0.1301 0.3759 0.9951 1.7294 0.0841 0.8957 0.3069 1.8045
20060830 0.1340 0.3867 0.9960 1.7219 0.0854 0.8922 0.3112 1.8011
20060906 0.1336 0.3857 0.9974 1.7227 0.0854 0.8939 0.3113 1.8012
20060913 0.1318 0.3806 1.0051 1.7264 0.0848 0.9018 0.3095 1.8029
20060920 0.1338 0.3854 1.0060 1.7225 0.0856 0.9008 0.3116 1.8007
20060927 0.1315 0.3799 1.0127 1.7273 0.0848 0.9079 0.3097 1.8031
20061004 0.1304 0.3772 1.0135 1.7295 0.0845 0.9098 0.3090 1.8040
20061011 0.1327 0.3833 1.0093 1.7250 0.0852 0.9042 0.3112 1.8019
20061018 0.1330 0.3830 1.0119 1.7242 0.0856 0.9068 0.3113 1.8010
20061025 0.1339 0.3867 1.0138 1.7228 0.0858 0.9068 0.3128 1.8006
20061101 0.1335 0.3868 1.0077 1.7236 0.0854 0.9020 0.3126 1.8015
20061108 0.1326 0.3847 1.0059 1.7252 0.0851 0.9017 0.3119 1.8021
20061115 0.1323 0.3837 1.0112 1.7260 0.0851 0.9061 0.3117 1.8024
20061122 0.1347 0.3903 1.0141 1.7213 0.0859 0.9056 0.3142 1.8003
20061129 0.1398 0.4015 1.0253 1.7117 0.0880 0.9104 0.3191 1.7949
20061206 0.1398 0.4005 1.0249 1.7115 0.0882 0.9105 0.3188 1.7944
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(Continue)

20061213 0.1428 0.4090 1.0232 1.7056 0.0891 0.9057 0.3218 1.7919
20061220 0.1439 0.4115 1.0269 1.7037 0.0896 0.9078 0.3229 1.7909
20061227 0.1393 0.4003 1.0301 1.7127 0.0881 0.9147 0.3192 1.7949
20070103 0.1402 0.4027 1.0253 1.7109 0.0883 0.9099 0.3199 1.7942
20070110 0.1420 0.4077 1.0258 1.7075 0.0888 0.9081 0.3214 1.7930
20070117 0.1432 0.4104 1.0337 1.7053 0.0893 0.9129 0.3226 1.7918
20070124 0.1420 0.4066 1.0377 1.7077 0.0890 0.9178 0.3214 1.7926
20070131 0.1424 0.4087 1.0464 1.7075 0.0889 0.9239 0.3221 1.7931
20070207 0.1454 0.4164 1.0471 1.7016 0.0899 0.9209 0.3248 1.7904
20070214 0.1406 0.4046 1.0454 1.7110 0.0884 0.9245 0.3210 1.7945
20070221 0.1422 0.4085 1.0433 1.7077 0.0889 0.9210 0.3221 1.7929
20070228 0.1123 0.2817 0.9029 1.7566 0.0799 0.8606 0.2542 1.8108
20070307 0.1102 0.2756 0.8981 1.7609 0.0791 0.8590 0.2513 1.8129
20070314 0.1144 0.2857 0.9087 1.7522 0.0809 0.8639 0.2557 1.8083
20070321 0.1145 0.2869 0.9191 1.7525 0.0808 0.8709 0.2564 1.8086
20070328 0.1140 0.2848 0.9075 1.7531 0.0807 0.8631 0.2552 1.8088
20070404 0.1153 0.2877 0.9110 1.7505 0.0812 0.8648 0.2564 1.8073
20070411 0.1161 0.2900 0.9067 1.7486 0.0815 0.8606 0.2572 1.8065
20070418 0.1170 0.2917 0.9185 1.7470 0.0819 0.8694 0.2581 1.8056
20070425 0.1150 0.2867 0.9219 1.7512 0.0813 0.8741 0.2565 1.8074
20070502 0.1157 0.2881 0.9237 1.7500 0.0815 0.8750 0.2570 1.8068
20070509 0.1179 0.2937 0.9263 1.7452 0.0824 0.8752 0.2591 1.8044
20070516 0.1183 0.2943 0.9430 1.7449 0.0826 0.8879 0.2596 1.8043
20070523 0.1194 0.2970 0.9382 1.7425 0.0830 0.8834 0.2605 1.8031
20070530 0.1180 0.2933 0.9445 1.7456 0.0825 0.8894 0.2592 1.8046
20070606 0.1180 0.2939 0.9435 1.7457 0.0823 0.8887 0.2591 1.8050

Average 0.1278 0.3574 1.0032 1.7330 0.0842 0.9095 0.2975 1.8037

Table 6: Goodness of fit statistics. KS, AD, and χ2 with the relative p-value for the
normal-GARCH, CTS-GARCH and RDTS-GARCH models from January 2, 1996 to
any Wednesday from January 4, 2006 to June 6, 2007. Values are in average.

KS AD χ2(p-value)

Normal-GARCH 0.0347 14.5832 185.0790(0.0016)
CTS-GARCH 0.0327 0.0689 149.7951(0.0732)
RDTS-GARCH 0.0328 0.0694 151.2415(0.0569)
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Figure 1: DJIA estimated market parameters for the normal-GARCH model from Jan-
uary 2, 1996 to any Wednesday from January 4, 2006 to June 6, 2007.
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Figure 2: DJIA estimated market parameters for the CTS-GARCH and RDTS-GARCH
models from January 2, 1996 to any Wednesday from January 4, 2006 to June 6, 2007.
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Figure 3: Goodness of fit. KS, AD and χ2 with the relative p-value for the normal-
GARCH, CTS-GARCH and RDTS-GARCH models from January 2, 1996 to any
Wednesday from January 4, 2006 to June 6, 2007. The AD statistic for the normal-
GARCH is not comparable, since it is always greater than 9.1474.
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Table 7: Option pricing performance for 17 selected Wednesday (one per month) be-
tween January 4, 2006 and May 9, 2007.

APE AAE RMSE ARPE

Normal-GARCH 20060111 0.0988 0.6381 0.8394 0.6289
CTS-GARCH 0.0489 0.3161 0.4268 0.2524
RDTS-GARCH 0.0470 0.3035 0.4417 0.1441

Normal-GARCH 20060208 0.1069 0.6513 0.7851 0.9685
CTS-GARCH 0.0540 0.3292 0.4139 0.3883
RDTS-GARCH 0.0486 0.2958 0.4157 0.1733

Normal-GARCH 20060315 0.0489 0.4487 0.5815 0.3760
CTS-GARCH 0.0253 0.2321 0.3209 0.1286
RDTS-GARCH 0.0238 0.2188 0.3230 0.0513

Normal-GARCH 20060412 0.0731 0.5483 0.7627 0.4077
CTS-GARCH 0.0363 0.2726 0.4462 0.1401
RDTS-GARCH 0.0355 0.2661 0.4678 0.0816

Normal-GARCH 20060510 0.0591 0.6099 0.7897 0.5024
CTS-GARCH 0.0347 0.3584 0.4700 0.1747
RDTS-GARCH 0.0316 0.3260 0.4583 0.0739

Normal-GARCH 20060614 0.0510 0.3229 0.4081 0.9875
CTS-GARCH 0.0460 0.2913 0.3837 0.3488
RDTS-GARCH 0.0548 0.3470 0.4563 0.1981

Normal-GARCH 20060712 0.0802 0.5860 0.7886 1.1047
CTS-GARCH 0.0284 0.2076 0.3321 0.3963
RDTS-GARCH 0.0258 0.1881 0.3268 0.1966

Normal-GARCH 20060809 0.0545 0.4186 0.5991 0.7688
CTS-GARCH 0.0252 0.1938 0.3067 0.2580
RDTS-GARCH 0.0282 0.2164 0.3342 0.1666

Normal-GARCH 20060913 0.0541 0.4947 0.6194 0.6993
CTS-GARCH 0.0293 0.2677 0.3718 0.3047
RDTS-GARCH 0.0248 0.2268 0.3602 0.1429

Normal-GARCH 20061011 0.0476 0.5284 0.7378 0.4608
CTS-GARCH 0.0240 0.2666 0.4404 0.1791
RDTS-GARCH 0.0228 0.2527 0.4453 0.0917

Normal-GARCH 20061108 0.1232 0.8606 1.0311 0.7525
CTS-GARCH 0.0716 0.5002 0.6108 0.3714
RDTS-GARCH 0.0615 0.4297 0.5800 0.1842

Normal-GARCH 20061213 0.0291 0.3631 0.4954 0.3599
CTS-GARCH 0.0182 0.2275 0.3481 0.1637
RDTS-GARCH 0.0176 0.2196 0.3473 0.0747

Normal-GARCH 20070110 0.0273 0.3313 0.4568 0.2751
CTS-GARCH 0.0188 0.2279 0.3588 0.1383
RDTS-GARCH 0.0202 0.2446 0.3742 0.0962

Normal-GARCH 20070207 0.0391 0.5965 0.7901 0.3261
CTS-GARCH 0.0253 0.3856 0.5312 0.1688
RDTS-GARCH 0.0227 0.3460 0.5219 0.0944

Normal-GARCH 20070314 0.0748 0.6228 0.8485 3.0362
CTS-GARCH 0.0287 0.2385 0.3386 1.0589
RDTS-GARCH 0.0243 0.2021 0.3101 0.5639

Normal-GARCH 20070411 0.0389 0.3809 0.5487 1.6838
CTS-GARCH 0.0212 0.2080 0.3205 0.6683
RDTS-GARCH 0.0210 0.2051 0.3268 0.3803

Normal-GARCH 20070509 0.0765 0.7750 0.9636 0.8979
CTS-GARCH 0.0432 0.4370 0.6169 0.3702
RDTS-GARCH 0.0433 0.4380 0.6492 0.2103
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