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Introduction

Users with academic, industrial or research background employ high performance
computers to perform simulations, often addressing socially relevant problems in en-
gineering, medicine and meteorology. This is the case for multiple reasons. Achiev-
ing cost-savings by replacing physical experiments, economizing time or avoiding
risks for human beings and material are the most mentioned ones. In some areas,
numerical simulation is the only way to gain information, since experiments are not
possible (e.g. astronomy, medicine or climate research). As a result, better prod-
ucts can be designed, the quality of life can be improved and lives and real assets
can be saved. All this is possible due to the massive computational power that is
available nowadays and numerical simulation becomes more and more important in
many areas.

(a) (b)

Figure 0.1. (a) Sum of cores and accumulated peak performance of all com-

puters in the top500 list over time from 1993 till 2010. (b) Empiric efficiency1of
many parallel solvers for sparse linear systems over the number of cores.

However, the new hardware capabilities and current developments for future com-
puting architectures offer multiple challenges for their users and especially for the
underlying numerical methods.

Todays hardware architectures have reached an enormous complexity which is vis-
ible from the number of cores of all computers in the Top500 [top10], a list of
the 500 most powerful supercomputers in the world with respect to their absolute
performance in the Linpack benchmark [DLP03], as displayed in Figure 0.1(a).

1Speedup (S) is defined as the quotient of the time (Ts) the fastest serial algorithm needs

divided by the time (Tp) a parallel executed algorithm on p cores needs for solving the problem

(S := Ts
Tp

). In some cases the parallel algorithm executed on one core (T1) is taken instead of the

fastest serial algorithm (Ts) which can lead to very different results in some cases.

Efficiency (E) is defined as speedup divided by the number of used cores within the parallel

execution (E := S
p
).

1
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The average size of clusters in the list is between four- and eight-thousand cores
(see Figure 0.2), whereas some of the most powerful machines host several hundred
thousand cores. Besides machines dedicated designed for high-performance comput-
ing, there are computing centers, mostly in the area of cloud-computing, hosting
machines with millions of cores.

It can also be observed that an increasing number of machines are equipped with
accelerators like graphic processing units (GPUs) or consist of other heterogeneous
hardware components offering very special capabilities (e.g. Cell, FPGAs etc.).
Such architectures offer very often the best performance per Watt-ratio according to
the Green500 list [gre10] but are usually intricate to use. Although a lot of research
is done to use the computational resources in an efficient way (by means of creating
as many meaningful results as possible based on a given amount of resources), many
solvers do not exploit the available performance (even for conventional CPU-based
architectures) which is suggested in Figure 0.1(b). This disadvantageous behavior
is especially the case when problems are solved that are fully coupled, which is
e.g. often the case in computational fluid dynamics (CFD). When incompressible,
Newtonian fluids are simulated, finite element (or related) approaches are very
frequently employed, usually leading to very large, sparse linear systems that have
to be solved. Since the solution of these linear systems is typically the most time
consuming step in the solution process, research in this area is essential. “Hardware-
aware“ numerical methods is one emerging expression and connotes, that within the
selection and / or development process of numerical methods for solving a problem,
the characteristics of hardware technologies were assigned to play a key role.

Figure 0.2. Number of cores of the computers in the top500 list from 1993
till 2010. Graphic taken from [top10].

In Figure 0.1(a) the accumulated theoretical peak performance of the worlds fastest
computers on the Top500 list is shown in order to illustrate the enormous available
computational performance. Today (2010) there are, in terms of theoretical peak
performance, the first petascale architectures available, offering the possibility to
perform O(1015) floating point operations per second (FLOPS). Previous terascale
architectures (O(1013) FLOPS) are wide spread across the whole world. Due to the
fact that the capabilities numerical simulations offer becomes evident and additional
computing power is requested to consider more complex problems, researchers aim
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at the development of the next generation of supercomputers offering exascale ca-
pabilities (O(1018) FLOPS) (e.g. the Exascale Innovation Center in Jülich founded
by IBM and the FZ Jülich or the Center for Applied Scientific Computing (CASC)
at Lawrence Livermore National Laboratory (LLNL)). Claimed goal is to reach ex-
ascale within the next decade. Beside the development of hardware components
and software to operate an exascale computer, it has to be guaranteed that ap-
plications can benefit from the computational resources. This is only the case by
enhancing (in close interaction with developments of hardware and software) the
needed numerical methods and algorithms in such a way that they exhibit fault
tolerance properties and scale well (meaning, that additional resources can be used
in an efficient way).

Beside computing results, reproducibility of experiments is one basic request for sci-
entific research. That rounding errors can have a significant impact on the accuracy
of numerical results is known since decades and the situation gets worse on today’s
massive parallel and heterogeneous computers. It is essential to be aware of the ef-
fects that can occur due to the finite (and therefore potentially inexact) arithmetic
on the computer and to know when techniques like interval arithmetics have to be
employed in order to get verified results. Similar problems arise when hardware
technologies shall be used which offer only a certain accuracy while a higher one is
requested for the result. Even for such circumstances there exist solutions.

Figure 0.3. Focus of the thesis are the two topics accuracy and performance
of solvers for large, sparse linear systems from a holistic point of view en-

compassing both, the numerical as well as the technological factors. Many

applications can directly benefit from the presented results, as for instance the
accelerated meteorological simulation demonstrates.

Within this thesis, the above described challenges of accuracy, heterogeneity and
parallelization are addressed with respect to iterative solvers for linear systems of
equations. The existence and effectiveness of numerical procedures exploiting ca-
pabilities of new hardware technologies is shown. Parallelization strategies for the
method of conjugate gradients (CG) and the generalized minimum residual (GM-
RES) method are presented with respect to special hard- and software. Effects of
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the data distribution on accuracy and performance are analyzed enabling optimiza-
tion with respect to accuracy, respectively performance, to achieve a higher quality
of the results. Based on the presented findings many numerical simulations can be
accelerated and more complex problems can be solved.

Goal of the thesis is to give an holistic view on numerical mathematics in the context
of modern hardware technologies with focus on iterative solvers for sparse linear
systems in terms of performance and accuracy. For solving a problem efficiently,
the need for a deep understanding of both the numerical methods as well as modern
hardware technologies can not be overemphasized.

In many applications, processes are modeled by partial differential equations and
finite element methods are frequently used to discretize such problems. Usually
large, sparse linear problems have to be solved and the method of conjugate gradi-
ents (CG) and the generalized minimum residual (GMRES) method are frequently
employed. Both methods, as well as some basic preconditioning techniques, are
explained in Chapter 1.

Chapter 2 gives an overview of modern hardware technologies. Compendiously
explained are multiprocessor systems, virtual memory arrangements, graphic pro-
cessing units (GPUs) and field programmable gate arrays (FPGAs). Also presented
are the programming paradigms (or application programming interfaces (APIs))
MPI, OpenMP, CUDA, OpenCL and PGAS languages.

Multiprecision, respectively mixedprecision, methods are discussed in Chapter 3
in order to take advantage of the performance in different floating point formats
offered by hardware but to concurrently ensure a certain quality of the result. A
major class of such methods can be represented as iterative refinement methods,
which is the focus of the chapter. Convergence of mixed precision iterative refine-
ment solvers is analyzed and numerical experiments are presented to validate the
theoretical findings. For the special case of elliptic operators, analytical bounds are
derived ensuring that the method error stays in the worst case in the same order of
magnitude as the discretization error.

In the following Chapter 4, strategies for highly efficient parallel CG and GMRES
implementations on a CPU cluster and a GPU based architectures are presented
when MPI, OpenMP or CUDA is used. Based on numerical experiments with
multiple test-cases and a comparison with a state of the art software library, the
quality is validated. Thereby, a strong emphasis is set to applications based on
partial differential equations in the area of fluid dynamics. Lastly, the impact of
preconditioning is also addressed.

In order to get information about the capabilities of hardware, prototypical evalua-
tions are shown in Chapter 5. This is done for CPU-, GPU- as well as for FPGA-
based architectures. Elementary kernels as well as full solvers for practice-oriented
applications have been performed. All architectures are considered separately as
well as in an inter-architectural comparison.

Rounding errors in combination with parallelization are addressed in Chapter 6.
Basic theory of rounding error propagation in elementary operations as well as the
two dimensional block-cyclic data distribution is presented. The theoretical findings
are validated based on numerical experiments, whereby verified computing in terms
of interval arithmetics is applied to obtain reliable results.

In the context of the previous findings, Chapter 7 presents results how different
data distributions can effect the achievable accuracy of a preconditioned CG solver.
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In Chapter 8, the acceleration of an existing simulation for tropical cyclones, used
by researchers from the meteorology, is demonstrated. After an short overview
about the meteorological model and the solving process, results for the implemen-
tation for a GPU are presented.

Finally, Chapter 9 summarizes the results of the thesis and gives an outlook.





CHAPTER 1

Selected Solvers for Linear Systems of Equations

Within this chapter, the method of conjugate gradients (CG), as well as the gener-
alized minimal residual method (GMRES) are explained from the theoretical point
of view. Preconditioning techniques for linear solvers are also shown and a short
summary of stopping criterias close the chapter. Parts of this chapter can also be
found in [Gal10] and partially follow the path of [Fac00], [SK06] and [Saa03].

1.1. Projection Methods

The basic idea of projection methods for solving a linear System Ax = b, with A ∈
R

n×n and x, b ∈ R
n, is to search an approximate solution xk in a certain subspace

V of Rn. The chosen approximation is optimal in V if the error, defined as x∗ − xk

with the correct solution x∗, stays orthogonal on V. Since one cannot compute the
error without the solution x∗ the residual rm = Axm− b is chosen to be orthogonal
to a second certain subspace W. In general there are orthogonal and skew (or
oblique) projection methods. The subspaces V and W are the same for orthogonal
projection methods and different for skew projection methods. Projection methods
are defined as follows:

Definition 1.1. A projection method for solving Ax = b searches a approximate
solution xm ∈ Vm with

rm = b−Axm⊥Wm, (1.1)

where Vm and Wm are m-dimensional subspaces of Rn.

For a orthogonal projection method (V=W) (1.1) is called a Galerkin condition.
For a skew projection method (V �= W) (1.1) is called Petrov-Galerkin condition
[Fac00, Saa03].

If an initial guess x0 is considered, the approximate solution is searched in the affine
subspace x0 + V. By assuming the availability of a basis for V and a basis for W
the matrices V and W can be defined whose columns are the basis vectors of V and
W. Now it is possible to find a representation for the approximate solution xk in
x0 + V as follows:

xk = x0 + V y. (1.2)

With the orthogonality condition (1.1) one gets for y

WT rk = 0

⇔WT (b−A(x0 + V y)) = 0

⇔WT (r0 −AV y) = 0

⇔WTAV y = WT r0.

(1.3)

Combining (1.2) and (1.3) one obtains

xk = x0 + V (WTAV )−1WT r0.

7
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Algorithm 1 General Projection Method

1: repeat
2: Select V and W
3: Compute bases and build matrices V and W
4: r ← b−Ax
5: y ← (WTAV )−1WT r
6: x← x+ V y
7: until convergence

This leads to a general form of a projection method as shown in Algorithm 1. Note
that algorithm 1 is meaningful if WTAV is nonsingular. There are two important
cases for which this constraint holds. First, if A is positive definite and V = W
which leads for example to the method of Conjugate Gradients. Secondly, if A is
nonsingular and V = AW which leads to the GMRES method. A proof to this
two statements as well as different theoretical results for projection methods can be
found in [Saa03].

1.2. Krylov Subspaces

A general Krylov subspace with respect to a matrix A is defined as follows:

Definition 1.2.

Km(A, v) := span{v,Av,A2v, ..., Am−1v}, m = 1, 2, ...

is called a Krylov subspace.

It yields dim(Km) = min(m, grade(v)), where grade(v) is the degree of the minimal
polynomial of the vector v with respect to A.

For projection methods onto Krylov subspaces and Krylov type iterative solvers, it
is important to compute an orthogonal basis of the related Krylov subspaces. For
general matrices this can be done with the Arnoldi algorithm (see Section 1.2.1)
whereas the Lanczos algorithm can be used in the case of a symmetric and positive
definite matrix. Figure 1.1 shows a survey of common Krylov type solvers for
linear systems, the main developers and the year of publication, the algorithm for
computing the orthogonal basis and a main characteristic of the algorithm.

1.2.1. Arnoldi Method. The Arnoldi Method can be used to compute an
orthogonal basis of a Krylov subspace Km. In the basic version Gram-Schmidt
conjugation is used to orthonormalize basis vectors. The vectors v1, v2, ..., vm pro-

Algorithm 2 Arnoldi Method using Gram-Schmidt

1: Choose a vector v1 with ||v1||2=1
2: for j = 1, 2, ...,m do
3: for i = 1, .., j do
4: hij = 〈Avj , vi〉
5: wj := Avj −

∑j
i=1 hijvi

6: hj+1,j = ||wj ||2.
7: If hj+1,j = 0 stop
8: vj+1 = 1

hj+1,j
wj

duced by Algorithm 2 form an orthonormal basis of Km(A, v1). These vectors build
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Figure 1.1. Historical development of Krylov type solvers, taken from

[Fac00]. Mentioned are the names of the solvers, their developers, when they
have been published, the algorithm for building the Krylov subspaces and the

principal method they are based on.

a matrix

Vm := (v1|v2|...|vm) ∈ R
n×m with V T

mVm = Im.

The constants produced in line 4 form a (m+1)×m Hessenberg matrix Hm, which
is defined as

Hm :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h11 h12 h13 · · · h1m

h12 h22 h23 · · · h2m

0 h32 h33 · · · h3m

0 0 h43 · · · h4m

...
...

. . .
. . .

...
0 0 · · · 0 hm+1,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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With line 6 in Algorithm 2 it follows

Avm =
m+1∑
i=1

himvi, m = 1, 2, 3, ...

and therefore one obtains

AVm = Vm+1Hm, m = 1, 2, 3, ... . (1.4)

Furthermore it yields

AVm = VmH̄m + wmeTm (1.5)

V T
mAVm = H̄m (1.6)

where H̄m is obtained by deleting the last row of Hm. These properties are impor-
tant for the GMRES algorithm.

In practice the orthogonality of these vectors is destroyed by rounding errors. To
minimize this effect, a modified Gram-Schmidt method can be used or the House-
holder algorithm for building the orthonormal basis. More information can be found
in [Fac00], [SK06] and [Saa03].

Algorithm 3 Arnoldi Method using modified Gram-Schmidt

1: Choose a vector v1 with ||v1||2=1
2: for j = 1, 2, ...,m do
3: wj := Avj
4: for i = 1, .., j do
5: hij = 〈wj , vi〉
6: wj := wj − hijvi
7: hj+1,j = ||wj ||2. If hj+1,j = 0 stop
8: vj+1 = 1

hj+1,j
wj

1.2.2. Lanczos Algorithm. In the special case of a symmetric matrix A, the
Arnoldi algorithm can be reduced to the Lanczos Algorithm. It follows from (1.6)
that for a symmetric matrix A the matrix H̄m becomes also symmetric.

H̄T
m = (V T

mAVm)T = V T
m (V T

mA)T = V T
mATVm = V T

mAVm = H̄m.

Due to the fact that H̄m is a Hessenberg matrix, it must be tridiagonal. Therefore
line 6 in Algorithm 2 can be simplified to a three-term recurrence. More precisely,
a new basis vector need not to be orthogonalized against all previous vectors, only
against the last three vectors. With αj = hjj and βj = hj−1,j the matrix H̄m

reduces to

Tm :=

⎛
⎜⎜⎜⎜⎜⎝
α1 β2

β2 α2 β3

. . .
. . .

. . .

βm−1 αm−1 βm

βm αm

⎞
⎟⎟⎟⎟⎟⎠ .

Algorithm 4 describes the basic Lanczos Method. For more information see [Saa03,
Fac00].
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Algorithm 4 Lanczos Algorithm

1: Choose a vector v1 with ||v1||2=1, β1 = 0,v0 = 0
2: for j = 1, 2, ...,m do
3: wj := Avj − βjvj−1

4: αj = 〈wj , vj〉
5: wj := wj − αjvj
6: βj+1 = ||wj ||2.
7: If βj+1 = 0 stop
8: vj+1 = 1

βj+1
wj

1.3. Conjugate Gradients Method

In this section the method of Conjugate Gradients is described. This method is
often used for linear systems with a positive definite and symmetric matrix A. In
this section it is assumed that the matrix A has these properties.

There are various derivations for the CG-method, e.g. as a projection Method onto
the Krylov subspace Km(A, r0). In the following the CG is derived from improve-
ments of the Steepest Decent method via the method of Conjugate Directions.

Solving the linear system Ax = b with a symmetric and positive definite matrix A
is equivalent to minimize

f(x) =
1

2
xTAx− bTx. (1.7)

Note that f ′(x) = Ax− b. The error is defined as ej = xj − x∗. It yields

x∗ =A−1b

⇔ xj − x∗ = xj −A−1b

⇔ ej =A−1(Axj − b)

⇔ ej =−A−1rj .

rj = b−Axj is called the residual and note that rj = −f ′(xj).

The Method of Steepest Descent (or Gradient Descent) provides a sequence
x1, x2, ..., which converges to the solution x∗ (f(x∗) = min f(x)). Starting from an
initial guess, the method takes in every iteration cycle a step towards the solution
in the negative direction of the gradient of f at the current point,

xj+1 = xj − αj∇f(xj) = xj − αjf
′(xj) = xj + αjrj .

In every step the direction is chosen in which f decreases most quickly. αj determines
the increment in this direction. The optimal αj is chosen to minimize f along
xj − trj . This is called line search. To determine αj the directional derivative
d

dαj
f(xj+1) is set equal to zero. With

d

dαj
f(xj+1) = f ′(xj+1)

T d

dαj
xj+1 = f ′(xj+1)

T rj (1.8)
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and f ′(xj+1) = −rj+1 one gets

d

dαj
f(xj+1) = 0

⇔ rTj+1rj = 0

⇔ (b−Axj+1)
T rj = 0

⇔ (b−A(xj + αjrj))
T rj = 0

⇔ (b−Axj)
T rj = αj(Arj)

T rj

⇔ rTj rj = αjr
T
j (Arj)

⇔ αj =
rTj rj

rTj Arj
.

Additionally the orthogonality between rj+1 and rj can be seen. Altogether the
following algorithm can be derived:

Algorithm 5 Steepest Descent

1: ri = b−Axi

2: αi =
〈ri,ri〉
〈ri,Ari〉

3: xi+1 = xi + αiri

For more details see [Bra07] and [SB05].

One problem of the method of Steepest Descent is, that the algorithm takes steps
in the same direction as earlier steps did, leading potentially to poor convergence.
The idea to improve this, is to use orthogonal search directions. This leads to the
method of Conjugate Directions.

The Method of Conjugate Directions uses a set of orthogonal directions {p0, p1, ..., pn−1}
and takes only one step in every search direction

xj+1 = xj + αjpj . (1.9)

To achieve this the error ej+1 = xj+1− x∗ should be orthogonal to pj . This is used
to determine αj

pTj ej+1 = 0

⇔ pTj (ej + αjpj) = 0

⇔ αj =−
pTj ej

pTj pj
.

Here arises a problem. It is not possible to compute the error ej without knowing x
∗.

The solution is to use A-orthogonal (or conjugated) search directions, this means

〈pi, pj〉A = pTi Apj = 0 , pi �= pj .

Now ej+1 shall be A-orthogonal to pj . For determining αj one has to minimize f
along xj − tpj . With (1.8) and (1.9) it follows that

d

dαj
f(xj+1) = f ′(xj+1)

T pj = 0

⇔ −rTj+1pj = 0

⇔ pTj Aej+1 = 0

⇔ pTj A(ej + αjpj) = 0

⇔ αj =−
pTj Aej

pTj Apj
=

pTj rj

pTj Apj
.
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Together with a set of A-conjugate vectors p0, ..., pn−1 the algorithm for the method
of conjugate directions can be obtained as shown in Algorithm 6.

Algorithm 6 Conjugate Directions

1: select a set of A-conjugate directions p0, ..., pn−1

2: repeat
3: ri = b−Axi

4: αj =
pT
j rj

pT
j Apj

5: xj+1 = xj + αjpj
6: until convergence

The matrix-vector product for determining the residual rj can be replaced by a
recursion. With ej+1 = ej + αjpj one gets

rj+1 = −Aej+1

= −A(ej + αjpj)

= rj − αjApj .

(1.10)

Note that this method terminates with exact arithmetic after n steps for a n × n-
matrix, see [ALO02]. For building the set of A-orthogonal search directions, one
can use the Gram-Schmidt process. Here the problem arises, that all old directions
are needed to build a new one leading to a high complexity for building the set of
conjugate directions.

The method of Conjugate Directions has an special property. In every step it
minimizes the error ej regarding to the energy norm ||e||A = (eTAe)

1
2 in e0 + Dj.

Dj is defined as the subspace span{p0, ...pj−1}. To show this the error can be written
as

e0 = x0 − x∗ =
n−1∑
i=0

δipi (1.11)

with the set of orthogonal directions p0, p1, ..., pn−1. Now one can write ej as

ej = xj − x∗ = e0 +

j−1∑
i=0

αipi

=
n−1∑
i=0

δipi −
j−1∑
i=0

δipi

=
n−1∑
i=j

δipi

(1.12)

In the second line the relation δi = −αi (see [She94]) is used. It follows from (1.12)
that ej is in e0 +Dj. Consider the energy norm of ej

||ej ||2A =
n−1∑
i=j

n−1∑
k=j

δkδip
T
kApi =

n−1∑
i=j

δ2i p
T
i Api. (1.13)

Here it can be seen that ej has the minimum energy norm in e0 +Dj, because any
other vector of this subspace has at least the same terms in its expansion (see (1.11)
and (1.12)).

The Method of Conjugate Gradients is an improvement of the methods of Steep-
est Descent and Conjugate Directions where the disadvantage in building the search
directions disappears. By conjugation of the residuals the search directions are con-
structed and it is no longer needed to store the old search vectors (see [Saa03]).
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Following relations are needed to proceed. First the orthogonality of rj and span{p0, ..., pj−1}
is shown:

pTi Aej =
n−1∑
j=i

δjp
T
i Apj

pTi rj = 0, i < j.

Furthermore rj is orthogonal to all previous residuals. To show this the inner
product of equation (1.15) and ri is considered.

pTj ri = rTj ri +

j−1∑
k=0

βjkp
T
k ri 0 = rTj ri, j < i. (1.14)

Obviously rTj ri = 0 holds for i �= j and with the first equation above one gets

pTi ri = rTi ri. Now the goal is to build the conjugate directions from the residuals.
Using the Gram-Schmidt conjugation for building these directions, it is set p0 = r0
and for j > 0

pj = rj +

j−1∑
k=0

βjkpk. (1.15)

To estimate βjk, (1.15) is transformed into

pTj Api = rTj Api +

j−1∑
k=0

βjkp
T
kApi

0 = rTj Api + βjip
T
i Api , j > i

βji = −
rTj Api

pTi Api
.

(1.16)

To simplify this expression the inner product of equation (1.10) and ri is taken:

rTi rj+1 = rTi rj − αjr
T
i Apj (1.17)

αjr
T
i Apj = rTi rj − rTi rj+1 (1.18)

rTi Apj =

⎧⎪⎨
⎪⎩

1
αi
rTi ri, i = j,

− 1
αi−1

rTi ri, i = j + 1,

0, otherwise.

(1.19)

βij =

{
1

αi−1

rTi ri
pT
i−1Api−1

, i = j + 1,

0, i > j + 1.
(1.20)

In (1.19) the relation (1.14) is used. Now it can be seen that almost all βij in the
Gram-Schmidt process disappear. More precisely, only the last direction is needed
to build the next conjugate direction. This makes the Conjugate Gradient Method
very useful. With a trick the matrix-vector product in the representation of β (1.20)
can be avoided. Using the representation of α in algorithm 6, which does not change
for Conjugate Gradient, and the identity (1.14) one gets

βi =
rTi ri

pTi−1ri−1
=

rTi ri
rTi−1ri−1

.

Identity (1.14) provides

αi =
pTi ri
pTi Api

=
rTi ri
pTi Api

.

Algorithm 7 shows the method of Conjugate Gradients.
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Algorithm 7 Conjugate Gradients

1: r0 = b−Ax0, p0 = r0, A spd
2: for i = 0, 1, 2, ... do

3: αi =
rTi ri
pT
i Api

4: xi+1 = xi + αipi
5: ri+1 = ri − αiApi

6: βi =
rTi+1ri+1

rTi ri

7: pi+1 = ri+1 + βipi

Note that the search directions are built by the residuals. Thus it follows

Dj = span{p0, ...pj−1} = span{r0, ...rj−1}.
In addition, the residuals are built by the old residuals and Apj−1. Therefore it
holds

Dj = span{r0, Ar0, ...Aj−1r0} = Kj−1(A, r0).

Now one can see that the method of Conjugate Gradients is also an orthogonal
projection method, where Vj = Kj . Relation (1.14) ensures the orthogonality of
the residual and W. For a derivation of CG as a projection method see [Saa03].

Note that the method of Conjugate Gradients is only a special version of Conjugate
Directions. It uses the residuals to build up the search directions. Therefore Con-
jugate Gradients has the same error minimizing property as Conjugate Directions.
The error ej is minimized regarding to the Krylov subspace Kj(A, r0). Additionally,
the error satisfies

||ej ||A 1.13
=

n−1∑
i=j

δ2i p
T
i Api >

n−1∑
i=j+1

δ2i p
T
i Api = ||ej+1||A.

Note that δ2i p
T
i Api > 0 with A positive definite.

There are one matrix-vector product, three vector updates and two dot-products
per iteration cycle. In general the matrix-vector product for computing Apj needs
n2 floating-point multiplications and n2 − n summations, leading to a asymptotic
complexity of O(n2). The complexity for the vector updates is O(n), because n
multiplications and n summations for each update are needed. The inner product
has also a complexity of O(n). Hence the total complexity per iteration step is
dominated by the matrix-vector product. If sparse matrices are used and only
nonzero entries are saved (see Chapter 4.1) the complexity decreases. Supposing
a matrix having nnz nonzero entries and nnz << n2. Now, nnz floating-point
multiplications are needed and at most nnz − 1 summations. The total complexity
is O(nnz) compared to O(n2) in the dense case.

As mentioned above CG is actually a direct method, which needs n steps to estimate
the solution. Whereas for concerning convergence of CG is the fact that in many
applications very large systems are handled and it is very expensive or impossible
to perform n iterations.

First, note that

rj = b−Axj = A(A−1b− xj) = A(x∗ − xj) = −Aej . (1.21)

Due to the error optimality of CG it yields

ek = xk − x∗ = min{z − x∗}
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with z ∈ x0 +Kk(A, r0), see also (1.12). Using the Krylov subspace and (1.21) one
gets

ek = e0 + c1Ae0 + c2A
2e0 + ...+ ckA

ke0

= (I + c1A+ c2A
2 + ...+ ckA

k)e0

= Pk(A)e0

with a polynomial Pk(t) of degree ≤ k satisfying Pk(0) = 1. Using the error
optimality again, it can be seen that

||ek||A = min
Pk(t)

||Pk(A)e0||A. (1.22)

For the positive definite matrix A exists a set of n real and positive eigenvalues 0 <
λ1 ≤ ... ≤ λn and corresponding orthonormal eigenvectors z1, ..., zn. Furthermore,
there exists a unique exposition of

e0 = c1z1 + c2z2 + ...+ cnzn.

Now ||ek||A and ||e0||A are considered:

||e0||2A = 〈
n∑

i=1

cizi,

n∑
j=1

cjλjzj〉 =
n∑

i=1

c2iλi. (1.23)

||ek||2A = ||Pk(A)e0||2A = 〈Pk(A)e0, APk(A)e0〉

= 〈
n∑

i=1

ciPk(λi)zi,
n∑

j=1

cjλjPk(λj)zj〉

=

n∑
i=1

c2iλiP
2
k (λi) ≤ [max

j
{Pk(λj)}2] · ||e0||2A.

(1.24)

Combining (1.22) and (1.24) one obtains

||ek||A
||e0||A ≤ min

Pk(t)
{ max
λ∈[λ1,λn]

|Pk(λ)|}. (1.25)

To proceed the Tschebyscheff polynomials and a relating theorem are needed. First,
the Tschebyscheff polynomials are defined:

Definition 1.3. The Tschebyscheff polynomials are defined as

T0(x) := 1, T1(x) := x,

Tn+1 := 2xTn(x)− Tn−1(x).

There is an interesting property of these polynomials:

Tn(cosθ) = cos(nθ)

Tn(x) = cos(nθ) =
1

2

[
(x+

√
x2 − 1)n + (x+

√
x2 − 1)−n

]
, x = cos θ.

(1.26)

For more details see [SK06]. Finally the following theorem is needed:

Theorem 1.4. For all polynomials Pn(x) in [−1, 1] with degree n ≥ 1 and leading
coefficient equal to one it yields

min
Pn(X)

{ max
x∈[−1,1]

|Pn(x)|} = max
x∈[−1,1]

| 1

2n−1
Tn(x)| = 1

2n−1
.
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For a proof and more details see [SK06]. To use this theorem with (1.25), the
interval [λ1, λn] is transformed to [−1, 1] by substituting x with (2λ−λ1−λn)/(λn−
λ1). Thus

Pk(λ) := Tk

(
2λ− λ1 − λn

λn − λ1

)
/Tk

(
λ1 + λn

λ1 − λn

)
has the lowest supremum norm in [λ1, λn], degree k and satisfies Pk(0) = 1. Fur-
thermore is yields

max
λ∈[λ1,λn]

|Pk(λ)| = 1/|Tk

(
λ1 + λn

λ1 − λn

)
|.

Defining

x := −λ1 + λn

λ1 − λn
=

λn/λ1 + 1

λn/λ1 − 1
=

κ(A) + 1

κ(A)− 1
> 1

and using (1.26) one gets

Tk

(
κ+ 1

κ− 1

)
=

1

2

[(√
κ+ 1√
κ− 1

)k

+

(√
κ+ 1√
κ− 1

)−k
]
≥ 1

2

(√
κ+ 1√
κ− 1

)k

.

(1.27)

Finally, as a result of (1.25) and (1.27), one gets an upper bound for the error in
step k in relation to the initial error in step 0.

||ek||A
||e0||A ≤ 2

(√
κ− 1√
κ+ 1

)k

. (1.28)

It is obvious that the convergence mainly depends on the condition number κ of A.

Equation (1.28) defines an upper bound for the number k of necessary iteration
steps to achieve ||ek||A ≤ ε||e0||A:

k ≤ 1

2

√
κln(

2

ε
) + 1.

Now the goal is to increase the convergence speed of the CG method. Therefore the
linear system Ax = b is transformed to an equivalent system Ãx̃ = b̃ with κ(Ã) <
κ(A), c.f. section 1.5. Symmetric preconditioning is used for this transformation to
preserve the properties of A (see section 1.5). Hence

C−1AC−T x̃ = C−1b,

x̃ = CTx

M = CCT .

The algorithm of Conjugate Gradients for this system is as shown in Algorithm
8. Computing C can be avoided by setting r̃i = C−1, p̃i = CT pi and using x̃i =

Algorithm 8 Preconditioned Conjugate Gradients

1: p̃0 = −r̃0 = C−1b− C−1AC−T x̃0, A spd
2: for i = 0, 1, 2, ... do

3: αi =
r̃Ti r̃i

p̃T
i C−1AC−T p̃i

4: x̃i+1 = x̃i + αip̃i
5: r̃i+1 = r̃i + αiC

−1AC−T p̃i

6: βi =
r̃Ti+1r̃i+1

r̃Ti r̃i

7: p̃i+1 = −r̃i+1 + βip̃i

CTxi. Additionally, a vector h is used to minimize matrix-vector products with the
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preconditioner M−1. Altogether the optimized preconditioned CG-method can be
found in Algorithm 9. Note that the search directions in Algorithm 9 are different

Algorithm 9 Optimized Preconditioned Conjugate Gradients (PCG)

1: r0 = b−Ax0, h0 = M−1r0, p0 = h0, A spd, initial guess x0

2: for i = 0, 1, 2, ... do

3: αi =
rTi hi

pT
i Api

4: xi+1 = xi + αipi
5: ri+1 = ri − αiApi
6: hi+1 = M−1ri+1

7: βi =
rTi+1hi+1

rTi hi

8: pi+1 = hi+1 + βipi

to those in Algorithm 7. Furthermore the complexity per iteration step increases.
Additionally a linear system in every iteration cycle has to be solved. Thus the
preconditioner M should have a simple structure to keep the complexity small.

1.4. Generalized Minimum Residual Method

In the following, the goal to solve a non-singular system Ax = b, in which A is not
necessarily symmetric or positive definite. Thus an extension to the method of Con-
jugate Gradients is needed which does not work in this case because solving Ax = b
is no longer equivalent to minimizing f(x) = 1

2x
TAx − bTx. From the projection

methods point of view, it is no longer possible to use the Lanczos algorithm to find
a basis of V. Instead, the Arnoldi algorithm has to be employed.

The GMRES approach is to minimize the residual

J(w) := ||Aw − b||22. (1.29)

Obviously x∗ satisfies J(x∗) = min J(w) = 0. Intention is to minimize J(w) with
respect to a Krylov subspace Km(r0, A). xk can be written as xk = x0 + z with
z ∈ Kk(r0, A). Therefore it yields

J(xk) = min
z∈Kk

J(x0 + z)

= min
z∈Kk

||A(x0 + z)− b||22
= min

z∈Kk

||Az + r0||22.
(1.30)

Note that GMRES is a projection method that takes V = Km(A, r0) and W =
AKm(A, r0) (in notation of Chapter 1.1)[Fac00], [Saa03]. Thus the Petrov-Galerkin
condition must hold,

rk = b−Axk⊥AKk.

In this case the Petrov-Galerkin condition is equivalent to the norm minimizing
condition (1.30) [Fac00].

Now an orthonormal basis of Kk(r0, A) is computed. Therefore the Arnoldi algo-
rithm can be used which is described in Chapter 1.2.1 with the first basis vector v1
defined as

v1 :=
1

β
r0, β := ||r0||2.
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Defining Vk = (v1|...|vk) with the orthonormal basis vectors vi, one can write z =
Vkc with c ∈ R

k. With (1.6) the following relations hold

r0 −Az = r0 −AVkc

= βv1 − Vk+1Hkc

= Vk+1(βe1 −Hkc)

and because of the orthogonality of the normalized vi it can be obtained:

J(xk) = min
c
||βe1 −Hkc||22. (1.31)

c can be computed by solving a least-squares problem. With c it yields xk = x0+Vkc.
Altogether the algorithm is as shown in Algorithm 10.

Algorithm 10 GMRES algorithm

1: r0 = b−Ax0, β := ||r||2, v1 := 1
β r0

2: H̄ := {hij}1≤i≤m+1,1≤j≤m, set H̄ = 0
3: for j = 1, 2, ...,m do
4: wj := Avj
5: for i = 1, .., j do
6: hij := 〈wj , vi〉
7: wj := wj − hijvi
8: hj+1,j = ||wj ||2. If hj+1,j = 0 set m := j and go to 10
9: vj+1 = 1

hj+1,j
wj

10: xm = x0 + Vmym with ym minimizes ||βe1 − H̄my||2

Now the least-squares problem (1.31) is addressed. Therefore Hkis transformed
into an upper triangular form using Givens-Rotations. Recall, a Givens-Rotation is
performed by multiplying a rotation matrix of the form

Ωij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
ci si

1
. . .

1
−si ci

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← i

← j

with c2i + s2i = 1. Here the rotation matrices Ωj := Ωj,j+1 is used to transform the
entries hj+1,j of H to zero. Ωj can be computed by

sj =
hj+1,j√

h2
j+1,j + h2

j,j

, cj =
hj,j√

h2
j+1,j + h2

j,j

. (1.32)

By applying the rotation matrices to the least-squares problem it ensues

R̂k =

(
Rk

0

)
∈ R

k+1×k, d̂k =

(
dk
γk

)
∈ R

k+1,γk ∈ R,
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where Rk is an upper triangular matrix and

R̂k = ΩkΩk−1 · · ·Ω1Hk = QkHk,

d̂k = ΩkΩk−1 · · ·Ω1βe1 = Qkβe1.

Note that this transformation works for every matrix H ∈ R
n×N with rank N < n,

see [SK06]. Solving the least-squares problem is equivalent to solve the linear
system Rkc = dk. Using the orthogonality of Qk respectively of the Ωi it holds

J(xk) = ||rk||22 = min ||βe1 −Hkc||22 = min ||d̂k − R̂kc||22 = γ2
k.

Thus the residual norm can be determined without computing rk and xk or solving
the least-squares problem in each iteration step, [Saa03][SK06].

For building Hk+1, a new column with k + 1 values is added to the end of Hk by
running the Arnoldi algorithm. For this purpose, the rotation matrices Ω1, ...,Ωk

can be used again for transforming Hk+1. More precise Ω1, ...,Ωk have to be applied
to the new column of Hk+1. For eliminating the entry hk+1,k, a new rotation matrix
Ωk+1 is needed. Applying Ωk+1 to the extended right hand side provides

γk+1 = −skγk, (1.33)

for more details see [Saa03][SK06]. Now it can be seen that the squared residual
norm decreases monotonously.

Algorithm 10 is not feasible for large j, because all basis vectors v1, ...vj−1 have to
be stored as well as to compute and orthogonalize vj against them. In addition,
the complexity increases linear. Furthermore from section 1.2.1 it is known that
rounding errors in the Arnoldi algorithm destroy the orthogonality of the v1, ..., vj
for large j. As a solution to these problems, one can run m << n iteration cycles,
compute xm and afterwards restart the algorithm with initial guess xm. This is
called restarted GMRES or GMRES(m) as shown in Algorithm 11. m indicates the
number of iteration cycles respectively the dimension of the Krylov subspace.

Algorithm 11 GMRES(m) algorithm

1: guess x0

2: for l = 1, 2, ... do
3: r0 = b−Ax0, β := ||r||2, v1 := 1

β r0
4: while j ≤ m and ||res|| > ε do
5: wj := Avj
6: for i = 1, .., j do
7: hij := 〈wj , vi〉
8: wj := wj − hijvi
9: hj+1,j = ||wj ||2

10: vj+1 = 1
hj+1,j

wj

11: for i = 1, .., j − 1 do
12: apply old rotation Ωi to the last column of Hj

13: compute and apply new rotation Ωj

14: compute new residual res
15: solve Rlcl = dl, compute xl = x0 + Vlcl, x0 = xl

16: stop if ||res|| < ε

There are different truncated GMRES versions. For example the Arnoldi algorithm
can be replaced by a incomplete orthogonalization process. More information about
such versions can be found in [Saa03].
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The complexity of restarted GMRES is discussed due to implementation issues.
First note, that the complexity of GMRES increases from iteration cycle to iteration
cycle. This is caused by the basis orthogonalization within the Arnoldi algorithm,
where one (sparse) matrix-vector multiplication, k + 1 vector updates and k + 1
dot products have to be performed in the kth iteration step. In GMRES(m) the
parameter k is at most m with m << n. Therefore a complexity of O(nnz) can be
obtained in every iteration cycle for GMRES(m).

In the previous sections the question what could happen if hj+1,j = 0 within the
Arnoldi-Algorithm in a certain step j was not answered. This is the only possible
reason for a breakdown of GMRES. From hj+1,j = 0 follows by (1.32) and (1.33)
that ||rj ||2 = 0 and the exact solution x∗ is found. Furthermore it is proved, that if
the algorithm stops with the exact solution x∗, then hj+1,j = 0, see [Saa03, SK06].

Since there are at most n independent vectors vj in R
n, the general GMRES algo-

rithm 10 computes the solution x∗ after at most n steps. However as mentioned
above, this is only a theoretical result. In practice it is often not possible to run n
iterations, even if rounding errors in the Arnoldi algorithm are ignored. Thus the
focus is set on GMRES(m) in the following, aware of the fact that there is (as far
as the author knows) no proof for general convergence of GMRES(m), see [SK06].
However with several assumptions to the matrix A there are convergence results.
For example, for a positive definite matrix A GMRES(m) converges for any m ≥ 1.
A proof can be found in [Saa03].

Important can be an upper bound for the convergence rate as for the CG- Method in
1.28. In the following only results are presented without corresponding proofs which
can be found in [Saa03]. The matrix A is henceforth assumed to be diagonalizable,
that is A = XDX−1, with all eigenvalues located in an ellipse E. Then it yields

||rm||2 ≤ κ2(X)
Tm(a/d)

|Tm(c/d)| ||r0||2

where rm is the residual in them-th GMRES step and Tm denotes the Teschebyscheff
polynomial of degree m. The constant c describes the center, d the focal distance
and a the major semi axis of the ellipse E.

For preconditioning the GMRES algorithm all three strategies presented in section
1.5 can be used. Focus in this work is on right preconditioning to avoid modifications
of the residual. Algorithms with left and symmetric preconditioning can be found
in [Saa03].

Intention in to solve

AM−1u = b, x = M−1u

with some kind of preconditioner M . Therefore the Arnoldi algorithm computes an
orthonormal basis of the Krylov subspace

span{r0, AM−1r0, ..., (AM−1)m−1r0}.
The GMRES algorithm computes the solution um = u0 + Vmcm of AM−1u = b.
The original solution xm is computed by multiplying M−1

xm = M−1um = x0 +M−1Vmcm.

Hence one obtains the right GMRES algorithm 12.

Finally a look is taken at a special preconditioning for GMRES. This technique
allows to change the preconditioner in every step and is therefore called flexible
GMRES or FGMRES. Line 5 in Algorithm 12 is split into two steps, first apply
the preconditioner M−1

j to the last basis vector vj and afterwards apply A to the
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Algorithm 12 GMRES(m) algorithm with right preconditioning

1: guess x0

2: for l = 1, 2, ... do
3: r0 = b−Ax0, β := ||r||2, v1 := 1

β r0
4: for j = 1, 2, ...,m do
5: wj := AM−1vj
6: for i = 1, .., j do
7: hij := 〈wj , vi〉
8: wj := wj − hijvi
9: hj+1,j = ||wj ||2

10: vj+1 = 1
hj+1,j

wj

11: solve min ||βe1 −Hlcl||22, compute xl = x0 +M−1Vlcl, x0 = xl

12: Stop if ||r||2 small enough

preconditioned vector zj . For computing the approximate solution xm the pre-
conditioned vectors zj have to be saved. The relation (1.4) changes for FGMRES

Algorithm 13 FGMRES(m) algorithm

1: guess x0

2: for l = 1, 2, ... do
3: r0 = b−Ax0, β := ||r||2, v1 := 1

β r0
4: for j = 1, 2, ...,m do
5: zj := M−1

j vj
6: wj := Azj
7: for i = 1, .., j do
8: hij := 〈wj , vi〉
9: wj := wj − hijvi

10: hj+1,j = ||wj ||2
11: vj+1 = 1

hj+1,j
wj

12: solve min ||βe1 −Hlcl||22, compute xl = x0 + Zlcl, x0 = xl

13: Stop if ||r||2 small enough

to

AZm = Vm+1Hm.

Note that the convergence of FGMRES cannot be proved. For more information
see e.g. [Saa03].

1.5. Preconditioning of Linear Systems

The convergence of iterative solvers depends usually on the condition number κ(A)
of the matrix. Improvements of the convergence speed can be achieved by transform-
ing the original system Ax = b to an equivalent problem Ãx̃ = b̃ with κ(Ã) < κ(A).
This approach is called preconditioning and there are different transformations pos-
sible like left (1.34), right (1.35) or symmetric (1.36) preconditioning.

A left preconditioning can be performed by choosing an adequate and non-singular
matrix M and multiply Ax = b by M−1

M−1Ax = M−1b. (1.34)

Solving the transformed linear system can be done explicitly by computing M−1A,
M−1b and using an iterative solver or implicit by using the preconditioner M within
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an algorithm. Implicit preconditioning is used in the PCG-Algorithm (see Chap-
ter 1.3) and in preconditioned GMRES (see Chapter 1.4). Remark, that the left
preconditioning changes the residual rj of original system to

r̃j = M−1b−M−1Axj = M−1(b−Axj) = M−1rj .

With a right preconditioning it is possible to avoid a modification of the original
residual. For this purpose the solution x is modified.

AM−1y = b, with y = Mx. (1.35)

The residual satisfies

r̃j = b−AM−1yj = b−AM−1Mxj = b−Axj = rj .

Hence one can work with the original residual in the preconditioned system. An
optimal choice for M is A, since

κ(AA−1) = κ(A−1A) = κ(I) = 1.

As a result, the non-singular matrix M−1 should approximate A−1 in some sense.
Both preconditioning methods are not suitable for the method of conjugate gra-
dients, because left and right preconditioning do not preserve the structure of A.
Therefore a method is needed, which preserves symmetry and the positive definite
structure that are essential for the CG solver. The solution is a combination of right
and left preconditioning. Define C−T := (C−1)T and let A be positive definite and
symmetric. The original System is transformed by setting

Ã := C−1AC−T

x̃ := CTx

b̃ := C−1b.

(1.36)

The resulting matrix Ã is also positive definite and symmetric, because

ÃT = (C−1AC−T )T = C−1ATC−T = Ã

xT Ãx = xTC−1AC−Tx = (C−Tx)TA(C−Tx) > 0, x �= 0.

Furthermore Ã is similar to the matrix M−1A with M := CCT , since

C−T ÃCT = C−TC−1A = (CCT )−1A = M−1A.

From linear algebra it is known, that the eigenvalues of Ã are similar to the eigen-
values of M−1A. For the condition number of Ã it holds

κ(Ã) =
λmax(M

−1A)

λmin(M−1A)
.

Likewise to left and right preconditioning the best choice for M is A. But therefore
a Cholesky decomposition of A has to be calculated, which is corresponding to solve
the linear system. One should choose M−1 to approximate A−1 in order to take
advantage of preconditioning.

Below two common preconditioners are considered in detail. First Jacobi precondi-
tioning and afterwards the incomplete LU-decomposition is considered.

1.5.1. Jacobi and Block-Jacobi Preconditioning. The Jacobi approach
is to set M := diag(A). Applying M−1 to a vector x corresponds to multiply every
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entry xi of x with 1
aii

, where aii is the i-th diagonal element of A. Hence the
diagonal of A is scaled to one.

M :=

⎛
⎜⎜⎜⎝
a11

a22
. . .

ann

⎞
⎟⎟⎟⎠

Only little storage is needed to save M . It is even possible to use no extra storage
by computing the entries “on the fly“, which means that they are computed when
they are needed. Using the Jacobi preconditioner in parallel solvers is easy, because
applying the preconditioner to a vector needs no communication. However the ben-
efit of this preconditioning depends strongly on the underlying application. Based
on practical observations, a benefit from Jacobi preconditioning can be expected
when the matrix has a small bandwidth or is diagonal dominant.

For a symmetric and positive define matrix with constant diagonal entries, the
Jacobi preconditioning scales the eigenvalues of A with a constant factor. Thus
the condition number of A does not change. As a result Jacobi preconditioning is
without effect on the convergence and only causes additional computation costs.

By assuming a linear system Ax = b, where A is symmetric, positive define and
ai,i = n ∈ R. Therefore the preconditioner M is

M =

⎛
⎜⎝n

. . .

n

⎞
⎟⎠ , M−1 =

⎛
⎜⎝

1
n
. . .

1
n

⎞
⎟⎠ .

Note that λ(M)i = n and λ(M−1)i = 1
n . The condition number of A is κ(A) =

λmax(A)
λmin(A) , where λmax(A) (λmin(A)) denotes the largest (smallest) eigenvalue of A.

Now the effect of Jacobi preconditioning on the condition number is analyzed. It
yields

M−1Ax = M−1λx =
λ

n
x

for all eigenvalues λ and corresponding eigenvectors x of A and therefore κ(A) =
κ(M−1A). In the CG-algorithm it can be seen that the factor 1

n is canceled and
the Jacobi-preconditioned version has the same solution approximations xk and
residuals rk as the un-preconditioned CG.

One example for such a case is the 2D Poisson equation on a unit-square that
is solved by using and finite difference discretization based on a 5-point-stencil.
Numerical results showing the effect of useless Jacobi preconditioning can be found
in Figure 4.15 in Chapter 4.9.2.

An expansion of the Jacobi preconditioner is the so called Block-Jacobi precon-
ditioner, where not only the diagonal elements are taken into account but bigger
blocks (Figure 1.2). On the blocks Bi any solver can be applied, e.g. a ILU (see
Chapter 1.5.2).

Due to the fact that the blocks of the Block-Jacobi are independent to each other,
in terms of degrees of freedom, the Block-Jacobi takes not all couplings of the prob-
lem into account when more then one block is used. Therefore the parallelization
of Block-Jacobi preconditioners is trivial and no communication is needed. In de-
pendence of the block size and the performed solver on the blocks, the number of
iterations can be reduced in comparison to the pure Jacobi (see Chapter 4.9.2).
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(a) (b)

Figure 1.2. a) Blocks of a Block-Jacobi-preconditioner applied to a matrix.

b) Nested Block-Jacobi preconditioner.

1.5.2. Incomplete LU-Factorization. The main idea of ILU is to approxi-
mate the matrix A by A = LU −R, where R is an error matrix, L a lower triangu-
lar matrix and U an upper triangular matrix. Therefore some fill in elements are
dropped during the factorization process of A. Compared to the Jacobi precondi-
tioning assembling and applying the ILU preconditioner M defined as M := LU is
much more involved. Applying M−1 to a vector x means solving the linear system
LUy = x by forward and backward substitution.

A general approach is to give an index set P in advance, which describes the nonzero
structure of L and U . The decomposition is done by Gaussian elimination and only
entries of L and U with indices in P are saved. Other entries are set to zero.
Therefore L and U are not necessarily regular. But the existence is guaranteed if
A is a M -matrix. For detailed theory the author refers to [Saa03].

Choosing PA as the nonzero indexes in A leads to the factorization called ILU(0).
This means, that no fill-in in L and U is allowed. The nonzero structure of L and
U is equal to the lower respectively the upper triangular part of A. Hence ILU(0)
is easy to use with the CSR matrix format (see Chapter 4.1), because the col array
and row array of [LU ] are equal to the arrays of A and only an additional val array
is needed to store the non-zeros of [LU ]. In practice L and U are stored in a single
CSR- matrix [LU ]. Since the diagonal values of L equal one, they are not saved
explicitly. This approach is also used in the following ILU algorithms.

Figure 1.3. L and U stored in a single matrix

Algorithm 14 ILU(0)

1: for i = 1, ..., n− 1 do
2: for k = 0, ...i− 1 and (i, k) ∈ PA do
3: aik := aik/akk
4: for j = k + 1, ..., n− 1 and (i, j) ∈ PA do
5: aij := aij − aikakj

An obvious approach is to allow fill-in during the factorization. This leads to de-
compositions called ILU(p), where p denotes the level of fill . Before defining the
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level of fill the idea of computing ILU(p) is shown. The nonzero structure of ILU(1)
is defined by the nonzero structure of the product L0U0, where L0 and U0 are taken
from ILU(0). The nonzero structure of ILU(2) is defined analogue by taking the
structure of ILU(1), and so on. For computing ILU(p) one has to perform an ILU(0)
factorization of A with the nonzero structure of ILU(p− 1), whereas at first the fill
in positions in A are set to zero. Fortunately, it is not required to compute the
previous nonzero structures for building ILU(p). Hence the level of fill is needed.
Every matrix entry aij is related to a level of fill levij [Saa03]. Initially, it is defined
as

levij :=

{
0, if aij �= 0 or i = j

∞, otherwise.
(1.37)

During the Gauss elimination the level of fill for every modified matrix entry is
updated by [Saa03]

levij = min{levij , levik + levkj + 1}. (1.38)

This strategy induces the following dropping rule. Every matrix entry with level
of fill greater than p is deleted (set to zero) during the factorization. In an imple-
mentation ∞ can be replaced by p + 1, due to the fact, that the level of fill will
never decrease. A main problem of ILU(p) is the memory allocation in advance. It
is not possible to predict a priori the number of nonzero entries in ILU(p). ILU(p)

Algorithm 15 ILU(p)

1: define the level of fill for all matrix elements using (1.37)
2: for i = 1, ..., n− 1 do
3: for all nonzero elements before the diagonal element in row i of A do
4: aik := aik/akk
5: update level of fill of aik
6: for all nonzero elements after the diagonal element in row i of A do
7: ai� := ai� − aikak�
8: update level of fill of ai�
9: replace all elements in row i with lev(aij) > p by zero

is a structural approximation to the LU - decomposition of a matrix A. It does not
take the values been dropped into account. A small value may be kept, while a
large value is dropped. It would be more desirable to drop small values and keep
large values. This leads to strategies using ”drop tolerances” like ILUT (ILU with
threshold) [Saa03]. [Saa03] proposes two dropping rules. First elements with ab-
solute value smaller than a tolerance τ are dropped and to control memory usage,
only the p largest values of a row are kept. The ILUT factorization exists for diag-
onal dominant matrices under certain conditions. For detailed theory of ILUT the
author refers to [Saa03]. Note that algorithms 14, 15 and 16 do not use pivoting
and hence they could break down. Now consider some implementation issues. Al-
gorithms 15 and 16 use a full row array of length n to handle fill in. This array
is initialized with zeros. Afterwards the nonzero elements of row i in A are copied
into this array. Then the Gaussian elimination adds the previous sparse rows to the
full row by eliminating entries. Before starting the elimination for the next row the
full row is transferred to CSR- structure and added into the matrix [LU ].

In [MAK03] is proposed a different approach to setup a ILU preconditioner. In
this approach a set P of nonzero indexes is computed in advance by a Boolean
matrix strategy. Based on this set, it can be competed a ILU preconditioner with
a algorithm similar to Algorithm 14.
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Algorithm 16 ILUT(τ ,p)

1: for i = 1, ..., n− 1 do
2: for all nonzero elements before the diagonal element in row i of A do
3: aik := aik/akk
4: drop (set to zero) aik if |aik| < τ · ||ai∗||2
5: if aik �= 0 then
6: for all nonzero element after the diagonal element in row i of A do
7: ai∗ := ai∗ − ai∗ak∗
8: drop (set to zero) ai� if |ai�| < τ · ||ai∗||2
9: keep only the p largest elements in L and the p largest elements in U

Implementation issues regarding the parallelization of the forward and backward
substitution can e.g. be found in [GK95].

1.6. Stopping Criteria for Iterative Solvers

In the previous sections it is not described how to stop a iterative solvers, in case of
convergence or divergence. In this section a brief survey of some criteria is given.
More details can be found in [CP09],[ADR92] or [BBC+94].

Ideally a stopping criterion should identify if the error ej = xj−x∗ is small enough,
check for divergence and also stop if the error is no longer decreasing. In general it
is not possible to determine the error in absence of the correct solution, hence the
residual is often used instead. Some simple stopping criteria for a given tolerance
tol are

||ek|| ≤ tol · ||e0|| relative error norm criterion,

||rk|| ≤ tol · ||r0|| relative residual norm criterion,

||rk|| ≤ tol absolute residual norm criterion.

The residual norm criterion depends strongly on the initial guess x0. Additionally
one can use an integer maxit to give an upper bound for the number of iterations.
Note that the tolerance tol should be greater than the machine precision ε. The
following relation between the error norm and the residual norm holds

||ek|| ≤ ||A−1|| · ||rk||.
Note that the error norm need not to be smaller than residual norm, but if one
knows something about ||A−1|| it is possible to estimate the error.

There are also several stopping criteria based on backward error analysis. The norm

wise backward error is defined as max( ||δA||||A|| ,
||δb||
||b|| ) related to the exact solution of

(A+δA)x̂ = b+δb. The terms δA and δb describe perturbations to the linear system
Ax = b. In this context the following stopping criteria proposed in [ADR92] and
[BBC+94] are:

||rk|| ≤ tol · (||A|| · ||xk||+ ||b||),
||rk|| ≤ tol · ||b||.

For more details on stopping criteria and their theory the author refers to the
literature.





CHAPTER 2

New Technologies in Computer Architecture

A short overview of types of parallelism as well as abstract hardware representations
of parallel architectures and detailed information regarding modern hardware tech-
nologies like GPUs and FPGAs can be found in the first section. Following behind,
the most common programming paradigms MPI, OpenMP, OpenCL, CUDA and
PGAS languages as well as the hardware description language (VHLD) are exposed.
Parts of this chapter are similar to [Hah09] and [Gal10].

2.1. Parallel Architectures

2.1.1. Types of Parallelism. Bit-level parallelism is the most elementary
type of parallelism, meaning the amount of Bits is processed by a processor in
parallel. Current multiprocessors (see 2.1.3) normally have a computer word size
of 64 bits while previous generations of processors have often used 32 bit words.
A second type of parallelism is the instruction level parallelism, formally known
as pipelining . For this purpose different instructions in a stream are reordered, so
that several instructions in a pipeline (stream) overlap. Parallelizing loops leads
often to data parallelism, which means that several processing units work in parallel
with the same instruction on different data. Finally there is a process or thread
parallelism where different tasks are processed in parallel. For detailed information
see e.g. [HP07] and [RR07].

2.1.2. Classification of Computer Architectures. The presented model
for categorizing computer architectures was proposed by Michael J. Flynn in 1966
[Fly72]. His approach is to group all computers into four categories concerning
their instruction and data parallelism.

Single Data Multiple Data
Single Instruction SISD SIMD

Multiple Instructions MISD MIMD

Figure 2.1. Flynn’s taxonomy. Computers are classified with respect to in-

struction and data parallelism.

In the following, all four combinations of data and instruction parallelism are ex-
plained:

SISD: A common uniprocessor, a processor with only one core, is an example for
this category. This processor can apply only one instruction to one single data
stream at a certain time.

SIMD: The typical example for SIMD architectures are vector processors. A set
of processors using different data streams executes the same instruction. The data
streams are processed in parallel (data-level parallelism).

29
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MISD: This is only a theoretical category. There exist no computers with this
design.

MIMD: There are several processors with their own instruction streams and their
own data. Common multi-core processors are of this type, where several threads
work in parallel (thread-level parallelism). High performance computing clusters are
often of this type, as well. Furthermore MIMD architectures can be divided into
two classes concerning the memory organization. This classes are shared memory
architectures and distributed memory architectures, which are defined via memory
addressing.

More information on Flynn’s classification can be found in [Fly72] and [HP07].

2.1.3. Multiprocessor Systems. Microprocessors usually aim for fast treat-
ments of computations of a single thread. Therefore multiple techniques are em-
ployed, like speculative execution, pipelining and others. This leads often to chips
where the arithmetic units allocate only a minor area of the core die area. About
one decade ago (view from 2010) limitations in chip design, like leakage current and
power dissipation led to processors made up of multiple conventional microproces-
sors, which are called multi-core or many-core processors.

Multiprocessor systems use more than two central processing units (CPU) within
a single system. A CPU, which consists of at least two processor cores, is called a
multi-core processor. More details on multiprocessors and multi-core processors as
well as their specific design can be found in [HP09, BBC+08]. Nowadays (2010)
multi-core processors can be found in almost every desktop computer as dual-, triple-
, quad- or hexa-core processors. The general trend in processor development goes
to processors with dozens or even hundreds of cores. Usually, processors can differ
significantly in their functionality, for example in the size of the instruction set or
in the levels and sizes of their caches. Below we want to distinguish multiprocessor
systems with respect to their memory organization.

A shared memory architecture is defined as a group of processors sharing a single
memory in the sense that all processors are working within a single memory ad-
dress space, whereas it is possible that the memory is physically distributed. It is
important that every processor can access every memory location. Thus different
processors can communicate via shared variables in memory.

A thread can be defined as a runtime entity that is able to independently execute
a stream of instructions in a shared memory environment [CJvdP08]. Different
threads share data and resources, but may also have some private data. Multi-
processors with a single physical memory and a single memory address space are
called symmetric shared memory multiprocessors (SMPs), see Figure 2.2 with shared
memory address space. The related architecture is also called uniform memory ac-
cess (UMA) architecture, because all processors have a uniform latency for memory
accesses.

Multiprocessors with a physically distributed memory and a shared memory ad-
dress space are called distributed shared memory (DSM) architectures. Usually this
architecture offers a non-uniform memory access (NUMA), because the access time
depends to the data location in memory. For both cases, symmetric and distributed
shared memory, the problem of cache coherence arises. This is when different pro-
cessors respectively threads load the same data from main memory in their local
caches, modify the data in different ways and write them back to the main memory.
Therefore strategies are needed to avoid such situations. Note that caches are no
shared memory. Detailed theory on shared memory architectures and on the cache
coherency can be found in [HP07] or [HP09].
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A distributed memory architecture offers a virtually (and usually physically) dis-
tributed memory address space. In contrast to the shared memory systems the
address spaces for each process are disjoint meaning that the global address space
is divided into several private address spaces. Hence a process respectively proces-
sor cannot access the memory of another process directly. For this purpose we need
explicit message passing between the related address spaces respectively the proces-
sors. Hence we need dedicated routines on a process to send and receive data. Figure
2.3 with distributed address space shows the structure of a distributed memory mul-
tiprocessor. Figure 2.2 can also be seen as a architecture with a distributed memory
address space, by assuming the main memory divided into different address spaces.
In a distributed memory architecture multiple independent instruction streams are
called processes. In contrast to threads, different processes are independent, so they
share no resources and work in private address spaces. Threads exist as a subset of
a process.

Figure 2.2. Structure of a multiprocessor with physically shared memory.
The memory address space can be divided or shared.

Figure 2.3. Structure of a multiprocessor architecture with physically dis-
tributed memory. The memory address space need not to be divided, it can

also be shared.

2.1.4. Graphic Processing Units. Graphic Processing Units are special
multi-core systems (often called many-core systems), whereas the cores have only a
very limited instruction set compared to most CPUs. Originally GPUs were devel-
oped for graphic applications like multimedia and the computer games. In the past
GPUs had only single precision processing units since the accuracy was sufficient for
visualizing data. Rounding errors or other effects influencing the quality of an im-
age that is often only 1

25 second on the screen did not play an important role. With
the introduction common CPU properties like full floating-point support, IEEE 754
rounding and built-in double precision support GPU technology became more in-
teresting for the High Performance Computing (HPC) market. That there exist
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multiple methods to overcome the absence of previously mentioned properties (by
assuming that the GPU is connected to a host offering such properties) is shown in
Chapter 3.

Modern GPUs consist of many parallel processors and are capable to run many
concurrent threads. They based on a stream processing design, which is a series
of operations are applied to a data stream. Figure 2.4 shows the hardware setup
of a NVIDIA GT200 respectively T10 GPU. It consists of 10 Thread Processing
Clusters (TPC), in which each TPC is made up of three streaming multiprocessors
(SM) and each SM contains eight processor cores. This cores are called streaming
processors (SP) or thread processors. Altogether there are 240 (single precision)
processor cores and 30 double precision units on a single chip. The execution across
the TPCs works in MIMD style, while execution across each SM works in SIMD
style. NVIDIA describes the execution across SMs as single instruction multiple
thread (SIMT). More information on the NVIDIA GT200 GPU can be found in
[NVI08]. Meanwhile the successive generation of Nvidias GPUs in form of the
GF100 respectively T20 chip is available (see Chapter 5.2 for more information and
a performance comparison). Main structural characteristics stayed the same but it
can be assumed that this will not be the case for future GPUs. General purpose
computing on graphics processing units (GPGPU) means running tasks on a GPU,
which normally are handled by a CPU. The main manufacturers of high performance
graphics chips, NVIDIA and AMD, offer specific programming languages to process
data streams beside off graphics rendering on their products. In the past AMD
distributed ATI Stream including Brook+ but went to OpenCL a short time ago.
NVIDIA offers with CUDA an extension to the C programming language. A more
general approach to take advantage of coprocessor technologies is OpenCL. Both
OpenCL and CUDA are explained in more detail in Chapter 2.2.3.

For more information on graphics processing units and their capabilities see e.g.
[AHHRed], [Hah09] or [HP09].

2.1.5. Reconfigurable Architectures. In the recent years more and more
heterogeneous and hybrid hardware platforms appear on the market for high per-
formance computers. Beside the GPU-accelerated platforms, which have been con-
sidered in the previous section, systems employing FPGAs (Field-Programmable
Gate Array) are offered by multiple vendors.

FPGAs are integrated circuits offering the possibility to be configured by the user
after the manufacturing process. The hardware can be configured for a specific
problem and enables programmers to make as many operations run concurrently
as they can physically fit on the FPGA. By doing so it can be possible to use
the available hardware resources in a very efficient way and, depending on the
application, conventional CPUs can be outperformed (see [SG06]). This is often
the case when computations based on integers have to be performed like in the
most common fields of applications for FPGAs, which are digital signal processing,
cryptography, bio-informatics and hardware emulation. A configuration of a FPGA
is not fixed for all times but it can be reconfigured over and over again. Important
is, that this process takes time before the computation can start.

Usually FPGAs are programmed by using a so called hardware description language
(HDL). Verilog and VHDL are the most widespread representatives but the usage
is more complicated compared to traditional high-level programming languages like
Fortran, Java or C/C++. There are converters available to create HDL-code from
high-level programming languages, see [Sch10] for details. Further information
related to FPGAs can be found in [GG05].
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Figure 2.4. Architecture of the NVIDIA GT200 respectively T10 GPU. Pic-

ture taken from [Hah09].

There are numerous variants of hardware architectures consisting of FPGAs. One
representative of a hybrid CPU-FPGA machine is the Convey HC-1 which is a
combination of a traditional two-socket computing node (in the following called
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host) and a FPGA-equipped accelerator part (in the following called device). A
schematic representation of the machine is shown in Figure 2.5. One socket of the
host is equipped with a x86-based Intel Xeon processor and the second socket hosts
an interconnect to the device. Four Xilinx Virtex5 FPGAs as well as eight memory
controllers and sixteen DDR2 slots can be found on the device site. The address
space for of the full machine is global, which means that processes running on the
host-site can access data in the physical memory of the device part and the other
way round. An important remark hereby is that the different access times lead to
significantly different performance results, as Chapter 2.1.5 shows. On the software
site Convey offers the possibility to use self-written implementations in Verilog as
well as existing kernels applicable to be used on the device with a interface syntax
that is similar to other libraries (e.g. BLAS etc.). Very simple loops, written in C
and without data dependencies, can be compiled for the device automatically by
tagging the relevant code using special commands, named pragmas, which are alike
to those used for OpenMP.

Figure 2.5. Architecture of the Convey HC-1 taken from [AHW10a].

A performance evaluation of elementary kernels and a linear solver on the above
described hybrid CPU-FPGA architecture is presented in Chapter 5.3 and related
work can be found in [Bre10] and [AHW10a].

2.2. Parallel Programming Paradigms

2.2.1. OpenMP. One of the most common shared memory programming
models is OpenMP (Open Multi-Processing). More precisely, OpenMP is a shared
memory application programming interface (API) that can be used with the pro-
gramming languages Fortran, C and C++. With OpenMP it is possible to describe
how computations are shared on different threads running on one or different pro-
cessors or cores. To do so compiler directives (often called only directives) are used
to specify for the compiler how the instructions have to be computed in parallel. Of
course, the compiler has to support OpenMP which is nowadays the case for most
compilers (e.g. compilers from GNU, IBM, Intel, PGI, Pathscale etc.).
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In many cases it is possible to parallelize sequential code with OpenMP, especially
when the code contains loops and the data dependency is low. Sometimes this is not
enough to get a sufficient level of performance and a reorganization of the code is
needed to create parallelism. One example for such a procedure is the modification
of the CG-algorithm to the so called pipelined-CG which is e.g. explained in [SG06].

The concept of OpenMP is to execute a program by a collection of cooperating
threads. To execute a program the operating system generates a process which
consists of several threads. These threads share the resources that have been as-
signed to the process in the sense that the memory address space is the same for
all threads (shared memory). The threads can be processed in parallel on any sys-
tem offering shared memory, which can be multi-core processors or multiprocessor
systems. OpenMP realizes a fork-join programming model, where a master thread
starts the program execution. If the execution of the program arrives at a OpenMP
parallel pragma, a so called “team of threads“ will be created to execute the parallel
section. Such a process is called fork. At the end of the parallel region only the
master thread continues and all other threads are terminated. Join is the most
common notation for this process. Beside creating teams of threads and specify

Figure 2.6. ”Fork-Join”-model of OpenMP. Multiple threads are created
within the execution process of a program when a parallel region is accessed

by the master thread (”fork”). When the parallel region is left, only the mas-

ter thread continues the work and all other threads are terminated (”join”).
Communication is performed based on shared variables.

how to share work among this team, OpenMP provides also means for synchroniz-
ing threads and declaring thread exclusive data. Synchronization is often needed
for communication between several threads which is performed implicitly via shared
variables in memory. OpenMP allows an implicit and an explicit work distribution
among threads. A loop can be parallelized by placing a pragma before the loop
starts and the parallelization is done automatically or in some sense implicit. In
contrast to that it is also possible to assign work explicitly to different threads. This
is called SPMD (single program multiple data) programming.

OpenMP specifications can be found in [Ope08] and detailed description of avail-
able directives can be found in [CJvdP08], [HL08] or [RR07].

2.2.2. MPI. MPI (Message Passing Interface) realizes a distributed memory
programming model providing Fortran, C and C++ support. It provides a broad set
of routines for managing processes and explicit communication. An MPI-program
consists of different processes containing private data. Actually every process could
execute a different program, what would be called MPMD (multiple program multi-
ple data). However, every process often executes the same program, what is called
SPMD (single program multiple data).
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Figure 2.7. Process-based program execution. n+1 processes are initialized
and they are communicating with each other by explicitly sending messages.

The communication routines are the most important part of MPI. There are point-
to-point communication routines like send and receive, where only two processes
are involved. In this case the sender and the receiver have to call the fitting rou-
tine. This is the basic MPI communication mechanism. On the other hand MPI
provides collective communication routines, where a complete group of processes
is involved. These are for example broadcast, gather, scatter, global reduction or
barrier (synchronization) routines. All processes which participate in such an col-
lective communication need to be organized in a MPI communicator. The standard
communicator, in which all processes are included, is MPI COMM WORLD. The
MPI-2 standard also facilitates one-sided communication, where only one process
calls a communication routine to manipulate data in the address space of another
process. Furthermore communication routines are distinguished between blocking
and non-blocking routines. If a blocking communication routine returns, the com-
munication is completed and the resources involved in the communication can be
used again. A non-blocking routine may return before the communication is com-
pleted, therefore the resources cannot be reused immediately. There exist special
routines to check if a non-blocking operation is completed or not.

MPI-1 is based on a static process model, that is processes are created at the start of
the program execution. Creating or deleting processes during the program runtime
is not possible. MPI-2 takes a dynamic process model as a basis. Thus creating
and deleting processes using special routines at runtime is possible.

More information about MPI and a list of MPI routines can be found in [Mes09],
[RR07] or [ALO02].

2.2.3. CUDA and OpenCL. Employing graphics processing units (GPU)
for general purpose computations (GPGPU) is not new. There are currently three
mayor producers of graphics cards, AMD (formerly ATI which was purchased by
AMD in November 2006), Intel and NVIDIA. While Intel currently focuses on
medium performance on-board graphics and combined CPU-GPU processors, AMD
and NVIDIA also offer dedicated hardware and APIs for GPGPU applications. His-
torically, the strength of GPUs are single precision floating-point operations. New
GPU generations can also provide double precision and integer operations (NVIDIA
in hardware, AMD emulated), however with reduced FLOP rates compared to single
precision.

Choosing the single precision performance for calculating the power efficiency, mod-
ern GPUs need about 0.2 W/GFLOPS (Nvidia GTX 480: 250 W, 1345 GFLOPs
in single precision). In terms of performance per Watt this are good theoretical
operating figures, but more than 200 W power consumption (and related heat that
has to be removed from the components) makes those chips hardly eligible for e.g.
blade servers. Due to the fact that only a minority of customers of computing
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centers (can) use GPUs they are not wide spread. Nvidia and AMD offer two ma-
jor lines of GPUs. One is dedicated to private consumers (Geforce/Radeon) and
one is for so called professional users (Tesla/Firestream). The difference of the two
lines is usually the support for the user, quality/reliability of the components, hard-
ware capabilities, the amount of memory and special properties like error correcting
memory (ECC).

Programming GPUs can be done with conventional graphics languages like OpenGL,
but both NVIDIA and AMD offer more general programming models for their chips
too. AMD offered till recently Close to Metal (CTM) which is a quite low level API,
that can be used with Brook+, a variation of the higher level GPU programming lan-
guage Brook developed at the University of Stanford. Brook+ is still near to stream
processing (vectors of variable length) and requires major code changes. NVIDIA’s
solution is called ”Compute Unified Device Architecture” (CUDA) [NVI09], orig-
inally an extension to the C programming language which can nowadays also be
used with multiple other languages like Python, Perl, Fortran, Java, Ruby, Lua, and
MATLAB (partly by employing third party wrappers). The support of Fortran is
based on the fact that still a lot of code, especially in the area of scientific computing,
is written in Fortran. As mentioned above, AMD focuses now on OpenCL.

Using CUDA enables developers to access the virtual instruction set and memory
of the parallel computational elements in CUDA GPUs and NVIDIA GPUs become
accessible for computation like CPUs but in a little less convenient way. GPUs
are optimized to execute many concurrent threads not extremely fast while todays
CPUs are optimized to execute only a few threads very fast. The last statement
seems to change with the emergence of hybrid CPUs combining traditional CPUs
with GPUs on one die (e.g. AMD Fusion and the Clarkdale architecture from Intel).

General purpose computation on graphics processing units depicts calculations done
on a GPU, whose primary purpose is not video output. As early as 1990, GPUs
could be used for robot motion planning, long before 3D capabilities were introduces.
Another technique from 2001 renders two textures in an ingenious fashion on a
cube, such that the use of particular parameters for perspective and texture overlay
yields the matrix product of the textures 8 bit color values. A texture size of
1024 × 1024 pixels reached in this way more then 4 GBOPS (byte operations per
second). Because of this inconvenient programming, the beginning of GPGPU is
rather connected to the introduction of the fully programmable graphics pipeline
also in 2001.

The problems GPGPU deals with, were originally strongly connected to computer
graphic and image processing. With the introduction of full floating-point support,
scientific projects started implementing finite difference and finite element tech-
niques for the solution of systems of partial differential equations (PDEs). Several
papers in 2003 demonstrated e.g. solutions of the Navier-Stokes equations for in-
compressible fluid flow on the GPU or for boundary value problems. Meanwhile,
even industrial applications using GPUs start emerging.

The Open Computing Language (OpenCL) is a framework for programming hetero-
geneous platforms consisting of CPUs, GPUs and DSPs. Originally developed by
Apple, OpenCL was further developed by multiple industrial companies (AMD, In-
tel, IBM, Nvidia) and in december 2008 as standard released. From a architectonic
point of view a OpenCL device consists of a host and one or more independent
compute units. A compute unit can consist of one or more compute units. One
major task of the host is to distribute the kernels onto the available compute units
during runtime. OpenCL kernels are translated by the OpenCL-compiler during
runtime and directly executed on the OpenCL device. One significant advantage
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of OpenCL is that it is much more platform independent then CUDA which works
only on Nvidia GPUs.

2.2.4. PGAS Languages. Within this thesis, PGAS (Partitioned Global Ad-
dress Space) Languages are not taken into account, however they shall be charac-
terized. This section is, exept for minor changes, taken from [BBC+08] (page
45).

PGAS combines some of the features of message passing and shared memory threads.
Like a shared memory model, there are shared variables including arrays and
pointer-based structures that live in a common address space, and are accessible to
all processes. But like message passing, there the address space is logically “parti-
tioned” so that a particular section of memory is viewed as “closer“ to one or more
processes. In this way the PGAS languages provide the needed locality informa-
tion to map data structure efficiently and scalable onto both shared and distributed
memory hardware. The partitioning provides different execution and performance-
related characteristics, namely fast access through conventional pointers or array
indexes to nearby memory and slower access through global pointers and arrays
to data that is far away. Since an individual process may directly read and write
memory that is near another process, the global address space model directly sup-
ports one-sided communication: no participation from a remote process is required
for communication. Because PGAS languages have characteristics of both shared
memory threads and (separate memory) processes, some PGAS languages use the
term ”thread” while others use ”process”. The model is distinguishable from shared
memory threads such as OpenMP, because the logical partitioning of memory gives
programmers control over data layout. Arrays may be distributed at creation time
to match the access patterns that will arise later and more complex pointer-based
structures may be constructed by allocating parts in each of the memory partitions
and linking them together with pointers.

The PGAS model is realized in three decade-old languages, each presented as an
extension to a familiar base language: United Parallel C (UPC) [Con05] for C;
Co-Array Fortran (CAF) [NR98] for Fortran, and Titanium [YSP+98] for Java.
The three PGAS languages make references to shared memory explicit in the type
system, which means that a pointer or reference to shared memory has a type that
is distinct from references to local memory. These mechanisms differ across the lan-
guages in subtle ways, but in all three cases the ability to statically separate local
and global references has proven important in performance tuning. On machines
lacking hardware support for global memory, a global pointer encodes a node identi-
fier along with a memory address, and when the pointer is dereferenced, the runtime
must deconstruct this pointer representation and test whether the node is the local
one. This overhead is significant for local references, and is avoided in all three
languages by having expression that are statically known to be local, which allows
the compiler to generate code that uses a simpler (address-only) representation and
avoids the test on dereference.

These three PGAS languages used a static number of processes fixed at job start
time, with identifiers for each process. This Single Program Multiple Data (SPMD)
model results in a one-to- one mapping between processes and memory partitions
and allows for very simple runtime support, since the runtime has only a fixed
number of processes to manage and these typically correspond to the underlying
hardware processors. The languages run on shared memory hardware, distributed
memory clusters, and hybrid architectures. On shared memory systems and nodes
within a hybrid system, they typically use a thread model such as Pthreads for the
underlying execution model. The distributed array support in all three languages
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is fairly rigid, a reaction to the implementation challenges that plagued the High
Performance Fortran (HPF) effort. In UPC distributed arrays may be blocked, but
there is only a single blocking factor that must be a compile-time constant; in CAF
the blocking factors appear in separate “co-dimensions;” Titanium does not have
built-in support for distributed arrays, but they are programmed in libraries and
applications using global pointers and a built-in all-to-all operation for exchanging
pointers. There is an ongoing tension in this area of language design between the
generality of distributed array support and the desire to avoid significant runtime
overhead.

Each of the languages is also influenced by the philosophy of their base serial lan-
guage. Co- Array Fortran support is focused on distributed arrays, while UPC and
Titanium have extensive support for pointer-based structures, although Titanium
also breaks from Java by adding extensive support for multidimensional arrays.
UPC allows programmers to deconstruct global pointers and to perform pointer
arithmetic such a incrementing pointers and dereferencing the results. Titanium
programs retain the strong typing features of Java and adds language and compiler
analysis to prove deadlock freedom on global synchronization mechanisms.





CHAPTER 3

Multiprecision Methods

As first part in this chapter, the iterative refinement method for solving linear sys-
tems of equations is explained. In addition to the principle method, the utilization
of mixed precision techniques is considered as well as convergence of such techniques.
For the special case of elliptic operators, analytical results are shown regarding the
perturbation that can be applied to the arising linear systems within the solution
process when multiple floating point formats are utilized.

Parts of this chapter have already been presented and published in the context of the
International Conference on State of the Art in Scientific and Parallel Computing
(PARA 2010) and the International Meeting on High Performance Computing for
Computational Science (VECPAR 2010). Related publications are [AHR] and
[AHR11].

3.1. Iterative Refinement Method

The motivation for the iterative refinement method can be obtained from Newton’s
method. Here, f is a given function and xi represents the solution approximation
in the ith step:

x0 given

xi+1 = xi − (∇f(xi))
−1f(xi), i = 0, 1, 2, . . . . (3.1)

This method can be applied to the function f(x) = b−Ax with ∇f(x) = −A, where
Ax = b is the linear system that should be solved with A ∈ R

n×n and x, b ∈ R
n.

By defining the residual according to ri := b−Axi, one obtains

xi+1 = xi − (∇f(xi))
−1f(xi)

= xi +A−1(b−Axi)

= xi +A−1ri i = 0, 1, 2, . . . .

Denoting the approximation for the solution update with c̃i ≈ A−1ri and using an
initial guess x0 as starting value, an iterative algorithm can be defined, where any
linear solver can be used as error correction solver.

Algorithm 17 Iterative Refinement Method

1: initial guess as starting vector: x0

2: compute initial residual: r0 = b−Ax0

3: while (‖ Axi − b ‖> ε ‖ r0 ‖) do
4: ri = b−Axi

5: solve error correction equation: Aci = ri approximately by c̃i
6: update solution: xi+1 = xi + c̃i

In each iteration, the error correction solver searches for a c̃i such that Ac̃i ≈ ri
(with respect to a certain quality, see. e.g. Chapter 1.6). Afterwards, the solution

41
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approximation is updated by xi+1 = xi+c̃i until the outer residual stopping criterion
with a given 0 < ε < 1 is fulfilled.

3.1.1. Error Correction Solver. Due to the fact that the iterative refine-
ment method makes no demands on the inner error correction solver, any backward
stable linear solver can be chosen. Still, especially the Krylov subspace methods
have turned out to be an adequate choice for many cases. These provide an ap-
proximation of the residual error iteratively in every computation loop, which can
efficiently be used to control the stopping criterion of the error correction solver
(cf. Chapter 1). The Krylov subspace methods used in the presented experiments
(see Chapter 3.2.3) fulfill the demand of backward stability, [DRDSA+95] and
[BES98].

3.1.2. Convergence Analysis of Iterative Refinement Methods. It should
be pointed out that the below presented results do not include rounding errors and
assume convergence of the error correction solver.

Based on the residual ri = b − Axi in the ith step, the improvement (w.r.t. accu-
racy) associated with one iteration loop of the iterative refinement method can be
analyzed. This is done to derive an estimation for the number of outer iterations
needed to achieve a certain accuracy.

Applying a solver to the error correction equation Aci = ri generates a solution
approximation c̃i. The associated residual di of the error correction solver is defined
according to

di := ri −Ac̃i, i = 0, 1, 2, . . . .

In case of a Krylov subspace method as inner solver, a residual stopping criterion
can be taken (see Chapter 1.6 for more information) which means that the residual
of the error correction solver fulfills:

‖ di ‖≤ εinner ‖ ri ‖ i = 0, 1, 2, . . . . (3.2)

After updating the solution like xi+1 = xi + c̃i, the new residual error term can be
obtained:

‖ ri+1 ‖= ‖ b−Axi+1 ‖
= ‖ b−A(xi + c̃i) ‖
= ‖ b−Axi︸ ︷︷ ︸

=ri

−Ac̃i︸ ︷︷ ︸
=di−ri

‖

= ‖ di ‖
(3.2)

≤ εinner ‖ ri ‖, i = 0, 1, 2, . . . .

Hence, the accuracy improvements obtained by performing one iteration loop equal
the accuracy of the residual stopping criterion of the error correction solver. It
follows, that after i iteration loops, the residual ri fulfills

‖ ri ‖ ≤ εiinner ‖ r0 ‖, i = 0, 1, 2, . . . . (3.3)

If i is choosen such that

εiinner‖r0‖ ≤ ε‖r0‖, (3.4)

then it follows from 3.3 that

‖ri‖ ≤ ε‖r0‖.
If we assume 0 < εinner < 1 then 3.4 holds if

i ≥ log(ε)

log(εinner)
. (3.5)
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Hence the number of outer iterations which guarantee ‖ri‖ ≤ ε‖r0‖ is

i =

⌈
log(ε)

log(εinner)

⌉
. (3.6)

where �·� denotes the Gaussian ceiling function.

Results of numerical experiments validating the theoretical findings can be found
in Chapter 3.2.3.

3.2. Mixed Precision Iterative Refinement Solvers

3.2.1. Mixed Precision Approach. The underlying idea of mixed precision
iterative refinement methods is to use different precision formats within the algo-
rithm of the iterative refinement method, approximating the relative residual error
and updating the solution approximation in high precision, but computing the error
correction term in a lower precision format (see Figure 3.1). This approach was also
suggested by [BBD+08], [BDK+08], [BDL+07], [GST07] and [GS08].

Using the mixed precision approach to the iterative refinement method, users have
to be aware of the fact that the residual error bound of the error correction solver
may not exceed the accuracy of the lower precision format.

Furthermore, each error correction produced by the inner solver in lower precision
cannot exceed the data range of the lower precision format. This means that the
smallest possible error correction is the smallest number εlow, that can be repre-
sented in the lower precision. Thus, the accuracy of the final solution cannot exceed
εlow either. This can become a problem when working with very small numbers,
because then the solution correction terms can not be denoted in low precision,
but in most cases, the problem can be avoided by converting the original values
to a higher order of magnitude. Instead of solving the error correction equation
Aci = ri, one applies the error correction solver to the system Aci = 10pri where
p has to be chosen such that the solution update ci can be represented in the used
low precision format. In this case, the solution update in high precision becomes
xi+1 = xi + 10−pci.

But there are also some more demands to the used low precision floating point
format and the used error correction solver with its respectively stopping criterion.
While the low precision floating point format has to be chosen with respect to the
condition number of the linear system such that the linear system is still solvable
within this format, it has to be ensured that the used error correction solver in
low precision converges for the given problem, and does not stagnate before the
demanded accuracy of the solution update is achieved. At this point it should be
mentioned, that the condition number of the low precision representation of the
matrix A may differ from the condition number of the original system.

If the final accuracy does not exceed the smallest number that can be represented
in the lower precision format, and if the condition number of the linear system is
small enough such that the system is solvable in low precision and the used error
correction solver converges and does not stagnate before the demanded accuracy is
achieved, then the mixed precision iterative refinement method gives (in terms of the
stopping criteria) the same solution approximation as if the solver was performed in
the high precision format. It is important to denote that the results are not bit-wise
the same!

When comparing the algorithm of an iterative refinement solver using a certain
Krylov subspace solver as error correction solver to the plain Krylov solver, it can



44 3. MULTIPRECISION METHODS

Figure 3.1. Mixed precision approach applied to an iterative refinement solver.

be realized, that the iterative refinement method has more computations to execute
due to the additional residual computations, solution updates and typecasts.

Each outer loop consists of the computation of the residual error term, a typecast,
an initialization of a vector, the scaling process, the inner solver for the correction
term, the reconversion of the data and the solution update. The computation of
the residual error itself consists of a matrix-vector multiplication, a vector addition
and a scalar product. Using a hybrid architecture, the converted data often has to
be transmitted between the devices.

For the typecast of a vector of the dimension n, the same cost as for one vector
addition in the higher precision format is assumed. For the matrix-vector multipli-
cation the cost of 2 · nnz are assumed, where nnz is the number of nonzero entries
within the matrix.

When using hybrid hardware with a distributed memory address space, the data
transfer can be displayed with respect to the cost of one computation in high preci-
sion as α+ β · n, where α denotes the delay (or latency) and β the effort needed to
transmit one vector entry. nnz denotes the number of nonzero entries of the matrix.
Altogether, for dimension n this gives an additional complexity to the plain solver
of:

additional operations additional cost
matrix vector multiplication 2 · nnz

2 vector additions 2 · n
2 vector scalings 2 · n

2 vector typecasts 2 · n
vector initialization n

2 scalar products 2 · (2n− 1)
2 vector transmissions 2 · (α+ βn)∑

2 · nnz + 11n− 2 + 2α+ 2βn

The goal is to analyze in which cases the mixed precision iterative refinement method
outperforms the plain solver in high precision. Obviously this is the case if the addi-
tional operations (denoted with K) are overcompensated by the cheaper execution
of the iterative error correction solver in low precision. Using an explicit residual
computation the computational cost of K is in the magnitude of the matrix-vector
multiplication. In case of an iterative update for the residual, the complexity is
even lower.
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3.2.2. Convergence Analysis of Mixed Precision Approaches. When
discussing the convergence of the iterative refinement method in section 3.1.2, a
model for the number of outer iterations needed to obtain a residual error below a
certain residual threshold ε ‖ r0 ‖ was derived. Having a relative residual stopping
criterion εinner of the Krylov subspace solver used as error correction solver

i =

⌈
log(ε)

log(εinner)

⌉
iterations have to be performed (according to ??) to obtain an approximation xi

which fulfills

‖ ri ‖=‖ b−Axi ‖≤ ε ‖ b−Ax0 ‖= ε ‖ r0 ‖ i = 1, 2, 3, . . . .

It should be mentioned, that this stopping criterion can only be fulfilled, if the
Krylov subspace solver converges in the respectively used floating point format.

If the iterative refinement technique in mixed precision is used, this convergence
analysis has to be modified due to the floating point arithmetic. In fact, two phe-
nomena may occur that require additional outer iterations:

(1) Independently of the type of the inner error correction solver, the low
precision format representations of the matrixA and the residual ri contain
representation errors due to the floating point format. These rounding
errors imply that the error correction solver performs the solving process
to a perturbed system (A+ δA)ci = ri+ δri. Due to this fact, the solution
update ci gives less improvement to the outer solution than expected.
Hence, the convergence analysis of the iterative refinement method has to
be modified when using different precision formats. To compensate the
smaller improvements to the outer solution, additional outer iterations
have to be performed.

(2) When using a Krylov subspace method as inner correction solver, the
residual is computed iteratively within the solving process. As floating
point formats have limited accuracy, the iteratively computed residuals
may differ from the explicit residuals due to rounding errors. This can
lead to an early breakdown of the error correction solver. As in this
case the improvement to the outer solution approximation is smaller than
expected, the convergence analysis for iterative refinement methods using
Krylov subspace solvers as error correction solvers has to be modified
furthermore. It may happen, that additional outer iterations are required
to compensate the early breakdowns of the error correction solver.

By denoting the total number of additional outer iterations induced by the rounding
errors and the early breakdowns when using Krylov subspace methods for the inner
solver with g one obtains

itotal =

⌈
log ε

log εinner

⌉
+ g (3.7)

for the total number of outer iterations. In fact g does not only depend on the
type of the error correction solver, but also on the used floating point formats, the
conversion and the properties of the linear problem including the matrix structure.

In order to be able to compare a mixed precision iterative refinement solver to a
plain high precision solver, a model serving can be derived as an upper bound for
the computational cost. The complexity of a Krylov subspace solver generating a
solution approximation with the relative residual error ε is denoted as Csolver(ε̃).
This complexity estimation can be obtained from the convergence analysis of the
Krylov subspace solvers [Saa03]. Using this notation, the complexity Cmixed(ε) of
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an iterative refinement method using a correction solver with relative residual error
εinner can be displayed as

Cmixed(ε) =

(⌈
log(ε)

log(εinner)

⌉
+ g

)
· (Csolver(εinner) · s+K) , (3.8)

where s ≤ 1 denotes the acceleration gained by performing computations in the low
precision format (eventually parallel on the low precision device) instead of the high
precision format. The quotient between the mixed precision iterative refinement
approach to a certain solver and the plain solver in high precision is denoted with

fsolver = Cmixed(ε)
Csolver(ε)

, and

fsolver =

(⌈
log(ε)

log(εinner)

⌉
+ g

)
· (Csolver(εinner) · s+K)

Csolver(ε).
(3.9)

can be obtained.

By analyzing this fraction, the following propositions can be stated:

(1) If fsolver < 1, the mixed precision iterative refinement approach to a cer-
tain solver performs faster than the plain precision solver. This superior-
ity of the mixed precision approach will particularly occur, if the speedup
gained by performing the inner solver in a lower precision format (e.g.
on a accelerator) overcompensates the additional computations, typecasts
and the eventually needed transmissions in the mixed precision iterative
refinement method.

(2) The inverse 1
fsolver

could be interpreted as speedup factor obtained by the

implementation of the mixed precision refinement method with a certain
error correction solver. Although this notation does not conform with the
classical definition of the speedup concerning the quotient of a sequentially
and a parallel executed algorithm, 1

fsolver
can be construed as measure for

the acceleration triggered by the use of the mixed precision approach (and
the eventually hybrid system).

(3) The iteration loops of Krylov subspace solvers are usually dominated by
a matrix-vector multiplication. Hence, using a Krylov subspace method
as inner error correction solver, the factor fsolver is independent of the
problem size for large dimension. This can also be observed in numerical
experiments (see Chapter 3.2.3 and [ABV10]).

Exact knowledge of all parameters would enable to determine a priori whether the
mixed precision refinement method using a certain error correction solver outper-
forms the plain solver. The computational cost of a Krylov subspace solver depends
on the dimension and the condition number of the linear system [Saa03].

While the problem size can easily be determined, an approximation of the condition
number of a certain linear system can be obtained by performing a certain number
of iterations of the plain Krylov subspace solver, and analyzing the residual error
improvement. Alternative methods to obtain condition number estimations can for
example be found in [Hig96].

The only factor that poses problems is g, the number of additional outer iterations
required to correct the rounding errors generated by the use of a lower precision
format for the inner solver. As long as users do not have an estimation of g for
a certain problem, it is not possible to determine a priori, which solver performs
faster.

To resolve this problem, an implementation of an intelligent solver suite could use
the idea to determine a posterior an approximation of g, and then choose the optimal
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solver. To get an a posterior approximation of g, the solver executes the first
iteration loop of the inner solver and then compares the improvement of the residual
error with the expected improvement. Through the difference, an estimation for
the number of additional outer iterations can be obtained, that then enables to
determine the factor fsolver and choose the optimal version of the solver.

3.2.3. Numerical Experiments. In this section three facts are shown based
on a set of experiments:

(1) Depending on the condition number of the system, the plain solver or the
mixed precision iterative refinement variant is superior.

(2) The factor fsolver is independent of the dimension of the problem. This
includes, that the mixed precision method works better for reasonably
many problems.

(3) The total number of outer iterations itotal (3.7) using limited precision
usually differs only by a small value g from the theoretical value i (??).
Hence approximating itotal by i+ 2 is usually a reasonable estimation.

In order to show these results, a set of artificially created test-matrices is used with
fixed condition number but increasing dimension.

To the linear system affiliated to these matrices, a CG solver as well as a GMRES
solver are applied and the performance is compared to the respective mixed precision
implementations. All solvers use the relative residual stopping criterion ε = 10−10 ‖
r0 ‖2. As right hand side a vector with ones in each component and the zero-vector
as initial guess for the solution has been chosen (aware of the fact that a multiple
of the right hand side leads often to reasonable results and that there exist a large
variety of application dependent strategies for choosing good initial guess like taking
the solution of the last time-step etc.). Due to the iterative residual computation
in the case of the plain solvers, the mixed precision iterative refinement variants
usually iterate to a better approximation, since they compute the residual error
explicitly, but as the difference is generally small, the solvers are comparable. For
the mixed precision iterative refinement implementations εinner = 10−1 is used.
The GMRES algorithm, as explained in Algorithm 11, is equipped with a restart
parameter of 10.
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M1 M2 M3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10 · n ∗ · · · · · · ∗

∗ 10 · n
. . .

.

.

.

.

.

.
. . . 10 · n

. . .
.
.
.

.

.

.
. . .

. . . ∗
∗ · · · · · · ∗ 10 · n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W V ∗ · · · ∗

V W V
. . .

.

.

.

∗ V W
. . . ∗

.

.

.
. . .

. . .
. . . V

∗ · · · ∗ V W

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H −1 0 · · · −1 0 · · · 0

−1 H −1
. . .

. . .
. . .

. . .
.
.
.

0
. . . H

. . .
. . .

. . .
. . . 0

.

.

.
. . .

. . .
. . .

. . . 0 −1

−1
. . .

.

.

.

0
. . .

. . .
. .
. 0

.

.

.
. . .

. . .
. . .

. . . H −1
0 · · · 0 −1 · · · 0 −1 H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∗ = rand(0, 1)
∗ = rand(0, 1)
V = 103 · n
W = 2 · 103 · n+ n

H = 4 + 10−3

problem: artificial

problem size: variable

sparsity: nnz = n2

cond. num.: κ < 3

storage format: MAS

problem: artificial

problem size: variable

sparsity: nnz = n2

cond. num.: κ ≈ 8 · 103
storage format: MAS

problem: artificial

problem size: variable

sparsity: nnz ≈ 5n

cond. num.: κ ≈ 8 · 103
storage format: CRS

Tab. 1: Structure plots and properties of the artificial test-matrices.

A more detailed description of the used test matrices, and a more extensive set of
numerical experiments including physical applications, can be found in Chapter 5.4.

Figure 3.2. Performance of CG/mixed CG applied to test case M1

Figure 3.3. Performance of GMRES/mixed GMRES applied to test case M1
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Figure 3.4. Performance of CG/mixed CG applied to test case M2

Figure 3.5. Performance of GMRES/mixed GMRES applied to test case M2

Figure 3.6. Performance of CG/mixed CG applied to test case M3

Figure 3.7. Performance of GMRES/mixed GMRES applied to test case M3
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The previous sections showed results of numerical analysis concerning the conver-
gence theory of mixed precision iterative refinement methods. These results from
the current section contribute to the possibility to control the usage of different
precision formats within an error correction solver.

A problem still requiring a more satisfactory solution is to determine the exact
dependency of the number of additional outer iterations on the characteristics of
the linear system, the solver type, the inner and outer stopping criterion, and the
used floating point precision formats. Further work in this field is needed to enable
an estimation depending on these parameters.

Technologies like FPGAs and application-specific designed processors offer a free
choice of floating point formats. Controlling the usage of these precision formats
within iterative refinement solvers is essential for optimizing the performance.

3.3. Mixed Precision Applied to Elliptic Operators

This chapter includes an analysis of the error propagation within a mixed precision
iterative refinement solver as explained in Chapter 3.1. The aim is to derive bounds
for the complexity of the low precision format used for the inner error correction
solver that guarantee the convergence of the error correction method. The analysis
reveals that these bounds depend on the discretization. As long as the rounding
error induced by the limited precision is not of higher order than the discretization
error, the error estimations only differ by a constant depending on the floating point
format.

3.3.1. Motivation. When within the iterative refinement method (see Chap-
ter 3.1) mixed precision techniques (see Chapter 3.2.1) are utilized in order to ac-
celerate the solver the question arises, how far the complexity of the floating point
format can be modified without worsening the quality of the result.

For elliptic equations, there exists the lemma of Strang [Bra07], providing an es-
timation for the error when discretizing the operator with finite elements. This
estimation can be used to derive an upper bound for the complexity of the floating
point format which can be used within the solution process when mixed precision
approaches are utilized.

The underlying idea is to use the estimation

‖u− uh‖ ≤ ch2‖f‖,
where uh denotes an approximation to the exact solution u of an elliptic equation, h
is the discretization fineness and c a problem specific constant. This estimation can
be obtained from the lemma of Aubin-Nitsche for special discretizations consisting
of quasi uniform triangles [Bra07].

In the end, it is obtained that as long as the rounding error triggered by the limited
accuracy of the used floating point format is not of higher order than the error
triggered by the discretization of the operator, the error stays in the same order of
magnitude. In this case, the regularity of the obtained linear system is preserved.

3.3.2. Numerical Analysis of Perturbations for Elliptic Operators.
At first the general relation between discretization and method error is analyzed.
Assuming that the problem is to search u ∈ V based on a variational problem of
the form

a(u, v) = 〈f, v〉 ∀v ∈ V (3.10)
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where V ⊂ Hm(Ω) and a : V ×V → R is a symmetric, elliptic and positive bilinear
form, which means that a(u, u) > 0 for all u ∈ V, u �= 0. Ω ⊂ R is assumed to be
bounded and f ∈ L2(Ω).

Now a finite dimensional discretization of a(·, ·) and f is considered based on a
discretization width h and search for an approximation uh ∈ Vh such that

ah(uh, vh) = 〈fh, vh〉 ∀vh ∈ Vh. (3.11)

It is assumed that the discretized bilinear form ah(·, ·) is uniformly elliptic, which
means there exists a constant α > 0 independent of the discretization such that

ah(vh, vh)≥ α‖vh‖2m,Ω ∀vh ∈ Vh. (3.12)

Then the Lemma of Strang can be applied providing the estimation

‖u− uh‖m ≤ cs

[
infvh∈Vh

(
‖u− vh‖m (Approximation error)

+ supwh∈Vh

|a(vh,wh)−ah(vh,wh)|
‖wh‖m

)
(Consistency error of a)

+ supwh∈Vh

〈f,wh〉−〈fh,wh〉
‖wh‖m

]
(Consistency error of f)

with a constant cs independent of the discretization.

In the following the continuity constant is needed and now defined. By assuming a
Hilbert space H, a bilinear form a : H ×H → R is called continuous if there exists
a C > 0 fulfilling

|a(u, v)| ≤ C‖u‖ · ‖v‖ ∀u, v ∈ H. (3.13)

If it is furthermore assumed that the Hilbert space V ⊂ Hm is a continuous embed-
ding, the validity of the Aubin-Nitsche lemma holds [Bra07]. It states, that the
finite element solution uh in Vh ⊂ V satisfies the estimation

‖u− uh‖0 ≤ c1‖u− uh‖1 sup
g∈H

(
1

‖g‖0 inf
v∈Vh

‖ϕg − v‖1
)

where for every g ∈ H, ϕg ∈ V denotes the corresponding unique weak solution of
the equation

a(w,ϕg) = 〈g, w〉 ∀w ∈ V.

The detailed proof of this result can be found in [Bra07].

From this, it can be obtained that for many conforming (quasi-uniform) as well
as some nonconforming (Crouziex-Raviart) Finite-Element discretization methods,
the estimation

‖u− uh‖0 ≤ cah
2‖f‖0 (3.14)

holds, where ca is a constant independent of the discretization size h [Bra07].

Due to the fact that the floating point representation on computers is finite, errors
occur when ah is computed. The representation of ah in a certain floating point
format is denoted as ãh (e.g. double precision). Applying the mixed precision
approach to the iterative refinement method, a representation ãh is used for the part
computed in high precision. A second representation of ah in the lower precision
part (e.g. single precision), where the error correction term is computed, is needed.
This perturbed bilinear operator can be represented as

˜̃ah(·, ·) := ãh(·, ·) + b1

with a perturbation b1 triggered by the use of the floating point format in the
error correction equation. Similarly, the representation of the right hand side f of
equation (3.10) is derived in the high and low precision formats

˜̃
f h := f̃h + b2.
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Considering the right-hand side of the estimation provided by Strang and informa-
tion can be obtained about whether equation

cs

(
inf

vh∈Vh

(
‖u− vh‖m + sup

wh∈Vh

|a(vh, wh)− ˜̃ah(vh, wh)|
‖wh‖m

)
(3.15)

+ sup
wh∈Vh

|〈f, wh〉 − 〈 ˜̃f h, wh〉|
‖wh‖m

)
≤ cah

2‖f‖0

is fulfilled. The existence of a fixed vh ∈ Vh is now assumed fulfilling

cs

(
‖u− vh‖m + sup

wh∈Vh

|a(vh, wh)− ˜̃ah(vh, wh)|
‖wh‖m (3.16)

+ sup
wh∈Vh

|〈f, wh〉 − 〈 ˜̃f h, wh〉|
‖wh‖m

)
≤ cah

2‖f‖0.

Now the goal is to obtain information about the perturbation. Therefore, the terms

sup
wh∈Vh

|a(vh, wh)− ˜̃ah(vh, wh)|
‖wh‖m ≤ sup

wh∈Vh

|a(vh, wh)− ãh(vh, wh)|
‖wh‖m (3.17)

+ sup
wh∈Vh

|b1|
‖wh‖m ,

and

sup
wh∈Vh

(
|〈f, wh〉 − 〈 ˜̃f h, wh〉|

‖wh‖m

)
≤ sup

wh∈Vh

(
|〈f, wh〉 − 〈f̃h, wh〉|

‖wh‖m

)
(3.18)

+ sup
wh∈Vh

( |b2|
‖wh‖m

)
are considered. Now it can be derived by combining (3.16), (3.17) and (3.18) that
the condition to estimate the error bound is⎛

⎜⎜⎜⎜⎝‖u− vh‖m︸ ︷︷ ︸
∈O(h2)

+ sup
wh∈Vh

|a(vh, wh)− ãh(vh, wh)|
‖wh‖m︸ ︷︷ ︸

∈O(h2)

⎞
⎟⎟⎟⎟⎠ (3.19)

+ sup
wh∈Vh

(
|〈f, wh〉 − 〈f̃h, wh〉|

‖wh‖m

)
︸ ︷︷ ︸

∈O(h2)

+ sup
wh∈Vh

( |b1|
‖wh‖m

)
︸ ︷︷ ︸

!∈O(h2)

+ sup
wh∈Vh

( |b2|
‖wh‖m

)
︸ ︷︷ ︸

!∈O(h2)

≤ ca
cs

h2‖f‖0

If this equation is fulfilled for the perturbations bi triggered by the limited precision
format is used, the method error is not of higher order than the discretization error.

3.3.3. Constants in Detail. For conforming elements the lemma of Céa
[Bra07, Gro07] can be taken to derive estimations for the perturbation. But
in the case of non-conforming elements a more general formulation is needed which
can be obtained by using the lemma of Strang and lemma of Aubin-Nitsche, where
the consistency error for a and f is also taken into account.

The right-hand side of equation (3.19) can be quantified to find the bounds for the
floating point formats that can be used within the solution process. Beside the
discretization size h, the norm ‖f‖0 has to be computed. Finally, both constants
cs and ca have to be explained.

cs arises in the context of the proof of the lemma of Strang: Let vh ∈ Sh be
arbitrary and use the abbreviation uh − vh = wh. Hereby denotes ‖ · ‖ an Hm-
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or grid-dependent norm. Based on (3.11) and (3.12) and the fact that u is equi-
continuous, one gets

α‖uh − vh‖2 ≤ ah(uh − vh, uh − vh) = ah(uh − vh, wh)

= a(u− vh, wh) + [a(vh, wh)− ah(vh, wh)] + [ah(uh, wh)− a(u,wh)]

= a(u− vh, wh) + [a(vh, wh)− ah(vh, wh)]− [〈l, wh〉 − 〈l, wh〉]
By deviding by ‖uh − vh‖ = ‖wh‖ and the continuity of a(·, ·), one obtains:

‖uh − vh‖ ≤ C

(
‖u− vh‖+ ‖a(vh, wh)− ah(vh, wh)|

‖wh‖ +
|〈l, wh〉 − 〈lh, wh〉|

‖wh‖
)

By applying the triangular inequality

‖u− uh‖ ≤ ‖u− vh‖+ ‖uh − vh‖
one can derive

‖u− uh‖ ≤ (1 + C)︸ ︷︷ ︸
=:cs

(
‖u− vh‖+ ‖a(vh, wh)− ah(vh, wh)|

‖wh‖ +
|〈l, wh〉 − 〈lh, wh〉|

‖wh‖
)
.

So the constant cs is defined by 1+C, where C is the continuity constant. Although
more strict estimations for cs are possible, the above derived approximation is used
due to simplicity.

One conclusion from the Aubin-Nitsche lemma (see e.g. [Bra07, Gro07]) is

‖u− uh‖0 ≤ c2C︸︷︷︸
=:ca

h2‖f‖0

where uh ∈ Vh solves the variational problem a(uh, vh) = 〈f, vh〉 based on linear
(respectively quadratic or cubic) triangular elements. Herby denotes C again the
continuity constant and it is possible to get the remaining components of cs as
c := ((1 + c1)c2C)/α.

From the definition of the H2-regularity [Bra07, Hac10] c1 is gained. LetH
1
0 (Ω) ⊂

V ⊂ H1(Ω) and a(., .) a V-elliptic bilinear-form. The variational formulation for
u ∈ H1

a(u, v) = (f, v)0, ∀v ∈ V

is called H2-regular if there exists for all f ∈ H0(Ω) a solution u ∈ H2(Ω) and
additionally there is a constant c1(Ω, a, s) fulfilling

‖u‖2 ≤ c1‖f‖0. (3.20)

s denotes the Poincaré constant that fulfills the Poincaré-Friedrichsche inequality

‖v‖0 ≤ |v|1, ∀v ∈ H1
0 (Ω)

where Ω is in-closed by a cube of edge length s. There are several other estimates
for the Poincaré constant according to [GalXX], which are e.g. based on circles:

s ≤ d√
2π

.

Here, the domain Ω can be surrounded by a circle with diameter d.

Finally the constant c2 arises in the context of the quality of the interpolation.
A quasi-uniform triangulation τh of Ω is assumed. For an interpolation based on
piecewise polynomials of degree t− 1, with t > 1, and a constant c2(Ω, s, t) holds

‖u− Ihu‖2,h ≤ c2 · ht−2|u|t,Ω ∀u ∈ Ht(Ω). (3.21)

The elements have to contain a circle with radius ρτ ≥ h
s [Bra07].
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3.3.4. Determining the Constants - an Example. For determining the
constants that influence the choice of a floating point format, the estimation (3.19)
is considered and the constants are approximated for a simple example where the
following Poisson equation is considered:

−Δu= f in Ω
u= 0 on ∂Ω

}
where

f = 2 · k2π2 sin(kπx) sin(kπy),

Ω= [0, k]2 ⊂ R
2.

This problem has the analytically exact solution u(x, y) = sin(kπx) sin(kπy).

For the discretization step, an uniform decomposition of the domain Ω into 2
(
k
h

)2
triangles is used.

Figure 3.8. Decomposition of Ω.

The domain Ω can be enclosed by a circumcircle with diameter d = k
√
2, the

triangles have an incircle with radius ρ = h
2+
√
2
.

For the further estimations, cs and ca need to be approximated. Using the definition
of the continuity of a(·, ·) (see 3.13), it is possible to estimate

0 ≤ |a(u, u)|
‖u‖21︸ ︷︷ ︸
∗

≤ C

based on the availability of the solution u. It becomes visible that ∗ can be in-
terpreted as some kind of Rayleigh quotient and by using the solution u one can
compute a lower bound for the continuity constant:

|a(u, u)|=
∫ k

0

∫ k

0

∇u∇udxdy =
1

2
k2π2 − 1

2
cos2(k2π)sin2(k2π) (3.22)

‖u‖21 =
∫
Ω

u+

∫
Ω

∇u∇udxdy (3.23)

=

∫ k

0

∫ k

0

sin(kπx)sin(kπy)dxdy︸ ︷︷ ︸
1−cos(k2π)+cos2(k2π)

π2k2

+
1

2
k4π2 − 1

2
cos2(k2π)sin2(k2π)︸ ︷︷ ︸
see3.23︸ ︷︷ ︸

∗∗∗
So one gets as estimation for the lower bound of the continuity constant:

|a(u, u)|
‖u‖21

=
∗∗
∗ ∗ ∗

k=1
=

π4

π4 + 8
≈ 0, 92.
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In case of ca, information about the coercitivity constant α is needed and the
Poincaré constant s has to be approximated. This can be achieved by using the
circumcircle radius of the domain Ω, and the relation s ≤ d√

nπ
, where n is the space

dimension [GalXX]. Using s ≤ k
π it is possible to derive

‖v‖21 = (‖v‖0 + ‖∇v‖0)2
≤ (1 + s)2‖∇v‖20
= (1 + s)2

∫
Ω

∇v · ∇v dx dy︸ ︷︷ ︸
=a(v,v)

⇒ α ≤ 1

(1 + s)2
.

The H0 norm of the right-hand side is also needed:

‖ f ‖0 =

√∫ k

0

∫ k

0

f · f dx dy

=

√∫ k

0

∫ k

0

(2k2π2 sin(kπx) sin(kπy))2 dx dy

=
√

2− 4cos(k2π) + 2(cos(k2π))2

k=1
= 2

√
2. (3.24)

Finally, one is left with the constants c1 and c2, that are usually difficult to approx-
imate. For the further approximations, k = 1 is chosen, and one obtains for the
domain Ω the unit square.

In case of c1, the definition of the H2-regularity is used (see 3.20) to approximate

c1 ≈ 0.051.

For the constant c2 (see 3.21) it is assumed to have the interpolation function Iu ≡ 0
and the coarse approximation for c2 is (construction-conditioned analogue to c1)

c2 ≈ 0.051.

By combining all information from above and by assuming that the approximation
of the bilinearform in the high floating point format is equal to the analytical one,
meaning a(·, ·) = ã(·, ·), one can calculate from equation 3.19 the perturbation that
is allowed in order to keep the method error smaller then the discretization error
(for the chosen example and certain assumptions):

sup
wh∈Vh

( |b1|
‖wh‖m

)
+ sup

wh∈Vh

( |b2|
‖wh‖m

)
≤ ca

cs
h2‖f‖ = h2(1 + c1)c2C‖f‖0

(1 + C)α

k=1≈ 0, 068h2.

From this equation it becomes also visible that the finer the discretization width
h is chosen, the perturbation decreases by h2, indicating that the condition of the
problem becomes worse.

3.3.5. Conclusion. Within this section, the numerical analysis for the pertur-
bation that can be applied to discretizations of elliptic operators, discretized with
finite element methods, is explained. The error estimation, based on a lemma of
Strang and the lemma of Aubin-Nitsche, gives strong upper bounds for the pertur-
bation in order to keep the method error (at most) in the order of magnitude of
the discretization error. Since the constants depend on the problem that is solved,
approximations can usually only be obtained through numerical experiments. In
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combination with the theory around a posteriori error estimators, this theory offers
multiple application possibilities.

Multiple perspectives arise in the context of the presented findings. Solvers could
be developed which iteratively approximate the bounds for the allowed perturba-
tion and variegate the employed floating point formats according to the bounds.
Hardware architectures allowing such techniques without using abstraction layers
are FPGAs. Software sided it is possible to use libraries offering the possibility to
define arbitrary precision formats like the GMP library [Lib].



CHAPTER 4

Implementations of CG and GMRES on Dedicated
Hardware

This chapter evaluates the properties of the three in Chapter 2.2 explained paradigms
MPI, OpenMP and CUDA in the context of the two solvers CG (see [Saa03] or
Chapter 1.3) and GMRES (see [Saa03] or Chapter 1.4) based on experiments with
eight matrices. Most of them are from 2D and 3D fluid flow problems that have
been discretized by finite elements. They are stored in the CSR-format on which
the implementations work. Considered are implementations which are based on a
single paradigm, as well as hybrid ones, often denoted as hybrid strategies. Addi-
tionally, an implicit parallelization using a highly optimized library offering basic
linear algebra subroutines (BLAS) is taken into account. Preconditioning, which
is extremely depending on the problem, is shown in Section 4.9. As a reference
with respect to performance, PETSC [BBG+09, BBE+08, BGMS97] has been
chosen.

Since the development of modern technology is characterized by simulations, that
are often no longer performed through physical experiments, but through mathe-
matical modeling and numerical simulation. For many simulations, for example in
computational fluid dynamics, enormous computation power and memory is needed
to be able to handle the often arising very large systems of linear equations.

Parallelization is nowadays the solution for coping with such tasks, as shown in
the introduction. There are many paradigms for programming parallel CPU-based
architectures, where the most common ones are MPI and OpenMP. For accessing
the computational power of a GPU, CUDA is widely used. Every paradigm has
its own advantages and disadvantages and sometimes it is not easy for software
developers to choose the optimal combination for the implementations. Results
from this Chapter can also be found in [Gal10] and are submitted for publication.

4.1. Data Storage Formats

This section explains a selection of storage formats for matrix data. Beside the
Coordinate Formate, the Compressed Sparse Row (CSR) and Compressed Sparse
Column (CSC) format are illustrated and an example is shown.

Storing only the non-zero entries of a matrix is the basic idea of sparse data for-
mats in order to save memory space when only a minor number of the entries in a
matrix differ from zero. In general, the more memory for storage is used, the more
structured are the access patterns to the matrix entries. Therefore one should find
a trade-off between memory usage and element access structure.

57
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The used format is described based on the following example:

A =

⎡
⎢⎢⎢⎢⎣
1−1 0 0 3
0 2 2 0 0
0 11 3−4 0
0 0 0 4 0
0 3 1 0 5

⎤
⎥⎥⎥⎥⎦ . (4.1)

The CSR- format is also known as Compressed Row Storage (CRS). The idea is
to store only non-zero entries of a matrix. Therefore the position of the non-zero
entry has to be saved too. A matrix is described by the three arrays val, col and
row. All non-zero entries are stored in val and its column numbers are stored in col
and array row contains pointers to the first elements in every row. Usually val is
of type double or float with length nnz (number of non-zeros), col and row are of
type integer with length nnz respectively dim(A) + 1. In case of the example 4.1,
the arrays are as shown in Figure 4.1. The indexing is zero-based (like in C/C++

Figure 4.1. CSR - format for matrix 4.1

etc.), but one-based indexing (like in Fortran etc.) is also possible. For symmetric
matrices the memory usage can be decreased by storing only the upper or lower
triangular matrix.

Beside the CSR-format, there exist lots of storage formats, each with application-
and hardware-specific advantages and drawbacks.

4.2. Parallel CG Implementations

4.2.1. OpenMP-Parallelization. Considered are two OpenMP implemen-
tations of CG. The first implementation extends the sequential algorithm with loop
parallelization by OpenMP with an implicit data distribution. The second imple-
mentation of CG is based on a (logical) data distribution. For this reason the
matrix and all vectors are divided into blocks. All matrix blocks and vectors are
distributed uniformly over the threads but there is no physical data distribution.
All threads have access to the same data except for such that is declared as private.
Communications occur via memory respectively shared variables. Finally, These
two implementations are compared with a sequential implementation utilizing the
BLAS-implementations from the Intel MKL which use thread parallelization and
are highly optimized for the underlying hardware from the same vendor.

It is possible to parallelize the matrix-vector product, dot products and vector up-
dates. For the computation of α and β a single region is needed to avoid that all
threads compute the same value and reduce the computation overhead. Addition-
ally, on more modern hardware architectures (like Intel Nehalem etc.), the clock
frequency of one core raises if the other cores are not used in order to speedup
sequential operations.
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1. vi = Api parallel
2. sp pv = pTi vi parallel
3. αi =

sp r
sp pv sequential

4. ri+1 = ri + αivi parallel
5. sp r = rTi+1ri+1 parallel
6. βi =

sp r
sp r old sequential

7. sp r old = sp r sequential
8. xi+1 = xi + αipi parallel
9. pi+1 = −ri+1 + βipi parallel

Table 4.1. OpenMP parallelizing scheme for a CG iteration cycle

4.2.2. MPI-Parallelization. First a distribution strategy for the matrix and
vectors has to be chosen. The used approach is to distribute the matrix A and the
vectors by rows (see figure 4.2), which is the most intuitive distribution when CSR is
the data storage format. The number of rows of the vectors are equal to the number
of rows on every process. Therefore the vector p has to be communicated among
all processes to perform the local matrix-vector products. The vectors x, r and v
need not to be communicated. Furthermore the dot products rT r and pTAp have
to be communicated to compute α and β. This data distribution is similar to a two
dimensional block-cyclic data distribution based on a n× 1 grid of processes which
is analyzed in Chapter 6 in terms of performance and accuracy. Since the focus in
this chapter is performance, the fastest data distribution (on the used hardware)
has been chosen.

Figure 4.2. MPI matrix distribution.

There are different designs for implementing the CG algorithm. In the shown im-
plementation, all processes perform the same operations on different data (SPMD).
The vector p is communicated with two different strategies. One is a so called
neighbor communication, where a process k communicates only with the processes
k − 1 and k + 1. Note that this is only possible when the data needed by k is
available from the direct neighbors. One example for such a case is when the band-
width of the data a process holds is smaller then the number of rows (using CSR)
the neighbor process holds. To avoid the overhead of unnecessary synchronization,
asynchronous communication is used. Finally, the dot products are communicated
using the MPI routine MPI Allreduce(). Table 4.2 shows the algorithm design of
the implementation. Furthermore, for the sequential runtime the best sequential
result of the compared implementations was chosen to calculate the speedup. As
reference implementation in terms of performance, the PETSc CG solver was used
to benchmark the presented parallelization strategies.

4.2.3. Hybrid-Parallelization. Both approaches from the two previous sec-
tions are combined to obtain a hybrid implementation. The MPI implementation
above is extended with an OpenMP loop parallelization for the local matrix-vector
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1. communicate/compute p
2. vi = Api parallel
3. sp pv = pTi vi parallel
4. communicate sp pv
5. αi =

sp r
sp pv local

6. ri+1 = ri + αivi parallel
7. sp r = rTi+1ri+1 parallel
8. communicate sp r
9. βi =

sp r
sp r old local

10. sp r old = sp r local
11. xi+1 = xi − αipi parallel
12. pi+1 = ri+1 + βipi parallel

Table 4.2. MPI parallelizing scheme for a CG iteration cycle

multiplication, the local vector updates and the local dot products (see table 4.3).
Alternatively it is possible to use the multithreaded MKL to implement an hybrid
version of CG.

1. vi = Api parallel/hybrid
2. sp pv = pTi vi parallel/hybrid
3. communicate sp pv
4. αi =

sp r
sp pv local

5. ri+1 = ri + αivi parallel/hybrid
6. sp r = rTi+1ri+1 parallel/hybrid
7. communicate sp r
8. βi =

sp r
sp r old local

9. sp r old = sp r local
10. xi+1 = xi + αipi parallel/hybrid
11. pi+1 = −ri+1 + βipi parallel/hybrid
12. communicate p

Table 4.3. Hybrid parallelizing scheme for a CG iteration cycle

4.2.4. CUDA-Parallelization. Finally, a CG implementation on a NVIDIA
GPU using CUDA is described. Implement is the same algorithm design as for the
CPU versions using CUBLAS and an extra kernel for the sparse matrix-vector mul-
tiplication. The CPU passes the data via PCIs to the GPU, where all computations
are done. All CUDA-implementation were executed on a Tesla S1070 based system
which is a representative from the professional GPU-computing series of NVIDIA .

4.3. Parallel GMRES implementations

In this section a strategy for GMRES(m) parallelization in different environments
is presented. As explained in Chapter 1.4, the implementation of pure GMRES is
usually not practicable. Therefore the focus is set on a restarted GMRES(m) and
its parallelization. See e.g. [SS86] or Chapter 1.4 for detailed information. As
restart parameter, m = 20 was set for all experiments.

4.3.1. OpenMP-Parallelization. Two pure OpenMP implementations and
a MKL implementation using the MKL thread parallelism are evaluated. The par-
allelization strategy for the pure OpenMP approaches are the same as for CG. First
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loops within the algorithm are parallelized and in the second implementation a
logical data distribution is used.

4.3.2. MPI-Parallelization. The same data distribution as in CG paral-
lelization is chosen, that is a distribution by blocks of rows. Chosen is the strategy
to parallelize the nested Arnoldi algorithm and the solution update at the end of
GMRES(m), while the least-squares problem is not solved in parallel. Furthermore
this least-squares problem is solved by every process which is motivated by the fact
that the restart parameter m is usually very small (5-50). For this reason it creates
to much overhead to distribute this small problem over all processes.

1. Arnoldi algorithm parallel
a. sparse matrix vector product parallel with comm.
b. dot products parallel with comm.
c. vector updates parallel

2. solving the least squares problem sequential
3. solution update parallel

Table 4.4. MPI parallelization scheme for a GMRES iteration cycle

The parallel Arnoldi algorithm consists of parallel sparse matrix-vector multiplica-
tions, parallel vector updates and parallel dot products. To perform such operations,
parallel MPI-based implementations are used.

4.3.3. Hybrid-Parallelization. In the proposed hybrid implementation MPI
and OpenMP are mixed. The plain MPI solver is extended with a local OpenMP
parallelization on every process and a hierarchical parallelization can be obtained.

1. Arnoldi algorithm parallel/hybrid
a. sparse matrix vector product parallel/hybrid with comm.
b. dot products parallel/hybrid with comm.
c. vector updates parallel

2. solving the least squares problem sequential
3. solution update parallel/hybrid

Table 4.5. Hybrid parallelization scheme for a GMRES iteration cycle

4.3.4. CUDA-Parallelization. A significant difference can be seen by com-
paring the CUDA implementation approach for GMRES to the approach for CG.
While the CG solver runs completely on the GPU, the GMRES solver uses the
GPU as an accelerator to speedup some of the performed operations. In fact, the
least-squares problem within the restarted GMRES algorithm is solved on the CPU,
because the system is to small to use the GPU efficiently. The dot products, vec-
tor updates are performed by using CUBLAS routines on the GPU. The sparse
matrix-vector multiplication is also done on the GPU by the use of a special ker-
nel (meanwhile CUBLAS offers a sparse matrix-vector multiplication, which was
not the case when the experiments were done). Therefore the dot product results
within the Arnoldi algorithm must be send via PCIe to the host. After adjusting
and solving the least-squares problem the least-squares solution is given back to the
device for updating the approximate solution.
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4.4. Reference Examples

As a first test-case a finite difference discretization of the Laplacian equation in 2D
on the unit square is chosen that is based on a 5-point stencil. The next three test-
cases arise in the context of a finite element discretization of a Venturi nozzle in two
and three dimensions with Q2-elements for the velocities and Q1-elements for the
pressure. Additionally the test-matrices CFD ACUSIM, Thermal 2, Stomach and
CFD Rothberg are taken from the University of Florida Sparse Matrix Collection
[Dav]. Estimations for the condition number have been performed by using the
Matlab function “condest()” which gives back a 1-norm estimate. As right hand side
for the experiments, the product of the test-case with the vector x := (1, . . . , 1)T

was chosen. An absolute stopping criteria of ‖rk‖ ≤ 10−10 for the residual was
chosen to stop the solver except for the test-cases Venturi 2D 3 and CFD Venturi
3D, where ‖rk‖ ≤ 10−6 was taken.

Laplace 2D

A =

⎛
⎜⎜⎜⎜⎝

B −I
−I B

. . .

. . .
. . . −I
−I B

⎞
⎟⎟⎟⎟⎠ ∈ R

mn×mn, with B =

⎛
⎜⎜⎜⎜⎝

4 −1
−1 4

. . .

. . .
. . . −1
−1 4

⎞
⎟⎟⎟⎟⎠ ∈ R

n×n.

Problem: Laplace 2D, FDM
Problem size: n = n ∗m
Sparsity: nnz = m(3n− 2) + 2n(m− 1)
Symmetric: yes
Pos. define: yes

Table 4.6. Sparsity plot and property of the test-case Laplace 2D.

CFD Venturi 2D 1 CFD Venturi 2D 3

Problem: CFD Venturi 2D, FEM
Problem size: n = 395.009
Sparsity: nnz = 3.544.321
Symmetric: no
Pos. define: ?

Problem: CFD Venturi 2D, FEM
Problem size: n = 1.019.967
Sparsity: nnz = 9.182.401
Symmetric: no
Pos. define: ?

Table 4.7. Sparsity plots and properties of the matrices CFD Venturi 2D.
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CFD Venturi 3D CFD ACUSIM

Problem: CFD Venturi 3D, FEM
Problem size: n = 106.496
Sparsity: nnz = 21.510.676
Symmetric: no
Pos. define: ?

Problem: CFD ACUSIM
Problem size: n = 14.822
Sparsity: nnz = 365.313
Symmetric: yes
Pos. define: yes
Estimated cond.: 3, 2 · 106

Table 4.8. Sparsity plots and properties of the test-matrices CFD Venturi 3D

and ACUSIM.

Thermal 2 Stomach

Problem: Thermal problem, FEM
Problem size: n = 1.228.045
Sparsity: nnz = 8.580.313
Symmetric: yes
Pos. define: yes
Estimated cond.: 7, 5 · 106

Problem: Human Duodenum 3D
Problem size: n = 213.360
Sparsity: nnz = 3.021.648
Symmetric: no
Pos. define: no
Estimated cond.: 85, 2

Table 4.9. Sparsity plots and properties of the matrices Thermal 2 and Stomach.
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CFD Rothberg

Problem: Computational fluid dynamics
Problem size: n = 123.440
Sparsity: nnz = 3.085.406
Symmetric: yes
Positive define: yes
Estimated cond.: 3, 7 · 106

Table 4.10. Sparsity plot and properties of the test-matrix Rothberg.

4.5. Hard- and Software Environment

Two hardware platforms are used for the experiments. One is a TESLA based
system equipped with one NVIDIA TESLA S1070. Each of the two host nodes is
connected via a PCIe 2.0 x16 to the S1070 and are each equipped with two Intel
Quad-core Xeon 5450 CPUs running at 3.0 GHz. The software platform adopted
for the numerical experiments is composed of the Intel MKL in version 10.1.1.019
and the Intel compiler in version 11.0.074.

The second platform is the Institutscluster which is located at the Steinbuch Centre
for Computing (SCC) at the Karlsruhe Institute of Technology (KIT). It consists
of 200 computing nodes each equipped with two Intel quad-core EM64T Xeon 5355
processors running at 2,6 GHZ, 16 GB of main memory and an Infiniband 4x DDR
interconnect. The overall peak performance of the whole system is about 17,57
TFlops and 15,2 TFlops in the Linpack benchmark. In addition to the Intel MKL
in version 10.1.2.024, the Intel compiler in version 11.1.056 and OpenMPI 1.3.1 are
chosen.

4.6. Numerical Experiments based on CG

4.6.1. OpenMP-Parallelization. The OpenMP implementation for the Laplace
problem with 90.000 unknowns scales well, since the problem fits complete into the
cache. In Figure 4.4 a trip between four and five threads can be observed, which is
caused by the architecture of the Institutscluster where the eight available cores are
divided on two separate sockets. In the situation of four threads the program runs
on a single quad-core processor, while in the case of five threads the program runs on
both quad-core processors. A manual pinning of threads to dedicated cores is pos-
sible but was not taken into account within this work. The distribution of threads
was left to the operating system. In all test cases, except Laplace with 90.000 un-
knowns, a performance limitation by the memory bandwidth on a IC1 node can be
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observed. Furthermore, there is no difference in the performance between the loop
parallelized and the data distributed implementation.

Figure 4.3. Test case Laplace 2D: Results for the loop parallelized CG im-

plementation with different problem sizes.

Figure 4.4. Test case Laplace 2D with 90.000 unknowns: Comparison of the

loop parallelized, data distributed and MKL threaded OpenMP implementa-

tions.

Figure 4.5. Test case Laplace 2D with 1.000.000 unknowns: Comparison of

the loop parallelized, data distributed and MKL threaded OpenMP implemen-

tations.
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Figure 4.6. Test case CFD ACUSIM: Comparison of the loop parallelized,

data distributed and MKL threaded OpenMP implementations.

Figure 4.7. Test-case CFD Rothberg: Comparison of the loop parallelized,

data distributed and MKL threaded OpenMP implementations.

Figure 4.8. Test-case Thermal 2: Comparison of the loop parallelized, data

distributed and MKL threaded OpenMP implementations.

4.6.2. MPI-Parallelization. As reference in terms of performance, the re-
sults of the above described implementations are compared to ones of the PETSc
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library. How rounding errors in combination with parallelization can effect accu-
racy of elementary operations is explained in Chapter 6 and effects on solvers can
be found in Chapter 7. The MPI-based CG solver scales well and for the Laplace
test-case the performance is excellent (Figures 4.9-4.14).

Figure 4.9. Test case Laplace2D with 4.000.000 unknowns. Comparison of

two plain MPI Implementations of CG with PETSc. Two processes per node
and neighbour communication.

Figure 4.10. Test case Laplace2D with 4.000.000 unknowns. Comparison of
two plain MPI Implementations of CG with PETSc. Four processes per node

and neighbour communication.

Figure 4.11. Test-case CFD Rothberg with one single-threaded process per

node. Selected gather is used.
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Figure 4.12. Benchmark for the test-case CFD Rothberg with two single-

threaded processes per node. Selected gather is used.

Figure 4.13. Benchmark for the test case CFD Rothberg with four single-
threaded processes per node. Selected gather is used.

Figure 4.14. Results for the test case Thermal 2. Selected gather is used.

The CG solver shows a super linear speedup for more than 24 processes on a single
node for the Laplace 2D test case, because then the problem fits into the caches.
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4.6.3. Hybrid-Parallelization. The results seen in figures 4.17, 4.18, 4.20
and 4.21 show that a mixed OpenMP/MPI implementation has no perfomance
benefit in the test environment compared to a pure MPI implementation.

Figure 4.15. Test case CFD ACUSIM with MKL multithreaded processes.

Each processes ran exclusively on a single node.

Figure 4.16. Test case Laplace2D with MKL multithreaded processes. Each

processes ran exclusively on a single node.

Figure 4.17. Comparison of a plain MPI and a hybrid solver for the test case
Laplace2D. The hybrid implementation uses two threads in one process on one

node and the plain MPI implementation uses two single-threaded processes on

one node.
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Figure 4.18. Comparison of a plain MPI solver and a hybrid solver for the test

case Laplace2D. The hybrid implementation uses four threads in one process

on one node, the plain MPI implementation uses four single-threaded processes
on one node.

Figure 4.19. Test case CFD Rothberg with plain OpenMP multithreaded

processes. All processes ran on a single node.

Figure 4.20. Comparison of a plain MPI solver and a hybrid solver for the
test case CFD Rothberg. The hybrid implementation uses two threads in

one process on one node and the plain MPI implementation uses two single-

threaded processes on one node.
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Figure 4.21. Comparison of a plain MPI solver and a hybrid solver for the

test case CFD Rothberg. The hybrid implementation uses four threads in
one process on one node and the plain MPI implementation uses four single-

threaded processes on one node.

Figure 4.22. Test case Thermal 2 with plain OpenMP multi-threaded pro-

cesses. All processes ran on a single node.

4.6.4. CUDA-Parallelization. Results for the CUDA implementation are
in shown in Table 4.11. The speedup is with respect to the sequential results on
the CPU for the related test-case. In Figure 4.24 the performance of the GPU

Test case Runtime [sec] Speedup
Laplace 2D 108,63 7,80
(4.000.000 unknowns)
Laplace 2D 14,26 6,38
(1.000.000 unknowns)
Laplace 2D 2,06 5,17
(250.000 unknowns)
CFD ACUSIM 2,71 2,20
CFD Rothberg 35,37 2,96
Thermal 2 85,98 6,16

Table 4.11. Benchmark results for CUDA CG.

solver is compared to a pure MPI implementation to classify the performance of
the CUDA implementation. The MPI solver with eight processes (running on four
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nodes) achieves the performance of the GPU solver, whereas the amount of employed
ressoures (in terms of energy and costs) is significantly higher.

Figure 4.23. CUDA CG for the test case Laplace 2D with different number
of unknowns.

Figure 4.24. CUDA CG compared with a MPI implementation of CG, where

two processes ran on one IC1 node. Test-case is the Laplace 2D matrix with
four million unknowns.

4.7. Numerical Experiments Based on GMRES

4.7.1. OpenMP-Parallelization. The three GMRES(m) implementations
show the same scaling performance problems as the CG implementations. This
is also due to the limited memory bandwidth on one Institutscluster node.
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Figure 4.25. Results for the test case Stomach. Three implementations are

compared: OpenMP loop parallelization, OpenMP distributed data paralleliza-
tion and MKL thread parallelization.

Figure 4.26. Speedups for the test case Stomach.

Figure 4.27. Results for the test case CFD Venturi 2D 1. Three implementa-

tions are compared: OpenMP loop parallelization, OpenMP distributed data

parallelization and MKL thread parallelization.
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Figure 4.28. Speedups for the test case CFD Venturi 2D 1.

4.7.2. MPI-Parallelization. Compared to the PETSc solver the proposed
solver has massive scaling problems. There is a better communication implementa-
tion needed.

Figure 4.29. Results for the test case Stomach. Selected gather is used.

Figure 4.30. Speedups for the test case Stomach. Selected gather is used.
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Figure 4.31. Results for the test case Stomach with two processes per IC1

node. Selected gather is used.

Figure 4.32. Results for the test case Stomach with four processes per IC1

node. Selected gather is used.

Figure 4.33. Results for the test case CFD venturi 2D 1 with one process per

IC1 node. Selected gather is used.
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Figure 4.34. Speedups for the test case CFD Venturi 2D 1 with one process

per IC1 node.

4.7.3. CUDA-Parallelization. The results for the CUDA implementation
are shown in Table 4.12. Speedup values are with respect to the sequential results
on the CPU for the related test case. For CFD Venturi 2D 2 and the 3D case,
sequential results could not be obtained.

Test-case Runtime [sec] Speedup
CFD Venturi 2D 1 317,34 5,07
CFD Venturi 2D 3 3414,16 -
CFD Venturi 3D 496,69 -
Stomach 3,70 3,94

Table 4.12. Benchmark results for CUDA GMRES(m). Where no speedup

is shown it was not possible to get sequential results on the CPU.

4.8. Result Interpretation

OpenMP based implementations scale well for problems that fit into the cache as
the Laplace problem with 90.000 unknown shows. If the amount of data is too
big for the cache OpenMP-parallelizations usually do nearly not scale any more for
more than 3 threads due to limitations of memory bandwidth (the data can then
be computed faster then they are delivered from the memory). Other effects arising
from hardware characteristics can be found. In Figure 4.4 a trip between four and
five threads can be observed, which is caused by the two-socket architecture of the
Institutsclusters nodes. In the situation of four threads the program runs on a single
quad-core processor, while in the case of five (or more) threads the program runs on
both quad-core processors. In all test-cases, except Laplace with 90.000 unknowns,
a performance limitation by the memory bandwidth on a IC1 node can be observed.
Furthermore, there is no difference in the performance between the loop parallelized
and the data distributed implementation. One conclusion from the presented exper-
iments is that for (probably existing) serial code OpenMP-parallelizations or the
usage of multi-threaded libraries give some additional performance on multicore
platforms.

In most cases MPI-based implementations scale almost like the OpenMP-based
parallelizations but for problems where the main memory is nearly exhausted the
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overhead of explicit messages using MPI can become a problem. On the other hand
MPI based code can easily use multiple nodes. Developing MPI code is often more
complicated than employing OpenMP but on most cluster systems nowadays the
performance of distributed memory nodes clearly outperforms the performance of
shared memory nodes.

Hybrid implementations give no benefit for the chosen test-cases and seem not very
meaningful being used.

Using coprocessor technologies like GPUs can be very beneficial in terms of per-
formance, as the presented results demonstrate. Because of portability issues the
usage of OpenCL might be interesting and could be a step for future work.

The presented CG implementation works well for the test cases Laplace 2D, CFD
ACUSIM and CFD Rothberg, while showing bad performance for the test-case
Thermal 2 which is a worst case scenario for the implementation. This is because
the load balancing and communication patterns are bad. For the vector exchange
belonging to the matrix vector multiplication the selected gather communication is
used in all test cases except for Laplace 2D. In Laplace 2D neighbor communication
is used to exploit the matrix structure.

More experiments should be performed to evaluate for the MPI-based solvers how
different numbers of processes running on the nodes influence the performance and
accuracy on different machines. These experiments should go hand in hand with an-
alyzing the energy efficiency of the implemented solvers for certain problem classes.

4.9. Preconditioning in Parallel Solvers

There are many different types of preconditioners that can be used in combination
with (parallel) CG or GMRES solvers. In the following numerical results for two
frequently used preconditioners, namely Incomplete LU (ILU) and (Block-) Jacobi
(BJ respectively J) and their combinations are presented.

4.9.1. Incomplete LU Preconditioning. To reduce the number of itera-
tions of the iterative solver in a significant way is one main goal of a preconditioner.
In Table 4.13 the results of a ILU(0) preconditioner with no fill-in in combination
with a CG solver are presented. This combination is applied to the Laplace 2D
test-case and a factor of about two between the number of iteration steps can be
seen. An additional factor of about two compared to the ILU(0) can be achieved
by allowing a certain fill-in (ILUT ). Since the reference examples are very small
and the pure CG converges fast, the overhead to compute the preconditioner is
significantly high and no performance gain could be achieved. Therefore, perfor-
mance results are not presented and the author refers to the next section where
ILU-preconditioning is combined with Block-Jacobi approaches. All numerical re-
sults based on the ILU-decomposition have been performed by using the ILU++
library [May, May07].

Problem size CG CG + ILU(0) CG + ILUT

90.000 658 338 127
250.000 1,093 540 216
562.500 1,632 789 414

Table 4.13. CG iteration steps without, with ILU(0) and ILUT precondition-

ing for test case Laplace 2D with different number of unknowns. The threshold

parameter T was set to 10−2.
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In general it can be observed that building the preconditioner is often more expen-
sive then to perform a loop of the pure solver. Efforts to accelerate a solver should
take this fact into account. To outsource the preconditioner to a appropriate accel-
erator is one feasible approach.

4.9.2. Jacobi and Block-Jacobi Preconditioning. In the following, Block-
Jacobi preconditioners with the MPI-based CG implementation are evaluated for
the test cases CFD ACUSIM and CFD Rothberg. For the diagonal blocks the de-
fault ILU++ configuration 1010 is used performing a multilevel ILU preconditioner
using pivoting by columns (to avoid small pivots) and row permutation to reduce
fill-in [ilu].

From Table 4.13 and 4.15 it is visible that the number of iterations for the pure
CG is not constant when the resources (processes) are scaled. A slight decrease is
visible which can be explained by the results from Chapter 6 where it is shown that
a higher grade of parallelization can lead to more accurate results and so to a faster
convergence of the solver.

That there is no effect from Jacobi preconditioning for symmetric, positive define
matrices when the diagonal is constant can be seen in Table 4.15. This effect is
caused by the fact that on the diagonal, all entries are equal to one and is a special
case of the proposition from Chapter 1.5.1.

CG

no Jacobi Block-Jacobi Block-Jacobi Block-Jacobi
# Processes precond. - 1 Block 5 Blocks 10 Blocks

1 2466 777 5 85 117

2 2461 778 82 118 138

3 2458 778 72 122 159

4 2462 778 80 135 174

6 2456 780 98 159 195

8 2458 780 99 176 214

12 2447 776 114 195 249

16 2451 778 134 224 274

20 2451 777 135 240 289

Table 4.14. Iterations steps of CG using different preconditioners for test-case

CFD ACUSIM. The number of blocks is stated for every process and within
each block ILU++ in configuration 1010 was used.

Figure 4.39 and 4.43 show the runtime results without the preconditioner setup time.
Runtime results in Figure 4.40 and 4.42 include the preconditioner setup time for
the Block-Jacobi benchmarks. The setup times for the plain Jacobi preconditioner
are negligible. The speedup results for test-case CFD ACUSIM in Figure 4.41 are
with respect to the sequential Jacobi preconditioned CG solver. In test-case CFD
Rothberg the speedups are with respect to the sequential CG solver.
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CG

no Jacobi Block-Jacobi Block-Jacobi Block-Jacobi

# Processes precond. - 10 Block 50 Blocks 100 Blocks

1 8193 8193 1299 1103 1569

2 8190 8190 726 1567 1829

3 8185 8185 837 1657 1875

4 8182 8182 1000 1818 1963

6 8184 8184 1202 1884 2235

8 8182 8182 1426 1986 2219

12 8173 8173 1613 2188 2581

16 8183 8183 1751 2192 2685

20 8183 8183 1818 2401 3039

24 8172 8172 2005 2498 3292

32 8183 8183 1981 2735 3798

40 8172 8172 1954 3026 4019

48 8179 8179 2176 3278 4440

Table 4.15. Number of iterations of a CG solver in combination with different

preconditioners for the test-case CFD Rothberg. The number of blocks is stated
for every process and to each block ILU++ in configuration 1010 was applied.

Figure 4.35. Comparison of a non-preconditioned MPI solver and a Jacobi-
preconditioned solver for the test-case CFD ACUSIM.

Figure 4.36. Speedups according to the results in 4.35.
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Figure 4.37. Comparison of a non-preconditioned MPI solver and a Jacobi-

preconditioned solver for the test case CFD Rothberg.

Figure 4.38. Speedups according to the results in 4.37.

Figure 4.39. Runtime results of the unpreconditioned MPI solver, different

Block-Jacobi preconditioned solvers and the Jacobi preconditioned solver for
the test case CFD ACUSIM. The Block-Jacobi preconditioned solvers use one,

five and ten blocks per process. Furthermore, the preconditioner setup time is

not included.
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Figure 4.40. Runtime results including preconditioner setup time of the un-

preconditioned MPI solver, different Block-Jacobi preconditioned solvers and
the Jacobi preconditioned solver for the test case CFD ACUSIM. The Block-

Jacobi preconditioned solvers use one, five and ten blocks per process.

Figure 4.41. Speedup results of the unpreconditioned MPI solver, different
Block-Jacobi preconditioned solvers and the Jacobi preconditioned solver for

the test case CFD ACUSIM. The Block-Jacobi preconditioned solvers use one,

five and ten blocks per process.

Figure 4.42. Runtime results including preconditioner setup time of the un-
preconditioned MPI solver, different Block-Jacobi preconditioned solvers and

the Jacobi preconditioned solver for the test case CFD Rothberg. The Block-

Jacobi preconditioned solvers use 10, 50 and 100 blocks per process.
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Figure 4.43. Runtime results of the unpreconditioned MPI solver, different

Block-Jacobi preconditioned solvers and the Jacobi preconditioned solver for
the test case CFD Rothberg. The Block-Jacobi preconditioned solvers use 10,

50 and 100 blocks per process. Furthermore, the preconditioner setup time is

not included

Figure 4.44. Speedup results of the unpreconditioned MPI solver, different

Block-Jacobi preconditioned solvers and the Jacobi preconditioned solver for
the test case CFD Rothberg. The Block-Jacobi preconditioned solvers use 10,

50 and 100 blocks per process.

The presented results indicate that there is a tradeoff between preconditioner setup
time and the acceleration of the solver by the preconditioner. Block-Jacobi precon-
ditioners with good acceleration properties often show high setup times compared
to the solver time. In contrast, the Block-Jacobi preconditioners with faster setup
times lead to more iteration steps of the iterative solver. The smaller the dimension
of the blocks used by the Block-Jacobi preconditioner the faster is the setup time
and therefore users should choose the right combination of blocks used in the pre-
conditioner, factorization of the blocks and also the level of parallelization according
to their application.



CHAPTER 5

Prototypical Evaluation of Hardware Capabilities

Essential for an efficient usage of modern hardware resources is a deep understanding
of the available capabilities. Such can be very different from machine to machine and
are depending on the hardware components, e.g. architecture of the processor(s),
memory, chip-set, accelerators, interconnect and other involved components.

This chapter shows prototypical approaches for evaluating cluster systems (Chapter
5.1), as well as systems that are equipped with GPUs (Chapter 5.2) or FPGAs
(Chapter 5.3). Finally, an inter-architectural comparison in terms of performance
is shown (Chapter 5.4) based on the iterative refinement method.

Parts of this chapter have already been reviewed, presented and published on the
SIAM-Conference on Parallel Processing for Scientific Computing (Seattle, Wash-
ington February 2010), the PARS workshop (arranged by the Gesellschaft für Infor-
matik; Parsberg, Germany June 2009) and the EMCL-preprint series. Associated
publications are [AHHRed], [ARH10] and [HRR09].

5.1. Cluster Computing

Most cluster systems used today for high-performance scientific computing are built
from off-the-shelf standard components placed in racks. Usually this leads to pre-
dictable results with respect to the available performance based on similar hardware.
When more exotic hardware shall be tested, as many information as possible should
be gathered in order to tailor numerical methods and implementations as good as
possible for the system.

SiCortex has chosen a strategy not to use standard components and offers a line of
integrated cluster machines based on a customized low-frequency MIPS multicore
processor and a specialized network fabric.

Investigated is the potential of the SiCortex platform for numerical simulation by
analyzing the performance of a set of elementary benchmarks and two fluid dynam-
ics applications executed on the SC072 and the SC5832 systems. The elementary
benchmarks quantify the performance in terms of computation rate, memory band-
width and communication latency. The fluid dynamics applications provide insight
into how well existing scientific code performs on the system. The results are com-
pared to those obtained on a commodity cluster with Intel Xeon cores and Infiniband
interconnect. The focus of the evaluation is computational performance, but also
the energy consumption for all three machines is considered.

The presented results indicate that while the SiCortex systems might be well suit-
able for applications that can be parallelized to a very fine level, they are outper-
formed by commodity clusters when this is not the case. However, an analysis of the
CFD applications shows that the SiCortex systems make it possible to significantly
reduce the energy consumption compared to a commodity cluster.

83
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During the past years systems composed of off-the-shelf components have dominated
the market for high performance computing clusters. A company building machines
in a different way is SiCortex with the products SC072 and SC5832. These systems
are based on low-frequency MIPS64 cores and use a customized interconnect for
communication. The idea is to provide a machine that better balances the compu-
tation rate of the CPU and the memory bandwidth by spreading the computations
over a very large number of cores. For applications that can be parallelized with
a fine granularity, the low-power nodes are thought to have the potential to also
reduce the energy costs of large scientific computations.

This chapter presents the results of several benchmarks performed on the SC072,
the SC5832, and a commodity cluster based on Intel Xeon cores and Infiniband
interconnect. The benchmarks include both elementary kernels and two full appli-
cations that solve a problem in fluid dynamics.

A description of the hardware and software used for the tests is given in Sec-
tions 5.1.1 and 5.1.2. The results of the benchmarks are presented in Sections 5.1.3
and 5.1.4. Section 5.1.5 summarizes the analysis of these results.

5.1.1. Hardware Description. This section gives an overview of the three
cluster systems used in the tests.

The SiCortex SC5832 is a single cabinet machine with 36 circuit modules each
accommodating 27 SiCortex node chips and associated memory [SiC]. Each node
hosts a six-core MIPS64 processor with a clock rate of 700 MHz. The most impor-
tant specifications of the machine used for the test are listed in Table 5.1.

All nodes on the SC5832 can communicate via a customized interconnect, which
is based on a Kautz-graph topology of degree 3 and diameter 6. In this network
topology, there are 3 disjoint paths from each node to any other node, which provides
fault tolerance in the case that a node or link fails. A maximum of 6 hops are
required to transmit a message between any two nodes.

The SiCortex SC072 is the desktop version of the bigger SiCortex machine and
contains 12 nodes with 72 cores in total. The diameter of the Kautz-graph with
degree 3 is 2 for this machine. The machine used for the test is equipped with 8
GB of main memory per node. A performance analysis of an earlier version of the
SC072 is available in [MLID09].

The commodity cluster used for the comparison is the Institutscluster IC1 located
at the Steinbuch Centre for Computing (SCC) [fC] at the former University of
Karlsruhe, now Karlsruhe Institute for Technology (KIT) [oT]. It consists of five
cabinets containing a total of 200 computing nodes, each equipped with two Intel
quadcore EM64T Xeon 5355 processors with Clovertown architecture running at
2.667 GHz. The interconnect used is Infiniband 4x DDR.

Table 5.1 summarizes the characteristics of these three systems. Most values come
from the specifications given by the respective manufacturers. The values for the
power consumption come from three sources: for the SC072, the power was mea-
sured with a wattmeter by the authors; for the SC5832, the power was taken from
a webpage of the University of Magdeburg [Sch]; and for the IC1, the values were
communicated from the SCC. The values of the Linpack benchmark computation
rate come from own measurements (SC072), the HPCC results database (SC5832)
and the website of the SCC (IC1).

5.1.2. Software Description. The benchmarks that were used fall into two
categories: elementary kernel benchmarks, which aim to measure an isolated aspect



5.1. CLUSTER COMPUTING 85

SC072 SC5832a IC1b

Nodes 12 972 200
Processors per node 1 1 2
Cores per processor 6 6 4
Th. comp. rate / core 1.4 GFlop/s 1.4 GFlop/s 10.7 GFlop/s
Th. comp. rate / node 8.4 GFlop/s 8.4 GFlop/s 85.3 GFlop/s
Th. comp. rate full machine 100.8 GFlop/s 8.2 TFlop/s 17.6 TFlop/s
Linpack full machine 56.6 GFlop/s 4.73 TFlop/sc 15.2 TFlop/s
L2-cache per processor 1.5 MB 1.5 MB 8 MB
Memory per node 8 GB 4 GB 16 GB
Memory full machine 92 GB 4 TB 32 TB
Memory bandwidth per node 10.7 GB/s 10.7 GB/s 10.7 GB/s
Power consumption load 330 W 21 kW 103 kW
Power consumption idle 230 W 11 kWd 56 kW

aThe evaluated machine is located at the computing center of the University

of Magdeburg. (See [Sch])
bSee http://www.rz.uni-karlsruhe.de/ssck/ic.php
cSee [HPC]
dSee [Sch]

Table 5.1. Key system characteristics of the three clusters used for the tests.

of the performance of the machine, such as its floating point computation rate, its
memory bandwidth or its interconnect communication speed; and a computational
fluid dynamics (CFD) application benchmark, which gives an indication of how
well the systems perform on typical scientific simulations. This section presents an
overview of the software used to test the machines.

On the IC1 the Intel compiler version 10.1.022 was used together with the Intel
MKL 10.1 numerical library. On the SiCortex machines the Pathscale compiler and
ATLAS BLAS 3.7.32 for the benchmarks is used.

5.1.2.1. Elementary Benchmarks. HPCC Suite: The HPC Challenge Bench-
mark is a suite of seven benchmark kernels created by the DARPA HPCS program
[DL05]. Together they provide a more balanced view of the performance of general-
purpose HPC systems than the classical Linpack benchmark, whose performance
is limited mainly by the rate of floating point arithmetic that the processors are
capable of. In the present work, the focus lies on two of the benchmarks: the
MPI ping-pong latency and the STREAM triad tests. Full benchmark results for
the SC5832 are available in the HPCC results database [HPC]. LLCbench: The
LLCbench benchmark collection consists of three parts, aiming to measure the per-
formance of simple linear algebra functions (Blasbench, [MLT98]), the performance
of the memory hierarchy (Cachebench, [MLT99]) and the speed of the communica-
tions interconnect (MPbench). This report includes results obtained with the first
two of these benchmarks.

5.1.2.2. Application Benchmarks. The numerical simulation test case is a stan-
dard example in fluid dynamics: 3D stationary lid-driven cavity on a cuboid.
This problem is solved with the finite element software HiFlow and the Lattice-
Boltzmann software OpenLB.

HiFlow: The HiFlow package is a parallel, finite element library with a strong
emphasis on computational fluid dynamics and is written in C++. The library
includes the following features:



86 5. PROTOTYPICAL EVALUATION OF HARDWARE CAPABILITIES

• CFD (incompressible Navier-Stokes, Low-Mach flows, heat convection)
• Reactive flows
• Eigenvalue computation for stability analysis
• Conforming h- and hp-FEM
• A posteriori error estimation for FEM
• Moving boundaries

HiFlow uses the PETSc [BBE+08, BBG+09, BGMS97] and METIS [KK99]
libraries for solving this linear system in parallel on all three machines. Meanwhile
the HiFlow package is available as Open Source project under the name HiFlow3

[AAB+10] while the shown benchmarks have been performed with the predecessor
of HiFlow3.

OpenLB: The OpenLB project [Ope] provides a publicly available C++ library
mainly intended for researchers and engineers who simulate fluid flows by means of
lattice Boltzmann methods [LBM]. The library includes the following features:

• Flows in complex geometries
• Turbulent flows
• Multiphase flows
• Thermal flows

The library enables a fast implementation of both simple applications and advanced
CFD problems. It is easily extensible to take into account new physical models.

The used version of OpenLB is capable of hybrid parallelization using MPI for inter-
nodal communication and OpenMP within the nodes. For a deeper analysis of the
parallelization see [HKL09].

5.1.3. Elementary Kernels Performance Results.

5.1.3.1. HPCC MPI-latency Results. The MPI latency benchmark from the
HPCC benchmark suite measures the latency of the communication between two
cores by sending messages from one core to another. The message size for the test
is 8 bytes. All pairs of cores are used in the test, and the minimum, maximum and
average values of the latency are reported. The test was run using different number
of nodes, with either one or all cores per nodes active, and the results are shown in
Fig. 5.1.

The spread of the latency on the SC072 machine is very small due to the fact that
either one or two hops are required for communication between any two cores. On
the SC5832 where the topology has diameter 6, the spread is a little larger. Much
larger fluctuations are seen on the IC1, which has a fat-tree topology. [GS05] pro-
vides more information on network topologies and their impact on communication
performance.

When all cores per node are used, the IC1 has a lower minimum latency than the
SiCortex machines. A comparison with the test with one core per node shows that
this minimum corresponds to communication within a single node. The average
latency on the IC1 is circa 2 μs with 4 nodes and almost 3 μs with 9 nodes. On the
SiCortex machines, the average latency with both 12 and 72 nodes is less than 1.5
μs, which indicates a better scalability with respect to this metric than the IC1.

5.1.3.2. Cachebench Results. On each of the three clusters the Cachebench
benchmark was run on a single core. Results for the SC5832 and the IC1 are
shown in Fig. 5.2 and Fig. 5.3. The corresponding graph for the SC072 has been
omitted since the results were practically identical to those of the SC5832.
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Figure 5.1. MPI Ping-Pong latency. The graph shows the average and the

variation around this value.

Figure 5.2. Performance of memory hierarchy on the SC5832 which are sim-
ilar for the SC072.

The effect of the use of cache memory on both machines is obvious from the graphs.
The L1-cache of both processors has the same size (32 kB) but the bandwidth
on the Xeon processor is approximately 8 to 10 times higher on the read and write
operations. The L2-cache, which in contrast to the L1-cache is not exclusive for each
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Figure 5.3. Performance of memory hierarchy on the IC1.

core, is considerably larger on the Xeon processors. It can be shared dynamically
on the Intel processor, but not on the SiCortex, which leads to a steeper decrease in
bandwidth on the latter system when the data cannot be held in this cache memory.

For arrays which fit into the L1 cache on the IC1, the memset and memcpy op-
erations perform considerably better than the hand-coded write and read-modify
operations; while on the SC5832, the difference in performance is minor. Clearly,
the system calls have been tuned to take advantage of the special features of the
Intel architecture, while the same is not true for the SiCortex MIPS platform. For
large arrays, the hand-coded versions are equivalent or better than the library calls.

For applications that intensively access the memory, the most important information
that can be extracted from the graphs is the bandwidth to the main memory,
which can be read at the far right of each graph. The bandwidth on the IC1 is
approximately 7.5 times higher than that of the SC5832 for the read operation, and
4.9 times higher for the write operation.

5.1.3.3. HPCC STREAM Results. The STREAM benchmark evaluates the mem-
ory performance within one node by performing a vector operation on an array of
data that does not fit into the L2 cache. The test has two different modes: “single”
mode, where the test is run only on one randomly chosen core; and “star” mode,
where all active cores run the test. The star mode makes it possible to measure the
degradation of the memory bandwidth when all cores on a node require access to
the memory controller simultaneously.

The graph in Fig. 5.5 shows the result of the triad (z = αx + y) operation for
different numbers of nodes. In each configuration either one or all cores were active
on each node. When only one core is active on each node, the single and star modes
give the same results, as one would expect.

The bandwidths achieved in single mode correspond to those measured with the
Cachebench benchmark. The results for the copy operation are similar to those
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of the triad since the performance of both operations are limited by the memory
bandwidth and not by the computational rate.

Figure 5.4. Single- and Star-STREAM copy performance for SC072, SC5832

and IC1.

Figure 5.5. Single- and Star-STREAM triad performance for SC072, SC5832

and IC1.

On the IC1 cluster, the measured bandwidth is reduced drastically when going
from the single mode to the star mode, whereas on the SC072 and the SC5832
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this reduction is much less pronounced. This suggests that the memory bandwidth
is less likely to be a bottleneck when scaling an application from one to six cores
per node on the SiCortex systems than on the IC1. On the latter system, the
time of execution of a parallel application can often be reduced by spreading the
processes over more nodes and using fewer cores on each node, in order to increase
the available memory bandwidth. The results of the STREAM benchmark suggest
that the same is not likely to be true on the SiCortex machine.

However, it should not be forgotten that even when all cores are used, the measured
bandwidth is 50% higher on the IC1 than on the SiCortex machines.

Figure 5.6. Random access rate in GUP/s.

5.1.3.4. Blasbench Results. The Basic Linear Algebra Subroutines (BLAS) are a
central part of many scientific computing codes. The Blasbench test-suite measures
the single-core computation rate of a kernel from each of the three levels of the
BLAS. These kernels are daxpy, dgemv, and dgemm, which respectively compute
vector-vector, matrix-vector and matrix-matrix multiplications.

Figures 5.7 and Figurefig:8b show the results of the Blasbench test on the SC5832
and IC1, respectively. The graph for the SC072 is omitted since it is identical to
that of the SC5832.

All three kernels show an increase in computation rate with the characteristic size
of the problem N up to a certain limit, where the curves flatten out. On the IC1,
the performance is higher for problem sizes up to N = 1024, since the data can fit
into the L2 cache. On the SC5832, this effect is absent, which suggests that the
ATLAS BLAS implementation does not make efficient use of the cache.

Overall, the daxpy operation is over 22 times faster on the IC1 than on the SiCortex
machines, and the dgemv operation is 8 times faster. For dgemm, the IC1 is 9.5
times faster, which should be compared to the ratio 7.6 in theoretical peak com-
putation rate between the two platforms. The IC1 achieves circa 90% of its peak
performance with the dgemm kernel, while the SiCortex systems reaches only about
70% efficiency. It seems clear that the highly optimized Intel MKL implementation
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Figure 5.7. Single core BLAS performance on the SC5832. The performance

on the SC072 and the SC5832 is identical.

Figure 5.8. Single core BLAS performance on the the IC1.

on the Intel processors significantly outperforms the ATLAS BLAS library on the
SiCortex MIPS64 processors.

It should however be noted that the IC1 shows some irregular but reproducible
variations with the problem size which are not present on the SiCortex systems.

5.1.4. Performance and Energy Efficiency of Applications.

5.1.4.1. Test case for HiFlow. The test case for the CFD package HiFlow is
a standard example: 3D lid-driven cavity (LDC) on a cuboid. The geometry is
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uniformly refined to 65536 cells and the incompressible Navier-Stokes equations are
solved for a stationary solution with Q2 elements for the velocity and Q1 elements
for the pressure. The number of unknowns in the resulting linear system of equations
is approximately 1.7 million.

Fig. 5.9 shows the time taken to assemble and solve the lid-driven cavity problem
with different number of processes distributed in different ways over the nodes on
the three clusters. For all three machines, there is a point after which the gain in
performance for each added process starts decreasing. This phenomenon, which is
typical when a fixed problem size is used, is due to Amdahl’s law, which states that
the gain in speed from parallelization is limited by the fraction of time spent in
sequential code.

Overall, the slope of the curves is similar for the SiCortex machines and the IC1 up
to approximately 128 processes, at which point the performance increase with each
added process falls off rapidly on the SiCortex systems.

Figure 5.9. Execution time for 3D lid-driven Cavity with HiFlow on the IC1,
SC072 and SC5832. Incompressible Navier Stokes equations are solved with

1,705,860 degrees of freedom.

As was seen for the STREAM benchmark in Section 5.1.3.3, this test shows the
impact of the memory bandwidth limitation on the IC1 through the fact that the
execution with 1 core per node is more than twice as fast as with 8 cores per node.
No such difference exists on the SiCortex systems, which can be interpreted as if
the SiCortex systems have a better balance between computation rate and memory
bandwidth. The fact remains, however, that the execution time on the IC1 is much
lower than on the SiCortex machines. As an example, with 96 processes, the IC1
solves the problem 9.4 times faster than the SC5832 with one core per node and 3.8
times faster with eight cores per node. These performance ratios are similar also
with other numbers of processes.

The main promise of the SiCortex systems is not computation speed but rather
efficiency in terms of energy. It is therefore interesting to investigate this aspect of



5.1. CLUSTER COMPUTING 93

Figure 5.10. Execution time for 3D Lid Driven Cavity with HiFlow on IC1,

SC072 and SC5832. Incompressible Navier-Stokes equations are solved with

1.705.860 degrees of freedom.

the cluster systems. By deducing the power consumption P under load per node
from the values given in Table 5.1, 514 W per node on the IC1, 21 W on the SC5832
and 28 W on the SC072 are obtained. With these values, it is possible to estimate
the total amount of energy E that is been spent for a computation which takes t
seconds through the relation E = P · t.
Fig. 5.12 shows the energy consumption as a function of the time taken to solve the
problem. As long as the execution time scales perfectly with the number of cores,
the curves are flat, since the increase in power from using more cores is compensated
by a corresponding decrease in execution time. Using one core per node on the IC1
clearly makes it possible to solve the problem in the shortest time, but the energy
cost is very high. To lower the energy consumption, all cores should be used on each
node. For execution times over 1300 s, where the scaling is good on the SC5832, the
energy consumption for a fixed execution time on this machine is between 3 and 4
times lower than on the IC1. Hence, if one can afford to let the computation take a
longer time to finish, large energy savings are possible on the SiCortex system. Fig.
5.11 shows the energy consumption as a function of the number of processes for
the different configurations. As long as the scaling is good, the increase in energy
consumption from using more cores is small, because each added core brings about
an almost proportional decrease in the computation time. For large numbers of
processes, adding a process no longer decreases the computation time very much,
and will therefore increase the energy consumption.

In absolute figures, the solution can be obtained with a much lower energy con-
sumption on the SiCortex machine than what is possible on the IC1, despite the
longer execution times. Using only one core per node is obviously very wasteful
from an energy perspective, but this practice is not uncommon among users on
the IC1, who want to avoid the bottleneck of the limited memory bandwidth, and
obtain their results as fast as possible.
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Figure 5.11. Energy consumption in relation to the utilized resources for

solving the Navier-Stokes equations on a cube with finite elements. The prob-

lem size is constant with 1.7 million unknowns in the discretized linear system
of equations. On IC1 and SC5832, configurations with one and all cores per

node were tested; while on SC072 twelve nodes were always used, with different

number of cores.

5.1.4.2. Test case for OpenLB. The test case for the Lattice Boltzmann/CFD
package OpenLB was again the 3D lid-driven cavity simulation, this time with an
instationary flow on a cubic geometry. A Lattice Boltzmann method with D3Q19
discretization model was used as explained in [HKL09]. In order to decrease the
execution time of the tests, only the first twenty time steps were computed, although
a typical simulation would use many more time steps. The execution time was
therefore dominated by the time to initialize the data structures; whereas in a real
computation this time would be negligible. Hence the initialization time was not
taken into account for the time measurements.

The size of the problem was scaled with the number of processes used so that when
the scaling is perfect, the computation time should stay constant. The problem size
was chosen differently on IC1 and SC5832, in order to obtain approximately the
same execution time on both systems.

Disregarding the initialization time, both the execution time and memory consump-

tion of the program scale as O(N
3

p ) where N is the number of discretization points

in each dimension and p the number of processes. In order to keep the execution
time T constant when varying p, the following relation was used to determine the
size of the problem: N = �α 3

√
p�. For the results shown in Fig. 5.13, α = 100

was used on the SC5832 and α = 180 was used on the IC1, which makes the latter
problem almost 6 times bigger than the former.

The results achieved with OpenLB are representative for explicit methods which
are usually limited by the available memory bandwidth. The results in Fig. 5.14
show that the computation time stays approximately constant, which indicates that
this code scales well on both machines.
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Figure 5.12. Energy consumption in relation to the computation time for

solving the Navier-Stokes equations on a cube with finite elements. The prob-

lem size is constant and leads to a linear system with 1.7 million unknowns. On
the IC1 and SC5832, configurations with one and all cores per node were tested;

while on the SC072 twelve nodes were always used, with different number of

cores per node.

Figure 5.13. Execution time for 20 timesteps of 3D lid-driven Cavity with

OpenLB on the IC1 and SC5832 without initialization time. The problem was
scaled according to Figure 5.14.

5.1.5. Conclusion. The results of the benchmarks have given some insight
into the characteristics of the integrated and custom-designed SiCortex SC072 and
SC5832 cluster systems. Their performance has been compared to that of the IC1,
which is a system assembled from off-the-shelf components from different vendors.

In terms of floating-point computation rate for each core, the SiCortex systems are
clearly inferior to the IC1. Sequential parts of an application thus have a larger risk
to become a limiting factor on the SiCortex system than on the commodity cluster.

The ability to fully exploit multicore processors is often limited by the bottleneck
associated with access to the main memory. The HPCC STREAM results show
that this bottleneck has been removed on the SiCortex systems, whereas it is very
significant on the IC1. This observation is confirmed through the CFD application
benchmark, where the IC1 exhibits a large difference in execution time when only
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Figure 5.14. Scaling of the problem size according to N = �α 3
√
p�. α = 100

on the SC5832, and α = 180 on the IC1.

one core per node is used instead of all cores. On the SiCortex machines, all cores
per node can be used without performance degradation.

On the other hand, the absolute performance of the SiCortex nodes is somewhat
disappointing: the IC1 performs 50% better in the HPCC STREAM benchmark,
and is 8 times faster on the BLAS dgemv operations. There seems to be room for
improvements both of the hardware and the software.

When a full node is used, the IC1 also outperforms the SiCortex systems, but
the ratio in performance is usually smaller than for a single core, even though the
number of cores per node is higher on the IC1. One reason for this is that the
memory bandwidth becomes a limitating factor on the IC1 to a larger extent than
on the SiCortex machines. This is illustrated by the results of the HPCC STREAM
benchmark, which indicate that the SiCortex cores are so slow that common scien-
tific computations are not limited by the bandwidth of the memory.

In order to achieve comparable execution times with a given application on the
slower processors in the SiCortex system, it is necessary to spread the computation
over a larger number of nodes. This is made possible by the low latency of the
system’s network. The potential for exploiting a large number of cores is also
determined by the scalability of the software. For the tested parallel fluid dynamics
codes the SC5832 performs well compared to the IC1. The finite element CFD
application requires 4 to 5 times more cores on the SiCortex machine than on the
IC1 to achieve the same computation time, when all cores per node are used. The
Lattice-Boltzmann approach also scales very well.

The SiCortex machines can also be used in a more energy efficient way than the x86
cluster. For a fixed computation time, an execution of the finite element application
on the commodity cluster consumes between 3 and 4 times more energy, when all
cores per node are used. In view of current environmental concerns, this makes the
SiCortex platform a very interesting alternative for tasks that are not time-critical.
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5.2. GPU-Accelerated Scientific Computing

Recently, the number of users and lines of code taking advantage of the compu-
tational power of accelerators, especially GPUs, grew enormously. One reason is
the facilitated programmability of GPUs by NVIDIA’s CUDA and OpenCL (see
Chapter 2.2.3). With the introduction of full double precision support on GPUs,
many scientific projects started using e.g. finite difference and finite element tech-
niques for the solution of systems of partial differential equations (PDEs) using GPU
hardware. Since 2003, several papers described the solution of the Navier-Stokes
equations for incompressible fluid flow on the GPUs [BFGS03, KW03] or other
boundary value problems [GLLS03]. An analysis of a meteorological simulation
for tropical cyclones and an implementation of rigid particle flows on GPUs can be
found in [HHR09b].

With the introduction of built-in double-precision support and IEEE754 compatibil-
ity, GPUs evolve towards universally usable processing units. Still, their paradigm
is related to former graphics stream processing: The same series of operations is
applied to every element of a set of data (i.e. a stream). Operations of a kernel
are pipelined, such that many stream processors can process the stream in parallel.
The limiting factor in this context is memory latency, especially when data depen-
dency is high and data locality is low. GPUs always try to hide memory latency
by executing many kernel instances in parallel on the same core. Switching these
lightweight “threads” and operating on other register sets can be done in just a few
cycles, whereas the cost of fetching data from the global memory extends several
hundreds of cycles.

While the problem described above is often inherent for many-core computing,
other restrictions of stream processing techniques have been addressed in CUDA,
which offer e.g. gather and scatter operations on the global graphics memory.
Furthermore, CUDA-capable devices can be programmed with slightly extended
C and runtime libraries, including hardware support for double precision (obeying
IEEE 754).

In fall 2009 NVIDIA released their new chip architecture ”Fermi”. In the following,
the utilization of this new architecture is for scientific computing is evaluated and
compared to former generations.

5.2.1. Hardware Description. As hardware platform for the evaluation ac-
celerators from the actual and previous generation have been chosen both from
the NVIDIA professional line (Tesla), as well as from the NVIDIA consumer line
(GeForce). A very detailed schematic overview of the GT200 respectively T10 GPU
is given in Figure 2.4 in Chapter 2.1.4. In Table 5.2 the main architectural and the-
oretical performance characteristics of the GPUs are explained. Additionally, the
systems hosting the GPUs are shown in Tabular 5.3 where also measurements of
key system properties are given.

5.2.2. Elementary Kernels Performance Results. In a first step, mea-
surements of the bandwidth on the host side of system as well as of the devices
are given in Tabular 5.3. In a second step benchmarks of some elementary kernels
are shown. Beside dot-products, vector updates, scalar-products, matrix-vector
and matrix-matrix operations are performed both in single and double precision.
All measured peak performances are also shown in Table 5.4. Figure 5.15 to 5.19
illustrate the progression of the performance curve of the respective kernel.
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Name Tesla C2050 Tesla C1060 GTX 480 GTX 280

Chip T20 T10 GF100 GT200a
Transistors ca. 3 Mrd. ca. 1,4 Mrd. ca. 3 Mrd. ca. 1,4 Mrd.
Core frequency 1.15 GHz 1.3 GHz 1.4 GHz 1.3 GHz
Shaders (MADD) 448 240 480 240
GFLOPs (single) 1030 933 1.345 933
GFLOPs (double) 515 78 168 78
Memory 3 GB GDDR5 4 GB GDDR3 1.5 GB GDDR5 1 GB GDDR3
Memory Frequency 1.5 GHz 0.8 GHz 1.8 GHz 1.1 GHz
Memory Bandwidth 144 GB/s 102 GB/s 177 GB/s 141 GB/s
ECC Memory yes no no no
Power Consumption 247 W 187 W 250 W 236 W
IEEE double/single yes/yes yes/partial yes/yes yes/partial

Table 5.2. Key system characteristics of the four GPUs used for the tests.

Computation rate and memory bandwidth are peak respectively theoretical
values.

Host Device

CPU MEM BW H2D GPU MEM BW D2H CC
[GB] [GB/s] [GB/s] [GB] [GB/s] [GB/s] ECC

2 x Intel Xeon 32 12.07 PA: 3.25 Tesla T20 3 BT: 91.28 PA: 2.51 2.0
(E5520, 4 cores) PI: 5.86 daxpy: 82.5 PI: 4.75

ddot: 88.3 Yes
2 x Intel Xeon 16 6.14 PA: 1.92 Tesla T10 4 BT: 71.80 PA: 1.55 1.3
(E5450, 4 cores) PI: 5.44 daxpy: 83.1 PI: 3.77

ddot: 83.3 No
1 x Intel Core2 2 3.28 PA: 1.76 GTX 480 1.5 BT: 108.56 PA: 1.38 2.0
(6600, 2 cores) PI: 2.57 daxpy: 135.0 PI: 1.82

ddot: 146.7 No
1 x Intel Core i7 6 12.07 PA:5.08 GTX 280 1.0 BT: 111.54 PA: 2.75 1.3

(920, 4 cores, SMT on) PI:5.64 daxpy: 124.3 PI: 5.31
ddot: 94.81 No

Table 5.3. Systems’ configurations. The abbreviations are as follows: MEM
is the amount of memory, BW the Bandwidth, H2D denotes the Host to Device

bandwidth via PCIe and D2H the other way round, CC is the CUDA ’compute’
capability and ECC is the availability of error correcting memory. PA means

pageable memory is allocated, PI denotes the usage of pinned memory.

Figure 5.15. Performance of the dot routine performed in single (sdot) and
double precision (ddot).

Except for the multiplication of two matrices with each other, all operations are
limited by the bandwidth of the GPU memory and the performance stays signifi-
cantly below the theoretical peak performance. Since there are not major changes
in the architecture of the GPUs, the behavior is usually similar to each other.
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Figure 5.16. Performance of the 2-norm routine performed in single (snrm2)

and double precision (dnrm2).

Figure 5.17. Performance of the vector scale and add routine axpy performed
in single (saxpy) and double precision (daxpy).

Figure 5.18. Performance of dense matrix vector multiplication routine per-

formed in single (sgemv) and double precision (dgemv).

Figure 5.19. Performance of the general matrix matrix multiplication routine
gemm performed in single (sgemm) and double precision (dgemm).
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Experiment Setup Performance (GFLOP/s)
Routine Data size C2050 C1060 GTX 480 GTX 280

sdot 185364 9.27 6.50 12.36 8.24
sdot 39903170 29.83 18.41 38.17 29.11
ddot 110218 5.38 3.50 6.68 4.16
ddot 39903170 18.79 11.03 19.38 12.48
snrm2 185364 7.72 4.88 9.76 7.41
snrm2 39903170 44.34 26.47 48.72 48.99
dnrm2 110218 3.06 1.79 3.39 1.79
dnrm2 39903170 22,74 13.49 33.22 19.22
saxpy 185364 11.96 8.62 14.83 11.23
saxpy 39903170 23.83 13.23 22.08 19.16
daxpy 110218 6.68 4.59 7.87 5.80
daxpy 39903170 12.54 6,92 11.33 10.52
sgemv 8192 58.19 34.63 68.72 40.49
dgemv 4096 25.39 14.74 29.69 19.52
sgemm 4096 330.17 367.61 430.40 368.75
dgemm 2048 174.21 74.40 161.97 73.76
Table 5.4. Performance for the elementary kernels for special data sizes.

5.2.3. Iterative Refinement and Pure CG Solver. Evaluated is the per-
formance of an implementation of the CG-algorithm (see Algorithm 7) based on the
CSR-data format. The linear system is obtained from a finite element discretization
of the Laplace equation on a unit square using linear test-functions, which is equiv-
alent to a finite differences discretization based on the 5-point-stencil. The matrix
has the following characteristics: 4.000.000 degrees of freedom (dofs) and 19.992.000
nonzero entries (nnz). All computations run exclusively on the accelerator and are
performed in double precision, the absolute stopping criteria (see Chapter 1.6) for
the residual is set to 10−6.

First the performance results for the itemized kernels within the CG are presented
and afterwards the complete runtime for the solver:

C2050 C1060 GTX 480 GTX 280

ddot (sec) 0.000725 0.000768 0.000436 0.000675
ddot (Gbyte/s) 88.28 83.33 146.78 94.81
ddot (GFlops/s) 11.03 10.42 18.35 11.85

dscale+daxpy (sec) 0.00185 0.001916 0.001153 0.001285
dscale+daxpy (Gbyte/s) 51.89 50.10 83.26 74.71
dscale+daxpy ( GFlop/s) 4.33 4.18 6.94 6.23

dcsrgemv (sec) 0.0187 0.019591 0.011527 0.013145
dcsrgemv (Gbyte/s) 17.10 16.33 27.75 24.34
dcsrgemv (GFlop/s) 2.14 2.04 3.47 3.04

daxpy (sec) 0.001163 0.001151 0.000711 0.000772
daxpy (Gbyte/s) 82.55 83.41 135.02 124.35
daxpy (GFlop/s) 6.88 6.95 11.25 10.36

Table 5.5. Performance evaluation of elementary kernels of the CG-algorithm
on the four evaluated accelerators. All measurements are performed in double

precision.
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Figure 5.20. Runtime of the CG algorithm for the Laplace test case for the
four evaluated accelerators. tc employs the use of texture cache, ntc without

using it.

Beside the computational performance energy efficiency becomes more and more
important for customers from academia and industry. Presented are results based
on the theoretical peak power consumption of the accelerators from Tabular 5.2 and
the runtime for the CG solver.

Figure 5.21. Energy consumption in Watt hours (Wh) for the Laplace test

case for four evaluated accelerators. tc employs the texture cache, ntc does
not.

To be able to evaluate the computational power of the hardware platform in a
more complex application, a GPU-implementation of a plain GMRES-(30) solver is
used and a mixed-precision iterative refinement implementation based on the same
solver. Mixed precision iterative refinement methods, as described in Chapter 3.1
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use a less complex floating point format for the inner error correction solver, and
are therefore able to exploit the often superior low precision performance of GPUs.

Both, the plain double GMRES-(30) and the mixed precision variant use the relative
residual stopping criterion of ε = 10−10 ‖ r0 ‖2, while εinner = 10−1 ‖ ri ‖2 was
chosen as inner stopping criterion for the error correction variant. As right hand
side a vector with ones for every entry and the zero-vector for the initial guess have
been used.

In case of the here evaluated mixed precision iterative refinement implementation,
the error correction solver is performed on the GPU, while the solution update is
led to the CPU of the same system. This enables to handle larger problems, since
the available memory on the GPU is usually very limited.

As test problems, three systems of linear equations CFD Venturi 2D 1, 2 and 3
affiliated with the 2D modeling of a Venturi Nozzle in different discretization fineness
are used. Detailed information as well as sparsity plots for the smallest and largest
CFD matrix can be found in Table 4.7. As base for the comparison, the total
computation time has been chosen.

Experiment setup Computation Time (s)
problem solver type C2050 C1060 GTX 480 GTX 280 HC3 IC1

CFD 1
double 164.84 252.74 145.23 183.37 230.31 482.90
mixed 80.48 129.19 60.98 98.46 91.71 195.59

CFD 2
double 473.38 778.75 456.17 518.49 819.46 1626.00
mixed 273.99 510.38 256.43 301.41 401.57 896.94

CFD 3
double 993.63 1921.64 1145.08 1046.49 2493.33 4909.04
mixed 554.28 1555.36 669.57 697.12 1330.70 2990.09

Table 5.6. Computation time ins s for problem CFD Venturi 2D 1, 2 and 3
based on a GMRES-(30). IC1 and HC3 results on 8 Cores

From Table 5.6 and Figure 5.22 it is visible that in terms of performance GPUs
clearly outperform the CPUs from of the same generation (Intel Clovertown (IC1)
vs. Nvidia T10/GT200 and Intel Nehalem (HC3) vs. Nvidia T20/GF100). This
is at least true for the here evaluated problems. If the energy consumption of the
standalone GPU is compared with the related value of a CPU the order stays manly
the same.

But if the power consumption of the host of a GTX 480 is also taken into account
it becomes clear that it has to consume less then 133 W to be as energy efficient
as the HC3 (by assuming that the host performs no computation that reduces the
runtime). Not considered is in this calculation the viewpoint of an computing center,
where the power consumption without load and the performance per memory unit
has also to be taken into account.

Performance

(1) GTX 480 (256 s)
(2) C2050 (273 s)
(3) GTX 280 (301 s)
(4) HC3 (401 s)
(5) C1060 (510 s)
(6) IC1 (896 s)

Energy Consumption

(1) GTX 480 (17,7 Wh)
(2) C2050 (18,7 Wh)
(3) GTX 280 (19,7 Wh)
(4) C1060 (26,5 Wh)
(5) HC3 (27,2 Wh)
(6) IC1 (127,93 Wh)

Figure 5.22. Performance and energy ranking for problem CFD Venturi 2D

2 based on a GMRES-(30). IC1 and HC3 results on 8 Cores. Energy efficiency

for GPUs computed without energy consumption for the host.
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5.3. FPGA-Accelerated Scientific Computing

FPGAs (Field-Programmable Gate Array) are integrated circuits and offer users
the probability to modify the configuration after the manufacturing process. This
is usually done by so called hardware description languages like VHDL or Verilog.
In terms of complexity (number of transistors) and manufacturing method (usually
defined in nm), FPGAs have the same characteristics like microprocessors but usu-
ally offer lower frequencies. In computational science FPGAs have a long tradition
in the area of signal processing and related fields and some scientists assign them
an important role in the medium-term future.

This chapter evaluates one representative of todays (2010) hybrid CPU-FPGA ma-
chines. First some elementary benchmarks are performed and after that numerical
experiments based on the mixed precision iterative refinement technique for solving
linear systems of equations are shown.

It has to be remarked that users programming FPGAs should be extremely cautious
with respect to occurring rounding errors. This is especially the case when no IEEE
rounding standards are available. Techniques like the iterative refinement method or
interval arithmetics [AH74] could be considered in order to get a certain accuracy
in IEEE respectively to obtain verified results.

5.3.1. Hardware Platform and Implementation Issues. All benchmarks
have been performed on the Convey HC-1 which is described in more details in
Chapter 2.1.5. Similar results to the presented ones can also be found in [AHW10b].

5.3.2. Elementary Kernels Performance Results. When comparing the
results of the dot product and axpy operation (Figures 5.23 and 5.24), it is visible
that between the single- and double-precision implementation, there is a factor
of approximately two in terms of performance. There are almost no significant
performance drops in relation to the length of the vector. For the gemv and gemm
kernels there two effects can be observed. First, the double precision performance is
always better then the single precision one. But for the gemv kernel it is much less
then the factor of two. Second, the behavior of the performance depends strongly
on the data size and the best results can be achieved when the matrices or vectors
are a power of two. If such a value is exceeded, the performance breaks down.

To obtain the best performance on the Convey HC-1, it is very important to place
the data in the right part of the memory. In Figure 5.27, the difference in perfor-
mance for a axpy operation, performed in single precision, based on two available
configurations for the allocation of memory is shown. Using the allocation function
from the CML library, the performance breaks down, while a static allocation in the
memory of the co-processor does not show such effects. The exact reason for this
behavior has to be investigated in the future, but one presumption is, that the CML
function does allocate the memory on the host side, and not on the co-processor
part.

5.3.3. Linear Solver Benchmark Results. In the following, performance
results of the CG solver and the iterative refinement method explained are shown.
As test-case the Poisson equation on a unit-square has been chosen which has been
discretized based on finite differences by means of a five point stencil leading to a
linear system with 200 degrees of freedom. As right hand side a vector with ones
for all entries has been chosen and the zero vector as initial solution.

The implementation of the CG solver has been done similar to Algorithm 7 where
all calls to BLAS-operations have been replaced by calls to the Convey CML library.
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Figure 5.23. Performance results of the dot-product in single and double
precision in GFLOPs as a function of the data size.

Figure 5.24. Performance results of the axpy operation in single and double

precision in GFLOPs as a function of the data size.

Four configurations have been evaluated which differ in the two modes where the
computation is performed and where the data is located. The first configuration is
that all data is located in the host memory and the computation is also performed
on the host. In the second configuration the data is placed in the co-processor
memory but the computation is performed on the host (this is possible because
there is one address space over the host and co-processor memory). In the third
configuration the host as well as the co-processor performs computations and the
associated memory holds the data. More precise, the matrix A and the vector p
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Figure 5.25. Performance results of the gemv operation in single and double
precision in GFLOPs as a function of the data size.

Figure 5.26. Performance results of the gemm operation in single and double

precision in GFLOPs as a function of the matrix dimension.

is kept in the host memory, which is because the matrix vector multiplication is
performed on the host, while all other vectors are kept in the device memory. Last,
but not least all data is located in the host memory and the computations are all,
except the mv-multiplication, executed on the co-processor.

Due to the fact that the CML does not support a matrix-vector multiplication in
the CSR-format (see Chapter 4.1), this operation is always performed on the host.
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Figure 5.27. Evaluation of the saxpy performance using two different memory
allocation procedures. When the cml-malloc is used the performance brakes

down when a certain matrix size is reached.

Calculation host host host,device host,device
Memory host host,device host,device host

Total time 1.021 1.071 3.931 11.151
CG time 0.996 1.031 3.869 11.124
CSR mv time 0.717 0.726 2.653 0.728
BLAS time 0.229 0.232 1.115 10.353
OL time 0.022 0.034 0.056 0.024
CP calls 0 0 7180 7180

Table 5.7. Characteristics of the CG solver executed on the Convey HC-1

with different configurations. CP calls is the number of calls for a function
that runs on the FPGA.

5.4. Inter-Architectural Comparison based on Iterative Refinement

5.4.1. Hardware Platform and Implementation Issues. For the perfor-
mance evaluation and the consideration of energy efficiency, the choice was to take
nodes of two HPC-clusters based on different generations of Xeon processors and
one system accelerated by a Nvidia Tesla S1070. Both clusters used for the com-
parison are located at the Steinbuch Centre for Computing (SCC) at the Karlsruhe
Institute for Technology (KIT).

The first machine is the Institutscluster IC1. As described in Chapter 5.1.1, it
consists of five racks containing a total of 200 computing nodes, each equipped with
two Intel quad-core Xeon 5355 processors with Clovertown architecture running at
2.667 GHz. There are 16 GB of main memory available on each node.

The second machine is a HP XC3000 cluster system, called HC3. In total, the
cluster has 332 computation nodes, each equipped with two Intel quad-core Xeon



5.4. INTER-ARCHITECTURAL COMPARISON BASED ON ITERATIVE REFINEMENT 107

5540 with Nehalem architecture. 288 nodes own 24 GB of main memory, 32 own
48 GB and the last 12 are equipped with 128 GB.

The Tesla-based system consists of two nodes hosting two Intel Xeon 5450 processors
operating at 3.0 GHz. A Tesla S1070 is connected via PCIe 2.0 16x and each node
controls two Tesla T10 computing processors, both equipped with 4 GB of memory.

Due to the fact that in the presented experiments only the computing capabilities
of one node is used and one T10 computing processor, the Tesla-system is in terms
of performance equivalent to a system equipped with one Tesla C1060. For this
reason, the energy consumption is calculated for the host alone and for one Tesla
C1060.

HC3 Tesla IC1
Processors per node 2 2 CPUs / 1 GPU 2
Cores per processor 4 8 / 240 4
Theoretical comp. rate / core 10.1 GFlop/s 12 / 3.9 GFlop/s 10.7 GFlop/s
Theoretical comp. rate / node 81 GFlop/s 96 / 933 GFlop/s 85.3 GFlop/s
L2-cache per processor 8 MB 8 / - MB 8 MB
Nodes 278 / 32 / 12 - 200
Memory per node 24 / 48 / 144 GB 32 GB 16 GB
Memory full machine 10.3 TB - 32 TB
Th. comp. rate full machine 27 TFlop/s 1.0 TFlop/s 17.6 TFlop/s
Power consumption load 80.8 kW 539 / 187,8 W1 103 kW

Table 5.8. Key system characteristics of the three machines used for the

tests. The first five rows give an overview for one node followed by additional
information concerning the full cluster systems HC3 and IC1.

5.4.2. Reference Examples. To be able to compare the performance of dif-
ferent implementation of the GMRES-(10) solver, tests with different linear systems
are performed. In this work 10 denotes the restart parameter for the GMRES.

All solvers use the relative residual stopping criterion ε = 10−10 ‖ r0 ‖2. Due to
the iterative residual computation in the case of the plain GMRES-(10) solvers, the
mixed GMRES-(10) solvers based on the mixed precision error correction method
usually iterate to a better approximation since they compute the residual error
explicitly, but as the difference is generally small, the solvers are comparable. In
case of the mixed precision GMRES-(10) on the TESLA-System, the error correction
solver is performed on one of the four available GPUs, while the solution update
is led to the CPU of the same system. This is done to be able to handle larger
problems since the amount of memory on the GPU is limited to 4 GB. The hardware
platform is therefore similar to a system equipped with one TESLA C1060, but in
the following the results are denoted with S1070.

On the one hand, matrices with a preset condition number are used, preset sparsi-
ties, and increase the dimension. Depending on the sparsity, the matrices are stored
in the matrix array storage format (MAS) or the compressed row storage format
(CRS).

M1 The first test matrix, is a dense matrix that is generated with the DLATMR-
routine out of the Lapack library [LAP]. As parameter set, all entries are
chosen smaller 1, and a condition number of 3. One drawback is that one
cannot set positive definiteness in the routine itself. To ensure this prop-
erty, the diagonal entries are set to be 10 · n, where n is the dimension of
the matrix. By doing so, one loses control of the condition number, but it
is bounded by the former choice.
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M2 The second test case is a sparse matrix similar to a 5-point stencil. The
difference is the the term H = 4+10−3 instead of H = 4 on the diagonal.
Furthermore, the second and fifth upper and lower diagonal is filled with
−1. The term 10−3 on the diagonal is used to control the condition num-
ber.

M3 As third artificial test matrix an ill-conditioned dense matrix is chosen. As
it is not easy to control the condition number of a dense matrix, chosen is
the term W = 2 · 103 · n+ n on the diagonal. The term on the upper and
lower second diagonal is V = 103 · n, and the rest of the matrix is filled
with random double precision numbers between 0 and 1. These entries
are the only entries the cannot be controlled, and in one row, they can at
most sum up to (n− 3) · (1− ε), but they can also sum up to (n− 3) · ε,
with ε > 0. Since the random numbers are for large dimension evenly
distributed, it is assumed that they sum up to 0.5 · (n− 3).
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Problem: artificial
Problem size: variable
Sparsity: nnz = n2

Cond. no.: < 3
Storage format: MAS

Problem: artificial
Problem size: variable
Sparsity: nnz = n2

Cond. no.: ca. 8 · 103
Storage format: MAS

Problem: artificial
Problem size: variable
Sparsity: nnz = 5n
Cond. no.: ca. 8 · 103
Storage format: CRS

Tab. 1: Structure plots and properties of the artificial test-matrices

Beside the artificial test-cases, linear systems obtained from the area of CFD are
taken into account. The three systems of linear equations CFD Venturi 2D 1, 2 and
3 are affiliated with the 2D modeling of a Venturi Nozzle in different discretization
fineness. The distinct number of supporting points leads to different matrix char-
acteristics concerning the dimension, the number of non-zeros, and the condition
number. Below, the characteristics for the CFD Venturi 2D 3 matrix is shown, spar-
sity plots and information for the similar matrices 1 and 2 can be found in Tabular
4.7. CFD Venturi 2D 1 has about four hundred thousand degrees of freedom, CFD
Venturi 2D 3 about one million.



5.4. INTER-ARCHITECTURAL COMPARISON BASED ON ITERATIVE REFINEMENT 109

CFD Venturi 2D 2

Problem: CFD Venturi 2D 2, FEM
Problem size: n = 634.453
Sparsity: nnz = 5.700.633
Symmetric: no
Positive define: ?

Table 5.9. Sparsity plot and properties of the CFD Venturi 2D 2 test-matrix

5.4.3. Numerical Results. Figure 5.28, 5.29 and 5.30 show the results for
the artificial test-cases for various dimensions on the GPU-based system as well as
on the IC1. In Tabulars 5.10 to 5.12 show the results for the application based
test-cases on all three machines.

Figure 5.28. Test-case M1 executed on the TESLA-system and IC1. Relative

residual stopping criterion ε = 10−10;
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Figure 5.29. Test-case M2 executed on the TESLA-system and IC1. Relative
residual stopping criterion ε = 10−10;

Figure 5.30. Test-case M3 executed on the TESLA-system and IC1. Relative

residual stopping criterion ε = 10−10;

CPU-Cores GPU
1 4 8

Computation time [s]

HC3 double 2267.47 1245.12 776.09
HC3 mixed 886.46 567.51 309.61
IC1 double 3146.61 1656.53 1627.77
IC1 mixed 1378.56 712.83 659.80
Tesla mixed 438.13

Table 5.10. Computation time for problem CFD 1 based on a GMRES-(10)

as inner solver for the error correction method
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CPU-Cores GPU
1 4 8

Computation time [s]

HC3 double 10765.30 4528.09 3363.44
HC3 mixed 4827.98 2177.19 1648.27
IC1 double 13204.70 6843.66 6673.07
IC1 mixed 5924.32 3495.09 3681.28
Tesla mixed 2092.84

Table 5.11. Computation time for problem CFD 2 based on a GMRES-(10)
as inner solver for the error correction method

CPU-Cores GPU
1 4 8

Computation time [s]

HC3 double 62210.70 19954.50 16541.90
HC3 mixed 42919.80 9860.26 8828.28
IC1 double 60214.50 32875.10 32576.50
IC1 mixed 41927.40 19317.00 19836.80
Tesla mixed 10316.70

Table 5.12. Computation time for problem CFD 3 based on a GMRES-(10)
as inner solver for the error correction method

5.4.4. Result Interpretation. In the first test (Figure 5.28), the low con-
dition number leads to a good convergence rate of GMRES-(10) and after few
iterations the solution approximation fulfills the stopping criterion. The additional
computational cost of the mixed precision iterative refinement approach is large
compared to the computational cost of the pure double solver. Therefore is the
mixed precision GMRES-(10) neither for the sequential, nor for the parallel case
able to compete with the plain double precision GMRES-(10). The TESLA S1070-
implementation of the mixed GMRES-(10) outperforms the solvers on the IC1 due
to the larger number of cores and the excellent single precision performance of the
GPU, that can be exploited by the inner error correction solver. It should be men-
tioned, that the factors between the computation time of the different solver types
are independent of the dimension n of the linear system that is solved.

The difference of the second test (Figure 5.29) to the first test case is the fairly high
condition number of κ ≈ 8 · 103 of the linear system. Due to the high number of
iterations the linear solvers have to perform, the overhead for the mixed precision
method is considerably small. Therefore, also on the IC1, the additional costs can
be overcompensated by the speedup gained by performing the inner solver in a lower
precision format. Both, for the parallel and the sequential case a factor of about
two is gained using the mixed precision iterative refinement approach instead of the
plain double precision GMRES-(10). The lower precision format leads to a shorter
execution time when performing elementary computations on the one hand, and
to a more efficient use of the memory bandwidth on the other hand. The memory
space needed to store one single precision floating point number is half the size that
is needed for one double precision floating point number. The memory bandwidth
is usually the limiting factor of the computational power of a system. Using a lower
precision format, the processors have shorter waiting time for the data, and the
system gains a higher efficiency. Since this argument applies to all memory levels,
the speedup using single precision for the GMRES-(10) can even exceed the factor
2 that characterizes the speedup of a general purpose CPU when switching from
double to single precision computations.
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The speedup factor gained by performing the mixed GMRES-(10) on the TESLA
S1070 is almost 15 with respect to the sequential plain double GMRES-(10) on the
IC1. Again one can observe, that the speedup factors between the different solvers
on the different Hardware platforms remain constant, independent of the problem
size.

For the third test case (Figure 5.30), again an artificial test matrix is used with a
condition number of κ ≈ 8 ·103. The difference to the former test cases is, that now
the solvers are applied to sparse linear systems where the matrices are stored in the
CRS format. The low number of nonzero entries leads no longer to a computational
cost that is quadratically increasing with the dimension, but linearly. Furthermore
is the total computational effort lower compared to the tests with matrix structure
M2. Despite some perturbations, that can be explained by rounding effects and the
use of different cache levels, one can still observe that the quotients between the
solver types remain the same, independently of the dimension of the linear system.
Again, both for the sequential and the parallel case, the mixed precision GMRES-
(10) on the IC1 outperform the plain double implementations due to the fact, that
the additional computational cost of the iterative refinement scheme is overcom-
pensated by the speedup gained through the execution of the inner solver in single
precision. The implementation on the TESLA S1070 can additionally exploit the
excellent single precision performance of the highly parallelized GPU. Furthermore
approximate the speedups gained by using the mixed precision GMRES-(10) the
speedups of test case M2.

All tests with the matrices CFD1, CFD2 and CFD3 show that the mixed precision
iterative refinement approach is also beneficial when applying solvers to real world
problems. The mixed GMRES-(10) solvers outperform the plain double GMRES-
(10) implementations for all test problems, both in the sequential and the parallel
case. The reason is again the fact, that the additional computational cost of the
iterative refinement approach is overcompensated by the cheaper inner solver using
a lower precision format.

Using hybrid hardware, the mixed GMRES-(10) on the TESLA S1070 even gener-
ates speedups up to 7 with respect to the plain double implementation on the IC1.
It can be observed, that this factor decreases for increasing dimension. The reason
is, that for large data amounts, the connection between the host CPU and the GPU
slows the mixed GMRES-(10) down.

5.4.5. Energy Efficiency. By using the values given in Table 5.8 for the
power consumption P under load of the different architectures, 244 W per node can
be obtained for the HC3, 514 W per node for the IC1 and 718 W for the Tesla-
system (node plus energy for one Tesla C1060). With these values, it is possible to
estimate the total amount of energy E that has been spent for a computation that
has taken t seconds through the relation E = P · t. The function indicates a linear
characteristic due to the fact that one node is used, assuming a constant energy
consumption, not taking into account whether one or more cores were used.

Modern processors usually offer the possibility of automatically raising the clock-
speed if sequential code is executed, and deactivating parts of the processor, if they
are not needed. The power consumption is effected by such mechanisms, and energy
measurements have to be performed for every run. This becomes difficult when a
machine is in production mode. On the HC3, measurements have shown an energy
consumption of 243,5 W per node in case of performing complex computations
using most components of the processor, and a power consumption of 225 W for
less complex computations using only little resources. The system setting for the
CPU-frequency is “on demand”. A deeper analyses of the machines may give more
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detailed information, but is can be assumed, that the energy consumption will
generally stay within these limits.

Figure 5.31. Energy consumption as a function of time for solving the CFD

Venturi 2D 1 test-case on HC3, IC1 and Tesla. The inner solver is a GMRES-

(10).

Figure 5.32. Energy consumption as a function of time for solving the CFD

Venturi 2D 2 test-case on HC3, IC1 and Tesla. The inner solver is a GMRES-
(10).
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Figure 5.33. Energy consumption as a function of time for solving the CFD

Venturi 2D 3 test-case on HC3, IC1 and Tesla. The inner solver is a GMRES-
(10).

5.4.6. Conclusions. The numerical tests in the previous section have shown
the high potential of using different precision formats within the proposed error
correction solver. The obtained algorithm is flexible in terms of choosing the inner
correction solver, and robust in terms of numerical stability. The possibility of
performing the error correction solver on a coprocessor increases the potential of
mixed precision methods, as they can be implemented efficiently on hybrid systems.
Performing the error correction solver of an error correction method in a lower
format leads to an overall increase in performance for a large number of problems.

On a CPU (IC1 and HC3), performing the error correction method in mixed pre-
cision, one often achieves a speedup factor of around two compared to the plain
solver in double precision.

When using hybrid hardware, consisting of coprocessors specialized on low preci-
sion performance, even higher speedup factors can be expected. In the numerical
experiments for the FEM discretizations of the Venturi Nozzle speedups of more
than seven for the CUDA implementation are achieved.

Still, a very ill-conditioned problem can lead to a high number of additional outer
iterations necessary to correct the rounding errors, that arise from the use of a lower
precision format in the error correction solver. For the worst case, the inner solver
will not converge. Due to the fact that one is usually not able to determine a priori
whether the mixed precision method is superior for a specific problem, an optimized
implementation of the solver would execute the first solution update of the mixed
precision error correction method and determine, depending on the improvement of
the solution approximation, whether it should continue in the mixed precision mode
or whether it should use the plain solver in high precision. The next step beyond this
strategy of changing between single and double precision is to use techniques around
adaptive precision, where the precision is adjusted according to the convergence in
the inner solver. FPGAs and related technologies may provide the capabilities for
such algorithms.



5.4. INTER-ARCHITECTURAL COMPARISON BASED ON ITERATIVE REFINEMENT 115

For an efficient implementation of the mixed precision iterative refinement tech-
niques in a solver suite, some additional work is required, especially concerning the
use of preconditioners. This may not only increase the stability of the solver, but
also its performance. In such an environment, the mixed precision error correction
methods form powerful solvers for FEM simulations and beyond.

The iterative refinement method implemented with mixed precision techniques, and
combined with GPU coprocessor technology shows very good results, at least for
the presented test-cases arising in the field of computational fluid dynamics. This
shows the high potential of hardware-aware computing. When numerical procedures
are developed and implemented with respect to the available hardware resources,
one can expect advantages in terms of performance and energy efficiency. Since,
depending on the problem, the time and energy savings can become quite large,
hardware-aware computing should be taken into account for individual solutions as
well as for large-scale simulations in computing centers.

The Tesla-system is based on an old CPU-architecture, comparable to the IC1-
cluster. All experiments have shown that even those older architectures can greatly
benefit by adding accelerators like GPUs, both in terms of performance and energy
efficiency. The GPU used in the Tesla-system is based on the old T10 computing
chip, and with the availability of the new Fermi-based GPUs, even the newest CPU-
architectures will be outperformed.

Future work includes a larger set of experiments concerning the linear systems, the
used solvers, and the evaluated hardware platforms. One focus could also be to
monitor the energy saving techniques of modern processors. Since the energy, the
system needs in idle may be a point of interest as well, it could also be taken into
account. The first step in this direction is already done in [ACF+11].





CHAPTER 6

Impact of Data Distribution in Accuracy and
Performance of Parallel Linear Algebra

Subroutines

In parallel computing the data distribution may have a significant impact in the ap-
plication performance and accuracy. These effects can be observed using the parallel
matrix-vector multiplication routine from PBLAS with different grid configurations
in data distribution. Matrix-vector multiplication is an especially important opera-
tion once it is widely used in numerical simulation (e.g., iterative solvers for linear
systems of equations as shown in the previous chapters).

This chapter presents a mathematical background of error propagation in elemen-
tary operations and proposes benchmarks to show how different grid configurations
based on the two dimensional cyclic block distribution impacts accuracy and per-
formance using parallel matrix-vector operations. The experimental results validate
the theoretical findings.

Parts of the results of this chapter have been reviewed, presented and published
in the context of the International Meeting on High Performance Computing for
Computational Science (VECPAR 2010), organized by Lawrence Berkeley National
Laboratory and University of Porto [RKH11].

6.1. Introduction

In many numerical algorithms, problems are reduced to a linear system of equations.
Therefore, solving systems like Ax = b with a matrix A ∈ R

n×n and a right hand
side b ∈ R

n is essential in numerical analysis. There are two major ways of solving
those systems: by direct solvers, which are mainly based on the Gaussian algorithm,
or by iterative solvers (see e.g. Chapter 1) which are often based on projections.
The second type usually contains one multiplication of a matrix with a vector in
each iteration step and the precision of such matrix-vector multiplication has a
significant impact on the convergence of the iterative solver [DDH07].

In most modern microprocessors, mathematical operations are performed by using
floating point arithmetics. However, the finite floating-point arithmetic can only
deliver an approximation of the exact result due to rounding errors. Since the exact
result is usually unknown, it is sometimes difficult to measure the quality of these
approximations. Besides, as a result of several operations, the accumulation of those
errors may have an impact in the accuracy of the results.

There are many papers proposing different solutions to find more accurate re-
sults. Some authors concern is to improve the numerical accuracy of the com-
puted results in computers through the use of extra precise Iterative Refinement
(see Chapter 3 or [DHK+06, DD05]). Others try to use mixed-precision algo-
rithms [GHW06, LLL+06, GST07, BBD+08] to obtain a good accuracy and
improve the performance. Another possible way to deal with this unreliability is to

117



118 6. DATA DISTRIBUTION - IMPACT ON ACCURACY AND PERFORMANCE

use verified computing [HRKH97]. Such techniques provide an interval result that
surely contains the correct result [AH74, AH83, KKL+93, KM81]. However,
the use of such methods may increase the execution time significantly. This effect
is even worse for large linear systems, that may need several days or even more to
be solved. Based on these researches, it is possible to notice that there is a tradeoff
performance versus accuracy.

Parallel computing is a well-known choice for simulating large problems. Since
many numerical problems are solved via a large linear system of equations, a parallel
algorithm would be a good approach. In this context, the libraries BLAS [BDD+02]
and LAPACK [LAP] seem a good choice, since they have a parallel version (PBLAS
and SCALAPACK [BCC+96]) that could be used in the case of very large systems.
However, it is important to remember that these libraries provide an approximation
of the correct result and not a verified result.

It is well known that the data distribution has a major impact in the performance of
a parallel application [BCC+96]. However, the data distribution can also present
an important influence on the accuracy of the numerical results. Sometimes a fixed
problem can lead to distinct solutions depending on the data distribution or the
number of processes used in its solution. This effect can possibly be explained by
the rounding error theory [Lin70].

Based on that, this work investigates the impact of different grids configuration used
in the two-dimensional block cyclic distribution on the accuracy and performance of
the parallel matrix-vector multiplication implemented by PBLAS. This particular
distribution was chosen since it was proved to be a good choice for parallel matrix
distribution on parallel environments with distributed memory [DW93]. Other
interesting data distribution was proposed in [EGPG96], however it is also based
on block distribution and was consider equivalent to the two-dimensional block
cyclic distribution [SH96].

In this chapter, the performance of different grids configuration was measured and
compared among them. To evaluate the accuracy of the approximations generated
by PBLAS, a comparison with the verified solution provided by C-XSC [KKL+93]
is done. The experimental results indicate how the grids should be configured to
find a compromise between accuracy and performance considering the application
needs.

This chapter is organized as follows. To better understand this problem, Section 6.2
presents two important backgrounds: the theory of rounding errors and the two-
dimensional block cyclic distribution scheme. Section 6.3 introduces the platform,
input data and results obtained in the numerical experiments. Finally, Section 6.4
present some final remarks and considerations about future work.

6.2. Background

This section presents the background used in this Chapter to explain the observed
effects of parallelization. Section 6.2.1 introduces the theoretical background from
the mathematical point of view concerning rounding errors, based on a paper of
Linz [Lin70]. Section 6.2.2 describes the two-dimensional block cyclic distribution
used by PBLAS.

6.2.1. Theory of Rounding Errors. Let ε be the machine accuracy and
fl(a◦b) the floating point result for an elementary composition of two real numbers
a and b. An elementary operation ◦ ∈ {+,−, ∗, /} of a and b can be estimated with
fl(a ◦ b) = (a ◦ b) + ε(a, b, ◦) for the worst case. We assume A ∈ R

n×n, x, y ∈ R
n
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and get yk = akx as result for the product Ax = y for every entry yk ∈ y. Let ak
denote the k − th row of A. For all yk, the approximation using the floating point
arithmetic is ŷk.

The now explained approach for a summation is called “simple approach” or ”simple
strategy“ in the following. For computing each yk ∈ y is to add the first entry to the
next one and then add the following entries one by one to the previous result. Using
floating point arithmetic and the abbreviation fl(ak,i ·xi) = ak,i ·xi+ε(ak,i, xi, ·) =:

b̂k,i, this strategy can be written as follows:

ŷk1
:= (b̂k,1 + b̂k,2) + ε1

ŷki
:= ŷki−1

+ b̂k,i + εi = yki
+

i∑
j=1

εj , i ∈ {2, 3, . . . n− 1}

Let the representation be the normalized floating-point with binary exponent and
q fraction bits and assume the addition to be done by truncating the exact sum to
q bits. Let pi be the exponent of ŷki

and ν = 2−q. The error for the ith step is
then |εi| ≤ ν2pi and the global error can be written using the estimates ak,ixi ≤ b,
|ŷki

| ≤ ib and 2pi ≤ 2ib in the following way

|yk − ŷk| ≤ ν
n−1∑
i=1

2pi ≤ 2νb
n∑

i=1

i = νbn(n+ 1).

This means the error using this approach grows like O(n2).

A second strategy for the summation is the so called “Fan-In” algorithm, which we
denote as ”advanced approach”. The values are added to each other in pairs and
the algorithm is then executed recursively. Let us define the notation

yk = ak,1x1 + ak,2x2︸ ︷︷ ︸
ŷn1,1

+ ak,3x3 + ak,4x4+︸ ︷︷ ︸
ŷn2,1︸ ︷︷ ︸

ŷn1,2

. . .+ ak,nxn

︸ ︷︷ ︸
ŷn1,m

and

ŷki,j
= ŷk2i−1,j−1

+ ŷk2i,j−1
+ εi,j

where εi,j is the rounding error when computing ŷki,j
. For the global error we have

|yk − ŷk| =
∑
σ1,k

εi,j ≤ ν
∑
σ1,k

2pσ1,k

where p is the exponent of the result and σ1,k is the set of all index pairs needed to
get ŷki,j

. Assuming that ak,ixi ≤ b, we have:

ŷki,j
≤ 2jb and 2pi,j ≤ 2j+1b.

Based on that, the error upper bound can be estimated by

|yn − ŷk| ≤ ν
∑
σ1,k

2pσ1,k ≤ 2νb
k∑

j=1

n/2j∑
i=1

2j = 2νbkn ≤ 2νb n log2 n.

For the advanced approach the error grows like O(n log2 n). The proof can be
extended to cases in which more than two entries are added to each other using
the “Fan-In”-algorithm. In that case, the error propagations is bounded by the one
presented by the strategies above.

The two approaches differ in a factor of n/(2 log2 n). This study suggests that a
finer granularity in the summation leads to lower upper boundaries for rounding



120 6. DATA DISTRIBUTION - IMPACT ON ACCURACY AND PERFORMANCE

errors. The proofs presented above show the impact of rounding errors in scalar
products, which are commonly part of matrix-vector multiplications.

6.2.2. Data Distribution in Numerical Algorithms. On distributed mem-
ory platforms, the application programmer is responsible for assigning the data to
each processor. How this is done has a major impact on the load balance and com-
munication characteristics of the algorithm, and largely determines its performance
and scalability [BCC+96].

PBLAS routines are implemented supposing the matrices are stored in the dis-
tributed memory according to the two-dimensional block cyclic distribution [DW93].
In this distribution, an M by N matrix is first decomposed into MB by NB blocks
starting at its upper left corner. The distribution of a vector is done considering
the vector as a column of the matrix. Suppose we have the following 10x10 matrix,
a vector of length 10 an MB and NB equal 3. In this case, we would have the
following blocks:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0,0 A0,1 A0,2 A0,3 A0,4 A0,5 A0,6 A0,7 A0,8 A0,9

A1,0 A1,1 A1,2 A1,3 A1,4 A1,5 A1,6 A1,7 A1,8 A1,9

A2,0 A2,1 A2,2 A2,3 A2,4 A2,5 A2,6 A2,7 A2,8 A2,9

A3,0 A3,1 A3,2 A3,3 A3,4 A3,5 A3,6 A3,7 A3,8 A3,9

A4,0 A4,1 A4,2 A4,3 A4,4 A4,5 A4,6 A4,7 A4,8 A4,9

A5,0 A5,1 A5,2 A5,3 A5,4 A5,5 A5,6 A5,7 A5,8 A5,9

A6,0 A6,1 A6,2 A6,3 A6,4 A6,5 A6,6 A6,7 A6,8 A6,9

A7,0 A7,1 A7,2 A7,3 A7,4 A7,5 A7,6 A7,7 A7,8 A7,9

A8,0 A8,1 A8,2 A8,3 A8,4 A8,5 A8,6 A8,7 A8,8 A8,9

A9,0 A9,1 A9,2 A9,3 A9,4 A9,5 A9,6 A9,7 A9,8 A9,9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
b2
b3
b4
b5
b6
b7
b8
b9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Suppose we have 4 processors. The process grid would be a 2x2 grid as follows:

(
P 0 P 1

P 2 P 3

)

These blocks are then uniformly distributed across the process grid. Thus, every
processor owns a collection of blocks [BCC+96]. The first row of blocks will be
distributed among the first row of the processor grid, that means among P0 and
P1, while the second row will be distributed among P2 and P3, and so on. For this
example, we would have:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P 0 P 1 P 0 P 1

P 2 P 3 P 2 P 3

P 0 P 1 P 0 P 1

P 2 P 3 P 2 P 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P 0

P 2

P 0

P 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

According to this distribution, each processor would have the following data:
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P 0 :

⎛
⎜⎜⎜⎜⎜⎜⎝

A0,0 A0,1 A0,2 A0,6 A0,7 A0,8

A1,0 A1,1 A1,2 A1,6 A1,7 A1,8

A2,0 A2,1 A2,2 A2,6 A2,7 A2,8

A6,0 A6,1 A6,2 A6,6 A6,7 A6,8

A7,0 A7,1 A7,2 A7,6 A7,7 A7,8

A8,0 A8,1 A8,2 A8,6 A8,7 A8,8

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
b2
b6
b7
b8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

P 1 :

⎛
⎜⎜⎜⎜⎜⎜⎝

A0,3 A0,4 A0,5 A0,9

A1,3 A1,4 A1,5 A1,9

A2,3 A2,4 A2,5 A2,9

A6,3 A6,4 A6,5 A6,9

A7,3 A7,4 A7,5 A7,9

A8,3 A8,4 A8,5 A8,9

⎞
⎟⎟⎟⎟⎟⎟⎠

P 2 :

⎛
⎜⎜⎝
A3,0 A3,1 A3,2 A3,6 A3,7 A3,8

A4,0 A4,1 A4,2 A4,6 A4,7 A4,8

A5,0 A5,1 A5,2 A5,6 A5,7 A5,8

A9,0 A9,1 A9,2 A9,6 A9,7 A9,8

⎞
⎟⎟⎠

⎛
⎜⎜⎝
b3
b4
b5
b9

⎞
⎟⎟⎠ P 3 :

⎛
⎜⎜⎝
A3,3 A3,4 A3,5 A3,9

A4,3 A4,4 A4,5 A4,9

A5,3 A5,4 A5,5 A5,9

A9,3 A9,4 A9,5 A9,9

⎞
⎟⎟⎠

The two dimensional block cyclic distribution is usually not used when the matrix
has a sparse data structure. Common storage formats, like CRS (compressed row
storage), CCS (compressed column storage) etc., usually lead to distributions where
a certain number of rows or columns are given to each process. The CRS presents
a row-wise data distribution, that could be seen as a np× 1 grid of processes in the
two dimensional block cyclic distribution. In the same way, a 1× np grid could be
interpreted as a column wise distribution, e.g. similar to a strategy taken when the
CCS is used.

From the mathematical theory it is clear that the upper bound for the rounding
errors occurring in a sparse matrix vector multiplication increases with the number
of nonzero elements (nnz) per row. In the proof presented in the last subsection,
the variable n should be replaced with nnz, assuming that the matrix data is sparse
and the vector data has O(n) entries.

It is important to mention that, for a matrix vector multiplication, no benefit in
accuracy can be expected due to parallelization when this is done based on a row-
wise data distribution and assuming that the sequential part on each process does
not use techniques like “fan-in”.

6.3. Numerical Experiments

This Section presents experimental results for different grid compositions. The
accuracy and performance are the focus of these tests.

The results of the considered matrix-vector multiplication were computed using first
the sequential BLAS-routines to obtain the sequential time. After this sequential
test, we used the PBLAS-routines from the MKL package for different grid compo-
sitions. All results have been computed three times to avoid effects caused by hard-
and software problems.

To evaluate which grid presents the best accuracy among the tested grids we ana-
lyzed the accuracy obtained by the parallel implementation through a comparison
with a verified result. The library used to obtain the verified result was C-XSC,
which stands for “extension for scientific computing”, and is a free programming
tool for the development of numerical algorithms which provides highly accurate and
automatically verified results. C-XSC does computations based on interval arith-
metics and direct rounding, providing an enclosure of the exact solution, which
is represented by an interval. This means that for a matrix-vector multiplication,
C-XSC will deliver a vector of intervals, each entry of the vector containing an in-
terval enclosure of the correct solution. The diameter of the intervals is usually very
small, since C-XSC implementation uses techniques to iteratively reduce the interval
diameter proofing that the interval result includes the exact result [KKL+93].
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The average error from the PBLAS result to the C-XSC result is computed as
follows. First, for each component of the result vector it is checked if it is in the
interior of the interval given from C-XSC. If it is inside the interval, it is considered
correct. If it is not inside, the distance to the interval is stored. Then the arithmetic
mean over all distances is computed, which we denote as average error.

Next Section introduces the platform used for the experiments. Section 6.3.2 illus-
trates the input data of four different matrices used in the tests. Finally Section 6.3.3
presents the accuracy and performance results with some considerations.

6.3.1. Hardware- and Software-Platform. The software platform used for
executing the numerical experiments is composed of optimized versions of the library
PBLAS (Intel CMKL in version 10.0.2.018 for test case M1 and version 10.1.2.024
for the test cases M2, M3 and M4), C-XSC version 2.2.3 and the standard Message
Passing Interface (MPI, see Chapter 2.2.2), more precise the OpenMPI implemen-
tation in version 1.2.8. The compiler used in these tests was the Intel compiler in
version 10.1.021.

As hardware platform the Institutscluster located at the Steinbuch Computing Cen-
tre (SCC) at the Karlsruhe Institute of Technology (KIT) was chosen. It consists
of 200 computing nodes each equipped with two Intel quadcore EM64T Xeon 5355
processors running at 2,667 GHZ, 16 GB of main memory and an Infiniband 4x
DDR interconnect. 17,57 TFlops is the overall peak performance of the whole sys-
tem and 15,2 TFlops in the Linpack benchmark. One process was placed on one
node and the allocated resources for the experiments were allocated exclusively to
avoid effects from other programs. All results have been computed at least five
times to get reliable results.

6.3.2. Input Data. All results shown in Chapter 6.3.3 refer to four different
input matrices and vectors. Their properties can be seen in Tables 6.1 and 6.2.

M1, the first test matrix, has dimension 16000 and is filled with pseudo random
numbers from the interval [−0, 5; 0.5].
M2 is a square matrix with dimension 4929 used as the initial basis for constrained
nonlinear optimization problem represented by GEMAT1 which is the Jacobian
matrix for an approximately 2400 bus system in the Western United States. M2,
arising in the area of power flow, is a sparse matrix with a medium condition number,
as presented in Table 6.1. It is important to mention that no special data storage
is used for sparse matrices. They are always stored as dense matrices.

The third matrix tested was M3. As shows Table 6.2, it is a dense matrix with
dimension 66. This matrix is used in the generalized eigenvalue problem Kx =
λMx, where M3 is matrix K and matrix M is BCSSTM02, from BCSSTRUC1 set.
This matrix arises in dynamic analysis in structural engineering.

Table 6.2 also presents the properties of matrix M4. It is a sparse matrix with
dimension 765 which presents a very high condition number. This matrix is used
in the real application of nonlinear radiative transfer and statistical equilibrium in
astrophysics.

All vectors used for the experiments are filled with pseudo random numbers from
the interval [−0, 5; 0.5].
Detailed information about the creation and properties of the test cases M2 to M4
can be found on the Matrix Market website [Mar]. In the following Chapter 7, two
more matrices are considered for a similar evaluation.
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M1 (Random) M2 (GEMAT11)

problem: Artificial
problem size: n = 16000
sparsity: nnz = 256000000
cond. number: n.a.
Frobenius norm: n.a.

problem: Power flow.
problem size: n = 4929
sparsity: nnz = 33185
cond. number: 3.74e+08
Frobenius norm: 8.2e+02

Table 6.1. Sparsity plots and properties of the test-matrices M1 and M2

M3 (BCSSTK02)) M4 (MCFE))

problem: Structural eng.
problem size: n = 66
sparsity: nnz = 2211
cond. number: 1.3e+04
Frobenius norm: 5.3e+04

problem: Astrophysics
problem size: n = 765
sparsity: nnz = 24382
cond. number: 1.7e+14
Frobenius norm: 2e+17

Table 6.2. Sparsity plots and properties of the test-matrices M3 and M4
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6.3.3. Numerical Results. This section discusses the results of a set of ex-
periments using the four different matrices presented in the previous section. The
first analysis is based on the accuracy obtained using different grid sizes. After that,
the performance results are shown.

Figure 6.1 presents the accuracy obtained using nine processes and different grid
configurations for test cases M1 and M2. The comparison between our PBLAS
algorithm and the verified results of the C-XSC-algorithm show that there are con-
stellations of processors grids, namely when the grid is np×1, where the accuracy of
the parallel computation is as precise as the sequential one. In all other cases when
the grid of processors is not np×1, the results present a better accuracy, suggesting
that the accuracy depends on the grid. Another important observation is that the
optimal accuracy for a fixed number of processes can be found by a 1× np grid. In
general we observed that the more columns the processes grid have, the better is
the accuracy.

Figure 6.1. Average error to the verified result for three different grids of
processes and a fixed number of nine processes for the test cases M1 (left plot)

and M2 (right plot).

Investigating the example in the light of Chapter 6.2.1 using, for simplicity, a number
of four processes. Let the dimension of the matrix be n, the number of processes
np = 4, the grid of the processes nr × nc and the block size nb := n

np . Considering

the case of an 2 × 2 grid of processes, the distribution follows the scheme in the
example in Section 6.2.2. For a 1 × 4 and 4 × 1 grid, the notation P a

Bc is used,
where a (from 1 to np) represents the number of the processes containing the data,
B denotes if it is a matrix(M) or a vector(v) and c is the number of the data block
related to one processor. The data distribution is as presented in Tables 6.3(a) and
(b).

Analyzing Table 6.4 and (b), it is possible to notice that in the computation based
on a np × 1 grid, each entry of the result vector is computed in just one process,
which means that the summation is done like in the simple approach from Chapter
6.2.1.
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Table 6.3. Data distribution for two different grids of four processes

The structure of the result distribution is shown in Table 6.4. The leading entry is
the position of the resulting vector, followed by the explanation of which parts were
combined to compute the result.
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Table 6.4. Processes which contain the final result and parts from which it is

computed

The advanced approach presented in Chapter 6.2.1 can be found on the 1 × np
grid where the final result will be placed on process one, but there are intermediate
results on every process leading to a higher quality in the computed result. This
suggests that the number of columns of the processor grid is responsible for the
granularity of the computation - a higher numbers of columns can lead to better
accuracy. So it is not astonishing that a symmetric grid produces results with an
intermediate precision (bounded by the other grids).

It is also possible to notice that the results for the application based problem M2
show that for all grid sizes the average error is less than 2.58e−16 which is excellent
considering the double precision format.

Figure 6.2 presents the average error for matrix M3 and M4. Based on the M3
graphic, we can see that even for small problems, the data distribution and the
executed computations can have an impact on the result. The average error to the
verified result, depending on the grid configuration, differs in about one magnitude.
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Figure 6.2. Average error to the verified result for three different grids of

processes and a fixed number of nine processes for the test cases M3 (left plot)

and M4 (right plot).

For the test case M4 we observe that the 9 × 1 grid delivers, analogue to all other
experiments, the most inaccurate result. The fact that the 3×3 grid is a little more
accurate than the 1×9 grid might be astonishing on the first view but this is possible
because the mathematical theory gives only a upper bound for the rounding error
propagation.

Figure 6.3. Average error to the verified result for different grids and different

numbers of processes. A matrix similar to M1 but with dimension 8192 was

taken for the experiments.

The results in Figure 6.3 show for different number of processes and grids of pro-
cesses the average error to the verified result based on a matrix with dimension
8192 and input data generated like in M1. For all grids np× 1 the accuracy is like
in the sequential case and independent of the number of processes. The graphic
shows that the more processes are used the better is the result. It can also be ob-
served that the larger the number of processes, the better is the accuracy, following
a logarithmic behavior, which corresponds to the theoretical findings.

6.3.3.1. Performance. This section presents the performance analysis consider-
ing matrix M1. The performance analysis for matrices 2 to 4 were not discussed
since they have small dimensions. In this case it is not worth to parallelize the mul-
tiplication, since the program would spend more time communicating among the
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processors than computing the result. Therefore it would maybe increase the com-
putational time instead of speedup the computation. Since matrix 1 has dimension
16000, it is the natural choice for the performance test.

Figure 6.4 shows that directly interrelated to the grid is the processing speed. It
is possible to notice that the computational time for the same problem size is very
different depending on the grid.

Figure 6.4. Commutation time for three different grids of processes and a

fixed number of nine processes for the test case M1.

This performance variation can be explained by the fact that different grids com-
municate differently. The amount, length and topology of such communication
have a significant impact on the performance [DW93]. In Table 6.3 is possible to
notice that some of the data that a processes need may be stored in another pro-
cesses, and therefore the processes need to communicate before the computation to
send/receive parts these data. This occurs also after the computation, when parts
of the result have to be collected from each processor and accumulated so that the
result is found. This is the case of the 1× 4 grid in Table 6.4.

The communication load-balance is optimal if it is equally distributed on all pro-
cesses. The impact on the performance depends significantly on the underlying
hardware (interconnect, memory bandwidth etc.). This means that not a single
process is sending or receiving a big bunch of data to all other processes, but that
all processes are sending little bunches of data to all other processes. For the grids
shown above, the structure of the communication is:

(a) Grid (1× 4)
before computation after computation
sender → receiver size sender → receiver size

P 0 → P 1 nb P 1 → P 0 n
P 0 → P 2 nb P 2 → P 0 n
P 0 → P 3 nb P 3 → P 0 n

(c) Grid (2× 2)
before computation after computation
sender → receiver size sender → receiver size

P 0 → P 2 2 ∗ nb P 1 → P 0 n/2
P 2 → P 1 2 ∗ nb P 3 → P 2 n/2
P 2 → P 3 2 ∗ nb

(b) Grid (4× 1)
before computation after computation
sender → receiver size sender → receiver size

P 0 → P 1 nb − −
P 0 → P 2 nb − −
P 0 → P 3 nb − −
P 1 → P 0 nb − −
P 1 → P 2 nb − −
P 1 → P 3 nb − −
P 2 → P 0 nb − −
P 2 → P 1 nb − −
P 2 → P 3 nb − −
P 3 → P 0 nb − −
P 3 → P 1 nb − −
P 3 → P 2 nb − −
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6.4. Remarks and Prospects

This Chapter presents the theory of rounding error propagation for elementary ker-
nels and validates the theoretical findings based on numerical experiments. Beside
accuracy the influence on performance of the process-grid using the two-dimensional
block cyclic distribution was addressed. Tests show that the process-grid has a sig-
nificant impact on both, but in a different way. The experiments suggested that the
more columns the grid has, the better is the accuracy. However, this is not true for
the performance, in which the effect is the opposite: the more columns the grid has,
the worse is the performance. For symmetric grids, the performance achieved was
good due to a better balance in the communication process. It presented, however,
a little less accuracy then in the best case.

It is important to mention, that the impact of the data distribution on the results of
numerical simulations depend strongly on the particular problem as well as on the
numerical procedures employed to find the solution. Results showing the impact
of the granularity of the parallelization can also be found in Table 4.15, where the
number of iterations CG needs to solve the problem decreases when the resources
are increased. The reason for this behavior can be explained by the above shown
theory.

Ongoing research is the evaluation of different hardware platforms like CPUs from
various vendors, GPUs and other accelerators as well as full cluster systems based
on different interconnects. A second focus is the impact of the utilized software like
compilers, optimization flags and different libraries. One goal is to accelerate linear
solvers like CG or GMRES by performing a data reordering during the solution
process. Within the next chapter, experiments are shown for the impact of the
data distribution on a Jacobi-preconditioned CG-solver for two test-cases.



CHAPTER 7

Impact of Data Distributions in Accuracy on
Krylov Subspace Methods

7.1. Introduction

In the previous chapter it is shown that the data distribution and related execution
scheme of parallel executed basic linear algebra subroutines can influence accuracy
as well as performance. The two dimensional block-cyclic data distribution was
chosen since it is a quasi-standard used in many implementations like ScaLAPACK
or PBLAS. Depending on the order the data is computed, rounding errors can occur
in different patterns and propagate in different ways.

Error propagation is well investigated for direct linear solvers and splitting methods
(see [Hig96]) but only few results can be found for projection methods, especially
when they are used in combination with preconditioners. In practice however, the
popular Krylov-subspace solvers CG and GMRES (see Chapter 1.3 and 1.4) are
commonly used in combination with an adequate preconditioning (see Chapter 1.5
for basic preconditioners and Chapter 4.9 for their influence on the convergence of a
solver) depending on the characteristics of the application. For some combinations
of solver and preconditioner it is proofed that convergence can not be guaranteed.
In general, the problem of influencing the convergence in numerical experiments
becomes even more complex since rounding errors have also be taken into account.
Beside numerical analysis, experiments have to be performed for solving problems
in an efficient way.

The goal of this chapter is to evaluate the impact of different data distributions
on the convergence of a parallel CG solver in combination with a Jacobi precondi-
tioning. This is done to derive a heuristic for an efficient usage of data reordering
techniques and to discuss the achieved results in the context of the impact of round-
ing error propagation in elementary kernels from Chapter 6 is goal of this chapter.

7.2. Implementation and Platform Issues

Based on the two dimensional block-cyclic data distribution which is explained in
Chapter 6.2.2, a parallel CG solver (see Chapter 1.3, Algorithm 9) with Jacobi
preconditioning (see Chapter 1.5.1) was implemented.

As software platform, optimized PBLAS routines from the Intel MKL in version
10.1.3.27 have been taken as well as OpenMPI in version 1.4.2, C-XSC version 2.2.3
and the Intel-Compiler in version 11.1.073. In all experimental setups only one
MKL thread was used per process in order to avoid additional effects from the fine
grained parallelism within the library. All experiments have been performed on the
Instituscluster which is located at the Steinbuch Computing Centre (SCC) at the
Karlsruhe Institute of Technology (KIT). It consists of 200 computing nodes each
equipped with two Intel quadcore EM64T Xeon 5355 processors running at 2,667
GHZ, 16 GB of main memory and an Infiniband 4x DDR interconnect with fat-tree
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M11 (bcsstk13) M12 (s1rmq4m1)

problem: Fluid flow, FEM
problem size: n = 2003
sparsity: nnz = 42943
cond. number: 4, 6 · 1010
Frobenius norm: 7, 5 · 1012

problem: Cylindrical shells, FEM
problem size: n = 5489
sparsity: nnz = 143300
cond. number: 3, 21 · 106
Frobenius norm: 1, 1 · 105

Table 7.1. Sparsity plots and properties of the test-matrices M11 and M12

topology. 17,57 TFlops is the overall peak performance of the whole system and
15,2 TFlops in the Linpack benchmark.

One process was placed on one node and the allocated resources for the experiments
were used exclusively to avoid effects in relation to other programs that are executed
simultaneously. All results have been computed at least five times to achieve reliable
results.

7.3. Numerical Experiments

7.3.1. Implementation Issues and Reference Example. As test-case the
matrices bcsstk13 and s1rmq4m1 from matrix market [Mar] were chosen. Their
characteristics are shown in Table 7.1 and more details can be found on [Mar].

For the experiments regarding the accuracy of a matrix-vector multiplication, the
vector was filled with pseudo random numbers within the interval [−0.5, 0.5] and
the results were verified by using C-XSC, analogue to the previous chapter. As
initial guess for the solver a vector with ones in every entry and the zero-vector as
right-hand has been chosen.

7.3.2. Numerical Results. Analogue to the previous chapter, the average
error (arithmetic mean) to the verified result of an matrix-vector multiplication is
shown. Again it can be observed that the more columns the grid of processes has,
the better is the accuracy.
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Figure 7.1. Average error to the verified result for three different grids of
processes for the test cases M11 (left plot) and M12 (right plot).

In Table 7.2, the best possible accuracy for the error in the A-norm is shown for
different grids of processes and the thereby inducted data distribution.

M11 M12
Grid of processes Error (A-norm)

1× 1 1.45e-08 2,64e-05
2× 2 1.36e-08 2,10e-05
8× 8 1.20e-08 8,74e-06

Table 7.2. Shown is the best accuracy that can be reached with a Jacobi-

preconditioned CG-solver.

7.4. Result Interpretation

In the previous chapter it is shown from a theoretical and experimental side that
the data distribution can have a significant impact on the accuracy of the result
for basic linear algebra operations. When such operations are used to build a
solver for linear systems, as it is shown in the present chapter, the properties of
the linear system that is solved plays, beside the properties of the linear solver
and it’s implementation, a governing role for the accuracy of the result. For the
simple test-cases it is not possible to fall below a certain accuracy when the data
distribution is done such that the elementary matrix-vector operations deliver not
the most accurate result.

If the linear system is solved with a solving process of e.g. a nonlinear, in-stationary
problem, it could be beneficial to dynamically reorder the data depending on the
needed accuracy and performance. Empirically, the first steps in a Newton-based
solver should be computed highly accurate, while afterwards the accuracy can be
reduced. This means that one should start using as many columns in the grid of
processes at the beginning and move to a transposed scheme during the solution
process. For some cases, this strategy might also be the other way round and the
presented results and described approaches shall be understood as indication that
even for small systems the effects of rounding errors and communication patterns
can be significant.

One important issue should be investigated in future work. While the accuracy of
matrix-vector operations is usually better the more columns the grid of processes
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has, the accuracy of vector operations (that are based on the same data distribution)
can decrease, since the more columns the grid has the fewer rows are involved and
vectors are distributed to fewer processes. This leads to an execution scheme for
scalar products that is performed in the worst case according to accuracy.



CHAPTER 8

Application Employing New Technologies in
Computer Architecture: Simulation of Tropical

Cyclones

Results presented in this chapter have been reviewed, presented and published in
conjunction with the PARS-workshop 2009, organized by the “Gesellschaft für In-
formatik e.V.”. The related publication is [HHR09a].

In this chapter the focus lies on direct numerical simulation (DNS) to solve the
governing equations as described in (8.1). In order to resolve all scales relevant
for solving the problem, DNS has high requirements on computational power and
memory . This makes it necessary to not only focus on the numerical scheme but
on the hardware platform as well. Increasing the number of conventional processors
is an effective but not economic solution. Accelerators such as the GT200 GPU
(see Chapter 2.1.4 and Figure 2.4) and following generations promise high compu-
tational performance, as shown in Chapter 5.2 and 4, at low financial effort and
moderate power consumption compared to CPUs from the same generation. In the
following it is investigated under which conditions GPUs can be used to accelerate
the computation.

The governing equations for the application problems discussed in the following are
the time-dependent incompressible Navier-Stokes equations arising from continuum
mechanical descriptions of fluid behavior:

ρ
Du

Dt
= −∇p+ μΔu+ f , ∇ · u = 0, (8.1)

where u is the fluid velocity field, p the pressure field, ρ the constant fluid density,
μ its molecular viscosity constant and f combines external forces acting on the
fluid. The operator D depicts the non-linear material derivative. The meteorological
model is based on these equations, completed by initial and boundary conditions.

8.1. The Meteorological Model

An existing meteorological application for simulating tropical cyclones in 2D was
considered for acceleration with CUDA (see Chapter 2.2.3). The task is to solve
the emerging Navier-Stokes equations (8.1) on a square geometry, as exemplary
shown in Figure 8.1. The implemented algorithm accomplishes this on the Navier-
Stokes equations in their stream vorticity formulation which is frequently used in
2D simulations and can be found e.g. in [Bro92, lio03].

A transformation of the fluid equations from the primal variable (u, v, p) to a vor-
ticity ξ based point of view is performed and the stream function Ψ is used to keep
the velocity information for u and v, where u = (u, v)T . By using the abbreviation
∂iX = ∂X

∂i the functions Ψ and ξ can be written as follows:

ξ = ∂xv − ∂yu and u = −∂yΨ, v = ∂xΨ. (8.2)
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Figure 8.1. Vorticity plot produced by the 2D meteorological application for

simulating tropical cyclones. On a square domain the incompressible Navier-

Stokes equations are solved in their stream vorticity formulation.

By applying the curl operator on equation (8.1) the pressure term vanishes and
with ξ and Ψ as above and f = (f1, f2)

T it remains:

−ΔΨ= ξ, (8.3)

∂tξ + u · ∂xξ + v · ∂yξ − μΔξ = ∂xf2 − ∂yf1. (8.4)

The discretization for solving the Poisson equation (8.3) for a fixed initial ξ is
done by finite differences and the arising linear system is solved by an FFT. With
this solution for ξ it is possible to compute u and v via (8.2) and update ξ by
using equation (8.4). This procedure is then continued iteratively. A proof for the
equivalence of the Navier-Stokes equations in their stream vorticity formulation to
the primal variable based formulation with periodic boundary conditions can be
found in [MB02].

Numerical analysis and experiments have shown, that the algorithm produces rea-
sonable results also with single precision FFT, a necessity, as NVIDIA’s CUFFT
library is currently not available in double precision. The CPU implementation is
based on Intel MKL’s DFTI routines which are very well optimized for the used
Intel-based hardware.

8.2. Numerical Experiments

Performance results of the elementary kernels on GPUs are shown in Chapter 5.2.2.
In order to reveal the speedup that can be achieved by employing a certain GPU
in comparison to a certain CPU, the performance evaluation has been done for
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a special hardware constellation. All results in this chapter have been obtained
with ASUS ENGTX280 (chip: GT200a) graphics cards on an ASUS P5B deluxe
mainboard with Intel P965 north bridge and an Intel Core 2 Duo E6600 CPU.
The experiments have been performed by using the libraries MKL 10.0.1.014 and
CUBLAS/CUFFT 1.0 using CUDA driver 177.13.

In order to analyze the solver speed for the overall problem the performance of the
hardware platform for the elementary kernels csrmv, axpy, dot and fft has to be
investigated. Since an off-chip (CPU) accelerator is used, bandwidth between host
and GPU has also to be examined.

Figure 8.2. Host-to-device memory bandwidth test results.

The north-bridge offers one PCIe slot connected with 16 lanes and another one with
4 lanes only. As plotted in Figure 8.2 one can achieves approximately 2.5 GB/s on
the faster slot and 0.65 GB/s on the other. This result clearly indicates that hybrid
(CPU/GPU) or multi-GPU programs should communicate as seldom as possible, as
the bandwidth is not sufficient for frequent transfers of larger data packages. Even
these values are only achieved for the faster slot if non-pageable “pinned” memory
is used. On the GPU, the peak bandwidth was measured to be approximately 115
GB/s, but as mentioned before all 240 SPs have to share this bandwidth.

For the vector operation saxpy (single precision) and daxpy (double precision) the
GPU can clearly outperform the CPU for large vector dimension (Figure 8.3). Due
to a lack of data re-use (low computational intensity) for this operation low perfor-
mance is obtained with CUDA for small vectors.

The same is valid for the dot product test results, that resemble the ones of saxy
so close, that another plot would have been superfluous. Working exclusively on
the GPU with large vectors is the key to achieving high speed-ups over MKL on a
conventional CPU.

For the csrmv test, n log n randomly placed entries of a matrix of dimension n× n
were set non-zero. This is the worst-case for the GPU, as accesses to the source
vector are random with high latency. Again a small number of entries is not suitable
for the many cores of the GPU, but at a reasonable dimension of 8192, the speed-up
compared to MKL increases to 2.4 (Figure 8.4).

The measurements of the 2D FFT are done by forward and backward real trans-
forms. Although the plots show only speed-ups of 1.2 and 1.3, the complete meteoro-
logic problem solver demonstrates that in combination with other kernels, speed-ups
increase significantly.

The first step in accelerating the existing simulation software was to create a Fortran
interface for the CUFFT library and replace the MKL fft-calls. As expected from
the fft-only benchmarks in Figure 8.5, just minor improvements could be achieved.
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Figure 8.3. Performance test results of the axpy kernel in single and double

precision.

Figure 8.4. Performance test results of the csrmv kernel in single and double

precision.

Figure 8.5. Performance test results of the 2D real-to-complex fft in single precision.

It is to be underlined, that all tests could solely be done with CUFFT 1.0. Newer
versions are expected to achieve a higher performance.

The other part of the algorithm, numerical ODE solving via the Runge-Kutta
method, was implemented with a ghost layer for the periodic boundary conditions
in the Fortran version. When porting to the GPU, this layer had to be eliminated in
order to keep a power-of-two element number per row and not introduce a moving
offset, that would not suite the GPU’s memory alignment constraints and lead to
higher latencies.

As in the Fortran version, the integration was implemented via an out-of-place
stencil operation. This allowed to declare the source data as textures, that are read-
only but cachable (cf. Figure 2.4). In a last step of optimization, the needed grid
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points for the operation are explicitly prefetched into the GPU’s shared memories.
This leads to another performance improvement with final speed-ups of 3.5 to 4.5
depending on the grid size, as shown in Figure 8.6.

Figure 8.6. Performance improvements using GPU acceleration. Speed-ups

of the 2D meteorological application based on the number of discretization
points in any direction.

8.3. Conclusion

The current as as previous GPU generations offer enormous potential that can be
utilized not only in constructed examples but also CFD applications with academic
and non-academic background. A basic condition for this is that the underly-
ing mathematical model combined with the numerical schemes for solving it offers
enough parallelism to create enough threads for the GPU to cover waiting time for
memory calls of one GPU-thread by executing another thread. Exchanging threads
is for free compared to the time a memory operation takes.

The programmability of NVIDIA-GPUs was heavily simplified by the introduction
of CUDA compared to the most common former approaches. Due to that, significant
performance increases can be achieved in very short time e.g. by extending existing
applications with accelerated kernels in Fortran and C/C++ as the partially ported
meteorological implementation shows. To port a code completely to the GPU then
offers the full performance of the architecture. In the future, OpenCL might macer-
ate the tradeoff that achieving high performance often means to loose portability (as
it is the case for CUDA implementations where no previous CPU-implementation
is available).

All this is available for a relatively low prize not only for consumer graphics cards
but also as professional solutions for high performance computing. By looking to the
TOP500 list [top10] the number of clusters with accelerators, often NVIDIA GPUs,
increases more and more and gives a strong impulse to make use of this technique.
Additionally, the performance per Watt ratio is very good for such machines, as
Chapter 5.2 and the Green500 list [gre10] indicate.





CHAPTER 9

Summary and Outlook

Within this last chapter, the content of the thesis, main results and open questions
are addressed in an aggregated form. Additionally, possible variants of further
research and developments are depicted.

Goal of the thesis was to analyze how modern hardware technologies can be used
to accelerate numerical simulations. Special focus was set on accuracy and perfor-
mance for solvers for linear systems of equations in the context of finite element
discretizations of partial differential equations. As résumé it can be stated that
within this thesis it is shown that there are numerical methods that can take great
advantage of the properties modern hardware offer in both, accuracy as well as
performance.

A short survey of the developments in modern hardware architectures opens the
thesis. Explained is the growth of performance within the last decade and todays
situation, where there are machines that can execute more than 1015 floating point
operations per second (FLOPS). Parallelism is identified as the strategy to build
such computers and the enormous complexity that comes along with hundred thou-
sands of cores and arising heterogeneous hardware platforms (employment of GPUs
and other coprocessor technologies) constitutes a big challenge for efficient numeri-
cal simulations. Applications requesting extensive computational resources can be
found in many areas. Especially solvers for sparse linear systems arising in the
area of computational fluid dynamics frequently show a poor scalability since the
problems are often fully coupled and have a large number of unknowns. The need
for efficient linear solvers can also be derived from the large number of projects
aiming at this topic or the numerousness of software libraries that are developed
in research institutions all over the world (e.g. MUMPS, Pardiso, PETSc, ScaLA-
PACK, Trilinos and many others).

The Conjugate Gradient method (CG), as well as the Generalized Minimum Resid-
ual method (GMRES), are two common solvers for linear systems of equations.
Both are explained in Chapter 1.1 as well as preconditioning techniques in form
of (Block-) Jacobi and incomplete LU-factorization. Because of their strong de-
pendence on the application, only basic strategies for preconditioning are shown.
Further developments aiming particularly at preconditioning should take into ac-
count the usage of fix-point and staggered arithmetic since upcoming technologies in
reconfigurable computing (FPGAs) seem very suitable for such techniques. When
nonlinear problems are solved, it seems to be beneficial to discuss the strategy
of choosing the stopping criteria of the linear solver dynamically (by assuming a
linearization step within the nonlinear solver like it is the case within Newtons
method).

Chapter 2 gives an overview of modern (2010) technologies in hardware archi-
tecture. First, basic information about parallel micro- and multiprocessor systems
is given, followed by a closer look onto graphic processing units (GPUs). In the
area of computational fluid dynamics, field programmable gate arrays (FPGAs) are
an emerging architecture which is also described with special focus on a dedicated

139
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hybrid CPU-FPGA machine. To use parallel architectures, special programming
paradigms (respectively APIs) have to be employed since automatic parallelization
of pure sequential code through the compiler is usually not efficient. OpenMP, as
a representative of paradigms for a global address space (also called shared mem-
ory), MPI, which assumes a distributed address space (or distributed memory),
as well as CUDA for certain GPUs, OpenCL and PGAS languages are explained.
OpenMP, MPI and CUDA are heavily used in the numerical experiments of the
following chapters. OpenCL and PGAS languages are not evaluated, but should be
taken into account in future studies. For the future is can be stated that paradigms
should consider data locality as main issue (as it is done in PGAS languages).

A promising approach to exploit the hardware capabilities of present and in the
medium term arising heterogeneous high performance computers is the iterative
refinement method in combination with mixed precision techniques as explained
in Chapter 3.1. This is true at least for the reference examples examined in
Chapter 5.4 from the area of computational fluid dynamics as well as for most of
the artificially created test-matrices. One future step could be to analyze how the
perturbation of the matrix, that occurs when it is transformed from one floating
point format to another, effects the condition number and if it could be beneficial
to assemble the matrices in the needed floating point format instead of converting it
as done in this work. The numerical analysis regarding mixed precision techniques
applied to elliptic operators is, as far as the author knows, never published before.
Analytical boundaries are presented to guarantee that the method error does not
exceed the error that comes along within the discretization step. Based on the
presented results, multiple promising opportunities are possible. A posteriori error
estimators can be employed to approximate the necessary constants. Hereby it is
very interesting that, depending on the error estimator, local information about the
error is available which could be used to choose the necessary accuracy within the
solution process locally. Deducted algorithms can be assumed to be very suitable to
be mapped on heterogeneous hardware, offering properties that correspond to the
needs of the part of the algorithm. Also imaginable are implementations varying the
floating point formats based on iteratively computed bounds for the perturbations
during runtime. Suitable libraries (such as the GNU Multi Precision library GMP)
or hardware that offer a free choice of working on arbitrary floating point formats
(like FPGAs) are already existing and the challenge is to develop suitable numerical
methods.

Hardware-aware numerical mathematics improves performance in many cases, as
shown in the evaluation of different implementations of the CG and GMRES solvers
based on dedicated hardware from Chapter 4. It is demonstrated how both above
mentioned solvers can be implemented in parallel using the paradigms OpenMP
and MPI on CPU-based architectures and CUDA for GPUs. It is shown that by
using special communication patterns the structure of the underlying linear system
can be exploited leading to significantly gains in scalability. Especially the proposed
neighbor communication was seen to be beneficial in some cases. Additionally, the
employment of software libraries offering highly optimized BLAS implementations,
as well as complete linear solvers, is addressed to reveal when it is beneficial to
deploy them. Based on multiple sparse linear systems arising from different appli-
cations it is shown that parallelization significantly reduces the computation time.
The results also indicate constrains for the scalability and the need to develop more
advanced linear solvers for parallel and hybrid architectures. In future research, the
flexible GMRES should be taken into account in combination with preconditioning
techniques that automatically adapt to the properties of the underlying problem
while simultaneously taking into account the characteristics of the underlying hard-
ware.



9. SUMMARY AND OUTLOOK 141

Every hardware, and every future hardware generation, has different and sometimes
new kinds of characteristics. In order to develop hardware-aware solvers, detailed
knowledge about the properties of the hardware and behavior of relevant solvers
is indispensable. Prototypical evaluations of CPU-based clusters, GPUs as well as
FPGAs are presented in Chapter 5 and can be seen as a reference scheme for other
researchers. All “classes“ of architectures are considered in particular, followed by
benchmarks that compare the different architectures with each other in terms of
performance as well as in terms of energy efficiency. As a result it can be stated
that GPUs are capable to solve sparse linear systems significantly faster then single
CPUs. But with respect to energy efficiency, respectively costs per solution, the
user has to define how expensive the results can be. It becomes obvious that in
the (near) future, adequate metrics have to be defined to measure the costs of a
solution not only with respect to performance but also with respect to other criterias
like energy efficiency, accuracy, reliability and so on. FPGAs and the software to
support the usage of high-level programming languages on such architectures has
to be strongly improved as the presented results indicate. This is also true for the
numerical methods that can be executed on such machines. Topics, which should
be covered in future research, are surely the usage of interval arithmetics, staggered
arithmetics and other methods that can be implemented in hardware instead of
running on a higher abstraction level. Preconditioners that work on integers could
be a first step into this direction and could extend the analytical work from Chapter
3.1.

Empirical observations document that different data distributions can lead to dif-
ferent results in numerical simulations. This problem becomes worse on parallel
and heterogeneous hardware and is very important to be discussed. Beside the
theory of rounding error propagation for elementary operations and multiple data
distributions, experiments validating the theoretical findings are shown in Chap-
ter 6. Based on the two-dimensional block-cyclic data distribution, routines from
the PBLAS/ScaLAPACK library have been evaluated with focus on accuracy and
performance for different test-cases. As reference for the quality of the computed
results, verified computing was utilized in the form of the C-XSC library. Impor-
tant in this set-up is that the choice of the linear system and right-hand side is
no longer limited to examples where the analytical result is known (to validate the
results). Arbitrary linear systems and right hand sides can be used and all results
can be verified. This has never been published before in such a constellation, as far
as the author knows. The theoretical results can be applied to many sparse data
formats and demonstrate that the more columns the grid of processes has the better
is the upper bound for the rounding error propagation. In the presented numerical
experiments, the accuracy for almost all test-cases show more accurate results for
increasing number of columns. One order of magnitude and more can be gained.
Depending on the topology of the communication layer (usually determined by the
hardware structure of the interconnect of the cluster), the performance behaves
contrarily due to imbalances in the communication scheme. Based on the shown
results it is possible to implement a linear algebra, respectively solvers, that can
reorder the data during runtime to optimize for speed and/or accuracy.

As canonical continuation, the impact of the data distribution on the convergence
of a parallel, preconditioned CG solver was evaluated in Chapter 7. It is shown for
two test-cases that a higher accuracy within parts of the underlying linear algebra
lead to more accurate results for the solution of the linear system. Here, detailed
numerical analysis of the solver with respect to rounding errors could help figuring
out the impact on the convergence rate of every single operation within the algo-
rithm. In addition to that, further numerical experiments should be performed and
more preconditioners should be taken into account.
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Chapter 8 presents a model for simulations of tropical cyclones, which is in ev-
eryday use by scientists from meteorology. The application was ported from a pure
CPU-based implementation to a CUDA-based simulation which can be executed on
GPUs. Beside three implemented versions running exclusively on one or the other
architecture, a hybrid implementation employing both, CPU and GPU, was created
since parts of the simulation could easily be shifted to a GPU. A speedup of close to
five is the result for the overall simulation on relevant grid sizes when the optimized
GPU-implementation (employing texture-caches) is used. Users of the simulation
are now able to create almost five times more results in the same time they created
only one result before, or in other words, they need only about 20 percent of the
time to perform a simulation.

In the midterm, lots of heterogeneous hardware architectures will appear. They
will be composed of conventional CPUs in combination with GPUs (on- and off-
die), FPGAs (on- and off-die) as well as other kinds of accelerator technologies.
Programming those machines based on a single, wide spread programming paradigm
(or API) seems only possible by using OpenCL. It shall be annotated that by
using this programing paradigm, implementations are more portable then with most
other paradigms but in order to exploit the available performance on a dedicated
hardware, a special tailoring of the code to the machine has to be performed leading
potentially to a decrease in performance (or even faults) on other systems. Data
locality might play the most important role in the future, since even today the
energy spend within the computation is mainly spend for the transportation of the
data, not for performing arithmetic operations. The efforts to integrate additional
functionalities to the MPI standard may also be observed carefully in the future.

Reproducibility of numerical results is a basic request from scientific researchers.
Since there exists hardware (e.g. FPGAs) offering the possibility to execute the
needed operations directly in hardware, verified computing may play an important
role in the future. This is especially the case in the area of dependable computing,
where at least some parts (or results) of an algorithm have to be computed with a
guaranteed accuracy. However, all future developments will be analyzed carefully
in terms of energy efficiency since more and more energy is spend for computing
power and hardware vendors will examine strictly the utilization of transistors.

All results presented in this work express the inspiration to give a contribution to
the scientific community in order to solve problems arising in the area of numerical
simulation in a more efficient way. Last, but not least, it is stated that the holistic
view of this work is motivated by the idea that a problem should never be solved
without spending a blink of an eye on the whole.
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mierung mit C/C++. Springer, Berlin, Heidelberg, 2008.

[HP07] J.L. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.

Elsevier, Amsterdam, 4th edition, 2007.
[HP09] J.L. Hennessy and D. Patterson. Computer Organization and Design. Elsevier, Am-

sterdam, 4th edition, 2009.
[HPC] HPCC. HPCC Results Database. http://icl.cs.utk.edu/hpcc/hpcc_results.

cgi.

[HRKH97] R. Hammer, D. Ratz, U. Kulisch, and M. Hocks. C++ Toolbox for Verified Scientific
Computing I: Basic Numerical Problems. Springer-Verlag New York, Secaucus, NJ,

USA, 1997.

[HRR09] V. Heuveline, B. Rocker, and S. Ronnas. Numerical Simulation on the SiCortex

Supercomputer Platform: a Preliminary Evaluation. EMCL Preprint Series, 2009.

[ilu] ILU++. http://iamlasun8.mathematik.uni-karlsruhe.de/∼ae04/iluplusplus.html.

[KK99] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1999.



146 BIBLIOGRAPHY

[KKL+93] R. Klatte, U. Kulisch, C. Lawo, R. Rauch, and A. Wiethoff. C-XSC- A C++ Class
Library for Extended Scientific Computing. Springer-Verlag Berlin, 1993.

[KM81] U. Kulisch and W. L. Miranker. Computer Arithmetic in Theory and Practice.

Academic Press, New York, 1981.
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[SK06] H.R. Schwarz and N. Köckler. Numerische Mathematik, volume 6. Teubner, Wies-

baden, 2006.
[SS86] Y. Saad and M. H. Schultz. Gmres: a generalized minimal residual algorithm for

solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869,

July 1986.
[top10] Website of the top500 project, December 2010.

[YSP+98] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind

Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, and Alex
Aiken. Titanium: a high-performance Java dialect. Concurrency: Practice and Ex-

perience, 10(11-13):825–836, 1998.





Index

A-orthogonal, 14

Arnoldi Method, 10

Blockcyclic data distribution, 68

CG Parallelization, 79

Conjugate Directions, 14

Conjugate Gradient, 13

Coordinate Format, 115

CSC, 116

CSR, 115

CUDA, 43

Distributed Memory, 38

Energy Norm, 15

Error correcting solver, 4

FGMRES, 23

FPGA, 41

Galerkin condition, 9

Generalized Minimum Residual Method, 20

GMRES, 20

GMRES Parallelization, 81

GPGPU, 43

GPU, 39

Gradient Descent, 13

ILU(p), 27

ILU(0), 27

ILUT, 28

Incomplete LU-factorization (ILU), 26

Iterative refinement method (IR), 3

Jacobi preconditioning, 25

Krylov Subspace, 10

Lanczos Algorithm, 12

Level of Fill, 27

Mixed precision, 5

MPI, 42

Multiprocessor System, 38

OpenCL, 43

OpenMP, 41

Parallel architectures, 37

Petrov-Galerkin condition, 9

Preconditioning, 24

Process, 39

Rounding error propagation, 66

Shared Memory, 38

SiCortex SC072, 46

SiCortex SC5832, 46
SMP, 38

Speedup, 8

Speedup Factor, 8
Steepest Descent, 13

Stopping criteria (iterative solvers), 29

Thread, 38

Tschebyscheff polynomials, 18

149


