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Abstract Declarative query interfaces to Sensor Net-
works (SN) have become a commodity. These interfaces
allow access to SN deployed for collecting data using re-
lational queries. However, SN are not confined to data
collection, but may track object movement, e.g., wildlife
observation or traffic monitoring. While relational ap-
proaches are well suited for data collection, research
on Moving Object Databases (MOD) has shown that
relational operators are unsuitable to express informa-
tion needs on object movement, i.e., spatio-temporal
queries. In this paper, we study declarative access to SN
that track moving objects. The properties of SN pre-
vent a straightforward application of MOD, e.g., node
failures, limited detection ranges and accuracy which
vary over time etc. Furthermore, point sets used to
model MOD-entities like regions assume the availability
of very accurate knowledge regarding the spatial extend
of these entities. As we show, assuming such knowledge
is unrealistic for most SN. This paper is the first that
defines a complete set of spatio-temporal operators for
SN while taking into account their properties. Based
on these operators, we systematically investigate how
to derive query results from object detections by SN.
Finally, we show how process spatio-temporal queries in
SN efficiently, i.e., reduce the communication between
nodes. Our evaluation shows that our measures reduce
communication by 45%-89%.

1 Introduction

Many sensor-network installations (SN) observe mov-
ing objects. For instance, scientists observe animal move-
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ment [13, 32, 37], or authorities monitor soldiers, pedes-
trians or vehicles [22, 29, 30]. In such applications, users
are interested in object movements, i.e., the queries
have spatio-temporal semantics.

A promising way to access networks declaratively is
by means of declarative queries [9, 10, 21]. But research
has focused on relational queries so far. Formulating
spatio-temporal information needs with relational oper-
ators results in very complex query statements [23, 47].
Moving object databases (MOD) have solved this prob-
lem by proposing operators with concise spatial and
spatio-temporal semantics.

There are several characteristics of SN that are in
the way of a straightforward application of MOD con-
cepts to SN: MOD tend to assume that information on
objects and regions is complete and accurate. Data col-
lected with SN in turn typically does not have this char-
acteristic. First, unobserved areas due to failed nodes
and the inaccuracy of detection mechanisms result in
inaccurate/incomplete information on the movement of
an object. For instance, laser scanners detect the dis-
tance of an object such as a vehicle to the node equipped
with the scanner, but not the exact position of the
object. Other mechanisms are even less accurate, e.g.,
acoustic vehicle detection only detects if a vehicle is
in the vicinity of the node [14]. Second, MOD model
regions as point sets which implies that precise infor-
mation on the spatial extend of the region is available
at any time. As we show, acquiring such information for
many SN deployments is unfeasible or even impossible.
To circumvent this problem, these SN typically observe
object movement in relation to a set of nodes instead of
a set of points. We refer to such a set of nodes as zone
to distinguish it from the term region which denotes
a point set. Since zones are a peculiarity of SN, they
have not been addressed by research on MOD. Third,
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the inaccuracy of object detection sometimes prevents
the SN from determining whether an object is inside,
on the border or outside of a region. It is challenging
to provide spatio-temporal operators for SN with clear
semantics for regions and zones while coping with the
intricacies of object detection.

In this paper we propose Moving Objects Sensor
Databases (MOSD), i.e., declarative access to sensor
networks that track moving objects. More specifically,
we make the following contributions:

Applicability: Different detection mechanisms use
different hardware with different properties and vary-
ing accuracy. Furthermore, deployments of SN them-
selves vary regarding several characteristics. We de-
fine meaningful abstractions applicable to all kinds
of detection mechanisms and deployment types with-
out sacrificing conciseness and expressiveness.

Semantics: We provide a set of spatio-temporal op-
erators for SN with concise semantics. These oper-
ators allow users to express spatio-temporal queries
in SN. The systematic translation of object detec-
tions into results for queries interested in object
movement in relation to a zone or region is the core
contribution of this paper.

Optimality: In some cases, the SN is unable to
determine whether the movement of such an object
conforms to a query or not due to the inaccuracy of
detection mechanisms. We identify these cases and
provide an approximate query result by dividing ob-
jects into three sets: The first set contains objects
that definitely conform and the second those that
definitely do not conform to the query. The third
set consists of objects where the SN cannot provide
a definite result. We prove that our approximation is
optimal, i.e., the aforementioned translations mini-
mize the third set.

Efficiency: Processing spatio-temporal queries must
be energy-efficient, because sensor nodes are typi-
cally battery-powered [1, 36]. We provide two differ-
ent execution strategies to compute spatio-temporal
query results in-network and reduce communication
by exploiting spatial correlation of object detections.
Our evaluation shows that these strategies reduce
communication by 45%-89% compared to process-
ing the query at the base station.

Finding a solution to the problem addressed by each
contribution is challenging itself. However, it is impor-
tant to note that these underlying problems cannot be
solved independently from each other one by one. This
paper provides an integral approach that addresses all
of them.

2 Applications for MOSD

We now describe two applications of object-tracking SN
and provide examples for spatio-temporal queries. The
scenarios illustrate the core differences between the two
main classes of spatio-temporal queries in SN and in-
troduce two important subclasses for each class.

2.1 Application Example 1: Surveillance

Figure 1 illustrates an application from vehicle detec-
tion and classification called ”A line in the Sand” [5].
Sensor nodes track vehicles moving in an area. An ex-
ample of a spatio-temporal query is ”Which vehicles Vi

have entered the restricted access region R?”.
As we show in Section 3.1, there exist various mech-

anisms that allow the detection of objects such as ve-
hicles, humans or animals. While some of them, e.g.,
radar [15], allow precise localization of objects detected,
most of them only determine if an object is in the vicin-
ity of a sensor node, e.g., microphones [11, 14]. Hence,
sensor nodes might be unable to determine if an object
detected is inside the region, on the border or outside.
Another issue, which is discussed in [5] as well, is the
possibly uncontrolled deployment of sensor nodes for
surveillance applications: For military deployments in
particular, it is often infeasible to deploy nodes manu-
ally, e.g., because the area of interest is controlled by
enemy forces. Hence, sensor nodes may be dropped out
of an airplane. This may result in unobserved areas [3].
Summing up, MOSD must cope with inaccurate and
incomplete information on the movement of objects.

For the query above, the region R is a set of points
that does not change over time. We call such a region
static. Another way to define a region is by means of
constraints referring to values which change over time.
For example, a user could define a region as all points
of space with a temperature below 0○C. In this case,
the region changes over time (dynamic region).

2.2 Application Example 2: Animal Tracking

Tracking animals at large temporal and spatial scale is
important to understand their behavior [13, 28]. SN can
be deployed over large areas and allow the monitoring
of animals such as caribous [38, 40] without much intru-
sion. The following is an example of a spatio-temporal
query scientists could issue: ”Which caribous Ci have
moved into the tree-covered swamp area on the south-
western side of the river?”

It is possible, but impractical, to model this swamp
area as a point set. This is because such a model would
require exact recording of the locations of all trees, the



Spatio-Temporal Sensor Databases 3

Fig. 1 Surveillance application with a region Fig. 2 Animal-observation application with a zone

swamp and the river. Typically, scientists solve this
problem by carefully planning the node positions and
placing them manually [20]. This controlled deployment
allows recording properties of the surroundings of each
node during deployment, i.e., before the nodes start
sensing. Based on this information, one can derive a
set of nodes inside the area of interest, e.g., all nodes
in the tree-covered swamp area on the south-western
side of the river (black colored circles in Figure 2). It is
sufficiently accurate for its purpose if the SN observes
caribou movement in relation to this set of nodes. As
stated in the introduction, we refer to such a set of
nodes as zone to distinguish it from the term region
which describes a point set. In Figure 2, the zone is the
set of black circles. Analogously to regions, there are
static and dynamic zones.

2.3 Scope and Assumptions

We are interested in a declarative interface for sen-
sor networks that observe moving objects and its effi-
cient implementation. We study queries on the spatio-
temporal relationship of a moving object and a region
or zone which may be static or dynamic .
Definition 1 (Spatio-Temporal Query): A spatio-
temporal query for SN is a tuple Q = {O,C,P}:
1. Object Description O: A description of objects

whose movement is queried. The description must
allow sensor nodes to identify relevant objects using
their sensing hardware.

2. Query Context C: This is a region or zone.
3. Predicates P: A set of predicates and operators

that define movement the user is interested in.
An object matching the description O is part of the
result if it has moved as described by P in relation to
the region or zone described by C. ◻

Sections 3.2 and 5 will elaborate on query contexts
for regions and zones respectively. The spatio-temporal
predicates and operators which describe the movement

of interest will be addressed in Sections 6 and 7. Note
that the query definition deliberately excludes queries
interested in the topological relationship of two regions,
two zones, lines and regions etc., since such queries are
outside of the scope of this paper.

Additionally, there are some assumptions resulting
from the applications envisioned in a natural way: Nodes
are stationary, i.e., they do not move once they have
started sensing. Nodes are able to distinguish between
query-relevant objects and irrelevant ones. This means
that if the query is interested in vehicles, the detection
mechanism can distinguish vehicles from other kinds of
moving objects, e.g., pedestrians. This is realistic, be-
cause detection mechanisms typically are designed for
a specific type of object. For example, mechanisms for
the detection of animals, e.g., acoustic animal recog-
nition [32], filter irrelevant events. Other mechanisms
for animals use collars [33, 38] attached to individuals
of the species observed, i.e., animals without a collar
remain undetected.

In addition, the various detection technologies typi-
cally allow the identification of individuals. This is im-
portant for spatio-temporal queries. In particular, if
node Si detects an object, and another node Sj detects
the same object later on, the SN can derive that the ob-
ject is the same. Such an identification is typically avail-
able, e.g., through identification numbers on the collars,
characteristic noise patters or ferro-magnetic signatures
(see [5] for examples).

3 Background

This section reviews related work and introduces con-
cepts/mechanisms our work is based on. There are three
areas of research related to ours; the numbers are in line
with the ones of the corresponding subsections:
3.1 Detection Mechanisms: There exist detection mech-

anisms for various kinds of objects. We review some
of them and summarize their properties.
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3.2 Moving Object Databases: MOD facilitate the pro-
cessing of queries with spatio-temporal semantics.
We introduce core concepts of MOD and discuss
why these are not readily applicable to SN. For fur-
ther details on MOD see [17, 23, 24].

3.3 Declarative Query Processing in SN: Research has
shown that accessing SN declaratively is advanta-
geous. We discuss the advantages and show why ex-
isting work is insufficient for SN that track moving
objects.

Section 3.3 reviews our own previous work on spatio-
temporal query processing in SN.

3.1 Detection Mechanisms

Object detection has received a lot of attention from re-
search [5, 11, 15, 25, 26, 31, 32, 41, 42, 49]. For example,
magnetometers have been used to detect and identify
the magnetic field generated by moving vehicles [26].
Most of the research in the area aims at increasing
the accuracy of detection or at efficiency, particularly
if readings from several nodes must be combined to de-
tect an object. Spatio-temporal query processing as pro-
posed in this paper is on top of these approaches: The
existing mechanisms try to detect objects. We propose
operators to let users access this information declara-
tively. We use some of the mechanisms just mentioned
for illustration.

In [32], microphones have been installed on sensor
nodes to detect, classify and identify animals, in this
case frogs. Similarly, one can generate sound signatures
from the noise of engines and propulsion gear of vehicles
using microphones [11, 42]. All these mechanisms can-
not determine the exact position of the object detected.
This is different with other mechanisms that allow dis-
tance estimation like Laser Scanners or even provide
precise locations of objects detected, like radar [15].

[5] investigates limitations regarding detection us-
ing magnetometers and micropower-impulse (MI) radar
(TWR-ISM-002-I): Their magnetometers have become
desensitized over time, and this effect is even stronger
if the sensor was exposed to heat. While this could be
fixed by circuitry that re-calibrated the magnetometers
at certain intervals, the area observed by a sensor node
has become significantly smaller temporarily. Further-
more, the MI-radar and the magnetometer have influ-
enced each other when both were used simultaneously.
While the documentation of the TWR-ISM-002-I [2]
states a maximum range of 60 feet, the actual range
has been significantly lower during their experiments.
External influences, e.g., rain, reduced the range even
more. Hence, one has to take into account that detec-
tion ranges change over time. This may result in areas

that are temporarily or permanently unobserved even
if the SN has been deployed manually.

3.2 MOD

Moving object databases are based on point-set topol-
ogy [19]. According to it, a space is composed of in-
finitely many points, e.g., the d-dimensional Euclidean
space Ed. We will use E2 for illustrations. All concepts,
those of MOD as well as our own, can be extended to
other spaces or more dimensions.

Point-set topology features subsets of space, i.e., sets
of points, called entities. There are three types of en-
tities: objects1, lines and regions We leave aside lines
in the following. An object is modeled by its position
which is a single point. A region is a point set where
every point p satisfies a set of conditions, e.g. a secu-
rity area or storm. We denote the set of conditions that
define a region R as CR and the function that checks
for a point p if it fulfills CR as CR (p):

CR (p) = {
T iff p fulfills CR
F Otherwise (1)

Every entity e partitions the space into three pair-
wise disjoint subsets: the interior eI , the border eB and
the exterior eE . For a region R, the border RB is the
line that encompasses the interior RI . Any point that
is neither in RB nor RI is part of RE . In case of an
object O positioned at p ∈ Ed, OI contains only p.
OB is empty, and OE contains every point except p.
See [16, 19] for formal definitions.

RI

O RB

RE RI

O
RB

RE RIO

RB

RE

Disjoint (O, R) Meet (O, R) Inside (O, R)

Fig. 3 Illustrations of the three predicates describing the topo-
logical relationship of an object O and a region R

3.2.1 Spatio-Temporal Predicates

MOD use predicates to describe the topological rela-
tionship of two entities A and B [16, 17]. Each predi-
cate describes how the exterior, border and interior of

1 Entities represented by a single point are typically called
point. We refer to such an entity as object to distinguish it from
a point which is an element of space.
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A intersects with the exterior, border and interior of B.
As illustrated in Figure 3, it is sufficient to define three
predicates to describe all possible intersections of an ob-
ject O and a region R: The predicate Disjoint (O,R)
is true if the interior of O intersects with the exterior
of R, i.e., OI

∩RE
≠ ∅. Similarly, Meet (O,R) is true

if O is on the border of R, i.e., OI
∩RB

≠ ∅. If the
interior OI intersects with the interior of the region,
i.e., OI

∩RI
≠ ∅, the predicate Inside (O,R) is true.

3.2.2 Spatio-Temporal Developments

In MOD, users formulate a query by describing the
movement they are interested in. To express arbitrary
changes of relationships between entities, [17] defines
the concatenation operator, as follows:
Definition 2 (Concatenation): The concatenation
of two predicates, P ▷ Q, is true if P is true for some
time interval [t0; t1[, and Q is true at t1. ◻

Using this operator, one can construct sequences of
spatio-temporal predicates P1 ▷ P2 ▷ . . . ▷ Pq. In line
with [17], we refer to such a sequence as spatio-temporal
development.
Example 1: In Section 2.1, the user wants to know
which vehicles V have moved into region R. To fulfill
the query, a vehicle V must be outside of R, then move
over the border RB into the interior RI .

Disjoint (V,R)▷Meet (V,R)▷ Inside (V,R) (2)

This spatio-temporal development usually is referred
to as Enter (V,R).

Disjoint (V,R)▷Meet (V,R)▷Disjoint (V,R) (3)
Inside (V,R)▷Meet (V,R)▷Disjoint (V,R) (4)

Other sequences are constructed similarly: Equa-
tions (3) and (4) define the predicate sequences for
Touch (V,R) and Leave (V,R) respectively. ◆

While infinite sequences of spatio-temporal predi-
cates are possible, [17] has shown that it is sufficient
to explicitly consider a canonical collection of 28 devel-
opments. From these 28 developments, more complex
ones can be constructed by means of concatenation, as
illustrated in Example 2.
Example 2: Suppose that a user is interested in
objects O that enter a region R, move around inside
the region and then leave the region. To express this

using the aforementioned developments, the user con-
catenates Enter (O,R) and Leave (O,R):

Cross (O,R) = Enter (O,R)▷ Leave (O,R) (5)

The concatenation Enter (O,R)▷ Leave (O,R) is
typically denoted as Cross (O,R). The expression in (5)
translates to the predicate sequence in (6). Note that
Inside (O,R) ▷ Inside (O,R) = Inside (O,R) at the
junction between Enter (O,R) and Leave (O,R), since
P = P▷P [17]. ◆

As in [17], we provide a canonical collection of spatio-
temporal developments for SN in Section 7. This allows
us to limit the number of predicate sequences we must
consider explicitly.

3.2.3 MOD vs. SN

MOD model an object as a point in space. For mov-
ing objects, this implies that the position is known pre-
cisely at any point in time. Most of the detection mech-
anisms used in SN cannot provide this accuracy (cf.
Section 3.1). There has been work aimed at process-
ing spatio-temporal queries if object positions are only
known at some instants of time [4, 12, 45, 46]. These
approaches are insufficient in our context: First, they
still require precise object positions from time to time.
Second, they are based on relatively strict assumptions.
For instance, [46] assumes that an object whose posi-
tion is p1 at t1 and p2 at t2 moves between p1 and p2
on a straight line ”at a constant speed”.

To conventional notion of a border that completely
encompasses a region does not readily carry over to our
context. This is because (some of) the border of a region
may be unobserved. For example, a user may query
Enter (O,R). Let us assume that O moves from the
outside of R into the region, but it is never observed on
the border, e.g., because a node that has been deployed
to observe the border has failed. Another problem with
the border is that it is a line. The time it takes an
object to move over a line is infinitely short. Capturing
this moment would require an infinitely high temporal
resolution of the detection hardware.

Capturing the spatial extent of regions is problem-
atic as well in some applications. In the examples in
Section 2, users formulate queries regarding the object
movement relative to a set of nodes. These queries are
unique to SN. Summing up, while MOD concepts serve
as a foundation, significant work is required to apply
them to SN.
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Cross (O, R) = Disjoint (O, R)▷Meet (O, R)▷

Leave(O,R)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Inside (O, R)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Enter(O,R)

▷Meet (O, R)▷Disjoint (O, R) (6)

3.3 Query Processing in Sensor Networks

Research has shown that declarative access to SN is ad-
vantageous, but has been limited to relational queries
so far [9, 10, 21, 34–36, 48]. For traditional database
systems, research has shown that expressing spatio--
temporal information needs using relational operators
results in unnecessarily complex queries that are diffi-
cult to process [23, 47].

The situation is comparable for existing relational
query processors for SN, e.g., TinyDB [36]. One rea-
son is the lack of continuous or time-aware data types
in purely relational systems, i.e., a value is assumed to
be constant unless it is updated explicitly. For contin-
uously moving objects, this implies frequent updates.
Furthermore, relational systems lack operators and data
types for point sets: Relational systems for SN only
feature simple data types, e.g., integer, float or string
for attributes. Storing point sets would require the de-
composition of the point set into separate values stored
in different tuples. Processing spatio-temporal queries
would then require reconstructing these point sets prior
to processing the actual query. Such a reconstruction is
complex since it requires subqueries and many join op-
erations. Summing up, storing data on moving objects
detected by SN would result in frequent updates, and
queries would be unnecessarily complex.

Our own work has addressed spatio-temporal queries
in the context of static regions [7] and static zones [8]
separately. This paper provides an integral approach
that is applicable to static/dynamic regions and zones.
This requires significant modifications and extensions
to previous concepts. Additionally, we describe new eval-
uations with deployments of Sun SPOT [43] sensor nodes
and optimization strategies.

4 Generic Model of a Sensor Network

This section provides a generic model of a SN which is
fundamental for our Applicability contribution.
Notation (Sensor Network): A sensor network
is a set SN = {S1, . . . ,Sn} of sensor nodes and a base
station. Every Si ∈ SN has a position POSi ∈ Ed.

Fig. 4 Illustration of the node model

Each node is equipped with hardware that allows it
to detect and identify objects in its vicinity.
Definition 3 (Detection Area): The detection area
DAi of node Si is the set of points DAi ⊆ Ed where Si

can detect an object. ◻

As discussed in Section 3.1, the detection area of
a node may have any shape or size and is subject to
external influences. For example2, S1 in Figure 4 has
been deployed close to a rock and thus cannot detect
objects moving behind that rock. A node Si detects the
object O at time t if O ∈DAi at t.
Definition 4 (Detection Function): The detection
function detect (Si,O, t) is defined as follows:

detect (Si,O, t) = {
T iff O ∈DAi at t
F otherwise (7)

An object O is detected at time t if detect (Si,O, t) =
T for at least one i ∈ {1, . . . , n}. Depending on the
deployment, detection areas may overlap. An object
within this overlap is detected by more than one node
simultaneously.
Definition 5 (Detection Set): The detection set
DetSetO

t ⊆ SN is the set of all nodes that detect an
object O at some time t.

DetSetO
t = {Si ∈ SN ∣ detect (Si,O, t) = T } (8)

For some detection mechanisms it is not possible to
determine the detection area accurately. However, the

2 To avoid clutter in the figures, we refer to nodes in figures
without subscript indices, i.e., nodes S1,S2, . . . are S1, S2, . . .
in the figures.
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Fig. 5 DetResO
t (S1) based on Dmax Fig. 6 DetResO

t (S1) with a distance
estimating detection mechanism

Fig. 7 Illustration of the space parti-
tions for a zone Z

maximum detection range is typically available prior
to deployment, e.g., because the manufacturer has con-
ducted a calibration [2].
Definition 6 (Maximum Detection Range): The
maximum detection range Dmax is the maximum dis-
tance of an object to a node to be detected. ◻

Detection mechanisms are used to localize objects
detected as accurately as possible. It depends on several
factors, e.g., hardware, weather etc., how accurate such
a localization is [5]. To deal with any kind of detection
mechanism, we model the result of an object detection
as a point set.
Definition 7 (Detection Result): The detection
result for an object O detected by Si at time t ∈ T is the
set DetResO

t (Si) of all points p ∈ Ed where O could
be according to the detection mechanism of Si. ◻

The shape and size of DetResO
t (Si) depends on

the detection mechanism, as Example 3 illustrates.
Example 3: Simple mechanisms like acoustic vehicle
detection [11, 42] or PIR-based motion detectors cannot
determine their detection area. They only determine
whether an object O is in the vicinity, i.e., in the detec-
tion area, of a node or not. As shown in Figure 5, when
S1 detects an object O at time t, DetResO

t (S1) is the
circle with center POS1 and radius Dmax. More sophis-
ticated mechanisms, e.g., laser scanners, determine the
distance d of the node to the object. Taking into account
a certain deviation ε, DetResO

t (S1) is ring-shaped, see
Figure 6. Note that some parts of DetResO

t (S1) in Fig-
ure 6 are not part of the detection area DA1 of S1. If
S1 cannot determine its detection area, it cannot dis-
tinguish between points in DetResO

t (S1) that are in
its detection area and those that are not. ◆

If several nodes detect an object simultaneously, the
sensor network can refine the information on the object
position by intersecting the various detection results.
Definition 8 (Possible Object Positions): The set
of possible object positions POPO

t ⊆ Ed of object O at
time t ∈ T is the intersection of all detection results

DetResO
t (Si) of nodes Si ∈ DetSetO

t .

POPO
t =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⋂
Si∈DetSetO

t
DetResO

t (Si) iff DetSetO
t ≠ ∅

∅ iff DetSetO
t = ∅

(9)

If the detection set for an object O is empty, O is
undetected. There can be various reasons for this, e.g.,
the object does not exist anymore or has moved into an
unobserved area. Independently of the reason, the SN
cannot make any statement regarding the position of
the object and we model this with POPO

t = ∅.
Definition 9 (Communication Area): The com-
munication area CAi ⊆ Ed of node Si is the set of points
where a node Sj can receive messages sent by Si. ◻

A node Si can directly communicate with another
node Sj if POSj ∈CAi. Communication areas can have
any shape or size and may change over time. Further-
more, nodes typically cannot determine their communi-
cation area. There exist several routing protocols that
determine the set of nodes that a node Si can directly
communicate with [18, 39]. These protocols allow for-
warding of messages via multiple hops, e.g., to send re-
sults to the base station. To accomplish this, each node
must store a list of nodes it can communicate directly
with and some routing information about the connect-
edness of each neighbor to the rest of the network.
Definition 10 (Communication Neighbors): The
communication neighbors CNi of a node Si are the nodes
that Si can directly communicate with. ◻

5 Point Set Topology for Sensor Networks

While we borrow the concept of a region as well as
its interior, border and exterior from MOD, the no-
tion of a zone remains to be defined. We then propose
a space partitioning based on zones and classify the
spatio-temporal queries that occur in SN. This is a pre-
requisite toward the contribution Semantics.
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A zone Z is a set of nodes satisfying a set of condi-
tions CZ, e.g., all nodes inside a swamp area (cf. Sec-
tion 2.2). Similarly to regions, we refer to the func-
tion that checks for a given node Si if it satisfies CZ as
CZ (Si):

CZ (Si) = {
T iff Si satisfies CZ
F Otherwise (10)

Definition 11 (Zone): A zone Z is a set of nodes
which satisfy a set of conditions CZ:

Z = {Si ∈ SN ∣ CZ (Si)} (11)

A node Si is inside of Z if Si ∈ Z, outside otherwise.
We refer to the set of nodes that are outside of the zone
as Z:

Z = {Si ∈ SN ∣ CZ (Si) = F} (12)

To define the semantics of predicates that express
the topological relationship of objects and zones, it is
necessary to partition the space. The core idea is as
follows: Any point p ∈ Ed can be either in no detection
area, only in detection areas of nodes in Z, only in those
of nodes in Z, or in detection areas of nodes in Z and
Z. Thus, every zone partitions space as follows:
Definition 12 (Unobserved Partition): The unob-
served partition Z∅ of a zone Z contains all points not
contained in any detection area:

Z∅ = {p ∈ Ed
∣ ∄Si ∈ SN ∶ p ∈DAi} (13)

Definition 13 (Interior, Exterior, Border of a
Zone): The interior ZI of a zone Z contains all
points exclusively observed by nodes in Z:

ZI
= {p ∈ Ed

∣ p ∉ Z∅ ∧ ∄Si ∈ Z ∶ p ∈DAi} (14)

The exterior3 ZE of a zone Z contains all points
exclusively observed by nodes in Z. The border ZB of a
zone Z contains all points of space observed by nodes
from Z and Z. ◻

Figure 7 illustrates this partitioning for a zone: Cir-
cles and squares4 represent nodes. Black circles/squares
represent nodes in Z while grey ones represent nodes
outside of Z. Every node has a detection area of a cer-
tain shape and the space partitions of Z depend on the
intersections of these detection areas.

3 Due to their similarity to (14), we omit the formulas for the
remaining partitions.

4 The difference between squares and circles is irrelevant here;
we explain it in Section 8.4.

Lemma 1. The point sets Z∅, ZI , ZE and ZB partition
the space, i.e., every p ∈ Ed is only in one partition.

Proof. A point p ∈ Ed is either included in at least
one detection area or unobserved. Z∅ covers all points
Ed ∖⋃1≤i≤n DAi. The observed points ⋃1≤i≤n DAi are
covered by one of the remaining partitions: All points
exclusively observed by nodes outside of Z are covered
by ZE . Similarly, ZI covers all points solely observed
by nodes in Z. All points observed by nodes inside and
outside of Z are covered by ZB . Each of these point
sets is pair-wise disjoint with the others, and thus they
partition the space. ∎

Lemma 1 is important: 1) It implies that there can-
not exist any other other partitions. 2) The true posi-
tion of an object is always in exactly one partition of a
zone.

Table 1 summarizes the different types of query con-
texts. It contains two columns that separate the main
classes of spatio-temporal queries in SN deployed to
observe object movement in relation to an area of in-
terest: The first class contains queries interested in the
movement of an object in relation to a region. Queries
aiming at object movement in relation to a zone consti-
tute the second class. Both, regions and zones, can be
either static or dynamic.

Partitions of zones and regions have in common that
they are point sets. This allows for a uniform approach
for the definition of predicates and deriving result for
them based on object detections as Section 6 shows.
An important difference is that the partitioning for a
region does not include a partition containing unob-
served areas. As we show in Section 7, the lack of such
a partition is the main challenge when it comes to deriv-
ing results for developments related to regions: The SN
must decide if the trajectory of an object conforms to a
development even if the object was undetected for some
time. For example, an object conforms to Enter (O,R)
(cf. Equation 2) even if the object was not detected
while crossing the border of R.

6 Deriving Predicate Results

In this section, we show how to derive predicate re-
sults based on object detections. By introducing detec-
tion scenarios, we formalize the information acquired
through object detections. This constitutes our final
step toward the contribution Applicability. The detec-
tion scenarios allow us to address the semantics of sin-
gle predicates and their results, i.e., the contributions
Semantics and Optimality for predicates.



Spatio-Temporal Sensor Databases 9

Zone Region
Formula Node Set Z= {Si ∈ SN ∣ CZ (Si) = T } Point set R = {p ∈ Ed ∣ CR (p) = T }
Partitions Z∅, ZE , ZI , ZB RE , RI , RB

Type static dynamic static dynamic
Example A set of unique node

identifiers
Nodes measuring a
temperature greater
than 0○C

All points inside a poly-
gon defined by GPS-
coordinates

All points where the
temperature is greater
than 0○C

Table 1 Summary of query contexts in SN

6.1 Detection Scenarios

When one or more nodes detect an object O at time
t, the actual position of O is in the set of possible ob-
ject positions POPO

t . To derive predicate results from
POPO

t , one has to determine how the set of possible
object positions POPO

t intersects with different parti-
tions of the region or zone.
Definition 14 (Detection Scenario): A detection
scenario DS is a function that returns a boolean value
based on the intersection of the set of possible object
positions POPO

t with the partitions of the query con-
text, i.e., a region or zone. ◻

We say that a specific detection scenario DS∗ occurs
for an object O and a time t if the detection scenario
returns T . Regardless of whether the query context is
a region or zone, there are five different detection sce-
narios. In the following, we define the set of detection
scenarios first and show that this set is exhaustive af-
terward.
Definition 15 (DS∅): The detection scenario DS∅ oc-
curs if POPO

t does not intersect with the interior, ex-
terior or border of the query context.

(ZE
∪ ZB

∪ ZI
) ∩POPO

t = ∅
(RE

∪RB
∪RI

) ∩POPO
t = ∅ (15)

Definition 16 (DSE): The detection scenario DSE

occurs if POPO
t is a subset of the exterior of the query

context.

POPO
t ⊆ ZE POPO

t ⊆RE (16)

Definition 17 (DSI): The detection scenario DSI

occurs if POPO
t is a subset of the interior of the query

context.

POPO
t ⊆ ZI POPO

t ⊆RI (17)

◻

Definition 18 (DSB): The detection scenario DSB

occurs if POPO
t is a subset of the border of the query

context.

POPO
t ⊆ ZB POPO

t ⊆RB (18)

◻

Definition 19 (DS•): The detection scenario DS•

occurs if POPO
t intersects with two or more partitions

of the query context, i.e., the detection mechanism can-
not determine if O is inside, on the border or outside
of a query context.

POPO
t ∩ ZE

≠ ∅ ∧POPO
t ∩ ZB

≠ ∅ ∧POPO
t ∩ ZI

≠ ∅

POPO
t ∩RE

≠ ∅ ∧POPO
t ∩RB

≠ ∅ ∧POPO
t ∩RI

≠ ∅

(19)

◻

According to the point-set topology for regions, the
border of a region is a line. DS• typically occurs in SN if
the object detected is somewhere near the border. Only
few detection mechanisms, e.g., radar, are sufficiently
accurate to distinguish such an object from one on the
border. Example 4 illustrates how to derive detection
scenarios from object detections with a detection mech-
anism that cannot distinguish between objects on the
border and those close to it.
Example 4: Let SN = {S1,S2,S3,S4}, and the node
positions are as illustrated in Figure 8. Each node only
detects objects in its vicinity. Thus, if Si detects an
object O, DetResO

t (Si) contains all points in the circle
with radius Dmax and center POSi. Suppose each Si

exclusively detects a vehicle Vi, 1 ≤ i ≤ 4. Then the
following scenarios occur:

V1 : DetResV1
t (S1) contains only points from RE .

Since S1 is the only node that detects V1, POPV1
t =

DetResV1
t (S1), and thus DSE occurs.

V2 : DetResV2
t (S2) contains only points from RI .

Analogously to V1, this means DSI .
V3 : DetResV3

t (S3) contains points from all three
partitions of R. This means that the detection
mechanism is not sufficiently accurate to deter-
mine on which side of the border of R the vehicle
V3 is. Thus, DS• occurs.

V4 : Analogously to V3.
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Simultaneous detection of a single object can change
the detection scenario. For instance, if S4 and S2 de-
tect V4 at the same time, POPV4

t is the intersection of
DetResV4

t (S4) and DetResV4
t (S2). This is a subset of

RI and results in DSI .

Fig. 8 Example of detection areas, detection ranges and a re-
gion

More sophisticated detection mechanisms influence
the resulting detection scenario as well. If S3 could de-
termine its detection area DA3, POPV3

t does not over-
lap with RB any more. The detection scenario for V3
changes from DS• to DSI . ◆

The intersection of two sets A and B is empty, if
A = ∅ or B = ∅. Thus, the detection scenario DS∅ only
occurs if POPO

t = ∅ or if all partitions of the query
context are empty.

Lemma 2. DS∅ implies that POPO
t = ∅.

Proof. The partitioning of space by regions is com-
plete and unambiguous for regions, i.e., there always
exists at least one partition that is non-empty. Accord-
ing to Lemma 1, the partitioning for zones is complete
as well. Thus, DS∅ implies POPO

t = ∅. ∎

Lemma 3. For any object O and point of time t, ex-
actly one of the detection scenarios DS∅, DSE, DSI , DSB

or DS• holds.

Proof. The lemma holds if the partitions of space,
where O could be at t based on the detection scenario
currently valid, are pair-wise disjoint. If DS∅ occurs, the
object is undetected at time t. A point p ∈ Ed is either
in at least one detection area or unobserved. DS∅ cov-
ers all points Ed ∖⋃1≤i≤n DAi. Thus, only those parts
of space that are observed must be considered in the
following, i.e., ⋃1≤i≤n DAi. We prove the lemma for the
observed part of space in the context of zones and re-
gions separately.

In the context of a region R, the detection scenario
DSI covers all points from RI . Similarly, DSE covers all

points from RE . DSB occurs if the sensor network can
determine that O is on the border for sure. Contrary to
that, DS• occurs if the accuracy of the object detection
is insufficient to provide a definite statement if O is on
the border, or close to it on either side. In this case an
area around RB is not part of RI and RE . All of these
point sets are pair-wise disjoint.

For a zone Z, the points covered by the respective
detection scenarios are analogous to those described
above. The only difference is that DS• cannot occur, be-
cause the border ZB is explicitly defined as those parts
of space where objects are detected by nodes in Z and Z.
The lemma holds, because all parts of space are covered
by the respective detection scenarios. ∎

The detection scenarios abstract from the details of
object detection and other issues. They also take into
account simultaneous detection of an object by more
than one node, i.e., they solve the Detection Challenge.
The remainder of this section, we show how to derive
predicate results based on detection scenarios, which is
the first step towards addressing the Semantical Chal-
lenge. Based on this, Section 7 says how to derive results
for spatio-temporal developments.

6.2 Predicate Results for Regions

This section shows how to evaluate predicates that de-
scribe the topological relationship of a region R and
an object O, given detection scenarios. DSE , DSB and
DSI guarantee that the object detected is in a certain
partition. Thus, objects detected with these detection
scenarios conform to a predicate P (O,R) in question
or not. As illustrated in Example 4, this is not true for
DS•, because POPO

t overlaps with more than one par-
tition. Objects detected according to DS• could fulfill
P (O,R), but this is not certain. We take this disparity
regarding the certainty of object positions into account
by adding a third value M (”maybe”) to the possible
results of P (O,R):
T : P (O,R) returns T if the SN can guarantee that

O fulfills P (O,R).
F : P (O,R) returns F if the SN can guarantee that

O does not fulfill P (O,R).
M: P (O,R) returns M otherwise.

Example 5: Continuing Example 4, suppose the user
is interested in vehicles Vi that fulfill Inside (Vi,R). Re-
call that a node Si can only determine if a vehicle is in
its vicinity or not: DetResVi

t (Si) is the circle with ra-
dius Dmax around the position POSi of the detecting
node Si. If node Si in Figure 8 detects Vi, 1 ≤ i ≤ 4, the
results are as follows:
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V1: The distance between S1 and R is greater than
Dmax. Thus, it is certain that V1 is outside of R.
This yields Inside (V1,R) = F .

V2: DetResV2
t (S2) and thus POPV2

t ⊆RI . Hence, the
vehicle V2 fulfills Inside (V2,R).

V3: Since the distance between S3 and the border of R
is less than Dmax, the detection area could overlap
the border. If a vehicle is detected only by S3, the
SN cannot determine on which side of the border
it is. Thus, Inside (V3,R) =M.

V4: Analogously to V3. ◆

The mapping of each detection scenario to a result for
any predicate is specified in the following. We prove for
each predicate P (O,R) that the set of objects O where
P (O,R) =M is minimal, i.e., the result obtained this
way is optimal. This mapping gives way to meaningful
results for spatio-temporal developments in Section 7.

6.2.1 Deriving Results for Inside (O,R)

Considering the five detection scenarios, there are two
scenarios where an object could be in a region R and
one where this is certain:
DSI : POPO

t only intersects with RI , i.e., POPO
t ⊆

RI . Hence, O is in R for sure.
DS•: POPO

t overlaps with RI but also overlaps with
other partitions of R. Thus, it is possible that O
fulfills Inside (O,R) but is not guaranteed.

DS∅: Objects may be in R without being detected,
i.e., O might fulfill Inside (O,R) while being un-
detected.

Equation 20 summarizes the mapping of detection sce-
narios to predicate results for Inside (O,R):

Inside (O,R) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T iff DSI

F iff DSE , DSB

M iff DS•, DS∅
(20)

Lemma 4. Let ΩR
Inside be the set of objects in R. The

set of objects where Inside (O,R) yields T or M is the
smallest superset of ΩR

Inside that the SN can derive.
Proof. The lemma is true if the objects detected
with DSE and DSB do not fulfill Inside (O,R) for sure.
DSE means that POPO

t is a subset of RE , i.e., POPO
t

does not intersect with RI . The detection scenario DSB

occurs for objects that are on the border, i.e., POPO
t

is a subset of RB . Hence, the object is not in R in both
cases for sure. ∎

Lemma 5. The set of objects where Inside (O,R) = T
is the largest subset of ΩR

Inside that the SN can derive.
Proof. Only objects detected according to DSI corre-
spond to object that fulfill Inside (O,R) for sure. The

remaining detection scenarios cannot guarantee that
the detected object is in R. DS∅ and DS• may occur
for objects outside of R as well. Objects detected ac-
cording to DSE or DSB are not in R for sure. Thus, there
does not exist a detection scenario of O that guarantees
Inside (O,R) except DSI . ∎

6.2.2 Deriving Results for Meet (O,R)

The predicate Meet (O,R) is true if O is on the border
RB of the region R. From the set of detection scenarios,
there is one that guarantees that O is on the border and
two others where it is possible:
DSB : In this case POPO

t ⊆RB , i.e., Meet (O,R) = T .
DS•: In contrast to the previous case, POPO

t also
contains points that are not part of the bor-
der. Thus, the object could be on the border,
but the limited accuracy of the detection mech-
anism does not allow a definitive answer, i.e.,
Meet (O,R) =M.

DS∅: The object could be on the border while not be-
ing detected by any sensor node, and therefore
Meet (O,R) =M in this case.

Equation (21) summarizes this:

Meet (O,R) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T iff DSB

F iff DSI , DSE

M iff DS•, DS∅
(21)

Lemma 6. Let ΩR
Meet be the set of objects on the border

RB. The set of objects where Meet (O,R) yields T or
M is the smallest superset of ΩR

Meet that a SN can
derive based on detection scenarios.
Proof. Analogously to Lemma 4, we prove this by
considering DSI and DSE : DSI ensures that POPO

t only
contains points from RI , i.e., O is not on the border
RB . Similarly, we derive from DSE that POPO

t is a
subset of RE and thus does not intersect with RB .
Thus, the set of objects where Meet (O,R) yields T or
M is the smallest superset of ΩR

Meet the sensor network
can compute. ∎

Lemma 7. The set of objects where Meet (O,R) = T
is the largest subset of ΩR

Meet identifiable by the SN.
Proof. Only DSB yields Meet (O,R) = T . Objects
O detected according to DS• could be on RB , but it
is not sure, because POPO

t also contains points from
other partitions. Undetected objects could be on the
border as well, but since they are not detected, it is
not certain. For the other two detection scenarios, it
is sure that the detected object is not on the border
because POPO

t ∩ RB
= ∅. Thus, a sensor network

cannot compute a larger subset of ΩR
Meet. ∎
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As stated above, most detection mechanisms used
in SN cannot determine that some object O is on RB .
Thus, once the distance of an object O to RB falls
below a certain limit, the detection mechanism cannot
determine if the object is on the border or just close
to it. Even if the sensor nodes can distinguish between
stationary objects on RB and those close to RB , the
result of the detection would be DS• in most cases in-
stead of DSB : The border RB is a line. The time it takes
for an object to move over this line is infinitely short.
Capturing this moment reliably would require hard-
ware with infinitely high temporal resolution. Thus,
even with very sophisticated detection mechanisms, SN
cannot detect objects on the border reliably.

Summing up, the set of objects detected with DSB

is typically very small or empty. But there are cases
where a SN might be able to guarantee that an ob-
ject is on the border and therefore we cannot ignore
DSB . One might consider removing Meet (O,R) from
the set of predicates for SN where it is impossible to
detect an object with DSB , since the only case where
Meet (O,R) = T will not occur. However, removing it
is problematic as it would reduce the set of spatio-
temporal queries expressible in SN significantly. For
example, without Meet (O,R) one cannot express the
development Touch (O,R). We show in Section 7 that
there exist developments containing Meet (O,R) whose
meaning can be guaranteed despite these problems. We
conclude that the mapping in (21) for Meet (O,R) is
as accurate as the detection mechanisms allow.

6.2.3 Deriving Results for Disjoint (O,R)

To conform to Disjoint (O,R), object O must be in
RE . The mapping to detection scenarios is analogous
to Inside (O,R):

Disjoint (O,R) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T iff DSE

F iff DSI , DSB

M iff DS•, DS∅
(22)

Obviously, there are lemmas analogous to Lemmas 4
and 5 for Disjoint (O,R).

6.2.4 Static and Dynamic Regions

The application scenarios in Section 2 have shown that
there are static and dynamic regions. A static region R
is a point set that does not change over time, while the
point set representing a dynamic region does. The pred-
icate results defined above apply to static and dynamic
regions. Computing the detection scenario to obtain a
predicate result implicitly assumes that the point set

representing the region is known. Thus, prior to com-
puting a detection scenario, it is necessary to determine
which points p ∈ Ed are in the region R.

For a static region R, computing a polygon encom-
passing R before query processing is straightforward.
Each node can store the polygon and compute the in-
tersection POPO

t ∩R, i.e., derive a detection scenario.
Checking if a point p is inside or outside of R be-

comes problematic if R is dynamic, i.e., changes over
time. The problem is illustrated in Example 6.
Example 6: Suppose R is the point set that contains
all points with a temperature below 0○C. If Si detects
an object O at time t and computes POPO

t , it is not
possible to intersect POPO

t with the partitions of R: If
Si measures a temperature below 0○C, it is not certain
that O also is at a position where the temperature is
less than 0○C. Analogously, Si cannot rule out that O
is at a position where the temperature is below 0○C. ◆

Solving the problem described in Example 6 requires
restrictive assumptions regarding the SN: There must
be at least one node that can check CR (p) for every
p ∈ Ed. This implies that nodes must be equipped with
sophisticated hardware that allows checking CR (p) for
points p where no node has been deployed. For instance,
infra-red cameras allow a node to determine the tem-
perature in its vicinity. However, nodes equipped with
these cameras must have considerably more computa-
tional power than those available today to process the
images taken by the cameras. Additionally, the nodes
must be deployed in such a way that there is at least
one camera that can measure the temperature for any
point in space at any time. Summing up, processing
spatio-temporal queries targeting at the relationship of
an object and a dynamic region has strict prerequisites.
However, it is sufficient for most SN if the movement
of an object is observed in relation to a zone. We now
define the respective predicates and show how to derive
results for them based on detection scenarios.

6.3 Predicate Results for Zones

Section 5 has proposed a space partitioning induced by
a given zone Z, based on detection areas. Even if sensors
cannot determine their detection areas, we can derive
the partition of the zone where an object detected is lo-
cated by using the following concept: If a node Si ∈ Z de-
tects O at time t, the position estimate DetResO

t (Si)

intersects with ZI , i.e., DetResO
t (Si) ∩ ZI

≠ ∅. The
actual position of O is either exclusively observed by
nodes in Z, or nodes inside and outside of Z observe it.
Thus, the object is either in ZI or in ZB . If there ex-
ists a node outside of Z that detects O, O is located in
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ZB , otherwise it is in ZI . Summing up, one has to con-
sider how the detection set DetSetO

t (cf. Definition 5)
intersects with Z and Z to determine how POPO

t inter-
sects with the partitions of the zone, i.e., compute the
corresponding detection scenario.
Lemma 8. The intersection of Z and DetSetO

t deter-
mines the detection scenario for some object O at some
time t:

DetSetO
t ∩ Z = ∅ ∧DetSetO

t ∩ Z ≠ ∅⇒ POPO
t ⊆ ZE

DetSetO
t ∩ Z ≠ ∅ ∧DetSetO

t ∩ Z = ∅⇒ POPO
t ⊆ ZI

DetSetO
t ∩ Z ≠ ∅ ∧DetSetO

t ∩ Z ≠ ∅⇒ POPO
t ⊆ ZB

Proof. We prove DetSetO
t ∩ Z = ∅ ∧ DetSetO

t ∩ Z ≠
∅⇒ POPO

t ⊆ ZE : The left-hand side of the implication
means that only nodes in Z detect O, i.e, DetSetO

t ⊆ Z.
Hence, we prove DetSetO

t ⊆ Z ⇒ POPO
t ⊆ ZE by con-

tradiction5, i.e., we have to prove that if POPO
t is not

a subset of ZE then DetSetO
t is not a subset of Z. Let

Si ∈ Z detect O at t, i.e., detect (Si,O, t) = T . Thus,
O is somewhere in DAi. Since POPO

t is the inter-
section of the detection areas of all nodes that detect
O at t, POPO

t must contain at least one p ∈ DAi.
Hence, POPO

t is not a subset of ZE , because ZE con-
tains only points exclusively observed by nodes in Z. If
POPO

t would not contain at least one p ∈ DAi then
detect (Si,O, t) = F . Summing up, DetSetO

t ⊆ Z implies
POPO

t ⊆ ZE . The other two implications can be proven
similarly. ∎

Note that the right-hand side of each implication
equals the formal expression associated with the detec-
tion scenarios DSE , DSI and DSB respectively.
Lemma 9. In the context of a zone Z, POPO

t can never
intersect with more than one partition of Z:

POPO
t ∩ ZE

≠ ∅⇒ POPO
t ⊆ ZE

POPO
t ∩ ZI

≠ ∅⇒ POPO
t ⊆ ZI

POPO
t ∩ ZB

≠ ∅⇒ POPO
t ⊆ ZB

Proof. We prove POPO
t ∩ ZE

≠ ∅ ⇒ POPO
t ⊆ ZE :

According to Definition 13, ZE only contains points that
are exclusively observed by nodes in Z. Hence, if POPO

t
contains points from ZE , the object is at a position that
is exclusively observed by nodes in Z. If there exists a
node Si ∈ Z that detects O, POPO

t does not intersect

5 To prove A ⇒ B by contradiction, it is sufficient to prove
B⇒ A.

with ZE anymore. The proofs for the remaining two
implications are analogous. ∎

Due to Lemma 9, DS• cannot occur with zones.
Thus, we omit DS• for the definition of predicates which
express the relationship between an object and a zone.
Definition 20 (Disjoint (O,Z)): The object O con-
forms to Disjoint (O,Z) if O is exclusively detected by
nodes in Z, i.e., if DSE occurs (cf. Lemma 8):

Disjoint (O,Z) = {T iff DSE

F otherwise (23)

Definition 21 (Inside (O,Z)): The object O con-
forms to Inside (O,Z) if O is exclusively detected by
nodes in Z, i.e., if DSI occurs (cf. Lemma 8):

Inside (O,Z) = {T iff DSI

F otherwise (24)

Definition 22 (Meet (O,Z)): The object O conforms
to Meet (O,Z) if O is detected by nodes in Z and Z
simultaneously, i.e., if DSB occurs (cf. Lemma 8):

Meet (O,Z) = {T iff DSB

F otherwise (25)

Let ΩZ
Disjoint be the set of objects in ZE . Since there

is no detection scenario where Disjoint (O,Z) =M, we
conclude that the set of objects where Disjoint (O,Z)
yields T equals ΩZ

Disjoint. Similarly, the sets of ob-
jects where Meet (O,Z) and Inside (O,Z) yield T equal
ΩZ

Meet and ΩZ
Inside respectively.

The space partitioning for regions divides all points
of space into three partitions. Every resulting partition
is associated with a predicate. For zones, we have intro-
duced a fourth partition Z∅ which contains all points
that are unobserved. To allow users to express that an
object movement includes that the object is unobserved
at some point in time, we define a fourth predicate:
Definition 23 (Undetected (O)): An object O con-
forms to Undetected (O) if there is no node Si ∈ SN
that detects O:

Undetected (O) = {T iff DS∅
F Otherwise (26)

In the following, we will write Undetected (O) in-
stead of Undetected (O, Z), because an object O with
Undetected (O) = T is undetected in relation to any
other zone as well.

MOD-concepts like concatenation (cf. Definition 2)
are applicable to the aforementioned predicates as well.
Thus, one can construct developments that query the
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spatio-temporal relationship of objects and zones. For
instance, one could define:

Enter (O,Z) = Disjoint (O,Z)▷Meet (O,Z)
▷ Inside (O,Z) (27)

Undetected (O) is particularly useful in the context of
spatio-temporal developments. For example, a user could
be interested in objects that fulfill Inside (O,Z) first and
then move into an unobserved area:

Disappear (O,Z) = Inside (O,Z)▷Undetected (O) (28)

Further examples for the use of this predicate are pro-
vided in Section 7 where spatio-temporal developments
in sensor networks are discussed.

6.3.1 Static and Dynamic Zones

As with regions, there are dynamic and static zones.
Users define a static zone Z by providing a set of con-
ditions such that the set of nodes fulfilling it does not
change over time. A dynamic zone changes over time,
typically because it depends on a measurable value, e.g.,
a temperature threshold. As with regions, the predi-
cates defined above are applicable in both cases.

Recall that dynamic regions have resulted in ex-
tremely strict requirements regarding the capabilities
and deployment of nodes. Dynamic zones do not have
such requirements, because every node only has to de-
termine if it is inside the zone or not. For example, the
dynamic zone in Table 1 requires each node to deter-
mine at certain points of time if it measures a temper-
ature below 0○C. Measuring the temperature is a stan-
dard feature of sensor nodes available, e.g., Sun SPOT
sensor nodes [43]. We conclude that commercially avail-
able sensor nodes can deal with dynamic zones, but not
necessarily with dynamic regions.

6.4 Summary

Table 2 summarizes the mapping of detection scenarios
to results of predicates expressing the relation between
objects and regions in SN. Each row corresponds to
a predicate and every column to a detection scenario
that describes how POPO

t overlaps with the partitions
of the region R.

Predicates that describe the relation between an ob-
ject and a zone are summarized similarly in Table 3.
Since DS• cannot occur in the context of zones, the cor-
responding column contains ’-’ entries. Based on these
results, we now focus on spatio-temporal developments,
i.e., sequences of predicates that describe an object move-
ment in relation to a query context.

7 Spatio-Temporal Developments

As illustrated in Section 3.2.2, users express queries
through spatio-temporal developments, i.e., by concate-
nating predicates. One core contribution of this paper
is the translation of sequences of object detections to
results for spatio-temporal developments.

There are some preliminary steps for such a trans-
lation: First, we show that the concatenation operator
▷ (cf. Definition 2) is insufficient to express certain in-
formation needs in SN. We address this by introduc-
ing a new concatenation operator. Second, we develop
a canonical collection of spatio-temporal developments
for SN similar to the existing collection for moving ob-
ject databases [17]. We need this collection to obtain
a finite set of developments which we must translate
to sequences of object detections. The last step is the
actual translation of each element of the canonical col-
lection and a proof that this translation is correct.

7.1 Irregularity of Zones and Concatenation

The difference between the partitioning of space for re-
gions and the one for zones is that regularity [44] cannot
be assumed for zones: Among other things, regularity
means that the interior RI is completely encompassed
by the border RB of a region R. As shown in Figure 7,
this is different with zones: The interior ZI adjoins to
the border ZB and Z∅.

The semantics of developments like Enter (O,R)
are affected by this: Suppose that a user is interested
in all objects O that move into the zone Z. For regions,
the space partitions are regular, i.e., an object O must
cross the border RB . In the context of a zone, a user
could express an interest similar to Enter (O,R) with
Enter (O,Z), as defined in (27). This is problematic,
because Enter (O,Z) restricts the result to objects that
are observed explicitly while crossing the border. How-
ever, an object O might fulfill Disjoint (O,Z) at some
time, then move through an unobserved area and fulfill
Inside (O,Z) afterward. From a semantical perspective,
O has entered the zone, but does not fulfill Enter (O,Z).

One might solve this by querying for all objects that
either fulfill Enter (O,Z) or HiddenEnter (O,Z), which
is defined in (29):

HiddenEnter (O,Z) = Disjoint (O,Z)▷Undetected (O)
▷ Inside (O,Z) (29)

HiddenEnter (O,Z) is insufficient as well: O could ful-
fill Disjoint (O,Z) first, then Undetected (O) followed
by Meet (O,Z) and finally Inside (O,Z). In this case, O
neither fulfills HiddenEnter (O,Z) nor Enter (O,Z). A
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P (O, R) DS∅ DSE DSI DSB DS•

Inside (O, R) M F T F M
Meet (O, R) M F F T M

Disjoint (O, R) M T F F M

Table 2 Mapping detection scenarios to predicate results
for an object O and a region R

P (O, Z) DS∅ DSE DSI DSB DS•

Inside (O, Z) F F T F -
Meet (O, Z) F F F T -

Disjoint (O, Z) F T F F -
Undetected (O,Z) T F F F -

Table 3 Mapping detection scenarios to predicate results
for an object O and a zone Z

user with the aforementioned query who does not care
if the object is detected or not while crossing the border
would have to provide an infinite number of predicate
sequences. This is because an object can move an ar-
bitrary number of times between Undetected (O) and
Meet (O,Z) before fulfilling Inside (O,Z). The develop-
ment in (30) is not an option either:

Disjoint (O,Z)▷ Inside (O,Z) (30)

The sequence in (30) never occurs, because ▷ requires
Inside (O,Z) to follow Disjoint (O,Z) immediately.
Lemma 10. For any object O and a region R, there
does not exist a movement that fulfills the predicate se-
quences Inside (O,R)▷Disjoint (O,R). Similarly, ob-
jects cannot fulfill Disjoint (O,R)▷ Inside (O,R).
Proof. According to Definition 2, the movement of an
object O in relation to a region R satisfies Inside (O,R)▷
Disjoint (O,R) if Inside (O,R) = T for some interval
[t0, t1[ and Disjoint (O,R) = T at t1. Due to the par-
titioning of space defined for regions (cf. Section 3.2),
to satisfy Inside (O,R) at ti and Disjoint (O,R) later
at tj , the object must cross the border at ti < t < tj .
Thus, if Inside (O,R) = T for [t0, t1[, Meet (O,R) = T
at t1. Hence, Disjoint (O,R) is not possible at t1. For
Disjoint (O,R)▷ Inside (O,R), the proof is analogous.
∎

Definition 24 (Relaxed Concatenation): The re-
laxed concatenation of two predicates, P ▷̃ Q, is true if
P is true for some time interval [t0; t1[, and Q is true
at t2 ≥ t1. ◻

Equation (31) defines a development that expresses
the query discussed above:

SNEnter (O,Z) = Disjoint (O,Z) ▷̃ Inside (O,Z) (31)

In combination with the predicate Undetected (O), this
new operator increases the semantical depth. Users now
can explicitly define if the object must be observed or
not while moving, as illustrated next.
Example 7: Figure 2 shows a SN deployed close
to a river with several bridges. Suppose that nodes are

deployed in a controlled way so that caribous moving
over a bridge are detected, but caribous swimming are
not, i.e., the river itself is unobserved. A user only in-
terested in caribous C entering Z by crossing bridges
can use Enter (C,Z). If only caribous that enter Z by
swimming are of interest, the user can express this with
HiddenEnter (C,Z). A user interested in all caribous en-
tering Z can query SNEnter (C,Z). ◆

Lemma 11. P1▷P2 ⇒ P1 ▷̃P2

Proof. According to Definition 24, the right-hand side
is true if P1 is true for some interval [t0, t1[ and P2 is
true at t2 ≥ t1. The left-hand side of the implication
states that P1 is true for some interval [t0, t1[ and P2
is true at t2 = t1. Hence, if the left-hand side is true,
the right-hand side is true as well. ∎

Lemma 12. P1 ▷̃ (P2 ▷̃P3) = (P1 ▷̃P2) ▷̃P3.

Proof. The left-hand side means ∃ [t0, t1[ ∶ P1 and
∃t2 ≥ t1 ∶ (P2 ▷̃P3). Furthermore, ∃ [t2, t3[ ∶ P2 and
∃t4 ≥ t3 ∶ P3. The right-hand side expresses that ∃ [t

′

0, t
′

3[ ∶

(P1 ▷̃P2) and ∃t
′

4 ≥ t
′

3 ∶ P3. Additionally, ∃ [t
′

0, t
′

1[ , t
′

1 ≤

t
′

3 ∶ P1 and ∃t
′

2 ≥ t
′

1 ∧ t
′

2 ≤ t
′

3 ∶ P2. If the left-hand side
is true for t

′

0 = t0, t
′

1 = t1, t
′

2 = t2, t
′

3 = t3 the right-hand
side is fulfilled also (and vice versa). ∎

Lemma 13. P1▷ (P2 ▷̃P3) = (P1▷P2) ▷̃P3

Proof. By applying Lemma 11, we derive that P1 ▷
(P2 ▷̃P3) implies P1 ▷̃ (P2 ▷̃P3). Analogously apply-
ing Lemma 11 to the right-hand side of the implication
results in (P1 ▷̃P2) ▷̃P3. Thus, we get P1 ▷̃ (P2 ▷̃P3) =

(P1 ▷̃P2) ▷̃P3 which is true according to Lemma 12.
∎

Users can formulate queries using both concatena-
tion operators. Thus, we define spatio-temporal devel-
opments in the context of SN as follows:
Definition 25 (Spatio-Temporal Development):
A spatio-temporal development P is a sequence of pred-
icates P = P1 θ P2 θ . . . θ Pq with θ ∈ {▷, ▷̃}. The
movement of an object O conforms to P if each pair
Pi−1 θ Pi with 2 ≤ i ≤ q is true in the order defined by
P. ◻
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We denote developments that describe the relation
of an object O and a region R with P (O,R). In this
case, all predicates refer to O and R as well, i.e., Pi =

Pi (O,R) with 1 ≤ i ≤ q. Similarly, P (O,Z) describes
the spatio-temporal relationship of O and a zone Z.

We use this definition to derive a canonical collec-
tion of developments for SN. This collection limits the
set of developments which must be translated into se-
quences of object detections.

7.2 A Canonical Collection of Spatio-Temporal
Developments

To obtain a canonical collection of spatio-temporal de-
velopments, [17] constructs a development graph which
represents possible spatio-temporal developments. A de-
velopment is possible if an object can move such that
the corresponding sequence of predicates P1 θ P2 θ . . .
θ Pq is satisfied.
Definition 26 (Development Graph): A develop-
ment graph is a graph DG = (V,E) that expresses pos-
sible predicate sequences:
V: Each possible predicate is represented by a vertex.
E: There is an edge (Pi,Pj) if an object can move such

that Pi θ Pj is satisfied. ◻

As shown above, the set of predicates applicable to
regions and objects differs from the one for zones and
objects: While there are equivalents to Inside (O,R),
Meet (O,R) and Disjoint (O,R), the set of predicates
for zones also contains Undetected (O). Thus, the de-
velopment graph for zones is different from the one for
regions.

7.2.1 The Object/Region Development Graph

The set of vertices VR of the object/region development
graph DGR

= (VR,ER
) has three elements:

VR
= {Inside (O,R) ,Meet (O,R) ,Disjoint (O,R)}

Lemma 10 implies that there does not exist an edge
from Disjoint (O,R) to Inside (O,R) and vice versa.
Figure 9 shows the object/region development graph.
For all graphs that follow, we use different lines to dis-
tinguish between the different concatenation operators:
Solid lines represent concatenations that exist for both
operators▷ and ▷̃ . The dotted lines stand for concate-
nations only possible with ▷̃ . Similarly, dashed lines
represent concatenations with ▷.

Comparing this graph to the development graph in
Figure 10 for objects and regions in MOD shows that
they only differ in one vertex: MOD distinguish between
meet (o, r) and Meet (O,R) [17]. meet (o, r) = T if o

Disjoint (O, R) Meet (O, R) Inside (O, R)
▷ ▷

Fig. 9 Development Graph for an object O and a region R

Disjoint (O, R)

Meet (O, R)meet (O, R)

Inside (O, R)

▷

▷

▷

▷

Fig. 10 Development Graph for an object O and a region R
in MOD according to [17]

is on the border of R for exactly one instant of time.
Contrary to that, Meet (O,R) = T if O is on the border
of R for a time interval. We omit developments with
meet (o, r) for SN, since this would assume detection
mechanisms with infinite temporal resolution.

7.2.2 The Object/Zone Development Graph

As shown in Section 6.3, there are four predicates that
express the relationship between an object and a zone.
Thus, for the object/zone development graph DGZ

=

(VZ,EZ
), the set of vertices VZ contains the four pred-

icates Inside (O,Z), Meet (O,Z), Undetected (O) and
Disjoint (O,Z). Figure 11 shows the development graph
for an object and a zone.

Disjoint (O, Z)

Inside (O, Z)

Meet (O, Z)Undetected (O)

▷ ▷̃ ▷ ▷̃

▷ ▷̃ ▷ ▷̃

▷ ▷̃

▷̃

Fig. 11 Development graph for an object O and a zone Z

Contrary to regions, zones are not regular (cf. Sec-
tion 7.1). As we have shown, this irregularity neces-
sitates the usage of two different concatenation oper-
ators. The edges in Figure 11 are explained as fol-
lows: The reasoning for the edges between Inside (O,Z),
Meet (O,Z) and Disjoint (O,Z) is analogous to Sec-
tion 7.2.1. Contrary to the development graph for re-
gions, edges in Figure 9 are solid, i.e., they represent ▷
and ▷̃ . This is correct, because Lemma 11 has shown
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that P1▷P2 ⇒ P1 ▷̃P2. Additional solid edges connect
Undetected (O) to the other three predicates, because
objects can move into or out of an undetected area at
any time. The dotted line between Inside (O,Z) and
Disjoint (O,Z) reflects the fact that these predicates
are only concatenable with ▷̃ , but not with ▷.

7.2.3 Enumeration of Possible Developments

Every path through a development graph represents a
possible development. The number of these paths is in-
finite, due to cycles. Hence, one has to restrict the set
of paths to obtain a finite set of developments. Simi-
larly to [17], we obtain such a finite set by constructing
development trees as follows:
1. Pick each element in V as the root of a development

tree.
2. Generate a child node of this root for every vertex

connected to this element in the development graph.
3. For each child node, construct a set of child nodes

– the adjacent vertices in the development graph.
4. A node is a leaf node, i.e., node generation stops if

(a) every predicate exists on the path from the root
to the current node, or

(b) the predicate corresponding to the current node
already appears on the path from the root to the
current node, i.e., there is a cycle.

To obtain the canonical collection, we generate all these
trees based on the respective development graph. For
regions, each node in such a tree represents one spatio-
temporal development. As we show, a node in the trees
for zones may represent more than one development.

Disjoint (O, R)

Meet (O, R)

Disjoint (O, R) Inside (O, R)

only ▷

Fig. 12 Development tree with root Disjoint (O, R)

Meet (O, R)

Disjoint (O, R)

Meet (O, R)

Inside (O, R)

Meet (O, R)

only ▷

Fig. 13 Development tree with root Meet (O, R)

Inside (O, R)

Meet (O, R)

Disjoint (O, R) Inside (O, R)

only ▷

Fig. 14 Development tree with root Inside (O, R)

Figures 12-14 show the development trees with roots
Disjoint (O,R), Meet (O,R) and Inside (O,R) respec-
tively. The sum of nodes in these three trees is 13, i.e.,
there are 13 unique spatio-temporal developments that
describe the relationship of an object and a region in a
SN over time. These 13 developments include three de-
velopments consisting of a single predicate. Semantics
of single predicates have been the focus of Section 6.2
already. The left column of Table 4 shows the ten de-
velopments consisting of more than one predicate. Sec-
tion 7.4 shows how to derive results for these develop-
ments.

The development tree starting with Disjoint (O,Z)
is shown in Figure 15. The structure of the develop-
ment trees with root Undetected (O), Meet (O,Z) and
Inside (O,Z) is similar and thus omitted here: Each tree
has 31 nodes, i.e., the total number of nodes in all trees
is 4 ⋅ 31 = 124. Contrary to the object/region develop-
ment tree, each node represents more than one unique
development because solid lines may be either ▷ or ▷̃ .
The value above each node in Figure 15 indicates the
number of developments represented by the node.

Lemma 14. Every development tree related to zones
represents 146 unique spatio-temporal developments.

Proof. The sum of the numbers above the vertices of
each development tree is 147. The value above each root
vertex is 1, but contrary to all other vertices, this node
does not represent a development. Hence, to obtain the
number of developments represented by the tree, one
has to subtract 1 from the sum of the numbers above
the vertices. The lemma holds if the number above ev-
ery non-root vertex equals the number of developments
represented by it. In the following, we suppose that the
number above vi is ki.

If vi is connected to vj via a solid edge, then kj =

2 ⋅ ki. The vertex vi represents a set of ki predicate se-
quences that end with the predicate Pi associated with
the vertex vi. Since the edge between vi and vj is solid,
it is possible to concatenate Pi with Pj using ▷ and ▷̃ .
Thus, one can ”append” Pj to each of these ki predi-
cate sequences using either▷ or ▷̃ . Hence, we conclude
that the vertex vj represents 2⋅ki developments that end
with Pj .
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Disjoint (O, Z)
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Inside (O, Z)
1

Undetected (O)
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Disjoint (O, Z)
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Meet (O, Z)
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4Disjoint (O, Z)
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Inside (O, Z)
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Undetected (O)
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Disjoint (O, Z)
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Meet (O, Z)
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Undetected (O)
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4

Disjoint (O, Z)
4

Undetected (O)
8

Meet (O, Z)
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4

Undetected (O)
4

Disjoint (O, Z)
8

Inside (O, Z)
8

Meet (O, Z)
8

▷ and ▷̃

only ▷̃

Fig. 15 Development tree with root Disjoint (O, Z)

If vi is connected to vj via a dotted edge, then
kj = ki. Again, vi represents a set of ki predicate se-
quences that end with the predicate Pi associated with
the vertex vi. Contrary to the case above, the dotted
edge indicates that one can only concatenate Pj to each
of these ki predicate sequences using ▷̃ . Hence, vj rep-
resents ki developments that end with Pj .

Summing up, the number above each node vi equals
the number of developments represented by the path
from the root node to vi. Hence, we obtain the 146
spatio-temporal developments represented by every path
in these development trees. ∎

We illustrate Lemma 14 using Figure 15: The root
Disjoint (O,Z) in Figure 15 has edges to three pred-
icates Undetected (O), Inside (O,Z) and Meet (O,Z).
The edge between Disjoint (O,Z) and Meet (O,Z) is
solid, i.e., both predicates may be concatenated using▷
and ▷̃ . Thus, there are two developments represented
by this path:
1. Disjoint (O,Z)▷Meet (O,Z)
2. Disjoint (O,Z) ▷̃Meet (O,Z).

The path from Disjoint (O,Z) to Undetected (O) via
Meet (O,Z) represents four developments. This is be-
cause one can ”append” Undetected (O) to each of the
two developments above using either ▷ or ▷̃ .

The edge between the root node Disjoint (O,Z) and
Inside (O,Z) is dotted. Thus, this path represents a sin-
gle spatio-temporal development:

Disjoint (O,Z) ▷̃ Inside (O,Z)

Even though the structure of the trees starting with
Meet (O,Z), Undetected (O) and Inside (O,Z) varies
slightly, the number of unique spatio-temporal develop-
ments is always 146. Hence, users can express 4 ⋅ 146 =
584 unique spatio-temporal developments that describe
the relationship between an object and a zone over time.
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Fig. 16 Development tree with root Meet (O, Z)
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Fig. 17 Development tree with root Undetected (O)
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Fig. 18 Development tree with root Inside (O, Z)
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7.3 Formal Description of Object Detection
Sequences

The trajectory of on object matches a development if
the object fulfills the predicates in the order specified
by the development. We use the following operator to
describe object trajectories formally:
Definition 27 (Detection Concatenation): The
concatenation of two detection scenarios, DS1 � DS2, ex-
presses that an object was detected according to DS1 in
the time period [t1, t2[ and detected according to DS2
at t2.6 ◻

Lemma 15. DS1 � DS1 = DS1

Proof. The left-hand side means that there is an
interval [t1, t2[ where an object is detected according
to DS1 and another interval [t2, t3[ where the object is
detected according to DS1 as well. This means that the
object is detected according to DS1 during [t1, t3[ which
equals the right-hand side. ∎

Definition 28 (Detection Sequence): A detection
sequence D= DS1 � . . . �DSk is a concatenation of de-
tection scenarios. It formalizes the information on the
movement of an object in the context of a query con-
text. D means that DS1 occurred for some time interval
[t1, t2[, DS2 occurred for some interval [t2, t3[ etc. ◻

In the following, we assume that any detection se-
quence has been normalized according to Lemma 15.
We use DR

O to denote that a detection sequence refers
to the movement of an object O in relation to a region
R. Analogously, DZ

O describes the movement of O in
the context of a zone Z.

Lemma 16. For any object O, there exists exactly one
detection sequence DO that represents the information
on the movement of O acquired by the sensor network.

Proof. According to Lemma 3, at each t ∈ T exactly
one detection scenario holds. The detection sequence
DO is the concatenation of these detection scenarios
and hence there can be only one. ∎

Given a development P, there exists an infinite num-
ber of detection sequences that conform to this devel-
opment. This is because an object may move arbitrarily
before or after conforming to the development, e.g., be-
fore conforming to Enter (O,R), the object O could al-
ternate between DSE and DS∅ any number of times. To

6 We have chosen right-open intervals here to be in line with
the definition of predicate sequences and the concatenation op-
erator ▷ (cf. Definition 2). This does not cause any problems
since the temporal resolution of any detection mechanism is
limited in any case.

summarize detection sequences that contain a certain
pattern, we introduce the notion of a detection term.
Definition 29 (Detection Term): A detection term
is a detection sequence or represents a (possibly infinite)
set of detection sequences described using the following
syntax:
t1∣t2: The operator ∣ means an alternative, e.g., t1∣t2

denotes that either the detection term t1 occurs
or the detection term t2.

{t}: The detection term t occurs an arbitrary number
of times, i.e., {t} = ε∣t∣t � t∣....

The operator � may be used to link detection terms as
well with the same semantical meaning. ◻

Example 8: Consider the development Enter (O,R).
The detection sequences DSE � DS• � DSI as well as
DSE � DS∅ � DSI describe object trajectories that con-
form to Enter (O,R). Additionally, there exists an in-
finite number of detection sequences that conform to
Enter (O,R) as well, like DSE � DS• � DS∅ � DSI . The
following detection term reflects this:

DSE � {DSB
∣DS•
∣DS∅} � DSI (32)

Definition 30 (Detection-Term Conformance): A
detection sequence D conforms to a detection term t iff
D contains a substring of detection scenarios that is
represented by t. ◻

It is sufficient if a substring of a detection sequence
conforms to the detection term because objects may
move arbitrarily before or after conforming to the term.

Example 9: Continuing Example 8, suppose that
object O crosses R, i.e, DR

O = DS
E � DS• � DSI � DS• �

DSE . The substring DSE � DS• � DSI conforms to the
detection term in (32) for Enter (O,R). ◆

There exist various algorithms, e.g., [27], to find a
substring that conforms to a pattern. Section 7.4 pro-
vides detection terms similar to the one for Enter (O,R)
above for every spatio-temporal development.

The detection term in (32) means that any O de-
tected with DSE at some time and later with DSI con-
forms to Enter (O,R). It is not important which de-
tection scenarios occur between DSE and DSI for O as
long as the order described above is maintained. For a
more concise presentation, we propose a relaxed version
of the concatenation operator for detection scenarios:
Definition 31 (Relaxed Detection Scenario Con-
catenation): The relaxed concatenation of two de-
tection scenarios DS1 �̃ DS2 means that an object was
detected according to DS1 at t1 and later according to
DS2 at t2 with t1 < t2. ◻
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Lemma 17. Let DS = {DS1,DS2,DS3,DS4,DS5} be the
domain of detection scenarios. If d = DS3∣DS4∣DS5 for
DSi ≠ DSj with i ≠ j, then DS1 � {d}� DS2 = DS1 �̃ DS2.
Proof. Follows directly from Lemma 3. ∎

We illustrate the use of Lemma 17 by applying it to
the detection term in (32): DSE � {DSB ∣DS•∣DS∅}� DSI .
In this case, d = DSB ∣DS•∣DS∅, DS1 = DS

E and DS2 =

DSI . Thus, we rewrite the term in (32) as DSE �̃ DSI .
Lemma 18. DS1 � DS2 ⇒ DS1 �̃ DS2

Proof. According to Definition 31, the right-hand side
is true if DS1 occurs for some interval [t0, t1[ and DS2
occurs at t2 ≥ t1. The left-hand side of the implication
states that DS1 occurs for some interval [t0, t1[ and DS2
occurs at t2 = t1. Hence, if the left-hand side is true,
the right-hand side is also true. ∎

7.4 Detection Terms

The inaccuracy of object detection or unobserved areas
sometimes prevent a definite answer whether an object
conforms to a given development or not. Given a devel-
opment P, the SN classifies objects detected into those
that definitely conform (P = T ), definitely do not con-
form (P = F) and maybe conform (P =M). In the fol-
lowing, we denote the true set of objects that conform
to a development P with ΩP.
Definition 32 (Optimal Result): The result de-
rived by the SN is optimal iff a.) the set of objects
where P = T is a subset of ΩP, b.) the set of objects
where P = F does not intersect with ΩP and c.) the set
of objects where P =M is minimal. ◻

In the following, we derive a maximal detection term
for every element P in the canonical collection of devel-
opments.
Definition 33 (Maximal Detection Term): A
detection term d is maximal for a predicate sequence P
iff it meets two conditions:
– There cannot exist an object O whose movement

conforms to P, but the corresponding detection se-
quence DO does not conform to d.

– There cannot exist an object O whose movement
does not conform to P, but the corresponding de-
tection sequence DO conforms to d. ◻

Example 10: As we will show in Section 7.4.1,
the term in (32) is maximal for Enter (O,R). Contrary
to (32), the following two terms are not maximal for
Enter (O,R):

DSE � {DSB
∣DS•} � DSI (33)

DSE � {DSB
∣DS•
∣DS∅} (34)

The term in (33) is not maximal, because an object O

detected with DR
O = DS

E � DS• � DS∅ � DSI conforms
to Enter (O,R), but DR

O does not conform to (33).
Similarly, (34) is not maximal, because objects with
DR

O = DS
E � DS• � DSE do not conform to Enter (O,R),

but DR
O conforms to (34). ◆

In the following, we address detection terms for de-
velopments in relation to regions and then those related
to zones. For both types, we show that the derived re-
sult is optimal.

7.4.1 Detection Terms for Regions

Recall that the canonical collection of developments
that describe the relationship of an object O and a re-
gion R has ten elements, listed in the left-hand column
of Table 4. For each of these developments P (O,R),
there is a detection term in the right-hand column such
that P (O,R) = T . We prove for each term that it is
maximal in the context of the corresponding develop-
ment P (O,R). Detection terms that indicate P (O,R) =
F are addressed afterward.

Determining whether P (O,R) = T . The follow-
ing Lemma is auxiliary, helping us to prove that the
detection terms in Table 4 are maximal.
Lemma 19. To ensure that Meet (O,R) = T , the de-
tection sequence DR

O of an object O must meet one of
the following requirements:
1. DR

O contains DSB.
2. DR

O conforms to DSI �̃ DSE.
3. DR

O conforms to DSE �̃ DSI .
For any other sequence, Meet (O,R) yields M or F .
Proof. DSB guarantees Meet (O,R) = T according
to (21). The other two cases imply that O has been
detected on both sides of the border RB . Hence, be-
tween these detections there was a time when O was
on RB even if DSB did not occur. For instance, the ob-
ject crossed the border while not being detected by any
node. Detection sequences that do not meet either of
these requirements conform to one of the two following
terms:
– {DSE ∣DS•∣DS∅}
– {DSI ∣DS•∣DS∅}

Neither {DSE ∣DS•∣DS∅} nor {DSI ∣DS•∣DS∅} allow the
SN to guarantee that Meet (O,R) = T according to (21).
∎

Lemma 19 states that the SN can only guarantee
Meet (O,R) = T if DSB occurs, or if the object has
been detected on both sides of the border. In any other
case, Meet (O,R) yields M or F .
Lemma 20. P (O,R) = T iff the detection sequence
DR

O conforms to the corresponding detection term in
Table 4.
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P (O, R) Detection term d

Disjoint (O, R)▷Meet (O, R) DSE � {DS•
∣DS∅} � (DSB

∣DSI)

Inside (O, R)▷Meet (O, R) DSI � {DS•
∣DS∅} � (DSB

∣DSE)

Meet (O, R)▷Disjoint (O, R) (DSB
∣DSI) � {DS•

∣DS∅} � DSE

Meet (O, R)▷Inside (O, R) (DSB
∣DSE) � {DS•

∣DS∅} � DSI

Disjoint (O, R)▷Meet (O, R)▷Inside (O, R) DSE � {DSB
∣DS•

∣DS∅} � DSI

Disjoint (O, R)▷Meet (O, R)▷Disjoint (O, R) DSE � DSB � DSE

Inside (O, R)▷Meet (O, R)▷Disjoint (O, R) DSI � {DSB
∣DS•

∣DS∅} � DSE

Inside (O, R)▷Meet (O, R)▷Inside (O, R) DSI � DSB � DSI

Meet (O, R)▷Disjoint (O, R)▷Meet (O, R) (DSI
∣DSB) � {DS•

∣DS∅} � DSE � {DSE
∣DS•

∣DS∅} � (DSI
∣DSB)

Meet (O, R)▷Inside (O, R)▷Meet (O, R) (DSE
∣DSB) � {DS•

∣DS∅} � DSI � {DSI
∣DS•

∣DS∅} � (DSE
∣DSB)

Table 4 Detection terms which indicate P (O, R) = T

Proof. We prove this for every P (O,R) in the left-
hand column of Table 4 separately: The movement of O
conforms to Disjoint (O,R)▷Meet (O,R) iff DR

O con-
forms to DSE � {DS•∣DS∅}� (DSB ∣DSI). The reasoning
for this is as follows: DSE is the only detection scenario
where Disjoint (O,R) = T . According to Lemma 19,
the SN can only guarantee Meet (O,R) = T after DSE if
DSB or DSI occurs. In the latter case, the detection term
DSE �̃ DSI occurs. By applying Lemma 17, we rewrite
this to DSE� {DS•∣DSB ∣DS∅} �DSI . The only detection
sequence not addressed by this term is DSE�DSB . Re-
moving DSB from {DS•∣DSB ∣DS∅} and adding it to the
end of the detection term solves this. Hence, the result-
ing term is DSE � {DS•∣DS∅} � (DSB ∣DSI). The proof
of correctness for detection terms related to all other
developments consisting of two predicates is analogous.

According to Lemma 19, to derive that Enter (O,R) =
T or Leave (O,R) = T , O must be detected conforming
to DSE �̃ DSI and DSI �̃ DSE respectively. By applying
Lemma 17, both terms are rewritten to the correspond-
ing detection terms in Table 4.

For Disjoint (O,R)▷Meet (O,R)▷Disjoint (O,R),
O must be detected with DSE first immediately followed
by DSB and DSE . If either DS• or DS∅ occur in be-
tween, O could have moved into R for some time. Such
a movement would not conform to Disjoint (O,R)▷
Meet (O,R)▷Disjoint (O,R). Thus, the term in Ta-
ble 4 is correct. The proof for the detection term of
Inside (O,R)▷Meet (O,R)▷Inside (O,R) is analogous.

For Meet (O,R) ▷Disjoint (O,R) ▷Meet (O,R),
we consider Meet (O,R)▷Disjoint (O,R) first: To con-

form to this first part, the object O must be detected
with DSI �̃ DSE or DSB�DSE (cf. Lemma 19). Hence,
(DSI ∣DSB)� {DS•∣DS∅}� DSE guarantees the first part,
i.e., Meet (O,R) ▷ Disjoint (O,R). Similarly, to con-
form to Disjoint (O,R)▷ Meet (O,R), the object O
must be detected with DSE �̃ DSI or DSE�DSB . Rewrit-
ing this by applying Lemma 17 yields the corresponding
detection term in Table 4. The proof for the detection
term for Meet (O,R)▷Inside (O,R)▷ Meet (O,R) is
analogous. ∎

Summing up, we have shown how SN can derive
P (O,R) = T by providing a detection term for every
spatio-temporal development.

Determining whether P (O,R) = F . Now we show
how SN derive P (O,R) = F . The most important dif-
ference to P (O,R) = T is that one must consider the
whole detection sequence instead of a substring: While
it is sufficient to find a substring in the detection se-
quence that conforms to a detection term to determine
that P (O,R) = T , to compute P (O,R) = F the SN
must rule out that any part of the detection sequence
could conform to P (O,R).
Lemma 21. An object O which is detected according to
DS• could conform to any spatio-temporal development
P (O,R).
Proof. According to Definition 19, DS• means that
POPO

t intersects with all partitions of R. This means
that the position of O is so ”close” to the border that
the sensor network cannot provide a definite answer on
which side of the border O is. Thus, an object could
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repeatedly move around and over the border of R in
any way while the sensor network can only determine
DS•. During this time, O could fulfill any development
that describes the relationship between O and R. ∎

Lemma 21 implies that detection sequences that do
not conform to a development must not contain DS•.
Looking at Table 2, this also applies to DS∅. Typically
detection areas may have any shape or size, i.e., objects
can cross the border of a region in arbitrary ways while
being undetected. This changes if assumptions about
the space covered by detection areas are viable, e.g., for
controlled deployments. We discuss three such coverage
assumptions (CA) in the following:
No assumption (CA∅): We assume that nodes have

been deployed randomly, and it is not fixed a priori
which parts of space are observed.

Coverage Assumption Border (CAB): Nodes have
been deployed in such a way that their detection ar-
eas cover the border RB entirely.

Coverage Assumption Border Interior (CABI):
The deployment guarantees that objects inside as
well as objects on the border are detected. Thus,
DS∅ only occurs for objects that are in RE .

Lemma 22. In case of CA∅, an object O that is tem-
porarily undetected, i.e., DS∅ occurs at least once in DR

O,
could conform to any development P (O,R).

Proof. As stated above, detection areas may have any
size or shape and thus the set of points that is unob-
served could intersect with any partition of R. An un-
detected object O could be at any of these unobserved
points in space and thus in any partition of R. Hence,
O may conform to any development that describes the
relation between O and R. ∎

According to Lemma 22, any occurrence of DS∅ or DS•

in the detection sequence rules out P (O,R) = F if as-
sumptions about the coverage of space are not viable.
SN with CA∅ can only derive P (O,R) = F if the object
is detected according to either DSI , DSB or DSE at all
times. Hence, DR

O must equal {DSI ∣DSB ∣DSE} as shown
in Equation (35).

For SN with CAB , we can assume that objects do
not cross the border while being undetected. To derive
that P (O,R) = F , the SN must ensure first that the
detection sequence of O does not conform to the corre-
sponding detection term in Table 4. Once this condition
is met, it is certain that P (O,R) = F if the detection
sequence DR

O does not contain DS• (cf. Equation (36)).
The reasoning for CAB applies to SN with CABI

as well. Additionally, any undetected object must be
outside of the region R, i.e., in RE . Thus, we replace
any occurrence of DS∅ with DSE prior to determining

if the detection sequence of O conforms to the term in
Table 4 associated with P (O,R).

Summary – Development results for queries with
regions. Given a detection term d associated with a
development P (O,R), Equations 35-37 summarize our
findings regarding the translation of sequences of object
detections into the result of a development P (O,R).

Theorem 1. The results for developments that describe
the relationship of an object and region derived accord-
ing to Equations 35-37 are optimal.

Proof. Let ΩP(O,R) be the set of objects that con-
form to a development P (O,R) in question. The set
of objects where P (O,R) = T is the largest subset of
ΩP(O,R) a sensor network can derive according to the
lemmas in Section 7.4.1. Similarly, the set of objects
where P (O,R) = F is the largest superset of ΩP(O,R)
the sensor network can derive. Therefore, the set of ob-
jects where P (O,R) =M is minimal, i.e., contains only
objects where the accuracy of the object detection pre-
vents a definitive answer. ∎

7.4.2 Detection Terms for Zones

According to Table 3, all predicates that express the
relationship between an object and a zone yield T or
F , but never M. Furthermore, the table shows that for
any predicate P (O,Z), there exists exactly one detec-
tion scenario DSi which yields P (O,Z) = T . All other
detection scenarios DSj ≠ DSi yield P (O,Z) = F . Com-
pared to regions, this eases the translation of detection
sequences to development results considerably.

Lemma 23. Let DSi be the detection scenario which
yields Pi (O,Z) = T , and DSj is the detection scenario
which yields Pj (O,Z) = T . If the detection sequence
DZ

O conforms to the term DSi � DSj (cf. Definition 30),
then Pi (O,Z)▷Pj (O,Z) = T . If DZ

O does not conform
to DSi � DSj, then Pi (O,Z)▷Pj (O,Z) = F .

Proof. We prove Pi (O,Z)▷Pj (O,Z) = T first: Ac-
cording to Definitions 27 and 30, conformance of DZ

O
to DSi � DSj means that the object O was detected
with DSi during [t1, t2[ and then with DSj at t2. Since
DSi yields Pi (O,Z) = T , we derive that Pi (O,Z) = T
for the interval [t1, t2[ and Pi (O,Z) = T at t2. Hence,
Pi (O,Z)▷Pj (O,Z) = T .

If DZ
O does not conform to DSi� DSj , there is no sub-

string in DZ
O where DSi is followed by DSj . This means

that either DSj never follows DSi, or DSi or DSj never
occur. For all of these cases, the sensor network can
guarantee that O does not fulfill Pi (O,Z)▷ Pj (O,Z)
and thus return F . ∎
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PCA∅ (O, R) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T iff DR
O conforms to the corresponding detection term d in Table 4

F iff DR
O does not conform to d and DR

O = {DSI
∣DSB

∣DSE}

M Otherwise
(35)

PCAB (O, R) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T iff DR
O conforms to the corresponding detection term d in Table 4

F iff DR
O does not conform to d and DR

O = {DSI
∣DSE

∣DS∅∣DSB}

M Otherwise
(36)

PCABI (O, R) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

T iff DR
O conforms to the corresponding detection term d

in Table 4 with DS∅ replaced by DSE

F iff DR
O does not conform to d and DR

O= {DSI
∣DSE

∣DSB}

M Otherwise

(37)

Lemma 24. Let DSi be the detection scenario which
yields Pi (O,Z) = T , and DSj is the detection scenario
which yields Pj (O,Z) = T . If DZ

O conforms to DSi �̃ DSj,
then Pi (O,Z) ▷̃Pj (O,Z) = T .
Proof. Analogous to Lemma 23. ∎

Lemmas 23 and 24 ease the definition of detection
terms for any of the 584 developments with zones. Due
to the large number of developments with zones, we do
not list a detection term for each one in this paper and
explain how to derive maximal detection terms based
on these lemmas: Consider a development P (O,Z) =
P1 (O,Z) θ1P2 (O,Z) θ2 . . . θq−1Pq (O,Z) where θi rep-
resents any concatenation operator, i.e., θi ∈ {▷, ▷̃}.
Let DSi be the detection scenario where Pi (O,Z) = T
according to Table 3. Thus, the detection term starts
with DS1 and the second detection scenario in the term
is DS2. If the concatenation operator between P1 (O,Z)
and P2 (O,Z) is ▷, then the detection term starts with
DS1 � DS2. Otherwise, the detection terms starts with
DS1 �̃ DS2. Next, we consider P3 (O,Z) and how it is
concatenated to P2 (O,Z). This continues until a de-
tection scenario corresponding to Pq (O,Z) terminates
the detection term. For example, Enter (O,Z) defined
in (27) has the detection term DSE � DSB � DSI .
Theorem 2. Suppose ΩP(O,Z) is the set of objects that
conform to a development P (O,Z). The set of objects
determined by the SN where P (O,Z) = T equals ΩP(O,Z).

Proof. Directly follows from Lemmas 23 and 24 and
the fact that there does not exist a predicate P (O,Z)
which yields M for any detection scenario. ∎

This concludes our discussion regarding the contri-
butions Semantics and Optimality. The remainder of
this paper addresses the contribution Efficiency.

8 Spatio-Temporal Query Processing in SN

We have implemented a distributed query processor for
spatio-temporal queries in SN. This section outlines
the core mechanisms of the query processor as follows:

First, Section 8.1 proposes a set of data structures used
for the computation of detection scenarios (Section 8.2).
Second, we describe how to to collect the information
required for this computation at the base station (Sec-
tion 8.3). The core contribution of this section is a pro-
posal how to process spatio-temporal queries. This in-
cludes two execution strategies that reduce the num-
ber of messages required to process such queries (Sec-
tion 8.4). Reducing the number of messages is impor-
tant, since energy consumption due to communication
typically dominates the overall energy consumption of
sensor nodes [1, 36]. Mechanisms that aim at regions or
dynamic zones are omitted here due to lack of space.

The query processor must return every object O
that conforms to P (O,Z). Prior to processing a query,
the following steps must be completed:
1. Definition of a zone Z.
2. Specification of the movement of interest as a spatio-

temporal development P (O,Z).
3. Dissemination of a list of nodes representing Z and

the query P (O,Z) to all nodes.
The SN must compute the detection scenario whenever
an object is detected. Based on the detection scenario,
the SN determines if a predicate of the query is true
using Table 3. Thus, it is sufficient to limit the dis-
cussion in the following to deriving detection scenarios
from object detections.

The distributed strategies notify the base station
whenever a predicate P (O,Z) in P (O,Z) is satisfied.
The base station determines if O has fulfilled a devel-
opment P (O,Z) using these notifications. Note that a
node may send several notifications regarding a predi-
cate to the base station because it detects the same ob-
ject more than once. This is intended, for two reasons:
First, the query P (O,Z) may contain a single predicate
more than once, e.g., Touch (O,Z). Second, coordinat-
ing nodes to prevent such redundant notifications re-
quires communication. A pre-study of ours has shown
that such a coordination only pays off if the network is
very small, the zone is small, and if the object moves
through detection areas of most nodes repeatedly. Thus,



Spatio-Temporal Sensor Databases 27

we do not intend to prevent this. On the other hand,
we show in Section 8.4 how to exploit spatio-temporal
semantics to reduce the number of notifications.

8.1 Data Structures and Algorithms

To store the information on objects detected, we use a
list Detections. It depends on the strategy where Detec-
tions is stored: For the centralized strategy, it is at the
base station. Contrary to that, the distributed strate-
gies share and replicate the elements of Detections in
such a way that sensor nodes can compute detection
scenarios based on it. Every element of Detections rep-
resents the detection of an object O by a node Si dur-
ing a time interval [tentry, texit]. Thus, every element
of Detections has the following structure:

NodeID: Identifier of the node Si detecting O.
ObjectID: An identifier of the object O that has been

detected by Si.
tO
entry: The time at which O has entered the detec-

tion area of Si.
tO
exit: This value either equals Ø or a time t >

tentry. If it equals Ø, this indicates that Si

is still detecting O. Otherwise, this value
equals the time texit at which O has left
the detection area of Si.

We say an element E of Detections originates from node
Si if E.NodeID = Si. When an object O enters the detec-
tion area DAi at t1, the corresponding node Si gener-
ates a list entry [Si,O,t1,Ø] and stores it in Detections.
Once O leaves DAi at t2, this list entry is updated to
[Si,O,t1,t2]. Note that an object that repeatedly enters
and leaves the detection area of a node may result in
several list elements originating from the same node.

For non-continuous detection mechanisms nodes can
determine tentry and texit by temporal interpolation:
Suppose Si checks periodically at t0, t1, . . . for objects.
An entry occurs at tj if Si did not detect an object at
tj−1 but detects it at tj , i.e., tentry = tj . An exit oc-
curs at tj if Si detected an object at tj and does not
detect it at tj+1, i.e., texit = tj+1. Research on detec-
tion mechanisms reviewed in Section 3.1 has yielded
approaches to detect continuously moving objects us-
ing non-continuous detection mechanisms with limited
temporal resolution.

8.2 Computing Detection Scenarios

According to Section 6.3, the sensor network must com-
pute how the detection set DetSetO

t intersects with
Z and Z, to compute a detection scenario at time t
for a given object O. We refer to this computation as
isDetecting (S∗, t,O). Its result is as follows:

isDetecting (S∗, t,O) = {T iff ∃Si ∈ S∗ ∶ detect (Si,O, t)
F Otherwise

The input parameter S∗ is either Z or Z. The imple-
mentation of isDetecting (S∗, t,O) is straightforward,
i.e., an iteration over Detections and Z, and therefore
omitted here. By computing isDetecting (Z, t,O) and
then isDetecting (Z, t,O), we obtain two boolean values
which indicate whether Z and Z intersect with DetSetO

t .
According to Lemma 8, this is sufficient to compute a
detection scenario in the context of a zone, and Ta-
ble 5 illustrates this: Each cell corresponds to a pair
of booleans that represent the result of the calls to
isDetecting (Z, t,O) and isDetecting (Z, t,O) and con-
tains the corresponding detection scenario.

isDetecting (Z, t, O)
T F

isDetecting (Z, t, O) T DSB DSI

F DSE DS∅

Table 5 Deriving detection scenarios using
isDetecting (S∗, t, O) with S∗ ∈ {Z, Z}

We now address the collection of the elements in
Detections to ensure that the result of the detection-
scenario computation according to Table 5 is correct.
Definition 34 (Correctness): The computation of
a detection scenario DS∗ is correct if the space partition
that corresponds to DS∗ (cf. Definitions 20-22) contains
the position p ∈ Ed of the object detected. ◻

Definition 35 (Completeness): The list Detections
is complete regarding an object O and a time t if Detec-
tions contains all existing elements [Si, O, t1, t2] with
t1 ≤ t and t ≤ t2 or t2 = Ø. ◻

Lemma 25. If Detections is complete, the detection sce-
nario computed according to Table 5 is correct.
Proof. Without loss of generality, assume the com-
puted detection scenario regarding an object O and a
time t is DSE . According to Definition 13, this means
that O is in ZE . Considering Lemma 8, this implies
that there is at least one node Si ∈ Z that detects O.
The computed detection scenario would be incorrect, if
there existed another node Sj ∈ Z which detects O at t
as well. Such a node cannot exist since Detections and
Zones are complete. For the other detection scenarios,
the proof is similar. ∎

Summing up, the base station or an arbitrary sensor
node must store a complete list Detections to compute
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a detection scenario for a given object O and a time t.
Our goal in the following is acquiring a complete list
Detections while minimizing the number of messages.

8.3 Centralized data collection

Notifying the base station whenever an object enters or
leaves the detection area of an arbitrary node Si is a
straightforward approach to achieve completeness. For
every incoming notification, the base station can mod-
ify its version of Detections and compute a detection
scenario, as shown in Algorithm 8.1.

Algorithm 8.1: Centralized data collection
1 When O enters/leaves DAi of Si at t do
2 Si sends corresponding notification to base station
3 end
4 When base station receives notification from Si do
5 Modify Detections at base station
6 Wait tdelay

7 Compute
[isDetecting (Z, t, O) , isDetecting (Z, t, O)]

8 end

The first part of Algorithm 8.1 is executed by any
node Si detecting objects and results in a notification
for every object detection. If Si is not a communica-
tion neighbor of the base station, the notification is for-
warded to the base station via multiple hops. The base
station executes the second part once it receives the
notification and modifies Detections accordingly. Prior
to computing the detection scenario, the base station
has to wait tdelay. This ensures that notifications of
nodes which simultaneously detect an object have ar-
rived before the detection scenario is computed. tdelay

is the maximum time a notification may need to be for-
warded to the base station. Its actual value depends
on factors such as communication hardware, SN size,
routing protocol etc. For our reference implementation
we use a delay of 30 seconds.

8.4 Distributed data collection

In the following, we show how to distribute Detections in
a way that allows nodes to compute detection scenarios
while only storing a part of Detections. This reduces
communication for two reasons:
– Nodes only notify the base station of objects that

at least fulfill one P (O,Z) ∈ P (O,Z).
– To compute detection scenarios, nodes only commu-

nicate with nodes in their vicinity, i.e., multi-hop
messages only occur if an object fulfills a predicate
of the query.

The latter point stems from the following idea: When a
node Si detects an object O, only nodes in its vicinity
can detect the object at the same time. This is because
O at position p ∈ Ed can be detected only by nodes
whose detection area contains p. Even though p is typ-
ically unknown due to the inaccuracy of the detection
mechanism, one can derive that only nodes close to Si

could possibly detect O at the same time.
Definition 36 (Detection Neighbor): Node Sj is
a detection neighbor of Si if the detection areas of both
nodes overlap, i.e., DAi ∩DAj ≠ ∅. DetNeighi is the
set of detection neighbors of Si. ◻

As discussed in Section 3.1, detection areas are in-
determinable for some SN. We show in Section 8.4.1
how a node can approximate its detection neighbors.
Notation (Detection Neighbor Subsets): The
subset of detection neighbors of a node Si that are in
Z are denoted by DetNeighZ

i . Similarly, DetNeighZ
i con-

tains all detection neighbors of Si that are outside of
Z.

Every node Si can derive for each detection neighbor
Sj ∈ DetNeighi if it is in Z or not since the query has
been disseminated to all nodes previously.

Lemma 26. Detections stored at Si is complete regard-
ing the object O and time t if Si detects O at t and
obtains all list elements for Detections regarding O orig-
inating from its detection neighbors DetNeighi.

Proof. We prove this by showing that there cannot
exist a node Sj ∉ DetNeighi that detects O at t. Sj ∉

DetNeighi implies that the detection areas of Si and
Sj do not overlap, i.e., DAi ∩DAj = ∅. Thus, there
does not exist a p ∈ Ed where Si and Sj can detect O
simultaneously. Hence, Sj cannot detect O at t. ∎

Lemma 26 limits the nodes from which Si must ac-
quire list elements for Detections to the detection neigh-
bors DetNeighi. By taking into account that Si is either
in Z or Z, we actually can compute a correct detection
scenario without Detections being complete.
Definition 37 (Semi-Completeness): Detections
regarding O and t stored at a node Si ∈ Z is semi-
complete if it contains all list elements [Sj ,O,t1,t2] with
t1 ≤ t ≤ t2 where Sj ∈ DetNeighZ

i . Analogously, Detec-
tions regarding O and t stored at a node Si ∈ Z is semi-
complete if it contains all list elements [Sj ,O,t1,t2] with
t1 ≤ t ≤ t2 where Sj ∈ DetNeighZ

i . ◻

Lemma 27. Let Si detect O at t. Without loss of gen-
erality, let Si ∈ Z. If Detections stored at Si is semi-
complete regarding O and t, the computation of the de-
tection scenario at Si according to Table 5 is correct.
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Proof. Since Si detects O, isDetecting (Z, t,O) = T .
Thus, only isDetecting (Z, t,O) remains to be computed
by Si. This only requires list elements from nodes in Z
to compute isDetecting (Z, t,O). ∎

Lemma 27 implies that the detection scenario com-
putation is still correct if Detections contains only list
elements from a subset of certain detection neighbors.
This reduces the number of messages, in particular be-
cause this subset is empty for most nodes.
Definition 38 (Border Node): A border node is
– a node Si ∈ Z with DetNeighZ

i ≠ ∅, or
– a node Si ∈ Z with DetNeighZ

i ≠ ∅. ◻

Figure 7 illustrates the concept of border nodes:
Non-border nodes inside Z are represented by black-
colored circles. Black-colored squares correspond to bor-
der nodes inside Z. Similarly, gray-colored squares and
circles correspond to border and non-border nodes out-
side of Z, respectively. A significant share of the nodes in
this scenario are non-border nodes. This is important,
because non-border nodes compute detection scenarios
without obtaining elements for Detections originating
from any detection neighbor.

Lemma 28. If a non-border node Si detects O at t and
modifies Detections accordingly, Detections stored at Si

is semi-complete.

Proof. Without loss of generality let Si ∈ Z and
DetNeighZ

i = ∅, i.e., Si is not a border node. DetNeighZ
i =

∅ implies that there does not exist a node Sj ∈ Z whose
detection area overlaps with the detection area of Si.
Thus, simultaneous detection of an object by Si and
some Sj ∈ Z is not possible by definition. Hence, detec-
tion of an object O by Si implies isDetecting (Z, t,O) =
F and isDetecting (Z, t,O) = T . ∎

Depending on the structure of the development in
question, the concept of border nodes allows for further
reduction of communication, as follows:

Lemma 29. Let P (O,Z) = P1 (O,Z)▷ P2 (O,Z). De-
tections and the resulting list elements stored in Detec-
tions originating from non-border nodes are not neces-
sary to process P (O,Z).
Proof. Without loss of generality, assume the non-
border node Si detects O at time t1 and derives a de-
tection scenario DS∗ that yields P1 (O,Z) = T according
to Table 3. If O fulfills P (O,Z) at some time t2 > t1,
there will be a border node Sj that detects O and com-
putes DS∗. Thus, Sj derives P1 (O,Z) = T as well and
if O fulfills P (O,Z) this must be followed directly by
P2 (O,Z) = T . If no such border node exists, O does not
fulfill P (O,Z) and therefore O is irrelevant regarding
the users interest. Hence, the detection of a non-border
node is irrelevant for developments like P (O,Z). ∎

Summing up, non-border nodes are inactive when
developments like Enter (O,Z) are processed.

8.4.1 Approximation of Detection Neighbors

There exist detection mechanisms where the detection
area is indeterminable, i.e., nodes cannot determine their
detection neighbors. We solve this by using a superset
ApproxDetNeighi which contains at least all detection
neighbors DetNeighi, i.e., DetNeighi ⊆ ApproxDetNeighi.
Results obtained while using ApproxDetNeighi instead
of DetNeighi are still correct, because those nodes in
ApproxDetNeighi that are not detection neighbors of Si

cannot detect an object at the same time as Si. Several
approaches to derive such a superset are conceivable,
and we outline two of them:
Communication Neighbors: If the communication

range can be assumed to be much larger than the
maximum detection range, a valid superset is CNi,
i.e., ApproxDetNeighi = CNi. This approach is ap-
plicable to most detection mechanisms used in SN,
and we use it for our evaluation.

Node Positions: Another approach is applicable if the
nodes know their position: The set ApproxDetNeighi

contains all nodes with a distance of at most 2⋅Dmax

to Si. The factor 2 ensures that the circles around
POSi with radius Dmax do not overlap.

Next, we propose two strategies to obtain the list ele-
ments for Detections originating from detection neigh-
bors.

8.4.2 Reactive Data Collection

Algorithm 8.2 outlines the reactive strategy, and its core
idea is as follows: According to Table 3, for each pred-
icate P (O,Z) there is one detection scenario where
P (O,Z) = T . Thus, each node can determine which
predicates and thus the detection scenarios that are rel-
evant to process the query. For instance, for P (O,Z) =
SNEnter (O,Z) each node knows that only DSE and DSI

are relevant. When an object O enters or leaves the de-
tection area of Si at time t, Si checks if this possibly
results in a predicate P (O,Z) of the query being true.
If so, Si requests Detections-entries on O from a sub-
set of its detection neighbors. We denote this subset as
DetNeighsub

i . After receiving and storing the entries re-
quested from DetNeighsub

i , Si computes the detection
scenario as described above. If the detection scenario
computed indicates that a predicate in P (O,Z) is true,
the base station is notified. The core question is: ”When
Si detects O, which detection neighbors could have tu-
ples that are relevant to compute the detection scenario,
i.e., which nodes must be in DetNeighsub

i ?”
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Reactive Si ∈ Z Si ∈ Z

DSI Entry DetNeighZ
i ∅

Exit ∅ DetNeighi

DSB Entry DetNeighZ
i DetNeighZ

i

Exit ∅ ∅

DSE Entry ∅ DetNeighZ
i

Exit DetNeighi ∅

Table 6 Detection-neighbor partitions for
the reactive strategy

Fig. 19 Detection Events
(S1 ∈ Z, S2 ∈ Z)

Proactive Si ∈ Z Si ∈ Z

DSI Entry ∅ DetNeighZ
i

Exit ∅ DetNeighZ
i

DSB Entry DetNeighZ
i DetNeighZ

i

Exit DetNeighZ
i DetNeighZ

i

DSE Entry DetNeighZ
i ∅

Exit DetNeighZ
i ∅

Table 7 Detection-neighbor partitions for
the proactive strategy

Algorithm 8.2: Reactive Strategy
1 When O enters or leaves the detection area of Si do
2 Modify Detections as described in Section 8.1;
3 DetNeighsub

i ← Detection neighbors that must be
queried according to Table 6;

4 Request tuples on O from every node in
DetNeighsub

i ;
5 Wait for response from every node in DetNeighsub

i ;
6 Determine detection scenario according to Table 5;
7 Notify base station if O fulfills a predicate of the

query according to Table 3;
8 end

We can derive DetNeighsub
i based on (1) the detec-

tion scenario to compute, (2) whether O entered or left
the detection area of Si and (3) whether Si is in Z or
Z. Table 6 shows DetNeighsub

i for any combination of
these three parameters. We use Figure 19 to explain
each entry: The first row is related to DSI , i.e., P (O,Z)
contains Inside (O,Z). DSI can only occur (1) if O en-
ters the detection area of a node in Z, or (2) if O leaves
the detection area of a node in Z. Case (1) is illus-
trated at t2 and t5 in Figure 8. To determine if DSI has
occurred, S2 only has to communicate with detection
neighbors outside of Z, i.e., with S1. This is reflected
by DetNeighZ

i in Table 6. Case (2) occurs at t3 and t8
in Figure 19. The node whose detection area the object
has left must send a request to all detection neighbors,
i.e., DetNeighi. This is because there must be at least
one detection neighbor in Z and no detection neighbor
outside of Z that still detects the object. The reasoning
for DSE is analogous. DSB only occurs if nodes inside
and outside of Z are in DetSetO

t . Hence, any Si ∈ Z
requests only tuples from DetNeighZ

i and vice versa.

8.4.3 Proactive Data Collection

The core idea of the proactive strategy is that a nodes
whose detection area was entered or left by an object
send this information to some of their detection neigh-
bors (cf. Algorithm 8.3). This allows each receiver of

the update to check if a predicate of the query was
true. Algorithm 8.3 illustrates the strategy.

The computation of DetNeighsub
i is the most impor-

tant step. As with the reactive strategy, it depends on
the three aforementioned parameters which detection
neighbors must be in DetNeighsub

i . For any combina-
tion of these parameters, there is an entry in Table 7.
We briefly explain each entry: Recall that DSI can ei-
ther occur (1) when an object enters the detection area
of a node in Z or (2) when the detection area of a node
in Z is left. Using Figure 19 again, Case (1) occurs at
t2 and t5. To compute the detection scenario correctly
at t2, S2 must know that S1 ∈ Z currently detects X1.
Case (2) occurs when X1 leaves the detection area of S1
at t3 and t8. Thus, if the query requires DSI , nodes in
Z must receive updates from their detection neighbors
outside of Z, i.e., DetNeighZ

i . The entries for DSE are
explained analogously: Nodes outside of Z must be in-
formed about object detections of their detection neigh-
bors inside Z, i.e., DetNeighZ

i . DSB requires simultane-
ous detection by nodes in Z as well as Z. Thus, every
Si ∈ Z must be informed about detections of detection
neighbors in Z and vice versa.

Algorithm 8.3: Proactive Strategy
1 When O enters/leaves detection area of Si do
2 Modify Detections as described in Section 8.1;
3 DetNeighsub

i ← detection neighbors whose
information must be updated according to Table 7;

4 Send updated list entries to every node in
DetNeighsub

i ;
5 Goto Line 9;
6 end
7 When Si receives updated tuples about O do
8 Insert updated tuples into Detections;
9 Determine detection scenario according to Table 5;

10 Notify base station if O fulfills a predicate of the
query;

11 end



Spatio-Temporal Sensor Databases 31

8.5 Impact of Node Failures

Node failures can have two consequences: (1) An object
O that would have been detected is not detected. (2)
Nodes detect O, but the detection-scenario computa-
tion is possibly incorrect because it is based on an in-
complete list Detections. Section 7 has shown how users
can express queries if they are interested in objects that
are temporarily unobserved. Thus, we focus on (2), i.e.,
we notify the user if query results returned could be
incorrect due to node failures. We discuss the detection
of failures first and continue with failure handling.

8.5.1 Failure Detection

The reactive strategy implicitly supports failure detec-
tion because a node Si expects responses from a set of
detection neighbors DetNeighsub

i . Si can derive that de-
tection neighbors which have not sent such a response
after a timeout have failed.

Failure detection requires additional measures with
the proactive strategy, because failed detection neigh-
bors cannot be identified based on missing responses.
One such measure is sending beacon messages periodi-
cally and assuming node failures if beacons are missing.
We include this overhead in our evaluation. This prob-
lem also occurs with the centralized strategy, i.e., addi-
tional messages are required to detect node failures.

8.5.2 Failure Handling

Our goal is to notify the user if a failure could have an
impact on the query result and mark the corresponding
result accordingly. We refer to the node whose failure
has been detected as Sfail. Any detection scenario DSerr

computed by a node Si with Sfail ∈ DetNeighi may be
incorrect because the list Detections was incomplete.
Lemma 30. If DSerr = DS

B, the failure of Sfail did not
affect the computation of the detection scenario.
Proof. According to Table 3, DSB occurs if there ex-
ists at least one node in Z and one node outside of Z
that detect the object. This is independent from the
potential detection of Sfail and thus the detection sce-
nario computation is not affected by the failure of Sfail.
∎

Lemma 31. If DSerr = DS
I and Sfail ∈ Z or DSerr = DS

E

and Sfail ∈ Z, the failure of Sfail did not affect the
computation of the detection scenario.
Proof. We prove this only for the case of DSerr = DS

I .
The reasoning for DSerr = DS

E is analogous. DSerr = DS
I

implies that there exists a node Sj ∈ Z that currently
detects O. Since Sfail ∈ Z, an additional list entry orig-
inating from Sfail would not change the result of the

detection scenario computation. Hence, the failure of
Sfail cannot affect the result. ∎

We infer that the base station must be notified only
if one of the following two cases occurs:
– DSerr = DS

I , and Sfail ∈ Z
– DSerr = DS

E , and Sfail ∈ Z
If one of these cases occurs, the notification to the base
station contains DSerr and Sfail.

9 Evaluation

Our evaluation investigates the following hypotheses:
H1 The centralized strategy does not scale as well as

the distributed strategies regarding network size
and node density.

H2 For Inside (O,Z) and Disjoint (O,Z), the proactive
strategy is most-energy efficient.

H3 The reactive strategy is the most energy-efficient
for Meet (O,Z).

H4 Distributed strategies reduce communication re-
quired for processing spatio-temporal developments.

In the following, we present results from experiments
using simulations as well as Sun SPOT deployments.

9.1 Simulation Configuration

We have used the KSN Sun SPOT simulator [6] to ob-
tain our results. This is because it allows the usage of
the same software for simulations as well as Sun SPOT
deployments. Each simulation run consists of the fol-
lowing steps:
1. Randomly deploy 100-300 nodes over an area of con-

stant size. Using an area of constant size ensures
different node densities for different network sizes,
i.e., varying numbers of detection and communica-
tion neighbors.

2. Define a zone containing between 2 and 30 nodes.
3. Generate 50 different object paths using a random

walk model with starting points randomly chosen.
4. For each object path, evaluate each detection sce-

nario using each strategy.
The results presented here are based on more than
100.000 simulation runs.

Recall that determining the detection area is not
possible for certain detection mechanisms. Our simula-
tions take this into account by using the set of commu-
nication neighbors as a proxy for the set of detection
neighbors: Every node sends a beacon periodically, and
every receiver of such a beacon adds the node to the list
of detection neighbors. We report the additional com-
munication related to beacons separately. Note that in
case of proactive data collection, the beacon messages
can be used for failure detection as well.
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Fig. 20 Scalability of data-collection strategies for Inside (O, Z)
for SN with 100-300 nodes
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Fig. 21 Comparison of communication costs for the eval-
uation of different detection scenarios

9.2 Simulation Results

Figure 20 shows that H1 holds: The graph plots the
average number of messages per simulation run to com-
pute Inside (O,Z). We omit similar graphs for the other
predicates. The number of messages required by the
centralized strategy increases linearly with network size.
This is expected, because objects are detected by more
nodes. This results in many messages which must be
forwarded to the base station. Despite the additional
communication to approximate detection neighbors, the
increasing network size (and node density) affects both
distributed strategies only marginally. We leave more
sophisticated measures to determine detection neigh-
bors more efficiently for future work.

To investigate H2 and H3, we compare the aver-
age number of messages required to process a given
predicate. The result in Figure 21 indicates that dis-
tributed strategies reduce communication by 45%−85%,
compared to the centralized strategy. As expected, the
proactive strategy is advantageous for Inside (O,Z) and
Disjoint (O,Z). This is because S∗ is smaller for the
proactive strategy compared to the reactive one when
objects leave a detection area of a node Si ∈ Z (cf. Ta-
bles 6 and 7). These roles are reversed for DSB , because
the proactive strategy is triggered more often than the
reactive one. These results confirm H2 and H3.

Strategy Number of Messages per Object for
Enter (O, Z) SNEnter (O, Z)

centralized 334 334
proactive 44,3 123,8
reactive 39,1 163,1

Table 8 Avg. number of messages for Enter (O, Z) and
SNEnter (O, Z)

Our simulation results support H4 as well: Table 8
shows the average number of messages to determine
that O conforms to Enter (O,Z) or SNEnter (O,Z) (cf.
equations (27) and (31)), respectively. Compared to the
centralized strategy, the distributed strategies reduce
communication by 51% to 89%. This is because only
few nodes send messages to the base station via multiple
hops. The proactive strategy is most efficient, because
SNEnter (O,Z) does not contain Meet (O,Z). Accord-
ing to Lemma 29, all non-border nodes can stay inactive
for Enter (O,Z). This explains the difference between
the results for SNEnter (O,Z) and Enter (O,Z).

9.3 Sun SPOT Case Study

Simulations abstract from certain real-world phenom-
ena which may impact performance, e.g., interferences
or collisions. We have conducted a case study using sev-
eral indoor and outdoor deployments to confirm our
simulation results in a real SN. We now present the
most important results.

Fig. 22 Node distribution and object paths for the Sun SPOT
case study conducted at the Karlsruhe Institute of Technology
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The node distribution of an outdoor deployment is
shown in Figure 22: We have mounted 50 Sun SPOT
sensor nodes on trees over an area of more than 2500m2

and positioned the base station (black square) in the
middle of the SN. Nodes inside and outside of Z are
represented by triangles and circles respectively. Two
remote controlled cars O1 (solid line) and O2 (dashed
line) moved through the SN. We have processed the
developments Enter (O1,Z) and Touch (O2,Z) with all
strategies and counted the messages required.

Strategy Number of Messages
Enter (O1, Z) Touch (O2, Z)

centralized 264 302
proactive 159 217
reactive 184 178

Table 9 Results for Enter (O1, Z) and Touch (O2, Z)

The centralized strategy always requires significantly
more communication than the other two strategies. This
is surprising, because the experiment favors the central-
ized strategy: Experiments with the base station at the
border of the SN result in even larger differences com-
pared to the distributed strategies. Objects that are
detected by more nodes or that move in patterns inten-
sify this effect. Considering Tables 6 and 7, the results
of the distributed strategies are expected: As shown
above, the proactive strategy requires less communi-
cation for Disjoint (O1,Z) and Inside (O1,Z) than the
reactive one. For Meet (O1,Z), these roles are reversed.
The proactive strategy is better for Enter (O1,Z) than
the reactive strategy because Meet (O1,Z) only occurs
a few times. This is different for O2: Meet (O2,Z) is
true for a long time due to the trajectory of O2 which
results in many messages with the proactive strategy.
This confirms our simulation results. We conclude that
the evaluation supports all hypotheses.

10 Conclusions

There exist many SN applications that track moving
objects. While research has shown that accessing SN
declaratively is advantageous, only relational queries
have been addressed so far. Relational operators are in-
sufficient to express the spatio-temporal semantics re-
quired by applications that track objects. This paper
provides the foundations for spatio-temporal queries in
SN. By developing an abstract detection model and in-
troducing the concept of detection scenarios, we have
formalized the information obtained by object detection

mechanisms in SN. Furthermore, we systematically in-
vestigated different types of spatio-temporal queries in
SN: Based on detection scenarios, we have translated
object detections into results for every type of query.
There are cases where the inaccuracy of object detec-
tion is in the way of a definite answer to a query, i.e.,
the query result is approximate. As we have proven, the
results derived by our techniques are optimal in these
cases. As a last step, we have proposed concepts for
energy-efficient in-network processing of spatio-temporal
queries in SN. We have evaluated our measures using
simulations as well as real deployments of sensor nodes.
The results how that our in-network processing reduces
communication by 45%-89% compared to collecting all
information on object detections at the base station.
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23. Güting, R.H., et al.: A Foundation for Representing
and Querying Moving Objects. ACM TODS (2000)
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