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Chapter 1

Introduction

This thesis is about the measurement of the inclusive b-jet cross section and new applications of the

multivariate analysis framework NeuroBayes. As for most PhD theses the title is a accumulation

of technical terms and for most people more or less incomprehensible. But nevertheless the title is

deliberate.

New applications of the multi variate analysis framework NeuroBayes for an

inclusive b-jet cross section measurement at CMS

The title covers the main topics of this thesis. These are the new applications of NeuroBayes

and the measurement of a physical quantity: the inclusive b-jet cross section. The reader will be

brought to these topics after a extensive introduction of the required background.

In chapter 2 I will highlight the theoretical basis of the physical contents. Therefor I will give a short

essay about the historical process up to the formulation of the quantum chromo dynamics (QCD).

QCD is the underlying theory behind the measurement presented in this thesis and describes the

strong interactions between the particles. Its intellectual father Murray Gell-Mann won the nobel

prize ”for his contributions and discoveries concerning the classification of elementary particles and

their interactions” as early as in 1969 [Nob].

Many years of research enhanced the list of elementary particles. Until now we found twelve

elementary fermions, six of them, the quarks, are able to do the strong interaction. The quarks

vary in electromagnetic charge and mass. One of these particles is the so called bottom quark

(b-quark). Its mass is about 4.2 GeV. The name bottom is chosen in analogy to the down-quark,

which is part of the proton.

The b-quark was discovered in 1977 at Fermilab [HHL+77]. This event was the starting point

of a huge field of research: b-physics. There are three main topics in b-physics: b production,

B spectroscopy and b flavor physics. The first two cover physical effects caused by the strong

interaction, while the last treats the description of the weak decay of the b-quark, which is very

important for discovery of physics beyond the standard model. The LHCb experiment at CERN

was built especially for analyses in this interesting sector.

But also studies on the strong interacting sector of the b-quark play an important role. On the one

hand b-quarks contribute to the background distributions for many analyses. A good understanding

of the b quark production mechanism may lead to significant improvements. Especially for new

particles, which decay into b-quarks, this is non-negligible. Furthermore for these processes a good

identification of the b-quarks is important.

On the other hand the production of the b-quarks itself is very interesting. In the last decades

analyses on this topic lead to curious results. At the beginning of the new millenium they already

7



8 CHAPTER 1. INTRODUCTION

claimed new production mechanisms beyond QCD predictions [Ber01], [Jun03]. It was not until ten

years later thet the results could be brought in line after a recalculation of the old theory. Above all

the difficulty to solve the perturbation calculations for heavy particles and the insufficient modeling

of the hadronization process led to those discrepancies between theory end experiment.

Today it is possible to reach a new regions in energy with the experiments at the Large Hadron

Collider (LHC). Thus it becomes again very interesting to check whether the theory is able to

describe the new measurements. In this thesis I will present the first analysis which covers the

production of b-quarks at such energies. The studies are done at the CMS experiment.

The third and the forth part of the thesis cover the description of the experiment. I will picture the

splendid history of CERN and its experiments which culminate in the construction of the LHC and

its experiments. I will introduce the layout of the CMS detector in chapter 3. With this apparatus

we are able to measure the physical processes which happen after the collision of protons at a

center of mass energy of 7 TeV. Further it is planned to increase the energy up to 14 TeV in the

near future. The obtained data must be transformed into physical objects. In chapter 4 I will

present how these objects are reconstructed.

The main topics are presented in chapter 5 and 6.

But let us have a more detailed look into the main parts. The syntax of the title is chosen to

emphasize these topics: For the measurement new applications where developed. An important

part of this thesis deals with the aggregation of known and new methods based on NeuroBayes.

NeuroBayes is unknown to most people so it is described in more detail.

NeuroBayes is a tool to do multi variate analysis. In the simplest case, this means that many input

variables are used to do a classification of two targets: background and signal or in more general:

target 0 and target 1. The inputs are combined and transformed to a single output variable which

carries all information to do the classification. The multi variate phase space is reduced to a one

dimensional. In section 5.1 a detailed summary of NeuroBayes is presented.

In the thesis itself I developed different applications for this. They range from general derivations

how to combine known methods with NeuroBayes to new approaches based on NeuroBayes and

specific applications for the physical analysis.

In section 5.2 I will focus on the interpretation of the NeuroBayes output. NeuroBayes is con-

structed in a way that it is possible to transform the results into a probability. This depends

among other things on the specification of the input samples. I will discuss two different setups.

The first I will call Monte Carlo (MC) based, the other data based. In fact the main difference

is the type of one of the targets for the classification. Either we take simulations of the back-

ground distribution in the MC based approach or a data sample for the data based approach. The

derivations of this I will show in section 5.2.1.

The knowledge on the probability can be used to execute a so called boost training. In section

5.2.2 I will introduce the basic idea, the implementation and the resulting possibilities.

Another application of NeuroBayes that was developed is the transformation of its output into

sPlot weights. sPlot is a method to determine the inclusive distribution of a specific variable using

the inclusive informations of a source variable which is uncorrelated to the former. In section

5.2.3 I will derive the connection between NeuroBayes and sPlot. With this it is possible to take

the NeuroBayes output directly as source for the sPlot method. The inspected variable has to be

uncorrelated to the NeuroBayes output.

Having many tools based on NeuroBayes in place it is obvious to apply them on physical topics.

Thus, it is used for a classification of jets. A jet is an observable pattern in the detector. Quarks

and gluon create many particles with a similar direction. On the one hand this happens because
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of the hadronization of these particles. On the other hand most of the created hadrons decay into

lighter particles in turn. All these particles were combined to so called jets. If such a jet is created

by b-quarks it is called b-jet. The aim of a b-jet tagger is to classify jets into b-jets and non-b-jets.

In section 5.3.1 I will present a NeuroBayes b-jet tagger based on Monte Carlo simulations (MC)

and in a second case based on data. For the data based tagger differences between data and MC

have to be studied. This was also done with NeuroBayes. Further I applied another method, called

boost, to show how much improvements are possible when doing this procedure.

In the last chapter I will focus on the inclusive b-jet cross section measurement done by CMS. I will

present the recent analysis done on early CMS data in section 6.1. This measurement was done

on data with an integrated luminosity at 60/nb. During the first year of data taking CMS already

collected 36/pb of data. Therefor an update of the recent measurement is planned. In section 6.2

I will present our contributions to this analysis and prospects for future results.

At the end I will start a discussion on alternative approaches to do this inclusive b-jet cross

section measurement. I will present a method based on the jet classification performed with the

NeuroBayes framework. In section 6.3 I will show how the results change if the newly developed

NeuroBayes b-jet tagger is used. The new tagger is used in the same manner as for the former

measurement.

Finally the results of this thesis will be summarized and discussed in chapter 7.
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Chapter 2

The Standard Model of particle

physics

In this chapter I will introduce the Standard Model of particle physics. The first part is an overview

of the parameters of the model. Precise mesurements of these quantities are needed to make further

estimates on the behaviour of the nature at the elemantary level.

The second part is about a special part of the model, perturbative quantum chromo dynamics

(pQCD). For this thesis we want to compare the experimental data with the predictions made

by the Standard Model. Therfore we need the calculations done by theorists. I will focus on the

problematics that came up over the years doing such calculations and present the current status.

Finally, I will work out the prospects of a further measurement of the inclusive b-jet cross section

at CMS.

2.1 Parameter of the Standard Model

Particle physics had its genesis with the discovery of the electron by Thomson in 1897 [Tho97].

Not that they were aware of the further particles we may discover, but the door was opened for a

new field of physics. In the beginning of the 20th century the picture of the atom was completed

and also the first anti-particle, the positron, was discovered in 1932 by C.D. Anderson [And33].

Nobody expected what would happen in the following years. It started with the discovery of a

new particle in cosmic rays: the muon in 1937 [SS37]. Its discovery led to the formulation of the

quantum electro dynamics (QED) in the 1940s by J. Schwinger, R. Feynman and S. Tomonaga

[Dys49]. Henceforward many further particles were found, many were detected in cosmic rays, but

also first accelerators were built. The first discovery of a new particle produced in collisions was

the neutral pion in 1949 [SPS50]. Until 1961 the number of particles rapidly increased. They found

many of the ground states of the today so called mesons and baryons, and also discovered the first

neutrinos in 1956 [RC56]. Up to then they found more then 20 different particles.

1961 a particle called η was discovered [PRS61]. This was the needed ingredient for a new phe-

nomenological classification of the particles: the eightfold way. Dependent on the measured quan-

tum numbers a systematic ordering was possible (see figure 2.1).

1964 the model was confirmed by the discovery of the Ω−, which was the last missing particle to

complete the structure of the eightfold way. Knowing this, Gell-Mann and Zweig independently

saw the possibility of a underlying theory using group theory with an SU(3) symmetry. This was

the birth of today’s quark model and finally, together with the quantum electro dynamics (QED),

11



12 CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

Figure 2.1: The eightfold way is an ordering of the ground state particles as proposed in 1961.

The particles are ordered dependent on their quantum numbers S and q. This composition leads

to the prediction of the later discovered particle Ω−− and is the base for the later formulated quark

model.

charge charge

e.m. weak color mass e.m. weak color

leptons right handed

I neutrino νe - +1/2 - < 2 eV - - -

electron e -e -1/2 - 511 keV -e - -

II neutrino νμ - +1/2 - < 0.19 MeV - - -

muon μ -e -1/2 - 106 MeV -e - -

III neutrino ντ - +1/2 - < 18.2 MeV - - -

tau τ -e -1/2 - 1.8 GeV -e - -

quarks right handed

I up u +2/3e +1/2 rgb 2.49 MeV +2/3e - rgb

down d -1/3e -1/2 rgb 5.05 MeV -1/3e - rgb

II charm c +2/3e +1/2 rgb 1.27 GeV +2/3e - rgb

strange s -1/3e -1/2 rgb 101 MeV -1/3e - rgb

III top t +2/3e +1/2 rgb 172 GeV +2/3e - rgb

bottom b -1/3e -1/2 rgb 4.2 GeV -1/3e - rgb

Table 2.1: List of elementary particles of the Standard Model. The parameters are taken from

[N+10].

the Standard Model of particle physics.

In the following I will present the elementary particles and the interactions of the Standard Model.

This section is partially extracted from [Ind04].

2.1.1 The elementary particles of the Standard Model

The one part of the Standard Model are the so called fermions. All particles with a half-integral

spin quantum number are assigned to this class. The elementary particles of this kind are divided

in leptons and quarks. For leptons, as well as for quarks, three generations of doublets exist. In

its generations the particles differ only by their mass. The quantum numbers are the same. Table

2.1 shows an overview of the different elementary particles.

Particles only participate in interaction where they have charge. It is to remark that the leptons

have no color charge. Further the neutrinos have even no electromagnetic charge. The weak

interaction only couples to left handed fermions. Therefore right handed neutrinos do not interact

with other particles except by gravitation. Because of the weakness of the gravitation these kind
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Figure 2.2: Feynman diagram of the electron scattering. A virtual photon is exchanged for the

interaction.

of neutrinos are not detectable. It is not known if such particles exist.

For each particle further exists an anti particle with opposite quantum numbers but same mass.

Quarks appear only in neutral colored combinations. Combination consisting of two quarks are

called mesons, combinations with three quarks baryons. Combinations with more than three

components are also possible but not observed in nature, yet.

2.1.2 The interactions of the Standard Model

There are four types of interactions, which we are able to experience: gravitation, electromagnetic

(e.m.), weak and strong interaction.

Gravitation

The gravitation is not included in the Standard Model of particle physics. I will briefly discuss its

main properties.

The pull of the gravitation is very small for energies below the Planck scale of 1019 GeV compared

to other interactions. We can neglect it in the model of particle physics. The gravitation has no

repulsion. Looking at cosmic phenomena it gets a dominant contribution e.g. for the motion of

the planets, stars and galaxies.

A boson called graviton, which carries the interaction, has not been discovered until now.

Electromagnetic interaction

The electromagnetic interaction is described by the quantum electro dynamics (QED). QED is a

group theory with a abelian symmetry group U(1). The U(1) implies only one generator which

represents the electromagnetic charge. The mediators of this charge are virtual photons. The

photons are bosons with spin 1 and have no mass. Further they have no charge themselves. Thus

they are not able to couple to each other.

Figure 2.2 shows a leading order Feynman diagram of QED process. There are two electrons which

interact to each other via a virtual photon. The coupling at the vertices is proportional to the

coupling constant
√
α. α ≈ 1

137 for small energy transfers. Therefore it is possible to calculate the

QED in terms of perturbation theory. Quite good approximations are already reached at O(α2).

Weak interaction

The weak interactions are described by the non abelian symmetry group SU(2). This group implies

three generators. One possible exposure of these generators is the use of the Pauli matrices Ji,

i = 1, 2, 3 multiplied by a factor of 1
2 . Three generators leads to three gauge bosons. All three

gauge bosons were discovered. There is the neutral Z boson with a mass of 91.2 GeV and the two

charged W± bosons with a mass of 80.4 GeV. Z and W± bosons are spin 1 particles.
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Figure 2.3: The normalized Drell-Yan mass spectrum, (1/σZ)dσ/dM , obtained in the di-muon

channel and compared to theoretical predictions. The uncertainty on the modeling accounts for

differences in the acceptance corrections obtained with POWHEG and FEWZ. [CMS11]

Further the high masses lead to a small range of the weak force, because of the Heisenberg uncer-

tainty principle. The product of the energy taken from the vacuum ΔE for a specific time scale

Δt is limited. Therefore the weak interaction is strongly suppressed. The raw estimate of the

maximum range l for the weak interaction is defined by l = c ·Δt, where c is the speed of light.

The gauge bosons couple to the third component of the weak isospin I3. Right handed particles

and left handed antiparticles have I3 = 0. Therefore the weak interaction couples only to half of the

particles. The Lorentz invariant property of the handedness is the chirality. It is a generalization of

helicity h, which is defined as the normalized product of the spin �S of the particle and its direction

of the momentum �p: h = �Sp̂. For massive particles the helicity is not Lorentz invariant.

Figure 2.3 shows the Drell-Yan mass spectrum in the range of the Z mass obtained in the di-muon

channel at CMS. The Z bosons are easy to produce if the center of mass energy is next to the

boson mass. We see a resonant structure in the spectrum. Away from the resonance we see the

expected dependency 1
s (remark the double logarithmic scale), where s is the square of the center

of mass energy
√
s.

Another difference between weak and electromagnetic interaction is the possibility of the gauge

bosons to couple to each other. This due to the non abelian structure of the gauge theory. It is

possible to have vertices with three or four Z and W± bosons.

Strong interaction

The strong interaction couples only with quarks and not with leptons. The quark model is formu-

lated by a non abelian gauge theory with the symmetry group SU(3). The charge is called color

charge in analogy to the color mixture of light. There is a red, green and blue charge and the

corresponding anti colors. All physical objects are uncolored. This can be achieved by a mixture

of a color with the same anti-color or a mixture of all three colors. This leads to mesons, composed

by a quark and an anti-quark, and baryons, composed by three quarks.

The SU(3) implies eight generators which lead to eight various gluons. The generator are the
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lambda matrices. The gluons carry a color and an anti-color. Because of the non abelian structure

of the SU(3) again couplings between the gluons to each other are possible. There exists three as

well as four gluon vertices. The gluons are spin 1 particles.

In contrast to the electromagnetic theory the coupling constant of the strong interaction αs is not

small. This has the effect that only for large momentum transfer it is possible to calculate physical

processes of strong interactions by perturbation theory. αs becomes smaller for large momentum

transfer and reaches asymptotically zero. This is called asymptotic freedom. If the momentum

transfer is small the higher order contributions O(αn
s ) become large and approximations are very

difficult.

Another effect of the strong interactions is the increase of the potential with increasing distance.

This leads to the confinement. If one tries to displace two quarks the requiered energy rises with the

distance of the two particles until enough energy is available to generate a new quark/anti-quark

pair out of the vacuum.

Looking at hadron collider this leads to the so called hadronization. Instead of single quarks,

many particles are produced which form so called jets. The jets consist of hadrons moving in

similar direction. The jets itself are reconstructed as objects with properties corresponding to the

properties of the leading quarks.

2.2 Heavy quark production

I found an meaningful introduction of heavy quark production in the proceedings of the heavy flavor

working group at the HERA-LHC Workshop in 2006 [BBB+06]. The main parts are extracted here:

Perturbation QCD is expected to provide reliable predictions for the production of bottom and

(to a lesser extent) charm quarks since their masses are large enough to assure the applicability of

perturbation calculations. Anyway a direct comparison of perturbation QCD predictions to heavy

flavor production data is not straightforward. Difficulties arise

• from the presence of scales, which are very different from the quark masses that reduce the

predictability of fixed-order theory,

• from the non-perturbation ingredients, which are needed to parametrize the fragmentation

of the heavy quarks into the observed heavy hadrons and

• from the limited phase space accessible to present detectors.

Moreover a breakdown of the standard collinear factorization approach can be expected at low

momenta of the partons. The study of heavy quark production in hadronic interactions together

with the nice results ot the electron-proton collisions at HERA has been therefore an active field

in the effort to overcome these difficulties and to get a deeper understanding of hard interactions.

Besides its intrinsic interest, a precise understanding of heavy quark production is important at

LHC because charm and beauty from QCD processes are relevant backgrounds to other interesting

processes from the Standard Model (e.g. Higgs to bb̄ or beyond). Moreover, theoretical and

experimental techniques developed at HERA in the heavy quark field, such as heavy-quark parton

densities or b-tagging, are also of great value for future measurements at the LHC.

After exciting years with ’rise and fall of the bottom quark production excess’ [Cac04] oil was

put on troubled waters and they came up with a rational route for further investigations in this

interesting topic on physics.

In my description of the theory behind the analysis I will refer mainly to these proceedings and
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summarize the ideas and prospects they made for the measurements at LHC. In the following I

will introduce the basics of the analysis and draw the picture of the main physics behind this

thesis. I will point to the complex approaches needed for predictions in QCD, and therefore point

to the problems in the perturbation as well as in the non-perturbation parts of the calculations. To

complete the picture of how confusing measurements of heavy flavor productions were, I will reflect

the historical curiosities and finalize this chapter with the paradigm claimed by Matteo Cacciari

[Cac04].

2.2.1 b-jet cross section

From the point of view of standard perturbation QCD calculations, the situation has not changed

since the beginning of the 90s: fully massive next-to-leading order (NLO) calculations were made

available for hadron-hadron, photon-hadron (i.e. photo production) and electron-hadron (i.e. Deep

Inelastic Scattering, DIS) collisions. These calculations still constitute the state of the art as far

as fixed order results are concerned, and they form the basis for all modern phenomenological

predictions.

This statement was given by [BBB+06] on the theory of heavy flavor production in 2006. Therefore

the perturbation QCD calculations are the base for a inclusive b-jet cross section measurement.

From the experimental point of view the cross section σ is defined by the number of events N

produced at a certain integrated luminosity
∫ L:

σ =
N∫ L .

In this thesis we are interested in the differential cross section of b-jets:

d2σb-jet

dpT dy
=

∂2 Nb-jet

∂pT∂y
∫ L

For the measurement of this quantity the number of b-jets have to be counted in different ranges of

the transverse momentum pT of the jet and its rapidity y. In addition the integrated luminosity has

to be measured. The latter was already done by the CMS collaboration [CMS10g]. The remaining

part, the analysis of the b-jets was first done during the summer 2010 on the very early data of

the CMS experiment [CMS10e]. In this thesis the update and the improvement of the former

measurement will be discussed.

Let us start with the already mentioned theoretical base, the perturbation QCD calculations:

2.2.2 QCD predictions

A nice overview of the heavy quark production is given in [FNW03]. The following explanations

are extracted from them.

For the heavy flavor production we distinguish three production mechanisms: the flavor creation

(FCR), the flavor excitation (FEX) and the gluon splitting (GSP). FCR processes occur already

at O(α2
s) while FEX and GSP appear primary at O(α3

s).

At leading order (LO) we have the following FCR processes:

gg → QQ̄ qq̄ → QQ̄

where g specifies the gluons, q light quarks and Q the heavy quarks. At next to leading (NLO)

order we have the following:
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Figure 2.4: Heavy quark Q production mechanisms at leading order (LO). These processes are

called flavor creation (FCR).

Figure 2.5: At next to leading order the production mechanism are classified in three kinds. Here

an example for the flavor excitation (FEX) is illustrated. The processes are assigned to it, if the

scattering is accomplished by a heavy quark out of the proton.

gg → QQ̄g qq̄ → QQ̄g gq → QQ̄q gq̄ → QQ̄q̄.

There we can specify two further kinds of production mechanism. For the FEX we define:

qQ → qQ̄ qQ̄ → qQ̄ gQ̄ → gQ̄

and the GSP is a hard gg → gg process followed by:

g → QQ̄.

Figure 2.4 to 2.6 illustrate the different production mechanisms.

FEX and GSP processes are well defined only in the case of large transverse momenta of the heavy

quark. Their extrapolation to the low transverse momentum region can at best be considered a very

rough model of higher-order heavy flavor production processes. Figure 2.7 shows the transverse

momentum pT spectrum of the different production mechanism, modeled by a Pythia 6 TuneZ2

event generator. It is nice to see how the guon splitting process becomes more dominant for the

high momenta jets.

In [BBB+06] the problems for such a calculation were discussed:

Perturbation calculations of heavy quark production contain badly converging logarithmic terms

of quasi collinear origin in higher orders when a second energy scale is present and it is much
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Figure 2.6: The gluons splitting category (GSP) refers to a hard gluon production process which

is followed by the intrinsic gluon splitting.
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Figure 2.7: Transverse jet momentum spectrum of the different b production mechanisms. For high

pT jets the production is dominated by gluon splitting processes. The plot is done on a Pythia 6

TuneZ2 sample were pT > 37 GeV.
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larger than the heavy quark mass m. Examples are the (square root of the) photon virtuality Q2

in DIS and the transverse momentum pT in either hadroproduction or photoproduction. Naming

generically E the large scale, we can write schematically the cross section for the production of the

heavy quark Q as

σQ(E,m) = σ0

(
1 +

∑
n=1

αn
s

n∑
k=0

cnk ln
k

[
E2

m2
+O

(
E

m

)])
,

where σ0 is the Born cross section, and the coefficients cnk can contain constants as well as func-

tions of m and E, vanishing as powers of m/E when E � m. Solving this equation for next

to leading order processes needs advanced resummation approaches. Various are developed with

the goal to resum the leading logarithms (αn
s lnn(E2/m2), LL) and next-to-leading logarithms

(αn
s lnn−1(E2/m2), NOLL).

Over the years, and with increasing experimental accuracies, it however became evident that per-

turbation QCD alone did not suffice. In fact, real particles - hadrons and leptons - are observed in

the detectors, not the quarks and gluons of perturbation QCD. A proper comparison between the-

ory and experiment requires that this gap is bridged by a description of the transition. Of course,

the accuracy of such a description will reflect on the overall accuracy of the comparison. When

the precision requirements were not too tight, one usually employed a Monte Carlo description

to correct the data, deconvoluting hadronization effects and extrapolating to the full phase space.

The final experimental result could then easily be compared to the perturbation calculation. This

procedure has the inherent drawback of including the bias of our theoretical understanding (as

implemented in the Monte Carlo) into an experimental measurement. This bias is of course likely

to be more important when the correction to be performed is very large. It can sometimes become

almost unacceptable, for instance when exclusive measurements are extrapolated by a factor of

ten or so in order to produce an experimental result for a total photoproduction cross section or a

heavy quark structure function.

The alternative approach is to present (multi)differential experimental measurements, with cuts

as close as possible to the real ones, which is to say with as little theoretical correction and

extrapolation as possible. The theoretical prediction must then be refined in order to compare

with the real data that it must describe. This has two consequences. First, one has to deal with

differential distributions which, in certain regions of phase space, display a bad convergence in

perturbation theory. All-order resummations must then be performed in order to produce reliable

predictions. Second, differential distributions of real hadrons depend unavoidably on some non-

perturbation phenomenological inputs, fragmentation functions. Such inputs must be extracted

from data and matched to the perturbation theory in a proper way, pretty much like parton

distribution functions of light quarks and gluons are.

To satisfy these claims Stefano Frixione and Bryan R. Webber propose in [FW02] the MC@NLO

method for matching the next-to-leading order calculation of a given QCD process with a parton

shower Monte Carlo simulation. For almost all analysis on QCD this method is used to compare

the measurements with the NLO prediction.

2.2.3 Historical context

A nice overview of the strange historical progress of b quark production measurements can be

found in [Cac04]. The main points are listed here:

Measurements of the bottom transverse momentum spectrum at collider began in the late 80s, when

the UA1 Collaboration, taking data at the CERN Spp̄S with
√
s = 546 and 630 GeV, published
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Figure 2.8: UA1 b-quark cross section measurement [A+91]. The experimental points origin from

independent measurements: b → J/ΨX (solid circle), high mass dimuons (open circle), low mass

dimuons (triangles) and muon jets (squares). These results were compared to the then recently

completed next-to-leading order calculations (NLO).

results for the pT > mb (the bottom quark mass) region.

The UA1 collaboration published two papers about beauty production: [A+87] and [A+91].

Figure 2.8 shows the result from [A+91]. The inclusive b cross section is plotted for rapidity

|y| < 1.5. The experimental points come from independent measurements: b → J/ΨX (solid

circle), high mass dimuons (open circle), low mass dimuons (triangles) and muon jets (squares).

These results were compared to the then recently completed next-to-leading order (NLO), i.e. order

α3
s, calculation ([NDE88] and [NDE89]), and were found to be in good agreement.

During the 90s the CDF and D0 Collaborations also measured the bottom quark pT distribution

in pp̄ collisions at the Fermilab Tevatron at
√
s = 1800 GeV. The main difference to the UA1

measurements is that they measured mainly the b cross sections out of the production rates of

specific B hadrons. This includes more difficult parts of non perturbation QCD which are needed

to describe the hadronization process and were not well modeled at that time.

There were seven papers published by the CDF collaboration:

• Measurement of the B-meson and b-quark cross sections at
√
s =1.8 TeV using the exclusive

decay B± → J/ΨK± [A+92]

• Measurement of the bottom quark production cross section using semileptonic decay electrons

in pp̄ collisions at
√
s =1.8 TeV [A+93b]

• Measurement of bottom quark production in 1.8 TeV pp̄ collisions using muons from b-quark

decays [A+93a]

• Measurement of the B meson and b quark cross sections at
√
s =1.8 TeV using the exclusive

decay B0 → J/ΨK∗(892)0 [A+94]
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Figure 2.9: b quark production cross section for |yb| < 1.0 compared with the inclusive single muon

results and the NLO QCD prediction. On the right is the result of the B+ meson differential cross

section measurements from CDF normalized to the NLO predictions.

• Measurement of the B Meson Differential Cross Section dσ/dpT in pp̄ Collisions at
√
s=1.8

TeV [A+95b]

• Measurement of the B+ total cross section and B+ differential cross section dσ/dpT in pp̄

collisions at
√
s=1.8TeV [A+02a]

• Measurement of the ratio of b quark production cross sections in pp̄ collisions at
√
s=630GeV

and
√
s=1800GeV [A+02b]

Three papers were published by the D0 collaboration:

• Inclusive μ and b-Quark Production Cross Sections in pp̄ Collisions at
√
s = 1.8 TeV [A+95a]

• Small-Angle Muon and Bottom-Quark Production in pp̄ Collisions at
√
s = 1.8 TeV [A+00a]

• The bb̄ production cross section and angular correlations in pp̄ collisions at
√
s = 1.8 TeV

[A+00b]

In figure 2.9 results of the b cross section measurements done at Tevatron Run1 are shown. The

left is taken from [A+00b] and shows the b quark production cross section for |yb| < 1.0 compared

with the revised inclusive single muon results and the NLO QCD prediction. The error bars on the

data represent the total error. The theoretical uncertainty shows the uncertainty associated with

the factorization and renormalization scales and the b quark mass. Also shown are the inclusive

single muon data from CDF [A+93a]. On the right hand side of the figure the result of the B+

meson differential cross section measurements from CDF normalized to the NLO predictions is

shown [A+02a]. Both plots show a large discrepancy between data and prediction.

Apparently at odds with the UA1 results, the Tevatron data seemed to display an excess with

respect to NLO QCD predictions.

At the same time, rates for bottom production that appeared higher than QCD predictions were

also observed in the so called γγ collisions by three LEP experiments: L3 ([A+01],[A+05]), OPAL

[C+00] and DELPHI [Sil04]. A γγ collison at electron positron collider means that both initial

particles remain after the interaction. The collison is happens by interchanging photons γ.
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Figure 2.10: Photoproduction of beauty quarks in events with two jets and a muon. The filled points

show the ZEUS results from this analysis and the open point is the previous ZEUS measurement

in the electron channel [B+01]. The full error bars are the quadratic sum of the statistical (inner

part) and systematic uncertainties. The dashed line shows the NLO QCD prediction with the

theoretical uncertainty shown as the shaded band.

Also the differences were found by the H1 [A+99] and ZEUS [B+01] Collaborations in ep collisions

at HERA.

All these analyses measured the open beauty production in γγ collisions. This high order process

is needed to be sensitive on the pQCD NLO calculation at electron collider.

But despite this seemingly overwhelming evidence of a excess of b quarks, theorists argue that QCD

is instead rather successful in predicting bottom production rates. Improved theoretical analyses

and more recent experimental measurements by the CDF and ZEUS Collaborations support this

claim, which is also borne out by a critical reconsideration of previous results.

At ZEUS they measured the photoproduction of beauty quarks in events with two jets and a muon

[C+04]. The resulting b cross section is shown in figure 2.10. The improved theoretical predictions

are comparable with the data.

In Tevatron Run 2 two results were presented by the CDF collaboration. One covers the inclusive

b cross section [CDF05] and the other measured the bb̄ di-jet production [CDF07]. Both show a

good agreement with the NLO predictions (Figure 2.11 and 2.12).

Finally we have results from the LHC. Until now the data seems to be in the predicted regions

although we reached already the regions not covered by the Tevatron experiments, where pt > 400

GeV or the rapidity y is in very forward direction. The forward region was explored by the LHCb

experiment [A+10].

Further results are published by the CMS collaboration. They have performed measurements of

the inclusive b-hadron production cross section with muons [K+11b] and the B± production cross

section [K+11a] were published. Also studies on the angular correlations of two b quarks were

analyzed [K+11c].

The inclusive b-jet cross section measurement is presented in this thesis in chapter 6. For this until

now only a preliminary result exists [CMS10e].
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Figure 2.11: The upper plot shows the inclusive b-jet cross section over a Pt range between 38

and 400 GeV measured at CDF Run2. In the lower the same is plotted relative to the theory

predictions.
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2.2.4 Conclusion

Looking back the measurement of b quark productions rates causes a few ambiguities and misinter-

pretations. Therefore Matteo Cacciari formulated in [Cac04] a paradigm which points the problems

in comparisons between measurements and prediction and proposes an procedure for analysis on

the b quark production:

’We shall take NLO QCD calculations as a benchmark for comparisons. We shall

require the experimental measurements to be genuine observable quantities. By this we

mean that as a matter of principle we do not wish to compare data for, e.g., b-quark pT

distributions, since such a quantity is clearly an unphysical one: the quark not being

directly observed, its cross sections have to be inferred rather than directly measured.

A meaningful comparison will therefore be one between a physical cross section and

a QCD calculation with at least NLO accuracy. Non-perturbation information, where

needed, will have to be introduced in a minimal and self-consistent way. This means that

we refrain from using unjustified models, and we shall only include non-perturbation

information that has been extracted from one experiment and then employed in pre-

dicting another observable, using the same underlying perturbation framework in both

cases. Such a precaution allows for a good matching between the perturbation and

the non-perturbation phases, a necessity in that only the combination of the two steps

leads to an unambiguous measurable quantity.

In practice, the non-perturbation information relative to the hadronization of the

b- quarks into B-hadrons is extracted from LEP data with a calculation which has

NLO + NLL accuracy. ... the LEP (or SLD) data are translated to Mellin moments

space, and only the moments around N = 5 are fitted. This ensures that it is the

relevant part of the non-perturbation information which is properly determined. These

non-perturbation moments are then used together with a calculation having the same

perturbation features, FONLL (Fixed Order plus Next-to-Leading Log - in this case

log(p2T /m
2
b)), to evaluate the cross sections in pp̄ collisions.

The expectation is then that total cross sections be reproduced by the NLO calcu-

lations for b quarks, and that differential distributions for B hadrons be correctly de-

scribed by a proper convolution of the FONLL perturbation spectrum for b quarks and

the non-perturbation information extracted from LEP data. Notice that a minimalist

use of non-perturbation information is made: there is no attempt to fully describe the

hadronization process. Only the relevant phenomenological information is determined

from data and used in the predictions.

A successful comparison will see data and theory in agreement within their com-

bined uncertainties. The theoretical ones will be assessed by varying as extensively as

reasonable the parameters and the unphysical scales entering the predictions. As for

the experimental errors, it is perhaps worth reminding that only 1-sigma errors are

usually shown on the plots, so that non-overlapping bands do not necessarily point to

a solid disagreement.’



Chapter 3

The CMS experiment

In this section I will outline the multifarious publication of the facilities, which stick together

with the successful realization of this analysis. Starting with one of the most important center of

scientific research, where the accelerator and experiment are built, I will go step by step into more

details until I reach the single detector components, which are relevant for my studies.

The following chapter is a summary with extractions of the public CERN web page: cern.ch and

in addition parts of the most informative papers I found to give a complete impression of the large

effort, which was made to realize such a project.

3.1 CERN - Conseil Europeen pour la Recherche Nucleaire

’CERN, the European Organization for Nuclear Research, is one of the worlds largest and most

respected centers for scientific research. Its business is fundamental physics, finding out what the

Universe is made of and how it works. At CERN, the worlds largest and most complex scientific

instruments are used to study the basic constituents of matter - the fundamental particles. By

studying what happens when these particles collide, physicists learn about the laws of Nature.

The instruments used at CERN are particle accelerators and detectors. Accelerators boost beams

of particles to high energies before they are made to collide with each other or with stationary

targets. Detectors observe and record the results of these collisions.

Founded in 1954, the CERN Laboratory sits astride the Franco-Swiss border near Geneva. It was

one of Europes first joint ventures and now has 20 Member States.’ [CER08a]

This is the short introduction on their web page. It is addressed to the interested to enter the

fascinating world of CERN. Over 50 year CERN is a leader in scientific and technical inventions,

which results in various highlights of research.

• 1954 Foundations for European science. CERN was ratified by the 12 founding Member

States: Belgium, Denmark, France, the Federal Republic of Germany, Greece, Italy, the

Netherlands, Norway, Sweden, Switzerland, the United Kingdom, and Yugoslavia. On 29

September 1954 the European Organization for Nuclear Research officially came into being.

• 1957 The first accelerator began operation. The 600 MeV Synchrocyclotron (SC) was CERNs

first accelerator and it provided beams for CERNs first particle and nuclear physics experi-

ments.

• 1959 The PS started up. The Proton Synchrotron (PS) accelerated protons for the first time.

With a beam energy of 28 GeV, the PS became host to CERNs particle physics program,

and provides beams for experiments to this day.

25
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• 1968 Georges Charpak revolutionized detection. Georges Charpak developed the multiwire

proportional chamber, a gas-filled box with a large number of parallel detector wires, each

connected to individual amplifiers. Linked to a computer, it could achieve a counting rate a

thousand times better than existing detectors. The invention revolutionized particle detec-

tion, which passed from the manual to the electronic era. Charpak was awarded by the 1992

Nobel Prize in Physics for his work on particle detectors.

• 1971 The worlds first proton-proton collider. The Intersecting Storage Rings (ISR) produced

the worlds first proton-proton collisions, providing CERN with valuable knowledge and ex-

pertise for its subsequent colliding-beam projects.

• 1973 Neutral currents are revealed. In an experiment conducted by Andr Lagarrigue and

colleagues, an invisible neutrino passed through the Gargamelle bubble chamber at CERN

jolting an electron in its wake.

• 1976 The SPS is commissioned. Measuring 7 km in circumference, the Super Proton Syn-

chrotron (SPS) was the first of CERNs giant rings. Built in a tunnel, it was also the first

accelerator to cross the Franco-Swiss border. Initially conceived as a proton accelerator with

a beam energy of 300 GeV, the SPS operates today at up to 450 GeV, and has handled many

different kinds of particles.

• 1983 Discovery of the W and Z particles. In 1983, CERN announced the discovery of the

W and Z particles. The discovery was so important that Carlo Rubbia and Simon van der

Meer, the two key scientists behind the discovery, received the Nobel Prize in physics only a

year after.

• 1986 Heavy-ion collisions begin. CERN began to accelerate heavy ions - nuclei contain-

ing many neutrons and protons - in the Super Proton Synchrotron (SPS). The aim was to

deconfine the quarks by smashing the heavy ions into appropriate targets.

• 1989 Giant LEP started up. LEP was commissioned in July 1989. During 11 years of

research, LEP and its experiments provided a detailed study of the electroweak interaction

based on solid experimental foundations. Measurements performed at LEP also proved that

there are three - and only three - generations of particles of matter. LEP was closed down

on 2 November 2000 to make way for the construction of the LHC in the same tunnel.

• 1990 Tim Berners-Lee invented the Web. Berners-Lee had defined the Webs basic concepts,

the URL, http and html, and he had written the first browser and server software.

• 1993 Precise results on matter-antimatter asymmetry. The NA31 experiment at CERN

published the first precise results on what is known as direct CP symmetry breaking, which

indicates more clearly the physics underlying the phenomenon.

• 1995 First observation of antihydrogen. A team led by Walter Oelert created atoms of

antihydrogen for the first time at CERNs Low Energy Antiproton Ring (LEAR) facility.

Nine of these atoms were produced in collisions between antiprotons and xenon atoms over

a period of three weeks.

• 2002 Capturing antihydrogen atoms. Two CERN experiments, ATHENA and ATRAP, took

a major step towards understanding antimatter in 2002 by creating thousands of atoms of

antimatter in a cold state.
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• 2004 CERN celebrates its 50th anniversary. The inauguration of the Globe in 2004 coincided

with the official celebration of CERNs anniversary, attended by representatives of the Orga-

nizations 20 Member States including the heads of state of France, Spain and Switzerland.

• 2009/10 The LHC started up.

More details on the highlights can be seen on [CER08a].

3.2 LHC - Large hadron collider

The Large Hadron Collider (LHC) is a gigantic scientific instrument near Geneva, where it spans

the border between Switzerland and France about 100 m underground. It is a particle accelerator

used by physicists to study the smallest known particles - the fundamental building blocks of all

things. It will revolutionise our understanding, from the minuscule world deep within atoms to the

vastness of the Universe.

Two beams of subatomic particles called hadrons - either protons or lead ions - will travel in

opposite directions inside the circular accelerator, gaining energy with every lap. Physicists will

use the LHC to recreate the conditions just after the Big Bang, by colliding the two beams head-on

at very high energy. Teams of physicists from around the world will analyse the particles created

in the collisions using special detectors in a number of experiments dedicated to the LHC.

There are many theories as to what will result from these collisions, but whats for sure is that a

brave new world of physics will emerge from the new accelerator, as knowledge in particle physics

goes on to describe the workings of the Universe. For decades, the Standard Model of particle

physics has served physicists well as a means of understanding the fundamental laws of Nature,

but it does not tell the whole story. Only experimental data using the higher energies reached

by the LHC can push knowledge forward, challenging those who seek confirmation of established

knowledge, and those who dare to dream beyond the paradigm. [CER08b]

The LHC, the worlds largest and most powerful particle accelerator, is the latest addition to CERNs

accelerator complex. It mainly consists of a 27 km ring of superconducting magnets with a number

of accelerating structures to boost the energy of the particles along the way.

Inside the accelerator, two beams of particles travel at close to the speed of light with very high

energies before colliding with one another. The beams travel in opposite directions in separate beam

pipes - two tubes kept at ultrahigh vacuum. They are guided around the accelerator ring by a strong

magnetic field, achieved using superconducting electromagnets. These are built from coils of special

electric cable that operates in a superconducting state, efficiently conducting electricity without

resistance or loss of energy. This requires chilling the magnets to about 271◦C - a temperature

colder than outer space! For this reason, much of the accelerator is connected to a distribution

system of liquid helium, which cools the magnets, as well as to other supply services.

Thousands of magnets of different varieties and sizes are used to direct the beams around the

accelerator. These include 1232 dipole magnets of 15 m length which are used to bend the beams,

and 392 quadrupole magnets, each 5-7 m long, to focus the beams. Just prior to collision, another

type of magnet is used to squeeze the particles closer together to increase the chances of collisions.

The particles are so tiny that the task of making them collide is akin to firing needles from two

positions 10 km apart with such precision that they meet halfway!

All the controls for the accelerator, its services and technical infrastructure are housed under

one roof at the CERN Control Centre. From here, the beams inside the LHC will be made to

collide at four locations around the accelerator ring, corresponding to the positions of the particle

detectors.[CER08b]
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Figure 3.1: Map of the LHC and its hinterland. The red regions correspond to the villages next to

CERN. The for experiments are drawn on their location in the accelerator ring.

Figure 3.1 shows the detectors and their location. The six experiments at the LHC are all run by

international collaborations, bringing together scientists from institutes all over the world. Each

experiment is distinct, characterized by its unique particle detector.

The two large experiments, ATLAS and CMS, are based on general-purpose detectors to analyse the

myriad of particles produced by the collisions in the accelerator. They are designed to investigate

the largest range of physics possible. Having two independently designed detectors is vital for

cross-confirmation of any new discoveries made.

Two medium-size experiments, ALICE and LHCb, have specialized detectors for analyzing the

LHC collisions in relation to specific phenomena.

Two experiments, TOTEM and LHCf, are much smaller in size. They are designed to focus on

forward particles (protons or heavy ions). These are particles that just brush past each other as

the beams collide, rather than meeting head-on

The ATLAS, CMS, ALICE and LHCb detectors are installed in four huge underground caverns

located around the ring of the LHC. The detectors used by the TOTEM experiment are positioned

near the CMS detector, whereas those used by LHCf are near the ATLAS detector.[CER08b]

3.3 CMS detector - Compact muon solenoid detector

CMS stands for Compact Muon Solenoid: compact because it is small for its enormous weight,

muon for one of the particles it detects, and solenoid for the coil inside its huge superconducting

magnet. It is a high-energy physics experiment in Cessy, France, part of the Large Hadron Collider

(LHC) at CERN.

CMS is designed to see a wide range of particles and phenomena produced in high-energy collisions

in the LHC. Like a cylindrical onion, different layers of detector stop and measure the different

particles, and use this key data to build up a picture of events at the heart of the collision.

Scientists then use this data to search for new phenomena that will help to answer questions

such as: What is the Universe really made of and what forces act within it? And what gives
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Figure 3.2: model of the CMS detector decorated with pictures of the different detector components
2.

everything substance? CMS will also measure the properties of previously discovered particles

with unprecedented precision, and be on the lookout for completely new, unpredicted phenomena.

[CMS08b]

Detectors consist of layers of material that exploit the different properties of particles to catch

and measure the energy and momentum of each one. CMS was designed around getting the best

possible scientific results, and therefore to look for the most efficient ways of finding evidence for

new physical theories. This put certain requirements on the design. CMS needed:

• a high performance system to detect and measure muons,

• a high resolution method to detect and measure electrons and photons (an electromagnetic

calorimeter),

• a high quality central tracking system to give accurate momentum measurements, and

• a hermetic hadron calorimeter, designed to entirely surround the collision and prevent parti-

cles from escaping.

With these priorities in mind, the first essential item was a very strong magnet. The higher a

charged particles momentum, the less its path is curved in the magnetic field, so when we know

its path we can measure its momentum. A strong magnet was therefore needed to allow us to

accurately measure even the very high momentum particles, such as muons. A large magnet also

allowed for a number of layers of muon detectors within the magnetic field, so momentum could

be measured both inside the coil (by the tracking devices) and outside of the coil (by the muon

chambers).

The magnet is the Solenoid in Compact Muon Solenoid (CMS). The solenoid is a coil of supercon-

ducting wire that creates a magnetic field when electricity flows through it; in CMS the solenoid

has an overall length of 13m and a diameter of 7m, and a magnetic field about 100,000 times

stronger than that of the Earth. It is the largest magnet of its type ever constructed and allows

2taken from http://bigscience.web.cern.ch/bigscience/en/cms/cms2.html
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the tracker and calorimeter detectors to be placed inside the coil, resulting in a detector that is,

overall, compact, compared to detectors of similar weight.

The design of the whole detector was also inspired by lessons learnt from previous CERN experi-

ments at LEP (the Large Electron Positron Collider). Engineers found that building sections above

ground, rather than constructing them in the cavern with all its access and safety issues, saved

valuable time. Another important conclusion was that sub-detectors should be made more easily

accessible to allow for easier and faster maintenance.

Thus CMS was designed in fifteen separate sections or slices that were built on the surface and

lowered down ready-made into the cavern. Being able to work in parallel on excavating the cavern

and building the detector saved valuable time. This slicing, along with the careful design of cabling

and piping, also ensures that the sections can be fully opened and closed with minimum disruption,

and each piece remains accessible within the cavern.

These considerations, along with the unique conditions of the LHC, affected the design of each

layer of the detector. [CMS08b]

3.3.1 Tracking system

The tracking system consists of two main components the pixel detector next to the beam pipe

and the silicon strip detectors next to it.

Pixels

Momentum of particles is crucial in helping us to build up a picture of events at the heart of the

collision. One method to calculate the momentum of a particle is to track its path through a

magnetic field; the more curved the path, the less momentum the particle had. The CMS tracker

records the paths taken by charged particles by finding their positions at a number of key points.

The tracker can reconstruct the paths of high-energy muons, electrons and hadrons (particles made

up of quarks) as well as see tracks coming from the decay of very short-lived particles such as beauty

or b quarks that will be used to study the differences between matter and antimatter.

The tracker needs to record particle paths accurately yet be lightweight so as to disturb the particle

as little as possible. It does this by taking position measurements so accurate that tracks can be

reliably reconstructed using just a few measurement points. Each measurement is accurate to 10

μm, a fraction of the width of a human hair. It is also the inner most layer of the detector and so

receives the highest volume of particles: the construction materials were therefore carefully chosen

to resist radiation.

The final design consists of a tracker made entirely of silicon: the pixels, at the very core of the

detector and dealing with the highest intensity of particles, and the silicon microstrip detectors

that surround it. As particles travel through the tracker the pixels and microstrips produce tiny

electric signals that are amplified and detected. The tracker employs sensors covering an area the

size of a tennis court, with 75 million separate electronic read-out channels: in the pixel detector

there are some 6000 connections per square centimeter.[CMS08b]

Silicon Strip Detectors

After the pixels and on their way out of the tracker, particles pass through ten layers of silicon

strip detectors, reaching out to a radius of 130 centimeters.

The tracker silicon strip detector consists of four inner barrel (TIB) layers assembled in shells with

two inner endcaps (TID), each composed of three small discs. The outer barrel (TOB) consists of
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Figure 3.3: model of the CMS detector decorated with pictures of the different detector components.

six concentric layers. Finally two endcaps (TEC) close off the tracker. Each has silicon modules

designed differently for its place within the detector.

This part of the tracker contains 15,200 highly sensitive modules with a total of 10 million detector

strips read by 80,000 microelectronic chips. Each module consists of three elements: a set of

sensors, its mechanical support structure and readout electronics.

Silicon sensors are highly suited to receive many particles in a small space due to their fast response

and good spatial resolution. The silicon detectors work in much the same way as the pixels: as a

charged particle crosses the material it knocks electron from atoms and within the applied electric

field these move giving a very small pulse of current lasting a few nanoseconds. This small amount

of charge is then amplified by APV25 chips, giving us hits when a particle passes, allowing us to

reconstruct its path.[CMS08b]

Looking at the two tracking detector components it is easy to see that they include a particular

amount of material in the innerst regions of the detector. Therefore electrons, photons and pions are

stimulated to react before reaching the calorimeters for their energy measurements. This implies a

more difficult reconstruction of the physical objects, but opens a new field of particle identification

dependent on bremsstrahlung. Figure 3.3 shows the material budget of the CMS tracker in units

of radiation length. [CMS09b]

3.3.2 Calorimeter

Outside the tracker are calorimeters that measure the energy of particles. In measuring the momen-

tum, the tracker should interfere with the particles as little as possible, whereas the calorimeters

are specifically designed to stop the particles in their tracks.

The Electromagnetic Calorimeter (ECAL) - made of lead tungstate, a very dense material that pro-

duces light when hit - measures the energy of photons and electrons whereas the Hadron Calorimeter

(HCAL) is designed principally to detect any particle made up of quarks (the basic building blocks

of protons and neutrons). The size of the magnet allows the tracker and calorimeters to be placed

inside its coil, resulting in an overall compact detector.[CMS08b]
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Electromagnetic calorimeter (ECAL)

In order to build up a picture of events occurring in the LHC, CMS must find the energies of

emerging particles. Of particular interest are electrons and photons, because of their use in finding

the Higgs boson and other new physics.

These particles are measured using an electromagnetic calorimeter (ECAL). But to find them with

the necessary precision in the very strict conditions of the LHC - a high magnetic field, high levels of

radiation and only 25 nanoseconds between collisions - required very particular detector materials.

Lead tungstate crystal is made primarily of metal and is heavier than stainless steel, but with

a touch of oxygen in this crystalline form it is highly transparent and scintillates when electrons

and photons pass through it. This means it produces light in proportion to the particles energy.

These high-density crystals produce light in fast, short, well-defined photon bursts that allow for

a precise, fast and fairly compact detector.

Photodetectors that have been especially designed to work within the high magnetic field, are also

glued onto the back of each of the crystals to detect the scintillation light and convert it to an

electrical signal that is amplified and sent for analysis.

The ECAL, made up of a barrel section and two endcaps, forms a layer between the tracker and

the HCAL. The cylindrical barrel consists of 61,200 crystals formed into 36 supermodules, each

weighing around three tonnes and containing 1700 crystals. The flat ECAL endcaps seal off the

barrel at either end and are made up of almost 15,000 further crystals.

For extra spatial precision, the ECAL also contains Preshower detectors that sit in front of the

endcaps. These allow CMS to distinguish between single high-energy photons (often signs of

exciting physics) and the less interesting close pairs of low-energy photons.[CMS08b]

Hadron Calorimeter (HCAL)

The Hadron Calorimeter (HCAL) measures the energy of hadrons, particles made of quarks and

gluons (for example protons, neutrons, pions and kaons). Additionally it provides indirect mea-

surement of the presence of non-interacting, uncharged particles such as neutrinos.

Measuring these particles is important as they can tell us if new particles such as the Higgs boson

or supersymmetric particles (much heavier versions of the standard particles we know) have been

formed.

As these particles decay they may produce new particles that do not leave record of their presence

in any part of the CMS detector. To spot these the HCAL must be hermetic, that is make sure

it captures, to the extent possible, every particle emerging from the collisions. This way if we see

particles shoot out one side of the detector, but not the other, with an imbalance in the momentum

and energy (measured in the sideways transverse direction relative to the beam line), we can deduce

that we are producing invisible particles.

To ensure that we are seeing something new, rather than just letting familiar particles escape

undetected, layers of the HCAL were built in a staggered fashion so that there are no gaps in

direct lines that a familiar particle might escape through.

The HCAL is a sampling calorimeter, meaning it finds a particles position, energy and arrival time

using alternating layers of absorber and fluorescent scintillator materials that produce a rapid light

pulse when the particle passes through. Special optic fibers collect up this light and feed it into

readout boxes where photodetectors amplify the signal. When the amount of light in a given region

is summed up over many layers of tiles in depth, called a tower, this total amount of light is a

measure of a particles energy.

As the HCAL is massive and thick, fitting it into compact CMS was a challenge, as the cascades of
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particles produced when a hadron hits the dense absorber material (known as showers) are large,

and the minimum amount of material needed to contain and measure them is about one meter.

To accomplish this feat, the HCAL is organized into barrel (HB and HO), endcap (HE) and forward

(HF) sections. There are 36 barrel wedges, each weighing 26 tonnes. These form the last layer of

detector inside the magnet coil whilst a few additional layers, the outer barrel (HO), sit outside

the coil, ensuring no energy leaks out the back of the HB undetected. Similarly, 36 endcap wedges

measure particle energies as they emerge through the ends of the solenoid magnet.

Lastly, the two hadronic forward calorimeters (HF) are positioned at either end of CMS, to pick up

the myriad particles coming out of the collision region at shallow angles relative to the beam line.

These receive the bulk of the particle energy contained in the collision so must be very resistant to

radiation and use different materials to the other parts of the HCAL.[CMS08b]

3.3.3 Muon detector

As the name Compact Muon Solenoid suggests, detecting muons is one of CMSs most important

tasks. Muons are charged particles that are just like electrons and positrons, but are 200 times

heavier. We expect them to be produced in the decay of a number of potential new particles; for

instance, one of the clearest ”signatures” of the Higgs Boson is its decay into four muons.

Because muons can penetrate several meters of iron without interacting, unlike most particles they

are not stopped by any of CMSs calorimeters. Therefore, chambers to detect muons are placed at

the very edge of the experiment where they are the only particles likely to register a signal.

A particle is measured by fitting a curve to hits among the four muon stations, which sit outside the

magnet coil and are interleaved with iron ”return yoke” plates. By tracking its position through

the multiple layers of each station, combined with tracker measurements the detectors precisely

trace a particles path. This gives a measurement of its momentum because we know that particles

traveling with more momentum bend less in a magnetic field. As a consequence, the CMS magnet

is very powerful so we can bend even the paths of very high-energy muons and calculate their

momenta.

In total there are 1400 muon chambers: 250 drift tubes (DTs) and 540 cathode strip chambers

(CSCs) track the particles positions and provide a trigger, while 610 resistive plate chambers

(RPCs) form a redundant trigger system, which quickly decides to keep the acquired muon data

or not. Because of the many layers of detector and different specialities of each type, the system

is naturally robust and able to filter out background noise.

DTs and RPCs are arranged in concentric cylinders around the beam line (the barrel region) whilst

CSCs and RPCs, make up the endcaps disks that cover the ends of the barrel.[CMS08b]
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Chapter 4

Event reconstruction

Recording the collisions with the CMS detector (see 3.3) is the first part of a physics analysis.

But it is almost impossible to study physics behaviour on the raw data. Most of the manpower

is needed to transform this data into a usable structure. The main goal of this transformation

is to reconstruct objects with well defined physics properties. Such objects are tracks, which are

mainly reconstructed with the tracking system (see 3.3.1) in the middle of the detector. Tracks

are produced by charged particles. Most of them are pions, but also protons, kaons, muons and

electrons make a visible signal which is recorded. With the additional information of the calorimeter

(see 3.3.2) it is possible to build objects called jets, which correspond to elementary particles

produced in the QCD process. To study QCD processes a well understood reconstruction of jet

objects is very important. The muon detector (see 3.3.3) helps us to find muon candidates with

a large purity. Further it is possible to reconstruct electron candidates, tau candidates or b-jet

candidates, which need more advanced algorithms of pattern recognition to identify such objects.

The following section will introduce how the recorded data is filtered by the CMS trigger system.

Further I present the samples, which are used for this analysis, explain the different physics objects

stored in their files and how they are reconstructed within the CMS software framework (CMSSW).

4.1 Trigger system

The trigger system is the important infrastructure which selects the samples for further analysis.

It does a rough classification of each event. In doing this the main job is the reduction of the huge

amount of data and the dispersion into so called trigger streams. A trigger stream provides an

enriched sample of interesting events which are needed for the analysis. A nice description of the

trigger system can be found in [A+09]. The main parts in this section are extracted from there. It

is summarized as much as possible in spite of getting an introducing idea, how the large amount

of data measured by the CMS experiment is filtered and recorded for analysis.

The trigger system consists of two modules: The CMS trigger [B+00] and data acquisition system

[CRS02]. They are designed to cope with unprecedented luminosities and interaction rates. At

the LHC design luminosity of 1034 cm−2 s−1, and bunch-crossing rates of 40 MHz, an average

of about 20 interactions will take place at each bunch crossing. The trigger system must reduce

the bunch-crossing rate to a final output rate of O(100) Hz, consistent with an archival storage

capability of O(100) MB/s.

Only two trigger levels are employed in CMS. The first one, the Level-1 Trigger (L1T) [B+00], is

implemented using custom electronics and is designed to reduce the event rate to 100 kHz. The

second trigger level, the High Level Trigger (HLT), provides further rate reduction by analyzing

35
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full-granularity detector data, using software reconstruction and filtering algorithms running on a

large computing cluster consisting of ordinary CPUs, the Event Filter Farm.

4.1.1 Level 1 trigger

In [B+00] the Level 1 trigger is explained in detail: The CMS L1 trigger is based on the identifi-

cation of muons, electrons, photons, jets, and missing transverse energy. The trigger must have a

sufficiently high and understood efficiency at a sufficiently low threshold to ensure a high yield of

events in the final CMS physics plots to provide enough statistics and enough efficiency for these

events so that the correction for this efficiency does not add appreciably to the systematic error of

the measurement.

Given the high event rate at the nominal LHC luminosity, only a limited portion of the detector

information from the calorimeters and the muon chambers is used by the L1T system to perform the

first event selection, while the full granularity data are stored in the detector front-end electronics

modules, waiting for the L1T decision. The overall latency to deliver the trigger signal (L1A)

is set by the depth of the front-end pipelines and corresponds to 128 bunch crossings. The L1T

processing elements compute the physics candidates (muons, jets, e/γ, etc.) based on which the

final decision is taken.

Relevant for this analysis are only the jet trigger. The definition of the level-1 jet trigger can be

found in [VPB07]. Level-1 jets are defined using the transverse energy sums in 12x12 calorimeter

trigger tower windows. A calorimeter trigger tower is defined as an array of 5x5 crystals in the

ECAL of dimensions 0.087x0.087 (ΔηxΔφ), which corresponds 1:1 to the physics tower size of the

HCAL. The algorithm uses a sliding-window technique that steps in units of 4x4 trigger towers,

called trigger regions, to give complete (η, φ) coverage of the calorimeter. The four highest jets in

the central and forward calorimeters, as well as four central τ jets are selected. Also selected are

single, double, triple and quad-jet triggers with varying thresholds and prescale factors.

4.1.2 High level trigger

As described in the CMS Technical Design Reports on the DAQ/HLT and on the Physics Perfor-

mance of the experiment [CMS06], the HLT selection is implemented as a sequence of reconstruction

and selection steps of increasing complexity, reconstruction refinement and physics sophistication.

The fully programmable nature of the processors in the Event Filter Farm enables the implemen-

tation of very complex algorithms utilizing any and all information in the event.

At HLT, jets are reconstructed using an iterative cone algorithm with cone size R = 0.5. The

algorithm is identical to the one used in the offline analysis. The inputs to the jet algorithm are

calorimeter towers, which are constructed from one or more projected HCAL cells and correspond-

ing projected ECAL crystals, and satisfy certain threshold requirements. For inclusion in the jet

finding algorithm, the calorimeter towers must have pT > 0.5 GeV and at least one tower must

satisfy the jet seed requirement of pT > 1 GeV. After jet finding, a correction for the calorimeter

response is applied to the reconstructed jets. This correction was obtained using QCD di-jet events

generated by PYTHIA and run through the full CMS detector simulation in CMSSW.

More details on the high level trigger, as well as this short summaray can be found in [VPB07].

4.2 Luminosity measurement

For any cross section analysis the measurement of the luminosity is important. The online and

offline methods on measuring the CMS luminosity are summarized in [CMS10g]. The following is
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extracted from there:

Online methods The CMS online luminosity measurement employs signals from the forward

hadronic calorimeter (HF), which covers the pseudorapidity range 3 < |η| < 5. Two methods for

extracting a real-time relative instantaneous luminosity with the HF have been implemented in

firmware. The first is based on zero counting, in which the average fraction of empty towers is used

to infer the mean number of interactions per bunch crossing. The second method exploits the linear

relationship between the average transverse energy per tower and the luminosity. Although all HF

towers are outfitted with luminosity firmware, the best linearity is obtained by limiting the coverage

to four azimuthal (2π) rings in the range 3.5 < |η| < 4.2. The principal reason for restricting the

η range is to avoid non-linearities introduced by averaging the tower occupancy over a range of η

rings with very different probabilities for having an occupied tower in a single interaction event. In

this case, the average fraction of empty towers becomes a sum over exponentials and is no longer

linear with the number of interactions per bunch crossing. The digital outputs of the circuits used

to read the signals from the HF PMTs are monitored in a non-invasive way and used to collect

channel-occupancy and ET -sum data in histograms that have one bin for each of the 3564 possible

bunch crossings.

Both methods can operate up to the full luminosity of the LHC (1034 cm−2 s−1 ). At very low

luminosities (1025 cm−2 s−1 and below) the algorithms just described are subject to small noise

backgrounds, but were demonstrated to function well for the luminosities delivered by the LHC

during the initial stages of the 2010 run. Since the tower occupancy method offers somewhat better

performance at the relatively low luminosities delivered by the LHC thus far, it has been adopted

as the default method. Results referred to as HF online are based on tower occupancy unless stated

otherwise.

Offline methods As a cross check on the HF-based online luminosity monitor, two offline al-

gorithms were developed for luminosity monitoring. One of these methods is based on energy

depositions in the HF, while the other makes use of tracking and vertex finding. The offline meth-

ods have the drawback of long latency (typically 24 hours elapse before the offline information from

a given run is available), but allow for better background rejection than the online methods. Most

importantly, the offline techniques employ a largely independent data-handling path, and in the

case of the vertex-counting method, involve a completely separate set of systematic uncertainties.

They thus complement the online method nicely.

The offline HF method is based on the coincidence of
∑

ET depositions of at least 1 GeV in the

forward and backward HF arrays (the sum in each HF runs over all towers). Timing cuts, where

|tHF | < 8 ns for both HF+ and HF-, are imposed to eliminate non-collision backgrounds.

A second offline method requires that at least one vertex with at least two tracks be found in the

event. The z-position of the vertex is required to lie within 150 mm of the center of the interaction

region. This method provides good efficiency for minimum bias (MB) events, while suppressing

non-collision backgrounds to the few per mil level.

An overview of the increasing luminosity can be seen in figure 4.1. For our analysis we decide to

ignore the very first data recorded in the commissioning era. This is arguable because of the small

luminosities during these runs (run 132440-135802). The end of the commissioning era is around

the end of May. Further the integrated luminosity is plotted on the right.

2taken from https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
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Figure 4.1: Peak luminosity per day for the first year of data taking with the CMS experiment.

The period from the first collisions until June is called the commissioning era, the period after

Run2010 era. On the right the integrated luminosity is shown. 2

4.3 Event reconstruction and object identification

This section addresses the reconstruction of physics objects appearing during the proton collisions

provided by the LHC. As already explained the measurements of all detector components are

filtered by the trigger system (see 4.1) and stored on tape. The data is saved in a so called RAW

data format. The information of all detector components is available.

The RAW dataset is the base for almost all physics analysis at CMS. But most do not use it before

the reconstruction of physics objects. The creation of the RECO data format is done promptly

after the data taking in the grid infrastructure. The grid is a global network of high performance

computing centers, placed all over the world, to execute the data streams from the CMS experiment

as well as for the other LHC experiments. The processing is done in multiple steps. Finally the

reconstructed data is stored distributed all over the world, but still available for all members of

the collaboration via the grid.

Using the CMS software, every collaboration member is able to select the physics objects of interest

for his analysis. In the majority of the cases the analyst produces relative small files with a flat

structure for his studies.

In my case this structure is related to jet objects. A jet is a particular structure in the detector,

which was generated by high energetic quarks or gluons created in the QCD process. Each jet

is further linked to other physics objects like tracks, electron, muons and vertices. The whole

constellation of the different objects is used to analyse the inclusive b cross section.

This section is a summary of all the important publications which studied and explained the

reconstruction of the physics objects needed for my analysis. The information is mostly extracted

from the papers related to the commissioning of the CMS experiments and its components.

4.3.1 Track reconstruction

The default track reconstruction at CMS is performed by the combinatorial track finder (CTF).

Starting from the reconstructed hits, the track reconstruction is decomposed in four logical parts

[AMST06]:

• Seed generation

• Pattern recognition, or trajectory building

• Ambiguity resolution
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• Final track fit

Triplets of hits in the tracker or pairs of hits with an additional constraint from the beamspot or a

vertex are used as initial estimates, or seeds, of tracks [CKKT06]. The seeds are then propagated

outward in a search for compatible hits. As hits are found, they are added to the seed trajectory

and the track parameters and uncertainties are updated. This search continues until either the

limit of the tracker is reached or no more compatible hits can be found, yielding the collection

of hits that belong to the track. In the final step, this collection of hits is fit to obtain the best

estimate of the track parameters.

The CTF performs multiple iterations. Between each iteration, hits that can be unambiguously

assigned to tracks in the previous iteration are removed from the collection of tracker hits to create

a smaller collection that can be used in the subsequent iteration. At the end of each iteration,

the reconstructed tracks are filtered to remove tracks that are likely fake and to flag the expected

purity of the tracks. More details can be found in [CMS10m].

4.3.2 Primary vertex reconstruction

To get a complete overview of the important components of the CMSSW, which are needed for

this thesis, the main parts of primary vertex reconstruction are extracted from [CMS10l]:

In the primary vertex reconstruction, the measurements of the location and uncertainty of an

interaction vertex are computed from a given set of reconstructed tracks. The prompt tracks orig-

inating from the primary interaction region are selected based on the transverse impact parameter

significance with respect to the beam line, number of strip and pixel hits, and the normalized track

χ2.

The beam line represents the three-dimensional profile of the luminous region where the LHC

beams collide at CMS. The beam line is determined in an average over many events, in contrast

to the event-by-event primary vertex which gives the precise position of a single collision. A good

measurement of the position and slope of the beam line is an important component of the event

reconstruction.

The selected tracks are then clustered based on their z coordinates at the point of closest approach

to the beam line. Vertex candidates are formed by grouping tracks that are separated in z by

less than a distance zsep = 1 cm from their nearest neighbor. Candidates containing at least two

tracks are then fit with an adaptive vertex fit to compute the best estimate of vertex parameters

such as position and covariance matrix, as well as the indicators of the success of the fit, such as

the number of degrees of freedom of the vertex and track weights of the tracks in the vertex. The

adaptive vertex fitter does not reject an outlying track; rather it down-weights the outliers with a

weight wi. The weight wi depends on the compatibility of track i with the vertex, as measured by

χ2 [FWV07]. For a track consistent with the common vertex, its weight is close to 1. The number

of degrees of freedom is defined as ndof = 2
∑

inTracks wi − 3. It is thus strongly correlated to the

ith number of tracks compatible with the primary interaction region. For this reason, the number

of degrees of freedom of the vertex can be used to select real proton-proton interactions. The

primary vertex resolution depends strongly on the number of tracks used in fitting the vertex and

the pT of those tracks.

Figure 4.2 shows exemplary the distribution of the reconstructed primary vertices from a single

run. The plots show the result in one and two dimensions.

3taken from [CMS10m]
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Figure 4.2: Plots of the primary vertex distributions from a single run.3

4.3.3 Secondary vertex reconstruction

The secondary vertex reconstruction is extracted from [MPQW06]:

Decay vertices, which result from long living particles are called secondary vertices. Most vertex

finders are sensitive to primary (PV) and secondary vertices (SV), so a vertex filter is needed to

select only the secondary vertex candidates. The discrimination is based on the distance of a vertex

to the beam line or to an already reconstructed primary vertex.

The trimmed Kalman vertex finder [SPF+06] searches for vertex candidates among the input set

of tracks, in an iterative way. During the first iteration, a Trimmed Kalman vertex fitter is applied

to the complete input set of tracks, yielding as outputs a vertex candidate and a set of tracks

which are incompatible with that vertex candidate. During the subsequent iterations, the same

procedure is applied to the set of incompatible tracks identified at previous iterations.

The trimmed Kalman vertex finder is sensitive to primary and secondary vertices, so a vertex

filter is used to select secondary vertex candidates. The vertex filter uses the following cuts on the

vertices:

• The distance from the vertex to the beam line has to exceed 100 μm but must not exceed 2

cm. The lower limit should reject primary vertices, the upper limit photon conversions and

nuclear interactions in the beampipe.

• The distance from the vertex to the beam line in the transverse (r-) plane divided by its

uncertainty has to be greater than three: Lt

σLt
> 3.

• The total invariant mass of the vertex must be smaller than 6.5 GeV/c2 to discard primary

vertices.

• Vertices with two tracks with opposite charge and an invariant mass of the K0 mass (± 50

MeV) are rejected. The 100 μm cut and the 3σ cut on the transverse flight distance are
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most important, because they reject most of the primary vertices. The effect of the cut of

6.5 GeV/c2 on the total invariant mass of the vertex is smaller.

In most cases b-hadrons produce a tertiary vertex because the decay chain proceeds via charm

production (the b-c-decay chain). The lifetime and the number of tracks from the decay vertex are

smaller for weakly decaying c- than for weakly decaying b-hadrons. For this reason the secondary

and the tertiary vertices are merged into one vertex in most cases. If tracks coming from a tertiary

vertex are also used to fit the secondary vertex, the measured flight distance is shifted to a higher

value. Another effect that corrupts the secondary vertex resolution are misassociated tracks from

the primary vertex or from underlying events.

4.3.4 Electron reconstruction

The electron reconstruction of the CMSSW is described in [CMS10d]. The following summary is

extracted from there:

Electron reconstruction uses two complementary algorithms at the track seeding stage: tracker

driven seeding, more suitable for low pT electrons as well as performing better for electrons inside

jets and ECAL driven seeding.

The ECAL driven algorithm starts by the reconstruction of ECAL superclusters of transverse en-

ergy ET > 4 GeV and is optimized for isolated electrons in the pT range relevant for Z or W

decays and down to pT > 5 GeV/c. Supercluster is a group of one or more associated clusters of

energy deposits in the ECAL constructed using an algorithm which takes account their characteris-

tic narrow width in the η coordinate and their characteristic spread in φ due to the bending in the

magnetic field of electrons radiating in the tracker material. As a first filtering step, superclusters

are matched to track seeds (pairs or triplets of hits) in the inner tracker layers, and electron tracks

are built from these track seeds. Trajectories are reconstructed using a dedicated modeling of the

electron energy loss and fitted with a Gaussian Sum Filter (GSF).

The filtering performed at the seeding step is complemented by a preselection. For candidates

found only by the tracker driven seeding algorithm, the preselection is based on a multivariate

analysis as described in [CMS10b]. For candidates found by the ECAL driven seeding algorithm,

the preselection is based on the matching between the GSF track and the supercluster in η and φ

[BCF+07]. The few ECAL driven electron candidates (1% for isolated electrons) not accepted by

these matching cuts but passing the multivariate preselection are also kept.

4.3.5 Muon reconstruction

In the standard CMS reconstruction for pp collisions, tracks are first reconstructed independently

in the silicon tracker (tracker track) and in the muon spectrometer (standalone-muon track). Based

on these, two reconstruction approaches are used:

• Global Muon reconstruction (outside-in): starting from a standalone muon in the muon

system, a matching tracker track is found and a global-muon track is fitted combining hits

from the tracker track and standalone-muon track. At large transverse momenta (pT 200

GeV/c), the global-muon fit can improve the momentum resolution compared to the tracker-

only fit.

• Tracker Muon reconstruction (inside-out): in this approach, all tracker tracks with pT > 0.5

GeV/c and p > 2.5 GeV/c are considered as possible muon candidates and are extrapolated

to the muon system, taking into account the expected energy loss and the uncertainty due to
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multiple scattering. If at least one muon segment (i.e. a short track stub made of DT or CSC

hits) matches the extrapolated track in position, the corresponding tracker track qualifies as

a tracker-muon track.

At low momentum (roughly p < 5 GeV/c) this approach is more efficient than the global muon

reconstruction, since it requires only a single muon segment in the muon system, while global muon

reconstruction typically becomes efficient with two or more segments. The majority of muons from

collisions (with sufficient momentum) are reconstructed either as a Global Muon or a Tracker

Muon, or very often as both. However, if both approaches fail and only a standalone-muon track

is found, this leads to a third category of muon candidates:

• Standalone-muon track only: this occurs only for about 1% of muons from collisions, thanks

to the high tracker-track efficiency. On the other hand, the acceptance of this type of muon

track for cosmic-ray muons is a factor 102 to 103 larger, thus leading to a collision muon to

cosmic-ray muon ratio that is a factor 104 to 105 less favorable than for the previous two

muon categories.

The results of these three algorithms are merged into a single collection of muon candidates, each

one containing information from the standalone, tracker, and global fit, when available. Candidates

found both by the Tracker Muon and the Global Muon approach that share the same tracker

track are merged into a single candidate. Similarly, standalone-muon tracks not included in a

Global Muon are merged with a Tracker Muon if they share a muon segment. Additional muon

identification information is stored for each candidate. The combination of different algorithms

provides a robust and efficient muon reconstruction. A given physics analysis can achieve the

desired balance between identification efficiency and purity by applying a selection based on the

muon identification variables. Several standard selections are provided.

The basic selection important for this analysis is the Soft Muon Selection: This selection requires

the candidate to be a Tracker Muon, with the additional requirement that a matching segment

be found in the outermost station where a segment is expected (based on muon position and

momentum), matching both in position and direction with the prediction of the track extrapolation.

Segments that form a better match in position with a different tracker track are not considered.

These additional requirements are optimized for low pT (< 10 GeV/c) muons. This selection is

presently used in B-physics analyses in CMS, in addition to Global Muons.[CMS10k]

4.3.6 Jets

In [CMS10f] I found a good explanation of the jet reconstruction:

Jets are experimental signatures of quarks and gluons, which are produced in high energy processes

such as the hard scattering of partons in pp collisions. Four types of jets are reconstructed at CMS,

which differently combine individual contributions from subdetectors to form the inputs to the jet

clustering algorithm: calorimeter jets, Jet-Plus-Track (JPT) jets, Particle-Flow (PFlow or PF)

jets, and track jets.

In this analysis only PFlow-jets are used. They are reconstructed using the Anti-kT [CSS08]

clustering algorithm with the size parameter R = 0.5. In [CMS10c] they claim:

The Particle Flow algorithm combines the information from all CMS sub-detectors to identify

and reconstruct all particles in the event, namely muons, electrons, photons, charged hadrons and

neutral hadrons. Electrons and muons aside, the particle-flow algorithm can be roughly summa-

rized in the following way. Tracks reconstructed in the central silicon tracker are extrapolated to

the electromagnetic (ECAL) and hadron (HCAL) calorimeter. The charged hadron candidates,
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Figure 4.3: Exemplary clustering of the anti-kt jet algorithm. Larger transverse momenta are

responsible for more conical clusters 5

in particular their energies and directions, are reconstructed from these tracks. A track is linked

to a calorimetric energy cluster in the ECAL and/or in the HCAL if the track extrapolation falls

within the boundaries of one of the energy deposits of the cluster. Photons and neutral hadrons are

reconstructed from calorimetric energy clusters: clusters separated from the extrapolated position

of tracks in the calorimeters constitute a clear signature of these neutral particles; neutral parti-

cles overlapping with charged particles in the calorimeters can be detected as calorimeter energy

excesses with respect to the sum of the associated track momenta.

Having the particle flow object they are fed to the anti-kt jet clustering algorithm. In [CSS08] the

anti-kt algorithm is described as follows: The functionality of the anti-kt algorithm can be under-

stood by considering an event with a few well separated hard particles with transverse momenta

kt1, kt2, ... and many soft particles. Soft particles will tend to cluster with hard ones long before

they cluster among themselves. If a hard particle has no hard neighbors within a distance 2R, then

it will simply accumulate all the soft particles within a circle of radius R, resulting in a perfectly

conical jet. If another hard particle is present such that R < δ12 < 2R then there will be two hard

jets. It is not possible for both to be perfectly conical. If kt1 � kt2 then jet 1 will be conical and

jet 2 will be partly conical, since it will miss the part overlapping with jet 1. Instead if kt1 = kt2

neither jet will be conical and the overlapping part will simply be divided by a straight line equally

between the two. Similarly one can work out what happens with δ12 < R. Here particles 1 and

2 will cluster to form a single jet. If kt1 � kt2 then it will be a conical jet centered on k1 . For

kt1 ∼ kt2 the shape will instead be more complex, being the union of cones (radius < R) around

each hard particle plus a cone (of radius R) centered on the final jet. Figure 4.3 shows the φ/η

plane with an exemplary clustering of jets by the anti-kt algorithm.

CMS has developed jet quality criteria (Jet ID) for calorimeter jets and PFlow jets which are found

to retain the vast majority of real jets in the simulation while rejecting most fake jets arising from

calorimeter and/or readout electronics noise. These are studied in pure noise non-collision data

samples such as cosmic trigger data or data from triggers on empty bunches during LHC operation.

The PFlow jets are required to have a charged hadron fraction CHF > 0.0 if within the tracking

fiducial region of |η| < 2.4, a neutral hadron fraction NHF < 1.0, a charged electromagnetic

(electron) fraction CEF < 1.0, and a neutral electromagnetic (photon) fraction NEF < 1.0. These

requirements remove fake jets arising from spurious energy depositions in a single sub-detector. In

the studies presented jets are required to pass Jet ID criteria.

5taken from [CSS08]
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Figure 4.4: Jet energy corrections applied on the PFjets. The multi-step procedure for MC-truth

jet energy corrections applies absolute (left), relative corrections (right). 7

4.3.7 Jet energy corrections

Jet energy measured in the detector is typically different from the corresponding particle jet energy.

The latter is obtained in the simulation by clustering, with the same jet algorithm, the stable

particles produced during the hadronization process that follows the hard interaction. The main

cause for this energy mismatch is the non-uniform and non-linear response of the CMS calorimeters.

Furthermore, electronics noise and additional pp interactions in the same bunch crossing (event

pile-up) can lead to extra unwanted energy. The purpose of the jet energy correction is to relate,

on average, the energy measured in the detector to the energy of the corresponding particle jet.

The information on the jet energy correction is extracted from [CMS08a] and [CMS10f]:

CMS has developed a factorized multi-step procedure for the jet energy calibration (JEC). The

following three subsequent (sub-)corrections are devised to correct calorimeter, PFlow and JPT

jets to the corresponding particle jet level: offset, relative and absolute corrections. The offset

correction aims to correct the jet energy for the excess unwanted energy due to electronics noise

and pile-up. The relative correction removes variations in jet response versus jet η relative to a

central control region chosen as a reference because of the uniformity of the detector. The absolute

correction removes variations in jet response versus jet pT . CMS pursues two complementary

approaches to determine the jet energy correction factors: utilizing MC truth information (MC

truth JEC), and using physics processes from pp collisions for in-situ jet calibration. At the current

initial stage of LHC running, MC truth JEC is used to correct jets in both data and MC simulation.

In figure 4.4 the two correction steps for the MC-truth jet energy corrections are shown. The offset

corrections are not factorized out.

Current physics analyses in CMS use 5% JEC uncertainties for PFlow jets, with an additional 2%

uncertainty per unit rapidity.

4.3.8 Jet Flavor definition

There is no unambiguous answer to the correct underlying flavor of a reconstructed jet. Three

definitions are used, reflecting three different points of view:

7taken from [CMS10f]



4.3. EVENT RECONSTRUCTION AND OBJECT IDENTIFICATION 45

Physics definition Reconstructed jets are matched to initial partons from the primary physics

process. They must be within the reconstructed jet cone with ΔR < 0.3. For example, for tt̄

events, the initial partons would be two b-jets from the decays of the top quarks, two non-b-jets

per hadronic W decay, and no initial gluon jets. There is no matching if hard (FS) radiation

occurred and the parton direction changes significantly. No flavor is assigned, if no unambiguous

answer is possible when more than one initial parton is matched. Gluon jets splitting to c- or b-

quarks are labeled as gluon-jets.

Algorithmic definition The parton that most likely determines the properties of the jet defines

the true flavor of the jet. The final state partons, after showering and radiation, are analyzed. The

partons must be within ΔR < 0.3 of the reconstructed jet cone. Jets from radiation are matched

with full efficiency. If there is a b-quark or a c-quark within the jet cone, it is labeled accordingly,

otherwise the jet is assigned with the flavor of the hardest parton.

Energetic definition This definition applies to generated jets (GenJets), where the constituents

of a jet are a set of generator objects (GenParticleCandidate). A variable is built for each jet

computing the fraction of the energy of the jet which comes from b or c hadrons. These quantities

can be used to attribute a flavor of the GenJet. A matched reconstructed jet can get the same

flavor as the matched GenJet.

The main differences between the definitions effect mainly jets from gluon splitting. Only physics

and energetic definitions see gluon splitting. The algorithmic definition is blind to it. Further the

algorithmic definition causes some contamination from gluon splitting to b and c jets. All the three

definitions can be applied to GenJets. Only the first 2 (Physics and Algorithmic definitions) can

be applied to particle flow jets. 8

For b-jet tagging the algorithmic definition is used.

4.3.9 b jet tagging

The CMS software contains already various b-jet tagging algorithms for different purposes. I took

the summarized description of the different taggers from [CMS09a]. Each tagger produces an

output value for each jet. The output of any algorithm is the so called discriminator, defined as a

single number which the user can cut on to select different regions in the efficiency versus purity

phase space. The discriminator can be a simple physics quantity like the IP significance for some

taggers, or a complex variable like the output of likelihood ratio or neural network.

Track counting (TCHE,TCHP) The simplest way of producing a discriminator based on track

impact parameters is an extension of the so called track counting algorithm. The track counting

approach identifies a jet as a b-jet if there are at least N tracks each with a significance of the

impact parameter exceeding S. This algorithm has two major parameters (N and S). The way of

producing a continuous discriminator for this algorithm is to fix the value of N , and consider as

discriminating variable the impact parameter significance of the Nth track (ordered in decreasing

significance). If one is interested in a high efficiency for b-jets, the second track can be used; for

higher purity selections the third track is a better choice. The discriminators obtained in this way

are plotted for QCD events in Figure 4.5, and are simply the IP significance shapes for the chosen

track.

8https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideBTagMCTools
9taken from [CMS10a]
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Figure 4.5: Discriminator of the track counting b-jet tagger9
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Figure 4.6: Discriminator of the jet probability b-jet tagger10

Jet probability (JPT,JBPT) The jet probability algorithms are a natural extension of the

track counting algorithms [CMS09a]. The idea is to combine the information coming from all

selected tracks.

For each track, the probability to come from the primary vertex is computed and these probabilities

are combined to provide the jet probability. The track probability distribution is calibrated by

means of the distribution of track impact parameters with negative signs. The negative part of the

impact parameter distribution is used for this purpose because it is mainly made up of primary

vertex tracks. The advantage of this method with respect to track counting is the fact that a single

discriminator is used (i.e. there is no need to choose) and that information from all tracks is used

at the same time. [RPS06] Two discriminators are provided; the first labeled jet probability is

strictly related to the combined probability that all the tracks in the jet come from the primary

vertex. The second, labeled jet B probability estimates how likely it is that the four most

displaced tracks are compatible with the primary vertex; the selection comes from the fact that

the average charged track multiplicity in weak b hadron decay is 5, and from the average track

reconstruction efficiency, around 80% for tracks in jets. The shapes of the discriminant variable

are presented in Figure 4.6.
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Figure 4.7: Input variables for the soft muon b-jet tagger11

Soft muon (SMT) The presence of a muon close to the jet is already a hint of a weak decay

of a B hadron. This can be complemented with some additional quantity, in order to build a

discriminator. In the soft muon by pT rel algorithm the pT of the muon with respect to the jet

axis is used [CMS09a]; harder cuts yield higher purities. In the soft muon by IP significance

the IP significance of the muon is used instead, but only when found to be positive. In all the

cases, when more than one muon is reconstructed, the one with the highest discriminator value is

used. Figure 4.7 shows shapes of the pT and the IP significance of the soft muons, which is used

to generate those taggers.

Soft electron (SET) It is also possible to create a soft electron b-jet tagger. Because of the

large number of pions appearing in each event it is not possible to get a b-jet tagger based on pure

soft electrons similar to the soft muon case. At the moment there is no official soft electron b-jet

tagger at CMS. Anyhow a NeuroBayes soft electron tagger was developed in [Mar09].

Simple secondary vertex (SSV) Secondary vertices can be used to select jets from B hadrons

with high purity. A simple version, called simple secondary vertex tagging algorithm is based

upon the reconstruction of at least one secondary vertex. If no such vertex is found, the algorithm

returns no discriminator, limiting its maximum b-jet efficiency to the probability of finding a vertex

in the presence of weak B hadron decay (around 60-70%). The significance of the 3D flight distance

is used as a discriminating variable for this tagger [CMS09a]. Two variants based on the minimum

number of tracks attached to the vertex are considered: Ntrk ≥ 2 yields the high efficiency

version (SSVHE). Further there is a high purity version (SSVHP), where Ntrk ≥ 3. [CMS10a]

The distribution of this discriminator is shown Figure 4.8

Combined secondary vertex (CSV) A more complex approach involves the use of secondary

vertices, together with other lifetime information, like the IP significance or decay lengths. By using

these additional variables, the combined secondary vertex algorithm provides discrimination

even when no secondary vertices are found, so the maximum possible b-tagging efficiency is not

limited by the secondary vertex reconstruction efficiency [CMS09a]. In many cases, tracks with an

10taken from [CMS10a]
11taken from [CMS10a]
12taken from [CMS10a]
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Figure 4.8: Discriminator for the simple secondary vertex b-jet tagger12

IP significance > 2 can be combined in a so-called pseudo vertex, allowing for the computation

of a subset of secondary vertex based quantities even without an actual vertex fit. When even

this is not possible, a no vertex category reverts simply to track based variables similarly to the

jet probability algorithm. These variables are used as input to a Likelihood Ratio, used twice to

discriminate between b- and c-jets and between b- and light jets, and then combined additively

with a factor of 0.75 and 0.25 respectively. For the commissioning of the b-jet tagger, the combined

secondary vertex algorithm was not incorporated. Because of its complex structure it needs a larger

amount of data for its initiation.

Figure 4.9 shows the performance of the CMS b-jet taggers. The performance is calculated on the

same Monte Carlo samples which are used for further comparisons in this thesis. On the y-axis the

mistag rate is plotted. The x-axis shows the b-jet efficiency. The best point to perform is the lower

right corner. As expected the more complex taggers, jet b probability and the combined secondary

vertex, are more performant.

Tagging efficiency

Plans on how to measure the b-tagging efficiencies are presented in [CMS07b]. The following

section is extracted from there. All the b-jet tagging algorithms rely upon the reconstruction of

lower level objects like tracks, vertices, and jets, which might make it difficult for the Monte Carlo

simulation to exactly reproduce the performance in data. The Tevatron collider experiments have

developed methods to measure the performance of the lifetime tagging algorithms in collider data.

The CMS collaboration adapted these methods to measure the b-tagging efficiency using data,

where jets with muon appear. The pTrel Method relies directly on a fit to the pT,rel distribution

of the muon before and after tagging the muon-jet; the Counting Method also relies on pT,rel

fits but uses additional information derived from the data. The third method, System8 Method,

consists of solving a system of eight equations constructed from the total number of events in two

samples with different b-jet content, before and after tagging with two b-tagging algorithms.

pTrel Method The basic idea of the pTrel method is to measure the b-quark content of a

muon+jet sample by fitting the pT,rel distribution of the muons to a linear combination of the

b-quark and c/light-quark jet templates. The process is repeated after tagging the muon-jet. The

b-tagging efficiency is calculated as the ratio between the number of b jets after and before tagging,
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Figure 4.9: Performance of the CMS b-jet taggers. To compare the different taggers, they are

plotted in the mistag rate/efficiency phase space. The lower right corner represents a tagger, where

all non-b-jet could be suppressed without loosing any b-jet. The colors are chosen to distinguish

the different kind of taggers. Blue: the muon tagger (SMT), green: the simple secondary vertex

tagger (SSV), violet: are track counting tagger (TC), orange: are the two more complex: jet b

probability and combined secondary vertex.
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as determined by the pT,rel fits. The pT,rel fits can be applied to the muon-jet+away-jet sample

(pTrel(n) method) or to the muon-jet+tagged-away-jet sample (pTrel(p) method) [CMS07b].

Counting Method The Counting method uses a different approach to estimate the b content

of the sample before tagging; it assumes that the away-jets in the n sample are dominated by light

jets, and that the average probability of tagging them can be estimated from light jets data sample

with negative impact parameter with respect to the interaction point [CMS07b].

The major source of systematic uncertainty for methods that rely on the pT,rel fit is given by

the modeling of the templates. To estimate this uncertainty, the templates were rederived using a

different sample. This alternative set of templates is then used to remeasure the b-tagging efficiency,

and the difference in the central value obtained is assigned as systematic uncertainty. Typical

variations in the range between 10 and 20% are observed, with the larger values corresponding to

bins with lower statistics on the samples used to derive the templates. The Counting method has

an additional systematic uncertainty arising from the measurement of the mistag rate, which is

evaluated by varying the number of cl jets before tagging by ±5% [CMS07b].

System8 Method The System8 method has been developed by the D0 collaboration [CDD+03].

It does not rely on pT,rel fits to extract the b-jet content of the samples; the Monte-Carlo simulation

is only used to evaluate correlation factors between different tagging algorithms. For the current

implementation of the System8 method, two data samples are used: the muon-jet+away-jet sample,

and the muon-jet+tagged-away-jet sample.

The following system of eight equations is then obtained:

n = nb + ncl

p = pb + pcl

ntag = εb nb + εcl ncl

ptag = β εb pb + α εcl pcl

nμ = εμ nb + εμ ncl

pμ = εμ pb + εμ pcl

ntag,μ = κb ε
tag
b εμb nb + κcl ε

tag
cl εμcl ncl

ptag,μ = β κb ε
tag
b εμb pb + ακcl ε

tag
cl εμcl pcl

The terms on the left hand side represent the total number of muon-jets in each sample before

tagging (n, p) and after tagging with a lifetime tagger (ntag , ptag ), the muon pT,rel cut (n
μ, pμ),

and both (ntag,μ, ptag,μ). The eight unknowns on the right hand side of the equations consist of

the number of b and c+light jets in the two samples (nb , ncl , pb , pcl), and the tagging efficiencies

for b and c+light jets for the lifetime tag and the muon pT,rel cut (ε
tag
b , εμb , ε

tag
cl , εμcl). The method

assumes that the efficiency for tagging a jet with both the lifetime tag and the muon pT,rel cut can

approximately be calculated as the product of the individual efficiencies.

Four additional parameters are needed to solve the system of equations: κb, κcl, α, and β. The

first two parameters represent the correlation between the lifetime tag and the muon requirement

for b jets (κb) and c+light jets (κcl), respectively. They are defined as

κb =
εtag,μb

εtagb εμb
κb =

εtag,μcl

εtagcl εμcl
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Figure 4.10: pT spectrum of the all jets in black and b-jets in red (left) and the fraction of b-jets

dependent on the jet pT (right) for the Monte Carlo samples reconstructed in CMSSW version 3.6

The parameters α and β represent the ratio between the lifetime tagging efficiencies of the two

data samples, used to solve System8, for b and c/light jets [CMS07b].

Further there is another method to determine the tagging efficiency of light quark and gluon jets.

The method uses tracks with negative values of the signed impact parameter [CMS07a].

4.4 Monte Carlo samples

In this thesis different MC samples are used. Both were generated by PYTHIA6 with different

tunes. They are also different in their GlobalTags and CMSSW release.

The samples are defined on specific p̂T bins. The p̂T ranges of each sample can be obtained from the

sample names. To get meaningful, unbiased Monte Carlo statistics the samples must be combined.

Before doing this it is needed to normalize all samples to the same integrated luminosity
∫ L.

w =
cross section

# events

Pythia 6 QCD DiJet

Table 4.4 contains the dataset names along with the corresponding number of events and the

cross section. All values are extracted from the official MC generation page 13. For the Summer

2010 reprocessing the CMS software version 3.6 is used. The GlobalTag of the reconstruction is

START36 V10::All. The table shows all 20 samples which cover the p̂T region from 0 GeV to

3500 GeV. Each sample has a specific number of events, created with the quoted cross section. In

the last column the weights w are listed which adapt the distribution to an integrated luminosity∫ L = 1/pb.

After applying this weights the pT spectrum of all jets (black) and also for b-jets can be seen in

figure 4.10. On the right the expected fraction of b-jets is shown.

The smoothness of the curve is a proof of the right application of the weights. Further to check

the amount of statistics of the Monte Carlo the number of events of each object is plotted in figure

4.11.

13https://twiki.cern.ch/twiki/bin/viewauth/CMS/ProductionReProcessingSummer10
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name # events cross section [pb] weight factor

QCDDiJet Pt0to15 2197029 4.844 · 1010 2.205 · 104
QCDDiJet Pt15to20 2256430 5.794 · 108 2.568 · 102
QCDDiJet Pt20to30 1032250 2.361 · 108 2.287 · 102
QCDDiJet Pt30to50 1161768 5.311 · 107 4.571 · 101
QCDDiJet Pt50to80 111289 6.358 · 106 5.713 · 101
QCDDiJet Pt80to120 606771 7.849 · 105 1.294 · 100
QCDDiJet Pt120to170 58888 1.151 · 105 1.955 · 100
QCDDiJet Pt170to230 51680 2.014 · 104 3.897 · 10−1

QCDDiJet Pt230to300 52894 4.094 · 103 7.740 · 10−2

QCDDiJet Pt300to380 64265 9.346 · 102 1.454 · 10−2

QCDDiJet Pt380to470 52207 2.338 · 102 4.478 · 10−3

QCDDiJet Pt470to600 20380 7.021 · 101 3.445 · 10−3

QCDDiJet Pt600to800 22448 1.557 · 101 6.936 · 10−4

QCDDiJet Pt800to1000 26000 1.843 · 100 7.088 · 10−5

QCDDiJet Pt1000to1400 23956 3.318 · 10−1 1.385 · 10−5

QCDDiJet Pt1400to1800 20575 1.086 · 10−2 5.278 · 10−7

QCDDiJet Pt1800to2200 33070 3.499 · 10−4 1.058 · 10−8

QCDDiJet Pt2200to2600 22580 7.549 · 10−6 3.343 · 10−10

QCDDiJet Pt2600to3000 20644 6.465 · 10−8 3.132 · 10−12

QCDDiJet Pt3000to3500 23460 6.295 · 10−11 2.683 · 10−15

Table 4.1: Monte Carlo samples: /name/Summer10-START36 V9 S09-v1/GEN-SIM-RECO,

CMSSW 36X (GlobalTag: START36 V10::All)
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Figure 4.11: Left: Amount of statistics for the different objects, which are used in the analyses.

MC samples for different p̂ T bins are available. The different samples must be weighed to get the

true pT spectrum. Right: Composition of the weighed MC created from different samples with

different p̂ T bin ranges.
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name # events cross section [pb] weight factor

QCD Pt 0to5 549809 4.844 · 1010 8.810 · 104
QCD Pt 5to15 1648096 3.675 · 1010 2.230 · 104
QCD Pt 15to30 5454640 8.159 · 108 1.496 · 102
QCD Pt 30to50 3264660 5.312 · 107 1.627 · 101
QCD Pt 50to80 3191546 6.359 · 106 1.992 · 100
QCD Pt 80to120 3208299 7.843 · 105 2.445 · 10−1

QCD Pt 120to170 3045200 1.151 · 105 3.780 · 10−2

QCD Pt 170to300 3220080 2.426 · 104 7.534 · 10−3

QCD Pt 300to470 3171240 1.168 · 103 3.683 · 10−4

QCD Pt 470to600 2019732 7.022 · 101 3.477 · 10−5

QCD Pt 600to800 1979055 1.555 · 101 7.857 · 10−6

QCD Pt 800to1000 2084404 1.844 · 100 8.847 · 10−7

QCD Pt 1000to1400 1086966 3.321 · 10−1 3.055 · 10−7

QCD Pt 1400to1800 1021510 1.087 · 10−2 1.064 · 10−8

QCD Pt 1800 529360 3.575 · 10−4 6.753 · 10−10

Table 4.2: Monte Carlo samples: /name TuneZ2 7TeV pythia6/Fall10-START38 V12-v1/GEN-

SIM-RECO, CMSSW 38X (GlobalTag: START38 V14::All)

To avoid running over samples, which have very small influence on the overall distribution, the

fraction of the different samples was studied (figure 4.11, right). Analysis in specific pT bins requires

only samples with a sufficient contingent of weighted events.

These samples are used in the recent inclusive b-jet cross section measurement, which was performed

on early CMS data. Further in this thesis these samples are used as an independent test dataset.

Pythia 6 QCD Tune2Z

The CMS collaboration also provides samples of Pythia 6 QCD Tune2Z. Tune2Z is a renewed fit

of the parameters of the Monte Carlo generator.

Table 4.4 contains the dataset names along with the corresponding number of events and the cross

section. All values are extracted from official MC generation page 14. For the Full 2010 production

CMSSW version 3.8 was used. The GlobalTag of the reconstruction is START38 V14::All.

The 15 samples provide more statistics than the former one. They are separated in p̂T bins up

to 1800 GeV. Further an additional inclusive sample which covers the high pT regions above 1800

GeV is added. The application of the weight results in a fully inclusive spectrum up to large pT

values.

For this Monte Carlo sample the same distributions as above are plotted. In figure 4.12 the pT

spectrum and the b-jet fraction can be seen. Figure 4.13 show the influence of the different samples

again.

Again the smoothness of the curve is a proof of the right application of the weights. Further to

check the amount of statistics of the sample the number of events of each object are plotted in

figure 4.13. The fraction of the different samples was studied as well.

These samples are used for all studies belonging to b-jet tagging as well as the b cross section

measurements. Monte Carlo expectations for comparison with data are extracted from it.

14https://twiki.cern.ch/twiki/bin/view/CMS/ProductionFall2010
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Figure 4.12: pT spectrum of the all jets in black and b-jets in red (left) and the fraction of b-jets

dependent on the jet pT (right) for the Monte Carlo samples reconstructed in CMSSW version 3.8

T, jet
p

1 1.5 2 2.5 3 3.5st
at

is
tic

al
 c

on
te

nt
 o

f o
bj

ec
ts

 p
er

 b
in

310

410

510

610

710

810

T, jet
p

210 310

 = 7 TeVsCMS simulation

jets
tracks
SVs
muons
electrons

T, jet
p

1 1.5 2 2.5 3 3.5

je
t f

ra
ct

io
n 

of
 s

am
pl

e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T, jet
p

210 310

 = 7 TeVsCMS simulation
Pt0to5

Pt5to15

Pt15to30

Pt30to50

Pt50to80

Pt80to120

Pt120to170

Pt170to300

Pt300to470

Pt470to600

Pt600to800

Pt800to1000

Pt1000to1400

Pt1400to1800

Pt1800

Figure 4.13: Left: Amount of statistics for the different objects, which are used in the analyses.

MC samples for different p̂ T bins are available. The different samples must be weighed to get the

true pT spectrum. Right: Composition of the TuneZ2 MC sample created from different samples

with different p̂ T bin ranges.



4.5. DATA SAMPLES 55

name # events Run range

JetMETTau/Run2010A 15 042 368 135821-141887

JetMET/Run2010A 24 064 576 141950-144114

Jet/Run2010B 20 270 640 146240-149711

Table 4.3: Trigger streams which arranges the dataset for the analysis. The jet stream, which is

relevant for this analysis was combined with the missing ET (MET) and the tau stream in earlier

periods.

4.5 Data samples

For this analysis the complete amount of data of the Run2010 era is used, making use of the

reprocessing in November 2010. It is reconstructed using the updated CMS software version 3.8.

The recorded data is structured dependent on the different so called eras of data taking and

the different trigger streams. The trigger stream changed two times, because of the increasing

luminosity provided by the LHC.

While for the early data taking it was possible to pool events for jet, missing energy or tau studies,

later the trigger streams only provided data for one analysis direction. The three datasets used are

listed in table 4.3.

A former reconstruction of the first data sample was also used for an inclusive b cross section study

on early CMS data, which was performed for the summer conferences 2010. Part of my thesis is

to take my studies for the early analysis as base for further investigations and provide an update

to the whole Run2010 dataset.

Having the right trigger streams it is also needed to check for an acceptable operation of the

detector. For each run the lumi sections are centrally certified in so called good runs. Thus

all detector components work well and we can believe in the reconstruction of the event. These

certified lumi sections are provided by the CMS collaboration and listed in a published JSON file.

We use the following official JSON files for that:

Cert 136033-149442 7TeV Nov4ReReco Collisions10 JSON.txt15

The attention of the CMS collaboration is focussed to high energy physics not yet covered by the

Tevatron experiments. With the gain in luminosity it became necessary to prescale single, low

energetic, jet triggers by some factor N . This must be done because of the technical limitations to

record all collisions (4.1). This means instead of each event only every Nth event accepted by a

specific trigger is recorded. Therefore the listing of the amount of data used for the analyses needs

a separated look at the different triggers.

The integrated luminosities
∫ L of the data we analyzed are shown in table 4.4. They were measured

by the CMS luminosity system [CMS10g]. For different trigger ranges the integrated luminosities

are listed separately.

The prescaling of the low energetic triggers demands an efficient functionality of the higher energetic

trigger. It is possible to test this and find a so called turn on point for each trigger. This can be

achieved by comparing the trigger rate of the one we are interested in with another fully efficient

one which is also unprescaled in this run range. The determined efficiency from such a comparison

can be seen in figure 4.14. The estimated turn on points, where the trigger is more than 99%

efficient is put in addition into the table 4.4.

15https://cms-service-dqm.web.cern.ch/cms-service-dqm/CAF/certification/Collisions10/7TeV/Reprocessing/
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sample first run turn on JetMETTau JetMET Jet all

HLT Jet15U 136035 37 0.0140 9.60 · 10−3 1.86 · 10−3 0.0256

HLT Jet30U 136035 84 0.120 0.192 0.0374 0.352

HLT Jet50U 136035 114 0.285 2.87 0.317 3.50

HLT Jet70U 141956 153 - 2.87 5.99 9.17

HLT Jet100U 141956 196 - 2.87 16.6 19.8

HLT Jet140U 147196 245 - - 27.8 36.0

HLT Jet180U 148822 300 - - 18.3 36.0

Table 4.4: integrated luminosity
∫ L in pb−1 for different samples and triggers. The different

triggers are shown with the run number of its activation and the turn on position in pT,jet, where

the trigger becomes 99% efficient. The last column shows the integrated luminosity of this pT,jet

range. The luminosities for the major trigger and the lower energy triggers are summed.
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Figure 4.14: Efficiency of the different triggers. As turn on point the position where the trigger

becomes 99% efficient is extracted.
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Figure 4.15: Available statistics for different bins in transverse momenta space of the jet. The

amount is relevant for the precision of the measurement. Due to trigger prescaling in the low pT

regions, there the statistics are more or less limited perennially to the given number.

In the end we get the spectrum of the objects we want to analyse like it is plotted in figure 4.15. The

structure in shape is caused by the prescaling of the trigger. The spectrum starts by a transverse

jet momentum of 37 GeV. There the low energetic jet trigger (HLT Jet15U) is barely efficient. It is

also possible to see, that we have already jets with a transverse momentum of 1000 GeV collected.

Accounting for the prescaling factor and the integrated luminosity we are able to plot the inclusive

jet cross section of the reconstructed jets (see figure 4.16).
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Chapter 5

New applications of NeuroBayes

Many analyses for very different purposes are performed with NeuroBayes [Fei04]. It was not only

applied to physics but also economics. With NeuroBayes interesting and important knowledge was

obtained 1. A summary of the different topics is available at the public web page neurobayes.de

In 2008 this knowledge was applied for the first time to the CMS experiment. A b-jet tagger for

specific b-quarks decaying to electrons was developed [Mar09]. Based on this experience further

applications of NeuroBayes for the CMS experiment were developed.

In this chapter I introduce the NeuroBayes framework and account for the new tasks I developed

for CMS.

5.1 NeuroBayes

In this section I will give a complete overview of the multivariate analysis framework NeuroBayes.

I will explain the architecture and the statistical methods included in this framework.

5.1.1 Introduction

NeuroBayes is a multivariate analysis framework, which was originally designed by Michael Feindt

[PT10]. Like most frameworks for physics analysis it was developed to tackle one of the most

important challenges in physics: the prediction of physics properties. This ranges from the binary

case, where we are interested in whether or not an event belongs to a specific class, for example

signal or background, to the continuous case, where the property of an object, for example the

decay time, is estimated [Mor06]. In this case NeuroBayes delivers the probability density of the

target for each event [Fei04].

These predictions are done by an intelligent combination of well known statistical methods [Fei04].

In this section I will introduce these methods and their contribution to NeuroBayes. The section is

separated into two parts. The first describes the preprocessing of the input variables. The second

part deals with correlation of the input variables to the target and the calculation of the prediction.

For a NeuroBayes analysis the various methods must be set up and calibrated on so called training

samples. I will limit myself to the explanation to the classification mode of NeuroBayes. The

classification is performed using two different samples as from now labeled as target 0 (T0) and

target 1 (T1). The aim is to calibrate a so called NeuroBayes expertise/expert which is able

to distinguish those two samples. In this section I will introduce the different methods which are

1http://neurobayes.phi-t.de/index.php/theses/jresearch-theses
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Figure 5.1: Probability integral transform for an exemplary variable. The left histogram shows the

original distribution. In middle plot is the cumulative distribution created from the left. Dividing

the y-axis in equally sized slices delivers the boundaries of the bins of the right histogram. The

content of each bin of the last plot has the same amount of statistics.

implemented in NeuroBayes. An overview of the possible setup parameters can be found in [PT10].

This expertise file is used to get the predictions for each event of a data sample.

5.1.2 Preprocessing

Preprocessing is the umbrella term for all methods applied on the input variables xi before the

study of correlation to the target. This includes transformations of the single variables with and

without knowledge of the target information as well as rotations of the complete input vector �x.

Probability integral transform

The probability integral transform is the transformation of random variables X distributed with

density f(x) to a uniform distribution. For a known cumulative distribution function F (x) =∫ x

−∞ f(x̃) dx̃ the variable Y = F (X) is distributed uniformly. If the distribution of X is unknown

it is possible to estimate this transformation. For this the cumulative histogram is created which

represents the cumulative distribution function. Dividing the y-axis in equal sized slices delivers

us the boundaries of the bins in x for a new histogram (figure 5.1). The bins of this histogram all

have the same amount of statistics.

Parametrization of the input variable distributions

Typically the distributions of the input variables for a given target are not known. For transfor-

mations of the input variable in a most convenient way it is recommended to parametrize these

distributions. One possible procedure is the concept of orthogonal polynomials [BL98].

Each function yi(xi) can be constructed by the linear combination of orthogonal polynomials

pk(x) =
∑k

i bki x
i in the following way

ỹi(xi) =
m∑
j

ajpj(xi).

It is possible to get an estimate of the parameters ai by a fit to the events. For aj with expectation

zero the estimate âi follows a normal distribution with mean E[âi] = 0 and variance Var(âi) = 1.

For the construction of the polynomial for the parametrization only the parameters ai, which are

significantly different from zero, are used.
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Figure 5.2: The target 1 distribution of two exemplary input variables (black) is fitted with the

orthogonal polynomial method. The resulted function is plotted in red. Dependent on the shape

of the variable may be difficult to find a good parametrization.

In figure 5.2 an orthogonal polynomial fit is performed. The fit looks good for the left plot. On

the other hand it is possible to get a worse description of the events as shown on the right. This

happens because of the low statistics in the corresponding bins of the histogram and the lack of

flexibility of the fit function. To reduce such an effect a probability integral transformation can be

applied before fitting.

Another important function to handle the parametrization is a fit of a spline function Sn(xi). This

is a function defined piecewise by polynomials of degree n (see also [BL98]). With degree n = 0

it is a step function, indentical to the histogram. The natural cubic spline function has degree

n = 3. It is twice continuously differentiable and the curvature of the endpoints a, b is defined by

S′′3 (a) = S′′3 (b) = 0. This requirement leads to the smallest possible curvature. The knots for the

spline function are constrained to the bin values.

Probability transformation

NeuroBayes makes use of both methods described above. First the distributions of the input

variables xi are transformed by the probability integral transform. Thus each bin of the input

variable histogram has the same statistical power. In the next step we are only interested in the

fraction of the events of one class. Figure 5.3 shows a histogram with the distribution of the two

targets of a NeuroBayes classification in red and black. The plot is extracted from the output

file of the official monitoring macro analysis.C. The plot can be identified by the label on the

right. ’Flat’ stands here for the result of the probability integral transform, splitted for the target

0 distribution in black and the target 1 distribution in red. Note the varying bin width, labeled on

the x-axis.

Based on this histogram it is already possible to estimate a conditioned probability P (T1|xi) for

each event,

P (T1|xi) =
Nbin(T1)

Nbin(T0) +Nbin(T1)
.

Nbin is the number of T0 or T1 events per bin. The fraction of each bin is shown in figure 5.4.

The plot is labeled with ’spline fit’. The 100 bins are simply labeled with the bin number.

To reduce binning effects and effects of the statistical uncertainties of each bin we can perform a

fit by the method of orthogonal polynomials to the fraction.
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Figure 5.3: Target 1 (red) and target 0 (black) distribution after the probability integral transform.

Figure 5.4: The fraction of the signal distribution of the flattened histogram (black) is fitted with

the orthogonal polynomial method. The resulting function is plotted in red.

Now we are able to transform the input variables directly to an estimate of their probability

P (T1|xi), where N is the normalization factor, which is given by the overall number of events,

N =
∑
bins

(Nbin(T0) +Nbin(T1)) .

This normalization factor cancels with the transformed a priori distribution F (xi), because this is

an uniform distribution. We have constructed the simplest case of Bayes theorem with flat prior:

P (T1|xi) =
1

N
ỹi(xi|T1)F (xi) = ỹi(xi|T1).

NeuroBayes does this for all input variables. For the following calculations each xi is replaced by

its P (T1|xi).

Standardization and correlation coefficients

In preparation of the calculation of the correlation coefficients the distributions of different input

variables are transformed once more. This time the variable distributions are standardized. The

transformation is chosen in a way that the mean of the sole distributions is zero and the variance

of them is one (figure 5.5)

yi =
ỹi − E[ỹi]√
Var(ỹi)

.

To calculate the correlation coefficients �ij of two input variables i and j we can sum the product

of the transformed values for all events.

�ij =
∑
N

yi yj

Figure 5.6 shows the matrix of the correlation coefficients of a exemplary NeuroBayes training.
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Figure 5.5: Standardization of the estimated signal probability of the variable from figure 5.4.

The mean of this distribution is zero with a width of one. This is the final distribution of the

transformed input variable after the preprocessing.

Figure 5.6: Matrix of correlation coefficients �ij . The first column is the target distribution, where

target 1 is set to 1 and target 0 is set to 0. In this example there are many highly correlated

variables �ij → 1, which are painted in deep red and deep blue colors.
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First order decorrelation

The main problem of multivariate analysis is the unknown correlation of the input variables. If

the correlations were known we can construct the likelihood function and test any hypothesis by a

likelihood ratio test [NP33]. Otherwise one has to find a procedure how to handle the correlated

variables. The easiest way is to remove all variables which are highly correlated. This results

in a more robust procedure but causes a loss of information which might be relevant for the

discrimination.

Therefore a more advanced procedure is to attempt a decorrelation of the input variables. One

possibility is to diagonalize the matrix of correlation coefficients �. Such a diagonalization is a

rotation in the n-dimensional phase space. The decorrelation is done in first order only. Second

order correlations still remain.

Formally the diagonal matrix D can be described as

D = A�A−1

Technically the calculation of the rotation matrix A is almost impossible, because it needs the

inverse of the n-dimensional matrix �. But there are methods, which converge to the diagonalized

form. The method used in NeuroBayes is the Jacobi rotation [BL98]. The idea is to do several

2-dimensional rotation steps until a close to diagonal matrix is formed. The merging of all this

sub-rotations gives us the matrix A.

We are able to construct a set of uncorrelated variables z̃i =
∑

Aij yj .

The remaining correlation to the target of each row represents the information of the input variable

finally added to the classification. With this information it is possible to prune variables with less

relevance. This regards to variables with less information for the classification as well as to variables

with more information but large correlation to others.

5.1.3 Target correlation and prediction

The preprocessing gives us a set of n almost uncorrelated variables z̃i. There are many methods for

hypothesis testing with these conditions in the literature. A lot of them have needlessly large run-

ning time, above all if some input variables have a very small correlation to the target. Depending

on the correlation to the target, a selection of the relevant input variables is recommended.

NeuroBayes has an automatic sorting algorithm of the variables. Variables are sorted by relevance

and, furthermore, it is possible to neglect variables with low significance.

To get the predictions NeuroBayes provides three different modes which lead to a calibrated ex-

pertise.

Zero iteration Training

The fastest and therefore most widely used procedure is an analytic method called zero iteration

training. As described above we have a matrix of uncorrelated standardized variables. This

represents a sphere in the n-dimensional phase space. So we have the freedom to decide a direction

without influencing the variables itself. We can choose the direction with the most discriminating

power with respect to the target. This direction is now called z0. It is a linear combination of the

z̃i:

z0 =
∑

rij z̃i

where rij are the coefficients of the rotation matrix, which provides the chosen direction.
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Figure 5.7: Diagonalization of the Zero iteration training. This is needed to get an probability

interpretation of the NeuroBayes output. On the left the transformation functions is determined

doing a fit of a monotonously rising spline function. On the right the resulting distribution of the

target 1 purity P (T1|ot) to the final output value ot is plotted. The expected behaviour, shown by

the diagonal line is fullfilled.

This method works very well, because of the transformation we did for the input variables. The

final input variables yi have a monotonous rising dependency to the target 1 purity of each variable

P (T1|yi). This dependency is conserved during the decorrelation. The projection of the variables

zi to the target is a very good discriminator z0. But this z0 does not fulfill the probability interpre-

tation. Plotting the T1 fraction of z0 and fitting with a monotonously spline function transforms

this to the probability P (T1|z0). The probability transformation can be seen in figure 5.7 on the

left. If the purity of each bin is plotted (as done on the right) it correspond directly to the mean

value of each bin. That means the output can be interpreted as probability.

The output value is now called ot. The index - finally combined with an identification number -

is used to specify different NeuroBayes trainings t. Hence for the probability I take the following

notation:

ot = P (T1|ot).

Neural Network Training

Another more time consuming method is an artificial neural network [Ros58]. With this we can

handle higher order correlations too. In NeuroBayes just a simple feed-forward network with one

hidden layer is implemented. The default value for the number of hidden nodes is the number of

input nodes minus one. The number of nodes N of the output layer depends on the NeuroBayes

mode. For a binary target it has one node, for the continuous mode N = 20. The output values

ot,i are calculated by:

ot,i = S

⎛
⎝∑

j

w2→3
ji S

(∑
k

w1→2
kj yk

)⎞⎠
where the weights wa→b

ji are the connections between the different layers, yk is the transformed

input value of variable k and S(x) is the sigmoid function

S(x) =
2

1− e−x
− 1
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Figure 5.8: Example of an architecture of an artificial neural network calibrated in NeuroBayes.

The thickness of the lines corresponds to the absolute values of the weight wa→b

used as the transfer function for each knot. A possible architecture of the artificial neural network

implemented in NeuroBayes is shown in figure 5.8. There are three layers, the input layer, one

hidden layer and the output layer with only one knot. The number of input layers is reduced,

because of the minor correlation of the input variables yi to the target. The thickness of the lines

correspond to the absolute values of the weight wa→b. These are calculated by the back propagation

mechanism [RHW87]. There is the possibility to use the so called BFGS mechanism [BRO70] to

minimize the error function in a more efficient way. As shown in [Fei04] the output of such an

artificial neural network can be interpreted as probability ot = Pt(T1|ot).

5.2 NeuroBayes probability

In this section I will present applications of the probability interpretation of the NeuroBayes output.

I will show how we must transform it to get the right probabilities of a given data sample and how

it can be used to estimate the fraction of signal events. Further I will introduce the sPlot method

and how it can be implemented if we have the NeuroBayes output distribution at our hands.

5.2.1 NeuroBayes probability transformation

For a given NeuroBayes classification with two samples T0 (target 0) and T1 (target 1) the result

of the training t gives us for each of the events the probability Pt(T1|ot) with the NeuroBayes

output value ot. The overall number of events is given by N = NT0 + NT1. For the output we

have the following equations:

Pt(T1|ot) = ot,

Pt(T0|ot) = 1− ot.

Being a probability is one of the main properties of the NeuroBayes output. Checking for this is

therefore a crosscheck of a reliable calibration of the NeuroBayes expert. In figure 5.9 on the right
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Figure 5.9: On the left the output distribution of an exemplary NeuroBayes calibration is shown.

In black is the background and in red the signal distribution. On the right the purity of the signal

distribution for each bin is plotted.

the purity pi =
ni(T1)

ni(T1∨T0) of each bin for the exemplary NeuroBayes output variable ot on the left

is shown. As expected, all the calculated purity values lie on the diagonal axis, which corresponds

to the quoted property.

If the target fraction differs form the analysis sample, a monotone transformation is needed to

maintain the probability interpretation. Here I will discuss two cases, where such a transformation

is needed.

Let us assume a general case, where we want to analyse a given data sample consisting of two

classes: signal S and background B. The size of the sample is given by Nd = N(S) +N(B). We

are interested in the probability P (S|onb) of some event out of this sample to be a signal event

dependent on the NeuroBayes output onb.

In the first case we have some simulations to study the differences between the two classes.

Therefore we have one sample SMC , where pdf(�x|SMC) ≈ pdf(�x|S) and one sample BMC , where

pdf(�x|BMC) ≈ pdf(�x|B), with given number of events N(SMC) and N(BMC). These two samples

are called training samples.

The way to go is quite easy. A successful NeuroBayes classification for case one (t1 : �x → ot1) on

the simulated samples gives us the probability Pt1(SMC |ot1).

ot1 = Pt1(SMC |ot1)
and

1− ot1 = Pt1(BMC |ot1)
Bayes theorem says:

Pt1(SMC |ot1)pdf(ot1) = pdf(ot1|SMC)Pt1(SMC)

Pt1(BMC |ot1)pdf(ot1) = pdf(ot1|BMC)Pt1(BMC)

and gives us the ratio for the training sample as:

ot1
1− ot1

=
Pt1(SMC |ot1)
Pt1(BMC |ot1) =

pdf(ot1|SMC)Pt1(SMC)

pdf(ot1|BMC)Pt1(BMC)
≈ pdf(ot1|S)

pdf(ot1|B)

Pt1(SMC)

Pt1(BMC)

To simplify the formula in the further steps we can introduce the likelihood ratio:
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Λt1(ot1) =
pdf(ot1|S)
pdf(ot1|B)

=
ot1

1− ot1

Pt1(BMC)

Pt1(SMC)
.

Bayes theorem is also true for the data sample so we get for the ratio on data:

P (S|ot1)
P (B|ot1) =

pdf(ot1|S)
pdf(ot1|B)

P (S)

P (B)
.

With P (B|ot1) = 1 − P (S|ot1) and the ratio for the training sample we get the probability of an

event to be signal for a given NeuroBayes value:

P (S|ot1) = Λt1(ot1)
P (B)
P (S) + Λt1(ot1)

=
Λt1(ot1)P (S)

1 + P (S) (Λt1(ot1)− 1)
.

The likelihood ratio Λt1(ot1) is easy to calculate from the known properties of the NeuroBayes

training. So only the fraction of signal events P (S) is needed to calculate the posterior probability

P (S|ot1). P (S) can be estimated by a template fit using P (ot|S) and P (ot|B) as templates.

Using P (S|ot1) as a weight on a data sample we can unfold the signal distribution of any variable,

which is totally correlated to ot1. In [PL05] this simple behavior is named inPlot.

In a second case we want to calculate this probability only with a given sample of simulated signal

(pdf(�x|SMC) ≈ pdf(�x|S)). All information about the background must be taken from the data

sample D = S+B. For the NeuroBayes classification (t2 : �x → ot2) we use the signal simulation as

target 1 sample and the data sample as target 0 sample: Pt2(D) + Pt2(SMC) = 1. Bayes theorem

for the NeuroBayes training gives us:

ot2 = Pt2(SMC |ot2) = pdf(ot2|SMC)Pt2(SMC)

pdf(ot2|S)Pt2(S) + pdf(ot2|B)Pt2(B) + pdf(ot2|SMC)Pt2(SMC)

For the interesting probability P (S|ot2) we know:

P (S|ot2) = pdf(ot2|S)P (S)

pdf(ot2|S)P (S) + pdf(ot2|B)P (B)

With Pt2(S)/Pt2(B) = P (S)/P (B), Nt2(S)/Nt2(D) = N(S)/Nd and Bayes theorem for the Neu-

roBayes training we get:

P (S|ot2) = Pt2(S)

Pt2(SMC)

(
ot2

1− ot2

)
= P (S)Λt2(ot2)

In this case we have similar dependencies as in the first case. The likelihood ratio Λt2(ot2) is well

known, but we need an estimate of the unknown signal fraction P (S). Another property of this

equation is the limitation of Λt2(ot2). Because of max(P (S|ot2)) = 1 we get Λt2(ot2) < 1/P (S).

This upper limit is smeared by the resolution of the NeuroBayes training.

5.2.2 Boost Training - NeuroBayes and weights

At last I want to focus on the procedure of boosting an already calibrated NeuroBayes expertise.

Boosting is an umbrella term for calibrating more than one expertise to get a final result. The

goal of each iteration step is to correct possible imprecisions of the former steps. For example if

you have a very complex problem it is clever to learn the obvious thing in a first step and do the

complicated things in a second. The second step will become easier because we are on a better

initial position.

To implement such a boost for the new calibration all events must be weighted.
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The easiest and most intuitive approach for a boost training is to weight the events e of the one

target with the probability to be of the other target:

wT0 = P (T1|e),

wT1 = P (T0|e).

A given region r with a given number of events N out of two classes T0 and T1 has the probabilities

P (T0|r) = N(T0)
N(T1)+N(T0) and vice versa. Applying the weight from above results in the same

effective numbers of events Nb:

Nb(T0) = wT0N(T0) =
N(T1)N(T0)

N(T1) +N(T0)
= wT1N(T1) = Nb(T1).

By knowing the true P (T |r) of the given region, no further classification is possible. For any

inclusive distribution is:

P (x|T1)wT0 = P (x|T1)P (T0|x) = P (x|T1)
∫

drP (T0|x, r)P (r|x)

A usual NeuroBayes classification results in an estimate of P̂ (T |r) = P (T |ot). The region r is

defined by the input variables. If we construct a weight in the same way with this estimate,

only the information gained by the training vanish. An additional so called boost training can

find further quantities to separate the two classes. The combination of both improves the overall

classification.

By construction the output of the two experts should be less correlated. The combination of the

two results can be approached by the multiplication of their likelihood ratios, given by

Λ =
pdf(ot|T1)
pdf(ot|T0) =

ot
1− ot

N(T0)

N(T1)
.

Still correlations of the two experts can appear. It happens when the probability interpretation of

the output variable ot of the unboosted calibration is not entirely correct. Thus the weights for

the boost training involve a bias from the ill estimated events. To control effects of this source it

is advised to take ot as an input for the boosted training. If everything is correct, the variable has

no correlations to the target and does not influence the boost training. Any dependency between

ot and the target is a hint towards problems which must by investigated.

In most of the cases the boost training does only small corrections to the first. Therefore possible

correlations are also small and the likelihood ratio combination can be used.

Such a boost training can be applied many times. In fact most of the improvements are already

achieved by the first boost training. Maybe for very special cases a gain with more iterations is

possible.

For the boost it is allowed to change the calibration settings in any imaginable way, while the

effective number of events in any region is the same for both classes. This enables various imple-

mentations which I will explain in the following:

• It is possible to focus the calibration on specific regions of the samples. This can be arranged,

if the weights are varied by any focusing function Ff .

w′T0 = P (T1|ot)Ff

w′T1 = P (T0|ot)Ff
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The effective number of events is still the same for the two classes, but transformed by the

function Ff .

Nb(T ) = w′TN(T ) =
N(T0)N(T1)

N(T1) +N(T0)
Ff

If the multivariate analysis technique with a correct error propagation works without a pre-

processing, which can cause binning effects, nothing should change. In most of the cases,

e.g. using probability integral transformations or a binned fitting of a regularization func-

tion, the application of the focusing function uncloses the binning. Therefore it is possible

to see the structure of the phase space on a subbin level. This way information lost during

preprocessing is recovered and the classification is improved.

As an example for b-jet tagging it is interesting to enable very pure b-jet samples. Choosing

Ff = 1
P (T0|ot) focuses the boost training on this so called purity region.

• It is also possible to enlarge the number of events to be more precise for the next calibra-

tion. For this it is important to take the new statistics into account, when calculating the

probabilities from the NeuroBayes output.

• It is allowed to add new variables to the boost training or leave some out.

• Another application is to study properties of the events independent of some other variable

x. With the weighting we can remove the dependencies of this variable x and do a new

classification. The calibration of this kind of boost training gives us an estimate independent

of the variable x. This feature is interesting for b-jet tagging efficiency measurements. With

a boost training it is possible for each existing b-jet tagger to create an uncorrelated partner.

This can be used for efficiency measurements on the data sample (see 4.3.9).

NeuroBayes has the ability to handle each event with a specific weight. That is why it is easy to

implement such a boost. NeuroBayes has also an internal boost mode where in a first step a zero

iteration training is performed and in a second step it attempts to find second order correlations

with an artificial neural network.

Weighting issue Indeed NeuroBayes is constructed for the use of weights. The idea is to have

a correct error propagation included in the framework for the application of advanced algorithms

as described in this section of the thesis. Unfortunately there is bug in version 20101026. Phi-

T claimed to fix this issues for the updated versions. The bug occurs in the wrong uncertainty

calculation, when large weights are applied (Figure 5.10). The effect of very large weights can be

seen in the bins on the right. The purity distribution is effected by the large weight of single events.

For the regularization a wrong estimate of the expected bin content is used.

This issue influences the result dramatically if very large weights are used. Therefore it is necessary

for this thesis to avoid large weights.

5.2.3 sPlot

sPlot is an unfolding technique introduced 2005 by Muriel Pivk [PL05]. The sPlot technique is a

method where the so called sPlot weights are applied on each event of a given sample. The weight

is calculated corresponding to a target T . For any variable x not correlated to this weight, its

distribution is transformed to the conditioned distribution of T :
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Figure 5.10: Effect of large weights. The bins on the right contain only one event with a large

weight. The purity is effected by the target type of this single event. A more reasonable estimate

of the purity should be around 0.5 with adequate uncertainty.

∫
dwsP lot pdf(x|wsP lot)wsP lot = pdf(x|T )

The sPlot paper includes among other things the derivation of the sPlot weights. Because of the

differing notations used in this thesis and analogies to a later method used for the b cross section,

I will introduce the sPlot method in my own words.

I will explain the sPlot method for a special case of only two classes. Similar to the descriptions

above we have one class called target 0 (T0) and the other called target 1 (T1). The sPlot weights

wsP lot are determined using the output values ot of a given NeuroBayes expert.

Looking at the inclusive distribution of ot for a given x we find:

∫
dot pdf(ot|x) =

∫
dot

∑
T

P (T |x) pdf(ot|T, x)

This equation is the usual base for any inclusive study. We have two variables. It is possible to

define an inclusive region of one variable x and take the other variable for studies of the target.

Therefore we need external knowledge about pdf(ot|T, x), e.g. templates from a Monte Carlo

sample. If we do this in further inclusive regions we can get a picture of how the first variable is

related to the target:

pdf(x|T ) = P (T |x) pdf(x)∫
dxP (T |x) pdf(x) .

If ot is uncorrelated to the variable x for both targets T , we are able to determine the x distribution

in a more advanced way. This is called sPlot method. Therefore the following requirement

pdf(ot|T, x) = pdf(ot|T )

must be fulfilled. There is no correlation of the two variables for the different targets T . This

brings us the following simplification:

∫
dot pdf(ot|x) =

∫
dot [P (T0|x) pdf(ot|T0) + P (T1|x) pdf(ot|T1)] .

A simple trick allows us the calculation of the distributions P (T |x). If we weight each event in ot

with the probabilities P (T0)/P (T0|ot) or P (T1)/P (T1|ot), we get two similar equations:
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∫
dot pdf(ot|x) P (T ′)

P (T ′|ot) =
∑
T

pdf(T |x)
∫

dot pdf(ot|T ) P (T ′)
P (T ′|ot) .

After applying Bayes’ Theorem we can write this in matrix notation:

⎛
⎜⎝
∫
dot pdf(ot|x) P (T1)

P (T1|ot)

∫
dot pdf(ot|x) P (T0)

P (T0|ot)

⎞
⎟⎠ =

⎛
⎜⎝

pdf(T0|x)
P (T0)

pdf(T1|x)
P (T1)

⎞
⎟⎠ V −1

where V −1 is the matrix:

V −1 =

⎛
⎜⎝

1
N

∑
Λ−1
t1 1

1 1
N

∑
Λt1

⎞
⎟⎠

The integration about ot is replaced by the sum over the finite number of events from the sample.

Λt1 is the likelihood ratio as defined in section 5.2.1 for the first case: Λt1 = pdf(ot|T1)
pdf(ot|T0) . The

integration of the normalized distribution pdf(ot) in the matrix elements next to the diagonal is

one. After the determination of Λt1 with a NeuroBayes training we are able to calculate the matrix

V , which is the inverse of V −1.

For pdf(x|T0) and pdf(x|T1) finally we get:

pdf(x|T1) = pdf(x)

∫
dot pdf(ot|x) P (T0)

P (T0|ot) (VT1,T1 + Λt1 VT1,T0)︸ ︷︷ ︸
wsPlot(T1)

pdf(x|T0) = pdf(x)

∫
dot pdf(ot|x) P (T0)

P (T0|ot) (VT0,T1 + Λt1 VT0,T0)︸ ︷︷ ︸
wsPlot(T0)

Here we can define the sPlot weights as requested in the beginning.

The sPlot weights wsP lot have further properties shown in [PL05]. So the sum of the signal and

the background weight is given by wsP lot(T0)+wsP lot(T1) = 1. The weights are not limited to an

interval between (0, 1). It is also possible to get weights smaller than zero and larger than one. The

statistical uncertainties can be calculated by the sum of the squared weights (σsP lot =
√∑

w2
sP lot).

The sPlot method is a nice feature to extract the signal and background shapes of variables, where

the particular distributions are unknown. It is possible to get this distributions by running over

the whole data sample. The uncertainty depends on amount of statistics, which is available for

signal and background.

5.3 NeuroBayes b-jet tagger

In this section I will present two new methods for discriminating b-jets from non-b-jets. Both

methods make use of the multi variante analysis framework NeuroBayes. For the first tagger the

NeuroBayes expert is calibrated using a sample of simulated b-jets (signal target, T1) and non-b-

jets (background target, T0). The other is calibrated using the real data sample as background

target.

First I will explain the needed input variables and their quality for b-jet tagging. In the second

part I explain the differences of the two b-jet taggers and show how they perform.
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category input variables of track objects

four vector momentum p

pseudo rapidity η

primary vertex significance of the two dimensional signed impact parameter

significance of the three dimensional signed impact parameter

two dimensional signed impact parameter

three dimensional signed impact parameter

track decay length

jet position track transverse momentum, relative to the jet axis

track parallel momentum, along the jet axis

ΔR of the track to the jet axis

minimum track approach distance to jet axis

jet energy transverse momentum, relative to the jet axis, normalized to its energy

parallel momentum, along the jet axis, normalized to its energy

quality χ2 value of the track fit [SAF+06]

number of hits in the pixel detector

number of hits in all tracking detectors

b hadron distance to reconstructed b hadron axis

significance of distance to reconstructed b hadron axis

track weight for b hadron reconstruction

Table 5.1: Input variables of the track objects

5.3.1 b-jet tagging variables

For the two NeuroBayes b-jet tagger I decided to develop a framework of conditional NeuroBayes

experts. To be most performant I use all available information concerning b-jets. This includes

lifetime information as well as lepton information. For this it is necessary to match different objects

to the jets. This objects are the tracks from the jet, secondary vertices, which are reconstructed

from tracks, electron and muon tracks (see 4.3). A table of the available input variables is shown

in the tables 5.1-5.5. Properties which correspond to the physical quantities as well as the quality

of the objects are stored in the input variables.

All of these variables have to be compared to data. Only input variables, which compare to data

are used for the NeuroBayes b-jet tagger. All of these objects will be used by NeuroBayes to decide,

how b-like a jet is.

Tracks Details of the track reconstruction can be found in section 4.3.1. From the four momen-

tum vector the transverse momentum and the pseudorapidity are extracted. Further geometrical

properties of the track relative to the primary vertex and the jet are used, e.g. the impact parame-

ter and its significance to be inconsistent with the primary vertex. The ratio of the sum of the track

momenta to the jet energy measured in the calorimeter is calculated as well as properties, which

describe the track kinematics relative to the jet. Finally some quality variables, the fit parameters

and the number of hits in tracking detector components are used (table 5.1).

Muons Details of the muon reconstruction can be found in section 4.3.5. The muon input

parameter list partially is the same as for the general track objects. There are two new variables,

which depend on the jet energy. The momentum of the muon track is boosted into the jet rest

frame. This and normalized by the jet energy is taken as additional input variable. The quality of
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category input variables of muon candidates

four vector momentum p

pseudo rapidity η

angle φ

primary vertex significance of the two dimensional signed impact parameter

significance of the three dimensional signed impact parameter

jet position track transverse momentum, relative to the jet axis

track pseudorapidity, relative to the jet axis

ΔR of the track to the jet axis

jet energy track momentum along the jet axis, in the jet rest frame

same, normalized to jet energy

quality χ2 value of the track fit [SAF+06]

Table 5.2: Input variables of the muon objects

the muons track is described by the χ2 value of the track fit. No information about the detector

components and muon identification variables are used. The full list can be seen in table 5.2.

The muon objects are very pure. The fraction of misidentified pions, kaons and protons is 0.26%,

0.3% and 0.05% [CMS10k].

Electron candidates Details of the electron reconstruction can be found in section 4.3.4. The

same variables as for the muons are used to describe the electron candidates. Electrons are difficult

to identify. Therefore some variables which deliver information about the electron likeliness of the

candidates are added. The electrons have a small mass. Variables to get information on possible

bremsstrahlung are created. Also the output of a classifier which separates electrons from pions is

used (tabular 5.3).

Secondary vertices Details of the secondary vertex reconstruction can be found in section 4.3.3.

Additional to the real reconstructed secondary vertices the secondary vertex objects in this analyses

contain so called pseudo vertices. The pseudo vertices are the sum of the four vectors of tracks

displaced from the primary vertex, which do not require the secondary vertex requirements. The

variables formed from the properties of these objects are listed in tabule 5.4. For the real secondary

vertices in addition the distance of the vertex position to the primary vertex is calculated.

Jets Details of the jet reconstruction can be found in section 4.3.6. For the jet classification the

mean values of the NeuroBayes output from the classifications of the sole objects corresponding to

the jet are taken as additional input variables. Further we have the corrected four vector of the jet

and the discriminating variables of all existing b-jet taggers (table 5.5).

5.3.2 NeuroBayes MC tagger (NBMC)

MC training is the common case how NeuroBayes (see also 5.1) is used. For calibrating the

NeuroBayes expert two simulated samples are needed: one sample for the signal target S and

one sample for the background target B. The calibration procedure is often called: training. A

fully calibrated NeuroBayes expert is able to discriminate events with signal target from events

with background target. This expertise is applied on the data sample. Thus each jet is related to

the transformed NeuroBayes output variable ot of the interval (0, 1). Small value of ot represent
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category input variables of electron candidate

four vector momentum p

pseudo rapidity η

angle φ

primary vertex significance of the two dimensional signed impact parameter

significance of the three dimensional signed impact parameter

jet position track transverse momentum, relative to the jet axis

track pseudorapidity, relative to the jet axis

ΔR of the track to the jet axis

jet energy track momentum along the jet axis, in the jet rest frame

same, normalized to jet energy

quality χ2 value of the track fit [SAF+06]

output of a mva electron/pion classifier [CMS10j]

position of first hit in z direction

position of first hit in radial direction

inversed ΔR of first and last hit of the track

ΔR of electron candidate and Gaussian sum filter track

inverted energy of bremsstrahlung

energy loss before calorimeter

Table 5.3: Input variables of the electron candidate objects

category input variables of secondary vertex (SV)

four vector mass of track sum at secondary vertex

primary vertex 2D distance of the SV to the primary vertex

significance of 2D distance of the SV to the primary vertex

3D distance of the SV to the primary vertex

significance of 3D distance of the SV to the primary vertex

jet ΔR of the SV to the jet axis

ratio of energy at secondary vertex over total energy

track number of track connected to the vertex

ΔR of the SV to the track sum

ratio of energy at secondary vertex over track sum

quality category of secondary vertex (Reco, Pseudo, No)

Table 5.4: Input variables of the secondary vertex objects
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category input variables of jets

four vector corrected transverse momentum pT

bare jet energy

pseudo rapidity η

angle φ

b tag combined SV tagger

jet B probability tagger

simple SV tagger

simpleSV high purity tagger

soft muon impact parameter tagger

soft muon transverse momentum tagger

track counting high efficiency tagger

track counting high purity tagger

objects number of track objects

number of secondary vertex objects

number of electron candidates

number of muon candidates

Table 5.5: Input variables of the jet objects

background-like events, larger values stand for more signal-like events.

For the NeuroBayes b-jet tagger a multi-level architecture was designed. The architecture of the

NeuroBayes b-jet tagger is shown in figure 5.11. Calibrations of the NeuroBayes experts on each

of the five physical objects, the tracks, secondary vertices, electron candidates, muons and jets are

needed.

We get an estimate for each object, how likely it is to be part of b-jet. This information were

collected for each jet. For the final NeuroBayes calibrations on jet-level new input variables were

defined. These were constructed out of the output values of object-level experts.

The jet-level consists of two steps. It is easy to achieve a good separation between b-jets and

non-b-jets because of the lifetime of the b-hadron. This is done by a first NeuroBayes calibration.

To be more effective for the jets, which are difficult to separate, in addition a boost training was

performed. For this the number of target 0 events was increased and weighted by the procedure

introduced in 5.2.2.

For all calibrations NeuroBayes is setup with default parameters. The number of hidden layers is

the number of input nodes minus one. Each input node is fed by one of the input variables. For all

calibrations of the experts NeuroBayes is used in classification mode with the global preprocessing

flag 422, which represents preprocessing and zero iteration training. The result is boosted by an

internal artificial neural network training. The maximal number of iterations for the neural network

is 100. Further each variable needs at least 2σ significance to be used for the classification.

The decision to use the internal boost mode is basically a aesthetic and less a technical. In most

of the cases the weights in the neural network converge to zero and the training is stopped before

100 iterations. This means that it is not possible to enhance the result found by the zero iteration

training. But the runtime is enlarged without a qualitative improvement. Nevertheless the output

distribution is slightly different, not in separation power, but in the shape. Figure 5.12 shows

two output distributions on the same target for the different setup modes. The runtime in zero

iteration mode was only 35.43s in contrast to the internal boost mode where 290.47s passed by.
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Figure 5.11: Architecture of the NeuroBayes b-jet tagger. Each box stands for a single NeuroBayes

calibration. The arrows point up where the result of the expert is used. The colors clarify the

different objects.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

no
. o

f e
ve

nt
s/

0.
01

500

1000

1500

2000

2500 target 1
target 0

 output®NeuroBayes
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 = 7 TeVsCMS private work 2010
®  <phi-t>

 Teacher®NeuroBayes

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

no
. o

f e
ve

nt
s/

0.
01

200

400

600

800

1000

1200

1400

1600

1800 target 1
target 0

 output®NeuroBayes
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 = 7 TeVsCMS private work 2010
®  <phi-t>

 Teacher®NeuroBayes

Figure 5.12: Left: the output distribution of the zero iteration mode. The training results in a

Gini index of 19.9 calculated in 35.43s. A classification with the same setup parameters plus an

additional internal boost results in a output distribution as shown on the right. The Gini index is

also 19.9, but the shape is much smoother with a much longer runtime of 290.47s. The explanation

of this effect is a different for the monotonous spline fit: NeuroBayes setup parameter DIAG instead

of DIA2 5.1.3.
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The explanation of this effect is a different value of the parameter which controls the curvature in the

monotonous spline fit for the diagonalization (see 5.1.3). Instead of the common NeuroBayes shape

parameter DIAG, the alternative DIA2 is used. The results of both setup modes are equivalent

discriminators.

In this thesis the output values are used for another NeuroBayes training. Having a structure similar

to many delta function can effect the preprocessing of the further NeuroBayes expert calibration.

Therefore I decided use the smooth diagonalization mode (DIA2). Further I accepted the enlarged,

but still small, runtime of the internal boost to get the best possible result.

For the calibrations of the experts the Pythia 6 QCD Tune2Z samples are used. As mentioned

above the samples must be weighted by w(sample) to get a smooth realistic pT,jet spectrum (see

4.4). The available statistics are more or less flat in log10(pT,jet) (see also figure 4.13). This brings

large weights which are problematic in the recent NeuroBayes version. To avoid weighting effects,

the spectrum is transformed once more to a flat distribution. The pT,jet spectrum plotted in double

logarithmic scale can be fitted by a polynomial function of the third order with a sufficient accuracy

in the range 37 GeV < pT,jet < 1000 GeV:

f(pT,jet) = exp
(
a0 + a1 log10(pT,jet) + a2 log10(pT,jet)

2 + a3 log10(pT,jet)
3
)

The parameters are determined as follows:

a0 = 39.86± 0.89, a1 = −24.79± 0.50, a2 = 8.39± 0.17, a3 = −1.582± 0.048

Figure 5.13 shows the fitted spectrum. The final weights are calculated out of the Monte Carlo

weights w multiplied with the extracted weight from the fit:

wfinal = α · w(sample)

f(pT,jet)

The constant factor α is chosen in a way, that the sum of all weights corresponds to the amount

of statistics.

After this preprocessing the input variables are used for the various calibrations of NeuroBayes

experts. The amount of statistics for the training is minimized as much as possible to avoid

time consuming disk access operations. A main feature of NeuroBayes is, that good results for a

discriminating output variable can be achieved, alreadz with a relative small number of training

events. Further the calibration itself is very fast compared to other advanced multi variate analysis

methods like boosted decision trees or artificial neural networks. A detailed study on this can be

found in [Mar10]. Table 5.6 shows the amount of events used. Also the run time of the NeuroBayes

training is listed. Large run time occure when the internal boost is able to improve the zero

iteration result.

A list of the relevant input variables and the NeuroBayes output distributions are shown on the

next pages. A complete list is attached in the appendix A.

Track training In table 5.7 the input variables of the track calibration are listed. They are

sorted by their relevance for the classification.

The most important variable is the three dimensional significance of the impact parameter of the

track (figure 5.14). The plots show the variable first in the usual exposition in logarithmic scale with

equidistant bins and second with a binning calculated by the probability integral transformation

5.1.2. In both the distribution for tracks from b-jets and non-b-jets are plotted. It is easy to see,

that with this input a good separation between signal and background can be established.
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Figure 5.13: To transform the pT,jet spectrum into a flat distribution, it was fitted by a polynomial

function at double logarithmic scale. The shown spectrum is calculated out of the avaliable MC

events. Therefore different samples must be weighted by a specific value (see 4.4). This causes the

binning effects on the right.

target 1 number of

calibration # t0 events # t1 events fraction input vars run time

track 184541 225460 50.0% 19 336.35s

vertex 362611 448418 51.1% 11 1969.51s

electron 145278 204932 53.3% 16 1396.76s

muon 253361 345744 48.3% 11 1335.45s

jet 192631 217312 48.2% 10 974.31s

boost 138772 433023 49.0% 10 167.72s

Table 5.6: Runtime of the different NeuroBayes calibrations. For the different trainings the number

of events and the target 1 fraction is listed. Because of the weighing of the events this number

does not correspond to the expected from the number of events. The last column shows how long

it takes to get the calibration of the NeuroBayes expert.
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added only loss, when correlation

name significance this removed to others

trackSip3dSig 102.89 102.89 13.67 97.8%

trackEta 13.88 13.54 12.88 22.5%

trackBdistSig 8.81 53.16 6.01 98.4%

trackSip3d 7.71 98.48 7.23 97.4%

trackJetDist 9.85 67.93 7.24 82.9%

trackMom 7.70 10.32 6.86 24.9%

trackJetDeltaR 2.49 8.05 7.21 83.8%

trackPtRelFrac 5.71 8.73 7.28 85.2%

trackLxy 5.67 81.42 5.41 84.0%

trackChi2 4.10 2.71 4.27 5.8%

trackBDist 3.75 43.07 3.76 94.6%

trackHits 3.66 3.24 3.41 18.4%

trackPxHits 2.03 5.82 1.99 20.5%

trackBweight 1.82 53.53 1.83 97.8%

trackSip2dSig 1.64 92.41 0.56 97.0%

trackSip2d 0.39 86.67 0.39 96.3%

trackPparFrac 0.00 8.73 0.00 100.0%

Table 5.7: Input variables of the track object NeuroBayes classification. Only variables, which are

more than 2σ in significance are used by NeuroBayes. The table also shows information about the

classification power of the variable itself and how important it is, that this variable is used. The

last column shows the correlation to the other variables.
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Figure 5.14: Track object training: The most important input variable is the significance of the

signed impact parameter. The distribution of this variable is shown in the classical histogram with

equidistant bins on logarithmic scale (left) and in probability integral transform (right). The b-jet

tracks are plotted in red. The differences to the non-b-jet tracks (black) are clearly visible.
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Figure 5.15: NeuroBayes output of the track and the vertex classification. In red are the objects

coming from a b-jet in black are objects coming from other jets.

Having this variable in, the other variables are more or less corrections to this powerful one.

Variables, which are highly correlated to it are ranked down. For example the two dimensional

significance of the impact parameter is sorted out by NeuroBayes, because of the small additional

information, which is left after the decorrelation. The parallel momentum of the track to the

jet axis normalized by the jet energy is yet 100% correlated. This means NeuroBayes is able to

reconstruct this variable from the other variables.

Figure 5.15 shows on the left the output distributions of track classification. Each event in this

plot corresponds to one track. The two classes, tracks from a b-jet (red) and track from other jets

(black), show the expected behavior. There is a good separation between signal and background.

We see an interesting double peaking structure of the red curve. This results because of the

fragmentation of the b-jet. The tracks of the right peak primarily correspond to tracks from the b

hadron. The tracks from the left are mainly pions from the hadronization process. There are also

large output values. This teaches the existence of tracks, which are very specific for b decays. On

the other hand for low values there are no tracks in the first 20% of the output interval. This tells

us that all kind of various tracks appear in b-jets. No single track can be excluded to stem from a

b-jet.

This behavior is used to construct an additional input variable for the final b-jet tagger. Similar

to the number of tracks corresponding to a secondary vertex, here the number of tracks which

correspond to the b hadron candidate Hb, which should appear in the right peak, are counted.

This is implemented by integrating the NeuroBayes output ot of the track expert starting from a

specific threshold ot > 0.5 for each jet.

Ntrack(Hb) = Ntrack(jet)

∫ 1

ot=0.5

dot(track) pdf(ot)

Vertex training In tabular 5.8 the input variables of the vertex calibration are listed. The

output of NeuroBayes is plotted in figure 5.15 on the right.

The most important variable is the number of tracks which are connected to the secondary vertex.

This is caused by the large mass of the b hadron. The correlation of 77% to other variables,

especially the secondary vertex mass confirms this statement. Another information contained in

this variable is the fact, that the b-hadron needs at least one additional weak decay compared to

the lighter quarks until it results in stable particles. This leads to an increased number of tracks
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added only loss, when correlation

name significance this removed to others

vertexNtracks 125.22 125.22 32.57 77.0%

vertexJetEFrac 63.54 122.79 35.01 72.2%

vertexPVSig2d 40.39 90.93 32.84 83.0%

vertexMass 28.87 112.81 25.16 78.7%

vertexTrackEFrac 18.65 11.99 17.19 35.6%

vertexPVDist3d 10.09 33.78 5.46 95.5%

vertexJetDeltaR 6.80 44.66 8.17 59.3%

vertexTrackDeltaR 5.57 8.39 5.57 40.9%

vertexCategory 0.41 66.40 0.39 69.1%

vertexPVDist2d 0.12 37.39 0.12 96.1%

vertexPVSig3d 0.00 91.15 0.00 100.0%

Table 5.8: Input variables of the vertex object classification. The columns show the relevance of

each variable.
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Figure 5.16: Secondary vertex object training: The most important input variable is the number of

tracks connected to a reconstructed secondary vertex. The distribution of it is shown for vertices

standing in b-jets (red) and non-b-jets (black). The bin with value zero shows only pseudo vertices.

connected to the secondary vertex. Figure 5.16 shows the distribution of this variable. The bin

with no tracks correspond to pseudo vertices. If no secondary vertex is reconstructed, at least two

tracks with large impact parameter are summed to this kind of object.

Other important variables are the vertex mass itself and the vertex energy compared to the jet

energy. Both quantify the mass of the b hadron. Further the information on the lifetime of the b

hadron are covered in the significance, how likely it is to have a secondary vertex away from the

primary vertex (vertexPVSig2d).

All this information lead to a very good classification, if the reconstructed secondary vertex is part

of a b-jet. Many of the secondary vertices are classified by almost 100% and appear in the last bin

of the output distribution. The existence of a reconstructed secondary vertex is therefore already

a good b-jet tagger.

Electron training In table 5.9 the input variables of the NeuroBayes electron calibration are

listed.
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added only loss, when correlation

name significance this removed to others

eleSip3dSig 92.62 92.62 60.82 83.7%

elePtRel 19.91 18.71 12.08 66.9%

eleSip2dSig 13.09 69.81 12.82 83.9%

eleZpos 9.57 9.35 6.39 39.1%

eleInvDeltaR 8.75 6.12 6.58 28.7%

eleId 8.42 20.74 5.70 45.3%

eleMom 8.07 7.23 6.57 26.9%

eleChi2 6.78 5.10 7.15 17.0%

eleEta 6.76 17.79 5.83 68.8%

eleJetDeltaR 4.55 13.17 1.33 95.1%

eleBrem 4.40 10.43 4.63 44.9%

eleGSFDif 4.66 4.06 4.51 44.3%

elePhi 4.07 2.45 4.08 5.0%

eleJetPparFrac 0.98 5.13 1.14 69.7%

eleEtaRel 0.76 16.45 0.76 95.8%

eleJetPpar 0.00 18.71 0.00 100.0%

Table 5.9: Input variables of the electron candidate object classification. The columns show the

relevance of each variable.

The electron candidates are more or less a subgroup of the track objects. So it is not surprising that

also the three dimensional significance of the signed impact parameter contains the most important

information for the classification. The same arguments due to the lifetime of the b hadron apply

here. Again the other variables are more or less corrections to this powerful one.

But there is another interesting variable, which is more relevant to distinguish electron candidates

from b-jets. This is the transverse momentum of the electron candidate relative to the jet axis

pT,rel. Because of the lepton decay of the b hadron into a electron it is possible, that the electron

carries much of the momentum from its mother particle. This leads to larger relative momenta

pT,rel. The distribution of this variable is shown in figure 5.17.

Figure 5.18 shows the output distributions of the electron classification on the left. Each event

in this plot corresponds to one electron candidate. The two classes, electron candidates from a

b-jet (red) and from another jet (black), show the expected behavior. There is a good separation

between signal and background.

We expects also two peaks in the signal distribution as seen for the tracks. There are two effects

which cause the shape of the output distribution.

At first the electron reconstruction is difficult because of the multiplicity of tracks. Many of

these tracks correspond to pions. To reduce the contribution of misidentified particles a selection

dependent on a good electron identification is needed. For this additional electron quality variables

are used. Nevertheless non electron particles remain and form the peaking structure on the left.

The other effect depends on real electrons not coming from b hadrons. Because of the material in

the tracking detector, photons can create electron/positron pairs. These particles are part of the

jets and arise for b-jets and non-b-jets in rather large impact parameter values. Compared to the

track object NeuroBayes output distribution the expected peak on the right is reduced.

The events in the left peak correspond again to tracks not coming from the b hadron.

Finally an additional input variable is constructed for the final b-jet tagger. This is implemented

by integrating the NeuroBayes output of the electron expert starting from a specific threshold
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Figure 5.17: Electron candidate object training: Distribution of the transverse momentum of the

electron relative to the jet axis.
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Figure 5.18: NeuroBayes output of the lepton classification. Left: electron candidates. Right:

muons. The b-jet objects are plotted in red.
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added only loss, when correlation

name significance this removed to others

muonSip3dSig 92.21 92.21 42.00 86.3%

muonChi2 53.05 68.84 49.89 25.2%

muonPtRel 24.56 42.32 8.88 85.3%

muonJetPparFrac 16.41 31.97 11.95 85.8%

muonEta 10.70 14.69 9.05 19.4%

muonEtaRel 5.13 20.04 6.24 95.2%

muonJetDeltaR 5.82 18.98 5.67 94.7%

muonPhi 3.02 3.11 3.01 1.4%

muonMom 2.83 22.36 2.84 88.2%

muonSip2dSig 2.51 76.31 2.51 85.9%

muonJetPpar 0.00 42.32 0.00 100.0%

Table 5.10: Input variables of the muon candidate object classification. The columns show the

relevance of each variable.

ot > 0.5 for each jet.

Nelectron(Hb) = Nelectron(jet)

∫ 1

ot=0.5

dot(electron) pdf(ot)

Muon training In table 5.10 the input variables of the NeuroBayes muon calibration are listed.

The most important variable is again to have a significant impact of the muon. The NeuroBayes

output distribution is shown in figure 5.18 on the right. Opposite to the electron case, the muons

are easy to detect. Because of the large muon system of CMS a detailed muon identification is not

needed. More problematic is the extrapolation of the muons into the tracking detector and the

mapping to a jet. Here the reconstruction quality becomes an important variable. The transverse

momentum of the muon relative the jet axis is important again. The argument for this is the same

as for the electrons, because the muons appear mostly from the weak decay of the b hadron.

Jet training Finally the input variables of table 5.11 are use for the NBMC b-jet tagger. The

input variables are constructed from the NeuroBayes outputs for the different objects. For each

jet the number of the specific objects found in the jet was created. For the tracks and the electron

in addition the good candidates are counted.

For each jet a the NeuroBayes outputs oi are combined. Under the presumption that each output

is an independent estimate of the probability to be part of a b-jet, it is possible to combine the

values by multiplying the likelihood ratios Λ(oi) = k · oi/(1 − oi), where k is the ratio of the two

targets used for the calibration.

Λ(b-jet|o) =
N∏
i

Λ(oi)

Finally a jet probability P (b-jet|o) is defined:

P (b-jet|o) = Λ(b-jet|o)
1 + Λ(b-jet|o)

The independence assumption is not entirely correct for objects like ours, because of correlations

between them. To get the probability right, corrections have to be applied. Nevertheless without
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added only loss, when correlation

name significance this removed to others

jetTrackProb 196.07 196.07 58.38 90.6%

jetNSV 34.82 168.53 36.38 77.0%

jetNMuon 18.74 45.35 19.11 16.5%

jetVertexProb 15.74 50.93 15.05 35.1%

jetElectronProb 8.23 61.38 5.46 82.6%

jetNTrack 4.31 32.04 5.64 72.4%

jetNGoodTrack 3.97 163.61 4.09 91.3%

jetMuonProb 3.63 39.69 3.64 18.9%

jetNEle 2.26 26.08 2.11 30.8%

jetNGoodEle 0.68 52.67 0.68 82.5%

Table 5.11: Input variables of the jet classification. The columns show the relevance of each

variable.

any correction the variables have good discrimination power and can be used for the construction

of a b-jet tagger.

In table 5.11 the input variables of the NeuroBayes jet calibration are listed.

The most important input variable is the probability estimate calculated from the track objects.

This is obvious, because it contains almost the whole lifetime information of the b hadron and

is calculable for each jet. The other variables are more or less corrections to this main input

variable. Further the existence of a secondary vertex or a muon are important informations for

the identification of a b-jet. At last let us have a look at the variable of good tracks. Compared

to the total number of tracks in the jet, the correlation to the target is strongly increased. The

significance is in the order of the significance from the number of secondary vertices. The statement

that we count tracks from b hadrons seem to be true.

The NeuroBayes output is shown in figure 5.19. The output is plotted in logarithmic scale for the

y-axis. Because of the powerful separation between the two classes, most of the jets are in a few

bins at low and high values. This was achieved using around 400000 events for the calibration of

the NeuroBayes expert. The powerful separation indicates how simple a construction of a b-tagger

is. More difficult is to improve this.

Boost training To gain the performance we need a boost training. Using the simplest boost

weight will cause some problems. Because of the already powerful separation, most of the events

would get a very small weight (see 5.2.2). This makes a further separation very difficult. The

effective statistics after the weighting are small. To get into the whole advantages of a boost

training, the number of events for the calibration must increase.

At first the probability interpretation of the NeuroBayes output must be tested. The right plot in

figure 5.19 shows the existence of this property. The calculated purity for each bin compares to

the diagonal within the statistical uncertainties. The probability interpretation is correct for the

given binning.

For the external boost a NeuroBayes training with the same setup as the previous one was executed.

As mentioned above there are different approaches to implement such a boost training. In this

section I will focus on two different approaches. The first tries to improve the b-jet classification

looking in more detail into the b-jet distributions. The weights are only applied on the background

sample. The other ansatz does a weighting also on signal sample but balances the effective statistics

to be in the same order as the real statistics.
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Figure 5.19: NeuroBayes output of the jet classification (left). red: the b-jets, black: other jets.

There are no jets in the first 5% of the output distribution. No cut was applied here. B-jets without

lepton and small lifetime look like a light jet. In the right plot the purity of the b-jet distribution

is shown. If the purity of each bin matches with the value of the NeuroBayes output variable the

probability interpretation is fulfilled. This property is required for the boost training.

Purity tagger. For the first we use the focusing function F pur
f = 1

1−P (S|ot) . Thereby the weights

for the target 1 events are always wS = 1. Taking the changed statistics for the boost training into

account brings us the following weights, which has to be applied on the target 0 events.

wB =
P (S|ot)

1− P (S|ot) = Λt
Nb(S)

Nb(B)
=

ot
1− ot

Nt(B)

Nt(S)

Nb(S)

Nb(B)

Nb(S) and Nb(B) describe the number of events used for the boost training, while the number of

events used in the first training are quoted as Nt(S) and Nt(B).

As control variable the output distribution of the unboosted training is added. This variable should

not effect the boost training and does not have correlations to the target.

An overview of the input variables can be seen in table 5.12. More detailed information about the

vertex is now the most important. Also the b-jet probability estimated from track informations

is still an important variable. In the first training not the complete information it contains could

be extracted and used for the classification. In figure 5.20 the distribution of this variable, as

used for the first training, is shown. The background (black, simulated non-b-jets), and signal

(red, simulated b-jets) are plotted separately and the good separation can be seen. To avoid

overtraining, NeuroBayes reduces the dependency on statistical fluctuations. Instead of the red

curve, the regularized blue curve is taken for the calibration. This procedure can affect some

information loss, especially if the statistics are small in some regions of the variable.

Applying the weights calculated for the boost training, the black curve is transformed into one

similar to the blue. For the boost training we want to be focused on the purity region, the

statistics were increased and we get a distribution as shown on the right for this variable. With

the enlarged statistics NeuroBayes is able to see the differences of the two shapes, which were not

apparent in the first training, due to the low statistics of the background in this region.

One can observe that the ot(binned) gives a relevant contribution for the boost classification. This

should not happen if the calibration of the first expert is perfect. Looking at the distribution shows

us the cause of the remaining correlation to the target after the weighing (figure 5.21).

The target dependency occurs for large values of the output distribution at almost one. All these
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added only loss, when correlation

name significance this removed to others

jetVertexProb 20.21 20.21 15.65 48.1%

jetTrackProb 12.15 17.79 11.24 50.8%

ot(binned) 11.85 4.78 6.75 64.1%

jetNTracks 7.49 7.83 6.67 25.4%

jetElectronProb 4.24 5.41 4.96 22.3%

jetNGoodEle 4.68 3.42 3.94 39.0%

jetNMuon 3.08 11.93 3.51 57.2%

jetNGoodTrack 2.57 8.47 2.71 41.7%

jetMuonProb 2.54 4.54 2.60 17.3%

jetNSV 2.02 2.05 2.12 25.3%

jetNEle 2.00 3.77 2.00 37.3%

Table 5.12: Input variables of the boost training for the jet classification. The columns show the

relevance of each variable.
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Figure 5.20: The plots show the distribution of the track probability, which is used as input variable,

for the unboosted (left) and the boosted NeuroBayes training. The increase of statistics and the

reweighing cause a gain of information for an improvement of the b-jet tagger.
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Figure 5.21: The plots show the distribution of the NeuroBayes output of the main expert, which

is used as input variable, the boosted NeuroBayes training. The probability interpretation was

tested on a well defined binning. The weighting allows us to see the structure within the bins.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

no
. o

f j
et

s/
0.

01

20

40

60

80

100

120

140

160
pythia6 MC non-b-jet

pythia6 QCD

 output®NeuroBayes
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 = 7 TeVsCMS simulation
®  <phi-t>

 Teacher®NeuroBayes

(jet)t1o
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(je
t)

t2o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  = 7 TeVsCMS simulation

diagonal

®  <phi-t>
 Teacher®NeuroBayes

Figure 5.22: NeuroBayes output of boost training for the jet classification. In red are the b-jets,

in black are other jets.

events belong to one bin of the diagonalization histogram. NeuroBayes is not able to resolve events

in such a detail.

More insecure is another fact. The weights are large in this region. As shown before is there

a problem with the correct error propagation for events with large weights. This can effect the

regularization of this special input variable. For the final b-jet tagger I left this variable out.

Figure 5.22 shows the output distribution of the boosted NeuroBayes MC training on the right.

Compared to the unboosted NBMC we see a smaller separation between the two classes. This is

expected because all informations used in the first training are not included in the second one. The

main advantage is that the both classification less correlated to each other. In figure 5.22 on the

right a scatter plot of the two variables is shown.

To get a combined NeuroBayes b-jet tagger, which uses the results of the two calibrations, the

likelihood ratios of the single training can be multiplied (see section 5.2.2). This results in a final

powerful discriminator to identify b-jets. Starting from now I will call this b-jet tagger: NeuroBayes

combined purity tagger (NB comb Pur). The performance of this tagger will be shown after the
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added only loss, when correlation

name significance this removed to others

jetNGoodEle 15.72 15.72 16.21 23.4%

jetTrackProb 13.11 11.78 11.82 16.8%

jetVertexProb 10.10 11.12 9.67 12.9%

jetNTracks 7.07 9.67 6.28 24.3%

jetMuonProb 5.65 6.07 5.83 10.0%

ot(binned) 4.16 3.83 4.15 29.2%

jetElectronProb 3.88 4.52 4.06 8.0%

jetNSV 3.07 0.16 2.80 26.1%

jetNMuon 2.05 2.36 2.04 9.2%

jetNGoodTrack 2.02 1.41 1.86 18.0%

jetNEle 1.29 1.96 1.29 14.9%

Table 5.13: Input variables of boost training for the jet classification. The columns show the

relevance of each variable.

introduction of another tagger optimized on the efficiency region.

Efficiency tagger. In addition I want to construct another b-jet tagger, which is more perfor-

mant in the efficiency region. The focusing function is chosen in a way that the effective number

of events is conserved over the spectrum of the NeuroBayes output distribution ot. Therefore this

variable was studied to create an additional weight factor dependent on their shape.

Normally the signal and background events are weighted with a specific weight: wS = P (B|ot) and
wB = P (S|ot). The effective number of events in ot is therefore reduced by α = P (B|ot) pdf(ot|S)+
P (S|ot) pdf(ot|B). To balance this we need the following focusing function:

F eff
f =

pdf(ot)

P (B|ot) pdf(ot|S) + P (S|ot) pdf(ot|B)
=

P (S)P (B)

P (S|ot)P (B|ot)
The application of the weights wT = (1 − P (T |ot))Ff with the targets t = S,B does not change

the effective number of events.

A NeuroBayes expert calibration was arranged. The overview of the input variables is shown in

table 5.13.

The ordering by relevance of the input variables changed when applying the other focusing function.

Especially the electron informations are more important.

The variables are less correlated to each other which point to that the first calibration found some

of the dependencies between the variables. Also the output variable of the former training is less

important compared to the boost in the purity region, where we had the issue with large weights.

The NeuroBayes calibration results in the output distribution plotted in figure 5.23. The separation

seems to be less developed than for the former boost training. This is deceiving because of the

different weighing. The two output distributions are not comparable.

For the final b-jet tagger also a combination with ot must be done. Again the likelihood ratios of

the two training are multiplied as described in section 5.2.2. Starting from now I will call this b-jet

tagger: NeuroBayes combined efficiency tagger (NB comb Eff).

Having two kinds of boosted NeuroBayes b-jet tagger available it would be interesting to compare

them. This comparison is done on a independent sample. We must produce so called performance

plots.
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Figure 5.23: NeuroBayes output of the alternative boost training for the jet classification. In red

are the b-jets, in black are other jets.

At CMS performance plots are used where the mistag rate is plotted against the b-jet efficiency.

Further comparisons using the purity are also possible. The already existing b-jet taggers from

CMS are presented in 4.3.9. To compare the NeuroBayes b-jet tagger only the most separating

of the existing b-jet taggers are taken - the combined secondary vertex b-jet tagger. Figure 5.24

shows the performance plot for all NeuroBayes b-jet taggers: the unboosted, the boosted and the

combined.

In the plot we see the already shown performance of the combined SV b-jet tagger and the Neu-

roBayes b-jet tagger we wanted to improve. The results of the two different boost calibrations are

also plotted, called boost and alternative boost. As expected the boost on purity region is less

performant over a wide range. Most of the events were weighted to a very small number, that

improvement in this regions are impossible. The alternative boost is more sensitive to jets in this

region. After the combination with the former NeuroBayes b-jet tagger is improved in the differ-

ent regions dependent on their assignment. In the efficiency region there is not enough space for

improvements. Only a tiny shift is visible. This differs in the purity region. Both combined tagger

can gain in this region. The purity tagger, which is optimized for this region gives the strongest

enhancements. On this sample we found a almost exponential separation over the whole range.

This brings us to the conclusion for the MC based b-jet tagger. The main advantage of a MC

training is, that signal and background is well defined. Regardless which fraction of signal to

background events is arranged, for the NeuroBayes classification we get an output with the best

discrimination power for these two classes. But for applying the expertise on data, the simulation

of our two classes must be quite well. For the b-jet we can be quite confident, that the simulations

describe data well. Indeed the production mechanism, production rate and fragmentation is not

well understood, but we have good understanding of the lifetime, the mass and the lepton branching

ratio and these are the informations we use for b-jet tagging.

For the background sample it is more difficult. We have already seen that noise tracks are not

good simulated. Further we have underlying events and pile up, which is hard to simulate. To get

all background sources in good shape much work must be done, if it is possible at all.
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Figure 5.24: Performance of the NeuroBayes b-jet taggers. All new taggers are plotted together

with the best existing tagger from CMS.

5.3.3 MC to data comparison

Having a good b-jet tagger on MC, a good performance on data is not guaranteed. All input

variables have to be checked how they compare with data. If there is good agreement it is more

likely that the b-jet tagger works on data.

Therefore this is one of the main tasks for the commissioning of the CMS experiment and b-jet

tagging. If there is a good agreement between simulations and data, we know that the detector is

well understood and usable for physics studies. Otherwise we have to restrict the field for analysis

to the known regions and study the misunderstood areas for their issues.

It is possible to use NeuroBayes for this comparison of data and Monte Carlo simulations.

NeuroBayes is setup with default parameters. The number of hidden layers is chosen to the number

of input layers minus one. Each input node is fed by one of the input variables. NeuroBayes is used

in classification mode with the global preprocessing flag 422, which represents preprocessing with

the internal boost training. The maximum number of iterations is set to 100. No BFGS algorithm

is applied. Each variable needs at least 2σ significance to be used for the classification.

For such a study a NeuroBayes expert is calibrated on the sample of the simulated events as the

one target and the events of the data sample as the other target. So the output distribution

discriminates between simulation and reality. If data and simulation agree well, the NeuroBayes

output distribution should be compatible with statistical fluctuations around the a priori fraction

of the data sample and the simulated sample.

The output distributions for all NeuroBayes comparisons can be found in appendix B.

Besides testing the quality of the simulation, NeuroBayes provides the tools to identify the variables

which cause differences between the two samples. It comes with an automatic calculation of the

relevance of each variable to separate the two classes (see 5.1). In our case we are pointed directly

to the variable with the largest discrepancy between data and simulation.
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Figure 5.25: Left: Flat distribution given by the NeuroBayes comparion for the muon χ2. Middle:

Flat distribution of the distance of a track to the jet axis. For large distances effects of noise tracks

can be seen. Right: Comparison of the η distributions of data and Pythia 6 QCD MC. In the

barrel region η < 1.5 is a good agreement is observed. In the forward region large differences can

be seen.

For our analysis we can use this feature to test how well simulation describes data. This study was

done for all input variables and different triggers, because they correspond to different momentum

ranges. The result is shown in tables 5.14 and 5.15. The order of the variables is the same as in

the tables above, but for the description an abbreviation is taken. In the following I will use this

abbreviations. The entries represent the correlation coefficients to the target.

When looking at the results of the comparison, one can notice the following things: Larger values

represent more differences between data and simulations. This happens mostly for the muon

candidates, which implies that muons in jets are not well simulated. The main difference appear in

the χ2 values of the muon track fit (figure 5.25). The exact cause could not be identified, because

the muon objects contain different types of muons (see section 4.3.5) and it is possible that the

difference is effected by one single type. For a final clarification we have to wait for an update from

the CMS muon physics object group (POG).

Further we see an effect of the jet energy correction. Before the correction the discrepency is larger

than after (jetEnergyUCorr vs. jetPt). This effects also the variables calculated relative to the jet

energy, like the momenta of the tracks (PtRel and Ppar). If this quantities are normalized to the

jet energy, the fraction looks quite fine (trackPtRelFrac and trackPparFrac). So I decide only to

keep the normalized ones.

Another issue can be seen on the signed impact parameter variables. For the tracks the two

dimensional rφ- calculation is more reliable than the three dimensional one. Because the large

correlation between these, I decided to take only the two dimensional ones.

The most important difference can be seen in the distance between track and jet axis (figure 5.25).

Unfortunatly the variable is multiplied with a factor -1. But nevertheless we can see that in data

tracks with a very large distance to the jet axis were found. This could happen by noise tracks

which are connected to the jet object and not simulated in Monte Carlo. To reduce this noise I

applied a cut at d(jet, track) > −0.1.

Also the ΔR distribution of the vertex to the jet axis as well as the sum of the jet tracks is not

well simulated.

As already seen in the corrected jet spectrum of the transversal momentum is there a discrepancy

for the low energy jets. In addition also a difference on jet and track level in η is found. This is in

the forward region |η| > 1.5 (figure 5.25). For the construction of a b-jet tagger I will restrict to

the barrel region and pT > 84 GeV.
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name Jet15U Jet30U Jet50U Jet70U Jet100U Jet140U

trackMom 3.0 2.3 2.3 2.1 2.2 1.6

trackEta 2.7 2.5 2.9 2.7 2.8 2.6

trackSip2dSig 2.1 1.2 1.0 1.4 1.2 1.1

trackSip3dSig 5.9 4.4 3.6 4.6 5.0 4.9

trackSip2d 1.3 1.2 1.4 1.8 1.6 2.1

trackSip3d 5.8 3.9 3.5 4.5 4.9 5.1

trackLxy 6.3 4.3 3.4 4.3 3.8 3.9

trackPtRel 5.3 5.2 4.9 5.1 5.1 4.7

trackPpar 3.0 2.3 2.3 2.1 2.2 1.6

trackJetDeltaR 1.4 1.9 1.8 2.6 2.9 3.0

trackJetDist 8.0 6.3 5.0 6.4 6.6 6.8

trackPtRelFrac 0.8 0.8 0.8 1.6 2.0 2.3 ↗
trackPparFrac 0.8 0.8 0.8 1.6 2.0 2.3 ↗
trackChi2 4.3 3.0 2.8 3.3 4.4 5.2

trackPxHits 1.5 2.6 2.6 2.9 3.1 3.9 ↗
trackHits 1.5 3.1 2.6 3.4 3.9 4.8 ↗
trackBDist 6.9 5.5 4.6 5.8 5.8 6.2

trackBdistSig 5.9 4.7 3.7 4.6 4.8 4.9

trackBweight 6.6 5.1 3.9 5.1 5.1 5.2

muonMom 1.5 5.0 4.7 3.8 2.6 2.1

muonEta 3.1 1.1 7.2 6.3 4.1 4.0

muonPhi 1.3 1.3 1.3 1.3 2.8 2.6

muonSip2dSig 2.4 2.3 1.4 1.0 1.0 1.5

muonSip3dSig 0.9 1.8 1.6 2.0 1.4 3.3

muonPtRel 6.9 7.6 9.3 6.9 6.3 6.3

muonEtaRel 5.8 5.8 5.9 4.5 5.7 4.8

muonJetDeltaR 5.8 4.9 4.1 3.2 3.5 3.8

muonJetPpar 6.9 7.6 9.3 6.9 6.3 6.3

muonJetPparFrac 1.4 4.7 5.4 4.3 3.0 2.8

muonChi2 7.4 8.1 10.5 9.5 9.8 11.3

eleMom 0.4 1.1 1.3 2.2 1.5 2.2

eleEta 2.5 0.9 0.4 1.6 1.4 1.4

elePhi 0.7 0.2 1.2 1.1 0.7 2.1

eleSip2dSig 1.1 0.8 1.1 1.6 1.8 2.7

eleSip3dSig 2.3 0.8 0.5 2.3 0.5 3.2

elePtRel 5.7 5.1 4.5 4.2 4.4 4.0

eleEtaRel 3.6 3.3 3.7 3.8 3.9 4.5

eleJetDeltaR 4.2 3.8 4.4 4.4 4.3 4.5

eleJetPpar 5.7 5.1 4.5 4.2 4.4 4.0

eleJetPparFrac 1.2 1.1 1.1 1.8 1.0 1.4

eleChi2 3.0 3.3 2.8 3.7 4.4 4.1

Table 5.14: Result of the data versus MC comparison. The single values represent the correlation

coefficients of the listed variables to the target (data/MC). Larger values mean larger differences

between data and simulation. In the last column some variables are marked with a small arrow.

This illustrates that the differences between data and MC increase for the different jet momenta.
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name Jet15U Jet30U Jet50U Jet70U Jet100U Jet140U

eleId 1.2 1.5 1.9 2.2 2.2 1.8

eleZpos 3.7 3.0 3.9 3.8 2.5 1.6

eleInvDeltaR 5.3 3.2 4.1 3.0 3.3 3.1

eleGSFDif 1.1 1.5 0.3 1.1 0.2 0.5

eleBrem 1.1 0.6 0.9 1.4 1.7 2.2

vertexMass 1.7 2.9 3.2 3.1 3.7 3.4

vertexPVDist2d 2.9 1.5 3.8 2.5 2.7 4.9

vertexPVSig2d 1.8 1.4 2.0 1.3 0.6 1.4

vertexPVDist3d 1.7 1.0 2.5 2.1 2.4 4.5

vertexPVSig3d 1.8 1.8 2.0 1.3 0.4 1.4

vertexJetDeltaR 4.9 3.9 4.1 5.2 5.0 6.6

vertexJetEFrac 1.9 4.0 3.3 2.7 2.9 1.2

vertexNtracks 3.1 2.9 1.6 1.9 2.0 3.4

vertexTrackDeltaR 7.0 7.0 7.7 8.5 9.2 8.0

vertexTrackEFrac 2.4 3.5 4.1 3.5 3.2 3.7

vertexCategory 1.6 1.6 0.2 0.2 0.3 1.5

jetPt 2.8 0.6 0.2 0.2 0.2 0.4

jetEnergyUCorr 3.8 3.8 4.2 3.6 3.6 2.6

jetEta 3.8 3.9 4.3 3.9 3.8 3.1

jetPhi 1.3 1.7 2.0 2.0 2.2 2.3

jetNTrack 5.6 5.4 5.3 5.0 4.5 3.8

jetNSV 0.2 0.2 0.3 0.1 0.4 0.3

jetNEle 0.7 0.9 1.7 2.8 2.8 3.7 ↗
jetNMuon 0.5 0.5 0.7 0.8 0.8 0.8

jetCSV 4.7 4.8 4.2 4.7 4.7 5.7

jetBProb 2.6 1.9 1.6 1.8 2.7 4.2

jetSSV 0.2 0.5 0.9 0.4 0.7 0.6

jetSSVP 0.6 0.6 0.8 0.6 0.9 0.8

jetMuonIP 0.9 1.5 2.6 3.6 3.7 4.4 ↗
jetMuonPt 1.4 2.2 3.3 4.0 4.1 4.8 ↗
jetTCHE 4.7 2.9 3.0 3.0 3.0 3.4

jetTCHP 5.3 3.5 3.3 3.8 3.7 4.1

Table 5.15: Result of the data versus MC comparison. The single values represent the correlation

coefficients of the listed variables to the target (data/MC). Larger values mean larger differences

between data and simulation. In the last column some variables are marked with a small arrow.

This illustrates that the differences between data and MC increase for the different jet momenta.

The bold values points to unexpected large differences between data and simulation.
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#t0 #t1 target 1 number of expected signal

calibration events events fraction input vars run time fraction in data

track 415465 225460 47.8% 19 615.4s 0.036

vertex 164335 104582 52.6% 11 68.97s 0.26

electron 175666 102353 51.4% 16 144.69s 0.041

muon 110388 73216 49.8% 11 43.89s 0.11

jet 117432 86813 51.0% 10 180.3s 0.033

boost 150077 173899 51.3% 10 146.15s

Table 5.16: Runtime of the different NeuroBayes calibrations. For the different trainings the

number of events and the target 1 fraction is listed. Because of the weighing of the events this

number does not correspond to the expected from the number of events. The last column shows

how long it takes to get the calibration of the NeuroBayes expert.

At last we should discuss the existing b-jet taggers. As constructed, the simple secondary vertex

b-jet taggers are well understood and very robust. The combined secondary vertex tagger is not yet

calibrated and therefore shows discrepancies in the comparison. The muon b-jet tagger is dependent

on the jet momentum. For larger jet momenta the differences between data and simulation rise.

To indicate to this I added an arrow symbol into the last column of the table. The electron b-jet

tagger only uses one variable of the electron properties. This variable looks also good. For the jet

probability tagger a larger discrepancy in the high pT region is found. The track counting taggers

show differences but in an acceptable size.

The complete overview of the input variables and how they compare between data and MC can be

seen in appendix A.

5.3.4 NeuroBayes data tagger (NBD)

In the last section we found a good agreement between data and simulations. This allows us to

create another kind of b-jet tagger: a data based b-jet tagger. The idea is to be less dependent

on the simulation of the background. The training is arranged in the same way as before, but for

target 0 data samples are used. Target 1 is again a simulated sample of b-jets. The data includes

correct background distributions, but also signal distributions. As shown in 5.2.1 for such a setup

it is also possible to transform the NeuroBayes output distribution to the signal probability if the

data is well described by MC.

We will see that a special preprocessing is needed to make the distributions comparable. I will

start explaining the alternative b-jet tagger based on data samples (NBD) which has the same

architecture as the classical MC based tagger (NBMC) described above. The NeuroBayes trainings

are set up with the same settings as before. There are only two differences: at target 0 the data

sample is used and for technical reasons the amount of statistics had changed. Table 5.16 shows

the statistics used for the calibrations.

In the following I start with the studies on the track level calibration. There I will point out

the special issues which appear for data based trainings. I will suggest a solution to reduce this

problem and go on with an updated setup for the rest of the calibrations.

Track The calibration of the NeuroBayes expert results in the output distribution shown in figure

5.26 on the left.

The result looks quite promising. The shape looks as we would expect it with a prominent sepa-

ration, which is caused by the large dependency on the track impact parameter. On the right side
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Figure 5.26: The output distributions of the data based training on track level on the left and for

a classical MC based training on the right.

of the distribution we have tracks, which mainly come from B hadrons, the signal events on the

left correspond to charged particles generated in the hadronization process. The main variation in

shape appear because of the differing amount of statistics used for the calibration of the expert and

the signal events present at target 0 for the NBD training. Let us have a more detailed discussion

of the two distributions.

The first obvious difference between MC training t1 and data training t2 is the enlarged gap for

large output values. The existence of signal events in target 0 leads to a shift of all output values.

Using the probability transformation, calculated in section 5.2.1, we find for the two training

scenarios the following dependency between the two output distributions:

od =
omc fmc/fd

1− P (S) + omc(P (S)(fmc + 1) + fmc/fd − 1)

od and omc are the output values of the two NeuroBayes experts. fmc and fd are the corresponding

fractions of the training sample f = N(T0)
N(T1) . P (S) is the unknown signal fraction of the data sample.

The enlarged gap on the right can be directly extracted from the equation. Assuming a maximum

value of omc = 1 for the MC based calibration the maximum of the data based training is limited

to

max(od) =
1

P (S) fd + 1
.

But we can also go a step further and transform the complete distribution of the MC based

training to an expected distribution for the data based training. For a fair comparison we applied

the two experts on another MC sample (Pythia 6, QCD DiJet, CMSSW 36X), which is statistically

independent from the samples used for their calibrations. The result is is shown in figure 5.27.

We see now a dominating structure produced by many tracks around 0.4. This is similar for the

NBD distribution and the NBMC distribution. In shape there is a small difference between the

two. The distribution consists of two peaking substructures.

The cause for this variation can be identified looking at the distributions of the input variables.

The movement of the substructure is an effect of the changed distribution of the transverse track

momentum relative to the jet axis pT,rel. The result of the former comparison is shown in figure 5.28

on the left. We found the differences between data and MC already by the data/MC comparison

introduced in section 5.3.3. In data we have more tracks at larger values than in MC. The jets in

data are broader than simulated in MC.
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Figure 5.27: The output distribution of the data based training is plotted. Further a comparison

of the distribution with the expectations from the NBMC training is shown. The NBMC output

distribution (gray) was transformed by the function introduced in the text.
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Figure 5.28: The left plot shows the differences between data and MC. In data more tracks with

large pT,rel were found than simulated in MC. This effects also the classification of b-jets. The plot

in the middle shows the purity of tracks coming from b-jets as calculated by MC, on the right the

extended purity of the NBD training is shown.
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This leads to a different purity estimate by the tagger calibrations at large pT,rel values. The

plot in the middle shows the purity as extracted for the MC based training. The relative number

of tracks from b-jets increases for large values. For the NBD training we can make a similar plot

which does not correspond to the purity. In the following I will call it extended purity α. Extended

means, that some signal events are present in the denominator, because of the construction of the

tagger, where signal is trained against data.

α =
NMC(S)

Nd +NMC(S)

NMC(S) is the number of signal events from MC simulation and Nd = N(B) + xN(S) is the

number of events from the data sample. Compared to the real purity the shape is more uniform

but should have the same variations at the same positions.

The right plot in figure 5.28 shows the α of the pT,rel variable. The shape is not more uniform than

in the middle plot, but is different in the large pT,rel value region. The fraction of signal events is

smaller. Knowing the differences between data and MC this is not surprising. We have less events

in this region in MC.

The question is now: How do such effects affect a b-jet tagger which is based on data? We still

achieve a good discrimination power. Also the probability interpretation is correct if we ask for

objects like they are simulated in MC. It is true that the probability to find these tracks from a

b-jet with large pT,rel is in reality smaller than expected from MC. But this does not mean that

there are less tracks from b-jets in reality - only less tracks which are simulated.

Having a just commissioned detector it is not expected to have everything in perfect state. Looking

at physics which is well known from other experiments we do not expect any new observation.

Almost all discrepancies between data and MC can point to problems in the simulation, wrong

assumptions for the resolution of detector components or efficiency calculations. Therefore we are

able to do a simple correction. Under the assumption that the fraction of our signal is correctly

simulated, and only the absolute numbers are wrongly simulated, we can do a reweighing of the

MC samples.

The weight factor can be extracted looking at the purity P (MC|xi) of the data/MC comparison

for the variables where we expect a correct simulated signal fraction. If we want to correct for more

variables we have to account for the correlations between them. Doing a NeuroBayes classification

gives us an estimate of the overall purity P (MC|ot). The application of the weights is similar to

a boost training where the weights for the data events are wD = 1. This is the focusing function

Ff = 1
P (MC|ot) . The weights for the MC events are:

wMC =
1− P (MC|ot)
P (MC|ot) .

A correct handling of this weights needs a detailed study of the input variables and the data.

This is a ambitious goal but not really achievable. A big step could be made with the application

of weights extracted from a overall data/MC comparison. The weights can be calculated with

a NeuroBayes expertise. The sample will be corrected on the level of the comparison. For all

inclusive subsamples still differences can occur.

Finally we apply the weights calculated from an overall data/MC comparison for the construction

of the NBD b-jet tagger. Figure 5.29 shows how the distributions compare after this correction.

The two distributions become more similar. This means that it is worth to correct the MC samples.

On the other hand we still found some differences. There is a clear structure on the left, where

more tracks appear than expected from MC. It seems that we found another discrepancy between
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Figure 5.29: The output distribution of the data based training is plotted. For the calibration

a correction of the MC distributions was applied. Further a comparison of the distribution with

the expectations from the NBMC training is shown. The NBMC output distribution (gray) was

transformed by the function introduced in the text.

data and MC. This points to differences between data and MC of the inclusive distributions of

b-jets or non-b-jets.

This implies two things for the data based b-jet tagger. If these discrepancies are caused by

insufficient simulation of the background processes we have a strong argument to do this correction.

We will profit from the situation that for the NBD we are independent from the background

simulations. This leads to an improvement for the b-jet tagger.

On the other hand it is also possible that the b-jet simulations are inadequate. Then the data

based training leads to a misinterpretation of the sample. The probability interpretation is only

valid for MC b-jets. Further real but not simulated b-jets are treated as background. To solve this

problem a more general model of the signal distributions has to be developed.

In the following I decided to add another preprocessing step, where I calculate the weights to apply

them for the correction. The very good knowledge on b hadrons and the excellent studies of b-jets

at other experiments makes me believe in good simulations of this inclusive class.

The additional preprocessing must be included for all data based b-jet tagging classifications.

Vertex Figure 5.30 shows the output distributions of the secondary vertex classification for the

NBD training and the expectation from the NBMC. The distributions looks similar to what we

expect. We see a large gap on the right, caused by the signal events present in the target 0 (black)

distribution. The shift is larger than for the tracks. This is expected because a reconstructed

secondary vertices is already a good indication of a b-jet. Therefore in the target 0 sample a large

fraction of secondary vertices from b-jets is present. From MC simulations we expect 26% of

b-jets.

Further I will point to the number of tracks associated to the secondary vertex. The distributions
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Figure 5.30: A comparison of the NeuroBayes output distributions of the NBD vertex training

with the expectations from the NBMC training is shown. On the right a correction is applied on

the MC sample.

of this illustrates the behavior in the NBD training very well. Figure 5.31 shows the purity of the

variable as used for the NBMC training on the left and the same for the extended purity of the

NBD training. For all bins we see a shift to the center. Especially for the 100% purity bins on the

right the shift caused by the purity extension is nicely visible.

The values of these bins can be taken to make a rough estimate of the signal fraction. The extended

purity α is around 0.8. We assume that the bins contain only signal: α = 1/(P (S)+1). This leads

to a signal fraction around 25%, which agrees with the expectations from MC.

Leptons Figure 5.32 shows the improvements we get after applying the corrections for the cal-

ibrations on lepton level. It is interesting, that for the electron candidates the weighing is not

needed to get a result similar to the expectations.

Jet We have all NeuroBayes calibrations of the jet objects in a good state and it is possible to

take them for the final jet classification. Again we do the corrections. The weights were determined

from the data/MC comparison. The result of the calibration can be seen in figure 5.33. The left

plot shows the output distribution on the trained sample, while the right shows it on a independent

sample. The method seems to work very well.

To finalize the data based b-jet tagger in a last step the boost training was performed. The

improvements are similar to the the MC based training. The performance is plotted in figure 5.34.

In summary we created two different b-jet taggers. The first one is based on MC samples while

the second uses data instead of background simulations. Both b-jet taggers are competitive to the

existing ones or even better. More important are the comparisons between data and MC. With

these studies we have a complete understanding of the tagger, which leads to a good belief in a

accurate functionality for further analysis.

In the following I will present a first use case of the new b-jet tagger in an inclusive b-jet cross

section measurement. But also further applications are imaginable, especially for the data based

b-jet tagger. Above all in most of the analyses where signal has to be separated from a large

amount of QCD background this ansatz is an interesting alternative to the usual approaches. In

many cases the background distribution consists of many not perfectly known subprocesses. With
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Figure 5.31: The left plot shows the purity of the number of tracks associated to the secondary

vertex for the NBMC training. On the right the same is shown for the extended purity of the NBD

training. Especially for the 100% purity bins on the right the shift caused by the purity extension

is clearly visible.
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Figure 5.32: The output distributions of the data based training are plotted. The upper plots show

the distributions when no correction is applied on the left for electron candidates and on the right

for muons. The lower plots show the same with corrections.
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Figure 5.33: Left: the output distribution of the NBD training. This expertise applied on an

independent sample results in the distribution plotted on the right. It is similar to the one expected

from MC.
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the data based approach one is able to bypass a detailed study on background and focus on the

signal study.



Chapter 6

b jet cross section measurement

In this chapter I will present the analysis of the inclusive b-jet cross section measurement. As

introduced in section 2.2 a measurement of this quantity is of large interest. It is important for

searches of particles which decay into b-quarks. In the Standard Model we know three particles

with this property. The t-quark, which decays to a b-quark with almost 100% probability, the

Z boson, which is able to decay to a bb̄ pair, and the W boson, where such a decay is strongly

suppressed. In addition, as a fourth particle of the Standard Model, the expected Higgs boson

is able to decay into bb̄ pairs. For these and many of the new particles from models beyond the

Standard Model the b-quark is an important indicator. Thus b-quark processes are also a large

background source. With the results of an b-jet cross section measurement it is possible to scale

the background for such analysis in a more reasonable way.

But also the analysis of the b-jet quantity itself is very interesting. Around 20 years ago, the same

measurement was on the way to cause a sensation. The detectors at the hadron collider SPPS

and Tevatron found a difference between theory and experiment (see section 2.2.3). New physics

models were discussed, but in the end a recalculation of the next to leading order predictions solved

this disparity and were approved by the Tevatron Run 2 experiments.

Among other things the old miscalculations were caused by an inadequate knowledge of the frag-

mentation functions and the parton distribution functions. These are still not understood com-

pletely today. A measurement of the b-jet cross section will give us a verification of the established

model. Above all it is possible to test the QCD calculations in transverse momentum space, which

is achieved by the collisions at LHC. Another discrepancy between experiment and theory will

bring us closer to the discovery of physics beyond the Standard Model.

This chapter includes different approaches for such a measurement. In the first part I will describe

the method as published in [CMS10e]. The last two sections will deal with updates done on the

extended data and a alternative approach for a b-jet cross section measurement with the use of

NeuroBayes.

6.1 Recent b cross section measurement at CMS

In the first part of this section I review the recent status of the CMS b-jet cross section measurement

at an integrated luminosity of 60 nb−1 [CMS10e]. I performed this analysis together with colleagues

from the CMS collaboration. Here the main parts are taken as published. Some information was

added to bring it into the context of this thesis.

The review starts with the specification of the collected data at that time. The procedure of b-jet

tagging is presented for a very small amount of data. It follows the measurement of the b-jet purity

105
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and the b-jet efficiency. To get the final result, detector effects are unfolded. The uncertainties

will be discussed.

6.1.1 Event and jet selections

The inclusive jet data was collected using a combination of Minimum Bias and single jet triggers

(see section 4.1), which are consecutively used in the lowest pT range where the triggers are fully

efficient. Dependent on the samll amount of data events the quality selection was applied similar

to that presented in section 4.5.

The pT spectra from individual triggers are normalized using luminosity estimates [CMS10h] and

then combined into a continuous jet pT spectrum. The integrated luminosity corresponds to 60

nb−1. Only one trigger is used per each pT bin, to simplify the analysis. The raw pT spectra

are unfolded using the ansatz method [BBK71; FFF78], with the jet pT resolution obtained from

MC. The uncertainty of the jet pT resolution is estimated using a comparison of dijet pT balance

between data and MC [CMS10f].

6.1.2 b-tagging

The b-jets are tagged using a secondary vertex high-purity tagger (SSVHP [CMS10a]). The sec-

ondary vertex is fitted with at least three charged particle tracks. A selection on the reconstructed

3D decay length significance is applied, corresponding to about 0.1% efficiency to tag light flavor

jets and 60% efficiency to tag b-jets at pT = 100 GeV.

The b-tagging efficiency and the mistag rates from c-jet and light jet flavors are taken from the MC

simulation and constrained by a data/MC scale factor determined from data. This b-tag efficiency

measurement relies on semileptonic decays of b-hadrons, the kinematics of which allow for discrim-

ination between b and non-b-jets. Fits to the distribution of the relative transverse momentum

of the muon with respect to the jet direction enable the extraction of the flavor composition of

the data, and ultimately the efficiency for tagging b-jets. The mistag rate from light flavor jets is

constrained separately by a study using a negative-tag discriminator [CMS10a].

The production cross section for b-jets is calculated as a double differential,

d2σb−jets

dpT dy
=

NtaggedfbCsmear

εjetεbΔpTΔyL ,

where Ntagged is the measured number of tagged jets per bin, ΔpT and Δy are the bin widths in

pT and y, fb is the fraction of tagged jets containing a b-hadron, εb is the efficiency of tagging

b-jets, εjet is the jet reconstruction efficiency and Csmear is the unfolding correction. εjet, εb and fb

are all calculated from MC in bins of reconstructed pT and y, for consistency with the data-based

methods. The correction factor Csmear unfolds the measured pT back to particle level using the

ansatz method, used also for the inclusive jet cross section measurement and described in [CMS10h].

b-tagging efficiency

The b-tagging efficiency with the selections used in this analysis is between 6% and 60% at pT >

18 GeV and |y| < 2.0. The efficiency rises at higher pT as the b-hadron proper-time increases. The

efficiencies estimated from MC are shown in Fig. 6.1. To smoothen out statistical fluctuations, the

b-tagging efficiency in each rapidity bin is fitted versus pT , and the fit result is used in the analysis.
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Figure 6.1: b-tagging efficiency in different rapidity bins.

b-tagged sample purity

The b-tagged sample purity is estimated using two complementary approaches. In the first method,

the invariant mass of the tracks associated to the secondary vertex, denoted secondary vertex

mass, is computed after the SSVHP selection. A fit to the secondary vertex mass distribution is

performed, taking the shapes for light, c and b-jets from simulation and letting free the relative

normalisations for c and b-jets, while fixing the small contribution from light jets to the MC

expectation (“template fit”). This fit allows for a robust estimate of the b-tagged sample purity

and constrains the mistag rate uncertainty from c jets. An example of the template fits is shown

in Fig. 6.2.

In the second method the b-tagging efficiency εb as well as the mistag rates for light flavor εl and

charm εc are estimated from MC. These are shown in Fig. 6.3. Multiplied by the expected relative

fractions of b-jets Fb, c jets Fc and light flavor jets Fl, also shown in Fig. 6.3 in the inclusive jet

sample (without b-tagging), the tag rates can be used to calculate the expected purity as

fb =
Fbεb

Fbεb + Fcεc + Flεl
.

The b-tagging efficiencies of c and light jets in Fig. 6.3(left) are multiplied by their relative frequency

to b-jets to illustrate the rough relative contributions of Fbεb, Fcεc and Flεl to the b-tagged sample

at pT ≈ 100 GeV. The resulting estimates of b-tagged sample purity from data and from MC are

shown in Fig. 6.4. The data and MC are found the be in good agreement, with an overall relative

data/MC scale factor measured to be 0.976±0.022 (0.996±0.030) for b-jets in the pT range 18–220

GeV (18–84 GeV) and rapidity |y| < 2.0.

Given the good agreement between data and MC, the central values for purity are taken from MC

to properly take into account the pT and y dependence.

b-tagging uncertainty estimates

The leading uncertainties for the inclusive b-jet production are those coming from jet energy scale,

luminosity, b-tag efficiency, and mistag rates. The 11% luminosity uncertainty [CMS10g] cancels

completely in the ratio to the inclusive jet pT spectrum, and the JEC uncertainty produces only a
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Figure 6.2: Example of secondary vertex mass fits.
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Figure 6.4: The b-tagged sample purity obtained using fits to secondary vertex mass (left). The

b-tagged sample purity estimated using b-tagging efficiency and mistag rates from MC (right).

small residual uncertainty due to differences in pT spectra and jet fragmentation between inclusive

jets and b-jets.

The leading remaining uncertainties for the ratio between b-jet and inclusive jet production are the

b-tagging efficiency and the charm mistag rate, both of which are currently in essence statistical

uncertainties from the data-based methods to constrain the b-tagging efficiency and the b-tagged

sample purity, and the b-jet specific JEC. The light quark mistag rate has a significant contribution

to the total uncertainty at high pT and forward rapidities, but is otherwise negligible due to the low

mistag rate. The inclusive jet energy scale, on the other hand, only contributes at pT < 30 GeV,

where the b-jet spectrum flattens while the inclusive jet spectrum is still exponentially falling.

The b-tagging efficiency measurement relies on semimuonic decays of b-hadrons. The limiting

factors for this measurement are the limited number of SSVHP tagged jets containing a muon, the

uncertainty in the c- and light template shapes and the systematic uncertainty in generalizing the

efficiency measured on semileptonically decaying b-jets to all b-jets. The obtained scale factor is

0.98± 0.08(stat)± 0.18(syst) for jets with pT > 20 GeV and |y| < 2.4 [CMS10a].

The uncertainty on b-tagging efficiency arising from poorly known relative contributions of flavor

creation (FCR), flavor excitation (FEX) and gluon splitting (GS) has also been studied in detail.

The relative angle ΔR between the b-hadrons is strongly dependent on the production mechanism.

The b-hadrons produced by GS, in particular, tend to be close to each other in ΔR, which leads

to a reduced efficiency of the SSVHP tagger. This uncertainty is estimated by varying the relative

contributions in MC within ±50%, constrained by studies of the ratio between secondary vertex

energy and b-jet energy, which is sensitive to the contributions of FCR+FEX (large ratio) compared

to GS (small ratio). The b-tagging efficiency as a function of the ΔR distance between the b-jets

is shown in Fig. 6.5(left). The variation versus ΔR is observed to be up to 25%, but combined

with the maximal variations of the GS and FCR+FEX by ±50% shown in Fig. 6.5(right) this

uncertainty is found to be less than 2%.

The b-tagging efficiency uncertainty is dominated by the statistical uncertainty in the data-driven

method. The uncertainty is conservatively taken as the statistical uncertainty of 8% in quadrature

with the 18% systematic uncertainty and the 2% from the data/MC scale factor of 0.98 that is not

applied in this analysis, giving 20% as the total systematic uncertainty for the b-tagging efficiency.
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Figure 6.5: The b-tagging efficiency variation versus ΔR between b-hadrons (left). Distribution of

ΔR between b-hadrons for ±50% variations of GS and FC+FEX (right).

It should be noted, however, that the robustness of the decay length observable can degrade at

pT > 200 GeV, which should be taken into account in future updates of the analysis that start to

probe this kinematic region.

An additional 10% uncertainty at pT > 200 GeV is taken into account for this, with the extra

uncertainty log-linearly reduced to 0% at pT = 100 GeV.

The light quark mistag rate calculated by MC simulation has been validated on data by studies

using a negative-tag discriminator to within a systematic uncertainty of about 50% [CMS10a].

This uncertainty has been directly propagated to the light quark mistag rate used in the present

analysis. This uncertainty is only a few percent across most of the kinematic range, but grows up

to 15% at high pT in the most forward rapidity bins.

The charm mistag rate is constrained by the secondary vertex mass template fits, whose results are

shown in Fig. 6.4(left), with a data/MC scale factor of 0.976± 0.022. The template fit uncertainty

is conservatively taken as the statistical uncertainty of 2.2% added in quadrature with the 2.4%

from the data/MC scale factor of 0.976 that is not applied in this analysis, giving 3.3% as the total

systematic uncertainty for b-tagged sample purity. The systematic uncertainty for the template

fits due to fixing the light quark mistag rate to the MC prediction has been tested by varying

the light quark mistag rate by ±50% and was found to be negligible compared to the statistical

uncertainty. These studies constrain the charm mistag rate uncertainty to 20% or better, which

is then propagated into an uncertainty in the analysis. The resulting uncertainty is around 3–4%

and flat in pT and y.

The difference of inclusive jet and b-JEC was studied by using the MC truth after applying the

standard inclusive JEC. The residual difference in MC is less than 1% at pT > 30 GeV where the

b-JEC uncertainty contributes most, and the difference in data could be expected to be of the same

magnitude. Due to the steeply falling pT spectrum, a 1% b-JEC uncertainty leads to about 5%

uncertainty on the ratio of b-jet and inclusive jet cross section. Here it is interesting to note that

direct measurements done at CDF using Z → bb̄ observed a relative b-jet scale of 0.971 ± 0.011

[D+08]. The significantly smaller relative b-jet correction expected at CMS can be attributed to

the Particle Flow reconstruction, which natively includes muons from semileptonic decays and is

more robust against differences in jet fragmentation than the calorimetric jets used in the CDF
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Figure 6.6: Leading sources of systematics uncertainty for the b-jet cross section measurement at

|y| < 0.5 (top left) and at 1.5 ≤ |y| < 2.0 (top right), and for the ratio of b-jet and inclusive jet

cross section measurements at |y| < 0.5 (bottom left), and 1.5 ≤ |y| < 2.0 (bottom right). The

11% luminosity uncertainty is not shown.

measurement.

Figure 6.6 shows a summary of the leading sources of uncertainty for the b-jet cross section and for

the ratio of b-jet and inclusive jet cross sections. The contribution from luminosity uncertainty is

completely canceled out in the ratio, and the contributions from JEC and JER [CMS10f] are largely

reduced at pT > 20 GeV. The remaining leading systematics for the ratio are b-tagging efficiency,

relative b-jet scale and charm mistag rate, all contributing with similar weight and leading to a

flat total uncertainty of about 20% at pT > 20 GeV.

The reconstructed MC has been processed through the same analysis chain as the data, and the

results have been compared to the MC truth results. This closure test found overall agreement to

better than 1% (10%) at pT > 30 GeV (pT > 15 GeV) and |y| < 2.0. The worse closure test at low

pT can be explained by the large size (more than a factor of ten at pT < 20 GeV) of the b-tagging

correction at low pT , combined with relatively poor MC statistics (10% uncertainty at 10 GeV).
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Figure 6.7: Measured b-jet cross section compared to the MC@NLO calculation, overlaid (left) and

as a ratio (right). The Pythia prediction is also shown, for comparison.

6.1.3 Measurement

The measured b-jet cross section is shown as a stand-alone measurement in Fig. 6.7 and as a

ratio to the inclusive jet pT spectrum in Fig. 6.8. The inclusive jet NLO theory prediction is

calculated with NLOJet++ [Nag02] using CTEQ6.6M PDF sets [P+02] and fastNLO [KRW06]

implementation. The factorization and renormalization scales were set to μF = μR = pT . The

inclusive b-jet prediction is calculated with MC@NLO [FW02; FNW03] using the CTEQ6M PDF

set and the nominal b-quark mass of 4.75 GeV, giving a total b cross section of 238 μb. The

parton shower is modeled using Herwig 6.510 [M+92]. The results are compared to a NLO theory

prediction (MC@NLO) and to the Pythia MC (tune D6T [Fan07]), and are found to be in good

agreement with Pythia and in reasonable agreement with MC@NLO. The NLO calculation is found

to describe the overall fraction of b-jets at pT > 18 GeV and |y| < 2.0 well, but with significant

shape differences in pT and y.

Fitting the measured ratio of data to Pythia in the phase space window 30 < pT < 150 GeV and

|y| < 2.0 to a constant, we obtain a global scale factor of 0.99 ± 0.02(stat) ± 0.21(syst), where

the systematic uncertainty is a weighted average over all the bins contributing to the fit. The

fit has χ2/NDF = 43.4/47. Repeating the same fit for the ratio between reconstructed MC and

generator-level MC results in a scale factor of 1.009 ± 0.005 with χ2/NDF = 246/46, confirming

good closure of the analysis chain. Finally, the NLO/MC global scale factor is 1.04± 0.05.

The total b cross section of 238 μb from the MC@NLO calculation has a sizable uncertainty from

the choice of renormalization scale between μR = 0.5 and μR = 2 (+40%, −25%), from CTEQ

PDF variations (+10%, −6%), and from the choice of b-quark mass between 4.5 GeV and 5.0 GeV

(+17%, −14%). The dominant scale uncertainty is overlaid as an uncertainty band around the

MC@NLO prediction in Figs. 6.7(b) and 6.8.

The application of the former unfolding method is difficult to reuse. This is because of the strongly

falling pT spectrum, which is covered in the update measurement. The pT distribution ranges

many orders of magnitude, where the unfolding method leads to a bias to higher values. There

are ongoing studies to solve these problems. The b-tagging measurements can be updated to the

36/pb.
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Figure 6.8: Measured b-jet cross section as a ratio to inclusive jet cross section. The NLO theory

and Pythia MC predictions are shown for comparison.

6.2 Update of the flavor content fitter

In this section I will present the results of the b-jet cross section measurement using a flavor content

fit to extract the fraction of b-jets in a so called tagged sample. Tagged means, only jets with a

large probability to be a b-jet are selected. This is obtained by a cut on the significance, how likely

it is, that the secondary vertex has a lifetime. This is an important property of b-jets, because they

contain a decay vertex of long-lived B hadrons. To get the cross section right, further an estimate

of the b-jet efficiency for the tagged sample is needed.

In the following I will introduce in the method of template fitting, which is used for the flavor

content fit. Thereafter I will specify the area, where these fits are applied and present the results

dependent on different intervals in transversal momentum and rapidity of the jet.

6.2.1 Template fit

Just for completeness I describe here the method of a binned log likelihood fit. Given a histogram

with a known number of bins nbins filled with the values from the variable of interest, the statistics

di in each bin i follow a Poisson distribution. The goal of the binned log likelihood fit is to vary

the parameters p of a given model Fi to the most probable values. This is done by a minimization

of the extended log-likelihood function with TMinuit. The statistical uncertainties are calculated

by Minos. The binned log likelihood function is shown in the following equation:

−2 logL =

nbins∑
i=0

di · log(Fp,i)− Fp,i

There are different ways for the parametrization p. The parametrization must be chosen dependent

on the information one is interested in. The first parametrization (p = 0) estimates the number of

events for each template. For nt templates we have the same number of free parameters N0...Nnt
.

F0,i = Fi(N0...Nnt
) =

nt∑
k=0

Nktk,i
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Each parameter is an estimate of how many events of a template class k are in a given data sample.

The fit extracts the number of events and its statistical uncertainties.

The second parametrization (p = 1) tries to extract the fractions fk of events to the total num-

ber of events in the given data sample Ntot. Therefore Ntot is one of the free parameters. A

parametrization with all fractions fk is not possible. One fraction can be replaced by the others:

fk = 1−∑j �=k fj , because the sum of all fractions has to be 1.

Another difficulty is that the fractions have natural limits. They have to be between 0 and 1.

The goal is to have a parametrization which can take this into account. So it is only possible to

estimate one of the fractions r0 ∈ fk at one time.

F1,i = Fi(Ntot, r0...rnt−1) = Ntot

⎛
⎝nt−1∑

k=0

rktk,i

k−1∏
j=0

(1− rj) + tnt,i

nt−1∏
j=0

(1− rj)

⎞
⎠

In principle it is possible to estimate the values of one parametrization out of the parameters from

the other. Due to the asymmetric uncertainties of the values the error propagation is difficult and

an additional fit is more reasonable.

6.2.2 pT/|y| binning
Choosing the pT and y binning for a differential jet-cross-section measurement has to take two

conflictive aspects into account. On the one hand, one wants to make a very fine binning in order

to have enough well defined points to fit the assumed function to. On the other hand one has to

have enough statistics in each bin for doing reasonable template fits which yield the fraction of b

jets with a good enough precision.

Also it is not necessary to run over all MC samples for creating the templates. We only used the

ones which influence the statistics by more then 0.1%. Also we try to avoid isolated events with

very large weight. The different bins in pT and the MC sample selection for each bin is listed in

table 6.1. Further there is an additional binning into the barrel region |y| < 1.5 and the forward

region 1.5 ≤ |y| < 2.5 of the detector. Studies of a finer binning in rapidity need a merging of the

pT bins. For the update of the CMS physical analysis summary [CMS10e] such a study was done,

but is not presented in this thesis.

6.2.3 Fit results

The flavor content fit is performed to measure the fraction of b-jets in a tagged sample. An enriched

b-jet sample was used. Therefore the jet has to pass the tight woking point of the simple secondary

vertex purity b-jet tagger SSV P > 2. This represents a cut on the significance of the secondary

vertex flight distance [Sch08]. It is required that the vertex is reconstructed with at least three

tracks. The selection results in a pure sample of b-jets with a small fraction of light jets and c-jets.

This selection is motivated to reduce the systematic uncertainties of the flavor content fit using the

secondary vertex mass mSV . Therefore we have to require a well understood secondary vertex.

Figure 6.9 shows the distribution of the simple secondary vertex purity b-jet tagger and the vertex

mass as published for the CMS commissioning in [CMS10a]. There is a good agreement between

data and MC

The flavor content fits are performed in the different bins of the transversal momentum pT . Three

templates for b-jets, c-jets and light-jets were created for each pT /y region for the final result. As

a cross check the b-jet fraction was also estimated with two templates (b-jet and non-b-jet). The

results were the same in the statistical context. Table 6.2 show the results of the flavor content
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37 ≤ pT < 43 x x x x x x HLT Jet15U

43 ≤ pT < 49 x x x x x x

49 ≤ pT < 56 x x x x x x

56 ≤ pT < 64 x x x x x x

64 ≤ pT < 74 x x x x x x

74 ≤ pT < 84 x x x x x x

84 ≤ pT < 97 x x x x x x HLT Jet30U

97 ≤ pT < 114 x x x x x x

114 ≤ pT < 133 x x x x x x HLT Jet50U

133 ≤ pT < 153 x x x x x x

153 ≤ pT < 174 x x x x x HLT Jet70U

174 ≤ pT < 196 x x x x x

196 ≤ pT < 220 x x x x x HLT Jet100U

220 ≤ pT < 245 x x x x x

245 ≤ pT < 272 x x x x x HLT Jet140U

272 ≤ pT < 300 x x x x x

300 ≤ pT < 330 x x x x x x x

330 ≤ pT < 362 x x x x x x x

362 ≤ pT < 1000 HLT Jet180U x x x x x x x

Table 6.1: selected bins for the analysis
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Figure 6.9: Distribution of the simple secondary vertex high purity b-jet tagger and the corre-

sponding vertex mass reconstructed with at least three tracks.
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3 templates 2 templates

pT range [GeV] fb err(stat) fb err(stat)

37 ≤ pT < 43 0.718 0.014 0.719 0.014

43 ≤ pT < 49 0.722 0.017 0.721 0.017

49 ≤ pT < 56 0.747 0.019 0.750 0.019

56 ≤ pT < 64 0.761 0.022 0.761 0.022

64 ≤ pT < 74 0.745 0.027 0.742 0.027

74 ≤ pT < 84 0.815 0.037 0.815 0.038

84 ≤ pT < 97 0.741 0.013 0.741 0.013

97 ≤ pT < 114 0.719 0.016 0.720 0.016

114 ≤ pT < 133 0.693 0.008 0.691 0.008

133 ≤ pT < 153 0.713 0.012 0.713 0.012

153 ≤ pT < 174 0.720 0.011 0.717 0.011

174 ≤ pT < 196 0.702 0.015 0.702 0.015

196 ≤ pT < 220 0.729 0.016 0.727 0.016

220 ≤ pT < 245 0.689 0.024 0.690 0.023

245 ≤ pT < 272 0.678 0.026 0.685 0.025

272 ≤ pT < 300 0.671 0.035 0.671 0.034

300 ≤ pT < 330 0.710 0.044 0.712 0.045

330 ≤ pT < 362 0.735 0.061 0.755 0.065

362 ≤ pT < 1000 0.584 0.072 0.581 0.070

Table 6.2: Fractions of b-jets in a tagged jet sample extracted by fitting on the secondary vertex

mass distribution

fits. The statistical uncertainties are also quoted. Further the result for the three template fit is

plotted in figure 6.10. The fit result of each bin can be seen in appendix D.

Within its statistical limitation the fit results agree with the expected distribution. The expectation

values are calculated from the samples which were used to determine the templates for the fit.

For the high pT jets we see an overestimation of the b-jet fraction. To explain this the spectrum

was studied dependent on the number of primary vertices existing in the event. The result of this

is shown in figure 6.11 for the bins with enough statistics.

In line with the statistics it is possible to argue that the more flat distribution is caused by the

existence of more than one primary vertex. These could be effects of an underlying event [CMS10i]

or additional proton-proton interactions (pile up). To clarify this issue finally, more statistics is

needed.

At last we tried to study the purity dependent on their rapidity. Therefore we had to reduce the

number of bins in pT to get sufficient statistics. The result is plotted in figure 6.12.

Again we find a good agreement between data and simulations.

6.2.4 Systematic uncertainties

In this section studies on the systematic uncertainties of the fitting procedure are presented.

Template statistics

The basic idea is that each template has a random status of the truth distribution for a given

number of events. Each bin content fluctuates around an unknown truth mean μ. The fluctuations

follow a Poisson distribution. The disagreement between these values and the truth contributes as
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Figure 6.10: Result for the pT spectrum determined by the flavor content fitter for |y| < 2.5. The

parametrization is chosen to measure directly the b-jet fraction for tagged jets (p = 1). Only

statistical errors are shown in this figure.
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Figure 6.11: Study of the dependency on pile up effects. The histograms show the b-jet fraction

of a tagged sample for different numbers of primary vertices. The statistics is too low to claim a

final conclusion.
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Figure 6.12: The plot show the measured dependencies of the b-jets in pT and |y| determined by

the flavor content fitter. There is a agreement between data and simulations.

a systematic effect to our fitting procedure.

To estimate this systematics we vary the templates by changing the content of each bin with a

random number following a Poisson distribution with the mean of the original bin value. These

new templates are fed to the flavor content fitter. This is done many times. The results of such a

variation can be seen in figure 6.13. The fit results vary around the original fit value. The width

of this distribution can be taken as an estimate for the systematic uncertainty σtempStat.

Figure 6.14 shows the systematic uncertainty σtempStat we presumed for the different bins. The

systematics in the forward region are higher due to the smaller statistics in this region. Further we

see a rise over pT . This rising drops, when a bin is reached where a different Monte Carlo sample

is used. This confirms the decision to use only the most relevant samples for a specific pT regions.

Overall the effects of large weights contribute to this kind of systematic uncertainty.

c and light fractions

The shapes of the templates look very similar for c-jets and light jets. The flavor content fit was

performed with two and also with three templates. As shown in table 6.2 the result of both is the

same for all fitting regions. The result for the b-jet fraction is independent fo the usage of the two

or three template method.

Besides the measurement of the b-jet fraction it is also interesting to analyze the c-jet fraction.

With the result of the three template method we also get an estimate on this quantity. Figure 6.14

shows on the right the fraction of the c-jets fc. To calculate the c-jet fraction in the sample the

fitted values must be multiplied by the non-b-jet fraction.

fc = rc(1− fb)

Dependent on the selections to get a pure b-jet sample the statistics for measuring this is poor

and we get large statistical errors. A detailed study on fc is not part of this thesis. Nevertheless
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Figure 6.14: The plot on the left shows the variance of the flavor content fit, if the templates were

varied within their statistical uncertainties. These contribute to the systematics. On the right

the fraction of c-jets fc is computed and compared to the MC expectations. The good agreement

allows a more strict estimate on the uncertainty caused by badly simulated c-jets.
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the agreement between data and simulations in the statistical context leads to a small systematic

uncertainty involved by a possibly defective c-jet contribution. Using the three template method,

systematic uncertainties caused by this are covered by a study of the variations of the template

bin statistics.

6.2.5 Tagging efficiencies from Monte Carlo simulation

As described above, the jets are required to have a SSVHP discriminator greater than 2.0. This is

the “tight” working point suggested by the b-tagging group. This cut rejects most of the light-jets

which might not be well simulated in MC and could introduce huge differences between the light

content of the data sample and the MC light-template. But on the other hand one has to measure

the efficiency for a b-jet passing this discriminator requirement for each pT /|y| bin. Since the

statistics on data is to low for an efficiency measurement, this is done on MC.

The b-tagging efficiency εb is defined as:

εb =
Nbtagged

Nbtagged
+Nbdumped

where Nbtagged
is the number of b-jets passing the SSV HP > 2.0 cut and Nbdumped

is the number

that fail this cut. So one only has to count the number of b-jets passing the cut and the number

of those which are cut away.

Figure 6.15 shows the efficiency extracted from the Pythia 6 QCD Monte Carlo samples for the

different bins.
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Figure 6.16: Normalized distribution for the number of b-jets extracted by the flavor content fit.

The values are compared with a Pythia 6 QCD TuneZ2 expectations. There is good agreement.

6.2.6 Updated result

In the previous sections I showed the updates I did for the single parts of the analysis. Now we

have to combine the results of all colleagues working at other parts of this analysis to get the final

b-jet cross section measurement. Due to these constraints, for this thesis it was not possible to get

this result.

Unfortunately the unfolding procedure does not work as expected for the increased statistics.

The steeply falling pT spectrum leads to a systematic effect while applying the ansatz fit. More

discussion in the collaboration and maybe an alternative approach are needed to produce a final

result.

Nevertheless I will present a picture of the measurement, where the all inputs are combined, but

without performing the unfolding. Let us have a look at the differential b-jet cross section:

d2σb-jet

dpT dy
=

Njet fb

εb
∫ L · Cunfold

ΔpTΔy
=

Nb-jet∫ L · Cunfold
ΔpTΔy

.

We have already measured the b-jet purity fb and the number of jets Njet. From our CMS

colleagues we get the results of the measurements of the integrated luminosity
∫ L. The b-jet

efficiency is still extracted from MC. Apart from the unfolding correction factor we are able to

create a normalized histogram for the number of b-jets. Figure 6.16 shows the determined values.

In addition the expected distribution calculated by Pythia 6 QCD TuneZ2 is drawn. No disagree-

ment between data and MC is found.

At last I will give an outlook at the expected b-jet cross section distribution. As claimed before the

unfolding procedure is not yet accomplished. The plot in figure 6.17 shows the result with updated

statistics.

The result is compared with MC@NLO simulations. Due to the unfolding challenge values are only

calculated up to a certain threshold.
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Figure 6.17: The complete analysis of the b-jet cross section measurement was updated. Most

subparts are updated. The update of the purity measurement presented here is included. Having

all analyss together a similar plot will go for publication.

6.3 NeuroBayes application

The methods presented for the b-jet cross section measurements do not yet use NeuroBayes at all.

There are different possibilities to do this analysis with the use of multi variate analysis techniques.

The apparent is the use of the NeuroBayes b-jet tagger, which was presented in this thesis. In the

following I will describe, how the flavor content fit method can be changed for the new b-jet tagger.

6.3.1 NeuroBayes template fit

The obvious application of the NeuroBayes b-jet tagger is to use the discriminator variable within

the flavour content fitter. There are different possibilities to include this tagger.

It is possible to change the target of the template fit. Recently the distribution of the secondary

vertex mass was used. The secondary vertex mass is a reliable variable for analysis on early data.

It has an adequate separation between b-jet and non-b-jets. Further it has a understandable shape,

which makes it easier to notice possible problems. For first data the secondary vertx mass was a

good choice.

Now we have studied all variables which are useful for b-jet tagging. The reconstruction software

has been calibrated and we found a good agreement between data and simulations (see section

5.3.3). This allows us to use another variable with more discrimination power instead of the

secondary vertex mass.

Further we can use another variable for the selection of the subsample which is used for the

template fit. Therefore the simple secondary vertex b-tagger must be replaced by a new one. The

cut down of the sample was made to reduce a possible dependency on badly simulated background

distributions. But the application of this cut had its prize. The sample was reduced not only
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Figure 6.18: Exemplary result of the flavor content fitter. Target distribution is the NeuroBayes

b-jet tagger output. On the left the result of the fit to data distribtuion of the three different

classes is shown. The right plot shows the ratio between fitted templates and data distribution.

in light-jets and c-jets, but also in b-jets. For the b-jet cross section analysis an estimate on the

b-tagging efficienciy εb is needed. For the recent measurement we took the expectation value from

MC. This was necessary, because the accuracy we got by an efficiency estimate on data was not

good enough. We did not gain by such a measurment.

Now we have enough data for a reasonable analysis of the b-tagging efficiency. Such measuments

will be done at CMS coordinated by the b-tagging group (BTV POG) for all official CMS b-jet

taggers. Unfortunately the new NeuroBayes b-jet tagger is not yet official. A measurement of its

efficiency is planned at our institute in the future.

In the following I will present what happens if the flavour content fit (FCF) is applied to the whole

data sample without a preselection. The FCF is used in the usual settings with three templates

for light-jets, c-jets and b-jets. For the templates the inclusive distributions of the NeuroBayes

combined b-jet tagger, which was introduced in section 5.3.2, are used. Figure 6.18 shows an

exemplary result of a specific pT /y bin, representative for all bins (see appendix E).

On the left the template distributions are plotted with a logarithmic scale on the y-axis. The

amount is scaled to the numbers extracted from the fit. In black the data points are plotted for

an easy comparison. It is already visible that in the central region we miss some jets. The plot on

the right confirms this. Here the ratio between data and the final fit distribution is plotted.

It seems that the MC distribtuions are not as well simulated as expected. For small values of

the NeuroBayes output distribution ot ≈ 0.05 − 0.1 we found an excess of jets in data. This is

in a region dominated by light jets. It seems that they appear at larger ot values than expected.

Because of the large fraction of light jets this effects the fit of the other two templates. Jets from

the other two classes are needed to compensate the missing light-jets. In our case this leads to

an overestimation of c-jets. In the central region we can see this. The fit expects more jets than

available in data. At last the b-jet template fits the rest of the distribution not yet covered by the

c-template. The fitted fraction tends to be smaller than the expected values form MC.

Figure 6.19 shows the result of the flavour content fitter applied in all pT /y bins for b-jets. All fit

results lie below the expectations.

The simulations are not good enough for the application of the flavor content fitter at this level.

A more detailed study on inclusive light jet distributions is needed to identify the objects which
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Figure 6.19: The flavour content fitter was used with the NeuroBayes b-jet tagger. the result of the

fit in different pT /y bins is shown. No preselection on the sample was applied. The NeuroBayes

variable is sensitive on differences between b-jets and non-b-jets. Due to the differences in the

inclusive shapes no convincing fit result is found. The bad application of the fittting procedure

points to an insufficient simulation of the jet distributions.
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cause the shape differences between data and MC.



126 CHAPTER 6. B JET CROSS SECTION MEASUREMENT



Chapter 7

Conclusion

The modeling of b-quark production is one of the most challenging topics in elementary particle

physics. Although the theory behind, QCD, was developed in the 1960s it was not possible to

predict the correct heavy quark cross sections for a long time. Especially for the b-quarks this leads

to curious discrepancies between measured results from experiments compared with insufficient

predictions. In the 1990s the experiments at Tevatron (Run 1) as well as the experiments at

LEP claimed an excess in b-quark appearance. Not until the revision of the next to leading

order calculations, where the expansion of large logarithmic terms were incorporated, and the

enhancement in the parametrization of the non-perturbative parts acceptable calculations of QCD

were found. Following this measurements at the CDF detector during Tevatron Run 2 approved

these calculations.

Today we redid the old CDF measurements at the CMS experiment. In contrast to the results

at that time, further improvement on the theory were included. At HERA the proton structure

function was measured in detail. This enables a further, more accurate verification of the theory.

The analysis published so far was done with very early CMS data with an integrated luminosity of

60/nb. The results were also presented in this thesis. We found an overall good agreement between

data and Pythia in the jet transverse momentum range 30 < pT < 150 GeV and rapidity |y| <
2.0, within about 2% statistical uncertainty and 21% systematic uncertainty. In comparison with

NLO@MC predictions we found significant differences in shape.

Furthermore this thesis presented the measurements on the b-jet purity for an update of the recent

CMS analysis. The update includes the experiences of one year data taking which results in an

integrated luminosity of 36/pb. The result will be published in the near future.

I showed, that the results from the recent and the updated measurement base on the simple

secondary vertex b-jet tagger. This is a very robust tagger developed for the use on early data.

For further improvements of the b-jet cross section analysis it is recommended to move to a more

powerful tagger. For this a new b-jet tagger was constructed. This b tagger uses the multi variate

analysis framework NeuroBayes.

The layout and the features of the NeuroBayes framework were described in detail in this thesis.

I presented new multi variate tools based on NeuroBayes, which allows us to compare data and

Monte Carlo simulations. These tools facilitate a quick and easy search for unexpected aspects

of the data. This comparison was done for jets in the b-jet specific phase space. A good overall

agreement was found.

This knowledge enabled the construction of a data based b-jet tagger. With this specific approach

it is possible to ignore the possibly badly simulated background events from Monte Carlo. Instead,

127
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this information is taken from the data sample.

I showed that it is further possible to correct for the small difference of the data/MC comparison.

The correction factor was calculated from output values calculated by the NeuroBayes expertise.

Further improvements were made by the so called boost method, which optimizes the classification

for a pure b-jet selection.

The final data based b-jet tagger was compared to existing b taggers from the CMS collaboration.

This is usually done on the different working points called loose, medium and tight, which corre-

spond to the values in b tag efficiency calculated at mistag rates of 10%, 1% and 0.1%. Compared

to the official b-jet probability tagger (JBP) I found efficiency improvement of 3%, 7% and 29%.

The new b-jet tagger is an additional tool for many analyses planned at the CMS experiment.

Especially the possibility to identify b-jets with a small rate of misidentification qualifies for studies

of heavy particles which decay in b-quarks. For SUSY searches, exotic particles and top physics

the use of this tagger may play a decisive role.

The full output of the new b-jet tagger is a strongly discriminating variable for inclusive jet dis-

tributions. Thus a measurement of the b-jet appearance was arranged. A large dependency on

the light jet contribution was found. For a final result more detailed studies of the background

distributions are needed. With this the measurement of the differential b-jet cross section can be

improved.



Appendix A

Distributions of b-jet tagging

variables

The following plots contain the distributions of all variables used in this thesis. The variable

name is labeled on the x-axis as defined in section 5.3. The plots are sorted in the same order as

introduced. The first plots show the data (black) and MC (red) distributions of each variable. For

an quick and easy comparison the variables are plotted many times: in the first column they are

the classical histograms (partly with logarithmic y-axis). The last three columns show the result

of the probability integral transform: for data/MC, nonb-b-jet MC/b-jet MC and data/b-jet MC.
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Appendix B

Results of data to Monte Carlo

comparison

The figures show the output distributions of the NeuroBayes experts, which were calibrated to

compare physics objects from the detector (black) and simulated objects, created with Pythia

6 QCD Tune2Z event generation [SMS06] (red). The number of QCD events and Monte Carlo

events are in the same order, so the a priori fraction is around 0.5. It is a good indication that

the separation of the two classes is small. Nevertheless events with small values of the NeuroBayes

output variable represent a kind of event which are underestimated in simulation. Events in the

region around 0.5 are well simulated and events with larger values of the NeuroBayes output variable

are overestimated in the simulation. The width of the output distribution is a measurement of the

MC quality. If it is too broad, it is necessary to look into more detail of the related input variables.

For each physics objects: tracks, secondary vertices, electron candidates, muons and jets the com-

parison was done in the six different trigger regions. The following plots show their output distri-

butions of the NeuroBayes experts.
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Figure B.1: Result of the comparison of data and MC for track objects
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Figure B.2: Result of the comparison of data and MC for vertex objects
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Figure B.3: Result of the comparison of data and MC for electron candidate objects
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Figure B.4: Result of the comparison of data and MC for muon objects
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Figure B.5: Result of the comparison of data and MC for jet objects



Appendix C

Dependency check

In section 5.3.4 the differences between the data and the MC tagger were discussed. To visualize

the dependencies of the two approaches the following equation was deduced:

ot2 =
ot1 f1/f2

1− P (S) + ot1(P (S)(f1 + 1) + f1/f2 − 1)

To check the correct implementation the framework was tested. First on MC two NeuroBayes

calibrations were trained with different target 0 samples. Once with background simulations and

once with complete data simulations. The expected P (S) = 0.036. The result is plotted in a

scatter plot (figure C.1).

For the second test two NeuroBayes calibrations were trained on the same target but with different

sample fraction. The result is also plotted to each other in a scatter plot. Here the expected

P (S) = 0. Figure C.1 confirms that the determined dependency is correct.
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Figure C.1: Dependency check for two NeuroBayes calibrations trained on different scenarios. Left:

signal events where added to the target 0 sample. On the right only the fraction of two samples

changes. The points follow the red line which confirms the determined dependency equation.
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Appendix D

Fit histograms of flavour content

fitter

The following histograms show the fits of the flavour content fitter. Each plot corresponds to a

region in which the procedure was performed. It starts with the low pT in the barrel region of the

detector. After that the results for the forward regions are shown.

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

100

200

300

400

500
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 43 GeV≤
T

37 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

50

100

150

200

250

300 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 49 GeV≤
T

43 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0
20
40
60
80

100
120
140
160
180
200
220

data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 56 GeV≤
T

49 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

20

40

60

80

100

120

140 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 64 GeV≤
T

56 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

10

20

30

40

50

60

70

80

90
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 74 GeV≤
T

64 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

10

20

30

40

50
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 84 GeV≤
T

74 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

50

100

150

200

250

300

350

400

450
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 97 GeV≤
T

84 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

50

100

150

200

250
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 114 GeV≤
T

97 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

200

400

600

800

1000

1200
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 133 GeV≤
T

114 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

147



148 APPENDIX D. FIT HISTOGRAMS OF FLAVOUR CONTENT FITTER

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

100

200

300

400

500

600 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 153 GeV≤
T

133 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

100

200

300

400

500

600

700 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 174 GeV≤
T

153 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

50

100

150

200

250

300
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 196 GeV≤
T

174 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

50

100

150

200

250

300

350

400 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 220 GeV≤
T

196 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

50

100

150

200

250
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 245 GeV≤
T

220 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

50

100

150

200

250

300
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 272 GeV≤
T

245 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

20

40

60

80

100

120

140

160
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 300 GeV≤
T

272 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

20

40

60

80

100

120
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 330 GeV≤
T

300 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

10

20

30

40

50

60
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 362 GeV≤
T

330 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

20

40

60

80

100
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 1000 GeV≤
T

362 GeV < p

 1.5≤|y|

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

20

40

60

80

100

120

140 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 43 GeV≤
T

37 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

10

20

30

40

50

60

70

80 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 49 GeV≤
T

43 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

10

20

30

40

50

60

70 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 56 GeV≤
T

49 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

5

10

15

20

25

30

35
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 64 GeV≤
T

56 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

5

10

15

20

25
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 74 GeV≤
T

64 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb



149

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

2

4

6

8

10

12

14

16 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 84 GeV≤
T

74 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

20

40

60

80

100
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 97 GeV≤
T

84 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

10

20

30

40

50

60

70
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 114 GeV≤
T

97 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

50

100

150

200

250 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 133 GeV≤
T

114 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

20

40

60

80

100

120 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 153 GeV≤
T

133 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

20

40

60

80

100

120

140
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 174 GeV≤
T

153 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

10

20

30

40

50

60

70

80

90
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 196 GeV≤
T

174 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

10

20

30

40

50

60

70

80
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 220 GeV≤
T

196 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

5

10

15

20

25

30

35

40 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 245 GeV≤
T

220 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

10

20

30

40

50

60 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 272 GeV≤
T

245 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

5

10

15

20

25
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 300 GeV≤
T

272 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

2

4

6

8

10

12

14

16

18
data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 330 GeV≤
T

300 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

1

2

3

4

5

6

7

8

9 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 362 GeV≤
T

330 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb

0 5 10 15 20 25 30

nu
m

be
r o

f j
et

s 
/ 0

.3
1 

G
eV

0

2

4

6

8

10

12 data

pythia6 QCD b-jet

pythia6 QCD c-jet

pythia6 QCD light jet

 1000 GeV≤
T

362 GeV < p

 2.5≤1.5 < |y| 

secondary vertex mass [GeV]
0 1 2 3 4 5 6 7 8 9 10

 = 7 TeVs-1CMS private work, 39 pb



150 APPENDIX D. FIT HISTOGRAMS OF FLAVOUR CONTENT FITTER



Appendix E

Fit histograms of NB flavour

content fitter

The following histograms show some of the fits of the flavour content fitter. Each plot corresponds

to a region in which the procedure was performed. The bins are chosen in a way that it is possible

to see the effect of the insufficent distributions in the whole pT /y phase space.
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Zuletzt möchte ich noch all denen danken, ohne die die Anfertigung dieser Arbeit nicht möglich
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immer hilfsbereit zur Seite standen und es ermöglichten, uns in der komplexen Welt der CMS
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neben den Referenten: Prof. Dr. Wim de Boer, Prof. Dr. Johann Kühn und Prof. Dr. Gerd
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