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Preface

Photonic crystals are refractive materials with a certain periodic structure in

one, two or three linearly independent dimensions. The behaviour of light in such

media strongly depends on its frequency. At so called “forbidden frequencies” lying

in the band gap of a particular photonic crystal no wave propagation is possible.

Such effects allow for applications in photonics and optics. For the prediction of

photonic crystal properties one relies on a model of an infinite crystal with perfect

periodicity. By the Floquet-Bloch transformation the Maxwell eigenvalue problem

for the propagating frequencies in an infinite domain is reformulated into a set of

eigenvalue problems in the elementary cell, parameterised by the quasi-momemtum

k. The relation between quasimomentum and eigenfrequencies is the well-known

band structure.

The aim of this thesis is to develop adaptive techniques to deal with the family

of eigenvalue problems. In one or two space dimensions there is a lot more that can

be said about the problem compared with the three-dimensional case. In Section

1 of Chapter II we pose the problem in more detail. We then focus on the two-

dimensional elliptic eigenvalue problem and develop a convergent algorithm for fixed

k and a chosen eigenvalue (Section 2 of Chapter II). In the same Chapter, in

Section 3, we investigate what can be done in a posteriori error estimation when

the dielectricity function has jumps that are not aligned with the discretisation.

This is a difficult mathematical topic that has not been treated successfully so far.

The last theoretic task of Chapter II is in Section 4. It is to develop an algorithm

to perform the entire band structure calculations adaptively and use as little as

possible computer resources, i.e. a suitable combination of a discrete set of Floquet

parameters where the eigenvalue problem is solved and an adaptive finite element

mesh for the eigenvalue problems.

In three dimensions there are many more difficulties involved in each eigenvalue

problem because the associated operator is no longer elliptic. In Chapter III, we

consider the corresponding boundary value problem and give a brief review of what

methods can be used to discretize the Maxwell equations in three dimensions using

H1 conforming finite elements. Our main results concerning the a posteriori error

estimation are valid for the full 3d curl curl system. However, the a priori results

vii



are only stated for the 2d curl curl system for which we perform the numerical

experiments. In 3d these results would be more involved.
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CHAPTER I

Introduction

1. Problem statement

1.1. Maxwell’s equations. The propagation of light inside a photonic crystal

is governed by Maxwell’s equations, which in the absence of free charges and currents

is the following system of partial differential equations

(1.1)

∇×E(x, t) = − 1

c

∂B(x, t)

∂t
,

∇×H(x, t) =
1

c

∂D(x, t)

∂t
,

∇·B(x, t) = 0,

∇·D(x, t) = 0,

where E is the electric field, H is the magnetic field, D and B are the displacement

and magnetic induction fields, respectively, and c is the vacuum speed of light. All

vector fields are functions from R3 × R to R3. Henceforth a bold font denotes a

vector quantity.

For a physical explanation and a detailed problem statement, we refer to [25].

We consider only the case of a linear medium. For such a medium there are two

linear constituitive laws, that relate D to E and B to H as

(1.2)
D(x, t) = ε(x) E(x, t)

B(x, t) = µ(x) H(x, t).

In this way, any linear dielectrical material is determined by two properties, the

electric permittivity ε and the magnetic permeability µ.

We assume that the medium has no frequency dependence (material dispersion),

which means that ε and µ are functions of position x only. To keep things simple,

we furthermore restrict to the case of isotropic and lossless media, which amounts

to saying that ε and µ are scalar real-valued positive functions.

Since the common choice of materials for photonic crystals do not possess any

magnetic property, we assume that µ = 1. Inserting the relations (1.2) into (1.1),

1



2 I. INTRODUCTION

we obtain a simplified form, where we only keep two out of four vector fields:

(1.3)

∇×E(x, t) = − 1

c

∂H(x, t)

∂t
,

∇×H(x, t) =
1

c
ε(x)

∂E(x, t)

∂t
,

∇·B(x, t) = 0,

∇·
(
ε(x) E(x, t)

)
= 0,

From the time-dependent problem we go to the time-harmonic form. This as-

sumption simplifies the problem, but does not restrict the generality of the approach,

because from Fourier analysis it follows that any solution can be modeled by har-

monic modes. Monochromatic light of frequency ω can be modeled by

(1.4)

E(x, t) = <
{
eiωtẼ(x)

}
,

H(x, t) = <
{
eiωtH̃(x)

}
,

where Ẽ and H̃ are complex vector fields. Substituting (1.4) in (1.3) we obtain a

system of differential equations describing the propagation of light of frequency ω in

a photonic crystal:

(1.5)

∇× Ẽ(x) = − iω

c
H̃(x),

∇× H̃(x) =
iω

c
ε(x)Ẽ(x),

∇·H̃(x) = 0,

∇·
(
ε(x) Ẽ(x)

)
= 0.

System (1.5) is time-independent. Any frequency ω, such that (1.5) possesses a

nontrivial solution, is allowed to travel through the crystal. On the other hand,

light at a frequency, for which (1.5) does not possess a nonvanishing solution, cannot

travel through the crystal.

1.2. Polarized modes. In Chapter II, we will deal with 2d photonic crystals.

Here, we briefly illustrate how the system (1.5) can be simplified when the electric

permittivity function ε only depends on the first two components of x = (x, y, z),

such that we can write ε = ε(x, y).



1. PROBLEM STATEMENT 3

It is straightforward to conclude, that in this case the quantities Ẽ and H̃ in

(1.5) will also only depend on x and y. The system (1.5) thus becomes

(1.6)

∇× Ẽ(x, y) = − iω

c
H̃(x, y),

∇× H̃(x, y) =
iω

c
ε(x, y)Ẽ(x, y),

∇·H̃(x, y) = 0,

∇·
(
ε(x, y) Ẽ(x, y)

)
= 0.

Now, we would like to show how the system (1.6) naturally splits into two disjoint

subproblems, called TM and TE modes.

1.2.1. TM mode. Substituting in (1.6) the first into the second equation we ob-

tain:

(1.7) ∇×
(
∇× Ẽ(x, y)

)
= − ω2

c2
ε(x, y)Ẽ(x, y).

Denoting the components of Ẽ by (E1, E2, E3) and remembering that each one of

these components only depends on x and y, we can write the system (1.7) as

(1.8)

(E2)yx
− (E1)yy

= ω2

c2
ε E1,

− (E2)xx
+ (E1)xy

= ω2

c2
ε E2,

− (E3)xx
− (E3)yy

= ω2

c2
ε E3,

where the subscripts x and y mean differentiation along the indicated axes. The last

equation of (1.8) does not depend on the other two equations. We call this equation

the TM mode and after the substitution λ = ω2

c2
it can be written as

(1.9) L E3 := −∆E3 = λ ε E3.

1.2.2. TE mode. To obtain the TE mode we again start with the system (1.6).

This time we substitute the second equation into the first one to obtain:

(1.10) ∇×
(
ε(x, y)−1∇× H̃(x, y)

)
= − ω2

c2
H̃(x, y).

This system again possesses an equation that is independent of the other two equa-

tions. This time it can be written as

(1.11) −∇·(ε−1∇H3) = λH3,

where H3 is the 3rd component of H̃ and λ = ω2

c2
.

1.3. Periodic media and the band structure of a photonic crystal. Pho-

tonic crystals are periodic structures. We assume that a crystal is unbounded and

occupies the whole space R3, which is an abstraction that is justified, when we as-

sume that the whole crystal is very large compared to the size of a periodicity cell.



4 I. INTRODUCTION

A useful overview of mathematical approaches concerning photonic crystals is given

in [27].

Let d ∈ {1, 2, 3} and suppose that there exist linearly independent vectors

r1, . . . , rd, such that

ε(x + rj) = ε(x) for all x ∈ R
3, j = 1, . . . , d.

Then the medium is called a d-dimensional periodic medium (photonic crystal) and

the vectors rj with minimal lengths are called the primitive vectors. For such a

medium one may define the d-dimensional Bravais lattice

Λ :=

{
d∑

j=1

lj rj | l1, . . . , ld ∈ Z

}
.

A d-dimensional domain Ω is called fundamental domain if for any x ∈ Rd there

exists a ∈ Λ such that either a is unique and x + a ∈ Ω, or a is not unique and

x + a ∈ ∂Ω. So we may write

R
d =

⋃

a∈Λ

(
Ω̄ + a

)
,

where for two distinct a1, a2 ∈ Λ, Ω̄+a1 and Ω̄+a2 may only have a non-empty inter-

section along their boundaries. We now define primitive reciprocal vectors r̂1, . . . , r̂d,

such that

ri · r̂j = 2πδij for all i, j ∈ {1, . . . , d} ,

and the d-dimensional reciprocal lattice by

Λ̂ :=

{
d∑

j=1

lj r̂j | l1, . . . , ld ∈ Z

}
.

The domain B that consists of k ∈ Rd which are closer to the origin than to any

other â ∈ Λ̂ is called the Brillouin zone.

In Chapter II we focus on the solution of the equation (1.9). This is quite a

challenging task since the domain of the problem is the whole space R2. A standard

tool for the analysis of partial differential equations with periodic coefficients is the

Floquet transform (see [26]). The result of an application of this theory is, that the

spectrum of the unbounded operator L from equation (1.9) can be represented as

the union of spectra of differential operators Lper(k) on bounded domains

σ (L) =
⋃

k∈B

σ (Lper(k)) ,
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where B stands for the Brillouin zone and Lper(k) is a k-dependent partial differential

operator on a fixed domain. Its eigenpairs satisfy:

(1.12)
Lper(k)E3 = −(∇ + ik) · (∇ + ik)E3 = λ ε E3 in Ω,

E3(x + a) = E3(x), a ∈ Λ, x,x + a ∈ ∂Ω,

where Ω is a fundamental domain. For each k ∈ B, Lper(k) is a self-adjoint operator

with a discrete and positive spectrum

(1.13) 0 < λ1(k) ≤ . . . ≤ λj(k) → ∞, as j → ∞

and finite dimensional eigenspaces (cf. [21]). Furthermore, for each j ∈ N an

eigenvalue λj(k) of the operator Lper(k) is a continuous function of the parameter

k ∈ B (cf. [26]). λj(·) is called a band function and its graph is called a band. For

j ∈ N we define the j-th band Ij :=
{
λj(k) | k ∈ B̄

}
. Since B̄ is compact and

connected and the operator Lper(k) is symmetric, Ij is a compact real interval. This

gives another representation of the spectrum:

(1.14) σ (L) =
⋃

j∈N

Ij.





CHAPTER II

Adaptive bandstructure calculations

1. Approximating the bandstructure

We have seen in the preceding chapter, that the spectrum of the unbounded

operator L (introduced in equation (1.9) in Chapter I) is given by the union of all

values of all bandfunctions (cf. (1.14) in Chapter I). Given k ∈B we are seeking

solutions (λj(k), uk,j) to the following eigenvalue problem

(1.1)
−(∇ + ik) · (∇ + ik)uk,j = λj(k)εuk,j in Ω,

uk,j(x + a) = uk,j(x), a ∈ Λ, x, x + a ∈ ∂Ω.

Ω is regarded as a torus, i.e. opposite sides are identified with each other. We are

considering several ”band functions” j ∈ M (with M := {1, . . . , 4}, for instance) at

the same time. We are interested in choosing a sufficiently large and well distributed

discrete set of parameters {ki}Nk

i=1 ⊂ B hand in hand with a good adaptive mesh for

the eigenvalue problem such that

(1.2) ERROR := max
j∈M

‖λj(·) − λj,num(·)‖
C0(B) ≤ TOL,

where λj,num(·) suitably interpolates different approximated eigenvalues λj,n(ki) on

the discrete set {ki}Nk

i=1 and λj(·) stands for the exact band function.

2. The shifted Laplace eigenvalue problem for fixed k

In this section we focus on the approximation of the eigenpairs of equation (1.1)

for fixed k by means of the finite element method. For this purpose, we first need

some preparation and some notation.

2.1. Functional spaces, norms, and notation.

Definition 2.1. Let Ω be a bounded, simply-connected Lipschitz-domain. We

define the following spaces of infinitely differentiable functions:

C∞(Ω̄) :=

{
f : Ω → C | ∀ m, n ∈ {0} ∪ N, ∃ ∂m+nf

∂xm∂yn
is continuous

}
,

C∞
c (Ω̄) :=

{
f ∈ C∞(Ω̄) | supp (f) ⊂ K compact in Ω

}
.

7



8 II. ADAPTIVE BANDSTRUCTURE CALCULATIONS

For a polygonal domain Ω that has an even number of sides, such that opposite sides

have the same length and orientation, we additionally define

C∞
1 (Ω̄) :=

{
f ∈ C∞(Ω̄) | f(x + a) = f(x), a ∈ Λ, x,x + a ∈ ∂Ω

}
.

Furthermore, we define the following scalar products

(f, g)L2 =

∫

Ω

f ḡ,

(f, g)H1 =

∫

Ω

∇f · ∇g, +(f, g)L2

that induce the norms ||·||L2 and ||·||H1 , which we also denote by ||·|| and ||·||1,
respectively. Finally, we define

H1
per(Ω) := C∞

1 (Ω̄)
||·||

H1

.

We use standard notation for all Sobolev spaces W s,p(Ω) and their associated

norms and seminorms, see e.g. [1]. For p = 2 we denote Hs(Ω) = W s,p(Ω) and

H1
0 (Ω) := C∞

c (Ω̄)
||·||

H1

. Furthermore, we denote ||·||s,Ω = ||·||s,2,Ω and ||·||Ω = ||·||0,2,Ω.

Throughout the thesis, we shall use C to denote a generic positive constant which

may stand for different values at its different appearances. At times, we write A . B

to denote A ≤ CB, for some constant C that is independent of mesh parameters.

2.2. Weak formulation. We define the following bilinear forms

(2.1)

ak(u, v) :=

∫

Ω

(∇ + ik)u · (∇ + ik)v for all u, v ∈ H1
per(Ω),

ak,σ(u, v) := ak(u, v) + σb(u, v) for all u, v ∈ H1
per(Ω),

b(u, v) :=

∫

Ω

ε u v for all u, v ∈ L2(Ω),

where ε is assumed to be a piecewise smooth function that is bounded from above

and below by positive constants ε, ε̄

(2.2) ε ≤ ε(x) ≤ ε̄ for all x ∈ Ω.

The norms associated to the bilinear forms, we denote in the following way

(2.3) |||v|||a,k,σ := {ak,σ(v, v)}1
2 ,

(2.4) ||v||b := {b(v, v)} 1
2 .

For fixed k, the weak formulation of problem (1.1) is the following problem.

Problem 2.2. Seek eigenpairs (λj , uj) ∈ C × H1
per(Ω), with ||uj||b = 1 and

(2.5) ak(uj, v) = λj b(uj , v) for all v ∈ H1
per(Ω).



2. THE SHIFTED LAPLACE EIGENVALUE PROBLEM FOR FIXED k 9

We also define a problem, where the spectrum is shifted by σ. In this way we

are able to deal with a coercive bilinear form on the left-hand side.

Problem 2.3. Seek eigenpairs (ζj, uj) ∈ C × H1
per(Ω), with ||uj||b = 1 and

(2.6) ak,σ(uj, v) = ζj b(uj , v) for all v ∈ H1
per(Ω).

Note that the shift σ defines the relation (ζj, uj) = (λj + σ, uj), which is a one-

to-one relation between the spectra of Problems 2.2 and 2.3.

2.3. The finite element method and interpolation estimates. We let

Tn, n = 1, 2, . . ., denote a family of triangular meshes on Ω, such that

(2.7) Ω =
⋃

T∈Tn

T.

In other words, we assume that Ω has a polygonal boundary. We assume that for each

n, Tn+1 is refinement of Tn. For a typical element T ∈ Tn, its diameter is denoted by

hT,n. We denote the maximal diameter in a triangluation by hmax
n := maxT∈Tn

hT,n.

hn denotes the function whose restriction to an element T is hT,n. All the meshes

are assumed to be conforming and shape regular in the meaning explained in [10].

On any mesh Tn we denote by Vn ∈ C0(Ω)∩H1
per(Ω) the finite dimensional space of

piecewise polynomials, i.e.

(2.8) Vn :=
{
vh ∈ C0(Ω) ∩ H1

per(Ω) | vh|T ∈ Pr(T ) for all T ∈ Th

}
.

Unless specified otherwise, we are dealing with linear polynomials in this chapter,

i.e. r = 1 in the above definition.

We denote by Fn the set of all the edges of the elements in Tn. Moreover, we

denote by hF the length of an edge F ∈ Fn. We use the following notation to denote

element patches:

(2.9) ω(T ) :=
⋃

{T ′ ∈ Tn | T ′ ∩ T 6= ∅} ,

(2.10) ω(F ) :=
⋃

{T ′ ∈ Tn | T ′ ∩ F 6= ∅} .

Assumption 2.4. There exists an interpolation operator Πh : H1
per(Ω) → Vn

with the following properties:

(2.11) ‖v − Πhv‖0,T ≤ ChT |v|1,ω(T )

and

(2.12) ‖v − Πhv‖0,F ≤ Ch
1
2
F |v|1,ω(F ) .

Furthermore we assume that the following stability estimate holds

(2.13) ‖v − Πhv‖Hl(Ω) ≤ C |v|Hl(Ω) , 0 ≤ l <
3

2
.
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One possible choice of an interpolation operator that fulfills Assumption 2.4

would be the interpolation operator introduced by Clément in [12].

Remark 2.5. The Scott-Zhang interpolation operator introduced in [33] satisfies

(2.11) and (2.12), however it satisfies (2.13) only for 1
2
≤ l. It is on the other hand

a projection on Vn in the sense that:

(2.14) vn = Πhvn for all vn ∈ Vn.

We define the discrete solutions to Problems 2.2 and 2.3 as follows.

Problem 2.6. Seek eigenpairs (λj,n, uj,n) ∈ C × Vn, with ||uj,n||b = 1 and

(2.15) ak(uj,n, v) = λj,n b(uj,n, v) for all v ∈ Vn.

Problem 2.7. Seek eigenpairs (ζj,n, uj,n) ∈ C × Vn, with ||uj,n||b = 1 and

(2.16) ak,σ(uj,n, v) = ζj,n b(uj,n, v) for all v ∈ Vn.

2.4. A priori analysis. The following result, which we formulate as a Lemma,

is obvious.

Lemma 2.8 (Continuity). The bilinear form ak(u, v) and ak,σ(u, v), respectively,

introduced in (2.1) are continuous in the sense that

(2.17) ak(u, v) ≤ Ca ||u||1 ||v||1 ∀u, v ∈ H1
per(Ω),

(2.18) ak,σ(u, v) ≤ Ca,σ ||u||1 ||v||1 ∀u, v ∈ H1
per(Ω).

Lemma 2.9 (Coercivity). With the choice σ = (maxk∈B
|k|2

ε
) + 1 and the norm

|||u|||a,k,σ = ak(u, u) + σb(u, u), we have the following coercivity estimate

(2.19) |||u|||a,k,σ ≥ c ‖u‖1 ∀ k ∈ B ∀u ∈ H1
per(Ω),

where ε = minx∈Ω ε(x) and c = min
{

1
2
, ε
}
.

Proof. We readily calculate

(2.20)

ak(u, u) :=

∫

Ω

(∇ + ik)u · (∇ + ik)u =

∫

Ω

|∇u|2 + |k|2
∫

Ω

|u|2

+ 2

∫

Ω

<
{
iuk · ∇u

}
.

It can easily be seen that

(2.21) <
{
iuk · ∇u

}
≤ |u|

∣∣k · ∇u
∣∣ ≤ |u| |k| |∇u| ,

and thus

(2.22)

∫

Ω

<
{
iuk · ∇u

}
≤ |u|21

2
+ 2 |k|2 ‖u‖2 ,



2. THE SHIFTED LAPLACE EIGENVALUE PROBLEM FOR FIXED k 11

where we have used the arithmetic-geometric mean inequality 2αβ ≤ δα2 + β2

δ
with

δ = 1
2
.

Remembering that σ = (maxk∈B
|k|2

ε
) + 1 we see that

(2.23)
ak(u, u) + σb(u, u) ≥ |u|21

2
+ (− |k|2 + σε) ‖u‖2

≥ min

{
1

2
, ε

}
‖u‖2

1 .

�

Applying the Lax-Milgram lemma, we can deduce that for sufficiently large σ

there is a uniquely defined solution operator T : L2(Ω) → H1
per(Ω), such that

(2.24) ∀f ∈ L2(Ω), ak,σ(Tf, v) = b(f, v), for all v ∈ H1
per(Ω).

Since the imbedding H1
per(Ω) ⊂ L2(Ω) is compact, we can conclude that the solution

operator T in (2.24) is a compact operator. Since T is furthermore a self-adjoint

operator, we can apply the spectral theorem for compact self-adjoint operators to

conclude that T has a positive discrete spectrum and the eigenspaces to these eigen-

values are finite dimensional. To each eigenpair (µ, u) of T there corresponds an

eigenpair (µ−1, u) of (2.3), so that we can conclude that (2.3) also has a positive and

discrete spectrum. Because the spectrum of (2.2) is a shifted version of the spectrum

of (2.3), it is also discrete with finite dimensional eigenspaces.

We make an additional assumption:

Assumption 2.10 (H1+s regularity). There exists s ∈ (0, 1] and there exists a

solution

(2.25) v ∈ H1
per(Ω) ∩ H1+s(Ω)

for any f ∈ L2(Ω) to the following boundary value problem:

(2.26)
−(∇ + ik) · (∇ + ik)v(x) = f(x) for all x ∈ Ω,

v(x + a) = v(x) a ∈ Λ; x, x + a ∈ ∂Ω.

This solution is not unique in general.

Theorem 2.11 (Convergence with respect to uniform mesh size). Let s be as

given in Assumption 2.10. Let hn be sufficiently small and consider the eigenvalue

ζl ∈ C of Problem 2.3. If (ζl,n, ul,n) ∈ C × Vn is a computed eigenpair of Problem

2.7 with ζl,n converging to ζl, then the following statements hold:

(2.27) 0 ≤ ζl,n − ζl . (hmax
n )2s
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(2.28) ‖ul − ul,n‖L2(Ω) . (hmax
n )s |||ul − ul,n|||a,k,σ

.

If in addition ul,n ∈ Hm+1(Ω) with m ≥ 2 then we have the following estimates:

(2.29) |||ul − ul,n|||a,k,σ
. (hmax

n )min{m,r} ‖ul‖m+1 ,

(2.30) |ζ − ζh| . (hmax
n )2min{m,r} ‖uj‖m+1,Ω ,

where r is the degree of the polynomials in the piecewise polynomial space Vn intro-

duced in (2.8).

Proof. These are standard results that can be adapted to our case very easily.

The main tools can be found in [2]. �

Remark 2.12. Undoing the effect of the shift of the spectrum by σ, we obtain

the same kind of result for the convergence of the eigenpairs of Problem 2.2 to the

eigenpairs of Problem 2.6. We refer to [21].

Theorem 2.13 (Relation between eigenvalue and eigenfunction error). Let (ζj,h, uj,h)

∈ R × Vh be a solution of Problem 2.7 that approximates the eigenpair (ζj, uj)

∈ R × H1
per(Ω) of Problem 2.3. Then we have the following estimate:

(2.31) |ζj − ζj,h| .ak,σ(uj − uj,h, uj − uj,h).

Proof. This is a standard result that can for instance be found in [21]. �

2.5. A posteriori error estimation. Before we can formulate and prove the

main results of this section, we first need to define the error estimator. This requires

some notation.

Definition 2.14 (Jump of a function). For any sufficiently regular function

g : Ω → C and for any edge F ∈ F that is common for the elements T and T ′, we

define the jump of g along F by

(2.32) [g]F (x) = lim
x̃∈T, x̃→x

g(x̃) − lim
x̃∈T ′, x̃→x

g(x̃).

Definition 2.15 (Residual error estimator). On each element T ∈ Tn the fol-

lowing local error indicator is defined for an eigenpair (ζl,n, ul,n) ∈ C×Vn of Problem

2.7:

(2.33)

η2
Tn

((ul,n, ζl,n), T ) := h2
T ‖(∇ + ik) · (∇ + ik)ul,n + ζl,nεul,n‖2

T

+
1

2

∑

F⊂∂T,F∈Fn

hF

∥∥[∂nul,n + ikul,n]F
∥∥2

F
.
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On the whole domain Ω the error can be estimated by means of the following esti-

mator:

(2.34) η2
Tn

((ul,n, ζl,n), Ω) :=
∑

T∈Tn

η2
Tn

((ul,n, ζl,n), T ).

Definition 2.16. For g ∈ L2(Ω) we define the data oscillation as

(2.35) osc(g, Tn) :=

(
∑

T∈Tn

||hT,n(g − ḡT )||2
)1

2

,

where ḡT is a polynomial approximation of g on T .

Theorem 2.17 (Reliability of the estimator). Let (ζj,n, uj,n) ∈ C×H1
per(Ω) be a

simple eigenpair of Problem 2.7. Then we have the following error estimate:

(2.36) |||uj − uj,n|||a,k,σ
. ηTn

((ζj,n, uj,n) , Ω) + (hmax
n )s |||uj − uj,n|||a,k,σ

,

where s is from Assumption 3.1, and uj is the eigenfunction number j of Problem

2.3.

Proof. We readily calculate for arbitrary v ∈ H1
per(Ω) and arbitrary vh ∈ Vh,

that

(2.37)

ak,σ(uj − uj,n, v) = ζj b(uj , v)

+
∑

T∈T

∫

T

((∇ + ik) · (∇ + ik)uj,n + εζj,nuj,n) (v − vh)

−
∑

T∈T

∫

∂T

∂n(uj,n + ikuj,n)(v − vh) − ζj,nb(uj,n, v).

It is equivalent to

(2.38)

ak,σ(uj − uj,n, v) =
∑

T∈T

∫

T

((∇ + ik) · (∇ + ik)uj,n + εζj,nuj,n) (v − vh)

− 1

2

∑

T∈T

∫

∂T

[∂n(uj,n + ikuj,n)] (v − vh)

+ ζj b(uj , v) − ζj,nb(uj,n, v).
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We choose v := u − uj,n and define vh := Πhv, where Πh : H1
per(Ω) → Vn is the

interpolation operator satisfying Assumption 2.4. This yields:

(2.39)

|||uj − uj,n|||2a,k,σ

.

(
∑

T∈T

η2
T

)1
2

|uj − uj,n|H1(Ω)

+ ζj b(uj , uj − uj,n) − ζj,nb(uj,n, uj − uj,n)

.

(
∑

T∈T

η2
T

)1
2

|||uj − uj,n|||a,k,σ
+ (ζj + ζj,n) (1 + b (uj, uj,n))

=

(
∑

T∈T

η2
T

)1
2

|||uj − uj,n|||a,k,σ

+
ζj + ζj,n

2
b(uj − uj,n, uj − uj,n)

.

(
∑

T∈T

η2
T

)1
2

|||uj − uj,n|||a,k,σ
+ (hmax

n )2s |||uj − uj,n|||a,k,σ
.

Here we used that |uj − uj,n|H1(Ω) ≤ |||uj − uj,n|||a,k,σ
, and that b(uj, uj) =

b(uj,n, uj,n) = 1. We additionaly used the fact that the bilinear form b(·, ·) is her-

mitian and in the last step we employed (2.28) from Theorem 2.11. Dividing the

equation by |||uj − uj,n|||a,k,σ
leads to the result. �

Remark 2.18. The second summand in (2.36) is a higher order term. If hmax
n < 1

2

independent of n, then we can absorb the second term in (2.36) to get

(2.40) |||uj − uj,n|||a,k,σ
. ηTh

((ζj,n, uj,n) , Ω)

independent of n.

2.6. A convergent adaptive algorithm for the eigenvalue problem. In

this section we propose a convergent adaptive algorithm of the form

(2.41) SOLVE → ESTIMATE → MARK → REFINE

We will explain the different modules shortly.

We achieve convergence of the algorithm that we describe below by extending

the results from [17], which rely on a similar result for the corresponding boundary

value problem (cf. [9]), to our case of photonic crystals. An oscillation term as in

[22] is merely used in the analysis, however, we do not need to refine according to

this quantity as was proposed in that source.

Now we describe the different modules put forth in (2.41) that make up the

algorithm.
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2.6.1. The Module SOLVE. We do not discuss the step SOLVE in detail. We

simply assume that the finite dimesnional Problem 2.7 is computed exactly, i.e.

for given l ∈ N the eigenpair (ζl,n, ul,n) is computed via exact linear algebra and

exact integration. In Section 3 we will investigate the effect of solving Problem

2.7 employing quadrature schemes, though not in conjunction with a convergent

adaptive algorithm.

2.6.2. The Module ESTIMATE. We assume that given a triangulation Tn and

the solution (ζl,n, ul,n) ∈ R× Vn of Problem 2.7, this module outputs the local error

indicators as defined in (2.33):

(2.42) {ηTn
((ul,n, ζl,n), T )}

T∈Tn
= ESTIMATE((ζl,n, ul,n), Tn).

2.6.3. The Module MARK. Given a grid Tn, the set of indicators {ηT}T∈Tn
, and

a parameter θ ∈ (0, 1), we suppose that MARK outputs a subset of marked elements

M ∈ Tn, i.e.

(2.43) M = MARK((ζl,n, ul,n), Tn, θ),

such that

(2.44)
∑

T∈M

η2
Tn

((ul,n, ζl,n), T ) ≥ θη2
Tn

((ul,n, ζl,n), Ω).

This strategy was introduced in Dörfler [18].

2.6.4. The Module REFINE. We do not require the procedure REFINE to satisfy

the Interior Node Property as in [29], for instance. Instead, we assume that a

procedure REFINE is at our disposal, as described in [9] and [17]. It is some iterative

or recursive bisection of elements with the minimal condition on the refinement

condition that each element that is marked is bisected at least once.

The discussion above results in the following Algorithm.

Algorithm 2.19. (Adaptive convergent FEM to solve for (ζl, ul))

1: Choose 0 < θ < 1.

2: Choose an initial mesh T0.

3: SOLVE the eigenvalue Problem 2.3 on T0 to find the eigenpair (λl,0, ul,0).

4: Let n := 0

5: ESTIMATE: Compute the local error indicators {ηTn
((ul,n, ζl,n), T )}

T∈Tn
from

(2.33).

6: Mark a set M ⊂ Tn according to the the module MARK from Section 2.6.3 using

θ.

7: Refine Tn according to the procedure REFINE described in Section 2.6.4 to get

a new conforming triangulation Tn+1.

8: Solve Problem 2.3 on Tn+1 to find the eigenpair (ζl,n+1, ul,n+1).
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9: Let n := n + 1 and go to Step 5.

The above algorithm is fairly standard. We estimate according to a standard

residual error estimator and refine a number of elements in each step that con-

tribute a certain fraction of the overall estimated error. That the discrete eigenpair

in Algorithm 2.19 actually converges to the corresponding eigenpair of Problem 2.3

will be formulated in the next theorem, which is taken from [17]. Remark 2.9 of the

mentioned article clearly states that the result can be used for our eigenvalue prob-

lem by employing a shift as was done in Problem 2.3. The proof given in [17] uses

a similar result for an adaptive convergent algorithm to solve the boundary value

problem that corresponds to the eigenvalue problem, which is given in [9]. The

authors of [9] were the first to prove convergence of a standard adaptive algorithm

without the need to refine according to an oscillation term similar to the one intro-

duced in (2.35), when g is replaced by some terms appearing in the estimator, and

without any additional assumptions, such as a saturation assumption for instance.

Though no refinement needs to be done according to an oscillation term, these kinds

of terms still play some role in the convergence analysis.

Theorem 2.20 (Convergence of the adaptive finite element method). Let (ζl, ul)

be some simple eigenpair of Problem 2.7 and {(ζl,n, ul,n)}n∈N0
be the sequence of finite

element solutions produced by Algorithm 2.19. Then there exist constants γ > 0 and

α ∈ (0, 1), depending only on the shape regularity of the meshes, c and Ca, from

the continuity and coercivity estimates, respectively, and the parameter θ used by

Algorithm 2.19, such that for two consecutive iterates n and n + 1, we have

(2.45) |||ul − ul,n+1|||2a,k,σ
+ γη2

n+1 ≤ α2
(
|||ul − ul,n|||2a,k,σ

+ γη2
n

)
.

Proof. The proof can be found in [17]. �

3. Investigating the effect of quadrature

In Section 2 we assumed exact integration of all the integrals that had to be

evaluated in the solution process and in the a posteriori error estimation. Simple

quadrature formulas can be used if the finite element mesh, which we unlike in

Section 2.3 denote by Th, is aligned with the jumps of the function ε, i.e. if the

restriction of ε to any element T ∈ Th is a smooth function. We use in this section

the index h (instead of n) as the mesh size of the triangulation, so that the discrete

space denoted earlier as Vn now is denoted as Vh. hmax
n now simply is denoted by h.

We would like to study the effect of evaluating the integrals by means of quadra-

ture both in the assembly of the finite element matrices and in the error estimation.

We distinguish the cases where the mesh is aligned with the jumps of ε and where

it is not.



3. INVESTIGATING THE EFFECT OF QUADRATURE 17

Our notation will be similar to the one used in [10] and [5]. Throughout this

section we assume that the integral appearing in the bilinear form b(·, ·) is decom-

posed into its different contributions from different elements. On each element we

use a quadrature rule of the following form to evaluate integrals

(3.1)

∫

T

φ ≈
L∑

l=1

ωl,Tφ(xl,T ),

where we assume that the weights ωl,T and quadrature nodes xl,T are induced by a

quadrature rule on a reference triangle (see [10] for details). We furthermore assume

that there exists t ≥ 1, such that for each T ∈ Th there holds:

(3.2)

∫

T

φ =
L∑

l=1

ωl,Tφ(xl,T ) ∀φ ∈ Pt(T ),

where Pt(T ) denotes the space of polynomials of degree at most t. We then say that

the quadrature scheme has degree of precision t.

We are still interested in Problem 2.2 of the previous Section. That is why we

study the approximation of eigenpairs of Problem 2.3 by eigenpairs of Problem 2.7,

when the integrals that appear in Problem 2.7 are evaluated numerically. Actually,

instead of assuming that we approximate any given eigenpair (ζl, ul) by solving

Problem 2.7, we need to do a convergence analysis for the following discrete problem.

Problem 3.1. Seek eigenpairs (ζ̃j,h, ũj,h) ∈ C × Vh, with ||uj,h||b̃h
= 1 and

(3.3) ak,σ(ũj,h, vh) = ζ̃j,h b̃h(ũj,h, vh) for all vh ∈ Vh,

where for uh, vh ∈ Vh

(3.4) b̃h(uh, vh) :=
∑

T∈Th

L∑

l=1

ωl,T ε(xl,T )uh(xl,T )vh(xl,T ),

and

(3.5) ||vh||b̃h
:=
{
b̃h(vh, vh)

} 1
2

,

and the weights ωl,T and quadrature nodes xl,T are chosen, such that the scheme

has degree of precision t.

To accomodate an easy analyis we introduce a function ε̃ as an approximation

to ε. The restriction of ε̃ to an element T ∈ Th will be denoted by ε̃T and is defined

as the polynomial of least possible degree, such that

(3.6)

∫

T

ε̃T uh vh :=
L∑

l=1

ωl,T ε(xl,T )uh(xl,T )vh(xl,T ) for all uh, vh ∈ Vh.
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Since uh and vh are from the discrete space Vh, the point evaluations on the right-

hand side of equation (3.6) make sense. From this definition the following property

of the piecewise polynomial ε̃ follows:

(3.7)
b̃h(uh, vh) =

∑

T∈Th

L∑

l=1

ωl,T ε(xl,T )uh(xl,T )vh(xl,T )

=

∫

Ω

ε̃ uh vh for all uh, vh ∈ Vh.

Since we have assumed that the quadrature scheme that is employed has degree of

precision t ≥ 1, the following fact easily follows, which we formulate as an assump-

tion.

Assumption 3.2. The following convergence in L∞(Ω) for the function ε̃, defined

in (3.7), towards ε holds:

(3.8) lim
h→0

||ε − ε̃||L∞(Ω) = 0.

3.1. A priori estimates. The a priori analysis in the absence of exact integra-

tion uses the same tools as in the standard a priori analyis for eigenvalue problems

that can be found in [2] and [3]. The analysis has been carried out for smooth

coefficients in [5] and [6]. We quickly summarize the results corresponding to our

problem and show what can be achieved in the case of discontinuous coefficients.

We recall the definition of the solution operator T to a corresponding boundary

value problem from (2.24) in Section 2.4. We state it once more and define similar

operators for the discrete Problems 2.7 and 3.1.

Definition 3.3. Let the operators T , Th and T̃h be defined as in [3] with the

obvious modifications, i.e. T , Th: H1
per(Ω)→H1

per(Ω) are defined by

(3.9)





Tf ∈ H1
per(Ω)

ak,σ(Tf, v) = b(f, v) ∀v ∈ H1
per(Ω),

(3.10)





Thf ∈ Vh ⊂ H1

per(Ω)

ak,σ(Thf, vh) = b(f, vh) ∀vh ∈ Vh,

and T̃h : Vh → Vh is defined by:

(3.11)





T̃hf ∈ Vh ⊂ H1
per(Ω)

ak,σ(T̃hf, vh) = b̃(f, vh) ∀vh ∈ Vh

The eigenvalues of T are the reciprocals of the eigenvalues of Problem 2.3, and T

and Problem 2.3 have the same eigenfunctions. Similarly, the non-zero eigenvalues
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of Th and T̃h respectively, are the reciprocals of those of Problems 2.7 and 3.1,

respectively, and they have the same eigenfunctions. In our analysis of eigenvalue

error with quadrature we will compare T , Th and T̃h. T will be viewed as an operator

on H1
per(Ω) equipped with the norm |||·|||a,k,σ and T̃h as an operator on Vh. Th will

be viewed as an operator either on H1
per(Ω) equipped with the norm |||·|||a,k,σ or as

an operator on Vh. In Assumption 3.5 and Theorem 3.10 the operators T , Th and

T̃h will be viewed as acting on the same spaces as described above, though equipped

with the L2(Ω) norm.

Lemma 3.4 (Convergence of T̃h to T ). There holds

(3.12) lim
h→0

∣∣∣
∣∣∣
∣∣∣T − T̃h

∣∣∣
∣∣∣
∣∣∣
a,k,σ,Vh

= 0,

where for any linear mapping Ah : Vh → H1
0 (Ω) with Vh ⊂ H1

0 (Ω):

(3.13) |||Ah|||a,k,σ,Vh
= sup

g∈Vh

|||Ahg|||a,k,σ

|||g|||a,k,σ

.

Proof. As in [5] and [10], we apply the first Strang lemma. Since the bilinear

form ak,σ(·, ·) is not approximated, we can conclude that

(3.14)
∣∣∣
∣∣∣
∣∣∣Tf − T̃hf

∣∣∣
∣∣∣
∣∣∣
a,k,σ

. inf
vh∈Vh

||f − vh||H1(Ω) + inf
wh∈Vh

∣∣∣b(vh, wh) − b̃h(vh, wh)
∣∣∣

|||wh|||a,k,σ

,

for arbitrary f ∈ Vh arbitrary. Choosing vh := Πhf as the Scott–Zhang interpolation

operator (cf. Remark 2.5) we furthermore estimate for arbitrary w ∈ Vh:

(3.15)

∣∣∣b(Πhf, wh) − b̃h(Πhf, wh)
∣∣∣ ≤
∣∣∣∣
∫

Ω

(ε − ε̃) Πhf wh

∣∣∣∣

. ||ε − ε̃||L∞(Ω) ||Πhf ||L2(Ω) ||wh||L2(Ω)

. ||ε − ε̃||L∞(Ω) ||Πhf ||H1(Ω) ||wh||L2(Ω)

. ||ε − ε̃||L∞(Ω) ||f ||H1(Ω) ||wh||L2(Ω) ,

where we have used the stability of the interpolation Πh (2.13). Since Πh is a

projection onto Vh (cf. (2.14)) we conclude that

(3.16)
∣∣∣
∣∣∣
∣∣∣Tf − T̃hf

∣∣∣
∣∣∣
∣∣∣
a,k,σ

. ||ε − ε̃||L∞(Ω) ||f ||H1(Ω) .

Thus

(3.17)
∣∣∣
∣∣∣
∣∣∣T − T̃h

∣∣∣
∣∣∣
∣∣∣
a,k,σ,Vh

. ||ε − ε̃||L∞(Ω) ,

and we conclude that (3.12) holds from the fact that

(3.18) lim
h→0

||ε − ε̃||L∞(Ω) = 0,

that we have assumed in Assumption 3.2. �
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Assumption 3.5. We assume the following convergence result, when we consider

the operators T and T̃h for L2(Ω) norms:

(3.19) lim
h→0

∣∣∣
∣∣∣T − T̃h

∣∣∣
∣∣∣
0,Vh

= 0,

where for any linear mapping Ah : Vh → H1
0 (Ω) with Vh ⊂ H1

0 (Ω):

(3.20) ||Ah||0,Vh
= sup

g∈Vh

||Ahg||L2(Ω)

||g||L2(Ω)

.

Let F ∈ ρ(T ), the resolvent set of T , be a closed set. Then we additionaly assume

that

(3.21)

∣∣∣∣

∣∣∣∣
(
z − T̃h

)−1
∣∣∣∣

∣∣∣∣
0,Vh

≤ C, ∀z ∈ F, ∀ small h.

The following result, which can be found in [5], is also valid in the periodic case

that we are considering.

Theorem 3.6 (Convergence result in the case of quadrature and smooth coef-

ficients). Let m ∈ N, and (ζj, uj) ∈ C ×
(
H1

per(Ω) ∩ Hm+1(Ω)
)

be the solution of

Problem 2.3. Let (ζ̃j,h, ũj,h) ∈ C × Vh be its approximation, the solution of Problem

3.1, where the degree of precision of the quadrature scheme employed in the bilinear

form b̃h(·, ·) in equation (3.4) is supposed to be at least t = 2m− 1. Let furthermore

ε∈ C∞
per(Ω̄). Then for h sufficiently small we have the following estimate:

(3.22) |||u − ũj,h|||a,k,σ
≤ Chmin{m,r},

and

(3.23)
∣∣∣ζj − ζ̃j,h

∣∣∣ ≤ Ch2min{m,r},

where r is the degree of the polynomials in the piecewise polynomial space Vh.

Now we wish to make an analysis in the case of discontinuous coefficients. For

simplicity, we restrict ourselves to the case of simple eigenvalues.

Theorem 3.7 (Convergence result in the case of quadrature and discontinuous

coefficients). Let (ζ̃j,h, ũj,h) ∈ C × Vh be an eigenpair of Problem 3.1 that approxi-

mates a simple eigenpair (ζj, uj) ∈ C×
(
H1

per(Ω) ∩ Hm+1(Ω)
)

of Problem 2.3. Then

for h sufficiently small we have the following estimate:

(3.24) |||uj − ũj,h|||a,k,σ
. hmin{m,r} + ‖(ε − ε̃)Eh(ζj,h)uj‖L2(Ω) ,

where r is the degree of the polynomials in the piecewise polynomial space Vh and

Eh(ζj,h) : H1
per(Ω) → H1

per(Ω) is the spectral projection onto the eigenspace of ζj,h:

(3.25) Eh(ζj,h) =
1

2πi

∫

Γj

(z − Th)
−1dz.
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Proof. The proof uses the ideas of [2]. Recall the definitions (3.9), (3.10) and

(3.11). Let Γj be a circle of radius r (Γj) in the complex plane centered at µj = ζ−1
j

and enclosing no other eigenvalues of T . Then for h sufficiently small µ̃j,h = (ζ̃j,h)
−1

but no other eigenvalues of T̃h are contained in Γj and

(3.26) E(ζj) =
1

2πi

∫

Γj

(z − T )−1dz,

(3.27) Ẽh(ζ̃j,h) =
1

2πi

∫

Γj

(z − T̃h)
−1dz,

where E(ζj) : H1
per(Ω) → H1

per(Ω) and Ẽh(ζ̃j,h) : Vh → Vh are the spectral projections

onto the eigenspaces of ζj, and ζ̃j,h, respectively. Using (3.26), (3.25) and (3.27) we

calculate

(3.28)

∣∣∣
∣∣∣
∣∣∣uj − Ẽh(ζ̃j,h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ

. |||E(ζj)uj − Eh(ζj,h)uj|||a,k,σ

+
∣∣∣
∣∣∣
∣∣∣Eh(ζj,h)uj − Ẽh(ζ̃j,h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ

.

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

2πi

∫

Γj

[
(z − T )−1 − (z − Th)

−1
]
ujdz

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
a,k,σ

+

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

2πi

∫

Γj

[
(z − Th)

−1 − (z − T̃h)
−1
]
Eh(ζj,h)ujdz

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
a,k,σ

.

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

2π

∫

Γj

(z − Th)
−1(T − Th)(z − T )−1ujdz

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
a,k,σ

+

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

2π

∫

Γj

(z − T̃h)
−1(Th − T̃h)(z − Th)

−1Eh(ζj,h)ujdz

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
a,k,σ

.

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

∫

Γj

(z − Th)
−1(T − Th)

uj

z − µj

dz

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
a,k,σ

+

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

∫

Γj

(z − T̃h)
−1(Th − T̃h)(z − Th)

−1Eh(ζj,h)ujdz

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
a,k,σ

.
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We continue the estimate by

(3.29)

∣∣∣
∣∣∣
∣∣∣uj − Ẽ(ζ̃j,h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ

≤ r (Γj) sup
z∈Γj ,0<h

∣∣∣∣∣∣(z − Th)
−1
∣∣∣∣∣∣

a,k,σ,H1
0 (Ω)

|||(T − Th)uj|||a,k,σ

r (Γj)

+r (Γj) sup
z∈Γj ,0<h

∣∣∣
∣∣∣
∣∣∣(z − T̃h)

−1
∣∣∣
∣∣∣
∣∣∣
a,k,σ,Vh

∣∣∣
∣∣∣
∣∣∣(T − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ

r (Γj)

= µj sup
x∈Γj ,0<h

∣∣∣∣∣∣(z − Th)
−1
∣∣∣∣∣∣

a,k,σ,H1
0 (Ω)

|||(I − Ph)uj|||a,k,σ

+r (Γj) sup
z∈Γj ,0<h

∣∣∣
∣∣∣
∣∣∣(z − T̃h)

−1
∣∣∣
∣∣∣
∣∣∣
a,k,σ,Vh

∣∣∣
∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ

r (Γj)

In the last equality we used the relation (T − Th)uj = (I − Ph)Tuj = µj(I − Ph)uj,

where Ph : H1
0(Ω) → Vh is the Rayleigh-Ritz projection, i.e.

(3.30) ak,σ(u, vh) = ak,σ(Phu, vh) ∀vh ∈ Vh.

Now lim
h→0

∣∣∣
∣∣∣
∣∣∣T − T̃h

∣∣∣
∣∣∣
∣∣∣
a,k,σ,Vh

= 0 from Lemma 3.4 implies that (cf. (3.7) in [5])

(3.31) sup
z∈Γj ,0<h

∣∣∣
∣∣∣
∣∣∣(z − T̃h)

−1
∣∣∣
∣∣∣
∣∣∣
a,k,σ,Vh

< ∞.

Furthermore, we have that (cf. [2])

(3.32) sup
z∈Γj ,0<h

∣∣∣∣∣∣(z − Th)
−1
∣∣∣∣∣∣

a,k,σ,H1
0 (Ω)

< ∞.

Hence we conclude that

(3.33)

∣∣∣
∣∣∣
∣∣∣uj − Ẽh(ζ̃j,h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ

. |||(I − Ph)uj|||a,k,σ
+
∣∣∣
∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ

.

In order to achieve the desired estimate, we now have to estimate the term

(3.34)
∣∣∣
∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ

.
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Observing that (Th − T̃h)Eh(ζj,h)uj ∈ Vh we are able to conclude that

(3.35)

∣∣∣
∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
2

a,k,σ

. ak,σ((Th − T̃h)Eh(ζj,h)uj, (Th − T̃h)Eh(ζj,h)uj)

= b(Eh(ζj,h)uj, (Th − T̃h)Eh(ζj,h)uj)

− b̃h(Eh(ζj,h)uj, (Th − T̃h)Eh(ζj,h)uj)

=
∫
Ω
(ε − ε̃)Eh(ζj,h)uj((Th − T̃h)uj)

≤ C ‖(ε − ε̃)Eh(ζj,h)uj‖L2(Ω)

∥∥∥(Th − T̃h)Eh(ζj,h)uj

∥∥∥
L2(Ω)

.

Since
∥∥∥(Th − T̃h)Eh(ζj,h)uj

∥∥∥
L2(Ω)

≤
∣∣∣
∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ

we thus end up

with the estimate

(3.36)
∣∣∣
∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ

≤ C ‖(ε − ε̃)Eh(ζj,h)uj‖L2(Ω) .

Combining (3.33) and (3.36) we achieve the estimate

(3.37) |||uj − uj,h|||a,k,σ
. |||(I − Ph)uj|||a,k,σ

+ ‖(ε − ε̃)Eh(ζj,h)uj‖L2(Ω)

Hence we conclude that:

(3.38) |||uj − uj,h|||a,k,σ
. hm + ‖(ε − ε̃)Eh(ζj,h)uj‖L2(Ω) .

�

Remark 3.8. In one space dimension we can achieve a more refined estimation:

As

(3.39)

∥∥∥(Th − T̃h)Eh(ζj,h)uj

∥∥∥
L∞(Ω)

.
∥∥∥(Th − T̃h)Eh(ζj,h)uj

∥∥∥
H1(Ω)

.
∣∣∣
∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ

,

we achieve

(3.40)
∣∣∣
∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ

. ‖(ε − ε̃)Eh(ζj,h)uj‖L1(Ω)

instead of estimate (3.36). In the special case that ε only has jumps in a finite

number of intervals, say Ti, i = 1, . . . , N , and stays constant everywhere else we can
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furthermore estimate to get:

(3.41)

‖(ε − ε̃)Eh(ζj,h)uj‖L1(Ω)

≤
∑

i=1,...,N

‖(ε − ε̃)Eh(ζj,h)uj‖L1(Ti)

≤
∑

i=1,...,N

‖ε − ε̃‖L∞(T ) ‖Eh(ζj,h)uj‖L∞(T ) |Ti|

≤ Ch.

Theorem 3.9 (Relation between eigenvalue and eigenfunction error in the case of

quadrature). Let (ζ̃j,h, ũj,h) ∈ R×Vh be a solution of Problem 3.1 that approximates

the eigenpair (ζj, uj) ∈ R × H1
per(Ω) of Problem 2.3. Then we have the following

estimate:

(3.42)

∣∣∣ζj − ζ̃j,h

∣∣∣ ≤ak,σ(uj − ũj,h, uj − ũj,h)

+ ζjb(uj − ũj,h, uj − ũj,h) + ζj

∫

Ω

|ε̃ − ε| |ũj,h|2 .

Proof. A simple calculation yields:

(3.43)

ak,σ(uj − ũj,h, uj − ũj,h) =ζj + ζ̃j,h − a(uj , ũj,h) − ak,σ(uj, ũj,h)

=ζ̃j,h − ζj + 2ζj − 2<{ak,σ(uj, ũj,h)}
=ζ̃j,h − ζj + 2ζj − 2<{ζj b(uj , ũj,h)}
=ζ̃j,h − ζj + ζj (2 − 2<{ b(uj, ũj,h)})
=ζ̃j,h − ζj + ζjb(uj − ũj,h, uj − ũj,h)

+ ζj

∫

Ω

(ε − ε̃) |ũj,h|2 .

From this we conclude that (3.42) holds. �

Theorem 3.10 (L2(Ω) estimate of the eigenfunctions). Let (ζ̃j,h, ũj,h) ∈ C × Vh

be an eigenpair of Problem 3.1 that approximates a simple eigenpair (ζj, uj) ∈ C ×(
H1

per(Ω) ∩ Hm+1(Ω)
)

of Problem 2.3. Then for h sufficiently small we have the

following estimate:

(3.44) ‖uj − ũj,h‖L2(Ω) . hmin{m,r}+1 + ‖(ε − ε̃)Eh(ζj,h)uj‖L2(Ω) ,

where r is the degree of the polynomials in the piecewise polynomial space Vh and

Eh(ζj,h) : H1
per(Ω) → H1

per(Ω) is the spectral projection onto the eigenspace of ζj,h:

(3.45) Eh(ζj,h) =
1

2πi

∫

Γj

(z − Th)
−1dz.

Proof. The proof is quite similar to the proof of Theorem 3.7. This time the

operators T and Th from (3.9) and (3.10), respectively, are considered from L2(Ω)
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into L2(Ω). T̃h from (3.11) will still be considered as acting on Vh. We recall the

spectral projections from (3.26) and (3.27),

E(ζj) =
1

2πi

∫

Γj

(z − T )−1dz,

Ẽh(ζ̃j,h) =
1

2πi

∫

Γj

(z − T̃h)
−1dz.

Ẽh(ζj,h) is a map from Vh to Vh and E(ζj) acts on H1
per(Ω). Using similar steps as

we did in Theorem 3.7 we arrive at the estimate

(3.46)

∣∣∣
∣∣∣uj − Ẽh(ζ̃j,h)Eh(ζj,h)uj

∣∣∣
∣∣∣
L2(Ω)

≤ r (Γj) sup
z∈Γj ,0<h

∣∣∣∣(z − Th)
−1
∣∣∣∣

L2(Ω)→L2(Ω)

||(T − Th)uj||L2(Ω)

r (Γj)

+ r (Γj) sup
z∈Γj ,0<h

∣∣∣
∣∣∣(z − T̃h)

−1
∣∣∣
∣∣∣
0,Vh

∣∣∣
∣∣∣(T − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
L2(Ω)

r (Γj)

= µj sup
z∈Γj ,0<h

∣∣∣∣(z − Th)
−1
∣∣∣∣

L2(Ω)→L2(Ω)
||(I − Ph)uj||L2(Ω)

+ r (Γj) sup
z∈Γj ,0<h

∣∣∣
∣∣∣(z − T̃h)

−1
∣∣∣
∣∣∣
0,Vh

∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
L2(Ω)

r (Γj)
.

From Assumption 3.5 we can deduce that

(3.47) sup
z∈Γj ,0<h

∣∣∣
∣∣∣(z − T̃h)

−1
∣∣∣
∣∣∣
0,Vh

< ∞.

The argument that

(3.48) sup
z∈Γj ,0<h

∣∣∣∣(z − Th)
−1
∣∣∣∣

L2(Ω)→L2(Ω)
,

i.e. (z − Th)
−1 regarded as operator from L2(Ω) to L2(Ω), is bounded can be found

in [2]. Hence we conclude that

(3.49)

∣∣∣
∣∣∣uj − Ẽh(ζ̃j,h)Eh(ζj,h)uj

∣∣∣
∣∣∣
L2(Ω)

. ||(I − Ph)uj||L2(Ω) +
∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
L2(Ω)

,

where Ph : H1
0 (Ω) → Vh again denotes the Rayleigh-Ritz projection satisfying (3.30).

In order to achieve the desired estimate, we now have to estimate the term
∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
L2(Ω)

.

Observing that (Th − T̃h)uj ∈ Vh and that
∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
L2(Ω)

≤
∣∣∣
∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
∣∣∣
a,k,σ
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we are able to conclude that

(3.50)

∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
2

L2(Ω)

. ak,σ((Th − T̃h)Eh(ζj,h)uj, (Th − T̃h)Eh(ζj,h)uj)

= b(Eh(ζj,h)uj, (Th − T̃h)Eh(ζj,h)uj)

− b̃h(Eh(ζj,h)uj, (Th − T̃h)Eh(ζj,h)uj)

=
∫
Ω
(ε − ε̃)Eh(ζj,h)uj((Th − T̃h)uj)

≤ C ‖(ε − ε̃)Eh(ζj,h)uj‖L2(Ω)

∥∥∥(Th − T̃h)Eh(ζj,h)uj

∥∥∥
L2(Ω)

.

Dividing by
∥∥∥(Th − T̃h)Eh(ζj,h)uj

∥∥∥
L2(Ω)

we thus end up with the estimate

(3.51)

∣∣∣
∣∣∣(Th − T̃h)Eh(ζj,h)uj

∣∣∣
∣∣∣
L2(Ω)

. ‖(ε − ε̃)Eh(ζj,h)uj‖L2(Ω) .

Combining (3.49) and (3.51) we achieve the estimate

(3.52) ||uj − uj,h||L2(Ω) . ||(I − Ph)uj||L2(Ω) + ‖(ε − ε̃)Eh(ζj,h)uj‖L2(Ω) .

We conclude the proof by noting that ||(I − Ph)Eh(ζj,h)uj||L2(Ω) . hmin{m,r}+1. �

Theorem 3.11 (Convergence result in the case of quadrature and discontinu-

ous coefficients II). Let (ζ̃j,h, ũj,h) ∈ C × Vh be an eigenpair of Problem 3.1 that

approximates a simple eigenpair (ζj, uj) ∈ C × H1
per(Ω) of Problem 2.3. Then for h

sufficiently small we have the following estimate:

(3.53)
∣∣∣ζj − ζ̃j,h

∣∣∣ . h2min{m,r} + ‖(ε − ε̃)Eh(ζj,h)uj‖2
L2(Ω) + ζj

∫

Ω

|ε̃ − ε| |ũj,h|2 ,

where Eh(ζj,h) is the spectral projection onto the eigenspace of ζj,h introduced in

(3.25).

Proof. We start with the estimate (3.42).

(3.54)

∣∣∣ζj − ζ̃j,h

∣∣∣ ≤ak,σ(uj − ũj,h, uj − ũj,h)

+ ζjb(uj − ũj,h, uj − ũj,h) + ζj

∫

Ω

|ε̃ − ε| |ũj,h|2 .

The first summand on the right hand side is the square of the quantitiy that was

estimated in Theorem 3.7. Because ε is bounded from above and below by positive

constants, the second term is equivalent to ||uj − ũj,h||2L2(Ω), the square root of which

was estimated in Theorem 3.10. �

Remark 3.12. We would like to mention that when we employ simple quadrature

rules to evaluate the integrals in the assembly of the matrices and the discontinu-

ities of the dielectricity function ε are not resolved by the mesh, the convergence
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for the eigenvalues need not be faster than the convergence of the eigenfunctions

in energy norm. This is in contrast to Theorem 2.11 and even to Theorem 3.6

where the convergence of the eigenvalues is twice as fast as the convergence of the

eigenfunctions.

We wish to illustrate this fact for a one-dimensional example, where ε only jumps

in two intervals and linear elements are employed. We have discovered in Remark 3.8

that in this special setting the energy error of the eigenfunctions can be estimated

to converge at least at the speed of

(3.55) |||uj − ũj,h|||a,k,σ
. h + ‖(ε − ε̃)Eh(ζj,h)uj‖L1(Ω) . h

Starting with Theorem 3.11 and doing similar manipulations as in Remark 3.8, we

can conclude that

(3.56)
∣∣∣ζj − ζ̃j,h

∣∣∣ . h2 + ‖(ε − ε̃)Eh(ζj,h)uj‖2
L2(Ω) +

∫

Ω

|ε̃ − ε| |ũj,h|2 . h,

since ||Eh(ζj,h)uj||L∞(Ω) and ||uj,h||L∞(Ω) are bounded in our special situation.

The inaccuracies in the assembly of the matrices due to quadrature, which are

rather significant, thus equally affect the calculated eigenfunctions and eigenvalues.

We could observe this fact also in numerical experiments (see Section 5.1 for details).

3.2. A posteriori estimates. We wish to show a result similar to the one in

Theorem 2.17 but without assuming exact integration in the solution procedure.

This comes at the expense of some additional terms.

Theorem 3.13 (Reliability of the estimator). Let (ζ̃j,h, ũj,h) ∈ C×H1
per(Ω) be a

simple eigenpair of Problem 3.1. Then for h sufficiently small we have the following

estimate:

(3.57)

|||uj − ũj,h|||a,k,σ
. ηTh

((ζj,h, ũj,h) , Ω) + ||ε − ε̃||L2(Ω) + ζj

∫

Ω

|ε̃ − ε| |ũj,h|2 + h2,

where ηTh

(
(ζ̃j,h, ũj,h), Ω

)
has been defined in Definition 2.15.

Proof. We readily calculate for arbitrary v ∈ H1
per(Ω) and arbitrary vh ∈ Vh,

that

(3.58)

ak,σ(uj − ũj,h, v) = ζj b(uj , v)

+
∑

T∈T

∫

T

(
(∇ + ik) · (∇ + ik)ũj,h + ε̃ζ̃j,hũj,h

)
(v − vh)

−
∑

T∈T

∫

∂T

∂n(ũh + ikũh)(v − vh) − ζ̃j,hb̃(ũj,h, v).
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It is equivalent to

(3.59)

ak,σ(uj − ũj,h, v) =
∑

T∈T

∫

T

(
(∇ + ik) · (∇ + ik)ũj,h + ε̃ζ̃j,hũj,h

)
(v − vh)

− 1

2

∑

T∈T

∫

∂T

[∂n(ũj,h + ikũh)] (v − vh)

+

∫

Ω

(εζjuj − ε̃ζ̃j,hũj,h)v.

We are going to choose v := u−ũj,h and define vh := Πhv, where Πh : H1
per(Ω) → Vh

is the interpolation operator satisfying Assumption 2.4. This yields:

(3.60)

ak,σ(uj − ũj,h, v) .

(
∑

T∈T

η2
T

) 1
2

|v|H1(Ω) +

∫

Ω

(εζjuj − ε̃ζ̃j,hũj,h)v

.

(
∑

T∈T

η2
T

) 1
2

|||v|||a,k,σ +

∫

Ω

ε(ζjuj − ζ̃j,hũj,h)v

+

∫

Ω

(ε − ε̃)ζ̃j,hũj,hv

.

(
∑

T∈T

η2
T

) 1
2

|||v|||a,k,σ +

∫

Ω

εζj(uj − ũj,h)v

+

∫

Ω

ε(ζj − ζ̃j,h)ũj,hv +

∫

Ω

(ε − ε̃)ζ̃j,hũj,hv.

Here we used that |v|H1(Ω) . |||v|||a,k,σ. Now we employ Theorems 3.9 and 3.10.

This leads to:

(3.61)

|||uj − ũj,h|||2a,k,σ
.

(
∑

T∈T

η2
T

) 1
2

|||uj − ũj,h|||a,k,σ

+
(
hmin{m,r}+1 + ‖(ε − ε̃)Eh(ζj,h)uj‖L2(Ω)

)
‖uj − ũj,h‖L2(Ω)

+

(
h2min{m,r} + ‖(ε − ε̃)Eh(ζj,h)uj‖2

L2(Ω) +

∫

Ω

|ε̃ − ε| |ũj,h|2
)

× ‖ũj,h‖L2(Ω) ‖uj − ũj,h‖L2(Ω)

+ ζ̃j,h ‖(ε − ε̃)ũj,h‖L2(Ω) ‖uj − ũj,h‖L2(Ω) .

Using the fact that both ‖ũj,h‖L2(Ω) and ‖Eh(ζj,h)uj‖L2(Ω) are bounded as well as

the fact that ‖uj − ũj,h‖L2(Ω) . |||uj − ũj,h|||a,k,σ
we can deduce the desired result

by dividing by the latter quantity and using the fact that h is small. �
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Remark 3.14. One conclusion that could be drawn from Theorem 3.13 is that

in order to perform a successful a posteriori analysis of the error in the eigenfunc-

tions in energy norm, we should have some element-wise contributions of the terms

||ε − ε̃||L2(Ω) and
∫
Ω
|ε̃ − ε| |ũj,h|2 in the estimator. The terms should be approxi-

mated by some easier expressions. If we were to assume that we could evaluate

||ε − ε̃||L2(T ) and
∫

T
|ε̃ − ε| |ũj,h|2 exactly, then there would be no point in our whole

analysis since in that case the integrals in the assembly of the finite element matrices,

which involve similar expressions, should be evaluated exactly in the first place.

Hence we recommend to include terms of the form

(3.62) hT (ε̄ − ε)

in the estimator η2
Tn

((ũj,h, ζ̃j,h), T ), where ε̄ and ε are from (2.2), in the case of the

eigenvalue problem when the discontinuities of ε are not resolved by the mesh.

4. An algorithm to calculate adaptively in both Ω and the Brillouin zone

It is the aim of this section to use the results from Sections 2.5 and 2.6 as

building bricks in an algorithm to compute an entire band structure adaptively.

The ultimate goal is to reduce the quantity ERROR from (1.2) using as little as

possible computational resources. We recall this quantity here,

(4.1) ERROR := max
j∈M

‖λj(·) − λj,num(·)‖
C0(B) ,

which shall be reduced starting from a combination of a uniform triangulation T0 in

Ω and a set of discrete points K0 := {ki}N0

i=1 uniformly distributed in the Brillouin

zone. In the course of the calculations we work with only one mesh in Ω, the refine-

ment procedure of which will be quite similar as the one in Algorithm 2.19. Before

each refinement in Ω, though, we accumulate contributions to the set marked for

refinement from the a posteriori error estimates for the different eigenvalue problems

for the different values of the discrete set of parameters {ki}N0

i=1. In this way, we have

a routine that solves the eigenvalue problem for various parameters simultaneously

using adaptivity in Ω.

In the Brillouin zone, we also create a mesh from the set of discrete points

K0 := {ki}N0

i=1. If N0,I is the number of elements of the initial mesh in the Brillouin

zone, we define an array {Ij}N0,I

j=1 with zero entries. The zeros indicate that we have

not evaluated yet, if the parameters are chosen dense enough. Elements of the mesh,

that will not be refined further will be set to 1 in the algorithm. In the course of

the calculations, since we do not know the true band functions λj(·), we estimate

the expression (4.1) by means of further band function evaluations, i.e. further

eigenvalue problems to be solved.
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Algorithm 4.1. (Adaptive bandstructure calculations)

1: Choose TOL > 0 .

2: Choose 0 < θ < 1.

3: Set n:=0.

4: Pick any initial mesh T0 and initial set of discrete points K0 := {ki}N0

i=1 ⊂ B,

which are the nodes of a conforming triangulation of B.

5: Solve for eigenpairs {(ζl,0,ki
, ul,0,ki

)}
ki∈K0,l∈M

using Algorithm 4.2 with T0, K0

and θ as input.

6: Define array I = {Ij}N0,I

j=1 of size N0,I with zero entries.

7: while {i : Ii = 0} is not empty do

8: Set V = ∅.
9: for j∈ {i : Ii 6= 1} do

10: Compute the centers ej,1, ej,2 and ej,3 of all edges of Ij and add them to a

list V := V ∪ ej,1 ∪ ej,2 ∪ ej,3.

11: end for

12: Create new elements of the mesh in B by joining all elements from V. The

old elements are removed from the list I, and the newly created elements are

added to the list with value 0.

13: Solve for eigenpairs {(ζl,n,ki
, ul,n,ki

)}
ki∈V,l∈M

with triangulation Tn using Al-

gorithm 4.2 with Tn and V as input.

14: for i∈ {j : Ij 6= 1} do

15: if Ii is such that for any ki ∈ V in the closure of the element Ii the expression

ζl,n,ki
from step 13 differs at most TOL from the linear interpolation, which

is the unique linear function joining the eigenvalues previously calculated

for the boundary nodes of the element, for all l ∈ M then

16: Set Ii := 1.

17: end if

18: end for

19: end while

Algorithm 4.2. (Adaptive solution of the eigenvalue problem for various

ki at once)

1: Input: Initial mesh T0 on Ω, set of discrete points K in the Brillouin zone B, n,

θ.

2: Solve Problem 2.7 on T0 for each ki ∈ K0 to find the eigenpairs

{(ζl,0,ki
, ul,0,ki

)}
ki∈K0,l∈M

.

3: Compute the local error indicators

{ηT0,i((ζl,0,ki
, ul,0,ki

), T )}
T∈T0

:= {ηT0((ζl,0,ki
, ul,0,ki

), T )}
T∈T0

for all ki ∈ K using

the expression (2.33).



4. AN ALGORITHM TO CALCULATE ADAPTIVELY 31

4: while ∃ i such that ηTn,i((ζl,n,ki
, ul,n,ki

), Ω) ≥
√

TOL do

5: for i such that ηTn,i((ζl,n,ki
, ul,n,ki

), Ω) ≥
√

TOL do

6: Mark a set Mn,ki
⊂ Tn according to the marking strategy described in

Section 2.6.3 using θ.

7: end for

8: Define M :=
⋃

ki∈K

Mn,ki

9: Refine Tn according to the procedure described in Section 2.6.4 to get a new

conforming triangulation Tn+1.

10: for ki ∈ K do

11: Solve the eigenvalue problem (2.15) on Tn+1 to find the eigenpair (ζl,n+1,ki
, ul,n+1,ki

).

12: Compute the local error indicators{
ηTn+1,i((ζl,n+1,ki

, ul,n+1,ki
), T )

}
T∈Tn+1

:=
{
ηTn+1((ζl,n+1,ki

, ul,n+1,ki
), T )

}
T∈Tn+1

using the expression from (2.33).

13: end for

14: Let n := n + 1.

15: end while

16: Output: Eigenpairs {(ζl,n,ki
, ul,n,ki

)}
ki∈K0,l∈M

, triangulation Tn

Remark 4.3. Algorithm 4.2 terminates due to the convergence result in Theorem

2.20, if we start from a sufficiently fine mesh in Ω. The reason is that due to the

contraction property in that theorem we can reach any prescribed tolerance for the

error in energy norm of an eigenfunction in a finite number of steps. The fact

that we consider several distinct eigenfunctions at the same time does not pose

any problems, because we consider the union of all refinements as would occur for

independent applications of Algorithm 2.19, which is convergent. Although Céa’s

Lemma is not valid in the case of eigenvalue problems, any additional refinement

for one eingenvalue problem that results from the other problems cannot worsen the

approximation significantly in the regime where we started with small initial step

size in Ω. In steps 4 and 5 of Algorithm 4.2, we require that the estimator be smaller

than
√

TOL because due to Lemma 2.13 this is a quite reasonable requirement if we

want to have the error in the eigenvalues to be less than TOL.

Algorithm 4.1 terminates when the set {i : Ii = 0} in step 7 is empty. Since the

band functions are highly regular functions of the parameter k, it is justified to

assume that at some point, as the mesh size decreases in the Brillouin zone B, the

linear interpolation that occurs in step 15 of the algorithm will be a good approxi-

mation of the true band function, which in turn is sufficiently well approximated in

discrete points by Algorithm 4.2. Then the different Ii in step 16 will be set to one

and the set the set {i : Ii = 0} will be empty.
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5. Numerical results

5.1. Results concerning the effect of quadrature. We first wish to illus-

trate numerically the findings at the end of Remark 3.8, that the error in the eigenval-

ues does not converge asymptotically as the square of the error in the eigenfunctions

in the energy norm.

This can be easily seen in a one-dimensional example, that follows. In an exam-

ple, where the dielectricity function ε has a finite number of discontinuities in Ω, we

were able to estimate in equations (3.55) and (3.56), that we have convergence in

the energy norm of the eigenfunctions and in the absolute values of the eigenvalues

of order 1 with respect to the mesh size h.

0 0.25 0.5 0.75 1
0
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8

10

12

Ω

ε(
x
)

Figure 5.1. Dielectricity funciton ε that is used for the experiments.

Our examples serve the purpose to show that, in general, we cannot expect better

convergence behaviour for the eigenvalues than for the eigenfunctions with certainty.

Because the dielectricity function ε possesses some symmetry, we distorted the initial

grid just a bit in order not to have cancellation of different errors. In Figures 5.2 and

5.3 we plot the different errors for uniform refinements starting from two different

randomly created distorted initial grids. If we do not distort the initial grid, or if

the dielectricity function ε is continuous on Ω, than we observe (Figure 5.4) that the

rate of convergence of the eigenvalues is twice as fast as that for the eigenfunctions

in energy norm.
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Figure 5.2. First Example: Number of unknowns vs. errors for the

eigenvalue and eigenfunction (energy error and estimated error) for se-

quences of uniformly refined grids starting from a distorted grid. The

quantities that are displayed in the legend are to be taken as Y and their

respective logarithms are the y-values in the plot.
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Figure 5.3. Second Example: Number of unknowns vs. errors for the

eigenvalue and eigenfunction (energy error and estimated error) for se-

quences of uniformly refined grids starting from a distorted grid. The

quantities that are displayed in the legend are to be taken as Y and their

respective logarithms are the y-values in the plot.

If we apply Algorithm 2.19 from Section 2.6 to solve an eigenvalue adaptively

for fixed parameter k, where the dielectricity function ε is discontinuous and using
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Figure 5.4. Third Example: Number of unknowns vs. errors for the

eigenvalue and eigenfunction (energy error and estimated error) for se-

quences of uniformly refined grids. The initial grid is not distorted. The

quantities that are displayed in the legend are to be taken as Y and their

respective logarithms are the y-values in the plot.

a simple quadrature rule but without additional terms in the estimator, we get

very bad results as displayed in Figure 5.5. We notice that the error in eigenvalues

(the red line in Figure 5.5) behaves rather eratically. In the course of the adaptive

refinements the error due to quadrature on some meshes is of the same scale as the

error due to discretization while on other meshes it is much larger. We conclude

that the error due to quadrature cannot be neglected in the a posteriori analysis

and that terms as suggested in Remark 3.14 should be added to the a posteriori

estimator. Thus, assuming exact integration when developing a theory limits the

range of examples to which it can be applied.
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Figure 5.5. Adaptive refinements for discontinuous ε that is not resolved

by the mesh: Number of unknowns vs. errors for the eigenvalue and eigen-

function (energy error and estimated error) for the solutions of Algorithm

2.19 but solving Problem 3.1 instead of Problem 2.7 in each step 8 of Algo-

rithm 2.19. We additionally display some quantities that appear in equation

(3.43). The quantities that are displayed in the legend are to be taken as

Y and their respective logarithms are the y-values in the plot.
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5.2. Results concerning the adaptive band structure calculations from

Section 4. First we have a look at what can be achieved with uniform meshes (both

in Ω and in B). We are dealing with a one-dimensional example for no other reason

than that it can be implemented easily. Table 5.1 lists the ERROR quantity defined

in (4.1) for different combinations of uniform meshes in Ω and in B. In the example

that is used for the calculations, ε attains the values 1 and 11 on equal parts of the

domain Ω and is piecewise constant with only two jumps. No jumps occur in the

interior of any element.

Ω 32 64 128 256 512 1024 2048
B
8 7.81e-01 3.88e-01 2.91e-01 3.26e-01 3.36e-01 3.39e-01 3.40e-01
16 8.25e-01 2.06e-01 1.22e-01 1.62e-01 1.72e-01 1.75e-01 1.76e-01
32 8.73e-01 2.18e-01 5.44e-02 4.91e-02 5.95e-02 6.21e-02 6.27e-02
64 8.96e-01 2.23e-01 5.57e-02 1.39e-02 1.43e-02 1.69e-02 1.76e-02
128 9.04e-01 2.25e-01 5.61e-02 1.40e-02 3.51e-03 3.73e-03 4.39e-03
256 9.06e-01 2.25e-01 5.62e-02 1.41e-02 3.51e-03 8.78e-04 9.42e-04

Table 5.1. Error in the eigenvalue approximation on uniform meshes.

We also display the results graphically:
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Figure 5.6. Error on different uniform meshes.
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We realize that care should be taken when deciding how fine the meshes in Ω

and in B should be. It does not help to approximate the eigenvalues very well for

each parameter k, but only use a coarse mesh in B or vice versa. We realize that a

prudent choice of the fineness of the meshes leads to good results with a reasonable

amount of work.

Now we turn our attention to what kinds of results we achieve implementing our

algorithm. The results of the algorithm described above can be seen in the black

diamonds in the graph below.
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Figure 5.7. Here we compare the results of Algorithm 4.1 (black
diamonds) with the previously displayed results for uniform refine-
ments.

In order to make it easier to draw some conclusions we now plot the error against

only one quantity, which we think is a good measure of the amount of work or time

necessary to solve the eigenvalue problem, namely the square root of the product

of the numbers of intervals in Ω and in B. The red and blue lines in the graph

correspond to the numbers that are printed in the same color in Table 1. The black

line corresponds to data from Table 1 between the red and blue diagonals. Once

again we have plotted the results of the adaptive strategy as in the previous graphic

as black diamonds.

We realize that the adaptive algorithm automatically finds good combinations of

meshes in Ω and in B. Since the eigenfunctions in the example are relatively smooth

functions, it only leads to results that are a bit better than those obtained for the
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Figure 5.8. Visualization of the coloured data points of Table 5.1.
The diamonds are results from adaptive calculations.

optimal combinations of uniform meshes. Nonetheless, it is more effective to use one

automatic procedure than to solve the problem on many different combinations of

uniform meshes and then guess which of the bandstructures is the most accurate.



CHAPTER III

Adaptive methods for the 2d curl curl problem

The most interesting case of course are 3d photonic crystals. In this case, the

problem does not split any more into two disjoint elliptic problems. There are lots

of difficulties involved in solving the curl curl equation adaptively. That is why

we focus on this issue in this section. A first step in this direction is to study the

following boundary value problem:

(0.1)

∇×∇×E = f in Ω,

∇·E = 0 in Ω,

E × n = 0 on ∂Ω,

where f ∈ L2(Ω) with ∇·f ≡ 0.

The a posteriori estimates apply to this general 3d case. As we have restricted

the numeric experiments to the 2d curl curl equation, the a priori estimates that we

cite for the weighted regularization method that we introduce in Section 2.2 are only

for this case. In two space dimensions we distinguish between a scalar-valued curl

that maps from L2(Ω)2 to L2(Ω)

(0.2) ∇× v =
∂v2

∂x1
− ∂v1

∂x2
,

and a vector-valued curl that maps from L2(Ω) to [L2(Ω)]
2

(0.3) ∇× φ =




∂φ

∂x2

− ∂φ

∂x1


 .

We assume that Ω is a polygonal domain. If the domain Ω is non-convex, which

amounts to considering a domain that has finitely many corners with an interior

angle ωa > π, the set of all these non-convex corners a ∈ ∂Ω will be denoted by A.

1. Discretizing the curl curl problem — edge elements vs. nodal

elements

Let us first state some spaces that are necessary for the discussion of the problem.

We write vector-valued functions in bold as well as the corresponding spaces. Thus,

L2(Ω) means L2(Ω)2 or L2(Ω)3, depending on whether we are in the two- or three-

dimensional setting. However, we do not make any notational distinction between

39
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the scalar products in L2(Ω) and L2(Ω). The following space, equipped with its

natural norm, will be crucial when dealing with Maxwell’s equations:

(1.1) H(curl, Ω) :=
{
E ∈ L2(Ω) : ∇×E ∈ L2(Ω)

}
.

We also use a corresponding space with zero trace of the tangential component on

the boundary,

(1.2) H0(curl, Ω) := {E ∈ H(curl, Ω) : E × n = 0 on ∂Ω} .

On H0(curl, Ω), the weak formulation of the problem

(1.3) E ∈ H0(curl, Ω) ∀v ∈ H0(curl, Ω)

∫

Ω

∇× E · ∇ × v =

∫

Ω

f · v

is not coercive since any gradient field is in the kernel of the operator associated

with the bilinear form on the left hand side of the equality. Hence the Lax-Milgram

lemma cannot be applied. There are several ways to circumvent this difficulty.

One way to proceed is to recall that we are only looking for divergence-free

solutions. If we define

(1.4) H0
0(curl, Ω) := {E ∈ H0(curl, Ω) : ∇×E = 0 in Ω} ,

and

(1.5) Z0(Ω) :=
{
E ∈ H0(curl, Ω) : (E, z) = 0 ∀z ∈ H0

0(curl, Ω)
}

,

then we are in position to quote a Poincaré–Friedrichs-type inequality, Corollary 4.4

in [24]:

Lemma 1.1. There is a constant C > 0 depending only on Ω, such that

(1.6) ||E||Ω ≤ ||∇ × E||Ω for all E ∈ Z0(Ω).

This lemma is one step in the analysis of the existence and the uniqueness of a

solution to both the Maxwell source problem and the Maxwell eigenvalue problem.

A well-known strategy for finite element computations of the Maxwell equations

is to use one of the two families of edge elements due to Nédélec (cf. [30] and [31]).

These elements are conforming in H(curl, Ω) since they are made up of piecewise

polynomial functions whose tangential components are continuous across elements.

The normal component is allowed to jump across elements. On a discrete level these

edge elements admit a splitting into a large kernel space and a space where the

Maxwell solutions are approximated. For instance, for linear elements of the first

family of Nédélec edge elements the splitting takes the form (cf. (3.5) in [34])

(1.7) Nh
0 ∩ H0

0(curl, Ω) = ∇V h
0 ,
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where Nh
0 denotes the linear edge elements conforming in H0(curl, Ω) and V h

0 de-

notes the piecewise linear finite element subspace of H1
0 (Ω). This splitting is a key

ingredient in the stability analysis of the discrete counterpart of (1.3) and ultimately

in the convergence analysis of finite element methods that employ edge elements.

Unfortunately, when approximating the Maxwell eigenvalue problem by means of

the edge elements, we calculate many zero eigenvalues that correspond to eigenfunc-

tions in the kernel of the curl-operator, Nh
0 ∩H0

0(curl, Ω). For an illustration we refer

to Figure 4 in [15], for instance.

When we use nodal elements, on the other hand, to approximate the Maxwell

equations, there is no splitting similar to the one in (1.7) that we could use for the

analysis. Usually some sort of regularization is performed such that the formulation

includes ∇·E in some term. One possibility would be to introduce the space

(1.8) XN := XN [L2(Ω)] :=
{
E ∈ H0(curl, Ω) : ∇·E ∈ L2(Ω)

}

and seek solutions

(1.9)
E ∈ XN ∀v ∈ XN∫

Ω

{∇ × E · ∇ × v + s∇·E ∇·v} =

∫

Ω

f · v,

where we have an additional term that integrates in L2(Ω) the product of the diver-

gence of E and the divergence of the test function and s > 0 is a penalty parameter

that can be chosen. Formulation (1.9) can be discretized using nodal finite elements.

The discrete space that consists of piecewise polynomials is required to be curl and

div conforming. Hence each function in the finite element space is continuous across

interfaces and contained in H1(Ω). If Ω is convex this choice of a discrete space is

dense in XN [L2(Ω)]. But if Ω is not convex, this is no longer the case (cf. [13]).

A better solution thus seems to be to stabilize the divergence in an intermediate

space Y between L2(Ω) and H−1(Ω) and pose the problem in

(1.10) XN [Y ] := {E ∈ H0(curl, Ω) : ∇·E ∈ Y }

with this choice of Y . The problem then reads as follows:

(1.11)
E ∈ XN [Y ] ∀v ∈ XN [Y ]∫

Ω

∇×E · ∇ × v + s (∇·E,∇·v)Y =

∫

Ω

f · v,

where (·, ·)Y denotes the scalar product in Y and s is a parameter to be chosen. The

approach taken by Badia and Codina in [4] corresponds to the choice Y := H−1(Ω).

Bonito and Guermond in [7] choose Y := H−α(Ω), α ∈ (1
2
, 1), in the case of the

eigenvalue problem. The approach by Costabel and Dauge on the other hand makes

the choice Y := L2
d,γ(Ω), a weighted Sobolev space.
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2. Two different approaches using nodal elements

We have chosen to focus on solving system (0.1) using nodal elements, which is

a rather new area of research. To our knowledge, there are no results concerning

a posteriori error estimation for these methods available in the literature. We will

focus on this issue in Sections 4 and 5. For now, we introduce the discrete spaces

that are used for both methods.

As we did in Section 2.3 of Chapter II, we define a space of piecewise polynomial

functions on a triangulation Th (this time conforming in H1(Ω) and not in H1
per(Ω)),

(2.1) Qh :=
{
vh ∈ C0(Ω) | vh|T ∈ Pr(T ) for all T ∈ Th

}
,

where Pr(T ) stands for the space of polynomials less than or equal to r > 0.

We consider this kind of H1-conforming finite element space for every component

of vectorial fields:

(2.2) Xh := (Qh)
d ∩ H0(curl, Ω).

The degree r of the polynomials at hand will be specified later. For the methods of

Badia and Codina [4] and Bonito and Guermond [7], which we henceforth will refer

to as negative Sobolev penalty discretizations we additionaly need another scalar

finite element space

(2.3) Mh := Qh/R.

Again, the polynomial degree for the space Mh will be specified later. We recall

from Section 2.3 that for a typical element T , its diameter is denoted by hT . We

denote the maximal diameter in a triangluation by hmax := maxT∈T hT . h denotes a

piecewise constant function whose restriction to an element T is hT .

As in Section 2.3 of Chapter II we assume the existence of some standard inter-

polation operators (cf. [12], [33]).

Assumption 2.1. There exist interpolation operators Πh : H1
0 (Ω) → Mh and

Πh : H1(Ω) → Xh with the following properties:

(2.4) ‖v − Πhv‖0,T ≤ ChT |v|1,ω(T ) ,

(2.5) ‖w −Πhw‖0,T ≤ ChT |w|1,ω(T ) ,

and

(2.6) ‖v − Πhv‖0,F ≤ Ch
1
2
F |v|1,ω(F ) ,

(2.7) ‖w − Πhw‖0,F ≤ Ch
1
2
F |w|1,ω(F ) .
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Furthermore, we assume that the following stability estimates hold

(2.8) ‖v − Πhv‖Hl(Ω) ≤ C |v|Hl(Ω) , 0 ≤ l <
3

2
,

(2.9) ‖w − Πhw‖Hl(Ω) ≤ C |w|Hl(Ω) , 0 ≤ l <
3

2
.

2.1. Negative Sobolev space penalty discretization. Both Badia and Co-

dina [4] as well as Bonito and Guermond [7] independently suggested to solve (0.1)

by means of the following discrete scheme: Find (Eh, ph) ∈ Xh × Mh, such that

(2.10)

∫

Ω

{
∇× Eh · ∇ × vh + ∇ph · vh + h2∇·Eh∇·vh

}
=

∫

Ω

f · vh,
∫

Ω

{−Eh · ∇qh + ∇ph · ∇qh} = 0

for all (vh, qh) ∈ Xh × Mh. Bonito and Guermond [7] more generally consider the

discretizations

(2.11)

∫

Ω

{
∇×Eh · ∇ × vh + ∇ph · vh + h2α∇·Eh∇·vh

}
=

∫

Ω

f · vh,
∫

Ω

{
−Eh · ∇qh + h2(1−α)∇ph · ∇qh

}
= 0

for all (vh, qh) ∈ Xh ×Mh, where α ∈ (1
2
, 1]. In what follows, we will call the scheme

(2.11) the H−α penalty discretization. The motivation why (2.10) is a good scheme

to discretize (0.1) is quite different in Badia and Codina [4] compared with the one

given in Bonito and Guermond [7]. We briefly summarize the viewpoints.

In [4] the point of view is that the Maxwell problem (0.1) first is recast as a

saddle point problem with a Lagrange multiplier p ∈ H1
0 (Ω):

(2.12)

∇×∇× E−∇p = f in Ω,

−∇·E = 0 in Ω,

E × n = 0 on ∂Ω.

For the weak formulation of this problem, the inf-sup condition

(2.13)

inf
(E,p)∈H0(curl,Ω)×H1

0 (Ω)
sup

(v,q)∈H0(curl,Ω)×H1
0 (Ω)

∫
Ω
{∇ ×E · ∇ × v −∇p · v + E · ∇q}

|||E, p||| |||v, q||| ≥ β > 0

is satisfied, where

(2.14) |||v, q||| = ||v||
H(curl,Ω) + ||q||H1(Ω) .
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The problem thus possesses a unique solution. For numerical purposes this form is

augmented. Otherwise the discrete counterpart would not satisfy an inf-sup condi-

tion. The augmented form reads as follows:

(2.15)

∇×∇×E −∇p = f in Ω,

−∇·E− ∆p = 0 in Ω,

E × n = 0 on ∂Ω.

Its weak formulation is:

(2.16)

E ∈ H0(curl, Ω) ∀v ∈ H0(curl, Ω)

∫

Ω

{∇ ×E · ∇ × v −∇p · v} =

∫

Ω

f · v,

∀q ∈ H1
0 (Ω)

∫

Ω

{E · ∇q + ∇p · ∇q} = 0.

If we multiply the last line by −1 and substitute ∇φ = −∇p, then we have exactly

(2.10) with ∇φ instead of ∇ph and apart from an additional stabilization term that

is motivated both theoretically and numerically in [4].

The point of view taken in [7] is that we choose Y := H−α(Ω), α ∈ (1
2
, 1], in

(2.17)
E ∈ XN [Y ] ∀v ∈ XN [Y ]∫

Ω

∇× E · ∇ × v + (∇·E,∇·v)Y =

∫

Ω

f · v.

For the choice α = 1 this results in

(2.18)
E ∈ XN [H−1(Ω)] ∀v ∈ XN [H−1(Ω)]∫

Ω

∇× E · ∇ × v + (∇·E,∇·v)H−1(Ω) =

∫

Ω

f · v.

In what follows we use the following definition of the H−1(Ω)-scalar product

(2.19) (·, ·)H−1(Ω) =
〈
·, (−∆)−1 ·

〉
,

where 〈·, ·〉 denotes the H−1(Ω) − H1
0 (Ω) duality pairing. If for an arbitrary vector

field E ∈ L2(Ω) we let p(E) ∈ H1
0(Ω) be so that

(2.20) ∆p(E) = ∇·E,

then the following identity holds:

(2.21) (∇·v,∇·E)H−1(Ω) =

∫

Ω

∇p · v.

That is why we look for solutions to

(2.22)
E ∈ XN [H−1(Ω)] ∀v ∈ XN [H−1(Ω)]∫

Ω

{∇ × E · ∇ × v + ∇p · v} =

∫

Ω

f · v,
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where p satisfies (2.20), or as expressed weakly

(2.23)

∫

Ω

∇p · ∇q =

∫

Ω

E · ∇q ∀q ∈ H1
0 (Ω).

We realize that we have again found (2.16) and the need for the stabilization term

h2∇·Eh∇·vh is explained in [7].

2.2. Weighted regularization method. The idea of the weighted regulariza-

tion method due to Costabel and Dauge [16] is to choose Y in (2.17) as a weighted

L2 space.

(2.24) L2
d,γ(Ω) :=

{
φ ∈ L2

loc(Ω) : dγφ ∈ L2(Ω)
}

,

where d is a function, that behaves locally like the distance to the nearest non-convex

corner a ∈ A of the domain Ω, and the choice 0 ≤ γ ≤ 1 ensures that

(2.25) L2(Ω) ⊂ L2
d,γ(Ω) ⊂ H−1(Ω).

The Maxwell problem is then posed over the space

(2.26) XN [L2
d,γ(Ω)] =

{
v ∈ H0(curl, Ω) : ∇·v ∈ L2

d,γ(Ω)
}

.

In [16] it is shown that for γ ∈ (γmin, 1] the operator associated with the weak

formulation of (0.1): Find u ∈ XN [L2
d,γ(Ω)], such that

(2.27)

∫

Ω

{
∇× u · ∇ × v + d2γ∇·u∇·v

}
=

∫

Ω

f · v for all v ∈ XN [L2
d,γ(Ω)]

is elliptic, the subspace H1(Ω) ∩ H0(curl, Ω) is dense in XN [L2
d,γ(Ω)] and the solu-

tion of (2.27) coincides with the solution of (0.1). γmin depends on the domain Ω.

According to [8] and [11], we have the following equivalence of norms on the space

XN [L2
d,γ(Ω)]:

(2.28) ||v||
XN [L2

d,γ
(Ω)] := ||v|| + ||∇ × v|| + ||dγ∇·v|| ∼ ||∇ × v|| + ||dγ∇·v|| ,

where two norms ||·||A and ||·||B are equivalent in the sense ||·||A∼ ||·||B if both

||·||A. ||·||B and ||·||B. ||·||A for all elements from the Hilbert space. The discrete

version of equation (2.27) can simply be stated as: Find uh ∈ Xh, such that

(2.29)

∫

Ω

{
∇× uh · ∇ × vh + d2γ∇·uh∇·vh

}
=

∫

Ω

f · vh for all vh ∈ Xh.
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3. A priori results from literature

In order to prove convergence in energy norm, both Costabel and Dauge in [16]

and Badia and Codina in [4] make an assumption that the finite element space Xh

contains gradients of another finite element space, which in turn possesses good

approximation properties.

Assumption 3.1. There exists a finite element space Gh defined over the mesh

partition Th, such that ∇φh ∈ Xh for any function φh ∈ Gh. Furthermore, this space

satisfies the approximation property

(3.1) inf
φh∈Gh

||φ − φh||Hs(ω) . (hmax)t−s ||φ − φh||Ht(ω) ,

in any bounded set ω ⊂ Ω, φ ∈ H t(ω) and 0 ≤ s ≤ t ≤ r + 1.

Remark 3.2. In [4], several examples of elements are listed for which Assump-

tion 3.1 holds true. For instance, it is known to hold in dimension 2 for r ≥ 4. In

this case we can take Gh as the finite element space obtained for the Argyris trian-

gle. Gh could also be constructed by using the Bogner-Fox-Schmidt triangle, which

is r ≥ 2. In order to do this, the triangulation Th should admit a coarser mesh

of macroelements. Under the same kind of restriction on the mesh topology, the

discrete space recently introduced in [35], based on the Powell-Sabin interpolant,

makes true Assumption 3.1 in both 2 and 3 dimensions for r ≥ 1.

3.1. Negative Sobolev space penalty discretization. Here we would like to

summarize the pointwise convergence results from Badia and Codina [4] and Bonito

and Guermond [7] for the discrete solution of (2.10) and of (2.11), respectively, to

the solution of (0.1).

From Bonito and Guermond [7] we cite the following convergence result for the

error measured in L2(Ω) norm.

Theorem 3.3 (Convergence in L2(Ω) norm). Let r ≥ 1 be the polynomial degree

of the space Xh. Then the solution Eh of (2.11) converges to the solution E of (0.1)

and the following estimate is valid

(3.2) ||E − Eh||L2(Ω) ≤ C (hmax)(α− 1
2
− α

2(r+1))
−

,

where the notation b− denotes any real number strictly smaller than b.

In order to state the convergence result from Badia and Codina [4], we use the

following regular decomposition.

Lemma 3.4 (Regular decomposition). Let E be the solution of the continuous

problem (0.1). Then it can be decomposed into a regular and a singular part.

(3.3) E = w + ∇φ,
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where w ∈ H1+λ(Ω)3 ∩H0(curl, Ω) and φ ∈ H1
0 (Ω)∩H1+λ(Ω) for some real number

λ > mina∈A
π
ωa

. If A is empty the lemma holds with λ := 1.

The lemma is stated in [4] and is a result of the deep analysis about the singu-

larities of the Maxwell problem due to Costabel and Dauge [14].

Theorem 3.5 (Convergence in |||·||| norm). Let Assumption 3.1 be satisfied.

Then the solution (Eh, ph) of (2.11) converges to the solution (E, p) of (2.12) and

the following estimate holds

(3.4) |||E −Eh, p − ph||| ≤ C (hmax)t ||w||H1+t(Ω)3 + (hmax)t−ε ||φ||H1+t(Ω)

for any ε ∈]0, t − 1
2
[ and for t = min {λ, r}, with λ from Lemma 3.4.

Remark 3.6. We stress the fact, that the formulation in both [7] and [4] is

developed for uniform meshes. The parameter h in the formulation is a quantitiy

that is uniform on each discretization. All arguments carried out in both papers

can be generalized to non-uniform meshes and all proofs work also with a piecewise

constant function h that attains the value of the diameter on each element.

3.2. Weighted regularization method. In order to state the a priori results

for the weighted regularization method we need to specify which space L2
d,γ(Ω) and

XN [L2
d,γ(Ω)] we are using. The weak formulation (2.27) depends on the choice of γ

which in turn depends on the domain Ω.

For a convex domain Ω we can choose d ≡ 1. If the domain Ω is non-convex

on the other hand, we let d denote the distance to the non-convex corners a ∈ A:

d(x) = dist(x,∪a∈Aωa). The weight function dγ thus behaves locally as the distance

function to a non-convex corner, raised to the power γ > 0. It is a non-negative

function that is bounded from above and beolow by a strictly positive constant

outside a neighbourhood of A.

From Theorem 7.4 in [16] we have the following result:

Theorem 3.7 (Convergence in XN [L2
d,γ(Ω)] norm). Let Assumption 3.1 be sat-

isfied. If γ is chosen such that δDir := mina∈A 1 − π
ωa

< γ ≤ 1 for all a ∈ A, then

(3.5) ||E −Eh||XN [L2
d,γ

(Ω)] ≤ C (hmax)min{r, λNeu−ε, γ−δDir−ε} ||f ||
L2(Ω) ,

where λNeu := mina∈A
π
ωa

is the minimum singularity exponent for the Neumann

Laplace operator and r is the degree of the polynomials in Xh. If A is empty we can

make the choice δDir := 0 and the theorem holds with λNeu := 1.
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4. Estimator for the H−1 discretization

We develop an a posteriori error estimator for equation (2.10), that is equation

(2.11) with the choice α = 1. We then show that it is a reliable estimator. We define

the element residuals

(4.1)

(
η

(1)
T

)2

:= h2
T ||f −∇×∇×Eh −∇ph||2T ,

(
η

(2)
T

)2

:= h2
T ||∇·Eh||2T ,

(
η

(3)
T

)2

:= h2
T ||∆ph||2T ,

and jump residuals

(4.2)

(
η

(1)
F

)2

:= hF ||[∇× Eh × n]||2F(
η

(2)
F

)2

:= hF ||[∂nph]||2F .

Furthermore we define

(4.3)

η(T )2 :=
(
η

(1)
T

)2

+
(
η

(2)
T

)2

+
(
η

(3)
T

)2

+
1

2

∑

F⊂∂T,F∈Fh

(
η

(1)
F

)2

+
1

2

∑

F⊂∂T,F∈Fh

(
η

(2)
F

)2

,

and

(4.4) η(Ω)2 :=
∑

T∈Th

η2
T

and show reliability of the estimator in a special situation.

Definition 4.1. On Xh × Mh we define the discrete norm as:

(4.5) |||vh, ph|||h = ||∇ × vh|| +
(
∑

T∈T

h2
T ||∇·vh||2T

) 1
2

+ ||∇ph|| .

Lemma 4.2. For the difference between the discrete solution (Eh, ph) ∈ Xh ×Mh

in (2.10) and the solution (E, p) ∈ H0(curl, Ω) ∩ H1
0 (Ω) of the continuous problem

(2.12) there holds

(4.6) |||E − Eh, p − ph||| ≤ C |||E− Eh, p − ph|||h
independent of h.

Proof. The proof is similar to the proof of Lemma 3.3 in [4], where the result

has been shown for the discrete solution alone and not for the differences E − Eh

and p − ph. Since Xh × Mh ⊂ H0(curl, Ω) × H1
0 (Ω), due to the inf-sup condition
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(2.13) we know that

(4.7)

sup
(v,q)∈H0(curl,Ω)×H1

0 (Ω)

∫
Ω
{∇ × (E− Eh) · ∇ × v −∇(p − ph) · v + (E− Eh) · ∇q}

|||E − Eh, p − ph||| |||v, q||| ≥ β > 0.

We now do some manipulations with the numerator

(4.8)

∫

Ω

{∇ × (E − Eh) · ∇ × v −∇(p − ph) · v + (E − Eh) · ∇q}

=

∫

Ω

{∇ × (E − Eh) · ∇ × v −∇(p − ph) · v + (E − Eh) · ∇(q − Πhq)}

+

∫

Ω

(E − Eh) · ∇(Πhq)

. ||∇ × (E− Eh)|| ||∇ × v|| + ||∇(p − ph)|| ||v||

+
∑

T∈Th

hT ||∇·(E−Eh)||T ||∇q||ω(T ) + ||∇(p − ph)|| ||∇(Πhq)||

. |||E − Eh, p − ph|||h |||v, q||| ,
where to estimate the second integral after the equality sign, we used the fact that

∇·E = 0 as well as the fact that the discrete solution (Eh, ph) solves (2.10). Πh

is the interpolation operator from Assumption 2.1 and we use its continuity in

H1(Ω) (2.8). When employing (4.8) in (4.7), cancelling |||v, q||| and multiplying

by |||E − Eh, p − ph||| we arrive at the result that we claimed was true. �

Lemma 4.3 (Decomposition lemma). The following decomposition is possible for

the difference between the solution E of the continuous problem (0.1) and the solution

Eh of the discrete problem (2.10)

(4.9) E −Eh = w + ∇φ

with w ∈ H1(Ω) and φ ∈ H1
0 (Ω) and the estimate

(4.10) ||w||1 + ||φ||1 ≤ ||E− Eh||H(curl,Ω) .

Proof. The result can be found in [24] (Lemma 2.4). �

Assumption 4.4 (Interpolation/Approximation by a C1 regular functions). There

exists an interpolation operator Π̃h : H1
0 (Ω) 7→ H1

0 (Ω) ∩ C1(Ω) ∩ Vr+1, where Vr+1

denotes a standard finite element of piecewise polynomials of degree at most r + 1

and r is the degree of the space Xh, such that there holds

(4.11)

∣∣∣
∣∣∣φ − Π̃hφ

∣∣∣
∣∣∣
T
≤ h1

T |φ|1,ω(T )

∣∣∣
∣∣∣φ − Π̃hφ

∣∣∣
∣∣∣
F
≤ h

1
2
F |φ|1,ω(F ) .
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Additionally, we assume that we have the following stability estimate

(4.12)
∣∣∣
∣∣∣∇Π̃hφ

∣∣∣
∣∣∣
Ω
≤ ||∇φ||Ω .

Theorem 4.5 (Reliability of the estimator). Let Assumption 4.4 be true. Then,

if hT ≤ 1 for all T ∈ Th, the a posteriori error estimator (4.4) is reliable in the

sense that

(4.13) |||E− Eh, p − ph||| ≤ Cη(Ω),

where (Eh, ph) ∈ Xh × Mh denotes the solution of the discrete equation (2.10) and

(E, p) ∈ H0(curl, Ω) × H1
0 (Ω) denotes the solution of the weak formulation (2.12).

Proof. We start our calculation using (4.6) of Lemma 4.2.

(4.14)

|||E− Eh, p − ph|||2

. |||E − Eh, p − ph|||2h
= (f ,E −Eh) − (∇× Eh,∇× (E −Eh))

−
∑

T∈T

h2
T (∇·Eh,∇·(E− Eh))T − (∇ph,∇(p − ph))

= (f ,E −Eh) − (∇× Eh,∇× (E −Eh))

−
∑

T∈T

h2
T (∇·Eh,∇·(E− Eh))T − (∇ph,E− Eh)

+ (Eh,∇(p − ph)) − (∇ph,∇(p − ph))

= (f ,E −Eh − vh) − (∇× Eh,∇× (E− Eh − vh))

−
∑

T∈T

h2
T (∇·Eh,∇·(E− Eh − vh))T − (∇ph,E− Eh − vh)

+ (Eh,∇(p − ph − qh)) − (∇ph,∇(p − ph − qh)) ,

where we have used the fact that ∇·f ≡ 0, ∇·E ≡ 0 and ∇p ≡ 0 and vh and qh are

arbitrary functions from the finite element spaces. We now apply the decomposition

of Lemma 4.3 and make the following choices: vh := Πhw + ∇Π̃hφ and qh :=

Πh(p− ph), where Πh and Πh are from Assumption 2.1 and Π̃h is from Assumption
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4.4. This leads to

(4.15)

|||E − Eh, p − ph|||2

. (f ,w −Πhw) − (∇× Eh,∇× (w − Πhw))

−
∑

T∈T

h2
T

(
∇·Eh,∇·(w + ∇φ −Πhw −∇Π̃hφ)

)

T

− (∇ph,w + ∇φ −Πhw −∇Π̃hφ) + (Eh,∇(p − ph − Πh(p − ph)))

− (∇ph,∇(p − ph − Πh(p − ph)))

=
∑

T∈T

(f −∇×∇×Eh,w −Πhw)T +
∑

F∈F

([∇× Eh × n] ,w − Πhw)F

−
∑

T∈T

h2
T

(
∇·Eh,∇·(w −Πhw + ∇φ −∇Π̃hφ)

)
T

− (∇ph,w −Πhw + ∇φ −∇Π̃hφ) + (Eh,∇(p − ph − Πh(p − ph)))

− (∇ph,∇(p − ph − Πh(p − ph))) .

Using the Cauchy-Schwarz inequality we estimate

(4.16)

|||E − Eh, p − ph|||2

.
∑

T∈T

||f −∇×∇× Eh −∇ph||T ||w − Πhw||T

+
∑

F∈F

||[∇×Eh × n]||F ||w − Πhw||F

+
∑

T∈T

h2
T ||∇·Eh||T ||w||1,ω(T )

+
∑

T∈T

hT ||∇·Eh||T
(
hT ||∆φ||T + hT

∣∣∣
∣∣∣∆Π̃hφ

∣∣∣
∣∣∣
T

)

+
∑

T∈T

hT ||∆ph||T ||φ||1,ω(T )

+
∑

T∈T

hT ||∆ph −∇·Eh||T ||p − ph||1,ω(T )

+
∑

F∈F

||[∂nph]||F
∣∣∣
∣∣∣φ − Π̃hφ

∣∣∣
∣∣∣
F

+
∑

F∈F

||[∂nph]||F ||p − ph − Πh(p − ph)||F .

Inserting ∇φ = E − Eh − w according to the decomposition Lemma 4.3, that we

used, or rather inserting ∆φ = −∇·Eh −∇·w, because ∇·E ≡ 0, and applying the

inverse estimate (cf. [4], [10])

(4.17) hT

∣∣∣
∣∣∣∆Π̃hφ

∣∣∣
∣∣∣
T

.
∣∣∣
∣∣∣∇Π̃hφ

∣∣∣
∣∣∣
T
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followed by the stability estimate (4.12), we arrive at the following inequality

(4.18)

|||E− Eh, p − ph|||2

.
∑

T∈T

||f −∇×∇× Eh −∇ph||T ||w − Πhw||T

+
∑

F∈F

||[∇× Eh × n]||F ||w −Πhw||F

+
∑

T∈T

h2
T ||∇·Eh||T ||w||1,ω(T )

+
∑

T∈T

hT ||∇·Eh||T
(
hT ||∇·Eh||T + hT ||w||T + ||φ||1,T

)

+
∑

T∈T

hT ||∆ph||T ||φ||1,ω(T )

+
∑

T∈T

hT ||∆ph −∇·Eh||T ||p − ph||1,ω(T )

+
∑

F∈F

||[∂nph]||F
∣∣∣
∣∣∣φ − Π̃hφ

∣∣∣
∣∣∣
F

+
∑

F∈F

||[∂nph]||F ||p − ph − Πh(p − ph)||F .

Using the triangle inequality on the term ||∆ph −∇·Eh||T , and then employing

(4.10), Assumption 2.1 and the trace inequality we conclude that

(4.19)

|||E − Eh, p − ph|||2

.





(
∑

T∈T

h2
T ||f −∇×∇× Eh −∇ph||T

) 1
2

+

(
∑

T∈T

h4
T ||∇·Eh||2T

)1
2

+

(
∑

T∈T

h2
T ||∆ph||2T

) 1
2

+

(
∑

F∈F

hF ||[∇× Eh × n]||2F

) 1
2

+

(
∑

F∈F

hF ||[∂nph]||2F

) 1
2



× |||E− Eh, p − ph|||

+
∑

T∈T

h2
T ||∇·Eh||2T .
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Since we assume, that hT ≤ 1 for all T ∈ Th, we conclude that

(4.20)

|||E −Eh, p − ph|||

.

(
∑

T∈T

h2
T ||f −∇×∇× Eh −∇ph||T

) 1
2

+

(
∑

T∈T

h2
T ||∇·Eh||2T

)1
2

+

(
∑

T∈T

h2
T ||∆ph||T

) 1
2

+

(
∑

F∈F

hF ||[∇× Eh × n]||2F

) 1
2

+

(
∑

F∈F

hF ||[∂nph]||2F

) 1
2

. η(Ω).

�

5. Adaptivity for the weighted residual method

In this section we derive an a posteriori error estimator for the discrete scheme

(2.29). We then resort to the ideas in [9] to show the reduction of a combined

quantity of the error measured in energy norm and the estimator. This could be

used to design a convergent adaptive algorithm similar to the one introduced in

Algorithm 2.19 of Chapter II with the modules

(5.1) SOLVE → ESTIMATE → MARK → REFINE.

As in Section 2.3 of Chapter II, we let Tn, n = 1, 2, . . ., denote a family of trian-

gular meshes on Ω. We assume that for each n, Tn+1 is refinement of Tn. We then

consider finite element spaces as introduced in (2.2) and denote them by Xn, where

the index denotes which member of the family we are dealing with.

Lemma 5.1 (Orthogonality relation). There holds:

(5.2)

||∇ × (E −En)||2 + ||dγ∇·(E−En)||2

= ||∇ × (E− En+1)||2 + ||dγ∇·(E− En+1)||2

+ ||∇ × (En+1 −En)||2 + ||dγ∇·(En+1 − En)||2 .

Proof. Since Xn ⊂ Xn+1 we can deduce that

(5.3)

∫

Ω

{∇ × (E −En+1) ·∇ × (En −En+1)

+d2γ∇·(E− En+1)∇·(En −En+1)
}

= 0.
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by substracting equation (2.29) with the choice vh := En − En+1 from equation

(2.27) with the choice v := En − En+1. In other words, En − En+1 is orthogonal to

En − En+1 in the scalar product

(5.4) (g,h) := (∇× g,∇× h) + (d2γ∇·g,∇·h).

From this we can conclude the orthogonality relation (5.2). �

We define the element residuals

(5.5)

(
ηTn

(En, T )
(1)
T

)2

:= h2
T ||f −∇×∇×En||2T(

ηTn
(En, T )

(2)
T

)2

:= ||dγ∇·En||2T
and jump residual

(5.6)
(
ηTn

(En, F )
(1)
F

)2

:= hF ||[∇× En × n]||2F
Furthermore we define

(5.7)

ηTn
(En, T )2 :=

(
ηTn

(En, T )
(1)
T

)2

+
(
ηTn

(En, T )
(2)
T

)2

+
1

2

∑

F⊂∂T,F∈Fn

(
ηTn

(En, F )
(1)
F

)2

,

and

(5.8) ηTn
(En, Ω)2 :=

∑

T∈Tn

ηTn
(En, T )2.

In order to be able to show that the estimator is reliable we need the following

decomposition as Theorem 1.2 of [16] (cf. also Theorem 2.3 in [11]).

Lemma 5.2 (Decomposition lemma). Let E ∈ XN [L2
d,γ(Ω)] denote the solution of

the weak formulation (2.27) and let En∈ Xn be the solution of the discrete equation

(2.29). Then the following decomposition is possible

(5.9) E −Eh = w + ∇φ,

with w ∈ H1(Ω) and φ ∈ H1
0 (Ω) and the estimate

(5.10) ||w||1 + ||φ||1 + ||dγ∆φ|| ≤ ||E −En||H(curl,Ω) .

Theorem 5.3 (Reliability of the estimator). The a posteriori error estimator

(5.8) is reliable in the sense that

(5.11) ||E − En||XN [L2
d,γ

(Ω)] ≤ CηTn
(En, Ω),

where En∈ Xn denotes the solution of the discrete equation (2.29) and E ∈ XN [L2
d,γ(Ω)]

denotes the solution of the weak formulation (2.27).



5. ADAPTIVITY FOR THE WEIGHTED RESIDUAL METHOD 55

Proof. We start our calculation using (2.28) to get

(5.12)

||E −En||2XN [L2
d,γ

(Ω)]

. ||∇ × (E− En)||2 + ||dγ∇·(E− En)||2

= (f ,E −En) − (∇×Eh,∇× (E − En))

−
(
d2γ∇·Eh,∇·(E− En)

)

= (f ,E −En − vh) − (∇×En,∇× (E −En − vh))

−
(
d2γ∇·En,∇·(E−En − vh)

)
,

where vh is an arbitrary function from the finite element spaces Xn. We now apply

the decomposition of Lemma 5.2 and decompose E−En = w +∇φ. Then we make

the choice vh := Πhw. This leads to

(5.13)

||E− En||2XN [L2
d,γ

(Ω)]

. (f ,w − Πhw) − (∇× En,∇× (w −Πhw))

−
(
d2γ∇·En,∇·(w + ∇φ − Πhw)

)

=
∑

T∈Tn

(f −∇×∇×En,w − Πhw)T

+
∑

F∈Fn

([∇× En × n] ,w − Πhw)

−
(
d2γ∇·En,∇·(w + ∇φ − Πhw)

)
.

Using the Cauchy-Schwarz inequality we estimate

(5.14)

||E− En||2XN [L2
d,γ

(Ω)]

.
∑

T∈T

||f −∇×∇× Eh||T ||w − Πhw||T

+
∑

F∈F

||[∇×Eh × n]||F ||w − Πhw||F

+

(
∑

T∈Tn

||dγ∇·Eh||2T

) 1
2

||w||1,Ω +

(
∑

T∈Tn

||dγ∇·Eh||2T

) 1
2

||dγ∆φ|| .

Using the interpolation estimate and (5.10) we conclude the proof. �

Remark 5.4. Due to the equivalence of norms in (2.28), we also have reliability

in another norm: The a posteriori error estimator (5.8) is reliable in the sense that

(5.15) ||∇ × (E − En)||2 + ||dγ∇·(E−En)||2 ≤ C1ηTn
(En, Ω),

where En∈ Xn denotes the solution of the discrete equation (2.29) and E ∈ XN [L2
d,γ(Ω)]

denotes the solution of the weak formulation (2.27). The constant C1 will be used

in the proof of Theorem 5.6.
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Now suppose that we are examining an algorithm

(5.16) SOLVE → ESTIMATE → MARK → REFINE,

as described in Section 2.6 of Chapter II, but modified to our situation. That is, in

each step the marking is done in such a way that

(5.17) ηTn
(En, M) ≥ θηTn

(En, Tn).

We will prove a contraction property for a combined quantity of the error measured

in energy norm and the estimator in Theorem 5.6, which is the main ingredient for

showing convergence of the adaptive algorithm in the case of the Laplace equation

in [9].

Lemma 5.5 (Estimator reduction). Let En and En+1 be two consecutive solutions

of the algorithm described above. Then there holds:

(5.18)

η2
Tn+1

(En+1, Ω)

≤ (1 + δ)
{
η2

Tn
(En, Ω) − λη2

Tn
(En, M)

}

(1 + δ−1) Λ
(
||∇ × (En+1 − En)||2 + ||dγ∇·(En+1 − En)||2

)
,

where λ := 1 − 2−
1
d > 0, d denotes the dimension and the constant Λ only depends

on the shape regularity of the mesh and the polynomial degree.

Proof. The main ideas of the proof were developed in [9]. First, for an arbitrary

T ∈ Tn+1 we use the definitions (5.5), (5.6) and (5.7) to calculate

(5.19)

η2
Tn+1

(En+1, T )2 =
(
ηTn

(En+1, T )
(1)
T

)2

+
(
ηTn

(En+1, T )
(2)
T

)2

+
1

2

∑

F⊂∂T,F∈Fn

(
ηTn

(En+1, F )
(1)
F

)2

= h2
T ||f −∇×∇× En+1||2T + ||dγ∇·En+1||2T

+
1

2

∑

F⊂∂T,F∈Fn

hF ||[∇× En+1 × n]||2F

≤ h2
T ||f −∇×∇× En||2T

+ h2
T ||∇ × ∇× (En − En+1)||2T

+ ||dγ∇·En||2T + ||dγ∇·(En − En+1)||2T

+
1

2

∑

F⊂∂T,F∈Fn

hF ||[∇× En × n]||2F

+
1

2

∑

F⊂∂T,F∈Fn

hF ||[∇× (En − En+1) × n]||2F ,
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where we have used the triangle inequality. Applying inverse estimates to the terms

involving the differences En − En+1 and again using the definitions (5.5), (5.6) and

(5.7) we conclude that

(5.20)

η2
Tn+1

(En+1, T )2

≤ ηTn+1(En, T )2

+Λ
(
||∇ × (En+1 − En)||2ω(T ) + ||dγ∇·(En+1 − En)||2ω(T )

)

Using Young’s inequality with parameter δ, summing over all elements T ∈ Tn+1

and using the finite overlap property of the patches ω(T ) we arrive at the following

estimate

(5.21)

η2
Tn+1

(En+1, Tn+1)

≤ (1 + δ) ηTn+1(En, T )2

(1 + δ−1) Λ
(
||∇ × (En+1 − En)||2 + ||dγ∇·(En+1 − En)||2

)
,

with a new constant Λ that only depends on the shape regularity of the mesh and

the polynomial degree. For a marked element T ∈ M ⊂ Tn, we set

Tn+1,T := {T ′ ∈ Tn+1 | T ′ ⊂ T} .

Since En ∈ Xn, we see that

(5.22)
(
η2

Tn+1
(En, F )

(1)
F

)2

:= 0

on sides F in the interior of T . We then obtain

(5.23)
∑

T ′∈Tn+1,T

η2
Tn+1

(En, T
′) ≤ 2−

1
d η2

Tn
(En, T ),

because refinement by bisection implies hT ′ = |T ′|− 1
d ≤ (2−1 |T |)−

1
d ≤ 2−

1
d hT for all

T ′ ∈ Tn+1,T . For an element T ∈ Tn \M, on the other hand, Remark 2.1 in [9] yields

η2
Tn+1

(En, T ) ≤ η2
Tn

(En, T ). Hence, summing over all T ∈ Tn+1 we arrive at

(5.24)

η2
Tn+1

(En, Ω)

≤ η2
Tn

(En, Ω \ M) − 2−
1
d η2

Tn
(En, M)

= η2
Tn

(En, Ω) − λη2
Tn

(En, M).

From this together with (5.21), the assertion finally follows. �

Theorem 5.6 (Contraction property). Let En and En+1 be two consecutive so-

lutions of the algorithm described above. Then there exists ζ > 0 and 0 < α < 1,

depending only on the shape regularity of the meshes and the parameter θ from the
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marking strategy, such that for any two consecutive iterates n and n + 1, we have

(5.25)
||∇ × (E − En+1)||2 + ||dγ∇·(E− En+1)||2 + ζη2

Tn+1
(En+1, Ω)

≤ α2
(
||∇ × (E− En)||2 + ||dγ∇·(E− En)||2 + ζη2

Tn
(En, Ω)

)
.

Proof. We start by employing Lemma 5.1 to get

(5.26)

||∇ × (E − En+1)||2 + ||dγ∇·(E− En+1)||2 + ζη2
Tk+1

(En+1, Ω)

= ||∇ × (E − En)||2 + ||dγ∇·(E−En)||2

− ||∇ × (En+1 − En)||2 − ||dγ∇·(En+1 −En)||2 + ζη2
Tn+1

(En+1, Ω)

Now we employ Lemma 5.5 to find:

(5.27)

||∇ × (E −En+1)||2 + ||dγ∇·(E− En+1)||2 + ζη2
Tn+1

(En+1, Ω)

≤ ||∇ × (E −En)||2 + ||dγ∇·(E−En)||2

− ||∇ × (En+1 − En)||2 − ||dγ∇·(En+1 −En)||2

+ ζ (1 + δ)
{
η2

Tn
(Ek, Ω) − λη2

Tk
(Ek, M)

}

+ ζ
(
1 + δ−1

)
Λ
(
||∇ × (En+1 − En)||2 + ||dγ∇·(En+1 − En)||2

)
.

Choosing ζ dependent on δ to be

(5.28) ζ :=
1

(1 + δ−1) Λ
⇐⇒ ζ(1 + δ) =

δ

Λ
,

we achieve that all the terms involving the difference En+1 − En cancel each other

out:

(5.29)

||∇ × (E − En+1)||2 + ||dγ∇·(E− En+1)||2 + ζη2
Tn+1

(En+1, Ω)

≤ ||∇ × (E − En)||2 + ||dγ∇·(E− En)||2

+ζ (1 + δ) η2
Tn

(En, Ω) − ζ (1 + δ)λη2
Tn

(En, M)

Invoking the marking strategy (5.17) we deduce

(5.30)

||∇ × (E − En+1)||2 + ||dγ∇·(E− En+1)||2 + ζη2
Tn+1

(En+1, Ω)

≤ ||∇ × (E − En)||2 + ||dγ∇·(E− En)||2

+ ζ (1 + δ) η2
Tn

(En, Ω) − ζ (1 + δ)λθ2η2
Tn

(En, Ω)

We rewrite this equality as follows with any κ ∈ (0, 1)

(5.31)

||∇ × (E − En+1)||2 + ||dγ∇·(E− En+1)||2 + ζη2
Tn+1

(En+1, Ω)

≤ ||∇ × (E − En)||2 + ||dγ∇·(E− En)||2

+ ζ (1 + δ) η2
Tn

(En, Ω) − κ ζ (1 + δ)λθ2η2
Tn

(En, Ω)

− (1 − κ)ζ (1 + δ)λθ2η2
Tn

(En, Ω).
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We apply the reliability of the estimator from Theorem 5.3 and replace ζ by the

choice made in (5.28) earlier to get

(5.32)

||∇ × (E− En+1)||2 + ||dγ∇·(E− En+1)||2 + ζη2
Tn+1

(En+1, Ω)

≤ α2
1

(
||∇ × (E − En)||2 + ||dγ∇·(E−En)||2

)

+ α2
2ζ η2

Tn
(En, Ω),

with

(5.33) α2
1 = 1 − κ

λθ2

C1Λ
δ, α2

2 = (1 + δ)
(
1 − (1 − κ)λθ2

)
.

Now choosing δ small enough yields

(5.34) α2 := max
{
α2

1, α
2
2

}
< 1,

which is the desired result. �
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6. Numerical results

In this section we test the methods described in this chapter to see how they

work in practice. We report convergence rates for uniform refinements both for the

weighted regularization method and when stabilizing the divergence term in a nega-

tive Sobolev space. We additionally display the results of the estimator for uniform

refinements. Afterwards we adaptively refine according to the estimators to show

that we can improve the effectiveness of the calculations.

Examples:

1 Torus [0, 1]2-periodic, smooth solution.

2 Square [0, 1]2, n× E = 0, smooth solution.

3 L–shaped domain, n ×E = 0, singular solution.

This is an interesting example. The L-shaped domain is given as Ω = [0, 1]2 \
([0, +1] × [−1, 0]). The example has already been studied in both [16], [7] and [4]

for uniform refinements. We reproduce these results and then apply our adaptive

approach.

We consider the following boundary value problem:

(6.1)

∇×∇×E = 0 in Ω,

∇·E = 0 in Ω,

E × n = G × n on ∂Ω,

where

(6.2) G =
2

3
r−

1
3

(
− sin( θ

3
)

cos( θ
3
)

)
,

where (r, θ) are the polar coordinates centered at the re-entrant corner of the do-

main. The solution to the above problem is E = ∇φ, where φ(r, θ) = r
2
3 sin(2

3
θ),

and E ∈ H
2
3 (Ω).
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6.1. Experimental order of convergence (eoc) for the weighted regu-

larisation method.∫

Ω

{∇ × Eh · ∇ × vh + d2γ∇·Eh∇·vh − σ1∇ph · vh} =

∫

Ω

f · vh

∫

Ω

{−σ1Eh · ∇qh + σ1σ2∇qh · ∇qh} = 0

6.1.1. Example 2. σ1, σ2 ∈ {0, 1}, γ = 0.9.

1.5 2 2.5 3

−2

−1.5

−1

−0.5
Convergence history

log
10

(N)

lo
g 10

(E
rr

)

N L2-err eoc

25 3.35−1

41 1.26−1

81 9.98−2 1.980

145 3.15−2 2.150

289 2.60−2 2.070

545 7.87−3 2.070

1089 6.56−3 2.050

Ex=2, pd=1, sig1=0, sig2=0, γ = 0.9, imax=7.

1.5 2 2.5 3

−2

−1.5

−1

−0.5
Convergence history

log
10

(N)

lo
g 10

(E
rr

)

N L2-err eoc

25 3.38−1

41 1.26−1

81 9.98−2 1.990

145 3.15−2 2.150

289 2.60−2 2.070

545 7.87−3 2.070

1089 6.56−3 2.050

Ex=2, pd=1, sig1=1, sig2=0, γ = 0.9, imax=7.

1.5 2 2.5 3

−2

−1.5

−1

−0.5
Convergence history

log
10

(N)

lo
g 10

(E
rr

)

N L2-err eoc

25 3.35−1

41 1.26−1

81 9.98−2 1.980

145 3.15−2 2.150

289 2.60−2 2.070

545 7.87−3 2.070

1089 6.56−3 2.050

Ex=2, pd=1, sig1=1, sig2=1, γ = 0.9, imax=7.
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1.5 2 2.5

−3.5

−3

−2.5

−2

−1.5

Convergence history

log
10

(N)

lo
g 10

(E
rr

)

N L2-err eoc

25 4.20−2

41 1.15−2

81 6.07−3 3.210

145 1.58−3 3.110

289 8.07−4 3.140

545 2.03−4 3.080

Ex=2, pd=2, sig1=0, sig2=0, γ = 0.9, imax=7.

1.5 2 2.5

−3.5

−3

−2.5

−2

−1.5

Convergence history

log
10

(N)

lo
g 10

(E
rr

)

N L2-err eoc

25 4.20−2

41 1.15−2

81 6.07−3 3.210

145 1.58−3 3.110

289 8.07−4 3.140

545 2.03−4 3.080

Ex=2, pd=2, sig1=1, sig2=0, γ = 0.9, imax=7.

1.5 2 2.5

−3.5

−3

−2.5

−2

−1.5

Convergence history

log
10

(N)

lo
g 10

(E
rr

)

N L2-err eoc

25 4.20−2

41 1.15−2

81 6.07−3 3.210

145 1.58−3 3.110

289 8.07−4 3.140

545 2.03−4 3.080

Ex=2, pd=2, sig1=1, sig2=1, γ = 0.9, imax=7.
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6.1.2. Example 3. σ1, σ2 ∈ {0, 1}, γ = 0.9.

2 2.5 3
−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

Convergence history

log
10

(N)

lo
g 10

(E
rr

)

N L2-err eoc

65 5.19−1

113 4.51−1

225 3.99−1 0.420

417 3.54−1 0.370

833 3.14−1 0.370

1601 2.81−1 0.340

Ex=3, pd=1, sig1=0, sig2=0, γ = 0.9, imax=6.

2 2.5 3

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

Convergence history

log
10

(N)

lo
g 10

(E
rr

)

N L2-err eoc

65 5.25−1

113 4.52−1

225 3.95−1 0.450

417 3.46−1 0.410

833 3.02−1 0.410

1601 2.66−1 0.390

Ex=3, pd=1, sig1=1, sig2=0, γ = 0.9, imax=6.

2 2.5 3

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

Convergence history

log
10

(N)

lo
g 10

(E
rr

)

N L2-err eoc

65 5.25−1

113 4.52−1

225 3.95−1 0.450

417 3.46−1 0.410

833 3.02−1 0.410

1601 2.66−1 0.390

Ex=3, pd=1, sig1=1, sig2=1, γ = 0.9, imax=6.

2 2.5 3

−0.7

−0.6

−0.5

−0.4

Convergence history

log
10

(N)

lo
g 10

(E
rr

)

N L2-err eoc

65 4.57−1

113 3.80−1

225 3.11−1 0.620

417 2.55−1 0.610

833 2.12−1 0.580
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6.1.3. Example 3 — Dependence on γ. σ1 = 0, σ2 = 0, γ ∈ [0, 1].
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Figure 6.1. Dependence of the error on the choice of γ. The y-
values are the errors for the approximation on a uniform mesh with
polynomial degree 2 and 1601 degrees of freedom.
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6.2. Eoc for the H−α regularisation.
∫

Ω

{∇ × Eh · ∇ × vh + h2α∇·Eh∇·vh −∇ph · vh} =

∫

Ω

f · vh

∫

Ω

{−Eh · ∇qh + h2(1−α)∇qh · ∇qh} = 0

6.2.1. Example 3. α ∈ (1
2
, 1).
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6.3. The estimator with uniform refinements. For uniform refinements we

achieve the following convergence:
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Figure 6.2. Results for uniform refinements.

N L2 error eoc estimator eoc
8 8.23−1 8.74−1

11 7.75−1 0.380 7.10−1 1.300

21 7.01−1 0.310 6.13−1 0.460

33 6.26−1 0.500 6.10−1 0.020

65 5.57−1 0.340 5.96−1 0.070

113 4.93−1 0.440 5.75−1 0.130

225 4.28−1 0.410 5.70−1 0.020

417 3.67−1 0.500 5.72−1 −0.010

Table 6.1. Uniform refinements for the H−0.7 penalty regularization.
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N L2 error eoc estimator eoc
8 7.74−1 9.67−1

11 6.92−1 0.700 9.01−1 0.440

21 6.34−1 0.270 8.62−1 0.140

33 5.63−1 0.520 8.85−1 −0.120

65 5.04−1 0.330 8.86−1 −0.000

113 4.50−1 0.400 8.80−1 0.030

225 3.98−1 0.360 8.73−1 0.020

417 3.53−1 0.390 8.59−1 0.050

Table 6.2. Uniform refinements with the weighted regularization
method with penalty parameter 0.9.

6.4. Adaptive results for the Negative Sovolev Space penalty discretiza-

tion.
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Figure 6.3. Adaptive refinements for the H−0.7 penalty regularization.

We realize that although the estimator overestimates the error, it is a very good

indicator. When we refine adaptively according to this indicator, we get much

smaller errors for the same number of degrees of freedom.
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6.5. Adaptive results for the Weighted Regularization Method.
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Figure 6.4. Adaptive refinements for the weighted regularization method.

We realize that also for the weighted regularization method we have found a

good error indicator.
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[2] I. Babuška, J. E. Osborn Finite Element-Galerkin Approximation of the Eigenvalues and

Eigenvectors of Selfadjoint Problems, Mathematics of Computation, Vol. 52, No. 186 (Apr.,

1989), pp. 275-297
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