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the software developers side, the algorithms and simu-
lation structures have to be redesigned, to exploit the
possibilities of these new technologies.

The simulation process of many physical and eco-
nomical processes can often be broken down into the
solution process of large sparse linear systems, count-
ing up for a high percentage of the overall resource
demand. This is the case, e.g., of many applications
that require the solution of partial di�erential equa-
tions (PDE) modeling physical, chemical or economical
processes. While direct solvers can deal with small to
medium-sized sparse linear systems, large-scale systems
frequently require the use of low-cost iterative solvers
based on Krylov subspace-based methods [4]. Here, we
focus on how these iterative solvers can be improved
with respect to power consumption. This demands not
only for a thorough analysis of the energy consumption
of the algorithms, but also the redesign of the solvers to
e�ciently exploit the energy-saving techniques o�ered
by the hardware components.

Using hybrid hardware platforms, in particular those
equipped with general-purpose multi-core processors and
GPUs, often requires a nontrivial adaption of the meth-
ods to the heterogeneous computing resources. While
the high number of computing cores in GPUs allows
the parallel execution of certain tasks and may trig-
ger signi�cant performance gains to data-parallel ap-
plications, the architecture often asks for non-negligible
modi�cations to the underlying methods. The limited
memory of GPUs and the signi�cantly higher perfor-
mance when operating in low precision suggests the
use of a mixed-precision iterative re�nement (MPIR)
method with an error correction solver on the accel-
erator. While applying this variant in general renders
a better runtime performance of the solver, this may
not necessarily be true for the energy consumption. The
reason is that the energy-saving techniques provided by
the system and the hardware platform frequently pose
some restrictions.

An initial analysis of the computation time and the
energy consumption of a plain GMRES solver {see sec-
tion 3.1, [4,5]{ and a MPIR variant was presented in [6].
The results revealed the superiority of solver imple-
mentations using hybrid hardware platforms, where the
high degree of hardware concurrency of the accelerator
was exploited to compute the expensive matrix-vector
and vector-vector operations. In this paper, we extend
those results showing how the solver can be tuned with
power-saving techniques so as to improve the energy
e�ciency.

Speci�cally, the main contribution of this paper is
a practical demonstration of how energy-saving tech-
niques can be applied with di�erent e�ciency to a vari-

ety of solver implementations. This reveals that power
demand and computation time of scienti�c applications
do not necessarily go hand-in-hand. We also show that,
in order to lower the energy consumption of iterative
solvers for linear systems, it is not su�cient to optimize
with respect to the computing time, but it is also nec-
essary to consider all parameters concerning the linear
system, the energy-saving techniques, and the hardware
platform. To achieve this goal, we split the paper into
the following parts:

1. Following the introductory part, we describe the
hardware setup. First, we introduce the hybrid CPU-
GPU hardware platform we used to conduct the ex-
periments. Additionally, we provide a description of
the power-measurement setup employed to conduct
detailed power monitoring.

2. In the next section, we describe the target mathe-
matical problem and introduce the benchmark lin-
ear systems. We also provide a brief overview about
iterative solvers and review how to use di�erent 
oating-
point formats in an iterative re�nement method.

3. In a detailed analysis we then compare the power
consumption and the computation time of the var-
ious GPU-accelerated GMRES solver implementa-
tions. In a �rst step, we analyze the impact of the
Krylov subspace size of the GMRES solver on the
runtime and the power consumption. After choos-
ing an adequate restart parameter, we then apply
a Jacobi preconditioner, improving the runtime as
well as the energy performance the algorithm. Fi-
nally, we embed the GMRES solver as well as its
preconditioned variant into a MPIR solver frame-
work. For some con�gurations this gives an addi-
tional improvement in the computation time and
energy consumption, but in all cases, the gain for
the latter one is smaller. Using DVFS and idle-wait
is known to decrease the overall power consumption
of linear solvers [6{8] We show how this technique
works by conducting a detailed energy consumption
of chipset and GPU for the time of a kernel call. This
shows that optimizing numerical algorithms with re-
spect to energy consumption not only demands the
redesign of the code, but also the e�cient leverage
of the power tools provided by the hardware plat-
forms.

4. In the last section, we o�er a number of conclusions
and a brief overview about open problems that have
to be addressed in future, to enhance the energy e�-
ciency of linear solvers further. This includes hard-
ware components which can be turned on/o� de-
pending on the demand.
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2 Target Setup

2.1 Hardware platform and linear algebra libraries

The experiments in this paper were conducted on a
system equipped with an AMD Opteron 6128 proces-
sor (eight cores) at 2.0 GHz and 24 GB of RAM. The
system was connected via PCIe (16x) to an NVIDIA
Tesla C1060 board (240 processor cores) with 4 GB
of GDDR3 memory. We invoked the tuned implemen-
tations from Intel MKL (v11.1) to perform all Level-1
BLAS operations (dot products, \axpys", norm compu-
tation, etc.) on the AMD processor. The compilation of
the CPU code was done using the GNUgcc compiler
(v4.4.3) with the 
ag -O3.

On the GPU, the Level-1 BLAS operations were
performed using the corresponding CUBLAS routines
from [9] (v3.0). NVIDIA nvcc compiler (v3.2) with an
up-to-date CUDA driver (v3.2) was employed for the
accelerator codes. A speci�c kernel for the computa-
tion of the sparse matrix-vector multiplication on the
GPU was implemented following the ideas in [10].

2.2 Measurement setup

Power was measured using an ASIC built as a number
of resistors connected in series with the power source,
with a sampling frequency of 25 Hz. This internal power
meter obtained the global energy consumption of the
chipset, processor and GPU from the lines connecting
directly the power supply unit with these components.
Samples were collected in a separate system, to avoid
interfering the performance of the tests. Figure 1 illus-
trates the connection of the energy measurement ASIC
to the system lines.

3 Mathematical Background

3.1 GMRES solvers

Large-scale sparse linear systems,Ax = b, can usually
be solved more e�ciently by applying iterative meth-
ods instead of direct solvers [4]. Especially the Krylov
subspace-based iterative methods have demonstrated
remarkable performance for many linear problems, be-
coming the method of choice for many applications.

GMRES is a projection method that operates on
Krylov subspaces generated by the Arnoldi algorithm.
It was designed for the solution of linear systems where
the coe�cient matrix A is neither necessarily symmetric
nor positive de�nite [4,5]. Indeed, GMRES also works

for nonsymmetric semi-positive de�nite systems, and is
especially appropriate for large-scale sparse matrices.

In exact arithmetic, after n steps, GMRES com-
putes the exact result to a linear system of dimensionn.
Therefore, GMRES is in fact a direct method, like other
Krylov subspace solvers, that computes the analytically
exact solution in n steps. In practice, for large linear
systems, di�culties appear in the method due to a lin-
ear increase in the computational and storage costs, and
to the loss of orthogonality of the Krylov subspaces trig-
gered by rounding errors. Because choosing a number
of iterations much smaller than n often yields a good
approximation of the result, one usually employs GM-
RES as an iterative solver, with a stopping criterion
depending on the residual norm.

In the plain GMRES algorithm, the whole Krylov
basis has to be stored until the residual is below a cer-
tain threshold. Therefore, for large linear systems, the
memory and computational costs of this method be-
come prohibitive. To avoid this, in the Restart-GMRES
variant, m-GMRES, the Krylov subspace and the ap-
proximation are not computed until the residual has
reached the demanded threshold, but restarted after a
certain number of steps (m).

The advantages of the restarted algorithm are that
the orthogonality of the computed Krylov subspaces
is preserved to a higher degree due to the restart of
the Krylov-subspace generator and the computational
and memory costs are bounded, as the linear problem
stays at a lower dimension, and onlym Krylov subspace
vectors have to be stored; see Algorithm 1.

3.2 Mixed precision iterative re�nement

A plain implementation of a Krylov subspace method is
usually the best option for a CPU-based system. On the
other hand, the superior low precision performance of
GPUs suggests the adoption of an iterative re�nement
method, where the error correction equation is solved
in a lower 
oating point precision format [11{13]. This
also reduces the memory demand, which is a substantial
advantage, since GPUs are usually equipped with small
on-device memory.

Newton's method can be applied to the function
f (x) = b! Ax with r f (x) = A. By de�ning the residual
r i := b! Ax i , one obtains

x i +1 = x i ! (r f (x i )) ! 1f (x i )

= x i + A ! 1(b! Ax i )

= x i + A ! 1r i :

Denoting the solution update with ci := A ! 1r i and us-
ing an initial guess x0 as starting value, an iterative



4 Hartwig Anzt† et al.

Power
Supply
Unit

GPU

PCI−Express

Motherboard

ComputerUSB

Measurement
Software Internal

Power Meter

Fig. 1 Hardware platform and sampling points.

1: for (l = 1, l + +) do
2: Compute r0 = b − Ax0, d0 = β0 =‖ r0 ‖2, v1 = r0

β0

3: for (j = 1, j ≤ m, j + +) do
4: % Iteration process of GMRES
5: Compute wj = Avj

6: for (i = 1, i ≤ j, i + +) do
7: % Arnoldi’s method
8: hi,j = 〈wj , vi〉
9: wj = wj − hijvi

10: end for
11: ω =‖ wj ‖2
12: for (i = 1, i < j, i + +) do
13: % Apply former rotation to hk

14: h̃ = cihi,j + sihi+1,j

15: hi+1,j = −sihi,j + cihi+1,j

16: hi,j = h̃

17: end for
18: if (ω ≤ |hj,j |) then
19: % Compute new rotation
20: tj = ω

|hj,j|

21: cj =
hj,j

|hj,j|
√

1+t2
j

22: sj =
tj√
1+t2

j

23: else
24: tj =

hj,j

ω

25: cj =
tj√
1+t2

j

26: sj = 1√
1+t2

j

27: end if
28: hj,j = cjhj,j + sjω % Apply rotation to rest of Ĥ

29: dj = −sjdj−1 %Apply the rotation to the RHS
30: dj−1 = cjdj−1

31: end for
32: solve Hly = d with the Gauss-Algorithm
33: Define the matrix Vl = [v1 . . . vl]
34: Compute the approximation xl = x0 + Vly

35: if (|dl| ≤ ε) then
36: stop
37: end if
38: end for

Algorithm 1: GMRES-( m) solver.

procedure can be de�ned as in Algorithm 2. The error
correction method makes no demands on the inner lin-
ear solver, so that any method can be chosen for this
purpose. In particular, in this paper we will use GM-
RES to solve the general sparse linear systems associ-
ated with the CFD application.

1: Choose initial guess: x0

2: Compute initial residual: r0 = b − Ax0

3: i = 0
4: repeat
5: Solve error correction equation Aci = ri for ci

6: Update solution: xi+1 = xi + ci

7: Compute new residual: ri+1 = b − Axi+1

8: i = i + 1
9: until (‖ ri ‖2≤ ε ‖ r0 ‖)

Algorithm 2: Error correction method.

3.3 Solver parameters

We use a plain GMRES algorithm in restart-variant as
reference solver while the MPIR method uses Restart-
GMRES solver in low precision as error correction solver.
For the di�erent tests, we set the restart parameter to
a variety of values. Furthermore, in most of our experi-
ments we �x the relative residual stopping criterion for
the �nal solution approximation to 10 −10. Due to the
iterative residual computation in the case of the plain
GMRES solvers, the MPIR GMRES variants usually
yield a more accurate approximation, since they com-
pute the residual error explicitly. However, as the dif-
ference is in general small, the results can be compared.

In the �rst tests, we vary the relative residual stop-
ping criterion εinner of the error correction solver in-
side the MPIR solver. In all other tests, when analyz-
ing the energy consumption of the individual parts of
the solver and the comparison to the plain solver imple-
mentation, we set the inner stopping criterion to 10−1,
as this choice is optimal for our application from the
points of view of execution time and energy consump-
tion.

3.4 Benchmark example

We evaluate the performance of the iterative GMRES
method to solve the linear systemAx = b, where A

is derived from a �nite di�erence discretization of a
two-dimensional 
uid 
owing through a Venturi Nozzle,
and b is a vector with all entries equal 1. Three linear
systems arising from the same application of di�erent
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Example n nnz

CFD1 395,009 3,544,321
CFD2 634,453 5,700,633
CFD3 1,019,967 9,182,401

Table 1 Dimensions of the benchmark examples.

CFD1

Fig. 2 Sparsity plot of the CFD1 matrix.

granularity were evaluated, CFD1, CFD2 and CFD3,
with the dimension/number of nonzero entries (n/ nnz)
given in Table 1. Figure 2 illustrates the sparsity pat-
tern of CFD1. The structure of the other two examples
is analogous.

For simplicity, in the iterative solver we set the ini-
tial guess to start the iteration process to x0 ≡ 0, de-
spite there exist sophisticated methods to approximate
an optimal initial solution. We set the relative resid-
ual stopping criterion of the solvers to ε = 10−10kr0k2,
where r0 is the initial residual. As we chosex0 ≡ 0,
then r0 = b − Ax0 = b and ε = 10−10√

n.

4 Numerical Experiments

4.1 Restart parameter tuning

In this �rst test, we analyze the in
uence of the restart
parameterm (number of iterations between two restarts)
on the overall computation time and the energy con-
sumption of the plain GMRES solver for examples CFD1,
CFD2 and CFD3.

The results in Figures 3 and 4 reveal that a larger
restart parameter improves the solver performance {
at least for the problems we analyze. Still, we observe
a limitation, and the improvements become negligible
for choices larger than 30 for CFD1/CFD2 and 50 for
CFD3. Note, however, that a higher value of m in-
creases the dimension of the Krylov subspace putting
more pressure on the memory demand, which may be-
come a problem for many hardware platforms, in partic-
ular on GPUs, where the memory is scarce. Research
analysis has shown, that restart parameters between
10 and 40 usually trigger acceptable performance for
many problems [4]. We furthermore observe an almost
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Fig. 3 Computation time (in secs.) for different values of the
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Fig. 4 Energy consumption (in Wh) for different values of
the restart parameter m.

linear dependency between computation time and en-
ergy consumption. This can be expected as long as no
energy-saving tools provided by hardware are applied.

In the following experiments we set the restart pa-
rameter m to 30 and, for convenience, refer to solver
30-GMRES as (plain) GMRES.

4.2 Solver variants

The next experiment enhances the plain GMRES solver
implementation with the addition of a Jacobi precon-
ditioner. We will denote this new solver as P-GMRES.

Table 2 collects the computation time and energy
consumption for all three benchmark examples. The re-
sults there show that, for all considered systems, the im-
provements of adding a preconditioner are signi�cant.
The speedup for the computation time ranges from
1.5× for CFD1 to 2.7× for CFD3. The fact that the
energy improvements are in the same range shows the
almost linear dependency between energy consumption
and computation time for this solver recon�guration.
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Table 4 Energy consumption (in Wh) of the plain GMRES,
its preconditioned variant P-GMRES, and their correspond-
ing versions with MPIR, with and without idle-wait (columns
“Idle-wait” vs. “Plain”, respectively), for CFD1, CFD2 and
CFD3.

Ex. Solver Energy (Wh)
Plain Idle-wait gain (%)

CFD1

GMRES 16.88 15.65 7.31
MPIR GMRES 12.38 11.62 8.75
P-GMRES 9.01 8.22 6.09
MPIR P-GMRES 7.35 6.61 9.99

CFD2

GMRES 66.66 62.03 6.95
MPIR GMRES 36.19 33.83 10.22
P-GMRES 38.79 34.83 6.51
MPIR P-GMRES 25.94 23.39 9.80

CFD3

GMRES 231.23 217.48 5.95
MPIR GMRES 86.12 80.88 8.70
P-GMRES 152.02 138.80 6.08
MPIR P-GMRES 92.62 84.51 8.75

5 Conclusion

In this paper we have presented a energy performance
analysis of di�erent variants of a GMRES solver ap-
plied to a sparse linear equation system arising in a
2-D two-dimensional 
uid 
ow application. In a �rst
step, we optimized the restart parameter with respect
to runtime and power demand of the plain GMRES
solver. We then analyzed the energy consumption of
di�erent solver variants, with preconditioning and em-
bedding the solver in a MPIR framework. The results
revealed, that the choice of the optimal solver depends
on the properties of the speci�c system. Thus, while
adding a preconditioner usually improves the runtime
as well as the energy performance, the MPIR framework
pays o� only for some cases. Applying the power-saving
technique "idle-wait", we were able to reduce the over-
all power consumption for all solver implementations
and test cases, roughly between 6 and 10%. This shows
that optimizing numerical algorithms with respect to
energy consumption demands both the redesign of the
code and the e�cient leverage of the power tools pro-
vided by the system. To conclude, only by combining
the competences of hardware developers, software en-
gineers and mathematicians, we will able to tackle the
energy challenge of an Exascale Computing Era.
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