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Symbols and notations 

 

AC cross section area of core 

AF cross section area of face 

B width of panel 

BS bending rigidity of a sandwich panel 

Cmy equivalent uniform moment factor (equivalent member method) 

D thickness of panel, for panels with flat or lightly profiled faces also distance of centroids 

of faces 

EF elastic modulus of face 

EC elastic modulus of core 

GA shear rigidity of panel, elastic buckling load due to shear rigidity 

GC shear modulus of core 

L length of panel, span of panel 

M bending moment 

MN fixed end moment due to eccentric axial force 

MT moment due to temperature differences 

Mw maximum bending moment of a sandwich panel 

N normal force, axial load 

Ncr elastic buckling load of a sandwich panel 

Nki elastic buckling load due to bending rigidity (faces) 

Nw axial wrinkling force, maximum compressive axial force 

P concentrated transverse load (point load) 

V transverse force 

 

e0 initial deflection, global imperfection 

fCv shear strength of core 

k relationship between deflection due to shear and deflection due to bending 

kyy interaction factor (equivalent member method) 

q linear load, distributed load 

qe0 equivalent load (due to initial deflection and axial force) 

tF thickness of face sheet 

w deflection 

wb deflection due to bending 

wT deflection due to temperature difference 

wv deflection due to transverse force 

wst deflection due to short-term load 
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wlt deflection due to long-term load 

 

α amplification factor to consider effects of 2nd Order Theory 

α imperfection factor (equivalent member method) 

αF thermal expansion coefficient of the face 

γ shear deformation 

λ slenderness 

λki bending slenderness 

λGA shear slenderness 

σF normal stress in the face 

σw wrinkling stress 

τC shear stress in the core 

φt creep coefficient 

φSt sandwich creep coefficient 

χ reduction factor (equivalent member method) 

ΔT temperature difference between inner face and outer face 

 

MI, VI, wi moment, transverse force, deflection calculated by 1st Order Theory 

MII, VII, wii moment, transverse force, deflection calculated by 2nd Order Theory 
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1 Introduction 

Until now the common application of sandwich panels is restricted to the function of space 

enclosure. The sandwich panels are mounted on a substructure and they transfer transverse 

loads as wind and snow to the substructure. The sandwich panels are subjected to bending 

moments and transverse forces only. A new application is to apply sandwich panels with flat 

or lightly profiled faces in smaller buildings – such as cooling chambers, climatic chambers 

and clean rooms – without any load transferring substructure (Fig. 1.1). 

 

 
Fig. 1.1: Building made of sandwich panels but without substructure 
 

In this new type of application in addition to space enclosure, the sandwich panels have to 

transfer loads and to stabilise the building. In addition to the moments and transverse forces 

resulting from transverse loads, the wall panels transfer normal forces arising from the super-

imposed load from overlying roof or ceiling panels. That implies the question about the load-

bearing behaviour and the load bearing capacity of sandwich panels subjected to axial load or 

a combination from axial and transverse loads. 

Design procedures for sandwich panels subjected to bending moments and transverse forces 

are given in EN 14509 [1] and in different (national) approvals. But there are no general de-

sign methods for panels subjected to axial loads or a combination of axial and transverse 

loads available. There are some publications, which mainly deal with the elastic buckling load 

of axially loaded sandwich panels, e.g. [10]. Also some mainly theoretical investigations on the 

interaction of elastic global buckling and elastic local buckling (wrinkling) have been done, e.g. 

[16], [17]. But the available investigations do not result in a design procedure, which can be 

used to design axially loaded sandwich panels, because these investigations basically deal 

with elastic buckling behaviour. Furthermore the influence of long-term loads (creep of core 

material) is not considered at all. 
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Within the framework of WP3 of the EASIE project, a design method for axially loaded sand-

wich panels has been developed. Buckling and long-term tests on axially loaded sandwich 

panels were performed. All tests are documented in the test reports D3.2 – part 3 [7] and D3.2 

– part 4 [8]. In report D3.3 - part 4, the evaluation of the tests and additional numerical investi-

gations are presented. A design procedure is developed The design model is based upon the 

existing design model for panels subjected to transverse loads according to EN 14509 [1] and 

the ECCS recommendations for the design of sandwich panels [2]. The existing model is ex-

tended in a way that consideration of axial forces and influences of 2nd order theory is possi-

ble. Also the behaviour due to long-term loads (creeping of the core material) can be consid-

ered by the design method presented in the report at hand. 

The report at hand only deals with the global load bearing behaviour of axially loaded sand-

wich panels. Panels with openings are not covered. In addition the local load-bearing capacity 

at the areas of load application, i.e. the cut edges of the panel, is to be considered.  

2 Load-bearing behaviour of panels subjected to transverse loads 

In sandwich panels with flat and lightly profiled faces, bending moments are transferred by a 

force couple in both face sheets. In the face sheets, only normal tensile and compression 

stresses act. 

 

D

M

M/D

M/D

 
Fig. 2.1: Load bearing behaviour of panels subjected to a bending moment 
 

The stress in the face sheets of a sandwich panel loaded by a bending moment M is 

F
F AD

M
⋅

=σ  (2.1) 

with 

FF tBA ⋅=  cross sectional area of face sheet 

tF  thickness of face sheer 

B  width of panel 

D  thickness of panel 
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The load bearing capacity is mostly restricted by reaching the ultimate stress in the com-

pressed face sheet (Fig. 2.2). Failure by yielding of the face sheet subjected to tension occurs 

very rarely. The face sheet represents a plate which is elastically supported by the core mate-

rial. The stability failure of the compressed face sheet is termed as wrinkling, the ultimate 

compression stress as wrinkling stress σw. 

 

 
Fig. 2.2: Wrinkling of the compressed face sheet 
 

The elastic wrinkling stress of a plane elastically supported plate can be calculated according 

to the following equation [14]. 

382,0 CCFw GEE ⋅⋅⋅=σ  (2.2) 

with 

EF elastic modulus of face sheet (steel: EF = 210.000 N/mm2) 

EC elastic modulus of core material 

GC shear modulus of core material 

 

According to [1] and [2] for design purposes the elastic wrinkling stress has to be reduced to 

take imperfections and quality of face, core and bonding between face and core into account. 

In the ECCS recommendations for sandwich panels [2] the following formulae is suggested. 

3
CCFw GEEk ⋅⋅⋅=σ  (2.3) 

with 

k = 0,65 for continuously laminated polyurethane sandwich panels 

k = 0,5....0,65 for other core materials and methods of manufacture 

In EN 14509 k = 0,5 is given for all types of panels. 

 

The experimentally determined wrinkling stress, however, often strongly deviates from the 

wrinkling stress calculated according to (2.3). Usually the wrinkling stress determined by test-

ing is higher than the wrinkling stress determined by calculation. E.g. even a lightly lining of 
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the faces increases the wrinkling stress in comparison to the theoretical value. Therefore for 

design purposes the wrinkling stress is usually determined by bending tests. 

The withstanding of transverse forces V is done by shear stresses in the core of the panel.  

C
C A

V
=τ  (2.4) 

with 

DBAC ⋅=  cross sectional area of the core 

 

V Cτ

 
Fig. 2.3: Load bearing behaviour of panels subjected to a transverse force 
 

When reaching the shear strength fCv of the core material shear failure occurs (Fig. 2.4).  

 

 
Fig. 2.4: Shear failure of the core 
 

Because of the relatively soft core layer deflections caused by transverse forces have to be 

considered. So the deflection of a sandwich panel consists of a bending part wb and a shear 

part wv. 

∫∫ ⋅+⋅=+= dx
GA

VVdx
B
MMwww
S

vb  (2.5) 

with 

bending stiffness: 

2

21

21 D
AA
AAEB

FF

FF
FS ⋅

+
⋅

⋅=  (2.6) 
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shear stiffness: 

CC AGGA ⋅=  (2.7) 

 

For a single-span panel loaded by a uniformly distributed load q, the deflection w at mid-span 

is 

GA
Lq

B
Lqwww
S

vb

24

8
1

384
5 ⋅

⋅+
⋅

⋅=+=  (2.8) 

 

3 Load-bearing behaviour of axially loaded sandwich panels 

3.1 Distribution of normal stresses 

The stiffness of the faces is very much higher than the stiffness of the core material. This is 

why also for panels loaded by axial loads or by a combination from axial load and bending 

moment normal forces act only in the face sheets. In addition to normal stresses from the 

bending moment (force couple), compressive stresses from the axial load act in the face 

sheets Fig. 3.1. 

 

D

M
N

N/2

N/2M/D

M/D

 
Fig. 3.1: Load bearing behaviour for bending moment and axial force 
 

Also for panels with axial load failure can occur by wrinkling of the face sheet or by shear fail-

ure of the core material. 

3.2 Global buckling 

For slender building components loaded by axial compression forces global buckling can oc-

cur. Also for axially loaded sandwich panels this stability failure mode has to be considered. If 

an ideal panel without any imperfections is assumed, the axial load increases up to the elastic 

buckling load Ncr. Then, global buckling induces. Because of the deflection moments and 

transverse forces arise. The deflection strongly increases with a constant axial force. Also the 

stress resultants moment and transverse force increase. Finally, the wrinkling stress in mid-

span or the shear strength at the support is reached and failure of the panels occurs [16], [17]. 
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In Fig. 3.2 the load-deflection curve for an ideal panel as well as for an imperfect panel with 

initial deflection is shown. 

 

Ncr

w

N

w

N

w0

ideal sandwich panel

imperfect sandwich 
panel

wrinkling of 
compressed face

 
Fig. 3.2: Load-deflection-diagram for axially loaded sandwich panels 
 

The elastic buckling load Ncr of a sandwich panel loaded by a centric axial load consists of the 

part Nki considering the bending rigidity of the face sheets and the part GA considering the 

shear rigidity of the core. The rate Nki corresponds to the elastic buckling load of both face 

sheets. The elastic buckling load of a sandwich panel can be calculated as follows 

GA
N

N
N

ki

ki
cr

+
=

1
 

(3.1) 

GANN kicr

111
+=  (3.2) 

with 

elastic buckling load due to bending rigidity 

2

2

L
B

N S
ki

⋅
=

π
 (3.3) 

elastic buckling load due to shear rigidity 

CC AGGA ⋅=  (3.4) 

 

The rate from bending rigidity Nki on the elastic buckling load depends on the length of the 

panel, whereas the shear rate GA is independent of the length. With increasing length of the 

panel, the elastic buckling load of the sandwich panel approaches the rate Nki from bending, 

i.e. the elastic buckling load of the face sheets. For very short panels the elastic buckling load 
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Ncr of the panel approaches the rate GA. Therefore GA represents an upper limit of the elastic 

buckling load (Fig. 3.3). 

 

bu
ck

lin
g 

lo
ad

length of panel

Ncr (sandwich panel)
Nki (faces, bending)GA

 
Fig. 3.3: Elastic buckling load of sandwich panels 
 

If imperfections and effects of 2nd order theory are neglected, the maximum compressive axial 

force of a centrically loaded panel corresponds to the axial load, which leads to wrinkling in 

both face sheets. The “axial wrinkling force” Nw can be calculated by the following equation. 

( )21 FFww AAN +⋅= σ  (3.5) 

The “axial wrinkling force” Nw is comparable to the plastic normal force of a steel cross-

section. Thus, the slenderness of a sandwich panel can be calculated as follows 

22
GAki

cr

w

N
N

λλλ +==  (3.6) 

with 

bending slenderness: 

ki

w
ki N

N
=λ  (3.7) 

shear slenderness: 

GA
N w

GA =λ  (3.8) 

 

Corresponding to the rate from shear representing an upper limit of the elastic buckling load, 

the shear slenderness λGA represents a lower limit of the slenderness of a sandwich panel. 
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The first buckling mode of a sandwich panel loaded by a centric axial force corresponds to 

global buckling for a slenderness of the panel λ > 1. For λ < 1, the first buckling mode corre-

sponds to wrinkling of the face sheets. In order that global buckling occurs, the panels must 

be thin and the faces must be relatively stiff, i.e. the face sheets must be thick. The global 

buckling load, however, is only reached for panels with rather unusual slenderness regarding 

building practice. For panels with usual dimension failure previously occurs by wrinkling or 

shear failure. 

For (slender) components subjected to an axial compression force effects of 2nd order theory 

have to be considered in the design procedure. These result in an amplification of deflections 

and thus, also of the stress resultants moment and transverse force. 

4 Buckling tests on axially loaded sandwich panels 

For investigating the global load-bearing behaviour of axially loaded sandwich panels, buck-

ling tests were performed. In order to be able to determine the global load-bearing capacity, 

local failure at load application area – e.g. by crippling of the face sheet – must be prevented. 

Therefore, the load was not introduced into the cut edges of the face sheets via contact such 

as in a real building structure. For load application, at first aluminium angles were stuck to-

gether with the face sheets and then fixed on a stiff load application plate. In order that the 

core of the panel can freely deform, the angles were stuck in a way that a gap of about 5 mm 

developed between the front side of the panel and the load application plate (Fig. 4.1). 

 

 
Fig. 4.1: Introduction of loads in the buckling tests 
 

In addition, panels with relatively big unusual slenderness regarding building practice were 

used for the tests. With increasing slenderness the influence of effects of 2nd order theory in-

creases and global buckling and wrinkling occur more likely. Therefore, the tests are mainly 

used for verifying the FE-model and the assumptions made to develop the design model. 
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In the tests, the panel had a hinged support at each end (Fig. 4.3). At the beginning of the 

test, the panel was subjected to a deflection via an additional support in mid-span. In this de-

flected position the support was fixed for the remaining test period (Fig. 4.4). In a second step, 

the axial load was applied. 

 

transverse load P

axial load N

strain 
gauges

measurement of force

measurement of displacement

hinged support

L-shaped aluminium profiles 
60x40x4
glued to the face of the panel

wooden board

support in mid-span le
ng

th
 L

sheet of steel 
d=20mm

hinged support
round steel 
d=30mm

  
Fig. 4.2: Test set up for buckling tests 
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Fig. 4.3: Hinged support 
 

 
Fig. 4.4: Support at mid-span 
 

In addition to the axial force and the deflection, the strain of the face sheet subjected to ten-

sion was measured. Therefore in mid-span strain gauges were applied (Fig. 4.5).  
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Fig. 4.5: Measurement of strain in mid-span 
 

If no failure previously occurs at load application area, the reaction force at the deflected mid-

support decreases with increasing axial force. When roughly reaching the elastic buckling load 

the panel lifts from the fixed mid-support and the deflection increases without an essential 

change of the axial force (Fig. 4.6). 
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Fig. 4.6: Test performance of buckling tests (test no. 09) 
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Because of the increasing deflection also the stress resultants moment and transverse force 

and thus the normal stress in the faces and the shear stress in the core increase. Finally fail-

ure occurs by wrinkling of the compressed face sheet or by shear failure of the core material. 

 

   
Fig. 4.7: Increasing of deflection and wrinkling at mid-span 
 

In the buckling tests panels with different core materials and different faces were tested. Also 

the length of the tested panels and the initial deflection at mid-support were varied during the 

tests. A compilation of the performed buckling tests is given in Tab. 4.1. Tab. 4.2 shows a 

summary of the test results. 
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No. type of panel *) face core length of panel initial deflection 

01 F steel, 0,75 mm PU, 60 mm 2500 mm 15 mm 

02 F steel, 0,75 mm PU, 60 mm 2500 mm 15 mm 

03 L GFRP, 1,8 mm EPS, 60 mm 3000 mm 22 mm 

04 K steel, 0,60 mm EPS, 60 mm 3000 mm 20 mm 

05 F steel, 0,75 mm PU, 60 mm 3000 mm 15 mm 

06 F steel, 0,75 mm PU, 60 mm 3000 mm 17,5 mm 

07 F steel, 0,75 mm PU, 60 mm 3500 mm 20 mm 

08 F steel, 0,75 mm PU, 60 mm 3500 mm 16,5 mm 

09 F steel, 0,75 mm PU, 60 mm 3500 mm 5 mm 

*) number refers to test report D3.2 [7], [8] 
Tab. 4.1: Performed buckling tests 
 

No. max load [kN] failure mode final failure after 
global buckling 

analytical buckling 
load [kN] 

01 34,4 failure of glue at 
load introduction  - 58,8 

02 51,0 

delamination of 
face subjected to 
compression at 
load introduction 

- 58,4 

03 10,6 global buckling  failure of core near 
load introduction  10,4 

04 25,3 failure of core near 
load introduction  - 63,5 

05 46,2 global buckling  failure of core at 
load introduction  49,5 

06 47,0 failure at load in-
troduction  - 50,4 

07 36,7 failure at load in-
troduction - 43,2 

08 43,0 global buckling  failure of core at 
load introduction 42,0 

09 43,4 global buckling  wrinkling of face  43,4 
Tab. 4.2: Results of buckling tests 
 

For each type of panel the material properties of core and face layers were determined (Tab. 

4.3). 



 page 19 
 of report 
 No.: D3.3 – part 4 
 

Versuchsanstalt für Stahl, Holz und Steine, Karlsruher Institut für Technologie (KIT) 
This report may only be reproduced in an unabridged version. A publication in extracts needs our written approval. 

 

type of panel thickness of face 
sheet [mm] 

shear modulus of 
core [N/mm2] 

elastic modulus of 
core [N/mm2] 

F 0,698 / 0,700 3,81 3,66 

K 0,554 / 0,551 5,57 - 

L GFRP (approx. 
1,8 mm) 11,08 - 

Tab. 4.3: Material properties 
 

For panel type F additional bending tests were performed to determine the wrinkling stress 

and the rigidity of the panel. 

The buckling tests on axially loaded sandwich panels are documented in detail in D3.2-part 3 

[7]. 

5 Numerical investigations 

5.1 FE-Model 

The numerical investigations were performed using the finite element program ANSYS. The 

face sheets of the panel were modelled with shell elements of type Shell 181. This element is 

defined by four nodes with three displacement degrees of freedom and three rotational de-

grees of freedom. It has bending, membrane and shear stiffness. As material behaviour, bilin-

ear material equations were arranged (linear-elastic, ideal-plastic), i.e. after reaching the yield 

strength, yielding occurs without strain hardening. 

The core layer of the panel was represented by volume elements of type Solid 185. This ele-

ment has eight nodes with three displacement degrees of freedom. For the numerical investi-

gations homogenous and isotropic core material was assumed.  

The numerical investigations were performed on single-span panels with hinged supports. In 

order to be able to investigate the global load-bearing behaviour of the panels, failure at the 

load application areas must be prevented. Therefore, the support of the panels was modelled 

as illustrated in Fig. 5.1. Compared to the face sheets, a stiff plate is directly connected to 

both face sheets on the front side of the panel. The core of the panel and the plate has no 

sheared nodes, so the core can freely deform. This corresponds to the construction of the 

support in the buckling tests, where free deformation of the core was facilitated by a gap be-

tween core material and load application plate. On the base point, displacements were pre-

vented at a line of nodes; this corresponds to a hinged support. At the opposite end of the 

panel, the nodes are only constrained horizontally, but they are vertically displaceable. On 

these nodes, the axial load can either be applied as load or as displacement. 
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Fig. 5.1: FE-model and detailed view on the support 
 

5.2 Preliminary investigations 

5.2.1 Preliminary remark 

For checking the efficiency of the FE model preliminary investigations were performed. At first, 

the necessary fineness of the mesh was defined. Especially if wrinkling of the face sheet has 

to be represented by the model, the element size in longitudinal direction of the sandwich 

panel has a decisive influence on the results. The mesh must be so fine that the waves corre-

sponding to the eigenmode of a wrinkled face sheet can correctly be represented. For the 

performed investigations a length of 4 mm was sufficient, the thickness direction resulted in a 

necessary mesh length of about 10 mm, the width direction in about 20 mm. 

The FE model was checked by comparing results of the numerical calculation with analytical 

values. For this purpose, the stiffness for bending load and different eigenvalues, e.g. elastic 

wrinkling stress and elastic buckling load were considered. In addition, some of the buckling 

tests were recalculated. 

5.2.2 Rigidity of the panel 

In order to examine, whether the FE-model correctly represents the rigidity of a sandwich 

panel, the deflection determined in the FE-analyses was compared with the analytically de-

termined deflection according to (2.8). In addition, the analytically and numerically determined 

stresses in the face sheets were compared to each other.  

In the numerical investigations the panel was loaded by a uniform transverse load which was 

selected in a way that the stress in the face sheets was about 100 N/mm2. 
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With the parameters EF = 210000 N/mm2, GC = 2 N/mm2, tF = 0,6 mm, B = 250 mm and a 

thickness range of 40 mm to 100 mm the following analytical and numerical results of stress 

σF and deflection w were calculated. 

 

Length Thick-
ness load 

analytical results FE deviation 

wb wv w stress w stress w stress 

[mm] [mm] [N/mm2] [mm] [mm] [mm] [N/mm2] [mm] [N/mm2] [%] [%] 

3000 

100 0,0053 8,9 30,0 38,9 100 39,4 99,8 1,21 0,20 

80 0,0043 11,2 30,0 41,2 100 41,4 99,9 0,58 0,10 

60 0,0032 14,9 30,0 44,9 100 44,8 99,9 0,18 0,10 

40 0,0021 22,3 30,0 52,3 100 52,0 99,9 0,61 0,10 

2000 

100 0,0080 4,0 30,0 34,0 100 35,3 99,9 3,92 0,10 

80 0,0064 5,0 30,0 35,0 100 35,5 99,9 1,54 0,10 

60 0,0048 6,6 30,0 36,6 100 36,6 99,9 0,04 0,10 

40 0,0032 9,9 30,0 39,9 100 39,5 99,9 1,05 0,10 
Tab. 5.1: Comparison of analytical and numerical results  
 

Based on the good agreement between analytical and numerical analysis, it can be assumed 

that the FE-model correctly reproduces the bending behaviour of a sandwich panel. 

5.2.3 Buckling behaviour 

In addition, the FE-model was checked by comparison of numerically and analytically deter-

mined eigenvalues. For this purpose, the wrinkling stress for panels subjects to bending and 

axial load and the global buckling load were considered. 

 

Wrinkling stress due to bending 

For panels subjected to a constant transverse load the first eigenvalue was determined by 

numerical analysis, and the corresponding stress in the face sheets was calculated. These 

stresses are compared to the wrinkling stress calculated according to (2.2). For the parame-

ters GC =3 N/mm2, EC = 4 N/mm2, tF = 0,5 mm and a thickness range of 40 mm to 100 mm, 

the following results ensue. 

 

Thickness [mm] 40 60 80 100 

length [mm] 2000 3000 3000 3000 

wrinkling 
stress σw 

FE 111,6 111,6 111,6 111,6 

analytical 112,5 111,6 111,6 111,6 

deviation [%] 0,77 0,03 0,02 0,01 
Tab. 5.2: Comparison of analytical and numerical results for wrinkling stress 
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Fig. 5.2: Wrinkling of the compressed face (buckling mode) 
 

Wrinkling stress due to centric axial load 

For panels with a slenderness λ < 1 the first eigenmode upon centric axial load corresponds to 

wrinkling of both face sheets. The corresponding axial wrinkling force Nw can be calculated 

according to (3.5) and (2.2).  

In the FE analysis, the panel was loaded in longitudinal direction at the nodes forming the dis-

placeable support. For a panel with the parameters given in the previous section, the following 

values result from the analytical and numerical analysis. 

 

Thickness [mm] 40 60 80 100 

Length [mm] 600 2000 2000 2000 

Nw 
FE 27897 27897 27897 27897 

analytical 26975 27821 27470 27788 

deviation [%] 3,3 0,3 1,5 0,4 
Tab. 5.3: Comparison of analytical and numerical results for axial wrinkling load Nw 
 

 
Fig. 5.3: Wrinkling caused by axial load (eigenvalue) 
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Elastic buckling load for global buckling 

For panels with slenderness’s λ > 1, the first eigenmode is global buckling of the panel. The 

analytical eigenvalue can be calculated according to (3.1) and (3.2). For the parameters 

GC = 2 N/mm2, EC = 4 N/mm2, tF = 0,7 mm and a thickness range of 40 mm to 100 mm the 

following numerical and analytical results ensue for the global buckling load Ncr. 

 

Thickness [mm] 40 60 80 100 

Length [mm] 3000 3000 3500 4500 

Ncr 
FE 12344 21223 28126 32086 

analytical 12415 21263 27994 31579 

deviation [%] 0,6 0,2 0,5 1,6 
Tab. 5.4: Comparison of analytical and numerical results for global buckling load 
 

 
Fig. 5.4: Global buckling caused by axial load (eigenvalue) 
 

For all results listed above, a very good agreement between analytically and numerically de-

termined eigenvalues can be observed.  

5.2.4 Comparison to test results 

In addition to the verification of the FE-model by comparison to analytical values, the model 

was also checked by comparison to test results. For the numerical calculations, the thickness 

of the face sheets and the material properties of the core determined for the tested panels 

were used.  

The correct representation of the rigidity was checked by comparison with the bending test 

performed within the framework of the tests on axially loaded sandwich panels [7]. In the fol-
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lowing figure, the force-deflection relationships determined in the test and in the numerical 

analysis are opposed to each other.  
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Fig. 5.5: Load-deflection-diagram for test and FE-calculation 
 

In addition, some of the buckling tests documented in [7] were recalculated in order to verify 

the FE-model. In doing so, tests were selected for which the axial force could be increased up 

to the buckling load without failure at the load application area, i.e. the tests in which lifting of 

the panel from the mid-support and thus, an increase of deflection took place (tests no. 03, 

05, 08, 09). 

At the mid-support only compression forces, but no tensile forces are transferred. In the FE 

model, the mid-support was represented by longitudinal springs (element type combin39) (Fig. 

5.7). The load-displacement relationship of the springs was selected in a way that they have a 

high stiffness, if compression forces act, but they cannot transfer any tensile forces (Fig. 5.6). 
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displacement

load

 
Fig. 5.6: Load-displacement-relationship for springs at mid support 
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Fig. 5.7: Mid-support in the FE-model 
 

In the following table, the maximum loads determined in the tests are opposed to the maxi-

mum loads from the numerical calculation. There is a good agreement between test and nu-

merical calculation. 

 

test No. result of test result of FE deviation analytical buckling 
load 

03 10,6 kN 10,6 kN 0,4 % 10,40 kN 

05 46,2 kN 45,1 kN 2,4 % 49,5 kN 

08 43,0 kN 42,5 kN 1,2 % 42,0 kN 

09 43,4 kN 42,6 kN 1,8 % 43,4 kN 
Tab. 5.5: Comparison of test results and numerical calculation 
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5.3 Calculations for determination of ultimate stress 

For the design of panels subjected to transverse loads the wrinkling stress σw is the ultimate 

compression stress, which can act in a face sheet. It is determined in bending test. In order to 

determine the ultimate stress for panels loaded by an axial force or by a combination of axial 

load and transverse load, FE-analyses were performed. For this purpose, the panels were 

loaded by a centric axial compression load or a combination of an axial load and a constant 

transverse load. The transverse load was selected in a way that the compressive stress 

caused by bending corresponds to about half the wrinkling stress. In addition, calculations 

with panels with a global initial deflection and a centric axial load were done. As global imper-

fection an initial deflection e0 corresponding to the first eigenmode of an axially loaded panel 

was applied (Fig. 5.8). The range of the initial deflection e0 was selected according to the 

maximum allowable longitudinal bowing following EN 14509 [1].  

Le ⋅=
500
1

0  (5.1) 

 

 
Fig. 5.8: Global imperfection for numerical calculation 
 

For all calculations, a local geometric imperfection was applied on the face sheet subjected to 

compression. The local imperfection corresponds to the eigenmode when reaching the wrin-

kling stress (Fig. 5.9). 
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Fig. 5.9: Local imperfection for numerical calculation 
 

The calculations were performed for the panel types given in Tab. 5.6. The range of the local 

imperfection was varied between 0,05∙tF and 0,1∙tF. 

 

Type of panel P1 P2 P3 

EC [N/mm2] 8 6 4 

GC [N/mm2] 4 3 2 

tF [mm] 0,6 0,5 0,7 

D [mm] 80 60 100 
Tab. 5.6: Panels for calculation of ultimate stress 
 

Calculations on the load-bearing capacity were performed in order to determine the ultimate 

compressive stress. For comparison, calculations on the load-bearing capacity were carried 

out on panels with the same local imperfections under bending load only and the ultimate 

compression stress was determined as well. This stress corresponds to the wrinkling stress, 

which is usually determined by bending tests. Fig. 5.10 shows a comparison of the numerically 

determined ultimate stresses for different kinds of loadings.  
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Fig. 5.10: Comparison of ultimate stresses 
 

Obviously, the failure stress upon normal forces or combined load from normal force and 

bending moment and the failure stress for pure transverse load are identical. Therefore, the 

wrinkling stress used to design panels subjected to transverse loads can also be used to de-

sign axially loaded sandwich panels. 

This assumption was confirmed by the tests carried out on axially loaded sandwich panels. In 

one of the buckling tests (test no. 09, [7]) failure occurred by wrinkling of the face sheet sub-

jected to compression (Fig. 5.12). The stresses in the face sheets were calculated from the 

axial load and the deflection measured in the test. The stress in the compressed face sheet 

was 163 N/mm2 upon failure of the panel (Fig. 5.11). For the corresponding face sheet, the 

wrinkling stress was also determined in a bending test on a panel of the same type (Fig. 5.12). 

The wrinkling stress for transverse load was 165 N/mm2. This good agreement confirms the 

applicability of the wrinkling stress determined by bending tests as ultimate stress for axially 

loaded panels. 
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Fig. 5.11: Measured and calculated stresses in the buckling test 
 

   
Fig. 5.12: Wrinkling of the compressed face in buckling and bending test 
 

5.4 Calculations to investigate the influence of 2nd order theory 

If components are loaded by compressive axial loads, effects of 2nd order theory have to be 

taken into account, i.e. deformations are considered in determination of stress resultants. If 

stress resultants are determined according to 1st order theory deformations are neglected. 
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Because of effects of 2nd order theory stresses do not increase proportionally to the axial load. 

Due to the axial force an increase of deflection also results in an increase of moment and 

transverse force.  

The amplification of the stress resultants moment M and transverse force V as well as the 

amplification of the deflection w can approximately be determined by the amplification factor α. 
III MM ⋅= α  (5.2) 

III VV ⋅= α  (5.3) 
III ww ⋅= α  (5.4) 

III NN =  (5.5) 

with 

MI, VI, wI stress resultants and deflection according to 1st order theory 

MII, VII, wII stress resultants and deflection according to 2nd order theory 

amplification factor: 

crN
N

−
=

1

1α  
(5.6) 

 

If effects of 2nd order theory are considered, also geometrical imperfections such as initial de-

flections must be considered for determination of stress resultants. So the moment according 

to 1st Order Theory is 

0
0 eNMM I ⋅+=  (5.7) 

M0 moment caused by transverse load and fixed-end moment 

N∙e0: moment caused by initial deflection in conjunction with axial force 

 

In order to check whether the approximation by the amplification factor α can also be applied 

for sandwich panels, FE-analyses were carried out and the load-deflection relationships were 

compared to the curves calculated according to the equations given above. In Fig. 5.13 and 

Fig. 5.14, the load-deflection curves from FE-analyses are opposed to the corresponding 

curves determined with the amplification factor α. 
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Fig. 5.13: Load-deflection-curves for FE and calculation by 2nd Order Theory 
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Fig. 5.14: Load-deflection- curves for FE and calculation by 2nd Order Theory 
 

The applicability of the amplification factor α on axially loaded sandwich panels was also con-

firmed by the buckling tests. The stresses in the face sheets were calculated in dependence 
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on the axial force and compared to the stresses determined from the measured strains. For 

selected tests, the calculated and the measured stresses are compared to each other (Fig. 

5.15 to Fig. 5.17). Also in this case, a good agreement between test and calculation by 2nd 

Order Theory can be observed.  
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Fig. 5.15: Comparison between test and calculation by 2nd Order Theory, test 05 
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Fig. 5.16: Comparison between test and calculation by 2nd Order Theory, test 08 
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Fig. 5.17: Comparison between test and calculation by 2nd Order Theory, test 09 
 

In [12], the approximate calculation with the amplification factor α is compared with the exact 

analytical solution by means of an example. Also in this case, the results agree well. 
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6 Design methods 

6.1 General 

The influence of an axial load can be considered either by design according to 2nd order theory 

or by design according to equivalent member method. For design according to 2nd order the-

ory the stress resultants moment and transverse force determined according to 1st order the-

ory are increased by the amplification factor α. In addition, geometrical imperfections must be 

considered for the determination of stress resultants, since they also result in moments and 

transverse forces if an axial force exists. Finally, the panels are designed on stress level.  

For design according to equivalent member method, the stress resultants according to the 1st 

order theory are used. In dependence on the geometric imperfection and the slenderness of 

the component, however, the maximum compressive axial force (axial wrinkling force Nw) has 

to be reduced. 

6.2 Design according to 2nd order theory 

The stress resultants according to 2nd order theory are determined by approximation by ampli-

fication of the stress resultants according to 1st order theory. 

In addition to moments from transverse load (e.g. wind loads) and fixed-end moments, also 

geometrical imperfections must be considered in the moment according to 1st order theory. As 

geometrical imperfection an initial deflection e0 can be applied. The range of this imperfection 

can be selected according to the maximum allowable longitudinal bowing following EN 14509 

[1].  

Le
500
1

0 =  (6.1) 

Also deflections wT from a temperature difference ΔT between internal face and external face 

result in moments and transverse forces if the panel is axially loaded. These moments can be 

determined just as the moments from geometrical imperfections.  

T
I
T wNM ⋅=  (6.2) 

8

2

⋅
⋅

⋅∆=
D

LTw F
T

α
 (6.3) 

αF coefficient of thermal expansion 

 

So the stress resultants according to 2nd order theory are calculated as follows. 
III MM ⋅= α  (6.4) 

III VV ⋅= α  (6.5) 
III NN =  (6.6) 
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amplification factor: 

crN
N

−
=

1

1α  
(6.7) 

T
I wNeNMM ⋅+⋅+= 0

0  (6.8) 

M0 moment caused by transverse load and fixed-end moment (N∙e) 

N∙e0: moment caused by initial deflection in conjunction with axial force 

N∙wT: moment caused by temperature deflection 

 

After determination of moment and transverse force according to 2nd order theory, design is 

done on the stress level using the wrinkling stress as ultimate stress. 

w
F

II

FF
F DA

M
AA

N σσ ≤
⋅

+
+

=
121

 (6.9) 

 

For transverse load, the shear strength fCv of the core material can also become decisive.  

Cv
C

II

C f
A
V

≤=τ  (6.10) 

 

Since the wrinkling stress σw and the shear strength fCv are usually determined by testing, lo-

cal imperfections of the panels such as surface irregularities of the face sheet and the material 

properties of the core are already considered in the ultimate stress. 

6.3 Design according to the equivalent member method 

Alternative to the design according to 2nd order theory on the stress level also design by 

equivalent member method is possible. For determining the reduction factor of the axial wrin-

kling force Nw a buckling curve for the corresponding sandwich panel is necessary. For a cen-

trically loaded panel with the initial deflection e0 we get the following equation. This equation 

considers the stress resultants according to 2nd order theory. The ultimate stress of the com-

pressed face sheet is the wrinkling stress σw. 

( ) 1
1

1

1

0

21

≤
−

⋅
⋅⋅

⋅
+

⋅+

cr

wFwFF

N
NAD

eN
AA
N

σσ
 

(6.11) 

 

Insertion of the axial wrinkling force Nw and the slenderness λ as well as the reduction factor 

wN
N

=χ  (6.12) 

results in the equation  
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1
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⋅
⋅
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λχ

χχ
D
e

 (6.13) 

 

As solution of (6.13) the known formula for determining the reduction factor is obtained. 

22

1
λφφ

χ
−+

=  (6.14) 

with 





 +

⋅
+⋅= 202

15,0 λφ
D
e

 (6.15) 

 

By application of the length-dependent initial deflection 

L
e

e 0
0 =  (6.16) 

(6.15) can be transformed to  

( )22215,0 λλλαφ +−⋅+⋅= GA  (6.17) 

with the imperfection factor  

w

S

N
B

D
e

⋅⋅
⋅

= πα 02
 (6.18) 

 

The imperfection factor depends on the geometry of the panel (thickness D, bending rigidity 

BS). In addition, the geometrical imperfection ē0 is considered in α. By consideration of the 

axial wrinkling force Nw and thus, the wrinkling stress σw also local imperfections as well as 

material properties of the core layer are indirectly considered in the imperfection factor. 

As an example, Fig. 6.1 shows a buckling curve for a sandwich panel. For checking the 

method, additionally some reduction factors determined by FE-analyses are shown in the fig-

ure. 
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Fig. 6.1: Example of a buckling curve for sandwich panels 
 

In order to be able to consider also moments from transverse load or eccentric axial loads, 

besides a practically never existing pure centric axial load, the above equation can be ex-

tended by a part for the bending moment following EN 1993-1-1 (section 6.3 and annex B). 

1≤+
⋅ w

yy
w M

Mk
N

N
χ

 (6.19) 

with 

wFw ADM σ⋅⋅=  (6.20) 

)8,01(
w

myyy N
NCk
⋅

⋅+⋅=
χ

 
(6.21) 

Cmy: equivalent uniform moment factor according to EN 1993-1-1, table B.3 (Tab. 6.1) 
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moment distribution  
Cmy 

uniformly distributed load point load 

M
ψM

 

11 ≤≤− ψ  4,04,06,0 ≥+ ψ  

Mh
ψMhMs

αs = Mh/Ms  

10 ≤≤ sα  11 ≤≤− ψ  4,08,02,0 ≥+ sα  4,08,02,0 ≥+ sα  

01 <≤− sα  
10 ≤≤ ψ  4,08,01,0 ≥− sα  4,08,0 ≥− sα  

01 <≤− ψ  ( ) 4,08,011,0 ≥−− sαψ  ( ) 4,08,02,0 ≥−− sαψ  

Ms
Mh

ψMh

αh = Mh/Ms  

10 ≤≤ hα  11 ≤≤− ψ  hα05,095,0 +  hα10,090,0 +  

01 <≤− hα  
10 ≤≤ ψ  hα05,095,0 +  hα10,090,0 +  

01 <≤− ψ  ( )ψα 2105,095,0 ++ h  ( )ψα 2110,090,0 +− h  

Tab. 6.1: Cmy according to table B.3 of EN 1993-1-1 [3] 
 

In Tab. 6.2 some calculations performed by means of the above equivalent member method 

are opposed to the results of a FE-analysis and a calculation according to 2nd order theory. 

For three different systems calculation is done for three different values of transverse load or 

end moment each. With the different transverse load or end moment the quotient M/Mw is de-

termined. In a second step the axial load N and the quotient N/Nw is determined. If the quo-

tients N/Nw determined by the different methods are compared, a good agreement becomes 

apparent. 

 

system M/Mw 

N/Nw calculated by 

G=3N/mm2 

E=6N/mm2 

D=80mm 

tF=0,6mm 

L=3500mm 

e0=1/500∙L 

equivalent 
member 
method 

2nd Order 
Theory FE 

 

0,20 0,46 0,46 0,45 

0,39 0,31 0,32 0,31 

0,79 0,10 0,10 0,10 

 

0,19 0,47 0,46 0,46 

0,39 0,33 0,32 0,33 

0,78 0,12 0,10 0,11 

 
0,18 0,44 0,46 0,46 

0,37 0,30 0,33 0,33 

0,74 0,10 0,12 0,12 
Tab. 6.2: Comparison of different possibilities for design 
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7 Time-dependent behaviour 

7.1 Basics 

In addition to the deflection wb due to bending, the deflection of a sandwich panel consists of 

the deflection wv due to shear deformation resulting from transverse force (formula (2.5)). 

Both, organic core materials such as polyurethane or expanded polystyrene and mineral wool 

show creep phenomena under long-term loads, e.g. dead-weight load and snow. If a constant 

load acts on a panel over a long period of time, the shear deformation of the core material and 

thus the shear deflection wv increase. The shear strain γ increases with constant shear stress. 

For sandwich panels the time-dependent shear strain is usually described by a creep function 

φ(t). 

( ))(1)0()( tt ϕγγ +⋅=  (7.1) 

Therefore the time-dependent deflection is 

( ))(1)0()()( twwtwwtw vbvb ϕ+⋅+=+=  (7.2) 

If the panels are loaded only by transverse forces creep effects can be considered by a reduc-

tion of the shear-modulus GC. So for design we have a notional time-dependent shear-

stiffness GA(t). 

( ) ∫∫∫∫ ⋅+⋅=+⋅⋅+⋅= dxVV
tGA

dxMM
B

tdxVV
GA

dxMM
B

tw
SS )(

11)(111)( ϕ  (7.3) 

C
C A

t
G

tGA ⋅
+

=
)(1

)(
ϕ

 (7.4) 

 

To design sandwich panels, which are subjected to long-term loads, not the complete creep-

function is necessary. Usually only two creep coefficients are used. The creep coefficient φ2000 

is used to consider snow loads; the creep coefficient φ100.000 is used to consider dead weight 

loads. 

 

To determine the creep coefficients φt, the creep function φ(t) is determined by (bending-) 

creep tests on panels subjected to a constant transverse (dead) load. In the test, the deflec-

tion of the panel is measured for a period of 1000 hours and the creep function is recalculated 

[1], [2]. 

bww
wtwt

−
−

=
)0(

)0()()(ϕ  (7.5) 

with 

w(t) deflection measured at time t 

w(0) initial deflection measured at time t=0 
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wb bending deflection, determined by calculation 

 

Based on the experimentally determined creep-function, both creep coefficients φ2000 and 

φ100.000 are determined by extrapolation. For design purposes the creep coefficient φ2000 de-

termined by testing is increased by 20%. So it is taken into account that a part of the creep 

deformation caused by snow loads during winter time is not recovered during summer time. 

7.2 Creeping of axially loaded sandwich panels 

Creeping of the core material results in an increase of the deflection of a panel. If, in addition 

to the transverse load, an axial load acts on the panel the increase of the deflection results 

also in an increase of the stress resultants moment and transverse force (Fig. 7.1). The nor-

mal stresses in the faces and the shear stress in the core also increase. Therefore, the long-

term behaviour of the panels has not only to be considered in the design for serviceability limit 

state (deformation limit) but also in the design for ultimate limit state (load-bearing capacity), 

i.e. for the determination of the stress resultants. 

 

N

oo wNM ⋅=tt wNM ∆⋅=∆ow
tw∆

 
Fig. 7.1: Creeping of an axially loaded sandwich panel 
 

7.3 Long-term tests 

To investigate the influence of axial loads on the creep behaviour of sandwich panels, long-

term tests on axially loaded sandwich panels were performed. In creep tests, which are usu-

ally performed on panels with transverse load, the panels are loaded by a constant load and 

the time-dependent deflection is measured (Fig. 7.2). 
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time t

load

time t

measured 
displacement

 
Fig. 7.2: Creep test 
 

To test panels with axial load this is an inapplicable procedure. So the long-term test with axial 

load were not performed as classical creep tests but as relaxation tests, i.e. a constant dis-

placement is applied and a resulting time-dependent force or stress is measured (Fig. 7.3). 

 

time t

measured 
force

time t

displacement

 
Fig. 7.3: Relaxation test 
 

During the long-term tests, the panels were loaded by an axial load corresponding to the 

working load to be expected in reality. For determination of the axial load it was assumed that 

wall panels are loaded by the loads applied from an overlying roof panel. For the roof panel a 

span of 6 m and a dead weight of about 0,12 kN/m2 were assumed. With a snow load sk = 

0,68 kN/m2 (snow load zone 2, 200 m above normal zero [4], [5]) an axial load of 2,4 kN/m 

ensues for the wall panels. This also approximates the indications in [9]. Here, an axial design 

load of 3,67 kN/m is assumed for the external wall of a building, which corresponds to a load 

of 2,6 kN/m for an averaged load factor of γF = (1,5+1,35)/2 = 1,425. The axial load in the 

tests was 2,8 kN/m (including test set-up). 

Since the creep behaviour of different core materials differs from each other, panels with the 

common core materials (polyurethane, expanded polystyrene, mineral wool) were tested. 
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transverse load P
strain 

gauges

measurement of force

measurement of displacement

hinged support

L-shaped aluminium profiles 
60x40x4
glued to the face of the panel

wooden board

support in mid-span
constant deflection le

ng
th

 L

sheet of steel 
t=20mm

hinged support
round steel 
d=30mm

Axial loading
2 x 48 kg

   
Fig. 7.4: Test set up for long-term tests on axially loaded sandwich panels 
 

The test set-up for the long-term test is given in Fig. 7.4. To apply the axial load the same test 

set-up was used as in the buckling tests (section 4). Per type of panel two tests were per-

formed. In the first test, the axial load was applied centrically, i.e. into both face sheets, in the 

second test the axial load was applied eccentrically only into one face sheet (Fig. 7.5). 
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N
N/2N/2

 
Fig. 7.5: Centric and eccentric application of axial load 
 

After applying the axial load, a deflection was applied to the panel via an additional support in 

mid-span (Fig. 7.6). The support was fixed and the deflection was kept constant over the test 

period.  

 

 
Fig. 7.6: Support at mid-span 
 

The reaction force at the mid-support was continuously recorded during the test (Fig. 7.7). To 

measure the reaction force strain gauges were used which were applied on the thread rods, 

used to install the support (Fig. 7.7). 
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Fig. 7.7: Measurement of reaction forces at mid support (strain gauges) 
 

In addition, in mid-span the strains in the face sheet subjected to tension were measured with 

strain gauges and also continuously recorded. 

 

 
Fig. 7.8: Strain gauges at the face sheet subjected to tension 
 

A compilation of the performed long-term tests is given in Tab. 7.1. A detailed documentation 

of the test results can be found in D3.2-part 4 [8]. 
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No. type of panel face core application of 
axial load initial deflection 

F-1 F steel, 0,75 mm PU, 60 mm centric 15,5 mm 

F-2 F steel, 0,75 mm PU, 60 mm eccentric 10,5 mm 

G-1 G steel, 0,60 mm EPS, 60 mm centric 15,5 mm 

G-2 G steel, 0,60 mm EPS, 60 mm eccentric 10,0 mm 

H-1 H GFRP, 1,8 mm EPS, 60 mm centric 15,5 mm 

H-2 H GFRP, 1,8 mm EPS, 60 mm eccentric 10,5 mm 

I-1 I steel, 0,60 mm MW, 60 mm centric 15,0 mm 

I-2 I steel, 0,60 mm MW, 60 mm eccentric 10,0 mm 
Tab. 7.1: Performed long-term tests 
 

For the purpose of comparison additionally to the long-term tests on axially loaded panels 

creep tests according to EN 14509 [1] were performed for each tested type of panel. The tests 

were performed on single-span panels which were subjected to a uniformly distributed dead 

load (Fig. 7.9, Tab. 7.2). 

 

L = 2700mm

measurement of displacement
dead load

measurement of displacement

 
Fig. 7.9: Test set up for creep tests according to EN 14509 
 

 
Fig. 7.10: Test set up for creep tests according to EN 14509 
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No. dead load 

F 1,44 kN 

G 1,44 kN 

H 0,96 kN 

I 0,64 kN 
Tab. 7.2: Dead load in creep tests 
 

In addition the material properties of core and face layers were determined for each tested 

type of panel. 

Also the results of the creep tests and the material properties are documented in D3.2-part 4 

[8]. 

7.4 Evaluation of long-term tests 

In the following it is verified that an axial force does not influence the creep behaviour of 

sandwich panels. So the creep coefficients determined according to EN 14509 by simple 

bending tests with transverse loading can also be used to design panels, which are axially 

loaded. Comparatively complex tests on axially loaded panels are not necessary. 

For this purpose the reaction force P at mid support and the stresses in the face sheet are 

determined by calculation using the creep functions determined according to EN 14509 (bend-

ing creep tests). These calculated values are compared to the values determined in the tests 

on panels with axial load. 

Based on the creep behaviour of the core material the reaction force P measured at mid-

support decreases during the test (Fig. 7.11). For this reason, also the stresses and strains in 

the face sheets decrease. 
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Fig. 7.11: Reaction force-time relationship for long-term tests 
 

At first, the creep function φ(t) was determined from the bending creep tests for each tested 

type of panel according to formula (7.5). For each type of panel (i.e. for each core material), 

the determined creep function φ(t) is presented in the following diagram.  
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Fig. 7.12: Creep functions 
 



 page 48 
 of report 
 No.: D3.3 – part 4 
 

Versuchsanstalt für Stahl, Holz und Steine, Karlsruher Institut für Technologie (KIT) 
This report may only be reproduced in an unabridged version. A publication in extracts needs our written approval. 

The deflection w of a panel loaded both by an axial load N and by a concentrated load P in 

mid-span is calculated as follows 

α⋅







⋅
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+

⋅
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+
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GA
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B
LPw

8448

23

 (7.6) 

with 

e = 0  for centric axial load (tests -1) 

e = D/2 for eccentric axial load (tests -2) 

α  amplification factor to consider effects of 2nd order theory 

 

P

N

e

P

N

 
Fig. 7.13: Mechanical models for evaluation of long-term tests 
 

If creeping of the core material is considered by creep functions φ(t), constant loads P and N 

result in the time dependent deflection w(t). 
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In the tests the deflection w is kept constant. Also the axial load N is constant. So the reaction 

force P at mid-support depends on the time and decreases due to the creep behaviour of the 

core material. Considering the axial force N, the constant deflection w0 and the creep function 

φ(t), the reaction force P(t) can be determined according to the following equation. 
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Caused by the time dependence of the force P also the stresses in the face sheets depend on 

the time. The normal stress σF(t) in the face sheet subjected to tension is calculated as follows 

FFFF
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24
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With the creep functions φ(t) determined from the bending creep tests on panels with trans-

verse load (Fig. 7.12), the time-dependent reaction force P(t) at mid-support and from this, the 

time-dependent stress σF(t) in the face sheet were determined using the above equations. 

In the following diagrams (Fig. 7.14 to Fig. 7.19), the forces and stresses determined in the 

tests are opposed to calculated values. The measured values were standardized to the calcu-

lated value at about t = 150 h.  
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Fig. 7.14: Long-term test F-1 
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Fig. 7.15: Long-term test F-2 
 

40

45

50

55

60

65

0 200 400 600 800 1000 1200 1400 1600 1800 2000

st
re

ss
[N

/m
m

2 ]

time [h]

panel G (EPS), centric loading

measured
calculated

 
Fig. 7.16: Long-term test G-1 
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Fig. 7.17: Long-term test G-2 
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Fig. 7.18: Long-term test I-1 
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Fig. 7.19: Long-term test I-2 
 

Based on the good agreement between the scopes of analytically and experimentally deter-

mined curves, a relevant influence of an axial force on the creep behaviour of the sandwich 

panels can be excluded. Therefore, the creep coefficients used for the design of panels sub-

jected to transverse loads can also be used for the design of axially loaded panels. This pro-

cedure has the advantage that all required coefficients can be determined in simply performed 

creep tests according to EN 14509 and no extensive long-term tests with axial loads must be 

carried out. Furthermore, for many panels the required parameters are already known. 

7.5 Consideration of long-term effects in design formulae 

When designing sandwich panels, creep effects must be considered for long-term acting 

loads such as dead weight and snow. According to EN 14509 this is done by an increase of 

the shear deflection wv using creep coefficients φt. The same procedure can be applied for the 

design of panels with axial load or combined load. The additional axial load as well as effects 

of 2nd order theory must be considered in the corresponding formulae. Furthermore it has to 

be noted, that not only the deflection, but also the stress resultants moment and transverse 

force increase, if the panel is loaded by long-term loads. 

 

We assume a panel, which is loaded by a short-term load as well as by a long-term load. The 

shear part wlt,v of the deflection caused by the long-term load increases due to creep effects. 

In addition the entire deflection according to 1st order theory increases due to effects of 2nd 
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order theory. This is considered by the amplification factor α. So the deflection wt has to be 

calculated as follows 

( ) αϕ ⋅+⋅+++= )1(,,,, tvltbltvstbstt wwwww  (7.10) 

with 

deflection due to short-term loads, e.g. wind: 

vstbstst www ,, +=  (7.11) 

deflection due to long-term load, e.g. snow or self-weight: 

vltbltlt www ,, +=  (7.12) 

α amplification factor (2nd order theory) 

 

An increase of deflections also results in an increase of the stress resultants moment and 

transverse force if an axial load exists. This means that besides effects from the 2nd order the-

ory also creep effects must be considered for determination of bending moment and trans-

verse force. In this case it is useful not to work with the creep coefficients φt describing the 

increase of the shear deformation, but with a “sandwich creep coefficient” φSt describing the 

increase of the deformation of the sandwich part of the cross-section [18]. 

( )Stltstt www ϕ+⋅+= 1  (7.13) 

with 

tSt k
k ϕϕ ⋅
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1  
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The “sandwich factor” k corresponds to the relationship between deflection due to shear de-

formation and deflection due to bending. Unlike the creep coefficient φt the “sandwich creep 

coefficient” φSt is not a material parameter. It also considers the loads acting on the panel. 

Therefore it has to be calculated for each single load case. 

The moment caused by long-term loads has to be increased by the coefficient φSt. As well the 

moment due to short-term load as the moment due to long-term load have to be amplified 

according to 2nd order effects. The time-dependent bending moment can be calculated in the 

following way 

( ) αϕ ⋅+⋅+= )1( Stltstt MMM  (7.16) 

with 

Mst moment due to short-term loads 

Mlt moment due to long term loads 



 page 54 
 of report 
 No.: D3.3 – part 4 
 

Versuchsanstalt für Stahl, Holz und Steine, Karlsruher Institut für Technologie (KIT) 
This report may only be reproduced in an unabridged version. A publication in extracts needs our written approval. 

 

Depending on the load, the creep coefficient corresponding to the duration of the load effect 

has to be applied. As long-term acting loads usually dead weight and snow are available. Ac-

cording to [1] and [2], for snow, duration of load effect of 2.000 h is stipulated, for dead weight 

of 100.000 h. So for design the creep coefficient φ2000 is used for snow loads, φ100.000 for dead 

weight loads. For a panel loaded by self-weight, snow and wind the deflection can be calcu-

lated with the following formula. 

( ) αϕϕ ⋅+⋅+++⋅+++= )1()1( 100000,,2000,,,, vGbGvSbSvWbWt wwwwwww  (7.17) 

with 

deflection due to wind load: 

vWbWW www ,, +=  (7.18) 

deflection due to snow load: 

vSbSS www ,, +=  (7.19) 

deflection due to self-weight load: 

vGbGG www ,, +=  (7.20) 

α   amplification factor for effects of 2nd order theory 

φ2000  creep coefficient for snow loads (2000 h) 

φ100.000  creep coefficient for self-weight loads (100.000 h) 

 

The bending moment of a panel subjected to wind, snow and self-weight load is calculated in 

the following way 

( ) αϕϕ ⋅+++⋅+= )1()1( 1000002000 SGSSWt MMMM  (7.21) 

with 

MW  moment due to wind load: 

MS  moment due to snow load 

MG  moment due to self-weight load 

φS2000  coefficient for snow loads (2000 h) 

φS100.000 coefficient for self-weight loads (100.000 h) 

 

7.6 Typical loads on wall panels of frameless structures 

In Fig. 7.20 wall panels of frameless structures with typical loads and an imperfection e0 are 

presented. 
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Fig. 7.20: Wall panels with typical loads 
 

The normal force N usually arises out of superimposed loads from snow and dead weight of 

the overlying ceiling. So the axial loads N are long-term loads. Axial loads are mostly applied 

to only one face sheet of the wall panel. So fixed-end moments MN arise, which are also long-

term loads (Fig. 7.21).  

eNM N ⋅=  (7.22) 

with 

e distance from loaded face to centroidal axis of the of panel, usually 
2
De =  
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Fig. 7.21: End moment MN at the upper end 
 

Depending on the construction an end moment MN can also act on the lower end of the panel. 
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Fig. 7.22: End moment MN at the lower end 
 

Due to long-term axial loads, also geometrical imperfections e0 result in long-term moments 

and transverse forces. A geometrical imperfection e0 can be considered by application of a 

constant equivalent line load qe0 [3]. 
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Analogous to the geometrical imperfection, also a deflection wT from temperature differences 

between internal face and external face can be considered by an equivalent line load qwT. 

D
TN

L
wNq FT

wT
α

⋅∆⋅=⋅⋅= 28  (7.24) 

 

In Fig. 7.23 the considered panels and the corresponding loads are shown. 
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Fig. 7.23: Loads acting on the wall panel 
 

For wall panels with the loading given above, the distribution of moment and transverse force 

is given in Fig. 7.24 (1st order theory, without consideration of creep effects). 
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Fig. 7.24: Distribution of moment and transverse force 
 

So the bending and shear deflection is 

a) 
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b) 
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Remark: 

To determine the transverse force resulting from a global imperfection e0 and an axial load N 

a constant equivalent line load is assumed, which also results in the bending moment N∙e0. 
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The deflection caused by this load is 
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To calculate the factor k only long-term loads are considered. 

a) 







 ⋅⋅⋅+⋅⋅⋅⋅= 22

0, 16
1

384
401 LeNLeN

B
w

S
blt  (7.33) 

( )0,
1 eN

GA
w vlt ⋅⋅=  (7.34) 

b) 







 ⋅⋅⋅+⋅⋅⋅⋅= 22

0 8
1

384
401 LeNLeN

B
w

S
b  (7.35) 

( )0
1 eN

GA
wv ⋅⋅=  (7.36) 

 

So the “sandwich factor” k which is needed to consider long-term effects results for the above 

wall panels in 
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8 Partial safety factors 

To design a sandwich panel according to EN 14509 [1] design calculations for the serviceabil-

ity limit state and for the ultimate limit state are done. For axially loaded sandwich panels as 

given above this results in the following procedure: 

Serviceability limit state 

• Limitation of deflection 

maxww ≤  (8.1) 

According to EN 14509 for wall panels 

100
Lwult =  (8.2) 

can be used, if there are not any other values from national standards. 

The loads have to be determined using the load factors γF and combination coefficients ψ for 

serviceability limit state. 

 

Ultimate limit state 

• Wrinkling of a face sheet 

dwdF ,, σσ ≤  (8.3) 

• Shear failure of the core 

dCvdC f ,, ≤τ  (8.4) 

The loads, which are used to calculate the normal stress σF,d in the face and the shear stress 

τC,d in the core, have to be determined using the load factors γF and combination coefficients ψ 

for ultimate limit state. 
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The resistance values of wrinkling stress σw,d of the face and shear strength fCv,d of the core 

material have to be calculated by dividing the characteristic values by the material factor γM. 

M

kw
dw γ

σ
σ ,

, =  (8.5) 

M

kCv
dCv

f
f

γ
,

, =  (8.6) 

The characteristic values σw,k and fCv,k are determined by testing. Usually they can be found on 

the CE-mark of the panel. For sandwich panels the material factors γM represent the variability 

of the mechanical properties of the sandwich panel. They are determined by the results of 

initial type testing and factory production control.  

The load factors γF are given by national specifications. They can be found in EN 1990 [6] and 

the related national annex. 

9 Summary 

In addition to the usual application as space enclosing components, in small buildings sand-

wich panels are partly also used without supporting substructure. This results in the question 

of the load-bearing capacity of the panels that are now, in addition to transverse loads, also 

subjected to axial loads. Using FE-analyses and tests, it could be shown that the panels sub-

jected to axial loads can be designed according to the 2nd order theory with the amplification 

factor α. The wrinkling stress determined in simple bending tests can be used as ultimate 

stress. In the presented design method, also the long-term behaviour of the panels, i.e. creep-

ing of the core material, can be considered. Only the creep coefficients, which are also used 

for the design of panels subjected to transverse loads, have to be known. 

Using the design model presented above there is no necessarily of any additional test to de-

sign axially loaded sandwich panels. Only the parameters used for the design of panels sub-

jected to transverse loads have to be known. 

In the annexes of the report a summary of both design methods is given. 
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Design according to 2nd order theory 

1 Properties of the sandwich panel 

Geometry and material properties of the sandwich can be found on the CE-mark or in approv-

als: 

thickness of the external face sheet    tF1 

thickness of the internal face sheet    tF2 

thickness of panel      D 

width of panel       B 

wrinkling stress of the external face sheet   σw,F1 

wrinkling stress of the internal face sheet   σw,F2 

yield strength of face sheet     fy,F 

shear strength of core material    fCv 

shear modulus of core material    GC 

elastic modulus of the faces      EF 

creep coefficient t = 2000h (snow loads)   φ2000 

creep coefficient t = 100000h (dead weight loads)  φ100.000 

 

cross sectional area of face  FF tBA ⋅=  

cross sectional area of core  DBAC ⋅=  

bending stiffness   2

21

21 D
AA
AAEB

FF

FF
FS ⋅

+
⋅

⋅=  

shear stiffness   CC AGGA ⋅=  

2 Actions and loads 

• Axial loads introduced from ceiling panel: 

NG  dead weight load 

NS  snow load 

• If axial loads are introduced in one face sheet only, additional end moments act: 

2
DNM ⋅=  

MN
G moment caused by NG 

MN
S moment caused by NS 

• Transverse loads 

w  wind load 
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• Imperfection: 

e0  initial deflection 

Initial deflections are considered by equivalent line loads: 

2
0

0 8
L
e

Nqe ⋅⋅=  

qe0,G equivalent line load due to self-weight (NG) 

qe0,S equivalent line load due to snow (NS) 

• Temperature difference between internal and external face 

Temperature differences ΔT cause a deflection wT 

8

2

⋅
⋅

⋅∆=
D

LTw F
T

α
 

The deflections wT is considered by equivalent line loads: 

D
TN

L
wNq FT

WT
α
⋅∆⋅=⋅⋅= 28  

qwT,G equivalent line load due to self-weight (NG) 

qwT,S equivalent line load due to snow (NS) 
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To determine stress resultants and deflections design loads have to be used (index d). For 

this purpose load factors γF and combination coefficients ψ have to be considered. They are 

given in EN 14509 or in national standards (e.g. EN 1990 with corresponding national annex). 

3 Deflection 

Deflections according to 1st order theory, without creep effects: 

• Deflection wW due to wind load 

)()( ,, wwwww I
vW

I
bW

I
W +=  

• Deflections wS due to snow load 

)()()()()()( ,,,,0,,,,,0, SwT
I

vS
N
S

I
vSSe

I
vSSwT

I
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N
S

I
bSSe

I
bS

I
S qwMwqwqwMwqww +++++=  

• Deflection wG due to self-weight load 
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Amplification factor (2nd order theory): 

crN
N

−
=

1

1α  
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N
N
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+
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1
 

2
2

k

S
ki s

B
N ⋅= π  

CC AGGA ⋅=  

Deflection wt
II determined with consideration of creeping and 2nd order theory: 

( ) ( )( ) αϕϕ ⋅+⋅+++⋅+++= 000.100,,2000,,,, 11 I
vG

I
bG

I
vS

I
bS

I
vW

I
bW
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t wwwwwww  

4 Stress resultants 

Moments according to 1st order theory, without creep effects: 

(See also the following figure) 

• Moments MW due to wind load 

)(wMM I
W

I
W =  

• Moments MS due to snow loads: 

)()()( ,,0 SwT
I
S

N
S

I
SSe

I
S

I
S qMMMqMM ++=  

• Moments MG due to self-weight load: 

)()()( ,,0 GwT
I
G

N
G

I
GGe

I
G

I
G qMMMqMM ++=  
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Transverse force according to 1st order theory, without creep effects: 

(See also the following figure) 

• Transverse force VW due to wind load 

)(wVV I
W

I
W =  

• Transverse force VS due to snow loads: 

)()()( ,,0 SwT
I

S
N
S

I
SSe

I
S

I
S qVMVqVV ++=  

• Transverse force VG due to self-weight load: 
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N
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I
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Coefficient for consideration of creep effects: 

tSt k
k ϕϕ ⋅
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blt
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Factor k for typical loads on wall panels (without temperature difference): 
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Stress resultants determined with consideration of creeping and 2nd order theory 

• Moment: 

( ) ( )( ) αϕϕ ⋅+⋅++⋅+= 000.1002000 11 S
I
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II
t MMMM  

• Transverse force: 

( ) ( )( ) αϕϕ ⋅+⋅++⋅+= 000.1002000 11 S
I
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S
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W
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t VVVV  

• Normal force: 

GS NNN +=  

5 Stresses in face sheets and core 

• Normal stress in compressed face sheet: 

211 FFF

II
t

F AA
N

AD
M

+
+

⋅
=σ  

• Normal stress in face sheet subjected to tension: 

212 FFF

II
t

F AA
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+
−
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• Shear stress in the core material: 

C
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V
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6 Limitation of deflection (serviceability limit state) 

maxwwt ≤  

For wall panels according to EN 14509: 

100max
Lw =  

7 Limitation of stresses (ultimate limit state) 

• Compression stress in face sheets: 

M

kw
dF γ

σ
σ ,

, ≤  

• Tensile stress in face sheet 

M

kyF
dF

f
γ

σ ,
, ≤  

• Shear stress in core material: 

M

kCv
dC

f
γ

τ ,
, =  
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Design according to equivalent member method 

1 Panels loaded only by axial load N 
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2 Panels loaded by axial load N and bending moment M 
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NRd, χ  according to the formulae given in section 1 
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Cmy: equivalent uniform moment factor according to EN 1993-1-1, table B.3 
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moment distribution  
Cmy 

uniformly distributed load point load 

M
ψM

 

11 ≤≤− ψ  4,04,06,0 ≥+ ψ  

Mh
ψMhMs

αs = Mh/Ms  

10 ≤≤ sα  11 ≤≤− ψ  4,08,02,0 ≥+ sα  4,08,02,0 ≥+ sα  

01 <≤− sα  
10 ≤≤ψ  4,08,01,0 ≥− sα  4,08,0 ≥− sα  

01 <≤− ψ  ( ) 4,08,011,0 ≥−− sαψ  ( ) 4,08,02,0 ≥−− sαψ  

Ms
Mh

ψMh

αh = Mh/Ms  

10 ≤≤ hα  11 ≤≤− ψ  hα05,095,0 +  hα10,090,0 +  

01 <≤− hα  
10 ≤≤ψ  hα05,095,0 +  hα10,090,0 +  

01 <≤− ψ  ( )ψα 2105,095,0 ++ h  ( )ψα 2110,090,0 +− h  
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