
Adaptive Algorithms for Semi-Infinite Programming

with Arbitrary Index Sets

Zur Erlangung des akademischen Grades
eines Doktors der Wirtschaftswissenschaften

(Dr. rer. pol)

an der
Fakultät für Wirtschaftswissenschaften

des Karlsruher Institut für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Math. Heinz-Paul Steuermann

Follow the ferret ...

Tag der mündlichen Prüfung: 21. Juni 2011
Referent: Prof. Dr. Oliver Stein
Koreferent: Prof. Dr. Karl-Heinz Waldmann

Karlsruhe 2011

Contents

1 Introduction 1

2 Background 7

2.1 Stationarity conditions . 7
2.2 Overestimating techniques . 8

2.2.1 The unimodalization method . 8
2.2.2 The αBB method . 14
2.2.3 A reduced outer approximation . 15

3 The Adaptive-Reduction Algorithm 17

3.1 Relaxation and reformulation . 17
3.2 Algorithms . 19
3.3 Convergence results . 24
3.4 A first numerical example . 32

4 The Adaptive-Convexification Algorithm 37

4.1 Relaxation and reformulation . 37
4.2 Algorithms . 40
4.3 Convergence results . 42
4.4 A first numerical example . 46

5 An X-adaptation method 51

5.1 The Adaptive-Reduction Algorithm with X-adaptation 51
5.1.1 Relaxation and reformulation . 51
5.1.2 Algorithms and X-Adaptation . 53
5.1.3 Convergence results . 58

5.2 The Adaptive-Convexification Algorithm with X-adaptation 63
5.2.1 Relaxation and reformulation . 63
5.2.2 Algorithms and X-Adaptation . 65
5.2.3 Convergence results . 69

6 The hybrid method 75

6.1 Motivation and reformulation . 75
6.2 Algorithms and convergence results . 77

7 Implementation Details 83

7.1 General information . 83

iii

Contents

7.2 Regularization of MPCC . 85
7.3 A phase 1 algorithm . 88
7.4 X-adaptation strategies . 89
7.5 Reduction of complexity . 90

8 Numerical examples 95

9 Final remarks 139

References 146

List of figures 149

List of algorithms 151

Curriculum Vitae 153

iv

1 Introduction

We consider (standard) semi-infinite optimization problems of the form

SIP : min
x∈X

f(x) s.t. g(x, y) ≤ 0 for all y ∈ Y

with X = [xℓ, xu] ⊂ R
n, xℓ < xu, Y ⊂ R

m and f ∈ Cp(Rn,R), g ∈ Cp(Rn ×R
m,R) with

p ≥ 1. The ideas presented here can easily be generalized to the case of more than one
semi-infinite constraint.

There is a wide variety of applications of semi-infinite optimization. Examples for these
applications are

• Chebyshev approximation,

• Robust optimization,

• Minimax problems,

• Design centering,

• Defect minimization for operator equations.

Here we will introduce two applications in more detail, that are, Chebyshev approxi-
mation and design centering problems. For details on the theory, more applications,
not covered by the mentioned problem classes, and many references on semi-infinite
optimization we refer to the excellent reviews [23, 40].

Chebyshev approximation deals with the approximation of a given function F on a
compact set Y by a function a (x, ·) with parameters x ∈ M ⊂ R

n so that the maximal
error becomes small. That leads to the non-smooth problem

CA : min
x∈M

‖F (·)− a (x, ·) ‖∞,Y = min
x∈M

max
y∈Y

|F (y)− a (x, y) |.

By an epigraph reformulation CA can be equivalently rewritten as

EPICA : min
(x,z)∈M×R

z s.t. max
y∈Y

|F (y)− a (x, y) | ≤ z.

It is not hard to see that maxy∈Y |F (y) − a (x, y) | ≤ z holds if and only if |F (y) −
a (x, y) | ≤ z holds for all y ∈ Y . Thus, we can rewrite EPICA as the following semi-
infinite problem

SIPCA : min
(x,z)∈M×R

z s.t. F (y)− a (x, y) ≤ z for all y ∈ Y

−F (y) + a (x, y) ≤ z for all y ∈ Y.

1

1 Introduction

We have to mention that the problem SIPCA is a smooth problem if all defining functions
are also smooth.

Given a parametrized body B (x) ⊂ R
m and a container C ⊂ R

m a design centering
problem consists in maximizing some measure, for example the area or the volume, of
B (x) so that it is contained in C. That leads to the problem:

DC : max
x∈Rn

V ol (B (x)) s.t. B (x) ⊂ C.

Problems of this type arise, for example, if one wishes to minimize the cutoff in a
manufacturing process, cf. [52, 53]. In [18, 24] the maneuverability problem of a robot
is formulated as a special design centering problem. And in [49] the problem of deciding
whether the quality of a manufactured element, produced in a fabrication process with
unavoidable fluctuations, is modeled as a design centering problem. For more details on
design centering problems we refer to [20, 36, 39].

Let us assume that C is described by a finite number of functional constraints, that is,

C = {y ∈ R
m | c1 (y) ≤ 0, . . . , cq (y) ≤ 0},

and
B (x) = {y ∈ R

m|y = T (x, z) , z ∈ Z}
with some fixed compact set Z and a function T . Then, we can reformulate DC, cf.
[29], as a semi-infinite problem:

SIPDC : min
x∈Rn

V ol (B (x)) s.t. ci (T (x, z)) ≤ 0 for all z ∈ Z, i ∈ {1, . . . , q}.

There exist a wide range of numerical solution methods for linear and nonlinear SIP s.
Overviews can be found in [25, 41, 42, 45]. Traditional solution methods for SIP are,
for example, discretization, exchange and reduction-based methods. These methods
generate a sequence of finite problems to approximate SIP . All of these methods
have in common that, at the beginning, some finite subset T of Y has to be chosen.
In discretization-based methods new points of Y are added successively to T , while
exchange-based methods replace some points in T by some new points from Y . The
reduction-based methods make use of the local reduction theory proposed in [22] to de-
termine a sequence of finite subsets of Y . However, these methods suffer from the major
drawback that their approximation of the feasible set X ∩M of SIP , with

M = {x ∈ R
n|g (x, y) ≤ 0 for all y ∈ Y },

may contain infeasible points for the original problem. Other methods that do not suffer
from this drawback use bi-level strategies and a branch-and-bound framework to handle
the infinite number of constraints. However, most of these methods with feasible iterates
like in [5, 6, 33, 34] focus on the global solution of SIP . Throughout these papers it is
assumed that the index set Y is given by a Cartesian product of intervals, that is, a box.

2

The method presented in [31] does not make assumptions on the shape of the index set
Y , but also focuses on the global solution of SIP . Thus, additional properties of the
objective function like convexity must be assumed, or one has to establish an additional
branch and bound framework to ensure the global optimality.

The algorithm discussed in [16] does not focus on the global solution of SIP . The
solution concept of this method is that of stationary points, and, thus, no additional
properties of the objective function are assumed. However, a drawback of this method
is that it can only handle one-dimensional index sets Y .

In the first part of the present work two basic numerical solution methods for solving SIP
with an arbitrary dimensional and arbitrarily shaped index set Y ⊂ R

m are presented.
The second method is an extension of the algorithm discussed in [16]. An additional
X-adaptation strategy, enhancing the numerical performance, for both algorithms is
discussed in the second part.

The solution concept for all algorithms will be that of stationary points. For this rea-
son no global assumptions are made on the structure of the objective function or the
constraints like linearity or convexity, neither in the decision variable, nor in the index
variable. Moreover, the techniques presented in [31] for handling the set Y differ from
our method in the adaptive way of the used subdivision strategies.

In the sequel we will make two assumptions. The first of the assumptions is made to keep
the exposition as simple as possible, the second is standard in semi-infinite programming.

Assumption 1. The box X ⊂ R
n contains all feasible points of SIP in its interior.

Assumption 2. The index set Y ⊂ R
m is non-empty, compact and given by

Y = {y ∈ R
m|vl (y) ≤ 0, l ∈ L},

where L is a finite index set and the functions vl, l ∈ L, are continuous.

It is well known, cf. [47], that SIP can be reformulated as the Stackelberg game

SG : min
x,y

f(x) s.t. g(x, y) ≤ 0, y is a solution of Q(x),

where the so-called lower level problem Q (x) is

Q (x) : max
y∈Rm

g(x, y) s.t. y ∈ Y.

Note that a point x is feasible for SIP if and only if the global optimal value of Q (x)
is non-positive. Thus, even checking feasibility of a point for SIP results in solving a
global optimization problem. If a smooth optimal value function y (x) of Q (x) is known,
that is a smooth function y (x) that solves Q (x) for each x, then SG can be reduced to
a standard nonlinear problem by replacing y by y (x). However, in general such a global
solution of Q (x) is not available.

3

1 Introduction

For some special functions g and sets Y checking feasibility of a point x for SIP becomes
easier than in the general case, and, moreover, SG can be further reformulated so that
we may obtain a problem which can be handled easier. Here we consider two special
cases, namely, unimodal or concave functions g on convex sets Y .

Definition 1.1.1.

(i) A set Y ⊂ R
m is called convex if for each y1, y2 ∈ Y we have (1− λ) y1 + λy2 ∈ Y

for each λ ∈ (0, 1).

(ii) Let Y ⊂ R
m be a convex set. A function g : Y → R is called unimodal on Y if it

possesses a unique global maximizer.

(iii) Let Y be a convex set. A function g : Rm → R is called concave on Y if the relation
g ((1− λ) y1 + λy2) ≥ (1− λ) g (y1) + λg (y2) holds for each y1, y2 ∈ Y and each
λ ∈ (0, 1).

It is well known that a function g ∈ C2 (Rm,R) is concave if and only if D2g (y) � 0.
For a function g that is continuously differentiable on a dotted open set we have the
following sufficient condition to check if it is unimodal.

Lemma 1.1.2. Let Y ⊂ R
m be a convex set, c ∈ Y and g ∈ C1 (Rm \ {c},R). If the

relation
Dg (y) (c− y) > 0

holds for each y ∈ Y \ {c}, then g is unimodal on Y and c is the global maximizer of g
on Y .

Proof. We give the proof by enforcing a contradiction. Let there be some c ∈ Y so
that the relation Dg (y) (c− y) > 0 holds for each y ∈ Y \ {c}, and let y ∈ Y , y 6= c,
with g (y) ≥ g (c). As Y is convex we have that ŷ1 (λ) = (1− λ) y + λc ∈ Y and
ŷ2 (λ) = λy + (1− λ) c ∈ Y holds for each λ ∈ (0, 1). With the mean value theorem we
obtain that the relations

0 ≥g (ŷ (1))− g (ŷ (0))

=Dλ (g (ŷ1 (λ))) |λ=ξ1

=Dg (ŷ1 (ξ1)) (c− y)

and

0 ≥g (ŷ (1))− g (ŷ (0))

=Dλ (g (ŷ2 (λ))) |λ=ξ2

=Dg (ŷ2 (ξ2)) (y − c)

hold for some ξ1, ξ2 ∈ (0, 1). With the intermediate value theorem we obtain that there
is some ξ0 ∈ [min(ξ1, ξ2),max(ξ1, ξ2)] so that

0 =Dg (ŷ1 (ξ0)) (c− y)

4

holds. As for each ξ ∈ (0, 1) we have (1− ξ) (c− y) = (c− ŷ1 (ξ)), we also have

0 =Dg (ŷ1 (ξ0)) (c− y)

=Dg (ŷ1 (ξ0)) (c− ŷ1 (ξ0))

for some ξ0 ∈ [min(ξ1, ξ2),max(ξ1, ξ2)]. That is a contradiction.

Let us assume for the moment that Q (x) is a unimodal problem, that is, g is unimodal
in the second argument on Y for each x, and that we have the solution y (x) of Q (x).
Then we are in the situation suggested above and SG reduces to a nonlinear optimization
problem.

NLP : min
x∈X

f(x) s.t. g (x, y (x)) ≤ 0.

That type of problems can be tackled, for example, by the methods presented in [50, 51].
That Q (x) is an unimodal problem is, of course, a very restrictive assumption and the
knowledge of a solution makes it even worse.

If we assume now, for the moment, that vl ∈ C1 (Rm,R) for each l ∈ L, that Q (x) is
a convex problem, that is, Y is convex and g is concave in y, and that Y possesses a
Slater point, then the Karush-Kuhn-Tucker conditions are necessary and sufficient for
optimality and SG can be reformulated as the following mathematical program with
complementary constraints ([16]).

MPCC : min
x,y,γ

f(x) s.t. g(x, y) ≤ 0

∇yg(x, y) +
∑

l∈L

γl∇yvl (y) = 0

0 ≤ −v (y) ⊥ γ ≥ 0.

Hence, under our temporary convexity assumption on Q (x), checking feasibility of a
point x for SIP becomes easier than for non-convex Q(x).

Next we take a look at a special semi-infinite problem. Choose B :=
[

b, b
]

⊂ R
m,

b < b ∈ R
m, with Y ⊂ B and define the semi-infinite problem

SIPB : min
x∈X

f(x) s.t. g(x, y) ≤ 0 for all y ∈ B

with the feasible set X ∩MB, where

MB = {x ∈ R
n|g (x, y) ≤ 0 for all y ∈ B}.

Then, under the assumption that g is unimodal in y and a solution of the lower level
problem is known, SIPB can be equivalently reformulated as

NLPB : min
x∈X

f(x) s.t. g (x, y (x)) ≤ 0,

5

1 Introduction

and, under the assumption that g is concave in y, SIPB can be equivalently reformulated
as

MPCCB : min
x,y,γ,γ

f(x) s.t. g(x, y) ≤ 0

∇yg(x, y) + γ − γ = 0

0 ≤ (b− y) ⊥ γ ≥ 0

0 ≤ (y − b) ⊥ γ ≥ 0.

The fact that B is a superset of Y obviously entails MB ⊂M . Using these observations
and looking at B as an outer approximation of Y , one obtains an upper bound on the
optimal value of SIP by solving SIPB. The better the approximation B of Y , the better
should be the obtained upper bound. The first algorithm, introduced in the present work,
uses this idea to construct a sequence of outer approximations of Y , combined with a
unimodalization strategy for g based on ideas from the optimal centered forms [4]. The
second algorithm also constructs a sequence of outer approximations of Y , combined with
the αBB method from [1, 2, 3, 14] as a concavification strategy for g. Both algorithms
generate a sequence of points which tends to a stationary point of SIP .

In Chapter 2 a brief review of stationarity, the main ideas of two relaxation strategies
of global optimization and the basic concept of a reduced outer approximation of a set
are presented. Chapter 3 contains the adaptive reduction algorithm, and Chapter 4 the
adaptive convexification algorithm. Both chapters contain first numerical examples. An
additional adaptation strategy for the set X for both algorithms is presented in Chapter
5. Chapter 6 contains a hybrid method and implementation details on all algorithms
are introduced in Chapter 7. Numerical examples illustrating the performance of all
methods are given in Chapter 8. Finally, in Chapter 9 we give final remarks and point
out possible improvements.

6

2 Background

In Section 2.1 a short overview of first order optimality conditions for SIP and a natural
constraint qualification are given. A brief review of overestimating techniques from global
optimization, that is, the unimodalization strategy and the αBB method, are given in
Section 2.2. In the last section of this chapter we introduce a special approximation of
a set. It is called reduced outer approximation.

2.1 Stationarity conditions

Let ∂M be the topological boundary of M . For x ∈ ∂M define the active index set

Y0 (x) := {y ∈ Y |g (x, y) = 0}.

It is easy to see that Y0 (x) is non-empty, compact and coincides with the set of global
maximizers of Q (x). Let σn+1 = {s ∈ R

n+2|s ≥ 0,
∑n+2

i=1 si = 1} be the (n+ 1)-
dimensional standard simplex.

Theorem 2.1.1 (Theorem of John, [26]). Let x ∈M be a local minimizer of SIP . Then
there exist yk ∈ Y0 (x), k = 1, . . . , n+ 1, and (κ, λ) ∈ σn+1 with

κ∇f(x) +
n+1
∑

k=1

λk∇xg(x, y
k) = 0

λkg(x, y
k) = 0, k = 1, . . . , n+ 1.

Note that for x ∈ int (M) the set Y0 (x) may be empty, and the conditions from Theo-
rem 2.1.1 reduce to ∇f (x) = 0. If a point x ∈ M satisfies the Extended Mangasarian-
Fromovitz Constraint Qualification (EMFCQ), that is, if there exists a d ∈ R

n with

〈∇xg (x, y) , d〉 < 0

for all y ∈ Y0 (x), then one can choose κ > 0 in Theorem 2.1.1, and x is called a
Karush-Kuhn-Tucker point (KKT point) of SIP . Here 〈., .〉 denotes the standard inner
product.

7

2 Background

2.2 Overestimating techniques

In this section we present two techniques to construct an overestimator for a given
function on a box set. Let B :=

[

b, b
]

⊂ R
m be a box. For a given function g : Rm 7→ R

we call a function g̃ : Rm 7→ R an overestimator for g on B if the relation g̃ (y) ≥ g (y)
holds for each y ∈ B. In the sequel let IRm denote the set of nonempty compact boxes
in R

m. For some B ∈ IR
m we use b and b to denote the vectors of lower and upper

bounds, that is, B =
[

b, b
]

. For some mapping L whose image is as subset of IRm we
use L and L to denote the vectors of lower and upper bounds, that is, L =

[

L,L
]

.

It is possible to calculate with intervals, interval vectors and interval matrices. We refer
to [35] and the references there in for details on the arithmetic.

2.2.1 The unimodalization method

With the unimodalization method from global optimization one can construct unimodal
overestimators of a given function on a box set. Since this method is based on the choice
of an optimal center and some concepts used in optimal centered forms, we will first
give a brief review of optimal centered forms discussed in [4]. After that we present the
unimodalization method which was first discussed in [17].

Let g ∈ C1 (B,R) be some function on B ∈ IR
m. A mapping L : IRm × R

m 7→ IR
m is

called Lipschitz function for g on B if the inclusion

g(y)− g(c) ∈ L(B, c)T (y − c) (2.1)

holds for each y, c ∈ B. The expression

Ĝ(B, c) := g(c) + L(B, c)T (B − c) ∈ IR
m

is called a centered form of g on B with center c. The inclusion property (2.1) immedi-
ately implies that the centered forms bound the function values of g on B. In general
we may not expect to find a Lipschitz function L so that the bounds are exact. Since
g is continuously differentiable on the compact set B, g is also Lipschitz continuous on
B and the Lipschitz constant can be used as a Lipschitz function, independent from the
center c, to construct a centered form. Instead of the Lipschitz constant we use a slightly
different Lipschitz function in the sequel. Let L,L : IRm 7→ R

m be defined by

L (B) :=







min(0,L1 (B))
...

min(0,Lm (B))






and L (B) :=







max(0,L1 (B))
...

max(0,Lm (B))






(2.2)

with

Lj (B) < min
y∈B

(
∂

∂yj
g(y)) and Lj (B) > max

y∈B
(
∂

∂yj
g(y)) (2.3)

8

2.2 Overestimating techniques

for j = 1, . . . ,m. It is not hard to see that L =
[

L (B) , L (B)
]

is a Lipschitz function
for g on B. Since only some bounds for the gradient of g on B are needed to construct
L, one may determine it by methods of interval arithmetic (cf., e.g., [21, 35]). Note that
max

(

‖L (B) ‖∞, ‖L (B) ‖∞
)

is at least as large as the original Lipschitz constant.

Since Ĝ still depends on the choice of the center c, a centered form is not uniquely
defined. Thus, naturally, the question arises if there is a center so that the upper or
lower bound for the function values become tightened. Such a center is called optimal
center. Since we have a maximization problem, we only have to find a center so that the
value for the upper bound for the values of g on B is the smallest among all possible
centers.

Theorem 2.2.1 ([4]). Let L (B) =
[

L (B) , L (B)
]

be a Lipschitz function for g on B.
For j = 1, . . . ,m let

c+j :=
Lj (B) bj − Lj (B) bj

Lj (B)− Lj (B)
.

Then it holds c+ ∈ B and max
(

Ĝ (B, c+)
)

≤ max
(

Ĝ (B, c)
)

for each c ∈ B. c+ is

called optimal center and Ĝ (B, c+) is called optimal centered form for g on B.

Another useful way to express Ĝ is using slopes. For j = 1, . . . ,m let

ǵj(y; c) := L (B)j (yj − cj) and g̀j(y; c) := L (B)j (yj − cj)

and set ǵ(y; c) = (ǵ1(y; c), . . . , ǵm(y; c))T , g̀(y; c) = (g̀1(y; c), . . . , g̀m(y; c))T . Then we
have that

Ĝ (B, c) = g(c) +

[

min
y∈B

(ǵ(y; c), g̀(y; c)) ,max
y∈B

(ǵ(y; c), g̀(y; c))

]

.

The next example illustrates our latter discussions.

Example 2.2.2. Using the slopes, for g (y) = sin(y) on B = [0, 2π] a centered form
with center c = π

2 and an optimal centered form is illustrated in Figure 2.1. We used
L (B) = −1.1, L (B) = 1.1 and obtain c+ = π for the optimal center.

Not only in Example 2.2.2, but also in general, it is not hard to see that even the
upper bound of Ĝ (B, c+) is not unimodal, and that for each vertex v of B we have

max
(

Ĝ (B, c+)
)

= g(c+) + max (ǵ(v, c+), g̀(v, c+)). Moreover, the graph of g on B is

contained within the area enclosed by the slopes constructed with ǵ(y; c) and g̀(y; c).
That observation leads to the unimodalization method.

The main idea of unimodalization is to add some piecewise linear term, similarly to
ǵ(y; c) or g̀(y; c), but not to a special value of the function, but to the function g in each
point. More precisely this is performed as follows:

9

2 Background

Figure 2.1: On the left Ĝ (B, c) is illustrated for g (y) = sin(x) on B = [0, 2π] with c = π
2
and on the

right Ĝ
(

B, c+
)

.

Let J ℓ (y, c) = {j ∈ {1, . . . ,m}|yj < cj} and Ju (y, c) = {j ∈ {1, . . . ,m}|yj ≥ cj}. Let

φ
(

y; c, B, L (B) , L (B)
)

=
∑

j∈Jℓ(y,c)

L (B)j
(

bj − yj
)

+
∑

j∈Ju(y,c)

L (B)j
(

bj − yj
)

and define a unimodal form

ĝB (y; c) = ĝ
(

y; c, B, L (B) , L (B)
)

= g (y) + φ
(

y; c, B, L (B) , L (B)
)

.

Before we give two examples for ĝ (y; c) we point out some properties. The straightfor-
ward proofs are omitted.

Lemma 2.2.3.

(i) For all vertices v of B and c ∈ B we have ĝB (v; c) = g (v).

(ii) For all y, c ∈ B the relation ĝB (y; c) ≥ g (y) holds.

(iii) If L (B) , L (B) 6= 0 holds, then we have the relation ĝB (y; c) > g (y) for each
y, c ∈ int (B).

(iv) Let L (B) , L (B) 6= 0. For each vertex y of B we have ĝB (y; c) = g (y).

10

2.2 Overestimating techniques

0 1 2 3 4 5 6

0

1

2

3

4

5

6

y

sin(x)

ĝB (y, c)

ĝB (y, c)

Figure 2.2: ĝB (y; c) for g (y) = sin(y) on B = [0, 2π] with c = π
2
and L (B) = −1.1, L (B) = 1.1.

Example 2.2.4. As a first example we look again at g (y) = sin(y) on B = [0, 2π] with
c = π

2 and L (B) = −1.1, L (B) = 1.1. With J ℓ (y, c) 6= ∅ if y < π
2 and Ju (y, c) 6= ∅ if

y ≥ π
2 , we obtain

ĝB (y; c) = sin (y) +

{

1.1y , y < π
2

1.1 (2π − y) , y ≥ π
2

for y ∈ B. This function is illustrated in Figure 2.2.

From the Example 2.2.4 one can see that for an arbitrarily chosen c ∈ B the function
ĝB (y; c) does not have to be continuous. The next example shows that the maximum of
ĝB (y; c) over B may not be attained.

Example 2.2.5. Let g (y) = sin(y1) + (y2 − 1)2, B = [0, 2π] × [0, 3] and c =
(

π
2 ,

5
2

)T
.

With L (B) = (−1.1,−2.1)T , L (B) = (1.1, 4.1)T we obtain

ĝB (y; c) =















sin (y1) + (y2 − 1)2 + 1.1y1 + 2.1y2 , y1 <
π
2 , y2 <

5
2

sin (y1) + (y2 − 1)2 + 1.1y1 + 4.1 (3− y2) , y1 <
π
2 , y2 ≥ 5

2

sin (y1) + (y2 − 1)2 + 1.1 (2π − y1) + 2.1y2 , y1 ≥ π
2 , y2 <

5
2

sin (y1) + (y2 − 1)2 + 1.1 (2π − y1) + 4.1 (3− y2) , y1 ≥ π
2 , y2 ≥ 5

2

for y ∈ B. This function is illustrated in Figure 2.3. It is not hard to see that ĝB (y; c)
is also not continuous and has a supremum with the value 17+3.3π

2 .

Even though the latter examples are not very promising, we obtain the following result
for a special choice for c.

11

2 Background

Figure 2.3: ĝB (y; c) for g (y) = sin(y1) + (y2 − 1)2 on B = [0, 2π]× [0, 3] with c =
(

π
2
, 5
2

)T
and L (B) =

(−1.1,−2.1)T , L (B) = (1.1, 4.1)T . The red dot marks the supremum of ĝB (y; c).

Theorem 2.2.6. Let ĝB (y) = ĝB (y; c+) with c+ from Theorem 2.2.1. We have that
ĝ (y) is continuous and unimodal on B, and that ĝ (c+) = max

y∈B
ĝ (y) holds.

Proof. To show that ĝB (y) is continuous it is sufficient to show that ĝB (y) is continuous
in c+. Let L > max

(

−L,L
)

∈ R and let ǫ, δ0 > 0 so that |g(y) − g(c+)| ≤ ǫ
2 if

‖y − c+‖ ≤ δ0. Let δ = min
(

δ0,
ǫ
4L

)

. From J ℓ (y, c+) ∪ Ju (y, c+) = {1, . . . ,m} for each
y ∈ B and the definition of c+ we have that

|ĝB (y)− ĝB
(

c+
)

|
≤|g (y)− g

(

c+
)

|+ |
∑

j∈Jℓ(y,c+)

L (B)j

(

yj − c+j

)

+
∑

j∈Ju(y,c+)

L (B)j

(

yj − c+j

)

|

≤|g (y)− g
(

c+
)

|+ 2L‖y − c+‖
≤ǫ.

Next we show that ĝB (y) is unimodal on B and that ĝB (c+) = max
y∈B

ĝB (y) holds. Let

j ∈ {1, . . . ,m}. If on the one hand for some y∗ ∈ B \ {c+} the relation y∗j < c+j holds,

we have from the definition of L (B) that

∂ĝB
∂yj

(y∗) =
∂g

∂yj
(y∗)− L (B)j > 0

12

2.2 Overestimating techniques

holds. If on the other hand the relation y∗j > c+j holds, we have from the definition of
L (B) that

∂ĝB
∂yj

(y∗) =
∂g

∂yj
(y∗)− L (B)j < 0

holds. In summary we obtain the relation 〈∇ĝB (y) , c+ − y〉 > 0 for each y ∈ B \ {c+}.
With Lemma 1.1.2 we have that ĝB is unimodal on B, and c+ is the global maximizer.

Before we continue our discussion we pick up Example 2.2.4 and 2.2.5 to illustrate the
latter result.

Example 2.2.7. For the function g (y) = sin(y) on B = [0, 2π] with L (B) = −1.1,
L (B) = 1.1 we obtain c+ = π. Thus, the overestimator is

ĝB (y) = sin (y) +

{

1.1y , y < π
1.1 (2π − y) , y ≥ π

.

For g (y) = sin(y1) + (y2 − 1)2 on B = [0, 2π] × [0, 3] with L (B) = (−1.1,−2.1)T ,
L (B) = (1.1, 4.1)T we obtain c+ =

(

π, 12362

)

. Thus, the overestimator is

ĝB (y) =















sin (y1) + (y2 − 1)2 + 1.1y1 + 2.1y2 , y1 < π, y2 <
123
62

sin (y1) + (y2 − 1)2 + 1.1y1 + 4.1 (3− y2) , y1 < π, y2 ≥ 123
62

sin (y1) + (y2 − 1)2 + 1.1 (2π − y1) + 2.1y2 , y1 ≥ π, y2 <
123
62

sin (y1) + (y2 − 1)2 + 1.1 (2π − y1) + 4.1 (3− y2) , y1 ≥ π, y2 ≥ 123
62

.

Both overestimators are illustrated in Figure 2.4. It can be seen that these overestimators
are continuous, unimodal and that they have a maximum in c+.

Figure 2.4: ĝB (y; c) for g (y) = sin(y) on B = [0, 2π] and for g (y) = sin(y1) + (y2 − 1)2 on B = [0, 2π]×
[0, 3] with optimal centers c+.

13

2 Background

A measure for the quality of the overestimator is the separation distance dUF between
ĝB and g. It is defined by

dUF

(

y; c+, B, L (B) , L (B)
)

:= ĝB (y)− g (y) = φ
(

y; c+, B, L (B) , L (B)
)

.

It is not hard to see that φ
(

y; c+, B, L (B) , L (B)
)

attains its maximum on B for y = c+.
Thus, with the definition of c+ we have that

max
y∈B

dUF

(

y; c+, B, L (B) , L (B)
)

= 〈L, b− c+〉 = 〈L, b− c+〉. (2.4)

On the one hand, it immediately follows that for a fixed box B one may improve the
overestimator by determining tighter bounds L (B) , L (B) for the gradient of g on B.
On the other hand, the maximum separation distance linearly tends to zero if the box
diameter ‖b− b‖2 goes to zero.

2.2.2 The αBB method

Let g ∈ C2 (B,R) be some general non-concave function on B. With the αBB method
of global optimization one can construct concave relaxations of g on B by adding a
quadratic term. More precisely this is performed as follows:

Let ψ (y;α,B) = α
2 〈y − b, b− y〉 and define

ğB (y) = ğ (y;α,B) := g (y) + ψ (y;α,B) .

For α ≥ 0 the function ğB is an overestimator of g on B and coincides with g at the
vertices of B. Moreover the Hessian of ğB is D2ğB (y) = D2g (y)− αI, where I denotes
the unit matrix. Let λmax (y) denote the maximal eigenvalue of D2g (y). Then ğB is
concave on B if we choose

α ≥ max
y∈B

λmax (y) .

Since only some upper bound for maxy∈B λmax (y) is needed one may determine it by
methods of interval arithmetic (cf., e.g., [14, 21, 35]). Note that determining the exact
value of maxy∈B λmax (y) would lead to a global optimization problem. Altogether it
follows that ğB is a concave overestimator of g on B if

α ≥ max{0,max
y∈B

λmax (y)}.

That is illustrated by the next example.

Example 2.2.8. Figure 2.5 shows two overestimators of the form ğB (y;α,B) for g (y) =
sin (y) on B = [0, 2π]. For one of these overestimators we used α = 1

2 which leads to a
non-concave function, since maxy∈B λmax (y) = 1. For the other, concave, overestimator
we used α = 1.

14

2.2 Overestimating techniques

0 1 2 3 4 5 6

0

1

2

3

4

5

y

ğ (y, 1, B)

ğ(y, 1

2
, B)

Figure 2.5: ğ (y;α,B) for g (y) = sin(y) on B = [0, 2π] with α = 1
2
and with α = 1.

The separation distance dαBB between ğB and g is

dαBB (y;α,B) := ğ (y;α,B)− g (y) = ψ (y;α,B) .

The separation distance is maximal at the barycenter 1
2

(

b+ b
)

of B with the value

max
y∈B

dαBB (y;α,B) =
α

8
‖b− b‖22. (2.5)

Similarly to the observations in the last subsection we have that for a fixed box B one may
improve the overestimator by determining tighter upper bounds α for maxy∈B λmax (y).
But for ğ the maximum separation distance quadratically tends to zero if the box diam-
eter ‖b− b‖2 goes to zero.

2.2.3 A reduced outer approximation

Now let Y ⊂ R
m be some arbitrary compact set with Y ⊂ B. Then ĝB is an unimodal

and ğB is a concave overestimator of g on B, and, thus, also on Y . In this case, however,
the separation distance of ĝB, respectively ğB, and g is not the only error which must
be taken into account to measure the quality of the overestimator on Y . Another error
is due to the quality of the approximation of Y by B. This motivates the following
definitions.

Definition 2.2.9. Let N ∈ N, Bk =
[

bk, b
k
]

⊂ R
m, bk < b

k
, k = 1, . . . , N , and µm be

the Lebesgue measure on R
m. The N−tuple of sets BN = (Bk, k = 1, . . . , N) is called

a tessellation of B if
⋃N

k=1B
k = B and µ

(

Bk ∩Bj
)

= 0 hold for all k, j = 1, . . . , N ,
k 6= j.

15

2 Background

For a tessellation BN of B and k ∈ {1, . . . , N} let ĝk (y) = ĝ
(

y; ck,+, Bk, Lk, L
k
)

be the

unimodal relaxation and let ğk (y) = ğ
(

y;αk, B
k
)

be the αBB relaxation of g (y) on Bk

with αk ≥ max{0,maxy∈Bk λmax (y)}, ck,+j =
Lk
j b

k
j−L

k
j b

k
j

Lk
j−L

k
j

for j = 1, . . . ,m and

Lk =







min(0,L1

(

Bk
)

)
...

min(0,Lm

(

Bk
)

)






and L

k
=







max(0,L1

(

Bk
)

)
...

max(0,Lm

(

Bk
)

)







with

Lj

(

Bk
)

< min
y∈Bk

(
∂

∂yj
g(y)) and Lj

(

Bk
)

> max
y∈Bk

(
∂

∂yj
g(y))

for j = 1, . . . ,m. It is easy to see that for all k the values of Lk, L
k
and αk can be chosen

so that L (B) ≤ Lk, L (B) ≥ L
k
and α ≥ αk holds. Moreover we have that

max
y∈B

dUF

(

y; c+, B, L (B) , L (B)
)

≥ max
k∈{1,...,N}

max
y∈Bk

dUF

(

y; ck,+, Bk, Lk, L
k
)

and that

max
y∈B

dαBB (y;α,B) ≥ max
k∈{1,...,N}

max
y∈Bk

dαBB

(

y;αk, B
k
)

holds.

Definition 2.2.10. Let Y ⊂ B, let BN = (Bk, k = 1, . . . , N) be a tessellation of B and
let NY ⊂ {1, . . . , N}. BNY = (Bk, k ∈ NY) is called a reduced outer approximation of
Y if Y ⊂ ⋃k∈NY

Bk and Y ∩Bk 6= ∅ holds for all k ∈ NY .

The approximation error of Y by a reduced outer approximation should become smaller,
the smaller all sets Bk and the larger N become. A simple but useful observation is
that not all sets Bk have to become small to reach a good approximation of Y , but
only those sets Bk whose intersection with the topological boundary of Y is non-empty.
Moreover only the reduced outer approximation of Y must be taken into account to
construct piecewise unimodal or concave overestimators of g on Y . These ideas will
be used to construct unimodal relaxations of the lower level problems in the adaptive
reduction algorithm, and convex relaxations of the lower level problems in the adaptive
convexification algorithm. Later it will even turn out, in both algorithms, that the
approximation of the index set Y of SIP must only be good locally around certain
points of interest.

16

3 The Adaptive-Reduction Algorithm

In this chapter we present the Adaptive-Reduction Algorithm. The chapter is organized
as follows. In Section 3.1 we discuss the relaxation and reformulation techniques used
within the algorithm which is presented in Section 3.2. After that, in Section 3.3, we give
the convergence results for the algorithm. In Section 3.4, we present a first numerical
example.

3.1 Relaxation and reformulation

Let Y ⊂ B ⊂ R
m and let BN = (Bk, k = 1, . . . , N) be a reduced outer approximation

of Y . According to the formulas 2.2 and 2.3, let L,L : IRm × IR
m 7→ R

m be defined by

L (X,B) :=







min(0,L1 (X,B))
...

min(0,Lm (X,B))






and L (X,B) :=







max(0,L1 (X,B))
...

max(0,Lm (X,B))






(3.1)

with

Li (X,B) < min
(x,y)∈X×B

(
∂

∂yi
g(y)) and Li (X,B) > max

(x,y)∈X×B
(
∂

∂yi
g(y)), (3.2)

and let c ∈ R
m with cj :=

Ljbj−Ljbj

Lj−Lj
for each j = 1, . . . ,m. Define an unimodal overesti-

mator (w.r.t. y) of g on X ×B by

ĝ : X ×B −→ R, (x, y) 7−→ g(x, y) + φ
(

y; c, B, L, L
)

as well as an unimodal overestimator of the restriction of g to X ×Bk by

ĝk : X ×Bk −→ R, (x, y) 7−→ g(x, y) + φ
(

y; ck, Bk, Lk, L
k
)

with Lk = L
(

X,Bk
)

, L
k
= L

(

X,Bk
)

and ckj :=
Lk
j b

k
j−L

k
j b

k
j

Lk
j−L

k
j

for each j = 1, . . . ,m. Since

min
(x,y)∈X×B

(
∂

∂yi
g(y)) ≤ min

(x,y)∈X×Bk
(
∂

∂yi
g(y))

and

max
(x,y)∈X×B

(
∂

∂yi
g(y)) ≥ max

(x,y)∈X×Bk
(
∂

∂yi
g(y)),

17

3 The Adaptive-Reduction Algorithm

Figure 3.1: The overestimator ĝ for g (x, y) = sin (xy) on X×B with X = B = [0, 2π], L = − 63
10
, L = 63

10

and c = π.

both, Lk and L
k
can always be chosen so that L ≤ Lk and L ≥ L

k
hold for each

k = 1, . . . , N . Before we continue we give an example for ĝ.

Example 3.1.1. Let X = B = [0, 2π] and g (x, y) = sin (xy). It is not hard to see that
the choices L = −63

10 and L = 63
10 satisfy the requirements. Using L and L we obtain

c = π. Thus, we have

ĝ (x, y) = sin (xy) +

{

63
10y , y < π
63
10 (2π − y) , y ≥ π

ĝ is illustrated in Figure 3.1. One can see that ĝ is an overestimator for g on X × B
and unimodal in the second argument y for each x but neither unimodal in general nor
in the first argument.

The next results are consequences from the discussion in Chapter 2, Subsection 2.2.1.

Lemma 3.1.2.

(i) For all k = 1, . . . , N and (x, y) ∈ X ×Bk the relation g(x, y) ≤ ĝk(x, y) holds.

(ii) For x ∈ X and k = 1, . . . , N the relaxation ĝk(x, y) is unimodal in the second
argument on Bk.

(iii) For all k = 1, . . . , N the maximum separation distance between ĝk and g on X×Bk

is 〈Lk
, b

k − ck〉 = 〈Lk, bk − ck〉.
(iv) For each x ∈ X the point ck is the solution of max

y∈Bk
ĝk (x, y) for each k = 1, . . . , N .

(v) If x ∈ X and ĝk
(

x, ck
)

≤ 0 holds for all k = 1, . . . , N , then we have x ∈M .

18

3.2 Algorithms

Define the set

MUF

(

BN
)

:= {x ∈ R
n|ĝk (x, y) ≤ 0 for all y ∈ Bk, k = 1, . . . , N}

and the semi-infinite problem

SIPUF

(

BN
)

: min
x∈X

f(x) s.t. x ∈MUF

(

BN
)

.

For MUF and SIPUF we obtain the following results. The straightforward proofs are
omitted.

Lemma 3.1.3.

(i) We have MUF

(

BN
)

⊂M .

(ii) Let SIPUF

(

BN
)

be consistent. Then every global, local solution or stationary point
of SIPUF

(

BN
)

is a feasible point of SIP .

From Lemma 3.1.2 (iv) we have that for each k = 1, . . . , N it holds ĝk (x, y) ≤ 0 for all
y ∈ Bk if and only if ĝk

(

x, ck
)

≤ 0 is true. Thus we obtain

MUF

(

BN
)

= {x ∈ R
n|ĝk

(

x, ck
)

≤ 0 for all k = 1, . . . , N}.

Define

GUF (x) :=
(

ĝk
(

x, ck
))

k=1,...,N
.

Now SIPUF

(

BN
)

can be equivalently reformulated as the nonlinear problem

PUF (BN) : min
x
f(x) s.t. GUF (x) ≤ 0.

This problem may be tackled by different solvers like those in [50, 51]. For more details
we refer to Chapter 7, Section 7.1.

3.2 Algorithms

Following the discussions in [16], the algorithm presented in this section computes a sta-
tionary point of SIPUF

(

BN
)

with active indices and terminates if it is also a stationary
point of SIP within a given tolerance on stationarity and additional tolerances on the
feasibility of the indices. If the computed point is not approximately stationary or the
active indices are not approximately feasible, the reduced outer approximation BN of Y
is refined and a respective refined SIPUF is solved. Before the algorithms are presented
some notation must be introduced.

For a point x ∈ MUF

(

BN
)

and points ck ∈ Bk, k = 1, . . . , N , define KUF
0 (x) := {k ∈

{1, . . . , N}|ĝk
(

x, ck
)

= 0}. As in Theorem 2.1.1, a point x ∈ MUF

(

BN
)

is stationary

19

3 The Adaptive-Reduction Algorithm

for SIPUF

(

BN
)

in the sense of John, if there is a subset J ⊂ KUF
0 , |J | = n + 1, and

(κ, λ) ∈ σn+1, so that

κ∇f(x) +
∑

k∈J

λk∇xg(x, c
k) = 0

λkĝ
k(x, ck) = 0, k ∈ J.

Notice here that ∇xĝ
k(x, ck) = ∇xg(x, c

k). In view of the semi-infinite problem and
to point out some similarities of all presented algorithms, we call a ck ∈ Bk with
k ∈ KUF

0 (x) an active index of SIPUF

(

BN
)

. For the algorithms some concepts like
stationarity and feasibility must be relaxed.

Definition 3.2.1. Let ǫact, ǫstat, ǫY > 0.

(i) y ∈ Bk with k ∈ {1, . . . , N} is called ǫact-active for ĝk at x, if ĝk(x, y) ∈ [−ǫact, 0].
(ii) x is called ǫstat-stationary for SIP with ǫact-active indices yk, k = 1, ..., n + 1, if

x ∈M and yk ∈ Y , k = 1, . . . , n+ 1, and there exist some (κ, λ) ∈ σn+1, so that

‖κ∇f(x) +
n+1
∑

k=1

λk∇xg(x, y
k)‖ ≤ ǫstat (3.3)

λkg(x, y
k) ∈ [−λkǫact, 0] , k = 1, . . . , n+ 1. (3.4)

(iii) ck ∈ Bk is called ǫY -feasible with respect to the reduced outer approximation BN of

Y if ck ∈ Y or if ck /∈ Y and Bk ∩ Y 6= ∅ and ‖bk − bk‖∞ < ǫY .

(iv) x is called ǫstat-stationary for SIP with ǫact-active and ǫY -feasible indices yk, k =
1, . . . , n + 1, with respect to BN , if x ∈ M and there exist ǫY -feasible indices yk

with respect to the reduced outer approximation BN of Y and (κ, λ) ∈ σn+1 so that

‖κ∇f(x) +
n+1
∑

k=1

λk∇xg(x, y
k)‖ ≤ ǫstat (3.5)

λkg(x, y
k) ∈ [−λkǫact, 0] , k = 1, . . . , n+ 1 (3.6)

holds.

The basic idea for the adaptive refinement of a given reduced outer approximation of Y
is to split the boxes which contain the computed active indices. To reduce the approxi-
mation error uniformly on a box, it can be split through its barycenter. This, however,
would make no sense in situations where a computed active index ck in Y is a vertex
of the given box, since then it is also an active index of the original problem and no
further refinement is necessary. This leads to the idea to split the adaptively chosen
boxes also adaptively, namely through the computed active indices, whenever possible.
The following definition deals with the choice of the appropriate coordinate along which
a box is split, and with situations in which splitting is not necessary or would lead to
numerically degenerate boxes.

20

3.2 Algorithms

Definition 3.2.2. For a reduced outer approximation BN let η ∈ Bk with some k ∈
{1, . . . , N}, and let ǫsplit > 0 be given. Define the index set of coordinate directions
along which the distance of η from the boundary ∂Bk is sufficiently large by

P k := P k(η) = {l ∈ {1, . . . ,m} | min{ηl − bkl , b
k

l − ηl} > ǫsplit(b
k

l − bkl)}.
In the case P k 6= ∅ choose the coordinate direction l ∈ P k with

(

b
k

l − bkl

)

= max
j∈P k

(

b
k

j − bkj

)

,

that is, the direction corresponding to the longest edges of Bk among the directions in
P k. Choose the hyperplane normal to the coordinate direction l through η to split Bk

into two boxes Bk,(1) and Bk,(2). For P k = ∅ the box Bk is not split. In this way, the
following splitting operator is defined:

S(Bk, η) :=

{

(

Bk,(1), Bk,(2)
)

, if P k(η) 6= ∅
Bk, if P k(η) = ∅.

Note that, in Definition 3.2.2, for P k(η) = ∅ the distance of η from some vertex of Bk is
so small that the box is not split. Moreover, choosing a coordinate direction l 6∈ P k as the
normal of a splitting hyperplane would generate one very ‘thin’ and, thus, numerically
degenerate box. Also note that the choice ǫsplit ≥ 1

2 would imply P k = ∅ for any η ∈ Bk

so that in the following we will always assume ǫsplit <
1
2 . The choice of the barycenter

Sk of a box Bk as a splitting point, that is η = Sk, always entails P k = {1, . . . ,m}.
A splitting algorithm merely based on Definition 3.2.2 may lead to the following problem.
In our convergence proof it will be necessary that the maximum edge lengths in the
sequence of boxes generated in the refinement steps tend to zero. This may not be the
case, as the index of the coordinate direction corresponding the longest edge of a box
Bk may never be contained in P k. This is illustrated by the following example.

Example 3.2.3. Let B0 := [0, 1]2 and (ην)ν be a sequence of splitting points with

ην = (ην1 , η
ν
2) :=

(

ǫsplit,
1

2ν+1

)

.

Due to P ν = {2} one box in each tessellation of B0 generated by splitting through ην is
given by

Bν = [0, 1]×
[

0,
1

2ν

]

.

That is illustrated in Figure 3.2. Looking at the limit leads to

lim
ν→∞

Bν = [0, 1]× {0}.

This means that the boxes degenerate in the sense that their surface area is vanishing but
the length of the longest edge does not tend to zero. The generalization of this example
to an arbitrary dimension is straightforward.

21

3 The Adaptive-Reduction Algorithm

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
B0

η0

η1

η2

Figure 3.2: Sequence of splitting points (ην)ν with ην =
(

ǫsplit,
1

2ν+1

)

and the corresponding sequence
of boxes tending to a degenerated box.

To avoid this kind of degeneration it is sufficient to enforce the index of the coordinate
of the longest edges to be contained in infinitely many P ν in the generated sequence.
For a given box Bν , comparing the edge lengths whose coordinate index is contained
in P ν and the length of the longest edge of the box and replacing ην by the barycenter
of Bν if necessary gives one possibility of treating the problem. To express this more
precisely let ην be given, ǫ > 0 and

Qν =
minl∈P ν

(

b
ν

l − bνl

)

‖bν − bν‖∞
be the relation of the shortest edge length with coordinate index in P ν to the longest
edge length of Bν . In the case Qν < ǫ a degeneration of a box Bν may occur. By setting
ην = Sν the coordinate index of the longest edges is always contained in P ν , and a
degeneration can be avoided.

Taking all this into account one achieves the splitting algorithm stated in Algorithm 1
which also describes how the feasible set of a refined problem SIPUF

(

BN
)

is constructed.

It is not hard to see that each N−tuple (Bk, k = 1, . . . , N) generated by Algorithm 1
is a reduced outer approximation of Y : Y is covered by

⋃N
k=1B

k, only those boxes are
taken into account which have a non-empty intersection with Y , and the intersection of
pairwise different boxes has measure zero. Notice here that the last ′else′ condition in
Algorithm 1 is included for numerical reasons. We refer to Chapter 7 for details on how
the needed constants are determined in Algorithm 1 and on checking if a generated box
has a nonempty intersection with the index set Y . Using the splitting algorithm, the
adaptive reduction algorithm is stated in Algorithm 2.

If for a given reduced outer approximation BN the problem SIPUF

(

BN
)

is not consistent
in Algorithm 2, a phase 1 algorithm like that described in [16] can be performed. In

22

3.2 Algorithms

Algorithm 1 Splitting step - refineUF (η)

Let η ∈ Bk∗ , k∗ ∈ {1, . . . , N}, and let Sk∗ be the barycenter of Bk∗ and

Qk∗ =
min

l∈Pk∗

(

b
k∗

l −bk
∗

l

)

‖b
k∗

−bk
∗
‖∞

.

if η /∈ Y or Qk∗ < ǫ then
Set η = Sk∗ .

end if

if P k∗ 6= ∅ then

Compute
(

Bk∗,(1), Bk∗,(2)
)

= S(Bk∗ , η).

Compute Lk∗,(1), Lk∗,(2) ≥ Lk∗ and L
k∗,(1)

, L
k∗,(2) ≤ L

k∗

on X×Bk∗,(1), X×Bk∗,(2)

and set

ck
∗,(1) =

(

L
k∗,(1)
1 b

k∗,(1)
1 −L

k∗,(1)
1 b

k∗,(1)
1

L
k∗,(1)
1 −L

k∗,(1)
1

. . . L
k∗,(1)
m b

k∗,(1)
m −L

k∗,(1)
m b

k∗,(1)
m

L
k∗,(1)
m −L

k∗,(1)
m

)T

ck
∗,(2) =

(

L
k∗,(2)
1 b

k∗,(2)
1 −L

k∗,(2)
1 b

k∗,(2)
1

L
k∗,(2)
1 −L

k∗,(2)
1

. . . L
k∗,(2)
m b

k∗,(2)
m −L

k∗,(2)
m b

k∗,(2)
m

L
k∗,(2)
m −L

k∗,(2)
m

)T

ĝk
∗,(1)(x, y) = g(x, y) + φ

(

y; ck
∗,(1), Bk∗,(1), Lk∗,(1), L

k∗,(1)
)

ĝk
∗,(2)(x, y) = g(x, y) + φ

(

y; ck
∗,(2), Bk∗,(2), Lk∗,(2), L

k∗,(2)
)

M (1) = {x ∈ R
n | ĝk∗,(1)(x, ck∗,(1)) ≤ 0}

M (2) = {x ∈ R
n | ĝk∗,(2)(x, ck∗,(2)) ≤ 0}

M̃ = {x ∈ R
n | ĝk(x, ck) ≤ 0 for all k ∈ {1, . . . , N} \ {k∗}}

if Y ∩Bk∗,(1) 6= ∅ and Y ∩Bk∗,(2) 6= ∅ then

Replace Bk∗ by Bk∗,(1) and Bk∗,(2) and replace Lk∗ , L
k∗

by Lk∗,(1), Lk∗,(2) and

L
k∗,(1)

, L
k∗,(2)

.
Set MUF (BN) = M̃ ∩M (1) ∩M (2).
Set N = N + 1.

else if Y ∩Bk∗,(1) 6= ∅ then

Replace Bk∗ by Bk∗,(1) and Lk∗ , L
k∗

by Lk∗,(1), L
k∗,(1)

.
Set MUF (BN) = M̃ ∩M (1).

else if Y ∩Bk∗,(2) 6= ∅ then

Replace Bk∗ by Bk∗,(2) and Lk∗ , L
k∗

by Lk∗,(2), L
k∗,(2)

.
Set MUF (BN) = M̃ ∩M (2).

else

Delete Bk∗ and Lk∗ , L
k∗

.
Set MUF (BN) = M̃ .
Set N = N − 1.

end if

end if

23

3 The Adaptive-Reduction Algorithm

Algorithm 2 Adaptive reduction algorithm - ara

Choose X ⊂ R
n with M ⊂ X, B =

[

b, b
]

⊂ R
m with Y ⊂ B and compute L,L on B.

Set L = max(‖L‖∞, ‖L‖∞) ∈ R.
Determine a reduced outer approximation BN of Y with some N ∈ N as well as

Lk ≥ L, L
k ≤ L and ck on Bk, k = 1, . . . , N , so that SIPUF

(

BN
)

is consistent.

Choose ǫact, ǫstat, ǫY > 0 and ǫsplit ∈
(

0, 12
)

with ǫsplit ≤ ǫact/
(

L‖b− b‖1
)

.
Compute a stationary point x of SIPUF

(

BN
)

with ǫact-active indices c
k, k = 1, . . . , n+

1, and multipliers (κ, λ) by solving PUF

(

BN
)

.
while x is not a stationary point of SIP with 2ǫact-active, ǫY -feasible indices ck,
k = 1, . . . , n+ 1, with respect to BN , and multipliers (κ, λ) do

for k = 1 to n+ 1 do

refineUF (c
k)

end for

Compute a stationary point x of SIPUF

(

BN
)

with ǫact-active indices ck, k =
1, . . . , n+ 1, and multipliers (κ, λ) by solving PUF

(

BN
)

.
end while

Section 7.3 we will discuss a phase 1 algorithm.

In the next section it will be shown that, if SIP has a Slater point, there always exists
a reduced outer approximation so that SIPUF

(

BN
)

is consistent.

3.3 Convergence results

Before stating the main convergence result some useful lemmata will be given to keep
the final proof simple. First of all it will be shown that it is always possible to find a
tessellation BN of the box B so that the problem SIPUF

(

BN
)

is consistent if SIP has
a Slater point. Here the tessellation is not chosen in an adaptive way but temporarily
uniform.

Lemma 3.3.1. Let B = [b, b] ⊂ R
m be furnished with a Cartesian grid equally spaced

along every coordinate axis, and BN =
(

Bk, k = 1, . . . , N
)

the induced tessellation of B.
Let x ∈ {x ∈ R

n|g (x, y) < 0, y ∈ Y } and y ∈ Y so that g (x, y) = maxy∈Y g (x, y) < 0.
Let L = max(x,y)∈X×B ‖∇yg (x, y) ‖∞ and let (N1 + 1, . . . , Nm + 1) be the number of grid
points in the spatial directions. If for all i ∈ {1, . . . ,m}

Ni ≥ L
‖b− b‖2
|g (x, y) |

holds, then x is feasible for SIPUF

(

BN
)

.

Proof. Let Lk = max(x,y)∈X×Bk ‖∇yg (x, y) ‖∞ and let d = b − b. Let Bk ⊂ B be an

arbitrary box. Then its side lengths are
dj
Nj

, j = 1, . . . ,m, and with Lemma 3.1.2 it

24

3.3 Convergence results

follows for all y ∈ Bk:

ĝk(x, y) = g(x, y) + φ
(

y; ck, Bk, Lk, L
k
)

≤ g(x, y) + 〈Lk
, b

k − ck〉
≤ g(x, y) + Lk‖bk − bk‖2

= g(x, y) + Lk

√

√

√

√

m
∑

j=1

d2j
N2

j

≤ g(x, y) + max
k=1,...,N

Lk
m
∑

j=1

√

d2j
mini=1,...,mN2

i

.

Due to the condition on Ni it holds

min
i=1,...,m

N2
i ≥ L2 ‖b− b‖22

g (x, y)2

which implies ĝk(x, y) ≤ 0 and, thus, the assertion.

Next we show that Algorithm 2 is well defined. In fact, if P k = ∅ holds at each active
index ck of an approximating problem SIPUF (BN), the reduced outer approximation of
Y is not refined any further and Algorithm 2 might loop. However, the following lemma
shows that the algorithm terminates in this case.

Lemma 3.3.2. Let x be a stationary point of SIPUF (BN) with ǫact-active indices ck,
k = 1, . . . , n + 1, and multipliers (κ, λ). Furthermore, let the refined reduced outer
approximation arising from applying Algorithm 1 to each ck, k = 1, . . . , n + 1, coincide
with BN . Then Algorithm 2 terminates at x.

Proof. We show that x is a stationary point of SIP with 2ǫact-active, ǫY -feasible indices
ck, k = 1, . . . , n+ 1, with respect to BN , and multipliers (κ, λ).

As a stationary point of SIPUF (BN), x is also feasible for SIPUF (BN), that is, x ∈
MUF (BN). In view of Lemma 3.1.3 we have that x ∈M holds, too. From the stationarity
condition for SIPUF (BN) we have

‖κ∇f(x) +
n+1
∑

k=1

λk∇xg(x, c
k)‖ ≤ ǫstat

with the multipliers (κ, λ) from SIPUF (BN) and with any ǫstat. Now choose an arbitrary

25

3 The Adaptive-Reduction Algorithm

ck, k = 1, . . . , n+ 1. Since ck is ǫact-active we have

g(x, ck) + φ
(

ck, ck, BkLk, L
k
)

=g(x, ck) +
m
∑

j=1

L
k
j

(

b
k

j − ckj

)

=ĝk(x, ck) ∈ [−ǫact, 0]

and hence

−
m
∑

j=1

L
k
j

(

b
k

j − ckj

)

≥ g(x, ck) ≥ −ǫact −
m
∑

j=1

L
k
j

(

b
k

j − ckj

)

.

The first inequality shows g(x, ck) ≤ 0. By our assumption the reduced outer approxima-

tion is not refined, so that P k(ck) = ∅must hold. That means that min
(

b
k

j − ckj , c
k
j − bkj

)

is bounded above by ǫsplit

(

b
k

j − bkj

)

. Furthermore, the choice of ck implies

L
k
j

(

b
k

j − ckj

)

= Lk
j

(

bkj − ckj

)

,

and, thus, the second inequality implies

g(x, ck) ≥ −ǫact − Lǫsplit‖b− b‖1,

with L = max(‖L‖∞, ‖L‖∞). Using the upper bound ǫact
L‖b−b‖1

on ǫsplit from Algorithm 2,

this leads to
g(x, ck) ≥ −ǫact − Lǫsplit‖b− b‖1 ≥ −2ǫact.

We have thus shown g(x, ck) ∈ [−2ǫact, 0], that is, c
k is 2ǫact-active.

Finally we have to prove that ck is ǫY -feasible with respect to BN . In fact, we even
have ck ∈ Y as otherwise in Algorithm 1 ck would be replaced by the barycenter of Bk,
in contradiction to P k = ∅. Consequently ck is ǫY -feasible with respect to BN for any
ǫY > 0.

The next lemma shows that refining a given reduced outer approximation BN of Y by
means of Algorithm 1 enlarges the feasible set of SIPUF

(

BN
)

.

Lemma 3.3.3. Let a reduced outer approximation BN of Y be given, and for a splitting
point ck let BÑ be the refinement of BN by means of Algorithm 1. Then MUF (BN) ⊂
MUF (BÑ) holds.

Proof. We have ck ∈ Bk with k ∈ {1, . . . , N}. In the case P k = ∅ the assertion follows

immediately, as Bk is not split. Otherwise, let Bk,(1), Bk,(2), L
k,(2)

, L
k,(2)

and ck,(1), ck,(2)

be constructed as in Algorithm 1. For i = 1, 2 the inequalities L
k,(i) ≥ L

(i)
and 0 ≤

26

3.3 Convergence results

b
k,(i) − ck,(i) ≤ b

k − ck,(i) hold true. Hence, for all x ∈ MUF (BN), i = 1, 2, and all
y ∈ Bk,(i) it follows that

ĝk,(i)(x, y) ≤ ĝk,(i)(x, ck,(i))

= g(x, ck,(i)) +
m
∑

j=1

L
k,(i)
j

(

b
k,(i)
j − ck,(i)

)

≤ g(x, ck,(i)) +
m
∑

j=1

L
k
j

(

b
k

j − ck,(i)
)

≤ g(x, ck) +
m
∑

j=1

L
k
j

(

b
k

j − ck
)

= ĝk(x, ck) ≤ 0.

To show some approximation properties of the reduced outer approximations especially
on the topological boundary of the index set Y in the main convergence proofs of the
algorithms presented in this and the following chapters, it will be needed that the lengths
of the longest edges of the generated sequence of boxes tend to zero. The following lemma
discusses this property for a sequence of boxes generated by using the barycenters as
splitting points.

Lemma 3.3.4. Let B0 =
[

b0, b
0
]

⊂ R
m and (Bν)ν be a sequence of boxes where Bν

is one of the two boxes generated by the splitting operator S(Bν−1, Sν−1), that is, by
splitting Bν−1 at its barycenter. Then with Dν := ‖bν − bν‖2 it holds:

(i) The relation Dν+1 ≤
√

1− 3
4mD

ν holds for all ν ∈ N.

(ii) For all ν ∈ N there is some τ ≤ m with ‖bν+τ − bν+τ‖∞ ≤ 1
2‖b

ν − bν‖∞.

Proof. To see (i) notice that in every splitting step 2m−1 parallel edges are bisected.

That means there is some l∗ ∈ {1, . . . ,m} so that
(

b
ν+1 − bν+1

)

l∗
= 1

2

(

b
ν − bν

)

l∗
and

the other edges remain unchanged. So one obtains

Dν+1 =

√

√

√

√

√

m
∑

l=1
l 6=l∗

(

b
ν+1 − bν+1

)2

l
+
(

b
ν+1 − bν+1

)2

l∗

=

√

√

√

√

√

√

m
∑

l=1
l 6=l∗

(

b
ν − bν

)2

l
+

(

b
ν − bν

)2

l∗

4

27

3 The Adaptive-Reduction Algorithm

=

√

(Dν)2 − 3

4

(

b
ν − bν

)2

l∗
.

As l∗ is the index of the longest edge of Bν , we have

(Dν)2 =
m
∑

l=1

(

b
ν − bν

)2

l
≤ m

(

b
ν − bν

)2

l∗

and thus

Dν+1 ≤

√

(Dν)2 − 3 (Dν)2

4m
=

√

1− 3

4m
Dν .

To see part (ii) let without loss of generality

b
ν

1 − bν1 ≥ . . . ≥ b
ν

m − bνm

so that ‖bν−bν‖∞ = b
ν

1−bν1 . Then in the following step b
ν

1−bν1 is replaced by b
ν+1
1 −bν+1

1 =
1
2

(

b
ν

1 − bν1

)

. If the latter length is still the largest, one can choose τ = 1. Otherwise, in

the next step b
ν+1
2 − bν+1

2 = b
ν

2 − bν2 is replaced by b
ν+2
2 − bν+2

2 = 1
2

(

b
ν

2 − bν2

)

. Again,

if this length stays maximal after halving, one can choose τ = 2, as 1
2

(

b
ν

2 − bν2

)

≤
1
2

(

b
ν

1 − bν1

)

. Continuing in this way one may either choose some τ ∈ {1, . . . ,m− 1}, or
finally all original side lengths are halved, which allows to choose τ = m. This shows
the assertion.

By construction in Algorithm 1, we have that for each splitting point the quotient Q
is larger then a given constant ǫ > 0. By Lemma 3.3.2 we have that for the sequence
of splitting points the sets P are nonempty, unless an approximately stationary point
with approximately active and feasible indices is computed. For a sequence of boxes
arising from applying the splitting operator to a sequence of boxes and splitting points
fulfilling the latter conditions, the next lemma discusses a property similar to that of
Lemma 3.3.4.

Lemma 3.3.5. Let 0 < ǫsplit <
1
2 , ǫ > 0, BN0,0 = B and (ην)ν be a sequence of points

with ην ∈ B so that P ν 6= ∅ in the sequence of tessellations
(

BNν ,ν
)

ν
arising from

applying the splitting operator S to a box in BNν ,ν and a point η of that box. Provided
that Qν ≥ ǫ for that box and ην , choose η = ην , and otherwise η = Sν . Let η∗ ∈ B be an
accumulation point of (ην)ν . Then ‖b∗,ν−b∗,ν‖∞ tends to zero for all boxes B∗,ν ∈ BNν ,ν

with η∗ ∈ B∗,ν .

Proof. First note that the tessellation BNν ,ν consists of finitely many boxes for each fixed
ν. Thus there are only finitely many boxes B∗,ν ∈ BNν ,ν with η∗ ∈ B∗,ν for each fixed ν.
As η∗ is an accumulation point of (ην)ν there must exist infinitely many B∗,ν ∈ BNν ,ν

in the sequence of tessellations
(

BNν ,ν
)

ν
with η∗ ∈ B∗,ν .

28

3.3 Convergence results

By construction, for each box B∗,ν and ν > 0 there is at least one box B∗,µ with µ < ν
and B∗,ν ⊂ B∗,µ. For each ν let lν ∈ P ν so that b

∗,ν
lν − b∗,νlν = maxl∈P ν b

∗,ν
l − b∗,νl . For

a given ν and a box B∗,ν let µ (ν) be the maximal number so that µ (ν) < ν, lµ(ν) = lν

and B∗,ν ⊂ B∗,µ(ν). Since the edges of the box B∗,µ(ν) with the coordinate direction
lµ(ν) = lν are split and B∗,µ(ν) is replaced by two new boxes in step µ (ν) + 1 in the
sequence of tessellations, there can only be at most two different boxes B∗,ν̂ and B∗,ν̃ ,
ν̂ 6= ν̃, in the sequence so that µ (ν̂) = µ (ν̃) holds. Furthermore, from the definition of
P ν we obtain that

(

b
∗,µ(ν)
lν − b

∗,µ(ν)
lν

)

−
(

b
∗,ν
lν − b∗,νlν

)

> ǫsplit

(

b
∗,µ(ν)
lν − b

∗,µ(ν)
lν

)

(3.7)

is true for each ν. Now we have to discuss two cases.

The first case is that each coordinate direction l ∈ {1, . . . ,m} is the direction of the
longest edge of infinitely many boxes B∗,ν , that is, for infinitely many ν we have that
lν takes every value in {1, . . . ,m}. In that case (3.7) implies that for each ν and l ∈
{1, . . . ,m} the inequality b

∗,ν
l − b∗,νl < (1− ǫsplit)

(

b
∗,µ(ν)
l − b

∗,µ(ν)
l

)

holds. Since for each

ν all numbers for µ (ν) can only appear twice, for each ξ ∈ N and l ∈ {1, . . . ,m} there is
some ν0 so that b

∗,ν
l − b∗,νl < (1− ǫsplit)

ξ
(

bl − bl
)

holds for ν > ν0. Due to 0 < ǫsplit <
1
2

it follows that ‖b∗,ν − b∗,ν‖∞ tends to zero.

The second case is that there is a set L̂ ⊂ {1, . . . ,m} so that the edges of all boxes B∗,ν

with coordinate directions l̂ ∈ L̂ are split only finitely many times, that is, there is some
ν0 so that lν /∈ L̂ for all ν > ν0. Then (3.7) implies, like in the first case, that for each
ξ ∈ N and l ∈ {1, . . . ,m} \ L̂ there is some ν1 so that b

∗,ν
l − b∗,νl < (1− ǫsplit)

ξ
(

bl − bl
)

holds for ν > ν1. Since lν ∈ L̂ for finitely many ν, there is some ν2 > ν0 so that

b
∗,ν

l̂
− b∗,ν

l̂
= b

∗,µ(ν)+1

l̂
− b

∗,µ(ν)+1

l̂
holds for each ν > ν2 and l̂ ∈ L̂, and by the definition

of P ν we have that b
∗,µ(ν)+1

l̂
− b

∗,µ(ν)+1

l̂
≥ ǫsplit

(

b
∗,µ(ν)

l̂
− b

∗,µ(ν)

l̂

)

for each l̂ ∈ L̂. By

applying these results again to B∗,µ(ν) we obtain that there is some ν2 and a fixed
number j ∈ N, so that b

∗,ν

l̂
− b∗,ν

l̂
≥ ǫjsplit

(

b
l̂
− b

l̂

)

holds for each ν > ν2 and l̂ ∈ L̂. For

any fixed j ∈ N, and due to 0 < ǫsplit <
1
2 , there is some ξ ∈ N so that the inequality

(1− ǫsplit)
ξ
(

bl − bl
)

< ǫjsplit
(

b
l̂
− b

l̂

)

holds for each l ∈ {1, . . . ,m} \ L̂ and l̂ ∈ L̂. As a

consequence of the latter result and the results for l ∈ {1, . . . ,m}\ L̂ and for l̂ ∈ L̂, there
is some ν3 > max{ν1, ν2} and some l̂∗ ∈ L̂ so that ‖b∗,ν − b∗,ν‖∞ = b

∗,ν

l̂∗
− b∗,ν

l̂∗
holds for

each ν > ν3. Thus we obtain that for each ν > ν3

Qν =
minl∈P ν

(

b
∗,ν − b∗,ν

)

l

‖b∗,ν − b∗,ν‖∞

=

(

b
∗,ν − b∗,ν

)

l̃

‖b∗,ν − b∗,ν‖∞

29

3 The Adaptive-Reduction Algorithm

<
(1− ǫsplit)

ξ
(

bl̃ − bl̃
)

b
∗,ν

l̂∗
− b∗,ν

l̂∗

≤ (1− ǫsplit)
ξ

ǫjsplit

bl̃ − bl̃
b
l̂∗
− b

l̂∗

holds. As
b
l̃
−b

l̃

b
l̂∗
−b∗

l̂

is bounded for each l̃ and l̂∗, and as j is fixed for ν > ν3, for every ǫ > 0

there is some ξ ∈ N so that
(1−ǫsplit)

ξ

ǫ
j
split

b
l̃
−b

l̃

b
l̂
−b

l̂

< ǫ. Accordingly there is some ν4 > ν3 so

that there is some ξ ∈ N with

Qν <
(1− ǫsplit)

ξ

ǫjsplit

bl̃ − bl̃
b
l̂
− b

l̂

< ǫ

for ν > ν4. Thus for some ν > ν4 the point Sν is chosen as a splitting point and hence
lν ∈ L̂ for some ν > ν4 > ν0. That is a contradiction. So in the same manner as in the
first case ‖b∗,ν − b∗,ν‖∞ tends to zero.

By construction in Algorithm 1, we have that for each splitting point the quotient Q
is larger then a given constant ǫ > 0. By Lemma 3.3.2 we have that for the sequence
of splitting points the sets P are nonempty, unless an approximately stationary point
with approximately active and feasible indices is computed. Now we state the main
convergence result.

Theorem 3.3.6. Algorithm 2 terminates after finitely many steps.

Proof. We give the proof by enforcing a contradiction. Assume that Algorithm 2 does
not terminate. Then there exist sequences of reduced outer approximations

(

BNν ,ν
)

ν
of

Y , (xν)ν ,
(

(

ck,ν
)

k=1,...,n+1

)

ν
and (κν , λν)ν , so that for each ν the point xν is stationary

for SIPUF (BNν ,ν) with ǫact-active indices
(

ck,ν
)

k=1,...,n+1
and multipliers (κν , λν), while

xν with all data is not ǫstat-stationary for SIP with 2ǫact-active, ǫY -feasible indices with
respect to BNν ,ν .

To derive a contradiction, in steps 1. to 3. the existence of accumulation points of the

sequences (xν)ν ,
(

(

ck,ν
)

k=1,...,n+1

)

ν
and (κν , λν)ν is shown. After that it is shown in

steps 4. to 6. that there exists a ν0 ∈ N so that xν0 with all data is an ǫstat-stationary
point for SIP with 2ǫact-active, ǫY -feasible indices with respect to BNν ,ν .

1. Assertion: The sequence (xν)ν has an accumulation point x∗ ∈ X ∩M .

Since (xν)ν is contained in the compact set X, it possesses an accumulation point
x∗ ∈ X. Let Mν := MUF (BNν ,ν). By Lemma 3.1.3 and Lemma 3.3.3 we have
M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ M , so that (xν)ν is also contained in the closed set M .
From this the assertion immediately follows.

30

3.3 Convergence results

2. Assertion: The sequence
(

(

ck,ν
)

k=1,...,n+1

)

ν
has an accumulation point

(

ck,∗
)

k=1,...,n+1
∈ Y n+1.

To show the assertion it is sufficient to show the existence of an accumulation
point in Y for every component of the sequence of the (n+ 1)-tuple. Let

(

ck
∗,ν
)

ν
,

k∗ ∈ {1, . . . , n + 1}, be a sequence of such components. We will distinguish two
cases. For the first case assume that ck

∗,ν ∈ Y holds for infinitely many ν ∈ N. By
the compactness of Y , the subsequence of these points possesses an accumulation
point in Y .

In the second case there is some ν0 ∈ N with ck
∗,ν /∈ Y for all ν ≥ ν0. Let (B

c∗,ν)ν
be the sequence of boxes with ck

∗,ν ∈ Bc∗,ν .

As for each ν the reduced outer approximation BNν ,ν only contains finitely many
boxes, after possibly switching to a subsequence we may assume that (Bk∗,ν)ν
satisfies Bk∗,ν ⊃ Bk∗,ν+1, ν ∈ N. As Algorithm 1 subdivides each box Bk∗,ν with
ck

∗,ν /∈ Y at its barycenter, Lemma 3.3.4 implies that the maximum edge lengths
of the Bk∗,ν , ν ∈ N, tend to zero. Due to Bk∗,ν ∩ Y 6= ∅, ν ∈ N, we arrive at

lim
ν→∞

min
y∈Y

‖ck∗,ν − y‖2 = 0

and, thus, the assertion.

3. Assertion: The sequence (κν , λν)ν has an accumulation point (κ∗, λ∗) ∈ σn+1.

This is clear from the compactness of σn+1.

4. Assertion: There exists a ν0 ∈ N so that each
(

ck,ν
)

ν
with k = 1, ..., n + 1 is

ǫY -feasible with respect to BNν ,ν for Y for all ν ≥ ν0.

By step 2. each sequence
(

ck,ν
)

ν
has an accumulation point ck,∗ for each k =

1, ..., n + 1. If ck
∗,∗ ∈ int(Y) for some k∗ ∈ {1, . . . , n + 1}, the assertion follows

immediately for that part of the (n + 1)-tuple of the sequence. If ck
∗,∗ /∈ int(Y)

for some k∗ ∈ {1, . . . , n+ 1}, then the assertion follows from Lemma 3.3.5.

5. Assertion: There is some ν0 ∈ N so that for all ν ≥ ν0 the point xν is ǫstat-
stationary for SIP with multipliers (κν , λν).

Since for all ν the point xν is stationary for SIPUF (BNν ,ν) with ǫact-active indices
(

ck,ν
)

k=1,...,n+1
and multipliers (κν , λν), parts 1. to 3. of this proof together with

a continuity argument entail

κ∗∇f(x∗) +
n+1
∑

k=1

λ∗k∇xg(x
∗, ck,∗) = 0.

Hence there is some ν0 ∈ N so that for ν ≥ ν0

‖κν∇f(xν) +
n+1
∑

k=1

λνk∇xg(x
ν , ck,ν)‖ ≤ ǫstat

31

3 The Adaptive-Reduction Algorithm

holds.

6. Assertion: There is some ν0 ∈ N so that for all ν ≥ ν0 and each k ∈ {1, . . . , n+1}
the index ck,ν is 2ǫact-active for g.

For any k ∈ {1, . . . , n + 1} and all ν ∈ N by assumption we have ĝk(xν , ck,ν) ∈
[−ǫact, 0]. The overestimating property of ĝk ensures g(xν , ck,ν) ≤ 0. Furthermore

ĝk(xν , ck,ν) =g(xν , ck,ν) + 〈Lk,ν
, b

k,ν − ck,ν〉 ≤ g(xν , ck,ν) + L‖bk,ν − bk,ν‖2

holds with L = max(‖L‖∞, ‖L‖∞). In view of Lemma 3.3.5 we have limν→∞ ‖bk,ν−
bk,ν‖2 = 0, so that there is some ν0 ∈ N with g(xν , ck,ν) ≥ −2ǫact for all ν ≥ ν0.
Altogether this leads to

g(xν , ck,ν) ∈ [−2ǫact, 0], k = 1, . . . , n+ 1

for all ν ≥ ν0, which shows the assertion.

In summary we have shown that there exists a ν0 ∈ N so that xν0 with all data is an
ǫstat-stationary point of SIP with 2ǫact-active, ǫY -feasible indices with respect to BNν0 ,ν0 .
Hence, Algorithm 2 would terminate with xν0 , in contradiction to the assumption.

3.4 A first numerical example

In this section we give a first numerical examples motivating our further approaches. We
implemented the presented algorithms in Matlab 7.10.0 (R2010a). The parameters L
and L were computed using the gradients of the restrictions g and the Matlab toolbox
Intlab 5.5, [43]. The nonlinear subproblems were solved using fmincon from theMatlab
Optimization Toolbox Version 5.0 with default tolerances. The example was run on a
2.4 GHz AMD Athlon 64 X2 processor with 4 GB RAM under Ubuntu 10.04 (lucid).
For more implementation details we refer to Chapter 7.

As a first example we investigate a problem from Chebychev approximation (cf. Chap-
ter 1), that is

CA : min
x∈Rn

max
y∈Y

|F (y)− a (x, y) |.

With F (y) = sin (πy), a (x, y) = x3y
2+x2y+x1 and Y = [0, 1] we obtain the semi-infinite

problem

SIPCA : min
x∈R4

x4 s.t. sin (πy)−
(

x3y
2 + x2y + x1

)

− x4 ≤ 0, y ∈ [0, 1]

− sin (πy) + x3y
2 + x2y + x1 − x4 ≤ 0, y ∈ [0, 1] .

For the set X we choose X = [−1, 1] × [3, 5] × [−5,−3] × [0, 3] and we set B = Y .
As a termination tolerance on the stationarity and on the activities of the constraints

32

3.4 A first numerical example

0 0.5 1

−0.055

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

iteration
0 0.5 1

−0.055

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

iteration

a) b)

Figure 3.3: a) The error function at x∗ for sin (πy) −
(

x3y
2 + x2y + x1

)

on Y = [0, 1] computed with
Algorithm 2. b) The error function at x∗ for − sin (πy) + x3y

2 + x2y + x1 on Y = [0, 1]
computed with Algorithm 2.

we choose ǫ = ǫact = 10−3. For the feasibility of the indices we choose ǫY = 0.035.

Furthermore we set ǫsplit = min

(

ǫact
max(‖L‖∞,‖L‖∞)‖b−b‖1

, 0.5− ǫY

)

. One has to notice

that we do not need a reduced outer approximation for the set Y . It can be handled
exactly.

As a starting point we used x0 = (1, 5,−3, 2). After 1 iteration (0.66 CPU seconds) we
obtain the feasible starting point

x1 = (−0.14968, 4.2195,−3.5291, 3)T .

After 37 more iterations (383455.38 CPU seconds) we obtain the approximately station-
ary point

x∗ = (−0.028467, 4.007,−4.0069, 0.028467)T

with the objective value 0.028467. The error functions are illustrated in Figure 3.3 and
the approximating function in Figure 3.4. As termination criteria we used the norm of
the stationarity condition, and, additionally, we required that the change in the value of
the objective function is less then 10−3 and the norm of the change in the iterates is less
then 10−2. At x∗ the norm of the stationarity condition is less then 10−16, the change
in the value of the objective function is 2.7102 · 10−4, and the norm of the change in the
iterates is 0.00558.

It is particularly noticeable that the numerical performance of the algorithm is that
poor, even though the set Y = [0, 1] must not be approximated. A first reason for
this may be the fact that, as a result of the reformulation, the number of constraints
in the subproblems increases with the number of boxes arising from splitting B into
smaller boxes. The overall number of boxes generated during the iterations is displayed
in Figure 3.5.

33

3 The Adaptive-Reduction Algorithm

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

Figure 3.4: The blue line represents the function sin (πy) and the red line the approximation a (x∗, y)
computed with Algorithm 2.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5
x 10

6

iteration

Figure 3.5: Overall number of boxes in each iteration for SIPCA generated by Algorithm 2.

It can be seen that the number of boxes, generated during the iterations, increases
exponentially. In the last iteration the total amount of boxes is 2108626 and each box
corresponds to one constraint. Thus, a nonlinear problem with 4 variables and 2108626
constraints must be solved. Another criterion to benchmark the numerical effort is the
error made by the unimodalization procedure. From the previous discussions we have

that the error is 〈L, bk − ck〉 = 〈L, bk − ck〉. Thus, the error is highly related to the
diameter of the generated boxes in the tessellation of Y and the size of L, L. The
latitude of boxes containing active indices and the maximum of the constants L, L, as
well as the error made by the unimodalization procedure on boxes containing active
indices is illustrated in Figure 3.6.

It can be seen that during the first iterations the error, as well as the constants L, L
decreases very fast, while it gets stuck in the later iterations. In the last iteration the
error is around 9.5 · 10−3. The peak in the values of the constants L, L can be explained

34

3.4 A first numerical example

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

iteration
0 10 20 30 40

0

1

2

3

4

5

6

7

8

iteration

a) b)

Figure 3.6: a) The maximum and minimum diameter of the boxes containing active indices generated
by Algorithm 2 in each iteration. b) The black line is the maximum of the constants L, L on
the boxes containing active indices and the red line is the error made by the unimodalization
procedure in each iteration.

by the fact that we only displayed the values for those boxes which contained active
indices, and they change in each iteration. From the error bound we know that, in
the worst case, we can only expect that the error tends linearly to zero with the size
of the boxes. Thus, it is not surprising that the algorithm may have a bad numerical
performance, as, particularly, the maximum value for L, L stays large. The constants
L, L are computed by evaluating the derivatives with respect to y of the constraints
on the set X and each generated box in the tessellation of Y . As the absolute value of
these derivatives is | − π sin (πy) + 2x3y + x2|, one can see that the values for L, L are
in some kind bounded below by the latitude of X, and this set stays unchanged during
the iterations.

Notice that the index set Y is an interval in this example, and, thus, the algorithm
can handle it exactly and does not need a reduced outer approximation. However, the
example points out a first drawback of the algorithm, that is, the error made by relaxing
the constraints, and the associated increase in the number of generated boxes. Since
the error is linked to the size of the boxes generated during the algorithm and the
computed constants, one may try to use another relaxation strategy with better error
bounds. Another possibility may be an adaptation of the set X so that the constants
L, L become smaller, and, thus, the error. Motivated by these observations, we will, at
first, discuss another relaxation strategy in the next chapter whose error bound tends
quadratically to zeros with the size of the generated boxes. After that, in Chapter 5
we will discuss adaptation strategies of the set X for both algorithms. More numerical
examples can be found in Chapter 8.

35

4 The Adaptive-Convexification Algorithm

The algorithm presented in this chapter has been published in [48]. It is an extension
of the algorithm discussed in [16] to arbitrary dimensional and arbitrarily shaped index
sets Y .

In Section 4.1 we discuss the relaxation and reformulation techniques used within the
algorithm. Then the algorithm is presented in Section 4.2. After that, in Section 4.3, we
give the convergence results. At last, in Section 4.4 we present a first numerical example.

4.1 Relaxation and reformulation

Let Y ⊂ B ⊂ R
m and let BN = (Bk, k = 1, . . . , N) be a reduced outer approxima-

tion of Y . Let λmax(x, y) be the maximal eigenvalue of D2
yg(x, y). Define a concave

overestimator (w.r.t. y) of g on X ×B by

ğ : X ×B −→ R, (x, y) 7−→ g(x, y) + ψ(y;α,B)

with α > max{0,max(x,y)∈X×B λmax (x, y)} as well as a concave overestimator of the

restriction of g to X ×Bk by

ğk : X ×Bk −→ R, (x, y) 7−→ g(x, y) + ψ(y;αk, B
k)

with αk > max{0,max(x,y)∈X×Bk λmax (x, y)}. Due to

max{0, max
(x,y)∈X×B

λmax (x, y)} ≥ max{0, max
(x,y)∈X×Bk

λmax (x, y)}

αk can always be chosen so that αk ≤ α holds for each k = 1, . . . , N . The next example
illustrates the overestimator ğ.

Example 4.1.1. Let X = B = [0, 2π] and g (x, y) = sin (xy). It is not hard to see that
we have α > max{0,max(x,y)∈X×B λmax (x, y)} for α = 79

2 . Thus, we obtain

ğ (x, y) = sin (xy) +
79

4
y (2π − y) .

ğ is illustrated in Figure 4.1. It can be seen that ğ is an overestimator for g on X × B
and concave in the second argument y for each x but neither concave in general nor in
the first argument.

37

4 The Adaptive-Convexification Algorithm

Figure 4.1: The overestimator ğ for g (x, y) = sin (xy) on X ×B with X = B = [0, 2π] and α = 79
2
.

The next results immediately follow from the discussion in Chapter 2, Subsection 2.2.2.

Lemma 4.1.2.

(i) For all k = 1, . . . , N and (x, y) ∈ X ×Bk the relation g(x, y) ≤ ğk(x, y) holds.

(ii) For x ∈ X and k = 1, . . . , N the relaxation ğk(x, y) is concave in the second
argument on Bk.

(iii) For all k = 1, . . . , N the maximum separation distance between ğk and g on X×Bk

is αk

8 ‖bk − bk‖22.
(iv) If x ∈ X and ğk (x, y) ≤ 0 holds for all y ∈ Bk, k = 1, . . . , N , then we have x ∈M .

Define the set

MαBB

(

BN
)

:= {x ∈ R
n|ğk (x, y) ≤ 0 for all y ∈ Bk, k = 1, . . . , N}

and the semi-infinite problem

SIPαBB

(

BN
)

: min
x∈X

f(x) s.t. x ∈MαBB

(

BN
)

as well as the lower level problems

Qk (x) : max
y∈Rm

ğk(x, y) s.t. y ∈ Bk

for k = 1, . . . , N . For MαBB, SIPαBB and Qk we obtain the following results. As in the
former chapter, we omit the straightforward proofs.

38

4.1 Relaxation and reformulation

Lemma 4.1.3.

(i) We have MαBB

(

BN
)

⊂M .

(ii) Let SIPαBB

(

BN
)

be consistent. Then every global, local solution or stationary
point of SIPαBB

(

BN
)

is a feasible point of SIP .

(iii) For αk > max
{

0,max(x,y)∈X×Bk λmax (x, y)
}

the solution of Qk (x) is unique for

each k = 1, . . . , N .

In [47] it is shown that the problem SIPαBB

(

BN
)

is equivalent to the Stackelberg game

SGαBB

(

BN
)

: min
x,y1,...,yN

f(x) s.t. ğk(x, yk) ≤ 0,

yk solves Qk (x) , k = 1, . . . , N.

For every k ∈ {1, . . . , N} the function ğk is concave in the second argument, and Bk is
convex and possesses a Slater point. For this reason the Karush-Kuhn-Tucker conditions
are necessary and sufficient for yk to be a solution ofQk (x). Thus for each k ∈ {1, . . . , N}
the point yk is a solution of Qk (x) if and only if there exist multipliers γk, γk ∈ R

m with

∇y ğ
k
(

x, yk
)

+ γk − γk = 0

0 ≤ yk − bk ⊥ γk ≥ 0

0 ≤ b
k − yk ⊥ γk ≥ 0.

Define

ω :=

(

x,
(

yk
)

k=1,...,N
,
(

γk
)

k=1,...,N
,
(

γk
)

k=1,...,N

)

F (ω) := f (x)

G (ω) :=
(

ğk
(

x, yk
))

k=1,...,N

C1 (ω) :=
(

γk, γk
)

k=1,...,N

C2 (ω) :=
((

yk − bk
)

,
(

b
k − yk

))

k=1,...,N

H (ω) :=
(

∇y ğ
k
(

x, yk
)

+ γk − γk
)

k=1,...,N
.

Now SGαBB

(

BN
)

can be equivalently reformulated as the MPCC

PαBB(BN) : min
ω
F (ω) s.t. G(ω) ≤ 0

H(ω) = 0

0 ≤ C1 (ω) ⊥ C2 (ω) ≥ 0.

This problem may be tackled by different solvers like those in [9, 44, 46]. For more
details we, again, refer to Chapter 7, Section 7.2.

39

4 The Adaptive-Convexification Algorithm

4.2 Algorithms

Similar to the algorithm presented in the latter chapter, the algorithm presented in
this section computes a stationary point of SIPαBB

(

BN
)

with active indices and termi-
nates if it is also a stationary point of SIP within a given tolerance on stationarity and
additional tolerances on the feasibility of the indices. If the computed point is not ap-
proximately stationary or the active indices are not approximately feasible, the reduced
outer approximation BN of Y is refined and a respective refined SIPαBB is solved. In
the following chapter most of the notations used in the former chapter are adopted. But,
since the indices are not predetermined as with the unimodal relaxations, when convex
relaxations are used, we have to introduce some new notations.

For a point x ∈ MαBB

(

BN
)

and solutions yk (x) of Qk (x), k = 1, . . . , N , define
KαBB

0 (x) := {k ∈ {1, . . . , N}|ğk
(

x, yk (x)
)

= 0} andBαBB
0 (x) := {yk (x) |k ∈ KαBB

0 (x)}.
As in Theorem 2.1.1, a point x ∈MαBB

(

BN
)

is stationary for SIPαBB

(

BN
)

in the sense
of John, if there exist yk ∈ BαBB

0 (x), k = 1, . . . , n+ 1, and (κ, λ) ∈ σn+1, so that

κ∇f(x) +
n+1
∑

k=1

λk∇xg(x, y
k) = 0

λkğ
k(x, yk) = 0, k = 1, . . . , n+ 1.

Notice here that ∇xğ
k(x, yk) = ∇xg(x, y

k).

In contrast to the unimodal relaxations, as mentioned before, the indices yk are not
predetermined in the current relaxation scheme. Thus, we have to introduce a slightly
different concept for the ǫY -feasibility of the indices.

Definition 4.2.1. Let ǫY > 0. y is called ǫY -feasible with respect to the reduced outer
approximation BN of Y if y ∈ Y or if y /∈ Y and there exists a box Bk so that y ∈ Bk,

Bk ∩ Y 6= ∅ and ‖bk − bk‖∞ < ǫY .

Using the splitting function and following the ideas of the former chapter one achieves
the splitting algorithm stated in Algorithm 3. The algorithm also describes how the
feasible set of a refined problem SIPαBB

(

BN
)

is constructed.

It is not hard to see that each N−tuple (Bk, k = 1, . . . , N) generated by Algorithm 3
is a reduced outer approximation of Y : Y is covered by

⋃N
k=1B

k, only those boxes are
taken into account which have a non-empty intersection with Y , and the intersection of
pairwise different boxes has measure zero. Notice here that the last ′else′ condition in
Algorithm 3 is included for numerical reasons. We refer to Chapter 7 for details on how
the needed constants are determined in Algorithm 3 and on checking if a generated box
has a nonempty intersection with the index set Y . Using the splitting algorithm, the
adaptive convexification algorithm is stated in Algorithm 4.

If for a given reduced outer approximation BN the problem SIPαBB
(

BN
)

is not con-
sistent in Algorithm 4, a phase 1 algorithm like that described in [16] can be performed.

40

4.2 Algorithms

Algorithm 3 Splitting step - refineαBB(η)

Let η ∈ Bk∗ , k∗ ∈ {1, . . . , N}, and let Sk∗ be the barycenter of Bk∗ and

Qk∗ =
min

l∈Pk∗

(

b
k∗

l −bk
∗

l

)

‖b
k∗

−bk
∗
‖∞

.

if η /∈ Y or Qk∗ < ǫ then
Set η = Sk∗ .

end if

if P k∗ 6= ∅ then

Compute
(

Bk∗,(1), Bk∗,(2)
)

= S(Bk∗ , η).

Compute α
(1)
k∗ , α

(2)
k∗ ≤ αk∗ on Bk∗,(1), Bk∗,(2) and set

ğk
∗,(1)(x, y) = g(x, y) +

α
(1)
k∗

2
〈y − bk

∗,(1), b
k∗,(1) − y〉

ğk
∗,(2)(x, y) = g(x, y) +

α
(2)
k∗

2
〈y − bk

∗,(2), b
k∗,(2) − y〉

M (1) = {x ∈ R
n | ğk∗,(1)(x, y) ≤ 0 for all y ∈ Bk∗,(1)}

M (2) = {x ∈ R
n | ğk∗,(2)(x, y) ≤ 0 for all y ∈ Bk∗,(2)}

M̃ = {x ∈ R
n | ğk(x, y) ≤ 0 for all y ∈ Bk, k ∈ {1, . . . , N} \ {k∗}}

if Y ∩Bk∗,(1) 6= ∅ and Y ∩Bk∗,(2) 6= ∅ then

Replace Bk∗ by Bk∗,(1) and Bk∗,(2) and replace αk∗ by α
(1)
k∗ and α

(2)
k∗ .

Set MαBB(BN) = M̃ ∩M (1) ∩M (2).
Set N = N + 1.

else if Y ∩Bk∗,(1) 6= ∅ then

Replace Bk∗ by Bk∗,(1) and αk∗ by α
(1)
k∗ .

Set MαBB(BN) = M̃ ∩M (1).
else if Y ∩Bk∗,(2) 6= ∅ then

Replace Bk∗ by Bk∗,(2) and αk∗ by α
(2)
k∗ .

Set MαBB(BN) = M̃ ∩M (2).
else

Delete Bk∗ and αk∗ .
Set MαBB(BN) = M̃ .
Set N = N − 1.

end if

end if

For more details on a phase 1 algorithm we refer to Section 7.3. In the next section
it will be shown that, if SIP has a Slater point, there always exists a reduced outer
approximation so that SIPαBB

(

BN
)

is consistent.

41

4 The Adaptive-Convexification Algorithm

Algorithm 4 Adaptive convexification algorithm - aca

Choose X ⊂ R
n with M ⊂ X, B =

[

b, b
]

⊂ R
m with Y ⊂ B and compute α on B.

Determine a reduced outer approximation BN of Y with some N ∈ N as well as αk ≤ α
on Bk, k = 1, . . . , N , so that SIPαBB

(

BN
)

is consistent.

Choose ǫact, ǫstat, ǫY > 0 and ǫsplit ∈
(

0, 12
)

with ǫsplit ≤ 2ǫact/
(

α‖b− b‖22
)

.
Compute a stationary point x of SIPαBB

(

BN
)

with ǫact-active indices yk, k =
1, . . . , n+ 1, and multipliers (κ, λ) by solving PαBB

(

BN
)

.
while x is not a stationary point of SIP with 2ǫact-active, ǫY -feasible indices yk,
k = 1, . . . , n+ 1, with respect to BN , and multipliers (κ, λ) do

for k = 1 to n+ 1 do

refineαBB(y
k)

end for

Compute a stationary point x of SIPαBB

(

BN
)

with ǫact-active indices yk, k =
1, . . . , n+ 1, and multipliers (κ, λ) by solving PαBB

(

BN
)

.
end while

4.3 Convergence results

As in Chapter 3, Section 3.3 we will first give some useful lemmata to keep the final
proof simple. Following the assembling of Section 3.3 it will be shown first that it is
always possible to find a tessellation BN of the box B so that the problem SIPαBB

(

BN
)

is consistent if SIP has a Slater point. Here the tessellation is not chosen in an adaptive
way but temporarily uniform.

Lemma 4.3.1. Let B = [b, b] ⊂ R
m be furnished with a Cartesian grid equally spaced

along every coordinate axis, and BN =
(

Bk, k = 1, . . . , N
)

the induced tessellation of B.
Let x ∈ {x ∈ R

n|g (x, y) < 0, y ∈ Y } and y ∈ Y so that g (x, y) = maxy∈Y g (x, y) < 0.
Let (N1 + 1, . . . , Nm + 1) be the number of grid points in the spatial directions. If for all
i ∈ {1, . . . ,m}

Ni ≥
√

maxk=1,...,N αk‖b− b‖22
8|g (x, y) |

holds, then x is feasible for SIPαBB

(

BN
)

.

Proof. Let d = b− b and let Bk ⊂ B be an arbitrary box. Then its side lengths are
dj
Nj

,

j = 1, . . . ,m, and with Lemma 4.1.2 it follows for all y ∈ Bk:

ğk(x, y) = g(x, y) +
αk

2
〈y − bk, b

k − y〉

≤ g(x, y) +
αk

8
‖bk − bk‖22

42

4.3 Convergence results

= g(x, y) +
αk

8

m
∑

j=1

d2j
N2

j

≤ g(x, y) +
maxk=1,...,N αk

8

m
∑

j=1

d2j
mini=1,...,mN2

i

.

Due to the condition on Ni it holds

min
i=1,...,m

N2
i ≥ maxk=1,...,N αk

8

m
∑

j=1

d2j
|g (x, y) |

which implies ğk(x, y) ≤ 0 and, thus, the assertion.

Now we show that Algorithm 4 is well defined. In fact, since we are in a similar situation
as in the latter chapter ,if P k = ∅ holds at each active index yk of an approximating
problem SIPαBB(BN), the reduced outer approximation of Y is not refined any further
and Algorithm 4 might loop. The following lemma shows that the algorithm terminates
in this case.

Lemma 4.3.2. Let x be a stationary point of SIPαBB(BN) with ǫact-active indices yk,
k = 1, . . . , n + 1, and multipliers (κ, λ). Furthermore, let the refined reduced outer
approximation arising from applying Algorithm 3 to each yk, k = 1, . . . , n+ 1, coincide
with BN . Then Algorithm 4 terminates at x.

Proof. We show that x is a stationary point of SIP with 2ǫact-active, ǫY -feasible indices
yk, k = 1, . . . , n+ 1, with respect to BN , and multipliers (κ, λ).

First, as a stationary point of SIPαBB(BN), x is inMαBB(BN) and, in view of Lemma 4.1.3,
also in M . Furthermore, the stationarity condition for SIPαBB(BN) implies

‖κ∇f(x) +
n+1
∑

k=1

λk∇xg(x, y
k)‖ ≤ ǫstat

with the multipliers (κ, λ) from SIPαBB(BN) and with any ǫstat.

Now choose an arbitrary yk, k = 1, . . . , n+ 1. Since yk is ǫact-active we have

g(x, yk) +
αk

2
〈yk − bk, b

k − yk〉 = ğk(x, yk) ∈ [−ǫact, 0]

and hence

−αk

2
〈yk − bk, b

k − yk〉 ≥ g(x, yk) ≥ −ǫact −
αk

2
〈yk − bk, b

k − yk〉.

The first inequality shows g(x, yk) ≤ 0. Due to αk ≤ α the second inequality implies

g(x, yk) ≥ −ǫact −
α

2

m
∑

j=1

(

ykj − bkj

)(

b
k

j − ykj

)

.

43

4 The Adaptive-Convexification Algorithm

By assumption the reduced outer approximation is not refined, so that P k(yk) = ∅
must hold, and in each summand of the above sum one factor can be bounded by

ǫsplit

(

b
k

j − bkj

)

, while the other factor is trivially bounded by
(

b
k

j − bkj

)

. This leads to

g(x, yk) ≥ −ǫact −
α

2
ǫsplit‖bk − bk‖22 ≥ −ǫact −

α

2
ǫsplit‖b− b‖22 ≥ −2ǫact

where we have used the upper bound 2ǫact/
(

α‖b− b‖22
)

on ǫsplit from Algorithm 4. We
have thus shown g(x, yk) ∈ [−2ǫact, 0], that is, y

k is 2ǫact-active.

Finally we have to prove that yk is ǫY -feasible with respect to BN . In fact, we even
have yk ∈ Y as otherwise in Algorithm 3 yk would be replaced by the barycenter of Bk,
in contradiction to P k = ∅. Consequently yk is ǫY -feasible with respect to BN for any
ǫY > 0.

The next lemma shows that refining a given reduced outer approximation BN of Y by
means of Algorithm 3 enlarges the feasible set of SIPαBB

(

BN
)

.

Lemma 4.3.3. Let a reduced outer approximation BN of Y be given, and for an arbi-
trary splitting point η let BÑ be the refinement of BN by means of Algorithm 3. Then
MαBB(BN) ⊂MαBB(BÑ) holds.

Proof. Let η ∈ Bk with k ∈ {1, . . . , N}. In the case P k = ∅ the assertion follows

immediately, as Bk is not split. Otherwise, let Bk,(1), Bk,(2), α
(1)
k , α

(2)
k be constructed

like in Algorithm 3. For i = 1, 2 and y ∈ Bk,(i) the inequalities α
(i)
k ≤ αk and 0 ≤

y − bk,(i) ≤ y − bk, 0 ≤ b
k,(i) − y ≤ b

k − y hold true. Hence, for all x ∈ MαBB(BN),
i = 1, 2, and all y ∈ Bk,(i) it follows that

ğk,(i)(x, y) = g(x, y) +
α
(i)
k

2
〈y − bk,(i), b

k,(i) − y〉

≤ g(x, y) +
αk

2
〈y − bk, b

k − y〉 = ğk(x, y) ≤ 0.

Now we are in the position to state the main convergence result.

Theorem 4.3.4. Algorithm 4 terminates after finitely many steps.

Proof. As in Theorem 3.3.6 we give the proof by enforcing a contradiction. Assume
that Algorithm 4 does not terminate. Then there exist sequences of reduced outer

approximations
(

BNν ,ν
)

ν
of Y , (xν)ν ,

(

(

yk,ν
)

k=1,...,n+1

)

ν
and (κν , λν)ν , so that for each

ν the point xν is stationary for SIPαBB(BNν ,ν) with ǫact-active indices
(

yk,ν
)

k=1,...,n+1

and multipliers (κν , λν), while xν with all data is not ǫstat-stationary for SIP with
2ǫact-active, ǫY -feasible indices with respect to BNν ,ν .

44

4.3 Convergence results

To derive a contradiction, in steps 1. to 3. the existence of accumulation points of the

sequences (xν)ν ,
(

(

yk,ν
)

k=1,...,n+1

)

ν
and (κν , λν)ν is shown. After that it is shown in

steps 4. to 6. that there exists a ν0 ∈ N so that xν0 with all data is an ǫstat-stationary
point for SIP with 2ǫact-active, ǫY -feasible indices with respect to BNν ,ν .

1. Assertion: The sequence (xν)ν has an accumulation point x∗ ∈ X ∩M .

Since (xν)ν is contained in the compact set X, it possesses an accumulation point
x∗ ∈ X. Let Mν := MαBB(BNν ,ν). By Lemma 4.1.3 and Lemma 4.3.3 we have
M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ M , so that (xν)ν is also contained in the closed set M .
From this the assertion immediately follows.

2. Assertion: The sequence
(

(

yk,ν
)

k=1,...,n+1

)

ν
has an accumulation point

(

yk,∗
)

k=1,...,n+1
∈ Y n+1.

To show the assertion it is sufficient to show the existence of an accumulation
point in Y for every component of the sequence of the (n+ 1)-tuple. Let

(

yk
∗,ν
)

ν
,

k∗ ∈ {1, . . . , n + 1}, be a sequence of such components. We will distinguish two
cases. For the first case assume that yk

∗,ν ∈ Y holds for infinitely many ν ∈ N. By
the compactness of Y , the subsequence of these points possesses an accumulation
point in Y .

In the second case there is some ν0 ∈ N with yk
∗,ν /∈ Y for all ν ≥ ν0. Let (B

k∗,ν)ν
be the sequence of boxes with yk

∗,ν ∈ Bk∗,ν .

As for each ν the reduced outer approximation BNν ,ν only contains finitely many
boxes, after possibly switching to a subsequence we may assume that (Bk∗,ν)ν
satisfies Bk∗,ν ⊃ Bk∗,ν+1, ν ∈ N. As Algorithm 3 subdivides each box Bk∗,ν with
yk

∗,ν /∈ Y at its barycenter, Lemma 3.3.4 implies that the maximum edge lengths
of the Bk∗,ν , ν ∈ N, tend to zero. Due to Bk∗,ν ∩ Y 6= ∅, ν ∈ N, we arrive at

lim
ν→∞

min
y∈Y

‖yk∗,ν − y‖2 = 0

and, thus, the assertion.

3. Assertion: The sequence (κν , λν)ν has an accumulation point (κ∗, λ∗) ∈ σn+1.

This is clear from the compactness of σn+1.

4. Assertion: There exists a ν0 ∈ N so that each
(

yk,ν
)

ν
with k = 1, ..., n + 1 is

ǫY -feasible with respect to BNν ,ν for Y for all ν ≥ ν0.

By step 2. each sequence
(

yk,ν
)

ν
has an accumulation point yk,∗ for each k =

1, ..., n + 1. If yk
∗,∗ ∈ int(Y) for some k∗ ∈ {1, . . . , n + 1}, the assertion follows

immediately for that part of the (n + 1)-tuple of the sequence. If yk
∗,∗ /∈ int(Y)

for some k∗ ∈ {1, . . . , n+ 1}, then the assertion follows from Lemma 3.3.5.

5. Assertion: There is some ν0 ∈ N so that for all ν ≥ ν0 the point xν is ǫstat-
stationary for SIP with multipliers (κν , λν).

45

4 The Adaptive-Convexification Algorithm

Since for all ν the point xν is stationary for SIPαBB(BNν ,ν) with ǫact-active indices
(

yk,ν
)

k=1,...,n+1
and multipliers (κν , λν), parts 1. to 3. of this proof together with

a continuity argument entail

κ∗∇f(x∗) +
n+1
∑

k=1

λ∗k∇xg(x
∗, yk,∗) = 0.

Hence there is some ν0 ∈ N so that for ν ≥ ν0

‖κν∇f(xν) +
n+1
∑

k=1

λνk∇xg(x
ν , yk,ν)‖ ≤ ǫstat

holds.

6. Assertion: There is some ν0 ∈ N so that for all ν ≥ ν0 and each k ∈ {1, . . . , n+1}
the index yk,ν is 2ǫact-active for g.

For any k ∈ {1, . . . , n + 1} and all ν ∈ N by assumption we have ğk(xν , yk,ν) ∈
[−ǫact, 0]. The overestimating property of ğk ensures g(xν , yk,ν) ≤ 0. Furthermore

ğk(xν , yk,ν) =g(xν , yk,ν) +
αν
k

2
〈yk,ν − bk,ν , b

k,ν − yk,ν〉

≤g(xν , yk,ν) + α

8
‖bk,ν − bk,ν‖22

holds. In view of Lemma 3.3.5 we have limν→∞ ‖bk,ν − bk,ν‖22 = 0, so that there is
some ν0 ∈ N with g(xν , yk,ν) ≥ −2ǫact for all ν ≥ ν0. Altogether this leads to

g(xν , yk,ν) ∈ [−2ǫact, 0], k = 1, . . . , n+ 1

for all ν ≥ ν0, which shows the assertion.

We have shown that there exists a ν0 ∈ N so that xν0 with all data is an ǫstat-stationary
point of SIP with 2ǫact-active, ǫY -feasible indices with respect to BNν0 ,ν0 . Hence, Algo-
rithm 4 would terminate with xν0 , in contradiction to the assumption.

4.4 A first numerical example

In this section we investigate the problem discussed in Section 3.4. We implemented
the presented algorithms in Matlab 7.10.0 (R2010a). The parameter α was computed
using the theorem of Gerschgorin and theMatlab toolbox Intlab 5.5, [43]. The nonlinear
subproblems were solved using fmincon from theMatlab Optimization Toolbox Version
5.0 with default tolerances. The example was run on a 2.4 GHz AMD Athlon 64 X2
processor with 4 GB RAM under Ubuntu 10.04 (lucid). For more implementation details
we refer to Chapter 7.

46

4.4 A first numerical example

0 0.5 1
−0.055

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

y
0 0.5 1

−0.055

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

y

a) b)

Figure 4.2: a) The error function at x∗ for sin (πy) −
(

x3y
2 + x2y + x1

)

on Y = [0, 1] computed with
Algorithm 2. b) The error function at x∗ for − sin (πy) + x3y

2 + x2y + x1 on Y = [0, 1]
computed with Algorithm 4.

The problem from Section 3.4 is a Chebychev approximation problem (cf. Chapter 1).
We want to compute a point x ∈ R

3 so that the maximal approximation error of the
function a (x, y) = x3y

2 + x2y + x1 to F (y) = sin (πy) becomes small. Reformulating
the problem as a semi-infinite problem we arrive at

SIPCA : min
x∈R4

x4 s.t. sin (πy)−
(

x3y
2 + x2y + x1

)

− x4 ≤ 0, y ∈ [0, 1]

− sin (πy) + x3y
2 + x2y + x1 − x4 ≤ 0, y ∈ [0, 1] .

For the set X we choose X = [−1, 1] × [3, 5] × [−5,−3] × [0, 3] and we set B = Y .
As a termination tolerance on the stationarity and on the activities of the constraints
we choose ǫ = ǫact = 10−3. For the feasibility of the indices we choose ǫY = 0.035.

Furthermore we set ǫsplit = min
(

2ǫactmin
(

1, 1
α‖b−b‖22

)

, 12 − ǫY

)

. We have to mention

that we do not need a reduced outer approximation for the set Y . It can be handled
exactly by the algorithm.

As a starting point we used the same point as in Chapter 3, that is, x0 = (1, 5,−3, 2).
After 1 iteration (0.88 CPU seconds) we obtain the feasible starting point

x1 = (0.6336, 3.0164,−4.7823, 2.5498)T .

After 7 more iterations (22.9 CPU seconds) the algorithm terminates with the point

x∗ = (−0.028005, 4,−4, 0.028005)T

with the objective value 0.028005. The error functions are illustrated in Figure 4.2 and
the approximating function in Figure 4.3. As termination criteria we used the norm of
the stationarity condition, and, additionally, we required that the change in the value of
the objective function is less then 10−3 and the norm of the change in the iterates is less
then 10−2. At x∗ the norm of the stationarity condition is 1.4296 · 10−15, the change in

47

4 The Adaptive-Convexification Algorithm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.3: The blue line represents the function sin (πy) and the red line the approximation a (x∗, y)
computed with Algorithm 4.

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

iteration

Figure 4.4: Overall number of boxes in each iteration for SIPCA generated by Algorithm 4.

the value of the objective function is 6.7847 · 10−6, and the norm of the change in the
iterates is 0.000118.

As desired, the algorithm has a better numerical performance then the algorithm pre-
sented in Chapter 3. At first we look at the overall number of boxes generated during
the iterations. It is displayed in Figure 4.4.

The number of generated boxes increases only linearly, and in the last iteration the total
amount of boxes is 18. Notice here that each generated box corresponds to an increase
in the number of variables by 3, in the nonlinear inequality constraints by 1, and in
the nonlinear equality constraints by 3. Thus, in the last iteration a problem with 58
variables, 18 nonlinear inequality and 54 nonlinear equality constraints must be solved.

The error made by the convexification procedure on a box Bk is αk

8 ‖bk − bk‖22. Thus, it

48

4.4 A first numerical example

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

iteration
0 2 4 6 8

0

2

4

6

8

10

12

iteration

a) b)

Figure 4.5: a) The maximum and minimum diameter of the boxes containing active indices generated
by Algorithm 4 in each iteration. b) The black line is the maximum of the constants α on
the boxes containing active indices and the red line is the error made by the convexification
procedure in each iteration.

seems likely that this behavior can be traced back to the changes in the error. Figure 4.5
illustrates the latitude of boxes containing active indices and the maximum of the con-
stant α in each iteration, as well as the error made by the convexification procedure on
boxes containing active indices.

As in the adaptive reduction algorithm, the error decreases very fast during the first
iterations, while it seems to get stuck in the later iterations. In the last two iterations
the error is around 2.3387 · 10−4 and 9.6327 · 10−6. Thus, the error is essentially smaller
than in the former algorithm.

In this section we do not give an example that illustrates the performance of the algo-
rithms if the index set Y is not box shaped, and, thus, reduced outer approximations are
needed. We refer to Chapter 8 for that, since, it will reveal some other problems, espe-
cially in a phase 1 algorithm. In the next chapter we will discuss adaptation strategies
of the set X for both algorithms, the adaptive reduction and the adaptive convexifica-
tion algorithm. With the additional adaptation the values for L, L and, respectively, α
should be further reduced. Thus, the error by relaxing the constraints should become,
additionally, smaller.

49

5 An X-adaptation method

In this chapter we discuss an X-adaptation procedure for the Adaptive-Reduction and
the Adaptive-Convexification Algorithm.

The solution concept of the algorithms presented in the former chapters is that of sta-
tionary points and not that of global optimizers. As we can only expect to find local
minimizers for a problem SIP , we do not need the global set X, but, we can restrict the
optimization process to some subset of X that contains a stationary point in its interior.
Since the set X affects the size of the constants L, L and α the maximum separation
distance of the original and the relaxed constraints should be reduced for some subset
of X. However, as one does not have such a subset for an arbitrary problem in general,
one can try to choose some subset of X and move it until a stationary point is in its
interior.

In the sequel, in view of the later algorithms, we will denote a subset of X by Xν for
some ν ∈ N. Further, let Y ⊂ B ⊂ R

m and let BN = (Bk, k = 1, . . . , N) be a reduced
outer approximation of Y .

5.1 The Adaptive-Reduction Algorithm with X-adaptation

5.1.1 Relaxation and reformulation

We recall that from the formulas (3.1) and (3.2) we have that Lν,k, L
ν,k

: IRm × IR
m 7→

R
m are defined by

L
(

Xν , Bk
)

:=







min(0,L1

(

Xν , Bk
)

)
...

min(0,Lm

(

Xν , Bk
)

)






and L

(

Xν , Bk
)

:=







max(0,L1

(

Xν , Bk
)

)
...

max(0,Lm

(

Xν , Bk
)

)







with

Li

(

Xν , Bk
)

< min
(x,y)∈Xν×Bk

(
∂

∂yi
g(y)) and Li

(

Xν , Bk
)

> max
(x,y)∈Xν×Bk

(
∂

∂yi
g(y)).

We will use Lν,k and L
ν,k

for L
(

Xν , Bk
)

, respectively L
(

Xν , Bk
)

, to keep the notation

short. Let cν,k ∈ R
m with cν,kj :=

L
ν,k
j bkj−L

ν,k
j b

k
j

L
ν,k
j −L

ν,k
j

for each j = 1, . . . ,m. Define an unimodal

51

5 An X-adaptation method

overestimator (w.r.t. y) of the restriction g on Xν ×Bk by

ĝν,k : Xν ×Bk −→ R, (x, y) 7−→ g(x, y) + φ
(

y; cν,k, Bk, Lν,k, L
ν,k
)

.

Due to

min
(x,y)∈X×B

(
∂

∂yi
g(y)) ≤ min

(x,y)∈Xν×Bk
(
∂

∂yi
g(y))

and

max
(x,y)∈X×B

(
∂

∂yi
g(y)) ≥ max

(x,y)∈Xν×Bk
(
∂

∂yi
g(y)),

both, Lν,k and L
ν,k

can always be chosen so that L (X,B) ≤ Lν,k and L (X,B) ≥ L
ν,k

hold for each k = 1, . . . , N . The next results are immediate consequences of Lemma 3.1.2.

Lemma 5.1.1.

(i) For all k = 1, . . . , N and (x, y) ∈ Xν ×Bk the relation g(x, y) ≤ ĝν,k(x, y) holds.

(ii) For x ∈ Xν and k = 1, . . . , N the relaxation ĝν,k(x, y) is unimodal in the second
argument on Bk.

(iii) For all k = 1, . . . , N the maximum separation distance between ĝν,k and g on

Xν ×Bk is 〈Lν,k
, b

k − ck〉 = 〈Lν,k, bk − ck〉.
(iv) For each x ∈ Xν the point cν,k is the solution of max

y∈Bk
ĝν,k (x, y) for each k =

1, . . . , N .

(v) If x∗ ∈ Xν and ĝν,k
(

x∗, cν,k
)

≤ 0 holds for all k = 1, . . . , N , then we have x∗ ∈M .

Before we continue our discussion we give an example to illustrate the impact of the
X-adaptation on the constants L, L and the maximum separation distance.

Example 5.1.2. Let B = [−1, 1], X = [−2, 2] and g (x, y) = x3y. As ∇yg(x, y) = x3

we have L (B) = −8, L (B) = 8 and c = 0. Thus, we obtain

max
y∈B

dUF

(

y; c, B, L (B) , L (B)
)

= 16.

For X1 = [−1, 1] we obtain L
(

X1, B
)

= −1, L
(

X1, B
)

= 1 and c = 0. Thus, we have

max
y∈B

dUF

(

y; c, B, L
(

X1, B
)

, L
(

X1, B
))

= 2.

In this example the impact of the set X on the constants L, L is vast. Thus, by switching
to X1 the values of these constants and the maximum separation distance of the original
and the relaxed function could be reduced enormously.

52

5.1 The Adaptive-Reduction Algorithm with X-adaptation

Define the set

MUF

(

Xν ,BN
)

:= {x ∈ Xν |ĝν,k (x, y) ≤ 0 for all y ∈ Bk, k = 1, . . . , N}

and the semi-infinite problem

SIPUF

(

Xν ,BN
)

: min
x∈Rn

f(x) s.t. x ∈MUF

(

Xν ,BN
)

.

The straightforward proofs of the following results are omitted.

Lemma 5.1.3.

(i) We have MUF

(

Xν ,BN
)

⊂M .

(ii) Let SIPUF

(

Xν ,BN
)

be consistent. Then every global, local solution or stationary
point of SIPUF

(

Xν ,BN
)

is a feasible point of SIP .

From Lemma 5.1.1 (iv) we have that for each k = 1, . . . , N it holds ĝν,k (x, y) ≤ 0 for all
y ∈ Bk if and only if ĝν,k

(

x, cν,k
)

≤ 0 is true. Thus we obtain

MUF

(

Xν ,BN
)

= {x ∈ Xν |ĝν,k
(

x, cν,k
)

≤ 0 for all k = 1, . . . , N}.

Define

GUF (x) :=
(

ĝν,k
(

x, cν,k
))

k=1,...,N
.

Now SIPUF

(

Xν ,BN
)

can be equivalently reformulated as the nonlinear problem

PUF (X
ν ,BN) : min

x
f(x) s.t. GUF (x) ≤ 0

x ∈ Xν .

This problem may be tackled by different solvers. We briefly discuss that in Chapter 7,
Section 7.1.

5.1.2 Algorithms and X-Adaptation

Similar to the ideas presented in Chapter 3 the algorithm discussed in this section com-
putes a stationary point of SIPUF

(

Xν ,BN
)

with active indices and terminates if it is
also a stationary point of SIP within a given tolerance on stationarity and additional
tolerances on the feasibility of the indices. If the computed point is not approximately
stationary or the active indices are not approximately feasible, the reduced outer ap-
proximation BN of Y is refined, a new set Xν+1 ⊂ X is constructed and a respective
refined SIPUF is solved. One has to notice that a stationary point of SIPUF

(

Xν ,BN
)

may be an element of the topological boundary of Xν , since the entire feasible set

53

5 An X-adaptation method

MUF

(

Xν ,BN
)

is not necessarily in the interior of Xν . Thus, the stationary conditions
for SIPUF

(

Xν ,BN
)

are slightly different.

For a point x ∈ MUF

(

Xν ,BN
)

and points cν,k ∈ Bk, k = 1, . . . , N , define KUF
0,ν (x) :=

{k ∈ {1, . . . , N}|ĝν,k
(

x, cν,k
)

= 0}. As in Theorem 2.1.1, a point x ∈ MUF

(

Xν ,BN
)

is stationary for SIPUF

(

Xν ,BN
)

in the sense of John, if there exist an (n+ 1)-tuple

J with {J} ⊂ KUF
0,ν (x), and

(

κ, (λk)k∈J , (µl)l∈{1,...,n} , (ξr)r∈{1,...,n}

)

∈ σ3n+1 with only

n+ 1 non-vanishing entries, so that

κ∇f(x) +
∑

k∈J

λk∇xg(x, c
ν,k)−

n
∑

l=1

µlel +
n
∑

r=1

ξrer = 0

λkĝ
ν,k(x, cν,k) = 0, k ∈ J

µl (x
ν
l − x) = 0, l ∈ {1, . . . , n}

ξr (x− xνr) = 0, r ∈ {1, . . . , n},

where ei denotes the i-th unit vector. Notice here that ∇xĝ
ν,k(x, cν,k) = ∇xg(x, c

ν,k).
If we assume that x ∈ int (Xν) holds, the former stationary conditions reduce to the
condition given in Chapter 3. In the sequel we will call a point cν,k ∈ Bk with k ∈
KUF

0,ν (x) an active index of SIPUF

(

Xν ,BN
)

.

Using the splitting function from Chapter 3 and the techniques introduced there, a
splitting algorithm is stated in Algorithm 5. It also describes how the set MUF (X

ν ,BN)
of a refined problem SIPUF

(

Xν ,BN
)

is constructed.

As for Algorithm 1, it is not hard to see that each N−tuple (Bk, k = 1, . . . , N) generated
by Algorithm 5 is a reduced outer approximation of Y .

Now we discuss the adaptation of the set X. Lemma 3.3.3 implies that for some reduced
outer approximation BN of Y we have MUF

(

X,BN
)

⊂ MUF

(

X,BN∗)

with a refined
outer approximation BN∗

. But for some sets Xν , Xν+1 ⊂ X, as Example 5.1.5 will
also show, we can not ensure such a property for MUF

(

Xν ,BN
)

and MUF

(

Xν+1,BN∗)

.
However, in the later convergence proof we will only need that for a special point of
interest x∗ ∈MUF

(

Xν ,BN
)

, for example a solution of SIPUF

(

Xν ,BN
)

, we can ensure
that there is some reduced outer approximation BN∗

and a set Xν+1 so that x∗ ∈
MUF

(

Xν+1,BN∗)

holds. The next lemma gives a first impression that finding such a
subset Xν+1 may be a hard task.

Lemma 5.1.4. Let X1, X2 ⊂ X so that X1 ∩X2 6= ∅, BN be some partition of B, and

let L1,k, L
1,k

and L2,k, L
2,k

be Lipschitz parameters on X1 × Bk, X2 × Bk for some
box Bk ∈ BN and a constraint g. Let c1,k, c2,k be the corresponding centers. If there is
some x∗ ∈ X1 ∩X2 with ĝ1,k (x∗, y) ≤ 0 for each y ∈ Bk and g

(

x∗, c2,k
)

≤ g
(

x∗, c1,k
)

,

then L1,k
j L

2,k
j ≤ L

1,k
j L2,k

j and L
2,k
j ≤ L

1,k
j , j ∈ {1, . . . ,m}, implies that ĝ2,k (x∗, y) ≤ 0

holds for each y ∈ Bk.

Proof. We have ĝ2,k (x∗, y) ≤ 0 for each y ∈ Bk if and only if ĝ2,k
(

x∗, c2,k
)

≤ 0 is true.

54

5.1 The Adaptive-Reduction Algorithm with X-adaptation

Algorithm 5 Splitting step - XrefineUF (η)

Let η ∈ Bk∗ , k∗ ∈ {1, . . . , N}, and let Sk∗ be the barycenter of Bk∗ and

Qk∗ =
min

l∈Pk∗

(

b
k∗

l −bk
∗

l

)

‖b
k∗

−bk
∗
‖∞

.

if η /∈ Y or Qk∗ < ǫ then
Set η = Sk∗ .

end if

if P k∗ 6= ∅ then

Compute
(

Bk∗,(1), Bk∗,(2)
)

= S(Bk∗ , η).

Compute Lν,k∗,(1), Lν,k∗,(2) ≥ Lν,k∗ and L
ν,k∗,(1)

, L
ν,k∗,(2) ≤ L

ν,k∗

on Xν × Bk∗,(1),
Xν ×Bk∗,(2) and set

cν,k
∗,(1) =

(

L
ν,k∗,(1)
1 b

k∗,(1)
1 −L

ν,k∗,(1)
1 b

k∗,(1)
1

L
ν,k∗,(1)
1 −L

ν,k∗,(1)
1

. . . L
ν,k∗,(1)
m b

k∗,(1)
m −L

ν,k∗,(1)
m b

k∗,(1)
m

L
ν,k∗,(1)
m −L

ν,k∗,(1)
m

)T

cν,k
∗,(2) =

(

L
ν,k∗,(2)
1 b

k∗,(2)
1 −L

ν,k∗,(2)
1 b

k∗,(2)
1

L
ν,k∗,(2)
1 −L

ν,k∗,(2)
1

. . . L
ν,k∗,(2)
m b

k∗,(2)
m −L

ν,k∗,(2)
m b

k∗,(2)
m

L
ν,k∗,(2)
m −L

ν,k∗,(2)
m

)T

ĝν,k
∗,(1)(x, y) = g(x, y) + φ

(

y; cν,k
∗,(1), Bk∗,(1), Lν,k∗,(1), L

ν,k∗,(1)
)

ĝν,k
∗,(2)(x, y) = g(x, y) + φ

(

y; cν,k
∗,(2), Bk∗,(2), Lν,k∗,(2), L

ν,k∗,(2)
)

M (1) = {x ∈ Xν | ĝν,k∗,(1)(x, cν,k∗,(1)) ≤ 0}
M (2) = {x ∈ Xν | ĝν,k∗,(2)(x, cν,k∗,(2)) ≤ 0}
M̃ = {x ∈ Xν | ĝν,k(x, ck) ≤ 0 for all k ∈ {1, . . . , N} \ {k∗}}

if Y ∩Bk∗,(1) 6= ∅ and Y ∩Bk∗,(2) 6= ∅ then

Replace Bk∗ by Bk∗,(1) and Bk∗,(2) and replace Lν,k∗ , L
ν,k∗

by Lν,k∗,(1), Lν,k∗,(2)

and L
ν,k∗,(1)

, L
ν,k∗,(2)

.
Set MUF (X

ν ,BN) = M̃ ∩M (1) ∩M (2).
Set N = N + 1.

else if Y ∩Bk∗,(1) 6= ∅ then

Replace Bk∗ by Bk∗,(1) and Lν,k∗ , L
ν,k∗

by Lν,k∗,(1) and L
ν,k∗,(1)

.
Set MUF (X

ν ,BN) = M̃ ∩M (1).
else if Y ∩Bk∗,(2) 6= ∅ then

Replace Bk∗ by Bk∗,(2) and Lν,k∗ , L
ν,k∗

by Lν,k∗,(2) and L
ν,k∗,(2)

.
Set MUF (X

ν ,BN) = M̃ ∩M (2).
else

Delete Bk∗ and Lν,k∗ , L
ν,k∗

.
Set MUF (X

ν ,BN) = M̃ .
Set N = N − 1.

end if

end if

55

5 An X-adaptation method

For each j ∈ {1, . . . ,m} the condition L1,k
j L

2,k
j ≤ L

1,k
j L2,k

j is equivalent to
L
2,k
j

(

b
k
j−bkj

)

L
2,k
j −L

2,k
j

≤
L
1,k
j

(

b
k
j−bkj

)

L
1,k
j −L

1,k
j

. As L
2,k ≤ L

1,k
and g

(

x∗, c2,k
)

≤ g
(

x∗, c1,k
)

we obtain

ĝ
(

x∗, c2,k
)

= g
(

x∗, c2,k
)

+ 〈L2,k
, b

k − c2,k〉

= g
(

x∗, c2,k
)

+ 〈L2,k
,





L2,k
j

(

b
k

j − bkj

)

L
2,k
j − L2,k

j





j=1,...,m

〉

≤ g
(

x∗, c1,k
)

+ 〈L2,k
,





L2,k
j

(

b
k

j − bkj

)

L
2,k
j − L2,k

j





j=1,...,m

〉

≤ g
(

x∗, c1,k
)

+ 〈L1,k
,





L1,k
j

(

b
k

j − bkj

)

L
1,k
j − L1,k

j





j=1,...,m

〉

≤ 0.

Lemma 5.1.4 says that x∗ stays feasible, while switching from X1 to X2, if the corre-
sponding values for the constraints in the computed centers c1,k, c2,k and the parameters

Li,k, L
i,k
, i = 1, 2, are non-increasing. But, as the next example shows, that can not be

ensured in general, even if the diameter if X1 is larger then the diameter of X2.

Example 5.1.5. Let X1 = [−2, 2], X2 = [0, 3], Y = [0, 2] and let M = {x ∈ R|g (x, y) =
(

x2 − x
)

y − 4 ≤ 0 for all y ∈ Y }. It is not hard to see that 0 ∈ M . Since ∇y ĝ (x, y) =
x2 − x, we obtain L = −2, L = 6 and c = 2 on X1 × Y . On X2 × Y we obtain L = −3,
L = 9 and c = 2. Thus, the relaxed constraints on X1 × Y and X2 × Y result in

ĝ1 (x, y) =
(

x2 − x
)

y − 4 + 2y,

respectively
ĝ2 (x, y) =

(

x2 − x
)

y − 4 + 3y.

For x∗ = 0 we have
ĝ1 (x∗, y) = −4 + 2y,

and
ĝ2 (x∗, y) = −4 + 3y.

Thus, we have ĝ1 (x∗, y) ≤ 0 for all y ∈ Y , while ĝ2 (x∗, 2) > 0. Even though the diameter
of X1 is larger then the diameter of X2, x∗ is a feasible point of the set MUF (X

1, Y),
while it is not a feasible point of MUF (X

2, Y). Thus, a given point of interest, feasible
for some choice of a subset of X, may not be feasible for another choice of a subset.

56

5.1 The Adaptive-Reduction Algorithm with X-adaptation

Since the first summands in ĝ1 and ĝ2 coincide, a reduction of the maximum value of
the second summand in ĝ2 below the maximum value of the second summand of ĝ1 may
avoid that problem. Keeping the set X2 unchanged, the maximum value of the second
summand is related to the diameter of the set Y . By splitting Y into smaller sets one
may reduce that value as we show next. Let B1 = [0, 1], B1 = [1, 2] and B2 =

(

B1, B2
)

.
On X2×B1 we have c = 1 and, thus, ĝ2,1 (x∗, y) = −4+3y. On X2×B2 we have c = 7

4
and, thus, ĝ2,2 (x∗, y) = −4 − 3 (1− y) for y < c, and ĝ2,2 (x∗, y) = −4 + 9 (2− y) for
y ≥ c. It is not hard to see that B2 is a tessellation of Y and ĝ2,i (x∗, y) ≤ 0 for each
y ∈ Bi and each i = 1, 2. Thus, x∗ is a feasible point of MUF (X

2,B2).

The next lemma generalizes the observations made in Example 5.1.5. That is, if a point
of interest is not in MUF (X

ν ,BN) for some set Xν and a tessellation BN , then there is
a refined tessellation BN∗

so that this point is in MUF (X
ν ,BN∗

). For the proof of this
lemma we first extend the splitting operator introduced in Section 3.2. Let S (B) denote
the barycenter of a box B. For ρ ≥ 1 define the ρ-times splitting operator Sρ of a box
B by

Sρ (B,S (B)) :=
(

Sρ−1
(

B1, S
(

B1
))

,Sρ−1
(

B2, S
(

B2
)))

,

with S1 (B,S (B)) = S (B,S (B)). Thus, Sρ (B,S (B)) generates a tessellation of B
with 2ρ boxes.

Lemma 5.1.6. Let X1, X2 ⊂ X, x∗ ∈ X1 ∩ X2 and BN be some partition of B. Let

there be some box Bk ∈ BN and Lipschitz parameters L1,k, L
1,k 6= 0 and L2,k, L

2,k 6= 0 for
a constraint g on X1×Bk, X2×Bk so that ĝ1,k (x∗, y) ≤ 0 for each y ∈ Bk, and let there
be some y∗ ∈ Bk so that ĝ2,k (x∗, y∗) > 0 is satisfied. There is a partition BN∗

of B so
that for each k∗ with Bk∗ ∈ BN∗

and Bk∗ ⊂ Bk, and corresponding Lipschitz parameters

L2,k∗ , L
2,k∗

on X2 × Bk∗, the relaxation ĝ2,k
∗
is unimodal in the second argument and

ĝ2,k
∗
(x∗, y) ≤ 0 for each y ∈ Bk∗.

Proof. By construction it is clear that ĝ2,k
∗
is unimodal in the second argument. If

we show that there is a partition BN∗
of B so that for each k∗ with Bk∗ ∈ BN∗

and
Bk∗ ⊂ Bk the inequality ĝ2,k

∗
(x∗, y) ≤ ĝ1,k (x∗, y) holds for each y ∈ Bk∗ the assertion

of the lemma follows immediately. Let L be the Lipschitz parameter for g on X × B

and let L = (L, . . . ,L)T ∈ R
m. The parameters L2,k∗ and L

2,k∗
can always be chosen so

that −L < L2,k∗ and L > L
2,k∗

for each k∗ and X2 ⊂ X. Thus, it is sufficient to show
that there is a partition BN∗

of B so that for each k∗ with Bk∗ ∈ BN∗
and Bk∗ ⊂ Bk

the inequality

φ
(

y; c2,k
∗

, Bk∗ ,−L,L
)

≤ φ
(

y; c1,k, Bk, L1,k, L
1,k
)

holds for each y ∈ Bk∗ and each k∗.

Let ρ ≥ 1 and let BN∗
arise from BN by applying Sρ to the box Bk in BN . Let Bk∗ ⊂ Bk

be a box in BN∗
and y ∈ Bk∗ . Let φ

(

y; c1,k
∗
, Bk, L1,k, L

1,k
)

= 0 hold for that y. As

57

5 An X-adaptation method

L1,k, L
1,k 6= 0 Lemma 2.2.3 (iv) implies that y is a vertex of Bk, and, thus, also a vertex of

Bk∗ . That implies φ
(

y; c2,k
∗
, Bk∗ ,−L,L

)

= 0, as with L1,k, L
1,k 6= 0 we also have L 6= 0.

Let c > 0 with φ
(

y; c1,k
∗
, Bk, L1,k, L

1,k
)

≥ ‖L‖2c. It is not hard to see that the relation

φ
(

y; c2,k
∗
, Bk∗ ,−L,L

)

≤ ‖L‖2‖bk
∗

− bk
∗‖2 holds. From Lemma 3.3.4 we obtain that the

inequality ‖bk
∗

− bk
∗‖2 ≤

(

1− 3
4m

)
ρ
2 ‖bk − bk‖2 holds. Since 0 < 1 − 3

4m < 1 for each

m, we have that for each c > 0 there is some some ρ so that
(

1− 3
4m

)
ρ
2 ‖bk − bk‖2 ≤ c.

Altogether we have that there is some ρ so that

φ
(

y; c2,k
∗

, Bk∗ ,−L,L
)

≤ ‖L‖2‖bk
∗

− bk
∗‖2

≤ ‖L‖2
(

1− 3

4m

)
ρ
2

‖bk − bk‖2

≤ φ
(

y; c1,k, Bk, L1,k, L
1,k
)

holds.

The way a subset of X is generated will first be characterized by abstract properties
needed within the later convergence proof of our algorithm. Later we will give two
examples for adaptation strategies possessing these features.

Condition 5.1.7. Given a point x and a set Xν ⊂ X, with x ∈ Xν , the new Xν+1 is
generated so that the following properties hold.

(i) x ∈ int
(

Xν+1
)

.

(ii) If x ∈ ∂Xν then there is some constant c1 > 1 so that for each ν the relation
‖xν+1 − xν+1‖2 ≥ c1‖xν − xν‖2 holds.

(iii) There is some c2 > 0 so that ‖xν+1 − xν+1‖2 > c2.

(iv) Xν+1 ⊂ X.

Using Lemma 5.1.6 and Condition 5.1.7 the X-adaptation algorithm is stated in Algo-
rithm 6.

With Lemma 5.1.6 we have that Algorithm 6 is well defined. That is, after finitely many
splitting steps the set J is empty. Using the splitting and the X-adaptation algorithm,
the adaptive reduction algorithm with X-adaptation is stated in Algorithm 7.

If for a given reduced outer approximation BN the problem SIPUF

(

X0,BN
)

is not
consistent in Algorithm 7, a phase 1 algorithm can be performed.

5.1.3 Convergence results

At first we show that Algorithm 7 is well defined. In fact, if for some iterate xν ∈
int (Xν), the set P k is empty at each active index ck of an approximating problem

58

5.1 The Adaptive-Reduction Algorithm with X-adaptation

Algorithm 6 X-Adaptation - XadaptUF (x,∆x)

Let x ∈ Xν , and BN a reduced outer approximation of Y .
Generate a set Xν+1 ⊂ X so that Condition 5.1.7 is satisfied.
Compute new parameters Lν+1,k, L

ν+1,k
and cν+1,k on Xν+1 × Bk for each k ∈

{1, . . . , N} and replace Lν,k, L
ν,k

by Lν+1,k, L
ν+1,k

as well as cν,k by cν+1,k. For each
k ∈ {1, . . . , N} set

ĝν+1,k(x, y) = g(x, y) + φ
(

y; cν+1,k, Bk, Lν+1,k, L
ν+1,k

)

Set J = {k ∈ {1, . . . , N}|ĝν+1,k (x, y) > 0 for some y ∈ Bk}.
while J 6= ∅ do

for k ∈ J do

Let Sk be the barycenter of Bk.
XrefineUF (S

k)
end for

Set K = {k ∈ {1, . . . , N}|ĝν+1,k (x, y) > 0 for some y ∈ Bk}.
end while

SIPUF (X
ν ,BN), the reduced outer approximation of Y is not refined any further. Thus,

we are in the same situation as in Chapter 3. That is, Algorithm 7 might loop. However,
the following lemma is a direct consequence of Lemma 3.3.2 and shows that the algorithm
terminates in this case.

Lemma 5.1.8. Let Xν ⊂ X and x ∈ int (Xν) be a stationary point of SIPUF

(

Xν ,BN
)

with ǫact-active indices ck, k ∈ Jν , for an (n+ 1)-tuple Jν , {Jν} ⊂ KUF
0,ν (x). Let

(κ, (λk)k∈Jν , (µl)l∈{1,...,n} , (ξr)r∈{1,...,n}) be the corresponding multipliers, and let the re-

fined reduced outer approximation arising from applying Algorithm 5 to each ck, k ∈ Jν ,
coincide with BN . Then Algorithm 7 terminates at x.

The next lemma is an implication of Lemma 3.3.3. It means that refining a given
reduced outer approximation BN of Y by means of Algorithm 5, using the splitting
function, enlarges the feasible set of SIPUF

(

Xν ,BN
)

.

Lemma 5.1.9. Let a reduced outer approximation BN of Y be given, and for a split-
ting point ck ∈ Bk let BÑ be the refinement of BN by means of Algorithm 5. Then
MUF (X

ν ,BN) ⊂MUF (X
ν ,BÑ) holds.

Since Algorithm 5 is used in Algorithm 6, Lemma 5.1.9 together with Condition 5.1.7 (i)

implies that for a point x ∈MUF (X
ν ,BN) we also have x ∈MUF (X

ν+1,BÑ). Here, BÑ

denotes a refinement of a reduced outer approximation BÑ by means of Algorithm 5.

Now we state the main convergence result.

59

5 An X-adaptation method

Algorithm 7 Adaptive reduction algorithm - Xara

Choose X ⊂ R
n with M ⊂ X, B =

[

b, b
]

⊂ R
m with Y ⊂ B and compute L,L on

X ×B.
Set ν = 0, X0 = X and L = max(‖L‖∞, ‖L‖∞) ∈ R.
Determine a reduced outer approximation BN of Y with some N ∈ N as well as

L0,k ≤ L, L
0,k ≥ L and c0,k on X0 × Bk, k = 1, . . . , N , so that SIPUF

(

X0,BN
)

is
consistent.
Choose ǫact, ǫstat, ǫY > 0 and ǫsplit ∈

(

0, 12
)

with ǫsplit ≤ ǫact/
(

L‖b− b‖1
)

.
Compute a stationary point x0 of SIPUF

(

X0,BN
)

with ǫact-active indices c0,k,
k ∈ J0 for some (n+ 1)-tuple J0 with {J0} ⊂ KUF

0,0

(

x0
)

, and 3n + 1 multipliers
(

κ, (λk)k∈J0 , (µl)l∈{1,...,m} , (ξr)r∈{1,...,m}

)

by solving PUF

(

X0,BN
)

so that n+1 mul-

tipliers are non-vanishing.
while xν is not a stationary point of SIP with 2ǫact-active, ǫY -feasible indices cν,k,
k ∈ Jν , with respect to BN , and multipliers (κ, λk∈Jν) do

for k ∈ Jν do

XrefineUF (c
k)

end for

if ν > 1 then

Set ∆xν = ‖xν − xν−1‖∞.
XadaptUF (x

ν ,∆xν)
else

Set X1 = X.
end if

Set ν = ν + 1.
Compute a stationary point xν of SIPUF

(

Xν ,BN
)

with ǫact-active indices cν,k,
k ∈ Jν for some (n+ 1)-tuple Jν with {Jν} ⊂ KUF

0,ν (xν), and 3n + 1 multipliers
(

κ, (λk)k∈Jν , (µl)l∈{1,...,m} , (ξr)r∈{1,...,m}

)

by solving PUF

(

Xν ,BN
)

so that n + 1

multipliers are non-vanishing.
end while

Theorem 5.1.10. Algorithm 7 terminates after finitely many steps.

Proof. We give the proof by enforcing a contradiction. Assume that Algorithm 7 does not
terminate. Then there exist sequences of reduced outer approximations

(

BNν ,ν
)

ν
of Y ,

(Xν)ν , (x
ν)ν ,

(

KUF
0,ν (xν)

)

ν
, (n+ 1)-tuples (Jν)ν with {Jν} ⊂ KUF

0,ν (xν),
(

(

ck,ν
)

k∈Jν

)

ν

and multipliers
(

κν , (λνk)k∈Jν , (µ
ν
l)l∈{1,...,n} , (ξ

ν
r)r∈{1,...,n}

)

ν
with only n+1 non-vanishing

entries, so that for each ν the point xν is stationary for SIPUF (X
ν ,BNν ,ν) with ǫact-active

indices
(

ck,ν
)

k∈Jν and multipliers
(

κν , (λνk)k∈Jν , (µ
ν
l)l∈{1,...,n} , (ξ

ν
r)r∈{1,...,n}

)

ν
, while xν

with all data is not ǫstat-stationary for SIP with 2ǫact-active, ǫY -feasible indices with
respect to BNν ,ν .

60

5.1 The Adaptive-Reduction Algorithm with X-adaptation

To derive a contradiction, in step 1. the existence of an accumulation point of the se-
quence (xν)ν is shown. In step 2. and 3. it is shown that for infinitely many ν the point xν

is an interior point of the boxXν and, thus, the multipliers (µνl)l∈{1,...,n} and (ξνr)r∈{1,...,n}
vanish for infinitely many ν. Then, in the steps 4. and 5. the existence of accumulation

points of the sequences
(

(

ck,ν
)

k∈Jν

)

ν
and

(

κν , (λνk)k∈Jν , (µ
ν
l)l∈{1,...,n} , (ξ

ν
r)r∈{1,...,n}

)

ν
is

shown. After that it is shown in steps 6. to 8. that there exists a ν0 ∈ N so that xν with
all data is an ǫstat-stationary point for SIP with 2ǫact-active, ǫY -feasible indices with
respect to BNν ,ν for infinitely many ν ≥ ν0.

1. Assertion: The sequence (xν)ν has an accumulation point x∗ ∈M .

Since (xν)ν is contained in the compact set X, it possesses an accumulation point
x∗ ∈ X. For i ≥ 0 let M̃ i :=

⋃i
ν=1MUF (X

ν ,BNν ,ν). By Lemma 5.1.9 and
Lemma 5.1.3 we have M̃0 ⊂ M̃1 ⊂ M̃2 ⊂ . . . ⊂ M . Thus, we have that (xν)ν is
also contained in the closed set M . From this the assertion immediately follows.

2. Assertion: There is some accumulation point x∗ ∈M of the sequence (xν)ν so that
for each ǫ > 0 there is some ν0 ∈ N so that it holds ‖x∗ − xν‖∞ ≤ ǫ as well as
xν ∈ int (Xν) for infinitely many ν ≥ ν0.

From step 1 we have that the sequence (xν)ν has an accumulation point x∗ ∈ M .
That means that for each ǫ > 0 there is some ν0 ∈ N so that it holds ‖x∗−xν‖∞ ≤ ǫ.
By Condition 5.1.7 (i),(iii) we have that the interior of Xν is nonempty. Thus, we
only have to distinguish two cases to show the assertion. The first case is that for
infinitely many ν ≥ ν0 we have xν ∈ int (Xν). That is exactly the statement of
the assertion. The second case is that there are not infinitely many ν ≥ ν0 with
xν ∈ int (Xν). In this case we have that there is some ν1 ≥ ν0 so that xν ∈ ∂Xν

for each ν ≥ ν1. Condition 5.1.7 (ii),(iv) and Assumption 1 imply that there is
some ν2 ≥ ν1 so that ∂Xν∩M = ∅ for each ν ≥ ν2. As x

ν ∈MUF (X
ν ,BNν ,ν) ⊂M

holds for each ν ∈ N, we obtain a contradiction.

3. Assertion: There is some ν0 ∈ N so that (µνl)l∈{1,...,n} = 0 and (ξνr)r∈{1,...,n} = 0
for infinitely many ν ≥ ν0.

For all ν the point xν with all data is stationary for SIPUF

(

Xν ,BN
)

. Thus, we
have that

µl (x
ν
l − x) = 0, l ∈ {1, . . . , n}

ξr (x− xνr) = 0, r ∈ {1, . . . , n}
holds. By step 2. there is some ν0 ∈ N so that xν ∈ int (Xν) holds for infinitely
many ν ≥ ν0. Thus, we obtain the assertion.

4. Assertion: The sequence
(

(

ck,ν
)

k∈Jν

)

ν
has an accumulation point

(

ck,∗
)

k∈J∗ ∈
Y n+1.

Step 3. implies that there is some ν0 ∈ N so that
(

cj,ν
)

k∈Jν ∈ R
n+1 with pairwise

different entries for infinitely many ν ≥ ν0. Thus, by possibly switching to a

61

5 An X-adaptation method

subsequence, it is sufficient to show the existence of an accumulation point in
Y for every component of the sequence of the (n + 1)-tuple. Let

(

ck
∗,ν
)

ν
, k∗ ∈

{1, . . . , n+1}, be a sequence of such components. As in the proof of Theorem 4.3.4
we will distinguish two cases. For the first case assume that for ν ≥ ν0 we have
ck

∗,ν ∈ Y for infinitely many ν ∈ N. By the compactness of Y , the subsequence of
these points possesses an accumulation point in Y .

In the second case there is some ν1 ∈ N with ν1 ≥ ν0 so that ck
∗,ν /∈ Y for all

ν ≥ ν1. Let (B
k∗,ν)ν be the sequence of boxes with ck

∗,ν ∈ Bk∗,ν .

After possibly switching to a subsequence we may assume that (Bk∗,ν)ν satisfies
Bk∗,ν ⊃ Bk∗,ν+1 for ν ∈ N, since for each ν the reduced outer approximation BNν ,ν

of Y only contains finitely many boxes. As Algorithm 5 subdivides each box Bk∗,ν

with ck
∗,ν /∈ Y at its barycenter, Lemma 3.3.4 implies that the maximum edge

lengths of the Bk∗,ν , ν ∈ N, tend to zero. Due to Bj∗,ν ∩ Y 6= ∅, ν ∈ N, we arrive
at

lim
ν→∞

min
y∈Y

‖ck∗,ν − y‖2 = 0

and, thus, the assertion.

5. Assertion: The sequence
(

κν , (λνk)k∈Jν , (µ
ν
l)l∈{1,...,n} , (ξ

ν
r)r∈{1,...,n}

)

ν
has an accu-

mulation point (κ∗, λ∗, 0, 0) ∈ σ3n+1.

This is clear from the compactness of σ3n+1 and step 3.

6. Assertion: There exists a ν0 ∈ N so that each
(

ck,ν
)

ν
with k ∈ Jν is ǫY -feasible

with respect to BNν ,ν for Y for all ν ≥ ν0.

With Lemma 3.3.5 the assertion results as in the proof of Theorem 3.3.6, step 4.

7. Assertion: There is some ν0 ∈ N so that for infinitely many ν ≥ ν0 the point xν is
ǫstat-stationary for SIP with multipliers (κν , λν) ∈ σn+1.

Since for all ν the point xν is stationary for SIPUF

(

Xν ,BN
)

with ǫact-active indices
(

ck,ν
)

k∈Jν and multipliers
(

κν , (λνk)k∈Jν , (µ
ν
l)l∈{1,...,n} , (ξ

ν
r)r∈{1,...,n}

)

, parts 1.,3.,4.

and 5. of this proof together with a continuity argument entail

κ∗∇f(x∗) +
∑

k∈J∗

λ∗k∇xg(x
∗, ck,∗) = 0.

Hence there is some ν0 ∈ N so that for infinitely many ν ≥ ν0

‖κν∇f(xν) +
∑

k∈Jν

λνk∇xg(x
ν , ck,ν)‖ ≤ ǫstat

holds.

8. Assertion: There is some ν0 ∈ N so that for infinitely many ν ≥ ν0 and each
k ∈ Jν the index ck,ν is 2ǫact-active for g.

62

5.2 The Adaptive-Convexification Algorithm with X-adaptation

With step 2. of this proof the assertion results as in the proof of Theorem 4.3.4,
step 6.

With these assertion we have that there exists a ν0 ∈ N so that for infinitely ν ≥ ν0 the
point xν with all data is an ǫstat-stationary point of SIP with 2ǫact-active, ǫY -feasible
indices with respect to BNν0 ,ν0 . Hence, Algorithm 7 would terminate with a xν , ν ≥ ν0,
in contradiction to the assumption.

5.2 The Adaptive-Convexification Algorithm with X-adaptation

5.2.1 Relaxation and reformulation

Let λmax(x, y) be the maximal eigenvalue of D2
yg(x, y). Define a concave overestimator

(w.r.t. y) of the restriction of g to Xν ×Bk by

ğν,k : Xν ×Bk −→ R, (x, y) 7−→ g(x, y) + ψ(y;αν
k, B

k)

with αν
k > max{0,max(x,y)∈Xν×Bk λmax (x, y)}. Due to

α ≥ max{0, max
(x,y)∈X×B

λmax (x, y)} ≥ max{0, max
(x,y)∈Xν×Bk

λmax (x, y)}

αν
k can always be chosen so that αν

k ≤ α holds for each k = 1, . . . , N . The next results
immediately follow from Lemma 4.1.2.

Lemma 5.2.1.

(i) For all k = 1, . . . , N and (x, y) ∈ Xν ×Bk the relation g(x, y) ≤ ğν,k(x, y) holds.

(ii) For x ∈ Xν and k = 1, . . . , N the relaxation ğν,k(x, y) is concave in the second
argument on Bk.

(iii) For all k = 1, . . . , N the maximum separation distance between ğν,k and g on

Xν ×Bk is
αν
k

8 ‖bk − bk‖22.
(iv) If x ∈ Xν and ğν,k (x, y) ≤ 0 holds for all y ∈ Bk, k = 1, . . . , N , then we have

x ∈M .

The X-adaptation can have an huge impact on the constant α, and, thus, on the max-
imum separation distance of ğ and g. Before we continue our discussion we give an
example to illustrate the impact of the X-adaptation.

Example 5.2.2. Let B = [−1, 1], X = [−2, 2] and g (x, y) = x2y3. As D2
yg(x, y) = 6x2y

we have α = 24. Thus, we obtain

max
y∈B

dαBB (y;α,B) = 6.

63

5 An X-adaptation method

For X1 = [−1, 1] we obtain α1 = 6. Thus, we have

max
y∈B

dαBB (y;α1, B) =
3

2
.

In this example the impact of the set X on the constant α is very huge. Thus, by
switching to X1 the values of this constant and the maximum separation distance of the
original and the relaxed function could be reduced enormously.

Define the set

MαBB

(

Xν ,BN
)

:= {x ∈ Xν |ğν,k (x, y) ≤ 0 for all y ∈ Bk, k = 1, . . . , N}
and the semi-infinite problem

SIPαBB

(

Xν ,BN
)

: min
x∈Rn

f(x) s.t. x ∈MαBB

(

Xν ,BN
)

as well as the lower level problems

Qν,k (x) : max
y∈Rm

ğν,k(x, y) s.t. y ∈ Bk

for k = 1, . . . , N . The straightforward proofs of the following results are omitted.

Lemma 5.2.3.

(i) We have MαBB

(

Xν ,BN
)

⊂M .

(ii) Let SIPαBB

(

Xν ,BN
)

be consistent. Then every global, local solution or stationary
point of SIPαBB

(

Xν ,BN
)

is a feasible point of SIP .

(iii) For αν
k > max

{

0,max(x,y)∈Xν×Bk λmax (x, y)
}

the solution of Qν,k (x) is unique

for each k = 1, . . . , N .

The problem SIPαBB

(

Xν ,BN
)

is equivalent to the Stackelberg game

SGαBB

(

Xν ,BN
)

: min
x,y1,...,yN

f(x) s.t. ğν,k(x, yk) ≤ 0,

x ∈ Xν ,

yk solves Qν,k (x) , k = 1, . . . , N.

For every k ∈ {1, . . . , N} the function ğν,k is concave in the second argument, and
Bk is convex and possesses a Slater point. For this reason the Karush-Kuhn-Tucker
conditions are necessary and sufficient for yk to be a solution of Qν,k (x). Thus for each
k ∈ {1, . . . , N} the point yk is a solution of Qν,k (x) if and only if there exist multipliers
γk, γk ∈ R

m with

∇y ğ
ν,k
(

x, yk
)

+ γk − γk = 0

0 ≤ yk − bk ⊥ γk ≥ 0

0 ≤ b
k − yk ⊥ γk ≥ 0.

64

5.2 The Adaptive-Convexification Algorithm with X-adaptation

Define

ω :=

(

x,
(

yk
)

k=1,...,N
,
(

γk
)

k=1,...,N
,
(

γk
)

k=1,...,N

)

F (ω) := f (x)

G (ω) :=

(

(

ğν,k
(

x, yk
))

k=1,...,N
, xν − x, x− xν

)

C1 (ω) :=
(

γk, γk
)

k=1,...,N

C2 (ω) :=
((

yk − bk
)

,
(

b
k − yk

))

k=1,...,N

H (ω) :=
(

∇y ğ
ν,k
(

x, yk
)

+ γk − γk
)

k=1,...,N
.

Now SGαBB

(

Xν ,BN
)

can be equivalently reformulated as the MPCC

PαBB(X
ν ,BN) : min

ω
F (ω) s.t. G(ω) ≤ 0

H(ω) = 0

0 ≤ C1 (ω) ⊥ C2 (ω) ≥ 0.

For details on solving this problem we refer to Section 7.2.

5.2.2 Algorithms and X-Adaptation

On the basis of the discussion in the former chapter the algorithm presented in this
section computes a stationary point of SIPαBB

(

Xν ,BN
)

with active indices and termi-
nates if it is also a stationary point of SIP within a given tolerance on stationarity and
additional tolerances on the feasibility of the indices. As in former section a stationary
point of SIPαBB

(

Xν ,BN
)

may be located on the topological boundary of Xν . But, in
contrast to the discussion in Section 5.1 the indices are not predetermined. Thus, the
stationary conditions from Theorem 2.1.1 must, again, be modified.

For a point x ∈ MαBB

(

Xν ,BN
)

and solutions yk (x) of Qν,k (x), k = 1, . . . , N , de-
fine KαBB

0,ν (x) := {k ∈ {1, . . . , N}|ğν,k
(

x, yk (x)
)

= 0} and BαBB
0,ν (x) := {yk (x) |k ∈

KαBB
0,ν (x)}. As in Theorem 2.1.1, a point x ∈MαBB

(

Xν ,BN
)

is stationary in the sense

of John for SIPαBB

(

Xν ,BN
)

, if there exist an (n+ 1)-tuple J with {J} ⊂ K0 (x) and

yk ∈ BαBB
0 (x), k ∈ J , and

(

κ, (λk)k∈J , (µl)l∈{1,...,n} , (ξr)r∈{1,...,n}

)

∈ σ3n+1 with only

65

5 An X-adaptation method

n+ 1 non-vanishing entries, so that

κ∇f(x) +
∑

k∈J

λk∇xg(x, y
k)−

n
∑

l=1

µlel +
n
∑

r=1

ξrer = 0

λkğ
ν,k(x, yk) = 0, k ∈ J

µl (x
ν
l − xl) = 0, l ∈ {1, . . . , n}

ξr (xr − xνr) = 0, r ∈ {1, . . . , n},

where ei denotes the i-th unit vector. Notice here that ∇xğ
ν,k(x, yk) = ∇xg(x, y

k).
If we assume that x ∈ int (Xν) holds, the former stationary conditions reduce to a
more common condition. That is, there exist yk ∈ BαBB

0 (x), k = 1, . . . , n + 1, and
(κ, λ) ∈ σn+1, so that

κ∇f(x) +
n+1
∑

k=1

λk∇xg(x, y
k) = 0

λkğ
ν,k(x, yk) = 0, k = 1, . . . , n+ 1.

Using the splitting function from Chapter 3 and the techniques introduced there, a
splitting algorithm is stated in Algorithm 8. It also describes how the setMαBB(X

ν ,BN)
of a refined problem SIPαBB

(

Xν ,BN
)

is constructed.

It is not hard to see that each N−tuple (Bk, k = 1, . . . , N) generated by Algorithm 8
is a reduced outer approximation of Y .

As in the former section the basic idea of the adaptation of the set X is to choose
some subsets of X around some point of interest, for example a solution of a subprob-
lem SIPαBB, so that the point stays feasible for the new problem. Corresponding to
Lemma 5.1.4 the next result gives a first impression that choosing arbitrary sets may
not lead to the desired result.

Lemma 5.2.4. Let X1, X2 ⊂ X so that X1 ∩X2 6= ∅, BN be some partition of B, and
let α1

k and α2
k be concavification parameters on X1×Bk, X2×Bk for some box Bk ∈ BN

and a constraint g. If there is some x∗ ∈ X1 ∩X2 with ğ1,k (x∗, y) ≤ 0 for each y ∈ Bk,
it holds:

(i) α1
k ≥ α2

k implies that ğ2,k (x∗, y) ≤ 0 holds for each y ∈ Bk.

(ii) α1
k ≥ α2

k is true if there is some y∗ ∈ int
(

Bk
)

so that ğ1,k (x∗, y∗) = 0 and
ğ2,k (x∗, y∗) ≤ 0 hold.

Proof. To see part (i) notice that ğ1,k (x∗, y) ≤ 0 for each y ∈ Bk if g (x∗, y) + α1,k

2 〈y −
bk, b

k − y〉 ≤ 0 for each y ∈ Bk. Since α1
k ≥ α2

k, and 〈y − bk, b
k − y〉 ≥ 0 holds for each

y ∈ Bk, part (i) follows immediately. Part (ii) can easily be seen by subtracting ğ1,k and
ğ2,k.

66

5.2 The Adaptive-Convexification Algorithm with X-adaptation

Algorithm 8 Splitting step - XrefineαBB(η)

Let x ∈ Xν , η ∈ Bk∗ , k∗ ∈ {1, . . . , N}, and let Sk∗ be the barycenter of Bk∗ and

Qk∗ =
min

l∈Pk∗

(

b
k∗

l −bk
∗

l

)

‖b
k∗

−bk
∗
‖∞

.

if η /∈ Y or Qk∗ < ǫ then
Set η = Sk∗ .

end if

if P k∗ 6= ∅ then

Compute
(

Bk,(1), Bk,(2)
)

= S(Bk, η).

Compute α
ν,(1)
k∗ , α

ν,(2)
k∗ ≤ αk∗ on Xν ×Bk∗,(1), Xν ×Bk∗,(2) and set

ğν,k
∗,(1)(x, y) = g(x, y) +

α
ν,(1)
k∗

2
〈y − bk

∗,(1), b
k∗,(1)

)− y〉

ğν,k
∗,(2)(x, y) = g(x, y) +

α
ν,(2)
k∗

2
〈y − bk

∗,(2), b
k∗,(2)

)− y〉

M (1) = {x ∈ Xν | gν,k∗,(1)(x, y) ≤ 0 for all y ∈ Bk∗,(1)}
M (2) = {x ∈ Xν | gν,k∗,(2)(x, y) ≤ 0 for all y ∈ Bk∗,(2)}
M̃ = {x ∈ Xν | gν,k(x, y) ≤ 0 for all y ∈ Bk, k ∈ {1, . . . , N} \ {k∗}}

if Y ∩Bk∗,(1) 6= ∅ and Y ∩Bk∗,(2) 6= ∅ then

Replace Bk∗ by Bk∗,(1) and Bk∗,(2) and replace αν
k∗ by α

ν,(1)
k∗ and α

ν,(2)
k∗ .

Set MαBB(X
ν ,BN) = M̃ ∩M (1) ∩M (2).

Set N = N + 1.
else if Y ∩Bk∗,(1) 6= ∅ then

Replace Bk∗ by Bk∗,(1) and αν
k∗ by α

ν,(1)
k∗ .

Set MαBB(X
ν ,BN) = M̃ ∩M (1).

else if Y ∩Bk∗,(2) 6= ∅ then

Replace Bk∗ by Bk∗,(2) and αν
k∗ by α

ν,(2)
k∗ .

Set MαBB(X
ν ,BN) = M̃ ∩M (2).

else

Delete Bk∗ and αν
k∗ .

Set MαBB(X
ν ,BN) = M̃ .

Set N = N − 1.
end if

end if

Lemma 5.2.4 (i) says that x∗ stays feasible, while switching from X1 to X2, if the
corresponding concavification parameter is non-increasing. But, as the next example
shows, that can not be ensured in general.

67

5 An X-adaptation method

Example 5.2.5. Let X1 = [−2, 2], X2 = [0, 3], Y = [0, 2] and let M = {x ∈ R|g (x, y) =
(

x4 − x2
)

y2 − 12 ≤ 0 for all y ∈ Y }. Since D2
y ğ (x, y) = 2

(

x4 − x2
)

, we obtain α1 = 24
on X1 × Y , and α2 = 144 on X2 × Y . Thus, the relaxed constraints on X1 × Y and
X2 × Y result in

ğ1 (x, y) =
(

x4 − x2
)

y2 − 12 + 12y (2− y) ,

respectively
ğ2 (x, y) =

(

x4 − x2
)

y2 − 12 + 72y (2− y) .

For x∗ = 1
2 we have

ğ1 (x∗, y) = − 3

16
y2 − 12 + 12y (2− y) ,

and

ğ2 (x∗, y) = − 3

16
y2 − 12 + 72y (2− y) .

It is not hard to see that ğ1 (x∗, y) ≤ 0 for all y ∈ Y , while ğ2 (x∗, 1) > 0. Even though
the diameter of X2 is smaller then the diameter of X1, x∗ is a feasible point of the set
MαBB(X

1, Y), while it is not a feasible point of MαBB(X
2, Y). Thus, given some point

of interest, feasible for some choice of a subset of X, may not be feasible for another
choice of a subset.

Since the first summands in ğ1 and ğ2 coincide, a reduction of the maximum value of
the second summand in ğ2 below the maximum value of the second summand of ğ1 may
avoid that problem. Keeping the set X2 unchanged, the maximum value of the second
summand is related to the diameter of the set Y . By splitting Y into smaller sets one may
reduce that value as we show next. For i = 1, . . . , 4 let Bi =

[

i−1
2 , i2

]

, B4 =
(

B1, . . . , B4
)

,

and ğ2,i (x∗, y) = − 3
16y

2 − 12 + 72
(

y − bi
)

(

b
i − y

)

. It is not hard to see that B4 is a

tessellation of Y and ğ2,i (x∗, y) ≤ 0 for each y ∈ Bi and each i = 1, . . . , 4. Thus, x∗ is
a feasible point of MαBB(X

2,B4).

The next lemma generalizes the observations made in Example 5.2.5, that is, if a point
of interest is not in MαBB(X

ν ,BN) for some set Xν and a tessellation BN , then there is
a refined tessellation BN∗

so that this point is in MαBB(X
ν ,BN∗

).

Lemma 5.2.6. Let X1, X2 ⊂ X, x∗ ∈ X1 ∩ X2 and BN be some partition of B. Let
there be some box Bk ∈ BN and concavification parameters α1

k 6= 0 and α2
k 6= 0 for a

constraint g on X1 ×Bk, X2×Bk so that ğ1,k (x∗, y) ≤ 0 for each y ∈ Bk, and let there
be some y∗ ∈ Bk so that ğ2,k (x∗, y∗) > 0 is satisfied. Then there is a partition BN∗

of
B so that for each k∗ with Bk∗ ∈ BN∗

and Bk∗ ⊂ Bk, and corresponding concavification
parameters α2

k∗ on X2×Bk∗, the relaxation ğ2,k
∗
is concave in the second argument and

ğ2,k
∗
(x∗, y) ≤ 0 for each y ∈ Bk∗.

Proof. Since α2
k∗ is a concavification parameter it follows immediately that ğ2,k

∗
is con-

cave in the second argument. Now we show that there is a partition BN∗
of B so that

for each k∗ with Bk∗ ∈ BN∗
and Bk∗ ⊂ Bk the inequality ğ2,k

∗
(x∗, y) ≤ g1,k (x∗, y) holds

68

5.2 The Adaptive-Convexification Algorithm with X-adaptation

for each y ∈ Bk∗ . Let α be the concavification parameter for g on X × B. Since α2
k∗

can always be chosen so that α2
k∗ < α for each k∗ and X2 ⊂ X, it is sufficient to show

that there is a partition BN∗
of B so that for each k∗ with Bk∗ ∈ BN∗

and Bk∗ ⊂ Bk

we have 〈y − bk
∗

, b
k∗ − y〉 ≤ α

ν1
k

α
〈y − bk, b

k − y〉 for each y ∈ Bk∗ and each k∗. For
ρ ≥ 1 let Sρ be the ρ-times splitting operator defined in Subsection 5.1.2. Let BN∗

arise
from BN by applying Sρ to the box Bk in BN , and let Bk∗ ⊂ Bk be a box in BN∗

with

y ∈ Bk∗ . If 〈y − bk, b
k − y〉 = 0 holds, we also have that 〈y − bk

∗

, b
k∗ − y〉 = 0 is true.

Let 〈y− bk, b
k − y〉 > 0. Since α1

k 6= 0 can also always be chosen so that α1
k < α for each

k and X1 ⊂ X, we have that there is a constant c > 0 so that
α1
k

α
〈y − bk, b

k − y〉 ≥ c.

Furthermore we have that 〈y − bk
∗

, b
k∗ − y〉 ≤ 1

4‖b
k∗ − bk

∗‖22 holds. By Lemma 3.3.4 we

obtain that ‖bk
∗

− bk
∗‖22 ≤

(

1− 3
4m

)
ρ
2 ‖bk − bk‖22 holds. Since 0 < 1 − 3

4m < 1 for each

m, we have that for each c > 0 there is some some ρ so that
(

1− 3
4m

)
ρ
2 ‖bk − bk‖22 ≤ c.

Altogether we have that there is some ρ so that

〈y − bk
∗

, b
k∗ − y〉 ≤ 1

4
‖bk

∗

− bk
∗‖22

≤ 1

4

(

1− 3

4m

)
ρ
2

‖bk − bk‖22

≤ α1
k

α
〈y − bk, b

k − y〉

holds.

Using Lemma 5.2.6 and Properties 5.1.7 the X-adaptation algorithm is stated in Algo-
rithm 9.

By Lemma 5.2.6 we have that Algorithm 9 is well defined. That is, after finitely many
splitting steps the set K is empty. Using the splitting and the X-adaptation algorithm,
the adaptive convexification algorithm with X-adaptation is stated in Algorithm 10.

If for a given reduced outer approximation BN the problem SIPαBB
(

X0,BN
)

is not
consistent in Algorithm 10, a phase 1 algorithm like that described in [16] can be per-
formed.

5.2.3 Convergence results

At first we will show that Algorithm 10 is well defined. If P k = ∅ holds at each active
index yk of an approximating problem SIPαBB(X

ν ,BN) for some iterate xν ∈ int (Xν),
we are in the same situation as in the former chapters. That is, the reduced outer ap-
proximation of Y is not refined any further and Algorithm 10 might loop. The following
lemma is a direct consequence of Lemma 4.3.2 and shows that the algorithm terminates
in this case.

69

5 An X-adaptation method

Algorithm 9 X-Adaptation - XadaptαBB(x,∆x)

Let x ∈ Xν , and BN a reduced outer approximation of Y .
Generate a set Xν+1 ⊂ X so that Condition 5.1.7 is satisfied.
Compute new parameters αν+1

k on Xν+1×Bk for each k ∈ {1, . . . , N} and replace αν

by αν+1. For each k ∈ {1, . . . , N} set

ğν+1,k(x, y) = g(x, y) +
αν+1
k

2
〈y − bk, b

k
)− y〉

Set K = {k ∈ {1, . . . , N}|ğν+1,k (x, y) > 0 for some y ∈ Bk}.
while K 6= ∅ do

for k ∈ K do

Let Sk be the barycenter of Bk.
XrefineαBB(S

k)
end for

Set K = {k ∈ {1, . . . , N}|ğν+1,k (x, y) > 0 for some y ∈ Bk}.
end while

Lemma 5.2.7. Let Xν ⊂ X and x ∈ int (Xν) be a stationary point of SIPαBB

(

Xν ,BN
)

with ǫact-active indices yk, k ∈ Jν , for an (n+ 1)-tuple Jν with {Jν} ∈ KαBB
0,ν (xν).

Let (κ, (λk)k∈Jν , (µl)l∈{1,...,n} , (ξr)r∈{1,...,n}) be the corresponding multipliers, and let the

refined reduced outer approximation arising from applying Algorithm 8 to each yk, k ∈
Jν , coincide with BN . Then Algorithm 10 terminates at x.

An implication of Lemma 4.3.3 is, that refining a given reduced outer approximation BN

of Y by means of Algorithm 8, using the splitting function, enlarges the feasible set of
SIPαBB

(

Xν ,BN
)

.

Lemma 5.2.8. Let a reduced outer approximation BN of Y be given, and for an arbi-
trary splitting point η let BÑ be the refinement of BN by means of Algorithm 8. Then
MαBB(X

ν ,BN) ⊂MαBB(X
ν ,BÑ) holds.

As Algorithm 8 is used in Algorithm 9, Lemma 5.2.8 together with Condition 5.1.7 (i)

implies that for a point x ∈ MαBB(X
ν ,BN) we also have x ∈ MαBB(X

ν+1,BÑ). Here,

BÑ denotes a refinement of a reduced outer approximation BÑ by means of Algorithm 8.

Now we are in the position to state the main convergence result.

70

5.2 The Adaptive-Convexification Algorithm with X-adaptation

Algorithm 10 Adaptive convexification algorithm - Xaca

Choose X ⊂ R
n withM ⊂ X, B =

[

b, b
]

⊂ R
m with Y ⊂ B and compute α on X×B.

Set ν = 0 and X0 = X.
Determine a reduced outer approximation BN of Y with some N ∈ N as well as α0

k ≤ α
on X0 ×Bk, k = 1, . . . , N , so that SIPαBB

(

X0,BN
)

is consistent.

Choose ǫact, ǫstat, ǫY > 0 and ǫsplit ∈
(

0, 12
)

with ǫsplit ≤ 2ǫact/
(

α‖b− b‖22
)

.
Compute a stationary point x0 of SIPαBB

(

X0,BN
)

with ǫact-active indices y
k, k ∈ J0,

and n+ 1 non vanishing multipliers
(

κ, (λk)k∈J0 , (µl)l∈{1,...,n} , (ξr)r∈{1,...,n}

)

with an

(n+ 1)-tuple J0, {J0}KαBB
0,0

(

x0
)

by solving PαBB

(

X0,BN
)

.

while xν is not a stationary point of SIP with 2ǫact-active, ǫY -feasible indices yk,
k ∈ Jν , with respect to BN , and multipliers

(

κ, (λk)k∈Jν

)

do

for k = 1 to n+ 1 do

XrefineαBB(y
k)

end for

if ν > 1 then

Set ∆xν = ‖xν − xν−1‖∞.
XadaptαBB(x

ν ,∆xν)
else

Set X1 = X.
end if

Set ν = ν + 1.
Compute a stationary point xν of SIPαBB

(

Xν ,BN
)

with ǫact-active indices yk,

k ∈ Jν , and n+1 non vanishing multipliers
(

κ, (λk)k∈Jν , (µl)l∈{1,...,n} , (ξr)r∈{1,...,n}

)

with an (n+ 1)-tuple Jν , {Jν} ∈ KαBB
0,ν (xν) by solving PαBB

(

Xν ,BN
)

.
end while

Theorem 5.2.9. Algorithm 10 terminates after finitely many steps.

Proof. We give the proof by enforcing a contradiction. Assume that Algorithm 10 does
not terminate. Then there exist sequences of reduced outer approximations

(

BNν ,ν
)

ν
of

Y , (Xν)ν , (x
ν)ν ,

(

KαBB
0,ν (xν)

)

ν
, (n+ 1)-tuples (Jν)ν with {Jν} ⊂ KαBB

0,ν (xν),
(

(

yk,ν
)

k∈Jν

)

ν

and multipliers
(

κν , (λνk)k∈Jν , (µ
ν
l)l∈{1,...,n} , (ξ

ν
r)r∈{1,...,n}

)

ν
with only n+1 non-vanishing

entries, so that for each ν the point xν is stationary for SIPαBB(X
ν ,BNν ,ν) with ǫact-

active indices
(

yk,ν
)

k∈Jν and multipliers
(

κν , (λνk)k∈Jν , (µ
ν
l)l∈{1,...,n} , (ξ

ν
r)r∈{1,...,n}

)

ν
, while

xν with all data is not ǫstat-stationary for SIP with 2ǫact-active, ǫY -feasible indices with
respect to BNν ,ν .

To derive a contradiction, in step 1. the existence of accumulation point of the sequence
(xν)ν is shown. In step 2. and 3. it is shown that for infinitely many ν the point xν is
an interior point of the box Xν and, thus, the multipliers (µνl)l∈{1,...,n} and (ξνr)r∈{1,...,n}

71

5 An X-adaptation method

vanish for infinitely many ν. Then, in the steps 4. and 5. the existence of accumulation

points of the sequences
(

(

yk,ν
)

k∈Jν

)

ν
and

(

κν , (λνk)k∈Jν , (µ
ν
l)l∈{1,...,n} , (ξ

ν
r)r∈{1,...,n}

)

ν
is shown. After that it is shown in steps 6. to 8. that there exists a ν0 ∈ N so that xν

with all data is an ǫstat-stationary point for SIP with 2ǫact-active, ǫY -feasible indices
with respect to BNν ,ν for infinitely many ν ≥ ν0.

1. Assertion: The sequence (xν)ν has an accumulation point x∗ ∈M .

Since (xν)ν is contained in the compact set X, it possesses an accumulation point
x∗ ∈ X. For i ≥ 0 let M̃ i :=

⋃i
ν=1MUF (X

ν ,BNν ,ν). By Lemma 5.2.8 and
Lemma 5.2.3 we have M̃0 ⊂ M̃1 ⊂ M̃2 ⊂ . . . ⊂ M . Thus, we have that (xν)ν is
also contained in the closed set M . From this the assertion immediately follows.

2. Assertion: There is some accumulation point x∗ ∈ X ∩M of the sequence (xν)ν
so that for each ǫ > 0 there is some ν0 ∈ N so that it holds ‖x∗ − xν‖∞ ≤ ǫ as well
as xν ∈ int (Xν) for infinitely many ν ≥ ν0.

From step 1 we have that the sequence (xν)ν has an accumulation point x∗ ∈ M .
That means that for each ǫ > 0 there is some ν0 ∈ N so that it holds ‖x∗−xν‖∞ ≤ ǫ.
By Condition 5.1.7 (i),(iii) we have that the interior of Xν is nonempty. Thus, we
only have to distinguish two cases to show the assertion. The first case is that for
infinitely many ν ≥ ν0 we have xν ∈ int (Xν). That is exactly the statement of
the assertion. The second case is that there are not infinitely many ν ≥ ν0 with
xν ∈ int (Xν). In this case we have that there is some ν1 ≥ ν0 so that xν ∈ ∂Xν for
each ν ≥ ν1. Condition 5.1.7 (ii),(iv) and Assumption 1 imply that there is some
ν2 ≥ ν1 so that ∂Xν ∩M = ∅ for each ν ≥ ν2. As xν ∈ MαBB(X

ν ,BNν ,ν) ⊂ M
holds for each ν ∈ N, we obtain a contradiction.

3. Assertion: There is some ν0 ∈ N so that (µνl)l∈{1,...,n} = 0 and (ξνr)r∈{1,...,n} = 0
for infinitely many ν ≥ ν0.

For all ν the point xν with all data is stationary for SIPαBB

(

Xν ,BN
)

. Thus, we
have that

µl (x
ν
l − xl) = 0, l ∈ {1, . . . , n}

ξr (xr − xνr) = 0, r ∈ {1, . . . , n}

holds. By step 2. there is some ν0 ∈ N so that xν ∈ int (Xν) holds for infinitely
many ν ≥ ν0. Thus, we obtain the assertion.

4. Assertion: The sequence
(

(

yk,ν
)

k∈Jν

)

ν
has an accumulation point

(

yk,∗
)

k∈J∗ ∈
Y n+1.

Step 3. implies that there is some ν0 ∈ N so that
(

yk,ν
)

k∈Jν ∈ R
n+1 with pairwise

different entries for infinitely many ν ≥ ν0. Thus, by possibly switching to a
subsequence, it is sufficient to show the existence of an accumulation point in
Y for every component of the sequence of the (n + 1)-tuple. Let

(

yk
∗,ν
)

ν
, k∗ ∈

72

5.2 The Adaptive-Convexification Algorithm with X-adaptation

{1, . . . , n+1}, be a sequence of such components. As in the proof of Theorem 4.3.4
we will distinguish two cases. For the first case assume that for ν ≥ ν0 we have
yk

∗,ν ∈ Y for infinitely many ν ∈ N. By the compactness of Y , the subsequence of
these points possesses an accumulation point in Y .

In the second case there is some ν1 ∈ N with ν1 ≥ ν0 so that yk
∗,ν /∈ Y for all

ν ≥ ν1. Let (B
k∗,ν)ν be the sequence of boxes with yk

∗,ν ∈ Bj∗,ν .

After possibly switching to a subsequence we may assume that (Bk∗,ν)ν satisfies
Bk∗,ν ⊃ Bk∗,ν+1 for ν ∈ N, since for each ν the reduced outer approximation BNν ,ν

of Y only contains finitely many boxes. As Algorithm 8 subdivides each box Bj∗,ν

with yk
∗,ν /∈ Y at its barycenter, Lemma 3.3.4 implies that the maximum edge

lengths of the Bk∗,ν , ν ∈ N, tend to zero. Due to Bk∗,ν ∩ Y 6= ∅, ν ∈ N, we arrive
at

lim
ν→∞

min
y∈Y

‖yk∗,ν − y‖2 = 0

and, thus, the assertion.

5. Assertion: The sequence
(

κν , (λνk)k∈Jν , (µ
ν
l)l∈{1,...,n} , (ξ

ν
r)r∈{1,...,n}

)

ν
has an accu-

mulation point (κ∗, λ∗, 0, 0) ∈ σ3n+1.

This is clear from the compactness of σ3n+1 and Step 3.

6. Assertion: There exists a ν0 ∈ N so that each
(

yk,ν
)

ν
with k ∈ Jν is ǫY -feasible

with respect to BNν ,ν for Y for all ν ≥ ν0.

With Lemma 3.3.5 the assertion results as in the proof of Theorem 4.3.4, step 4.

7. Assertion: There is some ν0 ∈ N so that for infinitely many ν ≥ ν0 the point xν is
ǫstat-stationary for SIP with multipliers (κν , λν) ∈ σn+1.

Since for all ν the point xν is stationary for SIPαBB

(

Xν ,BN
)

with ǫact-active

indices
(

yk,ν
)

j∈Jν and multipliers
(

κν , (λνk)k∈Jν , (µ
ν
l)l∈{1,...,n} , (ξ

ν
r)r∈{1,...,n}

)

, parts

1.,3.,4. and 5. of this proof together with a continuity argument entail

κ∗∇f(x∗) +
∑

k∈J∗

λ∗j∇xg(x
∗, yk,∗) = 0.

Hence there is some ν0 ∈ N so that for infinitely many ν ≥ ν0

‖κν∇f(xν) +
∑

k∈Jν

λνk∇xg(x
ν , yk,ν)‖ ≤ ǫstat

holds.

8. Assertion: There is some ν0 ∈ N so that for infinitely many ν ≥ ν0 and each
k ∈ Jν the index yk,ν is 2ǫact-active for g.

With step 2. of this proof the assertion is an implication of the proof of Theo-
rem 4.3.4, step 6.

73

5 An X-adaptation method

With these assertion we have that there exists a ν0 ∈ N so that for infinitely ν ≥ ν0 the
point xν with all data is an ǫstat-stationary point of SIP with 2ǫact-active, ǫY -feasible
indices with respect to BNν0 ,ν0 . Hence, Algorithm 10 would terminate with a xν , ν ≥ ν0,
in contradiction to the assumption.

74

6 The hybrid method

In this chapter we give a brief discussion on a hybrid method constructed with the
algorithms introduced in the former chapters. Here we only give the algorithms with an
additional X-adaptation. The construction of the algorithms without the X-adaptation
is, then, straightforward.

6.1 Motivation and reformulation

Let Bk be a box in a reduced outer approximation BN = (Bk, k = 1, . . . , N) of a set Y .
A measure for the quality of the overestimators used in the adaptive reduction algorithm
and the adaptive convexification algorithm is the maximum separation distance of the
original constraints and the relaxations on the set Xν × Bk. In the algorithms using
the unimodal relaxations the distance results in 〈Lν,k, bk − cν,k〉, and in the algorithms

using the concave overestimators we have
αν
k

8 ‖bk − bk‖22. The first numerical example
already pointed out that the numerical behavior of both algorithms is closely related to
the maximum separation distances. Since we can compute the separation distance on
each set X × Bk, Xν × Bk it is possible to construct an algorithm using the ’better’
relaxation technique, that is, the overestimator with the smaller separation distance.

First of all we recall that we defined an unimodal overestimator of the restriction g on
Xν ×Bk by

ĝν,k : Xν ×Bk −→ R, (x, y) 7−→ g(x, y) + φ
(

y; cν,k, Bk, Lν,k, L
ν,k
)

,

and a concave overestimator of the restriction of g to Xν ×Bk by

ğν,k : Xν ×Bk −→ R, (x, y) 7−→ g(x, y) + ψ(y;αν
k, B

k),

with the parameters Lν,k, L
ν,k

, αν
k chosen so that

Lν,k =







min(0,L1

(

Xν , Bk
)

)
...

min(0,Lm

(

Xν , Bk
)

)






and L

ν,k
=







max(0,L1

(

Xν , Bk
)

)
...

max(0,Lm

(

Xν , Bk
)

)







with

Li

(

Xν , Bk
)

< min
(x,y)∈Xν×Bk

(
∂

∂yi
g(y)) and Li

(

Xν , Bk
)

> max
(x,y)∈Xν×Bk

(
∂

∂yi
g(y)),

75

6 The hybrid method

and
αν
k > max{0, max

(x,y)∈Xν×Bk
λmax (x, y)}.

Let K̂, K̆ ⊂ {1, . . . , N} with

K̂ = {k ∈ {1, . . . , N} | 〈Lν,k, bk − cν,k〉 ≤ αν
k

2
‖bk − bk‖22}

and K̆ = {1, . . . , N} \ K̂. Define the set

Mhyb

(

Xν ,BN
)

:= {x ∈ Xν |ĝν,k
(

x, cν,k
)

≤ 0 for all k ∈ K̂,

ğν,k (x, y) ≤ 0 for all y ∈ Bk, k ∈ K̆}.
and the semi-infinite problem

SIPhyb

(

Xν ,BN
)

: min
x
f(x) s.t. x ∈Mhyb

(

Xν ,BN
)

.

We have to mention that we can define a lower level problem Qν,k (x) as in Chapter 5.2
if K̆ is not empty. It is

Qν,k (x) : max
y∈Rm

ğν,k(x, y) s.t. y ∈ Bk

for k ∈ K̆. Define

ω :=
(

x,
(

yk
)

k∈K̆
,
(

γk
)

k∈K̆
,
(

γk
)

k∈K̆

)

F (ω) := f (x)

Ğ (ω) :=
((

ğν,k
(

x, yk
))

k∈K̆
, xν − x, x− xν

)

Ĝ (x) :=
(

ĝν,k
(

x, cν,k
))

k∈K̂

C1 (ω) :=
(

γk, γk
)

k∈K̆

C2 (ω) :=
((

yk − bk
)

,
(

b
k − yk

))

k∈K̆

H (ω) :=
(

∇y ğ
ν,k
(

x, yk
)

+ γk − γk
)

k∈K̆
.

Following the ideas presented in the former chapters, SIPhyb

(

Xν ,BN
)

can be equiva-
lently rewritten as

PUF (X
ν ,BN) : min

ω
F (ω) s.t. Ğ(ω) ≤ 0

Ĝ(ω) ≤ 0

H(ω) = 0

0 ≤ C1 (ω) ⊥ C2 (ω) ≥ 0.

We have to notice that PUF (X
ν ,BN) is a standard nonlinear optimization problem if

K̆ = ∅ and an MPCC otherwise.

76

6.2 Algorithms and convergence results

6.2 Algorithms and convergence results

In this section we present the algorithms for the hybrid method. As a combination of
the algorithms introduced in the former chapter, the algorithm presented in this section
computes a stationary point of SIPhyb

(

Xν ,BN
)

with active indices and terminates if it
is also a stationary point of SIP within a given tolerance on stationarity and additional
tolerances on the feasibility of the indices. First of all notice that for SIPhyb

(

Xν ,BN
)

we have to rewrite the stationarity conditions from Theorem 2.1.1 again.

For a point x ∈Mhyb

(

Xν ,BN
)

and solutions yk (x) of Qν,k (x), k = K̆, as well as points

cν,k ∈ Bk, k ∈ K̂, define

KUF
0,ν (x) := {k ∈ K̂|ĝν,k

(

x, cν,k
)

= 0},

KαBB
0,ν (x) := {k ∈ K̆|ğν,k

(

x, yk (x)
)

= 0},
BαBB

0,ν (x) := {yk (x) |k ∈ KαBB
0,ν (x)}.

A point x ∈ Mhyb

(

Xν ,BN
)

is stationary for SIPhyb

(

Xν ,BN
)

in the sense of John, if

there exist an (n+ 1)-tuple
(

Ĵ , J̆
)

with {Ĵ} ⊂ KUF
0,ν (x), {J̆} ⊂ KαBB

0,ν (x), and yk ∈
BαBB

0,ν (x), k ∈ J̆ , as well as
(

κ,
(

λ̂k

)

k∈Ĵ
,
(

λ̆k

)

k∈J̆
, (µl)l∈{1,...,n} , (ξr)r∈{1,...,n}

)

∈ σ3n+1

with only n+ 1 non-vanishing entries, so that

κ∇f(x) +
∑

k∈Ĵ

λ̂k∇xg(x, c
ν,k) +

∑

k∈J̆

λ̆k∇xg(x, y
k)−

n
∑

l=1

µlel +
n
∑

r=1

ξrer = 0

λ̂kĝ
ν,k(x, cν,k) = 0, k ∈ Ĵ

λ̆kğ
ν,k(x, yk) = 0, k ∈ J̆

µl (x
ν
l − xl) = 0, l ∈ {1, . . . , n}

ξr (xr − xνr) = 0, r ∈ {1, . . . , n},

where ei denotes the i-th unit vector. In Algorithm 11 we state the error computation
step. The algorithm also describes how all parameters and restrictions for the feasible
set of a refined problem SIPhyb are computed. As a combination of the Algorithms 6 and
9 the splitting step for SIPhyb is stated in Algorithm 12. After that, in Algorithm 13,

we will give the X-adaptation algorithm for the hybrid method. The sets K̂ and K̆ may
change when a new subset of X is determined in Algorithm 13. Thus, the algorithm
also describes how to construct new sets K̂ and K̆.

As a direct consequence from Lemma 5.1.6 and 5.2.6 we have that Algorithm 13 is well
defined. That is, after finitely many steps the set K is empty.

With the latter presented algorithms we can give the adaptive hybrid algorithm in Al-
gorithm 14. It is a combination of the Algorithms 7 and 10.

77

6 The hybrid method

Algorithm 11 Error computation step - errhyb(X
ν , B(1), B(2), α, L, L, K̂ν , K̆ν)

for i = 1, 2 do

Compute α(i) ≤ α and L(i) ≥ L and L
(i) ≤ L on B(i) and set

c(i) =

(

L
(i)
1 b

(i)
1 −L

(i)
1 b

(i)
1

L
(i)
1 −L

(i)
1

. . . L
(i)
m b

(i)
m −L

(i)
m b

(i)
m

L
(i)
m −L

(i)
m

)T

Compute ERRi
αBB = α(i)

8 ‖b(i) − b(i)‖22 and ERRi
UF = 〈L(i)

, b
(i) − c(i)〉

if ERRi
αBB < ERRi

UF then

Set K̆ν = K̆ν ∪ {i}

ğ(i)(x, y) = g(x, y) + ψ(y;α
(i)
k , B(i))

M (i) = {x ∈ Xν | ğ(i)(x, y) ≤ 0 for all y ∈ B(i)}

else

Set K̂ν = K̂ν ∪ {i}

ĝ(i)(x, y) = g(x, y) + φ
(

y; c(i), B(i), L(i), L
(i)
)

M (i) = {x ∈ Xν | ĝ(i)(x, c(i)) ≤ 0}

end if

end for

Convergence results

In this subsection we briefly discuss some convergence results for the adaptive hybrid
algorithm. All results are consequences from the discussions in Chapter 5. As a direct
result from Lemma 5.1.8 and 5.2.7 we have that Algorithm 14 is well defined.

Lemma 6.2.1. Let Xν ⊂ X and x ∈ int (Xν) be a stationary point of SIPhyb

(

Xν ,BN
)

with ǫact-active indices cν,k, k ∈ Ĵν , and yk, k ∈ J̆ν , for an (n+ 1)-tuple
(

Ĵν , J̆ν
)

with {Ĵν} ⊂ KUF
0,ν (x) and {J̆ν} ⊂ KαBB

0,ν (x). Let (κ,
(

λ̂k

)

k∈Ĵν
,
(

λ̆k

)

k∈J̆ν
, 0, 0) be the

corresponding multipliers, and let the refined reduced outer approximation arising from
applying Algorithm 12 to each cν,k, k ∈ Ĵν , and yk, k ∈ J̆ν , coincide with BN . Then
Algorithm 14 terminates at x.

The next lemma is a consequence from Lemma 5.1.9 and 5.2.8. It means that refining
a given reduced outer approximation BN of Y by means of Algorithm 12, using the
splitting function, enlarges the feasible set of SIPhyb.

Lemma 6.2.2. Let a reduced outer approximation BN of Y be given, and for an arbi-
trary splitting point η let BÑ be the refinement of BN by means of Algorithm 12. Then

78

6.2 Algorithms and convergence results

Algorithm 12 Splitting step - refinehyb(ν, η)

Let η ∈ Bk∗ , k∗ ∈ {1, . . . , N}, Sk∗ be the barycenter of Bk∗ and

Qk∗ =
min

l∈Pk∗

(

b
k∗

l −bk
∗

l

)

‖b
k∗

−bk
∗
‖∞

.

if η /∈ Y or Qk∗ < ǫ then
Set η = Sk∗ .

end if

if P k∗ 6= ∅ then

Compute
(

Bk∗,(1), Bk∗,(2)
)

= S(Bk∗ , η) and set K̂ν = K̂ν \ {k∗}, K̆ν = K̆ν \ {k∗}.
Set

M̃ = {x ∈ Xν |ğk(x, y) ≤ 0 for all y ∈ Bk, k ∈ K̆ν ,

ĝk(x, ck) ≤ 0 for all k ∈ K̂ν}.

errhyb(X
ν , Bk∗,(1), Bk∗,(2), α, L, L, K̂ν , K̆ν)

if Y ∩Bk∗,(1) 6= ∅ and Y ∩Bk∗,(2) 6= ∅ then

Replace Bk∗ by Bk∗,(1) and Bk∗,(2) and replace αν
k∗ by α

ν,(1)
k∗ and α

ν,(2)
k∗ , as well as

Lν,k∗ , L
ν,k∗

by Lν,k∗,(1), Lν,k∗,(2) and L
ν,k∗,(1)

, L
ν,k∗,(2)

.
Set Mhybrid(X

ν ,BN) = M̃ ∩M (1) ∩M (2).
Set N = N + 1.

else if Y ∩Bk∗,(1) 6= ∅ then

Replace Bk∗ by Bk∗,(1) and αν
k∗ by α

ν,(1)
k∗ , as well as Lν,k∗ , L

ν,k∗

by

Lν,k∗,(1), L
ν,k∗,(1)

.
Set Mhyb(X

ν ,BN) = M̃ ∩M (1).
else if Y ∩Bk∗,(2) 6= ∅ then

Replace Bk∗ by Bk∗,(2) and αν
k∗ by α

ν,(2)
k∗ , as well as Lν,k∗ , L

ν,k∗

by

Lν,k∗,(2), L
ν,k∗,(2)

.
Set Mhyb(X

ν ,BN) = M̃ ∩M (2).
else

Delete Bk∗ , αν
k∗ and Lν,k∗ , L

ν,k∗

.
Set Mhyb(X

ν ,BN) = M̃ .
Set N = N − 1.

end if

end if

Mhyb(X
ν ,BN) ⊂Mhyb(X

ν ,BÑ) holds.

As an implication from Lemma 6.2.2 and Condition 5.1.7 we have that for a point
x ∈ Mhyb(X

ν ,BN) we also have x ∈ Mhyb(X
ν+1,BÑ), with a refined reduced outer

approximation BÑ . Now, as a result from Theorem 5.1.10 and 5.2.9 we can state the
main convergence result for Algorithm 14.

79

6 The hybrid method

Algorithm 13 X-Adaptation - Xadapthyb(x,∆x)

Let x ∈ Xν , and BN a reduced outer approximation of Y .
Generate a set Xν+1 ⊂ X so that Condition 5.1.7 is satisfied.
Set K̂ν+1 = K̆ν+1 = ∅.
Compute new parameters αν+1

k , Lν+1,k, L
ν+1,k

and cν+1,k on Xν+1 × Bk for each
k ∈ {1, . . . , N}.
Replace αν by αν+1, Lν by Lν+1, L

ν
by L

ν+1
and cν by cν+1.

for k = 1 to N do

Compute ERRk
αBB =

αν+1
k

8 ‖bk − bk‖22 and ERRk
UF = 〈Lν+1,k

, b
k − cν+1,k〉.

if ERRi
αBB < ERRi

UF then

Set K̆ν+1 = K̆ν+1 ∪ {k},

ğ(i)(x, y) = g(x, y) + ψ(y;αν+1
k , Bk)

else

Set K̂ν+1 = K̂ν+1 ∪ {k},

ĝ(i)(x, y) = g(x, y) + φ
(

y; cν+1,k, Bk, Lν+1,k, L
ν+1,k

)

end if

end for

Set

K ={k ∈ K̂ν+1|ĝν+1,k
(

x, cν+1,k
)

> 0}

∪ {k ∈ K̆ν+1|ğν+1,k (x, y) > 0 for some y ∈ Bk}.

while K 6= ∅ do

for k ∈ K do

Let Sk be the barycenter of Bk.
refinehyb(ν + 1, Sk)

end for

Set

K ={k ∈ K̂ν+1|ĝν+1,k
(

x, cν+1,k
)

> 0}

∪ {k ∈ K̆ν+1|ğν+1,k (x, y) > 0 for some y ∈ Bk}.

end while

Theorem 6.2.3. Algorithm 14 terminates after finitely many steps.

80

6.2 Algorithms and convergence results

Algorithm 14 Adaptive hybrid algorithm - aha

Choose X ⊂ R
n with M ⊂ X, B =

[

b, b
]

⊂ R
m with Y ⊂ B and compute α, L, L on

B.
Set ν = 0, X0 = X and L = max(‖L‖∞, ‖L‖∞) ∈ R.
Determine a reduced outer approximation BN of Y with some N ∈ N, α0

k ≤ α as well

as L0,k ≥ L, L
0,k ≤ L and c0,k on Bk, k = 1, . . . , N , with sets

K̂0 = {k ∈ {1, . . . , N}| α
0,k

2
‖bk − bk‖22 ≥ 〈L0,k

, b
k − c0,k〉},

K̆0 = {1, . . . , N} \ K̂0,

so that SIPhyb

(

X0,BN
)

is consistent.

Choose ǫact, ǫstat, ǫY > 0 and ǫαBB
split , ǫ

UF
split ∈

(

0, 12
)

with ǫαBB
split ≤ 2ǫact/

(

α‖b− b‖22
)

,

ǫUF
split ≤ ǫact/

(

L‖b− b‖1
)

.

Compute a stationary point x0 of SIPhyb

(

X0,BN
)

with ǫact-active in-

dices c0,k, k ∈ J̆0, yk, k ∈ J̆0 for an (n+ 1)-tuple
(

Ĵ0, J̆0
)

with

{Ĵ0} ⊂ KUF
0,0

(

x0
)

,{J̆0} ⊂ KαBB
0,0

(

x0
)

, and n + 1 non vanishing multipliers
(

κ,
(

λ̂k

)

k∈Ĵ0
,
(

λ̆k

)

k∈J̆0
, (µl)l∈{1,...,n} , (ξr)r∈{1,...,n}

)

by solving Phyb

(

X0,BN
)

.

while xν is not a stationary point of SIP with 2ǫact-active, ǫY -feasible indices ck,

k ∈ Ĵν , yk, k ∈ J̆ν , with respect to BN , and multipliers
(

κ,
(

λ̂k

)

k∈Ĵν
,
(

λ̆k

)

k∈J̆ν

)

do

for k = 1 to n+ 1 do

refinehyb(ν, y
k)

end for

if ν > 1 then

Set ∆xν = ‖xν − xν−1‖∞.
Xadapthyb(x

ν ,∆xν)
else

Set X1 = X.
end if

Set ν = ν + 1.
Compute a stationary point xν of SIPhyb

(

Xν ,BN
)

with ǫact-active in-

dices cν,k, k ∈ J̆ν , yk, k ∈ J̆ν for an (n+ 1)-tuple
(

Ĵν , J̆ν
)

with

{Ĵν} ⊂ KUF
0,ν (xν) ,{J̆ν} ⊂ KαBB

0,ν (xν), and n + 1 non vanishing multipliers
(

κ,
(

λ̂k

)

k∈Ĵν
,
(

λ̆k

)

k∈J̆ν
, (µl)l∈{1,...,n} , (ξr)r∈{1,...,n}

)

by solving Phyb

(

Xν ,BN
)

.

end while

81

7 Implementation Details

In this chapter we give implementation details on the presented algorithms. First, in
Section 7.1, we present some general information of the implementation and the system
the algorithms were implemented on. After that, in Section 7.2, we give some details
of the solving technique for the subproblems arising in the adaptive convexification
algorithm and, possibly, in the hybrid method. In Section 7.3 we discuss the basic
idea of a phase 1 algorithm. Two X-adaptation strategies are presented in Section 7.4.
At last, in Section 7.5 we give some ideas how the complexity of the subproblems can
be reduced. The techniques and algorithms described in this chapter are part of the
implementation of the former algorithms. In the sequel let BN be some reduced outer
approximation of Y , and Xν ⊂ X, Bk ∈ BN be some boxes.

7.1 General information

We implemented all presented algorithms in Matlab 7.10.0 (R2010a). The examples,
especially those from Chapter 8, were run on a 2.4 GHz AMD Athlon 64 X2 processor
with 4 GB RAM under Ubuntu 10.04 (lucid). As termination criteria for all algorithms
we used the norm of the stationarity condition, and, additionally, we required that the
change in the value of the objective function is less then some small constant and the
norm of the change in the iterates is less then another small constant. The choice of
these and all other constants for the numerical examples are specified there.

With the routines provided by the Matlab toolbox Intlab 5.5, [43], we have a practical
method to identify boxes Bk in a reduced outer approximation whose intersection with
the original index set Y of SIP is empty. As Y = {y ∈ R

m|vl (y) ≤ 0, l ∈ L}, one can
evaluate vl

(

Bk
)

for each l ∈ L with the methods of Intlab. Then, if there is some l∗ ∈ L
with min vl

(

Bk
)

> 0 the intersection of Y and Bk is empty, and Bk can be deleted.
Later we will briefly discuss a similar method to identify boxes which are not needed
during the optimization process.

Now we discuss the computation of the parameters L, L and α on the set Xν×Bk. Note
that the computation of the parameters onX×Bk orX×B is similar. Given a restriction
g (x, y) on a set Xν ×Bk and the gradient with respect to the second argument, that is,
∇yg(x, y), we evaluate ∇yg(X

ν , Bk) ∈ IR
m with the routines provided by the Matlab

toolbox Intlab 5.5. Thus, we obtain lower and upper bounds for min
(x,y)∈Xν×Bk

(
∂

∂yi
g(x, y))

83

7 Implementation Details

and min
(x,y)∈Xν×Bk

(
∂

∂yi
g(x, y)) for each i ∈ {1, . . . ,m}. Now, using the constant EPS form

Matlab which is the distance from 1.0 to the next larger double precision number, we
set

L
(

Xν , Bk
)

=











min
(

0,−
√
EPS+min ∂

∂y1
g(Xν , Bk)

)

...

min
(

0,−
√
EPS+min ∂

∂ym
g(Xν , Bk)

)











and

L
(

Xν , Bk
)

=











max
(

0,
√
EPS+max ∂

∂y1
g(Xν , Bk)

)

...

max
(

0,
√
EPS+max ∂

∂ym
g(Xν , Bk)

)











.

With this approach we can ensure the required conditions given by the relations (3.2).

As, for example, also explained in [14] the parameters α on Xν × Bk are computed
using the Hessian with respect to the second argument of g(x, y), that is, D2

yg(x, y), and
Gerschgorin circles, as well as the Theorem of Gerschgorin. Let A ∈ C

m×m be a matrix
with A = (aij)ij and ri =

∑m
j=1 |aij | − |aii|. For i ∈ {1, . . . ,m} the sets

Bri (aii) = {a ∈ C | |a− aii| ≤ ri}
are called Gerschgorin circles. With the aid of theses circles one can enclose the eigen-
values of A.

Theorem 7.1.1 (Theorem of Gerschgorin, [19]). All eigenvalues of A are contained in
the set

⋃m
i=1Bri (aii).

Notice here that the Hessian matrix D2
yg(x, y) is symmetric, thus, all eigenvalues are

real. To compute α on Xν × Bk we first evaluate D2
yg(X

ν , Bk) ∈ IR
m×m with the

routines provided by the Matlab toolbox Intlab 5.5. Let D2
yGij =

(

D2
yg(X

ν , Bk)
)

ij

denote the interval in the i-th row and j-th column of the interval matrix. By applying
Theorem 7.1.1 to D2

yg(X
ν , Bk) it is not hard to see that for the choice

α = max



0,
√
EPS+ max

i∈{1,...,m}



max
(

D2
yGii

)

+
∑

i 6=j

max
(

|D2
yGij |

)









we have α > max
(

0,max(x,y)∈Xν×Bk λmax (x, y)
)

.

The nonlinear subproblems arising in the adaptive reduction algorithms were solved using
fmincon from the Matlab Optimization Toolbox Version 5.0 with default tolerances.
If fmincon was not able to compute a Karush-Kuhn-Tucker point of a subproblem we
used a filter SQP method described in [50, 51]. The subproblems arising in the adaptive
convexification or the adaptive hybrid method are more complicated. The solution
method is briefly discussed in the next section.

84

7.2 Regularization of MPCC

−0.5 0 0.5 1
−0.5

0

0.5

1

x
1

x
2

Figure 7.1: Illustration of the set given by x1 ≥ 0, x2 ≥ 0, x1x2 = 0.

7.2 Regularization of MPCC

In this section let I, Ic, J ⊂ N and f : Rn → R, gi : R
n → R for i ∈ I, c1i , c

2
i : Rn → R

for i ∈ Ic, as well as hj : Rn → R for j ∈ J be some twice continuously differentiable
functions. Further, let g = (gi)i∈I , c

1 =
(

c1i
)

i∈Ic
, c2 =

(

c2i
)

i∈Ic
and h = (hj)j∈J . In

general the subproblems in the adaptive convexification algorithms have the form

MPCC : min
x
f(x) s.t. g(x) ≤ 0

h(x) = 0

0 ≤ c1 (x) ⊥ c2 (x) ≥ 0.

That type of problem is called mathematical problem with complementarity constraints.
It is well known , cf. [32], that this problem is non-smooth as a results of the constraints
0 ≤ c1 (x) ⊥ c2 (x) ≥ 0. We will illustrate that on the next example.

Example 7.2.1. Let Ic = {1}, n = 2 and c1 (x) = x1, c
2 (x) = x2. The constraints 0 ≤

c1 (x) ⊥ c2 (x) ≥ 0 can be equivalently reformulated as x1 ≥ 0, x2 ≥ 0, x1x2 = 0. The
set given by these constraints are the nonnegative coordinate axis x1, x2, as Figure 7.1
illustrates. One can see that the set is almost everywhere smooth except for the point
x1 = x2 = 0. Even though the non-smoothness of the feasible set of MPCC is limited to
only finitely many points, we can not, in general, expect that solvers like SQP methods are
able to solve them, since they require at least twice continuously differentiable functions.

For more details on the structure of the problem MPCC we refer to [27, 28, 32] and the
references there in.

Solution methods for MPCC are discussed in several works. Some of the methods, like
those introduced in [9, 44], use a smoothing or relaxing approach. Other methods use
techniques from non-smooth optimization, cf. [10, 37]. A new method, first introduced
in [46], uses a lifting approach. The method lifts the feasible set of MPCC into a higher

85

7 Implementation Details

−0.5 0 0.5 1
−0.5

0

0.5

1

x
1

x
2

C0.3

C0.05

C0.15

Figure 7.2: Illustration of the sets C and Ct for t ∈ {0.3, 0.15, 0.05}.

dimensional space so that it gets smooth. The solution method we used is a smoothing
approach discussed in [44]. As a start we pick up Example 7.2.1 to illustrate the main
ideas of the method. After that we give a brief outline of the used techniques.

Example 7.2.2. As seen in the latter example the set C = {x ∈ R
2 | x1 ≥ 0, x2 ≥

0, x1x2 = 0} is almost everywhere smooth except for the point x1 = x2 = 0. Let
Ct = {x ∈ R

2 | x1 ≥ 0, x2 ≥ 0, x1x2 = t2} for t ≥ 0. It is not hard to see that
Ct is smooth for t 6= 0 and that C0 = C holds. Thus, for small t > 0 the set Ct can be
interpreted as an smooth approximation of C. The sets C and Ct for some t > 0 are
illustrated in Figure 7.2.

The main idea of the method presented in [44] is to compute Karush-Kuhn-Tucker
points of a sequence of smooth approximations of MPCC with a sequence of smoothing
parameters t tending to zeros. There it is shown that these sequence of stationary points
tends to a, in some kind, stationary point of the original problem.

Let c1 (x) ∗ c2 (x) =
(

c1i (x) c
2
i (x)

)T

i∈Ic
. With the idea introduced in Example 7.2.1 we

obtain

MPCCt : min
x
f(x) s.t. g(x) ≤ 0

h(x) = 0

−c1 ≤ 0

−c2 ≤ 0

c1 (x) ∗ c2 (x) = t2.

as a smooth approximation of MPCC for some t 6= 0. For numerical reasons, as dis-
cussed for example in [13], it is reasonable to replace the constraints −c1 ≤ 0, c2 ≤
0, c1 (x)∗ c2 (x) = 0 in MPCC by a nonlinear complementarity function, NCP-function.
A function Φ : R2 → R that satisfies

a, b ≥ 0, ab = 0 if and only if Φ (a, b) = 0

86

7.2 Regularization of MPCC

is called NCP-function. An example for an NCP-function is the so called Fischer-
Burmeister function, cf. [12],

Φ̃FB (a, b) = a+ b−
√

a2 + b2.

Naturally Φ̃FB is non-differentiable for a = b = 0, but one can regularize it. The
smoothed Fischer-Burmeister function is given by

Φ̃FB (t, a, b) = a+ b−
√

a2 + b2 + 2t2.

Obviously, Φ̃FB (t, a, b) is differentiable for each t 6= 0 and we have Φ̃FB (0, a, b) =
Φ̃FB (a, b). In [30] the following property was observed.

Lemma 7.2.3. For t 6= 0 we have

a, b ≥ 0, ab = t2 if and only if Φ̃FB (t, a, b) = 0.

Taking all that into account, and with the notations used in Chapter 4 and Section 5.2,
we are now in the position to state the used solution method. We solved the problem
PαBB(BN), respectively, PαBB(X

ν ,BN) by applying fmincon, or the former mentioned
SQP method to the problems

P t
αBB(BN) : min

ω,t
F (ω) s.t. G(ω) ≤ 0

H(ω) = 0

Φ̃FB

(

t, C1 (ω) , C2 (ω)
)

= 0

et = 1

and

P t
αBB(X

ν ,BN) : min
ω,t

F (ω) s.t. G(ω) ≤ 0

H(ω) = 0

Φ̃FB

(

t, C1 (ω) , C2 (ω)
)

= 0

et = 1.

Here we used

Φ̃FB

(

t, C1 (ω) , C2 (ω)
)

=

(

φFB

(

γk, yk − bk
)

φFB

(

γk, b
k − yk

)

)

k=1,...,N

.

Note that we did not use a predefined sequence of smoothing parameters t. Instead we
use et = 1 as an additional constraint, and, thus, let the nonlinear solver determine a
value for t in each iteration. It is not hard to see that in a feasible point for PαBB(BN)
and PαBB(X

ν ,BN) we have t = 0.

87

7 Implementation Details

Figure 7.3: Illustration of the function g (x, y) = x4 − 6x2 + 8x − 6y2 on X = [−2, 2], Y = [0, 1]. The
dots mark stationary points of EPISIP .

7.3 A phase 1 algorithm

In this section we discuss a phase 1 for the presented algorithms. That is, a method to
find a feasible point of the problem as starting point for the main algorithms. Let us
recall that a point x∗ is feasible for SIP if the relation g(x∗, y) ≤ 0 holds for each y ∈ Y .
By an epigraph reformulation we obtain that this is equivalent to g(x∗, y) ≤ z∗ holds for
each y ∈ Y , for some z∗ ≤ 0. Thus, we have that x∗ is feasible for SIP if for a solution
(x∗, z∗) of the problem

EPISIP : min
(x,z)∈X×R

z s.t. g(x, y) ≤ z for all y ∈ Y

z ≥ −ǫ̃epi.

the relation z∗ ≤ 0 holds for some ǫ̃epi > 0. We add the additional constraint z ≥ −ǫ̃epi
to the problem to ensure that z is bounded below. Thus, we may find a feasible starting
point by applying the algorithms, as they are, at first to a problem that is reformulated
in that way. However, there may occur a problem. As the solution methods for the
subproblems, no matter which algorithm is used, compute stationary points and not
global optima of a problem, the algorithms may get stuck in a local minimum of EPISIP
with a positive optimal value. That means the algorithms may not find a feasible point
and break, even though there exist feasible points. We illustrate that in the next example.

Example 7.3.1. Let Y = [0, 1], X = [−2, 2] and g (x, y) = x4−6x2+8x−6y2. It is not
hard to see that the point (x∗, z∗) = (1, 3) with κ = λ = 1 is stationary in the sense of
John but not feasible, cf. Figure 7.3. Thus, our algorithms may get stuck in that point,
even though there are feasible points.

In fact, the discussed problem is a basic phenomenon in nonlinear optimization and can
be avoided with techniques, and computationally expensive algorithms from global op-
timization. In spite of that problem way apply the algorithms to reformulated problems

88

7.4 X-adaptation strategies

EPISIP of SIP as a phase 1 for our algorithms and try to calculate feasible starting
points. As a termination criterion we do not use a stationarity condition, but we stop
the phase 1 algorithm if a point (x∗, z∗) is found with z∗ smaller then some negative
constant −ǫepi > −ǫ̃epi. With the Lemmata 3.3.1 and 4.3.1 it is ensured that such a
point can be found under the appropriate conditions.

Since we do not use a stationarity condition as stopping criterion for the phase 1 we
have an advantage for the algorithms with the additional X-adaptation. From the main
convergence proofs of these algorithms, cf. Theorem 5.1.10 and 5.2.9, it is not hard to
see that Condition 5.1.7 (ii) is only needed to ensure that infinitely many iterates are in
the interior of the constructed sequence of subsets of X, and satisfy the approximative
stationarity condition. Thus, it is possible to drop that condition in the phase 1. Since
Condition 5.1.7 (iii) ensures that the constructed subsets of X do not degenerate to
a single point we also have that the feasible set of the relaxation of EPISIP is non
degenerated.

7.4 X-adaptation strategies

In this section we introduce two techniques for the adaptation of the set X, that is,
constructing the sequence (Xν)ν of subsets of X satisfying Condition 5.1.7. Let Xν ⊂
X ⊂ R

n and xν−1, xν ∈ Xν be two iterates of one of the presented algorithms so that
xν−1 is the barycenter of Xν .

We obtain a possible strategy to construct Xν+1 by choosing the box with barycenter
xν and side lengths 2δ‖xν − xν−1‖∞ for some δ >

√
n. As xν ∈ int

(

Xν+1
)

is true
Condition 5.1.7 (i) is satisfied. To see that Condition 5.1.7 (ii) is satisfied, notice first
that for xν ∈ ∂Xν and δ >

√
n the demanded side lengths imply that there is some

constant c̃ > 0 so that the relation (
√
n+ c̃) ‖xν − xν‖∞ ≤ ‖xν+1 − xν+1‖∞ holds for

each ν. Thus, Condition 5.1.7 (ii) is a consequence of the relation

‖xν − xν‖2 + c̃‖xν − xν‖∞ ≤
(√
n+ c̃

)

‖xν − xν‖∞
≤‖xν+1 − xν+1‖∞
≤‖xν+1 − xν+1‖2.

Since ∆xν = ‖xν − xν−1‖∞ may become small we have to bound the side lengths below
by some constant to ensure Condition 5.1.7 (iii). More precisely we set

Xν+1
i = [max (xνi − 2δmax (∆xν , ǫX) , xi) ,min (xνi + 2δmax (∆xν , ǫX) , xi)] (7.1)

for i = 1, . . . , n and some ǫX > 0. With that choice it is not hard to see that Condi-
tion 5.1.7 (iv) is also satisfied.

Another strategy inspired by the first one is to move the box, constructed like in (7.1),
into the direction of steepest descent for the objective function f . That is,

Xν+1
i =

[

max (xνi − 2δmax (∆xν , ǫX) , xi) ,min
(

xνi + 2δmax
(

∆, ǫX
)

, xi
)]

(7.2)

89

7 Implementation Details

for i = 1, . . . , n, ǫX > 0, and

∆xν = max

(

1− ∇f(x)
‖∇f(x)‖∞

, ǫX

)

‖xν − xν−1‖∞

∆xν = max

(

1 +
∇f(x)

‖∇f(x)‖∞
, ǫX

)

‖xν − xν−1‖∞.

As for the former strategy it is not hard to see that this choice also satisfies Condi-
tion 5.1.7.

As mentioned in the latter section, we can neglect the condition δ >
√
n for a phase 1

algorithm with X-adaptation.

7.5 Reduction of complexity

This section starts, with an implementable method to perform monotonicity tests of the
constraints in the second argument. After that, we give a practical method to identify
boxes not needed during the iterations. Notice that we only look at constraints g on sets
Xν ×Bk. A generalization to other box shaped sets is straightforward.

We start our discussion with the overestimator used for the adaptive convexification
algorithm, cf. Chapter 4 and Section 5.2. Let us recall that for a given constraint g
of SIP the algorithms introduced in Chapter 4 and Section 5.2 constructed concave
overestimators for g with respect to the second argument of the form

ğν,k : Xν ×Bk −→ R, (x, y) 7−→ g(x, y) + ψ(y;αν
k, B

k).

The constant αν
k was chosen so that αν

k > max{0,max(x,y)∈Xν×Bk λmax (x, y)}, where
λmax (x, y) denotes the maximal eigenvalue of D2

yg(x, y) and ψ
(

y;αν
k, B

K
)

=
αν
k

2 〈y −
bk, b

k − y〉. Let us assume for the moment that ∂
∂yi
g (x, y) > 0 on Xν × Bk for some

i ∈ {1, . . . ,m}, and that g is not concave in the second argument. Then it is clear that
the coordinate yi of the maximum of g with respect to the second argument on Bk is bi.
Though we overestimate g on the whole set by our adaptive convexification algorithm,
and, thus, also in coordinate direction yi and make an unnecessary error. Before we
continue we give an illustrative example.

Example 7.5.1. Let Xν = [0, 1], Bk = [−1, 1] and g (x, y) = x2+y2 sin (y)+y. It is not
hard to see that g is monotonically increasing and not concave in the second argument.
With α = 4 we obtain ğν,k (x, y) = x2 + y2 sin (y) + y + 2 (y + 1) (1− y) as a concave
overestimator for g. As one can see in Figure 7.4 the maximum of ğν,k in y does not
coincide with the one of g for arbitrary x ∈ Xν . Moreover, we make an unnecessary
error by overestimating g. However, it is not hard to see that the function g (x, 1) is
also an overestimator for g on the whole set and coincides with the maximum of g with
respect to y for each x.

90

7.5 Reduction of complexity

Figure 7.4: Illustration of the function g (x, y) = x2 + y2 sin (y) + y and its overestimator ğν,k. The blue
line are the maxima of g with respect to the second argument and the yellow the maxima of
ğν,k.

A generalization of the latter observation is straightforward. It is not hard to see that

ğν,k is still a concave overestimator for g on Xν × Bk if we fix those yi to b
k
for which

min(x,y)∈Xν×Bk ∇yg (x, y) ≥ 0 is satisfied and to bk for which max(x,y)∈Xν×Bk ∇yg (x, y) ≤
0 is true. Now, we can modify the Algorithms 3 and 8 for SIPαBB to include a mono-
tonicity test. In Algorithm 15 we only state the new splitting procedure for the case
a X-adaptation is used. It also describes how the feasible set of a refined problem of
SIPαBB is constructed. The monotonicity test is stated in Algorithm 16. The com-
putation of the bounds for min(x,y)∈Xν×Bk ∇yg (x, y) and max(x,y)∈Xν×Bk ∇yg (x, y) is
performed with the routines provided by the Matlab toolbox Intlab 5.5.

For the overestimator used for the adaptive reduction algorithm, cf. Chapter 3 and
Section 5.1, we do not need to introduce a monotonicity test. From the calculation of
the i-th component of the center ci and the choice of Li, Li on the corresponding sets for

each i ∈ {1, . . . ,m}, we have that ci = bki if min(x,y)∈Xν×Bk ∇yg (x, y) ≥ 0 and ci = b
k

i if
max(x,y)∈Xν×Bk ∇yg (x, y) ≤ 0 is true.

With another useful observation and the routines provided by Intlab one can try to
reduce the number of boxes in a reduced outer approximation of Y in a problem SIPUF

and SIPαBB, even if the intersection of a box and the original index set is not empty.
Here we have to distinguish the cases for X and Xν .

Let there be some Bk in the reduced outer approximation of Y so that the relation
g (x, y) < 0 holds for each (x, y) ∈ X × Bk. That means g does not have any active
index on Bk for each x ∈ X. As Y ∩Bk is a subset of Bk, we also have that g (x, y) < 0
holds for each (x, y) ∈ X ×

(

Y ∩Bk
)

. Since the feasible set M of SIP is a subset of X,
g does not constrain M for indices in Bk. Thus, Bk can be deleted from the reduced

91

7 Implementation Details

Algorithm 15 Splitting step with monotonicity test - XrefineαBB(η)

Let x ∈ Xν , η ∈ Bk∗ , k∗ ∈ {1, . . . , N}, and let Sk∗ be the barycenter of Bk∗ and

Qk∗ =
min

l∈Pk∗

(

b
k∗

l −bk
∗

l

)

‖b
k∗

−bk
∗
‖∞

.

if η /∈ Y or Qk∗ < ǫ then
Set η = Sk∗ .

end if

if P k∗ 6= ∅ then

Compute
(

Bk∗,(1), Bk∗,(2)
)

= S(Bk∗ , η).

Compute α
ν,(1)
k∗ , α

ν,(2)
k∗ ≤ αk∗ on Xν ×Bk∗,(1), Xν ×Bk∗,(2).

XtestmonoαBB

(

Xν , Bk∗,(1), Bk∗,(2)
)

.
for j = 1 to 2 do

Set

ğν,k
∗,(j)(x, y) = g(x, y) +

α
ν,(j)
k∗

2
〈y − bk

∗,(j), b
k∗,(j)

)− y〉

M (j) = {x ∈ Xν | gν,k∗,(1)(x, y) ≤ 0 for all y ∈ Bk∗,(1)}

with fixed yi = b
k∗,(j)

for i ∈ P (j) and yi = bk
∗,(j) for i ∈ P

(j)
.

end for

Set M̃ = {x ∈ Xν | gν,k(x, y) ≤ 0 for all y ∈ Bk, k ∈ {1, . . . , N} \ {k∗}}
if Y ∩Bk∗,(1) 6= ∅ and Y ∩Bk∗,(2) 6= ∅ then

Replace Bk∗ by Bk∗,(1) and Bk∗,(2) and replace αν
k∗ by α

ν,(1)
k∗ and α

ν,(2)
k∗ .

Set MαBB(X
ν ,BN) = M̃ ∩M (1) ∩M (2).

Set N = N + 1.
else if Y ∩Bk∗,(1) 6= ∅ then

Replace Bk∗ by Bk∗,(1) and αν
k∗ by α

ν,(1)
k∗ .

Set MαBB(X
ν ,BN) = M̃ ∩M (1).

else if Y ∩Bk∗,(2) 6= ∅ then

Replace Bk∗ by Bk∗,(2) and αν
k∗ by α

ν,(2)
k∗ .

Set MαBB(X
ν ,BN) = M̃ ∩M (2).

else

Delete Bk∗ and αν
k∗ .

Set MαBB(X
ν ,BN) = M̃ .

Set N = N − 1.
end if

end if

outer approximation of Y without affecting the feasible set. A test if g (x, y) < 0 holds
for each (x, y) ∈ X × Bk can be easily made by evaluating g

(

X,Bk
)

with the routines
of Intlab.

92

7.5 Reduction of complexity

Algorithm 16 Monotonicity test - XtestmonoαBB

(

X,B(1), B(2)
)

Set P (1) = P (2) = P
(1)

= P
(2)

= ∅.
for i = 1 to m do

for j = 1 to 2 do

Compute lower bounds for L
(j)
i for min(x,y)∈X×B(j)

∂
∂yi
g (x, y).

Compute upper bounds for L
(j)
i for max(x,y)∈X×B(j)

∂
∂yi
g (x, y).

if L
(j)
i ≥ 0 then

Set P (j) = P (j) ∪ {i}.
else if L

(j)
i ≤ 0 then

Set P
(j)

= P (j) ∪ {i}.
end if

end for

end for

Though we are in a slightly different situation if the relation g (x, y) < 0 holds only
for each (x, y) ∈ Xν × Bk. In this case we can only ensure that g does not constrain
Xν ∩M for indices in Bk, but we can not ensure that for the whole set M . In any
case, we can ensure that Bk is temporarily not needed in the problems SIPUF

(

Xν ,BN
)

and SIPαBB

(

Xν ,BN
)

. Thus, we can ignore this box temporarily in our optimization
processes. However, if the set Xν changes during the iterations one has to check again
whether g is negative, or not, for each point (x, y) on the new set.

93

8 Numerical examples

In this chapter we present some numerical examples to give an impression of the per-
formance of the algorithms and the interaction of the used concepts. The first example
is the Chebyshev approximation problem CA given in Section 3.4 and 4.4. On that
problem we consider the behavior of the algorithms and the impact of the additional
X-adaptation strategies. After that we investigate two illustrative examples from design
centering with Y ⊂ R

2. On the first problem we also consider the behavior of the algo-
rithms and the impact of the additional X-adaptation strategies. Then, on the second
problem, we will briefly discuss the numerical behavior of the reduced outer approxima-
tion of the index set. At last we give another design centering problem with Y ⊂ R

3.
In the sequel we will denote the maximum separation distance of a constraint and the
corresponding relaxation, cf. Lemma 3.1.2 and 4.1.2, shortly as error of a relaxation.
As termination criteria for all algorithms on each problem we used the norm of the
stationarity condition, the feasibility of the indices, and, additionally, we required that
the change in the value of the objective function is less then 10−3 and the norm of the
change in the iterates is less then 10−2.

We recall that the semi-infinite reformulation of the Chebyshev approximation problem
introduced in Section 3.4 was

SIPCA : min
x∈R4

x4 s.t. sin (πy)−
(

x3y
2 + x2y + x1

)

− x4 ≤ 0, y ∈ [0, 1]

− sin (πy) + x3y
2 + x2y + x1 − x4 ≤ 0, y ∈ [0, 1] .

withX = [−1, 1]×[3, 5]×[−5,−3]×[0, 3] and B = Y = [−1, 1]. As termination tolerances
on the stationarity and on the activities of the constraints we choose ǫ = ǫact = 10−3. As
the index set can be handled exactly by the algorithms we do not need some tolerance
ǫY on the feasibility of the indices.

For Algorithm 7 we set ǫsplit = min

(

ǫact
max(‖L‖∞,‖L‖∞)‖b−b‖1

, 12 − ǫY

)

), and for Algo-

rithm 10 we set ǫsplit = min
(

2ǫactmin
(

1, 1
α‖b−b‖22

)

, 12 − ǫY

)

. As a starting point for

both algorithms and each X-adaptation strategy we used x0 = (1, 5,−3, 2). In the
phase 1 procedure we choose δ = 1.1, and after the algorithms found a feasible starting
point we used δ = 2 +

√
EPS for the X-adaptations. The constant EPS form Matlab is

the distance from 1.0 to the next larger double precision number.

With Algorithm 7 and the adaptation strategy (7.1) we obtained the feasible starting

95

8 Numerical examples

0 20 40 60
0

200

400

600

800

1000

1200

1400

1600

1800

iteration
0 20 40 60

0

0.5

1

1.5

2

2.5

3
x 10

4

iteration

a) b)

Figure 8.1: The overall number of boxes and the overall number of boxes which may contain active
indices generated by Algorithm 7 for the problem SIPCA. In a) with the X-adaptation
strategy given by (7.1), and in b) with the X-adaptation strategy given by (7.2).

point

x13 = (0.73025, 4.7303,−3.2697, 2.2697)T

after 13 iterations (4.76 CPU seconds). After 41 more iterations (717.75 CPU seconds)
the algorithm terminates with the point

x∗ = (−0.028054, 4.0006,−4.0006, 0.028054)T

and the objective value 0.028054. At x∗ the norm of the stationarity condition is less
then 10−16, the change in the value of the objective function is 9.5774 · 10−5, and the
norm of the change in the iterates is 0.0018846.

And with Algorithm 7 and the adaptation strategy (7.2) we obtained the feasible starting
point

x14 = (0.69228, 4.6923,−3.3077, 2.154)T

after 14 iterations (4.27 CPU seconds). After 29 more iterations (1557.21 CPU seconds)
the algorithm terminates with the point

x∗ = (−0.028136, 4.002,−4.002, 0.028136)T

and the objective value 0.028136. At x∗ the norm of the stationarity condition is less
then 10−16, the change in the value of the objective function is 2.8488 · 10−4, and the
norm of the change in the iterates is 0.0062716.

As a start one can see that the results from Algorithm 2 and Algorithm 7 with both
adaptation strategies differ only marginally, while the latter algorithms perform better
then Algorithm 2 after a feasible starting point is found, but worse in the phase 1. For
that example, the adaptation strategy given by (7.1) performs better than the one given
by (7.2).

96

0 20 40 60
0

0.2

0.4

0.6

0.8

iteration
0 20 40 60

0

2

4

6

iteration

0 20 40 60
0

0.2

0.4

0.6

0.8

iteration
0 20 40 60

0

2

4

6

iteration

a) b)

c) d)

Figure 8.2: Results for Algorithm 7 for the problem SIPCA. a) The maximum and minimum diameter
of the boxes containing active indices with the X-adaptation strategy given by (7.1). b) The
green line is the maximum of the constants L, L on the boxes containing active indices and
the black line is the maximal error of the relaxations with the X-adaptation strategy given
by (7.1). c) The maximum and minimum diameter of the boxes containing active indices
with the X-adaptation strategy given by (7.2). d) The green line is the maximum of the
constants L, L on the boxes containing active indices and the black line is the maximal error
of the relaxations with the X-adaptation strategy given by (7.2).

A comparison of the overall number of boxes generated during the iteration by Algo-
rithm 7 which may contain active indices, cf. Figure 8.1, and the overall number of boxes
generated during the iteration by Algorithm 2, cf. Figure 3.5, shows a reason for the
difference in the runtime. We have to mention that in Algorithm 2 none of the generated
boxes could be deleted during the iterations, since, by our test, each box may contain an
active index. For the algorithm with the additional X-adaptation the number of boxes
which have to be taken into account is smaller than for the other algorithm, and, thus,
the subproblems become smaller. Figure 8.2 displays the diameter of boxes generated
during the iterations, which may contain active indices, and the maximal error made by
the relaxations in Algorithm 7, as well as the maximum values for for the constants L,
L. It can be seen that the diameter of boxes generated during the iterations, which may
contain active indices, and the error made by the relaxations in Algorithm 7, as well
as the values for L, L are also smaller than for Algorithm 2. With the X-adaptation
strategies one can reduce the maximum separation distance of the relaxation and the
original constraint, and, thus, the number of boxes needed in the iterations is reduced,
and the subproblems become smaller.

Furthermore one can see that there are jumps in the number of generated boxes. The
cause of these jumps can, again, be found in the X-adaptation procedure. If an iterate
is not feasible for a relaxed problem with a constructed subset of X, then the reduced

97

8 Numerical examples

outer approximation is refined until the point is feasible for the new problem, and, thus,
a large number of boxes might be generated.

Next we consider Algorithm 10. With the adaptation strategy (7.1) the algorithm finds
the feasible starting point

x13 = (0.73025, 4.7303,−3.2697, 2.2697)T

after 13 iterations (4.57 CPU seconds). After 14 iterations (7.87 CPU seconds) the
algorithm terminates with the point

x∗ = (−0.028005, 4,−4, 0.028005)T

and the objective value 0.028005. At x∗ the norm of the stationarity condition is 2.6122 ·
10−7, the change in the value of the objective function is 1.5959 · 10−16, and the norm
of the change in the iterates is 5.0351 · 10−15.

Algorithm 10 with the adaptation strategy (7.2) identified the feasible starting point

x14 = (0.69228, 4.6923,−3.3077, 2.154)T

after 14 iterations (4.78 CPU seconds). After 9 iterations (7.52 CPU seconds) the algo-
rithm terminates with the point

x∗ = (−0.028005, 4,−4, 0.028005)T

and the objective value 0.028005. At x∗ the norm of the stationarity condition is 3.5525 ·
10−9, the change in the value of the objective function is less then 10−16, and the norm
of the change in the iterates is 1.9898 · 10−15.

For Algorithm 10 we can observe the same effect as for Algorithm 7, that is, in comparison
to Algorithm 4 both adaptation strategies lead to a worsening of the runtime in the phase
1 of the algorithm. An indication for the cause can be found in the overall number of
boxes which may contain active indices, cf. Figure 8.3.

In the phase 1 none of the generated boxes contain an active index. That means none
of the relaxed nonlinear constraints become active. A too small value for δ can be the
only reason for that outcome, since the feasible set of the relaxed problems is given by
these nonlinear constraints and the subset of X constructed by the additional adaptation
strategy. That is additionally supported by the results displayed in Figure 4.5. As none
of the boxes contains an active index the diameters stay unchanged during the first
iterations, and the error made by the relaxations stays nearly unchanged. However,
with a large value for δ one can enlarge the subset of X so that the feasible set of
the relaxed problem is in its interior, and, thus, the subproblems in Algorithm 10 and
Algorithm 4 coincide. Nevertheless, after a feasible point is found Algorithm 10 with
both adaptation strategies performs better than Algorithm 4.

Before we investigate Algorithm 14 on the problem SIPCA, we illustrate the latter
remark. That is, another choice for δ in the algorithms should intend to improve the

98

0 10 20 30
2

3

4

5

6

7

8

9

10

11

12

iteration
0 10 20 30

2

3

4

5

6

7

8

9

10

11

12

iteration

a) b)

Figure 8.3: The overall number of boxes and the overall number of boxes which may contain active
indices generated by Algorithm 10 for the problem SIPCA. In a) with the X-adaptation
strategy given by (7.1), and in b) with the X-adaptation strategy given by (7.2).

0 10 20 30
0.1

0.2

0.3

0.4

0.5

iteration
0 10 20 30

0

5

10

15

iteration

0 10 20 30
0.1

0.2

0.3

0.4

0.5

iteration
0 10 20 30

0

5

10

15

iteration

a)

c)

b)

d)

Figure 8.4: Results for Algorithm 10 for the problem SIPCA. a) The maximum and minimum diameter
of the boxes containing active indices with the X-adaptation strategy given by (7.1). b) The
green line is the maximum of the constants α on the boxes containing active indices and
the black line is the maximal error of the relaxations with the X-adaptation strategy given
by (7.1). c) The maximum and minimum diameter of the boxes containing active indices
with the X-adaptation strategy given by (7.2). d) The green line is the maximum of the
constants α on the boxes containing active indices and the black line is the maximal error of
the relaxations with the X-adaptation strategy given by (7.2).

99

8 Numerical examples

runtime. We consider, again, Algorithm 10 with the X-adaptation (7.1) on the problem
SIPCA. We leave all termination tolerances and constants, except for δ, unchanged. In
the phase 1 we choose δ = 100 and after a feasible starting point is identified by the
Algorithm we set δ = 2 +

√
EPS.

The algorithms identified the feasible starting point

x1 = (0.90748, 4,−3.9935, 2.0925)T

after 1 iterations (1.02 CPU seconds). After 6 more iterations (8.62 CPU seconds) the
algorithm terminates with the point

x∗ = (−0.028005, 4,−4, 0.028005)T

and the objective value 0.028005. At x∗ the norm of the stationarity condition is 5.6842 ·
10−13, the change in the value of the objective function is 3.6312 · 10−13, and the norm
of the change in the iterates is 5.1353 · 10−13.

One can see that these results coincide with latter remark, and that for this example
both adaptation strategies for X perform nearly the same in Algorithm 10. In a first
summary we have, from the latter results, that there occur two opposing effects in the
X-adaptation. If, on the one hand, δ for the X-adaptation is chosen to small the size
of the computed step may become small and the algorithm needs more iterations to
compute a stationary point. On the other hand, with a smaller value for δ the feasible
set of a subproblem can be reduced, and, thus the number of boxes in a reduced outer
approximation, as well as the values for L, L and α may become smaller. As discussed in
Section 7.4, we have a lower bound for δ to ensure that stationary points for the original
problem can be computed, but we do not have an upper bound, and in the phase 1
algorithm the lower bound can also be dropped.

At last we investigate Algorithm 14 on the problem SIPCA. Here we only test the
algorithm with the additional X-adaptation.

With the adaptation strategy (7.1) Algorithm 14 computed the feasible starting point

x13 = (0.73025, 4.7303,−3.2697, 2.2697)T

after 13 iterations (5.65 CPU seconds). After 11 more iterations (12.95 CPU seconds)
the algorithm terminates with the point

x∗ = (−0.028005, 4,−4, 0.028005)T

and the objective value 0.028005. At x∗ the norm of the stationarity condition is 2.1104 ·
10−16, the change in the value of the objective function is 3.335 · 10−4, and the norm of
the change in the iterates is 0.007383.

And with the adaptation strategy (7.2) the algorithm identified the feasible starting
point

x14 = (0.69228, 4.6923,−3.3077, 2.154)T

100

0 10 20 30
2

4

6

8

10

12

14

16

iteration
0 10 20 30

2

4

6

8

10

12

14

iteration

a) b)

Figure 8.5: The overall number of boxes and the overall number of boxes which may contain active
indices generated by Algorithm 14 for the problem SIPCA. In a) with the X-adaptation
strategy given by (7.1), and in b) with the X-adaptation strategy given by (7.2). The blue
line is the number of boxes a concave relaxation is used on.

after 14 iterations (5.48 CPU seconds). After 12 iterations (10.81 CPU seconds) the
algorithm terminates with the point

x∗ = (−0.028005, 4,−4, 0.028005)T

and the objective value 0.028005. At x∗ the norm of the stationarity condition and the
change in the value of the objective function are less then 10−16. The norm of the change
in the iterates is 1.9159 · 10−15. The results from Algorithm 14 with both X-adaptation
strategies differ only slightly from the results obtained by the former algorithms.

One can see that the needed computational time is lower than for Algorithm 2 and
Algorithm 7, while it is slightly worse than for Algorithm 4 and Algorithm 10. As in
each iteration the constants L,L and αmust be computed for each box in the tessellation,
the difference in the computational time of Algorithm 4, 10 and Algorithm 14 might be
a result of the computational overhead.

That is supported by the results displayed in Figure 8.5. It can be seen that for both
adaptation strategies the overall number of generated boxes and the number of boxes
which may contain active indices differs only slightly from that one of Algorithm 4 and
Algorithm 10. Moreover, one can observe the same effect as in the latter algorithms
for the number of boxes which may contain active indices. That is, at the beginning
the number these boxes is zero. Almost on all boxes the algorithm chooses the concave
relaxation for the constraints, except for the last iterations. In the last iterations the
diameter of some boxes is that small, cf. Figure 8.6, that the corresponding constraints
are monotonic in the second argument, and, thus, the algorithm does not relax these
constraints.

The next examples we investigate are taken from the class of design centering problems,
cf. Chapter 1.

101

8 Numerical examples

0 10 20 30
0

0.2

0.4

0.6

0.8

iteration
0 10 20 30

0

2

4

6

iteration

0 10 20 30
0

0.2

0.4

0.6

0.8

iteration
0 10 20 30

0

2

4

6

iteration

a)

d)

b)

c)

Figure 8.6: Results for Algorithm 14 for the problem SIPCA. a) The maximum and minimum diameter
of the boxes containing active indices with the X-adaptation strategy given by (7.1). b) The
green line is the maximum of the constants α, the yellow line the maximum of L, L on the
boxes containing active indices and the black line is the maximal error of the relaxation with
the X-adaptation strategy given by (7.1). c) The maximum and minimum diameter of the
boxes containing active indices with the X-adaptation strategy given by (7.2). d) The green
line is the maximum of the constants α, the yellow line the maximum of L, L on the boxes
containing active indices and the black line is the maximal error of the relaxation with the
X-adaptation strategy given by (7.2).

z
1

z 2

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

Figure 8.7: Illustration of the container C for SIPDC1 .

102

For the first example we consider the container

C = {x ∈ R
2|c1(x) = (x1 −

1

2
)2 − x2 − 1 ≤ 0, c2(x) = x21 + x2 ≤ 0},

cf. Figure 8.7, and the design

D (x) = {z ∈ R
2| (cos(x5)

z1 − x1
x3

− sin(x5)
z2 − x2
x3

)2

+(sin(x5)
z1 − x1
x4

+ cos(x5)
z2 − x2
x4

)2 ≤ 1},

that is, an ellipse with free center (x1, x2)
T and axes x3, x4 in arbitrary position. To

maximize the area of D (x) we put f(x) = x3x4. As a parametrization for D (x) we use
D (x) = {z (x, y) |y21 + y22 ≤ 1} with

z (x, y) =

(

x1
x2

)

+

(

cos(x5) − sin(x5)
sin(x5) cos(x5)

)(

y1x3
y2x4

)

.

Thus, the constraint D (x) ⊂ C is equivalent to

gi (x, y) = ci (z (x, y)) ≤ 0 for all y ∈ Y = {y ∈ R
2|y21 + y22 ≤ 1}, i ∈ {1, 2}

and we arrive at the semi-infinite problem

SIPDC1 : min
x∈R5

−x3x4 s.t. gi(x, y) ≤ 0 for all y ∈ Y, i ∈ {1, 2}.

For this example we show how a box X can be constructed that contains the feasible set
of SIPDC1 . First note that the rotation variable x5 takes values in the interval [−π, π].
Since C and, thus, D(x) are contained in the box

[

−1
2 , 1
]

×
[

−3
2 ,

1
2

]

, it is not hard to
see that the radii x3 and x4 take values in [0, 1]. Thus, each feasible point of SIPDC1 is

contained in the box X = [x, x] with x =
(

−1
2 ,−3

2 , 0, 0,−π
)T

and x =
(

1, 12 , 1, 1, π
)T

. As

an initial approximation B for the index set Y we choose B =
[

b, b
]

with b = (−1,−1)T

and b = (1, 1)T . For all algorithms we choose the midpoint of X as the initial point x0,
and we use the tolerances ǫ = 10−2, ǫact = 10−3, ǫY = 0.035. Since the starting point x0

is not feasible, a phase 1 of the algorithms is performed to find a feasible point.

At first we test Algorithm 2. After 52 iterations (336.85 CPU seconds) we obtain the
feasible starting point

x52 =
(

0.25,−0.5, 8.791 · 10−18, 2.8225 · 10−18,−0.089828
)T
.

After 2 more iterations (29.78 CPU seconds) the algorithm terminates with the point

x∗ =
(

0.25,−0.5, 8.791 · 10−18, 2.8225 · 10−18,−0.089828
)T

and the objective value −2.4812 · 10−35. At x∗ the norm of the stationarity condition,
the change in the value of the objective function, the norm of the change in the iterates
are less then 10−16, and the approximate feasibility of the indices is 0.

103

8 Numerical examples

0 10 20 30 40 50 60
0

500

1000

1500

iteration

Figure 8.8: Overall number of boxes generated by Algorithm 2 for SIPDC1 and those which may contain
active indices.

Even though that result seem to be curious, it is not hard to check that x∗ is a stationary
point of SIPDC1 . It is the ellipse with center (0.25,−0.5) whose semi axes have the
lengths 8.791 · 10−18 and 2.8225 · 10−18, so, the area of the ellipse is approximately
0. That stationary point is not a minimum of the area. It is a maximum. However,
that result is not very surprising, since the solution concept of our algorithm is that of
stationary points, and the feasible starting point, determined in the phase 1 procedure,
is x∗. There we can also find the reason for that unwelcome result. In the phase 1
of our algorithm we try to find a feasible starting point for the main algorithm. The
feasible set of the relaxed problem is a subset of the feasible set of SIPDC1 . Our starting
point x0 is not feasible for the original problem, and, thus, not feasible for the relaxed
problem. On the one hand, the error in the feasibility and the error made by relaxing
the constraints decreases with the diameter of the generated sequence of boxes and from
Lemma 3.3.1 we have that there is some tessellation of B, respectively some reduced
outer approximation of Y so that the relaxed problem has a feasible point. On the other
hand, by reducing the lengths of the semi axes of the ellipse we also have a reduction
of the infeasibility. If the error in the feasibility of the generated sequence of points
decreases slower with the diameter of boxes than with the lengths of the semi axes, we
must expect that result.

An indication that we are in this situation for example SIPDC1 is the change in the
overall number of boxes generated during the iterations, cf. Figure 8.8, the change in
the diameter of boxes and in the maximum separation distance, cf. Figure 8.9, and
the reduced outer approximation of the set Y , cf. Figure 8.10. It can be seen that the
reduced outer approximation of Y is very precise and approximates the whole boundary
of the index set well. Moreover, the number of boxes which may contain active indices
becomes large during the iterations. But the error, made by the unimodal relaxations,
does not decrease fast, even though the maximal diameter of the boxes decreases. From
the discussions in Chapter 2 we know that the maximum separation distance of the

104

0 20 40 60
0

0.5

1

1.5

2

2.5

iteration
0 20 40 60

4

5

6

7

8

9

10

11

12

13

14

iteration

a) b)

Figure 8.9: Results for Algorithm 2 for the problem SIPDC1 . a) The maximum and minimum diameter
of the boxes containing active indices. b) The green line is the maximum of the Euclidean
norm of the constants L, L on the boxes containing active indices and the black line is the
maximal error of the relaxations.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1

g
2

Figure 8.10: Illustration of the reduced outer approximation of Y for the constraints g1, g2 at x∗ com-
puted by Algorithm 2 for the problem SIPDC1 .

relaxation and the original constraint on a set X×B is 〈L, b−c〉. As the last term tends
at least linearly to zeros with the diameter of the boxes the constants L, L must be still
large, cf. Figure 8.9. For our problem we have

∇yg1 (x, y) =

(

2
(

x1 + cos (x5) y1x2 − sin (x5) y2x4 − 1
2

)

cos (x5)x3 − sin (x5)x3
−2
(

x1 + cos (x5) y1x2 − sin (x5) y2x4 − 1
2

)

sin (x5)x4 − cos (x5)x4

)

,

∇yg2 (x, y) =

(

2 (x1 + cos (x5) y1x2 − sin (x5) y2x4) cos (x5)x3 + sin (x5)x3
−2
(

x1 + cos (x5) y1x2 − sin (x5) y2x4 − 1
2

)

sin (x5)x4 + cos (x5)x4

)

.

L, L are computed by evaluating ∇yg1 and ∇yg2 on X and a box B of the reduced outer
approximation of Y . As a result of the structure of ∇ygi, i = 1, 2, and, due to X is

105

8 Numerical examples

z
1

z 2

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

Figure 8.11: Illustration of the final result x∗ for SIPDC1 computed by Algorithm 4.

unchanged during the iterations, one can see that the values of these constants are, in
some kind, bounded by the latitude of X.

We have to mention that the zigzagging in the separation distance is a result of the
relaxation technique. The set of active indices, and, thus, the corresponding boxes in
the reduced outer approximation which constitute the error in the relaxation change in
each iteration.

After the unfruitful result for Algorithm 2, we test Algorithm 4 on SIPDC1 .

After 5 iterations (30.65 CPU seconds) the feasible point

x5 =
(

0.20954,−0.47452, 0.18668, 6.263 · 10−19, 0.1038
)

was identified. After 65 more iterations (195415.36 CPU seconds) the algorithm termi-
nates with the point

x∗ = (0.25,−0.5, 0.64025, 0.34474, 2.4359)T

and the objective value −0.22072. The solution is illustrated in Figure 8.11. At x∗

the computed norm of the stationarity condition is less then 10−16, the approximate
feasibility of the indices is 0.03125, the change in the value of the objective function
is 0.00041, and the norm of the change in the iterates is 0.00402. The reduced outer
approximation of Y in x∗ for g1 and g2 is illustrated in Figure 8.12. It can be seen that
the approximations of Y are not uniform and only refined locally.

A major drawback of the Algorithm 4 is the high numerical effort, although an accept-
able solution was computed. It may be explained by the fact that, as a result of the
reformulation, the number of variables in the subproblems increases with the number of
boxes arising from splitting B into smaller boxes. The overall number of boxes and the
number of boxes which may contain active indices in the reduced outer approximation

106

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
g

2
g

1

Figure 8.12: Illustration of the reduced outer approximation of Y for the constraints g1, g2 at x∗ for the
problem SIPDC1 computed by Algorithm 4.

Figure 8.13: Overall number of boxes generated by Algorithm 4 for SIPDC1 and overall number of boxes
which may contain active indices.

generated during the iterations is displayed in Figure 8.13. As both numbers differ only
marginally in each iteration we also have a low reduction of the number of variables and
constraints in the subproblems.

Each generated box corresponds to an increase in the number of variables by 6. In the
last iteration the total amount of boxes is 481. Thus, a subproblem with 2891 variables
and 8673 constraints must be solved.

The number of boxes, however, is not the only criterion to benchmark the numerical
effort. Another point, intimately related to the size of the generated boxes, is the
error made by the convexification procedure. This error depends on the convexification
parameter α and the diameter of the box. In the present example, on each box in each

107

8 Numerical examples

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

Iteration
0 10 20 30 40 50 60 70

0

0.5

1

1.5

2

2.5

3

Iteration

Figure 8.14: Maximum and minimum diameter of boxes containing active indices for g1 and g2 of the
problem SIPDC1 generated by Algorithm 4.

iteration the computed value of α is 4. To understand this, first notice that

D2
ygi(x, y) =

(

2(cos(x5)x3)
2 −2 cos(x5) sin(x5)x3x4

−2 cos(x5) sin(x5)x3x4 2(sin(x5)x4)
2

)

holds for i = 1, 2. Thus, the choice of α is independent of the size of the boxes in the
reduced outer approximation and only depends on the size of X. Since X does not
change, it is not hard to see that the computed value is correct. For this example an
additional adaptation of the set X may have an enormous impact on the performance of
the algorithm, since the values for α and for this reason also the error of the relaxation
might be reduced. Since α does not become small, the diameter of the boxes must
become small to decrease the approximation error. In Figure 8.14 the maximum and
minimum diameter of boxes in the reduced outer approximation of Y containing active
indices for g1 and g2 is displayed.

It can be seen that the maximum diameter of boxes containing active indices is not mono-
tonically decreasing. Since the boxes containing active indices change in every iteration
we can only ensure that there is a subsequence of boxes whose diameter decreases.

Now we test Algorithms 7 and 10 on SIPDC1 with both adaptation strategies. In the
phase 1 procedure we choose δ = 1.1, and after the algorithms found a feasible starting
point we used δ =

√
5 +

√
EPS for the X-adaptations.

With the adaptation strategy (7.1) Algorithm 7 finds the feasible starting point

x11 = (0.25,−0.5, 0.29616, 0.29616, 0.20384)T

after 11 iterations (8.65 CPU seconds). After 24 more iterations (340.12 CPU seconds)
the algorithm terminates with the point

x∗ = (0.25106,−0.50142, 0.34698, 0.60703, 0.81899)T

108

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1

g
2

Figure 8.15: Illustration of the reduced outer approximation of Y for the constraints g1, g2 of the problem
SIPDC1 at x∗ computed by Algorithm 7 with the X-adaptation strategy given by (7.1).

and the objective value −0.21063. At x∗ the norm of the stationarity condition is less
then 10−16, the change in the value of the objective function is 5.2767 · 10−5, and the
norm of the change in the iterates is 0.0026994. The error in the feasibility of the indices
is 0.015625.

And with the adaptation strategy (7.2) the algorithm finds the feasible starting point

x16 = (0.25,−0.5, 0.324, 0.324, 0.042395)T

after 16 iterations (15.27 CPU seconds). After 30 more iterations (501.87 CPU seconds)
the algorithm terminates with the point

x∗ = (0.25056,−0.49986, 0.34466, 0.62222, 0.8347)T

and the objective value −0.21446. At x∗ the norm of the stationarity condition, the
change in the value of the objective function, the norm of the change in the iterates, and
the error in the feasibility of the indices is less then 10−16.

As a first result we obtain that Algorithm 7 with both X-adaptation strategies performs
better than Algorithm 2. It can be seen, cf. Figure 8.15 and 8.16, that the reduced
outer approximations of Y in x∗ for both adaptation strategies are only good locally.
The uncolored boxes are those in the reduced outer approximation which do not contain
any active indices. Moreover, with the additional X-adaptation we are, in some sense,
able to control the result from the phase 1 of the algorithm. We will return to that
observation later. For SIPDC1 the adaptation strategy (7.1) performs better than (7.2)
for Algorithm 7.

For Algorithm 10 with the adaptation strategy (7.1) the feasible starting point

x11 = (0.25,−0.5, 0.29616, 0.29616, 0.15197)T

109

8 Numerical examples

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1

g
2

Figure 8.16: Illustration of the reduced outer approximation of Y for the constraints g1, g2 of the problem
SIPDC1 at x∗ computed by Algorithm 7 with the X-adaptation strategy given by (7.2).

is found after 11 iterations (12.92 CPU seconds). After 35 more iterations (385.97 CPU
seconds) the algorithm terminates with the point

x∗ = (0.24941,−0.50012, 0.33347, 0.62194, 0.87069)T

and the objective value −0.2074. At x∗ the norm of the stationarity condition is 1.0581 ·
10−5, the change in the value of the objective function is 1.0066 · 10−6, and the norm of
the change in the iterates is 0.0027758. The error in the feasibility of the indices is 0.

With the adaptation strategy (7.2) Algorithm 10 finds the feasible starting point

x18 = (0.25,−0.5, 0.33361, 0.302, 0.7242)T

is found after 18 iterations (41.27 CPU seconds). And after 49 more iterations (2221.47
CPU seconds) the algorithm terminates with the point

x∗ = (0.25,−0.5, 0.33799, 0.62653, 0.86492)T

and the objective value −0.21176. At x∗ the norm of the stationarity condition is
6.3206 ·10−16, the change in the value of the objective function is 1.193 ·10−10, the norm
of the change in the iterates is 1.5208 ·10−8, and the error in the feasibility of the indices
is 0.

As for the former algorithm, we obtain that Algorithm 10 with both X-adaptation
strategies performs better than Algorithm 4. It can be seen, cf. Figure 8.17 and 8.18, that
the reduced outer approximations of Y in x∗ for both adaptation strategies are only good
locally. Here, again, the uncolored boxes are boxes in the reduced outer approximation
which do not contain any active indices. For Algorithm 10 the X-adaptation strategy
given by (7.1) performs also better than (7.2) on example SIPDC1 .

110

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1

g
2

Figure 8.17: Illustration of the reduced outer approximation of Y for the constraints g1, g2 of the problem
SIPDC1 at x∗ computed by Algorithm 10 with the X-adaptation strategy given by (7.1).

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1

g
2

Figure 8.18: Illustration of the reduced outer approximation of Y for the constraints g1, g2 of the problem
SIPDC1 at x∗ computed by Algorithm 10 with the X-adaptation strategy given by (7.2).

The resulting approximately stationary points all algorithms computed differ only slightly,
while in contrast to the computational behavior for the problem SIPCA, the computa-
tional time to compute an approximately stationary point, and the number of iterations
of Algorithm 7 is smaller than for Algorithm 10 on the problem SIPDC1 and both X-
adaptation strategies. However, the overall number of generated boxes containing active
indices, cf. Figure 8.19, is smaller for Algorithm 10 than for Algorithm 7.

If we look at the error made by the different relaxation strategies, cf. Figure 8.20, then
one can see that the error made by the unimodal relaxations is smaller than the error
of the concave relaxations. An error of 0 means that the functions are monotonically
increasing or decreasing, or respectively are concave. The computational behaviors must
be based on the structure of the problem, the properties of the relaxations, and the harder
to solve subproblems arising in Algorithm 10.

111

8 Numerical examples

0 10 20 30 40
0

100

200

300

iteration
0 20 40 60

0

100

200

300

iteration

0 20 40 60
0

50

100

150

iteration
0 20 40 60 80

0

50

100

150

200

iteration

a) b)

c) d)

Figure 8.19: Overall number of boxes and number of boxes which may contain active indices for SIPDC1 .
In a) for Algorithm 7 with adaptation strategy given by (7.1). In b) for Algorithm 7 with
adaptation strategy given by (7.2). In c) for Algorithm 10 with adaptation strategy given
by (7.1). In d) for Algorithm 10 with adaptation strategy given by (7.2).

0 10 20 30 40
0

1

2

3

iteration
0 20 40 60

0

1

2

3

iteration

0 20 40 60
0

2

4

6

iteration
0 20 40 60 80

0

2

4

6

iteration

a) b)

c) d)

Figure 8.20: The black lines are the maximal errors of the relaxations in each iteration for the problem
SIPDC1 . The red lines are the maximal and the blue lines the minimal diameter of generated
boxes which may contain active indices. In a) for Algorithm 7 with adaptation strategy
given by (7.1). In b) for Algorithm 7 with adaptation strategy given by (7.2). In c)
for Algorithm 10 with adaptation strategy given by (7.1). In d) for Algorithm 10 with
adaptation strategy given by (7.2).

Since the hybrid method always chooses that relaxation technique with the smaller

112

separation distance, one may expect, from the latter results, that Algorithm 14 may
perform better than Algorithm 7 and Algorithm 10. Now we investigate the performance
of Algorithm 14 on problem SIPDC1 .

With the adaptation strategy (7.1) Algorithm 14 identifies the feasible starting point

x11 = (0.25,−0.5, 0.29616, 0.29616, 0.20384)T

after 11 iterations (8.56 CPU seconds). After 34 more iterations (573.18 CPU seconds)
the algorithm terminates with the point

x∗ = (0.2473,−0.49886, 0.33853, 0.61846, 0.86004)T

and the objective value −0.20937. At x∗ the norm of the stationarity condition is
5.6049 · 10−11, the change in the value of the objective function is 6.8952 · 10−11, and
the norm of the change in the iterates is 2.2443 · 10−9. The error in the feasibility of the
indices is 0.

With the adaptation strategy (7.2) Algorithm 10 finds the feasible starting point

x16 = (0.25,−0.5, 0.324, 0.324, 0.042395)T

after 16 iterations (14.77 CPU seconds). And after 32 more iterations (642.75 CPU
seconds) the algorithm terminates with the point

x∗ = (0.24849,−0.50027, 0.3369, 0.61806, 0.85359)T

and the objective value −0.20822. At x∗ the norm of the stationarity condition is less
than 10−16, the change in the value of the objective function is 7.5333 · 10−12, the norm
of the change in the iterates is 3.4728 ·10−11, and the error in the feasibility of the indices
is 0.

It can be seen that for both X-adaptation strategies Algorithm 14 performs worse than
Algorithm 7, but better then Algorithm 7 with the X-adaptation (7.2). A similar setting
can be observed for the number of iterations.

The overall number of boxes in the reduced outer approximation which may contain
active indices, cf. Figure 8.21, is comparable to that from Algorithm 10. But the made
error, cf. Figure 8.22, is slightly worse than the ones from Algorithm 7 and 10. Thus, it
is nearby that, this time, we can not explain the poor performance by the computational
overhead of the hybrid algorithm.

If we again investigate the maximum separation distance of the relaxation and the orig-
inal constraint, that is, the error made by relaxing the constraints, cf. Figure 8.22, and
the number of boxes where an unimodal and a convex relaxation is used, cf. Figure 8.21,
we can observe the following.

Even though we choose that relaxation technique in each iteration so that the maximal
error made by relaxing the constraints is the smallest, the reduction of that error after

113

8 Numerical examples

0 20 40 60
0

50

100

150

iteration
0 20 40 60

0

20

40

60

80

100

120

140

iteration

a) b)

Figure 8.21: Overall number of boxes and those which may contain active indices generated by Algo-
rithm 14 for SIPDC1 which may contain active indices. The blue line is the number of
boxes on which a concave relaxation is used. In a) for Algorithm 14 with the X-adaptation
(7.1). In b) for Algorithm 14 with the X-adaptation (7.2).

0 20 40 60
0

1

2

3

4

5

6

iteration
0 20 40 60

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

iteration

a) b)

Figure 8.22: The black lines are the maximal errors of the relaxations in each iteration for the problem
SIPDC1 . The red lines are the maximal and the blue lines the minimal diameter of generated
boxes which may contain active indices. In a) for Algorithm 14 with adaptation strategy
given by (7.1). In b) for Algorithm 14 with adaptation strategy given by (7.2).

splitting up boxes in the reduced outer approximation might decrease not as fast as one
might wish. The reasons for that are not quiet obvious and can be explained by the
special error we consider and the refinement step. We give an example to illustrate that.

Example 8.1.2. Let g(y) = y3 + y2 and Y = [−2, 1]. It is not hard to see that we have
α = 8 and L = −4, L = 14, c = 1

3 for g on Y . The function g and the relaxations ğ,
ĝ are illustrated in Figure 8.23. g attains its maximum at y∗ = 1, while ĝ attains its

114

−2 −1.5 −1 −0.5 0 0.5 1
−4

−2

0

2

4

6

8

10

y

ĝ

g

ğ

Figure 8.23: The function g(y) = y3 + y2 on Y = [−2, 1] and the relaxations ĝ and ğ.

maximum at c and ğ at x̆ = 1−
√

2
3 . Obviously, the maximum separation distance of ğ

and g on Y is smaller then the one of ĝ and g. Thus, our algorithm would choose ğ as
a relaxation. But the distance of the points c and y∗ is smaller then the distance of y̆
and y∗. Even though we choose the overestimator with the smallest maximum separation
distance we do not have that the distance of the optimal points is also small. Moreover, in
the splitting step we would split Y into two boxes through the point where the relaxation
attains its maximum. Here we would obtain a better result for the next iteration by
splitting Y at c, since g is monotone on [c, 1], but neither monotone nor concave on
[y̆, 1].

The observation made in the latter example is a general problem in nonlinear and global
optimization. Mostly the distance of two function values is bounded by the distance of
the corresponding arguments, whereas the converse is not true in general. Thus, we also
have that an active index of a relaxed constraint might not be close to an active index of
the original constraint, and for this reason it might be a bad splitting point. For more
details on error bounds we refer to [38]. For an analysis of splitting procedures in a
branch and bound framework we refer to [8] and the references there in.

Now we briefly discuss the choice of the parameter δ in the X-adaptation strategies. In
general it is not hard to see that with the additional X-adaptation strategy one might
reduce the values of the parameters used to relax the problems with the unimodalization
or the concavification techniques. The factor of that reduction is not clear, since, it is
strongly related to the structure of the function. In the sequel we will point out some
other effects which are a result of the X-adaptation. We start with the choice of δ in
the phase 1 algorithm.

From the results for the problem SIPCA one can see that with the X-adaptation the
algorithms need more iterations to compute a feasible starting point. The algorithms
without the additional adaptation, Algorithm 2 and 4, found a feasible point after 1
iteration, while Algorithm 7 and 10 needed 13 iterations with the adaptation strategy
(7.1), and 14 iterations with the adaptation strategy (7.2). A reason for that outcome

115

8 Numerical examples

is, that the step size is constricted by the X-adaptation. Especially from Figure 8.4 we
see that none of the generated boxes do contain an active index, thus no box is splitted.

In contrast to the results for the problem SIPCA, we have another effect for the problem
SIPDC1 . The results for the algorithms without the X-adaptation were poor. Actually,
in the phase 1 procedure Algorithm 2 computed a maximum of the problem. Indeed,
Algorithm 10 with both adaptation strategies needed more iterations to compute a
feasible point than Algorithm 4, but the CPU time was less. Moreover, with Algorithm 7
and theX-adaptation strategies we could avoid that the algorithm computes a maximum
in the phase 1 procedure by restricting the feasible set of the subproblems, additionally,
to subsets of X.

We have to mention that it is possible to choose δ = 0 in the phase 1 algorithm, if the
starting point is feasible for the original problem. If one chooses δ = 0 for a starting
point, feasible for the original problem, the algorithms will compute a reduced outer
approximation of the corresponding index set so that the point is also feasible for the
relaxed problem. That such a reduced outer approximation exists is a consequence from
Lemma 3.3.1 and 4.3.1.

After the algorithms computed a stationary point the role of δ changes. In contrast to the
phase 1 procedure, the choice of δ is limited for Algorithm 7 and 10. From Section 7.4 we
know that the relation δ >

√
n must hold to ensure Condition 5.1.7, (ii). As a result from

both examples, SIPCA and SIPDC1 , we have that the X-adaptation may increase the
performance of the algorithms, since with the X-adaptation we can reduce the feasible
set of a subproblem. Moreover, as also observed in the phase 1 of the algorithms on the
previous examples, with that additional restriction we can identify more boxes in the
reduced outer approximation of the index set which do not contain active indices for a
subproblem, cf. Figures 8.1, 8.3 and 8.19. One reason for that behavior is that more
restrictions may become redundant by the additional restriction to a subset of X. To
reduce the number of boxes in the subproblems, which lead to a reduction in the number
of the constraints and variables, one might choose δ as small as possible. But, as recalled
earlier, δ is bounded below by

√
n, and choosing smaller subsets of X may lead to an

inefficient shortening of the step size, and, thus, the algorithms need more iterations,
which may again lead to a larger amount of generated boxes. An optimal choice for δ
can not be given in general, since, it differs with the structure of the problem.

On the next examples we illustrate the latter remarks on the choice of δ, and we in-
vestigate the reduced outer approximation of an index set Y . It is a modification of a
design-centering problem taken from [16]. For the example we consider the container

C = {x ∈ R
2|c1(x) =

3

10
sin(πx1)− x2 ≤ 0, c2(x) = x21 +

3

10
x22 − 1 ≤ 0},

cf. Figure 8.24, and the design

D (x) = {z ∈ R
2| (

z1 − x1
x3

)2 + (
z2 − x2
x4

)2 ≤ 1}.

116

z
1

z 2

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

Figure 8.24: Illustration of the container C for SIPDC2 and SIPDC3 .

that is, an ellipse with free center (x1, x2)
T and axes x3, x4 parallel to the coordinate

axes.

To maximize the area of D (x) we put f(x) = x3x4. As a parametrization for D (x) we
use D (x) = {z (x, y) |y21 + y22 ≤ 1} with

z (x, y) =

(

x1
x2

)

+

(

y1x3
y2x4

)

.

As in the latter example, we obtain

gi (x, y) = ci (z (x, y)) ≤ 0 for all y ∈ Y = {y ∈ R
2|y21 + y22 ≤ 1}, i ∈ {1, 2}

and we arrive at the semi-infinite problem

SIPDC2 : min
x∈R5

−x3x4 s.t. gi(x, y) ≤ 0 for all y ∈ Y, i ∈ {1, 2}.

By switching to polar coordinates on the set Y , the problem SIPDC2 is equivalent to

SIPDC3 : min
x∈R5

−x3x4 s.t. gi(x, y) ≤ 0 for all y ∈ Y, i ∈ {1, 2},

with Y = [0, 1]× [0, 2π], gi (x, y) = ci (z̃ (x, y)) , i ∈ {1, 2}, and

z̃ (x, y) =

(

x1
x2

)

+

(

y1 sin (y2)x3
y1 cos (y2)x4

)

.

For the problems SIPDC2 and SIPDC3 we use the same termination tolerances as in the
latter example. It is not hard to see that the feasible sets of both problems is contained in
the setX =

[

−11
10 ,

11
10

]

×
[

−1
2 , 2
]

×[0, 1]×[0, 1]. For SIPDC2 we choose B = [−1, 1]×[−1, 1]
as an initial approximation of Y . For SIPDC3 we choose B = Y . As a starting point we

117

8 Numerical examples

z
1

z 2

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

Figure 8.25: Illustration of the final result x∗ for SIPDC2 computed by Algorithm 7.

choose the infeasible point x0 =
(

0, 34
1
2 ,

1
2

)

which is the barycenter of X, and for the first

results we choose δ = 1.1 in the phase 1 algorithm and δ =
√
5 +

√
EPS after a feasible

point was found. We have to notice that the stationary points of the problems SIPDC2

and SIPDC3 are the same. But one may expect that the algorithms perform better for
the problem SIPDC3 than for SIPDC2 , since the index set Y can be handled exactly.

For Algorithm 7 on the problem SIPDC2 we obtain the following results. For the X-
adaptation strategy (7.1) the algorithm found the feasible starting point

x3 = (−0.03641, 0.78641, 0.46359, 0.46359)T

after 3 iterations (2.62 CPU seconds). After 54 more iterations (72.16 CPU seconds) the
algorithm terminates with the point

x∗ = (−0.0026466, 0.96028, 0.74917, 0.75139)T

and the objective value −0.56292. The solution is illustrated in Figure 8.25. At x∗ the
norm of the stationarity condition is less than 10−16, and the change in the value of the
objective function, the norm of the change in the iterates, as well as the error in the
feasibility of the indices is 0.

With the adaptation strategy (7.2) Algorithm 7 finds the feasible starting point

x3 = (−0.03641, 0.78641, 0.467, 0.467)T

after 3 iterations (1.39 CPU seconds). And after 39 more iterations (57.56 CPU seconds)
the algorithm terminates with the point

x∗ =
(

3.1094 · 10−17, 0.96622, 0.7379, 0.76083
)T

and the objective value −0.56141. At x∗ the norm of the stationarity condition is
9.4919 · 10−8, , and the change in the value of the objective function, the norm of the

118

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1

g
2

Figure 8.26: Illustration of the reduced outer approximation of Y for the constraints g1, g2 of the problem
SIPDC2 at x∗ computed by Algorithm 7 with the X-adaptation strategy given by (7.1).

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1

g
2

Figure 8.27: Illustration of the reduced outer approximation of Y for the constraints g1, g2 of the problem
SIPDC2 at x∗ computed by Algorithm 7 with the X-adaptation strategy given by (7.2).

change in the iterates, as well as the error in the feasibility of the indices is 0. The
reduced outer approximation of Y at x∗ for both strategies are illustrated in Figure 8.26
and Figure 8.27.

For the problem SIPDC3 we obtain the following results with Algorithms 7. For the
X-adaptation strategy (7.1) the algorithm found the feasible starting point

x3 = (−0.0231, 0.7731, 0.4819, 0.4819)T

after 3 iterations (2.24 CPU seconds). After 21 more iterations (42751, 69 CPU seconds)
the algorithm was terminated by Matlab at the point

x∗ = (−0.0256, 0.9333, 0.7566, 0.7643)T

with the message out of memory. And indeed, for that problem the capacity of 4GB
RAM and the 2GB swap memory was used. When the algorithm stopped at x∗ the

119

8 Numerical examples

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

iteration

Figure 8.28: Overall number of boxes and those which may contain active indices generated by Algo-
rithm 7 and the X-adaptation strategy (7.1) for SIPDC3 which may contain active indices.

norm of the stationarity condition was 0.9048, the change in the value of the objective
function was 0.0179, and the norm of the change in the iterates was 0.0275.

In Figure 8.28 the overall number of boxes and those that may contain active indices is
displayed. It can be seen that in the last step the amount of generated boxes is very
large. The cause for that can be found in the X-adaptation. As the next to last iterate is
not feasible for the new generated subset of X, the algorithm splits boxes in the reduced
outer approximation of Y , which explains the huge number of boxes and requirement of
memory. With the adaptation strategy (7.2) and Algorithm 7 we obtain similar results
as for the strategy (7.1). Later we will survey that example again, and we will trace
back that result on the choice of δ.

Now we give the results for SIPDC2 obtained with Algorithms 10. For the X-adaptation
strategy (7.1) the algorithm found the feasible starting point

x3 = (−0.03641, 0.78641, 0.46359, 0.46359)T

after 3 iterations (1.58 CPU seconds). After 44 more iterations (66.29 CPU seconds) the
algorithm terminates with the point

x∗ =
(

−4.7995 · 10−17, 0.97076, 0.73416, 0.76169
)T

and the objective value −0.5592. At x∗ the norm of the stationarity condition is 3.0868 ·
10−6, the change in the value of the objective function is 8.5587 · 10−6, and the norm of
the change in the iterates is 0.0036774. The error in the feasibility of the indices is 0.

With the adaptation strategy (7.2) Algorithm 10 finds the feasible starting point

x3 = (−0.03641, 0.78641, 0.467, 0.467)T

after 3 iterations (1.68 CPU seconds). And after 44 more iterations (78.08 CPU seconds)
the algorithm terminates with the point

x∗ =
(

2.6017 · 10−17, 0.97076, 0.73416, 0.76169
)T

120

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1 g

2

Figure 8.29: Illustration of the reduced outer approximation of Y for the constraints g1, g2 of the problem
SIPDC2 at x∗ computed by Algorithm 10 with the X-adaptation strategy given by (7.1).

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1

g
2

Figure 8.30: Illustration of the reduced outer approximation of Y for the constraints g1, g2 of the problem
SIPDC2 at x∗ computed by Algorithm 10 with the X-adaptation strategy given by (7.2).

and the objective value −0.5592. At x∗ the norm of the stationarity condition is 4.4119 ·
10−10, the change in the value of the objective function is 8.0228 · 10−8, the norm of
the change in the iterates is 3.561 · 10−4, and the error in the feasibility of the indices
is 0. The reduced outer approximation of Y at x∗ for both strategies are displayed in
Figure 8.29 and Figure 8.30.

At last we give the results for SIPDC3 obtained with Algorithms 10. For the X-
adaptation strategy (7.1) the algorithm found the feasible starting point

x3 = (−0.0231, 0.7731, 0.4819, 0.4819)T

after 3 iterations (3.78 CPU seconds). After 24 more iterations (913.72 CPU seconds)
the algorithm terminates with the point

x∗ =
(

−1.1335 · 10−07, 0.96612, 0.77095, 0.78329
)T

121

8 Numerical examples

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

g
1

g
2

Figure 8.31: Illustration of the tessellation of Y for the constraints g1, g2 of the problem SIPDC3 at x∗

computed by Algorithm 10 with the X-adaptation strategy given by (7.1).

and the objective value −0.60387. At x∗ the norm of the stationarity condition is
5.7073 · 10−7, the change in the value of the objective function is 1.1535 · 10−7, and the
norm of the change in the iterates is 4.5935 · 10−5. The error in the feasibility of the
indices is 0.

With the adaptation strategy (7.2) Algorithm 10 finds the feasible starting point

x3 = (−0.03641, 0.78641, 0.472, 0.472, 0)T

after 3 iterations (3.21 CPU seconds). And after 9 more iterations (442.86 CPU seconds)
the algorithm terminates with the point

x∗ =
(

6.8888 · 10−7, 0.96627, 0.77074, 0.7835
)T

and the objective value −0.60387. At x∗ the norm of the stationarity condition is
1.4418 · 10−7, the change in the value of the objective function is 1.153 · 10−4, the norm
of the change in the iterates is 0.0068836, and the error in the feasibility of the indices
is 0. The tessellation of Y at x∗ for both strategies are displayed in Figure 8.31 and
Figure 8.32.

Before we investigate the reduced outer approximation, we reconsider Algorithm 7 on
the problems SIPDC3 and SIPDC2 . The bad results we obtain for Algorithm 7 with
both adaptation strategies may be a consequence of an inappropriate choice of δ. That
is, δ was chosen to small, and, thus, the step size in each iteration was restricted too
keen. Motivated by that consideration we test again the algorithms on the problems
SIPDC2 and SIPDC3 , but, with the parameters δ = 1.1 in the phase 1 and δ =

√
5 + 1

after a feasible starting point was found.

For Algorithms 7 on the problem SIPDC2 we obtain the following results. For the
X-adaptation strategy (7.1) the algorithm found the feasible starting point

x3 = (−0.03641, 0.78641, 0.46359, 0.46359)T

122

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

g
1

g
2

Figure 8.32: Illustration of the tessellation of Y for the constraints g1, g2 of the problem SIPDC3 at x∗

computed by Algorithm 10 with the X-adaptation strategy given by (7.2).

after 3 iterations (1.86 CPU seconds). After 37 more iterations (56.5 CPU seconds) the
algorithm terminates with the point

x∗ =
(

−7.2195 · 10−17, 0.96957, 0.73435, 0.76334
)T

and the objective value −0.56056. At x∗ the norm of the stationarity condition is
3.0842 · 10−9, and the change in the value of the objective function, the norm of the
change in the iterates and the error in the feasibility of the indices is 0.

With the adaptation strategy (7.2) Algorithm 7 finds the feasible starting point

x3 = (−0.03641, 0.78641, 0.467, 0.467, 0)T

after 3 iterations (1.37 CPU seconds). And after 34 more iterations (61.72 CPU seconds)
the algorithm terminates with the point

x∗ =
(

−9.7662 · 10−17, 0.96622, 0.7379, 0.76083
)T

and the objective value −0.56141. At x∗ the norm of the stationarity condition is
9.4919 · 10−9, and the change in the value of the objective function, the norm of the
change in the iterates and the error in the feasibility of the indices is 0. The reduced
outer approximation of Y at x∗ for both strategies are illustrated in Figure 8.33 and
Figure 8.34.

For the problem SIPDC3 we obtain the following results with Algorithms 7. For the
X-adaptation strategy (7.1) the algorithm found the feasible starting point

x3 = (−0.0231, 0.7731, 0.4819, 0.4819)T

after 3 iterations (1.78 CPU seconds). After 16 more iterations (247.85 CPU seconds)
the algorithm terminates with the point

x∗ = (−0.00013083, 0.96506, 0.77213, 0.7819)T

123

8 Numerical examples

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1

g
2

Figure 8.33: Illustration of the reduced outer approximation of Y for the constraints g1, g2 of the problem
SIPDC2 at x∗ computed by Algorithm 7 with the X-adaptation strategy given by (7.1) and
δ =

√
5 + 1.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1 g

2

Figure 8.34: Illustration of the reduced outer approximation of Y for the constraints g1, g2 of the problem
SIPDC2 at x∗ computed by Algorithm 7 with the X-adaptation strategy given by (7.2) and
δ =

√
5 + 1.

and the objective value −0.60373. At x∗ the norm of the stationarity condition is
9.5124 · 10−8, the change in the value of the objective function is 2.1454 · 10−4, and the
norm of the change in the iterates is 4.0336 · 10−4. The error in the feasibility of the
indices is 0.

With the adaptation strategy (7.2) Algorithm 7 finds the feasible starting point

x3 = (−0.0231, 0.7731, 0.483, 0.483)T

is found after 3 iterations (1.6 CPU seconds). And after 10 more iterations (90.51 CPU
seconds) the algorithm terminates with the point

x∗ =
(

−1.9341 · 10−6, 0.96631, 0.77064, 0.78291
)T

124

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

g
1

g
2

Figure 8.35: Illustration of the tessellation of Y for the constraints g1, g2 of the problem SIPDC3 at x∗

computed by Algorithm 7 with the X-adaptation strategy given by (7.1) and δ =
√
5 + 1.

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

g
1

g
2

Figure 8.36: Illustration of the tessellation of Y for the constraints g1, g2 of the problem SIPDC3 at x∗

computed by Algorithm 7 with the X-adaptation strategy given by (7.2) and δ =
√
5 + 1.

and the objective value −0.60334. At x∗ the norm of the stationarity condition is
7.6658 · 10−8, the change in the value of the objective function is 6.0282 · 10−4, the norm
of the change in the iterates is 0.0010633, and the error in the feasibility of the indices
is 0. The tessellation of Y at x∗ for both strategies are illustrated in Figure 8.35 and
Figure 8.36.

Next we also give the results for Algorithm 10 on the problems SIPDC2 and SIPDC3

with the changed values for δ. For the X-adaptation strategy (7.1) the algorithm found
the feasible starting point

x3 = (−0.03641, 0.78641, 0.46359, 0.46359)T

after 3 iterations (1.69 CPU seconds). After 51 more iterations (110.25 CPU seconds)
the algorithm terminates with the point

x∗ =
(

3.7098 · 10−18, 0.96981, 0.7411, 0.75908
)T

125

8 Numerical examples

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1

g
2

Figure 8.37: Illustration of the reduced outer approximation of Y for the constraints g1, g2 of the problem
SIPDC2 at x∗ computed by Algorithm 10 with the X-adaptation strategy given by (7.1)
and δ =

√
5 + 1.

and the objective value −0.56255. At x∗ the norm of the stationarity condition is
3.7341 · 10−16, the change in the value of the objective function is 1.7158 · 10−9, and the
norm of the change in the iterates is 2.4269 · 10−9. The error in the feasibility of the
indices is 0.

With the adaptation strategy (7.2) Algorithm 10 finds the feasible starting point

x3 = (−0.03641, 0.78641, 0.467, 0.467)T

after 3 iterations (1.53 CPU seconds). And after 46 more iterations (96.59 CPU seconds)
the algorithm terminates with the point

x∗ = (−4.3448e− 20, 0.97076, 0.73416, 0.76169)T

and the objective value −0.5592. At x∗ the norm of the stationarity condition is 1.2745 ·
10−8, the change in the value of the objective function is 8.5579 · 10−6, the norm of the
change in the iterates is 0.0036795, and the error in the feasibility of the indices is 0. The
reduced outer approximation of Y at x∗ for both strategies are illustrated in Figure 8.37
and Figure 8.38.

For the problem SIPDC3 we obtain the following results with Algorithms 10. For the
X-adaptation strategy (7.1) the algorithm found the feasible starting point

x3 = (−0.0231, 0.7731, 0.4819, 0.4819)T

after 3 iterations (2.24 CPU seconds). After 19 more iterations (391.23 CPU seconds)
the algorithm terminates with the point

x∗ =
(

2.7974 · 10−5, 0.96558, 0.77167, 0.78251
)T

126

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

g
1 g

2

Figure 8.38: Illustration of the reduced outer approximation of Y for the constraints g1, g2 of the problem
SIPDC2 at x∗ computed by Algorithm 10 with the X-adaptation strategy given by (7.2)
and δ =

√
5 + 1.

and the objective value −0.60384. At x∗ the norm of the stationarity condition is
3.2655 · 10−10, the change in the value of the objective function is 2.9851 · 10−4, and the
norm of the change in the iterates is 0.0047031. The error in the feasibility of the indices
is 0.

With the adaptation strategy (7.2) Algorithm 10 finds the feasible starting point

x3 = (−0.03641, 0.78641, 0.472, 0.472)T

is found after 3 iterations (2.21 CPU seconds). And after 26 more iterations (1696.54
CPU seconds) the algorithm terminates with the point

x∗ =
(

−1.2537 · 10−7, 0.96613, 0.77095, 0.78329
)T

and the objective value −0.60388. At x∗ the norm of the stationarity condition is
1.289 · 10−8, the change in the value of the objective function is 7.9448 · 10−7, the norm
of the change in the iterates is 2.27 · 10−5, and the error in the feasibility of the indices
is 0. The tessellation of Y at x∗ for both strategies are illustrated in Figure 8.39 and
Figure 8.40.

These results for the algorithms with the changed value for δ support the former asser-
tion, that is, a too small value for δ has a bad effect on the performance. The best choice
for these parameters in the algorithms can not be answered in general, as it depends on
the structure of the considered optimization problem. However, it can be seen that the
reduced outer approximation and the tessellation of Y in each algorithm is only refined
and good locally whatever the choice of δ is. In this example the adaptation strategy
for the set X given by (7.1) performs mostly better than the one given by (7.2).

Now we focus on the effect of the reduced outer approximation. As the problems SIPDC2

and SIPDC3 are equivalent, one might expect that the algorithms have a better perfor-

127

8 Numerical examples

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

g
1

g
2

Figure 8.39: Illustration of the tessellation of Y for the constraints g1, g2 of the problem SIPDC3 at x∗

computed by Algorithm 10 with the X-adaptation strategy given by (7.1) and δ =
√
5 + 1.

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

g
1

g
2

Figure 8.40: Illustration of the tessellation of Y for the constraints g1, g2 of the problem SIPDC3 at x∗

computed by Algorithm 10 with the X-adaptation strategy given by (7.2) and δ =
√
5 + 1.

mance for the latter problem, as the index set Y can be handled exactly and the algo-
rithms do not need a reduced outer approximation. Though the results differ from that
expectation. All algorithms perform better on the problem SIPDC2 than on SIPDC3 .
The reason for that outcome can be found in the dependency effect of interval arithmetic.
The dependency effect denotes a simple, but major problem in interval arithmetic, that
is, dependencies between different and even the same variables can not be handled. Be-
fore we discuss the impact of this effect on the algorithms, we illustrate the effect in an
example.

Example 8.1.3. Let g (x) = sin (πx)x. On X = [0, 1] we have that the minimum of g
is 0 and the maximum of g is around 0.5792. If we evaluate g on X with the techniques

128

0 20 40 60
0

10

20

30

40

50

60

70

80

90

100

iteration
0 5 10 15 20

0

20

40

60

80

100

120

iteration

a) b)

Figure 8.41: Overall number of boxes and those which may contain active indices generated by Algo-
rithm 7 and the X-adaptation strategy (7.1) in a) for SIPDC2 and in b) for SIPDC3 .

from interval arithmetic we obtain the following result.

g (X) = sin (πX)X

= [0, 1] · [0, 1]
= [0, 1] .

Thus, we have 0 as lower bound and 1 as an upper bound for g on X. The upper bound is
larger than the original upper bound, since with the techniques from interval arithmetic
one evaluates sin on X, and, after that, the multiplication of the resulting interval with
X is executed without regarding the dependency.

Here we only discuss the impact of the dependency effect on Algorithm 10 with the X-
adaptation strategy (7.1), since for the other strategy and the other algorithm the impact
is similar. Figure 8.41 displays the overall number of boxes, and those that contain
active indices, generated by Algorithm 10 for the problems SIPDC2 and SIPDC3 . It
can be seen that the total amount of generated boxes is larger for the problem SIPDC3

than for SIPDC2 , while the number of those boxes which may contain active indices
is comparable. Figure 8.42 illustrates the maximal values for α and the error of the
relaxations on boxes which may contain active indices for SIPDC2 and SIPDC3 . We have
that in most of the iterations the values for the constants α and the error of the unimodal
relaxation for SIPDC3 are larger than for SIPDC2 , while in the last iterations both get
stuck for the problem SIPDC2 . As for both problems the error tends quadratically to
zero with the diameter of the boxes, and as the diameters show a similar behavior like
the error in the relaxations for both problems, the difference in the generated number
of boxes can only be a result of the parameters α.

To compute the parameters α we evaluate the Hessian of the constraints with respect
to y on the generated subsets of X and the tessellation, respectively the reduced outer
approximation of Y . After that we apply the Theorem of Gerschgorin, cf. Theorem 7.1.1,

129

8 Numerical examples

0 20 40 60
0

1

2

3

iteration
0 20 40 60

0

2

4

6

8

10

iteration

0 5 10 15 20
0

1

2

3

4

iteration
0 5 10 15 20

0

10

20

30

40

iteration

a) b)

c) d)

Figure 8.42: a) The maximum and minimum diameter of the boxes containing active indices with for the
problem SIPDC2 generated by Algorithm 10 and X-adaptation strategy (7.1). b) The green
line is the maximum of the constants α on the boxes containing active indices and the black
line is the error of the relaxation for the problem SIPDC2 computed with Algorithm 10
and X-adaptation strategy (7.1). c) The maximum and minimum diameter of the boxes
containing active indices with for the problem SIPDC3 generated by Algorithm 10 and X-
adaptation strategy (7.1). d) The green line is the maximum of the constants α on the boxes
containing active indices and the black line is the error of the relaxation for the problem
SIPDC2 computed with Algorithm 10 and X-adaptation strategy (7.1).

130

to these matrices to obtain some bound for the eigenvalues. For the constraint g2 in
SIPDC2 we obtain

D2
yg2 (x, y) =

(

2x23 0
0 6

10x
2
4

)

.

And for the constraint g2 in SIPDC2 we obtain

D2
yg2 (x, y) =

(
(

D2
yg2 (x, y)

)

1,1

(

D2
yg2 (x, y)

)

1,2
(

D2
yg2 (x, y)

)

1,2

(

D2
yg2 (x, y)

)

2,2

)

,

with

(

D2
yg2 (x, y)

)

1,1
=2 sin2 (y2)x

2
3 +

6

10
cos2 (y2)x

2
4

(

D2
yg2 (x, y)

)

1,2
=2 cos(y2)x3 (x1 + y1 sin(y2)x3) + 2y1 sin(y2) cos(y2)x

2
3

− 6

10
sin(y2)x4 (x2 + y1 cos(y2)x4)−

6

10
y1 cos(y2) sin(y2)x

2
4

(

D2
yg2 (x, y)

)

2,2
=− 2y1 sin(y2)x3 (x1 + y1 sin(y2)x3) + 2y21 cos

2(y2)x
2
3

− 6

10
y1 cos(y2)x4 (x2 + y1 cos(y2)x4) +

6

10
y21 sin

2(y2)x
2
4.

Thus, it is not hard to check that the bounds α for the eigenvalues should be worse
for the problem SIPDC3 than for SIPDC2 , especially if one keeps the dependency effect
in mind. In principle the derivatives of the constraints become in some kind easier for
SIPDC2 , as a part of the nonlinearity of the constraints has moved to the index set Y .
And, in the latter example, the impact of the error in the feasibility of the indices can
be handled better by the algorithms than the error in the constants which are used to
relax the problem.

In the latter example we chose an ellipse with axes parallel to the coordinate axes as
design. This choice was only made for practical reasons as we will briefly show in the
next example.

For the example we consider the container from the latter example, that is,

C = {x ∈ R
2|c1(x) =

3

10
sin(πx1)− x2 ≤ 0, c2(x) = x21 +

3

10
x22 − 1 ≤ 0},

and the design

D (x) = {z ∈ R
2| (cos(x5)

z1 − x1
x3

− sin(x5)
z2 − x2
x3

)2

+(sin(x5)
z1 − x1
x4

+ cos(x5)
z2 − x2
x4

)2 ≤ 1}.

that is, an ellipse with free center (x1, x2)
T and axes x3, x4 in arbitrary position.

131

8 Numerical examples

z
1

z 2

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

Figure 8.43: Illustration of the final result x∗ for SIPDC4 computed by Algorithm 7 and theX-adaptation
strategy (7.1).

To maximize the area of D (x) we again put f(x) = x3x4. As a parametrization for
D (x) we use D (x) = {z (x, y) |y21 + y22 ≤ 1} with

z (x, y) =

(

x1
x2

)

+

(

cos(x5) − sin(x5)
sin(x5) cos(x5)

)(

y1x3
y2x4

)

.

As in the latter example, we obtain

gi (x, y) = ci (z (x, y)) ≤ 0 for all y ∈ Y = {y ∈ R
2|y21 + y22 ≤ 1}, i ∈ {1, 2}

and we arrive at the semi-infinite problem

SIPDC4 : min
x∈R5

−x3x4 s.t. gi(x, y) ≤ 0 for all y ∈ Y, i ∈ {1, 2}.

With the adaptation strategy (7.1) Algorithm 7 finds the feasible starting point

x10 = (−0.0056486, 0.84321, 0.63059, 0.57469, 0.1431)T

after 10 iterations (10.07 CPU seconds). And after 23 more iterations (204.76 CPU
seconds) the algorithm terminates with the point

x∗ = (−0.00096438, 0.94506, 0.76448, 0.74082, 0.14138)T

and the objective value −0.56634. The solution is illustrated in Figure 8.43 At x∗ the
norm of the stationarity condition is 2.238 · 10−16, and the change in the value of the
objective function, the norm of the change in the iterates, as well as the error in the
feasibility of the indices is 0.

Algorithm 10 with the adaptation strategy (7.1) identifies the feasible starting point

x9 = (−0.030499, 0.87226, 0.60063, 0.60063, 0.13567)T

132

z
1

z 2

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

Figure 8.44: Illustration of the final result x∗ for SIPDC4 computed by Algorithm 10 and the X-
adaptation strategy (7.1).

after 9 iterations (11 CPU seconds). And after 54 more iterations (1308.63 CPU seconds)
the algorithm terminates with the point

x∗ = (−0.19841, 0.78378, 1.0688, 0.62099, 1.0819)T

and the objective value −0.6637. The solution is illustrated in Figure 8.44. At x∗ the
norm of the stationarity condition is 5.7651·10−8, the change in the value of the objective
function is 1.4688 · 10−12, the norm of the change in the iterates is 3.5723 · 10−7, and the
error in the feasibility of the indices is 0.03125.

In contrast to the former examples the results from the algorithms for SIPDC4 are not
comparable. That is not an error in the algorithms, it is a result of our solution concept.
The algorithms try to compute a stationary point of a semi-infinite problem and not a
global solution. Thus, if more than one stationary point exists we can not expect to find
the same point with the different algorithms from an arbitrary starting point.

The last example we investigate is also a design centering problem, but with an index
set Y ⊂ R

3. We consider the container

C = {x ∈ R
2|c1(x) = −x1 ≤ 0, c2(x) = −x2 ≤ 0, c3(x) = −x3 ≤ 0,

c4(x) = x1 + x2 + x3 − 1 ≤ 0},

cf. Figure 8.45, and as design D (x) an ellipsoid with free center (x1, x2, x3)
T and axes

x4, x5, x6 in arbitrary position.

To maximize the volume of D (x) we put f(x) = x4x5x6. As a parametrization for D (x)
we use D (x) = {z (x, y) |y21 + y22 + y23 ≤ 1} with

z (x, y) =





x1
x2
x3



+R (x7, x8, x9) ·





y1x4
y2x5
y3x6



 ,

133

8 Numerical examples

Figure 8.45: Illustration of the container C for SIPDC5 .

and a rotation matrix

R (x7, x8, x9) =





cos(x7) − sin(x7) 0
sin(x7) cos(x7) 0

0 0 1



 ·





cos(x8) 0 − sin(x8)
0 1 0

sin(x8) 0 cos(x8)



 ·





1 0 0
cos(x9) − sin(x9) 0
sin(x9) cos(x9) 0





As in the latter example, we obtain

gi (x, y) = ci (z (x, y)) ≤ 0 for all y ∈ Y, i ∈ {1, 2, 3, 4},
with Y = {y ∈ R

2|y21 + y22 + y23 ≤ 1}. Finally we arrive at the semi-infinite problem

SIPDC5 : min
x∈R5

−x4x5x6 s.t. gi(x, y) ≤ 0 for all y ∈ Y, i ∈ {1, 2, 3, 4}.

Here we only give the results for Algorithm 7 and 10 with the X-adaptation strategy
(7.1). For SIPDC5 we use the same termination tolerances for the algorithms as in
the latter design centering problems. It is not hard to see that the feasible set of this
problem is contained in the set X =

[

− 1
10 .

11
10

]

×
[

− 1
10 .

11
10

]

×
[

− 1
10 .

11
10

]

×
[

0.1110
]

×
[

0.1110
]

×
[

0.1110
]

× [−π, π]× [−π, π]× [−π, π]. We choose B = [−1, 1]× [−1, 1]× [−1, 1] as an initial
approximation of Y for each constraint. As a starting point we choose the infeasible point
x0 =

(

1
2 ,

1
2 ,

1
2 ,

11
20 ,

11
20 ,

11
20 , 0, 0, 0

)

which is the barycenter of X, and we choose δ = 0.5 in
the phase 1 algorithm and δ = 4 after a feasible point was found.

For Algorithm 10 with the X-adaptation strategy (7.1) a feasible starting point

x69 = (0.21026, 0.20698, 0.20696, 0.2083, 0.20502, 0.205,

− 6.2161 · 10−17, 1.6447 · 10−12,−1.6445 · 10−12)T

134

Figure 8.46: Illustration of the final result x∗ for SIPDC5 computed by Algorithm 7.

was identified after 69 iterations (2918.41 CPU seconds). After 4 more iterations that
took around 6 days we aborted the optimization process at the point

x73 = (0.20779, 0.20779, 0.20779, 0.20779, 0.20779, 0.20779, 0, 0, 0)T .

and the objective value −0.00897. At x73 the norm of the stationarity condition is
2.2933 · 10−6, the change in the value of the objective function is 1.1609 · 10−14, and
the norm of the change in the iterates is 1.6762 · 10−12. And the error in the feasibility
of the indices is 0.125. Thus, the only reason the algorithm did not terminate was the
feasibility of the active indices in the reduced outer approximation of the index set.

For Algorithm 7 with the X-adaptation strategy (7.1) a feasible starting point

x69 = (0.20911, 0.20901, 0.21117, 0.205, 0.205, 0.2072,

7.7793 · 10−17, 9.8709 · 10−17, 3.0343 · 10−17)T

was identified after 69 iterations (2695.96 CPU seconds). After 2 more iterations (17642.05
CPU seconds) the algorithm terminates with the point

x∗ = (0.20991, 0.20985, 0.20983, 0.20979, 0.20979, 0.20979,

8.0081 · 10−17, 1.0135 · 10−16, 2.72 · 10−17)T

and the objective value −0.00923. The solution is illustrated in Figure 8.46, and the
reduced outer approximation of Y for each constraint in x∗ is illustrated in Figure 8.47.
At x∗ the norm of the stationarity condition is less than 10−16, the change in the value
of the objective function is 9.1314 · 10−5, and the norm of the change in the iterates is
0.0016836. The error in the feasibility of the indices is 0.015625.

135

8 Numerical examples

Figure 8.47: Illustration of the reduced outer approximation of Y for the constraints g1 on the upper
left, to the constraint g4 on the lower right of the problem SIPDC5 at x∗ generated by
Algorithm 7.

136

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

iteration
0 20 40 60 80

0

0.5

1

1.5

2

2.5

3

iteration

a) b)

Figure 8.48: Maximum and minimum of the diameter of boxes which may contain active indices. In a)
are those generated by Algorithm 10 and in b) are those generated by Algorithm 7.

First notice that we have D2
ygi(x, y) = 0 for each i ∈ {1, 2, 3, 4}, x ∈ R

9 and y ∈ R
3.

Thus, g is concave in the second argument and we can always choose α = 0 in Algo-
rithm 10. In contrast to that we have Dygi(x, y) = Dyz (x, y) (Dci) (z (x, y)) for each
i ∈ {1, 2, 3, 4}, where (Dci) (z (x, y)) is a constant vector for each i ∈ {1, 2, 3, 4}, x ∈ R

9

and y ∈ R
3, but Dyz (x, y) is not constant. Thus, the unimodal relaxations of the con-

straints do not coincide with the original constraints in general. That implies that the
bad performance of Algorithm 10 can not be a result of the maximum separation distance
of the constraints and their relaxations. Indeed we have observed that for Algorithm 10
the termination criterion on the feasibility of the indices in the reduced outer approxima-
tion of the index set Y was not satisfied for x73, while all other termination criteria were
fulfilled. Figure 8.48 displays the diameter of boxes that might contain active indices
in the reduced outer approximation of Y generated by Algorithm 10 and Algorithm 7.
The minimum of the diameter of boxes generated by Algorithm 10 is larger than the
one generated by Algorithm 7, while the maximum is similar. In Figure 8.49 the overall
number of boxes generated by Algorithm 10 and Algorithm 7 is illustrated. It can be
seen that the number of boxes generated by Algorithm 7 is much larger than the number
of boxes generated by Algorithm 10. Though, cf. Figure 8.47, the approximation of Y
for each constraint generated by Algorithm 7 is only good locally. In the last iteration
the overall number of boxes generated by Algorithm 10 is 780, and the overall number
of boxes generated by Algorithm 7 is 15546. Since the index sets Y for each constraint
is a ball, certainly, both algorithms must generate a very large number of boxes to ap-
proximate Y . However, the number of generated boxes in the last iteration corresponds
to a subproblem PαBB with an overall number of 7030 variables and 7801 constraints in
Algorithm 10, and to a subproblem PUF with an overall number of 9 variables and 15546
constraints in Algorithm 7. We have to notice here that 4680 of the constraints in the last
subproblem in Algorithm 10 are complementarity constraints. Since the subproblems
arising in Algorithm 10 are mathematical problems with complementarity constraints,

137

8 Numerical examples

0 20 40 60 80
0

100

200

300

400

500

600

700

800

900

iteration
0 20 40 60 80

0

2000

4000

6000

8000

10000

12000

14000

16000

iteration

a) b)

Figure 8.49: Overall number of boxes and those which may contain active indices. In a) are those
generated by Algorithm 10 and in b) are those generated by Algorithm 7.

and the subproblems arising in Algorithm 7 are standard nonlinear problems, we have
that the latter subproblems are in some kind easier to solve, cf. Section 7.2. Indeed, we
could observe that in Algorithm 10 more than 80% of the computational time was spent
for solving the subproblems.

Now, at the end of this chapter, we give a brief summary of the results. With both
additional adaptation strategies of the set X the performance of the basic algorithms,
Algorithm 2 and Algorithm 4, could be increased. The strategy given by (7.1) performs
mostly better than the one given by (7.2) on the given examples. It turned out that the
choice of the parameter δ in these adaptation strategies has an enormous impact on the
numerical behavior of Algorithm 7 and Algorithm 10, but, an optimal choice for this
parameter depends on the structure of the problem.

Moreover, on the given examples the number of boxes in the reduced outer approximation
of an index set generated by Algorithm 4 and 10 is smaller than the one generated by
Algorithm 2 and 7, whereas the subproblems PαBB arising in Algorithm 4 and 10 are in
some kind more complex than the subproblems PUF arising in Algorithm 2 and 7. Thus,
the performance of the algorithms results not only from the structure of the constraints,
but also from an interaction of the latter mentioned aspects. If we disregard, for the
moment the structure of the constraints, then one could expect that, both, Algorithm 4
and 10 perform better than Algorithm 2 and, respectively, Algorithm 7, if the needed
number of boxes in the reduced outer approximation to approximate an index set is
small enough. However, as also seen for the problem SIPDC5 , if the number of boxes
in the reduced outer approximation exceeds some number, then Algorithm 2 and 7
might perform better then the other algorithms, since the numerical effort to tackle the
subproblems PUF is lower than for PαBB.

138

9 Final remarks

In this thesis we presented two basic algorithms for solving semi-infinite optimization
problems with arbitrary index sets whose iterates are feasible for the original problem.
Furthermore we showed that they identify an approximately stationary point of semi-
infinite problem within finitely many steps. Additionally we discussed two X-adaptation
strategies, a hybrid method and showed their convergence. The first numerical tests
showed that the basic algorithms are implementable, but computationally inefficient.
The reason for this misbehavior could be traced back to the large number of boxes
in the reduced outer approximation of the index set. To overcome the inefficiency we
introduced an additional adaptation of the set X. In contrast to the results for the
basic algorithms, the algorithms with an additionalX-adaptation strategy perform much
better. However, several new questions arise, not only from the numerical examples.

It turned out that the size of the parameters L, L and α play an important role in the
behavior and performance of the algorithms, since the influence on the error made by
relaxing the constraints can not be neglected, even though this error decreases with the
diameter of the boxes in the reduced outer approximation. Our approach to compute
these parameters is based on the techniques of interval arithmetic, although we have to
accept drawbacks like the dependency effect. However, there are other, more complex,
techniques which can be used to obtain values for the needed parameters. One might,
for example, use affine arithmetic, cf. [11], to reduce the influence of the dependency
effect in the computation, and, thus, obtain more accurate values. Another possibility
to compute values for the parameter α for a given constraint g on a set X × Y is given
by semidefinite optimization. One can obtain that parameter as the solution of

min
α
α s.t. D2

yg (x, y) + αE � 0 for all (x, y) ∈ X × Y,

where E denotes the unit matrix. Of course, the solution of this problem may be a
hard task. For details on semidefinite optimization we refer to the review [7] and the
references there in. Apart from that it would also be possible to use another reformula-
tion technique, and, thus, construct a different solver. It is not hard to see that SIP is
equivalent to the problem

min
x∈X

f(x) s.t. max
y∈Y

g(x, y) ≤ 0.

If we assume now that g is concave in the second argument and Y is a convex, compact
set and possesses a Slater point, then we have from duality theory that this problem is

139

9 Final remarks

equivalent to

min
x∈X

f(x) s.t. L (x, y, γ) ≤ 0

∇yL (x, y, γ) = 0

γ ≥ 0.

Here L denotes the Lagrangian function of the problem maxy∈Y g(x, y) and γ is the cor-
responding multiplier. A solution of the latter problem is, under the made assumptions,
also a solution of SIP . If g is not concave in y or the index set Y is not convex, one
might use the techniques presented in this thesis to construct approximations of SIP
possessing the needed properties, and then try to approximate a solution of SIP with
this reformulation technique. However, if g is not concave in y the presented concav-
ification technique ensures that g is only ’piecewise concave’ on Y , thus, one has to
check if one can apply duality theory to this problem, and if this reformulation yields
an equivalent problem.

Other crucial points in the presented algorithms are the reduced outer approximation
BN used to approximate an index set Y , and the refinement step for the boxes in BN . As
the given numerical examples actually showed, naturally, one might need a large amount
of boxes to approximate the boundary, or a part of the boundary, for an arbitrary index
set Y . The examples SIPDC2 and SIPDC3 also showed that a transformation of Y to
a box shaped set, so that it can be handled exactly by the algorithms, might solve this
problem, but moves the approximation error of the reduced outer approximation to the
error made in the relaxations. Nevertheless it is possible to use other sets, for example
simplices instead of boxes, to build a tessellation, and, thus, another type of a reduced
outer approximation which might be more adequate to approximate some index set. Of
course, one would also need appropriate relaxation techniques. Another possibility to
reduce the amount of boxes could be a re-gluing of boxes in a special sense, and, thus,
reduce the number of variables and constraints in the subproblems of the algorithms. As
discussed in [15] for the αBB relaxation, it is possible to construct a smooth relaxation
on the entire tessellation covering the index set Y . Even though none of the boxes in the
tessellation are glued together, one could reduce the necessary number of relaxations by
using the ideas of these technique to construct a unimodal or convex relaxation on the
union of some boxes in the reduced outer approximation. Attention should be paid to
the fact that these boxes must be neighboring. In addition the choice of the boxes on
which such a relaxation technique should be made is not elementary. In the refinement
step for a box in BN we used an active index as splitting point for the corresponding
box. As we discussed for the hybrid method on example SIPDC1 , this choice might be
poor, since there might be more suitable points. Locating such a point is a hard task,
as we pointed out there. However, the refinement step splits the longest among some
special edges of a box, and it is possible to modify the choice of the edge which is split,
as long as one ensures that the generated sets or non degenerated. Thus, it might be
possible to split up the sets in a way that the relaxation error becomes smaller than with
the presented choice.

140

We have to mention that the presented examples of the adaptation strategies for the
set X in Section 7.4 are not the only possibilities to choose subsets of X satisfying
Condition 5.1.7. Another way might be to replace the gradient of the function f in the
strategy (7.2) by the gradient with respect to x of the Lagrangian function of the problem
SIP . For the multipliers and the needed indices one could use the ones determined in
the subproblems PUF or PαBB. One might also use ideas from trust-region methods to
construct some subsets of X, as long as one can ensure that Condition 5.1.7 or equivalent
conditions are satisfied.

141

Bibliography

[1] C. S. Adjiman, I. P. Androulakis, C. A. Floudas, A Global Optimization Method,
αBB, for general twice-differentiable constrained NLPs - I: Theoretical advances,
Computers and Chemical Engineering, 22 (1998), pp. 1137-1158.

[2] C. S. Adjiman, I. P. Androulakis, C. A. Floudas, A Global Optimization Method,
αBB, for general twice-differentiable constrained NLPs - II: Implementation and
computational results, Computers and Chemical Engineering, 22 (1998), pp. 1159-
1179.

[3] I. G. Akrotirianakis, C. A. Floudas, A new class of improved convex underestimators
for twice continuously differentiable constrained NLPs, J. Global Optim., 30 (2004),
pp. 367-390.

[4] E. Baumann, Optimal Centered Forms, BIT Numer. Math., 28 (1988), pp. 80-87.

[5] B. Bhattacharjee, W. H. Green, P. I. Barton, Interval Methods for Semi-Infinite
Programs, Comput. Optim. Appl., 30 (2005), pp. 63-93.

[6] B. Bhattacharjee, P. Lemonidis, W. H. Green, P. I. Barton, Global solution of Semi-
Infinite Programs, Math. Prog.., 103 (2005), pp. 283-307.

[7] S. Boyd, L. Vandenberghe, Semidefinite Programming, SIAM Rev., 38 (1996), pp.
49-95.

[8] T. Csendes, D. Ratz, Subdivision direction selection in interval methods for global
optimization, SIAM J. Numer. Anal., 34 (1997), pp. 922-938.

[9] V. Demiguel, M. P. Friedlander, F. J. Nogales, S. Scholtes, A two-sided relaxation
scheme for mathematical programs with equilibrium constraints, SIAM J. Optim.,
16 (2005), pp. 587-609.

[10] A. Dreves, C. Kanzow, Nonsmooth optimization reformulations characterizing all
solutions of jointly convex generalized Nash equilibrium problems, Comput. Optim.
Appl., DOI 10.1007/s10589-009-9314-x.

[11] L. H. de Figueiredo, J. Stolfi, An introduction to affine arithmetic, TEMA, 4 (2003),
pp. 297-312.

[12] A. Fischer, A special Newton-type optimization method, Optimization, 24 (1992),
pp. 269-284.

[13] A. Fischer, H. Y. Jiang Merit functions for complementarity and related problems:

143

Bibliography

A survey, Comput. Optim. Appl., 17 (2000), pp. 159-182.

[14] C. Floudas, Deterministic ghlobal optimization, theory, methods and applications,
Kluwer, Dordrecht, 2000.

[15] C. Floudas, C. F. Meyer, Convex underestimation of twice continuously differen-
tiable functions by piecewise quadratic perturbation: Spline αBB underestimators,
, J. Global Opt., 32 (2005), pp. 221-258.

[16] C. Floudas, O. Stein, The Adaptive Convexification Algorithm: A feasible point
method for Semi-Infinite Programming, SIAM J. Optim., 18 (2007), pp. 1187-1208.

[17] J. Gärttner, Unimodale Relaxierungen in der globalen Optimierung: Hybridver-
fahren und numerische Untersuchungen, Bachelorthesis, Karlsruhe Institut for
Technology, Institut for Operations Research, 2010.

[18] T. J. Graettinger, B. H. Krogh, The acceleration radius: A global performance
measure for robotic manipulators, IEEE Journal of Robotics and Automation, 4
(1988), pp. 60-69.

[19] S. Gerschgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk.
USSR Otd. Fiz.-Mat. Nauk, 7 (1931), pp. 749-754.

[20] P. Gritzmann, V. Klee, On the complexity of some basic problems in computational
convexity. I. Containment problems, Discrete Math., 136 (1994), pp. 129-174.

[21] E. Hansen, Global Optimization using Interval Analysis, Marcel Dekker, New York,
1992.

[22] R. Hettich, H. Th. Jongen, Semi-infinite programming: conditions of optimality and
applications, Springer, Lectures Notes in Control and Information Science, 7 (1978),
pp. 1-11.

[23] R. Hettich, K. Kortanek, Semi-Infinite Programming: Theory, Methods and Appli-
cations, SIAM Rev., 35 (1993), pp. 380-429.

[24] R. Hettich and G. Still, Semi-infinite programming models in robotics, in Parametric
Optimization and Related Topics II, J. Guddat, H. Th. Jongen, B. Kummer, and
F. Nožička, eds., Akademie Verlag, Berlin, 1991, pp. 112-18.

[25] R. Hettich, P. Zencke, Numerische Methoden der Approximation und Semi-Infiniten
Optimierung, Teubner, Stuttgart, 1982.

[26] F. John, Extremum problems with inequalities as subsidiary conditions, in Studies
and Essays, R. Courant Anniversary Volume, Interscience, New York, 1948, pp.
187-204.

[27] H. Th. Jongen, J.-J. Rückmann, V. Shikhman, MPCC: Critical Point Theory, SIAM
J. Optim., 20 (2009), pp. 473-484.

[28] H. Th. Jongen, J.-J. Rückmann, V. Shikhman, On Stability of the MPCC Feasible

144

Bibliography

Set, SIAM J. Optim., 20 (2009), pp. 1171-1184.

[29] H. Th. Jongen, J.-J. Rückmann, O. Stein, Generalized semi-infinite optimization: a
first order optimality condition and examples, Math. Prog.. , 83 (1998), pp. 145-158.

[30] C. Kanzow, Some noninterior continuation methods for linear complementarity
problems, SIAM J. Matrix Analysis and Applications, 17 (1996), pp. 851-868

[31] P. Lemonidis, Global Optimization Algorithms for Semi-Infinite and Generalized
Semi-Infinite Programs, PhD Thesis, Massachusetts Institute of Technology, 2007.

[32] Z. Q. Luo, J. S. Pang, D. Ralph, Mathematical Programs with Equilibrium Con-
straints, Cambridge University Press, 1996.

[33] A. Mitsos, P. Lemonidis, P. I. Barton, Global solution of bilevel programs with a
nonconvex inner program, J. Global Opt., 42 (2008), pp. 475-513.

[34] A. Mitsos, P. Lemonidis, C. K. Lee, P. I. Barton, Relaxation-Based Bounds for
Semi-Infinite Programs, SIAM J. Optim., 19 (2007), pp. 77-113.

[35] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University
Press, Cambridge, 1990.

[36] V. H. Nguyen, J. J. Strodiot, Computing a global optimal solution to a design
centering problem, Math. Prog., 53 (1992), pp. 111-123.

[37] J. Outrata, M. Kocvara, J. Zowe, Nonsmooth approach to optimization problems
with equilibrium constraints, Springer, 1998.

[38] J.-S. Pang, Error bounds in mathematical programming, Math. Prog., 79 (1997),
pp. 299-332.

[39] E. Polak, An implementable algorithm for optimal design centering, tolerancing and
tuning problem, J. Optimization Theory and Applications, 37 (1982), pp. 45-67.

[40] E. Polak, On the mathematical foundation of nondifferentiable optimization in en-
gineering design, SIAM Rev., 29 (1987), pp. 21-89.

[41] E. Polak, Optimization. Algorithms and Consistent Approximations, Springer,
Berlin, 1997.

[42] R. Reemtsen, S. Görner, Numerical Methods for Semi-Infinite Programming: A
survey, in Semi-Infinite Programming, R. Reemtsen and J. Rückmann, eds., Kluwer,
Boston, 1998, pp. 195-275.

[43] S. M. Rump, INTLAB - INTerval LABoratory, Institute for Reliable
Computing, Hamburg University of Technology, 2008, http://www.ti3.tu-
harburg.de/rump/intlab.

[44] S. Scholtes, Convergence Properties of a Regularization Scheme for Mathematical
Programs with Complementarity Constraints, SIAM J. Optim., 11 (2001), pp. 918-

145

Bibliography

936.

[45] O. Stein, Bi-level Strategies in Semi-Infinite Programming, Kluwer, Boston, 2003.

[46] O. Stein, Lifting Mathematical Programs with Complementarity Constraints, Math.
Prog., DOI:10.1007/s10107-010-0345-y.

[47] O. Stein, G. Still, On generalized semi-infinite optimization and bilevel optimization,
European J. Oper. Res., 142 (2002), pp. 444-462.

[48] O. Stein, P. Steuermann, The adaptive convexification algorithm for semi-infinite
programming with arbitrary index sets, Math. Prog. B, to appear.

[49] P. T. Tach, The design centering problem as a D.C. programming problem, Math.
Prog., 41 (1988), pp. 229-248.

[50] A. Wächter, L. T. Biegler, Line Search Filter Methods for Nonlinear Programming:
Motivation and Global Convergence, SIAM J. Optim., 16 (2005), pp. 1-31.

[51] A. Wächter, L. T. Biegler, Line Search Filter Methods for Nonlinear Programming:
Local Convergence, SIAM J. Optim., 16 (2005), pp. 32-48.

[52] A. Winterfeld, Maximizing volumes of lapidaries by use of hierarchical GSIP-models,
Diploma thesis, Technische Universität Kaiserslautern and Fraunhofer Institut für
Techno- und Wirtschaftsmathematik, 2004.

[53] A. Winterfeld, Large-scale semi-infinite optimization applied to industrial gemstone
cutting, PhD thesis, Technische Universität Kaiserslautern and Fraunhofer Institut
für Techno- und Wirtschaftsmathematik, 2007.

146

List of Figures

2.1 Illustration of Ĝ (B, c) and Ĝ (B, c+) for g (y) = sin(x) on B = [0, 2π]. . . 10

2.2 ĝB (y; c) for g (y) = sin(y) on B = [0, 2π] with c = π
2 and L (B) = −1.1,

L (B) = 1.1. 11

2.3 ĝB (y; c) for g (y) = sin(y1) + (y2 − 1)2 on B = [0, 2π] × [0, 3] with c =
(

π
2 ,

5
2

)T
and L (B) = (−1.1,−2.1)T , L (B) = (1.1, 4.1)T 12

2.4 ĝB (y; c) for g (y) = sin(y) on B = [0, 2π] and for g (y) = sin(y1)+(y2 − 1)2

on B = [0, 2π]× [0, 3] with optimal centers c+. 13

2.5 ğ (y;α,B) for g (y) = sin(y) on B = [0, 2π] with α = 1
2 and with α = 1. . . 15

3.1 The overestimator ĝ for g (x, y) = sin (xy) on X×B with X = B = [0, 2π],
L = −63

10 , L = 63
10 and c = π. 18

3.2 Sequence of splitting points (ην)ν with ην =
(

ǫsplit,
1

2ν+1

)

and the corre-
sponding sequence of boxes tending to a degenerated box. 22

3.3 Illustration of the error functions at x∗ for SIPCA computed with Algo-
rithm 2. 33

3.4 Illustration of the final result x∗ for SIPCA computed by Algorithm 2. . . 34

3.5 Overall number of boxes in each iteration for SIPCA generated by Algo-
rithm 2. 34

3.6 Diameter of boxes, L, L and maximum separation distance of the con-
straints for the problem SIPCA computed by Algorithm 2. 35

4.1 The overestimator ğ for g (x, y) = sin (xy) on X×B with X = B = [0, 2π]
and α = 79

2 . 38

4.2 Illustration of the error functions at x∗ for SIPCA computed with Algo-
rithm 4. 47

4.3 Illustration of the final result x∗ for SIPCA computed by Algorithm 4. . . 48

4.4 Overall number of boxes in each iteration for SIPCA generated by Algo-
rithm 4. 48

4.5 Diameter of boxes, α and maximum separation distance of the constraints
for the problem SIPCA computed by Algorithm 4. 49

7.1 Illustration of the set given by x1 ≥ 0, x2 ≥ 0, x1x2 = 0. 85

7.2 Illustration of the sets C and Ct for t ∈ {0.3, 0.15, 0.05}. 86

7.3 Illustration of the function g (x, y) = x4 − 6x2 + 8x− 6y2 on X = [−2, 2],
Y = [0, 1]. 88

147

List of Figures

7.4 Illustration of the function g (x, y) = x2 + y2 sin (y) + y and its overesti-
mator ğν,k. 91

8.1 Overall number of boxes for SIPCA generated by Algorithm 7. 96

8.2 Diameter of boxes, L, L and maximum separation distance of the con-
straints for the problem SIPCA computed by Algorithm 7. 97

8.3 Overall number of boxes for SIPCA generated by Algorithm 10. 99

8.4 Diameter of boxes, α and maximum separation distance of the constraints
for the problem SIPCA computed by Algorithm 10. 99

8.5 Overall number of boxes for SIPCA generated by Algorithm 14. 101

8.6 Diameter of boxes, α, L, L and maximum separation distance of the
constraints for the problem SIPCA computed by Algorithm 14. 102

8.7 Illustration of the container C for SIPDC1 102

8.8 Overall number of boxes for SIPDC1 generated by Algorithm 2. 104

8.9 Diameter of boxes, L, L and maximum separation distance of the con-
straints for the problem SIPDC1 computed by Algorithm 2. 105

8.10 Illustration of the reduced outer approximation of Y for SIPDC1 generated
by Algorithm 2. 105

8.11 Illustration of the final result x∗ for SIPDC1 computed by Algorithm 4. . 106

8.12 Illustration of the reduced outer approximation of Y for SIPDC1 generated
by Algorithm 4. 107

8.13 Overall number of boxes for SIPDC1 generated by Algorithm 4. 107

8.14 Maximum and minimum diameter of boxes containing active indices for
g1 and g2 of the problem SIPDC1 generated by Algorithm 4. 108

8.15 Illustration of the reduced outer approximation of Y for SIPDC1 generated
by Algorithm 7 with the adaptation strategy (7.1). 109

8.16 Illustration of the reduced outer approximation of Y for SIPDC1 generated
by Algorithm 7 with the adaptation strategy (7.2). 110

8.17 Illustration of the reduced outer approximation of Y for SIPDC1 generated
by Algorithm 10 with the adaptation strategy (7.1). 111

8.18 Illustration of the reduced outer approximation of Y for SIPDC1 generated
by Algorithm 10 with the adaptation strategy (7.2). 111

8.19 Overall number of boxes for SIPDC1 generated by Algorithm 7 and 10. . 112

8.20 Diameter of boxes and maximum separation distance of the constraints
for the problem SIPDC1 computed by Algorithm 7 and 10. 112

8.21 Overall number of boxes for SIPDC1 generated by Algorithm 14. 114

8.22 Diameter of boxes and maximum separation distance of the constraints
for the problem SIPDC1 computed by Algorithm 14. 114

8.23 The function g(y) = y3 + y2 on Y = [−2, 1] and the relaxations ĝ and ğ. . 115

8.24 Illustration of the container C for SIPDC2 and SIPDC3 117

8.25 Illustration of the final result x∗ for SIPDC2 computed by Algorithm 7. . 118

8.26 Illustration of the reduced outer approximation of Y for SIPDC2 generated
by Algorithm 7 with the adaptation strategy (7.1). 119

148

List of Figures

8.27 Illustration of the reduced outer approximation of Y for SIPDC2 generated
by Algorithm 7 with the adaptation strategy (7.2). 119

8.28 Overall number of boxes for SIPDC3 generated by Algorithm 7. 120
8.29 Illustration of the reduced outer approximation of Y for SIPDC2 generated

by Algorithm 10 with the adaptation strategy (7.1). 121
8.30 Illustration of the reduced outer approximation of Y for SIPDC2 generated

by Algorithm 10 with the adaptation strategy (7.2). 121
8.31 Illustration of the reduced outer approximation of Y for SIPDC3 generated

by Algorithm 10 with the adaptation strategy (7.1). 122
8.32 Illustration of the reduced outer approximation of Y for SIPDC3 generated

by Algorithm 10 with the adaptation strategy (7.2). 123
8.33 Illustration of the reduced outer approximation of Y for SIPDC2 generated

by Algorithm 7 with the adaptation strategy (7.1). 124
8.34 Illustration of the reduced outer approximation of Y for SIPDC2 generated

by Algorithm 7 with the adaptation strategy (7.2). 124
8.35 Illustration of the tessellation of Y for SIPDC3 generated by Algorithm 7

with the adaptation strategy (7.1). 125
8.36 Illustration of the tessellation of Y for SIPDC3 generated by Algorithm 7

with the adaptation strategy (7.2). 125
8.37 Illustration of the reduced outer approximation of Y for SIPDC2 generated

by Algorithm 10 with the adaptation strategy (7.1). 126
8.38 Illustration of the reduced outer approximation of Y for SIPDC2 generated

by Algorithm 10 with the adaptation strategy (7.2). 127
8.39 Illustration of the tessellation of Y for SIPDC3 generated by Algorithm 10

with the adaptation strategy (7.1). 128
8.40 Illustration of the tessellation of Y for SIPDC3 generated by Algorithm 10

with the adaptation strategy (7.2). 128
8.41 Overall number of boxes for SIPDC2 and SIPDC3 generated by Algo-

rithm 7 and X-adaptation (7.1). 129
8.42 Diameter of boxes, α and maximum separation distance of the constraints

for the problems SIPDC2 and SIPDC3 computed by Algorithm 10. 130
8.43 Illustration of the final result x∗ for SIPDC4 computed by Algorithm 7

and the X-adaptation strategy (7.1). 132
8.44 Illustration of the final result x∗ for SIPDC4 computed by Algorithm 10

and the X-adaptation strategy (7.1). 133
8.45 Illustration of the container C for SIPDC5 134
8.46 Illustration of the final result x∗ for SIPDC5 computed by Algorithm 7. . 135
8.47 Illustration of the reduced outer approximation of Y for SIPDC5 generated

by Algorithm 7. 136
8.48 Diameter of boxes in the reduced outer approximation of Y for SIPDC5

generated by Algorithm 7 and 10. 137
8.49 Overall number of boxes for SIPDC5 generated by Algorithm 7 and 10. . 138

149

List of Algorithms

1 Splitting step - refineUF (η) . 23
2 Adaptive reduction algorithm - ara . 24

3 Splitting step - refineαBB(η) . 41
4 Adaptive convexification algorithm - aca 42

5 Splitting step - XrefineUF (η) . 55
6 X-Adaptation - XadaptUF (x,∆x) . 59
7 Adaptive reduction algorithm - Xara . 60
8 Splitting step - XrefineαBB(η) . 67
9 X-Adaptation - XadaptαBB(x,∆x) . 70
10 Adaptive convexification algorithm - Xaca 71

11 Error computation step - errhyb(X
ν , B(1), B(2), α, L, L, K̂ν , K̆ν) 78

12 Splitting step - refinehyb(ν, η) . 79
13 X-Adaptation - Xadapthyb(x,∆x) . 80
14 Adaptive hybrid algorithm - aha . 81

15 Splitting step with monotonicity test - XrefineαBB(η) 92
16 Monotonicity test - XtestmonoαBB

(

X,B(1), B(2)
)

. 93

151

Curriculum Vitae

Heinz-Paul Steuermann

geboren am 17. September 1979 in Mönchengladbach

1986 - 1990 Grundschule, Gierath
1990 - 1999 Franz-Meyers-Gymnasium, Mönchengladbach
2000 - 2001 Studium der Mathematik an der RWTH-Aachen
2001 - 2007 Studium der Mathematik an der Heinrich-Heine Universität Düsseldorf
Seit 2007 Wissenschaftlicher Mitarbeiter am Institut für

Operations Research des Karlsruher Institut für Technologie

153

Erklärung

(gemäß §4, Abs. 4 der Promotionsordnung vom 27.12.2006)

Ich versichere wahrheitsgemäß, die Dissertation bis auf die in der Abhandlung
angegebene Hilfe selbständig angefertigt, alle benutzten Hilfsmittel vollständig
und genau angegeben und genau kenntlich gemacht zu haben, was aus Arbeiten
anderer und aus eigenen Veröffentlichungen unverändert oder mit Abänderungen
entnommen wurde.

Karlsruhe, den 11.05.2011

155

