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Prologue

The dissertation of Khurram Shahzad, which is before the reader, is the outcome of a contest,
where a simple model applied by a research group, which considers only available data, is
pinned against a ready-made, fully developed physically based model, which is adapted to a
new situation by consultants. There is an interesting background story that led to it. The de-
vastating floods of the year 2000 in the Mekong area brought about a number of international
activities, in the course of which I was invited by the German Foreign Office to participate in
the formative meeting of the Mekong River Commission’s flood management and mitigation
program. My experience with this kind of activities included participation in an expert meet-
ing in Mozambique after the big Limpopo flood of 1998, where a mixed group of experts had
gathered to make recommendations for future flood control. To involve many different types
of experts at the same time to discuss every aspect of flood management in a two day meeting
did not seem to me to be very efficient, and I became convinced that the only way a group of
experts can be effective is if they are concentrating on one aspect only. I thought that flood
warning was of the first priority, and organized a workshop of international experts in cooper-
ation with the Mekong River Commission Secretariat to make recommendations only on the
issue of early warning and flood forecasting for the Mekong River. The workshop took place
in 2002 in Phnom Penh, Cambodia, and was supported by the German Foreign Ministry. The
recommendations of this meeting included setting up a center for early warning, and to go for
a local flood forecast model on the basis of the available data, which should improve or re-
place the then existing model SSARR, which had been used since the early sixties. The MRC
then went ahead, the Regional Flood Management and Mitigation Center was founded, and a
program was generated which defined the duties of this center, with early warning and flood
forecasting of highest priority. [ was asked to draw up a program for the forecast activities, for
which I spent two weeks in Phnom Penh. I developed specific for the Mekong, the concept of
a data based forecast model, based on available information, along with the necessary data
gathering activity. However, while I was working on drafting this concept, the center decided
to use an existing model, the model URBS developed in Australia, and to put the model struc-
turing and application planning into the hands of an Australian consultant. When I found out
that this was decided, I went to find support for the data based study that I had in mind, and
fortunately the German Ministry of Science and Technology agreed to support this as part of
the program WISDOM, and the DAAD sponsored Khurram Shahzad to do the study under
my supervision.

Against this background one has to see the work of Khurram Shahzad, who developed a con-
cept that might well be used also for other rivers. Using the principle to go from the simple to
the more complex — if the simple does not do the job — he investigated as a first approach how
far one could go with classical time series analysis, i.e. by using regression models for inter-
connecting time series from all the gauging stations along the middle course of the Mekong
River. Naturally, this approach could not provide information for what happens in the regions
between gages, where the rainfall dominates what is coming down from the lateral hills — in
particular from the Eastern mountains between Laos and Cambodia, where rainfalls from the
Southwest monsoon cause the runoff. Using rainfall information in addition to river dis-
charges improves the forecasts — if it is properly used. It is interesting to know that the pecu-



liarities the Mekong middle region, where the rainfall is converted into runoff in a very sys-
tematic and consistent manner due to the fact that the Southwest monsoon is raining on almost
completely dry land, which in the first couple month of the flood season (starting in June) is
gradually filled up to almost complete saturation in August, are making it possible to estimate
the runoff coefficient without the help of any soil moisture accounting model, both during
calibration and real time operation. This is a most significant result of the study. The errors
from the forecasts are greatly reduced when this input is calculated, for which a simple gam-
ma distribution as unit hydrograph is sufficient. If in the end the forecast is further cleaned by
means of an error correction routine, then a very good forecast is obtained, as is made clear by
looking at quality assessment parameters calculated from the data, such as the persistence
index. In combining the simple regression model with this simple rainfall -runoff a model is
obtained which in actual application to the discharges in the years 2009 and 2010 proved the
value, if not the superiority of the data based approach.

Karlsruhe, June 2011 Erich J. Plate
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Abstract

The Mekong, 10th largest River of the world, is an important life line for South East Asian countries. The
Lower Mekong is the major source of surface water flow in Lao-PDR and Cambodia. However, during
the flood season, i.e. June to October, water overflows the banks of the river. The discharge increases as
Mekong flows from North to South, due to continuous inflows from its Eastern tributaries. The SE
monsoons and NW typhoons cause heavy rainfall in the mountains of northern Lao-PDR and along the
border of Lao-PDR to Vietnam which results in exceptionally high floods, up to 30,000 -70,000 m*/sec in
the Lower Mekong. Owing to their low altitude, almost entire inhabited part of Lao-PDR, central
Cambodia and Southern Vietnam are the sufferers of Mekong flooding.

On one hand, the flood overflow has been used for number of beneficial applications, i.e. agriculture,
fishing, etc. But on the other hand, it is responsible for many human casualties, for example in the flood
of the year 2000, the death tolls exceed 800. However, in financial terms, the flood benefits of 7100 (US$
millions) outnumber the flood damages, i.e. 76 (US$ millions). Therefore, the South East Asian countries
have decided to live with the floods. However, a major effort is required to reduce the intangible costs in
order to optimize the social benefits of Mekong floods. An appropriate flood risk zoning, and an efficient
early warning system are possible non-structural means in order to reduce flood damages while keeping
its benefits.

Flood forecasting is a most important element of an early warning system. However, in the case of Lower
Mekong, the existing flood forecasting models, i.e. SSARR and URBS, fail to produce the flood forecast
of required efficiency. Both of these models were developed in other regions (SSARR in USA and URBS
in Australia) and were then fitted to the conditions of the Mekong. However, when some pre-build (semi-
empirical) model is fitted to local conditions, the quality of model performance is subjected to certain
restrictions. First of all, there should be understanding of application purpose, based on a study of the
catchment, which should determine the structure of the model. Second, the application site should comply
with basic data requirements of pre-build model. First condition is satisfied by defining proper model
structure and calibrating the parameters of a model, and the second condition by furnishing the required
data. The main problem observed in the fitting of SSARR and URBS was inability to fulfill these
conditions. Therefore, objective of this study was to develop a better forecasting approach, which shall be
goal oriented, based on local conditions, i.e. local hydrology, and shall be workable with the available
data base. The application domain of this model was restricted to Middle Mekong, i.e. Luang Prabang to
Stung Treng. Further downstream of Stung Treng, the nature of flooding is quite different from upstream
Stung Treng because of specific effects of the large Tonle Sap Lake, which were not investigated in
present work.

Owing to data scarcity of catchment’s physical properties, i.e. geologic terrain, river cross sections, land
use, land cover, soil moisture and its hydro-meteorologic gauging, i.e. 31 rainfall and 7 discharge gauges
to represent the catchment area of 795000 km?® a data based forecasting approach was preferred. In
contrast to detailed and complex physical models, two simple data based modeling approaches were used,
i.e. Metric (Type 1) and Hybrid Metric Conceptual (Type 2), which are data efficient and therefore can be
used in the typical conditions of Mekong. In data based modeling approaches, the functional
dependencies are structured from the empirical relationship of subsequent discharges (Type 1 Model) or
of discharge with a rainfall (Type 2 Model) with the help of historical data.

But prior to model building, the objective function was selected in order to judge the quality of a model.
The quality was taken in terms of accuracy and reliability. In order to gauge accuracy, instead of Nash
Sutcliffe, the persistence Index (PI) was used. And reliability was measured by providing the probability
distributions of the remaining errors.



In the development of data based models, the information from upstream discharge gauges was used with
the help of routing and only the portion of discharge coming from lateral tributaries is forecasted. The
average discharge travel time from one gauge to another was determined with the help of cross correlation
analysis and by noting time delay of flood peak from one gauge to another.

Daily discharge data of 7 mainstream discharge gauges Mekong for year 1960 to 1990 and 1990 to 2005
have been used to develop and test the model respectively. The objective was to produce 1 to 5 days flood
forecast at each gauge. In Type 1 Model, the lateral inflows were forecasted on the basis of multi-
regression. These lateral inflows were added to the routed flow from upstream in order to generate future
discharges. The correlation of subsequent errors suggested the use of error correction by forecasting
errors. The forecasting efficiency after error correction, as expressed by PI, ranges from 0.7 to 0.5 in first
3 days lead time, however it was reduced to 0.2 to 0.4 for 4 and 5 days lead time.

In Type 2 Model, the lateral inflows were forecasted on the basis of conceptual rainfall-runoff models. In
total, 6 number of conceptual rainfall runoff models were constructed, one for each sub-basin. In addition
to discharge data, daily rainfall data of 31 rainfall gauges was used for year 1990 to 2005. The period
1990 to 2000 was taken as simulation period and that one of 2000 to 2005 as validation period for model
development. The basic 2 parameter Nash cascade was used in order to convert effective rainfall into
runoff. The effective rainfall was computed from areal average rainfall data with the help of a seasonal
adjustment coefficient KN, which includes, among other factors, the runoff coefficient. The lateral
inflows were computed by the best combinations of KN and n & k parameters, which are updated by
correcting error using the linear regression between subsequent errors.

The forecasting efficiency of a model with perfect rainfall data (assuming future rainfall is known
exactly) for 1 to 5 day forecast, as expressed by PI, ranges from 0.6 to 0.7, except at Nakhon Phanom
where it remains 0.1 to 0.5. However, forecasting efficiency is reduced if one replaces the perfect input
data with a forecasted rainfall for future days, and then range from 0.5 to 0.6 in first 3 days lead time and
0.2 t0 0.4 in 4 and 5 days lead time. A special combination of n and k parameter was introduced in order
to cope with the poor rainfall forecast situation. However, the resultant unit hydrograph shapes of these n
and k variant did not seem to be realistic, although they improved the forecasting efficiency, as expressed
by PI, to ranges from 0.6 to 0.7 in first 4 days lead time, and 0.5 to 0.6 in 5 days lead time. Again the
forecasting efficiency at Nakhon Phanom is smaller, i.e. ranges from 0.1 to 0.4. But if Type 2 Model is
used in the forecasting mode the efficiency of forecasts for longer lead times is very much reduced.

The typical compensating pattern of forecasting errors in Type 1 Model and Type 2 Model suggested the
use of weighted average of these two forecasts. Optimal weights were determined with the help of
standard regression. The forecasting efficiency of the mixed model in the analysis mode, as expressed by
PI, ranges from 0.6 to 0.7 in first 4 days lead time, and is reduced to 0.4 to 0.5 after 5 days lead time.

In summary, it has been demonstrated that simple data based models, i.e. Metric (Type 1) and Hybrid
Metric Conceptual (Type 2) can be successfully used in data scarce catchments like that of the Mekong.
To combine the advantages of the two methods weighted averages of the forecasts from the two models
are used in an approach that is called Mix Model. But it became evident that when improvements for
longer lead times are sought, an improvement of rainfall forecasts will be needed.

The finding of this study was that in large rivers flood forecasting, owing to physical continuity of large
rivers system, simple data based models can perform equally well or even better than complex physical
models. The best model for forecasting should not be the one which best captures the (complete) physical
reality, but the one that delivers the most accurate and reliable flood forecasts to be used in the practice of
flood management.



Zusammenfassung

Der Mekong, der zehntgrofte Fluss der Welt, ist eine wichtige Lebensader fiir die siidostasiatischen
Lénder. Der untere Mekong ist das bedeutendste Oberflichengewdsser in Laos und Kambodscha.
Waihrend der Hochwassersaison zwischen Juni und Oktober kommt es jedoch entlang dieses Flusses zu
Uberflutungen. Auf seinem Weg von Norden nach Siiden steigt der Abfluss des Mekongs durch
perennierende linksseitige Zufliisse stetig an. Der Siidost-Monsun und Nordwest-Taifune bringen hohe
Niederschldge in den Gebirgsbereichen von Nord-Laos und entlang der Grenze zwischen Laos und
Vietnam, welche im unteren Mekong ausgesprochen grofle Hochwasserabfliisse zwischen 30.000 und
70.000 m?/s auslosen. Hauptsédchlich Laos, Zentral-Kambodscha und der Siiden Vietnams leiden bedingt
durch ihren Tieflandcharakter unter diesen Hochwassern.

Einerseits haben die Uberschwemmungen fiir die Bevdlkerung eine ganze Reihe niitzlicher Effekte, z.B.
im Ackerbau und in der Fischerei. Auf der anderen Seite sind sie fiir viele Todesopfer verantwortlich, im
Jahr 2005 beispielsweise wurden 800 Tote in Folge der Hochwasser gezdhlt. In der 6konomischen Bilanz
iiberwiegt jedoch die positive Wirkung der Hochwasser (7100 Millionen US-Dollar) deutlich gegeniiber
den verursachten Schidden (76 Millionen US-Dollar). Aus diesen Griinden haben sich die
siidostasiatischen Linder entschieden, mit den Uberschwemmungen zu leben. Allerdings sind groBe
Anstrengungen notwendig, um die immateriellen Schidden zu reduzieren und damit den sozialen Nutzen
der Mekong-Hochwasser zu verbessern. Eine geeignete Ausweisung von Hochwasserflichen und ein
effizientes Frilhwarnsystem konnen dazu beitragen, die Hochwasserschidden zu reduzieren und den
Nutzen der Uberschwemmungen dennoch auszuschdpfen.

Die Hochwasservorhersage ist ein wesentliches Element eines Frithwarnsystems. Im Fall des Mekongs
sind bestehende Vorhersagemodelle, wie SSARR und URBS, nicht in der Lage, Hochwasservorhersagen
der notwendigen Giite zu erbringen. Beide Modelle wurden in anderen Gebieten entwickelt (SSARR in
den USA und URBS in Australien) und erst dann an die Bedingungen am Mekong angepasst. Wenn
jedoch vorgefertigte (semi-empirische) Modelle an lokale Bedingungen angepasst werden, sind sie in
ihrer Einsatzfihigkeit begrenzt. Zunidchst sollte basierend auf einer Einzugsgebietsstudie der
Anwendungszweck klar definiert werden, um eine geeignete Modellstruktur festzulegen. Weiterhin
sollten in dem Anwendungsgebiet die notwendigen Datengrundlagen fiir die Modellanwendung gegeben
sein. Die erstgenannte Bedingung kann durch die Kalibrierung der Parameter eines Modells erreicht
werden, die zweite indem die geforderten Daten zur Verfligung gestellt werden. Dies konnte bei der
Anpassung der Modelle SSARR und URBS nicht geleistet werden.

Daher war es das Ziel dieser Studie, einen besseren Vorhersageansatz zu entwickeln. Dieser sollte
zielorientiert sein, auf den lokalen (v.a. hydrologischen) Gegebenheiten basieren und mit der verfiigbaren
Datenbasis anwendbar sein. Das Anwendungsgebiet dieses Modells wurde auf den mittleren Mekong
beschréinkt, von ,Luang Prabang’ bis ,Stung Treng', weil der Abschnitt unterhalb durch den Einfluss des
,Tonle Se Up' Sees einer gesonderten Methode unter Zuhilfenahme eines hydraulischen Modells bedarf.

Im betrachteten Einzugsgebiet ist nur eine knappe Datengrundlage im Hinblick auf die physikalischen
Eigenschaften des FEinzugsgebietes, insbesondere mit seinen geologischen Verhéltnissen,
Gewisserprofilen, Bodennutzungen, seiner Vegetation, seinen Bodenfeuchteverhéltnissen, gegeben. Auch
sind nur wenige hydrometrologische Messstationen verfligbar: 31 Niederschlagsstationen und
7 Abflusspegel, die ein Einzugsgebiet mit einer Grole von 795.000 km? reprisentieren. Vor diesem
Hintergrund ist ein Modell, das einen datenbasierten Vorhersageansatz impliziert, vorzuziehen.

Im Gegensatz zu detaillierten, komplex-physikalischen Modellen gibt es zwei einfache datenbasierte
Ansitze: der metrische (Typ 1) und der hydrid-metrische konzeptuelle (Typ 2). Beide sind dateneffizient
und konnen deswegen fiir die Verhéltnisse am Mekong genutzt werden. Beim datenbasierten
Modellansatz werden die funktionellen Abhéingigkeiten aus der empirischen Beziehung von



aufeinanderfolgenden Abfliissen (Typ-1 Modell) oder von Abfliissen im Zusammenhang mit dem
Niederschlag (Typ-2) anhand historischer Daten ermittelt.

Um die Giite des Modells bewerten zu konnen, wurde vor der Modellbildung die Zielfunktion gewéhlt.
Die Qualitdit wurde dabei hinsichtlich Genauigkeit und Verldsslichkeit beurteilt. Fiir die
Abflussbewertung wurde statt des Nash-Sutcliffe-Faktors der Persistence-Index PI verwendet. Die
Verlasslichkeit wurde iiber die Wahrscheinlichkeitsverteilung der Restfehler gemessen.

Bei der Entwicklung datenbasierender Modelle wurden Abfliisse oberstromiger Pegel geroutet und nur
der Anteil aus seitlichen Zufliissen {iber Vorhersagen einbezogen. Die mittlere Transportzeit zwischen
den einzelnen Pegeln wurde mit Hilfe von Kreuzkorrelationsanalysen und durch die Bestimmung von
zeitlichen Abstdnden der Hochwasserspitzen an den Pegeln identifiziert.

Tégliche Abflusswerte der Jahre 1960 bis 1990 und der Jahre 1990 bis 2005 an 7 Hauptpegeln am
Mekong wurden verwendet, um die Modelle zu entwickeln und zu testen. Ziel war es, an jedem der
genannten Pegel eine 5-Tages-Vorhersage zu liefern. Beim Typ-1 Modell wurden die seitlichen Zufliisse
auf Basis einer multiplen Regression vorhergesagt. Diese lateralen Zufliisse wurden dem Hauptfluss von
Oberstrom aufgepragt und geroutet, um zukiinftige Abfliisse zu generieren. Die Korrelation resultierender
Fehler legte die Anwendung einer Fehlerkorrektur durch eine Fehlervorhersage nahe. Die
Vorhersageeffizienz nach der Fehlerkorrektur, dargestellt durch PI, liegt im Bereich zwischen 0.5 und 0.7
bei einer Vorhersagezeit von 3 Tagen und im Bereich 0.2 bis 0.4 bei 4 bis 5 Tagen Vorhersagezeit.

Beim Typ-2 Modell wurden die seitlichen Zufliisse auf Basis eines konzeptuellen Niederschlag-Abfluss-
Modells vorhergesagt. Dafiir wurden 6 unterschiedliche N-A-Modelle aufgebaut, fiir jedes
Teileinzugsgebiet eines. Zusitzlich zu den Abflusswerten konnte auf tdgliche Niederschlagsmessungen
von 31 Stationen der Jahre 1990 bis 2005 zuriickgegriffen werden. Das Zeitfenster 1990 bis 2000 wurde
dabei als Simulationsreihe verwendet, im Anschluss erfolgte fiir die Modellentwicklung eine Validierung
mit den Jahren 2000 bis 2005. Die einfache 2-parametrige Nash-Kaskade wurde eingesetzt um den
effektiven Niederschlag in Abfliisse zu transformieren. Der effektive Niederschlag konnte aus dem
mittlerem Gebietniederschlag der Messungen mit Hilfe des Korrekturfaktors KN, der u.a. auch den
Abflussbeiwert beinhaltet, errechnet werden. Die seitlichen Zufliisse wurden aus der geeignetsten
Kombination vom Faktor KN und der Parameter n und k berechnet, die durch eine Fehlerkorrektur unter
Zuhilfenahme der linearen Regression der Folgefehler aktualisiert wurden.

Die Vorhersageeffizienz eines Modells mit ,perfekten’ Niederschlagsdaten (unter Annahme dass der
Niederschlag genau bekannt ist) liegt fiir die Vorhersagetage 1 bis 5, ausgedriickt durch PI, zwischen 0.6
und 0.7, mit Ausnahme von ,Nakhon Phanom’ wo der Wert 0.1 bis 0.5 erreicht. Wenn die perfekten
Vorhersagedaten durch die tatsdchliche Vorhersage ersetzt werden so erreichen die Werte 0.5-0.6 fiir die
ersten 3 Tage und 0.2-0.4 fiir die Vorhersagetage 4 und 5. Eine besondere Kombination aus den n und k
Parametern wurde eingefiihrt, um Defizite in der Niederschlagsvorhersage auszugleichen. Die
resultierende Einheitsganglinie aus diesen n und k Parametern erschien nicht realistisch, obwohl die
Vorhersagegiite, wieder ausgedriickt durch PI, im Bereich von 0.6 bis 0.7 (1.-4. Tag) und 0.5 bis 0.6 (5.
Tag) lag. Auch hier war der Wert in ,Nakhon Phanom’ schlechter, er lag zwischen 0.1 und 0.4. Wenn das
Typ-2 Modell fiir groBere Vorhersagezeitraume angewandt wird, fallt die Giite der Vorhersage stark ab.

Die typischen Ausgleichsschemen der Vorhersagefehler der beiden Modelltypen suggerierten die
Mittelbildung der beiden Vorhersagen. Die optimalen Wichtungen wurden mit Hilfe der
Standardregression bestimmt. Die Vorhersagegiite der gemischten Modelle erreichte wieder als PI
ausgedriickt 0.6 bis 0.7 fiir die ersten 4 Tage und 0.4 bis 0.5 fiir den 5. Vorhersagetag.

Zusammenfassend wurde aufgezeigt dass einfache datenbasierende Modelle, das metrische (Typ-1) und
das hydrid-metrische konzeptuelle (Typ-2) Modell, erfolgreich in datenarmen Einzugsgebieten, wie das
des Mekong, eingesetzt werden konnen. Um die Vorteile der beiden Methoden in einem kombinierten
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Modell einzusetzen werden gewichtete Mittelwerte erzeugt. Gleichzeitig wurde ersichtlich, dass wenn
bessere Abflussvorhersagen erreicht werden sollen, auch die Niederschlagsvorhersagen fiir ldngere
Dauern verbessert werden miissen.

Die Erkenntnisse der vorliegenden Studie dulern sich wie folgt, die Vorhersage an groBen Gewédssern
kann mit einfach datenbasierten Modellen ebenso gut oder sogar besser geleistet werden wie mit
komplexen physikalischen Modellen. Das beste Modell fiir eine Vorhersage sollte nicht das Modell sein,
welches die physikalischen Gegebenheiten am besten abbildet, sondern jenes, welches die préziseste und
verldsslichste Hochwasservorhersage liefert.

Note that some of the texts and equations were taken without detailed referencing from the papers by the
writer and his co-authors, which are however listed in the list of references
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Introduction

1. Introduction

The River Mekong is one of the greatest rivers of South East Asia. Among the world’s largest
rivers, it is ranked 10" according to outflow at mouth. From its source in Tibetan plateau glaciers
at about 4500 m amsl (above mean sea level), River Mekong flows from north to south, draining
South East Asia. For centuries the lower River Mekong (downstream of China) has been the life
line in the socio-economics of the riparian countries. A study of the Siem Reap civilization
indicated the high dependence of local life on River Mekong throughout history. Direct and
indirect benefits of River Mekong to agriculture, fishery farming etc. reached 7100 (USS$
millions) in year 2008. However, this benefit did not come without cost in the shape of huge
damages caused by River Mekong floods. Inflow into River Mekong is unevenly distributed over
the year and mainly concentrated in summer flood seasons, i.e. June to October, due to heavy
rains caused by the south west monsoon, further enhanced through superposition of rain from
typhoon storm surges. The vulnerability of major flood victims in the riparian countries, i.e., in
Lao-PDR, Central Cambodia, and Southern Vietnam has increased in the last few decades
because of new settlement along the river and increase in the population density in existing cities
along River Mekong, for example, the cities Phnom Penh in Cambodia and Vientiane in Lao-
PDR.

Latest research on integrated water management suggest that development of any river should be
based on the concept of “living with floods”, which has been adopted by the riparian countries of
the Mekong river basin. This implies to avoid tampering with the river, and puts emphasis on
using non-structural measures, i.e. flood forecast, flood risk management, early warning system
etc. to reduce risks to life and property of people, while keeping the traditional benefits of River
Mekong.

There is a tradition of flood forecasting in the Mekong River Basin (MRB) as a non-structural
means for reducing vulnerability against harmful floods. The former Mekong Committee
(replaced in 1995 by the Mekong River Commission (MRC)) initiated a flood forecasting
program for the lower MRB in response to severe flooding in 1966. Normally flood forecasts of
1 to 5 days lead time are produced for 12 gauges along the main stem of the Mekong starting
from Chiang Sean in Lao-PDR to Kompang Cham in Cambodia. However, hydrologic models
for flood forecasting - the formerly used model SSARR, and the model URBS introduced in
2009, fail to produce flood forecasts and warnings of desired accuracy. The main flaw of the
adopted URBS forecasting model is its dependency on satellite rainfall input which first is not
regularly available in time, and secondly, representativeness of satellite rainfall estimates (SRE)
and their forecasts to actual rainfall occurrence’s depth and distribution is questionable. Yet
another problem of adopted models is their general distributed structure, which requires to model
the hydrological characteristics of a watershed for conversion of rainfall to runoff. The absence
of detailed physiographic data is a major constraint in efficient simulation and calibration of
semi-distributed models. In order to improve flood forecast quality, a better forecasting model is
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needed. But the scarcity of available hydro-meteorological and physiographic data limits the
applicability of available sophisticated flood forecasting models to the Mekong region. A review
of contemporary flood forecasting approaches revealed the feasibility of using data based
stochastic models, combined with Nash cascade based semi-conceptual models with variable
runoff coefficients for conversion of rainfall into runoff in the reaches between gauging stations,
as appropriate in view of the Mekong catchment data scarcity.

In this study the design of such a data based flood forecasting model is described, which can be
used for large rivers in general, and for the River Mekong in particular. The efficiency of this
flood forecasting model is tested for the River Mekong. To start with, it was found necessary to
find a measure by means of which the quality of flood forecasts can be measured in an objective
manner. A suitable objective quality criterion is selected, based on a literature survey of different
quality criteria. In order to establish benchmarks, this defined quality criterion is used to judge
not only the quality of forecasts from the new model, but also of the forecasts produced by
existing forecasting models for the Mekong.

Before starting on model building, the available hydro- meteorological data base for River
Mekong is analyzed and checked for consistency, in order to facilitate development of a data
based model. Keeping in mind both the scarcity of available data and the problems associated
with the lack of a dense network of rain gauges, the data based flood forecasting model is
designed with minimum data requirement. By adopting a model developing approach moving
from simple to complex, a model structure, with limited data requirement was selected in the
beginning. With these data a first model, based solely on conventional regression analyses was
developed, to assess the potential of hydro-meteorological data in producing flood forecast.
Efficiency of each further addition of complexity, with increased data requirement for each step,
is weighed against quality improvement furnished by each next step. Moving from a model for
flood forecasting that is based only on discharges to a conceptual rainfall — runoff model in the
first two steps, the two models are then used in combination using both rainfall and discharge
data in a third step. The reliability of the forecasts is documented by quality criteria and
probability density functions of the resulting forecasting errors. This allows to identify different
confidence intervals for each crisp forecasted value.
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2. Description of Study Area

2.1. Mekong Description

Mekong is one of the world’s greatest rivers, ranked 10® largest as per length and flow at the
mouth (Liu et al. 2009, flood report 2005). The 100 km wide strip of eastern Tibetan Plateau at
about 4500 meters above sea level is source area to the Mekong and also of Salween and
Yangtze rivers. Starting their journey few hundred km apart, the courses of these rivers separate
at the point of origin of Irrawaddy. Salween moves to south west and falls in Indian Ocean after
draining part of Myanmar; Yangtze drains central China and flows east. And Mekong in the
middle flows toward south east in between the catchments’ of Salween and Red rivers. From
China downstream it keeps its journey southward and empties into the South China Sea after
draining part of Myanmar, Lao PDR, Cambodia, and Vietnam (Clark et al. 2004; Twidale 2004).
The long stretched drainage patterns of Salween, Mekong and upper Yangtze are unique in
comparison to other large river system that drain the interiors of continents, such as the rivers
Amazon, Congo, and Mississippi, which have broad dendritic tributary network. The tributary
networks of Salween, Irriwaddy, Yangtze and particularly Mekong River exhibit different
drainage patterns due to heterogeneous underlying geological structure. These underlying
geological factors control the course of rivers and the landscape they carve out (Twidale 2004;
Tandon & Sinha 2007; state of the basin report 2010)

The greater Mekong can be divided into three parts; Lancang Jiang, as the river is called in China
has its upper basin in China, the middle Mekong, from downstream of Yunnan province of China
to Northern Cambodia, and the Mekong delta, formed by the river before reaching the South
China Sea. Middle Mekong and delta are usually combined into the Lower Mekong, which is the
area covered by the Mekong River Commission. The upper basin makes up 24% of the total area
and contributes on the averagel5% to 20% of discharge that flows into the Mekong River.
Upper Mekong flows for almost 2,200 km from its source before it enters the Lower Basin where
the borders of Thailand, Lao PDR, China and Myanmar come together in the Golden Triangle
(Overview of the hydrology of Mekong Basin, 2005). Soil erosion has been a major problem
here and approximately 50 % of the sediment in the river comes from the Upper Basin. As per
statistics of 1998, up to 28 % of the Mekong basin in Yunnan was classified as “erosion prone”.
Therefore cultivation was restricted in favor of reforestation. In the south of Yunnan, the river
slows down as the valley opens out and the flood plain becomes wider.

After leaving China, the Lower Mekong forms the border between Myanmar and Lao-PDR for
about 100 km then turns southwest to form briefly the border of Lao-PDR with Thailand. After
flowing some 400 km in Lao-PDR from the Lao-Thailand border again for about 850 km as it
moves east and then turns south through central south east Asia, passing through the capital of
Lao PDR, Vientiane. Lao PDRA lies almost entirely within the Lower Mekong Basin. The Mun
River’s confluence with the Mekong occurs right before it crosses into Cambodia. Mekong
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interacts with the complex Tonle Sap River system as it flows through Phnom Penh, the capital
of Cambodia. The seasonal cycle of changing water levels in the Mekong lead to changes in the
direction of flow toward and from the Tonle Sap River. High water levels in the Mekong and low
water levels in the Tonle Sap lake turn the direction of flow towards the lake, whereas for low
water levels in the Mekong in low flow season cause the Tonle Sap river to flow from the lake
towards the Mekong. Over all, the length of the Lower Mekong is about 2,600 km from golden
triangle to the South China Sea through the complex delta system of Vietnam (State of the basin
report, 2010). This complex Mekong delta actually begins in Phnom Penh, Cambodia, where the
Mekong divides into Lower Mekong and Bassac. Lower Mekong and Bassac then divide into six
and three main channels respectively to form the “Nine Dragons” in Vietnam before entering
into South China Sea. The main delta is flooded almost every year because it is less than five
meters high above sea level (MRC Annual Mekong Flood Report 2005, 2006).

2.2.  Geology of Mekong River Basin

Geology generally defines the catchment shape, boundaries and outlet together with River slope.
Mekong originates from Guyong-Pudigao creek at 5160 m above sea level near the foot of Mt
Jifu on the Tibetan Plateau (Liu et al. 2007). In its journey from Guong-Pudigao creek to South
china Sea it descend about 5 km in 4600 km (Fig.2.1 and 2.2). The slope does not remain
constant but changes along the longitudinal section of River (Fig.2.1). The Tibetan plateau is the
most densely glaciated area of the world, of which 316 Km? glacier area is attributed to Mekong
Basin (Eastham et al. 2008). The course of the Mekong on this plateau is influenced by the
tectonic fabric of the Tibetan Plateau. Here mainstream and major tributaries run parallel in
NNW to SSE direction (State of the Basin report, 2010)

Fig. 2.1: Elevation and Geological formations of Mekong (Source, Encyclopedia Britannica, 1994)
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In three rivers area, Mekong is confined in deep narrow sections where the depth of the river
goes up to 2500 m at some places as it passes through broad north-south trending arc for about
500 km. The Upper Mekong basin broadens at the point where the Salween and Yangtze
diverges to west and east respectively. This area is called Lancang Basin.
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Fig. 2.3: land cover map of lower Mekong (Source, Saito et. al. (2007))

After the river passed through the golden triangle, the northern Highlands of northeast Myanmar,
northern Thailand and northern Lao-PDR restrict the Mekong into steep-sided bedrock channels.
The river continues its journey from Northern Highlands to the saucer-shaped Khorat Plateau at
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an elevation of 300 meter above sea level, forming a border between Lao-PDR and Thailand
running from north to south. The rim of the basin is comprised of sharp cuesta formed by the
highly resistant sandstones of the Khorat Group. The Plateau is bounded by the Loei — Petchabun
fold belt from the west and by the Annamite Mountains in the east. In this plateau, the low range
hills which run from NNW to SSE, known as “Phuphan uplift” divides the basin in to two
sections, Savankhat basin to the north and the Mun/Chi Basin in the south (State of the Basin
report, 2010).

The Mekong enters the Tonle Sap basin just north of Pakse and flows in between the Khorat
mountains in the west and the Boloven Plateau in the east. At the southern end of this stretch, the
mainstream breaks up into a complex network of branching and reconnecting, with islands in
between. The Mekong in its passage from southern Lao-PDR to the alluvial plains of northern
Cambodia, passes through a series of cataracts at Khone Falls (Gupta and Liew, 2006, State of
the Basin report, 2010). The river flows further southwards until Kratie, where it takes a right
angle turn towards west due to the upland formed by the extensive basaltic lava flows near Ho
Chi Minh City. The mountainous terrain that runs from north to south in the shape of a broad arc
from the Boloven Plateau in Lao PDR to the volcanic uplands of southern Vietnam forms the
extreme border to the sub basins of the tributaries which are entering from the eastern side into
the Mekong mainstream (State of the Basin report, 2010).

The Mekong river delta forms downstream of Phnom Penh. The delta plain can be divided into
two parts, the low- laying inner delta which is close to sea level, yet has its topography
dominated by fluvial processes, and the outer delta, which is built by coastal plain deposits, and
is dominated by marine processes (Te et al., 2002 a).

2.3. Land Cover and Land Use

“Land cover is the observed (bio) physical cover on the earth's surface. In a very pure sense it
should be confined to describe vegetation and man-made features. Consequently, areas where the
surface consists of bare rock or bare soil are describing /and itself rather than land cover. Also, it
is disputable whether water surfaces are real land cover. However, in practice, the scientific
community usually describes those aspects under the term land cover.
(http://www.fao.org/docrep/003/x0596e/X0596e01e.htm#P213_18188). From the hydrologic
point of view, both land and land cover are important because they, along with soil type, define

the catchment response to rainfall, both by magnitude and its temporal distribution.

The Mekong River basin is mainly comprised of ever green forest, deciduous forest and grass
land. Although the boundary between evergreen, mixed deciduous and deciduous forest
ascertained by satellite imagery is more or less fuzzy, it still gives the general features of land
cover with a certain degree of confidence. The study conducted by Saito et. al. (2007) mentioned
that evergreen forests predominate the land cover of the Mekong Basin. The upper and middle
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Mekong together with the eastern portion of the lower Mekong is mainly covered with evergreen
forests. Deciduous forests are located mainly in the northern and the central Thailand area. Grass
lands together with crop fields cover the south western portion of Mekong river catchment.
These areas are mainly the low lands of Thailand and portions of northern Cambodia (Saito et.
al.,, 2007). Along with the forest cover there is a substantial portion of Mekong catchment
covered with permanent and temporary water bodies that includes lakes, ponds, wetlands and
marshes etc. The biggest of these is the Tonle Sap lake in Cambodia. Land cover maps as
produced by ESDP (2006) indicate the presence of thick and secondary forests in the catchments
of Sekong, Sen San and Sre Prok, extending further northward from the border of Cambodia to
Lao-PDR (Fig.2.3). This heterogeneous land cover condition in different sub-catchments of
Mekong is one of the main reasons behind the runoff coefficient variability in different areas of
the River.
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Fig. 2.4: Typhoon tracks along lower Mekong
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2.4. Climate

The climate of the Lower Mekong Basin (LMB) is dominated by the Southwest Monsoon, which
generates wet and dry seasons of more or less equal length (Overview of the hydrology of
Mekong Basin, 2005). In the wet season, there are usually heavy rains in most parts of the basin.
The flood period in the LMB is mainly caused by the Southwest monsoon season which usually
lasts from May until late September or early October. July, August and September are generally
the months of highest rainfall, although there is
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Fig. 2.5: Rainfall distribution in Lower Mekong Catchment (Source, hydrology report-05, MRC)
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evidence of a shift later in the season in Cambodia and in the deltaic region, where more rain
falls in September and October. Later in the season, tropical cyclones are responsible for making
August, September and sometimes even October the wettest months of the year in the delta
region as shown in Fig.2.4 (MRC Annual Mekong Flood Report 2005, 2006).

Annual average rainfalls over the Cambodian floodplain and the Mekong delta are equally low,
which is less than 1,500 mm. The highest rainfall is in the Central Highlands and within the
mainstream valley around Pakse. The distribution of mean annual rainfall over the Lower Basin
is given in Fig.2.5 as reproduced from (Overview of the hydrology of the Mekong Basin,2005).
This Fig. shows that left bank tributaries are receiving much higher rainfalls than right hand
tributaries of Thailand. This trend makes the sub-catchments of Central Highlands of Lao PDR
between Vientiane and Nakhon Phanom, along with Pakse and Kratie in Cambodia, the major
contributing catchments by receiving about 1800 mm of rainfall per annum. The range of rainfall
in the Thai sub-basin starts from less than 1,500 mm and goes up to 1700mm, and only a very
small fraction of the area receives over 1800 mm. The map clearly shows that the left bank
tributaries of Lao PDR receive much more rainfall than right bank tributaries.

Tab. 2.1: Mean monthly rainfall in different sub-regions of lower Mekong (Source, hydrology report-05,
MRC)

Marthermn Central Karat Cantral Cambodian Vietnam
Monih Region Region Plateau Highlands | Floodplain Delta
Chiang Rai Pakse Khon Kasn Pleiki P:;:: Chau Doc
Jan 13 5 a
Feb 10 15 3
Mar 20 20 35 25 15 15
Apr B5 Ta B0 BS 65 75
May 180 220 170 225 115 185
Jun 210 380 180 350 125 110
Jul 310 Jao 180 380 160 140
Aug 380 500 185 480 160 170
Sap 280 320 280 380 265 160
Ot 140 100 120 220 255 250
Mow B 20 10 75 130 160
Dec 20 3 3 20 20 40
AMNNUAL 1,730 2,050 1,210 2,200 1,320 1,300

The Lower Mekong Basin has been classified into six sub regions according to spatio-temporal
variation of rainfall in (Overview of the hydrology report of the Mekong Basin, 2005). Table 2.1
compares long-term averages of rainfall of these six sub regions. According to this table, the area
of maximum rainfall are the central region and the central high land, where rainfall exceeds 2000
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mm annually with monthly averages of almost 500 mm in the month of August. On the other
hand the annual average rainfalls over the Cambodian floodplain, Korat Plateau and the
Vietnamese delta is less than 1,500 mm. Rainfall in Northern region is little lower than central
region’s rainfall with the yearly average of 1700 mm. Amount of rainfall approximately doubles
from April to May in each of the region,. The average rainfall keeps on increasing from May to
August, where August receives highest rainfall. Downward trends start from August to
September and rainfall amounts decrease drastically in the month of November.

Temporal pattern of average monthly rainfall on the left bank sub-catchments of Mekong for the
years 1990-2005 are plotted in Fig.2.6. On the average, rainfall remains high from June to
September, with maxima in July or August. The maximum average rainfall occurs in the
contributing sub-basins between Nakhon Phanom and Mukdahan (NM), and between Pakse and
Stung Treng (PS) whereas the minimum average rainfall occurs in the contributing sub- basin
between Luang Prabang and Vientiane (LV). The range of rainfall from minimum maxima to
maximum maxima among Mekong left bank catchments is as high as 300 mm.
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Fig. 2.6: Spatio-temporal rainfall distribution

As per (Overview of the hydrology report of the Mekong Basin, 2005), tropical storms and
cyclones have a strong effect on the rainfall climate of the Basin. This effect shows up as a
double peak in the rainfall distribution over most of the Lower Basin during wet years, and the
concentration of maximum rainfalls during the last quarter of the year 2005 in Cambodia and
Viet Nam. The influence of cyclones is not widely recognized. Data on the wider regional
occurrence of tropical cyclones show that over Central and Southern Viet Nam they are most
frequent between September and November and are largely responsible for the higher rainfalls
occurring in these later months.
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The above average cyclone activity has wider impacts on the rainfall climate of north of Viet
Nam and Cambodia. Cyclones are further responsible for late wet season rainfall peaks. During
tropical cyclone periods, the probability that any given day will be wet (> 1 mm) reaches a
maximum over most of the Lower Basin. This happens even in the relatively dry parts of
Northeast Thailand. The Southwest Monsoon, combined with severe tropical storms, has been
the cause of flood disasters in the Lower Mekong, particularly in Cambodia and the delta. But
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the major impacts of such weather systems are
not confined to the southern part of the Basin. In
1966, Typhoon Phyllis was responsible for the
most extreme flood recorded at Vientiane since
1913 (Overview of the hydrology report of the
Mekong Basin, 2005).
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Fig. 2.7: Typhoon storms frequency in Lower Mekong

The analysis of typhoon frequency for the period
of 1991 to 2008 conducted by Pradeep et. al.
(2010) indicates that June receives the maximum
number of typhoons followed by May and July.
This does not support the findings of hydrology
report (2005) according to which the maximum
typhoon intensity occurs between September and
November (Fig.2.7)
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Fig. 2.8: Schematic diagram of lower Mekong
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temperatures are similar within the Lower Basin from Phnom Penh, Cambodia to as far north as
Luang Prabang in Lao PDR and Chiang Rai in Thailand. The summer temperatures are a little
lower at altitudes above 500 masl. At almost 2,500 masl in the Upper Se San sub basin in Viet
Nam, station Pleiku has mean summer temperatures that are only 2° to 3° C lower than those
typical of the Mekong lowlands. Winter mean temperatures decrease significantly from south to
north, from 26° - 27° C in Phnom Penh to 21° - 23° C in Chiang Rai.

In the entire lower Mekong Region the annual rates of evapo-transpiration, remain constant inter-
annually within the range of 1 and 2 meters. This range of evapo-transpiration makes the Korat
Plateau in Northeast Thailand, mainly the Mun and Chi Basins, with annual rainfall of 1200 mm,
one of the driest areas in Southeast Asia. In many climate classification systems this region is
defined as semi-arid. Lack of soil moisture in the area becomes critical during the late dry season
from February to April. Further south in the Cambodian and Vietnamese parts of the basin, the
annual evaporation rates are 1,500 to 1,700 mm. To the north at Chiang Rai, the rate is around
1,400 mm.

2.5. Hydrology of the individual reaches of the Mekong

The topography defines the hydrology and flow pattern of Mekong. Most of the inflow comes
from the sub-catchments located in the Northern Mountains in Lao-PDR and in the mountainous
regime along the border of Lao-PDR and Vietnam (Fig.2.10). The schematic diagram of the
lateral tributaries joining Lower Mekong in between discharge gauging stations is shown in
Fig.2.8. And the Fig.2.9 shows the longitudinal elevation profile of Lower Mekong.

2.5.1. Chiang Saen to Luang Prabang

The lateral sub-catchments of this reach are almost entirely mountainous and covered with
natural forests. This reach consists of a complex of right and left bank tributaries. Among these
laterals, Nam Mae Kok with an area of 10,870 km? from right and Nam Ou with an area of
25,810 km? from left are significant.

From Chiang Saen to Luang Prabang, the Mekong covers the distance of 353 km and drops a
height of 90 m (Fig.2.9). The total right and left bank tributaries of this reach contribute 10% to
the total Mekong river flow at gauge Stung Treng. Mean annual rainfall in this reach ranges from
1500 to 2000 mm.

2.5.2. Luang Prabang to Vientiane

With 5 right and one left bank tributary this reach has a length of 427 km with a slope of 0.00025
from Luang Prabang to Vientiane. The proportion of the total Mekong flow up to Stung Treng of
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the flow from this reach is 4%. Unlike all other reaches of Mekong, the hydrology of this reach is
dominated by right bank tributaries. Flash flooding in the lateral tributaries of this reach are
attributed to deforestation coupled with the culture of slash and burn agriculture.

Up to Vientiane, the flow of the main Mekong River remains dominated by the Yunnan
component of flow from China. Between Chiang Saen to Vientiane, no big lateral tributary
enters into the Main River to alter this dominance.

Flash floods are most common in Northern Thailand and northern Lao-PDR with catastrophic
events particularly in year 2000 and 2001. Two distinguished weather processes typical of this
area, have been indicated in (MRC AMFR 2008, 2009): first, typical monsoonal storms in
combination with average antecedent moist catchment, and secondly extreme weather systems
such as intense tropical depression, or severe tropical storms in combination with saturated
antecedent moisture conditions. However, the flood peaks due to the latter conditions are rapid
and of short duration, less than a day.

2.5.3. Vientiane to Nakhon Phanom

There is a significant discontinuity between the hydrological sub-regions upstream and
downstream of Vientiane (MRC AMFR 2007, 2008). Downstream of Vientiane, the impact of
the Yunnan flow component of the flood discharges is highly reduced by the large left bank
tributaries of Lao PDR. Downstream Vientiane, hydrologic conditions change because of
contributions from major left bank tributaries as result of heavy rainfall in the central high land
of Lao-PDR. In this 368 km long reach almost 20% of the total Mekong flow is produced,
bringing it to the top with respect to flow contributions. Tributaries Nam Ngum 50 km
downstream of Vientiane in combination with Nam Kaeding brings the largest part of total
lateral inflow. The dam on Nam Ngum is another distinctive feature of this reach, making the
natural lateral flow subject to reservoir operation. In this reach, these left bank tributaries mainly
exert their influence on the flood hydrology of Mekong.

In contrast to the reach from Chiang Saen to Vientiane, flash floods do not dominate the flood
hydrology of this stretch. In recent years the events of 2000, 2001 and 2002 were larger floods
both in terms of peak and volume in this reach (MRC AMFR 2007, 2008).

2.5.4. Nakhon Phanom to Mukdahan

Se Bang Fai from the left and Houai Bang Sai from the right with respective catchment areas of
10,240 and 3500 kmz, are the major lateral tributaries in this reach of 91 km. Total contribution
of this reach to the Mekong river flow at Stung Treng is small i.e. 4% , mainly due to low rainfall
on both right and left side areas that range from 1250 to 1500 mm per annum. This reach may
have an additional problem of negative flow in the winter, i.e. seepage as base- or ground water
flow from the lateral catchments and evaporation losses in the winter exceed the local gain.
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Fig. 2.9: Longitudinal elevation profile of Lower Mekong

2.5.5. Mukdahan to Pakse

Mukdahan to Pakse reach is comparatively short with a total length of 256 km. This reach is
unique in the sense that on the right side,the huge Nam Mun/ Nam Chi system with a catchment
area of 120,000 km’enter just above Pakse, after draining southern Thailand, however with very
small contribution in terms of lateral inflow to the total flow of Mekong. On the left side the
main contributor is Se Bang Hieng with a catchment area of 19,300 km?.
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Fig. 2.10: a) Topography and Mekong River with Tonle Sap and Major delta branches. b) Left sided
tributaries which have major contribution to the Mekong due to the border mountains to Vietnam.

2.5.6. Pakse to Stung Treng

The large river systems of Se Kong, Se San, and Sre Pok on the left bank control the hydrology
of the Mekong in this reach. A detailed hydrological analysis of the flood hydrology of these
tributaries is constrained by the lack of availability of data. However, the contribution of these
Rivers to the mainstream flood is significant as can be seen for the example of the year 2000
flood. In this 201 km long reach a discharge of 3000 m’/sec on the average is generated which
adds 23 % to the total average Mekong flow. The main reason of this inflow is again heavy
rainfall in Se Kong and Se San catchment which goes up to 2500 mm per annum. This region is
also influenced by typhoon storms in the late summer months. The overall impact of this reach in
defining the average flow characteristics of Main Mekong, which does not change much from
Stung Treng to Phnom Penh, because on the average there is only very little lateral inflow into
Mekong downstream of Stung Treng.
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2.5.7. Stung Treng to Kratie

Comparatively small inflow is contributed by tributaries downstream of Stung Treng. Only Prek
Krieng enters from left side in the main River. But the impact of Prek Krieng is hard to ignore in
summer flooding months when local storm outpours may result in lateral inflows, that are as
much as10,000 to 15,000 m’/sec.

2.5.8. Downstream of Kratie

The gauge site at Kratie is the point where the hydrological system develops into an almost
completely hydraulics dominated river system. Until then, about 90 % of the water inflow has
occurred, and outflow starts to decrease the runoff volume (AFMR 2007, 2008).. From there on,
overland flow and the reversing hydrodynamic system of the Tonle Sap has to be accounted for,
so that hydrological forecasting for this region has to provide the inflow at Kratie and hydraulic
models need to be used for forecasting further downstream. The seasonal cycle of changing
water levels at Phnom Penh results in "flow reversal" of water into and out of the Great Lake via
the Tonle Sap River. During the flood months, water flows up the Tonle Sap from the Mekong
mainstream into the Lake. As the water level decreases in the mainstream in late September,
water flows out of the Tonle Sap down into the Mekong mainstream (AFMR 2007, 2008). The
main contributing sub-basins of River Mekong with their topographic profile are shown in
Fig.2.10. The cross-section of River at Kratie is narrow in comparison to the River cross-sections
at upstream gauges of Mukdahan and Pakse (Fig.2.11). This is unique feature because normally
the river section normally widened as it enters in the flat lands.

2.6. Mekong River Basin Floods

All river floods are natural phenomena that occur recurrently within hydrological time scales.
They are characterized by increased water levels in river channels leading to overspill of natural
banks or artificial embankments and subsequent inundation of the surrounding flood plains
(White, 2000). River floods in tropical region are characterized by rapid increases of water
levels, due to rainstorms of high intensity.

Floods in the lower Mekong River occur in the summer month between May to October. They
are caused by extensive orographic rainfall occurrences as a result of south-west monsoon,
amplified by the downpour of tropical storms moving from the east over Gulf of Tonkin to the
northwestern Mekong catchment. Most of these tropical storms occur in the summer months of
June to October on the central mountain range, which run from north to south and form the
border of Lao-PDR and Vietnam. Therefore, mainly the left bank tributaries contribute to the
Mekong main stream flood.
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Fig. 2.11: Cross sections of lower Mekong at gauging stations, a) Chiang Saen, b) Luang Prabang; c) Vientiane; d)
Nakhon Phanom; e) Mukdahan, f) Pakse and g) Stung Treng

The floods in Mekong basin can be subdivided according to place and mode of occurrence into
five categories; flash floods in the tributaries, floods in the main channel of the Mekong River,
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combined Tonle Sap and Mekong floods, rainfall floods on Cambodian plains, and floods in the
Mekong delta (MRC Annual Flood Report, 2005).

2.6.1. Flash floods in side tributaries

Short duration, few hours to few days, flash flooding mainly occurs in the tributaries of Mekong
River due to intense and/ or long periods of rain - in particular in the mountainous areas of LMB.
The rapid rise of discharge in the lateral narrow streams sometimes also affects the water level of
the main River. These floods are largely harmful to people, cattle and infrastructure in the
impacted area. Mitigation measures to limit damages mainly should include regulating land use/
cover and effective flood forecasts, based on local rainfall runoff modeling supported by good
rainfall forecast. Dams and reservoirs built upstream of the flash flood risk areas may contribute
to the reduction of flash floods.

2.6.2. Floods in the Main Mekong River

The main River floods are caused by large scale rainfalls over large parts of the river basin
leading to high water levels in the mainstream resulting in overflows of lower sections of the
flood plain. The flooding time when water levels are higher than critical flood levels normally
lasts from one to two weeks. In the flood months from June to October, the Yunnan component
flow from China is superimposed by lateral inflows from left bank tributaries of the lower
Mekong that result into overflow of the river in number of different sections. The cities located
on the Mekong river banks, for example Vientiane in Laos and cities in Cambodia, suffer
directly from this over bank flow. Normally, some overflow is considered beneficial for watering
crops. However, long duration high water levels of flood waves affect crops adversely. Even
small overtoppings are considered harmful in the densely population regions along Mekong, if
they are not protected by flood embankments. Apart from human life loss, damages due to these
type of floods are caused to infrastructure, crops, live stock and private homes (MRC AMFR
2008, 2009)

Casualties and loss of cattle can be reduced by efficient flood forecasts. Mitigation measures for
limiting damage from such floods would consist mainly of a well functioning early warning
system, regulated land use, diversion of flood waters to wetland areas where possible, and of
building embankments for protection of urban areas or areas with important assets.

2.6.3. Floods in Eastern Lao-PDR

The low land of the Lao-PDR is particularly affected adversely by damage caused by Main
Mekong overflow, although the overtopping frequency of flood wave at Vientiane and
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Mukdahan is less than 10 years. Same is the case for Chiang Saen which is further upstream at
the border of Myanmar to Lao-PDR.

2.6.4. Floods in the Cambodian flood plain

There are three very different flood regions in Cambodia: the first is the region from Pakse to
Phnom Penh, which is dominated by floods from the upper Mekong. The second is the region of
floods in the Tonle Sap area, and the flow downstream of the confluence of Tonle Sap and
Mekong and the splitting up of the Mekong into Bassac and lower Mekong which are very much
influenced by the Tonle Sap. Downstream lies the third region,the delta, with an entirely
different regime of the floods .

2.6.5. Floods in the Mekong Delta

The areas inundated by water from the Bassac River, the Mekong River and the numerous
natural and artificial canals linking the two rivers that flow laterally to low lands from Phnom
Penh onwards mainly characterize the Mekong delta floods, together with the floods due to tidal
motion of the sea. Sometimes, high water levels in the Bassac / Mekong systems may not drain
easily to the sea due to tidal backwater. This was the case during the severe 2000 flood in the
downstream provinces of the Mekong Delta (MRC Annual Flood Report 2005, 2006).

2.7. Spatio-temporal Analysis of Mekong Flooding

Because the lower Mekong is a very long river, affected by variable incidences of weather
systems such as south western monsoons and eastern typhoons of different severity level along
its length, it is not necessary that it would cause flooding simultaneously along the full stretch
from Chiang Saen to Kratie. This is the reason that historical flood at different forecasting
stations were recorded in different years (Fig.2.12). Flood waves move from upstream to
downstream causing critical situations at some points, whereas no flood occurs elsewhere. This
selective flooding of different Mekong river stretches occurs due to a number of reasons, such as
variable conveyances of different sections along the river, synchronization of lateral tributary
flows, or flood wave attenuation because of over flow into the flood plains.

A historical analysis of flooding shows that there were some years with serious flooding in the
upper part of Lower Mekong with low to medium floods further downstream. For instance, the
year 1966 was the worst year in the upper part of the LMB, with its effects extending to Pakse.
Year 1978 was the year with the most serious floods for the area south of Mukdahan up to the
confluence with the Tonle Sap River in the flood plain of Cambodia. Year 1996 a severe flood
was recorded, but it was limited to the area of Stung Treng at the confluence with the Sekong
River. Years 1961, 1966 and 2000 were nearly equally devastating years for the Mekong Delta,
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although 2000 was seen as particularly damaging and remains memorable to all the people living
in the floodplains. Year 2005 was the most severe flood for the central area of Lao PDR and
Thailand (Nakhon Phanom, Thakek, Mukdahan and Savannakhet). In second ranking: years
1971, 1974, 1984, 1991, 1995 and 2002 may also be considered as severe for one or another
section of the LMB (MRC Annual Flood Report 2005, 2006).

Apart from the flood peak, the magnitude of flood volume is a useful indicator of flood intensity,
especially in large rivers like Mekong. The historical geography of the annual flood regime, as
reflected by flood magnitude of the Mekong (1960-2000) is presented in terms of matrix in a
Fig.2.13 (MRC Annual Flood Report 2005, 2006). This Fig. reiterates the evidence of variability
of flooding along the length of Mekong River.

Hymos Flow Data Side Rivers
RFMCC Lat Long Data

Ranking of years with highest flows (since 1960)

Hydro- 1 2 3 4
Station
Chiang 1966 1971 1970 1991
Saen
Luang 1966 | 2002 | 1971 | 1995
Prabang
Vientiane 1966 2002 1971 1978

Nakhon 2005 1995 2001 2000
Phanom
Mukdahan | 2005 1978 1966 1963

Pakse 1978 | 1991 | 1966 | 1991

Stung Treng | 1996 | 1978 | 2001 | 1997

Kratie 1978 | 1991 | 1981 | 1984

Fig. 2.12: Historical floods along lower Mekong
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2.8. Mekong River Floods in a Global Prospective

In contrast to the flood hydrology of Temperate Zone Rivers, such as the Chenab in Pakistan,
Rio Uruguay in South America, and River Thames in the UK etc, with seemingly random flood
pulses throughout the year, tropical rivers like Brahmaputra, Ganges, Yangtze, Huang He and
Mekong produce immense volumes of runoff in the shape of single annual flood hydrograph.

In large River basins like that of the Mekong the relatively rapid variation in flows are smoothed
out as the catchment scale increases as the longer duration responses due to each storm episode
coalesce, resulting in the highly coherent hydrograph in a flood season. This convergence, and
the associated accumulation of monsoonal flood runoff into a single seasonal hydrograph places
the Mekong amongst the global river systems within which the largest floods have been recorded
(MRC, 2006).

Fig.2.13. shows the location of these large river basins in latitude and the unit runoff produced in
each basin. In the list of river basins exceeding 500,000 km?® (O’ Connor, 2004), the Mekong
falls into the category of global extreme, as far as per peak discharge per unit area is concerned.
This is due to the historical maximum discharge event which occurred on the 3™ September,1939
at Kratie (Fig.2.13). However, this event seems to be not unique, as almost the same maximum
was repeated in 1978 and 2000.
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Fig. 2.13: The largest meteorological floods observed for global River basins exceeding 500,000 km2,
(Source reproduced in MRC Report, 2007 from O’ Connor, 2004)
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Fig. 2.14: dry and wet years frequency along lower Mekong (Source, MRC)
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2.9. Flooding Frequency

Fig.2.14 shows the reoccurrence volume of flood water between 2 to 20 year return periods at
different forecasting stations along Mekong. As mentioned in Section.2.7, that maximum
historical flood occurs in different year at different forecasting stations. Similar behavior is
reported in volume of flood water. The analysis of yearly flood volume at each gauge along
Mekong, as shown in Fig.14, confirm this pattern of the variability of flood volume at different
gauges.

A flood frequency analysis plot of flood peaks is shown in Fig.2.15. This plotting is based on
data from (MRC, 2006). The floods are actually multivariate events, characterized by peak flow,
flood volume and flood duration. Peak flows are related to inundation depth, whereas, flood
volume and duration decide the area under inundation and the duration of inundation (MRC,
20006). Therefore, an exhaustive frequency analysis should incorporate flood peak, flood volume
and flood duration.
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Fig. 2.15 : Flooding return periods along lower Mekong (data for this fig has been taken from MRC
AMFR 2006, 2007)

A distribution of the joint probabilities of annual flood peaks and volumes as presented in (MRC,
2007) and reproduced in Fig.2.16 shows the reoccurrence of flood with 2 to 50 year return period
at Chiang Saen and Vientiane.
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Fig. 2.16: Bivariate probabilities of the joint distribution of annual flood peak and volume at Chiang
Saen and Vientiane (Source: MRC AMFR 2006, 2007)

The statistics of flood discharges occurrence is meaningless, if it is not seen in the perspective of
overtopping flood levels or flood discharges. The water carrying capacity of the Mekong River
changes along its longitudinal section as shown in Fig.2.16a. The discharge carrying capacity
varies along longitudinal section of Mekong. The discharge carrying capacity at Mukdahan and
Pakse is lower than Nakhon Phanam, which is the next station upstream of Mukdahan. The
critical flood levels / discharges are plotted against the discharge carrying capacity at various
cross sections along Mekong in Fig.2.17a. The return period of flood overtopping at various
sections has been worked out by comparing magnitudes of floods of certain period against
overtopping flood discharge as presented in Fig.2.17b.
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Fig. 2.17: a) Critical flood discharges along Mekong, b) flood overtopping return periods along lower
Mekong (Flood return period data have been taken from AMFR-2006, 2007)
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2.10. Impact of Flooding in Mekong basin

Floods generally are perceived as natural disasters, however in the Mekong area, floods are a
mixed blessing. During the Monsoon season the river regularly overflows its banks in the lower
Mekong area, usually with beneficial effects (agriculture and fisheries) but once every 6 to 10
years river flood level exceed the critical beneficial level causing extensive damage to life and
property. Such a flood caused 800 human causalities in the year 2000 flood (Plate, 2007). The
major sufferers to these harmful floods are the residents of the Lower Mekong area who are
living along the river in the Central & Southern Lao-PDR, Central Cambodia and the deltaic
regions of South-Vietnam.

2.10.1. Flood benefits in Mekong basin

Agriculture in the lower Mekong basin mainly depends on irrigation from water overflow
through and over river banks that are caused by the flood wave. Farmers prepare land and sow
the seeds prior to the flood season and wait for the onset of the flood for irrigation. Paddy rice is
the main crop of the area. The benefits of floods in terms of agriculture, fisheries, other aquatic
animals, and for creation & maintenance of wetlands are tremendous for the riparian countries
Lao-PDR, Cambodia, Thailand and Vietnam. Only some of these benefits can be quantified in
financial terms as given in Table 2.2 (MRC AMFR 2008, 2009). Intangible benefits derived from
eco-system and wetland maintenance can be inferred from the fact that the lower Mekong
countries contain 16 WWF Global 2000 eco-regions, and that 1068 new species, without
counting invertebrates, have been discovered along the Mekong between 1997 to 2007
(Thompson, 2008).

Tab. 2.2- Flood benefits in Mekong basin

Country Estimated annual agricultural Value of national inland fishery
value accruing from the annual based on year 2000 estimates
Mekong Flood(USS millions)
(USS millions)
Cambodia 1000 608
Lao PDR Not Significant 212
Thailand Not Significant 900
Vietnam 3500 880
Total Lower Mekong Basin 4500 2600
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2.10.2. Flood damages in Mekong basin

The damage caused by flood water overflow in the flood plains, depends on flood peak and flood
peak duration which in turn decide depth and duration of inundation. However, like other geo-
physical hazards the flood damage depends on the area where it hits. The magnitude of damage
(Shrestha, 2005) depends on the settlement density, and the infrastructure of the flood prone
area, as well as on the type and frequency of crops and other agricultural uses.

Some flood damage data have been collected, by means of surveys, interviews and
questionnaires, by the national disaster management organizations of the riparian countries.
Damages listed in Table 2.3 (MRC AMFR 2008, 2009) include only the annual financial flood
damage of the riparian countries of the lower Mekong. However, the total damages must include
also social costs. For expressing social damages in financial terms there is the problem of the
inability to quantify loss of human lives and other intangible social consequences including
distress and health issues.

2.10.3. Cost to benefit optimization

If we take the damage as the cost of the floods, the financial benefits of the floods in lower
Mekong region far exceed their costs. However, if one includes intangible costs, the situation
may be changed.

Tab. 2.3- Flood damages in Mekong basin

Country Estimated annual agricultural value accruing
from the annual Mekong Flood (USS$ millions)

Cambodia 25

Lao PDR 10

Thailand 16

Vietnam 25

Total Lower Mekong Basin 76

Management of the flood risk should also include intangible factors, and thus it is a multi-
objective decision process. A major effort is required to reduce the intangible costs in order to
optimize the social benefits of Mekong floods. Non-structural measures need to be used to
maximum extent, using techniques as mentioned earlier in this article, to optimize the social
benefit. Above all, losses of human lives must be avoided. The population density along the
Mekong normally ranges from 30 to 50 persons per km” as per population density map of year
2000 (State of the Basin Report: 2003) which is further higher in big cities like Vientiane and
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Phnom Penh which are also located along Mekong Banks (Fig.2.19). One of the most effective
ways to reduce human vulnerability to extreme floods is a good early warning system, supported
by reliable and accurate flood forecasts

The riparian countries have to come up with strategies for reducing flood damages while keeping
the beneficial impacts of floods. Along with flood risk zoning they include long, medium, and
short term flood forecasting systems for the purpose of planning irrigation and to give early
warnings for vacating settlements and saving lives when the flood exceed the critical beneficial
level. One of the most effective ways to reduce human vulnerability to severe floods is effective
early warning supported by reliable and accurate flood forecasts.

2.11. Mekong River Flood Forecast

The settlement density is high along the Mekong River (Fig.2.18). The capitals of Lao-PDR and
Cambodia are also located along River Bank. This high settlement density requires good flood
forecast to evacuate the region before the hitting of flood wave. There is a tradition of flood
forecasting in the Mekong River Basin (MRB) as a non-structural means for reducing
vulnerability against harmful floods. The former Mekong Committee (replaced in 1995 by the
Mekong River Commission (MRC)) initiated a flood forecasting program for the lower MRB in
response to severe flooding in 1966. A hydrologic model (SSARR) and a hydrodynamic model
(DELTA) were adapted for flood forecasting. In the nineties the SSARR model forecast has been
enhanced by the implementation of a regression model for the Tonle Sap region (MRC, 1999;
Tanaka, 1999). Forecast products, including water level forecast bulletins, are published on the
MRC website (www.mrcmekong.org).

An expert meeting in 2002 on early warning for the Mekong River recommended the
improvement of flood forecasts and other aspects of the early warning process (Plate and Hewitt,
2002). The recommendations supported the creation of a Regional Flood Management and
Mitigation Center (RFMMC) within the MRC for flood studies on the Mekong. The center was
established in 2004. As a first step, the outdated SSARR model was to be replaced. The
Australian URBS (Carrol, 2007) hydrological model was selected by the RFMMC as a model to
be implemented (Pengel et al., 2008). The URBS model is a semi-distributed rainfall-runoff
model with a built-in flood routing capability which is combined with FEWS. FEWS is an
envelope that takes care of all data capturing, pre-validation and processing, model runs and
output post processing; enabling easy access to graphs and tables of input and output data, both
for recent and historical situations. Since June 2009 the new forecasting model based on the
URBS-Code (http://www.sunwater.com.au) is in use (Pengel et al., 2008).
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Fig. 2.18: Population density of the lower Mekong basin (State of the Basin Report: 2003)
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3. Literature Review

In this chapter, the flood forecasting problem of large rivers is explored in a purpose oriented
manner, in order to choose the appropriate tools for an optimum solution to flood forecasting on
the Mekong. After a brief introductory section on general concepts for forecasting (nature of
problem), the requirement of flood forecasting models will be presented. In the next section the
feasibility of contemporary hydrologic models will be analyzed in order to serve the purpose of
flood forecasting of River Mekong. The findings of this comparative analysis will be used
towards the decision support for a new flood forecasting model for Mekong. In the end, the
potential efficiency of a new model to serve the required objective (accuracy of forecast and
sustainability of proposed model) will be compared with the efficiency of previous flood
forecasting approach used in the Lower Mekong River.

3.1. Flood forecasting

Forecasting is the process of making statements about events whose actual outcomes (typically)
has not yet been observed. A commonplace example might be estimation of the expected value
for some variable of interest at some specified future date. Prediction is a similar, but more
general term. In hydrology, the term "forecast” is reserved for estimates of values at certain
specific future times based on initial conditions, while the term "prediction" is used for more
general estimates, when the initial conditions become irrelevant, such as probability based
statistics of the number of times floods will occur over a long period (Plate, 2007).

Forecasting is required in hydrology in order to estimate future incoming floods on a river. These
incoming flood events may occur in near or far future. However, there is a lack of consensus
regarding the classification of forecasts with respect to lead time, such as division of forecast
lead time into short, medium and long term, and their respective spans. The differences could be
attributed to the basis of classification, i.e. time, purpose, catchment size, rainfall field type and
forecasting approach. The forecast lead time, as in the case of Mekong River basin, is based on
purpose oriented fixed time markings, i.e. short term, medium term and long term. A short term
flood forecast for a large river, such as the Mekong ranges to 5 days. The medium term forecast
range from 5 to 10 days (Malone, 2006). On the other hand, Lettenmaier and Wood (1992) have
divided forecasts into two categories, i.e., short (less than 7 days) and long term (up to several
months) forecast. Plate’s (2007) classification of forecast lead times with their respective spans is
more relevant because of its context to system stability and continuity of physical processes. He
stated that short times are times when the variation of value from present to future is small and
thus can be foretold by simple models. The span of short term forecasts is further explained as
depending on catchment size and extent of dominant rainfall fields - as in large catchments
forecasting times of a few days may come under the definition of short time, in comparison to
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small catchments of a few km?, where the definition of short time may only apply to forecast
times of a few minutes.

The dominating factors affecting the flow dynamics of large rivers like Mekong are essentially
different from those of small rivers. The flows in small rivers are mainly driven by catchment
response rather channel flow dynamics - as the hydrologic response time, Ty (the time of
concentration of the catchment response at the forecast point) is dominated by hydrologic
response time of the catchment, T, in comparison to channel routing time T,. In small
catchments, the catchment runoff follows a typical sequence of land surface — runoff - channel
system, which means that catchment response turns into channel flow only after overland flow
from the land surface of the catchment has occurred. In this case we have four possibilities;

1) Te<T.+ Trand T, <<T,, Tc overland flow, Tr river flow Tf forecast time
) Te<T.+ Trand T, << T,
3)T¢g> T+ Trand T, << T,
4) Te>Te+ Trand T, << T..

The flow dynamics, in the first case, is driven by the catchment physics in comparison to second
case where it is driven by the channel behavior. Unlike the first two cases, in the third and fourth
cases the required forecast lead time T exceeds the available total response time Tc. In these
situations the extra lead time is acquired through rainfall forecasts, but at the cost of additional
meteorological uncertainties. But in actual practice, overland and channel flow of the large river
doesn’t follow this typical response — rather its flood discharge is generated on a number of
lateral sub-catchments which add to the main river in its course from upstream to downstream.
Thus, the flow dynamics at the forecast point is the combined result of catchment response of a
number of parallel lateral sub-catchments and the flow dynamic of the Main River.

For modeling the flood generating system of large rivers, it will be assumed, for the sake of
simplicity, that the lateral sub-catchments drain directly at the river gauges into the main river as
over land flow, to which one has to add the flow in the main river. Actually of course, the flow
from the sub-catchments is also a combination of overland flow and tributary flow.

Flow dynamics of large rivers is complex, as it is controlled by many different catchment
characteristics, such as catchment shape, overland and groundwater response, and channel flow
characteristics. For any particular application, one may base a flood forecast on channel routing
in the main river, rainfall-runoff models for the lateral subcatchments, with precipitation inputs
obtained from rainfall measurements or forecasts (for example by means of numerical weather
forecasts) or a combination of these, depending on user requirements and data availability. The
model component selection of a given forecasting problem depends on the relation between
required forecast lead time, Tr to the time of concentration of the catchment response at the
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forecast point. The combination of components of models for flood forecasting of large river is a
function of the river basin structure and varies from case to case. For example, in the case of
Mekong, one has to account for the fact that the components work together, but for the sake of
clarity each of the components is discussed separately.

3.1.1. Runoff Routing Models

Before starting the modeling of discharge routing in the main river, the persistence of discharges
at each of the gauges should be checked, by studying the changes in discharge at two subsequent
gauging times. In large rivers, owing to physical continuity of the river flow, the change in two
subsequently measured discharge values is small and therefore could be used as potential for
future forecast. In the selection of a runoff routing approach, one may move from time delayed
simple linear regression of downstream to upstream discharges. As described by Plate (2007) on
many large rivers flood forecasting is based on this sort of regression. However, if regression
fails to produce flood forecasts of required accuracy the option of hydrologic and hydraulic
runoff routing could be explored.

Routing of water down a river channel is generally described by the one-dimensional
hydrodynamic equations of unsteady flow known as the St. Venant equations. There are various
simplified version of this equation used in river forecasting, as listed and described by
Lettenmaier and Wood (1992); such as diffusion equation method, kinematic wave method,
Muskingum method, and also impulse response function methods, such as linear reservoir
models, cascade of linear reservoirs, lag and route method and others. These methods could be
mainly categorized into hydraulic and hydrologic models for flow routing.

However, for the purpose of flood forecasting, it seems appropriate, at least for the large Mekong
River (Plate, 2007; Apirumanekul, 2006), to use the time delayed discharge at the next upstream
gauge as approximation for the downstream discharge without considering the attenuation of
flood peak. One should move from simple to a more complex routing approach, under the
constraints of available data, if additional accuracy is gained by the added level of complexity.

3.1.2. Rainfall Runoff Modeling

Lettenmaier and Wood (1992) state that there is a range of forecasting models for stream flow
based on rainfall inputs. However, comprehensive rainfall runoff models inherently involve, and
are consequently classified on the basis of water storages; interception, soil moisture, surface
storage and process components on the basis of fluxes: infiltration, evapo-transpiration,
snowmelt, interflow, ground water base flow and surface runoff. The classification of rainfall
runoff models could be based on the specific combinations of various storages and flux, as well
as on the level of modeling complexity. The U.S National Weather Service River Forecast
system is an example of conceptual storage models. An even more comprehensive list of
watershed hydrologic models was provided by Singh and Woolhiser (2002)
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3.1.3. Rainfall Prediction Models

There are various methods of rainfall forecasting for hydrological applications; however, only a
few of them are listed here. For short period spatial rainfall forecasts, radar can be used by virtue
of its ability to measure both quantitative rainfall and short time changes in rainfall. For lead
times less than 2h, rainfall predictions are often based on radar rainfall data by adopting
precipitation projection or now-casting procedures (Smith, 1992).

Georgakos and Bras (1984) have developed a physically based prediction model for rainfall at a
site. Smith (1992) quoted that U.S. National Weather Service produce 6-h quantitative weather
forecast (QPF) products based on probability of heavy precipitation. QPF products are developed
using statistical procedures in which model output variables are input to regression models for
the precipitation variables of interest. This procedure is described by Glahn and Lowry (1972)

For real time flood forecasting in the Mediterranean catchment of the Gardon d’ Anduze Lardet
and Obled (1993) employed a stochastic rainfall generator which is based on renewal processes.
They found reliable forecasts for very short lead time of 4h ahead.

For the Anas catchment of Northwest India Zehe et al. (2005) predicted the long term monsoonal
rainfall (monthly) by a stochastic approach. The rainfall time series used was generated on the
basis of applying observed meso-scale circulation patterns.

Currently, in many countries numerical weather prediction is normally based on Global
Circulation Models (GCM). In weather forecasting meteorologists make ‘ensemble’ runs with
different initial conditions to test the sensitivity of the predictions. Apart from NOAA's Satellite
based rainfall forecast estimates; there are available other global numerical weather products to
produce rainfall prediction (Beven, 2001).

The tracking of typhoon or tropical storm movement proved important in the qualitative
prediction of rainfall in many Asian countries (Mekong region, Indo-Pak subcontinent), which
receive heavy rainfall from these storm systems. The quantitative use of typhoon information has
not yet been developed very far. For a statistical approach, some of the results from Camargo et
al. (2006) may be useful, who describe the tropical storm trajectories by probabilistic clustering,
in the western north pacific region. The analysis acknowledged the usefulness of track
identification towards the improved prediction of typhoon landfall, several days in advance.

3.2. Requirements of flood forecasting model
3.2.1. Application oriented

Flow forecast requirements for floods are different from other typical applications such as
navigation or reservoir operation. Unlike flow forecast for floods, the flow forecast for
navigation becomes relevant not only during critically high flows near to overtopping,
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particularly at critical sections (less discharge carrying capacity sections, thus potential to be
overtopped) but also for low flows along the river. Therefore, flow forecasts for the purpose of
navigation require sophisticated hydraulic modeling which provides forecasts of water levels
along the channel at fine spatial-temporal resolution, especially during low flows. On the other
hand, reservoir operations require reliable forecasts of flow volumes within discrete time
intervals. Unlike discharge volume reliability in the case of flow forecast for reservoir operation,
the time to peak and total flood volume is important in the context of flow forecasts for floods.

3.2.2. Object Oriented

There are number of mathematical models available in hydrology which can be potentially used
and have been used for flood forecasting. For example Plate (2007) distinguished the application
of models for flood forecasting from models for other typical applications such as; synthesis of
past hydrologic events, effects of anthropogenic and climate change on hydrologic response,
predicting future hydrologic events for design (Freeze and Harlan, 1969). Although the structure
of both forecasting and design models include discharge time series, runoff routing, rainfall
runoff modeling, they both serve quite different purposes. The purpose of design models is to
predict extreme value statistics of certain return period, such as 100 year flood. Unlike time to
actual peak, as in the case of flood forecasting models, only the order of magnitude of the
extreme flood is important in design models. The inherent and accepted uncertainty, primarily
due to input data, model, parameter, distribution choice, in the prediction of extreme value
statistics, is covered in design of protection work by suitable margins of safety. In contrast the
accepted accuracy in forecasting is much smaller in comparison and should be expressed by an
auxiliary error band together with crisp forecast or with different forecast ensembles.

Flood forecasting models primarily use simulation and trend extrapolation modeling. However
because of their specific objectives, they can be clearly differentiated from other categories of
watershed and trend extrapolation models. For example, Plate (2009) distinguishes between real
time forecast models and planning models in the domain of flood management hydrological
models. He said that each model has a different objective, consequently the structure of a model
should be a function of its application. Similarly in time series modeling simple decomposition
or prediction models can be differentiated from real time flood forecasting models with respect
to their application.

Maximum possible achievable accuracy and reliability are the primary goals of any forecasting
model. The accuracy should be read as the minimum possible disagreement between the timing
and magnitude of predicted and actual outcome. As there is no forecast with absolute agreement
of actual to predicted outcomes due to input, parametric, modeling and future uncertainty,
consequently a quantified statistics of possible disagreement is required with each outcome to
ensure passing on reliable information to the decision maker. The reliability of expected
outcomes depends on many factors. In some cases it is possible to attribute uncertainty of
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forecasts to its sources, by a Bayesian reliability analysis. Thus, it is possible to split up the
conversion problem from rainfall to river discharge into meteorological component and
hydrologic-hydraulic components, whose uncertainty can be determined individually, as done by
Krzysztofowicz (2001), who introduced appropriate hydrologic uncertainty processors (HUP)
and meteorological uncertainty processors (MUP). These can be treated separately, as illustrated
by Krzysztofowicz (2001) or collectively, as will be done for the work of this thesis.

3.2.3. Top to bottom versus bottom to top modeling

Young (2003) discussed the issue of top to bottom (moving from channel to catchment) and
bottom to top (moving from catchment to channel) modeling approach in the context of
forecasting models. He rightly argued in favor of top to bottom models, because of the
uncertainty involved in the process of bottom to top modeling. The bottom to top modeling,
essentially, requires physical/ conceptual modeling of catchment response, starting from remotest
catchment and coming down to the forecast point in the Main River gradually, which may not be
necessary for flood forecasting. Top to bottom models start from the next point upstream of the
foresting point in the River. The frequent use of regression models for hydrologic routing reflects
the popularity of top to bottom models in flood forecasting.

3.2.4. Physical Representativeness versus functional accuracy

Among the requirements of forecasting models, the accuracy of a model in producing flood
forecasts is more valuable in comparison to its physical representativeness of the catchment
process (Nash et al., 1977; Beven, 2000, 2001; Young, 2002; Plate, 2007; Kachroo, 1991).

Nash et. al. (1977) supported the findings of W.M.O (1975) on the advantages of simple
conceptual models in comparison to more elaborate forecasting models. Kitanides (1980a) stated
that ideally, the best model for real time forecasting would be a deterministic description of the
complete rainfall runoff process based on well known physical laws. He states, however, that
application of these laws is hindered in practice by the complexity of natural catchments.

Beven (2000) argued that there seems to be a tendency to think that the more physically based a
model is the more accurate will be its predictions, and to ignore the fact that all models should
depend on field data to define the characteristics of each unique catchment. Though process
based models may be richer scientifically than, say, transfer function models, yet that does not
mean they are more accurate in reproducing the data. Consequently the important thing in
forecasting is that the outcomes should be correct. (Kachroo, 1993; Plate, 2007)

3.2.5. Catchment Type and scale

Landscape, land use, hydrological scale and climate greatly influence the choice of a flood
forecasting model. Plate (2009) described the effects of landscape and scale in the model
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selection. The issue of scale is highly relevant to the selection of appropriate forecasting model.
Singh and Woolhiser (2002) described the analysis of Seyfried and Wilcox (1995) on how the
nature of spatial variability affects the hydrologic response over a range of scales. The need of
complexity of a hydrologic model is influenced by the scale for which it is built. The appropriate
selection of the correct scale may save one from the development or use of an unnecessary
complex model.

Plate (2009) stressed the dependence of rainfall runoff model selection on the basis of the
hydrological scale of the catchment. He explained the model choice with respect to four types of
hydrological scales: point scale, micro scale, meso scale and macro scale. The dominant
variables vary with scales, and models should be selected accordingly. For the point scale local
soil characteristics and plant cover determine the runoff. The flow for micro scale processes is
can be represented by fundamental laws of continuum physics. The meso scale is better
described by conceptual models based on system functions. Typical of this scale are unit
hydrographs. There is no clear limit of the size of the catchment area in the application of unit
hydrograph models, which depends on catchment characteristics and available data. With
increase of catchment size to macro scale flow in the river network becomes increasingly more
important than the rainfall runoff process

Large rivers are normally fed by macro scale sub-catchments, such as the sub-catchments of the
Mekong River. The macro scale refers to catchment sizes ranging from 1000 to several 10,000 s
km?. On this scale, instead of modeling surface runoff in detail, determination of the runoff
coefficient is most important for all sub areas. Furthermore, models combining sub-catchment
runoff with river networks are particularly advantageous for situations in which the geological or
topographic properties are very inhomogeneous, causing different runoff formation processes in
each sub-catchment. For example, the geological and topographic properties of the Mekong
River sub-catchments are unique to each sub-unit.

Climate and land use of a catchment also affect the choice of a forecasting model. The climate
dictated by geography required special kinds of model to suite the local condition. For example,
humid and arid catchments require different treatments. Similarly, forecasting models in typhoon
induced flash flooding are more dependent on storm system tracking and rainfall forecast in
comparison to orographic rainfall based or snowmelt based floods. Also, land use, i.e., cities,
crops, barren land etc, dictate the required spatio-temporal sensitivity and accuracy of flood
forecasts. (Plate, 2009)

3.2.6. Uncertainty Analysis

Kanning et. al. (2004) described uncertainties with reference to reliability of a flood defense
system. They classified the uncertainties into natural variability and knowledge uncertainty
where the latter can be reduced and the former has to be endured. Natural variability represents
the randomness or variation in nature in both time and space (Van Gelder, 2000). Knowledge
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uncertainty caused by basic lack of understanding and modeling the physical phenomena, or by
lack of sufficient data.

model

knowledge ] parameter
statistical

uncertainty u
distribution type

time

Natural

variability
space

Fig. 3.1; Classification of uncertainty by Kanning (2007)

Input uncertainty: the input data is either based on point and areal measurement or come from
quantitative precipitation and weather forecasts. In the first case there are considerable
measurement preprocessing errors, while in the second there are considerable forecast errors.

Initial state of the system uncertainty: imperfect knowledge of the initial state introduces these
errors. However, since hydrologic forecasting is performed in a continuous way, this source of
error is not important.

Model uncertainty: in modeling the various components of the rainfall-runoff process, several
simplifications have to be made. The various components of the hydrologic cycle separately and
the interactions between elementary processes are described by simplified functional relations.
These imperfections of the model introduce model errors.

Parameter uncertainty: Some of the model parameters have no exact physical meaning and have
to be chosen through calibration, on the basis of their reproduction efficiency of the input to
output behavior of the system. If more than one parameter has to be determined in this way, the
problem of equi-finality (Beven, 1993) arises, i.e. compensating effects of different sets of
models may yield the same result in application. Other parameters are found from the physical
characteristics of the basin, which cannot be determined with accuracy.

Kitanidis et al. (1980a, 1980b) discuss in detail the issue of uncertainty analysis with respect to
data and model structure for real time forecasting. They mention four major sources of
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uncertainty i.e., model uncertainty, input uncertainty, parameter uncertainty and uncertainty of
the initial state of the system, Once the model is available, the deterministic formulation assumes
that input information (precipitation and temperature) is sufficient to describe the condition of
the system, so that measurement of output (river flow) is actually redundant information except
for the cumulative effect of input, model, parametric and initial system state errors. Therefore,
they have suggested to modify output information in order to reduce these uncertainties.

To sum up: apart from natural variability, type and extent of uncertainty have to be considered in
flood forecasts, which mainly depends on forecasting input data, availability and accuracy of
calibration data, selection/availability, choice of model/ approach for forecast and user
requirement for the output. In a forecasting model, it is not useful to identify uncertainties of
each component of the model, or for each of the processors. Instead, it is better to lump the
results of all uncertainties, which make up the forecast error, and use the error statistics, i.e. the
difference of forecast from real discharges or water levels as measure of the uncertainty, as will
be done in this work.

3.2.7. Input Data Requirement for flood forecasting

Data requirement is normally seen in the context of an a priori chosen forecasting approach, i.e.
fitting the pre-built model on some catchment. However, it is more relevant that data availability
should dictate the choice of a forecasting method, especially in the context of hydrologic
modeling which requires tremendous amount of time series and physiographic data that is not
usually available and cannot be obtained at short notice. The method of fitting a model by
assuming values or parameters estimated from similar catchments does not serve the purpose
well in most of the cases.

In addition to basic physical laws prior information on the system in the shape of catchment
characteristics (physiographic data) and measured data time series (input and output) should be
used as basis for forecasting model construction. Generally, the requirements vary with the
selected type (metric, pure physical, conceptual and hybrid) of forecasting model. Metric and
conceptually empirical modeling normally requires input-output data series only. In contrast,
pure physical and hybrid models require not only modeling of the appropriate physical laws for
describing each of the processes of the discharge formation process, but also physiographic data
(atmospheric and geosphere) and input data in the form of ordinal gauging of water — as per
requirement - at various stages of water cycle, i.e., rainfall, evaporation, transpiration,
infiltration, interflow and surface flow (overland and channel flow).

In the case of large river flood forecasting by data based modeling; the availability of required
data dictates the choice of the model. These data have to be analyzed in detail with respect to its
spatial discretization, temporal discretization, length of record and data quality. Normally the
watersheds are categorized into un-gauged, sparsely gauged and densely gauged catchments with
respect to data availability.
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3.2.7.1. Spatial discretization

For detailed models of the rainfall — runoff process the areal distribution of rainfall may be
important. The major distinction in precipitation input is between point measurements and areal
gauging. Although the situation varies from case to case, time series from point measurements
are the normally available data form in most catchments. But the issues of density of point
measurements and their representativeness are to be considered. Point measurements could also
be used for areal approximation by some sort of areal averaging, i.e., mean areal average,
weighted areal average, isohyets and Thessian’s_polygons, as are normally used in conceptual,
lumped or semi distributed models. Satellite Rainfall Estimates (SRE) are now globally
available, but the problem of downscaling and validation of their representativeness by means of
ground based observed reality is an issue to be resolved prior to using them in any rainfall runoff
modeling. In the case of Mekong River, large differences have been found between ground
observations of rainfall and SRE (Malone, 2009).

There were, though, attempts to base physically distributed models on areal averaged inputs. A
study by Freeze and Harlan (1993) however, yielded limited success, (Freeze and Harlan, 1969).
It was rightly argued by Kachroo (1992) that the response to spatially averaged values of input is
not necessarily the average of responses to the corresponding distributed values. Consequently,
the spatial discretization, i.e., lumped, semi distributed and distributed, of physical or empirical
models should be oriented on the available spatial discretization of the input time series, i.e.,
rainfall and snow.

3.2.7.2. Temporal discretization

The availability of input data could be further analyzed with respect to its temporal gauging
frequency that may vary from few minutes, hourly, 6 hourly to daily resolution. Although
temporal gauging frequency of both, point and areal measurement in the case of rainfall, and
discharge measurement place the limit to the output interval of the forecasting model. However,
in principle output intervals smaller than measurement intervals could be approximated by
interpolation, but not without efficiency loss.

3.2.7.3.Data length

Unlike the high dependence on the frequency of spatio-temporal gauging as in distributed
models, the length of data is a decisive factor in the choice of the data driven model. For
example, artificial neural network (ANN) and empirical models require sufficient length of data
record for the purpose of training, parameterization, simulation and finally validation. Therefore,
time series and empirical models, cannot be used in the catchments with short historical data
records. The data should be used in the split sampling mode, by calibrating the model on a part
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of the record, the using the second part for verification, and a final validation takes place by
means of real time application of the model.

3.3. Review of Contemporary Flood Forecasting Approaches

Before the design/ selection of a flood forecasting model for large rivers, it is beneficial to
analyze the merits and demerits of existing flood forecasting techniques/ models. There is a large
variety of different forecasting models, for example (SSARR, URBS, Mike 11), based on
different principles, consequently with different input, modeling and output data requirements. A
literature survey revealed that various classifications of flood simulation models based on
different criterion are already part of different hydrologic papers and books. For example ASCE
(1996) reviewed and categorized flood analysis models into event based precipitation models,
continuous precipitation models, steady flow routing models, unsteady flow routing model,
reservoir regulation models, and flood frequency analysis models. Plate’s (2009) classification
distinguishes operation and design models.

A classification of flood forecasting models by Plate (2007), has placed the family of models into
five groups; a,b,c,d and e. Group a comprises deterministic models for forecasting a single value.
Group b models involve the stochastic nature of the catchment, by incorporating the uncertainty
of variation in rainfall distribution and hydraulic process. Normally, Monte Carlo methods are
employed for calculating from large numbers of observed hydrographs, deviation of actual value
from forecasted value. The sample of deviation is analyzed statistically and error bands are
derived (Krzysztofwicz, 2001). Group ¢ models use historical data to determine an empirical set
of response hydrographs for many different initial conditions. Group d models are just the
improved variant of group b models for large number of input conditions. Finally group e
represents traditional method of regression analysis of upstream with downstream gauges. The
initial four groups are essentially based on rainfall runoff modeling with possible distinction in
the process of whether or not and accounting random component. The last group is principally
based on empirical statistics of discharges or water levels.

But none of these classifications serve the required purpose of comparison of different flood
forecasting approaches with respect to their input requirements, the forecasting technique,
modeling type, modeling discretization, modeling optimization and type of output. Consequently
the available flood forecasting models’ plethora must be sorted and classified on an elementary
level into certain categories, and the practical applicability to the problem of large rivers’ flood
forecasting of each class must be assessed. This classification, unlike general model comparison,
will provide the opportunity to analyze the merits of these forecasting approaches to serve the
requirement of flood forecasting as outlined in Section-3.2.
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3.3.1. Forecasting Techniques

There are various categories of forecasting techniques such as time series methods, causal
methods, judgmental methods, artificial intelligence methods, however, trend extrapolation and
simulation methods are relevant to the problem of flood forecasting for the Mekong.

3.3.1.1. Trend Extrapolation

Trend extrapolation, commonly known as statistical forecasting methods, is based on time series
analysis, such as, examination of trends and cycles in historical data, and their extrapolation into
the future. The essence of statistical forecasting is identification of structure in the data, fitting a
time series model to the situation and then extrapolation of that model into the future. However,
the model structure should be based on the structure found in the data, and it is further assumed
that the structure will remain stable over the period being forecasted. There are many
mathematical models for forecasting trends and cycles. These time series methods are essentially
deterministic models, i.e. constant mean model, linear trend model, simple additive seasonal
model, more general linear model, growth model, regression models or essentially stochastic
models; autoregressive- moving average models, stochastic component model, models defined
by moment etc (Gilchrist, 1974).

For a very short term forecast, when the data (discharge) persistence is high (high correlation of
subsequent values) over the period being forecasted, trend extrapolation methods like simple
auto-linear regression, curve fitting can be useful. But if subsequent value persistence, over the
period being forecasted, gets disturbed by atmospheric storm forcing (rainfall), simulation
(modeling) methods are to be preferred, because time series or trend extrapolation methods are
useful only for stationary conditions.

3.3.1.2. Simulation Methods

Simulation methods use analogs to model complex systems. These analogs can take on several
forms, for example, mechanical or mathematical analogs. Mathematical analogs ranging from
pure empiricism, to simple physics based and conceptual simulations (unit hydrograph, transfer
function) are used in hydrologic modeling, i.e. for rainfall-runoff modeling, or runoff routing. In
general, a hydrologic model is defined (see for example Haan et al. (1982)) as a mathematical
representation of hydrological processes of a catchment in a simplified form.

The difference between trend extrapolation and empirical modeling should be noted. Though
both depend on statistical time series, in trend extrapolation the data structure is modeled and
replicated, whereas in a mathematical analog the physical system is imitated by means of
mathematical equations.
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For large rivers, stream flow forecast are invariably based on simulation of observations or
forecasted rainfall on the upper catchment, or of river flows at upstream points on the main river
or tributaries, often supplemented by rainfall measurement on the intervening catchment, to the
flow at the forecasting point (Kachroo, 1993). Channel simulation is required if variation in
persistence is caused by strong short term changes of upstream discharges, and rainfall-runoff
watershed simulation is needed for modeling change in persistence of discharges due to strong
rainfall forcing in the lateral catchment between two subsequent gauging points. Normally both
channel and watershed simulations are required in the flood forecast of large rivers, because of
consecutive sub-catchment runoff (overland flow to channel flow) and concurrent incoming river
flows (sub-catchment runoff addition to upstream main river flow). Sometimes, forecast of
rainfall is additionally required for flood forecast.

3.3.2. Modeling Type

The level of complexity of the mathematical analogs for watershed processes divides simulation
methods into various types. The components of the hydrological cycle can be divided into
structural elements, process and storage elements (ESA, 1997). Similarly, simulation methods
can be classified according to which element of hydrologic cycle is modeled with how much
complexity. But each simulation approach needs a mathematical equation, or a set of
interconnected equations, to model real world behavior. As regular mathematical abstractions of
the real world physics of conversion of rainfall into runoff are not possible without assumptions,
consequently, each approach has its own set of empirical conditions.

Hydrologic simulation modeling could be broadly categorized into four different prominent
approaches, which developed parallel, in order to answer the Penman (1961) question of what
happens to the rain? The answer of this question was given depending on the intended
applications, i.e. discharge data synthesis, design models, forecasting models, etc. These
approaches are abstracted by Young (2002) according to Wheather et al. (1993) as: pure physics
approach, metric approach, conceptual approach, and hybrid metric conceptual approach. These
different approaches have been used in the last 150 years in a quest to achieve better watershed
modeling. The following section will define and review these hydrologic models from a flood
forecasting perspective.

3.3.2.1. Pure physics approach

Simulation of water flow from precipitation to catchment overland and tributary flow with its
auxiliary components, inter- and ground water flow require complex modeling for physically
meaningful real time flood forecast. Basically, the structure and functional dynamics of a
catchment is to be modeled. The structure is represented by catchment parameters and the
description of the catchment initial conditions. The functional dynamics is normally
characterized by the interaction of the catchment structural elements with input data from

43



Literature Review

atmospheric forcing, i.e. it describes the response of the catchment to the precipitation and heat
input from the atmosphere. The spatial-temporal distribution of these forcings, combined with
different initial state conditions of the catchment, result in a variety of different outcomes of
runoff and water levels within the catchment. The initial condition of the catchment is
characterized by small scale processes and water level variation, induced by spatio-temporal
distribution of water within the catchment.

The imitation of natural catchment processes by means of pure physical simulation through
mathematical equations requires comparatively fixed/static structural model elements of a
catchment, i.e., size and shape of the basin, soil properties, land use and cover, topography,
geological and geomorphologic formation, location of tributary network of the river, slope,
cross-sectional and longitudinal sectional details of each tributary. And the dynamic part of the
model, i.e., storages and processes of water flow on, within, and below the catchment and in the
tributaries. These processes are needed to be defined by mathematical equations based on
physical laws.

If structure and structural dynamic of a catchment is properly defined, ideally, by pure physical
models, then the variety of different outcomes could be predicted simply as a function of rainfall
input and structural network in a deterministic environment. But it would require an enormous
effort of measurements to completely describe the natural variability of the structural elements of
process and storage elements. Consequently, the lack of detailed measurements along with other
constraints as described by Beven (2000, 2001, 2002) hinder the development of such pure
physical models on a hill slope scale, and even less on a catchment scale.

The “pure physics approach” is mostly based on partial differential equations. The blueprint for
physically-based digitally-simulated hydrologic response model was given by Freeze and Harlan
(1969). The component process, i.e. precipitation and evaporation, infiltration and soil moisture
flow, ground water flow and overland and channel flow were tried to be represented by well
established physical laws with exact mathematical representation. The model was considered a
composite boundary value problem described by partial differential equation and potential
theory. The proposed model was non-unique with respect to both time and space and applicable
over a wide range of hydrologic and geographic conditions. This type of distributed model was
capable to predict the local hydrologic responses for points within the catchment. The first
application of this kind of model was by Freeze (1972, 1974) followed by the SHE model of
Abbott et al.(1986). SHETRAN, MIKE SHE, (Bathurst et al., 1995; Parkin et al., 1996;
Refsgaard and Storm, 1995; Resgaard, 1997), IHMD (Calver and Wood, 1995) and HILLFLOW
(Bronstert and Plate, 1997) are a few examples of distributed physically based models (Singh
and Woolhiser, 2002). Most of these models followed the blue print of Freeze and Harlan (1969)
with different ways to discretise and solve process equations (Beven, 2002a). But only a few
(such as WATFLOOD and MIKE SHE) of these pure physical models were used to address the
problem of flood forecasting.

44



Literature Review

A wide application of MIKE SHE in large river flood forecasting is constrained by unavailability
of required physiographic data coupled with issues of scaling (Plate, 2009, Singh, 2002) and
efficient output replication (Beven,2002). In macro scale catchments, complex physical
modeling is not required, when the purpose is to define variation in discharge persistence
resulting from large scale averaging processes.

3.3.2.2. Metric approach

Unlike physical models block box/ pure empirical models, simulate input-output relations
empirically without complex catchment process imitation. The “metric approach”, based
primarily on observational data, seek to characterize the flow response using some form of
statistical estimation or optimization (e.g. Wood & O’ Connell, 1985). These include purely
black box- or time series models such as discrete and continuous time transfer function, artificial
neural network (ANN) and fuzzy representations (e.g. Tokar & Johnson, 1999). Metric
approaches in the form of regression models have been widely used for flood forecasting as
quoted by Plate (2007). The wide range applicability of the metric approach in flood forecasting
is due to their limited data requirement, i.e. discharge time series of subsequent gauges or
catchment rainfall and discharge time series. However, these methods have also distinct short-
comings. Regression models, although proved to be valuable in modeling comparatively linear
relations of upstream to downstream discharges, fail to simulate the time delayed behavior of
rainfall to runoff conversion, and ANN application is problematic due to their unknown complex
random parameterization of hidden layers in training process.

Simple linear regression models can be used to estimate the dependent variable from the
independent variable. If “Y” is to be estimated from “X” by means of some equation then it is
called a regression equation of “Y” on “X”. The simplest linear model for this case is as follows:

Y=by+b*X (3.1)

Constant “by” represents the intercept of straight line defined by the model or value of “Y” when
“X” is zero and “b,” represents slope of line. Shahzad (2004) quoted that forecast results from
simple linear regression might be improved by means of linear multi-regression to evaluate
correlations inferred from knowledge of the physical environment. The resulting equations are in
the form (Acreman, 1985):

Y= b0+ b1 X1+b2X2+b3X3 ............ ann (32)

where “by” is constant coefficient or intercept.

Usually “n” observations are available for the variable “Y” resulting in “n” numbers of
equations, one for each observation. Therefore, if these “n” equations have to be solved for the
(I3 ({32

p’ unknown parameters (regression coefficients) then “n” must be greater than “p” (Haan,
1979). An example of “n” equations may be:
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Y1= B1X1,1+B2X1’2+B3X1,3+ ............ BpXLp (33)
Y2= B1X2’1+B2X2,2+B3X2,3+ ............ BPXQ,p (34)
Y3=B1X3,1+B2X32,tB3 X355+ eeeeenee By X3, (3.5)
Yn: B]Xn,1+B2Xn’2+B3Xn,3+ ............ Ban’p (36)

The regression analyses are used to identify the mathematical dependence between the observed
values of physically related variables and thus can account for the additional information
contained in the correlated sequence of events. There are two accepted ways of solving Eq.3.1.
The first consists of least squares optimization of the system of equations, by one of the standard
optimization methods. The second consists of a combination of linear regressions separately for
each independent variable and determination of the variable with maximum effect on the root
mean square error. This regression is then used to obtain a first estimate for the multi-regression
relationship. The error after using this relation is used on the additional variables in sequence of
their importance. By means of this method, the effect of spurious correlations or of cross
correlation dependency between apparent independent variables is avoided.

3.3.2.3. Conceptual approach

Conceptual models provide a logical description of simple conceptual elements that simulate
processes occurring in the catchment. However, addition of a number of conceptual elements in
series and/or parallel in this semi empirical process, results in complex parameterization and
optimization schemes.

Normally, a conceptual approach” may be based on empirical equations which represent the
effect of internal storages, expressed through the Instantaneous Unit hydrograph (IUH). Todini
(2007) pointed out that since its first formulation this conceptual modeling approach, evolved in
two different directions: physically meaning full IUH modeling, and data driven hybrid models
for the ITUH.

The unit hydrograph application, based on observed hydrographs of rainfall and runoff was
proposed and used by Nash (1970), Kachroo (1991) and many others. Kachroo and Liang (1991)
stated that the unit hydrograph based on the assumptions of proportionality and superposition of
time invariant responses, expresses the operation of a system in converting the precipitation
excess x(t) to direct storm runoff y(t) by means of convolution integrals.

y(® = [ x(Dh(t — 1)dr (3.7)

where 7 is the time variable of integration and h(t) is the unit impulse response function or
instantaneous unit hydrograph ordinate at time t.

In the physically meaningful approach the shape of IUH is defined a priori by modeler as the
integral solution to a set of linear differential equations, and parameters are computed as
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functions of physical characteristics of the phenomenon. The Nash cascade (1958, 1960)
parameter estimation by virtue of Froude number, the bed slope, velocity, etc., by Dooge (1973)
is an example to this end.

3.3.2.4. Hybrid metric conceptual approach

In the “hybrid metric conceptual approach”, the conceptual models are estimated from the
available data and used to test hypotheses about the structure of hydrological storages and
processes on a catchment scale. Kitanidis and Bras (1980a) proposed a methodology of
conceptual model structure verification by output data. But their emphasis was on describing the
nature of the catchment response, i.e. essentially deterministic or stochastic. They reported that
the prior conception of catchment response, i.e. essentially deterministic or stochastic suggests
different types of modeling. The initial conceptual rainfall runoff modeling was based on
deterministic formulation. They suggested replacing it with inherently catchment stochastic
behavior. This modification resulted in a probability density function of system state.

Irrespective of a catchment’s deterministic or stochastic behavior, one can test the hypothetical
conceptual model of a catchment against available data. Kachroo (1991) described a theory and
applied hybrid metric conceptual models in flood forecast. In data driven hybrid approach, the
Nash parameters are estimated by input to output historical data as proposed by Natale and
Todini (1976a, b).

But there is agreement among hydrologists that neither the rainfall-runoff nor the runoff routing
process is really linear. In the case of rainfall-runoff, the effect of rainfall on a catchment is
greatly altered by wetness state/ antecedent moisture of a catchment. The rainfall may be
completely or partially absorbed depending on soil wetness state. Seasonal variations in the
runoff coefficient, i.e. the ratio of total stream flow volume to the total precipitation over a
certain area and time, is analyzed by Kadoglu (2001) by the use of polygons instead of fixed
ratio precipitation-runoff round the year. If one drops the assumption of time invariance in
catchment response by introducing varying runoff coefficients makes it possible to use the
basically linear convolution integrals, for a good replication of the non-linear rainfall-runoff
process. The concept of variable runoff coefficient is tested, in this study, for the design of
conceptual rainfall-runoff modeling routine of flood forecasting.

Application of conceptual approach in flood forecasting is of limited use in the absence of
updating (Kachroo, 1991) by regular recalibration. In addition, adoption of an error updating in
order to improve the estimated runoff from the conceptual approach, helps to overcomes the
inherent limitation of general rainfall-runoff modeling in the context of flood forecasting.

In the light of above discussion, metric, and data driven hybrid metric conceptual models seem
viable approaches for simulating runoff routing and rainfall runoff processes for the purpose of
large rivers’ flood forecast. Therefore, these two approaches for flood forecasting have been
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tested on the Mekong River. From this point onward in this text, the metric model will be called
Type-1 model, and data hybrid metric conceptual model will be called Type-2 Model.

3.3.3.1. Spatial discretization of forecasting models

In terms of spatial discretization, hydrologic models vary from simple lumped models to semi
distributed models to more complex distributed models. This differentiation is based on the units
of heterogeneity considered in the catchment. Lumped models consider the catchment as one
homogeneous unit; consequently the parameters of lumped models often do not represent
physical features of a hydrologic process and usually involve a certain degree of empiricism.

In lumped models, the impact of spatial variability of parameters is accounted by effective value
computation for entire basin such as by area weighted average (Haan et al., 1982). In the case of
discharge prediction, these models can provide as good a simulation as complex physical based
distributed models (Beven, 2000).

Cunderlik (2003) stated that the parameters of semi distributed models are partially allowed to
vary in space by dividing the basin into number of smaller basins. There are two main types of
semi-distributed models: Kinematic wave theory models such as HEC HMS, and probability
distribution models such as TOPMODEL (Beven, 1997).

Plate (2009) classified the plethora of available distributed models into three types; models based
on rectangular grid, models based on sub-catchments, and models based on response units. This
classification is used to describe the geological characteristics of the basin, trace its river
networks, and identify surface and ground water interaction. The rectangular grid models utilize
a digital terrain model (DTMs) or regular grid format. Grid based models are frequently applied
for flood forecasting (i.e. Todini, 1996). But in actuality catchment based models should better
be vector oriented. The response unit models divide the catchment into units of equal response.

For distributed models the catchment is divided into elementary heterogeneous units and flow is
passed from one node to another as water drains the basin (Singh, 1988). The distributed
modeling approach attempts to incorporate data concerning the spatial distribution of parameter
variations together with computational algorithms to evaluate the influence of this distribution on
simulated precipitation-runoff behavior. These models generally require large amount of (often
unavailable) data for parameterization in each grid cell (Cunderlik, 2003).

The question remains, what should be the scale of heterogeneity in flood forecasting of large
rivers. No doubt, the issue of heterogeneity should be referred to if it leads to an increase in
output efficiency with each detailed level of heterogeneity consideration in moving from coarser
to fine resolution. In the absence of practical pure physical models, efficiency of output in
physically meaningful models at catchment scale is reduced, if emphasis of parameterization is
on the point or process scale. The heterogeneity consideration in metric and hybrid models
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should be based on moving from simple (lumped) to complex (semi distributed) models guided
by increase of efficiency at each subsequent level as proposed by Nash and Sutcliffe (1970).

3.3.3.2. Temporal continuum of forecasting models

Cunderlik (2003) stated that the hydrological models could be divided into event driven models,
continuous process models, or models capable of simulating both short term events and
continuous hydrographs. Event driven models are designed to simulate individual precipitation-
runoff events with emphasis on direct runoff, consequently they are required for flash flood
forecasting approaches. Continuous — process models take into account the direct and indirect
runoff by considering moisture recovery during the period of no precipitation. They are suited
for long term volume forecasting (Ponce, 1989). In the case of large river flood forecasting,
where the flood wave is a complex function of time delayed effective rainfall aggregation of a
number of small and large scale events in different contributing sub-catchments, the continuous
process model is appears to be best suited, as used in this work.

3.3.4. Parameterization methods

Unlike pure physical models, parameterization is an issue to be resolved in empirical, semi-
empirical and conceptual modeling. Parameterization, as stated by Hochschild, (1999), is the so
called quantification of model parameters (measured constant or variables) describing the system
response. It is a basic component of model building.

Identification and optimization of parameters are two basic tasks in parameterization process.
Different methods of identification and optimization lead to different types of modeling.
Normally the identification and optimization are object driven, for example either to imitate the
functional relationship to make useful predictions, or to reproduce realistic behavior of the
process, which are two different objectives which lead to different sort of parameterization

As per Nash and Sutcliffe (1970) in empirical or analytical model parameterization, one should
move from simple to complex models. Optimization of parameters should be based on
minimizing the root mean square error, by suitable methods, for example by steepest descent
method, or a by conducting search in the possible parameter space by moving parallel to the
parameter axes. The optimization of a first set of parameters with a suitable objective function,
the error variance R” in their case, should be stabilized before moving to the next set of
parameters with increased order of complexity.

The same approach should be used in feed forward stepwise multiple regression unlike, feed
backward stepwise multiple regression. In feed backward stepwise multiple regression one start
from maximum parameter set and reduces the number of parameters stepwise to come to the
optimum number of parameters.
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In addition to model accuracy, Kachroo (1993) stressed the need of model consistency, whereby
the level of accuracy and the estimates of the parameter values persist through different sets of
data. The examination of parameter stability was assessed by Kachroo (1993) by ‘split
sampling’, i.e., the division of available record into two periods, in one of which the model is
calibrated and in the other, the verification period, it is tested and validated.They further
proposed to check appropriateness of parameter sets for the respective model, and to assess its
inadequacy i.e., usage of a linear model for a highly nonlinear system.

In general, the complexity of the parameterization process increases with the number of sets of
parameters, their interdependence, and the non-linearity of the system. This makes complex
models difficult to parameterize. The degree of freedom in calibration increases by involving
more parameters, out of necessity to represent more process reality in the modeling. That is an
effort, in recent practices of hydrological modeling, to make model realistic in terms of
representing all the details of all the processes along with its primary useful predictive
capabilities. The quest of realistic representation of process raised the issues of non-
identifiability (Beck (1987, 1990)) and of equi-finality (Beven (1993, 1996a)), which emerged
due to complex interplay of different parameter sets in the parameter space. Non-identifiability
prevents to find some “true” description of the system, and equi-finality implies that many
different sets of parameters might lead to the same hydrological system response, so that it is
unlikely ever to be able to say that one has the true set (Beven, 2001). This issue is particular
important if complex parameterization brings up the problem of optimization of different
parameter sets. There are approaches like global optimum and multi-criterion optimization that
are labeled as Pareto optimal set of models (Gupta et. al., 1998), which have been developed
over time to resolve the issue of optimization with respect to different parameter sets. However,
the issue of complex parameterization is irrelevant if the flood forecasting of large rivers is based
on lumped or semi distributed catchments with rainfall runoff conceptualization by unit
hydrograph.

3.3.5. Objective function

An objective function is needed as criterion for model parameter optimization. Most of the
rainfall runoff model use Nash and Sutcliffe (NS) (1970) efficiency criteria as objective
functions. This criterion is based on the proportion of improvement in the stage of “no model
forecast” to “model forecast”. In no model forecast, the mean of observed discharges was taken
as best prediction estimate. The ratio of residual sum of squared errors of model forecasts to no
model forecasts essentially reflects the model efficiency and consequently is used as objective
function.

In flow forecasting this criterion, however, is subject to criticism due to firstly, unnecessarily
primitiveness of the no model forecast and secondly, due to failure to draw distinction between
uncorrelated random and correlated errors.
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Nash et al. (1978) addressed this critique by proposing modifications to the original NS
efficiency criterion. The first modification was to replace mean discharges in no model forecast
by taking the mean of observed discharges on particular dates in the calibration period:

qa=(1/n) (qa,1 + qa2+....qdn) (3.8)

where qq1 , etc., refer to the discharges on date d in the first, second years, etc., of the calibration
period.

The second modification was proposed in the context of models which use an updating
procedure in real time forecasting. If persistence in the errors (e) is observed during the
calibration period, error corrections could be estimated by use of the autocorrelation function,
and added to each no model forecast estimates as described in Nash et al. (1978),.

Kitanidis and Bras (1980b), however, proposed a list of different efficiency criteria Coefficient
of efficiency, coefficient of determination, coefficient of persistence, coefficient of extrapolation,
etc. In particular, the coefficient of persistence (PI), expresses the benefit achieved in real time
model forecast through updating by using latest measurement instead of no model forecast. The
coefficient is expressed through:

imax

izo  [(xa(i+0)—xp(i+1)]?
PI(k) =1 — =2
(k) ST (g (D) —xq (i+8)]?

(3.9)

where x, and xrare observed and forecasted values and i is time index,
3.3.6. Forecasting model output

Rainfall runoff models for flood forecast are different from rainfall runoff models for design in
the sense that the former can employ the advantage of real time updating, i.e., improvement in
each estimated result on the basis of subsequent observations of actual values and thereby
making available errors of previous estimates. Kitanidis and Bras (1980a) quoted that operational
forecasting requires, in addition to a rainfall runoff model, a method for the continuous
correction of forecasts based on observed errors in earlier forecasts (Nash and Sutcliffe, 1970).
This feedback information proved valuable in improving real time forecasting performance as
illustrated by among many others, Rodriguez-Iturbe et al. (1978) and, Kachroo and Liang (1992).

Updating is a kind of filtering, because the errors in measurement and model are filtered out
through special algorithms. Frequently, Kalman filters are applied in linear models for updating
(Lettenmaier and Wood, 1992). But other methods are also used: for example Kachroo and Liang
(1992) have proposed autoregressive updating in real time flow forecasting.

The output of a flood forecasting model can be a single value of discharge or water level,, a
trajectory of future outcomes as ensemble members, or ensemble average with various
occurrence probability bands. The type of output, i.e. single or multiple results depends on the
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nature of the forecasting model. For example, deterministic models inherently do not consider
random components, consequently assume that a specific input results in one fixed output (Chow
et al., 1988). On the other hand, stochastic models consider random variables, consequently
produce various ensemble members based on random inputs and random input to output
trajectories-.

Output and input may have various temporal discretizations. For example hourly, 6 hourly, daily
etc, depending on the requirement. The spatial discretization on the other hand depends on the
nature of flow routing, i.e., 1D, 2D or 3D.

3.3.7. Selection of flood forecasting model for the Mekong

There is a range of different forecasting schemes (as discussed), however, each rests on input
data, model and output data. The nature of input data, i.e., data type, spatio-temporal
discretization, length of time series influence the choice of the forecasting scheme. Data spatio-
temporal discretization and gauging length in combination with required forecasting objective
i.e. flood control, navigation, etc. influence the choice of modeling type, i.e. metric, conceptual,
pure- physics based and hybrid. For large river forecasting models based on data spatio-temporal
discretization are more appropriate than pure- physics based and physically meaningful
conceptual models. However, these require a reasonable length of input and output data record,
which is more important for metric and hybrid modeling approaches.

As per requirement of flood forecasting as explained in section-3.2, trend extrapolation and
metric forecasting models (Type-1 Model) are more likely to be successful in flood forecasting,
provided the empirical relation between input to output data is revealed correctly, and that
dependency of output to input is largely to be detected by correlation and covariance statistics.
Uncomplicated simple linear relationships can be used in flood forecasting, provided that no
significant changes in the relation of output to input by anthropogenic or climatic changes occur.

On the other hand, pure physical and conceptual models are not a good choice for flood
forecasting in large rivers because these models rely on the explanation of catchment physics by
partial differential equations, and the appropriate conceptualization of the catchment model
primarily is the key to the relation of output to input. The degree of realistic representation of
catchment physics by pure physical laws or by conceptual abstraction is seen in the accuracy of
the output. However, the problem of producing a realistic physical representation of the
structural, process and storage elements is limited because of insufficient data, and thus hinder
the application of pure physical models to any practical flood forecasting problem on macro
scale catchments. Application of pure conceptual models in flood forecasting is limited by the
problems of catchment representativeness, scaling, non-identifiability and equi-finality. The
physically meaningful IUH conceptual models as illustrated by Dooge (1973) are also not free
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from the problems of complex parameterization.

It is concluded that (Type-2 Models) can be successfully used in flood forecasting. Suitable
conceptualizations can be tried on and verified against the available data, and hypotheses about
the structure of catchment scale hydrological storages and processes can be tested with more or
less emphasis on theory (physics) and data (empiricism). But in this approach, physical
interpretation must be coupled with subjective choices, i.e., separation of storm runoff from base
flow. Another problem is the estimation of effective rainfall and derivation of actual IUH/TUH
shape. The advantage of better physical interpretation usually is lost, however, when parameter
estimation is solely subjected to minimization of a suitable objective function.

From this discussion it is evident that one can use both Type-1 and Type-2 Models in flood
forecasting of large rivers — and therefore both will be used in flood forecasting for the Mekong.
However, the problem of subjective choices in Type-2 Model has to be solved. Therefore, in this
study, instead of separating the flow components, they will be taken as lumped quantities.. For
estimation of effective rainfall from total rainfall, a special methodology will be developed
(described in chapter-7). In this methodology the empirical behavior of catchment processes is
used in a prior analysis and later verified by input to output data validation, which indirectly
preserves the physics of the catchment in the data.

The benefit of updating will be used in the forecasting model to be developed, and three criteria,
i.e., Coefficient of determination (RSQ), NS and Persistence index will be used. The former two
will serve the purpose of basic rainfall-runoff model optimization and later for updating model
optimization.

In line with required objectives of flood forecast accuracy and quality, the effect of uncertainty
due to natural variability and knowledge uncertainty will be covered by generating predictive
uncertainty bands. This approach combines the results from both the hydrologic uncertainty
processors (HUP) and meteorological uncertainty processors (MUP) of Krzysztofowicz (2001)
into one description of predictive uncertainty, without identifying their origin from input data,
model building, parameter estimation. In order to clarify, the term predictive uncertainty used
here is different from its use by Todini (2007), who defined uncertainty based on covariate and
parameter sets.

3.4. Review of Flood Forecasting Models Applied in LMB

In this section the existing flood forecasting models, i.e. SSARR and URBS of Mekong will be
presented. The emphasis will be on the structure and performance of these models.
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3.4.1. SSARR Model

The SSARR model has been used by RFMMC for flood forecast of Mekong from 1980 to 2005.
The Stream flow Synthesis and Reservoir Regulation Model (SSARR) is owned by the U.S.
Army Corps of Engineers but is available via Internet at sites of the U.S. Geological Survey and
the Columbia Basin Water Management Division (http://www.nwd-wc.usace.army.mil/). The
SSARR Model is a watershed simulation model developed around 1960. It is a simple linear
storage model which includes the major hydrological processes: rainfall as input, snow
accumulation and melt (not implemented in MRB), evapo-transpiration, a fast interflow (soil)
and slow interflow (groundwater) and river channel routing. Included is a reservoir model to
calculate the effects of dam control and natural reservoirs.

3.4.1.1. Basic input and structure of SSARR model

The SSARR model is divided into two major model concepts: the watershed model and the river
system and reservoir regulation model (Fig.3.2). The watershed model has two options, which
are based on different approaches for snow cover incorporation. The watershed model includes
snow accumulation and melt, evapo-transpiration after Thornthwaite's formula, and an
interception routine as well as a cascade of linear storage approaches. It satisfies the law of
continuity through the storage equation with inputs from the other components of the
hydrological cycle, such as surface runoff routing. This is coupled with the soil moisture storage
(also named subsurface) and the evapo-transpiration module (Rockwood, 1972; US Army Corps
of Engineers, 1987). Base flow components as well as a lower zone components are included,
which are - as also other components- determined as a percentage value of the faster subsurface
storage components (Lindenmaier et. al., 2010).
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Fig. 3.2: a) basic principle of SSARR watershed model b) structure of SSARR model as it was in 1997,
both graphs are from (MRC, 1999).

In SSARR, the river system and reservoir regulation is taken as a linear storage approach like the
watershed model, the reach is separated in segments and each of these segments is again
represented by several storages which are based on following equation:

T _KTS (3.10)
s = .
0
where
TS = the time of storage per increment in hours

KTS = A constant to regulate the outflow hydrograph's shape
Q = Discharge [volume/time]

n = a coefficient usually between -1 and 1
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KTS affects the time of storage linearly, larger values of KTS result in a longer time of storage
for a given number of phases. KTS is rather responsible for the translation, the n value for the
peak height of a runoff curve (Lindenmaier et. al., 2010).

To ease the pre- and post-processing for the acting hydrologist at the RFMMC several shells
have been designed. The pre-processing/ processing shell is a Visual Basic routine that helps to
re-format the input data for the use of the SSARR executable. In the post-processing, data from
the SSARR output file is imported to an Excel file (Pich, 2006).

The SSARR executable of the MRC does not work on Windows XP and Windows 2000 system
software due to the closure of a security gap by Microsoft Inc, and thus it cannot be revised from
its present condition for adaptation to the present situation (Lindenmaier et. al., 2010).

3.4.1.2. SSARR model performance

The poor performance of SSARR in recent year floods of 2000 and 2005, forced the stakeholders
to revisit the forecasting model by either updating SSARR or replacing it with a new system. The
study conducted by (Lindenmaier et. al., 2010) on improving flood early warning system of
Mekong, stressed the need of adopting a new forecasting model by quoting that the SSARR
model as it is used in the RFMMC has the limitation that the parameter setting has been done a
long time ago and that the knowledge about parameter change and model justifications has been
lost after the long time hydrological forecaster retired. Reaches were added and subtracted in the
model depending on data availability which is not possible nowadays any more (MRC, 1999). In
addition to this, the model as it is used at the RFMMC lacks proper description and is very user
unfriendly.

3.4.2. URBS Model

In order to replace model SSARR by a better approach, the model URBS was selected as trial
model by RFMMC. URBS is a runoff-routing networked model of sub-catchments based on
centroid inflows. Pengel et al. (2008) described the application of URBS for flood forecast of for
the Lower Mekong basin (LMB). URBS is a semi-distributed non-linear conceptual runoff
routing model, (Carroll, 2004). It is a computer based, hydrologic modeling program that enables
the simulation of catchment storages and runoff responses by a network of conceptual storages
representing the stream network and reservoirs. URBS combines two hydrological modeling
processes into one model: rainfall runoff modeling, which converts the gross rainfall into net or
excess rainfall and runoff routing modeling, which takes the excess rainfall as input and converts
it into flow (Carroll, 2007).

The excess rainfall is determined by accounting for losses by two different options. First mode is
to determine loss as event model and second is by accounting for continuous losses. For the
event model, separate loss calculations are done for pervious and impervious areas. In

56



Literature Review

impervious areas the URBs model by default assumes no loss. However, in pervious areas the
loss is computed by continuous loss model (rainfall is lost on all parts of the catchment),
proportionate runoff model (only part of the catchment contributes to runoff), and Manley
Philips loss model (Rainfall is lost on all parts of catchment up to end infiltration) (Carroll,
2007).

After the excess rainfall has been determined, the runoff routing component of the model routs
the excess rainfall through a series of conceptual non-linear storages to determine the distribution
of flow in the catchment. The runoff routing component can be applied in either the basic or the
split mode. In the basic mode, the effect of sub-catchment and channel storage is treated as a
lumped storage at the centre of each sub-catchment. This basic model is a simple RORB-like
model (Laursenson & Mein, 1990) in which stream lengths are assumed to represent both
catchment and channel storage. Each conceptual non-linear reservoir is represented by the
storage-discharge relationship (Carroll, 2007):

S =K.Q" (3.11)

where K, is the non-linear routing constant for a single reservoir and is a function of the sub-
catchment and channel storage characteristics, empirically determined to read (Carroll, 2007):

K. =afLn(1+ F)/Sc (1+U)’ (3.12)

where

S = catchment and channel storage [m3h/s]
o = storage lag parameter

f = reach length factor

L = length of reach [km]

U = fraction urbanization of sub-catchment
F = fraction of sub-catchment forested

n = channel roughness or Manning's n

Sc= channel slope [m/m]

Q = outflow [m3/s]

m = catchment non-linearity parameter

When stream length alone is used to represent catchment and channel storage, the default values
of o and m adopted by URBS are 1.2 and 0.8 respectively. These values have been adopted from
typical catchments of South- East Queensland (McMahon and Muller, 1986).

In the split mode, the effects of the sub-catchment and channel routing are calculated separately.
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Firstly, the excess rainfall on a sub-catchment is routed through a conceptual storage at the centre
of the sub-catchment to the creek channel. The lag of the sub-catchment storage is assumed
proportional to the square root of the sub-catchment area. Next, the channel inflow is routed
along a reach using a linear or non-linear Muskingum method, whose lag time is assumed
proportional to the length of the reach. The split mode was preferred and adopted by RFMMC.
The split mode model is similar to Watershed Bounded Network Model or WBNM (Boyd,
1987), except assuming channel storage is proportional to channel length instead of catchment
area as in WBNM. In catchment routing, the travel time (T) in hrs from sub-catchment perimeter
to the centroid is computed as (Carroll, 2007):

T=\A/m /v (3.13)
where A is the area of sub-catchment and v is the velocity of flow in km per hr (Carroll, 2007).

Once the rainfall has been routed using the time-area diagram, it is routed again through a
nonlinear reservoir. The storage-discharge relationship for this reservoir is (Carroll, 2007):

Secach = (BVA (1 4+ F)?I (1+U)?) O" (3.14)

where
Scatch = catchment storage [m3h/s]
= catchment lag parameter
A = area of sub-catchment [km2]
U = fraction urbanization of sub-catchment
F = fraction of sub-catchment forested.
m = catchment non-linearity parameter

3.4.2.1. URBS model performance

The performance of URBS model in Mekong River flood forecasting is documented by Malone
(2009). He stated that the quality of URBS forecast is a function of the input, and that the poor
output of URBS forecast, as seen in flood season 2008, could be attributed to poor input of
rainfall by SRE. The issue of inconsistencies in the parameters adopted for URBS with reference
to different sub-catchments is further discussed as reason for poor flood forecast. Further, the
possibility of adding base flow modeling is under consideration to improve model performance.
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3.4.3. Remarks on Contemporary Flood Forecasting Approaches of Mekong

MRC has used SSARR and URBS model in order to produce 1 to 5 days flood forecast for LMB.
However, there are number of reservations on the performance of these models. The poor
performance of these models has different reasons but is due mainly because both of these
models do not satisfy the requirement of flood forecasting model as discussed in section-3.2.

The estimated parameters of SSARR to define soil moisture index, subsurface and surface flow
are not serving the purpose of efficient forecast anymore as reflected in forecasting performance
of year 2000 and 2005 floods. The improved semi-distributed non-linear conceptual runoff
routing model URBS is under trial by REFMMC, however, with limited success at number of
stations upstream in Lao-PDR and downstream in Cambodia of Lower Middle Mekong. The
basic problem in application of both SSARR and URBS is because of their approach of top to
bottom modeling by moving from catchment to channel. In this process of moving from
catchment to channel, there are lot of uncertainties involved. Part of this is due to the fact, that
the physiographic data required to parameterize efficiently the model in calibration stage is not
available. Secondly the high dependence on SRE as rainfall input, where SRE has never been
validated by ground based data till today. Thirdly, the semi-distributed URBS Model requires a
lot of physiographic and hydrologic data in order to optimize the model and its subsequent
operation. But data of required quantity and accuracy is not available in the data scarce
catchment of Mekong. Fourthly, both SSARR and URBS do not have any special routine which
can account for the possible uncertainty of flood forecast. All these factors result in the failure of
SSARR and URBS to produce flood forecasts of desired accuracy and reliability. Consequently,
in the absence of success in flood forecasting by SSARR and semi distributed model URBS, the
need emerges for a better forecast model. The metric (Type-1 Model) and hybrid conceptual
Data Based Modeling (Type-2 Model) approach will be tried in this thesis to improve flood
forecasting quality in terms of accuracy and reliability.
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4. Data Review
4.1. Data Collection

The quality of any engineering analysis and/ or design is dependent on the input data. Initial
screening of available data suggested that the problem of Middle Mekong flood forecasting will
have to be addressed under the constraints of limited data availability. The former Colonial
Governments in Southeast Asia started to implement rainfall and runoff observations in the early
60's in the Mekong River Basin (MRB). However, the civil unrest from the 1970 up to 1990 led
to huge data gaps, especially in the hinterland of Lao PDR and Cambodia. On the Thailand side,
observation of water level at gauges was going on throughout the years, but the water stage
relationships were not measured, as the Mekong was the border to Lao PDR. Furthermore the
availability of rainfall data is poor because only a small number of rain-gauges existed, and
secondly, because most of the gauges are concentrated in plain areas, near the main river and
hence they do not very well represent climatic conditions of whole sub-catchments. The data
availability sheet by MRC includes a total of 480 rainfall and 243 discharge gauges in the Lower
Mekong basin which were operational of and on since 1900. But the length of data at most of the
gauges is limited to few years.

4.1.1. Sources for water level and runoff data

Data collection in trans-boundary rivers like river Mekong is a complex issue. Data are collected
and kept by any number of different local, regional and national agencies in several countries. In
the absence of uniform quality standard methods of data collection quality of data also vary from
agency to agency. Furthermore the data banks are scattered over different agencies. MRC, being
the central coordinating commission, solved the problem of gathering data in one form.
Unfortunately, all the required data couldn’t be obtained at the start of this study. Rather data
were supplied in four increments from different sources.

One major source of historical runoff data for this study was access to the HYMOS database of
MRC, which was located at the MRC headquarters in Vientiane. It contains discharge and
rainfall data of all stations in the member countries of the MRC. However, data gathering and
implementation was temporary stopped in 2002 for political reasons. A second data set for major
discharge and rainfall stations was available from the RFMMC. Observed water levels and
precipitation of 20 to 40 stations were obtained from the line agencies of member countries. This
data set was unfortunately neither complete nor checked on mistakes. In addition, the number of
recorded stations changed from year to year, and finally the records contained only water level
data and no discharges. This data set was available from 2001 up to 2007. The MRC headquarter
started another consolidated effort to collect data from different line agencies and to compile
them in a single data base. The data were compiled by the British consultant firm Halcrow, who
prepared an initial report to Water Utilization Project (WUP) of the MRC in November, 2001.
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Another set of data for this study has been provided by the MRC headquarter in 2008, which was
a first revision of the HYMOS database (third data set). On comparing this data set with
previously collected (2007) data from RFMMC and in the HYMOS data base (initial version),
certain discrepancies were found and brought to the attention of both RFMMC and MRC
personnel. Finally, a revised set of data was made available to IWG in early 2010 (fourth data
set). All four data sets were thoroughly examined for quality and corrected, firstly in 2007-2008
and then rechecked in early 2010.

One consistent data bank has been created and used in this study for further analysis. Only two,
the revised HYMOS and MRC’s 2010 data out of the four mentioned data sets, i.e. HYMOS,
RFMMC, Revised HYMOS and MRC’s 2010 data came with some sort of supporting
information in the shape of Meta data and rating curves. Therefore, these two data sets were
preferred, also because they were complete in recording in comparison to the other two data sets.
In the end, the revised HYMOS data set was taken, which is augmented by recent data collected
in early 2010.

4.1.2. Main Mekong River Data

The 2600 km long stretch of Lower Mekong from the Golden Triangle (at the borders of
Thailand, Lao PDR, China and Myanmar) to South China Sea is gauged at 17 locations.
However, only for 7 gauges (Table-4.1) are the water levels and discharge data for the main
Mekong River fairly complete and of higher quality in comparison with other gauges.

4.2. Method used in Hydro-meteorological data collection
4.2.1. Water Level Data

The water level data have been mostly taken by vertical staff gauges. Quality of water level data
collected by this method is heavily affected by bank erosion and by damage to gauge installation
by floating logs and trash. Accuracy of the water level depends on maintenance of these
installations. Though staff gauges were in recent years replaced by less vulnerable slope gauges
yet these are also prone to damage in lowest and highest water levels.

Bubble type automatic water level recorders have been used in the Mekong region from 1960 to
around mid seventies, but due to lack of maintenance these gauges were abandoned. There was a
new attempt by the Australian AHNIP project in early 2000 to equip 18 stations with automatic
water level recorders and telemetry system for real time water level data sharing among the
participating nations, including 2 stations in China. Furthermore, a new generation of electronic
automatic water level recorders has been introduced into the region by the Japanese WUP-JICA
project, and other Hydro-meteorological Network Improvement projects. However, maintenance
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problems are limiting regular gauging at each station even by this new system. Therefore, main
set of water level data used in this study were collected by vertical and slope staff gauges.

Tab. 4.1: Gauging stations along Lower Mekong

Elevation of

Catchment Area

Distance

Sr. Gauging . . Consistent
> Latitude Longitude Zero gauge from
No. Station (meter amsl) (10°km?) Mouth km Data Record

20.273 100.083

1 Chiang Saen 357.11 189 2363 1960-2007
L 19.892 102.137

2 uang 267.195 268 2010 1960-2007

Prabang

17.928 102.620

3 Viantiene 158.04 299 1583 1960-2007
17.398 104.803

4 Nakhon 130.961 373 1215 1960-2007

Phanom

16.540 104.737

5 Mukdahan 124.219 391 1124 1960-2007
15.117 105.800

6 Pakse 86.49 545 868 1960-2007
13.545 106.017

7 Stung Treng 36.79 635 667 1960-2007
12.240 105.987

8 Kratie -1.08 646 1960-2007
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4.2.2. Discharge Gauging

In discharge gauging, the measurements are made by boat at the measuring cross section, which
is usually fixed due to fixed infrastructure for positioning. Error in the boat position is sometimes
high, due to difficulties in maintaining the boat in a fixed position against strong currents of
water. A cup type current meter was initially used which was replaced by a propeller type meter,
which is a more accurate instrument for estimation of water velocities, in particular if propellers
can be changed according to the magnitude of the velocity to be measured. But they are more
vulnerable to floating logs and rough treatment. A number of manufactured brand name current
meter and related equipment were introduced into the Mekong namely: GURLEY (a cup type),
NEYERPIC, A.OTT, SEBA, OSS BI1, VILLEPORT (propeller types) etc. (MRC Hydro-
meteorological data base review report, 2004)

4.2.3. Rating Curves

The establishment of a reliable relationship between the monitored variable stage and the
corresponding discharge is essential at all river gauging stations when continuous-flow data is
required from the continuous stage records. This calibration of the gauges is dependent on the
nature of the channel section and of the length of the channel between the site of the staff gauge
and the discharge measuring cross-section. All continuous estimates of discharge derived from a
continuous stage record depend on the accuracy of the stage values and the rating curves.
However, the river cross sections change over the years because of silting and scouring,
therefore, updating of this stage discharge relation is required at regular intervals, especially, in
rivers where floods are frequent.

4.3. Data Availability
4.3.1. Availability of Water level and Discharge data of Main River

The water level of main stream gauges has been recorded fairly regular from year 1960;
however, discharge gauging was not conducted regularly. As it is presented in Table-4.2, there
are certain gaps in discharge gauging. Normally, regular discharge measurements are required to
update ratings curves for computing realistic discharges. But in the cases of gaps in discharge
measurements, the stage-discharge relations of neighboring years have been used to produce
discharge data. For example, in the case of Chiang Saen, the missing year discharge data is
produced by neighboring years rating curves, which are divided into five groups from year 1960
to 2000 as given below (MRC Hydro-meteorological data base review report, 2004):
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Group of 1960, 1962, 1968, 1969 (black), and 1970 in light blue.
Group of 1998,1998 , 2000 (red)

Group of 1971,1872, 1973,1974, 1975, 1995, 1996 (pink), and
Group of 1997, 1998, 1999 and 2000.

Discharges computed by using ratings of neighboring years add additional uncertainty to the
quality of data, which however is inevitable. A similar procedure is repeated for other gauges
also to generate discharges of the years where measurements were not available.

Tab. 4.2: Gaps in discharge gauging along Lower Mekong

Dail Maximum
ai
Gauge Gauging y Discharge recorded Date of maximum
Nr. Gauge Type R Gauging X
initiation gauging gaps water level water level
Name frequency
(m)
1 Chiang Saen Bubble Gauge 1957 3-13 1975-1994 13.82 3-09-1966
Vertical staff
Luang gauge, slope 1962-66, 1969-
2 1950 2-11 22.38 02-09-1966
Prabang gauge, Bubble 70,1974-85
gauge
— 1962-66, 69-73,
3 Vientiane - 1895 - 12.71 04-09-1966
74-86, 89-90
Nakhon 1966,
4 Ph - 1960 3-5 13.34 11-09-1966
anom 1976-93
Slope gauge, 1975-82,
5 Mukdahan pe gaug 1959 - 14.24 19-08-1978
Staff gauge 1984,86,87
6 Pakse - 1960 - 1962-66 14.48 17-08-1978
1900-1954,57
Staff gauge,
7 Stung Treng | 1900 - 13.00 02-09-1939
Ope gauge 1960-04
. 1933-1959,
8 Kratie Slope gauge 1933 - 24.28 03-09-1939
1970-2001
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4.3.2. Data availability of
Lateral Tributaries of Lower
Mekong

A

As the Mekong flows from — Mekong LA : Rainfall
north to south, from China to - A1762-0 " K & ; Gauges
South China Sea, a number of B o- 10 '
tributaries from both banks [ 10-50
discharge into the main [ ]s0-100
Mekong. Water level and B 100 - 250
discharge gauging on these
lateral tributaries were
conductedduring the last 40 I 500 - 1,000
years but not regularly. I ' 000 - 3000
Furthermore, only some of the 4 a7 51758 350 Wlometers
lateral rivers have been . |
completely gauged. For

example, between Chiang

Saen to Luang Prabang, only -~
65% area of the total lateral
tributaries’ catchments is

gauged. With a total tributary catchment area of 79000 km?, this reach covers 14% of the area of
the lower Mekong basin. Similarly, gauged lateral tributaries drain only 21% of the area between
Luang Prabang and Vientiane. The condition of discharge gauging is alsonot different in other
reaches.

Discharge _
gauges »
Fig.4.1: Rainfall and Discharge gauges

Rainfall has been gauged at a number of stations in different sub-catchments of lower Mekong,
but most of these gauges are not truly representative of the sub-basins. Furthermore, most of
these gauges were not operational for a number of years. Only 34 rainfall stations in left bank
tributaries of the Mekong have fairly regular rainfall gauging records (Fig.4.1 and Table-4.3).

4.4. Quality of data
4.4.1. Water stage relation curves, river cross sections and warning levels

The quality of data, especially of the rating curves, poses a big problem for the understanding of
the flow regime of the Mekong. First of all, the water stage - discharge relation has to be
measured each year, because the morphological activity of the riverbed is substantial. In the
upper reaches erosion and river bank displacement lead to ever changing runoff relationships. A
report on the water stage relationships (RFMMC, 2004) shows that almost all gauges of main
Mekong show large variability, especially when high water levels are measured (Fig.4.2) , which
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is due to changes of the riverbed. Lower river gauges are greatly influenced by whether
measurements were taken during a rising or falling limb of the hydrograph. For example,
Kompong Cham shows three to four relationships depending on the seasonal time. It is not clear
which rating curves were used for the HYMOS data or for its revised versions by MRC for the

Tab. 4.3: Availability of rainfall data

" St.Code in: Stion s 18;’8';;’;?:&“{;‘;'5;) Country ~ [Attitude (m) Data Availability
Map HYMOS Latitude | Longitude

1 229 140504 |Mounlapamok 14.333 105.867 |Laos 94 65-70,79-87;89-01;05

2 256 140506 |Soukhouma 14.650 105.800 |Laos 95 79-92;94-05

3 259 140507 |Muang Champasack 14.900 105.883 [Laos 95 79-80;82-05

4 266 140705 |Attopeu 14.467 106.833  |Laos 29-30;32-33,35-38;43-44;88-05

5 225 150504 |Pakse 15.117 105.783 [Laos 93 29-39;50-05

6 224 150506 |Khongsedone 15.567 105.800 |Laos 122 63-70,72,79;83;88-05

7 227 150602 [Saravan 15.717 106.433  |Laos 170 29-33,35-39;42;64;70;87-05

8 270 150604 |Laongam 15.467 106.167 [Laos 451 30-33;35-39;89-05

9 260 150605 [Nonghine 14.750 106.217  |Laos 80-05

10 223 160405 |Savannakhet 16.550 104.750 [Laos 155 27-29;31-40;56,65-92;94-05

11 221 160502 |Seno 16.667 105.000 |Laos 184 50-73,75;76;78-81;84-90;95;99,01-04

12 220 160505 [Ban Kengkok 16.433 105.200  |Laos 126 31;35-39;65-67;89-05

13 265 160601 |Muong Tchepon 16.033 106.233  [Laos 23-25;27;30-32;35-38;90-05

14 218 170404 |Thakhek 17.417 104.800 |Laos 146 29-32;35-39;42;56,61-64;80-82;84-92;94-05

15 262 170501 [Signo 17.833 105.050  |Laos 87,89-05

16 216 180203 |Ban Nasone(Maknao) 18.017 102.967 |Laos 161 63;65-76;79;82;90-05

17 208 180303 [Paksane 18.400 103.633  |Laos 157 24;30;31;33;36-39;41-43;65-80;83;87-91;93-05

18 209 180304 |Thabok 18.283 103.200 [Laos 159 65-73;89-95;02;04-05

19 254 180307 |Muong Kao(Borikhane) 18.567 103.733  |Laos 29-33;36-39;41,43;78,79;88-05

20 253 180308 [Muong May 18.500 103.667  |Laos 78-80;85;88-05

21 285 180501 |Ban Nape 18.283 102.667 |Laos 100 22-24;27-32;34-45;93-94;96-05

22 233 190103 |Sayaboury 19.233 101.367 |Laos 323 64-75;78;80-89;91-05

23 243 190205 |Xieng Ngeun 19.750 102.233  [Laos 304 75;88-05

24 252 200101 |Muong Namtha 20.930 101.400 |Laos 600 29-33;36-38;41-43;92-05

25 251 200201 |Muong Ngoy 20.567 102.600 |Laos 96-05

26 273 200204 [Oudomxay 20.680 102.000  |Laos 550 91-05

27 250 210201 |Phongsaly 21.733 102.200  |Laos 22-25;27-44,88;90-05

28 428 160401 |MUKDAHAN 16.533 104.733  [Thailand 138 50-04

30 343 170403 [NAKHON PHANOM 17.500 104.333  |Thailand 140 53-04

31 342 180302 [BUNG KAN 18.333 103.417  |Thailand 164 79-04

32 307 190002 |CHIANG KHAM 19.517 100.300 [Thailand 39%4 83-85; 87-04

33 072 120502 [Stung Trang 12.250 105.540 |Cambodia 85-87, 92, 2001-02

34 226 150609 |Sekong 15.083 106.850 [Laos 126 92-93,95-05

lower Mekong River gauges, in particular starting from Kratie and further downstream.
Therefore, the analysis of stage discharge data to produce forecasts is conducted only up to Stung
Treng, which is the next gauge upstream of Kratie.
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Fig. 4.2 a) Historical rating curves of Chiang Saen, b b)
rating curve of Kompong Cham which shows
several rising and falling limbs

Luang Prabang, Viantiane, Nakhon Phanom, Nong,
Mukdahan, Pakse and Nong Khai which show
discrepancy especially at high water levels (MRC
Hydro-meteorological data base review report,
2004)
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There were four different versions of rating curves, i.e. SSARR, URBS, MRC old and MRC
NEW, available to the writer.
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It is certain that the rating curves used for the SSARR model are different from the ones that are
used today by MRC in the URBS model. And both types of rating curves do not agree with
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official MRC old and new rating curves. Curves used in SSARR are very old and do not
represent the stage discharge relation of today. The set of URBS rating curves was especially
prepared in the context of URBS model application. Rating curves for the URBS model were
produced so that the discharges produced by URBS model under given conditions of rainfall
input yielded measured water levels of those dates. And on the basis of the assumption that the
URBS model is performing with 100% accuracy, the measured water levels were fixed against
discharge output produced by URBS. Therefore, these rating curves are not actual water level -
discharge rating curves, but discharge - water level calibration curves for the URBS model.
Consequently, only the old and new sets of MRC rating curves are left to be adopted for water
level to discharge conversion. Therefore, in this study the MRC new set of rating curves is used
for all gauges except Nakhon Phanom (Fig.4.3).

A review of the data quality was conducted by plotting the time series of water levels and
discharges of each gauge separately. A problem in reviewing the data quality of water levels and
discharges was, as indicated earlier, that there existed four different available data sets, each
based on different sets of rating curves with incomplete documentation. Documentation of Meta
data on discharge measurement dates and types for each data set is seldom available.
Comparison of these different data sets revealed that discrepancies in data were both random and
regular. Regular differences were due to different ratings, whereas random difference may be
due to typing errors.

The yearly plots of water level against discharge supported the findings of (MRC review of data
base report, 2004) that cross section morphology changes annually. Plotting of yearly discharge
of consecutive gauges in the same Fig. reflect discharge contributions of lateral tributaries
(Fig.4.4). Lateral discharge contributions were determined indirectly by subtracting upstream
discharge from downstream discharge with time lag because gauges on lateral rivers are mostly
not available. In some cases these inferred discharges show trends, for example the lateral
contributions between Viantiane and Nakhon Phanom, and between Nakhon Phanom and
Mukdahan show upward and downward trends respectively (Fig.4.5a).

This trend in discharge starting in year 1993 onwards seems questionable, therefore they were
cross-checked against trends in rainfall time series. Those discharge trends which seemingly
were not confirmed by a trend in rainfall, were corrected by adjusting the rating curves of the
respective years, i.e. 1993 to 2007. That lateral discharges in these reaches could not be correct
was also emphasized by negative contributions in the flood season in the reach from Nakhon
Phanom to Mukdahan, which is not physically possible unless there is outflow, which was not
observed. There seems to be a problem in the stage — discharge relation of Nakhon Phnom from
year 1993 onwards. However, there is no such trend in discharges of year 1991 to 1993.
Therefore, the stage —discharge relation of year 1991 to 1993 was used to compute discharges of
Nakhon Phanom for year 1993 to 2007. The lateral inflow between Vientiane and Nakhon
Phanom (VN) and between Nakhon Phanom and Mukdahan (NM), computed by using previous
stage — discharge relation and revised stage — discharge relation,
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Fig. 4.4 Daily discharge plotting along middle Mekong gauges (1991 to 2000)
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are shown in Fig.4.5a and 4.5b respectively. And Fig.4.5b shows that the trend in time series of
VN and NM has been removed by using revised stage — discharge relationship of Nakhon
Phanom.

w 25 9 ——VN
E —NM y=2, 2197)( +4725,
R*= 0,066
3 = Linear (VN)
g ‘ y=-1,972x + 1835,
= = Linear (NM) RI= P332
15 A
m
1]
= 10 -
£
1]
po
£ 51
2
a J
0
o oD o I =
=] o o o ~ pher <4 © b
3 a ] Q = o o o =] =]
a a b5 ] ~ — el — ~ ~
5 3 2 2 2 S a ! & % 2 g
g & & & &§ & 8 & & 8 g
10 - Time [ daily]
a)
w 18 - ——VN (with revised Nakhon Phanom rating) y =0,099x + 1857,
E 16 ——NM (with revised Nakhon Phanom rating) R%= 0,000
3 ——Linear (VN (with revised Nakhon Phapom rating)) Y= o,ffaox +4700,
£ 14 | —=Linear (NM (with revised Nakhon Phanom rating)) R*=0,003

124

ol il L1 ML
ol i l‘k NI!IM! 04 i mmmmmum\

Discharge [ m*/sec ]
0o

————

0
P b3 b 2 & 5 3 pa 3 3 3

-2 & =] =] =] =] =] =) =) S =} S
o - — -~ - — - — -~ -~ —
— ~ ~ m =T wny {¥=] ™~ o0 o [=]
o ) =) =) D =) - =) =) =) S
o (=] o o o [=)] (=] o o o (=]
— - -l — - -l - -l — - ~

Time [ daily ]

b)

Fig. 4.5: Viantiane to Nakhon Phanom and Nakhon Phanom to Mukdahan lateral discharges
computation by using data of Nakhon Phanom, a) produced by MRC new rating and, b) revised rating
based on year 1991-1993
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The availability and quality of river cross sections is similar to those of the water stage relation
curves. The RFMMC provides river cross sections in their forecast pages in the internet, but
these are quite coarse and also produced with varying spacing for the width of the rivers (Fig.4.6)
which gives a false impression of the river cross section. More precise cross sections were
generated by using the information available at www.mrcmekong.org as given in Fig.2.12.

- b) Gauge | flood |alarm
115 | Pakse station level level
110
Ems \ (m) (m)
§100 1 :
v g5 o /- Chiang Saen | 11.8 11.5
2 o4 w Luang Prabang | 18.0 17.5
g s 1 — Chiang Khan |17.4 17.3
2 o OFlaodlevel Vientiane 12.5 11.5
:z 1 s | | [Nong Khai 122 [114
D 600 260 2300 260  zeso 080 3300 G500 9TT0 4200 000 Paksane 14.5 13.5
Nakhon 12.7 12.6
Fig. 4.6: a) River cross section at Pakse, reproduced from the Mukdahan 12.6 12.5
internet page of MRC. Note the varying spacing of the width, |Pakse 12.0 11.0
water level is of 30th September 2009. b) Flood and alarm Stung Treng 12.0 10.7
level of major Mekong gauges. Kratie 23.0 22.0
Phnom Penh 11.0 9.5
Tan Chau 4.2 3.0

4.5. Conclusion

The data of seven discharge gauges, i.e. Chiang Saen, Luang Prabang, Vientiane, Nakhon
Phanom, Mukdahan, Pakse, Stung Treng and 34 rainfall gauges was considered of acceptable
quality for use in this study.

After analyzing the four available data sets, the revised HYMOS data set is used. These
discharge data iare based on different stage — discharge relations for different years. The quality
of these discharge data seems acceptable except for Nakhon Phanom, because the historical
discharges (produced on the basis of variable stage — discharge relations) of Nakhon Phanom
show trends from year 1993 onwards. Therefore, discharge data from year 1993 onwards are
adjusted by using the stage — discharge relation of year 1991 to 1993 because there was no
observable trend in the discharge data for years 1991 to 1993.
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After comparing four different rating curves, i.e. SSARR, URBS, MRC Old and MRC New, for
current data, the MRC new rating curves were preferred for the inter-conversion of stages to
discharges and vice-versa except for Nakhon Phanom, where the revised rating curve is used
(produced on the basis on 1991-93 stage — discharge relation).
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5. Quality Criterion for Flood Forecasting

Prior to assess the performance quality of a forecast by any forecasting model, an objective
quality criterion to detect performance quality has to be selected. The criterion or set of criteria
should be sufficient to judge the model in terms of accuracy and reliability as given in section 1.3
of 3" chapter. There are many quality criteria which are used as objective functions in
hydrology. To name a few: root man square error, mean absolute error, accumulated volume
error, correlation coefficient, coefficient of determination, Nash and Sutcliffe coefficient,
coefficient of extrapolation, coefficient of persistence are normally used to assess the
performance of hydrologic models. However, root mean square error, mean absolute error, and
accumulated volume error are more or less subjective criteria because one cannot judge the
model performance by these criteria, which should be quantified by some standard scale, like a
Nash and Sutcliffe coefficient between 0 and 1.

In the other mentioned criteria, the squared error is normalized by some standard value. For
example, in Nash and Sutcliffe (1970) coefficient, the squared error is divided by standard
deviation of predicted values from the average value. This criterion is often used in hydrology to
determine the quality of model performance. If adapted to the forecasting case and denoted as
CNS (t) this criterion reads:

IMax xob(i+t)—Xf(i+t)]?
Yimax[xob (i+t)-X]2

NS(t) = 1 —CNS (¢) =

(5.1)

where Xx is the average value of the quantity x over the time from i=ip to 1=imax. It is obtained
from:

X

~YiZimax Xob (i) (5.2)

Note that this quantity depends on the forecasting time, expressed through parameter t. The
original Nash-Sutcliffe criterion was designed for the whole time series and essentially is a
measure of the contribution of forecast error (the numerator of Eq.5. 1) to the variance (the
denominator of Eq.5.1) of the total record. For a perfect fit, the numerator is zero, whereas for a
fit, which is no better than the average value the ratio, NS(t) becomes 1 or larger. By subtracting
NS(t) from 1 the direction of the criterion is reversed, and a good fit, in Nash - Sutcliffe
terminology, is a value close to 1, a poor fit will lead to a criterion CNS(t) =0, whereas for
QNS(t) the opposite is the case. As adapted to forecasting the Nash-Sutcliffe criterion implies
that we start the forecast with no information except that obtained from ranking all measured
values of forecasts. In that case, the best estimate of the future value is the mean value Xx. But
the problem with the Nash and Sutcliffe criterion in measuring the quality of forecast lies in its
comparison index denominator D, which does not take account of the difference of model
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estimate Xx from future observed values x, (i +¢). This no model estimate is fairly primitive as

discussed by Nash et. al. (1978) and given in Section 3.3.5. No model approximate of future
outcome could be much better than Xx_by virtue of real time data availability. In particular, the
last observed value Xops(i) is @ much better estimate of future x,,(i +¢) than Xx. Other problems

of Nash and Sutcliffe coefficient are; that a constant over/ underestimation of the predicting
model cannot be pointed out, the same error yields different Nash and Sutcliffe coefficient values
depending on the difference of future observed value from the average value Xx. Furthermore,
the criterion becomes meaningless when observed and predicted values are near to average Xx
and vice versa because when the difference between Xobs(1) and x,(i+7) is divided by difference

between Xqhs(1) and Xx, it depends on the magnitude of difference between Xhs(1) and XX in
addition to difference between xqps(1) and X, (i+1). And if Xobs(1) 1s located far from Xx, then D

becomes high making high NS and it is vice versa if Xops(i) is located near Xx
The concern that the Nash and Sutcliffe (1970) criterion does not reflect the true quality of a

model, has been raised by many hydrologist, i.e. Krause et al.(2005). Therefore an alternate
criterion is required to better assess the performance of a forecasting model.

Pakse season 2005: observations vs. 5 day forecast

14

weter level (M)
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6.7 16.7 26.7 5.8 15.8 25.8 4.9 14.9 24.9 4.10 14.1024.10
date

‘ —— observed —— 5 day forecast ‘

Fig. 5.3: Observed water level and 5 day forecast at Pakse gauge in 2005(Plate and Lindenmaier,
2008)

The study by (Plate and Lindenmaier, 2008) emphasized the need of better quality criterion. For
illustration, they have given an example of a 5-day forecast as function of time (Fig.5.3). For this
example forecasts are made by means of the model SSARR for station Pakse, for 2005. D(t) is
the numerator and E(t) the denominator of CNS(t), as expressed in Equ. 5.1. The sum is extended
over the whole season. From Fig.5.3 it is seen that when the season starts, i.e. when the Monsoon
rains start in early summer, the initial steep rise of the water surface is not correctly predicted by
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model SSARR, and yet one gets a CNS(t) value of 0.8 despite of poor performance of the model
(Plate and Lindenmaier, 2008, Lindenmaier et. al., 2010).

Tab. 5.1: Nash-Sutcliffe criterion applied to Pakse gauge readings for the 2005 season

D) |E(®)

sum 180.5 |898.9

CNS(t) |0.80

5.2. Better quality criterion for forecasting model

A better quality criterion is obtained if one uses the fact that at time t, one already has some
information available, at least the value of the time series to be forecasted at the present time t =
to, as well as for earlier times. If there is no other information available but the present day value,
then the best forecast for the near future is to assume the value at time to+T¥, i.e. at i + t, as being
equal to the value at t, (Plate and Lindenmaier, 2008, Lindenmaier et. al., 2010)..

In Fig.5.4 the forecast using the SSARR model and using the no information model with forecast
equal to x,(1) are shown for Pakse, using the data of August only. The 1 to 5 days forecasts are
shown as family of curves. The figures must be interpreted from one point X,(i) on the observed
gauge where a forecast is made for different forecasting times, represented by the other curves.
For example, on August 16 we observe a value of 11.30 m, indicated by the red dot on the left in
Fig.5.4a on the observed curve. A five days ahead forecast is made with the SSARR model,
which yields a value of 10.58 m, shown by the right red dot on the lag 5 curve in Fig.5.4a. This
value has to be compared with the actual value on the observed curve, which has a value of 12.19
m. On the right side of Fig.5.4, the same data are shown with a forecast based on present day
value x¢(i) = xo(i+t) (Plate and Lindenmaier, 2008, Lindenmaier et. al., 2010).
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PAKSE: August 2005. Observed vs. forecast by SSARR Pakse August 2005: forecast based on t0
model
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Fig. 5.4: Gauge Pakse, August 2005: a) forecast calculated with the SSARR model, b) taking xy(i) as
forecast vs. observed data (Plate and Lindenmaier, 2008)

The comparison of Fig. 5.4a and 5.4b shows that the forecast using xo(i) is not a bad first
approximation. The performance of a forecast model, expressed through a forecasted value x(i)
= x¢(i+t) after time Tr =t should be judged relative to this value. This implies that the deviation
of the observed value xq(i+t) from the present value x((i) should be larger than the deviation of
the observed value from the forecasted value xg(i+t), if the model is to provide a better forecast
than what one can estimate by just knowing the value x(i) at the time of the forecast (Plate and
Lindenmaier, 2008). This condition is expressed quantitatively by a persistence index PI, which
is an index similar in structure to the NS criterion (Berthet et al., 2009; Kitanidis and Bras,
1980a; Kitanidis and Bras, 1980b) and defined as:

i max

Dlxyi+0)—x, (i +0)]
PI(t)=1-|-=— (5.3)
D [x, i+ 1) —x, (D]

i=0

for which during calibration the sums have to be taken at each time t=i-A, i:],Z-j-ma) for

each t, i.e. for each T;: =t-N , where A ¢ is the time increment. A small value of PIy(t) indicates

poor, a large value good performance, i.e. if PIy(t) is close to 0, performance of the forecast is not
better than taking the value of today (at time t) as forecast for the value at Tr.
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Table 5.2: Pakse season 2005: quality criterion Equation 3 applied to SSARR forecasts (Plate
and Lindenmaier, 2008)

Pakse flood season 2005: comparison of SSARR model with equation (5.3)
D(1) |E() |D@) |E(2) |D@) |EGB) |D@#) |E@) |DG) |[E(5)

sum |7.60 16.1 27.8 |57.1 65 113 119 178 179 243.8

quality | 0.53 0.51 0.43 0.33 0.26

An application of this criterion to the Mekong for station Pakse is shown in Table 5.2, where
D(t) is the numerator and E(t) is the denominator for the t-day ahead forecast. The data are taken
for the whole season from 1 July to 31 October. As presented in Table 5.2, the performance of
SSARR is realistically assessed by Ply(t) by declaring it poor — as it was shown in Fig. 5.3(Plate
and Lindenmaier, 2008). But this quality criterion also has some positive and negative points.
The criterion loses its significance in situations where the difference between current and future
observed value is small. On the other hand it has the advantage of reflecting the gain from having
this particular forecasting model as compared to a no model forecast. However, PI is a relative
criterion. It therefore does not reflect the magnitudes of the forecasting errors, which are
described by the standard deviation as criterion, or the range of the forecasting errors. These are
best described by probability distributions of errors.

5.3. Performance of SSARR Model

The quality of SSARR model performance as reflected by the quality criterion PI is shown in
Fig.5.5. This Fig. presents the quality of forecasts for Pakse. PI ranges from 0.58 to 0.62 in the
cases of 1 to 4 days lead time forecast.
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Fig. 5.5: Coefficient of efficiency distribution for the whole forecasting season at Pakse for the
forecasting year 2005 (June to October).

5.4. Performance of URBS Model

The mean absolute error of URBS model forecasts for first to Sth week of June, 2009 are given
in Fig.5.6a, 5.6b, 5.6¢c, 5.6d, and 5.6e, respectively. Mean absolute error actually is not a good
quality criterion to reflect daily forecast model performance but unfortunately, the author did not
have an access to daily forecasts by
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URBS model. According to this Fig. the mean absolute errors ranges from 20 cm to 300 cm. The
errors for the upstream gauges, i.e. C to S are higher than for the gauges downstream of S.

At present, the success of the forecasting system is comparatively modest: it is claimed that
during flood seasons the one day forecasts are quite good, but that three day forecasts are not
good enough. In view of the large area of many 100000 km? upstream of the Mekong delta this is
surprising, although it is realized that the hydraulic conditions are quite complex, in particular
due to the damping role of the large lake Tonle Sap in Cambodia. The reason for this has
numerous roots: obvious are lack of data, or incomplete or even erroneous data, and a model
base which either no longer is up to date or it is not appropriate for the present application.

Therefore in this study, it is tried to use comparatively better data and adopt alternative
modelling approach in order to improve the flood forecast in particular at upstream gauges.
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6. Discharge Data Based forecasting (Type 1 Model)

6.1. Data Based Flood Forecasting

When physically based models are used, the functional dependencies are structured from the
channel and catchment physics of flood routing and rainfall — runoff models, and only the
parameters of the model are determined from the data base (Shahzad et. al, 2010). For a data
based model, the present to future discharge change is quantified and directly correlated with
other data (known discharge and rainfall), with only conceptual models for the runoff from sub-
catchments between gauges'. To develop appropriate data based model components for this
purpose, two different approaches are tested: a regression model based on discharge data, and a
rainfall — runoff model based on a unit hydrograph. A data based model which is structured from
the available data base may give results with similar error bounds as physically based models. It
was the objective of this study to explore the forecast capability of such data based models for
the Mekong.

Forecasts for large rivers are traditionally based on fitting existing models to the data base of
measured discharges and/or stages at different gauges. Consequently, the quality of the forecast
first of all is a function of the model used. The earliest types of models used were based on
discharge trend and regressions of discharges from past or/and upstream gauges against time
delayed downstream discharges (Model Type 1). More sophisticated models use rainfall — runoff
modeling and runoff routing components (Model Type 2).

The writer preferred to approach the forecasting problem not from the use of any existing model,
but to develop a forecast model from the data base, where it is less important that the model is
physically complete, than that the forecasts are as accurate as possible. Because a perfect forecast
is not possible in view of the uncertainty of the many factors contributing to the discharge
formation process, an error band must be expected. The quality of the forecast must be based on
two factors: on the mean value of the forecast, which should be as bias-free as possible, and on
the spread of the error band, which should be as narrow as possible, where the former is indicator
of model reliability and the latter of model accuracy. In contrast to physical models based on
analytical descriptions of all discharge forming processes, which have to consider uncertainties
in all parameters of the individual processes, a data based model lumps all errors into one
probability distribution (pdf) for the forecast, whose standard deviation is to be minimized

! Here the hydrological distinction is made between physical models and conceptual models. Physical models
describe the physical processes of the hydrological cycle as closely as possible. In contrast, conceptual models are
simple empirical models, such as the unit hydrograph model to fit the rainfall — runoff process.
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regardless of physical meaning of the forecast model used. However, use of a data based model
doesn’t mean that system physics is ignored completely; rather the imprints of system physics
are captured in the structure of data time series whose structure is a function of catchment and
channel physics.

In large rivers like the Mekong, a change of discharge from present to short time in the future is
mostly small in comparison to total present discharge. The discharge change is caused by rainfall
storms on the sub-catchments of the river. Very large hydro-meteorological forcings are required
to generate abrupt changes. Such storms do indeed occur in the flood season, and abrupt and
significant discharge changes can occur. The magnitudes of these discharge changes vary with
lead times and season. However, one can make an estimate of occurrence, of these discharge
changes by a prior discharge and rainfall time series analysis.

In the absence of a priori information on discharge change behavior, the range of discharge
change from the present to the future could be any value between 0 and infinity which leads to
absolute uncertainty. However, these discharge changes are outcomes of physical processes and
hence would be ideally predictable, were it not for the difficulty in quantifying the contribution
of each process to the generation of future discharge changes. This is due to model,
measurement, and other uncertainties as explained in chapter-3.. Irrespective of the cause, these
uncertain discharge changes could be classified into two major groups, i.e. conversion of rainfall
into runoff and river discharge, embodied in the hydrologic data processor, and the forecast of
the rainfall field, as expressed through the meteorological (rainfall) processor (Fig.6.1a). By
means of such processors, the hydrologic and meteorological uncertainty bands could be
narrowed down by modeling respective historical time series information. For short lead times of
large rivers, it is pragmatic to only use the discharge processor, whereas for long lead times
rainfall contributions from the sub-catchments may dominate the uncertainty, and reduction of
the uncertainty by means of a suitable rainfall processor is most important for a good forecast.
However, temporal short and long forecast lead times are relative terms, as explained in
chapter.3, therefore the effectiveness of each of the processors must be determined in each case
by a statistical analysis of discharge time series. Consequently, an iterative procedure should be
followed, by first analyzing the time series of the discharges only, and to develop a suitable
discharge processor based on the statistical structure of the discharge time series of adjacent
gauges which reduces the error band as much as possible (Model Type 0 and Model Type 1).
Only if this does not prove to be acceptable, then the error band should be further narrowed by
introducing rainfall information and developing a rainfall processor, (as needed for a Model
Type 2).
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Fig. 6.1: Flood Forecasting Scheme

Basic characteristics of the process of flood forecasting in flood seasons are illustrated in
Fig.6.1b. Assume that one is located at some station j, at a time identified by index, (i) and wants
to do forecast for some future time, say (i+t), where t = 0, 1, 2 ...m. The expected (forecast)
discharge is Qj(i+t) where j is the station index with j = 0, 1, 2 ..m. It could have any value
between maximum and minimum discharge limits as represented by blue lines in Fig. 6.1. These
extreme limits can be taken as limits of the uncertainty band, which is computed by a prior
discharge time series analysis. The observed future discharge Q is shown by the red line and
estimated/ expected values QF are given by the dotted line. Normally, the uncertainty band
increases with forecast lead time, and so do the potential deviations between expected and
observed values, because with increase in lead time, discharge information available at the time
of the forecast loses its potential to help in estimating future discharges. For very long lead times,
only the historical discharge probability distributions can be used to predict the span of possible
discharges for the required lead time.

6.2. Methodology

In this chapter, as described in (Shahzad et. al, 2010), the flows of Mekong River are forecasted
with 1 to 5 days lead time — as a first step, by using the information of forecasting gauge only
(moving back in time). And in the second step, the information of required upstream gauges is
used (moving back in time and upstream in space simultaneously). In each of these two steps
Type 0 and Type 1 Models are used. Type 0 Model gives a prior span of future discharges and
Type 1 Model gives a discharge forecast in the hind cast mode. Finally, the quality of these
lumped models is tested against the distributed model (URBS) in producing discharge from the
rainfall for flood forecasting at mainstream gauges.
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6.3. Forecast by moving back in time

In the first step, the problem of forecasting is discussed by using the discharge time series of
forecasting gauge only — hence without using the discharge information of the adjacent upstream

gauges. Q;(i +t) = Q;(i) + AQ;(i +1t) (6.1)

QFi(i + 1) = Q;(i) + AQF;(i + t) + gjo(i + 1) 6.2)

where & is the forecasting error.

Eq.6.1 defines the change of discharges from time i to i+t in the analysis mode — where AQ; (i +
t) is known and therefore Q;(i + t) can be calculated. But in the forecasting mode, one needs to
estimate AQ;(i +t). Eq.6.2 presents the case of forecasting mode, where Q;(i +t) and
AQ;(i + t) of Eq.6.1 is replaced by QF;(i +t) and AQF;(i + t) respectively — which are the
quantities to be forecasted. The first logical choice to approximate the future discharge would be
to assume AQ; persistence, i.e., to assume that the discharge does not change from one unit step
to the next, each of interval time t. Then, AQ;(i) can be taken as estimate for future discharge
AQ;(i +t) provided that the variation of discharge over forecast time (i + t) is negligible.
However, even in large rivers; this assumption may lead to large errors especially in flood
seasons, because discharges may change by large amounts, even for time intervals of 1 day,
which is the gauging frequency of the Mekong River. Evidently the discharge has three possible
future trajectories, i.e.
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Fig. 6.3: Potential flood discharge extrapolations
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it can remain constant, decrease or increase. The amount by which Qj increases or decreases may
or may not follow the previous Q; slopes. There are countless possible trajectories, i.e. as
indicated by indices i+tl, i+t2....i+tn in Fig.6.3. Consequently, the change of discharge Q; (i)
over time steps (i+t) must be improved for forecasting future discharges.

6.3.1. Type 0 Model (by moving back in time)

Prior to actual flood forecasting the hydrologic uncertainty, i.e. AQ; in unit time (i + t), where, t
varies from one to five days, can be quantified empirically by fitting a suitable probability
distribution to AQ;(i + t). The quantification can consist of giving historical mean, maxima and
minima, or of determining its probability distribution. The dependency of the AQ;(i + t)
distribution could be further refined by analyzing each month’s AQ;(i +t) time series
separately. Model development steps for Type 0 and 1 models are shown in Fig.6.2. The first
approximation of AQ;(i + t) can be the average discharge change W during the unit
time step from time i to (i +t). The W can be taken as a function of season. This
requires determination of the average discharge change A—QJ for each season. If one assign an
index s to each month of the flood season, i.e. s =1, 2 ...12, then Eq.6.2 and 6.3will change to:

AQ,5(Li+t) = %[Z{Z?AQ]-S(LL' +1)] (6.3)

QFis(i+ 1) = Qjs(D + AQ, s, + ) + go(i + 1) (6.4)

In Eq.6.3 n is the number of discharge changes inunit time At for each season s and y is the
number of years.

One can argue that the main problem in forecast by Eq.6.4 is the possibility of the cancellation of
negative and positive AQ; (i, i + t). However, it is not true because the frequency of positive
and negative 4Q; (i, i + t) of large rivers like Mekong depends on season. This is due to strong
seasonality of flood occurrence, as in Mekong region, where the onset, rise and recession timing
of floods are repeated over same the time with +/- of few 10-dailies. Consequently, in the rising
part of the hydrograph, the change in discharge is dominated by big positive discharge
differences and vice versa in a flood recession.

However, the positive +AQ; (1,1 +t) and negative —AQ, ;(1, 1 + t)discharge changes can also
be lumped into two separate groups in each season to estimate the range of future discharges.

89



Discharge Data Based Forecasting (Type 1 Model)

1 ..
+4Q,s(Li+1t) = m—ylZi/ZTAst(l,l-l-t)J (6.5)
m is number of positive discharge changes per season over unit time At, i.e.,

4Q;s(I+1)>4Q;5(D)

—4Q,,,1+1b) = %[Efzrf”AQ}-s(i,i + )] (6.6)

p is number of positive discharge changes per season over unit time At, i.e.,
4Q;5(i +1t) <4Q; (D)

With the help of this approach, the range of future discharges can be approximated by adding
pre-estimated positive and negative AQ, (1,1 + t)to the current discharge AQ; (i) by using
Eq.6.7 and 6.8.

QF;s(i+1t) = Qs(D) + (+ AQ,s(L, 1+ t)) + (i + ) (6.7)

QF}s(l + t) = st(i) + (_ AQ] s(li L+ t)) + EjO(i + t) (68)

This results into two possible future maximum and minimum approximations, which describes
the possible range of future discharges. This range can be successfully used as future forecast,
provided it is narrow, and the magnitude of deviations of positive and negative AQ; s(i,i +t)
time series is small. However, large deviations result in large error terms &;o(i + t) because the
spread of AQ; ¢(i,i + t) around the mean discharge changes is wide. The coefficient of variation
Cv, i.e. ratio of standard deviation to averages gives the approximation of possible discharge
changes with respect to averages. Therefore, Eq. 6.7 and 6.8 can be successfully used in
forecasting, when the magnitude of span, standard deviation and coefficient of variation Cv of
positive and negative AQ; ;(i, [ + t) is small.

The approach using average discharge changes assumes that in each season, increases or
decreases in discharge over certain time period remains close to constant, i.e. equal to the
average increase or decrease, which is less likely to be correct when there are large local rainfall
forcings. However, one can estimate the future discharge span in between 5 and 95% occurrence
probability by replacing the +AQ, s(1,t + t) and -AQ, 5(1,t + t) in Eq.6.7-8 by P(Asts)(i,i +
t) and P(AQ jsgs)(i,i + t) as given in Eq.6.9-10. Although the flood forecast span by Eqs.6.9
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and 6.10 will be wider than by using Eqgs.6.7 and 68 but with the high probability of future
discharges within the estimated span.

QFs(i + ) = Qjs()) + P(AQss ) (i, i + ) + gjo (i + 1) (6.9)

QF;s(i + ©) = Qjs() + P(AQs05) (i, i + 1) + gjo(i + 1) (6.10)

P(AQs) =5% and P(AQqs) =95%

6.3.2. Type 1 Model (by moving back in time)

The hydrologic uncertainty band of the forecast can be narrowed down by identifying functional
dependencies of future discharges Q; (i + t) on current discharges Q; (i), or of future AQ;(i + t)

on current AQ;(i), because discharge Qjand discharge change AQ; must be continuous.

Therefore, instead of using AQ, (1,1 +t) one can use the previous discharge gradient as
approximation for the future discharge gradient as given by Eq. 6.11.

QF (i +1t) = Q;() + AQ;(i — t) + gjo(i +t) 6.11)

A further reduction in error is obtained by using some weighted relation between AQ;(i — t, i)
and AQ; (i) instead of equality, i.e. Eq. 6.11could be rewritten as regression equations as given in
Eq.6.12 & 6.13;

QFi(i+t)=Q;()+ bj(i +)[AQ;(i —t) + G (i + )] + (i + 1) (6.12)

where b is the regression coefficient, t is the lead time, and C; (i + t) is the regression constant
or intercept.

Yet another approximation is obtained by going only one step into the past, i.e., to i-1 to forecast
Q; (i + t) with t = 1,2..m. The advantage of this approach as given in Eq.6.13 is that it uses only

recent discharge information instead of going t times into the past to forecast t time intervals into
the future, analogous to the cases in Eq.6.11-12;
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Another variation of Eq.6.13 could be multiplying AQ;(i,i — 1) with t as given in Eq.6.14. For

this approach it is assumed that all future time steps (i, i + 1); of discharge change are the same
as the one for times i-1 and i, in which case one gets:.

QFi(i+1t)=Q;()+ bj(i +1).t.[AQ;(i,i — 1) + G (i + )] + go(i + 1) (6.14)

Yet another approach is to use simple linear auto regression between Q; (i) and Q; (i —¢t) to
forecast Q; (i +t) in forecast mode, where the coefficients of the regression equation are
determined in the analysis mode, using historical data:

QFi(i+t) =bi(i+t)Q;(D)+C (i +1t)+¢oi +1) (6.15)

Eq.6.11-15 can be used to produce forecasts, but the main shortcoming of these approaches is
that the forecast depends entirely on the last observed discharge changes from time i to i-t or
from 1 to i-1. Consequently, the quality of such a forecast is affected by short time discharge
variations caused by local rainfall storm forcings.

6.4. Forecast by moving back in time and space

So far, the discharge change with time, of each discharge gauge, j has been discussed by only
using the time series of station j, i.e. not including the data of upstream discharge gauges.
However, the structure of the forecast model on a large river is determined by the combination of
flows in the main river channel, which are measured at stream gauges, and lateral inflows from
the sub-catchments between the gauges. The latter have to be inferred from local information:
tributary discharges and runoff from the sub-basin. Consequently, a model based on this situation
has to have the following components: an initial input of discharges from upstream stations, and
an estimate for the lateral inflows between stations. This is shown in Fig.6.4, where the
geometric notation used in this approach is presented. The point at which a forecast is to be made
has index 0, and stations upstream are identified by index j, where j goes from 0 to m.
Consequently, the station directly upstream of station 0 is station 1. The stations are supposed to
be located in flow time 1 day apart, i.e. At = 1 day: it takes one day for the discharge at point 1 to
reach point 0. In particular, the station with index m is located exactly m time intervals upstream
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of station zero, where m is the number of intervals in the forecast time. If the flow time between
adjacent gauges is larger than one day, then a virtual station has to be introduced, so that the
number of gauges for each forecast time is exactly the same as the number of time steps for the
forecast.
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Fig. 6.4: Notation definitions.

Let the index i1 denote the time, as referred to station 0. That is, the real time at the time of
forecast has the index i, which implies that at time t = i days a forecast QF(i+t) is to be made for
t days ahead. In this situation it is evident that the discharges at station j=t and all stations further
upstream of station t are know exactly (within the error of measurement).

To describe the forecast situation, Fig.6.4 is redrawn for the forecast mode as in Fig.6.5.In this
figure, the quantity:

is the net lateral inflow between stations j and j-1 in any time interval i,i+1. It is generated by
rainfall on the basin, and inflows from tributaries minus such lateral outflows QO as may occur.
With this notation, the continuity equation applied to the stretch between gauge 0 (the gauge for
which discharges are to be forecast) and station t upstream yields:

Qo(i + 1) = Q() + XZ1 DQ;(i + t —j) (6.17)
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Fig. 6.5:. redrawn to reflect forecast conditions

This equation expresses the condition of continuity and is generally valid, independently of
whether forecasts are considered or not. Q; is the discharge at point t, and & is the error due to
measurement uncertainties. For applications, Eq. 6.17 has to be considered both in the analysis
mode and in the forecast mode. In the analysis mode, the equation is used to set up the forecast
model, and in the forecast mode it is used to make actual forecasts.

a. The analysis mode.

The quantities in Eq. 6.17 cannot be measured directly. In the analysis mode they are determined
by taking the difference:

DQji+t—j)) =Qli+t—j)—Q_r(i+t—j—1L)
(6.18)
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which yields a family of time functions DQ;(i + t — j), where j = 1, 2...t, for each station j, and L
is the discharge travel time from station Q;_;, to subsequent downstream station Q;. As a first
step in the data analysis, this series of time functions has to be checked for consistency, by
observing differences between three adjacent stations — consistency implies that when there is no
overflow of the river banks then there cannot be a lower flow at the downstream gauge than at
the upstream one. Other features, such as finding errors yielding strange outliers and other
irregularities can be spotted and corrected in the parallel inspectional analysis of these time
functions. This inspectional analysis is a time consuming but important and integral part of the
data analysis, in particular in the Mekong area, where as mentioned before war and civil unrest
has substantially interfered with correct data collection and determination of rating curves.

b. The forecast mode

In the forecast mode Eq.17 is written:

QjFo(i+1t) = Qi) + th;(} DQji1Fo(i+t—j) +ep (i+1) (6.19)

where the index F denotes forecasts, whereas quantities without this index - i.e. Q(i) - are real
time observed values. The error terms &g are stochastically independent random variables. For
example, for t = 1 and 2 one obtains:

QFo(i+1) =Q (1) + DQ:Fy(i + 1) + epp(it1)

Q1Fo(i+2) = Qa(1) + DQ.Fo(i+ 1) + DQ,Fo(i + 2) + &, (i+2) etc.

It is worth noting that the use of spatio-temporal discharge information from upstream and lateral
gauges in forecasting is more useful than the use of temporal discharge change AQ , which is
obtained the help of only oneforecasting gauge j. The reason of this improvement is the
separation of known quantities from unknown quantities in a better way. For example in Eq.6.2,
AQ; (i+t) is because of the lateral inflow DQ; between gauge 0 & 1, 1 & 2...t-1 & tand t & m.
Therefore, by using the discharge of upstream gauge, i.e. Qi) one can avoid forecasting the
portion of inflows coming in between gauge t & m. Further, the lateral inflows between gauge 0
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& 1,1 & 2...t-1 & t are forecasted for different lead times, i.e. i+t, i+t-1, ....i+1 respectively as
given in Eq.6.19. By using this approach, one can avoid forecasting the whole AQ; (i+t) rather
only that portion of this quantity is forecasted which is really unknown and hence avoiding the
forecast of lateral inflow quantities which are already known.

The terms DQF in Eq.6.19 have to be determined ahead of time. It is assumed
that DQF;(i) =function of known quantities + error term. This is written for the terms of Eq.

6.20:

DQ;F(i+t—j) =DQ1;(i+t—j) +DQ2(i+t—j (6.20)

where DQI is a deterministic part, exactly known at time i because of already occurred
meteorological events and hydrologic processors, and DQ?2 is the unknown part because of future
rainfall occurrences that has to be forecast. Note that forType-0 and Type-1 Model, DQjF is not

split into DQ1; and DQZ;.

6.4.1. Type 0 Model (by moving back in time and space)

If one replaces the time series of Q; of Eq. 6.4 to 6.10 with DQ; ,the time series of lateral
discharges or their potential spans could be approximated with the help of average discharge
difference ADQ,; (1,1 + t)) or by means of probability distribution. The methods used for Q can
be applied to DQ, and can be expressed through Eq.6.21 to 6.24 by replacing Q;(i) with DQ;(1);

DQ;F(i+1t) =DQ;()) + (+ ADQ, (L, 1 + 1)) + &jo(i + ©) (6.21)
DQ;F(i+1t) =DQjs() + (—ADQ, s(L1 + ) + gjso(i + t) (6.22)
DQ;F(i +t) = DQ;s(i) + P(ADQjss) (i, i + £) + &0 (i + ) (6.23)
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DQ;F(i +t) = DQjs(i) + P(ADQjs05) (i, i + t) + gjo(i + ©) (6.24)

Once the span of DQ;F (i + t) is estimated with the help of Eq.6.21 to 6.24, the Q;F (i + t) span
could be determined with the help of Eq.6.19.

6.4.2. Type 1 Model (by moving back in time and space)

If one replaces the time series of Q; of Eq. 6.11 to 6.15 with DQ;, the time series of lateral

discharges could be forecasted with the help of extrapolation or by simple linear Regression. The
methods used for Q can be applied to DQ, and can be expressed through Eq.6.25 to 6.29 by

replacing Q;(1) with DQj(1).

DQ;F(i +t) = DQ;(i) + bj(i + t)[ADQ;(i,i — )] + C; (i + t) + gjo(i +1)  (6.26)

DQ;F(i +t) = b;(i + t)[ADQy()] + C; (i + £) + gjo(i + £) (6.29)

These forecasted DQ;F (i + t) could be used in Eq.6.19 in order to forecast Q;F (i +t) .
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6.4.2.1. Regression analysis mode

One can also estimate DQ;F(i +t) with the help of multi-linear regression. In the multi
regression model, the first term of Eq.6.20 is zero, and the second one becomes:

DQF(i+ 1) = (i + 0. Q@) + X “ G+ - DQMD + X~ G+t +e(+1D)
]

(6.30)

where k is the upstream most available gauge. In the analysis mode, the empirical coefficients

a, C and ) are found by least squares optimization, i.e. minimizing the standard deviation of g.

These coefficients then are used as known inputs into the forecasting model.

Eq.6.30 is based on the assumption that linear correlations exist, valid for all i, of DQ;( i) with
known parts of the time series of upstream gauges. Inspection of an x-y plot of DQ;(i) to
DQ;(i+ 1) for data of the Mekong River suggests the use of DQ;( i) as approximations for
DQF;(i+ 1) for each station j. However, for longer forecasting times the nearest station alone is
not sufficient, one wants to include also effects of stations which are further upstream.
Consequently, the terms DQF;(i + t — j) could be regressed against all differences DQ; upstream
between station 0 and station k by means of a linear multi-regression analysis, yielding:

DQ;F(i +t) = o;(i +1). Qx (1) +2}=k 71(i+t)-DQj(i) +Z}ﬁ=k- GG+t +e(i+D
]
(6.31)

For example, the forecast of DQF,(i + 5), i.e. 5 day lead time forecast for lateral discharge
station j index 7, could be produced by using Eq. 6.32

DQ,F(i+5) = a,(i+5).Q(i) + 7/7(1 +5) - DQ,(i)+ 7/9(1 +5)-DQy(1)+C, (i+5) +
Co (i +5) + (i + 5) (6.32)
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The difference between the forecasted value and the actual value is the error term given as
&ro(i + t) in Eq. 6.32.

When it is found that the error term time series is not entirely random, but a negative error is
frequently followed by a negative value and vice versa, a positive value is followed by a positive
value, then tthese errors &¢o(i +t) can be further reduced by regressing the future error term

against current errors. In this case further improvements could be obtained by means of a lag one
Marcov chain, i.e. as a first approximation to the time series structure of the error term one can
write the lag-one auto-regression. However, advantages can only be gained from this approach, if
the lead time of the error term is more than one day, and when significant correlations exist over
the forecast lead time.

grjoli+t) = Bji +t).ero(i+t—t) +@ji +1t) + &, +1) (6.33)

Since &¢o(i +t) is the estimate of the forecasting error term and determined in the analysis
mode, it will be renamed as &, (i + t). Introducing these pre-estimated errors into Eq.6.19

yields:

QiFo(i + ) = Q(i) + LIZE DQF(i + t — ) + ggie (i + +epj (i + ) (6.34)

The error term &5, (i + t) is analyzed further by finding its empirical probability distribution. In
this way one can, through a frequency analysis of the error terms, obtain bands about the
forecasted value, which are specified by the probability distribution P(¢). For example, the
Probability of P(ggq) =80% means that 80% of all values are lower than the forecast plus &g;.

6.5. Data Based Modeling Application to the Mekong River (by moving back
in time)

Daily discharges of 7 mainstream gauges of middle Mekong from Chiang Saen to Stung Treng
for the period of 1960 to 2004 are used to quantify uncertainty bands, and to develop and apply
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flood forecasting methods as described by Eq.6.1 to 6.15 in order to produce flood forecast at 6
gauges, i.e. Luang Prabang, Vientiane, Nakhon Phanom, Mukdahan, Pakse, and Stung Treng,
with 1 to 5 day lead times. For the analysis, the data time series are divided into two parts, one
for the time 1960 to 1990, and the other for the time from 1991 to 2004, for developing and
testing of forecasting models respectively (using the “split sampling” technique). Correlation
coefficients and Nash and Sutcliffe coefficients are used as preliminary criterion to assess each
model performance. The quality is then judged by means of the Persistence Index (PI) in the
final assessment of the forecasting model. However, a selection was made in as much as the
approaches which were giving very low Nash and Sutcliffe coefficient values in the preliminary
stages of model development were discarded and hence not verified by PI.

When models are applied to the data in the analysis mode, errors remain, due to the uncertainty
associated with model, data and measurement uncertainties. The statistics of these error terms
determine the limits of forecast accuracy of possible discharge changes. Application to actual
forecasts introduces additional forecast errors. The quality of the forecast can be assessed by
comparison of the historical error statistics — called here the hydrological uncertainty, with the
forecast error statistics — called here the forecast uncertainty.

In this step, Qj(i,i+t) are forecasted by moving back in time by using only the discharge time
series of Qj, hence not utilizing the information from upstream gauges or upstream reaches. The
performance of Type 0 Model and Type 1 Model as described in Eq. 1 to 15 and in Eq. 21 to 27
respectively is tested to do flood forecast in the middle reach of Mekong between Chiang Saen
and Stung Treng at C,L,V,N,M,P and S for 1 to 5 day lead times.

6.5.1. Application of Type-0 Model

At first the limits of the AQ; are quantified by analyzing the discharge statistics of the Mekong.
The spatio-temporal patterns of daily discharges at each forecasting gauge starting from Chiang
Saen to Stung Treng are presented in Fig.6.6. The forecasting stations are identified by the initial
letter of their name, i.e. Chiang Saen = C, Luang Prabang = L, Vientiane = V, Nakhon Phanom =
N, Mukdahan = M, Pakse = P and Stung Treng = S. The whole middle reach of the Mekong
between C and S is divided into 6 reaches, where each reach between adjacent gauging stations
is represented by the initials of the stations, such as CL, LV, VN, NM, MP and PS reach.
Similarly the lateral contribution in between two forecasting stations will also be represented by
the initials of terminal stations, for example, the lateral inflow between Chiang Saen to Luang
Prabang will be indicated by CL and so on.

Fig.6.6 shows the maximum and minimum recorded discharges at gauging stations along the
middle reach of the Mekong in the period of 1960 to 1990. A plot of the maximum discharges of
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the main river gauges as function of distance indicates that maximum recorded flow increases
from upstream to downstream. The maximum discharge at upstream gauge C is about 23,500
m’/sec in comparison to 68,880 m’/sec at gauge S, which is the last downstream gauge in this
analysis. Furthermore, maximum and minimum changes in main stream discharge AQ;(i+t) and
lateral discharge ADQ;(i+t) are also determined, with t = 1,2...5, however only the results of t=1
are presented in Fig.6.6. The maxima AQ; as shown by green bars illustrate that they also
increase from upstream to downstream. It means that the potential of maximum discharge change
in unit time is higher downstream than upstream.

Similarly, the statistics of the extremes, i.e., maxima and minima, of lateral inflows DQ; and
ADQ; indicate that normally the maximum AQ-values in 1 day unit time are smaller than
maximum temporal changes of the AQ-values of the main gauges. This information can be used
to approximate the forecasted uncertainty bands without using real time information, by simply
adding the span of maximum and minimum lateral ADQ to the upstream gauge discharge. The
analysis of the historical AQ — time series has given the approximate range of discharge changes
on either side in unit time, for example in the case of C it is +/- 4000 m’/sec. Along with
maximum and minimum AQ-values, one can also provide the probability distribution of the
changes AQ per unit time.
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Fig. 6.6: Terminal discharge statistics
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To start with, the maximum and minimum statistics of AQj(i+t) is determined as given in Fig.6.7,
in order to fix lower and upper limits of the error band as described in Section-6.1. The AQ-
values increase along the river - from 2500 to 10,000 m*/sec in 1 to 5 days at Chiang Saen, and
to 12000 to 32000 m*/sec at Stung Treng.

But the maximum and minimum statistics of AQ;(i+t) belong to extreme events, and most of the
time AQ;(i+t) remains smaller than these extremes.
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Fig. 6.7: Maximum and minimum discharge change in I to 5 days along Mekong

6.5.1.1. Forecast based on Average Differences

Both positive and negative AQ;(1,1+t) vary along the season and also from reach to reach.
Plotting of AQ, (1,1 + t) for t =1 to 5 days for the month of June to October shows the variation of
AQ during the flood season (Fig.6.8). The positive and negative AQ,(1,1+ t) values increase

along the river and during the season from June to August and then decrease in September and
October. However, positive and negative AQ-values are not of equal magnitude in different flood
months.
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6.5.1.2. Results and Discussion

This information of positive and negative m could be used in Eq.6.7-6.8 in order to do
estimate an a priori flood magnitude span. But since the range of m is based on
average differences, future discharges are likely to exceed these upper and lower limits. Again,
the span in between upper and lower limits obtained by adding m into Qj(i) increases

with lead time from 1 o 5 days is given in Fig.6.8 . For example in the case of S, it increase from
-400 to 1000 m*/sec in 1 day lead time (Fig.6.8a) to -2000 to +3000 m’/sec in five days lead time

lead time (Fig.6.8e).
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6.5.2. Application of Type 1 Model (by moving back in time)

In the second step, different variants of Type 1 Model are used in order to do flood forecasts at
C,L,V.N,M,P and S for 1 to 5 days lead times. The application potential of linear regression in
forecasting future discharges is presented here.

6.5.2.1.Forecast based on simple linear regression

In the analysis mode the correlation of subsequent discharge differences , i.e. AQj(i,i-1) vs.
AQj(@i,i+t) and ADQj(i,i-1) vs. ADQj(i,i+t) for Mainstream discharges Qj(i,i+t) and lateral
inflows DQj,j-1(i,i+t) are determined for each gauge j with lead time of 1 to 5 days. The high
correlation value suggests the feasibility of Eqs.6.13 and 6.27 for flood forecast. It is observed
that the correlation of subsequent discharge differences decrease with lead time, as shown in
Fig.6.9.
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Fig. 6.9: Correlation coefficient of subsequent AQ
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6.5.2.2. Results and Discussion

Prior to do forecasts by simple linear regression, the potential of this method is explored by
further analysing the x-y plots Q;(i) vs Q;(it+t) for C,L,V,N,M,P and S. The forecasting results
obtained by this approach are useful for one day forecasts because the magnitude of AQ is small
in comparison to that of the total discharge, and also because the discharge correlation is high for
1 day lead time, as shown in Fig.6.9. But this approach cannot be successfully used for lead
times more than 1 day as illustrated by the scatter plot of S for Q(i) vs Q(i+t) witht=1and t=15
as shown in Fig.6.10. These x-y plots show for each gauge only small scatter for t =1, which
increase for higher values of t reducing the usefulness of this approach for forecasts for more
than 1 day lead time:as shown in Fig.6.10, the discharge spread ranges up to 30,000 m’/sec?
above the mainstream discharge of 40,000 m*/secat S.
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Fig. 6.10: x-y plots, right) Qj(i) vs Qj(i+1) and left) Qj(i) vs Qj(i+35) for S

6.6. Data Based Modeling Application on Mekong (by moving back in time
and space)

6.6.1. Time lag calculation in between Major River gauges

The flow time between different stations can be determined by means of the cross correlation
curve, or it can be estimated by means of velocity measurements in the reaches. The average
travel time corresponds to the lag of the maximum of the cross correlation function. A time lag
calculation helps to obtain the characteristic flood travel times of the river. The Lower Mekong
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Basin is a large system where major stations are apart 100 to more than 300 km, yielding flow
times between stations of the order of one or two days. These flow times correspond roughly to
the time of measurement: the water level readings are made usually one or two times a day,
depending on the policy of the specific country. Consequently, the analysis is made on daily
values, and the forecast time is given in days.
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Fig. 6.11: Time lag computation by cross correlation analysis

Tab. 6.1: Time lag computation by a graphical approach

Reach Length Approx. Timelag|Approx. Timelag |Velocity Velocity
Km Day Hrs Km/hr misec
Chiang Saen L.Prabang 353 2 48 7 2.0
L.Prabang Vientiane 427 2 43 9 2.5
Vientiane N.Phanom 368 2 48 3 2.1
N.Phanom Mukdahan 9 1 24 4 1,1
lMukdahan Pakse 256 1 24 11 3.0
Pakse Stung Treng 201 1 24 8 2.3

Tables-6.1 & 6.2 give an overview of the results of computations of time lags between the major
gauges. Fig.-6.11 gives time lags obtained from cross correlations of discharge time series,
andTable-6.5 summarizes the time lag obtained by graphical plotting of storm peaks as shown in
fig.6.12.The results for the upper reaches are better defined, because cross correlation peaks are
sharp, whereas from Pakse downstream the cross correlation curves are spread more widely and
identification of the maximum becomes more difficult. A similar problem occurs in locating the
time delay of peaks between subsequent gauges in graphical plots of storm peaks of downstream
gauges.
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Fig. 6.12: Time lag computation by graphical approach

Results for Table-6.2 were calculated from given velocity data (RFMMC, 2004).
between minimum and maximum values is due to velocity changes during different water stages.
The data also show that time lags are about one day or smaller, which points out that in flood

seasons a higher measurement interval would be helpful for near time forecasting.

Tab. 6.2: Time lag computations using velocities given by RFMMC

The range

Guaging Station Velocity (m/sec) Reach Length Time Lag |Time Lag
Min Avg Max Km Hrs Days

Chiang Saen 0.7 1.5 2.6|Chiang Saen L.Prabang 353 42 1.7
L.Prabang 0.2 1.1 2 1|L.Prabang Vientiane 427 49 21
Vientiane 0.5 1.4 2 7|Vientiane N.Phanom 368 4 1.7
N.Phanom 0.2 1.0 2.3|N.Phanom Mukdahan N 12 0.5
Mukdahan 05 1.0 1.9|Mukdahan Pakse 256 38 1.6
Pakse 0.3 1,0 1.8
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Fig. 6.13: Schematic diagram of middle section of Lower Mekong

The Mekong flood wave takes approximately 9 days to travel from C to S after passing through
the intermediate flow gauging stations L, V, N, M and P. In the schematic diagram (Fig.6.13) of
the middle Mekong, each gauge is assigned space index j, as indicated in Figs.6.4 & 6.5, which
ranges from 0 to 9 increasing upstream from S to C. The travel time of flood wave is normally
one day from one gauging station to another except for C to L, L to V, and V to N, where it is 2
days as given in Tables 6.1 & 6.2. In the course of travel from Chiang Saen to Stung Treng, the
flood wave increases by contributions from lateral rivers which mainly drain the mountain range
between Lao PDR and Vietnam.
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In the flood forecasting procedure of moving back in time and space simultaneously, the
information of upstream current discharges Qj(i) is required as indicated in Eq. 6.31. It is
convenient to take space index j in terms of time t as indicated in Fig.6.13. The indices j are
defined on the basis of time lag from one gauge to the next. For example, from gauge j = 0 to
gauge j = 1, there is a time lag of one day and from gauge j = 3 to gauge j = 5, there is a time lag
of 2 days and so on. In this situation of labelling space in terms of time, the forecasting lead time
t at gauge j dictates the number of steps for moving upstream from the forecasting station. For
example, for 1 day forecast at Stung Treng, where t = 1, upstream flow Qj(i) has to be considered
taking j = 1 i.e., Qy(i), i.e., Pakse, and lateral inflows th;g DQ;(i + t —j) i.e., DQq(i+1) which is
lateral inflow between Pakse and Stung Treng. Similarly for 2 day forecast at Stung Treng,
where t = 2 one needs to consider Qj(i), with j = 2 that is Mukdahan and lateral inflows
Z};& DQ;(i +t) - i.e., DQ(i+2) + DQ,(i+1) which is the lateral inflow between Pakse and Stung
Treng, and Mukdahan and Pakse respectively. Therefore, the number of steps j movement
upstream in space is equal to forecasting lead lead timet.

In order to do forecasts by using Eq.6.31, the lateral discharges DQF(i+t) and &, (i + t) have to
be estimated first in the analysis mode. Since lateral discharge data is not available for Mekong
they are indirectly computed by subtracting upstream discharges from downstream discharges
with time lags as given in tables-6.1 & 6.2, by using Eq.6.18.

6.6.2. Application of Type-0 Model (moving back in time and space)

The temporal structure of lateral inflows DQj-values is analyzed in order to determine the

2

seasonality in lateral inflows. The box plot of mean monthly daily inflows, i.e. ( %,; ...... %),

where n is number of years, of each gauge j of Main Mekong River has been plotted against
time, i.e. 1, 2...12, in order to assess the mean monthly discharge temporal pattern with respect
to empirical potential upper and lower limits of lateral inflows together with 25, 50 and 75 %
quartiles. The maximum discharges are observed in the month of August or September. The box
plots also indicate the deviations of discharges from the mean discharges in each month. The
observed seasonality in discharges emphasizes the need of analyzing lateral ADQ separately for
each month because the ADQ may be a function of the magnitude of DQ.
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Fig. 6.14: Box plot of lateral inflows for CL, LV, VN, NM, MP and PS in a, b, ¢, d, e and f respectively

Therefore, ADQj(i+t) at P(AQs) =5% and P(AQgs) =95% probability of occurrence are
determined separately for each month in order to establish second order limits of the uncertainty
bands. For example, the range of ADQ;(i+t) for CL, LV, VN, NM, MP and PS reach between
0.05 and 0.95 probability limits per unit time of 1 to 5 days for the months of June and August
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are given in Fig.6.15. It can be seen in Fig.6.15 that ADQ;(i+t) vary with month and lead time.
However, the variation of ADQ;(i+t) does not increase linearly with lead time t.
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6.6.2.1.Flood forecast by Type 0 Model

The ADQ, (1,1 + t) are of different magnitude in different reaches, being maximum in reach PS

and minimum in reach LV. The maximum ADQ, ;(1,1 + t) of LV is in the month of September,
in contrast to all other reaches where it is in August (Fig. 6.16).

6.6.2.2. Results and Discussion

This information could be used as a priori information for estimating the flood magnitude span
by means of Egs.6.21-6.22 in combination with Eq.6.19. Foral to 2 days forecast, this approach
can be successfully used, because the average change in discharge in short lead times is small.
For example, for a two days forecast of S, one needs to add APS (i+2) and AMP (i+1) into (S(i)
+PS(i+2) + MP(i)), where the span of APS (i+2) and AMP (i+1) ranges from -1500 to +1500
m’/sec and -500 to +1000 m’/sec respectively. So the total expected span of S(i+2) would
become S(i) plus -2000 to +2500 m*/sec (adding the negative and positive averages of APS(1+2)
and AMP(i+1) respectively). If most of the discharge changes remain near the average discharge
change, then this approach gives a good initial guess of future discharges. However,
ADQjs(i,i +t) do not always remain close to average. Therefore, better ways are needed in

order forecast the discharge changes from current day to a future day.
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6.6.2.3.Forecast based on probability distribution

The ADQj(i+t) probability range between the limits of 0.05 to 0.95 of all the inflows of Middle
Mekong are given in Fig.17 in different months of flood season from June to October. It is
interesting to note that positive ADQ at 0.95 probability increase from June to August but
decrease from September to October. In many reaches negative ADQ-values at 0.05 probabilities
reach  their maximum in  September, for example in the MP reach.
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Fig. 6.17: Discharge variation Probability at P(e_05) & (P(c)_95) for flood season

Normalized probability density distributions of ADQj(i+t) of PS reach for the months of July,
August, September and October are given in Fig.6.18, where, t =1 to 5. The standard deviations
and means of these pdfs are given in Table-6.3. The shape of the pdfs are Gaussian, however
there is a positive bias in the pdf of ADQ;(i+t) in July, whereas this bias becomes negative in the
month of October, which indicates the ADQ;(i+t) variation pattern during the flood season. The
bias in the pdf is due to the rising and falling limbs of long flood hydrographs, where the
increasing number of positive ADQj(i+t) in July and August pushes the mean of pdf towards
right from the zero mean with the positive bias and increasing number of negative ADQj(i+t) in
October push it toward left from zero mean. Similar distribution analysis is also conducted for
other reaches for each month of flood season, i.e. June, July, August, September and October.
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Fig. 6.18: Normal distribution plots of AQ of PS reach for the months of July, August, September and
October in a, b, ¢ and d respectively

6.6.2.4. Results and Discussion

The ADQj(i+t) probability range between the limits of 0.05 to 0.95 can be used in Eq.6.23-6.24
in order to estimate the span of DQj;(i+t) — which can further be used in Eq.6.19 in order to
estimate the a prior span of future discharges Q;(i+t). But this span cannot be used as a forecast
because the range between 0.05 to 0.95 % occurrence probabilities is too wide, as shown in
Fig.6.18.

6.6.3. Flood forecast by Type 1 Model

The simple and multi-linear regressions are tried to determine lateral inflows in the application of
Type 1 Models.
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6.6.3.1. Forecast based on Simple linear Regression

In the analysis mode the correlation of subsequent discharge differences, i.e. ADQj(1,i-t) vs.
ADQj(1,i+t) for lateral inflows DQ;;.1(1,i+t) are determined for each gauge j with lead lead timeof
1 to 5 days. It is observed that the correlation of subsequent discharge differences decrease with

lead time, as shown in Fig.6.19.

Tab. 6.3: Statistical parameters for normal distributions of ADQj(i+t) for PS

i+1 i+2 i+3 i+4 i+5
Jul Average 72 79 60 135 237
St. dev. 1719 1849 1171 1865 2343
Aug Average 330 421 100 215 328
St. dev. 2741 3036 1587 2324 2879
Sep Average 6 16 -13 -17 -26
St. dev. 2679 2946 1381 2019 2455
Oct Average -361 -459 -143 -296 -441
St. dev. 1159 1328 916 1433 1780
I
—
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g 06 - mi+l
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Fig. 6.19: Correlation coefficient of subsequent ADQ
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6.6.3.2. Results and Discussion

The poor correlation between subsequent lateral inflows suggests the limited potential of this
approach as augmented by the Scatter plot of DQ(i) vs DQ(i+t) for reach PS (Fig.6.20).
Therefore, simple linear regression of subsequent discharges is not used for further

computations.
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6.6.3.3. Forecast based on Multi linear Regression

The multi-regression parameter oj(i +t), Cj(i +t) and vy;(i+t) of Eq.6.30 are determined in the
analysis mode for approximating DQF(i+t). The coefficients Bj(i + t) and ¢j(i + t) of Eq.6.33
are also pre-determined. These regression parameters are given in Table-6.4.

Tab. 6.4: Regression parameters to compute lateral inflows DQj(i+t)

Substantial Model Updating
DQ; Qx DQy DQ;, DQ:s DQ; DQ, DQ, Bj(i @j(
(i+t) (i+t) (i+t) (i+t) (i+t) (i+t) (i+t) +t) +t)
CS CL LV VN NM MP PS
YAt | w0 [ ve(it) |y [ yst) | s () | v2 (i) | vt | Gty | R
DQj+9
i+l 0.01 0.96 24.15 0.94 0.27 17.73
i+2 0.03 0.88 52.52 0.86 0.08 49.69
i+3 0.06 0.82 58.37 0.81 0.01 67.26
i+4 0.09 0.77 52.70 0.78 -0.05 76.26
it+5 0.11 0.73 47.64 0.76 -0.11 85.33
DQj+7
i+1 0,02 0,02 0,88 -8,36 0,89 -0.01 7.70
i+2 0,04 0,02 0,78 -14,45 0,80 0.08 16.05
i+3 0,05 0,04 0,69 -22,26 | 0,74 0.02 22.58
i+4 0,06 0,06 0,62 -30,41 0,70 0.01 26.23
it5 0,07 0,06 0,57 -41,55 0,68 0.01 27.00
DQj+5
it+1 0,00 0,00 -0,03 1,00 30,12 0,98 0.47 10.78
i+2 0,02 -0,02 -0,06 0,98 64,09 0,94 0.26 39.95
i+3 0,04 -0,07 0,02 0,95 99,95 0,90 0.09 83.54
it+4 0,07 -0,11 0,09 0,91 128,02 | 0,86 0.00 125.75
i+5 0,09 -0,12 0,12 0,88 0,12 0,83 -0.05 169.07
DQ+3
i+l 0,03 -0,01 -0,01 -0,01 0,96 -5,21 0,92 0.30 1.72
i+t2 0,05 -0,02 -0,03 -0,01 0,89 -12,61 0,83 0.04 -14.60
i+3 0,08 -0,03 -0,07 -0,01 0,82 -21,13 0,76 -0.06 -34.24
it+4 0,10 -0,04 -0,09 -0,01 0,78 -24,87 0,70 -0.04 -43.82
it+5 0,11 -0,06 -0,11 0,00 0,74 -22,02 0,66 -0.03 -44.58
DQj+2
it+1 0,02 0,03 0,02 0,00 0,00 0,95 -13,07 0,96 0.32 -4.50
i+2 0,04 0,08 0,05 0,01 0,01 0,88 -13,99 | 0,90 0.10 -5.01
i+3 0,06 0,11 0,08 0,03 0,03 0,81 -11,67 0,84 -0.07 -8.53
i+4 0,09 0,11 0,11 0,04 0,03 0,76 -8,20 0,80 -0.11 -13.91
it+5 0,12 0,11 0,15 0,04 0,01 0,71 -8,09 0,76 -0.08 -28.16
DQj+1
it+1 0,03 0,02 0,01 0,02 0,04 0,01 0,94 -24,01 0,96 0.29 67.80
i+2 0,09 0,02 -0,01 0,04 0,04 0,07 0,85 -61,38 0,91 0.20 153.64
i+3 0,13 0,01 -0,01 0,06 0,04 0,10 0,77 -90,12 0,87 0.12 230.73
i+4 0,17 0,02 0,00 0,08 0,06 0,11 0,71 -111,39 | 0,83 0.09 299.52
it+5 0,21 0,03 0,04 0,10 0,09 0,10 0,66 -129,12 | 0,81 0.07 371.19
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The flood flows of C, L, V, N, M, P and S are forecasted for the last 15 flood seasons s by using
Eq.6.30 and Eq.6.33. These forecasted flows are compared with actual observed flows, and then
flood forecast accuracy is estimated by using the persistence index PI.

The patterns of errors in these forecasts with different lead times are observed. Normally the
flood forecast errors are positive in flood accession and negative in flood recession above certain
critical discharge values. Then there are the remaining error after updating with which one has to
live with. Therefore, random values from the error probability distribution must be selected and
must be added to or subtracted from crisp forecast to generate flood forecast band.

6.6.3.4. Results and Discussion

The comparative plot of observed and forecasted discharges along with remaining errors is
shown in Fig.6.17. This Fig. shows the results of 1 and 2 day flood forecasting results for C, L,
V,N, M, P and S. It is evident from Fig.6.21 that the remaining errors are negligible at all gauges
in 1 day lead time, however, the errors goes up to 10,000 m*/sec in two days lead time.

The flood forecasting errors of P and S for fourth and fifth day lead time are presented in Fig-
6.22. The error ranges from 10,000 to 20,000m’/sec. The error time series as plotted on the
bottom of Fig.6.22 shows that positive errors are always followed by positive errors and vice
versa. Secondly, the flood forecast is lagging behind the observed discharge time series,
especially in the rising limb of flood hydrograph. This means, this approach fails to predict the
sudden rise in discharge in the rising limb. The high dependence on the past discharges in
predicting future flows is the main reason of this failure.
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Fig. 6.21: Flood forecast by multi-regression for C, L, V, N, M, P and S from top to bottom respectively,

right column with one day lead time, left column with two days lead time
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Fig. 6.22Flood forecast by multi-regression for P and S from top to bottom respectively, right column
with four days lead time, left column with five days lead time

The probability distribution plots of the forecasting errors of C, L, V, N, M, P and S are shown in
Fig.6.23. In each case, the spread of errors increase with the lead time. The forecasting errors of
lead time greater than two days are biased toward positive x-axis, which means the flood
forecasts underestimate the observed flow in the longer lead times.

The efficiency of flood forecast by multi-regression is gauged with the help of persistence index
(PI) is shown in Fig.6.24. The efficiency of all forecasting gauges, except Nakhon Phanom, for
first three days lead time varies from 0.5 to 0.7. However the efficiency decreases with increase

in lead time from 4™ to 5™ day.
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Fig. 6.23: Probability distribution of errors for I to 5 days forecast of C, L, V, V, M, P and S based on
1991 to 2000 flood season data
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Fig. 6.24: Efficiency of 1 to 5 days flood forecast by PI for C, L, V, V, M, P and S based on left column;
1991 to 2000 and right column; 2000 to 2005 flood season data
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The errors of flood forecast by multi-regression are further compared with the errors of no model
forecast. In the case of no model forecast, the observed discharge of today is taken as the

estimate of future discharges.
Tab. 6.5: Standard deviation of flood forecast (for 1991 to 2000 and 2000 to 2005)

Without forecast Forecast based on | Without forecast Forecast based on multi
Gaug | (1991 to 2000) multi regression (2001 to 2005) regression
e (1991 to 2000) (2001 to 2005)
L+1 640 549 649 622
L+2 1101 821 1059 910
V+1 623 493 674 479
V+2 1081 599 1117 634
V+3 1461 860 1454 1005
V+4 1778 1096 1716 1251
N+1 712 716 818 724
N+2 1288 1145 1417 1222
N+3 1799 1579 1886 1700
N+4 2248 1896 2293 2033
N+5 2648 2219 2650 2406
M+1 826 474 987 469
M+2 1536 1098 1762 1209
M+3 2165 1613 2439 1833
M+4 2721 2104 3028 2413
M-+5 3219 2483 3543 2848
P+1 1212 831 1225 758
P+2 2118 1411 2167 1366
P+3 2887 2053 2984 2108
P+4 3546 2613 3690 2780
P+5 4122 3137 4295 3390
S+1 2007 1397 1974 1242
S+2 3508 2515 3460 2310
S+3 4760 3540 4714 3300
S+4 5809 4489 5737 4231
S+5 6708 5290 6597 5057

The respective errors are compared in terms of standard deviations. The standard deviation of
errors of multi-regression model is compared with the standard deviation of errors of no model

122



Discharge Data Based Forecasting (Type 1 Model)

forecast. This comparison of standard deviation is given in Table-6.5, which indicate that
standard deviations reduce by 50% in 1 day lead time from the no model forecast to the forecast
by multi-regression. Again this reduction in standard deviation is valid for all forecasting gauges
except for Nakhon Phanom. But this reduction in standard deviation of errors decreases with
increase in lead time.

6.7. Summary

A no model forecast, i.e. assuming discharge of today will be the discharge of the future, serves
as first bench mark for improvement by any forecasting model. Application of Type 0 Model,
both by moving back in time and moving back in time and space, established a span of upcoming
future discharges based on the empirical analysis of discharge time series without real time
forecast: i.e. based on historical minimum, maximum, average, discharge differences. This
analysis is further augmented by provision of the probability distributions of discharge
differences of 1 to 5 days lead lead time. Consideration of seasonality in probability distribution
and in the estimation of minimum, maximum, average, discharge differences further narrowed
the future discharge span.

Type 1 Model is applied in two versions, one by moving back in time, and the second moving
back in time and space. The results of flood forecasts by moving back in time and space
simultaneously is found better than the forecasting results of moving back in time only. The
multi-regression model is found to be the best approach for estimating lateral inflows.
Forecasting results of the multi-regression model are further improved with the help of updating
by forecasting error regression.

Forecasting efficiency for the second version of Model 1 ranges from 0.5 to 0.7 in terms of PI for
first three days, however it decreases sharply above three days lead time. Again, the forecasting
efficiency for Nakhon Phanom, i.e. 0.2 to 0.3 is much lower than the forecasting efficiency
observed at other forecasting gauges.
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7. Rainfall and Discharge Data Based Forecasting (Type 2 Model)

7.1. Type 2 Models

During application of the regression model on the Mekong River, it was observed that the use of
persistence between subsequent discharges is sufficient to produce flood forecasts with
acceptable efficiency, i.e. PI = 0.45 to 0.70 up to two days lead time. However, the efficiency of
flood forecasts by this model reduces from PI = 0.4 to 0.3 with increase in lead time from the 3™
to the 5™ day (Chapter-6). It is likely that rainfall forcings reduce the capability of the type 1
model to produce effective flood forecasts for lead times greater than two days. This loss of
efficiency is due to the fact that the direct influence of rainfall is neglected. This can be tested by
plotting the errors of the Type 1 model forecasts against daily rainfall hyetographs. The
empirical evidence indicates that use of rainfall data becomes essential. If a significant
correlation exists between rainfall and errors, then linear regression could be used directly to
reduce the forecast errors by means of the rainfall time series. However, it is less likely to obtain
good correlation between errors and the daily rainfall data because, the Type 1 model, already
explained part of the discharges caused by rainfall forcing. Therefore it is difficult to justify to
use the rainfall data again for explaining the unexplained portion of the errors. Consequently,
instead of improving model 1 forecasts, it is more logical that the daily rainfall should be
correlated directly with lateral runoff.

The distinctive hydrological feature of a rainfall — runoff relation in catchments is the time delay
of the rainfall before it runs off. It is informative to obtain this time delay, expressed through a
time lag T, before regressing rainfall occurrence DP, ;.1 (i) against lateral discharges DQ;;44 (i).
Then the lateral discharge can be directly calculated from the rainfall by means of simple linear
regression, provided each daily impulse of rainfall DPj;,, (i) actually affects each daily lateral
discharge DQj;,1(1) with time delay T. However, the runoff DPj;,;(i)from daily catchment
rainfall is distributed in time over more than one day except in very small catchments of steep
areas. Consequently, it is better to use a rainfall runoff model to distribute the rainfall over time
to shape the discharge hydrograph. This approach results in the Type 2 model.
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Fig. 7.1: Flow chart for the development of Type 2 Model

The work flow chart for the Type 2 Model for Mekong flood forecasting, is presented in Fig.7.1.
Different options to prepare rainfall input, effective rainfall and runoff are listed in this Fig. The
options preferred at the end are underlined. The non-shaded portion of Fig.7.1 pertain to the
analysis mode of model development, whereas the shaded portions of Fig.7.1 pertain to the
forecast mode, i.e to the use of the model with a forecasted rainfall input. This chapter explains
the development and application of Type 2 Model by following the steps given in this Fig.

It was already discussed in chapter-3 that conceptual models serve well the purpose of flood
forecasting in macro scale catchments. But prior to building the conceptual model structure, one
has to answer three questions: what should be the spatial distribution of the sub-areas of the
catchment of a large river in a modeling structure, both in the horizontal and vertical scale, how
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to estimate the effective rainfall, and how to convert the effective rainfall into the runoff
hydrograph.

7.1.1. Spatial distribution of a catchment

For the answer to question one for the horizontal scale, depending on the type of model used, the
catchment is subdivided into a number of sub-basins, into grids, or into response units. However,
the difficulty of measurement or estimation of rainfall and discharge in each distributed unit
place limits on this division. The use of finer spatial resolution is of no additional benefit if the
spatial resolution of the network of gauges for measuring observed data is coarser than that of the
distributed sub-basins or grids. Secondly, even if it is assumed that high resolution rainfall and
discharge data are available, this approach loses its validity because the efficiency is reduced
when moving from micro to macro scale (Plate,2009) in balancing the equations of a flow from
one scale to another. In principle, it would be possible to subdivide the areas of the sub
catchments of the Mekong even further, into two or more units of macro scale size, provided that
discharge gauges were available at some intermediate points in order to validate rainfall runoff
models. However, no such gauges were available at intermediate points for this study, so that
neither fully distributed modeling nor partial distribution into two or more sub-basins was
possible. Consequently, all the sub-areas between subsequent discharge gauges on the main river
are lumped into one catchment, and the discharge change DQj;.,(i) was calculated from the

mainstream discharge gauges for these larger sub-catchments, as described in Chapter-6.

x rdVZh Surface flow
'
Inter flow
V'd
/ 7' Ground water flow

Fig. 7.2: Conceptualization of flow, spatial distribution

In answering the first question for the vertical scale one needs to consider the vertical structure of
a catchment. For the conceptualization of flow components, one can divide the catchment into a
number of horizontal layers piled up one on another from the top surface layer to deep down soil
strata through which the water moves with different translation times. Among hydrologists, the
most conventional division of water flow is the separation into surface (quick) and sub-surface
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(delayed) flow. And the sub-surface flow can be broken down again into interflow that runs just
beneath the surface layer with little time delay, and ground water flow.(Fig. 7.2). In unit
hydrograph analysis the surface flow has been named as direct flow generated by rainfall from
the present storm, and the delayed flow generated through draining of groundwater from the soil
is called base flow. Accordingly, the base flow has to be separated from the total flow
hydrograph in order to generate the direct flow discharges. An effective rainfall is used to
generate direct flow, to which the pre-estimated base flow is added afterwards in order to obtain
the total discharge. However, in conceptualization of flow in this study, base flow and surface
runoff are lumped into one component, because in practice one cannot measure these
components separately and one has to rely on physical models to determine each component.
Furthermore, available models to sub-divide hydrographs into a number of different flow
components are highly judgmental (Maidment, 1992). Therefore, in this study the observed flow
is considered as generated by an effective rainfall obtained by multiplying the actual rainfall with
an “adjustment factor” KN.

7.1.2. Effective Rainfall / Gain Estimation

In order to answer the second question, one needs to calculate the effective rainfall, from total
areal average rainfall. In this regard, the importance of good measurement of rainfall cannot be
denied (Hapuarachchi, 2007).The total areal average rainfall can be taken from the satellite rainfall
estimates (SRE), or by taking the arithmetic or weighted average (for example, by Thiessen
polygons) rainfall of the point gauges in the catchment, as was done for this study.

Once the total areal average rainfall has been calculated, the effective rainfall can be computed
by different methods. According to the procedure of effective rainfall determination from the
rainfall, rainfall-runoff models can be classified into two groups. For group-1 models the
effective rainfall is calculated first and then it is used as input to a conceptual catchment model
for runoff generation, whereas group-2 models (normally known as surface budget models) take
the incident rainfall as input and calculate the infiltration and other losses as integral part of
runoff estimation.

Effective rainfall is the component of the storm hyetograph which is not retained or infiltrated.
For large scale catchments, where field measurements are not available, the soil conservation
service (SCS) method, Horton equation or Green & Ampt method are frequently used to
determine effective rainfall (Maidment, 1992) These methods are intended to balance the water
volume, so that total runoff and total effective rainfall become identical. In the present study, a
method similar to group-1 models is employed. An adjustment factor KN, which includes the
runoff coefficient was used to compute the gain (the percentage of rainfall that is converted to
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runoff) from the rainfall. For each month, an average is found by simply closing the mass
balance between area-averaged rainfall and runoff, i.e. through the relation:

2sQ; (D) = ¢ - KN;(s) - Agj - Xs P; (1) (7.1)

where ¢ is a unit-conversion factor and KN;j(s) is the adjustment factor for reach j and season s.
Multiplying this coefficient KN with the total rainfall yields the total runoff volume, i.e. the
coefficient KN is used to calculate rainfall excess available for runoff.. Initially a constant K'N;
for the whole flood season was used. However, this assumption is not realistic enough. It was
found that KN depends both on season and on reach. Studies on variability of catchment
response to same rainfall input but of different catchment wetness conditions (Merz, 1997,
Berthet et. al, 2009, Longobardi, et. al) have suggested the need for using variable or seasonal runoff
coefficients.

The runoff coefficient is mostly related to the incident moisture condition and the infiltration
capacity of a catchment. If the catchment is fully saturated, then the rainfall occurrences do not
have to replenish the soil moisture deficit before turning into runoff. However, in cases of
unsaturated and semi-saturated catchments, the soil moisture deficit has to be made up first. The
saturation dynamics of different catchment is highly local, depending on the type of soil, its
permeability, and the catchment’s hydro-meteorological conditions. In the catchments of
Mekong tributaries annual rainfall is distribution over a few flood months and no or very little
rainfall occurs in other part of the year. Soil moisture increases from the onset of the flood
season / rainy season and starts decreasing by the end of the flood season. Since the frequency of
rainfall storms is high in the flood season with only few dry days in between the consecutive
rainfall storms, the catchment remains in the saturation state for a long time, once it gains the
saturation state. This behavior of the Mekong River is very typical of monsoon catchments,
because in other rivers (not hit by typical monsoons) the span of dry days in between the
subsequent rainfall storms may be high and hence each rainfall event first has to replenish the
soil moisture to bring the catchment into the saturation stage. Consequently, in these catchments
the antecedent rainfall occurrences must be considered in the computation of the runoff from the
rainfall of each event. However, the behavior of the Mekong is different. Because it receives
rainfall both from the south-west monsoon and typhoons, it shows a continuous increase in
effective rainfall during the flood season as the catchment moves from unsaturated to saturated
conditions. The catchment moves back to unsaturated condition once the flood season is over.
This phenomenon is repeated every year and hence, a cyclic wave propagation like movement of
monthly KN; around the mean yearly KN; (Fig.7.3) is produced. Therefore, in this study KN; is
computed empirically from observed rainfall runoff data. Four different methods, including
assuming constant KN; for whole flood season, have been tried.
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7.1.2.1. Constant KN;(y)

A constant value of KN for the whole season is obtained by calculating:

PR 10

KNO) = iz ri0 (7.2)

s I

KN = X} |—=2 ] .
TSR X Poesswryrey (7.3)

where y is an index for the days of the flood season of from May to October and KN, (y) is the

mean of KN;(y) of 1 to n annual records of (y days) flood seasons.

7.1.2.2.Mean monthly KN;(s)

2sQiM)

KNG) = o ser@ 74
wheres=1,2...6
e~ 1
KN,G) = 2T KN(s) (7.5)

where KN, (s) is the mean KN;(s) of 1 to n years for month s

7.1.2.3. KN; Estimation by multi-regression

The assumption of mean monthly KN,(s) occurrence in each flood season ignores the KN;(s)
variability from dry to wet years and the effect of rainfall distribution among different months of
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the flood season. Consequently, instead of using m, the actual KN;(s) can be used in the
analysis mode to provide the gain for rainfall runoff modeling. However, KN;(s) is not available
in the forecasting mode because its computation requires the data of P and Q for whole month
which is not available. Therefore, a method is developed to estimate KN;(s) by correlating it

with the previous month KN;(s — 1) with the help of linear regression:

KNj(s + 1) = 05(s) + Cj (s) - KNj(s) + g¢(s + 1) (7.6)

Fig. 7.3: Conceptualization of KN development with time, Top a) Variation of mean KN along flood
season, bottom b) Variation of KN along the flood season for year 1990 to 2000

where coefficients a and C are empirical constants depending on the month and the area Ay, and
s denotes the month of the year. The error term £¢;(s) was further regressed on other factors, to
reduce the error term. These other factors could be: current month’s rainfall, P; (s), accumulative
rainfall up to current month, AP; (s), current month discharge Q; (s), accumulative discharge up
to current month AQj (s), and K'N; of first month of flood season, i.e. KN;j (in). This dependence
of KN; (s) on number of different factors is exploited by using multiple linear regressions. This
approach has the advantage, that the non-linearity of the dependency of K'N; on the season is
covered by means of a piecewise linear relationship.
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Let £.;(s + 1) be expressed through a linear regression equation

KN KNc(s) KN KN; (s) KN Pjc(s) KN Pjc(s) KN
Qjc(s) 0-Qyc(s) . Qjc(s)}
Qc(s) KN Qc(s)

Ej (S + 1) — K_{B'KN)C(S) . KNjc(s) VKN (s) . KN;j(s) + o-Pyc(s) . Pjc(s) + TPc(s) . Pjc(s) + v-Qyc(8) .

(7.7)

with KN = average value of KN;(s + 1). Furthermore, the over bar denotes averages for every
quantity for the location j and season s+1. Note that all quantities in the brackets have been made
dimensionless by their respective averages, which are known from the original data analysis.
Consequently, one can express Eq.7.8 by a more compact expression:

—wn{p . KNic®) . KNinit(s) . Pi(s)  Pic(® RO . Qic® .
(s + D =RN{p-TE+1 G+ O Rt U Re T ag TP o) T
(7.8)

7.1.2.4. KN; Estimation by moving average regression

There are two problems in using pre-estimated monthly approximates KN;(s): first, the variation
of KN;(s) within the month is not accounted for, secondly, the potential of the most recent
available data of KN, is not exploited in estimating current and future KN; value. Therefore, the
average of last n days Q; to P; ratio is used as approximation of current day KN;(d). In this way,

each day (d) gets a separate value of KN; i.e.:

1
Lyn Qj(d-n+k)
1
®-Agj, Lig=q Pj(d—n+k)

KN;(d) = (7.9)

where n is the number of days over which average is taken that range from current day (d — n +
n) to day (d —n + 1) in the past.
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In order to estimate KN; of future days, when data of P and Q are not available, a first order

Markov Chain model can be tested. However, instead of using a Markov chain on a fixed
monthly period, a moving average window of n days is used in order to estimate future
days KN;(d + t).

1
;z’,gzl Qj(d—n+k+t)

KNf(d +t) = ¢.A0j.%2gzlpj(d—n+k+t) (7.10)
where t = 1,2...5 denotes lead time from the current day d The relation between
KN;(d)and KN;(d + t) can be established by using the basic Markov chain method:

KN;(d +t) = 6;(d).KN;(d) (7.11)
KN;(d +t) —KN,(d + t) = 6;(d).[ KN;(d) — KN,(d)] (7.12)

3 [KNj(d+)—KN](d+t)]

0;(d) = TN @R @] (7.13)
KN;(d +t) = KN,(d + ©) + 6;(d).[ KN;(d) — KN,(d)] (7.14)

7.1.3. Conversion of effective rainfall into runoff

For answering the third question, the distribution of effective rainfall over time as runoff from a
sub-catchment has to be considered. It can be assumed that DQ;;,4(i) is only due to the input
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from rainfall in tributaries. The lumping of each sub-basin into one area with uniform rainfall
and uniform basin characteristics allows one to use the unit hydrograph approach. Then observed
effective rainfall and DQj;4;(i) can be used in a simple unit hydrograph analysis. This

conceptualization assumes a linear system response.

The ordinates of unit hydrographs can be obtained in a number of different ways as explained in
chapter-3. One way is to estimate a unit hydrograph ordinate by fitting any distribution function,
which starts at zero and has a long tail with an asymptote of zero, as for example the gamma
distribution. A unit hydrograph u(t) in form of a gamma distribution (Nash Cascade) is:

u(t.m) = Ty k-t)" e (7.15)

k and n are parameters to be obtained from calibration, I'(n) is the gamma function of n, and t =
(i — 0.5)At. The shape of the gamma distribution is controlled by its parameters, i.e. n and k. In
the analysis mode, these parameters have to be determined empirically to generate flow values
close to the observed flows. The parameterization by trying different n and k parameter
combinations could be based on different methods, for example the methods of least squares,
maximum likelihood, or method of moments.

Prior to trying different n and k values to determine least square errors between observed and
generated flows by a trial and error approach, it is time efficient to establish a possible range of n
and k values. The product (n-1)*k is the time to the maximum of the gamma distribution. Putting
this time as equal to the time lag T between rainfall and runoff for maximum cross correlation,
yields a probable range of values of n and k. Although cross correlation analyses for different
annual flood seasons yield different time lags, the approximate range of T can be obtained by
this analysis. Possible combinations of n and k can then be determined that match the equality:
n—1.k=T (7.16)

n = number of reservoirs

k = Storage constant

T = time lag
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1/LSE k3
k2
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v

Fig7.4: Optimization of Gamma distribution functions; n and k

The n and k values are optimized by LSE. The manual way of optimization is to plot k as
function of n for different k values, as shown in Fig.7.4. In each curve of this Fig. k is kept
constant and n is varied along x-axis. On the y-axis is 1/LSE, where LSE is obtained by taking
the squared differences of observed and calculated discharges. The optimum combination is a
pair n and k which gives minimum LSE.

The fitness of observed to model discharges may be tested by using the Nash and Sutcliffe
(1970) coefficient NSK. However, in this study the coefficient of determination RSQ is used as
better measure to gauge the accuracy of the model. Reason for using RSQ in gauging the
efficiency of the rainfall runoff model is because in forecasting the consideration of correlation
between modeled to observed discharge is more important than one to one correlation of
modeled to observed discharge as reflected in NSK. The RSQ indicates the potential of the
model to produce discharges close to observed ones by providing the regression between
modeled and observed discharges. The coefficient of determination shows the strength of linear
relation between x and y as presented in Eq.7.17:

r= nyxy-(Ex)Xy)
VnZx2-Ex)2/nTy2-Cy)?

(7.17)

RSQ = r? (7.18)

To sum up, LSE should be used to select optimum n and k, whereas RSQ should to used to
gauge the efficiency of model which is based on these n and k parameters. Automatic
optimization algorithms are available, and can be used instead of graphical plotting as shown in
Fig.7.3, to find the best n and k parameters on the basis of LSE. The range of n and k is fixed
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through Eq.7.18 in these optimization algorithms in order to obtain the optimum n and k within
pre-selected range.

Two different types of rainfall input can be used for n and k parameterization, i.e. event based
and continuous inputs. In the event based approach, parameterization is done separately for
different storms. The event based approach gives different n and k values, one optimum for each
storm event. Different n and k for different storms are caused by the nature of storms, i.e. by the
differences in spatio-temporal distribution of rainfall and storm movement. In such a case, an
average over all gamma distribution curves can be selected as optimum unit hydrograph for
future flood events. The second approach is to take the rainfall hyetograph and the discharge
time series of a whole season, which includes a number of different storms, and fit the gamma
distribution with a single optimum pair of n and k. In this study, for parameterization of the
rainfall runoff model development for forecasting, taking continuous data was preferred over
event based data because it averages over all storms. Also, no base flow abstraction is needed.

Once the coefficient KN and the ordinates of unit hydrograph are estimated in the analysis mode,
the standard unit hydrograph equation can be used to compute discharges from the rainfall data
as:

DQ;(i) = KNj(s) - Agj Xh=1 P (0) - uy(i — ) (7.19)

In this equation, w is the time coordinate for the rainfall, Pj(w) is the rainfall during time interval
At at time o - At, and KN basically is the runoff coefficient, but it also yields an empirical
compensation for non-uniformity of the rainfall distribution. The rainfall data P;(i) of each basin
with area A and discharge increases DQ;(i) between adjacent stages are needed both in the
forecast and in the analysis mode.

135



Rainfall and Discharge Data Based Forecasting (Type 2 Model)

rainfall distribution: here rainfall is assumed the same for all subbasins
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Fig. 7.5: Unit hydrograph approach to forecasting: schematic presentation

The application of a unit hydrograph model in the forecasting mode is schematically shown in
Fig.7.5. For implementation of this schematic presentation, Eq.7.21 has to be combined with Eq.
7.22. Because part of the rainfall of today will be runoff in the future, the forecast DQF has two
components DQ1 and DQ2:

DQF;(i + t —j) = DQ1;(i + t — j) + DQ2;(i + t — j) (7.20)

DQL;(i +t—j) = KNj(s) - Agj - Xi—o P (@) - uj(i — ) (7.21)
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All quantities for DQI for the forecast are known at time t except KN;(s). In order to calculate
DQI exactly, KN has to be estimated in the forecast mode. Unlike analysis mode, KN;(s) cannot

be found by simply closing the mass balance between area-averaged rainfall and runoff through
Eq.7.1 because both the rainfall and runoff of the running month (s) are unknown for the whole
month unless we are sitting at the end of month. Consequently, KN;(s) has to be estimated first

by any one of the mentioned approaches, i.e. constant KN, average monthly KN, multi-linear
regression, or moving average.
Suitability of these methods can be tested by checking the efficiency of the adapted model in

generating the discharges. Therefore, further explanations of the applicability of these methods
are given in the application section of this approach to the Mekong.

In determining DQ2, both the future rainfall and KN;(s) are not known and have to be forecasted
in order to determine DQ2:

DQ2;(i + t — j) = KNj(s) - Agj; Z-57 P () - (i — o) (7.22)

o=i

In the absence of a weather forecast model which produces future rainfall forecasts, one has to
make assumptions of the future rainfall occurrences in the forecasting period (i+t). Very simple
future rainfall assumptions could be:

PF(i + ®) = P(w) (7.23)

PF(i + ©) = Z5X B () (7.24)

Both approaches have been used in this study.

137



Rainfall and Discharge Data Based Forecasting (Type 2 Model)

7.2. Application of the conceptual model to the Mekong River

7.2.1. InputData

Areal average daily rainfall and the time series of discharge increases DQj(i) between adjacent
stages, as described in Chapter 6, are used as input to develop the model and to test it. The data
time series is divided into two parts, i.e. 1990 to 2000 and 2001 to 2005 for simulation and
validation respectively.

The areal averaged rainfall Pj(i) was calculated from the recorded rainfalls of the selected
gauging stations (Table.7.1) for each of the six sub-basins. The location of ground rainfall
gauges used for average rainfall determination is shown in Fig.4.1. In order to estimate areas
associated with each rainfall station, the method of Thiessen polygon was tried for determination
of weighted average rainfall, but it was not found useful because of the poorly organized location
of rainfall gauges. In most of the cases, the rainfall gauges were found to be in clusters at one
location in each sub-basin, leaving only one rainfall gauge, to take more than 60 % of total
weight in the weighted average rainfall, hence introducing a strong bias in the average rainfall
determination by Thiessen polygons. Trial and error calculations showed that the best results
were found by using the simple area-averaged rainfall for further analysis. Consequently, the
arithmetic average of rainfall of all the gauges of each sub-basin j is used for areal rainfall Pj(i)
determination. SRE (satellite rainfall estimates) were not used because their quality was not
validated by ground based measurements and became one of the reasons for low efficiency of
URBS model forecast as mentioned by Malone in the report on sensitivity analysis of URBS
Model application on Mekong (Malone, 2009). The area of each sub-basin as needed in Eq.7.1 is
calculated with the help of GIS maps and given in Table.7.1.
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Tab. 7.1: Rain gauges of each sub-basin j

Reach Area (Sq. Km) |Rain Gages
CL 59000|Muong Namtha
Phongsaly
Muong Ngoy
Oudomxay
Chiang Kham
Xieng Ngeun
LV 24650 Xieng Ngeun
Sayaboury
VN 50016|Ban Nape
Muong May
Muong Kao
Thabok
Paksane

Bung Khan
Ban Nasone
N. Phanom
Signo

NM 11006 (Mukdahan
Signo

Thakek

N. Phanom
MP 37993 [Mukdahan
Savannakhet
Seno

Ban Kengkok
Muong Tchepon
Khongsedone
Saravan
Laongam
Pakse

PS 66757|Pakse
Mounlapamok
Soukhouma
Muang Champasack
Attopeu
Nonghine

The unit hydrograph approach based on the gamma distribution, requires in addition to rainfall
data three parameters for each section between adjacent gauges: the coefficient KN and the Nash
cascade parameters k and n. For a data based approach, these have to been determined
empirically from the data for each sub-basin j separately.
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7.2.2. Effective Rainfall / Gain Estimation

7.2.2.1.Gain by Constant KN

The adjustment factor KN as a percentage of total rainfall was obtained by using Eq.7.2 and 7.3
with the help of 10 years data from 1990 to 2000. Results are given in Table.7.2. They show the
variability of KN; in different sub-basins with a maximum, i.e. 1.39 in NM and a minimum i.e.
0.46, in CL. The variability in KN among different sub basins is partly caused by different
geographical conditions and soil types. Another cause of this KN;j variability is the size of the
area used for calculation in each sub-basin. The size of the area used in Eq.7.1 is not the actual
size of the contributing area of sub-basin j, because it is only the portion of the area on the left
bank of the contributing sub-basin. The reason of using only the area of left bank tributaries is
because it was assumed that only the left bank tributaries’ rainfall contributed significantly to the
inflow. But in actual practice, there is the portion of inflow from the right bank tributaries as
well. Ignoring the contribution of runoff from the right bank tributaries makes the KN; value
larger than if it were a runoff coefficient, especially in NM, where it exceeded one.

The constant values of KN; determined in the analysis mode for the whole season are tabulated
in table 7.2. They were initially used in Eq.7.19 to produce lateral inflows. However, the
resultant comparative plot of observed versus produced discharges show over-estimation in the
initial part of the flood season and underestimation late in the flood season. These results lead to
the consideration of seasonality of KNj

Tab. 7.2: Constant KN coefficient for each sub-basin j

Reach CL LV VN NM MP PS

P 2484 891 4281 720 2137 4748
Q 1135 554 2382 998 1987 3648
KN 0.46 0.62 0.56 1.39 0.93 0.77

7.2.2.2. Results with Monthly KN

Typical empirically calculated KN; by using Eq.7.4 for each sub-basin as functions of the month
in flood season are shown in Figs.7.6a and 7.6b. It can be seen in Figs.7.6a and 7.6b that there is
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a significant trend, with very small coefficients at the beginning of the season, which increase
with progress in time until reaching a maximum at the end of the season.
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Fig. 7.6a: Typical adjustment factors for VN (left) and NM (vight) for the years 1991 to 2000
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Fig. 7.6b: Typical adjustment factors for MP (left) and PS (right) for the years 1991 to 2000

Because the adjustment factor basically is a runoff coefficient (with a theoretical maximum of 1),
it can be surmised that the trend reflects the special seasonal hydrologic conditions of the
Mekong region. At the beginning of the season, before the advent of the monsoon, the soil is
dried out. Further into the season it is saturated gradually so that K'N; increases and reaches a
maximum at the end of the season. Note that the large increases at the end of the season, which
are observed for some of the years, are due to the fact that low discharges are divided by small
numbers of rainfall. Apart from these anomalies, the average trend is clearly significant.

The box plot of monthly KN illustrates further the behavior of KN; variability within the flood
season and also from one flood season to another as shown in Fig.7.7. In the analysis of data
from the Mekong lateral tributaries, it was found that KN;(s) strongly depends on the season of

the year. A surprisingly well fitting relation was found to exist between accumulative rainfall and
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accumulative discharge for each reach between gauging stations — an indication of the well
structured meteorological pattern caused by the regularity of the South West Monsoon (Fig.7.7).
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Fig. 7.7: KN box plot for each sub-basin, a) CL, b) LV, ¢) VN, d) NM, e¢) MP, f) PS

Monthly values of KN; were noted to increase from first month of flood season, i.e. June to last
flood month, i.e. October, as shown in Fig. 7.7. This steady rise of KN;, observed in almost every
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year, was a result of catchment wetness condition and soil permeability. First improvement in the

assumption of constant K'N; was, therefore to use mean monthlyK N, (s) in the analysis mode.
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Fig. 7.8: Scatter plot of accumulative rainfall and accumulative runoff for PS a) collective scatter plot for
flood season 1990 to 2005, b) scatter plot for flood season 1990 to 1995

The results of using mean monthlyK N, (s) to generate discharges removed the problem of over
and underestimation of discharges in the early and late flood season. It is because the relation of
rainfall to runoff changes along the flood season, as indicated in Fig.7.9, that the trend lines have
different slopes in the rainfall runoff scatter plot of each month. An interesting observation is that
the slopes of these trend lines increase from May up to October. The scatter plot of October
represents the falling limb and consists to a large part of base flow, and therefore represents data
points of old water flow and only very little rainfall input.
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Fig. 7.9: Scatter plot of rainfall and runoff for PS a) scatter plot for flood season 1990 to 2005, b) trend
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line representation of the scatter plot for flood season 1990 to 2005
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7.2.2.3.Gain by estimated monthly KN(s) by multi-regression

The variability KN;(s) from one flood season to another can be seen in the spread of box plot in
Fig.7.6. In most of the cases, the spread is wide and thus reducing the efficiency of m to
represent the actualKN;(s). In order to improve this situation, multi-regression is used to
estimate the KN;(s) separately for each month and for each flood season, as discussed in section

7.2. The data of 1990 to 2000 are used to build a regression model and to determine the

regression weights of Eq.7.6 to 7.9. This regression model is then validated on data for 2001 to
2005.
The regression parameters of Eq. 7.6 and Eq.7.8 are given in Table.7.3 to 7.6

Tab. 7.3: KNs+1 computation coefficient for VN

Month a B Y c T v o (C
Jun 1,11 0,11
0,00 0,00

Jul 0,70 0,25
-2,81 2,73 -3,35 3,08 9,03| -8,63

Aug 0,73 0,08
0,16 -0,09 1,24 -1,30 -0,91 0,89

Sep by jul 1,17 0,41
-1,81 -1,31 0,85 -1,84 2,89 1,07

Oct -0,09 2,52
-1,09 -2,31 9,97 -12,42 5,50 0,08

Tab. 7.4: KNs+1 computation coefficient for NM

Month a B Y c T v [0) C
Jun 0,64 0,08
0,00 0,00

Jul 2,51 -0,03
-0,02 2,45 -2,15 2,891 3,01 -6,20

Aug 1,11 0,04
-2,52 0,59| 1,21 -1,28| -0,57| 2,59

Sep 1,06 0,07
0,27 -2,04| 0,06 -0,73| 1,58| 0,86

Oct 3,64 -0,37
16,60 1,64 4,07 -3,65| -3,96 -
14,65
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Tab. 7.5: KNs+1 computation coefficient for MP reach

Month a B Y o T v o) C
Jun 1,08 0,17
0,00 0,00

Jul 0,77 0,36
2,76 -2,38| 5,45 -5,75| -9,21| 9,25

Aug 0,32 0,75
0,01 -0,14| 2,23 -2,18| -1,22| 1,32

Sep 0,53 1,08
-0,04 -0,66| 1,15 -1,51 -0,96| 2,00

Oct 0,55 2,69
-1,23 0,77 -0,77 1,70 5,83| -6,25

Tab. 7.6: KNs+1 computation coefficient for PS reach

Month a B Y o T v 0] C
Jun 1,29 0,05
0,00 0,00

Jul 1,01 0,13
-2,19 -0,28| -0,10 L,L19| 3,02 -1,76

Aug 0,44 0,22
-0,13 0,38 0,85 -1,18| -0,12 0,23

Sep by jun -0,03 0,93
-2,03 -2,60| 8,94 -8,51| -7,54 11,34

Oct by jun -4,93 3,01
-67,94 49,01 | -46,62 44,52 | 54,41 -35,08

7.2.2.4.Gain by estimated monthly KN;(s) by moving average

The performance of the multi-regression model to predict KN;(s) was found to be not quite as
good in the validation mode, as during analysis. Therefore the moving average KN; over the last
30 days has been used as current day KN;(d) estimate by using Eq.7.13. The results of
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simulation by Eq.7.15 show significant improvement in the rainfall runoff model performance in
comparison to the other three KN; estimation approaches - due to the obvious reason of using
most recent information, as well as accounting for the variability of KN; within the month.

In the analysis mode, the seasonal and daily effective rainfall is computed by each of the four
methods explained in section-7.1.2.4. However, KN values obtained by using moving averages
of last 30 days is preferred by virtue of its performance and therefore is adopted in the
forecasting mode as standard. As an example the forecasting results of KN by four different
approaches for reach RS in the year 2000 are shown in Fig.7.10. This Fig. clearly indicates that
KN estimation by moving average is performing better than any of the other three approaches.

140 1 Ohserved == Average
1,20 - Predicted by Multi Regression===Predicted by moving average

1,00 -

0.80 -

KN

0,60 -

0,40 -

0.20 -

OJDD 1 1 1 1 1
Jun Jul Aug Sep

Time [ Monthly ]

Fig. 7.10: KN estimation for reach PS of year 2000

However in the forecasting mode, the course of KN;(d + t) for the future t days has to be
estimated according to Eq.7.14, where the parameters of Eq.7.14 are obtained from Eq.7.13. This
approach would require separate parameters for each(d + t), therefore a total of 153 parameter
for 153 days d, which are however, actually not separate parameters but the ratio of KN;(d + t)

difference from its mean KN, (d + t) to KN;(d) difference from its mean KN, (d).
7.2.3. Conversion of effective rainfall into runoff

In the analysis mode, Eq.7.17 is used on known input — output results from the situation to be
studied. This analysis yields coefficients n and k of the gamma distribution.
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7.2.3.1. Determination of the system parameters n and k
The parameters n and k describing the gamma distribution were obtained by trial and error

optimization, yielding a stretching of the rainfall response over about 15 days with a peak after
about 3 to 5 days, so that this approach fits the data fairly well for longer time forecasts.

Tab. 7.8: Estimation of n and k parameters for event based approach

Years n k (n-1)*k ——1990
1990 34 2.1 5 —m—1991
1991 2.8 2.1 4 —A—1992
1992 7.1 1.8 11

o —1993
1993 2.5 2.1 3 g
&) —%—1994
1995 2.4 2.1 3 =
E —0—1995
1996 5.1 1.6 6 S 1996
1997 4.0 1.3 4
1998 2.0 2.1 2 o
1999 14.3 0.5 7 . o8
————————————  —4—1999
2000 3.6 2.1 5 0 1 2 3 4 5 6 7 8 9 10 _g 5409
Average 5 Time (days) Avg

Fig. 7.11: Rainfall to runoff cross correlation coefficients for PS sub-basin

The cross correlation function of average rainfall P; (i) and lateral discharges DP;;; (i) gave the
time lag T between rainfall to runoff peak. As an example, the cross correlation function for the
sub-catchment contributing to reach PS are presented in Fig. 7.11. It is clear from this Fig. that
the maximum correlation between rainfalls and runoff occurs in the range of time lags between 3
to 4 days.

In the event based approach, runoff hydrographs for each of the historical storm events are fitted
by means of a least square estimation of n and k for each storm. As an example, the n and k
parameters for the best fit unit hydrograph from different storms are given in Table.7.8 for the
sub-basin PS. One storm is selected per year. The value of k is fairly constant, i.e. 2.1 for most
events, but the values of n show high variability.

In the season based approach, 11 years data of lateral rainfall and respective runoff (1990 to
2000) of each reach is taken together to be fitted with different n and k parameter combinations.
The optimum n and k parameter combination is selected from these curves for each sub-basin j.
But in the selection of n and k, the LSE optimization is applied in five different ways. In the first
case, LSE optimization is applied by using original P;(i) and DQ;;.; (1) data and accounting for
all errors in the summation of LSE. In the second step, LSE are calculated for the observed and
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modeled runoff DQ;;; (1) above certain thresholds. The threshold is fixed in order to obtain the n
and k parameter, which are more efficient in high flows. In this case DQj,j — I (1) is taken as this
threshold. In the third case, LSE are computed by taking the squared differences of observed and
updated forms of modeled runoff from each n and k combination. Instead of taking the modeled
runoff, the predicted errors are calculated and added to the modeled runoff to yield the updated
runoff. LSE is obtained by taking squared difference of observed and updated modeled runoff. In
the fourth case, all the sub-basins j are optimized simultaneously by applying the LSE function
on the discharge difference (observed discharge Qj(i) minus discharge Q;F (i) calculated from
adding the modeled discharges DQ;;.i (i) to upstream discharges with appropriate time lags. LSE
of all the gauges Q;(i) are added together into a single summation, which is minimized by trial
and error with the help of different n and k combinations of each sub-basin j. In the fifth case, the
fourth step is repeated, but the forecasted rainfall of future days is used. In the third and fifth
approach, an additional correction factor is used in order to remove the volumetric error of
rainfall and runoff for each sub-basin j. This factor is changed with different combinations of n
and k in LSE optimization. The optimized n, k and volumetric correction factor, FKN are
presented in Table-7.9 for each of the five mentioned cases.

0,25
0,2

015 | |

ult)

i
01
f

0,05 -

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time [days)

a) b)

Time [days)

Fig. 7.12: a) Unit hydrograph ordinates as obtained by first case of n and k optimization of each sub-
basin j, a) Unit hydrograph ordinates as obtained by the second case of n and k optimization for each
sub-basin j

Once the KN and the optimum n and k values (as illustrated for Pakse-Stung Treng in Section
7.2.3.1 have been found for all reaches the ordinates of the runoff hydrographs can be
determined, and for each reach lateral inflows can be calculated.
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nl k1 FKNI1
CL 2,49 2,55 1,00
LV 1,96 5,07 1,00
VN 2,23 3,48 1,00
NM 2,03 3,52 1,00
MP 2,03 3,38 1,00
PS 2,79 2,11 1,00
n2 K2 FKN2
CL 2,97 1,83 1,00
LV 1,98 438 1,00
VN 2,71 1,79 1,00
NM 2,11 2,66 1,00
MP 2,44 1,86 1,00
PS 3,26 1,28 1,00
n3 K3 FKN3
CL 2,16 3,72 1,01
LV 1,68 7,14 0,94
VN 2,51 2,67 0,75
NM 2,34 2,56 0,86
MP 2,66 1,81 0,80
PS 2,13 3,12 1,14
nd k4 FKN4
CL 8,83 0,34 0,42
LV 1,85 8,09 1,63
VN 2,76 2,64 0,91
NM 2,55 3,17 1,53
MP 4,80 0,69 0,65
PS 2,35 3,04 137
ns K5 FKN5
CL 1,43 12,32 1,28
LV 1,61 20,22 2,36
VN 1,57 8,00 0,71
NM 1,63 7,25 1,24
MP 0,99 16,38 1,09
PS 1,75 7,28 1,02

An additional step was to try in one of the reaches, i.e. Pakse-Stung Treng a double cascade with
two n and k parameter sets to check possible improvement over a single cascade in the
conversion of rainfall to discharge. However, this analysis yielded hardly any improvement
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compared to single cascade based discharge estimation (Fig.7.13). Thus, a single Nash cascade is
adopted for computation of runoff from the rainfall in each sub-basin j of Mekong

Double Cascade

020 —ps1
—p2
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AN 0.00 =
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T(Days)
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Fig. 77.13: a) Conceptual representation of double cascade, b) Unit hydrograph ordinates as dictated by
optimized n and k parameters for PS, c) PS discharge simulation on the basis of double cascade

7.2.4. Rainfall runoff model usage for flood forecast

The estimated system functions can be used in the forecast mode in the rainfall runoff model for
flood forecasts, provided that the rainfall input is available for the last 15 to 20 days and for the
lead time of future forecasts.

In order to test the efficiency of this rainfall runoff model to produce flood forecast, it was used
for three different kinds of assumed future rainfall inputs. In the first case it was assumed that
both the future rainfall and the KN-values are known. This case gives the overall efficiency of
the model: when the forecasts for future rainfall and KN- values are available as in the analysis
mode. In the second case it was assumed that the future rainfall is known, but the KN-value is
unknown, and therefore one of the KN forecasts is used. This case presents the loss of efficiency
due to replacing the known KN with the predicted KN. As the model was tested on the historical
period of 1990 to 2005, therefore the information on rainfall and KN-values was available for the
forecasting period in a hind-cast mode. In the third case, both the predicted values of rainfall and
of KN are used as input to the model. This case reflects the loss of model efficiency due to
imperfect future KN and rainfall information.
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7.2.4.1. Known rainfall and known KN assumption

DQF;(i + t —j) is calculated by using Eq.7.20 to Eq.7.22 and compared with the DQ;(i + t — j)
obtained from the observed discharges. The performance of the rainfall runoff model in
generating DQF;(i + t — j) in each sub-basin j is evaluated by RSQ and PI. Then the errors of

these modeled DQF;(i + t — j) values are updated by using Eq.7.25. The regression parameters
of Eq.7.25 are calculated by using 1990 to 2000 data. These parameters are given in Table.7.10.

gjoli+t) = Bji +t).ero(i+t—t) +@ji+t) +e,H@+1) (7.25)

The updated values of DQF;(i + t — j) are then used in Eq.6.34 to produce flood forecasts for 1
to 5 daysat L,V,N, M, P and S.

7.1.2.1.1. Result and Discussion

First case of n and k:

The n and k parameters obtained by applying LSE optimization in four different ways are used to
produce DQ;(i + t) and Q;(i + t). The accuracy of DQF;(i + t) and QF;(i + t) varies from case
to case, it is however improved by updating in each case. The accuracy, by using first case and
second case of n and k optimization, of updated DQ;(i + t) in terms of RSQ for each sub-basin j
is given in Fig.7.14. The improvement in DQj (i +t —j) by updating can be seen, for example, in
the case of PS in Fig.7.15. The comparison of observed and modeled PS discharges with and
without updating shows significant improvements achieved by updating. However, these are
results of updating with one day lead time. The efficiency of updated discharges decreases with
increase in lead time.
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Tab. 7.10: Regression parameters of updating equations for each sub-basin j with lead time I to 5 days

Perfect P and fore. Fore. P and fore. KN
KN With case 5 of n and k

Perfect P and KN with | With case 1 of n Fore. P and fore. KN

case 1 of nand k and k With case 1 of n and k
Sub- Bj(i Bii+1t) | @jli+0)
basin Bili+¢t) | @jli+t)| +¢t) |@ji+t) | BiE+t) | @ji+t)
DQj+9
i+1 0.92 41 0.92 37 0.92 40 0.93 27
it+2 0.80 98 0.81 85 0.78 106 0.84 64
i+3 0.70 156 0.72 135 0.58 203 0.74 103
i+4 0.61 203 0.63 175 0.42 287 0.64 143
i+5 0.53 244 0.56 210 0.30 344 0.56 177
DQj+7
i+1 0.82 47 0.83 33 0.83 34 0.87 -16
i+2 0.69 78 0.72 55 0.70 59 0.78 -27
i+3 0.58 108 0.61 77 0.54 90 0.69 -38
it+4 0.49 131 0.52 93 0.39 120 0.59 -49
i+5 0.42 149 0.45 107 0.25 150 0.49 -61
DQj+5
i+1 0.95 52 0.96 46 0.95 48 0.96 93
it+2 0.88 144 0.88 128 0.87 141 0.90 246
it+3 0.79 246 0.79 218 0.73 283 0.82 428
it+4 0.71 339 0.72 301 0.54 484 0.73 659
i+5 0.64 422 0.65 377 0.37 666 0.63 896
DQj+3
i+1 0.89 51 0.90 38 0.90 38 0.91 10
it+2 0.75 118 0.77 88 0.74 99 0.79 23
i3 0.64 170 0.67 128 0.49 196 0.61 42
i+4 0.57 203 0.60 155 0.28 276 0.43 61
i+5 0.51 229 0.54 178 0.15 325 0.30 74
DQj+2
i+1 0.91 101 0.92 81 0.92 76 0.92 103
i+2 0.79 233 0.81 185 0.76 231 0.81 254
i+3 0.68 347 0.72 274 0.48 507 0.62 496
i+4 0.61 430 0.65 339 0.25 724 0.45 720
i+5 0.56 485 0.60 384 0.13 848 0.33 870
DQj+1
i+1 0.92 139 0.92 116 0.92 119 0.93 121
i+2 0.81 323 0.82 274 0.76 360 0.83 295
it+3 0.71 504 0.71 432 0.51 736 0.71 516
i+4 0.61 670 0.61 580 0.31 1055 0.58 752
i+5 0.53 811 0.53 709 0.20 1231 0.47 949
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Fig. 7.14: Efficiency of lateral modelled discharges DQ j (i+t) for each sub-basin j by RSQ, a)
simulation period, b) validation period

The performance of lateral discharges DQj (i+t—j), expressed in terms of the persistence index

PI, is shown in Fig.7.16. With the exception of LV, the PI show almost equal efficiency in the
simulation and validation mode. However, the efficiency increases with lead time and ranges
from 0.2 to 0.5 from 1 to 5 day lead time. The reason why PI values increase from first to fifth
day lies in the high discharge differences between current day and the fifth day, and this
difference is large, whereas a part of this difference is explained by the forecast. This results in
high PI values in comparison to the small discharge differences between current and future
discharges for a one day forecast. Consequently, the forecasting model has to be very efficient to
explain this small discharge difference for the one day interval. The same behavior can be seen
in each sub-basin from CL to PS.
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Fig. 7.15: Comparative plot of observed and lateral modeled discharges DQ j (i+1) in simulation and
validation mode with and without updating for sub-basin PS, a) flood selected from simulation period, b)

flood selected from validation period

153




Rainfall and Discharge Data Based Forecasting (Type 2 Model)

The possible reason of low PI in the case of LV is poor rainfall input because of the fact that this
basin is represented by two gauges only which are not sufficient to cover the spatial diversity of

rainfall.
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Fig. 7.16: Efficiency of lateral modeled discharges DQ j (i+t) in terms of PI for each sub-basin j, a) for simulation
period, b) for validation period

The forecasts of daily discharges in simulation and validation periods of 1 to 5 days lead time at
L,V,N,M,P and S show similar results, i.e. that forecasting efficiency reduces with lead time, as
presented in Fig.7.17 for the case of Stung Treng S. Comparisons of one and five day flood
forecasts with the observed discharges in the selected high flood seasons show that in both the
simulation period and the validation period the efficiency of forecasting model is more or less
similar, which can be further inferred from the PI plots in Fig.7.18.
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Fig. 7.17: Comparative plotting of 1 and 5 day forecast with observed discharges by first case at Stung Treng gauge
S, a) selected flood year from the simulation period, b) selected flood year from the validation period

154



Rainfall and Discharge Data Based Forecasting (Type 2 Model)

The value of PI ranges from 0.6 to 0.7 at the downstream gauges of M, P and S. For the further
upstream gauge of L, PI is much smaller, i.e. 0.2 to 0.5. But the efficiency of second upstream
gauge after L, i.e. V shows ranges from 0.3 to 0.7. Again the efficiency of model as per PI is
slightly lower in the validation period than in the simulation period (Fig. 7.18)
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Fig. 7.18: Efficiency of forecasted discharges in first case for Q j (i+t) in terms of PI at each gauge j, a)
for simulation period, b) for validation period

The spread of forecast errors is shown as normalized probability distribution in Fig.7.19. The
error probability plot is necessary to show the error spread for the forecasting seasons in the
simulation and the validation period in addition of observed and forecasted discharges
comparative plotting and its efficiency in terms of PI. For example the error distribution for 1 to
5 days forecast of S of the simulation period is even a little smaller than of the validation period.
Similar behavior has been observed in some cases of other gauges.
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Fig. 7.19: Distribution of forecasted error of the first case at Stung Treng gauge S for 1 to 5 days flood
season forecast, a) for simulation period, b) for validation period.
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Second case of n and k:

The results of second to fourth case of n and k show similar characteristics of increase in
efficiency of lateral discharges DQj (i+1t) with lead time and reduction in efficiency from

simulation to validation period, as shown in Figs.7.22-7.25. After comparing the forecasting
results of first case with second, third and fourth case, it can be stated that the first case is giving
the best performance to produce Qj (i +1t), as expressed by PI and error pdf. Although in the

second case the n and k parameters were optimized by calculating LSE only on the basis of
DQj (i) values above average, yet the quality of the results in terms of PI are not better than for

first case. A possible reason that no improvement was obtained, could be that PI is based on the
discharges of the whole flood seasons and not only on high flows. And secondly, below average
DQj (i) — inflows from lateral sub-basin j may coincide with high flows at a mainstream gauge.
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Fig. 7.20: Efficiency of lateral modeled discharges DQ j (i+t) in terms of PI for each sub-basin j, a) for
simulation period, b) for validation period (with second case of n and k)
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Fig. 7.21: Efficiency of forecasted discharges in second case for Q_j (i+t) in terms of PI at each gauge j,
a) for simulation period, b) for validation period (with second case of n and k)
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Third case of n and k:

The third case did perform better than the first case in forecasting mainstream DQJ. (i +1t). In the

optimization of n and k, the inclusion of the error correction routine is the reason of this
improvement. But this case does not perform better than the first case in producinng G+1).
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Fig. 7.22: Efficiency of lateral modeled discharges DQ j (i+t) in terms of PI for each sub-basin j, a) for

simulation period, b) for validation period (with third case of n and k)
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Fig. 7.23: Efficiency of forecasted discharges in second case for Q_j (i+t) in terms of PI at each gauge j,
a) for simulation period, b) for validation period (with third case of n and k)

Fourth case of n and k:

The negative PI has been noted in 1 day lead time forecast of CL in the fourth case of n and k.
This is plausible, because in this case, the n and k parameter were optimized by concentrating on
reducing the LSE of mainstream gauges Qj (i+1t) instead of concentrating on lateral
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inflows DQj(i +t). However, this case does not bring much improvement in the results of

mainstreamQj (i +t), except a small increase in the PI for P and S.
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Fig. 7.24: Efficiency of lateral modeled discharges DQ j (i+t) in terms of PI for each sub-basin j, a) for
simulation period, b) for validation period (with fourth case of n and k)
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Fig. 7.25: Efficiency of forecasted discharges in second case for Q_j (i+t) in terms of PI at each gauge j,

a) for simulation period, b) for validation period (with fourth case of n and k)

7.2.4.2. Known rainfall and forecasted KN with first case of n and k

The comparative plots of observed and forecasted discharges at Stung Treng of 1 and 5 day lead
time are shown in Fig.7.26. The comparative plotting of year 2000 represents the forecasting
performance in the simulation period, and the comparative plotting of year 2005 shows the
forecast quality in the validation period because year 2000 is a high flood year of simulation
period and 2005 is also a year with high floods in the validation period. The daily discharges
forecasts in the simulation and validation period of 1 to 5 days lead time at L,V,N,M,P and S by

using the observed rainfall of forecasting period and predicting the value of
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Fig. 7.26: Comparative plotting of 1 and 5 day forecast with observed discharges by first case at Stung
Treng gauge S, a) selected flood year from the simulation period, b) selected flood year from the
validation period
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Fig. 7.27: Efficiency of forecasted discharges in second case for Q_j (i+t) in terms of PI at each gauge j,
a) for simulation period, b) for validation period
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Fig. 7.28: Distribution of forecasted error of the second case at Stung Treng gauge S for 1 to 5 days flood
season forecast, a) for simulation period, b) for validation period.

KN by Eq.7.14 shows that forecasting efficiency reduces up to 5% in some cases as presented in
Fig.7.27. However, the efficiency of the last 3 downstream gauges, i.e. M, P and S in the
simulation and validation period is similar, as can be seen in PI plotting of Fig.7.27. But the
efficiency reduces from simulation period to validation period in the case of three upstream
gauges, i.e. L, V, and N. It is difficult, however, to notice the difference in the error distribution
of Stung Treng forecasting errors in Fig.7.28.

7.2.4.3. Forecasted rainfall and forecasted KN

With first case of n and k:

In the absence of good meteorological rainfall forecasts, three different methods of rainfall
forecasting, i.e. last 5 days average rainfall as a future rainfall for forecasting period, 5 day
forward shift of rainfall time series, and thirdly, taking today’s rainfall as a rainfall forecast for
next five days, have been tried to produce discharge forecast. However, only the results of the
comparatively best method, i.e. taking today’s rainfall as a rainfall forecast for next five days, are
presented in Fig.7.29. The daily discharges forecast of 2 and 4 day lead time at Stung Treng S by
using the forecasted rainfall and KN with the help of Eq.7.14 shows that this rainfall forecast is
quite reasonable for 2 day lead times, but gets poor for the 4™ day. The distinctive feature of 2™
and 4™ day forecasting error is that forecasts are leading the actual observed discharges which
means that both rise and fall of discharges in the forecast mode are occurring earlier than
observed occurrences. Secondly, there are sudden and persistent rises and falls of the hydrograph
which are due to repetitive inputs of either high or low rainfalls.
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Fig. 7.29: Comparative plotting of 2 and 4 day forecast with observed discharges by third case at Stung
Treng gauge S

The daily discharges forecast in the simulation and validation period of 1 to 5 days lead time at
L,V,N,M,P and S by using the forecasted rainfall and KN by Eq. 7.16 and 7.24 respectively
shows that forecasting efficiency reduces to PI = 0.3 in above fourth day forecast as presented in

Fig.7.30.
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Fig. 7.30: Efficiency of forecasted discharges in third case for Qj (i+t) in terms of Pl at each gauge j, a)

for simulation period, b) for validation period
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Fig. 7.31: Distribution of forecasted error of the third case at Stung Treng gauge S for 1 to 5 days flood
season forecast, a) for simulation period, b) for validation period.
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This difference is also noticeable in the spread of the forecasting errors distribution for Stung

Treng, as shown in Fig. 7.31

With fifth case of n and k:

The fifth case of n and k was based on forecasted rainfall and therefore is expected to perform
better in comparison to the first case of n and k. The efficiency of forecasting, as expressed by PI
supports this argument. In comparison to PI for the first case (Fig.7.30), the PI for the fifth case
(Fig.7.33) is high. Furthermore, comparative plotts of observed and forecasted discharges of S
(Fig.7.32) are indicating less errors in comparison to errors produced by forecast by using first
case of n and k (Fig.7.29).
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Fig. 7.32: Efficiency of forecasted discharges in third case for Q_j (i+t) in terms of PI at each gauge j, a)
for simulation period, b) for validation period
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Fig. 7.33: Efficiency of forecasted discharges in third case for Q_j (i+t) in terms of PI at each gauge j, a)
for simulation period, b) for validation period
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7.3. Summary

Type 2 Model has been developed and used in this chapter in order to reduce the forecasting
errors of Type 1 Model of 1 to 5 days forecast for Middle Mekong gauges, i.e. L, V, N, M, P and
S. Instead of using any existing Type 2 Model, the forecasting routine is constructed from the
available data base of 31 rainfall and 7 discharge gauges. The areas of the 6 reaches between 7
discharge gauges are considered as the lateral sub-basins j which contribute towards the main
Mekong flow with different time lags. A rainfall runoff relation has been established for each
sub-basin j by using lumped rainfalls as input into the rainfall - runoff model. Areal average
rainfall is obtained both by Thiessen polygon and arithmetic average, however, arithmetic
average is finally selected to be used for further calculations.

The effective rainfall available for runoff has been calculated by using an empirically derived
“adjustment factor” KN, which is similar to a runoff coefficient. The monthly value of the
coefficient KN is the ratio of the volumes of 30 days runoff to the volume of 30 days rainfall.
KN is observed to increase uniformly along the flood season. In order to do forecasting, the KN -
value is also to be estimated for future forecasting days along with the past and current day KN.
Consequently apart from using the assumption of a constant KN, KN is computed by three other
methods, i.e. as mean monthly KN, forecasted monthly KN and moving average KN. Owing to
its performance, the method of moving average KN is finally selected to compute effective
rainfall.

A Nash cascade with two parameters, i.e. n and k, is used to translate effective rainfall into
runoff. The Nash cascade represents the unit hydrograph as a gamma distribution, whose shape is
controlled by parameters n and k. The method of least squares is used for n and k determination
with additional efficiency check by RSQ. Five different variants of n and k are produced by
minimizing squared errors of: lateral discharges DQjF(i +1t), above average lateral

discharges DQ.F i+t > DQjF(i +t), lateral discharges after updating, discharges of
mainstream QjF(i +t) and discharges of mainstream by using forecasted rainfall. However,

owing to its performance, the n and k optimization method based on LSE of lateral
discharges DQF (i + t) is finally selected to compute runoff.

The method of split sampling is used for development and testing of the rainfall runoff model.
Simulated lateral inflows obtained from the unit hydrograph model from each sub-basin j is
produced using 1990 to 2000 rainfall data, and compared for validation against 2001 to 2005
data.
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Tab. 7.11: Standard deviation of error by various cases of flood forecast (for simulation period)

(first case of n and k) (fifth case of
n and k)
Gauge | Without | Observ | Observed | Observed | Observed P | Observed P Observed P
forecast | ed P P and P and and and forecasted | and forecasted
and forecasted | forecasted | forecasted | KN (constant KN (constant
calculat | KN KN (last 5 | KN (last5 | rainfall, P(i) = | rainfall, P(i) =
ed KN days avg.) | days time P(i+t)) P(i+t))
shift)
L+1 640 512 522 522 520 525 508
L+2 1101 730 746 802 789 809 731
V+1 623 510 509 509 509 512 503
V+2 1081 580 578 591 590 594 574
V+3 1461 781 790 843 827 834 780
V+4 1778 939 959 1123 1063 1122 981
N+1 712 672 672 675 683 682 677
N+2 1288 980 972 1025 1056 1034 1010
N+3 1799 1380 1389 1666 1628 1581 1408
N+4 2248 1602 1615 2165 2008 2064 1729
N+5 2648 1803 1826 2600 2359 2531 2065
M+1 826 465 462 462 469 465 461
M+2 1536 918 929 958 1008 951 928
M+3 2165 1256 1272 1537 1578 1450 1315
M+4 2721 1592 1609 2195 2145 2070 1784
M+5 3219 1811 1830 2752 2603 2645 2193
P+1 1212 781 771 767 801 753 763
P+2 2118 1173 1155 1357 1414 1255 1163
P+3 2887 1590 1556 2140 2115 2020 1737
P+4 3546 1944 1894 2897 2773 2800 2316
P+5 4122 2303 2236 3596 3376 3575 2895
S+1 2007 1285 1291 1316 1353 1307 1309
S+2 3508 2025 2051 2376 2476 2288 2147
S+3 4760 2591 2624 3648 3609 3543 2992
S+4 5809 3084 3113 4827 4616 4841 3953
S+5 6708 3486 3506 5751 5479 5941 4813

The modeled discharges of the river model for forecast time lags of 1 to 5 days are updated by
adding the latest available information on lateral inflows, which were obtained for 1 to 5 days
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lead time forecasts. The lateral inflows are checked for efficiency by PI, and subsequently used
for mainstream discharge forecast. Forecasts are produced by three different rainfall input
variants. In the first case, in order to test model efficiency, the observed historical future rainfall
and KN computed from observed historical data is used as available information to produce
forecasts. In the second case, the combination of observed future rainfall and forecasted future
KN are used. And finally in the third case, forecasted future rainfalls and forecasted future KN
are used. The quality of the model output in each case is assessed by comparative plotting of
observed and forecasted discharges, by comparing index PI and by the probability density
distributions of the remaining errors. In general, the efficiency index of flood forecasts at each
gauge has been observed to be reduced from first to third case from PI 0.7 to 0.5 in 1 to 3 day
lead time and from 0.7 to less than 0.4 in 4 and 5 day lead time.

The main reason behind the large efficiency loss for large lead times is the poor rainfall forecast,
for which instead of using actual rainfall, the information based on the last available 5 days of
rainfall is used to estimate future rainfalls. In the first case n and k values, which are optimized
according to lateral inflows are used in conjunction with three different cases of rainfall
forecasts. The fifth case of n and k optimization is designed to consider the case of unavailability
of future rainfall, therefore, it is based on forecasted rainfall using today’s rainfall only. It led to
some improvement, in general, efficiencies were obtained of PI = 0.7 for 1 to 3 day lead time and
PI=0.6to 0.5 in 4 and 5 day lead time respectively.

The standard deviations of errors from different variants of the Type 2 Model are compared with
the errors of no model forecast in Tables 7.12 and 7.13 for simulation and validation periods,
respectively. These tables summarize the model’s performance in comparison to no forecast at
all (i.e. assuming that today’s value is the same as for the value at lead time t in the future) by
presenting reduction in standard deviation of errors. In general, the standard deviation reduces by
50% from no forecast to forecast by perfect input of rainfall with first case of n and k
optimization. However, the reduction in standard deviation decreases by replacing the perfect
rainfall with forecasted rainfall. Still, comparatively less standard deviation of errors (one half in
1 to 3 day lead time and two third in 4 to 5 day lead time) is obtained by using the fifth case of n
and k parameters (specially optimized case of n and k by using forecasted rainfall time series)
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Tab7.12: Standard deviation of error by various cases of flood forecast (for validation period)

(first case of n and k) (fifth case of n
and k)
Gauge | Without | Observed | Observed | Observed P Observed P Observed P Observed P
forecast P and P and and and and forecasted | and forecasted
calculate | forecasted | forecasted forecasted KN (constant KN (constant
d KN KN KN (last 5 KN (last 5 rainfall rainfall
days avg.) days time propagation) propagation)
shift)
L+1 649 567 574 574 599 560 552
L+2 1059 802 827 962 968 891 790
V+1 674 471 480 479 478 485 480
V+2 1117 607 626 649 647 642 610
V+3 1454 923 981 1122 1087 1049 928
V+4 1716 1117 1219 1595 1443 1518 1226
N+1 818 647 641 628 637 651 666
N+2 1417 949 932 965 1014 996 959
N+3 1886 1369 1355 1755 1713 1619 1376
N+4 2293 1574 1566 2398 2168 2241 1753
N+5 2650 1836 1867 3020 2648 2922 2229
M-+1 987 432 446 445 446 457 452
M+2 1762 919 924 973 1016 987 954
M+3 2439 1300 1294 1687 1702 1584 1366
M+4 3028 1652 1634 2530 2385 2379 1905
M+5 3543 1881 1863 3260 2932 3160 2448
P+1 1225 669 668 664 700 643 666
P+2 2167 1087 1080 1239 1304 1127 1114
P+3 2984 1530 1504 2035 2037 1907 1734
P+4 3690 1914 1866 2869 2785 2725 2329
P+5 4295 2273 2198 3698 3474 3612 2959
S+1 1974 1111 1100 1111 1136 1116 1123
S+2 3460 1839 1811 2037 2198 1966 1906
S+3 4714 2424 2377 3204 3294 3027 2663
S+4 5737 2910 2819 4344 4289 4196 3498
S+5 6597 3327 3190 5339 5178 5318 4312
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8. Mixed Model Forecasting

8.1. Mixed Model: Type-1 Model and Type-2 Model combined

It is confirmed by the coefficients in table 8.1 that model 1 performs better (or just as good as
model 2) for short lead times, but that model 2 is much better at long lead times. The Problems
occur when a rainfall forecast also has to be made. In this case the weighted averages of model 1
and 2 are useful. The benefit of weighted averages of Type-1 and Type 2 model were also found
useful in the light of following observations.

The results of Type-1 and Type-2 models, presented in chapter 6 and 7 respectively, shows that
the forecasts by Type-1 Model underestimate the observed discharges of the rising part of flood
hydrograph in contrast to forecast by Type-2 Model (with forecasted rainfall input) which
overestimates the observed discharges, and both models behave vice versa in a falling limb. It
means that the forecast by Tpye-1 model is lagging behind the observed discharges and forecast
by Type-2 model is leading the observed discharges in the rising and falling parts of the
hydrograph. This tendency of under and over-estimation of Type-1 model in rising and falling
limb respectively is because of the fact that forecast is dependent on the gradient of past
discharges. The high dependence on past gradient results in under-estimation of initial rises of
discharges in the rising limb of flood hydrograph and over-estimation of discharges in the initial
decreases of discharges in the falling limb. However, this departure of future discharges from the
past trend is explained well by Type-2 Model, because it is based on the information of past
rainfall and future rainfall prediction scenarios instead of past discharge gradients. The forecast
of future discharges by Type-2 models depends on accuracy of rainfall input and modeling
accuracy. If the rainfall input is accurate, then the nature of Type-2 model is responsible for
earlier rise and fall of future discharges in forecasting mode than actual rise or fall of observed
discharges. The Type-2 model is based on unit hydrograph which is optimized in such a way that
the rainfall is distributed in time with an early peak (according to minimum time delay observed
between rainfall occurrence and runoff peak). This distribution of rainfall with early peak is
responsible for overestimation of discharge in the rising limb and vice versa in the falling limb.
Another distinctive feature of Type-1 model is the steady rise and fall of forecasted discharges in
contrast to abrupt and sudden rise and fall of forecasted discharges by Type-2 Model. The reason
of steadiness by Type-1 Model is because future discharges are constructed from the previous
discharge gradient information, which is steady due to the dynamics of large river. This
steadiness of the gradient of past discharges is responsible for the steadiness of future discharges
obtained from theType-1 model. On the other hand, the Type-2 model uses the information of
rainfall which may change abruptly in time, therefore, the forecasted discharges based on rainfall
information also show abrupt changes, in spite of being distribution over time by the unit
hydrograph.

These two complementary features of flood forecasts from Type-1 and Type-2 Model suggest to
use the two models in combination. Consequently, in this chapter the flood forecast by Type-1
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and type-2 model is averaged and compared with the observed discharges. However, instead of
taking simple averages, weights are assigned to the forecast of each model. These weights are
determined by the standard procedure of multi-linear regression. The lagging and smooth change
of discharge in the forecast in Type-1 Model has been cancelled in part by leading and abrupt
change of discharge in prediction by Type-2 Model.

8.2. Mixed Model application on Mekong
The mixed model as linear combination of the individual model forecasts are expressed through

Eq. 8.1, with regression weights @ and f given in Table8.1, which are used to produce mixed
flood forecasts:

Tab. 8.1: Optimized parameters for the updating of flood forecast

Observed P and KN Observed P and for KN Fore P and Fore KN
Gauge a(i+t) BGi+1t) a(i+t) BGi+1t) a(i+t) BGi+1t)
Qj+9 (L)
it+1 0.391 0.606 0.397 0.600 0.404 0.593
it2 0.205 0.793 0.186 0.811 0.391 0.606
i+3
i+4
it+5
Qj+7(V)
it+1 0.659 0.337 0.645 0.351 0.650 0.346
it+2 0.369 0.624 0.387 0.605 0.481 0.512
it+3 0.233 0.757 0.296 0.694 0.444 0.546
it+4 0.158 0.832 0.217 0.772 0.493 0.497
i+5
Qj+5 (N)
it+1 0.589 0.409 0.594 0.404 0.603 0.394
it2 0.335 0.663 0.321 0.677 0.402 0.596
it+3 0.221 0.771 0.225 0.766 0.464 0.529
i+4 0.183 0.808 0.195 0.795 0.548 0.444
it+5 0.149 0.841 0.165 0.823 0.586 0.404
Qj+3 (M)
it+1 0.517 0.482 0.637 0.362 0.612 0.387
it+2 0.181 0.817 0.221 0.777 0.314 0.684
it+3 0.046 0.952 0.112 0.885 0.369 0.628
it+4 0.040 0.954 0.110 0.882 0.453 0.540
it+5 0.039 0.954 0.113 0.879 0.521 0.471
Qj+2 (P)
it+1 0.419 0.581 0.432 0.568 0.475 0.525
it2 0.049 0.952 0.252 0.748 0.521 0.479
it+3 0.095 0.906 0.244 0.756 0.580 0.419
i+4 0.091 0.910 0.225 0.775 0.607 0.391
it+5 0.098 0.900 0.220 0.777 0.632 0.364
Qj+1(S)
it+1 0.153 0.848 0.215 0.785 0.322 0.678
it+2 0.068 0.935 0.149 0.853 0.420 0.581
i+3 -0.040 1.045 0.090 0.914 0.520 0.482
i+4 -0.018 1.025 0.107 0.898 0.583 0.419
it+5 -0.011 1.019 0.114 0.893 0.609 0.392
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The three different cases of flood forecasts by Type-2 Model have been discussed in 7.4.3.1,
7.4.1.2 and 7.4.3.3. To generate regression weights these three flood forecast cases are optimized
separately with Type-1 Model. Therefore three set of weights are shown in Table-8.1. The
normal trend of these weights shows that Type-1 Model has comparatively more weight
(represented by a) in flood forecasts of shorter lead times, i.e.1 to 2 days, however its weight
decreases with lead times longer than two days. The weights of Type-2 Model (represented by f3)
are smaller for shorter lead times, i.e.1 to 2 days, but increase with lead time. This decrease and
increase of @ and P with the lead time is logical because the Type-2 model becomes more
meaningful in explaining the future discharges with larger lead times because of the effect of the
rainfall input in comparison to Type-1 Model without rainfall input.

8.2.1. Mix forecast: Case-1 (Observed Rainfall and calculated KN)

The Case-1 of Type-2 Model as given in section 7.4.3.1 is combined with Type-1 Model by
Eq.8.1. The comparative plotting of observed and forecasted flow by Mix model for Stung Treng
with 1 to 5 day lead time is shown in Figs.8.1a, b, ¢, d, e. This shows that the first flood peak is
forecasted accurately by this approach, but the second flood peak is over-estimated in the rising
part. The forecasted discharges are rising before the rise of observed discharges even for the 5
days flood forecast. This leading behavior of flood forecasts by the Mix Model can be useful in
Case-3 of Type-2 Model mixing with Type-1 model, because rainfall forecasts of this case is
based on neighboring past rainfall events. These past rainfall events are shifted to the future and
can reduce the leading of future discharges by Case-1.

Figs.-8.2 a and b present the distribution of errors of 1 to 5 day flood forecasts for station Stung
Treng in the simulation and validation period. There is no significant difference in the overall
spread of error in the simulation and validation period.

This finding of similar performance of Mix Model in the simulation and validation period is
further supported by PI as given in Figs-8.3a and b. The PI of flood forecasts at L, V, N, M, P
and S show that except at L and N the flood forecasts of all other gages are quite acceptable, with
PI above 0.6.
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Fig. 8.1: Comparative plotting of observed and forecasted flows of Stung Treng, left column: 1 to 5 day
forecast (a,b,c,d,e) with the case of observed rainfall with calculated KN, right column: 1 to 5 day
forecast (f,g,h,i,j) with the case of observed rainfall with forecasted rainfall
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Fig. 8.3: Quality of flood forecast with the case of observed rainfall with calculated KN in terms of PI,
left column: simulation period, right column: validation period

8.2.2. Mix forecast: Case-2 (Observed Rainfall and forecasted KN)

The Case-2 of Type-2 Model as given in section 7.4.3.2 is combined with Type-1 Model
according to Eq.8.1. The comparative plotting of observed and forecasted flow by Mix model for
Stung Treng with 1 to 5 day lead time is shown in Figs.8.1f, g, h, 1, j. It shows results similar to
those of the combination of Case-1 of Type-2 Model with Type-1 Model. In this case also the
first flood peak is forecasted accurately, whereas the second flood peak is over-estimated in the
rising limb.
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The distribution of errors of 1 to 5 days flood forecast of Stung Treng in the simulation and
validation mode shows almost identical spread (Figs.8.4a and b).

[ 18 mL

[ Y [ 2"
uN mN
am =M
mpP up

[} us

1 2 3 4 5 1 2 3 4 5

Time Lead (days) Timelead (days)

Fig. 8.5: Quality of flood forecast in terms of PI, left column: simulation period, right column: validation
period

The PI of 1 to 5 day flood forecast by Mix-Model of L, V, N, M, P and S shows that except at L
and N the flood forecast of all other gages is fairly good, i.e. PI above 0.6.

8.2.3. Mix forecast: Case-3 (Forecasted Rainfall and forecasted KN)

The first two cases of Type-2 Model combination with Type-1 Model in Mix Modeling yield a
forecasting efficiency of acceptable level, i.e. above 0.6. However, the forecasting efficiency
reduces in the third case of Type-2 Model combination with Type-1 Model.

Method-1: Last 5 day average rainfall
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Fig. 8.6: Quality of flood forecast in terms of PI for first case of forecasted rainfall, left column:
simulation period, right column: validation period

The reduction of flood forecast accuracy by Mix Model is a function of the accuracy of rainfall
forecasts. Three different methods are used to generate future rainfall forecasts as given in
Chapter-7. The results of combination of 3 different methods of Case-3 of Type-2 Model with
Type-1 Model are given in Figs.8.7, 8.8 and 8.9.

Method-2: Time shift of 5 days
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Fig. 8.7: Quality of flood forecast in terms of PI for second case of forecasted rainfall, left column:
simulation period, right column: validation period

The Mix-Model results of Method-1 and 2 are shown in Fig-8.6 and 8.7. Mix-Model with rainfall
forecast of Method-2 is performing better than Mix-Model with rainfall forecast of Method-1.
The best forecasting results are obtained in the combination of Method-3 of Case-3 of Type-2
Model with Type-1 Model. The PI of 1 to 5 days flood forecast of V, M, P and S ranges from 0.5
to 0.7 (Fig.8-8.). However, in each of these three cases of Mix-Model results, the flood forecast
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performance in the validation period is less accurate than forecasting performance in the
simulation period.

Method-3: Using time index i rainfall for i+1 to i+5 rainfall forecast
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Fig. 8.8: Quality of flood forecast in terms of PI for third case of forecasted rainfall, left column:
simulation period, right column: validation period

8.2.4. Results of Flood Forecast by Mix-Model (Method-3 of Case-3 of Type-2 Model in
combination with Type-1 Model)

The accuracy of flood forecast reduces with the lead time. Similarly, the errors increase with the
forecasting lead time at each forecasting gage. Therefore, a comparative plotting of flood
forecasts with the observed flows is discussed separately for 1 to 5 days lead time.

8.2.4.1. Flood forecast of L, V, N, M, P and S with one day lead time

The flood forecasting results of 1 day lead time for L, V, N, M, P and S by Mix-Model are in
Figs.8.9 to 8.14. Each figure contains two columns, the left column shows the comparative
plotting of observed and forecasted discharges of year 2000, and the right column shows the
comparative plotting of discharges for year 2005. The year 2000 is year with the highest floods
in the simulation period, and year 2005 is year with the highest floods in the validation period.
These figures show that one day forecast is close to perfect in most of the cases. The errors
remain near zero, although in some rare cases the error goes up to 2000 m*/sec.
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8.2.4.2.

Flood forecast of L, V, N, M, P and S with two days lead time

Fig-8.15 to 8.20 shows the flood forecasting results of L, V, N, M, P and S for two days lead
time. The errors of two days flood forecast go up to 4000 m’/sec, and they are comparatively
larger than 1 day flood forecasts. But in most of cases, the forecasting error still remains close to
zero. In general, the errors are observed in the cases of sudden rise of discharges -which
seemingly are the result of rainfall occurrences after the forecasting day
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Fig. 8.17: Comparative plotting of observed and 2 day lead time flood forecast of N. Phanom (N), left
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Fig. 8.20: Comparative plotting of observed and 2 day lead time flood forecast of Stung Treng (S), left
column: for selected flood season (vear 2000) from simulation period, right column: for selected flood
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8.2.4.3. Flood forecast of V, N, M, P and S with three days lead time

Fig-8.21 to 8.25 shows the flood forecasting results of V, N, M, P and S for three days lead time.
The forecasting errors of V, N and M remain under 5000 m3/sec, however, more of the errors
exceed 5000 m’/ sec although they remain below 10,000 m*/sec in the case of P and S. Positive
errors are observed in the rising limb of the flood hydrographs; and most of the errors are
negative in the falling limb. This implies that for three day lead times, forecasts by Mix-Model
lag behind the actual observed discharges. This lag is apparently due to large lateral inflows in
short times. For example, in the case of the second flood peak at S, the discharge increased from
12000 to 40,000 m*/sec in just 5 days. However, the Mix-Model was able to forecast a large
portion of this discharge and the errors remain under 8000 m’/sec.
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Fig8.23: Comparative plotting of observed and 3 day lead time flood forecast of Mukdahan (M), left
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Fig. 8.24: Comparative plotting of observed and 3 day lead time flood forecast of Pakse (P), left column:
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Fig. 8.25: Comparative plotting of observed and 3 day lead time flood forecast of Stung Treng (S), left
column: for selected flood season (vear 2000) from simulation period, right column: for selected flood
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8.2.4.4.

Flood forecast of V, N, M, P and S with four days lead time

Figs.8.26 to 8.30 shows the flood forecasting results of V, N, M, P and S for four days lead time.
The forecasting errors of V, N and M remain under 5000 m*/sec but in the case of P and S the
errors exceed 5000 m?/ sec. However, in almost all cases they remain below 10,000 m’/sec.
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Fig. 8.26: Comparative plotting of observed and 4 day lead time flood forecast of Vientiane (V), left
column: for selected flood season (vear 2000) from simulation period, right column: for selected flood

season (vear 2005) from validation period
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Fig. 8.27: Comparative plotting of observed and 4 day lead time flood forecast of N. Phanom (N), left
column: for selected flood season (year 2000) from simulation period, right column: for selected flood

season (year 2005) from validation period
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Fig. 8.28: Comparative plotting of observed and 4 day lead time flood forecast of Mukdahan (M), left
column: for selected flood season (vear 2000) from simulation period, right column: for selected flood
season (vear 2005) from validation period
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Fig. 8.29: Comparative plotting of observed and 4 day lead time flood forecast of Pakse (P), left column:
for selected flood season (vear 2000) from simulation period, right column: for selected flood season
(vear 2005) from validation period
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Fig. 8.30: Comparative plotting of observed and 4 day lead time flood forecast of Stung Treng (S), left
column: for selected flood season (vear 2000) from simulation period, right column: for selected flood
season (vear 2005) from validation period.

8.2.4.5.

Flood forecast of N, M, P and S with five days lead time

Figs.8.31 to 8.34 show the flood forecasting results of N, M, P and S for five days lead time. In
general, the forecasting errors of N, M and P range from 500 to 10,000 m’/sec, but the
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forecasting error of S increased up to 18,000 m®/ sec in a total discharge of 50,000 m*/sec. This
high error in 5 days lead time strongly affects the average performance of Mix-Model.
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Fig. 8.31: Comparative plotting of observed and 5 day lead time flood forecast of N. Phanom (N), left
column: for selected flood season (vear 2000) from simulation period, right column: for selected flood
season (year 2005) from validation period
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Fig. 8.32: Comparative plotting of observed and 5 day lead time flood forecast of Mukdahan (M), left
column: for selected flood season (vear 2000) from simulation period, right column: for selected flood
season (year 2005) from validation period
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Fig. 8.33: Comparative plotting of observed and 5 day lead time flood forecast of Pakse (P), left column:
for selected flood season (vear 2000) from simulation period, right column: for selected flood season
(vear 2005) from validation period
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Fig. 8.34: Comparative plotting of observed and 5 day lead time flood forecast of Stung Treng (S), left
column: for selected flood season (year 2000) from simulation period, right column. for selected flood
season (vear 2005) from validation period

8.2.4.6. Distribution of errors for the Flood forecast of 1 to 5 days lead time

Fig. 8.35 shows the probability density distributions of forecasting errors of L, V, N, M, P and S
for 1 to 5 day flood forecasts in the simulation and validation periods. The error spread of the
validation period is about the same as the error spread of simulation period at each forecasting
gage. The error spread ranges from - 6000 to + 6000 m*/sec for L, V, N and M. However this
spread increases to 7000 m*/sec in the case of P. In the case of S most of the errors remain within
+/- 15000 m’/sec.

8.2.5. Results of Flood Forecast by Mix-Model in terms of Water Levels (Method-3 of Case-3
of Type-2 Model with Type-1 Model)

The forecasting results of 1 to 5 days flood forecast for year 2000 as presented in Fig.8.9-35 are
repeated in Fig.8.36-8.61 after converting observed and forecasted discharges into water levels.
The New MRC ratings of year 2010 are used to convert discharges because the rating curves for
year 2000 were not available to the writer. The reason of plotting observed and forecasted
discharges in terms of water level was because the same discharge errors can be different in
terms of water level at different stages. Normally, in the case of trapezoidal channels, errors are
larger in terms of water depth at low stages for the same discharge, because of narrow channel
with low discharge carrying capacity at low levels, which become large at high stages because of
high discharge carrying capacity of the flood cross section.
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Due to the fact that flood discharges correspond to high stages large discharge errors can be
small in terms of water level. In order to analyse the behavior of discharge errors in terms of
water depth a comparative plotting of observed and forecasted water levels is essential.

Further, flood forecasts are more meaningful in terms of water level to determine the critical and
overflow level of the channel, whereas discharges are important to estimate the flood magnitude.

8.2.5.1. Flood forecast of L, V, N, M, P and S with one day lead time

The flood forecasting results of 1 day lead time for L, V, N, M, P and S by Mix-Model in terms
of water level are presented in Fig-8.36 to 8.41. These figures show that one day forecasts are
close to perfect because in most of the cases the error remains near zero, however in some few
cases the error goes up to 30 to 50 cm.
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Fig. 8.36: Comparative plotting of observed and 1 day flood forecast (in terms of water level) of Luang
Prabang (L)
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Fig. 8.37: Comparative plotting of observed and 1 day flood forecast (in terms of water level) of

Vientiane (V)
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Fig. 8.38: Comparative plotting of observed and 1 day flood forecast (in terms of water level) of N.
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Fig. 8.39: Comparative plotting of observed and 1 day flood forecast (in terms of water level) of

Mukdahan (M)
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Fig. 8.40: Comparative plotting of observed and 1 day flood forecast (in terms of water level) of Pakse
(P)
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Fig. 8.41: Comparative plotting of observed and 1 day flood forecast (in terms of water level) of Stung
Treng (S)
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8.2.5.2. Flood forecast of L, V, N, M, P and S with two days lead time

Fig-8.42 to 8.47 shows the flood forecasting results of L, V, N, M, P and S for two days lead
time in terms of water level. The errors of two days flood forecasts are also only a few cm in
most of the cases, however, in some cases the error shoots up to 90 cm.
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Fig. 8.42: Comparative plotting of observed and 2 day lead time flood forecast (in terms of water level) of
Luang Prabang (L
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Fig. 0-18.43: Comparative plotting of observed and 2 day lead time flood forecast (in terms of water
level) of Vientiane (V)
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Fig8.44: Comparative plotting of observed and 2 day lead time flood forecast (in terms of water level) of
N. Phanom (N)
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Fig. 8.45: Comparative plotting of observed and 2 day lead time flood forecast (in terms of water level) of
Mukdahan (M)
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Fig. 8.46: Comparative plotting of observed and 2 day lead time flood forecast (in terms of water level) of
Pakse (P)
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Fig. 8.47: Comparative plotting of observed and 2 day lead time flood forecast (in terms of water level) of
Stung Treng (S)

8.2.5.3. Flood forecast of V, N, M, P and S with three days lead time

Figs.8.48 to 8.52 show flood forecasting results of V, N, M, P and S in terms of water level for
three days lead time. In general, the forecasting errors of V, N and M remain under 1 m but
errors may exceed 1 m in some rare cases at P and S. High errors are generally observed in the
rising part of a hydrograph and not at the higher water levels corresponding to discharge peaks,
which is useful because the flood forecast becomes more important at high stages.
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Fig. 8.48: Comparative plotting of observed and 3 day lead time flood forecast (in terms of water level) of
Vientiane (V)
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Fig. 8.49: Comparative plotting of observed and 3 day lead time flood forecast (in terms of water level) of
N. Phanom (N)
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Fig. 8.50: Comparative plotting of observed and 3 day lead time flood forecast of Mukdahan (M)
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Fig. 8.51: Comparative plotting of observed and 3 day lead time flood forecast (in terms of water level) of
Pakse (P)
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Fig. 8.52: Comparative plotting of observed and 3 day lead time flood forecast (in terms of water level) of
Stung Treng (S)

8.2.5.4. Flood forecast of V, N, M, P and S with four days lead time

Fig-8.53 to 8.57 shows the flood forecasting results of V, N, M, P and S for four days lead time
in terms of water level.. Forecasting errors of V, N and M remain between 0 to 150 cm but in the
case of P and S the errors can exceed 150 cm and may go up to as high as 180 cm. Again the
high errors are not exactly at the flood peak, but rather in the rising part of the flood hydrograph.
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Fig. 8.53: Comparative plotting of observed and 4 day lead time flood forecast (in terms of water level) of
Vientiane (V)
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Fig. 8.54: Comparative plotting of observed and 4 day lead time flood forecast (in terms of water level) of
N. Phanom (N)
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Fig. 8.55: Comparative plotting of observed and 4 day lead time flood forecast (in terms of water level) of
Mukdahan (M)
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Fig. 8.56: Comparative plotting of observed and 4 day lead time flood forecast (in terms of water level) of
Pakse (P)
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Fig. 8.57: Comparative plotting of observed and 4 day lead time flood forecast (in terms of water level) of
Stung Treng (S)

8.2.5.5. Flood forecast of N, M, P and S with five days lead time

Figs. 858 to 8.61 shows the flood forecasting results of N, M, P and S for five days lead time in
terms of water level. Forecasting errors of N, M, P and S range from 0 to 2 m. The typical
behavior in 5 days forecast is that positive errors are followed by positive errors, and negative
errors by negative errors. The possible reason of this continuous under or overestimation could
be the rainfall input for 5 days, because instead of using actual rainfall, a repetition of the current
day rainfall has been used as an estimate for future 5 days rainfall in the forecast by means of the
Type-2 Model.
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Fig. 8.58: Comparative plotting of observed and 5 day lead time flood forecast (in terms of water level) of
N. Phanom (N)
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Fig. 8.59: Comparative plotting of observed and 5 day lead time flood forecast (in terms of water level) of

Mukdahan (M)
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Fig. 8.60: Comparative plotting of observed and 5 day lead time flood forecast (in terms of water level) of
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Fig. 8.61: Comparative plotting of observed and 5 day lead time flood forecast (in terms of water level) of

Stung Treng (S)

It is apparent from Figs.8.36-61 that the errors do not remain constant during the flood season.
Apart from comparatively more errors in the rising limb and comparatively less errors directly
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under the flood peak, there is no relation between the stage and the errors. Therefore, it is useful
to compute the mean absolute errors as shown in Fig.8.62. The mean absolute errors in 1 day
forecast remain close to 1 cm for the downstream gauges, i.e. N, M, P and S but the errors are
high in terms of head at L and V, i.e. close to 10 cm. The errors in 2 days lead time forecasts
remains under 10 cm and in 4 days the errors ranges in between 38 to 45 cm. The maximum
error, of the order of 40 to 52 cm can be seen for 5 days lead time forecasts. But interestingly, in
4 and 5 days forecasts, there are fewer errors in the upstream gauges in comparison to the
downstream gauges.

Mean Absolute Error [m ]

Time lead [ days ]

Fig.8.62: Mean absolute errors of 1 to 5 days flood forecast for L, V, N, M, P and S for year 2000 flood

8.3. Conclusion and Discussion

The 1 to 5 days flood forecast of C, L, V, N, M, P and S has been improved by taking the
weighted average of the forecasts of Type-1 and Type-2 Models. The reason of this improvement
was the complementary nature of the errors of flood forecast produced by Type-1 and Type-2
Model. The improvement in flood forecast can be seen by comparing the Tables-6.5, 7.12 and
7.13 with Tables-8.2 and 8.3. The standard deviations of errors from different variants of the Mix
Model are compared with the errors of no model forecast in Tables 8.2 and 8.3 for simulation
and validation periods, respectively. These Tables summarize the model’s performance in
comparison to no forecast at all (i.e. assuming that today’s value is the same as for the value at
lead time t in the future) by presenting standard deviations of errors. The first two cases represent
the error statistics of Mix-Model, where the forecasting errors of Type-2 Model are produced by
using observed rainfall with calculated KN and observed rainfall with forecasted KN
respectively. The last three cases present the forecasting error of Type-2 Model with three
different methods of making rainfall forecasts, as discussed in Chapter-7. The comparison of first
two cases of Mix-Model forecasts with no model forecasts indicate that the standard deviation of
errors is reduced by 50% from no Model forecast to first two cases of Mix-Modeling forecasts.
This demonstrates that the standard deviation of errors can be reduced to half for almost all
gages, if the actual future rainfall is available. It also indicates the limit of Mix-model flood
forecasting efficiency in the cases of perfect rainfall input
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Tab. 8.2: Standard deviations (in m*/s) of various cases of flood forecast (for simulation period)

Gauge Without Observed P Observed P and Observed P and Observed P and Observed P and
forecast and forecasted KN forecasted KN forecasted KN forecasted KN
calculated KN (last 5 days avg.) (last 5 days time (constant rainfall
shift) propagation)

L+1 640 505 505 502 507 502
L+2 1101 729 732 754 768 740
V+1 623 485 484 484 485 484
V+2 1081 568 566 569 574 567
V+3 1461 770 773 794 804 779
V+4 1778 931 940 1015 1027 984
N+1 712 630 629 628 636 627
N+2 1288 931 924 943 993 921
N+3 1799 1360 1358 1462 1514 1383
N+4 2248 1581 1579 1793 1833 1695
N+5 2648 1787 1787 2113 2153 2011
M+1 826 451 451 449 456 447
M+2 1536 923 920 928 985 901
M+3 2165 1272 1267 1420 1513 1307
M+4 2721 1604 1598 1925 2018 1765
M+5 3219 1820 1813 2319 2408 2145
P+1 1212 762 757 751 778 735
P+2 2118 1167 1153 1273 1349 1159
P+3 2887 1569 1540 1865 1952 1697
P+4 3546 1906 1867 2430 2524 2232
P+5 4122 2240 2197 2960 3057 2754
S+1 2007 1284 1282 1289 1325 1280
S+2 3508 2048 2035 2221 2338 2107
S+3 4760 2627 2611 3242 3377 3009
S+4 5809 3121 3083 4143 4281 3875
S+5 6708 3514 3462 4903 5062 4637

The last three columns of Table-8.2 show the reduction of standard deviation of errors from no
Model to the cases of using imperfect rainfall forecast in Model-2. The best results are obtained
by using 3™ method of rainfall forecast, i.e. using current day rainfall pj(i) as an approximation
for future day’s rainfall P;(i+t) in Type-2 Model. In this case, the reduction of standard deviation
from no model forecast is as high as 50% for one to three day forecasting lead time, but it is
reduced to 30% in the fifth day. This reduction in the efficiency of the forecasting model with
lead time is due to the obvious reason of imperfect rainfall forecasts. The efficiency of Mix-
Model can very likely be much improved for four and five day lead times by better rainfall
forecasts.

The comparison of Table-8.2 and Table-8.3 shows that there is no significant difference between
standard deviations of errors in the simulation and the validation period. It means that the Mix-
Model is performing with similar efficiency in the simulation and validation mode.

197



Mixed Model Forecasting

Tab. 8.3: Standard deviation of various cases of flood forecast (for validation period)

Gauge | Without Observed P and | Observed P and | Forecasted P Forecasted P (last 5 | Forecasted
forecast calculated KN forecasted KN (last 5 days days time shift) and | P (constant

avg.) and forecasted KN rainfall
forecasted KN propagatio

n) and
forecasted

KN

L+1 649 640 628 620 644 613
L+2 1059 863 858 886 941 822
V+1 674 489 490 488 489 488
V+2 1117 663 666 650 666 634
V+3 1454 973 986 1013 1049 953
V+4 1716 1153 1192 1288 1323 1205
N+1 818 809 801 784 808 799
N+2 1417 1050 1024 990 1090 986
N+3 1886 1442 1414 1534 1639 1400
N+4 2293 1640 1612 1929 1997 1749
N+5 2650 1898 1889 2347 2394 2164
M+1 987 547 536 529 523 530
M+2 1762 1097 1073 1056 1133 1055
M+3 2439 1453 1412 1561 1709 1438
M+4 3028 1783 1738 2176 2311 1952
M+5 3543 2010 1965 2690 2786 2431
P+1 1225 807 795 786 805 776
P+2 2167 1248 1201 1268 1339 1181
P+3 2984 1689 1618 1971 2067 1824
P+4 3690 2071 1975 2604 2724 2390
P+5 4295 2426 2314 3213 3332 2961
S+1 1974 1216 1179 1158 1181 1161
S+2 3460 1938 1904 2058 2280 1961
S+3 4714 2507 2443 2981 3209 2751
S+4 5737 2984 2879 3940 4143 3647
S+5 6597 3394 3256 4787 4985 4465

Similar to the results of Type-1 Model as presented in Table 7.12 and 7.13, in
standard deviation reduces by 50% for perfect input of rainfall with first case of n and k
optimization. It means, there is not much difference between the results of Type-1 and Mix-

general, the

Model when a perfect input of rainfall is taken as rainfall forecast. But in the cases where
forecasted rainfall is used as an input, the standard deviation is comparatively smaller in the
results by Mix-Models than by Type 1 Model. This standard deviation is comparable to that of
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the fifth case (i.e. using n and k parameters with Type 1 Model). But since this case is physically
less plausible, it is preferred to use the Mix-Model also in the absence of better rainfall forecast.
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9, Conclusions and Recommendations

In the list of river basins exceeding 500,000 km” the Mekong has one of the largest peak
discharges per unit area, (O’ Connor, 2004). SE Monsoons and NW typhoons cause heavy
rainfalls in the Lower Mekong. This rainfall in Northern Lao-PDR and on the Anman mountains
along the border of Lao-PDR to Vietnam generate runoff into the main stem of the Mekong via
lateral tributaries. The lateral inflows are superimposed on the Yunnan (Upper Mekong)
discharge component of the Mekong. The Yunnan component contributes less than 20% of the
total Mekong flow and its proportion in summer discharges is even less. The lateral inflows from
left bank tributaries of the Mekong are the main reason of flooding.

The estimated flood damage to benefit ratio of 1 to 100 promote the idea of “living with the
floods” in Lower Mekong Basin. However, a major effort is required to reduce the intangible
costs in order to optimize social benefits of Mekong floods. Above all, losses of human lives
must be avoided. The population density along the Mekong normally ranges from 30 to 50
persons per km? as per population density map of year 2000, of which many live in flood prone
areas on the Mekong. In order too prepare people for beneficial floods, and to help protect them
against harmful floods a good early warning of upcoming flood is necessary to save human lives.
Flood forecasts of good quality are a decisive factor for a successful early warning. Flooding of
once in every two years on the average along Middle Mekong requires effective forecasting.

In order to produce flood forecasts with 1 to 5 days lead time, at 6 gauges, i.e. L, V, N, M, P and
S located in Lao-PDR and Cambodia along the Middle Mekong, a data based flood forecasting
model was developed. In the analysis mode of the study, the model was developed directly from
available data instead of fitting some imported model, i.e. a data based model was generated, in
contrast to the use of imported models, such as models SSARR and URBS, which have already
been tried by MRC, with limited success. In particular the simple linear storage model SSARR
has resulted in poor performance in recent high floods of year 2000 and 2005, mainly because
the parameters of this model were calibrated long ago and have never since been updated
successfully.

The semi distributed, non-linear and conceptual URBS model is a runoff-routing networked
model of sub-catchments based on centroid inflows. The rainfall excess is determined by
separating each sub-basin into pervious and impervious areas. In pervious areas the loss is
computed by a continuous loss model (rainfall is lost on all parts of the catchment), proportionate
runoff model (only part of the catchment contributes to runoff) and the Manley Philips
infiltration loss model (Rainfall is lost on all parts of catchment up to end infiltration). But since
data on local soil moisture conditions are seldom available — (it is not known to the writer how
the URBS model is calibrated, especially when it was found (indirectly from catchment gain)
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that soil wetness changes from early to late flood months. Unlike SSARR, in application of
URBS to the Mekong, the whole Mekong basin is divided into hundreds of sub-basins. The
application constraints of distributed models in flood forecasting for large rivers has been
discussed in detail in Chapter-3, where it is indicated that the over-parameterization of this
model does not help to get acceptable results

Both models SSARR and URBS are based on the principle of bottom to top modeling which was
opposed by Young (2002) to be used in flood forecast. In both models, no additional sub-routine
was given in order to describe the uncertainty with each forecasted value. Normally, every
forecast is subject to uncertainty. If no measure of the uncertainty is communicated to the user,
he is to believe that the forecast is true. Both the models need Satellite Rainfall Estimates (SRE)
data, which up to today has not yet been validated by ground based measured data. This problem
was noted by Malone (2009) who stated that the quality of URBS forecast is a function of input,
and that the poor quality of URBS forecasts, as seen in flood season 2008, could be attributed to
poor input of rainfall by SRE. Further, both models measure the quality of forecast by average
absolute error which is not a good measure of the uncertainty of the results and thus. Not well
suited to judge the performance of a forecasting model.

In order to set an objective standard to check the performance of the newly developed model, a
performance index PI was selected as objective measure. Unlike the well known Nash Sutcliffe
(NS), which gauges the performance of data generation model by dividing the variance of
discharge differences of modeled QF(i+t) minus observed Q(i+t) through the variance of
discharge differences of observed Q(i+t) minus mean Q (1), PI measures the model performance
by dividing the variance of the discharge differences of modeled QF(i+t) minus observed Q(i+t)
through the variance of the discharge differences of observed Q(i+t) minus present value Q (i),
i.e. by measuring the performance against the assumption of no changes in discharge over the
lead time. NS was found to be a suitable objective function for a design model where the best
available estimate of future discharge is the mean discharge, but not for flood forecasting where
the best estimate of future discharges is the last observed discharge. In addition to PI, the
probability distribution of errors was also determined to check forecast bias and the error
probability distribution on the basis of a detailed error analysis.

The Mekong is a long River, and it takes 9 days for the flood wave to propagate from C to S. In
the travel of flood wave from C to S, the flow is augmented by lateral tributaries. Therefore, at
each gauge along Mekong, there is one portion of discharge which is coming from upstream, and
another portion which is added by the lateral tributaries. With the help of the mass balance
equation the known gauged discharges from upstream was routed downstream. The unknown
lateral inflows were forecasted with the help of two data based models, i.e. Metric (Type 1
Model) and Hybrid Metric Conceptual (Type 2 Model). Unlike a complex physical model, the
data based models were structured exclusively from the available data base of 7 discharge and 31
rainfall gauges. Instead of concentrating on replicating the physical accurateness of a catchment
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and channel physics, optimisation of the functional accuracy of model in forecasting future flows
was preferred. But prior to the application of Type 1 and Type 2 Models, the potential of an
empirical probability based Type 0 Model was tested.

Type 0 Model was based on taking average discharge differences at each day for all years of
observation from current day to future forecast day and computing probability distribution of
discharge differences from current day to future forecast day. The addition of average positive
and negative discharge differences to current lateral discharge formed upper and lower limits of
future discharges. Similarly, adding the 5 and 95% occurrence probability discharge to current
discharge gave the other upper and lower limits. The problem was that in these approaches the
span was too narrow and many actual future discharges exceeded the lower and upper limits. In a
second approach the full range of available data was used, however, in this case the span was too
wide and forecasts on the basis of this approach were not useful.

Type 1 Model was developed by means of discharges only, using daily discharge data from 1960
to 1990 for analysis, and data from 1990 to 2005 for validation. In order to forecast future flows
at each gauge along Mekong, the lateral inflows were forecasted first. The lateral inflows were
computed on the basis of linear regression of forecasted value with time delayed upstream
discharges. Multi- regression was preferred to simple regression because simple auto regression
of lateral inflows suggested that good correlation between subsequent inflows decreased rapidly
with increase in time steps from one to five days — which then was compensated by adding
contributions from further upstream lateral inflows by means of simple linear regression. In this
manner, by regressing the lateral inflows against lateral inflows of subject reach and all available
upstream reaches with 1 to 5 days time steps forecasts for lateral inflows with 1 to 5 days lead
time were generated.

The generation of lateral inflows enabled to do discharge forecasts for 1 to 5 days lead time at 6
gauges along Mekong in the flood season, i.e. June-October. In general, the efficiency of the
forecasts of lateral inflows, as expressed by PI, ranged from 0.5 to 0.7 for the first two days, but
decreased sharply with more than three days lead time. The forecasting efficiency for Nakhon
Phanom was found to be even lower, i.e. 0.2 to 0.3 in comparison to other forecasting gauges.

Further application of the Type 1 Model on the Mekong River to the forecasts of river discharges
in the Mekong, showed that the use of persistence between subsequent discharges was sufficient
to produce flood forecasts with acceptable efficiency, i.e. PI = 0.5 to 0.70 up to two days lead
time. However, the efficiency of flood forecasts by this model reduced from PI = 0.4 to 0.3 with
increase in lead time from the 3™ to the 5% day. It was assumed, and found true later, that rainfall
forcings reduced the capability of multi-regressions to produce effective flood forecasts for lead
times greater than two days.

Consequently, rainfall information was used in developing the Type 2 Model, in order to
compensate the shortcomings (failure to produce good forecast above two days lead time) of the
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Type 1 Model. Some type of rainfall runoff model was required in order to convert the rainfall
hyetograph into the runoff hydrograph. On the basis of extensive literature review of the
requirements of large rivers flood forecast in the context of Mekong, a Hybrid Metric Conceptual
approach has been selected for the generation of runoff — resulting in the Type 2 Model. Separate
rainfall runoff models were constructed, one for each of the 6 sub-basins. Daily rainfall data of
33 rainfall and 7 discharge gauges were used. The data of 1990 to 2000 were used for simulation
and 2005 to 2005 for validation by using the standard split sampling approach. After analyzing
three different options, i.e. SRE, areal average, weighted areal average, to obtain areal rainfall, a
simple areal average was selected, because SRE by NOAA was found to be not validated by
ground based reality, and Thiessen polygon weighted areal averages were giving poor results
because of uneven distribution of rainfall gauges - in some cases one of the many gauges was
getting more than 60% of the weight because of its typical location.

The areal average rainfall was converted into effective rainfall with the help of an empirically
introduced adjustment coefficient KN. KN is defined as the ratio between seasonal, i.e.
cumulative monthly runoff to monthly cumulative rainfall. The typical behavior of runoff
response against the rainfall during the course of the flood season suggested the use of variable
runoff to rainfall ratio. The analysis of runoff to rainfall ratio has indicated seasonality, i.e. KN
increases from first to last month of flood season. Instead of using mean monthly KN for each
flood season, KN was forecasted with the help of multi linear regression and moving average
method. On the basis of comparative performance, the forecast of KN by moving average was
preferred at the end. This seasonal KN was used along with a 2 parameter Nash cascade in order
to convert effective rainfall into runoff. The n and k parameters of the Nash cascade were
selected on the basis of LSE (least squares error). LSE was applied on four different sets of
output data, i.e. lateral runoff, lateral runoff above certain threshold, lateral runoff after updating,
and mainstream discharges. In the fifth case, the input data of observed rainfall was changed into
forecasted rainfall and LSE optimization was applied on mainstream discharges. The n and k
values optimized by LSE application to lateral runoff was preferred because of its performance
in forecasting mainstream discharges. The optimized n and k values, obtained on the basis of
LSE of lateral runoff after updating, performed well for forecasting lateral discharges. But as the
goal was to forecast mainstream discharges the first case of n and k optimization was preferred.

The lateral inflows computed by the best variant of KN and n and k parameter combination were
updated on the basis of error corrections by using the correlation between subsequent errors. The
forecasting efficiency of a Type 2 Model with perfect rainfall data (assuming future rainfall is
known exactly) for 1 to 5 day forecast at mainstream gauges, as expressed by PI, ranged from 0.6
to 0.7, except at Nakhon Phanom where it remained of the order of 0.1 to 0.5. Forecasting
efficiency reduced when the perfect input data was replaced with a forecasted rainfall for future
days and thus ranged from 0.5 to 0.6 for the first 3 days lead time, and 0.2 to 0.4 for 4 and 5 days
lead time. However, by using the fifth case of n and k parameters, the forecasting efficiency
improved, as expressed by PI, which ranged from 0.6 to 0.7 for the first 4 days lead time, and
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from 0.5 to 0.6 in 5 days lead time. An exception was the forecasting efficiency at Nakhon
Phanom, which was lower i.e. ranging from 0.1 to 0.4. Although, the fifth case of n and k
improve the efficiency of Type 2 Model to forecast mainstream discharges even with poor
rainfall input (taking rainfall of today as future rainfall for next five days), it is not recommended
for application because the typical shape of unit hydrograph for this case did not seem to be
realistic. Therefore, it was necessary to find an alternate approach for producing better forecast
with more plausible first case of n and k, even with poor rainfall forecasts.

The typical compensating pattern of forecasting errors in Type 1 Model and Type 2 Model
suggested the use of average of these two as a forecast. The optimal weighted average was
determined by the standard regression technique. The forecasting efficiency of mixed modeling,
as expressed by PI, ranges from 0.6 to 0.7 in first 4 days lead time, and is also reduced to range
from 0.4 to 0.5 in 5 days lead time.

It has been found that in a data scarce catchments like that of the Mekong, a Metric Type 1
Model can be used for up to 2 days lead time flood forecast and Hybrid Metric Conceptual Type
2 Model can be used for 3 to 5 days forecasts. But the efficiency of Type 2 Model in longer lead
times was restricted by rainfall forecast quality. The use of Mix model has been preferred at the
end because it combined the information of discharge persistence extrapolation of Type 1 Model
with information of rainfall forcings into runoff as generated by Type 2 Model.

Since both Type 1 and Type 2 Models were based on empirical analysis of discharge and rainfall
time series in the analysis mode, it was assumed that this empirical relation will hold also good
in the future. But these functional dependencies of data are the result of system physics of the
basin, whose foot prints are captured by the data — and work only if there are no major
anthropogenic changes in the basin. On the other hand, global climate change effects only alter
the input of the data based model if the spatial pattern of rainfall changes in Mekong sub-basins.
However, change in the temporal pattern of rainfall is less likely to change the performance of a
Type 2 Model.

The quality of Mixed Model for Pakse, as expressed by PI, is 0.55 to 0.7 for the flood periods of
1990 to 2005 against 0.3 to 0.5 of SSARR for flood season of 2005. It is not possible to compare
the results of data based model with URBS results directly because the writer didn’t have access
to recent discharge data (2005 onwards), and URBS was not operational in the previous years
(1990 to 2005). However, weekly mean absolute errors of 20 cm to 280 cm have been noted for
the year 2009, which in comparison to mean absolute errors (5 cm to 50 cm) of mixed model for
2000 flood season are much higher.

Apart from the issue of performance, the use of the data based model is data efficient, works
efficiently and is simple to use in comparison to SSARR and URBS. Further, it needs the data of
only 33 rainfall gauges and 7 discharge gauges in comparison to extensive data requirement of
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SSARR and URBS. Further, the additional analysis of errors allows the data based modeling
approach to communicate uncertainty band along with each forecast.

There is, however, a need for better rainfall forecast, because for longer lead times, i.e. for more
than 4days, the efficiency of both models is impaired by rainfall events that occurred after the
day of issuance of flood forecast. The information of typhoon tracks can be used in order to
locate storm eye and may yield estimates of rainfall from these storms. A study of the possible
relation of typhoon tracks with rainfall occurrences in different sub-basins of Mekong is
recommended. The study should put emphasis on establishing some quantitative, or usable
qualitative relation between these two, so that information on typhoons could be used in
forecasting rainfall. The forecast by NOAA could also be used provided the SRE are validated
by ground based measurements but until these are available the use of NOAA rainfall forecasts is
not likely to be free from significant errors.

Performance of Type 2 model can be improved by adding more rainfall gauges, especially in the
LV sub-basin, where there are only two gauges at the moment. The installation of more rainfall
gauges and at more representative locations is likely to improve the performance of Type 2
Model, however, very likely only after revising the n and k parameters.

Apart from the quality of rainfall forecasts, the quality of the performance of the forecasting
model is also affected by the quality of the rating curves. An erroneous conversion of water
levels to discharges and vice versa is a likely cause of additional errors. The issue of ratings
seems to be a problem, leading to poor performance of both Type 1 and Type 2 Models in
particular at Nakhon Phanom which can be improved by better ratings.
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