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1. Introduction

What are the fundamental laws of nature? Is there a unified mathematical framework that de-
scribes all observed (and not yet observed) phenomena consistently? These are the questions
that drive theoretical physics and particle physics in particular. Starting from the beginning
of the previous century, remarkable progress in finding possible answers to these questions
has been made. With the early formulation of Quantum Electrodynamics (QED) by Paul
Dirac [1] in 1927 the importance of Quantum Field Theories (QFT) in the description of
fundamental interactions became evident. The quest for a valid unification of Quantum me-
chanics and Special Relativity then lead to the discovery of the Dirac equation and this in
turn to the prediction of antimatter as an interpretation of “negative energy solutions”.

Certainly, another milestone on the long way to the ultimate goal was the theory of electroweak
interactions by Glashow, Salam and Weinberg [2–4]. This theory, as QED, is formulated as a
gauge theory, but this time based on the Lie group SU(2)×U(1) and spontaneously broken in
order to account for the masses of fermions and weak gauge bosons. Together with Quantum
Chromodynamics (QCD) [5], the theory of strong interactions, this structure is known as the
Standard Model (SM) of particle physics today. The proof of renormalizability of anomaly-
free gauge theories [6] by ’t Hooft and Veltman in 1972 paved the way for the success of this
model. Since those days the SM has continuously been confirmed by a tremendous amount
of precision measurements [7] establishing it as a starting point for any further investigations
in particle theory.

Despite the enormous insights about nature the SM and General Relativity has bestowed us,
these two theories at the same time have revealed that there is unequally much more that
we do not understand. The mere fact that we need two theories to describe all fundamental
interactions of nature is unsatisfactory. Further inherent weaknesses of the SM are the mystery
of charge quantization, the unexplained origin of neutrino masses and the question of how
the pattern of masses and mixings in the SM arises, just to name a few. This has opened
the way for innumerable new ideas and theories with a varying degree of speculation and
persuasiveness. Without a doubt, the concept of Grand Unification that was first introduced
by Georgi and Glashow [8] pertains to the most promising candidates of physics beyond the
SM. In its simplest form a Grand Unified Theory (GUT) can be constructed on the basis of the
simple gauge group SU(5) unifying electromagnetic, weak and strong interactions. It combines
all SM fermions into its two smallest representations and can be broken spontaneously by an
adjoint Higgs to the SM gauge group. Even more alluring are SO(10) GUTs that allow for the
unification of all SM fermion fields of one generation together with a right-handed neutrino
in a single 16-dimensional multiplet. Here, however, the symmetry-breaking chain becomes
typically more involved and therefore increasingly less appealing than in SU(5) GUTs. Among
the most intriguing predictions of GUTs are the instability of nucleons and the unification of
gauge couplings at some high scale MGUT, the latter being the concern of this thesis.
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Chapter 1. Introduction

At around the same period of time when first GUT models have been formulated, it has been
realized that a consistent quantum field theory need not be constructed on the basis of a
direct product of the Poincaré group and internal (gauge) symmetries [9]. The yet unno-
ticed possibility, called Supersymmetry (SUSY), involves anticommuting generators realizing
a symmetry between fermions and bosons. In the same way as Dirac predicted antimatter as
the “negative energy solutions” of his equation, exact SUSY predicts the existence of super-
partners that differ from the original particle only by its spin. These findings constituted an
a posteriori justification for the previously discovered Wess-Zumino model [10], the simplest
supersymmetric, renormalizable quantum field theory. Softly broken SUSY with TeV scale
superpartners, and in particular the Minimal Supersymmetric Standard Model (MSSM) [11],
has numerous attractive features. Among them are a means of stabilizing the electroweak
scale, the existence of a dark matter candidate particle, a natural mechanism to provide elec-
troweak symmetry breaking and the possibility to embed gravity. Most notably, however,
in the context of this work is the fact that at the one-loop level the three gauge couplings
in the MSSM apparently unify at a high scale of about 1016 GeV which is to be contrasted
to the situation in the SM [12]. This means that the concept of Grand Unification can be
particularly easily realized in conjunction with SUSY.

In order to test the unification hypothesis of gauge couplings at the two-loop level, a concrete
SUSY GUT model has to be specified. This is because a consistent n-loop Renormalization
Group (RG) analysis must include n-loop running and (n − 1)-loop threshold corrections1.
These corrections arise because the MSSM is viewed as an effective theory that emerges
from a SUSY GUT by integrating out the super-heavy particles at some unphysical scale
µGUT = O(1016GeV). Since the threshold corrections depend on the masses of those particles,
one can constrain the super-heavy mass spectrum by requiring the gauge couplings to unify.
Of special interest in this procedure is the prediction for the colored triplet Higgs mass MHc .
This is because this parameter can also be constrained from the experimental bound on the
proton decay rate in SUSY GUTs via dimension-five operators. Both constraints together can
then be checked for compatibility providing a means to test the model.

As experimental precision on the input values αs, αem and sin2 Θ is increasing, also higher
order corrections in the unification analysis become significant. The work in hand is part of
a project that aims at establishing a consistent three-loop gauge coupling unification analysis
for phenomenologically interesting GUT models, in particular SUSY GUTs. Up to now only
consistent two-loop analyses are available [13–20]. They use two-loop Renormalization Group
Equations (RGEs) for the MSSM and the SUSY GUT and one-loop decoupling at the SUSY scale
µSUSY and the GUT scale µGUT. However, most of those analyses fix the SUSY decoupling
scale to µSUSY = MZ in order to start with MSSM RGEs at the electroweak scale right away.
In order to enhance this by one loop, we need three-loop RGEs for the SM, the MSSM and
the SUSY GUT under consideration and two-loop matching corrections at the SUSY and
GUT thresholds. Though a considerable part of the required input is already available [16,
21–33], the following ingredients are still missing: Three-loop electroweak corrections to the
SM running, two-loop electroweak corrections to the decoupling at µSUSY and, most notably,
two-loop matching corrections at µGUT.

1We use the terms threshold correction, matching correction and decoupling more ore less interchangeably in
this thesis.
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The aim of this thesis is twofold: In a first part we are going to analyze the unification of
gauge couplings at (almost) three loops using the above mentioned state-of-the-art input and
compare with previous two-loop analyses. This will provide a motivation for the second and
main part of this thesis: The calculation of the yet missing two-loop threshold corrections at
the GUT scale. Since there is a considerable number of well motivated GUT models, the aim
is to set up the calculation in a general framework in order to not to be restricted to only
one of them. The idea is to have a general formula depending on group theory invariants
and mass matrices of the theory. Specifying to a certain GUT model means to assign certain
values to these quantities and obtaining a formula that only depends on the mass spectrum
of that particular GUT. To realize this, we will be facing a number of challenges: First of all,
we will need to find an efficient method to treat all the group theory factors that appear in
the diagrams. Since the theory is spontaneously broken and furthermore contains unspecified
invariant tensors from scalar self-couplings and Yukawa couplings, we must reduce them to
a basic set of primitive invariants making only use of gauge invariance and nothing else.
Moreover, we will need to carry out a one-loop renormalization program for the model. The
subtleties as regards gauge fixing, ghost interactions and tadpole terms that also appear in
the renormalization of the likewise spontaneously broken electroweak model [34] are enhanced
by the nontrivial group structure in our case.

The remainder of this thesis is organized as follows: In chapter 2 we will review the SM,
SUSY and GUTs, also introducing several GUT models that will be used hereafter. This
chapter will also treat a few important concepts that will be useful later, as RG methods, basics
about proton decay and Schur’s Lemma. Chapter 3 is then devoted to the analysis to gauge
coupling unification in SUSY GUTs using state-of-the-art input and based on ref. [35]. The
theoretical framework for the calculation of two-loop matching coefficients at the GUT scale is
introduced in chapters 4 and 5. While the first focuses on field-theoretical aspects like gauge-
fixing, tadpole terms and renormalization, the latter describes the treatment and reduction
of group theory factors. As an application of the calculation we present numerical results
for the case of the Georgi-Glashow SU(5) Model in chapter 62. Finally, we summarize our
findings and discuss possibilities for the future of this project in chapter 7. In the appendix
the reader can find derivations of group theory reduction identities that appear in the main
text and further useful supplementary material.

2A substantial part of chapters 4-6 has been published in ref. [36]
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2. Supersymmetric Grand Unified Theories

The Standard Model (SM) of particle physics has been extremely successful in describing
low-energy phenomena. However, there are good reasons to believe that it is only an effective
theory of some extended model that is also valid at higher energies. In this chapter we briefly
review the SM and discuss possibilities of physics beyond it, in particular Grand Unification
and SUSY. Besides introducing particular GUT models, we will also cover some basic concepts
that will be needed in the course of this work. Among them are RG methods, proton decay
and Schur’s Lemma.

2.1. The Standard Model and its Limitations

The SM is a gauge theory based on the gauge group GSM ≡ SU(3)C×SU(2)L×U(1)Y with
chiral fermions sitting in the following representations:

Field QI ucI dcI LI ecI
Representation (3,2, 16) (3,1,−2

3 ) (3,1, 13 ) (1,2,−1
2 ) (1,1, 1)

where I = 1, 2, 3 is a generation index. The notation (3,2, 16) for example denotes that the
respective field transforms as a triplet of SU(3)C , a doublet of SU(2)L and carries hypercharge
1
6 . Postulating local gauge invariance leads to the introduction of gauge fields that live in the
adjoint representation of GSM:

Field Ga
µ W a

µ Bµ

Representation (8,1, 0) (1,3, 0) (1,1, 0)

Each of the three gauge fields interacts with the fermions via gauge-kinetic terms. The
respective coupling strength is denoted by the gauge couplings g3, g2 and g1. For convenience,
we also define

αi =
g2i
4π

, i = 1, 2, 3 . (2.1)

Since all SM fermions sit in complex representations of the gauge group, fermion mass terms
are not gauge invariant and are therefore forbidden. In order to obtain massive fermions
and weak gauge bosons, a scalar Higgs field in the representation (1,2, 12) with a vacuum
expectation value (vev) that breaks the gauge symmetry to SU(3)C×U(1)em is introduced.
Then the weak gauge bosons obtain masses through the gauge-kinetic terms of the Higgs field
and the fermions via their Yukawa interactions to the Higgs field. Moreover, exploiting the

5



Chapter 2. Supersymmetric Grand Unified Theories

freedom to perform unitary rotations in generation space, all flavor and CP violation in the
SM can be encoded in the unitary so-called CKM matrix VCKM.

Despite the great success of the model described above, there are a number of open questions
it poses: The quantization of charge remains a mystery because hypercharge is described by
an abelian group U(1)Y , the generators of which can be arbitrarily rescaled. Moreover, it may
appear unaesthetic that GSM is not a simple group and that the choice of representations of
the fermions seem arbitrary. This is even more mysterious as one observes that this particular
choice of representations and hypercharges leads to the exact cancellation of anomalies in the
SM, which is required in order to guarantee renormalizability. Other puzzles include neutrino
masses, hierarchies of fermion masses and the smallness of flavor-violating parameters in the
CKM matrix. On the other hand, after adding right-handed neutrinos to the SM in order
to account for neutrino masses, via the seesaw mechanism one obtains an important hint to
the scale of Grand Unification. Besides the large number of 19 parameters in the SM and
the so-called strong CP problem, there is another issue that is worth mentioning here: In
contrast to fermion masses in the SM, the mass of the Higgs field is not protected by some
symmetry against large radiative corrections. At the one-loop level, these corrections are
proportional to O(Λ2) + O(m2

f ), where Λ is some cutoff scale, e.g. MPl, and mf the mass
of any heavy fermion that can propagate inside the loop. In order to obtain a physical
Higgs mass of O(MZ), an extreme fine-tuning of about 30 orders of magnitude is needed,
which is considered as unnatural. This so-called hierarchy problem [37–40] can be solved by
SUSY whereas some of the aforementioned problems are addressed by GUTs, which will be
discussed in the next sections.

2.2. The Georgi-Glashow SU(5) Model

As soon as shortly after the establishment of the SM in the late sixties of the last century, first
proposals of gauge theories based on a simple gauge group, containing GSM as a subgroup,
came up. These theories are attractive not only from the aesthetic point of view as we will
see. The requirements for the choice of such a group G are:

• The rank of G must be at least four in order to contain all Cartan generators1 of GSM.

• Since SM fermions live in complex representations of GSM, also G must possess complex
representations. Otherwise a doubling of the particle content would be required.

The first GUT proposed by Georgi and Glashow [8] in 1974 was based on the gauge group
SU(5), the simplest group that fulfills the above requirements, and therefore may be considered
as the “prototype GUT”. All SM fermion representations of one generation can be unified in
the representations 5 and 10 of SU(5) as can be seen from the following decompositions2:

5 → (3,1, 13)⊕ (1,2,−1
2) , (2.2)

10 = [5× 5]a → (3,1,−2
3 )⊕ (3,2, 16)a ⊕ (1,1, 1) . (2.3)

1The rank of the group is equal to the number of simultaneously diagonalizable generators. These (diagonal)
generators are called Cartan generators.

2The index a indicates that the antisymmetric part of the representation has to be taken.
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2.2. The Georgi-Glashow SU(5) Model

More explicitly, the embedding of SM fermions into these representations can be written as

5 =









dc1
dc2
dc3
e
−νe









L

, 10 =
1√
2









0 uc3 −uc2 −u1 −d1
−uc3 0 uc1 −u2 −d2
uc2 −uc1 0 −u3 −d3
u1 u2 u3 0 −ec
d1 d2 d3 ec 0









L

. (2.4)

All fields have been chosen to be left-handed and the indices 1, 2, 3 denote the color of the
field.

The gauge bosons live in the adjoint 24 representation:

24→ (8,1, 0) ⊕ (1,3, 0) ⊕ (1,1, 0) ⊕ (3,2,−5
6)⊕ (3,2, 56 ) (2.5)

that obviously contains gluons, weak gauge bosons and B bosons in its decomposition. More-
over, the last two summands of the decomposition constitute additional gauge bosons that
are not present in the SM and obtain a super-heavy mass in the course of GUT symmetry
breaking. Again, these gauge bosons can be written more explicitly as an hermitian 5 × 5
matrix:

Aµ =
24∑

α=1

Aα
µT

α (2.6)

=
1√
2










X⋆
1µ Y ⋆

1µ
1
√

2

∑8
a=1G

a
µλ

a X⋆
2µ Y ⋆

2µ

X⋆
3µ Y ⋆

3µ

X1µ X2µ X3µ
1
√

2
W 3

µ W+
µ

Y1µ Y2µ Y3µ W−

µ − 1
√

2
W 3

µ










+
Bµ

2
√

15









−2
−2

−2
3

3









where the SU(5) generators in the fundamental representation have been denoted by Tα

and the Gell-Mann matrices by λa. From the above equation it is also visible that the
normalization of the hypercharge generator (the one belonging to the B boson) is fixed,
which automatically leads to the quantization of electric charge. In particular, the ratios
of hypercharges of the various SM multiplets are fixed to their right values solely by group
theory.

In order to break the SU(5) symmetry to GSM, the simplest possibility is to introduce a scalar
24H in the 24-dimensional representation which obtains a super-heavy vev in the direction of
the SM singlet (cf. eq. (2.5)). Furthermore, to break the electroweak symmetry, one usually
introduces another scalar 5H in the 5-dimensional representation with an uncharged vev of
O(MZ). The field 5H also contains the usual SM Higgs doublet, as can be seen from eq. (2.2).
Then the Yukawa Lagrangian of the Georgi-Glashow model can be written as [8, 41]

LSU(5)
Y =

1

4
10IY

U
IJ10J5H +

√
2 10IY

D
IJ 5J 5

⋆
H + h.c.

≡ 1

4
Y U
IJǫijklm10ijIC10klJ5Hm +

√
2 Y D

IJ10ijIC5iJ5
⋆
Hj

+ h.c. . (2.7)

In the first line we also have introduced a shorthand notation that is common in the literature,
where fundamental SU(5) indices i, j . . . and the Dirac charge conjugation matrix C = iγ2γ0
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Chapter 2. Supersymmetric Grand Unified Theories

are suppressed. Moreover, ǫijklm is the totally antisymmetric symbol with ǫ12345 = 1 and the
generation indices have been denoted by I, J . An important prediction of this model becomes
apparent, if one expresses the second term in the above expression through SM fields:

LSU(5)
Y ⊃ −Y D

ij

(
QT

i Cd
c
j + ecTi CLj

)
ǫ h⋆ + h.c. (2.8)

where the transposition is only with respect to Dirac space and h is the SM Higgs doublet.
Comparing with the SM Yukawa Lagrangian yields:

Y E =
(
Y D
)T

. (2.9)

Which predicts the unification of lepton and down-quark Yukawa couplings at the Grand
Unification scale MGUT. Though phenomenologically this condition is in quite good agreement
with experiment for the third generation, there are considerable deviations for the first and
second generation [41, p. 271]. This problem can be solved by additional scalar multiplets [42]
or higher dimensional operators [43–45]. In the gauge coupling unification analyses performed
later in this work, we will implicitly assume the second solution. Then we can safely ignore this
issue because higher-dimensional operators will only affect our analysis in an easily predictable
manner.

Finally, the scalar potential for the Georgi-Glashow model with the discrete symmetry
5H → −5H and 24H → −24H reads [41,46]

V (5H ,24H) =

−µ25 5⋆Hi
5Hi

+
b

6
(5⋆Hi

5Hi
)2

−1

2
µ224 24Hα24Hα +

A

4!
Tr(TαT βT γT δ)24Hα24Hβ

24Hγ24Hδ
+
B

4!
(24Hα24Hα)2

+c (TαT β)ij24Hα24Hβ
5⋆Hi

5Hj
. (2.10)

Note that we have written the GUT-breaking scalar 24H as a 24-dimensional vector multiplet
and not as an hermitian 5× 5 matrix as usually done. This is in order to be consistent with
our notation later in chapter 4. After the GUT-breaking scalar has developed a super-heavy
vev 〈24H〉 = v in the direction of the Hypercharge generator (i.e. vα = v0 δα,24), the physical
mass spectrum of the theory can be calculated in terms of the parameters of the Lagrangian:

M2
Σ = 1

144 A v20 , M2
24 = 1

3( 7
120A+B) v20 , M2

Hc
= 1

12 c v
2
0 . (2.11)

The color octet, the isotriplet and the singlet in 24H obtain masses MΣ, 2MΣ and M24,
respectively (cf. eq. (2.5)). The remaining terms in eq. (2.5) constitute the Goldstone bosons.
After imposing the fine-tuning condition µ25 = 3

20cv
2
0 in order to obtain massless Higgs dou-

blets, the color triplet in 5H obtains the mass MHc . The super-heavy gauge bosons in the
representation (3,2,−5

6)⊕ (3,2, 56) have a common mass

M2
X = 5

12 g
2 v20 . (2.12)

where g is the unique gauge coupling of SU(5). We neglect the effects of electroweak symmetry
breaking here because the strong hierarchy O(MW ) ≪ O(MGUT) renders them completely
negligible for the calculation of matching effects at the GUT scale later in this thesis.
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2.3. Supersymmetry (SUSY)

2.3. Supersymmetry (SUSY)

The most popular solution to the aforementioned hierarchy problem is SUSY. To supersym-
metrize a theory all fields are promoted to superfields containing both fermionic and bosonic
components. This leads to a cancellation of quadratic divergences in the Higgs self-energy.
Furthermore, the so-called non-renormalization theorem holds, which states that there is only
(logarithmically divergent) wave function renormalization in supersymmetric theories [47].

Theoretically, there is another intriguing motivation for SUSY: In 1967 Coleman and Mandula
proved on the basis of some very reasonable assumptions that all possible symmetries of the S
matrix must be described by a direct sum of the Poincaré algebra and the algebra describing
internal symmetries [48]. However, this theorem assumes that all generators of the algebra
fulfill commutation relations. Therefore, it was realized soon how to evade it, namely by
allowing for generators fulfilling anticommutation relations also [49]. Haag,  Lopuszánski,
Sohnius then proved that, roughly speaking, this possibility, called SUSY, is the only possible
extension of the Poincaré algebra [9].

For our purposes it is not necessary to introduce the elegant superfield formalism where
spacetime is enhanced by four anticommuting Grassmann dimensions. In a supersymmetric
theory all interactions are fixed by the choice of the superpotential. For a renormalizable
theory it would contain up to trilinear terms [50–52]:

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk (2.13)

where the φi can be interpreted as the complex scalar components of the respective superfields.
No complex conjugated fields are allowed in the superpotential (holomorphy condition). Then
the Lagrangian of the theory can simply be computed by the following formula:

Lchiral = ∂µφ⋆i ∂µφi + iψ̄iσ
µ∂µψi −

1

2

(

∂2W
∂φi∂φj

ψiψj +
∂2W⋆

∂φ⋆i ∂φ
⋆
j

ψ̄iψ̄j

)

− ∂W
∂φi

∂W⋆

∂φ⋆i
(2.14)

where ψi are the (Weyl) fermionic partners of φi. For a supersymmetric non-abelian gauge
theory, as it will be considered here, additional gauge interactions appear and the Lagrangian
can be written in the general form [52]:

L = φ⋆i (δij∂µ + igTα
ijA

α
µ)(δjk∂µ − igTα

jkA
α
µ)φk + iψ̄iσ

µ(δij∂µ − igTα
ijA

α
µ)ψj

−1

4
Fα
µνF

µνα + iλ̄ασ
µ(δαβ∂µ − ig(T γ

A)αβA
γ
µ)λβ

−
√

2g(λ̄αψ̄iT
α
ijφj + φ⋆iT

α
ijψjλα)− 1

2

(

∂2W
∂φi∂φj

ψiψj +
∂2W⋆

∂φ⋆i ∂φ
⋆
j

ψ̄iψ̄j

)

−V (φi, φ
⋆
i ) , (2.15)

V (φi, φ
⋆
i ) = FiF

⋆
i +

1

2
DαDα ,

Fi = −∂W
⋆

∂φ⋆i
, Dα = −gφ⋆i Tα

ijφj , (2.16)

Fµν
α = ∂µAν

α − ∂νAµ
α + gfαβγA

µ
βA

ν
γ . (2.17)
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Chapter 2. Supersymmetric Grand Unified Theories

Here again ψi and φi are the fermionic and complex bosonic components of the chiral superfield
under consideration. The index i can run over multiple irreducible representations of the gauge
group generated by Tα

ij with structure constants fαβγ . The superpartners of the gauge field
Aα

µ are denoted by λα both of which live in the adjoint representation of the gauge group

generated by (Tα
A)βγ ≡ −ifαβγ .

The minimal supersymmetric extension of the SM is obtained by working out eq. (2.15) for the
gauge group GSM and supermultiplets with the quantum numbers of the SM (cf. section 2.1).
Since the superpotential does not contain complex conjugated fields and in order to guarantee
the cancellation of anomalies, one further needs a second Higgs multiplet in the representation
(1,2,−1

2 ). Furthermore, since exact SUSY implies that the fields in one supermultiplet have
a common mass and none of the superpartners has been observed yet, SUSY must be broken.
Since finding a suitable breaking mechanism is not easy, one usually just parametrizes the
breaking by adding so-called soft-breaking terms [53] to the Lagrangian. This makes the
superpartners heavy and can lead to electroweak symmetry breaking. The resulting theory is
called the Minimal Supersymmetric Standard Model (MSSM). It is convenient to define the
ratio of the two vacuum expectation values as

tan β ≡ vu
vd

(2.18)

where vu gives masses to up-type fermions and vd to down-type fermions. Specifying a par-
ticular SUSY breaking mechanism usually leads to a particular form of the soft-breaking
terms. Popular breaking scenarios as, anomaly-mediated SUSY breaking (AMSB) [54], gauge-
mediated SUSY breaking (GMSB) [55] and Minimal Supergravity (mSUGRA) [56] are imple-
mented in so-called spectrum generators [57–60], which produce the low-energy values for the
soft-breaking terms for a particular scenario via RG running. This defines all the necessary
masses and mixing of the MSSM in terms of a few specific parameters.

2.4. Supersymmetric Grand Unification

Though SUSY and GUTs are good candidates for physics beyond the SM each by themselves,
there is even more striking evidence for the combination of the two: Since GUTs are based
on a simple gauge group, one of their most important predictions is the unification of gauge
couplings at some high scale MGUT. As became clear by early LEP data, this cannot be
achieved in the context of the SM without SUSY [12] (at least for minimal GUT scenarios).
On the other hand, unification of gauge couplings works perfect at the one-loop [12] and
two-loop [13–20] level in the context of the MSSM (cf. fig. 2.1). One of the important goals
of this thesis is to test this statement at the three-loop level. Moreover, we will focus on
the calculation of the two-loop matching corrections at the GUT scale that are needed for
a consistent three-loop RG analysis, as we will see later. This section is devoted to the
introduction of two SUSY GUT models that will be used later in our analysis.
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2.4. Supersymmetric Grand Unification

Figure 2.1.: The running of gauge couplings at one loop in the SM (left) and the MSSM (right) [12].
Q is the renormalization scale.

2.4.1. Minimal Supersymmetric SU(5)

The simplest supersymmetric GUT model is obtained by introducing superpartners for the
fields of the Georgi-Glashow model. Due to the holomorphy condition of the superpoten-
tial and the request for anomaly freedom, also an additional Higgs superfield 5H in the
5-dimensional representation is needed. Furthermore the scalar 24H that used to be real in
the Georgi-Glashow model becomes complex (though it still transforms as the real adjoint
representation) in order to maintain an equal number of fermionic and bosonic degrees of
freedom within one supermultiplet. The superpotential of Minimal SUSY SU(5) [11] is then
given by

W = M1Tr(TαT β)24Hα24Hβ
+ λ1Tr(TαT βT γ)24Hα24Hβ

24Hγ

+λ25HT
α24Hα5H +M25H5H

+
1

4
10IY

U
IJ10J5H +

√
2 10IY

D
IJ 5J 5H (2.19)

where I = 1, 2, 3 is a generation index and the fields are understood to be the bosonic
parts of the supermultiplet as described in the previous section. Again, SU(5) is broken to
GSM by the adjoint Higgs boson obtaining a vev3 〈24H〉 = v/

√
2 with vα = v0 δα,24 and

v0 = −4
√

30M1/(3λ1) at tree-level. Choosing 〈5H〉, 〈5H〉 ≪ v0 and in addition imposing the
(tree-level-) fine-tuning condition M2 = −

√
3λ2v0/

√
40 +O(MZ), the isodoublets in 5H and

5H obtain masses of order MZ . The super-heavy mass spectrum reads:

M2
X =

5

12
g2v20 , M2

Hc
=

5

24
λ22v

2
0 , M2

Σ ≡M2
(8,1) = M2

(1,3) = 25M2
(1,1) =

15

32
λ21v

2
0 , (2.20)

3The factor 1/
√
2 in the definition of the vev compared to the Georgi-Glashow model comes from the fact

that in the supersymmetric version only the real part of the field (which comes with this factor) acquires
a vev.
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Chapter 2. Supersymmetric Grand Unified Theories

where the indices in parentheses refer to the SU(3) and SU(2) quantum numbers. Here MΣ

denotes the mass of the color octet part of the adjoint Higgs boson 24H and MHc stands for
the mass of the color triplets of 5H and 5H , MX is the mass of the gauge bosons and g the
gauge coupling. The equality M2

(8,1) = M2
(1,3) only holds if one neglects operators that are

suppressed by 1/MPl as we do for the moment [45, 61, 62]. Note that we have one physical
mass parameter less than in the non-supersymmetric version of Minimal SU(5).

2.4.2. Missing Doublet Model

As already indicated previously, minimal SU(5) models suffer from a fine-tuning problem: In
order to obtain Higgs doublets with masses at the electroweak scale and at the same time
heavy color Higgs triplets, that suppress the proton decay rate to a reasonable level (cf.
section 2.6), one has to fine-tune the parameters of the Lagrangian or the superpotential.
Though the problem is, in some sense, less severe in supersymmetric models because due to
the non-renormalization theorem the fine-tuning does not occur at each order of perturbation
theory separately, it is still considered as unnatural. The Missing Doublet Model [63, 64] is
designed to avoid this so-called doublet-triplet splitting problem [11]. This is achieved at the
cost of introducing additional Higgs fields in the large SU(5) representations 50H and 50H

that do not contain any isodoublets and thus only couple to the color triplets in 5 and 5H . In
order to break SU(5), another Higgs field in the 75-dimensional representation is used instead
of the 24H in the minimal model. The superpotential reads [63,64]

W = M1Tr(752
H) + λ1Tr(753

H) + λ25H75H50H + λ̄25H75H50H + M250H50H

+
1

4
10IY

U
IJ10J5H +

√
2 10IY

D
IJ 5J 5H (2.21)

After 75H develops a vev, the spectrum of the theory can be parametrized by the five mass
parameters [18] MX,MHc ,MHc′

,MΣ and M2. The last is usually assumed to be of O(MPl)
such that the fields 50H and 50H do not contribute to the running above the unification
scale and below MPl. Otherwise, due to large group theory factors of these representations,
perturbativity cannot be guaranteed. In chapter 3 we will show, that in GUTs that need
large representations, as the Missing Doublet Model, the prediction of the gauge couplings at
the electroweak scale have huge uncertainties coming from the insufficiently precise matching
at the GUT scale. With the current theoretical input it is therefore not possible to reliably
exclude such a model by an RG analysis. In order to facilitate a sufficiently precise unification
analysis, it is indispensable to compute the two-loop matching corrections at the GUT scale.
The foundations and the first step for such a calculation will be the subject of chapters 4
through 6.

2.5. Running and Decoupling

Since gauge coupling unification analyses are based on the RG, we shortly review its main
properties here. We also consider the decoupling of heavy particles that plays a central role
in this thesis. A more thorough introduction and treatment of these subjects can be found
e.g. in refs. [65–67].
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2.5. Running and Decoupling

The main idea here is to test the prediction that there is only one (bare) gauge coupling
in GUTs. For mass-independent renormalization schemes this prediction implies that the
(renormalized) gauge couplings of the SM/MSSM should unify at a very high scale. The basic
procedure for such an analysis is to take experimental measurements for αi, i = 1, 2, 3 at the
electroweak scale, run up to the SUSY scale, decouple the SUSY particles there, then run up
to the GUT scale and decouple the heavy GUT particles there. If at the end the previously
distinct couplings have a common value, the prediction is consistent with experiment. The
details for the two ingredients, running and decoupling, will be described in the following two
subsections.

2.5.1. Renormalization Group Equations

When perturbatively calculating Green’s functions from a Lagrangian in Quantum Field The-
ory, one encounters divergences which are most commonly regulated using Dimensional Reg-
ularization (DREG) [6, 68] or Dimensional Reduction (DRED) [69–72]. The latter is more
suitable for supersymmetric theories. In order to relate these divergent Green’s functions
to finite observables, one has to renormalize the (bare) parameters and fields of the La-
grangian. In this process of renormalization there is an arbitrariness of how much of the finite
piece is subtracted together with the divergent part. One way in which this arbitrariness is
parametrized, is by the renormalization scale µ which is inevitably introduced in order to
maintain the original mass dimensions of the (renormalized) parameters in the Lagrangian
when going from 4 to 4− 2ǫ spacetime dimension. The set of transformations on the param-
eters of the Lagrangian that describe the transition from a particular renormalization scale µ
to another scale µ′ can be parametrized by an abelian Lie group, the RG [73–75]. The action
of the RG on the renormalized parameters can be described by RGEs which are first order
differential equations.

As an example we consider the gauge coupling g of a gauge theory based on a simple group
G. The bare coupling g0 gets renormalized by the following relation:

g0 = µǫZg g , (2.22)

with the renormalization constant Zg in the modified minimal subtraction scheme (MS).

Since dg0

dµ = 0, we can derive a differential equation that describes the µ dependence of the
renormalized coupling g:

µ
dg

dµ
= β , β = −ǫg − µ

Zg

dZg

dµ
g , (2.23)

where the gauge β function has been defined. Since β can be obtained by perturbative
expansion, we can define MS β function coefficients and rewrite the above RGE as follows:

1

2

d

dt

α

4π
=

N−1∑

k=0

( α

4π

)k+2
βk , α =

g2

4π
(2.24)

We have also introduced the more convenient parameter t = ln(µ) and used α instead of g.
In QCD the gauge β function in the MS scheme is known to four loops [21, 22], though a
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Chapter 2. Supersymmetric Grand Unified Theories

complete three-loop SM gauge β function is still missing. For the MSSM [23,24] and a general
supersymmetric GUT [26] full three-loop RGEs are available in the so-called DR scheme which
is a minimal subtraction scheme for DRED. The same is true for the most general single gauge
coupling theory in MS [25].

2.5.2. Decoupling of Heavy Particles

RGE analyses are most conveniently done using mass-independent renormalization schemes,
such as MS or DR. In these “unphysical” schemes the computation of β functions is simplified
significantly, which makes them most suitable for this application. As GUTs predict a unique
gauge coupling and the β function in MS and DR is mass-independent (and therefore inde-
pendent of GUT-breaking effects) one would naively expect the gauge couping to stay unique
up to low energy scales. Though in principle nothing is wrong with such an approach, we will
see in a moment that it does not work practically. Mass-independent schemes have the well
known drawback that the decoupling theorem [76] does not hold in its naive form. As a con-
sequence, in the approach described above, observables of low-energy processes will depend
logarithmically4 on all the heavy particle masses of the GUT. This is unacceptable, since it
would spoil perturbation theory by the presence of large logarithms ln(MGUT/µ), where µ is
the typical energy scale of the process and MGUT a typical super-heavy particle mass. The
way out of this dilemma is to use an effective theory [32, 77–85], where the heavy particles
are integrated out at the GUT scale. This means that the heavy fields are removed from the
original Lagrangian, which manifestly leads to power-suppressed contributions of O(1/MGUT)
in the effective Lagrangian. Moreover, the effects of the heavy particles are encoded in finite
shifts of all the masses, couplings and fields of the theory. For the case of the gauge coupling
this so-called decoupling relation reads:

αi(µGUT) = ζαi
(µGUT, α(µGUT),Mh) α(µGUT) , i = 1, 2, 3 . (2.25)

Here αi and α stands for the MS gauge coupling5 in the effective theory (the SM or the
MSSM) and full theory (GUT), respectively with the index i = 1, 2, 3 denoting the U(1), SU(2)
and SU(3) coupling, respectively. µGUT is the unphysical scale, at which the decoupling is
performed. At sufficiently high loop order predictions of physical observables must not depend
on µGUT anymore. The remaining dependence on this scale gives us an estimation of the
theory uncertainty of the prediction. ζαi

is the so-called matching coefficient that depends on
all the mass parameters of the particles that have been integrated out. They are abbreviated
by Mh in eq. (2.25). After performing the decoupling, eq. (2.25), at a scale µGUT = O(MGUT)
one uses the RGEs of the effective theory to compute the evolution of the three distinct gauge
couplings down to the electroweak scale.

4At the two-loop order also more complicated functions of the heavy masses can appear.
5For simplicity we will only speak about MS parameters from now on. If a SUSY GUT is considered, all

MS parameters will be replaced by DR parameters.
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2.5. Running and Decoupling

For the computation of ζαi
we follow refs. [66, 67], where the construction of the effective

Lagrangian is described for the case of QCD. We start with a GUT Lagrangian LGUT (full
theory). It contains fields with the mass of order MGUT and massless fields. (We neglect
electroweak symmetry breaking here.)

LGUT = LSM + Lheavy . (2.26)

First we define the bare decoupling coefficients for the light gauge fields, the light ghost fields
and the gauge coupling. Renormalization will be performed afterwards.

A(0)′,ai
µ =

√

ζ
(0)
3i
A(0),ai

µ , c(0)′,ai =

√

ζ̃
(0)
3i
c(0),ai , g

(0)
i =

√

ζ
(0)
gi g

(0) i = 1, 2, 3 . (2.27)

The bare fields on the left-hand side belong to the effective theory, whereas the ones on the
right-hand side are the fields that appear in LGUT. Of course there are similar relations for
all the other fields and couplings of the theory, but for our purposes these definitions are
sufficient. The effective Lagrangian can then be defined by the following equation

Leff(. . .

√

ζ
(0)
3i
A(0),ai

µ ,

√

ζ̃
(0)
3i
c(0),ai ,

√

ζ
(0)
gi g

(0), . . .) =

LSM(. . . , A(0)′,ai
µ , c(0)′,ai , g(0)i , . . .) +O(

1

MGUT
) (2.28)

Green’s functions of the light fields computed from LSM agree with those from Leff up to
terms of order 1/MGUT. We exploit this fact in order to compute the decoupling constant of
the light gauge field. The following equalities hold up to terms of order 1/MGUT:

δaibi
(

−gµν + pµpν

p2

)

−p2(1 + Π0
A,i(p

2))
= i

∫

d4xeipx〈TA(0),ai
µ (x)A(0),bi

ν (0)〉

=
i

ζ
(0)
3i

∫

d4xeipx〈TA(0)′,ai
µ (x)A(0)′,bi

ν (0)〉

=
1

ζ
(0)
3i

δaibi
(

−gµν + pµpν

p2

)

−p2(1 + Π0′
A,i(p

2))
(2.29)

where we have used eq. (2.27). Π0
A,i(p

2) and Π0′
A,i(p

2) are the transverse parts of the 1-particle
irreducible gauge boson two-point function in the full and the effective theory. This yields an
expression for the bare decoupling coefficient

ζ
(0)
3i

=
1 + Π0

A,i(p
2)

1 + Π0′
A,i(p

2)
. (2.30)

We expand the two-point functions for small external momentum p and keep only the leading
term. Since Π0′

A,i(0) contains only light degrees of freedom, all the integrals that appear
are scaleless and can be set to zero in the framework of DREG. Finally, we obtain a simple

expression for ζ
(0)
3i

:

ζ
(0)
3i

= 1 + Π0,h
A,i(0) . (2.31)

15



Chapter 2. Supersymmetric Grand Unified Theories

The superscript h denotes the “hard part” of the Green’s function, i.e. the bare decou-
pling coefficient is calculated from diagrams that contain at least one heavy line. Similar
considerations for the two-point function with external light ghost fields and the light ghost-
gauge-boson three-point function yields similar formulae for the bare decoupling of the ghost
field and the vertex:

ζ̃
(0)
3i = 1 + Π0,h

c,i (0) ,

ζ̃
(0)
1i = 1 + Γ0,h

Ac†c,i
(0, 0) . (2.32)

Finally, applying Slavnov-Taylor identities to the ghost-gauge-boson vertex, analogously as
in the case of the gauge coupling renormalization constant, the bare decoupling coefficient for
the gauge coupling can be derived,

ζ(0)gi =
ζ̃
(0)
1i

ζ̃
(0)
3i

√

ζ
(0)
3i

(2.33)

In order to obtain the decoupling coefficient for the renormalized gauge couplings, which is of
more interest for us, we just have to take into account the relevant renormalization constants
and arrive at our final formula:

ζαi
=




Zg

Zgi

ζ̃
(0)
1i

ζ̃
(0)
3i

√

ζ
(0)
3i





2

, i = 1, 2, 3 . (2.34)

The MS renormalization constants for the gauge coupling in the full and effective theory
are denoted by Zg and Zgi , respectively. Recall that the index i takes care of the fact that
the SM gauge group is not simple and labels whether an external gauge bosons and ghosts
belonging to U(1), SU(2) or SU(3) have to be taken.

At this point a remark concerning the µGUT dependence in different renormalization schemes
might be helpful. In mass-dependent renormalization schemes the threshold effect around the
GUT scale is obtained correctly by including the effect of the heavy GUT particles in the β
function. As there is no explicit matching performed in such schemes, there is no dependence
on the unphysical scale µGUT at all. Therefore, the question might arise how the µGUT de-
pendence of ζαi

in mass-independent renormalization schemes, as in eq. (2.34), comes about.
The answer is that by naively changing the renormalization scheme from mass-dependent to
mass-independent, low-energy observables obtain a logarithmic dependence on an unphysical
renormalization scale µ that has not been present before. These are the large logarithms
ln (µ/MGUT) that would spoil perturbation theory in the naive mass-independent renormal-
ization scheme. In our (effective theory) approach, however, we absorb these logarithms in a
redefinition of the gauge coupling and choose the unphysical scale µ = µGUT in the vicinity
of the heavy GUT masses, which introduces an explicit dependence of ζαi

on µGUT.
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2.5.3. One-Loop Decoupling Coefficients for Various GUT Models

In this subsection the known one-loop decoupling coefficients are listed for the three GUT mod-
els that have been described earlier in this chapter. As a starting point we take the general
formula from refs. [31, 33]. We also repeated their calculation and found agreement:

ζMS
αi

(µGUT) = 1 +
αMS(µGUT)

4π

[

− 1

12
Tr(T aiT ai ln

(
µ2GUT

M2
H

)

)

− 1

12
Tr(T aiT ai ln

(
µ2GUT

M2
S

)

) +
7

4
Tr(T ai

A T
ai
A ln

(
µ2GUT

M2
X

)

)

−2

3
Tr(T aiT ai ln

(
µ2GUT

M2
D

)

)− 1

3
Tr(T aiT ai ln

(
µ2GUT

M2
M

)

)

+
1

6
Tr(T ai

A T
ai
A )

]

, (no sum over ai) . (2.35)

Here MS , MH MX MD and MM are the mass matrices of GUT-breaking scalars, all other
scalars, gauge bosons, Dirac fermions and Majorana fermions with the generators T ai taken
in the appropriate representation. Note that there is no sum performed over the adjoint index
ai belonging to the group factor Gi in GSM =

∏

i Gi. Also due to the presence of the mass
matrices in the logarithms, the trace is only performed over the subspace of super-massive
particles. In DR the constant term 1

6 Tr(T ai
A T

ai
A ) with the adjoint generators T ai

A in eq. (2.35).
is not present.

Computing the theory dependent group theory factors and mass matrices, our results for
Minimal SUSY SU(5) and the Missing Doublet Model agree with the findings of e.g. refs. [13,
18]. For Minimal SUSY SU(5) the one-loop decoupling coefficients in DR read

ζα1(µGUT) = 1 +
α(µGUT)

4π

[

− 2

5
ln
(µ2GUT

M2
Hc

)

+ 10 ln
(µ2GUT

M2
X

)
]

,

ζα2(µGUT) = 1 +
α(µGUT)

4π

[

− 2 ln
(µ2GUT

M2
Σ

)

+ 6 ln
(µ2GUT

M2
X

)
]

,

ζα3(µGUT) = 1 +
α(µGUT)

4π

[

− ln
(µ2GUT

M2
Hc

)

− 3 ln
(µ2GUT

M2
Σ

)

+ 4 ln
(µ2GUT

M2
X

)
]

, (2.36)

with the mass parameters defined in subsection 2.4.1. For simplicity we keep from the list of
arguments of the coefficients ζαi

only the decoupling scale. In the case of the Missing Doublet

17



Chapter 2. Supersymmetric Grand Unified Theories

Model the decoupling constants read 6

ζα1(µGUT) = 1 +
α(µGUT)

4π

[

− 2

5
ln
(µ2GUT

M2
Hc

)

− 2

5
ln
(µ2GUT

M2
Hc′

)

+ 10 ln
(µ2GUT

M2
X

)

−20 ln
(µ2GUT

M2
Σ

)

+ 10 ln

(
64

625

)]

,

ζα2(µGUT) = 1 +
α(µGUT)

4π

[

− 22 ln
(µ2GUT

M2
Σ

)

+ 6 ln
(µ2GUT

M2
X

)

+ 6 ln

(
4

25

)]

,

ζα3(µGUT) = 1 +
α(µGUT)

4π

[

− ln
(µ2GUT

M2
Hc

)

− ln
(µ2GUT

M2
Hc′

)

− 23 ln
(µ2GUT

M2
Σ

)

+4 ln
(µ2GUT

M2
X

)

+ 4 ln

(
64

78125

)]

. (2.37)

As explained in subsection 2.4.2, the mass M2 does not contribute here since it is usually
assumed to be at or above the Planck scale in order to maintain perturbativity. Finally, the
formulae for the Georgi-Glashow model are found to be:

ζα1(µGUT) = 1 +
α(µGUT)

4π

[

− 1

15
ln
(µ2GUT

M2
Hc

)

+
35

2
ln
(µ2GUT

M2
X

)

+
5

3

]

, (2.38)

ζα2(µGUT) = 1 +
α(µGUT)

4π

[

− 1

3
ln
(µ2GUT

4M2
Σ

)

+
21

2
ln
(µ2GUT

M2
X

)

+ 1

]

,

ζα3(µGUT) = 1 +
α(µGUT)

4π

[

− 1

6
ln
(µ2GUT

M2
Hc

)

− 1

2
ln
(µ2GUT

M2
Σ

)

+ 7 ln
(µ2GUT

M2
X

)

+
2

3

]

.

Here the result is given in MS as can be seen from the presence of the constant terms. The
mass parameters have been defined in subsection 2.2. The ultimate goal of our project is to
extend these formulae to the two-loop level in the spirit of eq. (2.35).

2.5.4. One-Loop Decoupling Coefficients for the Matching of the MSSM to the
SM

In the RG analysis that will be presented in chapter 3 we will also need to perform a matching
of the MSSM to the SM. Therefore, for convenience we list all relevant gauge coupling one-loop
decoupling coefficients here. For the decoupling of αs actually the two-loop contributions are
known [29, 30]. However, because the expression is huge, we only give the one-loop formula
here [86]:

ζαs(µSUSY) = 1 +
αs(µSUSY)

4π

[

− 2 ln

(

µ2SUSY

m2
g̃

)

− 1

3

∑

q̃

ln

(
µ2SUSY

mq̃1mq̃2

)]

. (2.39)

6The occurrence of the last term in the parentheses of each equation is due to the use of relations between
the super-heavy masses.
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The summation is performed over all six squark flavors q̃ and mg̃ denotes the gluino mass.
µSUSY is the unphysical scale at which the matching is performed. No change of renormaliza-

tion scheme is included in eq. (2.39), i.e. the formula can be used either to relate αMS,MSSM
s

to αMS,SM
s or αDR,MSSM

s to αDR,SM
s . Note also that the top-quark is not integrated out here

since the effective theory is the full SM.

For the decoupling of α1 and α2 at µSUSY one needs to take into account electroweak breaking
effects which makes the calculation less straightforward. This is because the effective theory
cannot be considered SU(2)×U(1) gauge invariant if the decoupling scale µSUSY is relatively
low, i.e. O(100GeV). In ref. [16] the treatment of these effects is described in detail and leads
to the following formulae for the decoupling of the electromagnetic coupling αem and for α2:

ζαem(µSUSY) = 1 +
αem(µSUSY)

4π

[

− 8

9

∑

ũ

ln
( µ2SUSY

mũ1mũ2

)

− 2

9

∑

d̃

ln
( µ2SUSY

md̃1
md̃2

)

−8

3
ln
( µ2SUSY

mχ̃±
1
mχ̃±

2

)

− 2

3

∑

l̃

ln
( µ2SUSY

ml̃1
ml̃2

)

− 1

3
ln
(µ2SUSY

m2
H±

)
]

ζα2(µSUSY) = 1 +
α2(µSUSY)

4π

[

− 4

3

∑

ũ

[

ln
(µ2SUSY

m2
ũ1

)

+ sin2 θũ ln
(m2

ũ2

m2
ũ1

)]

−2

3

∑

d̃

[

ln
(µ2SUSY

m2
d̃1

)

+ sin2 θd̃ ln
(m2

d̃2

m2
d̃1

)]

−4

3
ln
(µ2SUSY

m2
χ̃±
1

)

− 2

3
ln
(µ2SUSY

m2
χ̃±
2

)

− 1

3

[

|(Z−)12|2 + |(Z+)12|2
]

ln
(m2

χ̃±
1

m2
χ̃±
2

)

−1

6

∑

l̃

ln
(µ2SUSY

m2
l̃1

)

− 1

6
ln
(µ2SUSY

m2
H±

)
]

, (2.40)

where again no change of renormalization scheme is included. The masses of up-squarks,
down-squarks, charginos, charged sleptons and charged Higgses are denoted by mũi

, md̃i
,

mχ̃±
i

, ml̃i
and mH̃± , respectively. Furthermore Z− and Z+ are chargino mixing matrices

defined by [87]

(Z−)T

(

mg̃2
evu√
2 sinΘ

evd√
2 sinΘ

µ

)

Z+ =

(

mχ̃±
1

0

0 mχ̃±
2

)

(2.41)

where the soft-breaking mass of the SU(2) gaugino mg̃2 , the Weinberg angle Θ and the Higgs
mass parameter µ from the MSSM superpotential appear. The squark field mixing angles are
defined as

(
q̃1
q̃2

)

=

(
cos θq̃ sin θq̃
− sin θq̃ cos θq̃

)(
q̃L
q̃R

)

. (2.42)

The appearance of these mixing parameters in eq. (2.40) is a manifestation of the SU(2)×U(1)-
breaking effects. In order to properly match the MSSM to the SM, one also has to take into
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Chapter 2. Supersymmetric Grand Unified Theories

account the change of renormalization scheme from DR to MS. This is provided by the
following general two-loop formula which is valid for a simple gauge group with only fermions
in the theory [88,89]:

αDR(µSUSY) = αMS
s (µSUSY)

[

1 +
αMS(µSUSY)

π

I2(Π
A)

12
+

(

αMS(µSUSY)

π

)2
11

72
I2(Π

A)2

−α
MS(µSUSY)

π

αe(µSUSY)

π

1

8
C2(Π

F )I2(ΠF )

]

. (2.43)

For the bottom-quark mass the relation reads [88,89]

mDR
b (µSUSY) = mMS

b (µSUSY)

[

1− αe(µSUSY)

π

1

4
C2(Π

F )

+

(

αMS(µSUSY)

π

)2
11

192
I2(Π

A)C2(ΠF )

− αMS(µSUSY)

π

αe(µSUSY)

π

(
1

4
C2(Π

F )2 +
3

32
I2(Π

A)C2(ΠF )

)

+

(
αe(µSUSY)

π

)2( 3

32
C2(Π

F )2 +
1

32
C2(ΠF )I2(Π

F )

)]

. (2.44)

Here we have used the notation of chapter 5 for the Casimir invariants and Dynkin indices.
For the case of 6-flavor QCD they have the values

I2(ΠA) = 3 , C2(Π
F ) =

4

3
, I2(ΠF ) = 6 · 1

2
. (2.45)

We cite the two-loop formula here in order to obtain sufficient precision also for the decoupling
of αs, where ζαs is known up to two loops. For α2 the one-loop part of eq. (2.43) still can be
used by inserting the appropriate value for the quadratic Casimir invariant I2(Π

A) = 2. For

α1 this invariant vanishes and therefore there is no difference between αMS
1 and αDR

1 at the one-
loop level. The evanescent coupling αe that differs from α due to different renormalizations
in DREG is computed for a degenerate squark mass mq̃ by the following formula [90]

αe(µSUSY) = αDR(µSUSY)

{

1 +
αDR(µSUSY)

π

[

I2(Π
A)

(

− 1

4
ln

(

µ2SUSY

m2
g̃

)

(2.46)

+

(

m2
g̃(1 + ln

(

µ2
SUSY

m2
g̃

)

)−m2
q̃(1 + ln

(

µ2
SUSY

m2
q̃

)

)

)

2(m2
g̃ −m2

q̃)

)

+C2(Π
F )







m2
q̃ − 3m2

g̃

4(m2
g̃ −m2

q̃)
+

m2
q̃(2m

2
g̃ −m2

q̃) ln

(

µ2
SUSY

m2
q̃

)

−m4
g̃ ln

(

µ2
SUSY

m2
g̃

)

2(m2
g̃ −m2

q̃)2







]}

.
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Figure 2.2.: Dimension-six proton decay via heavy gauge bosons in SUSY and non-SUSY GUTs.

2.6. Proton Decay

Besides gauge coupling unification, the instability of nucleons is one of the most remarkable
predictions of GUTs (for a review see e.g. ref. [91] and references therein). Since baryons and
leptons share gauge symmetry multiplets in such theories (cf. eq. (2.4)), gauge interactions
inevitably lead to baryon and lepton number violating processes. These are mediated by the
heavy X (electric charge ±4

3) and Y bosons (electric charge ±1
3) [92,93]. Example diagrams

that contribute to the process p → e+π0 are depicted7 in fig. 2.2. Note that these diagrams
lead to operators in the effective theory that have dimension six and thus induce decay rates
that are suppressed by 1

M4
X

. In SUSY GUTs the decay rates induced by these operators are

generally too low to be in conflict with experiment [61] due to the higher unification scale as
compared to non-SUSY GUTs.

However, SUSY allows for additional decay channels that are only suppressed by 1
M2

Hc

, where

MHc is the mass of the colored Higgs triplet, that resides e.g. inside the 5H and 5H of
SU(5). This so-called dimension-five decay, with the dominant decay channel p → K+ν (cf.
fig. 2.3), can lead to much faster decay rates [95–97]. Since MHc can be predicted from the
gauge coupling unification analysis, as we will see in chapter 3, one can check whether this
prediction is consistent with the current bound on proton decay by calculating the dimension-
five decay rate in the respective model. This kind of analysis lead Murayama and Pierce to
claim the exclusion of the Minimal SUSY SU(5) model [19]. However, later careful analyses
showed that this claim was a bit premature [45,61]: First of all one should point out that the
renormalizable version of minimal SUSY SU(5), as it has been defined in subsection 2.4.1, is
not consistent with experiment anyway because the first and second generation lepton and
quark Yukawa couplings fail to unify, as is predicted by this model. One way to reconcile
this, is to introduce higher-dimensional operators into the superpotential, i.e. terms that
are suppressed by 1

MPl
. [43–45]. The inclusion of these higher-dimensional operators has two

further consequences which both can serve to decrease the proton decay rate, attenuating the
tension:

7This figure and all other figures that depict Feynman diagrams in this thesis have been created with help of
the LATEX package AXODRAW [94]
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ũc

h̃±
νL

sL

u






K+

(b) RRRR contribution

Figure 2.3.: Dimension-five proton decay contributing to the dominant channel p→ K+ν. The large
blob indicates the dimension-five insertion that arises from integrating out the triplet
Higgs fields. The contribution from four right-handed fields (b) has not been considered
for a long time but turned out to be significant [97].

1. The masses M(8,1) and M(1,3) in eq. (2.20) are not equal anymore. This also implies
that one cannot determine MHc directly from the gauge coupling unification analysis

but only the combination
(
M(8,1)

M(1,3)

) 5
2
MHc . By choosing a lower ratio of these masses one

can increase MHc and thus decrease the proton decay rate.

2. The proton decay rate depends on the first generation of down-quark-lepton Yukawa
couplings Y D in the renormalizable model (cf. eq. (2.19)). Since, however, Y E and
Y D do not completely unify in the MSSM, it is not clear whether to choose the (larger)
down-quark or (smaller) electron Yukawa coupling for the calculation. Most analyses
before the publication of ref. [61], in particular ref. [19], have adopted the former choice,
encountering larger proton decay rates. Note, however, that the other choice is equally
justified and produces much lower decay rates. In the non-renormalizable model, where
this inconsistency does not prevail, any value in between these extremes can effectively
occur. It is shown in ref. [61] that due to this effect the proton decay rate can be pushed
below the experimental limit and that the non-renormalizable Minimal SU(5) model is
still perfectly viable.

2.7. Schur’s Lemma

This section is somewhat out of context in this chapter. We review an important lemma from
group theory that will be used throughout this thesis for the development of an appropriate
apparatus for dealing with the group theory factors of spontaneously broken gauge theories
as they appear in the calculation of the two-loop matching corrections at the GUT scale. In
fact we will only need the first part of this famous Lemma by Issai Schur that states [98]:

Let D(G) be an irreducible representation of a group G on the vector space V ,
and A be an arbitrary linear operator on V . If A commutes with all the operators
D(g), i.e. AD(g)−D(g)A = 0,∀g ∈ G, then A must be a multiple of the identity
operator 1l, i.e. A = C1l where C is a number.
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(Simple) proofs of this statement can be found in virtually any textbook on group theory,
e.g. in refs. [99,100]. For the case of Lie groups the operators D(g) are usually parametrized
by the exponential map D(g(θ)) = exp(−iθαTα) with the continuous parameters θα and the
generator matrices Tα. Then the statement is: If Tα generate an irreducible representation
and

if [A,Tα] = 0, ∀α then A = C 1l . (2.47)

If, on the other hand, the Tα generate a reducible representation, the lemma is still useful.
Throughout this thesis, if not stated otherwise, we will assume that a reducible representation
has block diagonal form. In such a case, a projector ̺i on the irreducible subspace i will have
the form

̺i = diag(0, . . . , 0, 1, . . . , 1, 0, . . . , 0) (2.48)

i.e. it is a unit matrix on the particular irreducible subspace. Now we can consider generators
Tα of a reducible representation. Then ̺i T

α will again generate an irreducible representation
and we can apply Schur’s Lemma:

if [A,Tα] = 0, ∀α then ̺iA = Ci ̺i (2.49)

with no sum over i.

An immediate application of this Lemma is known from QCD. where it allows us to define
Dynkin indices and quadratic Casimir invariants:

α β ∼ Tr(TαT β) ≡ I2 δαβ

∼ TαTα ≡ C2 1l

We can define the invariants I2 and C2 because the matrices Aαβ ≡ Tr(TαT β) and A′ ≡ TαTα

commute with all the (irreducible) generators Tα
A and Tα. Contracting α and β in the first

line and taking the trace in the second line yields the relation

I2 δ
αα = C2 Tr(1l) . (2.50)

The rigorous treatment of group theory factors for higher loop orders in unbroken gauge
theories with general Lie groups can be found e.g. in ref. [101]. In this thesis our focus will
be on spontaneously broken gauge theories (GUTs). In chapter 5 we will therefore develop
an appropriate framework of defining and reducing the group theory factors that appear in
loop calculations in GUTs up to the two-loop order. This will involve distinguishing between
broken and unbroken (reducible) generators and making use of the projectors ̺i defined in
eq. (2.48).
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3. Supersymmetric GUTs and Gauge Coupling
Unification at Three Loops

In the previous chapter we introduced two of the simplest supersymmetric SU(5) models,
the Minimal SUSY SU(5) Model and the Missing Doublet Model. Furthermore, we reviewed
some historical highlights of the former, with particular emphasis on proton decay. There
we mentioned that in 2002 this simplest SUSY GUT model has been claimed to be ruled out
due to the combined constraint from proton decay and gauge coupling unification. However,
later analyses have shown that the theory is still viable in its non-renormalizable version.
Since in the meantime new experimental data and substantial progress on the theory side
became available, we are encouraged to reanalyze the situation in the Minimal SUSY SU(5)
Model with a focus on gauge coupling unification. In particular, our aim is to update the
prediction for the triplet Higgs mass MHc by requiring the gauge couplings to unify. This
is achieved by exploiting the MHc dependence of the GUT threshold corrections, eq. (2.36).
The prediction gained in this way can then be compared with the lower bound coming from
proton decay, using ref. [61] and the current experimental decay rates. For simplicity we
stick to the renormalizable version of minimal SUSY SU(5) for the moment although it is
not consistent with the measured values of first and second generation Yukawa couplings.
This inconsistency does not play a role in our analysis. Furthermore, the predictions of the
triplet Higgs mass can be translated to the non-renormalizable version simply by employing
the rescaling relation

Mnon−r
Hc

= MHc

(
M(1,3)

M(8,1)

) 5
2

, (3.1)

where Mnon−r
Hc

is the triplet Higgs mass in the non-renormalizable model and M(1,3) and
M(8,1) are two independent mass parameters. Therefore, there is no loss of generality in
this approach. We start by describing the procedure of running and decoupling that is used
to determine MHc . Then we will present our results and discuss the consequences for the
viability of the model. There we will also mention results for the Missing Doublet Model
which will provide a main motivation to perform the calculation that will be described in
chapters 4 through 6. The present chapter is based on a paper that was published together
with L. Mihaila, J. Salomon and M. Steinhauser [35].

3.1. Running and Decoupling

A consistent n-loop RGE analysis requires n-loop running and (n − 1)-loop decoupling at
each threshold [31]. Since we are aiming at three-loop precision, the required ingredients for
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run decouple run decouple run

MZ → µSUSY αi → α
(MSSM)
i µSUSY → µGUT α

(MSSM)
i → α(GUT) µGUT → Mpl

EW 2(3) 1(2) 3
1(2) 3⋆

QCD 3 2 3

Table 3.1.: The loop precision available (and used) for the individual steps of the running-decoupling
procedure. The number in parentheses indicate the loop-order needed for a consistent
analysis.
(⋆ The running of the gauge and Yukawa couplings is performed to three- and one-loop
accuracy, respectively.)

the analysis are: Three-loop gauge β functions for the SM, the MSSM and the GUT under
consideration, as well as two-loop decoupling coefficients at the SUSY and the GUT thresholds.
Since the RGEs for the gauge couplings are coupled with those of the Yukawa couplings, we
also need the latter at sufficiently high loop order. Unfortunately, not all of this theoretical
input is available yet. Still, as will be argued later, we believe that the numerically most
significant building blocks for the case of Minimal SUSY SU(5) are already known. The
employed loop-orders for the individual steps are summarized in table 3.1.

In the following we will describe the theoretical and experimental input that is used for the
individual steps:

1. Experimental input at MZ

The three gauge couplings at the electroweak scale in the MS scheme constitute crucial
experimental input for our analysis. They are obtained from the weak mixing angle
in the MS scheme [7], the QED coupling constant at zero momentum transfer and its
hadronic contribution [102] in order to obtain its value at the Z-boson scale. Further-
more, we use the strong coupling constant [103]1 at the scale MZ . Considering all
uncertainties on these parameters, our input reads:

sin2 ΘMS = 0.23119 ± 0.00014 ,

αem = 1/137.036 ,

∆α
(5)
had = 0.02761 ± 0.00015 ,

αs(MZ) = 0.1184 ± 0.0020 . (3.2)

Whereas sin2 ΘMS and αs(MZ) are already defined in the MS scheme, ∆α
(5)
had constitutes

corrections to the on-shell value of αem. In order to obtain the corresponding MS result

we add the leptonic [104] and top-quark [105] contribution, ∆α
(5)
lep = 314.97686 · 10−4

and ∆α
(5)
top = (−0.70±0.05)·10−4 , and apply the transition formula to the MS scheme [7]

∆α(5),MS −∆α(5),OS =
αem

π

(
100

27
− 1

6
− 7

4
ln
M2

Z

M2
W

)

≈ 0.0072 . (3.3)

1We adopt the central value from ref. [103], however, use as our default choice for the uncertainty 0.0020
instead of 0.0007.
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This leads to

αMS
em (MZ) =

αem

1−∆α
(5)
lep −∆α

(5)
had −∆α

(5)
top − 0.0072

=
1

127.960 ± 0.021
. (3.4)

In the quantities sin2 ΘMS, αMS
em (MZ) and αs(MZ) the top-quark is still (partly) de-

coupled. Thus, in a next step we compute the six-flavor SM quantities using the rela-
tions [7, 106]

α(6),MS
em = αMS

em

{

1 +
4

9

αMS
em

π

[

ln
M2

Z

M2
t

(

1 +
αs

π
+
αMS
em

3π

)

+
15

4

(

αs

π
+
αMS
em

3π

)]}

,

sin2 Θ(6),MS = sin2 ΘMS

{

1 +
1

6

αMS
em

π

(
1

sin2 ΘMS
− 8

3

)[(

1 +
αs

π

)

ln
M2

t

M2
Z

− 15

4

αs

π

]}

,

(3.5)

where all couplings are evaluated at the scale µ = MZ . We obtain2

α(6),MS
em (MZ) = 1/(128.129 ± 0.021) ,

sin2 Θ(6),MS(MZ) = 0.23138 ± 0.00014 ,

α(6)
s (MZ) = 0.1173 ± 0.0020 . (3.6)

These quantities are related to the three gauge couplings via the equations

α1 =
5

3

α
(6),MS
em

cos2 Θ(6),MS
,

α2 =
α
(6),MS
em

sin2 Θ(6),MS
,

α3 = α(6)
s , (3.7)

which holds for any renormalization scale µ.

Since the RGEs for gauge couplings are coupled with those of the Yukawa couplings,
we have to evolve them simultaneously up to the GUT scale. Therefore, we also need
starting values for the third-generation Yukawa couplings which are computed from the
W - and Z-boson pole masses MW and MZ , the top-quark and tau-lepton pole masses
Mt and Mτ and the running bottom-quark mass mMS

b [7, 108,109].

MW = 80.398 GeV ,

MZ = 91.1876 GeV ,

Mt = 173.3 GeV ,

Mτ = 1.77684 GeV ,

mMS
b (mMS

b ) = 4.163 GeV . (3.8)

2Since we aim for gauge couplings at the electroweak scale with highest possible precision we use four-
loop running and three-loop decoupling as implemented in RunDec [107] in order to obtain α

(6)
s from

αs(MZ) ≡ α
(5)
s (MZ). At such high order in perturbation theory there is practically no dependence on the

decoupling scale.
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The corresponding uncertainties are not important for our analysis. The quark masses
are converted to their MS values in 6-flavor theory at MZ using RunDec [107]. The
difference between the on-shell and the MS value of Mτ is neglected since it is only
needed to obtain the starting value for yτ (MZ) which has a small impact on the running

of the gauge couplings. To obtain the electroweak vev v(6),MS(MZ) in MS at MZ in 6-
flavor theory from the on-shell value of MZ and the MS values of the gauge couplings,
we implement the one-loop SM contributions of the corrections given e.g. in ref. [86]:

v(6),MS(MZ) = 2
√

M2
Z + Re(ΠT

ZZ(M2
Z))

√
√
√
√

cos2 Θ(6),MS(MZ) sin2 Θ(6),MS(MZ)

4π α
(6),MS
em (MZ)

(3.9)

where ΠT
ZZ is the transverse Z-boson MS self-energy in the SM

ΠT
ZZ(p2) =

αem

4π cos2 Θ sin2 Θ

[

− 2 cos2 Θ
(

2 p2 +M2
W −M2

Z

sin4 Θ

cos2 Θ

)

B0(p,MW ,MW )

−
(

8 cos4 Θ + (2 cos2 Θ− 1)2
)

B̃22(p,MW ,MW )

+
∑

f

Nf
c

{

(g2fL + g2fR)H(p,mf ,mf )− 4 gfL gfR m
2
f B0(p,mf ,mf )

}
]

.

The electromagnetic coupling and the Weinberg angle have been taken in 6-flavor theory
in MS at the scale MZ . The sum

∑

f is over all quarks and leptons and Nf
c is 3 for

quarks and 1 for leptons. Moreover, the quantities gfL , gfR as well as the loop functions
are defined in the appendix of ref. [86]. The initial conditions for the Yukawa couplings
are then given by

yi(MZ) =

√
2m

(6),MS
i (MZ)

v(6),MS(MZ)
, i = t, b, τ . (3.10)

2. SUSY contributions to sin2 Θ(6),MS(MZ)
The determination of the experimental values in eq. (3.6) implicitly assumes that the
SM is valid up to high energy scales. Since in our case, however, the SM is only an
effective theory of the MSSM, we have to worry about contributions to these values that
are suppressed by 1

M2
SUSY

in order to achieve the precision we are aiming at. Due to

the presence of the weak gauge bosons in the loop corrections, the weak mixing angle
receives the numerically largest contributions whereas the influence of supersymmetric
particles on the electromagnetic and strong coupling can be neglected.

The procedure to incorporate the supersymmetric effects on the numerical value of
sin2 Θ(6),MS(MZ) is as follows (cf. fig. 3.1): In a first step we transfer sin2 Θ(6),MS(MZ)
from eq. (3.6) to the DR scheme [110] and apply afterwards the supersymmetric one-
loop corrections evaluated in ref. [111] relating the weak mixing angle in the SM to the
one in MSSM. In a next step we decouple the supersymmetric particles [16] and finally

go back to the MS scheme. As a result we obtain sin2 Θ(6),MS(MZ) at the scale µ = MZ
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Figure 3.1.: Illustration of the individual steps of how the 1
M2

SUSY

contributions to sin2 Θ(6),MS(MZ)

are incorporated including the references used. The starting point is the numerical value
given in eq. (3.6)

including virtual MSSM contributions. The described procedure amounts to applying
the following one-loop formula to the mixing angle

sin2 Θ(6),MS,corr(MZ) =
(

1−∆k̂f + ζαem − ζα2

)

sin2 Θ(6),MS(MZ) (3.11)

with ζαem and ζα2 given in eq. (2.40) and

∆k̂f =
cos Θ(6),MS

sin Θ(6),MS

ΠZγ(M2
Z)−ΠZγ(0)

M2
Z

, (3.12)

where the SUSY contributions to the Z − γ self-energy can be computed by [86]

ΠZγ(p2) =

√

3

5

α1α2

4π

[

− 2 cos 2Θ B̃22(mH± ,mH±)

+
1

2

2∑

i=1

(
|(Z+)1,i|2 + |(Z−)1,i|2 + 2 cos 2Θ

) (

4B̃22(mχi
,mχi

) + p2B0(mχi
,mχi

)
)

−4
∑

f

Nf
c ef

[

(gfL cos2 θf̃ − gfR sin2 θf̃ )B̃22(mf̃1
,mf̃1

)

+(gfL sin2 θf̃ − gfR cos2 θf̃ )B̃22(mf̃2
,mf̃2

)
]
]

. (3.13)

Again, the gauge couplings and the Weinberg angle have been taken in 6-flavor theory in
MS at the scale MZ . The sum

∑

f is over all quarks and leptons and Nf
c is 3 for quarks

and 1 for leptons. For the definition of the quantities gfL , gfR and ef as well as the loop
functions, please refer to the appendix of ref. [86]. Z+ and Z− are the chargino mixing
matrices from eq. (2.41) and the sfermion mixing angles have been given in eq. (2.42).
We have taken care to write the various contributions in eq. (3.11) in such a way that
the large logarithms ln (MSUSY/MZ) cancel completely.

Note that by construction these corrections to sin2 Θ(6),MS(MZ) are suppressed by the
square of the supersymmetric mass scale. We anticipate that for typical supersymmetric
benchmark scenarios the influence of supersymmetric corrections to sin2 Θ(6),MS(MZ)
can lead to shifts in MHc which are of the order of 10%. For the mSUGRA parameters

in eq. (3.18) the shift of sin2 Θ(6),MS(MZ) amounts to about 1.4 · 10−5.

29



Chapter 3. Supersymmetric GUTs and Gauge Coupling Unification at Three Loops

3. Running within the SM from µ = MZ to the SUSY scale µSUSY

Starting from eqs. (3.6), (3.7), (3.8) and (3.10) (and adding supersymmetric effects
to the weak mixing angle as discussed above), we use the three-loop β function of
QCD [112,113] and the two-loop RGEs in the electroweak sector [27,28,114,115] in order
to obtain the values of the gauge couplings at µSUSY ≈ 1 TeV. We take into account the
tau, bottom and top Yukawa couplings and thus solve numerically a coupled system of
six differential equations. The relevant RGEs are listed in appendix A.4 of this thesis.
Since the quartic SM Higgs coupling λ enters the equations of the Yukawa couplings
starting from two-loop order only, we neglect its contribution. The unphysical scale
µSUSY is not fixed but kept as a free parameter in our setup.

4. Decoupling and conversion to DR at µSUSY

For energies of about µSUSY ≈ 1 TeV the SUSY particles become active and the proper
matching between the SM and the MSSM has to be performed. We decouple all heavy
non-SM particles simultaneously at the scale µSUSY using the one-loop relations for α1

and α2 [16] that have been listed in subsection 2.5.4. These contributions are numerically
important since they help to flatten the µSUSY dependence of MHc significantly as will
be seen later in this chapter. For the Yukawa couplings we apply the relations

ySMt (µSUSY) = ζregt ζmt(µSUSY) ζ−1
v (µSUSY) yMSSM

t (µSUSY) sin β ,

ySMb (µSUSY) = ζregb ζmb
(µSUSY) ζ−1

v (µSUSY) yMSSM
b (µSUSY) cos β ,

ySMτ (µSUSY) = ζregτ ζmτ (µSUSY) ζ−1
v (µSUSY) yMSSM

τ (µSUSY) cos β . (3.14)

If not otherwise stated, a superscript SM denotes an MS quantity and a superscript
MSSM a DR quantity. The various ζ coefficients take care of the change of regularization
scheme, the decoupling of the mass and the decoupling of the vev, respectively. At the
one-loop level the formulae read

ζregt,b = 1 +
α3

4π

4

3
, ζregτ = 1 ,

ζmi
(µSUSY) = 1− Σi(m

2
i )

mi
, i = t, b, τ ,

ζ−1
v (µSUSY) =

√
3
5α

SM
1 (µSUSY) + αSM

2 (µSUSY)
3
5α

MSSM
1 (µSUSY) + αMSSM

2 (µSUSY)

(

1− Re ΠT
ZZ(M2

Z)

M2
Z

)

(3.15)

The self-energies Σi(m
2
i ) and ΠT

ZZ(M2
Z) can be extracted from eqs. (D.4) and (D.18)

of ref [86]. However, we need to take into account only the contributions from the
superpartners in these equations since we are decoupling to the full SM here. The
SUSY QCD decoupling effects for α3 and mb are known to two-loop order [29, 30]
and are also implemented to this precision in our setup. In particular the two-loop
SUSY QCD corrections for α3 are of utmost numerical importance.

As pointed out before, a fully consistent approach would require two-loop threshold
corrections not only in the strong but also in the electroweak sector. They are not yet
available, however, we also expect that their numerical impact is relatively small3.

3The smallness of the two-loop contributions to ζα1,2
(µSUSY) at µSUSY cannot be concluded solely from the
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Furthermore, consistency with the RG running would require mixed QCD-Yukawa cor-
rections for α3. They have been calculated in the course of the Ph.D. thesis of Jens
Salomon [116] and turned out to be negligible. This was anticipated since the effect of
these kind of corrections on the (three-loop) running is numerically small.

In our numerical analysis we generate the SUSY mass spectrum with the help of the
program SOFTSUSY [57] and also study the various SPS (Snowmass Points and Slopes)
scenarios [117,118].

At this stage also the change of renormalization scheme from MS to DR has to be
taken into account. We employed the one-loop conversion relations [90, 110] for all
parameters except α3 and mb where two-loop relations [90,119] have been used in order
to be consistent with the decoupling at the SUSY scale. For convenience the relevant
relations are listed in eqs (2.43), (2.44) and (3.15).

5. Running within the MSSM from µSUSY to the high-energy scale µGUT

We use the complete three-loop RGEs of the MSSM [23, 24] (cf. also appendix A.5)
to evolve the gauge and Yukawa couplings from µSUSY to some very high scale of the
order of 1016 GeV, that we denote by µGUT, where we expect that SUSY GUT particles
become active.

6. Decoupling at µGUT and determination of MHc

At the scale µGUT we need to perform the decoupling of the super-heavy GUT particles.
A consistent treatment would require two-loop decoupling relations. At the moment,
however, only one-loop results are available [31–33]. As we will see later, for the Minimal
SUSY SU(5) these missing two-loop effects are expected to be much less significant
numerically than the SUSY QCD two-loop decoupling effects, which we included. For
the Missing Doublet Model, however, we will see that this is not a good approximation
and that at the moment no firm conclusions can be drawn here because the theoretical
uncertainty due to the scale variation of µGUT is huge.

In order to determine the mass parameter MHc , one could take the values of the three
gauge couplings that we computed in the previous step, apply eq. (2.25) together with
eq. (2.36) and determine the values of the heavy GUT masses that yield a unique gauge
coupling α(µGUT) by scanning over the parameter space. In fact, at this order of
perturbation theory we can algebraically solve for those heavy masses by taking suitable
linear combinations of eq. (2.36). For Minimal SUSY SU(5) we can therefore determine
the colored Higgs triplet mass MHc and an additional parameter via

− 4π

α1(µGUT)
+ 3

4π

α2(µGUT)
− 2

4π

α3(µGUT)
= −12

5
ln

(

µ2GUT

M2
Hc

)

, (3.16)

5
4π

α1(µGUT)
− 3

4π

α2(µGUT)
− 2

4π

α3(µGUT)
= −24

[

ln

(
µ2GUT

M2
X

)

+
1

2
ln

(
µ2GUT

M2
Σ

)]

.

numerical smallness of of α1,2(µSUSY) since their effect at µGUT can in principle still be of the same order
of magnitude as those of ζα3

(µSUSY). However, subsection 3.2.1 will provide an a posteriori motivation for
the above statement: The flatness of the µSUSY dependence of MHc

suggests that in the absence of large
constant two-loop terms in the ζα1,2

(µSUSY) and without miraculous cancellations between ζα1
(µSUSY) and

ζα2
(µSUSY) their two-loop contributions should not be as important as the ones of ζα3

(µSUSY).
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It is common to define a new mass parameter MG ≡ 3

√

M2
XMΣ, which is the second

parameter, besides MHc that can be directly determined from the above equations. For
the case of the Missing Doublet Model the same linear combinations, which are obtained
from eq. (2.37), read

− 4π

α1(µGUT)
+ 3

4π

α2(µGUT)
− 2

4π

α3(µGUT)
= −12

5

[

ln

(

µ2GUT

M2
Hc

)

+ ln

(

µ2GUT

M2
Hc′

)]

+12 ln

(
64

3125

)

,

5
4π

α1(µGUT)
− 3

4π

α2(µGUT)
− 2

4π

α3(µGUT)
= −24

[

ln

(
µ2GUT

M2
X

)

+
1

2
ln

(
µ2GUT

M2
Σ

)]

−12 ln

(
262144

1953125

)

. (3.17)

7. Running within the GUT from µGUT to the Planck scale MPl

The last sequence of our approach consists in the running within the SUSY SU(5)
model. We implemented the three-loop RGEs for the gauge [26], and the one-loop
formulae for the Yukawa and Higgs self couplings [14, 18]. In the appendix of this
thesis, section A.7, we derive the gauge β functions from the general formulae given
in ref. [26]. The only purpose of this step is to check whether all parameters remain
perturbative up to the Planck scale. Since eqs. (3.16) and (3.17) only predict the

combination MG ≡ 3

√

M2
XMΣ (and MHcMHc′

in the case of the Missing Doublet Model),

we have some freedom in choosing the parameters that go into ζαi
(µGUT) which has an

impact on the perturbativity constraint. We regard a parameter point as fulfilling the
perturbativity constraint if e.g. for a given MG a MX can be found such that all the
parameters remain perturbative.

The simultaneous decoupling, that has been adopted here, might be problematic in case there
is a huge splitting among the SUSY or GUT masses. In that case a step-by-step decoupling
would be preferable (see, e.g., ref. [120]); however, two-loop calculations in that framework
are still missing. Furthermore, the mass splitting between the SUSY particles in almost all
benchmark scenarios currently discussed in the literature is rather small. The same is true
for the GUT masses that will appear in our analysis.

The described procedure has been implemented into a Mathematica package that provides
several useful functions suitable for the numerical analysis that will be presented in the fol-
lowing section.

3.2. Predictions for MHc
from Gauge Coupling Unification

Using the procedure described in the previous section, we now study the prediction of the two

SUSY GUT masses MHc and MG ≡ 3

√

M2
XMΣ with a focus on the former as it is the relevant

parameter for proton decay. In most cases we adopt the mSUGRA scenario for the generation of
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the SUSY mass spectrum using SOFTSUSY. For illustration the running of the gauge couplings
at three-loop order is depicted in fig. 3.2 for µSUSY = 1000 GeV and µGUT = 1016 GeV.
Additionally, we have chosen MΣ = 1 · 1015GeV, which, by requiring the gauge couplings to
unify, implies MHc = 1.7 · 1015GeV and MX = 4.6 · 1016GeV. For the SUSY spectrum we have
chosen the parameter point that will be introduced in eq. (3.18). Panel (b) illustrates how
two different choices of the decoupling scale µGUT can lead to a similar value of the gauge
coupling above µGUT which is the behavior we expect from a realiable analysis.

3.2.1. Dependence on the Decoupling Scales µSUSY and µGUT

We start by examining the dependence of MHc and MG on the decoupling scales since this
gives us an estimation for the improvement of the theoretical uncertainty due to the three-
loop analysis compared to the two-loop analysis. An exact calculation would yield a flat
curve, however, due to the use of perturbation theory, there is a remnant dependence which
is gradually eliminated by successively including higher orders. Fig. 3.3 shows the dependence
of MHc and MG on µSUSY (a) and µGUT (b) for the mSUGRA parameters

m0 = m1/2 = −A0 = 1000 GeV ,

tan β = 3 ,

µ > 0 . (3.18)

This parameter point results in squark masses of about 2 TeV which is at the upper range
of what can be measured at the LHC. Lower values for the masses of the superpartners will
generally result in lower values for MHc as will be shown later. Turning again to Fig. 3.3 (a),
two things are noteworthy:

• The three-loop effects make the curve almost flat. (The remaining variation of
log10(MHc/GeV) for the considered range of µSUSY is about 0.15.) We interpret this
fact as a hint that despite the missing three-loop electroweak running in the SM and
the two-loop electroweak decoupling from the SM to the MSSM, the numerically most
decisive corrections have been taken into account.

• At the scale µSUSY = MZ (the left edge of the plot) the increase of MHc due to three-
loop effects amounts to about one order of magnitude. This is important since many
previous unification analyses used µSUSY = MZ as the default decoupling scale [13–
17,20]. Therefore, presumed tension between their predictions for MHc and bounds on
MHc from proton decay is significantly attenuated by the three-loop effects.

The dependence of MHc on µGUT is shown in Fig. 3.3 (b). Recall that here only one-loop
decoupling at µGUT is employed. Still the variation of log10(MHc/GeV) for the considered
range of µGUT amounts to only 0.3 which is of the same order of magnitude as remaining
variation due to the µSUSY dependence described above. Again, we consider this as a hint
that the missing two-loop decoupling relations at the GUT scale will not change our result
too much in the Minimal SUSY SU(5) Model4. However, as always, this is to be taken with

4This statement is not true for the Missing Doublet Model, as will be shown later.
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Figure 3.2.: Illustration of the running and decoupling procedure for a specific parameter point. The
discontinuities are due to matching corrections at the SUSY and GUT thresholds. In
panel (b) the region around µGUT is enlarged and the behavior of the curve is shown if
the decoupling scale µGUT is lowered from 1016 GeV to 1015.5 GeV ≈ 3.2 ·1015 GeV. The
shaded band indicates the impact of the uncertainty on α3(MZ).
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Figure 3.3.: The dependence of MHc
on µSUSY (a) and µGUT (b). The dotted, dashed and solid

lines represent the one- two- and three-loop analysis. The shaded band indicates the
uncertainty on the determination of αs(MZ) with the value δαs = 0.0020.
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care since the variation of physical parameters due to the dependence on a decoupling scale
only provides a lower bound on the theoretical uncertainty.

3.2.2. Dependence on the SUSY Spectrum

Of course it is important to inspect how the result of the previous subsection changes de-
pending on the SUSY spectrum. Here we restrict ourselves to the three-loop case. In the
mSUGRA scenario only the parameter m1/2 causes a significant variation of MHc and MG.
This dependence is depicted in fig. 3.4 (a). Still, varying m1/2 up to 4 TeV does cause less
variation in MHc than the one order of magnitude jump due to three loop effects that was
discussed in the previous subsection. For further illustration the predictions of MHc and MG

for various SPS scenarios [117, 118] are shown in Fig. 3.4 (b). Again the variation of MHc is
within one order of magnitude. Note that SPS9 (anomaly-mediated SUSY breaking) leads to
the smallest values of MHc .

3.2.3. Dependence on the Uncertainty on the Input Parameters

Up to now we have focused on using the central values of the gauge couplings and the weak
mixing angle at the electroweak scale, eq. (3.6) as input for our analysis. The uncertainty
in their determination, however, has a major impact on the prediction of MHc and MG and
translates into an uncertainty in these two parameters. Since MHc and MG are complicated
functions of the experimental input variables, their uncertainties will, in general, be correlated.
In order to treat this in a proper way, we need to find a ∆χ2 function that depends on
log10(MHc/GeV) and log10(MG/GeV). All values in the log10(MHc/GeV)− log10(MG/GeV)
plane that yield a ∆χ2 below a certain fixed value, belong to a certain confidence level as
will be explained in more detail in a moment. In the following we describe shortly the
mathematical tools that are employed in such a situation (cf. e.g. ref. [121,122]).

We start with some random variables xi, (i = 1, . . . , n) with expectation values Xi. We
assume that their uncertainties are not correlated, i.e. the covariance matrix is diagonal

V (x) = diag(σ2x1
, . . . , σ2xn

) (3.19)

containing all squared standard deviations. Now we are interested in computing the covariance
matrix V (f) of the quantities fj(~x), (j = 1, . . . ,m) with expectation values Fj ≡ fj( ~X).
Assuming that the fj can be approximated by a first order Taylor expansion in the region of
about one standard deviation around Xi, we can compute the impact of the variation around
~X on the fj:

δfj = fj( ~X + δ~x)− Fj ≈
∂fj( ~X)

∂Xi
δxi ≡ Jji δxi , (3.20)

where J is the m × n Jacobian matrix. Then the desired m ×m covariance matrix for the
quantities fj is given by

V (f) = J V (x)JT . (3.21)

36



3.2. Predictions for MHc
from Gauge Coupling Unification

MG

MHc

m1/2 (GeV)

M
H

c,
 M

G
 (

10
16

 G
eV

)

0

0.5

1

1.5

2

1000 2000 3000 4000

(a)

1a
1a,,6

1b

2

3

4

5

7

8

9

MHc (1015 GeV)

M
G

 (
10

16
 G

eV
)

1.4

1.5

1.6

1.7

1.8

0.25 0.5 0.75 1

(b)

Figure 3.4.: The dependence of MHc
(solid in (a)) and MG (dashed in (a)) on the SUSY spectrum.

The labels and lines in panes (b) denote the various SPS points and slopes. Both plots
have been generated with µSUSY = 1000 GeV , µGUT = 1016 GeV and three-loop running.
The dependence on the mSUGRA parameters m0, tanβ and A0 is rather mild.
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C.L. (%) m=1 m=2 m=3

68.27 1.00 2.30 3.53
90.00 2.71 4.61 6.25
95.00 3.84 5.99 7.82
95.45 4.00 6.18 8.03
99.00 6.63 9.21 11.34
99.73 9.00 11.83 14.16

Table 3.2.: Depending on the degrees of freedom m in ~f , different values of ∆χ2 correspond to dif-
ferent confidence levels (C.L.). The given values assume Gaussian distribution of the
random variables fj.

This can now be used to calculate the ∆χ2 function:

∆χ2(~f) = (~f − ~F )T (V (f))−1 (~f − ~F ) = (~f − ~F )T (J V (x)JT )−1 (~f − ~F ) (3.22)

where we have used eq. (3.21). If the standard deviations on xi and their expectation values
Xi together with the functions fj(~x) are known, eq. (3.22) contains only known quantities.
(The Jacobian matrix J can be computed numerically if the functions fj are too complicated.)

Computing ∆χ2 for different values of ~f in eq. (3.22) yields a measure for the probability
that this particular ~f is realized. A table that assigns confidence levels (C.L.) to particular
values of ∆χ2 assuming that the fj are Gaussian distributed can be found e.g. in ref. [7] and
is reproduced in table 3.2 for convenience.

For our particular case we have three relevant input values (i.e. n = 3) with non-negligible
uncertainties and take

x1 = ∆α
(5)
had ,

x2 = sin2 ΘMS ,

x3 = αs(MZ) , (3.23)

with mean values and standard deviations given in eq. (3.2). The functions fj(~x) are defined
by the running and decoupling procedure described in section 3.1 and

f1 = log10(MHc/GeV) ,

f2 = log10(MG/GeV) , (3.24)

i.e. m = 2. The Jacobian J is determined numerically by calculating difference quotients with
sufficiently small step sizes such that a variation of the step size yields a stable result. Fig. 3.5
shows the result in the MHc −MG plane. We have adopted the choice µSUSY = MZ here in
order to be able to compare with the results in the literature. For the mSUGRA parameters
we again adopt our default choice, eq. (3.18). Again, one can see that the three-loop effects
are of comparable size as the uncertainty on the input parameters and cause a considerable
shift of about one order of magnitude in MHc . Note, however, if we had chosen µSUSY in
the vicinity of the average SUSY masses, the two- and three-loop ellipses would be almost on
top of each other (cf. also fig. 3.3 (a)) and coinciding with the three-loop ellipses in fig. 3.5.
Therefore, we can conclude from this analysis that in this case a two-loop running is sufficient
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if the decoupling scale is chosen close to the SUSY mass scales. Let us also mention that we
can reproduce the results of ref. [19] after adopting their parameters and restricting ourselves
to the perturbative input used in that publication.

Moreover, it is noteworthy that the error on the strong coupling has the largest impact on
the uncertainty of MHc and essentially determines the semi-major axis of the ellipse. Fig. 3.5
(b) illustrates how the outcome would be changed if δαs is halved.

Recently there have been a few extractions of αs based on higher order perturbative cor-
rections with uncertainties slightly above 1%, which, however, obtain central values for αs

close to 0.113 (see, e.g., ref. [123]). Since these results are significantly lower than the value
given in eq. (3.2) it is interesting to show in Fig. 3.5 (a) also the corresponding 68% and
90% confidence level ellipses (for the two- and three-loop analyses) as dotted lines adopting
αs(MZ) = 0.1135 ± 0.0014 [124]. One observes a big shift in the GUT masses, in the case of
MHc the central value is about one order of magnitude lower than for the αs value of eq. (3.2).

3.2.4. Top-Down Approach and the Missing Doublet Model

Finally, in this section we discuss the phenomenological results using the “top-down” ap-
proach, i.e. specifying the unique gauge coupling at some scale above µGUT and then pre-
dicting the three distinct gauge couplings at MZ . Then we can again vary the unphysical
scale µGUT and examine the impact on αi(MZ) in order to compare them to the experimental
values. The reason that this approach gives additional information compared to the approach
of subsection 3.2.1 is the following: Up to now the only way the threshold corrections at
µGUT enter our analysis was via eqs. (3.16) and (3.17). However, these equations do not
contain any information about the running above µGUT as will be argued in a moment, which
has the consequence that the theoretical uncertainty due to the variation of µGUT may be
underestimated :

In the general one-loop formula for the decoupling coefficient at µGUT, eq. (2.35), the µGUT

dependent terms can be rewritten in the form (cf. section A.8 in the appendix)

ζαi
(µGUT) = 1 +

α(µGUT)

π

[
1
2(βi0 − β0) ln (µGUT)− C0(Mh)

]

(3.25)

where βi0 and β0 are the one-loop gauge β function coefficients for the effective theory (MSSM)
and the GUT, respectively. C0(Mh) parametrizes the terms that depend on the super-heavy
masses. Here, due to the presence of β0 the decoupling coefficient depends on the running
above µGUT. Therefore, for models that contain large representation, as the Missing Doublet
Model, ζαi

(µGUT) will receive large contributions due to large numerical values of the Casimir
invariants. In particular in the top-down approach, the impact on αi(MZ) due to the variation
of µGUT will be huge in such a case. In forming the linear combinations, eqs. (3.16) and (3.17),
it is easy to see that β0 drops out. This is reflected by the moderate numerical coefficients
in in front of the logs in eq. (3.17) as compared to eq. (2.37). Therefore, the large variation
of physical parameters that has been observed before is not present in the approach of just
using the one-loop formulae, eqs. (3.16) and (3.17), in order to determine MHc and MG.
Though this is no problem per se, it is not clear at all whether the same will happen if one
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Figure 3.5.: The impact of the uncertainties on the gauge couplings at the electroweak scale on MHc

and MG. The inner ellipses mark the 68% and the outer ones the 90% confidence level
regions. Panel (a) shows the correlation for δαs = 0.0020 which is our default choice.
The dashed ellipses are obtained from the two-loop analysis and the solid ellipses from
the three-loop analysis. The dotted ellipses show how the result changes if one employs
αs(MZ) = 0.1135 ± 0.0014 instead. In panel (b) we have adopted the more optimistic
choice δαs = 0.0010. Again the dashed and solid curves correspond to the two- and
three-loop analyses, respectively.
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moves to two-loop decoupling at µGUT, because there interference terms of various β function
coefficients will appear in the µGUT dependence of ζαi

(µGUT). For this reason the estimation
of theory uncertainty due to the variation of µGUT has to be handled with care when using
eqs. (3.16) and (3.17). In order to estimate the full uncertainty, we employ the top-down
approach in this last subsection of our analysis5.

Fig. 3.6 (a) shows the prediction of αi(MZ) depending on µGUT for the following set of
parameters:

α(1017 GeV) = 0.03986 ,

MHc = 3.67 · 1014 GeV ,

MΣ = 2 · 1016 GeV ,

MX = 1.58 · 1016 GeV ,

µSUSY = 500GeV , (3.26)

and use the SPS1a benchmark scenario in order to be able to compare with the results for
the Missing Doublet Model6. Moreover, the chosen set of GUT mass parameters guarantees

the agreement of α(6),MS(MZ), sin2 Θ(6),MS(MZ) and α
(6),MS
s (MZ) with the values in eq. (3.2)

for µGUT = 1016GeV. It is noticeable that the one-loop curve for α3(MZ) is completely
flat. This is due to the fact that the one-loop QCD β function coincides with the one of
minimal SUSY SU(5). The two-loop and three-loop curve (both with one-loop decoupling)
exhibit a variation over the considered range of µGUT that is comparable to the experimental
uncertainty. This is in slight contrast to what has been observed in the previous sections
where the variation of MHc depending on µGUT was very small. This teaches us that, despite
all arguments given in the previous subsections, to be finally sure that the two-loop decoupling
effects at µGUT are small for the Minimal SUSY SU(5), one has to compute them.

When inspecting the µGUT dependence in the same fashion for the Missing Doublet Model,
things change dramatically as can be seen in fig. 3.6 (b). Here we have used as input param-
eters

α(1017 GeV) = 0.1504 ,

MHc = 6 · 1018 GeV ,

MHc′
= 1 · 1016 GeV ,

MΣ = 2 · 1015 GeV ,

MX = 3 · 1016 GeV ,

µSUSY = 500GeV , (3.27)

and again the SPS1a benchmark scenario. As can be seen, the dependence of αi(MZ) due to
the variation of µGUT is huge here. The theoretical uncertainty due to the scale variation must
be regarded as about one order of magnitude larger than the uncertainty on the experimental
value of αs(MZ). Therefore, no conclusion on whether this particular parameter point is

5Of course, one could as well use a bottom-up approach and analyze the µGUT dependence of α(MPl). But
then we would not have the direct comparison with experimental values.

6Since in the Missing Doublet Model the gauge coupling easily becomes non-perturbative above µGUT due to
the large gauge β function, one has to tune the input parameters carefully.
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Figure 3.6.: Gauge couplings at the µ = MZ obtained by a top-down approach within (a) Minimal
SUSY SU(5) and (b) the Missing Doublet Model as a function of µGUT. The dotted,
dashed and solid lines represent the one- two- and three-loop results, respectively. Fur-
thermore, the experimental values for αi(MZ) including uncertainties are denoted by
gray bands. In panel (b) the one-loop curves are depicted only up to µGUT ≈ 4 ·1014GeV
since beyond that scale α3 becomes non-perturbative.
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excluded or not can be drawn here. This observation provides an even stronger motivation
to compute the missing two-loop matching corrections at µGUT in order to allow for an
sufficiently reliable analysis of models with large representations, as the Missing Doublet
Model. These corrections are expected to reduce the scale dependence to a reasonable level.

As a further example where such large uncertainties are expected to occur, let us mention
GUT models based on the group E6 [125, 126]. Since the smallest representations in this
group are 27-, 78- (adjoint) and 351-dimensional, very easily large contributions to the gauge
β functions are produced. Due to eq. (3.25), this then induces a strong dependence on the
decoupling scale in ζαi

and thus leads to the same effect as demonstrated for the Missing
Doublet Model. As an example consider a SUSY E6 model that employs a 351H for the
symmetry breaking7 and the three fermion generations are embedded in three copies of the
27. Then the minimal contribution to the one-loop gauge β function will be (cf. eq. (A.75))

βE6
0 = −3 I2(ΠA) +

∑

x

I2(Π
x)

= −3 I2(Π78) + 3 I2(Π27) + I2(Π
351) + · · ·

= −3 · 12 + 3 · 3 + 84 + · · ·
= 57 + · · · (3.28)

where the ellipsis denotes further positive contributions. The numerical values for the Dynkin
indices I2(· · · ) have been taken from ref. [128]. Compared to the Missing Doublet Model where
β0 = 17, we therefore expect an even greater uncertainty due to the variation of µGUT from
such an E6 model. Let alone when a 650H with a Dynkin index of

I2(Π650) = 150 (3.29)

is involved in the breaking. To the author’s knowledge many gauge coupling unification
analyses for E6 models (e.g. ref. [129]) don’t even include one-loop threshold effects at the
GUT scale and rely purely on the apparent meeting of the gauge couplings due to RG running.
From the above argument, care is needed with such an approach since the (one- and two-
loop) threshold-corrections can change the picture in such a situation dramatically. These
considerations show that a large GUT gauge β function not only implies a tendency for non-
perturbative behavior, but also huge theoretical uncertainties.

3.2.5. Comparison with Proton Decay Constraints

Having derived all the phenomenological constraints on MHc from gauge coupling unification,
it is in order to compare with the constraints that come from proton decay in the Minimal
SUSY SU(5) Model. The latest upper bound on the proton decay rate for the dominant
channel p → K+ν̄ [130] is Γexp = 4.35 · 10−34/y. In order to translate it into a lower bound
for the the Higgs triplet mass in the minimal renormalizable SUSY SU(5) model, one needs
an additional assumption about the Yukawa couplings that enter the expression of the decay
rate Γ(p → K+ν̄). As pointed out in ref. [61] and at the end of section 2.6, one could either
use
7Note that the presence of the 351H is not always mandatory. There are also consistent SUSY E6 models
where the Higgs content 78H ⊕ 2× (27H ⊕ 27H) is sufficient [127].
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(i) the (larger) down-quark Yukawa coupling or

(ii) the (smaller) electron Yukawa coupling

for the calculation of the decay rate. Both cases are equally justified but yield strongly
deviating results for the decay rate8 For the case (i) and sparticle masses around 1 TeV the
lower bound for the Higgs triplet mass can be read off from Fig. 2 of ref. [61] and amounts
to MHc ≥ 1.05 · 1017GeV whereas for the second choice it becomes MHc ≥ 5.25 · 1015GeV.
From our phenomenological analysis presented above it turns out that within the minimal
renormalizable SUSY SU(5) model the upper bound for MHc is of about 1016 GeV at 90%
C.L. which is about one order of magnitude higher that the two-loop result with decoupling at
MZ . Though this is still in conflict with case (i), we observe that the three loop effects push
MHc up to the region that is allowed in case (ii) and one need not rely on higher-dimensional
operators in this case.

Including higher-dimensional operators, finally, to make the formulation of the theory consis-
tent, the tension between gauge coupling unification and proton decay is further reduced by
the mechanisms described in section 2.6.

3.3. Summary

In this last section, we briefly summarize the most important findings of the present chapter:

• We have performed an (almost) three-loop RG analysis for the gauge couplings and
examined phenomenological consequences for Minimal SUSY SU(5) and the Missing
Doublet Model with a focus on the former.

• We have found that µSUSY = MZ is not a good choice for the decoupling scale when
doing a two-loop analysis, though commonly used in the literature. With this choice
the mass of the colored triplet Higgs gets raised by one order of magnitude by the three
loop effect attenuating the tension with proton decay constraints (cf. subsections 3.2.1
and 3.2.3).

• We confirm that Minimal SUSY SU(5) cannot be ruled out by proton decay experiments
(cf. subsection 3.2.5).

• For the Missing Doublet Model the variation of α3(MZ) due to the dependence on the
decoupling scale µGUT is one order of magnitude larger that the current uncertainty
on the experimental value of α3(MZ). This behavior is expected in any GUT model
with large representations and is due to the missing two-loop GUT matching correc-
tions. This observation provides a strong motivation to calculate these corrections (cf.
subsection 3.2.4).

8The author is aware that this treatment is not completely consistent due to the non-unification of the
first generation Yukawa couplings in the renormalizable minimal SUSY SU(5). However, including higher-
dimensional operators complicates the treatment and only further weakens the bound compared to the case
where the electron Yukawa coupling is used for the calculation in the renormalizable model.
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4. Field-Theoretical Framework for the
Two-Loop Matching Calculation

In the previous chapter an (almost) three-loop RGE gauge coupling unification analysis was
presented for the Minimal SUSY SU(5) and the Missing Doublet Model. One of the missing
pieces that would complete the analysis are the two-loop GUT matching corrections. Though
their numerical impact is expected to be moderate in the case of Minimal SUSY SU(5), for the
Missing Doublet Model and any other GUT model with large representations they constitute
a decisive building block. Without them a reasonably reliable exclusion of such models by
gauge coupling unification is virtually impossible because the theoretical uncertainty due to
the variation of the unphysical parameter µGUT is so huge (cf. subsection 3.2.4).

This chapter is devoted to the description of a theoretical framework that is suitable for the
calculation of these two-loop matching corrections. Since there is a host of well motivated
GUT models that we want to apply our formula to, we want our final result to be applicable to
as many of them as possible. Therefore, it is desirable to carry out the calculation of the two-
loop matching corrections at the GUT scale in a framework that makes as few assumptions
on the underlying GUT model as possible. The idea is to have a general formula that depends
on the Casimir invariants and the mass spectrum of the theory. Such a formula has been
available at the one-loop level for a long time and was presented in eq. (2.35). Choosing a
specific model specifies those Casimir invariants and gives an expression that depends only
on the masses and couplings of the model.

The actual calculation that has been carried out in the course of this thesis is not yet done in
full generality, but makes some additional assumptions about the model. These assumptions
will be described in section 4.3. Nevertheless, we present the theoretical framework that is
needed for the calculation of the relevant Green’s functions (almost) as general as possible
below in order to be armed for future improvements of the calculation.

4.1. The Lagrangian

We consider a general renormalizable quantum field theory defined by the following La-
grangian:

L = −1

4
Fµν
α Fα

µν + ψ̄ (iσ̄µDµ − µF )ψ +
1

2
(DµΦ)TDµΦ− V (Φ) + LY + Lgf + Lgh. (4.1)

The Weyl fermion field ψ and the real scalar field Φ reside in (not necessarily irreducible)
representations of the gauge group G. The matrix µF can contribute to Dirac and Majorana
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mass terms of the fermions. The dynamics of the gauge field that transforms as the adjoint
representation of G, is described by the Yang Mills curl Fµν

α = ∂µAν
α − ∂νAµ

α + gfαβγA
µ
βA

ν
γ .

Moreover, V (Φ), LY, Lgf and Lgh are the scalar potential, the Yukawa interactions, the gauge
fixing and the ghost parts of the Lagrangian, respectively. They will be described in detail
later in this section. V (Φ) is chosen such that the scalar field Φ = v + Φ′ contains one G-
irreducible subspace that develops a vacuum expectation value (vev) v, that breaks G down
to the SM gauge group GSM ≡

∏

k Gk =SU(3)×SU(2)×U(1). Models that have more than
one vev of O(MGUT), where MGUT is a typical mass of a super-heavy particle, are not covered
by our framework yet. The indices α, β, γ . . . belong to the adjoint representation and label
the generators of G which fulfill the commutation relations

[Tα, T β] = ifαβγ T γ and also: [T̃α, T̃ β] = ifαβγ T̃ γ , (4.2)

with the structure constants fαβγ . We use the tilde to denote the generators of the real1

scalar representation which fulfill (T̃α)T = −T̃α . The generator that acts on the fermion
field satisfies (Tα)† = Tα. Again, Tα and T̃α need not necessarily be defined on irreducible
representations of G, but can also have block diagonal form. In order to distinguish between
broken and unbroken generators, we introduce the notation:

{α} =
∑

i

{Ai}+
∑

i

{ai} = {A}+ {a} , (4.3)

where Ai label the broken generators of G belonging to the GSM-irreducible subspace labeled
by i. If there is only one GSM-irreducible subspace in the adjoint representation of G, as
e.g. is practically the case in SU(5), we can omit the sub-index i. In contrast, ai labels the
unbroken generators belonging to the subgroup2 Gi:

T̃ aiv = 0 ,

T̃Aiv 6= 0 . (4.4)

As an example for this index labeling consider the decomposition of the adjoint representation
of SU(5)

24
︸︷︷︸

→ (8,1, 0)
︸ ︷︷ ︸

⊕ (1,3, 0)
︸ ︷︷ ︸

⊕ (1,1, 0)
︸ ︷︷ ︸

⊕ (3,2,−5
6 )⊕ (3,2, 56)

︸ ︷︷ ︸
. (4.5)

α a3 a2 a1 A

In this case no distinction of indices belonging to (3,2,−5
6) and (3,2, 56 ) is necessary because

these two representations are complex conjugates of each other. In contrast, for the case of
SO(10), the adjoint 45 decomposes under GSM as

45
︸︷︷︸

→ (8,1, 0)
︸ ︷︷ ︸

⊕ (1,3, 0)
︸ ︷︷ ︸

⊕ (1,1, 0)
︸ ︷︷ ︸

⊕ (3,2,−5
6)⊕ (3,2, 56)

︸ ︷︷ ︸
⊕ (3,1, 23)⊕ (3,1,−2

3 )
︸ ︷︷ ︸

α a3 a2 a1 A1 A2

⊕ (3,2, 16)⊕ (3,2,−1
6)

︸ ︷︷ ︸
⊕ (1,1, 1) ⊕ (1,1,−1)
︸ ︷︷ ︸

⊕ (1,1, 0)
︸ ︷︷ ︸

A3 A4 A5 (4.6)

1This is no loss of generality since any complex scalar can be written as two real scalars. Cf. also section A.3
in the Appendix.

2Please note the different meanings of the sub-index i when attached to the capital adjoint index opposed to
when attached to a lowercase adjoint index.
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Here we explicitly need to take into account sub-indices for broken generators.

The Lagrangian in eq. (4.1) is invariant under local gauge transformations with the real
parameter θ = θ(x):

ψ → ψ − iθαTαψ ,

Φ → Φ− iθαT̃αΦ ,

Aα
µ → Aα

µ + fαβγθβAγ
µ −

1

g
∂µθ

α . (4.7)

The covariant derivatives are defined as:

Dµψ = (∂µ − igTαAα
µ)ψ ,

DµΦ = (∂µ − igT̃αAα
µ)Φ . (4.8)

Note that faibjAk = 0 because otherwise the commutator [T ai , T bj ] would contain terms
proportional to TAk . Then GSM would not be closed (and hence would not be a group) which
is not the case. Using this property and eqs. (4.2) and (4.4), the gauge-kinetic term for the
scalar field Φ = v + Φ′ can be written as:

1

2
(DµΦ)TDµΦ =

1

2
(∂µΦ′)T∂µΦ′ +

1

2
g2vT̃AT̃BvAµ

AAµB

+igvT̃A∂µΦAµ
A + ig2fABaA

µ
BAµavT̃

AΦ′

+igΦ′T̃α∂µΦ′Aµ
α +

1

2
g2Φ′T̃αT̃ βΦ′Aµ

αAµα

+g2vT̃AT̃BΦ′Aµ
AAµB , (4.9)

where we can identify the (diagonal) gauge boson mass matrix

(MX)AiBi
≡ g2vT̃AiT̃Biv , (4.10)

with eigenvalues denoted by MXi
. Again, the sub-index i labels the GSM-irreducible subspace

that is meant, because each GSM-irreducible subspace can be assigned to a definite gauge bo-
son mass. Note that the position of the adjoint indices α,Ai, ai . . . is irrelevant. Furthermore,
it is understood that a partial derivative acts only on the single field, which is next to it.
The gauge-kinetic term for the scalars contains the undesired quadratic mixing igvT̃A∂µΦAµ

A

between Goldstone bosons and heavy gauge bosons. As we will see in a moment, the gauge
fixing Lagrangian Lgf can be chosen in such a way that this term is canceled, at least at
tree-level.

4.1.1. Gauge Fixing and Ghost Interactions

The quantization of gauge fields involves some peculiarities that are best dealt with in the
functional integral formalism where an integration over all possible field configurations of the
exponentiated classical action is performed. When carrying out this integration for the gauge
fieldsAα

µ, there are configurations that are connected via a gauge transformation, eq. (4.7), and
thus are equivalent. They give an infinite contribution and thus cause the functional integral
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to diverge. In order to avoid this, we need to integrate only over a particular representative
of such a gauge orbit. As described e.g. in ref. [65], this can be achieved by defining the
generating functional as

Z[J ] =

∫

[dA] detMf exp {i
∫

d4x(Lclass + Lgf +Aα
µJ

αµ)} (4.11)

where Jαµ = Jαµ(x) is the source function and

Lgf ≡ −
1

2

∑

α

f2α , (Mf (x, y))αβ ≡ δfα(θ)

δθβ
(4.12)

are the gauge-fixing Lagrangian and the Faddeev-Popov matrix, respectively. They are defined
in terms of the gauge fixing functional fα which is chosen such that fα = 0 defines a unique

representative A
(θ)α
µ for a particular gauge orbit3. The functional derivative with respect

to the gauge transformation parameter θ in eq. (4.12) is to be understood as the rate of
change of fα when Aα

µ and all other fields are gauge-transformed. Since we are dealing with a
spontaneously broken gauge theory, we choose the so-called Rξ gauge fixing functional [132]

fAi
=

1√
ξ1i
∂µA

µ
Ai
− ig

√

ξ2ivT̃
AiΦ′ ,

fai =
1√
ηi
∂µA

µ
ai . (4.13)

Note that we have chosen two distinct gauge parameters ξ1 and ξ2 for each GSM-irreducible
subspace of the heavy gauge bosons. They renormalize differently and thus can only be
equated with each other after renormalization. Otherwise not all the Green’s functions can
be made finite. In the same way each SM group factor receives its own gauge parameter
ηi. This subtlety arises first at the two-loop level and is not relevant for computing one-
loop matching coefficients. Although there are other possibilities for the choice of the gauge
fixing functional [31,133–135], we find this one most convenient for our purposes. In order to
account for the presence of the Faddeev-Popov determinant detMf in the functional integral,
eq. (4.11), we exponentiate the determinant [65,136]:

detMf =

∫

[dc][dc†] exp {−i
∫

d4x d4y c†α(x)(Mf (x, y))αβcβ(y)} (4.14)

which leads to new (unphysical) ghost fields cα and c†α in the action. We compute the Faddeev-
Popov matrix, eq. (4.12), for our choice of the gauge fixing functional, eq. (4.13). The result
is proportional to δ(4)(x− y) allowing us to carry out the integration over y in eq. (4.14). We

absorb the factor 1/(g1/2ξ
1/4
1i ) into cAi

and c†Ai
, as well as the factor 1/(g1/2η

1/4
i ) into cai and

c†ai in order to guarantee for canonically normalized kinetic ghost terms. Finally, the whole
procedure amounts to adding the following ghost interactions to the Lagrangian:

3This requirement may not be always fulfilled for non-abelian gauge theories due to Gribov ambiguities [131].
But since we are only interested in perturbative aspects in this work, we can assume that this is always
possible.
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LRξ

gh =
∑

ij

[

∂µc†Ai
(δAiBj

∂µ − gfAiBjαA
α
µ)cBj

−g2
√

ξ1iξ2i vT̃
AiT̃Bjv c†Ai

cBj
− g2

√

ξ1iξ2i vT̃
Ai T̃BjΦ′c†Ai

cBj

]

−
∑

ij

[

g

(
ηj
ξ1i

) 1
4

fAibjBi
∂µc†Ai

ABi
µ cbj + ig2

(
ξ1iηjξ

2
2i

) 1
4 fAibjBi

vT̃BiΦ′c†Ai
cbj

]

−
∑

ij

g

(
ξ1j
ηi

) 1
4

faiBjAj
∂µc†aiA

Aj
µ cBj

+
∑

i

∂µc†ai(δaibi∂µ − gfaibiciA
ci
µ )cbi . (4.15)

Here cAi
and cai denote the ghost fields belonging to the heavy and light gauge bosons,

respectively. Note again that for an SU(5) GUT we could do the replacement Ai → A for the
capital adjoint indices and the notation would become less clumsy. Here, however, we keep
the sub-index i in order to stay as general as possible.

The gauge-fixing Lagrangian is easier to compute and reads

LRξ

gf = −1

2

∑

i

f2Ai
− 1

2

∑

i

f2ai

=
∑

i

[

− 1

2ξ1i
(∂µA

µ
Ai

)2 − 1

2
g2ξ2i Φ′T̃AivvT̃AiΦ′ + ig

√

ξ2i
ξ1i
vT̃AiΦ′∂µAAi

µ

]

−
∑

i

1

2ηi
(∂µA

µ
ai)

2 . (4.16)

As mentioned before, after partial integration, the term ig
√

ξ2i/ξ1i vT̃
AiΦ′∂µAAi

µ in eq. (4.16)
exactly cancels the corresponding term in eq. (4.9) at tree level, where ξ1i = ξ2i is a valid
choice. However, when considering higher orders in perturbation theory, the bare gauge
parameters ξ1i and ξ2i are not equal to each other and the above two terms must be kept
explicitly as a counterterm in our calculation (cf. also the mixed counterterms in section 4.2).
The quadratic term in eq. (4.16) can be identified with the (unphysical) Goldstone boson
mass matrix:

M2
Gold ≡ g2

∑

i

ξ2i T̃
AivvT̃Ai (4.17)

with the property Tr(M2
Gold) =

∑

i ξ2iM
2
Xi
DA

i , where DA
i is the dimension of the i-th GSM-

irreducible representation of the heavy gauge bosons. From the Goldstone theorem it follows
that the matrix vT̃Ai projects on the subspace of Goldstone bosons, i.e. on the subspace that
obtains no mass term from V (Φ). Hence, the matrix M2

Gold has non-zero entries only on the
subspace of Goldstone bosons.
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4.1.2. The Scalar Potential

For V (Φ) we consider the most general renormalizable scalar potential:

V (Φ) = −1

2
µ2ijΦiΦj +

1

3!
κijk ΦiΦjΦk +

1

4!
λijkl ΦiΦjΦkΦl , (4.18)

with totally symmetric tensors µ2ij , κijk and λijkl. We impose the requirements

0 = [µ2, T̃α] ,

0 = T̃α
im κmjk + T̃α

jm κimk + T̃α
km κijm ,

0 = T̃α
im λmjkl + T̃α

jm λimkl + T̃α
km λijml + T̃α

lm λijkm , (4.19)

in order to make V (Φ) gauge invariant under G. Due to Schur’s Lemma (cf. sec. 2.7) the
first line in eq. (4.19) implies that the matrix µ2 is proportional to the unit matrix on each
subspace irreducible under G.

To break the GUT symmetry, there has to be one G-irreducible Higgs representation contained
in Φi that develops a vev. In order to treat the symmetry breaking appropriately, we define
the diagonal projector ΠH on this particular G-irreducible subspace (clearly, [T̃α,ΠH] = 0).
This subspace is further divided into the subspace of Goldstone bosons and the subspace of
physical Higgs bosons with projectors P G and P H̃, respectively ([T̃ ai , P G ] = 0 = [T̃ ai , P H̃]

and ΠH = P H̃ + P G). The physical Higgs bosons receive masses of order MGUT from V (Φ),
the Goldstone bosons do not. Using the Goldstone boson mass matrix from eq. (4.17), the
projector on the space of Goldstone bosons can be explicitly written down as [41]:

(P G)ij ≡ g2T̃A
ikvk

(
1

M2
X

)

AB

vlT̃
B
lj = (ΠH − P H̃)ij . (4.20)

This form of the projector also follows from the Goldstone theorem, which states that
M2

H T̃Av = 0, where M2
H is the scalar mass matrix arising from V (Φ), and therefore the

matrix T̃A
ij vj defines the subspace of Goldstone bosons. Constructing a proper projector out

of this matrix yields eq. (4.20).

Now we can parametrize the scalars in the following way:

Φi = vi + Φ′
i = vi +Hi +Gi + Si (4.21)

where v, H and G live only in the subspace defined by ΠH. S parametrizes all the other
scalars4:

(1l −ΠH)ijΦ
′
j = Si ,

(ΠH)ijΦ
′
j = Hi +Gi ,

(P H̃)ijΦ
′
j = Hi ,

(P G
ij )Φ′

j = Gi . (4.22)

4To see that the number of Goldstone bosons is equal to the number of broken generators, it is also possible

to define the Goldstone field as GA ≡ g
(

i
MX

)

AB
viT̃

B
ijΦ

′
j

50



4.1. The Lagrangian

First let us focus on the subspace that ΠH projects on. In order to develop a vev on this
subspace, the parameter µ2H, defined by ΠHµ2 ≡ µ2H1l, has to be positive5. If this is the
case, it is convenient to parametrize this part of the scalar potential in terms of physical
parameters as the Higgs mass M2

H , the heavy gauge boson mass MX, the gauge coupling g
and the tadpole t instead of the unphysical couplings µ2H and

λHijkl ≡ λi′j′k′l′Π
H
i′iΠ

H
j′jΠ

H
k′kΠH

l′l ,

κHijk ≡ κi′j′k′Π
H
i′iΠ

H
j′jΠ

H
k′k . (4.23)

In principle, this is analogous to what is usually done for the SM Higgs potential (cf. chapter 3
of ref. [137]). Here, however, it is more involved due to the appearance of the general invariant
tensors λHijkl and κHijkl. Using essentially eq. (4.19) and Schur’s Lemma, it is possible to rewrite

the up to quadratic terms of the potential in terms of new parameters M2
H (diagonal Higgs

mass matrix) and t (tadpole)6. For the trilinear and quartic terms this does not seem to be
possible at the level of the Lagrangian. Thus, for the moment, we leave those terms expressed
by the old parameters λHijkl and κHijk. They have to be eliminated in favor of M2

H , g and M2
X

at diagram level to make our choice of parameters consistent.

Now, including also the scalars on the subspace defined by 1l−ΠH, which is straightforward,
the scalar potential can be parametrized as follows:

V (Φ) = t viHi +
1

2
(M2

H)ijHiHj +
1

2
t HiHi +

1

2
t GiGi +

1

2
(M2

S)ijSiSj

+
1

2
(viλ

H
ijkl + κHjkl)HjGkGl +

1

2
(viλ

H
ijkl + κHjkl)HjHkGl +

1

6
(viλ

H
ijkl + κHjkl)HjHkHl

+
1

2
(viλijkl + κjkl)HjHkSl + (viλijkl + κjkl)HjGkSl +

1

2
(viλijkl + κjkl)GjGkSl

+
1

2
(viλijkl + κjkl)HjSkSl +

1

2
(viλijkl + κjkl)GjSkSl +

1

6
(viλijkl + κjkl)SjSkSl

+
1

24
λHijklGiGjGkGl +

1

6
λHijklGiGjGkHl +

1

6
λHijklGiHjHkHl

+
1

4
λHijklGiGjHkHl +

1

24
λHijklHiHjHkHl

+
1

6
λijklHiHjHkSl +

1

2
λijklHiHjGkSl +

1

2
λijklHiGjGkSl

+
1

6
λijklGiGjGkSl +

1

4
λijklHiHjSkSl +

1

2
λijklHiGjSkSl

+
1

4
λijklGiGjSkSl +

1

6
λijklHiSjSkSl +

1

6
λijklGiSjSkSl

+
1

24
λijklSiSjSkSl (4.24)

5This is true for κijk = 0. For κijk 6= 0 the condition is more complicated. However, we keep κijk 6= 0 in the
following and just assume that the condition is fulfilled.

6For more details of how this reparametrization is done, please refer to appendix A.2.
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where

t = −µ2H +
1

2v2
κHijkvivjvk +

1

6v2
λHijklvivjvkvl , (4.25)

(M2
H)ij = κHijkvk +

1

2
λHijklvkvl −ΠH

ij

[ 1

2v2
κijkvivjvk +

1

6v2
λHklmnvkvlvmvn

]

, (4.26)

(M2
S)ij = κSijkvk +

1

2
λSijklvkvl −

[
µ2(1l−ΠH)

]

ij
. (4.27)

Due to gauge invariance under the GSM (eqs. (4.4) and (4.19) ), both mass matrices are
diagonal and proportional to the unit matrix on each GSM-irreducible subspace. M2

H has

only non-zero entries on the subspace defined by P H̃ and M2
S only on the subspace defined

by (1l −ΠH) since we have defined

λSijklvkvl ≡ (1l−ΠH)ii′(1l −ΠH)jj′λi′j′klvkvl ,

κSijkvk ≡ (1l−ΠH)ii′(1l −ΠH)jj′κi′j′kvk . (4.28)

Note that the GiGjGk interaction vanishes. This can be shown by using eq. (4.19), Schur’s
Lemma and the antisymmetry of the generators T̃α.

It is important to see that M2
S must have only positive or zero entries. If there are negative

entries, some of the Si could develop a vev and our formalism would not apply. Strictly
speaking, we have (M2

S)ij < 0 for the SM Higgs doublet that is contained in Si, which would
exclude it from our treatment. But since in that case the scales involved have the strong
hierarchy O(MW ) ≪ O(MGUT), we can safely set the entry to zero here. To do this, some
of the λSijklvkvl must be fine-tuned against the corresponding (µ2(1l − ΠH))ij in eq. (4.27)
which is known as the doublet triplet splitting problem, inherent to generic GUTs. Note that
the classical minimum of the GUT-breaking Higgs potential is defined by the equation t = 0.
However, if we compute higher-order corrections, the parameter t ≡ 0− δt, where δt = O(α)
is a counterterm, has to be adjusted in such a way that the renormalized Higgs one point
function is zero at all orders of perturbation theory.

4.1.3. Yukawa Interactions and Fermions

The last term in eq. (4.1) to be specified is LY. The most general Yukawa interaction of the
Weyl fermion multiplet ψ with the real scalar multiplet Φ can be written as follows:

LY = −1

2

(

Y k
ijψiψjΦk + Y k⋆

ij ψ̄iψ̄jΦk

)

. (4.29)

Here Y k is a complex, symmetric matrix which, due to gauge invariance, satisfies the following
relation:

0 = Y k
mjT

α
mi + Y k

imT
α
mj + Y m

ij T̃
α
mk . (4.30)

In order to do calculations and derive Feynman rules with fermions, it is most convenient to
use four-component spinors instead of Weyl fields. Generally, the matrix µF from eq. (4.1)
and the matrix Y kvk from the Yukawa Lagrangian eq. (4.29) can give rise to both Dirac and
Majorana mass terms. Some of the fields will stay massless. In order to combine the respec-
tive Weyl fermions in an appropriate way to four-component spinors, we split the reducible
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representation of ψ into several parts using projectors and accounting also for possible mass
mixings and phases:

ψ = (̺DL + ̺DR + ̺M + pfL)ψ = ZL ξ+ + ZR ξ− + ZM λ + χ . (4.31)

The Weyl fields ξ+, ξ−, λ and χ are defined only on the subspaces defined by the projectors
̺DL , ̺DR , ̺M and pfL , respectively. The unitary mixing matrices ZL, ZR and ZM are chosen
such that the four component spinors

Ψ =

(
ξ+
ξ̄ T−

)

, Λ =

(
λ
λ̄T

)

(4.32)

are Dirac and Majorana mass eigenstates. Furthermore, there is also a massless (left-)chiral
four-component spinor:

f =

(
χ
0

)

. (4.33)

The real and diagonal Dirac and Majorana mass matrices are then given by

MD = ZT
R ̺

DR (Y kvk + µF ) ̺DL ZL

= Z†
L ̺

DL (Y k⋆vk + µ⋆F ) ̺DR Z⋆
R ≡

∑

n

MDn ̺
D
n ,

MM = ZT
M ̺M (Y kvk + µF ) ̺M ZM

= Z†
M ̺M (Y k⋆vk + µ⋆F ) ̺M Z⋆

M ≡
∑

n

MMn ̺
M
n . (4.34)

where the eigenvalues are denoted by MDn and MMn , some of which may also be zero. Though
explicitly stated here, we usually imply that the mixing matrices already contain the projector
on the respective subspace, i.e.:

̺DRZR = ZR , ̺DLZL = ZL , ̺MZM = ZM . (4.35)

A few remarks are in order here:

• In principle, each of the four subspaces defined in eq. (4.31) can share a G-irreducible
representation with any of the other subspaces, i.e. Majorana fermions can share G-
irreducible subspace with Dirac fermions, Dirac fermions with chiral fermions etc.. The
only restriction is that gauge invariance is maintained.

• Because ξ+ and ξ− form a Dirac spinor, we assume that they do not share a G-irreducible
representation. Otherwise gauge interactions could cause a chirality flip which is not
present in theories of interest. More specifically, if ξ+ transforms as the GSM-irreducible
representation RDL

n , then, in order to maintain gauge invariance, ξ+ must transform as
the complex conjugate representation of RDL

n which we denote by RDR
n . Therefore, if

we introduce the generators tα that transform the four-component Dirac fields, then

̺DL tα = ̺DL Tα , ̺DR tα = ̺DR (−Tα⋆) . (4.36)
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• λ transforms as a real representation of G and GSM.

• Care is needed, when using the invariance relation eq. (4.30) in connection with Dirac
fermions. The generator Tα that appears there is the one that transforms the Weyl field.
The Lagrangian, however, is now rewritten in terms of Dirac fields, that transform with
the generators tα. If we apply the relation to a coupling of the form ξ−iY

k
ijξ+j =

ΨiY
k
ijPLΨj , then we have to replace Tα by tα for the first index and by −tα⋆ for the

second index.

Taking into account these remarks, the gauge-kinetic Lagrangian in terms of four-component
spinors takes the form:

iψ̄ σ̄µDµψ = iΨ γµ∂µΨ + i
2Λ γµ∂µΛ + if γµ∂µPLf

−gAα
µ

{

Ψγµ
[

(Z†
L t

αZL)PL + (ZT
R t

αZ⋆
R)PR

]

Ψ

Ψγµ
[

(Z†
L t

αZM )PL + (ZT
R t

αZ⋆
M )PR

]

Λ

Λγµ
[

(Z†
M tαZL)PL + (ZT

M tαZ⋆
R)PR

]

Ψ

Λγµ(Z†
M tαZM )PL Λ + fγµtαPL f

Λγµ(Z†
M tα)PL f + fγµ(tαZM )PL Λ ,

}

(4.37)

where PL = 1
2 (1− γ5) and PR = 1

2(1 + γ5) are the chirality projectors in Dirac space. Please
note that in each term a different block of the reducible matrix tα is projected out due to
the appearance of different combinations of the mixing matrices. As stressed before, gauge
interactions do not change the chirality of the fermion and therefore the number of terms in
eq. (4.37) is limited. There is no such restriction for Yukawa terms. They can contain both
chirality-preserving and chirality-flipping couplings. The latter can contribute to Dirac mass
terms if the scalar field Φ develops a vev as can be seen in eq. (4.34). Therefore there is a
larger number of possible couplings:

LY = −1
2 Ψc(ZT

L Y
kZL)PLΨ Φk − 1

2 Ψ(Z†
L Y

k⋆Z⋆
L)PRΨc Φk

− 1
2 Ψ(ZT

R Y
kZR)PLΨc Φk − 1

2 Ψc(Z†
R Y

k⋆Z⋆
R)PRΨ Φk

−Ψ(ZT
R Y

kZL)PLΨ Φk − Ψ(Z†
L Y

k⋆Z⋆
R)PRΨ Φk

− 1
2 Λ(ZT

M Y kZM )PLΛ Φk − 1
2 Λ(Z†

M Y k⋆Z⋆
M )PRΛ Φk

− 1
2 f

c Y kPLf Φk − 1
2 f Y

k⋆PRf
c Φk

−Λ(ZT
M Y kZL)PLΨ Φk − Ψ(Z†

L Y
k⋆Z⋆

M )PRΛ Φk

−Ψ(ZT
R Y

kZM )PLΛ Φk − Λ(Z†
M Y k⋆Z⋆

R)PRΨ Φk

−Ψc(ZT
L Y

k)PLf Φk − Ψ(Z†
L Y

k⋆)PRf
c Φk

−Ψ(ZT
R Y

k)PLf Φk − f(Y k⋆Z⋆
R)PRΨ Φk

−Λ(ZT
M Y k)PLf Φk − f(Y k⋆Z⋆

M )PRΛ Φk , (4.38)

with the charge-conjugated Dirac spinor Ψc ≡ iγ2γ0Ψ
T

. Again note that different combina-
tions of mixing matrices project out different blocks of the matrix Y k. The mass terms for

54



4.2. Renormalization

Dirac and Majorana fermions are given by

Lfermionmass = −ΨMDΨ− 1
2ΛMMΛ , (4.39)

with MD and MM defined in eq. (4.34).

In the following we will need to distinguish between fields with the mass of O(MGUT) and
massless fields. We will follow the convention of chapter 5 and use the projectors P x

i for heavy
fields and pxi for the light fields.

4.2. Renormalization

In order to do a two-loop calculation of the matching corrections, a one-loop renormalization
program has to be carried out for the theory which, to the authors knowledge, has not been
done for GUT models before. The counterterms are adjusted in such a way that all the one-
loop Green’s functions of the theory are finite. For convenience we use the on-shell scheme
for the mass parameters of the theory and MS for the gauge couplings, the gauge parameters
and the fields. The renormalized Lagrangian is obtained from eq. (4.1) by the following
replacements:

Aai
µ →

√

Z3i A
ai
µ , AAi

µ →
√

ZX
3i A

Ai
µ ,

pDi Ψ→
√

ZΨi p
D
i Ψ , PD

i Ψ→
√

Zh
Ψi P

D
i Ψ ,

pMi Λ→
√

ZΛi p
M
i Λ , PM

i Λ→
√

Zh
Λi P

M
i Λ ,

pfLi f →
√

Zfi p
fL
i f ,

cai →
√

Z̃3i c
ai , cAi →

√

Z̃X
3i c

Ai ,

P H̃
i H →

√

ZHi P
H̃
i H , P G

i G→
√
ZGi P

G
i G ,

pSi S →
√

ZSi p
S
i S , PS

i S →
√

Zh
Si P

S
i S ,

M2
Xi
→ Z2

MXi
M2

Xi
, M2

Hi
→ Z2

MHi
M2

Hi
,

MDi
→ ZMDi

MDi
, MMi

→ ZMMi
MMi

ξ1i → Zξ1i ξ , ξ2i → Zξ2i ξ ,

ηi → Z3i η , g → µǫZg g . (4.40)

Again, we have used the sub-index i to take care of the fact that there might be several
GSM-irreducible representations for a field that all renormalize differently. No summation is
performed over that index. P x

i and pxi are projectors on the various GSM-irreducible subspaces
of heavy and light fields, respectively.

In the following we list the counterterm Feynman rules that are important for our calculation.
They are obtained by inserting the renormalization prescriptions from eq. (4.40) into eq. (4.1)
and considering the up to quadratic terms. For each counterterm we give an expression that
is valid to arbitrary loop order in the first line and in the second line a more convenient
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expression that is valid only for one-loop renormalization. We use the notation Zi ≡ 1− δZi

and t ≡ 0 − δt where δZi and δt are of order α. All the parameters that appear in the
equations are renormalized ones.

Heavy gauge boson:

Aµ Bν×←−
k

= iδAB

[

(ZX
3 −

ZX
3

ξZξ1

+
1

ξ
−1)kµkν−(ZX

3 −1)k2gµν+(ZX
3 Z

2
MX
−1)M2

Xgµν

]

= iδAB

[

−δZξ1kµkν−(M2
X−k2)δZX

3 gµν−2δZMX
M2

Xgµν

]

Light gauge boson:

aµ bν×←−
k

= iδab(Z3 − 1)
[

kµkν − k2gµν
]

= −iδab δZ3

[

kµkν − k2gµν
]

Heavy ghost:

A B×←−
k

= iδAB

[

(Z̃X
3 −1)k2−(Z̃X

3

√

Zξ1

√

Zξ2Z
2
MX
−1)ξM2

X

]

= iδAB

[

δZ̃X
3 (ξM2

X−k2)+(
1

2
δZξ1+

1

2
δZξ2+2δZMX

)ξM2
X

]

Light ghost:

a b×←−
k

= iδab(Z̃3 − 1)k2

= −iδab δZ̃3 k
2

Light ghost – gauge boson vertex:

c, µ

ba k
= g (Z̃3 − 1) fabc kµ

= −g δZ̃3 fabc kµ

Goldstone boson:

i j×←−
k

= i(P G)ij

[

(ZG−1)k2−(ZGZξ2Z
2
MX
−1)ξM2

X − t
]

= i(P G)ij

[

δZG(ξM2
X−k2)+(δZξ2+2δZMX

)ξM2
X + δt

]
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Physical Higgs boson:

i j×←−
k

= iδij

[

(ZH−1)k2−(ZHZ
2
MH
−1)M2

H − t
]

= iδij

[

δZH (M2
H−k2)+2δZMH

M2
H + δt

]

Mixed counterterm:

i A, µ×←−
k

= ig
[
√

ξ2
ξ1
− 1
]

vkT̃
A
kikµ

= ig
1

2
(δZξ1 − δZξ2) vkT̃

A
kikµ

Heavy Dirac fermion:

i j×←−
k

= iδij

[

(Zh
Ψ−1)/k−(Zh

ΨZMD
−1)MD

]

PL

= iδij

[

δZh
Ψ(MD−/k)+δZMD

MD

]

PL

Heavy Majorana fermion:

i j×←−
k

= iδij

[

(Zh
Λ−1)/k−(Zh

ΛZMM
−1)MM

]

PL

= iδij

[

δZh
Λ(MM−/k)+δZMM

MM

]

PL

Higgs tadpole:

i × = iviδt (4.41)

In order to avoid clutter with the notation, we have omitted the sub-index i here. From
the context it is always unambiguous that the GSM-irreducible representation of the field
under consideration is meant. For our calculation we need the renormalization constants of
all mass and gauge parameters at one-loop. As can be seen from the above Feynman rules,
the set of equations that is used to determine δZξ1 , δZξ2 and δt is overconstrained (cf. also
refs. [34, 138]). This provides a useful check for our calculation: we computed δZξ1 − δZξ2

from the pole of a combination of the heavy gauge boson and heavy ghost propagator as well
as from the mixed Goldstone boson – heavy gauge boson propagator. Both calculations lead
to the same result. In the same way δt was computed from the pole of the physical Higgs
tadpole as well as from the Goldstone propagator yielding the same result.
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In the course of this section let us also specify the Feynman rules for the propagators that
can be derived from the Lagrangian:

Heavy (Dirac or Majorana) fermion: Light fermion:

←−
k

i j =
i(PD,M)ij
/k −MD,M ←−

k

i j =
i(pD,M,fL)ij

/k

Physical Higgs: Goldstone boson:

i j
←−
k

=
i(P H̃)ij
k2 −M2

H

i j
←−
k

=
i(P G)ij

k2 − ξ2M2
X

Heavy ghost: Light ghost:

A B←−
k

=
iδAB

k2 −
√
ξ1ξ2M2

X

a b←−
k

=
iδab
k2

Heavy gauge boson:

A
µ

B
ν←−

k

=
iδAB

k2 −M2
X

[

−gµν + (1− ξ1)
kµkν

k2 − ξ1M2
X

]

= iδAB

[(

−gµν +
kµkν
M2

X

)
1

k2 −M2
X

− kµkν
M2

X

1

k2 − ξ1M2
X

]

Light gauge boson:

a
µ

b
ν←−

k
=

iδab
k2

[

−gµν + (1− η)
kµkν
k2

]

Again we have omitted the sub-index i for readability. Note furthermore that in the case of
the heavy gauge boson the propagator has been split into a transverse and longitudinal part.
Both parts are implemented as separate fields in our setup. We don’t specify all the other
Feynman rules since they can be easily read off the Lagrangian all parts of which have been
given in the previous sections.

4.3. Calculation of the Two-Loop Matching Coefficients

In subsection 2.5.2 (with the final formula, eq. (2.34)) we have described how the matching
coefficients ζαi

(µGUT) are calculated in principle. To do this in the theoretical framework that
has been described in the present chapter, we need to calculate the following renormalized
two Green’s functions:

• The Green’s function with two external light gauge bosons Aai
µ .

• The Green’s function with two external light ghosts cai .
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×
ai bi

×
ai bi

Figure 4.1.: Sample diagrams where the mixed Goldstone boson gauge boson counterterm con-
tributes to O(α2) terms. The insertion is proportional to i

2g(δZξ1 − δZξ2) vkT̃
A
kikµ (cf.

eq. (4.41)). These contributions are needed to subtract sub-divergences in correspond-
ing two-loop diagrams. Colored (bold) lines represent fields with mass of O(MGUT) and
black (thin) lines massless fields. Goldstone bosons are marked green (light gray, short-
dashed).

• The vertex Green’s function with two external light ghosts cai and one light gauge
bosons Aai

µ .

To this end also the renormalization constants for the Higgs tadpole, GUT-breaking scalar
masses, other scalar masses, fermion masses, gauge boson masses and gauge parameters ξ1i, ξ2i
and ηi have to be computed at one loop order. Furthermore, also the two-loop gauge coupling
renormalization, Zg/Zgi is needed in the full and effective theory in MS . Though it is already
known to the literature for a general renormalizable quantum field theory [25,27,28,115,139],
we have repeated the calculation and found agreement. Actually, for our setup this calculation
is more complicated than in the above references because we need a distinct field for each mass
that appears in the theory, whereas for the calculation of above references it was sufficient to
use generic scalars, generic fermions and so on. Therefore this provides a nontrivial check of
our implementation.

The one-loop contributions to the above-mentioned Green’s functions have to be carried out
for (at least) two distinct (bare) gauge parameters ξ1i and ξ2i . Inserting the renormalization
conditions, eq. (4.40), for the masses and gauge parameters, we obtain O(α2) terms that
serve to subtract the sub-divergences of the two-loop contributions to the Green’s functions.
Afterwards we compute the limit ξ1i → ξ2i ≡ ξ for the renormalized gauge parameters using
Mathematica in order to be compatible with the two-loop contributions that are computed
with a single (renormalized) gauge parameter ξ. In order to further simplify the expressions,
we have performed an expansion for small ξ up to O(ξ3) and then checked in the final result
that each order in ξ vanishes separately. Speaking about renormalization, let us also stress
again that the mixed Goldstone boson – gauge boson counterterms contributes explicitly here
via diagrams of the kind that are depicted in fig. 4.1. Moreover, the tadpole counterterm δt
is needed for renormalizing gauge boson masses coming from Goldstone boson propagators
(cf. also the Goldstone boson counterterm in eq. (4.41)). The O(ǫ) parts of the on-shell
counterterms are not needed in this calculation since the 1/ǫ parts of the one-loop result do
not depend on particle masses.

For the actual two-loop contributions to the three Green’s functions we do not explicitly
compute diagrams that contain a Higgs tadpole and compensate that by excluding the Higgs
tadpoles from the on-shell mass renormalizations as well. Taking them into account explicitly
would not provide a significantly powerful additional check and would only further increase
the number of diagrams. The omission of tadpoles in the above described way is consistent
since they do not depend on the kinematics of the process.
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Given the large number of Feynman diagrams, an automated computation is indispensable.
We have derived all the Feynman rules for the framework described in the present chapter
and implemented them into model files, that are suitable for the programs used. Majorana
fermions have been implemented using the methods developed in ref. [140]. The diagrams
were generated with QGRAF [141] and further processed with q2e and exp [142, 143]. In the
next step we used a FORM [144] implementation of the two-loop topologies of ref. [145] by
the authors of ref. [30] and also the FORM packages MINCER [146] and MATAD [147]. Let us
emphasize that no assumptions about the mass hierarchies of the heavy particles have been
made. Therefore, the result is valid for arbitrary numerical values of the mass parameters as
long as their mass splitting is not to large (empirically, the condition is M1

M2
. 100 for any two

masses M1 and M2) which would lead to power enhanced contributions and spoil perturbation
theory. The group structure that appears in all vertices in this calculation has to be reduced
to some primitive group theory invariants in order to allow for cancellations between the
various contributions. This is a highly nontrivial task for these kind of calculations since
the gauge symmetry is broken which complicates the situation compared to the unbroken
case [25, 26, 139] significantly. Therefore, we have devoted a separate chapter to this topic
and developed a framework that is suitable for our calculation. The reduction identities and
algorithms that are described in chapter 5 have been implemented in a FORM routine and used
in all steps of the calculation.

Let us now summarize all the checks that have been employed to ensure the correctness of
our result for ζαi

(µGUT):

• ζαi
(µGUT) is UV finite after carrying out all the renormalization.

• The calculation has been carried out for arbitrary (renormalized) gauge parameters ξ
and η . In the final result they all drop out.

• Some of the one-loop on-shell counterterms are overdetermined and yield a consistent
result when calculating them from different Green’s functions (cf. section 4.2).

• The µGUT dependence of ζαi
(µGUT) is determined by the two-loop gauge beta functions

of the full and effective theory. We can check analytically whether our result exhibits
this correct dependence. (This will be explained in more detail in section 6.3.)

Though we have set up our calculation in the general framework that has been described in
this chapter, we found it reasonable for the first step to impose some additional assumptions
on the GUT theory under consideration. This is in order not to have to deal with too many
difficulties simultaneously and to first obtain a result for a simple theory as a solid basis to
check whether it exhibits the properties that we expect from it. Now it is in order to describe
all these additional assumptions that have been made about the underlying GUT model:

• The trilinear coupling κijk in V (Φ), eq. (4.18), has been set to zero.

• There is only one vev of O(MGUT) in the theory.

• There are no heavy fermions in the theory.
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4.3. Calculation of the Two-Loop Matching Coefficients

• The heavy gauge bosons decompose in GSM-irreducible representations with a common
mass.

• The GUT-breaking Higgs decomposes into three GSM-irreducible representations (+
Goldstone bosons) at most. They can all have different masses.

• The other scalars in the theory decompose in GSM-irreducible representations that have
a common mass (+ light scalars).

• The light particles in the theory can decompose in arbitrarily many GSM-irreducible
representations.

As can be seen, the main limitation comes from the number of heavy degrees of freedom
in the theory. The above constraints are designed such that the resulting formula for ζαi

is
applicable to the simplest GUT, the Georgi-Glashow model, yet keeping the calculation as
simple as possible. The computational framework for our calculation is set up in such a way
that it can be generalized to more heavy degrees of freedom, in order to apply it to SUSY GUTs
in the future. In particular, the process of adding additional heavy degrees of freedom into
the model files has been automated using Perl scripts. Therefore, it is certainly true to say
that if we can establish a correct result for e.g. two-distinct masses of a certain field type
(e.g. scalars), then the generalization to more distinct masses is only a matter of computer
time. The most difficult obstacles among the above mentioned assumptions to overcome are
probably the number of super-heavy vevs and the inclusion of heavy fermions. Though it is
not clear whether it is necessary at all to overcome the first obstacle - since one could possibly
treat theories with multiple super-heavy vevs as a sequence of effective theories with just one
super-heavy vev - the second one certainly poses a challenge. In the course of this work we
have already undertaken several steps towards including heavy fermions, as the calculation of
the fermion mass on-shell counterterms, but at the two-loop level new group theory structures
will appear which need to be dealt with. The inclusion of the trilinear coupling κijk to the
scalar potential is, though not trivial, still manageable, since most relevant reduction identities
are already available in this thesis.

Although the present calculation is just general enough to be applied to the simplest GUT,
the number of Feynman diagrams for the two-loop Green’s functions described above already
is considerable. For the light gauge boson two-point function it amounts to 6278, whereas for
the ghost-gauge-boson vertex and the light ghost two-point function we have 4109 and 374
diagrams, respectively. Sample diagrams for all three processes are depicted in fig. 4.2.

The result for ζαi
is available in general form, i.e. with group theory factors and couplings

not specified to a particular Lie group or model. In chapter 6 we will assign definite values
to these quantities in order to show the application of the result exemplary. Note also that
we always need three different sets of group theory factors for i = 1, 2, 3, respectively.
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Figure 4.2.: Sample two-loop diagrams that appear in the calculation of ζαi
. The first line shows the

process Aai
µ → Abi

ν contributing to Π0,h
A,i(0). The second and third line depict cai → cbi

and cai → cbi + Aci
µ contributing to Π0,h

c,i (0) and Γ0,h
Ac†c,i

(0, 0), respectively. Colored

(bold) lines represent fields with mass of O(MGUT) and black (thin) lines massless fields.
Furthermore, curly lines denote gauge bosons, dotted lines ghosts, dashed lines scalar
fields and solid lines fermions. Goldstone bosons are marked green (light gray, short-
dashed), physical Higgs bosons red (gray, long-dashed) and other heavy scalars blue (dark
gray, short-dashed). Note also that two identical lines in one diagram need not have the
same mass because of the non-degenerate mass spectrum.
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5. Group-Theoretical Framework for the
Two-Loop Matching Calculation

In chapter 4 we have described the theoretical framework that is used for setting up the
calculation of the two-loop matching corrections at the GUT scale. We have chosen, not to
implement a particular model but to stay in that general framework in order to make ex-
tensions of the calculation to other GUT models as easy as possible. In the same spirit the
reduction of group theory factors has been dealt with: The idea is, not to fix the represen-
tations where the fields live in, but write everything as depending on a set of group theory
invariants. When specifying to a particular model, one chooses particular couplings and also
calculates the numerical values of these invariants. Besides being easier expandable, this
approach also has the advantage that the process of finding diagrams among which possible
cancellations, of e.g. gauge parameter dependent terms, can occur is simplified. These are
obviously all the diagrams that have the same group theory factor. Therefore, bugs in the
implementation are found much easier in this way.

To realize the reduction of group theory factors in such a general manner, one first has to
establish a notational framework of primitive group theory invariants. Then, of course, all
reduction identities that are needed to reduce group theory factors to this primitive set of
invariants have to be derived. Actually, we only need those reduction identities that appear
in the processes under consideration up to the two-loop level.

In QCD and other unbroken gauge theories this idea has led to the common practice not
to specify the calculation to SU(3) from the beginning but to give the result in terms of
invariants as C2, I2 and CA [21, 22, 25, 27, 28]. The state of the art of applying this to multi-
loop calculations in unbroken gauge theories, as QCD, is described e.g. in refs. [101, 148].
Basically, here the number of loops is limited only by the available master integrals and not
by the knowledge of how to the reduce group theory factors.

In broken gauge theories, as GUTs, the situation is quite different: To the author’s knowledge,
the reduction of group theory factors has only been dealt with up to the one-loop order in the
literature [31, 149, 150] up to now. Certainly, one reason for this situation is that, compared
to the unbroken case, the reduction is significantly more involved. The aim of this chapter
is to provide a (more or less) self-contained treatment of how to reduce color factors1 in
spontaneously broken gauge theories up to the two-loop level. It constitutes one of the major
achievements of this thesis. We have employed this framework for the two-loop calculation of
ζαi

(µGUT) that has been described in the previous chapter. As a supplement to this chapter

1For convenience we will use the terms “color structure”, “color factor” etc. in this chapter following QCD ter-
minology. However, obviously our formalism is not restricted to SU(3), but is meant to be applied to
GUT groups.
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Chapter 5. Group-Theoretical Framework for the Two-Loop Matching Calculation

the reader is advised to consult appendix A.1. There we have collected derivations for a
number of nontrivial reduction identities that appear in the present chapter without proof.

5.1. General Definitions and Notations

In this section we start with some generalities and continue to establish the notation that will
be used throughout this chapter. This involves many definitions but is inevitable in order to
have a firm ground for further investigations.

We start with a simple GUT group G that is broken to a (in general not simple) gauge group
∏

k Gk. In the following the Gk are called group factors. The generators of G in a general
reducible representation R are denoted by Tα in this chapter2. They fulfill the commutation
relation

[Tα, T β] = ifαβγ T γ , (5.1)

where fαβγ are the structure constants of G. In order to distinguish between broken and
unbroken generators, we use the notation of section 4.1:

{α} =
∑

i

{Ai}+
∑

i

{ai} = {A}+ {a} (5.2)

where Ai label the broken generators of G belonging to the
∏

k Gk-irreducible subspace
labeled by i. If there is only one

∏

k Gk-irreducible subspace in the adjoint representation of
G, we can omit the sub-index i in Ai. In contrast, ai labels the unbroken generators belonging
to the subgroup Gi (see also the examples given in eqs. (4.5) and (4.6)). As the Gi are regular
subgroups of G, also the following commutation relations hold:

[T ai , T bj ] = ifaibjck T ck (5.3)

where faibjck = 0 unless i = j = k. Furthermore, because the subgroup Gi is closed, we
have faibjAk = 0 for all i, j, k. Otherwise the commutator [T ai , T bj ] would contain terms
proportional to the broken generators TAk and hence Gi would not be closed. Note that if
not explicitly stated, the sub-indices i, j . . . of the indices ai, bj . . . , Ai, Bj . . . are not summed.
A repeated index a, b . . . or A,B . . . without sub-index, however, means that the sub-index
has been summed over. For a particular GUT model, the representation R that Tα is defined
on generally is reducible under G. It decomposes into G-irreducible representations where
the gauge bosons, Weyl fermions and scalars of the theory live in:

R→
⊕

x

Rx = RA ⊕RH ⊕RSI ⊕RSII ⊕ . . .⊕RFI ⊕RFII ⊕ . . . . (5.4)

RA stands for the adjoint (gauge boson) representation and RH for the representation of
the GUT-breaking scalar. The other symbols represent the irreducible representations for the
scalars and fermions, respectively, numbered by roman numerals for convenience. We define
projectors on these subspaces denoted by Πx with x = A,H,SI,SII . . . ,FI,FII . . .. Clearly,

2In chapter 4 we employed the symbol Tα only for the fermion representation. In this chapter, however, we
will use the symbol for a generic generator of the gauge group.
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Subspace projected on Projector SU(5) example Relation

G-irreducible Πx Π5H Π5H =

Generic
∏

k Gk-irreducible ̺xn ̺5H

(3,1,−1/3), ̺
5H

(1,2,1/2) ̺5H

(3,1,−1/3) + ̺5H

(1,2,1/2) =

Heavy
∏

k Gk-irreducible P x
n P 5H

(3,1,−1/3) P 5H

(3,1,−1/3) + p5H

(1,2,1/2)

Light
∏

k Gk-irreducible pxn p5H

(1,2,1/2)

Table 5.1.: Overview of all projectors that have been defined. The projector Πx on a G-irreducible
subspace decomposes further into projectors on

∏

k Gk-irreducible subspaces. These can
either be denoted by the generic ̺xn or by P x

n and pxn which contain also information on
whether the field living on the respective subspace is super-heavy of massless.

[Πx, Tα] = 0 holds for all x and α. As an example, for the case of the Georgi-Glashow model
eq. (5.4) would be

R → 24⊕ 24H ⊕ 5H ⊕ 5⊕ 10 , (5.5)

and the projectors would be denoted as Π24 etc.. Each of the representations on the right-
hand side decompose further under

∏

k Gk:

Rx →
⊕

n

Rx
n = Rx

1 ⊕Rx
2 ⊕Rx

3 ⊕ . . . (5.6)

with projectors P x
n and pxn. We use a capital P to denote that the respective

∏

k Gk-irreducible
representation contains fields with a mass of O(MGUT) and a lowercase p for projectors
on a subspace with massless fields. Because the Lagrangian is still invariant under

∏

k Gk

after symmetry breaking, each of those
∏

k Gk-irreducible subspaces can be assigned to a
definite mass of the respective field. The indices n = 1, 2, 3 . . . label the

∏

k Gk-irreducible
representation in Rx. The projectors fulfill [P x

n , T
ai ] = 0 = [pxn, T

ai ] for all x, a, n and i.
Picking out the 5H of SU(5) exemplary, eq. (5.6) would become

5H → (3,1,−1
3 )⊕ (1,2, 12) , (5.7)

Furthermore, it generally holds that

∑

n

̺xn ≡
∑

n

pxn +
∑

n

P x
n ≡ px + P x = Πx (5.8)

where ̺ can be P or p depending on n. Sticking to our SU(5) example, we would have
̺5H
n = p5H

n for n = (1,2, 12) since this representation contains the light SM Higgs doublet,
and ̺5H

n = P 5H
n for n = (3,1,−1

3 ) which contains the super-heavy Higgs triplet. Table 5.1
summarizes all projector definitions that have been introduced so far.
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Chapter 5. Group-Theoretical Framework for the Two-Loop Matching Calculation

Armed with these definitions, we can define some primitive Dynkin indices I2(. . .) and Casimir
invariants C2(. . .) which have real numerical values for a given group.

Tr(ΠxTαT β) = I2(Π
x) δαβ ,

Tr(̺xnT
aiT bi) = I2(̺

x
n)i δaibi ,

Tr(̺xnT
Ai̺xmT

Bi) = I2(̺
x
n, ̺

x
m)i δAiBi ,

ΠxTαTα = C2(Π
x) Πx ,

̺xnT
aiT ai = C2(̺

x
n)i ̺xn ,

̺xnT
Ai̺xmT

Ai = C2(̺
x
n, ̺

x
m)i ̺xn . (5.9)

Again ̺ can stand for either P or p. The existence of these invariants follows from Schur’s
lemma (cf. section 2.7). Note that an invariant defined as e.g. Tr(̺xnT

ai̺xmT
bi) is not primitive

because [T ai , ̺m] = 0. Furthermore, we can define the dimensions of the various irreducible
representations by

∆x ≡ Tr(Πx) ,

Dx
n ≡ Tr(P x

n ) ,

dxn ≡ Tr(pxn) , (5.10)

and specifically for the adjoint representation:

∆A ≡ δαα ,

DA
n ≡ δAnAn ,

dAn ≡ δanan . (5.11)

which gives us the relations

I2(Πx) ∆A = C2(Π
x) ∆x ,

I2(P
x
n )i dAi = C2(P

x
n )i Dx

n ,

I2(p
x
n)i dAi = C2(p

x
n)i dxn ,

I2(P x
n , ̺

x
m)i DA

i = C2(P
x
n , ̺

x
m)i Dx

n ,

I2(pxn, ̺
x
m)i DA

i = C2(p
x
n, ̺

x
m)i dxn . (5.12)

Let us emphasize again that no summation over the sub-indices i that label the
∏

k Gk-
irreducible representation is implied here. However, we introduce the convention that omitting
this sub-index implies summation:

C2(. . .) ≡
∑

i

C2(. . .)
i ,

C2(̺
x
n, ̺

x)i ≡
∑

m

C2(̺
x
n, ̺

x
m)i ,

I2(. . . ̺
x . . .)i ≡

∑

m

I2(. . . ̺
x
m . . .)

i . (5.13)

Note also that the invariants I2(Πx) and C2(Πx) have only been defined for convenience.
Actually they can be decomposed into other more primitive invariants:

I2(Πx) = I2(p
x)i + I2(P

x)i = I2(px, px)i + I2(P x, P x)i + 2 I2(P x, px)i , (5.14)

C2(Πx) = C2(p
x
i ) + C2(p

x
i , p

x) + C2(p
x
i , P

x) = C2(P
x
i ) + C2(P

x
i , p

x) + C2(P x
i , P

x) ,
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where the summation convention introduced before has been used. The right hand side of
eq. (5.14) does not depend on i anymore due to the summation of the projectors over the
full representation space Rx. Since in the calculation of matching coefficients one has to
distinguish between heavy and light particles, it is more convenient to use the more primitive
invariants on the right hand side.

Here we also give the first example of a nontrivial general reduction identity that can be
applied to any representation at the two-loop level:

faiBjCj Tr(̺xnT
Bj̺xmT

CjT bi) =

i

2
δaibi

[

I2(PA
j )iI2(̺

x
n, ̺

x
m)j + C2(̺

x
n, ̺

x
m)jI2(̺xn)i − C2(̺

x
m, ̺

x
n)jI2(̺xm)i

]

, (5.15)

where x ∈ {H,SI,SII, . . . ,FI,FII}. The derivation of this identity can be found in appendix
A.1.1.

5.2. The Adjoint Representation

The definitions that have been introduced so far are general enough to be applied to all color
factors that appear in our calculations. However, some of the fields live in representations
that deserve special attention. First let us focus on the adjoint representation. The generators
here are defined by

(Tα
A)βγ ≡ (ΠA Tα)βγ = −ifαβγ . (5.16)

Clearly, the operators PA
i and pAi project on the subspaces with indices Ai and ai, respectively.

Because now x = A in eq. (5.12) and faibjAk = 0, things simplify for the adjoint representation
since many Dynkin indices and Casimir invariants are directly related to each other. In fact,
it is sufficient to define four invariants:

fαγδfβγδ = I2(Π
A) δαβ ,

faicidif bicidi = I2(p
A
i )i δaibi ,

faiCjDjf biCjDj = I2(P
A
j )i δaibi ,

fAjciDjfBjciDj = I2(P
A
j , p

A
i )j δAjBj (5.17)

where we followed the notation of eq. (5.9). We keep the redundant sub-indices i and j in
lines 2 and 4 of eq. (5.17) in order to be consistent with the notation of eq. (5.9). Note that
faiBjCk = 0 for j 6= k because the indices j and k are used here to label the

∏

k Gk-irreducible
representation of the generator T ai

A which is assumed to have block-diagonal form. There is
another quadratic Casimir invariant for the adjoint representation that can be expressed
through these and one that vanishes:

fAjCDfBjCD =
[

I2(ΠA) − 2 I2(PA
j , p

A)j
]

δAjBj ,

fAiCDf bjCD = 0 . (5.18)

Furthermore, there are relations among these invariants:

I2(Π
A) = I2(P

A)i + I2(pAi )i ,

I2(PA
j , p

A
i )j DA

j = I2(P
A
j )i dAi . (5.19)
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At the two-loop level identities introduced so far are not sufficient to reduce all adjoint color
factors because products of up to six structure constants with various contractions can appear
in the diagrams. Using the Jacobi identity for fαβγ (which is equivalent to the commutation
relation for the adjoint generators)

[Tα
A, T

β
A]− ifαβγ T γ

A = 0 , ⇔
fβγδfαδǫ + fαβδfγδǫ + fγαδfβδǫ = 0 (5.20)

for different choices of α, β and γ, we can derive relations for products of three contracted
structure constants that have three uncontracted indices:

fαδǫfβǫφfγφδ =
1

2
I2(ΠA) fαβγ ,

faidieif bieifif cifidi =
1

2
I2(pAi )i faibici ,

faiDEf biEF f ciFD =
1

2
I2(PA)i faibici ,

faiDEf biEF fCFD = 0 ,

faiDEfBjEF fCjFD =
1

2

[

I2(ΠA)− 2 I2(PA
j , p

A)j
]

faiBjCj ,

faidieifBjeiF fCjFdi =
1

2
I2(pAi )i faiBjCj ,

faiDEfBkEfjfCkfjD =
1

2

[

2 I2(PA
k , p

A
j )k − δij I2(pAi )i

]

faiBkCk ,

fAjDefBjeF fCjFD =
1

2
I2(PA

j , p
A)jfAjBjCj ,

fAjDEfBjEF fCjFD =
1

2

[

I2(ΠA)− 3 I2(PA
j , p

A)j
]

fAjBjCj , (5.21)

where we have used the definitions in eq. (5.17). These relations are sufficient to do all the
reduction for two-point and three-point Green’s functions for the adjoint representation at
the two-loop level. It may happen that one encounters contractions that are not listed in
eq. (5.21). However, these contractions are then related to contractions that are listed in
eq. (5.21) by commuting adjoint generators (i.e. applying the Jacobi identity, eq. (5.20)).

5.3. GUT-Breaking Scalars

Next, let’s turn our attention to the representation RH where the GUT-breaking scalar field
H and the Goldstone field G live in. Some peculiarities occur here due to the appearance of
the vev v. v can be viewed as a ∆H-dimensional vector with a single non-vanishing entry in
the direction of the breaking. RH decomposes under

∏

k Gk into the part of physical Higgs
fields and a part of Goldstone bosons:

RH →RH̃ ⊕RG = RH̃
1 ⊕RH̃

2 ⊕ . . .⊕RG
1 ⊕RG

2 ⊕ . . . (5.22)

As already explained in section 4.1, the explicit form of the projector on the subspace RG is
given by [41]:

P G
i = g2T̃Aiv

(
1

M2
X

)

AiBi

vT̃Bi , P G =
∑

i

P G
i (5.23)
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where the (diagonal) gauge boson mass matrix (cf. eq. (4.10))

(M2
X)AiBi

≡ g2vT̃Ai T̃Biv ≡M2
Xi
δAiBi (5.24)

has been used. The antisymmetric generators in the real representationRH have been denoted
by T̃α. Accordingly, the projectors on the subspace of physical Higgs bosons can be written
as

∑

i

P H̃
i = P H̃ ≡ ΠH − P G = ΠH − g2T̃Av

(
1

M2
X

)

AB

vT̃B . (5.25)

where P H̃
i projects on RH̃

i . With these definitions and using eq. (5.3) as well as the antisym-
metry of T̃α, we already can derive a useful reduction identity for an invariant tensor that
appears frequently:

vT̃Ai T̃Bj T̃Ckv =
i

2g2
(M2

Xi
−M2

Xj
+M2

Xk
)fAiBjCk . (5.26)

One important property follows from T̃ aiv = 0:

T̃ ai T̃Ajv = [T̃ ai , T̃Aj ] v = −(T ai
A )AjBj

T̃Bjv . (5.27)

i.e. T̃ ai acts like the adjoint generator on the subspace of Goldstone bosons. This leads to
various relations between invariants in RH and in RA:

DG
j = DA

j ,

I2(P G
j )i = I2(PA

j )i ,

C2(P G
j )i = I2(PA

j , p
A
i )j ,

I2(P
H̃)i = I2(ΠH)− I2(PA)i ,

I2(P H̃, P H̃)i = I2(ΠH)− 2 C2(Π
H) +

3

2
I2(PA

i , p
A)i +

1

4
I2(ΠA) . (5.28)

This again highlights the intimate relationship between the adjoint representation and the
representation of Goldstone bosons. It is the manifestation of the fact that in spontaneously
broken gauge theories Goldstone bosons become the longitudinal part of the (now) massive

gauge bosons. Furthermore, from vT̃AiT̃BjP H̃
n = vT̃Bj T̃AiP H̃

n it follows that

I2(P
G
i , P

H̃
n )jDG

j = I2(P G
j , P

H̃
n )iDG

i ,

C2(P H̃
n , P

G
i )j = C2(P H̃

n , P
G
j )i . (5.29)

There is also a nontrivial important reduction identity that involves adjoint invariants as well
as GUT-breaking scalar invariants:

∑

jk

faiBjCjf biDkEk vT̃Bj T̃DkP H̃
n T̃

Cj T̃Ekv =

δaibi
∑

j

M2
Xj

g2

[

I2(PA
j )i I2(P H̃

n , P
G)j − 1

2
I2(P

H̃
n )i C2(P

H̃
n , P

G)j
]

. (5.30)
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The derivation of eq. (5.30) can be found in appendix A.1.2.

Furthermore, w.l.o.g. we now define P H̃
1 to be the operator that projects on the subspace

where v 6= 0 (i.e. (P H̃
1 )ij =

vivj
v2

is a matrix with a single non-zero entry in the component

(k, k) where vk 6= 0). Then because of T̃ aiv = 0 and vT̃AiP H̃
n = vT̃AiP GP H̃

n = 0, any invariant

that contains P H̃
1 alone or together with some other P H̃

i vanishes:

C2(P
H̃
1 ) = I2(P H̃

1 ) = C2(P
H̃
1 , P

H̃
i ) = I2(P H̃

1 , P
H̃
i ) = 0 . (5.31)

Since the Higgs mass matrix M2
H (cf. eq. (4.26)) commutes with all T̃ ai , it is diagonal and

proportional to the unit matrix on each
∏

k Gk-irreducible subspace. Therefore, it can be
written as:

M2
H =

∑

i

P H̃
i M2

Hi
, (5.32)

where M2
Hi

are masses of the physical Higgs bosons and particularly P G M2
H = 0 due to the

Goldstone theorem.

5.4. The Cubic and Quartic Scalar Couplings

Next, we will give some useful reduction identities that involve the cubic and quartic scalar
couplings κHijk ≡ κi′j′k′ P

H
i′i P

H
j′j P

H
k′k and λHijkl ≡ λi′j′k′l′ P

H
i′i P

H
j′j P

H
k′k P

H
l′l , which are defined to

be restricted to the space RH. Firstly, we only consider this subspace because, again, due
to the appearance of the vev on this subspace things are more involved. (In the case of the
Georgi-Glashow model RH is the 24-dimensional representation.) κHijk and λHijkl are totally
symmetric invariant tensors under G and appear in the scalar potential, eq. (4.18). These
identities can be derived by using eq. (4.19) and Schur’s Lemma as well as the definition of the
Higgs mass matrix, eq. (4.26). Some of these identities can also be obtained by multiplying
eq. (4.19) by ΦiΦjΦkΦl and performing derivatives w.r.t Φm. They are used to eliminate the
coupling λHijkl from the result by expressing it through the physical Higgs masses and other
physical parameters as the gauge boson mass matrix MX and the gauge coupling g. Recall,
that in order to make our choice of parameters consistent, κHijk and λHijkl should not be present
in the final result of a loop calculation but expressed through physical quantities as masses
and gauge couplings (cf. subsection 4.1.2). Using these identities in our calculation also
guarantees manifest cancellation of the gauge parameter dependence in physical quantities as
on-shell mass renormalizations or decoupling coefficients. The relation that are of relevance
for our calculation are

λHijklvjvkvl =
vi
v2
(
3 vM2

Hv −
3

2
κijkvivjvk

)
,

λHijklvivj(P
H
s )kl = 2 Tr(M2

Hs
PH
s )− 2κHjklvj(P

H
s )kl +

DH
s

v2
(1

2
κHijkvivjvk + vM2

Hv
)
,

λHijkn vk(P G
s )nl = −κHijn(P G

s )nl +
[
(T̃AsM2

H)ij − (M2
H T̃

As)ij
] g2

M2
Xs

vnT̃
As

nl ,
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M2
Xm

g2
λHijkl(P

H̃
n )ij(P

G
m)kl = C2(P H̃

1 , P
G)m

[

2 Tr(M2
HP

H̃
n )− κHjklvj(P H̃

n )kl

+
DH

s

v2
(1

2
κHijkvivjvk + vM2

Hv
)]

+2 Tr(M2
H T̃

AmP H̃
n T̃

Am)− 2 Tr(T̃AmM2
HP

H̃
n T̃

Am) ,

λHijkl(P
G
n )ij(P

G
m)kl =

g4

M2
Xn
M2

Xm

[

vT̃AnT̃AnM2
H T̃

Bm T̃Bmv

+ 2 vT̃An T̃BmM2
H T̃

An T̃Bmv
]

,

λHijklλ
H
mjklvivm =

v2

∆Hλ
H
ijklλ

H
ijkl .

(5.33)

For illustrative examples of how to derive these identities, the reader is advised to refer to
subsection A.1.4 in the appendix. In the same way we obtain some relations for the coupling
λ that is not restricted to the space RH. Important examples are:

λijkn vk(P G
s )nl = −κijn(P G

s )nl +
[
(T̃AsM2

S)ij − (M2
S T̃

As)ij
] g2

M2
Xs

vnT̃
As

nl ,

M2
Xm

g2
λijkl(̺

S
n)ij(P

G
m)kl = C2(P

H̃
1 , P

G)m λijklvivj(̺
S
n)kl

C2(P
H̃
1 , P

G)m κjklvj(̺
S
n)kl

+2 Tr(M2
S T̃

Am̺Sn T̃
Am)− 2 Tr(T̃AmM2

S̺
S
n T̃

Am) ,

λi1i2i3i4λj1j2j3j4 vi1vj1 (̺xn1
)i2j2(̺yn2

T ak)i3j3(̺zn3
T ak)i4j4 =

1
2λi1i2i3i4λj1j2j3j4vi1vj1(̺xn1

)i2j2(̺yn2
)i3j3(̺zn3

T akT ak)i4j4

−1
2λi1i2i3i4λj1j2j3j4vi1vj1(̺yn2

)i2j2(̺zn3
)i3j3(̺xn1

T akT ak)i4j4

−1
2λi1i2i3i4λj1j2j3j4vi1vj1(̺xn1

)i2j2(̺zn3
)i3j3(̺yn2

T akT ak)i4j4 (5.34)

with x, y, z ∈ {H,SI,SII, . . .}.

Up to now we have only given relations with the coupling λijkl on the left-hand side. But
there are also simplifications for the trilinear coupling κijk that we need to consider in order
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to guarantee maximal mutual cancellations between different diagrams:

κHijkvi(P
G
m)jk = − g2

2M2
Xm

κijkvivjvk C2(P H̃
1 , P

G)m ,

vrT̃
Am

ri κHijk(P H̃
n T̃

AmP H̃
l )jk = κHijkvi(P

H̃
l )jkC2(P

H̃
l , P

H̃
n )m

−κHijkvi(P H̃
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H̃
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−κijkvi(PS
n )jkC2(PS

n , P
S
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Am

ri κHijk(P G
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Xn

C2(P H̃
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1 , P

G)m κijkvivjvk ,

vrT̃
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ri κijk(P x
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C2(P H̃

1 , P
G)mκijkvi(P

x
n )jk , (5.35)

with x ∈ {H̃,G,SI ,SII , . . .}.

5.5. Fermion Representations and Yukawa Couplings

As explained in subsection 4.1.3, the splitting of representations for the fermions is more pe-
culiar than for the real scalars because Weyl fields can combine either to Dirac or Majorana
spinors or to chiral four-component spinors. These are the objects that we are actually inter-
ested in, and that appear in our calculation. Therefore, if we consider any G-irreducible
representation RF of Weyl fermions that appears in our theory, the decomposition into
∏

k Gk-irreducible representations à la eq. (5.6) looks like this:

RF →
⊕

n

RF
n =

⊕

n

RDL
n ⊕

⊕

n

RDR
n ⊕

⊕

n

RM
n ⊕

⊕

n

RfL
n . (5.36)

where the symbols denote the left-handed Dirac component, the right-handed Dirac compo-
nent, the Majorana field and the chiral massless field in this order. Not all terms on the
right-hand side must be present for every representation RF , because some G-irreducible
representations may decompose just into Dirac spinor components for instance, as is the case
for the 5 and 5 Higgsino fields in the Minimal Supersymmetric SU(5) model. The projectors

on these subspaces are denoted by ̺DL
n , ̺DR

n , ̺Mn and pfLn , respectively.

As described in subsection 4.1.3, we are taking into account possible mixing matrices ZL,
ZR and ZM for the heavy fermions. They are needed e.g. for describing the mixing between
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gauginos and Higgsinos in the 24-dimensional representation of the Minimal Supersymmetric
SU(5) Model. We assume that mixing matrices commute with all unbroken generators because
this is sufficient for the case of Minimal SUSY SU(5). Because of Schur’s Lemma, this fact
would imply that all mixing matrices are proportional to unity on each subspace irreducible
under

∏

k Gk, which would make them redundant. Therefore, in order to evade Schur’s
Lemma and have nontrivial mixings, the matrices must contain mixing of at least two

∏

k Gk-
irreducible subspaces, which is the case in the Minimal Supersymmetric SU(5) model. (There
the mixing is between the GSM representations (3,2,−5

6) and (3,2, 56 ) in 24.) This again
means that in case of a nontrivial mixing matrix on a subspace RD

i this particular subspace
is reducible under

∏

k Gk and the respective projector PD
i is only meaningfully defined on

a reducible subspace. Therefore care is needed here when defining Casimir invariants and
Dynkin indices for these subspaces: Using projectors on reducible subspaces and trying to
define suitable invariants similar to eq. (5.9), we will observe that they will not necessarily
be proportional to the unit matrix, as before, since they only commute with generators of
a reducible representation. In such a case Schur’s Lemma does not imply the existence of
a Casimir invariant. Therefore, whenever mixing matrices occur in traces, we do not write
them as an invariant, but leave the expression as it is.

In the following we list some important reduction identities which are derived using mainly
the Yukawa invariance relation eq. (4.30).

Tr(̺xjY
n̺ykY

m⋆)(̺zl T
aiT ai)nm = Tr(̺xjY

n⋆̺ykY
mT aiT ai)(̺zl )nm (5.37)

+Tr(̺ykY
n⋆̺xjY

mT aiT ai)(̺zl )nm

+Tr(̺xj Y
n⋆̺ykT

ai⋆Y mT ai)(̺zl )nm

+Tr(̺ykY
n⋆̺xjT

ai⋆Y mT ai)(̺zl )nm ,

Tr(̺xjT
aiY n⋆̺ykY

m)(̺zl T
ai)nm = Tr(̺xjY

n⋆̺ykY
mT aiT ai)(̺zl )nm

+Tr(̺ykY
n̺xjT

aiY m⋆T ai⋆)(̺zl )nm ,

Tr(̺xjT
aiY n̺ykY

m⋆)(̺zl T
ai)nm = −Tr(̺xj Y

n̺ykY
m⋆T aiT ai⋆)(̺zl )nm

−Tr(̺ykY
n⋆̺xjT

aiY mT ai)(̺zl )nm .

Here x, y ∈ {DL,DR,M, fL, . . .} and z ∈ {H,SI,SII, . . .}. The identities have been written in
terms of the generators Tα that transform the Weyl components of the fermions. Depending
on x and y, they will be either equal to tα or −tα⋆ (cf. subsection 4.1.3).

When computing the on-shell mass renormalization for Dirac and Majorana fermions, we
want to check whether the gauge parameter dependence drops out explicitly. In order for
this to happen, we use the Yukawa invariance relation, eq. (4.30), and the definition of the
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P H̃
1 HPD

i Ψ

G

̺Fj Ψ

PD
i Ψ

AA
µ

Figure 5.1.: Relation eq. (5.38) guarantees the manifest cancellation of gauge parameter dependence
in the divergent part of the on-shell mass renormalization between these two classes of
diagrams. Goldstone bosons are marked green (light gray, short-dashed), and heavy gauge
bosons and heavy Fermions blue (dark gray).

fermion mass matrices, eq. (4.34), to derive the following nontrivial identity:

C2(P H̃
1 , P

G) =
∑

j

[

C2(P
DL

i , ̺Fj ) + C2(P
DR

i , ̺Fj )
]

(5.38)

− 2

MDi
Tr(PD

i )
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j

[

Tr(PD
i ZLZT

R t
A̺Dj Z⋆

RZ†
L t

A)MDj

+Tr(PD
i ZLZT

R t
A̺Mj Z⋆

MZ†
M tA)MMj

]

=
∑

j

[

C2(P
DL

i , ̺Fj ) + C2(P
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− 2

MDi
Tr(PD
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∑

j

[

Tr(PD
i Z⋆

RZ†
L t

A̺Dj ZLZT
R t

A)MDj

+Tr(PD
i Z⋆

RZ†
L t

A̺Mj ZMZT
M tA)MMj

]

It relates the color factor of the tadpole with a Goldstone boson loop to the color factor of the
self energy with a longitudinal heavy gauge boson (cf. fig. 5.1). The summation is over all
∏

k Gk-irreducible representations that share a G-irreducible representation with the Dirac
fermion in RD

i . Note, however, that the right-hand side will be independent of i. The Casimir
invariants that appear here are also defined in terms of the tα. For a derivation of eq. (5.38),
please refer to subsection A.1.3 in the appendix.

Another family of relations that is important for the renormalization of heavy fermion masses
is illustrated here by two examples:
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Tr(PDL
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Similar relations are obtained by exchanging ZL, ZR and ZM and building all possible com-
binations of Y k and Y k⋆. Though our actual full calculation of ζαi

(µGUT) did not involve
heavy fermions yet (cf. section 4.3), we have calculated the on-shell mass renormalization for
them using the relations in this section and verified that the gauge parameter dependence
drops out.

The list of reduction identities may not be exhaustive, but it contains the most important
relations and shows how they can be derived in principle. In a similar fashion also other
identities can be derived using the invariance relations eqs. (4.19) and (4.30) for the invariant
tensors.

5.6. Automation of the Color Factor Reduction

In the following we briefly sketch the algorithm that is used for the reduction of all the color
factors in the diagrams: we have written a FORM routine that treats the color factors for each
individual diagram and reduces them to a basic set of invariants. In a first step, after all
color factors have been brought into a suitable symbolic notation, all reduction identities that
involve the quartic scalar coupling λijkl and κijk are applied to a given expression (eqs. (5.33),
(5.34) and (5.35)). After that any expression will contain traces of strings of generators T ai ,
TAi , projectors ̺xn, Yukawa matrices Y n and mixing matrices ZL,ZR,ZM . The adjoint
indices ai and Ai are contracted either mutually or with some structure constants. First all
the contracted adjoint indices are removed, i.e. traces of the form

Tr(. . . T ai . . . T ai . . .), Tr(. . . TAi . . . TAi . . .), (5.40)

by applying the definitions of the quadratic Casimir invariants eq. (5.9). If two generators
with mutually contracted indices are not next to each other, we commute them until they are
and apply definitions of the quadratic Casimir invariants then. Eventually we arrive at traces
that contain no more contracted indices. Next, expressions of the form

f ciaibi Tr(. . . T ai . . . T bi . . .), fαAiBi Tr(. . . TAi . . . TBi . . .), (5.41)
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are reduced by using

f ciaibiT aiT bi = 1
2f

ciaibi [T ai , T bi ] = i
2I2(pAi )i T ci (5.42)

and eq. (5.15). Again generators that are not next to each other are commuted. Expression
that contain the Goldstone projector P G

i are treated separately. We insert the explicit form
of P G

i (eq. (5.23)) and write the traces in the form v . . . v, where “. . .” stands for a string
of generators T ai , TAi , and projectors ̺xn. Here we additionally make use of the relations

T ajv = 0 and P H̃
i v = 0 (for i 6= 1) in order to eliminate all generators inside the string that

have a lowercase adjoint index. Afterwards, the same procedure as for traces is applied.

In the next step all color factors involving the Yukawa matrix Y n are reduced to a basic set of
invariants using eqs. (5.37), (5.38) and (5.39). Finally, we are left with various contractions
of structure constants which are expressed by the respective invariants using eqs. (5.17) and
(5.21). Lastly, some cosmetic manipulations are applied to the expression in order to make
the notation of the final result as convenient as possible. The actual program is slightly more
complicated than described above and one needs to introduce repetitive control structures
because not all the reduction can be done by a single run. However, the basic procedure is
along the lines described here. It is used at the final stage of the computation of each diagram.
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6. Two-Loop Matching for the
Georgi-Glashow SU(5) Model

The previous two chapters have described the details of our theoretical framework, both from
the field theory perspective and from the group theory perspective. We also explained how
the calculation of the two-loop matching corrections, ζαi

(µGUT), has been carried out in that
general framework. In this chapter we want to apply our result to the simplest possible
GUT, the Georgi-Glashow model [8] (cf. section 2.2). Although this theory is ruled out
experimentally [12], we use it as a toy model to demonstrate some simple numerics and to
check whether the result exhibits the expected properties. The goal for the future is, of course,
to extend the calculation to supersymmetric SU(5) models and other realistic GUT models.

6.1. Specification to the Model

In order to specify our general calculation to this particular model, we must calculate the
numerical values of all quadratic Casimir invariants and Dynkin indices that appear in the
final result. This is done with Mathematica using explicit implementations of the group
generators. They can be found e.g. in appendix B of ref. [62]. Furthermore, it is necessary
to specify the quartic scalar coupling λijkl (cf. eq. (4.18)) and the general Yukawa matrix Y n

ij

(cf. eq. (4.29)) such that the scalar potential and the Yukawa interactions of the model comes
out. The contractions of these quantities that appear in the final result have to be calculated
also and replaced in the general result. The other terms of the Lagrangian, eq. (4.1), are fixed
solely by the particle content of the theory.

The explicit parametrization of the quartic scalar coupling λijkl that leads to the scalar
potential, eq. (2.10), of the Georgi-Glashow model is given in the following. It splits up into
three parts. The first part is a quartic coupling of the 24H Higgs, the second one a quartic
coupling of the 5H Higgs and the last one is a mixed 5H − 24H coupling:

λ24αβγδ = A sTr(TαT βT γT δ) +
1

3
B (δαβδγδ + δαγδβδ + δαδδβγ) ,

λ5ijkl =
1

3
b (δijδkl + δikδjl + δilδjk) , i, j, k, l = 1, . . . , 10 ,

λ5−24
αβij = c (τατβ + τβτα)ij , α, β, γ, δ = 1, . . . , 24 . (6.1)

We have used the symmetrized trace

sTr(Tα1 . . . Tαn) ≡ 1

n!

∑

π

Tr(Tαπ(1) . . . Tαπ(n)) (6.2)
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where the sum is over all the permutations of the indices. Furthermore, note that the indices
i, j, k, l run from 1 to 10 although they belong to the fundamental 5 representation. This is
because the corresponding scalar is complex and we have written it as twice as many real
scalars that are transformed by the 10 × 10 generator matrices τ (cf. section A.3 in the
appendix):

τα =

(
i Im(Tα) i Re(Tα)
−i Re(Tα) i Im(Tα)

)

, (6.3)

where in the present section Tα is the 5 × 5 generator matrix in the fundamental represen-
tation. Inserting eq. (6.1) into eqs. (4.26) and (4.27), we obtain the scalar mass matrices.
Additionally, we need to impose the tree-level fine-tuning condition µ25 = 3

20cv
2, where µ25 is

the quadratic term of the 5H in eq. (4.18), in order to obtain massless Higgs doublets. Note
that in principle one would need to calculate the one-loop fine-tuning condition in order to
obtain massless Higgs doublets in a two-loop calculation. However, the light Higgs doublets
show up the first time in the two-loop Green’s functions in the matching calculation so that
it is sufficient to use the tree-level fine-tuning condition. Using this parametrization, we can
calculate the physical mass parameters, eq. (2.11).

The Yukawa interactions of the Georgi-Glashow model, eq. (2.7), are obtained by inserting
the Yukawa matrix

Y n
sr =

(

−Y U
IJǫijklm Tα

ijT
β
klS

⋆
mn 2i Y D

IJ Im(Tα
kl)Sln

2i Y D
IJ Im(Tα

jl)Sln 0

)

sr

(6.4)

into the general Yukawa Lagrangian, eq. (4.29). Here s = (I, s̃) and r = (J, r̃) are multi-
indices, where I, J stand for the flavor indices of the SU(5) Yukawa matrices Y U and Y D.
The indices s̃, r̃ = 1, . . . , 29 run over {α, j} and {β, k}, respectively. Note that we have written
the fermions of the 10 representation as a 24-dimensional vector instead of an antisymmetric
5× 5 matrix as usually. The Clebsch-Gordan coefficients for this transformation are given by
the following equations:

10α =
√

2 Tα
ij 10ij , 10ij = −

√
2 i Im(Tα

ij) 10α , (6.5)

where 10ij is the usual antisymmetric 5 × 5 matrix with the normalization as in eq. (2.4).
The generator matrices that act on 10α can then conveniently be rewritten as follows:

(T γ
10)αβ = Tr(T γ⋆TαT β) + Tr(T γT βTα)− Tr(T γT βTα⋆)− Tr(T γT β⋆Tα) . (6.6)

Furthermore, S = 1√
2
(1l, i1l) in eq. (6.4) is a 5×10 matrix and ǫijklm is the totally antisymmet-

ric tensor with ǫ12345 = 1. As can be seen from eq. (6.4), the Weyl fermion multiplet ψ from
section 4.1 is written as a 3 (24 + 5) = 87-dimensional vector for the case of Georgi-Glashow
SU(5) model.

Using the definitions from this section, we computed the numerical values of all the group
theory factors that appear in our general result. Furthermore, we set VCKM = 1l and kept
only the third generation Yukawa couplings yt and yb. We obtained three two-loop formulae
for ζαi

(i = 1, 2, 3) that depend on the parameters

α(µGUT), yt(µGUT), yb(µGUT), MX, MHc , MΣ, M24, µGUT . (6.7)
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where all the masses are renormalized on-shell and α, yt and yb in MS. The resulting formu-
lae are to long to be presented here, therefore the Mathematica package that contains the
expressions can be downloaded from

http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp10/ttp10-46/

6.2. Running and Decoupling Setup

In order to examine the numerical impact of the two-loop matching corrections in this model,
we have implemented a RGE analysis in Mathematica. Since in this model the gauge couplings
do not unify, we just focus on examining the reduction of the decoupling scale dependence,
as an illustration of our results. We start with the precise values of the three gauge couplings
at the electroweak scale. In section 3.1 we have described how to obtain them from known
experimental and theoretical input. For convenience we repeat our starting values here:

α(6),MS
em (MZ) = 1/(128.129 ± 0.021) ,

sin2 Θ(6),MS(MZ) = 0.23138 ± 0.00014 ,

α(6)
s (MZ) = 0.1173 ± 0.0020 . (6.8)

These quantities are related to the three gauge couplings via

α1 =
5

3

α
(6),MS
em

cos2 Θ(6),MS
,

α2 =
α
(6),MS
em

sin2 Θ(6),MS
,

α3 = α(6)
s . (6.9)

which holds for any renormalization scale µ. Furthermore, we also need the values of the
Yukawa couplings at the electroweak scale. How to obtain them, has also been described in
section 3.1.

The RG running in the SM was implemented at two loops [27,28,114,139] for the electroweak
sector and at three loops [112, 113] for QCD. We take into account the tau, bottom and top
Yukawa couplings and thus solve the coupled system of six differential equations. Since the
quartic SM Higgs coupling b enters the equations of the Yukawa couplings starting from two-
loop order only, we neglect its contribution. After taking into account the two-loop decoupling
relations, we compute the running from µGUT to the Planck scale using three-loop RGEs for
the gauge coupling and one-loop RGEs for the Yukawa couplings. The RGEs are obtained
by inserting the general expressions for the Yukawa and scalar couplings (eqs. (6.4) and
(6.1)) as well as the numerical values for the group theory factors into the general formulae
of refs. [25, 28] (see appendix A.6 for the details).
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Figure 6.1.: Dependence of α(1018 GeV) on the decoupling scale µGUT. The red (dotted), green
(dashed) and blue (solid) lines correspond to the one-, two- and three-loop analysis,
respectively. For the three-loop curve also the impact of the uncertainty on α3(MZ) with
δαs = 0.0020 has been indicated.

6.3. Dependence on the Decoupling Scale

In fig. 6.1 the dependence on the decoupling scale of α(1018GeV) in the bottom-up approach
is shown. Since only for QCD the full three-loop β function could be implemented and there
is no unification of gauge couplings anyway, we took α(µGUT) = ζ−1

α3
(µGUT) α3(µGUT) as

a starting value for the gauge coupling above the GUT scale. For illustration we use the
following set of mass parameters:

MX = 1015 GeV ,

MHc = 4 · 1013 GeV ,

MΣ = 1014 GeV ,

M24 = 6 · 1013 GeV (6.10)

which are chosen to obey the restriction MX & Mi for i = Hc,Σ, 24 . Otherwise the scalar
self-couplings easily become non-perturbative and blow up the gauge coupling above the
GUT scale. The scale dependence is shown for n-loop running and (n − 1)-loop decoupling
with n = 1, 2, 3. We observe a dramatic improvement when going from n = 1 to n = 2, as well
as when going from n = 2 to n = 3. In particular the three-loop corrections can be larger than
the error band depending on µGUT. Note also that for n = 2 choosing µGUT naively as a mean
value of the GUT masses, which would be of O(1014 GeV) in our case, is not a good choice.
The described qualitative behavior does not depend much on our choice of the GUT masses.
Though the numerical effect of the two-loop matching is already significant in the Georgi-
Glashow model, we emphasize that in certain models that contain large representations, as
e.g. the Missing Doublet Model [63,64], we expect these corrections to be even larger [35] (cf.
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also subsection 3.2.4). Our goal for the future, of course, is to generalize the formula for ζαi

to make it applicable to these models.

To provide a check of the result for the Georgi-Glashow model, we have verified analytically
that the matching coefficients ζαi

(µGUT) exhibit the correct µGUT dependence. This can
be derived from the knowledge of the two-loop β functions of the SM and the SU(5) model
by computing the derivative w.r.t. tGUT ≡ ln(µGUT) of eq. (2.25). Solving the resulting
differential equation order by order, we arrive at a general formula1 for the µGUT -dependent
terms in ζαi

(µGUT):

ζαi
(µGUT) = 1 +

α(µGUT)

π

[
1
2 (βi0 − β0) tGUT − C0(Mh)

]

(6.11)

+

(
α(µGUT)

π

)2
[

1
4(βi0 − β0)2 t2GUT +

[
1
8(Σjβ

ij
1 − β1)− C0(Mh) (βi0 − β0)

]

tGUT + C1(Mh)

]

.

C0 and C1 are µGUT-independent terms that depend only on the heavy GUT masses. Recall
that the β function coefficients are defined by:

1

2

d

dt

α

4π
=

N−1∑

k=0

( α

4π

)k+2
βk , α =

g2

4π
(6.12)

and similarly for αi. We find agreement in the µGUT dependence of our explicit calculation
with the form of eq. (6.11).

6.4. Summary

We have applied our result for the two-loop matching corrections to the simples GUT, the
Georgi-Glashow model, and examined the numerical impact on α(1018GeV). Depending on
the choice of the decoupling scale µGUT this impact can be larger than the uncertainty on the
input value αs(MZ). We have checked that the result exhibits the correct µGUT dependence
which is predicted by the two-loop gauge β functions of the full and effective theory. To the
author’s knowledge this is the first two-loop matching calculation at the GUT scale.

In order to apply our calculation to phenomenologically more interesting models, one needs to
relax the assumptions named in section 4.3. For example, in order to extend the calculation
to Minimal SUSY SU(5), the following changes compared to the current calculation have to
be carried out:

• Consider the contributions from the trilinear term in the scalar potential, eq. (4.18).

• Add two massive Dirac and three massive Majorana fermion GSM-irreducible represen-
tations as well as all possible kinds of Yukawa interactions for them. Mixing and phase
matrices ZL, ZR and ZM have to be taken into account.

1See section A.8 for the detailed derivation. For simplicity we neglect the Yukawa corrections in this formula.
However, the generalization is straightforward. Of course, in our analytical check we took care of them too.
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• Increase the number of GSM-irreducible representations within RS by four in order to
account for the complexity of 24H as compared to non-SUSY SU(5).

• Convert the result to the DR renormalization scheme.

However, let us stress, that the theoretical framework to carry out these generalizations has
already been described in detail in chapters 4 and 5. In fact, we even have undertaken the
first steps towards these generalization. For example we have calculated all the necessary one-
loop renormalization constants and have confirmed that the on-shell mass renormalization
constants are gauge parameter independent. Due to the additional fields, the number of
two-loop diagrams blows up significantly and is expected to be of O(50000) in total.

It is also noteworthy that the specification of the Lagrangian to minimal SUSY SU(5) is
expected to be much more involved than in the case of the Georgi-Glashow model. The
scalar potential alone is much larger in Minimal SUSY SU(5) because of additional fields in
the theory and scalar superpartners.

Summing up, by applying the the two-loop matching corrections at the GUT scale to the
Georgi-Glashow model, we have laid a solid ground for extended calculations for more realistic
models.
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The unification of gauge couplings is one of the crucial predictions of GUTs and therefore
worth studying in detail. In this work we have undertaken first steps towards a consistent
three-loop gauge coupling unification analysis with a focus on threshold corrections at the
GUT scale. These threshold corrections can pose constraints on the colored triplet Higgs mass
MHc that typically appears in GUTs. In combination with constraints on this mass coming
from proton decay experiments, this can serve as a means to test SUSY GUT models.

In chapter 3 we have performed an (almost) three-loop gauge coupling unification analysis for
the Minimal SUSY SU(5) and the Missing Doublet Model using state-of-the-art theoretical
and experimental input. A consistent three-loop analysis would require three-loop running
and two-loop decoupling at the SUSY and the GUT thresholds. In order to make our analysis
fully consistent, the following additional theoretical input would have been needed: Three-
loop electroweak corrections to the SM RGEs, two-loop threshold corrections to α1,2(µSUSY)
and two-loop threshold corrections for α1,2,3(µGUT). For the case of Minimal SUSY SU(5), we
argued that these missing pieces are not expected to change the outcome much. We have found
that for the choice µSUSY = MZ , which is often adopted in the literature, the prediction for
MHc is raised by one order of magnitude by three-loop effects attenuating presumed tension
with proton decay experiments. Therefore we have confirmed at the three-loop level that
the non-renormalizable version of Minimal SUSY SU(5) cannot be ruled out with current
experimental data.

In the case of the Missing Doublet Model, however, we have shown that the yet missing
two-loop decoupling effects at the GUT scale are expected to be huge. This is because in the
current setup the theoretical uncertainty of α1,2,3(MZ) due to the variation of µGUT exceeds
the experimental uncertainty on these values by one order of magnitude. Since this behavior
is typical of models with large representations, we are strongly motivated to compute these
missing two-loop threshold effects at the GUT scale which was the subject of the rest of this
thesis.

In chapters 4 and 5 we have introduced the field- and group-theoretical framework that has
been used to carry out the two-loop matching calculation at the GUT scale. This framework
is set up in a very general way and is therefore applicable to a wide range of GUT models.
We have considered all parts of the Lagrangian and described how subtle tasks as gauge
fixing, ghost interactions, tadpole terms and renormalization procedure are carried out in a
proper way. Furthermore, chapter 5 introduces a notational framework that is suitable to
treat the group theory factors that come up in the calculation. Moreover, it contains a wealth
of nontrivial reduction identities in orderto allow for cancellations of e.g. gauge parameter

83



Chapter 7. Conclusions and Outlook

dependent terms between different diagrams without inserting the actual numerical values
for the group theory invariants. Therefore, these two chapters may be considered as a useful
resource for future calculations of this kind.

Due to the complexity of the calculation, in a first step, we have imposed some additional
assumptions about the underlying GUT model which are designed to match the simplest GUT,
the Georgi-Glashow SU(5) Model. Though this model is ruled out experimentally, we have
employed it as a useful toy model. The assumptions that have been made in the calculation
have been described in section 4.3. As a first application, we have presented the numerical
analysis using the two-loop matching corrections in the Georgi-Glashow Model in chapter 6.
We have shown that in that model these matching corrections can be larger than the current
uncertainty on αs(MZ). The checks that have been made to ensure the correctness of the
result are also summarized in section 4.3. By this calculation we have laid a solid ground for
future calculations of the two-loop matching effects in more complicated GUT models.

Looking into the future, the next logical step is to extend the calculation to Minimal
SUSY SU(5). Several steps in this direction, as the formulation of the theoretical frame-
work and the implementation of heavy fermions, have already been undertaken in the present
work. A full list of steps to be considered for this project have been summarized in section 6.4.
In this context it is certainly worthwhile also to explore whether supergraphs [47, 151–153]
can be employed for a more efficient calculation of ζαi

in SUSY GUTs.

Looking even further into the future, most interesting results are expected for models with
large representations, as e.g. the Missing Doublet model (cf. subsection 3.2.4). But also
realistic non-supersymmetric SU(5) models as e.g. the model with an additional 15H Higgs
field [154] might be of interest in this context. To extend the calculation to SO(10) scenarios,
most probably additional changes in our theoretical framework have to be taken into account:
Since it is not possible to break SO(10) to GSM in a single step, we need to have two vevs of
order MGUT in our setup. It is not a priori obvious whether this will complicate our general
treatment of the renormalization of the scalar potential (cf. section 4.1.2) significantly.

Of course, it would be desirable to finally extend the analysis to realistic SUSY GUT sce-
narios that have predictive power also in the flavor sector. As an example, let us mention
the SUSY SO(10) model proposed by Chang, Masiero and Murayama [155] in 2002. Subse-
quent analyses of various flavor observables [156–159] confirmed the model as an interesting
alternative to popular minimal flavor violation scenarios.

Summing up, this work has contributed to establish a consistent three-loop gauge coupling
unification analysis for various SU(5) GUT models. In particular, we have performed a state-
of-the-art (almost) three-loop RGE analysis for Minimal SUSY SU(5) and the Missing Doublet
Model. Furthermore, in the main part of this thesis we have described a first calculation of
the two-loop matching corrections for the gauge couplings at the GUT scale and applied our
result to the Georgi-Glashow model.
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A. Appendix

A.1. Example Derivations of Group Theory Reduction Identities

This appendix is devoted to the illustrative derivation of a few reduction identities for color
factors1 that have been presented in chapter 5. It does by far not contain derivations for all
identities that appear there, however, there is supposed to be an example for each class of
identities such that the most important concepts in such derivations are still conveyed.

A.1.1. Derivation of Eq. (5.15)

As an example of the appearance of this particular color factor consider the following two-loop
diagram, that is encountered in the calculation of ζα1(µGUT):

ai bi

Cj

Bj

n

n

m ∼ faiBjCj Tr(̺xnT
Bj̺xmT

CjT bi) ≡ Gaibi
nm .

The internal fields are heavy gauge bosons and scalars which reside not necessarily in the
same irreducible representation. (In the above graph x = S.) Note that in the absence of the
projectors ̺xn,m, we could easily compute the color factor by exploiting

faiBjCjTBjTCj =
1

2
faiBjCj [TBj , TCj ] =

i

2
faiBjCjfαBjCjTα =

i

2
I2(P

A
j )i T ai , (A.1)

where we have used the definition of the adjoint invariant, eq. (5.17). However, if we sym-
metrize the left-hand side of Gaibi

nm in n and m, something similar is possible. We arrive at
this symmetrization by commuting TCj with T bi in Gaibi

nm and then taking the transpose of
one of the traces that arises. This yields:

Gaibi
nm −Gaibi⋆

mn = I2(P
A
j )iI2(̺

x
n, ̺m)j . (A.2)

We have used TαT = Tα⋆, eqs. (5.9) and (5.17) as well as the fact that the structure constants
are real. Moreover, the real part of Gaibi

n,m vanishes:

Re(Gaibi
n,m) =

1

2
faiBjCj

[

Tr(̺xnT
Bj̺xmT

CjT bi) + Tr(̺xnT
Bj̺xmT

CjT bi)⋆
]

1

2
faiBjCj

[

Tr(̺xnT
Bj̺xmT

CjT bi) + Tr(̺xnT
Cj̺xmT

BjT bi)
]

= 0 (A.3)

1For convenience we again adopt the terminology of chapter 5 and will speak of color factors instead of group
theory factors etc..
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We have again transposed the second trace and exploited the hermiticity of generators, as
well as [̺xn, T

bi ] = 0. Eq. (A.3) gives zero because the structure constants are antisymmetric
in Bj, Cj while the expression in parentheses is symmetric. Now that we know that Gaibi

n,m is
purely imaginary, eq. (A.2) yields the symmetrization in n,m:

Gaibi
nm +Gaibi

mn = δaibiI2(PA
j )iI2(̺xn, ̺m)j . (A.4)

If we additionally can compute the antisymmetrized sum of Gaibi
nm and Gaibi

mn , a proper linear
combination of the two will give us an expression for Gaibi

nm . This antisymmetrization is
computed as follows: We start with the identity

Tr(T aiTBj̺xnT
biTBj̺xm) = Tr(T biTBj̺xmT

aiTBj̺xn) (A.5)

which follows from the cyclicity of the trace. We now commute the left-most T ai , T bi with
TBj on both sides:

Tr(TBjT ai̺xnT
biTBj̺xm) + faiBjCj Tr(̺xnT

Bj̺xmT
CjT bi) =

Tr(TBjT bi̺xmT
aiTBj̺xn) + f biBjCj Tr(̺xnT

Bj̺xmT
CjT ai) . (A.6)

Here we can identify Gaibi
nm and again apply the definitions of color invariants, eq. (5.9) for con-

tracted generators that are side by side. Furthermore, we note that the matrix Aaibi ≡ Gaibi
nm

commutes with all unbroken generators (T ci
A )aibi of the adjoint representation. Therefore,

due to Schur’s Lemma, it is diagonal and proportional to the unit matrix on each
∏

iGi-
irreducible subspace. Particularly, Aaibi and thus Gaibi

nm is symmetric in ai and bi. Exploiting
all this, eq. (A.6) can be rewritten as:

Gaibi
nm −Gaibi

mn = δaibi
[

C2(̺xn, ̺
x
m)jI2(̺

x
n)i − C2(̺xm, ̺

x
n)jI2(̺

x
m)i
]

. (A.7)

This is the antisymmetrization of Gaibi
nm we have been looking for. Taking a half times the

sum of eq. (A.4) and eq. (A.7), we obtain our final result

Gaibi
nm = faiBjCj Tr(̺xnT

Bj̺xmT
CjT bi) =

i

2
δaibi

[

I2(P
A
j )iI2(̺xn, ̺

x
m)j + C2(̺xn, ̺

x
m)jI2(̺

x
n)i − C2(̺

x
m, ̺

x
n)jI2(̺

x
m)i
]

,(A.8)

which agrees with eq. (5.15). Nothing has been assumed about the representation that is
generated by Tα. Therefore, this identity is quite universal and applicable to a large class of
diagrams.

A.1.2. Derivation of Eq. (5.30)

For this color factor there is no particular diagram that it is proportional to. It rather appears
in the reduction process of a certain class of diagrams, examples of which are depicted in fig.
A.1. Clearly, such a diagram must contain a Goldstone line that leads to the vT̃Bj . . . T̃Ekv
structure and a GUT-breaking Higgs line that provides the projector P H̃

n . The structure we
are interested in reads

∑

jk

faiBjCjf biDkEk vT̃Bj T̃DkP H̃
n T̃

Cj T̃Ekv ≡ δaibi
Gi

n

dAi
. (A.9)
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Figure A.1.: Sample diagrams that lead to the color factor, eq. (5.30). All such diagrams have in
common that they contain one Goldstone line and one GUT-breaking Higgs line. Colored
(bold) lines represent fields with mass of O(MGUT) and black (thin) lines massless fields.
Goldstone bosons are marked green (light gray, short-dashed), GUT-breaking Higgs fields
red (gray, long-dashed) and heavy gauge bosons blue (dark gray)

The fact that the color factor is proportional to δaibi again follows from Schur’s Lemma and
defines the quantity Gi

n that we want to compute in this subsection. The structure looks
quite complicated since no unbroken generators T ai appear in between the two vevs such
that we could exploit T aiv = 0 in order to simplify the expression. Moreover, no contracted
adjoint indices appear in between the two vevs that could the eliminated using the definitions
of Casimir invariants, eq. (5.9). Therefore, our strategy will be to rewrite the expression in
several different ways by applying the relation

faiBjCjTCj = −i[T ai , TBj ] . (A.10)

Using the resulting equations, we will finally be able to relate Gi
n to something we can apply

the definitions of color invariants, eq. (5.9), to. There are three possible ways eq. (A.10) can
be applied to Gi

n:

Gi
n =

∑

jk

faiBjCjfaiDkEk vT̃Bj T̃DkP H̃
n T̃

Cj T̃Ekv

=
∑

jk

v[T̃ ai , T̃Cj ]T̃DkP H̃
n T̃

Cj [T̃ ai , T̃Dk ]v

= −
∑

jk

vT̃Cj T̃ ai T̃DkP H̃
n T̃

Cj T̃ ai T̃Dkv , (A.11)

Gi
n =

∑

jk

vT̃Bj [T̃ ai , T̃Ej ]P H̃
n [T̃ ai , T̃Bj ]T̃Ekv

=
∑

jk

[

2 vT̃Cj T̃ ai T̃DkP H̃
n T̃

ai T̃Cj T̃Dkv − vT̃Cj T̃ ai T̃DkP H̃
n T̃

Cj T̃ aiT̃Dkv

−vT̃Cj T̃Dk T̃ aiP H̃
n T̃

aiT̃Cj T̃Dkv
]

, (A.12)

Gi
n =

∑

jk

v[T̃ ai , T̃Cj ]T̃DkP H̃
n [T̃ ai , T̃Dk ]T̃Cjv

=
∑

jk

[

− vT̃Cj T̃ aiT̃DkP H̃
n T̃

aiT̃Dk T̃Cjv + vT̃Cj T̃ ai T̃DkP H̃
n T̃

Dk T̃ ai T̃Cjv
]

,(A.13)
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where we have used T̃ aiv = 0 and the antisymmetry of T̃α. Equating eqs. (A.11) and (A.12)
yields

vT̃Cj T̃ aiT̃DkP H̃
n T̃

aiT̃Cj T̃Dkv =
1

2
vT̃Cj T̃Dk T̃ aiP H̃

n T̃
ai T̃Cj T̃Dkv

=
1

2
vT̃Cj T̃Dk T̃ aiP H̃

n T̃
ai T̃Dk T̃Cjv . (A.14)

In the last line we have commuted T̃Dk and T̃Cj . Then the term proportional to the struc-
ture constant vanishes because P H̃

n T̃
aiT̃Fjv = T̃ aiP H̃

n T̃
Fjv = T̃ aiP H̃

n P
G
j T̃

Fjv = 0. Inserting
eq. (A.14) into eq. (A.13), we obtain

Gi
n =

∑

jk

[

vT̃Cj T̃ ai T̃DkP H̃
n T̃

Dk T̃ ai T̃Cjv − 1

2
vT̃Cj T̃Dk T̃ aiP H̃

n T̃
ai T̃Dk T̃Cjv

]

=
∑

jk

M2
Xj

g2

[

Tr(P G
j T̃

ai T̃ aiT̃DkP H̃
n T̃

Dk)− 1

2
Tr(P G

j T̃
Dk T̃ aiP H̃

n T̃
ai T̃Dk)

]

, (A.15)

where we have used eq. (5.23) and exploited [T̃ ai , T̃DkP H̃
n T̃

Dk ] = 0. In this form the color
factor looks much more manageable because there are contracted adjoint indices of generators
that are next to each other. Applying the definitions of quadratic Casimir invariants and
Dynkin indices, eq. (5.9), we finally obtain

Gi
n =

∑

jk

M2
Xj

g2

[

C2(P
G
j )iI2(P G

j , P
H̃
n )kDA

k −
1

2
I2(P

H̃
n )iC2(P H̃

n , P
G
j )k dAi

]

∑

j

M2
Xj

g2

[

I2(P
A
j )i I2(P

H̃
n , P

G)j − 1

2
I2(P H̃

n )i C2(P
H̃
n , P

G)j
]

dAi . (A.16)

In the final line we have used the third line of eq. (5.28), eqs. (5.29) and (5.19). This allowed
us to carry out one of the two sums. By employing the definition of Gi

n, eq. (A.9), we are
lead to the final result

∑

jk

faiBjCjf biDkCk vT̃Bj T̃DkP H̃
n T̃

Cj T̃Ekv =

δaibi
∑

j

M2
Xj

g2

[

I2(PA
j )i I2(P H̃

n , P
G)j − 1

2
I2(P H̃

n )i C2(P
H̃
n , P

G)j
]

(A.17)

in agreement with eq. (5.30).

A.1.3. Derivation of Eq. (5.38)

As explained in section 5.5, in order to check for gauge parameter independence of on-shell
renormalization constants of heavy fermions, a manifest cancellation of contributions from
diagrams of the type depicted in fig. 5.1 has to be guaranteed. The group theoretical identity
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that is needed for this, will be derived in the following. We start with the Yukawa invariance
relation, eq. (4.30):

Tα⋆Y k + Y kTα + Y mT̃α
mk = 0 (A.18)

for α = A. Since the color factors we want to relate do not contain explicit Yukawa couplings
but only fermion masses, we are interested in the type of Yukawa couplings that couple right-
to left-handed fermions. To this end we multiply eq. (A.18) by PD

i ZT
R from the left and

ZL from the right. Then we take the trace of the equation and multiply by (P G T̃AP H̃
1 )kl

obtaining:

0 = Tr(PD
i ZT

R [TA⋆Y k + Y kTA]ZL) (P G T̃AP H̃
1 )kl

+Tr(PD
i ZT

RY
mZL)(T̃AP GT̃AP H̃

1 )ml . (A.19)

Using eqs. (4.36) and (5.9) as well as (P H̃
1 )ml = vmvl

v2
yields

0 = Tr(PD
i ZT

R [Y ktA − tAY k]ZL) T̃A
knvn + Tr(PD

i ZT
RY

mZL)vm C2(P
H̃
1 , P

G) . (A.20)

In order to be able to introduce the Dirac mass matrix into this expression, we must first
substitute

Y kT̃A
knvn = tAY nvn − Y nvnt

A , (A.21)

which follows from eqs. (A.18) and (4.36) for the right-left type Yukawa coupling that appears
in eq. (A.20). The resulting expression contains the Yukawa coupling only in the combination
Y nvn, which is what we desired. We can now introduce the Dirac mass matrix, eq. (4.34),
and exploit the unitarity of the mixing matrices ZL and ZR. In a first step we assume µF = 0
and then show later that the result does not change for µF 6= 0. Introducing the Casimir
invariants, eq. (5.9), this already leads us to the final result

C2(P
H̃
1 , P

G) =
∑

j

[

C2(P
DL

i , ̺Fj ) + C2(P
DR

i , ̺Fj )
]

(A.22)

− 2

MDi
Tr(PD

i )

∑

j

[

Tr(PD
i ZLZT

R t
A̺Dj Z⋆

RZ†
L t

A)MDj

+Tr(PD
i ZLZT

R t
A̺Mj Z⋆

MZ†
M tA)MMj

]

,

which is the first part of eq. (5.38). The second part is obtained by a similar derivation
starting from the invariance relation for Y k⋆ and exchanging ZL ↔ ZR in a proper way. It
now remains to show that eq. (A.22) does not change if µF also contributes to the Dirac mass
matrix. The right-hand side of eq. (A.22) is then changed by the amount

∆ ≡ −2 Tr(PD
i ZT

R µF t
AtAZL) + 2 Tr(PD

i ZT
Rt

AµF t
AZL) . (A.23)

Since [µF , T
α] = 0 due to gauge invariance, Schur’s Lemma implies that µF is diagonal and:

µF =
∑

i

µFi
ΠFi . (A.24)
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We now assume that ZL and ZR diagonalize µF and Y kvk in eq. (4.34) separately2. In such
a case ZL and ZR can contain only phases, i.e.

PD
i ZL,R = PD

i exp (i φiL,R) . (A.25)

Inserting this into eq. (A.23), yields

∆ = −2 exp [i(φiL + φiR)]µFi
Tr(PD

i tAtA) + 2 exp [i(φiL + φiR)]µFi
Tr(PD

i t
AtA)

= 0 , (A.26)

i.e. eq. (A.22) remains valid for µF 6= 0.

A.1.4. Example Derivations of Eq. (5.33)

We first derive the first two lines of eq. (5.33) starting with the definition of the GUT-breaking
Higgs mass matrix, eq. (4.26 ):

(M2
H)ij = κHijkvk +

1

2
λHijklvkvl −ΠH

ij

[ 1

2v2
κijkvivjvk +

1

6v2
λHklmnvkvlvmvn

]

. (A.27)

Multiplying by vivj and solving for λijklvivjvkvl already gives us the first line of eq. (5.33):

λHijklvjvkvl =
vi
v2
(
3 vM2

Hv −
3

2
κijkvivjvk

)
. (A.28)

To obtain the second line, we multiply the Higgs mass matrix by (P H̃
s )ij :

Tr(P H̃
s M

2
H) =

[

κHijkvk +
1

2
λHijklvkvl

]

(P H̃
s )ij −

Tr(P H̃)

v2

[1

2
κijkvivjvk +

1

6
λHklmnvkvlvmvn

]

.

Substituting eq. (A.28) for λHklmnvkvlvmvn and solving for λHijklvivj(P
H
s )kl yields the second

line of eq. (5.33):

λHijklvivj(P
H
s )kl = 2 Tr(M2

Hs
PH
s )− 2κHjklvj(P

H
s )kl +

DH
s

v2
(1

2
κHijkvivjvk + vM2

Hv
)
, (A.29)

where we have used eq. (5.10). These identities are always used to eliminate λijkl as far as
possible from the result of a loop calculation and expressing it through physical quantities as
the Higgs mass matrix.

Next, we want to reduce the expression λHijkl(P
G
n )ij(P

G
m)kl (fifth identity in eq. (5.33)) using

the gauge invariance relation for λijkl, eq. (4.19), for α = An:

0 = T̃An

is λsjkl + T̃An

js λiskl + T̃An

ks λijsl + T̃An

ls λijks . (A.30)

We multiply by vi(vT̃
An)j(P

G
m)kl

g2

M2
Xn

, use the definition of P G
i , eq. (4.20), and obtain

λHijkl(P
G
n )ij(P

G
m)kl =

g4

M2
Xn
M2

Xm

[

(vT̃An T̃An)jλijkl vi(P
G
m)kl

+2 (vT̃An)jλijkl vi(P
G
mT̃

An)kl

]

. (A.31)

2This assumption is satisfied for the Higgsinos 5H and 5H in Minimal SUSY SU(5). In that case Y kvk is even
zero.
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Substituting both λs by the third line of eq. (4.19) and using the definition of the gauge boson
mass matrix, eq. (5.24), and Casimir invariants, eq. (5.9), results in

λHijkl(P
G
n )ij(P

G
m)kl =

g4

M2
Xn
M2

Xm

[

− C2(P
H̃
1 , P

G)n κijk(P G
m)ijvk − 2 (vT̃An)j κjkl(P

G
mT̃

An)kl

vT̃AnT̃AnM2
H T̃

Bm T̃Bmv + 2 vT̃An T̃BmM2
H T̃

An T̃Bmv
]

. (A.32)

Both κ terms can now be substituted by identities one and six from eq. (5.35), which results
in their cancellation. Therefore, the final formula is

λHijkl(P
G
n )ij(P

G
m)kl =

g4

M2
Xn
M2

Xm

[

vT̃AnT̃AnM2
H T̃

Bm T̃Bmv

+ 2 vT̃An T̃BmM2
H T̃

An T̃Bmv
]

(A.33)

in agreement with the fifth identity in eq. (5.33).

A.2. Reparametrization of the Scalar Potential

In this appendix we give some details on how the parametrization of the up to quadratic terms
in the scalar potential, eq. (4.24), arises. The presented parametrization is particularly useful
for renormalization since it permits a proper treatment of tadpole terms at higher orders.
For a more basic application of this idea, please refer to chapter 3 of ref. [137] where the
reparametrization is done for the case of the SM. Here we develop it in full generality. We
start with eq. (4.18) and insert the decomposition of the scalar field Φ:

Φi = vi +Hi
︸ ︷︷ ︸

+ Gi
︸︷︷︸

+ Si
︸︷︷︸

, (A.34)

RH̃ RG
︸ ︷︷ ︸

RS

RH

where v is the vev with a single non-zero component, H the physical Higgs field, G the Gold-
stone field and S a field, representing all the other scalars, present in the theory. For clarity
we have also indicated the representations where the individual fields live in. Considering
only the up to quadratic terms, we arrive at the following expression:

V (Φ) = Hit̃i +
1

2
M̃2

ijHiHj +
1

2
M̃2

ijGiGj +
1

2
M̃2

ijSiSj +O(Φ3) , (A.35)

where we have defined the quantities

t̃i = −µ2ijvj +
1

2
κijk vjvk +

1

6
λijklvjvkvl ,

M̃2
ij = −µ2ij + κijk vk +

1

2
λijklvkvl . (A.36)

91



Appendix A. Appendix

Here we already have used the fact that, due to gauge invariance (eq. (4.19)), the matrix µ2

is proportional to the unit matrix on each G-irreducible subspace and therefore

µ2ijviGj = 0 , µ2ijviSj = 0 , µ2ijHiGj = 0 ,

µ2ijHiSj = 0 , µ2ijGiSj = 0 . (A.37)

Also due to gauge invariance, eq. (4.19), we have λijklvjvkvl ∼ vi and κijkvjvk ∼ vi, be-
cause the matrices K and K ′ defined by Kij = λijklvkvl and K ′

ij = κijkvk are diagonal and
proportional to the unit matrix on each GSM-irreducible subspace. Hence

λijklGivjvkvl = 0 = λijklSivjvkvl ,

κijkGivjvk = 0 = κijkSivjvk ,

(A.38)

since (P G)ijvj = 0 = (PS)ijvj. The parametrization in eq. (A.35) has the disadvantage
that the masslessness of Goldstone bosons is not manifest there due to the appearance of an
explicit mass matrix for the Goldstone field. Note furthermore that on the subspace RH the
parameter µ2 is redundant, because it depends on the tadpole term t̃, which has been chosen
as a physical parameter in the Lagrangian. Therefore, we want µ2 also to disappear from the
mass matrix of the physical Higgs bosons H by trading it for t̃. To solve these issues, we
first rewrite the tadpole term by observing that t̃ ∼ vi due to arguments already given below
eq. (A.37). Therefore we define

t̃i ≡ t vi , t ≡ 1

v2
(
−µ2ijvivj + 1

2 κijk vivjvk + 1
6λijklvivjvkvl

)

≡ −µ2H +
1

2v2
κHijkvivjvk +

1

6v2
λHijklvivjvkvl . (A.39)

The classical minimum of the potential can be found by setting t = 0. In a quantum theory,
however, we must keep t as a counterterm, as explained in sections 4.1.2 and 4.2, in order
to guarantee that the vev v defines the minimum of the potential also at higher orders of
perturbation theory. Next, we turn to the term 1

2M̃
2
ijGiGj in eq. (A.35). From the Goldstone

theorem it follows that this mass term must vanish at the classical level. But since we are also
interested in quantum corrections, care is needed here. We calculate the term by applying
the explicit form of the Goldstone projector P G which is given in eq. (4.20) to M̃2. Using
also the gauge invariance relations in eq. (4.19), we can prove the identities

(P G)ijλjklmvlvm =
1

3v2
(P G)ik λjlmnvjvlvmvn ,

(P G)ijκjklvl =
1

2v2
(P G)ik κjlmvjvlvm ,

(P G)ijµ
2
jk =

1

v2
(P G)ik µ

2
jlvjvl = (P G)ik µ

2
H . (A.40)

From this it follows that:

(P G)ijM̃
2
jk = t (P G)ik . (A.41)

As expected from the Goldstone theorem, the term vanishes at the classical level, but con-
tributes as a counterterm to the two-point function of the Goldstone field via t. This is an
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important subtlety and crucial for a correct renormalization procedure (cf. also the countert-
erm Feynman rules given in section 4.2). Similarly, we calculate 1

2M̃
2
ijHiHj by applying the

projector P H̃ = ΠH − P G to M̃2:

(P H̃)ijM̃
2
jk = (ΠH)ijM̃

2
jk − (P G)ijM̃

2
jk

= t (P H̃)ik + M̃2
jk − t (ΠH)ik

≡ t (P H̃)ik + (M2
H)jk , (A.42)

where we have used eq. (A.41) and defined the physical Higgs mass matrix

(M2
H)ij = κHijk vk +

1

2
λHijklvkvl −ΠH

ij
1

v2

[1

2
κHklmvkvlvm +

1

6
λHklmnvkvlvmvn

]

. (A.43)

Note that P GM2
H = 0 and therefore the Higgs mass matrix, as we have defined it, can have

non-zero entries only on the subspace RH̃. Also the parameter µ2H does not appear anymore
in the definition of M2

H , as desired. For the fields Si no peculiarities occur, since they have
no vev. Their mass matrix is essentially given by M̃2:

(M2
S)ij = κSijkvk +

1

2
λSijklvkvl − (µ2(1l−ΠH))ij . (A.44)

The up to quadratic terms of the scalar potential can now be written as

V (Φ) = t viHi +
1

2
(M2

H)ijHiHj +
1

2
t HiHi +

1

2
t GiGi +

1

2
(M2

S)ijSiSj +O(Φ3) , (A.45)

which is the appropriate parametrization for renormalizing the theory. The couplings λijkl
and κijk still appear in the O(Φ3) terms of this equation. However, in the final result of a
loop calculation we aim at expressing all cubic and quartic scalar couplings in terms of the
physical parameters defined in this section (i.e. masses and tadpole terms).

A.3. Transition from Complex to Real Scalars

We show how any complex scalar multiplet can be rewritten as twice as many real scalars
the generator matrices of which are antisymmetric. This is in order to demonstrate that the
assumptions made in chapter 4 constitute no loss of generality and also to show how the
transition is done practically, e.g. for the analysis in chapter 6. We start with a complex
scalar multiplet ϕ transforming as a (not necessarily irreducible) representation of the group
G. The gauge-kinetic Lagrangian is then given by

Lkin = (Dµϕ)†(Dµϕ) (A.46)

with

(Dµϕ) = (∂µ − igT̂αAα
µ)ϕ , (A.47)

where T̂α (note the hat) are hermitian generators. The gauge infinitesimal transformation is
defined as

ϕ → ϕ− igθαT̂αϕ . (A.48)
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In order to make the transition to real scalars, we split the fields and the generators into real
and imaginary part

ϕ =
1√
2

(ϕR + iϕI) , T̂α = Tα
R + iTα

I (A.49)

with (Tα
R)T = Tα

R and (Tα
I )T = −Tα

I . We want real scalar field to be defined as

Φ =

(
ϕR

ϕI

)

. (A.50)

The question is now how to appropriately define antisymmetric generators T̃α (note the tilde)
such that the gauge transformation, eq. (A.48), can be rewritten as

Φ → Φ− igθαT̃αΦ . (A.51)

Inserting eq. (A.49) into eq. (A.48), we obtain

ϕ→ ϕR − igθα [iTα
I ϕR + iTα

RϕI ] + i {ϕI − igθα [−iTα
RϕR + iTα

I ϕI ]} (A.52)

This can also be written as
(
ϕR

ϕI

)

→
(
ϕR

ϕI

)

− igθα
(

iTα
I ϕR + iTα

RϕI

−iTα
RϕR + iTα

I ϕI .

)

(A.53)

Therefore, the appropriate definition of T̃α, in order to guarantee eq. (A.51), is

T̃α =

(
iTα

I iTα
R

−iTα
R iTα

I

)

. (A.54)

which manifestly fulfills (T̃α)T = −T̃α. The gauge-kinetic term can then be written as

Lkin =
1

2
(DµΦ)T (DµΦ) (A.55)

with

(DµΦ) = (∂µ − igT̃αAα
µ)Φ . (A.56)

Moreover, it can can be checked that the generators T̃α also fulfill the Lie algebra

[T̃α, T̃ β] = ifαβγ T̃ γ (A.57)

if it is fulfilled by T̂α

[T̂α, T̂ β ] = ifαβγ T̂ γ . (A.58)

Of course, in case a complex scalar appears in the theory, we need to rewrite not only the
gauge-kinetic term, but also all interaction terms that the field is involved in. As an example
consider the 5H − 24H mixing term in the Georgi-Glashow model that appears in eq. (2.10)

V (5H ,24H) ⊃ c (T̂αT̂ β)ij24Hα24Hβ
5⋆Hi

5Hj
, (A.59)
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where T̂α are now the hermitian generators in the fundamental representation of SU(5). For
convenience we write 5Hj

≡ ϕj henceforth. The task therefore is to rewrite

(TαT β)ijϕiϕj (A.60)

in terms of Φ. Inserting eq. (A.49) into eq. (A.60), we obtain

(TαT β)ijϕiϕj =
c

2

[
ϕRi

ϕRj
+ ϕIiϕIj + iϕRi

ϕIj − iϕIiϕRj

]
×

[

(Tα
RT

β
R)ij − (Tα

I T
β
I )ij + i(Tα

RT
β
I )ij + i(Tα

I T
β
R)ij

]

=
c

2

[
ϕRi

ϕRj
+ ϕIiϕIj

] [

(Tα
RT

β
R)ij − (Tα

I T
β
I )ij

]

− c
2

[
ϕRi

ϕIj − ϕIiϕRj

] [

(Tα
RT

β
I )ij + (Tα

I T
β
R)ij

]

, (A.61)

where symmetry properties in the indices i and j of the two terms in parentheses have been
exploited. It is now possible to introduce the antisymmetric generator matrix T̃α since

(TαT β)ijϕiϕj =
c

2
(ϕRi

, ϕIi)

(

(Tα
RT

β
R)ij − (Tα

I T
β
I )ij −(Tα

RT
β
I )ij − (Tα

I T
β
R)ij

(Tα
RT

β
I )ij + (Tα

I T
β
R)ij (Tα

RT
β
R)ij − (Tα

I T
β
I )ij

)(
ϕRj

ϕIj

)

=
c

2
Φi(T̃

αT̃ β)ijΦj (A.62)

Therefore the mixing term is appropriately rewritten as

c (T̂αT̂ β)ij24Hα24Hβ
5⋆Hi

5Hj
=

c

4
Φi{T̃α, T̃ β}ijΦj24Hα24Hβ

, (A.63)

where the anticommutator has been introduced in order to have a manifestly symmetric
coupling in α, β and i, j. The result agrees with the form of λ5−24

αβij that has been used in
eq. (6.1). Moreover, it is noteworthy that when going to Minimal SUSY SU(5), the undertaking
of rewriting all complex scalars becomes unequally more complicated because of the large
number of different scalar couplings in the potential.

A.4. β Functions for the SM

For the convenience of the reader, we list the RGEs for the gauge and Yukawa couplings in
the SM here. We define the β function coefficients for the gauge couplings including Yukawa
corrections as follows

1

2

dαi

d t
= βi0

(αi

4π

)2
+
(αi

4π

)2




∑

j=t,b,τ

βijYuk

( yj
4π

)2
+

3∑

j=1

βij1
αj

4π



+ δ3i β
QCD
2

(α3

4π

)3
,(A.64)

where the three-loop contribution β2 is only known for α3. The coefficients have been deter-
mined in refs. [112,113] (QCD) and [27,28,114] (electroweak sector)

β0 =





1
10 + 4

3ng
−43

6 + 4
3ng

4
3ng − 11



 , β1 =





9
50 + 19

15ng
9
10 + 3

5ng
44
15ng

3
10 + 1

5ng −259
6 + 49

3 ng 4ng
11
30ng

3
2ng −102 + 76

3 ng



 ,

βQCD
2 = −2857

2
+

10066

18
ng −

650

27
n2g , βYuk =





−17
10 −1

2 −3
2

−2
3 −2

3 −1
2

−2 −2 0



 . (A.65)
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Here ng = 3 is the number of fermion generations in the SM. The RGEs for the Yukawa
couplings are given by

dyi
dt

= yi

[

1

16π2
β̄
(1)
i +

(
1

16π2

)2

β̄
(2)
i

]

, i = t, b, τ (A.66)

where the functions β̄
(1)
i and β̄

(2)
i are defined as the (3, 3) components of the matrices β̄

(1)
U,D,L

and β̄
(2)
U,D,L given in eqs. (B.4) to (B.10) of ref. [28]. There we need to insert the replacements

H = diag(0, 0, yt) , FD = diag(0, 0, yb) , FL = diag(0, 0, yτ ) . (A.67)

We refrain from reproducing the full formulae for the Yukawa RGEs here because of their
large size.

A.5. β Functions for the MSSM

For the case of the MSSM full three-loop RGEs are known [24]. We reproduce them partly for
convenience and for the missing parts specify how to translate the result of ref. [24] into our
notation. For the gauge β function we have

1

2

dαi

d t
= βi0

(αi

4π

)2
+
(αi

4π

)2




∑

j=t,b,τ

βijYuk

( yj
4π

)2
+

3∑

j=1

βij1
αj

4π



+ βi2 , (A.68)

where

β0 =





3
5 + 2ng
−5 + 2ng
2ng − 9



 , β1 =





9
25 + 38

15ng
9
5 + 6

5ng
88
15ng

3
5 + 2

5ng −17 + 14ng 8ng
11
15ng 3ng −54 + 68

3 ng



 ,

βYuk =





−26
5 −14

5 −18
5

−6 −6 −2
−4 −4 0



 , (A.69)

where again ng = 3 is the number of generations. Furthermore, the three-loop contribution

βi2 in eq. (A.68) is related to the quantities β
(3)
gi given in eqs. (6a) to (6c) in ref. [24] via

βi2 =
gi

(16π2)4
β(3)gi (A.70)

The formulae for the three-loop contributions to the running of the Yukawa couplings are
huge. Therefore, we do not list them here. Taking into account only third generation Yukawa
couplings and setting VCKM = 1l, the RGEs read

dyi
dt

= (βYi
)33 , i = t, b, τ , (A.71)

where the matrices βYi
are defined in eq. (11) of ref. [24].
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A.6. Three-Loop Gauge β Function for the Georgi-Glashow SU(5)
Model

For performing a consistent three-loop RGE analysis, apart from the two-loop GUT matching
corrections also the three-loop gauge β function for the Georgi-Glashow model is needed.
The authors of ref. [25] give a general formula for the gauge β function of a general single
gauge coupling theory. Specifying the group theory factors that appear there to the Georgi-
Glashow model and inserting the scalar self-couplings from eq. (6.1), as well as the Yukawa
coupling from eq. (6.4) into their general result gives us the desired β function including scalar
self-couplings and Yukawa corrections:

1

2

d

dt

α

4π
= −40

3

( α

4π

)2
(A.72)

−1184

15

( α

4π

)3
+

[

−9

2

( yt
4π

)2
− 5

( yb
4π

)2
] ( α

4π

)2

−1007357

1080

( α

4π

)4

+

[

− 1323

4

( yt
4π

)2
− 3617

10

( yb
4π

)2

+
155

96

A

(4π)2
+

11

20

b

(4π)2
+

125

12

B

(4π)2
+

25

4

c

(4π)2

]
( α

4π

)3

+

[

51

4

( yt
4π

)4
+

47

4

( yb
4π

)4
+

839

8

y2t y
2
b

(4π)4

− 493

11520

A2

(4π)4
− 47

144

AB

(4π)4
− 1

12

b2

(4π)4
− 65

36

B2

(4π)4
− 851

200

c2

(4π)4

]
( α

4π

)2
.

The first line of this equation represents the one-loop result, the second line the two-loop
result and the rest corresponds to the three-loop corrections. Since the Yukawa couplings
enter the gauge β function starting from two-loop level only, it is enough to employ the one-
loop RGEs for the Yukawa couplings for the precision we are aiming at. These can be derived
in a similar manner from the general formula in ref. [28]:

dyt
dt

= yt

[

− 108

5

( α

4π

)

− 6
( yb

4π

)2
+ 9

( yt
4π

)2
]

,

dyb
dt

= yb

[

− 18
( α

4π

)

+ 11
( yb

4π

)2
− 9

2

( yt
4π

)2
]

. (A.73)

The scalar self-couplings A,B and c that appear in eq. (A.72) only at the three-loop level
are approximated as constants in our analysis by replacing them by their relations to the
physical mass parameters MΣ,M24,MHc ,MX, and the gauge coupling α by using eqs. (2.11)
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and (2.12). The scalar self-coupling b that appears here can be approximated similarly by a
constant using the SM Higgs mass M2

H,SM and the mass of the W boson MW :

b =
3

4
g2
M2

H,SM

M2
W

. (A.74)

A.7. Three-Loop Gauge β Function for Minimal SUSY SU(5) and
the Missing Doublet Model

The analysis in chapter 3 required the knowledge of the three-loop gauge β function for
Minimal SUSY SU(5) and the Missing Doublet Model. This can be derived from the general
formula given in ref. [26] neglecting Yukawa contributions for simplicity. With our convention
of β function coefficients, eq. (2.24), and the notation of eq. (5.9) their formulae read

β0 =
∑

x

I2(Π
x)− 3I2(ΠA) ,

β1 = 2 I2(ΠA)β0 + 4
∑

x

C2(Πx)I2(Πx) ,

β2 = −8
∑

x

C2(Πx)2I2(Π
x) +

[
8 I2(ΠA)− 6β0

]∑

x

C2(Π
x)I2(Π

x)

+β0I2(Π
A)
[
4 I2(ΠA)− β0

]
, (A.75)

where the sums are performed over all supermultiplets that appear in the theory. For the
case of Minimal SUSY SU(5) the superfield content is

24H ⊕ 5H ⊕ 5H ⊕ 5⊕ 10 . (A.76)

An explicit calculation with Mathematica yield the following numerical values for the invari-
ants

I2(ΠA) = I2(Π
24) = C2(Π

24) = 5 ,

I2(Π
5) =

1

2
, C2(Π

5) =
12

5
,

I2(Π10) =
3

2
, C2(Π

10) =
18

5
. (A.77)

Inserting this into eq. (A.75) leads to the β function coefficients for Minimal SUSY SU(5)

β0 = −3 ,

β1 =
794

5
,

β2 =
20271

25
. (A.78)

For the Missing Doublet Model a few additional invariants are needed

I2(Π
75) =

50

2
, C2(Π

75) = 8 ,

I2(Π
50) =

35

2
, C2(Π

50) =
42

5
. (A.79)
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A.8. Derivation of the µGUT-dependent Terms in ζαi
(eq. (6.11))

However, as motivated in chapter 3, we do not take into account the contributions from 50H

and 50H in order to stay perturbative below the Planck scale. Then the β function coefficients
for the Missing Doublet Model read

β0 = 17 ,

β1 =
5294

5
,

β2 = −672579

25
. (A.80)

The one-loop RGEs for the Yukawa couplings in Minimal SUSY SU(5) read [18]

dyt
dt

= yt

[

12

5

(
λ2
4π

)2

+ 9
( yt

4π

)2
+ 4

( yb
4π

)2
− 96

5

( α

4π

)
]

,

dyb
dt

= yb

[

12

5

(
λ2
4π

)2

+ 3
( yt

4π

)2
+ 10

( yb
4π

)2
− 84

5

( α

4π

)
]

,

(A.81)

where the Higgs self-coupling appear that have been defined in eq. (2.19). They evolve as
follows

dλ1
dt

= λ1

[

567

40

(
λ1
4π

)2

+
3

2

(
λ2
4π

)2

− 30
( α

4π

)
]

,

dλ2
dt

= λ2

[

189

40

(
λ1
4π

)2

+
53

10

(
λ2
4π

)2

− 98

5

( α

4π

)

+ 3
( yt

4π

)2
+ 4

( yb
4π

)2
]

. (A.82)

For the case of the Missing Doublet Model the RGEs for the Yukawa couplings are obtained
from the above system by setting λ2 = 0 and λ1 evolves as

dλ1
dt

= λ1

[

448

(
λ1
4π

)2

− 48
( α

4π

)
]

. (A.83)

These RGEs can be used in conjunction with e.g. eq. (2.20) to check whether the Higgs
self-couplings remain perturbative up to the Planck scale.

A.8. Derivation of the µGUT-dependent Terms in ζαi
(eq. (6.11))

The µGUT-dependent terms of the n-loop decoupling coefficient ζαi
are fixed by n-loop gauge

β functions as will be shown in this section. This fact has been exploited as a nontrivial check
of our result in section 6.3. We use the shorthand notation ai ≡ αi

π and a ≡ α
π here and start

with the decoupling relation

ai(µGUT) = ζαi
(µGUT) a(µGUT) . (A.84)

We take the derivative of eq. (A.84) with respect to tGUT ≡ ln(µGUT)

dai
d tGUT

= a
dζαi

d tGUT
+ ζαi

da

d tGUT
(A.85)
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Appendix A. Appendix

and use the perturbative expansion of the gauge β functions and the decoupling coefficient
up to the two-loop level

da

d tGUT
=

1

2
β0a

2 +
1

8
β1a

3 ,

dai
d tGUT

=
1

2
βi0a

2
i +

1

8
a2i
∑

j

βij1 aj ,

ζαi
= 1 + aAi + a2Bi , (A.86)

where the tGUT dependence of a, ai, Ai and Bi has been suppressed. Inserting this into
eq.(A.85), expressing all ai through a via eq. (A.84) and keeping only terms up to O(a3)
yields

0 = a2
{

dAi

d tGUT
− 1

2
βi0 +

1

2
β0

}

+a3







dBi

d tGUT
− βi0Ai + β0Ai −

1

8

∑

j

βij1 +
1

8
β1






. (A.87)

Each order in a must vanish separately, which defines two equations for Ai and Bi. Integrating
the equation of O(a2) leads to

Ai = 1
2(βi0 − β0)tGUT − C0 (A.88)

with a tGUT-independent constant C0. Inserting this result into the O(a3) equation and
integrating yields

Bi = 1
4(βi0 − β0)2 t2GUT +

[
1
8(Σjβ

ij
1 − β1)− C0 (βi0 − β0)

]

tGUT + C1 (A.89)

with a tGUT-independent constant C1. C0 and C1 can, however, depend on the physical
masses of the heavy particles that are integrated out, which we collectively denote by Mh.
This dependence is actually what makes the full calculation of ζαi

nontrivial at the end.
Inserting our results for Ai and Bi back into eq. (A.86), the final result is obtained:

ζαi
(µGUT) = 1 +

α(µGUT)

π

[
1
2 (βi0 − β0) tGUT − C0(Mh)

]

(A.90)

+

(
α(µGUT)

π

)2
[

1
4(βi0 − β0)2 t2GUT +

[
1
8(Σjβ

ij
1 − β1)− C0(Mh) (βi0 − β0)

]

tGUT + C1(Mh)

]

.

The inclusion of Yukawa corrections to this formula is straightforward.
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