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Zusammenfassung 
Alopecia Areata (AA) ist eine organspezifische Autoimmunerkrankung, welche 

Haarfollikel in der anagenen Phase angreift und durch eine peri- und intrafollikuläre 

Infiltration mit CD4+ und CD8+ T Zellen charakterisiert ist.  

Die wirkungsvollste Behandlungsmethode besteht in der Induktion eines milden 

chronischen Kontaktekzems durch die topikale Applikation eines Kontaktallergens 

wie Sqaricdibutylester, das über mehrere Monate appliziert wird. Die Mechanismen, 

welche dem therapeutischen Effekt eines Kontaktekzems bei AA zu Grunde liegen, 

sind weitgehend unbekannt. Es gibt jedoch Hinweise auf eine Expansion sogenannter 

myeloider Suppressorzellen, die Proliferation und Aktivierung von T-Zellen hemmen. 

Andererseits kann auch eine Blockade kostimulatorischer Moleküle der T-

Zellaktivierung, wie z.B. CD44, therapeutisch wirksam sein.  

Aktivierte T-Zellen sind durch eine Hochregulation der Expression von CD44 

charakterisiert. Dies führt zu einer Steigerung der T-Zellproliferation und erhöht 

deren migratorisches Potenzial. Es wurde postuliert, dass diese Effekte auf eine 

Kooperation von CD44 mit CD49d zurückzuführen sind. Um diese Hypothese zu 

überprüfen und die zu Grunde liegenden Mechanismen zu klären, habe ich zwei 

Leukämiezelllinien, EL4 und Jurkat, die entweder CD44 (Jurkat) oder CD49d (EL4) 

exprimieren mit der CD44 bzw. CD49d cDNA transfiziert. Zusätzlich habe ich CD44 

und CD49d Mutanten erstellt, die die Interaktion dieser beiden Moleküle miteinander 

oder die Interaktion mit dem Zytoskelett oder zytoplasmatischen Kinasen verhindern. 

Erste Befunde bestätigen die funktionelle Aktivität der transfizierten  Moleküle und 

belegen, insbesondere im Kontext mit der Motilität der T-Zellen, das essentielle 

Zusammenspiel von CD44 und CD49d und ergaben Hinweise auf beteiligte 

Zytoskelett- und Signaltransduktionsmoleküle. Entsprechende Untersuchungen der 

transfizierten Leukämiezelllinien zum Einfluss von CD44 und CD49d auf die T-

Zellproliferation belegten, dass das gewählte Modell zur Beantwortung der Frage 

geeignet ist. Untersuchungen zum molekularen Mechanismus sind noch nicht 

abgeschlossen. 

Diese Befunde deuten auf eine Kooperation von CD44 und CD49d in der T-

Zellmigration, -aktivierung und -proliferation hin. Eine Blockade von CD44 und 

CD49d  könnte einen Ansatzpunkt für die Therapie von Autoimmunerkrankungen 

darstellen. 
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Um die Frage zu beantworten, ob myeloide Suppressorzellen maßgeblich für den 

therapeutischen Effekt eines chronischen Kontaktekzems verantwortlich sind, habe 

ich zerst gezeigt, dass eine Behandlung mit trans-Retinolsäure den therapeutischen 

Effekt eines chronischen Kontaktekzems aufhebt. Es ist bekannt, dass trans-

Retinolsäure  myeloide Suppressorzellen in die Differenzierung treibt und sie dabei 

ihre suppressive Eigenschaft verlieren. Somit belegt dieser Versuch, dass myeloide 

Suppressorzellen maßgeblich am Therapieeffekt eines Kontaktekzems bei AA 

beteiligt sind. 

Um die Mechanismen zu klären, mittels derer ein chronisches Kontaktekzem bzw. 

myeloide Suppressorzellen mit den autoreaktiven T-Zellen der AA interferieren, 

wurden die Effekte einer Kontaktallergenbehandlung  mit denen von in vitro 

Kokulturen von T-Zellen aus  AA Mäusen mit myeloiden Suppressorzellen von 

Kontaktallergen-behandelten Mäusen verglichen. Kontaktallergenbehandlung und 

myeloide Suppressorzellen inhibieren die Proliferation der T-Zellen von AA Mäusen. 

Es wurde eine leichte Reduktion der ξ Kettenexpression und eine stark verminderte 

Aktivierung von Lck und Zap 70 beobachtet. und, weniger ausgeprägt, einer 

Reduktion der c-jun- und MAPK-Signalwege begleitet. Der stärkste Effekt wurde in 

Anwesenheit von AA-Hautlysaten, eines autoantigenen Stimulus, gesehen. Die 

Proliferation wurde aber auch bei T-Zellrezeptor-unabhängiger Stimulation durch 

PMA und Ionomycin gehemmt. Dieser Befund belegt, dass ein Kontaktallergen bzw. 

myeloide Suppressorzellen zumindest teilweise unabhängig vom T-Zellrezeptor-

Komplex wirken. Tatsächlich steigern ein Kontaktallergen bzw. myeloide 

Suppressorzellen die Aktivierung verschiedener proapoptotischer Moleküle, die an 

der mitochondrialen Apoptose beteiligt sind, und hemmen den anti-apoptotischen 

PI3K/Akt Weg. Der letzt genannte Effekt korreliert mit der TNFα-Sekretion der 

myeloide Suppressorzellen und TNFRI-Expression in Kontaktallergen behandelten T-

Zellen von AA Mäusen. 

Zusammenfassend kann gesagt werden, dass die Kontaktallergenbehandlung 

myeloide Suppressorzellen induziert, welche T-Zellaktivierung inhibieren und dazu 

beitragen Apoptoseresistenz autoimmuner T-Zellen  zu senken, indem sie die 

Aktivierung von pro-apoptotischen Proteinen induzieren. Kontaktallergen-induzierte 

myeloiden Suppressorzellen erscheinen daher für die Therapie organspezifischer 

Autoimmunerkrankungen in besonderer Weise geeignet. 
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1: Introduction 

 
1.1 Skin and Hair 
  
The skin is the largest organ of the integumentary system and it provides a protective 

barrier that keeps microbes out and essential body fluids in (1). Skin is composed of 

three primary layers: the epidermis, which provides water proofing and serves as a 

barrier to infection; the dermis, which serves as a location for the appendages of skin 

including  hair follicles and the hypodermis (subcutaneous adipose layer) (2). Hair is 

a filamentous biomaterial, which grows from follicles found in the dermis of the skin 

and is primarily composed of protein, notably keratin. Hair is one of the defining 

characteristics of the mammalian class since it is exclusively found in mammals. 

1.1.1 Hair Structure 

A cross section of the hair may be divided roughly into three zones:  

 Cuticle: it is the outermost part of the hair shaft. It is a hard shingle-like layer of 

overlapping cells. The hair cuticle is the first line of defense against all forms of 

damage; it acts as a protective barrier for the softer inner structure including 

the medulla and cortex and also controls the water content of the fiber (3).  

 Cortex: it contains the keratin bundles in cell structures and makes up the majority 

of the hair shaft. It is the cortex that gives hair its special qualities such as elasticity 

and curl.  

 Medulla: it is also called the pith or marrow of the hair. It is composed of round 

cells, two to five rows across. Thick or coarse hair usually contains a medulla while 

fine hair lacks a medulla (4). 

Hair grows from a follicular structure called hair follicle (HF) which serves as a hair 

root. The mature HF is a complex structure, composed of several concentric cylinders 

of epithelial cells, known as root sheaths which surrounds the hair shaft (5) The HF 

contains at its base a ball of specialized dermal cells, the dermal papilla which is fed 

by the blood stream and plays a very crucial role in the regulation of successive cycles 

of postnatal hair growth. Signals from the dermal papilla instruct epithelial stem cells 
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residing in the bulge region of the follicle to migrate to the base of the follicle, where 

they surround the dermal papilla, forming the hair matrix in response to further  

signals from dermal papilla matrix cells proliferate and differentiate to form hair shaft 

and inner root sheath (Scheme 1). Melanocytes also reside in HF and deposit pigment 

granules into the hair shaft as it forms (6-8). Keratins are a major structural 

component of the hair follicle. The hair shaft is a highly keratinized tissue formed 

within the hair follicle. When the specific epithelial cells in the hair shaft, known as 

trichocytes, pass through the keratinizing zone, keratinization actively occurs and the 

rigid hair shaft is generated (9). In humans, a total of 17 functional hair keratin genes 

(11 type I and 6 type II) have been identified. It has been shown that these hair 

keratins, except for one type II keratin K84 (Hb4), are abundantly and sequentially 

expressed in the hair shaft (10, 11, 12). 

 

 

Scheme1.  Structure of hair follicle. 
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1.1.2 Hair follicle morphogenesis 
 
The formation of hair follicles occurs during embryogenesis through a series of 

signals between dermal cells and overlying surface epithelial cells resulting in 

differentiation of the hair shaft, root sheaths, and dermal papilla (13). The epithelial 

cells that receive this ‘first dermal signal’ form a thickening of columnar cells known 

as a placode. Subsequently, a signal from the placode leads to the formation of a 

mesenchymal (dermal) condensate just beneath the placode. In response to a ‘second 

dermal signal’ from the dermal condensate, the epithelial placode cells proliferate and 

invade the dermis, eventually surrounding the dermal condensate, which develops into 

dermal papilla. Further proliferation and differentiation of the epithelial cells results in 

the formation of the inner root sheath and hair shaft of the mature hair follicle. 

Finally, the epithelial cells undergo proliferation and eventual differentiation into 

several distinct layers (14, 15) (Scheme 2). 

 

Scheme2. Follicular morphogenesis (17). 

1.1.3 Hair Growth cycle 

Each hair follicle undergoes a cycle of activity. The hair grows to a maximum length, 

then hair growth ceases and the hair is shed and replaced. At any one time we have 

only around 85% of our hair growing, the rest being in the resting stages. The hair 
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growth cycle has three distinctive phases (Scheme 3); Anagen: the period of active 

growth; Catagen: the period of breakdown and change; Telogen: the resting stage 

before resumption of growth 

1.1.3.1 Anagen: The epidermal cells surrounding the dermal papilla form the 

germinal matrix or root of the hair. These cells are constantly dividing, and as new 

cells are formed they push the older ones upwards where they begin to change shape. 

By the time the cells are about one-third of the way up the follicle they are dead and 

fully keratinized (16). In the anagen phase, the HF grows downward and forms the 

matrix region at its base. These matrix cells actively proliferate and differentiate into 

several distinct cell types, giving rise to the companion layer, the inner root sheath, 

and the hair shaft (17). A scalp hair will grow actively for between one and a half and 

seven years (three years being an average growth period). The average growth rate is 

about half an inch per month. On average 85% of follicles are in the anagen stage. 

1.1.3.1 Catagen: This is the end of the active growth period, and is marked by 

changes occurring in the follicle. The hair stops growing and becomes detached from 

the base of the follicle forming a club hair. The hair bulb begins to break down, 

resulting in the follicle becoming shorter. A small section of the outer root sheath 

remains in contact with the group of cells that formed the papilla. This period of 

breakdown or change lasts about three weeks. As the inner root sheath breaks down, 

the hair remains in the follicle due to its shape. On average, 1% of follicles are in the 

catagen stage. In the catagen phase, the lower portion of the HF undergoes apoptosis 

and regresses toward the permanent portion, before the HF returns to the telogen 

phase. Importantly, the mesenchyme-derived dermal papilla regresses and descends 

with the lower portion of the HF during catagen (17). 

1.1.3.2 Telogen: The section of remaining root sheath still in contact with the papilla 

is known as the secondary or root germ. It is from this root germ that a new hair can 

grow. The shortened follicle rests for about three months. The hair may be brushed 

out at this time or at the onset of anagen. On average 14% of follicles are in the 

telogen stage. 

 After the telogen stage the cycle returns to anagen and the root germ begins to grow 

downwards and forms a new bulb around the dermal papilla. It is the lower end of the 
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germ that forms the new bulb, producing a new hair. The upper part of the germ forms 

the new cells that lengthen the follicle below the club hair. The new hair may push the 

old hair out; therefore sometimes one may see two hairs in the same follicle (18, 19). 

 

Scheme3. The hair cycle:  The stages of the hair cycle are depicted, starting from the first 

postnatal anagen, when the hair shaft is growing and protruding through the skin surface. Follicles 

progress synchronously to the destructive (catagen) phase, during which the lower two-thirds of the 

follicle undergo apoptosis and regress. The dermal papilla is brought to rest below the bulge-stem-cell 

compartment, and after the resting (telogen) phase, a critical threshold of activating factors is reached 

and the stem cells become activated to regrow the hair (17). 
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1.2  Diseases associated with hair 
 

The loss of hair is known as Alopecia, this disease is not life threatening but the 

pressures of an image orientated society can make hair loss psychologically 

devastating for those affected, their families, and friends. 

The loss of hair could be either permanent or temporary, based on these clinical 

observations; alopecia is further classified broadly as: 

 Scarring (cicatricial) alopecia:  hair loss associated with fibrosis and scar tissue that 

replaces and often permanently destroys the hair follicle. 

 Non-Scarring alopecia: hair loss without permanent destruction of the hair follicle 

(20). 

1.2.1 Scarring (cicatricial ) Alopecia 

This disorder destroys the hair follicle and replaces the follicle with a scar of fibrous 

tissue causing permanent hair loss. In some cases, the hair loss is gradual and no 

symptoms are evident for long periods. In other cases, scarring alopecia causes are 

associated with severe itching, burning and pain which are rapidly progressive. The 

inflammation destroys the follicle below the skin surface but above the skin surface 

generally not much inflammation is visible. Studies leads to a hypothesis that scarring 

alopecia involves the malfunctioning of one of the hair structure machineries, which 

includes the stem cell rich region in the hair follicle and the outer root sheath (21). 

Most kinds of the alopecia of the scarring type involve the inflammatory infiltration 

of different immune cells and affecting one of these structures. 

On the basis of the predominant type of inflammatory cell component, the scarring 

alopecia is further classified into three groups: Lymphocytic scarring alopecia, 

Neutrophilic scarring alopecia and Mixed inflammatory scarring alopecia  

 

1.2.1.1 Lymphocytic scarring alopecia: It is associated with infiltration of 

lymphocytes into structural component of hair. The most common example of this 

type of alopecia is Discoid Lupus Erythematosus (DLE) or Chronic Cutaneous Lupus 

Erythematosus. Clinically DLE is characterized by ill defined patches of alopecia, 

with decreased follicular orifices, scale erythema, follicular plugging, depigmentation 

and atrophy (22). Some studies suggest that exposure to ultraviolet light provokes or 



                                                                                                                      Introduction 

 13

incites keratinocyte apoptosis and a reactive T-cell- or immune-complex-mediated 

response. 

 

1.2.1.2 Neutrophilic scarring alopecia:  It involves intrafollicular and perifollicular 

neutrophil infiltration. One of the examples of this kind is Folliculitis Decalvans, 

characterized by inflamed hair follicles that discharge pus. This scarring alopecia is an 

outcome of the patient’s susceptibility to infections due to systemic or local immune 

deficits and Staphlococcus aureus strain related properties. (Both acquired and 

inherited immune disturbances are associated with folliculitis decalvans) (23). 

 

1.2.1.3 Mixed inflammatory scarring alopecia: It involves both neutrophil and 

lymphocytes infilteration in intrafollicular and interfollicular regions. Example 

includes, Folliculitis (Acne) Keloidalis, early in this disease there is follicular 

dialation with neutrophil and follicular rupture, late lesions shows perifollicular 

granulomas around naked hair shafts mixed with a lymphoplasmacellular cell 

infiltrate and hypertrophic scar with broad eosinophilic hyalinized keloidal collagen 

bundles. Sebaceous glands are absent in this disease (24-26). 

 

1.2.2 Non- Scarring Alopecia:  

Non scarring alopecia involves temporal hair loss. Hair follicles are intact and are not 

damaged. Clinically in non-scarring alopecia follicular orifices are grossly apparent 

on the scalp and histo-pathologically the follicular units are intact. Hence hair re-

growth is possible in non-scarring alopecia. This kind of alopecia involves different 

kinds: 

 

1.2.2.1 Androgenetic alopecia: It is the most common type of hair loss. It is a 

disorder of dominant inheritance with variable penetrance (27, 28) affecting 

approximately half of the population by the age of 50 years, of both the sexes (28, 

29). Clinically it is a patterned alopecia, i.e. it is characterized by bitemporal recession 

and vertex balding in men (30) and in women (female pattern hair loss) by diffuse 

hair thinning of the crown with an intact frontal hair line (31). The total numbers of 

hair follicle remains unchanged but are genetically programmed, under the influence 

of androgens to undergo miniaturization (28, 32-34).  
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1.2.2.2 Telogen effluvium: it is a diffuse form of alopecia, in which the hair falling 

may be acute or chronic. Acute telogen effluvium can occur in both male and female 

and can be triggered by numerus factors like major surgery, injury, severe illness, 

childbirth, crash diet and numerous medications (33,35).  

 

1.2.2.3 Traction alopecia: It is a non-inflammatory, non-scarring alopecia which 

occurs due to mechanical damage. Clinically, the hair loss is often seen at the margins 

of the scalp, involving the frontal, temporal and parietal regions. In early traction 

alopecia the hair loss is temporary; in late traction alopecia there is marked loss of the 

terminal follicles with preservation of the vellus hairs and sebaceous glands and can 

lead to scarring process and thus permanent hair loss (36). 

 

1.2.2.4 Alopecia areata:  Alopecia areata (AA) is an inflammatory hair loss disease 

that can affect men, women and children. Circumstantial evidence suggests alopecia 

areata is an autoimmune disease where cells of an individual's own immune system 

prevent hair follicles from producing hair fiber. Alopecia affects certain stages of hair 

growth cycle the most affected stage could be the active phase, anagen stage which is 

characterized by active DNA synthesis and melanogenesis. 

Clinically, it is characterized by sudden onset of patches of nonscarring hair loss,   

with ‘exclamation-point’ hairs.  It may involve the entire scalp (alopecia totalis) and 

body hair (alopecia universalis), nail changes (pitting, thickening and ridging) may be 

seen. The early active stage is characterized by a peribulbar lymphoid cell infiltrate 

(33, 37) affecting the terminal hair follicles (35) and may invade the follicular 

epithelium and the matrix, as well as extend above the hair bulb and into fibrous tracts 

(37). Initially, the terminal hairs are attacked, but subsequently also the vellus hairs 

become involved. Eosinophils (38) and plasma cells may be present (39, 37).  There is 

a 70–90% ‘shift out of anagen’ of the hair follicles into catagen or telogen phase (33), 

but the number of hair follicles is unchanged. In longstanding (chronic) stages, with 

repeated episodes, the peribulbar lymphoid cell infiltrate also involves miniaturized 

hairs (35, 37). The majority of the hair follicles will be in catagen ⁄ telogen phase. 
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1.3  Alopecia areata as an autoimmune disease 
Alopecia areata (AA) is a heterogeneous disease characterized by non scarring hair 

loss on the scalp or any hair-bearing surface. It is one of the most frequently occurring 

organ-restricted autoimmune diseases in humans targeted to hair follicle (40).  

However, the antigenic targets, mechanisms, and consequences of autoimmune attack 

in AA have yet to be determined, but the evidence that autoimmunity may play a role 

in AA is dependant upon following factors: 

i) Its association with other autoimmune diseases, like vitiligo and thyroid diseases 

including Hashimoto’s Thyroiditis also, anti-thyroid antibodies and thyroid 

microsomal antibodies have been found in AA patients (41, 42).  

ii)   Response of AA patient to immunosuppressive or immunomodulatory therapy.   

iii) The characteristic infiltration of lymphocytes is present in and around the hair 

bulbs in active disease (43). In AA the infiltrate consists predominantly of activated T 

lymphocytes along with macrophages and Langerhans cells (44-46). Both CD4+ and 

CD8+ T lymphocytes are observed peri- and intra-follicularly. Studies involving 

injections of separated CD4+ and CD8+ or both cells together demonstrated that 

injection of purified single cell type alone did not result in hair loss, in contrast 

mixture of CD4+ and CD8+ T cells results in significant loss of hair. These results 

suggest that both CD4+ and CD8+ T cells have an important role in the pathogenesis 

of AA (47). An increased expression has been observed of class I MHC and class II 

MHC antigens in and around the lesions.  

iv) Pro-inflammatory changes occur both in the skin and in immune system organs. 

Inflammatory markers include the upregulation of expression of intercellular cell 

adhesion molecule (ICAM) and endothelial leukocyte adhesion molecule (ELAM) on 

the endothelium of blood vessels closely associated with affected hair follicles (48-

50). Changes in cytokine levels, particularly activating cytokines such as interleukin 2 

(IL- 2) and interferon-γ (IFN-γ) have been noted in patients with AA compared to 

normal controls (51). 

v) Associations between specific human leukocyte antigen (HLA genes) and AA lend 

further circumstantial evidence that autoimmune mechanisms are involved in the 

pathogenesis of disease. Normal hair follicle epithelium typically does not express the 

HLA class I antigen A, B and C. There is a concomitant increased expression of HLA 

class I (HLA-A, B, and C) and class II (HLA-DR) antigens in AA, (52, 53). In 
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particular, HLA class II alleles – DR4, DR5 (DR11), DR6 (54-61), and HLA-DQ3 

(including both subtypes DQB1*0301 (DQ7) and DQB1*0302 (DQ8)) (54-56, 64, 65) 

have been most consistently associated with AA. Furthermore, specific HLA 

associations have been reported as markers of clinical sub-types of AA (64). In the 

more severe forms of the disease–alopecia totalis (AT) and alopecia universalis (AU) 

– DRB1*0401 (DR4) and DQB1*0301(DQ7) are expressed with increased frequency 

(64). Hair follicles in the anagen phase are recognized sites of immune privilege. HF 

immune privilege is characterized by down regulation of MHC class I expression and 

strong local expression of immunosuppressants. HF appear to maintain immune 

privilege by actively suppressing natural killer cells (66) and  showed that the NK cell 

inhibitor, macrophage migration inhibitor factor, is strongly expressed by HF 

epithelium and that very few NK cells are observed in and around normal anagen HF 

compared to AA, in which they are prominently aggregated. A collapse of the 

immune privilege (IP) of the hair follicle results in the loss of hair, as seen in patients 

with AA (Scheme 4). 

 
 

Scheme4. A model of immune privilege collapse in AA pathogenesis: Both a normal 

anagen (growing) hair follicle (A) and a hair follicle in AA (B) are shown. MHC class I molecules are 

expressed on the epidermis, and on the most superficial (distal) portion of the normal hair follicle 

epithelium. The inferior (proximal) portions of the hair follicle are immune privileged and deficient in 

expression of MHC classes I and II as well as APCs. By contrast, the AA anagen hair follicle expresses 

MHC class I and II molecules throughout the follicular epithelium, including the portion adjacent to the 

dermal papilla of the hair follicle. Active AA also exhibits a perifollicular infiltrate of CD4+ T cells and 

an intrafollicular infiltrate of CD8+ T cells. IRS, inner root sheath; ORS, outer root sheath (65). 
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Experimental studies also give stronger evidence that autoimmune phenomenon is 

involved in AA, for example lesional scalp skin from AA patients grafted onto nude 

(athymic) mice shows regrowth of hair, suggesting a loss of inhibition by T cells. 

These experiments strongly suggest that the key mediators of AA reside outside the 

follicle itself. Given that lesional skin grafts are able to regrow hair in an athymic 

host, functional T cell populations appear to be involved in the pathogenesis of this 

disease (67). The strongest evidence implicating autoimmune mechanisms in the 

pathophysiology of alopecia areata has been provided by studies involving mice with 

severe combined immunodeficiency (SCID) (68). AA was induced on human scalp 

explants transplanted onto SCID mice by injection of autologous T lymphocytes from 

lesional skin. In particular, only T lymphocytes cultured with hair follicle homogenate 

and antigen presenting cells were capable of inducing AA in scalp explants. Both the 

clinical and histopathologic features of AA were reproduced in this model, including 

hair loss, perifollicular T lymphocyte infiltration, and expression of HLA-DR and 

ICAM-1 in the follicular epithelium. The induction of these changes was not a 

nonspecific effect of T cell activation, as lesions could not be produced by injection of 

IL-2 activated T cells from peripheral blood or scalp. Moreover, the fact that these 

changes could not be induced by lesional scalp T cells that were not cultured with 

follicular homogenate strongly suggests that the T lymphocytes involved in AA are 

reacting to specific follicular antigens (68). 

 

1.4  Treatment of AA 
There are several potential therapeutic drugs for treatment of alopecia areata. 

 

1.4.1 Immunosuppressive 

 Corticosteroids: corticosteroids are known to exert a strong inhibitory effect on the 

activation of T Lymphocytes, and also these can result in Th-1 mediated immune 

attack on the hair follicle in AA.  Topical, intralesional, and systemic corticosteroids 

have been used to treat AA, with different side-effects. But the rate of treatment 

success was not statistically significant (70-76). This treatment is only indicated in 

patchy AA with longstanding bald areas. It’s a painful procedure and can lead to 

permanent atrophy after injection. Whereas, initially, oral corticosteroids were used 

daily or every other day for several months (30 and 150 mg daily) giving rise to 
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unacceptable side effects such as hypertension, diabetes, immunosuppression, 

osteoporosis and proneness to thrombosis. Taken together, corticosteroids treatment is 

reasonable in exceptional, selected cases of AA, but has potentially serious side-

effects. 

 PUVA: Several studies have examined treatment of AA with PUVA using either 

oral or topical application of 8-methoxypsoralen (8-MOP) with ultraviolet A radiation 

(UVA) on the scalp or the whole body (77-83). There are a large number of 

recurrences (between 30% and 50% of successfully treated patients).due to the fact 

that regrown hair inhibits UVA radiation from reaching the skin. Long treatment with 

PUVA can lead to high risk of skin malignancies  

  Tacrolimus: FK506 is an immunosuppressive agent that can be applied topically to 

the skin. FK506 suppresses IL-2 production and release in activated T cells. 

Subsequently, activation and proliferation of T cells are inhibited (84). Therefore, 

FK506 is a promising candidate for the treatment of AA. In the C3H/HeJ mice model 

of AA, topically applied FK506 induces hair regrowth (85,86), accompanied by 

reduced peri- and intrafollicular infiltrates of CD4+ and CD8+ T cells and decreased 

expression of MHC class I, MHC class II and ICAM-1 on hair follicle epithelium. 

These encouraging results obtained in animal models suggested that topical 

application of FK506 could be effective in the treatment of human AA. 

 

1.4.2 Immunomodulatory 

 Squaric acid dibutylester (SADBE): AA has been treated with contact sensitizers 

for more than 20 years. Dinitrochlorobenzene (DNCB) was the first to be used (87), 

but because it has been shown to be mutagenic in the Ames test, it can no longer be 

recommended (88, 89). Today diphenylcyclopropenone (DCP) or squaric acid 

dibutylester (SADBE), which are not mutagenic in the Ames test, are widely used. 

Treatment with contact sensitizers are preceded by sensitization of the patient with 

2% SADBE solution on a small area of the scalp. Two weeks later, treatment is 

initiated by applying a 0.001% SADBE solution, followed by weekly applications of 

increasing concentrations until a mild eczematous reaction is obtained. In this way, an 

appropriate eliciting concentration of SADBE is identified for each patient. This 

concentration is then applied once a week to induce a mild eczematous reaction 

characterized by itching and erythema, without blistering or oozing. SADBE is used 
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in those patients who become tolerant to DCP. Initial hair regrowth is usually visible 

after 8 to 12 weeks. Treatment must be continued once weekly until complete hair 

regrowth is obtained. Treatment intervals are then decreased, and, eventually 

treatment may be discontinued. However, if relapse occurs, treatment can be restarted 

immediately to stop further progression of AA and to induce renewed hair growth. As 

applicable to many drug therapies, SADBE treatment also has some side effects like 

mild eczematous reactions and enlargement of retroauricular lymph nodes, these are 

usually well tolerated if patients are informed that they are desired for the therapeutic 

effect. Undesired side-effects are noted in 2 to 5% of patients (90). Dissemination of 

allergic contact dermatitis, urticarial or erythema multiforme-like reactions may also 

occur (91), but these can be treated successfully with topical corticosteroids. 

Pigmentary disturbances such as post-inflammatory hyperpigmentation with spotty 

hypopigmentation have been observed, especially in patients with dark skin, but these 

have resolved within 1 year after discontinuing treatment in most instances (92,93). 

Apart from these acute and subacute side-effects, no long-term side-effects have been 

reported after 21 years of SADBE (18 years of DCP) treatment worldwide of about 

10000 patients, including children. However mechanism behind the curative effect is 

still unclear. Several studies point towards the decreased ratio of CD4+:CD8+ T 

lymphocytes with reduction in IFNγ expression elevated IL2, IL10 and TNFα 

expression and also an increase in apoptosis of autoreactive T cells. Recent studies 

have provided a strong evidence of hindrance of APC migration and a strong 

expansion of myeloid derived suppressor cells (MDSC) that suppress T cell 

activation. Till date, SDABE treatment has been proved to be the best treatment for 

AA in human with minimum of side effects. 

 

1.5  Myeloid derived suppressor cells (MDSC) 
 In late 1970’s an unknown population of cell with suppressive features were 

identified. These were named as natural suppressor cells and were first identified in 

bone marrow and spleens of tumor bearing mice which were able to suppress T cell 

responses in vivo and in vitro. Further characterization demonstrated their 

involvement in immune tolerance induction by inhibiting different activities of the 

immune system. These cells were later named as myeloid derived suppressor cells 

(MDSC) since they were involved in regulating myeloid cell differentiation. MDSC 
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represent a heterogenous population of immature myeloid cells that consists of 

myeloid progenitors and precursors of macrophages, granulocytes and dendritic cells 

and are characterized by a strong ability to suppressor various T cell functions 

(Scheme 5). This heterogenticity demonstrates the plasticity of this immune 

suppressive myeloid compartment and shows, how various tumors and infectious 

agent can have similar effects on myeloid cells despite the differences in the factors 

that they produce to influence the immune system (94).  

 

Scheme5. The origin of MDSC: Immature myeloid cells (IMCs) are part of the normal 

process of myelopoiesis, which takes place in the bone marrow and is controlled by a complex 

network of soluble factors that include cytokines such as granulocyte/macrophage colony-stimulating 

factor (GM-CSF), stem-cell factor (SCF), interleukin-3 (IL-3), FMS-related tyrosine kinase 3 (FLT-

3), macrophage colony-stimulating factor (M-CSF) and cell-expressed molecules including Notch 

(not shown). Haematopoietic stem cells (HSCs) differentiate into common myeloid progenitor 

(CMP) cells and then into IMCs. Normally, IMCs migrate to different peripheral organs, where they 

differentiate into dendritic cells, macrophages and/or granulocytes. However, factors produced in the 

tumour microenvironment and/or during acute or chronic infections, trauma or sepsis, promote the 

accumulation of IMCs at these sites, prevent their differentiation and induce their activation. These 

cells exhibit immunosuppressive functions and are therefore known as myeloid-derived suppressor 

cells (MDSC). MDSC can also differentiate into tumor-associated macrophages (TAMs) within the 

tumor environment, which are cells that have a phenotype and function that is distinct from MDSC 

(95). 
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1.5.1 MDSC surface markers and subsets 
 
MDSC are identified as cells that simultaneously express the two markers CD11b and 

Gr-1. More recently MDSC were subdivided into two different subsets based on their 

expression of the two molecules Ly6C and Ly6G. The nuclear morphology and 

content of immunosuppressive substances have also been used to characterize mouse 

MDSC that are mononuclear, are considered “monocytic” and typically are 

CD11b+Ly6G+Ly6Chigh, whereas those with multi-lobed nuclei are 

‘granulocytic/neutrophilic-like’ and have CD11b+Ly6G+Ly6Clow phenotype (96-98). 

Importantly, evidences indicate that these two subpopulations may have different 

functions in cancer, infectious and autoimmune diseases (99-101). The variations in 

MDSC phenotype are consistent with the concept that MDSC are a diverse family of 

cells that are in various intermediate stages of myeloid cell differentiation. Because 

the myeloid population contains many different cell types and myeloid cell 

differentiation is a continuum of processes, MDSC may display diverse phenotypic 

markers that reflect the spectrum of immature to mature myeloid cells (102). This 

diversity prompted the search for markers that could be used to identify such a 

population. Several potential candidates were suggested, such as CD115 (M-CSFR), 

CD124 (IL-4Rα), CD40 and CD80 (103-106), however further studies indicated that 

although these markers are undoubtedly expressed on MDSC, they do not define 

specific immune suppressive populations of MDSC (107).   

In humans, the phenotype of these cells is less clearly defined, although recent studies 

have shown CD15 and CD66b as additional markers allowing for detection of G- 

MDSC and M-MDSC (108,109). These two major subsets of MDSC apparently have 

an important role in the antigen-specific versus non-specific nature of immune 

suppression. G-MDSC, which use reactive oxygen species (ROS) for their 

suppressive functions, require close cell - cell contact with T cells, which in turn is 

manifested by the strong reliance on antigen-specific interaction between MDSC and 

T cells (110). MDSC, which use up-regulation of NO and arginase production of 

immune suppressive cytokines and other mechanisms, effectively suppress antigen-

dependent T cell responses without requiring direct cell-cell contact. Evidence from 

various reports suggests that on a per cell basis M-MDSC are more potent then G-

MDSC (111-114). Experiments demonstrating that treatment with all trans-retinoid 

acid convert MDSC to DCs (115,116) support the concept that MDSC are normal 
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intermediaries. MDSC may play a role in normal homeostasis and maintenance of 

tolerance to self antigens.   

 

1.5.2 MDSC and suppressive activity 
 
MDSC suppress immunity, both innate and adaptive immune responses. Subsequent 

studies showed that the immunosuppressive functions of MDSCs require direct cell– 

cell contact and can be antigen-specific or non-specific, which suggests that they act 

either through cell-surface receptors and/or through the release of short-lived soluble 

mediators (95). Following are the mechanisms by which these cells suppress the 

immune response (Scheme 6): 

 

1.5.2.1 Arginase1 and iNOS: The suppressive activity of MDSCs has been 

associated with the metabolism of L-arginine. L-arginine serves as a substrate for two 

enzymes: iNOS, which generates NO, and arginase1 (ARG1), which converts L-

arginine into urea and L-ornithine. MDSCs express high levels of both arginase and 

iNOS, and a direct role for both of these enzymes in the inhibition of T-cell function 

is well established (117,118). Recent data suggest that there is a close correlation 

between the availability of arginine and the regulation of T-cell proliferation 

(119,120). The increased activity of arginase in MDSC leads to enhanced L-arginine 

catabolism, which depletes this non-essential amino acid from the microenvironment. 

The shortage of L-arginine inhibits T-cell proliferation through several different 

mechanisms, including decreasing their CD3ζ expression (121). In absence of  ζ chain 

CD4+ and CD8+ T cells are unable to transmit the required signals for activation and it 

also prevents the upregulation of the expression of the cell cycle regulators cyclin D3 

and cyclin-dependent kinase 4 (CDK4) (122). Additionally inhibiting the activity of 

arginase and iNOS, which are expressed in malignant but not in normal prostate tissue 

and are key enzymes of L-arginine metabolism, led to decreased tyrosine nitration and 

restoration of T-cell responsiveness to tumor antigens (123). NO suppresses T-cell 

function through a variety of different mechanisms that involve the inhibition of 

JAK3 and STAT5 in T cells , the inhibition of MHC class II expression (124) and the 

induction of T-cell apoptosis (125). 
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1.5.2.2 Reactive oxygen species (ROS): Another important factor that contributes to 

the suppressive activity of MDSC is ROS. Increased production of ROS has emerged 

as one of the main characteristics of MDSC in both tumour-bearing mice and patients 

with cancer (126-130). Inhibition of ROS production by MDSC isolated from mice 

and patients with cancer completely abrogated the suppressive effect of these cells in 

vitro (126,127,129). Interestingly, ligation of integrins expressed on the surface of 

MDSC was shown to contribute to increased ROS production following the 

interaction of MDSC with T cells (126). In addition, several known tumour-derived 

factors, such as TGFβ, IL-10, IL-6, IL-3, platelet-derived growth factor (PDGF) and 

GM-CSF, can induce the production of ROS by MDSC (131).  

 

1.5.2.3. Peroxynitrite: More recently, it has been described that peroxynitrite 

(ONOO-) is a crucial mediator of MDSC-mediated suppression of T-cell function. 

Peroxynitrite is a product of a chemical reaction between NO and superoxide anion 

(O2 -) and is one of the most powerful oxidants produced in the body. It induces the 

nitration and nitrosylation of the amino acids cysteine, methionine, tryptophan and 

tyrosine (132). Increased levels of peroxynitrite are present at sites of MDSC and 

inflammatory-cell accumulation, including sites of ongoing immune reactions. In 

addition, high levels of peroxynitrite are associated with tumor progression in many 

types of cancer (132-135), which has been linked with T-cell unresponsiveness. High 

levels of nitrotyrosine were present in the T cells, which suggested the production of 

peroxynitrites in the tumor environment. In addition, it has been demonstrated that 

peroxynitrite production by MDSC during direct contact with T cells results in 

nitration of the T-cell receptor (TCR) and CD8+ molecules, which alters the specific 

peptide binding of the T cells and renders them unresponsive to antigen-specific 

stimulation. However, the T cells maintained their responsiveness to nonspecific 

stimuli (136). This phenomenon of MDSC induced antigen-specific T-cell 

unresponsiveness was also observed in vivo in tumor-bearing mice (128). 

 

1.5.2.4. Cysteine deprivation: Recent work demonstrates that MDSC also block T 

cell activation by depriving the environment of cysteine, an amino acid that is 

essential for T cell activation. T cells lack the enzyme to convert methionine to 

cysteine and the membrane transporter to import cysteine, which could be reduced 

intracellularly to cysteine, and therefore must obtain their cysteine from extracellular 
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sources. Under healthy conditions, APCs (i.e., DC and macrophages) synthesize 

cysteine from methionine and import extracellular cystine and convert it to cysteine. 

Surplus cysteine is then exported during antigen presentation and imported by T cells. 

MDSC are also unable to convert methionine to cysteine, so they are fully dependent 

on importing cystine for conversion to cysteine. When MDSC are present in high 

concentrations they import most of the available cystine, depriving DC and 

macrophages of cystine. Because MDSC do not export cysteine, their immediate 

environment is cysteine-deficient and T cells are unable to synthesize the necessary 

proteins for activation (102).  

 
Scheme6. Suppressive mechanisms mediated by different subsets of MDSC: 
Myeloid-derived suppressor cells (MDSC) consist of two major subsets: granulocytic MDSC with a 

CD11b+Ly6G+Ly6Clow phenotype and monocytic MDSCs with a CD11b+Ly6G-Ly6Chigh phenotype. In 

most tumour models, it is predominantly (70–80%) the granulocytic subset of MDSC that expands. It 

has been hypothesized that the granulocytic subset of MDSCs has increased activity of STAT3 (signal 

transducer and activator of transcription 3) and NADPH, which results in high levels of reactive 

oxygen species (ROS) but little nitric oxide (NO) production. ROS and, in particular, peroxynitrite (the 

product of a chemical reaction between superoxide and NO) induces post-translational modification of 

T-cell receptors and may cause antigen-specific T-cell unresponsiveness. The monocytic MDSC subset 

has upregulated expression of STAT1 and inducible nitric oxide synthase (iNOS) and increased levels 

NO but little ROS production. NO, which is produced by the metabolism of L-arginine by iNOS, 

suppresses T-cell function through a variety of different mechanisms that involve the inhibition of 
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Janus kinase 3 (JAK3) and STAT5, the inhibition of MHC class II expression and the induction of T-

cell apoptosis. Both subsets have elevated level of arginase-1 (ARG-1) activity that causes T-cell 

suppression through depletion of arginine. Only monocytic MDSCs can differentiate into mature 

dendritic cells and macrophages in vitro (95). 

 

1.5.2.5. Subset-specific suppressive mechanisms: Recent findings indicate that 

different subsets of MDSC might use different mechanisms to suppress T-cell 

proliferation. As already discussed, two main subsets of MDSC have been identified: 

a granulocytic subset and a monocytic subset. The granulocytic subset of MDSC was 

found to express high levels of ROS and low levels of NO, whereas the monocytic 

subset expressed low levels of ROS and high levels of NO and both subsets expressed 

ARG16. Interestingly, both populations suppressed antigen-specific T-cell 

proliferation to an equal extent, despite their different mechanisms of action. The 

suppressive activity of the granulocytic subset was ARG1-dependent, in contrast to 

the STAT1- and iNOS-dependent mechanism of the monocyte fraction (101).  

 

1.5.2.6 Induction of regulatory T cells: MDSC can also promote the development of 

FoxP3+ regulatory T (TReg) cells (137, 138). The induction of TReg cells by MDSC was 

found to require the activation of tumor-specific T cells and the presence of IFNγ and 

IL-10, but was independent of NO (138). In a mouse model of lymphoma, MDSC 

were shown to induce TReg-cell expansion through a mechanism that required arginase 

and the capture, processing and presentation of tumor-associated antigens by MDSC, 

but not TGFβ. In contrast, some other studies suggested that MDSCs were not 

involved in TReg cell expansion since it was found that the percentage of TReg cells 

was invariably high throughout tumor growth and did not relate to the kinetics of 

expansion of the MDSC population (101). Furthermore, in a rat model of kidney 

allograft tolerance that was induced with a CD28-specific antibody, MDSCs that were 

co-expressing CD80 and CD86 were found to have a limited effect on the expansion 

of the TReg cell population (139). Although further work is required to resolve these 

discrepancies it seems possible that MDSCs are involved in TReg-cell differentiation 

through the production of cytokines or direct cell–cell interactions. Furthermore, 

MDSC and TReg cells might be linked in a common immunoregulatory network. 
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1.5.3. Expansion and activation of MDSC 

 MDSC accumulation and expansion are driven by multiple factors which may be 

endogenous or exogenous and can be divided into two main groups. The first group 

includes factors that are produced mainly by tumor cells and promote the expansion 

of MDSC through stimulation of myelopoiesis and inhibiting the differentiation of 

mature myeloid cells. The second group of factors is produced mainly by activated T 

cells and tumor stroma, and is involved in directly activating MDSC (95). 

 

1.5.3.1Granulocyte–macrophage-colony-stimulating factor: Granulocyte 

macrophage colony-stimulating factor (GM-CSF) acts at earlier stages of lineage 

commitment during the steady state regulating the expansion and maturation of early 

hematopoietic progenitors (113, 140). High concentrations of GM-CSF such as 

produced by activated T cells (141), NK-cells and DC (142) during immune responses 

may lead to expansion, redistribution and activation of Gr-1+CD11b+ cells. It has been 

demonstrated that GM-CSF acts differentially on the two MDSC subsets. It expanded 

both, CD11b+Gr-1int and CD11b+Gr-1low subsets in the spleen of tumor-bearing mice, 

but expanded only the CD11b+Gr-1low subset in the bone marrow (143). 

 

1.5.3.2 Vascular endothelial growth factor (VEGF): VEGF and its receptors have 

significant effects in early developmental stages and differentiation of vascular and 

hematopoietic progenitors. Within tumor-associated diseases, VEGF reduces the 

amount of DC and interferes with their function in vivo and in vitro, whereas the 

number of immature precursors of DC increases (144-146). Blocking the activation of 

VEGF receptor was effective at controlling tumor growth and inhibiting the 

infiltration of suppressive immune cells like MDSC, regulatory T cells and 

macrophages, while increasing the mature DC fraction (147). 

 

1.5.3.3 Prostaglandins: Prostaglandins, in particular PGE2, have been widely 

implicated in MDSC-mediated T cell inhibition. In an early study, signaling through 

the PGE2 receptor E-prostanoid (EP) 4 in MDSC was found to induce the expression 

and activity of arginase1. PGE2 promote tumor progression through non-immune 

mechanisms and by limiting anti-tumor immunity through the induction of higher 

levels and more suppressive MDSC (148). 
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1.5.3.4 Interferon-γ: IFNγ is secreted by many cells of the immune system and 

influences functions of T cell and MDSC (149-151). MDSC, in response to 

exogenous or autocrine production of IFNγ, generate ARG1 and iNOS together with 

an autocrine production of IL-13 and induce the expression of IL-4 and IL-13 

receptors (149). It has been shown that MDSC inhibit the cytotoxicity and IFNγ, 

production by NK-cells. After incubation with MDSC, NK-cells could not be 

activated to produce IFNγ, (152). In addition to the cytokines already mentioned, the 

immunosuppressive cytokine transforming growth factor-β (TGF-β) (153-156) as well 

as stem cell factor (SCF) (157), IL-1α, IL-4, IL-6, IL-10, IL-12, IL-13, matrix metallo 

protease-9 (MMP-9), M-CSF and G-CSF seem to have influence on generation and 

function of MDSC (95, 158).  

 

1.5.4 MDSC and signaling 

STAT3 plays a central role in many molecular events governing tumor cell 

proliferation, survival and invasion. At the same time, STAT3 is involved in 

inhibition of anti-tumor immune responses. In myeloid cells, STAT3 signaling drives 

the expression of Bcl-XL, c-myc, cyclin D1 or survivin, which prevents cell 

apoptosis, promotes cell proliferation, and prevents differentiation to mature cell types 

(159). Earlier studies established a crucial role for STAT3 in MDSC expansion in 

mice (160,161). Recently, an association was demonstrated between upregulated 

STAT3 activation and MDSC accumulation in melanoma patients (162). Inhibition of 

STAT3 in vitro abolishes the suppressive activity of MDSC. Ablation of STAT3 

expression in conditional knockout mice or selective STAT3 inhibitors markedly 

reduced the expansion of MDSC and increased T-cell responses in tumour-bearing 

mice (163,164). Abnormal and persistent activation of STAT3 in myeloid progenitors 

prevents their differentiation into mature myeloid cells and thereby promotes MDSC 

expansion. Several pathways downstream of STAT3 might be involved in the 

regulation of MDSC expansion and function. One such pathway involves the calcium-

binding pro-inflammatory proteins S100A9 and S100A8 (165).  In addition, it has 

been shown that MDSC also express receptors for these proteins on their cell surface. 

Activation of STAT3 in hematopoietic progenitor cells (HPC) upregulates S100A8 

and S100A9. This in turn, inhibits DC differentiation and promotes MDSC 
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accumulation (166). The precise mechanism of this effect is not clear, but it was 

suggested that the S100A9 and S100A8 heterodimer participate in the formation of 

the NADPH oxidase (Nox2) complex that is responsible for production of ROS in 

myeloid cells. Increased production of ROS contributes to inhibition of myeloid cell 

differentiation. Upregulation of ROS in MDSC is dependent on increased expression 

of Nox2. STAT3 activation is directly responsible for upregulating transcription of the 

Nox2 components p47phox and gp91phox, increasing ROS production by MDSC in 

tumor-bearing mice (167). PKCbII is required for DC differentiation and is 

downregulated by activated STAT3. STAT3 could also play an indirect role in MDSC 

differentiation. It was shown recently that heat-shock protein 72 (Hsp72), which is 

associated with tumor-derived exosomes, induces suppressive activity of MDSC via 

activation of STAT3. Thus, STAT3 utilizes various molecular mechanisms to regulate 

MDSC expansion and function (166). 

Evidences suggest an important role of STAT1 in regulation of MDSC, STAT1 is the 

main transcription factor activated by IFN-γ or IL-1β signaling and is implicated in 

the regulation of inducible nitric oxide synthase (iNOS) and arginase activity. MDSC 

from STAT1-/- mice failed to up regulate ARG1 and iNOS expression and therefore 

did not inhibit T cell responses (168).  Blocking IFN-γ secretion by T cells also 

abrogates MDSC-mediated suppression, mainly via the block of iNOS upregulation 

(169,170). A recent study demonstrated that STAT1 is particularly important for the 

function of M-MDSCs (171).  

STAT6 activation in MDSCs occurs in response to binding of IL-4 or IL-13 to the 

receptor CD124. This receptor is also described as a MDSC marker and is responsible 

for upregulation of arginase activity and increased TGF-β production by MDSC (172-

175). Other experiments have shown that STAT6 deficiency prevents signalling 

downstream of the IL-4Rα and thereby blocks the production of ARG1 by MDSC 

(163) (Scheme 7). 

 

1.5.4.1. MDSC and Toll like receptors 

In myeloid cells, the toll-like receptor (TLR) family plays a prominent role in NF-kB 

activation, primarily via the myeloid differentiation primary response gene 88 

(MyD88). TLR4 was shown to be involved directly in MDSC function (177), and 

LPS. In combination with IFN-γ, TLR4 could promote MDSC expansion, probably by 

inhibiting differentiation of DC (178). However, wild-type mice and mice lacking a 
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functional TLR4 protein had comparable expansion of the MDSC during 

polymicrobial sepsis, which suggests that signalling through TLR4 is not required for 

MDSC expansion and that MyD88-dependent signalling pathways that are triggered 

by other TLRs probably contribute to the expansion of MDSC in sepsis (179). This 

indicates that the activation of MDSC is a fundamental outcome of the host innate 

immune response to pathogens that express TLR ligands. 

 
Scheme7. Signalling pathways involved in the expansion of MDSC populations:  
The accumulation of myeloid-derived suppressor cells (MDSC) is regulated by several factors that are 

released by tumor cells, tumor stromal cells, activated T cells and macrophages, apoptotic tumor cells, 

bacterial and viral agents and by pathogen-infected cells. These factors trigger several different 

signalling pathways in MDSC that mainly involve the STAT (signal transducer and activator of 

transcription) family of transcription factors. STAT3 regulates the expansion of MDSC by stimulating 

myelopoiesis and inhibiting myeloid-cell differentiation. It also contributes to the increased production 

of reactive oxygen species (ROS) by MDSC. The activation of STAT6 and STAT1, as well as TLR-

mediated activation of nuclear factor-κB (NF-κB), by these factors results in the activation of MDSC, 

which leads to the upregulation of iNOS and arginase and increased production of suppressive 

cytokines such as transforming growth factor-β (TGF-β). In combination with STAT3 they also 

contribute to upregulation of ROS production by these cells. S100A8 and S100A9 directly bind to 

p67phox and p47phox, which are crucial components of NADPH complex. This binding potentiates 

NADPH oxidase activation in MDSC, which causes increased production of ROS, leading to the 
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observed suppressive effects. It is likely that MDSC activation via TLR play especially important role 

during pathogenic infections (95). 

 

It is important to note that an increase in the production and/or recruitment of IMCs in 

the context of acute infectious diseases or following vaccination does not necessarily 

represent an expansion of an immunosuppressive MDSC population. It is likely that 

under pathological conditions, the expansion of a suppressive MDSC population is 

regulated by two different groups of factors that have partially overlapping activity 

firstly, those that induce MDSC expansion and secondly, those that induce their 

activation (which leads to increased levels of ROS, arginase, or NO). This two-tiered 

system may allow for flexibility in the regulation of these cells under physiological 

and pathological conditions. 

 

1.5.5. MDSC and Autoimmunity 

Chronic inflammation and autoimmunity promote MDSC. In experimentally induced 

chronic inflammation of the skin (180), gut (181) and eye (182) an increase in MDSC 

populations is observed. The activation of TLR and the secretion of IL-1α, IL-10 and 

IL-12 are involved in this process (177, 183). In the murine model of multiple 

sclerosis, experimental autoimmune encephalitis (EAE), MDSC accumulate in the 

spleen of immunized mice. Moreover, this subset was capable of suppressing T-cell 

proliferation in vitro (184). There is also evidence suggesting a beneficial role of 

MDSC in autoimmune diseases. A significant increase in the number of MDSC was 

also detected in experimental autoimmune uveoretinitis, an animal model of human 

intraocular inflammatory disease (185) and in the skin and spleens (180) of mice that 

were repeatedly treated with a contact sensitizer to induce an inflammatory skin 

response and in inflammatory bowel diseases (186). MDSC were also found to 

infiltrate the spleen and suppress T-cell function in a model of traumatic stress (187). 

With the aim to find a possible therapy for alopecia areata, mice were persistently 

stimulated on the skin with a contact sensitizer in order to give rise to a chronic 

eczema that is accompanied by the generation and recruitment of MDSC, which, in 

turn, could control autoimmune T cells (180). 
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1.6  Alopecia areata and adhesion molecules  
In AA, as discussed before there is an infiltration of leukocytes at the site of disease. 

Since, adhesion molecules like CD44 or integrins play an important role in leukocyte 

extravasation and homing, it becomes important to discuss about the significance of 

adhesion molecule with AA. 

Adhesion molecules are important in inflammatory responses and may have roles in 

directing autoimmune processes through their expression on lymphoid and non-

lymphoid tissues. Interaction of adhesion molecules with their ligands mediate 

adherence of leukocytes to other cells and also to extracellular matrix. Adhesion 

molecule regulates leukocytes circulation, lymphoid cell homing to tissue and 

inflammatory sites and transendothelial migration and also participates in lymphocyte 

co-stimulation, cytotoxicity, lympho-haemopoiesis and leukocyte apoptosis. Adhesion 

molecules relevant to leukocytes have been classified as; 

 Selectins: selectins are expressed on leukocytes, platelets and endothelial cells. Their 

common structural component is an N terminal lectin binding domain. Selectins have 

been further classified as L-selectin (Lymphocytes), P-selectin (Platelets), E selectins 

(Endothelium). Selectin binding and rapid association and disassociation to 

glycosylated and sialyated ligands mediate leukocyte rolling along the endothelial cell 

wall and are involved in initial localization of leukocytes to inflammatory sites. 

Rolling of leukocyte at inflammatory sites exposes them to chemo-attractants and 

cytokines. This exposure leads to leukocytes activation, upregulation of additional 

adhesion molecules, chemotaxis and prolonged localization of cells to a site of 

inflammation (188). 

 Immunoglobulin super family (IGSF): are named and classified together because 

each receptor has immunoglobulin like amino-acid domain. The IGSF includes 

several related cell surface proteins found on immunocompetent cells like CD4, CD8, 

T cell receptor/CD3 complex and MHC classI and Class II molecules. IGSF receptors 

functioning as adhesion molecule which include “lymphocytes function antigen” 

(LFA-2, CD2 and LFA-3), intracellular adhesion molecules (ICAM-1 and ICAM-2) 

and VCAM-1. ICAM-1 and VCAM-1 are principal receptors of LFA-1 and VLA-4 

respectively. Cytokine stimulation of endothelial cells increased ICAM-1 expression, 

which promotes adherence of LFA-1 positive leukocytes to inflammatory sites. VLA-
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4/VCAM-1 adhesion may be primarily responsible for prolonged cell adhesion at 

inflammatory sites (189). 

 Integrin: Integrin adhesion molecules are heterodimeric proteins composed of non- 

covalently bound α and β subunits. Subunit combinations form functionally different 

receptors. Each contains a large extracellular domain, a transmembrane domain, and a 

generally short cytoplasmic tail. The extracellular domains of integrins bind ligands in 

the extracellular matrix (ECM) like fibronectin, vitronectin, laminin, collagen etc. or 

on the surface of other cell types to mediate either cell-substratum or cell-cell 

adhesion. In addition to forming these physical connections, integrins regulate cell 

signaling pathways through their cytoplasmic domains. These signaling pathways are 

important in coordinating cell migration. In particular, the α4β1 integrin (CD49d) 

mediates leukocyte migration essential for immune surveillance and inflammation. An 

ECM binding motif for many integrins is the amino acid sequence “arginine-lysine-

aspartate” (RGD) domain. Fibronectin, vitronectin and other integrins binding extra-

cellular proteins have this RGD domain (190). 

   It has been shown that α4 integrin (CD49d) associates with CD44 and contributes to   

leukocyte extravasation. Lymph node cells of AA mice displayed increased motility, 

proliferative activity and apoptosis resistance, which were equally inhibited by both 

CD44- and CD49d-specific antibodies (191). 

 

1.7 CD44 
The CD44 proteins form a rather ubiquitously expressed family of cell surface 

adhesion molecules involved in cell-cell and cell-matrix interactions. The CD44 

glycoproteins are well characterized members of the hyaluronate receptor family of 

cell adhesion molecules (192,198). CD44 has been described into a multitude of 

functions. The major physiological role is to maintain organ and tissue structure via 

cell-cell and cell-matrix adhesion. In leukocytes it has been characterized as an 

adhesion receptor engaged by migrating T cells including leukocyte extravasation. It 

also mediates T cell activation and thymic homing.  

 

1.7.1 CD44 structure 

1.7.1.1 Gene structure: The human CD44 gene has been mapped to the chromosomal 

locus 11p13 (192). CD44 glycoproteins are encoded by a single gene. They vary in 
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size owing to N-glycosylation and O-glycosylation and the insertion of alternatively 

spliced exon products in the extracellular domain of the molecule. The smallest 

standard or hematopoietic isoform (CD44s) is present on the membrane of most 

vertebrate cells. CD44 has seven extracellular domains, a transmembrane domain and 

a cytoplasmic domain (193). The standard CD44 consist of consists of an N-terminal 

signal sequence (exon 1), a Link-homology hyaluronan-binding module (exons 2 and 

3), a stem region (exons 4, 5, 16 and 17), a single-pass transmembrane domain (exon 

18) and a cytoplasmic domain (exon 20). Alternative splicing of CD44 predominantly 

involves variable insertion of different combinations of exons 6-15 (variant exons v1-

v10) into the stem region. Nearly all CD44 cDNAs isolated have exon 19 spliced out, 

producing an open reading frame encoding a 73 amino acid cytoplasmic domain. The 

inclusion of exon 19 would generate a short 5 amino acid cytoplasmic tail terminating 

at Arg294 (194) (Scheme 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme8. Gene structure of CD44 (195) 

 

1.7.1.2 Protein structure: The most abundant standard isoform of human CD44 

protein (CD44s) contains 363 amino acid (aa) and has a theoretical molecular mass of 

37 kDa. The protein consists of three regions, 270 amino acid (aa) extracellular 
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domain, 21 aa transmembrane domain and 72 aa C-terminal cytoplasmic domain. The 

highly conserved cytoplasmic tail can exist as a short or a more prevalent long form 

by the inclusion of the C-terminal exon (196). The hydrophobic transmembrane 

domain is encoded by exon 18 and is 100% conserved between mammalian species. 

The extracellular domain can be subdivided further into conserved and non-conserved 

regions. The N-terminal ectodomain, encoded by exons 1 to 5 is highly conserved (~ 

85%) between mammalian species and is thought to fold into a globular tertiary 

structure by the formation of disulphide bonds between three pairs of cysteine 

residues. Also present in this part of the molecule is a 100 aa region of homology with 

other hyaluronic acid (HA) binding proteins. This is termed the “link module” or CLP 

domain because of its resemblance to the HA binding domain of cartilage link protein 

(197). The variable region is the point at which up to 381 aa encoded by the 10 

alternatively spliced variant exons are inserted at a site between exons 5 and 16 of the 

RNA transcript, corresponding to amino acid position 223. The membrane proximal 

region of the extracellular domain, encoded by exons 16 and 17 is less conserved 

(35%) between mammalian species and includes several carbohydrate modification 

sites (Scheme 9). 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme9. CD44 protein structure: The standard form binds its principal ligand, hyaluronic acid at 

the N-terminal, distal extracellular domain. The inclusion of combinations of the variant exons (v1-v10) within the 

extracellular domain can alter the binding affinity for hyaluronic acid and confer interaction with alternative 

ligands. The molecule interacts with the cytoskeleton through the binding of ankyrin and the ERM family to the 

cytoplasmic domain (192) 
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1.7.1.3 Post-translational modifications: The apparent molecular mass of the CD44s 

protein, as estimated by gel electrophoresis, is ~80 kDa and the largest possible 

protein, containing peptides from all variant exons (referred to as “epican”) can be 

over 200 kDa which is much greater than the expected value as calculated from aa 

residues and is due to the extensive post-translational modification of CD44 isoforms 

(192). In cultured cells, CD44 is constitutively phosphorylated at Ser325 in the 

cytoplasmic tail (199-201). Ser325 phosphorylation is estimated to occur on ~25-40% 

of CD44 molecules and is mediated by Ca2+/calmodulin-dependent protein kinase II 

(CaMKII). Phosphorylation at Ser325 and Ser291 residues has been implicated in 

mediating cell migration on HA and in the interaction of CD44 with ezrin. Mutations 

at Ser325 site impair hyaluronan-mediated cell migration (202).   

 

1.7.1.4 Palmitoylation: CD44 is reversibly palmitoylated (203,204), the prospective 

acylation sites being Cys286 and/or Cys295. In the case of CD44, acylation has been 

reported to impair anti-CD3 mediated signal transduction in lymphocytes (204) and 

enhance the association of CD44 with ankyrin. (203). Given the location of these 

cysteine residues in the CD44 sequence, palmitoylation might also play a role in 

partitioning CD44 into membrane subdomains and/or in regulating its association 

with ERM proteins. 

 

1.7.1.5 Modification by proteolytic processing: It has been described that the 

extracellular domain of CD44 is subject to regulated proteolytic cleavage (205). 

Membrane type1 (MT1)-MMP and MT3-MMP has been shown to release soluble 

CD44 (206,207). CD44 cleavage can generate two cell associated CD44 species (~25 

kDa and ~12 kDa) in addition to the secreted extracellular domain fragment (208-

211). The ~25 kDa species corresponds to the residual membrane-bound C-terminal 

fragment (CTF), whereas the major product isolated from the ~12 kDa band is a 

CD44 intracellular domain (ICD) fragment resulting from a cleavage just inside the 

CD44 transmembrane domain.The released CD44-ICD fragment translocates to the 

nucleus and stimulates transcription, one of its target genes is the gene encoding 

CD44 itself (211).  
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1.7.2 CD44 Functions 

CD44 proteins have essential functions in life and their dysfunction, absence or over 

expression can lead to pathogenic phenotype. It has been described that CD44 null 

mice were viable and had relatively mild phenotype. Interestingly activated T cells 

survived longer in null mice than wild type mice which led to a resistance to hepatitis 

that could be explained by the involvement of CD44 in proapoptotic signaling (213). 

The multiple functions of the CD44 family of proteins are centered around the 

binding of HA and, to a lesser extent, other extracellular molecules. A transmembrane 

domain and a minimal cytoplasmic domain are required for efficient ligand binding 

(214,215), probably stabilizing CD44 at the plasma membrane and promoting 

receptor clustering. 

 

1.7.2.1 Cell adhesion and migration 

Cell adhesion and migration are critical steps in cancer progression and inflammatory 

responses and cell migration is important for tissue remodeling, wound healing and 

leukocyte migration. The CD44 dependent adhesion mechanism is most important for 

mobilization of effector cells at sites of infection and inflammation. Adhesion of 

CD44 to its ligand(s) induces up-regulation of additional adhesion molecules, mostly 

integrins like CD49d that strengthen adhesion. It has been suggested that CD44 and 

CD49d comes into proximity during T cell activation. On activated T cells, CD44 can 

regulate tethering and rolling interactions with vascular endothelial cells that express 

HA (216). The affinity of CD44 for HA seems to be modulated from inside the cells, 

as its binding affinity is upregulated by mitogenic stimuli, influenced by glycosylation 

of the extracellular domains and also by the phoshphorylation of specific serine 

residues in the cytoplasmic domain of CD44 (217), deletion of the cytoplasmic tail of 

CD44 prevents firm adhesion of cells to endothelium, which follows rolling as the 

first step in leukocyte extravasaation (218). There has been evidence for the 

physiological importance of the involvement of CD44s in leukocyte extravasation. It 

has been described that the development of an  oedema and leukocyte immigration 

into inflamed tissue as in delayed type hypersensitivity reactions can be strongly 

inhibited by anti-pan CD44 (219-221). In addition to the well defined role of CD44 in 

extravasation of T cells, CD44 also plays a crucial role in regulating cell motility 

within the tissue stroma. In tissue resident T cells CD44 and other adhesion receptors 
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localizes to the leading edges and lamellopodia (222). Intracellular signals not only 

guide CD44 to the leading edge but also support CD44 mediated cell motility by 

cleavage of extracellular domain by membrane type metalloproteinases 1 (MT1-

MMP) (209,223). 

1.7.2.2 Interaction with the cytoskeleton  
The cytoskeleton is a highly dynamic structure that reorganizes when cells respond to 

extracellular stimuli via actin polymerization and the rearrangement of the underlying 

cortical actin filaments (199-201). 

CD44 cytoplasmic domain lacks a binding site for actin. Therefore it mediates the 

interaction with actin via adaptor proteins like ankyrin, ERM family of proteins 

(ezrin, radixin and moesin) and related protein merlin (202). An ankyrin binding 

domain has been identified (203) and binding is influenced by many factors including 

palmitoylation (204). PKC mediated phosphorylation and GTP binding. Ankyrin 

binding is important for HA binding and cell adhesion as deletion of the ankyrin 

binding domain results in nearly complete loss of HA binding (227). 

ERM proteins act as key linkers between transmembrane proteins and cytoskeleton.  

The ERM proteins have a 300 amino acid domain at the N-terminus, α-helical central 

region and a C-terminal domain which has the F-actin binding site. ERM proteins are 

activated by phosphorylation and by binding to membrane phospholipids. It is the 

phoshorylated (active) form of ERM that binds to CD44 (202). ERM activation is 

regulated via Rho GTPase family. Binding of ROK, PKC and phosphatidyl inositol 4, 

5 bisphosphate (PIP2) to ERM proteins results in phosphorylation of these proteins 

(228-230). Thr567 Ezrin, Thr564 Radixin and Thr558 Moesin phosphorylations result in 

rearrangement of the cytoskeleton (231). CD44 binding to the cytoskeleton is further 

regulated by its cytoplasmic domain. In resting cells CD44 is phosphorylated at 

Ser325. The switch from Ser325 phosphorylation to Ser291 is triggered via PKC and 

leads to a break in the association between ezrin and CD44 (Scheme 10). In addition, 

Ser291 phosphorylation is also involved in directional migration of cells. Merlin 

protein has 65% homology to ERM proteins. Its activity is also regulated through 

phosphorylation and dephosphorylation (232). Merlin does not have an actin binding 

site and merlin-CD44 complex cannot bind to cytoskeleton (233). The ability of 

ERM/merlin proteins to switch between phosphorylated and dephosphorylated forms 

along with the competition between ERM and merlin to bind to CD44 leads to making 
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and breaking of CD44 interactions with the cytoskeleton [234]. Merlin is inactivated 

after its phosphorylation and prohibits its binding to CD44 When cells are in the 

growth phase, phosphorylated ERM binds to CD44 mediating cytoskeletal 

interactions. During this time merlin gets phosphorylated by PAK2 (p21-active kinase 

-2) and is now unable to bind to CD44. During growth arrest the opposite mechanism 

is under rule and MAPK activation is blocked (235, 236). 

 
 

Scheme10. Model for the regulation of the CD44-ERM complex by dynamic 

phosphorylation of the CD44 cytoplasmic tail: The ERM (ezrin, radixin, moesin)-family 

proteins can function to crosslink transmembrane receptors, including CD44, to the cytoskeleton. Their basic 

structure consists of the three-lobed N-terminal FERM domain followed by a coiled-coil region and a C-terminal 

domain that contains an F-actin binding site. In their ‘inactive’ conformation, the C-terminal domain binds to the 

FERM domain, masking both transmembrane receptors and F-actin interaction sites. Conformational regulation 

between the ‘inactive’ and ‘active’ forms involves complex mechanisms including phosphorylation and binding to 

the membrane phospholipids phosphatidylinositol 4,5-bisphosphate (PIP2). The cytoplasmic tail of CD44 is 

phosphorylated at Ser325 by CaMKII and this form of the receptor binds to an ‘active’ ERM protein that links 

CD44 to the actin cytoskeleton. PKC activation results in a concomitant dephosphorylation of Ser325 and 

phosphorylation of Ser291, resulting in disengagement of the ERM proteins and loss of cytoskeletal association 

(212). 

 

1.7.2.3 Role in lymphocytic function 

Several lymphocyte functions appear to be dependent upon CD44 expression. 

Increased surface levels of CD44 proteins are characteristic of T cell activation after 

encounter with its cognate antigen (238). Cell surface CD44 on lymphocytes can 

mediate the adhesion of lymphocytes to vascular endothelial cells via binding of HA, 
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and this interaction is used for activated T cell extravasation into sites of 

inflammation in mice (239) and in humans (240). This targeting of lymphocytes to 

effector sites by CD44–HA binding is enhanced by the induction of HA synthesis in 

vascular endothelium by the proinflammatory cytokines, TNF-α and IL-1α (241). 

Accordingly, the presence of CD44 splice variants appears to be obligatory for the 

migration and function of Langerhans cells and dendritic cells from peripheral organs 

to lymph nodes for antigen presentation (242). CD44 has a role in mediating the 

functions of regulatory T cell as well, which are essential for the prevention of 

autoimmunity. CD44 deficient Tregs fail to persist after transfer in vivo. The in vitro 

ligation of CD44 on activated wild type Tregs promotes persistent expression of the 

transcription factor FoxP3, which is essential for regulatory activities. These functions 

of CD44 are shown to be dependent upon the interaction with high molecular weight 

forms of HA that are found in the absence of inflammatory responses. 

 

1.7.2.4 CD44 signaling 

The location of CD44 in GEMs is of particular importance with respect to CD44 

mediated signal transduction, as the inner side of these microdomains is known to 

harbor signal transducing molecules. CD44 signaling can result in opposing effects 

depending on the cellular context, the expressed variant isoform and the associated 

signaling partner, for example, CD44 engagement can lead to proliferation or 

inhibition of proliferation, apoptosis or inhibition of apoptosis, resulting in up-

regulation and down-regulation of several signaling pathways involved in cell 

activation. 

However CD44 lacks intrinsic catalytic activity and its signaling depends upon its 

association with receptor tyrosine kinases and the Src family of phosphotyrosine 

kinases (PTKs). Src kinases act as molecular switches on the cell membranes linking 

extracellular events to intracellular signaling. They are activated through engagement 

with many receptors such as TCR/CD3 complex, CD4, CD8, B cell receptor, Fc 

receptors, integrins, GPI anchored receptors and growth factor receptors (193). When 

activated they mediate several signaling events including activation of additional 

PTKs such as ZAP-70 or Syk, phospholipases, cytoskeletal proteins and adaptor 

proteins. CD44 and the associated lck are recruited into membrane microdomains 

where they interact with the CD3/TCR complex. Association of CD44 with lck and 

fyn and in turn their co-localisation with the TCR allow for recruitment of several 
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other kinases necessary for T cell activation (243, 244).  The co-stimulatory function 

of CD44 is demonstrated by its ability to induce cell proliferation on freshly isolated 

lymph node cells in the presence of sub-threshold levels of anti-CD3. This is mediated 

by activation of several tyrosine kinases and is accompanied by strong activation of 

ERK and c-jun and involvement of MAPK (Scheme 11). Consequently, IL-2 

production and CD69 and CD25 expression are up-regulated in T cells. The situation 

differs in a T helper line (IP-12) where it was observed that CD44-cross-linking with 

CD3 leads to upregulation of CD95 and CD95L expression resulting in apoptosis 

induction (or activation induced cell death AICD). This argues for differential effects 

of CD44 on different cell types. It is important to note that, in both peripheral T cells 

and a T helper line, CD44 cross linking alone did not exert any effect on signaling by 

itself. This is in line with two signals one from the TCR and the other from a co-

stimulatory molecule. In antigen-specific T cell activation, CD44 has been described 

to deliver co-stimulatory signals for T cell activation (243). 

CD44 mediated cytoskeletal reorganization appear to be dependent on Rac1 

activation. Small GTPase Rac1 activation is required for this process. Rac1 is also 

known to co-localise with ezrin (245). These events along with phosphotyrosine 

kinase activations are responsible for cytoskeletal re-organizations in the cell. In T 

lymphocytes cross-linking anti-CD44 Ab leads to CD44-dependent spreading through 

F-actin polymerization, accompanied by T cell adhesion, flattening and spreading 

(244). Vav1 protein encoded by vav proto-oncogene is a 95 kD protein that is an 

upstream regulator of Rac1. Vav catalyses the GDP to GTP exchange on Rac1. Vav1 

activation involves phosphoinositides binding and tyrosine phosphorylation that is 

dependent on Src family kinases (lck and fyn) which associate with CD44. Thus, this 

could be a possible explanation for CD44 mediated effects on the cytoskeleton (244, 

246,247). Another mediator of CD44 signalling is RhoA and its downstream effector 

Rho-Kinase (ROK). ROK phosphorylates the cytoplasmic domain of CD44v3 which 

strengthen the interaction between these and ankyrin and supports tumor cell 

migration. In endothelial cells, migration is stimulated after CD44v10–HA binding by 

interaction between ROK and CD44v10 (248). 

Some studies have shown that CD44 is capable of activating human resting T cells 

and mouse cytotoxic T cells by itself and can promote proliferation of T cells that is 

dependent on IL-2 provision. In this study, anti-CD44 cross-linking does not 

phosphorylate the ξ chain of the TCR complex indicating that the signals generated in 
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this case are independent of TCR engagement. Indeed, it was demonstrated that this 

process is mediated by tyrosine kinases associated with CD44 (249).  

Using a mouse model for the autoimmune disease alopecia areata Marhaba et al., have 

shown an association between CD44 and CD49d. This association resulted in the 

formation of a signaling complex between CD44, CD49d and the underlying signaling 

machinery allowing for each surface molecule (CD44 or CD49d) to avail from the 

associated signaling molecules of the other. In this case, cross-linking of CD44 

resulted in the activation of the focal adhesion kinase (FAK) associated with CD49d, 

and CD49d cross-linking allowed the activation of Ezrin and Lck associated with 

CD44. Thus signaling pathways initiated through both the molecules CD44 and 

CD49d are triggered which could well be important in lymphocyte activation and 

function (191). 

 
Scheme11.   CD44 and signaling (250). 

 

1.7.2.5 CD44 and Alopecia areata 

The involvement of CD44 in autoimmune diseases is well known. As it has been 

already discussed above, AA is most effectively cured by the induction of DTH via 

chronic contact eczema treatment by SADBE. One of the mechanisms behind is 

expansion and activation of MDSCs and another aspect which is important in the cure 

of AA by chronic contact eczema is that there should be an impaired T cell activation 
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as a result of hindrance in APC migration towards draining lymph node. CD44 is 

described as lymphocyte homing receptor and plays a major role in leukocyte 

extravasation. In autoimmune diseases and allergic reactions, there are several reports 

suggesting alterations in the intensity of CD44 expression as well as changes in the 

pattern of CD44 and variant isoforms in autoimmune diseases. It has been shown that 

both CD44 and isoforms are supposed to function as costimulatory molecules (251-

253). Induction of AA in mice can be prevented by repeated injections of CD44v10. 

The blockade of CD44 on endothelial cell can contribute to the inhibition of  

leukocyte extravasation, but the different efficacy of an anti-CD44 blockade in 

diseased as compared with healthy mice depends upon leukocytes. The anti-CD44 

mediated inhibition of T cell extravasation preferentially affected activated 

(CD69+CD154+) T cells. T cell migration is more strongly inhibited with anti-

panCD44 than anti-CD44v10. Instead macrophage recruitment was more affected by 

anti-CD44v10 (254). Another important role of CD44 in leukocyte rolling and firm 

adhesion to vessel endothelium is due to its association with CD49d. Since 

autoimmune diseases are reflected by an increased percentage of peripheral blood 

leukocytes expressing activated CD44, it became relevant to look for the CD44 and 

CD49d association. This wide range of CD44 activities leads to a speculation that 

association of CD44 with CD49d could play an important role in leukocyte activation 

and /or apotosis resistance. In additionan antibody blockade of different CD44 

isoforms may provide therapeutics in T cell mediated autoimmune disease like 

Alopecia areata.  
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1.8 Aims of the study 
Alopecia areata (AA) is an organ related autoimmune disease that is cured most 

efficiently by chronic contact eczema. However, the underlying mechanism is 

unknown. To unravel the mechanism I aimed to shed some more light on the mode of 

T cell activation in Alopecia areata and the mechanisms promoting the therapeutic 

efficacy of chronic contact eczema, I approached to the following questions: 

  

1. Do adhesion molecules, particularly CD44 and CD49d account for T cell 

expansion and hyperactivity in Alopecia areata: This work builds on 

previous studies in our lab which showed that in T cells from Alopecia areata, 

but not of healthy mice, CD44 associates with CD49d. This associatrion 

support T cell migration, proliferation and apoptosis resistance. To prove that 

the CD44-CD49d association is essential for the observed effects, I generated 

T cell lines expressing either mutated CD44 or mutated CD49d. The T cell 

lines differed, in addition, by CD3/TCR expression. This allowed to 

concomitantly attend the question of a TCR-dependant versus TCR-

independent modulation of T cell activity via adhesion molecules. 

 

2. Are myeloid derived suppressor cells (MDSC), the driving force in the 

SADBE-induced cure of Alopecia areata: Myeloid derived suppressor cells 

have been found to be expanded in SADBE-treated Alopecia areata (AA) 

mice. However, studies were still missing to demonstrate their essential 

contribution to the therapy of Alopecia areata. I approached this question by a 

direct comparison of ex-vivo analyzed leukocytes from AA and SADBE-

treated AA mice with co-cultures of AA T cells with separated MDSC. In 

addition, I started to unravel the molecular pathways, whereby MDSC derived 

from SADBE-treated AA mice affect autoreactive T cells.
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2: Materials and methods 

2.1 Materials 

2.1.1 Animals 
Mice Origin 

C3H/HeJ Jackson Laboratories, Bar Harbour, USA 

 

2.1.2 Bacterial strain 

E.coli DH5α       Genotype: F-, Φ80dlacZ∆M15, ∆(lacZYA-

argF)U169, deoR, recA1, endA1, hsdR17(rk-

,mk+), phoA, supE44, thi-1, gyrA96, rel A1, λ- 

(Invitrogen, Darmstadt, Germany) 

2.1.3 Cell Lines 

Cell Line Origin 

EL-4 

 

Mouse Thymoma, American Type Culture 

Collection (ATCC) number: TIB- 39 

EL4+wtCD49d  EL4 cells transfected with mouse wild type CD49d 

EL4+mutCD49d  EL4 cells transfected with mouse CD49d muataed 

at Ser988 to alanine 

Jurkat  Human T lymphocyte ATCC TIB-152 

Jurkat+wtCD44  Jurkat cells transfected with mouse wild type CD44 

Jurkat+mutCD44  Jurkat cells transfected with mouse CD44 mutated 

at Ser291 and Ser325 to alanine 

Jurkat+truncCD44  Jurkat cells transfected with mouse CD44 excluding 

cytoplasmic tail 
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2.1.4 Primers 

F   5’-GCAGTGAATTCCCACCATGGACAAGGTTTGGTGGCAC -3’ 
mouseCD44wt 

R  5’-CGACGCTCGAGCACCCCAATCTTCATATCCAC -3’ 
F  5’-CATTTCCTGAGACTTGGCGGCCTCCCCGTTGGGGTACCCC -3’mouseCD44mut 

ser291 R  5’-GGGTACCCCAACGGGGAGGCCGCCAAGTCTCAGGAAATG-3’
F   5’-GTCTGCATCGCGGTCAATGCTAGGAGAAAGG -3’ mouseCD44mut 

ser325 R  5’-CTGCCCACACCTTCTCCTAGCATTGACGGCGATCCACAG -3’ 
F   5’- GCAGTGAATTCCCACCATGGACAAGGTTTGGTGGCAC -3’ mouseCD44-

truncated R  5’- TAGTCTAGAACTATTGACCGCGATGCA-3’ 

F   5’-GAGAATTCATGGCTGCGGAAGCGAG-3’ 
mouseCD49d  R  5’-CGCTCGAGTCAGTCATCATTGCTTTTGC-3’ 

F 5’-CGACGCGTATTATTACCATCGCCTTGCTACTTGG-3’ mouseCD49d mut 
ser298 R  5’-CGACGCGTCCAAGTAGCAAGGCGATGGTAATAAT-3’ 

 

2.1.5 Primary Antibodies 

Antibody Company  

Anti-Actin Becton Dickinson, Heidelberg, Germany 

Anti-akt Becton Dickinson, Heidelberg, Germany 

Anti-BAD Becton Dickinson, Heidelberg, Germany 

Anti-Bax Becton Dickinson, Heidelberg, Germany 

Anti-Bcl2 Becton Dickinson, Heidelberg, Germany 

Anti-Caspase 3 Becton Dickinson, Heidelberg, Germany 

Anti-Caspase 8 Becton Dickinson, Heidelberg, Germany 

Anti-Caspase 9 Becton Dickinson, Heidelberg, Germany 

Anti-Caspase 9 cleaved Cell Signalling, Frankfurt , Germany 

Anti-CD1d Becton Dickinson, Heidelberg, Germany 

Anti-CD3ζ Abcam Cambridge UK 

Anti-CD4 (YTA) European Animal Cell Culture collection, UK 

Anti-CD8 (YTS169) European Animal Cell Culture collection, UK 

Anti-CD11b (YBM) European Animal Cell Culture collection, UK 
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Anti-CD11c Becton Dickinson, Heidelberg, Germany 

Anti-CD16/32 Becton Dickinson, Heidelberg, Germany 

Anti-CD18 Becton Dickinson, Heidelberg, Germany 

Anti-CD25 Becton Dickinson, Heidelberg, Germany 

Anti-CD28 Becton Dickinson, Heidelberg, Germany 

Anti-CD40 Becton Dickinson, Heidelberg, Germany 

Anti-CD44(IM7) American type culture collection 

Anti-CD44 Becton Dickinson, Heidelberg, Germany 

Anti-CD49a Becton Dickinson, Heidelberg, Germany 

Anti-CD49b Becton Dickinson, Heidelberg, Germany 

Anti-CD49c Becton Dickinson, Heidelberg, Germany 

Anti-CD49d Becton Dickinson, Heidelberg, Germany 

Anti-CD49d (PS/2) American type culture collection 

Anti-CD49f Becton Dickinson, Heidelberg, Germany 

Anti-CD50 Becton Dickinson, Heidelberg, Germany 

Anti-CD54 (YN1/1.7.4) American type culture collection 

Anti-CD54 Becton Dickinson, Heidelberg, Germany 

Anti-CD62E Becton Dickinson, Heidelberg, Germany 

Anti-CD62L Immunotools, , Friesoythe; Germany 

Anti-CD62L-lig Becton Dickinson, Heidelberg, Germany 

Anti-CD62P Becton Dickinson, Heidelberg, Germany 

Anti-CD69 Becton Dickinson, Heidelberg, Germany 

Anti-CD80 Becton Dickinson, Heidelberg, Germany 

Anti-CD86 Becton Dickinson, Heidelberg, Germany 

Anti-CD95 Becton Dickinson, Heidelberg, Germany 

Anti-CD95l Becton Dickinson, Heidelberg, Germany 

Anti-CD102 Becton Dickinson, Heidelberg, Germany 

Anti-CD106 Becton Dickinson, Heidelberg, Germany 

Anti-CD120a Becton Dickinson, Heidelberg, Germany 

Anti-CD120b Becton Dickinson, Heidelberg, Germany 

Anti-CD152 Becton Dickinson, Heidelberg, Germany 

Anti-CD154 Becton Dickinson, Heidelberg, Germany 
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Anti-CD253 Biozol Eching, Germany 

Anti-CD254 Becton Dickinson, Heidelberg, Germany 

Anti-CD265 Becton Dickinson, Heidelberg, Germany 

Anti-CD284 Biolegend,  Uithoorn, Netherlands 

Anti-c-jun Santa Cruz, Heidelberg, Germany 

Anti-cytochrome c Becton Dickinson, Heidelberg, Germany 

Anti-ERK1/2 Becton Dickinson, Heidelberg, Germany 

Anti-Ezrin Becton Dickinson, Heidelberg, Germany 

Anti-FAK Becton Dickinson, Heidelberg, Germany 

Anti-FoxP3 Becton Dickinson, Heidelberg, Germany 

Anti-Gr1 Becton Dickinson, Heidelberg, Germany 

Anti- IFNγ Becton Dickinson, Heidelberg, Germany 

Anti-IL-1α Becton Dickinson, Heidelberg, Germany 

Anti-IL-10 Becton Dickinson, Heidelberg, Germany 

Anti-IL-12 Becton Dickinson, Heidelberg, Germany 

Anti-IL-2 Becton Dickinson, Heidelberg, Germany 

Anti-IL-4 Becton Dickinson, Heidelberg, Germany 

Anti-IL-6 Becton Dickinson, Heidelberg, Germany 

Anti-iNOS Becton Dickinson, Heidelberg, Germany 

Anti-JNK Becton Dickinson, Heidelberg, Germany 

Anti-LAT Santa Cruz, Heidelberg, Germany 

Anti-Lck Santa Cruz, Heidelberg, Germany 

Anti-Ly6C Becton Dickinson, Heidelberg, Germany 

Anti-LY6G Becton Dickinson, Heidelberg, Germany 

Anti-NFkB Santa Cruz, Heidelberg, Germany 

Anti-pAkt Becton Dickinson, Heidelberg, Germany 

Anti-Paxillin Becton Dickinson, Heidelberg, Germany 

Anti-pBAD Cell Signalling, Frankfurt , Germany 

Anti-p-c-jun Santa Cruz, Heidelberg, Germany 

Anti-pERK1/2 Santa cruz, Heidelberg, Germany  

Anti-pI3K Santa Cruz, Heidelberg, Germany 

Anti-pJNK Becton Dickinson, Heidelberg, Germany 
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Anti-pLck Santa Cruz, Heidelberg, Germany 

Anti-pZAP70 Becton Dickinson, Heidelberg, Germany 

Anti-Smac Becton Dickinson, Heidelberg, Germany 

Anti-Stat3 Becton Dickinson, Heidelberg, Germany 

Anti-Stat6 Becton Dickinson, Heidelberg, Germany 

Anti-TNFRI Becton Dickinson, Heidelberg, Germany 

Anti-TNFRII Becton Dickinson, Heidelberg, Germany 

Anti-TNFα Becton Dickinson, Heidelberg, Germany 

Anti-Trail Becton Dickinson, Heidelberg, Germany 

Anti-ZAP70 Becton Dickinson, Heidelberg, Germany 

2.1.6 Secondary antibodies 

Name Company 

Anti-mouse IgG HRP Amersham, Freiburg, Germany 

Anti-rabbit IgG HRP Amersham, Freiburg, Germany 

Anti-rat IgG HRP Amersham, Freiburg, Germany 

Anti-mouse IgG PE Jackson Laboratories, Bar Harbor,USA 

Anti-hamster IgG FITC Jackson Laboratories, Bar Harbor,USA 

Anti-mouse IgG FITC Jackson Laboratories, Bar Harbor,USA 

Anti-mouse IgG APC Jackson Laboratories, Bar Harbor,USA 

Anti-rat IgG FITC Jackson Laboratories, Bar Harbor,USA 

Anti-rat IgG PE Jackson Laboratories, Bar Harbor,USA 

Anti-rat IgG APC Becton Dickinson  Heidelberg, Germany 

Streptavidin FITC Jackson Laboratories, Bar Harbor,USA 

Streptavidin PE Jackson Laboratories, Bar Harbor,USA 

Streptavidin APC Jackson Laboratories, Bar Harbor,USA 

Streptavidin HRP Rockland, PA USA 

2.1.7 Enzymes 

 

Restriction enzymes  MBI Fermentas, St. Leon-Rot, Germany 

Taq polymerase MBI Fermentas, St. Leon-Rot, Germany 
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2.1.8 Instruments 

Name  Company 

Agitator for bacterial cultures Edmund Buehler GmbH, Hechingen, 

Germany 

Camera system Spot CCD Diagnostic Instruments, Sterling Heights, 

USA 

Cell chamber neubauer improved Brand, Wertheim, Germany 

Centrifuge Sorvall RC5B Plus Kendro, USA 

Centrifuge Biofuge fresco Heraeus, Hanau, Germany 

DNA-agarose gel electrophoresis chamber Bio-Rad, Munich, Germany 

Eagle eye (Mididoc) Herolab, Wiesloch, Germany 

ELISA plate reader Anthos labtec, Wals, Austria 

FACS  Calibur Becton-Dickinson, Heidelberg, Germany 

Hyper processor (for processing films) Amersham, Freiburg, Germany 

Incubator for bacteria Melag, Berlin, Germany 

Incubator for cell culture Labotec, Goettingen, Germany 

Invert microscope DM-IL Leica, Bensheim, Germany 

LSM710 (laser scanning microscope) Zeiss, Goettingen, Germany 

Master cycler (PCR cycler) Eppendorf, Hamburg, Germany 

Magnetic stirrer 3000 Heidolph, Keilheim, Germany 

Microscope DMBRE Leica, Bensheim, Germany 

Microwave Phillips, Wiesbaden, Germany 

Photocassette Amersham, Freiburg, Germany 

Ph-Meter-761 Calimatic Knick, Berlin, Germany 

Photometer Ultraspec III Amersham, Freiburg, Germany 

Pipettus-Akku Hirschmann, Eberstadt, Germany 

Pipettes Eppendorf, Hamburg, Germany 

Powersupply PS 9009 GIBCO, Darmstadt, Germany 

Rotor GSA Kendro, USA 

Rotor SW34 Kendro, USA 

Rotor SW41 Ti Beckman Coulter, Krefeld, Germany 

Sterile bench Heraeus, Hanau, Germany 



                                                                                                                          Materials 

 50

Sonicator Sonoplus Bandelin, Berlin, Germany 

Tabletop centrifuge Heraeus, Hanau, Germany 

Transferapparatus Mini Trans-Blot® Bio-Rad, Munich, Germany 

Thermo-mixer Eppendorf, Hamburg, Germany 

Homogenizer Bandelin Electronik, Germany 

UV-transilluminator Biotec Fischer, Germany 

Water-bath Julabo, Seelbach, Germany 

Weighing scale RC210 D Sartorius, Goettingen 

Whirlmixer Vortex Genie Si Inc., New York, USA 

 

2.1.9 Miscellaneous Materials 

Cell culture flasks 25cm2, 75cm2 Greiner, Frickenhausen, Germany 

Cell culture 96-well, 24-well, 6-well 

plates 

Greiner, Frickenhausen, Germany 

Centrifugal concentrators Vivaspin 6ml, 

20ml 

Vivascience, Hannover, Germany 

Cryovials Greiner, Frickenhausen, Germany 

Coverglass R. Langenbrinck, Emmendingen, 

Germany 

Falcon tubes 15ml, 50ml Greiner, Frickenhausen, Germany 

Needles BD Biosciences, Heidelberg, Germany 

Nitrocellulose membrane Hybond ECL Amersham, Freiburg, Germany 

Parafilm American Nat. Can., Greenwich, Great 

Britain  

Petriplates Greiner, Frickenhausen, Germany 

Pipette tips Sarstedt, Numbrecht, Germany 

Sterile filter 0,2µm Renner, Darmstadt, Germany 

Syringes BD Biosciences, Heidelberg, Germany 

Trans-well migration (Boyden) chambers 

48 well 

Neuroprobe, Gaithusberg, USA 

WhatmanTM 3MM paper Scleicher & Schull, Dassel 
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2.1.10 Chemicals: 

Acetic acid Riedel-de Haen, Seelze 

Acetone Fluka, Buchs, Switzerland 

Agarose Sigma, Steinheim 

Ammonium persulphate (APS) GIBCO, Darmstadt 

Ampicillin sulphate Calbiochem, Darmstadt 

Annexin FITC V Becton Dickinson,Heidelberg 

Bactoagar Fluka, Buchs, Switzerland 

Bio-Rad, Munich Bradford reagent Bio-Rad, Munich 

Biotin-X-NHS Calbiochem, Darmstadt 

Bovine Serum Albumin (BSA) PAA, Pasching, Austia 

Brij 96 Fluka, Buchs, Switzerland 

Bromo phenol blue Merck, Darmstadt 

Calcium chloride Merck, Darmstadt 

CFSE Invitrogen, Darmstadt 

Chloroform Riedel-de Haen, Seelze 

Coomassie R-250 Merck, Darmstadt 

Crystal violet Sigma, Steinheim 

Dimethyl formamide Merck, Darmstadt 

Dimethyl sulfoxide (DMSO) Merck, Darmstadt 

Ethanol Riedel-de Haen, Seelze 

Ethidium bromide Merck, Darmstadt 

Ethylenediamine tetraacitic acid (EDTA) Sigma, Steinheim 

Fibronectin Sigma, Steinheim 

Foetal Calf Serum (FCS) PAA, Pasching, Austria 

Formaldehyde (37%) Merck, Darmstadt 

G418 sulphate  PAA, Pasching, Austria 

Gelatine (cold water fish skin) Merck, Darmstadt 

Glucose Merck, Darmstadt 

Ladder Gene ruler DNA MBI Fermentas, St. Leon-Rot 

Ladder Prestained Protein  MBI Fermentas, St. Leon-Rot 

L-Glutamine AppliChem, Darmstadt 
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Glycerine Roth, Karlsruhe 

Glycine GERBU, Gaiberg 

HEPES GERBU, Gaiberg 

HiPerfect-Reagent for transfection Quiagen, Hilden 

Hyaluronan SIGMA, Steinheim, Germany 

Hydrochloric acid (HCl) Riedel-de Haen, Seelze 

Hygromycin PAA, Pasching, Austria 

Hyperfilm ECL Amersham, Freiburg, Germany 

Isopropanol Fluka, Buchs, Switzerland 

Magnesium carbonate Merck, Darmstadt 

Magnesium chloride Merck, Darmstadt 

Magnesium sulphate Merck, Darmstadt 

Magnetic Beads Miltenyl Biotec,  Bergisch Gladbach, 

Germany 

Milk powder Roth, Karlsruhe 

Methanol Riedel-de Haen, Seelze 

N,N,N’N’-Tetramethylenediamine 

(TEMED) 

Sigma, Steinheim 

Paraformaldehyde Sigma, Steinheim 

Penicillin Sigma, Steinheim 

Phenylmethylsulphonylfluoride (PMSF) Sigma, Steinheim 

Phorbolmyristateacetate (PMA) Sigma, Steinheim 

Propidium Iodide Sigma, Steinheim 

Potassium acetate Sigma, Steinheim 

Potassium carbonate Roth, Karlsruhe 

Potassium chloride Merck, Darmstadt 

Potassium dihydrogenphosphate Merck, Darmstadt 

Potassium tetrathionate Merck, Darmstadt 

Protease Inhibitor Cocktail Tablets Roche Diagnostics, Mannheim 

Protein G Sepharose 4 Fast Flow Amersham Biosciences, Freiburg  

Rotipherose Gel 30 (Acrylamide-mix) Roth, Karlsruhe 

RPMI 1640 GIBCO, Darmstadt cell culture 
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Silver nitrate Roth, Karlsruhe 

Sodium acetate Merck, Darmstadt 

Sodium azide AppliChem, Darmstadt 

Sodium carbonate AppliChem, Darmstadt 

Sodium chloride Fluka, Buchs, Switzerland 

Sodium hydrogen phosphate Merck, Darmstadt 

Sodium dodecyl sulphate (SDS) GERBU, Gaiberg 

Sodium hydrogen carbonate AppliChem, Darmstadt 

Sodium hydroxide Riedel-de Haen, Seelze 

Sodium pyruvate Merck, Darmstadt 

Sodium thiosulphate Merck, Darmstadt 

SP-Dio18(3) dye for exosome labelling Invitrogen, Darmstadt 

Tris Roth, Karlsruhe 

Triton-X-100 Sigma, Steinheim 

Trypan bue Serva, Heidelberg 

Trypsin Sigma, Steinheim 

Trypton AppliChem, Darmstadt 

Tween 20 Serva, Heidelberg 

Yeast Extract GIBCO, Darmstadt  

2.1.11 Buffers and solutions 

Name Composition 

Annexin FITC/PI 

Binding buffer 

10mM HEPES pH7.4, 140nM NaCl, 25mM CaCl2 

Bicarbonate buffer pH 

9.6 

15mM Na2CO3, 35mM NaHCO3. Fill to 900ml with distilled 

water. Adjust pH to 9.6 and make it upto 1l with water. 

Blot buffer (5x) 10g SDS, 142g Glycine, 30.3g Tris base and make upto 1l with 

distilled water. 1X buffer was made fresh by taking 5x Blot 

buffer, methanol and distilled water in the ratio 1:1:3 

Cell culture complete 

medium 

RPMI 1640 medium, 10% FCS, 1% Glutamine, 1% Penicillin/ 

Streptomycin antibiotic solution, additional antibiotic if needed. 

DEPC water 200µl DEPC reagent in 1l distilled water and autoclave 
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Ethidium Bromide 0.2g Ethidium bromide, distilled water 20ml. Stored in dark. 

Freezing medium 90%FCS, 10%DMSO 

Glycine solution 0.2M glycine in PBS 

HEPES buffer 25mM HEPES pH7.2, 150mM NaCl, 5mM MgCl2, 1mM 

PMSF, 1x Protease inhibitor, 1mM NaVO4, detergent as 

indicated in experiments 

LB medium 10g Peptone, 5g Yeast extract, 10g NaCl, fill upto 1l with 

Distilled water. For LB plates 15g agar was added. 

Laemmli buffer  62.5mM Tris HCl pH 6.8, 25% glycerol, 2% SDS, 0.01% 

bromophenol blue 

PBS (pH7.2) 137mM NaCl, 2.7KCl, 4.3mM Na2HPO4 in distilled water 

Running buffer for 

protein gels (10x) 

 10g SDS, 144g Glycine, 30g Tris, filled upto 1l with distilled 

water 

TAE Buffer 242g Tris base, 57.1ml Glacial acetic acid, 100ml 0.5m EDTA 

pH 8.0, Add distilled water 1l and adjust final pH to 8.5.  

TNES buffer 50mM Tris, 0.4M NaCl, 100mM EDTA, 1% SDS. 
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2.2 Methods 

2.2.1 Molecular biology 

2.2.1.1 Chemically competent cells  

From a 50 ml DH5α overnight culture, 1 litre of LB medium (without antibiotic) was 

cultivated till the OD 600nm  reaches 0.5-0.6.  Cells were then centrifuged in the 

Sorvall GSA rotor (250 ml centrifuge bottle) at 5,000 RPM for 10 minutes at 4oC, 

bacteria pellet was gently resuspended in 1/4 volume of ice cold sterile MgCl2.  Cells 

were again centrifuged at 4000 RPM in the Sorvall GSA rotor for 10 minutes and 

bacterial pellet was now re-suspended in 1/20 volume of ice cold CaCl2.  Cells were 

centrifuged at 4,000 RPM in the GSA rotor for 10 minutes and the cell pellet was re-

suspended in 1/50 volume of ice cold, sterile  85 mM CaCl2 in 15% glycerol 

w/v. Cells were aliquoted  in 50 µl each and stored  at -80oC. 

 

2.2.1.2 Transformation 

Competent cells were thawed on ice and 1-10ng of plasmid was added and incubated 

on ice for 30 mins. Competent cell plus plasmid was given a heat shock at 42°C for 2 

mins and kept on ice for another 5 mins. To this 1 ml of LB medium (no antibiotics) 

was added and kept at shaker for 1 hr at 37°C. 10 to 100 µl was then plated on LB 

agar plate containing selection drug (ampicilline at 100µg/ml). Plates were incubated 

overnight at 37°C. 

 

2.2.1.3 Mini-Prep 

Single colonies were recovered from LB agar plates in 2 ml LB medium containing 

selection agent (ampicilline at 100µg/ml) on a shaker set at 200 rpm at 37°C 

overnight.1 ml bacterial suspension was used for miniprep following producer’s 

recommendations (Miniprep kit, Qiagen). Positive clones were obtained by doing 

enzymatic digestion. 

 

2.2.1.4 Enzymatic restriction digestion 

For double digestion 1 µg purified plasmid with insert was mixed with 0.5µl (5U) 

primary restriction enzyme and appropriate digestion buffer (1X). Total volume was 

made up with distilled water to 10 µl and digestion was performed for 2 hrs in a water 

bath at 37°C. After digestion, DNA was purified over Qiagen mini-column and a 
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second enzymatic digestion was performed following the same procedure. Samples 

containing right sized fragments were further proceeded via midi-prep for 

transfection. 

 

2.2.1.5 Midi-PreP 

To obtain sufficient amount of vector DNA necessary for transfection, overnight 

cultures of positive clones were incubated overnight on a shaker set at 200 rpm at 

37°C in 100ml of LB medium containing appropriate selection antibiotic (ampicillin 

at 100µg/ml). Whole bacterial culture was used for midi-prepration following 

producer’s recommadations (Midi-prep Kit, Qiagen). 

 

2.2.1.6 Isolation of DNA fragment from agarose gel  

The DNA fragments were separated on agarose gel and were illuminated with UV-

light. The desired band was excised using a clean scalpel and transferred into 1.5ml 

tube. The DNA was purified from the excised agarose gel using Qiagen gel extraction 

kit following manufacturer’s protocol. 

  

2.2.1.7 Quantification of DNA  

DNA was quantified spectroscopically using a Spectronic-Unicam spectrophotometer. 

Concentration was determined by measuring the absorbance at 260nm and 280nm. 

Absorbance at 260nm should be higher than 0.1 but less than 0.6 for reliable 

determinations. A ratio of A260/A280 between 1.8 and 2 indicated a sufficient purity 

of the DNA preparation. 

 

 2.2.1.8 RNA preparation, cDNA synthesis and amplification 

Total RNA isolation was done from 107 cells with Tri reagent following 

manufacturer’s instructions (Applichem, Darmstadt, Germany). Quality of RNA 

preparation was checked by running RNA sample diluted in RNA sample buffer on 

1% agarose/formaldehyde gel. cDNA synthesis and amplification was performed by 

RT–PCR (reverse transcriptase polymerase reaction). 1-2 µg template RNA was 

mixed with 0.5µg oligo dT primer and heated at 70°C, 5 min; chilled on ice, then 

mixed with 1µl Im Prom II reverse transcriptase (10U), 1-2mM dNTP, 1x Im Prom II 

buffer 5x, 6mM MgCl2 and made upto a total of 20µl with nuclease free water. The 

program continues as 25°C-5min, 42°C-60min and 70°C-15min.  
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PCR was performed in 25 µl volume containing template, 1-2 mM dNTP, 1.5µl Red 

Taq polymerase, 2.5 µl 10x Taq buffer and 0.2 µM primer forward and reverse. Total 

volume was completed to 25 µl with autoclaved distilled water. 

PCR Program: 

wtCD44 :  94°C-5min, 94°C-30secs, 55°C-30secs, 72°C-1min -32cycles, 72°C-10min 

mutCD44 : 94°C-5min, 94°C-30secs, 50°C-30secs, 72°C-1min, 22cycles, 72°C-   

10min 

truncCD44 :94°C-5min, 94°C-30secs, 53°C-30secs, 72°C-1min -22 cycles, 72°C- 

10min 

wtCD49d : 94°C-5min, 94°C-30secs, 55°C-30secs, 72°C-3.5min -32 cycles, 72°C-

10min 

mutCD49d : 94°C-5min, 94°C-30secs, 54°C-30secs, 72°C-3.5min, 22cycles, 72°C-

10min 

GAPDH :  94°C-5min, 94°C-30secs, 55°C-30secs, 72°C-1min -32 cycles, 72°C-

10min 

 

2.2.1.9 Site directed Mutagenesis  

Site-directed mutagenesis is performed by using mutagenic primers (b and c) and 

flanking primers (a and d) to generate intermediate PCR products AB and CD that are 

overlapping fragments of the entire product AD. Products AB and CD are denatured 

when used as template DNA for the second PCR; strands of each product hybridize at 

their overlapping, complementary regions that also contain the desired mutation 

(indicated by the cross). Amplification of product AD in PCR #2 is driven by primers 

a and d. Final product AD is inserted into pcDNA3 vector (gray circle) to generate 

larger quantities of DNA. 
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Restriction sites were introduced into the mutated primers (CD49dmut MluI) to 

confirm the efficacy of mutants. Care should be taken that these sites should be 

unique (should not be present in insert and vector) and should not make any change in 

the protein structure, 

2.2.1.10 DNA gel electrophoresis 

PCR products or samples containing DNA of interest were checked by running an 

agarose gel of 1 to 2%, depending on the size of the product. When Red Taq 

polymerase was not used then DNA sample was mixed with DNA loading dye (6x) to 

locate the running front. Markers (1kb or 100bp) were run in parallel. The gel was run 

at 100 volts in a migration tank containing 1x TAE buffer. Bands were visualized on a 

U.V. transilluminator. 

2.2.2 Protein Chemistry 

2.2.2.1 Antibody purification  

Antibody purification was done by affinity chromatography using a sepharose protein 

G-4B column. To purify IgG fractions, sterile filtered hybridomas supernatants were  

passed over a sepharose protein G-4B column. The column was washed with 0.1M 

phosphate buffer, pH 7.5. Bound IgG was eluted from the column with 0.1M Glycine 

buffer pH 2.7. Protein containing fractions were dialyzed against PBS, concentrated 

and filter-sterilized. The protein amounts obtained were photometrically analysed for 

protein concentration by Biorad assay. 
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2.2.2.2 Biorad assay  

This test is based on the affinity of the  coomassie dye G-250 for proteins. In 

microassay it allows detections of BSA amounts under 25µg/ml. To proceed with 

detection of the soluble proteins, 1µl of each sample to test were diluted in a flat 

micotiter well with 99µl Biorad reagent prediluted (1 :10 in distilled water). In 

parallel, a 10mg/ml BSA solution in water was serially diluted to allow drawing of a 

standard curve. After 5min incubations, optical densities were read at 595nm on an 

ELISA reader. Optical densities were reported to the standard curve for concentration 

calculation. 

2.2.2.3 SDS- polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein components were separated using SDS polyacrylamide gel electrophoresis 

(SDS-PAGE). SDS, an anionic detergent denatures and imparts negative charge to all 

proteins in the sample. Proteins can be separated according to their size in an 

electrical field.  Two gels were used for this purpose. At the bottom resolving gel was 

poured to separate the proteins and at the top a stacking gel. The stacking gel 

concentrates all proteins in one band and allows them to enter the resolving gel at the 

same time; it can be mounted with a comb to load samples in the wells.  Before 

loading the gel, samples were boiled for 5 minutes at 95° C for proteins to allow 

complete protein denaturation. Around 25-30 µl of sample was loaded into wells. The 

inner and outer chambers were filled with running buffer (1x). 

2.2.2.4 Immunoprecipitaion 

Freshly harvested cells from lymph node, spleen or cultured cells (107) were taken,  

washed 3 times in cold PBS. Cells were lysed in 1ml HEPES buffer containing 

protease inhibitor and phosphate inhibitors as well as detergent  (1% Lubrol) for 1 

hour at  4°C on a rocking plate-form.  Lysates were then centrifuged 10min at 13,000 

rpm, 4°C. Lysate supernatants were collected. Immunoprecipitation was done using 1 

to 5 µg specific monoclonal or polyclonal antibodies at 4°C on a rocking plate-form 

for over night. Following over night incubation at 4°C, 5% of protein G-sepharose 

was added to the precleared lysates for 1 hour. Protein G coupled antibody was 

washed 3 times with lysis buffer completed with detergent. Sepharose pellet was 

resuspended in 80µl Laemmli buffer and boiled 5min at 95°C. After 1min 
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centrifugation at maximum speed, 20µl of the supernatant were taken and loaded on 

acrylamide gel to be resolved by SDS-PAGE. If indicated, cells were biotinylated 

before lysis and immunoprecipitation. Washed cells were resuspended in HEPES 

buffer containing 0.1mg/ml NHS-water soluble biotin. Biotinylation was performed 

30min under agitation at 4°C. The reaction was terminated by 3 washes with 0.2M 

glycine PBS solution. Cells were lysed 1 hour at 4°C in 1ml HEPES buffer containing 

protease and phosphatases inhibitors as well as detergent of choice. Following steps 

were similar as described above. 

2.2.2.5 Western Blotting 

Following gel electrophoresis proteins were electroblotted onto a nitrocellulose 

membrane (Amersham Biosciences) overnight at 30 volts and analysed by 

immunoblotting using specific primary and secondary antibodies. The gel, foam pads 

and 3MM Whattmann papers were equilibrated in blotting buffer; the gel was placed 

on the membrane which in turn was placed on Whattmann paper followed by foam 

pads on either side. The whole set was placed in a cassette holder, followed by a tank 

blotting apparatus such that the membrane was placed towards the anode side. After 

overnight transfer the blots were blocked with PBS/5% milk powder or BSA (for 

phosphospecific antibodies) for 1 hour, followed by primary antibody for 1 hour. 

Blots were washed with PBS/0.1%Tween thrice and 5 minutes each wash. Then the 

blots were incubated in secondary antibody for an hour, followed by washing again. 

The blots were developed with Enhanced Chemiluminescence system (ECL, 

Amersham Biosciences) and exposed to X-ray film (Amersham Biosciences) for 

desired time points and developed.  

2.2.3 Cell biology 

2.2.3.1 Cell culture 

Cells were grown in a humidified incubator at 37°C, 5% CO2. Cells were maintained 

in RPMI 1640 medium in 10% FCS as per the requirements. Cells were usually 

passaged at a ratio of 1:4.  For long term cell storage, cells were washed once with 

medium and frozen in cryovials in FCS, 10% DMSO. The vials were placed for 1 

hour at -80°C before transferring into liquid nitrogen. Cells were thawed from the 

cryovials by placing the vials from liquid nitrogen first on ice, followed by 37°C 
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water bath and immediately placed in falcon containing medium and centrifuged at 

1600 rpm for 5 minutes. The medium was sucked off and new medium was added and 

transferred to flasks at high density to maximise recovery. 

Cell viability was determined using hemacytometer and trypan blue staining. 

Tryptan blue: 0.4% Trypan blue (4vol) 

                       4.5% NaCl (1vol). 

2.2.3.2 Transfection of suspension cells 

107 Jurkat cells or/and El4 cells were washed in cold serum-free RPMI. Cells were 

then resuspended in 200 µl serum-free RPMI, kept on ice (Jurkat cells) or at room 

temperature (EL4 cells) in 0.4 cm electroporation cuvette for 10 mins. 10-15 ug of 

sterile DNA is added to the cells in the cuvette and mixed. Electroporation was done 

at 250 V, 960 µF. After the pulse cuvette is kept on ice (Jurkat cells) or at room 

temperature (EL4 cells) for 10 min. Later cells were plated in 1 ml of RPMI+10%FCS 

without antibiotic mix for 12 hrs and then were plated in 1ml of complete medium 

with 750µg/ml (Jurkat cells) and 250µg/ml (El4 cells) G418. Cells were tested within 

48 hrs for the transfection efficiency via flow cytometry. Once positive for the desired 

protein, cells were kept in culture for another 2 weeks and can be subjected to single 

cell cloning. 

 

2.3.3 Single cell cloning 

Single cell cloning can be done by single cell per well seeding or by serial dilution 

using 96 well plate in RPMI+10%FCS+G418 medium. For serial dilution 5x104 cells 

were plated in a single well of 96 well plates and were serially diluted down the lane. 

After 4 weeks clones were checked by flow cytometry, positive clones were 

expanded.  

 

2.2.3.4 Magnetic Beads separation 

Spleen cells and lymph node cells were prepared as described below. CD11b+/Gr1+ 

spleen cells were enriched by magnetic bead isolation. T cells were enriched in LNC 

by magnetic bead depletion of CD11b+, CD19+, and CD16/CD32+ cells. 

Viability of the separated populations was >95%. 
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2.2.3.5 Flow cytometry 

Fluorescent activated cell sorting (FACS) allows cell segregation based on size and 

granulation and also allows detecting the expression levels of proteins in cells. This 

method is based on diffraction of light and measure of fluorescence, which reflects 

cell size and amount of fluorescent antibody labelled cells. 

Cells were washed in PBS/0.5% BSA. About 5x105 cells were added to round 

bottomed 96 well plates. After centrifugation cells were suspended in 50 µl of primary 

antibody diluted in PBS/0.5% BSA and incubated for half an hour on ice. This was 

followed by washing the cells thrice with PBS/0.5%BSA, 5min each wash. Secondary 

antibody (50µl) coupled to fluorochrome was added to each well and incubated for 

half an hour on ice in the dark. The cells were again washed. After the last wash cells 

were suspended in 200µl PBS/0.5%BSA for immediate measuring. Staining was 

evaluated using FACS-Calibur (Becton Dickinson, Heidelberg, Germany).  In case of 

double or triple fluorescence the same procedure was repeated with adequate 

antibodies and blocking steps wherever necessary (e.g. different antibodies from the 

same species). 

For cytokines, intracellular FACS was performed. The cells were first incubated with 

formalin 1% to fix them for 10 minutes on ice. The cells were washed with PBS 1% 

BSA 3X as mentioned above. Thereafter the cells were incubated with 0.1 % Tween 

for 15 minutes on ice to create pores on the cell membrane and facilitate the entry of 

antibodies against the cytokines into the cells. The cells were again washed and 

antibodies were added following the usual protocol. 

 

2.2.3.6 Immunohistochemistry 

Immunoassay was performed on 5µm cross-section for skin tisues. The section was 

fixed with choloroform/acetone (1:1) for 4 mins. The endogenous peroxidase 

reactivity was blocked by washing with levamisole solution. Sections were fixed with 

4% PFA, after washing with PBS, non-specific binding was blocked with 2% normal 

serum derived from the same species as the secondary antibodies. The sections were 

washed with PBS followed by incubating in secondary biotinylated antibody for 30 

min. After 3 washing of 15 mins each section was incubated with avidin-biotin 

complex. After washing with PBS, the sections were detected by staining with AEC 

reagent. The reaction was terminated by adding water. Sections were counterstained 

with Mayer’s hematoxylin and mounted afterwards. 
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2.2.3.7 Migration assay 

Cell lines and LNC were freshly prepared. The cells were counted and 5x104 cells 

were incubated with or without anti-CD44, anti-CD49d and PMA for 30 mins on ice 

and then were seeded onto the upper well of a boyden chamber in 30 µl of RPMI 

without FCS. The lower part of the chamber is separated by a 5µm (LNC) and 8µm 

(cell lines) pore sized polycarbonate membrane. The lower part of chamber contained 

chemotaxis buffer with or without HA (5µg/ml), FN (250µg/ml). The chamber was 

incubated in 5% CO2 at 37oC for 4 hrs and cells in the lower chamber were counted 

by hemacytometer and trypan blue staining. 

 

2.2.3.8 Coating of plates for crosslinking 

HA (10µg/ml) and FN (50µg/ml) in bicarbonate buffer was used to coat 6-well plate 

(1ml) or 96-well plate (100µl). Plates were kept at 4οC o/n or at 37οC for 1 hr, plates 

were than washed 2X with PBS+0.1%BSA and blockd with PBS+1%BSA for another 

1 hr at 37οC. Washed 2X with PBS+0.1%BSA and can be stored in the same washing 

buffer untill use, at 4οC. 

 

2.2.3.9 Apoptosis assay 

Apoptosis assay was performed using Annexin V-FITC and propidium iodide (PI) (R 

& D systems, Wiesbaden-Nordenstadt, Germany) double staining. Early apoptotic 

cells bind to Annexin V because of the exposed phosphatidylserine on the outer cell 

membrane. Late apoptotic cells are positive for Annexin V and PI. Necrotic cells bind 

only PI. LNC (1x105, triplicates) were co-cultured with and without MDSC. Cultures 

contained AA skin lysates (100µg/ml) or PMA (10-8M)/ionomycin (10-6M). Cell lines 

were activated over crosslinked HA, FN and with PMA and were treated with or 

without anti-CD44 and anti-CD49d. Apoptosis was determined after 48h by 

AnnexinV/PI staining, 96-well plates were centrifuged at 1600 rpm for 5 minutes and 

washed with PBS/1% BSA. Cell labelling was performed according to manufacturer’s 

instructions. Cell were incubated in the dark at RT for 15 min and detected by FACS 

using the FL1 channel for Annexin FITC and FL-3 channel for PI. 

 

2.2.3.10 Proliferation assay 

LNC (1x105, triplicates) were co-cultured with and without MDSC. Cultures con-

tained AA skin lysates (100µg/ml) or PMA (10-8M)/ionomycin (10-6M). Cell lines 
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were activated over crosslinked HA (5µg/ml) and FN (250µg /ml) and with PMA (10-

8M)/Ionomycin (10-6M) in solution  and were treated with or without anti-CD44 and 

anti-CD49d to check for the proliferative activity, cells were evaluated for 72 hour in 

the presence or absence of anti-CD44 or anti-CD49d by 3H-thymidine incorporation. 

 

2.2.3.11 Cytosol, nuclei and mitochondria preparation 

Cells were incubated in hypotonic buffer, homogenized and centrifuged at 800rpm for 

pelleting the nuclei. For separating the cytosolic from the mitochondrial fraction, 

2.5x106 cells were lysed in 0.5ml lysis buffer. After adding Nonidet-P40 (0.5%), 

vortexing, and centrifugation (1600rpm, 5min), cytosolic proteins were recovered 

from the supernatant. The pellet (mitochondria) and the pelleted nuclei were washed, 

resuspended in lysis buffer (1% TritonX-100, 1% SDS) and sonicated (7sec, 9cycles). 

 

2.2.4 Animal experiments  
2.2.4.1 Skin Transplantation 

Donor mouse was sacrificed and recipient mice were anesthesized by injecting 0.12-

0.15ml ketamine i.p. Antero-posterior midline of the graft recipients was shaved. 

Disinfection of mice before grafting was done with the ethanol pad. For grafting 1 cm 

pieces in diameter of alopecia areata affected skin from the donor were cut and 

collected in PBS (till donor mice are ready). The recipient mice were cleaned with 

iodine solution at the area shaved before making any surgery. Round piece of skin 

from the graft recipient were removed from antero-posterior midline (shaved area). 

Graft was put onto the gap, stiches were made on four sides (with 3 knots each) and 

the gaps were sealed with histoacryl-glue. Bandages were applied once glue is dry. 

Mice drinking water was supplied with antibiotic Sulfadimidin (1g in 1L water) from 

day 0 (grafting day) to day 4 and from day 7 to day 11 after grafting. 

To look for effect of MDSC on hair re-growth, mice received MDSC (1x107, i.v.) or 

an ATRA depot pellet (sub cutaneous). Both applications were repeated after 3 weeks. 

 

2.2.4.2 Lymphatic organ preparation 

Lymph nodes and/or spleen were collected in the medium (RPMI) or PBS +1%FCS 

from 16-20 weeks old mice. Organs were meshed on the sterile gauze and washed the 

gauze 2-3 times with sterile medium. Cells were collected in 50 ml of RPMI medium 
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supplemented with 1% FCS and cells were centrifuged at 1600rpm for 5 minutes. 

Now these cells can be used for further experiment. 

 

2.2.4.3 Skin infiltrating leukocytes (Skil) preparation 

Skin is taken from whole of the back and is made free from fat, tissue and hair. Skin is 

first treated with trypsin (1mg/ml) for 30 min at 37°C and then pressed (epidermis) 

onto the sterile gauge (very harshly), cells were collected and washed with medium 

(RPMI) two times. This procedure was repeated 3 times and then cells were pooled 

and kept at 37°C for 2 hrs or o/n in RPMI 1640 medium supplemented with 10% 

FCS, antibiotic mix to rejuvenate them.   

 

2.2.4.4 Skin lysate preparation 

Skin is taken from whole of the back and is made free from fat, tissue and hair. Skin 

was then cut into very small pieces with scalpel and was homogenized with help of an 

ultra turrax in 5 ml of ice cold PBS. Lysates were centrifuged at 2000rpm for 15 mins 

to settle down the debris and were frozen at -200C until use. 

 

2.2.4.5 Delayed type hypersensitivity (DTH) reaction 

Whole back of the mice was shaved and sensitized by applying 1% SADBE (squaric 

acid dibutylester) in acetone on the dorsal side (back) 3-4 times with the help of 

cotton bud. Mice were then weekly sensitized by topical applications of 0.5% SADBE 

in acetone on the back and the abdominal wall to induce a moderately severe contact 

dermatitis lasting for 2–3 days. Mice were challenged 3-4 times. The skin becomes 

red, swollen, itchy, or blistered. This kind of skin reaction is a sign that the contact 

sensitizer has worked. Mice were sacrificed by cervical dislocation 3 days after the 

last challenge. 

 

2.2.5 Statistical analysis 

Significance of differences was calculated according to the Student's T test (in vitro 

studies). Functional assays were repeated at least 3 times. Mean±SD of in vitro 

studies are based on 3-4 replicates. 
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3. Results 

Autoimmune diseases are frequently characterized by persisting activation and 

expansion of autoreactive T cells as well as resistance towards activation induced cell 

death. This also accounts for alopecia areata, an autoimmune disease affecting anagen 

stage hair follicles, where the topical application of contact sensitizers presents the 

most efficient therapy in human as well as in a mouse model (257-259). I tried to 

answer particularly two questions, first what are the molecular mechanisms that 

allows for persisting T cell activation and second, how can the induction of an 

immune disorder, chronic contact eczema, be a therapeutic for another immune 

disorder, an organ related autoimmune disease. 

 

3.1 Persisting T cell activation 
I started with the first question, the persisting activation and expansion of T cells. In 

the healthy organism antigen-specific T cells become activated via TCR/CD3 

complex and co-stimulatory signals. Activated T cells become regulated by transient 

TCR internalization, inhibitory T cells such as regulatory T cells (Treg) and a 

mechanism called activation induced cell death. Alternatively to T cell activation via 

the TCR/CD3 complex, though not mutually exclusive, there is some evidence that T 

cells could become activated circumventing TCR engagement. Such an alternative 

mechanism could explain the escape from regulatory mechanisms and provides a 

means for persisting T cell activation and expansion as frequently seen in autoimmune 

diseases. I explored this question with T cell lines, which has the advantage of a 

uniform population of T cells and offers the opportunity to modulate individual 

molecules. In addition, I selected a T cell leukaemia, which expresses the TCR/CD3 

complex and a thymoma, which does not express the TCR/CD3 complex. This 

allowed me to distinguish between TCR-dependant versus TCR-independent effects.  

CD44 and CD49d can act as accessory molecules supporting TCR-initiated activation 

signals.Yet, they have also been suggested to contribute to TCR-independent T cell 

activation. In fact, previous work in our lab provided evidence that these two 

molecules might, in addition, co-operate. 
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3.1.1 Selection of an appropriate model system 
To explore the activity of CD44 as well as the suggested joint activities of CD44 and 

CD49d, I selected EL4 (Thymoma cell line) cells which are CD44+ , CD49d- and 

TCR/CD3- and Jurkat cells (Leukemia T cell line) which are CD44-, CD49d+ and 

TCR/CD3+ and for comparison naïve and activated LNC (Fig.1). Jurkat cells were 

transfected with CD44, CD44 mutated at position Ser325 and Ser291 (mutCD44) or 

CD44 without cytoplasmic tail (truncCD44). The mutCD44 will prohibit ezrin 

binding, since binding of ezrin requires an exchange of Ser325 versus Ser291 

phosphorylation (202), truncCD44 will prohibit binding of all cytosolic linker and 

signal transduction molecules. This will also provide evidence, whether the HA 

binding form of CD44 (activated form) is essential for the association with CD49d. 

EL4 cells were transfected with CD49d or CD49d mutated at position Ser988 

(mutCD49d). The latter will interfere with CD49d phosphorylation and prevents 

paxillin and FAK binding (260,261).       

              
                     

Figure1. CD44, CD49d and CD3 expression in EL4 and Jurkat cells: EL4, Jurkat and for 

comparison LNC from naïve (control) and AA mice were stained with the indicated antibodies and 

expression was checked by flow cytometry. 

 

3.1.2 Cloning of CD44 and CD49d mutants 
Cloning of CD44 without cytoplasmic domain (truncCD44): 

As the first step wild type murine CD44 was re-cloned in pcDNA3 vector. Restriction 

digestion with EcoRI and XhoI confirmed correct insertion of wild type CD44 (1.2  
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Kb) (Fig.2A). This plasmid was used for constructing the CD44 mutants- without 

cytoplasmic tail (truncCD44) and CD44 mutated at Ser291 and Ser325 to alanine 

(mutCD44). 

 For the construction of CD44 tailless mutant, a gradient PCR was performed for an 

appropriate annealing temperature. A good amplification was obtained at all the tested 

temperatures (Fig.2B). The amplified products were ligated to pcDNA3 at restriction 

sites EcoRI and XhoI and ligation was confirmed by restriction digestion with the 

same set of enzymes (Fig.2C), positive clones were confirmed by sequencing.  

 

           
 

Figure2. Amplification of CD44 excluding the cytoplasmic domain (truncCD44): (A) Confirmation 

of wild type CD44 in pcDNA3 by restriction digestion with EcoRI and XhoI at 37ο C for 2 hrs. The 

products were run on 1% agrose gel. The desired fragment was obtained at 1.2 kb. (B) Gradient PCR 

for truncated CD44. CD44 plasmid from (A) was used as a template for gradient PCR at 50οC, 53οC 

and 55οC. Amplified products were run on 1% agrose gel. The desired product was obtained at 1kb. (C) 

Amplified products were cloned in pcDNA3 and clones were confirmed by restriction digestion with 

EcoRI and XhoI at 37ο C for 2 hrs. The products were run on 1% agrose gel. The desired fragment was 

obtained at 1 kb. 

 
 
Cloning of mutated CD44 at Ser291 and Ser325 to alanine 
 
The CD44 wild type plasmid described above was used as a template for 

amplification with the primers with the desired base pair changed from AGT (Serine) 
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to GCT (Alanine). It was done in two parts; first mutation at Ser325 was introduced 

followed by the mutation at Ser291. Amplification using forward primer (F) and 

reverse primer with the mutation (Rm); reverse primer (R) and forward primer with 

the mutation (Fm) was performed, desired DNA amplification was obtained at 1.0 kb 

and 210 bp, respectively (Fig.3A). These amplified products were ligated with each 

other and were used as template for the second amplification using forward and 

reverse primer. The desired DNA fragments were obtained at 1.2 Kb (Fig.3B). The 

amplified products were ligated to pcDNA3 at restriction sites EcoRI and XhoI. 

Ligation was confirmed by restriction digestion with EcoRI and XhoI (Fig.3C). 

Positive clones were confirmed by sequencing. A positive clone from the first 

mutation was used as template for the second mutation at Ser291 and was cloned in 

pcDNA3. Restriction digestion with EcoRI and XhoI was performed to confirm the 

positive clone (Fig.3D). Positive clones were confirmed by sequencing (Fig.3E).    
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E 

 
 

Figure3. Cloning of CD44 mutated at Ser291 and Ser325 positions: (A) Amplification for the first 

mutation (Ser325) was done at annealing temperature 50ο C using wt CD44 as template with forward 

primer F+ reverse primer with mutated base pair Rm (1kb) and reverse primer R+ forward primer with 

mutated base pair Fm (210). Products were run on 1% agrose gel. (B) Second amplification was done 

using template from (A) with forward and reverse primer. (C) The amplified product was cloned into 

pcDNA3. Restriction digestion was done with EcoR1 and Xho1 at 37ο C for 2 hrs. The desired 

fragment was obtained at 1.2 kb. (D) The second mutation (Ser291) was done using a positive clone 

from (C), amplification was done using primers as in (A), amplified products were cloned in pcDNA3 

and restriction digestion was done with EcoR1 and Xho1 at 37ο C for 2 hrs, products were run on 1% 

agrose gel. The desired fragment was obtained at 1.2 kb. (E) Sequence analysis of the positive clone, 

desired mutations are shown with boxes. 

 

Cloning of mutated CD49d at Ser988 to alanine 
 
For inducing mutation in CD49d (3.5 kb) at Ser988 to alanine, wild type CD49d was 

used as template and amplification with the primers with the desired base pair 

changed from TCT (serine) to GCT (alanine) was performed. First, by using forward 

primer (F) and reverse primer with the mutation (Rm), second, using reverse primer 

(R) and forward primer with the mutation (Fm). The desired DNA amplification was 

obtained at 3.4 kb and 75 bp, respectively (Fig.4A). These amplified products were 

ligated to each other and used as template for the second amplification reaction.The 

desired DNA fragments were obtained at 3.5 Kb (Fig.4B). Amplified products were 

ligated to pcDNA3 at restriction sites EcoRI and XhoI. Ligation was confirmed by 

restriction digestion with EcoRI and XhoI (Fig.4C) and with MluI and EcoR1 

(Fig.4D), which was introduced into the mutated primer. Positive clones were 

confirmed by sequencing (Fig.4E). 
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Figure4. Cloning of CD49d mutated at Ser988: (A) Amplification was done with forward primer F+ 

reverse primer with mutated base pair Rm (3.4 kb) and reverse primer R+ forward primer with mutated 

base pair Fm (75 bp). Products were run on 1% agrose gel. (B) The second amplification was done 

using template from (A) with forward and reverse primer.  (C, D) The amplified product from (B) was 

cloned into pcDNA3 and restriction digestion with (C) EcoR1 and Xho1and (D) MluI at 37οC for 2 hrs 

was done. Samples were run on 1% agrose gel. The desired fragment was obtained at 3.5 kb. (E) 

Sequence analysis of positive clone, the desired mutation is shown with box. 

 

3.1.3 Efficacy of transfectants  
EL4 and Jurkat cells were stably transfected with non-mutated and mutated CD49d 

and CD44, respectively. Both lines showed high and comparable expression of CD44 

and CD49d. Furthermore, transfection-induced expression was well in the range of 

native expression in activated leukocytes (Fig.5 A, B).  
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Figure5. Efficacy of transfection: (A) Transfection efficiency was checked by flow cytometry. EL4, 

EL4-CD49d, EL4-mutCD49d, Jurkat, Jurkat-CD44, Jurkat-mutCD44, Jurkat-truncCD44 cells were 

stained with the indicated antibodies. (B) Cells were lysed and were run on SDS-PAGE, proteins were 

transferred to nitrocellulose membrane and blotted with the indicated antibodies. 
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3.1.4 Characterization of transfected lines 
 
As a prerequisite to define the impact of CD44-CD49d cooperativity on leukocyte / 

leukemia migration, activation and apoptosis resistance, it was mandatory to define 

the expression profile of adhesion molecules, T cell and T cell activation markers in 

EL4 and Jurkat cells and to control for possible alterations in expression by 

transfection of CD49d and CD44, respectively. EL4 cells along with CD44, express 

other adhesion molecule CD18 (β2), but do not express selectins and express CD54 

(ICAM1) at medium level. EL4 cells hardly express β1 integrins like CD49a (α1β1), 

CD49b (α2β1), CD49c (α3β1), CD49d (α4β1), except for low level expression of 

CD49f (α6β1). Expression of none of these molecules is altered by CD49d 

transfection. Jurkat cells do not express CD44. They express CD18 (β2)  at a low level 

as well as β1 integrins CD49a, CD49b, CD49c, CD49d and CD49f, strongest 

expression being seen for CD49c and CD49d. Jurkat cells weakly express selectin 

CD62P (P-selectin), but not CD62L (L-selectin) and CD62E (E-selectin). They 

express CD50 (ICAM3) and CD54 (ICAM1) at a high level. Expression is not altered 

by CD44 cDNA transfection (Fig.6A-C). 

EL4 cells do not express the T cell receptors TCRαβ or TCRγδ chains or CD3, but 

express CD4 (helper T cell specific for MHC classII) and CD8 (cytotoxic T cell 

specific for MHC class I) at high levels. This is in line with their origin from thymus, 

where early pre-T cells express CD4 and CD8 shortly before TCR and CD3 complex 

expression. Jurkat cells express CD3 and CD4. 

 Besides adhesion molecules, it was also important to know the expression of so 

called accessory molecules, which support the TCR complex. EL4 cells express CD25 

at a high level and CD28, CD69 at medium level, and CD154 and CD152 at a low 

level. Non-transfected Jurkat cells express CD69, CD154 at high level and CD152, 

CD25 and CD28 at medium level. Expression of these molecules is unaltered after 

CD44 cDNA transfection (Fig.6D, E).  

Both EL4 and Jurkat cells express the cytokines IL2 and IL12 which are involved in T 

cell activation. Only EL4 cells express IFNγ and TNFα at a high level. Expression of 

these cytokines is low in naïve lymphocytes, but increased in AA LNC (Fig.6F-H). 

Finally and in view of the question on apoptosis induced cell death, it should be noted 

that Jurkat cells express the apoptosis receptor CD95 (death receptor), and its ligand 

CD95L (death receptor ligand), CD120a (TNF receptor) which binds to TNF and 
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mediates apoptosis) and CD284 (Toll like Receptor-4). EL4 cells only express CD254 

(TNFR ligand expressed by helper T cells). Naïve lymphocytes express CD95 and 

CD254 at a medium high level. Expression of CD254 is decreased in AA LNC, 

CD95L and CD284 expression is increased in AA LNC (Fig.6I-K). 
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Figure6. Characterization of the transfected El4 and Jurkat cell lines: LNC from naïve (control) 

and AA mice and El4, El4-wtCD49d, EL4-mutCD49d, Jurkat, Jurkat-wtCD44, Jurkat-mutCD44, 

Jurkat-truncCD44 cells were stained with the indicated antibodies and expression was checked by flow 

cytometry.  
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Taken together, transfected EL4 and Jurkat cells express native and mutated CD49d, 

CD44, respectively at a comparably high level. With the exception of CD120a 

(TNFRI), which is downregulated in CD44 cDNA transfected Jurkat cells, adhesion 

molecule, T cell and T cell activation marker expression as well as death receptor 

expression were not affected by transfection. Thus, activation induced changes in 

transfected EL4 and Jurkat cells can be considered to rely on de novo expression of 

CD44 and CD49d, respectively. 

 

3.1.5 CD44 and CD49d are engaged in leukocyte migration 
CD44 and CD49d both can contribute to leukocyte migration and cooperative activity 

of CD44 and CD49d have been described to strengthen migratory activity. To control 

for the relevance of CD44-CD49d co-operativity in leukocyte migration, the impact of 

anti-CD44 and anti-CD49d on EL4 and Jurkat cells and as control on naïve and AA 

LNC, was evaluated. Migration was tested in Boyden chambers using hyaluronic acid 

(HA), fibronectin (FN) or PMA as stimulus. 

Control LNC displayed a lower migratory activity than AA LNC, which was more 

strongly inhibited by anti-CD44 than anti-CD49d, though both antibodies exerted a 

significant effect. The inhibitory effect was stronger in response to HA and FN than 

BSA. This accounted particularly for anti-CD49d in response to FN (Fig.7A). 

Transfection of EL4 with CD49d exerted no measurable impact on the migratory 

activity towards BSA. However, transfection of Jurkat cells with CD44 increased the 

migratory activity. Migration of non-transfected EL4 and mutCD49d transfected EL4 

cells was only inhibited by anti-CD44. Similarly, only migration of CD44 wt 

transfected Jurkat cells was inhibited by anti-CD44 (Fig.7B). Irrespective of the 

stimulus, the migratory activity of EL4 cells was not influenced by CD49d cDNA 

transfection. However, EL4-CD49d, but not EL4 and EL4-mutCD49d cell migration 

was significantly inhibited by anti-CD44 and anti-CD49d, anti-CD49d being most 

efficient in response to FN (Fig.7C). Independent of the stimulus, migration of 

untransfected and transfected Jurkat cells was inhibited by anti-CD49d. Distinct to 

EL4-mutCD49dcells, migration of Jurkat-mutCD44 and Jurkat-truncCD44 cells was 

partly inhibited by anti-CD44 (Fig.7D). 
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Figure7. Migration of the transfected EL4 and Jurkat cell lines: EL4, EL4-CD49d, El4-mutCD49d, 

Jurkat, Jurkat-CD44, Jurkat-mutCD44, Jurkat-truncCD44 cells and LNC  (5X104) were incubated with 

anti-CD44 or anti-CD49d, washed and seeded in triplicate in the upper well of a Boyden chamber, the 

lower well contained BSA, Hyluronic acid (HA), Fibronectin (FN) or PMA. After incubation for 4hrs 

at 37ο C, 5% CO2, cells in the lower chamber were counted. The percentage of migrating cells is shown 

(mean±SD of three separate experiments). 

 

To control, whether migration and inhibition of migration may be influenced by 

altered adhesion molecules expression due to stimulation with matrix proteins and 

PMA, adhesion molecule expression was evaluated in naïve and AA LNC, non-

transfected and transfected EL4 and Jurkat cells after stimulation on HA, FN or by 

PMA/Ionomycin. Except of a downregulation of CD49c in PMA-stimulated Jurkat 

cells, adhesion molecule expression in EL4 and Jurkat cells remained unaltered. In 

naive and AA LNC, CD44 and CD49d expression increased in HA, FN and PMA 

stimulated LNC. Increased expression of CD102 was only seen in naïve LNC 

(Fig.8A-D). 
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Figure8. Expression profile of adhesion molecules in LNC and transfected EL4 and Jurkat cells 

after stimulation: LNC from naïve (control) and AA mice and El4, El4-wtCD49d, EL4-mutCD49d, 

Jurkat, Jurkat-wtCD44, Jurkat-mutCD44, Jurkat-truncCD44 cells were activated on HA or FN coated 

plates and by PMA for 24 hrs follwed by staining with the indicated antibodies. Expression was 

checked by flow cytometry. 

 

Taken together, migration of naive and AA LNC is inhibited by anti-CD44 and anti-

CD49d, though stronger by anti-CD44. In line with this, HA promotes a stronger 

migratory stimulus than FN. Migration of EL4 and Jurkat cells is only inhibited by 

anti-CD44 and anti-CD49d respectively. Furthermore, anti-CD49d inhibits EL4-

CD49d, but not EL4 migration. Jurkat-mutCD44, Jurkat-truncCD44 becomes only 

weakly inhibited by anti-CD44 compared to Jurkat–CD44. From there we conclude 

that in hematopoietic cells CD44 is the major contributor to motility, yet can be 

supported by CD49d. The inefficacy of the extracellular domains of both molecules 
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point towards joint signal transduction rather than towards adhesion strengthening by 

an increase in the docking sites. 

 
3.1.6 Induction of the migratory phenotype is supported by CD44-
CD49d co-operativity 
 
To control for the hypothesis that possibly CD44 and CD49d initiated joint signal 

transduction accounts for strengthened motility, co-immunoprecipitation studies were 

done to get an insight into the CD44 and CD49d association with each other and 

downstream signalling molecules that might affect T cells migration. 

Co-immunoprecipitation confirmed the association of CD44 with CD49d, ezrin, FAK 

and paxillin in Jurkat-CD44 cells. However, co-immunoprecipitation of CD49d with 

CD44 was not observed in Jurkat-mutCD44 and Jurkat-truncCD44 cell lysates, 

similarly co-immunoprecipitation with CD49d showed association with CD44 in 

Jurkat-CD44 and not with Jurkat-mutCD44 and Jurkat-truncCD44 (Fig.9A). CD44 

crosslinking via HA and PMA stimulation strengthend the association of CD44 with 

CD49d, Ezrin and FAK in Jurkat-CD44 cells, but did not suffice mutCD44, 

truncCD44 to associate with CD49d, Ezrine and FAK (Fig.9B).                                                    
 A  

                   
                                               



                                                                                                                              Results 

 84

                                    

Figure9.  CD44 and CD49d association: (A) Jurkat, Jurkat-CD44, Jurakt-mutCD44, Jurkat-

truncCD44 cell lysates were immunoprecipitated with anti-CD44and anti-CD49d. Precipitates were 

dissolved by SDS-PAGE. After transfer, associated proteins were detected with the indicated 

antibodies. (B) Jurkat, Jurkat-CD44, Jurakt-mutCD44, Jurkat-truncCD44 cells were activated for 24 hrs 

with PMA or by crosslinking via HA. Cells were lysed and immunoprecipitated with anti-CD44, 

precipitates were dissolved by SDS-PAGE. After transfer associated proteins were detected by western 

blot with the indicated antibodies. 

 

These data provide clear evidence that only CD44 and CD49d co-operativity supports 

T cell and leukemic T cell migration as truncCD44 and mutCD44 which do not 

promote migration, also do not allow CD44 to associate with Ezrin or with CD49d-

associated FAK. 

 

3.1.7 Effect of CD44-CD49d co-operativity on cell proliferation  
Besides its impact on leukocyte migration, CD44 functions as accessory molecule in 

TCR complex-mediated signal transduction and can promote T cell proliferation and 

survival. AA LNC are in activated state and display a significantly increased 

proliferation rate in comparison to naïve LNC. AA LNC responded to HA, but not to 

FN and showed a stronger response to PMA than naïve LNC (Fig10A). When 

comparing the proliferation rate of EL4-CD49d, EL4-mutCD49d and Jurkat-CD44, 

Jurakt-mutCD44, Jurkat-truncCD44, in the absence of a stimulus, no increase in the 

proliferation rate was observed. Also CD44- and /or CD49d-crosslinking on HA or 

FN-coated plates did not suffice for increasing the proliferation rate, irrespective of 

whether only CD44 or CD49d or both, non-mutated molecules were expressed. 

Instead, PMA-treatment led to a sufficient reduction in the proliferation rate, which 

was independent of the transfection with mutated/non-mutated CD44 or CD49d. A 
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similar effect of PMA has been described by Han et al (156). I could only evaluate 

antibody inhibition as a possible indicator of CD44-CD49d cooperativity. Anti-CD44 

effectively reduced the proliferation of EL4-CD49d, but had no or only marginal 

effect on EL4-mutCD49d (Fig10B). Similar observations accounted for Jurkat and 

transfected Jurkat cells (data not shown).  

 

 

 

                                  

 
 
Figure10. Impact of CD44 and CD49d on T cell proliferation: (A) LNC from naïve (control) and 

AA mice and (B) El4, El4-wtCD49d, EL4-mutCD49d cells were activated on HA, FN and by PMA for 

24 hrs and proliferation was checked by 3H-thymidine incorporation. Significant differences in 

proliferation rate after antibody treatment are indicated by *. 
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Our present state of knowledge relies exclusively on antibody inhibition. Nonetheless, 

these data would be in line with cooperativity between CD44 and CD49d also having 

an impact on non-transformed and Leukemic T cell proliferation. I want to mention 

that preliminary evidence points towards CD44-CD49d interaction not to play a major 

role in protecting leukemic T cells from apoptosis as it has been observed in T cells 

(data not shown). This work is ongoing to define signaling pathways that become 

jointly activated via CD44-CD49d ligand binding. 

Additional experiments are required to conclusively answer the question on the 

pathway whereby CD44-CD49d cooperativity promotes T cell proliferation and 

whether this cooperativity suffices for T cell receptor independent T cell proliferation. 

With the tool of EL4 and Jurkat mutated lines, I created, this should be possible and is 

currently pursuate in the lab. 

 

3.2 Myeloid derived suppressor cells as the driving force in the DTH- 

induced cure of AA 
Persisting T cell activation and expansion in autoimmune disease, including AA may 

partly be due to pronounced activity of accessory molecules like CD44 or CD49d, but 

also is promoted by a failure of downregulation of response. As SADBE treatment is 

curative in AA, the comparison of leukocytes of AA and SADBE treated AA mice 

offered itself to see, whether AA leukocytes escape the inherit control mechanisms of 

the immune system including immunosuppression and how a chronic contact eczema 

cope up with these suggested escape mechanisms. 

 

3.2.1 Myeloid derived suppressor cells in AA and chronic contact 

eczema 
Immune responses occur following the initial step of specific antigen recognition and 

the transmission of activating signals. However, upon chronic stimulation, like 

persisting inflammation and /or cancer, immunoregulatory cells become activated. It 

is known that there is a defect in immunoregulatory cells in autoimmune diseases, 

including AA. Thus, it can be speculated that activation of immune regulatory cells by 

a chronic eczema may correct the deficit in AA. Two types of cells are most important 

for regulating T cell responses, Treg and myeloid derived suppressor cells (Gr-1+, 
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CD11b+ MDSC). The latter have been suggested to become particularly expanded and 

activated during chronic inflammation. Thus, I first evaluated the expansion of 

myeloid derived suppressor cells, which negatively affect T cell expansion and 

activation, and are engaged in AA in the therapeutic efficacy of a DTH in AA mice 

(SADBE treated AA mice). I started with the evaluation of MDSC in different 

lymphoid organs of untreated and SADBE treated mice. Gr-1+ CD11b+ cells were 

strongly increased in the spleen of DTH (naive mice treated with SADBE) and AA-

DTH (AA mice treated with SADBE). MDSC also are increased in lymph node cells 

(LNC) and skin infilterating leukocytes (SkIL) in both DTH and AA-DTH mice in 

comparison to the spleen and SkiL of control and AA mice (Fig. 11A-B). 

There are subgroups in MDSC which differ in their activity, therefore it also became 

important to look for the difference between AA and AA/DTH MDSC, since 

differences in the activation status of MDSC in these two groups may play an 

important role in functional activities. 

AA/DTH MDSC express Ly6C at a higher percentage than AA MDSC. In addition, a 

higher percentage of AA/DTH than AA MDSC expresses IL1α and IL6. High TNFα, 

STAT1, STAT6 and NF-kB expression in AA MDSC is further increased in AA/DTH 

MDSC (Fig.11C). 
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Figure11. Expression and characterization of MDSC: (A,B) The percentage of MDSC (Gr-1+ 

CD11b+) were double stained and checked via flow cytometry in SC, LNC and SkIL of naïve, AA, 

DTH and AA/DTH mice. The percentage (mean±SD) and the total number of Gr-1+ CD11b+ cells are 

shown. Significant differences in the percentage of spleen cells, SkIL and skin-draining LNC between 

DTH/AA-DTH mice and normal mice are indicated by *. (C) Expression of the indicated markers was 

evaluated by flow cytometry in naïve-, AA-, AA/DTH-MDSC, which were separated according to 

CD11b and Gr1 expression by magnetic beads. Significant differences between AA- and AA/DTH-

MDSC in the percentage of marker+ cells are indicated by *, significant differences in intensity of 

expression are indicated by s. 

 

Expansion of MDSC in DTH and AA/DTH mice points towards a putative role of 

MDSC in the curative action of contact sensitizers. In addition, higher expression of 

STAT1, STAT6 and NFκB expression, which are elevated in AA/DTH-MDSC 

compared to AA-MDSC, is known to be associated with the activated state of MDSC. 

These findings point towards a more activated status of AA/DTH-MDSC. 
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3.2.2 DTH- induced MDSC account for hair re-growth in AA 

  
SADBE treatment induces hair re-growth in AA mice and it has been shown that there 

is an expansion of MDSC in DTH and AA-DTH mice (Fig11A). To confirm that the 

hair growth likely is a consequence of MDSC expansion and activation, mice received 

ATRA (all trans retinoic acid), together with SADBE. ATRA is known for driving 

MDSC into differentiation and therefore MDSC no longer behave as suppressor cells. 

The application of SADBE was repeated weekly and ATRA application was repeated 

once in 3 weeks. ATRA treatment itself exerted no effect. However, when applied 

concomitantly with SADBE only 1 out of 10 mice showed partial hair re-growth, 

whereas 9 out of 10 mice showed partial or complete hair growth during SADBE 

treatment. Also confirming the importance of MDSC, 7 out of 10 AA mice that 

received intravenous (i.v.) injections of MDSC derived from SADBE treated AA 

mice also showed partial hair re-growth, which was prevented by concomitant ATRA 

treatment (Fig.12A). 

Immunohistological studies on skin sections showed that there was a reduction in 

CD4+ and CD8+ T cells in SADBE- and MDSC-treated mice, while no reduction was 

seen in SADBE or MDSC plus ATRA-treated mice (Fig.12B). Instead fewer CD11b+ 

and GR1+cells were detected in ATRA-treated mice (data not shown).  
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 Figure12. MDSC and hair re-growth in AA mice: (A) C3H/HeJ mice with total hair loss 10 week 

after transplantation of AA-affected skin were treated with SADBE, ATRA, SADBE+ATRA, 

AA/DTH MDSC or AA/DTH MDSC+ATRA. The number of mice with partial or total hair re-growth 

is shown. (B) Immunohistology (CD4, CD8) of shock frozen skin section as indicated (White arrows: 

orientation towards the epidermis). 
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Hair re-growth in AA mice after SADBE treatment or after transfer of MDSC and 

suppression of hair re-growth in mice concomitantly receiving ATRA provides a 

strong hint towards a central role of MDSC in the SADBE therapy for AA. To sustain 

this hypothesis, I made a direct comparison of the immune status of lymphocytes 

recovered from AA/DTH mice with the immune status of LNC co-cultured with 

MDSC. 

 

3.2.3 Activation status of T cells in AA and AA/DTH mice and impact 
of MDSC 
 
It has been stated before that T cells in AA are in an activated state and therefore it 

was important to see the effect of SADBE and MDSC on the activation status of these 

cells. It was observed that SADBE treatment exerted no major effect on the 

distribution of leukocyte subpopulations in LNC and SkIL of AA mice. Only CD11b+ 

cells were recovered at a higher level in AA/DTH than AA mice, however the level 

was comparable to that in DTH mice (Fig.13A). To see the impact of MDSC on the 

activation status of T cells, a co-culture system was established, where T cells from 

naïve, AA, DTH and AA/DTH were co-cultured with MDSC derived from naïve, AA, 

DTH and AA/DTH. No significant changes in the percentage of CD4+ and CD8+ LNC 

were observed after co-culture, except for a slight reduction of CD8+ AA and 

AA/DTH LNC after co-culture with AA/DTH- derived MDSC (Fig. 13B).  

Expression of the T cell activation markers CD28, CD69 and CD154 were high in AA 

and AA/DTH LNC and SkIL. Only expression of CD69 was further increased in 

AA/DTH mice compared to AA LNC. Expression of the co-stimulatory molecules 

CD40, CD80 and CD86 was increased in AA LNC and, particularly, SkIL and 

remained high or increased further in AA/DTH LNC (Fig.13C). After co-culture with 

DTH- or AA/DTH-MDSC, the expression of CD28 was slightly, while expression of 

CD69 was strongly reduced in AA (Fig13D). 

 Except for an unexpected reduction in IL-4 and a strong increase in IL-6, there were 

no major DTH-induced changes in cytokine expression in AA LNC and SkIL 

(Fig.13E) and co-culture with MDSC exerted no significant effect. Instead CD152 

and FoxP3 are low in AA LNC and SkIL but are strongly upregulated in AA/DTH 

LNC and SkIL. The latter also accounts for CD25+ cells in LNC and SkIL (Fig.13F). 
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The percentage of CD152+ LNC also increased in co-cultures with DTH- or 

AA/DTH-MDSC, but not with naïve- or AA- MDSC (Fig. 13G). 
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 Figure13. Activation status of autoreactive T cells in AA, AA/DTH and impact of MDSC: 

(A,C,E,F) LNC and SkIL of naive, AA, DTH and AA/DTH mice were stained with the indicated 

antibodies. Expression was evaluated by flow cytometry .The percentage of stained cells (mean±SD) is 

shown. (B,D,G) Draining LNC of naïve, AA, DTH and AA/DTH mice were co cultured for 48 hrs with 

MDSC from naïve, AA, DTH, AA/DTH mice and were stained with the indicated antibodies. Staining 

of LNC cultured in the absence of MDSC was taken as 100%. A significant decrease or increase in 

marker+ cells as compared to draining LNC and in co-culture with MDSCis indicated by *. 

 
Though SADBE treatment of AA mice does not affect the distribution of leukocyte 

subpopulations, it promotes T cell activation as revealed by up-regulation of 

activation marker CD69 and co-stimulatory molecules CD40 and CD86. While after 

co-culture with DTH- or AA/DTH-MDSC the percentage of the activation marker 

CD69 was significantly reduced.  Instead expression of CD152, which is a negative 
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regulator of T cell activation, was upregulated. Thus, MDSC derived from AA/DTH 

appear potent to control activation of autoreactive T cells. 

 

3.2.4 Regulatory T cells in AA and AA/DTH mice and impact of 
MDSC 
 
Regulatory CD4+CD25+FoxP3+ T cells (Treg) play an important role in maintaining 

homeostasis. Accordingly they are frequently reduced in autoimmune diseases. In 

fact, these are also recovered at a reduced level in AA LNC. Treg were slightly 

increased in AA/DTH LNC, but did not reach the level seen in naïve LNC (Fig.14A). 

Instead, when LNC were co-cultured with DTH- or AA/DTH-MDSC, normal or even 

elevated levels of Treg could be seen (Fig.14B).  

 

     

 
 

 

Figure 14.The impact of MDSC on regulatory T cells:  (A) LNC were triple stained for CD4, CD25 

and FoxP3. The percentage of triple-positive cells is shown. Significant changes between AA and 

AA/DTH LNC are indicated by *. (B) LNCs were co-cultured with MDSC for 48 hrs and triple stained 

for CD4, CD25 and FoxP3. The percentage of triple positive cells is shown.  Significant changes in Treg 

by co-culture with MDSC are indicated by *. 

 

Co-culture of LNC with MDSC derived from DTH and AA/DTH mice allowed for 

rescuing Treg to a significant level indicating a strong impact of MDSC on Treg 
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expansion and their importance in controlling disease by activation of 

immunosuppression mechanisms, as Treg are important regulatory cells of the immune 

system and that mostly affect activated T cells.  

 
3.2.5 Impact of MDSC on death related marker expression in AA 
effector T cells 
 
Besides the reduction in Treg, autoimmune disease T cells are frequently characterized 

by resistance against activation induced cell death. Nonetheless, in AA, apoptosis 

resistance is unexpected as SkIL and LNC express death receptors CD95L (FAS-L) 

and TNFRI (CD120a) at a high level. However, SADBE treatment further strengthens 

the expression of death receptors like Trail (CD253), TNFα, TNFRI and TNFRII 

(CD120b) (Fig. 15A).After co-culture with AA/DTH MDSC, high CD95L expression 

is further increased (Fig.15B). Both AA- and AA/DTH-MDSC support Trail and 

TNFα expression but only AA/DTH-MDSC support TNFRI and TNFRII expression 

(Fig.15C). TNFRI+ and TNFRII+ LNC were mostly CD4+. Trail was expressed at a 

comparable percentage of CD4+ and CD8+ cells. This distribution was not strikingly 

altered by co-culture with AA/DTH-MDSC (Fig.15D). 
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Figure15. The Impact of MDSC on death related marker expression in draining LNC and SkIL: 

(A) LNC and SkIL were stained with the indicated antibodies. The percentage of stained cells is 

shown. Significant changes in marker expression in AA/DTH compared to AA LNC or SkIL is 

indicated by *. (B,C) Draining LNC, as indicated, were co-cultured with MDSC for 48 hrs and stained 

for the indicated markers. Staining of LNC cultured in the absence of MDSC was taken as 100%. A 

significant decrease or increase in marker+ cells as compared to draining LNC cultured in the absence 

of MDSC is indicated by *. (D) LNC were double stained with anti-CD4 or anti-CD8 and anti-

CD120a, -CD120b or -CD253. The percentage of double positive cells per CD4+ and CD8+ cells are 

shown. 
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In the presence of DTH or AA/DTH MDSC the percentage of death receptors 

CD95L+, TRAIL+, TNFα+, TNFRI+ and TNFRII+ LNC was strongly increased, 

indicating a possible impact of MDSC on apoptosis induction. 

 

3.2.6 MDSC suppresses AA effector cell proliferation and promotes 
apoptosis 
 
In the absence of an antigen-specific stimulus (10% FCS) as well as in the presence of  

a polyclonal, but TCR-independent stimulus (PMA/Ionomycin), the proliferative 

activity of AA LNC exceeded not only that of naïve and DTH LNC, but also that of 

AA/DTH LNC. This difference became more striking in the presence of AA skin 

lysate that served as surrogate auto-antigen (since alopecia is an autoimmune disease 

of skin affecting hair follicles, autoantigens are expected to be in the hair follicles) 

(Fig.16A), which indicates that SADBE treatment may contribute to an antigen 

unspecific downmodulation of activated T cell proliferation, but possibly is most 

effective in interfering with an antigen specific response. Similarly, in the presence of 

10% FCS, DTH- and AA/DTH-MDSC inhibited AA, DTH and AA/DTH LNC 

(activated LNC) proliferation more efficiently than that of naïve LNC (Fig.16B). To 

support the suggested antigen-specific component of MDSC activity, LNC were co-

cultured with AA/DTH-MDSC in the presence of AA skin lysate or PMA/Ionomycin, 

where the latter circumvents the requirement of TCR engagement. It was observed 

that AA/ DTH-MDSC more efficiently suppressed the response of AA and AA/DTH 

than DTH LNC towards AA skin lysate. However, circumventing the requirement of 

TCR engagement (PMA/Ionomycin) AA/DTH-MDSC suppressed proliferation of 

AA, DTH and AA/DTH LNC with comparable efficacy (Fig.16C).  

Expectedly, AA/DTH-MDSC most efficiently affected the “antigen-specific” 

response of AA and AA/DTH LNC, but additionally exerted TCR-independent 

activity. The activity of MDSC appeared to be contact dependent. Since supernatant 

of MDSC culture for 48hrs under the same conditions did not suppress LNC 

proliferation (data not shown). 

 

 

 

 



                                                                                                                              Results 

 99

                                

                      
 

B                                                                                    C 

 

       
Figure16. AA and AA/DTH draining LNC distinctly respond to nominal antigen and 

PMA/Ionomycin: (A) 3H-thymidine incorporation of naïve, AA, DTH and AA/DTH LNC in response 

to 10% FCS, AA-skin lysate and PMA/Ionomycin. Significant differences in the response of AA/DTH 

compared to AA LNC are indicated by *. (B, C) Relative 3H-thymidine incorporation of draining LNC 

T cells after 48 hrs of co-culture with (B) MDSC/10%FCS (C) AA/DTH-MDSC/ AA skin lysate or 

AA/DTH-MDSC/ PMA/Ionomycin compared to cultures without MDSC. Values are shown for a ratio 

of T cells: MDSC=10:1. A significant reduction in proliferative activity by MDSC is indicated by *. 
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The proliferative response of AA/DTH LNC is significantly reduced compared to AA 

LNC and MDSC derived from DTH and AA/DTH LNC display stronger suppressive 

activity than MDSC from naïve and AA mice. In addition, there is evidence for 

antigen specificity of response suppression by MDSC (10% FCS versus AA lysate). 

MDSC also suppresses proliferation in response to PMA/Ionomycin. Taken together 

AA/DTH-MDSC most efficiently affected the "antigen-specific" response of AA and 

AA/DTH LNC, but also exerted TCR-independent activity. 

 

To have an insight of apoptosis in AA and AA/DTH mice, LNC from naïve, AA, 

DTH and AA/DTH mice were cultured in RPMI/10% FCS for 48hrs. It was observed 

that the apoptosis rate of AA LNC was significantly lower than that of naïve and DTH 

LNC. The percentage of apoptotic AA/DTH LNC was higher than that of AA LNC, 

but did not reach the level of naïve LNC (Fig.17A). When LNC from naïve, AA, 

DTH and AA/DTH mice were co-cultured with naïve- and AA-MDSC in 

RPMI/10%FCS, no significant increase in the apoptosis rate was seen,but in co-

culture with AA/DTH-MDSC, a slight increase was observed. Instead in the presence 

of PMA/Ionomycin, DTH and AA/DTH MDSC sufficed to strongly mitigate 

apoptosis resistance of AA and AA/DTH LNC. The same tendency, though, less 

pronounced was seen when AA or AA/DTH LNC were co cultured with DTH- or 

AA/DTH-MDSC in the presence of AA skin lysate (Fig.17B, C). To explore whether 

apoptosis resistance relies on CD4+ or CD8+ LNC and in which of these two 

subpopulations MDSC support apoptosis induction, so, it was observed that both 

CD4+ and CD8+ LNC from AA and AA/DTH showed comparable apoptosis 

resistance in presence of 10% FCS. No difference was seen in these two 

subpopulations when co-cultured with AA/DTH MDSC containing AA skin lysate or 

10%FCS, but with PMA/Ionomycin mostly CD8+ cells become apoptotic (Fig.17D). 

Thus MDSC from naïve and AA mice do not promote apoptosis. However, DTH- and 

AA/DTH-MDSC interferes with apoptosis resistance of AA and AA/DTH LNC, 

particularly when cells become stimulated circumventing TCR engagement 

(PMA/Ionomycin). 

These distinct features of AA versus AA/DTH MDSC likely rely on the differences 

between these two populations of myeloid derived cells. As described before, 

AA/DTH-MDSC showed a more activated state similar to that of M-MDSC 

(Monocytic-MDSC), which shows a higher expression of Ly6C. Thus, the highly 
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activated state of AA/DTH MDSC could well provide the fundaments for attacking 

autoreactive T cells. 
 

 

                                                               

          

                                                                                                                                              

 

 
Figure17. The impact of MDSC on apoptosis resistance of AA LNC: (A) LNC were cultured for 48hrs 

in the presence of 10%FCS or PMA/Ionomycin and apoptosis assay was performed using Annexin V-FITC 

and propidium iodide (PI). Early apoptotic cells bind Annexin V and necrotic cells take up PI. Cells were 

incubated in the dark at RT for 15 min and analyzed by flow cytometry using the FL1 channel for 

AnnexinV FITC and FL-3 channel for PI. The percentage of stained LNC is shown. A significant increase 

in apoptosis of AA/DTH as compared to AA LNC is indicated by *. (B) LNC were cultured for 48 hrs in 

the presence of MDSC (LNC: MDSC= 10:1) and 10% FCS or PMA/Ionomycin and were stained with 

AnnexinV-FITC/PI. The percentage of stained LNC is shown. A significant increase in the apoptosis of 

AA/DTH as compared to AA LNC is indicated by *. A significant increase in apoptosis in the presence of 

naïve versus AA/DTH MDSC is indicated by s. (C) LNC were cultured for 48 hrs in the presence of MDSC 
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(LNC:MDSC= 10:1) and AA skin lysate or PMA/Ionomycin and were stained with AnnexinV/PI. The 

relative percentage of stained LNC in comparison to cultures without MDSC is shown. A significant 

increase in apoptosis in the presence of MDSC is indicated by *. (D) AA/DTH LNC were cultured for 48 

hrs in the absence or presence of MDSC and 10%FCS or AA skin lysate or PMA/Ionomycin. The 

percentage of CD4+/AnnexinV+ and CD8+/AnnexinV+ LNC is shown. Significant differences in apoptosis 

susceptibility of CD4+ versus CD8+ LNC are indicated by *. 

 

DTH- and AA/DTH-MDSC display stronger suppressive activity than MDSC derived 

from naive and AA mice and also AA LNC are more severely affected than naive or DTH 

LNC. There is evidence for antigen-specificity of response suppression by MDSC but 

MDSC also suppress proliferation in response to PMA/Ionomycin. The latter particularly 

accounts for the impact of AA/DTH MDSC on apoptosis resistance. 

To sustain these hypotheses, I proceeded to evaluate T cell receptor (TCR) ligation 

initiated signal transduction as well as activation of the extrinsic or the intrinsic pathways 

of apoptosis. 

 

3.2.7 SADBE and MDSC interfere with TCR-initiated signal 

transduction 
ξ chain, a component of the T cell receptor (TCR/CD3) complex essential in T cell 

activation and there is evidence that MDSC can interfere with T cell activation via ξ chain 

downregulation. In freshly harvested AA/DTH LNC a minor reduction in ξ chain+ cells 

was observed (data not shown). In co-culture, naïve- and AA-MDSC exerted no effect 

and DTH-MDSC only had a slight effect on ξ chain expression. The expression of ξ 

chain, except in naïve mice, was significantly reduced in AA, DTH and AA/DTH LNC 

after co-culture with AA/DTH-MDSC in the presence of AA skin lysate.  

To support the interpretation that MDSC accounts for down-regulation of ξ chain 

expression, CD4+ and CD8+ LNC were co-cultured with MDSC.  It was observed that 

DTH- and AA/DTH-MDSC more strongly affected CD4+ than CD8+ ξ chain expression 

(Fig. 18A-C). 
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Figure18.  The impact of AA/DTH MDSC on ξ chain expression: (A) LNC were cultured for 48 hrs 

in the absence or presence of MDSC (LNC: MDSC= 10:1) and AA skin lysate. The percentage of ξ 

chain+ LNC was evaluated by flow cytometry. (B, C) LNC were cultured as described in A, cells were 

double stained for CD4 or CD8 and ξ chain. The percentage of CD4+ ξ + and CD8+ ξ + LNC is shown. 

(A-C)  A significant decrease in the percentage of ξ +cells by co-culture with MDSC is indicated by *. 

 

In the presence of surrogate autoantigen (AA skin lysate) DTH and AA/DTH MDSC 

promote more efficiently CD4+ than CD8+ ξ chain reduction. 
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There was no strong effect on ξ chain expression by SADBE or AA/DTH-MDSC. 

However, high level of the T cell signaling molecules (Scheme 12) lck, ZAP-70, c-jun 

and ERK1,2 phoshphorylation in AA LNC were significantly reduced in AA/DTH 

LNC as revealed by flow cytometry and western blot analysis (Fig. 19A-D).  

                    
Scheme12. T cell signaling components: T cell receptors are clustered by binding to peptide-

MHC complexes on an antigen-presenting cell,  This brings the Src-like cytoplasmic tyrosine kinase 

lck/fyn into the signaling complex and activates it. Activated, lck phosphorylates tyrosines on the ζ and 

ε chains of the CD3 complex, which now serve as docking sites for another cytoplasmic tyrosine kinase 

called ZAP-70. lck phosphorylates, and thereby activates, ZAP-70. ZAP-70 then phosphorylates 

tyrosines on the tail of another transmembrane protein, which then serve as docking sites for a variety 

of adaptor proteins and enzymes. These proteins then help relay the signal to the nucleus and other 

parts of the cell by activating the MAP kinase signaling pathways  
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Figure19. TCR associated signal transduction in AA/DTH LNC: (A,B) Phosphorylation of Zap-70, 

lck, c-jun and ERK1,2 was evaluated in freshly harvested LNC from naïve, AA, DTH and AA/DTH mice 

by flow cytometry and western blot. (A) Significant differences in the percentage of phosphorylated 

protein expression in AA and AA/DTH versus naïve LNC are indicated by s; significant differences 

between LNC from AA versus AA/DTH are indicated by *. (C, D) Ratio of phosphorylated to non- 

phosphorylated molecules in AA and AA/DTH LNC as revealed by Flow cytometry (C) and western blot 

(D). Significant differences between AA/DTH versus AA LNC(C) and proteins (D) are indicated by *.  

 

Activation of lck, Zap-70, c-jun and ERK1, 2 is impaired in AA/DTH LNC compared 

to AA LNC. 
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A similar picture emerged when LNC were co cultured with MDSC. Phosphorylation 

of ZAP-70, lck, c-jun and less pronounced, ERK1,2 was impaired in AA and 

AA/DTH, but not naïve LNC, when cultured in the presence of AA/DTH-MDSC. On 

the other hand, naïve-MDSC hardly exerted any effect (Fig.20A, B). Calculating the 

ratio of LNC expressing phosphorylated ZAP70, lck, c-jun and ERK1,2 as well as 

calculating the relative protein amount confirmed the strong effect of AA/DTH- 

MDSC on TCR signaling pathway activation, where AA and AA/DTH LNC were 

most and naïve LNC least sensitive to AA/DTH-MDSC ( Fig 20C,D). 
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 Figure20. Impact of AA/DTH MDSC on TCR-associated signal transduction: (A,B) LNC were 
co-cultured with MDSC for 48hrs (LNC: MDSC = 10:1). Expressions of non-phosphorylated and 

phosphorylated proteins were evaluated by (A) flow-cytometry and (B) western blot. (A) Significant 

differences in the ratio of phosphorylated to non-phosphorylated proteins in dependence on the 

presence of MDSC are indicated by *. (C, D)  The ratio of phosphorylated to non-phosphorylated 

proteins was evaluated by flow cytometry (C) for LNC (Flow cytometry) and (D) proteins (WB) in 

cultures containing naive or AA/DTH-MDSC. Significant differences between AA/DTH versus AA 

LNC (C) and proteins (D) are indicated by *. 

 

Taken together activation of lck, Zap70, c-jun and ERK1, 2 is impaired in AA/DTH 

LNC compared to AA LNC. AA/DTH MDSC promote ξ-chain reduction, but more 

efficiently mitigate lck, ZAP70, c-jun and, less pronounced ERK1, 2 activation. 

Thus, SADBE and AA/DTH-MDSC strongly inhibit sustained activation of signaling 

cascades promoting T cell proliferation. ζ-chain internalization which is initiated by 

AA/DTH-MDSC only, is likely contributing to impaired ZAP70 phosphorylation. 

However, the more striking reduction in Lck phosphorylation which is upstream of ξ-

chain did not essentially require TCR engagement. 
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3.2.8 MDSC participates in breaking apoptosis resistance 
AA effector cells are strongly resistant to apoptosis despite of high level expression of 

death ligands and CD120a. In addition, AA- and AA/DTH-MDSC promote TNFα and 

Trail, only AA/DTH-MDSC promotes CD120a (TNFRI) and CD120b (TNFRII) 

expression. This may correspond to higher apoptosis susceptibility of AA and 

AA/DTH LNC when co-cultured with AA/DTH MDSC, particularly in the presence 

of PMA/Ionomycin. However, PMA/Ionomycin should rather promote T cell 

proliferation. Therefore it became important to unravel the mechanism of this TCR-

independent break of apoptosis resistance supported by MDSC. Evaluation of 

expression of major anti-apoptotic protein (Scheme 13) was done. 

 

 
Scheme13. Apoptotic pathways 

 

It was observed that in freshly harvested LNC from naïve, AA and AA/DTH mice, 

revealed upregulation of p-Akt, p-Bad, Bcl2 and Bcl-Xl in AA compared to naïve 

LNC. As demonstrated by flow cytometry and western blots, Akt and Bad 

phosphorylation was reduced in AA/DTH LNC, but Bcl2 and Bcl-Xl expression was 

not reduced (Fig.21A-D). 
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    C                                                                                  D 

                                                         

                                           
 Figure21. Impact of SADBE on anti-apoptotic protein expression: (A, B) Anti-apoptotic protein 

expression evaluated in draining LNC by (A) flow cytometry and (B) WB. Significant differences in 

the percentage of stained AA/DTH compared to AA LNC are indicated by *. (C, D) The ratio of the 

anti-apoptotic proteins in AA/DTH compared to AA LNC as revealed by flow cytometry (C) and 

western blot (D). Significant differences between AA/DTH versus AA LNC (C) and proteins (D) are 

indicated by *. 
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Similarly, in the presence of AA skin lyaste AA/DTH MDSC interfered with Akt and 

Bad phosphorylation, but had no effect on Bcl2 and Bcl-Xl. In the presence of 

PMA/Ionomycin, AA/DTH MDSC rather promoted than suppressed Bcl2 and Bcl-Xl 

expression (Fig.22A, B). The ratios of cells expressing phosphorylated versus non-

phosphorylated Akt or Bad and the ratio of Bcl2 and Bcl-Xl versus actin as well as the 

corresponding relative protein band intensities are summarized for AA LNC cultured 

in the presence or absence of AA/DTH MDSC, supplemented with AA skin lysate or 

PMA/Ionomycin (Fig.22C).    
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Figure22. Impact of MDSC on anti-apoptotic protein expression:  (A, B) Expression of anti-

apoptotic proteins in LNC after co-culture with MDSC (LNC: MDSC= 10:1) in the presence of AA-

skin lysate or PMA/Ionomycin as revealed by (A) flow-cytometry and (B) WB.  Significant differences 

in anti-apoptotic protein expression in dependence on the presence of MDSC are indicated by *. (C) 

The ratios of  phosphorylated versus non-phosphorylated marker proteins  or marker proteins versus 

actin were evaluated in AA LNC, for co-cultures with naïve- versus AA/DTH-MDSC in the presence 

of AA lysate and PMA/Ionomycin. Significant differences in the relative expression intensity of anti-

apoptotic proteins in cultures containing AA/DTH- versus naïve- MDSC are indicated by *.. 

 

SADBE treatment is accompanied by a significant reduction in anti-apoptotic 

proteins. The impact of MDSC varies depending on the donor and the stimulus. 

AA/DTH-MDSC more efficiently than naïve-MDSC, suppresses Akt and Bad 

phosphorylation in the presence of AA skin lysate. In the presence of 

PMA/Ionomycin suppression becomes weaker and expression of Bcl2 and BclXl is 

strengthened. 

 

SADBE and AA/DTH-MDSC efficiently interfere with Akt activation and Bad 

phosphorylation, but do not cope with high level Bcl2 and BclXl expression. Thus, 

downregulation of anti-apoptotic proteins may not contribute to a major degree to 

AA/DTH-MDSC-induced apoptosis susceptibility of AA LNC. Alternatively, 

SADBE and /or AA/DTH-MDSC may promote pro-apoptotic molecule expression 

and activation. 
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Expression of caspase8, the direct target in receptor-mediated apoptosis, was 

unaltered in AA and AA/DTH. Instead, Bid, Bax, Smac, cytochrome C, cleaved 

caspase9 and caspase3 expression were significantly increased in AA/DTH compared 

to AA LNC (Fig.23A-D).  

            

                                                            
             C                                                            D                                                                 

                                         
 

Figure23. Impact of SADBE on pro-apoptotic protein expression: (A, B) Pro-apoptotic protein 

expression was evaluated by flow cytometry (A) and WB (B). (A) Significant differences in pro-

apoptotic protein expression in AA/DTH compared to AA LNC are indicated by *. (C, D) The cell and 
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protein ratio in AA/DTH versus AA LNC lysates as revealed by flow cytometry (C) and Western Blot 

(D). Significant differences between AA/DTH versus AA LNC (C) and proteins (D) are indicated by *. 

 

Upregulation of pro-apoptotic molecules engaged in the mitochondrial apoptosis 

pathway in AA/DTH LNC pointed towards AA/DTH-MDSC possibly activating pro-

apoptotic molecules in AA LNC. Bid, Bax, cleaved caspase9, caspase3 were 

expressed a higher percentage of AA and AA/DTH LNC, when co-cultured in the 

presence of PMA/Ionomycin with AA/DTH- than with naïve-MDSC (Fig.24A). This 

also accounted for Bax, cytochrome C, Smac, cleaved casp9 and casp3 protein levels 

(Fig.24B). Calculating the protein ratios for AA LNC confirmed upregulated 

expression of molecules engaged in the mitochondrial apoptosis pathway in co-

cultures with AA/DTH-, but not naive-MDSC (Fig.24C). Similar, but less pronounced 

effects were seen in co-cultures containing AA skin lysate (data not shown). 
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Figure24. Impact of MDSC on pro-apoptotic protein expression: (A, B) Expression of pro-

apoptotic proteins in LNC after co-cultured with MDSC (LNC: MDSC =10:1) in the presence of 

PMA/Ionomycin as revealed by flow cytometry (A) and WB (B) NT: not tested. (C)  The ratios of pro-

apoptotic marker expressing AA LNC and proteins were evaluated for co-cultures with AA/DTH 

versus naïve MDSC in the presence of PMA/Ionomycin. Significant differences in protein expression 

between AA/DTH- versus naive MDSC are indicated by *. 

 

Taken together, SADBE and AA/DTH-MDSC are not very effective in counter-

regulating high level anti-apoptotic protein expression in AA LNC, but most 

efficiently promote activation of the mitochondrial apoptosis pathway 

 

A chronic dermal DTH reaction supports induction and recruitment of highly efficient 

myeloid derived suppressor cells. A co-culture system provided evidence that reduced 

responsiveness of T cells relates to impaired activation of TCR-associated signaling 

cascades that only partly can be explained by ξ-chain downregulation. More 

importantly SADBE and AA/DTH-MDSC efficiently break autoimmune T cell 

apoptosis resistance by downregulation of anti-apoptotic proteins. They also support 

expression and stimulation of pro-apoptotic proteins.  

C
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4: Discussion 

Alopecia areata is a T cell-mediated autoimmune disease of the skin that affects 

anagen stage hair follicle, and does not become life-threatening (257). The human 

disease is closely mimicked by C3H/HeJ mice that develop AA spontaneously or after 

the transfer of full thickness skin grafts from AA affected mice. The mild disease state 

as well as the availability of an animal model makes this autoimmune disease unique 

inasmuch as these features permit to elaborate the complex immune interactions 

promoting the persistence/exacerbation of an autoimmune disease without an 

iatrogenic or late stage autoimmune disease-associated collapse of the immune 

system. Taking in account the classical autoimmune disease features of AA, 

expansion and activation of autoreactive T cells, reduction in Treg, apoptosis 

resistance, this autoimmune disease model is well suited to define the molecular 

pathways of disease maintenance/progression and also should allow elaborating 

therapeutics interventions that could be of general validity in organ-related 

autoimmune disease. 

I used this model to elaborate the molecular mechanisms, whereby a chronic eczema 

acts as the most efficient therapeutics in AA. Yet, before attending this, I wanted to 

shed more light on another feature of autoimmune T cells, their persistent activation 

and expansion. 

 

4.1 Undue T cell activation and expansion in autoimmune disease 
T cells respond to an antigenic stimulus that is mediated by TCR-complex. After 

antigen elimination, responding T cells can be driven into activation induced cell 

death (AICD) or return to the resting state due to antigenic deficiency or may became 

shut-off by transient internalization of the entire TCR/CD3 complex. All of these 

mechanisms can be disturbed in autoimmune disease. In addition, T cells may become 

activated independent of the TCR/CD3 complex. This phenomenon has been 

described to be mostly mediated by so called accessory molecules, the most important 

one being CD18. We described that CD44 can fulfill similar activities. Interestingly, 

previous work in our lab indicated that this kind of TCR/CD3 complex-independent T 

cell activation may also play a role in AA. This work also revealed that CD44 can co-

operate with CD49d (integrin) in undue T cell activation. In the first part I have tried 

to approach this question at the molecular level. 
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4.1.1 Involvement of CD44-CD49d association in AA 
The involvement of CD44 in autoimmune disease is well known. CD44 plays an 

important role in leukocyte extravasation in autoimmune disease and allergic reaction 

and has been implicated in the processes associated with changes in T cell 

morphology. Originally CD44 has been described as adhesion molecule mediating 

lymphocyte homing. CD44 is also important for the adhesion of leukocytes to 

endothelial cells as an initial step before extravasation. Adhesion of CD44 to its 

ligand(s) induces up-regulation of additional adhesion molecules, mostly integrins 

that strengthen adhesion. In line with this, the CD44-CD49d association supports 

leukocytes’ firm adhesion to vessel endothelium. CD44 associates with CD49d in the 

membrane of activated T cells through its cytoplasmic tail and in vivo this receptor 

combination can regulate T cell extravasation into the peritoneum after induced 

inflammation (258,259). 

It has been described that CD44 associates with src kinases like lck in glycolipid 

enriched membrane (GEM). Furthermore, CD44 and CD49d associate with each other 

via adaptor or signal transducing molecules. In fact CD44 crosslinking can induce 

FAK (Focal adhesion kinase) phosphorylation (Scheme 14) (260) and CD49d can 

promote c-src activation independent of FAK (261). 

The safest way to prove the relevance of the CD44-CD49d interaction in T cell 

activation is by using T cell lines or leukemic lines that differ in absence or presence 

of one of these two molecules, and to transfect these lines with the missing partner 

molecule with or without mutation. In the latter case mutation should be selected such 

that the two molecules can no longer interact with each other. This has been my 

starting point, Jurkat leukaemic line was transfected with CD44, CD44 mutated at 

Ser325 and Ser291 which prohibit ezrin binding, and CD44 without the cytoplasmic 

domain, which prohibit cytosolic signalling. EL4 T cell line was transfected with 

CD49d and CD49d mutated at Ser988 which prohibit paxillin binding. 
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Scheme14. CD44-CD49d association: Ligation of CD44 (e.g., through HA) can facilitate 

aggregation of CD44-integrin-kinase signaling components in lipid rafts. Src family kinases, such as 

Lck, associate with the cytoplasmic tail of CD44 and activate signaling pathway which can strongly 

influences lymphocytes activation and function. 

 

4.1.2 The CD44-CD49d complex promotes T cell motility 
Activated T cells display a migratory phenotype, where migration can be inhibited by 

both anti-CD44 and anti-CD49d. The importance of this co-operation was confirmed 

by increased motility of CD44 transfected Jurkat (CD49d+) and CD49d transfectred 

El4 (CD44+) cells. T cell motility requires the cytoplasmic tail of CD44 to form an 

association with ezrin, which acts as a linker and links CD44 to F-actin (262), 

Furthermore; ezrin binding requires an exchange of Ser325 versus Ser291 

phosphorylation. Therefore, as expected, Jurkat-truncCD44 (without cytoplasmic tail) 

and Jurkat-mutCD44 (Ser291and Ser325) had a lower migration rate. Similarly in 

EL4-mutCD49d less migration was observed since phosphorylation of S988 is 

required for CD49d mediated migration and affects paxillin binding, which in turn 

affects FAK binding. 

Thus, from the functional point of view, the two cell lines transfected with non-

mutated or mutated CD44 and CD49d fully support the engagement of CD44 and 

CD49d in T cell motility as well as the additional requirement of ezrin, paxillin and 

FAK. Co-immunoprecipitation with CD44 and CD49d studies revealed that no 

association between CD44 and CD49d was observed in the cell lines transfected with 
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truncCD44, mutCD44 and mutCD49d. Immunoprecipitations with CD44 on Jurkat-

CD44, Jurkat-mutCD44, Jurkat-truncCD44 revealed that association with ezrin, FAK 

and paxillin was observed only in the Jurkat-CD44 but fails to show any association 

in mutated or truncated CD44 which was cross confirmed by immunoprecipitation 

with CD49d. Thus, the association of CD44 and CD49d is essential for downstream 

with ERM proteins as well as paxillin and FAK which allows for the migration 

Taken together only the activated form of CD44 can associate with CD49d. Both, the 

cytoplasmic tail and ezrin binding are essential to promote the shift towards a mobile 

phenotype. 

 

4.1.3 The CD44-CD49d association promotes leukocyte proliferation 
Particularly CD44 also has been described to act as an accessory molecule in TCR 

complex mediated signal transduction (243). Thus, the question arose whether CD44 

in combination with CD49d also suffice to initiate downstream of the TCR/CD3 

complex activation cascade independent of the TCR/CD3 complex engagement. 

Particularly the EL4 thymoma line, which does not express the TCR and CD3 

complex, was well suited to answer this question. El4-CD49d showed higher rate of 

proliferation which was inhibited by both anti-CD44 and anti-CD49d, while EL4-

mutCD49d showed lesser proliferation and was inhibited only in presence of anti-

CD44 (TCR independent). In Jurkat-CD44mut, Jurkat-CD44trunc showed less 

proliferation, which was inhibited by anti-CD49d only instead Jurkat-CD49d showed 

a higher proliferation rate which was equally inhibited by both anti-CD49d and anti-

CD44. Thus, CD44 and CD49d association is important for the proliferation of the T 

cells and at this point I clould define this only the basis of antibody blockade but this 

work is ongoing to look for the signal cascade.  

From above data it can be speculated that the CD44-CD49d association supports 

TCR/CD3 initiated activation, but can also promotes TCR/CD3 independent 

activation and proliferation. The molecular pathway of signal transduction underlying 

the co-operativity of TCR with CD44-CD49d remains to be explored. In addition the 

impact of CD44-CD49d association on activation induced cell death (AICD) is yet to 

be defined. Further work is needed on this aspect such that it can provide an answer to 

the mechanism underlying the persisting activation and proliferation of autoreactive T 
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cells in autoimmune disease. Blockade of these bystander pathways could be a 

therapeutic approach in autoimmune disease including alopecia. 

 

4.2 Autoimmunity: T cell regulation and a chronic DTH as therapy 
Autoimmunity is characterized, besides undue persisting activation, by resistance 

against apoptosis induced cell death and a deficit in immunoregulatory elements, 

particularly regulatory T cells (Treg) and myeloid derived suppressor cells (MDSC). 

Furthermore, it has been suggested that chronic eczema may be a therapeutic due to 

its impact on the activation and expansion of MDSC. 

 

4.2.1 Characterization of MDSC 

Treatment of AA mice with SADBE results in an expansion and activation of myeloid 

derived CD11b+Gr1+ suppressor cells (MDSC). MDSC are characterized by their 

myeloid origin, immature state and most importantly by their potent ability to 

suppress different aspects of immune responses especially T cell proliferation and 

activation. MDSC were enriched in dermis and spleen of AA mice treated with 

SADBE (AA/DTH). Spleen of SADBE treated mice also contained an increase 

number of activated CD11b+ macrophages. In line with other reports (263), these 

activated macrophages were not suppressive and could even weaken the efficacy of 

MDSC suppression (180). Characterization of MDSC in AA and AA/DTH mice 

showed that AA/DTH-MDSC expressed Ly6C at a higher level which is a 

characteristic of M-MDSC (Monocytic-MDSC Ly6high). Evidence from various 

laboratories suggests that on a per cell basis M-MDSC has more potent suppressive 

behavior than the G-MDSC (Granulocytic-MDSCLy6C low). Previous work in our lab 

showed that AA/DTH-MDSC also expressed TGFβ (180), which can be involved in 

NO production (150,175) and can be induced by IFNγ (103), which supports MDSC 

activation (264). AA/DTH-MDSC showed an increased expression of STAT1, 

STAT6 and NFkB in comparison to AA-MDSC. STAT1 is the main transcription 

factor activated by IFNγ or IL1β signaling and is implicated in the regulation of NO 

and arginase activity on the other hand STAT 6 is also described as a MDSC marker 

and is responsible for upregulation of arginase activity (172-174) and increased TGFβ 

production by MDSC (175). According to several studies it appears that STAT 1 and 

STAT 6 play an important role in MDSC activation. NFkB is also involved in 
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expansion of MDSC, and plays an important role in signal activation of MDSC and 

acquisition of immune suppression function. M-MDSC is the main population of 

MDSC where the NFkB pathway has been shown to be active (265). AA/DTH also 

showed a higher expression of IL1α and IL6. IL1 α induces accumulation of MDSC 

and enhances their suppressive activity against CD4+ and CD8+ T cells (266), IL6 is 

also involved in expansion and activation of MDSC. Finally, TNFα expression and 

secretion as well as TNFRI (CD120a) and TNFRII (CD120b) expression are up 

regulated in MDSC from AA/DTH mice. 

Taken together MDSC d from AA/DTH mice are in a highly activated and 

suppressive state and thus could well be important in mitigating T cell activation. 

 

4.2.2 The relevance of MDSC in mitigating AA 
SADBE treatment cures alopecia and can be replaced (though slightly less efficient) 

by the transfer of AA/DTH-MDSC (180). It is known that ATRA, a member of 

retinoid family of molecules structurally related to vitamin A, exerts profound effects 

on cell proliferation, induction of differentiation and apoptosis in normal cells and 

cancer cells (115). Previously, it has been demonstrated that all trans retinoic acid 

(ATRA) had a potent activity in eliminating MDSC and drives these into 

differentiation towards mature myeloid cells. Treatment of cancer patients and tumor 

bearing mice with ATRA resulted in substantial decrease of these cells and 

improvement of immune responses (116,267). In our studies it has been shown that 

ATRA treatment prevents hair regrowth when applied along with SADBE or MDSC. 

In line with this the immunohistological studies demonstrate that dermal infiltrates of 

CD4+ and CD8+ cells ,which are a hallmark of AA disease were dramatically reduced 

after MDSC transfer and by  SADBE. But, the infiltration remains unaltered upon 

concomitant treatment. Thus, all these factors points towards an active contribution of 

MDSC to hair re-growth. 

  

4.2.3 Comparing the impact of SADBE and MDSC on leukocyte 

subsets and activation status of AA T cells 
It has been reported previously that AA is characterized by an increase in CD1+ 

(expressed on antigen presenting cells), CD4+ and CD8+ cells in the skin and also 

show an upregulation of T cell activation markers CD28, CD69 and CD154 as well as 
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of co-stimulatory molecules CD40, CD80 and CD86 in SkIL and draining LNC (268). 

Besides an expected increase in CD11b+ cells, SADBE treatment did not induce any 

significant change in the leukocyte subpopulation composition. SADBE treatment 

showed a reduction in IL-4 and a strong increase in IL-6, and also strengthened CD69, 

CD40 and CD86 expression only in lymph node and not in skin. In co-cultures with 

AA/DTH-MDSC, a slight decrease in CD8+ LNC was observed. Unlike SADBE 

treatment, AA/DTH-MDSC resulted in a decrease in the expression of activation 

markers CD28, CD69 and an increase in CD152 (CTLA 4) which transmits an 

inhibitory signal to T cells. CD152 expression was only slightly affected by SADBE 

treatment. Thus, MDSC do not actively eliminate T cell subsets and have no impact 

on co-stimulatory molecule expression by antigen prrsenting cell. However, they 

mitigate expression of accessory molecule on T cells 

Regulatory T cells (Treg) are a specialized subpopulation of T cells that act to suppress 

activation of immune cells and thereby maintain homeostasis of the immune system 

and tolerance to self antigens.The importance of the immunesuppressive potential of 

these cells become obvious in autoimmune disease, where Treg are frequently 

recovered at a reduced level (175). This holds true for AA also (268). Thus expression 

of Treg in AA become of special interest. Treg are defined as CD25+CD4+Foxp3+ cells. 

AA lymph node cells and SkIL displayed a reduced level of CD152 and FoxP3. In 

LNC of AA mice treated with SADBE, the percentage of Treg cells was increased 

significantly, but did not reach the level of naïve LNC. Impact of MDSC on Treg has 

been described (103). In line with this, after co-culture with AA/DTH-MDSC a 

further increase in Treg was observed in AA and AA/DTH lymph nodes which were 

even higher than that of naïve mice lymph nodes. IFNγ, IL10 and CD152 have been 

suggested to be required for Treg induction by MDSC (103). The impact of SADBE 

treatment as well as of MDSC on Treg expansion could provide a first explanation for 

the therapeutic efficacy of a chronic eczema /MDSC in AA.  

Apoptosis resistance of autoimmune T cells is an additional important feature of 

sustaining an autoimmune disease state. Autoimmune T cells were reportedly found to 

be resistant to apoptosis (268). In AA, apoptosis resistance is unexpected as SkIL and 

draining LNC express the death receptor CD95L at an elevated level. Death receptors 

are characterized by a unique intracellular death domain (DD), which is crucial for 

death ligand-induced apoptosis. SADBE and co-culture of LNC with MDSC had only 

slight effect on the expression of CD95L, but expression of other death molecules like 
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TNF (can induce apoptotic cell death) and Trail (TNF-related apoptosis-inducing 

ligand) expression become upregulated by both SADBE treatment and also in co-

culture with AA/DTH-MDSC. Furthermore, expression of TNFRI and TNFRII 

(without a death domain) was also increased after SADBE treatment as well as in co-

culture with AA/DTH MDSC, but not by co-culture of AA-MDSC. These distinct 

features of death receptor expression in AA and AA/DTH LNC rely on the difference 

in the activation status of MDSC in these mice. As described before, MDSC derived 

from AA/DTH mice represents a more activated and are more suppressive sub 

population than that of MDSC derived from AA mice 

 

4.2.4 The impact of MDSC on the activation state of T cells is 

reflected by the potency in suppressing T cell proliferation 
SADBE treatment, as well as, isolated MDSC from SADBE-treated AA mice 

efficiently suppresses AA effector T cell proliferation. Suppression was weakest in 

the absence of a nominal antigen and strongest in the presence of AA skin lysate 

which serves as a surrogate auto-antigen. Two major subsets of MDSC apparently 

have an important role in the antigen-specific versus non-specific nature of immune 

suppression. G-MDSC relies on antigen-specific interaction between MDSC and T 

cells, M-MDSC, which use upregulation of NO and arginase, production of 

immunosuppressive cytokines, and other mechanisms, effectively suppress antigen 

specific as well as antigen-independent T-cell responses. The idea that MDSC-

mediated T-cell suppression occurs in an antigen-specific manner is based on findings 

that antigen-specific interactions between antigen-presenting cells and T cells result in 

much more stable and more prolonged cell–cell contact than nonspecific interactions 

(269-271). Such stable contacts are necessary for MDSC derived ROS and 

peroxynitrite to mediate effects on the molecules on the surface of T cells that render 

the T cells unresponsive to specific antigen. However suppression was also observed 

in presence of PMA/Ionomycin, which argues against an exclusive reliance on T cell 

receptor (TCR)-initiated signaling. There are many ways by which MDSC can 

suppress the activation of T cells. One of the pathways relies on down regulating the 

TCR-associated ξ chain (180,272-274). In absence of ξ chain, CD4+ and CD8+ T cells 

are unable to transmit the required signals for activation.bIt was noticed that SADBE 

treatment did not show any significant down regulation of ξ chain expression in 
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freshly harvested LNC, but in co-cultures with DTH- or AA/DTH-MDSC there was a 

partial down regulation of the ξ chain predominantly in CD4+ cells. It has been 

observed previously in our lab that upon cross linking of the TCR with anti-ε, a 

stronger down regulation of the ξ chain in CD8+ than CD4+ LNC was observed (180). 

Thus, suggest that the AA skin lysate contains antigenic entities more efficiently 

recognized by CD4+ than CD8+ LNC. However, though ξ chain expression was not 

strongly affected by SADBE, SADBE sufficed for a significant change in the T cell 

signaling components. Activation of T cells brings the Src-like cytoplasmic tyrosine 

kinase lck into the signaling complex and activates it. Once activated, lck 

phosphorylates tyrosines on the ζ and ε chains of the CD3 complex, which now serve 

as docking sites for another cytoplasmic tyrosine kinase called ZAP-70. lck 

phosphorylates, and thereby activates, ZAP-70, ZAP-70 then phosphorylates tyrosines 

on the tail of another transmembrane proteins, which then serve as docking sites for a 

variety of adaptor proteins and enzymes. These proteins then help relay the signal to 

the nucleus and other parts of the cell by activating the MAP kinase, the JNK and the 

NFkB signaling pathways. SADBE, cause a reduction in lck, Zap70, c-jun and less 

pronounced ERK1, 2 phosphorylation. In co-culture of LNC with AA/DTH-MDSC 

there was also a strong reduction in the phosphorylation of lck and thereby control the 

phosphorylation of ZAP- 70 followed by c-jun and ERK1, 2 phosphorylation. 

Because lck activation is upstream of the ξ chain phosphorylation, these findings 

imply that ξ chain down regulation is not the dominating feature in SADBE- and 

AA/DTH MDSC initiated suppression of LNC proliferation. It also should be 

mentioned that one of the major pathways of ξ chain down regulation proceeds via 

Toll like receptor-4 (TLR4) (274), which is defect in C3H/HeJ mice (275). However 

TLR4 may not be essentially required, as in absence of TLR4, known to be important 

in controlling the susceptibility to contact hypersensitivity, contact hypersensitivity is 

not significantly impaired (276). As apparent by the therapeutic efficacy of SADBE 

treatment in AA mice, contact hypersensitivity is also not impaired in C3H/HeJ mice. 

Taken together, the mild down regulation of ξ chain and the strong reduction in lck 

phosphorylation argue for additional inhibitory signals that could have been 

transmitted via up regulated CD152 or via Treg or via not yet defined signals. The 

efficacy of MDSC to suppress LNC proliferation in the presence of PMA/Ionomycin 

also points towards additional immunosuppressive mechanisms. 



                                                                                                                        Discussion       

 124

It can be concluded from these studies that, SADBE treatment as well as co–culture 

with MDSC is accompanied by a striking reduction in the activation of signaling 

cascades promoting T cell proliferation. ξ chain down regulation can contribute to 

impaired responsiveness, but does not exclusively account for the observed effects. 

 

4.2.5 SADBE, MDSC and apoptosis resistance of AA effector cells 
As described above autoimmune T cells frequently escape apoptosis i.e. are apoptosis 

resistant. Proliferation stimulating signaling cascades like the Akt pathway has been 

shown to inhibit apoptosis by phosphorylating Bad. AA is characterized by high level 

Akt and Bad phosphorylation and also shows high expression of anti-apoptotic 

proteins Bcl2 and BclXl. 

The phosphorylation of Akt and Bad is downregulated when AA mice were treated 

with SADBE and the same effect was observed in co-cultures with AA/DTH–MDSC, 

both in the presence of nominal antigen i.e. AA skin lysate and in presence of 

PMA/Ionomycin which circumvents the TCR, but there was no change in the 

expression of Bcl2 and expression of BclXl even increased in the presence of 

PMA/Ionomycin. High apoptosis resistance of AA LNC may be supported by high 

expression of anti-apoptotic protein expression and this, to some extent is negatively 

affected by SADBE and MDSC. But counteregulation is not very effective and 

seemingly does not effect Bcl2 and BclXl expression. A possible explanation for this 

could be the high level TNFα secreation by MDSC and upregulated TNFR expression 

in AA and AA/DTH LNC initiating JNK and NFkB activation (277), where the latter 

promotes, besides others, transcription of BclXl (277). On the other hand, TNFR 

engagement can transduce both survival and apoptotic signals (278), where the 

elements accounting for the dominance of one or the other are not yet completely 

unraveled (274). Although there seems to be a balance between survival and apoptotic 

signals also in SADBE treated AA mice, I interpret the findings as indicating a slight 

dominance of pro-apoptotic signaling as most elements of the mitochondrial pro-

apoptotic pathway have been strongly upregulated. SADBE as well by AA/DTH-

MDSC promoted Bid expression (279), which activates Bak and Bax that translocates 

to mitochondrial membrane (280). Bax has been shown to have pore-forming 

capabilities. Following a conformational change, they could form channels or even 

holes in the outer mitochondrial membrane (281) and results in the release of 
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cytochrome c from the mitochondrial intermembrane space. Mitochondrial membrane 

permebilization also results in release of Smac/Diablo (282) a mitochondrial factor 

that can facilitate caspase activation through neutralizing endogenous inhibitors of 

caspases, the inhibitor of apoptosis proteins (IAPs). Cytochrome c is considered to be 

the primary mitochondrial factor in caspase-mediated apoptosis. Together with Apaf-

1 and procaspase-9, cytochrome c forms the apoptosome, which is a potent activator 

of caspase-3. Consecutively, the executioner caspase-3 is recruited to the apoptosome, 

where it is activated by the resident caspase-9. Caspase-3 then cleaves key substrates 

in the cell to produce many of the cellular and biochemical events of apoptosis.  

Taken together, I interpret my findings in the sense that the dominance of SADBE 

and AA/DTH-MDSC initiated pro-apototic signals could well rely on the provision of 

TNFα and on upregulated TNFR-expression. 

 

To summarize, the curative effect of persisting contact eczema predominantly relies 

on induction and recruitment of highly efficient M-MDSC characterized by 

upregulated TNFα expression. MDSC derived from AA/DTH contributes to ξ-chain 

downregulation, but exert additional immunosuppressive features that could proceed 

via Treg, upregulated CD152 or activation of an inhibitor upstream of Lck. Besides 

inhibiting T cell activation, AA/DTH-MDSC also break autoimmune T cell apoptosis 

resistance. Downregulation of anti-apoptotic molecules supports increased apoptosis 

susceptibility; the major contribution relies on the activation of the mitochondrial 

apoptosis pathway, where TNFRI might provide the initial trigger (Scheme 15). In 

view of the strong effects on autoimmune T cell activation and survival, DTH-MDSC 

should be considered a potent therapeutics in organ-related autoimmunediseases.   
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Scheme15. MDSC: Mode of action: T cell activation is suppressed by the production of 

arginase and ROS, the nitration of the TCR, cysteine deprivation, and the induction of Tregs. MDSC 

also act by downregulation of anti-apoptotic proteins and upregulation of pro-apoptotic protein. 
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5: Summary 
Alopecia Areata (AA) is an organ related autoimmune disease affecting anagen stage 

hair follicles and is characterized by a peri- and intrafollicular infiltrate of CD4+ and 

CD8+ T cells. The most effective way of treating AA is the application of contact 

sensitizers like diphencyprone or squaric acid dibutyl ester (SADBE). This topical 

application is refreshed for several months so that a mild form of a chronic eczema is 

persistently maintained. The molecular mechanisms underlying therapeutic efficacy 

of DTH in AA are not known, but evidences suggest a strong expansion of myeloid 

derived suppressor cells (MDSC) that hamper T cell proliferation and activation. 

Alternatively, a blockade of accessory molecules in T cell activation could possibly 

be of therapeutic benefit. CD44 and CD49d being candidate accessory molecules. 

In T cells, CD44 became upregulated during activation. Upregulated expression 

promotes leukocyte migration and proliferation. It has been suggested that these 

activities are jointly performed by CD44 and CD49d, which come into proximity 

during T cell activation. To define the underlying mechanism the CD49d-negative 

EL4 lymphoma line was transfected with CD49d or point mutated CD49d, which 

prohibits phosphorylation and FAK binding. In addition, a CD44-negative Jurkat 

leukaemia line was transfected with murine CD44, point mutated CD44 in the ezrin 

binding site and with a cytoplasmic tail truncated CD44. Untransfected and 

transfected EL4 and Jurkat cells and for comparison native and activated leukocytes 

from alopecia areata mice were evaluated for migratory and proliferative activity. 

Migration of leukocytes, EL4-CD49d and Jurakt-CD44 cells was more and equally 

inhibited by anti-CD44 and anti-CD49d, migration of EL4-CD49dmut and Jurkat-

CD44mut, Jurkat-CD44trunc cells was less affected and only inhibited by anti-CD44 and 

anti-CD49d respectively. Similar phenomena were observed with respect to 

proliferation, clarifying molecular pathway(s) are still being in progress 

It can be suggested from these findings that CD44 and CD49d works in cooperation to 

promote T cell migration, activation and proliferation. The blockade of these 

bystander pathways could be a therapeutic approach in autoimmune disease. 

Another important aspect underlying the curative effect of SADBE treatment in AA 

relies on the expansion and activation of myeloid derived suppressor cells (MDSC). A 

therapeutic effect of the latter was abolished by all trans retinoic acid which drives 

MDSC into differentiation. This finding suggested a central role of MDSC in the 
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SADBE therapy of AA. To prove whether the curative effect of SADBE treatment, 

indeed, relies on MDSC induction, the effect of in vivo SADBE treatment was 

compared with the effect of in vitro co-cultures of AA lymph node cells with MDSC 

derived from SADBE treated AA mice. SADBE as well as MDSC strongly interfered 

with AA LNC proliferation accompanied by weak down regulation of ξ chain, and 

strongly impaired activation of Lck and Zap 70, and less pronounced the c-jun and 

MAPK pathway. The strongest effect was seen in presence of AA skin lysate used as 

surrogate autoantigen. Proliferation was also impaired in the presence of PMA plus 

Ionomycin indicating that SADBE / MDSC act at least partly independent of the TCR 

complex. In fact SADBE /MDSC promoted activation of several proapoptotic 

molecules engaged in the mitochondrial apoptotic pathway and interfered with the 

anti-apoptotic PI3K/Akt pathway. The latter effects strongly correlated with TNFα 

secretion by MDSC and TNFRI expression in AA/DTH lymphocytes. 

Taken together, SADBE treatment results in the expansion of MDSC which impair T 

cell activation and contribute to breaking autoimmune T cell apoptosis resistance via 

promoting activation of pro apoptotic proteins. These activities qualify DTH-MDSC 

as a promising therapeutics in organ-related autoimmune diseases. 

 

 

 

 

 

 

 

 

 

 



                                                                                                                        References       

 129

6: References 
1. Elaine Fuchs, Scratching the surface of skin development. Nature 2007: 445: 834- 

842.  

2. K. S. Stenn and R. Paus, Controls of Hair Follicle Cycling.  Physiological Rev 
2001. 81:449-494. 

 
3. Nagase S, Shibuichi S, Ando K, Kariya E, Satoh N.,  Influence of internal   

structures of hair fiber on hair appearance. I. Light scattering from the porous 
structure of the medulla of human hair. J Cosmet Sci. 2002. 53(2):89-100. 

 
4. Feughelman Max, Mechanical properties and structure of alpha-keratin fibres: 

wool, human hair and related fibres, UNSW Press 1996   
 
5. Millar S.E., Molecular mechanisms regulating hair follicle development. J. 

Invest. Dermatol 2002. 118:216–25. 
 
6. Oliver, R. F. and Jahoda, C. A. B., Dermal-epidermal interactions. In Clinics in 

Dermatology. Androgenic Alopecia: from Empiricism to Knowledge. (1988). 74-
82. 

 
7. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. and Barrandon, Y., 

Morphogenesis and renewal of hair follicles from adult multipotent stem cells. 
Cell 2001. 104: 233-245. 

 
8. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T.-T. and Lavker, R. M., 

Involvement of follicular stem cells in forming not only the follicle but also the 
epidermis. Cell 2000.102: 451-461. 

 
9. Paus, R. & Cotsarelis, G., The biology of hair follicles. N. Engl. J. Med. 1999. 

341: 491–497  
 
10. Langbein L, Schweizer J., Keratins of the human hair follicle. Int. Rev. Cytol.  

2005. 243:1–78. 
 
11. Panteleyev AA, Botchkareva NV, Sundberg JP, Christiano AM, Paus R., The 

role of the hairless (hr) gene in the regulation of hair follicle catagen 
transformation. Am. J. Pathol. 1999. 155:159–71 

 

12. Bikle D.D., Vitamin D and the skin. J Bone Miner Metab. 2010. 28(2):117-30.  

 

13. Hardy M.H., The secret life of the hair follicle. Trends Genet 1992. 8:55–61 
 
14. Rendl M, Lewis L, Fuchs E, Molecular dissection of mesenchymal-epithelial 

interactions in the hair follicle. PLoS Biol. 2005. 3(11):e331. 
 



                                                                                                                        References       

 130

15. Schmidt-Ullrich R, Paus R, Molecular principles of hair follicle induction and 
morphogenesis. Bioessays. 2005. 27(3):247-61. 

 
16. laura Alonso and Elaine fuchs, The hair cycle. J Cell Sci. 2006. 119 (Pt 3):391-

3. 
 
17. Tong X, Coulombe PA., Keratin 17 modulates hair follicle cycling in a 

TNFalpha-dependent fashion. Genes Dev. 2006.20(10):1353-64. 
 
18. Wei Lu et.al., Alopecia areata:pathogenesis and potential for therapy. expert 

reviws in molecular medicine. 2006. 8(14):1-19 
 
19. Paus, R. & Cotsarelis G., The biology of hair follicles. N. Engl. J. Med. 1999. 

341, 491–497  
 
20. Catherine M Stefano, Histopathology of alopecia: a clinicopathological approach 

to diagnosis. Histopathology. 2010. 56(1):24-38. 
 
21. Templeton S.F., Solomon A.R., Scarring alopecia: a classification based on 

microscopic criteria. J. Cutan. Pathol. 1994. 21; 97– 109. 
 
22. Hordinsky M., Cicatricial alopecia: discoid lupus erythematosus. Dermatol. Ther. 

2008. 21; 245–248. 
 
23. Otberg N, Kang H, Alzolibani A.A., Shapiro J., Folliculitis decalvans. 

Dermatol. Ther. 2008. 21; 238–244. 
 
24. Whiting D.A., Cicatricial alopecia: clinico-pathological findings and treatment. 

Clin. Dermatol. 2001. 19; 211–225. 
 
25. Herzberg A.J., et. al., Acne keloidalis. Transverse microscopy, 

immunohistochemistry, and electron microscopy. Am. J. Dermatopathol. 1990. 
12; 109–121. 

 
26. Sperling LC, Homoky C, Pratt L, Sau P., Acne keloidalis is a form of primary 

scarring alopecia. Arch. Dermatol. 2000. 136; 479–484. 
 
27. Bergfeld WF., Androgenetic alopecia: an autosomal dominant  disorder. Am. J. 

Med. 1995. 98; 95S–98S. 
 
28. Whiting D., Scalp biopsy as a diagnostic and prognostic tool in androgenic 

alopecia. Dermatol. Ther. 1998. 8; 24–33. 
 
29. Messenger AG, Sinclair R., Follicular miniaturization in female pattern hair loss:  

clinicopathological correlations. Br. J. Dermatol. 2006. 155; 926–930. 
 
30. Hamilton JB.,Patterned loss of hair in man; types and incidence. Ann. NY Acad.    

Sci.1951. 53; 708–728. 
 



                                                                                                                        References       

 131

31. Ludwig E., Classification of the types of androgenetic alopecia (common 
baldness) occurring in the female sex. Br. J. Dermatol  1977. 97; 247–254. 

 
32. Sperling L.C., Lupton G.P., Histopathology of non-scarring alopecia. J. Cutan. 

Pathol. 1995. 22; 97–114. 
 
33. Eudy G, Solomon A.R., The histopathology of noncicatricial alopecia. Semin. 

Cutan. Med. Surg. 2006. 25; 35–40. 
 
34. Sueki H. et al., Quantitative and ultrastructural analysis of inflammatory 

infiltrates in male pattern alopecia. Acta Dermatol. Venereol. 1999. 79; 347–350. 
 
35. Whiting D, Templeton S.F., Solomon A.R., Disorders of cutaneous appendages. 

In Barnhill RL ed. Textbook of dermatopathology. New York, NY: McGraw-Hill, 
1998. 201–231. 

 
36. Sperling L.C., Alopecia areata. In an atlas of hair pathology with clinical 

correlations. New York, NY: The Parthenon Publishing Group, 2003. 63–78. 
 
37. Whiting D., The histopathology of alopecia areata in vertical and horizontal 

sections. Dermatol. Ther. 2001. 14; 297–305. 
 
38 Elston D.M., McCollough M.L., Bergfeld W.F., Liranzo M.O., Heibel M., 

Eosinophils in fibrous tracts and near hair bulbs: a helpful diagnostic feature of 
alopecia areata. J. Am. Acad. Dermatol. 1997. 37; 101–106. 

 
39. Mehregan D.A., Van Hale H.M., Muller S.A., Lichen planopilaris: clinical and 

pathologic study of forty-five patients. J. Am. Acad. Dermatol. 1992. 27; 935–942. 
 
40. McDonagh A.J., Tazi-Ahnini R., Epidemiology and genetics of alopecia areata. 

Clin Exp Dermatol 2002. 27: 405-9. 
 
41. Milgraum S.S., Mitchell A.J., Bacon G.E.,  Alopecia areata, endocrine function, 

and autoantibodies in patients 16 years of age or younger. J Am Acad Dermatol 
1987. 17: 57- 

 
42. Friedmann P.S., Alopecia areata and auto-immunity. Br J Dermatol 1981. 105: 

153-7. 
 
43. McElwee, K.J. et al., comparison of alopecia areata in human and nonhuman 

mammalian species. Pathobiology 1998. 66,90-107 
 
44. Perret C, Wiesner-Menzel L, Happle R., Immunohistochemical analysis of T-

cell subsets in the peribulbar and intrabulbar infiltrates of alopecia areata. Acta 
Derm Venereol 1984. 64: 26-30. 

 
45. Wiesner-Menzel L, Happle R., Intrabulbar and peribulbar accumulation of 

dendritic OKT 6-positive cells in alopecia areata. Arch Dermatol Res 1984. 276: 
333-4. 

 



                                                                                                                        References       

 132

46. Perret C, Wiesner-Menzel L, Happle R., Immunohistochemical analysis of T-
cell subsets in the peribulbar and intrabulbar infiltrates of alopecia areata. Acta 
Derm Venereol 1984. 64: 26-30. 

 
47. Hofmann R., et al., Cytokine mRNA level in alopecia areata befpre and fater 

treatment with the contact allergen  diphenylcyclopropenone. J. Invest. Dermatol 
1994. 103:520-533. 

 
48. Zhang J.G., and Oliver R.F., Immunohistological study of the development of 

the cellular infilterate in the plage follicles of The DEBR model of alopecia areata. 
Br. J dermatol 1994. 130,405-414. 

 
49. McDonagh, A.J. et al., HLA and ICAM-1 expression in alopecia areata in vivo 

and invitro, the role of cytokines. Br. J dermatol 1993.129,250-256. 
 
50. Nickoloff B.J., Griffiths C.E., Aberrant intercellular adhesion molecule -1 

expression by hair foliicle epithelial cells and endothelial leukocyte adhesion 
molecule -1 by vascular cells are important adhesion molecules alterations in 
alopecia areata. J. invest dermatology 1991. 96, 91s 92s  

 
51. Brocker E.B., et al., Abnormal expression of classI and class II major  

histocompatibility antigens in alopecia areata: modulation by topical 
immunotherapy. J invest dermatol 1987. 88,564-568. 

 
52. Messenger A.G., Bleehen S.S.,  Expression of HLA-DR by anagen hair follicles 

in alopecia areata. J Invest Dermatol 1985. 85: 569-72. 
 
53. Bystryn J.C., Tamesis J.,  Immunologic aspects of hair loss. J Invest Dermatol 

1991. 96: 88S-89S. 
 
54. Colombe B.W., Price V.H., Khoury E.L., et al.,  HLA class II antigen 

associations help to define two types of alopecia areata. J Am Acad Dermatol 
1995. 33: 757-64. 

 
55. Welsh E.A. et al.,  Human leukocyte antigen-DQB1*03 alleles are associated 

with alopecia areata. J Invest Dermatol 1994. 103: 758-63. 
 
56. Morling N., et al., DNA polymorphism of HLA class II genes in alopecia areata. 

Dis Markers 1991. 9: 35-42.  
 
57. Friedmann. Clinical and immunologic associations of alopecia areata. Semin 

Dermatol 1985. 4: 9-15. 
 
58. Frentz G., et al., HLA-DR4 in alopecia areata. J Am Acad Dermatol 1986. 14: 

129-30. 
 
59. Odum N., et al., HLA-DP antigens in patients with alopecia areata. Tissue 

Antigens 1990. 35: 114-7. 
 



                                                                                                                        References       

 133

60. Orecchia G., et al., Human leukocyte antigen region involvement in the genetic 
predisposition to alopecia areata. Dermatologica 1987. 175: 10-4. 

 
61. Duvic M., et al., HLA-D locus associations in alopecia areata. DRw52a may 

confer disease resistance. Arch Dermatol 1991. 127: 64-8. 
 
62. De Andrade M., et al., Alopecia areata in families: association with the HLA 

locus. J Investig Dermatol Symp Proc 1999. 4: 220-3. 
 
63. Akar A., et al., HLA class II alleles in patients with alopecia areata. Eur J 

Dermatol 2002. 12: 236-9. 
 
64. Colombe B.W., Lou C.D., Price V.H., The genetic basis of alopecia areata: HLA 

associations with patchy alopecia areata versus alopecia totalis and alopecia 
universalis. J Investig Dermatol Symp Proc 1999. 4: 216-9. 

 
65. Amos Gilhar, Ralf Paus and Richard S., Lymphocytes, neuropeptides, and 

genes involved in alopecia areata. J Clin Invest. 2007. 117(8):2019-27. 
 
66. Ito T., et al., Maintainanence of hair follicele privilgae is linked to prevention of 

NK cell attack. J Invest Dermatol 2008. 128, 1196-1206. 
 
67.Gilhar A., Krueger G.G., Hair growth in scalp grafts from patients with alopecia 

areata and alopecia universalis grafted onto nude mice. Arch Dermatol 1987. 123: 
44-50. 

 
68. Gilhar A., et a.l, Autoimmune hair loss (alopecia areata) transferred by T 

lymphocytes to human scalp explants on SCID mice. J Clin Invest 1998. 101: 62-
7. 

 
69. Alexis A.F., Dudda-Subramanya R, Sinha A.A., Alopecia areata: autoimmune 

basis of hair loss. Eur J Dermatol 2004. 14: 364-70 
 
70. Charuwichitratana S, Wattanakrai P, Tanrattanakorn S.,  Randomized 

double blind placebo-controlled trial in the treatment of alopecia areata with 
0.25% desoximetasone cream. Arch Dermatol 2000. 136:1276-1277,  

 
71. Kalkoff K.W., Macher E.. Growing of hair in alopecia areata & malinga after 

intracutaneous hydrocortisone injection. Hautarzt 1958. 9 (10) :441-451, 
. 
72. Orentreich N, Sturm H.M.,Weidman A.I., Pelzig A.,  Local Injection of 

steroids and hair regrowth in alopecias. Arch Dermatol 1960.  82:894-902.  
 
73. Fulop,  E,Vajda Z., Experimental studies on therapeutic and adverse effects of 

intrafocal steroid treatment. Dermatol Monatsschr 1971. 157:269-277. 
 
74. Porter D., Burton J.L., A comparison of intra-lesional triamcinolone 

hexacetonide and triamcinolone acetonide in alopecia areata. Br J Dermatol 1971. 
85:272. 

  



                                                                                                                        References       

 134

75. Abell E, Munro D.D., Intralesional treatment of alopecia areata with 
triamcinolone  acetonide by jet injector. Br J Dermatol 1973. 88:55-59. 

  
76. Frentz G.,Topical treatment of extended alopecia. Dermatologica 1977.155:147-

154. 
 
77. Claudy A.L., Gagnaire D., PUVA treatment of alopecia areata. Arch Dermatol 

1983. 119: 975-978. 
  
78. Larko O., Swanbeck G., PUVA treatment for alopecia totalis. Acta Derm 

Venereol 1983. 63:546-549.  
 
79. Lassus A., Eskelinen A., Johansson E., Treatment of alopecia areata with three 

different PUVA modalities. Photodermatology 1984.1:141-144. 
  
80. Mitchell A.J., Douglass M.C.,  Topical photochemotherapy for alopecia areata. J 

Am Acad Dermatol 1985.12:644-649. 
  
81. Healy E., Rogers S.,  PUVA treatment for alopecia areata. Does it work? A 

retrospective review of 102 cases. Br J Dermatol 1993.129:42-44. 
 
82. Taylor C.R., Hawk J.L.M., PUVA treatment of alopecia areata partialis, totalis 

and universalis. Br J  Dermatol 1995.133:914-918. 
 
83. Behrens-Williams S., et al., The PUVA-turban as a new option of applying a 

dilute psoralen solution selectively to the scalp of patients with alopecia areata. J 
Am Acad Dermatol 2001.44:248-252,  

 
84. Schreiber S.L., Crabtree G.R., The mechanism of action of cyclosporin A and 

FK506. Immunol Today 1992.13:136-142. 
 
85. McElwee K.J., Rushton D.H.,Trachy R., Oliver R.F., Topical FK506: A potent 

immunotherapy for alopecia areata? Studies using the Dundee experimental bald 
rat model. Br J Dermatol 1997.137:491-497.  

 
86. Freyschmidt-Paul P., et al., Current and potential agents for the treatment of 

alopecia areata. Curr Pharm Des 2001.7:213-230. 
 
87. Happle R., Echternacht K., Induction of hair growth in alopecia areata with    

D.N.C.B. Lancet 1977. 2:1002-1003.  
 
88. Happle R., Pointer for DNCB therapy in alopecia areata. Hautarzt. 1979. 

30(10):556. 
 
89. Happle R., The potential hazards of dinitrochlorobenzene. Arch Dermatol 

1985.121:330-331. 
 
90. Hoffmann R., Happle R., Topical immunotherapy in alopecai areata: What; how; 

and why? Dermatol Clin 1996.14:739-744. 
 



                                                                                                                        References       

 135

91. Perret C.M., Steijlen P.M., Happle R., Erythema multiforme-like eruptions. A 
rare side effect of topical immunotherapy with diphenylcyclopropenone. 
Dermatologica1990. 180:5-7.  

 
92. Van der Steen P., Happle R., Dyschromia in confetti as a side e!ect of topical 
      immunotherapy with diphenylcyclopropenone. Arch Dermatol 1992. 128:518-

520. 
 
93. Buckley D.A., Du Vivier A.W., The therapeutic use of topical contact sensitizers 

in benign dermatoses. Br J Dermatol. 2001. 145(3):385-405. 
 
94. Je-In Youn and Dmitry I. Gabrilovich., The biology of myeloid-derived 

suppressor cells: The blessing and the curse of morphological and functional 
heterogeneity. Eur. J. Immunol. 2010. 40: 2969–2975. 

 
95. Gabrilovich Dmitry I and Srinivas Nagaraj., Myeloid-derived-suppressor cells 

as regulators of the immune system. Nat Rev Immunol. 2009.  9(3):162-74. 
 
96. Youn, J. I., S. Nagaraj, M. Collazo, and D. I. Gabrilovich., Subsets of myeloid 

derived suppressor cells in tumor-bearing mice. J. Immunol. 2008. 181: 5791–
5802. 

 
97. Sawanobori, Y., et al., Chemokine-mediated rapid turnover of myeloid-derived 

suppressor cells in tumor-bearing mice. Blood 2008. 111: 5457–5466. 
 
98. Movahedi, K., et al., Identification of discrete tumor-induced myeloid-derived 

suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 
2008. 111: 4233–4244. 

 
99. Dietlin TA., et al,. Mycobacteria-induced Gr-1+ subsets from distinct myeloid 

lineages have opposite  effects on T cell expansion. J Leukoc Biol 2007. 81:1205–
1212. 

 
100.Zhu B, et al., CD11b+Ly-6Chi Suppressive Monocytes in Experimental   

Autoimmune Encephalomyelitis. J Immunol 2007. 179:5228–5237. 
 
101. Bronte V., Myeloid-derived suppressor cells in inflammation: uncovering cell 

subsets with enhanced immunosuppressive functions. Eur J Immunol. 2009. 
39(10):2670-2. 

 
102. Suzanne Ostrand-Rosenberg and Pratima Sinha., Myeloid-Derived 

Suppressor Cells: Linking Inflammation and Cancer. J Immunol. 2009. 
182(8):4499-506. 

       
103. Huang B., et al., Immature myeloid suppressor cells mediate the development of 

tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. 
Cancer Res. 2006. 66: 1123–1131. 

 



                                                                                                                        References       

 136

104. Pan P. Y., et al., Immune stimulatory receptor CD40 is required for T-cell 
suppression and T regulatory cell activation mediated by myeloid-derived 
suppressor cells in cancer. Cancer Res. 2010. 70: 99–108. 

 
105. Gallina G., et al., Tumors induce a subset of inflammatory monocytes with 

immunosuppressive activity on CD81T cells. J. Clin. Invest. 2006. 116: 2777–
2790. 

 
106. Yang R., et. al., CD80 in immune suppression by mouse ovarian carcinoma-

associated Gr-1+CD11b+myeloid cells. Cancer Res. 2006. 66: 6807–6815. 
 
107. Youn J. I., Nagaraj S., Collazo M. and Gabrilovich D. I., Subsets of myeloid-

derived suppressor cells in tumor-bearing mice. J. Immunol. 2008. 181: 5791–
5802. 

 
108.  Ko J. S., et al., Sunitinib mediates reversal of myeloid-derived suppressor cell 

accumulation in renal cell carcinoma patients. Clin. Cancer Res. 2009. 15: 
2148–2157. 

 
109. Rodriguez P. C., Ernstoff M. S., Hernandez C., Atkins M., Zabaleta J., 

Sierra R. and Ochoa A. C., Arginase I-producing myeloid-derived suppressor 
cells in renal cell carcinoma are a subpopulation of activated granulocytes. 
Cancer Res. 2009. 69: 1553–1560. 

 
110. Nagaraj S., et al., Altered recognition of antigen is a novel mechanism of 

CD81T cell tolerance in  Cancer. Nat. Med. 2007. 13: 828–835. 
 
111. Priceman S. J., et al., Targeting distinct tumor infiltrating myeloid cells by 

inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. 
Blood 2010. 115: 1461–1471. 

 
112. Morales JK, Kmieciak M, Knutson KL, Bear HD, Manjili MH., GM-CSF is 

one of the main breast tumor-derived soluble factors involved in the 
differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-
derived suppressor cells. Breast Cancer Res Treat. 2010. 123(1):39-49. 

 
113. Dolcetti L., et al., Hierarchy of immunosuppressive strength among myeloid-

derived suppressor cell subsets is determined by GMCSF. Eur. J. Immunol. 
2010. 40: 22–35. 

 
114. Nausch N., Galani I. E., Schlecker E. and Cerwenka A., Mononuclear 

myeloid-derived ‘‘suppressor’’ cells express RAE-1 and activate natural killer 
cells. Blood 2008. 112: 4080–4089. 

 
115. Mirza N., et al., All-trans-retinoic acid improves differentiation of myeloid cells 

and immune response in cancer patients. Cancer Res. 2006. 66: 9299–9307. 
 
116. Kusmartsev S., F. Cheng, B. Yu, Y. Nefedova, E. Sotomayor, R. Lush, and 

D. Gabrilovich., All-trans-retinoic acid eliminates immature myeloid cells from 



                                                                                                                        References       

 137

tumor-bearing mice and improves the effect of vaccination. Cancer Res. 2003. 
63: 4441–4449. 

 
117. Bronte V, Zanovello P., Regulation of immune responses by L-arginine 

metabolism. Nat Rev Immunol 2005. 5:641–654.  
 
118. Rodriguez PC, Ochoa AC., Arginine regulation by myeloid derived suppressor 

cells and tolerance in cancer: mechanisms and therapeutic perspectives. 
Immunol Rev 2008. 222:180–191.  

 
119. Ochoa AC, Zea AH, Hernandez C, Rodriguez PC., Arginase, prostaglandins, 

and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 
2007.13:721s–726s.  

 
120. Rodriguez PC., et al., Arginase I in myeloid suppressor cells is induced by 

COX-2 in lung carcinoma. J Exp Med 2005. 202:931–939. 
 
121. Rodriguez PC., et al., Regulation of T cell receptor CD3zeta chain expression 

by L-arginine. J Biol Chem 2002. 277:21123–21129.  
 
122. Rodriguez PC, Quiceno DG, Ochoa AC., L-arginine availability regulates T-

lymphocyte cell-cycle progression. Blood 2007. 109:1568–1573.  
 
123. Bronte V, et al., Boosting antitumor responses of T lymphocytes infiltrating 

human prostate cancers. J Exp Med 2005. 201:1257–1268.  
 
124. Harari O, Liao JK., Inhibition of MHC II gene transcription by nitric oxide and 

antioxidants. Curr Pharm Des 2004. 10:893–898.  
 
125. Rivoltini L, et al., Immunity to cancer: attack and escape in T lymphocyte-tumor 

cell interaction. Immunol Rev 2002.188:97–113. 
 
126. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI., Antigen-specific 

inhibition of CD8+ T cell response by immature myeloid cells in cancer is 
mediated by reactive oxygen species. J Immunol 2004.172:989–999.  

 
127. Schmielau J, Finn OJ., Activated granulocytes and granulocyte-derived 

hydrogen peroxide are the underlying mechanism of suppression of T-cell 
function in advanced cancer patients. Cancer Res 2001. 61:4756–4760.  

 
128. Kusmartsev S, Nagaraj S, Gabrilovich DI., Tumor-associated CD8+ T cell 

tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 
2005. 175:4583–4592.  

 
129. Szuster-Ciesielska A, et al., Reactive oxygen species production by blood 

neutrophils of patients with laryngeal carcinoma and antioxidative enzyme 
activity in their blood. Acta Oncol 2004. 43:252–258.  

 
130. Agostinelli E, Seiler N., Non-irradiation-derived reactive oxygen species (ROS) 

and cancer: therapeutic implications. Amino Acids 2006. 31:341–355.  



                                                                                                                        References       

 138

 
131. Sauer H, Wartenberg M, Hescheler J., Reactive oxygen species as 

intracellular messengers during cell growth and differentiation. Cell Physiol 
Biochem 2001.11:173–186.  

 
132. Vickers SM, MacMillan-Crow LA, Green M, Ellis C, Thompson JA., 

Association of increased immunostaining for inducible nitric oxide synthase and 
nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer. 
Arch Surg 1999.134:245–251. 

 
133. Cobbs CS, et al., Inactivation of wild-type p53 protein function by reactive 

oxygen and nitrogen species in malignant glioma cells. Cancer Res 2003. 
63:8670–8673.  

 
134. Bentz BG, Haines GK 3rd, Radosevich JA., Increased protein nitrosylation in 

head and neck squamous cell carcinogenesis. Head Neck 2000. 22:64–70.  
 
135. Nakamura Y, et al., Nitric oxide in breast cancer: induction of vascular 

endothelial growth factor-C and correlation with metastasis and poor prognosis. 
Clin Cancer Res 2006.12:1201–1207.  

 
136. Nagaraj S, et al., Altered recognition of antigen is a novel mechanism of CD8+ 

T cell tolerance in cancer. Nat Med 2007.13:828–835.  
 
137. Yang R, et al., CD80 in immune suppression by mouse ovarian carcinoma-

associated Gr-1+CD11b+ myeloid cells. Cancer Res 2006. 66:6807–6815.  
 
138. Huang B, et al., Gr-1+CD115+ immature myeloid suppressor cells mediate the 

development of tumor induced T regulatory cells and T-cell anergy in tumor-
bearing host. Cancer Res 2006. 66:1123–1131.  

 
139. Dugast AS, et al., Myeloid-derived suppressor cells accumulate in kidney 

allograft tolerance and specifically suppress effector T cell expansion. J 
Immunol 2008. 180:7898–7906.  

 
140. Barreda DR, Hanington PC, Belosevic M., Regulation of myeloid 

development and function by colony stimulating factors. Dev Comp Immunol 
2004. 28(5):509–554. 

 
141. Abdalla AO., et al.,  Kinetics of cytokine gene expression in human CD4 + and 

CD8 + T-lymphocyte subsets using quantitative real-time PCR. Scand J 
Immunol 2003. 58(6):601–606. 

 
142. de Saint-Vis B, Fugier-Vivier I, Massacrier C, Gaillard C, Vanbervliet B, 

Ait-Yahia S, Banchereau J, Liu YJ, Lebecque S, Caux C., The cytokine 
proWle expressed by human dendritic cells is dependent on cell subtype and 
mode of activation. J Immunol  1998. 160(4):1666–1676. 

 



                                                                                                                        References       

 139

143. Dolcetti L., et al., Hierarchy of immunosuppressive strength among myeloid-
derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol  
2010. 40(1):22–35.  

 
144. Gabrilovich DI., et al., Production of vascular endothelial growth factor by 

human tumors inhibits the functional maturation of dendritic cells. Nat Med 
1996. 2(10):1096–1103. 

 
145. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone 

DP., Vascular endothelial growth factor inhibits the development of dendritic 
cells and dramatically aVects the diVerentiation of multiple hematopoietic 
lineages in vivo. Blood1998. 92(11):4150–4166. 

 
146. Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf 

S, Carbone DP., VEGF inhibits T-cell development and may contribute to 
tumor-induced immune suppression. Blood 2003. 101(12):4878–4886. 

 
147. Roland CL, Lynn KD, Toombs JE, Dineen SP, Udugamasooriya DG, 

Brekken RA., Cytokine levels correlate with immune cell inWltration after 
anti-VEGF therapy in preclinical mouse models of breast cancer. PLoS One 
2009. 4(11):e7669. 

 
148. Eliana Ribechini, Verena Greifenberg, Sarah Sandwick, Manfred B. Lutz., 

Subsets, expansion and activation of myeloid-derived suppressor cells. Med 
Microbiol Immunol 2010.199:273–281. 

 
149. Gallina G., et al., Tumors induce a subset of infflammatory monocytes with 

immunosuppressive activity on CD8 + T cells. J Clin Invest 2006. 
116(10):2777–2790. 

 
150. Rößner S, Voigtländer C, Wiethe C, Hänig J, Seifarth C, Lutz MB., Myeloid 

dendritic cell precursors generated from bone marrow suppress T cell responses 
via cell contact and nitric oxide production in vitro. Eur J Immunol 2005. 
35(12):3533–3544. 

 
151. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, SeraWni P, 

Zanovello P, Segal DM.,  Myeloid suppressor lines inhibit T cell responses by 
an NO-dependent mechanism. J Immunol 2002. 168(2):689–695. 

 
152. Li H, Han Y, Guo Q, Zhang M, Cao X., Cancer-expanded myeloid-derived 

suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 
1. J Immunol 2009. 182(1):240–249. 

 
153. Young MR, Wright MA, Coogan M, Young ME, Bagash J., Tumor-derived 

cytokines induce bone marrow suppressor cells that mediate 
immunosuppression through transforming growth factor beta. Cancer Immunol 
Immunother 1992. 35(1):14–18. 

 



                                                                                                                        References       

 140

154. Maeda H, Shiraishi A., TGF-beta contributes to the shift toward Th2-type 
responses through direct and IL-10-mediated pathways in tumor-bearing mice. J 
Immunol 1996. 156(1):73–78. 

 
155. Alleva DG, Walker TM, Elgert KD., Induction of macrophage suppressor 

activity by Wbrosarcoma-derived transforming growth factor-beta 1: contrasting 
eVects on resting and activated macrophages. J Leukoc Biol 1995. 57(6):919–
928. 

 
156. Han S, Knoepp SM, Hallman MA, Meier KE., RasGRP1 confers the phorbol   

ester-sensitive phenotype to EL4 lymphoma cells. Mol Pharmacol. 2007. 314-
22. 25. 

 
157. Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH., Reversion 

of immune tolerance in advanced malignancy: modulation of myeloid-derived 
suppressor cell development by blockade of stem-cell factor function. Blood 
2008. 111(1):219–228. 

 
158. Park SJ., et al.,  IL-6 regulates in vivo dendritic cell diVerentiation through 

STAT3 activation. J Immunol 2004. 173(6):3844–3854. 
 
159. Yu, H. et al., STATs in cancer inflammation and immunity: a leading role for 

STAT3. Nat. Rev. Cancer 2009.  9, 798–809. 
 
160 Nefedova, Y. et al., Hyperactivation of STAT3 is involved in abnormal 

differentiation of dendritic cells in cancer. J. Immunol. 2004. 172, 464–474. 
 
161. Nefedova, Y. et al., Regulation of dendritic cell differentiation and antitumor 

immune response in cancer by pharmacologic-selective inhibition of the janus-
activated kinase 2/signal transducers and activators of transcription 3 pathway. 
Cancer Res. 2005. 65, 9525–9535. 

 
162.  Poschke, I. et al., Immature immunosuppressive CD14+HLADR-/ low cells in 

melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. 
Cancer Res. 2010. 70, 4335–4345. 

 
163. Nefedova Y., et al., Hyperactivation of STAT3 is involved in abnormal 

differentiation of dendritic cells in cancer. J Immunol. 2004.1;172(1):464-74. 
 
164. Kortylewski M, et al., Inhibiting Stat3 signaling in the hematopoietic system 

elicits multicomponent antitumor immunity. Nat Med 2005. 11:1314–1321.  
 
165. Foell, D. et al., S100 proteins expressed in phagocytes: a novel group of 

damage-associated molecular pattern molecules. J. Leukoc. Biol. 2007. 81, 28–
37 

 
166. Cheng, P. et al., Inhibition of dendritic cell differentiation and accumulation of 

myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. 
Exp. Med. 2008. 205, 2235–2249. 

 



                                                                                                                        References       

 141

167. Corzo, C.A. et al., Mechanism regulating reactive oxygen species in tumor-
induced myeloid-derived suppressor cells. J. Immunol. 2009. 182, 5693–5701. 

 
168.  Hattori H, Rosas LE, Okano M, Durbin JE, Nishizaki K, Satoskar AR., 

STAT1 is involved in the pathogenesis of murine allergic rhinitis. Am J 
Rhinol. 2007. 21(2):241-7. 

 
169. Gallina, G. et al., Tumors induce a subset of inflammatory monocytes with 

immunosuppressive activity on CD8+ T cells. J. Clin. Invest. 2006. 116, 2777–
2790. 

 
170. Kusmartsev, S. and Gabrilovich, D.I., STAT1 signaling regulates tumor-

associated macrophage-mediated T cell deletion. J. Immunol. 2005. 174, 4880–
4891. 

 
171. Kusmartsev S, Gabrilovich DI., STAT1 signaling regulates tumor-associated 

macrophage-mediated T cell deletion. J Immunol. 2005.174:4880–91. 
 
172. Sinha, P. et al., Reduction of myeloid-derived suppressor cells and induction of 

M1 macrophages facilitate the rejection of established metastatic disease. J. 
Immunol. 2005. 174, 636–645. 

 
173. Sinha, P. et al., Interleukin-13-regulated M2 macrophages in combination with 

myeloid suppressor cells block immune surveillance against metastasis. Cancer 
Res. 2005. 65, 11743–11751. 

 
174.  Bronte, V. et al., IL-4-induced arginase 1 suppresses alloreactive T cells in 

tumor-bearing mice. J. Immunol. 2003. 170, 270–278. 
 
175.  Terabe, M. et al., Transforming growth factor-beta production and myeloid 

cells are an effector mechanism through which CD1d restricted T cells block 
cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation 
prevents tumor recurrence. J. Exp.Med. 2003. 198, 1741–1752. 

 
176. Sinha P, Clements VK, Ostrand-Rosenberg S., Interleukin-13-regulated M2 

macrophages in combination with myeloid suppressor cells block immune 
surveillance against metastasis. Cancer Res 2005. 65:11743–11751.  

 
177. Bunt, S.K. et al., Inflammation enhances myeloid-derived suppressor cell cross-

talk by signaling through Toll-like receptor 4. J. Leukoc. Biol. 2009. 85, 996–
1004. 

 
178. Greifenberg, V. et al., Myeloid-derived suppressor cell activation by combined 

LPS and IFN-gamma treatment impairs DC development. Eur. J. Immunol. 
2009. 39, 2865–2876. 

 
179. Delano MJ, et al., MyD88-dependent expansion of an immature GR-

1(+)CD11b(+) population induces  T cell suppression and Th2 polarization in 
sepsis. J Exp Med 2007. 204:1463–1474.  



                                                                                                                        References       

 142

 
180. Marhaba R, Vitacolonna M, Hildebrand D, Baniyash M, Freyschmidt- Paul 

P, Zoller M., The importance of myeloid-derived suppressor cells in the 
regulation of autoimmune effector cells by a chronic contact eczema. J Immunol 
2007. 179(8):5071–5081. 

 
181. Haile LA, Gamrekelashvili J, Manns MP, Korangy F, Greten TF., CD49d is 

a new marker for distinct myeloid-derived suppressor cell subpopulations in 
mice. J Immunol. 2010. 185(1):203-10. 

. 
 
182. Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB., Analysis of 

retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals 
multiple regulatory cell populations. J Autoimmun 2008. 31(4):354–361. 

 
183. Arora, M., et al., TLR4/MyD88-induced CD11b(1)Gr-1 (int) F4/80(1) non-

migratory myeloid cells suppress Th2 effector function in the lung. Mucosa 
Immunol. 2010. 3: 578–593. 

 
184.  Zhu B., et al., CD11b + Ly-6C(hi) suppressive monocytes in experimental 

autoimmune encephalomyelitis. J Immunol. 2007. 179(8):5228–5237. 
 
 
185. Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB., Analysis of 

retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals 
multiple regulatory cell populations. J Autoimmun. 2008. 31(4):354-61. 

 
186. Haile LA., et al., Myeloid-derived suppressor cells in inflammatory bowel 

disease: a new immunoregulatory pathway. Gastroenterology 2008. 135:871–
881. 881 e871–875.  

 
187. Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB., CD11b+/Gr-

1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J 
Immunol 2006. 176:2085–2094.  

 
188. Kneur C,Ehrhardt C, Radomski MW, Bakowsky U., Selectins-potential 

pharmacological targets? Drug discovery Today. 2006. 11(21-22):1034-40 
 
189. LitmanGW, Cannon JP, Rast JP., New insights into alternative mechanisms of 

immune receptor diversification. Adv Immunol. 2005. 87:209-36 
 
190. Ramsay AG, Marshall JF, Hart IR., Integrin trafficking and its role in canacer 

metastasis. Cancer Metastasis rev. 2007. 26(3-4):567-78. 
 
191. Marhaba, R., Freyschmidt-Paul, P. and Zoller, M., complex formation in 

autoimmune disease has consequences on T cell activation and apoptosis 
resistance. Eur J Immunol 2006. 36: 3017-3032. 

 



                                                                                                                        References       

 143

192. S Goodison, V Urquidi, D Tarin., CD44 cell adhesion molecules. J Clin 
Pathol: Mol Pathol 1999. 52:189–196. 

 
193. R. marhaba and M.Zoeller., CD44 in cancer progression: adhesion, migration 

and growth regulation. J Mol Histol. 2004. 35(3):211-31. 
 
194. Goldstein, L. A., et al., A human lymphocyte homing receptor, the Hermes 

antigen, is related to cartilage proteoglycan core and link proteins. Cell 1989. 
56, 1063-1072. 

 
195. Zöller M., CD44: can a cancer-initiating cell profit from an abundantly 

expressed molecule? Nat Rev Cancer. 2011. 11(4):254-67 
 
196. Goldstein LA, Butcher EC., Identification of mRNA that encodes an alternative 

form of H-CAM (CD44) in lymphoid and nonlymphoid tissues. Immunogenetics 
1990. 32:389–97. 

 
197. Kohda D, Morton CJ, Parkar AA, et al., Solution structure of the link module: 

a hyaluronan-binding domain involved in extracellular matrix stability and cell 
migration. Cell 1996. 86:767–75. 

 
198. Misra S, Hascall VC, Berger FG, Markwald RR, Ghatak S., Hyaluronan, 

CD44, and cyclooxygenase-2 in colon cancer. Connect Tissue Res. 2008. 
49(3):219-24.  

 
199. Neame, S. J. and Isacke, C. M., Phosphorylation of CD44 in vivo requires both 

Ser323 and Ser325, but does not regulate membrane localization or cytoskeletal 
interaction in epithelial cells. EMBO J. 1992. 11, 4733- 4738. 

 
200. Peck, D. and Isacke, C. M., Hyaluronan-dependent cell migration can be 

blocked by a CD44 cytoplasmic domain peptide containing a phosphoserine at 
position 325. J. Cell Sci. 1998. 111, 1595-1601. 

 
201. Pure, E., Camp, R. L., Peritt, D., Panettieri, R. A., Jr, Lazaar, A. L. and 

Nayak, S., Defective phosphorylation and hyaluronate binding of CD44 with 
point mutations in the cytoplasmic domain. J. Exp. Med. 1995. 81, 55-62. 

 
202.  Peck, D. and Isacke, C. M., CD44 phosphorylation regulates melanoma cell 

and fibroblast migration on, but not attachment to, a hyaluronan substratum. 
Curr. Biol.1996. 6, 884-890  

 
203. Bourguignon, L. Y., Kalomiris, E. L. and Lokeshwar, V. B., Acylation of the 

lymphoma transmembrane glycoprotein, GP85, may be required for GP85-
ankyrin interaction. J. Biol. Chem. 1991.  266, 11761-11765. 

 
204. Guo, Y. J., Lin, S. C., Wang, J. H., Bigby, M. and Sy, M. S., Palmitoylation of 

CD44 interferes with CD3-mediated signaling in human T lymphocytes. Int. 
Immunol. 1994. 6, 213-221. 

 



                                                                                                                        References       

 144

205. Cichy, J. and Pure, E., The liberation of CD44. J. Cell Biol.  2003. 161, 839- 
843. 

 
206. Kajita, M., Itoh, Y., Chiba, T., Mori, H., Okada, A., Kinoh, H. and Seiki, 

M., Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell 
migration. J. Cell Biol. 2001. 153, 893-904. 

 
207. Mori, H., Tomari, T., Koshikawa, N., Kajita, M., Itoh, Y., Sato, H., Tojo, H., 

Yana, I. and Seiki, M., CD44 directs membrane-type 1 matrix 
metalloproteinase to lamellipodia by associating with its hemopexin-like 
domain. EMBO J. 2002. 21, 3949-3959. 

 
208. Murakami, D., Okamoto, I., Nagano, O., Kawano, Y., Tomita, T., Iwatsubo, 

T., de Strooper, B., Yumoto, E. and Saya, H., Presenilindependent gamma-
secretase activity mediates the intramembranous cleavage of CD44. Oncogene 
2003. 22, 1511-1516. 

 
209. Okamoto, I., Kawano, Y., Tsuiki, H., Sasaki, J., Nakao, M., Matsumoto, M., 

Suga, M., Ando, M., Nakajima, M. and Saya, H., CD44 cleavage induced by 
a membrane-associated metalloprotease plays a critical role in tumor cell 
migration. Oncogene 1999. 18, 1435-1446. 

 
210. Okamoto, I., Kawano, Y., Matsumoto, M., Suga, M., Kaibuchi, K., Ando, M. 

and Saya, H., Regulated CD44 cleavage under the control of protein kinase C, 
calcium influx, and the Rho family of small G proteins. J. Biol. Chem. 1999.  
274, 25525-25534. 

 
211. Okamoto, I., Kawano, Y., Murakami, D., Sasayama, T., Araki, N., Miki, 
        T., Wong, A. J. and Saya H., Proteolytic release of CD44 intracellular domain 

and its role in the CD44 signaling pathway. J. Cell Biol. 2001.  155, 755-762. 
 
212. Rick F. Thorne, James W. Legg and Clare M. Isacke., The role of the CD44 

transmembrane and cytoplasmic domains in co-ordinating adhesive and 
signaling events, Journal of Cell Science 2004. 117, 373-380  

 
213. Chen D., et al., CD44 deficient mice exhibit enhanced hepatitis after 

concanavalin A injection: evidence for involvement of CD44 in activation 
induced cell death. J.Immunology  2001. 166: 5889-5897 

 
214. Lesley, J., He, Q., Miyake, K., Hamann, A., Hyman, R. and Kincade, P. W., 

Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic 
domain and activation by antibody. J. Exp. Med. 1992. 175, 257-266. 

 
215. Thomas, L., Byers, H. R., Vink, J. and Stamenkovic, I., CD44H regulates 

tumor cell migration on hyaluronate-coated substrate. J. Cell Biol. 1992. 118, 
971-977. 

 
216. De Grendele HC, Estress P, Siegalman MH., Requirement for CD44 in 

activated T cell extravasation into an inflammatory sites. Science 1997. 278-
672-5 



                                                                                                                        References       

 145

  
217. Naor D, Sionov R.V. and Ish-Shalom D.,  CD44: structure, function, and 

association with the malignant process. Adv Cancer Res. 1997. 71:241-319. 
 
218. Tedder TF,Steeber DE, Chen A, Engel P., The selectins: vascular adhesion 

molecules FASEB J 1995. 9:866-873. 
 
219. Rosel M, Foger N, Zoeller M., Involvement of CD44v10 in B cell 

activation.Tissue antigens 1998. 56:99-113. 
 
220. Siegelman MH, Stanescu D, Estess P., The CD44-initiated pathway of t cell 

extravasation uses VLA-4 but not LFA-1 for firm adhesion. J clin invest 2000. 
105:683-691 

 
221. Stoop R, Kotani H, McNeish JD,Otterness IG,  Mikecz K., Increased 

resistance to collagen induced arthritis in CD44 deficient DBA/1 mice. Arthiritis 
Rheum 2001. 44:2922-2542 

 
222. Zohar, R. Suzuki N, Suzuki K, Arora P, Glogauer M, McCulloch CA, Sodek 

J., Intracellular osteopontin is an integral component of The CD44-ERM 
complex involved in cell migration. J.cell physiol  2000. 184;118-130. 

 
223. Savinov AY, Rozanov DV, Golubkov VS, Wong FS, Strongin AY., Inhibition 

of Membrane type1 matrix metalloproteinase by cancer drugs interfares with the 
homing of diabitogenic T cells into pancreas. J. Biol Chem 2005. 280, 277755-8. 

 
224. Small JV, Rotter K, Kaverina I., Functional design in actin cytoskeleton. Cur 

opinion in cell biology 1999. 11:54-60. 
 
225. Bretscher, A., Edwards, K. and Fehon, R. G., ERM proteins and merlin: 

integrators at the cell cortex. Nat Rev Mol Cell Biol  2002. 3: 586-599. 
 
226. Zhu D Bourguignon LY., The ankyrin- binding domain of CD44s is involved in 

regulating hyaluronic acid mediated functions and prostrate tumor cell 
transformation. Cell motil cytoskeleton 1998. 39: 209-222 

 
227. Bourguignon, L. Y., Kalomiris, E. L. and Lokeshwar, V. B.,  Acylation of the 

lymphoma transmembrane glycoprotein, GP85, may be required for GP85-
ankyrin interaction. J. Biol. Chem. 1991. 266, 11761-11765. 

 
228. Pietromonaco, S. F., Simons, P. C., Altman, A. and Elias, L., Protein kinase C 

theta phosphorylation of moesin in the actin-binding sequence. J Biol Chem 
1998. 273: 7594-7603. 

 
229. Yonemura, S., Hirao, M., Doi, Y., Takahashi, N., Kondo, T., Tsukita, S. and 

Tsukita, S., Ezrin/radixin/moesin (ERM) proteins bind to a positively charged 
amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, 
and ICAM-2. J Cell Biol 1998. 140: 885-895. 

 



                                                                                                                        References       

 146

230. Matsui, T., Maeda, M., Doi, Y., Yonemura, S., Amano, M., Kaibuchi, K., 
Tsukita, S. and Tsukita, S., Rho-kinase phosphorylates COOH-terminal 
threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-
tail association. J Cell Biol 1998. 140: 647-657. 

 
231. Matsui, T., Yonemura, S., Tsukita, S. and Tsukita, S., Activation of ERM 

proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and 
not ROCK kinases. Curr Biol 1999. 9: 1259-1262. 

 
232. Chishti, A. H. et al., The FERM domain: a unique module involved in the 

linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 1998. 23: 
281-282. 

 
233. Morrison, H., Sherman, L. S., Legg, J., Banine, F., Isacke, C., Haipek, C. A., 

Gutmann, D. H., Ponta, H. and Herrlich, P., The NF2 tumor suppressor gene 
product, merlin, mediates contact inhibition of growth through interactions with 
CD44. Genes Dev. 2001. 15, 968-980. 

 
234. Legg, J. W., Lewis, C. A., Parsons, M., Ng, T. and Isacke, C. M., A novel 

PKC regulated mechanism controls CD44 ezrin association and directional cell 
motility. Nat Cell Biol 2002. 4: 399-407. 

 
235. Kissil, J. L., Johnson, K. C., Eckman, M. S. and Jacks, T., Merlin 

phosphorylation by p21-activated kinase 2 and effects of phosphorylation on 
merlin localization. J Biol Chem 2002. 277: 10394-10399. 

 
236. Rong, R., Surace, E. I., Haipek, C. A., Gutmann, D. H. and Ye, K., Serine 

518 phosphorylation modulates merlin intramolecular association and binding to 
critical effectors important for NF2 growth suppression. Oncogene 2004. 23: 
8447-8454. 

 
237.  Bai Y, Liu YJ, Wang H, Xu Y, Stamenkovic I, Yu Q., Inhibition of the 

hyaluronan-CD44 interaction by merlin contributes to the tumor-suppressor 
activity of merlin. Oncogene. 2007. 26(6):836-50.  

 
238. DeGrendele HC., et al., CD44 activation and associated primary adhesion is 

inducible via T cell receptor stimulation. J Immunol 1997.159:2549–53. 
 
239. DeGrendele HC, Estess P, Siegelman M.H., Requirement for CD44 in 

activated T cell extravasation into an inflammatory site. Science 1997. 278:672–
5. 

 
240. Estess P, DeGrendele HC, Pascual V, et al., Functional activation of 

lymphocyte CD44 in peripheral blood is a marker of autoimmune disease 
activity. J Clin Invest 1998. 102:1173–82. 

 
241. Mohamadzadeh M, DeGrendele H, Arizpe H, et al., Proinflammatory stimuli 

regulate endothelial hyaluronan expression and CD44/HA-dependent primary 
adhesion. J Clin Invest 1998.101:97–108. 



                                                                                                                        References       

 147

 
242. Weiss JM, Renkl AC, Sleeman J, et al., CD44 variant isoforms are essential for 

the function of epidermal Langerhans cells and dendritic cells . Cell Adhes 
Commun 1998. 6:157–60. 

 
243. Foger, N., Marhaba, R. and Zoller, M., CD44 supports T cell proliferation and 

apoptosis by apposition of protein kinases. Eur J Immunol 2000. 30: 2888-2899. 
 
244. Foger, N., Marhaba, R. and Zoller, M., Involvement of CD44 in cytoskeleton 

rearrangement and raft reorganization in T cells. J Cell Sci 2001. 114: 1169-
1178. 

 
245. Auvinen, E., Kivi, N. and Vaheri, A., Regulation of ezrin localization by Rac1 

and PIPK in human epithelial cells. Exp Cell Res 2007. 313: 824-833. 
 
246. Collins, T. L., Deckert, M. and Altman, A., Views on Vav. Immunol Today 

1997. 18: 221-225. 
 
247. Galandrini, R., Palmieri, G., Piccoli, M., Frati, L. and Santoni, A., Role for 

the Rac1 exchange factor Vav in the signaling pathways leading to NK cell 
cytotoxicity. J Immunol 1999. 162: 3148-3152 

 
248. Zöller M, Gupta P, Marhaba R, Vitacolonna M, Freyschmidt-Paul P., Anti-

CD44-mediated blockade of leukocyte migration in skin-associated immune 
diseases. J Leukoc Biol. 2007. 82(1):57-71. 

 
249. Galandrini, R., Albi, N., Tripodi, G., Zarcone, D., Terenzi, A., Moretta, A., 

Grossi, C. E. and Velardi, A., Antibodies to CD44 trigger effector functions of 
human T cell clones. J Immunol 1993. 150: 4225-4235 

 
250. Ponta, H., Sherman, L. and Herrlich, P. A., CD44: from adhesion molecules 

to signalling regulators. Nat Rev Mol Cell Biol 2003. 4: 33-45. 
 
251.  Arch R, Wirth K, Hofmann M, Ponta H, Matzku S, Herrlich P, Zöller M., 
         Participation in normal immune responses of a metastasis-inducing splice 

variant of CD44.  Science. 1992. 257(5070):682-5. 
 
252. Galluzzo E, Albi N, Fiorucci S, Merigiola C, Ruggeri L, Tosti A, Grossi CE, 

Velardi A., Involvement of CD44 variant isoforms in hyaluronate adhesion by 
human activated T cells. Eur J Immunol. 1995. 25(10):2932-9. 

 
253. Levesque MC, Haynes BF., In vitro culture of human peripheral blood 

monocytes induces hyaluronan binding and up-regulates monocyte variant 
CD44 isoform expression. J Immunol. 1996. 156(4):1557-65. 

 
254. Tesch GH, Maifert S, Schwarting A, Rollins BJ, Kelley VR., Monocyte 

chemoattractant protein 1-dependent leukocytic infiltrates are responsible for 
autoimmune disease in MRL-Fas (lpr) mice. J Exp Med. 1999. 190(12):1813-24. 

 



                                                                                                                        References       

 148

256. McElwee, K. J., Freyschmidt-Paul, P., Hoffmann, R., Kissling, S., Hummel, 
S., Vitacolonna, M. and Zöller, M., Transfer of CD8(+) cells induces localized 
hair loss whereas CD4(+)/CD25(-) cells promote systemic alopecia areata and 
CD4(+)/CD25(+) cells blockade disease onset in the C3H/HeJ mouse model. J. 
Invest. Dermatol. 2005.124: 947-957. 

 
257. Kalish, R. S. and Gilhar, A., Alopecia areata: autoimmunity--the evidence is 

compelling. J. Investig. Dermatol. Symp. Proc. 2003. 8: 164-167. 
 
258. Freyschmidt-Paul, P., Sundberg, J. P., Happle, R., McElwee, K. J., Metz, S., 

Boggess, D. and Hoffmann, R., Successful treatment of alopecia areata-like 
hair loss with the contact sensitizer squaric acid dibutylester (SADBE) in 
C3H/HeJ mice. J. Invest. Dermatol. 1999. 113: 61-68. 

 
259 Zöller, M., Freyschmidt-Paul, P., Vitacolonna, M., McElwee, K. J., Hummel, 

S. and Hoffmann, R., Chronic delayed-type hypersensitivity reaction as a 
means to treat alopecia areata. Clin. Exp. Immunol. 2004. 135: 398-408. 

 
260. Fujita Y, Kitagawa M, Nakamura S, Azuma K, Ishii G, Higashi M, Kishi 

H, Hiwasa T, Koda K, Nakajima N, Harigaya K., CD44 signaling through 
focal adhesion kinase and its anti-apoptotic effect. FEBS Lett. 2002. 25; 528(1-
3):101-8. 

 
261.  Wu L, Bernard-Trifilo JA, Lim Y, Lim ST, Mitra SK, Uryu S, Chen 

M, Pallen CJ, Cheung NK, Mikolon D, Mielgo A, Stupack DG, Schlaepfer 
DD., Distinct FAK-Src activation events promote alpha5beta1 and alpha4beta1 
integrin-stimulated neuroblastoma cell motility. Oncogene. 2008. 27(10):1439-
48.  

 
262. Marhaba R, Freyschmidt-Paul P, Zoller M., In vivo CD44-CD49d complex 

formation in autoimmune disease has consequences on T cell activation and 
apoptosis resistance. Eur J Immunol 2006. 36:3017-32. 

 
263. SinhaP, VK clements, S. miller and S ostrand Rosenberg., Tumpor immunity: 

a balancing act between T cell activation , macrophage activation and tumor 
induced immune suppression. cancer immunol immunother 2005. 54 1137-1142. 

 
 264. Bronstein-Sitton, N., L. Cohen-Daniel, I. Vaknin, A. V. Ezernitchi, B. 

Leshem, A. Halabi, Y. Houri-Hadad, E. Greenbaum, Z. Zakay-Rones, L. 
Shapira, and M. Baniyash., Sustained exposure to bacterial antigen induces 
interferon-γ-dependent T cell receptor down-regulation and impaired T cell 
function. Nat.Immunol. 2003. 10: 957–964. 

 
 265. Thomas Condamine and Dmitry I. Gabrilovich., Molecular mechanisms 

regulating myeloid-derived suppressor cell differentiation and function. Trends 
Immunol. 2011. 32(1):19-25.  

 



                                                                                                                        References       

 149

266. Bunt, S. K., P. Sinha, V. K. Clements, J. Leips, and S. Ostrand-Rosenberg.,  
        Inflammation induces myeloid-derived suppressor cells that facilitate tumor 

progression. J. Immunol. 2006.176: 284–290. 
 
267. Bastien J, Rochette-Egly C., Nuclear retinoid receptors and the transcription of 

retinoid-target genes. Gene 2004. 328:1–16. 
 
268. Zöller M, McElwee KJ, Vitacolonna M, Hoffmann R., Apoptosis resistance in 

peripheral blood lymphocytes of alopecia areata patients. J Autoimmun. 2004. 
23(3):241-56. 

 
269. Kusmartsev S, Li Y, Chen SH., Gr-1+ myeloid cells derived from tumor-

bearing mice inhibit primary T cell activation induced through CD3/CD28 
costimulation. J Immunol 2000.165:779–785. 

 
270. Stoll S, Delon J, Brotz TM, Germain RN., Dynamic imaging of T cell-

dendritic cell interactions in lymph nodes. Science 2002. 296:1873–1876.  
 
271. Miller MJ, Safrina O, Parker I, Cahalan MD., Imaging the single cell 

dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp 
Med 2004. 200:847–856. 

 
272.  Ezernitchi, A. V., et al., TCR zeta down-regulation under chronic inflammation 

is mediated by myeloid suppressor cells differentially distributed between 
various lymphatic organs. J. Immunol. 2006. 177: 4763-4772. 

 
273. Nicholson, L. B., Raveney, B. J. and Munder, M., Monocyte dependent 

regulation of autoimmune inflammation. Curr. Mol. Med. 2009. 9: 23-29. 
 
274. Vaknin, I., et al., A common pathway mediated through Toll-like receptors 

leads to T- and natural killer-cell immunosuppression. Blood. 2008. 111: 1437-
1447. 

 
275. Beutler, B. and Poltorak, A., Positional cloning of Lps, and the general role of 

toll-like receptors in the innate immune response. Eur. Cytokine Netw. 2000. 11: 
143-152. 

 
276. Martin, S. F., et al., Toll-like receptor and IL-12 signaling control susceptibility 

to contact hypersensitivity. J. Exp. Med. 2008. 205: 2151-2162.  
 
277. Hatano E, Bennett BL, Manning AM, Qian T, Lemasters JJ, Brenner DA., 

NF-kappaB stimulates inducible nitric oxide synthase to protect mouse 
hepatocytes from TNF-alpha- and Fas-mediated apoptosis. 
Gastroenterology. 2001. 120(5):1251-62. 

 
278. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X.,Bid, a Bcl2 interacting 

protein, mediates cytochrome c release from mitochondria in response to 
activation of cell surface death receptors. Cell 1998. 94(4):481-90. 



                                                                                                                        References       

 150

 
279. Wei MC., et al., Proapoptotic BAX and BAK: a requisite gateway to 

mitochondrial dysfunction and death. Science. 2001. 292(5517):727-30. 
 
280. Chipuk, J. E., Green, D. R., How do BCL-2 proteins induce mitochondrial 

outer membrane permeabilization? Trends Cell. Biol. 2008. 18: 157-164. 
 
281. Ross, K., Rudel, T. and Kozjak-Pavlovic, V., TOM-independent complex 

formation of Bax and Bak in mammalian mitochondria during TNFalpha-
induced apoptosis. Cell Death Differ. 2009. 16: 697-707. 

 
282. Li, J., Li, Y., Qin, D., von Harsdorf, R. and Li, P., Mitochondrial fission leads 

to Smac/DIABLO release quenched by ARC. Apoptosis 2010. 15: 1187-1196. 
                             

 

                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                         Acknowledgements      

 151

Acknowledgements 
 

I would like to express my sincere gratitude to Professor Dr. Margot Zöller whose 

help, stimulating suggestions and encouragement helped me in all the time of 

research.  Her motivation and ideas throughout my PhD tenure in the lab were 

indispensable and also for her valuable inputs in writing of this thesis.  

 

I thank my fellow labmates Ulrike, Sanyukta, Florian, Honore, Theron for the 

stimulating discussions and for creating a cheerful and motivational environment in 

the lab. I would also like to thank Christien Niesk for helping me with the animal 

experiments. 

 

Where would I be without my family? My parents deserve special mention for their 

inseparable support and prayers. My Mother Rajrani singh, who sincerely raised me 

with her caring and gentle love. My Father Rajendra singh, who put the fundament of 

my learning character, showing me the joy of intellectual pursuit. I would like to 

thank my sister Anubhuti singh and brother Sidhant chaudhary for being supportive 

and caring siblings. 

 

Words fail to express my appreciation and gratitude to my husband and close lab mate 

Rahul whose dedication, love and persistent confidence in me, has taken the load off 

my shoulder. I owe my loving thanks to him for his encouragement and understanding 

which has made it possible to finish this work successfully. I would also like to thank 

Rahul’s family for their thoughtful support. 

 

Finally, I would like to thank everybody who was important to the successful 

realization of this thesis. 

 

 

 

 

 



                                                                                                             Curriculum Vitae      

 152

Curriculum Vitae 
 
 
Vibhuti Singh 
Masters of Science (M.Sc. Biotechnolgy) 
 
48, Gaisbergstrasse 
Heidelberg-69115 
Germany 

 
 

Personal Details 
 
Name     Vibhuti Singh 
 
Nationality    Indian 
 
Date of birth    27.08.1980 
 
Marital status    Married 
 
Telephone    004917676029843 
E-mail     vibhuti.singh13@googlemail.com 
Sex     Female 
Languages     English and Hindi 
 

 
 
Since January 2008-          PhD student registered at Faculty of Chemistry 
                                                         and Bioscience, Karlsruhe Institute of Technology 
                                                         (KIT). 
                                                         Topic of thesis: 

 
                                                           “Attending persistent T cell activation in 

alopecia areata: A therapeutic option” 
                                              At University Hospital of Surgery Heidelberg, 
                                                         Department of Tumor Cell Biology, Prof. Dr. 
                                                         Margot Zöller 

 

 

 

 

 

 

 



                                                                                                             Curriculum Vitae      

 153

Educational Background 
 
July 2001- Aug 2003                   Maters of Science (Biotechnology), passed  
                                                      with 78% .  C.C.S University, Meerut, INDIA.  
 Cell & Molecular Biology, Immunology, Genetics,            

Bioinformatics, Animal & Plant biotechnology. 
 
Project title: Study of Fusarium oxysporum-Cicer arietinum interaction. Involved in   
study of differentially expressed genes against Fusarium oxysporum attack by 
utilizing Suppression Subtractive Hybridization technique. Deptt. of Biotechnology,   
National Center for Plant Genome Research, Jawaharlal Nehru University, New 
Delhi,INDIA. 
 
July 1998- May 2001                      Bachelor of Science, passed with 66%                                       

R.G. Degree college, Meerut, INDIA.               
Zoology, Botany, Chemistry         

 
July 1996- June 1997      12th   Senior Secondry School, passed with     72%, 

Dayawati Modi Academy Modipirum, Meerut, 
INDIA, Hindi, English, Physics, Chemistry, 
Biology 

     
July 1994- June 1995      10th   Higher Standard School, passed with 74%,  
                                                      St. Thomas’ English Medium School   Hindi,   

English, Mathematics, Science, Computer studies 
Biology. 

 

Professional Background 
 

   July 2004- Oct 2007                     Senior Research biologist. Deptt. of Biotechnology, 
Ranbaxy Research Laboratories, Research and 
Development center, gurgaon, India  

 
Oct 2003 – June 2004 Research Job Trainee. Deptt. of Biotechnology, 

Ranbaxy Research Laboratories, Research and 
Development center, gurgaon, India. 

 
 
 
 
 
 
 
 

 

 



                                                                                                             Curriculum Vitae      

 154

Publications 
 
1.  Vibhuti Singh, Ulrike Mueller, Pia Freyschmidt-Paul, Margot Zöller Delayed type 

hypersensitivity-induced myeloid-derived suppressor cells regulate autoreactive T 
cells. European Journal of Immunology (In press). 

 
2.  Vibhuti Singh, Pia Freyschmidt-Paul and Margot Zöller. Distinct impact of CD44 

and CD49d on T cells and leukemic T cell migration and apoptosis resistance (in 
preparation). 

 

3.  Roop Singh Bora, Renu Malik, Ranjana Arya, Dikshi Gupta, Vibhuti Singh, 
Neeraj Aggarwal,  Sunanda Dastidar,  Abhijit Ray   and  Kulvinder Singh Saini 
High-level stable expression of pharmacologically active human 
phosphodiesterase PDE4 subtypes in mammalian cells and development of a 
novel Reporter gene assay for screening of   PDE4 subtype selective 
inhibitors.Biochem Biophys Res Commun. 2007. 356(1):153-8 

 
4   Prabuddha K. Kundu, Sunil Khattar, Vibhuti Singh, Pankaj Gulati, Rajeev Soni, 

Kulvinder. S.  Saini. Optimization and Enhanced Soluble Production of 
Biologically Active Recombinant Human p Mitogen-Activated-Protein Kinase 
(MAPK) In Escherichia coli. Protein Peptide letters. 2007.14(8):756-60. 

 
Patent 
      Inventors: Renu Malik, Roop Singh Bora, Ranjana Arya, Dikshi Gupta, Vibhuti 

Singh, Kulvinder Singh Saini. A reporter gene assay for identifying a compound 
as selective inhibitor of PDE 4 subtype. Indian application no: 2547/DEL/2006. 
27/11/2006. 

Abstracts 
 
1.  Vibhuti Singh, Margot Zöller. A chronic contact eczema mitigates alopecia areata 

through down-modulation of antigen specific T cell response and promotion of 
apoptosis. 5th semmering vaccines symposium Apr 28-30, 2011 at Vienna 
(Baden). 

 
2.  Vibhuti Singh, Renu Malik, Akriti Kashyap, Resmi Rajendran, , Roop Singh 

Bora,Kulvinder Singh Saini. Production of catalytically active recombinant 
Aurora B Kinase for anti- cancer drug discovery. International Symposium on 
Cancer Chemoprevention Translational Research, 21st December 2009, School of 
Life Sciences, Jawaharlal Nehru, University (JNU), New Delhi, India. 

 
3.  Sunil K. Khattar, Pankaj Gulati, Aayush Seth, Sanjay Bansal, T. Ranjit Kumar, 

Vibhuti Singh, Usha Bughani, P K Kundu & Kulvinder S. Saini.(2006). 
Molecular Cloning, Expression, Purification and Activation of Human p38α 
Mitogen Activated     Protein (MAP) Kinase. BioQuest 2006, in-house Biology 
symposium on 4th August 2006. 

 
4. Vibhuti Singh, Dikshi Gupta, Roop Singh Bora, Neeraj Aggarwal, Ranjana Arya 

and Kulvinder Singh Saini. (2006). Molecular cloning and expression of human 



                                                                                                             Curriculum Vitae      

 155

Phosphodiesterase PDE9A. National Biotechnology Conference-2006, Current 
Trends & Future Perspectives, Indian Institute   of Technology and Indian 
federation of biotechnologists (IFB- India), 2006. 

5.  Singh,V., Gulati, P., Soni, R., Saini, K.S., Khattar, S. and Kundu,   P.K.  (2004). 
Refolding of p38 MAPK protein inclusion bodies directly from e.coli homogenate 
using expanded bed adsorption chromatography. 73rd Anuual meeting of Society 
of biological Chemists (SBC) held at GB Pant University, Pantnagar, INDIA, 
during November 21- 24, 2004. 

6.  Gulati, P., Singh, V., Soni, R., Saini, K.S., Khattar, S. and Kundu, P.K.  (2004). 
Single step purification and activation of recombinant Human p38 MAPK by use 
of cross affinity tags. . 73rd Anuual meeting of Society of biological Chemists 
(SBC) held at GB Pant University, Pantnagar, INDIA, during November 21- 24, 
2004. 

 
 
Memberships and awards 
 
1. Scholarship awarded by Biotech Consortium India limited (BCIL), under 

Biotechnology Industrial Training Program (BITP) program funded by 
Department of Biotechnology (DBT) of India. 

 
2.  Qualified in GATE (Graduate Aptitude Test in Engineering) 2003 conducted by 

IIT (Indian Institute of Technology) Madras India, Chennai. 

 


	Table of Contents
	draft thesis

