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Datum der Prüfung: 14. Juli 2011



ii





Acknowledgments

A little learning is a dangerous thing,
drink deep or taste not of the Peirean spring.

– Alexander Pope

Let me in these first lines express my gratitude to all who supported me in my effort to
attain a physics doctorate.
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1 Introduction

The concept of topological order, where a phase of matter is characterised by a set of global
topological invariants instead of local order parameters, has become an intensely studied field
in contemporary condensed matter physics. It was first discovered in the S = 1/2 chiral spin
liquid (CSL) [1], which was motivated by the liquid states proposed to explain the fractional
quantum Hall (FQH) effect [2–4].

In this thesis, we study the properities of the CSL and a number of other states and systems
which potentially possess topological order.

First, we rewrite the CSL wavefunction in terms of Schwinger boson operators to set up a
hierarchy of spin liquid states for spin S, and numerically determine the topological degeneracy
for all hierarchy elements with S ≤ 2. For a spin S liquid state obtained from merging S spin
1/2 CSLs of each chirality we find values of (S + 1)2 for the topological degeneracy. This
provides strong evidence that these types of liquids support non-Abelian statistics for S ≥ 2
while at the same time preserving P and T symmetry. This makes them interesting as trial
states for frustrated spin S antiferromagnets, since both share the same symmetries.

A recently introduced extension of entanglement entropy [5, 6] as a tool to probe for hidden
topological order is based on entanglement spectra (ES) [7]. In a second line of work, we
compute the entanglement spectra of the CSL and another member of the spin liquid hierarchy,
the S = 1 chirality liquid obtained by merging two CSLs of opposite chirality, as well as those of
the groundstates of a frustrated J1-J2 antiferromagnetic Heisenberg model for both these spins.
In the S = 1/2 case we monitor the ES as we change boundary conditions from periodic to
cylindrical. As we compare the results of the J1-J2 model to the spectrum of the CSL, we find
preliminary hints of a topological phase transition in the J1-J2 spectrum, which appears to be
corroborated by the behaviour of a small chiral perturbation which we add to the Heisenberg
hamiltonian. However, it would have to be checked whether the observed effects persist as
system size is increased. In case of S = 1, where we use cylindrical boundary conditions
throughout, the entanglement spectra, although they do show some similar features and there
is still a decent overlap, differ in their main characteristic: quantum numbers and weight of
the lowest level. However, most likely effects of the small system size of only 4× 4 sites, which
is limited by fast Hilbert space growth and the reduced symmetry of the cylindrical boundary
conditions, are significant. This makes it difficult to draw conclusions for larger systems.

The last part of this thesis is devoted to a tangential idea related to the numerical method of
exact diagonalisation. Recently, a method was described [8] which allows the spinon-excitation
content of an eigenstate of the Haldane-Shastry model to be read directly off the Young
tableaux representing the total spin of the state. Since total momentum is conserved in the
HSM, this method can also be used to solve the mathematical problem of finding the eigen-
values of the cyclic permutation on subspaces of the same symmetry contained in product
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1 Introduction

spaces of fundamental SU(n) representations. We generalize this method to arbitrary higher
symmetric representations of SU(n) and show how it can significantly speed up computation
of momentum eigenvalues of total SU(n)-spin states.

One of the central goals of condensed matter physics is to find, describe and explain the
various phases of matter and transitions between these phases as parameters like temperature,
pressure, magnetic or electric field or also couplings between particles are varied. A central
pillar of our understanding of phase transitions at finite temperatures is the description in terms
of a local order parameter usually connected to a symmetry a system possesses in one phase, but
which is broken in the other. This describes such diverse phenomena as transition between
a liquid and a (crystaline) solid as well as between different crystal phases, between para-
and (anti-)ferromagnet (which can be regarded as (finite temperature) spin liquid and crystal
respectively) and Bose-Einstein-condensation-type transitions, e.g. the superfluid transition in
helium or the normal metal-superconductor transition. Not connected with symmetry breaking
but nevertheless described by an order parameter are the gas-liquid-amorphous solid transtions
or transitions into mesophases like e.g. liquid-crystals. At finite temperatures, phase transitions
are driven by temperature fluctuations, but they are possible even at T = 0, where it is
quantum fluctuations which can drive a system across a quantum critical point as the ground
state of its Hamiltonian changes abruptly upon variation of some non-temperature system
parameter. These transitions are usually still described with the help of an order paramter, as is
the one between superconductor-insulator where the order parameter is cooper-pair density and
phase. It was only after the discovery of the fractional Quantum Hall effect (FQHE) in 1982 by
Tsui, Störmer and Gossard [2], that this picture of phase-transition ↔ order parameter had to
be complemented by something new. The integer Quantum Hall effect, a quantisation of the off-
diagonal conductivity in integer multiples of the conduction quantum e2/h in strong magnetic
fields at low temperatures (first observed by v.Klitzing in 1980 [9]), could be understood
in terms of non-interacting electrons occupying orbitals characterized by Landau-level (i.e.,
energy) and canonical angular momentum quantum numbers. These Landau-levels are highly
degenerate: the number of angular momentum states in each is given by the number of Dirac
flux quanta NΦ = Φ/Φ0 permeating the sample. Taking disorder into account, one finds that
all but one of these states, which are extended in the clean case, become localized and the
observed jumps in conductivity now coincide with the (de)population of the one remaining
extended level (each state) at the center of each Landau subband. It soon became clear,
however, that a single particle picture is insufficient to explain the appearance of conductivity-
plateaus at fractional values of ν, the most prominent ones of which occur at filling fractions
ν = q/(2p+ 1), with q, p positive integers.

In 1983 Laughlin [3] proposed a very successful class of trial quantum Hall liquid states for
filling factors ν = 1/m, with m an odd integer, where close approach of particles is suppressed
with power m. Numerical studies including Coulomb interaction between electrons [10] showed
an excellent agreement with the exact ground state, but the most convincing aspect of these
states was the interpretation of the plateaus in terms of quasi-electron and -hole excitations,
which are connected to threading negative or positive flux quanta respectively through the
sample. The charge of these quasiparticles is ±e/m and their (Abelian) statistical phase upon
interchange is θ = ±π/m. This can be understood by help of Wilczek’s [11, 12] charge-flux-
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Figure 1.1: Topologically ordered states exhibit exotic quasi-particle statistics, like Abelian
(anyonic) or even non-Abelian a) upon local interchange or b) upon winding around
non-trivial loops on manifolds of higher genus (¿0)

composite picture and corresponds to the Berry’s phase of the many-body wavefunction upon
interchange through winding of two excitations. While (direct) observation of the statistics still
defies expermentalists’ efforts (although schemes have been proposed employing Fabry-Perot-
interferrometers to measure the Aharonov-Bohm-phase of a current around quantum dots with
a fixed number of quasi-particles [13]), the fractional charge has indeed been observed, first
in 1995 in resonant tunneling through a quantum anit-dot [14] which were corroborrated by
recent experiments measuring shot noise across quantum point contacts [15].

In 1985 Haldane and Rezayi [16] noticed that demanding periodic boundary conditions for
the Laughlin 1/m FQH liquids gives an m-dimensional manifold of solutions.

At around the same time, the transverse currents in a quantum Hall sample had been
recognized as gapless chiral edge channels where the magnetic fields separates left- and right
movers and thus enables dissipationless transport [17, 18].

These two major ideas inspired Wen’s [1, 19] paradigm-changing interpretation of fractional
quantum Hall liquids as an example of topological order (TO): a topologically ordered phase is
not characterized by a local order parameter but by topologocical invariants like ground state
degeneracy and number of edge-excitations, which cannot change continuously as parameters
are varied but rather only through a quantum phase transition. The field took another step
forward when it was realized [20] that invariance of a system with a gapped liquid state under
Wilson- (magnetic translation) operators implies an intimate connection between topological
ground state degeneracy and statistics of quasiparticles.

Besides FQH liquids, Spin liquids are another large class of states exhibiting topological
order. There, quantum fluctuations suppress the formation of magnetic or other kinds of local
(spin solid) order which would break the continous symmetries, like global SU(2) and transla-
tion symmetries. Whereas in the quantum Hall effect as well as the recently found topological
insulators, topological order can be detected rather directly via the classification of edge states,
the situation is more subtle for spin liquids. While they do not exhibit gapless edge states
in general, they still possess hidden topological order emergent through fractionalisation of
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1 Introduction

quantum numbers and quasiparticle statistics. Spin liquids are possible canditates for as yet
unidentified phases in a number of systems, among others the frustrated Kagomé antiferromag-
net [21, 22] and J1-J2 Heisenberg model of a square-lattice antiferromagnet with next-nearest-
neighbour interaction [23]. The relevance to current problems of high interest as well as their
accessability by various methods has established spin liquids as a major playground for new
developments in field theory and quantum criticality. Apart from field theoretical approaches,
there have also been analytical spin liquid solutions to some simple toy models, for instance
the non-Abelian liquid found by Yao and Kivelson as the exact ground state of the Kitaev
honeycomb model [24, 25]. Another analytically founded example inspired by the Quantum
Hall effect is the chiral spin liquid state (CSL) put forward by Kalmeyer and Laughlin [4] as
one of the first trial states for high-Tc superconductors. It is essentially a bosonic quantum
Hall wavefunction of spin flip operators. Its elementary excitations are spinons which carry
S = 1/2 but no charge, and which obey half-Fermi statistcs. While the CSL turned out not
to be directly relevant to high-Tc superconductors, it was the system in which Wen first estab-
lished the notion of topological order [1]. Owing to its equivalence to a QH state, the CSL’s
low energy physics is described by a Chern-Simons effective field theory. An extension of this
description leads to other branches in the field of spin liquids, such as the Z2 spin liquids,
which, in addition to spinons, support vison excitations which carry no spin but couple to an
additional gauge field with Z2 symmetry.

The CSL will be highly relevent to us, as we will use it as the building block in one of
the major proposals of this thesis: a hierarchy of SU(2) invariant quantum spin liquids. We
were able to evaluate numerically the topological degeneracy (TD) of all liquids from this
hierarchy with S ≤ 2, which allows us to infer their statistical properties via the TD-statistics
connection mentioned above. An especially interesting example is the S = 2 chirality liquid we
obtain by ’merging’ 2 S = 1/2 CSLs of both chiralities each. It is the first example of a spin
rotationally invariant spin liquid with non-Abelian excitations which also preserves parity (P)
and time reversal (T) symmetries. We establish a connection of hierarchy states obtained from
k CSLs of only one type of chirality with the Read-Rezayi k-cluster FQHE liquids [26], which
generalize electron pairing as described by the Pfaffian ν = 5/2 state. Using conformal field
theory, one can show that these states have a TD of k+1 [27]. This leads us to conjecture, that
a general hierarchy states with S ≥ 2 obtained from merging an equal number of CSLs with
positive and negative chirality support non-Abelian elementary excitations and, since they are
also evidently P and T invariant, we propose them as candidate states for disordered spin S
antiferromagnets.

In our numerics we determine the topological degeneracy of our hierarchy states by writing
out the wavefunctions for different center-of-mass-zero parameters because it is a more efficient
method if one knows the analytic form of spin liquid one wishes to analyze. Another possible
way to go is via the entanglement entropy. The entanglement entropy SA of a subsystem
A of a bigger system is the von-Neumann entropy of its reduced density matrix ρA. It was
shown that for low-dimensional liquid states [5, 6], SA is not extensive but rather has a
leading contribution which scales with the boundary size of A. If A is furthermore not a simply
connected region, its entanglement entropy has a system size independent, i.e., topological
contribution Stopo[6, 28]. In a recent study of the Pfaffian state on a sphere, Li and Haldane [7]

4
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Figure 1.2: a) merging 2 CSLs of each chirality gives a P and T invariant liquid with TD of 9,
indicating non-Abelian statistics of the excitations b) to compute this TD numer-
ically we evaluate the analytically known wavefunctions for a sufficient number of
randomly chosen points in the principal region

argued that instead of computing only one number from it, the full spectrum of the reduced
density matrix itself should provide a more sensitive tool to probe a system for topological
order. Since ρA can be interpreted as a thermodynamic state of some hamiltonian H at a
fictious temperature T = 1, the gap between lowest and second lowest level in the entanglement
spectrum (ES) reveals the strength of entanglement across the system boundary: a large gap
means weak entanglement, with the limit of ’infinite’ gap being a simple product state. It
has been found that for the Pfaffian state as well as for Abelian FQH liquids on sphere, the
angular momentum resolved ES shows a set of low lying levels which can, at least up to finite
size distortions, be brought into correspondence with edge states expected from conformal field
theoretical calculations [7]. Choosing a different normalistion for the many-body state reveals
an ’entanglement gap’ between these low lying levels typical for the topologically ordered
FQH states and higher ’generic’ ones, which is conjectured to remain finite under adiabtic
transformation of one state into another if and only if the two states are topologically equivalent
[29].

In one of the first entanglement spectrum studies of two-dimensional spin lattices, we use ES
to obtain information about the topological properties of frustrated quantum antiferromagnets
in comparison to our spin liquid hierarchy states. For this numerical work we implement
software to efficiently compute a symmetry (quantum number) resolved entanglement spectrum
for spin lattice clusters up to 32 sites, which is easily extensible to larger systems with a more
efficient diagonalisation routine.

For some systems, most notably the (geometrically) frustrated Kagomé lattice and the (in-
teraction) frustrated next-nearest-neighbour Heisenberg model at critical coupling J1 = 2J2,
spin liquids are candidates for the as yet unidentified phases (see, e.g. , [30]).

In this thesis we present the investigation of a 4 × 6 lattice cluster of S = 1/2 spins and
a 4 × 4 cluster of S = 1 spins. The subsystem A was a 4 × 3 and 4 × 2 cluster, respectively.
As conserved quantum numbers, we thus had the z-component of the total spin on A, Sz

A, as
well as the momentum along the edge (mA = 0, 1, 2, 3 in units of 2π/4). For the 4 × 6 cluster,
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1 Introduction

�

�

Figure 1.3: we investigate the entanglement spectra spin liquids from our hierarchy and anti-
ferromagnetic next-nearest neighbour Heisenberg groundstates on lattice clusters
of S = 1/2 and S = 1 spins and different boundary conditions

we both wrote down a CSL wave function and determined the groundstate of a J1-J2 AF
for different values of an effective length parameters. In case of the CSL with quasi-periodic
boundary conditions defined on the principal region P = {a + ibτ |a, b ∈ [0, 1)}, Im[τ ] > 0
the natural parameter is |τ |, while for the AF we decreased the coupling strengths between
two rows and defined as effective length the ratio of bulk-to-edge coupling. In this process,
boundary conditions change from periodic to cylindrical. We know that the CSL must undergo
a topological phase transition in the process, as it has topological order on a torus but not on
a cylinder. The idea was to compare the entanglement spectra of both systems to find possible
evidence of similar behaviour in the Heisenberg model groundstates.

We indeed find that in both cases the lowest-level gap in the ES decreases (but does not
close) before approaching its final value in the limit of cylindrical boundary conditions, which
is higher than its initial one. In the AF this is accompanied by an increased susceptibility
to a chiral perturbation in the vicinity, but not quite at, the position of the gap-peak. We
take this as preliminary evidence that a topological phase transition might indeed take place
in the AF groundstate. The system is not big enough however, to really enable an analysis
analogous to the FQHE states on a sphere that was mentioned above. To be able to say
anything more definite, such as whether the ground level gap we observed closes completely,
or how it is connected to the entanglement gap from the FQH one would have to repeat the
computation for larger systems. We intend to do this as soon as the necessary computational
facilities become available.

In the 4 × 4 spin S = 1 lattice cluster, we compared entanglement spectrum and evaluated
the overlap of a AF groundstate with the S = 1 chirality liquid. We chose this liquid, because
it is the first P and T invariant element in the hierarchy and as such shares the symmetries of
the Heisenberg hamiltonian. While we find a decent overlap, the entanglement spectra are not
very similar. The system is likely affected even more significantly by finite size effects than the
4× 6 S = 1/2 cluster. Since the subsystem A is a mere 2 rows high it cannot really be said to
constitute a ’bulk’. We hope to be able to do the same computation again on larger clusters
at some stage in the future.

The third line of work we want to present in this thesis takes a somewhat different direction.
In the course of our numerical work, a severe limitation to the method of exact diagonalisation
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we employ in studying our systems became obvious once more: Since it does not throw away
any information, it is maximally versatile in the range of quantum systems it can, in principle,
be applied to. But of course keeping all information means we can only use the physical
symmetries of the system to reduce our Hilbert space. In case of the hamiltonians we consider,
these are global SU(2) as well as lattice symmetries. While it is not hard to make use of the
lattice symmetries in a product basis, doing the same in a total spin basis is a much harder
problem, and the state-of-the-art in spin lattice computations is still to use symmetry-reduced
product bases. We cannot report here to have solved this problem, but another interesting one
which arises in this context is how to determine the eigenvalues (quantum numbers) of said
lattice symmetries. The general problem can be solved either by brute-force diagonalisation
of the symmetries in a product basis, or more subtly using character theory of finite groups
and the fact that all symmetries of a finite lattice cluster of N sites are just elements of the
permutation group SN . In the case of spin chains of fundamental SU(N) spins, where the
symmetry operation in question is the cyclic permutation CN (i.e., translation by one lattice
site), the solution of the problem of finding the eigenvalues eip is automatically contained in
the method of extended Young tableaux [8] invented as a way to determine the spinon content
of the spectrum of the Haldane-Shastry model. In this thesis, we generalize the method to
higher symmetric representations of SU(n), and show how it can be used to significantly speed
up computation of momenta in a total (SU(n)-)spin representation.

This thesis is organized as follows. In chapter 2, we review fractional quantum Hall states and
the chiral spin liquid derived from them and take a close look at the properties characterising
their topological order. In chapter 3, we present the main result of this thesis: the hierarchy
of fractional spin liquids we construct with the CSLs as basic building block. chapter 4 is
devoted to our entanglement spectrum analysis of the CSL and one other hierarchy state, the
S = 1 chirality liquid, which we compare to groundstates of next-nearest-neighbour Heisenberg
antiferromagnets. In chapter 5, we present the generalisation of the extendend Young tableaux
procedure. It allows reading off the eigenvalues of the cyclic permutation directly from the
Young tableaux representing a total highest weight subspace of a product space built from
arbitrary symmetric representations of SU(n). Finally in chapter 6 we provide a summary
of our results, and indicate possible extensions as well as future work required to verify our
observations.
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2 Topological order

The strongly correlated many-body states invented to describe the fractional quantum Hall
Effect (FQHE) led to the discovery of topological order (TO): an ordering that cannot be de-
scribed by a local order parameter associated with a broken symmetry but nevertheless shows
invariants like ground state degeneracy, fractional excitations and number of edge states. These
are insensitive to smooth changes of parameters and can only be altered by a quantum phase
transition, TO may be interpreted as a new paradigm for phases of matter. Far from being con-
fined to the states encountered in the FQHE, topological order and its features emerge in many
systems with genuine quantum behaviour. For instance, at the heart of the recently opened
field of topological insulators are edge states, charge or spin-current carrying (D-1)-dimensional
excitations localised at the boundary of D dimensional topologically ordered systems. Spin
liquids are another diverse area where topological phases appear. They have again enjoyed
increased interest in the last few years both because of their numerical accessability and in
some cases analytical tractability and because they are conjectured to stabilized in some model
systems of practical interest, e.g. , among others, frustrated quantum magnets. An important
example of a spin liquid is Laughlin’s chiral spin liquid (CSL) (chirality = broken P and T
symmetry). The wave function is essentially that of a bosonic fractional quantum Hall liquid
for spin flip operators acting on a Hilbert space spanned by S = 1/2 spins. It receives special
attention here because it serves as the basic building block for one of the main results we
present in this thesis: a hierarchy of topologically ordered liquids with spin S ≥ 1 per site,
which allows to have non-Abelian statistics while restoring P and T symmetry at the same
time. We will present its construction and properties of some hierarchy members in the next
chapter.

In this chapter, we give an overview of the discovery of TO and its diverse manifestations
found to date. We review Laughlin’s 1/m FQH liquids, the statistics of quasi-particles and its
topological degeneracy (TD) on a non-trivial topology. We then introduce the effective field
theory description and demonstrate how it describes fractional conductance and (electrical)
charge of the quasi-particles. This is followed by an account of the connection between TD and
fractional statistics for both Abelian and non-Abelian excitations and a sketch of edge states
and topological insulators. Lastly, we review in detail the chiral spin liquid due to Kalmeyer
and Laughlin, which, as mentioned, will play a key role in the next chapter.

2.1 Background

Ever since its discovery by Tsui, Störmer and Gossard [2] nearly three decades ago the frac-
tional quantum Hall effect (FQHE) has served as a fertile playground for condensed matter
physics and has inspired numerous new concepts. Fractionalisation of quantum numbers is one

9



2 Topological order

example. Even though first recognized in polyacetylene, where the elementary spin excitations
were found to carry not S = 1, but S = 1/2 [31], it was only appreciated as an important and
common many-body phenomenon by studying the fractional Quantum Hall liquids proposed
as trial states to explain the off-diagonal conduction plateaus. Among the most prominent are
the ν = 1/m states where m is an odd integer, put forward by Laughlin [3] in 1983. Unlike
the Landau-levels from the integer QHE, they represent true many-body states, i.e., they do
not arise as Slater determinants of single-particle orbitals. The Laughlin FQH liquids are not
the exact eigenstates of the Hall-hamiltonian with Coulomb- interaction, yet numerical studies
have shown overlaps with true (finite size) groundstates close to 1 [10]. More recently, a very
similar low-’energy’ part of the entanglement spectrum [7], providing the strongest evidence
yet that the 1/m states indeed capture the off-diagonal order of the true ground state. Arovas
et al. [12] applied the idea of charge-flux composites [11] to the FQHE states, identified the
quasi- particles and showed that they obey fractional (anyonic) statistics: by adjoining 1/ν
flux quanta to one (fermionic) degree of freedom the basic excitations are identified as inser-
tion or removal of a single flux quantum, which carries a charge ±e/m and exchange phase
±π/m. Only much later, in 1990, was fractional statistics generalised to non-Abelian ’phases’
when Moore and Read [20] proposed a state with a Pfaffian wave function for the filling frac-
tion ν = 5/2. It describes pairing of electrons and the elementary excitations are Majorana
fermions. Braiding of Majoranas effects not only a phasefactor but a rotation within the
subspace of fixed quasi particle number.

In 1985 Haldane and Rezayi [16] discovered what was later termed topological degeneracy
(TD): they noticed that a 1/m fractional quantum Hall liquid obeying quasi-periodic boundary
conditions acquires a set of m new parameters, the center-of-mass-zeros. The state space
obtained upon variation of these parameters is m dimensional and can be understood as the m-
fold degenerate ground state of the quantum Hall hamiltonian on a torus. Following an earlier
proposal by Girvin [10], Shou-Chen Zhang et al.in 1989 were able to derive an effective field
theory for the FQHE directly from the microscopic Hamiltonian [32]. It contains a real scalar
field φ(x, t) interpreted as the quasi-particle density coupled to both the real electromagnetic
gauge field A(x, t) and another, ’statistical’, gauge field a(x, t), the latter appearing as a Chern-
Simons topological term. This effective action allows to derive quantization of conductance
and vortex solutions for φ (this explains why CS actions are called topological).

The other seminal discovery of the 1980’s condensed matter physics was high-temperature
superconductivity in the cuprates. Among the proposals put forward to describe the electronic
state in the copper-oxide planes was the chiral spin liquid(CSL) by Kalmeyer and Laughlin [4].
It is modelled upon the earlier fractional QH liquid, but is rewritten for bosonic (localized spin)
degrees of freedom. It led the way for a whole new class of spin liquids in two spatial dimensions:
spin rotation invariant states with no long range 2-spin correlations which break parity and time
reversal, i.e., are chiral. They do however exhibit strong local antiferromagnetic correlations
and possess a local order parameter, which on a lattice can be alternatively characterized as a
triple product of spin operators from one triangular plaquette or as the Berry’s phase picked
up when moving a spin around a plaquet [33]. For the square lattice Wen, Wilczek and Zee [33]
were also able to give an explicit frustrated spin hamiltonian involving interaction of up to 6
sites which has such a CSL as groundstate.

10



2.1 Background

After Girvin [10] two years earlier had introduced the notion of off-diagonal long range order,
known from superconductivity and liquid helium [34], in fractional quantum Hall liquids, and
Wen in 1989 [1] discovered the ground state degeneracy of chiral spin liquids on nontrivial
topologies, it was Wen and Niu [19] who proposed to unify the observations for CSLs and
FQHLs under the paradigm of topological order. It denotes a novel class of phases of matter
which seemingly cannot be understood in the Landau-Ginzburg framework of broken symmetry
with associated local order parameter, like in a ferromagnet or a crystal. Rather, order is
manifest in the appearance of invariants of topological nature, like ground state degeneracy,
fractional statistics and edge states. The latter are located near the boundary of a system
(Hall sample, finite section spin lattice) carrying charge or spin currents, and are topologically
protected in the sense that the are stable agains disorder which does not change the topological
invariant characterising the bulk state.

In a 1991 paper, Moore and Read [20] proved an intimate connection between the topological
ground state degeneracy of a Laughlin type fractional QH liquid on a torus and the statistics
of its basic excitations. In essence, they construct an algrebra of operators representing quasi-
particle pair creation, subsequent translation by one principal vector and final annihilation
(Wilson-line operators) and show that translation operations in the two principal directions
do neither commute (phase 0) nor anti-commute (commutation with phase π), but rather
incur a phase νπ upon interchange. Diagonalising one of the operators then shows that energy
eigenstates must be degenerate in multiples of 1/ν if the hamiltonian is invariant under the
translation operation. This holds strictly speaking only in the thermodynamic limit L → ∞
and if all local excitations are gapped. Only then is the interaction between quasi-particles
purely statistical as otherwise interaction between them would lift the degerneracy by terms
of order e−L.

As was already mentioned above, in the same paper, Moore and Read moreover constructed
a new liquid state for the filling fraction ν = 5/2, the Pfaffian state, where basic excitations
display a non-Abelian Berry’s phase. A Pfaffian wave function also appears as the zero-energy
solution of the Bogoliubov-deGennes equations of a p+ip superconductor. These states have
recently received much attention for their potential to enable topological quantum comput-
ing [35]. In such a scheme, the qubits are double-pairs of (Majorana) quasi-particles and single
qubit operations are achieved by braiding within pairs (not all single qubit operations are pos-
sible however), while two qubit operations could be implemented by braiding between pairs .
Since the state of a qubit can only be changed by nonlocal operations it would conceivably be
very robust against common types of noise (charge, position).

Non-Abelian statistics make predicting the topological degeneracy somewhat more intricate:
there are fewer states in the ground state multiplet than expected. Initially, there was ap-
parently some confusion as to the correct values of the TD in a non-Abelian liquid, and only
in 2000 Read and Green [36] were able to give the definitive answer. A clear and intuitive
understanding of what causes some states expected from Abelian statistics to be absent in the
non-Abelian case was presented by Oshikawa et al. [37], termed ’blocking mechanism’, only
quite recently.

In 1999 Read and Rezayi [26] defined a class of FQH liquids which generalize the Moore-Read
pairing state to clusters of k particles. The statistics of elementary excitations are non-Abelian

11



2 Topological order

for all values k > 1 and the topological degeneracy was proven by Wen and Zee [27] to be
k + 1.

In recent times, attention has turned back to spin liquids and spin lattice models as neat
model systems to study topological order. One reason may be that fractional Quantum Hall
liquids seem to be fairly well understood by now, but more important is probably that liquid
states are conjectured to be stabilized in frustrated quantum magnets, where frustration can
be introduced via the interaction (e.g. next-nearest neighbour Heisenberg) or via the geometry
(e.g. the Kagomé-lattice). Other branches the field has diversified into are Z2 spin liquids,
where an additional emergent charge 2e gauge field reduces gauge freedom from U(1) to Z2

[38, 39] and algebraic liquids, which are potentially good descriptions of critical phases, as all
spin-spin correlators decay algebraically with distance [40].

In some cases, spin models allow studying topological order in an exactly solvable context, as
is the case with Kitaev’s toric code [41], a Z2 spin liquid interesting as topologically protected
quantum memory and also Kitaev’s honeycomb lattice spin model [24], where Yao and Kivel-
son [25] found a time reversal breaking CSL ground state with non-Abelian vortex excitations
and two topologically distinct sectors seperated by a quantum critical point.

A new measure for detecting topological order that the study of spin systems has uncovered
is topological entropy. It is the scale-invariant part of the von-Neumann entropy of a non-simply
connected region on the lattice. Field theoretical considerations [6] as well as a derivation using
a string-net condensate on a honeycomb- lattice [28] arrive at the result that the topological
entropy is essentially the logarithm of the total quantum dimension. This is defined via the
scaling of the internal Hilbert space of the quasi particles with their number and for Abelian
liquids is simply equal to the topological degeneracy. This also holds for some non-Abelian
ones like the Moore-Read state.

2.2 Topological degeneracy and fractional excitations

In this section we want to examine in more detail two of the key features of topological order,
the ground state degeneracy and the fractional statistics of fundamental excitations/quasi-
particles. We also introduce the topological algebra of flux insertion- and Wilson-loop operators
which provide the intimate link between topological degeneracy and statistics. We will consider
as examples both fractional FQH liquids, the systems were these notions were first discovered
in, and spin liquids, which have moved more into focus in recent times.

2.2.1 Laughlin 1/m states

We will first review the origin of the topological degeneracy in the case of the Abelian FQH
liquids proposed by Laughlin as trial states for the primary series of plateaus ν = 1/m with
m an odd integer.

In circular gauge with open boundary conditions, the wave function for the 1/m state is

ΨLaughlin[z] =
N∏

i<j

(zi − zj)m
N∏

j=1

e−
1

4l2
|zj |2 (2.1)
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2.2 Topological degeneracy and fractional excitations

where zi are the complex coordinates of the N electrons in the sample and the magnetic length
l2 is the area of one Dirac flux quantum

2πl2B = Φ0 (2.2)

Since m is odd integer, ΨLaughlin[z] is completely anti-symmetric in all coordinates, as is
required for fermions. The number of flux quanta NΦ is related to the number particles via
the filling fraction

NΦ = N/ν = mN (2.3)

i.e., there are m times as many flux quanta Φ0 as particles. If (2.1) is an eigenstate, adiabatic
insertion of one flux quantum at, say, the origin leads to another eigenstate because whole flux
quanta can be removed via a gauge transformation

Aμ → Aμ + ∇Λ(z) (2.4)

ψ(z) → ei e
c�

Λψ(z) (2.5)

Here, ψ(z) is a generic single particle orbital and serves to remind ourselves, that a gauge
transformation entails a phase-change of the wave functions. Thus the gauge will only lead to
periodic boundary conditions if the circular integral over the function Λ effecting the described
gauge transformation gives a multiple of 2π. This is the case for

Λ = −Φ0

2π
φ. (2.6)

in polar coordinates. Computing a closed loop integral around the origin shows that we indeed
encircle one Dirac flux quantum and the gauge transformation is thus single valued. On the
other hand, by increasing the flux, we insert angular momentum � into the system and therefore
expect the occupation numbers of canonical angular momentum states to have changed by 1.
This corresponds to an increase of one in the power of any coordinate zi in ΨLaughlin, i.e.,
zm
i → zm+1

i . Therefore, if we insert the flux at a general position ξ, we get

Ψqh
Laughlin[z, ξ] =

∏
i

(zi − ξ) ΨLaughlin[z]. (2.7)

We identify 2.7 as a state with a quasi-hole excitation at postion ξ. The other kind of quasi-
particle for the Laughlin states, quasi-electrons, correspond to the removal of one flux at a
position η

Ψqe
Laughlin[z, η] =

∏
j

e−
1

4l2
|zj |2∏

i

(∂zi − η)
∏
i<j

(zi − zj)m (2.8)

Repeating either process m times, we can create a factor looking like a full fermionic degree of
freedom, i.e., a full hole/electron with charge ±e. This motivates a picture of quasiparticles
as one flux quantum with an attached charge ±e/m. Creating such a quasiparticle by flux
insertion will require a non-continuous change in the electronic pattern and the 1/m states
thus describe incompressible quantum liquids where both creation of individual quasi-particles
as well as pair-creation is gapped. The energy cost is roughly of the order

ΔEqp = ν�ωc (2.9)

per particle.
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2 Topological order

2.2.2 Statistics of quasiparticles

The flux-charge composites that form the quasiparticles of the Laughlin-liquid acquire phases of
2π/m upon winding of one around the other which can be understood as the Aharonov-Bohm
phase of a charge νe particle encircling a flux Φ0:

2θ =
1
m

e

c�

∮
(Φ0/2π)φdφ

therefore the statistical parameter measuring phase change upon interchange of particles is

θ =
π

m
. (2.10)

A statistical parameter θ = 0 corresponds to bosons and θ = π to fermions. Because in 3
spatial dimensions all paths are homotopic to a point (in the absence of line-defects), these are
indeed all the possibilities that arise there. In two dimensions however, pointlike singularities
lead to a nontrivial fundamental group. Therefore particles ’remember’ how often they were
wound around each other and many-body eigenstates are no longer a representations of the
permutation- but rather the braid group. For the Laughlin FQH liquid, phases are Abelian
and the 1/m state are one-dimensional braid-group representations.

2.2.3 Fractional Quantum Hall liquids on a torus

We give a brief account of the origin ot topological degeneracy in FQH liquids. First found
in the 1/m Laughlin states by Haldane and Rezayi [16] in 1985, it provides the paradigm for
topological degeneracy in non-Abelian quantum Hall- as well as spin liquids.

Mapping the Laughlin states onto a torus is equivalent to imposing the quasi-periodic bound-
ary conditions

ΨLaughlin[z1 + 1, z2, . . . , zN ] = eiφ1 ΨLaughlin[z]

ΨLaughlin[z1 + τ, z2, . . . , zN ] = eiφτ ΨLaughlin[z] (2.11)

on a liquid in the principal region P = {a + bτ |a, b ∈ [0, 1)} spanned by the ’vectors’ 1 and
τ ∈ C.

To be able to fulfill these conditions, one has to replace factors zi − zj by ϑ(zi − zj |τ),
with ϑ(z|τ) = ϑ 1

2
, 1
2
(z|τ) the odd Jacobi-theta function (cp. App. A.1), while the gaussian

of the droplet has to be replaced by a gaussian with translation symmetry along the real
axis and finally we need to introduce a set of m+ 1 new parameters, m ’center-of-mass-zeros’
Zν ∈ P, ν = 1 . . .m and a phase shift eiK . The conditions (2.11) then lead to

eiK (−1)NΦ
!= eiφ1

eiKτ (−1)NΦ e2πi
P

ν Zν != eiφ2 (2.12)

which confines the m+ 1 parameters to an m-dimensional hyperplane.
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2.2 Topological degeneracy and fractional excitations
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Figure 2.1: A torus topology is equivalent to quasi-periodic boundary conditions where the
many-particle wave function acquires ’boundary phases’ φ1 and φτ

In total, the wave function on a torus is

ΨLaughlin [z|{Zν},K] = ei KZ
m∏

ν=1

ϑ(Z−Zν |τ)
N∏

i<j

ϑ(zi − zj |τ)m
N∏

j=1

e−
π
4
(|zj |2−z2

j ). (2.13)

This explains the name of the parameters Zν , as they introduce m additional zeros of the
many-body wavefunction at the position of the center-of-mass Z =

∑
j zj .

The function space spanned by ΨLaughlin[z|{Zν},K] as the Zν vary over P ism-dimensional [42]
and this is the topological degeneracy. Topological, since its appearance is owed to the non-
trivial topology of the torus, and a degeneracy, since one can identify this space as the ground
state space of the QH-hamiltonian at a filling ν = 1/m [43, 44] (see also appendix A.4).

The non Abelian Moore-Read wave function invented to describe half filling ν = 1/2 looks
similar to a Laughlin liquid. In circular, open boundary gauge it reads

ΨPf = Pf
[

1
zi − zj

] N∏
i<j

(zi − zj)
N∏

j=1

e−
1
4
|zj |2 . (2.14)

Here, the Pfaffian Pf
[

1
zi−zj

]
is defined as the polynomial

Pf
[

1
zi − zj

]
= A

{
1

z1 − z2

1
z3 − z4

. . .
1

zN−1 − zN

}
(2.15)

where A denotes antisymmetrisation, in this case over all pairings 1/(z2j−1 − z2j). When one
’toroidalizes’ (2.14), the Pfaffian is responsible for an additional 3-fold degeneracy: the zi
being fermionic the denominator is rewritten just like Jastrow-like product

∏
i<j(zi−zj) using

the odd Jacobi theta function ϑ(z|τ) from above. Boundary conditions however require the
numerator to be replaced by a theta-function ϑa,b(z|τ) as well. Total anti-symmetry dictates
one can use any one of the 3 even theta-functions (a, b) equal to (0, 0), (0, 1/2) or (1/2, 0).
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2 Topological order

2.2.4 Effective field theory

If one is only interested in the low energy behaviour of a system, an effective field theory
reformulation of the full Hamiltonian, with short-range, high energy fluctuations integrated
out, is a very useful tool. The coarse-graining it implies makes it applicable to dicrete systems
like spin lattices as well continuous ones.

The elemetnary excitations of a FQHE state or spin liquid can be described by a complex
scalar field φ(x, t), which is essentially the amplitude of excitations on the ground state. We
need to find the Langrange density L [φ, ∂μφ] of its dynamics. It is coupled to the electromag-
netic potential Aμ plus in general emergent gauge fields describing particle statistics. Instead
of starting from the exact Hamitonian H, more often one uses the theory of invariants to set
it up ’empirically’, including the only leading order terms invariant under the symmetries of
H.

In the following we would like to sketch the effective field theory for the ν = 1/m (m an
odd integer) Abelian states broadly following Zhang et al. [32]. The Langrange density at this
filling fraction is given by

L = Lφ + La + Lem (2.16)

where Lem = − 1
16π FμνF

μν is the usual Maxwell Langrangian for the electromagnetic gauge
field Aμ while the other two describe the dynamics of the statistical gauge field aμ and the
coupling of matter to the gauge fields respectively:

Lφ = φ̄[i∂0 − e(A0 + a0)]φ+
κ

2
φ̄[i∇− e(A + a)]2φ+ s|φ|2 − u|φ|4 (2.17)

La = −e
2m

4π
εμνσ aμ∂νaσ (2.18)

here as in the following, greek indices take values 0, 1, 2 and εμνσ is the fully antisymmetric
tensor of rank 3. In Lφ s = 2un (cp. solution for φ below), κ, u are phenomenological
parameters and n the electron density. La is a Chern-Simons topological term and describes
a statistical flux attached to the quasi particle field. The equations of motion

∂ν
∂L

∂(∂νaμ)
=
∂L

∂aμ

reveal a conserved quasi-particle current jμ

jμ =
e2m

2π
εμνσ∂νaσ (2.19)

where j0 = ∂Lφ/∂a0 = e|φ|2 and ji = ∂Lφ/∂ai − ∂i(∂Lφ/∂(∂iai)) Thus, j0 is simply the
density of quasi-particles and defining the magnetic field associated with the statistical gauge
field b ≡ ∂1a2 − ∂2a1 the meaning of the 0th equation

|φ|2 =
em

2π
b (2.20)
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2.2 Topological degeneracy and fractional excitations

becomes apparent: it describes quasi particles carrying a statistical flux em/2π, which is
confirmed by the explicit vortex solutions for φ shown below. The particle current is

Jμ =
∂L

∂Aμ
=

e2

2πm
εμνσ∂νAσ +

e

m
jμ (2.21)

We see that the spatial part J i is composed of the answer to the electric field ej = ∂jA0−∂0Aj

and the quasi-particle current contribution e/m ji:

J i = σij
H ej +

e

m
ji (2.22)

Here, σij
H = e2

2π m is the Hall conductance and it is now a fraction 1/m of the conductance of
a filled Landau-level (ν = 1). Note also, that the quasi-particles carry fractional charge e/m
in the electromagnetic current (whereas they carried charge e in the quasiparticle current!).
Therefore, the addition of the gauge field aμ governed by the topological Chern-Simons action
successfully describes quantisation of conductance in the fractional Quantum Hall effect.

What is the explicit solution for φ? The signs in front of parameters s = 2un and u are
different, so we do obtain a non-zero solution and in polar coordinates its large distances
r → ∞ behaviour is given by

φ(r, ϕ) =
√
n e±iϕ (2.23)

a(r, ϕ) = ±ϕ̂/er (2.24)

with a(r = 0, ϕ) = 0 and ϕ̂ the unit-vector in tangential direction. This solution describes a
vortex at the origin, which is topological in that the compactness of the phase of the field φ
gives rise to a winding number around the vortex core.

The total charge carried by a vortex is

qs =
∫

d2xJ0 =
e2

2πm

∮
adr = ± e

m
(2.25)

consistent with (2.22). So we can identify it with the fractionally charged quasi-holes and
quasi-electrons given explicitly in (2.7).

2.2.5 Topological algebra and blocking mechanism

In incompressible (gapped) liquids, like the Laughlin- and Moore-Read Pfaffian states, quasi-
particle statistics provide a different angle on topological degeneracy. Consider such a liquid
on a torus. One can define the following two pairs of operators

F1: insert a flux in 1-loop

Fτ insert a flux in τ -loop

T1 create quasi-e−-quasi-hole pair, transport one around 1-loop then
reannihilate

Tτ create q-e−-qh pair, transport around τ -loop, reannihilate
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2 Topological order

T1, Tτ are the Wilson-line (or loop) operators of the topologically non-trivial cycles. Say, our
incompressible quantum Hall liquid has statistical phase θ = ±p/q, q odd and coprime to p.
Then the relative Aharonov-Bohm phase for quasi-particle transport around loop i with or
without one additional flux inserted will be just exp[±2πi p/q], or in other words we have the
commutation relation

TiFi = FiTi e2πi p/q (2.26)

where we fixed the sign of the phase by fixing a sense of circulation and type of quasiparticle
transported (e.g. always the quasi-electron in direction of the principal vectors 1, τ ∈ C). Let
us use the Wilson-loop operators Ti as our observable to probe the state of the liquid and say
we are in an eigenstates |αi〉. Then we see that flux insertion brings us to another eigenstate
since

Ti(Fi |αi〉) = e2πi p/q FiTi |αi〉 = αie2πi p/qFi |αi〉
Thus, the eigenstates |αi〉 are in fact phase-states and inserting a flux brings us to a state with
a phase increased by 2πp/q:

Fi |αi〉 = |αi + 2π p/q〉 (2.27)

Also, we clearly have F q
i = 1, i.e., . inserting q flux quanta leaves the state as it was. This is

not a contradiction to the gauge argument from above which we used to construct quasi-hole
(and electron) states, since we are not talking about flux piercing the torus, but rather flux
through its holes. Therefore, we can say the quantum Hall hamiltonian is invariant under Fi

and we get a q-fold multiplet |0〉 , |2πp/q〉 , . . . , |2πp(q − 1)/q〉, i.e., a topological degeneracy
of q. However, there are two principal directions, and can make the construction shown
above for both of them. Does this mean we have a topological degeneracy q2 with states
{|2πp

q j, 2πp
q k〉}, j, k = 0, . . . , q−1? Not necessarily, because T1 and Tτ need not be independent.

If quasi-particle statistics is Abelian, we have in fact

T1Tτ = e2πip/qTτT1 (2.28)

because the sequence of operations T−1
1 T−1

τ T1Tτ corresponds to winding one particle around
the other, as is illustrated in Figure 2.2. This implies Tτ = F1 (and vice versa), therefore
the algebras for the two directions are in fact identical. Topological degeneracy is thus only
q, as one would expected comparing what we have said here to the example of the (Abelian)
Laughlin liquid (where p = 1 and q = m), where we know from the explicit wave function
that the topological degeneracy is m. As mentioned before, this is strictly true only in an
infinite system, where world-lines of quasiparticles can be spaced arbitarily far apart, so that
interaction between them is purely statisitcal.

If excitations are non-Ablian, the story becomes more involved, as one might imagine. in
fact the correct solution was found by Read and Green [36] in a seminal paper as late as 2000.
Their calculations are somewhat unaccessible, but Oshikawa et al. [37] found a beautifully
intuitive explanation, which we want to sketch in the following.

The two algebras spanned by T1 and Tτ cannot be more than identical, nor more than
completely independent, therefore q and q2 are is still lower and upper bounds respectively
for the total topological degeneracy, but non-Abelian statistics will cause identification of
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2.2 Topological degeneracy and fractional excitations
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Figure 2.2: The Wilson-operator sequence T−1
1 T−1

τ T1Tτ is topologically equivalent to two
linked particle loops. They are not doubled as the left picture might suggest at first
glance, because the ends and start of the paths in 1 and τ direction respectively
are joined (e.g. . Tτ to T−1

τ ) to give a single loop for each principal direction.

some state, while others remain distinct. Take for example the Moore-Read Pfaffian state
for half-filling. As stated above and described in detail in [35], pairs of Majorana-fermion
excitations span an internal Hilbert-space and braiding of Majoranas rotates the state vector
in the subspace of fixed excitation number. Each quasi-particle vortex carries charge ±e/2
and ±half a flux quantum. Therefore we have the relation

F1 = T 2
τ (2.29)

i.e., transporting a quasiparticle around the loop τ twice will introduce a full flux quantum.
Since excitations behave non-Abelian, braiding of quasi-particle b via T1TτT

−1
1 T−1

τ does not
result in a simple phase anymore, rather it causes a rotation of the state vector. One can
now diagonalise the flux insertion operators. F1 and Fτ themselves do not commute, but F1

and F q
τ do. For the Pfaffian state q = 2 and the Abelian exchange phase is 2π/4 and we

consider eigenstates |f1, f
′
τ 〉 with F1 |f1, f

′
τ 〉 = f1 |f1, f

′
τ 〉, Fτ |f1, f

′
τ 〉 = f ′τ |f1, f

′
τ 〉. Using the

commutation relations between Fi and Ti and T1 and T 2
τ we see that we can generate a total

of 8 eigenstates by applying powers of T1 and Tτ :

|f1, f
′
τ 〉 Tτ |f1, f

′
τ 〉

T1 |f1, f
′
τ 〉 TτT1 |f1, f

′
τ 〉

T 2
1 |f1, f

′
τ 〉 TτT

2
1 |f1, f

′
τ 〉

T 3
1 |f1, f

′
τ 〉 TτT

3
1 |f1, f

′
τ 〉

Not all of states are allowed however: in defining the Wilson-loops Ti, we said that the particle-
hole pair is annihilated after completing the loop. Owing to the non-Abelian statistics, this is
not always possible. We create and annihiliate pairs by applying (Dirac) creation/destruction
operators c, c† Expressed in terms of the Majorana-operators of particle and hole they are

c = γp − iγh

c† = γp + iγh (2.30)
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2 Topological order

1 1

�) �)

Figure 2.3: Winding the particle of a p-h-pair around the torus in 1-direction, there is the
ambiguity in who crosses the branch cut connecting the pair: a) the hole or b) the
particle? This has no physical consequences however, as either case implies c → c†

The key is now that due to the Majorana’s non-Abelian statistics, winding, say, the particle p
around the torus in 1-direction will change the sign of either γp or γh and therefore

c
winding−→ ±c† (2.31)

i.e., what was the destruction operator before winding turns into a creation operator after
winding! The sign is of no physical consequence and is simply an artifact of whether we say
the particle or the hole passes the branch-cut (see Fig. 2.3). Since the destruction- acts as
a creation operator on the (many-body) state after winding it will simply give 0, since the
single-particle orbital it acts on is already occupied.

This so called blocking mechanism holds for winding either around 1 or τ , and also if we do
both. For TτT1, annihilation is still blocked

c
T1−→ ±c† Tτ−→ c† (2.32)

whereas one might have hoped that two sign changes cancel out and unblock this state. This
can be understood if we realise that we made an implicit assumption: that the boundary
conditions are even in both directions (++). Looking at figure 2.3, we see that the a Wilson
loop leaves a branch cut behind (the line connecting particle and hole), which effectively
changes boundary conditions from (++) to (+−). But this means the Tτ operation does not
flip the sign of any Majorana operator, thus leaving also c, c† unchanged.

The total number of states in the algebra is therefore dependent on the boundary conditions:

BC states blocked #available
++ T 2k+1

1 , k = 0, 1, TτT
l
1, l = 0, 1, 2 2

+- T 2k
1 , k = 0, 1 6

-+ TτT
2k
1 , k = 0, 1 6

- - TτT
2k+1
1 , k = 0, 1 6

The Pfaffian state on a torus falls into one of the latter categories, confirming the topological
degeneracy of 6 one also obtains from the explicit wave function.
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2.3 Edge states

2.2.6 Z2 liquids

We would like to state the main features of the Z2 class of liquids already mentioned be-
fore. They were devised to describe a spin rotation- and lattice symmetry-invariant resonating
valence bond state on the two dimensional lattice [38].

The idea is to introduce a new scalar field Λ, associated with charge 2 quasi particles, i.e.,
it transforms like Λ → e2iθΛ if the spinons undergo a phase transformation zα → eiθzα, and
couple it minimally to the electromagnetic gauge field and to the spinon field via a Chern-
Simons-like topological term. The first breaks the U(1) gauge symmetry down to Z2 with the
effect of reducing gauge field fluctuations, the latter promotes pairing of spinons into a p-wave
singlet state called a vison. The action of such a liquid is

SΛ =
∫

d2rdt [|(∂μ − 2iAμ)Λ|2 + sv|Λ|2 + uv|Λ|4 − iΛεαβz∗α∂az
∗
β + c.c.] (2.33)

and similarly for Sz, with ’masses’ sz and uz where the last term above appears only once and
uz > 0 as well as uz > 0. One can give a phase diagram depending on the two ’masses’ sz and
sv of the spinon and vison field respectively as parameters. Only the case sz > 0 and sv < 0
describes a Z2-liquid phase were gauge symmetry is reduced to Z2 and the spinon field has no
vacuum expectation value and thus preserves spin rotation symmetry.

2.3 Edge states

One of the marks of topological phases are excitations located at the interface between systems
with different topological order. It was again the Quantum Hall effect which provided the
first example for this phenomenon [17]. In the integer effect, at least while the chemical
potential resides between Landau levels, the modes carrying the longitudinal current are 1-
dimensional Fermi-liquid states (quantum numbers of charge carriers: momentum k, charge
q = −e, renormalized mass m∗) localized near the edges of the sample since all states are
localize by disorder in the bulk. The magnetic field separates left and right movers, locating
them at opposite sides (i.e., the modes are unidirectional). Being topologically ordered, the
fractional QH effect exhibits edge states as well, yet there Wen [18, 45, 46] showed they form
in fact a chiral Luttinger liquid. This led to the prediction of a power law tunnelling I-V-curve,
which was subsequently indeed observed [47, 48].

The existence of gapless excitations located at the edges is already a consequence of Laugh-
lin’s gauge argument: consider an annulus with inner radius r1 and outer radius r2 > r1. If we
increase the flux through the hole by one flux quantum, only the occupation numbers can have
changed and we must have transported charge νe from the inner to the outer boundary. In the
thermodynamic limit r1, r2 → ∞ the work required for this goes to zero, i.e., the boundary
mode involved in the charge transfer has zero-energy.

There is also a field theoretical argument. Integrating out the electrons in the quantum Hall
problem we are left with an effective Lagrangian for the gauge field Aμ [18]

Leff =
νe2

4π
δAμ∂νδAλε

μνλ +
1

4g2
1

(δF0i)2 +
1

4g2
2

(δF12)2 + . . . (2.34)
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2 Topological order

where δAμ is the difference of the local gauge potential to a uniform background and δFμν =
∂μδAν − ∂νδAμ is the field strength. The action Sbulk =

∫
d3xLeff(δAμ(x)) is invariant under

gauge transformations Aμ → Aμ + ∂μΛ only on a compact manifold, like a torus. On, say, a
disc however one has

Sbulk(δAμ + ∂μΛ(x)) − Sbulk(δAμ) =
∫

dx0dσ
νe2

4π
Λ δFσ0 (2.35)

where σ parametrizes the boundary. Thus, in order to have a total action which is gauge-
invariant, one postulates a boundary action Sbd satisfying

Sbd(δAμ + ∂μΛ(σ)) − Sbd(δAμ) = −
∫

dx0dσ
νe2

4π
Λ δFσ0. (2.36)

This action is generated by a Langrangian depending on the part of the gauge field localized
at the boundary Lbd = Lbd(δAμ(σ)). One can go on to derive the functional form of the
boundary action Sbd and from this the algebra of the edge-excitations of a QH fluid, but there
is a more intuitive way.

Exploiting the fact that FQH and spin liquids are incompressible, one can find an intuitive
derivation of the chiral edge states [49]. Assume we have a droplet of (incompressible) fluid
with circular boundary localized by a smooth potential. The quantum-Hall conductance σH

will cause a circular current along the edge as response to the field gradient:

�j = σH êz × �Ebd, σH = ν
e2

h
(2.37)

This means electrons are moving along the boundary with the drift velocity v = Ec/B, where
c is the light velocity. A wave along the edge can be described by a scalar density ρ(x), where
x is the coordinate along the edge. A wave packet satisfies the equation of motion

∂tρ− v∂xρ = 0 (2.38)

where propagation can only happen in the direction determined by the Lorentz force. The
energy stored in the wave is

H =
∫

dx
1
2
e2hρE =

∫
dxπνvρ2. (2.39)

Taking the Fourier transform this becomes

ρ̇k = ivk ρk

H = 2π
v

ν

∑
k>0

ρkρ−k. (2.40)

This is just a set of the classical equations of motion q̇ = ∂H/∂p, ṗ = −∂H/∂q if we identify
ρk as the ’coordinates’ with the corresponding canonical momenta pk = 2πiρ−k/νk. If we now
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2.3 Edge states

canonically quantize the theory, i.e., assume [qk, pk′ ] = iδk−k′ , we arrive at

[ρk, ρk′ ] =
ν

2π
kδk+k′

k, k′ = integer × 2π
L

(2.41)

[H, ρk] = vρk

This is called a U(1) Kac-Moody algebra. It is essentially a collection of independent harmonic
oscillators with dispersion �ωk = vk for k > 0, reflecting the fact that propagation can happen
only in one direction. The level degeneracies for some fixed total momentum are

ktot/2π/L 0 1 2 3 4 5 6 . . . n
# levels 1 1 2 3 5 7 11 . . . p(n)

where p(n) is the number of partitions of n into positive integers.
If our quantum Hall fluid supports non-Abelian statistics, this is in fact not the whole story.

In that case, we have to supplement (2.41) by a chiral Majorana fermion mode [46], yielding a
different total momentum degeneracy spectrum. Therefore, given sufficiently fine momentum
resolution, one can distinguish between different topological orders by looking at the edge
excitations, which was recently exploited in entanglement spectrum analyses [7, 50] (see also
chapter 4).

Topological insulators. —In the case of the Hall-effect it is the magnetic field permeating the
sample which imposes a non-trivial topology on the electronic states. But something similar
can also happen without external field due to the internal spin-orbit coupling. In that case
there is now a correlation between direction of motion and direction of spin polarisation which
causes any current through the material to show a net spin-polarisation.

Closely related to this is the new field of topological insulators which emerged when in
2005 Kane and Mele [51] realized that spin orbit interaction can create charge or spin carrying
states on the boundary of systems which are insulators in the bulk. In their paper they studied
monolayer-graphene with spin orbit interaction. The low energy dispersion of clean graphene
shows famous Dirac-cones at the K and K’ points of the (hexagonal) Brillouin zone. Under
the influence of spin-orbit coupling, the dispersion changes from linear to quadratic and the
cones become gapped. Kane and Mele were now able to show, that the presence of a boundary,
i.e., when the graphene sheet is cut into a semi-infite system or a ribbon, gives rise to gapless
propagating modes along the edge which are robust even in the presence of a perturbation, as
long as time reversal symmetry is preserved (Figure 2.4 ).

A year later, in 2006, Bernevig et al. [52] proposed a 2D system in which these gapless edge
states were indeed observed [53]. Soon after 3 dimensional materials showing topologically
insulating behaviour were also discovered [54, 55]. If the boundary, which is a 2D surface there,
has a certain orientation with respect to the crystal lattice (e.g. (111) in Bi2Se3, momentum
parallel to the surface is well defined and spin-orbit interaction induces a Dirac-cone like
dispersion as long as time reversal symmetry is maintained. Therefore even if the bulk material
has a band gap, the surface will support gapless modes.

23



2 Topological order

a)

�=0

�=1

� ��

b)

E � kx 2 � � � 2 � ky2

E � vF kx

kx

�

�2 �1 0 1 2

�2

�1

0

1

2

Figure 2.4: a) a two dimensional, semi-infinite topological insulator (n=1 region): spin-orbit
interaction induces a band gap in the bulk and a direction dependent spin polari-
sation. The topology of the bands cannot be smoothly connected to the insulator
(n=0 region) without closing the gap. This gives rise to b) excitations lying in the
gap between (idealized parabolic) highest occupied and lowest unoccupied band

2.4 Chiral spin liquids

Besides fractional Quantum Hall liquids, spin liquids are another class of system which also
exhibit characteristic features of topological order. What makes them attractive for theoretical
study is their discrete nature, naturally amenable to numerical investigation and also, the
possibilty to find exactly solvable models showing toplogical effects. The recent example for
the latter is the Kitaev model [24] of spins on a Honeycomb-lattice with direction-dependent
nearest neighbour interactions. The exact, time-reversal breaking groundstate found by Yao
and Kivelson [25] supports non-Abelian vortex excitations.

Here however, we want to look more closely at the chiral spin liquid, in particular the spin
S = 1/2 liquid due to Laughlin [4] which we will use in the next chapter as basic building
block for a hierarchy of liquids with a higher spin S per site.

Under a generic spin liquid in two spatial dimensions we want to understand a homogeneous,
spin-rotation invariant state on a lattice where all 2-point correlators vanish with increasing
separation

〈ŜziŜzi+Δz〉 Δz→∞−→ 0 (2.42)

even at zero temperature. This decrease is often exponential, as in the case of the Laughlin
liquid [56], but can also obey a power law, like in the algebraic spin liquids [40] which are
candidates for the multitude of low-lying excitations of a Heisenberg model on the Kagome-
lattice. The above definition is meaningful, whether all sites harbour a spin or not. Yet
unless explicitly stated otherwise, we will in the following assume all sites to be occupied by
(immobile) spins (i.e., like in a Hubbard model at half filling and large U).

What local properties are required by and compatible with (2.42)? Homogeneity implies
that spin rotation invariance must not only hold for the total system but also for finite sub-
systems (of sufficient size). This in turn means there must be strong local anti-ferromagnetic
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2.4 Chiral spin liquids

correlations
〈ŜziŜzi+a〉 � −1

where a is the lattice constant.

2.4.1 The Chiral Spin Liquid (CSL)

Based on an idea by D.H. Lee, Kalmeyer and Laughlin [4] put forward a chiral spin liquid wave
function as a trial state for electrons in the CuO planes of high temperature superconducting
materials.

A chiral spin liquid (CSL), i.e., one which breaks parity (P ) and time reversal (T ), can be
characterised in several ways [33].

For one, a CSL has a nonzero expectation value of the chirality operator, defined as

χijk := Ŝi · (Ŝj × Ŝk) (2.43)

where ijk is a triple of neighbouring sites from one triangular plaquet (see Fig. 2.5). Parity
or time reversal symmetry would force 〈χijk〉 to be 0 everywhere, since both change the sign
of the triple product (P changes the order ijk → ikj, while T flips the sign of each spin). For
the same reason, the combined PT symmetry may be preserved in a chiral spin liquid.

A non-vanishing 〈χijk〉 can also be interpreted as a nonzero Berry’s phase when we transport
spins around the triangle ijk. Let P(ijk) be the operator effecting the cyclic permutation (ijk)
we have

Bijk := 〈P(ijk)〉 = 〈P(ij)P(jk)〉 (2.44)

=
1
4
〈(1 + ŜiŜj)(1 + ŜjŜk)〉 (2.45)

and from this one can see that Berry’s phase Bijk and chirality χijk are directly related through

〈χijk〉 = −2i (Bijk −Bikj). (2.46)

This allows the alternative characterisation of a chiral spin liquid as a spin state, where clock-
wise and counterclockwise spin transport yield different Berry’s phase.

+

ji

k
+

+ +

Figure 2.5: Snapshot of a 2 × 3 patch of a square lattice. The chirality operator (2.43) is
defined for sites from one (triangular) plaquet.
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2 Topological order

As stated, both χijk and Bijk are well defined only for fully occupied lattices. Introducing
electron creation/destruction operators ci, c

†
i and using them to express the spin operator as

Ŝi = �/2 c†i,τ�σττ ′ci,τ ′ (2.47)

where �σ is the vector of Pauli-matrices we can give meaning to it for general fillings, i.e., when
some sites are empty (e.g. due to doping).

Vanishing two point correlators only indicate absence of ’classical’ magnetic long range order.
Because of homogeneity, χ = 1/N

∑
(ijk) 〈χijk〉 is finite and therefore the chiralities must be

correlated over arbitrary distances. There are two ways to obtain a state with vanishing χ:
relaxing translation- invariance, e.g. in a square lattice restricting it to the two sublattices with
doubled lattice constant, or, the solution we will pursue in the next chapter, merging S = 1/2
chiral spin liquids with opposite chiralities into a liquid with higher spins per site.

2.4.2 CSL wave function

The Laughlin CSL for N spins S = 1/2 on a lattice with open boundary conditions can be
written as [4]

|ψCSL〉 =
∑

{z1,...,zM}
ψCSL[z]S+

z1
...S+

zM
|↓〉N (2.48)

where the sum is over all subsets of M sites and |↓〉N denotes the fully spin- down polarized
state. The wave function ψCSL for open boundary conditions is

ψCSL[z] =
M∏

j=1

G(zj)
M∏
i<j

(zi − zj)2
M∏

j=1

e−
πM
2N
|zj |2 (2.49)

where the product over G(zi) acts as a gauge, ensuring that ψCSL is a singlet. On the square
lattice with unit lattice constant it is given by G(z = x+ iy) = (−1)(x+1)(y+1) but generalises
to arbitary lattices as depicted in Figure 2.6 Apart from this, (2.48) is form-equivalent to a
bosonic fractional Quantum Hall state in a magnetic field of M/N flux quanta per plaquet:

1
4l2

=
π

2
NΦ

N a

!=
πM

2N
⇒ B =

M

N
Φ0

where l2 is the magnetic length defined in (2.2).
Just like other 1/m-Laughlin liquids, the CSL can be mapped onto a torus by help of the

odd Jacobi theta function:

ψCSL
torus[z;Z0] = ei K(Z0)Z ϑ(Z−Z0|τ)ϑ(Z − Z0|τ)

M∏
i<j

ϑ2(zi − zj |τ)
M∏

j=1

G(zj) e−
π
2
|zj |2−z2

j (2.50)

where C is the center of the lattice cluster and Z0 a center-of-mass-zero parameter needed to
ensure quasi-periodicity. In appendix A.2 we investigate the boundary conditions in detail.
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Figure 2.6: The site dependent sign G(z) on the a) square and b) hexagonal lattice. Filled dots
represent G(z) = 1 circles G(z) = −1. On a general lattice {na +mb|n,m ∈ Z},
spanned by vectors a and b, G is given in a similar way G = (−1)(n+1)(m+1)

Varying Z0 in the principal region yields a 2 dimensional functional space, i.e., the topological
degeneracy of the s = 1/2 CSL is 2.

Spin rotation invariance as well as vanishing correlation follow directly from the same state-
ments for a FQH state. Only translation invariance is broken in the open boundary formulation
(2.48), but it will be restored when we write it in periodic boundary conditions. It is a spin
singlet and P and T are both broken, as is evident once we realize that both operations corre-
spond to complex conjugation: T because it is anti-unitary and P since in 2 dimensions parity
means flipping one axis. If we define (2.49) to have chirality ’+’, P as well as T send ψCSL

+

to ψCSL− .

2.4.3 CSL from lowest Landau level

The equivalence of the CSL wave function with a quantum Hall state inspired another way
to construct it: it can be rewritten as the product of two lowest-Landau-level wave functions
φlll =

∏
i<j zi − zj

∏
j exp(−π/4|zj |2) in a fictuous magnetic field of strength Φ0 per lattice

plaquet [57]:
ψCSL[z] = S[z,w]φ[z]φ[w]. (2.51)

Here w are the N −M lattice sites complementary to the M sites z. This is a manifestation
of a ’particle-hole’-type of symmetry between up- and down-spin spinons. S[z,w] is an order
dependent sign related to G(zi) which can be expressed using electron destruction operators
cz↓

S[z,w] := 〈0|cz1↓ . . . czM↓cw1↓ . . . cwN−M↓| ↓↓ . . . ↓︸ ︷︷ ︸
all N spins ↓

〉 . (2.52)

This formulation of the CSL is of high practical relevance to us, as our numerical procedure
to write out explicit S = 1/2 CSL wave functions makes direct use it.

The for M = N/2 the state |ψCSL〉 can also be expressed as the Gutzwiller-projection of a
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Slater-determinant of single particle states

|ψCSL
+ 〉 = PGW |ψN

SD〉 (2.53)

where
PGW =

∏
j

(1 − c†i↑ci↑c
†
i↓ci↓) (2.54)

eliminates configurations with doubly occupied sites and

|ψN
SD〉 =

∑
{z1,...,zN}

∏
i<j

(zi − zj)
∏
j

e−
π
2
|zj |2 c†z1↑ . . . c

†
zM↑c

†
zM+1↓c

†
zN↓ |0〉 (2.55)

This is clearly a singlet, and since Gutzwiller-projection does not affect the spin on each site,
i.e.,

[PGW,Sj ] = 0

so is |ψCSL〉.
The Gutzwiller construction is especially useful when we want to describe states with spinon

or holon excitations. For instance

|ψCSL
+ η1↓...ηL↓〉 = PGWcη1↑ . . . cηL↑ |ψN+L

SD 〉 (2.56)

is a state with N spins and L down-spin spinons obtained from the Slater- determinant state
for N+L spins on N sites by removing up-spins on sites η1 to ηL. A state with L = 2K holons
can be written as

|ψCSL
+ η1...ηL

〉 = PGWcη1↑ . . . cηK↑cηK+1↓ . . . cηL↓ |ψN
SD〉 . (2.57)

The spinon excitations of the CSL have half-Fermi statistics if M = N/2. Once again, this
can be worked out from the complete analogy to the fractional QHE [12]: We have 2 flux
quanta per degree of freedom zi which corresponds to fictuous filling factor of ν ′ = 1/2 and
therefore statistical parameter θ = π/2. When constructing these excitations explicitly we
again add factors

∏
j(ξ − zi), each representing a hole at position ξ, which need not be a

lattice site! This might be somewhat counter-intuitive, but there is no mathematical or other
reason to demand that restriction.

From the statistics we can deduce the topological degeneracy of the Laughlin CSL to be
2. This confirms the result one obtains when adapting the CSL explicitly to (quasi-)periodic
boundary conditions.
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3 Fractional spin liquid hierarchy

In this chapter we present one of the main results of this work, a hierarchy of spin S liquids
built by Schwinger projection from 2S copies of Laughlin’s chiral spin liquid.

These liquids are characterized by the numbers of constituent CSLs with chiralities ’+’ and
’-’ and support excitations with non-Abelian statistics as soon as a chirality appears more than
once, i.e., for all S ≥ 3/2. We investigated the topological degeneracy (TD) of all liquids up
to S = 2 by numerically writing out their wave function on up to N = 16 site clusters with
periodic boundary conditions and varying the center-of-mass-zero parameters and found it to
be given by

μTD(k+, k−) = (k+ + 1)(k− + 1) (3.1)

where k+ and k− are the number of chirality ’+’ and ’-’ CSLs respectively, i.e., 2S = k+ + k−.
A particularly interesting example is the S = 2 liquid obtained from merging 2 CSLs of

each chirality (S2CL). It exhibits a topological degeneracy of 9, not 24 = 16 as a straighfor-
ward extrapolation of the CSL degeneracy would imply. There must therefore be some kind
of blocking mechanism at work, like the one described in the previous chapter, and this is
indicative of non-Abelian statistics. Moreover, its wave function is real, it therefore preserves
parity (P) and time reversal (T) unlike the original S = 1/2 CSL. The S2CL might make a
good candidate trial state for disordered quantum antiferromagnets, since their hamiltonian
generally also conserves P and T and should exhibit sponeneous symmetry breaking only in
peculiar cases. We want to note, that since the CSL is well defined on any lattice, so are all
our liquids derived from it (see appendix A.3).

In the following, we first show how Schwinger-boson projection can be used to merge S = 1/2
CSLs into liquids with higher spin per site, then we review the first two members of the
hierarchy, the S = 1 chiral spin liquid (NACSL) obtained from two (S = 1/2) CSLs of equal
chirality and the S = 1 ’chirality liquid’ (CL) built from two CSLs of opposite chirality. Each
was individually described in [58] and [57] respectively, however they were not understood
as part of a general scheme of constructing non-Abelian liquids presented here nor were the
topological properties confirmed in ’ab initio’ numerical studies.

3.1 Setting up the hierarchy

The main idea behind the construction is to replace SU(2) spin S operators Ŝ by products
of 2S boson operators a†, b† (Schwinger bosons) in the expression for the state |ψCSL〉. This
allows merging them into liquids with higher spin per site by simple multiplication.
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Figure 3.1: Using Schwinger bosons, merging S = 1/2 liquids, here 2 of them, is done by simple
multiplication of liquid creation operators

3.1.1 Rewriting the CSL

In section 2.4.3 we showed that ψCSL is expressible as the product of two lowest-Landau-level
wave functions φ. This property we now use to write down a creation operator for the S = 1/2
chiral spin liquid on a cluster of N sites.

To recall the CSL wave function, it is given by (see (2.51))

ψCSL
+ [z] = S[z,w]φ[z]φ[w]

with the many-particle fermionic sign S[z,w] ensuring the proper sign associated with a config-
uration (z1, . . . , zM ), which is basically the sign of the permutation needed to bring (z1, . . . , zM )
into (some) standard order.We should point out again, that the set of sites {w1, . . . , wN−M}
can be thought of as the complementary set to (z1, . . . , zM ) and is therefore determined up
to reordering, which will in all sums below only yield a prefactor that can be absorbed into
normalisation.

The idea is now to replace spin operators by Schwinger bosons a†, b† in the expression
for |ψCSL〉. These operators obey the usual bosonic commutation relations. The connection
between the spin state |S, Sz〉 and a state with 2S Schwinger bosons is given by

|S, Sz〉 =
(a†)S+Sz

(b†)S−Sz√
(S + Sz)!(S − Sz)!

|0〉 . (3.2)

The key advantage this formulation offers, is the ease with which we can project two individual
spins S1, S2 onto their symmetric total spin state |S = S1 + S2, S

z
tot〉 for all values of Sz

tot. What
in SU(2) language requires a sum over all states Sz

1 +Sz
2 = Sz

tot, with Schwinger bosons reduces
to a simple product of creation operators (see also appendix B.1 for more details).

Spin S = 1/2 is represented in this new language by states with only a single Schwinger
boson. The two possible states are therefore a† |0〉 =̂ |1/2, 1/2〉 and b† |0〉 =̂ |1/2,−1/2〉 and
these are mapped onto each other by the operators a†b and ab† respectively. This motivates
the definition of a CSL creation operator

Ψ̂CSL
+ [a†, b†] :=

∑
{zi},{wj}

ψCSL
+ [z]a†z1

. . . a†zM
b†w1

. . . b†wN−M
. (3.3)
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3.2 Numerical determination of Topological degeneracy

Here, as in section 2.4.3, the sum is over all ways of choosing sites z1, . . . , zM and w1, . . . , wN−M

from the lattice where z and w are disjoint. Note, that we do not have to require single
occupancy for either set of sites, because configurations with double occupancies are eliminated
by the wave function anyway.

From our observation about products of Schwinger operators in the previous paragraph it
is clear, that applying Ψ̂CSL

+ to the vacuum k times will give a state with k Schwinger boson
operators a†, b† per site corresponding to a total spin S = k/2 per site. This remains true, if
we mix in CSLs with opposite chirality, Ψ̂CSL− , and the order in which we apply the different
chiralities does not matter, since the operators are all bosons. Thus, we use (3.3) to construct
states

|ψS,k+〉 =
(
Ψ̂CSL
−
)2S−k+

(
Ψ̂CSL

+

)k+ |0〉 (3.4)

characterised by their total spin S and the number of CSLs with positive chirality k+. This is
the hierarchy of spin liquids we announced at the start of this chapter. We will now elaborate
the methods we used for analysing their topological degeneracy, the results obtained and what
we can infer about the physics of their fundamental excitations (statistics, gap, edges). In
particular we will have a close look at the S = 2 state made from two chirality ’+’ and ’-’
CSLs each, because it is the first example of a state which unites non-Abelian statistics with
parity and time-reversal symmetry.

3.2 Numerical determination of Topological degeneracy

We now turn to our numerical implementation of the Schwinger boson scheme and how within
it we can determine topological degeneracy of the S = 1/2 chiral spin liquid and any higher-spin
liquid we might construct from the CSL.

There are various ways to determine the topological degeneracy. One would be obtaining the
entanglement entropy of a topologically nontrivial region as will be described in more detail in
the next chapter about entanglement spectra. With the computational resources available to
us, this is however very challenging to do for higher spins on clusters of meaningful size: the
simplest nontrivial region on a square lattice is a holed-out 3 × 3 sector, i.e., ring of 8 sites
enclosing one single site and therefore we need at least 4 × 4 = 16 sites to make this ring well
defined (separated) in all directions (on a triangular lattice the required minimal region is the
same while on a hexagonal lattice it is much bigger). In this case even the Sz = 0 subspace of
the (S = 2)⊗16 product space has dimension ≈ 1010.

And even on a 16-site lattice, finite size effects would probably mask topological effects, since
in deriving the scale invariant entropy Kitaev et al. [6] assumed the region studied to be large
enough, that the boundaries can be considered smooth on the scale of the lattice constant.

We therefore opted for the more viable approach of exploiting the analytical form (3.3) of
the S = 1/2 CSL. The basic idea is to write down two lowest Landau-level wave functions
φZ0 adapted to the torus on the Hilbert space spanned by all Sz

tot = 0 product states of an N
site lattice cluster. We then combine the LLL wave functions into a CSL as described in 2.4.3.
The LLL wave functions depend on one center of mass coordinate Z0 each, but in fact only
their difference is of relevance (cp. appendix A), so that ψCSL also has only one effective
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Figure 3.2: Flowchart of the numerics involved in determining the topological degeneracy for
S = 1.

center-of-mass parameter Z0. After having constructed the basic building block, we proceed
in different ways, depending on the spin per site of the liquid we wish to obtain in the end:
For S = 1, we create a copy of ψCSL, apply complex conjugation if necessary, compute a list
with all Sz

tot = 0 product states for S = 1 per site and feed these three inputs to a program
implementing the Schwinger boson procedure. The output is a list of S = 1 product states
together with their amplitudes. The liquid we obtain will be a S = 1 analog if we use two
CSLs of equal chirality (no complex conjugation), which we call the non-Abelian chiral spin
liquid (NACSL), or a real-valued, P and T conserving liquid, the S = 1 chirality liquid (CL),
if we use one complex conjugated CSL (see Fig. 3.2).

If S = 3/2, there are also basically only two different cases to distinguish: either all 3 CSLs
have the same chirality (k+ = 3 or k+ = 0) or only two have (k+ = 1, 2). The numerical work
is again nearly the same in both cases: we call a merging procedure with 3 copies of a CSL
wave function, one possibly conjugated, and a basis list of Sz

tot = 0 product states.
The S = 2 liquids were however not obtained by merging 4 CSLs, but rather from two S = 1

liquids. The three cases one must distinguish are 2×NACSL, NACSL× CL or 2× CL. The
last can equally well be expressed (and computed) from two NACSLs with opposite chirality
and as it will become clear below, this is in fact the appropriate way to describe it, because
only this picture describes the correct topological degeneracy.

In all cases above, the final output is a wave function ψS
Z0

for some spin S per site and a
center-of-mass-zero parameter Z0. Two such wave functions for different Z0 will i.g. not be
collinear. Rather, as Z0 varies over the principal region, the wave functions ψS

Z0
will span a

manifold of a dimension equal to the topological degeneracy. We can only sample this manifold
at finitely many points, so repeat the above procedure several times, each time with a different,
randomly chosen center-of-mass-zero Z0,j . The random selection minimizes the risk that, by
accident, we are stuck in a subspace of the full wave function space. We then determine the
dimension of the space spanned by all these states. This can be done simply by computing
the rank of the mutual scalar-product matrix(

〈ψS
Z0,i

|ψS
Z0,j

〉
)

(3.5)

In addition to selecting points randomly, we also used as many as were computationally
feasible in order to be reasonably certain to really visit all dimensions in the ground state
manifold.
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3.3 Special hierarchy states

spin liquid O(dimH ) # samples top. degeneracy

1/2 CSL 102 15 2

1 CSL+CSL+ 5 · 104 20 3

CSL+CSL− 20 4

3/2 (CSL+)3 4 · 106 9 4

(CSL+)2CSL− 9 6

2 (CSL+)4 2 · 103 50 5

(CSL+)3CSL− 50 8

(CSL+)2(CSL−)2 50 9

k/2 (CSL+)k k + 1

k (CSL+)k(CSL−)k (k + 1)2

Table 3.1: Topological degeneracies a selected hierarchy liquids. Liquids with S ≤ 2 have
been investigated numerically on up to 16 site square lattice clusters by varying the
center-of-mass-zero(s).

A priori, there are 2S center-of-mass parameters, one from each CSL. But we found empiri-
cally, that they need not be varied separately: using two independent parameters in the S = 1
and S = 2 liquids as well as 3 independent ones for S = 3/2, we obtained the same topological
degeneracy as when we used the same Z0 for all constituent CSLs.

Table 3.1 gives the results we obtained on square lattice clusters of size 16 in the case of
S ≤ 3/2 and 8 for S = 2. The last two rows give the values we would expect to obtain
for higher spins per site, based on the the equivalence of the spin liquids of power k in our
hierarchy with the Read-Rezayi level-k series of liquids from the fractional quantum Hall effect
[26].

3.3 Special hierarchy states

We will now take a closer look at some of the liquids in our hierarchy: the two S = 1 liquids
already known [57, 58] and series of liquids obtained by merging k CSL copies of the same
chirality.

3.3.1 S = 1 liquids

The possible combinations of two S = 1/2 CSLs are the S = 1 chiral spin liquid (NACSL) and
the (S = 1) chirality liquid (S1CL). They are obtained by merging CSLs of equal or opposite
chiralities respectively.

Non-Abelian chiral spin liquid. —Let us first consider the NACSL. In Schwinger language,
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3 Fractional spin liquid hierarchy

it is
|ψNACSL

+ 〉 = Ψ̂+[a†, b†]Ψ̂+[a†, b†] |0〉 (3.6)

As was shown in [58] it is a spin singlet and supports non-Abelian statistics. The last statement
can be understood from its wave function, which is a bosonic Pfaffian FQH state

ψNACSL
+ [z] = Pf

[
1

zi − zj

] N∏
i<j

(zi − zj)
∏
j

G(zj)e−π/2|zj |2 (3.7)

where Pf [zi − zj ] is shorthand for the Pfaffian polynomial obtained by anti-symmetrising over
all differences (z2j−1 − z2j):

Pf [zi − zj ] = A {(z1 − z2)(z3 − z4) . . . (zN−1 − zN )} (3.8)

The Pfaffian can also be obtained as the square root of the determinant of the anti-symmetric
Jastrow-matrix Jij = (zi − zj), i, j = 1 . . . N :

Pf2 [zi − zj ] = det [(zi − zj)] (3.9)

which implies that it vanishes for odd number of variables, i.e., in all wave functions N must
always be even.

This wave function describes ’pairing’ of electrons in the following sense: consider the first
summand of the Pfaffian, which is just 1/(z1−z2)(z3−z4) . . . (zN−1−zN ). This will cancel the
respective factors of the Jastrow polynomial

∏
i<j(zi−zj). Therefore in the product monomial

(of degree N − 2 in each zj and N2/2 −N in total) close approaches of the ’partners’ (z1, z2),
(z3, z4) and so on are not suppressed any more, i.e., . they can be considered as ’bound’ more
closely.

As in the bosonic representation of the S = 1/2 CSL this wave function can be combined
with spin flip operators, but here these have to be renormalised to account for the different
normalisation of the Schwinger bosons (cp. (B.6)).

The non-Abelian chiral spin liquid state with spin-operators is then

|ψNACSL〉 =
∑

{z1,...,zN}
ψNACSL

+ [z] S̃+
z1
. . . S̃+

zN
|−1〉N . (3.10)

The summation is over N positions zj on the lattice where at most double occupancy is allowed,
|−1〉N = |−1, . . . ,−1〉 is the fully spin-down polarized state and the renormalised spin flips
are defined as S̃+ = 1±Sz

2 S±.
How the Pfaffian can be derived starting from (3.6) is demonstrated in appendix B.2. The

wave function is complex, i.e., chiral and thus breaks both P and T symmetry. It is equivalent
to a bosonic FQH Pfaffian state at filling ν = 1 and exhibits non-Abelian spinon excitation
of Ising-type SU(2) level 2 (see appendix B.4). A state with four excitations at the positions
η1, . . . , η4 (which need not be lattice sites!) can be written:

Pf
[

1
zi − zj

]
→ Pf

[
(η1 − zi)(η2 − zj)(η3 − zi)(η4 − zj) − (i↔ j)

zi − zj

]
(3.11)
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3.3 Special hierarchy states

i.e., even index excitations are connected to even index sites and vice versa.
The topological degeneracy follows from the quantum Hall equivalence and is 3, a value we

can confirm numerically. The fact that the topological degeneracy is reduced from the product
of the two constituent CSLs’ is another confirmation of non-Abelian statistics, as there must
be some blocking mechanism at work.
S = 1 chirality liquid. —The other wave function in the S = 1 case, the S1CL obtained

from 2 CSLs of opposite chirality, is

|ψCL〉 = Ψ̂+[a†, b†]Ψ̂−[a†, b†] |0〉 (3.12)

It is equally a spin singlet but, as we prove in appendix B.3, also has a real valued wave
function and is thus invariant under the action of P and T. Numerically, we obtain a topological
degeneracy of 4. The absence of blocking suggests that spinons keep the statistical properties
they have in the constituent S = 1/2 CSL, but now carry a chirality quantum number. Due
to the P and T invariance, this spin liquid appears to be an intersting trial state for S = 1
antiferromagnets. We will encounter it again in the next chapter, where we compare its
entanglement spectrum to that of an S = 1 frustrated J1-J2 antiferromagnet on a 4×4 square
lattice cluster.

3.3.2 Read-Rezayi series

The hierarchy liquids

|ψk−CSL
± 〉 =

(
ΨCSL
± [a†, b†]

)k |0〉 (3.13)

constructed from only one type of chirality, i.e., k+ = 2S or (equivalently) k+ = 0 in (3.4),
have the functional form of bosonic Read-Rezayi [26] quantum Hall states at Landau-level
filling fractions ν = S.

In the quantum Hall context, these states describe quasi-particles made from clusters of
k = 2S electrons, each carrying a spin S = 1/2. Coulomb-repulsion seperates these electrons
and can be expected to cause the k-cluster to have an antisymmetric orbital wave function,
therefore total spin of the cluster is the completely symmetric spin S = k/2 state. The ψk−CSL

spin liquids reflect this by allowing up to k-fold multiple occupation of the same site by particles
in one cluster while otherwise suppressing close approaches of particles from different clusters
like (zi − zj).

A general Read-Rezayi k-cluster wave function can be written as

ψRR
k,M=1 =

∑
P∈SN

∏
0≤r<s<N/k

χ(zP (kr+1) . . . zP (kr+k); zP (ks+1) . . . zP (ks+k)) (3.14)

where the polynomial

χ(z1 . . . zk; zk+1 . . . z2k) = (z1 − zk+1)(z1 − zk+2)(z2 − zk+2)(z2 − zk+3)
× (z3 − zk+3) . . . (zk − z2k)(zk − zk+1) (3.15)
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S=1
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CSL +

CL
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S=1/2

CSL +

CSL −

Figure 3.3: The S = 2 chirality liquid can be obtained in 2 ways from 2 S = 1 liquids. We
find a topological degeneracy of 9, indicating that ’+’ and ’-’ chirality sectors form
independent (at low energies) non-Abelian liquids

connects two k-clusters such that each zi is linked to exactly two sites from the other cluster.
If k = 1 this gives

∏
i<j(zi − zj)2 which is a bosonic Laughlin-state at ν = 1/2. For k = 2 the

summand for, e.g. , the identity permutation is

∏
0≤r<s<N/k

χ(z2r+1 . . . z2(r+1); z2s+1 . . . z2(s+1)) =
N∏

j=3

(z1 − zj)(z2 − zj)
N∏

j=5

(z3 − zj)(z4 − zj) . . .

=
N/2∏
k=1

∏
j>2k

(z2k−1 − zj)(z2k − zj)

=
∏
k

1
z2k−1 − z2k

∏
i<j

(zi − zj)

P
P∈SN−→ Pf

[
1

zi − zj

]∏
i<j

(zi − zj)

i.e., this reproduces the Pfaffian. The parameter M is the exponent of the Laughlin-Jastrow
factor

∏
i<j(zi−zj)M , i.e., wave functions with stronger repulsion and different statistics can be

obtained by multiplying (3.14) with an M −1-Laughlin-Jastrow polynomial
∏

i<j(zi − zj)M−1.
The equivalence to the ψk−CSL states of our hierarchy can be understood by looking at

the expansion of (Ψ̂CSL)k: we have k sets of M sites {zα
j } and zα

i , z
β
j are not connected by

a factor zα
i − zβ

j unless α = β, i.e., they form a k-cluster. In the appendix B.2 we show
explicitly for the S = 1 NACSL, which is the first non-trivial member of the Read-Rezayi
series, how symmetrization (induced by the sum over all subsets of M lattice sites) yields the
exact Pfaffian.

3.4 The S = 2 chirality liquid

A particularly interesting spin liquid trial state constructed from 4 S = 1/2 CSLs is the S = 2
chirality liquid (S2CL). Taking two CSLs of each chirality before projection, we obtain a liquid
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3.4 The S = 2 chirality liquid

with real valued wave function, i.e., P and T invariance are restored.
Interestingly, we arrive at the same state when merging either two S1CLs, or two NACSLs

with opposite chirality

|ψS2CL〉 =
(
Ψ̂S1CL[a†, b†]

)2 |0〉

= Ψ̂NACSL
+ [a†, b†] Ψ̂NACSL

− [a†, b†] |0〉 . (3.16)

The topological degeneracy of the final state is 9-fold (see Tab. 3.1), not 4 × 4 = 16-fold as
one might be lead to believe by the first line in (3.16) above. It is hence the first instance of a
blocking mechanism for a non-chiral hierarchy state, which reduces the topological degeneracy
from 16 for the constituent S1CLs to 9. The construction as well as the TD suggests that (3.16)
exhibits (Ising-type) non-Abelian spinon statistics for both chiralities.

This is apparent in the explicit wave function, which we obtain by expanding the CSL
creation operators. It is

ψS2CL(z1, . . . , zN ;w1, . . . , wN ) = Pf
[

1
zi − zj

]
Pf
[

1
w̄k − w̄l

] ∏
i<j

(zi − zj)

×
∏
k<l

(w̄k − w̄l)
∏
i,k

G(zi)G(w̄k) e−
π
2
(|zi|2+|wk|2) (3.17)

here, {zi} and {wj} are independent sets of sites on the lattice where at most double occupancy
is allowed within each set.

In the spirit of the NACSL above, we can also substitute renormalised spin-flip operators
S̃+ for the a†s in the expression for the state:

|ψS2CL〉 =
∑

{zi},{wj}
ψS2CL(z1, . . . , zN ;w1, . . . , wN )S̃+

z1
. . . S̃+

zN
S̃+

w1
. . . S̃+

wN
|−2〉N (3.18)

where

S̃+
η =

√
2 + Sz

3 − Sz
η

S+
η (3.19)

and |−2〉N is again the fully spin down polarized state of all N S = 2 spins.
The S = 2 chirality liquid state (3.16) is a promising candidate to capture a universality

class of disordered S = 2 antiferromagnets, where the spin liquids may be stabilized through
itinerant holes of appropriate kinetic energies, as the holon excitations in the hierarchical spin
liquids presumably share the very high mobility of the holons of the individual constituent
CSLs. The characteristic features of this universality class are, first, a (S + 1)2-fold TD for
the P and T invariant spin S hierarchy liquid on the torus, and second, that the spinons and
holons obey non-Abelian SU(2) level k = S statistics. The properties of the spinons would
manifest itself not only in the spin liquid state, but in the response to all probes which measure
energy scales beyond the ordering temperature, such as e.g. Raman scattering.

37



3 Fractional spin liquid hierarchy

3.4.1 State counting and effective field theory.

There are important subtleties associated with the Schwinger boson projection scheme we
employ here to obtain the hierarchy of spin liquids. The Hilbert space of an N -site spin
S = 1/2 lattice contains 2N states and is matched by the number of states in the configuration
space of the spinon excitations one can create in the CSL. For higher spin, however, the
Schwinger boson projection maps a 2Nk dimensional product space to a (k+ 1)N dimensional
space, in which the resulting spin liquid is defined. This poses the fundamental problem of
how this reduction manifests itself for the spinons in the hierarchy liquids. For example, while
the S = 1 chirality liquid (3.12) suggests a picture of free spinons of different chiralities, this
picture can only be true at the lowest energies, since the state counting does not match.

It will be interesting to investigate this issue further from a field theoretical perspective.
Starting with an effective Chern-Simons theory for a single chiral spin liquid [33], and the
appropriate generalizations for the higher spin CSLs (3.13), we are led to conjecture that
doubled Chern–Simons theories with the appropriate k may describe the low energy physics
for the non-Abelian higher spin chirality liquids.

The (bulk) effective field theory for a bosonic ν = 1 Pfaffian state is [59]

L =
2
4π
εμνσ

(
aa

μ∂νa
a
σ +

2
3
fabca

a
μa

b
νa

c
σ

)
(3.20)

where we have 3 (2+1)-component statistical gauge fields aa
μ and fabc is a fully symmetric

rank-3 tensor and the k parameter in front equals 2 (similar to Laughlin 1/m states, where it
is m). The action is the (2+1)dimensional space time integral of the Lagrangian- density

S =
∫

d3xL . (3.21)

Given our observation, that the two chiraltity sectors ’+’ and ’-’ are independent at the low
energies for which effective field theories are useful, we conjecture the full effective field theory
for S = 2 chirality liquid to be given by a doubled non-Abelian Chern-Simons action

LS2CL =
2
4π
εμνσ

(
ai

μ∂νa
i
σ + biμ∂νb

a
σ +

2
3
fijk(ai

μa
i
νa

i
σ + biμb

i
νb

i
σ)
)

+ jμ
aa

i
μ + jμ

b b
i
μ (3.22)

with two sets of 3-component gauge fields ai
μ and biμ. The conserved currents jμ

a and jμ
b

describe the flow of chirality ’+’ and ’-’ quasi-particles of statistical charge 1/2. Each sector
has a degeneracy of 3, bringing the total to 3×3 = 9, since the degeneracy of two independent
fields on a manifold of genus g = 1 and is equivalent to one field on genus g = 2.

It is possible, however, that this theory has to be constrained further, even though the
number of consistent choices appears to be limited [60].
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4 Entanglement spectrum analysis

In recent years, there has been considerable interest in entanglement as an indicator of topo-
logical properities of a quantum many body system. One investigation tool enjoying increased
popularity is the entanglement spectrum (ES) [7]. It is essentially the set of eigenvalues of the
reduced ground state density matrix of one part of a bipartite system. While it is difficult to
interpret the structure of such a spectrum by itself, comparing its ’low energy’ part to that of
other states with known properties is thought to unveil information about global entanglement
and can indicate the presence of topological order. However in some cases, like Laughlin 1/m
FQH liquid on a torus, one can make a direct assignment of levels in the entanglement spec-
trum to the chiral edge states expected from conformal field theory [18]. This gives a credence
to the interpretation of the generic reduced density matrix in terms of a ’thermodynamic’
Hamiltonian describing edge states localized at the boundary between the two subsystems.

In this chapter we present the results of an investigation comparing the entanglement spec-
tra of 2 members of our chiral spin liquid hierarchy with the ground states of a frustrated
antiferromagnetic model with next nearest neighbour Heisenberg-type spin-spin interaction on
square lattice clusters with varying boundary conditions. This work is one of the first ES
studies of a 2D system. It involved writing software to compute conserved-quantum-number-
resolved entanglement spectra (in our case those are Sz and momentum m along the subsystem
boundary, but our program can in principle handle other symmetries as well) from arbitrary
wavefunctions on a spin lattice. This software, we think, constitutes a notable achievement
in itself. Our implementation is applicable to any system that can be described by product
states of single particle orbitals. Further details are given in section 4.2.

The liquids we looked at are the original S = 1/2 chiral spin liquid (CSL) with periodic- and
the S = 1 chirality liquid (CL) with cylindrical boundary conditions. It is true that of highest
interest would be the S = 2 chirality liquid, as it manages to reconcile non-Abelian topological
order with the symmetries of the Heisenberg hamiltonian. But since the Hilbert space of even
a few S = 2 spins is already very large, the computational effort involved in diagonalizing any
hamiltonian on even relatively small clusters is prohibitive. With the S = 1 chirality liquid
however we do have a hierarchy member which has the full symmetry of the hamiltonian and,
inherited from the CSL, also shows short range antiferromagnetic fluctuations. This is why we
thought it might be interesting to compare its entanglement spectrum with that of a quantum
antiferromagnet. The practical benefit of the S = 1/2 CSL is a managable Hilbert-space
size up to 24 sites. In an effort to avoid interference effects of the two system edges on the
spectrum we mapped the chirality liquid onto a cylinder, because only on this geometry can
we cut a system into parts A and B creating only a single edge. The details of this process,
which entails rewriting the fundamental S = 1/2 CSL for cylindrical boundary conditions, is
described below in section 4.3.1.
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Figure 4.1: We monitor the entanglement spectrum of the CSL and a nnn Heisenberg antifer-
romagnet as we change boundary conditions from periodic to cylindrical. In the
case of the CSL we must cross a topological phase transition, as we know that it
has a different TD in both cases.

We find that while both states, the S = 1 CL and the Heisenberg ground state, share a
common order of low levels in the Sz = 0,m > 0 sector, the CL does not show the substantial
Sz = 0,m = 0 singlet contribution of the antiferromagnet.

A different idea lies behind the comparison of the S = 1/2 CSL and the antiferromagnet.
We know that with periodic boundary conditions the former possesses topological order with
the accompanying fractional statistics and topological degeneracy, while this is not the case
on a cylinder: as we shall see, the center-of-mass-zero parameters necessary to ensure quasi-
periodicity of the CSL on the torus do not appear for cylindrical boundary conditions. Thus,
if we send one dimension of the torus, say Lτ , to infinity, we end up in a different phase
without topological order, crossing a phase transition in between. To see whether a frustrated
S = 1/2 Heisenberg antiferromagnet might behave similarly, we compare the evolution of its
entanglement spectrum to the CSL’s. The lattice cluster we worked on had 4 × 6 = 24 sites.
This is far from the in some circumstances numerically feasible maximum of 36 sites for reasons
we will explain in section 4.3.3.

We observe that in both systems the lowest level in the ES, lying in the Sz = 0,m = 0
sector and thus suggestive of a singlet state on the subsystem A, shows a sharp increase at
certain values Lτ respectively L̃ of the effective lengths. In case of the J1-J2 Heisenberg
antiferromagnet, this increase takes the form of a sharp peak (at L̃ = 1.15), while, whithin
the resolution of our numerics, it is more like plateau between Lτ ≈ 1.5 − 2.0 for the CSL.
At the same time the gap between lowest and second lowest level (LL gap) shows the inverse
behaviour: a sharp dip for the antiferromagnet and a wide depression for the CSL. In the
antiferromagnet this is accompanied by an increased susceptibility to a chiral perturbation,
albeit at a slightly different effective length. We take this as preliminary evidence a quantum
antiferromagnet at critical frustration exhibits topological order akin to the one in the chiral
spin liquid.

We will now go on to introduce entanglement spectra in general, review where they were
studied before and what information they are thought to contain. Then we describe our
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implementation of an ES analysis program for arbitrary discrete or discretized systems. We
introduce the systems we studied, including the model Hamiltonian and the mapping of the
CSL wavefunction onto a cylinder. Finally we show the entanglement spectra we obtain and
attempt an interpretion.

4.1 Entanglement spectrum

4.1.1 Defintion

The state of a many-body system is completely described by its density matrix ρ. We are
interested in zero temperature physics, therefore we will be considering pure state density
matrices of the form ρ(Z) = |ψ(Z)〉〈ψ(Z)|, where Z is a set of parameters (e.g. the center-of-
mass-zeros of the chiral spin liquid). For any partition of the system into parts A and B we
can obtain the reduced density matrix of subsystem A by tracing out the degrees of freedom
in B

ρA = TrB ρ =
∑

|φB〉∈BB

〈φB|ρ |φB〉 (4.1)

where BA and BB are bases of the subsystems. We can diagonalise ρA

ρA =
∑

i

e−ξi/2 |φA
i 〉〈φA

i | (4.2)

where normalisation of |ψ(x)〉 implies unital trace (see C.1)∑
i

e−ξi/2 = 1 (4.3)

If system and subsystems share some symmetries with associated conserved quantum num-
bers n = nA + nB the density matrix decomposes in to sectors nA and nB and we get a
reduced density matrix for each label nA

ρnA
A = Trn−nA

B ρ (4.4)

If ψ(x) is normalised on the full Hilbert space H n the ρnA
A will not have unital trace anymore.

4.1.2 What it reveals

One of the entanglement measures studied in recent years is the entanglement entropy of a
quantum many body system [5, 61]. It is the von-Neumann entropy of subsystem A and can
be computed from the reduced density matrix introduced above

SA =
1
2

∑
i

ξie−ξ/2. (4.5)
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Figure 4.2: a) for a highly entangled spin liquid state devided into regions A and B the topolog-
ical entropy of A is proportional to its boundary because the main contributions
come from edge excitations b) if A is non simply connected, a size independent
contribution appears

Using field-theoretical arguments, it has been shown in general that the entanglement entropy
of a not simply connected region A′ of a D dimensional topologically ordered system, where
is not extensive, but rather proportional to the surface of A [6]

SA′ = αLD−1 + Stopo + . . . (4.6)

where the region size L is assumed large compared to the coherence length ξ of the system
and the dots stand for sub-leading order terms. Thus, it appears only states within distance
ξ from the (D − 1 dimensional) boundary ∂A′ contribute to SA′ . The even more interesting
term however is the intensive contribution Stopo: it is directly connected to the ground state
degeneracy inherent in a topologically ordered system. In the 1/m Laughlin state on a torus
for instance, the topological degeneracy is m and Stopo = log(m).

These considerations were arrived at independently in studies of string-net models of spins
on a honeycomb lattice [28], where the authors obtain essentially the same general form (4.6)
for SA′ .

When we compute the entanglement entropy, most information contained in the full spec-
trum of the reduced density matrix is lost. One might say knowledge of SA′(L) is sufficient
as it already enables one to recognize topological order in a system, via the size independent
contribution Stopo. In practice however computing entanglement entropy for many and large
enough system sizes L, in order to be able to separate size-dependent and independent parts
of SA′ , is a numerically challenging task. In a paper from 2008, Li and Haldane [7] argue
that looking at the full, conserved-quantum-number-resolved spectrum of the reduced density
matrix instead of just the entanglement entropy allows to recognize topological order directly
from the low lying part of the spectrum, at least in the case of FQH states on a spherical
geometry. A key is the interpretation of the entanglement spectrum as the eigenspectrum of a
Hamiltonian describing edge states. Even if the full system is in a pure state |ψ〉, the reduced
matrix ρA will in general not correspond to a pure state on subsystem A (in fact it only does
so if |ψ〉 is a product state). But we can always write ρA as a thermal distribution

ρA = e−HA (4.7)
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for some a hermitian operator HA with fictious temperature β = 1.. Thus, the entanglement
entropy is equivalent to a thermodynamic entropy and the low ’energy’ levels of HA correspond
to the edge excitations at the boundary ∂A.

In the limit of a product state there will only be a single level ξ1 = 0. Accordingly, we
can expect for the case of weak, non-zero entanglement to find a ’ground state’ of high weight
ξ1 � 1 separated by a large gap from the remainder of the spectrum ξj � ξ1, j > 2.

With our knowledge about the scaling of the entanglement entropy with system size, we
can expect the eigenstates |φ′j〉 of ρA with the highest weights e−ξ/2, to be localized near the
boundary between A and B: the scaling with the boundary size can only be explained if states
in the bulk do not contribute significantly.

When we classify levels in ρA by quantum number, i.e., compute the density matrices ρnA
A ,

we obtain information about the quantum numbers of these edge excitations. For spherical
geometry, there the algebra discribing edge excitations has long been known [18, 46] and was
just this spectrum which was observed by Li and Haldane [7]. But also in the case of the 1/m
Laughlin state on a torus it is possible make, at least in the thin torus limit, a direct analytic
connection between edge excitations as obtained from conformal field theory and the levels of
the entanglement spectrum [50].

4.2 Our implementation

In this section, we want to describe the computational problem involved in obtaining the
entanglement spectrum of a many-body spin state and explain how we implemented it.

The systems we studied were lattice clusters of N spins S (S = 1/2, 1). We considered states
ψ of the whole system with vanishing z-component of the total spin Sz

tot = 0. The partition is
between sets of sites A and B on which one can then obtain product bases BSz

A—B.
The input to our program are

• the wavefunction ψ, which implicitly includes a Sz
tot = 0 basis of the complete system

• the bases for the subsystems A and B

• the specifications of the lattice cluster

Of course, in principle it would suffice to know ψ and the lattice specifications (including the
number of sites an spins) and have the program generate the subsystem basis internally. But
going the route of decreased automation makes it easier to generalize the program to other
geometries, filling fractions or encodings of the orbitals.

The lattice specifications must include the dimension of the cluster (width×height), its
symmetries in the form of permutations of sites, the list of sites belonging to subsystem A as
well as the symmetries of A (also given as permutations). Common symmetries of the region
A and the entire system will provide quantum numbers labelling the reduced density matrices.
In our problem we considered systems and subsystems with cylinder symmetry where the
associated quantum number is the momentum along the boundary between A and B.
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4 Entanglement spectrum analysis

The basis used to write down the total system state |ψ〉 and the subsystem bases for A and
B must be product bases satisfying the following compatibility criteria

• the numbers of both sites and particles must add up NA +NB = N and Np
A +Np

B = Np

• the z-components of total spin must add up Sz
A + Sz

B = Sz
tot

• in the total system basis, the orbitals belonging to A must come before those of B,
i.e., a configuration must look like |σA

1 , . . . , σ
A
NA

;σB
1 , . . . , σ

B
NB

〉 where σj encodes the
state/particle encountered on site j (for instance, the codes we use are S + 1 − Sz if
there is a spin on site j and either 0 or 2(S + 1) if there is a hole)

• the total system basis may be in symmetry reduced form to save memory (i.e., of all
different configurations {|σ1, σ2, . . . , σN 〉, |σ′1, σ′2, . . . , σ′N 〉 . . . } connected by a symmetry
only one representative is kept)

• subsystem bases must not be symmetry reduced

the last condition could be relaxed if we included the symmetry specifications for subsystem B,
since then we could restore the full, unreduced subsystem-bases internally. As the subsystem
Hilbert-spaces are usually negligibly small as compared to that of the full system (NA ≈ N/2
and dimH grows exponentially), this restriction hardly affects performance.

The details of how the computation proceeds given these input data can be found in ap-
pendix C.2. We only want to mention some important practical issues. The first concerns a
performance bottleneck of our program. Currently, diagonalisation of the reduced density ma-
trix is performed with a straighforward implementation of Gauss’ algorithm. We are therefore
restricted to sizes of about 5000 × 5000. So far, this has not been a problem for the quantum
number resolved density matrices we were analyzing. The largest subsystems we considered
were NA = 16 spins S = 1/2, with an unreduced Sz

A = 0 Hilbert space of 11440. Region A
was a 4× 4 square cluster, which means we had the 4 momentum numbers m = 0, 1, 2, 3 along
its boundary with region B (of the same shape). The largest ρm

A were therefore on the order
of 3000× 3000, still within the capabilities of the internal diagonalisation procedure. Yet only
two more spins, NA = 18, already take us beyond the limit.

The next is the question when and how the eigenvalues λi = e−ξi/2 of ρA should be resolved
into separate levels. We allow specification of a threshold above which the eigenvalues are
to be treated as separate levels while below they are counted as one degenerate level. The
question is now whether one should apply this ’binning’ or ’coarse graining’ to the eigenvalues
λi themselves or their logarithms ξi. One might argue in favour of the ξi, but we feel binning
the λi is more useful as it gives a better ’resolution’ in the interesting lower part of the spectrum
λi � 1, which is where we want maximum information. Of course this means that many levels
λi � 1 will not be resolved, but since they do not carry much weight anyway, this does in fact
help to ’tidy up’ the spectrum.

Lastly, there is an issue concerning the comparability of levels from different Sz sectors. We
renormalize the matrix ρSz

A in order to make them indiviually plottable. This means if we want
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to compare two levels from different sectors, say ξSz
1

and ξSz
2

we need to add a correction

Δξtrue = ξSz
1
− ξSz

2
+ 2 ln

dim HSz
2

dim HSz
1

(4.8)

4.3 The systems

This section takes a close look at the states/systems of which we want to compare the entangle-
ment spectra. One class, the chiral spin liquid on the torus is already known from chapter 2,
but here we rewrite it for cylindrical boundary conditions and show how it loses its topological
degeneracy in the process. Then we introduce the antiferromagnetic Heisenberg model with
next-nearest-neighbour interaction whose ground state spectrum we will be comparing with
that of our spin liquids. We have chosen this model, because the nature of the phase around
the critical coupling strength J1 = 2J2 is still an open question, and it just might be described
by a spin liquid. We close the section with a brief look at the system sizes we can tackle
numerically.

4.3.1 S = 1 chirality liquid on a cylinder

So far we have seen the chiral spin liquid wavefunction in two incarnations: with open and
with quasi-periodic boundary conditions. Now we are looking for a form suited to a cylinder
geometry. In the following, we choose complex coordinates z such that the periodic dimension
is in direction Re[z] = x.

Just as the Jacobi-theta functions are the means to make an open-boundary CSL wavefunc-
tion quasi-periodic and so adapt it to the torus, we are looking for an anti-symmetric function
with periodicity in one direction to satisfy the cylindrical boundary conditions. The straight-
forward choice is the sin-function. Replacing factors (zi − zj) in the open-boundary CSL by
sin(π(zi − zj)) we obtain

ψCSL
cyl [z] = eiKZ

∏
ij

sin2(π(zi − zj))
∏
j

G(zj) e−
π
2
Im[zj ]

2
(4.9)

for the wavefunction of an S = 1/2 chiral spin liquid on a cylinder. The M lattice positions
{zj} are again coupled to either spin flips or Schwinger boson operators.

Since the Gaussian depends only on the non-periodic coordinate ’y = Im[z]’, it is evidently
invariant under the operation of transporting one particle around the cylinder in x-direction.
By demanding the wavefunction to be quasi-periodic with boundary phase φ1 we get the
condition

eiK(−1)M−1 != eiφ1 . (4.10)

One should note, that any additional center-of-mass parameters are conspicuously absent.
Apparently, relinquishing one periodicity as compared to the torus makes them unnecessary.
This also means there is no function space of CSLs and therefore no topological degeneracy:
the wavefunction (4.9) still describes a spin liquid with broken P and T, but it is no longer
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4 Entanglement spectrum analysis

Figure 4.3: chiral antiferromagnetic phase on a triangular lattice. the order parameter depends
on 2 directions instead of just 1 as in a Néel AF

topologically degenerate! This does not mean excitations lose there half-fermionic statistics,
but since there is only one Wilson-loop and one flux insertion operator the link between
statistics and topological degeneracy is broken. With the circumference of the torus in 1-
direction our lengthscale, τ is a parameter we can use to control the boundary conditions.
Sending τ → i∞ and using the limit behaviour of ϑ(z|τ) → sin(πz) derived in appendix A.1
we can motivate (4.9) starting from the quasi-periodic form (2.50) (appendix C.3).

Expressing Ψ̂CSL with Schwinger boson operators allows us to set up our spin liquid hierar-
chy 3.4 on a cylinder just as with other boundary conditions. The hierarchy state we will be
comparing to the antiferromagnet described in the next subsection is the S = 1 chirality liquid
obtained by projecting one CSL of each chirality. We chose it as a good candidate because,
as explained in the previous chapter, it is the first element in the hierarchy which is P and T
invariant and thus shares all symmetries with the frustrated Heisenberg hamiltonian.

4.3.2 Frustrated Antiferromagnet ground state

In the context of spin systems one commonly considers the Heisenberg model

HHeisenberg =
∑
ij

JijŜiŜj (4.11)

In strongly correlated systems on a lattice, it arises in the large U limit from the Hubbard-model
at half filling (which does not have an explicit spin-spin coupling) if we include second-order
hopping processes.

The possible phases of this quantum magnet model are very rich: there is ferromagnetism
if Jij = J < 0, Néel antiferromagnetism if J > 0, but also spin glass phases for randomly
distributed Jij . Especially interesting and theoretically challenging phases are encountered in
frustrated systems. A nearest-neighbour Heisenberg model on a triangular lattice for instance
exhibits spiral antiferromagnetic order with coplanar spin polarization [38], and the phase of
spins on a Kagomé-lattice is still the subject of ongoing debate (see [30] and citations therein),
with most approaches favouring some kind of liquid state.
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Figure 4.4: a) Graphical depiction of a 4 × 4 lattice cluster with nnn interaction and PBC b)
T = 0 phase diagram of a J1-J2 Heisenberg model for S = 1/2 spins. The nature
of the phase between the Néel- and the Collinear orders is not known

Triangular and Kagomé lattice are examples of geometric frustration, but some materials,
most notably the cuprates and iron pnictides showing high temperature superconductivity, are
thought to be described by a model of spins S = 1/2 on a square lattice where frustration
comes from the presence of a next-nearest neighbour coupling:

HJ1J2 = J1

∑
nn

ŜiŜj + J2

∑
nnn

ŜiŜj (4.12)

The parameter controlling the phase is the ratio g = J2/J1. Classical spins (S → ∞) are
Neel-ordered below g = 1/2 and show collinear order above. The transition at the critical
value g = 1/2 has been found to be of first order. For finite spin, quantum fluctuations change
the picture however. For instance spin S = 1/2 particles show a non-magnetic phase in the
region 0.4 � g � 0.65. This phase has variably been conjectured to be a valence bond solid,
a chiral spin liquid or a chiral plaquet ordered phase. A thorough treatment of this model is
given in [30].

The idea we pursue is to monitor the entanglement spectrum of both the ground state of
HJ1J2 at critical coupling strength J1 = 2J2 and a S = 1/2 chiral spin liquid as we transition
from periodic to cylindrical boundary conditions. Somewhere during the process, the chiral
spin liquid undergoes a quantum phase transition from a topologically ordered phase to one
without such order which should be visible in its symmetry resolved entanglement spectrum.
The hope is to find similar features in the entanglement spectra of the J1-J2 ground states.

A practical issue is the length parameter used: in the CSL wavefunction we have the param-
eter τ , defining the circumference of the torus in that direction, which we can send to infinity.
In HJ1J2 we achieve the change in boundary conditions by slowly reducing both couplings
between two rows of the lattice creating an edge in the system (see figure 4.5 a)). We define
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Figure 4.5: We compute entanglement spectra of a J1-J2 Heisenberg antiferromagnet and com-
pare them with spectra of our spin liquids on a) a 4 × 6 square lattice of S = 1/2
spins as boundary conditions change from periodic to cylindrical. The transition
is achieved by slowly decreasing the couplings between two rows Jedge → 0 (links
shown in red). b) a 4 × 4 lattice of S = 1 spins

the dimensionless length
L̃ := Jbulk/Jedge (4.13)

The subsystems A and B where chosen of equal size and such, that each had one edge in
common with the total system.

As mentioned in the previous section, the other geometry we diagonalise HJ1J2 on is a 4× 4
square lattice cluster of S = 1 spins (figure 4.5 b) ). We compare the ES of the ground state
to that of the chirality liquid, in the hope of finding similar edge structures or other features,
corroborating that the latter captures the essence of the former.

4.3.3 Cluster sizes

Three things determine the possible cluster sizes: hardware, lattice symmetries and intrinsic
properties of our building block, the S = 1/2 CSL. The first is the most obvious limitation. To
give some numbers: For lattice clusters of S = 1/2 spins with full translational and reflexion
symmetry diagonalizing a Heisenberg Hamiltonian on a 6 × 6 lattice is just barely possible
with the hardware we have. The reduced Hilbert space of this system has a dimension of
9 × 109/250 ≈ 32 × 106.

But we cannot reach this if we may not use all symmetries. And on a cylinder translation
symmetry in one direction is broken. Other factors decreasing our available choice of cluster
size are that we want the two subsystems A and B be as equal as possible and also as close to
a square-shape as possible (better bulk to edge ratio). All this means, that there are actually
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Figure 4.6: Entanglement spectra of the S = 1/2 CSL on a 4 × 6 cluster for a) L = 1 and
b) L = 3. The lowest level is singlet contribution Sz = 0,m = 0 and decreases
markedly between L = 2 . . . 2.5 and the same hold for the lowest-level gap. Both
the lowest and second lowest level have for all length the same quantum numbers
of Sz = 0,m = 0 and Sz = 0,m = 2 respectively.

very few suitable cluster sizes and shapes available and they are significantly below the ’upper
bound’ of 36.

The best choice would be N = 32 = 4 × 4 + 4 × 4, the combination of two 16 site square
lattices. But the Hilbert space of this cluster is still 40 × 106 and therefore slightly too large
for us to handle (at one point we did generate the J1, J2-Heisenberg hamiltonian and it has a
size of ≈ 25 Gigabytes).

Both subsystems should have even numbers of sites, because we want to avoid generating
bulk excitations in the CSL as we cut the system, therefore the total system size must be a
multiple of 4. 28 cannot be arranged in a shape with any bulkyness, leaving 24 as the largest
feasible and useful size.

In the case of the spin S = 1 chirality liquid and S = 1 Heisenberg model, the largest
feasible geometry satisfying (most of) the conditions is a 4× 4 = 16 site square cluster, which
we again cut in half. The results found in such a small system are hard to extrapolate to the
thermodynamic limit and the computations would have to be repeated with larger clusters as
soon as it computationally feasible.

4.4 Results

Here we present the results of our numerical investigation of the systems described above. The
focus lies on the comparison of S = 1/2 CSL and critical J1-J2-Heisenberg model on the 4× 6
lattice cluster since due to its somewhat larger size, this system should be less affected by
finite-size effects than the 4 × 4 spin S = 1 lattice.
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4.4.1 N = 24, S = 1/2 lattice cluster

On the 4×6 cluster of S = 1/2 spins we computed the entanglement spectra of both a Laughlin
CSL wavefunction and a the ground state of a J1-J2 frustrated Heisenberg model as we vary
boundary conditions from fully periodic to cylindrical. In the case of the CSL this is done by
sending the parameter τ to infinity, while keeping the flux Φ = NΦΦ0 finite. The result of this
limiting process is the CSL spin liquid decribed by equation (4.9). Its form can be understood
in terms of periodicity arguments, but a derivation is shown in C.3. For the CSL we therefore
define our control parameter

L := τ/2τinitial (4.14)

The starting value τinitial is 1.5, as that is the extent in Im[z]-direction of a 4 × 6 cluster if
the size in Re[z]-direction is set to 1. The additional factor of 2 in the denominator makes
common plots of values for the CSL and the J1-J2 model simpler. As described above, the
length scale for the J1-J2 model is defined via the ratio of the coupling stengths in the bulk to
those across the edges we create in the system (4.13)

L̃ := Jbulk/Jedge

We will keep there ratio J2/J1 = 1/2 everywhere, i.e., also at the edge.
As an additional probe we implemented a chiral perturbation of the pure J1-J2 model HJ1J2 .

It is basically a lattice-sum of chirality operators χijk := Si · (Sj × Sk) as defined in (2.43):

Hchi = χ
∑
ijk

Ŝi · (Ŝj × Ŝk) (4.15)

where the sum runs over all neighbouring triples of sites (ijk) with ((Rj − Ri) × (Rk − Ri))z >
0. We varied χ between 0 and ≈ J1/5 and observed the response in the ground state energy
as well as the entanglement spectrum.

A selection of the spectra we obtained is shown in figures 4.6, 4.7 and 4.8. In all of them,
we used a cutoff of ξi < 4.5 and a level resolution of exp(−ξi/2)− exp(−ξi−1/2) = ±10−4. We
plot only the first two Sz sectors, since only they are relevant to find the gap between lowest
and second lowest level (LL gap).

The main feature exhibited by both the CSL and the frustrated AF is a peak in the lowest
level with an accompanying dip in the LL gap. In the limit of large L, L̃, the lowest level
(gaps) settle down at a lower (higher) value than in the initial state. This is means that for
both systems subsystem entanglement is much weaker in cylindrical geometry. However, This
might in fact simply be a consequence of the reduction in the common boundary between A
and B.

Furthermore we find that the chiral perturbationHchi causes a linear response in the chirality

χGS(L) = 〈ψGS(L, χ)|
∑
ijk

χijk|ψGS(L, χ)〉 = −a(L)χ (4.16)

where a(L) is a length dependent ’chiral susceptibility’. There is a the peak in the chiral
susceptibility at around L̃ = 1.5. Interestingly this does not quite coincide with the position
of the dip in the LL gap.
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Figure 4.7: Entanglement spectra of the nnn-Heisenberg ground state a),b) without and c),d)
with chiral perturbation (χ = J1/10) on a 4 × 6 cluster below and above the
transition for lengths a),c) L̃τ = 1 and b),d) L̃τ = 2. The main singlet contribution
Sz = 0,m = 0 decreases exponentially and the minimal gap increases linearly
L = 2 . . . 2.5. The sector of the second lowest level changes from Sz = 1,m = 0 to
Sz = 1,m = 2.

In conclusion, while both the S = 1/2 CSL and a frustrated AF show a reduction of lowest-
level gap in the entanglment spectrum followed by a relatively fast approach to the limit
value as the effective lengths are increased. The positions where these occur cannot really be
compared as the scales of the effective lengths we use are unrelated.

The peak in the chiral susceptibility a(L̃) occurs at L̃ = 1.5, which is significantly different
from the position of the dip in the LL gap (at L̃ = 1.15). Currently we do not have a
convincing explanation for this, but we believe that it is nonetheless an effect of the same
transition responsible for the features seen in the lowest level and LL gap.

Unfortunately, the LL gap might not be the right quantity to look at. Whether the dip in
the LL gap as well as the other features observed for the AF indicate a transition between
topologically different phases can only be decided by going to larger systems where a finer
momentum resolution might make it possible to observe the full set of low lying ’topological’
states in the CSL and, if such a set indeed exists there, in the AF, which [29] identified as the
fingerprint of topological order in FQH-like spin liquids.
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Figure 4.8: Entanglement spectra at the minimal LL gap lengths: nnn-Heisenberg ground state
at L̃ = 1.15 a) without and b) with chiral perturbation. c) CSL at L = 1.5 Note
that for both the gap is between levels with quantum numbrs Sz = 0,m = 0 and
Sz = 0,m = 2. For the CSL this is the case for all lengths, while the AF shows
this feature only around the critical length L̃ = 1.15. One can also see, that the
levels structure is not visibly changed by the chiral perturbation, in contrast to the
region L̃ ≈ 1.5. where the lowest levels are shifted up with increasing χ, leaving
the LL gap almost unchanged.
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Figure 4.9: a) The lowest level (=main contribution) in all entanglement spectra and b) the
minimal gap between the lowest level and the next higher one. The lowest level is
always in the Sz = 0,m = 0 sector and therefore most likely a singlet. For both
the CSL and the AF we observe an increase in the lowest level with an according
decrease of the gap. The peak positions (rather a plateau for the CSL) are not
comparable as the scale of the two ’effective’ lengths used are unrelated. Note also,
that while both lowest and second lowest level of the CSL are in the Sz = 0,m = 2
sector for all values of L, it is not so in case of the AF ground state. There we
observe a switch from Sz = 1,m = 0 for L̃ = 1 via Sz = 0,m = 0 around the
transition length L̃ ≈ 1.15 to Sz = 1,m = 2 for large L̃. The chiral term seems to
delay the ’rearrangement’ of the of the system as the changes in both lowest level
and minimal gap size are significantly weaker in b).
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Figure 4.10: a) The ground state energy is well described by a hyperbola E = E∞−a/Lb with
E∞ = −25.27, a = 1.225 and b = 5.07 where energy is in units of (bulk) coupling
strength J1. b) When we add a chiral perturbation Hchi = χ

∑
ijk χijk to the

Heisenberg hamiltonian we observe a change in the ground-state energy almost
exactly like ΔE = −a(L)χ2 indicating a linear response of the chirality. The
’susceptibility’ a(L̃) has a sharp peak at L̃ = 1.5 which coincides with the point
where the chiral perturbation causes the biggest deviations in the entanglement
spectrum (cp. Fig. 4.9)
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Figure 4.11: The spectra of a) the chirality liquid and b) a J1 = 2J2-Heisenberg ground state.
The scarcity of levels for the AF is due to the overwhelming singlet contribution
Sz = 0,m = 0: most levels where eliminated by the enforced cut-off of 4.

4.4.2 N = 16, S = 1 cluster

We now come to the comparison of the spin S = 1 chirality liquid with the ground state of a
antiferromagnetic next-nearest-neighbour J1-J2 Heisenberg model at critical coupling strength
J1 = 2J2 on a 4× 4 spin S = 1 square lattice cluster with cylindrical boundary conditions. As
was already indicated, the chirality liquid has a real valued wavefunction and thus preserves
P and T symmetries, just like the Heisenberg Hamiltonian HJ1J2 . So it would be interesting
to check whether one can find any indication, that the CL is a suitable description for the
non-magnetic T = 0 phase of the antiferromagnet in the J2/J1 ≈ 1/2 regime.

Figure 4.11 shows the entanglement spectra of the CL and the frustrated antiferromagnet
ground state. As can be seen, both have a significant singlet contribution (Sz = 0, m = 0)
but in the AF it is far stronger than in the CL. Both this and the large LL gap causes are
a clear indication, that in the AF the subsystems A and B are not as strongly entangled as
the chirality liquid. A way to explain this is that even for critcal coupling strength, the is
close to a state with ’classical’ antiferromagnetic ordering, which in mathematical terms are
product-states. On the other hand the structure of the other Sz = 0 levels does indeed show
a similarity: in the m = 1, 2, 3 sector we have the same succession of levels m = 2, m = 1, 3,
m = 2 and m = 2 degenerate with m = 1, 3

As a second check, we also computed the overlaps between both states and the expectation
value 〈ψS1CL|HJ1J2 |ψS1CL〉 for different ratios of the coupling strength. The results are given
in table 4.1.

Both overlap and energy show the best agreement for J2/J1 = 0.5. An overlap of 0.92
and 88% energy saturation (〈ψS1CL|HJ1J2 |ψS1CL〉 ≈ EGS + 5J1, i.e., an average of 5 links
is not satisfied) is decent, but not impressive. We should note however, that there was no
fitting involved here, as the chirality liquid is parameter-free on the cylinder. There is a
slight tilt towards lower ratios of J1/J2, which might be an effect of the edge the system
has in cylindrical boundary conditions: when one reduces boundary conditions from periodic
to cylindrical, one cuts twice as many nnn-links as nn-links, so that Néel order will become
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4.4 Results

g | 〈ψCL|ψGS〉 | 〈ψCL|HJ1,J2 |ψCL〉 〈ψGS|HJ1,J2 |ψGS〉
0.00 0.6151 -65.50 -72.0
0.25 0.7657 -50.48 -56.0
0.49 0.9031 -36.78 -41.45
0.50 0.9152 -35.44 -40.0
0.51 0.8907 -34.84 -42.15
0.60 0.3504 -29.44 -45.0
1.25 0.0092 03.85 -51.0

Table 4.1: the table contains overlaps and energy expectation values of a ψCL(Z0) with the
exact ground state of a J1, J2-Heisenberg Hamiltonian for a N=16 square lattice

slightly more favourable as compared to collinear order.
This strikes upon the ratio of edge-to-bulk as the major weakness of this investigation: The

system as a whole in general and the subsystems A, B in particular are admittedly rather
small, so that extrapolating these results to the infinite lattice is difficult.

While the entanglement spectra do show common features, the chirality liquid is obviously
much more strongly entangled than the AF ground state and as the overlap and energy sat-
uration are also not outstanding we must conlude that, for such small systems at least, the
chirality liquid is of only limited value as an ansatz for the non-magnetic phase in the critical
nnn-Heisenberg antiferromagnet. However, a final verdict of how well for instance correlations
in chirality or higher order operators agree in both systems or whether the AF develops the
same (Abelian) edge structure must await computations on clusters with significantly larger
size.

55



56



5 Extended Young tableaux

In this chapter we present the method of extended Young tableaux, originally devised to find
the spinon-excitation content of eigenstates of a Haldane-Shastry spin chain composed of funda-
mental SU(n) spins. We show how it can be generalized to higher, symmetric representations
of SU(n). We also use it to compute the eigenvalues of the cyclic permutation (the translation
of a chain by one lattice site) faster than traditional methods based on group characters or
diagonlisation of total weight representations.

5.1 Motivation

The study of spin lattice models in low dimensions is an important and vibrant field of con-
temporary condensed matter physics and has produced many interesting insights into novel
states of matter and manifestations of order. Many currently studied systems, for instance
frustrated quantum antiferromagnets, have deceptively simple looking Hamiltonians, which
are nonetheless hard to investigate with analytical methods. In this case numerical methods,
like density matrix renormalisation group (DMRG), Coupled Cluster, Quantum Monte Carlo
variational methods, functional renormalisation group (FRG) based schemes or exact diagonali-
sation (ED) can be used to probe for the presence of order. This order can exist as spontaneous
symmetry breaking or as topological order and numerical methods help in obtaining the phase
diagram. Even fully tractable, integrable models can benefit from numerics in general and
ED in particular, when perturbation corrections to the analytically given eigenstates are to
be calculated. Among these methods exact diagonalisation (ED) stands out as the only one
being applicable regardless of the specifics of the physical model and its geometry.

A spin model consists of a cluster of N spins arranged on some lattice tile, with periodic,
or possibly other, boundary conditions, and a Hamiltonian describing the interaction of the
spins with each other or with external fields. The spins transform like some irreducible rep-
resentation σ of SU(n), usually SU(2) but higher n have also enjoyed attention [62–67]. For
any n, the Hamitonian acts on a tensor product space whose dimension grows exponentially
in N . This unfortunately makes ED computationally much more demanding than the other
numerical methods, which deal with this problem either by restricting themselves to a sub-
set of suitably chosen states containing most of the information that is physically relevant
(DMRG) [68], by starting from some ansatz for the wave function which is then refined varia-
tionally (Monte-Carlo) [69] or by taking interactions into account only up to some finite order
(Coupled Cluster) [70] or, in a recently developed approach, using auxillary particles to bring
the power of diagrammatic methods to bear on the problem (FRG [30]).

The most commonly considered interaction is of the Heisenberg form JijŜiŜj between spins
on sites i and j with a coupling constant Jij . Such a Hamiltonian is inherently invariant under
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5 Extended Young tableaux

global SU(2) (SU(n)) rotations and conserves both Stot and Stot
z and (or, for general SU(n),

total weight w and highest total weight wtot) respectively. In many models the Jij are such
that the Hamiltonian also has the full symmetry of the lattice, which implies the existence of
additinal conserved quantum numbers. While the currently most common approach to ED in
does exploit the Stot

z and lattice symmetry conservation, a viable scheme to utilize Stot has, to
our knowledge, not been implemented yet, even though it does promise significant performance
gains.

5.1.1 Total spin bases

For spin independent Hamiltonians, the problem is in principle solved by Gelfand and Tsetlin’s
construction of an inherently orthonormal basis for irreducible representations of U(n) (com-
plete with a prescription how to obtain the matrices of the infinitesimal generators of U(n), in
fact it works for the general linear group GL(n) too) [71, 72]. It has been used extensively in
numerical quantum chemistry and molecular physics after it was made practical by the inven-
tion of many ingenious schemes of obtaining the involved matrices efficiently (see e.g. [73–78]).
For the spin-dependent Hamiltonians of spin-lattice systems this method is not applicable
unfortunately. If however the system is composed of spins transforming like the fundamental
representation of SU(n), one can use the Dirac identity relating ŜiŜj to the transposition
Pij [79], and Yamanouchi’s construction of the representation matrices of irreducible represen-
tations λ of the symmetric group SN (with respect to a basis given by all standard Young
tableaux on λ) [80, 81] to write down the hamiltonian in a total spin (total highest weight)
basis. For higher spins, this is not possible anymore, because there is no equivalence to the
Dirac identity to express ŜiŜj in terms of transpositions/permutations (all one can do is write
Pij as a sum of powers of ŜiŜj as first described by Schrödinger [82], but not the other way
around).

5.1.2 The labelling problem

An interesting problem encountered in this context is to determine the quantum numbers
labelling states in a total hightest weight basis in addition to weight wz and highest weight
w, the generalisation of Sz and S of SU(2). They must be eigenvalues of operations from the
point symmetry group S of the lattice. Since for any lattice S is just subgroup of SN , the
full permutation group on N objects, these labels are the eigenvalues of a commuting subset
L of the lattice symmetries plus the eigenvalues of as many further commuting permutations
q ∈ L ′⊂SN\S as are needed to provide a unique labelling. The theoretical benefit of such
a basis is clear: since the Hamiltonian H is invariant under the lattice symmetries, its matrix
will be (block-) diagonal in the quantum numbers coming from L (and L ′).

How can we determine these eigenvalues? There are two traditional ways: Say V ⊗N
σ , the

N -fold product of an irreducible SU(n) representation Vσ contains the SU(n) IR Vw exactly
aw times and we want to know the eigenvalues of our commuting lattice symmetries on the
subspace V ⊕aw

w Then one way is to use character theory to decompose V ⊕aw
w into irreducible

representations of SN . The eigenvalues of the permutations L ∪L ′ are then obtained by
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5.1 Motivation

diagonalising the representation matrices in these SN IRs (which is possible for all of L
simultaneously since it is assumed to be commuting). Alternatively, we could write down all
product states φwz ∈ V ⊗N

σ , which have the total weight wz, obtain the representation matrices
of all labelling operations (L ∪L ′) and again diagonalise all of them simultaneously. In both
cases, we need to repeat the process for (some of) those higher weight multiplets, that are
contained in the subspace of the total weight w. In the case of SU(2) for instance, where the
total weight is just the z-component Sz

tot of Stot, it is sufficient to consider the next higher
total spin, i.e., Sz

tot + 1, and discount all sets of eigenvalues which appear for both Sz
tot and

Sz
tot + 1.
The decomposition of V ⊗N

σ into irreducible representations of SU(n) can be done elegantly
using the method of Young tableaux. It allows us to determine the aλ in

V ⊗N
σ =

⊕
λ

V ⊕aλ
λ (5.1)

Here (σ) and (λ) are integer partition of N corresponding to some highest weight s and w
respectively of SU(n). As we will describe in more detail below, an integer partition can be
visualized in the form of a diagram of left-aligned rows of boxes called a Young diagram or
shape. The existence of the correspondance between irreducible representations and integer
partitions makes it possible to use the terms ’weight’ and ’shape’ interchangeably in the context
of SU(n).

In a recent paper, [8] the method of extended Young tableaux was introduced which allows
the spinon content of an eigenstate of the Haldane-Shastry-Model for a chain of N fundamental
SU(n) spins to be read off directly from slightly modified Young Tableaux. An interesting
consequence is that this also solves the labelling problem we described above for the case
L = {CN}, CN being the generator of the cyclic subgroup CN of SN . The eigenvalues of CN

are usually identified with the momentum along the chain. To our knowledge it is the only
such method working directly with Young tableaux.

As one of the results of this thesis we show how the extended Young tableaux method
generalizes to higher symmetric representations of SU(n). We were not able to find a rigorous
mathematical proof of their correctness, but we present numerical evidence that it indeed
gives the correct results for the eigenvalues of CN , as long as the representations Vσ which
are coupled are symmetric, i.e., correspond to Young tableaux with a single row. We also
find, that while it does give the correct distribution of momenta on the subspace V ⊕aλ

λ of all
multiplets λ, it does not assign these momenta to the individual YT in a way which would
help in finding the irreducible representations of SN contained in V ⊕aλ

λ . Lastly we show how
exploiting the advantage of working directly with the Young tableaux can significantly speed
up the computational solution of the labelling problem for CN over the traditional methods.

This chapter is organized as follows: In section 2 we review the method of Young tableaux
for SN and how it relates to the irreducible representations of SU(n), we then in section 3
restate the extension procedure for fundamental representations and give some examples. In
section 4 we turn to our main result of applying the procedure to higher representations: we
reformulate the extension rule in a way that allows its application to YT built from higher
symmetric representations, present some evidence, that it does indeed give the correct results as
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5 Extended Young tableaux

far as the multiplet space as a whole is concerned and assess the suitability of extended Young
tableaux to obtain the decomposition into IRs of SN . In section 5 we analyse the computational
effort of traditional methods of obtaining the eigenvalues of the cyclic permutation CN and
show that an extended Young tableaux based scheme can yield a significant speed up.

5.2 Young Tableaux and SU(n)

We want to give a short summary of Young tableaux and their traditional uses in the context
of the symmetric and the (special) unitary groups.

The symmetric group SN is the group of permutations of N distinguishable things and
is of finite order |SN | = N !. It can serve as a role model for all finite groups, since every
finite group G is isomorphic to a subgroup of S|G| (Sydney’s theorem). Both for this and its
application in physics, where many-body wave functions in three spatial dimensions have been
found to always transform like trivial (bosons) or the alternating representation (fermions), the
representations of the symmetric group have been the focus of intense study over the years. In
principal, the mathematical problem of finding the representations and characters of SN was
essentially solved by Alfred Young [83] in an influential series of papers based on Frobenius’
earlier work for general finite groups and published at the beginning of the 20th century.

There are different ways to write a permutation suited to different situations. The most
compact and as we find illustrative is the cycle notation: the elements which are mapped one
onto the next are written within parentheses with the lowest index in the cylce appearing first
by default. E.g. (142) is a cycle of length 3 and maps 1 onto 4, 4 onto 2 and 2 back onto 1. (214)
would denote the same permutation in non-standard order. One-cylces, e.g. (3), also called a
fixed points, are usually omitted from the cyclic notation. That means, in the context of S5,
(142) corresponds to the full permutation (142)(3)(5). A permutation consisting of a single 2-
cycle is called a transposition. The set of transpositions GN = {(i, i+1), i = 1, . . . , N −1} acts
as the canonical set of generators for SN , i.e., every permutation can be written as products
of elements in GN . While these products are not unique, their parities are, and thus we
can uniquely associate every P ∈ SN with a sign σP = (−1)|P |, where |P | is the number of
transpositions needed to generate P .

In the theory of representations of the symmetric group SN , both the conjugacy classes and
the irreducible representations are intimately related to partitions of N into sums of k integers

(λ) = (λ1, λ2, . . . , λk), λ1 ≥ λ2 ≥ · · · ≥ λk > 0

|λ| :=
∑

j

λj = N (5.2)

In the case of the conjucacy classes [c] = (SN )−1c(SN ) the connection is quite direct: a
conjugacy class contains all permutations of the same cycle structure. For instance, the class
of (12)(345) in S5 is formed by all P ∈ S5 made up of a transposition and a 3-cycle. For the
irreducible representations the connection is via the Young tableaux which we will now review
briefly.
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5.2 Young Tableaux and SU(n)

5.2.1 Young tableaux and Young symmetrizers

We can depict an integer partition (λ1, . . . , λk) graphically by a so called Young diagram or
shape , which consists of k left aligned rows of boxes where row j has length λj (cp 5.1). A
Young tableaux on the shape (λ) is a Young diagram of shape (λ) where the boxes are filled
with integers bij ∈ {1, 2, . . . , N}. The two most important classes of YT are the semi-standard
and standard tableaux. A semi-standard tableaux T of type μ on the shape λ is a filling of λ
with μ1 1’s, μ2 2’s and so on such that the entries are non-decreasing in each row and strictly
increasing in each column (clearly this requires |μ| = |λ|). The standard tableaux on λ are
defined as all semi-standard tableaux of type (1, 1, . . . , 1), i.e., each number 1, . . . , N appears
exactly once.

(a)

(b)
1 3 2 3 5
6 7 5
3 4
7

(c)

1 2 3 4
5 6 ,

1 2 3 5
4 6 ,

1 2 3 6
4 5 ,

1 2 4 5
3 6 ,

1 2 4 6
3 5 ,

1 2 5 6
3 4 ,

1 3 4 5
2 6 ,

1 3 4 6
2 5

1 3 5 6
2 4

Figure 5.1: (a) the Young diagram or shape to the partition (5, 3, 2, 1), (b) the same diagram as
Young tableaux filled with indices i ∈ 1, . . . , 7 and (c) all standard Young tableaux
on the shape (4, 2)

The connection to the irreducible representations of SN is now the following: Given any
tableaux T of type (1, 1, . . . , 1) (not only standard ones, i.e., the indices could be out of
order too), one can interpret it as a symmetrization aT over all indices in the same row
followed by anti-symmetrization bT over indices in the same column. The resulting operation
cT = aT bT ∈ CSN is an element of the group ring of A = CSN and generates a minimal
left-ideal AcT , i.e., an irreducible representation (cp. appendix D.3) Moreover, the ideals
AcT generated as T varies over all standard YT sum directly and the space they span is
the subspace of all equivalent irreducible representations associated with the diagram λ(T ).
Therefore, since the irreducible representation V of a finite group G appears dimV times in
the group ring CG, the number Nλ of all standard YT on λ must equal the dimension of the
irreducible representation associated with λ.

5.2.2 Hook length and branching

Nλ can be computed by the famous hook-length formula

Nλ =
N !∏

i,j∈λ hij
(5.3)

where i, j are the coordinates of the box in row i and column j and hij is the length of the
’hook’ associated with box i, j, which is the number of boxes below and to the right plus the
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j

i

hij = λi − j + λ′j − i+ 1

Figure 5.2: The hook length formula allows to compute Nλ, the number of standard YT on a
shape λ

1 ⊗ 2 ⊗ 3︸ ︷︷ ︸
1
2 ⊕ 1 2

= 1
2
3

SU(2): n.def.

SU(3): rep1

⊕ 1 2
3

S = 1
2

rep8

⊕ 1 3
2

S = 1
2

rep8

⊕ 1 2 3

S = 3
2

rep10

Figure 5.3: The first few examples how one can use the branching rule to built up all Young
tableaux to a shape λ. In this way it is possible to decompose tensor products of
SU(n) representations, where the tableaux in the decomposition must have ≤ n
rows. Also, taking tensor products is an evidently distributive operation.

box itself. Thus, hij = λi − j + λ′j − i+ 1, where the conjugate diagram λ′ is obtained from λ
by interchange of rows and columns.

We can built up all standard YT on λ, |λ| = N in the following step-by-step manner: Start
with a single box. Then write down all ways in which one can add a second box such that the
resulting tableaux is a standard YT of which there are two: one can put the ’2’ to the right
or below the ’1’. To both of the two tableaux thus obtained we can add a ’3’ in two ways,
resulting in four different tableaux (see Fig. 5.3). If we continue in this fashion, making sure
that all intermediate shapes ν are contained in λ, we will arrive at all standard YT on λ. This
leads to the following recursive formula for Nλ (branching relation):

Nλ =
∑

μ

Nμ (5.4)

where the sum extends over all μ ⊂ λ which can be obtained from λ by removing one box.

5.2.3 SU(n)

The Young operators cλ can also be applied to product states of SU(n) representations. If we
define the action of a permutation in the natural way for P ∈ SN , |v〉 = |v1, v2, . . . , vN 〉 ∈ V ⊗N :

p |v〉 → |vp(1), vp(2), . . . , vp(N)〉

62



5.2 Young Tableaux and SU(n)

⊗
a a
b

=
a a
b

⊕ a
a
b

⊕ a
a b

⊕ a a
b

b
a a

⊕
�

�
�

�
��

�
�

��

Figure 5.4: The Littlewood-Richardson rule allows us to decompose tensor spaces of non-
fundamental representations. The crossed-out tableaux is the one of the ’naive’
expansion which is forbidden by the LR rule

it commutes with the operations of the unitary group SU(n) (in fact with all linear automor-
phisms in GL(V )). If V(1) = Cn is the fundamental representation of SU(n), this leads to the
conclusion that the subspace of all equivalent irreducible SU(n) representations forms an IR of
SN and therefore we may use the standard YT to label the IRs of SU(n). This is the well known
Schur-Weyl duality [84, 85]. There is also a more intuitive way of seeing this: we may built
up total highest weight states by adding the spins one after the other, deciding each time with
which spins to symmetrize and anti-symmetrize. But this is exactly the branching-rule way
of constructing the standard YT given above (cp Fig. 5.3). Since we cannot anti-symmetrize
on more elements than the dimension of the elementary representation V(1), we know that the
YT involved can only have dim(V(1)) rows.

Thus we arrive at the prescription for decomposing the product space of fundamental repre-
sentations

V ⊗N
(1) =

⊕
λ

V ⊕Nλ
λ (5.5)

Thus, the multiplicity with which each IR of SU(n) appears is given by Nλ and each subspace
V ⊕Nλ

λ also forms the irreducible representation of SN associated with that shape λ.

5.2.4 Non fundamental

Even if the elementary representations Vσ coupled together are not fundamental, which is
equivalent to |σ| > 1, we can still use Young tableaux to obtain the decomposition: in this
case the multiplicities aλ(σ,N) in the product space are the number of semi-standard Young
tableaux on the shape λ, |λ| = |σ|N of type (σ1, σ2, . . . , σk, σ1, . . . , σk, . . . , . . . , σ1 . . . , σk) which
satisfy the Littlewood-Richardson rule. This means, if we fill a diagram of |σ|N boxes with σ1

’1’s, σ2 ’2’s, ..., σk ’k’s, again σ1 ’(k+ 1)’s and so on until at last we enter σk ’kN ’s, such that
for each constituent σ the Littlewood-Richardson rule is satisfied: Reading the rows from right
to left and top to bottom and counting the frequencies cl how often we encounter each number
l = k(j−1)+1, k(j−1)+2,...,kj coming from the jth elementary shape σ we must at all times
during this process have: ck(j−1)+1 ≥ ck(j−1)+2 ≥ · · · ≥ ckj for all j = 1, . . . , N . An example is
given in 5.4. If the Young shape σ associated with the IR Vσ of SU(n) consists of only one row,
i.e., (σ) = (σ1), it is called a symmetric representation. The name comes from the fact that
we can be built it as the complete symmetrization of σ1 fundamental representations). When
coupling these single-row representations, the Littlewood-Richardson rule is trivially satisfied,
i.e., all semi-standard YT (of type (σ1, σ1, . . . , σ1)) are permissible.
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5 Extended Young tableaux

5.2.5 Relation to SN

Unfortunately however, for product spaces of higher SU(n) representations the decomposition
into IRs of SU(n) does not automatically give the decomposition into IRs of the symmetric
group SN anymore. Each multiplet subspace V ⊕aλ

λ certainly does still form a representation
of SN , but i.g. not an irreducible one. To our knowledge, it is not possible to determine which
IRs of the symmetric group are contained in V ⊕aλ

λ by straightforward analysis of the Young
tableaux. Rather one has to employ character theory to find the answer and we will now
briefly sketch one way in which this can be done. As mentioned before, the shape (or diagram)
labelling an IR of SU(n) stands in one-to-one correspondance to the highest weight (state)
contained in it. In case of SU(2) for instance, the highest possible value Sz

tot can attain in
a total multiplet is simply the total spin Stot itself. In terms of shapes it corresponds to a
single-row diagram of 2Stot boxes.

Say we want to decompose V ⊕aλ
λ . We take one representative permutation P from each

conjugacy class in SN and check how many states it leaves invariant in a basis Bwz of the
subspace spanned by product states with a certain total weight wz = w(λ). This yields a
vector of non-negative integers χw (with dimension equal to the number of classes in SN )
which is a compound character of SN and can be analysed using the characters χν of the
irreducible representations:

b̃νw =
1
N !

∑
p∈SN

χν(p)χw(p).

The numbers b̃νw are not yet the desired multiplicities however. Because a total weight subspace
Bwz always also contains some multiplets of higher highest weight w′ > w, each a certain
number cw

′
w ≥ 0 times. The cw

′
w are non-negative integers and can be determined from the

weight structure of the SU(n) IRs and is trivially equal to 1 for SU(2) but quickly becomes
messy to compute as n increases. Already SU(3) is too complex to be shown here (the formula
is given in appendix D.4). Therefore we must repeat the procedure for a number hw of higher
weights w′ > w and subtract a suitable linear combination:

bνw = b̃νw +
∑

w′>w

dw′ b̃νw′

The dw′ are coefficients determined from the cw
′

w in such way, that

∑
w′≥w

dw′w̃′ =
∑

w“≥w′≥w

dw′cw
′′

w′ w“ ∝ w . (5.6)

with w̃′ =
∑

w′′ cw
′′

w′ w′′ (w′ is a n − 1 dimensional vector). Lets give an example of what we
mean. Say we have 3 weights w1 < w2 < w3. The cwj

wi describing how often the IR wj appears
in the total weight representation wi can be arranged in form of a matrix, which will always
be an upper or lower triangular one depending on whether the weights are in increasing or
decreasing order respectively. We use increasing order and thus an example of a matrix might
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5.3 Fundamental extended Young tableaux

SU(2): 1 2
3 4 Stot = 0 → 1 2

3 4 → 1 2
3 4�

�

SU(3): 1 2
3 4 rep 6 → ” → 1 2

3 4�

�

� � �

Figure 5.5: A simple example for the extension procedure: the lower row slides to the right,
s.t. ’2’ is above ’3’. How many empty spaces are counted depends on the Lie group
under consideration.

be (
c
wj
wi

)
=

⎛
⎝ 1 1 2

0 1 1
0 0 1

⎞
⎠ (5.7)

Say we want to extract the information about w1. This means we have to form linear combi-
nations of the rows of the matrix, such that the entries in all columns except the first vanish.
The coefficients di = dwi we need for this are easily seen to be d1 = 1 and d2 = d3 = −1.

Once the SN -IR content of a multiplet space is known, all eigenvalues of permutations
are known as well. Thinking again of the problem of finding a total highest weight basis,
one in general has to do this character analysis to obtain the quantum numbers of lattice
symmetries. However, at least for the special case of the cyclic permutation CN on N objects,
there is a procedure to find its eigenvalues directly from the Young tableaux involved in the
decomposition of V ⊗N

σ . This is what we are going to turn to now.

5.3 Fundamental extended Young tableaux

In this section, we review how the method of extended Young tableaux, originally devised as
method to obtain the spinon content of eigenstates of the Haldane-Shastry spin-chain, can be
used to determine eigenvalues of the cyclic permutation CN ∈ SN . We first restate the rule
for the case of fundamental SU(n) representations (i.e., (σ) = (1)) as it was introduced in [8]
and then lay the ground for its generalization to tableaux of higher representations in the next
section by reformulating the construction as a stepwise process.

All eigenvalues of CN on V ⊕Nλ
λ are of the form eipT , where we use the Young tableaux T on

λ to index the momenta pT . We obtain these pT in the following way:
Rule, old version— Let T be a standard YT of size N . By sliding them to the right where

necessary, arrange all boxes of T such that in each column of the resulting extended tableau the
numbers in the boxes are in sequence (i.e., i above i+1 above i+2 etc.). This will often require
leaving empty rows between boxes (cp. Fig 5.5). Mark each empty space by a dot. To each
dot i we assign a number ai in such a way that the average of all ai within one column equals
the average of the numbers in all boxes in that column and the ai have integer or half-integer
values with a spacing of 1 between the numbers from one column.

As we mentioned, the origin of this procedure lies in the physical problem of the Haldane-
Shastry model (HSM), which consists of N spins on the complex unit circle with a Heisenberg-
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1 ⊗ 2 ⊗ 3︸ ︷︷ ︸
1
2
�

⊕ 1 2
� �

� �

= 1
2
3

m = 0

⊕ 1 2
�

� �
3

2

⊕ 1 3
2 �

� �

1

⊕ 1 2 3
� � �

� � �

0

Figure 5.6: Building extended tableaux box-by-box. Three rows are marked with dots, so here
we consider SU(n = 3). However, the momenta assigned do not depend on n

type JijŜiŜj interaction where the coupling Jij = |ηi − ηj |−2 decreases quadratically in the
chord distance. This model has a singlet groundstate and the excitations are spinons, which
can be thought of as delocalised domain walls (’half a spin flip’) in a background liquid with
strong antiferromagnetic short range correlations [86, 87].

By interpreting each dot in the extended Young tableaux as a spinon, they allow determining
the spinon content of the eigenstates (which conserve total spin and total momentum) and
moreover assigning each spinon a momenum number pi connected to the ai from above via
pi = 2π(ai−1/2)/N . The total momentum of a state is obtained by summing over all individual
momenta while the energy is essentially the sum of the squares of the momenta [8]. In both
quantities we need to include the constant offset p0 and p2

0 respectively given by

p0 = π
n− 1
n

N (5.8)

If one intends using extended YT to obtain eigenvalues of CN , both a more readily im-
plementable formulation of the extention rule and more streamlined formulae for the total
momentum computation will prove valuable.

Rule, new version: We start with a standard YT T , and an incomplete extended tableaux
E1(T ) containing only one column with the box ’N ’ in the same row as in T (say r). Now
take the box N−1, which in T appears in, say, row s. If s > r we put an N−1-box into the
row s of N ’s column in E1(T ), if s ≤ r we open a new column to the left of N ’s and place
N−1 into the sth row there. The new, still incomplete, extended tableaux we call E2(T ). We
continue in this fashion with the boxes N − 2, . . . , k, . . . 1 until the last box (’1’) is placed and
E(T ) = EN (T ) is completed by adding dots until all n rows are filled.

This procedure is more efficient and unlike the old formulation it is directly implementable
and above all it is important in generalising the procedure to products of higher (symmetric)
representations. To compute the total momentum pT , we combine the spinon momentum
numbers ai in each column c of the extended tableau E(T ) into one column number bc

bc =
∑
i∈c

ai (5.9)

Written directly in terms of the average of the box-labels 〈i〉c and the number of boxes kc in
the column, bc becomes:

bc = (n− kc) (〈i〉c − 1/2) (5.10)
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Stot b1, . . . , bm ptot
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Figure 5.7: All extended Young tableaux for N = 4 × S = 1/2 spins of SU(2)

the momentum pT associated with T is then simply the sum of all column momentum numbers

pT =
2π
N

1
n

⎛
⎝b0 +

∑
c∈E(T )

bc

⎞
⎠ (5.11)

The offset momentum number b0 := −(n − 1)N2/2 is necessary to ensure a linear scaling of
the sum (5.11) with n. Thus, no matter as pertaining to which SU(n) we interpret a tableau
T , it is always assigned the same momentum pT (see appendix E.3).

In figure 5.7 we show as an example the extension procedure for all total spin multiplets
of the tensor product space

(
1
2

)⊗4 of four S = 1/2. Since this is the tensor product of
a fundamental representation we can use the Schur-Weyl duality to easily check, that the
extension procedure gives the correct values: The lone quintuplett Stot = 2 must be fully
symmetric and has therefore momentum 0, the three tripletts Stot = 1 form the standard
representation V4 of S4 (of dimension 3 and associated with the partition (3, 1)) while the two
singlets are the self-conjugate IR W4 (2 dimensional, associated with (2, 2)) which stems from
the standard representation V3=̂(2, 1) of S3 and therefore must have momenta 0 and 2 (in
units 2π/N).

The spin degrees of freedom Si in the Haldane-Shastry model can be taken to transform
like any fundamental representation of SU(n) and the mechanism of constructing excitations
remains the same. Therefore this connection of extended YT and HSM eigenstates exists not
only for SU(2) but higher unitary groups as well and it provides the strongest argument in
favour of the correctness of our procedure. A rigorous mathematical proof, e.g. in the form of
an equivalence to the results obtained from character theory would be desirable however.
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Figure 5.8: Higher representation extended YT can be built box-wise as well. Ambiguity above
which of two identical k-boxes to place a (k−1)-box does not affect the resulting
momentum

5.4 Higher Representations

While the spins in the Haldane-Shastry model can be from any fundmantal SU(n) represen-
tations, not just SU(2), a straightforward generalisation to higher representations runs into
difficulty. One can nonetheless hope, that the mathematical statement remains valid for a suit-
able generalisation of the rule, which is what we investigated. It turns out, that for products
of symmetric SU(n) representations Vσ, i.e., those which are represented by single row YT
with |σ| boxes in them, the box-by-box approach to building extendend tableaux generalises
almost directly (cp. Fig 5.8), which is one of the main results of this work.

We have to introduce only one additional condition coming from an ambiguity in where
to put a box ’k’ if there are several eligible open columns with boxes ’k+1’in the incomplete
extended tableau EN−k(T ). Given a tableau T representing a multiplet in V ⊗N

σ (i.e., each
number appears |σ| times) we demand the resulting extended tableau E(T ) be minimal, i.e.,
it should have as few dots/empty spaces as possible. The way to achieve it is, for each k, to
consider the boxes with number ’k’ in decreasing order of their row index in T , i.e., place
lowest boxes first.

Consider the fourth YT from the top in Fig. 5.9. Assume we have already placed all ’3’s,
giving us an (incomplete) extended tableaux with two columns, one containing ’3’ in the second,
the other in the third row. If we now were to place the ’2’ from the first row first, then we
would have a choice to which of the two columns to add it. Depending on our decision, we
would end up with two different extended tableaux, one with momentum p = 0 the other with
p = 1. Placing the lower ’2’ (the one from the second row) first, there is no ambiguity, and we
identify the extended YT with p = 1 as the correct minimal one.

The only further change required is a shift of the momentum offset b0:

b0(σ) = −n− 1
2

Nσ (5.12)

The origin of the |σ| dependence is explained in App. E.3.
In the absence of a rigorous mathematical understanding why it works, we verified the

method numerically and find that it does give the right answers in all cases we checked, which
were for SU(n) up to n = 4 and N up to N = 16 (cp. Table 5.1).

Figures 5.9 and 5.10 show examples of the extension for coupling two-box tableaux, Fig. 5.9
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rep ptot b1, . . . , bm
#ptot
(0, 1, 2)

1
2
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1
2
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1 → 1
2
3

1
2
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0
}

(1,0,0)

1 1 2
2 3 3

1̄0 → 1 1 2
2 3 3�

�
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1 1 2 5

}
(1,0,0)
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2 2
3

�

� �
2 � �

1 5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(0,1,1)
1 1 2
2 3
3

8 → 1 1 2
2 3
3

�

� �
1 � �

1 2

1 1 2 2
3 3 27 → 1 1 2 3

2 3� �

� � � �
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1 1 2 5
→ (1,1,1)

1 1 2 3
2
3

10 → 1 1 2 3
2
3

� � �
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0 � � �

1 3 5

}
(1,0,0)

Figure 5.9: Some of the extended YT we find when coupling N = 3 rep 6 (=̂(2, 0)) of SU(3).
As offset momentum we have from (5.12): b0 = −18. The last column gives the
tally of all total momenta in the subspace of multiplets of that shape where curly
braces indicate that the YT shown are all there are for that shape.

group representation shape σ Nmax dim(V ⊗N )

SU(2) S=1/2 =̂(1) 16 65536

S=1 =̂(2) 14 4782969

SU(3) 3 =̂(1, 0) 12 531441

6 =̂(2, 0) 9 10077696

103 =̂(3, 0) 7 10000000

SU(4) 4 =̂(1, 0, 0) 10 1048576

104 =̂(2, 0, 0) 7 10000000

Table 5.1: Unitary groups SU(n) and maximal tensor powers N for which we verified the
correctness of extendend Young tableaux method
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⊕

Figure 5.10: The complete decomposition of V ⊗4
S=1 together with momenta assigned by our

method. In the right column we depict the identification of YT with the IRs
of S4 contained in the multiplet subspaces as far as we can do this unambigu-
ously. Clearly, the extended Young tableaux procedure does not agree with this
identification.

three SU(3) representation 6s and Fig. 5.10 four spin S = 1 of SU(2) respectively.

The latter also serves to illustrate one of the limitions of our method: decomposing multiplet
subspaces V ⊕aλ

λ (e.g. the subspace of all quintetts in (S = 1)⊗4 would be V ⊕aS=2
S=2 and aS=2 = 6)

into IRs of SN and then assigning each tableaux to the IR it should belong to according to its
internal structure (rightmost column of Fig. 5.10) one can see that our extension procedure is
not compatible with this decomposition. Let us elaborate on this in the following.

The method for assigning YT to IRs of SN we employed here was a very intuitive one: we
look at which shape remains when we remove the boxes first with indices Ns then N −1s, and
so on and how the relationships between different YT we get in this way relate to the ones of
standard YT for the same N . This method and ’works’ only for small N , and even there it
is ambiguous in some cases. Consider the subspace V ⊕6

Stot=2 of the product space V ⊗4
S=1 which

consists of 6 total spin quintuplets. Of the 6 tableaux representing these multiplets, three are
basically the same as the ones of the SN IR (3, 1), the only difference being that each number
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5.5 Fast extension procedure

is doubled:
1 1 2 2 3 3
4 4 ,

1 1 2 2 4 4
3 3 ,

1 1 3 3 4 4
2 2 (5.13)

Thus it seems straightforward to identify these three tableaux with the single representation
(3, 1) which we know from other methods does indeed appear in V ⊕6

Stot=2. The other three
tableaux remaining would have to be assigned to the two S4 representations U4 and W4 (the
trivial representation and the two dimensional IR induced from the standard representation
of S3) and it is this assignment which we cannot make unambiguously. However, it is not
really necessary to resolve this ambiguity, since even with the identifications we can make the
limitation we mentioned is appareant: the tableaux (5.13) belonging to (3, 1) are assigned
momenta 2,3 and 0, while from a representation V4 one would expect 1,2 and 3.

Thus, while extended YT do produce the correct frequencies of momenta for each subspace
V ⊕aλ

λ as a whole, the way momenta are assigned to the individual tableaux violates the decom-
postion into IRs of SN even in cases where the identification YT→IR of SN would be fairly
clear.

5.5 Fast extension procedure

In this section we want to propose a computational scheme for obtaining the eigenvalues of
the cyclic permutation CN which translates the extended YT procedure’s inherent advantage
of working directly with Young tableaux into a notable speedup over traditional methods. Let
us begin by describing these methods and analysing their asymptotic complexity.

At the beginning of this chapter, we already briefly described the two classes of traditional
computational methods for obtaining the eigenvalues of CN . They are character theory to
find the IR content of representation (from which the eigenvalues of CN follow directly) and
diagonalisation of the matrix of CN on total weight representations. Both start by writing
down a product-state basis Bw of a total weight subspace. If for instance we want to know,
which representations of S4 are contained in the subspace V ⊕6

Stot=2 of all six total spin quintuplets
in V ⊗4

S=1, we write down all product states having a weight Sz
tot of Sz

tot = 2. These are the ten
states

Ci
4 |1, 1, 1,−1〉 , Cj

4 |1, 1, 0, 0〉 , Ck
4 |1, 0, 1, 0〉 (5.14)

where i, j = 0..3, k = 1, 2 and the cyclic permutation C4 is applied to a state in the natural
way. Clearly, these states form the basis of a representation of S4.

5.5.1 Character theory

The character method now goes on to obtain the character χ of this total weight representation
and from this the multiplicities of irreducible SN representations, which yields the eigenvalues
of CN , since each IR λ comes with a fixed set of eigenvalues for each permutation.

To continue our example we simply take a representative from each of the 5 classes in S4

and check how many states it leaves invariant. The classes are (labelled by a representative
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5 Extended Young tableaux

permutation in cycle-notation) [id], [(12)], [(123)], [(1234)], [(12)(34)] with sizes 1, 6, 8, 6, 3 re-
spectively, the character is χ = (10, 4, 1, 0, 2). Multiplying this with e.g. χU4 = (1, 1, 1, 1, 1),
the character of the trivial representation, gives

〈χU4 |χ〉 =
1
4!

(10 + 24 + 8 + 0 + 6) = 2

Therefore, two trivial IRs are contained in the our total weight representation. We can do the
same for all other characters and thus arrive at the complete decomposition

VSz
tot=1 = 2 × U4 ⊕ 2 × V4 ⊕ W4

Of these, one U4 and one V4 belong to higher total spin multiplets (Stot = 4 and Stot = 3
respectively) and therefore need to be excluded. This brings the final tally to

V ⊕6
Stot=2 = V4 ⊕ W4 ⊕ U4

V4 is three-, W4 two- and U4 one dimensional, so all 6 quintuplets are accounted for (this
decomposition is the one shown in 5.10). In section 5.2.5 we already described the problem
of distinguishing between SN IRs which belong to a highest weight w and those which come
from higher highest weights w′ > w. The upshot is that we have to repeat the above steps
for all those higher weights w′, where the coefficients dw′ introduced there are non-zero. Let
hw be the number of such dw′ �= 0. In the case of SU(2), hS = 1 for all S, because we only
have to look at next higher the total Sz representation, i.e., the one with Sz

tot = S + 1. The
computational complexity of this method is determined by the size of the total weight state
basis, nw = |Bwz |, the number of classes in SN , which is p(N) (number of integer partitions
of N) and also hw:

Cchar,SN
= O (p(N)hw nw) (5.15)

There is however another way in which we can employ characters to get what we want: The
product basis Bwz is also a representation of the cyclic group CN . Therefore the multiplicity
fp of a momentum p can be computed via

fp =
1
N

N∑
k=1

ei2πpk/NTrCk
N (5.16)

where p = 0, . . . , N − 1 labels the irreducible representations and k = 1, . . . , N the classes of
CN and TrCk

N is the trace of the (nw × nw) representation matrix of the kth power of CN .
Already intuitively this appears to be faster than the full character decomposition and it is
definitely simpler, for instance no knowledge of all the simple SN characters is required (above
we just assumed them to be given from somewhere, which in practice means we would have to
compute them first). We do however have to generate all the powers Ck

N of CN , which takes
O (N nw) steps. Thus, total complexity is

Cchar,CN
= O (N hw nw) (5.17)

where we have also taken into account the hw-fold repetition required here just as in all the
methods based on total weight representations. This is significantly better than (5.15), but
still not as good as the straightforward diagonalisation described next.
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Figure 5.11: The standard YT branching graph for the shape λ = (2, 2, 1). For all depth j
the arrow-labels denote into which line the index N−j+1 goes. Thus, the paths
through the BG correspond 1-1 to all standard YT. An example of such a path
and the YT it corresponds to is shown in red.

5.5.2 Diagonalisation

The diagonalisation method really writes out the representation matrix of CN in the basis Bw

and diagonalises it. In general, diagonalisation is of (time) complexity O(n3) in the matrix
size n, but since we are dealing with a permutation matrix (in each row and column all entries
are zero except for exactly one ’1’) we only need O(n) steps. Like with the previous character
method, we will also obtain CN eigenvalues belonging to higher IRs (of SU(n)) which we can
get rid of in the usual way, incurring the usual hw factor. In the end therefore, diagonalisation
is even faster than using CN characters if we assume that the representation matrix of CN can
be written down in O(nw) time:

Cdiag = O (hw nw) (5.18)

5.5.3 Young tableaux scheme

The extension procedure on the other hand works by writing down the Nλ Young tableaux
on a shape λ and assigning each a momentum number m(T ) = 0, . . . , N − 1. The key here
is that it is possible to do both things efficiently by merging it into one process. How can we
do this? It might be a good idea to exploit the neat branching property, but a naive ansatz
building up tableaux by adding box after box while starting from scratch for each tableaux will
require O (N Nλ), which will not be much better than diagonalisation in the interesting cases
(low highest weight states) and due to the more intricate nature of the algorithms involved
probably turn out to be worse in some less interesting ones (highest weight states close to the
fully symmetric one).

We really can achieve O (Nλ) however, if we store the branching information in a suitable way:
the branching graph (BG). It encodes the relations between a shape λ and all μ ⊂ λ derivable
from it by removing the elementary shapes σ in the form of a directed graph. The node of
th graph are the shapes μ ⊆ λ (with λ the root) and a directed, labeled edge (μ → ν; labell)
connects shape μ and ν if and only if the latter can be obtained from the former by a regular
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5 Extended Young tableaux

removal of one elementary shape σ. A regular removal is the inverse of a regular addition,
which is defined as the addition of |σ| boxes filled with σ1 ’a’s, σ2 ’b’s and so on such that (i)
the resulting shape is valid (ii) the resulting tableaux obeys the Littlewood- Richardson rule
(cp. 5.2.4). The label l will be a list of length |σ|, recording into which rows we put the ’a’s,
’b’s, etc. An example of a branching graph for standard YT on the shape (2, 2, 1) is depicted
in Fig. (5.11). In this case, |σ| = 1 and the label is a single row-index. As long as σ is a
single-row tableaux (i.e., stands for a symmetric representation), there will be at most one
edge between nodes. If σ has multiple rows however, it can happen that there is more than
one edge (the edges differ in their labels however). Irrespective of the basic tableaux σ, each
node in a BG can be assigned a depth, i.e., a unique distance from the root, and it also holds
that all BGs have a unique lowest element (leaf) given simply by the elementary shape σ itself.

Computing the branching graph of a compound shape λ with k rows for some elementary

shape σ (where obviously |λ| = N |σ|) can be done very fast: it requires only O
((

k + |σ|
k

)
Dλ

)
steps, where Dσ

λ is the number of shapes μ obtainable from λ by regular removal of σ. It can
easily be bounded from above by (cp. appendix E.2)

Dσ
λ ≤

∑
λ1≥j1≥···≥jk≥0

1 =
(
λ1 + k
λ1

)
(5.19)

The leading contribution is Dσ
λ = O

(
Nk
)

and thus we find that BG generation requires only
polynomial time:

CBG = O
(
k|σ|Nk

)
(5.20)

One can now use the efficient graph iteration described in appendix E.1 to extract all paths
through the BG along with the extended YT they correspond to in O (Nλ) time. It is necessary
to compute this all at once, because a modularised approach of extracting the paths first and
then translating them one by one into YT incurs an additional O (N) time factor coming from
the fact that each path is of length N − 1.

The total time complexity achievable is therefore indeed determined purely by the number
of YT on λ

Ctime
extended YT = O (Nλ) . (5.21)

The memory requirement depends on whether we store the full extended tableaux or only
its momentum. In the former case we incur an additional factor O (N).

5.5.4 SU(2) example

Why is this superior to diagonalisation? In practice we are mostly interested in low-weight
SU(n) representations (in particular singlets), and for these, the number of all multiplets Nλ

grows significantly slower than nλ, the size of the corresponding total weight space.

Take for instance N spin S = 1/2 (N even): there are
(

N
N/2

)
Stot

z = 0 states but only

(
N
N/2

)
−
(

N
N/2 − 1

)
=

2
N + 2

(
N
N/2

)
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5.5 Fast extension procedure

Stot = 0 singlets.
In addition, the other methods incur the factor hλ(w) because they also need to look at

higher total weights in order to clearly distinguish which momenta belong to the representation
with highest weight λ and which do not. This factor, while trivial for SU(2), does indeed
become increasingly important as n increases, growing like o(k), where k is the number of
rows in λ.
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6 Conclusion

We investigated topological properties of the S = 1/2 chiral spin liquid (CSL), the model
system in which the notion of topological order was first developed, in comparison with other
states, either derived from it or thought to be described by it.

Spin liquid hierarchy. —Our primary result is a hierarchy of fractional spin

S = k+/2 + k−/2

liquids where each element is obtained by forming products of k+ CSLs of positive chirality and
k− CSLs of negative chirality in Schwinger boson representation. With the analytical form
of these liquids known, we wrote out numerically the explicit wavefunctions on spin lattice
clusters with periodic boundary conditions (PBC) and spins up to S = 2. We obtained the
topological degeneracy (TD) by sampling the center-of-mass-parameter manifold at randomly
selected points, computing the wave function for each point and then determining the rank of
the overlap matrix between all these wave functions. We find that all these liquids obey

TD(k+, k−) = (k+ + 1)(k− + 1).

Since there is an analytical correspondence of our hierarchy states obtained from CSLs of
only one chirality (k− = 0 or k+ = 0) to the series of Read-Rezayi k-cluster states of the
fractional quantum Hall effect, we conjecture that this result generalizes to S > 2. It is a clear
indication that the elementary (spinon) excitations in these liquids obey non-Abelian statistics
for S > 1. Since positive and negative chirality CSLs are related via parity (P) or time reversal
(T) operations, the hierarchy states which are the result of merging k+ = k− = S CSLs of each
chirality (’chirality liquids’ CL) are real valued and thus P and T invariant [57]. This makes
these liquids the first states where non-Abelian statistics and P, T invariance are reconciled.
In particular, we propose the spin S chirality liquids for S ≥ 2 as promising candidates to
capture a universality class of S ≥ 2 antiferromagnets, where, away from half filling, spin
liquids may be stabilized through itinerant holes of appropriate kinetic energy, as the holon
excitations in the hierarchical spin liquids presumably share the high mobility of holons in the
underlying CSLs. The characteristic features of this universality class are, first, the mentioned
(S + 1)2-fold TD on a torus and second, that spinons (and holons) obey non-Abelian SU(2)
level k = S statistics. In future numerical studies, we would like to test this conjecture at
least for the most numerically accessible of the non-Abelian CLs, the S = 2 chirality liquid.
Unfortunately, even for spin S = 2, the Hilbert space of lattice clusters is too large to allow
studies of meaningful cluster sizes with current computing facilities.

Entanglement spectrum. —In one of the first entanglement spectrum studies of two dimen-
sional spin systems we compared the spectra of two liquids from our hierarchy, the CSL itself
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6 Conclusion

and the S = 1 chirality liquid, with the spectra of next-nearest-neighbour J1-J2 Heisenberg
antiferromagnets (AF) at critical frustration J1 = 2J2. The geometries we looked at were a
4 × 6 (square) lattice cluster in case of the S = 1/2 spins and a cluster of dimension 4 × 4
with S = 1. In both cases, the retained subsystem A and the traced-over subsystem B, were
geometrically congruent regions, and the conserved quantum numbers were the z-component
of the total spin Sz

A and momentum along the A-B boundary mA = 0, 1, 2, 3 (in units 2π/4).
By changing boundary conditions for the CSL and the AF on the 4 × 6 (square) lattice

cluster of S = 1/2 spins from periodic to cylindrical by varying effective length parameters
between 1 and ∞, we investigated, whether the entanglement spectrum of the AF shows the
same features as the CSL’s, which we know must undergo a topologicial phase transition in
the process.

In the AF, at a critical effective length L̃ = 1.15 we find indeed a sharp dip in the gap
between lowest and second lowest level in its ES and a feature of equal magnitude appears in
the spectrum of the CSL, albeit, whithin the accuracy of our numerics, in the form of a plateau
between lengths L ≈ 1.5 − 2.0. Furthermore, the lowest level of both states, at all effective
lengths in the Sz = 0,m = 0 sector, settles at a lower value for the cylindrical boundary
conditions as compared to periodic ones, while the inverse is true of the gap. Another salient
feature is a peak in the chiral susceptibility of the AF as a function of the effective length,
signalling an increased sensitiviy to chiral perturbations. The position of this peak is somewhat
separated from that of the dip in the gap, but we nevertheless think the two come from the
same physical transition, as opposed to two separate transitions. We take our observations as
indications, that the AF undergoes a similar transformation as the chiral spin liquid. However,
due to the small circumference of our system and consequent coarse momentum resolution it
is not clear, whether this gap carries topological information as do the low lying levels seen
in entanglement spectrum studies of fractional quantum Hall states on a spherical geometry.
So the main focus of future work would have to lie on increasing the circumference to 6 or 8
while keeping a reasonable height. Of the resulting system sizes, 48 or even 64 sites will be
far beyond the possible for many years, even as algorithms improve and hardware capability
continues to grow. A 36 site cluster, on the other hand, would be realisable already today,
if we could use all symmetries of the 6 × 6 cluster. Unfortunately the cylindrical geometry
implies we have only translation and reflexion in one direction.

On the 4 × 4 spin S = 1 cluster, we imposed cylindrical boundary conditons on both the
CL and the AF groundstate. The entanglement spectra show marked differences: whereas the
CL has hardly any gap, i.e., is still highly entangled even on the cylinder, the antiferromagnet
behaves very similar to the S = 1/2 case featuring a very large gap due to the extremely strong
Sz = 0,m = 0 ’singlet’ contribution. While the sequence of levels in the Sz = 0,m > 0 sectors
is similar, and the overlap and energy expectation are still 0.92 and 88% (corresponding to
≈ 5J1 above the ground state) respectively, judging from the entanglement gap it appears that
the CL is of limited value as a description of the frustrated AF. To conclusively rule out the
CL as a, at least partially useful, description of antiferromagnetic states will require numerical
investigation of larger systems.

In a tangential line of work inspired by our hope to speed up numerical spin lattice compu-
tations, we were able to generalize the method of extended Young tableaux invented in the
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context of the Haldane-Shastry model for fundamental representations of SU(n), to arbitary
higher symmetric representations. Based on this method we were also able to find an algo-
rithm which speeds up the computation of eigenvalues of the cyclic permutation, essentially
eigenvalues of the total momentum along the chain, in total (SU(n))-spin representations at
least linearly. To our knowledge this is the first method which is able to achieve this for any
element of the permutation group by working directly with Young tableaux.
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A Notes on Topological order

A.1 Jacobi theta functions

The four Jacobi theta functions are defined as

ϑa.b(z|τ) ≡
∞∑

n=−∞
eiπτ(n+a)2 e2πi(n+a)(z+b) (A.1)

where a, b = 0, 1
2 and Im(τ)¿0.

It is easily verified that there is exactly on odd function among the four

ϑa,b(−z|τ) =

{
−ϑa,b(z|τ) if a, b = 1

2

ϑa,b(z|τ) otw.
(A.2)

Everywhere in this thesis, ϑ with the parameters a, b omitted stands for ϑ 1
2
, 1
2
.

The main property of these functions is their double-(quasi-)periodicity on the principal
region P = {z = a+ bτ |a, b ∈ [0, 1)}

ϑa,b(z + 1|τ) = e2πiaϑa,b(z|τ) (A.3)

ϑa,b(z + τ |τ) = e−iπτe−2πi(z+b)ϑa,b(z|τ) (A.4)

Each has exactly one zero in P as is shown in figure A.1.

��

��

Figure A.1: Each theta function has exactly one zero in the principal region.
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A Notes on Topological order

The defining relation for ϑa,b can be rewritten

ϑa,b(z|τ) = eiπ(2ab+τa2)e2πiza
∞∑

n=−∞
eiπτ n(n+a)e2πi(z+b)n

= eiπ(2ab+τa2)e2πiza

(
1 +

∞∑
n=1

cos (2πn(z + b+ (n+ a)τ/2))

)
(A.5)

Starting with this one can quickly derive the following alternative representations which are
often encountered

ϑ1(z, q) ≡ ϑ 1
2
, 1
2

= 2q1/4
∞∑

n=0

(−1)nqn(n+1) sin (π(2n+ 1)z) (A.6)

ϑ2(z, q) ≡ ϑ 1
2
,0 = 2q1/4

∞∑
n=0

qn(n+1) cos (π(2n+ 1)z) (A.7)

ϑ3(z, q) ≡ ϑ0,0 = 1 + 2
∞∑

n=1

qn2
cos(2πnz) (A.8)

ϑ4(z, q) ≡ ϑ0, 1
2

= 1 + 2
∞∑

n=0

(−1)nqn2
cos(2πnz) (A.9)

where we introduced the substitution q = eiπτ . In the literature it is quite common to find
theta defined with q instead of τ .

Assume Re[τ ]=0. Then q = eiπτ = e−π Imτ < 1 is purely real. Since it is smaller than 1,
the series

∑
n q

n2
will converge very fast, even for rather small Re[τ ]. Thus, we can usually

restrict ourselves to the first order and this approximation is very good for Re[τ ] � 1. In this
case, the odd theta function will reduce to a simple sine-function

ϑ(z|τ) Im[τ ]�1−→ 2e−πIm[τ ]/4 sin(πz) (A.10)

A.2 S = 1/2 CSL on a torus

A chiral spin liquid state on a torus written in terms of fermionic electron creation operators
c†z,σ is given by

|ψCSL
torus (Z0)〉 =

∑
{z1,...,zM ,w1,...,wM}

ψCSL
torus [z, Z0] c

†
z1,↑ . . . c

†
zM ,↑c

†
w1,↓ . . . c

†
wM ,↓ |0〉 (A.11)

where the summation is over all ways to destribute sites zi and wj disjointly over the principal
region P = {z = a + ib|a, b ∈ [0, 1)} lattice. The wavefunction is given by a product of
two lowest-Landau-level (lll) wavefunctions (for up- and down-spins respectively) and contains
an additional parameter Z0 coming from the quasi-periodic boundary conditions, as will be
explained in detail further down. Its effect is to fix a further zero of the wavefunction at the
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A.2 S = 1/2 CSL on a torus

position of the center-of-mass of all up and down spins, Z =
∑

i zi and W =
∑

j wj respectively.
The wavefunction itself is

ψCSL
torus [z;Z0] = φZ0 [z]φZ0 [w]

= ei K(Z0)Z ϑ(Z−Z0|τ)ϑ(W−Z0|τ)
∏
i<j

ϑ(zi − zj |τ)

×
∏
i<j

ϑ(wi − wj |τ)
∏
j

e−
π
4
(|zj |2−z2

j +|wj |2−w2
j ) (A.12)

= ei K(Z0)Z ϑ(Z−Z0|τ)ϑ(C − Z−Z0|τ)
×
∏
i<j

ϑ2(zi − zj |τ)
∏
j

G(zj) e−
π
2
|zj |2−z2

j (A.13)

where we have as usual neglected normalisation constants. ϑ(z|τ) stands for the odd Jacobi
theta function ϑ 1

2
1
2
(z|τ), K is a parameter determined by the boundary conditions (along

with the center-of-mass zero Z0). In the second equation also G(zi) appears, which is a site
dependent sign necessary to ensure the singlet property and is well defined on any lattice (see
next section). C = 1/N

∑N
j zj = 1+τ

2 is the center of the cluster. From now we will choose
the origin to coincide with C: C = 0.

The {wj} do not appear on the lhs, because the set as such is uniquely determined by the
{zi} (the two sets are disjoint and thus complementary), and the order does not matter: if we
reorder the {wj} by a permutation P ∈ SM , the signs (−1)P coming from both the function
φK,Z0 [w] and the fermionic creation operators c†w1,↓ . . . c

†
wM ,↓ cancel.

The φZ0,K [z] and φZ0,K [w] are lowest Landau level wavefunctions for M = N/2 particles,
with 1/4l2 as for a (fictious) magnetic field of M flux quanta in the principal region, i.e.,
1 flux quantum per plaquet of size a. We can see this when using 1/4l2 = πNφ/2A and
A = N a = 2M a:

1
4l2

=
π

4 a
(A.14)

The boundary conditions we demand are for the wavefunction to be periodic up to phases
φ1 and φτ ). It is to accomodate these boundary phases that we need to include the additional
parameter Z0 in a lll wavefunction on a torus. A phasefactor ei KZ can be added as well,
where K is then not free, but uniquely determined by our choice of Z0 and the boundary
phases φ1 and φτ . In the absence of a real magnetic field the only physically sensible choice is
φ1 = φτ = 0 i.e., ψCSL

torus to thus be single valued under magnetic translation of single particle
coordinates. In all, a lll wavefunction must be (K = K(Z0)):

φZ0,K [z] = ei KZϑ(Z−Z0|τ)
∏
i<j

ϑ(zi − zj |τ)
∏
j

e−
π
4
(|zj |2−z2

j ) (A.15)

When we combine two such lll wavefunctions into a CSL, each coms with a center-of-mass-
zero. Effectively, there is only one though, because only the difference plays a role in satisfying
the boundary conditions.
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A Notes on Topological order

Boundary conditions investigated

A magnetic translation of particle at zi (translation in the presence of a magnetic field) is
realized by the operator:

Ti(ξα) = exp
[
ξα

∂

∂z̄i
+ ξ̄α

∂

∂zi
+

1
4l2

(ξαz̄i − ξ̄αzi)
]

(A.16)

where ξα, α = 1, 2 are the principal displacements. The first part is just the usual mathematical
translation operator mapping

f(. . . zi . . . )
Ti(ξα)−→ f(. . . zi + ξα . . . )

while the latter corresponds to a phase acquired due to the magnetic field (in zero field, l=∞
and the phase vanishes as it should). Applying this operator to the lll wavefunction we require
(wlog. it suffices to show it for the first particle):

T1(ξα)φZ0,K [z] = e
1

4l2
(ξαz̄1−ξ̄αz1)φZ0,K(z1 + ξα, z2, . . . )

!= eiφαφZ0,K [z] (A.17)

This means, winding one particle around the torus in either of the principal directions should,
as stated before, merely result in a phasefactor to the wavefunction. So the wavefunction can
be regarded to obey quasi-periodic boundary conditions. In the absence of a (real) magnetic
field we would expect traditional periodic boundary conditions to hold, i.e., the physically rea-
sonable choice for the boundary phases in zero field is φα = 0. Expanding and rewriting the
condition (A.17) is a somewhat lengthy and subtle business, but nevertheless we want to show it
here. Remember that for these lowest Landau level functions we have 1/4l2 = πM/2A = π/4a,
the surface area of the torus is A = Im[τ ] = Na. The quasiperiodicity conditions of the Jacobi-
theta functions were given in the previous section. For brevity, we will write ϑ(z) instead of
ϑ(z|τ) for the rest of the paragraph where ϑ still stands for ϑ 1

2
1
2
.

Translation in direction ξ1 = 1:

T1(1)φZ0,K [z] = e−
π
4
(z̄1−z1) eiK(Z+1)ϑ(Z + 1 − Z0)

∏
1<i<j

ϑ(zi − zj)

×
M∏

j=2

ϑ(z1 + 1 − zj)e−
π
4
(|zj |2−z2

j ) e−
π
4
(|z1+1|2−(z1+1))

= e−
π
4
(z̄1−z1) eiKeiπMe−

π
4
(z̄1+z1+1−2z1−1)φK,Z0 [z]

= eiK(−1)MφK,Z0 [z]
!= eiφ1φK,Z0 [z]
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A.2 S = 1/2 CSL on a torus

Translation in direction ξ2 = τ : Here we use iπM = πM
Im[τ ] iIm[τ ] = π

2
τ−τ̄

2

T1(τ)φZ0,K [z]=e−
π
4
(τ z̄1−τ̄ z1) eiK(Z+τ)ϑ(Z + τ − Z0)

∏
1<i<j

ϑ(zi − zj)

×
M∏

j=2

ϑ(z1 + τ − zj)e−
π
4
(|zj |2−z2

j ) e−
π
4
(|z1+τ |2−(z1+τ)2)

= eiKτ (−1)M e−iπτM e−2πi(Z−Z0+M z1−
P

j zj)

× e−
π
4 [τ(2z1+τ)−2z1τ−τ2] φK,Z0 [z]

= eiKτ (−1)Me2πiZ0 e−iπM(2z1+τ)e
π
4
(τ−τ̄)(2z1+τ) φK,Z0 [z]

= eiKτ (−1)Me2πiZ0 φK,Z0 [z]
!= eiφτ φK,Z0 [z]

Altogether, we obtain the following conditions for K and Z0 in terms of the boundary phases:

eiK(−1)M != eiφ1 = 1 (A.18)

eiKτ (−1)M e2πiZ0 != eiφτ = 1 (A.19)

Since the boundary phases are assumed zero for now, both rhss are 1. We have 3 equations for
the 3 real parameters K,Re[Z0], Im[Z0], i.e., all three are fixed by the boundary conditions. A
freedom in our choice of Z0 only reappears when we merge two lll-wavefunctions into a CSL,
since there enter a priori two center-of-mass-zeros Z1 and Z2, but only their difference Z1−Z2

enters in the boundary conditions:

T1(τ)ψCSL
Z1,Z2

[z] = e
π
2
(z̄1τ−z1τ̄)eiK(Z+τ) ϑ(Z+τ−Z1)ϑ(−Z−τ−Z2)

N∏
j=2

ϑ2(z1+τ−zj)

× e−
π
2
[(z1τ̄+z̄1τ−τ(2z1+τ)]

∏
1<i<j

ϑ2(zi − zj)
N∏

j=1

G(zj)e−
π
2 (|zj |2−z2

j )

= eiKτ (−1)2N+1
(
e−iπτ

)2N e−2iπ[2Z−Z1+Z2−2
PN

j=2 zj+2(N−1)z1]

× e−
π
2
(τ̄−τ)(2z1+τ) ψCSL

Z1,Z2
[z]

= eiKτ (−1)2N+1e2iπ(Z1−Z2) e−2iπN(2z1+τ)e
π
2
(τ−τ̄)(2z1+τ) ψCSL

Z1,Z2
[z]

= eiKτ (−1)2N+1e2iπ(Z1−Z2)e−
π
2
(τ−τ̄)(2z1+τ) ψCSL

Z1,Z2
[z]

where we made use of the identity N/Im[τ ] = 1 in the last step. In all:

T1(τ)ψCSL
Z1,Z2

[z] = eiKτ (−1)2N+1e2iπ(Z1−Z2)e−
π
2
(τ−τ̄)(2z1+τ) ψCSL

Z1,Z2
[z] (A.20)

Two things become appearent: First, the boundary conditions depend only on the difference
Z1 − Z2, i.e., in effect there is only one free center-of-mass parameter. Second, and more
important, is the observation that the site variable does not drop out !
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A Notes on Topological order

A.3 CSL on general lattices

The chiral spin liquid must be a spin singlet to be invariant under global spin rotations. On
a square lattice (one atomic basis) the simple gauge sign G(zj = xj + iyj) = (−1)(xj+1)(yj+1)

ensures this where zj is measured in units of the lattice constant a. The singlet property does
however hold on general lattices too, as we show in the following.

The Perelomov identity [88]— Consider a lattice spanned by ηn,m = na+mb in the complex
plane, with n and m integer and the area of the unit cell Ω spanned by the primitive lattice
vectors a and b set to 2π,

Ω =
∣∣Im(ab̄)

∣∣ = 2π (A.21)

where Im denotes the imaginary part. Let G(ηn,m) = (−1)(n+1)(m+1). Then∑
n,m

P (ηn,m)G(ηn,m)e−
1
4
|ηn,m|2 = 0 (A.22)

for any polynomial P of ηn,m.

Proof — It is sufficient to proof the identity for the generating functional∑
n,m

e
1
2
ηn,mz̄G(ηn,m)e−

1
4
|ηn,m|2 = 0. (A.23)

Since G(ηn,m) takes the value −1 on a lattice with twice the original lattice constants, which
we may rewrite this as ∑

n,m

e
1
2
ηn,mz̄e−

1
4
|ηn,m|2 = 2

∑
n,m

eηn,mz̄e−|ηn,m|2 (A.24)

Kalmeyer and Laughlin [89] observed that for the square lattice, the sum on the r.h.s. can
be expressed as a sum of the Fourier tranform of the function we sum over on the l.h.s. We
demonstrate here that their proof can be extended to arbitrary lattices.

To begin with, since the area of the unit cell of our lattic is taken to be 2π, the reciprocal
lattice is given by the original lattice rotated by π

4 in the plane without any rescaling of the
lattice constants. In complex coordinates,

ζn′,m′ = i(n′a+m′b), (A.25)

as this immediately implies

Rn,m · Kn′,m′ = Re(ηn,mζ̄n′,m′) =
= Re

(
(na+mb)(−i)(n′ā+m′b̄)

)
= nm′Im(ab̄) +mn′Im(bā)
= 2π · integer,
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A.3 CSL on general lattices

where Re denotes the real part and we have used (A.21). We define the Fourier transform in
complex coordinates

f̃(ζ) =
∫
d2ηf(η)eiRe(ηζ̄). (A.26)

Then ∑
n′,m′

f̃(ζn′,m′) = Ω
∑
n,m

f(ηn,m) (A.27)

Eq. (A.27) follows directly from∑
n′,m′

eiRe(ηζ̄n′,m′ ) = Ω
∑
n,m

δ(2)(ηn,m − η), (A.28)

which is just the two-dimensional equivalent of the identity
∞∑

n′=−∞
e2πin′x =

∞∑
n=−∞

δ(x− n) (A.29)

The r.h.s. of (A.29) is obviously zero if x is not an integer, and manifestly periodic in x with
period 1. To verify the normalization, observe that since for any N odd,

+N−1
2∑

n′=−N−1
2

e2πin′y/N =

⎧⎨
⎩N for y = N · integer

0 otherwise.

This implies

1
N

+N−1
2∑

y=−N−1
2

+N−1
2∑

n′=−N−1
2

e2πin′y/N = 1,

which in the limit N → ∞ is equivalent to

∫ +N
2

−N
2

dy

N

+N−1
2∑

n′=−N−1
2

e2πin′y/N = 1

Substituting x = y/N yields ∫ + 1
2

− 1
2

dx

∞∑
n′=−∞

e2πin′x = 1,

which proves the normalization in (A.29).
We proceed by evaluation of the Fourier transform of f(η) = e

1
2
ηz̄e−

1
4
|η|2 :

f̃(ζ) =
∫
d2η e

1
2
ηz̄e−

1
4
|η|2eiRe(ηζ̄)

=
∫
d2η e

1
2
ηz̄e−

1
4
|η|2e

i
2
(ηζ̄+η̄ζ)

= 4πe−|ζ|
2+iζz̄ (A.30)

87



A Notes on Topological order

where we have used the integral∫
d2η F (η) e−

1
α

(|η|2−η̄w)

= F (α∂w̄)
∣∣
w̄=0

∫
d2η e−

1
α

(|η|2−η̄w−ηw̄)

= F (α∂w̄)
∣∣
w̄=0

∫
d2η e−

1
α

(|η−w|2−ww̄)

= απ F (α∂w̄)
∣∣
w̄=0

e
1
α

ww̄ = απ F (w)

with F (η) = e
1
2
ηz̄+ i

2
ηζ̄ , α = 4, and w = 2iζ.

Substituting (A.30) into (A.27) we obtain∑
n,m

f(ηn,m) = 2
∑
n′,m′

e−|ζn′,m′ |2+iζn′,m′ z̄ (A.31)

If we now substtute n′ = −n, m′ = −m, iζn′,m′ = ηn,m into the l.h.s. of (A.31), we obtain
(A.24). This completes the proof.

How does this relate to the CSLs singlet property? A state is a singlet iff it is annihilated
by both S+

tot and S−tot. Since S±tot =
∑

j S
±
j , applying either of these will in each term of the

overall sum give a factor
∑

j(zj −zk)2G(zj)e−π/2|zj |2 . But this is zero according to the identity
shown above, therefore |ψCSL〉 is a singlet on any lattice.

A.4 Laughlin 1/m-liquid manifold as degenerate ground states

The Quantum Hall hamiltonian has the general form

H =
1

2m∗
∑

j

(p̂i +
e

c
Âj)2 +

∑
j

V1(|zj |) +
∑
i<j

V2(|zi − zj |) (A.32)

with V2(z) a two body interaction potential and V1(z) the background potential required to
compensate divergences for long-range V2. In the real-life Quantum Hall effect, V2 is given by
the Coulomb-potential.

In their 1985 paper [44], Trugman and Kivelson give a short-range potential V2 which has
the Laughlin 1/m trial states as ground states in the limit range → 0. It is given by

V2(|r|) =
∞∑

n=0

cnb
2n∇2nδ2(r) (A.33)

where b is a parameter which can be identified with the range of the potential: for infinitesimal
b, only n = 0 contributes and V2 is a Dirac-delta, while for finite, increasing b the higher
derivatives of the wavefunction (at r = 0) become more and more important, effectively
increasing the distance from the origin at which the wavefunction is affected by V2.
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A.4 Laughlin 1/m-liquid manifold as degenerate ground states

Although [44] consider only open boundary conditions, their argument can be generalized
to the torus, as we will show now.

We are interested in the expectation value 〈ψm[Zν ]|V2|ψm[Zν ]〉, where |ψm〉 is the Laughlin
wavefunction and we made its dependence on the center-of-mass parameters Zν in periodic
boundary conditions explicit. Consider one term in the sum

∑
i<j V2(|zi−zj |), e.g. z = z1−z2.

The matrix element

〈ψm[Zν ]|V2|ψm[Zν ]〉 =
∑

n

cnb
2n

∫
dzψ∗m(z, z2, . . . , zN |{Zν})(Δnδ2(z))ψm(z, z2, . . . , zN |{Zν})

(A.34)
can be computed by integration by parts which moves the Laplacians Δ to the wavefunction
giving Δn|psim|2. The key observation now is that since m is odd and psim(z, z2, . . . , zN ) thus
and odd function of z, the lowest non-zero contribution comes from m − 1 applications of Δ
to the factor ϑm(z) in ψm (see 2.13 for the full wavefunction on the torus):

Δn|ϑ(z)|2m = |ϑ(z)|2m−2n−2[. . . ]

and the Dirac-δ(z) function in the integral picks |ϑ(z = 0)|2m−2n−2 which is zero unless n =
m − 1. Therefore, following the same reasoning as [44] did for open boundary conditions, we
can conclude that for vanishing b→ 0, ψm has energy vanishing like b2m−2. i.e., it is an exact
zero energy state state of A.32 with V1 ≡ 0 and V2 given by A.33 if b = 0 or cn = 0 for
n ≥ m − 1. Crucially, this is true independent of the Zν , which shows that one can really
identify the function space spanned by ψm{Zν} as a degenerate eigenspace of a quantum Hall
hamiltonian (since ψm is a combination of lowest-Landau-level orbitals the kinetic part of A.32
contibutes just a constant 1

2�ωcN when applied to a Laughlin state).
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B Addenda: Spin liquid hierarchy

B.1 Schwinger bosons

Like the Holstein-Primakov transformation used, e.g. , to solve the ferromagnetic Heisenberg
model, Schwinger bosons are a technique to express SU(2) representations of, integer or half-
integer, spin S in terms of bosonic operators. Here we introduce a pair raising/lowering
operators a†j , aj and b†j , bj for each lattice site j. Commutation relations are the canonical
bosonic

[ai, a
†
j ] = δij

[ai, aj ] = [a†i , a
†
j ] = 0 (B.1)

and the same for b, b† with the additional mixed commutators[
ai, b

†
j

]
=
[
a†i , b

†
j

]
= [ai, bj ] = 0 (B.2)

for all i, j in the lattice.
These operators act on vacuum states |0, 0〉j in the natural way:

a†j |n,m〉j =
√
n+ 1 |n+ 1,m〉j

aj |n,m〉j =
√
n |n− 1,m〉j

b†j |n,m〉j =
√
m+ 1 |n,m+ 1〉j

bj |n,m〉j =
√
m |n,m− 1〉j (B.3)

The total vacuum |0〉 is simply

|0〉 := |0, 0〉1 |0, 0〉2 . . . |0, 0〉N . (B.4)

The connection between these operators and a state |S, Sz〉 of an SU(2) representation S
with z-component Sz is given by

|S, Sz〉 =
(a†)S+Sz

(b†)S−Sz√
(S + Sz)!(S − Sz)!

|0〉 . (B.5)

for a generic pair a†, b†.
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B Addenda: Spin liquid hierarchy

The spin operators S±, Sz therefore correspond to√
S + Sz

1 + S − Sz
S+=̂ a†b (B.6)√

S − Sz

1 + S + Sz
S−=̂ ab† (B.7)

Sz =̂
1
2

(
a†a− b†b

)
(B.8)

since the prefactor generated by, say, S+

S+ |S, Sz〉 =
√
S(S + 1) − Sz(Sz + 1)) |S, Sz + 1〉

in Schwinger boson language is just√
S(S + 1 − Sz(Sz + 1)) =

√
(S + Sz + 1)(S − Sz)

=
√

(na + 1)nb

which is what a†b generates as prefactor when acting on |na = S + Sz, nb = S − Sz〉.
The key advantage Schwinger bosons hold over spin operators is the ease with which we can

symmetrise two spins. Consider two spins S1 and S2. If we want to write down the total spin
state |Stot, S

z
t ot〉 for some value of Sz

tot this requires in general a sum over all product states
|S1, S

z
1〉 |S2, S

z
2〉 with Sz

1 + Sz
2 = Sz

tot:

|Stot, S
z
t ot〉 =

∑
Sz

1+Sz
2=Sz

t ot

|S1, S
z
1〉 |S2, S

z
2〉 (B.9)

Using Schwinger bosons to express individual spin states we see that all summands are in fact
the same up to normalisation:

|Stot, S
z
tot〉=̂N(Stot, S

z
tot)
(
a†
)Stot+Sz

tot
(
b†
)Stot+Sz

tot

∝
∑

Sz
1+Sz

2=Sz
tot

N(S1, S
z
1)
(
a†
)S1+Sz

1
(
b†
)S1+Sz

1
N(S2, S

z
2)
(
a†
)S2+Sz

2
(
b†
)S2+Sz

2

where we defined N(n,m) = 1/
√

(n+m)!(n−m)! and used that a†, b† commute. Unfortu-
nately there is no equality, because normalisation does not check out:

1 �=
∑

Sz
1+Sz

2=Sz
t ot

√
(Stot + Sz

tot)!(Stot − Sz
tot)!√

(S1 + Sz
1)!(S1 − Sz

1)!
√

(S2 + Sz
2)!(S2 − Sz

2)!

=
Max(S1,Sz

tot+S2)∑
Sz

1=Min(−S1,Sz
tot−S2)

√(
Stot + Sz

tot

S1 + Sz
1

)(
Stot − Sz

tot

S1 − Sz
1

)
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B.2 S = 1 CSL wavefunction

B.2 S = 1 CSL wavefunction

The Schwinger boson language allows us to merge 2 S = 1/2 CSLs into a S = 1 liquid with
chirality by a simple multiplication :

ψS1CSL
+ [a†, b†] = ψCSL

+ [a†, b†]ψCSL
+ [a†, b†]

=
∑

{z1,...,zM}
{z′1,...,z′M}

M∏
i<j,1

(zi − zj)2
N−M∏
i<j,1

(z′i − z′j)
2
∏
j

G(zj)G(z′j)

×
∏
j

e−
π
2
(|zj |2+|z′j |2) a†[z]b†[zC ]a†[z′]b†[z′C ]

=
∑

{z1,...,zM

zM+1...zN}

M∏
i<j,1

(zi − zj)2
N∏

i<j,M+1

(zi − zj)2
N∏

j=1

G(zj)

×
N∏

j=1

e−
π
2
|zj |2 a†[z]b†[zC ]

=
∑

{z1,...,zN}
S

⎧⎨
⎩

M∏
i<j,1

(zi − zj)2
N∏

i<j,M+1

(zi − zj)2

⎫⎬
⎭

N∏
j=1

G(zj)

×
N∏

j=1

e−
π
2
|zj |2 a†[z]b†[zC ]

=
∑

{z1,...,zN}
Pf
[

1
zi − zj

] N∏
i<j,1

(zi − zj)
N∏

j=1

G(zj) e−
π
2
|zj |2a†[z]b†[zC ]

Here zC denotes the set of sites complementary to z = {z1, . . . , zM} and the notation a†[z]
stands for

a†[z] := a†z1
. . . a†zM

and analogously for b†[w].
In the step from line 2 to 3 we merged the two sets of sites z (M sites) and z′ (N−M sites) each
with double occupation forbidden into one list of N sites where (at most) double occupation is
allowed. This does not cause problems, because even though a double occupation might now
occur within the first M or the last N−M sites, these configurations do not contribute since
then at least one of the factors (zi − zj)2 gives 0.
Since we already sum over all possible ways to pick N sites from the lattice allowing for double
occurances, we can add a symmetrizer without changing the wavefunction except for an overall
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B Addenda: Spin liquid hierarchy

factor N !, i.e., we use the follwing property of symmetrization

S :
∑

{z1...zN}
S f [z] = N !

∑
{z1...zN}

f [z]

if f [z] is a symmetric function.
To obtain the final result, we used the identity [58]

S

⎧⎨
⎩

M∏
i<j,1

(zi − zj)2
N∏

i<j,M+1

(zi − zj)2

⎫⎬
⎭ = Pf

[
1

zi − zj

] N∏
i<j,1

(zi − zj) (B.10)

which only holds in the case M = N/2. We do not attempt a proof here, but let us quickly
check that the degree of the polynomials on both sides coincides. On the lhs, the braces contain
polynomials with total degree 2 × 2 ×M(M − 1)/2 = 2M(M − 1) (the symmetriser does not
change this), while the rhs gives N(N − 1)/2 = M(2M − 1) from the Jastrow-factor and −M
from the Pfaffian for a total of M(2M − 1) −M = 2M(M − 1), so it does check out.

B.3 S = 1 CL wavefunction

We want to give the explicit form of the chirality liquid wavefunction and prove that it is real
valued. Plugging in the S = 1/2 CSL into (3.12) we obtain

Ψ̂S1CL =
∑

{zi},{wj}
{z′i},{w′

j}

M∏
i<j

(zi − zj)2(z̄′i − z̄′j)
2

M∏
j=1

G(zj)G(z′j)e
−π

2
(|zj |2)+|z′j |2

M∏
k=1

a†zk
a†

z′k
b†wk

b†
w′

k
(B.11)

for the S = 1 CL creation operator where the sum runs over two sets Z = {z1, . . . , zM},
Z ′ = {z′1, . . . , z′M} each containing M = N/2 distinct sites and each associated with its com-
plementary set W = {wj},W ′ = {w′j} (thus Z ∪W = Z ′ ∪W ′ exhaust the lattice and W,W ′

can be assumed to be in some standard order, because including all M ! orders in the sum
would only contribute an overall factor (M !)2 to the wavefunction).

Let us now consider one (fixed) configuration
∏

k a
†
zka

†
z′k
b†wkb

†
w′

k
and assume |Z ∩ Z ′| = d,

i.e., d sites occur in both Z and Z ′ (since the number of a† and b† are the same it implies
W ∩W ′ = d). Define ZD = Z\(Z ∩ Z ′) and Z ′D = Z ′\(Z ∩ Z ′). The key observation is now
that exchanging sites between ZD and Z ′D does not change the configuration

∏
k a
†
zka

†
z′k
b†wkb

†
w′

k
.

Therefore the coefficient c[
∏M

k a†zka
†
z′k
b†wkb

†
w′

k
] can be written as

c[
∏
k

a†zk
a†

z′k
b†wk

b†
w′

k
] =

∑
P∈S2(M−d)/SM−d×SM−d

P
∏
i<j

(zi−zj)2(z̄′i−z̄′j)2
M∏
j

G(zj)G(z′j)e
−π

2
(|zj |2)+|z′j |2

(B.12)
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where S2(M−d)/SM−d×SM−d denotes all classes of permutations which exchange sites between
ZD and Z ′D. Such a permutation P is applied to

∏
i<j(zi − zj)2(z̄′i − z̄′j)

2 in the natural way

(e.g. P(12) (r1 − r3)2(r̄2 − r̄3)2 = (r2 − r3)2(r̄1 − r̄3)2). The factor
∏M

j G(zj)G(z′j)e
−π

2
(|zj |2)+|z′j |2

is evidently real and invariant under any interchanges we might apply, so we do not have to
worry about it. It is the other product which we must inspect more closely. But a short
thought reveals that each permutation P in the sum has a (unique) complementary ’partner’
Q, defined as the permutation which exchanges those sites which are left alone by P and vice
versa. It has the properties:

PZD ∩QZD = PZ ′D ∩QZ ′D = ∅ ⇔ PZD = QZ ′D ∧ PZ ′D = QZD (B.13)

The sites in appear withoutZD, the ones in Z ′D with complex conjugation respectively, there-
fore (B.13) says that every zk appearing in P

∏
i<j(zi − zj)2(z̄′i − z̄′j)

2 will appear as z̄k in
Q
∏

i<j(zi − zj)2(z̄′i − z̄′j)
2 and vice versa. But this means

P
∏
i<j

(zi − zj)2(z̄′i − z̄′j)
2 = Q

∏
i<j

(zi − zj)2(z̄′i − z̄′j)2 (B.14)

Since we have identified pairs of complex conjugate summands in the sum (B.12) it follows
that the whole sum must be real. Since the configuration

∏M
k a†zka

†
z′k
b†wkb

†
w′

k
we investigated

was arbitary, it holds in general and thus |ψS1CL〉 is real.

B.4 SU(2) level k anyons

In some models there exist fundamental excitations with exotic statistics described by a SU(2)
level k algebras. Such an algebra consists of a set of ’fusion rules’ which the result of all
possible 2 quasi-particles merging operations.

Algraically, SU(2) level k works the following way: each particle can be thought to represent
a spin S = 0, 1/2, . . . , k/2. The fusion rules for a particle S1 and S2 are basically the decompo-
sition of the product representation S1 ⊗ S2 with an artificial cap on the highest allowed spin

S1 ⊗ S2 →
Min(k−S1+S2,S1+S2)⊕

S=|S1−S−2|
S (B.15)

Note the upper boundary, which would be just S1 + S2 if we were considering normal SU(2)
spins.

For the case of the simplest non-trivial example, k = 1, we have 2 possible ’spins’ 0, 1 but
they are usually called 1 and σ. (1 because spin 0 is a singlet and as such the unit element of
the tensor product operation). There are only 2 fusion rules:

1 × σ → σ (B.16)
σ × σ → 1 (B.17)
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Just like in the coupling of ordinary SU(2) representations, the order of the factors does not
matter. The interpretation is, that annihilating 2 quasiparticles to the vacuum is always
possible. This describes quasiparticles with Abelian statistics, in contrast to the algebra of
SU(2) level 2 described next.

In the next level, k = 2, the possible spins are 0,1 and 2 which we label by 1, σ and τ
respectively. They fuse like

1 × σ → σ (B.18)
1 × τ → τ (B.19)
σ × σ → 1 + τ (B.20)
σ × τ → σ (B.21)
τ × τ → 1 (B.22)

The interesting rule is the third: it is not determined wether two σ-particles fuse to give a
singlet 1 or a τ particle.

This is the algebra describing excitations in Pfaffian states like the one proposed for ν = 5/2
in the fQHE, vortex core states of p + ip superconductors or the NACSL and S2CL in our
hierarchy. The connection is as follows: quasi-particles are represented by Majorana fermion
operators ηj with (anti-)commutation relations

{ηi, ηj} = 2δij (B.23)

They are the σs of the algebra. Quasi-particles are created in pairs η2k−1, η2k and each pair
corresponds to a full Dirac fermion with creation and destruction operators

c†k =
1
2
(η2k−1 + η2k) (B.24)

ck =
1
2
(η2k−1 − iη2k) (B.25)

A Dirac fermion corresponds to the τ particle from above and the ’1’ we identify with the state
with no Dirac-fermion present. The eigenstates of the c†kck span the Hilbert space. Given a
fixed number of quasi-particles, say 2N , the Hilbert space H2N is therefore 2N dimensional.
Defining the operation

Uij =
1√
2
[1 + ηiηj ] (B.26)

one can show that they form a representation on H2N of the braid group of N particles on a
sphere. Uij can therefore be interpreted as the operation of braiding two Majoranas, while, e.g.
U2

ij corresponds to winding them around each other once. If there is 1 pair of quasi-particles,
there is only one representation matrix, U12, 2-dimensional and diagonal. But as soon as there
are 2 pairs or more there are non-Abelian Uij [35].

Take N = 2: with the pairing (η1, η2), (η3, η4), U12 and U34 are diagonal (i.e., Abelian) 4×4
matrices, while the other 4 matrices have off-diagonal entries, hence they do not commute
with U12 and U34 (they are however not independent and we may choose one of them, say, U23
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B.5 S = 2 CL wavefunction

as representative/generator). This is just what non-Abelian statistics is about: exchanging
particles does not only give a phase factor, it rather rotates our state vector in the Hilbert
space! ’Fusion’ of quasi-particles j and k equates to applying the Dirac-fermion destruction
operator

cjk =
1
2
(ηj − iηk) (B.27)

to the system. As in the blocking mechanism described in section 2.2.5, by virtue of our basis
states not being the natural basis for cjk, the result is a superposition of a state with a Dirac-
fermion present in orbital jk (corresponding to a τ) and no such Dirac-fermion (corresponding
to the ’vacuum’ 1).

We see now how non-Abelian statistics is essential here: this behaviour is only possible
because winding quasi-particles can change their state and not only their phase.

B.5 S = 2 CL wavefunction

In analogy to the S=1 CSL, we would like to rewrite the S=2 CL in terms of renormalised
spin flips. The Schwinger-boson form allows us to merge two S = 1 CSL wavefunctions by
simple multiplication:

ψS2CL(z1, . . . , zN ;w1, . . . , wN ) = ψS1CSL
+ [z]ψS1CSL

− [w]

= Pf
[

1
zi − zj

]
Pf
[

1
w̄k − w̄l

] ∏
i<j

(zi − zj)

×
∏
k<l

(w̄k − w̄l)
∏
i,k

G(zi)G(w̄k) e−
π
2
(|zi|2+|wk|2)

Here z and w are two lists of sites where (only) double occupation is allowed withing each.
The creation operator for an S=2 CL is then

Ψ̂S2CL =
∑

{z1,...,zN}
{w1,...,wN}

ψS2CL(z1, . . . , zN ;w1, . . . , wN ) a†[z]b†[w] (B.28)

and the state is obtained by applying this operator to the vacuum:

|ψS2CL〉 = Ψ̂S2CL |0〉 (B.29)

Since both are bosonic in nature, it is no problem to substitute renormalised spin-flip operators
S̃+ for the a†s:

|ψS2CL〉 =
∑

{zi},{wj}
ψS2CL(z1, . . . , zN ;w1, . . . , wN )S̃+

z1
. . . S̃+

zN
S̃+

w1
. . . S̃+

wN
|−2〉N (B.30)

The empty vacuum |0〉 is replaced by a ’vacuum’ of completely down polarised spins |−2〉N =
|2,−2〉⊗N and the renormalisation of spin-raising operators is given by

S̃+
η =

√
2 + Sz

η

3 − Sz
η

S+
η
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C Addenda: Entanglement spectrum analysis

C.1 Partial trace and reduced density matrix

A system S can be decomposed into subsystems A and B (i.e., is bipartite), if it allows a
description by product states

|ψS
jk〉 = |φA

j 〉 |φBk〉 ↔ BS = BA × BB (C.1)

with BA and BB bases of the two subsystems. Given a density matrix ρ of the full system,
we can perform a partial trace over, say, B to obtain a reduced density matrix on subsystem
A (4.1)

ρA = TrBρ =
∑

|φB
k 〉∈BB

〈φB
k |ρ|φB

k 〉 (C.2)

Proposition 1 ρA is again a density matrix, i.e., it is (i) hermitian, (ii) has unital trace and
(iii) probabilistic eigenvalues e−ξ/2, ξ ∈ [0,∞).

Proof —
(i) follows directly from ρ† = ρ
(ii)

TrA =
∑

|φA
j 〉∈BA

〈φA
j |ρA|φA

j 〉

=
∑
|φA

j 〉
〈φA

j |
∑

|φB
j 〉∈BB

〈φB
k |ρ|φB

k 〉 |φA
j 〉

=
∑
|ψS

jk〉
〈ψS

jk|ρ|ψS
jk〉

= TrSρ = 1 (C.3)

(iii) Let ρ =
∑

α pα |ψα〉〈ψα|. Each |ψα〉〈ψα| can be written as

|ψα〉〈ψα| =
∑
i,j,j′

c̄αijc
α
ij′ |φA

i 〉〈φA
i | ⊗ |φB

j 〉〈φB
j′ |
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Therefore

TrBρ =
∑

k

〈φB
k |
∑
i,j,j′

∑
α

c̄αijc
α
ij′ |φA

i h〉〈φA
i | |φB

j 〉〈φB
j′ | |φB

k 〉

=
∑

i,j,j′,k

∑
α

c̄αijc
α
ij′δjkδj′k |φA

i 〉〈φA
i |

=
∑

i

(∑
k

∑
α

|cαik|2
)
|φA

i 〉〈φA
i | (C.4)

Therefore the eigenvalues λi of ρA are
∑

k

∑
α |cαik|2 ≥ 0. Together with (ii) it follows 1 ≥ λi ≥ 0,

i.e., they are probabilistic and can be written like λi = e−ξ/2.
This concludes the proof.

C.1.1 Alternative approach to ρA

In the literature one often finds the following way to define the reduced density matrix spectrum

|ψ〉 =
∑

i

e−ξi/2 |i〉A |i〉B (C.5)

From which the form (C.2) for ρA follows immediately. Being succinct and ostensibly clear, it
lends itself to brief, to-the point introductions to the topic of entanglement spectra. However,
we feel it requires some closer explanation.

A general state on a bipartite system with bases BA = {|i〉A} and BB = {|j〉B} is given by

|ψ〉 =
∑
ij

cij |i〉A |j〉B (C.6)

where normalisation implies
∑

ij |cij |2 = 1. Now one can define the states on B

λi |i〉B =
∑

j

cij |j〉B (C.7)

and again from normalisation we can infer

λi =
√∑

j

|cij |2 (C.8)

i.e., λi ≥ 0. Since also
∑

i λ
2
i = 1 it follows that we can set λi = e−ξi/2 for some ξi ∈ [0,∞),

which brings us to (C.5).
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C.2 Entspec: an implementation for symmetry resolved ES generation

a)

Sz
A dim(H Sz

A
A ) Δξ shift

0 924 0.00
1 792 0.31
2 495 1.62
3 220 2.87

b)

Sz
A dim(H Sz

A
A ) Δξ shift

0 1107 0.00
1 1016 0.17
2 784 0.70
3 504 1.57

Table C.1: Δξ shifts for a) N = 12, S = 1/2 and b) N = 8, S = 1 spins

C.1.2 Quantum number resolved spectra

If we can express the Hilbert space HS of the total system as a direct sum of product spaces
H n

A—B on the subsystems, i.e.,

H n
S =

⊕
m

H m
A × H n−m

B (C.9)

where n is a set of quantum numbers that is conserved for all systems, then we can compute
quantum number resolved reduced density matrices

ρn
A = Trn−m

B ρn. (C.10)

The trace is only over those states on B, which conserve the quantum numbers.
For instance given an Sz

tot = 0 state |ψSz
tot=0〉 of N spins S on a lattice cluster, partitioned

into subsystem A with M and B with N −M spins, the Hilbert space H
Sz

tot=0
S of the total

system decomposes into

H
Sz

tot=0
S =

+Ns⊕
k=−Ns

H
Sz

A=k
A × H

Sz
B=−k

B (C.11)

and we can compute a reduced density matrix on A for each value of Sz
A. Since we do not

include the full Hilbert space, of the original density matrix, it will not satisfy TrSz
A=k

A ρ
Sz

A=k
A = 1.

To obtain a proper density matrix we have to renormalise ρSz
A=k

A with its trace.
Care must be taken when comparing levels for different Sz: since the subspaces HSz have

different dimensions, the levels in their spectra carry different weight. The true difference
between two levels ξSz

1
1 and ξSz

2
2 is therefore not Δξ = ξ

Sz
1

1 − ξ
Sz

2
2 but

Δξ′ = ξ
Sz

1
1 − ξ

Sz
2

2 + 2 ln(
dim HSz

2

dim HSz
1

) (C.12)

C.2 Entspec: an implementation for symmetry resolved ES
generation

We are given a state |ψ〉 in a product basis of the total system, the lattice specification
(including the specification of subsystem A shape and those symmetries of A, which will still
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C Addenda: Entanglement spectrum analysis

give good quantum numbers after the partial trace over B, which are exactly those A has in
common with B) and the bases for subsystems A and B, BA and Bb respectively. We want to
compute the spectrum of the reduced density matrix resolved into eigenvalues of symmetries
on A.

This is done in 5 steps

1 ρA generation: rewrite |ψ〉 from a list into a matrix Ψ where rows are labeled by the
states in BA and columns by the states in BB. The reduced density matrix is then
ρA = Ψ†Ψ

2 Q-matrix generation: the Q-matrices are the projection matrices onto A-symmetry
eigenspaces. For each symmetry A has in common with B and the total system, we
compute the projection operator onto an eigenstate by looping through the configura-
tions in BA. In step j we choose a configuration φj from among those which we did
not yet encounter. We apply the generator g of the symmetry until we return to φ.
Each configuration gkφ, k = 0, . . . ,K we look up in φ ∈ BA and add an entry ei2πk/K

to column j row gkφ. This produces a projector for one symmetry only. It would be
straightforward to handle several g1, g2, . . . however as long as they commute. We plan
to include this feature into our program in the future.

3 symmetry projection: ρg
A = Q†gρAQg.

4 diagonalise the ρg
A → {λi}g

5 bin the λi, merging levels which are closer together than some desired precision (user
specified with default value 10−9)

C.3 CSL on a cylinder

Just as one adapts a droplet CSL wavefunction to (quasi-)periodic boundary conditions by
making the substitutions Z → ϑ(Z|τ) and (zi−zj) → ϑ(zi−zj |τ), with the ’wrapping function’
ϑ(z|τ) the odd Jacobi-theta function, we need to find an odd function suited to cylindrical
boundary conditions (cbc). It need only be periodic in one direction now and the most natural
choice having both properties is a Sin-function. We therefore write a lowest Landau level
wavefunction φ[z]

φ[z] =
M∏
i<j

sin(π(zi − zj))
M∏
j

e−
π
4
Im[zj ]

2
(C.13)

two of which we can combine just like with open or periodic boundary conditions to give a
CSL wavefunction on the cylinder (4.9)

ψCSL
cyl [z] = eiKZ

M∏
ij

sin2(π(zi − zj))
M∏
j

G(zj) e−
π
2
Im[zj ]

2
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C.3 CSL on a cylinder

Figure C.1: One can obtain the CSL wavefunction for cylindrical boundary conditions by tak-
ing the torus version and sending the parameter τ → i∞

where the factor π is included in the argument of the sine because our unit length is the
circumference of the cylinder.

Substituting zj → zj + 1 will leave the wavefunction unchanged with the exception of a
phase eiK , which can be set to equal the boundary phase:

eiK != eiφ1 ⇒ K = φ1 (C.14)

It is also possible to motivate (4.9) as a limit of the CSL on a torus when sending the
parameter τ → i∞ while keeping the total flux at NΦ0. As we see from (A.10), setting τ to be
purely imaginary, ϑ(z|iIm[τ ]) will quickly approach 2e−πIm[τ ]/4 sin(πz). This means for ψCSL

torus

ψCSL
torus,τ→∞ = eiKZ

√
2

M(M+1)+2
e−πIm[τ ](M(M−1)+2)/8 sin(π(Z − Z0)) sin(π(Z + Z0))

×
∏
i<j

sin2(π(zi − zj))
∏
j

G(zj)e−πIm[zj ]
2
e−πIm[zj ]Re[zj ]

= eiKZ
√

2
M(M+1)+2

e−πIm[τ ](M(M−1)+2)/8e−π
P

j Im[zj ]Re[zj ]

×
∏
i<j

sin2(π(zi − zj))
∏
j

G(zj)e−πIm[zj ]
2

∝ [cos(2Z0) − cos(2Z)]
∏
i<j

sin2(π(zi − zj))
∏
j

G(zj)e−πIm[zj ]
2

(C.15)

The first part on the rhs is just the wavefunction up to normalisation, the second describes a
liquid with more zeros than particles, i.e., a CSL with one additional flux quantum.
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D Group theory and Young tableaux

In this appendix we would like to give a brief review of the basic results in the theory of groups
and their representations. A special focus will be on the beautiful and intuitive technique of
Young tableaux that was invented to describe irreducible representations of the symmetric
group. However, there is a deep connection between the representations of the symmetric
group and the general linear group GL(V ) (as well as its subgroups U(n) and SU(n)) which
manifests itself most visibly in the one-to-one relationship between highest weight labels and
Young diagrams as well as the fact that Young tableaux can be used to decompose representa-
tions of GL(V ) as well.

D.1 Definition, fundamental consequences

Definition 1 A group is a pair (G, ·) of a set of elements G, finite or infinite, with a multi-
plication operation ’·’ defined on it:

′·′ : G×G→ G (D.1)

such that the following three conditions are satisfied

∀x, y, z ∈ G : (x · y) · z = x · (y · z) = x · y · z (associativity) (D.2)
∃1e ∈ G : ∀x ∈ G : x · e = e · x = x (existence of unity) (D.3)

∀x ∈ G : ∃1x
−1 ∈ G : x · x−1 = x−1 · x = e (inverses) (D.4)

The cardinality |G| of G is also called the order of G.

’∃1’ stands for ’there is exactly one’, i.e. it is the statement of uniqueness.

Definition 2 A group G is called abelian or commutative if in addition to the basic group
laws it also holds

∀x, y ∈ G : x · y = y · x (D.5)

If it is clear which multiplication is meant, one omits the ’·’ and just writes, e.g., xy instead
of x · y and also refers to the set G alone as ’the group G’. Only if there is more than one
multiplication operations and elements from different groups in one equation or the if there are
’multiplications’ involved that are no real group operation (like the inner product of a vector
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D Group theory and Young tableaux

space or the cross-product ’×’ of C3) does one mark them explicitly and we will keep with this
convention in the following.

To name some example of groups there are the integer numbers Z with normal addition,
which is a countably infinite abelian group, the set SN of the permutations of N distinguishable
items, which is a finite but non-abelian group or the set of invertible n×nmatrices over C, called
GL(C, n), which is uncountably infinite and also has the structure a complex manifold making
it an example of a Lie group. The very simplest group is the trivial group {e}, containing only
a single element.

Associativity

Associativity may look innocent enough at first glance, especially since one is very used to
it, but it is quite a strong restriction on which structures of groups are possible and many
properties can be deduced with its help. For example, the fact that for any x ∈ G its inverse and

the unit element e commute with it is a consequence of associativity: xex−1 (D.3)
= xx−1 (D.4)

= e =
exx−1 since x was arbitrary ⇒ ∀x ∈ G : xe = ex. A similar derivation shows xx−1 = x−1x = e
so including the second equality in our above definition (D.3) was in fact redundant. The
same can be said of the uniqueness we demanded: uniqueness of the unity also follows from
existence of the inverse (and vice versa) due to associativity: let a ∈ G be another element with
ax = xa = x ∀x ∈ G then multiplying with x−1 from, say, the right and using associativity
we get a = axx−1 = exx−1 = e proving that a is in fact identical with e. Similarly, if we have
y ∈ G : yx = e we can deduce x−1 = (yx)x−1 = y(xx−1) = y, showing that there is really only
one inverse.
Moreover, for all elements x ∈ G the map fx defined by

fx : G→ G (D.6)
y �→ xy

is a bijection: if y, y′ ∈ G : fx(y) = fx(t′) ⇔ xy = xy′ x−1·⇔ y = y′ and ∀y ∈ G : fx(x−1y) =
xx−1y = y proving injectivity and surjectivity. Associativity comes in directly in the latter only,
but we used it indirectly in showing injectivity via the commutativity of the inverse. Of course,
reversing the order of multiplication in (D.6) defining f ′x(t) := yx yields a bijective map as well.

Group table

For a finite group G, |G| < ∞, the information about its structure can be summarised in the
group table. It is a square table, both rows and columns labelled by the group elements (in
some arbitrary order) and the entry in row x and column y is given by x · y. For example, the
group table of S3, the permutation group on 3 elements is given by:
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D.1 Definition, fundamental consequences

e (123) (132) (12) (13) (23)

e e (123) (132) (12) (13) (23)

(123) (123) (132) e (13) (23) (12)

(132) (132) e (123) (23) (12) (13)

(12) (12) (23) (13) e (132) (123)

(13) (13) (12) (23) (123) e (132)

(23) (23) (13) (12) (132) (123) e

Here we use the cyclic notation of a permutation: e.g. (123) sends ’1’ to ’2’, ’2’ to ’3’ and ’3’
back to ’1’ closing the cycle. All permutations in SN can be expressed in this way for arbitrary
N . E.g. (124)(35)(6) ∈ S6 is a 3-cycle on the letters 1,2 and 4, a 2-cycle on ’3’ and ’5’ and a
1-cycle, i.e. a fixed point, on ’6’.
As one can see, the fact that (D.6) is bijective manifests itself through each element in G ap-
pearing exactly once in each row and column, which can serve either as a check of consistency
or a way to speed up the computation of the group table.

Generators

Another concept which is very very important in group theory is the one of generators and
generating sets.

Definition 3 A set S ⊂ G is said to be a generating set (for G) if every element in G may
be written as a product of (finitely many) elements of S:

∀x ∈ G : ∃s1, . . . , sk ∈ S : x = s1s2 . . . sk (D.7)

For instance, if we look at the group table of S3 we see that for instance the three transpo-
sitions t1 = (12), t2 = (13) and t3 = (23) generate the full group. This choice is not minimal
however: Using only two transpositions, or one transposition and one 3-cycle also works.

Generating sets also provide a key to unlocking infinite groups: for those we of course cannot
write down the full group table, but what we can do in many cases is find a finite generating
subset. Accordingly, in that case G is called finitely generated. In fact, the finitely generated
groups are the only infinite groups we can investigate in a meaningful way. The easiest example
of such a group is (Z,+) again, where the generating set is simply SZ = {1}. Others are the
free groups Fk on k generators {a1, . . . , ak} (consisting of all products of the generators were
no factors of the form aja

−1
j appear), but also the Lie groups like GL(V ) are finitely generated

if we understand this in an infinitesimal way and drop the limitation to finite products (since
otherwise the resulting group would necessarily be countable).
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D Group theory and Young tableaux

One can take the notion of generators one step further: in general, we need only specify
the set S and a suitable set of relations between the generators in it to define a group in an
abstract sense.
Using again the example of S3 with the above definition of the generators ti, we only need to
know that t2i = e, i = 1, 2, 3 and i �= j ⇒ titj �= tjti to be able to deduce the full group table.
Here is how: if we form titjti for i �= j it holds

(titjti)2 = titj(titi)tjti = titjtjti = · · · = e

Therefore we must have titjti = tk for some k. Now, k = i is ruled out by e = ti(titjti) =
tjti �= e and k = j by tjti �= titj so the only possibility is for k to be the remaining third index.
This implies

t1t3 = t2t1 = t3t2 =: c

t3t1 = t1t2 = t2t3 = c−1

and thus c, c−1 are the only new elements, since all other products of generators can be reduced
to one of e, t1, t2, t3, c or c−1.

Homomorphism

Frequently one is interested in maps between groups that are ’compatible’ with the group
structure, because they provide a means of analysing, classifying and comparing different
groups.

Definition 4 A map φ : G→ H between two groups G and H is called a homomorphism if

∀x, y ∈ G : φ(x ·G y) = φ(x) ·H φ(y) (D.8)

A homomorphism of G into itself, i.e. if H = G, it is called an endomorphism. A very
important class of homomorphisms are the bijective ones, called isomorphisms.

Here we made it explicit that the multiplication on the lhs refers to the one of G while on the
rhs it is the one defined on H.
Isomorphisms deserve special attention, because they are a ’generalisation the equality sign’
for groups. With this we mean that to isomorphic groups G ∼= H are essentially the same
even if they are not one and the same. I.e. given some realisation of G it might appear to
differ from the one we are given of H, but the existence of an isomorphism means their group
tables must be the same up to reordering of elements. If they are finitely generated infinite
groups we may not be able to look at their group tables, but an isomorphism allows us to
find two generating sets with the same algebraic behaviour. This remains true if G and H are
uncountably infinite, e.g. realisations (properly called representations, D.2) of some Lie group
in different dimensions.
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Conjugacy Classes

Definition 5 The conjugacy class of an element c ∈ G is the G-subset [c] = GcG−1 which is
shorthand for

[c] :=
{
x ∈ G|∃t ∈ G : x = tct−1

}
(D.9)

This does indeed define a classification of G which becomes clear when we consider the relation
≡ defined by

x ≡ y :⇔ ∃t ∈ G : x = tyt−1 (D.10)

Using t = e we see that it is reflexive, it is also symmetric because of the existence of inverses
and above all it is transitive since from x = tyt−1 and y = szs−1 it follows x = ts z s−1t−1 =
(ts)z(ts)−1 and thus x ≡ z.
This also implies that we can use any member x ∈ [c] to generate the entire class via GxG−1 i.e.
forming products with all elements in G and their inverses. This motivates the definition of
the natural projection onto the factor set G/ ≡ (factor sets will be defined in the next section)

[.] :G→ G/ ≡ (D.11)

x �→ [x] = GxG−1

mapping x to its conjugacy class [x].
Since it commutes with all elements in the group, the identity e is always in a class by itself.

Similarly, if G is abelian all classes contain only single elements and the factor set G/ ≡ is
isomorphic to G itself.

Subgroups

A notion of supreme importance is that of a subgroup.

Definition 6 If a group G contains a subset H ⊆ G that is algebraically closed under the
multiplication of G and the inverse operation then H is called a subgroup of G.

Every group trivially contains the subgroups {e} and G itself. For a nontrivial example we can
again turn to S3: inspecting its group table we see that the first three elements, e, (123) and
(132) transform only among each other upon multiplication, which is exactly what is meant by
algebraic closure. Thus they form a three-element abelian subgroup, called the cyclic subgroup
of order three (also known as the alternating group A3).

In general, if we have a homomorphism between two groups φ : G → H, both its kernel
and its image form subgroups of G and H respectively: Let x, y ∈ kerφ ⊆ G then: φ(xy) =
φ(x)φ(y) = e2 = e and thus xy ∈ kerφ. Similarly for the image x′, y′ ∈ Imφ = φ(G) ⊆ H there
are x, y ∈ G : x′ = φ(x) and y′ = φ(y) thus x′y′ = φ(x)φ(y) = φ(xy) ∈ Imφ.

These relatively simple facts already lead to some interesting consequences: If two groups
of the same order |G| = |H| and G has no proper subgroup, then we immediately know that
any homomorphism from one to the other is either an isomorphism or trivial. Similarly, if
|G| < |H| and H is the group without proper subgroup, then there can only be the trivial
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D Group theory and Young tableaux

homomorphism from G to H.

The notion of a factor set allows us to draw farther reaching conclusions about the relation-
ship between groups and possible homomorphisms between them.

Definition 7 Given a group G and a subgroup H ⊆ G we can define the factor set G/H =
{[x]H |x ∈ G} where

[x]H := {y ∈ G|∃h ∈ H : y = xh} (D.12)

This defines the left factor sets, which are the only ones we will be using, but it is of course
possible to use the reverse order as well. The classes [.]H should not be confused with the
conjugacy classes (which we denote by simple brackets [.] without indices). This definition
achieve a proper classification because the relation x ∼H y defined by (D.12) is indeed an
equivalence. Since multplication with a fixed element x is injective for all x ∈ G and therefore
in particular all x ∈ H, the classes [.]H in the factor set necessarily all have the same size:

∀x ∈ G : |[x]H | = |H| (D.13)

This definition holds for groups of all cardinalities. For finite groups however this lets us infer
more: the existence of a homomorphism with trivial kernel φ : G → H, kerφ = {e} implies
that |H| must be a multiple of |G|.

Normal subgroups

There is a special kind of subgroup which allows defining a group structure on the factor set.

Definition 8 A subgroup N ⊆ of a group G is called normal if GN = NG. This is shorthand
set-notation for

∀x ∈ G : a, a′ ∈ N : ax = xa′ (D.14)

In a somewhat imprecise way one can say that normal subgroups are those which ’commute’
with the group. If we multiply (D.14) by x−1 from the left, we obtain a′ = x−1ax, which
we recognize as the equivalence condition (D.10). This shows that a normal subgroup must
contain complete conjugacy classes. This also works the other way around: if we can identify
a collection of conjugacy classes that are closed under the group multiplication, they form a
normal subgroup.

Consider two classes [x]N , [y]N from the factor set G/N = {[c]N |c ∈ G} of G with respect
to a normal subgroup N and take two representatives x, x′ ∈ [x]N and y, y′ ∈ [y]N repectively.
Then it follows for the conjugacy classes of the product:

[x′y′]N = [xh yh′]N = [xy h′′h′]N = [xy]N (D.15)

Where we have used in the first step that since they each come from the same class and
in the second the normal subgroup property (D.14). But this implies that we can define a
multiplication on G/N in well defined manner by simply defining the product of two classes
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as the class of the product. With this multiplication, G/N is indeed a group: associativity
follows from associativity of the G-product, the unit element is [e]N , the class of the G-unit
element, and the inverse of [x]N is simply [x]−1

N = [x−1]N .
Again S3 provides an illustrative example: the cyclic subgroup C3 contains all the elements

in the conjugacy classes [e] and [(123)] and nothing besides, so it is normal. The factor group
is isomorphic to S2 = {e, (12)}: S3/C3

∼= S2. S3 contains no other normal subgroup.
The (Cartesian) productG×H of two groupsG,H is again a group if we define multiplication

componentwise:

∀(g, h), (g′, h′) ∈ G×H : (g, h) · (g′, h′) = (gg′, hh′) (D.16)

D.2 Representations of finite groups

Definition 9 A representation of a group G is a homomorphism D from G into the group of
invertible linear automorphisms of a vector space V , the carrier space.

D :G→ GL(V ) (D.17)
g �→ D(g) (D.18)

D is called a faithful representation if it is injective.

Because it is usually clear which mapping D is meant, one often simply calls the carrier space
V itself ’a representation’.

All linear maps can be associated with square matrices over the basis field V is defined over,
therefore one usually thinks of a representation as a realisation of the group G with nV × nV

matrices (nV = dimV ) and therefore we will take D(g) to denote a matrix. When applying
a group operation g to an element v ∈ V one also frequently omits the representation matrix
and for brevity’s sake writes directly gv instead of D(g)v.

The representation matrices D(x), x ∈ G are only determined up to a basis transformation:
If the invertible matrix T effects a change to a new basis the representation matrices change
like

D(x) �→ D̃ = T−1D(x)T (D.19)

The two representations D(x) and D̃(x) are called equivalent.
If we can find a basis transformation such that the matrices D̃(x) are, for all x ∈ G, of the
form

D̃(x) =

⎛
⎝ D1 R

0 D2

⎞
⎠ (D.20)

we call the representation reducible and if the offdiagonal part R vanishes too, the representa-
tion is said to be decomposable because in that case the representation is clearly just a direct
sum of two independent representations D1(G) and D2(G).
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Irreducible representations

Definition 10 A representation D(G) of a group G is called irreducible if there is no basis
transformation such that brings all matrices D(G) simultaneously into the form (D.20).

Finite groups have the neat property that reduciblity and decomposability are equivalent, i.e.
a reducible representation always decomposes into direct some of irreducible ones which can
be shown in the following way: given any inner product 〈., .〉 on V we obtain a G-invariant
one by averaging over the group

〈v, w〉G :=
1
|G|
∑
G

〈D(g)v,D(g)w〉 (D.21)

Now if V is not already irreducible, we can find a proper subrepresentation W . Then V
decomposes into W and W⊥, the orthogonal subspace to W with resp to 〈., .〉G. Because
〈., .〉G is G-invariant it holds for all v ∈W, w ∈W⊥ and g ∈ G

0 = 〈v, w〉G = 〈gv, gw〉G = 〈v′, gw〉G
proving that G ·W⊥ ⊆ W⊥. But this means that the representation matrices D(g) are all
block-diagonal and thus decompose into a direct sum of two subrepresentations.

Constructing representations

There are other ways to construct new representations besides taking the direct sum. Given
two representations D1, D2 on the spaces V1 and V2 respectively we can also form the product
representation, i.e. the tensor product of all representation matrices

D : G→ GL(V1 × V2) (D.22)
x �→ D1(x) ⊗D2(x)

This representation lives on the carrier space V = V1 × V2 and is in general reducible. It is
the main purpose of this chapter to introduce methods how we can decompose it in the cases
when G = SN , the symmetric group, and G = U(n), the unitary group. However, we consider
not only two- but in general N -fold tensor products (V ⊗N ).

The symmetric power SymN V of a vector space V are all elements in V ⊗N defined in the
following way:

v ∈ SymN V ⇔ ∃v1, v2, . . . , vN ∈ V : v = S (v1 × v2 × · · · × vN ) (D.23)

where we defined the symmetrisation operation

S (v1 × v2 × · · · × vN ) :=
∑

P∈SN

vP (1) × vP (2) × · · · × vP (N) (D.24)

112



D.2 Representations of finite groups

The elements of SymN V are thus completely symmetric under all permutations. This
property clearly survives addition of vectors and multiplication with scalars, i.e. SymN V is a
vector space.
If {ei, i = 1, . . . , nV } is a basis of V , then a basis of SymN V is given by

{S (ej1 × · · · × ejN ), 1 ≤ j1 ≤ j2 ≤ · · · ≤ jN ≤ nV }
and has a dimension of (N + nV − 1)!/nV !(N − 1)!.

Similar to symmetrization, we define the outer or wedge product of N vectors

v1 ∧ v2 ∧ · · · ∧ vN :=
∑

P∈SN

(−1)|P | vP (1) × vP (2) × · · · × vP (N) (D.25)

where |P | denotes the number of transpositions required to build the permutation P .
In analogy to symmetrization above, the outer power ∧NV of a vector space V is given by

all elements of the form v1 ∧ v2 ∧ · · · ∧ vN in V ⊗N . The basis

{ej1 ∧ · · · ∧ ejN , 1 ≤ j1 < j2 < · · · < jN ≤ nV }
in terms of V -basis vectors ej has the dimension nV !/(nV −N)!N !. Note, that this is undefined
for N > nV , which reflects the fact, that we cannot antisymmetrize over more constituents
(copies of V ) than there are degrees of freedom (dimenson of V ).

Schur’s lemma

An extremely useful tool in representation theory is Schur’s lemma. A succinct formulation is

Theorem 1 Let A a homomorphism between two irreducible representations V and W of G.
It holds
(1) either A is an isomorphism or A = 0.
(2) if V = W , then A = ξ 1dim V with ξ ∈ C

Here ’V = W ’ is shorthand for ∀g ∈ G : DV (g) = DW (g).

Proof:
(1) We know that the subspaces KerA ⊆ V and ImA ⊆ W are invariant under G. But being
irreducible only they themselves and the trivial subspace {0} can be invariant in V and W .
If KerA = V then of course ImA is trivial: A = 0.
Otherwise KerA is trivial and consequently ImA = W , which implies that A is both injective
and surjective, i.e. an isomorphism (of groups and vector spaces).

(2) In that case we can identify V = W and consider the matrix of A in some basis. Because
the underlying field C is algebraically closed, A must have at least one eigenvalue λ. But then
A− λ1 has a non-zero kernel, and using irreducibility again this must in fact comprise all of
V . �
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In practical terms therefore, Schur’s lemma is a statement about matrices that commute
with all matrices of irreducible representations. If A satisfies

Dλ(g)A = ADμ(g)

for all g ∈ G and two IRs λ, μ then A = ξ 1χλ(1) if λ = μ and A = 0 otherwise.
Schur’s lemma is invoked frequently in many proofs representation and character theory, but

it find one of its most elegant applications in Yamanouchi’s elegant construction of explicit
representation matrices of the symmetric group, which we will sketch briefly in section D.3.

Characters

The goal of representation theory is to determine how many and what kind of (inequivalent)
irreducible representations a group G can have. If |G| < ∞ this is achieved by help of the
powerful method of group characters, of which we would like to introduce the basic notions
and results.

Definition 11 Given g ∈ G, its character χ(g) in a representation D(G) of G on the space
V is defined as the trace of its representation matrix

χ(g) := TrD(g) (D.26)

Since the trace operation is invariant under unitary transformations and one can show that
all representations of finite groups are unitary, it follows that the character is a class function,
i.e. must be the same for all elements of a conjugacy class:

Tr[D(x)†D(g)D(x)] = Tr[D(g)] ⇒ χ(g) = χ([g]) (D.27)

This is important from a practical point of view, since it simplifies sums over G involving
characters, but also because it implies that the number of conjugacy classes kG := |G/≡ | is
equal to the number of inequivalent irreducible representations.

In a unitary transformation, the character of the inverse element is the complex conjugate:

χ(x−1) = χ̄(x)

This also implies that classes containig both x and x−1 must have real character.

The following relations for characters of compound representations are quite useful:

Proposition 2 Given two representation V, W of a group G it holds

χV⊕W = χV + χW,

χV⊗W = χVχW

χ∧2V =
1
2
[χ2

V(g) − χV(g2)]
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The first two are not very surprising and the third one can be shown by diagonalising g on
∧2V . The eigenvalues are {λiλj‖i < j}, where λi are those on V ,.
A very similar relationship holds for the characters of Sym2V .

The central result of character theory are the criteria for reducibility and the decomposition
of reducible representations it provides. This is summarized in the following two propositions.

Proposition 3 The character χ (viewed as a vector in a kG dimensional space) uniquely
identifies an irreducible representation, in particular are two representations equivalent if and
only if their characters are identical.

The forward direction is clear, because as all representations of finite groups are unitary, trans-
formations between equivalent ones are unitary operations, so they do not change the character.
The reverse direction follows from the fact that the set of all matrices with the same character
is connected with respect to unitary changes of basis.

If χ and χ′ are two characters and thus two vectors in a kG dimensional space we define
their inner product as

〈χ, χ′〉 :=
1
G

∑
[x]

kxχ([x−1])χ′([x]) (D.28)

where kx = |[x]|.

Proposition 4 The characters χλ of the irreducible representations Vλ of a finite group G
form the basis of a kG dimensional vector space and are orthonormal with respect to the inner
product (D.28). This means it holds

〈χλ, χμ〉 = δλμ (D.29)

for all irreducible representations Vλ, Vμ.

Criteria for reducibility

Thus, given the character χ of some representation V , we easily see whether it is reducible by
taking the scalar product with itself. For assume V =

⊕
λ V

⊕aλ
λ , then we have χ =

∑
λ aλχλ

and therefore if follows from (D.29)

〈χ, χ〉 =
∑

λ

|aλ|2 (D.30)

Thus, if and only if the ’square’ of χ equals one is it irreducible, otherwise it is compound.
Also, exploiting orthonormality once more, we can obtain the multiplicity aλ of Vλ in V from

aλ = 〈χλ, χV〉 (D.31)
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Since the represenation D(G) is a homomorphism, the unit element of G must be mapped
onto the unit element in the space of dimV ×dimV matrices, i.e. the unit matrix 1dimV . This
implies

χV(e) = dimV (D.32)

which will be useful later on when we derive all properties of the irreducible representations
of the symmetric group SN via their characters.

In what sense do characters provide all the information about a representation? Well, if take
any element g ∈ G of the group, we know all its eigenvalues of its representation matrix D(g)
if we know the characteristic polynomial and the coefficients of that we can obtain from the
characters. The characteristic polynomial is defined p[x] = det(D(g) − x) and the coeffients
ai, i = 0, .., nV of the monomials xi are

anV = (−1)nV

anV −1 =
∑

j

λj = χV(g)

anV −2 =
∑
i�=j

λiλj =
1
2
[
χ2

V(g) − χV(g2)
]

. . .

anV −k =
∑

j1 �=j2 �=···�=jk

λj1 . . . λjk
=

. . .

a0 =
∏
j

λj

So the entire characteristic polynomial is expressible via the characters of g, g2, . . . , gm, where
m is the order of g. It is defined as the first natural number such that gm = e. For finite |G|,
m is obviously finite as well.

Group ring and regular representation

Given a finite group G we can built an algebra over some field F by using the group elements
themselves as vectors. This is the motivation behind the following definition

Definition 12 The group ring of G over a field F is the vector space

FG = spanF G

together with the multiplication inherited from G.
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To become more familiar with this new structure, lets look at a general element from FG
in the natural basis provided by G

x ∈ FG : x =
∑
g∈G

αg g (D.33)

The coefficients αg ∈ F are the (unique) expansion coefficients in the natural basis. Given a
second element y =

∑
g∈G βg g the ring operations ’+’ and ’·’ can be written explicitly

x+ y =
∑

g

(αg + βg) g (D.34)

xy = x · y =
∑
g,h

αgβh gh =
∑

g

(∑
h

αgh−1βh

)
g (D.35)

Clearly, G ⊂ FG, and thus FG provides a representation of the group G which is called the
regular representation.
In the natural basis the representation matrices of group elements are |G| × |G| permutation
matrices DR(g), i.e. matrices which have exactly one entry ’1’ in each row and column and
otherwise only ’0’s. Similar to the group table, we can label both rows and columns of these
matrices by the elements of G. The entries in the hth row and h′th column of DR(g) is given
by

DR
hh′(g) = δh,gh′

Where the Kronecker-delta is to be read the usual way: it is ’0’ unless h = gh′ is true, in which
case it gives ’1’.

Decomposing the regular representation

Since all its matrices are permutation matrices, the character of the regular representation is
easily found to be

χR(g) =
{ |G| if g = e

0 otw.
(D.36)

Every irreducible representation λ appears in the regular one: If λ is of dimension nλ = χλ(e)
its multiplicity is

aλ = 〈χλ, χR〉 =
1
|G|nλ|G| = nλ (D.37)

Thus, each IR appears with a multiplicity equal to its dimension, which implies

|G| =
∑

λ

n2
λ (D.38)

where the sum extends over all kG irreducible representations of G.
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Especially for smaller groups, this allows a quick guess as to the dimensions of the IRs
involved.
Let S3 serve as an example again: It’s regular representation is 3! = 6 dimensional. There is
only one way to write 6 as the sum of squares: 6 = 2 × 12 + 22. The two one-dimensional
IRs are the trivial one, which every group has and which maps all g ∈ G to the 1 × 1-matrix
(1), and the alternating representation which maps p ∈ S3 �→ sgn(p). The two-dimensional
representation is called the standard representation V3. It is faithful, and in a suitable basis
the matrices of the two generators T12 and T23 are

T12 =
(

1 0
0 −1

)
, T23 =

(
−1

√
3

2√
3

2 −1

)
(D.39)

The easiest way to obtain the generators for general IRs of SN is via Yamanouchi’s construction
(see D.3), but in this simple example they can be derived ’by hand’: start with the natural
representation which has a basis {|100〉 , |010〉 , |001〉}. T12 acts on this basis like T12 |100〉 =
|010〉, T12 |010〉 = |100〉 and T12 |001〉 = |001〉. The action of T23 can be obtained analogously.
If we define the state |u〉 = 1/

√
3(|100〉 + |010〉 + |001〉) we see that it is invariant under

both generators and thus forms the basis of the trivial representation U3. If, in the remaining
two-dimensional subspace, we choose the basis

|a〉 =
1√
6
(|100〉 + |010〉 + 2 |001〉)

|b〉 =
1√
2
(|100〉 − |010〉)

we see that T12 and T23 attain just the form (D.39).

Of course, S3 is a very easy example, so let us consider S4 to illustrate the full power of
character theory.
S4 has five classes and therefore we expect to find as many IRs. The order of S4 is 4! = 24
and there are two ways to write this as the sum of five squares

24 = 2 × 12 + 42 + 2 × 12 = 2 × 12 + 2 × 32 + 22

The first however is not possible, as it does not sum to 24. Even if it did, it would still
not be possible because there are no other one-dimensional IRs besides the trivial U4 and
the alternating U ′4. This is due to the fact that one-dimensional representations are abelian
and therefore unfaithful for a non-abelian group like S4. But every unfaithful IR for a group
comes from a non-trivial normal subgroup and S4 contains only three of these: S4 itself, the
alternating group A4 and M := {e} ∪ [(12)(34)]. S4 gives rise to the trivial representation U4,
A4 to the alternating representation U ′4 and M gives rise to a two-dimensional IR called W4

which turns out to be isomorphic to V3. Thus, S4 has two one-dimensional, two (inequivalent)
three dimensional and one two-dimensonal representations.

The characters of all five representations are determined as follows: χU4 = 1 on all classes
and χU ′

4
= +1 for classes of even and −1 for classes of odd permutations. Similar to S3,
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the four-dimensional natural representation of S4 decomposes into the trivial IR U4 and the
standard rep V4, therefore χV4 = χnat −χU4 . Multiplying χV4 (class-wise) by χU ′

4
we get a new

character which we recognize as irreducible by taking the scalar-product with itself (see (D.30)).
The character χW4 of the last remaining IR is easily determined by exploiting orthonormality.
The complete character table of S4 is then

size 1 6 8 6 3
class [e] [(12)] [(123)] [(1234)] [(12)(34)]
U4 1 1 1 1 1
U ′4 1 -1 1 -1 1
V4 3 1 0 -1 -1
V ′4 3 -1 0 1 -1
W4 2 0 1 0 -2

D.3 The symmetric group and Young tableaux

The quintessential finite groups are the symmetric groups SN , consisting of all |SN | = N !
permutations of N distinguishable things. We have already become familiar with them, their
representations and subgroups up to N = 4. It can be shown, that every finite group arises as
the subgroup of some SN (Sydney’s theorem, 2). It is because of this function as a role model
for the analysis of finite groups, that they were intensily studied in the past and their prop-
erties like subgroups, characters and irreducible representations determined already a century
ago in the works of Alfred Young and Issai Schur [83, 90]. It was Schur who discovered and
Weyl who later explored in detail the intimate connection between the representations of the
(finite) symmetric groups and those of the (continous) groups GL(V ) and its subgroups U(n)
and SU(n).
It is this connection which makes the symmetric group highly relevant in many-body physics,
where Hamiltonians of N particles transforming like a representation of SU(n) often commute
with the SU(n) Casimir-operators thus have total ’spin’ (total highest weight) eigenstates
which are also symmetric (bosons )or antisymmetric (fermions) in the full set of particle coor-
dinates. This means the full wavefunction transforms like either the trivial or the alternating
representation of SN for particles in 3 dimensions. So one might at first glance hope to have
to know only a very basic version of SN representation theory. But while the full wavefunction
always shows trivial or alternating behaviour under particle exchange, this is not true of either
a subset of all particles or partial wavefunctions of incomplete sets of coordinates (regarding
e.g. just spatial coordinates and not the spin). In both cases mixed symmetries corresponding
to multi-dimensional irreducible SN representations may occur.

The discovery of anyonic quasi-particle statistics in 2 dimensions in the context of the frac-
tional quantum hall effect spawned much interest in the braid group which is a generalisation
of the symmetric group where the condition T 2

i = 1 on the N − 1 canonical generators of
SN (the transpositions (i, i+1)) is dropped. While quite intriguing quasi-particle effects were
uncovered and explained in terms of non-trivial representations of the braid group defined on
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the internal Hilbert space of windings, the fundamental degrees of freedom of full many-body
wavefunctions remain bosonic or fermionic.

Sydney’s theorem

Theorem 2 Every finite group G is isomorphic to a subgroup of the symmetric group S|G|.

Proof: The regular representation of G consists of |G| × |G| dimensional permutation matri-
ces which can as well be interpreted as natural permutation matrices for elements from S|G|.
This identification provides an injective group homomorphism φ : G→ S|G| whose image must
therefore be a subgroup of S|G|. �

Conjugacy classes

Every permutation can be expressed very succinctly in cycle-notation, where one groups to-
gether indices which are mapped one onto the other in a cyclic fashion, usually starting with
the lowest index in the cycle. For instance (134) is a cycle on the three indices 1,3 and 4 where
1 �→ 3, 3 �→ 4 and 4 �→ 1. (413) is the same cycle in non-canonical order. 1-cycles are also
called fixed point (of the permutation) and are often omitted for brevity. A transposition for
instance is thus a permutation consisting one 2-cycle and N − 2 fixed points and is written
simply as (ij).
A general permutation in SN is made up from α1 1-cycles, α2 2-cycles, ..., αN N-cycles where
the multiplicities αj obviously have to satisfy∑

j

j αj = N (D.40)

What does this have to do with the conjugacy classes? Well, given p ∈ SN we can constuct
its class by taking the product p′ = qpq−1 for all q ∈ SN .
If, say, p(i) = j, then p′(q(i)) = qp(i) = q(j). There is thus the following intuitive rule

Proposition 5 p′ is obtained from p by replacing a k-cycle (j1j2 . . . jk) by (q(j1)q(j2) . . . q(jk)).

But this means that the conjugacy-transformation does not change the cycle structure
{α1, . . . , αN}.

Proposition 6 The conjugacy class [p] for p ∈ SN contains all p′ ∈ SN that have the same
cycle structure as p.
If this structure is given by the cycle multiplicities α1, . . . , αN , then the size of [p] is

np := |[p]| =
N !∏

k=1..N αk! kαk
(D.41)
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Because the cycle frequency (c) = (α1, . . . , αN ) corresponds in a natural way to the integer
partition

(c) �→ (μ) = (1, 1, . . . , 1, 2, . . . , 2, . . . )

where ’1’ appears α1 times, ’2’ α2 times and so on, the number of conjugacy classes in SN is
equal to the number of partitions of N into positive integers.

Irreducible representations, characters, Young tableaux

In representation theory, the central quantities which neatly sums up the essence of the group
(or the group table) and provides the information to e.g. decompose an arbitrary representation
into its irreducible atoms is the character table.
How can obtain the simple characters of SN? Since we know SN must have as many irreducible
representations as there conjugacy classes [c], we can use positive integer partitions (μ) of N
as labels for the IRs as well as the classes. But a labelling alone is of course not much use
without having some procedure to compute the characters from the labels.

The connection between the integer partitions λ and the characters χ(λ)
(c) is via the characters

φ(λ) of representations IndSN
Hλ

1 induced from the trivial representation of the subgroup H(λ) =
Hλ1 × Hλ1 × . . . Hλk

, defined as the direct product of symmetric groups constructed on the
sets of indices 1, 2, . . . , λ1; λ1, . . . , λ1 + λ2;...;N − λk + 1, . . . , N respectively.
For a general group G with subgroup H the character of the l-th class of G in IndG

H 1 is
|G|hc/|H|gc where gc is the size of class c in G and hc the number of elements from the class
which are also in H. Applying this to our case we have |SN | = N !, |Hλ| =

∏
j λj !, if p ∈ [c]

then gc = np = N !/
∏

k=1..N αk! kαk (cp. (D.41)) and finally

hc =
∑
{βl

j}

∏
j

λj !∏
l l

βl
jβl

j !

where the sum extends over all nonnegative integer solutions βl
j of the two conditions

∑
l lβ

l
j =

λj and
∑

j β
l
j = αl. βl

j is just the number of l-cycles in the subgroup Hλj
, and for each

subgroup we apply formula (D.41) with N and αl replaced by λj and βl
j .

Thus finally φ(λ)
(c) is

φ
(λ)
(c) =

|SN |hc

|Hλ|gc
=

∑
α1,α2,...,αNP

l lβl
j=λj ,

P
j βl

j=αl

∏
l

αl!∏
j β

l
j !

(D.42)

The φ
(λ)
(c) are compound characters of SN , but one can show (see,e.g. [91]) that they are

linearly independent as λ varies over all integer partitions of N . Therefore, taking suitable
linear combinations, we can obtain all simple characters χ(λ)

(c) from the φ(λ)
(c) .

The way to find this linear combination is to construct polynomials

s(c) :=
∏

l

sαl
l , with sl :=

k∑
i=1

xl
i
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in the variables x1, . . . , xm, where m, the number of variables, must be larger than k, the
number of rows in (λ) but no larger than N .
The compound characters φ(λ)

(c) appear as the coefficients of monomials xλ1

p(1)x
λ2

p(2) . . . x
λk

p(k), p ∈
SN in s(c):

s(c) =
∑
(λ)

φ
(λ)
(c)

∑
p∈SN

xλ1

p(1) . . . x
λk

p(k),

Multiplying with the totally antisymmetric Jastrow-polynomial Jm =
∏

i<j≤m(xi−xj) gives
Frobenius’ famous formula

s(c)Jm =
∑
(λ)

χ
(λ)
(c)

∑
p∈SN

(−1)|p|xλ1+m−1
p(1) xλ+m−2

p(2) . . . xλm

p(m) (D.43)

where the simple characters χ(λ)
(c) appear as coefficients on the rhs (for a lucid derivation see

e.g. [91]).

We would like to briefly sketch how a graphical method for obtaining characters involving
Young tableaux can be derived from (D.43) in a natural way. The full account can be found
in [91]. Let us consider the class (1, 1, . . . , 1) of the identity element. The corresponding
polynomial is

s(1N ) =

(∑
i

xi

)N

Starting with the ’bare’ Jastrow-factor

Jk =
∏
i<j

(xi − xj) =
∑

p∈SN

(−1)|p| xm−1
p(1) x

m−2
p(2) . . . x

1
p(m−1)x

0
p(m)

the idea is to built up the full rhs of Frobenius’ formula by successively multiplying with
∑

i xi a
total of N times. We want to arrive at the monomial xλ1+m−1

1 xλ2+m−2
2 . . . xλm

m (λj = 0 if j > k).
At all times during this stepwise process, the exponents of any intermediate monomial must
all be different, because otherwise it would be annihilated by the sum over all permutations.
But since we can raise the exponents by at most 1 in each step, it follows that at all times we
must have multiplied with more x1s than x2s, more x2s than x3s and so on. The total number
of ways in which we can do this is then the character χ(λ)

(1N )
. If for instance we want to know

the character of the unit element of the representation (λ) = (2, 1, 1) of S4 we must in the end
have raised the power of x1 by 2, of x2 by 1 and x3 also by 1. The possible ways of doing this
are (factors on the left are applied first):

x2
1x2x3, x1x2x1x3, x1x2x3x1

Therefore this character is 3. We can depict these three different multiplication-orders graphi-
cally in the following way:

1 2
3
4 ,

1 3
2
3 ,

1 4
2
3 (D.44)
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The interpretation is straighforward: a number i in row j means that the i-th step is a
multiplication with xj . These patterns are called Young tableaux. Let us define them in
general.

Definition 13 A Young tableau (YT) is any filling of a Young diagram with indices 1 ≤
ijk ≤ N .
The Young diagram to the integer partition (λ) = (λ1, . . . , λk), λ1 ≥ λ2 ≥ · · · ≥ λk is the
visualisation of (λ) as k left aligned rows of boxes where row j has length λj.
A standard YT is a filling of the shape (λ),

∑
j λj = N with the indices 1, . . . N such that

indices are strictly increasing in both rows and columns.

The Young diagram of (λ) is usually referred to as the ’shape λ’.
The YT in D.44 are examples of standard Young tableaux, in this case on the shape (2, 1, 1).
We can generalise from our simple example S4, λ = (2, 1, 1) and state

Proposition 7 The dimension of the irreducible representation λ = (λ1, . . . , λk),
∑

j λj = N

of SN , which equals the character χ(λ)

(1N )
of the unit element, is just Nλ, the number of standard

Young tableaux on λ.

The graphical method of Young tableaux can be extended two work for any class (c) =
(1α12α2 . . . NαN ), not only the class of the unity element.
Again multiplying the Jastor-polynomial Jm factor-by-factor with s(c) = sα1

1 sα2
2 . . . sαN

N , the
polynomial corresponding to (c), we see that we can now raise powers by more than 1: The s2s
raise it by 2, the s3s by 3 and so on. It still holds however, that after each step monomials where
two variables appear with the same power are killed by antisymmetrisation. The difference to
the simple case (c) = (1N ) is that now we do not have to raise the power of x1 faster than
x2 faster than x3 ... anymore precisely because we can use factors xl

j , l > 1 from sl to let xj

’overtake’ (a number of) variables xi.
To make this clear, consider an intermediate monomial before step a

x
νj−a+m−(j−a)
j−a x

νj−a+1+m−(j−a+1)
j−a+1 . . . x(j − 1)νj−1+m−j+1x

νj+m−j
j

somewhere into the process and assume it is well formed (i.e. ν1 ≥ ν2 ≥ · · · ≥ μm). Multipli-
cation with xl

j raises the power of xj by l. Regarding xj ’s total new power we now assume

νj−Δ−1 +m− (j − Δ − 1) > νj +m− j + l > νj−Δ +m− (j − Δ)

Informally speaking, xj overtakes the Δ variables xj−Δ, . . . , xj−1. The new monomial is of
course not in standard order anymore, but there is a permutation p ∈ SN which will reorder
it. In cyclic notation this permutation is

p = ((j − Δ)(j − Δ + 1) . . . (j − 1)j)

and comes with a sign (−1)Δ. In terms ouf Young tableaux we can say we added l indices a
to row j until its length surpassed row j−1 by 1, then continued there in the same fashion
until we arrived in row j−a where we added the remaining ’a’s. This defines the following
definitions
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Definition 14 A Young diagram where the rows are not left aligned and their length is not
necessarily non-decreasing is called a skew shape.
A skew shape is connected if in all its rows and columns there are at least 2 boxes.

For example
1

1 is not connected while
1

1 1 is.

Definition 15 We call the addition of l boxes ’a’ to the rows j, j − 1, j − 2 of a (valid) shape
μ and so on regular if the final shape μ′ is valid and if the skew shape μ′ − μ is connected.

This leads to

Proposition 8 The character χ(λ)
(c) of the class (c) in the IR (λ) of SN is

χ
(λ)
(c) = neven(c, λ) − nodd(c, λ)

where neven(c, λ) is the number of ways one can fill the shape λ with indices (c) = (1α12α2 . . . NαN )
using an even number of regular applications, and nodd(c, λ) the number of ways to do the same
with an odd number of regular applications.

Branching rules

A shape μ is contained in another shape λ, μ ⊆ λ iff for all rows j λj ≥ μj . The difference λ−μ
is the skew shape with row lengths λj−μj where each row starts in column μj +1. For instance

− =

1
1
1

1

The difference of the sizes is the size of this skew shape: |λ| − |μ| = |λ− μ|.

It is not hard to see that we can built up all standard YT on a shape λ recursively by first
building all YT on all shapes μr obtained from λ by removing a box from row r. To each std.
YT on μr we then add a box ’N ’ in row r.

This implies for the number of std. YT on λ

Nλ =
∑

μ:|λ−μ|=1

Nμ (D.45)

Interestingly, the same branching formula holds for the decomposition of IndSN
SN−1

UN the
representation of SN induced from the trivial representation of SN−1 ⊂ SN .
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D.3 The symmetric group and Young tableaux

Young symmetrizers

Given a Young tableaux on the shape λ of type (1N ) we define the row and column groups RT

and CT as all those P ∈ SN which permute boxes only within rows and columns respectively.
Further we define symmetrization and antisymmetrization operations aT , bT ∈ CSN by

aT =
∑

P∈RT

P (D.46)

bT =
∑

Q∈CT

(−1)QQ (D.47)

Multiplying these two operators we arrive at the Young symmetrizer

cT = bT aT . (D.48)

One can show that it holds

cT ′cT =

{
N !cT if T ′ ≥ T

0 otw.
(D.49)

where the order refered to is lexicographical: T ′ ≥ T if either λ(T ′) > λ(T ) or if, in case
λ(T ′) = λ(T ), the first box in which they differ contains a higher number in T ′ than in T .
This means the ct are essentially idempotent (rescale with 1/

√
N !) and therefore acts as a

right-unit element left on the left ideal AcT :

∀a ∈ AcT : acT = a (D.50)

Furthermore cT is a simple idempotent and the ideal AcT is minimal, i.e., an IR of SN . Let
us prove this statement.

Assume, we find a subideal W of AcT . It must contain an idempotent, eW , which generates
W: W = AeW . Since W ⊆ AcT , it must hold by (D.50)

eW cT = eW (D.51)

As an element in A, eW can be expanded in the natural basis of A (the one provided by SN

itself)
eW =

∑
g∈SN

wg g

Using the expansion cT =
∑

R(T ),C(T )(−1)q pq of cT (D.51) the product reads⎛
⎝∑

SN

wg g

⎞
⎠
⎛
⎝∑

R,C

(−1)q pq

⎞
⎠ =

∑
SN ,R,C

(−1)qwg gpq
!=
∑
SN

wg g (D.52)

i.e., we require wgpq = (−1)qwg. In particular for g = id wpq = (−1)qwid. Also,

cT eW cT =
∑
SN

wg cT gcT =
∑
SN

wg cT cgT g (D.53)
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D Group theory and Young tableaux

where gT is the Young tableau obtained from T by applying permutation g (we used gcT =∑
R(T ),C(T )(−1)q gpqg−1g =

∑
R(gT ),C(gT )(−1)q p′q′ g). But it holds cT cgT = 0 unless g =

pq, p ∈ R(T ), q ∈ C(T ). Why is this the case? What we will show is that unless g = pq, gT
will have two boxes in the same row which are in the same column in T . Assume there are no
two such boxes, then all boxes in the first column of T must be in different rows in gT . We
can therefore find a permutation p1 ∈ R(T ) which brings these boses all to the first column
(in p1gT ). But the same must also hold for the boxes in the second column of T , i.e., there is
a p2 ∈ R(T ) such that the boxes in the first two columns of p2p1gT are the same as in T (they
may not be in the same order though). We can continue this until after at most l = λ(T )1 − 1
steps we equalized the contents of every column of pl . . . p1gT and T . We may then apply an
element from C(T ) to bring all columns into the right order. In all we find

T = qpl . . . p1gT = qpgT ⇔ pqT = gT

Therefore have proved the counterpositive must also be true: if g �= pq then there must be
two boxes from the same column in T ending up in the same row in gT . But, rembering
cT = aT bT this means we try to antisymmetrize on two symmetric indices which gives 0:
aT bTagT bgT = aT (bTagT )bgT = 0. This concludes the proof.

The representations generated by the Young symmetrizers of all standard YT on a shape
λ are all linearly independent. In fact, they sum directly and together span the space Vλ of
all equivalent IRs λ. Vλ is also a two-sided ideal in A. This can be seen very easily: suppose
there were a non-trivial x with x ∈ AcT and x ∈ AcT ′ for two standard YT on the same shape.
Then x = xcT = xcT ′ = xcT cT ′ = xcT ′cT . But the last two equalities cannot both be true as
we have seen in the previous proof.

Young symmetrizers are the starting point for a construction of an explicit orthonormal basis
{eTT ′} of Vλ containing N2

λ elements each labelled by two standard YT on λ. The condition
for orthonormality is

eTT ′eT ′′T ′′′ = δT ′T ′′eTT ′′′ . (D.54)

Given this equation, we may compute the representation matrix of a permutation g ∈ SN in
the IR λ via the formula

gTT ′eTT ′ = eTT ′′geT ′′′T ′ (D.55)

As it turns out, we can find a basis with real coefficients by slightly extending the Young
symmetrizers. They already satisfy cT cT ′ = 0 iff the permutation g taking T to T ′ cannot be
written as g = pq with p ∈ R(T ), q ∈ C(T ). Interestingly, we can define an order on the set
of std. YT which respects this, i.e., where T ′ < T implies cT cT ′ = 0. The order is: T ′ < T ⇔
the first box in which T and T ′ differ when read row-wise from top to bottom is larger in T .

To obtain a basis satisfying (D.54) we need to sandwich a suitable permutation between
two aT and bT ′ [92]:

eTT ′ =
1
Nλ

aT sTT ′b′T ′ (D.56)

where b′T ′ satisfies b′T ′aT = δTT ′bTaT and sTT ′ ∈ SN is the permutation which takes the
tableaux T ′ to T : T = sTT ′T ′.
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D.3 The symmetric group and Young tableaux

Yamanouchi construction

Computing the quantities defined above in practive for any SN is very tedious even for relatively
small N . Luckily, we do not actually need know the explicit form of the basis (D.54) to get the
representation matrices of the corresponding IR λ. They can be obtained very elegantly using
Yamanouchi’s construction, which interprets the standart YT themselves as orthonormal basis
states.

Let us briefly describe how it works. First up, it is clear that we need only find the matrices
of a set of generators, and one chooses the transpositions (12), (23), . . . , (N−1N). Now assume
we have the set of all std. YT of a shape λ. We will turn it into a list by requiring the following
order: first collect together tableaux where the box N is in the same position. Within each
of these collections form ’subcollections’ of tableaux with the box N − 1 in the same position.
Continue in this fashion until each sub...subcollection contains only one YT. In effect we have
now constructed the branching graph introduced in 5.11. Use lexicographical ordering on the
paths of this graph.

Applying the Yamanouchi construction recursively, it is clear that the states, i.e., tableaux,
in each sub-collection at a level k with shape μk ⊂ λ form the basis of the irreducible repre-
sentation labelled by μk. So if we can find the representation matrix DN−1 of (N,N − 1), all
others follow by recursion.

Let us now state the procedure to determine DN−1. Regarding the boxes ’N ’ and ’N − 1’in
λ we can distinguish three cases:

• the boxes N and N − 1 are in the same row. Then DN−1 is diagonal in these states with
eigenvalue 1

• the box N is directly below N − 1: DN−1 is again diagonal in these states, but with
eigenvalue -1

• none of the above, i.e., N is in row r of length λr, N − 1 is in row s �= r of length
λs �= λr: then there are two collections of states which differ in N and N − 1 being
swapped. This means, removing both boxes N and N − 1 one can reach the same
subshape μrs = μsr = μ ⊂ λ with |μ| = N −2 in two different ways. DN−1 will now have
a diagonal and an off-diagonal block mixing these two collections of states. Each block
is proportional to the unit matrix 1Nμ with prefactors σrs,rs on the diagonal and σrs,sr

on the off-diagonal which are given by

σrs,rs = ± 1√
1 + sNN−1

(D.57)

σrs,sr = +
√

sNN−1

1 + sNN−1
(D.58)

where sNN−1 is the 1-norm distance between the boxes N and N −1, i.e., the number of steps
a rook (the chess piece) would have to take to get from box N to N − 1:

This is in fact all one needs to know about the Yamanouchi’s construction, yet if the reader
is interested in the elegant and beautiful derivation, it can be found, e.g. , in [91].
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D.4 The special unitary group SU(n)

In this section we will give short review of Lie groups and their relatives, the Lie algebras. Lie
groups are infinite groups, which are at the same time differentiable manifolds. The ’mother’
of all LGs is GL(n), the group of invertible automorphisms of an n-dimensional vector space,
but it has many subgroups with more practical importance, e.g. in physics, like the symplecitc
group SL(n), the unitary group U(n), the uni- modular group SU(n) or the orthogonal group
O(n). These are in fact the 4 ’classical’ Lie groups (as opposed to the more ’exotic’ exceptional
Lie groups like E(8)) first fully analyzed by Weyl [85]. We will focus on the unimodular group
SU(n), but the techniques shown here can easily be applied to the other examples.

Definition and Algebra

The group SU(n) is defined as the group of n×n matrices with entries in C with the following
properities

A ∈ SU(n) ⇔ A†A = AA† = 1n ∧ detA = 1 (D.59)

From now on we will omit the index n on the unit matrix. That this defines a group follows
from the properties of the † and det operations. Clearly, SU(n) is a subgroup of the unitary
group.

Understanding the structure of a Lie group is next to impossible by only looking at the
group itself, but luckily there is a closely related mathematical structure with nice properties,
the Lie algebra. It is basically the tangent space of the unit-element in the Lie group. To find
it in our case, we make the ansatz A = 1 + iaX for a group element in the neighbourhood of
1, where a is a small real number. Using the defining relations of SU(n) then puts restrictions
on the matrices X:

(1 − iaX†)(1 + iaX) != 1 + O
(
a2
)⇔ X = X† (D.60)

det 1 + iaX = 1 ⇔ TrX = 0 (D.61)

So we see the tangent space of 1 is spanned by the set of traceless, hermitian matrices X ∈
Cn×n. It forms a group ring or algebra, i.e., we can add and multiply matrices and there are
inverses of addition but not in general of multiplication, and it is called the Lie algebra su(n).
For any X ∈ H0 it holds exp iX ∈ su(n) because

(
eiX
)†

= e−iX and det[eiX ] = 1. (D.62)

One says SU(n) is exponentially generated by its Lie algebra.
If we choose a basis {Ej} in su(n), then the above looks

∀A ∈ SU(n)∃{xj} ∈ R : A = exp[−i
∑

j

Ejxj ]

The Ej are also called (infinitesimal) generators of the group SU(n).
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Introducing the Lie bracket as the commutator of X and Y:

[., .] :su(n) × su(n) → su(n)
X,Y �→ XY − Y X (D.63)

one can express all relevant information about a Lie algebra through the commutation relations
of the basis elements Ej :

[Ei, Ej ] = cijkEk

where we assume summation over repeated indices (on different levels). The numbers cijk are
called the structure constants of the Lie algebra. They are of course dependent on the choice of
basis, and choosing the basis properly can go a long way in helping to understand the structure
of a Lie group, in our case su(n).

Standard basis of su(n)

We will no give a convenient basis of su(n). Define Eij as the matrix with a ’1’ in the ith row
and jthe column if i �= j. And if i = j < n set Eii to be the matrix with a ’1’ in position (i, i)
and a ’-1’ in position (i+ 1, i+ 1). These n1 − 1 matrices obey the commutation relations

[Eij , Ekl] = δjkEil (D.64)
[Eii, Ejk] = δijEik − δi+1jEi+1k − δikEji + δi+1kE(ji+ 1) (D.65)

all others are 0. In particular this is true of the ones between the diagonal matrices Eii, which
in fact form a maximal set of mutually commuting generators. Thus they from an Abelian sub-
algebra, the Cartan algebra of su(n). We can therefore use their eigenvalues to label the basis
states in any representation of the algebra/group. The n−1 dimensional vector of eigenvalues,
which are always integers, is called a weight of (this state) in the representation. Introducing
lexicographical ordering on the weights of representations, each representation V is uniquely
characterised by its highest weight w. The heigest weight state |w〉 is unique, i.e., there is no
other state in the representation with the same eigenvalues wz = w of the Cartan generators.
This uniqueness is in general not true for lower weight states. Only for SU(2), where the
heigest weight is the spin and wz the z-component of spin, are all states in a representation
unique. If we plot the weights of a represenation as points in an n − 1dimensional space, we
obtain the weight diagram of the su(n). It turns out that, after a suitable basis adaption, the
weight diagrams of all su(n) have a high degree of symmetry. This comes from the subgroup
decomposition property

SU(n− 1) × U(1) ⊂ SU(n) (D.66)

which tells us that, in the right basis, weight diagrams of su(n) are composed of stacked
su(n− 1) diagrams. Of course we can only really do the plotting in case of n ≤ 4. For n = 2,
the weights are equidistant points on a line (corresponding as mentioned to the z-component
of the spin, then the distance btw. each point is just 1). su(3) diagrams are made up of stacked
su(2) diagrams and if the distance btw. neighbouring points is always the same (e.g. 1), they
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will have 2π/3 rotation symmetry. Using such su(3) weight diagrams to build those of su(4),
we obtain 3dimensional diagrams with tetrahedral symmetry.

As we have mentioned, each point in such a diagram in general stands for multiple states, i.e.,
the weights wz do not provide a unique labelling. However, one can use the property (D.66) to
find such a unique labelling [93]. The idea is to give each state additional labels coming from
the the subalgebra su(k)-representations it is a part of. This provides an additional

∑n−2
j j

labels bringing the total to n(n− 1)/2, just as many as we need.
Gelfand and Tsetlin found an ingenious scheme how to obtain the matrices of the generators

(D.65) in implicitly orthonormal bases represented by triangular (’Gelfand’-)patterns of n− 1
rows with integers mij in them [71]. Here j is the row and i the column index and in row j
there are j − 1 entries. The top row entries min = wz

i = wi are just the weights, while the
others satisfy the ’betweenness’ condition

mij ≥ mij−1 ≥ mi+1j

Thus each Gelfand has n(n − 1)/2 entries, which means they can be used to give a unique
labelling of each state in a representation. In fact, one can interpret each row k as the weight of
the state with respect to the subgroup/algebra su(k) ⊂ su(n), which reveals that these patters
are inspired by the subgroup decomposition we mentioned above. Gelfand and Tsetlin were
now able to find analytic (if rather lengthy) expressions for the matrices Eij in a basis of A
nice, succinct introduction can be found in [73].

Connection to Young tableaux

Given an irreducible representation V of SU(n), the N fold tensor-product V ⊗N is again a
representation, albeit not irreducible anymore, if SU(n) operates on V ⊗N like

A ∈ SU(n), v = (v1, . . . , vN ) ∈ V ⊗N : Av := (Av1, . . . , AvN ) (D.67)

At the same time, it is clear that V ⊗N is also a representation of the permuation group SN if
we define

p ∈ SN , v ∈ V ⊗N : pv := (vp(1), . . . , vp(N)) (D.68)

Now it is easy to see that the actions of SU(n) and SN commute:

pAv = p(Av1, . . . , AvN ) = (Avp(1), . . . , Avp(N)) = A(vp(1), . . . , vp(N)) = Apv (D.69)

What looks like a simple fact has far-reaching consequences, as Schur [84] first realized and
Weyl [85] explored in detail (hence its name Schur-Weyl-duality). For assume we find an
irreducible SU(n) representation Vw in V ⊗N . Then for each p ∈ SN pVw is an IR which is
isomorphic to Vw. pVw can now either be identical with Vw or the two sum directly, i.e., have
no common vector except for 0. Assume there were such an element, say w �= 0. Then there
must be a v ∈ Vw s.t. w = pv and

Vw = SU(n)w = SU(n)pv = pSU(n)v = pVw
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where we have used that we can generate any representation (up to normalisation) by applying
all group elements of SU(n). Therefore, if Vw and pVw have one common element, they must
necessarily coincide.

We can thus construct equivalent representations by applying permutation operations. It is
not clear, whether this will give us all equivalent IRs contained in V ⊗N but we can definitely
say that the subspace V ⊕aw

w of all SU(n)- representations Vw is a representation of SN .
If V is the fundamental representation of SU(n), i.e., V = Cn, and we represent it by a

single box, , we can built IRs of SU(n) by applying the Young symmetrizer of the previous
section to V ⊗N and obtain the decompostion into IR’s of SN labelled by a Young diagram λ
which at the same time will be IR’s of SU(n), labelled so far by w. In fact, the highest weight
w of an SU(n) is always an integer partition of at most n−1 rows, and since it must equal (λ)
in this case, we se that Young symmetrizers of n or more rows give 0 V ⊗N . This establishes
an equivalence between highet weight and integer partitions which we can use to decompose
tensor products of higher SU(n) IRs. The number of times a certain IR λ appears in V ⊗N

σ

is given by the number of semi-standard YT on λ of type (σ, . . . , σ) (where σ is repeated N
times) which obey the Littlewood-Richardson rule.
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E Supplementaries to extended Young
tableaux

E.1 Efficient graph iteration

The branching graph is the key datastructure for implementing fast Young tableaux generation,
but the form presented in 5.5 is not yet sufficient to allow an efficient iteration over all paths
through it. To achieve this we need to both add some additional information to the BG and
use suitable datastructures to guide the iteration.

To illustrate: Taking the BG as it is, we could for instance perform a depth-first iteration:
we use a size N − 1 (= max. depth) array c[.] recording to which child we descend to from the
node μc[d] at each depth. In each step we then decend one level further down the graph until
we reach the leaf and there, having found a new path, we add it to our result and backtrack
to the closest node where we can descend in a different direction. Of course, we can easily,
in addition to c[.], also keep a record l[.] of the labels encountered along the path or directly
built the extended YT as we go along. The problem is however, that in all this we decend and
backtrack step by step through the graph, which will take on average O (N) steps and this
brings the total complexity to O (N Nλ).
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Figure E.1: To enable efficient graph iteration, we need to augment the ordinary branch-
ing graph with additional information: to each node we attach the potential
backtracking- positions, i.e., all nodes with more than one child (shown in the
blue lists) lying on along the leftmost path descending from that node to the leaf
(also marked in blue).
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We can do better if we perform a precomputation before the iteration itself adding the
following information to each node μ of the graph: from μ we follow the leftmost path (lmp)
to the leaf and, while we descend, push on a stack Kμ all the nodes with more than one child,
because only these will be potential candidates to backtrack to (see Fig. E.1). We also save
lμ[.], the label sequence along the lmp of μ and/or Tμ the ’incomplete’ extended YT using
indices N−d(μ), N−d(μ)−1, . . . , 1 where d(μ) is the depth of node μ. We could of course also
use the rightmost path.
Precomputation of the triple Kμ, lμ, Tμ for all nodes of a BG for shape λ built from elementary
shapes σ requires

Cpre = O(N) O (Dσ
λ) = O

(
Nk+1/kk

)
= O

(
Nk+1

)
(E.1)

steps where we used that the function Dσ
λ counting the number of shapes μ ⊂ λ obtainable

from λ by regular removal of elementary tableaux σ is bounded from above by Nk/kk (cp.
next section).
We see it is only linearly more demanding (in N) than computing the basic branching graph
and in particular still polynomial (in N).

We do not want to give the algorithm for efficient iteration in full detail, but let us at least
describe the main steps, so that the idea becomes clear.
The ingredients are first the array c[.], already known from the naive ansatz above and still
needed to keep track of where we descend to from the node μc[d] lying at a depth d. Furthermore
we introduce a stack K (the backtrack-stack) which will at all times contain the nodes on our
current path where we could descend in a different direction, i.e. which have more than one
child and have not yet been exhausted (i.e. c[d] <#children of node μ(c[d])). Flow control
requires only a single ’while’-loop which is repeated as long as K is nonempty.
With these datastructures the iteration process works the following way:

0. assume we enter the loop with c[.] completely filled and a complete extended YT (from
initialisation or the previous pass)

i first, retrieve the uppermost element from K (removing it in the process)

ii if this is, say, j, increment c[j] by one, reset c[i] = 1 for all i > j and descend to μ(c[j+1])
(the c[j] + 1 th child of node μ(c[j]))

iii update stack K: if c[j] <#children of μ(c[j]) → push j onto K again

iv in any case, push all backtrack positions indicated in μ(c[j + 1]) onto K (blue lists in
Fig. E.1)

v obtain next extended YT: drop the indices 1, . . . , N − j from the previous one and join
remainder with the (incomplete) YT Tμ(c[j+1]) that we added to μ(c[j + 1]) during the
precomputation
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Joining two parts of an extended YT can easily be done in O (1): we need only check wether
row(N−j+1) > row(N−j). If so, we merge the leftmost column of the remainder with the
rightmost column of Tμ(c[j+1]), if not, we simply concatenate. Strictly speaking this is true
only for standard Young tableaux, where the number of boxes |σ| in the elementary tableaux is
equal to one. If we are considering tableaux with |σ| > 1, joining requires O (|σ|) time instead.

We should add, that this algorithm does not depend on the graph having only a single leaf.
It will in fact work for any graph, where nodes have a (unique) depth.

In all, the algorithm sketched above needs O (1) (or O (|σ|) i.g.) steps to generate one
path/extended Young tableaux, and thus the full iteration requires O (|σ|Nλ) time and O (|σ|N Nλ)
memory. The memory requirements are dominated by the size of the resulting list of extended
YT, but if we store only the momenta, memory requirment is down to O (Nλ).

E.2 Branching graph size

The time required to generate the basic branching graph for a shape λ built up from N ele-
mentary tableaux σ as well as augmenting it in preparation for efficient iteration is determined
mostly by its size, i.e. the number of its nodes. This in turn is just Dσ

λ , defined as

Dσ
λ =#diagrams μ with μ ⊂ λ and μ obtained from

λ by regular removal of one or more shapesσ (E.2)

Our goal is now to find a good estimate for Dσ
λ .

Defining Dλ := D
σ=(1)
λ , we can use it as an upper bound on Dσ

λ , as the additional σ-dependent
constraints in (E.2) serve only to decrease the number μ that are compatible.

But Dλ is easily expressed as the multiple sum

Dλ =
∑

j1≤λ1

∑
j2≤Min(λ2,j1)

· · ·
∑

jk≤Min(λk,jk−1)

1 (E.3)

where k is the number of rows in λ. This can be estimated from above by forgetting about
Min(λi,ji−1) and bounding ji just by ji−1 instead

Dλ ≤
∑

0≤jk≤jk−1≤···≤j1≤λ1

1 =
(
λ1 + k
λ1

)
(E.4)

Two instances are of particular interest:
(a) λ1 = N, k = 1 in which case the estimate gives almost the exact result (Dλ = N compared

to
(
N + 1
N

)
= N + 1) and

(b) λ1 = N/k =: m, k > 1, k|N where the above estimate gives the exact result. If p<k;m(n) is
the number of integer partitions using at most m summands of size ≤ k we have

D(m,...,m) =
N∑

j=1

p≤k;m(j)
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which leads to the same sum as in (E.4), proving that the bound (E.3) is exact and the number
of nodes is really given by (m+ k)!/k!m!.

For many other combinations of N and k (E.3) overestimates the size of the branching graph
considerably. Take λ = (N − k + 1, 1, . . . , 1) (’hook’ shape). Assuming N−k+1>k the true
value is Dλ = (λ1 − 1)2 + (λ1 − 1)(λ1 − k+ 1) ≈ 2λ2

1 − kλ1 = O
(
λ2

1

)
independent of k (as long

as it remains smaller than λ1) while (E.3) yields O
(
λk

1

)
.

It might well be possible to find a tighter bound, but (E.3) suffices for our purposes, as it
already shows the polynomial dependance on N .

E.3 Momentum offset b0

Given a tableaux T built from N elementary tableaux σ we may interpret it as pertaining to
the product space V ⊗N

σ of any SU(n) where n is at least as large as the number of rows in
T . We want to show here, that the momentum assigned to T (or rather its extended version
E(T ), but they stand in 1-1 relation) via the sum (5.11) is independent of this interpretation,
i.e., n.

∑
c∈E(T )

bc =
∑

c

(n− kc)(〈i〉c −
1
2
)

= n

(∑
c

〈i〉c −
1
2
cT

)
−
(
N(N + 1)

2
|σ|− 1

2
N |σ|

)

= n

(∑
c

〈i〉c −
1
2
cT

)
− 1

2
|σ|N2

where we defined cT as the number of columns of E(T ) used the relations cT =
∑

c 1,
∑

c kc =
|σ|N and

∑
c kc 〈i〉c = |σ|N(N +1)/2. As a reminder, kc is the number of boxes in column c of

the extended tableaux E(T ) and |σ|N is just the total number of boxes in E(T ) (and therefore
also in T ).

We see, that if we add the offset momentum number b0 = −(n− 1)N2/2 we arrive at

b0 +
∑

c∈E(T )

bc = n

(∑
c

〈i〉c −
1
2
(cT + |σ|N2)

)
(E.5)

and thus n cancels when computing the momentum pT = 2π/Nn(
∑

c bc + b0).
What still needs to be checked is whether the quantity in parenthesis in (E.5) is always an

integer. To see that this is indeed the case, we need to analyze the relationship between N , cT
and

∑
c 〈i〉c. Since in all columns of E(T ), the boxes are in sequence,

∑
c 〈i〉c is always either

integer or half-integer. In fact we can express each summand as 〈i〉c = jc + (kc − 1)/2, where
jc is number in the uppermost box. Therefore, 〈i〉c is half-integer, if and only if there is an

136



E.3 Momentum offset b0

even number of boxes in column c. Now assume
∑

c 〈i〉c is half-integer. This means, we must
have an odd number of columns with an even number of boxes. If now N is even, there is an
even number of boxes left to be distributed over rows with an odd number of boxes in them.
This means that this number of (odd-box-number) columns is even. Thus in this case cT /2 is
half-integer while N2/2 is integer and in total sum (E.5) is of the form n×integer. It is not
hard to see that in the other three cases this holds as well (cp. Tab. E.1).

∑
c 〈i〉c N ⇒ cT total

half-integer even ⇒ odd integer

” odd ⇒ even ”

integer even ⇒ even ”

” odd ⇒ odd ”

Table E.1: The four possible parity combinations of
∑

c 〈i〉c and N . All lead to an integer
value for the total momentum (E.5).
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