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Chapter 1

Introduction

From early native mythology, over Shakespeare’s plays right up to modern movies and TV

shows, the most inspiring and most successful stories have always been the tales of overcoming

obstacles. So far the story of metamaterials has been a very successful one of its own accord

[1–3] but has now reached a point where it has to face a serious challenge:

Most of these artificial media, designed to have specially tailored properties not to be found in

nature (e.g. a negative refractive index), exploit plasmonic effects and are therefore composed

of metallic building blocks. Unfortunately, metal nanoparticles suffer from intrinsic losses

due to absorption, which are especially severe in the optical wavelength regime. Many of the

popular applications of plasmonic metamaterials like perfect lenses [4] or cloaking devices

[5, 6] are therefore rendered impractical; after all, who is really interested in an invisibility

cloak that itself casts a visible shadow?

Conclusively, it is currently one of the most important goals of the metamaterial and plasmonics

community to compensate or at least reduce these intrinsic losses in the metal structures [7, 8].

Several approaches have been proposed to this end, ranging from the use of special low-loss

alloys [9] to geometrically adjusting the plasmonic structures in order to reduce losses [10].

One of the most promising ideas, however, is the introduction of a medium providing optical

gain which in turn could compensate for the loss of the metal [11].

The combination of a metamaterial with an optical gain medium has been studied by several

theoretical investigations that prove the feasibility of this loss-compensation approach [12, 13].

This theoretical treatment relies on rigorous numerical calculations where the exact geometry of

the metamaterial considered has to be implemented along with a sophisticated model of the gain

medium (e.g. a four-level system). They show that loss-reduction can be reached for realistic

parameters of both the metamaterial and the gain medium that are within experimentally

accessible limits.

On the experimental side, however, only few results have been published on the hybrid system

of metamaterial and gain medium. Nikolay Zheludev’s group focuses on complementary

split-ring resonators that are covered with a layer of lead-sulfide quantum dots. On these

they observe an increase of transmittance by about 1% upon continuous-wave pumping

[14] and a multifold enhancement of photoluminescence together with a narrowing of the

photoluminescence spectrum [15].

Shumin Xiao et al. report on their results for a double-fishnet negative-index material that

employs a dye-doped (Rh800) epoxy as spacer layer providing the gain [16]. They measure

1



2 Chapter 1. Introduction

an increase of relative transmittance on the order of 100% upon pumping and compare

their experiments to detailed numerical calculations from which they infer complete loss-

compensation for one particular wavelength.

Although loss-compensation is a very important aspect of current plasmonics research the

combination of plasmonic particles with gain media - or, more generally speaking, with

emitters - offers a multitude of other fascinating research topics as well. They range from

fluorescence enhancement [17] over directing the emission of quantum dots by plasmonic

antennas [18] to quantum-optical applications like the single-photon transistor [19].

The most prominent example of a device derived from plasmon-emitter interaction is the

spaser (surface plasmon amplification by stimulated emission of radiation) proposed by Mark

Stockman and David Bergman [20].

As the name already suggests, the spaser is the nanoplasmonic analogon to the laser where

the cavitiy is replaced by a resonant nanoparticle and the plasmons take the part of photons.

The energy for the amplification is, like with a conventional laser, provided by an externally

pumped gain medium [21].

Yet the fundamental difference to a classical laser is that a spaser does not necessarily emit

light. It can also make use of the dark plasmonic modes, which do not couple to the far field,

and thus serve as an efficient energy source that is localised to a few nanometres. This energy

can still be accessed by near-field interaction of, for instance, molecules with the spaser.

This concept has been experimentally realised by Mikhail Noginov et al. in 2009 [22] and

expanded to a light-emitting variety, the so-called lasing spaser by Nikolay Zheludev [23].

The latter makes use of breaking the symmetry of a metamaterial building block that would

otherwise support a dark mode, allowing it to weakly couple to the far field and eventually lead

to emission of coherent light.

All these concepts, from loss-compensation in plasmonic metamaterials to spasing,

fundamentally rely on the interaction between plasmonic materials and a gain medium. Without

sufficient coupling, resulting in a significant energy transfer from the gain medium to the

plasmon, no loss-compensation can be achieved, nor can plasmons be amplified. It is therefore

essential to understand the way in which coupling between a plasmonic metamaterial and a gain

medium occurs.

Most likely this coupling is mediated by the near fields of the plasmonic particles which can

interact with the emitters of a gain medium. Since plasmons generate strongly enhanced

near fields, this coupling can be rather efficient but their strong spatial confinement implies

restrictions to the separation of the emitters from the particle to still observe significant coupling

effects.

Although many propositions for efficient loss-compensation are based on dye molecules as

gain media because they offer very high gain coefficients they are not necessarily suitable

for a detailed study of the coupling mechanism between a plasmonic metamaterial and a gain

medium. This goal demands a highly controllable, reproducible system that is ideally long-term

photostable.

Therefore dye molecules in solution or embedded in some matrix are not our gain medium of

choice. We rather turn to semiconductor nanostructures, more precisely to epitaxially-grown

single quantum wells, whose physical properties can be precisely controlled in the growth
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process and which still offer sufficiently high gain that can even be enhanced by cooling the

sample to low temperatures. Furthermore, quantum wells hardly bleach and can thus be used

even for time-consuming experiments without any change in their gain characteristics.

An additional advantage is the possibility of electrical charge-carrier injection in semiconductor

structures, which is likely essential if active metamaterial devices are the final goal of our

research because optical pumping is certainly not suitable for technological applications.

Outline of this Thesis

We start with a summary of the most important properties of plasmonic metamaterials in

Chapter 2. This includes a review of basic light-matter interaction followed by an introduction

to the physics of particle plasmons. We then present the concept of metamaterials and give

a brief overview over the different possibilities this offers before we discuss the split-ring

resonator (SRR) in some detail because it serves as the example of metamaterial building blocks

throughout this thesis. The chapter closes with a review on the losses of plasmonic particles and

on how they can be compensated.

Chapter 3 introduces the fundamentals of semiconductors with a special focus on the optical

properties of single quantum wells (QWs). Here, we also discuss the physics of a two-level

system (2LS) with the different mechanisms of absorption and emission and we deduce the

optical Bloch equations which are the relevant equations of motion for charge carriers in a 2LS.

Next, we present the experimental and numerical methods used in this thesis (Chapter 4). We

describe the fabrication of the QWs by molecular-beam epitaxy (performed in Tucson) and

that of the metamaterials electron-beam lithography. An illustration of the optical setups for

photoluminescence and pump-probe measurements follows, together with a brief explanation

of the pump-probe method. Finally, we sketch the principle of the discontinuous Galerkin time-

domain method used (in the group of Prof. Kurt Busch) for numerical near-field calculations.

In Chapter 5 we develop a simple analytical toy model based on the near-field coupling between

a bosonic plasmon resonance and a fermionic gain resonance of a two-level system. We use this

model to theoretically study the influence of the coupling strength and of the spectral detuning

between the two resonances on the behaviour of the coupled system. Thus we can make

some predictions on the outcome of our experiments and get an impression of the important

parameters of the system.

The following two chapters are dedicated to our experimental results. First (in Chapter 6) we

present pump-probe measurements that clearly prove the coupling between arrays of SRRs and

a single quantum well. We find a distinct change in relative differential transmittance of the

the SRR+QW (−8%) compared to that of the bare QW (+2%) together with a pronounced

decay-rate enhancement, which we compare to numerical near-field calculations and explain by

the Purcell effect. We then proceed to studying how the coupling between metamaterial and

quantum well changes upon growing distance between the two (Chapter 7). We find an explicit

dependence of the strength of coupling - represented by the strength of the resulting effects -

on the SRR-QW separation. Again, we compare our results to numerical near-field calculations

and find overall agreement. We therefore conclude the interaction between the SRR arrays and

the QW to be dominated by the plasmonic near fields.

In the end we summarise our results and the conclusions drawn from them and give a brief

outlook on further research regarding plasmon-emitter interaction.
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Chapter 2

Plasmonic Metamaterials

Many of the applications usually mentioned for metamaterials seem to belong into the world

of science fiction rather than into actual science to most people. Indeed, a negative refractive

index [24], a perfect lens [4] and the notion of cloaking [5, 6] all contradict our every-day

experiences and more likely appeal to our imagination. But as sometimes "truth is stranger

than fiction" (M. Twain), most of them have already been realised to some extent and are still

an active field of research [1–3, 7]

This has only been possible because of the underlying concept of metamaterials: artificial

materials whose optical properties can be specially tailored to such an extent that they cannot

be found in any natural material. As the properties of the building blocks - the analogue of

atoms in normal substances - mainly govern the properties of the metamaterial as a whole, we

can design them to generate the properties we intend.

Most often this is achieved by exploiting the concept of particle plasmons, collective

oscillations of the free electron gas, in metallic nanostructures. Their resonances can be tuned

by altering the shape of the particles, leading to a high degree of flexibility and a broad range

of applications their properties can be adjusted to. On the other hand, plasmonic metamaterials

have one major drawback: they suffer from intrinsic losses due to the dissipative metal they are

composed of. Especially in the near-infrared and optical spectral region metals have very high

losses that to this day hinder real applications of photonic metamaterials.

In this chapter we are concerned with the basic concepts of plasmonic metamaterials and the

losses they suffer. We start with a general introduction to the light-matter interaction, in the

course of which we discuss the Lorentzian oscillator and the dielectric response of metals

as described by the Drude model. Next, we turn to the fundamentals of particle plasmons

and continue with a brief overview of metamaterials in general, followed by a more detailed

study of the split-ring resonator, which is the metamaterial building block we use in this thesis.

The chapter closes with a discussion of losses in plasmonic metamaterials and in how we can

compensate for them.

2.1 Light-Matter Interaction: The Dielectric Response

When an electromagnetic wave interacts with matter it is mainly the electric field E displacing

the electrons (or other charge carriers) inside the material from their equilibrium positions [25,

5



6 Chapter 2. Plasmonic Metamaterials

26]. This leads to charge separation because the lattice ions are much heavier than the electrons

and can therefore be considered to stay at rest. The resulting dipoles yield a polarisation of the

whole material given by

P = Np = −Nex, (2.1)

where N is the number of electrons and p is the dipole moment of a single atom which is given

by the product of the elementary electron charge e and the average displacement x of an electron

with respect to its equilibrium position. Assuming the material to be linear and isotropic we can

use the material equation for the electric displacement field

D = ǫ0E + P = ǫ0 (1 + χ)E = ǫ0ǫE (2.2)

to find the dielectric response which is contained in the susceptibility χ and the dielectric

function ǫ, both of which are, in general, not constant but depend on frequency. Instead of

these functions, however, we often use the refractive index

n(ω) =
√

ǫ(ω) (2.3)

which is sometimes the more intutitive observable.

No matter which of these three functions we use to describe the dielectric response of a material,

we generally deal with complex functions:

χ(ω) = Re [χ(ω)] + iIm [χ(ω)] (2.4)

ǫ(ω) = Re [ǫ(ω)] + iIm [ǫ(ω)] (2.5)

n(ω) = Re [n(ω)] + iIm [n(ω)] . (2.6)

The material is therefore not only dispersive but also dissipative as the imaginary part of the

refractive index is related to the absorption coefficient δ in Beer’s law by

δ =
2ω

c
Im [n(ω)] . (2.7)

In the following we discuss two classical models, the Lorentzian-oscillator model and the Drude

model, from which we can derive the dielectric response functions. The former is suitable for

dielectrics, the latter describes free charge carriers and is therefore applicable to metals and

doped semiconductors.

2.1.1 Lorentzian-Oscillator Model

Starting again from the assumption that an external electric field E(t) displaces the electrons in

a material from their equilibrium position and taking into account the attractive force between

an electron and a lattice ion, which acts as a restoring force, we arrive at a driven harmonic

oscillator with resonance frequency Ω. This, of course, implies the displacement to be small

and is therefore only true if the electrons are still bound to the atoms. In a solid, the oscillation

is further damped, e.g. by interaction of the electrons with phonons. We can consequently

describe the response of the electrons to the external field by the following classical equation of

motion:

meẍ(t) +meγẋ(t) +meΩ
2x(t) = −eE(t). (2.8)
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Figure 2.1: Real and imaginary part of the dielectric function ǫ (ω) of a Lorentzian oscillator. The parameters are

Ω = 2π × 1.6 × 1013 s−1, γ = 2π × 7.9 × 1011 s−1, (Ne2)/(ǫ0meΩ
2) = 2, chosen to be realistic values for a

typical ionic crystal [25]. Frequencies are normalised to the resonance frequency Ω.

Here, we have introduced the damping frequency γ and the electron mass me. Equation (2.8)

can be readily solved to yield

x(t) = − e

me

· 1

Ω2 − ω2 − iγω
· E(t). (2.9)

Using equations (2.1) and (2.2) we deduce the following dielectric function (compare Fig. 2.1)

ǫ(ω) = ǫ∞ +
Ne2

ǫ0me

· 1

Ω2 − ω2 − iγω
, (2.10)

where ǫ∞ is the dielectric constant the material approaches in the limit of high frequencies,

which contains non-resonant contributions like lattice vibrations. To refine our picture of the

dielectric response we can explicitly take these contributions into account by treating them as

additional Lorentzian oscillators. We assign to each of them a specific oscillator strength fj to

model their influence on the complete response and then take the sum over all contributions:

ǫ(ω) = 1 +
Ne2

ǫ0me

∑

j

fj
Ω2

j − ω2 − iγjω
. (2.11)

Note, that the classical model will lead to fj = 1 for every oscillator but that a quantum

mechanical treatment rather yields the condition
∑

j fj = 1 for each electron. This paradox

can be resolved by assuming that one particular electron is involved in several transitions and

the absorption strength is divided amongst them [25].

2.1.2 Drude Model

For the treatment of metals where the electrons are no longer bound to the lattice atoms we

need to modify the Lorentzian oscillator model. We now consider a gas of quasifree electrons

(electron plasma) which is distributed over the whole crystal [28]. If we excite this gas with
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Figure 2.2: Real and imaginary part of the dielectric function ǫ(ω) of a Drude metal. The parameters have been

chosen to match those of silver (ωp = 2π × 2.2 × 1015 s−1, ωc = 2π × 5.2 × 1012 s−1) found by a fit to the

experimental data of Johnson and Christy [27]. Frequencies are normalised to the plasma frequency ωp.

an external electric field E(t) = E0e
−iωt a free electron will be displaced by x and follow the

equation of motion

meẍ(t) +meγ · x(t) = −eE(t), (2.12)

where all interactions have been merged into the effective electron massme. In the free-electron

case there is no restoring force from the lattice ions because the interaction between electrons

and lattice is negligible (thus equation (2.12) resembles equation (2.8) for a vanishing resonance

frequency Ω = 0). All interaction between the electrons and the lattice is described by the

frictional damping from collisions of the electrons with, mainly, phonons and defects. The

damping frequency γ of a Drude metal is therefore often referred to as collision frequency ωc.

Solving equation (2.12) yields

x(t) =
e

me

· 1

ω2 − iγω
· E(t), (2.13)

which can be used to calculate the dielectric response with the help of equations (2.1) and (2.2):

ǫ(ω) = 1− Ne2

ǫ0me

· 1

ω2 − iγω
= 1−

ω2
p

ω2 − iγω
. (2.14)

Here we have introduced the plasma frequency

ωp =

√

Ne2

ǫ0me

, (2.15)

which is the natural resonant frequency of the whole electron gas and marks the transition from

negative to positive real parts of the dielectric constant of a Drude metal (compare Fig. 2.2).

Let us note in passing that a real metal can never be fully described with the Drude model

because it does not account for interband transitions. For most metals these transitions occur in

the UV (e.g. 3.9 eV = 320 nm for silver) and can thus be neglected for the visible and near-

infrared spectral region. Notable exceptions to this rule are gold and copper, which have an
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Figure 2.3: Electronic origin of a particle plasmon: (a) equilibrium distribution, (b) induced dipole at t = 0, (c)

dipole distribution at t = T0/2.

interband transition in the visible spectrum [25] (2.4 eV = 520 nm for gold). This transition

drastically increases absorption around this frequency, which is why gold and copper have a

reddish shine to the spectator’s eye.

2.1.3 Kramers-Kronig Relations

From the dielectric functions derived above (equations (2.10) and (2.14)) we see that their

real and imaginary parts depend on the same quantities, most notably on the resonance and

the damping frequency. This infers that we cannot change either part of the complex number

without changing the other.

In fact, this is not unique to refractive indices within the Lorentz or Drude model but is

a universal statement that can be deduced directly from the law of causality; the exact

interdependence is formulated by the Kramers-Kronig relations [25, 29]:

Re [n(ω)] = 1 +
1

π
P

∫ ∞

−∞

Im [n(ω′)]

ω′ − ω
dω′ (2.16)

Im [n(ω)] = − 1
π
P

∫ ∞

−∞

Re [n(ω′)]− 1

ω′ − ω
dω′ (2.17)

2.2 Particle Plasmons

We have seen above how the electrons in bulk matter react to an external electric field E.

Especially for metals this behaviour changes when we substitute the bulk sample by a small

particle whose size is comparable to the skin depth. In this case the electric field can penetrate

the volume of the particle, which gives rise to an electronic response unlike that of a simple

Drude metal.

Let us first consider a spherical metal nanoparticle: Without an external field the electron gas

in the metal is in equilibrium and evenly distributed over the particle volume (Fig. 2.3 a). If,

however, we introduce an external electric field the whole gas is somewhat shifted with respect

to its equilibrium position, thus leading to charge separation by accumulating negative charges

(Fig. 2.3 b). This induced dipole produces an internal electric field which points in the opposite
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direction than the external field. It therefore acts as a restoring force on the electrons and leads

to a charge oscillation (Fig. 2.3 c). We call this collective oscillation of valence electrons a

particle plasmon or localised surface plasmon1. Since the mechanism it originates from is very

similar to that of the Lorentzian oscillator model (section 2.1.1) we can use the same equation

of motion as equation (2.8).

Yet the picture of a plasmon as an induced dipole is only valid if we assume the electric field

to have a constant phase over the whole particle and thus neglect retardation. Within this

quasistatic approximation we can find an analytic expression for the polarisability α (ω) of a

metal nanosphere by solving the Laplace equation [30]:

α (ω) = 4πr3
ǫ(ω)− ǫs
ǫ(ω) + 2ǫs

, (2.18)

where r << λ is the radius of the sphere, ǫ(ω) is the dielectric function of the (Drude) metal

and ǫs the dielectric constant of the surrounding material. This term shows a resonance when

the real part of the denominator vanishes, that is, when

|Re [ǫ(ω)]| = −2ǫs. (2.19)

The non-vanishing imaginary part Im [ǫ(ω)], however, causes this resonance to be finite and

not a pole in the polarisability. It is manifest - and clearly visible - in the resonantly enhanced

scattering and absorption cross-sections [30]

σscat =
k4

6π
|α(ω)|2 and σabs = kIm [α(ω)] , (2.20)

which is the origin of the bright colours in transmittance and reflectance of metal-stained

glasses.

Remarkably, beyond the quasistatic approximation the spectral position of the particle plasmon

resonance does not solely depend on the materials of the sphere and its surrounding but also

on the size (or more generally the shape) of the particle. Plasmon resonances can therefore be

tuned to almost arbitrary spectral positions by adjusting the geometry of the particle.

If we now want to study larger spherical particles, which do not satisfy the conditions of

the quasistatic approximation, we have to return to the rigorous analytical approach of Mie

theory [31]. Here, the internal and scattered fields of a metal sphere are expanded into a set

of normal modes. We can then in turn expand the absorption into a power series and truncate

it at an appropriate order. For instance, if we only take the first - the dipolar - term of this

expansion into account we arrive at the above result for the quasistatic approximation and the

two descriptions become completely analogous.

More complex shapes than a sphere can, in prinicple, not be studied analytically. Although the

quasistatic approach can be extended to elliptical particles by the introduction of geometrical

factors, we generally have to resort to numerical calculations to find the optical properties

associated with arbitrarily shaped metal particles.

1As these are the only kind of plasmons we deal with in this thesis, we refer to particle plasmons whenever we

use the simplified term plasmon.
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Modern research efforts on particle plasmons are not so much concerned with the resonance

spectra but, to a large extent, rather focus on the enhanced near fields associated with these

resonances. Returning to the quasistatic approximation we can describe the near field of a

spherical particle as the electric near field of a dipole known from classical electrodynamics

[29]

Edipole =
1

4πǫ0
[3n(n · p)− p]

1

r3
. (2.21)

Since the dipole moment p is connected with the polarisability α by p = ǫ0ǫsαE a particle

plasmon resonance is always accompanied by a resonantly enhanced near field. Again, for

more complex particle shapes or outside the quasistatic limit we rely on numerical calculations

to find the exact field distributions generated by a plasmon (compare section 4.3).

2.3 Metamaterials

The basic principles of optics allow for a lot of interesting optical properties that are physically

possible but do not occur in natural materials. One of the most striking examples of this is

the possibility of a negative refractive index proposed by Victor Veselago in 1968 [24]. Since

John Pendry found an application for these negative-index materials (NIMs) in the form of his

perfect lens in 2000 [4] the research interest in this direction is undiminished [1–3, 7, 32, 33].

To arrive at materials with specially tailored artificial properties, which we call metamaterials,

we use an analogy to real substances in form of the effective medium approach: the optical

properties of a crystal are crucially influenced by the properties of the individual atoms while

both the size of and the distance between the atoms is much smaller than optical wavelengths.

In this case the incident wave cannot resolve the lattice structure and therefore reacts to the

crystal as a whole.

Translating this concept of an effective medium to artificial media we find the condition that

the grating period a of the medium must be much smaller than the wavelength λ for which the

medium is designed. Furthermore, we can make use of the fact that it is the physical properties

of the individual building blocks that dominate the optical properties of the whole effective

material. From this we draw the freedom to design building blocks that are tailored to the

problem at hand.

We have already met the first example of a metamaterial for which the effective medium

approach is valid in form of metal-stained glasses where the plasmonic resonances of the

artificially-added particles cause the glass to have a certain colour by significantly changing

its scattering and absorption behaviour. In general, metamaterial building blocks do not need

to be based on plasmonic particles and therefore do not have to be metallic. If the artificial

properties of a metamaterial do, however, rely on plasmon resonances we sometimes refer to

them specifically as plasmonic metamaterials.

Let us now return to negative-index materials as the most prominent example of metamaterials.

As Veselago states, a negative refractive index requires both the permittivity ǫ and the

permeability µ to be negative. This is the reason why there are no natural negative-index

materials. Although a negative ǫ is readily found in metals (see section 2.1.2), natural substances

show a negligible magnetic response at optical frequencies and therefore have a permeability

µ = 1.
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Figure 2.4: (a) Sketch of the split-ring resonator geometry and its relevant size parameters; the green arrow

indicates the ring current induced by an external field. (b) Analogous representation of the resonator as an electrical

LC circuit.

The goal of designing a building block for a negative-index material is therefore to find

structures that exhibit a magnetic dipole moment when excited with an external field. The

component that provides this magnetic response in the quintessential NIM in the optical region,

the fishnet structure [34–36], is a so-called cut-wire pair [37, 38]. It consists of two parallel

metal strips separated by a dielectric spacer. Owing to retardation effects this configuration can

support a ring current from one wire to the other, leading to a magnetic moment.

Yet when it comes to magnetic response the workhorse of the metamaterial community is still

the first structure proposed to this end [39]: the split-ring resonator which we describe in detail

below.

2.3.1 The Split-Ring Resonator

John Pendry and co-workers first suggested the split-ring resonator (SRR) as a "magnetic atom"

in 1999 [39] and the first experimental realisation in the microwave regime followed soon after

by David Smith and co-workers [32]. Using electron-beam lithography the same concept could

be extended to the near-infrared and optical spectral region by Stefan Linden and co-workers

[40, 41].

The SRR is basically a U-shaped metal particle along which an external field can excite a

ring current following the shape of the SRR (Fig. 2.4 a). This ring current, in turn, induces

a magnetic moment perpendicular to the plane of the resonator and thus provides a magnetic

response and the possibility of a permeability unequal to unity.

Essentially, the split-ring resonator can be understood as an analogue of the classical

electrodynamic LC circuit: the bent metal wire is one winding of a coil, the upper parts of

the two vertical arms, separated by a gap, act as capacitor (Fig. 2.4 b). The inductivity L and

the capacitance C of this circuit can then also be calculated from electrostatics:

L = ǫ0ǫ
Aplate

d
= ǫ0ǫ

t·b
g
, C = µ0

Acoil

lcoil
= µ0

lx·ly
t
, (2.22)

where lx, ly, g and b are the geometry parameters of the SRR as depicted in Fig. 2.4 a and t is

the metal thickness. We therefore expect the resonance frequency corresponding to this LC (or

magnetic) resonance to be

ωLC =
1√
LC

=
c

ǫ

√

g

lxlyb
, (2.23)
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Figure 2.5: Possible orientations of the electric and the magnetic field along the arms of an SRR under normal

incidence. For the polarisation in (a) the magnetic mode is excited, for the one in (b) it is not.

which depends only on the geometry of the split-ring resonator and on the dielectric constant

of the surrounding. Much like plasmonic resonances, we can thus tune the position of the

magnetic resonance by altering the absolute and relative sizes of the arms of the SRR. There

is, of course, a limit to this procedure when the height b of the horizontal arm becomes so

small that it vanishes or so large that the SRR turns into a rectangle; in both cases the magnetic

resonance can no longer be observed.

Polarisation Dependence

When a light wave impinges onto a split-ring resonator it is, in principle, possible for both the

electric and the magnetic field component to couple to the SRR. As we are mainly interested in

the magnetic resonance it would be the obvious approach to induce the necessary ring current

by a magnetic field vector H normal to the plane of the SRR. In most optical experiments,

however, we want to work under normal incidence where neither H nor E are perpendicular to

the substrate. The two principal orientations of the fields to the SRR for this case are shown in

Fig. 2.5.

Since the electric field E does not couple to the coil but rather to the capacitor, it is still possible

to induce the desired ring current via the electric field if it has a component perpendicular to

the capacitor plates, i.e. parallel to the gap of the resonator [42]. For this configuration, as

shown in Fig. 2.5 a, the ring current flows through the SRR because the external field has to be

compensated and therefore charge has to be transferred from one plate to the other.

If E is oriented along the vertical arms (Fig. 2.5 b) it does not couple to the internal field of the

capacitor to which it is perpendicular. Thus there is no need for charge transfer to compensate

for an additional field and no magnetic mode is observed.

In what follows we stick to the terminology of horizontal and vertical polarisation and by these

refer to the alignment of the electric field with respect to the gap of the SRR. Thus horizontal

polarisation (Fig. 2.5 a) can excite the fundamental resonance whereas vertical (Fig. 2.5 b)

cannot; this is why we sometimes also use the terms resonant and non-resonant polarisation.
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Figure 2.6: Correspondence between the resonant modes of a rod antenna (left panel) and a split-ring resonator

(right panel). The blue arrows indicate the polarisation for which the SRR modes can be excited.

Higher-Order Resonances

We have already described the split-ring resonator as a wire bent into a U-shape and now take

a closer look at this picture. It illustrates the plasmonic point of view on an SRR and helps to

understand the higher-order resonances.

If we fold the two vertical arms back to the baseline of the resonator we obtain a rod antenna

whose excitation modes are well-known: the fundamental mode occurs when the current is

distributed over the complete length of the antenna with one maximum in the middle and two

nodes at the ends. An additional node is present, along with a second maximum, for the second-

order mode. The third-order excitation exhibits yet another node and maximum in the current

distribution and so forth (Fig. 2.6, left panel).

Folding the antenna back into a split ring, we find the same current distributions and can relate

them to the SRR resonances. The fundamental mode gives rise to the ring current and can

therefore be identified as the magnetic mode. The second- and third-order resonances do not

lead to a dominant magnetic moment. We consequently call them electric resonances and

further classify them according to the polarisation by which they can be excited as vertical

and horizontal electric mode (Fig. 2.6, right panel).

Figure 2.7 shows calculated spectra of a split-ring-resonator array for horizontal and vertical

incident polarisation. The long-wavelength fundamental mode can only be observed for

horizontal polarisation. For this excitation geometry we also observe the third-order or

horizontal electric mode at shorter wavelength. At almost the same spectral position but with a

significantly larger linewidth we find the second-order mode for vertical incident polarisation.
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Figure 2.7: Calculated transmittance spectra of an array of split-ring resonator for (a) horizontal and (b) vertical

incident polarisation. The SRR cartoons show which modes the resonances correspond to.

2.4 Loss and Loss-Compensation

One of the big challenges plasmonic metamaterials research, indeed any plasmonics research,

faces today is that of overcoming the intrinsic losses of the dispersive metals they are based

on. These losses are the main obstacle to most applications that scientists and engineers are

working on. For instance, a plasmonic waveguide has to be able to support a surface plasmon

for more than a few microns [43], otherwise it is just as useless as a cloaking device that casts

a shadow due to absorption losses [6].

Since this thesis aims at taking a step towards loss-compensation by investigating the coupling

between plasmonic metamaterials and quantum wells, we take a closer look at these losses and

how they can possibly be compensated, in this section.

2.4.1 Losses in Metallic Nanostructures

As we have seen in section 2.1, metals described by the Drude model are highly dissipative for

frequencies well below the plasma frequency ωp (compare Im [ǫ] in Fig. 2.2). Using equation

(2.7) we can link the imaginary part of the refractive index, ultimately the imaginary part

of the dielectric response, to absorption in the metal. This absorptive loss is often referred

to as Ohmic loss because the electron energy is dissipated into heat in the same way that is

responsible for electric resistance.

These Ohmic losses present a severe challenge for many possible applications of plasmonics

and metamaterials, especially in the visible or in the near-infrared spectral region where typical

telecomunication wavelengths are located.

Dealing with metallic nanoparticles instead of extended films or bulk metal, however, we

cannot use a pure Drude description for the optical behaviour of the particle. Especially

when approaching a plasmonic resonance the response of a metal nanoparticle to an external

electromagnetic field differs considerably from that of a Drude metal (see section 2.2).

We can find an instructive analytical formula for this behaviour if we return to the polarisability
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of a metallic nanosphere in equation (2.18): let the sphere be composed of a perfect Drude

metal following the dispersion relation ǫ (ω) given by equation (2.14) and let it be surrounded

by vacuum, thus ǫs = 1. In this simple case we can rewrite the polarisability as

α (ω) =
4πr3

3
· Ne

2

ǫ0me

· 1

Ω̃2 − ω2 − iγω
, (2.24)

where we have substituted the resonance frequency Ω̃ = ωp/
√
3. This term already resembles

the functional form of a Lorentzian oscillator. We continue with an evaluation of the scattering

and absorption cross-sections by inserting the above result into equation (2.20).

σscat = A · ω4

(Ω̃2 − ω2)2 + γ2ω2
, (2.25)

σabs = B · γω2

(Ω̃2 − ω2)2 + γ2ω2
, (2.26)

where we have condensed all constants into the prefactors A and B. The scattering and

absorption cross-sections, or more precisely their sum, is directly linked to the extinction

spectrum resulting from a plasmonic particle. Thus we find the particle plasmon resonance

to have a Lorentzian lineshape, centred around Ω̃. And a full-width at half-maximum (FWHM)

∆ω = 2γ. Since γ quantifies the damping of the oscillator we can use it to define a quality

factor Q of the plasmon, which can be directly derived from the spectrum:

Q =
Ω̃

∆ω
. (2.27)

As a rule of thumb we can therefore state: the narrower and the larger the peak in the extinction

spectrum, the higher is the Q factor of the plasmon and the higher is its oscillator strength f .

The above, however, is only strictly true for the natural linewidth of a plasmon. In most

experiments we deal with an ensemble of particles which are not exactly identical in shape and

size. This results in a further broadening of the spectral line owing to the multitude of slightly

differing resonance positions; this effect is called inhomogeneous broadening.

Loss Channels of Particle Plasmons

At this point it is important to have a closer look at the loss channels we observe for particle

plasmons. Generally speaking, we can divide losses into two categories: radiative and non-

radiative ones. The former are due to energy transfer to the environment by radiative processes.

The latter originate from internal dissipation of energy (compare Fig. 2.8).

Radiative losses of plasmons are related to the coupling of the plasmon to the external

electromagnetic field. An efficient coupling of the plasmon to the light field goes along with

high radiative losses and therefore with a broad spectral line. This "loss" channel is, in fact,

highly desirable for a lot of experiments and applications where the plasmonic particle is used

as an antenna.

Non-radiative ohmic losses, however, hinder most applications because the conversion of

energy to internal processes renders this amount of energy inaccessible by optical means. In
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Figure 2.8: Decay channels of a particle plasmon: radiative losses by coupling to the light field and non-radiative

losses by creation of an electron-hole pair; adapted from [44]

.

plasmonic particles the energy is mainly dissipated due to the production of electron-hole

pairs, either via interband transitions from the d-band to the conduction band or via intraband

transitions within the conduction band [44].

2.4.2 Loss-Compensation

To make devices based on optical metamaterials feasible we need to compensate the high

Ohmic losses of the metal building blocks to a great extent. There are several approaches

by which absorptive losses can be reduced: by selecting low-loss materials [36, 45, 46], by

tailoring the geometry [10] or by introducing a gain medium [11]. We describe these concepts

in the following paragraphs.

The first idea is simple: to find a conducting material, supporting plasmons, that has the lowest

possible losses in the spectral region of interest. For optical and near-infrared wavelengths this

turns out to be silver. Indeed, the negative-index metamaterial with the lowest losses in this

regime is a silver fishnet structure [36]. For this structure Gunnar Dolling et al. report a figure

of merit FOM = −Re(n)/Im(n) = 3 with Re(n) = 1 at a wavelength of 1400 nm. Using

equation (2.7) we find a corresponding absorption coefficient of δ ≈ 3× 104 cm−1.
The use of superconducting materials for metamaterials is another obvious idea in this direction

because in the superconducting phase all resistive losses vanish. However, this approach is

not feasible for plasmonic applications because the superconducting energy gap is well below

the near-infrared region but the superconducting phase exists only for energies lower than this

gap. Even for more suitable spectral regions it is not the solution of choice for applications

because of the low temperatures required for operation. Even the best high-temperature

superconductors to date still require liquid-nitrogen cooling, making them unfit for use in many

devices.

New material systems like metal-alloys [9], intermetallics [47] or graphene [48] have also been

proposed as a possible solution by way of material engineering. Experimental realisations of

these ideas, however, have not passed the stage of being proof-of-principle, yet.
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Figure 2.9: Three possibilities of positioning a gain medium (purple) with respect to a plasmonic metamaterial: (a)

imbed the whole sample in the gain medium, (b) selectively position the gain medium at special locations, (c) use

a gain medium as substrate.

.

A second way of minimising absorptive losses is the convenient design of the building blocks

to this end. Durdu Güney et al. have numerically studied the influence of geometric parameters

of split-ring resonators for different frequency regions [10]. For the high frequencies of interest

to us they find a means of lowering Ohmic losses by reducing the geometric skin depth and

simultaneously enlarging the cross section of the SRR arms. The key idea behind this is to

geometrically approach the bulk limit and come closer to the bulk value of the skin depth which

is smaller than the value found for particles.

This approach has the advantage of starting from well-studied and already controllable material

systems and only adjusting the design parameters. However, if we aim at an application for

a specific wavelength geometrical tailoring can only be performed within narrow boundaries

because every change in geometry results in an altered resonance frequency. How well this

idea can be transported to real samples has also not been demonstrated experimentally, so far.

The third approach is the one we follow in this thesis: the compensation of absorptive losses

by the introduction of optical gain [11]. Optical gain is, naively speaking, the opposite of

absorption. We can therefore use the excess energy provided by the gain medium to compensate

for the energy lost due to dissipation in the metallic nanostructure. Theoretical investigation

has proved the introduction of gain a promising method for loss-compensation [12, 13, 49].

Although the gain solution to the problem of loss sounds straightforward we have to make

certain considerations:

We have found above that low-loss metamaterials have an absorption coefficient of

δ ≈ 3 × 104 cm−1, which is on the same order of magnitude as the gain coefficients of

typical semiconductors. We can therefore be confident to find a gain medium that is, in

principle, strong enough to compensate the loss of a metamaterial.

Most importantly, though, the energy transfer between the nanostructure and the gain medium

requires cross-talk between the two components. We have shown in [49] that the behaviour of

the combined system depends crucially on the coupling strength between the plasmon and the

gain. Before aiming at full compensation of absorptive losses, we therefore first have to prove

substantial coupling between the plasmonic metamaterial and the gain medium we intend to use.

Finally, we need to decide how to experimentally incorporate the gain medium into an active

metamaterial. Figure 2.9 shows the three basic possibilities: we can completely imbed the

metamaterial in the gain medium, which is feasible for dyes or quantum dots or polymers
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doped with either [14]. For certain types of metamaterials, e.g. fishnets or cut-wire pairs, it

is favourable to position the active medium at a specific location where we expect the highest

coupling efficiency. In case of a fishnet or a cut-wire pair the gain medium can be efficiently

used as spacer between the two metal layers [16]. If, however, we choose a semiconductor

as gain material the obvious incorporation is the use as active substrate [50]. Although this

is not the position where we expect maximum coupling efficiency, semiconductors have two

advantages: they are long-term photostable and they offer the possibility of electrical pumping,

which is especially important regarding applications.

We have so far discussed loss-compensation approaches from a purely plasmonic point of view,

deliberately disregarding what happens to a negative index of refraction. Because a negative

index implies a negative phase velocity we have to regard causality as expressed in the Kramers-

Kronig relations (see section 2.1.3), thus imposing restrictions on how far losses can be reduced

in negative-index materials without violating causality [51, 52].
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Chapter 3

Semiconductor Optics

The optical properties of semiconductors ceased to be of purely scientific interest many years

ago: light-emitting semiconductor devices have arrived in our every-day lives, e.g. in the

form of semiconductor lasers [53, 54] powering CD players and disk drives. This capability

to produce light when excited with an electrical source, which makes them so interesting for

use in compact devices, is the reason why we use semiconductors as gain media, keeping in

mind future applications1.

We want to exploit this optical gain of a semiconductor nanostructure to aim at compensating

the absorptive losses of a plasmonic metamaterial, in which we follow theoretical suggestions

[20, 55]. However, in order for this concept to work the two systems have to exchange energy

and thus have to couple significantly.

To achieve substantial coupling between a semiconductor substrate and a plasmonic structure

maximum overlap of the electronic wave function in the semiconductor and the plasmonic near

field is crucial. This renders control over the distribution of the wave function desirable. Such

is, however, not possible in bulk semiconductors because the electrons can move freely in all

three spatial directions. Quasi-two-dimensional structures like quantum wells [56] confine the

movement of electrons to a plane, leading to bound quantised states in the third dimension.

As this confinement depends not only on the materials but also on the exact geometry of the

quantum well the wave function can be engineered to some extent.

In this chapter we summarise the basic concepts of semiconductors before we go on to consider

in more detail the optical properties of single quantum wells. We conclude this introduction by

studying how semiconductors can be modelled as optical two-level systems. In this framework

we describe different light-emission processes and derive the optical Bloch equations as the

relevant equations of motion. Here, we also review the Purcell effect and Förster transfer as

examples of how (two-level) emitters interact with their environment.

3.1 Semiconductors

In crystalline solids the electronic states form bands and are not considered as individual levels

[57]. Occupied states below the Fermi energy form the valence band, unoccupied ones above

1Within the scope of this thesis, however, we only use optical pumping.

21
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Figure 3.1: Schematic band structure of a semiconductor (a) in momentum space - energy versus wave vector k -

and (b) real space - energy versus space coordinate r.

the Fermi energy form the conduction band2. These two bands can either overlap, when the

electron levels form a continuum, or they can be energetically separated by a region in which

no states exist. This region is called a band gap and is characterised by its width in energy space,

the band gap energy Eg. As a rule of thumb, we generally speak of a semiconductor if the band

gap energy is 0 < Eg ≤ 4 eV [58].

We further divide semiconductors into two classes according to their band structure: If the

maximum of the valence band and the minimum of the conduction band occur at the same

momentum vector k we call this a direct semiconductor (e.g. GaAs, see Fig. 3.2 a). If, however,

the band minima and maxima have some separation in momentum space the semiconductor is

considered indirect (e.g. silicon, see Fig. 3.2 b) because an additional momentum component is

needed for the lowest-energy transition from the valence to the conduction band. In general, a

semiconductor material has a more complex band structure and can have both direct and indirect

band gaps at once. It is then classified by the one with the lowest band-gap energy.

3.1.1 Charge Carriers

The optical properties of semiconductors are mainly governed by electronic interband

transitions. We therefore take a closer look at the relevant charge carriers and discuss a simple

model of the transitions and related optical effects later, in section 3.3.

The Concept of Effective Mass

Speaking about the basic concepts of semiconductor optics we usually operate in the so-called

one-electron approximation. This means, we condense the potential of the crystal atoms and

2Note that these sharp filling conditions are only true for T = 0K; for temperatures T > 0 K the electronic

distribution is smeared out within an energy interval of about kBT according to the Fermi-Dirac statistics. For the

sake of simplicity, we stick to the zero-temperature case throughout the text.
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Figure 3.2: Schematic bandstructure of (a) a direct semiconductor like gallium arsenide and (b) of an indirect

semiconductor like silicon.

the interaction potentials between all the electrons into one periodic potential [58]. If we now

want to describe the influence of an external field acting on the electrons, we need to account

for the interactions with the lattice and with other electrons by introducing the effective mass

m∗ given by

1

m∗
=

1

~2

∂2E

∂k2
=

1

~2

∂2E

∂ki∂kj
, (3.1)

where i, j = x, y, z refer to the spatial coordinates. Equation (3.1) shows that the effective mass

reflects the curvature of the band a charge carrier is located in and that it is, in general, a tensor

depending on the direction the particle is moving in.

For interband transitions we often only need to consider events close to the band extrema, where

the dispersion is usually parabolic, leading to a constant effective mass. We can therefore apply

the effective-mass approximation and describe the charge carriers as free particles with effective

mass m∗.

The Concept of Holes

In interband transitions electrons are excited from the valence band to the conduction band.

While it is straightforward to describe the movement of the few excited electrons in the

conduction band, this direct approach becomes impractical for the multitude of occupied states

in the valence band. We therefore turn to considering the defect electrons or holes left by the

excitation of electrons. The properties of such a hole are closely connected to the ones of the

electron that was removed from the valence band and are given below.

electric charge: qh = −qe = e
wave vector: kh = −ke,VB

effective mass: m∗
h = −m∗

e,VB

m∗
h > 0 m∗

e,VB < 0
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Figure 3.3: Schematic band structure of a semiconductor including the spin-orbit splitting of the valence band into

a heavy hole (hh) band and a light hole (lh) band.

The concept of holes allows for a description of the valence band, which is simple and

completely equivalent to that of the few electrons in the conduction band. These quasiparticles

are therefore the second relevant charge carriers in a semiconductor, alongside the electrons.

In many semiconductors the valence bands show spin-orbit splitting, that is, they are split into

two subbands degenerate at the Γ-point [59]. These two subbands differ significantly (see

Fig. 3.1.1) in their dispersion, which leads to the holes having substantially different effective

masses. We therefore speak of the heavy hole band and the light hole band and also refer to the

respective charge carriers as heavy holes and light holes.

The Concept of Excitons

Since electrons and holes are oppositely charged particles they interact via their Coulomb

potentials and form a bound pair similar to positronium. We can describe this bound state as

one quasiparticle and then call it an exciton. In most semiconductors the Coulomb interaction

between an electron in the conduction band and the corresponding hole is strongly screened

by the valence electrons. This results in a weak binding of the electron-hole pair and is often

referred to as Wannier-Mott exciton. The less-frequent tightly bound case, as it exists in ionic

semiconductors, is called Frenkel exciton.

As any two-particle system, the Wannier-Mott exciton can be described by a center-of-mass

motion and a relative motion of the two particles. The former leads to the picture of an exciton

as one quasiparticle with an effective mass m∗
exc = m∗

e +m∗
h; the latter is similar to the well-

known case of a hydrogen atom: The relative motion thus has quantised bound states and a

continuum of states, where we can describe the excitons as ionised into free electrons and free

holes. Still, the wave functions of the "free" particles are modified by their Coulomb interaction.

In principle, the absorption spectra of excitons can be calculated from their eigenenergies and

wave functions if we introduce an interaction term accounting for the Coulomb interaction.

However, the underlying concept of excitonic absorption is different from optical absorption in

the one-electron picture [59]. In the two-particle picture optical absorption is the conversion of a
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Figure 3.4: (a) Schematics of a single quantum well. (b) Corresponding band structure in real space.

photon into an exciton leading to an exciton-polariton. Using this conceptionally strict approach

usually makes approximations necessary if we want to calculate the absorption spectra. We will

therefore not go into further detail of exciton-polaritons, which can be found in textbooks on

semiconductors [59] and semiconductor optics [58].

3.2 Semiconductor Quantum Wells

Single quantum wells (QWs) are semiconductor heterostructures consisting of a thin layer

of one semiconductor with a lower band-gap energy E low
g sandwiched between two thicker

layers of another semiconductor material whose band gap energy Ehigh
g is higher (see Fig. 3.4).

Usually, one refers to the middle layer as the quantum well or the quantum film and to the two

surrounding high-band-gap layers as the barriers.

This configuration confines the charge carriers in the stacking direction (z) if the confinement

energy

Econf =
(∆pz)

2

2m
∼ ~

2

2m(∆z)2

is comparable to the kinetic energy of the (quasi-)particle. For semiconductors this is the case

when the layer thickness ∆z of the well is smaller or equal to the exciton Bohr radius a0,exc of

the low-band-gap material. For the material system used in this work (InAlAs/InGaAs/InAlAs)

this leads to a quantum-well layer that must be smaller than the exciton Bohr radius of InGaAs

a0,InGaAs ≈ 18 nm [60]. If this confinement condition is fulfilled the charge carriers behave like

particles in a box potential resulting in quantised states with well-defined energies and wave

functions, which are derived in detail below.

In the plane of the well itself (xy-plane) the electrons (and holes) can still move freely,

undisturbed by the confinement in z-direction. A single QW therefore is an example of a

two-dimensional electron gas with the corresponding step-like functional form of its density

of states (see Fig. 3.5).
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Figure 3.5: Density of states for a free electron gas in three (bulk) and in two dimensions (quantum well).

3.2.1 Electronic States of an Infinite Potential Well

Having introduced the basic concept of a single quantum well (QW) we now derive the energy

levels and wave functions by modelling the confinement of the electrons3 in z-direction by an

infinite potential, which corresponds to the textbook problem of a particle in a one-dimensional

box. This potential describes the situation in a single QW for large differences of the two band

gaps ∆Eg = Ehigh
g −E low

g , for smaller ∆Eg a refinement of the model towards a finite potential

well may be necessary. For the quantum wells used in this thesis the larger band gap of InAlAs

(Ehigh
g ≈ 2 eV) is more than twice as high as that of InGaAs (Ehigh

g ≈ 0.75 eV) and the barriers

can therefore be considered infinitely high. We thus restrict the following discussion to the case

of an infinite potential.

This confinement potential V (z) for a quantum well of width w is given by

V (z) =

{

0 for 0 < z < w
∞ else

Since there is no further potential acting on the electrons in x- and y-direction we can write the

Schrödinger Equation for the electrons as

[

− ~
2

2m∗
e

∇2 + V (z)

]

ψ(x, y, z) = Eψ(x, y, z), (3.2)

where m∗
e is the effective mass of the electron, ψ(x, y, z) and E are the wave functions and

energy eigenvalues.

This equation can be separated into two independent problems for the potential V (z) in the z-
direction and for a free movement (zero potential) in the xy-plane. The complete wave function

ψ(x, y, z) can then be found as the product

ψ(x, y, z) = φ(x, y) · ζ(z)
3In this section we only consider the electronic states explicitly but the same formalism holds true for holes if

we substitute the effective mass of the electronm∗e by that of the holem
∗

h.
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of the wave functions φ(x, y) and ζ(z) resulting from the separated equations:

[

− ~
2

2m∗
e

∇2
xy

]

φ(x, y) = Exyφ(x, y) (3.3)

with ∇2
xy =

∂2

∂x2 +
∂2

∂y2
and

[

− ~
2

2m∗
e

∂2

∂z2
+ V (z)

]

ζ(z) = Ezζ(z). (3.4)

Equation (3.3) describes the movement of a free particle in two dimensions and (3.4) is

the Schrödinger equation of a one-dimensional infinite potential well. The solutions to

both problems are well-known and can readily be found in standard textbooks on quantum

mechanics, e.g. [61] or semiconductor optics, e.g. [58, 62]:

The wave function of a free particle is known to be a plane wave

φ(x, y) = ei(kxx+kyy) ≡ eikxy ·rxy (3.5)

with the corresponding continuous eigenvalues

Exy =
~
2

2m∗
e

(k2x + k2y) =
~
2

2m∗
e

k2xy. (3.6)

The particle-in-a-box problem in equation (3.4) leads to perfect confinement of the electrons

within the width of the well. Therefore the wave function ζ(z) is strictly zero outside the well

and at its boundaries, owing to the continuity condition. Inside the potential well (0 < z < w)
the electrons have symmetric wave functions

ζ(j)(z) =

√

2

w
sin

(

jπ

w
z

)

, (3.7)

which are individually related to the quantised energy eigenvalues denoted by j = 1, 2, ... and
given by

E (j)
z =

~
2

2m∗
e

(

jπ

w

)2

. (3.8)

Together, equations (3.5) to (3.8) describe a set of j two-dimensional parabolic subbands whose

minimum corresponds to the jth eigenvalue of the infinite quantum well as illustrated in Fig.

3.6. In the x- and y- direction a particle can thus move in much the same way no matter what

band it is located in, but its energy - even at rest - is raised by the eigenenergy E (j)
z of the

particular band. The complete energy eigenvalues of a single quantum well are therefore given

by the sum of Exy and E (j)
z

E (j) =
~
2

2m∗
e

(

k2x + k2y +
j2π2

w2

)

. (3.9)

From this energy quantisation in one dimension follow the distinct optical properties of

semiconductor quantum wells, which we discuss next.
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Figure 3.6: (a) Energy eigenvalues and wave functions for a one-dimensional infinite potential well and the

corresponding (b) parabolic subbands of the free electron gas in the xy-plane.

3.2.2 Optical Properties: Absorption

In order to understand the absorption of light by a single quantum well we consider in the

following the transitions that can occur between the valence and the conduction band when the

charge carriers are subject to the confinement condition in z-direction given by equation (3.8).

To evaluate the rate of absorption we have to evaluate Fermi’s golden rule

wi→f =
2π

~
|〈f |−er · E| i〉|2 g(~ω), (3.10)

where r is the position vector of the electron, E is the amplitude of the incident electric field

and g(~ω) is the density of states, which for the case of a quantum well has to be considered in

two dimensions. If we want to find the absorption spectrum we first need to evaluate the matrix

elements in equation (3.10). For a polarisation vector in the xy-plane these take the form

Mjj′ = 〈j′ |x| j〉 =
∫

ψ∗j′xψjd
3r. (3.11)

For the wave functions of a single quantum well (given by equation (3.7)) this term is only

non-zero if the quantum number j of the inital state is equal to the number j′ of the final state
as the wave functions are orthonormal. Interband transitions in quantum wells therefore need

to obey the selection rule

∆j = 0 (3.12)

and can only occur between hole states and electron states with the same quantum number j as
illustrated in figure 3.7. Each of these transitions corresponds to a specific energy

~ω = Eg + E (j)
e + E (j)

h = Eg +
~
2j2π2

2w2

(

1

m∗
e

+
1

m∗
h

)

(3.13)

depending on the band gap energyEg and the two energy levels E (j)
e and E (j)

h for the jth electron
and hole state. The absorption spectrum of a quantum well therefore consists of a series of
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Figure 3.7: Allowed transitions with∆j = 0 between the valence and conduction band of a single quantum well.

Figure 3.8: Schematics of the step-like absorption spectrum of a single quantum well. The peaks (dashed lines)

show the influence of the excitonic interaction.

steps corresponding to the allowed transitions for ∆j = 0. Taking into account the Coulomb

interaction between electrons and holes every step is further modified by its own excitonic

series. Figure 3.8 shows a sketch of the resulting absorption spectrum [62].

For light polarised in z direction, i.e. in quantisation direction of the quantum well, we need to

find different selection rules. Their derivation relies on symmetry arguments in a group theory

approach [63], so we only sketch an outline here and give some results.

Like above we need to evaluate the matrix element in equation (3.10) for electronic eigenstates

of the QW. We obtain non-zero solutions of the matrix element that do not simply depend on

the quantum number j but rather on parity π and on the eigenstatesm of the angular momentum

Lz. Transitions are allowed if either

∆m = 0 and ∆π = 1 (3.14)

or

∆m = 1 and ∆π = 0. (3.15)
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Figure 3.9: Diagram of different states of a two-level system: (a) the electron rests in its ground state |1〉, (b) an
incident photon excites the electron to the upper state |2〉, (c) the electron relaxes back to its ground state emitting

a photon in the process.

In particular, this renders the dipole transition between the heavy-hole (hh2) and the conduction

(c1) band forbidden. However, these restrictions only hold true for plane-wave excitation if

there is no gradient of the electric field over the width of the quantum well. They can also be

excited, if only weakly, owing to tetrahedral symmetry in many real semiconductors.

3.3 Two-Level Systems

To understand optical transitions in a semiconductor it is instructive to limit considerations

to only two levels, a ground state |1〉 with energy E1 and an excited state |2〉 with energy

E2 > E1 (compare Fig. 3.9). This approximation is valid for absorption and emission processes

in semiconductors as long as they occur at or around the band extrema, where the dispersion

of the bands can be neglected; it is relatively accurate for the discrete levels in quantum wells.

It does, however, reach its limit at the explanation of gain and lasing because the necessary

population inversion cannot be achieved in a two-level system. Still, the formalism of a two-

level system can be applied to a gain medium if we introduce an external pump rate, like we do

in the toy model described in chapter 5.

3.3.1 Absorption, Spontaneous and Stimulated Emission

In a two-level system a photon can only be absorbed or emitted if the electron "jumps" from

one of the levels to the other. The photon is needed to fulfil energy conservation and therefore

has to carry an energy ~ω = E2 − E1 equivalent to the energetic difference of the two levels

[25].

If an electron has been excited to the upper level it has the natural tendency to relax back

to an energetically more favourable, i.e. lower, state. In the process of jumping from level

|2〉 to level |1〉 it emits a photon4. As this happens without an external stimulus we call it

spontaneous emission or luminescence. The spontaneous emission rate is governed by the

Einstein A coefficient and is given by

dN2

dt
= −A21N2, (3.16)

4The emission of radiation is, of course, not the only way in which an excited system can decay back to its

ground state. There are also non-radiative channels allowing for the release of energy, which shall not be described

here (compare 2.4.1).
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where N2 is the population of state |2〉 and A21 describes the transition from the upper to the

lower level. From this we can deduce the radiative decay rate τrad for spontaneous emission to

be

τrad = A−121 . (3.17)

The opposite transition, that is the excitation of an electron from the lower to the upper state,

cannot occur spontaneously. The electron needs to gain energy from an external field to cross

the gap between the two levels. This can be achieved by the absorption of a photon. For

processes stimulated by an external field the transition rates are described by the Einstein B
coefficient. Therefore absorption accompanied by an excitation of the electron from |1〉 to |2〉
is described by the following rate equation:

dN1

dt
= −B12N1u(ω) (3.18)

withN1 being the population of the lower level, B12 being the Einstein coefficient for excitation

and u(ω) being the energy density of the external electric field of the incident photon.

However, an external field can not only yield absorption if the electron is in the lower state,

it can also stimulate an electron in state |2〉 to jump down to state |1〉. For this relaxation the

electron needs to release its excess energy and consequently emits another photon. We therefore

call this process stimulated emission. It can formally be described analogously to absorption

with the Einstein coefficient B21 for the opposite transition, i.e. from the upper to the lower

level:
dN2

dt
= −B21N2u(ω) (3.19)

The three processes of absorption, spontaneous and stimulated emission are not independent

and neither are the corresponding Einstein coefficients. The two Einstein B coefficients for

absorption and emission are related via the degeneracies g1 and g2 of the two levels involved

g1B12 = g2B21. (3.20)

The relation between the coefficients A21 and B21, respectively, governing spontaneous and

stimulated emission is given by

A21 =
2~

π
·
(ωn

c

)3

B21, (3.21)

where c is the speed of light in vacuum and n is the refractive index of the medium. From

equations (3.20) and (3.21) we see that theB12 coefficient for absorption is directly proportional

to the two emission coefficients A21 and B21. We can thus conclude that a high absorption

coefficient yields a high probability for emission, leading to a short radiative lifetime τrad (see
Eq. (3.17)). This, however, does not mean that the absorption and emission spectra are the

same. The spectral shapes cannot be explained by rate equations but by the thermal distribution

of the charge carriers in their bands [25]. The absorption spectrum of a quantum well is, for

example, a step function (Fig. 3.8) whereas its luminescence spectrum is generally a Lorentzian.
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The above relations also contain the reason why a strict two-level system cannot reach

population inversion and thus not serve as a gain material. In this case the degeneracies in

equation (3.20) are both unity and the two coefficients for absorption and stimulated emission

are the same. An incident photon will thus stimulate absorption and emission with equal

probability. It is therefore not possible that more electrons are in the upper state |2〉 than there

are in the lower state |1〉, unless the system is driven coherently.

3.3.2 Optical Bloch Equations

Having introduced the relevant absorption and emission processes, we now take a closer look

at the dynamics of a two-level system interacting with an external field E(r, t). We further limit

our considerations to fermionic charge carriers (like electrons and holes) in the one-particle

approximation and only allow dipolar transitions between the two levels.

These assumptions lead to the following Hamiltonian [64]

H = E1c
†
1c1 + E2c

†
2c2 − E(r, t)

(

d21c
†
2c1 + d∗21c

†
1c2

)

, (3.22)

where E1 and E2 are again the energies of the two levels and d21 is the dipole matrix element

of the transition from level |2〉 to level |1〉. We have also introduced the creation operator c†j
and the annihilation operator cj , which respectively describe the creation and annihilation of an
electron in level |j〉.

The dynamics of the optical transition amplitudes

pij = 〈c†icj〉 (3.23)

for a transition from level |j〉 to |i〉 and the occupation factor of level |i〉

fi = 〈c†ici〉 (3.24)

can then be deduced straightforwardly from the Heisenberg equation of motion, which is given

by

−i~ ∂
∂t
O = [H,O] (3.25)

for an arbitrary operatorO. If we want to evaluate this equation for the transition amplitudes pij
and the occupation factors fi, we first solve equation (3.25) for the four creation and annihilation
operators with the help of the commutator relation for Fermions

[

ci, c
†
j

]

= δij. (3.26)

Inserting the results into equations (3.23) and (3.24) and employing charge carrier conservation

(f1 + f2 = 1) directly leads to the optical Bloch equations for a fermionic two-level system:

−i~ ∂
∂t
p12 = (E1 − E2) p12 + d21E(r, t) (1− 2f2) (3.27)

and

−i~ ∂
∂t
f2 = d21E(r, t)p

∗
12 − d∗21E(r, t)p12 (3.28)
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In order to complete the picture of charge-carrier dynamics in a two-level system we add two

phenomenological damping rates [64]: the longitudinal damping Γ for the occupation number

fi describes the relaxation of an initial distribution back to the equilibrium Fermi function. On

the other hand, the transverse damping rate γ characterises the damping of the oscillation of

the transition amplitude pij . Introducing these rates into equations (3.27) and (3.28) and some

rearrangement yields the final form of the optical Bloch equations

−i~ ∂
∂t
p12 + (E2 − E1 + i~γ) p12 = d21E(r, t) (1− 2f2) (3.29)

and

−i~ ∂
∂t
f2 − i~Γf2 = d21E(r, t)p∗12 − d∗21E(r, t)p12. (3.30)

Linear Optical Properties

The optical Bloch equations are the equations of motion for the charge carriers in a

semiconductor. We should therefore be able to derive the optical properties directly from them

in a similar way as we have done in section 2.1. This task is most straightforwardly achieved

by rewriting equations (3.27) and (3.28) with the help of the Bloch vector




u
v
w



 ≡





2Re [p12]
2Im [p12]
f2 − f1



 . (3.31)

We additionally define the transition frequency Ω = ~
−1 (E2 − E1) and the Rabi frequency

ΩR(t) = ~
−1d21E(t) and arrive at the matrix form of the (undamped) optical Bloch equations:





u̇
v̇
ẇ



 =





0 Ω 0
−Ω 0 −2ΩR(t)
0 2ΩR(t) 0









u
v
w



 . (3.32)

Since we are interested in the linear optical properties we only need to consider the uninverted

two-level system, which means the occupation of the upper level is zero (f2 = 0) and therefore

w = −1. We can now simplify equation (3.32) to

ü+ Ω2u = 2ΩR(t)Ω. (3.33)

This equation is formally equivalent to the equation of motion for the Lorentzian oscillator

(compare (2.8)) - in the undamped case - if we interpret u = x/x0 as a relative displacement

of the electrons5 normalised to an arbitrary value x0. The transition frequency Ω describes the

eigenfrequency of the system. Inserting the definition of the dipole matrix element

d21 = −e~/ (2x0meΩ), where me is the (effective) mass of the electron, we arrive at the well-

known equation of motion for a Lorentzian oscillator

meẍ+meΩ
2x = −eE(t). (3.34)

Starting from this equation we can derive the linear optical properties as we have done in section

2.1.1, which we will not repeat here as the results are already given therein.

5Here again, we use electrons as one example of charge carriers in a semiconductor, where the same formalism

could be used for holes as well.
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3.3.3 Interaction of Emitters and their Environment

Two-level systems describe many types of optical emitters fairly well but this picture only treats

them as isolated entities. Their interaction with the surrounding is, however, important for

many applications where resonant interaction effects are exploited. Since our investigation of

the coupling between a quantum well and a plasmonic metamaterial is a similar problem to the

interaction of an emitter with its surroundings, we think it worthwile to revisit two of the most

common mechanisms associated with this issue: the Purcell effect and resonant Förster transfer.

The Purcell Effect

The Purcell effect, as originally stated by Edward M. Purcell in 1946, describes the

enhancement of the spontaneous decay rate6 Γ of a single emitter when it is coupled to a

resonant cavity [65] with a quality factor Q by the Purcell factor

F = 3Q
4π2V

(

λ
n

)3
with V =

∫
ǫ|E|2dr

max(ǫ|E|2)
, (3.35)

where V is the effective mode volume in a cavity resonant at wavelength λ with a host medium

of refractive index n.
More generally, we can relate the spontaneous decay rate Γ to the local density of photonic

states (LDOS) gL by

Γ =
πp2ω

3~ǫ0
gL, (3.36)

where p is the dipole moment and ω is the frequency of the optical transition [66]. We can

therefore also express the Purcell factor as the enhancement of the LDOS. This is especially

important because the conventional Purcell factor defined in equation (3.35) is a disputable

quantity if we deal with plasmonic particles instead of dielectric cavities. In the following we

discuss some of the concerns raised on this subject [67, 68].

Most obviously, the definition of the mode volume in equation (3.35) presents a problem for

plasmonic particles because the energy density ǫ |E|2 therein becomes negative for metals with

ǫ < 0. Stefan A. Maier therefore proposed to redefine the energy density in such a way that

it accounts for the energy stored in the metal [67], for instance by (Re [ǫ] + 2ωIm [ǫ] /γ) |E|2,
which remains positive and real [69].

A more general objection to the Purcell factor based on mode volume and quality factor was

raised by A. Femius Koenderink [68]. Equation (3.35) can be derived from the more general

formulation using the LDOS when we make two assumptions: firstly, that normal modes can

be defined and that the LDOS can be expressed as the sum over all normal modes. Secondly,

that this sum is dominated by a single term.

For metallic particles, however, both these assumptions do, generally, not hold and the

derivation of Eq. (3.35) therefore breaks down. Firstly, dispersive absorbing media usually do

not allow for the definition of a set of normal modes. Secondly, even if this expansion can be

performed, it is not dominated by a single term, although in many cases the resonance itself

results from one term only.

6Not to be confused with the longitudinal damping Γ in the previous section.
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Whenever we talk about the Purcell effect in this work, we therefore refer to the enhancement

of the LDOS and relate changes in decay rate directly to a change in the LDOS.

Förster Transfer

While the Purcell effect deals with the interaction of an emitter and a cavitiy, Förster resonant

energy transfer (FRET) describes the non-radiative transfer of energy from one emitter (donor)

to another (acceptor) via non-radiative dipole-dipole interaction [70].

Suppose a donor in its excited state D∗ can be described as a radiating dipole. If we now put an

acceptor A in close proximity, the electric field of the donor dipole acts on the electrons of the

acceptor and induces a dipole A∗. We can write this as a reaction equation

A+D∗ → A∗ +D

that clearly shows the energy transfer from the excited donor to the acceptor.

This energy transfer is mediated by the dipole-dipole interaction without any real photons being

transferred from donor to acceptor. Thus the transfer rate ΓT is proportional to the square of

the dipole-dipole interaction potential Vdipole−dipole and consequently proportional to the sixth

power of the dipole-dipole separation R:

ΓT ∝ |Vdipole−dipole|2 ∝
1

R6
. (3.37)

The overall efficiency of energy transfer ET can now be expressed as a relation between the

transfer rate ΓT and the relaxation rate Γ0 of the acceptor without the donor:

ET =
ΓT

ΓT + Γ0

= 1− Φ0

ΦF

. (3.38)

Here, we have also rearranged the expression to depend solely on the quantum yields Φ0 and

ΦF of the acceptor on its own and in the presence of the donor, respectively.

Generally speaking, the Förster transfer is most efficient if two conditions are met [71]: The

separation between donor and acceptor should be as small as possible (less than 10 nm)

because the dipole interaction is governed by the near fields. Furthermore, there must be

sufficient overlap between the emission spectrum of the donor and the absorption spectrum

of the acceptor, otherwise energy transfer is not possible at all.
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Chapter 4

Experimental and Numerical Methods

Before we turn to the theoretical discussion and the experimental investigation of plasmonic

metamaterials coupled to gain media, we first want to introduce the methods we employ for

these purposes. We start with the fabrication of our samples. Within the scope of this thesis

we concentrate on epitaxially grown single semiconductor quantum wells as gain medium,

which we incorporate into the metamaterial system by using them as substrate in our standard

fabrication procedure based on electron-beam lithography.

Following this section on fabrication, we present the two measurement setups that have

been assembled and are used for characterising our gain materials and for investigating the

coupling between plasmonic metamaterials and quantum wells. Here, we also shortly recap the

measurement principle of pump-probe spectroscopy, which is the central method we use for

studying the coupling behaviour.

Finally, we give a brief introduction to the discontinuous Galerkin time-domain method. This

numerical tool is employed to access the near-field distributions created by the plasmonic

resonances of the metamaterial, from which we seek to understand details in the coupling

mechanism between the metamaterial and the gain substrate.

4.1 Sample Fabrication

Our single quantum wells are specially designed for this thesis and grown using molecular-

beam epitaxy by Profs. Galina Khitrova and Hyatt M. Gibbs at the College of Optical Sciences

at the University of Arizona. On top of these wafers we fabricate arrays of silver split-ring

resonators by a standard electron-beam-lithography process with subsequent metal evaporation

and a final lift-off procedure. The principles of both these fabrication steps towards our final

samples are described below, together with the special parameters used to arrive at the specific

samples shown in this thesis.

4.1.1 Molecular-Beam Epitaxy

Molecular-beam epitaxy (MBE) is a very precise technique for growing thin layers or layered

(semiconductor) nanostructures. The molecular (or atomic) beams needed for this method are

usually produced in Knudsen cells by thermal evaporation of ultrapure material sources. These

beams are introduced into an ultra-high vacuum chamber where they react on the surface of a

37
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Figure 4.1: (a) TEM image of the HSG 37 InGaAs-quantum well and (b) high-resolution TEM image of the same

wafer, indicating the low surface roughness and the smooth layer boundaries. The numbers on the right-hand side

of panel (a) give the measured thicknesses of the individual layers.

heated crystalline substrate to form monolayers of the intended material, e.g. doped, ternary or

quaternary semiconductors. This allows for controlled growth concerning both the composition

and the thickness of the layers.

Such precision is, however, subject to certain preconditions: Achieving pure and clean epilayers

is only possible if the concentration of contaminants, mainly residual gases, is as low as

possible. To assure this the components of an MBE system are built of materials that show

little outgassing and can withstand high temperatures. The latter is neccessary because regular

bakeouts are important for the system to remain clean and remove any residual gases from the

chamber. Aditionally, we minimise interaction of leftover gas molecules with the substrate by

assuring that their mean free path is larger than the complete size of the MBE chamber by

establishing ultra-high vacuum conditions.

Having cleared the chamber of all contaminants we still need a means of control to adjust

the thickness and the crystal stoichiometry in the intended layer. By opening and closing

mechanical shutters to switch the molecular beams on and off we can modulate the relative

growth times and thus control the layer thickness to monolayer precision. At the same time

this sets the relative amounts of materials in one layer. Still, precise handling of the shutters is

only possible if we can monitor the layer thickness and its stoichiometry during growth. Owing

to the already established ultra-high vacuum we can use electronic or ionic methods like mass

spectroscopy, reflection high-energy electron diffraction or Auger electron spectroscopy [59].

The quantum-well wafer we use for most of this thesis (HSG 37) was grown in a Riber 32PMBE

machine. The semi-insulating Fe-doped InP substrate was first heated to 175◦C for degassing

overnight. Afterwards we heated it to 490◦C under an As4 flux of 1.4 × 10−5Torr and then

performed the epitaxy at the same As4 flux but at slightly lower temperature (480−485◦C). The
layer structure of InAlAs and InGaAs was grown lattice matched to the InP substrate without

interruptions to the following target thicknesses (from substrate to top): 400 nm In0.52Al0.48As

as buffer and lower barrier 12.7 nm In0.53Ga0.47As for the QW layer, 2.5 nm In0.52Al0.48As upper

barrier followed by a 2.3 nm thick In0.53Ga0.47As cap layer to prevent oxidation.
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Figure 4.1 shows transmission electron microscope (TEM) images of the resulting quantum-

well wafer HSG 37. From these we can measure the layers to be slightly thicker than intended;

the In0.53Ga0.47As layers are by about 8.7% larger, the In0.52Al0.48As layers by 15%. We can also

see the smooth surface, which was measured by atomic-force microscopy to be 0.37 nm root

mean square in the centre of the 51-mm diameter wafer, and also the smooth interfaces between

the individual layers.

4.1.2 Electron-Beam Lithography

For the fabrication of planar nanostructures electron-beam lithography (EBL) is the method of

choice because it combines high resolution with high flexibility regarding structure design as

long as the structures are essentially two-dimensional. Its superior resolution in comparison to

optical lithography results from the much shorter wavelength of the electrons.

To perform electron-beam lithography we need a scanning-electron microscope (SEM) that is

equipped with a computer-controlled beam-deflection unit and a beam blanker: in the SEM a

beam of electrons from a cathode is accelerated - for lithographic purposes typically between

10 to 100 kV - and focused onto the image plane.

If we put a resist-covered substrate in the image plane the focused electron beam will expose

the resist locally. Finally, the deflection unit and the blanker allow for moving the electron beam

along a pre-defined path where the resist will be exposed. We can therefore use the lithography

SEM to write almost arbitrary patterns with a resolution of a few nanometers. This limit of EBL

resolution is, however, not the spot size we can focus the electron beam to but is rather given by

the resist.

After the writing process we develop the sample, making use of the fact that the solubilities

of the exposed and the unexposed areas of the resist in a specific developer are significantly

different. For a positive-tone photoresist, like the one used for this thesis, the exposed parts are

highly soluble whereas the unexposed parts are not. In this case, development leaves a mask of

the written pattern which can be used for postprocessing like metallisation.

The nanostructures used for our experiments are all fabricated by the same procedure of

electron-beam lithography and subsequent metallisation which is described in detail below.

Figure 4.2 illustrates the individual steps of sample fabrication.

Starting from a clean 5mm × 5mm piece of the quantum-well wafer we spin-coat an

approximately 200-nm thick layer of the positive-tone photoresist poly-methyl-metacrylate

(PMMA1) and afterwards remove the remaining solvent by heating the sample to 165◦C for at

least 30 minutes.

Into this resist layer we write the patterns of our intended nanostructure arrays using a Raith

eLine2 lithography SEM. For the EBL we apply an acceleration voltage of 30 kV together with

a basic area dose of 180 µC/cm2 to write the nanostructures. In order to modify the geometric
features of the structures to a certain degree, the actually deposited dose is adjusted to vary
from this basic value by up to 25% for every array.
The electron beam has cracked the polymer chains of the PMMA where the resist was exposed

1PMMA 950k A4 by MicroChem. Corp., Newton (USA)
2Raith GmbH, Dortmund (Germany)
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Figure 4.2: Fabrication of SRR arrays: (a) The quantum-well wafer is used as a substrate which is (b) spin-
coated with PMMA-resist. (c) SRR arrays are written by electron-beam lithography and (d) developed resulting
in a PMMA mask. (e) Onto this we evaporate silver and (f) perform an acetone lift-off leaving behind the silver
nanostructures on the wafer.

Figure 4.3: Electron micrograph of a typical silver split-ring-resonator array on a quantum-well wafer.

and we develop the sample in a 1:3 mixture of methyl-isobutyl ketone and isopropanole for 8 s
and, additionally, for 20 s in pure isopropanole. This leaves a negative PMMA structure of our
sample design, which we can use for metallisation.
Under vacuum conditions (pressures below 2 × 10−6mbar) we apply ∼ 30 nm of silver onto
the sample by electron-beam evaporation. Finally, we perform a lift-off in hot (65◦C) acetone
to remove excess metal and obtain a sample with arrays of silver nanostructures on top of the
quantum-well wafer. An example of the resulting metal structures is shown in Fig. 4.3.

To adjust the separation of the quantum well from the surface for the samples discussed in
section 7 we completely cover the piece of wafer with an additional layer of magnesium flouride
before it is coated with resist. Like the metallisation, this is done by electron-beam evaporation
where the thickness of the layers can easily be varied by only a few nanometers.
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Figure 4.4: Diagram of the low-temperature photoluminescence setup. Note, that many components are only
present in the setup because the same laser system is used for pump-probe spectroscopy as well.

4.2 Measurements

In this thesis we use standard linear spectroscopy, more precisely a fourier-transform
spectrometer3, only to pre-characterise our samples, which is not explicitly described here.
To investigate the coupling of a plasmonic metamaterial with the gain of a quantum-well we
employ measurement techniques where the active material is pumped and we then detect its
emission properties. For all experiments we cool the samples to less than 10K to minimise
thermal effects and to provide maximum gain from the quantum wells.

4.2.1 Photoluminescence Spectroscopy

Photoluminescence (PL) is the spontaneous emission from an active material after excitation
with an optical source (compare section 3.3.1). In our measurement setup (see Fig. 4.4) this
source is a mode-locked titanium:sapphire oscillator4 with a repetition rate of 81MHz and a
pulse length of 150 fs; its output wavelength is set to 810 nm. In the standard configuration we
only use a maximum of 200mW of the original 2.1W average output power because we derive
our pump beam from the backreflection from the optical parametric oscillator (OPO; we do this
for practical reasons because the same laser system is also used for pump-probe spectroscopy
(see section 4.2.2)).
To continuously adjust the pump power for the PL measurements we use a combination of a
half-wave plate and a linear polariser. We also reduce the diameter of the laser beam5 with a
system of two lenses (FL1 and FL2) whose focal lengths are f = 150mm and f = 50mm,

3Equinox 55 by Bruker Optics GmbH, Ettlingen (Germany)
4Tsunami by Spectra-Physics GmbH, Darmstadt (Germany)
5This is not essential for the PL measurements but for pump-probe spectroscopy (see 4.2.2) for which the same

laser system and components are used.
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respectively. The pump beam is then focused onto the sample by a 50-mm lens (L1) resulting
in a pump spot of ∼ 20 µm diameter. The sample itself is kept in a helium-flow cryostat6 (C)
and cooled to Tsample < 10K.
We collect the photoluminescence in forward direction with a second identical 50-mm lens
(L2) and eventually send it into a spectrometer7 (mono) equipped with a 150-lines-per-cm
grating optimised for 1200 nm. A liquid-nitrogen-cooled InGaAs array8 (LN-D) is mounted on
the exit port of the spectrometer as a detector. We can thus take a complete spectrum over a
spectral range of roughly 200 nm in one run.
The setup is further equipped with an imaging arm to control the position of the pump spot on
the sample with the help of a PbS-CCD camera9 working in the near infrared.

Photoluminescence measurements offer a fast way to investigate active samples but for the
combined system of a metamaterial on a quantum film the results proved to be uninstructive.
We have therefore discontinued the use of PL spectroscopy for this purpose and have limited the
approach to the characterisation of the bare quantum-well wafers and their emission properties.

4.2.2 Pump-Probe Spectroscopy

Our discussion of the two-level system (section 3.3) has already shown that the optical
properties of such systems depend on their inversion state described by the inversion factor
f2 − f1 or simply by the occupation factor f2 of the upper state. In a pump-probe experiment
we can directly measure the resulting change in transmittance or reflectance - depending on the
experimental setup:
We hit a sample with a pump beam whose energy suffices to lift electrons to an excited state
leading to a population of the upper state (f2 > 0) resulting in altered optical properties. If
then a second beam (the probe) hits the excited sample a different proportion of the light is
transmitted than for the unpumped case. By employing a lock-in technique we can directly
measure the often relatively small change ∆T of transmittance induced by the pump.
If we now delay the arrival of the probe beam by a time interval∆t compared to the pump beam
we allow the charge carriers to relax back to the ground state in the meantime. Consequently,
we detect less change in transmittance because the system is in a less strongly inverted state.
By continuously varying the time delay∆t we can thus monitor the relaxation behaviour of the
charge carriers involved.
For negative time delays, when the probe hits the sample before the pump, we expect no pump-
probe signal because all electrons are still in their ground state. In practice, however, we always
see a background signal stemming from photoluminescence which occurs independently from
the probe.

The centre piece of our pump-probe setup (Fig. 4.5) is an optical parametric oscillator10 (OPO)
from which we derive both the pump and the probe beam. We use the backreflection off the
OPO crystal to pump our samples; the crystal reflects approximately 200mW average power of

6CryoVac, Troisdorf (Germany)
7HR 460 by Jobin Yvon GmbH, Grasbrunn (Germany)
8OMA V by Roper Scientific GmbH, Trenton (USA)
9IR Vidikon by Hamamatsu, Hersching (Germany)

10Opal by Spectra-Physics GmbH, Darmstadt (Germany)
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Figure 4.5: Diagram of the pump-probe setup that was assembled and used for this thesis. The 810 nm-pump beam
is derived from the ti:sapphire backreflection off the OPO crystal, the probe beam is the OPO’s signal and can be
tuned between roughly 1.4 µm and 1.6 µm.

the pump laser which is a mode-locked titanium:sapphire oscillator11 with a repetition rate of
81MHz at a centre wavelength of 810 nm with a pulse duration of 150 fs and a beam diameter
of 2mm. If necessary, the pump beam power can be freely attenuated with a combination of a
half-wave plate (λ/2) and a linear polariser (Pol). In order to ensure a sufficiently large pump
spot on the sample the pump beam passes through two lenses (FL1 and FL2) with focal lengths
of f = 150mm and f = 50mm, respectively, by which the beam diameter is reduced. It then
hits a retro reflector (RM) mounted on a motorised delay line (DS) with a travel range of 4 cm
before it is combined with the probe beam at the pick-up mirror (PM) which reflects the pump
wavelength but allows the probe to pass through.
The signal output of the OPO, tunable between 1.4 µm and 1.6 µm, serves as the probe in our
setup. As continuous tuning of the probe power is not necessary we attenuate it to the desired
value of ∼ 70 µW with a set of neutral-density filters. The probe beam passes through a
telescope (SL1 and SL2) consisting of an f = 25mm lens and an f = 100mm lens, by which
the beam is expanded before it reaches the pick-up mirror (PM) where it meets the pump beam.
The probe polarisation can be turned with a half-wave plate (λ/2) inserted into the beam if
necessary.

The two arms of the setup have to be adjusted in such a way that both pump and probe have
travelled the same distance from the OPO crystal when they reach the pick-up mirror and
the delay stage is set to its ∆t = 0 position. From this point on they are guided colinearly
and focused with an f = 50mm-lens onto the sample which is cooled to Tsample < 10K

11Tsunami by Spectra-Physics GmbH, Darmstadt (Germany)
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in a helium-flow cryostat12 (C). The spot sizes on the sample are 20 µm for the pump and
10 µm for the probe spot. This ratio is necessary to ensure the probed part of the sample to be
homogeneously pumped.
We collect the transmitted light with an f = 50mm-lens (L2), filter the remaining pump
light (most of it is already absorbed by the InP substrate) and image (L3, f = 100mm) the
remaining probe onto a germanium diode (D). The transmittance change ∆T resulting from
the pump is directly measured with a lock-in technique when the pump beam is chopped
(i.e. blocked and unblocked) at 400Hz frequency. In much the same way we can record the
reference, i.e. the transmittance of the probe without the pump, by blocking the pump beam,
modulating the probe beam and measuring the lock-in signal thereof.
Finally, the temporal information results from stepping the motorised delay line and recording
the pump-probe signal ∆T with respect to its position. We usually record 100 steps over a
travel range of 3 cm in a double-pass geometry, resulting in a time-delay window of 200 ps and
a temporal resolution of 2 ps.

In order to ensure spatial overlap of the two beams we can use an alignment arm (dashed beam
path in Fig. 4.5) equipped with the same set of lenses as L1 and L2 and a 25 µm pinhole in the
focal plane through which both beams have to be focused. We also use this arm to check the
alignment of the delay line by comparing the signal transmitted through the pinhole over the
whole travel range of the stage. During measurements we monitor the position of both beams
on the sample with a PbS-CCD camera13 (cam).

4.3 Numerical Calculations

To obtain a theoretical understanding of the coupling mechanism between metamaterial and
quantum well we need information about the three-dimensional field distributions around the
metal nanostructures, which are not accessible from our experiments. We therefore rely on
numerical simulations of the field distributions. These calculations are performed by Michael
König in the group of Prof. Kurt Busch at Karlsruhe Institute of Technology and are based on
the discontinuous Galerkin time-domain method.
We give a brief introduction to this method below. In our reasoning we follow a related review
by Kurt Busch et al. [72] and refer to this article and the references therein for a more detailled
description of the method.

4.3.1 Discontinuous Galerkin Time-Domain Method

To numerically solve nanophotonic problems we can usually stick to a classical description of
the electromagnetic fields given by Maxwell’s equations. Numerous methods exist for this task
but two of them are most notable because they are most flexible: these are the finite difference
time-domain method (FDTD) and the finite element method (FEM).
The former is a fast time-domain approach, which allows for calculating a whole spectrum in
one simulation by exciting the system with a short - thus spectrally broad - pulse instead of a

12CryoVac, Troisdorf (Germany)
13IR Vidikon 2741 by Hamamatsu, Hersching (Germany)
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plane wave. The speed of FDTD, however, is the result of a rather simple stepping algorithm
that relies on the rigid, rectangular Yee grid. This turns spatial discretisation into a problem if
objects are not parallel to the grid axes and can lead to slow convergence and staircasing effects
which are especially relevant for metallic nanostructures.
Finite element methods, on the other hand, allow efficient discretisation of almost arbitrary
geometries by a flexible, unstructured mesh. The electromagnetic field is formulated for each
individual element and every element is in turn coupled to its neighbours, leading to a sparse
system of linear equations, which is then solved. However, FEM is a frequency-based method.
We therefore need to solve this system of equations for a series of frequencies if we want
to obtain a spectrum that can be compared with measurements. It is thus often slower and
computationally more costly than a comparable FDTD calculation.

The discontinuous Galerkin time-domain method (DGTD) essentially combines the advantages
of both approaches resulting in a versatile and efficient simulation technique for nanophotonic
problems. Like in FEM we divide the computational domain into a set of elements that can be
of arbitrary shape but for three-dimensional calculations are often chosen to be tetrahedral. On
each of these elements we expand the electromagnetic fields in terms of a set of basis functions.
In case of DG(TD) these basis functions are restricted to one specific element and strictly zero
on all others - hence the discontinuous in DGTD. This allows for an individual treatment of
the linear algebra on each element and therefore reduces computational cost. In the end, we
have to combine all elements by reintroducing coupling between neighbouring elements again.
We achieve this by the concept of numerical flux and by modifying the physical equations on
each element to incorporate the continuity conditions from Maxwell’s equations. Note, that the
necessary modifications depend on the fields on neighbouring elements.
We start from Maxwell’s curl equations

ǫ(r) · ∂tE(r, t) = ∇×H(r, t)
µ(r) · ∂tH(r, t) = −∇× E(r, t)

(4.1)

where we have absorbed ǫ0 and µ0 into the fields to have dimensionless units. Employing the
discontinuous Galerkin procedure to discretise the electromagnetic fields in space, we find a
system of coupled, first-order ordinary differential equations for the expansion coefficients of
the electromagnetic field:

∂t

(

Ẽ(t)

H̃(t)

)

= H ·
(

Ẽ(t)

H̃(t)

)

+

(

Ẽ
source

(t)

H̃
source

(t)

)

, (4.2)

where H is the explicitly known system operator acting on the current expansion coefficients
and where source terms have been included.
Having accomplished the spatial discretisation of our problem, we need to find a time stepping
scheme for the time-domain. For DGTD the algorithm of choice are low-storage Runge-Kutta
methods because they are comparable in accuracy to the spatial discretisation and because they
are storage-efficient. To obtain spectral information from DGTD calculations, we again do not
repeat the whole procedure for a set of plane waves at discrete frequencies but rather use an
ultra-short excitation pulse and thus draw a complete spectrum from a single run.

In conclusion, the discontinuous Galerkin time-domain method is well-suited to problems in
nanophotonics and is therefore employed to determine the plasmonic near-field distribution
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of split-ring resonator arrays. Using DGTD we can perform these calculations of the real
geometry of the structures, including the rounded edges, and do not run into problems with
the discretisation of the high-index substrates. Still, the calculations can be completed in a
reasonable amount of time.



Chapter 5

Toy Model for a Plasmonic Resonance

Coupled to a Two-Level System

A coupled system never behaves like the simple sum of its parts. This is impressively
demonstrated by the beating of two coupled pendula. Depending on the initial conditions, they
each change their amplitude and oscillation frequency in such a way that a naive observer of
only one pendulum would likely not perceive it as a harmonic oscillator.
When dealing with coupled systems it is therefore always desirable to have a theoretical model
of the system which helps to predict and understand its often complicated and unexpected
behaviour. Such a model can also give insight into the important parameters driving the system
to one response or another.
Many theoretical studies of the coupled metamaterial-with-gain system rely on numerical
calculations [13, 20, 23] and use some model (e.g. a four-level system) for the gain medium
involved. Apart from the high computational cost of this time-consuming approach, it also
calls for an exact implementation of the plasmonic structure. Although such a treatment can
help to understand particular experiments or test their feasibility in advance, we can hardly
draw general conclusions from it.
We therefore propose a simple but general toy model of a plasmonic resonance coupled to
the gain resonance of a two-level system, which is the appropriate equivalent to the coupled-
oscillator model. The key difference, however, is the fact that our toy model deals with two
different kinds of resonances: a bosonic plasmon resonance and a fermionic gain resonance of
an inverted two-level system [49].

The present chapter gives an overview of this toy model and over the main conclusions we can
draw from it. We start with the definition of the model, leading to a set of equations resembling
the optical Bloch equations (compare 3.3.2). From these we derive linear spectra for fixed
inversion of the two-level system and preview what kind of response we expect from the pump-
probe measurements presented in the following chapters. Finally, we review the limits of this
simple model, in the course of which we briefly investigate in how far this model is capable of
reproducing lasing (or rather spasing) predicted for a plasmon-and-gain system [20, 23].

47
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Figure 5.1: Illustration of the toy model: a plasmonic resonance (SRR array on the left) with resonance frequency
Ωpl, damping frequency γpl, dipole matrix element dpl and dipole densityNpl is coupled to a two-level system (on
the right) with resonance frequency Ω2LS, damping frequency γ2LS, dipole matrix element d2LS and dipole density
N2LS with an inversion factor f . The coupling is described by a phenomenological parameter L.

5.1 Definition

To arrive at a general toy model for a particle plasmon coupled to gain we first have to simplify
the description of both constituents based on their resonant behaviour:
The plasmonic resonance, which is a Lorentzian, is characterised by its lineshape via the centre
frequency Ωpl and the spectral width correlated with the damping frequency γpl and a dipole
matrix element dpl of the oscillation. Furthermore, we can describe the bosonic system by
its transition amplitude ppl. Knowing the volume density of plasmonic resonators Npl in our
sample, we can calculate the macroscopic polarisation Ppl as the product of the latter three
quantities: Ppl = Npldplppl + c.c., where c.c. denotes the complex conjugate of the first term.
The two-level system (2LS) gain resonance is described by a fermionic mode with centre
frequency Ω2LS and transverse damping frequency γ2LS. The dipole matrix element d2LS
and the transition amplitude p2LS characterise the transition, and the occupation factor f
of the upper level quantifies the state of inversion of the system. We further introduce the
longitudinal damping Γ2LS which determines the relaxation of the two-level inversion. Again,
the macroscopic polarisation P2LS = N2LSd2LSp2LS+c.c. can be calculated with the help of the
volume density of oscillators N2LS in the gain material.

As sketched in figure 5.1 the coupling between the plasmonic resonance and the gain resonance
is defined by a phenomenological parameter L. We model the coupling by the interaction of the
(evanescent) near fields, which modify the local electric field 1:
We first consider the local field of the two-level system. For the isolated system this is given by
the external electric field

E (t) = Ẽcos (ωt) =
Ẽ

2

(

e−iωt + c.c.
)

. (5.1)

To account for the influence of the plasmonic near-field we have to introduce an additional term
consisting of the (macroscopic) polarisation of the plasmon Ppl times the phenomenological

1For the sake of simplicity, we omit any vectorial properties of the electric field and all other quantities here.
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coupling parameter L
E → E + LPpl. (5.2)

The same reasoning leads to an equivalent alteration of the local field for the plasmon by the
near field of the two-level system

E → E + LP2LS. (5.3)

In section 3.3.2 we have already derived the optical Bloch equations (3.29) and (3.30) as the
equations of motion for a fermionic two-level system. We can use the same formal result for
the bosonic plasmon mode if we remove the Fermi blocking factor (1− 2f); for this case the
second Bloch equation is not relevant because the inversion of the bosonic system is zero. This
leads to the following three equations

ṗ2LS + (iΩ2LS + γ2LS) p2LS = i~−1d2LSE (1− 2f) (5.4)

ṗpl + (iΩpl + γpl) ppl = i~−1dplE (5.5)

ḟ + Γ2LSf = i~−1 (p∗2LSd2LSE − p2LSd
∗
2LSE

∗) . (5.6)

Within the toy model the electric fields need to be modified according to equations (5.2) and
(5.3) to account for the near-field coupling between the plasmon and the gain mode. We thus
arrive at the defining equations of the model:

ṗ2LS + (iΩ2LS + γ2LS) p2LS = i
[

~
−1d2LSE + V2LSppl

]

(1− 2f) (5.7)

ṗpl + (iΩpl + γpl) ppl = i
[

~
−1dplE + Vplp2LS

]

(5.8)

ḟ + Γ2LSf = i
[

p∗2LS
(

~
−1d2LSE + V2LSppl

)

− c.c.
]

. (5.9)

To simplify notation we have introduced the coupling frequencies

V2LS = ~
−1d2LSLNpldpl and Vpl = ~

−1dplLN2LSd2LS. (5.10)

Toy Model in the Rotating-Wave Approximation

For resonant experimental situations we can further simplify the above result using the well-
known rotating-wave approximation (RWA). Here, the fast oscillating non-resonant term is
neglected as it almost averages out to zero [58], justifying a harmonic ansatz for the electric
field

E(t) =
Ẽ

2

(

e−iωt + c.c.
)

(5.11)

and for the complex transition amplitudes

p2LS = p̃2LS · e−iωt and ppl = p̃pl · e−iωt. (5.12)

In this way we can rewrite the defining equations of the toy model as follows:

i (Ω2LS − ω) p̃2LS + γ2LSp̃2LS = i

[

~
−1d2LS

Ẽ

2
+ V2LSp̃pl

]

(1− 2f) (5.13)

i (Ωpl − ω) p̃pl + γplp̃pl = i

[

~
−1dpl

Ẽ

2
+ Vplp̃2LS

]

(5.14)

ḟ + Γ2LSf = i

[

p̃∗2LS

(

d2LS
Ẽ

2
+ V2LSp̃pl

)

− c.c.

]

. (5.15)
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5.2 Analytical Solution for Fixed Inversion

The pump-probe measurements we show in the following chapters present the special case of
a coherently driven system under transient conditions, which can be described by a fixed and
given population inversion f of the two-level system2.
We therefore limit our considerations to a constant inversion f and to situations where the RWA
is valid. In this case we can analytically solve equations (5.13) and (5.14). The transition
amplitudes then follow as

p̃2LS =

(1− 2f)

[

~
−1d2LS

Ẽ
2
+

~
−1V2LSdpl

Ẽ
2

(Ωpl−ω)−iγpl

]

(Ω2LS − ω)− iγ2LS − (1− 2f)
VplV2LS

(Ωpl−ω)−iγpl

(5.16)

for the two-level-gain resonance and

p̃pl =
~
−1dpl

Ẽ
2
+ Vplp̃2LS

(Ωpl − ω)− iγpl
(5.17)

for the plasmon resonance.

Although these are solutions for a special case they are well suited to illustrate some aspects of
the behaviour of a coupled plasmon-and-gain system. Both p̃2LS and p̃pl do not only depend on
the quantities describing either the two-level-system gain or the plasmon resonance but on a
mixture of both. It is therefore no longer appropriate to consider the two as separate resonances
but rather as one combined mode, unless the coupling factor L is strictly zero.
We further expect complicated spectra to be derived from equations (5.16) and (5.17), which -
in general - are not simply Lorentzian. A sure sign of this is the denominator of (5.16) which
leads to the general resonance in p̃2LS but has a resonance itself.

In the following we derive linear spectra from equations (5.16) and (5.17) and study the
influence that the parameters entering the toy model have on the spectra. We choose to do
this for three experimentally relevant parameters, namely the occupation factor f , the coupling
strength described by L and the spectral detuning between the two resonances.

5.2.1 Linear Spectra

If we want to extract linear transmittance spectra from the above transition amplitudes we first
need to calculate the macroscopic polarisations

P2LS = N2LSd2LSp2LS + c.c. Ppl = Npldplppl + c.c. (5.18)

from them. These translate into complex refractive indices for the two layers via equation
(2.2) and (2.3). Although we essentially deal with one coupled resonance, as we have stated

2At this point we must note that a strict two-level system cannot reach inversion factors greater than f = 0.5
for steady-state conditions. We resolve this restriction by imagining the gain medium to be pumped via additional
levels, which are not explicitly treated within the toy model.
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above, the toy model still assigns two separate refractive indices n2LS and npl to the two layers,
representing the gain layer influenced by the plasmon and the nanostructure layer influenced
by the gain medium.
We thus arrive at a multilayer system for which the transmittance can be extracted in several
ways: We can either follow an effective-medium approach described by Maxwell-Garnett
theory [73, 74] where the whole sample is described as one slab; or we can calculate the
transmittance spectrum from a transfer-matrix algorithm [26], retaining the layer structure of
our sample.

In the Maxwell-Garnett effective-medium approach we calculate a single polarisation P for the
complete slab by weighting the separate polarisations P2LS and Ppl with the relative thickness
of the respective layer:

P =
l2LS

l2LS + lpl
P2LS +

lpl
l2LS + lpl

Ppl, (5.19)

where the absolute thickness of the layers is given by l2LS and lpl. Employing equations (2.2)
and (2.3) we can calculate the effective refractive index n of this layer and then calculate the
amplitude transmission coefficient t of the slab with the help of the Airy formula [26]

t =
4n · eiδ/2

(n+ 1)2 − (n− 1)2 · eiδ
. (5.20)

Here, δ = 2nlω
c
denotes the phase delay caused by the transition through the slab. Knowing the

surrounding media of the effective slab, this value translates into the intensity transmittance T
and we can calculate effective transmittance spectra.

For the transfer-matrix approach we first calculate the two refractive indices n2LS and npl of
the two layers by way of equations (2.2) and (2.3) and insert these into the matrices Mpr(n)
describing the propagation through a homogeneous slab with refractive index n andMtr(n1, n2)
accounting for the transition from one layer with refractive index n1 to another with index n2.
The propagation and transition matrices are given by

Mpr(n) =

(

eiδ 0
0 eiδ

)

and Mtr(n1, n2) =

(

n1 + n2 n2 − n1

n2 − n1 n1 − n2

)

, (5.21)

where the phase delay is again δ = 2nlω
c
if l is the layer thickness.

We can calculate the complete matrix of the transmission through a layered stack by sequentially
multiplying the matrices for transition and propagation with the correct refractive indices for
the individual layers. The resulting matrix TM consists only of combinations of the amplitude
transmission coefficients tb, tf in forward and backward direction and the amplitude reflection
coefficient rb.

TM =
1

tb

(

tftb − rfrb rb
−rb 1

)

(5.22)

Therefore the matrix TM contains all necessary information we need to calculate linear
transmittance (or reflectance) spectra.

In figure 5.2 we present a comparison of the transmittance spectra calculated from the toy model
via the two approaches described above. We have chosen the parameters that enter the model
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Figure 5.2: Comparison of transmittance spectra calculated from the toy model with either a Maxwell-Garnett
effective-medium approach (upper row) or a transfer-matrix formalism (lower row): column (a) shows the spectra
for the plasmonic resonance alone, column (b) for the pure two-level system in its ground state, column (c) gives
the spectra for the coupled resonances for an unpumped gain medium, column (c) the same for a completely
inverted two-level system. Parameters are: Ω2LS = 2π × 200THz, γ2LS = 50THz, d2LS = 6.5 × 10−29 Cm,
N2LS = 2.1× 1024m−3; Ωpl = 2π× 200THz, γpl = 90THz, dpl = 4.2× 10−26 Cm, N2LS = 5.3× 1020m−3;
L = 8× 1010 Fm−1.

to be roughly comparable to the samples we present in the experimental section following
this chapter. The gain medium is described by Ω2LS = 2π × 200THz, γ2LS = 50THz,
d2LS = 6.5 × 10−29Cm, N2LS = 2.1 × 1024m−3; the parameters for the plasmonic resonance
are Ωpl = 2π × 200THz, γpl = 90THz, dpl = 4.2 × 10−26Cm, N2LS = 5.3 × 1020m−3;
finally, the phenomenological coupling parameter is chosen to be L = 8× 1010 Fm−1.
For these calculations we have limited the system under consideration to a two-layer geometry:
the plasmonic metamaterial of thickness lpl = 30 nm and the two-level gain medium with a
thickness l2LS = 15 nm. We have not introduced a substrate or any additional spacer layer
separating the metamaterial from the gain medium and we have set the background refractive
index to unity.
Figure 5.2 shows that under these conditions both the effective-medium approach and the
rigorous transfer-matrix approach lead to the same transmittance spectra. For more complicated
geometries, especially for a thick spacer between the metamaterial- and the gain layer, the
effective-medium approach can become obsolete and we have to resort to transfer-matrix
calculations. For the parameter study in the following section, however, we use the effective-
medium approach for the simple two-layer geometry described above.
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Here, we also see how different the optical properties, represented by the transmittance spectra,
of the coupled system can be compared to those of the two constituting resonances: For the
coupled case where the two-level system rests in its ground state (Fig. 5.2 c) we observe the
typical mode-splitting for strongly coupled resonances. However, if the two-level system is
inverted (Fig. 5.2 d) the spectral lineshape changes significantly from the (split) Lorentzian we
find in cases a to c.
This is first evidence of how sensitively the coupled system reacts to a change in the model
parameters. We therefore study the influence of the coupling strength described by L and of the
spectral detuning between Ω2LS and Ωpl in the following section.

5.3 Influence of Toy-Model Parameters

Ten parameters enter into the definition of the toy model: each resonance is characterised by
four of them (Ω, γ, d and N ). We additionally need the occupation factor f to fully describe
the two-level system. Finally, to model the coupling between the two resonances we have
introduced the phenomenological local-field coupling parameter L.
Under experimental conditions most of these parameters are fixed by the materials of the
samples. For instance, the transition matrix element d2LS and the dipole density N2LS are
material parameters depending on the specific gain medium we choose for our samples. Other
parameters, however, can easily be varied in an experiment. Especially the plasmon resonance
frequency can be adjusted by geometrical tuning and we can also deliberately change the
coupling strength, e.g. by varying the distance between the metamaterial and the gain medium.
Of course, these parameters are fixed for one sample once we have chosen them for our
experiments. One parameter we can directly adjust in the measurement is the occupation factor
f which we can influence by changing the pump power we use.
This section is therefore dedicated to a theoretical investigation of how the transmittance spectra
change upon variation of f , L or Ωpl. Since from this parameter study we intend to develop a
feeling for our experiments (Chapters 6 and 7), which happen under transient conditions, we
can use the analytical solution for fixed inversion derived above.

5.3.1 Occupation Factor f

We start with the influence of the occupation factor f , which represents the pump intensity used
in the experiment. This factor has no direct effect on the plasmonic resonance, only on the 2LS
resonance and by this also on the coupled system. We thus want to compare the transmittance
spectra derived from the toy model for both the gain medium and for the hybrid sample if the
two-level system is inverted to different extents (Fig. 5.3) while we keep all other parameters
(apart from f ) the same as for Fig. 5.2.
From Fig. 5.3 we immediately see that the coupled system (red curves) is influenced far more
significantly by a change in the occupation factor f than the two-level system alone. The 2LS
spectrum changes from a slight dip in transmittance for f < 0.5 to a slight peak for f > 0.5.
The gain material is therefore absorbing if the 2LS is not inverted and becomes active, i.e.
amplifying, if the occupation of the upper level exceeds that of the lower level. The change in
transmittance itself is, of course, not very large because we have adjusted the 2LS parameters to
our experimental gain medium which shows an increase in transmittance of 2% upon pumping.
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Figure 5.3: Change in transmittance spectra upon variation of the occupation factor f . Blue curves correspond
to the bare two-level system, red curves are for the coupled system of gain medium and plasmonic resonance
(L = 8××1010 Fm−1).

For the coupled system, however, a change of the occupation factor generates qualitatively
different spectra: If the two-level system is in the ground state (f = 0) we clearly see the two
split modes expected for two sufficiently strongly coupled resonances. This splitting becomes
less and less pronounced if we increase the occupation factor until the coupled resonance is
indistinguishable from the uncoupled case (compare Fig. 5.2 a) at f = 0.5. For larger values of
f - we now deal with an inverted 2LS because more electrons occupy the upper than the lower
state - the resonance becomes both deeper and narrower, indicating a reduction of damping in
the coupled plasmon-2LS system compared to the plasmon alone. In the extreme case of a
completely inverted gain medium transmittance even becomes zero at the common resonance
frequency.
It is therefore desirable to invert the gain medium as much as possible in order to compensate
for plasmonic losses. In the following, we consequently compare a completely inverted two-
level system (f = 1) to an uninverted one (f = 0) and investigate how other experimentally
accessible parameters change the transmittance of our system.

5.3.2 Coupling Strength L

The second influential parameter we want to study is the coupling strength described by the
phenomenological parameter L. To this end we calculate transmittance spectra for different
values of L while leaving the other parameters fixed at Ω2LS = 2π × 200THz, γ2LS = 50THz,
d2LS = 6.5 × 10−29Cm, N2LS = 2.1 × 1024m−3, Ωpl = 2π × 200THz, γpl = 90THz,
dpl = 4.2 × 10−26Cm, N2LS = 5.3 × 1020m−3 and do this for an occupation factor of f = 0
(unpumped system) and f = 1 (completely inverted system), respectively. Figure 5.4 shows the
resulting spectra for a coupling parameter varying between L = 0 and L = 11× 1010 Fm−1.
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Figure 5.4: Change in transmittance spectra upon variation of the coupling parameter L. Dashed black curves
correspond to the unpumped case (f = 0), solid red curves are for a completely inverted two-level system (f = 1).

Let us first look at the passive case when the two-level system is in its ground state (f = 0,
dashed black curves in Fig. 5.4): Without coupling (L = 0) the transmittance spectrum
resembles the plasmon resonance. If we increase the coupling there is at first no visible change
but the resonance broadens slightly owing to mode-splitting, which is not very pronounced
yet. At L = 5 × 1010 Fm−1 the split modes become clearly visible; they are distributed
symmetrically about the common centre frequency of the plasmon and the gain resonance at
ω = 2π × 200THz. For even higher coupling parameters the split increases, i.e. the spectral
separation between the two modes becomes larger and larger. The depth of both transmittance
dips, however, remains roughly the same with a minimum value of Tmin = 0.4, regardless of
the coupling strength. This behaviour is typical for coupled modes and can be found in many
coupled systems.
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A more dramatic dependence on the coupling strength can be found for the coupled system
in case the two-level system is excited. To maximise this effect we consider a completely
inverted 2LS (f = 1, solid red curves in Fig. 5.4): Again, for no or low coupling the spectrum
is given by the resonance of the plasmonic metamaterial. If, however, we now increase the
coupling strength, we do not find a broadening and subsequent splitting of the spectrum but
rather the opposite. The transmittance dip narrows down to increasingly smaller linewidth and
becomes deeper and deeper with the minimum transmittance value reaching its lowest position
of Tmin = 0 for a coupling parameter of L = 8 × 1010 Fm−1. Note that this does not happen
absolutely symmetrically around the centre frequency as was the case for the mode-splitting
when f = 0; the spectra rather develop a certain asymmetry which is manifest in the kink on
the low-frequency side of the transmittance dip for L = 8× 1010 Fm−1.
For even higher coupling factors the system becomes unstable and shows a Fano-like
lineshape before the transmittance dip turns into a delta peak reaching values of T > 300 for
L = 10×1010 Fm−1. The latter can be interpreted as the onset of lasing or rather lasing spasing
[23]. However, yet higher coupling does not lead to an increase of this effect (see bottom right
panel in Fig. 5.4). This clearly shows how sensitive the plasmon-and-gain system with an
inverted gain medium reacts to changes in coupling. Obviously, not only the overall strength of
coupling can be important but also the exact value of the coupling parameter, especially for the
unstable lasing (spasing) case.

5.3.3 Spectral Detuning of Ω2LS and Ωpl

A second important parameter which is easily accessible in an experiment is the spectral
detuning ∆Ω of the two resonance frequencies Ω2LS and Ωpl. To develop a feeling for the
influence of the detuning on the transmittance of the coupled system, we choose a coupling
strength exhibiting a specific spectral feature (L = 8×1010 Fm−1), keep the resonance position
of the two-level system constant at Ω2LS = 2π × 200THz and vary the resonance frequency
Ωpl of the plasmonic metamaterial; again we examine the spectra for the umpumped (f = 0)
and the fully inverted (f = 1) case. This approach closely resembles the way we conduct the
experiments. The results of these calculations are shown in figure 5.5.

Again, the behaviour in the passive case is that of two classical coupled oscillators. We start
from the degenerate situation, i.e. ∆Ω = 0 (central panel in Fig. 5.5), where the resonance is
split into two modes, symmetrically with respect to the centre frequency Ωpl = Ω2LS.
If we now move to larger detunings ∆Ω - either to the blue or to the red - we find the original
plasmon resonance to re-emerge. The further Ωpl is removed from Ω2LS the more weight does
it gain; this becomes visible in the corresponding transmittance dip, which is much deeper
compared to the second dip in the spectrum; the latter meanwhile becomes more and more
shallow. We can identify the more pronounced of the two modes to belong to the plasmon
because this feature moves through the spectrum when we alter the plasmonic resonance
frequency and it is located at Ωpl for larger detunings.
The changes to the transmittance spectra owing to detuning of the two resonances with an
inverted two-level system are somewhat more complicated. In general, we can state that the
transmittance spectrum is the more similar to the f = 0 case the larger the detuning becomes
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Figure 5.5: Change in transmittance spectra upon variation of the plasmon resonance frequency Ωpl while the
centre frequency of the two-level system resonance remains fixed at Ω2LS = 2π × 200THz. Dashed black curves
correspond to the unpumped case (f = 0), solid red curves are for a completely inverted two-level system (f = 1).

(compare top left and bottom right panels in Fig. 5.5). Here too, the two individual resonances
are revealed when their centre frequencies differ; naturally, the two-level-system resonance
appears as a peak instead of a dip when the system is inverted. This peak, however, is more
pronounced for blueshifts of Ωpl than it is for redshifts.
One big difference to the unpumped situation is the way in which the plasmonic resonance
emerges: the narrow dip for the degenerate case (Fig. 5.5, central panel) does not immediately
split into a broad dip from the plasmon and a small peak from the two-level system. It rather
develops a more pronounced asymmetry in form of a broadening of the resonance to the side
of the spectrum the plasmonic resonance is shifted to. That is the dip "opens up" towards lower
frequencies if we redshift Ωpl or to higher frequencies for a blueshift. For even larger detunings
the spectrum is reshaped gradually towards the unpumped case while the steep feature at
Ω2LS is maintained for a certain range of ∆Ω, leading to non-Lorentzian lineshapes in the
transmittance spectra.

Overall, general predictions for a given experimental situation turn out to be difficult when
dealing with a coupled system consisting of a plasmonic metamaterial and a gain medium.
Especially for the pump-probe experiments presented in Chapters 6 and 7, where we do not deal
with transmittance spectra but rather with the difference between the pumped and unpumped
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system for one spectral point, it is crucial to know the parameters of a given sample.
For the degenerate case Ω2LS = Ωpl we expect the inversion of the gain medium to result in
a decrease of transmittance around the centre frequency and to an increase for frequencies
removed from it - provided the system is not yet in its unstable (lasing) state. For non-
degenerate situations, however, no such simple prediction can be made and we have to calculate
the difference of the spectra for an inverted and a passive two-level system.

5.4 Limits of the Toy Model

The mode-coupling model presented in this chapter is called toy model for a reason: it is an
extreme simplification of a system exhibiting complicated physics. We consequently do not
expect the model to cover all aspects of the real system in detail. In this section we aim to find
the boundaries within which we can use the toy model by exploring possible limitations.

One case where we expect such a simple model to cause problems is the extreme situation
when the coupled system becomes unstable and starts to lase (or lasing spase). We have,
however, seen in section 5.3 that the calculations for a fixed occupation factor of f = 1 do
already show the onset of lasing. Still, this is not sufficient evidence for the toy model being
able to describe lasing (spasing) as here especially the constant inversion factor is an improper
oversimplification.
In this case of net-gain, i.e. when the gain exceeds the loss, the probability of the upper level
population described by f will be reduced by stimulated emission. Eventually, a stady-state
emerges and the occupation is fixed to some value f < 1; in laser theory this phenomenon is
known as gain-pinning [64].
If we want to treat lasing dynamics with the toy model we therefore have to go back to the
defining equations (5.13) to (5.15) remaining in the rotating-wave approximation and adjust
them accordingly. We now eliminate all effects from external electric fields by setting E = 0
and introduce an additional pump rate Γpump = Γ0 (1− f) to account for the inversion of the
two-level system, which would otherwise not be possible. We also abbreviate the effective rate
of stimulated emission on the left-hand side of Eq. (5.15) with Γstim. Overall, this leads to a
rate equation describing the dynamics of the coupled system.

ḟ + Γ2LSf = i [p̃∗2LSV2LSp̃pl − c.c.] + Γpump = −Γstim + Γpump. (5.23)

If we now establish non-zero initial conditions from which lasing can start in some way and
solve this equation numerically we can monitor the switch-on behaviour of a lasing spaser
including the typical relaxation oscillations of a laser. Further details on this treatment can be
found in reference [49] and will not be discussed here because this work is not concerned with
the details of lasing spasing.
In conclusion, the special case of a lasing spaser can be described with the help of the toy
model and does not present severe problems.

The fact that we need to feed some non-zero initial conditions into the model is, however, a
first hint towards one of its constraints. We have to impose these initial conditions because the
model does not contain any spontaneous emission from which lasing could start. The model is
therefore incapable of describing any phenomena related to spontaneous emission. We cannot



5.4. Limits of the Toy Model 59

use it to analyse photoluminescence measurements and we cannot account for changes in the
emission rates owing to an enhancement of spontaneous emission, i.e. for the Purcell effect.

In the toy model both the plasmonic metamaterial and the two-level system are described by a
single resonance each, which are subsequently coupled via their near-field interaction. There is
no means of introducing coupling effects between the individual plasmonic particles or the set
of emitters that make up the gain medium.
Especially when the gain material is inhomogeneously distributed over the metamaterial in
the real sample a description where this spatial distribution is not averaged out might become
important. Here, modifications to the present toy model can become necessary in such a way
that we first couple an individual plasmonic particle resonance to a gain resonance and let a set
of these systems interact afterwards.

Finally, the toy model is based on near-field interactions but does not provide a possibility of
modelling the spatial distribution of these. For instance, we can only account for less overlap
of the evanescent fields of the metamaterial with the gain due to increasing spatial separation of
the two by lowering the phenomenological coupling parameter L. There is no method to adjust
it systematically, even if we know how the field decays.
Furthermore the near-field coupling parameter in the model does not explicitly account for
the fact that only a small percentage of the dipoles in the gain medium are reached by the
plasmonic near fields. This too can only be described by lowering L to a value averaging over
the emitters that are affected and the ones that are not.
In both cases we can only adjust the local-field parameter by fitting to experimental results and
not predict its value or its dependence on, for instance, separation a priori. Considering the
altogether ten parameters we need to determine, this procedure becomes somewhat questionable
if the other parameters cannot be fixed by different means (additional spectroscopic data,
literature values etc.). This turns the coupling parameter L into a difficult observable to draw
conclusions from.

On the whole, the toy model presented in this chapter is surprisingly well suited for a qualitative
description of a plasmonic metamaterial coupled to a gain medium - as we will see later in
comparison to our experimental data - especially considering the high degree of simplification
it is based on. Although this simplicity can be of advantage for understanding important aspects
of the system, we have to be aware of the limits of this model. However, it turns out to be
a convenient tool for predicting or checking experimental data qualitatively but the numerical
values of the model parameters can only be derived from a fit (with up to ten parameters for the
worst case) and should therefore not be taken too seriously.
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Chapter 6

Experimental Proof of Coupling between

Split-Ring Resonators and Quantum Wells

We are now set and ready to turn to the experimental investigation of a hybrid system consisting
of a plasmonic metamaterial and a gain medium. The specific system we consider in this
thesis is an array of silver split-ring resonators (SRR) on top of a single InGaAs-quantum well
(QW), which we study by means of low-temperature femtosecond pump-probe spectroscopy
as described in section 4.2.2.
In this first experimental section we focus on one sample (NA1) and present detailed
experimental evidence for the existence of substantial coupling between the metamaterial and
the quantum well. Our measurements show a significant difference both in the magnitude of
the pump-probe signals and in the dynamics of the system when we compare the bare quantum
well to the well with an array of SRRs on top. This claim is further supported by fitting the
spectroscopic data with the toy model introduced in Chapter 5 and by estimating the Purcell
factors derived from the dynamics with the help of numerically acquired field enhancements.

We start by giving the specific design of sample NA1 and by outlining the exact set of
measurements and control measurements we perform. Thereafter we choose a representative
set of measurements which we discuss in detail before we give an overview over the remaining
experimental data and show how all these can be consistently analysed with the help of the
toy model. The chapter closes with a theoretical approach to the description of the decay-rate
enhancement we observe in our measurements; here, we use near-field calculations to estimate
the corresponding Purcell factor for our experimental situation.

6.1 Outline of the Experiments

Although this section deals with only one sample, we need to present a considerable amount
of data to draw reliable conclusions from the experiments. This involves a set of control
experiments whose purpose we outline in this section. First, however, we present some details
on sample NA1, which is the one we investigate here.

61
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Figure 6.1: (a) TEM image of the quantum well HSG 37. (b) Low-temperature photoluminescence (PL)
measurements for increasing pump power P , taken on a part of NA1 without SRRs. (c) SEM image of a typical
SRR array (D) on NA1. (d) Room-Temperature transmittance spectra of the SRR arrays on NA1 for horizontally
incident polarisation; the grey curve marks the spectral position of the low-temperature PL for P = 200mW.

6.1.1 Sample Design

Sample NA1 is fabricated on a piece of the epitaxially grown wafer HSG 37 containing a
single In0.53Ga0.47As quantum well which is 13.8 nm thick and starts 5.3 nm below the surface
(Fig. 6.1 a). The barriers consist of In0.52Al0.48As and the whole sample is capped by a further
thin layer of In0.53Ga0.47As to prevent oxidation of the aluminium content. Further details on
the fabrication and composition of HSG 37 are given in section 4.1.1.
HSG 37 is designed to have its low-temperature (5 − 10K) gain to be centred around 1.5 µm.
The corresponding photoluminescence (PL) measurements - which are taken under identical
conditions as the pump-probe measurements - are presented in Fig. 6.1 b and show a PL
maximum around the desired wavelength and a linewidth for low excitation powers of about
25 nm, which further proves the quality of the quantum well. This spectral width significantly
broadens with increasing pump power, so we conclude that the pump power used for the
time-resolved measurements (200mW) suffices to saturate the inversion of the gain medium.

To produce arrays of silver SRRs which serve as the plasmonic metamaterial we perform a
standard electron-beam lithography procedure (section 4.1.2) with HSG 37 as substrate. On
one sample we fabricate a whole set of arrays where the SRRs are geometrically adjusted to
exhibit different spectral positions of their fundamental resonance. In this way we can examine
the spectral detuning between the gain resonance and the plasmonic resonance. On NA1 the
metal structures are 30 nm thick and their fundamental resonances vary between 1.20 µm and
1.80 µm; corresponding room-temperature transmittance spectra are given in Fig. 6.1 d.
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Figure 6.2: Sketch (not to scale) of the set of four experiments we perform on each field and for every wavelength.
(a) pump-probe measurement on the SRR field (red) and on the bare quantum well (blue) for horizontal probe
polarisation, where the fundamental mode is excited; (b) the same for vertical probe polarisation, for which the
fundamental mode cannot be excited.

6.1.2 Experimental Procedure

The pump-probe setup described in section 4.2.2 is used to obtain time-resolved spectroscopic
data on our samples, with which we investigate the coupling between SRRs and quantum wells.
We pump the samples at 810 nm with an average power of 200mW focused to a spot of 22 µm
full width at half maximum (FWHM). To ensure that a homogeneously pumped area of the
sample is measured, the probe spot has about half the diameter (10 µm FWHM); the average
probe power is set to 70 µW. Having verified that the measurements are not sensitive to pump
polarisation, we have chosen the polarisation of the pump beam to be horizontal (with respect
to the bottom arm of the SRRs) for all further experiments.
While we leave the pump conditions constant for all measurements, we change the wavelength
of the probe beam between 1.4 µm and 1.6 µm to obtain some spectral information. We can
also turn its polarisation to provide some control measurements, which are described in the
following paragraph.

For every probe wavelength and every SRR array we perform a set of four pump-probe
measurements which are illustrated in Fig. 6.2.
The most interesting experiment is the one where we expect to see coupling. This is the
case when the fundamental resonance of the split-ring resonators is excited, i.e. for probe
polarisation horizontal with respect to the SRR gap (Fig. 6.2 a). We take this measurement
on the SRR field (red box) and on a region of the sample close by where there are no metal
structures (blue box). Thereby we can directly compare the pump-probe signal of the bare
QW and of the coupled SRR-QW system and determine the changes from coupling to the
metamaterial.
The same pair of measurements on and off the SRR field is taken for vertical probe polarisation
(Fig. 6.2 b). For this configuration the fundamental mode, which is the one that has spectral
overlap with the gain resonance, cannot be excited. We can therefore determine if the effects
we observe in the experiment corresponding to the red box in Fig. 6.2 a are caused by resonant
coupling or purely by the presence of metal on top of the well.
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6.2 Time-Resolved Spectroscopy on Sample NA1

On sample NA1 we have performed time-resolved spectroscopic measurements on several fields
of SRRs with different resonance positions owing to variations in their geometrical design.
Here, we will not present all of them in detail but rather focus on two selected arrays: field D
which shows the strongest effects (λSRR = 1540 nm); field A, whose fundamental resonance
(λSRR = 1270 nm) has no spectral overlap with the QW gain resonance.
For the remaining arrays we condense the data into spectra for one particular time delay and
compare these with fits from the toy model (section 5). Finally, we return to the time-resolved
data and take a closer look at the decay-rate enhancement we find in our experiments.

6.2.1 Measurements for Selected SRR-Resonance Positions

Figure 6.3 shows time-resolved measurements for SRR array D whose fundamental resonance
at low-temperatures is centred around 1540 nm.
The blue curves depict the relative differential transmittance ∆T/T on the bare quantum well
close to field D. They are positive over the whole spectrum of probe wavelengths and reach
their maximum of about 2% around λprobe = 1480 nm. We find the pump-probe signal of the
quantum well to decay single-exponentially with a lifetime τQW = 670 ps for all wavelengths.
Both the spectral and the temporal behaviour of the quantum well show no dependence on the
polarisation of the probe beam.
This resembles the behaviour expected of quantum wells in a pump-probe experiment [75]
when pumped to saturation: The pump lifts electrons from their ground to an excited state so
that the the probability for absorption of the probe beam is reduced, leading to an increase
in transmittance. The relaxation of the excited electrons is governed by standard quantum
statistics and is therefore expected to be exponential.

For horizontal probe polarisation (column a) we find a distinct difference for the measurements
on the SRR arrays (red curves) compared to the control measurements on the bare quantum
well (blue curves):
Most notably, the majority of on-field signals for this configuration are negative, corresponding
to a lowering of the transmittance upon pumping. Only for probe wavelengths at the very edges
of our measurement window (λprobe = 1420 nm, λprobe = 1440 nm and λprobe = 1560 nm) do
we find positive ∆T/T values at all.
The magnitude of this (negative) differential transmittance changes with probe wavelength.
It reaches its maximum value of ∆T/T = −8% for a probe wavelength of 1480 nm,
corresponding to the spectral maximum position of the quantum-well-gain spectrum. For both
lower and higher wavelengths the magnitude of ∆T/T decreases down to less than ±1%.
Apart from the pure value of the signals we observe a significant change in the dynamics
of the combined SRR-QW system compared to that of the quantum well alone. Especially
for wavelengths between 1460 nm and 1520 nm a single-exponential decay is not suitable to
describe the dynamics of the on-field signals. When fitting the experimental data with a sum
of two exponentials we find two time constants that are both shorter (τ1 = 15 ps, τ2 = 180 ps)
than the lifetime of the quantum well. This decay rate enhancement will be discussed in detail
below (section 6.2.3).
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Figure 6.3: Time-resolved pump-probe measurements on field D (λSRR = 1540 nm). Red lines correspond
to measurements on the SRR array, blue ones to measurements on the bare quantum well. (a) Differential
transmittance over time delay for horizontal probe polarisation; (b) the same for vertical probe polarisation.
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Figure 6.4: The same as Fig. 6.3 for field A whose fundamental resonance is located around λSRR = 1270 nm,
thus representing an off-resonant situation of plasmon and gain resonance.

Throughout the accessible wavelength range the signals on the arrays for horizontal probe
polarisation are significantly different from those on the bare quantum well.

If, on the other hand, we look at the data for vertical probe polarisation (Fig. 6.3 b) we find the
measurement on the array (red curves) to be hardly distinguishable from the ones on the bare
well (blue curves):
The differential transmittance on the field is positive over the whole spectral range and its
magnitude varies on the same scale as the signal of the quantum well alone, i.e. roughly
between 1% and 2%. There is also no detectable change in the dynamics of the pump-probe
signals on the array for this polarisation. We still find a single-exponential decay with a lifetime
of τ = 670 ps, which is identical to the dynamics of the bare wafer.
We can therefore conclude that all effects found on the split-ring arrays for horizontal
polarisation can be attributed to a coupling of the fundamental resonance to the gain resonance
of the quantum well. A dominant influence of the metal in proximity to the semiconductor
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nanostructure can be ruled out on the basis of this control experiment for vertical polarisation.

We now compare the above observations to the measurements on the off-resonant field A
(λSRR = 1280 nm) presented in figure 6.4. Although the signals on field A for horizontal
polarisation also differ from the ones on the bare well the difference is not as dramatic as it is
for field D.
Here, we do not observe the differential transmittance to become negative but we find the
magnitude of ∆T/T on the arrays to be larger than on the quantum well alone. Over the whole
spectral range of our measurements the ratio between the maximum ∆T/T value on the array
and the maximum on the bare well is roughly constant with the on-field signal being about
three times as high. There is no significant dependence of this change on the probe wavelength.
The same holds true for the dynamics of the combined system. We find a single exponential
decay whose lifetime τ1 = 530 ps is not much different from the lifetime of the well alone.
Neither the single-exponential dynamics nor the lifetime show any significant variation with
the probe wavelength.

For vertical probe polarisation we again find no veritable difference between the pump-probe
data on the array and on the bare quantum well, neither in the magnitude nor in the dynamics
of the differential transmittance.

6.2.2 Summary and Comparison with Toy Model

In general, the pump-probe data of the other arrays measured on sample NA1 show the same
qualitative behaviour as the fields A and D described above, depending on the spectral position
of their fundamental resonance. To ease comparison we here condense data to a spectral
representation by taking the differential transmittance values at a fix time delay of ∆t = +5ps
and plotting them against the probe wavelength for horizontal probe polarisation (Fig. 6.5); the
full time-resolved data for all fields can be found in Appendix B.

We find the relative differential transmittance on the bare quantum well (blue dots) to not vary
much over the whole sample; it reaches its maximum of ∆T/T = 2% for a probe wavelength
of 1.46 µm and falls off to either side of the accessible spectral range.
Comparing the measurements on different fields with different resonance wavelengths we also
observe a shift in the spectral position of the maximum |∆T/T | value; if the resonance is
further in the blue this maximum is also shifted to the blue. For higher resonance wavelengths
the width of the differential transmittance spectrum also broadens compared to the cases for
lower resonance wavelengths. Together with this broadening the maximum value of |∆T/T |
decreases.
For resonant on-field measurements we generally find negative values of ∆T/T around the
resonance and values close to zero or even positive towards both lower and higher wavelengths.
How does this change the original line shape of the plasmonic resonance on the passive
substrate? The resonance occurs as a Lorentzian dip in the transmittance spectrum; a negative
value of∆T around the resonance therefore further deepens the resonance whereas the positive
values on the spectral edges push the lobes of the Lorentzian closer to unity. The overall
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Figure 6.5: Summary of the measurements on sample NA1 for horizontal probe polarisation: Dots represent
measured values for a fix time delay of ∆t = +5ps, dashed lines are guides to the eyes. Solid lines show the
corresponding toy-model fits for fields A to I. The colour code is the same as in the figures before: blue are data
for the bare QW, red for QW+SRR. Table 6.1 gives the resonance wavelengths and the coupling parameters L of
the individual fields.

result is a spectral narrowing of the resonance, which in turn corresponds to a reduction of
the damping frequency γ describing the Lorentzian (compare Chapter 2). We therefore find
evidence of a slight loss-compensation in our pump-probe data, the extent of which is further
discussed in 6.2.4.

Fields A and I represent off-resonant fields which have their fundamental resonance at λSRR =
1270 nm and λSRR = 1740 nm, respectively. Here, the ∆T/T values are generally positive, we
observe neither the change in sign of the signal nor the drastic change in magnitude we find for
resonant conditions.

We now want to compare these measurements with the predictions from our toy model (Chapter
5). To this end we need to generate differential transmittance data from the toy-model spectra.
We thus calculate the spectra for an array both for a passive two-level system (f = 0) and for
a completely inverted one (f = 1). To arrive at the relative differential transmittance we then
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field λSRR Ωpl L
A 1270 nm 2π × 241THz 1.8× 1010 F/m
B 1460 nm 2π × 205THz 1.7× 1010 F/m
C 1480 nm 2π × 203THz 1.8× 1010 F/m
D 1540 nm 2π × 195THz 2.1× 1010 F/m
E 1550 nm 2π × 193THz 1.8× 1010 F/m
F 1580 nm 2π × 190THz 2.1× 1010 F/m
G 1610 nm 2π × 187THz 2.2× 1010 F/m
H 1640 nm 2π × 183THz 2.1× 1010 F/m
I 1740 nm 2π × 175THz 0.1× 1010 F/m

Table 6.1: Resonance positions λSRR and Ωpl and local-field parameter L used for the toy-model calculations for
the different fields on sample NA1.

take the difference of the two values and normalise this to the passive system:
(

∆T

T

)

TM

=
T (f = 1)− T (f = 0)

T (f = 0)
. (6.1)

The resulting calculated differential-transmittance spectra are presented in figure 6.5 by the
solid lines; solid blue lines show the calculations without the SRRs, i.e. for the bare two-level
system, solid red lines show the calculations for the complete, coupled system.

For all these calculations we keep most of the ten model parameters constant and choose them to
fit our experimental conditions as well as possible. The quantum well is modelled by a two-level
system with

Ω2LS = 2π × 205THz, γ2LS = 50THz,
d2LS = 6.5× 10−29Cm, N2LS = 2.1× 1024m−3

(6.2)

and the fundamental split-ring mode with a plasmonic resonance described by

Ωpl depends on array γpl = 90THz,
dpl = 4.2× 10−26Cm, Npl = 5.3× 1020m−3.

(6.3)

The remaining local-field parameter L is left as a free fit parameter to adjust the calculations to
our measurements. The resulting values for L are given in table 6.1 for all nine arrays together
with the respective resonance frequencies Ωpl.

We see in Fig. 6.5 that the general agreement of the toy-model fits with the measured data
is excellent considering how very simplified the model is and how complex the experimental
behaviour turns out. The two most notable observations - that the signals are mainly negative in
the observed spectral range and that the maximum of |∆T/T | shifts with the central wavelength
of the plasmonic resonance - are reproduced in the calculations.
The toy-model fits can even be made consistently with most of the toy model parameters being
kept at the same values for all arrays. Even the only real free parameter L only varies by about
±10% from the average over the whole range of arrays. Note, that the off-resonant field I is
excluded from this rule because the fitting procedure for this field results in an ambiguity.
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Figure 6.6: (a) Temporal dynamics of field D for λprobe = 1480 nm; the black dots show the fits to the experimental
data, a single-exponential decay for the bare quantum well (blue curve) and a sum of two exponentials for
SRR+QW (red curve). (b) Dynamics of field F at λprobe = 1500 nm for different pump powers; the ratio of
pump to probe power is kept constant over all measurements.

In conclusion, we regard all this as evidence of substantial coupling between the split-ring-
resonator arrays and the single quantum well underneath, which we propose to be mediated by
the plasmonic near fields of the metamaterial. We therefore proceed with an investigation of
how the coupling effects vary when we alter the distance between the quantum well and the
split-ring resonators in Chapter 7.
Before we turn to this second step, however, we take a closer look at the decay-rate
enhancements we observed in the time-resolved measurements on sample NA1 and discuss
their origin.

6.2.3 Decay-Rate Enhancement

From the time-resolved data in Fig. 6.3 we have found a pronounced difference in the dynamics
of the measurements on the fields compared to those on the bare wafer. From these data we
find the signals on the bare quantum well to decay single-exponentially with a time constant of
τQW = 670 ps; the signal on array D cannot be fitted with a single exponential but a sum of two
exponential functions describes the decay in the measured time window rather well. From this
fit we extract two time constants τ1 = 15 ps and τ2 = 180 ps. These fits to the experimental
data are given by the black dots in figure 6.6 a. There are, basically, three explanations to the
more rapid decay times in the presence of the plasmonic nanostructures:

(i) Quenching due to the presence of metal.

(ii) The onset of lasing.

(iii) Enhancement of the spontaneous emission rate as described by the Purcell effect.

We can rule out explanation (i) from the control measurements we performed for vertical
probe polarisation: any effect that arises directly from the presence of metal in close proximity
to the gain medium should not depend on polarisation, and thus on the excitation of a
plasmonic resonance. Since we do not observe any decay-rate enhancements for vertical probe
polarisation this cannot be the cause of the more rapid decays.
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Figure 6.7: Intensity |E|2 enhancements calculated by DGTD for an SRR representing the ones of field D in
the central plane of the quantum well (z = −12.5 nm): (a) Enhancement of the in-plane components of E, (b)
intensity enhancements of all field components.

If the decay-rate enhancement marks the onset of lasing we expect the decay to be faster with
higher pump powers. Since we already use the maximum pump power we can derive from our
experimental setup (Ppump = 200mW) we can only check what happens for lower powers. In
this case we would expect the fast decay to slow down and resort back to the single-exponential
decay with τ ≈ τQW eventually.
We therefore repeat the measurements on field F for pump powers of 100mW, 50mW and
10mW and also reduce the original probe power of 70 µW so that the ratio of pump and probe
power is kept constant at 20000 : 7 (λprobe = 1500 nm). We can see from the results presented
in Fig. 6.6 b that the temporal dynamics of the pump-probe signals on the array do not change
significantly with the pump power. They especially do not follow our expectation that the fast
component vanish when we decrease the pump power.
From this we conclude that our system is not on the brink of lasing and that the decay-rate
enhancements must be explained otherwise.

We are thus left with the Purcell effect as the most probable cause of this observation. We
check this assumption in the following paragraph with the help of numerical calculations.
As we have stated in section 3.3.3 the Purcell effect leads to a decay-rate enhancement which
is correlated with an increase in the local density of states (LDOS). In the presence of a
resonant plasmonic particle we can in turn link the increased LDOS to the near-field-intensity
enhancement resulting from the plasmon resonance. As we have no direct experimental
access to the near-fields generated by the SRR metamaterial we derive this information from
numerical calculations via a discontinuous Galerkin time-domain (DGTD) method (compare
section 4.3) that is implemented by the group of Prof. Kurt Busch.
Michael König performed DGTD calculations for silver (ωpl = 1.37 × 10−16 s−1,
ωc = 0.84 × 10−14 s−1) SRRs (lx = 145 nm, ly = 125 nm, t = 35 nm, g = 61 nm,
b = 60 nm, edges are rounded with a radius of 12.5 nm. ) arranged in an array with a
grating constant a = 250 nm on a homogeneous substrate with a refractive index of n = 2.8
which is modelled by a half-space. He first determined the wavelength of the fundamental
resonance and then calculated the electric fields in the unit cell of the array for different cut
planes (z coordinate) of the SRR and the substrate. We can thus calculate the field or intensity
enhancement Î = I/I0 for one particular z plane by taking the ratio of the intensities (or fields)
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I = |E|2 with the SRR to the fields without, i.e. for the substrate alone, I0 = |E0|2.
Figure 6.7 shows the calculated intensity enhancements for a cut plane z = −12 nm
corresponding to the middle plane of the quantum well. In Fig. 6.7 a we present the
enhancement of the in-plane intensity, that is we only take into account the x- and y
components of the electric field, so the in-plane intensity becomes |Ex|2 + |Ey|2. Panel (b)
gives the enhancement of the complete intensity where the z component is not eliminated.
For the middle plane of the quantum well (z = −12.5 nm) and compare the in-plane with the
complete intensity enhancement because of the physics of a single quantum well (compare
section 3.2): In an infinite quantum well the ground state (n = 1) wave function has a
maximum at the centre of the well and therefore the probability of presence for an electron is
highest there. We thus consider the LDOS enhancement in this plane to be dominant for the
Purcell factors we find in our experiments. To better match the experimental conditions we
should average over the whole width of the quantum well, ideally weighting this average with
the electronic wave function. Since we only aim at an approximation to back our thesis of the
origin of rate enhancement we only consider the fields in the symmetry plane.
We know from the selection rules that the heavy-hole exciton in a quantum well cannot couple
to an electric field in z direction if excited with a plane wave where there is no strong field
gradient over the width of the quantum well. Therefore the in-plane intensity enhancement
(Fig. 6.7 a) would be relevant for an estimation of the Purcell factor. The near-fields of a
plasmonic nanostructure, however, cannot be described with plane waves; moreover, their
decay into the substrate happens on the same scale as the width of the quantum well (ẑ = 20 nm
where Iz = Iz=0/2, taken from the calculations). We thus do not expect the selection rule
stated above to hold true for this case and expect the quantum well to also couple to the z
component of the electric field.

In conclusion, the enhanced LDOS and with this the Purcell factor resulting from the presence
of the SRRs can be estimated from the complete intensity enhancement as it occurs in the
central plane of the quantum well. From Fig. 6.7 b we therefore approximate the maximum
Purcell factor to F ≈ 50. This is in good agreement with the experimental decay-rate
enhancement for the fast time component, where F = τQW/τ1 = 670 ps/15 ps = 44.6.
The plasmonic intensity enhancement presented in Fig. 6.7 is obviously not distributed
uniformly over the whole unit cell but rather exhibits certain hot spots, that is areas of
high enhancement factors, and large areas with much lower enhancement factors. This, we
presume, is the cause of the two different lifetimes we find in our experiments: because the
low-enhancement regions lead to a lower Purcell factor than the high-enhancement regions
the original lifetime τQW of the quantum well is influenced differently, resulting in a multi-
exponential decay instead of a single-exponential one.
There is, of course, no general reason why there should be exactly two different decay constants
and not an arbitrarily high number of them. However, this simplest of the more complex
decay dynamics fits our experimental data rather well (Fig. 6.6 a) and we see no reason to
complicate matters further since the scope of these calculations does not go beyond first-order
approximations, anyway.

Overall, we prove substantial coupling between a plasmonic metamaterial and a single quantum
well by time-resolved pump-probe measurements. We find a significant difference in sign
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Figure 6.8: Illustration of the extent of loss-compensation we have achieved for field D given by the red dot. The
dashed line marks the limiting condition of γ = V between the white triangle, for which no permissible solution
of equation (6.4) exists and the green triangle where such a solution can be found, thus losses can be compensated
completely.

and magnitude of the differential transmittance for the measurements on the resonant arrays
compared to all reference measurements. Furthermore, we observe a dramatic change in the
dynamics of the system in form of a double-exponential instead of a single-exponential decay
with much shorter lifetimes than for the quantum well alone. We attribute this decay-rate
enhancement to the Purcell effect, i.e. an enhanced LDOS due to the plasmonic near-field
enhancements.

6.2.4 Extent of Loss-Compensation

As the ultimate goal of coupling metamaterials to gain media is the compensation of Ohmic
losses in the metal structures we briefly want to examine in how far we succeed in doing so and
evaluate if, from our experimental data, we can consider such loss-compensation feasible.
From our pump-probe data we have already found qualitative evidence of some loss-
compensation but we now want to quantify this effect. We therefore first derive a measure
to judge the extent of loss-compensation in relation to a metamaterial in which losses are
completely compensated. For this reason we return to the toy model (Chapter 5) for the best-
case scenario when the two resonance frequencies Ωpl and Ω2LS are equal. For this degenerate
case the condition where the loss exactly compensates the gain is given by the occupation factor
f of the upper level

f =
1

2

(

1 +
γplγ2LS
VplV2LS

)

≡ 1

2

(

1 +
γ2

V 2

)

∈ [0, 1] (6.4)

where we have introduced the effective damping and the coupling frequencies γ and V (for a
detailed derivation of this equation see Appendix A). If the zero-loss condition - where the
gain equals the loss - can be fulfilled, equation (6.4) has a solution in the allowed interval [0, 1]
(green triangle in Fig. 6.8); if such a solution does not exist, the zero-loss criterion cannot be
met for the given set of toy model parameters (white triangle in Fig. 6.8).
For the toy model parameters from the fit to the experimental data (compare Fig. 6.5) of field D
on sample NA1 we can calculate the effective damping and coupling frequencies as

γ = 67THz and V = 18THz. (6.5)
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Figure 6.8 illustrates the extent of loss-compensation with respect to the limiting case of γ = V
(dashed line) for field D. With this sample we are still in the region where equation (6.4) has
no solution in the permitted interval and the zero-loss condition can therefore not be fulfilled.
It also shows how far away we are from completely compensating the losses: to arrive at the
γ = V line we would have to increase the coupling (L) by a factor of three to four or increase
the quantum-well gain (i.e. the dipole matrix element d2LS) by the same factor. Alternatively
we could also decrease the damping of either the SRRs or the QW or perform any possible
combination of these strategies.



Chapter 7

Influence of the SRR-QW Separation on

Coupling Strength

In the previous chapter we have thoroughly studied if observably strong coupling exists
between a plasmonic metamaterial - represented by an array of silver split-ring resonators -
and a gain medium, namely an InGaAs-single-quantum well. Having accumulated sufficient
evidence for the existence of coupling we now investigate the nature of this coupling in more
detail.
Both in the definition of the toy model (Chapter 5) and for the theoretical (section 6.2.3)
estimation of Purcell factors we have already assumed the coupling to be mediated by the
plasmonic near fields of the metamaterial. We therefore expect the strength of the coupling
to significantly depend on the spatial separation of the SRRs from the quantum well. This
distance can be adjusted experimentally to a certain degree by introducing an additional spacer
layer before we fabricate the metal structures on the quantum-well wafer.
In this way we can, of course, only achieve larger separations of the SRRs and the quantum
well, leading to weaker coupling between them. We therefore expect all the effects presented
in chapter 6 (large negative values of ∆T/T together with an enhancement of the decay-rates)
as evidence of a coupled system to become less and less pronounced with growing separation.

We start with a brief overview of how we expect the distance between SRR and QW to
influence the coupling between them and then define the five samples we have fabricated and
investigated in order to study this dependence. Afterwards we pick one particular sample
(NA7) and discuss the effects we find there in comparison to sample NA1 presented in the
previous chapter. Finally, we assemble the experimental data of all five samples to reveal the
behaviour of the SRR-QW coupling with growing separation. To test our assumption of the
coupling being mediated by plasmonic near fields we compare the experimental results with
intensity enhancements derived from DGTD calculations and find good agreement.

7.1 Changing the Distance

We are interested in how the coupling changes with the distance between the metamaterial
and the quantum well because we expect its strength to depend strongly on the spatial overlap

75
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Figure 7.1: Sketch of the spatial overlap of the exponentially decaying plasmonic near field (colour map from blue
to red) with the electronic wave function of the single quantum well (colour map purple to pink) with increasing
spacer thickness from (a) to (c). The geometry in (a) corresponds to sample NA1, the one in (c) to NA62.

between the plasmonic near field of the SRR and the electronic wave function in the quantum
well as depicted in Fig. 7.1. Ideally, the maximum of the plasmonically enhanced near field is
at the same z position as the maximum of the electronic wave function, i.e. in the symmetry
plane of the well. In an experiment we cannot straightforwardly arrive at such a configuration
because the upper barrier, together with the width of the well itself, present a lower boundary
to the separation for our standard fabrication procedure.

To investigate in what way the coupling changes with separation we have fabricated five
samples where the split-ring resonators are situated at different distances from the centre of the
quantum well. The sample with the smallest separation is sample NA1, which we have already
presented in Chapter 6; its basis is the quantum-well wafer HSG 37 and no additional spacer
layer has been introduced. From the same wafer (HSG 37) we have fabricated three further
samples where we have evaporated a defined layer of magnesium flouride (MgF2) onto the
wafer before the lithography step. Samples NA7, NA5 and NA62 thus have additional spacers
of 15 nm, 20 nm and 40 nm thickness, respectively.
Since this evaporated MgF2 layers do not form homogeneous closed films for smaller
thicknesses we have also used one sample that is based on a different wafer (HSG 33).
The quantum well in HSG 33 is of the same nominal thickness as that in HSG 37;
their photoluminescence spectra are comparable and the gain is centred around the same
wavelengths. The upper barrier of HSG 33 is, however, 9.5 nm larger than that of HSG 37,
which increases the separation of the well from the metamaterial on top.
The details on the wafers and spacer layers of all five samples we use for the investigation of the
distance-dependence of SRR-QW coupling are given in table 7.1. Comparing these samples,
we have to keep in mind that the refractive index of magnesium flouride (nMgF2

= 1.3)
is significantly smaller than that of the semiconductors the QW is made up of (nSC ∼ 3).
Therefore the near fields decay more rapidly (with distance) in the semiconductor than they do
in the dielectric spacer.
Before we now turn to a comparison of all five samples we first look in more detail at sample
NA5, whose separation of the SRR from the middle of the QW is roughly twice that of NA1
and see how the effects we found earlier change in this particular case.
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sample QW wafer cap and barrier MgF2 layer complete top layer
NA1 HSG 37 5.5 nm 0nm 5.5 nm
FA3 HSG 33 15.0 nm 0nm 15.0 nm
NA7 HSG 37 5.5 nm 15 nm 20.5 nm
NA5 HSG 37 5.5 nm 20 nm 25.5 nm
NA62 HSG 37 5.5 nm 40 nm 45.5 nm

Table 7.1: Samples used for distance-dependent measurements. Note, that all - apart from one - are based on the
same quantum-well wafer HSG 37.

7.1.1 Sample NA7: Doubling the Distance between SRR and QW

The separation of the SRR from the centre of the QW in NA7 is roughly twice as large as for
sample NA1. The latter we discussed in some detail in Chapter 6. We therefore want to pick
NA7 as reference of the samples with an additional spacer layer and discuss it to a greater
extent than the others. It also serves as a start to the comparison with sample NA1, where the
metamaterial is closest to the quantum well of all the five samples investigated.

Figure 7.2 shows pump-probe data collected on field C with a fundamental resonance at
λSRR = 1500 nm; it thus corresponds directly to the measurements presented in Fig. 6.3 and
taken on sample NA1. For sample NA7 we also find evidence of coupling in the significant
difference of the horizontally probed measurements taken on the arrays (red lines) to those
on the bare quantum well (blue lines). Again, no such difference occurs for vertical probe
polarisation.
However, the signals we observe on NA7 for the coupled case are smaller in the magnitude
of ∆T/T than that of the bare wafer and do not change dramatically with wavelength. For all
accessible probe wavelengths the magnitude of the differential transmittance on the fields is
well below ±0.5% whereas the signal on the bare QW varies between 0.4% and 1.9%.
Although we still observe some negative values of ∆T/T for the on-field measurements they
are far from being as pronounced as they are on the resonant fields of NA1; neither are they
as frequent and rather present the exception on NA7. Actually, field C here can be seen as
the limiting case where the pump-probe signals of a resonant array change from negative to
positive, thus being hardly different from zero.

On sample NA1 the dynamics of the system are also changed dramatically - from a slow
single-exponential decay on the bare QW to a double-exponential decay with two faster time
constants on the SRR arrays. This effect, too, is hardly observable on field C of sample NA7
where the decay on the arrays is a single exponential one and happens at the same time scale as
that of the quantum well alone.

A direct comparison of sample NA7 with NA1 distinctly shows how sensitive the coupling
between a plasmonic metamaterial and a quantum well underneath is on the relative separation
of the two. Despite the additional spacer layer being only 15 nm thick - thus doubling the
distance between SRR and the mid-plane of the QW - the coupling effects are dramatically
reduced: we still observe a significant difference between the differential transmittance on the
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Figure 7.2: Time-resolved pump-probe measurements on field C (λSRR = 1500 nm). Red lines correspond
to measurements on the SRR array, blue ones to measurements on the bare quantum well. (a) Differential
transmittance over time delay for horizontal probe polarisation; (b) the same for vertical probe polarisation. We
observe that all effects found on NA1 have decreased significantly (compare Fig. 6.3).

SRR array compared to that on the bare QW but neither large negative signals nor pronounced
changes in the system dynamics can be observed.
From the DGTD calculations we have already used in the previous chapter we know that the
near fields of the SRRs decay to half their initial strength on the order of 20 nm. In sample



7.1. Changing the Distance 79

Figure 7.3: Pump-probe measurements for all five samples at a probe wavelength of λprobe = 1480 nm taken on
SRR arrays whose fundamental resonance is centred around 1540 nm.

NA7 we have artificially enlarged the separation between SRR and QW by 15 nm, which is
not far from the decay length of the near fields and find the coupling effects to have reduced
significantly. This meets our expectation that the coupling is mainly governed by the overlap of
the plasmonic near fields with the quantum-well wave function (Fig. 7.1).

In the following we proceed to a comparison of all five samples (see table 7.1) for which we
only use the measurements on one resonant field for the same probe wavelength on each sample.

7.1.2 Different SRR-QW Separations

In the previous chapter we found the most pronounced effects, resulting from the coupling
between the SRR array and the single QW, on field D of sample NA1 at a probe wavelength
of λprobe = 1480 nm. The fundamental SRR resonance of this field is centred around
λSRR = 1540 nm for low temperatures.
We therefore choose an array of SRRs on each of the five samples1, which shows a
magnetic resonance at approximately the same centre wavelengths λSRR = 1540 nm and
compare the differential transmittance we measure on these fields for a probe wavelength of
λprobe = 1480 nm. The resulting time-resolved measurements are assembled in figure 7.3 with
growing distance between SRR and QW from (a) to (e).
While we do not observe a significant difference in the differential transmittance of the bare
quantum well (blue lines) for the five different samples, we find a distinct dependence of the

1The full set of measurements for all fields and all probe wavelength on these five samples can be found in
Appendix B.
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signal on the arrays (red lines) on the separation of the SRRs from the QW.
The variations we find for the off-field measurements are likely due to slight changes in the
measurement parameters (like the maximum accessible pump power) or to diminished quality
of the QW when a sample is cut from close to the edge of the wafer.
For the on-field measurement, however, the change in the signals of the different samples
is much more prominent and cannot be explained by mere experimental imperfections: For
samples NA1 and FA3, where the metamaterial is located relatively close to the quantum
well and the overlap between near field and wave function is large, we observe a negative
sign of ∆T/T together with a visible acceleration of the decay compared to the bare well.
This decay-rate enhancement is extremely pronounced for NA1 (factor 50 for the fast decay
constant) but only slight for FA3 (factor 4).
Like already discussed above, sample NA7 marks the transition from negative to positive
differential transmittance signals. Here, for twice the distance from the QW compared to NA1,
the on-field signal is hardly different from zero and no significant decay-rate enhancement
can be derived from the measurement. If the metamaterial is separated even further from the
quantum well (sample NA5) ∆T/T turns clearly positive with a single-exponential but its
magnitude is still different from the measurement on the quantum well alone.
Finally, for an additional 40 nm-spacer (sample NA62) the measurement on the split-ring array
is almost indistinguishable from that on the QW close by. This corresponds to the uncoupled
case where we do not expect changes in the pump-probe signal stemming from the SRR
resonance. The latter will lead to a resonant decrease in the absolute transmittance T of the
probe beam but this will not be affected by the pump; the increase in transmittance therefore
originates solely from the quantum well. The overlap between the plasmonic near field and the
QW wave function is therefore found to be negligibly small for a separation of approximately
52 nm between SRR and the mid-plane of the QW, which is more than twice the decay length
of the plasmonic near fields we derived from the DGTD calculations.

We further condense the above measurements to yield the distance-dependent plot shown in
figure 7.4. To this end we introduce the lift ∆ in the differential transmittance signal, which we
define as the difference between the maxima of the pump-probe signals on the bare quantum
well to those on the SRR array (compare Fig. 7.4(a)):

∆ =

(

∆T

T

)(QW) ∣
∣

∣

∣

∆t=+5ps

−
(

∆T

T

)(SRR+QW) ∣
∣

∣

∣

∆t=+5ps

. (7.1)

This lift from the relative differential transmittance on the array to that on the bare quantum
well is an experimental observable that is capable of quantifying the strength of the near-field
coupling between SRR and QW. We have already found in section 5.3 that the difference
between the pumped and unpumped coupled system, i.e. the differential transmittance,
becomes larger when coupling gets stronger (L is larger). For the bare gain medium, however,
without any metamaterial resonance to couple to, the coupling strength has no influence on
the pump-probe signal. For the extreme case of zero coupling we further expect the relative
differential transmittance to be the same on the array and on the bare wafer. Overall, the
magnitude of ∆ is therefore directly correlated with the strength of the near-field coupling.
The experimentally determined dependence of the coupling strength - described by the lift
∆ - on the spatial separation of the SRR and the QW is clearly not linear and resembles the
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Figure 7.4: (a) Definition of the lift∆ in differential transmittance; as an example we use a set of measurements on
sample NA1 (Fig. 7.3 a). (b) Lift ∆ in relative differential transmittance (green dots) plotted against the thickness
of the complete top layer; the dashed line has been added as a guide to the eye.

exponential decay we expect from near-field effects rather well, as far as this conclusion can be
drawn from a set of five distances only.

To further support the relation between the strength of the coupling of the metamaterial to the
quantum well and the intensity enhancement of the plasmonic near fields, we return to the
DGTD calculations we have already used for this purpose in Chapter 6 in the following section.

7.1.3 Comparison to DGTD Calculations

Still assuming it is the magnitude of the intensity enhancement Î = I/I0 of the plasmonic
near fields that determines the coupling strength between the metamaterial and the QW we
first survey in what way this enhancement decays with growing distance from the split-ring
resonators. To this end we compare the calculated near-field enhancements which we derive
from the same DGTD calculations we use in Chapter 6 in different cut planes. We choose
them such that their separation from the bottom of the metal structure is the same as that of the
quantum well symmetry plane in the five samples we experimentally study. Since the quantum
wells in HSG 33 and HSG 37 are both roughly 14 nm thick, this means adding another 7 nm to
the complete top layer values in table 7.1. The resulting intensity-enhancement distributions
for the five samples are presented in figure 7.5.

From these calculations we clearly see how strongly the intensity enhancement depends on the
distance from the plasmonic particle. Where the maximum enhancement for the QWmid-plane
of NA1 is Î = 55 we only find a maximum value of 22 for that of FA3, which is only 10 nm
further away. This trend of a super-linear decay continues for even larger distances from the
SRR, complying with the expectation of an exponential decay we have for plasmonically
enhanced near fields.
For sample NA62 (Fig. 7.5 e) we find almost no enhancement of the fields compared to the
situation without the SRRs. This fact matches the experimental observation that coupling
between the SRR and the QW is almost absent for this sample (compare Fig. 7.3 e). We can
therefore conclude that the strength of the coupling is directly correlated with the strength of
intensity enhancement generated by the plasmon.
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Figure 7.5: Intensity enhancements calculated via DGTD for z planes corresponding to the depth of the symmetry
planes of the quantum well for each of the five samples. Except for (a) the colour coding is identical in all plots.

The picture we use above, where we only take the maximum value of Î for one distinct plane,
is subject to simplifications: firstly, the calculations do not account for the different refractive
index we introduce with the MgF2 layer. Secondly, we overemphasise the maximum of the
wave function in the central plane of the quantum well.
The first simplification is inherent in the way we performed the calculations and only leads to
minor digressions from a full treatment, which will lead to the decay length with a lower-index
(MgF2) spacer being slightly longer than for the high-index version in our calculations. The
reduction of our considerations to only one point instead of sampling the whole quantum well,
however, is significant and we deal with it in the following.

To account for all the different intensity enhancements over the quantum well we simply
average the Î values over the whole unit cell and over a layer of 13.8 nm, which is the thickness
of the QW. We thus end up with only one value Îavg for every sample configuration, allowing
for a direct comparison of how the intensity enhancement varies with distance. Figure 7.6 b
shows the resulting plot of Îavg against the thickness of the complete top layer, clearly revealing
the super-linear dependence on distance; panel a of the same figure repeats the corresponding
relation derived from the measurements.
To ease comparison between measured and calculated distance-dependences, which are
considered for different observables, we normalise both data sets to the value for the smallest
distance from the SRR, i.e. for a complete top layer of 5.5 nm (sample NA1). We present
the resulting graphs in figure 7.6 c and find excellent qualitative agreement: the curves for
measurement (green) and calculation (orange) show the same overall behaviour although
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Figure 7.6: (a) Experimentally determined lift ∆ in relative differential transmittance (green dots) plotted against
the thickness of the complete top layer. (b) Calculated intensity enhancement Îavg averaged over one unit cell and
the complete thickness of the QW for different depths. (c) Comparison of experimental and theoretical results in
(a) and (b); both are normalised to their maximum values to ease comparison. Dashed lines are guides to the eye.

the calculated values are always larger than the measured ones, indicating that the coupling
strength decays more slowly in the calculations than it does in the experiments.
Part of this discrepancy results from the particles in the calculations being more perfect than
the measured ones; therefore they will likely suffer less losses and thus support stronger, more
long-range plasmonic near fields. Furthermore, upon averaging over all intensity enhancements
in the whole well, we have used an unweighted average and thereby assume that the coupling
strength scales strictly linear with the intensity enhancement and also that every (z) position
of the well contributes equally to the coupling. However, we know that in real quantum wells
the wave functions can be distorted from the ideally symmetric case by disorder, asymmetry
and the finite potential barriers of the QW. The latter assumption does therefore not necessarily
hold for a real QW structure but as we do not know the details of these deviations from an ideal
QW we choose to consider an ideal, infinite well.

Overall, the agreement between our distance-dependent pump-probe measurements and
the DGTD calculations for the plasmonic intensity-enhancement is excellent, especially
considering the simplicity of the theoretical model. We take this accordance as evidence of
the fact that the coupling between a plasmonic metamaterial and a gain medium is dominated
by near-field interactions.
We have assumed this correlation throughout this thesis, starting with the near-field coupling
in the toy model (Chapter 5), but we can now rely on experimental data undermining this
assumption to be justified.
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Chapter 8

Conclusions and Outlook

The scope of this thesis has been to take first steps towards the compensation of ohmic losses
in plasmonic structures by introducing a gain medium. This is certainly one of the most
pressing issues in metamaterial research because the intrinsic losses hinder all applications
suggested for these artificial media. However, the fundamental prerequisite, without which
this loss-compensation principle does not work, is a substantial coupling between the plasmon
and the gain medium. This thesis has therefore focused on the coupling between a plasmonic
metamaterial and a gain medium.

Furthermore, the coupling between plasmonic systems and an emitter or gain medium is of an
even more general interest to current research because hybrid systems of plasmonic particles
and gain media offer a multitude of fascinating possibilities:
Most closely related to loss-compensation is the concept of the spaser as the plasmonic
analogue to the laser as proposed by Mark Stockman and David Bergman in 2003 [20]. As
the original spaser operates with dark optical modes Nikolay Zheludev and co-workers have
expanded this idea to the lasing spaser where coherent optical emission is possible [23]. In
2009 Mikhail Noginov et al. have experimentally realised a spaser-based nanolaser and thus
proved the feasibility of this approach [22].
In general, plasmonic antennas can siginificantly influence the radiative properties of
emitters. Besides enhancing the efficiency of emission of, for example, fluorescent molecules
[17], correctly-designed antennas can also control the direction of emission [18]. Like the
aforementioned work a lot of current research focusses on the interaction of plasmonic antennas
with single emitters because this system promises interesting quantum-optical phenomena
[76] and devices like the generation of single photons and plasmons [77] or the single-photon
transistor [19].
The work presented in this thesis has therefore contributed to a vibrant field of optics that offers
a wide range of promising research topics and applications because all the above-mentioned
effects are essentially based on this interaction mediated by the plasmonic near fields.

For our study, however, we have focused on only one material system: we have chosen arrays
of silver split-ring resonators (SRRs) as a suitable example of a plasmonic metamaterial and
have employed epitaxially-grown single InGaAs-quantum wells (QWs) as gain medium that
we have used as substrate for electron-beam lithography, thus essentially placing the gain
underneath the metamaterial.
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We have experimentally studied this hybrid system of SRRs and QW - whose fundamental
resonance and gain resonance are respectively centred around 1.5 µm - by means of low-
temperature femtosecond pump-probe spectroscopy. This method provides a well-defined
excitation and de-excitation situation, which has allowed us to arrive at conclusive evidence of
coupling between an array of SRRs and a single QW underneath.
This experimental evidence is supported by theoretical studies of the hybrid system, both by
numerically acquired near-field calculations and by comparison with a general analytical toy
model for the coupling of a plasmon resonance to a two-level-system gain resonance, which
we have developed as part of this thesis.

The first step towards understanding the coupling between a plasmonic metamaterial and a
gain medium has been the development of a specific but general theoretical model of this very
complex hybrid system. Instead of relying on numerical implementations of the plasmonic
particle and a suitable three- or four-level-system description of the gain medium used [13, 23],
this toy model (Chapter 5) simply couples a bosonic plasmon resonance to a fermionic gain
resonance of a two-level system (2LS) via near-field interactions. For this approach we neither
need to know the geometry of the metamaterial building blocks nor the exact term schemes
of the gain medium. It is therefore far less demanding in terms of time and computational
resources.
The defining equations of the toy model take the mathematical form of the optical Bloch
equations with an additional term that accounts for the coupling between the two resonances.
Under transient conditions for a fixed occupation factor f of the upper level of the 2LS, this
basic system of equations can be solved analytically within the rotating-wave approximation,
which is appropriate for comparison with our experimental situation.
From this solution we have derived transmittance spectra for toy model parameters that were
adjusted as to fit the composition of our samples: The plasmonic resonances have been chosen
to roughly resemble those of the fabricated SRR arrays in spectral position and lineshape
(centre frequency, depth and width of the Lorentzian) and the 2LS has been defined such that
it is in accordance with the physical properties of typical InGaAs quantum wells whose gain is
centred around 1.5 µm.
By systematically changing the centre frequency Ωpl of the plasmon resonance in one case
and the value of the near-field-coupling parameter L in another, we have have performed
parameter studies of this realistic hybrid plasmon-gain system for both a passive (unpumped)
gain medium (f = 0) and a fully inverted (pumped) 2LS (f = 1). These have shown that the
behaviour of the coupled system is very complex and sensitively depends on both the coupling
strength and on the relative spectral detuning of the two resonances involved. Comparing the
spectra of the pumped 2LS with those of the passive one we find transmittance to generally
decrease around the resonance upon pumping, which gives a first impression of the signals we
expect from the pump-probe measurements.
For the degenerate case (Ωpl = Ω2LS) we have also found the system to become unstable for
strong enough coupling. In this case transmittance rises to values far larger than one in a sharp
peak at the common resonance frequency; this can be interpreted as lasing - or rather as lasing
spasing since the feedback is provided by the plasmon mode and not by a usual cavity.
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In the first experimental section (Chapter 6) of this work we have concentrated on the
pump-probe measurements performed on one specific sample (NA1) where the single InGaAs
quantum well is situated only 5.5 nm below the surface and is 13.8 nm thick (compare Fig.
4.1) with a gain spectrum centred around 1.46 µm. On this sample we have fabricated a set
of silver SRR arrays that are geometrically adjusted to have their fundamental resonances
centred at various spectral positions between 1.20 µm and 1.80 µm, which has allowed us to
experimentally study the influence of the spectral detuning between the SRR resonance and the
gain resonance.
On this sample we have found substantial evidence for the coupling between the quantum well
and the plasmonic metamaterial on top of it. We have directly compared the time-resolved
relative differential transmittance ∆T/T on the SRR arrays with that on the bare QW next to
the array for several probe wavelengths and have found them to be distinctly different: while
the QW shows a maximum ∆T/T of 1 − 2% (depending on the probe wavelength) which
decays single-exponentially with a lifetime of τQW = 668 ps the signals on the arrays are
generally negative and differ in magnitude both from that of the QW and for different probe
wavelengths.
For the field with the most pronounced effects we have found a maximum ∆T/T = −8% at a
probe wavelength of 1480 nm compared to +2% on the QW in the corresponding experiment.
The magnitude of the differential transmittance depends on the spectral position of the probe
and is generally larger around the resonance of the QW and smaller for wavelengths away from
it. We have been able to fit this behaviour with the toy model described above consistently
for all fields measured on this sample, keeping most significant parameters constant and only
changing the position of the plasmon resonance to match the array and adjusting the coupling
parameter to a certain degree.
Furthermore, the dynamics of the measurements on the arrays are also significantly different
from that of the well alone. Most obviously, the temporal behaviour cannot be expressed with
a single-exponential decay, like for the bare QW, but follows a more complicated function. We
have found the sum of two exponentials with decay constants τ1 = 15 ps and τ2 = 180 ps to
approximate the dynamics well.
We have thus observed a decay-rate enhancement of 50 times for the fast and of 4 times for
the slow time component. These more rapid decays could either originate from quenching to
non-radiative modes due to the presence of metal or signify the onset of lasing or result from
an enhanced local density of states (LDOS) in the sense of the Purcell effect.
We have ruled out the first explanation by a pump-probe control experiment for a probe
polarisation turned by 90◦ where the fundamental SRR resonance cannot be excited. In this
measurement we have seen no significant difference between the measurements on the SRR
arrays and those on the bare wafer, neither in the magnitude of the signal nor in the dynamics
of the system. We have thus concluded that quenching is not the origin of the more rapid decay
times.
The second hypothesis has been tested by an additional experiment where we have varied the
pump power. The lifetimes in these time-resolved measurements have not changed with pump
power and have especially not become shorter with an increase in power. Lasing can therefore
also be excluded as the cause of the decay-rate enhancements observed.
Conclusively, we have been left with the Purcell effect to explain these more rapid decays.
Since the Purcell effect describes a decay-rate enhancement by an increase in the LDOS, which
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in turn is correlated with the intensity enhancement in the quantum well by the presence of
the plasmonic particle, we have employed numerical near-field calculations performed in the
group of Prof. Kurt Busch to support this claim. The calculated intensity enhancements reach
factors of up to 55, which fits the enhancement factor of the fast decay component surprisingly
well. We therefore attribute the rapid decays to the Purcell effect and the two time components
to contributions from areas with high intensity enhancements and areas with low intensity
enhancements.
Finally, we have developed a means of characterising how far we are still from the goal of
complete loss-compensation in the plasmonic metamaterial based on the solution of the toy
model for the case of degenerate resonances. Although we have compensated some of the
intrinisic losses of the SRRs, we have concluded to be "a factor of three to four" below this
goal for the most effectively compensated array on sample NA1. This means we would either
need to increase the coupling or the gain by a factor of three to four or decrease the effective
damping of the system by this factor or use any combination of these approaches to arrive at
the same values in order to reach a zero-loss metamaterial.

In the last part of this thesis (Chapter 7) we have investigated how the coupling strength and
the resulting effects in the pump-probe data change if we increase the distance between the
quantum well and the split-ring resonators. To this end we have fabricated five samples with
differently thick spacer layers on top of the QW. Apart from one sample we have used the
same quantum well and have added an additional layer of magnesium flouride to increase this
distance.
On these samples we have found the coupling effects described above to be less and less
pronounced with increasing distance between the QW and the SRR array. We have observed
negative ∆T/T values less frequently and the decay-rates have been enhanced by smaller
factors. Overall, the measurements on the arrays have increasingly resembled those on the bare
quantum well the further we have separated the SRRs from the QW. In fact, we would expect
the two signals to be identical for a completely uncoupled system, so this observation agrees
well with our expectations.
To further support our assumption of the coupling between metamaterial and gain medium to be
mediated by the plasmonically enhanced near fields we have again compared our measurements
to numerically calculated intensity enhancements. Averaging these enhancements over the
complete dimensions of the quantum well underneath one array and examining the dependence
of the resulting Îavg value on the distance of the well from the surface has yielded a super-linear
decay of the intensity enhancement.
We have compared this result to the experimentally found decay of the lift ∆ of differential
transmittance, i.e. the difference of the signal on the field to that on the bare wafer, with
growing distance of the QW from the SRR. The two curves are in excellent qualitative
agreement and the relative decays from the initial maximum value over distance are also
comparable (the actual values cannot be compared directly because ∆ and Îavg have different
dimensions). This has confirmed our expectation that the plasmonic near fields play a dominant
and crucial part in the coupling between a plasmonic metamaterial and a gain medium.
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By this thorough experimental study of silver SRR arrays on top of single InGaAs quantum
wells and comparison of the results with both an analytical toy model and numerical near-field
calculations we have proved the existence of significant coupling between the plasmonic
metamaterial and the gain medium. This coupling is the essential prerequisite to compensate
the intrinsic Ohmic losses of the metamaterial by incorporating gain.
In addition our distance-dependent experiments have confirmed the assumption that this
coupling is dominated by near-field interactions between the plasmonic mode and the gain
medium. This observation is further supported by numerical near-field calculations that show
the same distance-dependent behaviour as our measurements.
This proof can, however, only be the first step towards an applicable loss-compensation
scheme. To achieve a zero-loss metamaterial one will have to find a way to increase the
coupling between the metamaterial and the active medium, either by designing the plasmonic
particles such that they yield higher near-field enhancements or by positioning the gain closer
to the particles, preferrably in the plane of maximum field enhancement. This can readily be
done by using a different sort of gain medium, for instance molecules in a host matrix [16],
but if one wants to stick to semiconductor structures because of their advantages for possible
technological applications this means a considerable effort regarding fabrication.
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Appendix A

A Loss-Compensation Criterion Derived

from the Toy Model

We want to derive a criterion with which to judge the extent of loss-compensation from the
simple toy model described in Chapter 5. We start from the defining equations of the toy model
in the rotating-wave approximation

i (Ω2LS − ω) p̃2LS + γ2LSp̃2LS = i

[

~
−1d2LS

Ẽ

2
+ V2LSp̃pl

]

(1− 2f) (A.1)

i (Ωpl − ω) p̃pl + γplp̃pl = i

[

~
−1dpl

Ẽ

2
+ Vplp̃2LS

]

, (A.2)

where we have neglected the third equation because we do not need it here. Without an external
light field (Ẽ = 0) and for steady-state gain (i.e. f is pinned to a steady-state value) we can
readily combine these two coupled equations to

ω2 − [(Ω2LS + Ωpl)− i (γ2LS + γpl)]ω = − (Ω2LS − iγ2LS) (Ωpl − iγpl) + V2LSVpl (1− 2f) .
(A.3)

This quadratic equation straightforwardly leads to the solutions
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2

±
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2

)2

− (Ω2LS − iγ2LS) (Ωpl − iγpl) + V2LSVpl (1− 2f),

(A.4)

which can be simplified to yield

ω =
Ω2LS + Ωpl

2
−iγ2LS + γpl

2
±

√
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Ω2LS − Ωpl

2
− i

γ2LS − γpl
2

)2

+ V2LSVpl (1− 2f). (A.5)

For the zero-loss case when the gain exactly cancels out the loss of the system, the polarisation
envelops need to be constant, therefore the imaginary part of equation (A.5) has to be strictly

91



92 Appendix A. A Loss-Compensation Criterion Derived from the Toy Model

zero. We can therefore use this fact to arrive at a general gain-equals-loss condition:

γ2LS + γpl
2

= ±Im





√

(

Ω2LS − Ωpl

2
− i

γ2LS − γpl
2

)2

+ V2LSVpl (1− 2f)



 . (A.6)

To get a slightly more simple criterion we restrict ourselves to the special case of degenerate
resonance frequencies Ω2LS = Ωpl for which equation (A.6) can easily be solved leading to a
criterion for the steady-state occupation factor f

f =
1

2

(

1 +
γplγ2LS
VplV2LS

)

≡ 1

2

(

1 +
γ2

V 2

)

∈ [0, 1] . (A.7)

Here we have introduced the effective damping and the coupling frequencies γ = γplγ2LS and
V = VplV2LS. Since the inversion factor f can only take values in the interval [0, 1]we can judge
the possibility of complete loss-compensation by the solution of equation (A.7): If a given set
of toy-model parameters represented by γ and V yields a solution in the permitted interval zero
loss is possible; if the solution does not fall into this interval complete loss-compensation cannot
be achieved under these conditions.



Appendix B

Experimental Data: Full Record

The interpretations presented in the main part of this thesis are based on a vast set of
experimental data and have therefore not been shown completely within the text. Here, however,
we want to present all experimental information gathered from the five samples discussed in
sections 6 and 7: These include room-temperature FTIR spectra, scanning-electron microscopy
(SEM) images taken after the measurements and the complete time- and wavelength-dependent
pump-probe measurements.
In the figures presenting the pump-probe results we stick to the colour code used in the
main text, i.e. red lines denote measurements on the split-ring resonator arrays, blue curves
correspond to measurements on the bare quantum well. Again, the data for a probe polarisation
horizontal with respect to the SRR gap are presented in the left column, those for vertical probe
polarisation on the right. The polarisation of the pump beam is always oriented horizontally.

Sample NA1 (HSG 37)

FTIR Spectra
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SEM Micrographs



95

Pump-Probe Data
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Sample FA3 (HSG 33)

FTIR Spectra

SEM Micrographs
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Pump-Probe Data
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Sample NA7 (HSG 37)

FTIR Spectra

SEM Micrographs
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Pump-Probe Data
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Sample NA5 (HSG 37)

FTIR Spectra

SEM Micrographs
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Pump-Probe Data
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Sample NA62 (HSG 37)

FTIR Spectra

SEM Micrographs
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Pump-Probe Data
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