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Abstract

Information Retrieval (IR) deals with delivering relevant information items given

the specific information needs of users. As retrieval problems are defined in various

environments such as the World Wide Web, corporate knowledge bases or even per-

sonal desktops, IR is an every day problem that concerns almost everybody in our

society. In this thesis, we present research results on the problem of Multilingual

IR (MLIR), which defines retrieval scenarios that cross language borders. MLIR is a

real-world problem which we motivate using different application scenarios, for ex-

ample search systems having users with reading skills in several languages or expert

retrieval.

As the main topic of this thesis, we consider how user-generated content that

is assembled by different popular Web portals can be exploited for MLIR. These

portals, prominent examples are Wikipedia or Yahoo! Answers, are built from the

contributions of millions of users. We define the knowledge that can be derived

from such portals as Social Semantics. Further, we identify important features of

Social Semantics, namely the support of multiple languages, the broad coverage of

topics and the ability to adapt to new topics. Based on these features, we argue that

Social Semantics can be exploited as background knowledge to support multilingual

retrieval systems.

Our main contribution is the integration of Social Semantics into multilingual re-

trieval models. Thereby, we present Cross-lingual Explicit Semantic Analysis, a se-

mantic document representation that is based on interlingual concepts exploited from

Wikipedia. Further, we propose a mixture language model that integrates different

sources of evidence, including the knowledge encoded in the category structure of

Yahoo! Answers.

For evaluation, we measure the benefit of the proposed retrieval models that ex-

ploit Social Semantics. In our experiments, we apply these models to different es-

tablished datasets, which allows for the comparison to standard IR baselines and to

related approaches that are based on different kinds of background knowledge. As

standardized settings were not available for all the scenarios we considered, in partic-

ular for multilingual Expert Retrieval, we further organized an international retrieval

challenge that allowed the evaluation of our proposed retrieval models which were

not covered by existing challenges.
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Chapter I

Introduction

The field of Information Retrieval (IR) is concerned with satisfying information

needs of users. The IR approach therefore is to find and to present information items,

for example documents, that contain the relevant information. IR covers various ap-

plication scenarios — related to our work life as well as to our leisure activities. It is

no exaggeration to say that IR is an every day problem that concerns almost every-

body in our society. The most prominent example is certainly searching the World

Wide Web. The sheer mass of websites requires efficient approaches to retrieve

relevant subsets for specific information needs. However, a constantly increasing

number of information items are also gathered in corporate knowledge bases or even

on our personal computers. This requires to adapt the retrieval techniques applied to

Web search to these new scenarios.

Many of these information items — for example websites, posts to social net-

works or personal emails — are written in different languages. In fact, only one

fourth of Internet users are native English speakers.1 The nature of the Internet does

not know any language boundaries. People from different nations and languages are

for example connected in social networks. This clearly motivates the development

and improvement of multilingual methods for IR, which also cross the language

barriers when seeking for information. Users may often be interested in relevant in-

formation in different languages, which are retrieved in a single search process when

using multilingual technologies. This also allows users to express the information

need in their mother tongue while retrieving results in other languages.

The bottleneck for the development of multilingual approaches to IR are lan-

guage resources that mediate between the languages. Examples for such resources

that are often used in current multilingual retrieval systems are bilingual dictionaries

or interlingual wordnets such as EuroWordNet2. These traditional resources are usu-

ally hand crafted and cover only a limited set of topics. As these are closed systems,

1There are 27.3% of English Internet users according to http://www.internetworldstats.
com (last accessed November 16, 2010)

2http://www.illc.uva.nl/EuroWordNet/ (last accessed April 8, 2011)
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2 CHAPTER I. INTRODUCTION

they depend on revisions for updates — which are usually expensive and therefore

infrequent. In this thesis, we propose to explore new types of multilingual resources.

Evolving from the Web 2.0, we define Social Semantics as the aggregated knowl-

edge exploited from the contributions of millions of users. Using Social Semantics

for IR has several advantages compared to using traditional multilingual language

resources. First of all, many languages and many domains are covered as people

from all over the world contribute to Social Web sites about almost any topic. These

resources are thereby constantly growing. This has also the consequence that they

are up-to-date as they almost instantly adapt to new topics.

The questions remains how resources of Social Semantics can be exploited for

multilingual retrieval — which is the central research question behind this thesis.

We show that these collaboratively created datasets have many features that can be

explored in respect to their application to IR.

In this section, we first describe and motivate multilingual retrieval scenarios.

Then, we will present the definition of semantics that is used throughout this the-

sis. We will also define IR — in particular cross-lingual and multilingual retrieval.

Following these definitions, we will present the main research questions that are

considered in this thesis. This includes a summary of our contributions in respect

to these research questions. Finally, we will give an overview of all chapters that

guides through the content of this thesis.

I.1 Multilingual Retrieval Scenario
The question might be raised whether there is a real need for multilingual retrieval.

We will motivate the investigation in this multilingual problem by the following two

scenarios.

Internet usage statistics as presented in Figure I.1 show that only one fourth of

the Internet users are native English speakers. English speakers still constitute the

biggest user group, but this is likely to change as Internet penetration — which is

almost saturated in most English speaking countries — will grow for example in

Chinese or Spanish speaking areas. It can be assumed that many of these users are

able to read more than one language. In the European Union for example, more than

half of the citizens assert that they can speak at least one other language than their

mother tongue [TNS Opinion & Social, 2005]. The results of the according survey

are presented in Figure I.2.

As a consequence of the ability to understand more than one language, these

users are also interested in Web content of different languages which motivates mul-

tilingual retrieval scenarios. Multilingual users will probably be most confident in

formulating their information need using their mother tongue. However, they will be

interested in relevant information in any language they are able to understand. This

gives real benefit in cases when relevant resources are scare in the original query

language.

The second scenario corroborating the need for multilingual retrieval is Entity
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Figure I.1: Statistics of the number of Internet users by language.

Search. In contrast to document retrieval, the items returned by the retrieval system

are entities which are not as dependent on a specific language as text documents are.

Examples for entity classes are locations or people. In the search process, evidence

of different languages can be used to identify relevant entities. In this thesis, we will

present research results on Expert Retrieval as an application of multilingual Entity

Search.

An argument against multilingual retrieval scenarios is the usage of English as

lingua franca of the Internet. Assuming that all relevant information is available in

English and can be read by all Internet users makes multilingual approaches obso-

lete. However, the statistics presented in Figure I.1 motivate a different view on the

language landscape of the Internet. Information is published in various languages

and many users will not be able to access the English part of the Internet. It is

therefore important to consider other languages as English as well and to develop

multilingual retrieval methods that allow to cross the boundaries of languages.

Many multilingual retrieval approaches are based on Machine Translation (MT)

systems. These systems allow the automatic translation of text to another language.

In the context of retrieval, MT systems have the potential to reduce the problem of

multilingual retrieval to the monolingual case. However, these systems still have

high error rates — which are for example rooted in the ambiguity of terms or in

the complexity of grammar. While all IR systems have to deal with the ambiguity

of terms, the problem is that errors introduced in the translation step are potentially
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Respondents able to participate in a conversation in another language than their mother tongue 
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Figure I.2: Statistics of the share of citizens in the European Union that are able to

understand another language aside from their mother tongue. Source: Europeans
and Languages, Eurobarometer Special Survey 237, Wave 63.4, TNS Opinion &

Social, May-June 2005.
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amplified in retrieval systems that are based on MT. Further, only few popular lan-

guages are supported by current MT systems. These problems will most probably

not be solved in the near future. This motivates the development of multilingual re-

trieval methods that do not depend on MT or at least are able to compensate errors

introduced by the translation systems.

I.2 Definition of Semantics
In this thesis, we present new approaches to exploit Social Semantics for MLIR.

Different definitions of the term semantics are established in literature — depending

on the research field and specific context. In the following, we will give an overview

of these different definitions and precisely define the term semantics in the context

of this thesis.

I.2.1 Historical Overview
The term semantics was introduced by M. Bréal at the beginning of the 20th century

to describe the subfield of linguistics that analyzes and describes the meaning of lin-

guistic expressions [Bußmann, 1983]. Different focus is thereby set on the meaning

of single lexicon tokens, relations between those tokens (for example synonymy),

the meaning of sentences as the sum of meaning of its single lexemes as well as their

grammatical relation and the relation of linguistic expressions and their meaning to

the physical world.

As part of semantics, the research field of formal semantics adapts analytical

techniques from logic to natural language [Abbott, 1999]. The goal thereby is to

find formal and precise definitions of the meaning of linguistic expressions. Abbott

[1999] gives an overview of the historical development of formal semantics. As

one of the first researchers in this field, Bloomfield formally defined semantics by

stimulus and response. The meaning of text depends on the current situation of the

speaker and the response she gets from hearers. Therefore the knowledge about

everything in the speakers’ world is required to define the meaning of text. This

definition of formal semantics was impractical and the research did not advance till

the introduction of generative models of language by Chomsky. However, Chomsky

himself was convinced that intuition about meaning could not be used to improve

the analysis of linguistic forms. He insisted upon the radical autonomy of syntax,

i.e. syntactic rules are the initial stage of language that is not influenced by meaning

[Joseph, 2002]. As a reaction to this hypothesis, Montague disagreed and claimed

that there is no difference between natural languages and formal languages. In fact,

semantic and syntactic representations mirror each other. This theory was the advent

of recent approaches to formal semantics based on truth conditions. These truth

conditions, which are equivalent to models used in logic, are existential to define the

semantics of linguistic expressions. Knowing the meaning implies knowing the truth

conditions which therefore relate language to the outside world.
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Apart from linguistics, the semantics of text or documents is also subject of in-

vestigation in computer science. The vision of the Semantic Web [Berners-Lee et al.,

2001] includes the formal semantic description of data that makes it machine pro-

cessable. The Semantic Web is build on ontologies [Studer et al., 1998] that for-

malize vocabulary by logics with clearly defined semantics. The meaning of the

vocabulary modeled in ontologies can therefore be shared and can also be further

processed using automatic reasoners. A common way to implement ontologies is to

use description logics, which allows inference and the assignment of truth conditions

using models analogous to Montague’s theory on formal semantics.

The Semantic Web vision considers the Internet as a database providing struc-

tured knowledge with clearly defined semantics, which is also denoted as the Web of
Data. However the biggest share of content is still provided in unstructured text with

no explicit meaning, including most of the user generated content, which is denoted

as the Web of Documents. Our definition of semantics is less precise but allows

to describe the implicit knowledge found in these unstructured or semi-structured

datasets. This will be clarified in the next section.

I.2.2 Social Semantics defined by Category Systems

Traditional semantic data sources have several drawbacks — especially in their ap-

plication to open domain problems such as IR. As examples, ontologies often model

a specific domain and therefore have a limited coverage. These ontologies potentially

contain labels in different languages, but in most cases they are only defined in one

specific language. Linguistic resources like thesauri are updated infrequently due to

the high costs of new revisions. This motivates the exploitation of user-generated

content as semantic data sources from the Web 2.0.

Definition I.1 (Web 2.0) The Web 2.0 is defined by the interaction and socializa-
tion of users in the Internet. This includes all kind of user-generated content, for
example collections of individual contributions or collaboratively created resources.
As opposite to Web sites created by few editors, a large number of users — in many
cases all Internet users — are allowed to contribute and provide new content.

The datasets created in the scope of the Web 2.0 do not contain an axiomatic

definition of vocabulary as found in the Semantic Web. In contrast, they contain

aggregated knowledge of many users that we define as Social Semantics:

Definition I.2 (Social Semantics) We define the implicit knowledge created by the
contributions of many users as Social Semantics. The semantics of this aggregated
data is defined through usage. Concepts defined by Social Semantics have no ax-
iomatic definition. The collective usage of these concepts implies that there is an
implicit agreement to understand them in the same way. This bottom-up semantics
of concepts contrast to the logical definition of concepts in the Semantic Web.
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The usage of Social Semantics as background knowledge for MLIR is motivated

by the properties of these datasets. Data sources that are exploited in respect to

MLIR scenarios should support the following features — which are often present in

Web 2.0 datasets:

Interlingual: In the application area of MLIR, data sources need to cover all sup-

ported languages. Ideally, they also provide connections between languages

which help to cross the language boundaries in the retrieval process.

This is often given for Web 2.0 portals that support users from many different

nations and languages.

Topic Coverage: General IR systems are not limited to special domains and poten-

tially have to retrieve documents for any information need. IR systems based

on background knowledge therefore require data sources covering a broad

range of topics corresponding to the different information needs of the users.

Web 2.0 portals are usually also not limited in respect to domains and there-

fore have content about many topic fields. Additionally, this content is user

generated and will most probably mirror the same popular domains that can

also be found in the IR scenario.

Up-to-Date: IR systems need to adapt quickly to new topics as these are the topics

users will most likely be searching for. Data sources used to enhance IR need

to adapt to these topics as well. Only up-to-date and adaptive resources will

improve search for emerging topics that were not covered before.

In the Web 2.0, content is constantly added that will most probably also cover

the most recent topics. This means that datasets from Web 2.0 portals are

updated very quickly and are therefore able to adapt to new topics.

We consider two prominent families of Web 2.0 sites in this thesis to define So-

cial Semantics. These are Wikis and Social Question/Answer Sites. Both of them are

instances of datasets that support the above mentioned properties and are therefore

qualified as background knowledge in the MLIR scenario. In the following, we will

define both Wikis and Social Question/Answer Sites (SQASs):

Definition I.3 (Wiki) Wikis are collections of articles that allow users to collabo-
ratively create, edit and comment these articles. As Wikis contain the aggregated
knowledge of their users, they are often regarded as example of Collective Intelli-

gence. The most prominent example of a Wiki covering many domains and languages
is Wikipedia.3

Definition I.4 (Social Question/Answer Site) Social Question/Answer Sites

(SQASs) allow users to post questions to the system. In contrast to IR, these

3http://www.wikipedia.org/ (last accessed April 8, 2011)
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questions are not answered automatically based on some background collection
but other users are able to provide answers. Most SQASs include social features
like rating of questions or answers, which help to identify questions of high quality
and appropriate answers. As example, the currently most popular SQAS is Yahoo!

Answers.4

The question remains what kind of structures evolve from Web 2.0 sites that can

be used as background knowledge for IR. In general, Web 2.0 sites do not define ex-

pressive ontologies. However, in many cases they feature a hierarchical organization

of the user-generated content. We will define such Web 2.0 sites as category systems.

An example for such category systems are Wikis or SQASs which allow the assign-

ment of articles respectively questions to categories. Category systems provide the

semantic structures we analyze in this thesis as instances of Social Semantics.

Definition I.5 (Category Systems) We define category systems as hierarchical or-
ganizations of concepts. Concepts are defined by textual description in one or more
languages. Categories correspond to organizational units that consist of clusters of
related concepts and of sub-categories that allow a more detailed classification of
concepts. Thereby, the classification of concepts to categories is no binary decision,
concepts can be associated to several categories.

Category systems do not define a formal hierarchy as the hierarchical relations
between categories have different semantics. This includes for example the is-a rela-
tion as used in taxonomies, but is not limited to it.

We will show how category systems can be used as semantic resources to im-

prove MLIR. They evolve from Web 2.0 sites and often support the properties of

Social Semantics as defined above — they support many languages, cover a broad

range of topics and are constantly updated.

I.3 Definition of Information Retrieval
Information Retrieval (IR) deals with the representation, storage, organization of and

access to information items [Baeza-Yates and Ribeiro-Neto, 1999]. IR systems with

suitable representation and organization of the information items allow users with an

information need to have easy access to the information she is interested in.

Typically, the user manifests her information need in the form of a query — usu-

ally a bag of keywords — to convey her need to the IR system. The IR system will

then retrieve items which it believes are relevant to the user’s information need. In-

deed, the notion of relevance is at the center of IR. It is defined on the semantic level

and defines whether the content of a retrieved item satisfies the user’s information

need. The users’s satisfaction with the IR system is linked to how quickly the user is

able to find the relevant items. This implies that the retrieval of non-relevant items,

4http://answers.yahoo.com/ (last accessed April 8, 2011)
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particularly those ranked higher than the relevant items, represent a less than satis-

factory retrieval outcome for the user. We will use the following definition for IR

throughout this paper:

Definition I.6 (Information Retrieval) Given a collection D containing informa-
tion items di and a keyword query q representing an information need, IR is defined
as the task of retrieving a ranked list of information items d1, d2, . . . sorted by their
relevance in respect to the specified information need.

In the monolingual case, the content of information items di and the keyword
query q are thereby written in the same language.

Related to IR is the problem of Question Answering. The main distinction of

these two problems is given by the different types of information needs and the pre-

sentation of results. In IR, the information need is often imprecise or vague. IR sys-

tems are mostly used as explorative systems that allow users to iteratively formulate

their information need based on preliminary results. In contrast, Question Answer-

ing requires sharp and clearly expressed information needs. Further, the presentation

of a ranked list of items that contain relevant information is different. In Question

Answering systems, single facts or short explanations are expected that precisely an-

swer the given information need. Using IR systems, users have to extract these facts

and explanations from the list of relevant items themselves. However, many Ques-

tion Answering approaches build on IR by mining the ranked list of information

items for possible answers (see for example [Kwok et al., 2001]).

I.3.1 Multilingual IR
In Cross-lingual and Multilingual IR, the information need and the corresponding

query of the user may be formulated in other languages than the one in which the

documents are written in. Relevance is in principle a language independent concept,

as it is defined on the semantic level of both documents and information need.

Cross-lingual IR (CLIR) is the task of retrieving documents relevant to a given

query in some language (query language) from a collection of documents in some

other language (collection language).

Definition I.7 (Cross-lingual IR) Given a collection D containing documents in
language lD (collection language), CLIR is defined as retrieving a ranked list of
relevant documents for a query in language lq (query language), with lD �= lq . D is
a monolingual collection — all documents in D have the same language.

In contrast to CLIR, Multilingual IR (MLIR) considers corpora containing doc-

uments written in different languages. It can be defined as follows:

Definition I.8 (Multilingual IR) Given a collection D containing documents in
languages l1, . . . , ln with li �= lj for 1 ≤ i, j ≤ n, i �= j, MLIR is defined as
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the task of retrieving a ranked list of relevant documents for a query in language lq .
These relevant documents may thereby be distributed over all languages l1, . . . , ln.

MLIR finds application in all those settings where a dataset consists of docu-

ments in different languages and users of the retrieval system have reading capabil-

ities in some of the languages the documents are written in. In most cases, people

have indeed basic reading and understanding skills in some other language than their

mother tongue (the one they usually query the collection). Such settings can be found

in particular in the Web but also in large corporate multinationals. Further, still if the

users do not understand the language of a returned document, Machine Translation

systems can be applied to produce a text in the native language of the user.

I.3.2 Entity Search
Entity Search (ES) is a subfield of IR that attracts more and more attention. For

example at TREC — the most important platform for IR evaluation — a complete

track is dedicated to ES [Balog et al., 2009b]. Instead of documents, a set of entities
is searched. In analogy to standard IR, ES systems are expected to return a ranked list

of relevant entities given an information need. Examples of such entities are people

(often referred to as Expert Retrieval) or other named entities (cities, countries, . . . ).

In the context of this thesis, we extend ES to the multilingual scenario:

Definition I.9 (Multilingual Entity Search) Given a set of entities E, Multilingual
Entity Search (MLES) is defined as the task of retrieving a ranked list of relevant
entities for a query in language lq . Entities are information items that do not depend
on a specific textual representation and have the same meaning in the context of any
language. Examples for such entities are people or locations. Therefore, the notion
of relevance is independent of the query language or the language of the textual
evidence that is used to rank each entity.

In many cases, the problem of MLES can be reduced to the problem of MLIR by

defining a multilingual text profile of each entity. However, this is not a trivial step as

the weighting of terms or the integration of different text sources might be difficult.

Another problem in ES is the result presentation. While the names of entities might

not be human readable or even missing, other descriptive properties of entities need

to be extracted and presented to the user of the search system.

I.4 Research Questions
The main research question we address in this thesis is how semantic background

knowledge can be exploited for MLIR. This problem consists of two parts.

The first problem is the discovery or selection of suitable resources. Given the

retrieval scenario, these resources need to cover a broad range of topics and should

be able to adapt to dynamic changes. In addition, the information provided by these
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resources should be useful in respect to the retrieval scenario. We assume that there

is a positive correlation between quality and usefulness, as resources of low quality

will probably not be very helpful when used as background knowledge. Examples of

low quality resources are resources containing a large share of noise, which makes it

hard to identify meaningful content. Therefore, a high quality of data is also required

for suitable resources.

Our proposed approaches to solve this problem aim at using datasets from the

Web 2.0. We argue that commonly used semantic data sources such as domain on-

tologies do not meet the properties of Social Semantics in the general case, which are

however preferable in the MLIR scenario. Our contribution is therefore the exploita-

tion of collaboratively created Web 2.0 resources, which are built by the contribu-

tions of many Internet users and define implicit knowledge — the Social Semantics

as defined in Definition I.2.

The second problem is how the semantic resources can be integrated in retrieval

models. The main goal is to improve retrieval performance by using the knowledge

provided by these resources. However, the integration must be robust in respect to

changes in the background knowledge. Further, improvements in retrieval perfor-

mance need also to be consistent when applied to different information needs and

document collections. While the definition of retrieval models exploiting the back-

ground knowledge is the central task to solve this problem, focus has also to be set

on experimental design and evaluation of the new models.

In summary, the main research questions and our approaches to solve these ques-

tions are the following:

Selection of Resources: What are suitable resources that can be used as seman-
tic background knowledge to support MLIR systems, and that also meet the
properties of Social Semantics?

In more detail, we analyzed two multilingual Web 2.0 portals in respect to the

properties of Social Semantics: Wikipedia and Yahoo! Answers.

In the case of Wikipedia, a large coverage of topic fields is given. How-

ever, it is not clear if all content is linked across languages. We analyzed

Wikipedia databased in several languages and created statistics that indeed

show that the level of linkage across languages is sufficient and also of high

quality [Sorg and Cimiano, 2008a]. We also identified missing cross-language

links in Wikipedia [Sorg and Cimiano, 2008b]. In Chapter VI, we present re-

sults that show that most of these missing links were added by the Wikipedia

community since our experiments — supporting the hypothesis that Wikipedia

is constantly improving and adapting.

As regarding to Yahoo! Answers, we analyzed the distribution of questions

to categories and languages, showing the large coverage of topic fields and

also the support for various languages [Sorg et al., 2010]. The growing rate

of Yahoo! Answers is much higher compared to Wikipedia due to the lower

barriers of publishing content. This growing rate implies that Yahoo! Answers
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is constantly updating and therefore also adapting to new topics.

Application to MLIR: How can the knowledge encoded in these resources be used
to support multilingual retrieval?

We considered different approaches to answer this question.

Using Wikipedia as background knowledge, we analyzed how Explicit Seman-
tic Analysis, an approach to concept indexing, can be extended to multilingual

scenarios. Therefore we defined Cross-lingual Explicit Semantic Analysis

that exploits Wikipedia databases in different languages and can be applied

to CLIR and MLIR [Sorg and Cimiano, 2008a]. Then, we analyzed differ-

ent design choices of Cross-lingual Explicit Semantic Analysis that allow the

optimization of the multilingual retrieval system and the exploitation of dif-

ferent features of Wikipedia such as category links [Sorg and Cimiano, 2009,

2011a]. In our evaluation, we also addressed the question how Cross-lingual

Explicit Semantic Analysis as a Wikipedia based retrieval system compares to

related approaches relying on implicit concepts. Our results show that Cross-

lingual Explicit Semantic Analysis achieves comparable results without ex-

pensive training on the test dataset [Cimiano et al., 2009].

In a second retrieval scenario on Yahoo! Answers, we addressed the ques-

tion of how the knowledge given by the question/answer history can be used

to improve a multilingual retrieval system. Our contributions are two-fold.

Firstly, we show that the structural information encoded in the category clas-

sification of questions can be integrated into standard retrieval models. We

therefore defined a mixture language model that is able to integrate different

sources of evidence. This resulted in a significant improvement compared to

the performance of several baselines in the Expert Retrieval scenario used in

our evaluation. Secondly, we show that parameters of such integrated retrieval

systems can be optimized using Machine Learning techniques. We used a

discriminative model to design a retrieval system that is based on a trained

classifier and input generated by various language models. Our results show

that the values of several evaluation measures are significantly improved using

the discriminative model that is trained on existing relevance assessments.

Evaluation: What is the impact in respect to IR performance of the proposed se-
mantic retrieval models compared to standard approaches?

The evaluation of the proposed models requires datasets that allow the defi-

nition of cross-lingual or multilingual scenarios. In the case of Cross-lingual

Explicit Semantic Analysis, we participated at an international IR challenge

that defined a multilingual search task, including a standardized dataset, top-

ics, relevance assessments and evaluation measures. The results show that

Cross-lingual Explicit Semantic Analysis is comparable with competing re-

trieval systems for certain topic languages [Sorg et al., 2009].
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To evaluate the retrieval system exploiting Yahoo! Answers, we used an Ex-

pert Retrieval scenario on this dataset. As we were first to propose such a

scenario, no evaluation frameworks were available for these experiments. We

therefore addressed the problem of creating a well defined MLIR challenge

on top of the Yahoo! Answers dataset. We organized the CriES workshop at

CLEF, including the creation of the ground truth in respect to a set of carefully

selected topics [Sorg et al., 2010].

I.5 Overview of the Thesis
In Chapter II, we present preliminaries of IR. We will define IR and the search

pipeline that is used in most IR systems. Further, we will define the specific prob-

lems addressed by IR. This chapter gives important background that is needed to

understand the new models we propose in this thesis.

In Chapter III, we give an overview of how semantics are used in IR. This in-

cludes different definitions of semantics. We distinguish between three approaches

to apply semantics to IR — semantic document models, semantic relatedness and se-

mantic retrieval models. The intention of this chapter is to present the most relevant

related work in respect to these different approaches.

In Chapter IV, we define Cross-lingual Explicit Semantic Analysis (CL-ESA).

This model addresses all three research questions as defined in Section I.4. We

describe how concepts can be extracted from Wikipedia that are aligned across lan-

guages. This is applied to multilingual retrieval by the definition of an interlingual

concept space which is then used for CL-ESA. In this context, we present different

design choices and parameters of CL-ESA that allow to optimize the retrieval model.

Finally, this chapter also contains the evaluation of CL-ESA on several CLIR and

MLIR scenarios.

In Chapter V, we present another approach to exploit Social Semantics. We

present multilingual retrieval models that are based on the theory of language models

and allow to combine different sources of evidence. This includes classification

systems as given by the categories in Social Question/Answer Sites. Again, the three

research questions are addressed. As resource we selected a dataset from Yahoo!

Answers. We defined a retrieval model that is able to exploit this data to improve the

retrieval performance in an Expert Retrieval scenario. To evaluate these models, we

designed an official retrieval challenge which also allows to compare our models to

alternative IR systems.

In Chapter VI, we present a Data Mining approach to detect missing cross-

language links in Wikipedia. The quality of this Data Mining approach is evalu-

ated using a test corpus. We also present long term studies of the development of

these missing links in Wikipedia. This aims at the research question of selecting

appropriate resources. Our results show that it is possible to improve Wikipedia us-

ing automatic approaches and that Wikipedia is actually improving over time. This

qualifies Wikipedia as a resource for Social Semantics.
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In Chapter VII, we summarize the outcomes of this thesis and give an outlook to

future applications and research.



Chapter II

Preliminaries of Information
Retrieval 1

In this chapter, we present preliminaries of IR that help to understand the semantic

retrieval models we present in this thesis. We focus on multilingual aspects and will

give further background on common approaches to deal with documents and queries

in different languages.

We already defined IR in Chapter I (see Definition I.6). Given the user informa-

tion need in form of a query, IR systems return information items ranked by their

relevance. The overall search process is visualized in Figure II.1. This process con-

sists of two parts. The indexing part processes the entire document collection to built

index structures that allow for efficient retrieval. These are usually inverted indexes.

Each document is thereby preprocessed and mapped to a vector representation. In

this thesis, we will discuss different approaches to define such representation, either

based on terms or concepts. The search part is based on the same preprocessing

step that is also applied to the query. Using the vector representation of the query,

the matching algorithm determines relevant documents which are then returned as

ranked results.

In detail, this chapter is structured as follows:

Document Preprocessing: We describe the preprocessing that can be applied to

documents containing text in various languages. This is not only limited to

languages using scripts based on the Latin alphabet, but also includes the pre-

processing of documents containing text of other scripts and character encod-

ings. We will also introduce specific approaches to solve the problems of

tokenization and normalization that are required to process text depending on

the used script and language.

Monolingual IR: We introduce different document models, retrieval models and

1This chapter is based on [Sorg and Cimiano, 2011b].
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Figure II.1: The IR pipeline using vector space representation of documents and

queries. The IR process consists of two processing pipelines: indexing of documents

and searching of relevant documents given a query.

index structures that have been applied to IR. We will also present extensions

to basic retrieval models — query expansion and document a priori models.

Firstly, we will only consider monolingual scenarios, in which documents and

queries have the same language.

Cross-lingual IR: We present different approaches to CLIR. This including trans-

lation based and concept based approaches. We also discuss the advantages

and disadvantages of the different approaches in respect to specific applica-

tion scenarios.

Multilingual IR: We introduce MLIR and distinguish it to the related problem of

CLIR. In multilingual scenarios, an additional problem is often to detect the

right language of documents, which we introduce as the language identifica-

tion problem. Another challenge for MLIR is the organization and construc-

tion of indexes. We introduce different approaches to define multilingual in-

dexes and define aggregated retrieval models that allow to build rankings of

multilingual documents.

Evaluation: We present the most common methodologies for the evaluation of IR

systems. This includes experimental setup, relevance assessments and evalua-

tion measures. We also give an overview of established datasets.

Tools, Software and Resources: Finally, we present selected tools that can be used

to implement the different steps in the IR pipeline.



II.1. DOCUMENT PREPROCESSING 17

Algorithm 1 The preprocessing pipeline of document d that results in a set of tokens

T .
d← INPUT

T ← ∅
[c1, c2, . . . ]← character-stream(d)
B ← tokenize([c1, c2, . . . ])
while B �= ∅ do
t← POLL(B)
if is-compound(t) then
B ← B ∪ compound-split(t)

end if
if not is-stop-word(t) then
t = normalize(t)
T ← T ∪ {t}

end if
end while
return T

II.1 Document Preprocessing

In this section, we cover the preprocessing of documents. Preprocessing takes a

set of raw documents as input and produces as set of tokens as output. Tokens are

specific occurrences of terms2 in a document which represent the smallest unit of
meaning. This output defines the vocabulary that can be used to index a collection

of documents as described in Section II.2.

As in most extant IR models and systems, we make the simplifying assumption

that the order of tokens in a document is irrelevant. Phrase indexes or positional
indexes are examples of approaches making use of the order of tokens (see Manning

et al. [2008] for an introduction).

Depending on language, script and other factors, the process for identifying terms

can differ substantially. For Western European languages, terms used in IR systems

are often defined by the words of these languages. However, terms can also be

defined as a fixed number of characters in sequence, which is often the case in IR

systems applied to Asian languages. In Chinese for example — where words are

not separated by whitespaces — it is common to use character sequences instead of

words as tokens. This avoids the problem of detecting word borders.

In the following sections, we introduce common techniques used for document

preprocessing. In our discussion, we will mainly emphasize the differences in pre-

processing for different languages and scripts. This includes in particular a discus-

sion of the differences with respect to document syntax, encoding, tokenization and

normalization of tokens. The complete preprocessing pipeline is illustrated in Algo-

2Terms are also referred to as “types” in literature.
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rithm 1. This pipeline shows the dependencies of the different preprocessing steps

that will be described in the following.

II.1.1 Document Syntax and Encoding
The first step in the preprocessing pipeline is to identify documents in the given data

stream [Manning et al., 2008]. In many cases this is a straightforward task as one

can assume that one file or web site corresponds to exactly one document. How-

ever, there are other scenarios with files containing several documents (for example

XML retrieval) or documents spread over several files (for example Web pages). The

definition of what exactly constitutes a document is thus essentially a design choice

of the developer and depends on the search task, which is defined by the kind of

information items that should be retrieved.

The next step is to transform documents into character streams representing the

content of documents. The goal of this step is to get a unified representation with

respect to encoding, script and direction of script. Two documents with the same

content in the same language should have thus identical character streams after this

step. The following challenges have to be addressed:

Document Syntax. The content of documents is usually encoded in a syntax spe-

cific for the given file type. Based on the file type specification, the textual content

of a document has to be extracted prior to indexing, avoiding in particular that vo-

cabulary elements containing formatting instructions or metadata information are

indexed.

Examples for file types which require content extraction are PDF files or Web

pages. For both cases, many libraries are available that parse PDF or HTML files

and extract the textual content.

In many scenarios, only parts of the textual content contribute to the semantic

content of an individual document. Other parts might be equal across documents —

for example header or footer parts. In these cases, indexing the complete text also

introduces irrelevant content. For specific document formats, extractors based on

the structure of documents are usually applied to identify the relevant text parts. In

the case of Web pages for example, the extraction depends on the individual layout

of the site. While elements from the header like title or keywords might describe

content and should be extracted, the top bar or menus — which are identical on all

web pages in the collection — should be ignored.

Encoding and Script. Encoding refers to the representation of letters through a

number of bytes in a computer system. Historically, the ASCII character encoding

scheme was widely used to encode English documents. As this scheme is mainly

limited to the Latin alphabet, it cannot be used for scripts having different letters.

As an encoding scheme supporting most common languages, Unicode [Consortium,

2009] established itself as the de facto standard for internationalized applications.
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The unique number of every character across all languages ensures high portability

across platforms and avoids errors introduced by conversion. Unicode also supports

right-to-left scripts and can be used to encode for example Arabic or Hebrew. As

most operating systems and also most current programming languages support Uni-

code, it is highly recommended to use this character encoding as default.3

For IR systems, it is essential that queries and documents are represented in the

same script. At some level, retrieval boils down to matching characters, which will

not be successful when query and document scripts are not compatible. Korean is

an example for a language that has different common scripts, namely Hangul and

Hanja. The process of mapping text into another script is defined as transliteration.

This must not be confused with translation, as the language is not changed. Translit-

eration attempts to mimic the sound of the word in the original language by using

the spelling of a different language. It is therefore a phonetic transformation that is

typically reversible.

For preprocessing of datasets containing documents in heterogeneous scripts,

romanization is a common technique used to get a unified representation. Roman-

ization is defined as the transliteration of any script to the Latin (Roman) alphabet.

For example, this allows to represent Chinese text using letters from the Latin al-

phabet. For retrieval systems, this is especially useful when searching for common

names. Applying romanization, common names used in documents of different lan-

guages and scripts will be mapped to the same character sequence in most cases. As

part of the United Nations Group of Experts on Geographical Names (UNGEGN),

the Working Group on Romanization Systems provides romanization resources for

various languages. The motivation of this working group is to introduce unique rep-

resentations of geographic names. However, the resources provided can be used for

romanization of any text.

Direction of Script. As scripts are used to record spoken language, there is a nat-

ural order of words and characters defined by their order in the speech stream [Man-

ning et al., 2008]. Usually byte representations of text also reflect this natural order.

The actual direction of script is handled by the visualization layer in applications,

which is part of the user interface. The main problems are typically documents con-

taining text in different languages with different directions of script. An example are

Arabic texts with English common names. As we focus on the core functionality

and models of multilingual IR in this chapter, we will not discuss these difficulties

any further. We only operate on the data level of documents, which is usually inde-

pendent of the direction of the script. When designing user interfaces, this is a more

important issue.

3Technically, Unicode is a mapping from characters to code points. The set of Unicode encodings

includes UTF-8 and UTF-16.
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II.1.2 Tokenization

Tokenization is defined as the process of splitting a character stream into tokens.

Tokens are instances of terms and correspond to the smallest indexation unit. The

set of all terms is typically called the vocabulary. In the following, we will introduce

three common types of vocabularies that require different tokenization approaches.

The choice of vocabulary is an important design choice for any IR system.

In order to illustrate the different tokenization approaches we will use the fol-

lowing sentence as running example:

It is a sunny day in Karlsruhe.

Word Segmentation. The most common approach to tokenization is splitting text

at word borders. Thus, tokens refer to words of a language and the vocabulary is

equivalent to a lexicon (including morphemes).

For languages that use whitespaces to separate words, this is a successful ap-

proach used in most IR systems. Whitespaces and punctuations are thereby used as

clues for splitting the text into tokens. Examples for such languages are Western

European languages. The problem of this approach is that simply splitting text at

all whitespaces and punctuations will also split parts of the text that should be repre-

sented by a single token. Examples of such error sources are hyphens (co-education),

white spaces in proper nouns (New York), dates (April 28, 2010) or phone numbers

[Manning et al., 2008]. In many cases heuristics are used to decide whether to split

or not. Classifiers can also be trained on this decision. For our running example,

splitting using white spaces results in the following tokens:

[It], [is], [a], [sunny], [day], [in], [Karlsruhe]

Tokenization at word borders is a much harder problem for scripts without

whitespaces — such as Chinese. Approaches can be classified into two classes:

lexical and linguistic. Lexical approaches match terms from a lexicon to the token

stream in order to get a complete coverage. Usually this matching is not determin-

istic. To get reasonable accurate matchings, heuristics can be applied — such as

always preferring to match longer terms. A problem for such approaches are un-
known terms which are not in the lexicon and will not be matched but should be

detected as such. Linguistic approaches make use of background knowledge con-

sisting of already tokenized text. Using statistical measures based on the frequency

of tokens, the goal is to find the most probable segmentation of the current text. Hid-
den Markov Models can be used to compute this in an efficient way [Zhang et al.,

2003]. Machine learning techniques like Conditional Random Fields have also been

successfully applied to this problem [Peng et al., 2004]. As all approaches never

achieve a perfect segmentation, wrong tokens will be used for indexing and search

and will therefore degrade the retrieval performance.
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Phrase Indices. Phrase indices are based on word segmentation. Tokens are

thereby defined not as single words but as sequences of words. Phrase indices are

also known as n-gram models, with n defining the number of words in each token.

The character stream which has been already split into words is mapped to tokens

by moving a window of n words iteratively over the text. These tokens preserve

the context of words. However, this comes at the cost of a very huge vocabulary.

Another problem for search is the sparseness of terms, leading to the problem that

many terms in queries will not be present in the collection at all. In order to circum-

vent this problem, phrase indices can be used on top of a retrieval approach based on

single word segmentation. For our running example, a 3-gram model results in the

following tokens:

[It is a], [is a sunny], [a sunny day], ...

Character n-gram Models. Character n-gram models use sequences of n charac-

ters as tokens. Token streams are obtained by moving a window of n characters over

the text. In this case terms do not correspond to words. The vocabulary is defined

as the set of sequences having n characters, including white spaces and punctuation.

Term lengths of 4 or 5 have been shown to be reasonable. For our running example

a character 4-gram model results in the following tokens:

[_It_], [It_i], [t_is], [_is_], [is_a], [s_a_], ...

This approach can be applied to any character stream and does not depend on

word border clues such as whitespaces. It can therefore be used to tokenize text of

any script. As no segmentation is needed, this also avoids errors introduced by word

segmentation. In the literature, this approach has also been proven to be superior to

word based segmentation in several scenarios [McNamee and Mayfield, 2004]. It

has also been applied to the problem of spelling correction [Manning et al., 2008].

In the context of multilingual retrieval, character n-gram tokenization can only

be used if no mapping of terms into different languages is needed. Terms do not

correspond to words and thus can not be mapped or translated across languages. An-

other drawback using character n-grams is the more difficult visualization of search

results. As only n-grams are matched, it is not possible to highlight matching words

in the search results.

II.1.3 Normalization
The goal of normalization is to map different tokens describing the same concept to

the same terms. An English example is the mapping of plural forms to their singular

forms, like cars to car. Normalization can be defined as building equivalence classes

of terms. For each equivalence class, a representative term is selected, which is then

used to replace the occurrences of all other terms in this class. Often, the most

frequent term in each class is used as such representative. In a search scenario,

normalization can be used to increase the amount of relevant documents retrieved
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and thus also increase the recall of the system. The same normalization methods

have to be applied to the collection before indexing and to the query before search.

This ensures that all tokens are mapped to equivalent terms — which is crucial for

matching queries to documents.

The approach to normalization differs between languages. For languages having

complex morphology, it is a common approach to map (compound) terms to their

lemma(s). Examples are Roman and Germanic languages. There are two main ap-

proaches to this problem. Firstly, lemmatizers use lexical information to map terms

to lemmas. For this approach rich linguistic resources are required. Secondly, stem-
mers use a set of simple rules to map terms to stems [Manning et al., 2008]. For

the plural example, the rule of deleting trailing s would map both terms to the same

equivalence class. Stemmers do not require rich language resources. The drawback

is that terms are not mapped to lemmas but to stems, which do not necessarily cor-

respond to a word. In many cases terms describing different concepts might also be

mapped to the same stem. For example, the terms organize, organizing and orga-
nization would be mapped to organ, which makes it impossible to distinguish these

terms in the index. In contrast, a lemmatizer would correctly normalize organize and

organizing to the lemma organize without changing the term organization.

Normalization might also be useful for scripts using diacritics. An example of the

usage of diacritics in French are the characters “é” or “è”. If the usage of diacritics

is not consistent, it is useful to delete them in the normalization step. For example,

if users do not specify diacritics in queries, normalization should also delete them

before indexing. Simple rule-based approaches are normally applied to remove dia-

critics.

For fusional languages (for example German, Dutch, Italian), compound splitting
is another form of normalization. Applied to such languages, compound terms are

typically split into the composing lemmas in order to increase recall. The problem

of compound splitting is quite similar to the problem of word segmentation in Asian

languages as described above. Lexical approaches use a lexicon to match terms in

compounds. Linguistic approaches additionally use background knowledge. Many

approaches compare the frequency of the compound itself and the frequency of its

constituent terms to decide whether to split or not. When applying compound split-

ting, usually both compounds and split components are added to the token stream.

In the search process this still allows the matching of compounds.

Removal of stop words is a normalization step that deletes frequent terms from

the token stream. The frequency of these terms is thereby counted in the whole doc-

ument corpus. As a consequence, these most frequent corpus terms occur in almost

all documents and are therefore not useful to discriminate between relevant and non-

relevant documents. Stop words are usually articles, prepositions or conjunctions.

For many languages, compiled lists of stop words exist which can be used to match

and filter tokens. For example, an English stop word list may contain the following

terms:

a, in, is, it, the, this, to, when, ...
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Coming back to our running example, stemming and stop word removal would

result in the following tokens:

[sunni], [day], [karlsruh]

Given some simple rules, the trailing “y” of sunny is substituted by “i” and the

trailing “e” of Karlsruhe is omitted.

II.1.4 Reference to this Thesis

The experiments presented in this theses are only based on documents and queries

in Roman and Germanic languages. As all of these languages are based on the

Latin alphabet, we use word segmentation based on whitespaces throughout the ex-

periments. As normalization step, stemming and stop word removal are applied to

documents and queries.

Other techniques — such as transliteration or character n-gram models — will

not be used in our experiments. However, our generic approaches could be applied

to other languages like Chinese or Korean which require other preprocessing steps.

When applied consistently to documents, queries and background knowledge, the

variation of preprocessing would most probably not affect the effectiveness of our

proposed retrieval models.

II.2 Monolingual IR

Most approaches to MLIR are either directly based on monolingual IR techniques

or make at least use of standard IR models. MLIR can be seen as the problem of

aggregating the results of IR systems in different languages. Apart from aggrega-

tion, language specific preprocessing of queries is needed, in particular translation

which will be covered in Section II.4. In general, MLIR is based on the same in-

dex structures and relies on similar document and retrieval models as known from

monolingual IR. In this chapter, we therefore give a short overview of monolingual

IR, including document representation, index structures, retrieval models and docu-

ment a priori models. We focus on those aspects of IR which will also be relevant for

CLIR or MLIR. For more details concerning monolingual IR we refer to Manning

et al. [2008] or Baeza-Yates and Ribeiro-Neto [1999].

II.2.1 Document Representation

In Section II.1, we described the preprocessing of documents. This results in token
stream representations of documents. The tokens are instances of terms, which are

defined by words, stems or lemmas of words or character n-grams. The IR models

presented in this chapter are independent of the used vocabulary and can be applied
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to any term model. For the sake of presentation, we will make the simplifying as-

sumption that terms correspond to words in spoken language throughout this chapter,

as this yields the most intuitive vocabulary for humans.

Most current retrieval approaches use document models based on the indepen-
dence assumption of terms. This means that occurrences of terms in documents are

assumed to be independent of the occurrences of other terms in the same document.

While this is certainly an overly simplistic assumption, retrieval models based on

this assumption achieve reasonable results with current IR technology.

Given the independence assumption, documents can be represented using the

vector space model. The vector space is spanned by the vocabulary in such a way

that each dimension corresponds to a specific term. Documents are represented as

vectors by a mapping function f which maps token streams of documents d to term

vectors �d. Different functions f are used in literature, the most prominent being:

Boolean Document Model: The value of a dimension corresponding to a specific

term is set to 1 if the term occurs at least once in the document, otherwise to

0.

TF Document Model: The value of each dimensions depends on the number of

occurrences of terms in the document token stream, defined as term frequency.

The term frequency can be directly used as value in the term vector. Variants

are for example the normalization of the term frequency by document length.

TF.IDF Document Model: These models additionally multiply term frequency val-

ues by the inverse document frequency of terms. The document frequency of

a term is the number of documents in the collection containing this term. The

inverse document frequency therefore puts more weight on seldom terms and

less weight on frequent terms which do not discriminate well between docu-

ments in the collection. In most cases, the logarithm of the inverse document

frequency is used in TF.IDF models.

Given a collection of documents, the document term vectors can be aligned to

form the term-document matrix. This matrix is spanned by terms as rows and doc-

uments as columns. We will illustrate the different document representations using

the following documents:

Doc1: It is a sunny day in Karlsruhe.
Doc2: It rains and rains and rains the whole day.

For the different documents models discussed, this results in the following term-

document matrices:

Boolean TF TF.IDF
Term Doc1 Doc2 Doc1 Doc2 Doc1 Doc2

sunny 1 0 1 0 1 log 2/1 = 0.7 0.0

day 1 1 1 1 1 log 2/2 = 0.0 1 log 2/2 = 0.0
Karlsruhe 1 0 1 0 1 log 2/1 = 0.7 0.0

rains 0 1 0 3 0.0 3 log 2/1 = 2.1
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II.2.2 Index Structures

An important aspect of IR is time performance. Users expect retrieval results in al-

most real time and delays of only one second might be perceived as a slow response.

The simplistic approach to scan through all documents given a query does obviously

not scale to large collections. The high time performance of current retrieval sys-

tems is achieved by using an inverted index. The idea is to store for each term the

information in which documents it occurs. This relation from terms to documents is

called posting list, a detailed example can be found in Manning et al. [2008]. During

retrieval, only posting lists of query terms have to be processed. As queries usu-

ally consist of only few terms, the scores can be computed with low average time

complexity.

For the example documents presented above, we get the following posting lists:

sunny -> doc1(1x)
day -> doc1(1x), doc2(1x)
Karlsruhe -> doc1(1x)
rains -> doc2(3x)

A remaining bottleneck using inverted indexes is memory consumption. Load-

ing of posting lists from storage to main memory is the slowest part and should be

avoided. Heuristics are therefore needed to decide which posting lists should be kept

in memory and which should be replaced. General approaches to reduce memory

usage — for example by compression or by usage of suffix trees — are described in

[Baeza-Yates and Ribeiro-Neto, 1999]. For very large corpora, distributed indexing

can be applied. Posting lists are distributed to several servers. Each server therefore

indexes the posting lists of a subset of the vocabulary.

In order to reduce the time complexity of retrieval, inexact retrieval models —

also known as top-k models — can be applied. These models determine documents

that are most likely to be relevant without processing all matching documents. Using

these methods, retrieval time can be reduced without getting significant losses in

retrieval performance [Anh et al., 2001].

II.2.3 Retrieval Models

Retrieval models are used to estimate relevance of documents to queries. Different

theoretical models have been used to define these relevance functions. In the fol-

lowing, we will describe three main families of retrieval models: boolean models,

vector space models and probabilistic models. Depending on the retrieval model,

queries are represented in different ways. Boolean queries used for boolean models

are modeled as a binary term vector. As defined above, the order of query terms is

lost in this representation, as only the presence or absence of terms is captured. For

vector space and probabilistic models, queries are represented in a real-valued vector

space and scores for each query term are accumulated [Manning et al., 2008].
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Boolean Models. Boolean Models have been the first retrieval models used in the

beginning of IR. In the case of the Boolean retrieval model, relevance is binary and

is computed by matching binary vectors representing term occurrence in the query

to binary document vectors representing term occurrence. As current vector space

or probabilistic models outperform boolean models, we will not consider boolean

models in this chapter but focus on the other more successful models. The interested

reader is referred to [Manning et al., 2008] for details.

Vector Space Models. Vector space models are based on vector space representa-

tions of documents. As described above, this vector space is spanned by the vocabu-

lary and entries in the term-document matrix are usually defined by term frequencies.

There are different models to assess the relevance of documents to a given query:

• Accumulative Model: The retrieval function computes scores for each query

term. The query term scores are summed up per document to get a final ac-

cumulated score for each document. Functions computing scores for a single

query term t are based on the following measures:

– tfd(t). Term frequency in the document.

– |d|. Length of the document.

– df(t). Document frequency of the query term.

– tfD(t). Number of tokens of the query term in the whole collection.

– |D|. Number of documents in the collection.

For example, the accumulated score of a simple retrieval model based on term

frequency and inverse document frequency is computed as follows:

score(q, d) =
∑
t∈q

tfd(t) log
|D|

df(t)

• Geometric Model: The vector space representation of the query q can be in-

terpreted as term vector �q. In this case, geometric similarity measures in the

term vector space can be used as retrieval models [Manning et al., 2008]. For

example the cosine similarity has been applied successfully in retrieval sce-

narios:

score(q, d) = cosine(�q, �d) =
〈�q, �d〉
‖ �q ‖‖ �d ‖

Probabilistic Models. In probabilistic retrieval models, the basic idea is to es-

timate the likelihood that documents are relevant to a given query. Relevance is

thereby modeled as a random variable R taking values {1, 0}. A document d is rele-

vant for a given query q, iff P (R = 1|d, q) > P (R = 0|d, q) [Manning et al., 2008,
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p. 203]. It has been shown that, given a binary loss function and the most accu-

rate estimation of all probabilities based on all available information, these models

achieve optimal performance [van Rijsbergen, 1979]. However, in practice it is not

possible to get accurate estimations. Probabilistic models have also been used to

justify design choices in heuristic functions used in vector space models, for exam-

ple the use of the inverted document frequency (see [Manning et al., 2008] for more

details).

The BM25 model [Robertson and Walker, 1994] is an example of a probabilistic

retrieval model that has been proven to be very successful in practice. The scoring

function is defined as follows:

score(q, d) =
∑
t∈q

idf(t)
tfd(t)

k1

(
(1− b) + b |d|

∑

d′ |d′|
|D|

)
+ tfd(t)

idf(t) = log
|D| − df(t) + 0.5

df(t) + 0.5

Common values for the parameters of this model are k1 = 2 and b = 0.75, but they

should be adjusted to the search task and dataset.

Language Models. In recent years, language models have established themselves

as powerful alternative retrieval models. Language models are a subclass of proba-

bilistic models. Documents, queries or whole collections are represented by gener-

ative models. These models are represented by probability distributions over terms,

for example the probability that a document, query or collection generate a certain

term [Ponte and Croft, 1998].

Maximum likelihood estimation is often used to define document models. The

probability of a term t being generated by document d is then defined as:

P (t|d) = tfd(t)

|d|
In information retrieval, language models are used to estimate the probability

P (d|q) which is then interpreted as relevance score. Using Bayes’ Theorem, this can

be transformed to:

P (d|q) = P (q|d)P (d)

P (q)

As P (q) is constant for a query and P (d) can be assumed to be uniform, ranking of

documents is based on the value of P (q|d). When modeling queries as set of inde-

pendent terms, this probability can be estimated using document language models:

P (q|d) =
∏
t∈q

P (t|d)



28 CHAPTER II. PRELIMINARIES OF IR

As this score will be zero for all documents not containing all query terms, smoothing
is often applied. Using background knowledge, a priori probabilities of terms P (t)
are estimated and a mixture model is used for retrieval:

P (q|d) =
∏
t∈q

(1− α)P (t|d) + αP (t)

with α being the smoothing weight.

Often, the whole collection is used as background knowledge and the a priori
probability is estimated by the language model of the collection:

P (t) =

∑
d∈D tfd(t)∑
d∈D |d|

II.2.4 Query Expansion
Query expansion is an established technique to improve retrieval performance, which

is of special interest in the context of cross-lingual and multilingual IR. The query

is expanded by additional terms that further characterize the information need. The

goal is to match more relevant documents which contain relevant content but use

other terms to describe it.

Expanded queries can be used in all retrieval models presented above. Usu-

ally, expanded query terms are given less weight than the original query terms. The

weight depends on the confidence of each expanded term and the overall weight put

into query expansion. Using probabilistic retrieval models, query expansion can be

used to improve the estimation of probabilities, for example the estimation of the

query language model. We distinguish two different sources for expansion terms:

Background Knowledge. Additional knowledge sources are exploited to find ex-

pansion terms for a given query. An example is the usage of a thesaurus to expand

the query with synonyms of the query terms [Voorhees, 1994; Mandala et al., 1999].

For CLIR or MLIR, a special case of query expansion is the translation of the query.

In this case the query is expanded using the terms of its translation into different

languages.

Relevance Feedback. Using relevance feedback for query expansion is a two step

retrieval process. First, the original query is matched to the document collection.

Then, relevance assessments are used to identify the relevant documents in the re-

trieval results. Using an expansion model based on term frequency and document

frequency in this set of expansion documents, promising terms are identified and

used in a second retrieval step for query expansion.

The selection of relevant documents in the first step can be either manual or

automatic. In the first case, the user selects relevant documents manually out of the

retrieval results of the first step. In the case of so called Pseudo Relevance Feedback
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(PRF), the top k documents of the first retrieval step are assumed to be relevant [Xu

and Croft, 1996]. This enables to implement automatic query expansion without user

interaction. For this reason, PRF is often referred to as blind relevance feedback.

II.2.5 Document a priori Models

In all retrieval models presented above, the a priori probability of documents is

assumed to be uniform, i.e. the probability of retrieving documents independently

of a specific query is the same for all documents. However, in many scenarios this

assumption does not hold. For example, documents have different perceived quality

and popularity. Such factors could definitely influence the a priori probability of a

document in the sense that very popular or high-quality documents should intuitively

have a higher likelihood of being relevant.

For the different types of retrieval models, there are different approaches to inte-

grate document priors. When using vector space models, these a priori probabilities

can be multiplied with the IR score of each document [Baeza-Yates and Ribeiro-

Neto, 1999]. Another option is the linear combination of scores and a priori prob-

abilities. Weights in this linear combination have to be optimized for the special

application scenario. For probabilistic and language models, the estimation of doc-

ument priors P (d) is required as part of the retrieval model. In the standard case

without background knowledge, document priors are assumed to have equal distri-

bution over all documents. However, if document a priori models are available, they

can be integrated directly into the retrieval model by replacing the uniform model

used before.

The way document priors are modeled clearly depends on the target application.

In web search for example, the web graph consisting of pages and hyperlinks can

be exploited to compute authority measures, which can be used as document pri-

ors. Pagerank [Brin and Page, 1998] and HITS [Kleinberg, 1999] are established

algorithms to compute authority in Web graphs. Another example is search in com-

munity portals. Ratings of users, usage patterns or other evidence can be used to

compute document priors [Agichtein et al., 2008].

II.2.6 Reference to this Thesis

In Chapter IV, we present a concept-based retrieval model. This model makes use of

the vector space model to relate documents to concepts. Further, the retrieval model

in the concept space is inspired by the geometric model presented above.

The theory of language models is used in Chapter V to define new generative

models that support the aggregation of different sources of evidence in the retrieval

process. Standard approaches based on probabilistic retrieval models are thereby

used as baseline in the experiments.
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II.3 Cross-lingual IR
Cross-lingual IR is the task of retrieving documents relevant to a given query in some

language (query language) from a collection D of documents in some other language

(collection language) (see Definition I.7). Hereby, D is a monolingual collection, i.e.
all documents in D have the same language.

Essentially, we can distinguish between two different paradigms of CLIR. On the

one hand, we have translation-based approaches that translate queries and/or docu-

ments into the language supported by the retrieval system. Such approaches reduce

the task of cross-language retrieval to a standard monolingual IR task to which stan-

dard retrieval techniques can be applied. On the other hand, there are also approaches

that map both documents and queries into an interlingual (concept) space. The rele-

vance functions are then defined on the basis of this interlingual space. We discuss

these different approaches below.

II.3.1 Translation-based Approaches
Translation-based approaches translate the query and/or the document collection into

some language supported by the retrieval system. Translation-based approaches dif-

fer in the choice of translation techniques as well as in the choice of whether only the

query, the document collection or both are translated. We will describe several al-

ternative choices for the latter below. Further, translations can be either obtained by

involving manual translators or through the application of Machine Translation (MT)

techniques. We also discuss this in more detail below.

Translating Queries. The default strategy for CLIR is the translation of the query

into the language of the document collection. This effectively reduces the problem

of CLIR to monolingual IR. In what follows, we list some of the advantages (PRO)

and disadvantages (CON) of such an approach:

PRO

• Only the query has to be translated, which is usually a short text.

• The index can be used to evaluate queries in arbitrary languages (under the

condition that they can be translated into the language of the collection / in-

dex).

CON

• An online query translation is needed. As the response time of the retrieval

system is the sum of the translation time and the retrieval time, an efficient

MT system is needed in order to maintain system performance at reasonable

levels.
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• The accuracy of the retrieval system is partially dependent on the quality of

the MT system used.

Translating Documents. A further strategy is to translate the entire document col-

lection into the query language and create an inverted index for the query language.

This might be useful in search scenarios having a fixed query language, for example

in portals that have only users of one language. In the following, we also provide a

summary of advantages and disadvantages of such an approach:

PRO

• The translation is part of the preprocessing as indices will be based on the

translated documents. Thus, there is (almost) no temporal constraint on the

translation step — such that one can resort to manual translation if needed for

quality reasons.

CON

• The query language has to be known and fixed in advance. As the index is

specific for this language, queries in other languages are not supported.

• The entire collection has to be translated, which might be costly.

Pivot Language. As a combination of the first two approaches, both queries and

documents can be translated into a so-called pivot language. The pivot language

is either a natural or artificial language for which translation systems are available

from many languages. English is most often used as such pivot language due to the

large amount of available translation systems. As no direct translation from query

language to document language is needed, the pivot language approach is useful if

no language resources supporting this translation are available.

Using a pivot language reduces CLIR to the problem of standard monolingual

IR as an existing IR system in the pivot language can be applied to any pairs of

query and document languages. However, the performance depends on an adequate

translation for both the query language and the collection language into the pivot

language. Advantages and disadvantages here can be summarized as follows:

PRO

• Translation systems to a pivot language can be used for CLIR between lan-

guages for which direct translation is not available.

• Existing IR systems in the pivot language can be used for CLIR for any pair

of query and document language.
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CON

• Online translation of the query as well as offline translation of documents (as

part of document preprocessing) are required.

Query Expansion. Query expansion techniques that add additional query terms to

the original query can also be applied in CLIR settings in the following ways:

Pre-translation expansion expands the query before it is translated. The ex-

panded query is then processed by the translation system. This has the advantage

that more context by the additional query terms is given as input to the translation

process. In CLIR settings, this was shown to improve precision of the retrieval re-

sults [Ballesteros and Croft, 1997].

Post-translation expansion is equivalent to query expansion used in monolingual

IR. In a CLIR setting, it has been shown that post-translation expansion can even al-

leviate translation errors as wrong translations can be spotted by using local analysis

of the results of the query (e.g. using PRF) [Ballesteros and Croft, 1997].

II.3.2 Machine Translation

As described above, a translation step is necessary for translation-based CLIR. Ei-

ther the query or documents need to be translated before queries can be evaluated

using the (language-specific) inverted index. Manual translation — for example by

professional translators — typically incurs high costs. The manual translation of

documents does not scale to large corpora and it is not possible to have real-time

translation of queries, a crucial requirement in retrieval systems that need response

times in fractions of a second (for example in web search). This clearly motivates

the use of MT for CLIR.

In this chapter, we present the two main approaches to MT used in CLIR systems:

dictionary-based translation and Statistical Machine Translation.

Dictionary-based Translation. A straight-forward approach to query translation

is the use of bi-lingual dictionaries for term-by-term translation. There are different

strategies to cope with alternative translations of terms, ranging from choosing the

most common translation to taking into account all possible translations. Interest-

ingly, Oard [1998] has shown that there are no significant differences between the

different strategies in a CLIR setting. When using all alternative translations, query

terms are usually weighted by their translation probability.

Ballesteros and Croft [1997] argue that post-translation expansion can be used to

minimize translation errors in dictionary-based query translation. They have shown

that using Pseudo Relevance Feedback for query expansion removes extraneous

terms introduced by the translation and therefore improves the retrieval performance.
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Statistical Machine Translation. In contrast to dictionary-based translation,

Statistical Machine Translation (SMT) aims at translating whole sentences. Thus,

in principle SMT can be applied both in the case of query or document translation.

Most current SMT systems are based on the IBM Models introduced by Brown

et al. [Brown et al., 1993]. These models are iteratively induced for language pairs

on the basis of a training corpus in which sentences are aligned across languages. In

two subsequent steps, the term alignment of translated sentences and the translation

model of terms are optimized. The final model then is a product of the iterative op-

timization of these two steps. These models can be further improved by additionally

translating phrases. In this case, not only alignment and translation of single terms

but also of phrases like New York are learned and applied. Using additional back-

ground knowledge can also improve translation, for example by including language

models derived from large monolingual training corpora.

The drawbacks of applying SMT systems to translate the query on the fly is the

potentially longer execution time of the retrieval step and the requirement of a train-

ing corpus. The execution time bottleneck seems less problematic given the contin-

uous advances in computer hardware and the fact that providers of online translation

systems build on a large and distributed computer infrastructure. Indeed, recent sys-

tems can already be applied to real time query translation. However, training corpora

are still missing for many language pairs [Resnik and Smith, 2003].

II.3.3 Interlingual Document Representations

An alternative to translation-based CLIR are interlingual document representations.

The essential idea is that both query and documents are mapped to an interlingual

concept space. In contrast to term-based representations of documents, concepts rep-

resent units of thought and are thus assumed to be language-independent. Language-

specific mapping functions are however needed in order to map documents into the

interlingual concept space. Such a mapping might for instance rely on a quantifica-

tion of the degree of association for terms in different languages (and by aggregation

also for a document) to the given set of interlingual concepts.

By mapping queries to the same concept space as documents, IR can be reduced

to the comparison of query and document concept vectors. This enables the applica-

tion of standard similarity measures to compute a ranking, such as the cosine of the

angle enclosed by the two vectors representing the query and the document. In the

following, we present two approaches to interlingual concept spaces that have been

applied to CLIR.

Latent Semantic Indexing. In the monolingual case, Latent Semantic Indexing

(LSI) is used to identify latent topics in a text corpus. These topics, which corre-

spond to concepts as described above, are extracted by exploiting co-occurrences of

terms in documents. This is achieved by Singular Value Decomposition of the term-

document matrix [Deerwester et al., 1990]. The latent topics then correspond to the
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eigenvectors having the largest singular values. This also results in a mapping func-

tion from term vectors to topic vectors. LSI was originally used for dimensionality

reduction of text representation and for improved retrieval of synonyms or similar

terms. By using parallel training corpora, LSI can also been applied to CLIR [Du-

mais et al., 1997]. In this case the extracted topics span terms of different languages

and the mapping function maps documents of all languages to the latent topic space.

More details of LSI will be given in Chapter III.

Explicit Semantic Analysis. Recently, Explicit Semantic Analysis (ESA) has

been proposed as an alternative concept based retrieval model [Gabrilovich and

Markovitch, 2007]. Concepts are explicit and defined with respect to some exter-

nal knowledge source. Textual descriptions of each concept are used to map doc-

uments into the concept space. Examples of such resources of concepts and their

descriptions that have been used for ESA are Wikipedia and Wiktionary. ESA can

be applied to CLIR if textual descriptions of concepts are available in all languages

supported by the retrieval system. When using Wikipedia as multilingual knowledge

resource, cross-language links can be used to build multilingual concept definitions,

which will be introduced in Chapter IV.

II.3.4 Reference to this Thesis

We will introduce Cross-lingual ESA as a CLIR system in Chapter IV. In our exper-

iments we compare the retrieval performance of CL-ESA, LSI and Latent Dirichlet

Allocation (LDA) on established datasets. Further we present an aggregated model

that combines translation based approaches with CL-ESA. This model was evaluated

by our participation in an international MLIR challenge.

The language models presented in Chapter V are instances of translation based

approaches. In the retrieval process, queries are translated to all the different docu-

ment languages.

II.4 Multilingual IR
In contrast to CLIR, Multilingual IR (MLIR) considers corpora containing docu-

ments written in different languages. Given the documents in languages l1, . . . , ln
of collection D, the task is defined as the retrieval of a ranked list of relevant docu-

ments for a query q in the query language lq . These relevant documents may thereby

be distributed over all languages l1, . . . , ln (see Definition I.8).

In general, MLIR systems are based on similar techniques as CLIR systems and

essentially the same translation approaches can be applied. However, the multi-

lingual scenario requires a different index organization and relevance computation

strategies compared to both monolingual and cross-lingual retrieval. In the follow-

ing, we briefly describe different strategies ranging from unified indices to multiple
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language-specific indices. If the language of the documents is not known a priori,
language identification is required as part of the preprocessing.

II.4.1 Language Identification
Language identification is defined as the problem of labeling documents with the

language in which the content of the document is expressed. In the following, we

assume that documents are monolingual, i.e. they contain text in one language. The

more complex case of mixed documents will be briefly touched upon at the end of

this section.

The problem of language identification can be reduced to a standard classification

problem with discrete classes. The target classes are given by a set of languages and

the task is to classify documents into one of these classes representing each of the rel-

evant languages. Given monolingual training corpora for each language, supervised

Machine Learning (ML) approaches can be applied to this task. The most successful

reported classification method is based on character n-gram representations of docu-

ments. Cavnar and Trenkle [1994] present language identification results with 99%

of precision using a set of 14 languages. They build term vectors for each document

by extracting character n-grams for n = 1 . . . 5. An important aspect here is that the

classifiers can be trained on monolingual input for each of the languages, so that an

aligned dataset is not necessary. Thus, the approach is applicable in principle to any

set of languages. Further, the method requires no preprocessing as character n-grams

are based on the character streams without word splitting. It has been demonstrated

that the accuracy of this language identification method is dependent on document

length as longer documents provide more evidence for the language they are written

in. The results of Cavnar and Trenkle [1994] show that precision of 99% or more

can be expected for documents having more than 300 characters.

Applying the proposed classifier on mixed documents having content in multiple

languages results in unpredictable classification. The language-specific distribution

of terms or n-grams (that is exploited by the classifier) is lost as the characteristics of

the individual languages overlay each other. These documents have to be split into

their monolingual components beforehand. As the splitting is done on sections, para-

graphs or event sentences, this produces shorter documents that are more difficult to

classify, thus degrading results.

II.4.2 Index Construction for MLIR
There are two main approaches to index construction for MLIR — differing in

whether a single or multiple indices are used. Single index approaches build one

index for the documents in the different languages. We distinguish three different

techniques for constructing such an index:

Document Translation: By translating all documents into a pivot language, the

problem of MLIR can be reduced to CLIR. The single index then contains
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all the translated documents.

Language Token Prefixes: Nie [2002] proposes the creation of a unified index by

adding language prefixes to all tokens. This ensures that terms having the

same character representation in different languages can be distinguished. The

lexicon of the unified index consists of terms in all languages. Nie argues that

this unified index preserves term distribution measures like term frequency or

document length.

Concept Index: As discussed above, language-independent concept indices can

also be applied to MLIR. As documents of different languages are mapped

to the same interlingual concept space, only a single concept index is needed

for the multilingual corpus.

Approaches based on multiple indices build different indices for each language of

the corpus. There are two different techniques:

Language-Specific Indices: Each document in a multilingual collection is added to

the index for the corresponding language, whereby the language needs to be

identified such that the language-specific preprocessing can be applied. For

monolingual documents, the set of documents contained in each index are

thus disjoint. For mixed documents having content in different languages,

only document parts in the language of the index are added. In this case a

document can appear in many of the language-specific indices.

Specific Preprocessing: For each language, an index is constructed containing all

documents of the corpus. However, preprocessing of these documents is spe-

cific to the language associated to each index. For each index, documents are

therefore assumed to only have content in the according index language. In

the retrieval step, the translated queries are matched to the index associated to

the query language.

The indexing approach based on specific preprocessing avoids the problems

introduced by language classification, which is mostly relevant for documents

having content in several languages. In some cases, text in different languages

occurs in the scope of one sentence which can most probably not be detected

using language classification. Examples are common names in a foreign lan-

guage or quotes. Using language specific indexes of all documents with the

according preprocessing ensures that each query translation can be matched

to the entire corpus. Therefore no text parts are missed due to false language

classifications.

II.4.3 Query Translation
The different approaches to index construction require different query translation

strategies. For single indices based on document translation or concept indices, we
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refer to Section II.3 as the query translation is analogous to query translation used in

CLIR.

For all other approaches, queries need to be translated into all document lan-

guages. Depending on the index used, these translations are applied in different

ways:

Language Token Prefixes: A query for the unified index with language prefixes for

each term is build by concatenation of all query translations into a single query

and by adding language prefixes to all query tokens. Standard IR retrieval

models can then be used to query the unified index.

Multiple indices: When using multiple indices for the different languages, the

translation of the query into each language is used to query the index of the cor-

responding language. This produces different language-specific rankings for

each language that have to be combined into an aggregated score determining

an aggregated ranking. We discuss some of the most important aggregation

models below.

II.4.4 Aggregation Models

Retrieval based on multiple indices requires score aggregation models, as the rank-

ings based on evidence in each language need to be combined to yield a final ranking.

Given a set of languages L = {l1, . . . , ln}, a query q and language-specific scores

for each document scorel(d, q), a straightforward approach is to sum up the scores

for all the languages:

score(q, d) =
∑
l∈L

scorel(q, d)

The aggregated score can then be used to sort all documents and produce an overall

ranking of the documents.

The main problem of the above aggregation strategy is the potential incompati-

bility of the scores. In fact, by simply adding scores it is assumed that the absolute

score values express the same relevance level in each ranking. However, for most

retrieval models this is not the case. The absolute values of scores depend on col-

lection statistics and term weights, for example the number of documents, number

of tokens, average document length or document frequency. For each index, these

values differ and therefore the absolute scores are not necessarily comparable.

In order to overcome this problem, typically normalization is applied to each

ranking before aggregation. A standard approach for MLIR is the Z-Score normal-

ization [Savoy, 2005]. Each ranking is normalized by using statistical measures on

its scores, i.e. the minimal score, the mean score and the standard deviation. Given

training data in the form of queries and relevance judgments for documents, Machine

Learning techniques can be used to compute optimal weights by which scores can

be combined (see Croft [2002]).
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Algorithm 2 Aggregation of multiple rankings r1, . . . , rn based on Z-Score normal-

ization. For ranking r, r[i] defines the score at rank position i, scorer(d) defines the

score of document d. MIN, MEAN and STD-DEVIATION are defined on the set of

score values of ranking r.

R← {r1, . . . , rn}
for all r ∈ R do {Normalization}
μ← MEAN(r)
σ ← STD-DEVIATION(r)

δ ← μ−MIN(r)
σ

for i = 1..|r| do
r[i]← r[i]−μ

σ + δ
end for

end for

rc ← []
for all d ∈ D do {Aggregation}
s← 0
for all r ∈ R do
s← s+ scorer(d)

end for
scorerc(d)← s

end for
rc ← DESCENDING-SORT(rc)
return rc

A complete aggregation step using Z-Score normalization is presented in Algo-

rithm 2. Given a set of rankings R = {r1, . . . , rn}, the algorithm computes the com-

bined ranking rc. In the first step, each ranking ri is normalized using the minimum

value, the mean value and the standard deviation of its values. In the second step,

combined scores are computed by summing the scores of each document across all

rankings. Finally, the combined ranking is build by re-ordering documents according

to descending values of the aggregated scores.

II.4.5 Reference to this Thesis

The scenario of MLIR will be used in Chapter IV and V to evaluate the proposed

retrieval models. Standard approaches such as query translation combined with Z-

Score normalization will be presented as baseline approaches and will also be inte-

grated in new models. The language model presented in Chapter V uses aggregation

not only across languages but also to combine different sources of evidence.
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II.5 Evaluation in IR
Ultimately, the goal of any IR system is to satisfy the information needs of its users.

Needless to say, user satisfaction is very hard to quantify. Thus, IR systems are typ-

ically evaluated building on the notion of relevance, where relevance is assessed by

a team performing the evaluation of the system rather than by the final user of an

IR system. Hereby, one can adopt a binary notion of relevance where documents are

relevant to a query or not or even a degree of relevance to a query. The former case is

the most frequent one in IR evaluation. Given a specification of which documents are

relevant to a certain query and which ones not, the goal of any IR system is to max-

imize the number of relevant documents returned, while minimizing the amount of

non-relevant documents returned. If the IR system produces a ranking of documents,

then the goal is clearly to place relevant documents on top and non-relevant ones on

the bottom of the ranked list. Several evaluation measures have been proposed to

capture these intuitions. In addition, several reference collections with manual rel-

evance judgments have been developed over the years. As results on such datasets

are thus reproducible, they allow different system developers to compete with each

other and support the process of finding out which retrieval models, preprocessing,

indexing strategies, etc. perform best on certain tasks.

In this section, we will first describe the experimental setup that was introduced

as the so called Cranfield paradigm. Terms defined in the Cranfield experiments

— for example corpus, query or relevance — have been used already throughout

this chapter. Then, we introduce and motivate different evaluation measures. These

measures are based on relevance assessments. We describe manual and automatic

approaches to create relevance assessments. Finally, we provide an overview of

established datasets that can be used to evaluate CLIR or MLIR systems.

II.5.1 Experimental Setup
The experimental setup used to evaluate IR systems has to ensure that an experiment

is reproducible, which is the primary motivation for the development of the Cranfield

evaluation paradigm [Cleverdon, 1967]. According to this paradigm, we have to fix

a certain corpus as well as a minimum number of so-called topics consisting of a

textual description of the information need as well as a query to be used as input for

the IR system. The systems under evaluation are expected to index the collection

and return (ranked) results for each topic (query). In order to reduce the bias towards

outliers, a reasonable number of topics needs to be used in order to yield statistically

stable results. A number of at least 50 topics is typically recommended.

For each topic, a so-called gold standard defines the set of relevant documents

in the collection [Manning et al., 2008]. The notion of relevance is hereby typically

binary — a document is relevant or not to a given query. Using this gold standard,

the IR system can then be evaluated by examining whether the returned documents

are relevant to the topic or not, and whether all relevant documents are retrieved.

These notions can be quantified by certain evaluation measures which are supposed
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to be maximized (see below). As user satisfaction is typically difficult to quantify

and such experiments are difficult to reproduce, an evaluation using a gold standard

— with defined topics and given relevance assessments — is an interesting and often

adopted strategy. We will discuss how the necessary relevance assessments can be

obtained in the next section.

II.5.2 Relevance Assessments

Experimentation in IR usually requires so-called relevance assessments that are used

to create the gold standard. While for smaller collections, for example the original

Cranfield corpus, the manual examination of all the documents for each topic by

assessors is possible, this is unfeasible for larger document collections [Manning

et al., 2008]. Thus, a technique known as result pooling is used in order to avoid that

assessors have to scan the entire document collection for each topic. The essential

idea is that the top ranked documents are pooled from a number of IR systems to be

evaluated. For each topic, one typically considers the top k documents retrieved by

different systems, where k is usually 100 or 1000. As relevance assessments vary

between assessors, each document / topic pair is usually judged by several assessors.

The final relevance decision as contained in the gold standard is an aggregated value,

for example based on majority votes. The measurement of the inter annotator agree-

ment, for example through the kappa statistic [Manning et al., 2008], is an indicator

for the validity of an experiment. A low agreement might for instance result from

the ambiguous definition of information needs.

By involving several systems in the pooling, one tries to reduce the bias of the

relevance judgments towards any single system. Moreover, the test collection should

be sufficiently complete so that the relevance assessments can be re-used to test IR

techniques or systems that were not present in the initial pool.

For CLIR or MLIR systems, an alternative evaluation method is provided by

the so called mate retrieval setup. This setup avoids the need to provide relevance

judgments by using a parallel or aligned dataset consisting of documents and their

translation into all relevant languages. The topics used for evaluation correspond

to documents in the corpus. The so-called mates of this topic — the equivalents of

the document in different languages — are regarded as the only relevant documents,

such that the goal of any system is to retrieve exactly these mates. The gold stan-

dard can therefore be constructed automatically. The values of evaluation measures

are clearly underestimated using this gold standard, as other documents might be

relevant as well.

II.5.3 Evaluation Measures

In order to quantify the performance of an IR system on a certain dataset with respect

to a given gold standard consisting of relevance judgments, we require the definition

of certain evaluation metrics. The most commonly used evaluation measures in IR
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relevant non-relevant
retrieved TP FP

non-retrieved FN TN

Table II.1: Contingency table of retrieval results for a single query.

are precision and recall. Precision measures the percentage of the retrieved docu-

ments that are actually relevant, and recall measures the percentage of the relevant

documents that are actually retrieved.

Computation of these measures can be explained based on the contingency table

of retrieval results for a single query as presented in Table II.1. Precision P and

recall R are then defined as:

P =
TP

TP + FP
R =

TP

TP + FN

In order to choose an appropriate evaluation metric, it is crucial to understand

how the retrieval system will be used. In some scenarios, users are likely to read all

documents, for example in order to compile a report, while in other scenarios, such as

ad hoc search in the Web, users are likely to only examine the top-ranked documents.

It should be clear from these very extreme examples of usage that the choice of an

evaluation metric is not independent of the way the IR system is supposed to be used.

For retrieval systems in which both precision and coverage (i.e. returning all

relevant documents) is important — which is not necessarily the case for Web Search

— a reasonable choice is average precision (AP), which averages the precision at

certain positions in the ranking. In particular, these are the positions at which relevant

documents are found.

For the document collection D = {d1, . . . , dn}, ranking R = {r1, . . . , rl} with

1 ≤ ri ≤ n and ri �= rj for i �= j, the set of relevant documents DREL, the binary

function rel : D → {0, 1} mapping relevant documents to 1 and non-relevant to 0
and Pk as precision at cutoff level k, AP is computed as follows:

AP (R) =

∑l
i=1 Pi · rel(dri)
|DREL|

Mean average precision (MAP) averages AP over all topics and can be used to eval-

uate the overall performance of an IR system.

A common feature of measures such as MAP — others are bpref [Buckley and

Voorhees, 2004] and infAP [Yilmaz and Aslam, 2006] — is that they are primarily

focused on measuring retrieval performance over the entire set of retrieved docu-

ments for each query, up to a pre-determined maximum (usually 1000). As already

mentioned, such evaluation measures are a reasonable choice for scenarios in which

users require as many relevant documents as possible. However, it is likely that users

will not read all 1000 retrieved documents provided by a given IR system. For this
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reason, other measures have been proposed to assess the correctness of the retrieval

system given the fact that users typically only examine a limited set of (top-ranked)

documents. For example, precision can be calculated at a given rank (denoted P@r).

Precision at cut-off rank 10 (P@10) is commonly used to measure the accuracy of

the top-retrieved documents.

When it is important to get the single top-ranked document correct, mean recip-

rocal rank (MRR) is another established evaluation measures. MRR is defined by

the inverse rank of the first retrieved relevant document, averaged over all topics.

In some cases, relevance assessments contain multiple levels of relevance.

Measures such as normalized discounting cumulative gain (NDCG) [Järvelin and

Kekäläinen, 2000] can then be applied as they take into account the preference to

have highly-relevant documents ranked above less relevant ones.

II.5.4 Established Datasets

IR experiments become reproducible and results comparable by re-using shared

datasets consisting of a common corpus of documents, topics / queries and rele-

vance assessments. In the field of IR, different evaluation initiatives defining various

retrieval tasks and providing appropriate datasets have emerged.

Apart from datasets published by evaluation campaigns, parallel corpora are also

of high interest to CLIR and MLIR. They are used as language resources, for ex-

ample in order to train SMT systems or in order to identify cross-language latent

concepts as in LSI. Additionally, they are also used as test collections, for example

in mate retrieval scenarios.

Evaluation Campaigns:

Text REtrieval Conference (TREC) is organized yearly with the goal of provid-

ing a forum where IR systems can be systematically evaluated and compared.

TREC is organized around different tracks (representing different IR tasks

such as ad hoc search, entity search or search in special domains). For each

track, datasets and topics / queries (and relevance judgments) are typically

provided that participants can use to develop and tune their systems. Since

its inception in 1992, TREC has been applying the pooling technique that al-

lows for a cross-comparison of IR systems using incomplete assessments for

test collections. TREC and similar conferences are organized in a competitive

spirit in the sense that different groups can compete with their systems on a

shared task and dataset, thus making results comparable. Such shared eval-

uations have indeed contributed substantially to scientific progress in terms

of understanding which retrieval models, weighting methods etc. work better

compared to others on a certain task. However, the main goal of TREC is not

only to foster competition, but also to provide shared datasets to the commu-

nity as a basis for systematic, comparable and reproducible results. The main
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focus of TREC is monolingual retrieval of English documents, such that the

published datasets only consist of English topics and documents.

Cross-lingual Evaluation Forum (CLEF) was established as the European coun-

terpart of TREC with a strong focus on multilingual retrieval. In the ad hoc

retrieval track, different datasets have been used between 2000 and 2009, such

as a large collection of European newspapers and news agency documents

with documents in 14 languages, the TEL dataset containing bibliographic en-

tries of the European Library in English, French and German and a Persian

newspaper corpus. For all datasets, topics in different languages are available,

which makes these datasets suitable for CLIR and MLIR. The TEL dataset

also contains mixed documents with fields in different languages.

NII Test Collection for IR Systems (NTCIR) defines a series of evaluation work-

shops that organize retrieval campaigns for Asian languages including

Japanese, Chinese and Korean. A dataset of scientific abstracts in Japanese

and English as well as news articles in Chinese, Korean, Japanese and English

with topics in different languages has been released. In addition, a dataset for

Japanese-English patent retrieval has been published.

Forum for Information Retrieval Evaluation (FIRE) is dedicated to Indian lan-

guages. It has released corpora built from web discussion forums and mailing

lists in Bengali, English, Hindi and Marathi. Topics are provided in Bengali,

English, Hindi, Marathi, Tamil, Telugu and Gujarati.

Workshop on Cross-lingual Expert Search (CriES) was held at the CLEF con-

ference 2010. As part of the workshop, a pilot challenge on multilingual Ex-

pert Search was defined. The dataset was based on an official crawl of the

Yahoo! Answers site, consisting of questions and answers posted by users

of this portal. Topics in English, German, French and Spanish were defined

and manual relevance assessments were published based on a result pool of

submitted runs.

Parallel corpora:

JRC-Acquis is a document collection extracted from the Acquis Communautaire,

the total body of European Union law that is applicable in all EU member

states. It consists of parallel texts in the following 22 languages: Bulgarian,

Czech, Danish, German, Greek, English, Spanish, Estonian, Finnish, French,

Hungarian, Italian, Lithuanian, Latvian, Maltese, Dutch, Polish, Portuguese,

Romanian, Slovak, Slovene and Swedish.

http://langtech.jrc.it/JRC-Acquis.html (last accessed April

8, 2011)

Multext Dataset is a document collection derived from the Official Journal of Eu-

ropean Community in the following five languages: English, German, Italian
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Spanish and French.

http://aune.lpl.univ-aix.fr/projects/multext/ (last ac-

cessed April 8, 2011)

Canadian Hansards consists of pairs of aligned text chunks (sentences or smaller

fragments) from the official records (Hansards) of the 36th Canadian Parlia-

ment in English and French.

http://www.isi.edu/natural-language/download/
hansard/ (last accessed April 8, 2011)

Europarl is a parallel corpus containing the proceedings of the European Parlia-

ment from 1996 to 2009 in the following languages: Danish, German, Greek,

English, Spanish, Finnish, French, Italian, Dutch, Portuguese and Swedish.

http://www.statmt.org/europarl/ (last accessed April 8, 2011)

Wikipedia as a Corpus. Snapshots of the Wikipedia databases can be used as

language resources. Actually, we showed that the language models derived from the

English Wikipedia are similar to the language models derived from other established

English datasets. This allows the conclusion that the Wikipedia databases in other

language could also be used as resources for language models [Vrandecic et al.,

2011]. Currently, Wikipedia supports approx. 260 languages.

http://dumps.wikimedia.org/ (last accessed April 8, 2011)

II.5.5 References to this Thesis
The experiments presented in this thesis will be based on several of the introduced

datasets. The model presented in Chapter IV will be evaluated using parallel datasets,

namely JRC-Acquis and Multext. Further we participated in the ad hoc challenge

defined by CLEF using this retrieval approach.

The creation of the dataset used in the CriES pilot challenge will be described in

Chapter V. This includes the preprocessing of the raw data provided by Yahoo, the

selection of topics and the creation of the gold standard based on result pooling and

manual relevance assessments. Our proposed retrieval model in Chapter V will also

be evaluated using the CriES dataset.

II.6 Tools, Software and Resources
The development of a complete IR system includes many different aspects, such as

the implementation of preprocessing steps, file structures for inverted indexes and

efficient retrieval algorithms. Building a system from scratch therefore constitutes

an enormous effort. It is essential to build on existing tools to reduce the costs related

to implementation.

In a specific project, it might be the case that only the retrieval model or ranking

function need to be adapted, while the other components of the system can be used
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off-the-shelf. Fortunately, there are different libraries providing standard IR compo-

nents or even complete frameworks where certain components can be replaced.

In the following, we present selected tools and software libraries supporting the

development of IR systems. We focus on established tools that are widely used and

also have community support. The most popular IR framework is Lucene, which

also contains wrappers for many other tools we present.

Preprocessing.

Content Analysis Toolkit (Tika): Toolkit to extract text from documents of various

file types, e.g. PDF or DOC, implemented in Java. The detection of file types

is also supported. Tika evolved from the Lucene project.

http://tika.apache.org/ (last accessed April 8, 2011)

Snowball: Stemmer for several European languages. The implementation is very

fast and also supports stop word removal. Lists of stop words for the supported

languages are provided on the project web site.

http://snowball.tartarus.org/ (last accessed April 8, 2011)

HTML Parser: Tool for parsing HTML documents. This can be used to extract

textual content from Web sites, ignoring tags and parts not related to the se-

mantic content.

http://htmlparser.sourceforge.net/ (last accessed April 8,

2011)

BananaSplit: Compound splitter for German based on dictionary resources.

http://niels.drni.de/s9y/pages/bananasplit.html (last

accessed April 8, 2011)

Translation. The web portal Statistical Machine Translation4 is an excellent entry

point to get information about Statistical Machine Translation systems. It provides

software and datasets to train translation models.

As an example of a commercial SMT system, the Google Translate Service5 pro-

vides an API for translation into various languages. However, as translation is part

of preprocessing and is usually not deeply integrated into the retrieval framework,

any commercial translation system might be plugged into a CLIR or MLIR system.

IR Frameworks.

Lucene is a widely used IR framework implemented in Java. It is available as Open

Source software under the Apache License and can therefore be used in both

commercial and Open Source programs. It has reached a mature development

4http://www.statmt.org (last accessed April 8, 2011)
5http://translate.google.com/ (last accessed April 8, 2011)
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status and is used in various applications. The main features of Lucene are

scalability and reliability. This comes at the price of a decreased flexibility

making it more difficult to exchange components. For instance, in Lucene the

index construction is dependent on the retrieval model selected, so that the

retrieval model can not be exchanged without rebuilding the index.

http://lucene.apache.org/ (last accessed April 8, 2011)

Terrier and Lemur are tools used for research purposes. Terrier (implemented in

Java) and Lemur (implemented in C++) are both flexible IR frameworks that

can be easily extended and modified. Due to this different focus they do not

match the stability and performance of Lucene.

http://terrier.org/ (last accessed April 8, 2011)

http://www.lemurproject.org/ (last accessed April 8, 2011)

Evaluation.

trec eval is a tool that can be used to compute various evaluation measures for a

given document ranking with respect to a gold standard. The input is expected

as plain text files with simple syntax. Creating output in the TREC format

enables to use trec eval for any IR system. The IR frameworks presented

above also support output in the TREC format.

http://trec.nist.gov/trec_eval/ (last accessed April 8, 2011)



Chapter III

Semantics in Information
Retrieval

In this chapter, we will present an overview of how semantics can be exploited in IR

systems. Firstly, we will classify the different approaches presented in related work

according to the used document representation model. As many of these document

representations depend on semantic relatedness, we will then present the most com-

mon approaches to define semantic relatedness based on background knowledge. Fi-

nally, we will present semantic retrieval models that directly make use of semantics

in the relevance function.

The semantic retrieval models presented in this chapter describe the foundations

of the proposed retrieval models presented in Chapter IV and V. The overview of

alternative approaches to exploit semantics in IR that is given in this chapter will

also support the comparison and differentiation of our proposed models to related

work.

III.1 Semantic Vector Spaces
In Chapter II, we defined the Vector Space Model (VSM) for representing docu-

ments. We also showed how vector similarities are used as retrieval models for IR.

In literature, different approaches are known that extend the VSM using background

knowledge. These approaches define semantic vector spaces that are spanned by

topics or concepts. A mapping function from the term vector space to the semantic

vector space allows to map term vectors of documents or queries to concept vectors.

Applied to IR, the actual retrieval step in semantic vector spaces is similar to retrieval

in the standard VSM. In both cases, the ranking of documents are based on vector

similarity measures that are used to compare query vectors to document vectors.

In the following, we present the most prominent approaches to semantic vector

spaces. They differ in the definition of concepts and in the type of background

47
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knowledge that is used to extract these concepts. A main criteria for classifying these

approaches is their usage of intrinsic or external background knowledge. Intrinsic

knowledge is mined from the dataset the model is applied to — for example statistics

about co-occurrences of terms in the corpus. External knowledge is provided by

external sources that are in most cases not part of the current retrieval scenario.

III.1.1 Generalized Vector Space Model
The Generalized Vector Space Model (GVSM) was defined by Wong et al. [1985]

to overcome some of the drawbacks of the standard VSM. The standard VSM is

based on the independence assumption of terms. Occurrences of terms in documents

are independent, which is modeled by the orthogonality of the vectors of all terms

in the vocabulary. Formally, the scalar product of the term vectors �ti, �tj of any two

non-equal terms ti, tj in vocabulary V is zero:

〈�ti, �tj〉 = 0 for ti, tj ∈ V, i �= j

Documents dk ∈ D are represented by term vectors with statistical weights for each

term, for example the term frequency in the document. This leads to the following

vector representation of document d:

�d =
∑
ti∈V

ad,i�ti

with ad,i being the weight of term ti in document d.

For IR, the query vector �q of query q is defined in the same way:

�q =
∑
ti∈V

aq,i�ti

with aq,i being the weight of term ti in query q.

In the retrieval scenario, document and query vectors are compared using vector

similarity measures. A standard measure is the cosine similarity which is the nor-

malized scalar product in the vector space. Due to the independence of term vectors,

this scalar product can be simplified, resulting in the following scoring function:

score(q, d) =
〈�q, �d〉
‖�q‖‖�d‖

=

∑
ti∈V aq,iad,i√∑

ti∈V a2q,i

√∑
ti∈V a2d,i

The problems arising with the independence assumption are demonstrated by the

following example:

Example III.1 We consider the following example document d1 and example query
q1:
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d1: Safety instructions for driving automobiles in
winter conditions.

q1: car snow

Matching query q1 to document d1 in the standard VSM results in zero similarity as
there is no term overlap. The term vectors of automobile and car are orthogonal
which contrast their synonymy relation. The terms winter and snow are related
which is again not modeled in the VSM.

To address this problem Wong et al. [1985] suggested to use the correlation ma-

trix G to model the correlation of terms:

G =

⎡
⎢⎢⎢⎣

�t1 · �t1 �t1 · �t2 · · · �t1 · �tn
�t2 · �t1 �t2 · �t2 · · · �t2 · �tn

...
...

. . .
...

�tn · �t1 �tn · �t2 · · · �tn · �tn

⎤
⎥⎥⎥⎦

Given this correlation matrix, the score of document d given query q is then defined

as:

score(q, d) = �qTG�d

Example III.2 Using the terms from the document and query presented in Exam-
ple III.1, a possible correlation matrix is given by:

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

t1 t2 t3 t4 t5
automobile = t1 1 1 0 0 0

car = t2 1 1 0 0 0
instruction = t3 0 0 1 0 0

snow = t4 0 0 0 1 .5
winter = t5 0 0 0 .5 1

⎤
⎥⎥⎥⎥⎥⎥⎦

As the entries in the correlation matrix of the synonym terms automobile and car are
set to 1, document d1 will be a positive match for query q1. In addition, the semantic
relatedness of snow and winter is modeled using a correlation value of .5.

An open question remains how the correlation matrix G is constructed. A pop-

ular automatic approach is using co-occurrence statistics of terms in training cor-

pora [Wong et al., 1985]. There are various alternative approaches known in liter-

ature, many of them modeling the correlation using measures of semantic related-

ness which will be described in detail in Section III.2. Recently, Anderka and Stein

[2009] showed that Explicit Semantic Analysis — which forms the foundation of

our research presented in Chapter IV — can also be interpreted as an instance of the

GVSM, modeling term correlation using textual descriptions of concepts.
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III.1.2 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is a well known approach for extracting concepts

from a given text corpus [Deerwester et al., 1990]. The resulting document repre-

sentation intends a two-fold improvement in respect to the standard VSM. Firstly,

related terms are mapped to the same concepts, which solves the problems presented

in Example III.1. Secondly, the dimension of the vector space is reduced which

allows for more efficient indexing and retrieval techniques.

LSI is based on Singular Value Decomposition (SVD) — a technique from Lin-

ear Algebra. A full SVD is a loss-free decomposition of a matrix M , which is

decomposed into two orthogonal matrices U and V (left and right singular vectors)

and a diagonal matrix Δ (singular values):

M = UΔV T

Estimating less singular values and their corresponding singular vectors leads to an

approximation of M by: M ≈ ŨΔ̃Ṽ T .

Applied to vector space representations of documents, the matrix M is defined

as the term-document matrix given corpus D = {d1, . . . , dn} and vocabulary V =
{t1, . . . , tm}. Entry mi,j then corresponds to the weight of term ti in document dj .

Applying SVD to the term-document matrix results in a set of concepts Γ that is

implicitly given by the columns of U . U covers the term-concept space by holding

a weight for the correlation of each term-concept pair. Analogously, the document-

concept space V contains a weight for the document-concept correlation. Since

the dimension of Δ corresponds to the number of concepts and singular values are

derived in descending order, a reduced SVD results in the most relevant concepts.

Example III.3 We will use the following four documents in our example:

d1: Safety instructions for driving automobiles
in winter conditions.

d2: Cars, snow and winter.
d3: Snow forecast in winter time.
d4: Instructions to wash your automobile.

These documents define the following term-document matrix M :

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

d1 d2 d3 d4
automobile 1 0 0 1

car 0 1 0 0
instruction 1 0 0 1

snow 0 1 1 0
winter 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
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Applying SVD on M results in the following matrixes U , Δ and V T , with γi repre-
senting the implicit concepts:

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

γ1 γ2 γ3 γ4
automobile −0.39 0.56 0.12 0.15

car −0.23 −0.28 0.89 −0.25
instruction −0.39 0.56 0.12 0.15

snow −0.43 −0.49 −0.048 0.76
winter −0.68 −0.24 −0.41 −0.56

⎤
⎥⎥⎥⎥⎥⎥⎦

Δ =

⎡
⎢⎢⎣

2.40 0 0 0
0 1.89 0 0
0 0 0.70 0
0 0 0 0.45

⎤
⎥⎥⎦

V T =

⎡
⎢⎢⎢⎢⎣

d1 d2 d3 d4
γ1 −0.61 −0.56 −0.46 −0.33
γ2 0.46 −0.53 −0.38 0.59
γ3 −0.25 0.62 −0.66 0.34
γ4 −0.59 −0.11 0.45 0.66

⎤
⎥⎥⎥⎥⎦

By reducing the dimension of the model, LSI brings related terms together and

forms concepts. In this new space, documents are no longer represented by terms

but by concepts. New documents (for example from the retrieval document collec-

tion) or queries are represented in terms of concepts by folding them in into the LSI

model. This is done by multiplying their term-vector with Ũ . The document-concept

mapping is thus defined by the following function:

�d∗ = Δ̃−1ŨT �d

By mapping term vectors of queries in the same way, retrieval can be performed

using vector similarity measures in the concept space. The knowledge that is used

to define the concept space using LSI is given by the term-document matrix of a text

corpus. In a retrieval scenario, this could be either the test collection or any other

collection with sufficient vocabulary overlap to the test collection.

Example III.4 Selecting the two largest eigenvalues in Δ from Example III.3 results
in Δ̃ with all other eigenvalues set to zero:

Δ̃ =

⎡
⎢⎢⎣

2.40 0 0 0
0 1.89 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

This implicitly defines two concepts γ1 and γ2. The topic-document matrix M∗ is
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then given as:

M∗ = Δ̃−1ŨTM =

⎡
⎣ d1 d2 d3 d4

γ1 −3.50 −3.20 −2.65 −1.87
γ2 1.66 −1.91 −1.37 2.11

⎤
⎦

III.1.3 Latent Dirichlet Allocation
In the family of probabilistic latent topic models, Latent Dirichlet Allocation (LDA)

defines a generative model that allows to represent documents based on a vector

space defined by latent topics in analogy to LSI.

The basic idea of this approach is to abstract from particular words and to repre-

sent documents by mixtures over a set Γ of latent concepts γ1, . . . , γk (for example

hidden document-specific themes of interest), whereby each concept is characterized

by a fixed conditional distribution over words in the vocabulary.

LDA assumes that all terms (both observed and previously unseen) are generated

by randomly chosen latent concepts. In contrast to the SVD used in LSI, LDA

has a well founded probabilistic background and tends to result in more flexible

model fitting [Blei et al., 2003]. It allows resources to belong to multiple latent

concepts with different degrees of confidence and offers a natural way of assigning

probabilistic feature vectors to previously unseen resources.

In line with Blei et al. [2003], the content of the particular document is generated

by selecting a multinomial distribution over concepts given the Dirichlet prior. For

each term, a concept is generated from the document-specific concept distribution,

and then a keyword is generated from the discrete distribution for that concept as

follows:

1. The number of words in the document is chosen: n ∼ Poisson(ξ)

2. The keyword generating parameter is chosen: θ ∼ Dir(α)

3. For each of the document terms t1, . . . , tn:

• The generative concept for ti is chosen: ci ∼Multinomial(θ).

• The term ti is generated using a multinomial probability with parameter

β conditioned on ci: P (ti|ci, β)
Applied to IR, the LDA approach can be instantiated as follows. In the first step, the

background knowledge collection B, which is either the test collection D or a differ-

ent collection covering similar topics, is used for fitting the corpus-level properties

α and β which are estimated using the variational Expectation Maximization (EM)

procedure [Blei et al., 2003]. In the process of corpus analysis, we also obtain the

document-level variables θ, sampled once per training document. As a result we

obtain the posterior distribution of the hidden concepts γ1, . . . , γk given a document

d:

Pd(θ,�γ|�t, α, β) = Pu(θ,�γ,�t|α, β)
Pu(�t|α, β)

(III.1)
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Given the estimated model parameters, the similarity between documents and

queries can be computed. Each document and query are mapped to a concept-based

representation by Φ. In the LDA approach, Φ estimates the distribution of the hid-

den concepts γ1, . . . , γk (III.1) using the variational EM procedure [Blei et al., 2003].

The estimated probabilities are considered as characteristic features of the document

in the latent concept-based feature space: Φ(d) = Pd(θ,�γ|�t, α, β).

Example III.5 As example for LDA we apply a collapsed Gibbs samplers initialized
with two topics γ1, γ2 on the documents defined in Example III.3. This results in the
following term-topic matrix:⎡

⎢⎢⎢⎢⎢⎢⎣

γ1 γ2
instruction 0 2
automobile 0 2

winter 2 1
car 1 0

snow 2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

The assignment of documents to topics is then defined as:⎡
⎣ d1 d2 d3 d4

γ1 0 3 2 0
γ2 3 0 0 2

⎤
⎦

Our expectation is that queries and their relevant documents show the similar

behavior in terms of probabilities over latent concepts (see Equation III.1). We notice

that the cosine similarity measure enforces in this case the intuitively expected IR-

like similarity estimation behavior, whereby the similarity of the document to itself

is maximized and the orthogonal document feature vectors (for example document

vectors with disjoint sets of non-zero topic probabilities) have zero similarity.

Various extensions of LDA have been proposed in related work that allow to

exploit background knowledge. For example Zhou et al. [2008] propose to build

topic models based on social annotations that are then used in a retrieval framework.

Other examples are presented in [Chemudugunta et al., 2008] or [Andrzejewski et al.,

2009].

III.1.4 Semantic Smoothing Kernels
Bloehdorn et al. [2006] presented an approach that exploits background knowledge

given by a taxonomy to define Semantic Smoothing Kernels. These kernels have

been introduced by Siolas and d’Alché-Buc [2000] and are defined as follows:

Definition III.1 (Semantic Smoothing Kernel) The semantic smoothing kernel for
two data items (for example documents) x, y given by their vector representation
�x, �y ∈ X is given by

κ(�x, �y) = �xQ�yT
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where Q is a square symmetric matrix whose entries represent the semantic proximity
between the dimensions of the input space X [Bloehdorn et al., 2006].

Applied to text mining, Semantic Smoothing Kernels can be interpreted as in-

stance of the GVSM with Q being the correlation matrix of terms. Bloehdorn et al.

[2006] propose to use super-concept expansion based on WordNet as knowledge re-

source to define entries in matrix Q. We will present and analyze this and other

established approaches to define semantic relatedness in detail in the following Sec-

tion III.2.

Apart from the IR scenario described in this thesis, kernel functions can be ap-

plied to other text mining tasks such as classification or clustering. They offer there-

fore flexible tools to use semantic background knowledge in several application sce-

narios.

III.1.5 Explicit Semantic Analysis
In contrast to LSI or LDA, the semantic document representation defined by Ex-

plicit Semantic Analysis (ESA) is based on explicit concept spaces. Gabrilovich and

Markovitch [2007] introduced ESA as a mapping of documents to a vector space

that is spanned by a set of concepts. Each concept has a textual description, which

is used to define the mapping function. In summary, the text similarity between a

document and a concept description is used to compute the value of the dimension

in the vector representation that corresponds to the according concept. The model

of ESA and its application to IR will be presented in detail in Chapter IV. In this

chapter, we will also present several examples of ESA.

Various knowledge sources for explicit concept definitions have been used in

literature. The most prominent example is Wikipedia [Gabrilovich and Markovitch,

2007]. Concepts are thereby defined by Wikipedia articles. Another example is data

from the Open Directory Project1. In this case, concepts correspond to Web sites

or bundles of Web sites with similar topics [Gabrilovich and Markovitch, 2007].

Finally, Wiktionary2 has also been used as background knowledge for ESA [Zesch

et al., 2008].

Anderka and Stein [2009] have shown that ESA applied to IR can be interpreted

as instance of the GVSM. The correlation matrix G as introduced in Section III.1.1

is thereby defined by term correlations that are exploited from the textual concept

descriptions.

III.1.6 Ontology-based Document Representations
An approach for ontology-based document representations is presented by Baziz

et al. [2005]. They propose to build semantic networks for documents. The net-

work is constructed by matching terms to concepts that are defined in an ontology

1http://www.dmoz.org/ (last accessed April 8, 2011)
2http://www.wiktionary.org/ (last accessed April 8, 2011)
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which is used as background knowledge. Each concept is thereby disambiguated and

linked to other concepts using semantic relatedness measures (see the following Sec-

tion III.2). For other approaches that match documents to ontologies for a semantic

representation of documents see for example [Popov et al., 2004] or [Castells et al.,

2007].

Applied to IR, the semantic networks of documents are used to map documents

to the concept space. This concept space is spanned by concepts — similar to ESA.

Weights of concepts for a document are defined by the frequency of concepts and by

the weights of their relations in the semantic network.

III.2 Semantic Relatedness
Many IR systems that exploit semantics in their retrieval model are based on seman-
tic relatedness:

Definition III.2 (Semantic Relatedness) Semantic relatedness measures the lexi-
cal relatedness of concepts. Semantic relatedness extends the notion of similarity as
it includes any kind of functional relationship [Budanitsky and Hirst, 2006]. Ex-
amples are “meronymy (car-wheel), antonymy (hot-cold) or frequent association
(pencil-paper, penguin-Antarctica, rain-flood)” [Budanitsky and Hirst, 2006, pg.
13].

Semantic relatedness is used in many fields of Natural Language Processing

(NLP), including “word sense disambiguation, determining the structure of texts,

text summarization and annotation, information extraction and retrieval, automatic

indexing, lexical selection, and the automatic correction of word errors in text” [Bu-

danitsky and Hirst, 2006, pg. 13]. In this thesis we will focus on its application to IR.

The following approaches have been proposed to extend IR models using semantic

relatedness:

Term Correlation Matrix: As already mentioned in Section III.1, semantic relat-

edness has been used to construct the correlation matrix G as defined by the

GVSM. Each entry gij of G — defined as the correlation �ti · �tj of term ti and

tj — then directly corresponds to the semantic relatedness of ti and tj :

gij := sr(ti, tj)

This approach is for example used by [Gurevych et al., 2007] or [Müller et al.,

2007]. Bloehdorn et al. [2006] defined the correlation matrix used to define

semantic smoothing kernels in a similar way.

Query Expansion: As introduced in Chapter II, query expansion is a technique to

improve the recall in retrieval scenarios. By extending the set of query terms,

more documents are matched to a query. This aims at solving problems that are
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for example introduced by synonymy of query and document terms. Semantic

relatedness can be used to select appropriate terms for query expansion. This

is supported by the study of Müller and Gurevych [2009]. They show that

indeed semantic relatedness can be used to overcome the vocabulary mismatch

problems between query terms and document terms. A further example of a

retrieval approach that uses query expansion based on semantic relatedness is

given by [Fang, 2008].

Topic Space: Semantic relatedness as relation between terms can be used to define

equivalence classes of related terms. These equivalence classes (or topics) can

then be used to define a topic space that allows a more compact representation

of term vectors. Using correlation values mined from a background collection,

LSI and LDA are examples for the application of semantic relatedness to the

definition of semantic document representations.

A known problem of defining semantic relatedness is contextual dependence of

the relation, given for example by the ambiguity of terms. “Lexical semantic relat-

edness is sometimes constructed in context and cannot always be determined purely

from an a priori lexical resource” [Budanitsky and Hirst, 2006, pg. 45]. In retrieval

scenarios it is therefore important to not only consider the pairwise relation of query

and document terms, but to also include the context given by other query terms or

the whole document.

Semantic similarity can be seen as a kind of semantic relatedness. While relations

such as hyponomy/hypernomy will still be useful to define semantic similarity, other

type of relations such as co-occurrences in text corpora will not.

III.2.1 Classification of Semantic Relatedness
Approaches to semantic relatedness can be classified according to the type of back-

ground knowledge used to define the relation:

Dictionary: Entries in dictionaries can be exploited to define semantic relatedness

by using the provided references to other terms. Alternatively, the description

of two terms can be compared and the relatedness is then defined by a text

similarity measure such as term overlap.

Thesaurus: Similar to dictionaries, thesauri contain information about terms of a

language. As they group together words of similar meanings they are a more

practical resource for semantic relatedness.

Semantic Network: In semantic networks, terms are connected based on different

kind of relations, for example hyponymy/hypernymy. The most prominent

semantic network for English is WordNet. Various approaches have been pre-

sented to define semantic relatedness based on semantic networks which will

be presented in Section III.2.2. Additionally, taxonomies and ontologies can

be interpreted as semantic networks and will also be considered in this section.
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Unstructured Text. In unstructured text, co-occurrences of terms are often inter-

preted as semantic relatedness. While this is clearly only an estimation of

relatedness, the advantage lies in the large amount of available training data.

Different definition of context can be used to mine co-occurrences, ranging

from sentences over paragraphs to whole documents.

Lin [1998] proposed an alternative classification of semantic relatedness by an-

alyzing the properties of the semantic relatedness function in a mathematical sense.

He presents a set of criteria to evaluate these functions that are derived from the

mathematical definition of metrics as well as from intuitions for semantic related-

ness. In the following will use the classification based on knowledge sources. The

mathematical properties of the semantic relatedness functions have less relevance to

the topic of this thesis than the selection of appropriate knowledge sources.

III.2.2 Structured Knowledge Sources

Lexical structured knowledge sources define relations between concepts that are as-

sociated with terms. Strube and Ponzetto [2006] proposed the following definition

of semantic relatedness on structured knowledge sources (or taxnonomies):

Definition III.3 (Semantic Relatedness in Taxonomies) “Semantic relatedness
indicates how much two concepts are related in a taxonomy by using all relations
between them (i.e. hyponymic/hypernymic, meronymic and any kind of functional
relations including has-part, is-made-of, is-an-attribute-of, etc.)” [Strube and
Ponzetto, 2006, pg. 1419].

Different knowledge sources have been exploited to define semantic related-

ness. In the following we will present the most prominent and therefore widely

used knowledge sources.

WordNet. WordNet is the most often used resource for the definition of semantic

relatedness. Budanitsky and Hirst [2006] evaluated several definitions of semantic

relatedness based on WordNet. This evaluation was based on a test set of word pairs

that were manually judged for semantic relatedness by human assessors.

An alternative approach to evaluate semantic relatedness measures is to actu-

ally evaluate certain tasks that apply these measures. IR is an example for such a

task. In this case, the relatedness measures are evaluated according to the improve-

ments achieved in the retrieval task. It is important to mention that both evaluation

approaches might lead to different rankings of relatedness measures. The human per-

ception of relatedness will not be equivalent to the relatedness that might be useful

for a specific retrieval task.

The following are examples for WordNet based measures of semantic related-

ness:
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• Resnik [1999] proposed a semantic relatedness measure based on subsuming

elements. Given two concepts c1, c2 and a set S(c1, c2) of subsuming concepts

of c1 and c2, the relatedness between c1 and c2 is defined as follows:

sr(c1, c2) := max
c∈S(c1,c2)

[− logP (c)]

whereas P (c) is the probability of concept c, that is defined as 1 for the root

concepts and decreasing when moving down the taxonomy.

• Lin [1998] propose a definition of semantic relatedness based in information

theory. He models his relatedness measure as the ratio of the amount of infor-

mation that is needed to state the commonality of two concepts c1 and c2 to

the amount of information that is needed to fully describe both concepts.

• Jiang and Conrath [1997] combine the information theoretic measure of se-

mantic similarity presented by Resnik [1995] with corpus statistical informa-

tion. In particular, they define weights for edges in semantic networks based

on local structures and define the similarity by the aggregated weight of the

shortest path between two concepts.

Wikipedia. Wikipedia — interpreted as structured knowledge source — has also

be used to define semantic relatedness measures. The structure is thereby given

by links that connect articles (page links), links that define the category structure

(category links) and links that connect articles or categories across languages (cross-
language links). The following are examples for semantic similarity measures de-

fined on the structure of Wikipedia:

• Strube and Ponzetto [2006] propose to match terms to titles of Wikipedia

pages. Using the category structure of Wikipedia, the relatedness measure is

then computed based on the category paths found between matching articles.

• Witten and Milne [2008] define semantic relatedness using the link struc-

ture established by links between articles. In contrast to Strube and Ponzetto

[2006], they do not use information about categories.

III.2.3 Text Corpora as Knowledge Source
Apart from using structured knowledge sources to define semantic relatedness, other

approaches are based on unstructured resources. The biggest advantage of text based

approaches is the large amount of available data. Semantic networks as presented

above are expensive in creation and maintenance. For relatedness measures based on

term co-occurrences, in principle any text corpus can be used as knowledge source.

For the majority of approaches, the most important information extracted from

the training corpus are term correlations. Usually correlation values are mined using

statistical measures on co-occurrences of terms. While structured knowledge sources
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are often used to define semantic similarity, text based approaches based on term

correlations naturally define semantic relatedness, as co-occurrences of terms are

hints for relatedness and do not allow to infer similarity.

An example for a distributional measure of semantic similarity is given by Mo-

hammad and Hirst [2006]. They also propose to cluster the documents used as back-

ground knowledge to categories, which allows for a more efficient implementation.

Gabrilovich and Markovitch [2007] have introduced Explicit Semantic Analysis

(ESA) that is based on text corpora — such as corpora derived from Wikipedia,

the Open Directory Project or Wiktionary — to compute semantic relatedness. In

contrast to Strube and Ponzetto [2006] or Witten and Milne [2008], the structure

is not primarily used to compute the relatedness. Terms are matched against the

body of articles leading to vector representations of terms in a the concept space

spanned by all articles. More details on this technique will be given in Chapter IV.

In addition, Gabrilovich and Markovitch [2007] used some structural information in

Wikipedia to compute a priori weights of articles, which is in general not possible

for text corpora.

III.3 Semantic Retrieval Models
Defining semantic document representations is one possible approach to use back-

ground knowledge in IR systems. As described above, the main problems thereby

are the definition of the set of concepts and the definition of the mapping function

that allows to map term vectors of documents and queries to the concept space.

Alternatively, semantic knowledge can directly be integrated in the retrieval

model. In the following, we will describe three approaches of semantic retrieval

models:

III.3.1 Language Models
Language Models define retrieval models based on generative models of documents

(see Chapter II). These models are described by probability distributions of terms ti
being generated by a document d: P (ti|d). Mixture models of probability allow the

integration of different sources of evidence to model the probability of term ti given

document d:

P ∗(ti|d) = α1P1(ti|d) + α2P1(ti|d) + · · ·+ αkPk(ti|d)

with
∑

i αi = 1. Each conditional probability Pi(ti|d) can be modeled using differ-

ent knowledge. Examples are the relative term frequency of term ti in document d
or the a priori probability of ti in the corpus. By using other background knowledge

to model Pi, semantics can be integrated into IR based on language models.

An example for such modeling is presented by Cao et al. [2009]. They propose to

use a mixture model that exploits categorization information to improve retrieval on
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a dataset from a Social Question/Answer Site. The semantic knowledge is given by

the categories of each questions, which is then used to define the mixture language

model. These experiments are related to our research presented in Chapter V.

III.3.2 Learning to Rank

Supervised Machine Learning (ML) is defined as learning models based on training

data that allow to make predictions about new data. For example in the case of clas-

sification, the training data consists of instances that are assigned to a set of classes.

The learned model based on this training data then predicts the class assignment of

new instances.

Different approaches exist to use ML methods for IR, which are often labeled as

learning to rank approaches. They differ in the training data that is used to learn the

model and in their integration in the retrieval model. In line with the main topic of

this thesis, the training data can be referred to as background knowledge. Ranking

models that are optimized using ML techniques allow to exploit this knowledge in

the training process and can therefore be classified as semantic retrieval models.

Given a feature representation of documents and a query q, classifiers can directly

be applied as retrieval function. Given a binary relevance model, there are two target

classes: relevant and non-relevant. The scoring function is then defined as:

score(d, q) = P (Fq(d)→ relevant)

with Fq(d) being the feature representation of document d given query q. Train-

ing data (or background knowledge) is given by relevance assessments of training

queries. This approach to integrate ML in IR will be used in the discriminative

model we present in Chapter V.

An alternative approach is presented by Joachims [2002]. He proposes to classify

pairs of documents given a query. The classifier then predicts the relative ranking of

these two documents. These predictions can then be used to define a final ranking of

all documents. As training data, he uses click through data collected by an Internet

search engine. This data motivates the classification of pairs of documents as this

reflects the behavior of users. Given the list of top ranked documents, users click on

the most relevant ones and therefore prefer them to the other presented documents.

More details on this approach will be presented in Section V.4.3.

III.3.3 Extended Query Models

In addition to defining semantic representation of documents, extended query models
have been proposed as another approach to use background knowledge for IR. Ex-

tended query models can be classified into manual and automatic approaches. The

goal is to define a query representation that provides a precise model of the user’s

information need.
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Manual Approaches. Manual approaches depend on the user to provide informa-

tion that allows to build more detailed query models. For example in the retrieval

system presented by Rinaldi [2009], the user is asked to provide subject keywords

and domain keywords. Subject keywords are matched to the text content of the docu-

ments in the test collection. Domain keywords are used to build a dynamic semantic
network using background knowledge provided by WordNet. This network is then

used to refine search results. Other manual approaches to build extended query mod-

els are presented in [Chen and Dhar, 1990] or [Anick, 2003].

Automatic Approaches. Automatic approaches to build extended query models

include Pseudo Relevance Feedback (PRF) as presented in Chapter II. Using a first

retrieval step, the top documents are assumed to be relevant and additional keywords

are extracted from these documents. In a second retrieval step, the extended query is

matched against the test corpus.

While PRF is based on unstructured text — often the test collection itself —

other approaches to automatic query expansion are based on structured background

knowledge. Building on the notation of semantic relatedness as introduced above,

related terms in respect to query terms can be used to expand the query. Any defi-

nition of semantic relatedness could thereby be used to select the expansion terms,

exploiting different sources of background knowledge such as thesauri or semantic

networks.
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Chapter IV

Cross-lingual Explicit Semantic
Analysis

Explicit Semantic Analysis (ESA) has been proposed in recent years as a success-

ful approach to concept indexing by authors such as Gabrilovich and Markovitch

[2007], Gupta and Ratinov [2008], Müller and Gurevych [2008] or Potthast et al.

[2008]. Based on a given set of concepts with textual descriptions, ESA defines the

representation of documents in respect to these concepts. This can be applied for

example to compute Semantic Relatedness measures or in retrieval tasks.

The strength of the ESA approach is founded in its definition of concepts. ESA

does not depend on resources that are traditionally used for concept indexing, for

instance semantic term networks such as WordNet, taxonomies or ontologies. In

contrast, ESA allows to exploit unstructured or semi-structured text corpora to define

the set of concepts that is then used for concept indexing.

This definition of concepts facilitates to use the large amount of already avail-

able text corpora as background knowledge which includes datasets of Web 2.0 doc-

uments. Many of these datasets contain documents in multiple languages, cover a

broad range of topic fields and are constantly updated. These are clear advantages

compared to the usage of traditional resources which are usually hand-crafted and

therefore lack these features.

Web 2.0 datasets have the problem that they contain many noisy documents.

These are for instance spam documents or documents that do not describe a specific

topic but contain recordings of the communication between users. In Wikipedia, an

example for such documents are the discussion pages that are attached to each article.

Further, Web 2.0 datasets are not carefully designed and populated such as hand-

crafted semantic resources but are built by the contributions of many heterogeneous

Internet users. However, ESA is based on statistical measures and inconsistencies

or even errors in the background knowledge have only small influence. This allows

to exploit these datasets as the benefits of having multilingual, broad and up-to-date

63
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resources overweight the drawback of the presence of some level of noise in the data.

As an outstanding Web 2.0 dataset, Wikipedia combines all the features men-

tioned above. It is published in various languages, has content about many topics

and is constantly updated. Additionally, the level of noise in Wikipedia is low com-

pared to other Web 2.0 resources. Further, Wikipedia has features that introduce

structural knowledge and can be used to design extensions of the ESA model. Ex-

amples of these features are the category structure of Wikipedia or links between

Wikipedia articles. By reason of these characteristics of Wikipedia, most of the pub-

lished approaches to ESA use Wikipedia as background knowledge — which is also

pursued in this chapter. Some of our proposed extensions to ESA also exploit the

information that is contained in the structure of Wikipedia.

In the following, we will present a generalized model of ESA. This mod-

els allows different design choices, which will be evaluated in our experiments.

The most important extension is the definition of Cross-lingual Explicit Semantic

Analysis (CL-ESA), which allows to apply ESA on text in multiple languages. We

will use Information Retrieval (IR) as the application scenario of CL-ESA in our ex-

periments. Alternative applications such as computing Semantic Relatedness mea-

sures will not be covered in this thesis.

IV.1 Preliminaries
Wikipedia is an interesting resource for concepts. These concepts are thereby defined

by articles or categories and are related to each other by links in Wikipedia. For this

reason, Wikipedia is often used as background knowledge of ESA that basically

requires a set of concepts with textual descriptions.

In this section, we will define all features of Wikipedia that are important to

understand how ESA can exploit Wikipedia as background knowledge. Further, we

introduce a running example that is used to illustrate the different semantic document

representations.

Despite of using Wikipedia, ESA is a general model and is able to exploit other

resources as background knowledge. The extensions to ESA that we propose in

this chapter depend on structures that connect concepts across languages. Some of

them also make use of a hierarchical category structure on concepts. These features

are given in Wikipedia by cross-language links and category links. However, any

dataset containing multilingual textual descriptions of topics that can be regarded as

concepts could potentially be used as background knowledge for CL-ESA.

Wikipedia Database. For our retrieval framework, we consider a fixed set of sup-

ported languages L = {l1, . . . , ln}. As background knowledge for the multilingual

retrieval model, we use Wikipedia databases Wl with l ∈ L. Wl consists of a set of

articles A(Wl) and a set of categories C(Wl) in language l.
In this chapter, we will use the sample subset of English and German articles and

categories that is presented in Figure IV.1 to give examples for the different ESA
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Figure IV.1: Wikipedia articles, categories and link structure that are exploited for

document representations in different concept spaces (ESA, CL-ESA, Cat-ESA and

Tree-Esa).
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approaches. Articles are presented in the lower level and categories in the upper

level. In Wikipedia, there are links that assign articles to categories as well as links

between categories defining sub-category relationships. We will refer to both as

category links (CL), represented by vertical arrows in Figure IV.1. Cross-language

links (LL), represented in Figure IV.1 by horizontal connections, connect equivalent

articles or categories across languages and are therefore crucial for a cross-lingual

extension of ESA.

ESA is based on a set of concepts as background knowledge. In this chapter,

we propose different approaches to exploit Wikipedia to define concepts. The most

simple model is only based on articles in one language. The multilingual extension

of this model also uses articles in other languages and exploits cross-language links

between articles. Other models are based on categories and subtrees of categories.

When describing these models in Section IV.2 and IV.3, we will again refer to Fig-

ure IV.1 that visualizes the structure of Wikipedia used to define each of the different

concept spaces.

The Wikipedia databases contain user-generated content that is collaboratively

edited. All links, category and cross-language links in particular, are manually cre-

ated and therefore not always consistent across languages. We identified two differ-

ent types of such inconsistencies that are most relevant in our context.

First, there is the problem of missing or false language links. An example for

such a missing link is the article Container ship:

Example IV.1 (Inconsistent LLs) In the English Wikipedia, the arti-
cle Container ship is not linked to its Spanish equivalent Buque
portacontenedores.

Second, categories in one language potentially contain articles that are not part

of the equivalent category in another language. A similar problem are differences

in sub-category relationships. An example is given by the category Natural
scientists:

Example IV.2 (Structural Differences of Categories across Languages) In the
English Wikipedia, the category Natural scientists is a sub-category
of Natural sciences. In the German Wikipedia however, the equivalent
articles Naturwissenschaftler and Naturwissenschaft have no such
sub-category relation.1

While manually created links might be erroneous, it has been shown that the high

number of Wikipedia editors as a collective succeeds very well in maintaining infor-

mation quality at high standards [Giles, 2005]. In Chapter VI, this behavior will be

analyzed in respect to missing cross-language links. As ESA relies on statistical term

1This structural error is present in the Wikipedia dump of September 2009 that was used in our ex-

periments. In the current online version of Wikipedia, the missing category link was added. This is an

example of how Wikipedia is constantly improved and errors are detected and solved by the community.
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distributions across a high number of articles or categories, we assume that these

errors — actually structural differences across languages — will only marginally af-

fect the retrieval performance. In Chapter VI, we will also show that the Wikipedia

community is able to identify errors in the cross-language link structure and that

Wikipedia is therefore constantly improving over time.

Running Example. The different aspects and different variants of ESA and the

application of ESA to retrieval will be illustrated using several examples. These

example are all based on a sample query and a set of sample concepts derived from

Wikipedia articles and categories. These concepts and their relations are presented

in Figure IV.1. The visualization of the structural features that are presented in this

figure will help to understand the extensions of ESA that we define in this chapter.

In addition to the sample set of concepts, we will use the following sample query

for the examples in the next sections:

Example IV.3 (Sample Query for Running Example) The title of a document
from the Multext dataset2 (introduced in Section IV.5) is used as running example.
We use the translation into English and German:

English: The transport of bicycles on trains
German: Beförderung von Fahrrädern mit dem Zug

IV.2 Explicit Semantic Analysis
Explicit Semantic Analysis (ESA) indexes a given document d with respect to a

set of explicitly given external concepts. Gabrilovich and Markovitch [2007] have

outlined the general theory behind ESA and in particular described its instantiation

to the case of using Wikipedia articles as external concepts. In this thesis, we will

basically build on this instantiation of ESA, which we describe in more detail in the

following.

IV.2.1 Definition of Concepts

All concept models described below build on an explicitly defined and finite set of

concepts C = {c1, . . . , cm} with respect to which documents will be indexed.

Further, for all models we assume the existence of a text signature τ of con-

cepts which defines the textual description of concepts. As we extract concepts from

Wikipedia, this is a (sub-)set of all articles A(W ) of Wikipedia database W :

τ : C → 2A(W )

2Document ID: FXAC93006DEC.0012.02.00
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By considering the textual signature of concepts, we are able to compute the term

distribution for each concept. Using term weighting techniques, this information is

then used to index documents with respect to concepts.

IV.2.2 Original ESA Model
ESA maps a document d to a high-dimensional real-valued vector space spanned by

concepts C. This mapping function Φ : D → R
m is defined as follows:

Φ(d) := (φ(d, c1), . . . , φ(d, cm))T (IV.1)

The value φ(d, ci) in the ESA vector of d expresses the strength of association

between a document d and concept ci. This value is computed based on term distri-

butions in d and in the text signature τ(ci) of concept ci. In the original model, it is

based on a tf.idf function on the text signature of concepts applied to all terms t of

document d:

φ(d, c) :=
∑
t∈d

tf.idfτ(c)(t)

The tf.idf function is based on the Bag-of-Words model, where each dimension

of the term vector corresponds to a unique term. For a given document d in cor-

pus D, the values of each dimension represent the weight of a term t in d. This

weight is typically computed by taking into account the distribution of the term in

the document and corpus. For instance, tf.idf is a widely used function counting the

occurrences of a term in a document weighted by the inverse number of documents

in the corpus which have at least one occurrence of this term:

tf.idfd(t) =
tfd(t)

|d| log
|D|

df(t)

with tfd(t) as the term frequency of t in d, |d| the number of tokens in d, |D| the

number of documents and df(t) the document frequency of t, defined by the number

of documents in D containing term t.
For our running example, the association strength to the concept Bicycle is vi-

sualized in Figure IV.2. In order to facilitate understanding, we use the simple term

frequency values instead of the term frequencies weighted by the document frequen-

cies (tf.idf). The term frequency vector is then based on the number of occurrences

of each term, which is given by tfτ(Bicylce)(t). In this case, the association strength is

computed by summing all values in this frequency vector that correspond to terms

occurring in the sample text.

IV.2.3 ESA applied to IR
ESA allows to map arbitrary text to the vector space defined by the set of concepts.

As described in Chapter II, these vector representations can be used in a concept-

based retrieval framework.
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is defined by the angle between their concept vector representations, which is for

example computed by the cosine function.
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Given query q and document collection D, ESA-based IR is defined by the fol-

lowing steps:

1. The query q is mapped to the concept space, resulting in the vector represen-

tation:

�q = Φ(q)

2. All documents are mapped to the concept space. For each document di, the

vector representation is then defined by:

�di = Φ(di)

3. The score of document di given query q is computed by applying a vector

space similarity measure. The most prominent measure is the cosine similar-

ity:

scoreq(di) =
〈�q, �di〉
‖�q‖‖�di‖

4. The ranking is constructed by ordering the documents according to ascending

scores.

An illustration of the usage of vector space similarity in IR is given in Figure IV.3.

When implementing IR systems, comparing queries to all documents does not

scale to big or large collections. In Chapter II, we mentioned the usage of inverted in-

dexes for efficient retrieval systems based on the Bag-of-Words model. This method

can be applied to concept-based retrieval as well. An inverted concept index is built

by storing posting lists of documents for all concepts. For each concept, the posting

list contains all documents that activate the given concept in their concept vectors.

Using inverted concept indexes then allows for efficient retrieval implementations in

respect to computation time and memory.

IV.2.4 Historical Overview
Since its introduction by Gabrilovich and Markovitch [2007], different application

scenarios and different extensions of ESA have been proposed in literature. In the

following, we will present the most prominent approaches which are also relevant in

the context of this thesis. There are many more publications concerned with specific

use cases and extensions of ESA. In our view, these approaches are not related to our

approach and will therefore be omitted in the following list.

ESA as Semantic Relatedness Measure. In the seminal paper on ESA,

Gabrilovich and Markovitch [2007] introduced their approach as a measure of se-

mantic relatedness. Their evaluation was based on a test set of word pairs. The com-

puted semantic relatedness of each word pair was compared to manual judgments of
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human assessors. As background knowledge, they proposed to use Wikipedia arti-

cles as well as Web sites listed in the Open Directory Project (DMOZ)3. When using

the Wikipedia database as concept source, several preprocessing steps were applied.

Articles were first filtered — selecting a set of articles containing a sufficient amount

of text. Further, a priori weights were assigned to articles using information gained

from incoming and outgoing pagelinks in Wikipedia.

Müller and Gurevych [2008] also applied ESA as measure of semantic relat-

edness. They proposed to use Wiktionary4 as alternative background knowledge

source.

ESA applied to IR. Egozi et al. [2008] proposed to apply ESA to an IR scenario.

As described above, they used the cosine vector similarity to compare concept vec-

tors of queries and documents for ranking. Their evaluation was based on a dataset

from TREC and topics defined by the TREC ad-hoc retrieval task (see Section II.5

for an introduction to TREC and other IR retrieval challenges). As the results of the

plain ESA model were not satisfactory, they introduced a refinement step in which

the weights of the concept vectors are adjusted. Along with the principles of Pseudo

Relevance Feedback, the results of a first probabilistic retrieval step, based on term

vector representations of documents and topics, are used to increase or decrease the

weights of matching concepts in the concept representation of the topic. The refined

topic concept vector is than matched against the concept representations of docu-

ments in a second step — leading to a significant improvement of retrieval results.

Cross-lingual Explicit Semantic Analysis. In 2008, we proposed an extension

of ESA to multilingual settings [Sorg and Cimiano, 2008a]. Concepts in different

languages that are aligned across languages can be used to define an interlingual

concept space. Aligned concepts are thereby mapped to the same interlingual con-

cept. The mapping of language-specific concept vectors of documents and topics to

the interlingual concept space allows to apply ESA in Cross-lingual IR (CLIR) and

Multilingual IR (MLIR) scenarios. More details will be given in Section IV.3.

An example for such aligned concepts are Wikipedia articles. They are part of

the Wikipedia in a specific language but are linked to corresponding articles in other

languages by cross-language links. In this chapter, we will interpret these links as

concept alignments.

Potthast et al. [2008] suggested a similar approach to define CL-ESA, which was

developed independently of our approach. Similar to the experiments presented in

Section IV.5, they evaluated their approach on a parallel corpus using documents

from the JRC-Acquis dataset. However they did not investigate the impact of the

different design choices we introduce in the next section. By using Wikipedia cate-

gories to define concepts, we further extend the CL-ESA model by abstracting from

single articles.

3http://www.dmoz.org/ (last accessed April 8, 2011)
4http://www.wiktionary.org/ (last accessed April 8, 2011)
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ESA defined on Wikipedia Categories. Using Wikipedia categories as concepts

was suggested by Liberman and Markovitch [2009]. They defined concept vectors in

the concept space spanned by categories and applied ESA on this space to compute

the semantic similarity of terms. In the next section, we will present a different

approach to exploit the category structure of Wikipedia for ESA and will also apply

this model to MLIR.

IV.3 Definition of CL-ESA
In this section, we present different extensions and variations of the ESA model. Our

models are all based on Wikipedia as background knowledge because all the features

our models depend on are present in the Wikipedia database.

Firstly, we define Cross-lingual Explicit Semantic Analysis (CL-ESA) which al-

lows to apply ESA to documents in different languages. This requires an abstraction

of single articles and categories. Links across languages in Wikipedia can be used to

define equivalence classes which will be used to define interlingual concepts.

Secondly, we will present different variations of the ESA model. Many of these

variations can be applied to CL-ESA as well as to monolingual ESA. A major vari-

ation is the usage of Wikipedia categories instead of articles to define the set of

interlingual concepts that is then used to represent queries and documents for IR.

IV.3.1 Definition

In order to be able to use Wikipedia as multilingual background knowledge we build

on the notion of interlingual articles IA(W ) and interlingual categories IC(W ).
Thereby, W represents the union of all Wikipedia databases Wl1 , . . . ,Wln in lan-

guages l1, . . . , ln.

The definition of interlingual articles is based on cross-language links in

Wikipedia. These directed links connect equivalent articles across languages and

define the relation LL

LL : A(W )×A(W )

with (a1, a2) ∈ LL iff article a1 is linked to a2 via a cross-language link. The

symmetric, reflexive and transitive closure of the LL relation can be used to define

the equivalence relation ≡LL. The set of interlingual articles is then defined by the

set of equivalence classes of all articles in different languages based on ≡LL:

IA(W ) := A(W )/ ≡LL

Interlingual articles can be represented by any article in the according equivalence

class and therefore have representations in different languages.

Interlingual articles are thus defined by sets of equivalent articles in different

languages. The language projection function Ψl maps interlingual articles to their
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Figure IV.4: Examples for interlingual articles and interlingual categories. The

connecting arrows represent cross-language links in Wikipedia. Interlingual arti-

cles (categories) correspond to equivalence classes of articles (categories) which are

based on the symmetric, reflexive and transitive closure of the cross-language link

relation.

Wikipedia articles in a specific language l:

Ψl : IA(W )→ 2A(Wl)

Example IV.4 In Figure IV.4 the interlingual article [Train] is visualized. It is
defined by the equivalence class containing the English article Train and all arti-
cles that are connected to this article via cross-language link (and therefore defined
as equivalent). In our example there are four articles that are fully connected across
all languages, i.e. Zug (German), Train (English), Train (French) and Tren
(Spanish). However, the German article Bahn (Verkehr) is also part of this
equivalence class as it also links to Train.

When extending ESA to cross-lingual setting, the concept space is based on in-

terlingual articles IA(W ). We define this extension to ESA as CL-ESA. It general-

izes the ESA model presented in Equation IV.1 to documents in different languages.
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For each document language l, a language specific text signature τl of concepts is

defined:

τl(c) := Ψl(c)

This text signature is used to compute the association strength between the interlin-

gual concepts and documents in language l. If interlingual articles map to several

articles in a specific language, the text signature is defined as the concatenation of

these articles. As the concept representation is based on interlingual concepts, docu-

ments of different languages are mapped to the same concept space. Altogether, the

generalized CL-ESA model for document d in language l using a tf.idf association

strength function is defined as:

Φl(d) := (φl(d, c1), . . . , φl(d, cm))T (IV.2)

with

φl(d, c) :=
∑
t∈d

tf.idfτl(c)(t)

In Section IV.4, we present ESA models based on interlingual categories instead

of interlingual articles. As categories in Wikipedia are also connected via cross-

language links, the definition of interlingual categories IC(W ) is analogous to the

notion of interlingual articles using the same equivalence relation. We use the same

notation for the language projection function Ψl that maps interlingual categories to

their Wikipedia categories in each language:

Ψl : IC(W )→ 2C(Wl)

In the case of CL-ESA, the concept space C is then defined by the interlingual cate-

gories IC(W ).

Example IV.5 As an example, the interlingual category [Rail transport] is
visualized in Figure IV.4. By analogy to the definition of interlingual articles, the
presented equivalence class of categories contains four fully connected categories
and an additional Spanish category Ferrocarril that links to the English cate-
gory Rail transport.

Ideally, each interlingual article (category) contains exactly one article (category)

in each language, and therefore in each Wikipedia database Wl. However, this can

not be assumed in the general case, which is shown by the counter examples pre-

sented in Figure IV.4. Statistics about the used Wikipedia databases, for example the

average number of articles (categories) in each interlingual article (category), will be

presented in Section IV.5.

IV.3.2 CL-ESA applied to CLIR/MLIR
ESA has been applied to IR by mapping both queries and documents to the concept

space and then ranking documents by the vector distance to the query using the co-

sine distance measure. As the representations delivered by CL-ESA are language
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Figure IV.5: The basic principle of CL-ESA: Queries and documents of different

languages are mapped to the interlingual concept space using language specific con-

cept descriptions. Relevance of documents to queries is then measured by using

similarity measures defined in the concept space.
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Figure IV.6: Example for pruning of ESA vectors. Dimensions having the lowest

association strength values are set to zero.

independent, the framework can be naturally extended to multilingual retrieval set-

tings without any further modification. Coming back to our running example, we

interpret the English text as query, the German text as document. Figure IV.5 visu-

alizes the CL-ESA representation of both text snippets. For retrieval purposes, the

vector-based similarity of the concept vector of the query and every document in

the collection can be calculated and the documents can be ranked according to this

similarity.

A common technique used in all ESA implementations known to us is the di-

mension projection of ESA vectors. This has two main reasons: Firstly, it allows

for more efficient implementations of the retrieval step due to more compact vector

representations. This is also highly relevant for reducing the storage size of inverted

concept indexes that are required for real-time retrieval. Secondly, the projection of

the vectors also reduces noise in concept representations. The dimension projection

function Π is defined as mapping function of vectors in the concept space:

Π : R|IA(W )| → R
|IA(W )|

Experiments using different functions Π will be presented in Section IV.5.

Example IV.6 An example for the projection of CL-ESA vectors is given in Fig-
ure IV.6. Setting selected values of the CL-ESA vector to zero raises the sparseness
of the vector and allows for more efficient implementations in regard to memory and
storage consumption.
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English German French
Query Scary Movies Horrorfilme Les films d’épouvante

Top 10 Wikipedia articles

1 Scary Movie Horror La Plus Longue Nuit du diable

2 Horror Audition Barbara Steele

3 Scary Movie 3 Dark Water Danger planetaire

4 Kazuo Umezu Candyman James Wan

5 James L. Venable Prophezeiung (1979) Dracula, mort et heureux de l’être

6 Horror and terror Wolfen (Horrorfilm) Seizure

7 Regina Hall Alienkiller Danvers (Massachusetts)

8 Little Shop of Horrors Brotherhood of Blood Fog (film,1980)

9 The Amityville Horror Lionel Atwill The Grudge

10 Dimension Films Doctor X La Revanche de Freddy

Table IV.1: The top-10 activated Wikipedia articles in the ESA vector of the example

query Scare Movies and its translations in the three languages German, English and

French.

English German → English
Query Scary Movies Horrorfilme

Top 10 Wikipedia articles

1 Scary Movie Horror

2 Horror Audition (disambiguation)

3 Scary Movie 3 Dark Water

4 Kazuo Umezu Candyman

5 James L. Venable Splatter film

6 Horror and terror Prophecy (film)

7 Regina Hall Wolfen (film)

8 Little Shop of Horrors The Borrower

9 The Amityville Horror Brotherhood of Blood

10 Dimension Films Lionel Atwill

Table IV.2: The top-10 activated Wikipedia articles in the ESA vector of the example

query after mapping German articles into the English Wikipedia space.

The final ranking function for a document d in language ld given a query q in

language lq is then defined as:

rel(q, d) = rel(Π(Φlq (q)),Π(Φld(d))) (IV.3)

First, the query and the document are mapped to the concept space using the

language-specific CL-ESA functions Φlq and Φld (compare Figure IV.5). Both re-

sulting concept vectors are then projected using the function Π (compare Figure

IV.6). Finally, the similarity of both vectors is computed using the function rel. The

output can be used to compute a relevance score between query q and document d.
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English French → English
Query Scary Movies Les films d’épouvante

Top 10 Wikipedia articles

1 Scary Movie The Grudge

2 Horror The Devils Nightmare

3 Scary Movie 3 Barbara Steele

4 Kazuo Umezu The Blob

5 James L. Venable James Wan

6 Horror and terror Dead and Loving It

7 Regina Hall Seizure (film)

8 Little Shop of Horrors Danvers, Massachusetts

9 The Amityville Horror The Fog

10 Dimension Films A Nightmare on Elm Street 2

Table IV.3: The top-10 activated Wikipedia articles in the ESA vector of the example

query after mapping French articles into the English Wikipedia space.

Article English German → English
Position in ranked ESA vector

Scary Movie 1 555

Horror 2 1

Scary Movie 3 3 288

Scary Movie 2 4 619

The Amityville Horror (1979 film) 10 262

Scary Movie 4 12 332

Horror film 15 15

Horrorpunk 16 353

Jon Abrahams 23 235

Poltergeist (film series) 29 542

Table IV.4: Rank position of the top activated common articles that are activated

both in the English and German concept vector.



78 CHAPTER IV. CROSS-LINGUAL EXPLICIT SEMANTIC ANALYSIS

IV.3.3 Example for CL-ESA

As further example in this chapter, we present the query Scary Movies5 from the

CLEF 2008 ad-hoc retrieval dataset, where our system performed remarkably well.

Table IV.1 contains the top-10 activated articles of the German, English and

French Wikipedia in the ESA vectors of the according translations of the exam-

ple query. Thereby, activation means that the corresponding dimension of an article

has a non-zero value in the concept vector. The articles are ranked by the ascending

value of their association strength to the query. These articles clearly differ between

the languages. It is in particular interesting to observe that many results are actually

named entities which differ between languages. This could be explained by the dif-

ferent cultural background that implies a different popularity and usage of specific

named entities. Consequently, the CL-ESA vectors for the same query in different

languages vary substantially, which is less optimal in a cross-lingual retrieval setting.

Table IV.2 and IV.3 contain the mappings of the German and French concept

vectors to the English Wikipedia space. These mappings show that many of the top

ranked articles using the English query and English Wikipedia are also present in the

concept vectors that are based on queries in other languages and are then mapped to

the English concept space. It can also been observed that the mapping of concept

vectors introduces new concepts to the top-10 activated concepts. The reason for

this is that in some cases several articles in the source Wikipedia are mapped to

the same target article in the English Wikipedia. For example, when mapping the

German concept vector to English, the concept Splatter film is present in the top

ranked articles, which is not the case in the German vector. Its association score is

accumulated from the score of several German concepts that are all linked to Splatter
film.

To illustrate the actual overlap of the ESA vectors, Table IV.4 contains a list of

articles that are both activated i) in the English ESA vector and ii) in the German

ESA vector mapped to the English concept space. These matches are ranked ac-

cording to the descending values of the association score in the English ESA vector.

The positions of these matches show that the English vector and the mapped Ger-

man vector have common non-zero dimensions, but the rank of these dimensions

differs substantially. In an ideal setting, these ranks should be equal in both vectors.

However, given the good retrieval results we achieved on this query, this indicates

that these variations in the resulting CL-ESA vectors do not influence the overall

retrieval performance.

IV.4 Design Choices

When instantiating the CL-ESA model, we are faced with many design choices.

Particular design choices are:

5Document ID: 10.2452/460-AH
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• How is the concept space defined?

• How does this definition exploit the structure of Wikipedia?

• Which function should be used to compute the association strength?

• What is the best strategy for projecting ESA vectors to more efficient repre-

sentations?

• How is relevance between query and document vectors modeled?

In this section, we present various alternatives for the above mentioned design

choices.

Applied to the CL-ESA model as presented in Section IV.3, the different design

choices essentially determine how the CL-ESA vector of queries and documents is

built (see Equation IV.2) and how scores of documents given queries are computed

based on these CL-ESA vectors (see Equation IV.3). Wikipedia also allows varia-

tions in the definition of the interlingual concept space, for example based on articles

or on categories. In the following, we present the design choices of the generalized

CL-ESA model, which can be summarized as follows:

• Dimension Projection Function Π: This function is used to project the CL-

ESA vector to reduce the number of non-zero dimensions. When implement-

ing ESA, processing and storing of concept vectors using all dimensions with

association strength greater than 0 implies high computation and storage costs.

Therefore, we project the vectors to obtain sparser representations.

• Association Strength Function φl: Quantifies the degree of association be-

tween document d in language l and concept c. This is based on the text

signature τl of concept c and the text of document d.

• Relevance Function / Retrieval Model rel: Defines the relevance of a docu-

ment to a given query on the basis of CL-ESA vector representations. While

the cosine (thus assuming a geometric retrieval model) has been used as rel-

evance function, other alternatives inspired by different approaches to mono-

lingual IR are possible here.

• Concept Space: The concept space essentially defines a set of interlingual

concepts as well as their textual signatures in all relevant languages. Arti-

cles and categories of Wikipedia can be used to define different interlingual

concept spaces. We also present an approach that is based on the category

taxonomy and uses the sub-category relation in Wikipedia to define concepts.

In this section, we will discuss particular implementations of the above functions

and design choices for the concept space that can be used to instantiate the proposed

generic retrieval framework based on CL-ESA. In Section IV.5, we will also pro-

vide experimental evaluation of particular instantiations applied to CLIR and MLIR

scenarios.



80 CHAPTER IV. CROSS-LINGUAL EXPLICIT SEMANTIC ANALYSIS

IV.4.1 Dimension Projection

The dimension projection function is used to reduce the number of non-zero entries

in each concept vector — speeding up the computation of any relevance function.

We present different design choices for the realization of the dimension projection

function Π that have been considered in previous literature, but never been analyzed

nor compared systematically.

In the following we will use �d = Φl(d) as the concept vector representation

of document d in language l. Let �di denote the i-th dimension of the ESA vector

of d representing association strength of d to concept ci. The function αd defines

an order on the indices of the dimensions according to descending values such that

∀i, j : i < j → �dα(i) ≥ �dα(j), for example �dα(10) is the 10-th highest value of �d.

We consider the following variants for the dimension projection function:

• Absolute: with Πm
abs(

�d) being the projected vector by restricting �d to the m di-

mensions with highest values:, i.e. α(1), . . . , α(m) (as in [Gabrilovich, 2006]

and [Sorg and Cimiano, 2008a])

• Absolute Threshold: with Πt
thres(

�d) being the projected vector by restricting
�d using threshold value t to the dimensions j with values �dj ≥ t (as in [Müller

and Gurevych, 2008])

• Relative Threshold: with Πt
rel(

�d) being the projected vector by restricting �d

to the dimensions j with values �dj ≥ t · �dα(1), t ∈ [0..1], thus restricting it to

those values above a certain fraction of the highest-valued dimension

• Sliding Window: This function moves a windows of fixed size l over the

sorted values until the difference of the first and last value in the window falls

below a threshold t. The projection cuts off all values after this position. This

function was used in the original ESA model [Gabrilovich, 2006]. Formally,

the projected vector Πt,l
window(

�d) is defined by restricting �d to the first i dimen-

sions according to the order αd for which the following condition holds:

�dα(i−l) − �dα(i) ≥ t · �dα(1)

with threshold t ∈ [0..1].

A relevant question is certainly how to set the parameters m and t. We address

this in the experiments by first fixing a reasonable value for m in Πm
abs. In order

to be able to compare the different approaches, we choose the parameter t in such

a way that the number of non-zero dimensions of the projected ESA vectors of all

documents in the datasets amounts to m on average. The parameter l was set to 100

as in [Gabrilovich and Markovitch, 2007].
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IV.4.2 Association Strength
Language specific functions φl(d, c) are used to calculate the value of the ESA vector

for a document and the dimension corresponding to a concept c. These functions are

based on the term representation of d and the text signature τl(c) of c in language l.
Let |C| denote the number of articles, |τl(c)| the number of tokens in the text

signature τl(c) of concept c. Let further tfd(t) (tfτl(c)(t)) denote the term frequency

of t in document d (text signature τl(c)) and rtfτl(c)(t) =
tfτl(c)(t)
|τl(c)| represent the

relative term frequency. cf(t) is the number of concepts containing term t in their

text signature. The inverse concept frequency is then defined as icf(t) = log |C|
cf(t)

.

We can use the following functions here:

• TFICF: The most widely used version of the tf.idf function applied to con-

cepts:

φtf.icf,l(d, c) :=
∑
t∈d

tfd(t) rtfτl(c)(t) icf(t)

• TFICF*: A modified tf.icf version ignoring how often the terms occur in

document d:

φtf.icf∗,l(d, c) =
∑
t∈d

rtfτl(c)(t) icf(t)

• TF: An association function only based on term frequencies (ignoring inverse

document frequencies):

φtf,l(d, c) =
∑
t∈d

tfd(t) rtfτl(c)(t)

• The BM25 ranking function as defined by Robertson and Walker [1994] with

parameters set to the following standard value: k1 = 2, b = 0.75:

φBM25,l(d, c) =
∑
t∈d

tfτl(c)(t)(k1 + 1)

k1

(
(1− b) + b |τl(c)|

∑
c′∈C

|τl(c′)|
|C|

)
+ tfτl(c)(t)

icfBM25(t)

with

icfBM25(t) = log
|C| − cf(t) + 0.5

cf(t) + 0.5

• The Cosine similarity between the tf and tf.icf vectors of d and cl:

�d = (tfd(t1), tfd(t2), . . . )
T

�cl = (tf.icfτl(c)(w1), tf.icfτl(c)(w2), . . . )
T

φcos(d, c) =
〈�d,�cl〉
‖�d‖‖�cl‖
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Note that we have also experimented with other variations of the above presented

functions, where the tfτl(c) instead of rtfτl(c) values were used. This resulted in

a performance degradation of about 75% in all cases. For this reason, we do not

present the results with the tfτl(c) versions of the above functions in detail.

For MLIR settings, we also performed experiments putting more weight on the

icf factor:

• TFICF2: tf.idf as presented above with quadratic icf factor:

φtf.icf2,l(d, c) :=
∑
t∈d

tfd(t) rtfτl(c)(t) icf(t)2

• TFICF3: tf.idf with cubic icf factor:

φtf.icf3,l(d, c) :=
∑
t∈d

tfd(t) rtfτl(c)(t) icf(t)3

The quadratic and cubic ICF factor gives higher weight to seldom words and lower

weights to frequent words. Our experiments indeed confirm that considering ICF to

the power of 2 and 3 is beneficial in MLIR but not in CLIR settings.

IV.4.3 Relevance Function
The relevance function rel(q, d) defines the score of a document d ∈ D in lan-

guage ld for a given query q in language lq and is used to rank the documents in the

retrieval process. In this multilingual setting, the function is defined on projected

CL-ESA vectors �q = Π(Φlq (q)) of query q and �d = Π(Φld(d)) of document d (see

Section IV.3).

By analogy to the Bag-of-Words model, term statistics used in retrieval models

can be generalized to the Bag-of-Concepts model. The term frequency of concept c
in document d is defined as tfd(c) = �dc, the document frequency df(c) corresponds

to the number of documents in D with �dc > 0. Based on this analogy, standard

relevance functions defined for text retrieval can be applied to the Bag-of-Concepts

model.

• The Cosine similarity of query and document vectors (used by all ESA

implementations known to us):

relcos(q, d) =
〈�q, �d〉
‖�q‖‖�d‖

• TFIDF: The tf.idf function transfered to the Bag-of-Concepts model:

relTFIDF(q, d) =
∑
c∈C

tfq(c) rtfdi
(c) idf(c)

=
∑
c∈C

�qc
�dc∑

c′∈C �dc′
log
|D|

df(c)
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• KL-Divergence: Many recent text retrieval systems use relevance functions

based on the theory of language modeling. In order to be able to apply these

approaches to our setting, we define the conditional probability of a concept c
given a document or query d as follows:

P (c|d) :=
�dc∑

c′∈C �dc′

Intuitively this probability corresponds to the relative weight of concept c in

respect to all other concepts based on the association strength values.

This definition of the conditional probability originates from the Bag-of-

Words model and is inspired by Zhai and Lafferty [2001], who also describe

how these probabilities can be used to define a ranking function based on the

Kullback-Leibler (KL) divergence [Lee, 1999]. The KL divergence measures

the difference between the query and the document model (leading ultima-

tively to the negative sign in the formula below). Transferred to our model,

this results in the following retrieval function:

relKL(q, d) = −DKL(q|d) ∝ −
∑
c∈C

P (c|q) logP (c|d)

• LM: An alternative approach is to use the conditional probability P (q|d) as

relevance function. This distribution can be converted using the conditional

distributions of documents given concepts, Bayes’ law and the a priori proba-

bility of concepts P (c) = df(c)
|D| :

relLM(q, d) = P (q‖d) =
∑
c∈C

P (q|c)P (c|d)

∝
∑
c∈C

P (c|q)
P (c)

P (c|d)

IV.4.4 Concept Spaces
Besides the design choices for dimension projection, association strength and rele-

vance function presented above, a crucial question is how to define the concept space

with respect to which documents will be indexed. In the original ESA model applied

to Wikipedia, concepts correspond to single articles. For CL-ESA, we extended

concept definitions by introducing interlingual concepts having language specific

text signatures (see Section IV.3). These text signatures are defined by the content

of articles and the structure given by categories in Wikipedia databases in different

languages.

In the following, we propose two new approaches to define concepts based on

Wikipedia: Cat-ESA and Tree-ESA. These are novel extensions of CL-ESA inspired
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Figure IV.7: ESA vectors based on different definitions of the concept space. The

original ESA model is based on articles. Concepts in Cat-ESA are defined by cate-

gories. The textual description of each category is thereby built using the articles of

the category. For Tree-ESA, sub-category relations are additionally used to define

the textual descriptions.
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by the model introduced by Liberman and Markovitch [2009]. They presented a

measure of semantic relatedness based on a concept space spanned by Wikipedia

categories. In this thesis, we integrate the category based concept space in our cross-

lingual ESA framework, which allows to find optimal design choices and parame-

ters for this specific concept space. The model of Liberman and Markovitch [2009]

has not been applied to IR nor CLIR/MLIR so far. Our further contribution is the

evaluation of category based concept spaces in MLIR tasks. Finally, we introduce

Tree-ESA that additionally exploits the hierarchical structure of categories.

Cat-ESA relies on categories of Wikipedia to define concepts. In this model,

only links assigning articles to categories are considered, while relations between

categories are not used.

Tree-ESA uses sub-category relations to propagate textual descriptions of con-

cepts along the category hierarchy. Figure IV.7 contains examples for concept vec-

tors based on different definitions of the concept space. Again, articles and categories

presented in Figure IV.1 are used in this example. The ESA model defines concepts

by articles, for example Automobile. Using Cat-ESA, concepts correspond to cate-

gories which abstract from single articles. Here, all article in the text signature of

a category are also used to compute the association strength, but each article has a

smaller overall weight as the text signature consists of several articles. Finally, Tree-

ESA exploits the sub-category structure of Wikipedia and considers all articles along

the category tree to define the text signatures.

The intuition behind these concept models is that they become more and more

language-independent the more concept descriptions abstract from single articles.

Therefore, indexing documents with respect to Wikipedia categories instead of

Wikipedia articles might be a good choice for cross-lingual retrieval. Missing lan-

guage links between articles or existing language links between articles describing

different concepts may have a significant influence on the performance of CL-ESA.

When using Cat-ESA with many articles in each category, these problems will surely

have a smaller impact. In Tree-ESA, descriptions of categories are even bigger as

they also contain subcategories. Our hypothesis is that the category-based represen-

tations used in Cat-ESA and Tree-ESA are better candidates for MLIR document

models as the category structure is more stable across languages compared to the

structure of articles. Our results indeed support this conclusion.

Category ESA. Category ESA (Cat-ESA) is based on a set of categories Γ =
{γ1, . . . , γo}. We define the function

MEMBERS : Γ→ 2C

that maps category γ to all articles contained in the category, which is a subset of the

set of articles C.

Instantiated for Wikipedia as in our case, the categories Γ correspond to inter-

lingual categories IC(W ) as defined in Section IV.3. The category membership

function MEMBERS is then essentially defined by category links. These links are
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part of Wikipedia and assign articles to categories in a specific language l:

CLl : A(Wl)→ C(Wl)

Using equivalence classes of articles and categories as defined above, these links

can be generalized to interlingual articles and categories. More details about mining

these links from Wikipedia will be presented in Section IV.5. As articles potentially

contain more than one category link, the sets of interlingual articles of categories

may not be disjoint.

In contrast to CL-ESA, the concept space of Cat-ESA is then spanned by Γ and

not by C. The text signature τ of category γ is defined as the union of text signatures

of all interlingual articles that are linked to one of the categories in the interlingual

category:

τCat-ESA(γ, l) :=
⋃

c∈MEMBERS(γ)

τCL-ESA(c, l)

When computing term statistics, this union is equivalent to the concatenation of the

articles.

Category Tree ESA. For Category Tree ESA (Tree-ESA), the categories as de-

scribed for Cat-ESA are part of a tree structure. Given a single root category γr and

a sub-category relation SUB : Γ→ 2Γ, all other categories can be reached from the

root category. The function TREE : Γ→ 2Γ maps a category γ to the subtree rooted

in γ and is recursively defined as:

TREE(γ) := γ ∪
⋃

γ′∈SUB(γ)

TREE(γ′)

As all categories are part of a tree structure without circles, this recursion stops at a

leaf category node, for example

TREE(γ) := γ if γ is a leaf

Again, category links in Wikipedia, linking one category to another, can be gen-

eralized to interlingual categories and therefore be used to define the sub-category

relation. The association strength of document d to category γ is then not only based

on concepts in γ but also on the concepts of all subcategories. This results in the

following definition of the text signature function τ :

τTree-ESA(γ, l) :=
⋃

γ′∈TREE(γ)

τCat-ESA(γ
′, l)

Tree-ESA requires a tree-shaped category structure. Using Wikipedia, this is

not given as some links introduce circles in the category structure. In Section IV.5,

we will describe our pruning method that filters such category links to make the

Wikipedia category structure usable for the proposed Tree-ESA model.
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English German → English
Query Scary Movies Horrorfilme

Position in ranked ESA vector

Parody films 1 55

Films 9 8

Film 10 3

B movies 24 14

Films by genre 25 4

1976 films 27 43

2000 films 33 80

Creative works 34 18

Entertainment 25 5

Teen films 38 28

Table IV.5: Rank position of the top ranked common categories that are activated

both in the English and German concept vector based on Cat-ESA.

Example for Category ESA. Similar to the example presented in Section IV.3.3,

we also use the query Scary Movies to visualize the advantages of Cat-ESA. Ta-

ble IV.5 presents the ranks of categories in the Cat-ESA vectors that are activated in

the English and German concept vectors of the sample topic Scary Movies and its

German translation Horrorfilme.

Comparing these ranks to the results presented in Table IV.4 shows that the com-

mon categories are found at much lower rank positions. The top 10 corresponding

concept in the CL-ESA vectors based on Wikipedia articles have an average rank of

320 in the German concept vector with a maximum rank of 619. Using Cat-ESA,

this average is only 25 with a maximum of 80.

Our conclusion is that using categories, the resulting Cat-ESA vectors are more

similar after the mapping to the interlingual concept space. This supports the hy-

pothesis that Cat-ESA is able to compensate the differences that are present on the

level of articles in the Wikipedia databases in different language. These differences

do not have a strong influence on the interlingual category structure that is exploited

by Cat-ESA.

IV.5 Experiments
In this section, we will present the experiments we performed to evaluate the dif-

ferent CL-ESA models and variants we introduced in Section IV.3. Firstly, we will

introduce the different test corpora we used in the experiments. This includes par-

allel corpora and datasets from the CLEF evaluation campaign. Further, we present

more details and statistics of the specific snapshot of the Wikipedia database that

was used as background knowledge for the different CL-ESA variants. Then, we

will describe the methodology of our experiments and define the different evaluation

measures used.

We will present results of four different experiments. In summary, the main
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objectives of our experiments are:

1. Selection of the best CL-ESA variants and parameters in respect to CLIR (Sec-

tion IV.5.4). This includes the variations of the dimension projection function,

the association strength function and the relevance function as presented in

Section IV.4.

2. Selection of the most suitable concept space and relevance function in re-

spect to different scenarios of cross-lingual and multilingual retrieval (Sec-

tion IV.5.5). This refers to the different definitions of concept spaces presented

in Section IV.4.

3. Comparison of explicit concept models (CL-ESA) to implicit concept mod-

els (Latent Semantic Indexing and Latent Dirichlet Allocation) on the task of

Cross-lingual IR (Section IV.5.6).

4. Performance of CL-ESA as retrieval model applied to an international MLIR

challenge. In this context, we compare our results to the results of various

approaches submitted by other research groups (Section IV.5.7).

IV.5.1 Methodology and Evaluation Measures
We evaluate the presented CL-ESA models on the task of IR. The experiments are

based on different multilingual datasets. Dependent on the datasets, we define two

specific retrieval tasks: mate retrieval and ad-hoc retrieval (see Chapter II). These

tasks differ in the type of topics and in the relevance assessments that are used to de-

fine the ground truth. For mate retrieval, documents of the dataset are used as topics

and the relevance assessments can be inferred automatically. For ad-hoc retrieval,

a set of topics representing specific information needs are constructed and the rele-

vance assessments for these topics is created by humans. Both retrieval tasks will be

described in detail in this section.

An important issue when presenting results in IR is also the selection of appropri-

ate evaluation measures, as they ensure that results are comparable. Using standard

measures also improves the readability, as readers usually are already familiar with

these measures. In the following, we present the two different types of datasets as

well as the evaluation measures used in our experiments.

Mate Retrieval. The mate retrieval task assumes the availability of a parallel cor-

pus that can be used to evaluate cross-lingual IR approaches. We define parallel

corpora as follows:

Definition IV.1 (Parallel Corpus) A parallel corpus, supporting a set of languages
L = {l1, . . . , ln}, consists of a set of documents in language li and all the transla-
tions of each document into the other languages lj ∈ L \ {li}. The translated copies
of document d are called mate documents or mates of d.
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Parallel corpora in a mate retrieval setting support automatic evaluation (see Chap-

ter II). Essentially, the retrieval task consists of retrieving the parallel document (the

mate) as best match given a specific document as query. Per definition, the single

mate in each language is thus the only relevant document for each language. Usu-

ally, mate retrieval is used to evaluate CLIR approaches in which the language of the

retrieval collection is homogeneous.

We also extended mate retrieval to MLIR by i) considering for each query the

translations into four languages and ii) adding the translated versions of all docu-

ments into each language to the corpus, including all mate documents of the queries.

In our case, there exist thus four relevant documents for each query, i.e. the four

equivalent articles or mates. This is clearly a MLIR setting as the retrieval corpus

contains documents in all languages and the four mates need to be retrieved to yield

a recall of 100%. Retrieving only the relevant documents in the query language —

which is the query itself — will give us a recall of 25%.

Ad-hoc Retrieval Challenge. Retrieval challenges allow to compare the perfor-

mance of different IR systems on a shared dataset and task. Ad-hoc retrieval tasks

provide a corpus of documents and define a set of topics. Participating groups are

then able to submit the retrieval results on the dataset given the topics. Usually, the

top ranked documents of all groups are then pooled and judged w.r.t. their relevance

to the query by human assessors.

The datasets used for ad-hoc retrieval challenges usually contain a large amount

of documents — often 1,000,000 documents or more. Participating groups have

therefore to ensure that the retrieval systems they develop can scale to this large

amount of data.

Topics consist of query terms, a description including more details about the

topic, and occasionally a narrative that contains even more details. At prominent IR

challenges like TREC or CLEF, the topics are hand-crafted after the careful analysis

of the document corpus. In the context of a specific retrieval challenge, usually 50

to 60 topics are defined. Examples of such queries are given in Section IV.5.7.

The relevance assessments acquired after assessing the documents in the result

pool are often published as ground truth for the set of topics. This allows to evaluate

runs that have not been part of the original result pool. Assuming a great diversity of

retrieval systems that contribute to the result pool, most of the retrieved documents

of new runs will be covered by the ground truth. Additionally, evaluation measures

like BPREF that are robust in respect to non-complete relevance assessments can

be used to minimize the influence of the missing assessments (see Section V.5 for a

definition and applications of BPREF).

Evaluation Measures. Results of our experiments are presented using standard

evaluation measures based on the ground truth, which is defined by the mate retrieval

scenario. In particular, we use the following measures given the set of queries Q:
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Recall at cutoff rank k (R@k): Recall defines the number of relevant documents

that were retrieved in relation to the total number of relevant documents. Re-

call at a specified cutoff rank k is defined by only considering the top k results.

In the special case of mate retrieval, R@k defines the number of queries for

which the mate document was found in the top k results. In the multilin-

gual mate retrieval setting, it measures how many of all translations have been

found.

Mean Reciprocal Rank (MRR): MRR measures the average position of the first

relevant document. In mate retrieval, this corresponds to the rank of the only

mate document. In contrast to R@k, this also takes into account the position

of the relevant document, resulting in higher values the lower the rank of the

first relevant document in the ranked result list. MRR is defined as follows:

MRR =
1

|Q|
∑
q∈Q

1

mink{dq,k |REL(dq,k, q) = 1}

with dq,k as the retrieved document given query q at rank k and REL(d, q) as

the binary relevance function of document d given query q.

Mean Average Precision (MAP): MAP is another standard measure in IR that is

also sensitive to the rank of relevant documents. It is defined as the mean of

Average Precision (AP) over all topics. AP averages precision measured at the

rank of each relevant document for a given topic. Altogether, MAP is defined

as:

MAP =
1

|Q|
∑
q∈Q

∑n
k=1 P@k · REL(dq,k, q)

|{d ∈ D |REL(d, q) = 1}

with P@k as Precision at cutoff rank k.

As for MRR, this measure is inverse proportional to the position of the mate

in the ranked retrieval list. For ad-hoc retrieval challenges, MAP has emerged

as standard evaluation measure.

IV.5.2 Test Datasets

We used three different datasets in the experiments. The first two, Multext and JRC-

Acquis, are parallel corpora that are used for mate retrieval. The third one, the TEL

dataset, was published as corpus for an ad-hoc retrieval challenge. In the following,

we describe these datasets in detail.

Multext and JRC-Acquis Datasets. We use the following two parallel corpora in

our experiments:



IV.5. EXPERIMENTS 91

<div type=RECORD id="FXAC93006ENC.0001.01.00">
...
<div type="Q">

...
Subject: The staffing in the Commission of the
European Communities
...
Can the Commission say:
1. how many temporary officials are working at

the Commission?
2. who they are and what criteria were used in

selecting them?
...

</div>
<div type="R">

...
1 and 2. The Commission will send tables showing
the number of temporary staff working for the
Commission directly to the Honourable Member and
to Parliament’s Secretariat.
...

</div>
</div>

Figure IV.8: Example record of the Multext dataset.

• Multext6 consisting of 3,152 question/answer pairs from the Official Journal

of European Community (JOC).

• JRCAcquis7 consisting of 7,745 legislative documents of the European Union.

Both corpora contain manually translated equivalents of each document in English,

German, French and Spanish. In our experiments, we applied a preprocessing

pipeline as commonly used in IR systems consisting of stop word removal, nor-

malization and stemming (see Section II.1). In particular, we first eliminated stop

words (for example and or the) and extremely short terms (length < 3). Then we

substituted special characters to get a more consistent representation of terms (for

example ä → a or é → e). Finally we applied stemming to all words using the

Snowball stemmer in the according languages.

Figure IV.8 contains the English version of a sample record of the Multext

dataset, which is also available in all other languages. Each document consists of

6http://aune.lpl.univ-aix.fr/projects/MULTEXT/ (last accessed April 8, 2011)
7http://langtech.jrc.it/JRC-Acquis.html (last accessed April 8, 2011)
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Record Title or Subject Annotation Terms
1 Strength, fracture and complexity: an Fracture mechanics,

international journal. Strength of materials

2 Studies in the anthropology of North -

American indians series.

3 Lehrbuch des Schachspiels und Einführung Chess

in die Problemkunst.

Table IV.6: Example records of the TEL dataset.

Field Description BL ONB BNF
title The title of the document 1 .95 1.05

subject Keyword list of contained subjects 2.22 3.06 0.71

alternative Alternative title .11 .50 0

abstract Abstract of the document .002 .004 0

Table IV.7: Average frequency of content fields of the TEL library catalog records.

Each record may contain several fields of the same type.

questions posted to the European Commission and the answers to these questions.

TEL Dataset. The TEL dataset was provided by the European Library in the con-

text of the CLEF 2008/2009 ad-hoc track. This dataset consists of library catalog

records of three libraries: the British Library (BL) with 1,000,100 records, the Aus-

trian National Library (ONB) with 869,353 records and the Bibliothèque Nationale

de France (BNF) with 1,000,100 records. While the BL dataset contains a major-

ity of English records, the ONB dataset of German records and the BNF dataset of

French records, all collections also contain records in multiple languages.

All of these records consist of content information together with meta informa-

tion about the publication. The title of the record is the only content information

that is available for all records. Some records additionally contain some annotation

terms.

This dataset is challenging for IR tasks in different ways. Firstly, the text of

the records is very short, only a few words for most records. Secondly, the dataset

consists of records in different languages and retrieval methods need to consider

relevant documents in all of these languages.

Table IV.6 shows the content information of some records of the BL dataset (the

English part of TEL). As can be seen in these examples, each record consists of

fields which again may be of different languages. Not all of these fields describe the

content of the record but contain also meta data such as the publisher name or year

of publication.

As the CLEF topics are only targeted at the content of records, we first identi-
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BL ONB BNF

Lang Tag Det Lang Tag Det Lang Tag Det
English 61.8% 76.7% German 69.6% 80.9% French 56.4% 77.6%

French 5.3% 4.0% English 11.9% 8.0% English 12.9% 8.2%

German 4.1% 2.9% French 2.8% 2.1% German 4.1% 3.8%

Spanish 3.1% 2.0% Italian 1.8% 1.5% Italian 2.3% 1.4%

Russian 2.7% 1.7% Esperanto 1.5% 1.5% Spanish 2.0% 1.4%

Table IV.8: Distribution of the five most frequent languages in each dataset, based

on the language tags (Tag) and on the language detection model (Det).

fied all potential content fields. Table IV.7 contains a list of the selected fields and

the average count of each field for a record. Further, we reduced additional noise

by removing non-content terms like constant prefix or suffix terms from fields, for

example the prefix term Summary in abstract fields.

In order to be able to use the library catalog records as multilingual documents,

we also had to determine the language of each field. Our language detection ap-

proach is first based on the language tags provided in the dataset. These tags are

present at all records of the BL dataset, for 90% of the ONB dataset and for 82%

of the BNF dataset. The language distribution in the different datasets based on the

language tags are presented in Table IV.8 in the column Tag.

However, there are several problems with language tags in the TEL dataset. Our

analysis of the datasets showed that relying merely on the language tags introduces

many errors in the language assignment. Firstly, there are records tagged with the

wrong language. Secondly, as there is only one tag per record, language detection

based on tags is not adequate for records containing fields in different languages. We

therefore applied a language classifier to determine the language of each field of the

records in the TEL dataset.

In order to identify the language for each field, we exploit a language detection

approach based on character n-grams models. The probability distributions for char-

acter sequences of the size n are used to classify text into a set of languages. We

used a classifier provided by the Ling Pipe Identification Tool8 which was trained on

corpora in different languages. We used the Leipzig Corpora Collection9 that con-

tains texts collected from the Web and newspapers and the JRC-Acquis dataset that

consists of documents published by the European Union and their translations into

various languages as training data.

We conducted multiple tests in order to verify the effectiveness of the language

detection model. The results showed that using a 5-gram model and a 100,000 char-

acter training leads to optimal results. The classifier achieves high performance of

more than 97% accuracy for text containing more than 32 characters. As this is the

case for most fields in the TEL dataset, this classifier is applicable for the language

detection task in our framework.

8http://alias-i.com/lingpipe/ (last accessed April 8, 2011)
9http://corpora.uni-leipzig.de/ (last accessed April 8, 2011)
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Our language detection model determines the language for each field based on

evidence from tags and from text based classification. Table IV.8 contains the lan-

guage distribution in the TEL datasets based on the detection model in column Det.
There are significant differences compared to the language assignment using only

language tags, which clearly motivates the application of the language detection

model. This step will probably also help to improve results in the retrieval task,

as the retrieval models rely on correct language assignments.

IV.5.3 Reference Corpus
As described in Section IV.3, we used Wikipedia as background knowledge for the

CL-ESA model. In particular, we used different dumps of the English, German,

French and Spanish Wikipedia database.

For the experiments analyzing ESA implementation variants and the compari-

son to intrinsic models based on LSI or LDA, we used Wikipedia database dumps

from June 2008 in the languages English, German and French.10 As we rely on

the language links to define interlingual concepts, we only chose articles that are

linked across all three languages. This means that for any article al in language

l ∈ {EN,DE, FR}, there exist articles al′ and al′′ in the other languages that are

linked to al. Additionally, these articles al′ and al′′ are also linked to each other.

Example IV.7 For example, given any English article aEN, there is a German arti-
cle aDE and a French article aFR that are linked to aEN, and aDE is also linked to aFR.
Other examples using existing Wikipedia articles and categories are visualized in
Figure IV.4. As presented in this figure, the English article Train is linked to arti-
cles in all other languages which are again linked to each other. These articles can
therefore be used to define the concept train. This does not hold for the German ar-
ticle Bahn (Verkehr) which is only linked to the English article. It is therefore
not included in the definition of the interlingual concept.

Altogether, we used 166,484 articles in each languages, as these were the articles

that fulfilled our requirements.

For the experiments on concept spaces, we used Wikipedia database dumps from

September 2009 in the languages English, German, French and Spanish.11 In or-

der to extract interlingual articles as described in Section IV.3, we filtered out arti-

cles having less than 500 characters. Then we selected interlingual articles (cate-

gories) having associated articles (categories) in three or more languages. In this

case, we did not require that all of these articles (categories) are linked to each

other. This resulted in 358,519 interlingual articles and 35,628 interlingual cate-

gories. 94% of the interlingual articles and 95% of the interlingual categories are

10http://dumps.wikimedia.org/ (last accessed April 8, 2011)
11We used the most recent Wikipedia version for these experiments, which was a different dump as the

one used previously. As the evaluation of the different CL-ESA variants and the evaluation of the different

concept spaces are independent, this has no influence on the conclusions of our experiments.
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thereby linked to exactly one article / category in each language. This approves that

the Wikipedia databases are highly consistent across languages and shows the po-

tential of Wikipedia to be used as multilingual knowledge resource and in particular

to define universal (in our case called interlingual) concepts.

For Tree-ESA as described above, we also require a hierarchical link structure on

interlingual articles and categories. We use category links in the different Wikipedia

databases to define these links. The basic idea is to consider single category links

in a specific Wikipedia as evidence for an interlingual link between the according

interlingual article and interlingual category. This is defined by the support of an

interlingual category link:

Definition IV.2 (Support of Interlingual Category Links) The support σ of an in-
terlingual category link between interlingual article α ∈ IA(W ) and interlingual
category γ ∈ IC(W ) is defined as:

σ(α, γ) := |{(a, c) ∈ CLl | l ∈ L, a ∈ Ψl(α), c ∈ Ψl(γ)}|
with CLl being the relation defined by category links in Wikipedia Wl and L being the
set of supported languages. Ψl is the projection of interlingual articles or categories
to articles or categories in Wikipedia Wl as defined in Section IV.3.

We use a support threshold of σ ≥ 2 to select interlingual category links, result-

ing in 605,672 links between articles and categories. We apply the same definition

of support and the same threshold for links between interlingual categories, resulting

in 58,837 links. The intention of the selection process of interlingual category links

is the reduction of noise. Links, that are only supported by one category link, are

only present in a single Wikipedia database. They are missing in all other languages

and might therefore be redundant or even introduce errors.

As root for the category tree used in Tree-ESA, we selected the interlingual cat-

egory associated with the top category in the different language-specific Wikipedias.

86% of the interlingual categories extracted before are connected to this root by cat-

egory links and are therefore part of the category tree. As the category link graph in

Wikipedia contains cycles, we use a breadth-first algorithm that explores the graph

starting from the root category. All links introducing circles are ignored in the ex-

ploration, thus resulting in a tree-shaped category structure.

IV.5.4 Evaluation of ESA Model Variants
As described in Section IV.3, the ESA model allows different design choices. To

find best parameters for CLIR, we performed experiments testing the influence of

different variants on the retrieval performance. Our experiments have been carried

out in an iterative and greedy fashion in the sense that we start form the original ESA

model as a baseline. Then we iteratively vary different parameters and always fix the

best configuration before studying the next parameter. The sequence of optimiza-

tions is given by the nesting of functions in Equation IV.3. We first optimized the
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parameters of the inner functions that do not depend on the output of other functions

and then proceeded to the outer functions. At the end of our experiments, we will

thus be able to assess the combined impact of the best choices on the performance

of the ESA model.

In summary, the contributions of the experiments on ESA model variants are the

following:

1. We identify best choices for the parameters and design variants of the CL-ESA

model on a CLIR scenario.

2. We show that the CL-ESA model is sensitive to parameter settings, heavily

influencing the retrieval outcome.

3. We show that the settings chosen in the original ESA model are reasonable,

but can still be optimized for CLIR and MLIR settings.

Experimental Settings. Results of the evaluation of variants of the CL-ESA model

are presented in Figures IV.9 to IV.12. As the observed effects were constant across

measures, we only present recall at cutoff rank 1 (R@1). For experiments on the

Multext corpus we used all documents (2,783) as queries to search in all documents

in the other languages. The results for language pairs were averaged for both retrieval

directions (for example using English documents as queries to search in the German

documents and vice versa). For the JRC-Acquis dataset, we randomly chose 3,000

parallel documents as queries (to yield similar settings as in the Multext scenario)

and the results were again averaged for language pairs. This task is harder compared

to the experiments on the Multext corpus as the search space consists of 15,464

documents and is thus bigger by a factor of approximately 5. This explains the

generally lower results on the JRC-Acquis dataset.

To prove the significance of the improvement of our best settings (projection

function Π10000
abs , association strength function tf.icf∗, cosine retrieval model) we

carry out paired t-tests (confidence level 0.01) comparing the best settings pairwise

with all other results for all language pairs on both datasets. Results where the dif-

ferences are not significant with respect to all other variants at a confidence level of

0.01 are marked with X in Figures IV.9 to IV.12.

In the following we discuss the results of the different variations of the CL-ESA

model:

Projection Function. We first used different values for the parameter m in the

projection function Πm
abs. The results in Figure IV.9 showed that m = 10, 000 is a

good choice for both datasets.

On the basis of this result, we investigated different projection functions. In or-

der to be able to compare them, we set the different threshold values t such that

the projected ESA vectors had an average number of approx. 10,000 non-zero di-

mensions. An exception is the function sliding window (orig.) where we used the
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Figure IV.9: Variation of m in the projection function Πm
abs using the tf.icf∗ associa-

tion function and cosine retrieval model. Results that have no significant difference

to the results of our best setting are marked with X.
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Figure IV.10: Variation of the projection function Π using the tf.icf∗ association

function and cosine retrieval model.
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Figure IV.11: Variation of the association strength function φl using the projection

function Π10,000
abs and cosine retrieval model.

parameters described in [Gabrilovich, 2006]: threshold t = 0.05 and window size

l = 100. Using an absolute number of non-zero dimensions yielded the best results

(see Figure IV.10), the difference being indeed significant with respect to all other

variants. Thus, we conclude that neither the settings of the original ESA approach

(sliding window) nor in the model of Gurevych et al. [2007] (fixed threshold) are

ideal in our experimental settings. For the remaining experiments, we therefore use

the absolute dimension projection function that selects 10,000 articles (Π10,000
abs ).

Association Strength. The results in Figure IV.11 show that the functions tf.icf

(used in the original ESA model) and tf.icf∗ perform much better compared to the

other functions. The better performance of tf.icf∗ which ignores the term frequen-

cies in the queries was indeed significant w.r.t. all other alternatives for all language

pairs considered on both datasets. We thus conclude that the settings in the origi-

nal ESA model are reasonable, but, surprisingly, can be improved by ignoring the

term frequency of the terms in the document to be indexed. The low results using

the tf function show that icf is an important factor in the association strength func-

tion. Otherwise, the normalization of the tf.icf values (= cosine function) reduces the

retrieval performance substantially.

Retrieval Model. Experiments with different retrieval models lead to the result

that the cosine function, which is used by all ESA implementations known to us,

constitutes indeed a reasonable choice. All other models perform worse (the differ-

ence being again significant for all language pairs on both datasets), which can be

seen at the charts in Figure IV.12, especially on the JRC-Acquis dataset.

Discussion. Our results show on the one hand that ESA is indeed quite sensitive

to certain parameters (in particular the association strength function and the retrieval
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Figure IV.12: Variation of the retrieval model using Π10,000
abs and tf.icf∗.

model). The design choices have a large impact on the performance of the ESA

based retrieval approach. For example, using tfc values instead of rtfc values (which

are length normalized) in the association strength function decreases performance

by about 75%. Unexpectedly, abstracting from the number of times that a term ap-

pears in the query document (using tf.icf∗) improves upon the standard tf.icf measure

(which takes them into account) by 17% to 117%. We have in particular shown that

all the settings that are ideal in our experiments are so indeed in a statistically sig-

nificant way. The only exception is the number of non-zero dimensions taken into

account, which has several optimal values.

On the other hand, the results of our experiments confirm that that the settings

in the original ESA model (Π0.05,100
window , tf.icf, cosine) [Gabrilovich and Markovitch,

2007; Gabrilovich, 2006] are reasonable. Still, when using the settings that are ideal

on both datasets according to our experiments (Π10,000
abs ,tf.icf∗,cosine), we achieve a

relative improvement in TOP-1 accuracy between 62% (from 51.1% to 82.7%, Mul-

text dataset, English/French) and 237% (from 9.3% to 31.3%, JRC-Acquis dataset,

English/German). This shows again that the settings can have a substantial effect on

the ESA model and that ESA shows the potential to be further optimized and yield

even better results on the various tasks it has been applied to.

Finally, all experiments including the German datasets have worse results com-

pared to the English/French experiments. This is likely due to the frequency of

specific German compounds in the datasets, which lead to a vocabulary mismatch

between documents and Wikipedia articles. However an examination of this remains

for future work.

IV.5.5 Concept Spaces for Multilingual Scenarios

Two different retrieval problems have been considered in the context of retrieval

systems bridging between languages: Cross-lingual IR (CLIR) and Multilingual IR
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(MLIR). While CLIR is concerned with retrieval for given language pairs (i.e. all

the documents are given in a specific language and need to be retrieved to queries

in another language), MLIR is concerned with retrieval from a document collection

where documents in multiple languages co-exist and need to be retrieved to a query

in any language.

While CL-ESA model variants where evaluated on a CLIR scenario, we also

tested its performance on multilingual settings. This is an inherently more difficult

problem as documents of different languages compete in the retrieval process. We

will define this problem as language biases in this section. One of the goals in the

following experiments is to show that CL-ESA is not strongly affected by language

bias. In these experiments, we particularly focus on different concept spaces that are

used by CL-ESA, Cat-ESA and Tree-ESA.

In summary, the contributions of the experiments on multilingual retrieval sce-

narios are the following:

1. We present and analyze the performance of different CL-ESA models on a

MLIR task.

2. We show that CL-ESA using concept spaces based on Wikipedia categories

improves performance on MLIR settings compared to concept spaces based

on articles. Our results show that there is indeed a gain in MAP from 18% to

39%.

3. We show that CL-ESA applied to MLIR is not strongly affected by two differ-

ent types of language biases (which will be defined in the following).

4. We argue that CLIR and MLIR are quite different problems for which different

retrieval approaches need to be applied. In particular, we show how the perfor-

mance in CLIR and MLIR tasks varies substantially for the same parametric

choices.

Definition of Language Bias. One of the main problems that make MLIR very

challenging could be defined as language bias. This problem manifests itself in two

facets:

• The language bias type I captures the intuition that, given a query in a certain

language, the retrieval system is in principle biased to return documents in

that specific language. An extreme case is multilingual retrieval without query

translation. Most terms in the query will only be matched to documents of the

same language which are then retrieved in the top ranked results. However,

even if query translation is applied, information will often be lost in the trans-

lation process, for example by incomplete translations, which has a similar

effect on the retrieval results.

• The language bias type II captures the fact that retrieval systems based on

standard term weighting models are intrinsically biased to rank documents in
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Retrieval Multext JRCAcquis
Concept Model ID Model R@10 MAP R@10 MAP
Bag of Words 1 BM25 .27 .27 .25 .25

CL-ESA 2 TFICF .27 .27 .26 .26

3 TFICF2 .30 2.29 .28 2.27
4 TFICF3 .33 3.33 .29 3.28

Cat-ESA 5 TFICF .36 3.33 .27 .27

6 TFICF2 .44 4,5.39 .32 5.30
7 TFICF3 .47 6.43 .36 6.33

Tree-ESA 10 TFICF .36 3.33 .26 .26

11 TFICF2 .48 10.42 .30 3,5,10.28
12 TFICF3 .51 6,11.46 .33 5,11.31

Table IV.9: Results of mate retrieval experiments using queries and documents of

all languages. Statistically significant differences according to paired t-test at confi-

dence level .001 are marked with the ID of the compared result.

the most prominent language of the collection relatively high. This problem is

again based on the matching of query terms to documents and on the a priori

probability of documents. The high share of documents in the most prominent

language leads to a high probability that these documents are at least matched

to some of the query terms. In contrast, this probability is much lower for the

small share of documents in other languages.

Both problems arise in particular in connection with document models used in

monolingual IR, which are language-specific. In the following experiments, we will

analyze how CL-ESA and its variants are affected by the language bias problem. We

will also examine other baseline approaches in respect to the language bias in MLIR

tasks.

Experimental Settings. To define queries for our experiments, we randomly se-

lected 50 documents each from the Multext and from the JRC-Acquis dataset. We

then used all translations of these documents as queries, which resulted in 200 mul-

tilingual queries for each dataset. As evaluation measures we used Mean Average

Precision (MAP) and Recall at cutoff level of 10 (R@10).

Document Models. The results on the multilingual mate retrieval task using the

different CL-ESA abstractions and retrieval models are presented in Table IV.9

which shows R@10 and MAP values for the different configurations under analysis.

The results clearly show that the models relying on categories as concepts instead

of articles are indeed superior, with MAP improvements of 70% (Multext) and 32%

(JRC-Acquis) to the BoW model baseline and 39% (Multext) and 18% (JRC-Acquis)

to CL-ESA.
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Figure IV.13: Differences in AP to MAP for each query. The results using different

query languages are presented in a single additive bar. The experiments were per-

formed on a mate retrieval setting using Tree-ESA with the TFICF3 model on the

Multext dataset.

The interlingual document representation given by Cat-ESA and Tree-ESA is

therefore more suited for MLIR than any of the other models considered. Interest-

ingly, there seems to be no significant difference between Cat-ESA and Tree-ESA.

The fulfillment of our intuition that category-based concept models smooth the struc-

tural and content-based differences of Wikipedia databases in different languages is

a possible explanation of these results.

When considering the different retrieval models, the results vary significantly.

For all category-based models we achieve high performance gain when using tf.icf2

instead of tf.icf on both datasets (MAP improvements between 8% to 27%). About

the same improvement is observed again when using tf.icf3 instead of tf.icf2 (MAP

improvements between 10% to 11%). All these improvements using the different

retrieval models have been tested to be statistically significant at confidence level

.001 using a paired t-test. Giving more weight to non-frequent terms is therefore

beneficial for multilingual mate retrieval. A possible explanation is that reducing

the weight of frequent terms also reduces the language bias, as this bias might be

induced by the different distributions of these terms in each language.

Language Bias. The fact that the R@10 values are close to 50% for Cat-ESA and

Tree-ESA shows that to a query in a certain language the system is retrieving about

two mates in the top ten results on average. This shows that Cat-ESA and Tree-ESA

can deal with the language bias reasonably well. The fact that the performance is

comparable across languages and not biased to any specific languages can be visually

inferred from the values presented in Figure IV.13, which plots Average Precision

(AP) results for English, German, French and Spanish queries on the Multext dataset

using Tree-ESA with tf.icf3. The X-axis consists of the 50 queries, each having a

translation in all languages. On the Y-axis, the difference of the query specific AP to
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Figure IV.14: Relative performance with regard to best MAP values for mate re-

trieval using different CL-ESA models on multilingual documents and on English

documents of the Multext dataset.

the MAP of all queries is plotted. These differences were determined for each query

language and the results are presented as a single additive bar.

The results show that the performance of our approach does not vary across lan-

guages as differences to MAP are mostly consistent when using the same query in

English, German, French or Spanish. For some queries, we achieve an AP above av-

erage which is observed using all query languages. Considering the bad performing

queries, the results are also consistent when using queries in the different languages.

CLIR vs. MLIR In this section, we introduced MLIR as an inherently more dif-

ficult problem than CLIR. To support this claim we have additionally performed

CLIR experiments on the Multext dataset. In this case the target document collec-

tion consists only of documents in one language. Experiments using Cat-ESA with

the tf.icf2 model on English documents resulted in high MAP values ranging from

.72 to .85 using German, French and Spanish queries. This shows that our model is

also applicable to CLIR but also that CLIR is indeed a much easier problem.

The results for CLIR presented above are based on an optimal selection of param-

eters. Interestingly, we appreciate that the best performing configuration is different

from the best performing configuration for MLIR. To illustrate this effect we set the

relative performance for both best performing configurations on the Multext dataset,

on the one hand for CLIR and on the other hand for MLIR, to 100% in Figure IV.14.

The performance of all other configurations is shown relatively to the best configu-

ration. The results in Figure IV.14 show that while using cubic ICF values always

improves results for MLIR, this is definitely not the case for CLIR. Using Cat-ESA

and Tree-ESA, we observe a significant drop in MAP compared to the quadratic icf

model. This effect is also confirmed using Tree-ESA for CLIR on the JRC-Acquis

dataset. This shows that model and parameter selection has to be adjusted to the spe-

cific settings, i.e. CLIR or MLIR. As these are different problems, good approaches

to solve one setting might not be optimal on the other.
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IV.5.6 External vs. intrinsic Concept Definitions

In Section IV.5.4 and IV.5.5, we presented experiments on CL-ESA model variants

as well as variations of the oncept space. However, we did not compare CL-ESA to

alternative concept based approaches to CLIR. In the following, we introduce two

models based on intrinsic concept definitions. Both models are evaluated in regard

to retrieval performance using the mate retrieval scenario and they are compared to

CL-ESA.

In summary the contributions of the experiments comparing CL-ESA to intrinsic

concept models are the following:

1. Training of intrinsic models on Wikipedia results in much lower retrieval

performance. CL-ESA is therefore able to exploit Wikipedia as background

knowledge more effectively.

2. CL-ESA shows comparable results to intrinsic models that are trained on the

dataset, using a train/test split. However, CL-ESA is not trained on the dataset

but a generic model based on background knowledge.

Intrinsic Concept Definitions. For the comparison to alternative concept models,

we chose LSI and LDA as representative approaches for deriving implicit (latent)

concepts from a text collection.

In the monolingual case, LSI is used to identify latent topics in a text corpus.

These topics, which correspond to concepts in CL-ESA, are extracted by exploit-

ing co-occurrences of terms in documents. This is achieved by Singular Value

Decomposition (SVD) of the term-document matrix [Deerwester et al., 1990]. The

latent topics then correspond to the eigenvectors having the largest singular values.

This also results in a mapping function from term vectors to topic vectors. LSI

was originally used for dimensionality reduction of text representation and for im-

proved retrieval of synonyms or similar terms. By using parallel training corpora,

LSI can also been applied to CLIR such that the resulting topics span terms of dif-

ferent languages [Littman et al., 1998]. More details and an example of LSI is given

in Chapter III.

As an instance of probabilistic latent topic models, we consider the LDA based

generative model. The basic idea of this approach is to abstract from particular words

and to represent multilingual documents by mixtures over a set of latent concepts

(i.e. hidden document-specific themes of interest), whereby each concept is charac-

terized by a fixed conditional distribution over terms from different languages. LDA

assumes that all multilingual terms (both observed and previously unseen) are gen-

erated by randomly chosen latent concepts. In contrast to the SVD used in LSI,

LDA has a well founded probabilistic background and tends to result in more flexi-

ble model fitting [Blei et al., 2003]. It allows resources to belong to multiple latent

concepts with different degrees of confidence and offers a natural way of assigning

probabilistic feature vectors to previously unseen resources.
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en-fr en-de de-fr

Dataset Method R@1 MRR R@1 MRR R@1 MRR

Multext CL-ESA .83 .87 .72 .78 .64 .71

LSI (Dataset) .71 .81 .60 .72 .59 .72
LSI (Wikipedia) .36 .48 .13 .21 .13 .22

LDA (Dataset) .11 .69 .04 .48 .05 .47

LDA (Wikipedia) .01 .27 .01 .16 .01 .14

JRC- CL-ESA .56 .61 .35 .40 .27 .32

Acquis LSI (Dataset) .52 .65 .29 .45 .34 .49
LSI (Wikipedia) .18 .27 .07 .12 .07 .13

LDA (Dataset) .08 .62 .12 .36 .04 .38

LDA (Wikipedia) .01 .09 .01 .07 .01 .08

Table IV.10: Results for the mate retrieval experiments on the Multext and JRC-

Acquis dataset using optimal settings of the topic numbers for LSI/LDA (500) and

of the non-zero dimensions for CL-ESA vectors (Π10,000
abs ). Evaluation measures are

Recall at cutoff rank 1 (R@1) and Mean Reciprocal Rank (MRR).

Experimental Settings. For the comparison of external vs. intrinsic concept mod-

els we used the same experimental settings as in Section IV.5.4, using all documents

of the Multext dataset and 3000 randomly selected documents of the JRC-Acquis

dataset as queries. We considered English, German and French as baseline languages

and performed accordingly 6 series of experiments with all possible language pairs.

The results for one language pair in both directions, for example English-German

and German-English, were then averaged.

Concerning the LSI implementation, the Wikipedia corpus after preprocessing

was still too huge and too sparse for an efficient LSI, which would require each doc-

ument and its mate to have between 50 and 500 terms. Therefore, we skipped all

terms which appear less than 15 times and finally used all documents containing at

least 75 terms. In this way for example, the number of English-French document

pairs was reduced to 54,764. These restrictions were applied to each language pair

separately. Because of the sparseness of the term-document matrices, a similar pro-

cess was applied to the JRC-Acquis dataset.

Results. Figure IV.15 shows sample MRR results for mate retrieval experiments

between English and French documents. CL-ESA reaches its peak performance

with a projection of concept vectors to 10,000 non-zero dimensions (Π10,000
abs , see

Section IV.4), which shows that generally it needs a minimum number of associated

concepts to perform reasonably, but clearly also reaches a point were further associa-

tions to more concepts start introducing noise. For latent topic models, the accuracy

tends to increase from 100 to 500 topics. The exploration of computationally much

more expensive latent models ends with 500 topics, due to computational limitations

of our servers. In the experiments we report below, we used these optimal settings
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Figure IV.15: Results for the mate retrieval experiments on English and French doc-

uments for different topic numbers for LSI/LDA and different numbers of non-zero

dimensions (m parameter) for CL-ESA (tf.icf∗, Πm
abs).
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(projected to 10,000 non-zero dimensions for CL-ESA, 500 for latent models) for all

language pairs.

Table IV.10 shows the corresponding summary of achieved results. It includes

R@1 and MRR of the mate documents. In addition, for latent topic methods we

compared the retrieval characteristics for different choices of the background knowl-

edge resource, namely Wikipedia vs. the test collection itself at the ratio of 60%

for learning and 40% for testing. The results show that w.r.t. R@1, CL-ESA out-

performs both other models on all language pairs of the Multext dataset and on the

English-French and English-German pairs of the JRC-Acquis dataset, but not on

German-French. With respect to MRR, LSI performs better than CL-ESA in some

cases, but only when it has been trained on the retrieval document collection itself.

When LSI is trained on Wikipedia as an aligned corpus, results are in all cases worse.

This shows that CL-ESA is indeed superior as it does not rely on an aligned corpus

to be trained on to deliver good results.

Discussion. Our results show that using Wikipedia as multilingual knowledge re-

source leads to significantly worse results for latent topic models (in contrast to the

case when they are trained on the retrieval document collection). The explanation

of this phenomenon is twofold. On the one hand, Wikipedia is not a fully parallel

corpus and linked articles may show substantial variation in size, quality, and vocab-

ulary. On the other hand, there is a serious vocabulary mismatch between Wikipedia

and our thematically focused test collections. For instance, in the Multext collection,

4,713 English terms (44%), 8,055 German terms (53.8%) and 7,085 French terms

(53.6%) are not covered by Wikipedia articles at all. We also assume that the per-

formance of LDA observed in our experiments can be further improved by heuristic

model tuning, including optimization of concentration parameters for Dirichlet pri-

ors, or smoothing of estimated multinomial parameters (as described in [Blei et al.,

2003]).

Overall, it can be claimed that CL-ESA clearly outperforms LSI/LDA unless

the latter are trained on the document collection and not on Wikipedia as a generic,

domain-independent resource. The availability of aligned corpora is a serious re-

striction, so that CL-ESA is clearly the preferred model here as it delivers reasonable

results requiring no data aligned across languages besides Wikipedia.

A further crucial advantage is its excellent scalability: CL-ESA does not require

comprehensive computations with nonlinear space/time behavior and can be practi-

cally performed within 20-30 min for any desired number of topics in each of our

test collections. The complexity of CL-ESA depends on the number of activated con-

cepts k in the concept vector of the query — which was fixed to different numbers

≤ 20, 000 in our experiments using the projection function — and the length of the

entries in the inverted concept index. The maximal size of these entries is given by

the number of documents n, which results in the worst case complexity of O(kn).
On average, these entries are much smaller. Their average length depends on the

number of concepts j � k and the number of activated concepts k in each document
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Field Content
CLEF 2008: 10.2452/460-AH

Title Scary Movies

Description Find publications discussing the making or

describing the details of any horror film.

CLEF 2009: 10.2452/701-AH
Title Arctic Animals

Description Find documents about arctic fauna species.

Table IV.11: Examples for topics used in the CLEF ad-hoc tasks.

concept vector: kn
j . This results in the average-case complexity of O(k

2

j n).
In contrast, LSI and LDA have much higher complexity. Even with significantly

lower dimensionality, the computation of the LSI and LDA models took between 3

hours and 7 days. The complexity of LSI is based on the singular value decomposi-

tion of the document-term matrix, which as the complexity of O(n3).

IV.5.7 Experiments on the CLEF Ad-hoc Task
We participated in two different retrieval challenges organized in the context of

CLEF: the ad-hoc task in 2008 and the ad-hoc task in 2009. In the following, we

describe these tasks and present the achieved results of our CL-ESA-based retrieval

systems. Both challenges use the TEL dataset as introduced in Section IV.5.2 that

contains documents from the British Library (BL), the Austrian National Library

(ONB) and the Bibliothèque Nationale de France (BNF).

CLEF 2008 Ad-hoc Task. The CLEF ad-hoc TEL task was divided into mono-

lingual and bi-lingual tasks. 50 topics in the main languages English, German and

French were provided. The topics consist of two fields, a short title containing 2-4

keywords and a description of the information item of interest in terms of 1-2 sen-

tences. An example of a topic is given in Table IV.11.

The objective is to query the selected target collection using topics in the same

language (monolingual run) or topics in a different language (bi-lingual run) and to

submit the results in a list ranked with respect to decreasing relevance. In line with

these objectives, we submitted results of six different runs to CLEF 2008. These

are the results of querying English, German and French topics to the TEL English

dataset and English, German and French topics to the TEL German dataset.

The following parameter settings as described in the implementation section

were used for these experiments:

ESA vector length: We used different lengths of the ESA vector to represent topics

and records. For the topics we used k = 10, 000, i.e. the 10,000 Wikipedia

articles with the strongest association to a specific topic were used to build the
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Dataset Topic language MAP
TEL English (BL) English 17.7%

German 7.6%

French 3.6%

TEL German (ONB) English 6.7%

German 9.6%

French 5.1%

Table IV.12: Retrieval results on the CLEF 2008 ad-hoc task measured by Mean

Average Precision (MAP).

ESA vector for this topic. For the records, we used k = 1, 000. The difference

between the lengths is mainly due to performance issues. We were only able to

process the huge amount of records by limiting the length of the ESA vectors

for records to 1,000 non-zero entries. As only 50 topics were provided, we

were able to use more entries for the ESA vectors for topics. Our intention

thereby was to improve recall of the retrieval, which is achieved by activating

more concepts in the topic vector.

Article selection: The CL-ESA model used for experiments submitted to CLEF

2008 was based on the concept space defined by all articles in the English

and German Wikipedia. We did not apply any pre-selection of articles, for

example based on the linkage across languages. The main problem of this set-

ting is the loss of many dimensions in the mapping process across languages,

as not all of the articles corresponding to a non-zero ESA vector entry have

an existing cross-language link to the Wikipedia in the target language. In this

case, the information about this dimension is lost in the mapping process. A

pre-selection of articles that are used to build the concept space overcomes this

problem, which was used for example in our experiments submitted to CLEF

2009.

CLEF 2008 Results. Table IV.12 contains the CLEF 2008 results of our submitted

experiments measured by Mean Average Precision (MAP). The results show, that

monolingual retrieval still outperforms cross-lingual retrieval. On the BL dataset,

retrieval performance is more than doubled when using English topics compared to

using German or French topics. On the ONB datasets, the differences are much

smaller.

In addition to the submitted experiments we also conducted experiments on the

TEL dataset to better quantify and understand the impact of certain parameters on

the result quality. As we were not able to evaluate the results apart from the submit-

ted ones, we decided to examine the result overlap for queries in different languages

on the same dataset. This measure can be seen as a quality measure for the capa-

bility of retrieving relevant documents across languages. Ideally, queries in different
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Article restriction Topic language pair Average result overlap
No restriction English - German 21%

English - French 19%

German - French 28%

Articles with existing English - German 39%

cross-language link English - French 51%

German - French 39%

Table IV.13: Result overlaps of the top retrieved documents using topics in different

languages on the BL dataset. For the CL-ESA model, two different reference corpora

are tested: the set of all Wikipedia articles vs. the set of articles with an existing

cross-language link.

languages should result in the same set of retrieved records. We computed the result

overlap for two different settings. Firstly, we used the same settings as in the sub-

mitted results. For the second set of experiments, we further restricted the Wikipedia

articles that were used for ESA indexing to articles with at least one language link to

one of the two other languages considered. Table IV.13 contains the result overlaps

for topic pairs in different languages on the BL dataset.

The results show that we were able to substantially improve the retrieval methods

according to the results overlap measure. By using the restricted set of Wikipedia

articles, the retrieval results are more similar when using queries that are defined by

different translations of the same topic. For example, the overlap of using the English

and French queries of the same topics is raised from 19% to 51%. Our assumption

is that the results on the retrieval task would also improve, but we did not manage to

submit an official run on time for this challenge.

CLEF 2009 Ad-hoc Task. The CLEF 2009 ad-hoc topics were similar to the top-

ics from CLEF 2008. The 50 topics have the same format consisting of two fields,

a short title containing 2-4 keywords and a description of the information item of

interest in terms of 1-2 sentences. An example topic used in CLEF 2009 is given in

Table IV.11.

Again, monolingual and bi-lingual challenges were defined for the CLEF 2009

ad-hoc task based on the TEL corpus. We submitted results of six different runs,

querying English, German and French topics to the BL, ONB and BNF datasets.

In contrast to the experiments submitted to CLEF 2008, we applied the language

detection model as preprocessing step to all TEL records. As shown in Section IV.5,

this improves the classification rate of the language of fields compared to only rely-

ing on the specified language tags. This information is then used to build language

specific indexes. A lower error rate in language detection should therefore also im-

prove the overall retrieval performance.
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Topic Lang. Retrieval Method MAP P@10 R@100
BL Dataset

en Baseline (single index) .35 .51 .55

Multiple Indexes .33 .50 .52

Concept + Single Index .35 .52 .54

de Baseline (single index) .33 .49 .53

Multiple Indexes .31 .48 .51

Concept + Single Index .33 .49 .53

fr Baseline (single index) .31 .48 .50

Multiple Indexes .29 .45 .47

Concept + Single Index .32 .51∗ .50

ONB Dataset
en Baseline (single index) .16 .26 .36

Multiple Indexes .15 .24 .35

Concept + Single Index .17∗ .27 .37

de Baseline (single index) .23 .35 .47

Multiple Indexes .23 .34 .49

Concept + Single Index .24∗ .35 .47

fr Baseline (single index) .15 .22 .31

Multiple Indexes .14 .20 .32

Concept + Single Index .15 .22 .31

BNF Dataset
en Baseline (single index) .25 .39 .45

Multiple Indexes .22 .34 .45

Concept + Single Index .25 .39 .45

de Baseline (single index) .24 .35 .45

Multiple Indexes .22 .32 .43

Concept + Single Index .24 .36 .45

fr Baseline (single index) .27 .38 .51

Multiple Indexes .25 .35 .50

Concept + Single Index .27 .37 .50

Table IV.14: Results of the three retrieval approaches that we submitted to the CLEF

2009 ad-hoc track: the baseline using a single index, retrieval based on multiple

language-specific indexes and concept based retrieval combined with a single index.

Statistical relevant improvements according to a paired t-test with confidence level

.05 are marked with ∗.
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Track Rank Participant Experiment DOI MAP
English 1st chemnitz CHEMNITZ.CUT 13 BILI MERGED DE2EN 9 10 40.46%

2nd hit XTDD10T40 35.27%

3rd trinity TCDDEENRUN3 35.05%

4th trinity-dcu TCDDCUDEEN1 33.33%

5th karlsruhe DE INDEXBL 32.70%

French 1st chemnitz CUT 24 BILI EN2FR MERGED LANG SPEC REF CUT 17 25.57%

2nd karlsruhe EN INDEXBL 24.62%

3rd chesire BIENFRT2FB 16.77%

4th trinity TCDDEFRRUN2 16.33%

5th weimar CLESA169283ENINFR 14.51%

German 1st chemnitz CUT 5 BILI MERGED EN2DE 1 2 25.83%

2nd trinity TCDENDERUN3 19.35%

3rd karlsruhe EN INDEXBL 16.46%

4th weimar COMBINEDFRINDE 15.75%

5th chesire BIENDET2FBX 11.50%

Table IV.15: Official results of the bilingual TEL task at the CLEF 2009 ad-hoc track

[Ferro and Peters, 2009].

CLEF 2009 Results. The results of our experiments are presented in Table IV.14.

The results using multiple indexes show that this approach was not able to beat the

baseline. Using a single index for the TEL records without language classification

and topics only translated into the main language of each dataset achieved better per-

formance compared to our approach based on indexes for each language and multiple

translations of the topic to the matching languages.

Another interesting result is that the combination of concept-based retrieval to

the Machine Translation based retrieval was able to improve the retrieval in some

cases. The improvement was significant according to a paired t-test with confidence

level .05 for French topics on the BL dataset and English and German topics on the

ONB dataset. However, in many cases the performance was similar to the baseline

without statistical significance of the difference. We could therefore not reproduce

the strong improvements for example presented in [Müller and Gurevych, 2008].

Müller and Gurevych [2008] used different datasets in their experiments with much

longer documents compared to the TEL dataset. In the BL, ONB and BNF dataset

many documents only consist of a few terms. This is a possible explanation of the

different outcomes, as the CL-ESA retrieval model seems to have better performance

on a search task with longer documents.

The official results of the bilingual TEL task at the CLEF 2009 ad-hoc track are

presented in Table IV.15 [Ferro and Peters, 2009]. Our best runs achieved rank five

on the English BL dataset, rank two on the French BNF dataset and rank three on

the German ONB dataset. For the French BNF dataset, the differences in MAP of

our best run compared to the run that is ranked first are not significant according to
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a paired t-test.

For a more detailed analysis, we compared the retrieval results of each topic.

In Figure IV.16, the differences in Average Precision of our concept based retrieval

approach and the best run that was submitted to the according track are plotted for

each topic. The bars that are placed above the zero level represent topics for which

our approach achieved better results than the best submitted run. Topics for which

our approach failed to beat the best submitted run are represented by bars below the

zero level.

The plots in Figure IV.16 show that our concept-based retrieval approach is able

to outperform the best run for several topics. However, for other topics the per-

formance is worse. This allows the conclusion that concept-based retrieval has the

potential to improve retrieval results. In future work, a further analysis is needed that

studies the reasons of this fluctuation of performance. This includes the definition

of characteristics of topics that are best supported by concept-based retrieval. Based

on these characteristics, a classifier could then be used to predict the retrieval per-

formance which allows to choose the most promising retrieval method for a specific

topic.
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(a) German topics on the English BL dataset.
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(b) English topics on the German ONB dataset.
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(c) English topics on the French BNF dataset.

Figure IV.16: Comparison of the concept + single index run to the best run of each

bilingual TEL task at CLEF 2009. The differences in Average Precision are pre-

sented for each of the 50 topics that were used in this retrieval challenge.



Chapter V

Category-based Language
Models for Multilingual Expert
Retrieval

In Chapter IV, we presented Cross-lingual Explicit Semantic Analysis (CL-ESA),

an approach that indexes text with respect to categories. This results in semantic

representations of documents that can be used in concept-based retrieval systems.

Thereby, the Wikipedia databases in several languages are used as data sources from

which the concepts are extracted. These concepts define an external category system

that we used for the CL-ESA approach. A different situation is given if the category

system is defined in the context of the target dataset of the retrieval task. In contrast

to an external category system defined for example by Wikipedia, the items of in-

terest in the retrieval task are categorized and therefore define an internal category

structure.

Examples of datasets with such an internal category structure are datasets from

Social Question/Answer Sites (SQASs). In these community portals, questions and

answers are usually categorized to a taxonomy which helps users to navigate and to

find items in specific topic fields. This introduces an internal category structure on

the questions and answers in the SQAS. The most prominent instance of a SQAS is

Yahoo! Answers which will also be used in our experiments.

For retrieval scenarios defined on these datasets, an open question is how the

internal category structure can be exploited to improve the retrieval performance.

We propose different retrieval models that are based on categories in the dataset and

therefore address this problem. These models are rooted in the theory of language

models and combine different sources of evidence — with one of them being the cat-

egorical information. In our experiments we show that the new models outperform

state-of-the-art retrieval approaches that are not aware of the category system. We

therefore show the benefit of factoring background knowledge, in this case internal

115
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category systems, into the retrieval process.

A further aspect we address in this chapter is the optimization of the combined

retrieval models. We propose to use Machine Learning techniques to find optimal

parameters to combine different sources of evidence.

New datasets such as datasets from SQASs allow to define new retrieval scenar-

ios. In addition to the standard IR scenario of retrieving relevant text items given a

query, other scenarios such as the retrieval of similar questions or the identification

of answers of high quality are possible. In this chapter, we consider the problem

of routing questions to experts. Given a new question, this problem is defined as

identifying the expert who is most likely able to answer the question and who should

therefore be contacted. We apply this problem to SQASs and consider all users of

these portals as potential experts. The question routing problem is an instance of

an IR problem as a relevance ranking of experts is needed for a new question. We

refer to this retrieval problem of relevant experts given a specific question as Expert
Retrieval.

In the following, we will first formally introduce the problem of Expert Retrieval.

Then, we present a detailed definition of language models used for Information

Retrieval. Thereby, we focus on Multilingual IR as well as Expert Retrieval. Af-

terwards, we define our approaches to combine different sources of evidence —

mixture language models and Machine Learning based models. Finally, we present

various experiments on a dataset extracted from Yahoo! Answers, a popular Social

Question/Answer Site. The results show that our proposed retrieval models are able

to benefit from the internal category system in this dataset for the task of retrieving

relevant experts for new questions.

V.1 Expert Retrieval

In this chapter, we consider the task of Expert Retrieval (ER). In difference to the

document retrieval scenario that was used in the preceding chapters, the information

items to be retrieved are users of the system. Given an information need, relevant

users have to be identified — which are then referred to as experts for this topic. The

task of ER is defined as follows:

Definition V.1 (Expert Retrieval) Expert Retrieval (ER) is a special case of Entity
Search as defined in Definition I.9. In ER, the items of interest in the retrieval task
are users. ER systems attempt to identify those people having the most expertise on
a topic that is specified by a specific information need.

Similar to document retrieval, the task of ER can be formalized as follows: given
a set of experts E and an information need specified by query q, the expected re-
trieval result is a ranked list of experts ei ∈ E such that rankq(ei) < rankq(ej)
implies that expert ei is more likely able to answer the information need than expert
ej .
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To determine the expertise of users, we will use a text-centric definition of exper-

tise in this thesis. We make the assumption that expertise can be captured reasonably

enough by analyzing the content of the postings of experts. These postings are cap-

tured by the text profiles of experts:

Definition V.2 (Text Profiles) Given expert e, the text profile of e is defined by the
sum of all textual contributions or postings of e. This is also referred to as the
signature of an expert e.

In the context of a specific document collection D, the text profile of e is defined
by the set of documents that are completely or partially written by e.

This definition of text profiles allows to apply established techniques from IR to

the problem of ER. This will be elaborated in the following sections.

The text-centric definition of expertise is also motivated by the large amount

of textual contributions of people to Web 2.0 sites. Many of these contributions

can be used as evidence for expertise in specific topic fields, for example posted

answers to questions in SQASs or modifications of Wikipedia articles. We thus

characterize users of such portals by their textual contributions which allows to apply

new retrieval scenarios such as ER to the Web 2.0.

ER has different applications in personal or corporate environments. In this the-

sis, we focus on applications in the context of the Web 2.0. Our main use case are

SQASs. These portals are dedicated to answer complex information needs that might

not be easily solved by existing IR systems, for example Internet search engines. In

these portals, questions are answered by other users that are or claim to be experts

in the specific topic field. Identifying potential experts for new questions can be

used for query routing. The most relevant experts are then notified about the new

questions in their area of expertise. This potentially leads to lower response times as

relevant experts can act immediately on notification.

When considering international communities as for example in Yahoo! Answers,

ER obviously calls for multilingual technologies. To support this statement we dis-

tinguish between knowledge and contributions. The knowledge of an expert about

a specific topic is language-independent and can be shared to people of other lan-

guages. However, the contributions of experts about this topic are language-specific.

Considering for example a query in language l1, relevant experts with contributions

in language l2 will not be found. There is a language mismatch of the query to the

text profiles of experts. Multilingual retrieval approaches offer solutions to this prob-

lem, as relevant experts for information needs and text profiles in arbitrary languages

can be identified.

V.2 Language Models for IR
In Section II.2.3, we already briefly introduced language models and their applica-

tion to IR. In the following, we will present more details and background of the



118 CHAPTER V. CATEGORY-BASED LMS FOR MULTILINGUAL ER

theory of language models. We also extend the basic models to support the ER task.

This presentation of the theory of language models is inspired by the language model

chapter of Manning et al. [2008] that gives a detailed introduction to this topic.

In this section, we will first present the basic theory of language models. We will

further introduce different extensions that are relevant to the retrieval task considered

in this chapter, namely Expert Retrieval on Social Question/Answer Sites. Then, we

will present an historical overview of language models in IR. Finally, we propose

new extensions that allow to define language models for multilingual retrieval and to

exploit the semantics given by category systems.

V.2.1 Theory of Language Models
Basically, a language models is a probability distributions P over a vocabulary V =
{t1, . . . , tn}. As a property of probability distributions, the sum of probabilities of

all terms has to be 1: ∑
t∈V

P (t) = 1

Interpreting a language model as a generative model, P (t) defines the probability of

drawing term t given this language model.

Language models can also be used to determine the probability of a sequence

of terms. This is modeled as the subsequent drawing of terms from the probability

distribution. In the context of IR, often a unigram model is assumed. In this model,

term occurrences are independent of context. This simplifies the probability of a

sequence of terms to the product of the term probabilities.

Example V.1 Given a language model with probability distribution P (t), the prob-
ability of the term sequence t1t2 . . . tk based on the unigram model is defined as:

P (t1t2 . . . tk) = P (t1)P (t2) . . . P (tk)

The estimation of language models is usually based on statistics derived from text

corpora. In fields such as speech recognition, large corpora are used to estimate not

only unigram models but also models that consider the context of terms, for example

n-gram models. However, these context-sensitive models require large amounts of

training data to overcome the data sparseness problem. In IR, language models are

usually estimated on single documents. In most cases, this only allows to estimate

unigram language models.

A common estimation of a language model P (t|d) from document d is based

on the maximum likelihood estimation of each term [Ponte and Croft, 1998]. This

is based on the term frequency tfd(t) of term t in document d, normalized by the

document length |d| (see Chapter II):

P (t|d) = tfd(t)

|d| (V.1)
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To apply language models to IR, a common approach is the query likelihood
model. Given a query q, a retrieval system needs to identify the most relevant docu-

ments. In language models, this relevance is formalized by the conditional probabil-

ity P (d|q) of document d given query q. Using Bayes’ law, this can be transformed

to:

P (d|q) = P (q|d)P (d)

P (q)

As P (q) is constant for query q, this factor has no influence on the final ranking. In

many retrieval systems, the a priori probability of documents P (d) is assumed to be

uniform, making this factor obsolete as well.

In analogy to the unigram model of documents, the query terms t ∈ q are also

assumed to be independent. Using the generative language model P (t|d) of docu-

ment d as defined in Equation V.1, the score of d in respect to query q is then defined

as:

scoreq(d) = P (d|q) ∝ P (q|d) =
∏
t∈q

P (t|d) (V.2)

There are alternatives to the query likelihood model for using language mod-

els for IR. Another option is building both language models of documents and the

query. The scores of document d is then computed by comparing the document

model P (t|d) to the query model P (t|q). In Section IV.4, we already introduced

KL-Divergence as distance measure of probability distributions, applied to concept-

based retrieval. The KL-Divergence distance DKL can also be used to define a term

based retrieval model [Lafferty and Zhai, 2001]:

scoreq(d) = −DKL(q‖d) ∝ −
∑
t∈V

P (t|q) logP (t|d)

The advantage of comparing document and query language models is the simple in-

tegration of more complex query models. Query models can be estimated not only

using the actual query terms but also by integrating background knowledge. Often,

similar techniques as the ones known from query expansion are used to build ex-

tended query models, for example Pseudo Relevance Feedback (see Definition II.2).

V.2.2 Smoothing
One problem of the query likelihood model is the conjunctive interpretation of

queries. As the score of documents as defined in Equation V.2 is a product of the

probabilities for each query term, any missing query term in document d will lead to

a zero score of d. This is based on the estimation of the language model of d, which

will assign zero probability to any term not occurring in d.

A common solution to this problem is smoothing. By extending the document

language model to have non-zero probabilities for all terms in the vocabulary, miss-

ing query terms do not lead to zero scores in the retrieval process. The extended
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document language models are usually based on statistical measures such as term

distributions in the entire corpus.

An example for smoothing that is often applied in IR scenarios is Jelinek-Mercer
smoothing [Jelinek and Mercer, 1980]. Using a background language model Pbg(t),
document language models are based on a mixture probability distribution:

P ′(t|d) = (1− α)P (t|d) + αPbg(t) (V.3)

with α being the weight parameter for the background model. A maximum likeli-

hood estimation on the corpus D can be used to estimate the background language

model:

Pbg(t) =

∑
d∈D tfd(t)∑
d∈D |d|

Another popular smoothing method is based on Dirichlet priors, which has also

been successfully applied to IR scenarios [MacKay and Peto, 1995].

According to Manning et al. [2008], smoothing does not only solve the problems

of the conjunctive interpretation of queries but also improves the overall performance

of IR systems. They argue that smoothing adds important weights to terms that

are similar to the inverse document frequency factors as used in vector space and

probabilistic retrieval models.

V.2.3 Language Models for Expert Search
In this chapter, we consider the application scenario of expert search as defined in

Section V.1. In contrast to standard IR settings, the items of interest in the retrieval

task are defined by the set of experts E. These experts are described by a set of doc-

uments D that are related to E, for example by the authorship relation. As already

defined in Definition V.2, the set of all documents related to expert e is called the

text profile of e.

To apply language models to ER, the scoring function as defined in Equation V.2

has to be extended to support text profiles. In analogy to document retrieval, the

score of expert e given query q based on language models is defined as:

scoreq(e) = P (e|q) ∝ P (q|e) =
∏
t∈q

P (t|e)

In order to estimate the conditional probability P (t|e) of term t given expert e, we

use the language models of the documents in D:

P (t|e) =
∑
d∈D

P (t|d)P (d|e) (V.4)

with P (d|e) modeling the relation of d and e. In general, it is not possible to estimate

P (d|e) directly as the language model of e is not known. Therefore, we apply Bayes’
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Theorem in order to estimate the probability P (d|e):

P (d|e) = P (e|d)P (d)

P (e)

The priors P (d) and P (e) are often assumed to be uniformly distributed, i.e. P (d) =
1
|D| and P (e) = 1

|E| . In the case that each document has exactly one author out of

E, the probability P (e|d) of expert e given document d can be modeled as:

P (e|d) =
{

1 if e is author of d
0 else

In other cases with several authors per document, more complex estimations are

required. Overall, the scoring function based on these simplifying assumptions is

defined as:

P (q|e) ≈
∏
t∈q

∑
d∈D

P (t|d)P (e|d)

Combined with smoothing, this model has been proposed by Balog et al. [2009a].

Their Model 1 is defined as:

P (q|e) ≈
∏
t∈q

[
(1− α)

(∑
d∈D

P (t|d)P (d|e)
)

+ αPbg(t)

]

with α being the smoothing weight as presented in Equation V.3. The background

language model Pbg(t) is again estimated on the entire corpus D. We will refer to

this model as PLM.

V.2.4 Historical Overview
The theory of language models applied to IR has been introduced by Ponte and

Croft [1998]. They proposed to use Maximum Likelihood Estimation to model the

document language models as presented in Equation V.1. They also suggested to use

smoothing based on corpus statistics as defined in Equation V.3.

The research in ER was mainly driven by the enterprise track at TREC (see for

example [Craswell et al., 2005]). In this context, different entity retrieval systems

were published that are based on language models.

Cao et al. [2005] proposed a two-stage language model. They use the notion of

two-stage as they model expertise by documents that are related to experts. This is

similar to the estimation of the expert language model as presented in Equation V.4.

Balog et al. [2009a] defined two different language models for ER. Model 1 or

the expert language models are based on textual profiles of experts to estimate the

language models of experts as in our approach. We thus follow Model 1 and propose

several extensions thereof. Model 2 or the document language models are based on

the retrieval of relevant documents that are then used to identify associated experts.
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Balog et al. compare both systems using different extensions on several datasets.

Their results show that no clear preferred model can be identified as the differences

of performance depend on the extensions and on the used dataset.

Petkova and Croft [2006] suggest a hierarchical language model for ER. In prin-

ciple, they use Model 1 as defined by Balog et al. [2009a]. In addition, they propose

to use evidence of different document collections to build a combined model of ex-

pertise. These different collections might also be defined by subsets of the original

collection. Their combined model is based on a linear combination of language mod-

els that are each based on a single sub-collection. The sub-collections as suggested

by Petkova and Croft are thereby defined by the categories. In Section V.4, we also

present a combining approach that uses linear combination to define a mixture model

of probabilities.

V.3 Extensions of Language Models
In this chapter, we consider the scenario of multilingual ER. Therefore, we propose

an extension of the language model retrieval framework that supports multilingual

documents and queries. The dataset we use in our experiments, which is extracted

from Yahoo! Answers, has an internal category structure. In order to use this in-

formation in the retrieval process, we further define language models for category

systems that allow to exploit the category structure in the dataset.

V.3.1 Language Models for MLIR
To apply language models to multilingual retrieval scenarios, we propose to use

query translation as introduced in Chapter II. Given the set of document languages

L = {l1, . . . , ln}, query q in language lq is translated to each language li using a

Machine Translation system. The combined query q∗ is then defined as the union of

terms of all the translated queries:

q∗ = q ∪ qlq→l1 ∪ qlq→l2 ∪ . . .

In this translated query, the language LANG(t) of each query term t is determined

by the language of the translation that introduced the term.

The translated query q∗ has also implications on the estimation of document and

background language models. The maximum likelihood estimation of the document

language model as presented in Equation V.1 is defined as follows for translated

query terms:

P (t|d) =
{

tfd(t)
|d| if LANG(t) = LANG(d)

0 else

This means that query terms of other language as the document language are gener-

ated with zero probability.
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The background language model — used for example for smoothing — is also

adapted to the multilingual query. In essence, different language models are built

for each language. For example for language l, only the subset of documents in

language l are considered: Dl = {d ∈ D | LANG(d) = l}. The background

language model for query terms in language l is estimated using Dl. We refer to this

language specific background model as P ∗
bg
(t), which is based on different language

models for each language.

V.3.2 Language Models for Category Systems
As part of our ER scenario introduced in Section V.1, we assume that the documents,

which are defined by the contributions of experts and are therefore part of the text

profiles of experts, are organized in a categorical structure. In Chapter I, we mo-

tivated such category systems as potential knowledge source for retrieval systems.

Our suggested approach to integrate this knowledge is based on the extension of

language models using generative models of categories.

In the set of categories C, each category c ∈ C is a subset of corpus D: c ⊆ D.

Categories are used to assign documents to specific topic fields. Thereby, categories

do not have to be disjoint. They may contain common documents or even include

other categories, resulting in a hierarchical structure of categories.

We define language models on categories based on the textual evidence of the

documents in each category. Using Maximum Likelihood Estimation, the language

model P (t|c) of c is then defined as:

P (t|c) =
∑

d∈c tfd(t)∑
d∈c |d|

(V.5)

This generative model defines the probability of category c generating term t.
To integrate language models of categories in the ER model, we suggest an ap-

proach similar to summing over documents as presented in Equation V.4. Assuming

independent query terms, the retrieval model mainly depends on the estimation of

P (t|e). We propose to sum evidence for all categories given expert e to estimate

P (t|e):
P (t|e) =

∑
c∈C

P (t|c)P (c|e) (V.6)

Intuitively, P (t|c) models the probability that query term t is generated given the

language model of category c. This probability is weighted using the conditional

probability P (c|e) of category c given expert e. Thus, the language models of cate-

gories with higher probability given expert e have more influence in the generative

model P (t|e).

Example V.2 We consider the two extreme cases of expert e1 and e2. e1 is only
related to category c1, i.e. P (c1|e1) = 1 and P (ci|e1) = 0 for ci �= c1. For
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expert e2, all categories have the same probability P (ci|e2) = 1
|C| . Then, P (t|e1)

corresponds to the language model of c1:

P (t|e1) = P (t|c1)
and P (t|e2) is the average of all category language models:

P (t|e2) = 1

|C|
∑
c∈C

P (t|c)

P (t|c) is estimated via the term frequency of t in all documents d contained in

category c as presented in Equation V.5. These language models directly exploit the

category structure of corpus D.

The remaining problem is the estimation of P (c|e) — the probability of cate-

gory c given expert e. In this chapter, we propose different approaches to estimate

P (c|e). These approaches are specific to the application scenario as they exploit fur-

ther background knowledge. In our retrieval models, we use measures that quantify

the popularity of an expert within a given category. In detail, we define two different

popularity models:

Frequency based Popularity Model. Given a category c ⊆ D containing |c| doc-

uments, each expert is associated to a subset of these documents, for example the

documents authored by this expert. For expert e, we define this set of associated

documents in category c as ce. Using the size of ce, the frequency based popularity

model is defined as:

Definition V.3 (Frequency Popularity Model (PMfreq)) The popularity of expert e
in category c is defined by the size of the set of documents ce associated to e:

PMfreq(e, c) =
|ce|
|c|

Expert Network based Popularity Model. In many application scenarios — es-

pecially in the Web 2.0 context — experts are connected to each other. These con-

nections are either explicit, for example personal contact lists or friendship rela-

tions, or implicitly derived from the data. An example for an implicit relation is

co-authorship. Documents having multiple authors define a relation between these

authors.

In this chapter, our experiments are based on Social Question/Answer Sites. In

this context, users post questions that are answered by other users. This defines

implicit relations between questioners and answerers. More details will be presented

in Section V.5.

Using arbitrary connections between experts, we define the expert network as

follows:
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Definition V.4 (Expert Network) The set of experts E and the relation Γ ⊂ E×E,
which formalizes the connections between experts, define the expert network G =
(E,Γ). Nodes are defined by the set of experts E and edges are based on Γ. Two
experts e1 and e2 are linked iff (e1, e2) ∈ Γ.

In category systems and using implicit expert connections based on documents,
the category-specific expert network Gc for category c is only based on connections
that are defined by the documents in c.

Expert networks allow to apply measures of centrality known from graph theory.

The goal is to exploit these measures to quantify the popularity, either within the

subgraph for one category or for the entire graph. In this section, we propose to

use the PageRank algorithm [Brin and Page, 1998] as instance of an approach to

compute the centrality of nodes. We chose PageRank as the PageRank algorithm

computes a single value of centrality for each node which is needed to define the

following popularity model:

Definition V.5 (PageRank Popularity Model (PMpagerank)) Applied to the expert
network G = (E,Γ), the PageRank algorithm computes a centrality value
PAGERANK(G, e) for each expert e. The PageRank popularity model can also be
applied to category-specific expert networks Gc. We define the PageRank popularity
model based on these centrality values:

PMpagerank(e, c) =
PAGERANK(Gc, e)∑

e′∈E PAGERANK(Gc, e′)

Informed vs. Non-informed Search In category systems, documents are classi-

fied to categories. This also allows the a priori classification of topics to a specific

category in the retrieval scenario. While statistical classifiers can be used to classify

topics, the manual selection of the topic category is also an option in many applica-

tion scenarios. The user formulating a query is then required to also specify the most

appropriate target category. This is for example often implemented in SQASs.

The information about the topic category is valuable in the search process. The

retrieval results can be improved by only considering documents and experts in the

target category, which will be shown in our experiments.

In the following, we distinguish between informed and non-informed ap-

proaches. Informed approaches assume that the target category of a topic is known

in advance. In the retrieval model, these approaches also exploit this information.

Non-informed approaches do not depend on the category classification of topics.

V.4 Combining Sources of Evidence
The expert retrieval models presented in Section V.2 are all document centric models.

The only evidence for expertise is given by the set of documents and their relation
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to the set of experts. However, in many application scenarios, many more features

are available that can be used to define expertise. An example is the scenario of

ER in SQASs as proposed in this chapter. The complex relations between experts,

ratings of questions or answers and other features of these portals could be used to

identify relevant experts with respect to specific topics. An open challenge is how

these features can be integrated into retrieval models and how the evidence provided

by them can be combined.

In the following, we propose a principled way of combining different sources of

evidence in the retrieval framework of language models. This allows to use different

estimations of expertise in the overall scoring function.

The combination of different sources of evidence requires a weighting of the

different parameters. This calls for the application of Machine Learning techniques

to identify optimal parameter settings. We present different approaches to define

retrieval functions using supervised ML.

In this section, we first present a mixture language model that allows to combine

different estimations of expertise for given query terms. Then, we propose a discrim-

inative model that reduces the ranking problem to a regression problem, which can

be solved using ML techniques. Finally, we present an alternative approach based

on the principles of Learning to Rank. In this approach, a classifier is used to com-

pute preferences between pairs of experts, which are then used to define a scoring

function for the ER task.

V.4.1 Mixture Language Models
To integrate different sources of evidence for ER, the main idea is to use different

estimations for the probability distribution P (t|e). For each source i, Pi(t|e) defines

the conditional probability of query term t given expert e based on the information

given by this source of evidence.

In order to integrate the different estimations Pi(t|e), we propose a mixture lan-

guage model (MLM) with weight parameters αi as for example also used in [Petkova

and Croft, 2006]:

P (t|e) =
∑
i

αiPi(t|e)

with
∑

i αi = 1. This defines a valid conditional probability distribution. The αi

weights determine the influence of each component or source of evidence in the

mixture model.

In the ER scenario, this mixture model is used to define the scoring function.

One source of evidence is defined by the smoothing factor Pbg(t), which is based on

the background language model. The weight of the background model is determined

by the weights of the other models, resulting in the following scoring function that

extends Model 1 of Balog et al. [2009a]:

P (q|e) =
∏
t∈q

[∑
i

αiPi(t|e) + (1−
∑
i

αi)Pbg(t)

]
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with 0 < αi < 1 and
∑

i αi < 1.

The novelty of this approach lies in the different models used to estimate Pi(t|e)
based on different sources of evidence. In the following, we present different models

in the context of expert search which will also be evaluated in our experiments.

Text Profile Model. This is a generative model that quantifies the probability of

an expert e generating a query term t on the basis of its text profile, consisting of all

documents that are associated to this expert:

Pprofile(t|e) =
∑
d∈D

P (t|d)P (d|e)

This source of evidence corresponds to the document-based expert search model,

which is for example presented in [Balog et al., 2009a].

Category-restricted Text Profile Model. Given a category system in the dataset

that classifies all documents to a set of categories C, this model can be used for

informed search scenarios. In this case, the target category c of query q is known

in advance. Based on this information, the set of documents can be restricted to

documents in this category, which results in the following estimation:

Pprofile+c(t|e) =
∑
d∈c

P (t|d)P (d|e)

This model is based on category-specific text profiles of experts. Only documents

in the target category are considered in order to estimate the relevance of experts.

Intuitively, the language model of expert e is based on the language models of all

documents di that are related to e. By only using documents in the target category

c, the documents in other categories have no influence on the language model of e.

This is potentially helpful in the retrieval task as these documents — which are not

classified to the target category — might introduce noise to the language models of

experts in respect to the given query.

Category Model. As presented in Section V.3, language models of categories can

be defined using the text of all documents in each category. These language mod-

els can then be used for an implicit classification of query terms, resulting in the

following category-based estimation of P (t|e) as defined in Equation V.6:

Pcat(t|e) =
∑
c∈C

P (t|c)P (c|e)

The probability P (c|e) of category c given expert e is estimated by popularity models

as presented above: P (c|e) ≈ PM(e, c), which are either based on the share of

documents in category c associated to e (PMfreq) or the PageRank scores of expert e
in category c (PMpagerank, see Section V.3.2).
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Informed Category Model. In an informed scenario — where the category c of

the query is known — the category language model P (t|c) is obsolete. This function

will be uniform for the target category and 0 otherwise. Using again the popularity

models as in the category model, this results in the following estimation of P (t|e):

Pcat+c(t|e) = P (c|e) ≈ PM(e, c)

V.4.2 Discriminative Models
Using the MLM presented above, finding optimal values of the weight vector is

essential. When using several sources of evidence, exploring the parameter space

using heuristic methods is time consuming and potentially leads to local maxima.

This calls for the use of optimization techniques known from Machine Learning to

combine several sources of evidence. In summary, we propose to reduce the retrieval

task to a regression problem.

Machine Learning (ML) algorithms expect feature representations of instances.

In the ER task, feature representation of experts depend on the topic and are therefore

defined on expert-topic tuples:

Definition V.6 (Feature Representation of Experts) The feature representation of
expert-topic tuples in a real-valued feature space Rn is defined by the mapping func-
tion

F (e, q) : E × V k → R
n

with E being the set of experts and V the vocabulary that is used to formulate any
query q.

When combining different sources of evidence, each source i defines a mapping
function Fi(e, q) that defines the source-specific features. The combined feature rep-
resentation is then defined by the concatenated feature vector:

F (e, q) = (F1(e, q)
T , F2(e, q)

T , . . . )T

Intuitively, each of the features defined in F (e, q) measures the relevance be-

tween expert e and query q. This allows to integrate different measures of relevance,

which are for example based on different relevance models or on different sources

of evidence.

Using the feature representation of experts given a specific topic that is repre-

sented by query q, the ranking of experts can be reduced to the following regression

problem:

Definition V.7 (ER as Regression Problem) The problem of ranking experts E for
a given query q can be reduced to a regression problem of learning the optimal
parameters for a function expertise : Rn → [0, 1]. The input is thereby given by
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Feature Description
MIN Minimal probability: mint∈q Pi(t|e)

MAX Maximal probability: maxt∈q Pi(t|e)
AVG Average probability:

∑
t∈q Pi(t|q)
|q|

MEDIAN Median probability in the sorted values of {Pi(t|e) | t ∈ q}
STD Standard deviation in the set {Pi(t|e) | t ∈ q}

Table V.1: Aggregated features that are defined by the conditional probability

distribution Pi(t|e). These features describe properties of expert e given query

q = (t1, t2, . . . ) according to generative model i.

the feature representation F (e, q) of each expert e. The experts can then be ranked
according to expertise(F (e, q)), i.e.

rank(e1) ≤q rank(e2)↔ expertise(F (e1, q)) ≥ expertise(F (e2, q))

The training data for such regression problems is given by topics with existing

relevance assessments. Assuming a binary relevance function, the set of relevant

experts E rel

q and non-relevant experts Enon-rel

q for query q are used as training examples.

The expected outcome of the classifier function is then defined as

expertise(F (e, q)) =

{
1 e ∈ E rel

q

0 e ∈ Enon-rel

q

An important success factor for the application of ML algorithms is the engineer-

ing and selection of appropriate features. In the following, we present the features

that are used in our experiments. Afterwards, we describe the different regression

and classification models that we apply to the problem of ER.

Feature Design. As explained above, feature representations of candidate experts

are used as input for the regression function. Each feature of the vector F (e, q) (see

Definition V.6) describes a property of expert e given the specific query q. Features

are defined on pairs of experts and queries, which was already proposed by Joachims

[2002] in his Learning to Rank approach.

Additionally, the set of features that is used to classify experts has to be identical

for different queries. This implies that features have to be independent on the number

of query terms. The reason for this is that we want the classifier to work for a query

with an arbitrary number of terms. Therefore the features we propose are aggregated

values for all query terms.

Given expert e and query q, we use the following features to define F (e, q):

Language Model Features: As described above, different sources of evidence are

used to model the probability of query term t being generated by expert e:
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Evidence Features Count
Language Models [Pprofile], [Pprofile+c], [Pcat], [Pcat+c], [Pbg] 25

Products of LMs [Pprofile × Pprofile+c], [Pprofile × Pcat], [Pprofile × Pcat+c], . . . 50

[Pprofile × Pprofile+c × Pcat], [Pprofile × Pprofile+c × Pcat+c], . . . 50

Prob. Models BM25, TF.IDF, DLH13 (on expert text profiles) 3

total 128

Table V.2: Summary of all features used in the discriminative model. For language

models, five aggregated features where generated for the conditional probability dis-

tribution Pi(t|e) over query terms: MIN, MAX, AVG, MEDIAN and STD.

Pi(t|e). We use this probability distribution to define aggregated features for

all query terms. These aggregated features (namely minimum, maximum, av-
erage, median and standard deviation) are described in detail in Table V.1.

We thus assume the generation of any query term to be conditionally indepen-

dent from the generation of other query terms (see [Gao et al., 2005] for an

approach modeling such dependencies).

Products of Language Model Features: As the above aggregate features do not

capture the dependencies between different sources of evidence on term level,

we additionally consider products of these conditional probability distribu-

tions. For example given two evidence sources i and j, we define the com-

bined distribution as Pij(t|e) = Pi(t|e)Pj(t|e). The aggregated features as

described in Table V.1 are then computed based on Pij . In the experiments

in Section V.5, we add features for all permutations of up to three evidence

sources. The dependencies on term level of the different language models are

therefore captured in the feature representation of experts.

Probabilistic Model Features: In addition to the aggregated features over query

terms for the different generative models, we also use standard IR retrieval

scores based on the text profile of each expert. Features are then defined as

the score of expert e given query q. We used in particular retrieval models

based on BM25, TF.IDF and DLH13 term weighting in combination with Z-

Score normalization for multilingual retrieval (see Chapter II for more details

of these retrieval models), resulting in exactly one feature for each retrieval

model.

All features uses for the discriminative model are summarized in Table V.2. In

analogy to the mixture language model, we use two different generative models as

sources of evidence for expertise: a generative model based on the text profiles of

experts (Pprofile) and a category generative model (Pcat). In the informed scenario, we

also assume that the topic category is known and also use text profiles restricted to

the target category (Pprofile+c) and the category model of the target category (Pcat+c).

As described above, the term dependencies across the different generative models
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are modeled using products of query term probabilities for all permutations of up to

three evidence sources. Finally, we also add features based on probabilistic retrieval

models.

Classifiers. The discriminative model is implemented on the basis of a regression

model. The output of regression models are continuous real values that can be di-

rectly used as scores of experts. In contrast to regression, the output of standard

discrete or binary classifiers is not qualified to be used as scores. As all relevant

experts are mapped to a single score value, they can not be further distinguished for

ranking. As we show in our experiments, this usually leads to poor retrieval results.

However, discrete or binary classifiers allow to determine the probability of in-

stances belonging to the positive or relevant class. This probability value can be used

to define the score of experts e for query q:

scoreq(e) = P (X = relevant|q, e)

While this makes any classifier applicable in principle to the expert retrieval task,

our experiments have shown that discrete classifier functions performed much worse

than regression-based classifiers.

In order to rank experts, we used the following regression models and classifiers:

Multilayer Perceptron (MLP): MLPs are instances of regression functions. They

are based on different layers of connected perceptrons. Each perceptron has

inputs from the preceding layer and computes its output value using a sigmoid

function. In our experiments, we used a MLP layout with one hidden layer.

The number of perceptrons k in the hidden layer is determined by the number

of features n we used to represent experts: k = (n+ 2)/2.

Logistic Regression: As a further regression function, we used the multinomial lo-

gistic regression model with a ridge estimator proposed by le Cessie and van

Houwelingen [1992].

J48 Decision Tree: The J48 decision tree is a discrete classifier, which is a pruned

version of the C4.5 decision tree [Quinlan, 1993]. We use this classifier to

compare the performance of regression functions to discrete classifiers in our

experiments.

V.4.3 Learning to Rank

An alternative approach to the discriminative model for using ML in IR was proposed

by Joachims [2002] as Learning to Rank. Instead of directly classifying experts given

the query q, the classifier is used to determine the preference of two experts in the

context of q. The input feature vectors of this classification model therefore represent

the difference of two experts. The learning to rank approach is defined as follows:
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Definition V.8 (Learning to Rank) Given a question q, the Learning to Rank ap-
proach compares pairs of experts to compute a preference of which expert to rank
before the other. The ranking of experts can then be reduced to the following prefer-
ence function:

pref : E × E ×Q→ {0, 1}
with pref(e1, e2, q) = 1 meaning that e1 should be ranked before e2 for query q. The
preference function can be implemented by a classifier. This allows to use supervised
ML to optimize this function based on training data.

The work of Joachims [2002] is motivated by the task of ranking documents

where click-through data is used as relevance assessments in order to derive training

pairs. Click-through data is based on the decision of users to click on one or several

of the presented documents. As the users are presented a ranked list of top docu-

ments, these decisions can be interpreted as preferences of the clicked documents

w.r.t. the documents presented before these in the ranked list. Learning to Rank al-

lows to design a retrieval model that are optimized using training pairs of documents

that are derived from this click-through data.

As classifier, Joachims used RankSVM — an implementation of a support vector

machine that is adapted to the learning to rank problem. While training is performed

on pairs of experts with the preference information, the actual scores in the retrieval

process are computed for single experts. For our learning to rank retrieval model,

we use a different approach. We refer to standard ML models that are also trained

on pairs of experts. For retrieval however, we evaluate again pairs of experts to

compute the scores that determine the ranking of experts. This will be explained

below in more detail.

Similar to the discriminative model, feature design is also an important aspect of

the learning to rank approach. We use the same features as presented for the discrim-

inative model, which are adapted to support pairs of experts. The exact definition of

the feature vector will be presented in the following. Afterwards, we describe our

approach to define ranking of experts based on the output of the learning to rank

classifier. Finally, we list the ML models that were used to implement this retrieval

approach.

Feature Design. For the Learning to Rank approach, features of pairs of experts

given a query are needed as input to the preference function. We will use the same

features as defined above in the discriminative approach to model feature vectors of

experts given a query. For expert e1 and e2 and query q, the learning to rank features

vector F ′(e1, e2, q) is then defined as the vector difference of the features vectors

F (e1, q) and F (e2, q):

F ′(e1, e2, q) := F (e1, q)− F (e2, q)

Ranking. The learning to rank classifier determines the preference of two experts.

Using the pair-wise comparison of all experts, we propose to use a voting system
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to define scores of experts. This voting system defines the score of expert e as the

number of experts that should be ranked lower than e based on pref:

score(e, q) = |{e′ ∈ E | pref(e, e′, q) = 1}|

As the pairwise comparison of all experts is not scalable for large sets of experts,

we apply the learning to rank approach to re-rank a set of candidate experts. Using

an alternative retrieval model, first a fixed number of experts is selected. In a second

step, these experts are than ranked according to the preference function which results

in the final ranking.

Classifiers. As the preference function used in the learning to rank approach is a

binary decision function, no continuous output of the classifier is needed. The output

of binary classifiers — such as the J48 decision tree — can directly be used as the

preference function.

We also use the regression functions as used for the discriminative approach for

the learning to rank approach, namely MLPs and Logistic Regression. This allows

for the comparison of the different retrieval approaches and feature representations

without changing the underlying ML model. Using the output of the regression func-

tions, the binary preference function is defined using a fixed threshold for positive

and negative decisions.

In contrast to Joachims [2002], we do not use a special classifier as RankSVM.

Our focus is clearly on feature design and on the different retrieval models. We ana-

lyze the retrieval performance using different sets of features, based on single experts

and on differences between experts. We therefore assume that standard classifiers are

sufficient for these experiments.

V.5 Experiments
The experiments to evaluate the different retrieval approaches presented in Sec-

tion V.4 are based on an expert retrieval scenario as presented in Definition V.1.

We use a dataset that is derived from a crawl of Yahoo! Answers — an instance of

a Social Question/Answer Site (see Definition I.4). This dataset consists of ques-

tions, answers to these questions, a categorization of questions and references to the

authors of both questions and answers.

In the context of the Conference on Multilingual and Multimodal Information

Access Evaluation (CLEF) 2010, we organized the Cross-lingual Expert Search

(CriES) retrieval challenge.1 Retrieval challenges define a specific retrieval task with

standardized experimental settings. This includes a dataset and a set of topics with

according relevance assessments (see Section II.5). For the CriES challenge, we

used the crawl from Yahoo! Answers to build a dataset and selected a set of topics

1http://clef2010.org/, http://www.multipla-project.org/cries (last ac-

cessed April 8, 2011)
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that are suitable for the specific retrieval task of multilingual Expert Retrieval. These

settings are also used for the experiments in this chapter. In our evaluation, we will

use the ground truth that is based on relevance assessments that were created in the

context of CriES.

We define several retrieval baselines that our proposed approaches are compared

to. This includes basic retrieval models but also the results of the other groups that

participated at the CriES challenge.

In summary, the main objectives of our experiments are the following:

1. Analysis of the differences of the informed vs. the non-informed scenario.

Does the information about the topic category help to improve the retrieval

performance?

2. Presentation of the retrieval results using the mixture model in comparison to

the baseline approaches. These baseline approaches include standard MLIR

models and the retrieval systems used by participating groups at the CriES

pilot challenge.

3. Presentation of the retrieval results using the discriminative model. This also

includes the analysis of the training process and the resulting learned ML

model. The results of the discriminative model are compared to the mixture

model and the baseline approaches.

4. Presentation of the retrieval results using the Learning to Rank model. These

results are compared to the results of the discriminative model that is based on

a similar feature representation of experts.

V.5.1 Yahoo! Answers
Yahoo! Answers2 is an instance of a Social Question/Answer Site (see Defini-

tion I.4). In summary, users of the portal post questions that are answered by other

users. The detailed process of posting questions and answers as well as the rating

and rewarding system will be described in the following.

Size and Market Share. According to Yahoo! Answers staff, the portal reached

200 million users in December 2009.3 They also claim that 15 million users are

visiting the portal each day.4 The high number of visitors is confirmed by other

sources. According to Google ad planner for example, the portal attracts 1.1B page

views per month.5

2http://answers.yahoo.com/ (last accessed April 8, 2011)
3http://yanswersblog.com/index.php/archives/2009/12/14/

yahoo-answers-hits-200-million-visitors-worldwide/ (last accessed April 8,

2011)
4http://yanswersblog.com/index.php/archives/2009/10/05/

did-you-know/ (last accessed April 8, 2011)
5Statistics from 2010/05/17
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Figure V.1: Market share of Yahoo! Answers in the market of Social Ques-

tion/Answer Site, measured by the number of visits in the US market during one

week. Source: Hitwise USA, March 2008.

The market share of different SQASs sites is presented in Figure V.1. According

to Hitwise USA, Yahoo! Answers has a market share of 74% in this segment.6 The

popularity and leading position of Yahoo! Answers clearly motivates to use the data

in this portal for research. Yahoo! published an official crawl of Yahoo! Answers

for research purposes. We used this dataset to define a corpus for multilingual ER,

which will be described in Section V.5.2.

Features of the Yahoo! Answers Site. Yahoo! Answers has a defined process of

posting and answering questions. A new question is open for a specified time period

— initially for three days which can be extended up to eight days. In this period,

users are allowed to post answers to this question. During this time, the questioner

is able to pick a best answer out of the submitted answers. Selecting a best answer

closes the questions, i.e. no further answers can be submitted.

The rating system implemented in Yahoo! Answers allows to rate questions and

answers. Questions can be marked with stars — indicating interesting questions. An-

swers are rated using thumbs up or thumbs down tags. In the case that the questioner

does not select a best answer, the number of received thumbs is used to automati-

cally determine the best answer. The ratings of answers can be seen as voting for an

answer to get the best answer. Additionally, the portal allows to post comments to

answers.

The status of users in Yahoo! Answers is based on a rewarding system. Initially,

the number of questions and answers that can be submitted to the portal by each user

is limited. By gaining points that raise the status level of a user, these personal limits

6http://www.marketingcharts.com/interactive/question-answer-site-
visits-up-118-yahoo-answers-is-clear-leader-3891/ (last accessed April 8, 2011)
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are extended. Points are earned for example if a submitted answer is selected as best

answer. The level of users is also expressed by visual changes in the avatars of users,

for example by an orange badge.

The rewarding system is designed to motivate users to submit questions and an-

swers of high quality. Yahoo! Answers is a social community portal in which users

have a social status. Increasing the level of a user can therefore be seen as a raise

of her social status in this community. This is an important incentive for users to

contribute and is probably also a key factor of the success of Yahoo! Answers.

Quality of Answers. Harper et al. [2008] analyzed the quality of answers in

SQASs. They apply different measures to estimate the quality of answers, for ex-

ample number of answers and the length of answers. Additionally, human assessors

judged the quality of answers and the effort that was probably made to author the an-

swers. In their study, they compared SQASs to non-free question answering portals

and to portals that directly route questions to matching experts. Non-free question

answering portals differ to SQASs as questioners bid money on their questions that

is received by the answerer. The main outcomes of Harper et al. [2008] according to

the quality of answers are:

• The quality of paid answers in non-free question answering portals is better

compared to SQASs in the case that enough money is bid on questions. If the

amount is too low, the answers given in SQASs have superior quality. Overall,

the diversity of answers is higher in SQASs as more answers per questions are

posted.

• The quality of answers in question answer portals — SQASs and non-free

portals — is better compared to the answers in portals that route questions

to single experts. In these portals, the percentage of questions that are not

answered at all is also higher. The aspect that is not covered in the analysis of

Harper et al. is the selection of appropriate experts for given questions. The

ER approach suggested in this thesis aims at identifying experts that will most

probably give high quality answers to new questions.

Knowledge Partner Program. In Yahoo! Answers, an effort to raise the qual-

ity of answers is made through the knowledge partner program. Any company or

organization can offer professional-quality knowledge by answering questions in a

specialized field. In return, they are allowed to mention their own products or ser-

vices and visual features such as links or logos are displayed in the context of their

answers.

V.5.2 Dataset
The dataset that we use to evaluate our ER models is is a subset of an official crawl of

Yahoo! Answers, namely the Yahoo! Answers Webscope dataset that was introduced
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Figure V.2: Number of questions in the largest categories in the Yahoo! Answers

Webscope dataset.

by Surdeanu et al. [2008].7 This crawl contains 4.5M questions with 35.9M answers.

For each question, one answer is marked as best answer (the selection process of

best answers is described in Section V.5.1). The dataset contains ids of authors of

questions and best answers, whereas authors of non-best answers are anonymous.

Questions are organized into categories which form a category taxonomy.

In the context of the CriES workshop, we used this dataset to create a corpus

that can be used to evaluate multilingual ER systems. We organized an open IR

challenge, the CriES pilot challenge, that allows the comparison of retrieval system

from different participating groups [Sorg et al., 2010].

Description. The dataset used in the CriES pilot challenge is a subset of the Ya-

hoo! Answers Webscope dataset, considering only questions and answers in the topic

fields defined by the following three top level categories including their sub cate-

gories: Computer & Internet, Health and Science & Mathematics.

An overview of the largest categories in this dataset is given in Figure V.2. As our

approach is targeted at the ER problem, we chose very technical categories yielding

a dataset with a high number of technical questions. These questions require domain

expertise to be answered. As many questions in the dataset serve the only purpose of

7This dataset is provided by the Yahoo! Research Webscope program (see http://research.
yahoo.com/ (last accessed April 8, 2011)) under the following ID: L6. Yahoo! Answers Comprehensive
Questions and Answers (version 1.0)
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Language share

Category Questions EN DE FR ES
Comp. & Internet 317,074 89% 1% 3% 6%

Health 294,944 95% 1% 2% 2%

Science & Math. 185,994 91% 1% 2% 6%

Table V.3: The share of questions in each language for the categories in Yahoo!

Answers that are used in the CriES dataset.

diversion, it was important to identify categories with a low share of such questions.

In the challenge, four languages are considered: English, German, French and

Spanish. As category names are language-specific, questions and answers from cate-

gories corresponding to the selected categories in other languages are also included,

for example Gesundheit (German), Santé (French) and Salud (Spanish) that

all correspond to the Health category.

The selected dataset consists of 780,193 questions, each question having exactly

one best answer. The answers were posted by 169,819 different users, i.e. potential

experts in our task. The answer count per expert follows a power log distribution, i.e.
54% of the experts posted one answer, 93% 10 or less, 96% 20 or less. 410 experts

published answers in more than one language. These multilingual experts posted

8,976 answers, which shows that they are active users in the portal. The language of

questions and answers are distributed over languages as shown in Table V.3.

Topic Selection. The topics we used in the context of the CriES challenge consist

of 15 questions in each language — 60 topics in total. As these topics are questions

posted by users of the portal, they express a real information need. Considering the

multilingual dimension of our ER scenario, we defined the following criteria for the

topic selection to ensure that the selected topics are indeed applicable for our task:

International domain: People from other countries should be able to answer the

question. In particular, answering the question should not require knowledge

that is specific to a geographic region, country or culture. Examples:

Pro: Why doesn’t an optical mouse work on a
glass table?

Contra: Why is it so foggy in San Francisco?

Expertise questions: As the goal of our system is to find experts in the domain of

the question, all questions should require domain expertise to answer them.

This excludes for example questions that ask for opinions or do not expect an

answer at all. Examples:

Pro: What is a blog?
Contra: What is the best podcast to subscribe to?
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We performed the following steps to select the topics:

1. Selection of 100 random questions per language from the dataset (total of 400

candidate topics).

2. Manual assessment of each candidate topic by three human assessors. They

were instructed to check the fulfillment of the criteria defined above.

3. For each question the language coverage was computed. The language cover-

age tries to quantify how much potentially relevant experts are contained in the

dataset for each topic and for each of the different languages. The language

coverage was calculated by translating a topic into the different languages (us-

ing Google Translate) and then using a standard IR system to retrieve all the

expert profiles that contain at least one of the terms in the translated query.

Topics were assigned high language coverage if they matched an average num-

ber of experts in all of the languages. In this way we ensure that the topics are

well covered in the different languages under consideration but do not match

too many experts profiles in each language. This is important for our multilin-

gual task as we intend to find experts in different languages.

4. Candidate questions are sorted first by the manual assessment and then by

language coverage. The top 15 questions in each language were selected as

topics.

Relevance Assessment. We used result pooling for the evaluation of the retrieval

results of the participating groups in the CriES pilot challenge. For each submitted

run, the top 10 retrieved experts for each topic were added to the result pool. All

experts in this result pool were then judged for relevance in respect to the according

topics.

The assessment of experts was based on expert profiles. Assessors received top-

ics and the whole profile of experts, consisting of all answers posted by the expert in

question. Based on this information they assigned topic-expert tuples to the follow-

ing relevance classes:

• 2 — Expert is likely able to answer.

• 1 — Expert may be able to answer.

• 0 — Expert is probably not able to answer.

The assessors were instructed to only use evidence in the dataset for their judgments.

It is assumed that experts expressed all their knowledge in the answer history and will

not have expertise about other topics, unless it can be inferred from existing answers.

Overall, six assessors evaluated 7,515 pairs of topics and expert profiles. The dis-

tribution of relevant users for the topics in the four different languages is presented in

Figure V.3. In order to visualize the multilingual nature of the task we also classified
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Figure V.3: Distribution of the numbers of relevant experts for the English, German,

French and Spanish topics. Experts are classified to languages based on their answers

submitted to the Yahoo! Answers portal. For each set of topics in the four languages

and for each expert language, the distribution of the numbers of relevant experts in

the according language is visualized using a box plot.
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relevant users to languages using their answers in the dataset. The distribution of

relevant users for the topics in the four languages is shown separately for each user

language group.

The analysis of the relevant user distribution shows that for all topics the main

share of relevant users publish answers either in the topic language or in English.

This motivates the cross-language expert retrieval task we consider, as monolingual

retrieval in the topic language or cross-lingual retrieval from the topic language to

English do clearly not suffice. The number of relevant experts posting in a different

language than the topic language or English constitute a small share. However, the

percentage is too large to neglect these experts — for example Spanish experts for

German topics.

V.5.3 Evaluation Measures
The problem of ER is a subtask of IR and therefore allows us to use standard IR eval-

uation measures. These measures have already been introduced in Section II.5 and a

precise definition can also be found in Section IV.5.1 in the context of the evaluation

of concept-based retrieval models. We use the following evaluation measures for the

ER experiments that can be summarized as follows:

Precision at cutoff rank 10 (P@10): The share of relevant experts in the top 10

retrieved experts.

Recall at cutoff rank 100 (R@100): The share of relevant experts in the top 100

retrieved experts in respect to the total number of relevant experts for a given

topic.

Mean Reciprocal Rank (MRR): This measure depends on the rank of the first rel-

evant experts in the ranking. Higher values of MRR imply that these experts

have lower ranks on average for all topics.

Mean Average Precision (MAP): In many IR evaluation campaigns, MAP has

been used as standard evaluation measure. This is a precision oriented mea-

sure that does not depend on a specific cutoff rank. As for most measures,

higher values of MAP imply better performance of the retrieval system.

All the measures presented above depend on complete relevance assessments,

i.e. the relevance of all retrieved experts is known in the evaluation. However this

is not always given. The ground truth of retrieval challenges is often built using the

relevance assessments of a result pool that contains the retrieval results of several

search systems. Using this ground truth to evaluate new runs that were not part of

the initial result pool leads to the problem of incomplete assessments. Most probably,

experts will be retrieved in the new runs that are not in the result pool and therefore

it is unknown if they are relevant or not. By assuming that all retrieved experts

that have not been judged are not relevant, all measures as presented above can be
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applied to evaluate new runs. The problem is that this approach underestimates the

performance as these experts might also be relevant. Buckley and Voorhees [2004]

suggest to use an alternative evaluation measure that is robust against incomplete

relevance assessments:

Binary Preference Measure (BPREF): This measure is based on the order of rel-

evant and non-relevant experts in the ranking. Given topic q and its set of

relevant experts R and of non-relevant experts N known from the relevance

assessment, the BPREF on a ranking of experts α is defined as:

BPREFq(α) =
1

|R|
∑
r∈R

1− |{e ∈ N | rankα(e) < rankα(r)}|
|R|

Intuitively, BPREF measures the number of wrong sequences in all possible

pairs of retrieved experts. Thereby, wrong sequence means that a non-relevant

expert is retrieved before a relevant expert.

In our experiments, we present results that were not officially submitted to the CriES

workshop and were therefore not part of the result pool. By using BPREF as evalu-

ation measure, we ensure a fair comparison of the different systems without having

complete relevance assessments for the new runs.

V.5.4 Baselines

We use several baselines in our experiments that are compared to the proposed ER

models using combined evidence as presented in Section V.4. In summary, these

retrieval baselines can be classified as follows:

Popularity Baseline: In the context of category systems, popularity models as de-

scribed in Section V.3.2 can be used to determine a priori scores of experts

in each category. The assumption is that popular experts in a category are

probably able to answer questions related to the topic of the category.

In informed scenarios that assume the knowledge of the target categories of

topics, we define the popularity baseline as the ranking of experts according

to their popularity in this target category. As we consider different approaches

to model the popularity of experts — using the answer frequencies and using

the social network of the category — this also results in different popularity

baselines.

Probabilistic Retrieval Model: We use a standard probabilistic retrieval model —

namely the multilingual extension of BM25 — as baseline approach. We com-

pare to this state-of-the-art retrieval model to illustrate the improvements in

retrieval performance achieved by our proposed models.



V.5. EXPERIMENTS 143

Standard Language Models: We use the language model for ER proposed by Ba-

log et al. [2009a] as further baseline. This model is described in detail in Sec-

tion V.2.3. As our task is multilingual ER, we extended this model to support

multilingual retrieval as described in Section V.3.1.

CriES Pilot Challenge: Different groups submitted their retrieval results to the

CriES pilot challenge. This retrieval challenge is based on the same dataset

and topics as used in our experiments, which allows direct comparison to the

approaches of these participating groups.

In the following, we further describe the probabilistic retrieval model BM25 and

summarize the retrieval models used by the groups that participated at the CriES

pilot challenge.

BM25. As experts are defined through textual profiles, the task of retrieving ex-

perts can be reduced to a standard document retrieval scenario. As state-of-the-art

probabilistic retrieval model to compare to we chose the BM25 model [Robertson

and Walker, 1994]. For the multilingual scenario, results from language specific in-

dexes are combined using Z-Score normalization [Savoy, 2005], which has proven

to be effective in different multilingual IR challenges, for example the CLEF ad-hoc

task.

BM25 + Popularity. Given the informed scenario, the category of a new topic is

known. In this case, the popularity of experts in this target category can be combined

with any vector space or probabilistic retrieval model by simply adding the popular-

ity to the score of each expert. In our experiments, we will combine BM25 with

the frequency based popularity model PMfreq. To ensure compatible values, we will

again first apply Z-Score normalization to the results of the probabilistic model and

the popularity model, resulting in s∗
BM25

and PM∗
freq

. The final score is then defined by

the weighted sum of the normalized values:

s(e, q) = αs∗
BM25

(e, q) + (1− α)PM∗
freq
(e, cq)

In our experiments, we empirically optimized the weight factor α.

CriES Pilot Challenge Models. The retrieval systems used for the submitted runs

to the CriES pilot challenge can be classified to the following main retrieval ap-

proaches:

MLIR on Expert Profiles: Similar to the probabilistic baseline as defined above,

text profiles of experts can be interpreted as documents. This allows to apply

MLIR approaches to the task of ER. All groups used query translation based

on Machine Translation systems to support multilingual retrieval (see Sec-

tion II). As retrieval models, different vector space models and probabilistic

models were applied.
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Matching CriES runs:

• Iftene (run ids: run0, run1) [Iftene et al., 2010]

• Leveling (run ids: DCUa, DCUq) [Leveling and Jones, 2010]

Exploitation of Social Network: As described in the definition of the popularity

models in Section V.3.2, the social network that is based on users, questions,

answers and categories can be used to support ER systems. These systems

that are based on the social network of experts use the HITS algorithm and the

degree of nodes to define scoring functions for experts.

Matching CriES runs:

• Iftene (run ids: run0, run1, run2) [Iftene et al., 2010]

• Leveling (run ids: DCUa, DCUq) [Leveling and Jones, 2010]

Resource-indexing based Retrieval: Text profiles of experts can be matched to

resources using resource-indexing systems based on external knowledge

sources. These matches can be used to map experts to interlingual concept

spaces similar to Cross-lingual Explicit Semantic Analysis (CL-ESA) as pre-

sented in Chapter IV. In contrast to CL-ESA, the approach of Herzig and

Taneva [2010] is based on a set of linked resources as concept space. Herzig

and Taneva also used manual resource-indexing of topics as their approach

depends on larger text snippets for automatic indexing.

Matching CriES runs:

• Herzig (run ids: 1-boe-06-03-01-q01m, 2-boe-06-03-01-q01,
3-boe-07-02-01-q01m) [Herzig and Taneva, 2010]

V.5.5 Results of Baselines

In Section V.5.4, we defined several baseline retrieval approaches to the problem of

multilingual ER. This includes popularity based models as well as runs submitted to

the CriES pilot challenge. The results of these baselines are presented in Table V.4.

For the CriES challenge, we chose precision-oriented evaluation measures. Pre-

cision at cutoff rank 10 (P@10) represents the average percentage of relevant experts

in the top 10 retrieved experts. This measure is motivated by the behavior of peo-

ple using search engines. Most users only consider the results that are presented on

the first result page, which are usually around 10 items. The precision in these top

results is therefore most important for the user satisfaction.

In the evaluation, we also use Mean Reciprocal Rank (MRR) as further evalu-

ation measure. This measure is based on the rank of the first relevant expert only.

This is motivated by the ER scenario. Assuming that the first relevant experts will be

able to satisfy an information need, the rank of this expert is most critical. A MRR
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(a) Results measured by precision at cutoff level 10 (P@10) and Mean Reciprocal Rank

(MRR). The results are presented for both strict and lenient assessments.

Strict Lenient
Run Id P@10 MRR P@10 MRR

Exploitation of the Social Network
1 Iftene (run2) .62 .84 .83 .94

2 Popularity model PMpagerank .56 .85 .67 .92

3 Popularity model PMfreq .67 .89 .79 .96

MLIR on Expert Profiles
4 Iftene (run0) .52 .80 .82 .94

5 Iftene (run1) .47 .77 .77 .93

6 BM25 + Z-Score .19 .40 .39 .63

MLIR using the Social Network
7 Leveling (DCUa) .09 .14 .40 .51

8 Leveling (DCUq) .08 .16 .42 .54

Resource-indexing based Retrieval
9 Herzig (3-boe-07-02-01-q01m) .49 .76 .87 .93

10 Herzig (1-boe-06-03-01-q01m) .48 .77 .86 .94

11 Herzig (2-boe-06-03-01-q01) .35 .65 .61 .74

(b) The result overlap of the baseline runs. The presented values correspond to the count of retrieved

experts of each run for all topics that are also retrieved by the compared run in the top 10 results. The

absolute numbers of common experts are presented below the diagonal, relative values in respect to all

retrieved experts above the diagonal.

1 2 3 4 5 6 7 8 9 10 11

1 - 62% 76% 51% 41% 0% 1% 0% 14% 14% 11%

2 374 - 74% 41% 35% 0% 0% 0% 17% 17% 12%

3 457 441 - 45% 37% 0% 0% 0% 17% 17% 12%

4 307 243 271 - 64% 0% 1% 1% 14% 14% 11%

5 248 208 223 385 - 1% 2% 2% 13% 13% 9%

6 1 1 1 1 4 - 10% 2% 1% 1% 1%

7 3 2 2 4 11 58 - 12% 0% 1% 0%

8 1 0 0 3 13 12 72 - 1% 1% 1%

9 82 101 101 83 78 3 2 4 - 92% 46%

10 83 100 102 83 78 3 3 4 554 - 48%

11 67 71 73 63 54 3 1 4 276 286 -

Table V.4: Results of the baseline runs. We present the performance measured by

standard evaluation measures and the pairwise overlap of runs in respect to retrieved

experts.
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value of 1 would be optimal, meaning that all experts on the first rank are relevant

for the according query.

All evaluation measures are presented based on strict and lenient assessment. As

described in Section V.5.2, the assessment of retrieved experts was based on three

classes of relevance. Strict assessment only considers experts in class 2 as relevant

— expert that are likely able to answer the given question. Lenient assessment ad-

ditionally defines experts in class 1 as relevant — expert that may be able to answer

the question.

As further statistics of the baseline runs, we present the result overlap in Ta-

ble V.4. This is a pairwise comparison of retrieval runs. The overlap measures the

number of experts that are retrieved by both runs in the top 10 results — aggre-

gated for all topics. The overlap matrix in Table V.4 contains the absolute numbers

of common experts (below the diagonal) and the relative numbers in respect to all

experts in the top 10 results (above the diagonal). In the discussion, we use these

result overlaps to visualize the similarities and differences of the different baseline

approaches.

All results in Table V.4 are marked with run ids. These ids will be used in paren-

thesis in the discussion to refer to the according run. For example (2) refers to the

popularity model PMpagerank.

Evaluation of CriES Runs. Four different groups participated at the CriES pilot

challenge. Results of the most successful runs are presented in Table V.4. All submit-

ted runs were used to build the result pool for the manual relevance assessments. In

addition to the presented evaluation measures, we also visualize the precision/recall

curves of the submitted runs in Figure V.4. In this figure, interpolated recall values

for different precision levels are used to draw curves for each run. The values on the

X-axis correspond to the precision levels and the values on the Y-axis to the interpo-

lated recall. The area under the curve can be used as further evaluation measure that

is intuitively visible in Figure V.4.

The presented results in Table V.4 and Figure V.4 allow the following observa-

tions:

• Most submitted runs beat the probabilistic baseline (6). Exceptions are the

runs (7,8), that are much worse than (6) based on strict assessment and com-

parable to (6) based on lenient assessment. We will not include any further

analysis of the retrieval system of runs (7,8) as any relevant approach should

be able to improve the simplistic baseline (6).

• The runs solely using the social network have the best performance based on

strict assessment (1,3). The best approach measured by P@10 and MRR based

on strict assessment is defined by the frequency-based popularity model PMfreq

(3) in the target category of the query. Run (1) performs slightly worse based

on strict assessment but has higher precision than (3) based on lenient assess-

ment. These results show that the social network contains strong evidence for
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(a) Results based on strict assessment.
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(b) Results based on lenient assessment.

Figure V.4: Precision/recall curves based on interpolated recall.
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expertise in the informed scenario.

• The combination of the information given by the social network and by text

based retrieval models was not successful (4,5), especially based on strict as-

sessment. For example run (1) has precision of .62 while (4) — which is based

on (1) — only achieves precision of .52. We address this problem of combin-

ing the different sources of evidence in the mixture language model. Results

of this model are presented in Section V.5.6.

• Resource-indexing based retrieval achieves best results based on lenient as-

sessments — run (9) has a precision value of .87. However based on strict

assessment, this run only has a precision of .49, which is .18 less than the

frequency based popularity model (3).

Overlap of Retrieved Experts. The result overlap of the baseline runs as pre-

sented in Table V.4 shows the variety of the different retrieval approaches. We draw

the following conclusion based on these overlap values:

• The probabilistic baseline (6) has almost no overlap (≤ 1%) to any of the

best performing approaches (1,3,4,9). This means, that the expertise model is

completely different as a disjunct set of experts is returned.

• The best performing approaches based on the social network (1,3) are similar

with a high overlap of 76%. As the rankings of experts are similar, both ap-

proaches seem to exploit the same information given by the number of answers

posted by users.

• The combined approach (4) shares half of the retrieved experts with social net-

work based approach (1). This shows that the combined approach introduces a

different model of expertise — which is however not able to improve the per-

formance measured by P@10 and MRR based on strict assessment. Based on

lenient assessment, similar performance is achieved with this partially over-

lapping set of retrieved experts.

• The resource-indexing based retrieval approach (9) has low overlap (≤ 17%)

with the social network based approaches (1,3) and the combined approach

(4). This shows that the model of expertise used in the resource-indexing based

approach is different to the model used in the other approaches. Different

sources of evidence are exploited by the resource-indexing based approach —

which leads to the best performance based on lenient assessment.

V.5.6 Results of the Mixture Language Models
The results of our ER experiments are presented in Tables V.5 and V.6. Table V.5

contains the results on the non-informed scenario. In this case, the category of new
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(a) Results based on strict assessment.

Id Model P@10 R@100 MAP BPREF

Baselines
1 BM25 + Z-Score .19 .10 .04 .08

2 PLM [Balog et al., 2009a]
(1).50 (1).45 (1).22 (1).33

Mixture Language Model
3 PMLM (.1Pprofile + .9Pcat)

(2).55 (2).50 (2).26 (2).37
Discriminative Models

4 DM (Logistic Regression) .31 .40 .14 .31

5 DM (MLP) .34 .40 .15 .30

Re-ranking of run 3 (top 100 experts)
6 DM (Logistic Regression) .39 .50 .21 .37
7 DM (MLP) .39 .50 .21 .37
8 LRM (J48) .23 .47 .12 .33

(b) Results based on lenient assessment.

Id Model P@10 R@100 MAP BPREF

Baselines
1 BM25 + Z-Score .39 .12 .06 .19

2 PLM [Balog et al., 2009a]
(1).69 (1).32 (1).19 (1).30

3 PMLM (.1Pprofile + .9Pcat)
(2).73 (2).36 (2).22 (2).33

4 DM (Logistic Regression) .43 .29 .12 .27

5 DM (MLP) .48 .29 .13 .27

6 DM (Logistic Regression) .51 .36 .18 .33
7 DM (MLP) .53 .36 .17 .33
8 LRM (J48) .34 .06 .04 .06

(c) Result overlap measured by common experts of two runs in the top 10

retrieved experts.

1 2 3 4 5 6 7 8

1 - 2% 2% 1% 3% 1% 2% 0%

2 10 - 77% 22% 23% 34% 35% 5%

3 9 464 - 25% 24% 36% 35% 5%

4 5 131 149 - 42% 58% 38% 5%

5 18 136 146 250 - 39% 59% 4%

6 8 202 214 347 233 - 58% 5%

7 13 207 210 230 354 346 - 4%

8 1 27 29 27 21 28 23 -

Table V.5: Non-informed experiments: Expert retrieval results on the Yahoo! An-

swers dataset with unknown category of new questions. Precision at cutoff level 10

(P@10), recall at cutoff level 100 (R@100), Mean Average Precision (MAP) and

BPREF are used as evaluation measures.
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(a) Results based on strict assessment.

Id Model P@10 R@100 MAP BPREF
Baselines

9 PMfreq (Popularity Model) (3).67 .43 .29 .37

10 BM25 + PMfreq + Z-Score (3,6,8).71 (6).47 (3,6).31 (3,6).39

Mixture Language Model
11 PMLM (.5Pprofile + .5PMfreq)

(3).67 (6).47 (3,6).31 (3,6).39

Discriminative Models
12 DM (Logistic Regression) .50 .54 .27 .39

13 DM (MLP) .60 (3,8).60 (3,8).33 (3,8).43
Re-ranking of run 8 (top 100 experts)

14 DM (Logistic Regression) .53 .47 .25 .37

15 DM (MLP) .62 .47 .31 .39

16 LRM (Logistic Regression) .55 .46 .26 .37

17 LRM (J48) .58 .47 .27 .39

(b) Results based on lenient assessment.

Id Model P@10 R@100 MAP BPREF
9 PMfreq (Popularity Model) .79 .33 .21 .31

10 BM25 + PMfreq + Z-Score (3,6).84 (6).37 (3,6).25 (3,6).35

11 PMLM (.5Pprofile + .5PMfreq) .80 (6).37 (3,6).24 (3,6).35

12 DM (Logistic Regression) .69 .41 .24 .37

13 DM (MLP) .78 (3,8).45 (3,8).30 (3,8).42
14 DM (Logistic Regression) .70 .37 .22 .35

15 DM (MLP) .79 .37 .26 .35

16 LRM (Logistic Regression) .74 .36 .23 .34

17 LRM (J48) .73 .37 .23 .35

(c) Result overlap measured by common experts of two runs in the top 10 retrieved

experts.

9 10 11 12 13 14 15 16 17

9 - 92% 90% 41% 58% 51% 68% 52% 60%

10 550 - 90% 41% 61% 52% 71% 53% 62%

11 539 541 - 42% 61% 52% 71% 53% 61%

12 245 247 253 - 49% 68% 45% 60% 39%

13 348 363 364 294 - 49% 78% 49% 53%

14 305 309 313 407 292 - 58% 82% 49%

15 408 424 426 268 466 347 - 59% 63%

16 310 318 319 360 291 489 354 - 50%

17 359 370 368 231 315 292 379 299 -

Table V.6: Informed experiments: Expert retrieval results on the Yahoo! Answers

dataset using informed approaches that use the category of new questions. Preci-

sion at cutoff level 10 (P@10), recall at cutoff level 100 (R@100), Mean Average

Precision (MAP) and BPREF are used as evaluation measures.
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questions is not known. Table V.6 contains the results on the informed scenario using

a priori knowledge of the category of new questions.

As evaluation measures, we use precision at cutoff rank 10 (P@10), recall at

cutoff rank 100 (R@100), Mean Average Precision (MAP) and binary preference

ranking (BPREF). Not all runs presented in Tables V.5 and V.6 were part of the re-

sult pool in the context of the CriES challenge. The values for P@10, R@100 and

MAP are therefore underestimated. To address this problem, we include BPREF as

evaluation measure that has been designed to be robust against incomplete assess-

ments.

Similar to the results presented in Section V.5.5, we also present the pairwise

result overlap of all runs in Tables V.5 and V.6. This will again be used to identify

approaches that are based on similar models of expertise.

The statistical significance between systems was verified using a paired t-test at

a confidence level of .01. Significant results are marked with the id number of the

system compared to. For example, the P@10 value .50 of the language model PLM

(2) shows a statistical significant difference compared to the P@10 value .19 of the

probabilistic model BM25 (1) in Table V.5.

In the following, we discuss the results of the baseline runs, the mixture language

model (MLM), the discriminative model (DM) and the Learning to Rank model

(LRM). We will use the system id in parenthesis to link to the according results in

Tables V.5 and V.6.

Informed vs. Non-informed Scenario. As a first observation, it is important to

mention that the usage of the information given by the topic category generally im-

proves retrieval results (results in Table V.5 vs. results in Table V.6). As example,

the probabilistic baseline (1) has a precision of .19 while the linear combination of

this baseline with the frequency based popularity model results in a substantially im-

provement to a precision of .71. Similar effects can be seen for the discriminative

model. Using the same Machine Learning model and the same retrieval approach,

precision can be improved from .34 to .60 by adding features that exploit the target

category of queries.

However, analyzing approaches that do not exploit the target category of queries

is still important as there are use cases that correspond to the non-informed scenario.

An example are questions that could be assigned to several categories and the selec-

tion of a specific category is therefore difficult for users of a SQAS.

Mixture Language Model. The mixture language model that combines language

models of user profiles and categories shows high performance in the non-informed

scenario. We make the following observations based on the results presented in

Table V.5:

• The probabilistic multilingual retrieval system (1) has poor performance com-

pared to the mixture language model (3). For example based on strict assess-
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ment, P@10 is improved from .19 to .55. Similar improvements are given for

the other evaluation measures.

• The reference language model (2) introduced by Balog et al. [2009a] is out-

performed by the mixture language model. The statistical significance of this

improvement is given for all used evaluation measures. For example based on

strict assessment, MAP is improved by .04 and R@100 by .05.

These results show that the mixture language model is able to successfully combine

the different sources of evidence in the non-informed scenario. By considering the

category language models in the retrieval model, the results are improved in respect

to the reference approaches.

In the informed scenario, the mixture language model (11) outperforms the base-

line using the frequency based popularity model (9). Improvements with statistical

significance are given for R@100, MAP and BPREF. For example based on lenient

assessment, MAP is improved by .03 and BPREF by .04. However, the linear com-

bination of the probabilistic model and the popularity model (10) achieves better

precision having the same values for R@100, MAP and BPREF compared to the

mixture language model (11). For example based on strict assessment, P@10 is

improved from .67 to .71. This shows that the simple linear combination of the dif-

ferent sources of evidence is superior to the mixture language model in the informed

scenario.

Discriminative Models. The discriminative models in the non-informed scenario

(4,5) are not able to compete against the approaches based on language models. In

fact, both approaches are consistently worse than the reference language model (2)

for all evaluation measures. We are not able to give a satisfying explanation of this

observation. Our hypothesis is that the features in the non-informed scenario do not

allow to distinguish between relevant and non-relevant experts.

Considering the informed scenario, the discriminative model (13) outperforms

all other models in respect to R@100, MAP and BPREF. We make the following

observations based on the results presented in Table V.6:

• Based on both strict and lenient assessments, the discriminative model using

MLPs (13) achieves best results in respect to R@100, MAP, BPREF. For ex-

ample based on strict assessment, BPREF of .37 of the popularity model is

improved to .43. The improvement of R@100 is even higher, the results of the

mixture language model (11) are improved by .13.

• Using the discriminative model, the precision measured by P@10 is worse

compared to the baselines — the popularity model (9) and the linear combi-

nation of the probabilistic and the popularity model (10). The discriminative

model is therefore optimizing recall, which is substantially improved. How-

ever, other measure of precision — MAP and BPREF — are also improved,

which shows that the discriminative approach also has adequate precision.
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• MLPs are the best choice for the underlying ML system used in the discrimi-

native model. Using Logistic Regression deteriorates the results, for example

by .06 for R@100 based on strict assessment.

Re-ranking of Results. The re-ranking of the top 100 experts that are found using

the mixture language models (3,11) does not show any obvious improvement in both

non-informed and informed scenarios. This holds for the discriminative approaches

(6,7,14,15) and for the Learning to Rank approaches (8,16,17). In fact, the results

are worse compared to the original rankings (3,11) that are used for the re-ranking.

An interesting fact is that the drop of performance is not observed for BPREF. In

the non-informed scenario, the re-ranking approaches using discriminative models

(6,7) have same BPREF than the original model (3). In the informed scenario, this

also holds for the Learning to Rank approach (17) using the J48 decision tree com-

pared to the original informed model (11). All runs of re-ranking approaches were

not part of the result pool that has been assessed in the context of CriES. Therefore,

the results of the re-ranking approaches are probably influenced by incomplete as-

sessments. This is supported by the observation that the BPREF values do not show

the same deterioration. For realistic judgments of the re-ranking approaches, com-

plete relevance assessments of all retrieved experts are needed which remains future

work of this thesis.

Diversity of Retrieved Experts. The results presented in Table V.6 show that us-

ing the popularity model is a strong baseline in the informed scenario. In fact, this is

one of the most successful retrieval strategies measured by the evaluation measures.

In the ER scenario in SQASs, this means that users with many posts in a category

are the obvious experts that are able to answer new questions in this category.

However in a realistic scenario, these users will not able to answer all new ques-

tions in a specific category. An alternative evaluation measure could be defined by

the diversity of retrieved experts. ER should not only identify relevant experts but

also have a diverse result set that potentially distributes new questions to many dif-

ferent users.

We propose to measure the diversity using the result overlap to the popularity

model (9) as presented in Table V.6. High overlap means that only the popular ex-

perts are retrieved and that the diversity is low. The results show that the probabilistic

model (10) has a high overlap of 92% — the set of retrieved experts is almost iden-

tical to the popularity baseline (9). The same holds for the mixture language model

with an overlap of 90%. The discriminative model (13) has much lower overlap of

58%. This means that the diversity of retrieved experts is higher at the same time

as having improvements of R@100, MAP and BPREF. This is a further argument to

favor the discriminative approach in the ER scenario.
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Correctly Classified
Instances Features

78.8% AVG([Pprofile × PMfreq])
79.5% +MIN([PMfreq])
79.8% +MEDIAN([Pcat])
80.1% +AVG([Pprofile × Pprofile+c × PMfreq])
80.2% +DLH13 + Z-Score

80.3% +MEDIAN([Pcat × Pterm])
80.3% +DEVIATION([Pcat × PMfreq])
80.4% +MAX([Pprofile × Pprofile+c × Pcat])
80.4% +MEDIAN([Pprofile])
80.4% +MEDIAN([Pprofile × PMfreq])

Table V.7: Top-10 ranked list of features used for the discriminative model in the

informed scenario. Features were selected by a greedy stepwise algorithm. Starting

with an empty set of features, the feature resulting in the most correctly classified

instances was added in each step. Thereby, the classification was based on a logistic

regression classifier using the current set of selected features as input.

V.5.7 Feature Analysis

The performance of the discriminative model is based on the performance of the

underlying ML model. This model uses the features defined in Section V.4 to build

a classifier based on the training data. An interesting question is the importance of

each feature in the ML model.

To get an idea of which features contribute most to the success of the classifier

function, we performed a feature analysis of the features used in the discriminative

model. Features were evaluated by their performance in the classification. The fea-

ture set was selected by a greedy stepwise algorithm. The results are presented in

Table V.7, sorted by the share of correctly classified instances that was achieved by

adding each feature. We derive the following results from this analysis:

• The top features are based on the category of the question (PMfreq and Pprofile+c).

This was expected due to the high performance of the popularity model.

• All sources of evidence are present in the top features: User profiles (Pprofile

and Pprofile+c), categories (Pcat and PMfreq), background language model (Pbg) and

standard MLIR models (DLH13 + Z-Score). This shows that each source adds

information that is useful for the classification.

• Considering dependencies on term level of the different sources of evidence is

important, as many top ranked features are indeed products of single-evidence

term probabilities which capture this dependency, for example [Pprofile×PMfreq].
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V.6 Summary of Results
In the following, we give a summary of all results that were presented in this chapter.

This includes the results of our experiments, our main contributions and also our

lessons learned.

V.6.1 Results of the Experiments
The main results of our experiments on the Expert Retrieval scenario using the Ya-

hoo! Answers dataset can be summarized as follows:

Informed vs. Non-informed Scenario. The results of the different retrieval mod-

els are not consistent across the two scenarios that we consider — the non-informed

scenario and the informed scenario that requires former knowledge about the tar-

get category of topics. Some of the top performing models in one scenario do not

achieve good results in the other scenario. For example, the discriminative model

is not improving results in the non-informed scenario compared to the mixture lan-

guage model — but is one of the best models in the informed scenario. Our conclu-

sion is that there is no single solution for both scenarios. Different retrieval models

are needed that are optimized to the according retrieval task.

Mixture Language Model exploits Category System. The mixture language

model is one of the best performing models in both scenarios. In particular, it outper-

forms the baseline language model that is not using the categorical information. Our

conclusion is that the mixture language model, which we defined on expert and cat-

egory profiles, is able to exploit the knowledge that is given by the category system

in Yahoo! Answers to successfully improve the retrieval results.

Popularity Model. The popularity model based on answer frequencies is a strong

baseline that outperforms all submitted runs to the CriES challenge when using strict

assessment. For lenient assessment, only two retrieval systems are able to improve

this model in respect to some evaluation measures. These systems are based on an

alternative approach to exploit the social network as well as on resource-indexing. In

our experiments, the mixture language model and the discriminative approach out-

perform the popularity baseline which is indicated by all used evaluation measures.

Discriminative Model in Informed Scenario. The discriminative model that we

propose in this chapter is able to further improve the results of the mixture language

model in the informed scenario. As the features that are used in the discriminative

model are based on the same language models, this shows that the combination of

different sources of evidence can be optimized using Machine Learning techniques.

Further, the results obtained using the discriminative model have more diversity of

retrieved experts compared to the other models that are mostly dominated by the
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popularity baseline. In the question routing use case, this means that the payload of

answering questions is distributed to a larger set of experts.

V.6.2 Lessons Learned

In the following, we discuss further considerations about the presented experiments

and analyze some negative results. We think that these results might be helpful to

avoid mistakes and dead ends in future research.

Discrete Classifier in Discriminative Approach. Using classifiers with discrete

output such as decision trees resulted in poor retrieval results in the discriminative

approach. In this case, many experts get the same or very similar scores — which

makes them indistinguishable for ranking purposes. Cross-validation of the under-

lying ML model on the training set was usually comparable to regression functions

such MLPs or Logistic Regression, but differences were huge when applying the

classifier to the actual retrieval task. For example, the re-ranking approach in the

informed scenario based on the J48 decision tree results in a substantial performance

drop compared to the mixture language model.

Training Data for ML Models. The discriminative model was only effective when

training on strict relevance judgments, irrespective of the fact whether evaluation

was performed in strict or lenient mode. We also performed experiments training

on pairs of questions and expert providing the best answer as specified in the Ya-

hoo! Answers dataset (i.e. not using the relevance judgments provided in the CriES

dataset). Let’s call these pairs best-answer-pairs. This did also yield unsatisfactory

results. A possible explanation for the negative performance is the fact that negative

examples where randomly sampled from non-best-answer-pairs, thus leading to a

noisy dataset as many experts might be relevant for a given question in spite of not

having provided the best answer.

Bias of Relevance Assessments. Our experiments show that the popularity model

is a very strong baseline that achieves high evaluation values when applied as re-

trieval model. This means that experts with many associated documents are more

likely to give answers to new questions. While this might be true in the considered

SQAS, there might also be the affect of a bias in our relevance assessments. The hu-

man assessors judged the text profile of experts which are possibly long documents

for users who posted many answers. These profiles contain questions and answers of

many different topic fields and are hard to overlook. The assessors might have been

drawn to judge these users as relevant. This could be the explanation of the possible

bias towards active users.

To evaluate this hypothesis, alternative relevance assessments are required. By

assessing single question/answer pairs, the bias towards long profiles could be
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avoided and this could be compared to the existing relevance assessments. How-

ever, this introduces new problems. In some cases, the expertise might be defined in

the context of several answers, which is not covered in this type of evaluation.
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Chapter VI

Enriching the Cross-lingual
Structure of Wikipedia

Wikipedia is a rich knowledge source that contains descriptions of concepts in a

broad range of topic fields. In Chapter IV, we presented CL-ESA as an approach

that allows using the concepts provided by Wikipedia to define a concept-based doc-

ument representation. Other applications of the knowledge encoded in Wikipedia

are presented in Chapter III. In addition to the concept descriptions, Wikipedia also

aligns articles and categories across languages. We exploited these alignments in

Chapter IV to define an interlingual concept space that supports Cross-lingual IR

and Multilingual IR.

The cross-lingual structure of Wikipedia is based on cross-language links. These

links are created by adding references to corresponding articles or categories in other

languages to the source text of articles or categories. This is manually done in a col-

laborative process by the Wikipedia editors. Therefore, the existence and correctness

of such cross-language links is not guaranteed. Further, it is difficult for editors to

create such links, as this requires language skills in at least two different languages.

While many editors might be able to create links to international languages such as

English, this is certainly not the case for languages that are not widely distributed

such as Albanian.

Cross-language links are the only connecting elements of Wikipedia content

across languages. Therefore, they are crucial for any application that depends on the

alignment of articles or categories in different languages. This also means that the

performance of these applications is affected by missing or incorrect cross-language

links. In this chapter, we propose an automatic approach to identify missing cross-

language links. Our motivation is based on the assumption that enriching the cross-

language structure of Wikipedia will also benefit all systems that exploit this struc-

ture.

Our approach aims at supporting human editors by suggesting cross-language

159
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link candidates. We automatically generate recommendations of link candidates.

However, these links are not added immediately to the according Wikipedia articles.

Automatic editing of content in Wikipedia is problematic as the introduction of er-

rors will not be accepted by the Wikipedia community. Instead, we suggest new

links to the editors which allows them to manually check the correctness while still

reducing the effort of inserting new cross-language links. The editors do not have to

browse all articles to find possible missing links but are guided through the identi-

fied link candidates. This will also decrease the probability that articles or categories

with missing links are overseen by the editors. Additionally, the editors do not have

to manually identify the target articles or categories of new links as these are also

suggested by our automatic approach.

In the following, we will first present the motivation for our approach which de-

tects missing cross-language links in Wikipedia based on statistics of existing links.

Then, we describe our classification model that is based on specific features to iden-

tify new links. This approach is evaluated using a set of randomly selected Wikipedia

articles. Finally, we discuss the self-correctiveness of Wikipedia using the example

of our generated list of missing cross-language links. The results of this discussion

allow different conclusions about the quality and future of Web 2.0 resources such

as Wikipedia.

VI.1 Motivation
In Chapter III, we presented different approaches that exploit the cross-language

links in Wikipedia for Semantic Relatedness measures or for cross-lingual or multi-

lingual IR. Cross-lingual Explicit Semantic Analysis with Wikipedia as background

knowledge, as presented in Chapter IV, is another example for a model that is based

on cross-language links. The performance of these approaches depends on the cross-

language link structure of Wikipedia, which should be consistent and needs to have

enough coverage.

In the context of this chapter, we have chosen the German and English versions of

Wikipedia and computed statistics about the German/English cross-lingual structure

to get a clear picture about its consistency and coverage. These findings motivate our

approach to learn new cross-language links in Wikipedia.

VI.1.1 Statistics about German/English Cross-Language Links
Our analysis of the cross-lingual structure of Wikipedia is based on English and

German Wikipedia dumps from October 2007. We only used articles in the default

namespace excluding redirect pages.1 As preprocessing step, we resolved all links

ending in redirect pages to the corresponding articles.

1Redirect pages are used to disambiguate different surface forms, denominations and morphological

variants of a given unambiguous named entity or concept to a unique form or identifier. In Wikipedia,

these pages have no content and directly forward to the corresponding article.
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For our analysis, we counted the number of articles in the English and German

Wikipedia databases and the total number of cross-language links in those articles

that are pointed either to the English or to the German Wikipedia.2 These links can

be classified in the following classes:

Bidirectional: A bidirectional link llα that connects article a in Wikipedia database

Wα to article b in Wikipedia database Wβ has an equivalent counterpart llβ
located at the target article, i.e. llβ connects article b to article a.

No Backlink: A cross-language link with no backlink does not have a counterpart.

Given such a link ll that connects article a ∈ Wα to article b ∈ Wβ , there is

no link located at b pointing to any article in Wα.

Inconsistent Backlink: In this case, the target article of a cross-language link is

linked to another article as the source article. Formally, given such a link llα
that connects article a ∈Wα to article b ∈Wβ , there is another cross-language

link llβ located at b that connects b to article a′ ∈Wα with a′ �= a.

An example is the English article 3D rendering that is linked to the Ger-

man article 3D-Computergrafik. This German article is linked to the

English article 3D computer graphics, which is a different article than

3D rendering.

The three classes of cross-language link are analogously defined for links between

categories instead of articles.

All the results of our analysis of the cross-lingual structure between the English

and German Wikipedia snapshots are presented in Table VI.1. The results show that

only a small fraction (14%) of articles in the English Wikipedia was linked to articles

in the German Wikipedia. The fraction of German articles linked to English articles

was much bigger, but at 45.9% it was still less than half of all articles in the German

Wikipedia. For some articles, there may not be a corresponding article in another

language due to the country specific content. However, half of all articles in the

German Wikipedia have no cross-language link to the English Wikipedia. As most

probably not all of them are specific to Germany and have an existing counterpart

in the English Wikipedia, there is still a big margin to learn new meaningful cross-

language links.

As the fraction of bidirectional links was around 95% in the English and German

Wikipedia, high consistency of cross-language links can be taken for granted. This

motivates their use in a bootstrapping manner to find new cross-language links.

2Cross-language links in Wikipedia are located in the text of the source article or category by a ref-

erence to the title of the target article or category. As titles are used as identifiers in Wikipedia, these

references correspond to directed links that are well-defined as they connect exactly two articles or cate-

gories.
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(a) Number of articles.

Articles
English Wikipedia 2,293,194

German Wikipedia 703,769

(b) Number of cross-language links.

Links Share of Articles
English→ German (EN-DE) 321,498 14.0%

German→ English (DE-EN) 322,900 45.9%

(c) Classification of existing cross-language links.

EN-DE LLs DE-EN LLs
Bidirectional 303,684 94.5% 303,684 94.1%

No backlink 9,753 3.0% 12,303 3.8%

Inconsistent Backlink 7,845 2.4% 6,132 1.9%

Table VI.1: Statistics about the cross-lingual structure of the English and German

Wikipedia (snapshot of September 2009). Only cross-language links (LLs) from

English to German articles and vice versa are considered.

VI.1.2 Chain Link Hypothesis
One problem in learning new cross-language links between the German and English

Wikipedia is the large number of articles (see Table VI.1). It will surely not be

possible to use a classifier on all article pairs, therefore a pre-selection of candidate

articles seems appropriate.

In addition to existing cross-language links, our approach to identify new cross-

language links also uses pagelinks in Wikipedia:

Definition VI.1 (Pagelink) In a Wikipedia database W , pagelinks (PLs) are links
between articles in W . They are located at the source article by a reference to the
title of the target article.

In order to preselect a number of relevant articles, we rely on the chain link
hypothesis. This hypothesis builds on the notion of a chain link:

Definition VI.2 (Chain Link) For two Wikipedia databases Wα,Wβ in corre-
sponding languages α, β, a chain link (CL) between two articles aα ∈ Wα and
aβ ∈Wβ is defined by the following link structure:

aα
pl−→ bα

ll−→ bβ
pl←− aβ

or
aα

pl−→ bα
ll←− bβ

pl←− aβ
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Figure VI.1: Visualization of a chain link that is used to find candidate pages for

new cross-language links. The presented articles are linked via pagelinks (pl) and

cross-language links (ll).

with bα ∈ Wα and bβ ∈ Wβ . Pagelinks between articles are displayed as
pl−→ and

cross-language links between articles in different languages as ll−→. The articles bα
and bβ are called chain link intermediate articles (CLIAs).

An example for such a chain link between an article in the German Wikipedia and

an article in the English Wikipedia is illustrated in Figure VI.1. The article aα =
Horse in the English Wikipedia is connected through the displayed chain link to

the article aβ = Hauspferd in the German Wikipedia. The articles bα = Mammal
and bβ = Säugetiere are CLIAs of this chain link that is formed by the pagelink

from Horse to Mammal, the cross-language link from Mammal to Säugetiere
and the pagelink from Hauspferd to Säugetiere.

Based on chain links, we formulate the chain link hypothesis, which is the basic

hypothesis that lays the foundation for the selection of cross-language link candi-

dates:

Definition VI.3 (Chain Link Hypothesis) Every article is linked to its correspond-
ing article in another language through at least one chain link.

In order to empirically verify the plausibility of the above hypothesis, we have

generated the RAND1000 dataset containing 1000 random articles of the German

Wikipedia with existing cross-language links to the English Wikipedia. For all ar-

ticles in the RAND1000 dataset, we tested if the hypothesis is indeed fulfilled. In

particular, for an article aα in the dataset, connected to the article aβ in the English

Wikipedia through a cross-language link, we checked if aβ is in the candidate set
C(aα). The candidate set of an article aα is composed of all articles that are con-

nected to aα through at least one chain link.
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Candidates Percentage
Full candidate set 95.7%

Restricted candidate set 86.5%

Table VI.2: Percentage of articles in the RAND1000 dataset for which the chain

link hypothesis is fulfilled when considering the full candidate set and the restricted

candidate set.

However, we noticed that the average number of articles in each candidate set

is still not small enough. In case of the RAND1000 dataset, the mean size of the

candidate set is 153,402. This means that an approach to find a cross-language link

for an article a, which considers all articles in C(a) as potential candidates, can be

very expensive from a computational point of view.

Thus, we also consider a reduction of the number of candidates. Therefore, we

define the support of a candidate c with respect to an article a in the dataset as the

number of existing chain links between a and c. For each article a, we limit the

number of candidates to less than 1000 by raising the minimal support of candidates

for this article until less than 1000 candidates were selected. This minimal support

will be referred to as support threshold in this chapter. For each article, we call the

set of candidates with higher support than the threshold the restricted candidate set
C′(a), which is confined to at most 1000 candidates.

Table VI.2 contains the percentage of articles for which the chain link hypothesis

is fulfilled. The results show that for more than 95% of the articles in the RAND1000

dataset the corresponding article in the English Wikipedia is included in the full can-

didate set. Regarding the restricted candidate set, the hypothesis holds for more than

86% of the articles. With respect to the decrease in performance time by processing

at most 1000 instead of 153,402 candidate articles for each source article on average,

it seems a good trade-off in terms of best case accuracy.

The chain link hypothesis is therefore strongly supported by this evaluation on

the RAND1000 dataset, even after restricting the candidate set to at most 1000 can-

didates for each article. Based on these findings, the usage of the chain link hy-

pothesis to restrict the set of candidate articles for new cross-language links seems

to be promising. The approach presented in the remainder of this chapter strongly

relies on the chain link hypothesis as a feature for training a classifier, which is able

to predict whether a pair of articles in two languages (German/English in our case)

should be connected via a cross-language link. Having motivated our approach and

the underlying hypothesis empirically, we describe the approach in more detail in

the next section.
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VI.2 Classification-based Approach

The main idea behind our approach to learn new cross-language links is to train

a classifier, which is able to predict whether a pair of articles (a, b) of two distin-

guished Wikipedia databases Wα,Wβ with a ∈ Wα and b ∈ Wβ should be linked.

As it is not feasible to apply the classifier to all article pairs in two languages, we

only consider the restricted candidate set C′(a) ⊂ Wβ for an article a as potential

targets of a new cross-language link.

We used the popular Support Vector Machine (SVM) implementation SVMlight
by Joachims et al. [1999] with a linear kernel function as classifier. The classifier

is trained with a number of features, which we describe in details below. Features

are defined on article-candidate pairs (a, c) ∈ Wα × Wβ with c ∈ C′(a) and are

based on different sources of evidence. Based on our chain link hypothesis, the

support of c with respect to a — defined above as the number of chain links between

these articles — is considered and the link structure of the CLIAs is exploited. In

addition, the categories of a and c are also considered. As categories are also linked

by language links, it is possible to align categories across languages. Finally, we also

use simple features based on the title and text of articles.

VI.2.1 Feature Design

The features can be classified in two classes: graph-based and text-based features.

Graph-based features exploit the link structure in Wikipedia, which is given by

pagelinks, category links and cross-language links. Text-based features are based

on the title and text of the Wikipedia articles.

For the definition of graph-based features, we need to specify the number of

inlinks of an article. Inlinks of an article a ∈ Wα are pagelinks from another

article that are targeted to a. The number of inlinks of a is therefore defined as

INLINKS(a) = |{b ∈Wα | b pl−→ a}|.
For the definition of text-based features, we introduce the Levenshtein Distance

[Levenshtein, 1966], which is a string metric based on the edit distance between

two strings. The edit distance is defined as the minimal number of insert, delete and

replace operations that is needed to transform one string to another. We use a version

of the Levenshtein Distance that is normalized by the string lengths.

As described above, features are based on article-candidate pairs. In the fol-

lowing, we denote the source article as a and the candidate target article as c with

c ∈ C′(a).

Graph-based Features:

Feature 1 (Chain Link Count Feature)

This feature is equal to the support of c with respect to a.
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English Wikipedia German Wikipedia

CL(Hauspferd,horse)
CLIA=Säugetiere

CL(horse,Hauspferd)
CLIA = mammal

horse
Hauspferd

CL(horse,Hauspferd)
CLIA = donkey

CL(horse,Hauspferd)
CLIA = rider

CL(Hauspferd,horse)
CLIA=Esel

CL(Hauspferd,horse)
CLIA=Reiter

Figure VI.2: Example of two CLIA graphs on a set of chain links in the En-

glish and German Wikipedia. Both graphs have a common edge connecting the

CLIAs mammal and donkey, but also non-common edges (mammal,rider) and

(rider,donkey).

Feature 2 (Normalized Chain Link Count Feature)

This feature is the value of Feature 1 normalized by the support threshold

that was used to restrict the candidate set for a.

Featureset 3 (Chain Link Inlink Intervals)

Given an article a and a candidate c, we compute all the chain links be-

tween them. Then, we classify the CLIAs of these chain links to 20

intervals defined over the number of inlinks of each CLIA, i.e. we clas-

sify a CLIA b into a bucket according to the value INLINKS(b). Thus,

we yield 20 features corresponding to the 20 intervals.

The motivation behind this classification of CLIAs is the assumption that

chain links containing CLIAs with fewer inlinks are more specific for a

topic and therefore more important for the choice of the correct article.

The design of several features corresponding to the different classes of

chain links according to the number of CLIA inlinks allows the classifier

to explore this assumption. For example, the number of chain links with

few CLIA inlinks is a single feature, which gets appropriate weight in

the classification model according to the training data.

Feature 4 (Common Categories Feature)

The number of categories of candidate article c that are directly linked

via a cross-language link to a category of article a.

Feature 5 (CLIA Graph Feature)

This feature is based on a similarity measure on graphs. Given two

graphs Gα and Gβ on the same set of vertices, the similarity is defined as
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the number of common edges of these graphs normalized by the number

of vertices. For article a and candidate c, the graphs Gα and Gβ are de-

fined by the set of chain links between a and c. Thereby, chain links are

the vertices in these graphs. Edges in Gα between two chain links exist

if the CLIAs in Wα of these chain links are linked by a pagelink in Wα.

Analogously, edges in Gβ between two chain links exist if the CLIAs in

Wβ of these chain links are linked by a pagelink in Wβ . The CLIA graph

feature is given by the value of the defined similarity measure between

Gα and Gβ .

An example for two CLIA graphs based on a set of chain links is given

in Figure VI.2.

Text-based Features:

Feature 6 (Editing Distance Feature)

This is the normalized Levenshtein Distance on the titles of the candidate

articles pair.

Intuitively, articles with identical titles in the different Wikipedia

databases should be identified using this feature. The Levenshtein Dis-

tance allows for non-exact matching, which will give high similarity

scores to close matches such as “Munich” to “München”.

Feature 7 (Text Overlap Feature)

This feature computes the text overlap between the text of the candi-

date article pair. To remain independent of lexical resources, there is no

translation involved. In our case, the text of English articles is directly

matched to the text of German articles. This feature is useful if the arti-

cles for example share many named entities that have identical names or

labels in several languages.

VI.3 Evaluation
The evaluation is based on the RAND1000 dataset. As described above, this dataset

consists of 1000 articles of the German Wikipedia, each with an existing cross-

language link to an article in the English Wikipedia. This set of articles is fixed

for all experiments, thus the random selection was only performed once.

In the following, we first analyze this dataset to get a lower bound for the clas-

sification experiment. Afterwards, we describe the experimental setup. Finally, we

present further results on articles without an existing cross-language link.

VI.3.1 Baseline
In order to find a lower bound for recall, we define a simple method to find language

links by matching the titles of articles. The recall of this method on the RAND1000
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dataset is equal to the percentage of German articles that are linked to English articles

with identical title. The analysis of the RAND1000 dataset showed that 47.0% of the

articles in this dataset are linked to English articles with identical title. The reason for

this high share is the fact that many Wikipedia articles describe named entities and

thus have the same title in different languages. This value defines a lower bound for

recall as this method to find new language links is very simple and straightforward.

Any other method should exceed the results of this baseline.

VI.3.2 Evaluation of the RAND1000 Dataset
In the experiments, we used a random 3-1-split of the RAND1000 dataset. The first

part, containing 750 articles, was used for training the classifier. The remaining 250
articles were used for the evaluation.

In order to evaluate the correctness of our approach, we consider the TOP-k with

k ∈ {1, . . . , 5} candidates. The ranking of candidates is based on the directed dis-

tance of their feature vector to the SVM-induced hyperplane. The larger the distance,

the higher is the classifier’s certainty that the candidate belongs to the positive class,

i.e. the candidate should be linked to the source article. Hereby, we do not distin-

guish candidates having feature vectors with a positive distance to the hyperplane

and others with a negative distance. Thus, it is possible that some of the candidate

articles that appear at the top of the ranking are actually classified to the negative

class.

TOP-k Evaluation. As quality measure for the TOP-k evaluation we defined TOP-

k-accuracy as the share of articles in the test set for which the correctly linked article

was part of the k top ranked candidates:

TOP-k-Accuracy =
|{aα ∈ RAND1000 | ∃aβ ∈ TOP-k(aα) : aα

ll−→ aβ}|
|RAND1000|

One important problem in learning the classifier is the discrepancy between pos-

itive and negative training data. For every article in the training set, there exists at

most one positive example — the actual target of the existing cross-language link

— but up to 1000 negative examples — all other candidate articles in the restricted

candidate set. Using the whole training data will most likely yield a classifier, which

always predicts new examples to belong to the majority class — the negative exam-

ples in our case (compare Provost [2000]). In order to avoid this, the training data

had to be balanced such that we only used a portion of the negative examples in

order to train the classifier. For each article in the training set, 2, 5 and 10 negative

examples were randomly selected and together with all positive examples were used

to train the classifier.

To be able to measure the quality of different features, we trained the classifier

with different feature sets. First, we used only the Chain Link Count Feature. In this

case, candidate articles with a higher number of chain links are ranked higher. The
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(a) Results using a ratio of 2:1 of negative/positive training example.

TOP-k-Accuracy

Feature selection TOP-1 TOP-2 TOP-3 TOP-4 TOP-5

1 (Chain Link Count F.) 42.4% 51.2% 60.0% 62.8% 64.8%

6-7 (Text features) 68.4% 71.2% 73.6% 74.8% 75.2%

1-5 (Graph features) 54.8% 64.0% 68.4% 70.8% 72.0%

1-7 (All features) 71.2% 76.0% 78.8% 79.6% 80.0%

(b) Results using a ratio of 5:1 of negative/positive training example.

TOP-k-Accuracy

Feature selection TOP-1 TOP-2 TOP-3 TOP-4 TOP-5

1 (Chain Link Count F.) 42.4% 51.2% 60.0% 63.2% 64.8%

6-7 (Text features) 68.8% 72.8% 74.4% 74.8% 75.2%

1-5 (Graph features) 55.2% 62.8% 67.6% 68.8% 70.0%

1-7 (All features) 74.8% 79.2% 79.2% 80.0% 80.4%

(c) Results using a ratio of 10:1 of negative/positive training example.

TOP-k-Accuracy

Feature selection TOP-1 TOP-2 TOP-3 TOP-4 TOP-5

1 (Chain Link Count F.) 0.0% 0.4% 0.4% 0.4% 0.4%

6-7 (Text features) 68.4% 72.4% 74.4% 74.8% 75.2%

1-5 (Graph features) 55.6% 62.4% 67.6% 69.2% 70.4%

1-7 (All features) 76.0% 78.4% 78.8% 80.4% 81.2%

Table VI.3: Results of the evaluation on the RAND1000 dataset. The tables are

based on different ratios of negative/positive training examples. The first column

describes the feature selection. The remaining columns show the TOP-k-accuracy

of our classification approach with k ∈ {1, . . . , 5}.

purpose of this experiment is to support the hypothesis that chain links are a promi-

nent clue for language links between articles. In another set of experiments, we used

the text features only as well as the graph features only, respectively. This allows to

assess the influence of each of the different feature sets. Finally, the classifier was

trained with all features to find out if it is indeed worth considering all the features

together.

Results of the experiments are shown in Table VI.3. The table shows the accuracy

with respect to the top k candidates considering varying sizes of negative examples.

Overall, the choice of negative/positive ratio does not have a strong impact on the

results. However, further experiments showed that using too many negative exam-

ples leads to learning a trivial classifier, as is the case when using the chain link

count feature alone for a negative/positive ratio of 10:1. A negative/positive ratio of

5:1 seems therefore reasonable and will be used in the further experiments described
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Ratio -/+ Feature
data selection Recall Precision
10:1 All features 69.6% 93.5%

Table VI.4: Results of the best candidate retrieval on the RANDOM1000 dataset.

below.

The accuracy of the prediction when considering only the chain link features

ranges from 42.4% (TOP-1) to 64.8% (Top-5). Considering the TOP-1 results, we

conclude that the classifier trained with the chain link features alone does not im-

prove with respect to our baseline that matches articles with identical titles and has

a TOP-1-accuracy of 47%. The text and graph features alone yield results in terms

of accuracy between 68.8% (TOP-1) and 75.2% (TOP-5) as well as 55.2% (TOP-1)

and 70% (TOP-5). Both types of features thus allow to train a classifier which out-

performs the naive baseline. Considering all features yields indeed the best results,

leading to a prediction accuracy between 76% (TOP-1) and 81.2% (TOP-5). Thus,

we have shown that the number of chain links seems to be the weakest predictor for

a cross-language link between two articles in isolation. When considering all fea-

tures, the results certainly improve, showing that the number of chain links crucially

contributes towards making a good decision in combination with the other features

used.

As we use articles from the English and German Wikipedia as test data, the text

features based on text overlap and similarity are strong features with good classifi-

cation results. However, even using only graph-based features — thus operating on

a completely language-independent level — the results exceed the trivial baseline.

Therefore, we can assume that our method will produce reasonable results for any

language pair of Wikipedia, even if they use different alphabets or if their languages

are from different linguistic families. In those cases, the text based features will play

a negligible role.

Best Candidate Retrieval In order to automatically generate new language links,

it is necessary to choose exactly one candidate for each source article and to decide

whether this candidate is the corresponding article or not. To achieve these goals,

we define best candidate retrieval as a modified TOP-1 retrieval. Different to the

TOP-k retrieval as presented above, we only select the best ranked candidate if its

feature representation has a positive distance to the SVM-induced hyperplane, thus

this candidate is classified to the positive class. In other cases, no cross-language

links will be generated for the given source article. The results of the best candidate

retrieval are presented in Table VI.4.

The recall of this experiment is 22.6% higher compared to the baseline that

matches articles with identical titles. As we use the restricted candidate set that is

based on the pre-selection of candidates, the maximum recall depends on the number

of target articles that are actually included in the candidate sets and it has therefore
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an upper bound of 86.5%. It is important to note that the recall of 69.6% of our best

candidate retrieval means that we find 80% of the cross-language links that can be

found at all given our pre-selection on the basis of the candidates’ support.

As our aim is to learn correct links, high precision is a requirement. From

this viewpoint, our approach seems very promising as new cross-language links are

learned with high precision of 93.5% and a reasonable recall. It could therefore be

used to enrich the Wikipedia database with new language links.

VI.3.3 Learning New Cross-language Links
In order to test our approach in a real scenario with the aim of inducing new cross-

language links, instead of applying it to articles with existing ones, we processed

the German Wikipedia considering all those articles which do not have an existing

cross-language link to the English Wikipedia. As our algorithms are still in a state

of research prototype and as we do not have the computational power, it was not

possible for us to process all of these articles. Therefore, we defined a relevance

ranking on the articles based on the number of incoming pagelinks and sorted the

articles according to this ranking. We processed the first 12,000 articles resulting in

more than 5,000 new cross-language links according to best candidate retrieval as

described above.

The first 3,000 links were manually evaluated by researchers in our group. The

corresponding articles of 2,198 links had identical titles. These links were assumed

to be correct. The remaining 802 links were evaluated by 3 independent persons,

who classified them in the following classes:

• Correct links.

• Close matches — links between articles that could be linked, but do not de-

scribe the exact same concept.

• Poor matches — links between articles that describe related concepts.

• Wrong links.

The annotator’s correlation was reasonable with a Pearson’s product-moment corre-

lation coefficient between 0.80 and 0.84.

The result of the evaluation of the learned cross-language links is presented in

Figure VI.3. 32% of the manually judged links are classified as correct. Adding

the 8% of close matches, our approach has a precision of 40% on links that connect

articles with non-identical titles.

Considering all learned links, including links that connect articles with identical

titles, the overall result has a precision of 82% for learning correct cross-language

links. Further, the manual evaluation showed that 92% of the links connected at least

related articles. These are very satisfactory results.

This set of new learned cross-language links will be used in the next section to

give an example for the self-correctiveness of Wikipedia.
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Figure VI.3: Evaluation of the first 3,000 learned cross-language links. Links con-

necting articles with identical titles were assumed to be correct. All other links were

judged manually by three independent assessors.

VI.4 Discussion
In Chapter I, we motivated the exploitation of Web 2.0 resources presenting several

advantages compared to traditional resources. Web 2.0 resources are often multi-

lingual, cover a broad range of topics and are constantly updated. These updates

include adaptation to new topics but also insertion of missing content or correction

of existing errors. An interesting question is if we can prove this hypothesis and

design experiments that show these constant improvements.

In this chapter, we presented an approach to identify missing cross-language

links. It was applied to a dump of Wikipedia and resulted in a set of new links. We

will use these links to design an experiment that shows the self-correctiveness of

Wikipedia. The goal is to check the presence of these links in Wikipedia at a more

recent point in time.

We also discuss the conclusions of this experiment. Our results show that

Wikipedia is actually improving and structural problems are solved by the Wikipedia

community. As Wikipedia is an instance of a Web 2.0 portal, conclusions can also

be generalized to other Web 2.0 resources. Finally, we raise some open questions

about the limitations of the self-correctiveness in Wikipedia.

VI.4.1 Self-correctiveness of Wikipedia
In our experiments, we analyze if missing cross-language links are introduced

to Wikipedia over time. This intends to demonstrate the self-correctiveness of

Wikipedia, in this case the introduction of missing links.
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In the previous section, we identified a set of 3,000 missing cross-language links

in the Wikipedia of October 2007. Our experiments are based on this set of miss-

ing links. In particular, we check if they are introduced in more recent versions of

Wikipedia, in particular snapshots of September 2009 and October 2010.

The missing cross-language links were classified in the five classes presented

earlier: identical titles, correct links, close matches, poor matches and wrong links.

According to each class, we present statistics on the share of language links that have

been added to the more recent Wikipedia versions. The results of our analysis are

presented in Figure VI.4.

These results show that the differences between the Wikipedia of September

2009 and October 2010 are only marginal with respect to the set of missing links.

All links that match to this set were added in the time period between October 2007

and September 2009. Another high level result is that there is no substantial differ-

ence between the learning rate of missing cross-language links in the English and in

the German Wikipedia. Almost the same share of the 3,000 articles in the German

Wikipedia have been linked to articles in the English Wikipedia as it is the case for

the opposite direction.

Examining the five classes of links, the results allow the following observations:

• Most of the links that connect articles with identical title have been added to

Wikipedia since October 2007 — the point of time of our first experiments. In

fact, more than 96% of these links have been implemented by the Wikipedia

community.

• More than 83% of the links that were classified as correct have been added to

Wikipedia.

• Approximately half of the links that were classified as close matches are found

in the recent Wikipedia versions.

• Almost none of the poor matches and no wrong links have been added.

On the one hand, the results show that Wikipedia is able to correct deficits such

as missing cross-language links. Almost all links with high confidence — links

connecting articles with identical titles and links that were classified as correct —

have been added to Wikipedia. On the other hand, 17% of the links classified as

correct are still missing. This clearly motivates the further development of automatic

approaches that support human editors. The community succeeds in finding many

deficits, but will most probably not be able to find all of them.

The distribution of added language links according to the five classes as defined

above also supports the classification scheme we used to evaluate the learned cross-

language links. This distribution mirrors our intension when designing the target

classes: links that are classified as correct should be added with high probability,

links that are classified as close match might be added and all other links are prob-

ably wrong and should not be added. The data in Figure VI.4 clearly supports the

outcomes of our human-based evaluation.
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(a) Cross-language links from the German Wikipedia to the English Wikipedia.
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(b) Cross-language links from the English Wikipedia to the German Wikipedia.

Figure VI.4: Share of the learned cross-language links present in the Wikipedia ver-

sions of September 2009 and October 2010. The links are classified based on manual

evaluation.
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Figure VI.5: An examples for a structural difference in the category hierarchy of the

English and German Wikipedia.

VI.4.2 Quality and Future of Web 2.0 Resources
Our evaluation of the missing cross-language links shows that Wikipedia, as one of

the most prominent Web 2.0 resources, is constantly improving. Many Wikipedia

articles are already of high quality, which is for example shown in the compari-

son to the Encyclopedia Britannica [Giles, 2005]. And our findings about the self-

correctiveness of Wikipedia suggest that the quality of these articles is still raising.

These are indications that new Web 2.0 resources replace traditional resources, which

are created by a limited number of professional editors.

However, we claim that there is a limit on the self-correcting process in collab-

oratively created resources. One reason for this limit is the requirement of common

agreement in editing content of such resources. Design decisions that are not easily

judged as right or wrong will probably not be consistent based on the principles of

collaborative editing. We will show this problem using the example of the cross-

lingual alignment of the category hierarchy in Wikipedia.

Example VI.1 Figure VI.5 visualizes a small excerpt of the English and German
category hierarchy. In the English Wikipedia, the category Metallurgists
is a sub category of Materials scientists and engineers which is
a sub category of Scientists. In the German Wikipedia however, the
corresponding category Metallurg (metallurgist) is not a sub category of
Werkstoffwissenschaftler (materials scientist) which corresponds to
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Materials scientists and engineers based on cross-language links.
The intermediate category Ingenieurswissenschaftler (engineering sci-
entist) is instead modeled as super category of Metallurg (metallurgist).

The hierarchical relations between categories in the English and German

Wikipedia presented in Example VI.1 illustrate the existing structural differences

that depend on different viewpoints. Both versions could be regarded as correct. In

a traditional encyclopedia, the consistency is enforced by strict guidelines. This is

not the case for collaboratively created resources and the mechanism of common

agreement will also fail to solve these structural differences. Especially when con-

sidering alignments across languages, these inconsistencies may also be grounded in

linguistic or cultural differences.

When exploiting Web 2.0 resources for cross-lingual or multilingual NLP ap-

proaches, it is important to detect and to consider the inconsistencies that are intro-

duced by content in different languages. This helps to design approaches that are

robust against these structural mismatches. The overall goal is to benefit from the

diversity introduced by the content in multiple languages, but also to minimize the

negative influence of content that is not consistently modeled in all languages.

Apart from exploiting these resources for NLP application, the analysis of mul-

tilingual Web 2.0 resources itself is an interesting field of research. Anomalies or

inconsistencies can be used to detect differences in language usage or even in cul-

ture. Understanding the multilingual interaction that is present in current Web 2.0

portals, such as Wikipedia, will be an important success factor for multilingual NLP

approaches that build on this data.



Chapter VII

Conclusion

In this chapter, we first summarize the outcomes of this thesis including the main

research questions and our approaches to find solutions to these questions that were

presented throughout this thesis. Afterwards, we present an outlook that is based on

open questions that are raised in the context of this thesis. These open questions can

also be used to draft a road map for future research.

VII.1 Summary
In Chapter I, we introduced the notion of Social Semantics that describes the knowl-

edge encoded in Web 2.0 data. We motivated the exploitation of this data in respect

to multilingual IR as these collaborative created knowledges sources have several

advantages compared to traditional language resources. In particular, they support

multiple languages, cover a broad range of topics and almost instantly adapt to new

topics.

Based on this motivation, we presented the main research questions we addressed

in this thesis. In summary, these are the following questions:

(i) Selection of Resources: What are suitable resources that can be used as seman-

tic background knowledge to support IR and CLIR/MLIR systems in particular,

and that also meet the properties of Social Semantics?

(ii) Application to MLIR: How can the knowledge encoded in these resources be

used to support multilingual retrieval?

(iii) Evaluation: What is the impact in respect to IR performance of the proposed

semantic retrieval models compared to standard approaches?

Our contributions were presented in Chapters IV, V and VI. The results of our

research that are described in these chapters address one or several of the research

questions.

177
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In Chapter IV, we presented a generalization and several extensions of Explicit

Semantic Analysis (ESA). We used Wikipedia as a resource for conceptual knowl-

edge that can be interpreted as Social Semantics. In respect to research question (i),

we identified several outstanding properties of Wikipedia that qualify it for usage as

knowledge source. This includes the definition of concepts in various languages as

well as the broad coverage of topic fields. Building on the multilingual concept def-

initions of Wikipedia, we introduced Cross-lingual Explicit Semantic Analysis (CL-

ESA), a cross-lingual extension of ESA. We also presented different design choices

that allow to optimize and to adapt the CL-ESA model to specific retrieval scenar-

ios. Concept-based retrieval based on CL-ESA is an instance of a retrieval model

that exploits Social Semantics, thus addressing the research question (ii). We de-

fined a methodology for evaluation using several standardized datasets to measure

the impact of CL-ESA as demanded by research question (iii). Our results show that

CL-ESA can be optimized using different parameter settings and design choices. In

particular, the retrieval performance is improved if the model is adapted to the spe-

cific scenario such as CLIR or MLIR. In comparison to intrinsic concept models, we

showed that CL-ESA shows comparable performance for CLIR to Latent Semantic

Indexing and Latent Dirichlet Allocation. However, no training is required for CL-

ESA which is a clear benefit in most application scenarios. Finally, the results of our

participation at an international retrieval challenge shows that the CL-ESA-based

retrieval system is competitive in CLIR scenarios.

In Chapter V, we presented an approach that is able to exploit the internal cat-

egory system of a dataset in a retrieval task. In contrast to CL-ESA, no external

definitions of concepts are used in the retrieval model. We propose to exploit the

question and answer history and the category system in Yahoo! Answers as re-

sources for Social Semantics, which addresses research question (i). The retrieval

approach that exploits the category system of Yahoo! Answers was applied in an

Expert Retrieval (ER) scenario. Our proposed retrieval model is based on a lan-

guage modeling framework. A mixture language model allows to combine different

sources of evidence. In respect to research question (ii), we therefore defined a re-

trieval model that is able to benefit from the knowledge that is provided by Social

Semantics. To measure the performance of our retrieval approach as formulated in

research question (iii), we refer to the topics and ground truth that we published in

the context of the CriES workshop. Our results show that different sources of evi-

dence can be successfully combined to improve the retrieval performance in the ER

task. In addition, Machine Learning approaches can be used to find the best param-

eters for this combination. Our approaches outperform all baselines that we defined

for this task as well as all runs that were submitted to the CriES challenge by other

research groups.

In Chapter VI, we presented an automatic approach to improve the quality of

Wikipedia. In detail, we identified missing cross-language links between existing

Wikipedia articles in different languages. Our approach is based on ML and uses

existing cross-language links as training data. In this context, we also analyzed the
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cross-lingual link structure of Wikipedia in respect to coverage and consistency. The

evaluation of the learning approach shows that we are able to identify missing cross-

language links with high precision and recall. A further long term experiment that

compares three Wikipedia snapshots in a time period of three years shows that more

than 80% of the missing links have been added by the Wikipedia community over

the time. This again proofs the quality of the learned cross-language links. Our

approach to learn missing links, the analysis of existing links and the experiment

about the self-improvement capabilities of Wikipedia aim at research question (i).

The overall conclusion is that Wikipedia contains data of high quality which is con-

stantly improving and can therefore be used as resource for Social Semantics.

In summary, we presented different approaches that solve many issues in the

context of our three research questions. We motivated to use datasets from the Web

2.0 as resources for Social Semantics, namely Wikipedia and Yahoo! Answers. We

proposed two different retrieval models that are able to exploit the Social Semantics

in the retrieval process, i.e. concept-based retrieval exploiting Wikipedia and lan-

guage models combining several sources of evidence exploiting the category system

in Yahoo! Answers. Finally, we evaluated the proposed approaches using different

retrieval scenarios and experimental settings on standardized datasets. Our results

are promising as they show that the information encoded in collaboratively created

resources can indeed be used to support NLP tasks such as IR.

In the context of the CriES workshop, we organized an IR challenge and defined

a new dataset based on Yahoo! Answers, which can be used to evaluate multilingual

ER systems. This exceeds our research as other research groups will benefit from

the substantial contributions given by the definition of the dataset, the topics and

the ground truth. Research on IR depends on these standardized retrieval settings

as it allows to compare systems and to measure improvements. The CriES retrieval

challenge introduces the new application area of ER in Social Question/Answer Sites

that can now be used in future IR research.

We hope that our contributions advanced the research, open more research ques-

tions and will motivate future work in this field of research.

VII.2 Outlook

The outlook of this thesis covers two different aspects. Firstly, we identify some

open questions that are relevant for follow up research. Secondly, we describe the

possible future directions of the Web 2.0. Our definition of Social Semantics is based

on datasets from the Web 2.0 and therefore its future developments are important in

this field of research. We will focus on new features that will allow a more detailed

and a more targeted exploitation of Web 2.0 resources.
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VII.2.1 Open Questions

Open questions that can be raised in the context of this thesis are related to the

knowledge sources and to the retrieval systems.

Knowledge Sources. The knowledge sources we exploit for MLIR are Web 2.0

portals that provide datasets built on the contributions of their users. There is no

warranty for the quality of these datasets, and in most cases this quality will be very

diverse. While some parts of the datasets may have content of high quality, other

parts may be neglected. It is also very difficult to distinguish between objective

and subjective content. This problem — which is analyzed in the research field

of sentiment analysis — is not solved for the usually short text snippets that are

submitted to Web 2.0 portals.

Another issue is the robustness of the exploitation in respect to spam or attacks.

Approaches that exploit Web 2.0 datasets have to tolerate some level of spam as it

will most probably not be possible to detect and to delete all contributions of spam-

mers. The question remains how much spam in a dataset is acceptable in respect

to the usefulness of the dataset as knowledge source. Other possible problems are

attacks to Web 2.0 portals. These attacks aim at influencing the opinion or the per-

ception of a specific topic. As attackers add or modify content, this can also have

an affect on systems that exploit the resulting datasets. To detect spam or attacks

in Web 2.0 resources and to design spam and attack tolerant systems for exploiting

these resources are important issues that should be analyzed and addressed in future

research.

Considering Wikipedia, the problem of spam is solved by the community — at

least for Wikipedia versions such as the English or German Wikipedia which have

a large number of active editors. Wikipedia is therefore a high-quality resource that

can already be exploited. However, a prominent problem of Wikipedia are different

opinions of editors, which could be also interpreted as attacks depending on the

individual view point. In some cases, this leads to edit wars, i.e. edits are reverted

and re-submitted again in a loop. Wikipedia offers tools to prevent and to end such

edit wars. Still, these problems motivate to design systems that are able to deal with

different opinions for the same topics, which is another direction of future research.

The privacy and accessibility of data is another problem in the Web 2.0. While

this is not an issue for collaboratively created resources such as Wikipedia, it is very

important for portals containing personal information such as social networks. For

these resources, a balance between privacy of users and accessible information has

to be found, which for example requires techniques to anonymize the data. On the

one hand, all users might benefit of the publication of their data as systems that are

then able to exploit this data could improve personal tasks such as IR. On the other

hand, personal data has to be protected and users should always be able to control

the amount of data that is publicly accessible. In many cases, it is difficult to find the

balance between privacy and public benefit.
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Retrieval Systems. The semantic retrieval systems that we presented in this thesis

could be extended by addressing the following open research questions.

Firstly, the personalization of retrieval systems to specific users can be used to

improve the retrieval performance and therefore the satisfaction of the information

needs of the users. This personalization could be based on contextual information

that is given by the searcher, for example connections in his/her social network. A

possible approach to use this context in semantic retrieval models is to filter the

background knowledge for information that is relevant for the current user and to

only use this filtered knowledge in the retrieval process.

Secondly, a classification of topics could be helpful in the retrieval process. Dif-

ferent topics require for different background knowledge and also have different

expected result types. Retrieval systems that are able to adapt to specific types of

topics could therefore improve the overall retrieval results. A possible approach for

this adaptation is to define a set of classes for topics and to use a classifier to assign

new topics to a specific class. Based on training data, specific background knowl-

edge for each class is identified and then used to support the retrieval for topics that

are assigned to the according class. For retrieval models based on Machine Learning,

specific models could be learned for each class which has the potential to improve

the retrieval performance. The classification of topics could also be used to select

between different retrieval models which are known to be superior for specific topic

classes.

Finally, alternative ML models could be used in the retrieval process. In the mod-

els we presented in Chapter V, we trained the ML models on relevance assessments.

Other alternative options are interactive search systems that are based on user feed-

back to train the underlying models. For these systems, techniques such as Active
Learning could be used to minimize the level of user feedback while still achieving

high learning rates.

VII.2.2 Future of the Web 2.0

In this outlook, we will also discuss some possible developments of the Web 2.0.

In this thesis, we used the knowledge encoded in Web 2.0 datasets to improve IR.

Therefore, we are interested in how developments of the Web 2.0 will also change

the possibilities and challenges for the exploitation of Web 2.0 datasets. We will

discuss these developments in respect to the application scenario of IR.

Web 2.0 and the Semantic Web. A development that has already started is the

introduction of semantic annotations in the Web 2.0. This introduces the principles

of the Semantic Web to user-generated content.

Annotations are added automatically, semi-automatically or manually by the

users. Automatic approaches use available data to publish the corresponding se-

mantic annotations. An examples for a source of annotations that can be added auto-

matically are the relations between users in social networks, which are known by the
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system. While the manual annotation will not be feasible for the majority of users,

semi-automatic approaches are able to support the annotation process. Improved

text editors are able to suggest annotations to users. Text mining approaches can be

used to add semantic annotations in a further feedback loop. These approaches will

spread the usage of semantic annotation and will enable users to contribute without

being an expert in semantic technologies.

The advantage of having semantic annotations is that the semantics of the an-

notated text are well defined and can be processed automatically. When exploiting

these datasets, the semantics have not to be inferred from the term distributions but

can directly be used to support the target task. For example, considering the Expert

Retrieval task on datasets from Social Question/Answer Site as presented in Chap-

ter V, semantic annotations would allow to define a more detailed category structure

with several dimensions based on different classification schemes. This data could

probably be used to further improve the retrieval models for ER.

Other use cases of semantic annotations are linked resources and the encoding of

context which will be described in the following paragraphs.

Linked Resources. Semantic annotations are often used to describe concepts or

named entities. The linked data principles define a standardized approach to cre-

ate unique identifiers of such concepts and named entities, i.e. Unique Resource

Identifiers (URIs). Annotations using URIs then allow to make connections between

several datasets, for example if the same concepts are annotated in more than one

dataset.

In this thesis, only one dataset was exploited as background knowledge for each

task. However, links between resources allow to combine several resources as back-

ground knowledge. This has the advantage that possibly more details are available

for each concept. As the information is gathered across several resources, this might

also add different view points in the definition of concepts. This allows to choose

the particular definition that is most suitable for a specific task or context. The an-

notation based on URIs has also the potential to solve problems in NLP such as

synonymy or disambiguation.

Context in Web 2.0. In the Web 2.0 scenario, all users not only consume but also

contribute to the content of the Web. In most cases, these contributions only contain

short text snippets, for example tags for images or short status updates. This makes

it inherently more difficult to automatically annotate these contributions, as perfor-

mance of automatic annotation approaches usually depends on the length of the text.

For longer texts, annotations will be identified with higher precision and recall.

Therefore, it is important to not only consider the contributions but also the cur-

rent context of users as additional information source for automatic annotation. This

includes for example the current location or the current activity of a user. In a broader

sense, the context also includes the social network defined by family or friends and

other personal information such as education, work experience and hobbies. Much
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of the information is not contained in the short text snippets that are usually submit-

ted but has to be inferred from the context of a user. Therefore, the semantics of

user contributions depend on this context and knowledge about the context is helpful

for automatic annotation. Semantic technologies provide techniques that allow to

encode the context so that it can be processed automatically.

Having more context published in the Web 2.0, richer information is available

that motivates to develop further approaches to exploit Social Semantics. In the

retrieval scenario, the context can for example be used to improve search that is

tailored towards the current task or location of a user. The problem of using context

for IR has for example been considered by Crestani and Ruthven [2007]. The design

of IR systems that are able to exploit the semantics given by the context of users is a

promising direction of future work in the research field of this thesis.
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