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1

Introduction

1.1 Motivation

Since the development of the first mathematical models for cellular electrophysiol-

ogy and the following dawn of in-silico modeling of the whole heart, quantitative

approaches that allow the description of bioelectric effects at both cell and tissue

level have become indispensable for modern cardiological research. The ability

to integrate data from different in-vitro experiments and the possibility to selec-

tively change distinct model parameters (without collateral effects) are just two

important features of quantitative in-silico modeling.

The recent but steadfast increase in computational resources has enabled cardiac

models of unprecedented complexity and realism. While the first electrophysio-

logical model described the properties of single cardiac myocytes with a simpli-

fied set of equations, it is nowadays possible to connect millions of biophysically

detailed models of cardiac electrophysiology such that they characterize the bio-

electric phenomena in slabs of tissue or even the whole heart.

The electrical activity of the heart creates electrical fields which finally lead to

potential differences on the body surface. These potential differences can also be

calculated by solving the so-called forward problem of electrocardiography. This

closes the loop of multiscale modeling as all relevant microscopic (i.e. ion chan-

nel gating on the cellular levels) and macroscopic processes (i.e. action potential

propagation and solution of the forward problem) are covered by adequate in-silico

models.

There are numerous application areas which are predestined for realistic multiscale

models. Among them is the prediction of the effects of drugs or genetic mutations

on the ECG as well as investigations in the realm of ischemia. At present, these

models can help to advance our knowledge on pathological processes or help to
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assess the plausibility of theories (e.g. with respect to the triggers of arrhythmic

episodes, or the connection between dispersion of repolarization and T-Wave mor-

phology). Yet in the future, multiscale models will have the potential to enable

patient-specific diagnosis and therapy which is hoped to increase the success of

treatment and reduce the costs of follow-up examinations.

1.2 Focus of the Thesis

This thesis is focused on several different aspects within the whole loop of multi-

scale modeling. Both microscopic and macroscopic topics have been investigated.

On a cellular level:

• The inclusion of a model for beta-adrenergic signaling has enabled the consid-

eration of sympathetic effects on cellular electrophysiology.

• The modeling of the congenital Long-QT syndrome has provided an interesting

example to investigate the effects of a genetic mutation both on a cellular scale

and on the body surface ECG.

On an organ level:

• A model to represent the effects of the excitation conduction system (in partic-

ular the Purkinje fiber network) was developed as such a model is vital for the

realistic simulation of ventricular activation.

• The effects of various different distributions of electrophysiological hetero-

geneities were investigated with respect to their role in the genesis of the T-

Wave.

On the torso level (solution of the forward problem of electrocardiography):

• Different rule-based approaches were tested to model the distribution and ori-

entation of skeletal muscle fibers.

• A dynamic model of a deforming heart was developed to assess the effects of

contraction and relaxation on the morphology of the T-Wave.

• The influence of different tissues was ranked with respect to a realistic solution

of the forward problem of electrocardiography.

• A new method was developed to predict the effects of conductivity variations

in important organs during the solution of the forward problem.
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1.3 Structure of the Thesis

Part I covers basic medical and technical principles:

• Chapter 2 provides the necessary medical foundations (anatomical basics,

electrophysiological basics, electrophysiological heterogeneities, the excitation

conduction system, beta-adrenergic regulation, the congenital Long-QT syn-

drome and the electrocardiogram).

• Chapter 3 presents the state of the art in cardiac modeling. Yet this overview is

not exhaustive as only modeling areas are covered which were also in the focus

of this thesis.

Part II outlines the methodology that was used in each of the presented studies:

• Chapter 4 introduces the methods that were used for all studies within the

realm of electrophysiological modeling; i.e.:

Modeling of the Specialized Conduction System: Parts of this work were created

during the supervised Student Research Project of Raffi Kalayciyan [1]. Some

of the corresponding results were also presented at a scientific conference [2, 3].

Modeling of Electrophysiological Heterogeneities: Parts of this work were sub-

mitted to a scientific journal [4].

Modeling of Beta-Adrenergic Regulation: Parts of this work were created dur-

ing the supervised Diploma Thesis of Carola Otto [5] and the Student Research

Project of Andreas Bohn [6]. Parts of the results were also presented at a scien-

tific conference [7].

Modeling of the Congenital Long-QT Syndrome: Parts of this work were created

during the supervised Student Research Project of Andreas Bohn [6]. Parts of

the results were also presented at three scientific conferences [8, 9, 10].

• Likewise, Chapter 5 covers the methods used for all anatomical studies and all

investigations based on the solution of the forward problem of electrocardiog-

raphy; i.e.:

Anatomical Modeling: With respect to the anatomical modeling no new meth-

ods were developed, but the already existing software from the Institute of

Biomedical Engineering (Karlsruhe Institute of Technology) was merely used.

Resolution Effects of Anatomical Models: Parts of the results were presented at

a scientific conference [11].

Modeling of Skeletal Muscle Fiber Orientation: Parts of the results were pre-

sented at a scientific conference [12].
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Modeling of the Effects of Ventricular Deformation on the ECG: Parts of the

results were presented in a scientific journal with contributions from Oussama

Jarrousse and Thomas Fritz [13].

Ranking the Influence of Various Tissue Conductivities: Parts of this work were

created during the supervised Master Thesis of Pham Tri Dung [14]. Parts of the

results were also presented in a scientific journal (in collaboration with Frank

Weber) [15].

Predicting the Effects of Tissue Conductivity Variations Based on the Principal
Component Analysis: Parts of this work were created during the supervised

Diploma Thesis of Stefan Bauer [16]. Parts of the results were also presented

on a scientific conference [17] and in a scientific journal (in collaboration with

Frank Weber) [18].

Part III presents the results of the studies that were introduced in Part II:

• Chapter 6 provides the results of all electrophysiological studies. The methods

used in each of these studies are described in Chapter 4.

• Likewise, Chapter 7 presents the results of all anatomical studies and studies

that were related to the solution of the forward problem of electrocardiography.

The methods used in each of these studies are described in Chapter 5.

The thesis concludes with a summary and an outlook on possible future work in

Chapter 8.



Part I

Basic Foundations





2

Medical Background

This chapter is intended to provide the medical foundations which are necessary

for most of the technical explanations following hereafter. The description of the

medical background was restricted to the essential minimum. However, most of

the sections conclude with references on more specialized literature to which the

interested reader is kindly referred.

2.1 Cardiac Anatomy

2.1.1 Anatomical Overview

The pumping action of the heart drives the circulatory system, thereby sustaining

a constant blood flow, which distributes oxygen to the organs in the periphery and

removes metabolic wastes. During one cycle, deoxygenated blood from the pe-

ripheral organs enters the right atrium through the superior or inferior vena cava.

From there, it is pumped to the right ventricle and into the lungs where it is oxy-

genated again. After that, the blood flows through one of the four pulmonary veins

into the left atrium. From the left atrium the blood is pumped into the left ventricle

and subsequently into the aorta from where it is distributed throughout the body.

From Fig. 2.1 it can be seen, that the left ventricular wall is much thicker than the

wall in the right ventricle or the atria. This is due to the pressure difference between

the systemic loop (≈ 80-120 mmHg) and the pulmonary loop (≈ 30 mmHg).

The uni-directional flow of the blood is enforced by a number of different valves

between atria and ventricles and between the cavities and the arteries/veins. The

mitral and tricuspid valve which seal the atria from the ventricles are connected to

the papillary muscles via the chordae tendineae.

Other important anatomical aspects like the ventricular fiber orientation or the

specialized excitation conduction system are introduced in subsequent sections
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Fig. 2.1. The human heart has four cavities which are separated into a left and right side by the septum. A

normal heart weighs between 230 and 350 g. Most of the weight is contributed by the left ventricle which

has a much ticker wall than the right ventricle. Figure modified based on [19].

(see 2.1.2 and 2.2.3). A complete anatomical overview introducing all important

structures of the heart is outside the scope of this thesis. For more information,

please refer to [20, 21, 22].

2.1.2 Ventricular Fiber Orientation

Ventricular fiber orientation is one of the key factors that influence the activa-

tion sequence of the ventricles. This is due to the fact that conduction veloc-

ity is anisotropic with faster propagation along the fibers than perpendicular to

them [23, 24].

There are a number of different experimental techniques that have been used to

characterize ventricular fiber orientation in the past. They range from quantita-

tive polarized light microscopy [25] over different histological sectioning tech-

niques [26, 27] to Diffusion Tensor MRI (DTMRI), which has been originally

developed to track nerve fibers in the brain but has recently also been used in-

creasingly often to image fiber orientation in various ventricular preparations [28,

29, 30, 31, 32, 33, 34].
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Fig. 2.2. Schematic drawing, clarifying the terminology that is used to describe the ventricular fiber orienta-

tion. Usually, a local coordinate system is introduced with respect to which the fiber angles are determined.

This local coordinate system can be formed by the longitudinal axis of the left ventricle, the vector which

is perpendicular to the epicardium and a third vector which can be calculated by their cross product. In this

local coordinate system, the helix angle α1 describes the fiber inclination in apico-basal direction while

the transverse angle α3 characterizes the degree to which the fibers imbricate. A non-zero transverse an-

gle means that the fibers are not parallel to the endo or epicardial surface. Finally, the schematic drawing

indicates the arrangement of sheets that have been reported to run in radial direction [39].

Most studies that investigated the fiber orientation quantitatively introduced a local

coordinate system with respect to which the fiber angles were determined. Care

has to be taken though if the results from different studies are compared as there

are differences between the local coordinate systems (e.g [35] vs. [29, 30, 34,

36]. Fig. 2.2 introduces the most common terminology used to describe the fiber

arrangement: in this context, the helix angle α1 describes the fiber inclination in

apico-basal direction whereas the transverse angle α3 characterizes the degree to

which the fibers imbricate (i.e. are not parallel to the endo or epicardial surface).

The remaining angle α2 is usually not used to characterize the course of the fiber

orientation as changes in it can not be easily interpreted (as e.g. in case of α1 or

α3). It can be calculated from the other angles as described in [37, 38].

Concerning the course of the helix angle α1 it is commonly accepted that it rotates

more or less linearly through the wall (from endo to epicardium as can be seen in

Fig. 2.3; this is also called “fiber twist”), e.g [35, 26, 40, 41, 30, 25, 37]. Only the

degree of rotation and the question of variability between different regions of the

heart is discussed [26].

In case of the transverse angle α3 the situation is more complicated. In a histolog-

ical study, the transverse angle was reported to be close to 0 ◦ (which means that

the fibers have a circumferential orientation) with minimal variation from apex
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Epicardium

Endocardium
Fig. 2.3. Transmurally rotating helix angle. Blue color represents a positive helix angle whereas red denotes

negative angles.

to base (α3,Apex = −3◦ vs. α3,Base = 3◦ according to [35]). This is not surpris-

ing, as histological studies have to rely on pre-defined cut surfaces. While this

allows to measure the in-plane component (helix angle) with high accuracy, pos-

sible out-of-plane components (transverse angle) remain unknown [29]. In this

case, DTMRI has significant advantages, as it allows to measure the fiber orienta-

tion non-destructively with a dense spatial sampling. Several DTMRI based stud-

ies have reported a significant apico-basal variation of the averaged or midwall

transverse angle [29, 34, 30]. This could also have important elastomechanical

implications [36, 41]. Moreover, a possible transmural variation of the transverse

angle has been suggested [42, 43, 37, 27]. Although this is still debated, as fibers

are generally assumed to be parallel at the endo and epicardial surface, a combi-

nation of myocyte branching [44] and volume averaging effects within each voxel

could deliver a potential explanation.

Finally, fibers have been reported to be arranged in a laminar fashion with exten-

sive cleavage planes, that are 4-6 myocytes thick [39]. These planes (or sheets) run

radially from endo to epicardium (see Fig. 2.2). Distinct mechanical and electri-

cal properties have been associated with this laminar architecture [45]. However,

it should also be noted that the cleavage planes might be artifacts that are due to

tissue shrinkage during the preparation process and that there existence is doubted

by Lunkenheimer et al. [27].

A more detailed overview comparing the results of different studies that investi-

gated the fiber orientation in the ventricles can be found in [37].
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2.2 Cardiac Electrophysiology

2.2.1 Electrophysiological Basics

Cardiac cells are confined from the surrounding extracellular space by a selectively-

permeable membrane. Under physiological conditions, there are different ionic

concentrations in the intra- and extracellular space contributing to a potential dif-

ference that can be measured over the cell membrane and which is referred to as

transmembrane voltage. However, as cardiac myocytes are electrically excitable,

this transmembrane voltage is usually not constant but changes in a controlled

fashion that is determined by various ion channels, pumps and exchangers which

are integrated into the cell membrane.

If the transmembrane voltage rises from its resting voltage (usually around -90

mV) to more positive values, an action potential (AP) is triggered (see Fig. 2.4).

Phase 1 of each ventricular action potential is determined by a steep increase in

sodium channel conductivity gNa. The inflow of positively charged sodium raises

the transmembrane voltage further, creating a positive feedback. This causes the

remaining sodium channels to open and thus leads to a rapid depolarization. Af-

ter several milliseconds, the sodium channels close again and phase 1 of the AP

is stopped. During the plateau phase (phase 2), the calcium conductivity gCaL is

increased. The following inflow of calcium triggers an intracellular calcium re-

lease from specialized storage compartments. This calcium release is responsible

for the initiation of mechanical contraction (for details on this so-called excita-

tion contraction coupling, please refer to [46]). The repolarization of the myocyte

(phase 3) is determined by the opening of voltage gated potassium channels (in-

crease of gK). The efflux of the positively charged potassium leads to a restoration

of the transmembrane voltage to its negative resting values (phase 4). Usually,

the sodium channels can not be reactivated until the repolarization is almost com-

pleted. This is called refractoriness of a cell and is one of many safety features that

protect the heart from (high frequency) arrhythmic events.

As explained above, electrical excitation is an important trigger, as it precedes

mechanical contraction. To maximize the pump function of the heart, it is essen-

tial that all cells contract in a coordinated fashion. This is partly ensured by the

coupling of the myocytes through so-called gap junctions. Thus the heart is an

electrical syncytium, which means that all cells will be excited if an excitation is

triggered somewhere in the heart.
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discussed to which extent these dispersion contribute to the genesis of the T-Wave

and which of them is predominant [68].

A lot of experimental studies in the past tried to link APD dispersion and T-Wave

shape and derived rules for the most likely sequence of repolarization. Some of

them were based on the idea that heat shortens the APD while cooling prolongs

it. The associated changes of T-Wave shape and polarity were subsequently ob-

served and interpreted. Such experiments were conducted on a number of differ-

ent species. As not all species have positive T-Waves under baseline conditions the

results of these studies have to be carefully interpreted:

• Frogs normally have negative T-Waves. However, the T-Wave became positive

after a warming of the apex shortened apical APD.

• Turtles have positive T-Waves under baseline conditions. In this case, a cooling

of the apex prolonged apical APD and led to inverted T-Waves.

The results of these and similar experiments are summarized in [69].

2.2.3 The Specialized Excitation Conduction System

The excitation conduction system of the heart consists of specialized cells which

control and coordinate both the generation and conduction of action potentials

throughout the myocardium. Thus it can ensure the appropriate rate and timing

of the contraction in all regions of the heart, which is essential for the effective

cardiac function. Unlike normal atrial or ventricular myocytes, the cells of the ex-

citation conduction system have the ability to depolarize spontaneously and thus

determine the heart rate. Under physiological conditions, the sinus node (SN) has

the highest autorhythmicity. From there, the depolarization propagates over the

Bachmann’s bundle to the left atrium and across the terminal crest and the pecti-

nate muscles into the right atrium as visualized in Fig. 2.5A (for anatomical details

on fast conducting structures in the atria, please refer to [70]). Once it reaches the

atrioventricular node (AVN), the conduction is delayed so that atrial contraction

occurs before the contraction of the ventricles (thereby atrial contraction can help

to fill the ventricles with blood). From the AVN the depolarization wave travels

through the bundle of His and is split up into the so-called right bundle branch

(RBB) and left bundle branch (LBB), which conduct the excitation into the left

and right ventricle, respectively (see Fig. 2.5B). Both RBB and LBB are finally

connected to the Purkinje fiber network. This Purkinje fiber network has a web-

like structure that fans out over the endocardial surface of both ventricles (some
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fiber even run through the lumen of the ventricles and are thus called free-running

Purkinje fibers). Exemplary visualizations of the Purkinje fiber network for differ-

ent species can be seen in Fig. 2.6.

Part of the Purkinje network are the so-called Purkinje muscle junctions (PMJs),

which form the only connections of the excitation conduction system with the my-

ocardium (all previous structures in the ventricles like RBB, LBB and major parts

of the Purkinje network are electrically isolated from the working myocardium).

The cells of the excitation conduction system are also known to have unique elec-

trophysiological characteristics. E.g. the Purkinje fiber cells differ from normal

ventricular myocytes with respect to the following features:

• There are differences in the magnitude of some ionic currents [76, 77, 78] (e.g.

ICaL is smaller [78], IK1 is smaller [77, 78], Ito is larger [77] in Purkinje cells

whereas If only exists in Purkinje but not in ventricular cells [78]).

• dVmax/dt is greater in Purkinje cells (400-800 V/s) compared to ventricular

tissue (150-300 V/s) [78].

• The AP plateau is lower in Purkinje cells [78, 79] probably due to differences

in intracellular calcium handling.

• The APD restitution slope was also reported to be different [78, 79].

• Purkinje cells have a different response to pharmacological agents [79], thus

they can form a substrate that facilitates the development of early after depolar-

izations (EADs) which could trigger episodes of Torsade de Pointes (TdP) [78].

Atrioventricular 
Bundle
Interventricular 
Septum

Left and Right 
Bundle Branches Purkinje Fibers

SN

AVN

SN

AVN AVN

SN

A B C

Fig. 2.5. Schematic drawing of the excitation conduction system. A: Depolarization is initiated in the SN

and travels from there across the atria to the AVN. B: After a delay, the depolarization front is split up into

the RBB and LBB which guide the excitation front into the right and left ventricle, respectively. C: RBB and

LBB are connected to the Purkinje fiber network which has a fanlike structure and covers the ventricular

endocardium almost completely. Finally, the depolarization spreads into the working myocardium at the

so-called PMJs. Figure modified based on [19].
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A B

C D

E F

Fig. 2.6. Overview over the ventricular part of the excitation conduction system in different species. A:

Fibers of the excitation conduction system in a bovine heart stained with India ink (figure was adapted from

[71]). B: Septal surface of the left ventricle in an adult murine heart (figure was adapted from [72]). C:

“The left ventricular free wall (LVW) was incised in the center from base to apex, then the two parts of the

wall were pulled back on both sides to expose the left flank (LF) of the interventricular septum. The dotted

line indicates the limits between the LF and the LVW”. Lower density of the Purkinje fibers were found in

the right compared to the left ventricle (HB: his bundle, PF: Purkinje fiber). Purkinje fibers were visualized

with enhanced Green Fluorescent Protein (EGFP). (figure was adapted from [73]). D: “The whole right

ventricular wall (RVW) was pulled back on the right. The dotted line indicates the limits between the right

flank (RF) of the interventricular septum and the RVW. Arrowhead indicates a fiber connecting the RF

web to the RVW network. Small white circles indicate connecting fibers which have been cut. Insert shows

details of the RBB (arrow) which emerged from the His bundle and intersected with the septal artery (star)

and its ramifications” (APM: anterior papillary muscle; figure was adapted from [73]). E: Branching of the

LBB and the following Purkinje fiber network (figure was adapted from [74] where it has been scanned

from Tawara’s drawings [75]). RBB and the following Purkinje fiber network (figure was adapted from [74]

where it has been scanned from Tawara’s drawings [75]).
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Yet great care has to be taken when comparing the results of studies conducted

on different species as some electrophysiological features are highly species-

dependent [80].

In addition to that, anatomical features of the Purkinje fiber network have been

reported to vary between different species as well [81, 82]. E.g. the bovine heart

has intramural Purkinje fibers that extent through the wall from endocardium al-

most up to the epicardium (i.e. they stop in the subepicardium, 2 mm before the

epicardial surface). This explains why the bovine heart has similar QRS complex

durations as a human heart although it is roughly four times as large. Finally even

within the same species, there are divergent descriptions of the internal organiza-

tion and topographical location of the bundle branches and the Purkinje fibers [83].

In human, the LBB is often reported to be divided into two branches called the left

anterior and left posterior fascicles [84, 85]. These fascicles are often directed to-

wards the bases of the anterior and posterior papillary muscles of the left ventricle.

However, there are other findings in which three rather than two separate divisions

were found [86] and studies which found a “diffuse fanlike structure broadly dis-

tributed over the left septal surface” [83]. On top of that, it seems that there is

also considerable inter-individual variation [86] which makes it difficult to derive

generally applicable rules with respect to the anatomy of the human excitation

conduction system.

2.2.4 Beta-Adrenergic Regulation of Cellular Electrophysiology

The autonomic nervous system (ANS) subconsciously regulates the activity of a

large number of organs in the human body. In situations of stress and physical ac-

tivity it adapts the heart rate, controls the blood pressure and prioritizes the blood

supply of vital components such as the brain and the muscles while other pro-

cesses are suppressed (e.g. digestion). The ANS is classically divided into two sub-

systems: the parasympathetic system and the sympathetic system (see Fig. 2.7).

Both systems usually work antagonistically with respect to each other.

In this thesis, the focus is on the sympathetic regulation of the heart. In this case,

the so-called β1 receptor is the predominant target for the regulatory hormone

Norepinephrine (NE). A similar effect as NE is attributed to the substance Isopro-

terenol (ISO), which is a sympathomimetic drug that mimics the effects of agents

of the sympathetic nervous system. It is therefore often used in electrophysiologi-

cal experiments to simulate the influence of an active sympathetic regulation.
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Fig. 2.7. Schematic drawing detailing the innervation of the various organs by the parasympathetic and

the sympathetic branch of the autonomic nervous system. Various different hormones and receptors are

involved in this regulatory system. However, when it comes to the heart, β1 receptors are predominantly

responsible for the sympathetic regulation. Figure was modified based on [87].

If activated, the sympathetic branch of the ANS influences both cells from the spe-

cialized conduction system and cells from the ventricular and atrial working my-

ocardium. In case of the sinus node, the sympathetic influence has chronotropic ef-

fects (increase in heart rate). Similarly, beta-adrenergic regulation induces positive

dromotropic effects in the atrioventricular node (increase in conduction speed).

Regarding the working myocardium, an increased activity of the sympathetic

branch of the ANS increases the inotropy (larger contractility) and the lusitropy

(faster relaxation of the heart).

Further details on the different types of receptors and hormones as well on the

pre- and postganglionic processes that are participating in the regulatory control
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of the ANS are outside the scope of this thesis. For more information, please refer

to e.g. [88, 87].

A description of the intracellular signaling cascade that is activated by the binding

of NE or ISO to the β1 receptors will be provided in section 4.3. There, we will also

introduce an in-silico model, which is able to quantitatively describe the effects of

this adrenergic signaling cascade on a number of different ion channels.

2.2.5 The Congenital Long-QT Syndrome

General Introduction

The congenital Long-QT Syndrome (LQTS) denotes various ion channel muta-

tions with a prevalence of ≈ 1:5000 [89, 90] (however not all mutation carriers

are symptomatic [91]). Being “little more than a medical oddity” at first with “a

minute number of investigators interested”, the exploration of the LQTS benefited

tremendously from the foundation of the International Long-QT Syndrome Reg-

istry in 1979 [92]. By providing a repository for genotyped families (in 2003 over

1200 LQTS families were available) and a platform for data exchange and discus-

sions, the registry has enabled many of the ground-breaking discoveries within the

realm of the LQTS that have been made ever since [92].

Patients suffering from LQTS often experience polymorphic ventricular tachycar-

dia from the Torsade de Pointes (TdP) type which can lead to sudden cardiac death

if untreated. In the clinical practice, LQTS patients are usually identified by a pro-

longed QTc time (QTc > 0.46 s indicates a potential LQTS [93]). However, if

diagnosis is merely based on QTc prolongation it is not very specific as not all

LQTS patients show such a prolongation. In an effort to enhance diagnostic relia-

bility, Schwartz et al. [94] thus introduced a more complex point score system that

considers other factors such as the occurrence of syncopes or the family history.

It is important to consider that there is not a single LQTS but rather there are dif-

ferent LQT subtypes (genotypes) that have been discovered in recent years (e.g.

in 1998 four subtypes were known [95], in 2003 already seven subtypes were dis-

covered [96] and today the list of LQT subtypes encompasses 12 entries [97]).

Subtypes are grouped depending on the gene which is affected by the mutation.

Table 2.1 gives an overview over the various types of LQTS including genes, pro-

teins, ion channel currents and effects of the various mutations.

It is evident from Table 2.1 that LQT 1-3 are the most common subtypes:
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• In case of LQT 1, the slow delayed rectifier potassium current IKs is affected.

The mutation causes a loss of function (reduction of the maximum channel

current).

• In case of LQT 2, the rapid delayed rectifying current IKr is reduced (here the

mutation causes a loss of function as well).

• Concerning LQT 3, the mutation leads to a re-activation of the sodium current

(late INa, gain of function).

The standard procedure to determine the LQT subtype is genetic screening. This is

both labor intensive and costly [101]. Yet it is imperative that the patient’s subtype

is known as therapy (see below) and TdP triggers are different for each of the three

most important subtypes.

Classically, patients suffering from LQT 1 are thought to have the greatest risk

of cardiac events during exercise (e.g. swimming), conditions of elevated heart

rate, and sympathetic nerve activity. In contrast to that, cardiac events in LQT 2

patients were triggered by arousal/emotions or noise (e.g. alarm clock). Finally,

LQT 3 patients have the greatest risk of TdP during periods of rest, bradycardia

and conditions of low sympathetic nerve activity (a summary of these behavioral

triggers can be found in [102]).

Table 2.1. List of LQT subtypes linking affected genes, proteins, ion channel currents and effects of the

various mutations. Data for the table was compiled from [98, 97, 96]. The sources did not always agree

as to the genes and affected ionic currents. Furthermore, some publications associate a mutation in the A-

kinase anchoring protein with LQT 1 [99, 100] which is in contradiction with the publication from Zareba

et al. [97] where it is referred to as LQT 11 (as listed in this table).

Subtype Gene Protein Current/Effect Occurrence

LQT 1 KCNQ1/KVLQT1 α subunit IKs ↓ 30-35%
LQT 2 KCNH2/HERG α subunit IKr ↓ 25-30%
LQT 3 SCN5A α subunit Late INa ↑ 5-10%
LQT 4 ANKB ankyrin-β INa∗ < 1%
LQT 5 KCNE1/minK β subunit IKs ↓ < 1%
LQT 6 KCNE2/MiRP1 β subunit IKr ↓ < 1%
LQT 7 KCNJ2 α subunit IK1 ↓ < 1%
LQT 8 CACNA1 α subunit ICaL ↑ < 1%
LQT 9 CAV3 caveolin 3 INa∗ < 1%
LQT 10 SCN4B β subunit Late INa ↑ < 1%
LQT 11 AKAP9 A-kinase anchoring protein IKs ↓ ∗ < 1%
LQT 12 SNTA1 Sodium current regulator INa ↑ ∗ < 1%
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Review articles characterizing the LQTS are available in [98, 97, 96, 103].

Adrenergic Influence on the Long-QT Syndrome

It has long been known that some LQT subtypes react highly sensitive to the pres-

ence of beta-adrenergic agents. An imbalance of the various sympathetic inputs

was initially even hold responsible for the existence of the syndrome [104] (before

the underlying mutation of ion channel proteins was discovered).

As explained above, TdP in some LQT subtypes is thought to be triggered by

sympathetic activity. This was confirmed by Noda et al. [105] who found that

the change in ventricular repolarization that was induced by sympathetic activity

was different between LQT 1-3. Similarly, Schwartz et al. reinforced the role of

autonomic response in patients suffering from LQT 1 [106].

Although the link between sympathetic activity and TdP in LQTS is clinically

well established (see above), the cellular mechanisms which could explain these

differentiated responses are still not completely understood (see paragraph “Open

Questions” below). This is different with respect to a relatively new mutation,

which is known to selectively disrupt the sympathetic regulation of the slow de-

layed rectifier potassium current IKs [107, 99, 108, 100, 109]. In this case, the

adaptor protein Yotiao is affected by the mutation (AKAP-binding domain mu-

tation). Thus, IKs cannot be regulated by the sympathetic nervous system yet the

regulation of the remaining channels is still intact. Under increased sympathetic

activity, this means that the increase in ICaL cannot be compensated by an increase

in IKs. The resulting APD and QT prolongation is here truly restricted to periods

of physical activity.

A summary of the sympathetic modulation of the LQTS (not considering recent

findings like the AKAP-binding domain mutation) can be found in [110, 111].

The Use of the Electrocardiogram in Long-QT Diagnosis

For a general introduction of the electrocardiogram, please refer to section 2.3.

Electrocardiographic studies on the LQTS can be separated based on whether

they tried to differentiate between LQTS patients and healthy control subjects or

whether they tried to discriminate between the various LQT subtypes. Studies from

the first group used principal component analysis [112] or body surface potential

mapping [113]. However both methods did not have an impact on the present clin-

ical practice which is still based on the standard 12 lead ECG and the point score

system from Schwartz et al. [94]. Studies from the second group aim at providing
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Fig. 2.8. Representative examples for ECGs that are associated with patients suffering from LQT 1-3. T-

Wave morphology differences are evident between the three mutations: While LQT 1 patients have broad

based T-Waves, patients suffering from LQT 2 have small, notched T-Waves. Finally, the ECG of LQT

3 is associated with an isoelectric ST segment and a narrow T-Wave. ECGs in the top row were adopted

from [118] whereas the ECGs in the bottom row originate from [119].

a good first initial guess which can be used to direct the genetic screening towards

a specific mutation.

In general, the following ECG features are attributed to the three most common

types of LQTS [114, 115]:

• LQT 1 patients often show broad based T-Waves of relatively high amplitude

(T-Wave amplitude LQT 1: 0.34±0.16 mV vs. LQT 2: 0.21±0.25 mV vs LQT

3: 0.30±0.38 mV [114]).

• The T-Waves in LQT 2 are of low-amplitude with a bifid or notched [116]

morphology. Typical morphological features and differences compared to LQT

1 can even be amplified by subjecting the patients to a stress test [117].

• Finally, the ECG in LQT 3 shows a delayed, narrow T-Wave and an obvious

ST-segment prolongation.

Fig. 2.8 shows examples of typical ECG waveforms for LQT 1-3.

Recently, Struijk et al. presented a study in which they used parameters that de-

scribed T-Wave morphology in terms of duration, asymmetry, flatness and ampli-
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tude. With a discriminant analysis based on 4 or 5 parameters, they were able to

separate between patients suffering from LQT 1 and LQT 2 [120].

Gender Differences in the Congenital Long-QT Syndrome

Although, LQTS is equally distributed between the sexes, adult women are clini-

cally more often affected by the disease than men (probably due to their longer QT

intervals [121, 122]). Concerning younger patients, the probability of a first car-

diac event by the age 15 is higher in males than in females [123]. However for male

patients this risk decreases after puberty (not for female patients). Finally, gender

seems to impact as well on the electrophysiological response to beta-adrenoceptor

blockade [124]. Overall it should be noted, that gender and the associated hor-

monal influences are a major determinant for the course and clinical manifestation

of LQTS. A summary of gender-related influences on the LQTS can be found

in [103].

Therapeutic Options for Treatment of the Congenital Long-QT Syndrome

Most often, LQT patients that already experienced a syncope are treated with beta-

blockers. If syncopes or arrhythmia-related symptoms still occur despite the beta-

blocker treatment, the implantation of a cardioverter defibrillator (ICD) is often

necessary [125].

It should be noted, that beta-blocker therapy is particularly promising in LQT 1

patients [126] while it is significantly less effective in LQT 2 and might be even

pro-arrhythmic in LQT 3 patients (as lower heart rates can provoke cardiac events

in LQT 3 patients [96]).

In addition to that, there is also a “genotype-specific” treatment:

• LQT 2 patients can be treated by increasing the extracellular potassium level

which increases the repolarizing current IKr [127]. This current is normally re-

duced due to the mutation effects.

• LQT 3 patients were reported to benefit from the administration of the sodium

channel blocker Mexiletine, which significantly shortened their QT intervals [128].

Finally, therapeutic trials were conducted with left cardiac sympathetic dener-

vation [129]. In this case, the effect of the sympathetic regulation is erased by

surgically removing the corresponding ganglia. It should only be considered if

beta-blocker treatment was not successful or tolerated by the patient. As it is only

available at specialized facilities, it is seldom used in the clinical practice. A more
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detailed summary of all therapeutic option that exist for the treatment of LQTS

can be found in [130, 131].

The Congenital Long-QT Syndrome: Open Questions

Although a multitude of studies concerning the LQTS has been published since its

discovery, there are still some unanswered questions:

• As previously mentioned, LQT 1 patients are frequently associated with broad

based T-Waves of large amplitude. This is not easily explainable, as the het-

erogeneously expressed current IKs which is assumed to be responsible for the

dispersion of repolarization is the same current that is reduced in case of LQT

1 (loss of function mutation). One would therefore rather expect a reduced T-

Wave amplitude as a reduction of dispersion of repolarization should homoge-

nize the repolarization.

In case of LQT 2 the situation is vice versa. Here, we would expect a large

T-Wave amplitude from theoretical considerations: As the homogeneously ex-

pressed current IKr is reduced, the inherently present heterogeneous properties

of IKs are amplified (due to the fact that the contribution of IKr to the repolar-

ization is weakened). This should lead to an increased APD gradient and thus

to larger and wider T-Waves. Yet clinically, LQT 2 patients often show low

amplitude T-Waves (see Fig. 2.8).

It is possible that adaptation processes (e.g. remodeling) do partly compensate

for the effects of the mutations. However no detailed information on these pro-

cesses is so far available.

• Although patients suffering from LQT 2 often exhibit notched T-Waves, the

origin of these notches is still somewhat unclear. In several modeling studies,

low extracellular potassium concentrations were reported to be able to induce

notched T-Waves [132, 133]. Yet it is questionable if all LQT 2 patients with

T-Wave notches have such a low extracellular potassium level.

• Finally it is known from clinical observations, that LQT 3 patients have a high

risk of TdP during periods of rest or low heart rate. Antzelevitch et al. claim that

an increase in transmural dispersion of repolarization is the main trigger for the

onset of TdP (e.g [110]). Yet, an increase in sympathetic activity is known to

increase the repolarizing current IKs (see section 4.3.1). Under the assumption

that this current is distributed heterogeneously such an increase should lead to

an increase in transmural dispersion of repolarization regardless of the type of
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LQTS (for LQT 1 and LQT 2 this increase was also observed by Antzelevitch

et al. but not for LQT 3).

2.3 The Electrocardiogram

Projections of the electrical potential differences on the heart that exist during de-

and repolarization can be measured on the body surface. The resulting waveform

has been termed the electrocardiogram (ECG) and is still the most important tech-

nique when it comes to the non-invasive assessment of cardiac electrophysiology.

The typical ECG signal that is associated with a single heart beat can be seen in

Fig. 2.9:

• The P-Wave is caused by electrical activation of the atria (typical physiological

duration: ≈ 100−120 ms)

• The PQ segment is associated with the conduction delay in the AVN (see sec-

tion 2.2.3; typical physiological duration: 120-200 ms / typical physiological

duration of the PR interval: 113-212 ms [134])

• The QRS complex denotes ventricular activation (typical physiological dura-

tion: 69-109 ms [134])

• The ST segment follows the QRS complex and ends with the beginning of the

T-Wave (usually the T-onset is not determined and thus no durations for the ST

segment are given).

• The T-Wave is a measure for the repolarization sequence of the ventricles. Un-

der physiological conditions it is usually concordant with the QRS complex.

• The U-Wave can sometimes follow the T-Wave. It has a similar shape as the

P-Wave. However, its origin is still controversially discussed in the commu-

nity [135, 136, 137, 138].

In the clinical routine the so-called standard 12-lead recording system is com-

monly used. It encompasses bipolar (Einthoven) and unipolar leads (Goldberger

and Wilson). For a detailed overview concerning different lead systems and their

clinical use, please refer to [140]. In general, different leads are sensitive to differ-

ent wave directions and different regions of the heart (i.e. ischemic changes might

not be visible in each/or any of the clinically used leads). The introduction of ad-

ditional leads can thus help to characterize the electrophysiological processes on

the heart more completely.
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Fig. 2.10. BSPM recording system ActiveTwo from BioSemi. 64-80 active electrodes are used to record

the potential differences on the body surface. Each electrode has its own signal amplifier, which increases

the signal-to-noise ratio (SNR) thereby enhancing the quality of the recording. The signal is subsequently

digitized with 24-bit dynamic range and transferred via an optical and USB interface to a laptop for storage.

The electromagnetic tracking system (FASTRAK) uses a stylus to record the position of the electrodes.

Data transfer is based on USB as well. Parts of the figure were adapted from Krueger et al. (euHeart

Project [144]) as well as from [145].

A B

Fig. 2.11. A: Electrode placement (80 electrodes) during the BSPM measurement on a volunteer. The

electrode strips facilitate and accelerate the use of the system in a clinical setting. B: Screenshots of the

software that was used to save the data and inspect the signal waveforms during the acquisition. Part (B) of

the figure was adapted from Krueger et al. (euHeart Project [144]).
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Introduction to Cardiac Modeling

3.1 Modeling Cardiac Electrophysiology

In the following chapter the basic principles of cardiac modeling are introduced.

Beginning with the electrophysiological modeling of a single myocyte, the math-

ematical coupling of these models is described which allows the simulation of

bioelectric phenomena in a tissue patch or even a whole heart. After introducing

these basic techniques, the state-of-the-art in various fields of cardiac modeling is

presented.

3.1.1 Electrophysiological Modeling Basics

Most of the current electrophysiological models are based on the pioneering work

of Hodgkin and Huxley [147]. In 1952 they developed the first mathematical

model that allowed the quantitative description of cellular electrophysiology. Due

to technological reasons their model was based on the giant axon of a squid. They

used an electrical equivalent circuit to characterize the ion fluxes through the cell

Cm

+
+ +

RNa RK RL

ENa EK EL

V
m
 =

 Φ
i -

 Φ
e

Fig. 3.1. Electrical equivalent circuit created by Hodgkin and Huxley to characterize the electrophysiology

of a giant squid axon. The cell membrane was modeled by a capacitance Cm whereas the ion channels

were determined by voltage-dependent resistors and the corresponding Nernst voltages were represented

by voltage sources.
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membrane (see Fig. 3.1). In this case, the membrane was modeled by a capacitance

Cm whereas the ion channels were determined by voltage-dependent resistors and

the corresponding Nernst voltages were represented by voltage sources. The total

transmembrane current Imem consisted out of three components:

Imem = INa + IK + IL (3.1)

Here, INa represented the sodium current and IK the potassium current. All other

currents were summarized as leakage currents IL.

The status of every channel was determined by gates which open and close based

on voltage-dependent gating variables (denoted m, n or h). E.g. in case of INa the

corresponding equations were:

INa = gNa(Vm−ENa), gNa = gNa,max m3h (3.2)

Here, gNa is the channel conductivity (while gNa,max is the maximal channel con-

ductivity) and ENa is the Nernst potential for sodium. Details on the gating process

and the rate constants of the gating variables can be found in [46].

Finally, changes in the transmembrane voltage Vm could be described by:

dVm

dt
=− 1

Cm
(Imem− Is) (3.3)

where Is was an intercellular stimulus current.

Models of Human Ventricular Electrophysiology by ten Tusscher et al.

The electrophysiological models from ten Tusscher et al. represented the state-of-

the-art during the course of this thesis. They have several advantages [148] com-

pared to the widely used Luo-Rudy model (which is available in various different

versions [149, 150]). Originally developed for the study of reentrant arrhythmias,

both ten Tusscher model revisions include distinct parameter sets for endocardial,

M and epicardial cells thus allowing the consideration of transmural electrophys-

iological heterogeneity. The main improvements between the first and second re-

vision were directed towards a more realistic description of the intracellular cal-

cium dynamics (considering a subspace (SS) in the latest version). Fig. 3.2 shows

a schematic visualization of both model revisions. Distinct symbols are used to
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differentiate between the various types of ionic currents and pumps. Furthermore,

virtual intracellular ionic compartments are used to group the different ionic fluxes.

The total transmembrane current in the first [151] and second revision [152] of the

ten Tusscher model contains the following ionic components:

Imem = INa + Ib,Na + IK1 + Ito + IKr + IKs + IK p + ICaL + Ip,Ca + Ib,Ca + INaCa + INaK

(3.4)

The currents are:

• Sodium currents: INa = fast sodium influx, Ib,Na = background sodium current

• Potassium currents: IK1 = inward rectifier current, Ito = transient outward cur-

rent, IKr = rapid delayed rectifier current, IKs = slow delayed rectifier current,

IKp = plateau potassium current

• Calcium currents: ICaL = L-type calcium current, Ip,Ca = plateau calcium cur-

rent, Ib,Ca = background calcium current

• Mixed currents: INaCa = sodium / calcium exchanger current, INaK = sodium /

potassium pump current

Recently a new model was published by Grandi et al., characterizing the elec-

trophysiological properties of human ventricular myocytes as well [153]. Among

the new model features are updated formulations for the repolarizing potassium

currents (IKs and IKr) and investigations regarding the effects of a block of these

currents on the APD. It might be interesting to repeat some of the investigations

presented in this thesis with this model in order to evaluate the effects and plausi-

bility of the new current formulations.

3.1.2 Modeling Studies Evaluating Electrophysiological Heterogeneities

In section 2.2.2 we explained how electrophysiological heterogeneities are respon-

sible for differences in APD that lead to dispersion of repolarization (DOR) and

finally determine T-Wave shape and polarity. Although all information concerning

these heterogeneous ion channel distributions originate from experimental stud-

ies it has to be acknowledged that it is often difficult to directly implicate their

findings with specific T-Wave features. Among the reasons for this are low spatial

sampling (e.g. in case of electrode recording techniques [154]) or limited field of

view (e.g. in case of optical mapping on cut surfaces [155]).

In this context, in-silico models of cardiac repolarization are predestined to fill

this gap and overcome the limitations of experimental studies. They can be param-
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Fig. 3.2. Schematic diagram of the ventricular models from ten Tusscher et al. [151, 152]. A: First revision

of the ten Tusscher model [151]. The myocyte is divided into several compartments: the cytosol (with the

different virtual ionic compartments: K+, N+, Ca2+) and the sarcoplasmic reticulum with a calcium up-

taking (network sarcoplasmic reticulum: NSR) and a calcium releasing (junctional sarcoplasmic reticulum:

JSR) compartment. Between the intracellular compartments, the calcium release current Irel and the cal-

cium uptaking current Iup are handling the intracellular flow of calcium. Finally, the buffering of calcium to

troponin and calmodulin in the cytosol (BufC) and calsequestrin (CSQN) in the JSR are taken into account.

B: Second revision of the ten Tusscher model [152]. The main differences compared to the first revision

can be found within the intracellular calcium handling. A subspace (SS, also known as dyadic space) was

introduced modeling an area where the cell membrane and membrane of the sarcoplasmic reticulum (SR)

are in close proximity. Ryanodine receptors Irel are susceptible to an elevation of calcium concentration in

the subspace and trigger a release of calcium from the SR. Figure was modified based on [5].

eterized with measurement data and subsequently allow to evaluate the relation

between APD dispersion and T-Wave morphology quantitatively. This offers sig-

nificant advantages over the mere qualitative interpretations of the past, in which

the effects of heterogeneous ion channel properties were usually predicted based

on more or less verifiable assumptions. The first study that dealt with quantitative
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modeling of the T-Wave was from Harumi et al. [156]. They presented a model

that allowed to predict T-Wave shapes if both activation sequence and APD distri-

bution were known. Subsequent studies used manually adapted dipole sources that

characterized the repolarization [157] or measured repolarization times to calcu-

late the corresponding ECG [158].

Due to the continuous increase in computational resources it is nowadays even pos-

sible to investigate the influence of a 3D distribution of ion channel heterogeneities

on the ECG. This is done by calculating ventricular activation and repolarization

in an in-silico model of the ventricles and using the resulting transmembrane volt-

age distribution as input for the solution of the forward problem (for details see

section 3.2.3). Such an approach was chosen by Xue et al. [159, 160, 161]. How-

ever, their cellular-automaton based model was not able to consider the effects of

electrotonic coupling, which severely limits the validity of the presented conclu-

sions [162].

Especially for studies on cardiac repolarization it is known to be imperative to

use the more complex and computationally demanding reaction-diffusion models,

which can consider the gap-junction related coupling effects (see section 3.1.3).

To the best of our knowledge, reaction diffusion models were so far only used to

investigate the influence of transmural heterogeneities in a wedge or 1D fiber [163,

133, 164, 165]. Although more complex 3D models are available [166, 167, 168,

169] they were never used to evaluate the effects of apico-basal or interventricular

heterogeneities in a systematic way.

3.1.3 Modeling Action Potential Propagation in Tissue

In order to describe the propagation of an electrical excitation wavefront in cardiac

tissue, the electrophysiological models that characterize the properties of a single

myocyte have to be coupled with a suitable method. Ideally, this coupling method

should be able to consider the anisotropic properties of cardiac tissue arising from

the non-uniform distribution of gap junctions.

In general, electrical excitation conduction in the heart can be described using mi-
croscopic or macroscopic approaches. In case of the microscopic methods, each

myocyte is discretized with a large number of computational elements (μm reso-

lution) and the current flow through the intra- and extracellular spaces can be cal-

culated [170]. An advantage of such an approach is its ability to consider hetero-

geneities in myocyte shape as well as gap junction, ion channel and capillary dis-
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tribution. On the downside, when it comes to simulations in larger tissue patches

or even the whole heart (with ≈ 1010 myocytes), the microscopic approaches have

to be discarded due to the extremely high computational costs that are involved.

In this context, the macroscopic approaches like the bidomain model (here the

computational elements have a resolution of several 100 μm) are preferred which

describe the processes of the interacting cells based on a spatially homogenized

representation of the tissue [171].

The Bidomain Model

The bidomain model assumes that the cardiac tissue can be described by two do-

mains that represent the volume-averaged intra- and extracellular space. Anisotropy

is considered by assigning a unique conductivity tensor for each of the domains.

Intra- and extracellular anisotropy originates from the distribution of intracellu-

lar structures, gap junctions as well as from the fiber and sheet orientation of the

myocardial layers.

If we assume that the potentials in the intra- and extracellular domain are labeled

Φi and Φe, then the corresponding current densities Ji and Je are determined by:

Ji =−σi∇Φi (3.5)

Je =−σe∇Φe (3.6)

In this case, σi and σe are the volume-averaged conductivities of the intra- and

extracellular domain. Furthermore we assume that the principle of charge conser-

vation is applicable here: This means that a current that leaves one domain has to

enter the other domain via a transmembrane current Im:

−∇ · Ji =+Im(−Isi) (3.7)

−∇ · Je =−Im(−Ise) (3.8)

Here, Isi and Ise represent potential stimulus currents in the intra- or extracellular

domain.

If we now combine equation 3.5-3.8, we receive:

∇ · (σi∇Φi) = +Im(−Isi) (3.9)

∇ · (σe∇Φe) =−Im(−Ise) (3.10)
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In a next step, equation 3.10 can be solved for Im and the result can be used to

substitute Im in equation 3.9:

∇ · (σi∇Φi) =−∇ · (σe∇Φe)− Isi− Ise (3.11)

Under the assumption that the transmembrane voltage Vm is defined according to

Vm = Φi−Φe, the left and right side of equation 3.11 can be expanded by adding

−∇ · (σi∇Φe) and thus the equation is transformed into:

∇ · (σi∇Vm) =−∇ · ((σi +σe)∇Φe)− Isi− Ise (3.12)

This equation connects the transmembrane voltage with the extracellular potentials

and can be used to solve the forward problem of electrocardiography as will be

explained in section 3.2.3. It also constitutes the first part of the bidomain model.

To derive the second part of the bidomain model which establishes the connection

to the electrophysiological model we need the definition of the transmembrane

current Im:

Im = β (Cm
dVm

dt
+ Imem) (3.13)

In this case, β is the membrane surface to cell volume ratio, Cm is the membrane

capacitance and Imem is the sum of the ionic transmembrane currents from the

electrophysiological model.

Now we can use equation 3.13 to substitute Im in equation 3.9:

∇ · (σi∇Φi) = β (Cm
dVm

dt
+ Imem)− Isi (3.14)

If we replace Φi by Vm+Φe then we can transform equation 3.14 and thus acquire

the second part of the bidomain model:

∇ · (σi∇Vm)+∇ · (σi∇Φe) = β (Cm
dVm

dt
+ Imem)− Isi (3.15)

The Monodomain Model

The monodomain model is a simplification of the bidomain model and can be de-

rived from the corresponding equations by assuming equal intra- and extracellular

anisotropy ratios (σi = κσe). After applying some algebraic transformations, we

finally receive the monodomain equation:
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∇ · (σi∇Vm) = (κ +1)β (Cm
dVm

dt
+ Imem)− Is (3.16)

in which Is is the external stimulus current.

Differences between the mono- and bidomain model were reported to be small

in case of sinus rhythm and in the absence of extracellularly applied stimuli cur-

rents (e.g. defibrillation) [166]. Recent developments in the area of bidomain and

monodomain modeling were targeted on a reduction of the computational load of

bidomain simulations [172] and on an expansion of the monodomain approach to

allow the consideration of bidomain bath-loading effects [173].

As the monodomain equation is computationally cheap compared to a full clas-

sical bidomain approach it was used for all large scale biventricular simulations

throughout this thesis.

3.1.4 Modeling the Specialized Excitation Conduction System

As explained in section 2.2.3 the specialized excitation conduction system is re-

sponsible for the synchronization of ventricular excitation and the coordination of

mechanical contraction. Its complex anatomical structure and large inter-species

and inter-individual variations (see 2.2.3) pose major challenges concerning its ad-

equate representation in a computer model. In general, three different approaches

have been used in the past to model the anatomy and effects of the specialized

excitation conduction system:

1) The ventricular tissue was manually stimulated at the sites and corresponding

times of early endocardial activation that were reported by Durrer et al. [174].

Examples for this approach can be found in [157, 166].

2) The excitation conduction system was created manually based on anatomical

atlases or photographic data. Exemplary studies that followed this approach are

now listed in chronological order:

• Pollard et al. [175, 176] modeled the bundle of His by 35 parallel cables (20

cables formed the LBB while the remaining 15 represented the RBB). These

cables branched extensively, but finally merged with 35 reference points on the

endocardial surface which represented the PMJs (4 PMJs were located near

sites of early endocardial activation while the remaining 31 PMJs were spread

throughout the ventricles in an effort to cover large parts of the endocardial

surface). In a final step, the PMJs were completely interconnected thus forming

the terminal Purkinje network.
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• Siregar et al. [177] based the architecture of the His-Purkinje system on the

data from Durrer et al. [174]. The main branches of the specialized conduction

system led to three endocardial areas in the left ventricle (“an area high on the

paraseptal wall, a central area on the left surface of the interventricular septum,

and a posterior paraseptal area at about one third of the distance from base to

apex”) and one area in the right ventricle (antero-apical region of the endo-

cardium). Electrical activation in the specialized conduction system depended

on a segment’s length and the associated conduction velocity.

• Berenfeld et al. [178] tried to fit the scanned drawings from Tawara et al. [75]

to the endocardial surface of their ventricular model. The end points of the

Purkinje fibers were labeled and used as locations for the PMJs. Ventricular

activation was then simulated for physiological or bundle branch block scenar-

ios. In case of unrealistic results, the Purkinje system was iteratively (manually)

adapted.

• Simelius et al. [179] manually constructed their conduction system based on

textbooks on human anatomy and other literature (e.g. the studies from Tawara

et al. [75] and Durrer et al. [174]). The bundle branches were modeled accord-

ing to the trifascicular concept [85] (e.g. one bundle branch in the right and

two branches in the left ventricle). The bundle branches ended at the papillary

muscles (both left and right ventricle) and continued as the Purkinje network.

In an effort to validate their model, Simelius et al. calculated the 12-lead ECG

and compared it to ECGs that were acquired on normal subjects.

• Vigmond et al. [180] modeled the excitation conduction system by flattening

the endocardial surface of both ventricles onto a plane. Then, they manually

superimposed a model of the conduction system which was created based on

various literature data (for details, see [180]). As there was a high degree of

variability between the sources, they concentrated on the following features:

“the left Purkinje network had three major areas of activation: the septum, the

inferior free wall, and the superior free wall. In the right Purkinje network, the

activation proceeded primarily from the septum out to the papillary muscles in

the lower part of the ventricle”. Finally, the 2D model of the Purkinje network

was mapped back on the 3D model prior to the electrophysiological simula-

tions.

• ten Tusscher et al. [181] used an interactive graphical software package to place

the PMJs and Purkinje fibers on top of the endocardial surface of the left and
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right ventricle. The initial position of the fibers and PMJs (76 PMJs were placed

in the LV while 54 PMJs were positioned in the RV) was based on anatomical

textbooks and the sites of earliest endocardial activation reported by Durrer

et al. [174]. In a subsequent step, the position of the PMJs, Purkinje fibers,

fiber length, thickness and conductivities were iteratively (manually) adjusted

in order to achieve a realistic activation sequence.

3) The excitation conduction system was created with a semi-automatic proce-

dure that required minimal user interaction. Such a procedure is especially valu-

able if the excitation conduction system has to be created for a number of differ-

ent datasets. In this case manual placement of bundle branches and PMJs based

on anatomical atlases or photographic data is very time-consuming and thus pro-

hibitive. Studies that use semi-automatic procedures are listed in the following (in

chronological order):

• Abboud et al. [182] modeled the His-Purkinje conduction system based on a

self-similar structure (bifurcating tree). The branches of the utilized bifurcating

tree decreased in length with each bifurcation. The angle between the splitting

branches was fixed to 70◦ throughout the whole conduction system. The geom-

etry of the conduction system was thereby determined only by the length of the

branches and the splitting angle used.

• Lorange et al. [183] used a two-component model to represent the specialized

conduction system. In this case, the LBB and RBB were modeled by a system

of cables that ended in a sheet of highly conducting tissue which represented the

distal Purkinje system. 1120 PMJs were distributed uniformly over the sheets

thus connecting it to the remaining ventricular tissue. The end points of the

cables which represented the bundle branches were chosen according to the

measurements from Durrer et al. [174] (i.e. in the left ventricle, three cables

excited the midseptum, the high anterior paraseptal and low anterior papillary

muscle regions, and the posterior papillary muscle region whereas a single cable

excited the following parts of the right ventricle: the lower septum, apex, and

free wall in the region of the anterior papillary muscle).

• Berenfeld et al. [184] used a sheet network to model the ventricular conduc-

tion system. Short fibers modeled the connections between the sheet and the

remaining myocardium. No detailed anatomical description was provided.
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• Werner et al. [185] used a semi-automatic procedure that is explained in detail

in [1, 139, 185] and in section 4.1. It was used as basis for the model of the

excitation conduction system that was used in this thesis.

• Ijiri et al. [186] proposed the use of an extended, so-called L-system to model

the mesh structure of the Purkinje fiber network semi-automatically. The L-

system is a formal grammar which was initially introduced by Lindenmayer

to describe the development of plants [187] (since then it has been used in

a variety of applications to describe complex branching structures; for details

see [186]). According to Ijiri et al. [186] the conduction system is created by the

following steps: at first the endocardial surface has to be chosen, then the user

specifies initial points from which the Purkinje fibers will grow. The growth

of the Purkinje system is constraint by two extensions of the L-system: the

first enforces a uniform Purkinje fiber distribution and the second allows the

construction of closed mesh structures (loops). As the growth of the Purkinje

fiber network was rapid, the effects of different parameters could be examined

by trial and error.

• Zimmerman and Romero et al. [188, 189] basically adopted the L-system ap-

proach from Ijiri et al. [186]. The main differences compared to the approach

from Ijiri et al. [186] is that they added non-deterministic decisions, which

means that the PMJs are not necessarily distributed in a uniform pattern (al-

though no justification was given for this model feature). In addition to that,

the proposed method was not able to model loops although this was an impor-

tant feature of the algorithm from Ijiri et al. [186]. The activation of each PMJ

was derived by calculating its distance to the AV node and assuming a constant

propagation speed of 3 m/s. The resulting excitation sequence did not agree

with the measurements from Durrer et al. [174] (although this was claimed by

the authors).

In a consecutive project, the same group used splines to connect the PMJs,

which have been placed in a pattern that aimed at reproducing the activation

sequence of Durrer et al. [174] and others (no details were given on the method

used to place the nodes) [190]. The electrophysiological modeling of the Purk-

inje system was adopted from Vigmond et al. [180].

It is interesting to note that the same group did not use their recently developed

model in a study which aimed at personalizing the excitation conduction sys-

tem [191]. In this case they rather resorted to a much simpler approach: they
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just varied the number of PMJs and their activation time in different regions of

the ventricles based on a numerical optimization scheme. The results were not

convincing: while the total activation time was closer to the ground truth with

a personalized Purkinje system than without any excitation conduction system,

the error in the left ventricle was even increased if the excitation conduction

system was added to the model.

• Bordas et al. [192] used high resolution MR images (of 4 rat and 1 rabbit ven-

tricles) in combination with a semi-automatic segmentation procedure that was

able to extract the free-running Purkinje system (i.e. the part of the Purkinje

system that runs through the chambers of the ventricles). The reconstructed

Purkinje systems exhibited large inter-individual variability in both location

and density of the fibers. As the terminal Purkinje network was not visible in

the MR images (which is also a current limitation of the approach), the PMJs

were placed at the distal ends of the free-running Purkinje system in order to

evaluate the effects of these specialized fibers on the sequence of activation in

a simulation study.

The extraction of the Purkinje fiber system from these high resolution MR im-

ages was also recently covered in [193]. In this case, the use of orientation dis-
tribution functions (ODF) was proposed to replace the time-consuming manual

extraction.

Some of the models of the excitation conduction system allowed retrograd acti-

vation of the Purkinje system (i.e. the depolarization wave travels from the my-

ocardium into the Purkinje network). Although retrograd activation is not impor-

tant for a physiological activation in sinus rhythm, it should be considered e.g. in

models of bundle branch block where the activation front can enter the distal ends

of the blocked bundle branch (see [181]). Examples for models that allow such

retrograd activation can be found in [194, 195, 196, 181, 180, 190, 184].

Finally, there are a number of electrophysiological models that describe the unique

electrophysiological properties of the Purkinje cells. The first model of this kind

has been presented by Noble et al. [197] and successive models have continuously

evolved in both complexity and realism [198, 199, 181, 200].

3.1.5 Modeling Beta-Adrenergic Regulation

As explained in section 2.2.4, beta-adrenergic signaling plays a crucial role in the

chronotropic, dromotropic, lusitropic and inotropic regulation of the heart. These



3.1. MODELING CARDIAC ELECTROPHYSIOLOGY 39

effects can be considered in electrophysiological models in a straightforward way:

i.e. by simply adapting the conductivity or availability of affected channels accord-

ingly. This strategy was pursued e.g. in [201, 202].

Yet such an approach can not consider potential differences in time scales between

the individual components of the adrenergic signaling pathway (slow vs. fast dy-

namics) or between the adrenergic effects and successive regulatory systems (e.g.

calcium/calmodulin dependent kinase (CaMK) phosphorylation [203]). In addi-

tion to that, the interplay between changes in cycle length (due to chronotropic

effects of ISO on the SN) and ISO-induced APD adaption on the level of the

working myocardium might play an important role for the genesis of arrhythmic

potential in patients suffering from LQTS [109].

In 2002 the Alliance for Cellular Signaling was formed which aimed at answering

global questions about signaling networks [204]. This large-scale collaboration

focused on the pathways of two cell types: B lymphocytes and cardiac myocytes.

Shortly afterwards, Saucerman et al. was the first to publish a model of the entire

beta-adrenergic signaling pathway from ligand to various effectors [205]. In this

model, transmembrane currents and the intracellular calcium handling were based

on Luo Rudy’s model of guinea pig’s ventricular myocytes (adapted for rabbit

by Puglisi et al. [206]) which was first adapted to rat [205] and later to rabbit

electrophysiology [100]. Other model components were modified based on:

• Experimental calcium handling data from Bers [207]

• Formulations for the L-type calcium channel from Jafri et al. [208]

• Formulations for the transient outward potassium current from Pandit et al. [209]

The initial version of the Saucerman model [205] was subsequently expanded to

consider additional targets of beta-adrenergic regulation (i.e. effects on the ryan-

odine receptor complex (RyR) and troponin I (TnI) as implemented in [210] and

regulation of IKs as added in [100]). Various versions of the Saucerman model

were also used by other groups to model chronotropic [211] and inotropic [212]

effects of beta-adrenergic activation as well as its role on the LQTS [109].

Recently, the interplay between beta-adrenergic regulation and the calcium/calmodulin

dependent kinase (CaMK) has come into the focus of the scientific commu-

nity [213, 203]. It is generally assumed that an increased heart rate raises intra-

cellular calcium (Ca2+) levels (partly due to beta-adrenergic regulation), which

activate CaMK. However, this additional signaling pathway and its dependency

on the adrenergic regulation cascade is outside the scope of this thesis. The inter-
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ested reader can find a detailed overview describing calcium cycling and signaling

in [214].

3.1.6 Investigations Concerning the Congenital Long-QT Syndrome

As explained in section 2.2.5, the congenital LQTS is an ion channel mutation

whose investigation during the last 30 years has significantly advanced our under-

standing of cardiac electrophysiology. Besides phenomenological and statistical

discoveries, important findings have also been enabled by experimental and in-

silico studies.

When it comes to experimental investigation, the work from Antzelevitch and

coworkers is undoubtedly the most famous [215, 216, 217, 218, 219, 220, 221,

222, 223]. In their so-called ventricular wedge experiments, they used an arteri-

ally perfused cutout from the left ventricle of a dog which allowed the simultane-

ous recording of action potential waveforms (from endo, M and epicardial cells)

and the corresponding transmural ECG. In this setting, they used pharmacological

agents to emulate the effects of the three most important types of LQTS (LQT 1:

Chromanol 293B; LQT 2: d-Sotalol; LQT 3: ATX-II). In addition to that, other

agents were administered and their effect on the shape of the AP morphology and

ECG was evaluated (i.e. Isoproterenol was administered to mimic the role of in-

creased sympathetic activity [110] or Mexiletine and Propranolol were infused to

analyze the effects of sodium channel blockers or beta-blockers [217]).

Although several important findings (such as the link between TdP and APD dis-

persion and many others) originate from these wedge experiments, they also have

the following significant limitations:

• The pharmacological agents are an oversimplified electrophysiological model

of the real LQTS. The degree of channel block is not known (only the dose of

the agent) and neither biophysical changes nor potential adaptation processes

that might have been induced by the mutation can be considered.

• The wedge is an oversimplified anatomical model of the complete heart. It is

not able to consider potential effects of apico-basal electrophysiological hetero-

geneities (for details see section 6.2.1). Thus, the transferability of the results

from the wedge experiments (e.g. the transmural ECG) is questionable at best.

• Finally, the ECG waveforms extracted from the wedge do not match with the

classical waveforms (see Fig. 2.8) that are expected for patients with LQT 1-3

(although the authors usually claim that this is the case).



3.2. ANATOMICAL MODELING AND THE FORWARD PROBLEM OF ELECTROCARDIOGRAPHY 41

On the other hand, the published in-silico studies on the LQTS can be separated

based on whether they investigated arrhythmogenic mechanism of LQTS in single

cells (e.g. [224, 225]) or if they considered action potential propagation and calcu-

lated the corresponding ECGs [226, 133, 227, 228]. All computational studies that

tried to reproduce the large T-Waves seen in LQT 1 patients failed to do so. In all

cases, the reduction of the heterogeneous current IKs homogenized the repolariza-

tion thereby reducing the T-Wave amplitude [226, 133, 227]. This led Potse et al.
to the unexpected conclusion that IKs can therefore not be responsible for the APD

dispersion and T-Wave concordance in the human ventricle [226]. Although this

seems to be far-fetched as other mechanisms might be involved, it is at the same

time difficult to rebut his argumentation.

Recently, several computational studies were published that use the model of beta-

adrenergic signaling from Saucerman et al. (see section 3.1.5) in order to consider

the effects of sympathetic influence during the modeling of LQTS. In two cases,

this model is used to describe the effects of a previously described AKAP binding

domain mutation (see section 2.2.5) [100, 109]. Finally, the Saucerman model has

also been used to re-evaluate the effects of beta-adrenergic activation and block in

LQT 3 [229].

3.2 Anatomical Modeling and the Forward Problem of Electro-
cardiography

3.2.1 Resolution Effects of Anatomical Models

During the last decade, quantitative cardiac modeling has made significant progress

with respect to model precision, possible application areas and its clinical sig-

nificance. These advances are partly due to the increasing computational re-

sources which nowadays allow to model large patches of cardiac tissue or even

a whole ventricle using reaction-diffusion models (see section 3.1.3). In contrast

to cellular-automaton approaches, which were used in the past [185], reaction-

diffusion models consider the coupling of the myocytes through gap junctions

which is especially important for the simulation of a realistic repolarization se-

quence [162].

On the downside, it is known, that the results of reaction-diffusion models depend

on the resolution of the underlying anatomical model. In case of low spatial res-

olution, the conduction velocity of an electrical wavefront is reduced [166]. It is
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not uncommon to compensate for this effect by adapting the intracellular conduc-

tivities accordingly (see e.g. [166, 15, 18]). In case of lower spatial resolutions,

the intracellular conductivities must be raised to achieve realistic conduction ve-

locities. Yet even in this case, it is not possible to compensate for the effects that

low spatial resolution has on the wavefront curvature. For anisotropic simulations

it has been shown that not only the speed but also the shape of the excitation pat-

tern depends on the spatial resolution of the anatomical model [230]. The realistic

description of wavefront curvature becomes especially important if waves emerge

from narrow tissue structures or propagate around a zone of conduction block dur-

ing spiral wave rotation [231].

3.2.2 Modeling Ventricular Fiber Orientation

3.2.2.1 General Considerations

As explained in section 2.1.2 the consideration of fiber orientation anisotropy is

important for realistic models of the ventricular activation sequence. So far, it

has not been possible to create individual or patient-specific models of ventric-

ular fiber orientation. Therefore the fiber orientation information that was mea-

sured ex-vivo is usually transferred to the anatomical model under investigations

by rule-based [166, 169] or atlas-based techniques [232, 233]. The ex-vivo fiber

orientation is usually assessed by histological sectioning or DTMRI as explained

in section 2.1.2.

Although DTMRI data has been analyzed at the Institute of Biomedical Engineer-

ing (Karlsruhe Institute of Technology) [37, 43, 234, 235] and techniques have
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Fig. 3.3. Fiber orientation rules based on the measurements from Streeter et al. [35]. These rules were

used as input for the algorithm developed by Weiss [38], which we used to create fiber the orientation

information for this study.
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Fig. 3.4. Exemplary visualization of the fiber orientation information that was generated for the ventricles

of a healthy 27-year old proband (patient/proband-ID 3; see section 7.1.1). In this case, the x-component

of the fiber orientation vector (Cartesian representation) is color coded based on an HSV colormap (red:

negative x-component, blue: positive x-component). The streamline visualization was provided by Martin

Krueger (IBT).

been developed that allow to transfer this DTMRI-based fiber orientation to ar-

bitrary anatomical models [37, 236] the fiber orientation information used in this

study was created with a rule-based approach for reasons of simplicity.

In the future, it will probably become possible to use DTMRI to image the fiber

orientation in individual patients in-vivo. Recently, advances that support this as-

sumption have been made [237].

3.2.2.2 Rule-Based Method to Create Fiber Orientation Information

As explained before, we used a rule-based approach developed by Weiss [38] to

implement fiber orientation information into our in-silico models of the ventricles.

The rules were extracted based on the measurements from Streeter et al. [35]. In

this case, the helix angle α1 varied almost linearly from −75.3◦ at the epicardium

to 55.5◦ at the endocardium. In addition to that, a small apico-basal variation in

the transverse angle α3 was reported (α3,Apex =−3◦ vs. α3,Base =+3◦) which was

discarded in the rule-based approach. Sheets (i.e. the laminar architecture which

was described in section 2.1.2) were also not considered. The final course of the

helix and transverse angle that was used as input data for the fiber orientation

implementation can be seen in Fig. 3.3. No distinctions were made between left

and right ventricle (i.e. the same rule was used throughout both ventricles). Details

on the implementation of the rule-based approach can be found in [38].

An exemplary fiber orientation dataset that results from the use of the rule-based

approach is visualized in Fig. 3.4. In this case, fiber orientation information
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was generated for the ventricles of a healthy 27-year old proband that was used

for different investigations throughout this work (patient/proband-ID 3; see sec-

tion 7.1.1).

3.2.3 The Forward Problem of Electrocardiography

The forward problem of electrocardiography describes the connection between the

electrical sources within the myocardium and the corresponding potential distribu-

tion on the body surface. It is solved in various studies throughout this thesis e.g.

to predict the effects of heterogeneous ion channel distributions on the T-Wave

(see section 4.2) or to evaluate the effects of changes in the excitation conduction

system model on the QRS complex (see section 4.1).

3.2.3.1 Problem Formulation and Implementation

In theory it is possible to use the bidomain model to calculate action potential prop-

agation in the tissue (see section 3.1.3). In this case we would directly receive the

extracellular potentials in the whole torso model. Furthermore, such an approach

would consider the conductivities of the tissues that are surrounding the heart. This

can be important for certain applications as changes in the conductivities of these

tissue are known to change the distribution of epicardial potentials [238]. However

this so called fully-coupled approach also has disadvantages:

• If the bidomain model is used to calculate action potential propagation in the

tissue it is important to use small time increments (e.g. 10-20μs) to obtain real-

istic simulation results. However, in case of the ECG (extracellular potentials)

it is often sufficient to have a relatively coarse temporal resolution (e.g. 1 ms).

This means, that a fully-coupled approach is computationally very expensive as

the extracellular potentials are calculated more often than necessary (and espe-

cially this part of the bidomain model which necessitates to solve a large linear

system of equations is computationally very expensive).

• In addition to that, the action potential propagation is simulated on a structured

voxel grid at the Institute of Biomedical Engineering (Karlsruhe Institute of

Technology). As structured grids do not allow regions with different spatial

discretization within an anatomical dataset, the whole torso model would have

to be discretized with a resolution that is sufficient for realistic action potential

propagation simulations (see section 7.2). In case of a resolution of 0.4 mm3

this would lead to ≈ 800 · 106 cubic elements and in case of 0.2 mm3 it would
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Fig. 3.5. The action potential propagation is simulated on a structured grid using the monodomain model

(left side). The resulting transmembrane voltages are then interpolated onto a tetrahedron model of the

ventricles (middle) and a part of the bidomain equations is used to calculate the body surface potentials

(right side).

even lead to≈ 6.4 ·109 elements. Simulations on anatomical models of this size

are currently not feasible.

To overcome these problems, we use a technique which is often referred to as the

two-step approach for solving the forward problem of electrocardiography [238].

In this case, the source terms (transmembrane voltages) are calculated in the un-

coupled heart using the monodomain equation. Here at the Institute of Biomedical

Engineering (Karlsruhe Institute of Technology) we then interpolate these trans-

membrane voltages onto an unstructured tetrahedron mesh for reasons of compu-

tational efficiency (see Fig. 3.5). Then the bidomain model is used for the forward

calculation as it connects the transmembrane voltage Vm and the extracellular po-

tential Φe:

∇ · (σi∇Vm) =−∇ · ((σi +σe)∇Φe) (3.17)

Here, σi and σe are the volume-averaged conductivity tensors of the intra- and ex-

tracellular domain. The finite element method in conjunction with Dirichlet (refer-

ence potential) and Neumann (thorax-air boundary) boundary conditions was used

to transform (3.17) into a system of linear equations, which was then solved by ap-

plying Cholesky decomposition and a conjugate gradient method. Details on the

implementation and solution of the forward problem can be found in [239, 146].
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3.2.3.2 Influences of Tissue Conductivities

It is well known, that the solution of the forward problem does not only depend

on the position and amplitudes of the cardiac sources but also on the size and

location of the internal organs and structures which are often referred to as in-

homogeneities [240]. Apart from this geometrical information (size and location)

the inhomogeneities are also known to vary with respect to their conductivities and

degree of anisotropy [241, 242]. This makes it difficult to predict their influence

on the ECG intuitively.

In recent years, efforts have been made to characterize the influence of inhomo-

geneities on the computed body surface potential maps (BSPMs). Most of the

associated simulation studies were based on dipole sources [240] or measured epi-

cardial potentials [243]. However, all studies that were published so far neglect to

address the lack of consensus in the literature concerning measured tissue conduc-

tivity values [244]. They usually simply choose an arbitrary set of conductivities

from the large body of published values. Yet the conductivities of all major inho-

mogeneities in the thorax differ by a factor of 2.3 to 16.5 between different mea-

surement studies. An example for this conductivity variation is the data published

on kidney tissue, which has been reported to have a conductivity of 0.0544 S/m in

[245] compared to 0.9 S/m in [246].

There are several reasons for these large conductivity deviations between different

studies:

• It is technologically challenging to measure conductivities in the low frequency

range which is required to satisfy the requirements of the quasistatic electrocar-

diographic calculations.

• Measurements are often conducted using different experimental techniques [247].

Other deviations result from measurements on different species or even sample

variations within the same species.

• Tissue conductivities change ex-vivo after the sample has been excised [248,

249]. Reasons for this are temperature changes, biological degradation, a chang-

ing water content or the onset of ischemic effects [250].

• Pathological conditions can cause changes in tissue or fluid conductivity [251].

Examples for this are cystic fibrosis or pulmonary emphysema, which reduces

lung conductivity whereas Pompe’s disease leads to low skeletal muscle con-

ductivity. In addition to that, even blood conductivity is variable as it depends

on the hematocrit.
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So there is an obvious need to evaluate these effects with respect to simulated

ECGs as large conductivity uncertainties could introduce significant modeling er-

rors even in case of organs with lower importance. Another aspect that is directly

related to the influence of conductivity variations in different inhomogeneities is

the required complexity of a torso model. When it comes to the creation of patient-

specific anatomical models it is important to know which structures have to be in-

cluded to achieve realistic results. All remaining inhomogeneities can potentially

be removed which would speed up the labor intensive and time consuming process

of creating computational models for the solution of the forward problem.

3.2.3.3 Rule-Based Modeling of Skeletal Muscle Fiber Orientation

It has been shown in several different studies that skeletal muscle fiber orientation

is important for the realistic solution of the forward problem of electrocardiog-

raphy [15, 243]. However, if the forward problem should be solved for patient-

specific anatomies there is usually no information available concerning the muscle

fiber arrangement in the heart or skeletal muscles. The main reason for this is

that Diffusion Tensor MRI, which is currently the only technique able to deliver

in-vivo data on fiber orientation, is time-consuming and susceptible to motion ar-

tifacts. In case of cardiac anisotropy, the missing fiber orientation information is

often modeled using rule-based approaches (see section 3.2.2 and [26, 166]). How-

ever, regarding the modeling of skeletal muscle fiber direction only few models are

available which will be presented in the following:

• The model from Bradley et al. is based on an anatomical dummy [240]. Skele-

tal muscle fiber orientation was extracted from this dummy using a magnetic

tracking device. The extracted orientation information was then matched onto

the torso model that was used for the simulations by a coordinate transforma-

tion which relied on anatomical landmarks. A disadvantage of this model is,

that it depends on the fidelity of the anatomical dummy which was never vali-

dated. Another limitation is associated with the measurement positions: Fibers

could only be tracked on the outer or inner surface of the skeletal muscle layer.

Fibers between these surfaces were assumed to change their direction in a linear

fashion.

• Johnson et al. [252] initially proposed a simplified, rule-based method to de-

termine the skeletal muscle fiber orientation which was subsequently adopted

by Klepfer et al. [243]. In this case, the torso was considered to be a cylinder
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around which the muscle fibers wrap. In order to implement this distribution,

the torso was divided into twelve segments (from a cross-section perspective)

and the fiber direction was assumed to be perpendicular to the bisector of each

segment (see [252, 243] and section 5.3). A validation of the associated fiber

orientation is lacking here as well.

• Finally Sachse et al. created a model of skeletal muscle fiber orientation based

on the highly detailed thin-section photos of the Visible Man dataset (National

Library of Medicine, Bethesda, Maryland, USA) [253]. In this case, automatic

methods such as texture analysis and a 3D Sobel filter were used to extract an

initial fiber orientation. In a post-processing step, these initial orientations were

manually checked and if necessary revised by human experts. As this model of

skeletal muscle fiber orientation was based on image data it is safe to assume

that it contains the highest level of detail and the most realistic description of

the skeletal muscle fiber orientation that is available.

3.2.3.4 Effects of Ventricular Deformation on the Morphology of the T-Wave

Today, the forward problem of electrocardiography is usually solved using static

models of the heart and torso that neglect ventricular contraction and relaxation

as well as other movement (e.g. due to respiration). While ventricular deformation

does not impact on simulations of the depolarization sequence (as the contraction

occurs after the electrical activation of the tissue) both contraction and relaxation

occur during the ST segment and the T-Wave of the ECG. It can be assumed that

the associated change in distance and relation between the cardiac source and the

ECG electrode position at the body surface is likely to have effects on simulated

BSPMs.

This assumption is supported by several in-silico studies that have shown that both

the position and orientation of the heart inside the thorax have a major impact on

body surface potentials [254, 251]. It is also backed up by experimental studies:

In a clinical trial, Feldman et al. infused 15 normal subjects with methoxamine

and performed Valsalva maneuver to increase and decrease left ventricular dimen-

sions [255]. In these experiments, the T-Wave amplitude depended directly on the

size of the ventricular chambers. In contrast to that, no significant effects were

seen if the proximity of the left ventricle to the thoracic surface was altered. The

changes in T-Wave amplitude were attributed to alterations in endocardial to epi-

cardial surface ratio which were caused by the thinning of the ventricular wall.
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Thinner walls led to an increased transmural gradient during ventricular repolar-

ization and an augmentation of the endocardial influence. The result was a higher

T-Wave amplitude. In addition to that, it has been shown that a larger blood vol-

ume in the ventricles leads to increased body surface potentials [256]. This has

become known as the Brody effect [257].

In recent years, electromechanical models have also been used to estimate the

changes in the body surface ECG that is associated with ventricular motion. In a

study by Xia et al., the ventricular activation was calculated with a simplified cel-

lular automaton whereas the resulting mechanical deformation was modeled based

on composite material theory and the finite element method [258]. Subsequently,

the same research group constructed a dynamic heart model based on MR image

data [259]. However, the results of this study remain questionable as the dynamic

heart model was put in a widely used standard torso model to calculate the ECG.

If the heart was not aligned correctly in the standard torso model (which can be

difficult as both position and orientation have to be correctly estimated), changes

due to ventricular deformation could have been over- or underestimated.

Finally, Smith et al. investigated the effects of deformation and mechanoelectrical

feedback on the ECG in a 2D slice of the human heart and torso [260]. In this case,

the deformation was reported to reduce the T-Wave amplitude while the QT time

was shortened due to stretch activated channels.
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Methods





4

Electrophysiological Modeling

This chapter introduces the methods that were used for the various electrophys-
iological studies conducted during the course of this thesis (i.e. the modeling of

the specialized excitation conduction system, investigations on the effects of elec-

trophysiological heterogeneities on the T-Wave, the role of beta-adrenergic regu-

lation on ventricular electrophysiology and investigations on the congenital LQT

syndrome). The corresponding results can be found in chapter 6.

4.1 Modeling the Specialized Excitation Conduction System

As explained in section 2.2.3 the specialized excitation conduction system is a

major determinant for the ventricular activation sequence and thus has to be in-

cluded in any realistic model of ventricular excitation. Although a number of

modeling studies have included descriptions of the terminal Purkinje fiber net-

work (for details, please see section 3.1.4) most of the proposed models can not

be easily transferred to different anatomical datasets (i.e. most of the models were

manually constructed and tailored to specific anatomies). In addition to that, the

existing semi-automatic procedures, which would allow such a transfer, have so

far mostly not been evaluated with respect to their ability to generate realistically

shaped QRS complexes.

In this context, the following study aims at creating a realistic endocardial stimu-

lation profile that characterizes the location and time instant of ventricular stimu-

lation. The underlying semi-automatic approach facilitates an easy transfer of the

resulting stimulation profile to different anatomical datasets by adapting certain

model parameters. Furthermore, we conducted a sensitivity analysis to evaluate

the importance of the various parameters towards the creation of realistic exci-

tation sequences. Finally, body surface potential maps are computed and the ex-
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tracted Einthoven leads are compared to clinically acquired ECGs (on the same

volunteer) to further validate the proposed method. The results of this study can

be found in section 6.1.

In addition to the study which is presented in the following, the proposed endo-

cardial stimulation profiles were also used in a paper presented by Kalayciyan et
al. [3].

4.1.1 Anatomical and Electrophysiological Input Data

The anatomical models used in this study were derived from the MR images of

a healthy 27-year-old volunteer (patient/proband-ID 3; see section 7.1.2). Prior to

the segmentation of the ventricles (see section 5.1) the ventricular MRI dataset was

trilinearly interpolated (from 1x1x1 mm3) to a cubic voxel side length of 0.4 mm,

which resulted in a total number of 352 x 246 x 275 elements. The corresponding

torso model had 437 x 500 x 232 cubic elements with a side length of 1 mm. It

contained varying tissue conductivities for lungs, liver, spleen, kidneys, skeletal

muscle, heart muscle and fat tissue based on the measurements from Gabriel et
al. [242]. The anisotropic properties of the cardiac muscle fibers were considered

both in the thoracic as well as in the ventricular dataset. The underlying fiber

orientation was modeled based on rules proposed by Streeter et al. [35] (for details,

please refer to section 3.2.2).

The ionic model used for describing the dynamic electrophysiological properties

of the ventricular tissue was developed by ten Tusscher et al. [151]. Ion channel

heterogeneities were considered which are important for a realistic sequence of

repolarization [67]. In this case, the density of IKs (in transmural and apico-basal

direction) and Ito (in transmural direction) was modified. To this end, three distinct

tissue layers were considered in transmural direction: endocardium 40%, midmy-

ocardium 40% and epicardium 20%. Furthermore, changes in electrotonic cou-

pling (due to changes in tissue resistivity) through the ventricular walls according

to [261] and [262] were modeled by adapting the respective tissue conductivities

(based on [262]). In apico-basal direction, it has been reported that apical IKs is

twice as large as at the base of the ventricle [263]. We implemented this gradient

in our model, while the IKs-density in-between apex and base was linearly interpo-

lated. Finally, the density of the homogeneously distributed potassium channel IKr

was increased by 50% in order to account for the faster repolarization that has been
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Fig. 4.1. Schematic diagram visualizing the semi-automatic creation of an endocardial stimulation profile.

The algorithm is initialized by manually chosen root-points. In a next step the algorithm automatically cre-

ates a user-definable number of PMJs at the endocardial surface and connects the nodes to a tree structure.

Finally this tree is walked and the algorithm derives a unique stimulation time for each PMJ by calculating

the geometrical distance to its root-point and dividing it by a certain conduction velocity.

observed in the clinically acquired recordings. No electrophysiological differences

between left and right ventricle were considered.

Before initializing the ventricular activation, all parameter configurations of the

electrophysiological model were pre-calculated in an uncoupled environment for

a duration of 60 s with a basic cycle length of 0.87 s which matched the proband’s

heart rate during the clinical recording. Action potential propagation in the car-

diac tissue was described with the monodomain reaction-diffusion model (see

section 3.1.3). The simulation of ventricular de- and repolarization (400 ms) took

about 14h on 14 CPUs (2 GHz Apple Xserve PPCs).

4.1.2 Creation of the Endocardial Stimulation Profile

The semi-automatic procedure that is used to create the endocardial stimulation

profile is an extension of previous work from Werner et al. [185]. Technical de-

tails of the extension can be found in [1]. The proposed method is initialized by
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manually chosen root-points. Usually their initial location is based on the position

of the following anatomical structures: the apical point of the right bundle branch

as well as the apical point of both the anterior and the posterior fascicle of the

left bundle branch. It can also be advisable to place them near the regions of early

endocardial activation that were reported by Durrer et al. [174]. In a next step, the

algorithm automatically generates a user-definable number of nodes at the endo-

cardial surface (see Fig. 4.1). In this case, both the density of the nodes, as well

as the minimal distance of the nodes to the atria can be specified. Now, a modified

version of Prim’s algorithm is used to determine the three sub-spanning trees that

contain all endocardial nodes (details on the implementation of Prim’s algorithm

can be found in [185, 1]). This search is started at the manually placed root-points

(see Fig. 4.1). In the following, the algorithm differentiates between two modes:

• In the first case, only end nodes that have no successors are defined as Purkinje

fiber endings or Purkinje muscle junctions (PMJs). This option was chosen for

this study.

• In the second case, all nodes are defined as Purkinje fiber endings or PMJs (this

case is visualized in Fig. 4.1).

At each PMJ, a spherical area of variable size is stimulated to initialize excitation

spread. In order to derive the time instant of activation for each PMJ, we calculated

the geometrical distance to its corresponding root point and divided this distance

by the (user-definable) conduction velocity inside the Purkinje fiber tree structure

(see Fig. 4.1). Moreover it is possible to consider potential delays that might occur

within the left or right bundle branch by introducing a time-offset for each of the

three root-points (e.g. slower conduction velocity in one of the three trees can be

modeled by specifying an adequate time-offset for the corresponding root-point).

Finally, clinical activation time data or isochrone measurements from the literature

can be considered by manually adding additional PMJs. Fig. 4.2 gives an overview

over the most important parameters that can be adapted to ensure the creation of a

realistic stimulation profile.

In order to evaluate the effect of these different parameters on the QRS complex

in the ECG, a standard stimulation profile setup was generated based on which all

following stimulation profiles were derived by varying the respective parameter

that is under investigation. This standard stimulation profile was created with the

following parameters:
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Fig. 4.2. Overview showing a selection of the most important parameters that can be adjusted during the

creation of an endocardial stimulation profile.

• The conduction velocity inside the Purkinje tree structure in both left and right

ventricle was set to v = 2000 mm/s

• The minimal distance between the nodes of the Purkinje tree was set to 3 mm

(left ventricle) and 5 mm (right ventricle) thus generating 744 PMJs in total.

• The basal part of the ventricles was not covered with Purkinje nodes: left ven-

tricle (15% uncovered), right ventricle (20% uncovered).

• The temporal offset between left and right root-points was chosen such that the

left root-points were stimulated 8 ms after the right root-point. The reason for

this was the greater distance between the AV node and the left root-points.

• The left posterior fascicle was shifted to the basal paraseptal wall to one site of

early activation as recorded by Durrer et al. [174].
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• A spherical area containing 60-115 voxels was stimulated at each PMJ. The

stimulation amplitude was maximal at the center of the sphere and decayed

towards its borders according to a Gaussian envelope.

4.1.3 Forward Calculations and Clinical ECG Recording

In order to be able to analyze the effects of a differently parameterized stim-

ulation profile on the QRS complex of the ECG, we had to solve the forward

problem of electrocardiography. To this end, a tetrahedron mesh of the voxelized

thorax dataset was created on which the simulated transmembrane voltage distri-

butions could be interpolated. Then the bidomain theory was used to derive the

corresponding BSPMs as explained in section 3.2.3. The calculation of 400 ms of

BSPMs (1 ms time increment) was finished in approximately 2 hours on a single

Xserve CPU.

To further evaluate the realism of the simulated ECG signals, we compared them

to a clinically acquired multi-channel ECG recording. In this case, the data was

recorded with a 64 lead-system from BioSemi (ActiveTwo) at rest. To ensure

that the simulated ECGs were extracted from similar measurement locations as

used during the clinical recording, the electrode positions were localized with an

electromagnetic tracking system from Polhemus (FASTRAK). The resulting po-

sition information was then manually matched to the model of the torso and sub-

sequently used to derive the correct electrode positions. The ECG recording was

post-processed by removing the baseline wander [264]. Furthermore the signal

was denoised by relocating the reference point from the right iliac fossa to Wil-

son Central Terminal [265]. In order to create a template heart beat which could

be used for comparison, we averaged 340 consecutive heart beats on all channels.

The resulting template heart beat can be seen together with the simulated signals

in section 6.1.

4.2 Electrophysiological Heterogeneities in the Ventricles

As explained in section 2.2.2 ion channel heterogeneities are hold responsible for

the dispersion of repolarization (DOR), which determines the shape and polarity

of the T-Wave. Yet due to the complex nature of the underlying processes it is

difficult to predict the effects of these ion channel heterogeneities on the ECG

without the help of quantitative models of ventricular repolarization.
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In this study we want to present such a model. Data on heterogeneous ion channel

densities and APD distribution were gathered and used to parameterize a model of

human ventricular electrophysiology. As APD dispersion in the human ventricles

is thought to be mainly determined by a heterogeneous expression of IKs chan-

nels [66] we chose the gKs-parameter to consider this dispersions in the model. In

the following we calculated activation and repolarization of different heterogenous

IKs-distribution models using an anisotropic and high resolution reaction-diffusion

model of the ventricles. The resulting transmembrane voltage distributions were

used to solve the forward problem of electrocardiography (see section 3.2.3) and

derive the corresponding ECGs for the different IKs models. The realism of the

calculated ECGs was evaluated by comparing them to clinically acquired multi-

channel ECG data. These recordings were performed on the same volunteer that

also provided the anatomical models of the ventricles and torso which were used

for the simulated ECGs.

4.2.1 Anatomical Modeling

The anatomical models of the ventricles and torso used in this study were created

based on the MRI scans of a healthy 27-year-old proband (see proband with ID 3 in

Table 7.1 and Fig. 7.3). The MR imaging sequence and the following segmentation

procedure is described in detail in [13] and in section 5.4.2. The diastolic dataset

of the ventricles which was used for the simulation of activation and repolarization

consisted of 181 million cubic elements (24.5 million elements with cardiac tissue)

with a side length of 0.2 mm. Fiber orientation was considered by implementing

a distribution based on the measurements from Streeter et al. [35]. According to

this data, the helix angle α1 was varied linearly from 55.5◦ at the endocardium to

−75.3◦ at the epicardium while the transverse angle α3 was kept constant at −3◦.
For more details, please refer to section 3.2.2.

The result of the torso segmentation was a voxelized dataset containing 405.5 mil-

lion cubic elements with a side lengths of 0.5 mm. For the forward calculations

we converted this voxelized dataset into an unstructured tetrahedron model. The

meshing process was designed such that we received a higher node density inside

the heart than elsewhere. In total, the tetrahedron model of the torso contained

431,449 nodes and 2,435,642 tetrahedrons with an average node distance in the

heart of 1.2 mm. The meshing was performed using the Computational Geometry

Algorithms Library (CGAL) [266]. Please refer to [13] (section 5.4.2) for a list of
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all organs that were included in the torso model and a more detailed description of

the considered anisotropic properties.

4.2.2 Simulating Ventricular Activation

The electrophysiological properties of the ventricles were characterized using the

latest version of the ten Tusscher model for human ventricular myocytes [152].

The model equations were solved with a combination of Rush-Larsen formal-

ism [267] (gating variables) and forward Euler method (all other variables) with a

20 μs time increment. Action potential propagation in the ventricular tissue was

described with the monodomain reaction-diffusion (RD) model (see section 3.1.3).

The specialized conduction system which initializes ventricular activiation was

modeled with a specially adapted endocardial stimulation profile. Details on the

construction and parameterization of this profile can be found in [2, 13] and in

section 4.1. The stimulation profile parameters were iteratively adapted until the

simulated QRS complex was in good agreement with a clinically acquired multi-

channel ECG recording. Stimulation profile parameters were:

• Distance between the PMJs was set to 2 mm in the LV and 2.2 mm in the RV.

• One of the LV root-points was shifted to the basal paraseptal wall to one site

of early activation as recorded by Durrer et al. [174]. No additional, manual

stimulation points were added.

• Basal coverage: 5% uncovered in both LV and RV.

• Conduction velocity was set to 2400 mm/s in the left ventricular Purkinje net-

work and to 1900 mm/s in the right ventricular Purkinje network.

• Time offset between LV and RV: the LV was stimulated 8 ms after the RV.

A comparison between the measured and simulated QRS complexes in the Einthoven

leads can be seen in Fig. 6.3.

4.2.3 Electrophysiological Heterogeneities

All configurations of heterogeneous IKs densities that were investigated in this

study were based on the literature overview that is displayed in Table 4.1, Table 4.2

and Table 4.3. In the following, we will distinguish between the midmyocardium

(Mid) which denotes an anatomical position and the M-cells which have distinct

electrophysiological features and do not necessarily only appear in Mid position.

The results of the experimental studies were sorted depending on whether they
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investigated the distribution of the M-cells and commented on transmural (TM)

dispersion (see Table 4.1 and Table 4.2) or whether they reported on apico-basal

(AB) or interventricular (IV) dispersion (see Table 4.3). Endocardium was denoted

Endo and epicardium was referred to as Epi. In total, 19 different heterogeneous

IKs configurations were constructed based on the measurements listed in both ta-

bles.

The heterogeneous IKs distribution was considered during the electrophysiologi-

cal simulations by storing the maximum channel conductance gKs in a dataset with

identical dimensions and resolution as the anatomical model. This means, that ev-

ery volume element in the anatomical model had a corresponding gKs value in this

additional dataset. To consider these values during the simulations, the additional

dataset was loaded and used to replace gKs in the electrophysiological model be-

fore starting the calculations.

4.2.3.1 Transmural Heterogeneities

All listed studies report a longer Endo APD compared to Epi. This was considered

by reducing Epi gKs (gKs,Epi = 0.92 · gKs,Endo) according to [268]. Regarding the

modeling of the M-cells, the lack of information concerning the exact position, the

volume fraction of M-cells within the ventricular wall and the topography of the

M-cells was problematic. From Table 4.1 it can be seen, that M-cells have been

found at different transmural depths throughout the wall (sub-Endo, Mid layers

and sub-Epi) and in different topographical formations (layers, clusters/islands).

However, the few studies, that report on the volume fraction of the M-cells, agree

that they account for ≈ 30% of the ventricular mass [261, 269]. Based on these

reported properties, we assumed a constant thickness of the M-cell layer, which

was moved to 3 different locations inside the ventricular wall:

• TM-60: this setup contained 60% Endo, 30% M and 10% Epi cells (see

Fig. 4.4).

• TM-40: this setup contained 40% Endo, 30% M and 30% Epi cells (see

Fig. 4.4).

• TM-20: this setup contained 20% Endo, 30% M and 50% Epi cells (see

Fig. 4.4).

Similarly as proposed above, the modeling community usually integrates the M-

cells in layers of varying thicknesses into their in-silico models of the ventri-
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cles [166, 159, 161, 164]. However, recently several experimental studies pro-

posed the existence of a more complex M-cell topography [155, 154]. In these

studies, the M-cells were found to be clustered in the shape of islands. To inves-

tigate the effects of a clustered M-cell arrangement on the ECG, we created 2

additional setups. In both cases, the center of the M-cell islands was positioned

close to the Endo (distance: 20.5% of total wall thickness) in both left ventricle

(LV) and right ventricle (RV) according to [155]. M-cell island size was reported

to be 2.4 mm in depth (transmural direction) and 4.7 mm in width (longitudinal

direction) [155]. No information was available on the height of the islands as the

shape of the M-cell clusters was investigated on the cut surface of a left ventricular

wedge preparation [155]. For reasons of simplicity, we assumed equal width and

height and modeled the M-cell islands as ellipsoids. The resulting shape, location

and size of the M-cell islands was similar to the experimental reports (compare

magnification of Fig. 4.4 TM-IS-4r with pictures in [155]). In case of the right

ventricle no measurement data on the size of the islands was available. Therefore

we simply halved the width, height and depth of the M-cell ellipsoids to account

for the thinner RV walls. To additionally investigate the effects of M-cell island

packing density we created the following two setups:

• TM-IS-3r: here, the center of the M-cell islands were spaced 3*r (r = height =

width) apart (see Fig 4.4).

• TM-IS-4r: here, the center of the M-cell islands were spaced 4*r (r = height =

width) apart (see Fig 4.4).

In all transmural setups, the septum was assumed to have similar properties as the

LV free wall (e.g. Epi cells on the side of the septum that faces the RV and Endo

cells on the side facing the LV) as can be seen in Fig. 4.4. All parameters of the

electrophysiological model for the three cell types were adopted from the original

ten Tusscher et al. publication [152] (except gKs,Epi which was reduced to 92%

gKs,Endo as mentioned before).
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4.2.3.2 Apico-Basal Heterogeneities

Concerning the distribution of APD heterogeneity in apico-basal direction there

are contradicting reports in the literature (see Table 4.3). Both shorter and longer

APD has been found at the apex compared to the base. To account for these in-

consistent findings we constructed two setups with opposing apico-basal hetero-

geneities, that will be described in more detail in the following.

One of the three cell types has to be chosen as basis for the apico-basal setups.

In this case we assumed that the ventricles contained purely Endo cells (due to

reports that the majority of the LV is made up of Endo cells [261]) and assigned

the corresponding values for gKs (0.36064 nS/pF) and gto. Measurements on dogs

found apical IKs to be twice as large compared to the base [263]. For human sam-

ples, a similar but smaller apico-basal gradient was found [263]. Based on this

data, we created a model with a 1.5 times larger IKs density at the apex (vs. base)

and another model with a 1.5 times larger IKs density at the base (vs. apex). All

gKs values in between apex and base were linearly interpolated. Both apico-basal

setups can be seen in Fig. 4.4:

• A1B1.5: Endo gKs was multiplied with apico-basal scaling factors. The result

was a higher basal gKs density (gKs,Apex = 0.36064 nS/pF,

gKs,Base = 0.54096 nS/pF).

• A1.5B1: Endo gKs was multiplied with apico-basal scaling factors. The result

was a higher apical gKs density (gKs,Apex = 0.54096 nS/pF,

gKs,Base = 0.36064 nS/pF).

4.2.3.3 Interventricular Heterogeneities

In case of the distribution of interventricular heterogeneities, all but one listed stud-

ies agree that RV APD is shorter compared to the APD in the LV (see Table 4.3).

Such a relationship was reported for Endo [288, 289], M [57] and Epi cells [56].

According to Volders et al., IKs is approximately twice as large in the RV. Based

on this report, we adapted the previously introduced setups of transmural hetero-

geneity (layered M-cell topography) by doubling RV gKs:

• TM-60*IV: the transmural setup containing 60% Endo, 30% M and 10% Epi

cells was adapted by doubling RV gKs (see Fig. 4.4).

• TM-40*IV: the transmural setup containing 40% Endo, 30% M and 30% Epi

cells was adapted by doubling RV gKs (see Fig. 4.4).
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HOM

2 ms 86 ms

HOM

2 ms 86 ms

Fig. 4.3. Activation time map of the setup that contained purely Endo cells (HOM). Activation was finished

after 86 ms. This activation time map was used to construct both setups with a linear relationship between

AT and APD (AT-APD-0.5, AT-APD-1.4). To this end, the AT map was normalized and the resulting

scaling factors were multiplied with the gKs of Endo cells. This means, that areas that were activated later

had a higher gKs-scaling factor which in turn led to a shorter APD90.

• TM-20*IV: the transmural setup containing 20% Endo, 30% M and 50% Epi

cells was adapted by doubling RV gKs (see Fig. 4.4).

4.2.3.4 Combination of Apico-Basal and Transmural Heterogeneities

In this section we describe the creation of setups that contained both transmural

and apico-basal gKs gradients. The following 6 setups are a combination of the 3

setups of transmural heterogeneity (layered M-cell topography) and the 2 setups

that contain apico-basal heterogeneities:

• TM-60*A1B1.5: the transmural setup TM-60 was multiplied with apico-basal

scaling factors (apical scaling factor: 1 / basal scaling factor 1.5 / factor in-

between: interpolated). The results can be seen in Fig. 4.4.

• TM-40*A1B1.5: the transmural setup TM-40 was multiplied with apico-basal

scaling factors (apical scaling factor: 1 / basal scaling factor 1.5 / factor in-

between: interpolated). The results can be seen in Fig. 4.4.

• TM-20*A1B1.5: the transmural setup TM-20 was multiplied with apico-basal

scaling factors (apical scaling factor: 1 / basal scaling factor 1.5 / factor in-

between: interpolated). The results can be seen in Fig. 4.4.

• TM-60*A1.5B1: the transmural setup TM-60 was multiplied with apico-basal

scaling factors (apical scaling factor: 1.5 / basal scaling factor 1 / factor in-

between: interpolated). The results can be seen in Fig. 4.4.

• TM-40*A1.5B1: the transmural setup TM-40 was multiplied with apico-basal

scaling factors (apical scaling factor: 1.5 / basal scaling factor 1 / factor in-

between: interpolated). The results can be seen in Fig. 4.4.
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• TM-20*A1.5B1: the transmural setup TM-20 was multiplied with apico-basal

scaling factors (apical scaling factor: 1.5 / basal scaling factor 1 / factor in-

between: interpolated). The results can be seen in Fig. 4.4.

4.2.3.5 Other Electrophysiological Configurations

Finally, we wanted to consider the studies that found an inverse linear relationship

between activation time (AT) and APD [280, 291, 292, 293, 294, 295]. One study

even hypothesized that it might be an intrinsic property of the myocardium that

enables it to adapt its APD to the activation sequence [295]. Some of these studies

performed a linear regression analysis and found an inverse relationship between

AT and APD. This means that progressively later activation was associated with

progressively shorter APDs. Although all studies agreed on this inverse relation-

ship between AT and APD there are contradictions with respect to the slope of the

linear fit. The majority of the studies reported slopes steeper than negative unity

(−1.3 [291], −1.32 [293], −1.44 [295]) while one study reported smaller slopes

between −0.10 and −0.93 [292]. The steepness of the slope is important as it is

directly related to the repolarization sequence. In case of small slopes (<−1) the

shortening of the APD is not enough to compensate for the delay in AT. Therefore

the sequence of repolarization is similar (same direction) to the sequence of activa-

tion. In contrast to that, the repolarization sequence is reversed (opposite direction

than the depolarization) if the slope is larger than negative unity as the shortening

of the APD is in that case larger than the delay in AT. In order to evaluate the

effects of both slopes on the shape of the T-Wave, we created two heterogeneous

gKs distributions that were associated with slopes < −1 and > −1, respectively.

Similar as done for the construction of the apico-basal setups, we again assumed

that the ventricles consisted out of Endo cells and chose the parameters of the elec-

trophysiological model accordingly. The heterogeneous gKs distributions for both

setups were created based on an AT map of a homogeneous setup that contained

purely Endo cells (see Fig. 4.3):

• AT-APD-0.5: here, the maximum of the AT map from Fig. 4.3 was normalized

to 1.75 (the minimum was normalized to 1). The resulting scaling factors were

multiplied with the gKs of Endo cells (gKs,Endo = 0.36064 nS/pF).

• AT-APD-1.4: here, the maximum of the AT map from Fig. 4.3 was normalized

to 2 (the minimum was normalized to 0.25). The resulting scaling factors were

multiplied with a gKs of 0.36064 nS/pF.
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Fig. 4.4. Distribution of the heterogeneous gKs parameter. In the first and second row gKs is displayed for the

different setups of transmural heterogeneity. Row three shows the apico-basal configurations whereas row

four visualizes gKs for the interventricular setups. Rows five and six show gKs for the mixed transmural

and apico-basal setups while the last row displays the distribution of the remaining electrophysiological

configurations.
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Due to this approach, areas that were activated later had a higher gKs-scaling factor.

This led in turn to a shorter APD90.

The last setup which was evaluated in this study was a configuration that had a

homogeneous gKs density:

• HOM: this setup contained only Endo cells.

4.2.4 Forward Calculation of the ECG

For each heterogeneous electrophysiological configuration that was introduced in

section 4.2.3 a simulation of ventricular activation and repolarization was con-

ducted. The resulting transmembrane voltages were then interpolated onto the

unstructured tetrahedron mesh of the ventricles that was created as described in

section 4.2.1. Subsequently, the bidomain model was used to calculate the extra-

cellular potentials in the whole torso. Tissue conductivities that were used during

the forward calculations were based on the measurement data from Gabriel et al. at

10 Hz [245]. The forward calculation procedure is described in more detail in [15]

and in section 3.2.3.

To ensure comparability of the simulated and measured ECGs, we extracted the

simulated body surface potentials at the same positions that were used during the

multi-channel ECG recording. A visualization of these electrode positions can be

found in Fig. 5.10. To be able to transfer the electrode position from the clini-

cal measurements to the tetrahedron model of the torso, we localized the elec-

trodes with an electromagnetic tracking system (FASTRAK, Polhemus, Burling-

ton VT, USA). This measured position information was then manually matched to

the tetrahedron mesh of the torso.

4.2.5 Multi-channel ECG Recording

The multi-channel ECG data was recorded with a 64 lead-system (ActiveTwo,

BioSemi, Amsterdam, Netherlands) at ≈ 70 beats per minute. The raw ECG data

was post-processed by removing the baseline wander [264] and increasing signal

to noise ratio [265]. Finally, a template heartbeat was created that could be used to

compare the simulated ECGs with the measurement. To this end, 116 consecutive

heart beats were averaged on every channel which was equivalent to 100 s of ECG

recording time.



4.3. BETA-ADRENERGIC REGULATION OF VENTRICULAR ELECTROPHYSIOLOGY 71

4.3 Beta-Adrenergic Regulation of Ventricular Electrophysiology

4.3.1 Overview Over the Intracellular Signaling Pathway

In the course of this thesis, we integrated main components of the intracellular

adrenergic signaling pathway from Saucerman et al. [100] into the latest revision

of the ten Tusscher model for human ventricular myocytes [152]. Essential parts

of the regulatory pathway will be explained in the following. A more detailed

explanation of all biophysical transitions and the underlying equations is provided

in [5].

The adrenergic signaling is activated by Norepinephrine (NE) or Isoproterenol

(ISO) binding to β1-receptors (see Fig. 4.5: green structure). The receptor-ligand

complexes are coupled to Gs proteins, subsequently inducing an adenylyl cyclase

(AC) stimulation. AC promotes the synthesis of the second messenger cyclic AMP

(see Fig. 4.5: magenta structures) which in turn activates protein kinase A (PKA)

(see Fig. 4.5: blue structures). The catalytic subunits of PKA now phosphorylate

a number of different target proteins (see Fig. 4.5: red structures) which has di-

rect (e.g. ICaL, IKs) or indirect (e.g. SERCA, INaK) effects on the conformation

of the channel proteins. In this context, the term phosphorylation describes the

most common reversible modification of a protein thereby regulating its activity.

The regulation works as follows: the protein kinase can add a phosphate group

whereas the protein phosphatase removes it again.

In the latest version of the intracellular signaling cascade from Saucerman et
al. [100], adrenergic regulation of five target proteins was considered: ICaL, RyR,

SERCA, TnI and IKs. When we transferred the adrenergic signaling pathway to

the ten Tusscher model, we did not consider the adrenergic effects on RyR and

TnI (see Fig. 4.5: canceled connection between PKA and RyR as well as between

PKA and TnI). This was done for two reasons: On the one hand, adrenergic ef-

fects on these proteins are controversially discussed (especially with respect to

RyR [296, 297, 298]) and on the other hand, extensive adaptations would have

been necessary as the corresponding equations differed significantly between the

Saucerman and the ten Tusscher model. However, after performing some initial ex-

periments, we added adrenergic regulation of INaK later on. This became necessary

to avoid excessive accumulation of intracellular calcium (for a detailed explana-

tion see section 4.3.2: INaK and section 6.3.1).



72 CHAPTER 4. ELECTROPHYSIOLOGICAL MODELING
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Fig. 4.5. Schematic of the beta-adrenergic signaling pathway which was included into the second revision

of the ten Tusscher model for human ventricular myocytes. NE or ISO binds to β1-receptors (green) which

eventually raises cAMP levels (magenta). Subsequently, cAMP activates PKA (blue) which phosphorylates

target proteins (red) thereby directly (e.g. ICaL, IKs) or indirectly (e.g. SERCA, INaK) affecting the channel

conductivity or availability. Furthermore, indirect effects on NCX were triggered (orange). This was due to

the enhanced removal of sodium from the intracellular space (through the ISO-induced increase in INaK).

A lowered cytosolic sodium concentration enhanced the function of NCX which could then remove more

calcium from the intracellular space. Figure modified based on [100].

4.3.2 Target Proteins of Beta-Adrenergic Regulation

In the following, the effects of the beta-adrenergic regulation on the target pro-

teins will be explained and the respective equations will be provided. Generally

speaking, the adrenergic influence was modeled by multiplying the channel con-

ductivity with a factor or adding a summand that caused a leftward shift in the

current-voltage relationship. If no adrenergic effects were present, the factor was

set to 1 and the summand to 0. In this case, the model behaved like the original ten

Tusscher model which was used as basis.

The global effects of ISO can be summarized as follows:

• The phosphorylation of ICaL increases the inflow of calcium into the cell. A

larger ICaL triggers a higher calcium release current from the SR. The resulting

increase in cytosolic calcium concentration leads to an increase in contractility.
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• The phosphorylation of the SERCA (Iup) increases the speed with which the

calcium is pumped back into the SR after the contraction has been initiated.

This leads to an increase in lusitropy.

• The phosphorylation of IKs increases the sodium conductivity thereby shorten-

ing the APD.

• The phosphorylation of INaK indirectly stimulates the sodium / calcium ex-

changer NCX. The increase in NCX ensures that excessive calcium which

might have accumulated in the cytosol (due to the ISO-induced increase of

ICaL) is removed.

L-type Calcium Current (ICaL)

Unfortunately, the calcium handling was implemented differently in the Saucer-

man compared to the ten Tusscher model. Therefore several adaptations were nec-

essary to allow a transfer of the adrenergic signaling pathway (for details please

refer to [5]). The following equation was used by ten Tusscher to describe ICaL:

ICaL =gCaL · fpo · favail ·d · f · fCaSS

· f2 ·4(V −15)F2

RT
· 0.25 ·CaSS · e2(V−15) F

RT −Cao

e2(V−15)· F
RT −1

(4.1)

In this case, the adrenergic regulation worked through a phosphorylation of the

α1C-subunit (LCCa) of the calcium channel protein which increased the chan-

nel’s open probability and the phosphorylation of the β -subunit (LCCb) which

enhanced the channel’s availability. From a mathematical point of view, fpo and

favail were introduced as interface to the adrenergic signaling cascade. Their val-

ues were above 1 if ISO was present and equal to 1 if no ISO was administered.

They could be calculated according to:

fpo = 0.03 · f racLCCap

f racLCCapo
+0.97 (4.2)

favail = 0.05 · f racLCCbp

f racLCCbpo
+0.95 (4.3)

Here, f racLCCap and f racLCCbp was the fraction of phosphorylated LCCa and

LCCb protein subunits in the presence of ISO. In contrast to that, f racLCCapo and
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f racLCCbpo was the fraction of phosphorylated LCCa and LCCb protein subunits

in the absence of ISO.

Calcium Uptake Current (SERCA or Iup)

In case of the SERCA or Iup the effects of the beta-adrenergic regulation are in-

direct: The activity of Iup is regulated by phospholamban (PLB) which has an

inhibiting effect on the uptake current. The application of ISO now leads to a phos-

phorylation of PLB thereby reducing its inhibiting influence. Thus the activity of

the pump is indirectly promoted.

Mathematically, the adrenergic influence is represented by an increase in the affin-

ity of the pump towards calcium as a result of PLB phosphorylation. To this end,

the term that characterizes the cytosolic calcium concentration at which the pump

reaches 50% of its maximum conductivity was modified:

Kmup = Kmupo · (0.6 · f racPLB

f racPLBo
+0.4) (4.4)

Here, Kmupo is the baseline value of the half-saturation constant (from the orig-

inal ten Tusscher model) whereas fracPLB and fracPLBo is the fraction of non-

phosphorylated PLB in the presence and absence of ISO. If ISO is administered,

the value of the half-saturation constant Kmup is reduced which means that the

pump already reaches half of its maximal pump current at lower cytosolic calcium

concentrations.

The ISO-dependent Kmup was subsequently integrated into the equation for Iup:

Iup =
Vmaxup

1+Km2
up/Ca2

i
(4.5)

Slow Potassium Current (IKs)

In case of IKs, the activation of beta-adrenergic regulation caused an increase in

maximum conductivity and a leftwards shift in the conductivity-voltage relation-

ship.

The equation for IKs in the ten Tusscher model is given by:

IKs = gKs · xs2 · (V −EKs) (4.6)

The beta-adrenergic regulation was incorporated here by adapting gKs and xs ac-

cordingly.
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In case of gKs the constant maximum conductivities of 0.392 nS/pF for endo- and

epicardial cells and 0.098 nS/pF for M cells from the original ten Tusscher model

were replaced by:

gKs = gKso · (0.2 · f racIksp

f racIkspo
+0.8) (4.7)

Here, gKso represents the old ten Tusscher constants whereas f racIksp and f racIkspo

denote the fraction of the phosphorylated IKs channels in the presence and absence

of ISO, respectively.

The gate xs was given by:

xs∞ =
1

1+ e(xs∞(V 05)−V )/14
(4.8)

Here, xs∞(V05) replaced the constant value of -5 that was used in the original ten

Tusscher publication:

xs∞(V 05) =−5− (1.5 · f racIksp

f racIkspo
−1.5) (4.9)

According to this, xs∞(V05) was equal to -5 in the absence of ISO as the term

in brackets is equal to 0. However, in the presence of ISO, the term in brackets

increased, leading to a shift of xs∞(V05) to more negative values (which can be

translated into a leftwards shift of the channel activation curve).

Sodium / Potassium Pump Current (INaK)

Beta-adrenergic regulation of this channel was not implemented in the first ver-

sion of the model [5, 7]. However, after performing some initial experiments, we

soon realized that the additional calcium which was flowing into the cell due to

the ISO-induced increase of ICaL can trigger calcium sparks from the SR (see sec-

tion 6.3.1). A similar observation was made by Despa et al. [299] who studied the

effects of adrenergic regulation on INaK using genetically altered PLM knockout

mice. If no ISO-induced increase of INaK was possible (as this part of the signaling

cascade has been genetically removed) the calcium spark frequency increased sig-

nificantly. This was attributed to the indirect effects that an increase of INaK had on

the sodium / calcium exchanger NCX. An increase of INaK removed more sodium

from the cytosol which in turn increased the sodium concentration gradient that

was used by NCX to remove excessive calcium from the cytosol (for more details

see section 6.3.1).
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ISO effects on INaK were implemented in a straightforward way: both the max-

imum conductivity kNaKIso and the half saturation constant of sodium (KmNaIso)

were modified. Both parameters were assumed to be controlled by the propor-

tion of activated protein kinase A I (PKACI). The differences between PKAI and

PKAII are explained in [5].

The modified equation of INaK was defined by:

INaK =kNaKIso · Ko ·Nai

(Ko +KmK) · (Nai +KmNaIso)

· 1

(1+0.1245 · e−0.1·(V F/RT ) +0.0353 · e−(V F/RT ))
(4.10)

In this case, the new ISO-dependent maximum conductivity of the pump was de-

termined by:

kNaKIso = kNaK · ( f ackNaK · PKACI
PKACIinit

+(1− f ackNaK)) (4.11)

Here, higher levels of activated PKACI increased the conductivity compared to

the baseline value (without ISO) of kNaK that was adopted from the original ten

Tusscher publication.

Concerning the half saturation constant of sodium (KmNaIso), the corresponding

equation was modified such that the constant had a smaller value in case of an

increased level of active PKACI. A smaller half saturation constant enabled the

pump to start working at lower levels of cytosolic sodium.

KmNaIso = KmNa · ( f acKmNa ·
PKACIinit

PKACI
+(1− f acKmNa)) (4.12)

4.3.3 Technical Implementation

In general, the equations of electrophysiological models that contain transmem-

brane currents as well as a model for the intracellular calcium handling are solved

with a combination of Euler integration and Rush Larsen formalism [267]. An

overview over different electrophysiological models and possible solution tech-

niques is given in [46]. However, after we included the adrenergic signaling path-

way (which had several interfering loops and processes with different time scales)

into the ten Tusscher model, we had to use a solution approach that could handle

such a system of equations more efficiently. In this case, we chose a solver from
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the SUNDIALS suite [300] which is able to adapt its step size depending on the

degree of change in the solution function (variable-step, multi-step method).

In addition to that, parts of the signaling pathway (e.g. binding reactions) were

assumed to be at quasi-equilibrium and thus represented by algebraic equa-

tions [210]. As a consequence, we used the IDA solver which is able to handle

a system of differential algebraic equations (DAEs). A prerequisite for this solver

was that all equations which were solved based on analytical solutions (e.g. CaSS,

CaSR and Cai and their buffering based on Zeng et al. [150]) were reformulated

according to the original notation used by Luo and Rudy [149]. Details on this

reformulation as well as an explanation of different solver parameters and a first

evaluation regarding the solution quality with different termination criteria can be

found in [7, 5].

4.4 The Congenital Long-QT Syndrome

As explained in section 2.2.5, the congenital LQT syndrome (LQTS) is one of

the most often investigated genetic diseases of the heart. During the course of this

thesis, three studies were conducted that investigated several aspects of the disease.

The methodology used in these studies will be explained in the following. Each

subsection begins with a short description detailing the scope of the investigation.

4.4.1 Multiscale Modeling of Long-QT 2 in the Visible Man Torso: A
Feasibility Study

Scope of the Study

The aim of this study was the creation and evaluation of a simplified in-silico

model of LQT 2. To this end, a heterogeneous 3D model of the human ventricles

was used to simulate action potential propagation and repolarization for LQT 2 and

a physiologic control setup. The results of these simulations were used as input

for the calculation of the BSPM and ECG. In addition to that, AP morphology

traces were extracted from representative transmural locations and the results were

compared with experimental [132] and other in-silico studies [133]. The results of

this investigation can be found in section 6.4.1.

Methods

In order to simulate the electrophysiological processes in the ventricles and cal-

culate the corresponding ECGs, an isotropic 3D model of the Visible man heart
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and torso was used in conjunction with the monodomain equation and a model

for ventricular electrophysiology [151]. Transmural electrophysiological hetero-

geneity of IKs and Ito was considered as this has been shown to be important for

the realistic simulation of a transmural ECG with a positive T-Wave [301]. Rather

than modeling endocardial, M and epicardial cells in discrete, equally thick lay-

ers, we chose to calculate the corresponding maximal heterogeneous ion channel

conductivities depending on the transmural position using a spline interpolation.

The resulting transmural conductivity distribution can be seen in Fig. 4.6. LQT 2

was incorporated into the electrophysiological model by a reduction of the maxi-

mum conductance gKr,max of IKr [302]. A reduction to 50% gKr,max was chosen to

model a mild version of LQT 2 while a complete block of the current (0% gKr,max)

represented a more severe form.

The computational elements which described the ventricular tissue, were coupled

with a monodomain approach assuming equal intra- and extracellular conductiv-

ities (see section 3.1.3). The corresponding equations were discretized with the

finite difference method.

The simulation study was based on the anatomy of the Visible Man dataset, ini-

tially provided by the National Library of Medicine, Bethesda, Maryland, USA

and post-processed at the Institute of Biomedical Engineering (Karlsruhe Institute

of Technology) [303]. The original dataset of the ventricles was interpolated to a

cubic voxel size of 0.4 mm (which lead to a model that contained 279 x 254 x

259 voxels). In order to ensure a realistic sequence of ventricular activation, we

adapted a Purkinje fiber network that was presented in [185]. In this case, the au-

tomatically generated Purkinje fiber endings (see Fig. 4.7A) determined the sites

at which we applied endocardial stimulation currents. The sequence of these stim-
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Fig. 4.6. The transmural course of the maximal conductivities gKs,max and gto,max is shown. In case of

gKs,max, the conductivity was lowest in M cells while gto,max was small in endocardial cells.
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Fig. 4.7. A: Ventricular anatomy of the Visible Man dataset (sliced view). The turquoise dots mark the

locations of the Purkinje fiber endings. Stimulus currents were applied at these locations in a special se-

quence that was designed to mimic the excitation conduction system. Exemplary endocardial, M and epi-

cardial cells were monitored on the red line to analyze the APD changes (while electrotonical coupling was

present) that were induced by the LQT 2 syndrome (see section 6.4.1 for details). B: Transparent visual-

ization of the Visible Man torso model with superposed ECG lead positions. The Central Terminal for the

Wilson leads was generated using the points E1–E3. Figure adopted from [8].

ulus currents was derived by calculating the distance of each Purkinje fiber ending

to a virtual AV node and assuming a constant conduction velocity. Before running

the action potential propagation simulations, we pre-calculated the electrophysio-

logical model in an uncoupled environment (25 s with a basic cycle length of 1 s)

to tune the gating variables and ionic concentrations.

The torso model which was used during the forward calculations had a relatively

coarse grid size of 2 mm (in total it contained 297 x 170 x 260 cubic voxels) to save

computation time and memory consumption. It comprised the following list of

tissues and organs: lungs, liver, intestine, pancreas, spleen, kidneys, bones, blood,

muscle and fat tissue. It is important to consider the respective tissue conductivities

for each organ (for details see section 3.2.3.2) during the solution of the forward

problem. In this case, tissue conductivities were assigned based on the published

values from Gabriel et al. [245]. No anisotropic tissue properties were considered

in the torso model. Before solving the forward problem, the voxelized torso model

was converted into a tetrahedron mesh (for details, see section 3.2.3). Then the

simulated transmembrane voltages were interpolated onto the tetrahedron mesh

of the ventricles and the body surface potential map was calculated as described

in section 3.2.3. The electrode positions that were used for the extraction of the

standard Einthoven and Wilson leads can be seen in Fig. 4.7B.

The simulation of action potential propagation and repolarization in the ventricles

was conducted on 5 Apple XServe G5 dual 2 GHz processor cluster nodes using
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the message passing interface (MPI) [304] for process communication. In total, we

simulated 450 ms for each of the three electrophysiological setups (physiological

case, mild LQT 2: 50% gKr,max, severe LQT 2: 0% gKr,max). Using a 10 μs Euler

integration times step, the simulation of each setup took 45 hours. In contrast to

that, the solution of the forward problem was far less demanding. The associated

equations were solved in 1.5 hours on only one 2 GHz G5 processor (temporal

increment: 1 ms).

4.4.2 Suitability of Different Electrophysiological Models to characterize
Long-QT 2

Scope of the Study

The aim of this study was to evaluate a set of state of the art electrophysiological

models regarding their suitability to model LQT 2. The criteria that were used

for the evaluation were on the one hand based on APD changes in a single cell

environment and on the other hand on QT duration and T-Wave morphology that

were extracted from a computed transmural ECG. The results of this investigation

can be found in section 6.4.2.

Methods

Transmural heterogeneity was considered in the electrophysiological models by

varying the maximum channel conductivity of IKs (gKs,max = gKs,Epi) and Ito

(gto,max = gto,Epi). In this case, epicardial conductivities were adopted from the

original publications [151, 152, 305, 306] while the endocardial and M cell con-

ductivities were adapted as follows:

• Concerning IKs, we set M cell conductivity to gKs,M = 0.2 ·gKs,Epi and endocar-

dial conductivity to gKs,Endo = 0.92 ·gKs,Epi.

E1 E2

14 mm length

Fig. 4.8. The in-silico model of the parallelepiped (blue color) was 14 mm long and placed in a bath-

medium with electrodes at either side to extract the extracellular potentials. The potential difference be-

tween the electrodes determined the course of the transmural ECG.
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• Regarding Ito, we set M cell conductivity to gto,M = gto,Epi and endocardial

conductivity to gto,Endo = 0.25 ·gto,Epi.

Conductivity values in between these anchor points were interpolated using a cubic

spline. This resulted in a similar transmural conductivity distribution as shown in

Fig. 4.6.

LQT 2 was modeled by reducing the maximum conductivity gKr,max by 50% to

account for the LQT 2 induced loss of function of IKr. All electrophysiological

models were pre-calculated (25 s of precalculation with a basic cycle length of 1

s) to tune gating variables and ionic concentrations before the APD was extracted

for subsequent evaluation.

In order to investigate the impact of LQT 2 on the transmural ECG, we simulated

excitation spread and repolarization in a synthetically generated isotropic paral-

lelepipedal structure consisting out of 70 cubic voxels with a side length of 0.2

mm. The coupling of the ventricular tissue was described based on the bidomain

equations (see section 3.1.3) which directly allowed the extraction of the extra-

cellular potentials Φe (see Fig. 4.8) without the need for an additional forward

calculation procedure.

A number of characteristic signal features was extracted from the transmural ECG

in an effort to characterize the morphological changes that were introduced by

LQT 2. Among them was the QT interval which was defined here as the time

between QRS onset and the point at which the tangent drawn at the maximal

downslope of the T-Wave intersected with the isoelectric line (see Fig. 4.9). In

addition to that, the full width half maximum of the T-Wave (TFWHM) was used

as a measure for the T-Wave shape. Finally, the ratio Tmax/QRSmean was an indi-

cator for the height of the T-Wave relative to the QRS complex. Both TFWHM and

Tmax/QRSmean were modulated by the transmural dispersion of repolarization.

4.4.3 In-silico Evaluation of Beta-Adrenergic Effects on the Long-QT
Syndrome

Scope of the Study

As explained in section 3.1.6, several in-silico studies tried to reproduce the wedge

experiments from Antzelevitch’s group in which LQT was induced pharmaco-

logically and the T-Wave changes were monitored in the transmural ECG. How-

ever, these previous in-silico studies were not able to consider the effects of beta-
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Fig. 4.9. Exemplary transmural ECG together with the parameters that were extracted in an effort to char-

acterize the morphological changes introduced by LQT 2. The QT interval was determined based on the

tangent method. TFWHM and Tmax/QRSmean were used to quantify changes of the T-Wave concerning am-

plitude and signal morphology.

adrenergic regulation as the underlying effects were not known in detail and thus

a corresponding model was not available at that time.

Recently, such a model was presented by Saucerman et al. [100] and we subse-

quently integrated it into the model of human ventricular electrophysiology from

ten Tusscher et al. (see section 4.3). In this study, we used this expanded model to

mimic the wedge experiment from Antzelevitch et al. (see section 3.1.6). A spe-

cial focus was put on changes in TDR in each of the three different LQT subtypes

(LQT 1-3) both in the presence and absence of beta-adrenergic stimulation. The

results of this study can be found in section 6.4.3.

Methods

The computational model of the ventricular wedge preparation contained 120 x

20 x 20 cubic voxels with a side length of 0.1 mm. Thus the resulting transmural

extent of the wedge was comparable to experimental preparations [221, 217]. The

anisotropic properties of the ventricular tissue were considered by creating a fiber

orientation setup for the in-silico wedge model as described in section 3.2.2.

Ventricular electrophysiology was described based on the revised version of the

ten Tusscher model [152] in which we integrated the beta-adrenergic signaling

cascade from Saucerman et al. [7] (for details please refer to section 4.3). The

model was recently expanded to consider adrenergic effects on the Na/K-ATPase

(INaK). These effects help to remove excessive Ca2+ from the cytosol which could

otherwise trigger EADs by inducing spontaneous Ca2+ sparks from the sarcoplas-
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Fig. 4.10. A: Measured [119] and simulated transmural APD90 distribution for the wild-type setup. A

constant offset of 35 ms was added to the measured data to compensate for the shorter APD90 of the canine

compared to human myocytes. Thus a better comparability between the measured and simulated APD90

trace was ensured. B: Resistivity scaling factors were extracted from [119] and used to adapt the transmural

conductivities in our model.

mic reticulum [299] (for details please refer to section 6.3.1). Furthermore, we

adapted the distribution of the transmural electrophysiological heterogeneity and

the maximum conductivity gKs,max in each of the three transmural layers such,

that we received a similar ratio of APD90,Epi/APD90,M/APD90,Endo as in the wedge

experiments [119]. As no information was provided on the transmural distribution

and width of the endocardial, M and epicardial layer we assumed the following dis-

tribution: 20% endocardium, 30% M and 50% epicardium. Likewise, we adapted

gKs,max by setting gKs,Endo = 0.45 ns/pF, gKs,M = 0.08 ns/pF, gKs,Epi = 0.75 ns/pF.

Finally a non-uniform distribution of tissue resistivity was reported throughout the

wall of the wedge preparation [119]. To incorporate this data into our model, we

extracted resistivity scaling factors from the measurements and used them to adapt

our conductivities in 10 transmural layers accordingly. The resulting transmural

APD90-distribution and tissue resistivities between epicardium and endocardium

can be seen in Fig. 4.10.

The wedge was electrically activated by applying intracellular stimulus currents

at its endocardial front surface (see Fig. 4.11). The bidomain model was used to

describe action potential propagation within the wedge (see section 3.1.3). In order

to calculate a transmural pseudo ECG (tECG), we submerged the wedge in blood

(σblood = 0.7 S/m) and placed a ground electrode near the endocardial surface. The

extracellular potentials were then extracted in 1 mm distance from the epicardial

surface and saved as tECG.

In order to model the effects of LQT 1 and LQT 2, we used a simple model

which was based on a reduction (50%) of the maximum conductivity gKs,max and
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Anatomical Modeling and the Forward Problem of
Electrocardiography

This chapter introduces the methods used for the various studies in the realm of

anatomical modeling and the solution of the forward problem that were conducted

during the course of this thesis (i.e. the creation of anatomical models and effects

of model resolution on the electrophysiological simulations, investigations on the

role of skeletal muscle fiber orientation in the context of the forward problem,

the modeling of ventricular contraction and its effects on the ECG, the ranking of

tissue conductivities for a realistic simulation of ECG signals and a novel PCA

based BSPM prediction technique). The corresponding results can be found in

chapter 7.

5.1 Creating Anatomical Models based on MRI data

For the realistic simulation of cardiac electrophysiology and the calculation of

the corresponding body surface ECGs it is important to have accurate anatomical

models that deliver geometrical boundary conditions. In the past, most studies

were based on standard datasets like the Utah torso model [243], NORMAN [308]

or the Visible Man [309, 303] and Visible Female [310, 311] dataset. However,

over the last years, patient-specific anatomical models are becoming more and

more popular. This has two main reasons:

• The anatomy influences both the action potential propagation (e.g. due to differ-

ences in size of the ventricles, thickness of walls, possible obstacles) as well as

the solution of the forward problem (e.g. due to differences in shape, size and

position of the organs, torso contour). As cardiac modeling should be trans-

ferred to the clinical practice, future simulations will have to be performed on

patient-specific models and the sensitivity of these simulations with respect to

certain anatomical features will have to be investigated.
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• It is difficult to validate the simulations based on a standard model as the nec-

essary data (e.g. intracardiac measurements, multi-channel ECG recordings) is

usually not available. This is different for patient-specific datasets where elec-

trophysiological mapping data or ECGs can be acquired alongside the anatom-

ical imaging.

Both, CT and MRI deliver image data that allow to create anatomical models of

sufficient detail and resolution for most applications of cardiac modeling. How-

ever, as this study was based on data from volunteers (probands/patiens) only MR

images were available due to ethical reasons.

After the image acquisition was completed, the data had to be segmented and

classified in order to be able to assign the corresponding electrical properties to

the different tissues. Segmentation can be done manually or (semi-)automatically.

Although both approaches have their advantages and disadvantages, automatic

methods will dominate in the clinical practice (in the future) as manual segmenta-

tion is very time-consuming and requires expert knowledge. Automatic segmen-

tation procedures are often based on pre-defined mean models that are adapted

during the segmentation procedure [312, 313]. Such techniques have also been

used at the Institute of Biomedical Engineering (Karlsruhe Institute of Technol-

ogy) by Krueger et al. [314, 315, 316]. However, they were not yet available

during the course of this work. Here, segmentation techniques like region grow-

ing or interactively deformable triangle meshes were used. Both segmentation

techniques were previously implemented at the Institute of Biomedical Engineer-

ing [317, 318, 319, 320, 321] and were merely used in this work for the creation

of patient-specific models.

5.1.1 Region Growing

The region growing algorithm is usually initialized using manually chosen seed

points. Starting from these seed points, the algorithm compares the gray values of

neighboring voxels with a pre-defined range of accepted values. If the gray value

is found within this range, the voxel will be marked and subsequently included

in the segmentation results. This newly added voxel acts as additional seed point

from which further comparisons will be conducted. In theory, the algorithm should

stop at organ borders when no new neighbors with a matching set of features can

be found. An advantage of the method is, that the resulting regions are always ho-

mogeneous (e.g. compared to thresholding). However, on the downside, the seg-
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mented contours can be rough and chiseled which is problematic if a tetrahedron

mesh should be created based on the segmentation results. In general, the results

of the region growing algorithm depend on the chosen seed points. However, re-

cently an extension has been proposed that overcomes this limitation (although this

extension was not used in the presented work) [322]. In this work, region grow-

ing was mainly used for the segmentation of the intestine or blood pools. Fig. 5.1

shows a schematic representation of the region growing algorithm.

5.1.2 Interactively Deformable Triangle Meshes

Interactively deformable triangle meshes are a manual version of the so-called ac-

tive contours [323]. The segmentation procedure is initialized by superposing a

spherical triangle mesh over the MR image data. The user is now able to manipu-

late the contour of this mesh in an effort to approximate the borders of the organ

that should be segmented. To accelerate the segmentation, it is usually possible

to adjust the area of effect of the mesh manipulation force. A large area of effect

will lead to more global changes (nodes in a relatively large neighborhood of the

chosen node will be moved) whereas a small area of effect limits the deformation

to the direct vicinity of the chosen node. If the area of effect can be chosen, it is

advisable to start the segmentation by roughly deforming the mesh to the target or-

gan (large area of effect) before the details are traced with a higher precision (small

area of effect). The use of interactively deformable meshes results in homogeneous

regions that normally have smooth surfaces. Furthermore triangle meshes are very
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Fig. 5.1. Schematic visualization of the region growing technique. A: A seed point is manually placed in

the structure that should be segmented. B: Starting from this seed point, the gray value of the neighboring

voxels is compared with a pre-defined range of accepted values. Voxels that have gray values within this

range are included in the region and marked with a star, whereas all other voxels are marked with an "O"

(outside). C: The newly added voxels act as seed points and the algorithm iterates. D: The algorithm stops

as soon as there are no new neighbors in the target gray value range. The red contour marks the segmented

region.
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Fig. 5.2. Graphical user interface that allows the manipulation of the interactively deformable triangle

meshes. In this case, the triangle mesh is displayed in turquoise on top of the MRI data of the heart. The

MRI data is visualized from three different perspectives (XY, XZ, YZ plane) to facilitate the navigation

and the segmentation of the data. Initial center and radius of the spherical triangle mesh as well as the area

of effect of the manipulation force can be set in the window on the lower right side.

flexible and allow the segmentation of low quality image data where automatic

methods would be unsuitable (in this case, the experience of the user can com-

pensate for poor image quality). However, their use requires expert knowledge,

results are user dependent and the segmentation procedure is very time consum-

ing. In this work, all structures in the ventricles and torso (exceptions: see 5.1.1)

were segmented using this technique. A visualization of the graphical user inter-

face that allowed the manipulation of the interactively deformable triangle meshes

can be seen in Fig. 5.2.

5.2 Resolution Effects of Anatomical Models

As explained in section 3.2.1 the spatial resolution of the anatomical model can in-

fluence the conduction velocity and wavefront shape during simulations of action

potential propagation in tissue. In order to quantify these effects we created virtual

tissue patches with differing resolutions and compared the associated isochrone

distributions. The results of this in-silico experiment were then used to choose
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an adequate resolution for the simulation of a realistic excitation sequence in

an anisotropic and electrophysiologically heterogeneous biventricular model. The

methods of this investigation will be presented below while the results can be

found in section 7.2.

5.2.1 Investigations on Wavefront Shape

In order to investigate the effects of spatial resolution on the wavefront shape, we

created three virtual tissue patches with the dimensions 6 cm x 6 cm (see Fig. 5.3).

Each patch consisted of cubic voxels with different resolutions. For voxel side

lengths of 0.4 mm, 0.2 mm and 0.1 mm, the patch dimensions translated into

datasets containing 150 x 150, 300 x 300 and 600 x 600 elements, respectively.

The homogeneous electrophysiological properties of the tissue patches were de-

scribed using the epicardial model for human ventricular myocytes from ten Tuss-

cher et al. [151]. As indicated by the black arrows in Fig. 5.3, the fiber orienta-

tion was set to 0◦. Activation was initiated by applying a stimulus current to the

center of each tissue patch. The conduction velocity in both transverse and lon-

gitudinal fiber direction was identical in all three patches (transverse velocity: 50

cm/s; longitudinal velocity 65 cm/s according to [324]). To enable this identical

conduction velocity, we had to adapt the intracellular transverse and longitudinal

conductivities as the conduction velocity is known to be reduced at lower spatial

resolutions [166]. Adapted intracellular conductivities were set to the following

values:

• 0.4 mm: σi,T = 0.095 S/m and σi,L = 0.141 S/m

• 0.2 mm: σi,T = 0.072 S/m and σi,L = 0.114 S/m

• 0.1 mm: σi,T = 0.063 S/m and σi,L = 0.102 S/m

5.2.2 Biventricular Model

The anatomical information for the construction of the biventricular model was de-

rived from the MRI scans of a healthy volunteer. The segmented voxelized dataset

of the ventricles consisted of 704 x 492 x 550 (≈ 191 · 106) elements with a side

length of 0.2 mm. Approximately 15.5% of the dataset was excitable ventricular

tissue (≈ 30 ·106 voxels). Fiber orientation was incorporated into the model as de-

scribed in section 3.2.2 using a rule-based approach. Similar as in the tissue patch

experiments described above, we used the ten Tusscher model for human ventricu-

lar myocytes [151] to describe the electrophysiological properties of the tissue. In
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Fig. 5.3. Schematic representation of the three virtual patches that were used to investigate the effects of

spatial resolution on the wavefront shape. Lowest resolution was 0.4 mm. In this case, the tissue patch

consisted out of 150 x 150 cubic voxel elements. In contrast to that, the tissue patch with the highest

resolution contained 600 x 600 voxels (resolution: 0.1 mm).

this case, however, electrophysiological heterogeneities were considered to ensure

a realistic repolarization sequence. To include transmural heterogeneities, the wall

was divided in three layers of different thicknesses: 40% endocardium, 40% M

cells and 20% epicardium. In each of these layers, the parameters gKs and gto were

modified according to the suggestions from ten Tusscher et al. [151]. In addition to

these transmural electrophysiological heterogeneities, we adapted the tissue con-

ductivities in ten distinct transmural zones. Conductivity scaling factors for each of

these zones were derived from the wedge measurements from Yan et al. [262]. The

setup of electrophysiological heterogeneities was completed by the inclusion of an

apico-basal gradient of gKs. Based on Szentadrassy et al., apical gKs was doubled

compared to the base [263]. All values in between apex and base were linearly

interpolated. The excitation conduction system and in particular, the Purkinje fiber

network was modeled by a special sequence of endocardially applied stimulations

(see [2] and section 4.1).

5.2.3 Numerical Methods

The mathematical equations of the ten Tusscher model were solved with a com-

bination of the Euler and Rush-Larsen [267] method while the action potential

propagation in the tissue was described with the monodomain reaction diffusion

model (see section 3.1.3). Temporal increments were set to 10 μs for the electro-

physiological model as well as for the monodomain equation in case of the three

tissue patches and to 20 μs in case of the biventricular simulations. All simulations

were performed in a C++ simulation framework [325].
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5.3 Modeling Skeletal Muscle Fiber Orientation and the Effects
on the Body Surface ECG

As explained in section 3.2.3.3 skeletal muscle fiber orientation has a strong effect

on forward calculated ECGs. Yet it is currently not feasible to image the fiber ar-

rangement non-invasively, which is a prerequisite to be able to include it in patient-

specific torso models. Therefore only simplified rule-based approaches can be used

to consider these anisotropic properties during the forward calculation.

In this study, we evaluate the realism of several rule-based methods. Among them

is the approach from Klepfer et al. and two newly developed methods which are

based on Klepfer’s assumptions of tangential orientation of the fibers with respect

to the torso’s surface. The quality of the different fiber orientation approximations

was assessed by comparing the associated forward calculated BSPMs with the

BSPM resulting from the reference skeletal muscle fiber distribution developed by

Sachse et al. for the Visible Man dataset [253].

The methods of this investigation will be presented below while the results can be

found in section 7.3.

5.3.1 Data Source: Anatomical and Electrophysiological Model

As the reference fiber orientation was derived from the Visible Man dataset, it had

to provide the anatomical basis for the simulation of cardiac activation and repo-

larization as well as for the calculation of the body surface ECGs. Action potential

propagation was calculated in an anisotropic and electrophysiologically heteroge-

neous model of the ventricles. Details on the considered cardiac anisotropy infor-

mation and on the distribution of transmural and apico-basal heterogeneities can

be found in [12, 2].

In order to solve the forward problem, the simulated transmembrane voltages

were interpolated onto an unstructured tetrahedron mesh of the ventricles and the

BSPMs were calculated as described in [15]. Fig. 5.4A shows a visualization of the

voxelized torso model that was used as basis for the construction of the unstruc-

tured tetrahedron mesh. It contained 18 different tissues and fluids among which

were: blood, lungs, liver, intestine, pancreas, spleen, kidneys, muscle (skeletal and

heart), bones, cartilage and fat tissue. Anisotropy of electrical conductivity was

considered in case of the ventricles and skeletal muscle. Both anisotropy ratios

(along:across) were set to 3:1. The tissue conductivities used for the forward cal-

culations were based on the measurements from Gabriel et al. at 10 Hz [245].
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Electrode locations which were used to extract the body surface potentials are vi-

sualized in Fig. 5.4B.

5.3.2 Creation of Different Datasets Containing Skeletal Muscle Fiber
Orientation

The basic assumption of all rule-based approaches was that the skeletal muscle

fibers are aligned parallel to the torso surface. Furthermore, all existing rule-based

methods neglect the muscle fiber component that is oriented from head to feet

(longitudinal orientation). In this evaluation, all skeletal muscle fiber information

was integrated into the skeletal muscle layer of the Visible Man dataset that is dis-

played in Fig. 5.5A. We now list the fiber orientation datasets that were considered

in this evaluation:

• Gold: This dataset was used as reference (gold standard). It was created based

on the thin-section photos of the Visible Man dataset [253]. Automatic methods

such as texture analysis and a 3D Sobel filter were used to derive an initial

orientation which was then manually revised by human experts.

• Klepfer: In this case, the fiber orientation was assumed to be perpendicular to

the bisector of the twelve segments into which the thorax was subdivided [243].

A visualization of this method can be found in Fig. 5.5B.

• Gradient: Here, a 3D Sobel filter was used on the torso geometry filled with an

increasing gray value from inside to outside (see Fig. 5.5C). The result was a

E1 E2

E3

Reference

A B

Fig. 5.4. A: Voxelized model of the Visible Man torso. In total it contained 18 different tissues and fluids.

The most important were blood, lungs, liver, intestine, pancreas, spleen, kidneys, muscle (skeletal and

heart), bones, cartilage and fat tissue. B: Unstructured tetrahedron model of the Visible Man torso which

was created based on the voxelized model shown in (A) and used for the forward calculations. The electrode

positions mark the locations were the body surface potentials were extracted (7 electrodes were located on

the back). Einthoven I: E2-E1, Einthoven II: E3-E1.
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Fig. 5.5. A: Visualization of the skeletal muscle layer that was part of the Visible Man model. All rule-

based fiber orientation information was integrated into this layer. The cut plane indicates the viewpoint in

(B) and (C). B: Rule-based approach according to Klepfer et al. [243] (Figure directly adopted from [243]).

The thorax was subdivided into twelve segments. The fiber orientation was assumed to be perpendicular to

the bisectors of each segment. C: The torso was filled with an increasing gray value from inside to outside.

A 3D Sobel filter used on this dataset created a vector field in which each vector was normal to the thoracic

surface at its respective location. The fiber orientation was now assumed to be perpendicular to the planes

formed by the normal vectors and the longitudinal torso orientation.

vector field in which each vector was normal to the thoracic surface at its re-

spective location. The fiber orientation was now assumed to be perpendicular to

the planes formed by the normal vectors and the longitudinal torso orientation.

• Gold+No-Z: In this case, we used the gold standard fiber orientation. However,

the longitudinal component of the fiber vectors was erased so that all fibers were

horizontally aligned.

• Gradient+Back: This setup was equal to the Gradient dataset. The only excep-

tion was the incorporation of the back muscles. They are known to be longitu-

dinally oriented and were integrated accordingly.

• Only-Heart: No skeletal muscle anisotropy was considered (only ventricular

fiber orientation data was taken into account).

5.4 Modeling Ventricular Deformation and the Effects on the
Body Surface ECG

In section 3.2.3.4 we explained that the forward problem is usually solved using

a static heart and torso model that neglects the movement of the cardiac sources

during ventricular contraction and relaxation.

In this study, we evaluate the effects of this movement on the BSPM by creating

an anisotropic and electrophysiologically detailed dynamic model of the ventri-

cles based on cinematographic (Cine) and tagged MRI data. As the ventricular

contraction and relaxation occurs during the ST segment and T-Wave of the ECG,
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we hypothesized that the magnitude of T-Wave changes is likely to depend on the

relation between mechanical deformation and electrical repolarization. In other

words, the synchrony between maximal systolic contraction and onset of ventric-

ular repolarization will probably determine the extent of the BSPM changes.

We tested this hypothesis by creating three different electrophysiological setups,

each with a unique QT time:

• The deformation-induced BSPM changes for a healthy volunteer were assessed

by using a setup with physiological QT time

• Effects for an abnormally short QT time (fast repolarization) were investigated

based on a model of the short QT syndrome (SQT) (mechanical contraction and

relaxation was identical as in the physiological setup)

• Effects for an abnormally prolonged QT interval (slow repolarization) were

evaluated using a model of the long QT syndrome (LQT) (mechanical contrac-

tion and relaxation was identical as in the physiological setup)

Both, SQT and LQT are generally assumed to be “primary electrical diseases” with

no influence on mechanical function [137]. They should therefore be suitable to

probe to which extent the T-Wave changes depend the synchrony/asynchrony of

mechanical relaxation and electrical repolarization.

5.4.1 Rationale of the Construction of the Dynamic Model

Fig. 5.6 outlines the main steps that led to the construction of the dynamic forward

calculation model. Details on the different steps will be provided in the subsequent

sections.

At first, time dependent anatomical models of the ventricles were constructed

based on the 4D Cine MRI scans. These models captured the mechanical states

of the ventricles during contraction and relaxation. They were also used as refer-

ences for the elastic registration procedures during which the diastolic dataset was

mapped onto the various contracted states. The resulting displacement informa-

tion was used to move the nodes of the unstructured tetrahedron mesh (used for

the forward calculation) to their corresponding positions in the dynamic model.

Then the electrical activation and repolarization was calculated on the static dias-

tolic model and the electrical sources were moved to their positions in the dynamic

model prior to the forward calculation. The limitations that were associated with

this hybrid approach will be discussed in section 7.4.4.
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Fig. 5.6. The flowchart provides an overview over the main steps that led to the construction of the dynamic

model. The first frame (diastolic state) of the 4D Cine data was used to simulate the depolarization and

repolarization of the ventricles. The resulting transmembrane voltage distributions were assigned to the

nodes of an unstructured tetrahedron mesh, generated from the torso voxel data and the high-resolution

diastolic heart model. This static mesh was used for the forward calculation in case of the static model.

In order to conduct dynamic forward calculations, the diastolic model of the ventricles was registered

to the anatomical models in deformed states that were created based on the remaining Cine data. The

result of each registration was a deformation field which was used to move the nodes and corresponding

transmembrane voltages to their position in the dynamic model.

5.4.2 Anatomical Modeling

5.4.2.1 MR Imaging protocol

A healthy, 27-year-old volunteer delivered the MR images that formed the anatom-

ical basis of this study. MR image acquisition was performed on a clinical 1.5T

scanner (Magnetom Avanto, Siemens Medical Systems, Erlangen, Germany).

Thorax imaging was based on a T1 weighted 3D gradient echo sequence (VIBE

- volumetric interpolated breath-hold sequence) in an expiratory breath-hold (pa-

rameters were: coronal orientation, voxel size 1 x 1 x 2 mm3, TR/TE: 3.2/1.1 ms,

FA: 8◦) [326].

In contrast to that, three different datasets of the cardiac cavities were acquired:

• 22 short-axis slices containing Cine MRI data which was preprocessed and seg-

mented in different contraction states in order to be used as references for the

registration procedures.

• A high resolution diastolic dataset which was used to validate the diastolic seg-

mentation based on the lower-resolution Cine data.

• 3 slices containing tagging data which was used in one case during the reg-

istration to incorporate information concerning the regional heterogeneity of

deformation.
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Slice 12 Phase I Slice 12 Phase 7

Slice 12 Phase I9 Slice 12 Phase 25 Phase 30Slice 12

Slice 12 Phase 14

Fig. 5.7. This figure shows one of the 22 short axis slices that contained the Cine data. Each Cine slice

imaged the ventricular contraction and relaxation in 50 phases (RR-Interval: 1060 ms, temporal resolution:

21.6 ms). Shown are selected phases of slice 12. Phase I shows the diastolic state, whereas phase 14

coincides with the maximal contraction during systole. Only the first 30 phases were considered during the

construction of the dynamic model.

In case of the Cine data, the left and right ventricle were imaged from base to apex

in short axis view with a retrospective ECG gated 2D steady-state free-precession

sequence (SSFP, trueFISP) Cine (TE/TR: 1.19/35.62 ms, TR-real (echo-spacing):

2.7 ms, : FA 80◦, slice thickness: 4 mm, in-plane resolution: 1.9 x 1.9 mm2). The

temporal resolution was 21.6 ms (RR-Interval: 1060 ms, 50 phases). An example

of a short axis Cine dataset can be seen in Fig. 5.7. Shown are selected phases

from slice 12.

The high resolution diastolic dataset (static) was imaged with a standard 3D ECG

and respiratory gated SSFP sequence (“whole heart approach”) with a spatial reso-

lution of 1 x 1 x 1 mm3 [327]. The T1/T2 contrast was chosen such that a good dif-

ferentiation between the blood filled cardiac chambers and the myocardium could

be obtained.

The tagging sequence was based on a segmented FLASH (Fast Low Angle SHot)

2D sequence with prospective ECG gating. Using this technique, a 8 mm grid

was "tagged" onto the myocardium (other sequence parameters were: TR/TE:

40.85/3.93 ms; no iPAT, flip angle 14◦, spatial resolution 1.3 x 1.3 x 6 mm3).

Overall 22 phases were acquired.
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5.4.2.2 Segmentation of the Torso and Cardiac Cavities

In a preprocessing step, all MRI image data were trilinearly interpolated to en-

sure an adequate isotropic resolution for the segmentation procedure. Then the 22

short axis slices that contained the Cine images were concatenated such, that we

received a complete 3D dataset of both left and right ventricle for each of the 50

phases. An example of this fusion of image data is displayed in Fig. 5.8. In this

case, the different short axis images are combined to create a 3D dataset of phase

1 (diastolic state).

The aim of this project was the evaluation of the impact of ventricular contrac-

tion on the T-Wave not only for a physiological relation between electrical repo-

larization and mechanical relaxation but also for two pathologies that alter the

onset of electrical repolarization. Thus, it had to be ensured that the dynamic

model was able to describe ventricular contraction until electrical repolarization

was completed in all three electrophysiological configurations (physiological QT

time, SQT and LQT). In this case, the LQT setup had the longest QT time (QTc >

450 ms) thereby determining the minimal temporal extent of the dynamic model.

Due to the temporal spacing of 21.6 ms between the different phases in the Cine

images (see 5.4.2.1) it was decided to segment the first 30 out of 50 phases. These

first 30 phases allowed the description of the ventricular contraction and relaxation

up to 626 ms after the R peak which was sufficient, even for severe cases of LQT.

The segmentation of the ventricles in differently contracted states and the thorax

was done manually, relying on interactively deformable 3D contours (for more

information on this technique, see 5.1.2). In case of the segmentation of the ven-

tricles, an important feature of these contours was that they allowed incremental

changes. This means that the different phases were not independently segmented

by starting each segmentation procedure from scratch. We rather segmented con-

secutive phases by adapting the contours of the preceding phase (e.g. phase 2 was

segmented by adapting the contours of phase 1). This guaranteed consistent re-

sults and reduced the overall segmentation errors. On the downside, the reuse of

the 3D contours could potentially lead to jagged contour surfaces. This effect was

compensated by spatially smoothing the contours with an HC Laplacian filter. In

contrast to a conventional Laplacian filter, the HC version was able to prevent

shrinkage effects during the smoothing [328]. In addition to that, all contours ex-

cept for the diastolic, systolic and last contour were averaged over time. Temporal

averaging was done based on a moving average window that contained 3 contours
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(phase t− 1, phase t, phase t + 1). The resulting spatio-temporally averaged con-

tours were again projected onto the MR images and checked for consistency.

Fig. 5.9 shows the segmented diastolic (transparent gray) and systolic (red) dataset

from two different perspectives. Due to the incremental segmentation procedure,

the fidelity of the diastolic segmentation was especially important as it served as

starting basis for the segmentation of the 29 consecutive phases of deformation.

Thus it was validated by comparing it to the independently segmented dataset

that was derived from the high-resolution static MRI scan (SSFP, “whole heart

approach”; see 5.4.2.1).

The segmented biventricular models in different contraction states served as refer-

ence for the elastic 3D registration procedure that is described in the section 5.4.3.

All electrophysiological simulations (depolarization and repolarization) were con-

ducted in a voxelized model of the diastolic ventricles containing 691 x 489 x 536

cubic elements with a side length of 0.2 mm. Fiber orientation in the ventricles

was modeled as described in section 3.2.2. Its inclusion allowed to consider the

anisotropic conduction properties of the myocardium. The anisotropy ratio was

set to 2.4 and the conductivities were chosen such that we obtained a realistic

transverse conduction velocity of 50 cm/s (longitudinal conduction velocity was

82 cm/s) according to [324] and realistic transmural conduction times similar to

[262].

Short Axis 
Phase I, Slice 3

Short Axis 
Phase I, Slice 13

Short Axis 
Phase I, Slice 8

Short Axis 
Phase I, Slice 18

Complete 3D Dataset
Phase I

Fig. 5.8. In order to construct a 3D model that represents the deformation state of the ventricles in each

phase, the short axis slices were concatenated. Potential misalignment between the short axis slices due to

proband movement or heart rate variability that affected ECG gating was corrected manually. The segmen-

tation results of these 3D datasets were subsequently used as input for the registration procedure.
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A B

Fig. 5.9. Segmentation results of the diastolic (transparent) and systolic (red) state from side (A) and top

(B) view.

Fig. 5.10 shows a voxelized representation of the torso (437 x 500 x 232 elements

with a voxel size of 1 mm3). The final model contained all organs that are relevant

for the forward calculation [15] and additional structures like the intestine, spleen

and kidneys. The complete list of organs which had distinct conductivities in the

model comprised: the lungs, liver, spleen, kidneys, small intestine, colon as well

as skeletal muscle, anisotropic heart muscle, blood and fat tissue. The anisotropic

tissue properties of the heart muscle were considered during the forward calcu-

lation (anisotropy ratio of electrical conductivities was 3:1). Conductivity values

were assigned based on the measurements from Gabriel et al. at 10 Hz [245].

The forward calculations were conducted on an unstructured tetrahedron mesh that

contained a higher node density in the heart than elsewhere. Surface and organ

nodes of this tetrahedron mesh were created based on the voxelized torso model

shown in Fig. 5.10 while all cardiac nodes were inserted based on the high reso-

lution diastolic dataset. The final tetrahedron mesh that was used for the forward

calculations contained 317,000 nodes and 2,040,000 tetrahedrons. For validation

purposes, experiments were conducted with meshes that had up to 1,680,000 nodes

and 10,400,000 tetrahedrons. However, the results were almost identical and thus

the lower resolution mesh was chosen to reduce the computational costs during

the forward calculation.

5.4.3 Elastic 3D Image Registration

5.4.3.1 Project Requirements

Unlike in previous studies [258, 260], the contraction of the ventricles that was in-

vestigated here was not computed with a biomechanical model but rather derived
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Fig. 5.10. Voxelized model of the torso containing the following organs: lungs, liver, spleen, kidneys, small

intestine, colon, skeletal muscle (not visible), anisotropic heart muscle, blood and fat tissue. Electrode

positions at which body surface potentials were extracted are marked by red spheres. 57 electrodes were

positioned on the torso front, while 7 electrodes were situated on the back.

from MR image data (Cine and tagged MRI). However, in order to be able to con-

sider the ventricular deformation during the forward calculation, the trajectories of

the cardiac nodes and thus the movements of the associated electrical sources have

to be known. The biomechanical models introduced earlier [258, 260] directly pro-

vide this information as the trajectories are calculated and thus readily available.

Yet, in this study, the ventricular deformation is described by 30 different anatom-

ical models that were created based on Cine MRI data. A drawback of these Cine

images is that they only contain information on the movement of the endocardial

and epicardial surfaces. Besides the coarsely spaced slices with tagging data, no

information was available that described the movement of the cardiac nodes within

the ventricular walls.

To obtain the trajectories of nodes inside the walls, we chose to use an elastic

registration technique. During each registration, the diastolic dataset of the heart

and surrounding organs was matched onto the anatomical models in the contracted

states that were described previously (see 5.4.2.2). The result of each registration

process was a deformation field that characterized the movement of each indi-

vidual node and could be used to model the ventricular deformation. In total, 29

registration procedures were carried out in order to construct the dynamic model.

Based on the assumption that the movement of the ventricles should only affect

tissues in direct vicinity, we introduced a bounding box around the heart and con-
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sidered only the movement of tissues within this box during the registration. More

details on the bounding box and technical implementation will be provided in sec-

tion 5.4.3.3.

5.4.3.2 General Considerations of Image Registration

In general, elastic image registration is an ill-posed problem and thus a direct so-

lution approach is not possible [329]. Other approaches that are often used and

suitable for these kind of registration problems are based on a similarity measure

and a regularizer. The similarity measure can be considered as the driving force

whereas the regularizer controls the deformation. In case of this study, the reg-

istration should match differently shaped ventricles onto each other. Therefore a

regularizer that considers the physical properties of the heart and surrounding tis-

sues would be ideal.

Recently, registration methods for medical images have been proposed that use

key features of biomechanical models [330, 331]. In these methods, the imaged

objects are modeled as elastic bodies that are deformed by image similarity forces

while at the same time, the biomechanical elasticity model is used to regularize

this deformation.

One possibility to calculate image similarity forces is based on the so-called Itera-

tive Closest Point (ICP) algorithm. In the past it has mainly been used to estimate

the rigid transformation of roughly aligned 3D datasets. Since its first introduction

[332, 333], the algorithm has been used e.g. in the integration of range images

[334], for the alignment of MRI images [335] and human motion tracking [336].

When initialized with two 3D point clouds, a source cloud S and a target cloud

T , the algorithm tries to iteratively find a rigid transformation that minimizes a

similarity metric of all corresponding pairs of source and target points. In each

iteration k, the algorithm performs two main tasks:

• Define correspondence pairs between points in S and T
• Find the rigid transformation that minimizes an error metric that depends on

the previously determined correspondence pairs (e.g. mean square error of dis-

tances between source and target point)

Each correspondence pair consists of a point xk,i(i = 1, . . . ,m) from S and the

point xk, j( j = 1, . . . ,n) from T that satisfies a correspondence metric. Often the

minimal Euclidean distance to xk,i denoted dk,i is used:
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Fig. 5.11. Sliced view of the unstructured tetrahedron mesh of the torso that was used for the forward

calculation of the body surface potentials. The node density inside the heart was higher than in the rest

of the torso. The red box marks the bounding box that was used during the registration procedures. The

movement of all nodes within this box was considered during the registration. The nodes on the surface of

the box and all nodes outside the box were fixed and thus prevented from moving.

dk,i = min
j∈{1,··· ,n}

‖xk, j−xk,i‖ (5.1)

Since its initial introduction, many variants of the ICP algorithm have been pro-

posed [337]. Recently, Amberg et al. showed how to extend the ICP algorithm to

the nonrigid registration of surfaces while retaining the convergence properties of

the original algorithm [338]. In order to impose constraints on the deformation, a

regularizer was used that minimized the difference between transformations acting

on neighboring mesh vertices. This can be interpreted as a kind of stiffness term

that forces neighboring vertices to undergo similar transformations [338]. The ap-

proach that was used in this study to register the surface of the diastolic ventricles

to the surface of the deformed states used a similar regularization principle as Am-

berg et al. [338]. Details will be provided in the next section.

5.4.3.3 Current Implementation

As explained previously, we assumed that the ventricular contraction only affected

tissues that were in direct vicinity of the heart and thus lay inside a pre-defined

bounding box. While the ventricles contract and relax, the adjoining tissues fol-

low the deformation passively. To consider this passive movement while matching

the ventricular surfaces onto each other, a combination of the nonrigid ICP algo-

rithm and a biomechanical model of elasticity was used [339]. The elastic image
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registration procedure described below was conducted in close cooperation with

Oussama Jarrousse and Thomas Fritz.

The bounding box (180 x 148 x 136 mm3) contained the heart in diastolic state

and all surrounding tissues that consisted out of fat, muscle, lung, liver, spleen

and colon. Vertices located on the surface of the bounding box were fixed and

thereby prevented from moving. A visualization of the bounding box is shown in

Fig. 5.11. Details on the elasto-mechanical parameterization of the tissues inside

the bounding box can be found in [13].

To improve the quality of the registration, four subsets of source and target points

were defined. Points from one of the source subsets will only search for corre-

spondences in the associated target subset. The subsets contained the endocardial

and epicardial surface of the left and right ventricle that were extracted from the

models created based on the Cine MRI data.

In addition to this surface information, tagging data that described the movement

within the ventricular wall was included into the dynamic model as well. 23 tag-

ging points (18 from the left ventricle and 5 from the right ventricle) were manu-

ally tracked in three slices over the whole cardiac cycle. As tagged and Cine MR

images had different temporal resolutions, the movement of the landmarks was

linearly interpolated so that the respective time bases matched. An example of the

short axis tagging data can be seen in Fig. 5.12 at selected phases of ventricular

contraction and relaxation. Manual extraction of the tagging information was dif-

ficult as the contrast of the tagging grid was not constant over time and therefore

hard to track.

Each of the 29 iterative registration procedures adhered to the following scheme: In

each iteration, correspondences were defined and a cost function that depended on

the vertice coordinates was minimized. The correspondences were defined based

on the minimal Euclidean distance (see equation 5.1).

To finally determine the deformation, a cost function E was minimized (similar as

in [338]). Here, the cost function was given by:

E(Xk,k) = Eε(Xk)+Eicp(Xk,k)+Eλ (Xk,k) (5.2)

Where Xk is a vector of all vertice coordinates of the model in iteration k. Eε(Xk)

is related to the biomechanical model of elasticity and consists of a set of strain

energy density functions governing the different passive elastic properties of the

model. It can be interpreted as the stiffness of the model.
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Fig. 5.12. This figure shows one of the three tagging slices that was used to extract landmark information

for the registration procedures. The tagging data had a lower temporal resolution than the Cine data (tagging

data: 18-22 phases vs. Cine data: 50 phases). Linear interpolation was used to calculate the locations of

the landmarks in between the imaged phases. Furthermore, the non-uniform contrast can be seen when the

different phases of the tagging data are compared (e.g. phase 1 with phase 16). This additionally impeded

the manual extraction of the landmarks.

Eicp(Xk,k) and Eλ (Xk,k) are determining the image similarity forces. Eicp(Xk,k)
is given by:

Eicp(Xk,k) = k
m

∑
i=1

αsd2
k,i (5.3)

where m is the number of source points, αs is a weighting parameter for the endo-

cardial and epicardial surface points and dk,i is the Euclidean distance between the

correspondence pair (xk,i, xk, j) as presented earlier in equation (5.1).

Similarly the landmarks term Eλ (Xk,k) is given by:

Eλ (Xk,k) = k
p

∑
l=1

αld2
l (5.4)

where p is the number of landmarks, αl is a weighting parameter specific for the

landmarks and dl is the Euclidean distance between source and corresponding

target landmark.

A suitable solution for the registration problem was found when the cost func-

tion of equation 5.2 was minimized. In this case, the criteria of both, the image

similarity measures and the biomechanical elasticity model, were satisfied. The

associated non-linear system was solved in parallel with an implementation of the

Newton method from the PETSc package. After each iteration, the vertices’ po-

sitions were updated and the registration continued until a termination criterion

was reached. In this project, the termination criterion was reached when both, the

mean distance d̄ of all correspondence pairs and landmarks was below 0.07 mm,

and the maximum distance dmax was below 0.5 mm. This was a good compromise

between computational costs and fidelity of the registration results.



5.4. VENTRICULAR DEFORMATION AND THE EFFECTS ON THE BODY SURFACE ECG 105

From equation (5.2), (5.3) and (5.4) one can conclude that at the beginning of the

registration process (small k) the model’s stiffness Eε (independent of k) domi-

nates the deformation. However, with increasing iterations (growing k), the image

similarity terms (Eicp and Eλ , both depending on k) become larger and finally

overcome the stiffness of the biomechanical model.

The result of each registration procedure was a deformation field. It was used to

move the nodes of the unstructured tetrahedron mesh of the torso that was used for

the forward calculation to their position in the dynamic model. This was done by

iterating through the nodes inside the bounding box (see inlet Fig. 5.11) and cal-

culating the new position by trilinear interpolation from the deformation field. The

fiber orientation was adapted to the contracted states in a similar way. In this work,

the fiber orientation of each tetrahedron was defined by the vector connecting the

center of gravity and a second point lying in the direction of the fiber orientation.

To determine the fiber orientation in the contracted state, both points were moved

based on trilinear interpolation of the deformation field. The final position of these

two points was used to calculate the fiber orientation in the deformed state. The

adapted unstructured tetrahedron meshes and fiber orientation were subsequently

utilized for the dynamic forward calculations. Deformed states in between the 29

registered frames were interpolated linearly such that the resulting dynamic torso

model had a temporal resolution of 2 ms (i.e. every 2 ms the deformation state of

the model was updated).

In total, three different anatomical torso models were created for the forward cal-

culation. They contained the ventricles in dynamic and static conditions, respec-

tively. The following setups were investigated as to their influence on the T-Wave

in the body surface ECG:

• STATIC denotes a static torso model in which the diastolic state of the ventricles

was used for the whole cardiac cycle.

• DYNA denotes a dynamic torso model. While considering ventricular contrac-

tion and relaxation, this model discards the deformation information provided

by the manually tracked landmarks (i.e. Eλ (Xk,k) = 0, see (5.2)).

• DYNALAND denotes a dynamic torso model as well. In contrast to the DYNA

model, this model includes the displacement information that was derived from

the landmarks. In this case, αl was set to 10 ·αs to emphasize the influence of

the landmarks.
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5.4.4 Electrophysiological Modeling

5.4.4.1 Endocardial Stimulation Profile

For the realistic simulation of the body surface ECG, it is imperative to model

a realistic depolarization sequence. In this case, ventricular activation was deter-

mined by a specialized endocardial stimulation profile that mimicked the role of

the excitation conduction system. The stimulation profile was created by adapting

a semi-automatic approach from Werner et al. [185, 2]. Details on the construction

of the endocardial stimulation profile can be found in [2, 13] and in section 4.1. The

parameters of the stimulation profile were manually adapted in order to achieve a

good match between the simulated ECG and a clinical recording. The resulting

stimulation profile is visualized together with the corresponding isochrone maps

in Fig. 5.13A and 5.13B.

5.4.4.2 Electrophysiological Heterogeneities

In this study, the first version of the ten Tusscher model for human ventricular my-

ocytes was used to describe the electrophysiological properties of the ventricular

cells. The associated mathematical equations were solved with a combination of

Rush-Larsen and forward Euler method (for details, see [13]).

To allow for a realistic repolarization sequence, transmural and apico-basal het-

erogeneities were included into the model. For a list of experimentally measured

heterogeneities and their influences on the T-Wave morphology please refer to

section 4.2. In this case, heterogeneous properties of the slowly delayed rectifier

current IKs and the transient outward current Ito were considered. Endocardial, M

and epicardial cells were assumed to appear in layers. Layer thickness was 40% for

endocardial, 40% for M and 20% for epicardial cells. This is a good compromise

between the more endocardial position of the M cells reported in [155, 262, 272]

and the more epicardial position that is described in [261].

According to [262, 261, 340, 341, 155] tissue resistivity is not distributed uni-

formly across the ventricular wall. A sudden drop in gap junction density be-

tween M and epicardial cells has been reported to reduce electrotonic coupling

allowing large APD90 gradients at the respective locations. To consider these ef-

fects in the model, resistivity scaling factors have been extracted from the wedge-

measurements by Yan et al. and were used to adapt transmural conductivites in the

left and right ventricle accordingly.
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Fig. 5.13. A: Color-coded stimulation profile together with the root-points (black spheres) that were used

during the construction of the stimulation profile as described in [2, 13]. B: Isochrone map of the activa-

tion sequence in a horizontal plane at mid-to-apical height. Color scale and cut-plane are adopted from the

work of Durrer et al. [174] to facilitate the comparison with their invasively acquired isochrone measure-

ments. C: Heterogeneous gKs distribution. The layered distribution of endocardial, M and epicardial cells

is clearly visible. In apico-basal direction, a linearly increasing density of gKs was implemented. D: APD90

distribution for the physiological setup with normal QT time as explained in section 5.4.5.

In apico-basal direction, a higher apical gKs was assumed based on [263]. In mea-

surements on dogs, apical gKs was found to be approximately twice as large com-

pared to basal density [263]. A similar distribution although with a weaker gradi-

ent was also found in human left ventricular tissue [263]. gKs distribution in the

model was implemented accordingly (gKs,Apex = 2 · gKs,Base). Values in between

apex and base were linearly interpolated. The distribution of gKs together with the

resulting APD90 for a setup with physiological QT times (see 5.4.5) can be seen

in Fig. 5.13C and 5.13D.

5.4.5 Modeling physiological QT times, SQT and LQT

In order to guarantee a realistic relation between mechanical relaxation and elec-

trical repolarization for physiological QT times, we had to ensure that the QT time



108 CHAPTER 5. ANATOMICAL MODELING AND THE FORWARD PROBLEM

of the simulation was comparable to the proband’s QT time during the MR image

acquisition. As the QT time was not directly extractable from the MRI system, we

determined the heart rate during the MRI scan and used it to correct the clinically

acquired ECG. Bazett-corrected QT time was approximately 391 ms (manually

extracted from Einthoven II), which is in good agreement with values from Mason

et al. for the corresponding age group [134]. In case of the simulation setup for

physiological QT times, no parameter adaptions had to be made as the standard

parameterization initially proposed by ten Tusscher et al. delivered a similar QT

time.

The ion channelopathy termed SQT syndrome has been associated with gain-of-

function mutations in KCNH2 (HERG, SQT1), KCNQ1 (KvLQT1, SQT2), and

KCNJ2 (Kir2.1, SQT3). Patients suffering from this disease have shortened QT in-

terval durations (QTc < 330 ms) and tall peaked T-Waves. The SQT syndrome was

modeled by simply increasing the maximum conductivity gKr,max of the slowly de-

layed rectifier current IKr by a factor of 2.5 to shorten the QT interval.

The LQT syndrome can be caused by mutations in various different ion channels

[103]. Affected patients show QT prolongation (QTc > 450 ms) and changes in

T-Wave morphology depending on the LQT subtype [103]. For more details on

the LQT syndrome, please refer to section 2.2.5 and section 3.1.6. Here, LQT was

modeled by a complete block of IKr (gKr,max = 0).

The action potential propagation in the tissue was described based on the mon-

odomain reaction-diffusion model. The associated mathematical equations and

implementation details are described in section 3.1.3.

5.4.6 Forward Calculation of the ECG in the Static and Dynamic Models

Input data for the forward calculations were the transmembrane voltage distribu-

tions that resulted from the simulations of depolarization and repolarization on the

static diastolic voxel model of the left and right ventricle. These distributions were

interpolated onto the static unstructured tetrahedron mesh (see Fig. 5.11).

In case of the STATIC model, the transmembrane voltages assigned to the nodes in

the static unstructured tetrahedron mesh were used to calculate the ECG over the

whole cardiac cycle. In case of the dynamic torso models (DYNA / DYNALAND),

the transmembrane voltage distributions for each time step were interpolated onto

the static tetrahedron mesh similarly as for the STATIC model. Yet, after the in-

terpolation, the nodes were moved to their corresponding positions in the dynamic
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torso models before the forward calculation was performed. To describe the cur-

rent deformation state in the dynamic models, a new tetrahedron mesh was used

every 2 ms.

During the forward calculations, the bidomain equations were utilized to calculate

the extracellular potentials. Details on the solution of the forward problem can

be found in [15] and in section 3.2.3. The resulting body surface potentials were

extracted at the 64 electrodes that covered the front and parts of the back of the

proband’s torso (electrode position is shown in Fig. 5.10).

5.5 Ranking the Influence of Different Tissues with Respect to
their Conductivities

As explained in section 3.2.3.2, tissue conductivities can have an important effect

on the results of the forward problem of electrocardiography. Yet, although there

is a large uncertainty in reported conductivity values for different organs, no study

has so far addressed this issue and the potential ramifications in a systematic way.

In this section we present a study that has the following aims:

• A sensitivity evaluation was conducted to evaluate the most important inhomo-

geneities for a realistic solution of the forward problem. To this end, we used

fixed percental conductivity changes and ranked the inhomogeneities according

to their importance.

• An uncertainty analysis evaluated the effects of contradictory conductivity re-

ports between different experimental studies. In this case, the tissue conductiv-

ities were set to the reported minimum and maximum values and the resulting

BSPM changes were considered in the subsequent ranking.

• Finally we removed groups of organs from our torso model and calculated the

associated errors with respect to a reference model. This was done to be able

to propose recommendations that are targeted on facilitating the creation of

patient-specific models.

Unlike some existing studies with similar (but not identical) scopes, the solution of

our forward problem was based on a distribution of cardiac sources that resulted

from the realistic simulation of a complete heart beat. Therefore the presented

results are particularly applicable to future studies that aim at clinical applications

of cardiac simulations.

The results of this study can be found in section 7.5.
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5.5.1 Electrophysiological Modeling

The Visible Man dataset [309] was chosen to investigate the impact of the different

tissue conductivities on forward calculated ECGs. Due to the fusion of information

from different imaging modalities (MR, CT, thin section photography) the Visible

Man dataset provides highly detailed anatomical information that is unmatched by

models that are created based on clinically available image data.

Cardiac depolarization and repolarization (in sinus rhythm) were simulated sepa-

rately for atria and ventricles and was used as input data for the calculation of the

body surface potentials. Different models to simulate the action potential propa-

gation in the tissue were used for atria and ventricles. For the atria, a rule-based

Cellular Automaton was used to calculate the distribution of transmembrane volt-

ages and the spread of excitation [185]. In contrast to that, the current flow in

the ventricles was described using the monodomain reaction-diffusion model in

conjunction with a biophysically detailed ionic model [151]. This allowed the in-

clusion of complex electrophysiological heterogeneities in the ventricles, which

are important for a realistic repolarization sequence.

Atrial excitation was simulated in a voxelized model with an isotropic resolution of

0.33 mm. The electrophysiological model from Courtemanche, Ramirez and Nat-

tel [342] was used to parameterize the Cellular Automaton. According to reports

from Hansson et al. the conduction velocity was set to 700 mm/s [343]. Faster

conductivities were assigned to the crista terminalis (1300 mm/s) and Bachmann’s

bundle (1770 mm/s) [344, 345].

For the simulation of ventricular excitation, the anatomical dataset was interpo-

lated to an isotropic voxel size of 0.4 mm. Anisotropy of ventricular conduction

was considered by incorporating muscle fiber orientation as described in sec-

tion 3.2.2 and [15]. The electrophysiological properties of the ventricular tissue

were described using the model developed by ten Tusscher et al. [151]. The model

contains transmurally heterogeneous descriptions of the ion channel characteris-

tics of the slow delayed rectifier current IKs and the transient outward current Ito.

In addition to these transmural heterogeneities we modeled apico-basal gradients

of gKs to enable a realistic repolarization sequence. Details on the modeling of

the included electrophysiological heterogeneities can be found in [15] and in sec-

tion 5.4.4. Ventricular activation was initiated by a sequence of endocardially ap-

plied stimuli currents. The model that determined the location and temporal se-

quence of these stimuli currents was described in [2] and in section 4.1.
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Before simulating the ventricular activation, all heterogeneous parameter configu-

rations of the electrophysiological model were pre-calculated in a single cell en-

vironment (duration of the pre-calculation: 60 s with a basic cycle length of 1 s).

This was done to tune gating variables and ionic concentrations. Furthermore, the

intracellular conductivities were adapted so that they compensated for the large

voxel size of 0.4 mm and the thicker walls of the Visible Man dataset. The adapted

intracellular conductivity was chosen such that the average transmural conduction

time was approximately 30 ms [262].

5.5.2 Torso Model, Conductivities and Forward Calculation

In order to solve the forward problem of electrocardiography, the voxelized torso

model was converted into an unstructured tetrahedron mesh. The following tissues

and structures were considered in the model: heart, blood (both intracavitary and in

the main vessels), lungs, fat (both visceral and subcutaneous), anisotropic skeletal

muscle (will be referred to as muscle in all tables), intestine, liver, kidneys, bone,

cartilage, and spleen. Tissues covering less than 0.5 % of the body volume are

omitted in this list.

The construction of the tetrahedron torso geometry was initialized by creating

a mesh with 70,000 nodes that characterized the contours of the torso and the

shape of the internal organs. The nodes of this mesh were chosen from a 2 mm

voxel dataset of the torso. Subsequently the heart region was refined by adding

200,000 additional nodes based on the high-resolution cardiac datasets described

in section 5.5.1: 190,000 for the atria and ventricles and 10,000 for the major blood

vessels around the heart.

In the tetrahedron torso model, the anisotropic electrical conductivities of the

ventricles and skeletal muscle were considered. Ventricular fiber orientation was

adopted from the simulations of ventricular excitation described in section 5.5.1.

In case of the skeletal muscles, fiber orientation was extracted from the highly

detailed thin-section photos of the Visible Man dataset [253]. Automatic methods

such as texture analysis and a 3D Sobel filter were used to derive an initial orien-

tation estimation, which was then revised by human experts. The resulting skeletal

muscle fiber setup is shown in Fig.5.14.

In our standard setup, we used the tissue conductivities that were reported by

Gabriel et al. at 10 Hz [245]. Skeletal muscle anisotropy ratio was set to 7 as

this seems to be the value that is most frequently cited in the literature [241]. In
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Fig. 5.14. Skeletal muscle fiber orientation of the Visible man dataset [253]. The orientation information

was extracted from the highly detailed thin-section photos using a combination of automatic methods such

as texture analysis, a 3D Sobel filter and manual corrections.

the Visible Man model, the intestine was not separated into small intestine and

colon. Therefore we used an average intestine conductivity of 0.278 S/m, which

was calculated based on medical textbook’s length and diameter statements on the

small intestine and colon (for details see [15]) and the corresponding conductiv-

ities reported by Gabriel et al. at 10 Hz [245]. The resulting volume fractions of

the small intestine and colon were 53.3% and 46.7% respectively.

As explained in section 3.2.3.2 there are a number of reasons for differences in

conductivity measurements originating from different studies. In order to evalu-

ate these conductivity uncertainties, a table was compiled listing the upper and

lower boundary of reported conductivities for the respective organ. Ten primary

sources ([247, 249, 250, 346, 347, 348, 349, 350, 351, 352]) and five review ar-

ticles ([241, 246, 245, 248, 353]) were considered. If a range of conductivities

instead of a single value was reported from a measurement paper, we considered

the respective upper or lower boundary for the listing. An exception was made

for the intestine: as only one literature source provided measurement data on the

small intestine and colon and due to the fact that most anatomical torso models

do not separate between the different parts of the intestine, we chose the lower

boundary of the intestine conductivity based on measurements of colon samples

and the upper boundary based on the reported value for the small intestine. As the

forward problem is considered to be a quasi-static problem, all measurements that

were performed at frequencies above 10 kHz were excluded from the listing.

Due to the scarcity of measurement data from human samples, most simulation

studies also use conductivity values from animal studies. Therefore we also in-
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Fig. 5.15. Unstructured tetrahedron model of the Visible Man torso with a superimposed BSPM showing

the atrial activity at 41 ms after sinus node stimulation. Visualized electrodes mark the locations were the

body surface potentials were extracted for subsequent analysis. Seven electrodes were located on the back

of the torso and are therefore not visible.

cluded measurements on animal samples into our listing. Finally no differenti-

ations were made between in-vivo or ex-vivo measurements or investigations at

different sample temperatures.

The forward calculations were performed based on the classic two step approach:

As a first step, atrial and ventricular activation and repolarization were simulated

on a voxelized model of the heart as described in section 5.5.1. Then the resulting

transmembrane voltages were interpolated onto the unstructured tetrahedron mesh

of the heart and the bidomain model [171] was used to calculate the extracellular

potentials in the whole torso. Details on the forward problem and the associated

mathematical equations can be found in [15] and in section 3.2.3.

The resulting body surface potentials were extracted at 64 electrodes that cover

the torso front and parts of the back of the Visible Man model. The electrodes’ po-

sitions can be seen in Fig. 5.15. The signals that were extracted at each electrode

were rearranged into an n-dimensional spatio-temporal vector Φ for further anal-

ysis. Assuming there are m electrodes and each electrode records the body surface

potentials at t samples, the vector dimension n can be calculated by n = m · t.
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5.5.3 Ranking the Conductivities with respect to Sensitivity and Uncertainty

To evaluate the importance of a certain tissue or fluid within the torso model, we

used two different ranking methods:

1) In a sensitivity analysis, we probed changes of the body surface potentials by

increasing and decreasing the conductivity of one organ at a time by 25% of the

values reported by Gabriel et al. [245]. A similar evaluation was done for the skele-

tal muscle anisotropy which was set to 5.25 and 8.75, respectively. The difference

between the BSPMs that were calculated using the increased and decreased con-

ductivity was a measure for the influence of the associated organ.

2) In an uncertainty analysis, the conductivity of each organ was set to the minimal

and maximal conductivity that was reported in the literature while the conductivi-

ties of all other organs remained at their standard values. This was a measure that

could be used to evaluate the influence that the currently existing measurement un-

certainties can have on the simulated body surface potentials. An example of the

potential changes that can be associated with measurement uncertainties is shown

in Fig. 5.16.

We used three different quantitative measures for both the sensitivity and the un-

certainty ranking. I.e. we used the root mean square error (RMSE) to evaluate
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Fig. 5.16. ECG in the Einthoven II lead resulting from forward calculations based on different skeletal

muscle conductivities. Atrial and ventricular activation was unchanged between both visualized signals.

The skeletal muscle anisotropy ratio was fixed to 7. The signals correspond to the lowest (0.0435 S/m [347])

and highest (0.213 S/m [346]) skeletal muscle conductivity obtained from the literature. The Einthoven II

lead was calculated using electrode 13 and 64 (see Fig. 5.15).
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differences in signal amplitudes between the signals Φ1 and Φ2 calculated at two

conductivity values σ1 and σ2

RMSE =

√
1

n
·

n

∑
i=1

[Φ1(i)−Φ2(i)]
2 (5.5)

A second measure that was not influenced by homogeneous signal scaling but

rather considered changes in signal morphology or changes between different sig-

nal regions or time instants was the normalized RMSE (RMSEnorm). It was calcu-

lated by normalizing each signal vector to a maximum absolute value of 1 before

calculating the RMSE.

Finally, the linear correlation coefficient (CC) was used as third measure. Between

the signals Φ1 and Φ2 it can be calculated by:

CC =
1

s1 · s2

n

∑
i=1

[
Φ1(i)−Φ1

] · [Φ2(i)−Φ2

]
(5.6)

Here, Φ1,2 are the arithmetic mean values and s1,2 the standard deviations of the

respective signals Φ1,2.

5.5.4 Possible Torso Model Simplifications

In order to assess possible torso model simplifications, we removed a varying num-

ber of low-ranking organs from the model. If the associated body surface poten-

tials were similar to the results that were calculated with a fully heterogeneous

torso model, the removal of these organs during the creation of future torso mod-

els would be permitted. Every simplified setup contained the heart as the cardiac

anatomy is a prerequisite for the simulations of the transmembrane voltages that

are used as input for the forward calculations. In addition to the heart, the 7, 5

or 3 most important organs or structures of the RMSE/CC-sorted atrial and ven-

tricular sensitivity ranking were added (see Table 7.5). The resulting setups were

named TOP7RMSE/TOP71−CC, TOP5RMSE/TOP51−CC and TOP3RMSE/TOP31−CC.

As some research groups also use homogeneous torso models we evaluated the

quality of the associated results by creating a homogeneous model. In this case,

HOMRMSE and HOM1−CC were identical.

The virtual removal of organs was performed by replacing the respective organs

with a mean conductivity σ that represented the averaged conductivity within the

torso. Two different mean conductivity values were considered:
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1) σ1 was based on the volume fraction of the different organs and the conductivity

values from Gabriel et al. at 10 Hz [245] that were associated with the respective

organ. This weighted average conductivity was calculated to be 0.123 S/m.

2) σ2 was based on literature values for the average torso conductivity. Two studies

were available reporting average torso conductivities of 0.241 S/m [348] and 0.216

S/m [350]. We used the arithmetic mean of these two reported values: 0.229 S/m.

As mentioned above, the performance of the simplified setups was rated by com-

paring the associated results with the fully heterogeneous torso model which

served as gold standard. Evaluation criteria were the RMSE or CC (depending

on which criterion was chosen for the selection of the most important organs).

5.6 BSPM Prediction for Varying Conductivities Based on PCA

In section 7.5 we will show how the BSPM can be influenced by changes in tissue

conductivities and we will recommend a list of organs that should be included in a

torso model which is used for the solution of the forward problem. However, also

within these most important organs the tissue conductivity is not precisely known

(reasons for this conductivity uncertainties were introduced in section 3.2.3.2).

Presently, BSPM changes that are due to conductivity variations can only be as-

sessed by repetitive forward calculations. A disadvantage of such an approach is

that a large number of forward calculations would have to be performed, which

is very time consuming and probably not possible in a potential future clinical

application.

In this study, we therefore propose a more efficient approach based on the Principal

Component Analysis (PCA) to overcome these limitations. The PCA is a statistical

method that allows to describe the variance in data by transforming it to a new

set of orthogonal basis vectors. These new basis vectors are chosen such, that the

representation error is minimized if the dimensionality of the data is reduced [354].

The PCA has been used in many application areas of biomedical engineering, e.g.

in image processing [355]. When it comes to ECG or BSPM analysis, it has been

utilized to remove spatial redundancy [356], extract respiratory information [357],

estimate T-Wave alternans [358], or suppress signal noise [359, 360].

In this study, we use the PCA to predict conductivity related BSPM changes from

few sample simulations. To this end, we performed seven forward calculation for

each considered organ (blood, muscle, lung, fat). In each forward calculation, the

conductivity was varied between ±75% of the default value (steps of 25%). The
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resulting signals were then fed into the PCA and allowed to estimate the ECG over

the whole sampled conductivity range. This was possible as conductivity induced

BSPM variations were described by a mean signal and the first PCA eigenvector

scaled by a conductivity dependent PCA score. Due to the monotonic nature of the

PCA score curve, missing scores could be interpolated and we were thus able to

reconstruct the BSPM for conductivities that were not part of the initial sample.

We evaluated this technique for conductivity changes in a single tissue as well

as for changes in multiple tissues at the same time. In addition to that, the pro-

posed method can be used to calculate confidence intervals for a simulated ECG,

which constitute the upper and lower signal boundaries for arbitrary conductivity

uncertainties. Finally we used the PCA method in the opposite direction: rather

than determining the most likely BSPM signal for a set of known conductivities,

we probed hundreds of different conductivity combinations in an effort to find the

most likely conductivities for a given BSPM based on a numerical optimization

scheme.

The results of this study can be found in section 7.6.

5.6.1 Electrophysiological Modeling

The highly detailed Visible Man dataset [309] provided the underlying anatomy

for the simulation of cardiac excitation and repolarization and the subsequent

solution of the forward problem of electrocardiography. Action potential propa-

gation in the atria and ventricles was described with the monodomain-reaction-

diffusion model (see section 3.1.3) that was integrated into a C++ simulation

framework [325].

For the simulation of atrial excitation in normal sinus rhythm, the Visible Man

atrial dataset was interpolated to an isotropic voxel size of 0.3 mm. Atrial elec-

trophysiology was described based on the model by Courtemanche et al. [342],

which was initialized with 60 beats at 1 Hz. Intracellular conductivities were cho-

sen such that the conduction velocity in the isotropic atrial tissue was 70 cm/s. In

the simulations, atrial activation (P-Wave) was completed after 150 ms.

Ventricular excitation and repolarization were simulated in an anisotropic model of

the Visible Man dataset that accounted for transmural and apico-basal electrophys-

iological heterogeneities. Details concerning the fiber orientation, the electrophys-

iological model and its heterogeneous parameterization can be found in [18, 15].

Ventricular activation was initiated by a special sequence of endocardial stimula-
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tions that mimicked the role of the excitation conduction system, see section 4.1

and [2]. Ventricular activation and repolarization was simulated for a total duration

of 400 ms (comprising QRS complex and T-Wave).

5.6.2 Torso Model and Forward Calculation

The unstructured tetrahedron model of the Visible Man dataset that was used for

the solution of the forward problem was adopted from [15] and is described in de-

tail there. It contained the following tissues: anisotropic heart muscle, blood (both

intracavitary and in the main vessels), lungs, fat (both visceral and subcutaneous),

anisotropic skeletal muscle (from now on referred to as muscle), intestine, liver,

kidneys, bone, cartilage, and spleen. For details on the modeling of ventricular

or skeletal muscle anisotropy please refer to [15]. Anisotropy ratios (along:across

conductivity) were set to 3:1 for the ventricular tissue and 7:1 for the skeletal mus-

cles. The conductivities used in this study were based on the values published by

Gabriel et al. at 10 Hz [245] (from now on referred to as GG). The only excep-

tion was made for the conductivity of the intestine for which we used an averaged

conductivity of 0.278 S/m as calculated in [15].

The forward calculations were again performed using the common two-step ap-

proach. At first, cardiac excitation was simulated as described in section 5.6.1.

Then the resulting distribution of transmembrane voltages was interpolated on the

unstructured tetrahedron model of the torso and the bidomain model [171] was

used to calculate the extracellular potentials (for details see section 3.2.3 and [15]).

For the subsequent evaluation, the body surface potentials were extracted at 64

electrodes which were positioned as shown in 5.15. The electrodes mainly covered

the central and left side of the thorax where highest signal variability is expected.

The following organs, tissues and fluids (from now on simply referred to as tis-

sues) are known to have a strong influence on the body surface ECG: blood, mus-

cle, lungs, fat [15, 240, 243] (see section 7.5.2). To probe our PCA-based BSPM

prediction technique we chose to evaluate variations in these most important tis-

sues. To this end, we conducted forward calculations with varying conductivities

for each organ and fed the results as input data into a PCA analysis. For each of

the four tissues, we performed seven forward calculations at the GG conductivity

and GG±25%, GG±50% and GG±75% to account for the existing conductivity

uncertainties due to measurement difficulties, sample variations or conductivity

affecting diseases. A change of ±75% translates into a ratio of 7 between upper
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and lower conductivity boundary. Typical uncertainty ranges for the four tissues

under investigation are between 2.3 and 5.5 (see [15] and Fig. 7.16), so a maximal

change of ±75% should be sufficient to cover this span. To enhance readability,

the seven conductivities will be referred to as σi = -75%, -50%, -25%, GG, +25%,

+50%, +75% in the following.

5.6.3 BSPM Analysis using PCA

As explained earlier, changes in tissue conductivities lead to changes in the as-

sociated BSPMs. The changes were quantitatively analyzed based on the PCA as

will be explained in the following. We separated our analysis between atrial and

ventricular signals. As the PCA decomposition was applied separately as well for

each tissue (blood, muscle, lungs, and fat) and for atrial and ventricular signals,

eight PCA decompositions had to be performed in total.

5.6.3.1 Assembly of the Spatio-Temporal Data Matrix

PCA is a statistical analysis method to detect patterns in data of high dimension.

Usually the data which should be analyzed is stored in a matrix X that consist

of m variables with n observations each and thus has m× n entries. In this study,

the n observations corresponded to the different conductivities that were under

investigation (i.e. n = 7) while each conductivity delivered a signal consisting of

m data points (m = number of electrodes × number of time steps).

In other words, the forward calculations resulted in seven BSPMs from the dif-

ferent conductivity values, recorded at 64 electrodes at time steps t = t0, . . . , tmax.

For every conductivity σi, the signals from all 64 electrodes at all time steps could

therefore be concatenated into one spatio-temporal signal vector

xσi = [x1
σi
(t0), . . . ,x1

σi
(tmax), . . . ,x64

σi
(t0), . . . ,x64

σi
(tmax)]

T

In order to construct the signal matrix X which served as input for the PCA, all

spatio-temporal signal vectors from the seven BSPMs (σi = -75%, -50%, -25%,

GG, +25%, +50%, +75%) were combined as follows:

X =

⎛⎜⎝ x1
−75%(t0) · · · x1

GG(t0) · · · x1
+75%(t0)

...
...

...
...

...

x64
−75%(tmax) · · · x64

GG(tmax) · · · x64
+75%(tmax)

⎞⎟⎠
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Each column of X contained the full spatio-temporal signal vector for one of the

seven conductivities under evaluation.

5.6.3.2 PCA Decomposition

The first step during the PCA decomposition is the creation of a mean-free data

matrix Xmf. To this end, the mean value over all observations is calculated for every

row and stored in the m-dimensional vector x̂. This mean value is subsequently

subtracted from all columns of X, which results in the creation of Xmf.

The so-called principal components P are now calculated by solving the eigenvec-

tor problem

CP = PΛ (5.7)

where P and Λ are m×m-dimensional matrices and C is the m×m-dimensional

covariance matrix C = cov(Xmf). The columns j = 1, . . . ,m of P contain the m
eigenvectors p j, and the diagonal elements of Λ contain the corresponding eigen-

values λ j. All off-diagonal elements of Λ are 0. The magnitude of the eigenvalues

λ j is a measure for the amount of signal variation that is represented by p j. We

used this property to sort the eigenvectors and eigenvalues in order of decreasing

eigenvalues.

While it is possible to determine the eigenvectors and eigenvalues as described

above, the PCA is often performed more efficiently based on the singular value

decomposition [354]. Although this approach delivers only first n-1 eigenvec-

tors, this is usually sufficient for most applications. In this study, we used this

method as well by applying an implementation of the modified Golub-Reinsch

algorithm [361, 362] from the GNU Scientific Library [363].

5.6.3.3 Signal Reconstruction

If the PCA is interpreted as a coordinate transformation, the calculated eigenvec-

tors span a new orthonormal coordinate system, in which the origin is x̂ and the

base is {p j | j = 1, . . . ,m}. The spatio-temporal signal vectors xσi (sigmai rep-

resents the seven different conductivity values from -75% – +75%) can now be

expressed in the new coordinate system as a superposition of the new base vectors

xσi = x̂+
m

∑
j=1

s j,ip j (5.8)
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The PCA scores s j,i are the entries of the score matrix S = PT Xmf, which is cal-

culated as the projection of the initial mean-free data onto the new coordinate

system.

In many applications, the main data variation is already captured in the first few

eigenvectors. Thus the PCA can be used to reduce the complexity in data of high

dimension as it represents the data more efficiently in its problem specific coor-

dinate system that is formed by the PCA eigenvectors. In this study, it was even

sufficient to only consider the first eigenvector, because λ1 � λ2 as we will show

in section 7.6.1. Therefore, signal reconstruction can be done using

xσi ≈ x̂+ s1,i ·p1 (5.9)

As x̂ is usually different for the respective tissues, the origin of the coordinate sys-

tem was shifted to the default signal for the GG conductivities. This was possible

because this signal was part of the PCA input matrix for all tissues.This resulted in

the shifted scores q1,i = s1,i−s1,GG and the reconstruction formula can be rewritten

to:

xσi ≈ xGG +q1,i ·p1 (5.10)

Although equation (5.9) and (5.10) are mathematically equivalent, equation (5.10)

had the advantage that it allowed to combine the results of PCAs from different

tissues (see section 5.6.4.2) by using a common coordinate system origin.

5.6.4 Signal Estimation for Arbitrary Conductivities

For a certain tissue and e.g. ventricular input data, the simulated BSPM for each

of the seven conductivities can be reconstructed from the standard GG signal by

adding a certain “portion” of the first principal component (see equation (5.10)).

The “size” of this portion for a conductivity σi was determined by the shifted score

q1,i.

In the following sections (5.6.4.1 and 5.6.4.2) we explain how the BSPM can be

estimated for an arbitrary conductivity that lies between the GG±75% boundaries

that were introduced before. This was done for both: Conductivity changes in a

single tissue and also for conductivity changes in multiple tissues at the same time.
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x(σB,σM,σL,σF)≈ xGG +qB(σB) ·p1,B +qM(σM) ·p1,M

+qL(σL) ·p1,L +qF(σF) ·p1,F (5.12)

This reconstruction equation assumed that it was possible to describe the effects of

combined conductivity variations of several tissues as the superposition of signal

changes caused by varying the single conductivities separately.

5.6.4.3 Validation of the PCA-based BSPM Prediction

In order to validate our reconstruction approach, which was based only on the first

eigenvector of the PCA decomposition, we compared the ratio between first and

second eigenvalue. In addition to that, we calculated the pairwise angles between

the first eigenvectors of each of the four tissues as these angles were a measure

of the independence of changes caused by the different tissues. This was done

separately for atria and ventricles.

To assess the errors during signal reconstruction that were due to the omission of

the second and successive eigenvectors, we reconstructed BSPM signals for differ-

ent conductivities (changes in a single tissue) using the exact shifted scores and the

first eigenvector according to equation (5.10). The root mean square error (RMSE)

between the reconstructed and the original forward-calculated signal (which was

used as reference) served as quantitative measure for this reconstruction error. The

signals which were used as input for the PCA decomposition covered the relevant

parts in the cardiac cycle (150 ms of atrial depolarization and 400 ms of ven-

tricular de- and repolarization). Therefore the RMSE was representative for the

reconstruction error that can be expected when predicting the BSPM of a typical

heartbeat.

In addition to the errors that were associated with our simplified reconstruction

equation (5.10), we evaluated the errors that were introduced by the PCA score in-

terpolation based on a leave-one-out validation. To this end, we deliberately omit-

ted an input signal at a specific conductivity from our PCA and used the interpo-

lation technique to derive the associated interpolated score. This score was then

used to reconstruct the associated BSPM (conductivity changes in a single tissue)

and the reconstruction error was assessed by calculating the RMSE. In this case,

the RMSE was a measure for the combined errors that were introduced by both the

omission of the second and successive eigenvectors and the score interpolation.
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Finally, we evaluated the errors associated with the reconstruction of BSPMs that

were influenced by simultaneous conductivity variations in all four tissues. In this

case, we predicted the BSPMs with all four conductivities either increased or de-

creased by 25%. This resulted in 24=16 combinations, which were reconstructed

using equation 5.12. In order to generate reference data that could be used to as-

sess the quality of the reconstruction we performed the associated 16 additional

forward calculations using the method described in section 5.6.2. Again the RMSE

was calculated between the reconstructed and the reference signals. Here, it was a

measure to evaluate the assumption that the combined conductivity variations of

several tissues can be predicted by the superposition of the changes introduced by

a single tissue separately. A similar validation procedure was repeated for larger

conductivity variations of ±50%.

5.6.4.4 Confidence Intervals

As explained in section 3.2.3.2, there are multiple reasons for measurement uncer-

tainties of tissue conductivities. However, normally the BSPM changes associated

with these uncertainties are neglected as most simulation studies use best-guess

conductivities from an arbitrary literature source.

With the presented PCA-based reconstruction approach it is possible to determine

the minimum and maximum signal between given conductivity boundaries for

each time step. This lower and upper signal boundaries could then be considered

as a confidence interval for the reconstructed signal.

In this study, such confidence intervals were calculated based on the best-guess

values from GG. Assuming a relative uncertainty δσrel the confidence interval

was determined for simultaneous uncertainties of ±10%, ±30%, and ±50% in all

four tissues.

Because bipolar ECG leads are often used in a clinical setting, we exemplarily

evaluated the calculation of confidence intervals in the Einthoven II lead.

5.6.4.5 Conductivity Optimization

During the BSPM signal reconstruction, the PCA uses the relationship between

tissue conductivities and PCA scores to predict the effects of changing tissue con-

ductivities. Yet, this relationship is bijective and can also be used in the opposite

direction. In this case, it is possible to predict the most likely conductivities for a

given BSPM signal. To test this inverse prediction method, we used Nelder-Mead’s
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simplex algorithm [364] as multidimensional optimization scheme to vary the con-

ductivities until a minimal RMSE indicated the best possible match with the avail-

able reference signal. A common problem during multi-dimensional parameter

optimization is that the search algorithm might get trapped in a local minimum.

To prevent this from happening, the optimization procedure was always started

ten times from different initial positions. The optimization approach was evalu-

ated for the same 16 reference signals that were used in section 5.6.4.3 (combined

tissue conductivities variations in all 4 organs: 24 combinations with variations of

±25%).
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Results: Electrophysiological Modeling

This chapter presents the results of the various electrophysiological studies that

were conducted during the course of this thesis. The methods that were used during

the creation of these results are described in section 4.

6.1 Results: Modeling the Specialized Excitation Conduction
System

6.1.1 Effects of the Endocardial Stimulation Profile on the ECG

Fig. 6.1 gives an overview over the effects of changes in the most important stim-

ulation profile parameters on the QRS complex in the Einthoven II lead. The ECG

that resulted from the standard parameterization of the endocardial stimulation

profile is visualized together with the clinically measured signal in Fig. 6.1A (for

details on the standard parameterization or the clinical measurement please refer

to section 4.1). The simulated signal showed a similar R peak morphology as the

measurement while the S peak was significantly smaller in case of the simulations.

QRS complex changes due to a change in conduction velocity within the Purkinje

tree are illustrated in Fig. 6.1B. Slower velocities led to a slower depolarization

which was associated with a rightwards shifted, broadened R and S peak (of re-

duced amplitude) and a postponed and prolonged repolarization phase. The effects

of an increased conduction velocity were vice versa. A variation in the degree of

endocardial coverage with PMJs mainly induced changes of the amplitude and

width of the S peak and T-Wave (see Fig. 6.1C). In this case, a lower coverage

(30% of the basal surface was uncovered in both left and right ventricle) led to

a widening of S peak and T-Wave and increased their amplitudes. In Fig. 6.1D it

can be observed that changes in PMJ density had an impact on the amplitude and
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S peak morphology (see Fig. 6.1E). While changes were small if left and right

ventricular root-points were stimulated simultaneously, the R peak was shifted

leftwards and the S peak had a reduced amplitude and widened morphology if

the stimulation sequence was reversed (in this case the left ventricular root-points

were activated first). The effects of a relocation of the root-points can be seen in

Fig. 6.1F. Here, the left ventricular root-points have been moved to the anterior and

posterior papillary muscles. This resulted in a reduced R peak amplitude whereas

the S peak was wider and more pronounced. In addition to that, the T-Wave ampli-

tude was increased and the waveform was widened. Finally, we manually placed

additional PMJs at the sites of early left ventricular activation as reported by Dur-

rer et al. [174]. This led to both a wider R peak of reduced amplitude (which was

additionally shifted to the left) and a wider and deeper S peak. Futhermore, the

repolarization occurred faster and the T-Wave amplitude was higher compared to

the standard setup.

In Fig. 6.2 the isochrone maps that resulted from the standard stimulation profile

are compared with the invasively acquired measurements from Durrer et al. [174].

The cut plane was chosen at a similar anatomical position. Although the ventricu-

lar anatomy is clearly different, the isochrone maps show many common features

(e.g. pattern of early activation in the left ventricle vs. late activation in the poste-

rior part of the right ventricle).

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Simulation with the 
Standard Stimulation Profile

Isochrone Distribution 
According to Durrer et al.

ms

Fig. 6.2. Comparison between the simulated (standard stimulation profile) and a measured isochrone dis-

tribution (measurement was conducted by Durrer et al., the figure on the right side is directly adopted

from [174]). Both isochrone maps show marked similarities: early activation on the anterior part of the left

ventricle and last activation on the posterior side of the right ventricle.
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6.1.2 Discussion

Although it is well known that the excitation conduction system is a major determi-

nant for the correct sequence of ventricular activation, there is only a small number

of in-silico models available (see section 3.1.4). The main reason for this are con-

tradictory anatomical descriptions, inter-individual variability and the scarcity of

human activation-time data. In addition to that, most of the existing models of the

excitation conduction system are customized to a special ventricular anatomy and

need considerable manual adjustments in order to be transferable to a new dataset.

In this study, we present a method that allowed the fast creation of an endocardial

stimulation profile that was designed to mimic the specialized excitation conduc-

tion system. Through variable model parameters it was possible to rapidly cus-

tomize the stimulation profile or to adapt it to different ventricular anatomies.

In addition to that, we varied the different parameters and evaluated their impact

on the Einthoven II lead. In this context it is interesting to note that parameters

which had only an impact on the height of the R and S peak like the density of the

PMJs (Fig. 6.1D) or the time offset between the root-points (Fig. 6.1E) induced

no changes of the T-wave morphology. In contrast to that changes of the width

of the R and S peak due to modifications of the conduction velocity (Fig. 6.1B),

endocardial coverage (Fig.6.1C) or the manually placed root-points (Fig. 6.1F)

impacted directly on the width and height of the T-wave.

If the left ventricular root-points were stimulated 8 ms after the one in the right

ventricle, the QRS complex showed a better match with the clinical recording. This

was unexpected as Durrer et al. claim that the first ventricular activation occurs in

the left ventricle [174]. Furthermore, the inclusion of Durrer’s sites of early acti-

vation did not enhance the match with the clinically acquired ECG (see Fig. 6.1F).

In conclusion, we presented a versatile method that allowed the fast and realistic

creation of endocardial stimulation profiles. To further facilitate the customization

and adaption to new ventricular anatomies, we envision an optimization frame-

work that will automatically determine an optimal parameterization of the stimu-

lation profile and thus further reduce time consuming manual interaction. Such an

optimization framework will be implemented and evaluated in a future study.
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Fig. 6.5. Averaged correlation coefficient and averaged and normalized RMSE between the measured and

simulated signals. Both criteria were calculated within a signal window (with 261 ms length) that contained

the T-Wave and parts of the ST segment. This had the advantage that the evaluation was possible regardless

the differences in QT times between the various setups.

and the simulated signal. More details on this approach will now be given in the

following:

At first, we had to define a window for the measured ECG signal. To this end, we

determined the T-Wave maximum in an arbitrary lead with a positive T-Wave and

chose the window to start 160 ms before this maximum and to end 100 ms after it.

The resulting window with a length of 261 ms is visualized in Fig. 6.3A.

Now we had to find the corresponding window for each simulated signal. In this

case, we again determined the T-Wave maximum in an arbitrary positive lead and

used it as an initial guess for the window position. For this position, we then calcu-

lated the correlation coefficient between every channel of the measured and simu-

lated signals. Based on these channel specific correlation coefficients it was possi-

ble to calculate the averaged correlation coefficient |r| by:

|r|= 1/n
n

∑
i=1

|rn| (6.1)

where n was the channel number.

Within these windows, the average correlation coefficient r was calculated be-

tween each heterogeneous setup and the measured signal by:

r = 1/n
n

∑
i=1

rn (6.2)
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This averaged correlation coefficient is visualized together with the standard devi-

ation over the electrodes of each heterogeneous setup in Fig. 6.5. High morpholog-

ical similarities are indicated by large values of r. Values below 0 denote T-Waves

with opposite polarities.

Although the correlation coefficient is a suitable measure to compare different sig-

nal morphologies, it neglects signal amplitudes and is therefore not able to eval-

uate if the amplitude relations between QRS complex and T-Waves are realistic

in the simulated signals. For this reason, we chose to analyze these amplitude re-

lations by calculating the averaged RMSE. Prior to the calculation of the RMSE

all signals were normalized to their respective R-peak amplitude in the Einthoven

II lead. The same signal windows that were previously used to determine the av-

eraged correlation coefficient r were now used to calculate the RMSEs between

measured and simulated signals. The RMSEs over all channels were subsequently

averaged and normalized using the largest averaged RMSE of all setups (in this

case: TM-60*A1B1.5). The resulting values are plotted together with the standard

deviation in Fig. 6.5. All heterogeneous configurations that had both a large value

of r and a small averaged RMSE showed a good agreement with the measured

reference T-Wave.

In experimental studies, the repolarization time (RT) is an often determined pa-

rameter that is used to characterize the repolarization sequence. It is defined as

the sum of activation time and action potential duration (RT = AT+APD90). In

Fig. 6.6 and Fig. 6.7 the repolarization time maps of all 19 heterogeneous config-

urations are visualized.

In general, it was not possible to rule out the existence of either apico-basal or

transmural heterogeneities as setups with both, exclusively apico-basal and exclu-

sively transmural heterogeneities resulted in concordant T-Waves. However there

were some transmural and also apico-basal configurations that seem to be un-

likely to generate positive T-Waves. With respect to transmural heterogeneities it

could be observed that a more endocardial position of the M-cells led to positive

T-Waves of large amplitudes. In this case, the repolarization started from the epi-

cardium (see Fig. 6.6). If the M-cells were moved further to the epicardium, the

repolarization started from the endocardium and the T-Wave was inverted.

If we look at the effects of apico-basal heterogeneities, it could be observed that a

higher apical density of IKs resulted in positive T-Waves with repolarization start-
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Fig. 6.6. Repolarization time maps for the setups with transmural, apico-basal and interventricular hetero-

geneities. Please note the individual color-scaling of each repolarization time map.

ing at the apex. Negative T-waves were seen for higher basal IKs densities. In this

case, the repolarization started at the base of the LV and at the apex of the RV.
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Fig. 6.7. Repolarization time maps for setups with a combination of apico-basal and transmural hetero-

geneities and setups that had a linear relationship between AT and APD. The repolarization time map in

the last row visualized the repolarization sequence in a homogeneous setup. Please note the individual

color-scaling of each repolarization time map.

If interventricular heterogeneities were added to transmural heterogeneities, it al-

ways resulted in notched T-Waves. Due to the higher IKs density, the repolarization

began in these setups at the RV apex. The combination of transmural and apico-

basal setups produced positive, negative and biphasic T-Waves. Again a more en-
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calculation of ECGs. However these models rely on simple electrophysiological

descriptions and do not allow to integrate experimentally measured ion channel

heterogeneities.

In this study, we strove to fill this gap by using an anisotropic heart and torso model

in combination with a detailed model of cardiac electrophysiology to determine the

effects of different heterogeneous IKs distributions on the ECG. In contrast to other

studies that investigated the effects of repolarization heterogeneities using a cellu-

lar automaton approach [159, 160, 161], we simulated action potential propagation

with the monodomain reaction diffusion equations which has several advantages

over rule-based fixed AP models as outlined in [162].

In order to be able to create representative IKs distributions for a subsequent eval-

uation, we compiled a literature overview concerning heterogeneous ion channel

densities and APD dispersion (see Table 4.1, Table 4.2 and Table 4.3). Although

this list is not complete, it represents a collection of studies that are often used in

the modeling community as basis for models of heterogeneous ion channel dis-

tributions. In addition to that, the tables also illustrate the conflicting reports be-

tween measurements on different, or even within the same species (e.g. direction

of apico-basal dispersion).

It should further be noted that the existence and effects of the M-cells is contro-

versially discussed in the community. Although we listed a number of studies that

found M-cells in a variety of species, there is also a large body of reports that dis-

putes their existence or at least their functional role regarding the genesis of the

T-Wave. The list of species in which the existence of M-cells is questioned com-

prises canine [366, 367, 368], pig [369, 370], rat [371] and human [111, 372, 373].

The contradictory findings are mainly attributed to differences in measurement

techniques [67, 374] and the use of certain anesthetic agents [374]. Other factors

that might influence the development of characteristic M-cell features in cardiac

tissue is the age of the animals under study [375] and the type of sample on which

the measurements are conducted (wedge vs. intact heart) [376].

In this study we did not try to prove or refute the existence of the M-cells. We rather

aimed at a neutral evaluation of the effects of previously measured heterogeneities

on the morphology of the T-Wave. To this end, we evaluated not only transmural

but also apico-basal, interventricular and mixed setups. It should be noted, that

none of the tested setups was able to reproduce the measured T-Wave in the multi-

channel ECG completely. However, there were some configurations that appeared
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to be more likely and others that could be ruled out as they produced discordant

T-Waves.

Examples for setups that performed above average were the transmural configu-

rations in which the M-cells were placed in Mid position (TM-40) or had island-

shaped topography (TM-IS-3r, TM-IS-4r). In contrast to that, a more epicardial

M-cell position as proposed by Drouin et al. [261] is unlikely as it was not able

to generate a concordant T-Wave. Furthermore, our model did also not support

the existence of a higher basal density of IKs (see Fig. 6.4 and Fig. 6.5). The best

match between measured and simulated T-Waves was achieved for the apico-basal

configuration with higher apical IKs density (A1.5B1) and a mixed transmural and

apico-basal configuration (TM-40*A1.5B1).

If we look at the setups that had an inverse linear relationship between AT and

APD, it was surprising to see that both tested slopes (-0.5 and -1.4) produced

concordant T-Waves. This was not expected as it challenged the rule of thumb

according to which the repolarization should travel in the opposite direction than

the depolarization to generate concordant T-Waves. However, these findings were

supported by the study from Yuan et al. [292] where slopes < −1 were found

in the presence of positive T-Waves. Finally it should be noted that the T-Waves

resulting from both setups had unrealistic signal amplitudes (see Fig. 6.5) which

renders the associated gKs distributions to be rather unlikely.

In general, it was difficult to predict T-Wave morphologies based on the repolariza-

tion time (RT) maps that are displayed in Fig. 6.6 and Fig. 6.7. This is particularly

evident if we compare the RT map of TM-60 with the map of the HOM setup.

Despite the fact, that both AT maps are similar and that they show a repolarization

sequence that is comparable to the activation sequence (compare with Fig. 4.3),

both setups generate T-Waves of different polarities. This emphasizes the impor-

tance of quantitative cardiac modeling as it might not be sufficient to perform a

(low) number of isolated RT measurements to reliably predict the T-Wave mor-

phology.

Our study is limited by the fact, that the sequence of repolarization is not only

determined by the APD but also by the sequence of activation. This means that a

different sequence of activation would lead to differences in the sequence of re-

polarization and thus to different T-Wave morphologies. We tried to minimize this

potential source of error by modeling an activation sequence which resembled the

real activation sequence as much as possible (compare measured and simulated
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QRS complex in Fig. 6.3). In addition to this dependence of the repolarization se-

quence on ventricular activation, the T-Wave morphology might also depend on

the shape of the anatomical model that is used for the investigation. In case of an

anatomical model that has thicker ventricular walls, the depolarization front needs

more time to travel through the wall and thus the model will react differently to

certain distribution of transmural or even apico-basal heterogeneities [377]. Fi-

nally we used a static diastolic model of the ventricles that neglected ventricular

contraction and relaxation. The consideration of these effects has been shown to

lead to a shortened QT time [260] and a reduced T-Wave amplitude [13, 260].

These effects should be kept in mind when interpreting the results of this study.

When it comes to the formation of the T-Wave, it is known that not only the length

and time of initiation of an action potential is important, but also the height and

slope of the action potential plateau (see response in [372]). This means that a

prominent T-Wave can exist even if the differences in repolarization times are

small. In addition to that, differences in action potential slope are probably also

responsible for the constant rise in signal amplitude in the ST segment of the mea-

sured ECG (see Fig. 6.3A). As this was not visible to the same extent in case of

the simulated signals, we conclude that our model had a lower than normal het-

erogeneity concerning different action potential morphologies. This issue should

be addressed in future studies by the inclusion of additional ion channel hetero-

geneities that impact on the shape rather than the duration of the ventricular action

potential.

In conclusion, we presented an evaluation that used a realistic in-silico model of

the ventricles to investigate the effects of different ion channel heterogeneities

on the morphology of the T-Wave. The results were compared to a clinical ECG

recording from the same volunteer that delivered the anatomical basis for the sim-

ulation study. To the best of our knowledge, this is the first biventricular and elec-

trophysiologically detailed model that allows to assess the influence of ion channel

heterogeneities by comparing the results with real clinical ECG data. This model

can be used in the future whenever new measurement data becomes available to

evaluate its plausibility with respect to the formation of concordant T-Waves.
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6.3 Results: Beta-Adrenergic Regulation of Cellular Electro-
physiology

6.3.1 Calcium Sparks and Adrenergic Influence on INaK

In our initial implementation of the beta-adrenergic signaling pathway, we con-

sidered its effects only on three target proteins: ICaL, SERCA (Iup) and IKs [5, 7].

After conducting some test simulations for longer simulation durations (up to 60

s), it soon became obvious that the model (especially with M cell parameterization)

was prone to spontaneous calcium release currents (from now on termed calcium

sparks) from the SR which could trigger early after depolarizations (EADs) as can

be seen in Fig. 6.9.

The reasons for these calcium sparks was the cytosolic accumulation of calcium

that was evoked by the increase of ICaL under beta-adrenergic activity. In addition

to that, also more calcium was present in the SR due to the ISO-induced increase

in Iup.

As a first reaction, to counteract these calcium sparks, we reduced the ISO-effects

on ICaL by adapting the phosphorylation coefficients as described in [5, 7]. How-

ever, after conducting a literature survey it became evident, that the existence of

calcium sparks was normal if the adrenergic regulation on INaK was not consid-

ered [299].

Despa et al. conducted experiments investigating the effects of ISO on INaK and

its indirect influence on the cytosolic calcium concentration via NCX [299]. Con-

cerning INaK, a small single-membrane spanning protein called phospholemman

(PLM) seems to be responsible for the regulation of the pump activity. In resting
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Fig. 6.9. Example for a spontaneous calcium release current from the SR (shown here is an M cell configu-

ration that was paced at 1 Hz). The calcium spark triggered an early after depolarization (EAD) that might

become arrhythmogenic. Figure was modified based on [6].
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Table 6.1. Number of calcium sparks that occurred for the different cell types (endo, M and epicardial cell)

under different stimulation frequencies (0.5 Hz, 1 Hz, 2 Hz) in the presence of ISO during a simulation

duration of 60 s. Two different in-silico model versions are compared: a model without ISO-effects on INaK

(PLM-KO) and a model that considers these effects (WT).

Endo M Epi
0.5
Hz

1
Hz

2
Hz

0.5
Hz

1
Hz

2
Hz

0.5
Hz

1
Hz

2
Hz

PLM-KO 0x 1x 6x 0x 11x 0x 0x 6x 12x

WT 0x 0x 0x 0x 7x 0x 0x 0x 3x

conditions, PLM inhibits INaK by reducing its affinity for cytosolic sodium. In the

presence of ISO, PLM is phosphorylated thereby inducing a leftwards shift in the

sodium activation curve (i.e. the inhibiting effect is reduced). In their investiga-

tions, Despa et al. used healthy mice (WT) and PLM knockout mice (PLM-KO) in

which the phosphorylation of PLM was no possible. WT mice showed a smaller

ISO-induced increase in both cytosolic and SR calcium content due to the indirect

effects of INaK on NCX that were explained previously (see section 4.3.1) [299].

To consider the described effects, we integrated the adrenergic effects on INaK into

our model as well (see section 4.3.2). As initial parameterization, f ackNaK was

set to 0.011 and f acKmNa was set to 0.34. To compare the susceptibility of this

updated model towards the development of calcium sparks to the original version

from [5, 7], the following in-silico experiments were conducted: Endo, M and

epicardial configurations of the model were stimulated at frequencies of 0.5 Hz,

1 Hz and 2 Hz for a total duration of 60 s. Then, the number of calcium sparks

occurring within this period was counted. The results were sorted depending on

whether adrenergic effects were considered to regulate INaK (WT) or not (PLM-

KO). Table 6.1 summarizes the results:

None of the three different cell types showed calcium sparks for stimulation rates

of 0.5 Hz both with (WT) or without ISO effects on INaK (PLM-KO). For a stim-

ulation rate of 1 Hz, all cell types showed sparks in the PLM-KO configuration

(highest incidence in M-cells) which disappeared in endo- and epicardial cells

once the influence of ISO on INaK was considered. In case of the M cells, the num-

ber of sparks was reduced in the WT configuration. At higher stimulation rates (2

Hz), only endo- and epicardial cells showed calcium sparks (PLM-KO). In case

of endo cells, the sparks disappeared and in case of epicardial cells, they occurred

less frequently once ISO effects on INaK were considered.
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• Without adrenergic effects on INaK, the cytosolic sodium concentration rose in

the presence of ISO (see Fig. 6.12C). This did not agree with the experimen-

tal results from Despa et al. [299]. However, it should be noted that they were

surprised by the fact that ISO had no effect on Nai in PLM-KO mice in their

experiments. Actually they expected to see a rise in cytosolic sodium concentra-

tion in this setting (similarly as it was observed in the simulations). The reason

for this was the larger calcium influx that was party balanced by the enhanced

calcium extrusion via NCX. Due to the effects on INaK, this should in turn in-

crease cytosolic sodium as explained in [299].

• The larger the phosphorylation effects on INaK, the stronger the decay in cy-

tosolic sodium: For the WT setup, no change of Nai was observable. However,

for an increased phosphorylation (factor 1.5 or 2) similar reductions were seen

as in the experiments.

Based on these results, one could argue that the phosphorylation effects on INaK

are not adequately represented in the WT setup. However, additional experiments

should be conducted (e.g. the time-course of cytosolic calcium could be repro-

duced based on [299]) before final adaptations are made.

6.3.2 Effects of Beta-Adrenergic Regulation on Endo, M and Epicardial
Cells

In the following, the effects of an activated beta-adrenergic signaling pathway are

shown on endo, M and epicardial cells (see Fig. 6.13, Fig. 6.14, Fig. 6.15). The

main effects on the four channels in which ISO influence was considered were

already described in section 4.3.2. Here, graphical visualizations of these changes

are shown for the sake of completeness.

6.3.3 Changes of AP Morphology Due to Beta-Adrenergic Regulation

After including the beta-adrenergic signaling pathway into the ten Tusscher model,

the repolarizing flank of the AP showed a small slope just before the repolariza-

tion was finally completed (see Fig. 6.16A). Such a change in AP morphology was

neither observed in the original Saucerman model [100] nor in experimental mea-

surements on a ventricular wedge preparation (see Fig. 6.16B). When conducting

in-silico experiments, this change in repolarization slope could severely affect AP

evaluation criteria like the APD90. Such problems were encountered e.g. in a study











6.4. RESULTS: THE CONGENITAL LONG-QT SYNDROME 153

a reduction of IKr channel conductivity, we observed a prolongation of the APD90

in all three cell types. Under physiological conditions, the heterogeneous distri-

bution of IKs leads to a longer APD90 in M cells (as the IKs density is consider-

ably lower here compared to endo- and epicardial cells): APD90,Endo = 318 ms,

APD90,M = 320 ms, APD90,Epi = 275 ms.

In the presence of LQT 2, the low intrinsic density of IKs caused a disproportion-

ately high prolongation of the APD90 in the M cells. However, this prolongation

is balanced and thus reduced in tissue simulations due to the effect of electro-

tonic coupling (e.g. mild LQT 2 (50 % gKr,max) uncoupled: APD90,Endo = 296 ms,

APD90,M = 362 ms, APD90,Epi = 289 ms vs. mild LQT 2 (50 % gKr,max) coupled:

APD90,Endo = 349 ms, APD90,M = 351 ms, APD90,Epi = 296).

The upper row of Fig. 6.19 shows the ventricular activation sequence for the phys-

iological case. The depolarization was initialized by the stimulus currents at the

Purkinje fiber endings in the apical endocardium. In general, the activation se-

quence was not influenced by the LQT 2 pathology as the associated changes in

gKr,max only affected the phase of ventricular repolarization. No significant poten-

tial differences were present during the ST-segment (starting at t = 77 ms) result-

ing in an isoelectric line in the ECG (see Fig. 6.19C). The repolarization sequence

in our heterogeneous model started at the endo- and epicardial border of the apex

and finally vanished in the basal M cells (see Fig. 6.19D and Fig. 6.19E). This

resulted in a concordant T-Wave in the clinical 12-lead ECG (see Fig. 6.20).

In case of LQT 2, the reduction of the repolarizing current IKr led to a prolongation

of the QT interval (see Fig. 6.20). In addition to that, the disproportionately high

prolongation of the M cell APD90 increased the dispersion of repolarization that

was present in the model. An increase of this dispersion led to a widening of the T-
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Fig. 6.18. Influence of LQT 2 on AP morphology of endocardial (A), M (B) and epicardial cells (C). The

AP traces were extracted from tissue simulations in which the electrotonic coupling smoothened the AP

morphology differences between the three cell types. Two degrees of LQT 2 severity were modeled (50 %

gKr,max, 0 % gKr,max). The APD90 prolongation increased with severity. Figure adopted from [8].
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wave and an augmentation of the T-wave amplitude which is visible in Fig. 6.20.

Ventricular repolarization was finally finished after t = 375 ms, t = 400 ms and

t = 433 ms for the physiological setup, the mild form of LQT 2 (50 % gKr,max) and

the more severe form (0 % gKr,max), respectively.

6.4.1.2 Discussion

Although the ECG is still predominantly used in the clinical routine to identify

LQTS patients, the quantitative effects of ion channel mutations on the body sur-

face ECG are not entirely understood. Within this context, mutation-induced ef-

fects on the T-Wave morphology are of particular interest.

In this study we investigated the effects of LQT 2 on electrotonically coupled

ventricular myocytes and the body surface ECG. LQT 2 was modeled either by a

reduction of IKr channel conductivity or a complete block of this ionic current. Due

to the heterogeneous electrophysiological properties of the ventricular tissue this

led to a disproportionately high prolongation of the APD in the M cells similar

to measurement results that were based on a canine ventricular wedge prepara-

tion [216]. In addition to that, a QT prolongation was also observed in the com-

puted Einthoven and Wilson leads, as expected.

In spite of the opposite polarity of depolarization and repolarization, our model

produced a concordant T-Wave (see Fig. 6.20) which we attributed to the hetero-

geneous ion channel distribution that was considered. Although it was beyond the

scope of this study to evaluate the impact of different heterogenous distributions

(e.g. transmural vs. apico-basal) it can be concluded that transmural heterogeneity

alone could be sufficient to generate a positive T-Wave. The study from Yan et
al. [216] supports this hypothesis but nevertheless it should be clarified in future

investigations.

It should be noted that although our model was able to reproduce the expected

QT prolongation, we did not see a notched or bifurcated T-Wave in any of the

simulated standard leads. Yet, such a signal has clinically been associated with an

increased risk of Torsade de Pointes [379]. According to Gima and Rudy, T-Wave

notches can be induced by superimposing a hypokalemia on the LQT 2 syndrome

in a one dimensional model [133]. In this case, the effects of the hypokalemia on

the inward rectifier potassium current IK1 were held responsible for the appear-

ance of the notch. Although hypokalemia has often been reported to be a potential

arrhythmogenic substrate in the presence of LQTS [380] it is not completely clear
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A t = 26 ms B t = 43 ms C t = 77 ms t = 317 msD E t = 336 ms

20 mV

-80 mV

3 mV

-3 mV

Fig. 6.19. Ventricular activation and repolarization (top row) in the physiological case together with the

corresponding BSPMs (bottom row). The depolarization started at t = 0 ms in the apical endocardium of

the left and right ventricle and propagated first in apical (A) and later in basal epicardial direction (B).

After the plateau phase of the AP (ST segment in the ECG) (C), the repolarization sequence started at

the apical endo- and epicardium (D) and vanished in the basal midmyocardial region (E). In the displayed

physiological case, ventricular repolarization was finished after 375 ms.

if all cases of notched T-Waves can be attributed to hypokalemia or if there might

be additional effects involved.

In an extension of the presented model, the ventricular fiber orientation should be

considered to allow for the anisotropic conduction velocity that is present in car-

diac tissue. Information regarding the course and distribution of ventricular mus-

cle fibers is available from histological investigations [35] and Diffusion Tensor

MRI datasets [43]. In addition to that, a computational model of the LQTS would

be more realistic if it considered changes in ion channel kinetics that can be ex-

tracted from patch-clamp measurements. Finally, additional information on het-

erogeneous ion channel distributions should be considered. E.g. Volders et al. [57]

reported a larger IKs and Ito density in the M cells in the right ventricle which ab-

breviated the APD compared to cells from similar locations in the left ventricle.

Furthermore, Szentadrassy et al. [263] found an apico-basal IKs gradient, which

should be implemented in a future version of our model as well.

In general, it could be observed in this study that morphological changes of the

T-Wave due to LQT 2 were lead dependent (see Fig. 6.20). In the future it might

be possible to use personalized computer-based models of the LQTS to evalu-

ate potential genotype-phenotype correlations. If such correlations could be es-

tablished, it might be possible to derive special ECG lead positions that amplify

these genotype-phenotype relation. In the long run this could lead to an ECG-

based genotype identification strategy that avoids the time-consuming and expen-
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Fig. 6.20. Einthoven I (A) and Wilson V4 (B) ECG leads were extracted from the calculated BSPMs. The

increase in dispersion of repolarization due to LQT 2 led to a widening of the T-Wave and an augmentation

of the T-Wave amplitude. Figure adopted from [8].

sive DNA analysis, which is up to now still the gold standard for the differentiation

between the various types of LQTS.

6.4.2 Results: Suitability of Different Electrophysiological Models to
Characterize Long-QT 2

6.4.2.1 Effects of LQT 2 on the APD90 and the Transmural ECG

The APD90 that was calculated based on the different electrophysiological models

under physiological and pathological conditions can be seen in Table 6.2. With-

out LQT 2, the latest model from ten Tusscher et al. (TT 06) [152] showed the

largest electrophysiological heterogeneity followed by the model from Seemann

et al. (SM) [306] and the first version of the model from ten Tusscher et al. (TT

04) [151]. In all cases, the introduction of LQT 2 led to a preferential prolongation

of the M cell APD90 due to the intrinsically weak IKs current there. The highest

absolute and relative M cell APD90 prolongation was observed for the SM model

while both versions of the ten Tusscher model showed a comparable relative pro-

longation. Concerning the model from Kurata et al. we were surprised to see that

the modifications in gKs and gto did not lead to the desired transmural distribution

of APD90. We attributed this to the strong influence which the endocardially re-

duced Ito had on ICaL. Thus the reduction of gKs in the M cells was not sufficient to

prolong the APD90 of the M compared to the endocardial cell (APD90,Endo = 392

ms vs. APD90,M = 382 ms; see Table 6.2).

The effects of LQT 2 on several characteristic signal parameters of the transmu-

ral ECG can be seen in Table 6.3. The reduction of the repolarizing IKr current

led to a QT interval prolongation in three of the four models that were evaluated.

In addition to that, the associated increase in transmural dispersion of repolariza-
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Table 6.2. Comparison between the physiological and pathological APD90 in endo, M and epicardial cells.

Physiological Case LQT 2 (50% gKr,max)
APD90 APD90 APD90 ΔAPD90 ΔAPD90 ΔAPD90

Endo M Epi Endo M Epi

TT et al. 278 ms 327 ms 271 ms 20 ms 35 ms 19 ms
04 [151] 7% 11% 7%
TT et al. 291 ms 413 ms 299 ms 18 ms 43 ms 20 ms
06 [152] 6% 10% 7%
Kurata et al. 392 ms 382 ms 341 ms 44 ms 74 ms 46 ms
[305] 11% 19% 13%
SM et al. 283 ms 338 ms 277 ms 35 ms 82 ms 34 ms
[306] 12% 24% 12%

tion resulted in an augmentation of the T-Wave amplitude and a broadening of its

morphology.

It was not possible to extract signal parameters from the transmural ECG that

was calculated using the Kurata model. The reasons for this were related to the

problems that we encountered when we tried to integrate transmural heterogeneity

into this model (as described earlier). As no significant T-Wave was present in the

corresponding transmural ECG, we excluded the data from the Kurata model from

Table 6.3.

Finally, the simulated transmural ECG signals are shown in Fig. 6.21. This allows

a visual evaluation of the signal morphology. For comparison, the transmural ECG

is shown from a wedge experiment in which LQT 2 was induced pharmacologi-

cally [132] (see Fig. 6.21D).

Table 6.3. Comparison of selected features from the transmural ECG under physiological and pathological

conditions. Abbreviations: T-Wave full width at half maximum (TFWHM).

Physiological Case LQT 2 (50% gKr,max)
Tmax/QRSmean QT TFWHM Δ (Tmax/QRSmean) Δ QT Δ TFWHM

TT et al. 0.094 335 ms 31 ms 0.068 28 ms 3 ms
04 [151] 72% 8% 10%
TT et al. 0.254 386 ms 37 ms 0.047 40 ms 12 ms
06 [152] 18% 10% 32%
SM et al. 0.167 328 ms 15 ms 0.118 63 ms 9 ms
[306] 70% 19% 60%
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6.4.2.2 Discussion

In general, characteristic features of LQT 2 that were found in wedge experi-

ments [132] (like QT interval prolongation and increase in transmural dispersion

of repolarization that led to larger and wider T-Waves) were reproduced correctly

by both models from ten Tusscher et al. [151, 152] and by the model from See-

mann et al. [306]. Differences were only observed regarding the degree of existing

electrophysiological heterogeneities as well as with respect to the changes that

were introduced by LQT 2. However, it should be noted that the ventricular wedge

preparation, which we used as reference for this study, was also only a model

(based on pharmacological agents) of LQT 2. The large amplitude T-Waves that

were seen after the onset of LQT 2 are in contrast to clinically recorded body sur-

face ECG signals which show mainly low amplitude T-Waves for patients suffering

from LQT 2 [119].

In a prospective study, the various electrophysiological models including the LQT

2 modifications could be used to simulate the body surface ECG. The results could

then be compared to patient data and thus allow a more realistic assessment of each

model’s performance.

6.4.3 Results: In-silico Evaluation of Beta-Adrenergic Effects on the Long-
QT Syndrome

6.4.3.1 Transmural ECG and Transmural Dispersion of Repolarization

After the wedge was electrically activated at the endocardium, the excitation wave

propagated towards the epicardium. Due to the chosen APD90-distribution (short

APD90 in epicardial vs. long APD90 in M cells, see Fig. 4.10A), the repolarization

started in the epicardial region and ended in the M cells. The transmurally adapted

tissue conductivity arrangement (see Fig. 4.10B) resulted in a conduction time of

26 ms. Based on the geometrical dimensions of the wedge, this conduction time

could be translated into a conduction velocity of 46 cm/s, which was close to

experimental recordings [262].

The AP plots for all LQT mutations (Fig. 6.22-Fig. 6.24) were extracted from the

tissue simulations in which electrotonic coupling was present. The APD90 changes

reported in the following are relative changes with respect to the wild-type (WT)

setup.
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Fig. 6.21. Overview over the signal morphology of the transmural ECGs that were calculated using dif-

ferent electrophysiological models: A: The transmural ECG from the first version of the ten Tusscher

model [151] had a small T-Wave and showed only moderate QT prolongation after the onset of LQT 2. B:

In contrast to that, the revised model from ten Tusscher et al. [152] showed a larger T-Wave but similar QT

prolongation. C: Finally the model from Seemann et al. [306] showed the largest LQT 2 related changes.

In this case, the small T-Wave (under physiological conditions) became substantially larger and wider and

the QT time was prolonged significantly (after LQT 2 was induced). D: Transmural ECG resulting from

a wedge experiment in which LQT 2 was induced pharmacologically (based on d-Sotalol) [132]. Figure

modified based on [132].

LQT 1

The effects of a loss of function of IKs, which was used to model LQT 1, can be

seen in Fig. 6.22. After reducing gKs,max by 50%, the APD90 of M and epicardial

cells were both prolonged (APD90,M +16%, APD90,EPI +21%). If we additionally

activated the adrenergic effects by virtually administering 1μM ISO, the APD90

of the M cells was slightly longer than in LQT1 without ISO (APD90,M +21%)

whereas the APD90 of epicardial cells was abbreviated by 4% (see Fig. 6.22A,

Fig. 6.22B). With respect to the TDR, we saw that a simple block of gKs,max (with

varying degree) did not lead to significant changes. In contrast to that, the TDR

rose substantially after we applied ISO in addition to the reduction of gKs,max (see

Fig. 6.22D). Finally, the main effect of LQT 1 on the tECG was a QT prolongation

whereas the T-Wave morphology was not affected. The application of ISO com-

pensated this QT prolongation. In addition to that, it was surprising to see that the
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increase of TDR under ISO influence did not lead to a widening of the T-Wave or

an increase of its amplitude (see Fig. 6.22G).

LQT 2

LQT 2 was modeled by a reduction of gKr,max. This led to a slight prolongation

of the APD90 in both M and epicardial cells (APD90,M +7%, APD90,EPI +6%, see

Fig. 6.23A and Fig. 6.23B). In this case, the activation of the adrenergic signaling

cascade caused a dramatic shortening of epicardial APD90 (-21%) whereas M cells

were not affected (+7%) to the same extent. Unlike seen in LQT 1, an increase in

the block of the affected channel (now: IKr) did lead to an increase in TDR here

(see Fig. 6.23D). This effect was even enhanced by the application of ISO. With

respect to the tECG, we observed a slight QT prolongation and widening of the T-

Wave in case of active LQT 2 (see Fig. 6.23F). However, no additional widening

was seen after the application of ISO (the T-Wave even became narrower) even

though the TDR was largest in this case.

LQT 3

After the mutation 1795insD was included in INa to model LQT3 both the APD90

of M and epicardial cells were marginally prolonged (+5% and +3%, respec-

tively). The addition of ISO had the largest effects on the APD90 of epicardial

cells (APD90,M +2%, APD90,EPI -23%, see Fig. 6.24A and Fig. 6.24B) thereby

increasing the TDR (TDRWT = 47ms, TDRLQT3 = 53ms, TDRLQT3,ISO = 96ms,

see Fig. 6.24D). The effects of the mutation on the tECG were rather small (see

Fig. 6.24F). A slight QT prolongation could be observed after the mutation was

activated while the application of ISO shortened the QT interval to even smaller

values than in the WT case.

6.4.3.2 Discussion

The aim of this study was the reproduction of the wedge experiments, in which

Antzelevitch et al. analyzed the effects of LQT 1-3 under the influence of beta-

adrenergic regulation. Previous in-silico models [227, 133] were limited by the

fact that no model was available at that time to describe the intracellular adrenergic

signaling cascade.

The first step towards the reproduction of the experiments was to create similar

experimental conditions: To this end, we adapted gKs,max in the endocardial, M
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Fig. 6.22. AP morphology, development of TDR and transmural ECG for a model of LQT 1. A,B: The

AP morphology of M (A) and epicardial (B) cells is shown for the WT case, LQT 1 (50% gKs,max) and

LQT 1 with ISO. C: The AP morphology from canine wedge experiments is shown for comparison (Figure

directly adopted from [221]). At least a qualitative agreement can be seen: while the APD90,M remains

unchanged (or is even slightly prolonged) in case of M cells and active LQT 1 + ISO, the epicardial

APD90,EPI is shortened after the application of ISO. D: Development of the TDR for different degrees of

channel block with and without ISO. The TDR was almost unaffected by a simple channel block, while the

addition of ISO increased it significantly. E: Experimental data showing the dispersion of repolarization

times (which is not identical, but related to the TDR) for different concentrations of the channel blocker

Chromanol 293B (Figure directly adopted from [217]). F: Experimental data showing again the dispersion

of repolarization times in the presence of the channel blocker Chromanol 293B while ISO was administered

additionally during the measurements (Figure directly adopted from [221]). G: Simulated transmural ECG.

H: Measured transmural ECG (Figure directly adopted from [221]).



162 CHAPTER 6. RESULTS: ELECTROPHYSIOLOGICAL MODELING

 60

 80

 100

 120

 25 50 75 100

T
D

R
 (

m
s)

gKr (%)

mod. gKr
mod. gKr ISO

D E

A
-80

-40

 0

 40

 80

 0  100  200  300  400T
ra

ns
m

em
br

an
e 

vo
lta

ge
 (

m
V

)

Time (ms)

WT
gKr 50%

gKr 50% ISO

B
-80

-40

 0

 40

 80

 0  100  200  300T
ra

ns
m

em
br

an
e 

vo
lta

ge
 (

m
V

)

Time (ms)

WT
gKr 50%

gKr 50% ISO

C

 0

 4

 8

 12

 16

 20

 0  100  200  300  400

tE
C

G
 (

m
V

)

Time (ms)

WT
gKr 50%

gKr 50% ISO

F G

M cell Epi cell

WT
gKr 50%

gKr 50% ISO

WT
gKr 50%

gKr 50% ISO

WT
gKr 50%

gKr 50% ISO

mod. gKr ISO
mod. gKr

Fig. 6.23. AP morphology, development of TDR and transmural ECG for a model of LQT 2. A,B: The

AP morphology of M (A) and epicardial (B) cells is shown for the WT case, LQT 2 (50% gKr,max) and

LQT 2 with ISO. C: The AP morphology from canine wedge experiments is shown for comparison (Figure

directly adopted from [221]). D: Development of the TDR for different degrees of channel block with

and without ISO. The TDR did slightly increase with an increase in the degree of the channel block. If

ISO was administered additionally the TDR increased significantly. E: Experimental data showing the

dispersion of repolarization times (which is not identical, but related to the TDR) in the presence of the

channel blocker d-Sotalol and ISO (Figure directly adopted from [221]). F: Simulated transmural ECG. G:

Measured transmural ECG (Figure directly adopted from [221]).
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and epicardial layer in order to mimic the transmural APD90-distribution that was

measured in the wedge (see Fig. 4.10A). As the exact position and thicknesses of

the three transmural layers were not explicitly stated, we had to assume a certain

distribution (in this case: 20%:30%:50%). However, with this setup we were not

able to completely reproduce the transmural course of the APD90 even though we

added a layer of high resistivity that was reported to decouple the epicardium from

the M cells [119] (see Fig. 4.10B). The existence of this layer of high resistivity

was attributed to a region with a sharp transition in fiber orientation [119]. Yet such

a sharp transition in fiber orientation has never been reported by any other study

(see section 2.1.2). More recent studies from Glukhov et al. [155] and Poelzing et
al. [340, 341] attributed this increase in resistivity to a reduced density of connexin

43 in epicardial cells (connexin 43 is an indicator for gap junction density).

The results of the computational wedge experiments were in good qualitative (but

not quantitative) agreement with the measurements. Concerning LQT 1, the reduc-

tion of gKs,max induced a homogeneous prolongation of the APD90 in all cell types

without a significant reduction in TDR [217]. Only a large reduction to 25% of the

baseline gKs,max value led to a slight reduction in TDR (see Fig. 6.24D). This is

different from findings in previous studies [227, 226] where a reduction of the het-

erogeneously distributed IKs always led to a reduced dispersion of repolarization

and thereby to narrow or even negative T-Waves. The main reason for the almost

constant TDR that we observed in this study was seen in the initial elevation of

baseline gKs,max values, which were adapted in order to reproduce the measured

course of APD90 (see Fig. 4.10A). In this case, we assumed that the heteroge-

neously distributed current IKs was expressed with a significantly higher density

than the homogeneously distributed current IKr. This means that we could moder-

ately reduce gKs,max while still preserving the existing dispersion of repolarization.

This effect can also be seen in the study from Gima et al. [133] in which extremely

high densities of IKs were chosen compared to IKr (11:1 endocardial, 4:1 midmy-

ocardial and 35:1 epicardial). Based on this parameterization, they were able to

generate positive T-Waves (in case of a partial IKs block) with similar width and

amplitude as in the WT case. Yet they also claimed upright T-Waves even if IKs

was set to 0%. This is quite surprising as they reported in the same study that

an electrophysiologically homogeneous wedge preparation will produce negative

T-Waves.
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Concerning LQT 2, a reduction of the homogeneously distributed IKr amplified

the intrinsic IKs heterogeneity which in turn led to an increase in TDR and to a

widening of the T-Wave in the tECG. The same was true for LQT 3 where the

reactivation of INa caused a preferential prolongation of the APD90 in M cells and

thus increased the TDR. The models of both LQT 2 and LQT 3 led to a much

smaller APD90 (on cell level) and QT (concerning the tECG) prolongation com-

pared to LQT 1. This was due to the elevated levels of IKs: in case of IKr the density

was low compared to IKs, therefore a reduction did not lead to a significant prolon-

gation. In case of the mutated INa, the reactivation was not enough to significantly

prolong the APD90.

In all three mutations, the application of ISO always shortened the APD90 of epi-

cardial cells. In case of the M cell, ISO prolonged the APD90 in the presence of

LQT 1 and LQT 2 while there was almost no ISO-induced change in the presence

of LQT 3. In addition to that, the TDR was increased in the presence of ISO (for

all three mutations), which was in agreement with the experimental findings in

case of LQT 1 and LQT 2 but in contradiction with reports from LQT 3 where

a TDR reduction has been reported [221]. In our simulations, however, an ISO-

induced increase in TDR did not lead to a significant widening of the T-Wave or to

an increase of its amplitude. We attributed this effect to a combination of the AP

morphology changes in the presence of ISO (flat slope at the repolarizing flank)

and the specific features of the APD90, which is extracted exactly in the region of

this flat slope. In this case, this special AP morphology leads to large APD90 values

but at the same time, the potential difference that is present in the computational

model of the wedge is small. For more information on this ISO-induced AP mor-

phology changes please refer to section 6.3.3. If we consider the ISO effects over

time, we were surprised that our computational results matched with the effects

that Antzelevitch et al. observed 2 minutes after the application of ISO. This was

unexpected, as our pre-calculations ensured that the ISO-effects were maximal in

the in-silico model. In theory, these maximal effects should rather correspond to

the effects that Antzelevitch et al. observed after 10 minutes in their experiment.

In this study, we were able to reproduce some of the features of the pharmacologi-

cally induced LQT syndromes from the well-known wedge experiments. However,

it should be noted that these experiments were based on modeled (pharmacolog-

ically) rather than inherited LQT pathologies. When compared to clinical record-

ings from LQT patients there are some obvious contradictions:
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• Although the wedge experiments predict no significant changes in TDR and T-

Wave morphology for LQT 1, patients suffering from this disease exhibit broad-

based T-Waves even at rest and without adrenergic regulation [118]. Yet, the

appearance of these broad-based T-Waves is difficult to explain: Under physio-

logical conditions, the heterogeneous IKs distribution is generally assumed to be

responsible for the dispersion of repolarization in ventricular tissue. Now, a loss

of function mutation affecting IKs (like LQT 1) should reduce the dispersion,

which would lead to narrow T-Waves of low amplitude rather than broad-based

T-Waves.

• Concerning LQT 2, the situation is vice versa: In this case, the wedge experi-

ments predict an increase in TDR as the mutation reduces the conductivity of

IKr, thereby preferentially prolonging the APD90 in M cells (due to the low in-

trinsic density of the other repolarizing current IKs). This directly contradicts the

low-amplitude T-Waves, which are clinically observed in LQT 2 patients [118].

One possible explanation for this obvious contradiction in case of LQT 1 might

be found aside the classical loss of function mutation. Recently, a mutation has

been identified that does not reduce the conductivity of IKs but rather damages a

protein that is responsible for its link to the adrenergic signaling cascade [100].

As all other channels are still modulated by the sympathetic nervous system, the

application of ISO (or physical activity) will cause an increased inflow of e.g.

Ca2+ (as ICaL is enhanced by ISO), which will prolong the APD90. Under normal

conditions, the ISO-induced increase in IKs will restrict the APD90 prolongation,

which is not possible in case of the reported mutation (as the adrenergic regulation

of IKs was deactivated by the mutation).



7

Results: Anatomical Modeling and the Forward
Problem of Electrocardiography

This chapter presents the results of the various studies in the realm of anatomical
modeling and the solution of the forward problem that were conducted during the

course of this thesis. The methods that were used during the creation of these

results are described in section 5.

7.1 Results: Creating Anatomical Models based on MRI data

7.1.1 Overview: Clinically Acquired Data

Table 7.1 provides an overview over the data that was acquired in cooperation

with the University Hospital Heidelberg. In total, multi-channel ECG data were

recorded for 6 patients/probands, while MRI scans were performed on 4 of the 6

patients/probands. The male and female probands were healthy while all patients

suffered from the congenital long QT syndrome. For 2 patients, no long QT sub-

type was known while for the remaining 2 patients the subtype was known (LQT1)

yet the exact mutations still had to be identified.

MR imaging was performed on a 1.5 T Magnetom Avanto scanner (Siemens Med-

ical Systems, Erlangen, Germany). The torso was always imaged both in inspira-

tory and expiratory breath-hold (resolution: ≈1x1x2 mm3). The heart was imaged

in diastolic state (≈1x1x1 mm3). In one case, we additionally acquired 4D cine-

matographic and tagging data of the ventricles, which we used to build a model of

the ventricular contraction and relaxation (see section 5.4).

Multi-channel ECG data were acquired using a 64 or 80 lead-system (ActiveTwo,

BioSemi, Amsterdam, Netherlands). In order to be able to use the same electrode

positions for the extraction of the simulated ECGs that were also used during

the ECG measurements, the electrode positions were localized with an electro-
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magnetic tracking system (FASTRAK, Polhemus, Burlington VT, USA), see sec-

tion 2.3.

7.1.2 Visualization of Segmented and Classified Heart and Torso Models

Fig. 7.1 - 7.4 show the available MRI raw data, the segmented and classified voxel

models that were created based on the raw data and finally 3D visualizations of

the resulting heart and torso models. Different MRI sequences were used to image

torso and heart. Both datasets were independently segmented and subsequently

combined for the 3D torso model. Only coarse atrial segmentation was performed

in this work as the atria were only included in the torso model to establish a realis-

tic surrounding for the ventricles during the solution of the forward problem. The

detailed atrial structures that are visible in the 3D heart model were segmented by

Krueger et al. [314, 315, 316].

7.2 Results: Resolution Effects of Anatomical Models

7.2.1 Investigations on Wavefront Shape

The isochrone plots in Fig. 7.5 visualize the excitation spread in the three virtual

tissue patches (isochrone rings correspond to the wavefront position in time incre-

ments of 10 ms). It is obvious that the shape of the wavefront was different for

each resolution. The largest differences were observed close to the angel bisec-

tor of the major and minor semi-axes x and y (marked in Fig. 7.5). In theory, the

wavefront should have the shape of an ellipsoid (radii of the ellipsoid depend on

the anisotropy ratio). In order to evaluate the difference between this elliptical ref-

erence and the different resolution-dependent excitation wavefronts quantitatively

we determined the maximum difference between the fourth isochrone ring (see ar-

row in Fig. 7.5) and a manually fitted ellipsoid. As expected, the differences were

larger for lower resolution. For a resolution of 0.4 mm the maximum difference

was 1.13 mm while it was reduced to 0.56 mm and 0.22 mm for resolutions of

0.2 mm and 0.1 mm, respectively. Due to these results and previous reports in the

literature [166], we chose to conduct the simulations in the biventricular model

with a voxel size of 0.2 mm. This resolution provides a good compromise between

realistic excitation patterns and computational complexity.



7.2. RESULTS: RESOLUTION EFFECTS OF ANATOMICAL MODELS 169

Ta
bl

e
7.

1.
O

v
er

v
ie

w
o
v
er

th
e

cl
in

ic
al

ly
ac

q
u
ir

ed
d
at

a
fr

o
m

p
at

ie
n
ts

an
d

p
ro

b
an

d
s.

M
R

I
im

ag
in

g
w

as
p
er

fo
rm

ed
o
n

a
1
.5

T
M

ag
n
et

o
m

A
v
an

to
sc

an
n
er

(S
ie

m
en

s

M
ed

ic
al

S
y
st

em
s,

E
rl

an
g
en

,
G

er
m

an
y
).

M
u
lt

i-
ch

an
n
el

E
C

G
d
at

a
w

as
ac

q
u
ir

ed
u
si

n
g

a
6
4

o
r

8
0

le
ad

-s
y
st

em
(A

ct
iv

eT
w

o
,

B
io

S
em

i,
A

m
st

er
d
am

,
N

et
h
er

la
n
d
s)

.

E
le

ct
ro

d
e

p
o
si

ti
o
n
s

w
er

e
lo

ca
te

d
w

it
h

an
el

ec
tr

o
m

ag
n
et

ic
tr

ac
k
in

g
sy

st
em

(F
A

S
T

R
A

K
,

P
o
lh

em
u
s,

B
u
rl

in
g
to

n
V

T
,

U
S

A
).

†
F

o
r

th
is

d
at

as
et

w
e

ac
q
u
ir

ed
4
D

ci
n
em

at
o
g
ra

p
h
ic

an
d

ta
g
g
in

g
d
at

a
o
f

th
e

v
en

tr
ic

le
s

in
ad

d
it

io
n

to
th

e
st

at
ic

d
ia

st
o
li

c
sc

an
(s

ee
se

ct
io

n
5
.4

).
‡

T
h
is

p
at

ie
n
t

su
ff

er
ed

fr
o
m

sy
n
co

p
es

an
d

h
ad

an

im
p
la

n
ta

b
le

ca
rd

io
v
er

te
r-

d
efi

b
ri

ll
at

o
r

(I
C

D
).

In
al

l
ca

se
s,

th
e

to
rs

o
w

as
im

ag
ed

in
in

sp
ir

at
o
ry

an
d

ex
p
ir

at
o
ry

b
re

at
h
-h

o
ld

.
U

su
al

ly
,
th

e
ex

p
ir

at
o
ry

d
at

as
et

w
as

u
se

d

fo
r

th
e

co
n
st

ru
ct

io
n

o
f

th
e

to
rs

o
m

o
d
el

(e
x
ce

p
ti

o
n
:

d
at

as
et

m
ar

k
ed

w
it

h
∗)

.
F

:
F

em
al

e,
M

:
M

al
e,

N
/A

:
n
o
t

av
ai

la
b
le

ID
S

ex
S

iz
e

W
ei

g
h
t
A

g
e

A
cq

u
is

it
io

n
D

at
e

P
at

h
o
lo

g
y

T
o
rs

o
M

R
I

H
ea

rt
M

R
I

E
C

G
F
A

S
T

R
A

K

1
F

1
.6

0
m

5
2

k
g

4
7

1
5
/0

8
/2

0
0
7

N
o

≈1
x
1
x
2

m
m

3
≈1

x
1
x
1

m
m

3
6
4

ch
an

n
el

N
/A

2
F

1
.6

3
m

6
6

k
g

1
8

1
5
/0

8
/2

0
0
7

L
Q

T
≈1

x
1
x
2

m
m

3
≈1

x
1
x
1

m
m

3
6
4

ch
an

n
el

N
/A

(S
u
b
ty

p
e

N
/A

)

†
3

M
1
.8

0
m

7
9

k
g

2
7

1
9
/0

3
/2

0
0
8

N
o

≈1
x
1
x
2

m
m

3
1
x
1
x
1

m
m

3
6
4

ch
an

n
el

Y
es

4
F

N
/A

N
/A

1
7

1
9
/0

2
/2

0
1
0

L
Q

T
N

/A
N

/A
8
0

ch
an

n
el

N
/A

(S
u
b
ty

p
e

N
/A

)

‡
5

F
N

/A
N

/A
4
8

1
6
/0

3
/2

0
1
0

L
Q

T
1

N
/A

N
/A

8
0

ch
an

n
el

N
/A

(M
u
ta

ti
o
n

S
2
7
7
2
)

∗6
F

1
.7

0
m

7
9

k
g

5
0

1
4
/0

5
/2

0
1
0

L
Q

T
1

≈1
x
1
x
2

m
m

3
1
x
1
x
1

m
m

3
8
0

ch
an

n
el

N
/A

(M
u
ta

ti
o
n

S
2
7
7
2
)



170 CHAPTER 7. RESULTS: ANATOMICAL MODELING AND THE FORWARD PROBLEM

M
R

I S
ca

n 
To

rs
o

M
R

I S
ca

n 
H

ea
rt

S
eg

m
en

te
d 

To
rs

o
S

eg
m

en
te

d 
H

ea
rt

3D
 T

or
so

 M
od

el

3D
 H

ea
rt

 M
od

el

Fig. 7.1. Raw MRI data, segmented voxelized models and 3D visualizations of the data with

patient/proband-ID 1 (see Table 7.1). Different MRI sequences were used to image torso and heart (the

heart dataset also had a higher resolution). Both datasets were independently segmented and subsequently

combined for the 3D torso model shown in the bottom part of the figure. Only coarse atrial segmentation

was performed in this work as the atria were only included in the torso model to establish a realistic sur-

rounding for the ventricles during the solution of the forward problem. The detailed atrial structures that

are visible in the 3D heart model were segmented by Krueger et al. [314, 315, 316].
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Fig. 7.2. Raw MRI data, segmented voxelized models and 3D visualizations of the data with

patient/proband-ID 2 (see Table 7.1). Different MRI sequences were used to image torso and heart (the

heart dataset also had a higher resolution). Both datasets were independently segmented and subsequently

combined for the 3D torso model shown in the bottom part of the figure. Only coarse atrial segmentation

was performed in this work as the atria were only included in the torso model to establish a realistic sur-

rounding for the ventricles during the solution of the forward problem. The detailed atrial structures that

are visible in the 3D heart model were segmented by Krueger et al. [314, 315, 316].
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Fig. 7.3. Raw MRI data, segmented voxelized models and 3D visualizations of the data with

patient/proband-ID 3 (see Table 7.1). Different MRI sequences were used to image torso and heart (the

heart dataset also had a higher resolution). Both datasets were independently segmented and subsequently

combined for the 3D torso model shown in the bottom part of the figure. Only coarse atrial segmentation

was performed in this work as the atria were only included in the torso model to establish a realistic sur-

rounding for the ventricles during the solution of the forward problem. The detailed atrial structures that

are visible in the 3D heart model were segmented by Krueger et al. [314, 315, 316].



7.2. RESULTS: RESOLUTION EFFECTS OF ANATOMICAL MODELS 173

M
R

I S
ca

n 
To

rs
o

M
R

I S
ca

n 
H

ea
rt

S
eg

m
en

te
d 

To
rs

o
S

eg
m

en
te

d 
H

ea
rt

3D
 T

or
so

 M
od

el

3D
 H

ea
rt

 M
od

el

Fig. 7.4. Raw MRI data, segmented voxelized models and 3D visualizations of the data with

patient/proband-ID 6 (see Table 7.1). Different MRI sequences were used to image torso and heart (the

heart dataset also had a higher resolution). Both datasets were independently segmented and subsequently

combined for the 3D torso model show in the bottom part of the figure. Only coarse atrial segmentation was

performed in this work as the atria were only included in the torso model to establish a realistic surrounding

for the ventricles during the solution of the forward problem. The detailed atrial structures that are visible

in the 3D heart model were segmented by Krueger et al. [314, 315, 316].
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Fig. 7.5. Isochrones of the action potential propagation in three patches of ventricular tissue with different

resolutions (isochrone rings correspond to the wavefront position in time increments of 10 ms). The major

and minor semi-axes are labeled with x and y, respectively. Arrows mark the fourth isochrone ring. This

ring was used for quantitative evaluation of the wavefront shape.

7.2.2 Biventricular Model

Fig. 7.6 shows a visualization of the excitation spread in the biventricular model.

Activation was initiated at the sites of early endocardial activation as reported by

Durrer et al. [174]. Intracellular conductivities were set to σi,T = 0.072 S/m (trans-

verse) and σi,L = 0.114 S/m (longitudinal). The resulting conduction velocities

were 50 cm/s in transverse and 65 cm/s in longitudinal direction.

The simulation was performed on 5 Apple Xserves. Each Xserve had 2 quad core

processors (2.8 GHz Intel Xeon) and at least 24 GB of memory. The simulation of

the excitation spread (100 ms of cardiac activity) took approximately 5 hours and

occupied 100 GB of memory.

7.2.3 Discussion

In this study, we investigated the effects of spatial resolution on the wavefront

shape and presented a highly detailed biventricular model that allowed the realistic

simulation of ventricular activation. In-silico experiments on virtual tissue patches

with different resolutions demonstrated that lower resolutions led to a deformation

of the excitation wavefront especially close to the angel bisector of the major and

minor semi-axes that characterizes the elliptical shape of the ideal-theoretic case.

In a previous study, it had already been shown that the shape of the wavefront de-

pends on the spatial resolution of the model [230]. However in that study, these

changes were partially due to the associated changes in conduction velocity as

the intracellular conductivities were kept constant. In the experiments presented in

this study, we adapted the intracellular conductivities in order to preserve the lon-
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Fig. 7.6. Visualization of ventricular activation in the biventricular model after 85 ms. Stimulus currents

were applied according to a complex stimulation protocol in an effort to mimick the specialized excitation

conduction system. A: Anterior view. B: Posterior view.

gitudinal and transverse conduction velocities. But even with identical conduction

velocities, the excitation fronts showed resolution-dependent differences. These

differences were attributed to changes in coupling between the individual com-

putational cells and different neighborhood relations due to stair-case artifacts at

lower resolutions.

In case of the biventricular model, we would like to emphasize that it was the

largest model that has been used to simulate cardiac electrophysiology at the In-

stitute of Biomedical Engineering (Karlsruhe Institute of Technology) so far. In

addition to that, it is to the best of our knowledge the first model that incorporates

the following features:

• High spatial resolution (0.2 mm)

• Realistic fiber orientation

• Transmural and apico-basal electrophysiological heterogeneities

• Rule-based stimulation profile that enabled a physiological excitation sequence

The electrophysiological simulations were conducted based on a voxelized repre-

sentation of the ventricular anatomy. Such a structured grid had the disadvantage

that the majority (84.5%) of the elements did not contain excitable tissue. As struc-

tured grids do not allow to discretize these areas with a lower resolution, a large

amount of memory overhead is created in each simulation. To avoid this problem,

we envision the use of unstructured tetrahedron meshes to represent the cardiac

geometry during electrophysiological simulations in the future.

In conclusion it can be said that the presented model lay the foundations for future

studies in which we want to couple highly detailed biventricular models to a com-
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putational representation of the thorax. This will enable us to predict the effects of

changes on the ion-channel level up to the body surface ECG (e.g. see section 4.2).

7.3 Results: Modeling Skeletal Muscle Fiber Orientation and
the Effects on the ECG

7.3.1 Models of Skeletal Muscle Fiber Orientation

A visualization of the skeletal muscle fiber orientation models is shown in Fig. 7.7.

When compared with the simplified rule-based models (Fig. 7.7C-E), the gold

standard (Fig 7.7A-B) showed a much more complex fiber arrangement. Differ-

ences were particularly large in the abdominal region, as well as near the arms, the

neck and the back muscles as all fibers in these regions had a significant longitudi-

nal component. All rule-based setups (exception: Gradient+Back) neglected pos-

sible longitudinal fiber orientation components. Please note, that the method pro-

posed by Klepfer et al. (Fig. 7.7C) showed discrete transitions every 30◦ degrees

which are marked by small arrows in Fig. 7.7C. These discrete transitions were

due to the discrete bisectors of the twelve cross-section segments (see Fig. 5.5). In

contrast to that, the proposed gradient approach (Fig. 7.7D) created a smoothened

circumferential orientation. The only rule-based setup that partially considered

longitudinal fiber orientation components was the setup Gradient+Back. However,

even in this case, longitudinal components were limited to the back muscle region

and transitional orientations were not considered.

Table 7.2. RMSE (μV) between gold standard and rule-based fiber orientation setups

Fiber Orientation
Setup

RMSE

Klepfer 88
Gradient 89
Gold+No-Z 83
Gradient+Back 55
Only-Heart 40
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Fig. 7.7. Visualizations of the different fiber orientation setups evaluated in this study. The visualizations

were constructed by following the fiber orientation starting from user-defined seed points. A,B: Complex

fiber orientation of the gold standard (Gold). It can be seen, that muscles in the abdominal region, the arms,

neck and back have significant longitudinal components. C: Rule-based fiber orientation setup according

to Klepfer et al. [243] (Klepfer). The arrows mark sharp fiber orientation transitions. D: Rule-based fiber

orientation setup according to the new gradient approach (Gradient). In this case, the sharp fiber orientation

transitions that were visible in Klepfer model could be avoided. E: Rule-based fiber orientation setup based

on the gradient approach. Here, the longitudinally oriented back muscles were considered as well. F: Rule-

based fiber orientation setup based on the gold standard. However, in this case, the longitudinal fiber vector

components were set to zero.

7.3.2 Effects on the ECG and BSPM

Fig. 7.8 and Fig. 7.9 show the impact of the different fiber orientation setups on

the Einthoven I and Einthoven II leads, respectively. The upper part of each figure

shows the corresponding ECG of the Gold setup which we used as reference. It

is interesting to note that the changes in the QRS complex strongly depended on

the ECG lead. When comparing Fig. 7.8 with Fig. 7.9, amplitude changes were

relatively large in the Einthoven I lead while they were much smaller in Einthoven

II. During ventricular repolarization (T-Wave) signal changes could be observed
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GradientGold

t = 34 ms t = 34 ms

Fig. 7.10. Exemplary BSPM patterns are shown for the gold standard (Gold) and a rule-based (Gradient)

fiber orientation setup during the QRS complex (t = 34 ms). It can be seen, that the BSPM patterns are

broadened in the direction of the fiber orientation thus influencing the signal amplitude of the different

ECG leads. In this case, the electrodes are used to extract the ECG of the Einthoven I lead.

relation between the projected direction of the different Einthoven leads and the

orientation of the skeletal muscle fibers. In case of the Einthoven I lead, the fibers

of the rule-based setups lay parallel to the projected lead direction due to the ne-

glect of the longitudinal components. As the larger conductivity along the muscle

fibers led to a broadening of the BSPM peaks in fiber direction, the signals at the

two electrodes of the Einthoven I lead became more similar, which finally reduced

the amplitude of the difference signal (see Fig. 7.10). Regarding Einthoven II, the

absence of a longitudinal fiber component led to a constriction of the BSPM peaks

and thus to an increase in signal amplitude (see Fig. 7.11).

It is interesting to note that all rule-based approaches performed worse than the

setup that completely neglected skeletal muscle fiber orientation (see Table 7.2).

The reason for this was the omission of the longitudinal component. If we added

longitudinally oriented back muscles (Gradient+Back), the results were at least

partially enhanced. A comparison between the RMSE of the gold standard without

longitudinal orientation (Gold+No-Z) and the RMSE of the rule-based approaches,

however, showed that the assumption of the circumferential orientation was valid

and that there was no significant inclination of the muscle fibers towards the torso’s

interior.

We would like to emphasize that the results of this study depended on the skeletal

muscle anisotropy ratio that was used (3:1). In the literature, there are reports of

much larger anisotropy ratios (up to 15.3:1, see [350, 15] and section 7.5.1). The



7.3. RESULTS: EFFECTS OF SKELETAL MUSCLE FIBER ORIENTATION ON THE ECG 181

GradientGold

t = 34 ms t = 34 ms

Fig. 7.11. Exemplary BSPM patterns are shown for the gold standard (Gold) and a rule-based (Gradient)

fiber orientation setup during the QRS complex (t = 34 ms). It can be seen, that the BSPM patterns are

broadened in the direction of the fiber orientation thus influencing the signal amplitude of the different

ECG leads. In this case, the electrodes are used to extract the ECG of the Einthoven II lead.

BSPM signal broadening effects in fiber direction (see Fig. 7.10 and Fig. 7.11)

will increase with higher anisotropy ratios and thus the associated lead-dependent

changes (see Fig. 7.8 and Fig. 7.9).

In general it can be concluded, that a simplified rule-based approach to include

the skeletal muscle anisotropy as used in [243] or [381] can induce large errors

in the calculation of the BSPMs. This conclusion is probably equally valid for the

so-called McFee approximation to consider skeletal muscle fiber anisotropy [382].

This approximation assumes, that the anisotropic properties of the skeletal muscle

layer can be modeled by increasing the thickness of the muscle layer by a factor of

3-7. Due to its fast and simple implementation, the McFee approximation has been

used in a number of different studies [382, 383, 256, 384, 385, 386] most of the

time even with a fixed skeletal muscle layer thickness. The analogy between the

McFee approximation and the rule-based approaches which assume that all skele-

tal muscles fibers are oriented parallel to the torso surface is evident. Although the

McFee approximation does not assume all fibers to be horizontally aligned, it does

not consider potential longitudinal orientations in return (as no real anisotropy is

considered and the anisotropy is modeled by simple scaling of an isotropic skeletal

muscle layer, the isotropic conductivity in the plane parallel to the torso surface

can be interpreted as a random fiber orientation).

Until methods are available that allow to consider the regionally heterogeneous

longitudinal component of the skeletal muscle fibers (e.g. DTMRI or more so-
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phisticated rule-based methods) it seems to be better to entirely neglect their

anisotropic influence.

7.4 Results: Modeling Ventricular Deformation and the Effects
on the ECG

7.4.1 Elastic 3D Image Registration

Fig. 7.12A and 7.12B show the distance of the landmarks to their target positions

and the distance of all other points to their closest neighbors during the regis-

tration process from the diastolic to systolic state. With increasing iterations, the

distances became smaller until the termination criterion was reached. In all cases,

the termination criterion was reached after 8-12 iterations.

Fig. 7.12C and 7.12D give an overview over the landmark distances to their target

positions and the distance of all other points to their closest neighbors before and

after the registration procedures. The mean distances before the registration give

an impression on the contraction (growing distances to the diastolic state) and

relaxation (shrinking distances to the diastolic state) of the ventricles over time.

As expected, ventricular deformation was a non-linear process in which the con-

traction phase was shorter than the relaxation phase. The standard deviation of the

distances was a measure of the regional differences in deformation (i.e. some areas

did undergo significantly larger displacements than others).

The rotation of the landmarks during contraction was quantified by calculating

their rotation around the longitudinal axis of the left ventricle. Maximal and min-

imal systolic rotation was 10.7◦ and 0.6◦, respectively, while the average rotation

was 4.7◦±2.5◦. This was in the range of reported values at the respective ventric-

ular locations [258].

Fig. 7.13 shows the mechanical state of the DYNALAND model at 15 selected

phases. The displacement vectors indicate the trajectories of the cardiac nodes.

They were extracted from the deformation fields that resulted from the 29 registra-

tion procedures. Maximal systolic contraction was imaged in phase 14 as seen in

Fig. 5.7 and Fig. 7.13. The Cine data was imaged using retrospective ECG gating

thus beginning with the R-peak in the ECG. R-peak maximum was reached after

approximately 30 ms (see Fig. 7.14). Thus, maximal ventricular contraction was

imaged approximately 281 ms after the R-peak.
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Phase 2, t = 51.6 ms Phase 4, t = 94.8 ms Phase 6, t = 138 ms

Phase 8, t = 181.2 ms Phase 10, t = 224.4 ms Phase 12, t = 267.6 ms

Phase 14, t = 310.8 ms Phase 16, t = 354 ms Phase 18, t = 397.2 ms

Phase 20, t = 440.4 ms Phase 22, t = 483.6 ms Phase 24, t = 526.8 ms

Phase 26, t = 570 ms Phase 28, t = 634.8 ms Phase 29, t = 656.4 ms

Fig. 7.13. Shown are the displacement vectors that describe the trajectories of the cardiac nodes in the

DYNALAND model together with a transparent visualization of the ventricles in the diastolic state. The

displacement vectors were extracted from the deformation fields that resulted from the 29 registration

procedures. Phase 14 represents the state of maximal ventricular contraction.

depolarization wave spread from apex to base. Moreover, it was identical for all

three electrophysiological setups (physiological QT time, SQT and LQT).
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(physiological QT time, SQT and LQT), a reduction of the T-Wave amplitude was

visible when using the dynamic models during the forward calculations. How-

ever, there were no visible differences between the DYNA and the DYNALAND

model. Table 7.3 summarizes the differences between the maximum amplitudes

of the STATIC and the dynamic models in the Einthoven II lead. In addition to

the amplitude reductions, the T-Wave maximum was also slightly postponed when

using the DYNA and DYNALAND model (+2 ms for physiological QT times and

+1 ms for LQT).

Fig. 7.15 shows the correlation coefficient r between the STATIC and DYNA

model (rStaticDyna) and between the STATIC and DYNALAND model (rStaticDynaland).

Correlation coefficients were calculated in each electrode and over the complete

length of the ECG for the three electrophysiological configurations (physiological

QT time: 0−400 ms, SQT: 0−370 ms, LQT: 0−470 ms).

In addition to that, the absolute change δ of the T-Wave maximum was calcu-

lated by subtracting the absolute value of the T-Wave maximum of the DYNA

(δStaticDyna) or of the DYNALAND model (δStaticDynaland) from the absolute value

of the T-Wave maximum of the STATIC model. The resulting δ values for each

electrode were then normalized using the electrode with the maximum δ of the

respective model. The normalization factors are listed in Table 7.4. They were a

measure for the magnitude of the amplitude changes for each of the three electro-

physiological setups.

In general, the correlation coefficient is sensitive towards changes in signal mor-

phology such as temporal shifts etc.. In contrast to that, the normalized absolute

change is a measure of T-Wave amplitude neglecting morphological alterations.

No visible changes could be observed between the DYNA and DYNALAND

model for both, the correlation coefficient and normalized absolute change (see

Fig. 7.15).

The correlation coefficient was clearly reduced in electrodes 7-12, 23-28, 35-40,

46-52 and 58-64 in all three electrophysiological setups. The periodicity in the

Table 7.3. T-Wave amplitude reduction of the dynamic models compared to the STATIC model (Einthoven

II)

Phys. QT SQT LQT

DYNA 60% 66% 67.2%
DYNALAND 59.7% 66% 66.7%
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Table 7.4. Factors used to normalize the absolute change for the three electrophysiological configurations

in case of the DYNA and DYNALAND model (see Fig. 7.15)

DYNA DYNALAND

Phys. QT 5.12 ·10−4 5.15 ·10−4

SQT 5.53 ·10−4 5.56 ·10−4

LQT 3.54 ·10−4 3.63 ·10−4

coefficient and absolute change) followed by the setup with normal QT times and

the LQT setup.

7.4.4 Discussion

In this project we evaluated the effects that ventricular deformation and the move-

ment of the associated electrical sources had on the T-Wave in the ECG. To this

end, ventricular activation and repolarization was simulated using a detailed elec-

trophysiological model that was able to consider the effects of individual ion chan-

nels [151]. Transmural and apico-basal electrophysiological heterogeneities were

considered to allow for a realistic repolarization sequence. Although interventric-

ular (between left and right ventricle) differences in ion channel density have been

reported (e.g. [57]) they were not integrated in the presented model.

Ventricular activation was initiated by a special sequence of endocardially applied

stimulus currents. The location and temporal sequence of these stimuli were de-

termined based on a semi-automatic approach that was introduced in [2] and in

section 4.1. Unlike the models presented by ten Tusscher et al. [181] and Vig-

mond et al. [180] the semi-automatic approach used here did not allow to consider

the specific electrophysiological characteristics of Purkinje cell. However, it was

fast and easily adaptable to different anatomical models and had a smaller number

of model parameters that had to be adjusted in order to create realistic ECG wave-

forms. The resulting isochrone maps were in good agreement with the invasively

acquired measurements from Durrer et al. [174].

Action potential propagation in the cardiac tissue was described with the mon-

odomain reaction-diffusion model. Although it is a simplification of the computa-

tionally more demanding bidomain model, it has been reported to generate sim-

ilar results in the absence of externally applied stimuli currents (e.g. defibrilla-

tion) [166].
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In this project, we hypothesized that the magnitude of T-Wave changes will depend

on synchrony/asynchrony of mechanical relaxation and electrical repolarization.

Thus, it was expected that T-Waves calculated based pathologies that influenced

the QT time show different changes compared to the T-Wave calculated for a phys-

iological setup. In this case, a setup with pathologically short QT time (SQT) and a

setup with pathologically long QT time (LQT) was chosen to test this hypothesis.

Although the simplified models of SQT and LQT were not able to reproduce the

morphological features of the pathological T-Waves, they correctly modeled the

characteristic QT times for the respective pathology which was the crucial param-

eter for this study.

As expected, changes in the relation between mechanical contraction and relax-

ation and electrical repolarization led to differences in T-Wave amplitude changes.

The SQT setup showed the largest T-Wave changes. In this case, the end of repo-

larization and the phase of maximal systolic contraction coincided. Thus, the repo-

larization occured during a strongly contracted state of the ventricles. For longer

QT times (e.g. the setup with physiological QT time or LQT) the repolarization

occurred after the systole thus resulting in smaller T-Wave amplitude changes.

Recently, the LQT syndrome has been reported to lead to longer contraction du-

rations [387]. This would mean that the systole is prolonged and thus T-Wave

changes could potentially be underestimated in our dynamic LQT models. How-

ever, we modeled a very mild form of LQT (QTc = 461 ms). Clinically, a QTc >

500 ms is not uncommon. Longer QT times would compensate the effects of a

prolonged systole and lead to similar results as we presented here. In any case,

T-Wave amplitudes were reduced in both dynamic models. This was in agreement

with the results from a previous experimental [255] and in-silico study [260].

The dynamic models used to evaluate the influence of ventricular deformation

on the ECG were created by elastic registration of a diastolic model to the vari-

ous deformed states that were previously segmented based on Cine MRI data. We

think that this approach is superior compared to approaches in which the dynamic

models are created based on electromechanical modeling (see [258, 260]). This is

due to the difficulties that are associated with the validation of electromechanical

models. If it is not proven that the deformation is modeled correctly, conclusions

regarding the impact of that deformation on the shape of the T-Wave are illegit-

imate. Our approach is not limited by this problem as the dynamic models used
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here were inherently validated based on the underlying MR images that were used

for their construction.

To our knowledge, there is one other dynamic model that has been created based on

MRI data and was used in a number of different studies [388, 389, 390, 259]. Yet,

we think that the dynamic model presented in this work has several advantages:

• Wei et al. used a simplified cellular automaton to describe ventricular electro-

physiology [259]. It has previously been shown that such fixed AP models have

severe shortcomings in the realistic description of electrical repolarization due

to the lack of electrotonic coupling [162]. In this study, we use a detailed ionic

model including realistic electrophysiological heterogeneities (transmural and

apico-basal) that fully accounts for the effects of electrotonic coupling.

• The MRI data used in this work had a higher spatial (factor 2) and temporal

(factor 2.5) resolution. This enabled the construction of a dynamic model that

captured the non-linear ventricular contraction with more accuracy.

• Wei et al. used a standard torso geometry to solve the forward problem of elec-

trocardiography while the dynamic heart model was created based on MRI data

from a volunteer. Torso and heart model were then merged prior to the forward

calculations. This could potentially lead to large errors due to the strong effects

of heart displacement on the body surface potentials [240]. We avoided this

source of error by creating both torso and dynamic heart model from the MRI

data of the same volunteer.

• Most importantly, we used a physiological QT time (389 ms) that was in agree-

ment with literature data [134] and allowed to establish a realistic relation be-

tween mechanical deformation and electrical repolarization. In contrast to that,

we estimated a QT time slightly over 200 ms (T-Wave at 180 ms; no exact QT

time given) for the study of Wei et al.. Even compared to pathological condi-

tions like SQT this QT time is too short and thus unrealistic. In our opinion, it is

not possible to draw any conclusion regarding the impact of cardiac motion on

the ECG based on the model of Wei et al. as the physiological relation between

the electrical and the mechanical processes is severely disturbed.

If we compare the dynamic model created in this study to the models that were

based on electromechanical modeling ([258, 260]), it should be acknowledged

that the presented approach was very labor intensive due to the manual segmenta-

tion of the anatomical models and the subsequent registration procedures. In gen-

eral, the spatio-temporal accuracy of our models was determined by the fidelity
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of the manual segmentation and the precision of the landmark positions. Manual

segmentation techniques (as used in this study) are always prone to errors (e.g.

individual inaccuracies and inter-individual variations). However, strategies were

used to minimize segmentation errors such as the incremental segmentation pro-

cedure where phase t +1 was segmented using the contours of phase t as starting

basis as well as the spatial and temporal averaging of the segmented contours.

The inclusion of the manually tracked landmarks allowed a more realistic char-

acterization of the regional heterogeneity of deformation. Yet, our model would

benefit from the incorporation of additional landmarks from a larger number of

slices to describe the regional heterogeneity of deformation completely. As it is

unfeasible and possibly imprecise to extract a large number of landmarks manu-

ally, we envision to use the Sine Wave Modeling approach [391], which delivers

displacement information from tagged MRI at sub-pixel accuracy for a large num-

ber of measurement positions without user interaction. In this case, it would no

longer be necessary to segment the endocardial and epicardial surfaces manually

as the registration could be performed based solely on the displacement of the

automatically extractable landmarks.

One of the limitations of the dynamic model that we presented here is that it did not

consider the effects of mechanoelectrical feedback as deformation was not simu-

lated but extracted from MRI data. In the future, it would be possible to create

strain maps during the registration using the biomechanical model and feed these

strain maps back into the electrophysiological model to consider these effects. In a

2D model, mechanoelectrical feedback was reported to lead to a leftward shift of

the T-Wave in the calculated pseudo-ECG [260]. This was attributed to the short-

ening of the APD due to an increase in free intracellular calcium [392]. Another

limitation of the model presented in this study is that it did not consider changes

in electrotonic coupling that might arise due to changes in the fiber arrangement

during ventricular contraction or changes in myocardial conductivities that are as-

sociated with cell shortening [393]. Such effects could only be considered if the

whole cardiac cycle would be simulated on a time dependent ventricular anatomy.

However in that case, the stiffness matrix would have to be reassembled for each

time instant which is computationally very expensive.

In conclusion, we have presented a realistic 3D model to evaluate the influence of

ventricular contraction on the T-Wave in the ECG. In addition to its application
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possibilities regarding dynamic forward calculation, the created models could also

be used as a reference to validate mechanical simulations in the future.

7.5 Results: Ranking the Influence of Different Tissues with
Respect to their Conductivities

7.5.1 Literature Overview Regarding Conductivity Uncertainties

Fig. 7.16 lists the minimum and maximum conductivity that was found in the

measurement literature. These values were used as upper and lower boundaries

for the uncertainty analysis. The tabulated conductivities were sorted according to

the highest ratio between upper and lower conductivity boundary. ‖ and ⊥ denote

conductivities along and across muscle fibers. As explained before, we used mea-

surement values from the colon as lower conductivity boundary for the intestine

and data from the small intestine as upper conductivity boundary. To allow for

a comparison to the conductivities measured by Gabriel et al. which were used

in our standard setup, the Gabriel conductivities were listed in the table as well.

For the sensitivity analysis, the conductivities from Gabriel et al. were varied by

±25%. The resulting conductivities are not explicitly stated as they can be easily

calculated from the tabulated values.

The intracellular transverse conductivity σi⊥ of the heart muscle and the associated

anisotropy ratio were set to the values reported by Colli Franzone et al. [394]

(σi⊥= 0.031525 S/m; anisotropy ratio: 9.516). Extracellular anisotropy ratios that

are frequently reported are 2.23 [350], 2.5 [395] or 4 [396]. For the uncertainty

analysis, the heart muscle conductivity at random fiber orientation was chosen for

the extracellular conductivity across the fiber. The extracellular anisotropy ratio

was set to 3 which was in good agreement to the previously stated ratios.

7.5.2 Sensitivity and Uncertainty Analysis

The results of the sensitivity and uncertainty analysis are shown in Table 7.5 and

Table 7.6 for the atrial and ventricular input signal. Both tables are sorted ac-

cording to the RMSE of the not-normalized signals. Organ ranks for a CC or

RMSEnorm-sorted table are given in brackets.
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Table 7.5. Results of the sensitivity analysis for atria and ventricles. Shown are three different rankings

depending on different evaluation criteria (RMSE, RMSEnorm and 1-CC). The numbers in brackets denote

the ranks with respect to the alternate ranking criteria.

Name RMSE (μV) RMSEnorm 1-CC

A
tr

ia

Muscle ⊥ 13.2 6.85E-3 (4) 2.88E-3 (6)
Blood 10.4 1.03E-2 (2) 7.89E-3 (1)
Muscle
aniso.

9.0 6.59E-3 (6) 3.15E-3 (4)

Lungs 6.9 1.09E-2 (1) 7.80E-3 (2)
Fat 5.3 8.77E-3 (3) 6.14E-3 (3)
Heart 4.6 6.19E-3 (7) 3.12E-3 (5)
Intestine 4.1 6.82E-3 (5) 2.47E-3 (7)
Liver 2.2 3.59E-3 (8) 9.78E-4 (8)
Bone 1.6 2.49E-3 (9) 5.16E-4 (9)
Cartilage 0.55 9.33E-4 (10) 6.18E-5 (10)
Spleen 0.16 2.65E-4 (11) 5.82E-6 (11)
Kidneys 0.12 2.01E-4 (12) 2.19E-6 (12)

V
en

tr
ic

le
s

Blood 55.1 1.70E-2 (1) 2.76E-2 (1)
Muscle ⊥ 47.9 8.10E-3 (3) 4.20E-3 (4)
Heart 46.1 1.07E-2 (2) 9.90E-3 (2)
Muscle
aniso.

36.7 7.80E-3 (4) 3.70E-3 (5)

Fat 26.4 7.00E-3 (5) 4.90E-3 (3)
Lungs 23.3 5.80E-3 (6) 3.10E-3 (6)
Intestine 17.8 4.80E-3 (7) 1.10E-3 (7)
Bone 9.06 2.90E-3 (8) 7.69E-4 (8)
Liver 8.44 2.60E-3 (9) 5.90E-4 (9)
Cartilage 4.94 1.60E-3 (10) 2.08E-4 (10)
Spleen 0.42 1.22E-4 (11) 1.50E-6 (11)
Kidneys 0.40 1.10E-4 (12) 8.78E-7 (12)

7.5.2.1 RMSE-based Ranking

When we compare the RMSE-sorted atrial sensitivity ranking (ASR) with the ven-

tricular sensitivity ranking (VSR) the main differences between both rankings was

the position of the heart and lungs. While the lungs were more important for atrial

signals, the heart tissue ranked higher for ventricular input data. Common features

of both rankings were that blood and skeletal muscle conductivity had the largest

impact. Furthermore, some organs that had similar RMSE values had just swapped



7.5. RESULTS: RANKING THE INFLUENCE OF DIFFERENT TISSUES 195

order in the ASR compared to the VSR (e.g.: skeletal muscle & blood, lungs &

fat, bone & liver).

The main differences between the atrial uncertainty ranking (AUR; Table 7.6) and

the ASR were an increase in heart and intestine importance and a decrease in

blood and fat importance. Changes in the ventricular uncertainty ranking (VUR)

were similar. Here, we also observed a higher rank for heart and intestine and a

lower rank for blood and lung tissue compared to the VSR. When we compared

the AUR with the VUR, it was again evident that the lungs were considerably more

important for atrial simulations whereas the heart muscle was more important for

the ventricles.

7.5.2.2 CC-based Ranking

The main differences of the CC-based ranking compared to the RMSE-based rank-

ing were the higher importance of lung and fat tissue and the reduced significance

of skeletal muscle conductivity in the ASR. In case of ventricular input signals

(VSR), similar observations were made: the impact of fat tissue increased and the

effects of skeletal muscle conductivity changes were reduced. All other organs in

both ASR and VSR did not move at all or only by one rank.

In case of a CC-sorted AUR, skeletal muscle conductivity and anisotropy as well as

blood were less important whereas heart tissue, fat and liver were more important.

Regarding the VUR intestine and skeletal muscle conductivity had a lower rank yet

blood, fat and bone had a higher rank. Again, all other organs showed only minor

changes if AUR and VUR were compared between RMSE and CC dependent

sorting.

The impact of different organ conductivities on forward calculated ECGs based

on atrial or ventricular input data can also be evaluated based solely on the CC-

sorted ranking. In this case, it was obvious that the lungs strongly affected atrial

signals while the heart and skeletal muscle conductivity were more important for

ventricular signals (ASR vs. VSR). While comparing the CC-based AUR with the

corresponding VUR it was observed, that fat tissue, lungs, intestine and liver con-

ductivity were more important for atrial signals than blood, bone, skeletal muscle

conductivity and anisotropy which had larger effects on ventricular data.
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Table 7.6. Results of the uncertainty analysis for atria and ventricles. Shown are three different rankings

depending on different evaluation criteria (RMSE, RMSEnorm and 1-CC). The numbers in brackets denote

the ranks with respect to the alternate ranking criteria.

Name RMSE (μV) RMSEnorm 1-CC

A
tr

ia

Muscle ⊥ 46.1 2.12E-2 (7) 2.43E-2 (7)
Muscle
aniso.

35.7 2.52E-2 (5) 4.49E-2 (5)

Heart 22.0 3.28E-2 (2) 7.62E-2 (1)
Lungs 20.9 3.25E-2 (3) 5.88E-2 (3)
Intestine 19.6 3.32E-2 (1) 5.32E-2 (4)
Blood 17.0 1.67E-2 (8) 2.06E-2 (8)
Fat 16.8 2.76E-2 (4) 6.29E-2 (2)
Liver 12.8 2.12E-2 (6) 3.40E-2 (6)
Bone 7.0 1.12E-2 (9) 1.03E-2 (9)
Kidneys 0.85 1.50E-3 (10) 1.24E-4 (10)
Spleen 0.61 9.95E-4 (11) 8.16E-5 (11)

V
en

tr
ic

le
s

Heart 156.8 4.12E-2 (1) 1.71E-1 (1)
Muscle ⊥ 156.0 2.24E-2 (5) 3.83E-2 (5)
Muscle
aniso.

145.3 2.99E-2 (2) 5.53E-2 (3)

Intestine 91.2 2.30E-2 (4) 2.37E-2 (6)
Blood 89.3 2.66E-2 (3) 7.06E-2 (2)
Fat 80.9 2.23E-2 (6) 4.97E-2 (4)
Liver 43.0 1.21E-2 (8) 1.40E-2 (8)
Lungs 41.6 9.70E-3 (9) 9.10E-3 (9)
Bone 40.7 1.31E-2 (7) 1.56E-2 (7)
Kidneys 2.62 7.17E-4 (10) 4.15E-5 (10)
Spleen 1.73 4.78E-4 (11) 2.24E-5 (11)

7.5.2.3 RMSEnorm-based Ranking

Now we compare the RMSEnorm-based ranking to the CC-based ranking as both

criteria focus primarily on signal morphology rather than on mere amplitude scal-

ing. In case of the RMSEnorm-based ASR, the skeletal muscle anisotropy and the

heart tissue conductivity became less important. In contrast to that, intestine and

skeletal muscle conductivity became more important. Changes in the VSR were

limited to the fat tissue conductivity, which ranked lower compared to the CC-

based sorting. All remaining tissues showed only minor changes in both ASR and

VSR. Similar trends were seen in the AUR and VUR. In both rankings, the intes-

tine ranked higher whereas fat ranked lower in the RMSEnorm-based ranking.
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Fig. 7.17. Graphical visualization of the conductivity rankings from Table 7.5 and Table 7.6. Higher ranks

in the respective categories are indicated by larger bars.

Finally, we also compared the ASR and VSR based solely on the RMSEnorm-sorted

ranking: In this case lung, intestine and fat tissue conductivity had a stronger in-

fluence on atrial signals whereas skeletal muscle anisotropy and heart muscle con-

ductivity turned out to be more important for ventricular simulations. When com-

paring the RMSEnorm-sorted AUR and VUR, it was observed that intestine, lungs,

fat and liver were more important for the atria while skeletal muscle conductiv-

ity and anisotropy as well as blood and bone had a larger impact on ventricular

BSPMs.

Fig. 7.17 summarizes the results of the conductivity rankings in a graphical vi-

sualization. Shown are both the sensitivity and uncertainty ranking for all three

different comparison metrics (RMSE, RMSEnorm and CC).

7.5.3 Possible Torso Model Simplifications

The results of the torso model simplification are shown in Table 7.7. As expected,

the more organs and structures were considered, the better was the match of the

associated BSPMs with the reference data. The only exception to this rule the

TOP3RMSE setup for the ventricles based on σ1. In this case, the results of the

simpler TOP3RMSE setup were closer to the reference data than the result of the

more complex TOP5RMSE model.
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Fig. 7.18 gives an impression of the differences between the simplified models

and the reference setup in case of the Einthoven II lead. It can be seen, that an

overly simplified torso model can lead to severe distortions of the resulting body

surface signals. As a general trend, the simplified models always lead to lower

R-peak amplitude. Effects on the S-peak and T-Wave were more complex. Here,

the simplified models showed both smaller or larger amplitudes. However, there

was a relation between changes in S-peak and T-Wave: a model that led to a larger

S-peak also had a larger T-Wave in most cases and vice versa.

In addition to that, it seemed to be important which conductivity was used as re-

placement for the removed organs. However, no clear answer can be given regard-

ing the best average conductivity σ : While σ1 often led to better result if only a

few organs were removed, a torso model filled with σ2 showed better results in

case of completely homogeneous models.

7.5.4 Discussion

In this project, we ranked the influence of tissue conductivities on forward-

calculated ECGs and evaluated the error that was associated with simplified torso

models that neglected some of the lower-ranking organs. Studies with similar aims

have been conducted in the past [240, 243, 397, 383]. However, this study delivers

new and additional insights as it differs from previous work regarding the cardiac

source distribution that was used as input for the forward calculations, the imple-

mented anisotropy, the highly detailed torso model and the methodology that was

Table 7.7. Error of possible torso simplifications. The simplified torso models were based on the RMSE or

CC-based ranking tables. The simplified models for atria and ventricles were not necessarily identical.

Atria Ventricles
σ1 σ2 σ1 σ2

R
M

S
E

TOP7RMSE 6.0 μV 7.1 μV 40.9 μV 46.8 μV
TOP5RMSE 11.2 μV 11.6 μV 55.4 μV 48.7 μV
TOP3RMSE 15.3 μV 16.9 μV 44.3 μV 69.8 μV
HOMRMSE 89.3 μV 42.9 μV 267.5 μV 139.4 μV

1
-C

C

TOP71−CC 7.8E-3 1.1E-2 1.0E-2 1.6E-2
TOP51−CC 2.4E-2 2.9E-2 1.5E-2 2.0E-2
TOP31−CC 5.0E-2 4.2E-2 5.1E-2 6.9E-2
HOM1−CC 1.3E-1 1.2E-1 1.6E-1 1.4E-1
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based approaches [243], an approximation proposed by McFee et al. [383, 256,

384, 385, 386, 382] or neglected anisotropic influences at all [397, 398]. How-

ever, in case of the McFee approximation it has been suspected [240] and for

the rule-based approach [243] we have previously shown [12] (and section 7.3)

that such methods are not able to produce realistic anisotropy information. This

is particularly problematic, as the skeletal muscle anisotropy was found among

the 4 most important organs in any of the four presented rankings (ASR, AUR,

VSR, VUR).

• Due to computational limitations, there are significant differences with respect

to the details of the torso model that was used for the conductivitiy evaluations.

While the eccentric spheres models that were used in [384] and [385] have been

criticized by Bradley et al. [240] and van Oosterom et al. [398] and the use of

"tailored" geometries was favored, several of the older studies used only coarse

torso models with a few hundred or thousands of nodes [397, 256, 398, 386].

Regarding the level of detail that is considered in the different torso models,

we would like to stress that even the most recent studies [240, 243, 386] evalu-

ated only a subset of the organs and structures that are analyzed in this study. A

low number of organs can lead to potential errors in a conductivity evaluation

study, as it has been reported [243] that a simple additive relationship between

the different structures is unlikely. On the one hand this means that the removal

of organs need not in any case reduce the quality of the results (as observed in

this study for the TOP3RMSE vs. TOP5RMSE setup in Table 7.7) as the effects

of some structures might cancel each other out. On the other hand, it can be

difficult to judge the importance of organs in a simple torso model that only

considers a small number of inhomogeneities as the results might have been

different if additional structures would have been considered. Thus the results

from investigations that evaluated torso models of different detail are not nec-

essarily directly comparable.

• When we look at previous simulation studies (and also on studies that evaluated

the impact of tissue conductivities in the torso model), it is obvious that there

are severe differences in the utilized conductivities (and in the ratios between

the conductivities of the different organs). Yet, none of these studies tried to

estimate the effects that these conductivity uncertainties might have had on the

result.
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In this study, we therefore differentiated between a sensitivity and an uncertainty

analysis. For the sensitivity analysis we used fixed percental changes of the con-

ductivities published by Gabriel et al.. In order to evaluate the influence of mea-

surement uncertainties on the body surface potentials, we first collected literature

values for each organ and then conducted forward calculations for each organ’s

minimum and maximum conductivity.

We used three different metrics (RMSE, RMSEnorm, CC) to rank the sensitivity

and the influence of conductivity uncertainties for each organ. In case of the sensi-

tivity analysis and the RMSE as evaluation criterion, it turned out, that both atrial

and ventricular signals were most sensitive to changes in skeletal muscle, blood,

heart, lungs, and fat conductivity as well as skeletal muscle anisotropy. When fo-

cusing on surface ECG morphology (evaluation criterion: CC), the skeletal muscle

conductivity had a lower impact but fat on the other hand was more important. It

is interesting to note that for all three evaluation criteria the lungs were more im-

portant for atrial simulations whereas the heart had a stronger impact on the ven-

tricles. The reason for this is seen in the location of the atria which are completely

surrounded by lung tissue. The stronger influence of heart tissue conductivity on

the ventricular signals is probably due to the much thicker chamber walls of the

ventricles compared to the atria.

As previously explained, it is difficult to directly compare the results of different

studies that evaluated the role of conductivity variations for the forward problem.

Reasons for these difficulties are methodological differences, differences in torso

models and chosen conductivities. While considering these limitations, we found

the following similarities and differences:

• The lungs were previously found to be both important [240, 243, 397, 384], and

unimportant [398, 383].

• Skeletal muscle conductivity had a large [385], moderate [240, 384], or small [243]

effect on torso potential. In contrast to that, skeletal muscle anisotropy was al-

ways considered to be important [243, 383].

• Heart tissue conductivity had a strong impact in two studies [240, 398], which

is in agreement with our results.

• Our results confirmed the large effects of changes in blood conductivity as re-

ported by Rudy et al. [384] and van Oosterom et al. [398]. Yet this contradicts

earlier reports from Rudy et al. [385] were blood was found to be less impor-

tant.
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• Our study showed moderate effects of fat conductivity on signal amplitude (yet

stronger effects on signal morphology). These findings are in contradiction with

reports from Bradley et al. [240] and Klepfer et al. [243] where large effects

were seen and findings from Rudy et al. [384] where only small effects were

found.

• The effects of spine and sternum were always found to be small (if investigated

at all) [243, 397, 383]. Klepfer et al. additionally evaluated the role of bone,

which was also found to be of low impact. In this study, we used a torso model

that included all major bony and cartilaginous structures but likewise found no

significant effects.

No other study evaluated the effects of intestine, liver, spleen and kidneys. Among

these organs, our results show, that the intestine was the most important structure

(followed by the liver) which was probably due to its larger size: intestine: 6.3% vs.

liver: 4.1% vs. spleen 0.5% and kidneys 0.8% of the total torso volume). However,

these organs marked the lower end of most rankings.

If the effects of conductivity uncertainties were additionally considered, the impor-

tance of blood and fat decreased whereas the influence of heart tissue and intestine

increased. These changes were directly related to the degree of uncertainty (see

Table 7.6): The larger the ratio between upper and lower conductivity boundary,

the higher the rank of the respective organ in the uncertainty analysis. Especially

for the rarely considered organs and structures like the kidneys, bone, liver, and

spleen but also for some very important tissues like the heart or skeletal muscle

fiber anisotropy, there are significant uncertainties which should be addressed by

the measurement community.

It is difficult to give one single recommendation regarding the level of detail that

should be incorporated into a torso model that is used to solve the forward prob-

lem of electrocardiography. In general, the more organs and structures that were

considered in the model, the better was the match with the completely heteroge-

neous reference model that served as gold standard (the only exception was the

TOP3RMSE model for the ventricular signals). As expected, simplification results

also depended on the conductivity of the removed organ. If it was closer to the

average torso conductivity that was used to replace the organ, the removal had

smaller effects.

For most applications however, it should be sufficient to include the 5 most impor-

tant inhomogeneities in addition to the heart. According to our results, these or-
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gans and structures were skeletal muscle conductivity as well as anisotropy, blood,

lungs, and fat. This list was identical for both atrial and ventricular input signals

and agreed with the suggestions from Bradley et al. [240], although the ranking of

the organ importance was different and they were not able to evaluate the effects

of the intracavitary blood pool. It is also interesting to note that the solution qual-

ity of the simplified models depended on the averaged torso conductivity σ , that

was used for organ replacement. Especially for clinical applications which would

benefit from the time saving that is associated with simplified models it might be

possible to derive an optimized σ that minimizes the differences between simpli-

fied and completely inhomogeneous torso models.

The differences between the simplified torso models and the inhomogeneous ref-

erence were larger in our work compared to previous studies [240, 243]. We think

that this is related to the elevated heart conductivity that both studies used to model

the effects of the ventricular blood indirectly [240]. According to Bradley et al.,
changes in BSPM pattern and amplitude are greater if the heart conductivity is

lower [240].

In contrast to the results of our study, Ramanathan and Rudy [386] claim that it

is not necessary to use an inhomogeneous torso model as the BSPM differences

resulting from the use of a homogeneous model are small and fall in the range

of normal interindividual variations. Yet, their conclusions are weakened by their

simple, low resolution torso model (containing only 6684 triangular elements that

described the shape of the lungs, bone and skeletal muscle (McFee approxima-

tion)), which was used in conjunction with the boundary element method to cal-

culate transfer matrices that linked the epicardial potentials to the body surface

potentials. In addition to that, none of their presented 12-lead ECGs looked physi-

ological (notched QRS complexes, ST elevation or depression, discordant T-Waves

(if any at all)). Furthermore, the only difference in the female model that was used

to evaluate possible gender-specific variations was the additional incorporation of

fat tissue to model the breasts. All remaining contours looked identical to the male

model although the description in the method section suggested the creation of a

completely unique model based on different source data. In conclusion, it should

be noted that our results shown in Fig. 7.18 and Table 7.7 clearly dispute their

recommendation for a homogeneous torso model.

Finally, we evaluated the effects of blood in the major vessels (superior and infe-

rior vena cava, pulmonary arteries and veins, aorta) and the fat layer around the
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heart individually. In the Visible Man dataset that was used for this study, these

structures were a subset of the blood and fat, respectively. However, in patient-

specific models they are rarely included due to the time-consuming segmentation

procedure. To evaluate their effects, we separated them from the remaining blood

and fat by assigning unique tissue classes. Then, a similar sensitivity analysis was

conducted as described in section 5.5.3. In case of an RMSE-sorted ASR, the blood

in the main vessels had large effects (rank 4) and should be included in all torso

models for atrial simulations. In contrast to that, the fat around the heart ranked

only on position 8 and might be negligible. For the RMSE-sorted VSR, both fat

around the heart (position 7) and blood in the main vessels (position 12) had small

effects.

When examining the results of studies that evaluated the sensitivity of the BSPM

regarding changes in tissue conductivities, it has to be considered that all results

depend on the default conductivities and the torso model that is used. Identical de-

fault conductivities in conjunction with a different torso model or identical torso

models combined with different default conductivities will produce different sen-

sitivity rankings. Although we tried to quantify the effects that the present conduc-

tivity uncertainties have on electrocardiographic simulations we cannot solve this

problem by determining the correct conductivities based on computer simulations.

It will be the task of the measurement community to eliminate these uncertainties

and further narrow down the possible choices.

It should be noted, that different organs have slightly varying influences on differ-

ent segments in the ECG (P, QRS, T) [240, 243]. This means that different atrial

or ventricular excitation sequences might produce slightly different RMSE or CC

values (but not necessarily different ranking positions). For evaluation purposes,

we performed atrial simulations with different conduction velocities in the Crista

Terminalis and Bachmann’s Bundle (both set to 1400 mm/s). With this modified

anisotropy setup, the ranking positions were almost unchanged, which means that

the conclusions drawn in this work should be applicable to other physiological

excitation sequences as well.

Before transferring the results of this study to different torso models, effects of

varying torso compositions should be kept in mind. On the one hand, there are

well-known gender-specific differences with respect to the volume of skeletal mus-

cle vs. fat tissue. On the other hand, the Visible Man dataset has a very high frac-

tion of body fat (38% within the torso) thus results will be different for more
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slender models. Furthermore, the Visible Man dataset contains fine structures with

a high level of detail that are currently not available in patient-specific models

based on CT or MRI data. This could mean that such models can have different

conductivity sensitivities.

It would be interesting to repeat this study with a larger pool of different torso

models (height, weight, gender, body composition). Currently this is not possible

due to the lack of methods that allow the creation of skeletal muscle fiber orienta-

tion in patient-specific datasets. If such methods become available, a similar study

on a representative group of torso models would allow a concluding evaluation

regarding the impact of different organ conductivities on body surface potentials

7.6 Results: BSPM Prediction for Varying Conductivities Based
on PCA

7.6.1 Eigenvalue Ratios and Eigenvector Angles

Table 7.8 lists the ratios of the first and second eigenvalues λ1/λ2 for the four

different tissues. As the minimal ratio was 31 it was obvious that for all organs,

the information content of the first principal component (PC) was much larger than

that of the second PC. This property was used in section 5.6.3.3 when transforming

equation (5.8) to (5.9).

In addition to that, the pairwise angles between the first eigenvectors of all four

tissues were in the range of 45◦ to 124◦ for the atria and 57◦ and 143◦ for the

ventricles. Thus, no two tissues had parallel eigenvectors, which would imply a

similar effect of the tissues during conductivity variations.

7.6.2 Signal Reconstruction

Fig. 7.19 shows the shifted PCA scores of the four different tissues for atrial and

ventricular data. All score curves did monotonically depend on the conductivity

Table 7.8. Ratio between first and second eigenvalue

Blood Muscle Lung Fat

Atria 232 181 299 77

Ventricles 652 106 489 31
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Table 7.9. RMSE (μV ) when using exact and interpolated scores

Blood Muscle Lung Fat

A
tr

ia
E

x
ac

t
S

co
re

s

σ−75% 1.910 2.612 1.389 1.200

σ−50% 0.387 0.457 0.259 0.139

σ−25% 0.422 0.097 0.588 0.207

σGG 0.002 0.001 0.001 0.000

σ+25% 0.597 0.832 0.307 0.328

σ+50% 1.248 1.695 0.751 0.715

σ+75% 1.903 2.557 1.274 1.120

V
en

tr
ic

le
s

E
x
ac

t
S

co
re

s

σ−75% 5.782 12.597 2.868 12.120

σ−50% 1.009 1.335 0.343 0.767

σ−25% 1.071 2.492 0.516 1.945

σGG 0.008 0.002 0.002 0.003

σ+25% 1.586 3.884 0.866 3.166

σ+50% 3.370 8.100 1.895 6.875

σ+75% 5.215 12.434 2.975 10.713

A
tr

ia
In

te
rp

.
S

co
re

s

σ−50% 0.566 0.709 0.209 0.216

σ−25% 0.441 0.609 0.114 0.219

σ+25% 0.598 0.831 0.296 0.324

σ+50% 1.316 1.779 0.783 0.748

V
en

tr
ic

le
s

In
te

rp
.

S
co

re
s

σ−50% 1.465 2.420 0.560 1.671

σ−25% 1.151 2.591 0.547 2.081

σ+25% 1.585 3.862 0.864 3.113

σ+50% 3.578 8.475 1.994 7.209

tricles, the average RMSE was 5.8±1.5 μV for 25% variations and 19.0±5.6 μV

for 50% variations.

An example of a reconstructed signal that resulted from conductivity variations in

all four organs can be seen in Fig. 7.20.
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Table 7.10. RMSE (μV ) for combined conductivity variations z in all four tissues (z={25%,50%}). Errors

were larger for larger variations and in case of ventricular compared to atrial signals.

Atria Ventricles

Relative Variation z 25% 50% 25% 50%

σB−z σM−z σL−z σF−z 2.1 11.3 7.2 22.6

σB−z σM−z σL−z σF+z 1.9 10.0 4.1 18.8

σB−z σM−z σL+z σF−z 2.7 13.6 8.4 27.7

σB−z σM−z σL+z σF+z 1.0 5.7 4.5 21.0

σB−z σM+z σL−z σF−z 1.7 6.7 5.0 18.1

σB−z σM+z σL−z σF+z 1.7 5.8 8.1 26.2

σB−z σM+z σL+z σF−z 1.3 5.4 4.3 15.0

σB−z σM+z σL+z σF+z 1.7 5.2 7.0 18.4

σB+z σM−z σL−z σF−z 1.2 4.3 6.0 16.6

σB+z σM−z σL−z σF+z 1.7 6.0 5.8 20.9

σB+z σM−z σL+z σF−z 1.4 5.0 7.9 26.5

σB+z σM−z σL+z σF+z 1.5 5.9 5.5 19.1

σB+z σM+z σL−z σF−z 1.3 3.7 6.0 20.8

σB+z σM+z σL−z σF+z 1.6 5.2 4.2 7.6

σB+z σM+z σL+z σF−z 1.2 3.6 4.8 15.9

σB+z σM+z σL+z σF+z 1.2 2.9 4.8 9.3

Average 1.6 6.3 5.8 19.0

7.6.2.1 Confidence Intervals

Fig. 7.21 shows the resulting confidence intervals for relative conductivity varia-

tions of ±10%, ±30%, and ±50% in all four organs. For a larger relative uncer-

tainty δσrel, the gap between the GG signal and possible upper and lower signal

boundaries will become wider. The relative uncertainty should be chosen conser-

vatively such that the real signal will definitely lie within the calculated confidence

intervals.

7.6.2.2 Conductivity Optimization

Table 7.11 shows an example of the conductivity optimization results. In this case,

the reference for the conductivity optimization was a signal in which the conduc-

tivities of all four tissues were increased by 25%. For blood, the optimization de-

livered a conductivity of 0.881 S/m (compared to 0.875 S/m), which corresponded
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Fig. 7.20. Example of potential ECG changes due to conductivity variations. The signal in which all four

conductivities were varied (here: blood and muscle decreased by 25%, lungs and fat increased by 25%)

shows significant deviations compared to the default signal (GG) that was calculated with the conductivities

from Gabriel et al.. The bottom part of the figure is a magnification of the QRS complex shown above. The

PCA method presented in this study could be used to predict the effects of these combined conductivity

variations in all ECG segments (P-wave, QRS complex, T-Wave). In this case, the P-wave amplitude was

multiplied by two for better visibility.

to a percental increase of 25.9% (compared to 25%). So the resulting optimization

error for the blood conductivity was 0.9 percentage points.

Over all 16 conductivity setups which we used to evaluate the optimization

method, the averaged error (over all four tissues) was 3.0±2.2 percentage points

for atrial data and 4.7±4.2 percentage points for ventricular data.

7.6.3 Discussion

In this study, we developed a PCA-based technique that allowed to predict changes

in BSPMs that were associated with conductivity variations in a single or multiple

tissues. The effects of these conductivity changes could be predicted over a wide

range of conductivities from few sample simulations which were used as input

for the PCA approach. The presented method was validated for both atrial and

ventricular signals.
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A key assumption of the method was, that changes in BSPMs due to conductiv-

ity variations in a single organ can be described with the first eigenvector of a

PCA decomposition. This assumption was verified by calculating the eigenvalue

ratios between the first and second eigenvalues for all four organs. As the ratio

was always larger than 30, it was permissible to assume that the major part of

the signal variation was described by the first eigenvector. The assumption was

also indirectly confirmed by the relatively small errors that were observed for sig-

nal reconstructions (single tissue conductivity changes) based on the exact scores.

The associated RMSE was always under 12.6 μV, thus no subsequent eigenvectors

needed to be included in the reconstruction. In general, ventricular RMSEs were

larger than the errors for atrial signals which we attribute to the larger ventricular

signal amplitudes.

Using the proposed PCA method, only seven sample simulations (with different

conductivities for each tissue) had to be performed to enable the reconstruction

of BSPM signals for arbitrary conductivities within the simulated range. This was

possible, as signals for values between the simulated input conductivities could be

predicted by interpolating the PCA score curve. This technique was verified using

a leave-one-out validation for the±25% and±50% simulations. Here, the RMSEs

of the reconstructions with the interpolated scores were not significantly larger

than the RMSEs that were associated with the exact scores for similar conductivity

variations. It should be noted, that it was not possible to perform a leave-one-

out validation for the ±75% simulations as the polynomial interpolation was only

defined between the minimum and maximum conductivity boundaries that were

used as input. If a simulated value at the boundary (e.g. at -75%) would be removed

from the PCA input data, the interpolated score curve would only be defined in the

-50% to +75% region.

Due to the problems that are associated with the exact measurement of in-vivo con-

ductivities (see section 3.2.3.2) and the possible inter-individual variations, there

is usually more than one conductivity that is not exactly known. Therefore, we

expanded our PCA-based prediction technique and demonstrated that the effects

of combined conductivity variations can also be considered with the presented

method. This was possible by aligning the coordinate systems of the different

PCAs based on the GG signal which served as common origin. The reconstruc-

tion of the effects of combined conductivity changes was based on the assumption

that the changes can be expressed by superposing the effects of the respective
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Fig. 7.21. Visualization of the signal calculated with the default conductivities according to Gabriel et al.
(GG signal) and different confidence intervals (CI). Shown are the upper and lower signal boundaries in

the Einthoven II lead that can result for different conductivity uncertainties. Simultaneous uncertainties of

±10%,±30%, and±50% in all four tissues were considered. Again, the P-Wave amplitude was multiplied

by two to enhance signal visibility.

single conductivity variations. Although there are reports indicating that the ef-

fects of conductivity variations in two different organs are not necessarily addi-

tive [243, 399], our results (e.g. Fig. 7.20) showed that the PCA method was able

to predict the signal changes in the investigated conductivity boundaries. Other in-

dicators for the applicability of the presented method were the low average RMSE

values for the combined conductivity variations of ±25% (atria: 1.6 μV / ven-

tricles: 5.8 μV ). For larger variations of ±50%, the average RMSE only rose to

6.3 μV for the atria and 19.0 μV for the ventricles. It should be noted that in a real

clinical setting, the amount of conductivity variation is likely to be different for

each tissue. However, this does not limit the feasibility of the presented approach

as we only chose equal conductivity variations for the sake of simplicity.

On the other hand, there are of course signal changes due to combined conductiv-

ity variations that cannot be considered with the presented PCA method. Among

these changes are non-linear cancellation effects or non-linear signal amplifica-

tion. In this context, we want to emphasize that the linearization used in this study



212 CHAPTER 7. RESULTS: ANATOMICAL MODELING AND THE FORWARD PROBLEM

is only an approximation. In general, linear approximations are feasible for many

problems. However, the range in which these approximations deliver acceptable

results must be critically evaluated. Within the conductivity boundaries evaluated

in this study, the RMSE values showed that the PCA method was able to provide

a good estimation of the signal changes that should be expected. In contrast to the

time-consuming forward calculations (duration over one hour), the PCA decom-

position and reconstruction took approximately 1 s (including program startup and

data loading) on a standard desktop computer using one CPU.

In addition to the reconstruction of BSPM signals for different combinations of

conductivities, the PCA method can also be used to estimate confidence intervals

for arbitrary ECG leads without having to perform additional forward calcula-

tions. To this end, we used the reconstruction equation to calculate the minimum

and maximum signal that could occur within given conductivity boundaries (for

each time step). Due to the monotonic relation between conductivities and PCA

scores, only the signals at the boundaries of the conductivity ranges needed to be

evaluated. It should be noted, that the resulting confidence interval curves (e.g.

Fig. 7.21) were normally not based on a single conductivity setup. They can rather

be interpreted as a synthetic signal as different conductivity combinations led to

the minimal and maximal signals at different time instants. This ensured, that the

confidence interval curves defined a range in which the real ECG signal will in all

cases lie (despite potential uncertainties in the tissue conductivities).

The presented technique to calculate confidence intervals could be expanded to

allow to predict the probability for the reconstructed signal to lie within certain

boundaries, similar to [399]. In this case, the PCA method would be used to predict

the signal at finite conductivity steps between the upper and lower conductivity

boundaries. The results could then be statistically evaluated e.g. by calculating the

mean signal and standard deviations. Although such a statistical evaluation would

not be as detailed as the approach proposed in [399], it would have the advantage

that the signals could be calculated a posteriori (without having to change the

setup for the forward calculation). In addition to that, it would be possible to apply

the PCA approach to a 3D torso model and at all time steps, which is currently not

possible with the highly sophisticated method proposed by Geneser et al. [399].

As it was possible to fit a polynomial function to describe the dependency of the

PCA scores on the different tissue conductivities, it was also possible to use this

interpolated function in the opposite direction. In this case, it was not used to de-
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Table 7.11. Optimization example for atrial data

Blood Muscle Lung Fat

GG Conductivity (S/m) 0.7 0.202 0.0389 0.0377

Percental Increase (Reference) +25 +25 +25 +25

Reference Conductivity (S/m) 0.875 0.253 0.0486 0.0471

Percental Increase (Estimated) +25.9 +23.8 +19.5 +20.0

Estimated Conductivity (S/m) 0.881 0.250 0.0465 0.0453

Abs. Error in Percentage Points 0.9 1.2 5.5 5.0

rive PCA scores for conductivities in-between the forward calculated input data

but rather to determine the conductivity for a given PCA score. Nelder-Mead’s

simplex optimization scheme [364] was used to probe hundreds of different con-

ductivity combinations and the resulting BSPMs were compared with the reference

signal. The PCA scores of the best matching signal were then used to determine

the corresponding conductivities. This kind of brute-force optimization would nor-

mally not be possible with the standard forward calculation technique as it would

take weeks or months to calculate the BSPMs of all different combinations. In

contrast to that, the PCA-based method needed 40 s to reconstruct 3300 signals.

The conductivities that were predicted by the optimization procedure were close

to the reference conductivities. If the reference signals had conductivity variations

by±25% from the GG conductivity in all four tissues, the average deviation (over

all four tissues) of the optimized conductivities was 2.96±2.24 percentage points

for the atria and 4.74±4.21 percentage points for the ventricles.

It should be noted, that the optimization procedure needed a significant slope of the

polynomial interpolation function q(σ) (see Fig. 7.19). Otherwise, small errors in

the PCA scores (optimization result) could lead to large errors in the predicted tis-

sue conductivities. Although the slope of q(σ) was sufficient to determine the most

likely conductivities for the four important tissues under investigation, it might not

be possible to use this method for organs like the spleen or kidneys, which are

known to have little impact on the BSPM (and thus small slopes of q(σ)) [15].

In addition to that, the conductivity optimization procedure was based on the as-

sumption that all BSPM changes were caused by altered tissue conductivities. Yet

in a clinical setting, it is highly likely that there are other model parameters that

are unknown (e.g. distribution of heterogeneous electrophysiological properties or
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exact sequence of myocardial activation). It is possible that changes in these un-

known parameters have similar effects as changes that are caused by conductivity

variations. In this case the other unknown parameters would disguise the effects of

the conductivity changes and thus prevent a successful conductivity optimization.

On the other hand, the PCA-based optimization method could potentially be used

in these other modeling domains as well. For example it might be possible to use it

for the determination of heterogeneous ion channel distributions that are important

for a realistic model of ventricular repolarization.

In general, it might also be possible to apply the PCA-based technique to the in-

verse problem of electrocardiography (in this case, the cardiac sources should be

found for a given BSPM distribution). Within this realm, the cardiac sources would

have to be reconstructed for a measured BSPM several times with different con-

ductivities. The resulting data could then be fed into the PCA-based method.

In conclusion, the presented PCA-based approach can be used to efficiently predict

BSPM changes that were associated with tissue conductivity variations. BSPM

changes in a single tissue were captured by the first PCA eigenvector. Signal

changes due to variations in multiple tissues could be described by combining

the eigenvectors from PCAs of the corresponding tissues. With this information,

confidence intervals for arbitrary conductivity uncertainties within the initial con-

ductivity boundaries could be calculated.

The eigenvectors and PCA scores are uniquely calculated for every torso model

and every tissue. Thus, these parameters are patient-specific and consider individ-

ual differences in thoracic anatomy (e.g. organ size and position), cardiac anatomy

and electrophysiology. The method can therefore be applied to a great range of

datasets (e.g. patient-specific setups that result from anatomical and electrophys-

iological personalization). Based on these features, it can be concluded that the

presented PCA-based approach is a promising tool to evaluate the effects of con-

ductivity uncertainties on the outcome of clinically relevant patient-specific for-

ward calculations.
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Conclusions and Outlook

During the course of this thesis, several important aspects on various levels of the

multiscale cardiac modeling loop have been investigated:

On the cellular level, a model for the intracellular beta-adrenergic signaling path-

way was integrated into an electrophysiological model for human ventricular my-

ocytes. The propensity of this new model towards the development of calcium

sparks (which can trigger EADs) was evaluated and the model was expanded by

including adrenergic regulation on INaK which allowed a more realistic description

of the intracellular calcium handling under sympathetic influence. In this work, the

main reason for the inclusion of the effects of beta-adrenergic regulation was its

prominent role with respect to the congenital Long-QT syndrome (LQTS). In two

studies, both transmural and body surface ECGs have been calculated in the ab-

sence and presence of a LQTS subtype. Although the model became more realistic

if adrenergic effects were considered (especially concerning the changes in DOR),

there are still some unanswered questions when it comes to the shape and ampli-

tude of the T-Waves that are associated with LQT 1 and LQT 2.

It should also be noted, that the importance of beta-adrenergic regulation is not

limited to the modeling of the LQTS. As a matter of fact, there are numerous sce-

narios which would benefit from the consideration of these effects (i.e. simulations

at elevated heart rate or mechanical modeling due to changes in the intracellular

calcium handling which affect lusitropy and inotropy).

On an organ level, we developed and evaluated a semi-automatic approach that al-

lowed to consider the effects of the specialized excitation conduction system (with

a focus on the Purkinje fiber network) during physiological ventricular activation

based on a so-called endocardial stimulation profile. The presented approach deliv-

ered realistic activation sequences which were validated using standard isochrone

maps and proband-specific ECG data. The semi-automatic nature of the method
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facilitates the fast creation of endocardial stimulation profiles on new, (patient-

specific) anatomical models. A current limitation of the approach is related to the

fact that the adaptation of the stimulation profile to a new anatomy or ECG still

necessitates manual interaction, which can be tedious and time-consuming. In a

future model version, we envision the use of an automated parameter adaptation

based on a numerical optimization scheme and an adequate optimization crite-

rion (i.e. the maximization of the correlation coefficient between simulated and

measured QRS complexes). To reduce simulation times for each iteration of the

parameter adaptation, a rule-based cellular automaton (for the simulation of exci-

tation spread) in conjunction with a lead field matrix approach (for the solution of

the forward problem) could be used. This should be precise enough for the simu-

lation of ventricular activation as electrotonic coupling is here not as important as

e.g. during ventricular repolarization. Using this proposed framework, one itera-

tion (which encompasses the creation of the stimulation profile, the simulation of

ventricular activation and the forward calculation of the ECG) could be performed

in ≈ 5 min. This should be fast enough to optimize the parameters of the endo-

cardial stimulation profile in a trial-and-error manner. The first steps to implement

this optimization framework have already been undertaken.

Another aspect that was investigated on the level of the ventricles was related to

the sequence of repolarization and the genesis of the T-Wave. A literature survey

was conducted in order to create representative, heterogeneous distributions of IKs

which is thought to be mainly responsible for the dispersion of APD in human

ventricular tissue. Although no distribution was able to completely reproduce the

repolarization pattern that was seen in a reference measurement (multi-channel

ECG), it was obvious that some distributions were more likely to produce realistic

results than others; i.e.:

• If M cells are considered, they should be closer to the endo- than to the epicar-

dial wall to allow for a concordant T-Wave.

• With respect to apico-basal gradients, our simulations showed that a higher

apical density of IKs (which could be translated into shorter apical APD) is

more likely than a higher basal density.

• Interventricular heterogeneities did not improve the T-Wave morphology in the

simulations. They rather led to biphasic T-Waves which were not seen in the

reference measurements.



217

On the torso level, an investigation evaluated the realism of different (simple) rule-

based approaches to model the skeletal muscle fiber orientation. Although one of

the approaches was published in prestigious journal [243] we were surprised that

none of the rule-based methods was able to represent the skeletal muscle fiber

anisotropy appropriately. For future studies, there are two possibilities: more com-

plex rule-based approaches could be created and tested or efforts could be made

to image the skeletal muscle fiber orientation in-vivo using DTMRI sequences.

In the realm of the solution of the forward problem, we investigated the impact

of ventricular deformation and the associated movement of the electrical sources

on the morphology of the T-Wave in the ECG. Among the new aspects of this

study was the fact that the deformation was based on MR image data and that the

simulations were conducted using a 3D model of the ventricles rather than a 2 D

slice. The main effect on the T-Wave was a reduction of its amplitude which was

both plausible and in agreement with other studies. As the approach chosen in this

study relied heavily on the manual segmentation of the ventricles in differently

contracted (and relaxed) states, it is not possible to use it regularly whenever new

patient-specific models become available. Two strategies can be used to make this

limitation tolerable: on the one hand it is possible to at least roughly consider the

effects of deformation by simply scaling the simulated T-Waves with the factors

determined in this study (to consider the amplitude reduction). On the other hand,

we proposed a possibility to enhance the generation of the dynamic heart and torso

model which eliminates the need for manual segmentation. In this case, the move-

ment is no longer captured by cinematographic MRI scans but rather by a large

number of tagging slices. From these tagging data, it is possible to automatically

extract the displacement information based on the so-called Sine Wave Modeling

approach [391]. Thus, the registration procedure and subsequently the creation of

the dynamic model could be completely automated.

Finally, the effects of tissue conductivities on the solution of the forward problem

were investigated. In a first study, we conducted a sensitivity analysis to evaluate

the most important inhomogeneities for a realistic solution of the forward prob-

lem. In addition to that, an uncertainty analysis evaluated the effects of contradic-

tory conductivity reports from different experimental studies. Finally we removed

groups of organs from the torso model and calculated the associated errors with

respect to a reference model. This allowed to propose recommendations which or-

gans have to be considered during the creation of patient-specific models. Among
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the five most important structures (besides the heart) were: skeletal muscle con-

ductivity as well as anisotropy, blood, lungs, and fat.

In a second study that dealt with the role of tissue conductivities, we developed

a new and efficient method that allowed to predict the effects of tissue conduc-

tivity changes on the BSPM. This method was based on the principal component

analysis and was significantly faster than repetitive forward calculation which rep-

resented the only option that was available to investigate these effects so far. Thus,

the proposed approach can potentially be used in the future to personalize in-silico

models in a clinical setting.

In conclusion, it can be said that although there are still numerous unanswered

questions in the area of multiscale cardiac modeling. Yet its potential to support

clinical diagnosis and therapy of cardiovascular diseases is undisputed. In this con-

text, the presented thesis has advanced the state-of-the-art in several important ar-

eas. The associated increase in model realism and personalization is one of many

steps towards the clinical use of quantitative in-silico modeling of the heart.
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