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Abstract

Currently Monte Carlo event generators are playing a very important role for the
simulation of signal and background processes at the Large Hadron Collider at
CERN, in Geneva. For some observables it will be very important to consistently
improve the accuracy of the predictions to higher orders in the perturbative expan-
sion. In this direction, several approaches are possible. In the present thesis we
consider the standard Herwig++ parton shower as well as a new, coherent dipole-
type shower along with an automated way of matching. The work is focussed on the
positive weight next-to-leading-order matching formalism (POWHEG), which com-
bines parton shower simulation and next-to-leading-order calculation in a consistent
way which only produces positive weight events. The POWHEG scheme is used in
both approaches of parton showers algorithm and for three different processes.

The POWHEG method is applied to Deep Inelastic Scattering (DIS) and the
related Higgs boson production via vector-boson fusion process in the Herwig++
Monte Carlo event generator. The simulation contains a full implementation of the
truncated shower required to correctly model soft emissions in an angular-ordered
parton shower. Furthermore, we present a method, based on the POWHEG match-
ing scheme, to simulate photon production processes at next-to-leading-order. This
technique is applied to the simulation of diphoton production in hadron-hadron col-
lisions. The simulation includes both the photon fragmentation contribution and a
full implementation of the truncated shower. The new, coherent dipole-type parton
shower is tested in its final-initial and initial-final radiation by simulating radia-
tion within the POWHEG formalism for the DIS process. We describe the NLO
phase-space that is used for the calculation of the NLO momenta and phase-space
integration of differential cross section. The present work is concluded with a com-
parison of the simulations of the two showers for the DIS process.
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Introduction

The Large Hadron Collider (LHC) at the European Organization for Nuclear Re-
search (CERN) has recently started colliding protons at 7 TeV in the centre of mass
frame and will continue to operate at half power until 2014, when proton beams are
expected to circulate in the main ring at 14 TeV in the centre of mass frame, a new
world record for the highest-energy man-made particle collisions.

The LHC is expected to illuminate a new landscape of physics in the coming
years. We will learn whether electroweak symmetry breaking is realised as postulated
by the Higgs mechanism, the last missing piece in the puzzle of the Standard Model.
We will also address the question of whether Supersymmetry describes our universe
or is only a mathematical tool. We may even obtain a deeper understanding of the
space-time structure of Nature, by testing the idea of extra dimensions.

The price to pay for this precious knowledge is the tremendous complexity of
the experiment at the LHC. On the one hand we have the technical issues of dealing
with such a huge machine that is expected to measure micrometric distances. On the
other hand we need a full understanding of the outcome of high-energy proton-proton
collisions. The task is colossal and can only be addressed by a close collaboration
between theory and experiment.

Theorists are expected to contribute by providing accurate predictions. To this
end it is crucial that the strong interaction, which confines quarks in protons and
governs processes involving quarks and gluons, which comprise the background, are
well understood.

Quantum Chromodynamics (QCD) is the component of the Standard Model
describing the interaction of coloured particles. It has been extensively tested at
several collider experiments, such as the Large Electron Positron (LEP) collider, the
Hadron-Electron Ring Accelerator (HERA) and Tevatron, and is widely accepted
as the correct quantum field theory of strong interaction.

At high scales, the QCD predictions can be calculated by means of perturbative
expansion in terms of quarks and gluons, commonly referred to as partons. However,
since QCD becomes strongly coupled at small transferred momentum, partons that
are produced in a scattering process fragment to observed hadrons. This physics
is described by non-perturbative models, which are phenomenological models and
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Introduction

depend on parameters that are tuned to experimental data.

Monte Carlo event generators provide a description of collisions at particle acce-
larator experiments and a simulation of the physics involved. They supply a means,
via a parton shower, of evolving from the high scale, where partons behave as free
particles and a perturbative expansion can be applied, to a lower scale, where non-
perturbative models are needed.

The perturbative physics consists of three parts: the hard subprocess, the shower
and the decay. The hard subprocess is in general calculated at leading order. Each
external leg then undergoes soft and collinear branching, the parton shower, which
evolves from high to low scale. Finally each unstable particle decays according to
the decay rate.

Next-to-leading order (NLO) perturbative QCD calculations provide the best
description for inclusive observables. However, parton showers are needed when we
want to calculate observables that are more exclusive and sensitive to higher multi-
plicity configurations. Therefore, the best description will be obtained by combining
NLO QCD corrections with parton showers.

This is complicated because the NLO matrix element and parton showers both
radiate in some regions of the phase-space. A prescription, known in the literature
as an NLO matching scheme, is needed to remove the double counting and give NLO
results for infrared safe observables in the strong coupling.

In the present work the POWHEG matching scheme of Refs. [1, 2] has been
implemented for Higgs production via vector boson fusion, diphoton production
and deep inelastic scattering (DIS) subprocesses in the Herwig++ parton shower of
Ref. [3] and in the dipole-type parton shower of Ref. [4] for DIS. More precisely, the
outline of this thesis is as follows.

We will start in Chapter 1 by introducing the basics of QCD theory and QCD
single- and multiple-particle emissions, which are of interest for the understanding
of the parton shower. We will describe parton showers and the POWHEG matching
algorithm, giving particular attention to the Herwig++ and the dipole shower of
Ref. [4].

Higgs production via vector boson fusion (VBF) is a very promising channel
for Higgs searches at the LHC. In fact, since this process has a special kinematical
structure that allows for good separation from the background, VBF is expected to
play a fundamental rôle in the measurement of the Higgs coupling to gauge bosons
and fermions in different decay channels, i.e. H → τ+τ− and H → W+W−. The
implementation of the POWHEG method for VBF in the Herwig++ parton shower
will be discussed in Chapter 2.

One of the main backgrounds for the discovery channel of the Higgs boson de-
caying into a pair of photons will be discussed in Chapter 3, where we describe
the implementation of the POWHEG formalism for diphoton production in hadron-
hadron collisions for the Herwig++ parton shower.

The DIS process has made an important contribution to the understanding of
the internal structure of hadrons and is very well-known in the literature. Its imple-
mentation in the Herwig++ parton shower, according to the POWHEG matching
scheme, goes along the same lines as for Higgs production via vector boson fusion,
as will be discussed in Chapter 4.
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Introduction

On the other hand, the implementation of the DIS in the dipoles shower follows
a different approach, as will be described in Chapter 5: I designed and implemented
the NLO phase-space and the program provides an automated method of matching.
This process is an important test for the initial-final and final-initial radiation of
the dipole shower, as will be extensively discussed.

In Chapter 6 we provide a summary of the approaches and compare distributions
for the two showers, in the DIS case. The thesis ends with Chapter 7, which is
dedicated to a summary and conclusions of the whole work, and a well documented
bibliography.
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Chapter 1

Parton Showers and QCD
corrections

The Large Hadron Collider (LHC) has just begun working at CERN. Its primary
goals are the detection of the Higgs boson, which would confirm the validity of the
Standard Model and our understanding of the origin of mass, and particles predicted
by theories of physics beyond the Standard Model, such as supersymmetry. The
understanding of Quantum Chromodynamics (QCD), which underlies proton-proton
scattering, has a crucial role in the analysis of discovery signals and backgrounds.

QCD is universally accepted as the correct quantum field theory of strong inter-
actions and its predictions have been tested at different collider experiments, such
as the Large Electron Positron (LEP) Collider and the Tevatron. Next-to-leading
order (NLO) QCD corrections provide the best description for sufficiently inclusive
observables. However, this is not enough when we want to calculate observables that
are more sensitive to high multiplicity configurations: a parton shower algorithm,
which is based on Monte Carlo simulation, would provide a better description in this
case. Therefore the best picture will be obtained when we combine NLO corrections
and a parton shower.

In this Chapter we review the way these two components can be pieced together.
An overwiev of QCD is presented following Refs. [5,6]. We start by highlighting the
main features of QCD and perturbative expansion within this theory (Sect. 1.1).
More attention will be focussed on singularities and the parton branching formalism
(Sect. 1.2). Collinear emissions will be studied in the simple case of two particles,
before generalising to multi-parton branching and showing that the DGLAP equa-
tion resums the leading logarithmic divergences (Sect. 1.3). Soft emissions will be
treated in Sect. 1.4. We will present an overview of Monte Carlo event generators
in Sect. 1.5, emphasising the features of interest for the understanding of the rest
of the thesis. We will reserve Sect. 1.6 for a discussion of parton shower simulation,
focussing on the Herwig++ shower of Ref. [3] and the dipole shower of Ref. [4],
which have been used in the present work. In Sect. 1.7 we will discuss the way the
worlds of QCD corrections and parton showers can be combined, focussing on the
POWHEG matching scheme, which is the algorithm used in the present work. In
Sect. 1.8 we will conclude the Chapter by recapping the main topics discussed.
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Chapter 1. Parton Showers and QCD corrections

Flavour Charge Mass
u +2

3
e ∼ 4 MeV

d −1
3
e ∼ 7 MeV

c +2
3
e ∼ 1.5 GeV

s −1
3
e ∼ 135 MeV

t +2
3
e ∼ 175 GeV

b −2
3
e ∼ 5 GeV

Table 1.1: Flavours, electric charges and masses of quarks. Here e defines the charge
of the electron, which is 1.602 · 10−19C.

1.1 Quantum Chromodynamics

QCD is the component of the Standard Model describing the interactions of parti-
cles with colour charge, partons, and is constructed as a non-abelian gauge theory,
SU(Nc) [7]. Colour charge has three values, i.e. Nc = 3: red, green and blue. The
fermions of the theory are called quarks and they are in a triplet of SU(Nc). There
are six types of quarks, known as flavours, and each of them also has QED charge,
which is a fraction of the electron charge, as shown in Tab. 1.1. The antiparticles
are called antiquarks. They have opposite electric charge and can take one of the
three anticolours: antired, antigreen or antiblue. The gauge boson of the theory is
called the gluon and is in a colour octet of SU(Nc) and has zero mass. Quarks and
gluons are not observed as free particles but rather clump together to form a singlet
of SU(Nc), hadrons ; this is due to confinement, which is an intrinsic property of the
theory, as we will see later in this section.

In the present section we aim to briefly introduce QCD, highlighting the features
that will be useful for the understanding of the rest of this work. In Sect. 1.1.1 we
will describe the Lagrangian of the theory, Sect. 1.1.2 summarises the notion of
perturbative expansion in QCD and in Sect. 1.1.3 we will illustrate the running of
the strong coupling.

1.1.1 QCD Lagrangian

QCD is constructed as a SU(Nc) gauge theory with Lagrangian density

LQCD =

nf
∑

f=1

ψ̄f
i [i 6Dij −mfδij ]ψ

f
j − 1

4
Fµν,aF

µν
a + Lgauge + Lghost

≡ L0 + Lint + Lgauge + Lghost, (1.1)

where

6Dij ≡ γµDµ,ij = γµ[∂µδij + igsAµ,a(Ta)ij], (1.2)

Fµν,a = ∂µAν,a − ∂νAµ,a − gsCabcAµ,bAν,c. (1.3)

Here and throughout this work, greek letters indicate Lorentz indices and latin
letters colour indices; in particular, abc go from 1 to N2

c −1, whereas i, j range from
1 to Nc. The first two terms in Eqn. 1.1 are invariant under a local SU(Nc) gauge

2



1.1. Quantum Chromodynamics

transformation. Within the Lagrangian, quarks are described by spinor fields, ψf (x),
where f = 1, ..., nf denotes the flavour of the quarks, and the gluon is described by
the vector field Aµ(z). Moreover, Cabc are the structure constants of SU(Nc), which
define its Lie algebra and gs is the coupling constant. The Lagrangian density
of non-interacting quark fields is L0 =

∑nf

f=1 ψ̄
f
i [i 6∂ij − mfδij ]ψ

f
j and Lint defines

the interaction. The term Lgauge is needed to define the gluon fields propagator1.
According to a prescription introduced by Faddeev and Popov [8], this is done by
introducing the gauge fixing term [5]

Lgauge = − 1

2λ
(∂µAµ,a)

2. (1.4)

Typically the gauge parameter, λ, is chosen to be λ = 1 and the gauge is called the
Feynman gauge, where the gluon propagator has the simplest form.

Moreover, in non-abelian gauge theories, an extra ghost term must also be in-
cluded in order to cancel the propagation of unphysical gluon field polarization [9].
This is done by the ghost contribution

Lghost = ∂µφ
†
a{Dµ

abφb}, (1.5)

where φb is a scalar ghost field of Grassman variables. The ghost fields are unphysical
so they do not appear as external particles.

1.1.2 Perturbative QCD

The differential cross section for the scattering of particle a, with momentum pa,
and particle b with momentum pb, into particles of momenta p1...pn is given by

dσab =
¯∑|M(papb → p1...pn)|2

F
dΦn, (1.6)

where ¯∑ denotes the sum over all final-state quantum numbers and the average over
initial-state quantum numbers of the process, M is the Feynman amplitude, F the
incoming particle flux, given by F = 4

√

(pa · pb)2 − p2ap
2
b and the Lorentz invariant

phase-space element (LIPS) for n outgoing particles is

dΦn(papb → p1...pn) = (2π)4δ4

(

pa + pb −
n
∑

k=1

pk

)

n
∏

k=1

d3pk

(2π)32Ek
. (1.7)

The calculation of the Feynman amplitude, or S-Matrix elements, is performed
within perturbation theory, where the interaction terms of the Lagrangian are con-
sidered as perturbations to the free Lagrangian. Matrix elements are constructed
as a series in the couplings of the interaction terms, more specifically as a series in

αs =
g2s
4π
. If the couplings are small, the series can be truncated and the result is an

approximation at finite order.

1In order to define the propagator of the gluon fields, the operator associated with terms bilinear
in the gluon fields needs to be inverted and to do that it is necessary to introduce gauge-fixing
terms in the Lagrangian.
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Chapter 1. Parton Showers and QCD corrections

1.1.3 The running coupling constant

In Quantum Field Theories there are divergences coming from loop diagrams in
which virtual particles propagate with unconstrained momentum: virtual diver-
gences. These singularities are controlled by renormalization, which consists of
rewriting the physical parameters in terms of bare parameters, which appear in the
Lagrangian, such that the observable quantities are finite. Nevertheless it introduces
a renormalization scale (µ) and scheme dependence into the physical parameters.
The constraint that phyisical quantities do not depend on the unphysical scale can
be expressed in terms of a differential equation, known as the renormalization group
equation.

Considering the strong coupling, the most important parameter of QCD, this
equation can be expressed as

Q2 ∂αs

∂Q2
= β(αs), (1.8)

and for this reason we refer to the coupling as a running coupling. In the previous
equation β(αs) can be computed as a power series expansion in αs [10, 11],

β(αs(Q
2)) = −b0α2

s(Q
2)(1 + b1αs(Q

2) + ...), (1.9)

with b0 =
33−2nf

12π
and b1 =

153−19nf

2π(33−2nf )
. From the previous equation emerges the

fact that for nf ≤ 16 the beta function has a negative sign, leading to a vanishing
coupling constant in the large energy regime: this is a well known feature of QCD
called asymptotic freedom. As opposed to QED, where the coupling increases with
increasing energy, the beta function of QCD guarantees the validity of the pertur-
bative expansion at high energies. This behaviour is shown by the solution of Eqn.
1.8 at 1-loop level:

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)b1ln
Q2

µ2

. (1.10)

Conversely, Eqn. 1.10 shows that the coupling diverges for small Q2: this is another
feature of QCD, known as confinement, and is responsible for the fact that partons
are bound in hadrons and are not detected as free particles2.

The absolute value of the coupling constant is not predictable and has to be
obtained from experiment. Usually αs(M

2
Z) is chosen as a reference point to ensure

that the perturbative analysis is valid. Moreover, as an alternative to Eqn. 1.10, αs

can be expressed at leading-order in terms of the parameter ΛQCD as [5]

αs(Q
2) =

1

b1ln
Q2

Λ2
QCD

. (1.11)

ΛQCD is the scale at which the coupling would diverge; qualitatively, it is the scale
at which αs(Q

2) becomes strong and the perturbative regime is not valid. It is not
uniquely defined and depends on the renormalization scale, the number of active
flavours and the order to which the beta function is computed: at 4-loops, in the
MS scheme ΛMS

QCD = 220 MeV.

2A full description of the formation of hadrons is outside the domain of perturbation theory
and relies on non-perturbative models of QCD that are not fully developed.
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1.2. The parton branching formalism

p1

p2

q1

q3

q2

p2

p1

+

q1

q3

q2

Figure 1.1: Feynman diagrams contributing to the radiative corrections of the pro-
cess e+e− → hadrons.

1.2 The parton branching formalism

The parton shower is based on the parton branching formalism, which describes soft
and collinear emissions in terms of enhanced contributions. The corrections have a
universal factorized form and are logarithmically divergent. In Sect. 1.2.1 we will
show the origin of these divergences for the process e+e− → hadrons and provide an
argument to regulate them. Then in Sect. 1.2.2 we illustrate how singularities are
factorized in terms Altarelli-Parisi splitting functions.

1.2.1 O(αs) radiative correction

The leading order cross section for the process e+e− → hadrons is given by

σB = NcQ
2
q

4πα2

3Q2
, (1.12)

where Qqe is the electric charge carried by the quark q, α = e2

4π
is the fine structure

constant andQ is the momentum of the intermediate boson. TheO(αs) real emission
consists of two Feynman diagrams as shown in Fig. 1.1. The analytical contribution
is given by

σR = σBCF
αs

2π

∫

dx1dx2
x21 + x22

(1− x1)(1− x2)
, (1.13)

where CF = N2
c−1
2Nc

,

xi =
2qi ·Q
Q2

(1.14)

are called Dalitz variables and define the momentum fraction, with integration region
xi ∈ [0, 1] and x1 + x2 > 1, cf. Fig. 1.2.

Eqn. 1.13 shows that the real emission contribution to the cross section diverges
in the limits x1 → 1 and/or x2 → 1. This picture is the basis of the parton shower
formalism and is better seen by expressing the momentum fraction in Eqn. 1.14 in
terms of the opening angles θij between the partons,

1− x1 = x2x3(1− cosθ23),

1− x2 = x1x3(1− cosθ13). (1.15)

5



Chapter 1. Parton Showers and QCD corrections

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x 1

x
2

Figure 1.2: The shaded region shows the phase-space available in Dalitz variables,
for the process e+e− → hadrons.

Therefore the singular region of the differential cross section corresponds to the
limits where the gluon is collinear to the quark (θ13 → 0), or to the anti-quark
(θ23 → 0), or it is soft (x3 → 0).

Eqn. 1.13 can be written as [5]

σR = σBCF
αs

2π

∫

dz
dp2⊥
p2⊥

[

1 + z2

1− z
+O(p2⊥)

]

, (1.16)

where p⊥ is the transverse momentum of the emitted parton, z is the momentum
fraction of the emission and σB is the leading-order cross section. The divergences
of the previous integral can be regulated by introducing cut-offs, Q0 and ǫ, and
parametrising the divergent regions according to

Q2
0 < p2⊥, ǫ < z < 1− ǫ. (1.17)

The integral in Eqn. 1.16 then yields single and double logarithmic terms

∝ αs

2π
ln

(

Q2

Q2
0

)

, ∝ αs

2π
ln

(

Q2

Q2
0

)

ln

(

1

ǫ

)

. (1.18)

Here the single logarithm corresponds to the collinear divergences while the double
logarithm corresponds to collinear and soft regions of the phase-space. Note that
according to the theorem of Kinoshita, Lee and Nauenberg (KLN) [12–14] those
singularities are cancelled at all orders in αs in any observable that is not sensi-
tive to soft and collinear emission of partons; those observables are called infrared
safe. In particular, for the full inclusive cross section of e+e− → hadrons the diver-
gences coming from the radiative correction are cancelled by identical singularities
of opposite sign arising from the O(αs) virtual correction.
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1.2. The parton branching formalism

Mn

qĩj

qi

qj

Figure 1.3: Correction to a process with n-particles in the final state and matrix
element Mn. The correction is due to the branching of an external parton qĩj → qiqj .

1.2.2 Splitting functions

The factorization in Eqn. 1.16 can be generalized to the case of a process with n
particles in the final state and the parton ĩj splitting into two particles i and j, as
shown in Fig. 1.3. The matrix element will contain the factor from the propagator,

1

q2
ĩj
−m2

ĩj

, (1.19)

which is singular in the limit that the emitter is on-shell (q2
ĩj
→ m2

ĩj
). In the massless

limit the previous factor becomes

1

EiEj(1− cosθij)
, (1.20)

which shows that the divergences appear in the limit that either an external parton
is soft (Ei,j → 0) or the external partons are collinear (θi,j → 0).

The main result of QCD is that, in the enhanced soft and collinear limit, those
singularities are factorized into a universal set of Altarelli-Parisi splitting functions
[15], Pĩj→ij(z), according to

dσn+1 = dσn
αs

2π

dp2⊥
p2⊥

dzPĩj→ij(z). (1.21)

These splitting functions are universal in the sense that they do not depend on
the underlying process but only on the parton species involved in the branching.
In the following we will briefly discuss the case of emission of a gluon and for any
further detail see Ref. [5]. The main step consists of writing the matrix element,
in the on-shell limit, in terms of the Sudakov decomposition of the emitted particle
momenta. For the branching pq ≡ p→ qqqg we obtain

qµq = zpµ +
p2⊥

2zp · nn
µ + kµ⊥, (1.22)

qµg = (1− z)pµ +
p2⊥

2(1− z)p · nn
µ − kµ⊥, (1.23)
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Chapter 1. Parton Showers and QCD corrections

where p is the momentum of the emitter, the reference vector n is a light-like vector
with three-momentum opposite to that of p, p⊥ is the transverse momentum of the
emission and k⊥ is chosen so that k2⊥ = −p2⊥. Note that the previous results hold
in the on-shell limit, where p2 ≃ 0. The modulus squared of the matrix element
summed over colours and spins factorizes

|M̄n+1|2 = 8παs
1

(qq · qg)
1 + z2

1− z
|M̄n|2 +O(p⊥). (1.24)

This result has to be considered together with the corresponding radiative phase-
space measure written in terms of z and p⊥. At O(p⊥) we have [5]

dΦn+1 = dΦn
dzdp2⊥

16π2z(1 − z)
. (1.25)

In this way we obtain

dσn+1 = dσn
dp2⊥
p2⊥

dz
αs

2π
Pq→qg, (1.26)

where

Pq→qg = CF

[

1 + z2

1− z

]

(1.27)

is the Altarelli-Parisi splitting function for the q → qg branching. The collinear
splitting functions for different flavour branching can be derived in a similar way
giving

Pg→gg = CA

[

z

1− z
+

1− z

z
+ z(1 − z)

]

, (1.28)

Pg→qq̄ = TF [1− 2z(1− z)] , (1.29)

where CA = Nc and TF = 1/2. Eqns. 1.27-1.28 are known in the literature as
unregularized splitting function because they diverge in the soft gluon limit z → 13.
The divergent behaviour can be regularized by using a prescription that is known
as plus prescription. We will not discussed the regularized version of the splitting
functions here and refer the reader to Ref. [5, 6] for further details.

Here we have considered the branching from final-state partons, whose branching
line is characterised by the virtuality q2 > 0 of the intermediate parton. For this
reason it is known as time-like branching. The same factorization would be gained
for the branching of initial-state emission; in the latter case, the intermediate parton
would have a virtuality q2 < 0 and we would refer to it as space-like branching.

1.3 The DGLAP equation

In order to illustrate the origin of logarithmic divergences in QCD, we generalize the
approach followed in the previous section to the case of multiple collinear emission,

3The splitting function Pg→gg has also singularity at z = 0, but this divergence can be mapped
to z = 1 given the z → 1− z symmetry of the function [5].
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1.3. The DGLAP equation

Mn

q1
q2

qq

qg2
qg1

(p⊥1
, z1) (p⊥2

, z2)

Figure 1.4: Real emission correction to a general process with n particles in the final
state. The correction is due to the emission of gluons.

i.e. when more than one branching happens along the branching line. We will start
from a two-particle branching (Sect. 1.3.1) before illustrating the case of multi-
particle emission in Sect. 1.3.2. In the latter, we will show that the DGLAP equation
provides a leading-logarithm (LL) resummation of these divergences.

1.3.1 Two-particle emissions

We start from the simple case, of two collinear gluons emission, as shown in Fig. 1.4.
The approach leading to the factorization shown in Eqn. 1.26 relied on the fact that
the emitter was on-shell. Going backwards along the branching line in Fig. 1.4 we
see, from Eqns. 1.22 and 1.23, that at (p⊥2 , z2) the emitter has virtuality given by

q22 = (qq + qg2)
2 =

p2⊥2

z2(1− z2)
. (1.30)

When we consider the branching at (p⊥1, z1), this finite virtuality can be neglected in
the limit q21 ≫ q22. The latter condition is known in the literature as strong ordering.
From Eqn. 1.30 we find that, for non-soft emission, the strong ordering condition
can be expressed as

p2⊥1
≫ p2⊥2

. (1.31)

Following the approach of the previous section, in the non-soft, collinear limit of
Eqn. 1.26, we find that the emission illustrated in Fig. 1.4 is proportional to

(αs

2π

)2
∫ Q2

Q2
0

dp2⊥1

p2⊥1

∫ p⊥1

Q2
0

dp2⊥2

p2⊥2

=
1

2

(αs

2π

)2

ln2

(

Q2

Q2
0

)

. (1.32)

Note that the presence of double logarithms holds because of the strong ordering
condition; in fact if we invert the relation in Eqn. 1.31, p2⊥1

≪ p2⊥2
, we get only a

single logarithm while the strong coupling is still at a power of two: this configuration
is therefore subleading. From Eqn. 1.32 it follows that the description of exclusive jet
observable contains the logarithmic terms of Eqn. 1.18. If the resolution parameters
are small those logarithms will dominate the observable. Moreover, each power of
αs will introduce a large logarithm, invalidating the truncation of the perturbative
series. For this reason we need an algorithm to rewrite the integral in such a way
that the perturbative approach is still valid: resummation. The DGLAP equation
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Chapter 1. Parton Showers and QCD corrections

provides a leading-order resummation, as we will see in the next section. Before
concluding this section it is important to note that the strong ordering condition
(Eqn. 1.31) implies not only an ordering in the transverse momenta, but also in the
opening angle of the emission or any other variable parametrising the collinear limit
of the branching. The variable with which the strong ordering variable is applied is
called the ordering variable and it is of main interest for parton shower. Different
choices of ordering variable do not change the treatment of the leading logarithms
(LL) but only the subleading terms.

1.3.2 Multi-particle emissions

In Sect. 1.2 we saw that the branching formalism is based on a picture of partons
evolving in an ordering variable, t, and undergoing an emission while evolving from
t→ δt with probablility Pĩj→ij(t)δt; from Eqn. 1.21, this is given by

Pĩj→ij(t)δt =
δt

t

∫ 1

0

dz
αs

2π
Pĩj→ij(z). (1.33)

Here and in the following the strong coupling is αs ≡ αs(t). The DGLAP equation
[15, 16] is defined as

t
∂fi(x, t)

∂t
=

∫ 1

0

dz
αs

2π
P (z)

[

1

z
fi

(x

z
, t
)

− fi(x, t)

]

(1.34)

and describes how fi(x, t) develops in t. The functions fi(x, t) are called parton
density (fragmentation) functions and describe the probability of finding a parton
species i with momentum fraction x of the incoming (outgoing) hadron at a scale
given by the ordering variable t. Using the plus prescription mentioned in Sect. 1.2.2,
Eqn. 1.34 can be written in terms of regularized splitting functions and the inte-
gration region becomes x ≤ z ≤ 1. However, in the Monte Carlo approach it is
preferible to use unregularized splitting functions and remove the divergences in the
following way.

We consider the Sudakov form factor,

∆(t) = exp

[

−
∫ t

t0

dt′

t′

∫ 1−ǫ

ǫ

dz
αs

2π
P (z)

]

, (1.35)

which is defined as being the probability for evolving from t → t0. Here we have
introduced an explicit cut-off ǫ to remove the singularities. The definition of this
cut-off is to some extent a matter of choice about what we classify as an unresolvable
emission, which involves the radiation of an undetectable soft parton. In terms of
the Sudakov form factor, Eqn. 1.34 becomes

t
∂

∂t

(

fi(x, t)

∆(t)

)

=
1

∆(t)

∫ 1−ǫ

ǫ

dz

z

αs

2π
P (z)fi

(x

z
, t
)

(1.36)

and for multiple parton species emission, ĩj → ij, it becomes

t
∂

∂t

(

fi(x, t)

∆i(t)

)

=
1

∆i(t)

∑

i,j

∫ 1−ǫ

ǫ

dz

z

αs

2π
Pĩj→ij(z)fĩj

(x

z
, t
)

, (1.37)
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1.4. Soft emission

which shows no logarithmic enhancement. Therefore the strongly-ordered DGLAP
equation resums the leading logarithmic contributions.

1.4 Soft emission

So far we have discussed only collinear singularities. Now we consider soft singular-
ities. Returning to the branching in Fig.1.3, we consider the case of a soft emitted
gluon, i.e Eg ≃ 0, with momentum

qµg = Eg(1;n), (1.38)

where n is a unit vector defining the direction of the gluon. In the limit Eg → 0
the matrix element factorises into a product of a spin independent eikonal factor, a
colour factor and the coupling constant

Mn+1 = gst
c
ab

qq · ǫ(qg)∗c
qq · qg

Mab
n . (1.39)

Note that the form of this factorisation is universal in the sense that it describes
the emission of a soft gluon from any of the external on-shell partons, with only the
colour factor depending on the emitting parton species (ab). The cross section will
then be given by summing Eqn. 1.39 over all external partons and squaring: the
result is given by [5]

dσn+1 = dσn
dEg

Eg

dΩ

2π

αs

2π

∑

i,j

CijWij , (1.40)

where the sum over i and j refers to all possible pairs of external partons. Here
Cij contains the colour factors while Wij is the radiation function. Note that in the
collinear limit, Eqn. 1.40 approximates the general soft-collinear form of Eqn. 1.21
and treats soft and collinear singularities on an equal footing: this is the basic idea
of angular ordered parton showers.

In the massless limit, the radiation function is given by

Wij = E2
g

pi · pj
pi · qgpj · qg

. (1.41)

The radiation function can be written in terms of the opening angle between the
partons i, j, and g as

Wij =
1− cosθij

(1− cosθig)(1− cosθjg)
. (1.42)

The previous equation shows that Eqn. 1.40 contains soft singularities, because
of the 1

Eg
term, together with collinear singularities (see Eqn. 1.42), as we expect.

Eqn. 1.42 can be written in terms of

W
(i,j)
ij =

1

2

(

Wij +
1

1− cosθ(i,j)g
− 1

1− cosθ(j,i)g

)

(1.43)

11



Chapter 1. Parton Showers and QCD corrections

as
Wij = W

(i)
ij +W

(j)
ij , (1.44)

where the superscript (i, j) is meant to be either the particle i or j. In Eqn. 1.44
the collinear singularities θig → 0 are separated from θjg → 0 and the interference
between them has been removed.

It is convenient to perform the integral over the azimuthal angle of the gluon,
relative to the parton to which the gluon is collinear and this gives [5]

∫ 2π

0

dφ(i,j)g

2π
W

(i,j)
ij =

1

1− cos(i,j)g
Θ(θij − θ(i,j)g), (1.45)

which shows that the interference is completely destructive outside of a cone centred
along the line (i, j) and extending as far as the line (j, i): the radiation function
then exhibits a property of angular ordering [17–24]. For massive partons, the
same angular ordering applies but with an inaccessible area collinear to the massive
quarks, the dead cone [25].

1.5 Monte Carlo event generators

The main general purpose Monte Carlo events generators used to be Pythia [26]
and HERWIG [27]. They were based on FORTRAN language and despite the fact
that they were very successful in describing several physical processes, maintaining
them became impractical as they grew. For this reason they were rewritten in an
object-oriented structure in the C++ language as Pythia 8 [28] and Herwig++ [3].
In the meantime another event generator was also developed: SHERPA [29]. These
event generators present a common structure that provides the simulation but have
notable differences in the details of the simulation itself. In this section we describe
the general features of Monte Carlo event generators. Later we will give more details
on Herwig++, which is the event generator used for the present work.

1.5.1 The structure

Monte Carlo event generators provide an event-by-event description of collisions at
particle accelerator experiments, supplying as complete as possible a simulation of
the physics involved. The event-by-event flexibility guarantees predictions for any
number of observable quantities and the application of the experimental cuts to
these predictions.

Event generators simulate physics in two different domains: perturbative and
non-perturbative. Those regions are separated by a hadronization scale, which is
typically of the order of 1 GeV. At higher scales the asymptotic freedom guarantees
that the strong coupling is small and perturbation theory can be applied to describe
the interactions of free partons: the hard subprocess. However, at lower scales con-
finement dictates that only colour singlets exist: hadronic states are observed and
not free partons. This physics will be described by non-perturbative models: these
are phenomenological models based on physical assumptions, which depend on free
parameters that need to be tuned to experimental data.
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1.6. The parton shower

Monte Carlo event generators provide a means, via a parton shower, of evolving
from the hard scale, where partons are produced at a fixed order in perturbation
theory, to the soft scale, where non-perturbative models are applied. The perturba-
tive physics consists of three main parts: the hard subprocess, perturbative decays
and the parton shower. The hard subprocess is generally calculated at leading-order
with a tree-level matrix element. Each external leg undergoes multiple soft and
collinear branching, the parton shower, which evolves from the hard scale down to
the hadronization scale. This corresponds to a DGLAP resummation of the LL
terms. Moreover, the unstable particles decay according to the decay rate calcu-
lated in perturbation theory. The hadronization models, describing the way stable
hadrons are created by final state partons, are then applied. The interaction of
the remnants of the beam particles, after the partons of the hard scattering have
been extracted, also needs to be simulated: this is done with a non-perturbative
model describing the underlying events. In particular, the underlying events are the
products of two components: the hadron production in multiple parton interactions
(MPI) and the beam-beam remnants (BBR), which is the result of the hadronization
of the beam partonic constituents that did not participate in the hard scattering.

1.6 The parton shower

The parton shower is a formalism devoted to the simulation of scattering events of
particle physics in colliders. Continuing along the same lines as Sect. 1.3, where
we illustrated final state branching, we will start by describing a final state parton
shower in Sect. 1.6.1. In Sect. 1.6.2 we will investigate the need for a backward
evolution for initial state radiation and then take a brief look at angular-ordered
parton showers in Sect. 1.6.3. We will conclude the present section by highlighting
the main features of the parton shower used in the present work: Herwig++ in
Sect. 1.6.4 and in Sect. 1.6.5 the dipole shower of Ref. [4].

1.6.1 Final state parton shower

The parton shower is based on the fact that the branching formalism of the DGLAP
equation (Eqn. 1.37) can be interpreted in a probabilistic way as Markov process
(see Refs. [30–33]), describing independent branchings. This interpretation is seen
by integrating4 Eqn. 1.37 with respect to the ordering variable and writing it as

fi(x, t) = ∆i(t)fi(x, t0) +

∫ t

t0

dt′

t′
∆i(t)

∆i(t′)

∑

ĩj

∫ 1−ǫ

ǫ

dz

z

αs

2π
Pĩj→ijfĩj

(x

z
, t′
)

. (1.46)

The previous equation can be solved by iterative substitution and has a very
interesting probability interpretation. The first term on the right hand side defines
the probability that no resolvable emission happens in evolving from t down to the
hadronization scale t0. The second term corresponds to the probability of having
a branching ĩj → ij at a scale t′ and momentum fraction z: this is given by the

4We proceed along the same lines as Sect. 1.3, where we derived the DGLAP equation
(Eqn. 1.37) for final state branching; therefore, we refer to a final state parton shower here.
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Chapter 1. Parton Showers and QCD corrections

probability of having no resolvable emission from t to t′,
∆

ĩj
(t)

∆
ĩj
(t′) , multiplied by the

probability of undergoing a branch at scale t′ and momentum fraction z. The recur-
sive approach requires that the function fi(

x
z
, t′) in the second term undergoes the

same evolution by branching at (t′′, z′), with t′ < t′′ < t0 and z′ 6= z.
Conventionally the parton shower evolution is expressed by a generating func-

tional, which describes all configurations and corresponding probabilities of the
states accessible to the shower [5]. This parton shower resums the effect of en-
hanced collinear emission to all orders in αs in the LL approximation. In practice,
it is generated following the parton shower algorithm. This consists of calculating
the scale of the emission by generating random numbers R,R′ ∈ [0, 1], solving

R =
∆i(t)

∆i(t′)
(1.47)

for t and calculating the momentum fraction of the branching, z, by solving5

∫ z

ǫ

dz′
αs

2π
P (z′) = R′

∫ 1−ǫ

ǫ

dz′
αs

2π
P (z′). (1.48)

1.6.2 Initial state parton shower

The branching algorithm described above generates what is known as forward evo-
lution or final state parton shower. At each branching a parton with timelike mo-
mentum is emitted and the emitting particle moves towards a lower virtuality.

In the initial state parton shower the incoming parton, extracted from the in-
coming hadron, has negative (spacelike) virtuality which increases, to less negative
values, when the particle moves towards the hard scattering. The initial state shower
describes parton emissions in the LL approximation via the DGLAP equation. The
DGLAP equation for initial state branchings is identical to the one for final state
branching. For this reason, we could plan to resolve it by following the same ap-
proach used in Sect. 1.3: a parton is selected from the incoming hadron and showered
from the hadronic scale to the hard scale. This approach has two drawbacks: it is
ambiguous in the shower scheme and inefficient in the event generation. In fact,
on the one hand it is not easy to decide which parton corresponds to the incoming
parton of the hard scattering and the scale at which the shower should be stopped
to generate the hard scattering. On the other hand we want the incoming partons
of the hard scattering to interact at the correct value of the hard scale in order to
form a particular boson; forward evolution would require that a high proportion of
events must be rejected.

Consequently, a backward evolution scheme is applied. It works by generating
the hard process first and then showering the initial state parton backwards from
the hard scale to the hadronization scale, where the partons are assigned to the
incoming hadrons. In this case the probability of evolving a particle of flavour i
backwards from (t2, x) to (t1, x) with no resolvable emission is given by the modified
Sudakov form factor

Πi(t1, t2; x) = ∆(t1, t2)
fi(x, t1)

fi(x, t2)
, (1.49)

5The choice of the cut-off ǫ in practice defines what is considered to be a resolvable emission.
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1.6. The parton shower

where ∆(t1, t2) =
∆(t2)
∆(t1)

. The branchings are then generated according to the prob-
ability given by the product of the probability of having no resolvable emission
(Eqn. 1.49) and the probability of emitting a parton at (t, z), given by

αs

2π
Pĩj→ij(z)

fĩj(
x
z
, t)

zfi(x, t)
. (1.50)

In practice this is generated using a Monte Carlo algorithm analogous to the one
discussed for the timelike case.

1.6.3 The angular-ordered parton shower

So far we have discussed the parton shower formalism including only the collinear
emission. Soft gluon emission can be included by extending the approach described
in Sect. 1.4 to the case in which a soft gluon is emitted by any number of external
partons in a parton shower configuration and by iterating that to any number of
soft gluon emissions [25]. It has been shown that coherent soft gluon effects can be
taken into account at LL approximation by choosing the ordering variable of the
parton shower to be the opening angle of emission [34]. A simple modification can
be made to the parton shower formalism, taking the ordering variable to be the
opening angle of emissions: this is know as an angular-ordered parton shower. From
our discussion of the strong ordering of parton shower emission, such a change in
ordering variable does not change the description of non-soft emissions in the LL
approximation.

1.6.4 Herwig++ parton shower

Herwig++ is an angular-ordered parton shower. The ordering variable is chosen to
be

q̃2 =
q2
ĩj
−m2

ĩj

z(1− z)
, (1.51)

where z is the light-cone momentum fraction in the Sudakov decomposition, q2
ĩj
is

the virtuality and mĩj the mass of the emitting particle. In the collinear limit, the
evolution variable behaves as

q̃ = Eĩjθij +O(θ2ij); (1.52)

therefore it takes into account coherent soft gluon emission via angular ordering.

Phase-space

Now we consider the allowed phase-space in Dalitz variables. For illustrative pur-
poses, here we only discuss the phase-space coverage for a final state parton shower;
this choice is made with the aim of comparing the results with those discussed in
Sect. 1.2.1.
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Figure 1.5: Contours of constant k̃ = 0.6 (dotted), k̃ = 0.9 (solid) and k̃ = 1.2
(dashed) in Dalitz variables. Emissions of parton 1 are depicted in black while those
for parton 2 are in red. The shaded region is the allowed phase-space region for the
process e+e− → hadrons (cf. Fig. 1.2).

Consider the QCD shower for the hard subprocess shown in Fig. 1.1. The Dalitz
variables are defined as (cf. Ref [35])

x1 = 1− b+ c− z(1− z)k̃, (1.53)

x2 = (2− x1)r + (z − r)
√

x21 − 4c, (1.54)

where

b =
m2

2

Q2
, c =

m2
1

Q2
, (1.55)

r =
1

2

[

1 +
b

1 + c− x1

]

. (1.56)

The dimensionless evolution variable is k̃ = q̃2

Q2 and the initial condition for it pro-
vides the limit to the phase-space region that is accessible from each progenitor.

For simplicity we consider the massless case, i.e. m1 ≃ m2 ≃ 0, and we plot a
contour for three different values of k̃, Fig. 1.5.

The dotted curves show radiation for k̃ = 0.6, the solid lines have k̃ = 0.9 while
the dashed ones have k̃ = 1.2. The phase-space coverage strongly depends on the
evolution variable and the area of the dead zone decreases as k̃ increases. The shaded
region describes the physically allowed phase-space region, as already discussed in
Sect. 1.2.1. Curves have been plotted in different colours to distinguish the emission
of parton 1 (black) from parton 2 (red).

In the case of an asymmetric initial condition the contour curves (red dashed)
are shown in Fig. 1.6. In this case we choose k̃ = 0.6 for one of the progenitors and
its inverse for the other progenitor. The default initial condition is k̃ = 1 (solid black
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Figure 1.6: Contours of constant k̃ for the parton 1 and 1/k̃ for parton 2. We
choose k̃ = 0.6, dashed red line, and k̃ = 1, solid black line. The solid black curves
correspond to the default initial condition. The shaded region is as described in
Fig. 1.5

line). It provides the best, symmetric, coverage of the physically allowed phase-space
region.

1.6.5 Dipole shower

In Sect. 1.2 we described the 1 → 2 branching in terms of the usual collinear
approximation. Within this formalism the outgoing momenta are given by Eqns. 1.22
and 1.23, and the cross section factorises in terms of splitting functions depending
on the momentum fraction of the emission, which is in general defined as

z =
n · qq
n · p , (1.57)

where n is a gauge vector in the light-cone gauge introduced in Sect. 1.2.

Dipole-type showers are based on the generalization of this picture, by intro-
ducing exact energy-momentum conservation within the splitting6 pi, pj →
qi, q, qj, which is obtained by requiring

n = pj , qj =

(

1− p2⊥
2pi · pjz(1− z)

)

pj. (1.58)

With this choice, we force the spectator to absorb the longitudinal recoil of the
splitting; this is known as recoil strategy.

Within this framework the n + 1 final-state matrix element squared, summed

6Here and in the following (qi, q, qj) stands for (emitter, emission, spectator).
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over all collinear configurations, is

n+1 〈M(q1, ..., qn+1)|M(q1, ..., qn+1)〉n+1 →
n
∑

i=1

∑

j,k 6=i

4παs

qi · qk
Pik(z)|n=pj n 〈M(q1, ..., pi, ..., qn)|Cij|M(q1, ..., pi, ..., qn)〉n ,(1.59)

where

Cij = −Ti ·Tj

T2
i

(1.60)

is the colour correlation operator introduced in [36]. This operator can be included
because each amplitude |M〉 is a colour singlet, i.e.

n
∑

i=1

T 2
i +

n
∑

i=1

∑

j 6=i

Ti · Tj = 0. (1.61)

Ignoring the g → qq̄ splitting, Eqn. 1.59 gives

1

qi · q
z

1− z

∣

∣

∣

∣

n=pj

=
qi · pj

qi · qq · pj
1

qi · q
1− z

z

∣

∣

∣

∣

n=pj

=
q · pj

q · qiqi · pj
, (1.62)

so that the single splitting function Pik(z)|n=pj defines the complete, correct soft
behaviour for the dipole i, j (cf. Eqn. 1.41).

However, the fact that the DGLAP splitting functions give the correct soft be-
haviour is not enough to reproduce the correct Sudakov form factor. In fact the
integrand function of Eqn. 1.35, the soft anomalous dimension, is changed by the
recoil strategy: the next-to-leading logarithm (NLL) coefficient is directly modified
by the recoil effect while the LL one turns out to be twice the correct result [34]. The
overestimate of the LL coefficient is due to the fact that the phase-space introduces
an overlap of the regions available for emission off either parton of the dipole.

To remove this problem we can “continue” the DGLAP splitting function over
the phase-space in a way that reproduces the correct soft behaviour whenever we
add the modified splitting functions for both legs of the dipole. In other words,
following the prescription given in Ref. [36], the eikonal part is replaced by

pi · pj
pi · qpj · q

→ pi · pj
pi · q(pi + pj) · q

(1.63)

while the collinear part is left unchanged. In this way, the regions describing soft
emission off either leg of the dipole separate and the correct anomalous dimension is
recovered with recoil effect entering only beyond leading logarithm (BLL). Moreover,
the exact factorisation of the phase-space in terms of the splitting variables is pro-
vided with no kinematic approximation. However, for initial-state radiation, using
the Catani-Seymour prescription, this method has shortcomings; in particular, for
intial-initial dipoles, a final state singlet receives non-vanishing transverse momen-
tum from the very first shower emission only and the spectator is left unchanged.
This is not sufficient for the description of the whole final-state spectrum.

The dipole shower used in the present work is part of a program called Match-

box and the algorithm is implemented as an add-on module of the Herwig++ event
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1.6. The parton shower

generator; it implements the Catani-Seymour prescription and provides a formalism
that overcomes the highlighted shortcomings [4]. The kinematics for initial state
emitter and/or spectator are described by considering the physical splitting process
and keeping exact momentum conservation. The spectator is forced to take the lon-
gitudinal recoil of the splitting only. Backwards evolution is used and the transverse
momentum of the emitting particle is migrated to the final state by re-aligning the
incoming partons to the beam axes at the end of the evolution. Moreover, within
a dipole-type shower it is difficult to maintain the strong angular ordering that is
related to the 1 → 2 nature of the description; ordering in transverse momentum of
the emitted particle is much more natural in this case. As we will see in the next
section, this feature removes complications when implementing the NLO correction
of the hard process into the parton shower.

Phase-space

We now consider the phase-space coverage for emission of a final-final dipole, in the
Dalitz variables, for the massless limit of the dipole shower of Ref. [4]. For a splitting
(pi, pj) → (q1, q2, qj), the Dalitz variables are defined in terms of

q1 = zpi +
p2⊥
zsij

pj + k⊥, (1.64)

q2 = (1− z)pi +
p2⊥

(1− z)sij
pj − k⊥, (1.65)

respectively, where k2⊥ = −p2⊥, sij = 2pi · pj, k⊥ · pi,j = 0 and z =
pj ·q1
pi·pj . This gives

x1 = z +
p2⊥
zsij

, (1.66)

x2 = 1− p2⊥
z(1− z)sij

. (1.67)

The boundaries are given by [37]

µ2 < p2⊥ <
sij
4

z± =
1

2

[

1±
√

1− 4p2⊥
sij

]

. (1.68)

In Fig. 1.7 we show the allowed phase-space region for a dipole of mass s
1/2
ij = 100

GeV and µ = 5 GeV. The shaded region shows the emissions off parton 1. The
straight grey lines define emission at fixed values of z; z = 0 along x1 = 1 − x2
and z = 1 along x1 = 1. The curved lines define emission at fixed values of p⊥;
p⊥ = 0 at the border of the shaded region and increases when the area enclosed
by the curved grey line decreases. The solid black line is the region accessible for
emissions off parton 2. The two regions overlap, as discussed previously, and almost
the whole physical phase-space is available in this case, apart from regions near
the singularities, which are exaggerated in our case for illustrative purposes; i.e the
infrared cut off has been chosen to be high.

Dipole showers provide a very good description of the phase-space, due to the
exact momentum conservation that they are based on.
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Figure 1.7: Allowed phase-space regions in terms of Dalitz variables. The blue region
is accessible to the emission of parton 1. The contourplot shows curved grey lines,
which define emission at fixed p⊥, and straight grey lines at fixed z. The black solid
line defines the area accessible to parton 2.

1.7 Matching parton shower and NLO corrections

The parton shower is an essential tool for simulating high-multiplicity final-states.
Traditionally leading-order matrix elements have been used in these simulations
together with the parton shower approximation. However, in recent years different
approaches have been developed in order to improve the accuracy of the description
by including the next-to-leading order matrix element.

In this section we describe the NLO matching technique that combines parton
shower and NLO calculations. We start by giving an overview of the subtraction
method in Sect. 1.7.1, and matching schemes (Sect. 1.7.2), before highlighting the
POWHEG method and the way in which it has been implemented in the shower
(Sect. 1.7.3).

1.7.1 Catani-Seymour subtraction method

The NLO cross section can be written as

dσNLO = B(Φn)dΦn + V0(Φn)dΦn +R0(Φn+1)dΦn+1, (1.69)

where B(Φn) is the born, V0(Φn) the virtual and R0(Φn+1) the radiative contribu-
tions. V0 and R0 are both divergent, as denoted by the subscript “0”; in particular,
the ultra-violet divergences appear only in the virtual contribution, while the in-
frared appear in both. The ultra-violet singularities are removed by renormalisation,
as discussed in Sect. 1.1.3.

The infrared divergences arise when an external final-state parton becomes soft or
collinear to another final-state parton. These singularities can be parametrised using
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1.7. Matching parton shower and NLO corrections

dimensional regularization: the divergent contributions are evaluated in d = 4− 2ǫ
dimensions, where they are integrable. In this way, the singularities appear in terms
of poles in ǫ. The KLN theorem [12–14] dictates that these divergences must cancel
when summing up both contributions: this gives a fully inclusive cross section that is
finite for infrared-safe observables. Note that the radiative piece could contain infra-
red singularities coming from a configuration in which an initial parton is collinear
to a final one: these divergences are not cancelled by the virtual piece but rather
factorised into the definition of physical parton density functions (PDFs).

However, for less inclusive cross section the KLN theorem can not be applied
and the infra-red safe observable

O =

∫

dΦnOn(Φn) [B(Φn) + V0(Φn)] +

∫

dΦn+1On+1(Φn+1)R0(Φn+1) (1.70)

can be calculated using Monte Carlo method as long as we have a prescription that
removes the singularities. The subtraction procedure is an algorithm that provides
a set of counterterms, Cα(Φn+1), so that the contributions

R(Φn+1) = R0(Φn+1)−
∑

α

Cα(Φn+1), (1.71)

V (Φn) = V0(Φn) +
∑

α

∫

dΦrC
α(Φn+1) (1.72)

are finite. To this end the counterterms need to be defined such that they show the
same divergent part as the radiative correction in each divergent region α. Moreover,
if the Cα can be integrated in the radiative phase-space, dΦr, yelding poles in

1
ǫ
which

cancel those in V0, the NLO differential cross section

dσNLO = [B(Φn) + V (Φn)] dΦn +R(Φn+1)dΦrdΦn (1.73)

is finite.
In the present work we use the general NLO subtraction scheme, introduced

by Catani and Seymour, which provides a universal set of counterterms and their
corresponding integrals in d-dimensions [36].

1.7.2 NLO matching schemes

Next-to-leading order calculations provide the best description for sufficiently inclu-
sive observables. However, parton showers are needed when we want to calculate ob-
servables that are more exclusive and sensitive to higher multiplicity configurations;
parton shower simulation evolves from low multiplicity, high energy configuration,
described by fixed-order matrix elements, to high multiplicity, low energy config-
uration, to which universal hadronization models are applied. Therefore the best
description will be obtained when we combine NLO corrections and parton showers.

This is complicated because the higher-order matrix element and the parton
shower both radiate in some regions of the phase-space, which leads to double count-
ing. A prescription, known as a NLO matching scheme, is needed to remove this
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Chapter 1. Parton Showers and QCD corrections

problem of double counting. The aims of the NLO matching algorithm are to pro-
vide the parton shower resummation of soft and collinear emission while giving NLO
results for all infrared safe observables in αs.

In recent years a number of different approaches have been developed to im-
prove the simulation of high transverse momentum, pT , radiation. In the PYTHIA
event generator [26], corrections have been calculated for several different pro-
cesses [38–41]. Similar corrections have been made to a number of processes in
the HERWIG event generator [27,42–48] and with the new parton shower algorithm
in Herwig++ [49–54]. However, these methods are limited to relatively simple pro-
cesses, only correct the hardest emission in the event and retain the leading-order
normalisation of the cross section.

In recent years, there have been numerous efforts to combine higher multiplicity
and higher order matrix elements with the parton shower in order to either provide
a better description of many hard emissions while retaining the leading-order nor-
malisation [55–63], or the hardest emission together with the correct next-to-leading
order normalisation of the cross section by including the full NLO matrix elements.

A number of approaches has been developed to provide a description of the hard-
est emission together with a next-to-leading order cross section. In the approach of
Frixione, Webber and Nason (MC@NLO) [64,65], the parton shower approximation
is subtracted from the exact next-to-leading order calculation. This was the first suc-
cessful systematic scheme for matching next-to-leading order calculations and parton
showers and has been applied to many different processes in HERWIG [66–68] and
Herwig++ [69–71]. However, this method has two drawbacks: it generates weights
that are not positive definite7 and is implemented in a way that is fundamentally
dependent on the details of the parton shower algorithm.

These problems have been addressed with a new matching algorithm, which
achieves the same aims as MC@NLO but produces only positive weight events; it
was introduced by Nason and called POWHEG (POsitive Weight Hardest Emission
Generator) [1, 2].

1.7.3 POWHEG matching

The POWHEG method is based on the fact that if the hardest emission (the emission
with the greatest transverse momentum) is generated according to the exact NLO
cross section, then all infrared-safe observables will be given according to their NLO
distributions; in fact, the subsequent branchings are softer and they only affect
observables at next-to-next-to-leading-order.

If the parton shower simulation is ordered in transverse momentum (see dipole
showers in Sect. 1.6.5) we can simulate the process by first generating the hardest
emission and then evolving the process by using the parton shower from the (N+1)-
parton final state, forbidding any emissions with transverse momentum above that of
the hardest one. However, for shower algorithms that are ordered in other variables,

7It should be noted that while the presence of negative weight events is not appealling, it
does not constitute a problem. These events would be included in any histograms and contribute
negative weight to a bin. However, the result should still be positive when we describe infrared-safe
observables with sufficiently high statistics.
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1.7. Matching parton shower and NLO corrections

for example the angular ordering in Herwig++, the hardest transverse momentum
emission is not generated as the first emission in the parton shower. Therefore the
shower must be reorganized into a truncated shower that describes soft emissions at
higher evolution scales than the highest pT emission, together with vetoed showers
that describe emissions at lower evolution scales that are constrained to be softer
than the hardest emission [1, 2].

Within the POWHEG formalism the hardest emission is singled out so that it can
be generated separately and then it is generated according to exact NLO formulae.

In the standard Monte Carlo approach, each event is generated according to
the leading-order weight B(Φn) and then all external legs initiate a shower. The
hardest emission can happen along any of the parton shower lines and it is distributed
according to [1, 2]

dσPS = B(Φn)dΦn [∆R(q̃I , q̃0; 0) + ∆R(q̃I , q̃0; pT )F (q̃, z)dq̃dz] , (1.74)

where q̃I is the initial scale and q̃0 is the hadronization scale. ∆R is called remnant
Sudakov and is defined as the products of remnant Sudakov form factors for all
external legs

∆R(q̃I , q̃0; pT ) =
∏

l

∆Rl
(q̃I , q̃0; pT )

= exp



−
∫ q̃I

q̃0

∑

ĩj

∑

ĩj→ij

dPĩj→ij(q̃, z)θ(pT (q̃, z)− pTh
)



 , (1.75)

with

dPĩj→ij =
αs(q̃, z)

2π

dq̃2

q̃2
dzPĩj→ij(z, q̃) (1.76)

The remnant Sudakov is introduced to overcome the following problem, Ref. [1, 2].
In brief, to single out the hardest emission a θ-function is needed to guarantee that
no emission with pT greater than the hardest emission is generated in truncated
and vetoed showers. This θ-function is included in the splitting functions of both
new showers but not in Sudakov form factors. However, standard Monte Carlo
techniques require that Sudakov form factor and parton shower do have the same
splitting functions. In order to make truncated and vetoed showers suitable for a
Monte Carlo algorithm, the standard Sudakov form factor is split into pieces: one
contains the same θ-function appearing in the splitting functions and is used for the
showers, the other contains the opposite θ-function and is called the remnant. The
infinitesimal splitting probability summed over all the parton-shower legs is

F (q̃, z)dq̃dz =
∑

ĩj

∑

ĩj→ij

dPĩj→ij(q̃h, zh), (1.77)

where (q̃h, zh) describes the hardest radiation and the summation over ĩj denotes
summation over the external legs which initiate the parton shower.

The αs expansion of Eqn. 1.74 is given by

dσPS = B(Φn)dΦn

[

1 + F (q̃, z)dq̃dz −
∫ q̃I

q̃0

F (q̃, z)dq̃dz +O(α2
s)

]

. (1.78)
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We now manipulate the exact NLO cross section in Eqn. 1.73 to match the form
of Eqn. 1.78 and we get

dσNLO =

[

V (Φn) +

∫

dΦrR(Φn+1)

]

dΦn

+ B(Φn)dΦn

[

1 +
R0(Φn+1)dΦr

B(Φn)
−
∫

R0(Φn+1)dΦr

B(Φn)

]

. (1.79)

The second term in Eqn. 1.79 has the same form as Eqn. 1.78 if we replace

F (q̃, z) → R0(Φn+1)

B(Φn)
, dq̃dz → dΦr. (1.80)

Accordingly, the Sudakov form factor is defined as

∆R(pT ) = exp

[

−
∫

dΦr
R0(Φn+1)

B(Φn)
θ(pT (Φn+1)− pTh

)

]

(1.81)

and the NLO cross section

dσNLO =

[

V (Φn) +

∫

dΦrR(Φn+1)

]

dΦn

+ B(Φn)dΦn

[

∆R(pTmin
) + ∆R(pT )

R0(Φn+1)dΦr

B(Φn)

]

, (1.82)

where the cut-off pTmin
is introduced to avoid the singular regions of the radiative

corrections: this defines what is considered a resolvable emission. Eqn. 1.81 is known
in literature as the modified Sudakov form factor.

Eqn. 1.82 has the same expression as the exact cross section at NLO, Eqn. 1.69,
but also generate the same distribution of the hardest emission, Eqn. 1.74. There-
fore, together with the truncated and vetoed showers it satisfies the requirement of
a NLO matching prescription. The first term in the square brackets is higher order
in αs and can be implemented by generating an n-body configuration and applying
the standard shower. The second term in square brackets defines the distributions
of events containing the hardest emission and it is implemented, together with the
shower reorganization, within the POWHEG method. Although this is a workable
implementation, i.e. MC@NLO scheme, it suffers from negative weights since the
first term in not positive definite.

The POWHEG method overcomes this problem by introducing

B̄(Φn) = B(Φn) + V (Φn) +

∫

[

R(Φn,Φr)−
∑

α

Cα(Φn,Φr)

]

dΦr, (1.83)

and rewriting the NLO differential cross section, with only differences at NNLO, as

dσ = B̄(Φn)dΦn

[

∆R(pTmin
) +

R(Φn,Φr)

B(Φn)
∆R(kT (Φn,Φr))dΦr

]

. (1.84)

The POWHEG formalism requires that the n-body configuration is generated
according to B̄(ΦB). The hardest emission in the event is then generated by using
the Sudakov form factor given in Eqn. 1.81. As B̄(ΦB) is simply the next-to-leading-
order differential cross section integrated over the radiative variables, it is naturally
positive, and therefore leads to the absence of events with negative weights.
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POWHEG in the Herwig++ parton shower

The POWHEG algorithm is implemented in the Herwig++ parton shower according
to the following procedure:

• generate an event according to Eqn. 1.84;

• directly hadronize the small fraction of non-radiative events;

• map the radiative variables parametrising the emission onto the evolution
scale, momentum fraction and azimuthal angle, (q̃h, zh, φh), from which the
parton shower will reconstruct identical momenta;

• consider the initial N -body configuration generated from B̄(ΦB) and evolve
the parton emitting the extra radiation from the default starting scale down
to q̃h using the truncated shower;

• insert a branching with parameters (q̃h, zh, φh) into the shower when the evo-
lution scale reaches q̃h;

• generate pT vetoed showers from all external legs.

POWHEG in the dipole shower

The POWHEG scheme is implemented in the dipole shower used in the present
work, as summarised in the following:

• generate born-type events, with a weight that is the LO differential cross
section, B(Φn);

• generate the hardest emission by using the exact real emission matrix element;

• define the dipole kinematics by inverting the “tilde-mapping” defined in Ref. [36];

• define splitting kernels Pn+1+i→n+2+i, with i = 0, ..., N (where N is the multi-
plicity), to generate a transition from the state |n+ 1 + i〉 to |n + 2 + i〉;

• feed the dipole shower.

For a given configuration C, the splitting kernel is defined as

PC =
DC

∑

I DI(ΦB,ΦR)

R(ΦB,ΦR)

B(ΦB) +Bscreen(ΦB)
. (1.85)

In this way all divergences but the divergence associated with DC are divided out
from the real emission matrix element and unpleasant behaviour of the born ma-
trix element, such as peaks due to unstable particles, are flattened out. The term
Bscreen(ΦB) has been introduced on purpose in Eqn. 1.85 and has to be chosen such
that it avoids divergences when B(ΦB) → 0 and forces the PDF to smoothly tend to
zero whenever they oscillate around the origin. It can be shown that parametrizing
Bscreen(ΦB) in term of p⊥ results in the fact that the screen-term must vanish when
p⊥ → 0 in order not to spoil the resummation of large logarithms [37].
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Note that the present approach is a general description of the POWHEG method
and the NLO cross section within this general approach is equivalent to Eqn. 1.84 [37].
The generality of the approach, together with the ability to rigorously calculate
fixed-order expansion of the parton showers guarantee that matching at NNLO is
possible even if there has been no attempt reported in the literature thus far.

1.8 Summary

QCD is widely accepted as the correct theory of strong interactions. The under-
standing of QCD is crucial for the success of collider experiments, but it is not
enough to describe observables that are sensitive to final-state high multiplicity.
The best description is given when NLO QCD corrections and parton showers work
together.

The success of the parton shower resides in the flexibility of Monte Carlo event
generators, which provide an event-by-event description of the cascade. The parton
shower is based on parton branching formalism, which describes soft and collinear
emissions in terms of a universal factorised form. These emissions correspond to en-
hanced emissions that result in LL corrections. Parton showers provide resummation
of these LL contribution to all orders in αs.

Collinear emission is described by a parton shower formulated in terms of an
evolution in virtuality, while coherent, soft gluon emission is correctly included by
ordering emissions in the opening angle of the branching. Angular ordered parton
showers are used in Herwig++. On the other hand, dipole showers are based on a
dipole picture of the splitting, which guarantees exact momentum conservation, and
an ordering in the transverse momentum of the emission.

These features provide a better description of the allowed phase-space: mainly
the whole phase-space is covered without dead regions. The order in transverse
momentum guarantees an easier implementation of the matching scheme, such as
POWHEG: now the hardest p⊥ emission is the first one and there is no need to
reorganize the shower to correct it.
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Chapter 2

Implementing the POWHEG
method for Higgs production via
vector boson fusion in the
Herwig++ parton shower

The Large Hadron Collider (LHC) at CERN is designed to illuminate the nature
of electroweak symmetry breaking in the Standard Model [72–75], and in particular
discover the Higgs boson. Once the Higgs boson has been observed and its mass
determined, it will be crucial to measure the way it couples to gauge bosons and
fermions [76, 77]. The most promising processes in which these couplings of the
Higgs boson can be measured are gluon-gluon and vector-boson fusion, as shown in
Fig.1 2.1a. The former consists of a gluon-gluon partonic collision that produces a
Higgs boson via a virtual top quark loop [78]. It has the largest cross section for
Higgs boson masses of less than ∼ 1TeV and will be important for the measurement
of the Higgs coupling to the top quark.

Higgs boson production via vector-boson fusion (VBF), despite not having the
largest cross section at the LHC, is very useful because of its kinematical structure,
characterized by two forward jets2 and a central Higgs. It is a process in which two
incoming fermions each radiate a W± or Z0 boson, which then combine to produce
the Higgs boson. VBF is expected to play a fundamental rôle in the measurement
of the Higgs boson couplings to gauge bosons and fermions, because it allows for
independent observation in different channels: H → ττ [79, 80], H → WW [81, 82],
H → γγ [83] and H →invisible [84, 85].

The angular distribution of the two tagging jet carries unambiguous information
of the CP properties of the Higgs coupling to the W± or Z0 independently from the
decay channel and the mass of the Higgs considered [86]. In the Standard Model
(SM) the WWH and ZZH couplings originate from the kinetic energy term of the
symmetry breaking field, which provides a coupling that is proportional to the metric
tensor gµν ; this tensor structure is not gauge invariant by itself and the Higgs boson

1The plot was made by the Tev4LHC Higgs working group.
2As we will see later in this Chapter, at NLO we will use an algorithm to select two jets among

the three forward jets.
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Figure 2.1: Higgs production via vector boson fusion does not have the largest cross
section at LHC, as shown in (a), but is very useful in determining the CP nature of
the Higgs boson, as shown in (b).

is identified only after the spontaneous symmetry breaking. It thus follows that the
azimuthal angle distribution of the two tagging jet is proportional to the invariant
mass squared of the two tagging jet; as depicted in Fig.3 2.1b, the cross section is
essentially flat (SM curve) apart from a slight bias for small angles due to the applied
cuts (see Ref. [86]). Higgs couplings to the gauge bosons which arise from loop effects
have a completely different tensor structure [86]. As a consequence, the azimuthal
angle distribution shows a very different behaviour within an effective field theory
with dimension 6 operators, as shown in Fig. 2.1b. The CP odd contribution of the
Lagrangian provides a cross section proportional to the Levi-Civita tensor in the
coupling, which gives a nonzero result when four independent momenta contribute
to the process, while it vanishes in the other cases (CP odd curve), i.e. for planar
scattering this happens when the two tagging jets are back-to-back or collinear. The
CP even contribution provides a cross section that is proportional to the squared
scalar product of the two tagging jets transverse momentum (CP even curve). From
Fig. 2.1b we conclude that Higgs production via vector boson fusion is expected to
play an important rôle in determining the CP nature and the tensor structure of the
Higgs coupling.

In order to calculate the SM Higgs boson coupling constants with sufficient ac-
curacy, next-to-leading (NLO) QCD cross corrections for the VBF process must be
included. These corrections have been known for some time [87] and are relatively
small, with K-factors around 1.05 to 1.1. At next-to-leading order, the theoretical
prediction of the Standard Model production cross sections have an error of less
than 10%. This accuracy is sufficient to compare predictions with upcoming LHC

3The normalized distribution was plotted by the Herwig++ collaboration in the case of Higgs
mass mH = 160 GeV and Higgs decay H → WW .
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measurements, which will be performed with a statistical accuracy on the product
of the production cross section and decay branching ratio reaching 5 to 10% [76,77].
The theoretical uncertainties for the VBF process therefore do not significantly
compromise the precision of the coupling constant measurements. This makes the
VBF process more attractive than Higgs production via gluon fusion, which has a
K-factor larger than 2 and for which the uncertainties remain between 10 − 20%
even after the inclusion of next-to-next-to-leading order corrections [88–96]. Nev-
ertheless, stringent cuts are necessary to distinguish the VBF Higgs boson signal
from the backgrounds. In particular, a veto on additional activity in the events, the
central-jet veto, is often imposed to reduce the backgrounds.

In this Chapter we discuss the way I implemented the POWHEG method for
the Higgs production via VBF in the Herwig++ parton shower [97]. As we will
see in the next sections, VBF and DIS have common features so that they can be
implemented in the Herwig++ parton shower using a similar approach. However, we
prefer to focus on the VBF implementation here and dedicate Chapter 4 to the DIS
implementation. The calculation of the VBF leading-order kinematics with NLO ac-
curacy in the POWHEG approach will be discussed in Sect. 2.1. A brief description
of the generation of the hardest emission within Herwig++ will be outlined in Sect.
2.2 and in Sect. 2.3 we give details of the implementation of truncated and vetoed
showers in the program. Our results will be described in Sect. 2.4. We present our
conclusions in Sect. 2.5.

2.1 Calculation of B̄(ΦB)

The leading-order diagram for the VBF process is shown in Fig. 2.2a, together with
appropriate crossings of the quark lines. In principle other contributions to the VBF
process should be considered: diagrams with the exchange of identical outgoing
quarks and the quark annihilation processes q̄q → Z∗ → ZH and q̄q → W±∗ →
W±H with hadronic decays of the vector bosons. However, colour suppression and
the large momentum transfer in the weak-boson propagators make the contribution
from these additional processes negligible in the phase-space regions where VBF
can be observed experimentally, i.e. with widely separated quark jets of very large
invariant mass [98].

At O(αs(µR)), the contributions coming from amplitudes in which the gluon is
attached to both upper and lower quark lines in the VBF process vanish because the
weak boson has no colour charge. The only Feynman graphs contributing are there-
fore the ones shown in Figs. 2.2b-2.2f, where for simplicity we show only radiation
from the upper quark line.

The corrections to the DIS and VBF processes are therefore the same provided
that we take into account the corrections to both quarks lines in the VBF process.
In this section, we show the analytical contributions to the next-to-leading order
differential cross section for VBF. Collecting the real emission cross section, de-
scribed in Sect. 2.1.1, together with the virtual and collinear contributions, briefly
discussed in Sect. 2.1.3, B̄(ΦB) can be calculated. Particular attention will be paid
to the NLO phase-space, Sect. 2.1.2, so that later in this thesis it will be possible to
compare the present implementation and the one that I made for the DIS into the

29



Chapter 2. Implementing the POWHEG method for Higgs production via vector
boson fusion in the Herwig++ parton shower

V

V
H

q

QQ

q

V

V

qq

V

V

qq

V

V

qq

V

V

qq qq

V

V

qq

QQ
V

V
H

qq

g

Q

q

Q

H

q

V

V

q

Q Q

H

q

V

V

g g

Q

H

qg

Q

q̄

QQ

g

H

q

q̄

(a) (b)

(c) (d)

(e) (f)

V

V

V

V

Figure 2.2: Feynman diagrams contributing to Higgs boson production via weak-
boson fusion at O(αs(µR)): leading order (a), virtual (b) and real emission (c-f)
corrections. For simplicity, we show only radiative corrections to the upper line in
the gluon emission (c-d) and gluon initiated processes (e-f). In this case V = W±

or Z0.

dipole shower. We then discuss how B̄(ΦB) is sampled within Herwig++ in Sect.
2.1.4.

2.1.1 Real emission contribution

The corrections to e+e− annihilation to hadrons can be written in a form in which
the QCD and electroweak parts exactly factorize [99]. This method was later gen-
eralized to any process in which the lowest-order diagrams contain a single quark
line attached to a single electroweak gauge boson [48]. We adopt this approach
for the calculation of the real corrections to VBF4, based on the calculation of the
correction to DIS in Refs. [44, 48].

4In Chapter 4 the same approach will be used for the calculation of the corrections to DIS.
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Jµ

p3

p2p1 ωµ ωµ

p3

p2p1

Jµ

Figure 2.3: QCD Compton scattering, in which a quark interacts with an arbitrary
current Jµ via boson-quark coupling ωµ.

Consider the QCD Compton process, shown in Fig. 2.3, where a quark q with
momentum p1 and a fraction xB of the incoming hadron momentum, interacts with
a current Jµ and boson-parton coupling ωµ, and scatters into an outgoing quark q′

with momentum p2 and a gluon with momentum p3

QCDC : q(p1) +X → q′(p2) + g(p3) +X ′. (2.1)

It is simplest to work in the Breit frame, in which the incoming parton for the
leading-order process has four-momentum q1 = Q

2
(1; 0, 0, 1), the exchanged boson

has four-momentum q = (0; 0, 0,−Q) and the scattered quark has four-momentum
q2 =

Q
2
(1; 0, 0,−1). In this frame the four-momenta of the real emission process are

p1 =
Q

2
(−x1; 0, 0,−x1); (2.2a)

p2 =
Q

2
(
√

x22 + x2⊥; x⊥ cosφ, x⊥ sinφ,−x2); (2.2b)

p3 =
Q

2
(
√

x23 + x2⊥;−x⊥ cosφ,−x⊥ sinφ,−x3); (2.2c)

where the transferred momentum q = (0; 0, 0,−Q) = p2 + p3 − p1,

xi =
2pi · q
q · q . (2.3)

Momentum conservation requires that x3 = 2 + x1 − x2 and

x2⊥ =
(x23 − x21 − x22)

2

4x21
− x22. (2.4)

In terms of these variables the cross section for the real emission process is

dσNLO =
1

4(2π)2
dφ

2π

dx1dx2
−x31

−x1xBf(−x1xB, Q2)

xBf(xB, Q2)

Q2|MQCDC|2
|MLO(q1, q2)|2

dσ2, (2.5)

where xB is the momentum fraction of the quark in the leading-order process,
|MQCDC|2 and |MLO(q1, q2)|2 are the spin and colour averaged matrix elements
squared for the real emission and leading-order processes respectively.
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Using the gauge introduced by the CALKUL collaboration [100], the matrix
element for the real emission process is [44, 48]

|MQCDC|2 = − 8παSCF

(1 + x1)(1− x2)Q2

(

x21 + (x22 + x2⊥)R2

)

|MLO(q1, q2)|2, (2.6)

where

R2 ≡
x22

x22 + x2⊥

|MLO(r̄1, r2)|2
|MLO(q1, q2)|2

, (2.7)

with r2 =
p2
x2

and r̄1 = r2 − q.
The integration of the phase-space is simpler if we use the variables:

x1 = − 1

xp
; (2.8a)

x2 = 1− 1− zp
xp

; (2.8b)

so that the phase-space limits become xB < xp < 1 and 0 < zp < 1. In terms of
these variables

x2⊥ =
4(1− xp)(1− zp)zp

xp
. (2.9)

The cross section for the real emission process becomes

dσNLO =
αSCF

2π

dφ

2π

xB

xp
f(xB

xp
, Q2)

xBf(xB, Q2)

dxpdzp
(1− xp)(1− zp)

(

1 + x2p(x
2
2 + x2⊥)R2

)

dσ2. (2.10)

This allows us to treat the QCD Compton process as a correction to the leading-
order quark scattering process.

The boson-gluon fusion process,

BGF : g(p1) +X → q′(p2) + q̄(p3) +X ′, (2.11)

can be treated in a similar way. In this case the spin and colour averaged matrix
element squared is

|MBGF|2 =
8παSTR

(1− x2)(1− x3)Q2

(

(x22 + x2⊥)R2 + (x23 + x2⊥)R3

)

, (2.12)

where

R3 =
x23

x23 + x2⊥

|MLO(r3, r3 + q)|2
|MLO(q1, q2)|2

, (2.13)

with r3 = −p3/x3.
Using the same change of variables as before the differential cross section is

dσLO =
TRαS

2π

dφ

2π

dxpdzp
zp(1− zp)

xB

xp
f
(

xB

xp
, Q2

)

xBf(xB, Q2)

(

x2P (x
2
2 + x2⊥)R2 + x2P (x

2
3 + x2⊥)R3

)

.

(2.14)
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Thus far, our result gives the calculation of the BGF cross section, without any
distinction between quark and antiquark scattering. If we want to view Eqn. 2.14
as a correction to a given lowest-order process, partons and antipartons should be
treated equivalently. As the zp = 1 singularity is associated with configurations
that become collinear to the lowest-order quark scattering process, while the zp = 0
singularity is associated with the antiquark scattering process, we can separate

1

zp(1− zp)
=

1

zp
+

1

1− zp
(2.15)

and rewrite the cross section as

dσNLO =
TRαS

2π

dφ

2π

dxpdzp
(1− zp)

xB

xp
f(xB

xp
)

xBf(xB)

(

x2P (x
2
2 + x2⊥)R2 + x2P (x

2
3 + x2⊥)R3

)

, (2.16)

with the corresponding 1
zp

term giving a correction to the antiquark scattering pro-

cess [44, 48].
Using these results we can rewrite the real emission corrections as

dσR ≡ R(ΦB,ΦR)dΦBdΦR, (2.17)

where

R(ΦB,ΦR) =
∑

I∈{QCDC,BGF}
RI = B(ΦB)

∑

I∈{QCDC,BGF}

CIαs(µR)

2π
AI , (2.18)

with

CQCDC = CF , (2.19a)

CBGF = TR, (2.19b)

AQCDC =

xB

xp
fq(

xB

xp
, Q2)

xBfq(xB, Q2)

1

(1− xp)(1− zp)

(

1 + x2p(x
2
p + x2⊥))R2

)

, (2.19c)

ABGF =

xB

xp
fg(

xB

xp
, Q2)

xBfq(xB, Q2)

1

(1− zp)

(

x2P (x
2
2 + x2⊥)R2 + x2P (x

2
3 + x2⊥)R3

)

. (2.19d)

The radiative phase-space element is

dΦR =
1

2π
dxpdzpdφ. (2.20)

The singularities in R(ΦB ,ΦR) are cancelled by subtracting

DI =
CIαs(µR)

2π
DI , (2.21)

where DI are the Catani-Seymour dipoles [36]:

DQCDC =

xB

xp
fg(

xB

xp
, Q2)

xBfq(xB, Q2)

x2p + z2p
(1− xp)(1− zp)

; (2.22a)

DBGF =

xB

xp
fg(

xB

xp
, Q2)

xBfq(xB, Q2)

x2p + (1− xp)
2

1− zp
. (2.22b)

The contribution of the real emission processes to B̄ is therefore

B(ΦB)dΦB

∑

I∈{QCDC,BGF}

CIαs(µR)

2π
(AI −DI) dΦR. (2.23)
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2.1.2 NLO phase-space

The NLO phase-space measure is

dΦ
(5)
NLO = dΦRdΦl, (2.24)

where dΦR describes the hadronic contribution and is given by Eqn. 3.7, dΦl de-
scribes the leptonic contribution, which is the one generated at LO, and provides the
remaining two degrees of freedom. The method by which we generate the momenta
at NLO is as follows:

• generate momenta at LO in the centre of mass frame;

• boost LO momenta into the Breit frame;

• calculate Q2;

• generate the radiative variables5: {xp, zp, φ} or equivalently {x1, x2, φ};

• calculate the NLO momenta defined in Eqns. 2.2a-2.2c by using Q2 and the
radiative variables;

• boost NLO momenta into the centre of mass frame.

From the previous algorithm we see that the NLO phase-space depends on the LO
momenta and that the transferred momentum, Q2, is not a degree of freedom of the
NLO phase-space measure.

2.1.3 Virtual contribution and collinear remainders

The finite piece of the virtual correction is given by [98]

dσV =
CFαs(µR)

2π
V (xB)B(ΦB), (2.25)

where the finite contribution of I(ǫ) [36] and the virtual correction are

V (xB) = −π
2

3
− 9

2
+

3

2
ln

Q2

µ2
F (1− xB)

+ 2 ln(1− xB) ln
Q2

µ2
F

+ ln2(1− xB). (2.26)

The collinear remainders are

dσcoll =
CFαs(µR)

2π

fm(xB, µF )

f(xB, µF )
B(ΦB), (2.27)

5The radiative phase-space is defined in Eqn. 3.7. As we will discuss in Sect. 2.1.4, for conve-

nience we transform {xp, zp, φ} to
{

x̃p, zp, φ̃
}

, defined on the interval [0, 1].
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where the modified PDF is6

fm
q (xB, µF ) =

∫ 1

xB

dxp
xp

{

fg

(

xB
xp
, µF

)

A(xp)

+

[

fq

(

xB
xp
, µF

)

− xpfq(xB, µF )

]

B(xp)

+ fq

(

xB
xp
, µF

)

C(xp)

}

, (2.28)

where fq and fg are the quark and gluon PDFs respectively, and

A(xp) =
TF
CF

[

x2p + (1− xp)
2
]

ln
Q2(1− xp)

µ2
Fxp

+ 2
TF
CF

xp(1− xp), (2.29)

B(xp) =

[

2

1− xp
ln
Q2(1− xp)

µ2
F

− 3

2

1

1− xp

]

, (2.30)

C(xp) =

[

1− xp −
2

1− xp
lnxp − (1 + xp)ln

Q2(1− xp)

µ2
Fxp

]

. (2.31)

The combined contribution of the finite virtual term and collinear remnants is

dσV+coll =
CFαs(µR)

2π
V(ΦB)B(ΦB), (2.32)

with
V(ΦB) ≡ V (xB) + Ṽ (xB, µF )., (2.33)

where Ṽ (xB, µF ) =
fm(xB ,µF )
f(xB ,µF )

.

2.1.4 Sampling B̄ within Herwig++

Using the results in the previous sections

B̄(ΦB) = B(ΦB)

[

1 +
CFαs(µR)

2π
V(ΦB)

+
∑

I∈{QCDC,BGF}

CIαs(µR)

2π

∫

[AI(ΦB,ΦR)−DI(ΦB,ΦR)] dΦR



 . (2.34)

For convenience, the radiative variables {xp, zp, φ} are transformed into a new

set
{

x̃p, zp, φ̃
}

, defined on the interval [0, 1], such that the radiative phase-space is

a unit cube. The variable xp is redefined as

xp = 1− ρ
1

1−n , (2.35)

where n is fixed, and ρ is the new variable with phase-space limits

0 < ρ < (1− xB)
1−n. (2.36)

6We write the modified PDF for the quark q, but a similar expression is valid for an incoming
antiquark q̄.
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This change of variable has been made in order to guarantee numerical stability
when calculating the integral of 1/(1 − xp). A further transformation is needed to
achieve x̃p:

ρ = (1− xB)
1−nx̃p. (2.37)

Finally, the variable φ is easily redefined as φ̃ = φ
2π
.

The sampling of B̄(ΦB) proceeds in the following way:

1. generate a leading-order configuration using the standard Herwig++ leading-
order matrix element generator, providing the Born variables ΦB with an as-
sociated weight B(ΦB);

2. radiative variables ΦR are then generated by sampling B̄(ΦB), parametrised in
terms of the unit cube (x̃p, zp, φ̃), using the Auto-Compensating Divide-and-
Conquer (ACDC) phase-space generator [101];

3. the leading-order configuration is accepted with a probability proportional to
the integrand of Eqn. 2.34 evaluated at {ΦB ,ΦR}.

In order to treat radiation from both quark lines in the VBF and DIS pro-
cesses we randomly select one line that emits the radiation and generate events in

Φ
{

x̃p, zp, φ̃
}

. The symmetry of the process then ensures that the correct statistical

result is obtained by multiplying the correction term in Eqn. 2.34 by two.

2.2 The generation of the hardest emission

The hardest emission is generated using the modified Sudakov form factor, given by
the product of ∆R(pT ) for each channel contributing; this is done by replacing the
ratio R(ΦB,ΦR)/B(ΦB) in Eqn. 1.81 with

WI(ΦB,ΦR) =
RI(ΦB,ΦR)

B(ΦB)
. (2.38)

Moreover, we prefer to generate the hardest emission in terms of radiative variables
Φ′

R(x⊥, zp, φ̃) so that the θ-function in Eqn. 1.81 simply gives x⊥ as the upper limit
of the integral and the modified Sudakov form factor, for the channel I, becomes

∆RI
(x⊥) = exp

(

−
∫ xmax

⊥

x⊥

dx′⊥
x′3⊥

dφ̃dzp
CIαS

2π
8zp(1− zp)(1− xp)

2AI

)

, (2.39)

where Q
2
xmax
⊥ is the maximum value for the transverse momentum.

The radiative variables are generated using the veto algorithm, described in [26].
We use the upper bounding function

gI =
aI
x3⊥

, (2.40)

for the integrand, which is chosen such that gI can be easily integrated in {x⊥, xmax
⊥ }.

The generation procedure then proceeds as follows:
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1. x⊥ is set to xmax
⊥ ;

2. a new (x̃p, zp, φ̃) is randomly generated according to

∆over
RI

(x⊥) = exp

(

−
∫ xmax

⊥

x⊥

dx′⊥
x′3⊥

dφ̃dzpaI

)

, (2.41)

giving7

x2⊥ =
1

1
(xmax

⊥ )2
− 2

aI
lnR1

, (2.42)

zp = R2, (2.43)

φ̃ = R3. (2.44)

3. if x̃p < 0 or x̃p > 1, the configuration generated is outside the phase-space
boundaries, then return to step 1;

4. if
1

gI

CIαS

2π
8zp(1− zp)(1− xp)

2AI > R, (2.45)

the configuration is accepted, otherwise return to step 1.

2.3 Truncated and vetoed parton showers

The Herwig++ shower algorithm [3, 35] starts at an initial scale, given by the kine-
matics and the colour structure of the hard scattering process, and evolves down in
the evolution variable related to the angular separation of parton branching prod-
ucts, q̃. The evolution is generated by the emission of partons in 1 → 2 branching
processes and each branching is described by a scale, q̃, a light-cone momentum
fraction, z, and an azimuthal angle, φ. The latter parameters are used to uniquely
define the momenta of all particles radiated in a shower. However, the Herwig++

approach generally requires some reshuffling of these momenta after the generation
of the parton showers to ensure global energy-momentum conservation.

(N +1)-body final states associated with the generation of the hardest emission
are first interpreted as a standard Herwig++ emission, from the N -body configu-
ration, specified by the branching variables (q̃h, zh, φh). The POWHEG emission is
performed as a single Herwig++ shower as follows:

1. the truncated shower evolves from the default starting scale to q̃h, such that
any further emission conserves the flavour of the emitting parton and has
transverse momentum lower than that of the hardest emission;

2. the hardest emission is forced with shower variables (q̃h, zh, φh);

3. the vetoed shower evolves down to the hadronization scale, vetoing any emis-
sion with transverse momentum higher than that of the hardest emission.

7Here Ri defines a random number in [0, 1].
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The key feature of this approach is the ability to interpret the hard emission
in terms of the shower variables. In order to do this we first need to consider the
treatment of processes with an initial-state final-state colour connection, such as
DIS or VBF, in the Herwig++ parton shower. In these processes the momenta of
the incoming and outgoing colour connected partons after the parton shower are
first reconstructed from the shower variables as described in Ref. [3]. These off-
shell momenta are such that energy and momentum is not conserved, so boosts
are applied to the incoming and outgoing momenta such that the momentum of the
virtual boson is preserved by the showering process. In DIS and VBF type processes
the reconstructed momenta are boosted to the Breit-frame of the system before the
radiation. We take pb to be the momentum of the original incoming parton and pc
to be the momentum of the original outgoing parton and pa = pc − pb, therefore in
the Breit-frame

pa = Q(1; 0, 0,−1). (2.46)

We can then construct a set of basis vectors,

n1 = Q(1; 0, 0, 1), n2 = Q(1; 0, 0.− 1). (2.47)

The momenta of the off-shell incoming parton can be decomposed as

qin = αinn1 + βinn2 + q⊥, (2.48)

where αin = n2·qin
n1·n2

, βin = n1·qin
n1·n2

and q⊥ = qin − αinn1 − βinn2. In order to reconstruct
the final-state momentum we first apply a rotation so that the momentum of the
outgoing jet is

qout = αoutn1 + βoutn2 + q⊥, (2.49)

where βout is taken to be one and the requirement that the virtual mass is preserved

gives αout =
q2out+p2⊥
2n1·n2

, where q2⊥ = −p2⊥. The momenta of the jets are rescaled such
that

q′in,out = αin,outkin,outn1 +
βin,out
kin,out

n2 + q⊥, (2.50)

which ensures that the virtual mass of the partons is preserved. The requirement
that the momentum of the system is conserved, i.e.

pa = q′out − q′in = Q(0, 0,−1; 0), (2.51)

gives

αinkin − αoutkout =
1

2
, (2.52a)

βin
kin

− βout
kout

= −1

2
. (2.52b)

Once the rescalings have been determined the jets are transformed using a boost
such that

qin,out
boost−→ q′in,out. (2.53)

In order to interpret the hard emission in terms of the shower variables we first
calculate the momentum of the off-shell incoming, q′newb , or outgoing, q′newc , parton
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depending on whether we are dealing with initial- or final-state radiation. We then
compute the boost into the Breit-frame of this system and construct the basis vectors
n1,2 as before, which allows us to determine the transverse momentum, q⊥, of the
off-shell incoming parton. In this frame the momenta of the partons before the
shower would be:

pb =
Q

2
(1 + c; 0, 0, 1 + c); pc =

Q

2
(1 + c; 0, 0,−(1− c)). (2.54)

The momenta of the off-shell partons before the boost required to conserve energy
and momentum are

qnewb = αnew
in n1 + βnew

in n2 + q⊥ qnewc = αnew
out n1 + βnew

out n2, (2.55a)

where

αnew
in =

pb · n2

n1 · n2
, βnew

in =
q′2b − q2⊥

2n1 · n2αnew
in

, (2.56a)

αnew
out =

q′2c
2n1 · n2βnew

out

, βnew
out =

pc · n1

n1 · n2
. (2.56b)

The inverse of the boost, which would be applied in the shower to ensure energy-
momentum conservation, can then be determined and applied to all the incoming
and outgoing partons. These momenta can be decomposed in terms of the Sudakov
basis used in Herwig++, allowing the shower variables (q̃h, zh, φh) to be determined.

2.4 Results

The typical feature of the VBF process at hadron colliders is the presence of two
forward tagging jets. At leading-order, they correspond to the two scattered quarks
in the hard process and their observation, together with the properties of the Higgs
boson decay product, is vital for the suppression of backgrounds [79–85]. Tagging
jet distributions must be known precisely in order to gain a good estimate of the
Higgs couplings: comparison of the Higgs production rate with tagging jets cross
section, within cuts, determine Higgs boson couplings [76, 77] and the uncertainty
of measured couplings are determined by the theoretical error of the cross section.
At next-to-leading order, tagging jet distributions is enough to estimate size and
uncertainties of the higher order QCD corrections, because the Higgs boson does
not induce spin correlations in the phase-space of its decay products.

A detailed analysis of jet distributions has been realized in the present work
and the results are shown in this section. A preliminary step has been the valida-
tion of the B̄ function, by comparing the NLO differential cross section as function
of the rapidity and the transverse momentum for the stable Higgs boson given by
Herwig++ and VBFNLO, as shown in Fig. 2.4 and Fig. 2.5 respectively. The rapid-
ity distribution is symmetric about zero, as expected in a proton-proton collision.
In both cases we find excellent agreement between the two distributions and this
demonstrates that the generation of radiative variables and the calculation of B̄ is
correct.
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Figure 2.4: Rapidity of the Higgs boson at NLO. The result from Herwig++ (solid
black line) is compared to that from VBFNLO (dashed red line).

Figure 2.5: Transvere momentum of the Higgs boson at NLO. The results from
Herwig++ (solid black line) are compared to those from VBFNLO (dashed red line).
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However, at next-to-leading order we can either encounter two jets, with one
of them composed of two partons (recombination effects), or 2 jets + 1 parton
which does not qualify as jet, or three jets corresponding to well-separated partons.
For LHC data, an algorithm to select two tagging jets is needed. There are two
possibilities [98]:

1. pT -method : the two tagging jets are the two highest pT jets in the event;

2. E-method : the two tagging jets are the two highest energy jets in the event;

We follow the pT -method and jets are defined according to the kT algorithm by using
the FASTJET package [102]. As mentioned before, cuts are needed to reduce the
effect of backgrounds and we provide two sets of results by choosing two different
sets of cuts.

At first, it has been of interest to compare results with the ones from Nason’s
implementation that has recently appeared in the literature [103]. To this end, we
follow the cuts in Ref. [103]. Transverse momentum, pjT , and rapidity, yj, of tagging
jets are chosen so that:

pjT ≥ 30 GeV, |yj| ≤ 5. (2.57)

Moreover, we require the tagging jets to lie in opposite hemispheres and have a large
invariant mass, i.e.,

yj1 · yj2 < 0, mjj > 600 GeV. (2.58)

We set the Higgs boson stable and choose a mass mH = 120 GeV. The factor-
ization and renormalization scales are chosen to be equal to the mass of the Higgs
boson. The other relevant electroweak parameters are

MW = 79.964GeV, MZ = 91.188GeV, (2.59)

αem(MZ)
−1 = 128.930, sin2θW = 0.23102, (2.60)

and the weak coupling is computed as g =
√

4αem/sinθW . The parton distribution
functions are chosen to be the CTEQ6M set [104].

The resuts of the POWHEG implementation in the Herwig++ parton shower are
shown in Fig. 2.6 and corresponding results from Ref. [103] in Fig. 2.7. In Fig. 2.6a
we show the result for the rapidity separation, |yj1 − yj2|, of the two tagging jets.
In addition to the shower at LO (red dashed line), we have included the Herwig++

result with POWHEG correction (solid black line) and matrix element correction
based on the approach of Ref. [44] (dotted blue line). The distributions are centred
around 5.5. POWHEG corrections provide a distribution that is 5% higher with
respect to the matrix element correction based on the approach of Ref. [44] and 9%
smaller than the one expected from Ref. [103] (see Fig. 2.7a) at the peak of the
curve. In Fig. 2.7a POWHEG BOX [105] is interfaced with HERWIG and PYTHIA

parton showers, solid black and dashed red line respectevly. The NLO cross section
is given by the dotted blue curve and it is almost indistinguishable fom the showers
simulation. Here the black dotted line marks the value |yj1 − yj2| = 4.2: this is the
position of the cut on rapidity difference that will be applied in the following.
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(a) (b)

Figure 2.6: The rapidity separation of the two tagging jets (a) and relative rapidity
of the third jet (b). The results from Herwig++ within the POWHEG formalism
(solid black line) are compared with the shower at LO (red dashed line) and LO
shower with matrix element correction based on the approach of Ref. [44] (dotted
blue line).

(a) (b)

Figure 2.7: The rapidity separation of the two tagging jets (a) and relative rapidity
of the third jet (b). Here we show results from Ref. [103]. POWHEG BOX is interface
with HERWIG (solid black line) and PYTHIA (red dashed line) parton shower. The
NLO cross section is given by the blue dotted curve. The black dotted line marks
the cut on rapidity difference that will be used in the following.
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In addition, we fix a rapidity separation cut, |yj1 − yj2| > 4.2, and study distri-
butions of the third (hardest) jet. Of relevant interest is the relative rapidity of the
third jet with respect to the average of the rapidities of the two tagging jets,

yrelj3
= yj3 − (yj1 + yj2)/2, (2.61)

that we plot in Fig. 2.6b. We compare distributions from the Herwig++ parton
shower without matrix element correction (red dashed line) and with corrections
provided by the POWHEG formalism (solid black line) and the approach of Ref. [44].
We estimate an increasement of 29.4% at the peak of the distribution due to the
POWHEG formalism. Fig.2.6b describes the result expected from Ref. [103] (see
Fig. 2.7b) reasonably well: the |yrelj3 |-distribution is centred at 3.5 and has peak of
0.034 pb, as expected. In Fig. 2.7b the POWHEG BOX implementation of HERWIG

(solid black line) and PYTHIA (red dashed line) is shown. Here again we notice that
the NLO cross section distribution (blue dotted line) shows only a little difference
from the curves describing the showers. However, a slight asymmetry is visible at
the peaks of the distributions and this does not help in determining the exact high
of the peaks. The curve in Fig. 2.6b is very symmetric with respect to the origin,
as expected in a proton-proton collision.

The second set of result follows the cuts introduced in Ref. [98]. We choose

pjT ≥ 20 GeV, |yj| ≤ 4.5. (2.62)

Moreover, we generate the Higgs boson decay in τ+τ− isotropically and require
that the produced leptons have transverse momentum, pT

τ(+,−)
, and pseudorapidity,

ητ (+,−), so that
pT

τ(+,−)
≥ 20 GeV, |ητ (+,−)| ≤ 2.5. (2.63)

In addition, we require that jet-lepton separation in the rapidity-azimuthal angle
plane satisfies

∆Rjτ (+,−) ≥ 0.6, (2.64)

and that the taus fall between the two tagging jets in rapidity

yj,min < ητ (+,−) < yj,min. (2.65)

Backgrounds to VBF are significantly suppressed if the rapidity of the two tagging
jets are well separated; therefore, we require

|yj1 − yj2| > 4. (2.66)

The factorization and the renormalization scale are chosen to be equal to the mass
of the Higgs boson, mH = 120 GeV. The other relevant electroweak parameters are

MW = 80.3980GeV, MZ = 91.1876GeV, (2.67)

αem = 0.007556, sin2θW = 0.222646, (2.68)

and the weak coupling is computed as g =
√

4αem/sinθW. The parton distribution
functions are chosen to be the CTEQ6M set [104].
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Figure 2.8: Difference of rapidity (left panel) and higher pT (right panel) distribution
of the two tagging jets. In the left panel we have excluded the cut in Eqn. 2.66.

The analysis provides a comparison of distributions for POWHEG implementation
(solid black curve) and LO simulation (dashed red curve) of Herwig++ parton shower
together with VBFNLO NLO differential cross section (dotted blue curve).

In Fig. 2.8 we present the differential cross section as a function of rapidity
separation and higher pT of the two tagging jets. In the left panel we have excluded
the cut in Eqn. 2.66. The cross sections show a peak around 5 in the left panel and
70 GeV in the right panel. The POWHEG implementation leaves unchanged the
higher pT cross section, while it modifies the difference of rapidity distribution with
respect to the LO simulation of the Herwig++ parton shower: the curve is 2.3%
lower at the peak and slightly shifted to a higher value of the rapidity difference.

In Fig. 2.9 we plot the cross sections of smaller transverse momentum (left panel)
and rapidity (right panel) of the two tagging jets. The transverse momentum dis-
tribution shows a peak around 30 GeV and the rapidity around 2. The Herwig++

shower provides a similar description at LO and NLO accuracy.

The transverse momentum and rapidity distributions of the third jet are plotted
in Fig. 2.10 in the left and right panel respectively. As expected here we see a
harder spectrum for the third jet in the POWHEG approach, which is now simulated
using the real emission matrix element rather than the shower approximation. The
POWHEG curve is 3% lower at the peak for the transverse momentum and 6.4%
higher at the peak for the rapidity distribution with respect to the LO simulation
of Herwig++.

In this second set of plots we see that the Herwig++ results lie below the fixed
NLO results for distributions involving the two leading jets as a result of the subse-
quent parton shower, unlike the results of Ref. [103] where there is little difference
between the POWHEG and fixed order results. This difference exists at both leading
order and in the POWHEG approach in Herwig++ and is a result of the different
shower algorithm and kinematic reconstruction in Herwig++. A similar behaviour
was pointed out in the previous set of plots, where we found that the rapidity dif-
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Figure 2.9: Distributions of smaller transverse momentum, pj,min
T , (left panel) and

smaller rapidity, yj,min, (right panel) of the two tagging jets.

ference distribution is smaller with respect to the curve of Ref. [103] at the peak.
Given the excellent description of the related DIS data compared with the previous
HERWIG shower algorithm (see Chapter 4), this is an important difference in the
two approaches and worthy of further study.

2.5 Conclusions

In this Chapter the POWHEG NLO matching scheme has been implemented in
the Herwig++ Monte Carlo event generator for Higgs production via vector-boson
fusion. The B̄ function has been calculated following the general approach provided
in [48]. The simulation contains a full treatment of the truncated shower, which is
needed for the production of wide angle, soft radiation in angular-ordered parton
showers.

The implementation of B̄ has been checked by comparing results between Her-

wig++ and VBFNLO. The excellent agreement between the distributions shows that
the generator of radiative variables and the calculation of B̄ is correct.

We have shown different jet distributions after imposing typical cuts, which
are required to remove the effects of backgrounds. With the first set of results we
have compared the implementation of POWHEG formalism with the matrix element
correction obtained with the approach of Ref. [44] on one side, and on the other
with the LO Herwig++ parton shower. The distributions describe reasonably well
the results expected from a work that has recently appeared in the literature [103]
even though the difference of rapidity shows a normalization that is different than
the one expected. The relative rapidity of the third jet shows an excellent symmetry
about zero, as expected in a proton-proton collision.

In the second set of results we find that the POWHEG implementation does
improve the rapidity difference distribution for the two tagging jets and of pT and
rapidity for the third hardest jet, while it mainly leaves the other distributions

45



Chapter 2. Implementing the POWHEG method for Higgs production via vector
boson fusion in the Herwig++ parton shower

Figure 2.10: Transverse momentum distribution of the third jet (pj3T ) is plotted in
the left panel and the rapidity distribution of the same jet (yj3) in the right one.

of the two tagging jets unchanged with respect to the LO simulations within the
Herwig++ parton shower. The difference between the Herwig++ results and the
VBFNLO curves is not expected and is worthy for further study.

The lack of data prevents us from comparing the jet distributions with experi-
mental results. However, the present work, together with the Higgs production via
gluon fusion and the Higgs-strahlung simuations, which were already implemented in
Herwig++2.3 [106], will provide an essential tool for analysing the upcoming results
at the LHC.
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Chapter 3

Implementing the POWHEG
method for diphoton production
in hadron collisions in the
Herwig++ parton shower

For Higgs masses below 140 GeV, the decay of the Higgs into two photons is one of
the most promising discovery channel for Higgs detection at the LHC [107–111]. The
γγ-decay mode can be well identified experimentally but the signal is small compared
to the background. In Fig. 3.1a the Higgs signal, shown for different masses, is scaled
by a factor 10 to be visible above the large background. Several processes contribute
to these backgrounds, as shown in the same figure. The irreducible backgrounds are
given by two real prompt photons, produced from qq̄ → γγ (γγ born) and gg → γγ
(γγ box). The reducible backgrounds are given by events where at least one final
state jet is interpreted as a photon. The γ+jet sample originates from two possible
sources: either two prompt photons with one γ radiated during the fragmentation
of the jet (γ+jets (2 prompt γ)) or one prompt photon and the other candidate
corresponding to a mis-identified jet or isolated π0 (γ+jet (1 prompt γ + 1 fake)).
Furthermore, we can mis-identify both jets in the final states of processes such as
Drell-Yan and hadron-hadron→ jets.

In the present Chapter we will consider one of the main candidates to these
backgrounds: the prompt photon production in hadron-hadron collisions. Diphoton
(γγ) production at large invariant mass (Mγγ) is not only a large background for
the discovery channel of the Higgs boson decaying into a pair of photons for the
CERN LHC experiments [112, 113] and the Fermilab Tevatron [114], but it also
constitutes an important background for new physics, such as heavy resonances
[115], extra spatial dimensions [116] and cascade decays of heavy new particles [117].
Measurement involving γγ-production have already been carried out at fixed-target
[118–120] and collinear experiments [121–125].

The theoretical understanding of diphoton production and precise measurements
of the differential cross section of the process are therefore not only important for the
discovery of new phenomena but also as a check of the validity of the predictions of
perturbative quantum chromodynamics (pQCD) and soft-gluon resummation meth-
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Figure 3.1: Backgrounds to the Higgs boson decay channel into γγ (a). The figure is
presented in Ref. [113]. The 2-prompt photons production is an important candidate
for such backgrounds and is given by qq̄ → γγ, gg → γγ and γ + jet production
with one of the photons radiated during the fragmentation of the jet. The gg → γγ
process can be important and even comparable to the leading-order contribution at
low diphoton mass (Mγγ) (b). The figure on the right panel is presented in Ref. [125].
The distribution is plotted with PYTHIA and gives the fraction of events produced
via γγ-box relative to the total γγ-production as a function of Mγγ .

ods [125].

The dominant production method for direct photon pairs is leading order qq̄
scattering, although the formally next-to-next-to-leading order, O(α2

s), gluon-gluon
fusion process via a quark-loop diagram [126] can be important, and even comparable
to the leading-order contribution at low diphoton mass (Mγγ) [125] due to the large
gluon parton distribution function. This is shown in Fig. 3.1b. The distribution is
plotted with the PYTHIA event generator and is presented in Ref. [125]. It gives the
fraction of events produced via gg → γγ relative to the total diphoton production
as a function of Mγγ .

The O(αs) corrections to the qq̄ → γγ process are given by the qq̄ → γγg, gq →
γγq and gq̄ → γγq̄ subprocesses and corresponding virtual corrections. Moreover,
the contribution where the final parton is collinear to a photon is calculated in terms
of the quark and gluon fragmentation function into photons [126,127]. We will give
more details about fragmentation functions in Sect. 3.2. Given the behaviour of the
latter functions, ∼ α

αs
, these terms contribute to the same order as qq̄ → γγ. The

QCD corrections to the process are well known in the literature [128–133]. They are
large compared to most new physics [124], and thus the understanding of the QCD
production mechanism is crucial for the research of new physics in this channel.

However, the inclusive production rate of high pT π0, η, ω or of pairs like π0π0,
π0γ, and similarly for η and ω, is an order of magnitude bigger than for direct
photons. For this reason the experimental selection of direct photons requires the use
of isolation cut. Different criteria for the isolation of photons have been developed
in recent years: the cone approach [128,134], the democratic approach [135] and the
smooth isolation procedure [136]. Monte Carlo programs, such as JETPHOX [137]
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and DIPHOX [138], provide simulation for direct photon production together with
the implementation of isolation cuts.

The present Chapter is devoted to the implementation of the POWHEG method
for the γγ-production in hadron collisions in the Herwig++ parton shower [139]. It
is organized as follows. In Sect. 3.1 we introduce the POWHEG formulae useful
for the description of our approach and our treatment of the photon fragmentation
contribution. The calculation of the leading-order kinematics with NLO accuracy
in the POWHEG approach is discussed in Sect. 3.2. In Sect. 3.3 we describe the
procedure used to generate the hardest emission. We show our results in Sect. 3.4
and finally present our conclusions in Sect. 3.5.

3.1 Modification of POWHEG

In order to use the POWHEG method for processes involving photons where the real
emission matrix elements contain both QCD singularities from the emission of soft
and collinear gluons and QED singularities from the radiation of soft and collinear
photons we need to make some modifications to the POWHEG approach. We start
by writing the real emission piece as

R(ΦB,ΦR) = RQED(ΦB,ΦR) +RQCD(ΦB,ΦR), (3.1)

where

RQED(ΦB,ΦR) =

∑

iD
i
QED

∑

j D
j
QED +

∑

j D
j
QCD

R(ΦB,ΦR), (3.2a)

contains the collinear photon emission singularities and

RQCD(ΦB,ΦR) =

∑

iD
i
QCD

∑

j D
j
QED +

∑

j D
j
QCD

R(ΦB,ΦR). (3.2b)

contains the singularities associated with QCD radiation.1 Here the counter terms
have been split into those Di

QCD which regulate the singularities from QCD radiation
and those Di

QED which regulate the singularities due to photon radiation.

We can regard the real QCD emission terms as part of the QCD corrections to
the leading-order process, whereas the QED contributions are part of the photon
fragmentation contribution coming from a leading-order process with one less photon
and an extra parton. We therefore modify the next-to-leading order cross section
for processes with photon production giving

dσ =

{

B(ΦB) + V (ΦB) +

∫

[

RQCD(ΦB,ΦR)−
∑

i

Di
QCD(ΦB,ΦR)

]

dΦR

}

dΦB

+RQED(ΦB,ΦR)dΦRdΦB. (3.3)

1In practice the counter terms can be negative in some regions and we choose to use their
magnitude in this separation in order to ensure that the real contributions are positive.
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We can now write the cross section for photon production processes in the
POWHEG approach in the same way as in Eqn. 1.84

dσ = B̄(ΦB)dΦB

[

∆QCD(0) +
RQCD(ΦB,ΦR)

B(ΦB)
∆QCD(kT (ΦB,ΦR))dΦR

]

(3.4)

+B′(Φ′
B)dΦ

′
B

[

∆QED(0) +
RQED(Φ

′
B,Φ

′
R)

B′(Φ′
B)

∆QED(kT (Φ
′
B,Φ

′
R))dΦ

′
R

]

,

where B̄(ΦB) is now defined as

B̄(ΦB) =

{

B(ΦB) + V (ΦB) +

∫

[

RQCD(ΦB,ΦR)−
∑

i

Di
QCD(ΦB,ΦR)

]

dΦR

}

dΦB

(3.5)
and B′(Φ′

B) is the leading-order contribution for the process with an extra par-
ton and one less photon with Φ′

B and Φ′
R being the corresponding Born and real

emission phase-space variables.
The Sudakov form factor for QCD radiation is

∆QCD(pT ) = exp

[

−
∫

dΦR
RQCD(ΦB,ΦR)

B(ΦB)
θ(kT (ΦB,ΦR)− pT )

]

, (3.6a)

and the Sudakov form factor for QED radiation is

∆QED(pT ) = exp

[

−
∫

dΦ′
R
RQED(Φ

′
B,Φ

′
R)

B′(Φ′
B)

θ(kT (Φ
′
B,Φ

′
R)− pT )

]

. (3.6b)

The POWHEG algorithm is implemented for photon production processes using
the following procedure.

• First select either a direct photon production or a fragmentation event using
B̄(ΦB) and B′(Φ′

B) and the competition method to correctly generate the
relative contributions of the two different processes.

• For a direct photon production process:

– generate the hardest emission using the Sudakov form in Eqn. 3.6a;

– directly hadronize non-radiative events;

– map the radiative variables parametrising the emission onto the evolution
scale, momentum fraction and azimuthal angle, (q̃h, zh, φh), from which
the parton shower would reconstruct identical momenta;

– generate the N -body configuration from B̄(ΦB) and evolve the radiating
parton from the starting scale down to q̃h using the truncated shower;

– insert a branching with parameters (q̃h, zh, φh) into the shower when the
evolution scale reaches q̃h;

– generate pT vetoed showers from all the external legs.

• For a fragmentation contribution:
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Figure 3.2: Diphoton production at leading-order.

– generate the hardest QED emission using the Sudakov form factor in
Eqn. 3.6b;

– directly shower and hadronize non-radiative events, forbidding any per-
turbative QED radiation in the parton shower;

– for events with QED radiation map the radiative variables parametrising
the emission into the evolution scale, momentum fraction and azimuthal
angle, (q̃h, zh, φh), from which the parton shower would reconstruct iden-
tical momenta;

– generate the N -body configuration from B′(Φ′
B) and evolve the radiating

parton from the starting scale down to q̃h using the truncated shower, but
allowing QCD radiation with pT greater than that of the hardest QED
emission;

– insert a branching with parameters (q̃h, zh, φh) into the shower when the
evolution scale reaches q̃h;

– generate the shower from all external legs forbidding QED radiation, but
not QCD radiation, above the pT of the hardest emission.

This procedure now includes both the QCD corrections to the leading-order direct
photon production process and both the perturbative QED corrections to the photon
fragmentation contribution and the non-perturbative contribution is simulated by
the parton shower.

In the next two sections we will describe how we implemented this approach in
Herwig++ for photon pair production.

3.2 Calculation of B̄(ΦB)

In this section we describe theO(αs) corrections to diphoton production. At leading-
order, γγ-production is described by the Feynman diagram illustrated in Fig. 3.2.
Next-to-leading order contributions yield O(αs) corrections coming from qq̄ → γγg,
gq → γγq and gq̄ → γγq̄, together with the corresponding virtual corrections, as
shown in Fig. 3.3. These subprocesses contain QED singularities, corresponding to
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Figure 3.3: Diphoton production at next-to-leading order. In (a) the real and virtual
Feynman diagrams contributing to the qq̄ → γγ subprocess are shown while in (b)
the real diagrams for the gq initiated process are given.

configurations where the final-state parton becomes collinear to a photon, which do
not cancel when summing up the real and the virtual pieces of the cross section. They
are formally absorbed into a quark (Gγq(z, µ

2)) or gluon (Gγg(z, µ
2)) fragmentation

function into photons, which define the probability of finding a photon carrying
longitudinal momentum fraction z in a quark or gluon jet at scale µ for a given
factorization scheme. This QED singular component is called the Bremsstrahlung
or single fragmentation contribution, see Fig. 3.4. In our approach it is treated
separately and simulated by showering the gq → γq or gq̄ → γq̄ within the Monte
Carlo algorithm as described in the previous section. At next-to-leading order the
same configuration appears in any subprocess in which a quark (gluon) undergoes
a cascade of successive collinear splittings ending up with a quark-photon (gluon-
photon) splitting. These singularities are factorized to all orders in αs, according to
the factorization theorem. When the fragmentation scale µ is chosen higher than
any other hadronic scale, i.e. µ ∼ 1 GeV, these functions behave roughly as α

αs(µ2)

and therefore contribute at leading-order.

For a full study at NLO accuracy, the O(αs) corrections to the Bremsstrahlung
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Figure 3.4: Bremsstrahlung contribution for diphoton production.

contribution need to be calculated. Moreover, these corrections in their turn yield
the leading order contribution of the double fragmentation type process; in the latter
case, both photons result from the collinear fragmentation of a parton. However,
these corrections are out of the scope of the present work and are not considered
here.

3.2.1 Real emission contribution

In order to calculate the real emission contribution to B̄(ΦB) we need to specify both
the radiative phase-space, ΦR, and the subtraction counter terms. We choose to use
the dipole subtraction algorithm of Catani and Seymour [36] to specify the counter
terms and the associated definition of the real emission phase-space as follows.

In the centre of mass frame the incoming hadronic momenta are P⊕ and P⊖
respectively for the hadrons traveling in the positive and negative z-directions. Sim-
ilarly the momenta of the incoming partons in the Born process are p̄⊕ = x̄⊕P⊕ and
p̄⊖ = x̄⊖P⊖, respectively. The momenta of the photons in the Born process are k̄1,2
respectively. The corresponding momenta in the real emission process are p⊕ and
p⊖ for the incoming partons and k1,2,3 for the outgoing particles, which are chosen
such that k1,2 are the momenta of the photons and k3 that of the radiated final-state
parton.

In the CS approach the real phase-space depends on which parton is the emit-
ter of the radiation and which the associated spectator defining the dipole [36].
When the parton with momentum p̄⊕ is the emitter and that with momenta p⊖ the
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spectator the full phase-space is [36]

dΦ3 = dΦBdΦR = dΦB
(k1 + k2)

2

16π2

dφ⊕
2π

dv⊕
dx

x
θ(v⊕) θ

(

1− v⊕
1− x

)

θ(x(1−x)) θ(x−x̄⊕),
(3.7)

where the radiative phase-space variables are

x = 1− (p⊕ + p⊖) · k3
p⊕ · p⊖

, v⊕ =
p⊕ · k3
p⊕ · p⊖

, φ⊕, (3.8)

φ⊕ is the azimuthal angle of the emitted particle around the ⊕̂-direction and

x ∈ [x⊕, 1], v⊕ ∈ [0, 1− x]. (3.9)

In terms of these variables

p⊕ = p̄⊕/x, p⊖ = p̄⊖, (3.10a)

x⊕ = x̄⊕/x, x⊖ = x̄⊖. (3.10b)

It is useful to specify the momenta of the radiated parton in terms of its transverse
momentum, pT , and rapidity, y, such that

k3 = pT (cosh y; cosφ⊕, sinφ⊕, sinh y) . (3.11)

Using the definition of x and v⊕

k3 = v⊕p⊖ + (1− x− v⊕)p⊕ + q⊥, (3.12)

where q⊥ is the component of the 4-momenta transverse to the beam direction. The
on-shell condition, k23 = 0, gives

−q2⊥ = p2T = 2p⊕ · p⊖(1− x− v⊕)v⊕. (3.13)

From Eqn.3.12 and the definition of rapidity

y =
1

2
ln

[

kE3 + kz3
kE3 − kz3

]

=
1

2
ln

[

(1− x− v⊕)x⊕
v⊕xx⊖

]

, (3.14)

the CS variables are


















v⊕ = 1
x⊖

√
ŝ

pT
ey
,

x =
1− pT

x⊖
√

ŝey

1+
pT ey

x⊕
√

ŝ

.
(3.15)

This is sufficient to calculate the momentum of the radiated parton. However
rather than implementing the real emission variables in the Sudakov form factor in
this way and then imposing the θ(kT (ΦB,ΦR)−pT ) function, it is easier to transform
the real emission into the transverse momentum, rapidity and azimuthal angle of
the emitted parton.
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The Jacobian for this transformation is

∣

∣

∣

∣

∂(x, v)

∂pT∂y

∣

∣

∣

∣

=

2pT
sx⊕x⊖

(

1− pT e−y
√
sx⊖

)

(

1 + pT ey√
sx⊕

)2 =
2pTx

2

sx⊕x⊖(1− v⊕)
. (3.16)

The momenta of the photons in the real emission process can then be calculated
from the Born momenta

kµr = Λµ
ν k̄

ν
r r = 1, 2, (3.17)

where the Lorentz transformation is

Λµ
ν = gµν −

2(K + K̄)µ(K + K̄)ν
(K + K̄)2

+
2KµK̄ν

K2
, (3.18)

with

K = p⊕ + p⊖ − k3 = k1 + k2 (3.19a)

K̄ = p̄⊕ + p̄⊖. (3.19b)

The condition K2 = K̄2 is compatible with the definition of x given in Eqn. 3.8. The
kinematic variables for the ⊖̂ collinear direction are calculated in a similar way and
they provide a radiative phase-space as in Eqn. 3.7. Moreover, given the x⊕ ↔ x⊖
asymmetry of the rapidity in Eqn. 3.14, it is [y]⊖ = − [y]⊕. In the rest of the paper

we refer to the collinear direction as Ô = {⊖̂, ⊕̂}, when both components need to
be included.

In addition to the real emission variables we need the dipole subtraction terms
of Ref. [36]. In the following B(ΦB) is computed in terms of the reduced momenta
defined in terms of the momenta for the real emission process in Ref. [36]. The QCD
singularities from qq̄ → γγg are absorbed by the dipoles

Dqg,q̄ ≡ Dqg
QCD =

CFαs(µR)

2π

1

p̄⊕k3

{

2

1− x
− (1 + x)

}

B(ΦB), (3.20a)

Dq̄g,q ≡ Dq̄g
QCD =

CFαs(µR)

2π

1

p̄⊖k3

{

2

1− x
− (1 + x)

}

B(ΦB), (3.20b)

where the dipoles Dij,k denote the emitter i, emitted parton j and spectator k.
The gq → γγq subprocess involves the QCD dipoles

Dgq,q ≡ Dgq
QCD =

TFαs(µR)

2π

1

4p̄⊕k3
{1− 2x(1− x)}B(ΦB). (3.21)

In order to separate the QCD and QED emission we also need the QED dipoles

Dq
qγ ≡ DqγF

QED = e2q
1

2k2k3ξ

{

2

2− ξ − z
− (1 + z)

}

B′(Φ′
B), (3.22a)

Dqγ
q ≡ DqγI

QED = e2q
1

2p⊖k3ξ

{

2

1− ξ + z
− (1 + z)

}

B′(Φ′
B), (3.22b)
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where

ξ = 1− k2k3
(k2 + k3)p⊕

, (3.23a)

z =
p⊕k2

(k2 + k3)p⊕
, (3.23b)

and eq is the charge of the quark q in units of the electron charge. In this case, the
radiative phase-space is dΦ′

R(ξ, z, φ
′). Similar dipoles are included for the gq̄ → γγq̄

subprocess. We do not include perturbative QED radiation from the qq̄ → γg
subprocess as it does not give a perturbative correction to Gγg(z, µ

2).
In practice we generate the real emission piece as a contribution from each of

the incoming partons as

∫

[

RQCD(ΦB,ΦR)−
∑

i

Di
QCD(ΦB,ΦR)

]

dΦi
R = (3.24)

∑

i=⊕,⊖

∫

[

|Di
QCD|

∑

j |D
j
QED|+

∑

j |D
j
QCD|

R(ΦB,Φ
i
R)−Di

QCD(ΦB,ΦR)

]

dΦi
R,

For the later generation of the Sudakov form factor it is useful to express the
dipoles as

DI
QCD ≡ CIαs(µR)

2π
DIB(ΦB), (3.25)

where I = {qg; q̄g; gq; gq̄},

Cqg = Cq̄g = CF , (3.26)

Cgq = Cgq̄ = TF , (3.27)

and

DJ
QED ≡ e2qDJB(Φ′

B), (3.28)

where J = {qγF, qγI, q̄γF, q̄γI}.

3.2.2 Virtual contribution and collinear remainders

The finite piece of the virtual correction is

dσV =
CFαs(µR)

2π
V (w)B(ΦB). (3.29)

where the finite contribution of I(ǫ) [36] and the virtual correction [131] is

V (w) =
(

3 + ln2w + ln2(1− w) + 3ln(1− w)
)

+
F (w)

(

1−w
w

+ w
1−w

) , (3.30)
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where eq is the electric charge of quark q, and

F (w) = 2lnw + 2ln(1− w) +
3(1− w)

w
(lnw − ln(1− w))

+

(

2 +
w

1− w

)

ln2w +

(

2 +
1− w

w

)

ln2(1− w), (3.31)

with w = 1 + t̂
ŝ
, where ŝ and t̂ are the usual Mandlestam variables.

The collinear remainders are

dσcoll =
CFαs(µR)

2π

fm(xO, µF )

f(xO, µF )
B(ΦB), (3.32)

where the modified PDF is2

fm
q (xO, µF ) =

∫ 1

xO

dx

x

{

fg

(xO
x
, µF

)

A(x)

+
[

fq

(xO
x
, µF

)

− xfq(xO, µF )
]

B(x)

+ fq

(xO
x
, µF

)

C(x)
}

+ fq(xO, µF )D(xO), (3.33)

fq and fg are the quark and gluon PDFs respectively, and

A(x) =
TF
CF

[

2x(1− x) + (x2 + (1− x)2)ln
Q2(1− x)2

µ2
Fx

]

, (3.34)

B(x) =

[

2

1− x
ln
Q2(1− x)2

µ2
F

]

, (3.35)

C(x) =

[

1− x− 2

1− x
lnx− (1 + x)ln

Q2(1− x)2

µ2
Fx

]

, (3.36)

D(xO) =

[

3

2
ln

(

Q2

µ2
F

)

+ 2ln(1− xO)ln

(

Q2

µ2
F

)

+ 2ln2(1− xO) +
π2

3
− 5

]

.(3.37)

The combined contribution of the finite virtual term and collinear remnants is

dσV+coll =
CFαs(µR)

2π
V(ΦB)B(ΦB), (3.38)

where
V(ΦB) ≡ V (w) + Ṽ (xO, µF ), (3.39)

where Ṽ (xO, µF ) =
fm(xO,µF )
f(xO,µF )

.

3.2.3 Generation of the hard process

The next-to-leading order simulation of photon pair production in Herwig++ uses
the standard Herwig++ machinery to generate photon pair and photon plus jet
production in competition. The B̄ function is implemented as a reweighting of the
leading-order matrix element as follows:

2We write the modified PDF for the quark q, but a similar expression is valid for an incoming
antiquark q̄.
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1. the radiative variables ΦR {x, v, φ} and Φ′
R {ξ, z, φ′} are transformed into a

new set such that the radiative phase-space is a unit volume;

2. using the standard Herwig++ leading-order matrix element generator, we gen-
erate a leading-order configuration and provide the Born variables ΦB with an
associated weight B(ΦB);

3. the radiative variables ΦR are generated and B̄(ΦB) sampled in terms of the
unit cube (x̃, ṽ, φ̃), using the Auto-Compensating Divide-and-Conquer (ACDC)
phase-space generator [101];

4. the leading-order configuration is accepted with a probability proportional to
the integrand of Eqn. 3.5 evaluated at {ΦB,ΦR}.

3.3 The generation of the hardest emission

Following the generation of the Born kinematics with next-to-leading order accuracy
the hardest QCD or QED emission must be generated according to Eqns. 3.6a or 3.6b
respectively, depending on whether a direct or photon fragmentation contribution
was selected.

3.3.1 The hardest QED emission

The hardest QED emission is generated by using the modified Sudakov form factor
defined in Eqn. 3.6b. We generate it in terms of the variables Φ′

R(xp, zp, φ), with

dΦ′
R =

1

2π
dxpdzpdφ, (3.40)

defined in [44,48], where xp ∈ [xo, 1], zp ∈ [0, 1] and the azimuthal angle φ ∈ [0, 2π].
The invariant mass of the initial-final dipole q2 = (pi − pk)

2 = −Q2 is preserved by
the photon radiation. It is easiest to generate the hardest emission by introducing
x⊥ such that the transverse momentum of the emission relative to the direction of
the partons in the Breit frame of the dipole is pT = Q

2
x⊥ where

x2⊥ =
4(1− xp)(1− zp)zp

xp
. (3.41)

The Sudakov form factor can then be calculated in terms of Φ̃′
R(x⊥, zp, φ), such that

the θ-function simply gives x⊥ as integration limits and Eqn.3.6b becomes

∆J
QED(x⊥) = exp

(

−
∫ xmax

⊥

x⊥

dx′⊥
x′3⊥

dφdzp
α

2π
W

AJ
QED

B

)

, (3.42)

where
α

2π
AJ

QED

|Di
QCD|

∑

j |D
j
QED|+

∑

j |D
j
QCD|

R(ΦB,Φ
J
R), (3.43)
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the Jacobian, W, is
W = 4zp(1− zp)(1− xp)

2, (3.44)

and Q
2
xmax
⊥ is the maximum value for the transverse momentum.

It is impossible to generate the hardest emission directly using Eqn. 3.42, and so
we instead use an overestimate

g(x⊥) =
a

x3⊥
, (3.45)

of the integrand in Eqn. 3.42 so that

∆over
QED(x⊥) = exp

(

−
∫ xmax

⊥

x⊥

dx′⊥
x′3⊥

dφdzpa

)

, (3.46)

can be easily integrated in {x⊥, xmax
⊥ }. This allows us to solve R1 = ∆over

QED(x⊥),
where R1 is a random number in [0, 1] to get the transverse momentum of a trial
hard emission

x2⊥(R1) =
1

1
(xmax

⊥ )2
− 2

a
lnR1

. (3.47)

This trial hard emission is then accepted or rejected using a probability given by the
ratio of the true integrand to the overestimated value. If the emission is rejected the
procedure is repeated with xmax

⊥ set to the rejected x⊥ value until the generated value
is below the cut-off. This procedure, called the veto algorithm, correctly generates
the hardest emission according to Eqn. 3.42 [26].

3.3.2 The hardest QCD emission

The hardest QCD emission is generated in terms of the variables ΦR(pT , y, φ) defined
in Sect.3.2.1. Eqn.3.6a then becomes

∆I
QCD(pT ) = exp

(

−
∫ pmax

T

pT

dx′⊥dφdy
CIαs

2π
WI

AI
QCD

B

)

, (3.48)

where
CIαs

2π
AI

QCD =
|DI

QCD|
∑

j |D
j
QED|+

∑

j |D
j
QCD|

R(ΦB ,Φ
I
R) (3.49)

the Jacobian
WI =

x

1− vO
, (3.50)

where we mean to use v⊕ for I = {qg; gq; gq̄} and v⊖ for I = {q̄g}.
As before we use the veto algorithm to generate the hardest QCD emission

according to Eqn. 3.48. In this case we introduce the overestimate function

gI(pT ) =
aI
pT

, (3.51)

so that

∆over
QCD(pT ) = exp

(

−
∫ pmax

T

pT

dp′T
p′T

dφdyaI

)

, (3.52)
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is easily integrable in {pT , pmax
T } and R1 = ∆over

QCD(pT ) can be solved giving

pT (R1) = R
1
a

1 . (3.53)

As before this trial hard emission is then accepted or rejected using a probability
given by the ratio of the true integrand to the overestimated value. If the emission
is rejected the procedure is repeated with pmax

T set to the rejected pT value until the
generated value is below the cut-off.

3.4 Results

Unlike the implementations of many other processes in the POWHEG formalism it
is impossible to directly compare our results for any quantities directly with next-
to-leading-order simulations in order to test the implementation due to the very
different treatment of the photon fragmentation contribution. Instead we compare
a simple observable, the rapidity of the photons, with the next-to-leading-order pro-
gram DIPHOX [138] as a sanity check of our results not expecting exact agreement,
although the PDFs and electroweak parameters were chosen to give exact agreement
for the leading order qq̄ → γγ process.

For proton-proton collisions at a centre-of-mass energy of 14 TeV, we used the
following set of cuts on pT and rapidity of photons

pγT > 25 GeV, |yγ| < 2.5, (3.54)

together with a cut on the invariant mass of the γγ-pair

80 GeV < Mγγ < 1500 GeV. (3.55)

Moreover, we follow typical experimental selection cuts to isolate direct photons
from the background: we require that the amount of total transverse energy, Ehad

T ,
released in the cone, centred around the photon direction in the rapidity and az-
imuthal angle plane, is smaller than 15 GeV, i.e.

(y − yγ)2 + (φ− φγ)2 ≤ R2 (3.56)

Ehad
T ≤ 15 GeV, (3.57)

where R = 0.4 is the radius of the cone. The PDFs are chosen to be the CTEQ6
set [104]. The result is shown in Fig. 3.5. The distributions from DIPHOX at
NLO(red dashed line) and LO (red dash-dotted line), together with LO Herwig++

(dotted black line) and Herwig++ with POWHEG corrections (solid black line) do
not include the gluon-gluon channel. At LO the Herwig++ and DIPHOX distri-
butions are indistinguishable. At NLO they show a difference that is very small
compared to the correction from LO to NLO, which means that the NLO curves are
in reasonable agreement given the sizable contribution of the fragmentation contri-
bution that is treated differently in the two approaches.

In Fig. 3.6a we compare the results from Herwig++ with the data of Ref. [124],
a fixed next-to-leading-order calculation from DIPHOX (dotted magenta line) and
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Figure 3.5: Rapidity of the γγ-pair at NLO. The distribution from the Herwig++

parton shower with POWHEG correction (solid black line) is compared with NLO
cross section from DIPHOX (dashed red line). At LO the Herwig++ distribution is
given by the dotted black line while the cross section from DIPHOX by the dash-
dotted red line.

RESBOS (dashed-dotted green line) [140–144], which performs an analytic resum-
mation of the logarithmically enhanced contributions. Here and in the following the
LO Herwig++ parton shower (red dashed line) includes the qq̄ → γγ, qg → γjet
and gg → γγ contribution. The implementation of POWHEG correction improves
the description and this results in a distribution (solid blue line) that is in good
agreement with the data. Here, as in the following, the NLO curve includes the
gg → γγ subprocess. In the lower frame, we plot the ratio MC/data and the yellow
band gives the one sigma variation of data. All the plots comparing the results of
Herwig++ with experimental results were made using the Rivet [145] package.

It is of interest to study the transverse momentum of the γγ-pair, because it
is not infrared safe for pγγ⊥ → 0. The qq̄ → γγ and gg → γγ processes present a
loss of balance between the corresponding real emission and virtual contribution,
which results in large logarithms at every order in perturbation theory. In addition,
the fragmentation components introduce an extra convolution that smears out this
singularity. Since DIPHOX is based on a fixed, finite order calculation it is not
suitable for the study of infrared sensitive observables and it fails in the description
of these observables at low pγγ⊥ , as it is shown in Fig. 3.6b (dotted magenta line).
Resummation for diphoton production in hadron-hadron collision has been provided
at all orders in αs in Ref. [146] and implemented in RESBOS, as the corresponding
distribution (dashed-dotted green line) shows in the same figure. The Herwig++

parton shower resums the effect of enhanced collinear emission to all orders in αs

in the leading-logarithmic (LL) approximation and results in a finite behaviour for
pγγ⊥ → 0 (red dashed line). However, the LO distribution does not correctly describe
the data. In presence of POWHEG correction the distribution (solid blue line) stays
finite at low pγγ⊥ and is in good agreement with the CDF data [124].

In addition, Herwig++ distributions, with and without POWHEG corrections,
are compared to the data of Ref. [125]. In Fig. 3.7, we show the transverse momen-
tum of the diphoton pair for two ranges of invariant mass of the γγ-pair, Mγγ ; in
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Figure 3.6: The (a) invariant mass and (b) transverse momentum of the γγ-pair.
The solid blue line shows the POWHEG approach, while the dashed red curve shows
the result of the Herwig++ shower at LO. We show the NLO cross section provided
by DIPHOX (magenta dotted line) and RESBOS (green dashed-dotted line). The
data are from Ref. [124] and the curves are plotted with Rivet [145]. In the lower
panel, the yellow band describes the one sigma variation of data.
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Figure 3.7: Transverse momentum of the diphoton system for (a) 50 GeV < Mγγ <
80 GeV and (b) 80 GeV < Mγγ < 350 GeV. The distribution for the POWHEG
formalism (solid blue line) is plotted together with the distribution for the Herwig++

parton shower (dashed red line). The data are from Ref. [124] and the lower frame
is as described in Fig. 3.6
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Figure 3.8: Azimuthal angle between the photons for (a) 50 GeV < Mγγ < 80 GeV
and (b) 80 GeV < Mγγ < 350 GeV. The solid blue line shows the result for the
Herwig++ shower with POWHEG corrections, while the red dashed line gives the
result from the Herwig++ parton shower. The data are from Ref. [124] and the
lower frame is as described in Fig. 3.6

b

b b

b
b

b
DØ datab

Hw++ POWHEG

Hw++ LO

10−1

(a) 50 GeV< Mγγ <80 GeV

d
σ

/
d
|c

o
s

θ
∗ |

/
d

M
γ

γ
[p

b
/

G
eV

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-3 σ
-2 σ
-1 σ
0 σ
1 σ
2 σ
3 σ

| cos θ∗|

(M
C

-
d

a
ta

)

b

b

b

10−2

(b) 80 GeV< Mγγ <350 GeV

d
σ

/
d
|c

o
s

θ
∗ |

/
d

M
γ

γ
[p

b
/

G
eV

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-3 σ
-2 σ
-1 σ
0 σ
1 σ
2 σ
3 σ

| cos θ∗|

(M
C

-
d

a
ta

)

Figure 3.9: Polar scattering angle between the photons for two ranges of Mγγ :
50 GeV < Mγγ < 80 GeV (a) and 80 GeV < Mγγ < 350 GeV (b). The solid blue
line describes the Herwig++ result with POWHEG corrections, the dashed red line
does not include matrix element corrections. The data are from Ref. [124] and the
lower frame is as described in Fig. 3.6.
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Fig. 3.7a 50 GeV < Mγγ < 80 GeV and in Fig. 3.7b 80 GeV < Mγγ < 350 GeV.
For the same ranges of Mγγ we plot the azimuthal angle distribution between the
photons in Fig. 3.8a and Fig. 3.8b respectively and the polar angle between the pho-
tons in Fig. 3.9a and Fig. 3.9b. For all distributions we see that the LO Herwig++

ditributions (red dashed line) do not correctly describe the data. The POWHEG
approach improves the simulation and provides a good description of D0 data [125].

3.5 Conclusion

In the present Chapter the POWHEG NLO matching scheme has been extended and
applied to γγ-production in hadron collisions. The QED singularities are not treated
by including fragmentation functions but rather by simulating the LO cross section
for the corresponding process and then showering it. The simulation contains a full
treatment of the truncated shower which is needed to correctly generate radiation
with transverse momentum that is smaller than the one of the hardest emission.

The implementation of the process was tested by comparing the results with the
fixed-order DIPHOX program which is in good agreement with the results of our
approach for observables which are not sensitive to multiple QCD radiation.

We find that without a correction to describe the hard QCD radiation there is a
deficit of radiation in the simulation. The POWHEG approach overcomes this prob-
lem and provides a good description of the data of Refs. [124, 125]. A remarkably
good description is obtained for infrared sensitive observables, like the transverse
momentum of the γγ-pair at low pγγ⊥ , which demonstrates the resummation of log-
arithmic enhancement provided by the Herwig++ parton shower.

This is the first NLO simulation of a process involving photons and provides an
important new tool for the study of promt photon production. The simulation will
be made available in a forthcoming version of the Herwig++ simulation package.
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Chapter 4

Implementing the POWHEG
method for DIS in the Herwig++

parton shower

There are three categories of scattering in particle physics: elastic, when only the
momentum of the target and incident particle is changed, inelastic, which provides
an excitation of the target particle in the final state, and deep inelastic, where the
target is destroyed and new particles may be created.

During the 1960s inelastic scattering of leptons (electrons, muons and neutrinos)
became a fundamental tool for the study of the nature of the internal structure of
strongly interacting particles (hadrons). The basic philosophy behind these exper-
iments was that the leptons, well-known nearly point-like particles, could be used
to probe the structure of protons and neutrons, which were poorly understood at
that time. The efficacy of the probe depends on the wavelength of the exchanged
boson, λ = ℏ/q, where ℏ is Plank’s constant and q is the square root of the scale:
the shorter the boson wavelength, the more detail the probe can resolve.

The first experiments with inelastic scattering were performed with beams of
electrons of energy up to 16 GeV and a fixed target of protons; the work was led
by a MIT-SLAC group at the Stanford Linear Accelerator Center [147–150]. We
present some of their results in Fig. 4.1.

The cross sections, instead of being tiny and falling off rapidly as for the elastic
electron-proton cross section, were found to be large with a dependence on the
transferred momentum q2, which is largely described by the Mott cross section, i.e.
by scattering of pointlike spin 1

2
particles. Fig. 4.1a shows the differential cross

section, divided by the (Mott) cross section for point-like scattering, against q2 for

constant values of the invariant mass of the hadronic final state, W = [(q + P )2]
1/2

,
where P is the momentum of the incoming hadron, and scattering angle of 10o.

Fig. 4.1b shows the energy spectrum of electrons of incident energy E = 4.879
GeV scattered at 10o from protons and final energy E ′. We see the large elastic peak,
which is shifted from 4.879 GeV by the recoil effect, and other peaks that correspond
to the excitation of the recoil system. However, only the first peak beyond the elastic
one, at E ′ ≈ 4.2 GeV, corresponds to a well-known proton resonant state called ∆.
In the other regions several excited states contribute to a “single” peak and the
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(a) (b)

Figure 4.1: The pioneering experiments at SLAC showed that the DIS electron-
proton cross section had a weak dependence on the transferred momentum, (a),
Ref. [150]. In the right panel, (b), Ref. [149], we see resonance peaks due to excited
states of the proton.

apparently featureless regions hide resonant states as well.

The complicated features of inelastic scattering were understood within the mod-
els proposed by Bjorken (cf. Ref. [151]) and Feynman (cf. Ref. [152]) who had
respectively hypothesized the scale invariance1 and parton model of hadrons. The
former asserts that as q2 → ∞, W 2 → ∞, the ratio W 2/q2 is fixed, while the latter
states that protons and neutrons are a collection of point-like constituents, partons,
i.e. inelastic processes can be interpreted as the elastic scattering of the lepton with
one of these constituents.

Over the last decades, with the availability of higher energy accelerators, more
experiments have contributed to a better understanding of the structure of hadrons
and the quark parton model has become the universally recognised picture describing
the strong interaction.

The deep inelastic scattering process (DIS) has contributed a great deal in this
direction and is now a well known process in the literature. There are two categories:
one involves the exchange of a virtual photon or Z0 boson and is referred to as neutral
current, the other involves the exchange of aW± boson and is referred to as charged
current. In ep-scattering at HERW, the former provides a final-state lepton, the
latter a final-state neutrino.

Here we will focus on the neutral current, in particular electron-hadron and
positron-hadron DIS. At leading order it is described by the Feynman diagrams
shown in Fig. 4.2a, together with appropriate crossings of the quark line. As we
mentioned in Chapter 2, the implementation of the POWHEG method for DIS in the

1In a private communication, Bjorken told the MIT-SLAC group about the scaling in 1968 [153].
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Figure 4.2: Feynman diagrams contributing to deep inelastic scattering at
O(αs(µR)): leading order (a), virtual (b) and real emission (c-f) corrections. For
simplicity, we show radiative corrections only to the upper line in the gluon emission
(c-d) and gluon initiated processes (e-f).

Herwig++ parton shower strictly follows the one for VBF. However, the numerical
integration is simplified by the simpler expression of the matrix element.

In this Chapter we will show the way I calculated and implemented the B̄(ΦB)
for DIS [97]. The rest of the implementation is very similar to the VBF one, so we
refer the reader to Chapter 2. Finally we present results in Sect. 4.2 and conclusions
in Sect. 4.3.
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4.1 Calculation of B̄(ΦB)

The expression for the B̄(ΦB) function is given by

B̄(ΦB) = B(ΦB)

[

1 +
CFαs(µR)

2π
V(ΦB)

+
∑

I∈{QCDC,BGF}

CIαs(µR)

2π

∫

[AI(ΦB,ΦR)−DI(ΦB,ΦR)] dΦR



 , (4.1)

where B(ΦB) is the born, V(ΦB) is the virtual contribution of Eqn. 2.33 and
DI(ΦB,ΦR) are the dipoles in Eqns. 2.22a-2.22b. The only difference to the VBF
case is due to the real corrections. The real emission contribution to B̄ is given by
Eqn. 2.23. However, in the DIS case the leading-order matrix elements are simple
enough that R2,3 (see Eqns. 2.19c-2.19d) can be calculated analytically and inte-
grated over the azimuthal angle, φ and zp to simplify the numerical integration of
B̄.

For DIS [44, 47],

R2 =
cos2 θ2 +A cos θ2

(

ℓ−
√
ℓ2 − 1 sin θ2 cosφ

)

+
(

ℓ−
√
ℓ2 − 1 sin θ2 cosφ

)2

1 +Aℓ+ ℓ2
,

(4.2)
where cos θ2 = x2√

x2
2+x2

⊥
, sin θ3 = x⊥√

x2
2+x2

⊥
, ℓ = 2

yB
− 1, yB = q·q1

pℓ·q1 and pℓ is the four-

momentum of the incoming lepton. A is related to the couplings of the fermions to
the exchanged vector bosons. For the charged current process A = 2, whereas for
the neutral current process

A =
4rCA,ℓCA,q (QℓQq + 2rCV,ℓCV,q)

(

Q2
ℓQ

2
q + 2QℓQqrCV,ℓCV,q + r2

(

C2
V,ℓ + C2

A,ℓ

) (

C2
V,q + C2

A,q

)) , (4.3)

with r = Q2

(Q2+m2
Z
)
and

CV,i =
1

sin θW cos θW

(

I3,i
2

−Qi sin
2 θW

)

, (4.4a)

CA,i =
1

sin θW cos θW

I3,i
2
, (4.4b)

where mZ is the Z0 boson mass, θW the Weinberg angle, Qi the fermion charge and
T3,i its weak isospin.

The expression for R3 can be obtained from that for R2 with the substitution
A→ −A, θ2 → θ3 and φ → π − φ.

In this case the contribution to B̄ is

B(ΦB)dΦBdxp
∑

I∈{QCDC,BGF}

αS

2π
SI , (4.5)
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where

SQCDC =

xB

xp
fq(

xB

xp
, Q2)

xBfq(xB, Q2)

2 + 2ℓ2 − xp + 3xpℓ
2 +Aℓ (1 + 2xp)

1 +Aℓ+ ℓ2
, (4.6a)

SBGF = −
xB

xp
fq(

xB

xp
, Q2)

xBfq(xB, Q2)

1 + ℓ2 + 2 (1− 3ℓ2) xp(1− xp) + 2Aℓ (1− 2xp(1− xp))

1 +Aℓ+ ℓ2
.

(4.6b)

4.2 Results

At this stage the POWHEG matching for DIS proceeds identically to the VBF
case; the NLO phase-space is built up as described in Sect. 2.1.2, B̄ is sampled as
described in Sect. 2.1.4 and the shower algorithm, hardest emission, truncated and
vetoed showers follow as in sects. 3.3-2.3. For this reason we proceed directly to the
results.

In order to test our implementation of the POWHEG approach for deep inelastic
scattering we first compared the results from Herwig++ and DISENT [156] for the
reduced cross section

σ̃ =
xQ4

2πα2Y+

d2σ

dxdQ2
, (4.7)

where y = Q2

xs
, Y± ≡ 1± (1−y)2 and α is the fine-structure constant. The difference

between the Herwig++ and DISENT results divided by the sum of the results is
shown as a dashed line in the lower panels in Figs. 4.3 and 4.4. However, the dashed
line is not visible because this difference is always less than one per mille. In addition
Fig. 4.3 shows the comparison of the Herwig++ result with the results from Ref. [154]
and Fig. 4.4 shows the comparison of the Herwig++ result with the results from
Refs. [154] and [155]. The excellent agreement with DISENT and the experimental
data demonstrates that the generation of the Born variables and calculation of B̄ is
correct. In both cases the PDFs from Ref. [157] were used.

In order to study the real emission we compare the results of Herwig++ with
the measurements of the transverse energy flow in DIS from Ref. [158], which are
sensitive to the treatment of hard radiation in angular ordered parton showers [44].

The cross section for the transverse energy flow, 1
N

dE∗
T

dη∗ , is given as a function of
pseudorapidity, η∗. Here the superscript ∗ is used for the quantities in the hadronic
centre of mass system and N is the total number of DIS events. Comparisons of
Herwig++ with the low and high Q2 samples from Ref. [158] are shown in Figs. 4.5
and 4.6, respectively. In addition to the Herwig++ result, with and without the
POWHEG correction, we have included the result of the FORTRAN HERWIG [27,42]
and Herwig++ with a matrix element correction based on the approach of Ref. [44].
These results clearly show that without a correction to describe hard QCD radiation
there is a deficit of emissions between 1 < η∗ < 3, which is remedied by using either
the POWHEG approach or a traditional matrix element correction. In general the
POWHEG approach gives slightly less radiation than the matrix element due to the
Sudakov suppression of radiation, which is neglected in the matrix element correction
approach and is in the best agreement with the experimental results. In these plots
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Figure 4.3: The e+p reduced cross section σ̃e+p, as a function of x at fixed Q2

between 200GeV2 and 1500GeV2. The experimental results of Ref. [154] are shown
as crosses. The lower frame shows (Data−Theory)/Data and the yellow band gives
the one sigma error. The solid (black) line shows the Herwig++ result.
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Figure 4.4: The e±p reduced cross section σ̃e±p, as a function of x at fixed Q2 between
200GeV2 and 1500GeV2. The experimental results of Ref. [154] for σ̃e+p are shown
as crosses and the results of Ref. [155] for σ̃e−pas diamonds. The lower frame shows
(Data−Theory)/Data and the inner (yellow) band gives the one sigma error for σ̃e+p

and the outer (magenta) band the one sigma error for σ̃e−p. The solid (black) line
shows the Herwig++ result for σ̃e+p and the dashed (red) line shows the Herwig++

result for σ̃e−p.
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Figure 4.5: The inclusive transverse energy flow 1
N
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∗ at different val-

ues of x and Q2 for the low Q2 sample from [158]. The lower frame shows
(Data− Theory)/Data and the yellow band gives the one sigma error.
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Figure 4.6: The inclusive transverse energy flow 1
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x and Q2 for the high Q2 sample from [158]. The lower frame shows (Data −
Theory)/Data and the yellow band gives the one sigma error.
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we have tuned the mass parameter for the splitting of the soft beam remnant cluster
in Herwig++ to 0.5 GeV from the HERWIG value of 1 GeV. The transverse energy
flow in DIS is most sensitive to this parameter and the original HERWIG value was
tuned to older transverse energy flow data.

4.3 Conclusions

In the present Chapter the POWHEG formalism has been applied to the Herwig++

parton shower for the DIS process. As discussed in Sect. 2.1, some of the Feynman
diagrams contributing to the VBF process are negligible in the phase-space regions
where VBF can be observed experimentally. This results in similar NLO corrections
for both DIS and VBF, provided that in the latter process we take into account the
corrections to upper and lower quark lines. This allows for the application of the
same approach for both processes.

The calculation and implementation of B̄ have been checked by comparing the
reduced cross section from Herwig++ and DISENT, and we find excellent agreement
between the two distributions. In addition, we find the cross sections to be in
good agreement with the experimental results of Refs. [154, 155, 158]. Our results
show that the POWHEG approach correctly populates the so-called dead zone, as it
appears in the transverse energy flow distributions at high Q2.
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Chapter 5

Implementing the POWHEG
method for DIS in Matchbox

The DIS is a simple and very well known process in the literature, but it provides an
important test bed for the initial-final and final-initial radiation of the dipole shower.
In Chapter 4 we discussed the importance of DIS for the study of hadron structure
before showing the way I implemented the POWHEG method for this process in the
Herwig++ parton shower; particular emphasis was put on the calculation of B̄(ΦB),
the generation of the hardest emission and the reorganization of the shower into
truncated and vetoed shower.

Now we focus on the POWHEG implementation for DIS into the shower of
Ref. [4]. As we highlighted in Sect. 1.6.5, the dipole shower is pT ordered and
does not need to be rearranged: the hardest pT emission is simply the first one
and there is no need to interrupt the branching simulation. Moreover, Matchbox

is based on a general design that provides B̄(ΦB) in an automatic way and imple-
ments it for e+e− → hadrons, Drell-Yan and DIS processes, by the crossing of the
M(O→q(p1)+q̄(p2)+l(p3)+l̄(p4)) matrix element, where q (q̄) identifies a quark (antiquark)

and l (l̄) a lepton (antilepton) of a given flavour. The POWHEG approach for
DIS in the dipole shower has been completed by my implementation of the NLO
phase-space. In particular, the latter is required to be independent from the LO im-
plementation and to present the transferred momentum, Q2, as one of the degrees
of freedom. For these reasons the phase-space algorithm of Sect. 2.1.2 cannot be
used even though the Breit frame is still the simplest choice.

In this Chapter we will show how I implemented the NLO phase-space into the
dipole shower for DIS in Sect. 5.1, and the results will be given in Sect. 5.2. We will
present our conclusions in Sect. 5.3.

5.1 NLO phase-space

The next-to-leading order cross section for the DIS process is1 (cf. Eqn. 1.6)

dσNLO =
dΦ3

2ŝ
dxf(x,Q2)

¯∑|M(k1p1 → k2p2p3)|2, (5.1)

1The convention for the momenta follows the one chosen in Fig. 5.1.
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where ¯∑ denotes the sum over the final-state quantum numbers for each contribut-
ing channel and the average over the initial-state quantum numbers. The function
f(x,Q2) is the PDF, which depends on the momentum fraction of the incoming par-
ton, x, and the scale, Q2. As mentioned before, Matchbox provides an automated
way to calculate ¯∑|M(k1p1 → k2p2p3)|2 and the PDF. The remaining contribution
is

dΦNLO =
dΦ3

2ŝ
≡ WNLOdΦ̃NLO, (5.2)

which consists of the phase-space weight, WNLO, and the phase-space variables
defined on the unit cube, dΦ̃NLO. Moreover, the phase-space is expected to provide
the outgoing momenta in the centre of mass frame of the incoming particles.

In this section we describe in detail how these quantities are calculated and show
the way the DIS NLO phase-space works within Matchbox. The implementation
proceeds schematically in the following way:

• calculate the NLO phase-space measure;

• parametrise the variables in terms of the unit cube;

• map the phase-space to flatten the integrand in the singular domain;

• generate the outgoing momenta in the centre of mass frame of the incoming
particles.

In the following we will give more details about each of these items.

5.1.1 The measure

We want to calculate the phase-space measure for massless quarks and leptons with
mass ml. The phase-space for the e(k1) + q(p1) → e(k2) + q(p2) + g(p3) scattering

2,
shown in Fig. 5.1, is given by (cf. Eqns. 1.6-1.7)

dΦNLO =
(2π)4

2ŝ

d3k2
(2π)32Ek2

d3p2
(2π)32Ep2

d3p3
(2π)32Ep3

δ4(k1 + p1 − k2 − p2 − p3). (5.3)

Choosing px = p2 + p3, i.e. using
∫

d4pxδ
4(px − p2 − p3), (5.4)

we change our problem into a simpler 2 → 2 scattering and can thus split the
phase-space measure into hadronic and leptonic contributions.

The leptonic part is studied by considering the scattering p1 + k1 → px + k2 and
rewritten as

dΦl
NLO =

(2π)4

2ŝ

d3k2
(2π)32Ek2

d3px
(2π)32Epx

δ4(k1 + p1 − k2 − px)

=
1

32π

1

|~k1|ŝ3/2
dφl

2π
dQ2. (5.5)

2This is just one of the channels contributing to DIS at NLO. The discussion of the phase-space
would proceed in a similar way if we considered the eg → eqq̄ or any other process obtained by
crossing.
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e(k1)

q(p1)

e(k2)

q(p2)

g(p3)

q

Figure 5.1: Electron-quark scattering at NLO.

Here the last line follows from energy conservation and the definition

Q2 = −(k1 − k2)
2, (5.6)

and φl is the azimuthal angle of the outgoing lepton around the incoming direction.

The hadronic contribution is studied in the Breit frame by considering the process
p1 + q → p2 + p3 and rewritten as

dΦh
NLO = (2π)3dm2

x

3
∏

i=2

d3pi
(2π)32Epi

δ4(px − p3 − p2)

=
1

16π2

dφh

2π

dx1
x1

dx2Q
2, (5.7)

where the result follows from energy-momentum conservation of the momenta de-
fined in Eqns. 2.2a-2.2c and the definition of xi in Eqn. 2.3. The hadronic azimuthal
angle around the incoming direction is φh.

From Eqns. 5.5 and 5.7 we obtain

dΦNLO ≡ dΦh
NLOdΦ

l
NLO = − 1

64(2π)3
Q2

|~k1|ŝ3/2
dQ2dφl

2π

dφh

2π

dx1
x1

dx2, (5.8)

which gives the phase-space measure of Ref. [48] in the massless case. Eqn. 5.8 gives
the phase-space weight in the variables {Q2, φl, φh, x1, x2}.

5.1.2 The unit cube

As we discussed in Sect. 2.1.4, for convenience the phase-space variables are trans-
formed into a new set defined on the unit cube.

The element dQ2 integrates the photon propagator (∝ 1/Q2), which diverges in
the limit Q2 → 0. The mapping of the phase-space needs to be denser in the region
where the integrand function has a high gradient and this would require more time
for the numerical integration. In order to provide an efficient integration we consider
a Jacobian transformation that both flatten the integrand function and change Q2
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into Q̃2, where Q̃2 is defined in [0, 1]. This is performed in the following way

∫ Q2
max

Q2
min

1

Q2
dQ2

=
[

lnQ2
max − lnQ2

min

]

∫ 1

0

dQ̃2, (5.9)

where
∣

∣

∣

∣

J

(

∂Q2

∂Q̃2

)∣

∣

∣

∣

dQ̃2 = Q2(Q̃2)
[

lnQ2
max − lnQ2

min

]

dQ̃2 (5.10)

Q2(Q̃2) = e[(lnQ
2
max−lnQ2

min)Q̃2+lnQ2
min]. (5.11)

We typically set Q2
min = 2 GeV2 and Q2

max = ŝ.
The azimuthal angles can be easily parametrised on the unit cube as:

dφ̃l =
dφl

2π
, dφ̃h =

dφh

2π
. (5.12)

Finally the variable (x1, x2) can be changed into the (xp, zp) defined in Eqns. 2.8a-
2.8b as

∣

∣

∣

∣

J

(

∂2(x1, x2)

∂xp∂zp

)∣

∣

∣

∣

dxpdzp =
1

x3p
dxpdzp. (5.13)

5.1.3 Mapping

Here again the integrand function shows a high gradient towards the singularities
in (xp, zp) and for efficiency reasons we flatten the integrand in the singular do-
main. The divergences are given by ∼ 1

(1−xp)(1−zp)
for the quark initiated process

(cf. Eqn. 2.10) and ∼ 1
zp(1−zp)

for the gluon initiated one (cf. Eqn. 2.16). Therefore

we need a new set of variables (x̄p, z̄p) such that

dzp
dz̄p

dz̄p = [zp(z̄p) + ǫ][1− zp(z̄p) + ǫ]dz̄p, (5.14a)

dxp
dx̄p

dx̄p = [1− xp(x̄p) + ǫ]dx̄p, (5.14b)

which gives

z̄p =
1

1 + 2ǫ
ln

[

zp + ǫ

1− zp + ǫ

]

, (5.15a)

x̄p = −ln[1− xp + ǫ] (5.15b)

and the Jacobian
∣

∣

∣

∣

J

(

∂2(xp, zp)

∂x̄p∂z̄p

)∣

∣

∣

∣

dx̄pdz̄p = [zp(z̄p) + ǫ][1− zp(z̄p) + ǫ][1− xp(x̄p) + ǫ]dx̄pdz̄p. (5.16)
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Here we choose ǫ = 0.01 to guarantee that the variables (x̄p, z̄p) are finite every-
where in their domain, i.e. x̄min

p ≤ x̄p ≤ x̄max
p and z̄min

p ≤ z̄p ≤ z̄max
p with

x̄min
p = −ln[1− xB + ǫ], x̄max

p = −ln[ǫ], (5.17a)

z̄min
p =

1

1 + 2ǫ
ln

[

ǫ

1 + ǫ

]

, z̄max
p =

1

1 + 2ǫ
ln

[

1 + ǫ

ǫ

]

. (5.17b)

The variables (x̄p, z̄p) are not defined on the unit cube and we need a further
Jacobian transformation for that. We choose

x̃p =
x̄p − x̄min

p

x̄max
p − x̄min

p

, (5.18a)

z̃p =
z̄p − z̄min

p

z̄max
p − z̄min

p

, (5.18b)

with Jacobian
∣

∣

∣

∣

J

(

∂2(x̄p, z̄p)

∂x̃p∂z̃p

)∣

∣

∣

∣

dx̃pdz̃p = [x̄max
p − x̄min

p ][z̄max
p − z̄min

p ]dx̃pdz̃p. (5.19)

5.1.4 Outgoing momenta

At this stage we have all the ingredients needed to calculate the NLO outgoing
momenta. The lepton momentum is calculated in the centre of mass frame and has
the following form:

k2 = (

√

|~k2|2 +m2
l ; |~k2|cosθlsinφl, |~k2|sinθlsinφl, |~k2|sinθl), (5.20)

where the polar angle is known from Eqn. 5.6, |~k2| is the modulus of the lepton
trimomentum and in the centre of mass frame it is

|~k2| =
[

(ŝ+m2
l − p2x)

2

4ŝ
−m2

l

]1/2

. (5.21)

The parton momenta p2 and p3 are calculated in the Breit frame according to
Eqns. 2.2b-2.2c. Now we need to boost these momenta into the centre of mass frame.
The same result is obtained if we boost p2+p3 so that px → (E ′

x;−~k2). To this end,
we first translate px along the z-axis; i.e.









√
ŝ−Ek2

−kx2
−ky2
−kz2









=









γz 0 0 −βzγz
0 1 0 0
0 0 1 0

−βzγz 0 0 γz

















Ex

0
0
pzx









, (5.22)

which gives

βz =
pzxEx + |~k2|(

√
ŝ− Ek2)

(
√
ŝ− Ek2)

2
. (5.23)

We then need to rotate px around the x-axis by θl and φl around the z-axis. This
gives the requested expression for px. Therefore we apply the same roto-translation
to p2 and p3 separately.
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5.1.5 The NLO phase-space algorithm

Once the phase-space weight has been calculated we need a recipe in order to im-
plement it into a code. The phase-space algorithm works in the following way:

• generate flat distributed random numbers between 0 and 1, Φ̃NLO =
{

Q̃2, φ̃l, φ̃h, x̃p, z̃p

}

;

• compute the momentum of the outgoing lepton in the centre of mass frame;

• calculate the parton momenta in the Breit frame, Eqns. 2.2b-2.2c;

• boost the parton momenta to the centre of mass frame;

• compute the weight:

WNLO =

∣

∣

∣

∣

J

(

∂2(x1, x2)

∂xp∂zp

)∣

∣

∣

∣

∣

∣

∣

∣

J

(

∂2(xp, zp)

∂x̃p∂z̃p

)∣

∣

∣

∣

∣

∣

∣

∣

J

(

∂Q2

∂Q̃2

)∣

∣

∣

∣

× 1

x1(x̃p)

1

64(2π)3
Q2(Q̃2)

|~k1|ŝ3/2
. (5.24)

5.2 Results

In order to test the implementation of the phase-space, we first compare results of
the NLO cross section for Matchbox and Herwig++. For the following set of cuts

Q2 > 20 GeV2, (5.25)

W 2 > 100 GeV2, (5.26)

we compare the pT and rapidity distribution of the outgoing lepton, as shown in
Fig. 5.2. The distributions are normalised to one. The pT curve has a peak around
5 GeV and is 0.28 1

GeV
high. The rapidity distribution has a peak around 2 and 1.4

high. The distribution is not symmetric respect to zero as expected in lepton-proton
scattering (cf. rapidity distribution for hadron-hadron scattering in Fig. 2.4). For
both observables there is a tiny mismatch of the cross section between Herwig++

and Matchbox.

To check whether the mismatch is coming from the implementation of the NLO
phase-space, we use two equivalent sets of dipoles and check the integration over the
phase-space. For the quark initiated process, we introduce suitable dipoles, that we
call “new dipoles” (ND), and write in terms of the Catani-Seymour dipoles, that we
label with the subscript “standard dipoles” (SD), in the following way:

DFI
ND = DFI

SD + (1− x)(1 + 3xz), (5.27)

DIF
ND = DFI

SD + u(1 + 3x̃(1− u)), (5.28)
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5.2. Results

Figure 5.2: NLO cross section comparison between Herwig++ (solid blue line) and
Matchbox (dashed red line). We plot the pT (left panel) and rapidity (right panel)
distribution of the outgoing electron. In both cases we observe a tiny mismatch.

where

x =
pemittpspect + pemisspspect − pemittpemiss

(pemitt + pemiss)pspect
, (5.29)

z =
pemittpspect

(pemitt + pemiss)pspect
, (5.30)

x̃ =
pspectpemitt + pemisspemitt − pemisspspect

(pemitt + pemiss)pspect
, (5.31)

u =
pemittpemiss

(pemitt + pemiss)pspect
, (5.32)

and DIF
SD + DFI

SD is the counterterm for the QCD Compton scattering defined in
Eqn. 2.22a. The ND-dipoles can be easily integrated over the 1-parton phase-space
of the emitted particle and the result of the integration is a finite term that has
to be included in the virtual piece of the cross section. The results are shown in
Fig. 5.3. The pT (left panel) and rapidity distribution (right panel) of the outgoing
lepton match very well within the statistical fluctuations. This demonstrates that
the phase-space integration works correclty and that the mismatch pointed out in
Fig. 5.2 is not caused by the NLO phase-space implementation.

We would now like to provide a test that is focussed on observables that are
more sensitive to the extra-jet. In order to study the real emission, we consider the
transverse energy flows and the thrust distribution, which are specifically sensitive
to the hard radiation [44]. We compare the results of the dipole shower, with and
without POWHEG corrections (solid blue line and red dashed line respectively),
with the transverse energy flow in DIS from Ref. [158]. As in the previous Chapter,

the cross section for the transverse energy flow, 1
N

dE∗
⊥

dη∗ , is shown as a function of
pseudorapidity, η∗. The superscript ∗ is used to label the quantities in the hadronic
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Figure 5.3: NLO cross section comparison between ND-dipoles (solid blue line) and
SD-dipoles (dashed red line). We plot the pT (left panel) and rapidity (right panel)
distribution of the outgoing electron. In both cases the distributions match very
well.

centre of mass system and N is the total number of DIS events. We choose the
high Q2 sample of Ref. [158] and provide two sets of results. In Fig. 5.4 we show the
transverse energy flow for different values of the Bjorken scale, x, and Q2. The lower
frame shows the ratio theory/data and the yellow band gives the one sigma error
of the data. Here and in the following the distributions are plotted with the Rivet

package [145]. In Fig. 5.4a the LO dipole shower provides a bad description of data
and this problem is overcome with the POWHEG corrections: the NLO distribution
describes the data very well and the ratio theory/data stays within the one sigma
error of the measurement (see lower frame). However, the ratio theory/data of the
NLO distributions is bigger for higher values of Q2, and for low values of η∗ the LO
simulation seems to give a better description of the data of Ref. [158]: see Figs. 5.4c-
f. This behaviour is not expected. A careful analysis of Figs. 5.4b-e shows that the
LO and NLO simulations are equally not optimal for η∗ ≈ 2 and the same happens
for η∗ ≈ 1.5 in Fig. 5.4f. Moreover, a systematic deviation from the data seems to
characterise the LO and NLO distributions of Fig. 5.4g at low η∗.

In Fig. 5.5 we show the transverse energy flow for different ranges of Q2 and
after integrating over x. Here again it emerges that the NLO simulation describes
the HERA data very well at low values of Q2, while the LO distribution stays below
the measurement, see Fig. 5.5a-b. However, we observe a systematic deviation
that appears for both the LO and NLO curves at η∗ ≈ 2.7 in Fig. 5.5b. For Q2 >
400 GeV2 the LO simulation gives a better description and both distributions deviate
from the data with a ratio theory/data ≈ 1.6 for η∗ ≈ 2.3.

The behaviour of the shower is not fully understood yet, as the shower is still
under testing/debugging. As mentioned in the introduction of the present Chapter,
the implementation of the DIS was made with the purpose of testing the dipole

82



5.2. Results

b
b b

b
b

b b b

b

b

b

b

H1 datab

Dipole Shower

Dipole Shower POWHEG

10−1

1

(a) 〈x〉 = 0.0043, 〈Q2〉 = 175 GeV2

1
/

N
d

E
∗ ⊥

/
d

η
∗

/
G

eV

-1 0 1 2 3 4 5

0.6

0.8

1

1.2

1.4

1.6

η∗

M
C

/
d

a
ta

b

b
b b

b b b
b

b

b

b

1

(b) 〈x〉 = 0.01, 〈Q2〉 = 253 GeV2

1
/

N
d

E
∗ ⊥

/
d

η
∗

/
G

eV

-1 0 1 2 3 4 5

0.6

0.8

1

1.2

1.4

η∗

M
C

/
d

a
ta

b

b

b b
b

b

b

1

(c) 〈x〉 = 0.026, 〈Q2〉 = 283 GeV2

1
/

N
d

E
∗ ⊥

/
d

η
∗

/
G

eV

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

0.6

0.8

1

1.2

1.4

1.6

η∗

M
C

/
d

a
ta

b

b

b
b

b
b

b b

b

1

(d) 〈x〉 = 0.012, 〈Q2〉 = 511 GeV2

1
/

N
d

E
∗ ⊥

/
d

η
∗

/
G

eV

-1 0 1 2 3 4

0.6

0.8

1

1.2

1.4

η∗

M
C

/
d

a
ta

b

b

b
b

b

b
b

b

b

1

(e) 〈x〉 = 0.026, 〈Q2〉 = 617 GeV2

1
/

N
d

E
∗ ⊥

/
d

η
∗

/
G

eV

-1 0 1 2 3 4

0.6

0.8

1

1.2

1.4

η∗

M
C

/
d

a
ta

b

b

b

b

b

1

(f) 〈x〉 = 0.076, 〈Q2〉 = 682 GeV2

1
/

N
d

E
∗ ⊥

/
d

η
∗

/
G

eV

-0.5 0 0.5 1 1.5 2 2.5

0.6

0.8

1

1.2

1.4

1.6

η∗

M
C

/
d

a
ta

b

b

b

b

b

b

b

1

10 1
(g) 〈x〉 = 0.11, 〈Q2〉 = 2200 GeV2

1
/

N
d

E
∗ ⊥

/
d

η
∗

/
G

eV

-1 0 1 2 3 4

0.6

0.8

1

1.2

1.4

η∗

M
C

/
d

a
ta

Figure 5.4: The inclusive transverse energy flow 1
N
dE∗

⊥/dη
∗ at different values of x

and Q2 for the high Q2 sample from [158]. The lower frame shows theory/data and
the yellow band gives the one sigma error of the data.
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(c) 〈Q2〉 > 400 GeV2
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Figure 5.5: The inclusive transverse energy flow 1
N
dE∗

⊥/dη
∗ at different values of Q2

for the high Q2 sample from [158]. The lower frame is as described in Fig. 5.4.

shower for the initial-final and final initial radiation. The present work has given
strong hints to direct debugging and further tests, and the results have improved
significantly with the passing of time. At the present stage we consider the results to
be in a reasonable agreement with the data, but further improvement are expected
to come.

We will first need to understand the behaviour of the shower better. Then we
will need to study with care the effects of the hadronization model and understand
how simulation could be improved in this direction. As mentioned in the previ-
ous Chapter, the transverse energy flow in DIS turned out to be very sensitive to
the value of the mass parameter for the splitting of the soft beam remnant cluster
and a tuning of this parameter was needed to optimize the results from Herwig++.
A similar tuning was tried for Matchbox but did not provide the expected results.
Furthermore, we expect higher order corrections to NLO to be necessary for a sat-
isfactory simulation, as shown in Ref. [159]. In the latter work simulations with
SHERPA were compared with the transverse energy flow in DIS from Ref. [160]. It
was shown that Monte Carlo predictions gradually improve with a growing number
of final-state partons in the hard matrix element. They observed that if only two
final-state partons are considered in the matrix element, the Monte Carlo prediction
is far off the data. The 3-parton sample gives an improved description, but the data
is described in a satisfactory way only by a 4-parton sample.

We now look at observables that are sensitive to the geometric distribution, or
shape, of the jets. In 1977 Sterman and Weinberg pioneered a method used to
predict the production of jets in e+e− events using QCD [161]. The model included
two variables that are of great importance to qualify and quantify the shape of an
event: thrust and broadening.

The thrust measures the longitudinal collimation of the jets in the event and the
broadening measures the spatial distribution. They are respectively defined as:

T =

∑

i |~pi · ~n|
∑

i |~pi|
=

∑

i |p
||
i |

∑

i |~pi|
, (5.33a)

B =

∑

i |~pi × ~n|
∑

i |~pi|
=

∑

i |p⊥i |
∑

i |~pi|
. (5.33b)

The sum is over all momenta of the particles in the current hemisphere of the
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Breit frame3, while ~n defines the unit vector in the chosen direction. The common
direction used in analysis is either the photon axis, which is the direction of the
virtual photon, or the thrust axis, which is the direction in which the thrust is
maximised.

Here we choose the thrust axis and compare the simulation from the dipole
shower with the result from Ref. [162]; the dipole shower analysis was performed
with the program Rivet which, thus far, only provides correct results for the thrust
for the data of Ref. [162].

Fig. 5.6 shows the thrust for the LO and NLO dipole shower (solid blue and
dashed red respectively) at different values of the Bjorken scaling variable x and Q2,
for the high Q2 sample of Ref. [162]. The lower frame is as described in Fig. 5.4.
It is necessary to exclude events in which the energy in the current hemisphere is
less than a certain limit; i.e. a cut, ǫlim, is needed to ensure infrared safety. The
distributions are normalised such that n refers to the number of events in the (x,Q2)
bin after the ǫlim cut is applied and N to the total number of events in the (x,Q2)
bin before the ǫlim cut (cf. Ref. [162–164]).

In Figs. 5.6a-b the LO and NLO simulations describe the data well for 0.7 <
T < 0.95 and 0.8 < T < 0.95 and they both deviate from the data for lower values
of the thrust. In Figs. 5.6c-f the LO dipole shower provides a better simulation: the
lower frame shows that the red dashed line fluctuates within the yellow band or it
stays closer to it than the solid blue line. The POWHEG corrections provide a good
description of data for high Q2, as is shown in Fig. 5.6g. In the latter case, the LO
shower also simulate the data well, with the exception of the range 0.75 < T < 0.8,
where the ratio MC/data ≈ 2.

As mentioned before, we expect to optimize the results with a better under-
standing of the dipole shower, which is currently in a stage of test/debugging. The
effect of the hadronization model has to be considered with care and we need to
understand how the results can be improved in this direction. Another candidate
for the improvement of the results is the higher order correction to NLO that we
expect to be relevant for the simulation of the thrust as well.

5.3 Conclusions

DIS is a very well known process in the literature and provides an important test bed
for the initial-final and final-initial radiation of the dipole shower. In this Chapter
we have discussed the POWHEG implementation of this process into the dipole
shower of Ref. [4]

Matchbox provides an automated way to compute and implement B̄, while the
NLO phase-space was implemented as discussed in the present Chapter. We have
calculated the phase-space measure, the outgoing momenta and the variables have
been parametrized in terms of the unit cube.

A preliminary check of the implementation has been performed by comparing the
NLO cross section of Matchbox and Herwig++. The tiny differences that we found

3In the Breit frame the current hemisphere or current region is the hemisphere of space con-
taining the final state partons.
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Figure 5.6: The thrust at different values of x and Q2 for the high Q2 sample from
Ref. [162]. The lower frame provides the same information as Fig. 5.4.
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in the pT and rapidity distributions of the outgoing lepton were studied in detail by
providing the integration of the phase-space with two different sets of dipoles. The
good agreement of the distributions showed that the mismatch is not caused by the
NLO phase-space implementation.

A further test has been performed on observables that are sensitive to the emis-
sion of the extra-jet: transverse energy flow and thrust. Here we find that for some
ranges of rapidity and thrust, the LO simulation is better than the NLO distribution.
This is not expected. However, the dipole shower is still in a stage of test/debugging.
The present work has contributed to the test of initial-final and final-initial radiation
of the shower but we expect further improvements to be made. A better understand-
ing of the shower, the tuning of parameters describing the hadronization model and
the higher order corrections to NLO are the main candidates for such improvement.
Given the status of the shower, we consider the results of the present work to be in
reasonable agreement with the HERA data of Refs. [158] and [162].

Here we have compared the NLO cross sections of Matchbox and Herwig++. At
this stage, it is of principle interest to deepen the comparison of the descriptions
provided by the two showers. We will compare the distributions of transverse energy
flow, discussed for Herwig++ in Chapter 4, and the thrust that has not yet been
considered for Herwig++. We devote the next Chapter to completing the studies of
the present work by giving details on such comparison.
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Chapter 6

Comparing the DIS
implementation for Herwig++ and
Matchbox

As already discussed, deep inelastic scattering was of great importance for the study
and understanding of the internal structure of hadrons and is now very well known
in the literature. In the present work, the NLO QCD corrections to DIS were
implemented into the Herwig++ and Matchbox parton showers according to the
POWHEG matching scheme, as shown in Chapters 4 and 5 respectively. The two
approaches are different, as was extensively discussed in the previous Chapters, and
it is useful to recap the main aspects of the two implementations here.

The implementation of DIS into the Herwig++ parton shower was performed
along the same lines as the Higgs production via vector boson fusion (see Chapter 2).
I worked on the implementation of the B̄ and the NLO phase-space. In the latter
the transferred momentum, Q2, is computed in the Breit frame at LO and then used
for the generation of the NLO momenta (cf. Eqns. 2.2a-2.2c).

The implementation of DIS inMatchbox provides an important test for the initial-
final and final-initial radiation of the dipole shower. I worked on the implementation
of the NLO phase-space, while B̄ is automatically computed by the program itself.
As required, the NLO phase-space is independent from the LO one and Q2 is one of
the phase-space variables.

At this stage it is of interests to compare the result produced by the two different
simulations. In this Chapter we will present the results of the comparison in Sect. 6.1
and conclusions in Sect. 6.2.

6.1 Results

This Section is devoted to a comparison of distributions of transverse energy flow
and thrust from Herwig++ and Matchbox.

In Fig. 6.1 we collect the results for the transverse energy flow that were shown
in Chapters 4 and 5. We compare the distributions from Herwig++ and Matchbox

without POWHEG corrections (dotted green and dashed red line respectively) and
the corresponding NLO curves (dashed-dotted magenta and solid blue respectively).
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6.1. Results

We focus on the high Q2 sample of Ref. [158] and show distributions for different
ranges of Q2 and x. The lower frame gives the ratio theory/data and the yellow
band the one sigma error. Here and in the following the distributions were plotted
with the Rivet package [145].

In Figs. 6.1a-g both LO simulations show a deficit of radiation between 1 < η∗ <
3. This is very evident for the Herwig++ distributions; therefore, we conclude that
the dipole shower without NLO correction provides a better description compared
to the LO Herwig++. The lack of radiation is remedied by using the POWHEG
correction, as the solid blue and dashed-dotted magenta lines show. Both NLO
parton showers provide a very good description of the data in Fig. 6.1a. The NLO
simulation of the dipole shower shows a bigger theory/data ratio for higher values
of Q2, while Herwig++ presents satisfactory NLO results (Fig. 6.1b-f): the dashed-
dotted curve stays within the yellow band and it is rare that the LO Herwig++

simulation is better than the NLO one (cf. η∗ < 0 in Fig. 6.1g). However, it has
to be mentioned that the systematic deviations that we have pointed out in the
previous Chapter for the dipole shower at LO and NLO (cf. η∗ ≈ 2 in Figs. 6.1b-e
and η∗ ≈ 1.5 in Fig. 6.1f) have been removed from the Herwig++ curves by tuning
the mass parameter for the splitting of soft beam remnant clusters to 0.5 GeV, as
discussed in Chapter 4. A similar tuning was tried for the dipole shower but it did
not provide the expected improvement. The transverse energy flow in DIS is very
sensitive to this parameter and perhaps a different tuning is needed for the dipole
shower.

In Fig. 6.2 we show the transverse energy flow from the two showers for different
ranges of Q2 and after integrating over x. Also in this case it is evident that the
LO description provided by the dipole shower is better than the corresponding LO
Herwig++ curve (cf. Fig. 6.2a-c). The NLO dipole shower describes the data of
Ref. [158] very well for low ranges of Q2 (cf. Fig. 6.1a-b), even though the Herwig++

simulation is very satisfactory at NLO. ForQ2 > 400 GeV2 the dipole shower without
POWHEG corrections gives the best description of the measurements of Ref. [158]
with the exception of the deviation at η∗ ≈ 2.3 that we may reasonably solve with
an optimal tuning of the parameters of the hadronization model.

Figs. 6.1-6.2 collect the plots that we have shown in Chapter 4 and 5, but the
thrust has only been discussed for the dipole shower thus far. We dedicate the last
part of the present section for the comparison of distributions of this observable. In
Fig. 6.3 we show the distributions for thrust at different values of Q2 and Bjorken
scale x. The simulation at LO and NLO for both Herwig++ and Matchbox are
compared with the data of Ref. [162]. The thrust is calculated in the current hemi-
sphere of the Breit frame and along the thrust axis. The legend is as in Fig. 6.2
and the yellow band is described in Fig. 6.2 as well. In this case, the systematic
deviations from the yellow band are not removed by tuning the mass parameter for
the splitting of soft beam remnant cluster to 0.5 GeV. It is relevant to notice that
both showers present a similar deviation for low values of thrust in Figs. 6.3a-c and
for 0.7 < T < 0.85 in Fig. 6.3d-e. In the same regions the showers show a better
description at LO. The big deviation present in Fig. 6.3f for the NLO Herwig++

parton shower has been studied for different values of the mass parameter and the
results did not show a relevant improvement. However, the two approaches provide
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Figure 6.1: The inclusive transverse energy flow 1
N
dE∗

T/dη
∗ at different values of x

and Q2 for the high Q2 sample from [158]. The lower frame shows theory/data and
the yellow band gives the one sigma error of the data.
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Figure 6.2: The inclusive transverse energy flow 1
N
dE∗

T /dη
∗ at different values of

Q2. The high Q2 sample from [158] is considered here. The lower frame shows
theory/data and the yellow band gives the one sigma error of the data.
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6.2. Conclusions

a reasonable description of the data from Ref. [162]. The dipole shower provides
a better description at high values of Q2. We assume that NNLO corrections are
needed to improve the description of the two showers for this observable but we do
not exclude the possibility to optimize the similation with further study.

6.2 Conclusions

The present Chapter was devoted to a comparison of the Herwig++ and dipole
shower implementations of the POWHEG method for the DIS process. First we
have summarized the main features of the approaches followed for the two showers.
For both of them we have then considered distributions of inclusive transverse en-
ergy flow and thrust, and we have compared them with the data of Ref. [158] and
Ref. [162] respectively.

The analysis regarding the transverse energy flow shows that the dipole shower
provides a better description of the data of Ref. [158] at LO compared to the LO
Herwig++ shower. However, the NLO simulation from Matchbox does not produce
an equivalent improvement: the fluctuations are not always contained in the one
sigma error of the data and the LO simulation is better in some ranges of η∗ and
for different values of < Q2 >. The LO Herwig++ simulations show a very evi-
dent deficit of radiation for 1 < η∗ < 3 that is remedied by using the POWHEG
correction. The NLO Herwig++ distributions describe the data very well, with fluc-
tuations that are contained in the yellow band of the lower frame. However, we
have become aware that the transverse energy flow in DIS is most sensitive to the
mass parameter for the splitting of soft beam remnant cluster. Deviations similar to
the ones pointed out in the previous Chapter for the dipole shower have been cured
in the Herwig++ distributions by tuning this parameter. A similar tuning did not
give the expected improvement for the dipole shower but we expect that a different
tuning would help for the optimization of the results. The dipole shower is still in a
stage of test/debugging: we consider the results to be reasonably good but expect
to improve the simulation in the near future.

Tuning the parameter of the hadronization model did not improve the results
of both showers for the thrust. We have pointed out systematic deviations that
are present in ranges of thrust where the LO simulations show a better description.
However, the Herwig++ and dipole showers provide a reasonable description of the
data from Ref. [162] and we expect the simulations to be improved with further
study.
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ŝx < 0.9, Q2 < 640 GeV2

1
/

N
d

n
/

d
T

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.5

1

1.5

2

2.5

T

M
C

/
d

a
ta

b

b

b

b

b

b

b

b
b

10−1

1

10 1

(d) 0.0024 < x < 0.6, 0.04 < Q2
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Figure 6.3: The thrust at different values of x and Q2. The high Q2 sample from
Ref. [162] is considered here. The lower frame provides the same information as in
Fig. 6.1.
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Chapter 7

Conclusions

The Large Hadron Collider at CERN has recently started operating, launching a new
era of research in particle physics. Exciting new physics, including new particles,
are expected to be found in the very near future and the potential for making a new
discovery depends on the accuracy of event generators in describing both signal and
background processes. Many efforts have been put into developing a new generation
of event generators intended for use throughout the LHC data analysis era. To this
end, great attention has been focussed on the improvement of parton showers using
matrix element corrections.

Parton showers provide a resummation of the logarithmic enhancement that are
associated with soft and collinear emissions. This formalism has been very successful
but it has some limits in its applicability. In the standard approach the parton
branching is based on the collinear approximation and the parton shower description
becomes unreliable for large transverse momentum emissions: there is a region of
phase-space, referred to as the dead zone, into which the shower cannot radiate.
On the other hand, fixed-order matrix element calculations give a good description
of emissions with large transverse momentum and they are the main candidate for
the improvement of the parton shower description. However, the naive interface of
parton showers and NLO corrections would imply a double counting of the region
of phase-space where they both radiate.

A formalism is therefore needed to merge the two worlds such that the resumma-
tion of the shower is retained, the description of large transverse momentum emission
is improved with the exact matrix elements and the double counting is removed. A
number of different matrix element merging (or matching) schemes have been de-
veloped over the last few years. The first successful systematic method is known as
MC@NLO. However, the novel POWHEG method has the advantage of producing
only positive weights. It corrects the hardest emission with the NLO cross section
and therefore requires angular ordered parton showers to be reorganized in terms of
truncated showers, vetoed showers and hardest emission.

In the present thesis, the POWHEG matching scheme has been studied within
the standard Herwig++ parton shower and the new dipole-type shower of Ref. [4].
The latter formalism generalises the standard parton shower branching by introduc-
ing exact energy-momentum conservation within the splitting, with the consequent
disappearance of the dead zone. Unlike the Herwig++ parton shower, which is angu-
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lar ordered, the evolution of the dipole shower is described in term of the transverse
momentum of the emitted particle and no reorganization of the shower is needed for
the implementation of the POWHEG method.

The POWHEG method was first applied to Higgs production via vector boson
fusion (VBF) in the Herwig++ parton shower. This process is expected to play a
fundamental rôle in the measurement of the Higgs coupling to fermions and gauge
bosons, because it allows for different decay channels, such as H → τ+τ− and H →
W+W−. We found that the POWHEG implementation improves the cross section
for rapidity separation of the two tagging jet and transverse momentum and rapidity
for the third hardest jet, while it leaves the rest of the distributions unchanged with
respect to the LO Herwig++. The lack of data prevents us from comparing jet
distributions with experiment results. However, we expect this implementation to
be an important tool for analysing the upcoming results at the LHC.

The POWHEG scheme was then implemented for diphoton production in hadron-
hadron collisions in the Herwig++ parton shower. This process is considered one of
the main backgrounds for the discovery channel of the Higgs boson decaying into two
photons, for Higgs masses below 140 GeV. The POWHEG approach was found to
give a good description of the data of Refs. [124,125]. A remarkably good description
is obtained for infrared sensitive observables, like the transverse momentum of the
γγ-pair, that demonstrates the resummation of logarithmic enhancement provided
by the Herwig++ shower. The implementation is based on a general approach that
treats QED singularities by simulating the LO cross section for the corresponding
process and then showering it rather than using the fragmentation function. This
approach turned out to be successful and very efficient, and it will be implemented
in VBFNLO for processes with final state photons in the near future.

Deep inelastic scattering (DIS) has been of great importance for the study of
the internal structure of hadrons since the 1960s and is now a well known process
in the literature. Its implementation in the Herwig++ parton shower within the
POWHEG merging scheme was also shown in the present thesis. The approach
followed the one used for VBF. We first compared results with DISENT and found
excellent agreement, which demonstrates that the NLO cross section is correctly
implemented. We thus found results to be in good agreement with the measurement
of Refs. [154, 155, 158].

The same process was studied in the dipole shower within the POWHEG formal-
ism. The latter algorithm is implemented in the shower in an automated way and I
worked on the NLO phase-space that provides the NLO momenta and phase-space
integration of the differential cross section. The implementation aimed to test the
shower for the final-initial and initial-final radiation. We found a tiny mismatch with
the NLO cross section from Herwig++. The mismatch was carefully studied with an
explicit test on the integration of the NLO phase-space and the positive results that
we obtained demonstrated that the mismatch is not caused by the NLO phase-space
implementation. Furthermore, we compared results with the data of Refs. [158,162]
and found that the LO simulation is better than NLO in some ranges of rapidity and
thrust. The dipole shower is still in the test/debugging stage and we consider the
results to be in a reasonable agreement with the data. However, we expect further
improvement to come in the near future.
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Finally, the implementations of DIS in the two showers were analysed together.
The results from Herwig++ and the dipole shower at LO and NLO were compared
with the data of Refs. [158, 162]. For the transverse energy flow, we find that the
dipole shower provides a better description at LO than the LO Herwig++, but this
improvement is not present at NLO. We found standard Herwig++ shower with
POWHEG corrections to give very satisfactory results. The thrust is described rea-
sonably well from the two showers but the tuning of parameter of the hadronization
model did not show the expected improvement.

In summary, we have presented research in the implementation and development
of matching parton showers with matrix element corrections. Successful results have
been shown for an implementation that is expected to be a relevant tool for the
analysis of data for the Higgs detection at the LHC and for a general approach,
which describes QED singularities in processes with final states photons, that will
be implemented in VBFNLO in the near future. In addition, very interesting results
have been shown for the novel dipole shower and they are expected to be of great
help with upcoming improvements of the description of the shower. Results, such
as these, are extremely significant. The LHC promises to unlock scientific mysteries
about the creation of the Universe and the fundamental nature of matter, and Monte
Carlo event generators will play a major rôle.
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