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Representation-Independent Data Usage Control

Alexander Pretschner, Enrico Lovat, Matthias Büchler

Karlsruhe Institute of Technology, Germany
{pretschner,lovat,buechler}@kit.edu

Abstract. Usage control is concerned with what happens to data af-
ter access has been granted. In the literature, usage control models have
been defined on the grounds of events that, somehow, are related to data.
In order to better cater to the dimension of data, we extend a usage con-
trol model by the explicit distinction between data and representation
of data. A data flow model is used to track the flow of data in-between
different representations. The usage control model is then extended so
that usage control policies can address not just one single representation
(e.g., delete file1.txt after thirty days) but rather all representations of
the data (e.g., if file1.txt is a copy of file2.txt, also delete file2.txt). We
present three proof-of-concept implementations of the model, at the op-
erating system level, at the browser level, and at the X11 level, and also
provide an ad-hoc implementation for cross-layer enforcement.

1 Introduction

If usage control enforcement is to be enforced on data, then one must take into
account the fact that this data exists in multiple representations. For instance,
there can be multiple copies of a file, or multiple clones of an object. Moreover,
an image can exist as network packet, Java object, window pixmap, data base
record, or file. The representations hence potentially reside at different layers
of abstraction, including operating system, runtime system, window manager,
and DBMS. High-level usage control requirements such as “don’t copy” tend to
have different meanings at these different layers (copy a file, take a screenshot,
duplicate a database record, copy&paste in a word processor). While in principle,
it is possible to enforce these requirements at the level of processor and memory,
it turns out to be hard to identify, in general, precisely those CPU instructions
that pertain to copying a file, taking a screenshot, etc. Therefore, we consider it
convenient to simultaneously enforce usage control requirements at all relevant
layers of abstraction. This, however, makes it necessary to follow the flow of data
from one representation to another within and across abstraction layers.

In this paper, we present a model and an implementation of a framework
that combines usage control enforcement with data flow tracking technology.
One example of the resulting system is a social network in which users may view
pictures in their browsers (first representation at first layer of abstraction) but
not copy cache files (second representation, second layer) or take screenshots
(third representation, third layer) [1]. This paper describes the model and its
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prototypical implementation; detailed security and performance analyses are not
in the scope. We organize our paper along the following steps.

Step 1: Specification-level usage control policies based on events We start with a
trace-based semantic model. Traces are infinite streams of sets of events, Trace =
N → P(Event). In this model, usage control policies are interpreted as sets
of allowed sequences of sets of events. We call these policies specification-level
policies. The semantics of a policy, expressed in language Φ+ (here: a future time
temporal logic, hence the +) is the set of traces that makes the corresponding
formula true. This is captured by a relation |=+⊆ Trace × Φ+. This policy
language is part of the literature [2].

Step 2: Data and containers; data state In order to cater to the dimension of
data, we distinguish between data and containers. Containers (files, pixmaps,
memory regions, network packets) reflect different representations of data. This
is captured by the data state σ ∈ Σ of a system which essentially maps containers
to sets of data items. The data state changes with every step (set of events) of the
system via a transition function % : Σ×P(Event)→ Σ. Using %, the current data
state can, for each trace t and each moment in time n, be recursively computed
from the past by the function states(t ,n). This data flow model (which in fact is
slightly more complex, as we will see below) has been described and instantiated
to various levels of abstraction before [3–5]. In this paper, we embody the data
flow model in a usage control policy language and an integrated semantic model;
this constitutes the core contribution of this paper.

Step 3: Specification-level usage control policies based on data In Φ+, we can only
express container usages, i.e., usage events that pertain to one specific represen-
tation. As argued above, we deem it natural to express data usages as well, which
pertain to all representations of the same data. We hence augment the policy
language Φ+ by (1) data usages and (2) special operators that operate on data
rather than containers—e.g., some data may not flow into a specific container
such as a network socket. This new language is called Φ+

i . The semantics of Φ+
i ,

|=+
i ⊆ Trace×Φ+

i , is defined on the grounds of the data state function states. At
each moment in time, we compute the current data state via states and use it for
defining the semantics of data usages and the special operators. Essentially, if a
data usage is specified, we evaluate the respective formula w.r.t. all the contain-
ers that, according to the current data state, contain the respective data item.
In this paper, we provide the language and its formal semantics.

Step 4: Implementation-level policies based on data Specification-level policies
are enforced by mechanisms that are configured by implementation-level poli-
cies. Implementation-level policies are event-condition-action (ECA) rules that
perform an action provided that a trigger event has happend and the respective
condition has evaluated to true. The action can be to inhibit the trigger event
(which requires the distinction between desired and actual events), to modify
the trigger event (which also requires this distinction), or to execute some other
event (which does not require this distinction). Since these mechanisms are actu-
ally implemented, it is convenient to express the condition part of the ECA rules
in a language that expresses requirements on the past. This language Φ− and
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the semantics |=− are the natural past duals of Φ+ and |=+ [6]. In this paper,
similar to Φ+

i , we augment Φ− by data usages and special state-based opera-
tors and obtain Φ−i with semantics |=−i ⊆ Trace × Φ−i . The distinction between
specification-level and implementation-level policies in the context of usage con-
trol based on events has been described in the literature [6, 7]. In this paper, we
add the data dimension also to implementation-level policies.

Step 5: Runtime monitors for events and data The semantic relations |=+, |=−
, |=+

i , |=
−
i are of a declarative nature. Since Φ+ and Φ− essentially boil down to fu-

ture and past LTL, we can leverage the huge body of work in the area of runtime
verification to synthesize efficient monitors both for monitoring specification-
level and (the condition part of) implementation-level policies. In the first case,
we can detect violations (detective enforcement) whereas in the second case, we
can also prevent violations from happening by blocking or modifying attempted
events, and by performing compensating, penalizing, or notifying actions. Effi-
cient runtime verification technology is available [8].

It is straightforward to implement the evolution of the data state. At each
moment in time, we intercept the current events and update the data state by
consulting the transition function %. This simple implementation yields a state
machine that computes the data state extraction function states.

In terms of the combined model, if a data usage is specified in a policy (and
thus in the synthesized monitor), we consult the state machine that implements
states from within the usage control monitor to retrieve all the containers that
contain the respective data item, and evaluate the policy w.r.t. all these contain-
ers. Function states is independent of any given policy; since our framework is
intended to be deployed at different levels of abstraction, there hence is one data
state tracker per abstraction layer, and one runtime monitor per layer per policy.
While pure usage control monitors [9] as well as data flow tracking systems [3–5]
have been implemented before, we provide implementations of combined data
flow tracking and usage control enforcement mechanisms in this paper.

Step 6: Cross-layer enforcement As the above example of the social network
application shows, data representations may exist at several different layers of
abstraction (cache file, pixmap, web page content), and we must track the flow
of data and enforce usage control requirements not only at single layers of ab-
straction, but also across layers of abstraction. Conceptually, this turns out to
be rather simple, and we provide a respective coarse model in this paper. The
implementation is, however, far more difficult if a general solution is sought (how
does the operating system know that a specific window content corresponds to
a file?). In this paper, we provide a non-generic ad-hoc implementation of this
combined model as a proof of concept.

Research Problem In sum, we tackle the problem of how to do usage control
on data that exists in multiple representations at different levels of abstraction.

Solution We present, firstly, a formal model that extends one usage control
model by the notion of data representations and that hence allows us to track
data flows within and in-between different representations at different layers of
abstraction. We use the formalism in this paper to clarify concepts only; in a
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second step, we plan to extend existing work on analysis technology [7] to the
combined model. Secondly, as a proof of concept, we show how to implement such
a system. Practical security issues are not the focus of this paper which is why we
do not present a security analysis, and we do not claim that our implementation
cannot be circumvented (respective protection technology is described elsewhere
[10]). We do not discuss performance nor policy management either.
Contribution Data flow tracking at specific layers of abstraction has been done
in a multitude of ways [3, 4, 11–20], also in the form of information flow analyses
where implicit flows are also taken into account [21, 22]. As far as we are aware,
this work ends where sensitive (or tainted) data is moved to illegal sinks, e.g.,
when a file is written or an http post request is sent. If such an illegal sink is
reached, something bad has happened, and an exception is thrown. In contrast,
our work adds the dimension of usage control that allows to specify and enforce
more fine-grained constraints on these sinks. Conversely, usage control models are
usually defined on the grounds of technical events, including specific technologies
such as complex event processing or runtime verification [23, 8], but do not cater
to the flow of data. We add the distinction between representation and data to
these models. We see our contribution in the marriage of the research areas of
usage control and dynamic data flow tracking.
Organization Section 2 recapitulates a semantic model and a policy language
for usage control as well as a simple semantic model for data flow from the liter-
ature. Section 3 presents our combined model. Section 4 describes three different
instantiations as well as an ad-hoc cross-layer enforcement implementation. Sec-
tion 5 puts our work in context, and Section 6 concludes with a discussion.

2 Background

In this section, we recap the specification-level policy specification language [2]
and the data flow model [3–5] that we will combine in Section 3.
Step 1: Usage Control We consider a usage control system model [2] based
on classes of parameterized events where parameters represent attributes. Ev-
ery event in set Event ⊆ EventName × Params consists of the event’s name
and parameters, represented as a partial ( 7→) function from names to values:
Params ⊆ ParamName 7→ParamValue for basic types ParamName,ParamValue,
EventName. We denote event parameters by their graph, i.e., as (name, value)
pairs. We assume a reserved parameter name, obj, to indicate, in case of a us-
age event, on which data item the event is performed. An example is the event
(show , {(obj , x )}), where show is the name of the event and the parameter obj
has the value x . Moreover, we reserve a Boolean parameter isTry which indicates
if the event is desired or actual (this is necessary if events should be blocked or
modified in order to enforce policies) [6].

In policies, events are usually under-specified. For instance, a policy likely
does not contain the time-stamp of an event, but if the event actually happens,
the time stamp is present. As a second example, if the event (show , {(obj , x )})
is prohibited, then the event (show , {(obj , x ), (window ,w)}) should also be pro-
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hibited. For this reason, events are partially ordered with respect to a refine-
ment relation refinesEv . Event e2 refines event e1 iff e2 has the same event
name as e1 and all parameters of e1 have the same value in e2. e2 can also
have additional parameters specified, which explains the subset relation in the
definition. Let x .i identify the i -th component of a tuple x . Formally, we then
have refinesEv ⊆ Event × Event with ∀ e1, e2 ∈ Event • e2 refinesEv e1 ⇔ e1.1 =
e2.1 ∧ e1.2 ⊆ e2.2. In the semantic model, we will assume traces to be maximally
refined (all parameters carry values; this seems natural in an actually running
system): maxRefinedEv = {e ∈ Event : ∀ e ′ ∈ Event • e ′ refinesEv e ⇒ e ′ = e}.
The semantics of the usage control policy language is defined over traces. Traces
map abstract points in time—the natural numbers—to possibly empty sets of
maximally refined actual and desired events: Trace : N→ P(maxRefinedEv).

Specification-level usage control policies are then described in language Φ+

(+ for future). It is a temporal logic with explicit operators for cardinality and
permissions where the cardinality operators turn out to be mere macros [7],
and where we omit the permission operator for brevity’s sake. We distinguish
between purely propostional (Ψ) and temporal and cardinality operators (Φ+).

Ψ ::= true | false | E(Event) | T (Event) | not(Ψ) | and(Ψ, Ψ) | or(Ψ, Ψ) | implies(Ψ, Ψ)

Φ+ ::= Ψ | not(Φ+) | and(Φ+, Φ+) | or(Φ+, Φ+) | implies(Φ+, Φ+) |
until(Φ+, Φ+) | after(N, Φ+) | within(N, Φ+) | during(N, Φ+) |
always(Φ+) | repmax (N, Ψ) | replim(N,N,N, Ψ) | repuntil(N, Ψ, Φ+)

We also distinguish between desired or attempted (T) and actual (E) events.
These syntactically reflect the (semantic-level) parameter isTry introduced above.
The semantics of events is captured by relation |=ε⊆ Event × Φ+ that relates
events (rather than traces) to formulae of the form E (·) or T (·) as follows:
∀ e, e ′ ∈ Event • e |=ε E (e ′)⇔ e refinesEv e ′ ∧ e.2 (isTry) = false and
∀ e, e ′ ∈ Event • e |=ε T (e ′)⇔ e refinesEv e ′ ∧ e.2 (isTry) = true.

not , and , or , implies have the usual semantics. The until operator is the weak-
until operator from LTL. Using after(n), which refers to the time after n time
steps, we can express concepts like during (something must constantly hold dur-
ing a specified time interval) and within (something must hold at least once
during a specified time interval). Cardinality operators restrict the number of
occurrences or the duration of an action. The replim operator specifies lower
and upper bounds of times within a fixed time interval in which a given formula
holds. The repuntil operator does the same, but independent of any time inter-
val. Instead, it limits the maximal number of times a formula holds until another
formula holds (e.g., the occurrence of some event). With the help of repuntil ,
we can also define repmax , which defines the maximal number of times a for-
mula may hold in the indefinite future. As an example of a cardinality operator,
replim(100 , 0 , 3 ,E ((login, {(user ,Alice)}))) specifies that user Alice may login
at most 3 times in the next 100 time units.

Step 2: Data Flow Tracking We base our work on data flow tracking on ap-
proaches from the literature [3–5]. In this model, data flow is defined by a tran-
sition relation on states that essentially map data representations, so-called con-
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tainers, to data. Transitions are triggered by principals that perform actions. For-
mally, we describe systems as tuples (P ,Data,Event ,Container , Σ, σi , %) where
P is a set of principals, Data is a set of data elements, Event is the set of events
(or actions), Container is a set of data containers, Σ is the set of states of the
system with σi being the initial state (∅,∅,∅), and % is the state transition func-
tion. In the following, we assume that the principals executing actions (making
an event happen) are provided as a parameter of the action.

States are defined by three mappings (for simplicity’s sake, we concentrated
on just one mapping in the introduction): a storage function of type Container →
P(Data), to know which set of data is stored in which container; an alias function
of type Container → P(Container) that captures the fact that some containers
may implicitly get updated whenever other containers do; and a naming function
that provides names for containers and that is of type F → Container . F is a
set of identifiers. We need identifiers to correctly model renaming activities. We
thus define Σ = (Container → P(Data))×(Container → P(Container))×(F →
Container). We define transitions between two states by % : Σ×P(Event)→ Σ.
For simplicity’s sake, in this paper, we assume independent actions only. This
means that if (σ,E ) ∈ %, then the target state of this transition is independent of
the ordering in which the actions in E are executed in an actual implementation.

3 A Combined Model

In the usage control model of Section 2, data is addressed by referring to specific
representations of this data as event parameters. For instance,
after(30, always(not(E ((play , {(obj,song1.mp3)}))))) stipulates that a file (a
specific representation and a specific container) called song1.mp3 must not be
played after thirty days. We address the situation where a copy of that file,
song2.mp3, should not be played either. To this end, we extend the semantic
model by data usages that allow us to specify protection requirements for all
representations rather than just one. Using the data flow tracking model, we
compute, at each moment in time t , the current data state of the system: we
simply take the usage control model’s system trace until t , extract the respective
events in each step, iteratively compute the successor data states for each data
state and eventually get the data state at time t . In an implementation, we will
of course not store the entire system history but rather use state machines to
record the data state of a system at each moment in time (step 5).
Data, Containers, and Events We need to distinguish between data items and
containers for data items. At the specification level, this leads to the distinction
between two classes of events according to the “type” of the obj parameter:
events of class dataUsage define actions on data objects. The intuition is that
these pertain to every representation. In contrast, events of class containerUsage
refer to one single container. In a real system, only events of class containerUsage
can happen. This is because each monitored event in a trace is related to a
specific representation of the data (a file, a memory region, etc). dataUsage
events are used only in the definition of policies, where it is possible to define
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a rule abstracting from the specific representation of a data item. We define a
function getclass that extracts if an event is a data or a container usage.

EventClass = {dataUsage, containerUsage}
getclass : Event → EventClass

Data ⊆ ParamValue

Container ⊆ ParamValue

Container ∩Data = ∅

{(obj , d) | d ∈ Data} ⊆ Params

{(obj , c) | c ∈ Container} ⊆ Params

∀ e : Event • getclass(e) = dataUsage ⇔
∃ x : ParamValue • ((obj , x ) ∈ e.2) ∧ x ∈ Data

∀ e : Event • getclass(e) = containerUsage ⇔
∃ x : ParamValue • ((obj , x ) ∈ e.2) ∧ x ∈ Container

Step 3: Adding Data State In our semantic model, policies are defined on
sequences of events. We want to describe certain situations to be avoided or
enforced. However, in practice there usually is an almost infinite number of
different sequences of events that lead to the same situation, e.g., the copy or
the deletion of a file. Instead of listing all these sequences, it appears more
convenient in situations of this kind to define a policy based on the description
of the (data flow state of the) system at that specific moment. To define such
types of formulas we introduce a new set of state-based operators, Φi (inspired
from [3] where no precise semantics is provided):

Φi ::= isNotIn(Data,PContainer) | isCombinedWith(Data,Data) |
isOnlyIn(Data,PContainer)

and define Φ+
i ::= Φ+ | Φi . Intuitively, isNotIn(d ,C ) is true if data d is

not present in any of the containers in set C. This is useful to express con-
straints such as “song s must not be distributed over the network”, which be-
comes always(isNotIn(s, {cnet})) for a network container (any socket) cnet . The
rule isCombinedWith(d1, d2) states whether data items d1 and d2 are combined
in one container. This is useful to express Chinese Wall policies. isOnlyIn is the
dual of isNotIn and expresses that data d can only be in containers of set C. This
can be used to express concepts like “data d has been deleted”: isOnlyIn(d ,∅).

We have seen above that we implicitly quantify over unmentioned parameters
when specifying events in policies by using relation refinesEv . We now extend
this definition. An event of class dataUsage can be refined by an event of class
containerUsage if the latter is related to a specific representation of the data
the former refers to. As in the original definition, in both cases the more refined
event can have more parameters than the more abstract event. An event e2
refines an event e1 if (1) e1 and e2 both have the same class (containerUsage
or dataUsage) and we have e2 refinesEv e1; or (2) if e1 is a dataUsage and e2
a containerUsage event. In this case (2), e1 and e2 must have the same event
name, and there must exist a data item d stored in a container c such that
(obj , d) ∈ e1.2; (obj , c) ∈ e2.2; all parameters (except for obj ) of e1 have the
same value in e2; and e2 can possibly have additional parameters. Formally,
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these requirements are specified by relation refinesEvi ⊆ (Event × Σ )× Event ,
which checks whether one event e2 refines another event e1 also w.r.t. data and
containers (Σ is needed to access the current information state):

∀ e1, e2 ∈ Event ; σ ∈ Σ • (e2, σ) refinesEvi e1 ⇔
(getclass(e1) = getclass(e2) ∧ e2 refinesEv e1)

∨ ((getclass(e1) = dataUsage ∧ getclass(e2) = containerUsage ∧ e1.1 = e2.1

∧ ∃ d ∈ Data, c ∈ Container • d ∈ σ.1(c)

∧ e1.2(obj ) = d ∧ e2.2(obj ) = c

∧ (e1.2\{(obj , d)} ⊆ e2.2\{(obj , c)})))

We use the function states : (Trace × N)→ Σ to compute the information
state at a given moment in time via states(t , 0 ) = σi and n > 0⇒ states(t ,n) =
%(states(t ,n − 1 ), t(n − 1 )). With the help of refinesEvi and states, we can now
define the satisfaction relation for event expressions in the context of data and
container usages. We simply add one argument to |=ε and obtain |=ε,i⊆ (Event×
Σ)× Φ+

i as follows:

∀ e, e ′ ∈ Event , σ ∈ Σ • (e, σ) |=ε,i E(e ′)⇔ (e, σ) refinesEvi e ′ ∧ e.2 (isTry) = false

∀ e, e ′ ∈ Event , σ ∈ Σ • (e, σ) |=ε,i T (e ′)⇔ (e, σ) refinesEvi e ′ ∧ e.2 (isTry) = true

On these grounds, we can formally define the semantics of the specific data
usage operators in Φi with semantics |=i⊆ (Trace × N)× Φi which leads to the
definition of |=+

i ⊆ (Trace × N) × Φ+
i depicted in Figure 1 (the definitions for

the cardinality operators are complex because of the refinement relation, it is
possible that two simultaneously happening events e1, e2 that both refine the
same event e both make E (e) ∈ Ψ true. For a trace t , it is thus not sufficient to
simply count those moments in time, n, that satisfy (t ,n) |=+

i E (e) [2, 6]).

∀ t ∈ Trace; n ∈ N; ϕ ∈ Φi ; σ ∈ Σ • (t ,n) |=i ϕ⇔ σ = states(t ,n) ∧
∃ d ∈ Data,C ∈ PContainer • ϕ = isNotIn(d ,C ) ∧

∀ c′ ∈ Container • d ∈ σ.1(c′)⇒ (c′ /∈ C )

∨ ∃ d ∈ Data,C ∈ PContainer • ϕ = isOnlyIn(d ,C ) ∧
∀ c′ ∈ Container • d ∈ σ.1(c′)⇒ (c′ ∈ C )

∨ ∃ d1, d2 ∈ Data • ϕ = isCombinedWith(d1, d2) ∧
∃ c′ ∈ Container • d1 ∈ σ.1(c′) ∧ d2 ∈ σ.1(c′)

Step 4: Mechanisms enforce specification-level policies Specification-
level policies expressed in Φ+

i describe which runs of a system are allowed and
which ones are not. There are usually several ways of enforcing such policies, by
modification, inhibition, or execution. For instance, the requirement “no non-
anonymized data may leave the system without notification” (where the exact
meaning of anonymization is not important) can be enforced by overwriting
name and birth date fields with blanks (modification), by blocking messages
that are not anonymized (inhibition), or by actually sending the notification if
such a data item leaves the system (execution). Since there is not the one right
choice, a user must explicitly stipulate this by selecting an operational mecha-
nism. These operational mechanisms embody implementation-level policies and
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∀ t ∈ Trace,n ∈ N, ϕ ∈ Φ+
i • (t ,n) |=+

i ϕ⇔
∃ e, e ′ ∈ Event • (ϕ = E(e) ∨ ϕ = T (e)) ∧ e ′ ∈ t(n) ∧ (e ′, states(t ,n)) |=ε,i ϕ

∨ ϕ ∈ Φi ∧ (t ,n) |=i ϕ

∨ ∃ψ ∈ Φ+
i • ϕ = not(ψ) ∧ ¬ ((t ,n) |=+

i ψ)

∨ ∃ψ, χ ∈ Φ+
i • ϕ = or(ψ, χ) ∧ ((t ,n) |=+

i ψ ∨ (t ,n) |=+
i χ)

∨ ∃ψ, χ ∈ Φ+
i • ϕ = until(ψ, χ)

∧ (∃ u ∈ N • (((t ,n + u) |=+
i χ ∧ (∀ v ∈ N • v < u ⇒ (t ,n + v) |=+

i ψ))

∨ ∀ v ∈ N • (t ,n + v) |=+
i ψ))

∨ ∃ i ∈ N; ψ ∈ Φ+
i • ϕ = after(i , ψ) ∧ (t ,n + i) |=+

i ψ

∨ ∃ l , x , y ∈ N; ψ ∈ Ψ • ϕ = replim(l , x , y , ψ)

∧ x ≤
∑l

j=1

∣∣{S ⊆ Event | S ⊆ t(n + j ) ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ∧ (m < n + j ⇒ t ′(m) = t(m)) ∧ (t ′,n + j ) |=+

i ψ

∧6 ∃S ′ ⊆ Event • S ′ ⊂ S ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ′ ∧ (m < n + j ⇒ t ′(m) = t(m)) ∧ (t ′,n + j ) |=+

i ψ}
∣∣ ≤ y

∨ ∃ l , u ∈ N; ψ ∈ Ψ ; χ ∈ Φ+ • ϕ = repuntil(l , ψ, χ)

∧
(
(t ,n + u) |=+

i χ ∧ ∀ v ∈ N • v < u ⇒ ¬((t ,n + v) |=+
i χ)

∧
∑u

j=1

∣∣{S ⊆ Event | S ⊆ t(n + j ) ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ∧ (m < n + j ⇒ t ′(m) = t(m)) ∧ (t ′,n + j ) |=+

i ψ

∧6 ∃S ′ ⊆ Event • S ′ ⊂ S ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ′ ∧ (m < n + j ⇒ t ′(m) = t(m)) ∧ (t ′,n + j ) |=+

i ψ}
∣∣ ≤ l

)
∨
∑∞

j=1

∣∣{S ⊆ Event | S ⊆ t(n + j ) ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ∧ (m < n + j ⇒ t ′(m) = t(m)) ∧ (t ′,n + j ) |=+

i ψ

∧6 ∃S ′ ⊆ Event • S ′ ⊂ S ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ′ ∧ (m < n + j ⇒ t ′(m) = t(m)) ∧ (t ′,n + j ) |=+

i ψ}
∣∣ ≤ l

∨ ∃ψ, χ ∈ Φ+
i • ϕ = and(ψ, χ) ∧ (t ,n) |=+

i not(or(not(ψ),not(χ)))

∨ ∃ψ, χ ∈ Φ+
i • ϕ = implies(ψ, χ) ∧ (t ,n) |=+

i or(not(ψ), χ)

∨ ∃ψ ∈ Φ+
i • ϕ = always(ψ) ∧ (t ,n) |=+

i until(ψ, false)

∨ ∃ i ∈ N; ψ ∈ Φ+
i • ϕ = within(i , ψ) ∧ (t ,n) |=+

i

∨i
x=1 after(i , ϕ)

∨ ∃ i ∈ N; ψ ∈ Φ+
i • ϕ = during(i , ψ) ∧ (t ,n) |=+

i

∧i
x=1 after(x , ϕ)

∨ ∃ l ∈ N; ψ ∈ Ψ • ϕ = repmax (l , ψ) ∧ (t ,n) |=+
i repuntil(l , ψ, false)

Fig. 1. Semantics of Φ+
i

are conveniently expressed as event-condition-action (ECA) rules [6]; whether
or not satisfaction of an implementation-level usage control policy entails en-
forcement of a specification-level policy can be checked automatically [7]. In our
case, the semantics is as follows: if a triggering event is detected, the condition
is evaluated; if it evaluates to true, the action (modify, inhibit, execute) is per-
formed. Since mechanisms are operational in nature, we decided to formulate
the conditions in a past variant of our language, Φ− with semantics |=− [6, 7].
The fact that mechanisms can inhibit or modify motivates the conceptual dis-
tinction between desired and actual events (E (·) and T (·); we could well have
restricted the usage of Ψ in specification-level policies to actual events (E (e))
which, however, slightly complicates the combined definitions).

Implementation-level policies hence come in the following forms. We assume
a trigger event e and a condition ϕ ∈ Φ−. Modifiers are formulas (T (e) ∧
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(E (e) ⇒ ϕ)) ⇒ T (e ′) ∧ ¬E (e) where e ′ is like e but with some parameters
modified. The idea is that if e is attempted (T (e)) and the actual execution
of e makes the trigger true (E (e) ⇒ ϕ), then e ′ should happen in lieu of e
(T (e ′) ∧ ¬E (e); the reason for having T (e ′) rather than E (e ′) is that there
might be multiple concurrently executing mechanisms). Inhibitors are formulas
(T (e) ∧ (E (e) ⇒ ϕ)) ⇒ ¬E (e) that simply prohibit the desired event T (e) by
requiring ¬E (e) in case E (e) would make ϕ true. Finally, executors are expressed
as (T (e) ∧ (E (e)⇒ ϕ))⇒ T (e ′) ∧ E (e) for some event e ′ to be executed; again,
since there may be multiple mechanisms in place, e ′ can only be attempted at
this stage. The formal semantics of a set of combined mechanisms as well as
conflict detection has been described elsewhere [6, 7].

Now, in order to make mechanisms aware of data-flow, we need to extend
Φ− by Φi . Observe that the semantics of Φi , |=i , “does not look into the future”
and makes use of the states function that already is defined solely in terms of
the past. As a consequence, we can simply let Φ−i ::= Φi | Φ−, verbatim reuse
the definition of |=i , and directly get the combined semantics of Φ−i , |=−i (Ap-
pendix A). Because of space limitations, we do not provide a formal semantics of
entire mechanisms (that is: entire ECA rules, not just conditions) here; however,
this straightforwardly generalizes the case without data flow tracking [6].

Step 5: Architecture Our generic architecture is the same for each concrete
level of abstraction at which the infrastructure is instantiated. We distinguish
three main components: a Policy Enforcement Point (PEP), able to observe,
intercept and possibly modify and generate events in the system; a Policy Deci-
sion Point (PDP), representing the core of the usage control monitoring logic;
and a Policy Information Point (PIP), which provides additional information to
the PDP, namely the state of data dissemination, σ ∈ Σ.

The role of the PEP is to implement the mechanisms of step 4. PEPs intercept
desired and actual events, signal them to the PDP and, according to the response,
allow, inhibit or modify them. Using the events signaled by the PEP, the PDP
evaluates the policies, more specifically, the condition of the ECA rules. While
we implemented one specific algorithm [24] for the PDP, any runtime verification
algorithm can be used [8]. Due to its generic nature, the same implementation
can be reused at different levels of abstraction: only the binding of events in the
system to events specified in the policies has to be performed. In order to take a
decision, the PDP may need additional information (e.g., in case of state-based
formulae or data usages) concerning the distribution of data among the different
representations. For this reason the PDP queries the PIP. The PIP represents
a (layer-specific) implementation of the data-flow tracking model presented in
step 3. In order to properly model the evolution of the data-flow state, the PEP
notifies the PIP about every actual event that happens in the system, and the
PIP then updates its data state σ ∈ Σ according to %.

The interplay of PEP, PDP, and PIP is shown in Figure 2. Whenever the PDP
checks an actual (container) event e against a data usage event u in a policy,
the PIP is consulted to check if the data item referred to by u is contained in
the container referred to by e.
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Fig. 2. Interplay of PEP, PDP, PIP

Policy management and deployment are out of the scope of this paper. We
do not discuss the problem of attaching an initial policy to a data item either;
in the implementations discussed below, this is done manually.

Step 6: A coarse model for cross-layer data flow detection and usage
control enforcement In the example of the social network application in Sec-
tion 1 we have three monitors: one at the level of the operating system, one
at the level of the web browser, and one at the level of the X11 system. Now,
some events, together with the data that they operate on, at one layer imply
related events at a different layer. For instance, saving a page in the web browser
(event save) implies a write() system call at the operating system layer. As a
consequence, data flows from one layer to another one.

We introduce a set of layers, L, that includes layers such as X11, the operating
system, a browser, etc. For each event, we assume that there is precisely one
layer at which this event happens (if there is more than one layer, then this is
captured by the following function π). This motivates the definition of a function
λ : Event → L that partitions the set of events. Note that neither our definition
of the transition relation % nor the definition of the data state σ nor the definition
of languages Φ+

i and Φ−i require events, containers, and data to reside at one level
of abstraction. As a consequence, we may assume that our system is specified
globally, i.e. encompassing all levels of abstraction. We can then use function
λ to separate the different layers: Event` = {e ∈ Event : λ(e) = `} contains the
events relevant at layer `, and, using graph notation, %` = {(σ,E , σ′) : E ⊆
Event` ∧ %(σ,E ) = σ′} projects the data flow transition relation to layer `
(remember that in step 2 of Section 2, we required independence of events in the
definition of % for simplicity’s sake). With %` and Event`, we can implement the
data flow monitor for layer ` as described in step 5. The usage control monitor
part is synthesized from a policy; the only layer-specific part is Event`. In the
implementation, the set of %` and Event` hence defines the set of independent
enforcement mechanisms for all layers ` ∈ L.
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We now consider the flow of data in-between different layers. To this end,
we introduce a relation π : Event → 2Event . With this relation, it is possible to
specify, at the model level, that whenever an event happens at one layer `1, a
set of simultaneous events at another layer `2 necessarily take place. Formally,
we can capture this intuition by a constraint on the set of traces of a system:
∀ s ∈ Trace ∀ t ∈ N∀ e ∈ Event : e ∈ s(t) ⇒ π(e) ⊆ s(t). In other words, via
π we require in the semantic model that, for instance, there must be a write()
system call whenever there is a save action in the web browser, thus capturing
the data flow from browser to operating system.

In this way, cross-layer data flow tracking and data-driven usage control
enforcement can be specified in a conceptually very simple way. However, in
terms of the implementation, this is far more challenging. While every layer-
specific infrastructure instantiates the general model, our current cross-layer
enforcement solution is an ad-hoc implementation that relates an event at one
layer to an event at another layer in a hard-coded way (Section 4).

4 Instantiations

Operating System: OpenBSD At the operating system level, system calls
are the events that can change the state of the system. The complete description
of the data-flow tracking model can be found in [3]. Here, we show how to extend
this implementation with a usage control monitor, thus providing an instance
of the combined model of this paper. Events are system calls, and they are
invoked by processes on data containers. Containers include files, pipes, message
queues and the network. A process itself is also considered as a data container
because the process state, CPU registers and the memory image of the process
are possible locations for data. Data containers are identified by a set of names,
which includes file names, descriptors and sockets. Each state consists of the
three mappings presented in section 3: storage, alias and naming. As an example,
aliases are created if memory is mapped to a file system (mmap() system call).
The transition relation % is described in [3].

The combined usage control and data flow tracking system is implemented
using Systrace, a policy enforcement tool for monitoring, intercepting and modi-
fying system calls in OpenBSD. In contrast to our earlier work [3], the combined
implementation of this paper can enforce advanced usage control policies that
address all the instances of the same data at the same time. For example, we
can enforce the policies provided in Appendix B.1.
Windowing System: X11 X11 is a distributed system and a protocol for GUI
environments on Unix-like systems. In X11, events that change the state of the
system are network packets exchanged between clients and servers. The model
for data-flow tracking and primitive usage control is described elsewhere [4]. We
recall its main concepts and show how it can be extended with an advanced
usage control monitor, providing a second instance of our combined model.

Events are requests, replies, events and errors, invoked on specific X11 re-
sources by principals that, because of the distributed setting, are identified by IP
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address and port. Resources form the containers that potentially carry sensitive
information, like windows, pixmaps (memory areas that are valid destinations for
drawing functions), atoms (unique names for accessing resources or for commu-
nication between different clients), attributes and properties (variables attached
to windows), etc. States consists of the three mappings presented in section 3:
storage, alias and naming. Among others, aliases are created whenever windows
overlap translucently. The transition relation % is described in [4].

The combined usage control and data flow tracking system is implemented
using Xmon, an X11 applications debugging tool for monitoring, intercepting and
modifying network packets from/to an X server. As opposed to [4], by virtue of
the usage control runtime monitor, it is able to enforce advanced usage control
policies, with temporal and cardinality operators, addressing every instance of
the same data at the same time. An example policy we can enforce is presented
in Appendix B.2.

Web Browser: Firefox A third instance of our model at the browser level
extends an existing usage control extension for the Firefox web browser [25].
In this scenario, we want to protect sensitive web page content from malicious
usage by the user of the browser. Here, we show how to instantiate the data-flow
tracking model to objects of the browser domain, in order to extend the existing
implementation to another instance of the combined model presented so far.

Events are user actions, including “copy”, “paste”, “print”, “save as”, etc.,
and are performed by a user on web page content. Content can be stored in two
types of containers: read-only (the non-editable part of a web-page) and read-
write (text fields where it is possible to type); in addition, there is the clipboard.
The only principal in this scenario is the user of the browser.

The browser-level instantiation does not require the alias function, because
no alias relations are created among containers. Similarly, the naming function
is constant. Therefore, a state of the system is given only by the state of the
storage function Σ = (Container → 2Data). Due to space constraints, we do not
present the definition of the transition relation % here. The resulting system can
enforce advanced policies that address all the representations of the same data,
possibly involving cardinality and temporal operators. As an example, we can
enforce the policy provided in Section B.3.

Cross-Layer Enforcement We also implemented cross-layer usage control by
combining the three implementations presented above [1]. To do so, we deployed
the three monitors, each consisting of PEP, PDP, and PIP, on the same physical
system and made them communicate with each other. A general protocol for such
a communication among arbitrary parties is the subject of current work, so we
hard-coded a communication solution tailored for this specific scenario: we made
the Firefox monitor able to instruct the OS and X11 monitors about new policies
and data flows from the browser level to the operating system and the windowing
system, respectively. For our example, we adopted an existing solution [25] for
policy retrieval and hard-coded inter-layer data flow observations.

We consider a social network use case [25] where a user watches a picture on
someone else’s profile page. Since the picture is considered sensitive, its usage
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is restricted. In particular, no local usage is allowed after download, except for
printing, and whenever the picture is printed, a notification must be sent to
the owner. The respective specification policy is “This picture cannot be copied
to the clipboard (not even in form of a screenshot) nor saved to disk and its
cached version can be used only by Firefox. No printing of the picture without
notification of the owner.” The implementation-level policies in concrete XML
syntax are provided in Appendix B.

The behavior of the combined system is sketched in Figure 3 in Appendix C.
In our implementation, at each level we distinguish between the business logic
and the monitoring component which instantiates the model presented in this
paper (PEP, PDP and PIP in step 5 of Section 3). If the user requests the page
with picture Pic, the browser downloads the profile page together with a policy
that contains a sub-policy related to the figure. Upon reception by the web
browser, Pic takes new representations: it is rendered as a set of pixels inside the
browser window (W), it is cached as a file (F), and it is internally represented
by the browser in some memory region referenced by a node in the DOM tree
(I). Each representation must be protected at its layer of abstraction.

To do so—and this is the ad hoc part of the implementation—the browser
monitor instantiates the generic policy it got from the remote server to each
level by adding runtime information including the name of the cache file F and
the ID of the window W. Because this data is created at runtime, it cannot be
statically determined by the server a priori. After instantiating and deploying
the policies to the OS and X11 layers, the browser monitor allows rendering the
picture and creating the cache file (Figure 3 in Section C).

From this point onward, all three instantiations of the policy are enforced at
different levels of abstraction, as shown in the three following usage attempts. In
the first example, the user tries to print the picture; the attempt is intercepted,
evaluated against the policy and, after notifying the owner about it, allowed
to become an actual usage. In the second example, taking a screenshot of the
browser window is intercepted by the X11 monitor. According to the policy, the
request is modified; the effect of changing the parameter mask to 0x00 results in
returning a black rectangle as screenshot. The last example shows how opening
file F, the cached copy of I, is prohibited (i.e., the system call is denied) when
the caller process is not Firefox itself (Figure 4 in Section C).

5 Related Work

The subject of this paper is the combination of data flow detection with usage
control, a policy language, and a prototype enforcement infrastructure.

Enforcement of usage control requirements has been done at the OS level [26,
27, 3], at the X11 level [4], for Java [11, 12, 28], the .NET CIL [13] and machine
languages [14, 15, 29]; at the level of an enterprise service bus [16]; for dedicated
applications such as the Internet Explorer [17] and in the context of digital
rights management [18–20]. These solutions focus on one of the two aspects of
the problem: either data flow tracking or event-driven usage control. Our model,
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in contrast, tackles both at the same time and since it is layer-independent, it
can be instantiated to each of these layers. At the level of binary files, the Garm
tool [29] presents a technique that combines data tracking with an enforcement
mechanism for basic usage control. This model focuses on access control, trust
and policy management aspects, while our goal is the formalization and im-
plementation of a generic model and a policy language to express and enforce
advanced usage control requirements at arbitrary levels of abstraction. Data flow
confinement is also intensely studied at the operating system level [26, 27]; at this
level, our work differs in that we aim at enforcing complex usage control policies.

A multitude of policy languages [2, 30–36] has been proposed. As far as we
know, none of them addresses the data dimension like ours does; they allow
for definitions of usage restrictions for specific rather than all representations of
data, and their semantic models do not consider data flows.

In terms of data flow tracking, our approach restricts the standard notion of
information flow analysis which also caters to implicit flows and aims at non-
interference assessments [37, 38, 21, 22]: our system detects only flows from con-
tainer to container. This explains why we prefer to speak of data flow rather
than information flow. Moreover, even if we plan to leverage results of static
analyses, like [39], we want to detect these flows at runtime. Implementations of
such data-flow tracking system have been realized for the operating system [3],
X11 [4], OpenOffice [5] and Java byte code and can be used as PIP component
to instantiate our model. This cited work, however, only addresses the data flow
detection part without full usage control.

In terms of general-purpose usage control models, there are similarities with
the models underlying XACML [40], Ponder2 [41] and UCON [42]. The first two,
however, do not provide formalized support for cardinality or temporal opera-
tors (free text fields exist, but the respective requirements are hard to enforce).
UCON supports complex conditions [43], and has been used in applications at
different level of abstraction, such as the Java Virtual Machine [44] and the
Enterprise Service Bus [45]. Data flow is not considered, however.

Complex event processing [23] and runtime monitoring [8] are suitable for
monitoring conditions of usage control policies. As such, they address one aspect
of the problem, namely the monitoring part, and do not cater to data flow.

6 Conclusions

The contribution of this paper is a combination of usage control with data flow
detection technology. Rather than specifying and enforcing usage control policies
on specific representations of a data item (which is usually encoded in events that
are usage-controlled), our work makes it possible to specify and enforce usage
control policies for all representations of a data item (files, windows contents,
memory contents, etc.). We have provided a model, a language, an architec-
ture and a generic implementation for data-centric usage control enforcement
that we instantiated to several abstraction layers. Our implementation consists
of combined usage control and data flow monitors for an operating system, a



16 Alexander Pretschner, Enrico Lovat, Matthias Büchler

windowing system, and a web browser, together with a cross-layer enforcement
infrastructure for these levels. As an example, this system makes it possible that
a user can download a picture on a web page and watch it in the browser but not
copy&paste or print the content without notification (enforced at the browser
level); nor take a screenshot (enforced at the X11 level); nor access the cache
files (enforced at the OS level).

Because of space restrictions, we have not provided security nor performance
analyses. While we do not claim that our system cannot be circumvented, we
have some confidence that a reasonable level of security can be attained [25,
10]. Performance-wise, we currently are faced with an overhead of one to two
orders of magnitude [3, 4]. This, however, heavily depends on the kind of events
that happen in our system, and our system is not optimized at all. Security and
performance analyses and improvements are the subject of current work. This
paper also does not solve the problem of policy deployment, livecycle manage-
ment, and delegation. Finally, we do not consider the problem of media breaks
(e.g., taking a photograph of the screen).

Our current data flow model is very simple. While it is appropriate for use
cases of the kind we present in this paper, the involved overapproximations
quickly lead to a label creep in practice. For instance, in the simple OS-level
model, if a process reads a file that contains one tainted bit, then every sub-
sequent output of the process is tainted. We are currently investigating how to
adopt McCamant and Ernst’s quantitative information flow model [46] as well
as dynamic declassification techniques to overcome this problem. The layers of
abstraction that we catered to in this paper do not exhibit indirect information
flow caused by control flow; this is, however, the case for runtime systems. We
plan to combine static and dynamic analyses at this level to get more precise
data flow models for these layers.

While we believe that many usage control enforcement problems can be
solved by instantiating our framework to a few layers (OS, windowing system,
data bases, runtime systems, browsers, word processors, mail clients), we have to
understand what precisely these layers consist of. In the screenshot example at
the windowing system level, for instance, we need to make sure that the system
is not run within a virtual machine which would allow one to take a screenshot
outside the virtual machine, thus circumventing the enforcement infrastructure;
the solution here is to add another layer that runs in a hypervisor.

In terms of further future work, we need a generic implementation for cross-
layer enforcement, a formal model that caters to dependent events at one mo-
ment in time, and a way of protecting the enforcement infrastructure that not
necessarily inherits the disadvantages of trusted computing technology [10].
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A Past formulas with data flow: Φ−
i

Mechanisms, or ECA rules, are specified in a past temporal logic Φ− [6] that we
extend with the data flow semantics as for the future language. This extended
past language is called Φ−i .

Φ− ::= Ψ | not−(Φ−) | and−(Φ−, Φ−) | or−(Φ−, Φ−) | implies−(Φ−, Φ−) | since−(Φ−, Φ−) |
before−(N, Φ−) | within−(N, Φ−) | during−(N, Φ−) |
always−(Φ−) | repmax−(N, Ψ) | replim−(N,N,N, Ψ) | repsince−(N, Ψ, Φ−)

Φ−i ::= Φ− | Φi

Its semantics is defined by |=−i ⊃|=− as follows.
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∀ t ∈ Trace,n ∈ N, ϕ ∈ Φ−i • (t ,n) |=−i ϕ⇔
∃ e, e ′ ∈ Event • (ϕ = E(e) ∨ ϕ = T (e)) ∧ e ′ ∈ t(n) ∧ (e ′, states(t ,n)) |=ε,i ϕ

∨ ϕ ∈ Φi ∧ (t ,n) |=i ϕ

∨ ∃ψ ∈ Φ−i • ϕ ∈ {not(ψ),not−(ψ)} ∧ ¬ ((t ,n) |=−i ψ)

∨ ∃ψ, χΦ−i • ϕ ∈ {or(ψ, χ), or−(ψ, χ)} ∧ ((t ,n) |=−i ψ ∨ (t ,n) |=−i χ)

∨ ∃ψ, χ ∈ Φ−i • ϕ = since−(χ, ψ)

∧ (∃ u ∈ N • u ≤ n ∧ (t ,n − u) |=−i χ ∧ (∀ v ∈ N • u < v ≤ n ⇒ (t ,n − v) |=−i ψ)

∨ ∀ v ∈ N • v ≤ u ⇒ (t ,n − v) |=−i ψ)

∨ ∃ i ∈ N; ψ ∈ Φ−i • ϕ = before−(i , ψ) ∧ i ≤ n ∧ (t ,n − i) |=−i ψ

∨ ∃ l , x , y ∈ N; ψ ∈ Ψ • ϕ = replim−(l , x , y , ψ)

∧ x ≤
∑min(l,n)

j=0

∣∣{S ⊆ Event | S ⊆ t(n − j ) ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n − j ) = S ∧ (n ≥ m > n − j ⇒ t ′(m) = t(m)) ∧ (t ′,n − j ) |=−i ψ

∧6 ∃S ′ ⊆ Event • S ′ ⊂ S ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n − j ) = S ′ ∧ (n ≥ m > n − j ⇒ t ′(m) = t(m)) ∧ (t ′,n − j ) |=−i ψ}

∣∣ ≤ y

∨ ∃ l , u ∈ N; ψ ∈ Ψ ; χ ∈ Φ− • ϕ = repsince−(l , χ, ψ)

∧
(
u ≤ n ∧ (t ,n − u) |=−i χ ∧ ∀ v ∈ N • u < v ≤ n ⇒ ¬((t ,n − v) |=−i χ)

∧
∑u

j=0

∣∣{S ⊆ Event | S ⊆ t(n − j ) ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n − j ) = S ∧ (n ≥ m > n − j ⇒ t ′(m) = t(m)) ∧ (t ′,n − j ) |=−i ψ

∧6 ∃S ′ ⊆ Event • S ′ ⊂ S ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n − j ) = S ′ ∧ (n ≥ m > n − j ⇒ t ′(m) = t(m)) ∧ (t ′,n − j ) |=−i ψ}

∣∣ ≤ l
)

∨
∑n

j=0

∣∣{S ⊆ Event | S ⊆ t(n − j ) ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n − j ) = S ∧ (n ≥ m > n − j ⇒ t ′(m) = t(m)) ∧ (t ′,n − j ) |=−i ψ

∧6 ∃S ′ ⊆ Event • S ′ ⊂ S ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ′ ∧ (n ≥ m > n − j ⇒ t ′(m) = t(m)) ∧ (t ′,n − j ) |=−i ψ}

∣∣ ≤ l

∨ ∃ψ, χ ∈ Φ−i • ϕ ∈ {and(ψ, χ), and−(ψ, χ)} ∧ (t ,n) |=−i not−(or−(not−(ψ),not−(χ)))

∨ ∃ψ, χ ∈ Φ−i • ϕ ∈ {implies(ψ, χ), implies−(ψ, χ)} ∧ (t ,n) |=−i or−(not−(ψ), χ)

∨ ∃ψ ∈ Φ−i • ϕ = always−(ψ) ∧ (t ,n) |=−i since−(false, ψ)

∨ ∃ i ∈ N; ψ ∈ Φ−i • ϕ = within−(i , ψ) ∧ i < n ∧ (t ,n) |=−i
∨i

x=1 before−(i , ϕ)

∨ ∃ i ∈ N; ψ ∈ Φ−i • ϕ = during−(i , ψ) ∧ i < n ∧ (t ,n) |=−i
∧i

x=1 before−(x , ϕ)

∨ ∃ l ∈ N; ψ ∈ Ψ • ϕ = repmax−(l , ψ) ∧ (t ,n) |=−i repsince−(l , false, ψ)

B Implementation-Level Policies

The following policies are expressed in a concrete syntax that reflects the abstract
syntax for ECA rules in Section 3, step 4: trigger event, condition, action to be
taken in response. Note the use of the dataUsage attribute of the parameter node.
Its purpose is twofold: firstly, the presence of a type attribute identifies the node
as the compulsory (obj, object name) attribute/value pair. Secondly, it instructs
the system on how this value should be interpreted (and possibly transformed),
whether as data or as container. Also note the use of the isTry parameter to
distinguish attempted (value=“true”) from actual usages (value=“false”).
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B.1 Operating System

The first policy is an example from the DRM world: a file, song.mp3, can be
used, i.e. opened, (lines 12-15) at most 4 further times and within 30 seconds (1
timestep = 1 second) after the first use (lines 8-27); further attempts of opening
the file will result in opening a predefined error message (lines 28-34). We provide
it to demonstrate the use of complex conditions.

1 <controlMechanism>
2 <id>OS DRM example</ id>
3 <t r i gge rEvent>
4 <id>open</ id>
5 <parameter name=”obj ” value=”song .mp3” type=”dataUsage”/>
6 <parameter name=” isTry ” value=” true ”/>
7 </ t r i gge rEvent>
8 <cond i t i on>
9 <or>

10 <not><be fo r e t ime In t e rva l=”30”>
11 <always><not>
12 <event>
13 <id>open</ id>
14 <parameter name=”obj ” value=”song .mp3” type=”dataUsage”/>
15 </ event>
16 </not></always>
17 </ be f o r e></not>
18 <not>
19 <repmax l im i t=”5”>
20 <event>
21 <id>open</ id>
22 <parameter name=”obj ” value=”song .mp3” type=”dataUsage”/>
23 </ event>
24 </repmax>
25 </not>
26 </ or>
27 </ cond i t i on>
28 <ac t i on s>
29 <a l low>
30 <modify>
31 <parameter name=”obj ” value=”/ etc /UCmon/ exp i red .msg” />
32 </modify>
33 </ a l low>
34 </ ac t i on s>
35 </ controlMechanism>

The effect of our implementation can be seen by executing the following
sequence of commands:

> vlc song.mp3

> cp song.mp3 song2.mp3

> mv song2.mp3 song3.mp3

> cat song3.mp3 > song4.mp3

...

(after more than 30 seconds)

...

> vlc song4.mp3 --> ERROR!

When trying to play (command vlc) the file song4.mp3 (a copy of the original
song.mp3 ) more than 30 seconds after the first play, an error message is played
instead of the song. The same error is generated when trying to open whatever
instance of the song after the fifth time.
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As a second example, we present a policy that forbids data-disclosure by
using a state-based operator:

1 <controlMechanism>
2 <id>OS Disc losure example</ id>
3 <t r i gge rEvent>
4 <id>wr i t e</ id>
5 <parameter name=” isTry ” value=” true ”/>
6 </ t r i gge rEvent>
7 <cond i t i on>
8 <not>
9 <i sNotIn data=”song .mp3”>

10 <con ta in e r s>
11 <conta ine r>Net</ conta ine r>
12 </ con ta in e r s>
13 </ i sNotIn>
14 </not>
15 </ cond i t i on>
16 <ac t i on s>
17 < i n h i b i t />
18 </ ac t i on s>
19 </ controlMechanism>

In this example, we forbid every write system call that sends the song (the
data) stored in “song.mp3” over the network, i.e. to a socket descriptor. “song.mp3”
and “Net” are names for containers and are translated into containers accord-
ing to the function F at runtime. In particular, “Net” is a reserved name for
the container “Cnet” that stands for “the network”. Every container represent-
ing a socket descriptor is aliased to “Cnet”, therefore writing data to a socket
corresponds to writing it to “Cnet”.

As this policy applies to dataUsage events, the value of parameter data of
operator isNotIn is interpreted as “the data stored in the container with this
name”.

Finally, as a third example, we present the operating system policy used in
the cross-layer enforcement example.

1 <controlMechanism>
2 <id>OS Res t r i c t F i l e Usage</ id>
3 <t r i gge rEvent>
4 <id>open</ id>
5 <parameter name=”obj ” value=” cacheF i l e ” type=”dataUsage”/>
6 <parameter name=” isTry ” value=” true ”/>
7 </ t r i gge rEvent>
8 <cond i t i on>
9 <XPathEval>

10 / t r i gge rEvent /parameter [@name=’PNAME’ ] / @value != ’ c : \\ Fi r e f ox \\ f i r e f o x .
exe ’

11 </XPathEval>
12 </ cond i t i on>
13 <ac t i on s>
14 < i n h i b i t />
15 </ ac t i on s>
16 </ controlMechanism>

In this example, every attempt of opening file cacheFile (lines 3-7) is inter-
cepted and forbidden (lines 13-15) if the caller process is different from Firefox
(lines 8-12). Note the use of XPath inside the condition block, in order to test
values belonging to the trigger event. In the current implementation we identify
the Firefox process by the name and path of the executable, because the pro-
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cess ID is different in every execution. This introduces obviously some security
vulnerabilities, and other solutions can be used to overcome this issue.

In the cross-layer example, when such a policy is received from the remote
server, values like cacheFile and the path of the application are replaced by
placeholders and filled in at runtime by the web browser PEP (Appendix C).

B.2 Windowing System

1 <controlMechanism>
2 <id>X11 Screenshot</ id>
3 <t r i gge rEvent>
4 <id>GetImage</ id>
5 <parameter name=”obj ” value=”0x1a00005” type=”dataUsage”/>
6 <parameter name=” isTry ” value ” true ”/>
7 </ t r i gge rEvent>
8 <cond i t i on>
9 <t rue />

10 </ cond i t i on>
11 <ac t i on s>
12 <a l low>
13 <modify>
14 <parameter name=”planeMask” value=”0x0” />
15 </modify>
16 </ a l low>
17 </ ac t i on s>
18 </ controlMechanism>

In this example, the enforcement mechanism prevents the X client from
taking a screenshot (X11 action GetImage, line 4) of the content of window
0x1a00005 (line 5; in the cross-layer example, this data is filled in by the web
browser PEP). If a client sends a request for a screenshot of that window, the
action is permitted (line 12), but the parameter planeMask is modified to the
value 0x0 (line 14). planeMask represents which set of drawable objects should
be included in the screenshot: a planeMask of 0xffff means that every plane is
contained in the screenshot, whereas invoking GetImage with planeMask equal
to 0x0 returns a black image because no plane is included.

As mentioned before, if such a policy is received from the server, parameters
like the window ID must be replaced by the proper runtime values.

B.3 Web Browser

The first example is from the social network scenario: a user is allowed to print
a profile picture (lines 3-7) only once (line 10). Further attempts of printing are
forbidden (line 19).

1 <controlMechanism>
2 <id>Browser Pr int</ id>
3 <t r i gge rEvent>
4 <id>pr in t</ id>
5 <parameter name=”obj ” value=” img p r o f i l e ” type=”dataUsage”/>
6 <parameter name=” isTry ” value ” true ”/>
7 </ t r i gge rEvent>
8 <cond i t i on>
9 <not>

10 <repmax l im i t=”1”>
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11 <event>
12 <id>pr in t</ id>
13 <parameter name=”obj ” value=” img p r o f i l e ” type=”dataUsage”/>
14 </ event>
15 </repmax>
16 </not>
17 </ cond i t i on>
18 <ac t i on s>
19 < i n h i b i t />
20 </ ac t i on s>
21 </ controlMechanism>

A second example from the same context is the following:

1 <controlMechanism>
2 <id>Browser Submit</ id>
3 <t r i gge rEvent>
4 <id>submit</ id>
5 <parameter name=”obj ” value=” l b l a dd r e s s ” type=”dataUsage”/>
6 <parameter name=” isTry ” value ” true ”/>
7 </ t r i gge rEvent>
8 <cond i t i on>
9 <t rue />

10 </ cond i t i on>
11 <ac t i on s>
12 <a l low />
13 <execute>
14 <ac t i on>
15 <id>SendNot i f i c a t i on</ id>
16 <parameter name=”msg” value=”ErrMsg 1” />
17 </ ac t i on>
18 </ execute>
19 </ ac t i on s>
20 </ controlMechanism>
21
22 <controlMechanism>
23 <id>Browser Cl ip</ id>
24 <t r i gge rEvent>
25 <id>copy ext</ id>
26 <parameter name=”obj ” value=” l b l a dd r e s s ” type=”dataUsage”/>
27 <parameter name=” isTry ” value=” true ”/>
28 </ t r i gge rEvent>
29 <cond i t i on>
30 <t rue />
31 </ cond i t i on>
32 <ac t i on s>
33 < i n h i b i t />
34 </ ac t i on s>
35 </ controlMechanism>

With these two mechanisms, a notification is sent to the (social network)
user (lines 14-17) if the content of the address field on its profile page (line 5) is
sent as a part of a submission form (lines 3-7) (e.g., when posted on a bulletin
board or sent using a webmail client like Gmail) and cannot be copied to the
system clipboard (lines 24-28, 33).

Note that in our implementation there is a local clipboard for the Firefox user
which is independent from the system clipboard (which, in turn, is managed by
the policies that apply to the X11 layer). Every time the user invokes a “copy”
command, two events are triggered, “copy int”, that copies the current selection
into our local clipboard, and “copy ext”, that does the same for the system
clipboard. This differentiation allows us to forbid leakage of data outside the
browser environment (line 25) without forbidding “copy&paste” actions inside.
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Another example, similar to the one mentioned in the cross-layer use case, is
the following:

1 <controlMechanism>
2 <id>Browser Save Pic</ id>
3 <t r i gge rEvent>
4 <id>save</ id>
5 <parameter name=”obj ” value=” img p r o f i l e ” type=”dataUsage”/>
6 <parameter name=” isTry ” value ” true ”/>
7 </ t r i gge rEvent>
8 <cond i t i on>
9 <t rue />

10 </ cond i t i on>
11 <ac t i on s>
12 < i n h i b i t />
13 </ ac t i on s>
14 </ controlMechanism>

It the user tries to save the picture img profile (directly, or as a part of
a bigger container, like the frame or the page) (lines 3-7) then the action is
forbidden (lines 11-13).

In the cross-layer use case presented in Section 4, policies akin to these three
is instantiated by replacing the content of some parameters, like src, with the
appropriate runtime values.
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C Cross-Layer Enforcement

Fig. 3. Policy distribution in the cross-layer setting
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Fig. 4. Policy enforcement in the cross-layer setting
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