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RÉSUMÉ en français
Dans cette thèse, des méthodes sont présentées pour accéder aux propriétés physiques dans
un régime de températures intermédiaires. Cela comporte non seulement des techniques
numériques mais aussi des méthodes analytiques. Les premières sont discutées dans le cadre
du groupe de renormalisation de la matrice densité, dans le but de décrire des systèmes
possédant une échelle de température par un ensemble d’états. Les autres sont appliquées
à la densité d’états de systèmes quasi-bidimensionnels qui sont considérés comme un bon
modèle pour décrire les delafossites, dont les propriétés thermoélectriques attirent beaucoup
d’intérêt. De plus, leur comportement présente de fortes similitudes avec le liquide de Fermi,
mais à haute température. Ce comportement est analysé par les méthodes proposées. En
outre, nous montrons qu’il est possible d’extraire des propriétés de la densité d’états et le
dopage de ces matériaux dans ce cadre.
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rature scales. These methods include both numerical ones on the one hand and analytic ones
on the other. The former ones operate within the framework of the density matrix renorma-
lization group aiming to characterize a system at finite temperature by a set of states. The
latter ones are applied to the density of states of slightly modified two-dimensional systems
which are believed to describe the delafossite compounds. These materials recently attrac-
ted a huge interest due to their thermoelectric properties, but have revealed a behavior at
intermediate temperatures resembling a Fermi liquid one. This behavior is examined with
the proposed methods. Furthermore, it is shown that properties of the density of states as
well as the charge carrier density of those materials can be extracted from a careful study.
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Abstract

This work aims to propose techniques to access physical properties at intermediate temper-
ature scales. These methods include both numerical ones on the one hand and analytic ones
on the other. The former ones operate within the framework of the density matrix renor-
malization group aiming to characterize a system at finite temperature by a set of states.
The latter ones are applied to the density of states of slightly modified two-dimensional
systems which are believed to describe the delafossite compounds. These materials re-
cently attracted a huge interest due to their thermoelectric properties, but have revealed
a behavior at intermediate temperatures resembling a Fermi liquid one. This behavior is
examined with the proposed methods. Furthermore, it is shown that properties of the
density of states as well as the charge carrier density of those materials can be extracted
from a careful study.

Résumé

Dans cette thèse, des méthodes sont présentées pour accéder aux propriétés physiques dans
un régime de températures intermédiaires. Cela comporte non seulement des techniques
numériques mais aussi des méthodes analytiques. Les premières sont discutées dans le cadre
du groupe de renormalisation de la matrice densité, dans le but de décrire des systèmes
possédant une échelle de température par un ensemble d’états. Les autres sont appliquées
à la densité d’états de systèmes quasi-bidimensionnels qui sont considérés comme un bon
modèle pour décrire les delafossites, dont les propriétés thermoélectriques attirent beaucoup
d’intérêt. De plus, leur comportement présente de fortes similitudes avec le liquide de Fermi,
mais à haute température. Ce comportement est analysé par les méthodes proposées. En
outre, nous montrons qu’il est possible d’extraire des propriétés de la densité d’états et le
dopage de ces matériaux dans ce cadre.

Kurzbeschreibung

Ziel dieser Arbeit ist es Methoden vorzustellen, die Temperaturbereiche zwischen der Hoch-
und Tieftemperaturentwicklung erschließen können. Dies beinhaltet einerseits numerische,
andererseits aber auch analytische Vorgehensweisen. Erstgenannte Methoden arbeiten im
Rahmen der Dichtematrix-Renormalisierungsgruppe, um Systeme bei endlicher Tempera-
tur durch eine Vielzahl von Zuständen zu beschreiben. Die anderen Vorgehensweisen wer-
den auf eine leicht modifizierte zweidimensionale Zustandsdichte angewendet, welche die
Klasse der Delafossite beschreibt. Diese Materialien stehen seit kurzem wegen ihrer thermo-
elektrischen Eigenschaften im Fokus der Wissenschaft. Zudem zeigen sie ein Verhalten, das
stark einer Fermiflüssigkeit ähnlet – allerdings bei Raumtemperatur. Dieses Verhalten wird
mit den vorgeschlagenen Vorgehensweisen untersucht. Dabei wird dargestellt, wie Eigen-
schaften der Zustandsdichte sowie der Dotierung aus einer solchen Untersuchung ermittelt
werden können.
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Chapter 1

Introduction

1.1 Motivation

Humanity has always struggled with the goal of conserving energy. While ages ago this
meant conserving the strength of one’s own body in order to activate energy reserves in
case a predator appears, nowadays we think more globally about how to deal with the
limited resources of our planet. In the process of using renewable energies, reusing wasted
energy has been put into focus as well. In particular, car industry found that nearly two
thirds of the energy stored in gasoline is blown out of the exhausting pipe as heat. As a

Thot

Tcold

~jSn p n

Figure 1.1: One element of a thermoelectric generator [1] consists of serial con-
nected pairs of thermoelectric materials (here: differently doped semi-conductors
denoted by n and p) which are meandered. If the upper area is connected to
a hot reservoir Thot, entropy is transported towards the lower plane at Tcold by
different kind of charge carriers inside the pairs symbolized by ◦ and •. The
lower end of a material with negative charge carriers will therefore be placed on
a lower electronic potential ⊖ than the one with hole-like charge carriers. Hence,
an electric voltage bias is generated. The ratio of this conversion of heat energy
into electrical energy is defined as the thermopower.
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Figure 1.2: The quadratic behavior of the electronic contribution to the resistivity
σ−1 from Fermi liquid theory showed to be valid up to the freezing point of water
(dotted temperature on the right-hand side) and above in titanates Sr1−xLaxTiO3

according to [18].

solution various enterprises are trying to make this wasted heat again available by the use
of thermoelectric generators [2].

Since the first days of space exploration those generators were used in order to power
self-contained probes by means of the heat of radioactive materials [3]. However, the
success of this technology in everyday life was hindered until now by issues concerning the
efficiency of these generators. In order to overcome this drawback such generators consist
of multiple layers of thermoelectric elements which are built up of only two wisely chosen,
alternately stacked materials (cf. Fig. 1.1). The important feature of these materials is that
they differ in the sign of the thermopower S = ∆V/∆T , the final voltage drop ∆V which
lies at the electrically disconnected material related to the applied temperature difference
∆T = Thot − Tcold. The maximum efficiency η of energy conversion of one pair of those
materials with similar absolute value of their material properties is then given by the
thermopower [4]:

η = ηCarnot

[ √
1 + ZT − 1√

1 + ZT + Tcold/Thot

]

with Z = S2σ

κ
, (1.1)



CHAPTER 1. INTRODUCTION 11

 0

 50

 100

 150

 200

 250

 300

 0  200  400  600  800  1000

S
 [

µV
/K

]

T [K]

x = 1%

x = 4%

x = 10%

 2

 4

 6

 8

0 50 100  

σ-1
 [

m
Ω

cm
]

T
2
 [10

4
 K

2
]

x = 4%

x = 10%

Figure 1.3: The thermopower of Mg-doped CuRhO2 shows above room tempera-
ture a linear behavior while the resistivity (inset) is characterized by a quadratic
behavior with respect to temperature. In addition, for the highest doped sample
another linear (quadratic) region with a different coefficient is observed at low
temperature [23].

where ηCarnot specifies the maximal obtainable efficiency as given in a Carnot process,
T = (Thot + Tcold)/2 denotes the averaged temperature, while σ and κ represent the elec-
trical and heat conductivity of the used thermoelectric material whose ratio is often fixed
by the Wiedeman-Franz law [5, 6]. Promising candidates, like manganites [7], titanates [8],
clathrates [9, 10], skutterudites [11] or delafossites [12–15], showed that high efficiency can
be obtained from correlated metals with narrow bands [16] as well as band insulators with
sharp band edges [17].

Furthermore, since the goal is a high efficiency at room temperature it might ques-
tion the use of theoretical frameworks, like Fermi liquid theory, since they usually contain
low temperature expansions. Nevertheless, some materials like the titanates have shown a
broad temperature region where the behavior from Fermi liquids theory is valid even up
to room temperature (cf. Fig. 1.2) [18]. As will be shown in section 2.3, this theory leads
to a quadratic resistivity and a linear thermopower with respect to temperature. Such a
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behavior has been found in the materials mentioned below (1.1), although deviations were
noticed at very low temperature (cf. Fig. 1.3). Additionally, in some cases an offset was
observed too [19–21]. In measuring the low temperature behavior of these quantities for
some delafossites [22, 23] a Fermi liquid behavior was obtained at low temperature which
contains a different slope in the thermopower, respectively a different quadratic coefficient
in the resistivity and where no offsets were required. Thus revealing the behavior at room
temperature to be apparently a Fermi liquid behavior. This phenomenon might be ex-
plained by a structural phase transition, but this has never been evidenced experimentally.
For other explanations of this behavior, which will be called an apparent Fermi liquid
(AFL) one, theoretical tools have to be introduced in order to access this intermediate
temperature range.

Before addressing this question in chapter 3 and 4, the key aspects of the materials,
where this kind of behavior was found, is addressed in the following section 1.2. Chapter 2
will then introduce the theoretical framework of accessing quantities which are dependent
on temperature in general, where the observed Fermi liquid behavior is quantitatively
explained too. The final chapter 5 will summarize the results.

1.2 The Delafossites

In 1873 Friedel named the commonly found mineral CuFeO2 after his colleague Gabriel
Delafosse [24]. Nearly a century later it was shown that in the same structure several com-
pounds crystallize, allowing a systematic study of the group which was therefore called the
delafossites [25, 26]. In this group, copper could even be replaced by platinum, palladium
or silver, leading to rarely known crystalline oxides of noble metals. However, these sub-
stances are not so important for thermoelectric applications since this replacement leads to
a d9 configuration of the substituents and therefore a metallic behavior with a good heat
conductivity (cf. (1.1)).

More important in this sense is the semi-conductor class. Additionally, it shows a rich
variety of physical systems due to an underlying low dimensional structure. This range
reaches from band insulators, like CuRhO2 [19] over multiferroica, like doped CuFeO2 [27],
to Mott-insulators, like CuCrO2 [28, 29], where an AFL behavior has been observed for
doped systems too. In section 4.5 and 4.6, the former and latter materials will be used to
apply the theory described in this work. The physics of these materials are governed by the
substituent of iron since the other metallic atom in the unit cell is in a d10 configuration
in this case. The observed effects of strong correlation is due to the close oxygen atoms,
mediating a superexchange coupling between these atoms (cf. Fig. 1.4). Moreover, the
oxygen atoms are octrahedraly coordinated around these atoms. From group theory as
well as from a near field expansion of the crystal field the five d-orbitals will split into
the two-fold degenerate eg and the three-fold degenerate t2g states [30]. Thus the different
shifts in energy of these states arising from the crystal field explains the semi-conductor
gap.
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a) Unit cell b) Connections of the octahedrons inside a layer

Figure 1.4: The structure of the delafossites (left) consists of hexagonal layers
(right) of one kind of atoms (blue) octahedrally coordinated (gray octahedrons)
with oxygen ones (red). The axis from the oxygen atoms to those of the transition
metal inside the layers are therefore perpendicular (bottom right). The layers
are separated by another kind of atoms (green), which are the copper ones for
the original CuFeO2. Furthermore, the layers are slightly shifted leading to a
rombohedral system with space group R3m.



14 1.2. THE DELAFOSSITES

-8

-6

-4

-2

 0

 2

 4

 6

Γ M K Γ A L M K H A

ε 
[e

V
]

kx

ky

kz

Γ

A

K

H

M

L

Figure 1.5: The electronic band structure of CuRhO2 (where the zero point of
energy was placed at the upper band edge of the highest occupied band dominated
by the t2g-orbitals of rhodium) as calculated by the augmented spherical wave
method according to [19], shows a dispersionless region along the direction K-H
(with respect to the Brillouin zone pictured on the left-hand side). The colors of
the band distinguish the dominant contribution of atoms in the unit cell according
to Fig. 1.4.

These octahedrons form layers which are separated by the copper atoms, like in the
perovskite structure. However, in contrast to this structure the layers are closer since
neighboring octahedrons not only share two, but three oxygen atoms. Therefore the layers
form a hexagonal lattice. Furthermore, the directions from the oxygen atoms to the low
dimensional lattice atoms form an angle of 90◦. Thus, the p-orbitals of the oxygen atoms
with maximum overlap to the lattice atoms do not overlap with each other. This would lead
to an insulating behavior even if the layer is doped. In contrast, experimentally, a metallic
behavior is observed in the doped case. Therefore small influences, like the asymmetric
configuration of the oxygen atoms in the crystal field, can cause significant change in
physical properties, leading to a perturbation of the two-dimensional environment.
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In order to consider all atoms in the unit cell, density functional theory as well as
augmented spherical wave methods have been applied to several classes of delafossites to
determine their electronic structure [19, 29, 31–36]. In some studies even the thermopower
could be accessed within the constant scattering time approximation of Boltzmann trans-
port theory [19, 33, 36]. In these investigations a strong increase of states at the band
edge was observed. Moreover, a recent one [19] revealed a dispersionless region in the
vicinity of the Fermi energy along a particular direction of the Brillouin zone (cf. Fig. 1.5).
This feature can be viewed as the residual effect of the previously described underlying
two-dimensional structure. Conclusively, this leads to a discontinuous augmentation of the
density of states at the band edge.

While on the one hand, such features might be difficult to resolve numerically, physical
properties on the other are known to be strongly dependent on such analytic anomalies.
As found for other anomalies, like a cusp in the density of states [37] or Van-Hove sin-
gularities [38, 39], this could render other phases observable, like marginal Fermi liquid
ones [38]. Furthermore, the discontinuous band edge can be seen as a quantum phase tran-
sition [40] where a metal-insulator transition occurs varying with the (doping dependent)
Fermi energy. Therefore the presence of a discontinuous density of states could cause novel
phases to emerge which might explain the observed AFL behavior.
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Chapter 2

Temperature Dependence
of Physical Quantities

In this chapter, the general theoretical framework of the calculation of physical quantities,
which are dependent on temperature, is discussed. The first section introduces the key
attributes by which clean physical systems are described. In particular, a simplified micro-
scopic model is introduced, to which the numerical techniques proposed in chapter 3 will
later be applied. Afterwards, the formalism for the calculation of thermodynamic prop-
erties in section 2.2 as well as transport properties in section 2.3 is discussed, in order to
understand the previously mentioned low temperature behavior of Fermi liquid theory.

Of course, this chapter should not be understood as replacing a profound study on these
topics but rather to summarize the key aspects qualitatively in order to illustrate the point
of the methods in the following chapters, as well as to distinguish the Fermi liquid behavior
from those later described. However, since the numerical computation in chapter 3 is often
done for fixed particle number, a method to calculate thermodynamic quantities in this
case is explained in order to obtain reference curves. In addition, an approximation is
introduced which enables the determination of the thermopower by equilibrium properties
in particular cases. For a thorough survey of the other topics the reader should refer to
further literature [41–44].

2.1 Non-interacting and Interacting Fermions

Quantum-mechanical particles are usually separated into two groups. Those which can
occupy the same quantum-mechanical state multiple times and those which can do so
only once. This work will consider only the latter one, in particular those which have an
anti-symmetric wave function and are named fermions. If the particles do not interact
with each other, the particles can move freely (with respect to the motion of the other
particles) and one superposes the wave function of each particle. This means the allowed
energies of the whole system E is fully determined by the single-particle energies ε. The
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Figure 2.1: The distribution and degeneracy of the energy levels of the ring
described by (2.3) with M = 14 sites and N = 7 fermion where no interaction
is present V = 0. Upwards the many-body energies are shown on a logarithmic
scale while downwards the single-particle ones can be viewed on an ordinary scale.
Apparently the number of states greatly increases for the former ones as are
the possible number of degenerate levels. The different gap sizes will play an
important role later on.

latter quantity usually depends on various quantum numbers including the spin. However,
in fully polarized systems the spin dependency can be neglected, naming the considered
fermions spinless. For convenience the other quantum numbers will be represented only by
one multi index k which becomes only a single index for one-dimensional systems.

In contrast, for interacting fermions, e.g. electrons which repel each other by the
Coulomb interaction, the self-energy Σ(ω, k) further enters, which appears in the single-
particle Green’s function

G(ω, k) =
1

ω − εk − Σ(ω, k)
, (2.1)

where ω denotes the Fourier transformed variable of time dependency scaled by the reduced
Planck constant ~. For small interaction strength Fermi liquid theory is often applicable.
Thereby the energy levels vary only adiabatically, leading to small changes in the self
energy. The real part of this quantity modifies then the dispersion relation only slightly
leading to a renormalization of parameters entering the single-particle energies εk, like
the introduction of an effective mass. However, since the self-energy can obtain complex
values, its imaginary part can lead to qualitative new features. In particular, in Fermi
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liquid theory this part is interpreted as the inverse of a finite lifetime,

τ−1(ε) = Im Σ(ε, k)
∣
∣
∣
∣
ε=εk

, (2.2)

of the quasi-particles with energy ε. This interpretation is due to the fact that, unlike in the
non-interacting case, the superposition of single-particle states are no longer eigenstates of
the full Hamiltonian. Therefore these single-particle states of the quasi-particles will decay
into many-body states. In general, it is therefore necessary to consider these states which
are usually described by the occupation number formalism, where the many-body states are
represented by the occupation numbers of each site. Respectively, it is more appropriate
to look at the many-body energies E than the single-particle ones ε (cf. Fig. 2.1). This
spectrum is broader and can obtain huge values of the degeneracy, especially in the non-
interacting case.

A simple system which exemplifies this difference and which is not described by a Fermi
liquid picture is a one-dimensional one where N spinless fermions are distributed on M
sites (cf. Fig. 2.2). For instance, it can be interpreted as one empty orbital of each of
the considered atoms, forming a ring in real space. Therefore in the case of M = 6 this
system can be seen as a simplified model of benzene, but larger rings can be realized
experimentally too [45, 46]. In the theoretical description the fermions are assumed to
be able to hop only to the closest sites with the hopping amplitude t. Additionally, an
interaction V is present between these neighboring sites. Therefore the Hamilton operator
takes in second quantization the form

Ĥ = t
M∑

j=1

(ĉ†j+1 ĉj + ĉ†j ĉj+1) + V
M∑

j=1

n̂j n̂j+1 , (2.3)

where n̂j = ĉ†j ĉj is the occupation operator and the operator ĉj destroys, respectively ĉ†j
creates, a fermion at the site j which can be occupied only once by one fermion. This leads
to the algebra described by

{ĉi, ĉ†j} = δi,j . (2.4)

Additionally, the ring geometry is considered by identifying the site M + 1 with the first
one, i.e. ĉM+1 = ĉ1, but could be modified by an additional phase if a magnetic field
is taken into account [47–54]. In addition, the model can include diagonal disorder by
adding terms for each site j which are proportional to n̂j [50–54]. Afterwards, a stochastic
sampling over ensembles with different proportionality constants is performed. The clean
model can also be mapped on a spin-1/2-chain, namely the XXZ model by a Jordan-Wigner
transformation [55].

In the case of the non-interacting system V = 0 the Hamiltonian can easily be diago-
nalized by a Fourier transformation

ĉj =
1√
M

∑

k

e−ijk ˆ̃ck with k ∈
{2π
M
n
∣
∣
∣
∣n ∈ {1, 2, . . . ,M}

}

, (2.5)
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Figure 2.2: The system modeled by (2.3) where the blue spheres represent the
sites which can be singly occupied by a fermion. These particles can interact with
fermions on neighboring sites, illustrated by the red connections, or can hop to
those sites if they are not occupied (green arrows).

where ˆ̃ck is the transformed annihilation operator. This leads to the single-particle energies
to be given by

εk = −2t cos k . (2.6)

While at finite system sizes M a gap is obtained due to the discrete spectrum, the finite size
gap vanishes in the limit of infinite system size M → ∞, and the momentum k becomes
continuous leading to a continuous dispersion relation εk. Furthermore, the appearance of
this quantity as a quantum number means that the fermions are fully delocalized through-
out the ring. Since the particles can not circumvent each other in the one-dimensional
environment, in the case of small interaction strength the low-energy excitations are col-
lective modes which are no longer characterized by the framework of Fermi liquid theory,
but by the description of a Luttinger liquid [56–58].
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Figure 2.3: Phase diagram of the ring (2.3) in the thermodynamic limit.

In contrast, if the Hamiltonian (2.3) is dominated by the interaction part (t = 0), the
ground state changes qualitatively. On the one hand, if an attractive interaction V < 0
is present, all particles will accumulate in one region of the system. Therefore the ground
state describing this phase separation would be M -fold degenerate and consists of the
states

| • • · · · •
︸ ︷︷ ︸

N

◦ ◦ · · · ◦
︸ ︷︷ ︸

M−N

〉, | ◦ • • · · · •
︸ ︷︷ ︸

N

◦ ◦ · · · ◦
︸ ︷︷ ︸

M−N−1

〉, . . . (2.7)

where • describes an occupied and ◦ an empty site, thus distinguishing this state from the
one obtained by (2.5). On the other hand for repulsive interaction V > 0 unoccupied sites
between the fermions are favorable. For an even number of sites M and exactly at half
filling N = M/2 only two states are therefore possible for the ground state where the sites
are alternately occupied in real space

| • ◦ • ◦ · · ·〉 and | ◦ • ◦ • · · ·〉 . (2.8)

Since the fermions usually carry charges, this phase is called a charge density wave. Fur-
thermore, moving a particle to another site for both phases would need a finite amount of
energy due to the finite interaction strength V . Therefore a gap arises between the ground
state and the first excited state which is not due to the finite system size, in contrast to
the non-interacting system. Thus, the system resembles a charge density wave insulator
in contrast to the metallic behavior of the non-interacting system. Similarly, an electron-
phonon interaction instead of the discussed electron-electron one would result in a charge
density wave as well, leading to a Peierls insulator due to the resulting deformation of the
one-dimensional lattice [59–61]. Furthermore, such a transition has been suggested in the
two-dimensional analog of this model, too [62, 63].

Therefore, for the general case of the Hamiltonian (2.3) two phase transitions between
these phases are expected (cf. Fig. 2.3). From the Bethe Ansatz [64–67] as well as from
the density matrix renormalization group method (DMRG) [68], which will be discussed
in section 3.2, the transition points have been found at V = ±2t. While for the charge
density wave this transition will only occur at half filling N = M/2, the transition point at
the edge of the phase separation phase is independent of the particle number in contrast
to systems like the t-J model where the spin of the fermions is taken into account [69, 70].
Furthermore, since the argument was made by only varying the interaction strength V as
system parameter both transitions should take place even at vanishing temperature. This
kind of transitions are therefore called quantum phase transition [40] in contrast to thermal
driven ones, like the melting of ice.
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2.2 Thermodynamic Properties

When considering physical systems, properties might change with different boundary con-
ditions. In particular, the system might interchange particles with its environment leading
to the distinction between the grand canonical ensemble, where this is possible, and the
canonical one, where this is restrained. The resulting thermodynamic properties, like the
specific heat C, differ for both cases in general, but can easily be calculated for non-
interacting fermions.

The basic quantity that defines thermodynamic properties is the partition function Z.
In general, this quantity can be obtained by trying to maximize the statistically defined
entropy S under the constraints given by the considered ensemble and the norm of the
probability distribution. In another approach it is obtained as the normalization of the
statistical operator Ŵ of the system. This operator can be calculated from the total
statistical operator describing the system and the environment, if the degrees of freedom
of the environment are traced out

Ŵ = Trenvironment Ŵtotal . (2.9)

Furthermore, assuming a large enough environment means that the variation on the energy
and particle expectation value will be small. Therefore the logarithm of the resulting
statistical operator can be expanded to first order in these quantities

Ŵ ∝ e−β(Ĥ−〈Ĥ〉) +βµ(N̂−〈N̂〉)+... , (2.10)

where the coefficients have already been associated as the inverse temperature β = 1/kBT
where kB denotes the Boltzmann constant, and the chemical potential µ. For the partition
function this leads to

Zµ = Tr Ŵ = Tr e−β(Ĥ−µN̂) =
∑

{n}

e−β(En−µNn) with Nn =
M∑

k=1

nk , (2.11)

where n is used, like in the following, as a multi index and whose entries nk run over all
the possible occupation numbers of a state, i.e. 0, 1 for fermions, and En denotes as before
the many-body energies of the Hamiltonian Ĥ. Here, the dependence of the partition
function on temperature via the inverse temperature β was suppressed, in contrast to the
dependence on the chemical potential in order to distinguish it from the quantity in the
canonical ensemble later on. Thermodynamic properties such as the internal energy1 U or
the entropy S are then given by the derivatives of this function:

Nµ = β−1∂ lnZµ
∂µ

Sµ = −kBβ
2∂β

−1 lnZµ
∂β

(2.12)

Uµ = µNµ −
∂ lnZµ
∂β

Cµ = kBβ
2∂

2 lnZµ
∂β2

(2.13)

1 To be precise, the internal energy U
(
N
(
(kBβ)

−1, µ,V
)
,S
(
(kBβ)

−1, µ,V
)
,V
)

where V represents the
volume given by the number of sites M for models like (2.3), is calculated above due to the dependencies
of the partition function.
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These relations can also be expressed in operator notation as

Nµ = 〈N̂〉β,µ , Sµ = −kBZµ〈ln Ŵ 〉β,µ, (2.14)

Uµ = 〈Ĥ〉β,µ , Cµ = kBβ
2
[

〈Ĥ2〉β,µ −
(

〈Ĥ〉β,µ
)2]

, (2.15)

where the thermodynamic expectation value of an operator X̂ is defined as

〈X̂〉β,µ = Z−1
µ Tr

(

Ŵ X̂
)

. (2.16)

For a non-interacting system with M single-particle states the grand canonical partition
function can be written as the product of the distributions of single particles:

Zµ =
∑

n1

∑

n2

· · ·
∑

nM

e−β
∑M

k=1
nk(εk−µ) =

M∏

k=1

∑

n1

e−βn1(εk−µ) =
M∏

k=1

Zk (2.17)

Thereby it could be seen, that even the zero point of the single-particle energies is arbitrary
if the chemical potential is measured from the same point. Furthermore, in a fermionic
system the occupation number n1 of eigenstates can only be zero or unity as mentioned in
the last section. Therefore defining the distribution of a single particle by the reciprocal
of the Fermi function f :

Zk =
1∑

n1=0

e−βn1(εk−µ) = 1 + e−β(εk−µ) =
1

f
(

− β(εk − µ)
) (2.18)

Thus all quantities in (2.12) and (2.13) can easily be obtained. However, for a large system
size M the product in (2.17) might be difficult to evaluate. This product becomes a sum if
put in (2.12) or (2.13) due to the logarithmic dependence of the thermodynamic properties
on the partition function. Therefore this sum is usually rewritten by the density of states
ρ into an integral

∑

k

F (εk) = M
∫ ∞

−∞
ρ(ε)F (ε) dε with ρ(ε) =

1
M

∑

k

δ(ε− εk) . (2.19)

This description is especially beneficial in the thermodynamic limit, where the system size
M tends to infinity but a constant density is assumed. Thereby the sum in the definition
of the density of states becomes an integral with a prefactor of M/(2π)d, where d denotes
the dimension, explaining the prefactor in the definition (2.19). For instance, this quantity
of a d-dimensional system with the dispersion relation

εk =
~

2k2

2m
with k ∈ R (2.20)

can be derived as

ρ(ε) =
Sd (2m)d/2

2 (2π~)d
εd/2−1 , (2.21)
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where m describes the mass of the considered particles and Sd denotes the area of the unit
sphere in d dimension, e.g. S1 = 2, S2 = 2π or S3 = 4π. While for a one-dimensional
system this expression shows a square-root singularity at ε = 0 known as a Van-Hove
singularity, it is constant for a two-dimensional system like the idealized one discussed in
section 1.2.

The transfer from a grand canonical to a canonical ensemble is usually done by a
Legendre transformation between the grand canonical potential Ω = −β−1 lnZµ and the
free energy F = −β−1 lnZN . Thereby, the dependence on the chemical potential µ changes
to one on the fixed particle number N , i.e. F (N) = Ω

(

µ(N)
)

+ µ(N)N . Thus the needed
task for this transformation is determining the chemical potential for the desired particle
number. This leads to the challenge of inverting the particle number condition,

Nµ/M =
∫ ∞

−∞
ρ(ε) f

(

β(ε− µ)
)

dε , (2.22)

following from putting (2.18) in (2.12) and applying the transformation (2.19). The oc-
curring integral can be found as a series in the polylogarithm function Lis+1, where the
order s ∈ C is given by the corresponding power in the expression of the density of states
as a series of such powers (cf. appendix). However, the inversion of these functions can
usually not be expressed as finite combinations of elementary functions. Therefore it is
only possible to treat them in approximations or numerical evaluation.
The most famous of these approximations would probably be the Sommerfeld approxi-
mation. For this, the integral in (2.22) is expanded for low temperature by considering
the deviation of the Fermi function from a step function. The result for a non-interacting
three-dimensional system, which is described by the density of states in (2.21), would be a
behavior which would be quadratic in temperature. This leads to a quadratically depen-
dent chemical potential, too, and through similar derivation rules as in (2.12) and (2.13)
to a linear specific heat:

µ = εF −̟T 2 CN = γ T +O(T 3) , (2.23)

where εF describes the Fermi energy (cf. Fig. 2.4) and ̟ and γ are material dependent
coefficients. They are given for a three-dimensional system with (2.20) by

̟ =
π2kB

2

12εF
, γ =

π2kB
2

2εF
N . (2.24)

In the Fermi liquid theory of interacting systems these parameters get renormalized, but a
linear behavior of the specific heat with respect to temperature still remains, in contrast to
critical systems [71–73]. This result can be visualized by the use of the Fermi surface too
(cf. Fig. 2.4). The temperature raises the energy of the fermions by kBT . However, since at
zero temperature the particles occupy every state of the density of states below the Fermi
energy only those with an energy around this energy scale contribute to the specific heat,
leading to the system dependent parameter γ.
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kF
kBT

kBT

Figure 2.4: At zero temperature the states which are lowest in energy, are filled
by the particles which have a wave vector smaller than kF which corresponding
energy is the Fermi energy εF . Since every state can be occupied only once,
this leads to the Fermi surface separating occupied and empty states. At finite
temperature excitations around this Fermi surface can happen with maximum
energy kBT (left). Therefore the scattering of two quasi-particles, which describe
the excitations, can maximally transfer the same amount of energy (right).

Although with the above mentioned technique physical quantities usually needed can
easily be obtained, numerical simulations are often limited to finite system sizes as will
become clear later on. For such finite system sizes the quantities of the grand canonical
system vary from the ones in the canonical ensemble. Nevertheless, the latter ones can
still be calculated by the partition function but the sum in (2.11) has to be restricted to
those states which obey the fixed particle number N . In addition the chemical potential
will not appear:

ZN = Zµ=0

∣
∣
∣
particle number=N

=
∑

{n}

e−βEn
∣
∣
∣
particle number=N

(2.25)

The difference between both ensembles can already be seen at low temperatures. For both
ensembles, the behavior for those temperatures is given by the first terms describing the
many-body level spacing ∆ between the ground state and the first excited states due to
the finite system size in the corresponding ensemble:

Z = 1 + e−β∆
(

1 +O( e−βδ)
)

, (2.26)

where δ denotes the level spacing between the first two excited states. The relation in (2.13)
will then lead to a low temperature behavior of the specific heat familiar from insulators

C = kB∆2β2 e−β∆ +O(β2 e−2β∆) +O(β2 e−β(∆ + δ)) . (2.27)

Note that in a grand canonical system of non-interacting fermions the gap ∆ is given by
inserting an additional fermion into the system which occupies a state with the energy
εnF+1, where nF denotes the highest occupied single-particle level in the ground state
(cf. Fig. 2.5). In contrast, for a canonical system additional energy is necessary to release
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grand canonical

nF

nF + 1

canonical

Figure 2.5: Illustration of the lowest energy excitation of grand canonical and
canonical systems with finite size. In the former one lesser energy is needed to
occupy the first excited state than in the latter one, since in this ensemble the
particle of the highest occupied state has to be released first.

a fermion from its original state so that it can occupy the next higher one. Therefore
the finite size gap ∆ of a canonical system is larger than the one in the grand canonical
system, resulting in different exponential increase of the specific heat at low temperatures
(cf. Fig. 2.6).

The restriction to states which fulfill the particle number constraint in the case of the
canonical ensemble can be treated exactly too. The constraint as formulated by Kronecker’s
delta can be dealt with by using its Fourier transformed representation:

ZN =
∑

{n}

e−β
∑

k
εknk δN,

∑

k
nk

(2.28)

=
1
M

Re
M∑

p=1

∑

{n}

e−β
∑

k
εknk + 2πip(

∑

k
nk−N)/M (2.29)

=
1
M

Re
M∑

p=1

e−2πipN/M
∏

k

1∑

nk=0

e−βεknk + 2πipnk/M (2.30)

Here, the periodicity of the Fourier transform was chosen as M since the maximal viola-
tion of the constraint will always be lower than that number for singly occupied states.
From (2.30) the canonical partition function can be calculated from the grand canonical
one using an imaginary chemical potential. This is similar to the Popov-Fedotov trick in
the two-dimensional anti-ferromagnetic Heisenberg model, where such a chemical potential
was used in order to constrain the local auxiliary-fermion-charge [74]. In the calculation
above the problem was restricted to its real part which can easily be evaluated when us-
ing the complex logarithm after the sum over the occupation of one state is performed
in (2.30):
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Figure 2.6: Comparison of the specific heat of a canonical CN and a grand
canonical system Cµ for different system sizes M as calculated by taking the
derivatives of (2.33) and (2.17) with (2.18) according to (2.13) for the ring (2.3).
The different gap ∆ between the ground state and the first excited state of the
grand canonical or canonical system causes the curves to approach the specific
heat in the thermodynamic limit from upwards or from below. As seen, both
curves for a system size of M = 1050 coincide in the diagram and therefore can
be viewed as the one in the thermodynamic limit.

ZN =
1
M

Re
M∑

p=1

e−2πipN/M exp

(
∑

k

ln
(

1 + e−βεk + 2πip/M
)
)

(2.31)

=
1
M

M∑

p=1

cos

(

2πpN/M −
∑

k

arctan

[

sin(2πp/M)
eβεk + cos(2πp/M)

])

·

·
∏

k

√

1 + e−2βεk + 2 e−βεk cos(2πp/M) (2.32)

The p = M term in this expression resembles the grand canonical result with vanishing
chemical potential. In using further the symmetry of this expression under the transforma-
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tion p→M−p the relative difference between the canonical and grand canonical partition
function, with vanishing chemical potential, is obtained

ZN − Zµ=0

Zµ=0

= (−1)N
∏

k

tanh(βεk/2)
∣
∣
∣
M even

+ 2
⌊(M−1)/2⌋
∑

p=1

cos

(

2πpN/M −
∑

k

arctan

[

sin(2πp/M)
eβεk + cos(2πp/M)

])

·

·
∏

k

√
√
√
√1 +

cos(2πp/M)− 1
cosh(βεk) + 1

, (2.33)

which turns out to be numerically stable even for low temperatures (cf. Fig. 2.6). Since
the sum has been reduced by adding the p and M − p values, a term appears when the
sum contains an odd number of terms. This resulting first term in the expression above
might resemble a qualitative difference between and even and odd number of particles. For
the ground state of a one-dimensional system such a qualitative difference is known by the
application of Legett’s theorem [75] to the ring (2.3) which has been derived for polarized
systems as well [76].

The different finite size gaps of a canonical and a grand canonical system impli-
cates another interesting feature which can be exemplified using the above formula (2.33)
(cf. Fig. 2.6). For M = 2 the grand canonical system of (2.3) resembles the two-level
system where a Schottky-anomaly is known in the specific heat. When increasing the
system size an additional peak emerges from this anomaly since the exponential increase
due to the finite size gap (2.27) does not match the one of the original anomaly. Between
these features a linear region appears, which extends to vanishing temperature in the ther-
modynamic limit, where the position of the finite size peak is suppressed. This result is
also known from conformal field theory from which the slope as defined in (2.23) is given
by [77, 78]

γ =
πkB

2

6t
M . (2.34)

Furthermore, the approach of the canonical system towards the thermodynamic limit shows
a slightly different behavior due to the above discussed different finite size gaps (cf. dis-
cussion after (2.27)). Therefore the linear region, when extrapolated to vanishing specific
heat, does not intersect the origin, but the intersection point moves towards it if the system
size is increased. In this sense, the grand canonical version can be regarded as resembling
the thermodynamic limit better than the canonical one. However, in numerical simulations
the canonical version might be more easily accessible since the restriction to the states of
a canonical system reduces the amount of memory needed as will be further discussed in
section 3.1.
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2.3 Transport Properties

Within Drude transport theory [79] the electrical conductivity is given by

σ =
q2Nτ

mV , (2.35)

where q and m denote the charge and mass of the conducting particles and V represents
the volume while τ is the mean time between two scattering events, i.e. the time those
particle remain in the same momentum state. Since for non-interacting fermions the parti-
cles always remain in their initial momentum state this time τ would be given by external
processes, like impurity scattering [43]. However, for interacting fermions the finite lifetime
might be shorter than the times of these external processes and will therefore cause signif-
icant changes in the conductivity of a lattice. The rate of the decay of the quasi-particles
is usually given in second order in the interaction strength by the imaginary part of the
Feynman diagram

but can be estimated by Fermi’s golden rule when considering the scattering of two quasi-
particle excitations above the Fermi surface (cf. Fig. 2.4) [80]. In this formula, the transition
probability would be determined by the product of the processes that the one quasi-particle
can increase its energy and that the other one can decrease its by the same amount. Both
processes are proportional to the maximal transfered energy ∆ε. At finite temperature,
this energy is given by the thermal energy kBT . Since the determined transition proba-
bility is proportional to the inverse life time, the electrical contribution to the reciprocal
conductivity would be quadratic with temperature

σ−1 ∝ τ−1 ∝ ∆ε2 ∝ T 2 , (2.36)

as was seen experimentally (cf. Fig. 1.2). Furthermore, a universal ratio A/γ2 was found
in experiments where A denotes the quadratic coefficient of the resistivity with respect
to temperature, i.e. the proportionality constant of (2.36), and γ was defined in (2.23).
Even heavy fermion compounds [81] as well as metallic oxides [82–84] seem to obey this
Kadowaki-Woods relation although with a different value than simple metals due to many-
body correlations [85] (cf. Fig. 2.7). This behavior is in contrast to the known activated
behavior of an insulator [6]:

σ−1 ∝ V/N ∼ eβ∆/2 , (2.37)

where ∆ denotes again the gap of the insulator, which was seen for one sample in the inset
of Fig. 1.3.
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Figure 2.7: Quadratic coefficient of the resistivity against the linear one of the
specific heat according to [82]. Transition metals follow the Kadowaki-Woods ratio
A/γ2 = 4 · 10−7 µΩcm/(mJ/Kmol)2 (solid line) while heavy fermion compounds
exhibit the slightly larger value of A/γ2 = 1 · 10−5 µΩcm/(mJ/Kmol)2 (dashed
line).

Another quantity mentioned previously in (1.1) important for practical applications
is the thermopower. This quantity is defined as the voltage drop ∆V resulting from a
temperature gradient ∆T where no particle current or concentration gradients are present.
It can therefore be expressed as the ratio of correlation functions [44]:

S =
∆V
∆T

=
1
qeT

〈ĵQĵn〉
〈ĵnĵn〉

(2.38)

=
1
qeT

(

〈ĵE ĵn〉
〈ĵnĵn〉

− µ
)

(2.39)

=
1
qeT

(

E0(T )− µ(T )
)

, (2.40)
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where the first law of thermodynamics was used to obtain (2.39) and qe denotes the negative
charge of the electron while ĵn, ĵQ and ĵE describes the particle, heat and energy current
operator respectively. In the last step the thermopower was decomposed into a transport
property described by the function E0(T ) and a term determined from the equilibrium
situation given by the chemical potential. Nevertheless, the actual value of these two
terms are explicitly dependent on the zero point of the single-particle energies. When
considering a specific temperature T the expression in the brackets of (2.40) represents
the chemical potential when the single-particle energies are shifted by E0(T ). Therefore
the actual value of the thermopower for this specific temperature is fully determined by
the equilibrium situation but in a reference frame in which the correlation function 〈ĵE ĵn〉
vanishes. Although for the full temperature dependence of the shift E0 transport theory
is still needed, it can be estimated in special cases.

In the limit of very high temperatures, Chaikin and Beni argued that the transport
function E0(T ) takes a constant value within Kubo formalism [86]. They even determined
it in the atomic limit by stochastic arguments, and this convenient formula became known
as the Heikes formula

S =
kB

qe
ln

1− x
x

, (2.41)

where x denotes the doping. The doping dependence of this formula was applied to many
systems although it needed to be modified in case of degenerate systems or in the presence
of an interaction scale which is even much greater than the temperature scale [86–93]. How-
ever, as neither the temperature nor the dimensionality of the system enter these formulas,
using them might be questionable, especially if the thermopower decreases when increas-
ing the temperature above the application region where it had seemed to saturate [92, 93].
Applying these formulas to the delafossites discussed in section 1.1 would raise doubts,
too, due to the observed linear behavior of the thermopower in temperature, which was
defined as the one of the AFL. Therefore formulas for the thermopowers depending on
temperature at intermediate temperature ranges are needed.

When considering a single resonant level, e.g. in molecular junctions, another expression
can be derived in case the coupling to ballistic leads is weak and temperature indepen-
dent. If such a level is in resonance, i.e. at the same energy as the chemical potentials of
both leads, a temperature gradient would not lead to a current I due to the symmetry
of the model. Therefore the thermopower (2.38) would vanish. Thus in the following will
be considered the opposite situation where the level would be far away from the chemi-
cal potentials. In this limit, the Lorentzian transmission T (ε) for the non-resonant level
model [94] might be expanded in terms of the broadening Γ of the level

T (ε) = Γ δ(ε− ε0 ) +O(Γ2) , (2.42)

where ε0 denotes the energy of the level and the normalization at zero temperature was
taken into account. The Landauer formula [95, 96] for the tunneling current I gives for
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such a transmission in the spinless case

I =
qe
π~

∫

T (ε)
[

f
(

βL(ε− µL)
)

− f
(

βR(ε− µR)
)]

dε (2.43)

=
qeΓ
π~

[

f
(

βL(ε0 − µL)
)

− f
(

βR(ε0 − µR)
)]

, (2.44)

where ~ is the reduced Planck constant and the inverse temperature β as well as the
chemical potential µ in the left and right lead where distinguished by the indices L and R.
For the condition that no current flows I = 0, which was asked for in the definition of the
thermopower, the Fermi functions and therefore their arguments have to be equal

(ε0 − µR) kBTL = kBTR (ε0 − µL) . (2.45)

In expressing therein the quantities of the left and right environment by their small dif-
ferences qe∆V and ∆T as well as the averaged temperature T and chemical potential µ
previously used, the thermopower is obtained according to (2.38) as

S =
1
qeT

(

ε0 − µ
)

. (2.46)

Therefore the E0(T ) function assumes the constant position of the considered level ε0. Fur-
thermore, the same relation can be derived when the transmission is governed by thermal
processes [97].

Motivated by the results of these formulas the temperature independent correlation
functions ratio approximation (TICR) approximates the transport term of the thermopower
as a constant E0(T ) ≈ E0 in a certain temperature region [98]:

S(T ) ≈ 1
qeT

(

E0 − µ(T )
)

(2.47)

Thereby, the freedom of choice for the zero point of the single-particle energies is preserved.
Furthermore, regarding the constant E0 as an independent parameter may include some
contributions of electron-electron scattering or electron-phonon scattering. The latter one
can be treated approximately as well. However, a detailed study on a cubic lattice [99,
100] pointed out a linear behavior of the thermopower with respect to temperature in
the low and high temperature limit, but without an offset. In addition, the obtained
features at intermediate temperatures of this calculation get smeared over for large Debye
temperatures, which were reported for several delafossites [101–103]. Therefore, this work
will only consider the purely electronic part of the thermopower while the effects of the
phonons will merely be accounted by the E0 parameter.

Of course, such a determination of a transport property by results known from the
system at equilibrium will not always be possible. For instance, while this approximation
might work well for high temperatures where the chemical potential has left the conduction
band and this band might seem as a single level as in (2.46), it will fail at low temperature:
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Figure 2.8: Absolute value of the linear coefficient of the thermopower against the
one of the specific heat in the low temperature limit from data collected in [104].
The different point types represent different sign of the thermopower.

This can be seen when looking at the thermopower of a metal. In this case this quantity
vanishes at zero temperature. This means that the TICR constant E0 takes the value of
the Fermi energy:

E0 = εF (2.48)

With the chemical potential from (2.24) this gives a linear thermopower

STICR = − π
2kB

2

12qeεF
T . (2.49)

However, the temperature dependence of the transport function E0(T ) is still important:
Within the framework of Boltzmann transport theory a linear thermopower in Fermi liquid
theory could be derived [104]

S =
π2kB

2

2qe

T

εF

(

1 +
2
3
ξ
)

. (2.50)
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Thereby, the coefficients of non-interacting fermions in three dimension with the common
dispersion relation (2.20) are renormalized in the Fermi liquid by the correlation length ξ.
In comparing this result to the one previously derived from the TICR (2.50) the quadratic
term of the E0(T ) function seems to contribute to the thermopower by three times the
amount of the chemical potential at low temperatures. Also in other models such deviation
at low temperatures have been observed by the use of a finite frequency formulation of the
thermopower [105–109].

Surprisingly, when comparing the thermopower (2.50) to the specific heat (2.23) another
universal ratio q is found for a non-interacting fermionic system:

q = −S qe
T γ

= − 1
N

(2.51)

Furthermore, it could be shown that this ratio remains even if scattering processes are
considered [110]. Therefore, this constant ratio has been found experimentally, too
(cf. Fig. 2.8).
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Chapter 3

Numerical Evaluation
at Finite Temperatures

In this chapter, the numerical evaluation of the expectation values (2.14) and (2.15) is
discussed. At present, these can be numerically determined using techniques like density
functional theory [111] or quantum monte carlo techniques [112, 113]. However, this work
will be concerned about the implementation of a temperature scale into another technique,
namely the density matrix renormalization group method. While this technique can be
applied to any fermionic system formulated in second quantization without any further as-
sumptions, it is usually efficient only in one-dimensional systems. Even so, the application
to systems with higher dimension is still part of ongoing research [114–116].

Due to the two-dimensionality of the delafossites, this method will therefore be applied
to the model introduced in (2.3). Furthermore, owing to the question of efficiently im-
plementing a temperature scale, the thermopower is not yet accessible by this approach.
This question is successfully addressed for a system with weak interaction strengths in
section 3.5, and in section 3.6 a general scope is presented. Before this the numerical
approach by (iterative) diagonalization is introduced in the following section 3.1, as well
as the density matrix renormalization group (DMRG) technique in section 3.2. The final
section 3.7 will summarize the results.

3.1 Exact Diagonalization

Often, a physical system is reduced to only a few key features. For instance, in the tight
binding approximation used in section 2.1 the motion of a particle like an electron is
restricted to the hopping between lattice sites. Furthermore, the infinitely many orbitals
of an atom at a lattice point in the considered crystal is usually modeled by taking only
a few of them. This leads to a finite number of states for such systems which can be
represented as vectors in a Hilbert space H with finite dimension. The physical quantities,
which are represented by quantum mechanical operators, are then described as matrices
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in this space. Finding all excited states of the Hamiltonian Ĥ therefore reduces to the
problem of diagonalizing the Hamilton matrix H.

With modern computers, this problem can easily be solved for small systems, i.e. a
small number of lattice points and only a few orbitals per site. However, on increasing
the system size the Hilbert space H grows very fast. For instance, while for a canonical
system of N = 5 spinless fermions distributed on M = 10 singly occupied sites only 252
many-body states have to be considered, for twice the number of particles and sites more
than 105 states need to be determined. This leads to a total cost of memory up to 273 GB
(for the storage of a fully occupied Hamilton matrix in double precision). Of course, this
amount can be reduced by considering more symmetries of the system, but the scaling to
larger systems still remains that drastic. Therefore means have to be developed to reduce
the Hilbert space H during the calculation to only those states, which are important for
the actual quantity one is interested in.

Since often the attention is focused on ground state properties, the method has been
extended to include iterative techniques. An important role is played by those using Krylov
subspaces Kn. With each iteration n, these subspaces cover a growing part of the Hilbert
space H. This allows one to save memory if the iterating process is stopped at a given
tolerance of the desired quantity. The subspaces Kn are build as the linear span of those
vectors, which are generated from an initial vector |i〉 by applying the Hamilton matrix H
multiple times:

Kn =
[

|i〉, H|i〉, H2|i〉, . . . , Hn|i〉
]

(3.1)

The state generated from the initial vector |i〉, which is usually chosen randomly, would
then tend towards the ground state of the Hamiltonian, providing it has a finite overlap
with this state. In addition, the Lanczos algorithm [117] orthonormalizes these vectors as
they are generated, leading to a basis of this subspace






|m〉 =



H|i〉 −
∑

p<m

〈m|H|i〉 |m〉


 /N
∣
∣
∣
∣m = 1, 2, . . . , n






, (3.2)

where N is chosen so that 〈m|m〉 = 1. This leads to a representation of the Hamiltonian
as a trigonal matrix which is easily diagonalized.

However, Davidson [118] showed that a faster convergence is obtained, if a so-called
preconditioner A is used. His algorithm can be expressed by considering the eigenvectors
|nk〉 and eigenvalues λn,k of the Hamilton matrix HK projected to the previous Krylov
space of the former iteration Kn. Thereby, the new basis vector of the Krylov space for
the subsequent iteration Kn+1 is given by the component of

[A− λn,k1H]−1(H − λn,k1H)|nk〉H (3.3)

orthogonal to the previous ones. For the practical algorithm, the eigenvector |nk〉 has to be
transformed from a basis representation of the Krylov space (3.1) (where only n numbers
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are necessary to identify a state) to vectors lying in the whole Hilbert space H. This trans-
formation is usually shifted into the operator in round brackets. That operator determines
the residual vector, i.e. the error vector of the generated state to the actual k-th eigenstate
of the Hamilton matrix. In order to assure faster convergence, the additional operator
given by the square brackets in (3.3) is applied leading to the correction vector. Prefer-
ably, the preconditioner A would be the full Hamilton matrix, so that this process would
give the true eigenstate after one step. However, inverting the full Hamilton matrix would
be another tough issue. Therefore, the matrix A denotes an approximation to the original
Hamilton matrix which is easy to invert. For instance, for A = 1 again the Lanczos algo-
rithm is obtained, while in the original Davidson algorithm the matrix containing only the
diagonal elements of the Hamilton matrix is used. Nevertheless, more advanced algorithms,
like the Jacobi-Davidson one [119], usually consider more sophisticated preconditioners.

While the iterative techniques reduce greatly the amount of memory needed to obtain
and store the results, building up the system still requires a lot of resources. If only non-
interacting particles are concerned an M×M -matrix is sufficient. However, for interacting
particles the Hamilton matrix has to be build in the many-body basis as discussed in
section 2.1, leading again to memory problems. To overcome this difficulty, techniques
have been developed using the renormalization group.

3.2 The Density Matrix Renormalization Group

In the year 1971, Wilson introduced renormalization group theory to second-order phase
transitions and critical phenomenon, and was by this mean able to solve the Kondo prob-
lem [120, 121]. In these problems correlations appear on various energy scales, leading
to the failure of perturbation theory. The main idea of renormalization group theory is
now to tackle the physical problem in steps, one for each scale. By renormalizing system
parameters, the model at a larger scale is then mapped onto one at a smaller scale. How-
ever, this reduction of used basis states in order to describe the system still needs a clear
separation of energy scales for the numerical renormalization group (NRG). In contrast,
transport functions, boundary conditions or interactions in a tight binding model require
representations other than the one given by the lowest eigenfunctions of the Hamiltonian as
used in NRG. In order to find targets better suited for a given system, the density matrix
renormalization group (DMRG) method was introduced [122–126].

This method already assumes that the considered system is part of a much larger
structure, called the superblock C. Hence it distinguishes between the system A and an
environment B. Furthermore, it searches for the most probable state in the system A with
respect to the superblock C which resembles the ground state. Such a search was addressed
in section 2.2 by acquiring the statistical operator in (2.10). It will be processed in this
framework as follows (cf. Fig. 3.1):

By iterative diagonalization, e.g. by the Jacobi-Davidson algorithm as in the calculation
below, the ground state |ΨC〉 of the superblock C is obtained. However, in general this
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Figure 3.1: Reduction scheme of the DMRG method: The operators which con-
struct the Hamilton matrix of the system A and environment block B are used
to generate the one in the superblock C. However, this Hamilton matrix as well
as the density operator of the superblock does not need to be stored (gray) since
only the action of a state decomposed as a tensor product from the parts of the
system and environment block (denoted by the double index ij) has to be calcu-
lated in order to find the ground state by iterative diagonalization routines. From
it the reduced density matrix is constructed, its lowest eigenstates are determined
and the reduction transformation is obtained for each block (if no symmetries are
considered).
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vector will resemble an entanglement between the system A and the environment B. This
means that the system can not only be in a pure state, described by a single wave function,
but in a mixed state, characterized by a density matrix ρA, too. This density matrix is
obtained from the one of the superblock,

ρC = |ΨC〉〈ΨC | , (3.4)

by tracing out the degrees of freedom of the environment B:

ρA = TrB ρC =
∑

α

wα|α〉〈α| (3.5)

Here, the reduced density matrix is expressed by its ordered eigenvalues wα ≤ wα−1 and
eigenvectors |α〉, which span the Hilbert space HA of the system A. In general, multiple
eigenvectors are necessary describing the entanglement of the system. However, often,
especially in one-dimensional systems, the ordered eigenvalues wα decay rapidly. Therefore
the ground state of the system A may be approximated by taking only the first NCut terms
of the sum in (3.5), e.g. NCut = 800 in the following calculation. The validity of this
approximation can be checked during this procedure by confirming that the sum of the
discarded weights

∑

α>NCut wα or the discarded entropy,

Sdisc = −
∑

α>NCut

wα lnwα , (3.6)

is negligible. While in statistical physics the weights wα are interpreted as probabilities of
finding the most probable state in the system A as mentioned previously, it can also be
shown, that in this case the approximation represents the best way to project the dimension
of the Hilbert space HA of the system A to another one with dimension NCut, in the sense
of a least-squares minimization of the differences between the exact ground state of the
system and the approximated one [123].

With this reduction scheme it is possible to increase the size of the superblock. At the
beginning of the process of achieving this goal a sufficiently small number MA and MB of
the first sites as well as of the last sites are diagonalized exactly.1 These are forming the
initial system A and environment block B (cf. Fig. 3.2). Afterwards, a neighboring site is
attached to each block. These sites are also connected forming the link between the system
and environment. Together, the increased blocks construct the superblock C, i.e. the new
basis vectors are composed by

|A〉 ⊗ |σ〉 ⊗ |τ〉 ⊗ |B〉 , (3.7)

where |A〉 and |B〉 lie in the Hilbert space of blocks A and B, and |σ〉 and |τ〉 represent
basis vectors of those of the additional sites. This enables the determination of the ground

1 If no order is given in the structure, like if periodic boundary conditions are applied, an arbitrary cut
has to be chosen.
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Figure 3.2: In the infinite system algorithm of the DMRG the structure is suc-
cessively built up by adding one site to both the system A and the environment
block B. The states of both blocks form the basis of the Hilbert space of the
superblock C at each step. The representation of each step, distinguished here by
the indices, are stored for later purpose.
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state in the superblock C which permits the evaluation of quantum-mechanical expectation
values of various operators. In addition, the density matrix of the system block and
similarly that of the environment can be constructed from this state as described above.
The projection of the states to the subspace given by only the NCut states with the highest
eigenvalues in the density matrix leads therefore to the reduction of the Hilbert space for
each block. This transformation of the basis states and the successive truncation to the
subspace with reduced dimension have to be applied to every operator which is of interest.
Subsequently, both blocks are further enlarged, leading to a continuous increase of the size
of the superblock.

Despite that, this renormalization procedure often converges only very poorly. A reason
for that can be seen in (2.33): In increasing the system size oscillating behavior typically
occurs [127]. Therefore one should question a blind extrapolation to infinite system sizes.
Furthermore, if the system is not totally uniform the procedure involving the addition of
only one site might choose ill-advised states since the further structure of the system is
not known. Thus the method scales also badly with the number NCut of states kept in
this case [128]. Since increasing this number requires soon a huge amount of memory it is
more useful to think of the previous infinite system algorithm as a process to generate an
initial guess for the ground state of the system with a particular size. In the following finite
system algorithm, where the size of the superblock remains fixed, this guess is improved
by shifting the border between the system and environment block through the superblock
(cf. Fig. 3.3). Therefore the system block increases while the environment block decreases.
When the environment block can be treated exactly, the role of system and environment
is interchanged reversing the direction of the shift. This sweeping through the superblock
is repeated multiple times. After a few of those sweeps convergence is often obtained for
a specific system size and the final expectation values can be determined by the entries of
the operators in the space of the superblock C. In comparing different system sizes a trend
towards the thermodynamic limit can then be determined.

However, achieving convergence in the DMRG algorithm is usually better if hard wall
boundary conditions, i.e. the superblock ends sharply on the left and right side, are applied
than if periodic boundary conditions are used (cf. Fig. 3.4). As mentioned in the previ-
ous footnote, one of the reasons for this can be found by the arbitrary cut which has to
be introduced for periodic boundary conditions. Therefore the DMRG is better suited for
hard wall boundary conditions. Furthermore, a deepened understanding could be obtained
when the DMRG was formulated as an optimization in the spaces formed by matrix prod-
uct states [129, 130]. While for strict one-dimensional systems with hard wall boundary
conditions usually one of these states represents the ground state, for periodic boundary
conditions of a system with higher dimension a different state might be searched for. Thus
quantum information theory could propose a better suited algorithm which generalizes the
DMRG to tensor networks [131, 132]. However, these techniques have to operate with
matrices which are not sparsely occupied. Since this means a strong increase of required
memory the DMRG algorithm is often used even for periodic boundary conditions as in
the following study.
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1a)

A1,3 B1,1
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A1,3 B2,1
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3a)

A1,1 B2,2

3b)

Figure 3.3: In the finite system algorithm of the DMRG the size of the superblock
C stays fixed. Instead, the size of the system block is enlarged by decreasing the
size of the environment block. Once the maximum size is obtained the role of
the system and environment block interchange (1b). The labels A and B refer to
the original distinction of the system and environment block while their indices
represent the number of the sweep and step therein from which the basis states
are recalled from memory according to Fig. 3.2.
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Figure 3.4: When comparing the application of the DMRG to strict one-
dimensional spinless systems of size M with periodic (PBC) or hard wall boundary
conditions (HWBC) the method shows a better convergence for the latter one.
This can be seen both when looking at the difference of the obtained ground state
energy to the real one ∆E0 and when comparing the time t the computation takes
(inset) with respect to an increase of the number of states NCut kept in the density
matrix.

In addition, this procedure motivates to enlarge the Hilbert space, on which the DMRG
is usually operating, to the space of linear operators acting on it. Without changing the
DMRG algorithm much, this allows one to target in (3.4) not only the ground state but
the full statistical operator as well (without determining the full spectrum in detail). Since
in the infinite temperature limit this matrix is given by the unit matrix, finite tempera-
ture properties can be accessed by implementing a suitable evolution, i.e. cooling, tech-
nique [133, 134]. However, when cooling the system more entries of the statistical operator
become non-zero and therefore important. This means that the appearing matrices are
again not sparsely occupied leading to an increase of memory usage. The technique there-
fore breaks down at low temperatures. For that reason, this work will develop methods
accessing finite temperature properties where the DMRG will operate only on the Hilbert
space as discussed above.
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The substitution of the target in (3.4) of the former method is not the only way of access-
ing finite temperature properties. In particular, substituting the ground state in (3.4) by
the eigenstate of the transfer matrix with the largest eigenvalue leads to the transfer matrix
renormalization group (TMRG) [126]. This means instead of diagonalizing the Hamilton
matrix of the superblock C the transfer matrix of this block is constructed. Afterwards,
its eigenstate with the largest eigenvalue is again determined by iterative diagonalization
techniques. Since this leads to targeting the maximum eigenvalue of the superblock during
the sweeps of the TMRG the thermodynamic limit is obtained right away. Within this
technique it is possible to calculate thermodynamic properties of mostly two-dimensional
classical systems and some corresponding quantum-mechanical systems [135]. Nevertheless,
this technique only works for those few specific types of systems and is technically difficult
since the transfer matrix is non-hermitian. Therefore, additional techniques have to be
developed in order to calculate expectation values which are dependent on temperature for
more general systems.

3.3 Calculation using Excited States

Since the presented DMRG algorithm so far does not allow the evaluation of thermody-
namic expectation values without increasing the memory requirements enormously, the
remainder of this chapter will be concerned with the implementation of a temperature
scale into the DMRG without this need. In particular, thermodynamic quantities are of
interest. In order to calculate those quantities, according to (2.11) or (2.25) energies of
excited states are needed. Within the DMRG framework these expectation values can be
calculated by targeting not only the ground state of the superblock, but also the excited
states as well. The reduced density matrix (3.5) is then determined by the sum over all
their contributions

ρA =
∑

n

TrB |ΨCn〉〈ΨCn| . (3.8)

As a modification of this technique, the statistical operator (2.10) is sometimes already
introduced in the sum of (3.8).

However, the number of excited many-body states grows rapidly with increasing system
size as mentioned previously. For instance, while for a canonical ensemble consisting of
N = 7 spinless fermions distributed on M = 14 sites 3432 excited states are needed to
compute the exact curve of the specific heat, this number increases for 30 sites at half
filling to over 108. Nevertheless, in restricting the sum in (2.11) or (2.25) to the lowest
eigenstates it should be possible to obtain the low temperature behavior for a certain
system size (cf. (2.26)):

ZN ≈
∑

n<cutoff

e−βEn (3.9)
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Figure 3.5: Specific heat of N = 7 spinless non-interacting fermions distributed
on a ring (2.3) with M = 14 sites. Depending on how many excited states
according to (2.6), (2.13) and (3.9) are considered in a DMRG calculation the
exact curve (dashed line) is approximated with different quality. Initially, the
validity range with respect to temperature is rapidly increasing while afterwards
convergence becomes very slow. However, in taking into account more states
the computation time (inset) and memory demand increases rapidly too. Due to
the large degeneracy (cf. Fig. 2.1) the curves represent the consideration of all
degenerate energy levels in (3.9) up to and including the first, fifth, 15th and 65th

excited one (from 215 in total).

Even so, the scaling of the breakdown temperature of this method with the cutoff is still a
cause for concern. While in the case of spectral functions it is still possible to gain valuable
insight [136], in the case of the specific heat convergence with increasing the number of
excited states is very poor (cf. Fig. 3.5). The reason for this behavior lies in the growing
number of states needed when the probed energy region is located near the middle of a
many-body band: In contrast to the edge of the band which is characterized by a large
gap between the many-body states due to the finite system size, the gaps between the
excited many-body states in the middle of the band are narrower (cf. Fig. 2.1). While
for a low cutoff this means that the breakdown temperature can greatly be increased by
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taking more states, for a cutoff where the corresponding states lie within the many-body
band the augmentation of this temperature is only marginal. In particular, this leads to
the conclusion that it is not possible to access the behavior in the thermodynamic limit,
where the finite size gap vanishes, by this technique.

3.4 Thermal Quantum States

Since in the previous section the evaluation of the sum appearing in the partition function
caused numerical difficulties in (3.9), in the remainder of this chapter the explicit evaluation
of this sum will be avoided. Ideal would be an evaluation process like the one used in case of
a pure state as prescribed by quantum mechanics. There, the formulation of the problem in
terms of field theory, using creation and annihilation operators (2.4), allowed the extraction
of the desired values by a diagonalization process. In fact, finite temperature expectation
values (2.16) are surprisingly similar to quantum mechanical ones. This becomes clear if
the contribution of the statistical operator is split into two parts which are related to the
states over which the trace is running:

〈X̂〉β,µ =
∑

n

〈n| 1
√

Zµ
e−(Ĥ−µN̂)β/2 X̂

1
√

Zµ
e−(Ĥ−µN̂)β/2 |n〉 (3.10)

If the sum in this formula was not present, thermodynamic expectation values could be
calculated like in quantum mechanical field theory by assuming the system would be in the
state e−(Ĥ−µN̂)β/2|n〉/

√

Zµ . However, the external sum prevents defining a simple state
which characterizes the system at finite temperature in general.

In 1975, Takahashi and Umezawa [137] presented an analytical way to overcome this
difficulty and therefore laid the corner stone to what was later called a thermo field theory.
To this purpose, he proposed to enlarge the Hilbert space by a copy of the system, so that
the orthogonality relation between the supplementary eigenstates |ñ〉 can be used to define
a thermal quantum state

|β〉µ =
1

√

Zµ

∑

n

e−(Ĥ−µN̂)β/2 |n〉 × |ñ〉 , (3.11)

where × denotes the direct product. This state will then represent the system at a cer-
tain temperature since the expectation value of an arbitrary operator under this state
determines the thermodynamic one:

µ〈β|X̂|β〉µ =
1
Zµ

∑

n,m

〈n| e−(Ĥ−µN̂)β/2 X̂ e−(Ĥ−µN̂)β/2 |m〉〈ñ|1|m̃〉 (3.12)

=
1
Zµ

∑

n

e−β(En−µNn)〈n|X̂|n〉 (3.13)
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Thereby, note that the sum in (3.11) include only the same excited eigenstates of both
subspaces, but the operators appearing in (3.12) only act on the part of the Hilbert space
of the original system.

Finding a thermal quantum state at finite temperature is still challenging. However,
this task simplifies in the limit of infinite temperature β → 0. In this limit the proposed
state is uniformly distributed on the combined eigenspaces of the system and its copy:

(

〈n| × 〈ñ|
)

|β = 0〉µ =
1

√

Zµ
(3.14)

Still, if a basis transformation is only applied to the system states,

|n〉 =
∑

k

Unk |k〉 , (3.15)

this distribution would change in general:

(

〈n| × 〈ñ|
)

U †|β = 0〉µ =
1

√

Zµ
Unn

∗ (3.16)

In order to preserve the equal distribution, the supplementary states |ñ〉, which later be-
came known as ancilla states, are entangled with the ones of the original system by forcing
a similar basis transformation on the ancilla space [138]

|ñ〉 = Ukn
∗ |k̃〉 , (3.17)

where Ukn∗ represents the complex conjugate of the entries of the transpose of the trans-
formation matrix U . Therefore, the state in this limit is characterized by a uniform distri-
bution in any basis:

|β = 0〉µ =
1√
Z

∑

n

|n〉 × |ñ〉 =
1√
Z

∑

n,k

Unk Ukn
∗ |k〉 × |k̃〉 =

1√
Z

∑

k

|k〉 × |k̃〉 (3.18)

For numerics, this means that such a state can easily be created since a uniform dis-
tribution in the real space basis can be used. Therefore, only an evolution technique has
to be found in order to obtain those thermal quantum states at lower temperatures. Since
the entanglement with the ancilla state has to be taken into account (3.17) the evolution
technique is more advanced but could successfully be implemented in the DMRG algo-
rithm [139]. In addition, cooling the system iteratively, as in the implemented scheme,
might lead to an increasing numerical error. Therefore, the technique fails when low tem-
perature expectation values are addressed. Hence, a way to generate a state, like the
thermal quantum one, at finite temperature would be beneficial.
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3.5 Thermal States

In this section we address two goals which arose in the last section, namely generating a
thermal state which characterizes the system at arbitrary temperature, and reducing the
necessary memory by avoiding ancilla states. While the former one will be discussed later
on for a weakly interacting system, the latter one will be addressed in the following.

For thermodynamic properties like the specific heat in (2.14), the considered operators
in (3.10), Ĥ and Ĥ2, commute with the Hamiltonian and therefore possess already a
common eigenspace with the statistical operator. The increase in system size by the ancilla
space and the more complicated algorithm is therefore not necessary. Instead, the thermal
state,

|β,Φ〉N =
1
N
∑

n

e−Enβ/2 + iΦn|n〉 , (3.19)

in the original Hilbert space can be used in order to obtain those expectation values. Here,
the normalizing partition function was substituted by a normalization constant N since for
practical application its contribution would be calculated as the norm of this state, e.g. for
the canonical ensemble:

〈X̂〉β,N = N〈β,Φ|X̂|β,Φ〉N
N〈β,Φ|β,Φ〉N

=
1
ZN

∑

n,m

〈n| e−Ĥβ/2 X̂|m〉 e−Emβ/2

=
1
ZN

∑

n,m

〈n| e−Ĥβ/2 |m〉Xm e−Emβ/2 =
1
Z

∑

n

e−βEnXn (3.20)

In addition, supplemental phases Φn have been introduced in (3.19) to the former defi-
nition (3.11) since they will cancel when calculating the expectation value but will prove
useful later on. Therefore, the system at a specific temperature can not only be charac-
terized by one special state but by one out of a certain set. However, note that since the
ancilla states were not used the knowledge of the eigenstates of the system are necessary
in order to construct such states. Generating an equal distribution in another basis as
previously mentioned will therefore not lead to a thermal state in the infinite temperature
limit in general, in contrast to previous studies [140].

A given thermal state in the original Hilbert space can easily be evolved describing a
cooling of the system. The operator needed for this process is the statistical operator where
the inverse temperature has been replaced by half of the difference between the target β
and initial inverse temperature β0:

T̂ (β − β0) = e−Ĥ(β−β0)/2 = eiĤ(i(β−β0)/2) (3.21)

which resembles the time evolution operator but with a purely imaginary time equal to
this difference (multiplied by the imaginary unit i). Therefore Krylov subspace techniques,
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e.g. the Arnoldi algorithm, can be applied in order to evaluate the action of this opera-
tor onto the initial thermal state [141, 142]. Thereby, the Hamilton operator in (3.21) is
projected onto the Krylov space (3.1) allowing the calculation of the full matrix exponen-
tial. The Krylov space is then enlarged until the gain in precision falls below a predefined
accepted error margin, e.g. for the calculations following below 10−9. Therefore, this tech-
nique allows preservation of the unitarity of the real time evolution operator instead of
other methods like the Runge-Kutta algorithm [143], but can also be applied to ladder
systems in contrast to Suzuki-Trotter based approaches [144].

An initial thermal state can easily be generated in the special case of a system without
interaction in the grand canonical ensemble. Since in this case the many-body states are
constructed simply by a tensor product

⊗
in occupation number formalism, the thermal

state should be represented by
⊗

k

(

|0〉k + bk eiφk |1〉k
)

=
∑

n⊆{x|1≤x≤M}

∏

q∈n

bq eiφq
⊗

k 6∈n

|0〉k ⊗
⊗

q∈n

|1〉q (3.22)

=
∑

n

e
∑

q
ln bq + i

∑

q
φq |n〉 , (3.23)

where |0〉k describes the unoccupied and |1〉k denotes the occupied state k. Comparison
with the grand canonical version of (3.19) determines the relative occupation probability
bk leading to the thermal state as

|β,Φ〉µ =
⊗

k

(√

f
(

− (εk − µ)β
)

|0〉k +
√

f
(

(εk − µ)β
)

eiφk |1〉k
)

(3.24)

∝
⊗

k

(

|0〉k + e−(εk−µ)β/2 + iφk |1〉k
)

, (3.25)

with Φn =
∑

k∈n φk and where εk are the single-particle energies and f denotes the Fermi
function (2.18). Note that in this expression, the 2M arbitrary phases Φn introduced in
the sum over many-body states in (3.19) have been restricted to the combination of M
site depended ones φk due to the use of the single particle picture. However, they can
again be generalized if a linear combination of those tensor product states is considered.
Remarkably, in the normalized state (3.24) the coefficients represent the hole and particle
occupation number amplitude combined with an arbitrary relative phase. Since in the
canonical case the particle number constraint is present in the partition sum (2.25) and
therefore in the definition of the thermal state (3.19) the tensor product in the above
calculation has to be restricted to satisfy this constraint as well:

|β,Φ〉N =
⊗

k

(√

f
(

− (εk − µ)β
)

|0〉k +
√

f
(

(εk − µ)β
)

eiφk |1〉k
) ∣
∣
∣
∣
N

(3.26)

Within exact diagonalization the evolution of those states show very good results
(cf. Fig. 3.6). In addition, these results indicate, that the thermal state of the system
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Figure 3.6: Results for the specific heat for the ring (2.3) with M = 14 sites
and N = 7 particles obtained within exact diagonalization by using the thermal
state of the non-interacting system as a trial one for the interacting system. Even
in the strong interacting case V = 3t, the results after sampling the concerning
expectation values 〈H〉β,N and 〈H2〉β,N approach the exact curve of the specific
heat for low temperatures. The additional peak which emerges there is due to
the phase transition between the charge density wave and the Luttinger liquid
(cf. Fig. 2.3).

with interaction might be well approximated by that of the system without interaction.
In addition, this agreement can be increased if the arbitrary phases are sampled. This
stochastic sampling would decrease the noise in the exponential decay of the overlap of the
trial thermal state with the excited states of the interacting system (cf. Fig. 3.7). Such a
decay with respect to the many-body eigenenergies would be obtained by the real thermal
state according to (3.19).

This technique can be implemented within the DMRG framework since the thermal
state is build as a tensor product. For instance, the Hamilton matrix can be represented
in the DMRG procedure in Fourier representation. When the block size is enlarged by an
additional site (3.7) the occupation number operator n̂k of this site k would be diagonal.
Therefore, the ground state of the superblock |ΨC〉, which is afterwards used to generate
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Figure 3.7: Results for the distribution of the trial thermal state |β,Φ〉N with
β = 0.5t projected on the excited states |n〉 of the interacting system for the
ring (2.3) with M = 14 sites and N = 7 fermions obtained within exact diago-
nalization. According to (3.19) this would be an exponential decay for the true
thermal state which is shown for the non-interacting case for comparison. Since
the interaction increases the energy of the system in (2.3), the curves of the inter-
acting system is shifted to larger energies. As seen, sampling over relative phases
between single-particle eigenstates with occupied and unoccupied sites reduces
the noise greatly. Even in the strong interacting regime V = 3t, where the ground
state has completely changed into a charge density wave, an exponential decay is
obtained in the low energy region after sampling. Nevertheless, additional spikes
in the averaged curves appear at larger energy leading to substantial disagree-
ment between the obtained curves of the specific heat and the exact one at high
temperature (cf. Fig. 3.6).
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the density matrix (3.4), can be decomposed by applying this operator as well as its
complement 1 − n̂k. These components can then be weighted by the coefficients of the
thermal state in (3.24) in order to construct a suitable target for the DMRG. This leads
to excellent agreement between the calculated curve of the specific heat with respect to
temperature and the exact one for the non-interacting system (cf. Fig. 3.8). Furthermore,
this observation still holds if the curves are compared to the results of the low temperature
approximation (3.9) for an interacting system in its validity region.

3.6 Stochastic Sampling Techniques

While in the last section a thermal state, which characterizes a system at a given tem-
perature, could be generated for weakly interacting systems, applying this framework to
arbitrary interaction strength is questionable. Nevertheless, from the situation considering
weak interaction it could be inferred that stochastic sampling was beneficial to the goal of
finding an initial thermal state. In fact, in order to calculate thermodynamic expectation
values depending on temperature, stochastic sampling can already be introduced in their
definition (2.16). In practice, this means replacing the trace over the states of the whole
Hilbert space by randomly obtained states |ξ〉:

ZN〈X̂〉β,N =
∑

n

〈n| e−βĤX̂|n〉 ≈
∑

ξ

〈ξ| e−βĤX̂|ξ〉 =
∑

n,ξ

|〈ξ|n〉|2 e−βEnXn , (3.27)

where for simplicity again an operator was assumed which commutes with the Hamiltonian
for a canonical ensemble.

Jaklič [145] argued that the random states |ξ〉 and the application of the statistical
operator in (3.27) can be obtained within the Lanczos algorithm from iterative exact diag-
onalization techniques. Thereby from an initial, random state the basis states of a Krylov
space (3.1) are generated. These states can then be used to evaluate the high temperature
expansion of (3.27)

ZN〈X̂〉β,N ≈
∑

ξ

∑

k

(−β)k

k!
〈ξ|ĤkX̂|ξ〉 . (3.28)

The results are afterwards averaged over a few randomly chosen initial states. However,
while this technique proves reliable at high temperatures by construction, sampling errors
occur at low temperatures. An improvement can be made by splitting the statistical op-
erator in two steps, one before and one after the considered operator [146]. This means
treating the stochastically chosen states more like the thermal one in (3.20). Neverthe-
less, this technique assumes that the convergence with the number of random samples is
sufficiently fast which is still demanding at very low temperatures.

The reason for this breakdown becomes clear when the overlaps of the randomly chosen
states in (3.27) are compared to those of the thermal state (3.19). While at high temper-
atures the thermal state is nearly uniformly distributed at low temperates its distribution
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Figure 3.8: Results for the specific heat for the ring (2.3) with M = 30 and µ = 0
obtained within the DMRG framework by using a trial thermal state for different
interaction strength V . For finite interaction strength the chemical potential
is fixed to the above value by using the particle-hole symmetric version of (2.3),
i.e. lowering the energy by V N̂ where N̂ is the particle number operator. Therefore
the system remains at half filling.

decays exponentially with the excitation energy of the many-body states. Therefore at
low temperature the randomly chosen states should have a larger overlap with the ground
state of a system in order to resemble the thermal state more adequately. For this goal the
original Hamiltonian can be perturbed by diagonal disorder of maximum strength W and
the ground state of the new Hamiltonian can be used as random state. However, as seen by
the phases of the thermal state at the end of the last section 3.5, a complex disorder might
be important as well. Therefore a complex off-diagonal disorder along hopping bonds was
added to the Hamiltonian too:

|ξ〉 ∈
{

ground state
(

Ĥ +
∑

j

[µj n̂j + (t′j + it′′j ) ĉ
†
j ĉj+1] + h.c.

) ∣
∣
∣
∣µj, t

′
j, t
′′
j ∈ [0,W ]

}

(3.29)

The resulting overlap with the excited states of the clean system obtained from exact diag-
onalization decays for the ring (2.3) surprisingly close to an exponential one (cf. Fig. 3.9).
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Figure 3.9: Overlap of the ground state of a perturbed system Hamiltonian (with
maximum disorder strength W ) with the excited states of the original one for the
ring of size M = 14 with N = 7 spinless non-interacting fermions. The result is
nearly an exponential decay. In addition, the inset shows the overlap of a similar
system (3.30) where one site is taken out of ring and has an increased hopping
amplitude t′ = 20t. This causes the degenerate levels to split and therefore three
separate many-body bands occur. However, for those multiple many-body bands
slight deviations from an exponential decay can be seen.

The occurrence of such an exponential decay for a sparsely occupied off-diagonal on top of
a diagonal perturbation of the original Hamiltonian was already noted in [147] but were
placed there in the framework of a quantum micro-canonical ensemble where the expan-
sion (2.10) is not valid. However, the temperature of the states generated is not known,
but will scale with the maximal disorder strength W used. This allows the reaching of
higher temperatures. Nevertheless, a larger maximal disorder strength might lead to the
need of taking into account a large number of samples.

Furthermore, deviations from the decay of a thermal state occurs if the system has mul-
tiple energy scales. For instance, consider the non-interacting ring if one site is separated
from it but coupled to one site of the remaining ring by a strong hopping amplitude t′.
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Figure 3.10: Specific heat of the ring of spinless fermions for M = 30, N = 15
and V = 0. The temperature region in agreement increases with larger maximal
disorder strength W .

The Hamiltonian for this system therefore reads

Ĥ = t′ĉ†1 ĉ2 + t
M∑

j=2

ĉ†j+1 ĉj + h.c. , (3.30)

with the periodic boundary condition ĉM+1 = ĉ2 since the first site represents the sepa-
rated site. Applying the transformation U = exp(iσyπ/4)⊗ 1M−2, where σy represents the
second Pauli matrix acting on the first two sites, this model can be rewritten as

ˆ̃H = t′ ˆ̃n
†

1 − t′ ˆ̃n2 + t
M∑

j=2

ˆ̃c
†

j+1
ˆ̃cj + h.c. , (3.31)

where the operators ˆ̃X denote the transformed operators. Thus the ring can be viewed as
small perturbation in the case t≪ t′ whose degeneracies are therefore lifted and formerly
one many-body band is separated into three around −t′, 0, t′. The perturbation to the
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Figure 3.11: When interaction is introduced in the ring with M = 14 sites the
formation of the charge density wave is visible by an emerging peak in the specific
heat calculated by stochastic sampling techniques with W = t. Therefore making
a bandwidth as well as a filling controlled quantum phase transition observable.

hopping along the new topology leads again nearly to an exponential decay. However,
the construction of the disorder Hamiltonian (3.29) ensures in this case only an increased
overlap with the lowest eigenstates. If another high energy structure is present, like the
splitting into the three many-body bands in this model, an exponential decay is not guar-
anteed. This is visible at the upper band edges as well as increased overlap elements for
the highest band. Nevertheless, since this band will only contribute to the specific heat at
very high temperature, its influence should not matter much.

While the imaginary time evolution will allow the study of the cooling of the system,
the determination of the temperature of the initial state is still challenging. In order to
resolve this issue the result, e.g. for the specific heat, can be fitted to the low temperature
expansion (2.27) by adjusting the initial temperature β0. This means that an additional
DMRG run is necessary to determine enough states to obtain the finite size gap. The results
for the specific heat show a deviation at first, but after a few iteration of the imaginary
time evolution the perturbations from an exponential decay seem to cease to be important,
thus achieving agreement with the exact curve (cf. Fig. 3.10). Furthermore, this agreement
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Figure 3.12: Setup for measuring the thermopower of a one-dimensional system
(boxed) consisting of hopping (dotted) and interaction (dashed) within the DMRG
framework using the implementation of a thermal state. The system is enframed
on both sides by thermal states constructed according to (3.25) but placed on
different temperatures TL and TR as well as different chemical potentials µL and
µR in order to simulate an applied voltage bias ∆V = e(µL−µR). In determining
the voltage bias where no current flows in the system the thermopower can be
accessed.

still holds even if interaction is present, allowing the study of quantum phase transitions
with this method (cf. Fig. 3.11).

3.7 Summary and Outlook

The formulation of the expectation values at finite temperature by the quantum-mechanical
expression using a thermal quantum state showed that in principle one state is sufficient
to describe the system at finite temperature. However, considering expectation values of
any operator in general needs the enlarging of the original Hilbert space and therefore an
increase in memory. Luckily, in order to obtain canonical thermodynamic quantities which
are given by sums over the momenta of the Hamiltonian, the enlarging is not necessary.

However, finding such a state is still critical. In particular, just taking a random state
would not be sufficient for the method using the original Hilbert space. Better would be
a cleverly chosen state. For instance, we propose using the one generated for the non-
interacting system even for the corresponding interacting system. Still, if any interaction
is present the quantities obtained by those states will still show deviations.
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Therefore one has to switch to stochastic techniques. From them the question arises
over which kind of accessible variables can be sampled. In order to access thermodynamic
quantities of interacting systems we showed that the intrinsic freedom of complex phases in
the thermal state of the non-interacting system can be used. This procedure can even be
implemented in the DMRG framework, but is questionable for large interaction strength.

For a more general approach of accessing low temperatures we further suggested to
target states which lie close to the ground state. Therefore the ground state was taken
from a Hamiltonian where the on-site potential as well as the hopping parameters could
stochastically vary. This led to good agreement for the specific heat, where an augmenta-
tion of the disorder strength led to an increase of the temperature region which could be
accessed. Thereby stressing the role of sampling in order to obtain a suitable state.

Furthermore, with the implementation in the DMRG framework of such thermal states
even for the non-interacting case, we think it might be possible to access the thermopower.
In order to achieve this goal we suggest replacing the momentum leads by leads containing
a thermal state in the framework of measuring the conductance [148, 149]. This means
the DMRG should be applied to a total system where the system under consideration
is enframed by sites occupied according to the thermal state (cf. Fig. 3.12). Adding a
coupling between all these sites and the sites at the edge of the system would then lead
to a coupling of these thermal environments to the system. If in addition, the chemical
potentials of these environments are varied like for the case of measuring the conductance,
a voltage bias will lie across the system. For a given temperature difference between the
environments this voltage drop is then adjusted, so that no current is flowing through
the system. Hence, with this technique the validity of the TICR approximation could be
investigated.
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Chapter 4

Analytic Approximations
at Finite Temperatures

In this chapter, the apparent Fermi liquid (AFL) behavior observed for the delafossites will
be studied. This behavior was characterized among others by a linear thermopower with
respect to temperature and included a finite offset for a temperature region close to room
temperature (cf. Fig. 1.3). It was observed in doped CuRhO2 [19] and doped CuCrO2 [29].
The interpretation for the phenomenon of both materials will be given at the end of this
chapter. Before this a theoretical framework will be developed in order to derive a similar
behavior.

However, the application of numerical techniques is still challenging. On the one hand
first principle techniques, like the augmented spherical wave method (ASW), seem to de-
scribe well the low temperature limit while the slope of the AFL behavior is still overes-
timated [19]. This might indicate many-body scattering contributions, which lead to the
question if the TICR constant E0 in (2.47) can cover them. On the other hand, using a
microscopic model is very demanding since many overlapping bands contribute to the band
structure as seen in Fig. 1.5.

Therefore, this chapter is concerned with an analytic treatment of the phenomenon.
Such a treatment not only allows the discussion of the stability of the AFL, but also
provides analytic expressions which can easily be fitted to experiments. In the extreme
case, this might lead to a recipe for experimentalists on how to scale the axes of their
diagrams to extract microscopic quantities, like the degeneracy in case of modified Heikes
formulas (2.41). Thus allowing an easy application of the phenomenological theory to
further measurements. Furthermore, an analytic treatment might provide insight into the
underlying mechanism and therefore a better understanding.

However, such a treatment is based on a starting point which can be motivated by the
structure of the delafossites presented in section 1.2. When discussing Fig. 1.4 and 1.5
there, these materials were characterized by a perturbed two-dimensional structure which
is slightly doped. In neglecting higher bands the behavior should therefore be dominated by
the discontinuous band edge, especially at high temperatures, when the chemical potential
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has left the band. Therefore a suitable starting point would be the expansion of the density
of states as a Taylor series around the band edge1

ρ(ε) =
∞∑

n=0

ρn
n!
εn ·Θ(ε)Θ(W − ε) , (4.1)

where W describes the bandwidth, ρn denotes the limit of the n-th derivative of the density
of states as the energy approaches the band edge from within the band, i.e. ε → 0+, and
the zero point of the single-particle energies was placed at the band edge. Furthermore,
their thermopower, where an AFL behavior was clearly seen, might be determined by
the chemical potential through the TICR approximation in (2.47). This quantity was
implicitly determined in (2.22) by the density in the system which resembles the doping
value x = N/M . For the Taylor series above and a sufficiently large bandwidth, W →∞,
this condition takes the form (cf. appendix)

x =
∫ ∞

−∞
ρ(ε) f

(

β(ε− µ)
)

dε = −
∑

n

ρnβ
−(n+1) Lin+1(ν) , (4.2)

where ν = − eβµ denotes the negative fugacity and Li the polylogarithm.

In the first part of this chapter, different approximation schemes will be developed and
applied, in order to extract a behavior of the chemical potential which could explain the
observed behavior of the thermopower when using the TICR approximation (2.47). This
includes the application of the conventional low and high temperature expansions in terms
of the polylogarithm in section 4.1 and 4.2 but in the framework of the polylogarithm. The
results of these approximations will be exemplified by comparison to the exact solution
given by numerics. For clarity, merely the case where only the first two coefficients of
the density of states in (4.1) are non-vanishing will thereby be shown since this limit will
be used in the following part, too. This second part is then concerned with application
of the theory to the thermopower of doped CuCrO2 (section 4.5) and doped CuRhO2

(section 4.6). Thereby, it will be shown how to gain access to the parameters in the
density of states as well as the charge carrier density by measuring the thermopower. The
results are summarized in the concluding section 4.7.

4.1 Low Temperature Expansion

The low temperature regime of the doping number constraint as formulated in (4.2) can
be accessed by an expansion of the polylogarithm for large negative arguments since the

1 In fact, the calculation done in this chapter can easily be generalized to arbitrary (non-integer) powers
in the series by replacing the factorial by the Gamma function. Only the expansion of the polylogarithm
at low temperature (cf. appendix) might cause concern but the behavior can be obtained by the common
Sommerfeld approximation.
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chemical potential µ > 0 lies within the band for the doped materials. As shown in the
appendix expanding the polylogarithm for βµ≫ 1 leads to

x =
∫ µ

0
ρ(ε) dε+

π2

6
ρ′(µ) (kBT )2 +O(T 4) , (4.3)

which is known from Sommerfeld expansion too. Therefore the chemical potential should
be quadratically dependent on temperature as in the three-dimensional case (2.23)

µ = εF −̟T 2 +O(T 4) with ̟ =
π2

6
kB

2ρ
′(εF )
ρ(εF )

, (4.4)

where εF denotes again the Fermi energy and ρ′(ε) is the derivative of the density of states
with respect to energy. This result leads within the TICR framework to

STICR =
̟

qe
· T , (4.5)

where the result has been used that the TICR constant should vanish for a metal as
discussed in section 2.3. However, as seen from the determination of the coefficient ̟
in (4.4), the low temperature thermopower given by (4.5) will vanish for a strict two-
dimensional metallic system described by a constant density of states (2.21), ρ′(εF ) = 0,
since the chemical potential is independent of temperature in this limit.

Similarly, the specific heat of the canonical system can be shown to be linear with
respect to temperature (cf. appendix):

Cx = γ T +O(T 3) with γ =
π2

3
ρ(εF ) kB

2M (4.6)

In addition, a similar ratio of the thermopower in the TICR approximation (2.47) and the
specific heat as in (2.51) can be found: In the case when the Taylor series of the density
of states is dominated by only one term with power n, the resulting ratio becomes again
only dependent on the doping:

qTICR = −̟
γ

= − 1
2M

ρ′(εF )
ρ(εF )2

= − 1
2x

n

n+ 1
(4.7)

Note however the findings of section 2.3: In the low temperature limit the TICR approx-
imation might not be valid, therefore this ratio might get renormalized, e.g. there for the
three-dimensional system by a factor of six.

Furthermore, the technique described by using an expansion for βµ ≫ 1 of the poly-
logarithm allows a breakdown temperature to be obtained. As a measure of the condition
where the expansion is violated, the temperature where βµ = 2 can be taken. With this
breakdown criteria and the chemical potential from (4.4), this breakdown temperature is
given by

TS =

√

1 + εF̟/kB
2 − 1

̟/kB

. (4.8)
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The region in the phase diagram where the temperature is below the stated one will be
denoted as Sommerfeld region. Remarkably, the above temperature is smaller than the
Fermi temperature

TF =
εF
kB

. (4.9)

In particular, for small Fermi energies and quadratic coefficients of the chemical potential,
like in the case where only a discontinuity at the band edge is present (̟ = 0), this tem-
perature amounts to half of its value. When comparing the numerical inversion of (4.2)
it was found in Fig. 4.1 that the stated temperature (4.8) describes the breakdown better
than the Fermi temperature (4.9). In contrast, for less dominant discontinuity the approx-
imation (4.4) might even be valid slightly above the temperature TS. Since the delafossites
showed a dominant discontinuity, a Fermi liquid behavior in these materials is expected
to break down earlier than indicated by the Fermi temperature. For this reason and to
be able to investigate alternative behaviors, approximation schemes at higher temperature
will be discussed in the following.

4.2 High Temperature Expansion

For high temperatures the chemical potential of (4.4) will be far below the band edge.
Since this means that βµ≪ −1 the Taylor series of the polylogarithm (A.13) can be used.
Using only the linear term of this series in the negative fugacity ν = − eβµ will result in
the doping constraint (4.2) given by

x =
∑

n

ρnβ
−(n+1) eβµ +O(e2βµ) . (4.10)

Thus it resembles the result known if the Fermi function is replaced by the Boltzmann
distribution in the original integral definition (2.22). Therefore the chemical potential in
this approximation µB follows as

µB = −kBT ln
kBT ρ̃(kBT )

x
, (4.11)

where a renormalized density of states is introduced

ρ̃(ε) =
∑

n

ρnε
n ·Θ(ε) . (4.12)

Although this quantity is only an abbreviation in the above formula, its interpretation will
become clear in the next section. The region in the phase diagram where the formula (4.11)
is valid will be called Boltzmann region. The border of this region can be described by a
similar breakdown temperature as introduced previously for the Sommerfeld region, but
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Figure 4.1: Comparison of the result for the chemical potential in low and high
temperature expansion (4.4), (4.11) to the numerical solution of (4.2) at a tem-
perature T = 400 K for different materials described by a density of states which
only contains the first two terms of a Taylor series ρ(ε) = (ρ0 + ρ1ε) ·Θ(ε) and is
doped by a fraction of x charge carriers. The areas denote the relative error be-
tween the exact solution an the approximated ones up to 10%. The lines describe
the parameter values if the breakdown or Fermi temperatures become equal to
the specific temperature T .

now for the condition βµB = −2. However, in (4.10) this requires the inversion of the
function ρ̃ following from the density of states:

x e2 = kBTB ρ̃(kBTB) (4.13)

Assuming that the breakdown temperature TB is still small, the function ρ̃ is governed by
the first terms of the Taylor series. Thus this temperature scale is given by

TB ≈
√

1 + 4 e2xρ1/ρ2
0 − 1

2kBρ1/ρ0

. (4.14)
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Furthermore, above this temperature a linearization of the expression (4.11) around a
certain temperature T̃

µB = µ
(0)
B + µ

(1)
B (T − T̃ )−̟ (T − T̃ )2 , (4.15)

µ
(0)
B = −kBT̃ ln

kBT̃ ρ̃(kBT̃ )
x

, (4.16)

µ
(1)
B = −kB ln

kBT̃ ρ̃(kBT̃ )
x

− kB[1 + kBT̃ (ln ρ̃)(1)] , (4.17)

̟ =
kB

2T̃
[1 + 2kBT̃ (ln ρ̃)(1) + (kBT̃ )2(ln ρ̃)(2)] , (4.18)

where (ln ρ̃)(n) denotes the n-th derivative of the logarithm of the renormalized density of
states at the thermal energy kBT̃ , proves to be a good approximation, at least if again a
dominant discontinuity or a linear term is assumed (cf. Fig. 4.1).

In addition, since at these high temperatures the chemical potential is believed to have
left the band, the occurring situation might be similar to the one discussed at the non-
resonant level model (2.46). Then the TICR approximation should be valid. Combining
the above expression with this approximation (2.47) leads to a linear thermopower

STICR =
E0 − µ(0)

B + µ
(1)
B T̃ +̟T̃ 2

qe
· 1
T
− 1
qe

(µ(1)
B + 2̟T̃ ) +

̟

qe
· T (4.19)

=
E0 − ε̃F
qeT

− S0 +
̟

qe
T . (4.20)

In contrast to the low temperature behavior (2.50) this expression contains a finite offset S0,
as seen in experiments (cf. Fig. 1.3), as well as a hyperbolic offset. However, the linear term
̟T will not be dominant if the expansion temperature is sufficiently large. Therefore, the
thermopower could be interpreted as constant with temperature, in similarity to the known
plateau like behavior from the Heikes formula (2.41). In addition, its doping dependence
would be given by that of the chemical potential (4.11) which resembles for low doping the
result in the atomic limit as will be discussed in more detail later on.

In summary, the result obtained in this section might explain the AFL behavior seen
for doped CuRhO2. However, if the parameters of the density of states are extracted out
of the band structure Fig. 1.5 the calculated breakdown temperature of this approxima-
tion (4.14) will be larger than the temperature where the behavior has been observed in
the experiments. Furthermore, for dominant discontinuity the gap between this breakdown
temperature and the one from the low temperature expansion (4.8) opens considerably
(cf. Fig. 4.1). Therefore another approximation is needed to investigate the missing region.
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4.3 Approximation of the Polylogarithm Difference

In order to fill the gap arising between the Boltzmann and Sommerfeld region, it is useful
to take a closer look at the similarity of the polylogarithm of different orders (cf. Fig. 4.2).
While every polylogarithm intersects at the origin and have the same slope there as well
(cf. appendix), their behavior still remains similar at finite negative arguments. Since
the first polylogarithm resembles an elementary function Li1(ν) = − ln(1 − ν), it is very
appealing to consider the other orders in terms of an approximation of the polylogarithm
difference (APLD) [23]

dn(ν) = Lin+1(ν)− Li1(ν) . (4.21)

Introducing and expanding this difference in (4.2) as a Taylor series around a certain
negative fugacity ν0 yields

x = kBT ρ̃(kBT ) ln(1− ν)

−
∑

n6=0

ρndn(ν0) (kBT )n+1

−
∑

n6=0

ρn
(

dn−1(ν0)− d−1(ν0)
)

ν0
−1 (kBT )n+1(ν − ν0)−O

(

(ν − ν0)2
)

. (4.22)

The first term, proportional to the logarithm in this approximation can be understood
as following from a temperature dependent averaged density of states ρ̃ which was already
introduced in the high temperature approximation (4.12). In the case of low temperatures
when the first two orders dominate this renormalized density of states, it just resembles
the original density of states but taken at the thermal energy:

ρ(ε)→ ρ̃(kBT ) ≈ ρ(kBT ) (4.23)

However, it will differ from the original one for more sophisticated cases.

Additionally, the zeroth order of the Taylor series only shifts the doping value used in
the theory,

x→ x + dx(kBT ) with dx(kBT ) =
∑

n6=0

ρndn(ν0) (kBT )n+1 , (4.24)

since this term does not depend on the chemical potential. It resembles the requirement
to fulfill the doping constraint (4.2) at the expansion point.

The first order terms in this expansion would result in the chemical potential given by

kBT ρ̄ (1 + eβµ) exp
(

kBT ρ̄ (1 + eβµ)
)

= kBT ρ̄ exp

(

x + dx(kBT )− kBT ρ̄ (ν0 − 1)
kBT ρ̃(kBT )

)

, (4.25)

where kBT ρ̄ is the prefactor of the linear term in (4.22) similar to dx(kBT ) for the zeroth
order. The solution of this equation can be found as the Lambert W function [150] with
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Figure 4.2: The behavior of polylogarithmic functions of different order remains
similar for small negative arguments. The negative fugacity ν0 marked on the
right-hand side (dotted line) denotes the temperature T0 which will later serve as
expansion temperature (4.34).

the right-hand side as argument. Of course, for small (positive) arguments this function
can again be linearized. Since this will lead to the same solution as if only the zeroth order
term is taken, the first order contributions will only give corrections at large doping (4.24)
or low temperatures. Therefore this as well as all higher orders will be neglected in the
following, leading to the chemical potential in this approximation µP given as

µP = kBT ln

[

exp

(

x + dx(kBT )
kBT ρ̃(kBT )

)

− 1

]

(4.26)

= kBT
(

z + ln(2 sinh z)
)

, (4.27)

with the argument of the hyperbolic function

z =
x + dx(kBT )
2kBT ρ̃(kBT )

=
x +

∑

n6=0 ρndn(ν0) (kBT )n+1

2
∑

n ρn (kBT )n+1
. (4.28)

In this approximation, the doping dependence of the chemical potential as seen in (4.26)
changes qualitatively from the one obtained in the high temperature limit (4.11). Therefore,
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Figure 4.3: The comparison of the result for the chemical potential within the
APLD similar to Fig. 4.1. The areas denote the relative error between the exact
solution and the quadratic approximated one up to 100% or between the result
by the APLD (4.26) and the exact solution (inset). The lines describe the pa-
rameter values if the degeneracy Tdeg, APLD expansion T0 or upper-breakdown
temperature TP given by (4.30), (4.34) and (4.31) become equal to the specific
temperature T = 400 K. The expansion temperature was taken as T̃ = 2T .

the thermopower within the TICR approximation following from this expression can be
viewed as a generalization of the Heikes formula (2.41) (cf. discussion after (4.20)).

The validity of this expression can be related to the results of the high temperature
approximation and Sommerfeld expansion in particular cases: For a very large expansion
temperature the difference of the polylogarithms dn(ν0) becomes negligible. Due to the as-
sumed high temperatures the result of Boltzmann approximation µB in (4.11) is obtained
by an additional expansion of the exponential function in (4.26). In contrast, in decreasing
the expansion temperature the corresponding fugacity will reach unity, i.e. ν0 → −1. After
this point a slight variation of the chemical potential or the temperature will lead to a
greater change in the fugacity. Therefore higher orders become important (cf. discussion
after (4.25)) and the Taylor series (4.22) will break down for smaller temperature differ-
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ences. This means the APLD as presented should only be used for temperatures larger
than the degeneracy temperature Tdeg. This temperature is implicitly given by

x = −
∑

n

ρn Lin+1(−1) (kBTdeg)n+1 . (4.29)

If the Taylor series (4.1) is dominated by its first terms (4.29), it can be solved yielding

Tdeg ≈
− ln 2 +

√

(ln 2)2 + π2xρ1/3ρ2
0

π2kBρ1/6ρ0

, (4.30)

where the chemical potential vanishes according to (4.2) (cf. Fig. 4.3). However, for a very
dominant discontinuity, the first term in (4.22) will give the dominant contribution to the
doping. Therefore, the other terms will resemble small corrections whose importance will
decrease as the first term increases. Since the latter was treated exactly in the APLD, this
means that the validity region is increased to very low temperatures. As stated, in the limit
of a strict two-dimensional system when only a discontinuity is present in the density of
states, the approximation becomes exact and resembles the result of Sommerfeld expansion
after performing a Taylor series for small temperatures. This limit will be thoroughly
discussed in the following section.

While (4.29) limits the application of the approximation (4.26) to small temperatures,
it will fail for temperatures much larger than the expansion temperature T0, too. This
issue arises due to the fact that the chemical potential in this approximation has a log-
arithmic singularity where the argument of the exponential function in (4.26) vanishes.
The singularity can also be seen in the numerical solution in Fig. 4.3 where it seems that
the APLD remains valid until close to this anomaly. Since at these temperatures the high
temperature approximation is valid, this approximation should be used for temperatures
similar or larger than the temperature TP which is implicitly given by

x = −dx(kBTP ) = −
∑

n6=0

ρndn(ν0) (kBTP )n+1 , (4.31)

where the logarithms in (4.26) has its singularity. If again the Taylor series (4.1) is domi-
nated by its first two terms this expression simplifies to

TP ≈
√

x
−d1(ν0) ρ1kB

2
. (4.32)

Remarkably, this temperature diverges in the two-dimensional limit where only a discon-
tinuity is present in the density of states. This again shows that the APLD will become
exact in this limit.

A suitable expansion point for the APLD therefore has to lie between the degeneracy
temperature (4.29) and this singularity temperature (4.31). Since the breakdown tem-
perature of the high temperature approximation (4.14) will always be larger than the
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latter temperature the expansion fugacity −ν0 has to take a value between e−2 and unity,
i.e. −1 ≤ ν0 ≤ − e−2. It is therefore appealing to use ν0 = −e−1 which means the chem-
ical potential is at the thermal energy below the band edge, i.e. µ = −kBT . Putting this
temperature into the doping constraint (4.2) determines this temperature implicitly by

x = −
∑

n

ρn Lin+1(− e−1) (kBT0)n+1 , (4.33)

which when the first terms of the Taylor series (4.1) are dominant can be solved to

T0 ≈
ln(1− ν0)−

√
(

ln(1− ν0)
)2 − 4 Li2(ν0) xρ1/ρ2

0

2kBρ1/ρ0 Li2(ν0)
. (4.34)

With this expansion temperature T0, further simplifications can be brought to (4.26):
In this case the absolute value of the difference of the polylogarithm functions of first
orders amounts to |d1(ν0)| = 0.03 and monotonically decreases with larger expansion tem-
peratures. This value is significantly smaller than the corresponding coefficient in (4.22)
ln(1 + e−1) = 0.3 describing the effect of the averaged density of states ρ̃ at this expansion
temperature. Furthermore, since it gets multiplied by at least kB

2T 2 its effect to the dop-
ing at room temperature will be significantly smaller than common values of the doping.
Although the difference increases slightly for higher orders (cf. Fig. 4.2), the shift of the
doping dx in the expansion (4.26) may be neglected, especially if the Taylor series is gov-
erned by its first terms. Since this means neglecting even the first order in the expansion
of the APLD (4.22) the expansion point ν0 would not be present in the solution of the
chemical potential (4.26). Therefore an even larger application region is expected in this
case which is in agreement with the diverging behavior of the break down temperature TP
from (4.31) as well as the discussion of the lower break down temperature after (4.29).

Reviewing the results of this section, for dominating discontinuity the characteristic
(breakdown) temperatures found in (4.8), (4.9), (4.14), (4.30), (4.31) and (4.34) may be
ordered as

TS < TF < Tdeg < T0 < TB < TP . (4.35)

4.4 APLD and an Apparent Fermi liquid

In this section we will address the question when the chemical potential can again be
approximated by a quadratic form. This would then lead within the TICR approxima-
tion (2.47) to a linear thermopower characterizing an AFL. However, as will be shown, an
important tendency can be gained by considering the case where only a discontinuity is
present in the density of states

ρ(ε) = ρ0 ·Θ(ε) . (4.36)
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In order to apply this insight later on to experiments, where a more realistic model would
be appropriate, the general case is shortly discussed afterwards.

As mentioned previously in this limit where only a discontinuity is present (4.36) the
APLD becomes exact, therefore the breakdown temperatures do not have to be considered.
Performing a quadratic expansion around the transition temperature T0 in this case leads
to

µP− = µ
(0)
P (T̃ ) + µ

(1)
P (T̃ ) · (T − T̃ )−̟ · (T − T̃ )2 (4.37)

= kB

(

z + ln(2 sinh z)
)

T̃

− kB

(

z coth z − ln(2 sinh z)
)

(T − T̃ )

− kB
z2

2 sinh2 z

1
T̃

(T − T̃ )2 , (4.38)

where the argument of the hyperbolic functions (4.28) is simplified to

z =
x

2ρ0kBT̃
. (4.39)

Due to the fact that the linear coefficient after reordering in powers of T will not vanish
(cf. Fig. 4.4) this leads to an AFL behavior. Furthermore, the quadratic coefficient ̟
possesses in its T̃ dependence an inflexion point near its maximum at

z coth z =
3
2
. (4.40)

Thus the terms of higher order will have small values near this maximum and the quadratic
expansion will approximate the function very well around this point. Therefore defining
a particular expansion temperature T̃P−. Since the numerical solution of (4.40) reads
z ≈ 1.29 this temperature is given by

T̃P− ≈ 4505
K
eV
· x
ρ0

= 0.8TS = 0.3Tdeg . (4.41)

An interesting aspect of this temperature is that the chemical potential have not yet
moved far from the Fermi energy. In fact, the low temperature expansion (4.4) would
describe a chemical potential independent of temperature. It therefore stays at the Fermi
energy with increasing temperature. At the specified temperature, when it differs from
the Fermi energy by

(

εF − µP (T̃P−)
)

/εF = 3% it finally starts moving towards the band

edge (for comparison:
(

εF −µP (2T̃P−)
)

/εF = 25%). This is due to the fact that the Fermi

distribution is cut at the band edge (at T̃P− it is reduced by 8% there) while at higher
energies no such cut is effective (cf. Fig. 4.5). Therefore the chemical potential has to shift
to lower values in order to fulfill the doping constraint (2.22). In addition, the beginning
of this shift can be approximated as a Taylor series (4.38) with non-vanishing quadratic
coefficient, therefore distinguishing it from the Fermi liquid parameter. Nevertheless, a
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Figure 4.4: Behavior of the temperature coefficients of the quadratic expan-
sion µP− = ε̃F + qeS0T −̟T 2 for only a discontinuity according to (4.38). The
temperature dependence of these parameters are weakest around the tempera-
ture T̃ given by (4.40). Additionally, the curves for an additional linear term
ρ1 = 2 (eV)−1 ρ0 in the density of states with a doping of x = 0.2 eV ρ0 are shown
according to (4.42) and (4.43) (dashed lines). At these values, the close stationary
points have begun to shift independently, causing the AFL to destabilize. In the
figure ε̃F , qeS0, ̟ are given in units of ρ0/x, kB

−1 and kB
−2x/ρ0 respectively.

cross-over from a true Fermi liquid behavior, i.e. with finite parameters, to such an AFL
one can not be observed in this limit.

However, on the one hand in considering very small additional coefficients of higher
order terms in the Taylor series, the real Fermi liquid parameter would be non-vanishing.
On the other hand, the boost of the chemical potential near the temperature T̃P− may still
be possible to observe on top of the background behavior caused by these coefficients. Since
the breakdown temperature of the observable Fermi liquid TS will be slightly lower than
the stated temperature (4.41) this leads to a comparably small transition region between
a Fermi liquid and an AFL behavior. Analytically, this represents itself as follows: When
taking the effects in (4.26) of the full Taylor-series of the density of states into account,
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Figure 4.5: Mechanism causing the chemical potential to shift with temperature
for Fermi liquid and apparent Fermi liquid behavior. For the former one (top) an
asymmetry of the density of states ρ at the Fermi edge, e.g. a linear increase of
states, causes a quadratically dependent chemical potential. In the high tempera-
ture expansion (bottom) the decreasing values of the Fermi function f causes the
chemical potential to shift which when expanded shows a linear term as well. A
similar effect can be observed at intermediate temperature (middle), only that the
decreasing values outside of the band causes the shift. In the case of a dominant
discontinuity this shift can even be stronger than those caused from Fermi liquid
theory, and therefore it might be possible to observe this effect.

both the hyperbolic argument as described in (4.28) and the modification of the derivatives
in the quadratic expansion have to be taken into account:

µ
(1)
P (T̃ )→ µ

(1)
P (T̃ ) − kB z̃(1 + coth z) , (4.42)

̟ → ̟
(

1 +
z̃

z

)2

+ kB
1 + coth z

2
(

ρ̃(kBT̃ )
)2

·
[

zkBT̃ ρ̃
(2) ρ̃(kBT̃ ) + dx(1)ρ̃(1) − 2zkBT̃

(

ρ̃(1)
)2 − 1

2
dx(2) ρ̃(kBT̃ )

]

, (4.43)

with z̃=
(

2zkBT̃ ρ̃
(1) − dx(1)

)

/(2ρ̃) and where ρ̃(n) denotes the n-th derivative of the renor-

malized density of states and dx(n) respectively the one of the doping change both taken at
the thermal energy kBT̃ . These adjustments cause the common stationary point of all three
coefficients of the chemical potential µPq, as a polynomial in temperature T , to shift inde-
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pendently (cf. Fig. 4.3). Therefore, this destabilizes the quadratic approximation thereby
destroying the AFL and stressing the role of a large discontinuity for this kind of AFL.
However, as expected at the beginning of this paragraph, in adjusting the doping x in the
case of small other coefficients ρn for n > 0 of the Taylor series, a narrow region remains
where the different stationary points are close to one another. As indicated in Fig. 4.4,
the observation temperature T̃Pq of the AFL of this region would then be larger than the
temperature given in (4.41).

In contrast to the AFL by the high temperature approximation, where the temperature
only has to be larger than the breakdown temperature TB, the AFL by APLD is centered
around the temperature T̃P− from (4.41) if only a discontinuity is considered or slightly
above for small further coefficients. In addition it crucially depends on the influence of
the discontinuity. This can be seen in the phase diagram too, for instance if only a linear
coefficient is considered (cf. Fig. 4.6). Of course in a realistic density of states the presence
of an upper band can destroy these phases as well if the chemical potential becomes too
close to it. Therefore a large enough gap is necessary too.

As mentioned previously, the offset of the thermopower within the APLD (4.42)
and (4.43) with (4.19), as well as the one obtained in the high temperature approxima-
tion (4.17) and (4.18) with (4.19) can be related to modified Heikes formula (2.41) in the
limit of low doping. In this case the nominator in the Heikes formula (2.41) is taken as
unity leading to

SHeikes =
kB

qe
ln

1
x
. (4.44)

Therefore only a factor in front of the argument of the logarithm is missing to obtain the
formula of the high temperature approximation if the TICR constant is neglected (cf. (4.11)
with (2.47)). Furthermore, as shown in previous studies [86–88] a degenerate lower level
with degeneracy g leads to a shift in Heikes formula and therefore a modification of for-
mula (4.44) by an offset of q−1

e kB ln g. Thus, the APLD as well as the high temperature
approximation result in the same formula as the modified Heikes formula for low doping
if this degeneracy is identified by g = kBT̃ ρ0 in case of a purely two-dimensional system
(cf. Fig. 4.7). Remarkably, this means that not the total number of states in the lower
band contributes to the thermopower, but only a small fraction of it. Reviewing this re-
sult from the atomic limit, the degeneracy of the lower level in modified Heikes formula
is replaced by only that part of the broadened level which is close to its upper edge with
respect to the thermal energy, similar to the discussion of properties in Fermi liquid the-
ory (cf. Fig. 2.4). For less dominant discontinuity this identification changes in the high
temperature approximation to

g = kBT̃ ρ̃(kBT̃ ) exp
(

kBT̃ (ln ρ̃)(1) + (kBT̃ )2(ln ρ̃)(2)
)

. (4.45)

However, even with this identification the modified Heikes formula can not account for
the results obtained by the introduced approximations for doping values that are not that
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Figure 4.6: Phase diagram for a density of states given by ρ(ε) = (ρ0 +ρ1ε) ·Θ(ε),
T = 400 K (areas) and T = 800 K (lines). In the different colored regions the
relative errors between the exact solution of the chemical potential and the one
described by the stated behavior is smaller than 50%. For the AFL by APLD
(AFL region on the left), equations (4.42) and (4.43) are compared to (4.26),
respectively for the one given by the high temperature approximation (4.11) (AFL
region present in the lower right corner). In these regions the more general Fermi
liquid and AFL expressions (4.4), (4.11), (4.26) differ from the exact solution by
less than 1%.

small. Then the decrease of the thermopower with respect to increased doping is damped
as compared to the behavior of the Heikes formula. This damping is even more pronounced
in the APLD which leads astonishingly to an increase within the APLD for large doping
values.

4.5 Application to the Delafossite CuCrO2

In the following sections the observed AFL behavior in the thermopower of the delafossites
will be studied. In particular, this section will be concerned with the AFL noticed in
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Figure 4.7: Comparison of the offsets of the thermopower (4.20) in the high
temperature approximation S0,B as well as in the APLD S0,P obtained within
the TICR framework. The solid lines represent the results for a purely two-
dimensional system, i.e. ρn = 0 for n > 0 with ρ0 = 1 (eV)−1, while the dashed ones
are drawn if an additional linear term ρ1 = 2 (eV)−1 ρ0 is present in the density
of states. Both cases are shown for an expansion temperature T̃ = 400 K. The
curve of the perturbed two-dimensional system obtained by the high temperature
approximation does not change much compared to the one of the unperturbed
system. In addition, the result of the Heikes formula SHeikes from (2.41) is shown
as well as the curve which is shifted by the proposed degeneracy factor appearing
in modified Heikes formula.

CuCr1−xMgxO2 while the subsequent section is devoted to that found in CuRh1−xMgxO2.
It will be investigated if the derived formulas for the chemical potential can explain the
measured thermopowers in combination with the TICR approximation. This means that
the obtained chemical potentials (4.15), (4.42) and (4.43) should be put in the TICR
approximation (2.47) and that the resulting expression should be fitted to the experimental
data by adjusting the coefficients in the Taylor series. However, fitting such an infinite
number of parameters is obviously not practicable. Instead, only the first two terms of
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the Taylor series should be considered. In addition, the replacement of chromium by
magnesium as well as the substitution of rhodium later leads to a hole-doping in the t2g
band (cf. section 1.2). For this kind of doping the upper band edge is important in contrast
to the lower one which was described in (4.1) for electron-like doping. In order to apply
the previously discussed framework, the signs of all energies should therefore be inverted.
This leads to the density of states to be given by

ρ(ε) = (ρ0 − ρ1ε) ·Θ(−ε) . (4.46)

Furthermore, since the lower band edge was neglected, the density of states can not be
normalized with respect to the orbitals contributing to the band. Since the particle number
constraint (4.2) can be scaled arbitrarily, only two of the parameters in (4.46) and the
doping are independent. Thus only the normalized doping y and the parameter ratio r can
be adjusted. They are defined by

y =
x
ρ0

, r =
ρ1

ρ0

. (4.47)

When measuring the thermopower of doped CuCrO2 [29] (cf. Fig. 4.8) the data for low
doping does not seem to show a linear regime as clearly as doped CuRhO2 (cf. Fig. 1.3).
However, for intermediate values of the doping a trend towards a linear region is visible
above T = 600 K. Since this temperature is very high the results of the lowest doped sample
can be interpreted as a linear behavior, but with an even increased temperature T = 900 K
which served as expansion temperature T̃ . Therefore the region where the parameters can
be adjusted to the determined formulas should be restricted to values above the former
temperatures. Moreover, to account for the strong noise the samples are showing the offset
and linear term of the thermopower was adjusted by considering the quantities

TS(T )− T̄ S(T̄ )
T − T̄ with T̄ = 700 K , (4.48)

since they do not depend on the E0 parameter of the TICR. This parameter was then
adjusted by an additional fit. In calculating the exact solution by numerics afterwards the
results can then be compared to the data points at lower temperatures. Note that already
when the data was first investigated [29] samples with large doping where proven to be
contaminated by the forming of a spinel phase. Therefore mainly the data for the low and
intermediate doping as shown in Fig. 4.8 will be addressed.

Adjusting the parameters in (4.47) while comparing the experimental values to those
obtained by the approximation for high temperatures in section 4.2 gives already reasonable
parameters (cf. Tab. 4.1), in contrast to those for low temperatures. That would mean
for this material the temperature scale would be very low although it is believed to be
strongly correlated. Nevertheless, adjusting the parameters for the formula of the APLD
from section 4.3 differ from these. At a closer look this is due to the fact, that the
obtained parameters of the APLD would lead to a breakdown temperature TP close to
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Figure 4.8: Comparison of the thermopower of CuCr1−xMgxO2 given by experi-
mental data (points) according to [29, 151] to the one obtained from the param-
eters of the density of states for values of the determined doping of x = 0.35%,
0.85% and 1.1% respectively for the nominal doping x = 0.5%, x = 1% and
x = 2%. The TICR parameter E0 has been adjusted to the different doping
values.

the considered one. Therefore a larger expansion temperature T0 = µ (2kB)−1 has to be
considered. However, with this expansion temperature the simplification made after (4.34)
would not hold any more. Thus, it requires to take the zeroth order dx(kBT ) of the
APLD in (4.22) into account, which is proportional to d1(ν0) for the density of states
in (4.46). With these modifications the results coincide with those obtained from the high
temperature approximation.

While the results of the TICR parameter E0 ≈ 100 meV are close to those reported
for doped manganites, but with opposite signs since they are electron-doped [20, 98], the
slope ρ1 seems to dominate the effective density of states for this material. This is in
agreement with a previous first principle study [29]. Furthermore, the results exhibit a
strong increase of both parameters for the highest doped samples which fall in the range
where the formation of a secondary spinel or CuO phase was previously reported [29] as
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x [%] ρ0 [(keV)−1] ρ1 [(eV)−2] r [(eV)−1] y [meV] E0 [meV] x̃ [%]
0.5 175 35 200 28.6 131 0.35
1.0 141 28.3 200 70.7 153 0.85
2.0 220 44 200 91 112 1.10
3.0 608 122 200 49.3 58.2 0.60
4.0 823 165 200 48.6 51.9 0.59
5.0 1180 236 200 42.4 36.7 0.51

Table 4.1: Parameters of the effective density of states ρ0, ρ1 as determined
by a fit of the thermopower of (2.47) with (4.11) to the experimental values of
CuCr1−xMgxO2 given for the values of the nominal doping x as extracted from the
fitting parameters y, r and E0. In addition the deduced effective charge carrier
density x̃ is shown too.

mentioned above.

However, the other samples exhibit some variations for the parameters too: Although
they show a clear common parameter ratio r = 200 (eV)−1 the value for the normalized
doping y still varies. During the first investigation [29] a similar issue was observed since
the targeted nominal doping,

x = 0.5%, 1%, 2% , (4.49)

did not succeed due to the mentioned forming of the spinels. Therefore, in that study
statistical electron diffraction spectroscopy (EDS) was used to determine the change of the
size of the unit cell. From their results, more reliable values can be obtained [151] leading
to quite different doping values

x̃EDS = 0.2%, 0.6%, 1.1% . (4.50)

Similarly, this encourages adjusting the doping in the present method to find the effective
charge carrier density. This issue and its solution is not only known for doped CuCrO2, but
has been addressed for several other manganites, too [98]. However, since the doping values
can only be obtained from (4.47) if the parameters of the density of states are known, one
sample should be picked in order to calibrate the others. If the most reliable value of the
reported EDS data x̃EDS = 1.1% is used for the nominal one of x = 2% the parameters of
the density of states,

ρ0,B = 0.121 (eV)−1, ρ1,B = 24.2 (eV)−2 , (4.51)

coincide for all low doped samples for doping values of

x̃ = 0.35%, 0.85%, 1.1% , (4.52)

which are within the error margins of those suggested from the EDS measurements. Fur-
thermore, if the charge carrier concentration is calculated for the higher doped samples a
decrease is obtained, indicating again the mentioned problems in sample preparation.
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Formula x [%] r [(eV)−1] y [meV] E0 [meV]
µP 1 3.5 4.8 33
µPq 1 3.1 4.6 31
µP− 1 - 2.4 6.1
µP 4 3.4 6.0 11
µPq 4 3.4 6.0 11
µP− 4 - 3.1 -14
µP 10 3.4 21 36
µPq 10 2.5 19 32
µP− 10 - 13 17

Table 4.2: Stationary points of fitting the thermopower of (2.47) with (4.26),
(4.38), (4.42) and (4.42) to the experimental data of CuRh1−xMgxO2 in the region
where an AFL behavior is observed.

The calculation of the thermopower using the exact numerical solution leads to good
agreement between theory and experiment as can be seen in Fig. 4.8. Additionally, the
hyperbolic offset caused by the TICR parameter seems to describe the increase at low
temperature and doping, while the agreement is lost below T ≈ 600 K for intermediate
doping values. This might be due to a breakdown of the TICR, but surprisingly coincides
with the Boltzmann breakdown temperatures for these samples TB = 349 K, 565 K, 644 K.
These values confirm the placement of the observed behavior in the region of the phase
diagram where the AFL by the high temperature approximation can be found, too.

4.6 Application to the Delafossite CuRhO2

As mentioned in the introduction, the doped band insulator CuRhO2 shows a clear linear
behavior of the thermopower with respect to temperature. However, the adjustment of the
parameters in the derived formulas to the measurements of CuRh1−xMgxO2 [19] shows a
different picture than in the case of the doped Mott-insulator CuCrO2: On the one hand,
a blind fit of the low temperature expansion (4.4) in combination with the TICR (2.47)
would give negative discontinuities due to the observed offset in the thermopower. For the
high temperature one (4.15) on the other hand, both the parameter ratio r and normalized
doping y varies strongly between the samples, taking even negative values for the highest
doped material for the former quantity. Therefore, the observed behavior can not be
explained by these approximations. Nevertheless, adjusting the parameters in the formula
obtained by the APLD with the simplification stated after (4.34) leads to more consistent
results.

In comparing the results produced by a fit using the formula of the APLD with the
expansion temperature (4.34) (cf. Tab. 4.2), the values of the parameter of the TICR
E0 ≈ 30 meV are in agreement for the lowest and highest doped samples and fall in a
region similar to those reported for manganites [19, 98], too. Furthermore, the results of
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the expansion for vanishing parameter ratio (4.38) gives values similar to those obtained
from the quadratic expansion and from fitting the full solution (4.26). Again the parameter
ratios found are close, while the values of the effective doping vary. Therefore the doping
can be adjusted where the results of the parameters of the density of state coincide for
doping values of

x = 2.3%, 2.8%, 10% . (4.53)

With these values of the doping, all samples give therefore rise to the same parameters
of the density of states of

ρ0,P = 4.7 (eV)−1, ρ1,P = 16 (eV)−2 . (4.54)

These results of the APLD are close to those obtained by first principle studies (cf. Fig. 4.9).
The obtained parameters place the largest doped sample of this material in the phase dia-
gram (cf. Fig. 4.6) precisely in the narrow area of the validity range of the AFL by APLD,
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while the lowest doped samples are closer to the region described by the high tempera-
ture approximation. This is further supported by the fact that the Boltzmann breakdown
temperature for the largest doped sample TB(x = 10%) = 1316 K is larger than the one
considered while the expansion temperature of the APLD T0(x = 10%) = 653 K lies within
the region where the linear behavior is observed. Therefore the observed AFL can be
understood as the remains of a broader manifestation for larger discontinuity. Compared
to doped CuCrO2 this material exhibits therefore a discontinuity enhanced thermopower
although larger doping values were considered. Furthermore, the recalculation of the ther-
mopower using the exact solution shows an extraordinary good agreement (cf. Fig. 4.10).
At low temperature the hyperbolic offset E0 of the thermopower dominates the theoret-
ical behavior for this material too. Nevertheless, since the data does not show a strong
upturn this rather indicates the breakdown of the TICR in agreement with the discussion
in section 2.3. However, a slight upturn can be found for the lowest doped sample which
compared to the intermediate one has a larger E0 constant. Since interaction effects are ex-
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temperatures for the different doping values.

pected to be negligible due to nearly filled bands, this might arise from scattering processes
caused by a larger disorder in this sample which could explain the insulating behavior at
very low temperatures [19], too.

From the parameters of the density of state further quantities like the specific heat can
be determined (cf. Fig. 4.11). Since the calculation of the specific heat is not dependent
on the TICR approximation a Fermi liquid behavior can be observed at very low temper-
atures. Nevertheless, for low doping the effective mass gets renormalized in comparison to
calculations in which the discontinuity is neglected. This phase breaks down at a temper-
ature which decreases with decreasing doping, in agreement with the expected insulating
behavior for zero doping. However, the breakdown temperatures are obviously not well
described by the Fermi temperature TF , but seem to occur at temperatures somewhat be-
low the analytically introduced smaller breakdown temperature TS. In the vicinity of this
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temperature a peak in the derivative of the specific heat is found (cf. inset of Fig. 4.11).
It should be observable in experiments, in particular for low doping. Above the transition
area, around the degeneracy temperature Tdeg, a linear region emerges which extends to
T0, where the chemical potential has left the band, and for large doping even beyond. Note
that the difference between the apparent effective mass and the bare one exceeds those
usually expected from interaction effects obtained using the slave-boson saddle-point ap-
proximation applied to a nearly filled band [152]. At higher temperatures for the two lower
doped samples, the slope gradually reaches a slightly smaller value, forming another linear
region above the breakdown temperature of the high temperature approximation TB. This
region is described by the AFL in the high temperature approximation. Under an increase
of the doping, the APLD replaces the high temperature approximation as the valid ap-
proximation at intermediate temperature. In this way the transition from the AFL in the
high temperature approximation to the one given by the APLD is visible. This can be seen
in Fig. 4.6 too, where an expansion around T̃ = 800 K was considered and the difference
of the chemical potential at a temperature T = 400 K was studied. The transition occurs
therein when moving upwards, respectively increasing the normalized doping y = x/ρ0,
along the line for r = ρ1/ρ0 = 3.4 (eV)−1. Since the transition temperatures T0 for the dif-
ferent doping are always lower than the expansion temperature T̃ the APLD (4.26) remains
valid.

4.7 Summary and Outlook

In summary the density of states of the delafossites was described by a Taylor series with
a dominant zero order term due to their underlying perturbed two-dimensional structure.
Furthermore, since the considered materials were only slightly doped, this series was placed
around the band edge. Thereby paying respect to the fact, that at intermediate temper-
ature the chemical potential has left the band and therefore the region at the band edge
provides the largest values of the Fermi function, where states still exists.

With this simplification of those materials Sommerfeld expansion and Boltzmann ap-
proximation could be formulated as expansions of the polylogarithm. On the one hand,
the low temperature expansion showed a Fermi liquid behavior which may extend up to
room temperature for dominant discontinuity and large doping. On the other hand, we
obtained an AFL behavior already from the high temperature expansion. This behavior is
not only characterized by a non-vanishing term of the chemical potential, which is linear
in temperature, but also exhibits the same qualitative doping dependence as the Heikes
formula in the low doping regime. Therefore it showed that this famous formula might be
applied even to semi-conductors in some cases, although the interpretation of extracted
quantities changes. Moreover, within this framework we were able to obtain breakdown
temperatures for both cases. These temperatures showed a gap between the application
range of these approximations which even broadens for a dominant discontinuity.

In order to access the missing temperature range, we developed the APLD which ap-
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proximates in lowest order the density of states by its value at the thermal energy kBT , if
only the first two terms of the Taylor series are considered. By this approximation we were
able to specify a characteristic temperature where another AFL behavior can be observed,
if only a discontinuity is present. This temperature increases with perturbations to the
two-dimensionality of the system before the AFL region finally breaks down. In addition,
the doping dependence of the chemical potential and therefore of the thermopower in the
TICR approximation would differ from the one known from the Heikes formula around
this temperature. Furthermore, due to the interpretation of this approximation, which we
gave in section 2.3, this scheme should be valid within the validity range of the APLD.

While the high temperature approximation was sufficient to explain the thermopower
of doped CuCrO2, the APLD was needed for the interpretation of the doped delafossite
CuRhO2. Thereby, we could make a contribution to the pressing question of the real
amount of charge carriers by assuming the same density of states for each sample of the
materials. Moreover, since we obtained an effective density of states we could calculate the
specific heat for the latter material, showing distinguishing features which might motivate
further experiments.
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Chapter 5

Conclusion

Motivated by the findings of the delafossites where an apparent Fermi liquid behavior was
measured around room temperature, i.e. a linear thermopower and quadratic resistivity
with respect to temperature, we addressed the question, how to access thermodynamic
properties as well as the thermopower in temperature regions insufficiently covered so far.

In order to access quantities which are dependent on temperature within the DMRG
framework we started from the ancilla approach where a single thermal quantum state can
describe the system at a specific temperature. However, in order to target thermodynamic
expectation values we could successfully demonstrate that enlarging the Hilbert space in
this technique is not necessary. Instead, we proposed to use a thermal state, which we
could generate in different ways:

On the one hand, we used the exactly known state of a non-interacting system, which
could successfully be implemented in the DMRG framework. On the other hand, we gener-
ated an approximation to this state by taking the ground state of the original Hamiltonian,
which was perturbed by both on-site disorder and disordered hopping parameters. Both
showed a similar picture when calculating the overlap amplitudes of the generated state
with the many-body eigenstates of the Hamiltonian. These overlap amplitudes resemble
roughly an exponential decay with respect to the many-body energies of the system as
is necessary for a thermal state. Nevertheless, for finite interaction strength stochastic
sampling over different trial states was still necessary. In case of the thermal state of the
non-interacting system we showed that the exploitation of the freedom of its arbitrary in-
ternal phases leads to surprisingly good results, even for large interaction strength at low
temperatures. Furthermore, we proposed that with this technique it should be possible to
access the thermopower, which can be applied to the delafossites if the DMRG is improved
to access higher dimensional systems.

Since these materials are usually composed by connected layers, we focused on the ef-
fects of a density of states governed by the first terms of a Taylor series too. Thereby, we
were able to place Sommerfeld expansion and Boltzmann approximation in the framework
of using polylogarithm and obtained better breakdown criteria. Enlarging the application
region of the latter approximation, we developed the APLD which enables to cover the
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complete temperature region above the degeneracy temperature where the chemical po-
tential leaves the band. Especially, for a dominant discontinuity in the density of states
like in a two-dimensional system this approximation could be interpreted by replacing the
energy dependent density of states by its value at the thermal energy. Furthermore, such
a dominant discontinuity enlarges the validity range of this approximation scheme even
further, covering the full temperature range for an unperturbed two-dimensional system.

These techniques enabled us to investigate the thermopower of doped CuCrO2 and
doped CuRhO2 within the TICR approximation, which we could interpret by the non-
resonant level model. In the study we were not only able to extract the parameters of a
simplified density of states of these materials but to contribute to the question of the real
charge carrier density too. In addition, we showed that while the former material can be
understood in a Boltzmann picture where the lower tail of the Fermi function dominates
the properties, the latter exemplifies another situation which is governed by the upper tail
and which is only observable due to the dominating discontinuity at the band edge. Both
situations lead to a quasi linear behavior of the thermopower, explaining the observed AFL
behavior whose effects we suggested should be measurable in the specific heat as well.
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Appendix

Polylogarithms and their
expansion results at low temperature

In this chapter, the polylogarithms are defined by the integral which occurred in sec-
tion 2.2 and which properties lead to the development of the approximation introduced in
section 4.3. Some mathematical properties are derived afterwards including an inversion
formula for real arguments. In the following, this formula allows to obtain the result of
Sommerfeld expansion when the formalism is applied on the physical constraint of fixed
particle number. In addition, it is shown, that the specific heat can exactly be determined
in the grand canonical ensemble, while the low temperature approximation is needed for
the canonical one.

When considering the doping constraint (4.2) and the density of states as series of
powers s the following integrals appear:

Lis+1(z) = − 1
Γ(s+ 1)

∫ ∞

0
xs f

(

x− ln(−z)
)

dx , (A.1)

where f(x) = (1 + ex)−1 denotes the Fermi function (2.18) and Re(s) > −1 as well as
z 6∈ {x ∈ R |x ≥ 1} are assumed for reasons of convergence. The functions Lis+1 defined
in (A.1) are called the polylogarithm [153] of order s + 1 and are illustrated for the first
integer orders in Fig. 4.2 on page 66. It is easily shown that they fulfill a recursion relation
with respect to their orders via their derivatives:

∂ Lis+1(z)
∂z

=
1

Γ(s+ 1)

∫ ∞

0
xs f ′

(

x− ln(−z)
)

dx
1
z

(A.2)

=
1

zΓ(s+ 1)

[

xs f
(

x− ln(−z)
)
∣
∣
∣
∣

∞

0
− s

∫ ∞

0
xs−1 f

(

x− ln(−z)
)

dx
]

(A.3)

= − 1
zΓ(s)

∫ ∞

0
xs−1 f

(

x− ln(−z)
)

dz =
Lis(z)
z

, (A.4)

where f ′(x) denotes the derivative of the Fermi function. In addition, this recursion relation
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means that all these functions share a similar behavior around the origin, i.e.

lim
z→0

Lis(z) = − 1
Γ(s)

lim
z→0

∫ ∞

0

zxs−1

z − ex
dx = 0 , (A.5)

lim
z→0

∂ Lis(z)
∂z

= lim
z→0

Lis−1(z)
z

=
1

Γ(s− 1)

∫ ∞

0
xs−2 e−x dx = 1 . (A.6)

More popular is the recursion formula in integral form through which the polylogarithm
can alternatively be defined:

Lis+1(z) =
∫ z

0

Lis(x)
x

dx (A.7)

The name of the functions derives from this recursion formula (A.7) and the fact, that one
of these functions can be expressed by the logarithm. In particular, the function of first
order represents this elementary function but at a shifted argument:

Li1(z) = −
∫ ∞

0

z

z − ex
dx (A.8)

= −
∫ ∞

z−1

z

t(t− z) dt (A.9)

= −
∫ ∞

z−1

( 1
t− z −

1
t

)

dt (A.10)

= − ln
t− z
t

∣
∣
∣
∣

∞

z−1
(A.11)

= − ln(1− z) , (A.12)

where in (A.9) the integral was rewritten as dependent on the denominator, i.e. applying
the substitution t = z − ex. If the known series expansion of the logarithm for |z| < 1 is
combined with the recursion relation (A.7) a similar series expansion,

Lis(z) =
∞∑

m=1

zm

ms
, (A.13)

can be found. This allows the extension of the definition of the polylogarithm to arbitrary
order s ∈ C. Furthermore, from (A.13) can be inferred, that these functions are real valued
for real arguments |x| < 1 and real order n ∈ R. While for real arguments larger unity
x ≥ 1, the polylogarithm functions exhibit a branch cut like the shifted logarithm (A.12),
the functions can be evaluated at an arbitrary argument as well. Remarkably, if the
argument is smaller than the negative unity x < −1 the value of those functions can
be related to those with the inverse argument by the inversion formula [154]. In the
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case of positive integer orders it simplifies so that only the logarithm enters besides the
polylogarithm [153]:

Lin(−x) = 2
⌊n/2⌋
∑

m=0

Li2m(−1)
(ln x)n−2m

(n− 2m)!
− (−1)n Lin

(

−1
x

)

(A.14)

This can be proven using the integral version of the recursion formula (A.7):

Lin+1(−x) =
∫ −x

0

Lin(t)
t

dt (A.15)

= Lin+1(−1−) +
∫ x

1+

Lin(−y)
y

dy (A.16)

= Lin+1(−1−) + 2
⌊n/2⌋
∑

m=1

Li2m(−1)
1

(n− 2m)!

∫ x

1+

(ln y)n−2m

y
dy

− (−1)n
∞∑

m=1

(−1)m

mn

∫ x

1+

y−m−1 dy (A.17)

= Lin+1(−1−) + 2
⌊n/2⌋
∑

m=1

Li2m(−1)
1

(n− 2m)!

∫ lnx

0+

zn−2m dz

− (−1)n
∞∑

m=1

(−1)m

mn

∫ x

1+

y−m−1 dy (A.18)

= Lin+1(−1−) + 2
⌊n/2⌋
∑

m=1

Li2m(−1)
1

(n− 2m+ 1)!
(ln x)n−2m+1

− (−1)n+1
∞∑

m=1

(−1)m

mn+1

(

x−m − (1−)m
)

(A.19)

= Lin+1(−1) + 2
⌊n/2⌋
∑

m=1

Li2m(−1)
(ln x)n+1−2m

(n+ 1− 2m)!

− (−1)n+1 Lin+1

(

−1
x

)

+ (−1)n+1 Lin+1(−1) (A.20)

= 2
⌊(n+1)/2⌋
∑

m=0

Li2m(−1)
(ln x)n+1−2m

(n+ 1− 2m)!
− (−1)n+1 Lin+1

(

−1
x

)

, (A.21)

where the substitutions y = −t and z = ln y were used in (A.16) and (A.18) respectively.
Note that for convergence reasons of the series 1+ (1−) denotes values slightly greater
(smaller) than 1, i.e. 1± δ, where the limit δ → 0 has been done in the penultimate line.



90 APPENDIX POLYLOGARITHMS

The initial condition is satisfied since

Li1(−x) = − ln(1 + x) = − ln x− ln
(

1− 1
−x

)

= − ln x+
∞∑

m=1

1
m

(−x)−m . (A.22)

For a general density of states ρ(ε) as decomposed in series of powers, these functions
represent the integral of each summand appearing in the particle number condition (2.22).
In the case of a Taylor series of only one band around the band edge1 at ε0 it takes the
form

ρ(ε) =
∑

n

ρn
n!

(ε− ε0)nΘ(ε− ε0) Θ(ε0 +W − ε) , (A.23)

where W denotes the bandwidth.

For such a density of states formula (A.14) can be used to derive the low temperature
properties. The particle number density or doping x is determined by the sum over all
states which are occupied as given by the Fermi function f . This sum becomes an integral
as described in (2.19) which can be rewritten by the polylogarithm functions:

x =
∫

ρ(ε) f
(

β(ε− µ)
)

dε (A.24)

=
∫ ε0+W

ε0

∑

n

ρn
n!

(ε− ε0)n
1

1 + eβ(ε−µ)
dε (A.25)

=
∑

n

ρn
n!

[∫ ∞

ε0
−
∫ ∞

ε0+W

]

(ε− ε0)n
1

1 + eβ(ε−µ)
dε (A.26)

=
∑

n

ρn
n!
β−(n+1)





∫ ∞

0
xn

1
1 + ex+β(ε0−µ)

dx

−
∫ ∞

0
(x+ βW )n

1
1 + ex+β(W+ε0−µ)

dx



 (A.27)

= −
∑

n

ρnβ
−(n+1)



Lin+1(− eβ(µ−ε0))

−
n∑

j=0

(βW )n−j
(

n
j

)

j!
n!

Lij+1(− eβ(µ−W−ε0))



 , (A.28)

1 In the calculation performed in this chapter, the zero point of energy will not be fixed in order to
allow the application of the derived formulas to multiple bands. In this case, the band edge, bandwidth
and the Taylor coefficients would acquire an additional band index. The summation over this index would
be carried out at the sum of the Taylor series.



APPENDIX POLYLOGARITHMS 91

with the substitution x = β(ε− ε0) in the penultimate line. From the series representation
of the polylogarithm (A.13) the second term in the formula above will be suppressed by
the factor e−βW for low temperatures. Therefore for a large bandwidth this term can be
neglected. From the inversion formula (A.14) the remaining first term in (A.28) can be
rewritten, yielding the result of Sommerfeld expansion in lowest order in temperature:

x ≈ −
∑

n

ρnβ
−(n+1)



2
⌊(n+1)/2⌋
∑

m=0

Li2m(−1)

(

β(µ− ε0)
)n+1−2m

(n+ 1− 2m)!

− (−1)n+1
∞∑

m=1

(−1)m

mn+1
e−mβ(µ−ε0)



 (A.29)

= − 2
∑

n

ρnβ
−(n+1)



Li0(−1)
βn+1

(n+ 1)!
(µ− ε0)n+1

+ Li2(−1)
βn−1

(n− 1)!
(µ− ε0)n−1 +O(βn−3)



 (A.30)

= − 2 Li0(−1)
∑

n

ρn
(n+ 1)!

(µ− ε0)n+1

− 2 Li2(−1)β−2
∑

n

ρn
(n− 1)!

(µ− ε0)n−1 +O(βn−3) (A.31)

=
∫ µ

0
ρ(ε) dε+

π2

6
β−2 ρ′(µ) +O(β−4) , (A.32)

where in the last line the series were identified as the Taylor series of the anti-derivative and
the derivative of the density of states ρ(ε) with respect to energy, and Li0(−1) = −1/2, as
well as Li2(−1) = −π2/12 were used. Expanding the chemical potential in this expression
as power series with respect to temperature

µ = εF + µ1 T −̟T 2 + µ3 T
3 +O(T 4) , (A.33)

and expanding the resulting expression further in a Taylor series, so that a comparison of
the coefficients of the temperature dependence is possible leads to

x =
∫ εF

0
ρ(ε) dε , (A.34)

µ1 = µ3 = 0 , (A.35)

̟ =
π2

6
kB

2ρ
′(εF )
ρ(εF )

. (A.36)



92 APPENDIX POLYLOGARITHMS

In order to evaluate the grand canonical potential, partial integration has to be applied
to proceed afterwards as in the case of the particle number:

Ω/M = −β−1 lnZµ/M (A.37)

= β−1
∫ ∞

−∞
ρ(ε) ln

[

f
(

− β(ε− µ)
)]

dε (A.38)

= β−1
∑

n

ρn
n!

∫ ε0+W

ε0
(ε− ε0)n ln

[

f
(

− β(ε− µ)
)]

dε (A.39)

= β−1
∑

n

ρn
n!

1
n+ 1

[

W n+1 ln
[

f
(

− β(ε0 +W − µ)
)]

− β
∫ ε0+W

ε0
(ε− ε0)n+1 f

(

β(ε− µ)
)

dε
]

(A.40)

≈
∑

n

β−(n+2)ρn Lin+2(− eβ(µ−ε0)) (A.41)

= −
∫ µ

0

∫ ε′

0
ρ(ε) dε dε′ − π2

6
ρ(µ)kB

2 T 2 +O(T 4) (A.42)

The derivatives of this expression with respect to temperature determine the low temper-
ature behavior of the entropy and the specific heat in the grand canonical ensemble:

Sµ/M = −∂Ω/M
∂T

=
π2

3
ρ(µ)kB

2 T (A.43)

Cµ/M = T
∂Sµ/M
∂T

=
π2

3
ρ(µ)kB

2 T (A.44)

For an accurate calculation of these quantities in the canonical ensemble the free energy
should be determined which can be found from the grand canonical potential by a Lagrange
transformation. There the chemical potential is again given by (A.34). The free energy F
can therefore be obtained as

F/M = Ω/M + µ x (A.45)

= −
∫ εF

0

∫ ε′

0
ρ(ε) dε dε′ − π2

6
ρ(εF )kB

2 T 2 + εF x +O(T 4) . (A.46)

Again the derivatives determine the entropy and specific heat in the canonical ensemble:

Sx/M = −∂F/M
∂T

=
π2

3
ρ(εF )kB

2 T (A.47)

Cx/M = T
∂Sx/M

∂T
=
π2

3
ρ(εF )kB

2 T (A.48)

This is the same result as if the chemical potential dependent on temperature is used in
the specific heat of the grand canonical ensemble.



93

Acknowledgements

At the end of this thesis, I would thank the referees Prof. Dr. Fakher F. Assaad and Dr. Diet-
mar Weinmann as well as Prof. Dr. Peter Wölfle, Dr. Antoine Maignan and Prof. Dr. Ray-
mond Frésard for the possibility to work on these interesting topics. In particular, I’m
most grateful for the support of Prof. Dr. Raymond Frésard on the French and Ms. Hornik
on the German side without whom this joint thesis would not have been possible. In ac-
cordance to this diplomatic act, which was gladly approved by Prof. Dr. Josette Travert,
Prof. Dr. Lamri Adoui and Prof. Dr. Horst Hippler, I want to mention that the ordering of
the title pages might differ due to administrative issues. For the idea of such a cooperation
as well as his technical aid I want to specially show my gratitude to Dr. Peter Schmitt-
eckert who acted as unofficial supervisor throughout the preparation of this thesis too. In
addition, I wish to acknowledge the assistance of the Steinbuch Centre for Computing,
the Institut für Kondensierte Materie and the Institut für Nanotechnologie who were so
kind to let me use their computer clusters where the numerical calculation were processed.
On the software side gfortran, g++, awk, pov-ray3.6, gnuplot and latex2ε were used as
well as some internet resources, like www.leo.org and www.wikipedia.org. In order to cre-
ate figures from published data, this data was extracted from figures in the publications
mentioned in their captions. Furthermore, I feel obliged to the financial support of the
Research Unit 960 “Quantum Phase Transitions”, the French-German University and the
ANR through NEWTOM (ANR-08-BLAN-0005-01). In particular, Dr. Christine Martin
was very helpful in organizing the cooperation for the latter one as well as discussing the
chemical side of the considered materials. Furthermore, I want to express my deepest
thanks to our secretary Rose Schrempp and to my colleagues, in particular Dr. Alexander
Braun, Dr. Johannes Reuther, Dr. Sam Carr and Dipl.-Phys. Stéphane Ngô Ðinh at the
Institut für Theorie der Kondensierten Materie (TKM), Dr. Emmanuel Guilmeau, Dr. Ul-
rike Lüders and Dr. Cédric de Vaulx at the Laboratoire de Cristallographie et sciences des
Matériaux (CRISMAT), and Dr. Volker Eyert and Prof. Dr. Thilo Kopp from the Univer-
sität Augsburg for useful discussions on related topics. Last but not least I am indebted
to my friends and family, especially to my cousin Francis Kremer, for their motivating
support.

Copyright c© (2011) Stefan Kremer. Permission granted to reproduce for personal and
educational use only. Commercial copying, hiring, lending is prohibited.



94



95

Bibliography

[1] C. de Vaulx, private communication (2009).

[2] S. L. “Strom aus Abwärme: Der thermoelektrische Generator von BMW” Heise
Autos (2008).

[3] R. R. Furlong and E. J. Wahlquist “U.S. space missions using radioisotope
power systems” Nuclear News 42 (5), 26-34 (1999).

[4] D. M. Rowe Thermoelectrics Handbook: Macro to Nano edited by D. M. Rowe
(CRC Press, Boca Raton, 2006), pp. 1-4.

[5] G. V. Chester and A. Thellung “The Law of Wiedemann and Franz” Proc.
Phys. Soc. 77 (5), 1005-1013 (1961).

[6] C. Kittel Introduction to Solid State Physics (John Wiley and Sons, New York,
1953), pp. 222, 307.

[7] M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, and H. Arai “Electri-
cal Transport Properties and High-Temperature Thermoelectric Performance of
(Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi)” J. Sol. State Chem. 120
(1), 105-111 (1995).

[8] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T.
Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K.
Koumoto “Giant thermoelectric Seebeck coefficient of a two-dimensional electron
gas in StTiO3” Nature Materials 6 (2), 129-134 (2007).

[9] G. S. Nolas, J. Sharp, and H. J. Goldsmid Thermoelectrics in Springer Series
in Materials Science 45 (Springer, Berlin, 2001), pp. 191-207.

[10] A. Saramat, G. Svensson, A. E. C. Pamqvist, C. Stiewe, E. Mueller,
D. Platzek, S. G. K. Williams, and D. M. Rowe “Large thermoelectric fig-
ure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30”
J. Appl. Phys. 99 (2), 023708 [5 pages] (2006).



96 BIBLIOGRAPHY

[11] X. F. Tang, L. D. Chen, T. Goto, and T. Hirai “Effects of Ce filling frac-
tion and Fe content on the thermoelectric properties of Co-rich CeyFexCo4−xSb12”
J. Mater. Res. 16 (3), 837-842 (2001).

[12] H. Kuriyama, M. Nohara, T. Sasagawa, K. Takubo, T. Mizokawa, K.
Kimura, and H. Takagi High-temperature thermoelectric properties of Delafossite
oxide CuRh1−xMgxO2 Proc. 25th Int. Conf. Thermoelectrics (Vienna) (IEEE, Pis-
cataway, 2006), p. 97.

[13] Y. Ono, K. Satoh, T. Nozaki, and T. Kajitani “Structural, Magnetic and
Thermoelectric Properties of Delafossite-type Oxide, CuCr1−xMgxO2 (0 ≤ x ≤ 0.05)”
Jpn. J. Appl. Phys. 46 (3A), 1071-1075 (2007).

[14] K. Hayashi, T. Nozaki, and T. Kajitani “Structure and High Temperature
Thermoelectric Properties of Delafossite-Type Oxide CuFe1−xNixO2 (0 ≤ x ≤ 0.05)”
Jpn. J. Appl. Phys. 46 (8A), 5226-5229 (2007).

[15] T. Nozaki, K. Hayashi, and T. Kajitani “Thermoelectric Properties of Dela-
fossite-Type Oxide CuFe1−xNixO2 (0 ≤ x ≤ 0.05)” J. Chem. Eng. Jpn. 40 (13),
1205-1209 (2007).

[16] I. Terasaki, Y. Sasago, and K. Uchinokura “Large thermoelectric power in
NaCo2O4 single crystals” Phys. Rev. B 56 (20), 12685-12687(R) (1997).

[17] D. Bérardan, E. Guilmeau, A. Maignan, and B. Raveau “In2O3:Ge, a promis-
ing n-type thermoelectric oxide composite” Solid State Commun. 146 (1), 97-101
(2008).

[18] Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai,
and Y. Iye “Filling Dependence of Electronic Properties on the Verge of Metal–
Mott-Insulator Transitions in Sr1−xLaxTiO3” Phys. Rev. Lett. 70 (14), 2126-2129
(1993).

[19] A. Maignan, V. Eyert, C. Martin, S. Kremer, R. Frésard, and D.
Pelloquin “Electronic structure and thermoelectric properties of CuRh1−xMgxO2”
Phys. Rev. B 80 (11), 115103 [9 pages] (2009).

[20] M. Miclau, J. Hejtmanek, R. Retoux, K. Knizek, Z. Jirak, R. Fresard,
A. Maignan, S. Hebert, M. Hervieu, and C. Martin “Structural and Magnetic
Transitions in CaMn1−xWxO3” Chem. Mater. 19 (17), 4243-4251 (2007).

[21] Y. Klein, S. Hébert, A. Maignan, S. Kolesnik, T. Maxwell, and B.
Dabrowski “Insensitivity of the band structure of substituted SrRhO3 as probed
by Seebeck coefficient measurements” Phys. Rev. B 73 (5), 052412 [4 pages] (2006).

[22] M. Tanaka, M. Hasegawa, and H. Takei “Growth and Anisotropic Physical
Properties of PdCoO2 Single Crystals” J. Phys. Soc. Jpn. 65 (12), 3973-3977 (1996).



BIBLIOGRAPHY 97

[23] S. Kremer and R. Frésard “Thermoelectric transport properties of an apparent
Fermi liquid: Relation to an analytic anomaly in the density of states and application
to hole-doped delafossites” submitted to Ann. d. Phys. [21 pages] (2011).

[24] Ph. de Clermont “Séance du 18 juillet 1873” Bulletin de la Société chimique de
Paris 20 (2), 99 (1873).

[25] R. D. Shannon, D. B. Rogers, and C. T. Prewitt “Chemistry of Noble
Metal Oxides. I. Syntheses and Properties of ABO2 Delafossite Compounds” In-
org. Chem. 10 (4), 713-718 (1971);
C. T. Prewitt, R. D. Shannon, and D. B. Rogers “Chemistry of Noble Me-
tal Oxides. II. Crystal Structures of PtCoO2, PdCoO2, CuFeO2, and AgFeO2” In-
org. Chem. 10 (4), 719-723 (1971);
D. B. Rogers, R. D. Shannon, and C. T. Prewitt “Chemistry of Noble Metal
Oxides. III. Electrical Transport Properties and Crystal Chemistry of ABO2 Com-
pounds with the Delafossite Structure” Inorg. Chem. 10 (4), 723-727 (1971).

[26] K. Isawa Oxide Thermoelectrics edited by K. Koumoto (Research Signpost, Tri-
vandrum, 2002), p. 213.

[27] S. Seki, Y. Yamasaki, Y. Shiomi, S. Iguchi, Y. Onose, and Y. Tokura
“Impurity-doping-induced ferroelectricity in the frustrated antiferromagnet CuFeO2”
Phys. Rev. B 75 (10), 100403(R) [4 pages] (2007).

[28] J.-P. Doumerc, A. Wichainchai, A. Ammar, M. Pouchard, and P. Ha-
genmuller “On magnetic properties of some oxides with delafossite-type structure”
Mater. Res. Bull. 21 (6), 745-752 (1986).

[29] A. Maignan, C. Martin, R. Frésard, V. Eyert, E. Guilmeau, S. Hébert,
M. Poienar, and D. Pelloquin “On the strong impact of doping in the triangular
antiferromagnet CuCrO2” Solid State Commun. 149 (23), 962-967 (2009).

[30] M. Tinkham Group theory and quantum mechanics (McGraw-Hill, New York, 1964),
pp. 86, 282.

[31] R. Seshadri, C. Felser, K. Thieme, and W. Tremel “Metal–Metal Bonding
and Metallic Behavior in Some ABO2 Delafossites” Chem. Mater. 10 (8), 2189-2196
(1998).

[32] H. Okabe, M. Matoba, T. Kyomen, and M. Itoh “Magnetic property and
electronic structure of itinerant PdxCoyO2 magnets” J. Appl. Phys. 93 (10), 7258-
7260 (2003).

[33] D. J. Singh “Electronic and thermoelectric properties of CuCrO2 : Density func-
tional calculations” Phys. Rev. B 76 (8), 085110 [4 pages] (2007).



98 BIBLIOGRAPHY

[34] V. Eyert, R. Frésard, and A. Maignan “On the Metallic Conductivity of the
Delafossites PdCoO2 and PtCoO2” Chem. Mater. 20 (6), 2370-2373 (2008).

[35] V. Eyert, R. Frésard, and A. Maignan “Long-range magnetic order and spin-
lattice coupling in delafossite CuFeO2” Phys. Rev. B 78 (5), 052402 [4 pages] (2008).

[36] H. Usui, R. Arita, and K. Kuroki “First-principles study on the origin of large
thermopower in hole-doped LaRhO3 and CuRhO2” J. Phys. : Condens. Matter 21
(6), 064223 [4 pages] (2009).

[37] S. Schmitt “Non-Fermi-liquid signatures in the Hubbard model due to van Hove
singularities” Phys. Rev. B 82 (15), 155126 [12 pages] (2010).

[38] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A.
E. Ruckenstein “Phenomenology of the Normal State of Cu-O High-Temperature
Superconductors” Phys. Rev. Lett. 63 (18), 1996-1999 (1989).

[39] D. M. Newns, P. C. Pattnaik, and C. C. Tsuei “Role of Van Hove singularity
in high-temperature superconductors : Mean field” Phys. Rev. B 43 (4), 3075-3084
(1991).

[40] J. A. Hertz “Quantum critical phenomena” Phys. Rev. B 14 (3), 1165-1184 (1976).

[41] F. Schwabel Quantenmechanik für Fortgeschrittene (Springer, Berlin, 1997).

[42] F. Schwabel Statistische Mechanik (Springer, Berlin, 2000).

[43] A. Altland and B. Simons Condensed Matter Field Theory (Cambridge Univer-
sity Press, Cambridge, 2010).

[44] G. D. Mahan Many-particle physics (Plenum Press, New York, 1990).

[45] H. Bluhm, N. C. Koshnick, J. A. Bert, M. E. Huber, and K. A. Mo-
ler “Persistent Current in Normal Metal Rings” Phys. Rev. Lett. 102 (13), 136802
[4 pages] (2009).

[46] L. P. Lévy, G. Dolan, J. Dunsmuir, and H. Bouchiat “Magnetization of
Mesoscopic Copper Rings : Evidence for Persistent Currents” Phys. Rev. Lett. 64
(17), 2074-2077 (1990).

[47] V. Meden and U. Schollwöck “Persistent currents in mesoscopic rings : A nu-
merical and renormalization group study” Phys. Rev. B 67 (3), 035106 [9 pages]
(2003).

[48] R. A. Molina, D. Weinmann, and J.-L. Pichard “Interacting electron sys-
tems between Fermi leads : effective one-body transmissions and correlation clouds”
Eur. Phys. J. B 48 (2), 243-247 (2005).



BIBLIOGRAPHY 99

[49] P. Schmitteckert and U. Eckern “Phase coherence in a random one-dimensional
system of interacting fermions : A density-matrix renormalization-group study”
Phys. Rev. B 53 (23), 15397-15400 (1996).

[50] P. Schmitteckert, T. Schulze, C. Schuster, P. Schwab, and U. Eckern
“Anderson Localization versus Delocalization of Interacting Fermions in One Dimen-
sion” Phys. Rev. Lett. 80 (3), 560-563 (1998).

[51] P. Schmitteckert, R. A. Jalabert, D. Weinmann, and J.-L. Pichard “From
the Fermi Glass towards the Mott Insulator in One Dimension : Delocalization and
Strongly Enhanced Persistent Current” Phys. Rev. Lett. 81 (11), 2308-2311 (1998).

[52] A. Wobst and D. Weinmann “Two interacting particles in a disordered chain IV :
Scaling of level curvatures” Eur. Phys. J. B 10 (1), 159-167 (1999).

[53] D. Weinmann, P. Schmitteckert, R. A. Jalabert, and J.-L. Pichard “De-
localization effects and charge reorganizations induced by repulsive interactions in
strongly disordered chains” Eur. Phys. J. B 19 (1), 139-156 (2001).

[54] R. A. Molina, P. Schmitteckert, D. Weinmann, R. A. Jalabert, G.-L.
Ingold, and J.-L. Pichard “Residual conductance of correlated one-dimensional
nanosystems : A numerical approach” Eur. Phys. J. B 39 (1), 107-120 (2004).

[55] P. Jordan and E. Wigner “Über das Paulische Äquivalenzverbot” Z. Phys. 47
(9), 631-651 (1928).

[56] J. M. Luttinger “An Exactly Soluble Model of a Many-Fermion System” J. Math.
Phys. 4 (9), 1154-1162 (1963).

[57] A. Luther and I. Peschel “Calculation of critical exponents in two dimensions
from quantum field theory in one dimension” Phys. Rev. B 12 (9), 3908-3917 (1975).

[58] F. D. M. Haldane “General Relation of Correlation Exponents and Spectral Prop-
erties of One-Dimensional Fermi Systems: Application to the Anisotropic S = 1

2

Heisenberg Chain” Phys. Rev. Lett. 45 (16), 1358-1362 (1980).

[59] J. E. Hirsch and E. Fradkin “Effect of Quantum Fluctuations on the Peierls
Instability: A Monte Carlo Study” Phys. Rev. Lett. 49 (6), 402-405 (1982).

[60] J. E. Hirsch and E. Fradkin “Phase diagram of one-dimensional electron-phonon
systems. II. The molecular-crystal model” Phys. Rev. B 27 (7), 4302-4316 (1983).

[61] M. Hohenadler, H. Fehske, and F. F. Assaad “Dynamic charge correlations
near the Peierls transition” Phys. Rev. B 83 (11), 115105 [8 pages] (2011).

[62] Q. Yuan, T. Nunner, and T. Kopp “Imperfect nesting and Peierls instability for
a two-dimensional tight-binding model” Eur. Phys. J. B 22 (1), 37-42 (2001).



100 BIBLIOGRAPHY

[63] N. Pavlenko and T. Kopp “Electron-phonon coupling in a two-dimensional inho-
mogeneous electron gas: consequences for surface spectral properties” J. Phys.: Con-
dens. Matter 20 (39), 395203 [7 pages] (2008).

[64] C. N. Yang and C. P. Yang “One-Dimensional Chain of Anisotropic Spin-Spin
Interactions. I. Proof of Bethe’s Hypothesis for Ground State in a Finite System”
Phys. Rev. 150 (1), 321-327 (1966);
C. N. Yang and C. P. Yang “One-Dimensional Chain of Anisotropic Spin-Spin
Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite
System” Phys. Rev. 150 (1), 327-339 (1966).

[65] M. Karbach and G. Müller “Introduction to the Bethe Ansatz I” Computers in
Physics 11 (1), 36-44 (1997);
M. Karbach, K. Hu, and G. Müller “Introduction to the Bethe Ansatz II”
Computers in Physics 12 (6), 565-574 (1998);
M. Karbach, K. Hu, and G. Müller “Introduction to the Bethe Ansatz III”
arXiv:cond-mat/0008018v1 [11 pages] (2000).

[66] M. Takahashi Thermodynamics of one-dimensional solvable models (Cambridge
University Press, Cambridge, 1999).

[67] I. N. Karnaukhov and A. A. Ovchinnikov “One dimensional strongly interact-
ing Luttinger liquid of lattice spinless fermions” arXiv:cond-mat/0110289v1 [4 pages]
(2001).

[68] P. Schmitteckert and R. Werner “Charge-density-wave instabilities driven by
multiple umklapp scattering” Phys. Rev. B 69 (19), 195115 [5 pages] (2004).

[69] F. F. Assaad and D. Würtz “Charge and spin structures in the one-dimensional
t-J model” Phys. Rev. B 44 (6), 2681-2696 (1991).

[70] M. Ogata, M. U. Luchini, S. Sorella, and F. F. Assaad “Phase Diagram of
the One-Dimensional t-J Model” Phys. Rev. B 66 (18), 2388-2391 (1991).

[71] H. v. Löhneysen, A. R. Roch, M. Vojta, and P. Wölfle “Fermi-Liquid
Instabilities at Magnetic Quantum Phase Transitions” Rev. Mod. Phys. 79 (3), 1015-
1075 (2007).

[72] M. Zacharias, P. Wölfle, and M. Garst “Multiscale quantum criticality:
Pomeranchuk instability in isotropic metals” Phys. Rev. B 80 (16), 165116 [15 pages]
(2009).

[73] P. Wölfle and E. Abrahams “Quasiparticles beyond the Fermi liquid and heavy
fermion criticality” arXiv:cond-mat/1102.3391v2 [5 pages] (2011).

[74] V. N. Popov and S. A. Fedotov “The functional-integration method and diagram
technique for spin systems” Sov. Phys. JETP 67 (3), 535-541 (1988).



BIBLIOGRAPHY 101

[75] A. J. Leggett Granular Nanoelectronics edited by D. K. Ferry (Plenum Press,
New York, 1991), pp. 297-311.

[76] X. Waintal, G. Fleury, K. Kazymyrenko, M. Houzet, P. Schmitteckert,
and D. Weinmann “Persistent Currents in One Dimension: The Counterpart of
Leggett’s Theorem” Phys. Rev. Lett. 101 (10), 106804 [4 pages] (2008).

[77] I. Affleck “Universal Term in the Free Energy at a Critical Point and the Confor-
mal Anomaly” Phys. Rev. Lett. 56 (7), 746-748 (1986).

[78] C. M. Naón, M. J. Salvay, and M. L. Trobo “Conformal properties of one-
dimensional quantum systems with long-range interactions” Phys Rev. B 72 (24),
245110 [4 pages] (2005).

[79] P. Drude “Zur Elektronentheorie der Metalle” Ann. d. Phys. 4 (11), 369-402 (1900).

[80] A. Rosch “Ist ein See von Elektronen immer eine Fermi-Flüssigkeit?” Physik in un-
serer Zeit 30 (3), 118-122 (1999).

[81] K. Kadowaki and S. B. Woods “Universal relationship of the resistivity and
specific heat in heavy-fermion compounds” Solid State Commun. 58 (8), 507-509
(1986).

[82] Y. Maeno, K. Yoshida, H. Hashimoto, S. Nishizaki, S. Ikeda, M. Nohara,
T. Fujita, A. P. Mackenzie, N. E. Hussey, J. G. Bednorz, and F. Licht-
enberg “Two-Dimensional Fermi Liquid Behavior of the Superconductor Sr2RuO4”
J. Phys. Soc. Jpn. 66 (5), 1405-1408 (1997).

[83] C. Urano, M. Nohara, S. Kondo, F. Sakai, H. Takagi, T. Shiraki, and T.
Okubo “LiV2O4 Spinel as a Heavy-Mass Fermi Liquid: Anomalous Transport and
Role of Geometrical Frustration” Phys. Rev. Lett. 85 (5), 1052-1055 (2000).

[84] S. Nakamae, K. Behnia, N. Mangkorntong, M. Nohara, H. Takagi, S. J.
C. Yates, and N. E. Hussey “Electronic ground state of heavily overdoped non-
superconducting La2−xSrxCuO4” Phys. Rev. B 68 (10), 100502(R) [4 pages] (2003).

[85] K. Miyake, T. Matsuura, and C. Varma “Relation between resistivity and
effective mass in heavy-fermion and A15 compounds” Solid State Comm. 71 (12),
1149-1153 (1989).

[86] P. M. Chaikin and G. Beni “Thermopower in the correlated hopping regime”
Phys. Rev. B 13 (2), 647-651 (1976).

[87] D. B. Marsh and P. E. Parris “High-temperature thermopower of LaMnO3 and
related systems” Phys. Rev. B 54 (23), 16602-16607 (1996).



102 BIBLIOGRAPHY

[88] W. Koshibae, K. Tsutsui, and S. Maekawa “Thermopower in cobalt oxides”
Phys. Rev. B 62 (11), 6869-6872 (2000).

[89] A. Maignan, D. Flahaut, and S. Hébert “Sign change of the thermoelectric
power in LaCoO3” Eur. Phys. J. B 39 (2), 145-148 (2004).

[90] S.-P. Kou and Z.-Y. Weng “Self-localization of holes in a lightly doped Mott
insulator” Eur. Phys. J. B 47 (1), 37-46 (2005).

[91] P. Limelette, S. Hébert, H. Muguerra, R. Frésard, and C. Simon
“Dual electronic states in thermoelectric cobalt oxide [Bi1.7Ca2O4]0.59CoO2” Phys.
Rev. B 77 (23), 235118 [5 pages] (2008).

[92] J. Hejtmánek, Z. Jirák, K. Knížek, M. Maryško, M. Veverka, and
C. Autret “Valence and spin states in perovskites LaCo0.95M0.05O3 (M = Mg, Ga,
Ti)” J. Magn. Magn. Mater. 320 (14), e92-e95 (2008).

[93] M. Uchida, K. Oishi, M. Matsuo, W. Koshibae, Y. Onose, M. Mori,
J. Fujioka, S. Miyasaka, S. Maekawa, and Y. Tokura “Thermoelectric re-
sponse in the incoherent transport region near Mott transition: the case study of
La1−xSrxVO3” Phys. Rev. B 83 (16), 165127 [5 pages] (2011).

[94] A. Branschädel, private communication (2011).

[95] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas “Generalized many-
channel conductance formula with application to small rings” Phys. Rev. B 31 (10),
6207-6215 (1985).

[96] P. Hu “One-dimensional quantum electron system under a finite voltage” Phys.
Rev. B 35 (8), 4078-4081 (1987).

[97] D. Segal “Thermoelectric effect in molecular junctions: A tool for revealing trans-
port mechanisms” Phys. Rev. B 72 (16), 165426 [7 pages] (2005).

[98] R. Frésard, S. Hébert, A. Maignan, L. Pi, and J. Hejtmanek “Modeling
of the thermopower of electron-doped manganites” Phys. Lett. A 303 (2), 223-228
(2002).

[99] K. Durczewski and M. Ausloos “Inelastic-phonon-scattering effect on the be-
havior of the thermoelectric power of metals” Phys. Rev. B 49 (18), 13215 [13218]
(1994).

[100] K. Durczewski and M. Ausloos “Theory of the thermoelectric Seebeck coef-
ficient: The case of phonon scattering for a degenerate free-electron gas” Phys.
Rev. B 53 (4), 1762-1772 (1996).



BIBLIOGRAPHY 103

[101] O. A. Petrenko, G. Balakrishnan, M. R. Lees, D. McK. Paul, and
A. Hoser “High-magnetic-field behavior of the triangular-lattice antiferromagnet
CuFeO2” Phys. Rev. B 62 (13), 8983-8988 (2000).

[102] T. Okuda, Y. Beppu, Y. Fujii, T. Onoe, N. Terada, and S. Miyasaka
“Specific heat of delafossite oxide CuCr1−xMgxO2 (0 ≤ x ≤ 0.03)” Phys. Rev. B 77
(13), 134423 [5 pages] (2008).

[103] Q.-J. Liu, Z.-T. Liu, and L.-P. Feng “Theoretical calculations of mechanical,
electronic, chemical bonding and optical properties of delafossite CuAlO2” Phys-
ica B 405 (8), 2028-2033 (2010).

[104] K. Behnia, D. Jaccard and J. Flouquet “On the thermoelectricity of correlated
electrons in the zero-temperature limit” J. Phys.: Condens. Matter 16 (28), 5187-
5198 (2004).

[105] V. S. Oudovenko and G. Kotliar “Thermoelectric properties of the degenerate
Hubbard model” Phys. Rev. B 65 (7), 075102 [6 pages] (2002).

[106] B. S. Shastry “Sum rule for thermal conductivity and dynamical thermal transport
coefficients in condensed matter” Phys. Rev. B 73 (8), 085117 [16 pages] (2006).

[107] J. O. Haerter, M. R. Peterson, and B. S. Shastry “Strong Correlations Pro-
duce the Curie-Weiss Phase of NaxCoO2” Phys. Rev. Lett. 97 (22), 226402 [4 pages]
(2006).

[108] M. R. Peterson, B. S. Shastry, and J. O. Haerter “Thermoelectric effects in
a strongly correlated model for NaxCoO2” Phys. Rev. B 76 (16), 165118 [14 pages]
(2007).

[109] B. S. Shastry “Electrothermal transport coefficients at finite frequencies” Rep.
Prog. Phys. 72 (1), 016501 [23 pages] (2009).

[110] K. Miyake and H. Kohno “Theory of Quasi-Universal Ratio of Seebeck Coefficient
to Specific Heat in Zero-Temperature Limit in Correlated Metals” J. Phys. Soc.
Jpn 74 (1), 254-258 (2005).

[111] H. Eschrig “T > 0 ensemble-state density functional theory via Legendre trans-
form” Phys. Rev. B 82 (20), 205120 [9 pages] (2010).

[112] A. W. Sandvik “Stochastic series expansion method with operator-loop update”
Phys. Rev. B 59 (22), 14157-14160(R) (1998).

[113] O. F. Syljuåsen and A. W. Sandvik “Quantum Monte Carlo with directed loops”
Phys. Rev. E 66 (4), 046701 [28 pages] (2002).



104 BIBLIOGRAPHY

[114] T. Xiang, J. Lou, and Z. Su “Two-dimensional algorithm of the density-matrix
renormalization group” Phys. Rev. B 64 (10), 104414 [6 pages] (2001).

[115] J. Rissler, R. M. Noack, and S. R. White “Measuring orbital interaction using
quantum information theory” Chem. Phys. 323 (2-3), 519-531 (2006).

[116] M. C. Bañuls, D. Pérez-García, M. M. Wolf, F. Verstraete, and J.
I. Cirac “Sequentially generated states for the study of two-dimensional systems”
Phys. Rev. A 77 (5), 052306 [9 pages] (2008).

[117] K. Lanczos “An Iteration Method for the Solution of the Eigenvalue Problem of
Linear Differential and Integral Operators” J. Res. Natl. Bur. Stand. 45 (4), 225-282
(1950).

[118] E. R. Davidson “The Iterative Calculation of a Few of the Lowest Eigenvalues and
Corresponding Eigenvectors of Large Real-Symmetric Matrices” J. Comput. Phys. 17
(1), 87-94 (1975).

[119] G. L. G. Sleĳpen and H. A. van der Vorst “A Jacobi-Davidson iteration
method for linear eigenvalue problems” SIAM J. Matrix Anal. Appl. 17 (2), 401-425
(1996).

[120] K. G. Wilson “Renormalization Group and Critical Phenomena. I. Renormaliza-
tion Group and the Kadanoff Scaling Picture” Phys. Rev. B 4 (9), 3174-3183 (1971);
K. G. Wilson “Renormalization Group and Critical Phenomena. II. Phase-Space
Cell Analysis of Critical Behavior” Phys. Rev. B 4 (9), 3184-3205 (1971).

[121] K. G. Wilson “The renormalization group and critical phenomena” Rev. Mod.
Phys. 47 (4), 773-840 (1975).

[122] S. R. White “Density Matrix Formulation for Quantum Renormalization Groups”
Phys. Rev. Lett. 69 (19), 2863-2866 (1992).

[123] S. R. White “Density-matrix algorithms for quantum renormalization groups”
Phys. Rev. B 48 (14), 10345-10348 (1993).

[124] R. M. Noak and S. R. Manmana “Diagonalization- and Numerical Renormal-
ization-Group-Based Methods for Interacting Quantum Systems” AIP Conf. Proc.
789 (1), 93-163 (2005).

[125] K. A. Hallberg “New Trends in Density Matrix Renormalization” Adv. Phys. 55
(5-6), 477-526 (2006).

[126] U. Schollwöck “The density-matrix renormalization group” Rev. Mod. Phys. 77
(1), 259-316 (2005).



BIBLIOGRAPHY 105

[127] R. A. Molina, D. Weinmann, and J.-L. Pichard “Length-dependent oscil-
lations of the conductance through atomic chains: The importance of electronic
correlations” Europhys. Lett. 67 (1), 96-102 (2004).

[128] C. D. E. Boschi and F. Ortolani “Investigation of quantum phase transitions
using multi-target DMRG methods” Eur. Phys. J. B 41 (4), 503-516 (2004).

[129] S. Östlund and S. Rommer “Thermodynamic Limit of Density Matrix Renormal-
ization” Phys. Rev. Lett 75 (19), 3537-3540 (1995).

[130] N. Schuch, I. Cirac, and F. Verstraete “Computational Difficulty of Finding
Matrix Product Ground States” Phys. Rev. Lett. 100 (25), 250501 [4 pages] (2008).

[131] F. Verstraete, D. Porras, and J. I. Cirac “Density Matrix Renormalization
Group and Periodic Boundary Conditions: A Quantum Information Perspective”
Phys. Rev. Lett. 93 (22), 227205 [4 pages] (2004).

[132] V. Murg, F. Verstraete, Ö. Legeza, and R. M. Noack “Simulating strongly
correlated quantum systems with tree tensor networks” Phys. Rev. B 82 (20), 205105
[11 pages] ((2010)).

[133] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac “Matrix Product
Density Operators: Simulation of Finite-Temperature and Dissipative Systems”
Phys. Rev. Lett. 93 (20), 207204 [4 pages] (2004).

[134] M. Zwolak and G. Vidal “Mixed-State Dynamics in One-Dimensional Quantum
Lattice Systems: A Time-Dependent Superoperator Renormalization Algorithm”
Phys. Rev. Let. 93 (20), 207205 [4 pages] (2004).

[135] T. Nishino “Density Matrix Renormalization Group Method for 2D Classical Mod-
els” J. Phys. Soc. Jpn 64 (10), 3598-3601 (1995).

[136] I. Schneider, A. Struck, M. Bortz, and S. Eggert “Local Density of States
for Individual Energy Levels in Finite Quantum Wires” Phys. Rev. Lett. 101 (20),
206401 [4 pages] (2008).

[137] Y. Takahashi and H. Umezawa “Thermo field dynamics” Collect. Phenom. 2,
55-80 (1975).

[138] M. Suzuki “Thermo Field Dynamics in Equilibrium and Non-Equilibrium Interact-
ing Quantum Systems” J. Phys. Soc. Jpn 54 (12), 4483-4485 (1985).

[139] A. E. Feiguin and S. R. White “Finite-temperature density matrix renormal-
ization using an enlarged Hilbert space” Phys. Rev. B 72 (22), 220401(R) [4 pages]
(2005).



106 BIBLIOGRAPHY

[140] S. Sota and T. Tohyama “Low-temperature density matrix renormalization group
using regulated polynomial expansion” Phys. Rev. B 78 (11), 113101 [4 pages] (2008).

[141] P. Schmitteckert “Nonequilibrium electron transport using the density matrix
renormalization group method” Phys. Rev. B 70 (12), 121302(R) [4 pages] (2004).

[142] R. B. Sidje “Expokit: A Software Package for Computing Matrix Exponentials”
ACM Trans. Math. Softw. 24 (1), 130-156 (1998).

[143] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling
Numerical Recipes: The Art of Scientific Computing (Cambridge University Press,
Cambridge, 1986), pp. 550-554.

[144] S. R. White and A. E. Feiguin “Real-Time Evolution Using the Density Matrix
Renormalization Group” Phys. Rev. Lett. 93 (7), 076401 [4 pages] (2004).

[145] J. Jaklič and P. Prelovšek “Lanczos method for the calculation of finite-
temperature quantities in correlated systems” Phys. Rev. B 49 (7), 5065-5068(R)
(1994).

[146] M. Aichhorn, M. Daghofer, H. G. Evertz, and W. v. d. Linden “Low-
temperature Lanczos method for strongly correlated systems” Phys. Rev. B 67 (16),
161103(R) [4 pages] (2003).

[147] B. V. Fine “Typical state of an isolated quantum system with fixed energy and
unrestricted participation of eigenstates” Phys. Rev. E 80 (5), 051130 [19 pages]
(2009).

[148] D. Bohr and P. Schmitteckert “Strong enhancement of transport by interaction
on contact links” Phys. Rev. B 75 (24), 241103(R) [4 pages] (2007).

[149] P. Schmitteckert “Calculating Green functions from finite systems” J. Phys.
Conf. Ser. 220, 012022 [19 pages] (2010).

[150] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.
Knuth “On the Lambert W function” Adv. Comput. Math. 5 (1), 329-359 (1996).

[151] E. Guilmeau, M. Poienar, S. Kremer, S. Marinel, S. Hébert, R.
Frésard, and A. Maignan “Mg substitution in CuCrO2 delafossite compounds”
accepted for publication in Solid State Comm. [11 pages] (2011).

[152] R. Frésard and G. Kotliar “Interplay of Mott transition and ferromagnetism in
the orbitally degenerate Hubbard model” Phys. Rev. B 56 (20), 12909-12915 (1997).

[153] L. Lewin Polylogarithms and associated functions (North Holland, New York, 1981),
pp. 192, 236.

[154] A. Jonquière “Note sur la série
∑∞
n=1

xn

ns
” Bulletin de la S. M. F. 17, 142-152

(1889).


	Introduction
	Motivation
	The Delafossites

	Temperature Dependence of Physical Quantities  
	Non-interacting and Interacting Fermions
	Thermodynamic Properties
	Transport Properties

	Numerical Evaluation at Finite Temperatures
	Exact Diagonalization
	The DMRG Method
	Calculation using Excited States
	Thermal Quantum States
	Thermal States
	Stochastic Sampling Techniques
	Summary and Outlook

	Analytic Approximations at Finite Temperatures  
	Low Temperature Expansion
	High Temperature Expansion
	Approximation of the Polylogarithm Difference
	APLD and an Apparent Fermi liquid
	Application to the Delafossite CuCrO2
	Application to the Delafossite CuRhO2
	Summary and Outlook

	Conclusion
	Polylogarithms
	Acknowledgements

