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Introduction

0.1 Introduction to the problem to be simulated

Micro-ring resonator is an optical device which consists of a circular ring cavity in the center
and coupled by two separated straight waveguides through an air gap of a few hundred
nanometers. Optical signals which are imported from one of the straight waveguides can
be resonated into the ring cavity and again be switched to another straight waveguide if
their frequencies match. People from industry are interested in designing of micro-ring
resonators. Such optical devices are useful components for wavelength filtering, switching,
routing [16, 35]. Due to huge cost of material based experiments, numerical simulations
have become indispensable approaches.

Mathematical problem of micro-ring resonator is nothing but to solve time domain
Maxwell’s equations. A method called finite difference time domain (FDTD) [43] has been
used to various types of application problems involving time domain Maxwell’s equations,
including numerical simulations of micro-ring resonators [16]. To represent the localized
fields with high accuracy, FDTD has to sacrifice a large number of numerical grid points
even in the region where the requirement of fields resolution is relatively low. Hence, another
method called adaptive wavelet collocation method (AWCM) which dynamically adjusts the
distribution of numerical grid points is motivated.

0.2 Motivation of AWCM

Assume there is a 1D Gaussian Pulse propagating towards the positive direction of x-axis
(Figure 1). To represent the signal numerically, one has to use certain number of points
around the peak; however, the amount of points with same density is unnecessary in the
region far away from the peak, at least before the peak approaches there. Thus, a more
effective way of distributing computational grid points is needed. The distribution should
not be uniform but nonuniform and should dynamically change as the peak moves to the
right.

When we consider adaptivity of numerical grid points, we have two aspects: first, some
parts of the numerical grid points in the current time step may become less important in
the next time step, and should be discarded; second, some other parts of the numerical grid
points may become significant, thus, more points should be added to that region. In every
time step, we perform throwing away and adding some more of grid points. Wavelets which
describe detail information of different resolution levels of a function can be a straightforward
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2 Introduction

way of deciding the distribution of numerical grid points effectively. In other words, using
wavelet for adaptivity strategy is a natural choice.

Especially for time evolutionary equations, an effective method called adaptive wavelet
collocation method (AWCM) ([40], [39], [30], [20], [41] and [42], etc.) has been developed and
verified. In this thesis, we investigate the applicability of AWCM to solve the time domain
Maxwell’s equations numerically which is also one system of the evolutionary equations,
and compare the results of numerical simulations with other methods, such as FDTD,
interpolating scaling functions method (ISFM) [14], Coupled Mode Theory (CMT) [17], etc
.

Figure 1: Gaussian peak propagating along x-axis
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Chapter 1

Mathematical modeling of the
micro-ring resonator

1.1 Structure of a micro-ring resonator

Analyzing high frequency signal coupling efficiencies of a type of optical waveguide, micro-
ring resonator, which is composed of a micro-ring cavity and two straight waveguides is
the main purpose of the numerical simulation. The geometry of this micro-ring resonator
is described in detail in Figure 1.1. From the position A, the left part of the waveguide
WG1 below, a bundle of signal containing continuous frequencies will be launched. The
excitation in WG1 is a Gaussian pulse modulating a frequency carrier1 [35]. Then along
with the time evolution we will observe that some parts of the signals of certain frequencies
will be switched into the ring cavity and also again be switched into the other straight
waveguide, while other parts of the signals will continuously propagate along the WG1 and
exit from the right position B of WG1. The numerical simulations of ring resonators have
been done using FDTD [16], DGTD [18], [28] and CMT [17], etc. In this paper we will
simulate the ring resonator with AWCM and compare the results obtained with FDTD,
ISFM and CMT.

1.2 Time domain Maxwell’s equations

1.2.1 3D Maxwell’s equations

Propagation of electro-magnetic waves is described by Maxwell’s Equations, which consist
of Faraday’s law, Ampere’s law, Gauss’s law for electric field, and Gauss’s law for magnetic
field. The time dependent Maxwell’s Equations in three dimensions in differential form are

1This will be explained in detail in Chapter 5.
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1.2. TIME DOMAIN MAXWELL’S EQUATIONS 5
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Figure 1.1: A geometric diagram of a micro-ring resonator, which is composed of a circular
ring cavity and two lateral straight waveguides. On-resonance and off-resonance signal
excited from port A are guided with different directions by the ring resonator. Source: [35].

given by:

−∂B
∂t

= ∇× E in Ω× [0,∞), (1.1a)

∂D
∂t

= ∇×H−J in Ω× [0,∞), (1.1b)

∇ · D = ρ in Ω× [0,∞), (1.1c)

∇ · B = 0 in Ω× [0,∞), (1.1d)

where the symbols in (1.1a) - (1.1d) are:� E : electric field (volts / meter),� D: electric flux density (coulombs / meter2),� H: magnetic field (amperes / meter),� B: magnetic flux density (webers / meter2),� J : electric current density (amperes / meter2),



6 Chapter 1� ρ: free charge density (coulombs / meter3).

Each of these fields is a three dimensional vector function of four independent variables: x,
y, z and t ((x, y, z) ∈ Ω, t ∈ [0,∞)), where Ω ⊂ R3 is a bounded domain.

Remark 1.1. 1. Symbols in the time domain equations such as B, E , D, H, and J are
denoted by calligraphic fonts to be distinguished from those in the frequency domain
equations. We use bold fonts for the fields in the frequency domain, i.e. B, E, D, H
and J.

2. We will use subindex to denote each component of the vector, for example, E =
x̂Ex + ŷEy + ẑEz, where x̂, ŷ, ẑ are unit vectors along x, y, z respectively. Note that
Ey here does not mean the partial derivative of E with respect to y.

3. Equations (1.1a), (1.1b) are called curl equations.

4. Equations (1.1c), (1.1d) are called divergence equations.

5. In linear, isotropic materials, D is related to E by a constant called electrical permit-
tivity, as well as B is related to H by a constant called magnetic permeability. These
relations are called constitutive equations.

D = εE = ε0εrE ,

B = µH = µ0µrH,

where� ε: electrical permittivity (farads / meter),� εr: relative permittivity or dielectric constant (dimensionless scalar),� ε0: free space permittivity (8.854187817× 10−12 farads / meter),� µ: magnetic permeability (henrys / meter),� µr: relative permeability (dimensionless scalar),� µ0: free space permeability (4π × 10−7 henrys / meter).

For anisotropic materials, the dielectric constant is different for different directions of
the electric field, and D and E generally have different directions, in this case, the
permittivity ε is a matrix:




Dx

Dy

Dz


 =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33







Ex
Ey
Ez


 . (1.3)
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In particular, if the off-diagonal entries of the matrix in (1.3) are all zero, we have




Dx

Dy

Dz


 =




ε11 0 0

0 ε22 0

0 0 ε33







Ex
Ey
Ez


 . (1.4)

This type of medium is called to be biaxial. Moreover, if we have ε11 = ε22, the
medium is uniaxial. In the case of ε11 = ε22 = ε33, it is an isotropic medium.

6. In this thesis, we will only deal with the case that there is no free charge density, i.e.,
ρ ≡ 0.

7. Initial conditions and boundary conditions are needed to solve various types of prob-
lems.

1.2.2 Decoupling of 2D Maxwell’s equations

Assume x, z directions represent the horizontal direction and the vertical direction respec-
tively, and the fields are constant along y-direction2, thus, the partial derivatives with respect
to y vanish in the equations (1.1a) and (1.1b) so that Maxwell’s equations are divided into
transverse magnetic mode with respect to y (TMy) and transverse electric mode with respect
to y (TEy):� TMy mode:

∂Hx

∂t
=

1

µ

∂Ey
∂z

, (1.5a)

∂Hz

∂t
= −1

µ

∂Ey
∂x

, (1.5b)

∂Ey
∂t

=
1

ε

(
∂Hx

∂z
− ∂Hz

∂x
− Jy

)
. (1.5c)� TEy mode:

∂Ex
∂t

=
1

ε

(
−∂Hy

∂z
− Jx

)
, (1.6a)

∂Ez
∂t

=
1

ε

(
∂Hy

∂x
− Jz

)
, (1.6b)

∂Hy

∂t
=

1

µ

(
∂Ex
∂z
− ∂Ez

∂x

)
. (1.6c)

2Fields in the 2D Maxwell’s equations are still 3D vector fields. However, these are called 2D since the
fields do not change along the y direction.
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Remark 1.2. 1. TMy mode and TEy mode are independent of each other, hence, in the
homogeneous case, i.e. J = 0, any solution of 2D Maxwell’s equations is a linear
combination of solutions of two modes, conversely, any linear combination of solutions
of two modes is a solution of 2D Maxwell’s equations.

2. In this thesis, we will focus on TMy mode for our problem of the numerical simulation
of the micro-ring resonator.

1.2.3 Reduction to 1D Maxwell’s equations

Starting from the 2D Maxwell’s equations (1.5), (1.6), we assume further that fields are con-
stant along z direction. Then, the partial derivatives with respect to z vanish in (1.5), (1.6).
Thus, TMy mode and TEy mode are more simplified as an x-directed, y-polarized trans-
verse electromagnetic (TEM) wave and an x-directed, z-polarized transverse electromagnetic
(TEM)3 wave, respectively.� x-directed y-polarized TEM mode:

∂Ey
∂t

=
1

ε

(
−∂Hz

∂x
−Jy

)
,

∂Hz

∂t
= −1

µ

Ey
∂x
.� x-directed z-polarized TEM mode:

∂Ez
∂t

=
1

ε

(
∂Hy

∂x
− Jz

)
,

∂Hy

∂t
= −1

µ

Ez
∂x
.

Remark 1.3. 1. Similar with 2D case, these two 1D modes are independent of each
other.

2. In each of these two modes, if we assume J = 0, by eliminating either electric or

magnetic field, we derive traditional 1D wave equation (i.e.
∂2u

∂t2
= c2

∂2u

∂x2
, where

c2 = 1/
√
µ0ε0 is the speed of light in vacuum) for magnetic or electric field.

1.3 Numerical methods

Numerical methods to differential equations are indispensable when there is no analytic
solution available. The derivatives in differential equations are substituted by numerically
approximated ones so that the new equations can be solved with computers. According to

3These terminologies here are referenced from those in [35].
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the type of numerical discretization, there are various kinds of numerical methods, such as
FDTD, ISFM, finite element method (FEM) and AWCM, etc. With the guarantee of the
certain accuracy analysis, approximate solutions computed from approximated equations
are practically useful in application. All these computations are done on a bounded domain
Ω.

1.3.1 Incident source

Hard source

A hard source is simply specifying E and H fields values on some selected points with given
time function. For example, in a 1D numerical grid, we can generate a continuous sinusoidal
wave of frequency f0 by hard source for Ey at position xhard:

Ey|nxhard
= E0 sin(2πf0n∆t),

where E0 is the amplitude of the sinusoidal wave, and n is the index for time stepping.
We can also generate another type of hard source, a bandpass Gaussian pulse with zero dc
content:

Ey|nxhard
= E0 exp(−[(n− n0)/ndecay]

2) sin(2πf0(n− n0)∆t).

The pulse is centered at the time-step n0 and ndecay is a scaling factor of the Gaussian
amplitude.

An incident source launched by a hard source technique is easy to implement. However,
it is not a preferable way of source launching for a long-duration incident wave such as
continuous mono-frequency wave. Because when the scattered field propagates back to the
hard source points, retro-reflective waves will occur from these locations so that it would
contaminate the computation [35]. This problem has been solved by another technique
which will be discussed in next subsection.

Total field and scattered field technique

We can excite an arbitrary incident wave using total field/scattered field (TF/SF) formu-
lation, see for example, K. R. Umashankar [38] and A. Taflove and S. C. Hagness [35].
Based on the linearity of Maxwell’s equations in vacuum, we decompose the electric field
and magnetic field as:

Etotal = Einc + Escat, Htotal = Hinc +Hscat.

We divide the whole computational domain into two regions (see Figure 1.2). The inside
region is total field region, and the outside region is scattered field region. In the total field
region the total field is stored in the computer memory, in the scattered field region the
scattered field is stored in the computer memory. At the numerical cells near the interface
between the total field region and the scattered field region, the numerical derivatives are
calculated by the stored variables of different types. We must correct these numerical
derivatives at those cells. The incident field values Einc and Hinc are known beforehand and
the total field and scattered field values are unknown. Since the formulation of TF/SF is
dependent on each type of numerical method, we will discuss it with AWCM in detail in
Chapter 5.
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Signal scatterer

Scattered field region

Total field region

Interface between
TF and SF region

Figure 1.2: Description of the total field and scattered field regions.

1.3.2 Perfectly Matched Layer

In our numerical simulation problems of a micro-ring resonator, we need to simulate un-
bounded propagations of electromagnetic waves. However, we cannot store infinite number
of numerical data in computers or even if we managed to store those data we could not
perform numerical calculations on the infinite number of data. Our interests are only in
the region where the signals are interacting with the materials. Therefore, we must do
simulations on finite, truncated computational domains. When we truncate computational
domains, our concern is that those signals scattered by waveguides should disappear from
the boundary as if it is exiting from the boundary without any reflection. This is done by
adding an absorbing medium around the original computational domain, which absorbs the
waves incident into the layer after being scattered by the waveguides in the main domain,
[2], [15]. This absorbing medium around the original computational domain is called per-
fectly matched layer (PML).

There are two key points in the theory of PML:

1. the fields match at the interface between the isotropic and anisotropic media, i.e. zero
reflection at the interface,

2. after totally transmitted into the PML region, the fields attenuate rapidly in the PML
region.

Let us consider a time-harmonic, TEy-polarized plane wave,

Hinc(x, z, t) = ℜ(Hinc(x, z) exp(ıωt)),
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Incident H field

Z

0
X

Uniaxial anisotropic Perfectly Matched Layer

Figure 1.3: A magnetic plane wave incident on the interface between vacuum and PML.

with frequency ω, where

Hinc(x, z) = ŷH0 exp(−ıβi
xx− ıβi

zz)

(Figure 1.3), in isotropic space (z > 0) is incident on a lossy material (z < 0) which is
a uniaxial anisotropic medium4, where ŷ is a unit vector along y direction, and H0 is the
amplitude of the sinusoidal wave, ı =

√
−1, and βi

x, β
i
z are wavenumbers of the plane wave

in the isotropic medium corresponding to x, z direction respectively and the superindex i
means isotropic. Note that we use the calligraphic fonts for field values in the time domain
and the bold fonts for those frequency domain. The interface between two media is the
z = 0 plane. The fields excited within the uniaxial anisotropic medium satisfy two curls
equations (1.1a), (1.1b) with uniaxial constitutive relation.

∇× E = −µ0µrµ
∂H
∂t

, (1.9a)

∇×H = ε0εrε
∂E
∂t
, (1.9b)

where εr and µr are the relative permittivity and permeability of the isotropic space and

ε =



a 0 0
0 a 0
0 0 b


 , µ =



c 0 0
0 c 0
0 0 d


 .

4See the definition of the uniaxial medium in the Remark1.1.
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The equations in the system (1.9) in the frequency domain are:

∇× E = −ıωµ0µrµH, (1.10a)

∇×H = ıωε0εrεE. (1.10b)

Since derivative of an exponential function is constant times the original function, i.e.
(exp(ax))′ = a exp(ax), it is clear that for any sinusoidal plane wave,

A(x, z) = ŷA0 exp(−ıβxx− ıβzz),

the curl operator is equal to a multiplication operator with the vector −ıβ, i.e.,

∇× = β×

where β = x̂βx + ẑβz. Note that β is not a 2D vector, indeed, it is a 3D vector whose ŷ
component is 0.

The incident plane wave with the wavenumber vector βi after entering the uniaxial
anisotropic medium becomes another plane wave with the wavenumber vector βa = x̂βa

x +
ẑβa

z , where the superindex a means anisotropic, thus, (1.10) becomes:

βa ×E = ωµ0µrµH, (1.11a)

βa ×H = −ωε0εrεE. (1.11b)

Here, if µ and ε are identity matrices in R3×3, the equations in (1.10) coincide with the
isotropic case, hence, we derive from (1.10a)

Einc(x, z) = (x̂βi
z − ẑβi

x) ·H0/(ωε) · exp(−ıβi
xx− ıβi

zz).

It is well known that in the theory of electromagnetic waves, at the dielectric interface the
tangential components of the electric and magnetic field intensities must be continuous. Now
using the continuity, we compute the reflection coefficient Γ of TEy incident wave at the
interface (z = 0) of the two half spaces. The reflection coefficient Γ is defined by the ratio
of the amplitudes of reflected field to incident field at the interface. In the upper half-space
(z > 0) where the medium is isotropic, the total field is a superposition of the incident and
reflected fields, and the reflected magnetic field

Href = ŷΓH0 exp(−ıβi
xx+ ıβi

zz),

thus,

Hup = Hinc +Href

= ŷH0(exp(−ıβi
xx− ıβi

zz) + Γ exp(−ıβi
xx+ ıβi

zz))

= ŷH0(1 + Γ exp(2ıβi
zz)) · exp(−ıβi

xx− ıβi
zz).
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By substituting the Href into (1.10a) with the isotropic setting, we get

Eref = (−x̂βi
z − ẑβi

x)ΓH0/(ωε) exp(−ıβi
xx+ ıβi

zz),

hence,

Eup = Einc + Eref

= (x̂βi
z − ẑβi

x)H0/(ωε) exp(−ıβi
xx− ıβi

zz) + (−x̂βi
z − ẑβi

x)ΓH0/(ωε) exp(−ıβi
xx+ ıβi

zz)

=
[
x̂βi

z(1− Γ exp(2ıβi
z))− ẑβi

x(1 + Γ exp(2ıβi
z))
]
H0/(ωε) exp(−ıβi

xx− ıβi
zz).

The wave transmitted into the lower half-space medium which is anisotropic will also be
expressed as

Hlow = Htra

= ŷτH0/(ωε) exp(−ıβa
xx− ıβa

z z),

Elow = Etra

= (x̂βa
z/a− ẑβa

x/b)τH0/(ωε) exp(−ıβa
xx− ıβa

z z),

where τ is the transmission coefficient, which is defined by the ratio of the amplitudes of
the transmitted field and incident field at the interface. Enforcing the continuity of the
tangential components of the fields at the interface, we obtain

βi
x = βa

x; Γ =
βi
z − βa

z /a

βi
z + βa

z/a
; τ = 1 + Γ =

2βi
z

βi
z + βa

z/a
.

We want to construct an anisotropic medium which perfectly matches (i.e. Γ = 0), thus, we
require βi

z = βa
z/a. If we write the equations (1.11) in each components, we have

βa
xEz − βa

zEx = ωµ0µcHy, (1.12)

βa
zHy = ωε0εraEx, (1.13)

βa
xHy = −ωε0εrbEz. (1.14)

From (1.13), (1.14) we eliminate Ex, Ez and substitute those into (1.12), then we get the
dispersion relation in the uniaxial medium:

βa
x
2/b+ βa

z
2/a = k2 · c, (1.15)

where k2 = ω2ε0εrµ0µr, which satisfies the dispersion relation in the isotropic medium
βi
x
2
+ βi

z
2
= k2. Since βa

x = βi
x and βa

z = aβa
x, we get from (1.15),

βi
x
2
/b+ βi

z
2 · a = k2 · c.

It is valid if we choose c = a and b = 1/a. Hence, the plane wave will be purely transmitted
into the uniaxial anisotropic medium if a = c = 1/b = 1/d, independent of the angle



14 Chapter 1

of incidence. The remaining thing is to find a suitable a such that the transmitted wave

attenuates in the medium. This can be done if we choose a = 1 +
σ

ıωε0
, hence, we have,

ε =




1 +
σ

ıωε0
0 0

0 1 +
σ

ıωε0
0

0 0
1

1 +
σ

ıωε0



= µ. (1.16)

Finally, given a TEy incident wave, the field intensities in the uniaxial medium are given by

Hlow = ŷH0 · exp(−ıβi
xx− ıβi

zz) · exp(−αzz),

Elow =


x̂

βi
z

ωε0εr
− ẑ

βi
x(1 +

σ

ıωε0
)

ωε0εr


 ·H0 · exp(−ıβi

xx− ıβi
zz) · exp(−αzz),

where the attenuating factor is αz =
σ

ωε0
βi
z, using the relation between the wavenumber k

and the angular frequency ω, i.e. v =
ω

k
, where v =

1√
µε

is the speed of the waves, and the

definition of impedance η0 :=

√
µ

ε0
, we obtain

αz = ση0
√
εr cos θ

i,

where, θi is the incident angle of the plane wave (i.e. βi
z = k cos θi). We substitute (1.16)

into the matrix form of the equation (1.10), then we have




∂Hz

∂y
− ∂Hy

∂z

∂Hx

∂z
− ∂Hz

∂x

∂Hy

∂x
− ∂Hx

∂y




= ıωε0εr




1 +
σ

ıωε0
0 0

0 1 +
σ

ıωε0
0

0 0
1

1 +
σ

ıωε0







Ex

Ey

Ez


 . (1.17)

We convert these equations from the frequency domain into the time domain with inverse
Fourier transformation, then the first two equations in (1.17) in the time domain become

∂Hz

∂y
− ∂Hy

∂z
= ε0εr

∂Ex
∂t

+ σεrEx,

∂Hx

∂z
− ∂Hz

∂x
= ε0εr

∂Ey
∂t

+ σεrEy.
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The inverse Fourier transform of the third equation in (1.17) is not convenient since the
term ıω is in the denominator, Gedney [15] introduced a technique which split the inversion
into two steps using Dz, that is, first update Dz using information of the magnetic fields
and then update Ez with the updated Dz:

Dz =
ε0εr

1 +
σ

ıωε0

Ez. (1.18)

Then, we have
∂Hy

∂x
− ∂Hx

∂y
=
∂Dz

∂t
.

From (1.18), we get

ıωDz +
σ

ε0
Dz = ıωε0εrEz.

Again, with the inverse Fourier transform we can derive the relation between Dz and Ez in
the time domain:

∂Dz

∂t
+
σ

ε0
Dz = ε0εr

∂Ez
∂t

.

Hence, the Ez field can be updated from Dz field which has been updated in the previous
step. So far, we have considered only for a simple case of a medium which is uniaxial along
only one direction. However, in practical, we need to deal with some corner regions which
are uniaxial along various directions. In these general corner regions, the matrices ε, µ,
which describe the property of the medium are:

ε = µ =




1

sx
0

0 sx 0

0 0 sx







sy 0

0
1

sy
0

0 0 sy







sz 0

0 sz 0

0 0
1

sz



=




sysz
sx

0

0
sxsz
sy

0

0 0
sxsy
sz



,

where sx = 1 +
σx
ıωε0

, sy = 1 +
σy
ıωε0

, sz = 1 +
σz
ıωε0

. Let

D̃z = ε0εr
sx
sz
Ez. (1.19)

Note that here we use D̃z to distinguish it with Dz, which is syD̃z. We substitute (1.19)
into the second row in the equation of the matrix form (1.17), then,

∂Hy

∂x
− ∂Hx

∂y
= ıωsyD̃z

= ıωD̃z +
σy
ε0

D̃z. (1.20)

By converting (1.20) into the time domain, we have

∂Hy

∂x
− ∂Hx

∂y
=
∂D̃z

∂t
+
σy
ε0
D̃z. (1.21)
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From equation (1.19) we have

ıωD̃z +
σz
ε0

D̃z = ε0εr

(
ıωEz +

σx
ε0

Ez

)
.

Again with inverse Fourier transform we have the following time domain relation:

∂D̃z

∂t
+
σz
ε0
D̃z = ε0εr

(
∂Ez
∂t

+
σx
ε0
Ez
)
.

In this way, we are able to incorporate the PML method to our TMy mode problem (1.5)
with J = 05. In this case, the matrices ε and µ of the medium property in the curl equations
in the frequency domain (1.10) are:

ε = µ =




1

sx
0

0 sx 0

0 0 sx







sz 0

0 sz 0

0 0
1

sz



=




sz
sx

0

0 sxsz 0

0 0
sx
sz



.

Using the previous method described above, we get a PML-extended form of TMy mode
equation

∂Bx
∂t

=
∂Ey
∂z

in ΩPML × [0,∞), (1.22a)

∂Hx

∂t
+
σz
ε0
Hx =

1

µ0

(
∂Bx
∂t

+
σx
ε0
Bx
)

in ΩPML × [0,∞), (1.22b)

∂Bz
∂t

= −∂Ey
∂x

in ΩPML × [0,∞), (1.22c)

∂Hz

∂t
+
σx
ε0
Hz =

1

µ0

(
∂Bz
∂t

+
σz
ε0
Bz
)

in ΩPML × [0,∞), (1.22d)

∂D̃y

∂t
+
σx
ε0
D̃y =

∂Hx

∂z
− ∂Hz

∂x
in ΩPML × [0,∞), (1.22e)

∂Ey
∂t

+
σz
ε0
Ey =

1

ε

∂D̃y

∂t
in ΩPML × [0,∞), (1.22f)

where ΩPML is the computational domain extended by PML (See Figure 1.4). Our interest

is in the update of Hx, Hz and Ey, not in the fields such as Bx, Bz and D̃y. In practical
calculation, these auxiliary fields are needed only in the region when the corresponding lossy
factor σi 6= 0 (i = x, z). Inside the main computational domain Ω, where all the lossy factors
are zero, this system (1.22) coincides with (1.5).

5See the Remark 1.4.
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Remark 1.4. 1. J = 0, since, in our simulation problem, there is no electric current
density source.

2. Initial conditions: The initial conditions for these fields are dependent on each type
of problems we want to solve. For example, in the case we test the propagation of
a Gaussian pulse in the waveguides, the electric field Ey will be given as a Gaussian
pulse, and all other fields are zeros initially. When we need to continuously input some
type of waveguide modes, the initial conditions of all the fields are zeros, except that
the electric field values on some particular positions need to be corrected at each time
step either by the hard source or the total field and scattered field source.

Bx(x, z, 0) = Bxini(x, z), Hx(x, z, 0) = Hx
ini(x, z),

Bz(x, z, 0) = Bzini(x, z), Hz(x, z, 0) = Hz
ini(x, z),

D̃y(x, z, 0) = D̃ini
y (x, z), Ey(x, z, 0) = Eyini(x, z),

for ∀ (x, z) ∈ ΩPML, where Bxini(x, z), Hx
ini(x, z), Bzini(x, z), Hz

ini(x, z), D̃ini
y (x, z)

and Eyini(x, z) are given functions.

3. Boundary conditions: The boundary conditions of all fields (i.e. on the outermost
boundary) are always zeros. Here the assumption is that the propagating fields start
to attenuate exponentially after entering PML region and become almost zeros when
they arrive at the outermost boundary.

Bx(x, z, t) = 0, Hx(x, z, t) = 0,

Bz(x, z, t) = 0, Hz(x, z, t) = 0,

D̃y(x, z, t) = 0, Ey(x, z, t) = 0,

for ∀ (x, z) ∈ ∂ΩPML, ∀ t ∈ [0,∞), where ∂ΩPML is the boundary of ΩPML.

1.4 Numerical approximation of derivatives

Let us consider a scalar function u(x, z, t) such that u(x, z, t) ∈ C2(ΩPML) × [0,∞), where
ΩPML is a 2D rectangular domain, i.e. ΩPML = [xleft, xright]× [zbottom, ztop]. We uniformly

divide ΩPML into Nx×Nz sub domains. Let ∆x =
xright − xleft

Nx
, ∆z =

ztop − zbottom
Nz

. Denote

u|ni, j = u(i∆x, j∆z, n∆t), where ∆t is the time step, i, j, n ∈ 1

2
Z =

{
1

2
m : m ∈ Z

}
.
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Figure 1.4: Description of a computational domain for the simulation of general time domain
Maxwell’s equations: computational domain is surrounded by PML region. The inside white
domain is the original computational domain Ω. The whole domain including PML is ΩPML.

Approximation of time derivatives

Consider the approximation of the time derivative of u(x, z, t) at the grid point (i∆x, j∆z),
at the time step n∆t. From the Taylor series expansion, we have:

u|n+1/2
i, j =u|ni, j +

∆t

2

∂u

∂t
(i∆x, j∆z, n∆t) +

∆t2

8

∂2u

∂t2
(i∆x, j∆z, n∆t) +O(∆t3), (1.25a)

u|n−1/2
i, j =u|ni, j −

∆t

2

∂u

∂t
(i∆x, j∆z, n∆t) +

∆t2

8

∂2u

∂t2
(i∆x, j∆z, n∆t) +O(∆t3). (1.25b)

By subtracting (1.25b) from (1.25a), we get

∂u

∂t
(i∆x, j∆z, n∆t) =

u|n+1/2
i, j − u|n−1/2

i, j

∆t
+O(∆t2).

This is a central finite difference scheme (or symmetric scheme) which has second order
accuracy. We use leap-frog time stepping6 for our TMy modes system extended with PML:

6This is a scheme whose electric field and magnetic field are half time step staggered.
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(1.22). First, if we consider semi-numerical scheme, i.e. only time derivatives are approxi-
mated, we have the following.

Bx|n+1/2 = Bx|n−1/2 +∆t
∂Eyn
∂z

, (1.26a)

Hx|n+1/2 =
1− σz∆t

2ε0

1 +
σz∆t

2ε0

Hx|n−1/2 +
1

µ0



1 +

σx∆t

2ε0

1 +
σz∆t

2ε0

Bx|n+1/2 −
1− σx∆t

2ε0

1 +
σz∆t

2ε0

Bx|n−1/2


 , (1.26b)

Bz|n+1/2 = Bz|n−1/2 −∆t
∂Ey|n
∂x

, (1.26c)

Hz|n+1/2 =
1− σx∆t

2ε0

1 +
σx∆t

2ε0

Hz|n−1/2 +
1

µ0



1 +

σz∆t

2ε0

1 +
σx∆t

2ε0

Bz|n+1/2 −
1− σz∆t

2ε0

1 +
σx∆t

2ε0

Bz|n−1/2


 , (1.26d)

D̃y|n+1 =
1− σx∆t

2ε0

1 +
σx∆t

2ε0

D̃y|n +
∆t

1 +
σx∆t

2ε0

(
∂Hx|n+1/2

∂z
− ∂Hz|n+1/2

∂x

)
, (1.26e)

Ey|n+1 =
1− σz∆t

2ε0

1 +
σz∆t

2ε0

Ey|n +
1

1 +
σz∆t

2ε0

1

ε

(
D̃y|n+1 − D̃y|n

)
, (1.26f)

where fields are only discretized for the time variable. The super index represents the
corresponding time step.

Approximation of spatial derivatives

We have established a mathematical model, system (1.22), for the numerical simulations of
micro-ring resonators. Now according to the methods of approximating the spatial deriva-
tives, there are finite difference time domain (FDTD), interpolating scaling function method
(ISFM), adaptive wavelet collocation method (AWCM), etc. In the next chapter, we will
discuss FDTD.
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Finite difference time domain method

The simplest way of approximating a derivative of a given function f(x) ∈ C3(a, b) at one
point x0 ∈ (a, b) is finite difference. The derivative f ′(x0) which is the slope of the tangential
line at x0 is approximated with the slope of another secant line which passes two points near
that point (See Figure 2.1). This approximation is called finite difference. Finite difference
can be obtained by truncating the Taylor series of the function at that point.� forward difference scheme with x0 and a forward point x0 + h:

f ′(x0) =
f(x0 + h)− f(x0)

h
+O(h), (2.1a)� backward difference scheme with x0 and a backward point x0 − h:

f ′(x0) =
f(x0)− f(x0 − h)

h
+O(h), (2.1b)� central difference scheme with a forward point x0 + h and a backward point x0 − h:

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
+O(h2). (2.1c)

Hence, forward and backward finite differences have first order accuracies, while central
difference has second order accuracy. When we solve Maxwell’s equations, normally we
use central difference, which is symmetric. According to the arrangement of numerical grid
points of different components of electric field and magnetic field, there are several numerical
schemes, such as the staggered uncollocated scheme, the unstaggered collocated scheme and
the staggered collocated scheme, [35].

2.1 Yee’s scheme

The staggered uncollocated scheme is called Yee’s scheme [43] (Figure: 2.2 and 2.3). In
Yee’s scheme, not only different fields are not collocated on the same positions, but also each
different component of the same fields is not collocated on the same grid point. Furthermore,

20
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x 0x 0 −h x 0+h

l 0,0

xa b0

z=f(x)

z

(a) tangential line l0,0 of f(x) at x0

x 0x 0 −h x 0+h

l1,0

l0,0

xa b0

z=f(x)

z

(b) tangential line l0,0 of f(x) at x0 and for-
ward secant line l1,0 of f(x) at x0

x 0x 0 −h x 0+h

l0,0

l0,−1

xa b0

z=f(x)

z

(c) tangential line l0,0 of f(x) at x0 and back-
ward secant line l0,−1 of f(x) at x0

x 0x 0 −h x 0+h

l1,−1

l0,0

xa b0

z=f(x)

z

(d) tangential line l0,0 of f(x) at x0 and cen-
tral secant line l1,−1 of f(x) at x0

Figure 2.1: Lines involved with exact and approximate derivatives of f(x) at x0

not every grid point in the Yee’s lattice is assigned to a component of a field. In detail,
there is no field component on points (i∆x, j∆y, k∆z), where i,j,k ∈ Z. There is one grid
point for electric field between every two successive points for magnetic field of the same
type, and there is one grid point for magnetic field between every two successive points for
electric field of the same type. Thus, each field is updated using the spatial derivatives of
other field on both side of it. The finite difference scheme is therefore a central scheme
which has second order of accuracy.

Let us consider the semi-numerical equations system (1.26) discretized on the two-
dimensional Yee’s grid (Figure 2.3). We consider the spatial derivatives in (1.26), such

as
∂Eny
∂x

,
∂Ey|n
∂z

,
∂Hx|n+1/2

∂z
,
∂Hz|n+1/2

∂x
. Denote u|ni, j = u(i∆x, j∆z, n∆t), where u ∈

{Ey, Hz, Hx}, for i, j, n ∈
1

2
Z.
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∆x(i ∆y, j ∆z, k )

x

y

∆x ∆z((i+1) ∆y, (k+1), (j+1) )

Hz Hz
Ex

Hy

Ey

z

Hy

Hz

Hy

Ez

Hx

Hx Hx

0

Figure 2.2: Yee’s grids in three dimensional space: uncollocated staggered grid. Source: A.
Taflove, Susan C. Hagness, Computational electrodynamics, the finite time difference time
domain method, third edition, 2005, pp. 59.

∂Ey|ni,j+1/2

∂z
=
Ey|ni, j+1 − Ey|ni, j

∆z
+O(∆z2) (2.2a)

∂Ey|ni+1/2, j

∂x
=
Ey|ni+1, j − Ey|ni, j

∆x
+O(∆x2), (2.2b)

∂Hx|n+1/2
i, j

∂z
=
Hx|n+1/2

i, j+1/2 −Hx|n+1/2
i, j−1/2

∆z
+O(∆z2), (2.2c)

∂Hz|n+1/2
i, j

∂x
=
Hz|n+1/2

i+1/2, j −Hz|n+1/2
i−1/2, j

∆x
+O(∆x2). (2.2d)

We obtain the approximation of the Maxwell’s equations system extended with PML by
substituting these finite difference approximations into the semi-numerical system (1.26).



2.1. YEE’S SCHEME 23

∆ yj

∆xi

Ey

∆ y(j−1/2)

∆ y(j+1/2)

∆x(i−1/2) ∆x(i+1/2)

Hx

Hx

Hz Hz

Figure 2.3: Yee’s grids in two dimensional space (for TMy mode): uncollocated staggered
grid

Bx|n+1/2
i, j+1/2 = Bx|

n−1/2
i, j+1/2 +

∆t

∆z
(Ey|ni, j+1 − Ey|ni, j), (2.3a)

Hx|n+1/2
i, j+1/2 =

1− σz∆t

2ε0

1 +
σz∆t

2ε0

Hx|n−1/2
i, j+1/2 +

1

µ0



1 +

σx∆t

2ε0

1 +
σz∆t

2ε0

Bx|n+1/2
i, j+1/2 −

1− σx∆t

2ε0

1 +
σz∆t

2ε0

Bx|n−1/2
i, j+1/2


 ,

(2.3b)

Bz|n+1/2
i+1/2, j = Bz|

n−1/2
i+1/2, j −

∆t

∆x
(Ey|ni+1, j − Ey|ni, j), (2.3c)

Hz|n+1/2
i+1/2, j =

1− σx∆t

2ε0

1 +
σx∆t

2ε0

Hz|n−1/2
i+1/2, j +

1

µ0




1 +
σz∆t

2ε0

1 +
σx∆t

2ε0

Bz|n+1/2
i+1/2, j −

1− σz∆t

2ε0

1 +
σx∆t

2ε0

Bz|n−1/2
i+1/2, j


 ,

(2.3d)

D̃y|n+1
i, j =

1− σx∆t

2ε0

1 +
σx∆t

2ε0

D̃y|ni, j +
∆t

1 +
σx∆t

2ε0

·
(
Hx|n+1/2

i, j+1/2 −Hx|n+1/2
i, j−1/2

∆z
−
Hz|n+1/2

i+1/2, j −Hz|n+1/2
i−1/2, j

∆x

)
, (2.3e)

Ey|n+1
i, j =

1− σz∆t

2ε0

1 +
σz∆t

2ε0

Ey|ni, j +
1

1 +
σz∆t

2ε0

1

ε

(
D̃y|n+1

i, j − D̃y|ni, j
)
. (2.3f)
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Remark 2.1. 1. Initial conditions for the difference system (2.3):

Bx|−1/2
i, j+1/2 = Bxini(i∆x, (j + 1/2)∆z), Hx|−1/2

i, j+1/2 = Hx
ini(i∆x, (j + 1/2)∆z),

Bz|−1/2
i+1/2, j = Bzini((i+ 1/2)∆x, j∆z), Hz|−1/2

i+1/2, j = Hz
ini((i+ 1/2)∆x, j∆z),

D̃y|0i, j = D̃ini
y (i∆x, j∆z), Ey|0i, j = Eyini(i∆x, j∆z),

for all i, j ∈ Z such that i ∈ [0, Nx], j ∈ [0, Nz].

2. Boundary conditions for the difference system (2.3):

Bx|n−1/2
i, j+1/2 = 0, Hx|n−1/2

i, j+1/2 = 0 : ∀(i, j) ∈ Z
2 such that i ∈ {0, Nx} or j ∈ {0, Nz − 1};

Bz|n−1/2
i+1/2, j = 0, Hz|n−1/2

i+1/2, j = 0 : ∀(i, j) ∈ Z
2 such that i ∈ {0, Nx − 1} or j ∈ {0, Nz};

D̃y|ni, j = 0, Ey|ni, j = 0 : ∀(i, j) ∈ Z
2 such that i ∈ {0, Nx} or j ∈ {0, Nz};

where n ∈ N0.

2.2 Unstaggered collocated scheme

Unlike Yee’s scheme, the unstaggered collocated scheme uses the same grid point for all
the components of the both of the electric and magnetic fields (Figure: 2.4). There is
no “empty point” (i.e. point which is assigned to no component of the either field, like
(i+ 1/2)∆x, (j + 1/2)∆z), where i, j ∈ Z in Figure 2.3).

∆ yj

∆ y(j+1)

∆ y(j−1)

∆x(i−1) ∆xi ∆x(i+1)

Hz

Ey Hx

Figure 2.4: Unstaggered collocated scheme in two dimensional space (for TMy mode)
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Then, the spatial derivatives in (1.26) are approximated as the following:

∂Ey|ni, j
∂z

=
Ey|ni, j+1 − Ey|ni, j−1

2∆z
+O(∆z2), (2.6a)

∂Ey|ni, j
∂x

=
Ey|ni+1, j − Ey|ni−1, j

2∆x
+O(∆x2), (2.6b)

∂Hx|n+1/2
i, j

∂z
=
Hx|n+1/2

i, j+1 −Hx|n+1/2
i, j−1

2∆z
+O(∆z2), (2.6c)

∂Hz|n+1/2
i, j

∂x
=
Hz|n+1/2

i+1, j −Hz|n+1/2
i−1, j

2∆x
+O(∆x2). (2.6d)

If we substitute (2.6) into the semi-numerical system (1.26), we obtain:

Bx|n+1/2
i, j = Bx|n−1/2

i, j +
∆t

2∆z
· (Ey|ni, j+1 − Ey|ni, j−1), (2.7a)

Hx|n+1/2
i, j =

1− σz∆t

2ε0

1 +
σz∆t

2ε0

Hx|n−1/2
i, j +

1

µ0



1 +

σx∆t

2ε0

1 +
σz∆t

2ε0

Bx|n+1/2
i, j −

1− σx∆t

2ε0

1 +
σz∆t

2ε0

Bx|n−1/2
i, j


 , (2.7b)

Bz|n+1/2
i, j = Bz|n−1/2

i, j − ∆t

2∆x
(Ey|ni+1, j − Ey|ni−1, j), (2.7c)

Hz|n+1/2
i, j =

1− σx∆t

2ε0

1 +
σx∆t

2ε0

Hz|n−1/2
i, j +

1

µ0



1 +

σz∆t

2ε0

1 +
σx∆t

2ε0

Bz|n+1/2
i, j −

1− σz∆t

2ε0

1 +
σx∆t

2ε0

Bz|n−1/2
i, j


 , (2.7d)

D̃y|n+1
i, j =

1− σx∆t

2ε0

1 +
σx∆t

2ε0

D̃y|ni, j +
∆t

1 +
σx∆t

2ε0
(
Hx|n+1/2

i, j+1 −Hx|n+1/2
i, j−1

2∆z
−
Hz|n+1/2

i+1, j −Hz|n+1/2
i−1, j

2∆x

)
, (2.7e)

Ey|n+1
i, j =

1− σz∆t

2ε0

1 +
σz∆t

2ε0

Ey|ni, j +
1

1 +
σz∆t

2ε0

1

ε

(
D̃y|n+1

i, j − D̃y|ni, j
)
. (2.7f)
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Remark 2.2. 1. Initial conditions for the difference system (2.7):

Bx|−1/2
i, j = Bxini(i∆x, j∆z), Hx|−1/2

i, j = Hx
ini(i∆x, j∆z),

Bz|−1/2
i, j = Bzini(i∆x, j∆z), Hz|−1/2

i, j = Hz
ini(i∆x, j∆z),

D̃y|0i, j = D̃ini
y (i∆x, j∆z), Ey|0i, j = Eyini(i∆x, j∆z),

for all i, j ∈ Z such that i ∈ [0, Nx], j ∈ [0, Nz].

2. Boundary conditions for the difference system (2.7):

Bx|n−1/2
i, j = 0, Hx|n−1/2

i, j = 0,

Bz|n−1/2
i, j = 0, Hz|n−1/2

i, j = 0,

D̃y|ni, j = 0, Ey|ni, j = 0,

for all i and j such that either i ∈ {0, Nx} or j ∈ {0, Nz}, and for n ∈ N0.

3. Order of approximation:
The local error of the difference schemes (2.3), (2.7) are both O(∆t2) + O(∆x2) +
O(∆z2). The orders of accuracy for the spatial derivatives approximations discussed
above, i.e. (2.2), (2.6) are all two. We can increase the order of the spatial derivatives
by increasing the number of points on each side of the corresponding grid point used
in approximating derivatives. These schemes are called higher order finite difference
scheme.

From the (2.6), we notice that the unstaggered collocated scheme is essentially a combi-
nation of four staggered independent Yee’s schemes (Figure: 2.5), that is, these four parts
are unaffected by each other during the implementation. We can easily know that, sim-
ilarly, in 1D or 3D case we can also decompose the unstaggered collocated scheme into
several independent parts, and the number of independent parts is decided by the level of
the dimension. This behavior is more clearly explained when we use a 1-point source in
the scheme. If the initial conditions of all other points except the source point are zeros,
then, only the independent part that contains the source point is being updated during time
stepping while other parts stay zeros. ∆x in Yee’s scheme (Figure 2.3) plays the same role
as 2∆x in the unstaggered scheme (Figure 2.4). Therefore, double number of discretization
is needed for the unstaggered scheme in order to get the same accuracy.
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Hx

Ey

Hx

Hz Ey

Hx

Hx

∆ y(j+1)

∆ yj

∆ y(j−1)

∆xi∆x(i−1) ∆x(i+1)

(a)

Hz

Hx

∆ yj

Ey∆ y(j−1)

Ey Ey

∆xi

EyHz

∆x(i+1)∆x(i−1)

Hx

∆ y(j+1)

(b)

∆ y(j+1)

∆ yj

∆ y(j−1)

∆xi∆x(i−1) ∆x(i+1)

EyHz Hz

Hx

Hx

(c)

Ey

Ey

∆xi∆x(i−1)

Hx

Hz Hz

∆ yj

∆x(i+1)

HzHz

∆ y(j+1)

∆ y(j−1)

(d)

Figure 2.5: Decomposition of the 2D unstaggered collocated scheme (Figure 2.4) into four
staggered independent Yee’s schemes

2.3 Numerical dispersion and stability

Let us consider TMy mode equation (1.5) in homogeneous medium with the assumption
J = 01:

∂Hx

∂t
=

1

µ

∂Ey
∂z

, (2.10a)

∂Hz

∂t
= −1

µ

∂Ey
∂x

, (2.10b)

∂Ey
∂t

=
1

ε

(
∂Hx

∂z
− ∂Hz

∂x

)
. (2.10c)

1Throughout the whole thesis we will use this assumption that there is no current density source.
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When we solve Maxwell’s equations numerically, it is inevitable for us to discuss the be-
havior of numerical dispersion and stability, which also influence our choice for the spatial
discretization size and time step. We consider the difference system (2.3) in the main com-
putational domain Ω (Figure 1.3) only, where all the lossy factors, σ’s, are zero and no

auxiliary variable such as B or D̃ is needed, then the system simplifies into:

Hx|n+1/2
i, j+1/2 = Hx|n−1/2

i, j+1/2 +
∆t

µ∆z
(Ey|ni, j+1 − Ey|ni, j), (2.11a)

Hz|n+1/2
i+1/2, j = Hz|n−1/2

i+1/2, j −
∆t

µ∆x
(Ey|ni+1, j − Ey|ni, j), (2.11b)

Ey|n+1
i, j = Ey|ni, j +

∆t

ε

(
Hx|n+1/2

i, j+1/2 −Hx|n+1/2
i, j−1/2

∆z
−
Hz|n+1/2

i+1/2, j −Hz|n+1/2
i−1/2, j

∆x

)
. (2.11c)

2.3.1 Numerical dispersion

Lemma 2.3. If a pair of real numbers kx and kz satisfies

ω2µε = k2x + k2z , (2.12)

then, the following set (2.13) of the fields is a solution to the system (2.10),

Hx(x, z, t) = −
kz
µω

exp(ı(ω t− kx x− kz z)), (2.13a)

Hz(x, z, t) =
kx
µω

exp(ı(ω t− kx x− kz z)), (2.13b)

Ey(x, z, t) = exp(ı(ω t− kx x− kz z)), (2.13c)

conversely, if there exists a pair of real numbers kx and kz such that (2.13) is a solution to
the system (2.10), then kx and kz yield (2.12).

Proof. If kx and kz satisfy (2.12), we can easily check that (2.13) is a solution of (2.10)
simply by substituting (2.13) into (2.10).

Conversely, if there exist kx and kz such that (2.13) is a solution to the system (2.10),
we can obtain (2.12) by substituting (2.13) into (2.10) and simplifying it.

The solution (2.13) is a plane sinusoidal wave of angular frequency ω. Suppose that kx,

kz are components of a wavevector ~k, i.e. , ~k = kxx̂ + kzẑ, then from (2.12) we have the

analytic relation between phase velocity v and wavevector ~k,

v =
ω∣∣~k
∣∣ , (2.14)

where phase velocity v =
1√
µε

and
∣∣~k
∣∣ =

√
k2x + k2z .



2.3. NUMERICAL DISPERSION AND STABILITY 29

Optical waves of various frequencies travel at the same speed v in homogeneous medium.
However, it is not the same for the numerical case, that is, the solution to the numerical dif-
ference system (2.11) is different from that to (2.13) in wavenumbers, for given fixed angular
frequency ω. This causes the phase velocity ṽ of the numerical wave differs from the analytic
velocity v. And the numerical phase velocity ṽ depends on the angular frequecy ω, number
of space discretization, ratio of smallest time step size and space mesh size and propagation
direction. This phenomena is called numerical dispersion. The choice of the smallest spatial
discretization size is restricted due to the analysis of numerical dispersion of the FDTD. In
the numerical dispersion analysis, our aim is to calculate ṽ of the corresponding numerical
plane sinusoidal wave with frequency ω and compare ṽ with v.

Lemma 2.4. If a pair of real numbers k̃x and k̃z satisfies

[
1

v∆t
sin

(
ω∆t

2

)]2
=

[
1

∆x
sin

(
k̃x∆x

2

)]2
+

[
1

∆z
sin

(
k̃z∆z

2

)]2
, (2.15)

where v = 1/
√
µε, then the following set (2.16) is a solution to the difference system (2.11),

Hx|nI, J+1/2 = −
∆t

µ∆z

sin
(
k̃z∆z/2

)

sin
(
ω∆t/2

) exp(ı(ω n∆t− k̃xI∆x− k̃z(J + 1/2)∆z)), (2.16a)

Hz|nI+1/2, J =
∆t

µ∆x

sin
(
k̃x∆x/2

)

sin
(
ω∆t/2

) exp(ı(ω n∆t− k̃x(I + 1/2)∆x− k̃zJ∆z)), (2.16b)

Ey|nI, J = exp(ı(ω n∆t− k̃xI∆x− k̃zJ∆z)). (2.16c)

Conversely, if there exists a pair of real numbers k̃x and k̃z such that (2.16) is a solution to
the difference system (2.11), then k̃x and k̃z yield (2.15).

Proof. The proof of this lemma is essentially the same as that of Lemma 2.3.

The equation (2.15) is numerical dispersion relation of the FDTD with Yee’s scheme
[35], from which we will analyze the relation between ṽ and v. The numerical phase velocity
ṽ is defined by:

ṽ :=
ω∣∣∣~̃k
∣∣∣
, (2.17)

where ~̃k = k̃xx̂+ k̃zẑ. We shall only consider the case of ∆x = ∆z ≡ ∆, moreover, we define
a term called CFL stability factor2:

S := v∆t/∆, (2.18)

and we know that wavelength λ is related to the angular frequency ω by

λω = 2πv, (2.19)

2The term is named after Richard Courant, Kurt Friedrichs, and Hans Lewy who described it in their
1928 paper [6].
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Now we define the grid sampling density Nλ := λ/∆. From (2.18) and (2.19) we have
∆t = S∆/v and λ = 2πv/ω, respectively, hence, the dispersion relation (2.15) becomes

1

S2
sin2

(
πS

Nλ

)
= sin2

(
1

2

∣∣∣~̃k
∣∣∣∆cosφ

)
+ sin2

(
1

2

∣∣∣~̃k
∣∣∣∆sinφ

)
, (2.20)

where φ = arctan(k̃z/k̃x), which is the propagation angle of the wave with respect to x direc-
tion. And we use ṽφ to denote the numerical phase velocity with respect to the propagation
angle φ. The dispersion coefficients are different along different propagation directions. Here
we will only discuss two directions which are relatively simple: φ = 0 and φ = π/4. First,
for the case that φ = 0, the equation (2.20) simplifies into:

1

S
sin

(
πS

Nλ

)
= sin

(
1

2

∣∣∣~̃k
∣∣∣∆
)
.

Thus we get the corresponding numerical phase velocity:

ṽ0 =
ω∣∣∣~̃k
∣∣∣
= γ0v,

where the dispersion coefficient γ0
3 is

γ0 =
π

Nλ arcsin

[
1

S
sin

(
πS

Nλ

)] .

From this we see that the dispersion coefficient γ0 is dependent on the choice of both the
stability factor S and the grid sampling density Nλ. Next, we come to the case that φ = π/4.
In this case, the equation (2.20) becomes

1

S
sin

(
πS

Nλ

)
=
√
2 sin

(
1

2

∣∣∣~̃k
∣∣∣∆
)
.

Thus we get the corresponding numerical phase velocity:

ṽπ/4 =
ω∣∣∣~̃k
∣∣∣
= γπ/4v,

where the dispersion coefficient γπ/4 is

γπ/4 =
π

√
2Nλ arcsin

[
1√
2S

sin

(
πS

Nλ

)] .

As Nλ increases, the coefficient increases towards 1 (See Figure 2.6, 2.7). In Figure 2.7,
we tested with CFL factors 1/

√
2 times those of Figure 2.6. We need more numbers of

numerical meshes in one wavelength to get more accurate numerical phase velocities. In
the simulation of ring-resonator with FDTD [16], the smallest mesh size is 13.6nm, which
guarantees at least 100 cells inside a wavelength around 1.5µm. In this case, the error of
the numerical dispersion is less than 0.001, see Figure 2.6, 2.7.

3γφ is the dispersion coefficient with respect to the propagation angle φ.
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Figure 2.6: Dependencies of dispersion coefficient γ0 on the grid sampling density Nλ with
different fixed CFL factors. Note that when S = 1, i.e., there is no numerical dispersion
along the propagation angle φ = 0, see the magic time step in [35].

2.3.2 Numerical stability

We cannot choose freely the smallest time step ∆t regardless of the mesh size ∆x, ∆z.
The choice of ∆t is restricted by the choice of spatial mesh size: ∆x, ∆z. Otherwise, we
have numerical instability, which blows up the numerical data after several time steps. The
principal idea of the numerical stability analysis is that the amplification factor of time dif-
ference operator is less than that of the curl operator. We will derive the stability condition
for the Yee’s FDTD scheme for the three dimension case4. We rewrite the Maxwell’s curl’s
equations in a homogeneous medium,

∂E
∂t

=
1

ε
∇×H, (2.21a)

∂H
∂t

= −1

µ
∇× E . (2.21b)

Let

E =
√
µ/εẼ ,

V = H + jẼ ,

4These ideas are mainly from [34, 35].
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Figure 2.7: Dependencies of dispersion coefficient γπ/4 on the grid sampling density Nλ with
different fixed CFL factors. Like the case φ = 0, there is no numerical dispersion when the
CFL factor S = 1/

√
2.

where j =
√
−1, then we can combine the two curl equations (2.21) into one equation:

∂V
∂t

=
j√
µε
∇× V. (2.22)

Then the Yee’s FDTD scheme of the equation (2.22) becomes:

V|n+1/2
p,q,r − V|n−1/2

p,q,r

∆t
=

j√
µε
∇̃ × V|np,q,r, (2.23)

where ∇̃ is “discretized gradient” with respect to central finite difference of second order
with Yee’s scheme, i.e., whose three components are central finite difference approximations
of partial derivatives with respect to corresponding directions. We use von Neumann method
or Fourier method5 to analyze the numerical stability. We set

V|np,q,r = V0α
n exp(ı(kxp∆x+ kyq∆y + kzr∆z)), (2.24)

where V0 is a constant 3D vector and α is amplification factor. Our task is to derive
the condition which guarantees the numerical stability of the finite difference scheme, i.e.,
|α| ≤ 1. We substitute (2.24) into (2.23) to obtain:

α1/2 − α−1/2

∆t
V0 = −

2√
µε

(
sin2(kx∆x/2)

(∆x)2
,
sin2(ky∆y/2)

(∆y)2
,
sin2(kz∆z/2)

(∆z)2

)
× V0. (2.25)

5See for example [21].
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If we consider V0 as a column vector and write the equation (2.25) in matrix form, then

α1/2 − α−1/2

∆t
V0 =

2√
µε
AV0, (2.26)

where

A =




0 −sin
2(kz∆z/2)

(∆z)2
sin2(ky∆y/2)

(∆y)2

sin2(kz∆z/2)

(∆z)2
0 −sin

2(kx∆x/2)

(∆x)2

−sin
2(ky∆y/2)

(∆y)2
sin2(kx∆x/2)

(∆x)2
0




.

Thus, from (2.26), we know that

√
µε(α1/2 − α−1/2)

2∆t
is an eigenvalue of the matrix A. By

solving

|sI − A| = 0,

where I is the 3D identity matrix, we get,

s

(
s2 +

sin2(kx∆x/2)

(∆x)2
+

sin2(ky∆y/2)

(∆y)2
+

sin2(kz∆z/2)

(∆z)2

)
= 0.

Since α1/2 − α−1/2 cannot be zero, we have

(√
µε(α1/2 − α−1/2)

2∆t

)2

+
sin2(kx∆x/2)

(∆x)2
+

sin2(ky∆y/2)

(∆y)2
+

sin2(kz∆z/2)

(∆z)2
= 0. (2.27)

After simplification, we have

α2 − (2− 2η)α + 1 = 0, (2.28)

where

η = 2v∆t

√
sin2(kx∆x/2)

(∆x)2
+

sin2(ky∆y/2)

(∆y)2
+

sin2(kz∆z/2)

(∆z)2
.

Note that v = 1/
√
εµ, thus by solving (2.28), we obtain

α = 1− η ±
√

(1− η)2 − 1.

It is easy to see that |α| ≤ 1 if and only if

0 ≤ η ≤ 2.

Hence,

v∆t

√
sin2(kx∆x/2)

(∆x)2
+

sin2(ky∆y/2)

(∆y)2
+

sin2(kz∆z/2)

(∆z)2
≤ 1. (2.29)
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We require that the inequality (2.29) should be held for all possible kx, ky and kz, thus we
have the stability condition of the Yee’s FDTD scheme:

∆t ≤ 1

v

√
1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2

.

Remark 2.5. 1. 2D TMy mode can be understood as a special case of 3D case, where

H = x̂Hx + ẑHz and E = ŷEy.

Thus,
V = H + jE = x̂Hx + jŷEy + ẑHz.

We set
V|np,r = V0α

n exp(ı(kxp∆x+ kzr∆z)),

where V0 is a constant 3D vector, then instead of (2.25), we have

α1/2 − α−1/2

∆t
V0 = −

2√
µε

(
sin2(kx∆x/2)

(∆x)2
, 0,

sin2(kz∆z/2)

(∆z)2

)
× V0, (2.30)

and the remaining steps of the stability analysis is the same as that of 3D case, thus
we have,

∆t ≤ 1

v

√
1

(∆x)2
+

1

(∆z)2

.

2. For 1D TEMy mode the process of the stability proof is similar. The stability condition
for 1D case is:

∆t ≤ 1

v

√
1

(∆x)2

=
∆x

v
.

We define S =
v∆t

∆x
, which is (CFL) stability factor in one dimensional case. Then

the stability condition is S ≤ 1.

3. For the stability of the Uncollocated staggered scheme, which is a combination of
several independent Yee’s schemes, we apply the stability criterion for each of the
independent Yee’s scheme whose spatial mesh size is double of that of the original
scheme itself. Then we have the stability condition for the Uncollocated Staggered
scheme in which the upper bound for ∆t is two times that of Yee’s scheme.

∆t ≤ 2

v

√
1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2

.
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Interpolating scaling functions
method

The Taylor series method is not the only way of deriving the central finite difference scheme
(2.1c). We can also obtain the scheme using the concept of Lagrangian interpolation (see
[37]), which can be straightforwardly extended to other numerical schemes by replacing the
Lagrangian polynomials with other types of functions.

We know that there is a unique polynomial of degree less than n that interpolates n
distinct given points. We can explicitly represent this unique polynomial in the following
form.

Definition 3.1. To any set of n distinct real data points,

{(xj, yj) ∈ R
2 | j = 1, 2, · · · , n and xm 6= xp for m 6= p},

the Lagrangian interpolating polynomial is defined by

P (x) :=

n∑

k=1

ykℓk(x), (3.1)

where the Lagrangian basis polynomial

ℓj(x) =
∏

1≤k≤n

k 6=j

x− xk
xj − xk

.

The error of the Lagrangian interpolation is stated in the following theorem.

Theorem 3.2. Let x1, x2, · · · , xn be n distinct real numbers in [a, b], and g ∈ Cn[a, b].
Then for x ∈ [a, b] there exists ξ(x) in (a, b) with

g(x) = P (x) +
g(n)(ξ(x))

n!
(x− x1)(x− x2) · · · (x− xn),

where P is the Lagrangian interpolating polynomial with n points (xj, g(xj))1≤j≤n.

35
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Proof. See, for example, K. E. Atkinson [1].

Now we come to the derivation of central differences with Lagrangian interpolation. We
approximate a function f ∈ C3(a, b) with the Lagrangian interpolating polynomial P (x) at
three points, (xj , f(xj)) for j = 1, 2, 3, where

a < x1 = x0 − h, x2 = x0, x3 = x0 + h < b.

Then, (3.1) becomes

P (x) = f(x0 − h)ℓ1(x) + f(x0)ℓ2(x) + f(x0 + h)ℓ3(x), (3.2)

where the Lagrangian basis polynomials ℓ1, ℓ2 and ℓ3 of the three points x0 − h, x0 and
x0 + h are as following:

ℓ1(x) =
x− x0

(x0 − h)− x0
x− (x0 + h)

(x0 − h)− (x0 + h)
, (3.3a)

ℓ2(x) =
x− (x0 − h)
x0 − (x0 − h)

x− (x0 + h)

x0 − (x0 + h)
, (3.3b)

ℓ3(x) =
x− (x0 − h)

(x0 + h)− (x0 − h)
x− x0

(x0 + h)− x0
. (3.3c)

Differentiating on both sides of (3.2) and substituting x = x0 into it, we obtain the
central difference scheme:

f ′(x0) ≈ P ′(x0) =
f(x0 + h)− f(x0 − h)

2h
.

Since 3-points Lagrangian interpolation is exact for the polynomial of degree less than 3,
the approximation (3.2) above has second order accuracy.

We have shown that finite difference can be obtained by differentiating the local approx-
imation of a function with Lagrangian interpolations. Now we consider replacing these local
polynomial functions with another type of functions called interpolating scaling functions1

(ISF’s). In this thesis we will call this method interpolating scaling function method (ISFM).
There are several different ways of constructing ISF’s. We can construct ISF’s by iterative
interpolation processes, which does not involve the concept of wavelets, see G. Deslauriers
and S. Dubuc (1989) [10]. N. Satio and G. Beylkin (1992) have shown that ISF is an au-
tocorrelation of Daubechies compactly supported scaling function [31]. W. Sweldens [32]
proved that one can also obtain ISF by lifting a set of biorthogonal wavelet filter called Lazy
wavelet. Like FDTD in previous chapter, we also consider uniform meshes, that is, only
scaling functions of the same level of resolution are involved.

1These functions were sometimes also named as interpolating wavelets, or Deslauries-Dubuc interpolating

functions, or fundamental interpolating functions, see for example D. L. Donoho [12], M. Fujii [14] and S.
Dubuc [13].
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3.1 Wavelets

3.1.1 Multi-resolution approximations

Our purpose is to decompose functions in L2(R) according to different resolution levels2. We
start with the mathematical definition ofmulti-resolution approximations (MRA) introduced
by Mallat [25, 24] and Meyer [27]. First, we need the definition of the Riesz basis.

Definition 3.3 (Riesz basis). Assume that V is a subspace of L2(R). We call a set of
functions

{en ∈ V |n ∈ Z},
a Riesz basis of V if there exist A > 0 and B such that any function f in V can be uniquely
decomposed into

f(·) =
+∞∑

n=−∞

anen(·),

where an ∈ R and satisfies the following inequality

A ‖f‖2L2 ≤
+∞∑

−∞

|an|2 ≤ B ‖f‖2L2 .

The notation ‖ · ‖L2 refers to L2(R) norm, i.e.,

‖f‖L2 =

(∫
|f(x)|2dx

)1/2

, f ∈ L2(R).

Now, we come to the definition of the MRA.

Definition 3.4 (MRA). A sequence {Vj}j∈Z of closed subspaces of L2(R) is a multiresolution
approximation if the following 6 properties are satisfied:

∀ j, k ∈ Z, f(·) ∈ Vj ⇔ f

(
· − k

2j

)
∈ Vj ,

∀ j ∈ Z, Vj ⊂ Vj+1,

∀ j ∈ Z, f(·) ∈ Vj ⇔ f(2·) ∈ Vj+1,

lim
j→−∞

Vj =
+∞⋂

j=−∞

Vj = {0},

lim
j→+∞

Vj =

(
+∞⋃

j=−∞

Vj

)
= L2(R).

There exists φ(·) ∈ L2(R) such that {φ(· − k)}k∈Z is a Riesz basis of V0.

2This term will be defined immediately.
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Remark 3.5. 1. The subindex j is the resolution level. Translating or shifting does not
change the resolution level of a function, while dilating or contraction does. The higher
the level j, functions with the more detailed information are contained in Vj .

2. For an L2(R) function f , we define its orthogonal projection PVj
f into the subspace

Vj of L
2(R). We know that

lim
j→−∞

‖PVj
f‖L2 = 0 and lim

j→+∞
‖f − PVj

‖L2 = 0.

The first equation means that, if a function loses every detail of it, then nothing is
left. And the second equation means that a function recovers its original information
by obtaining all details of every resolution level.

3. We can easily check that, for any j ∈ Z, {φj,k}k∈Z, which is defined by

φj,k(·) := 2j/2φ(2j · −k),

is a Riesz basis of Vj. In particular, {φ1,k}k∈Z is a Riesz basis of V1. Since V0 ⊂ V1, we
represent φ as the linear combination of the basis {φ1,k}k∈Z of V1:

φ(·) =
+∞∑

k=−∞

hkφ1,k,

or

φ(·) =
√
2

+∞∑

k=−∞

hkφ(2 · −k), (3.4)

where hk ∈ R. We call φ scaling function, and the equation (3.4) scaling equation.
The sequence of coefficients {hk}k∈Z is called the filter of scaling function φ, or more
briefly, the filter h. We define the symbol h of the filter h by

h(ω) :=
1√
2

+∞∑

n=−∞

hn exp(−ınω). (3.5)

The reason we use Fourier series of {hk}k∈Z scaled by factor 1/
√
2 instead of the

original Fourier series to define the symbol is for the convenience of normalization of
the formulas which will be discussed later. The filter has a finite support if there exist
k1, k2 ∈ Z such that k1 < k2 and hk = 0 for all k < k1 and k > k2 (k ∈ Z). If the
filter has a finite support, then the summations in the scaling equation (3.4) and in
the definition (3.5) of the symbol h are finite sums.

Theorem 3.6 ([25]). A family of functions {φ(· − n)}n∈Z is a Riesz basis of the space V0 if
and only if there exist A > 0 and B > 0 such that

1

B
≤

+∞∑

k=−∞

|φ̂(ω + 2kπ)|2 ≤ 1

A
, ∀ ω ∈ [−π, π],

where φ̂ is the Fourier transform of φ, i.e. φ̂(ω) =
∫∞

−∞
φ(t) exp(−ıωt)dt.
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3.1.2 Scaling functions

Let f be a function in L2(R) and {Vj}j∈Z be an MRA. In every subspace Vj for every
j ∈ Z, f is optimally approximated by its orthogonal projection PVj

f into Vj. We need an
orthonormal basis of Vj to compute the orthogonal projection.

We use δm,n to denote the Kronecker symbol, i.e.

δm,n =

{
1, if m = n,
0, if m 6= n

Definition 3.7 (Orthogonal scaling function). We call a scaling function φ of an MRA
{Vj}j∈Z orthogonal if {φj,n}n∈Z is an orthogonal basis of Vj for all j ∈ Z. Particularly, if
these norms of the basis functions are one, we call φ to be orthonormal, i.e. for all j,

〈φj,m, φj,n〉 = δm,n.

In fact, from the properties of MRA, we know that if {φj,n}n∈Z is an orthonormal basis
of Vj for any fixed j0 ∈ Z, then it is so for all j.

Lemma 3.8. Let {Vj}j∈Z be an MRA and φ be a scaling function of it. Then φ is orthonor-

mal if and only if its Fourier transform φ̂ satisfies

+∞∑

k=−∞

|φ̂(ω + 2kπ)|2 = 1. (3.6)

If a scaling function φ is not orthonormal, we can get an orthonormal scaling function
ϕ by orthogonalization as following

ϕ̂(ω) =
φ̂(ω)

(∑+∞
k=−∞ |φ̂(ω + 2kπ)|2

)1/2 .

We can easily check ϕ satisfies the orthonormal condition (3.6).
We also know that properties of scaling functions totally rely on the choice of the filter

in the scaling equation (3.4). We will study the properties of scaling function φ with the
filter h. By taking the Fourier transform of both sides of (3.4), we obtain

φ̂(ω) = h
(ω
2

)
φ̂
(ω
2

)

We recursively use this relation to get

φ̂(ω) =

(
p∏

k=1

h(2−kω)

)
φ̂(2−pω).

If φ̂(ω) is continuous (e.g. φ ∈ L1) at ω = 0, then we have,

φ̂(ω) =

(
+∞∏

k=1

h(2−kω)

)
φ̂(0).
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Theorem 3.9 ([25]). Let φ ∈ L2(R) ∩ L1(R) be an orthonormal scaling function, with the
scaling equation

φ(·) =
√
2

+∞∑

k=−∞

hkφ(2 · −k), (3.7)

Then the symbol h of the filter h satisfies

|h(ω)|2 + |h(ω + π)|2 = 1, for ∀ ω ∈ R, (3.8)

and
h(0) = 1. (3.9)

Conversely, if h(ω) is 2π periodic and continuously differentiable in a neighborhood of ω = 0,
if it satisfies (3.8) and (3.9) and if

inf
ω∈[−π/2,π/2]

|h(ω)| > 0,

then

φ̂(ω) =
+∞∏

k=1

h(2−kω)

is the Fourier transform of a scaling function φ ∈ L2(R).

Proof. See S. Mallat 1998 [25].

3.1.3 Orthogonal wavelets

Let f be an L2(R) function and {Vj}j∈Z be an MRA. Suppose Wj to be the orthogonal
complement of Vj in Vj+1:

Vj+1 = Vj ⊕Wj .

The orthogonal projection of f on Vj+1 can be decomposed as the sum of the orthogonal
projections on Vj and Wj:

PVj+1
f = PVj

f + PWj
f.

Here the complement PWj
f is the detail information of f which can be described at the

resolution level j + 1 but cannot be described at the level j. For j < l, we know that

Vj+1 ⊂ Vl and Wl⊥Vl,

thus,
Wl⊥Vj+1 and Wl⊥Wj ⊂ Vj+1.

Hence, for j < l,
Vl = ⊕l−1

k=jWk ⊕ Vj. (3.10)

Since {Vj}j∈Z is an MRA, by letting j → −∞ and l → +∞ in (3.10), we get

L2(R) = ⊕+∞
j=−∞Wj.
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Therefore, f can be represented as the superposition of details of all resolution levels.

f =

+∞∑

j=−∞

+∞∑

n=−∞

〈f, ψj,n〉ψj,n.

Theorem 3.10. Let φ be an orthonormal scaling function with the symbol h. Let ψ be the
function whose Fourier transform is

ψ̂(ω) = g
(ω
2

)
φ̂
(ω
2

)

with

g(ω) = exp(−ıω)h∗(ω + π). (3.11)

Let us denote

ψj,n = 2
j

2ψ(2j · −n), for j ∈ Z.

Then, for any resolution level j, {ψj,n}n∈Z is an orthonormal basis of Wj, and for all j ∈ Z,
{ψj,n}j, n∈Z is an orthonormal basis of L2(R).

Proof. See S. Mallat 1998 [25].

We call the function ψ a wavelet3. Sometimes people also call the wavelet ψ to be a
mother wavelet and the scaling function φ to be a father wavelet. And we call Wj a wavelet
space of resolution level j.

Definition 3.11 (Orthonormal wavelet). A wavelet ψ is orthonormal if {ψj,k}j,k∈Z is an
orthonormal basis of L2(R).

Since ψ ∈ W0 ⊂ V1, we can represent ψ with the unique combination of the basis
{φ1,k}k∈Z,

ψ(·) =
+∞∑

n=−∞

gnφ(2 · −n).

We call the sequence gn the filter of the wavelet of ψ, or briefly the filter g, and the symbol
g is the Fourier series of the filter g,

g(ω) =
1√
2

+∞∑

n=−∞

gn exp(−ınω).

Apparently, properties of the wavelet ψ depend on its filter g and the scaling function φ.
And since the filter g is constructed from the filter h of the scaling function φ, the main
task in construction of wavelets is to construct the filter h.

3Here in this definition of wavelet, we are involved in the range of discontinuous wavelet transform.
People define a zero average function in L2(R) to be a wavelet for the continuous wavelet transform. The
requirement of the zero average is to guarantee the admissible condition which makes the reconstruction
formula or the inverse wavelet transform possible, see Daubechies 1992 [8].
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3.1.4 Constructing wavelets

When we want to construct a wavelet ψ, we mainly consider the number of vanishing mo-
ments of ψ and its support. We will investigate how the filter h is related on the requirement
of the number of vanishing moments and support of ψ.

Vanishing moments:

Definition 3.12 (Vanishing moments). A function ψ has p vanishing moments if
∫ +∞

−∞

tkψ(t)dt = 0 for 0 ≤ k < p

In other words, the fact that ψ has p vanishing moments means that ψ is orthogonal to
any polynomial of degree less than p.

Theorem 3.13 (Vanishing moments). Let ψ and φ be a wavelet and a scaling function,
respectively, which are both orthonormal. And let h be the symbol of the filter h of φ.
Suppose that

|ψ(t)| = O((1 + t2)−p/2−1) and |φ(t)| = O((1 + t2)−p/2−1).

The following four statements are equivalent:

(i) The wavelet ψ has p vanishing moments.

(ii) ψ̂(ω) and its first p− 1 derivatives are zeros at ω = 0.

(iii) h(ω) and its first p− 1 derivatives are zeros at ω = π.

(iv) for any 0 ≤ k < p,

qk(·) =
+∞∑

n=−∞

nkφ(· − n) is a polynomial of degree k.

Proof. See S. Mallat 1998 [25].

Compact support:

In application, the number of non-zero coefficients of the filter of a scaling function directly
affects the computational cost. The more the number of non-zero coefficients of the filter
is, the greater is the cost of the computation. We know from the following lemma that
the number of non-zero coefficients of the filter is related to the support size of the scaling
function.

Lemma 3.14 (Compact support). The scaling function φ has a compact support if and only
if the filter h has a compact support. Furthermore, their supports are equal.

Proof. See I. Daubechies [7] and S. Mallat [25].

Note that, if a scaling function does not have a compact support, then the number of
non-zero coefficients of the filter of the scaling function is infinite. We are interested in
scaling functions or wavelets which have compact supports.
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Daubechies compactly supported wavelets

Theorem 3.15. Let h = {h0, h1, · · · , h2p−1} (p ∈ N), be a finite real sequence, whose symbol
is h. If h satisfies

|h(ω)|2 + |h(ω + π)|2 = 1, h(0) = 1,

and

h(ω) =

(
1 + exp(−ıω)

2

)p

t(ω),

where t is a trigonometric polynomial with |t(ω)| ≤ 2p−1/2 (∀ ω ∈ R). Then there is a
compactly supported orthonormal scaling function φ ∈ L2(R), whose Fourier transform φ̂ is

φ̂(ω) =
1√
2

+∞∏

k=1

h(2−kω).

Proof. See Daubechies [7, 8] or Louis Maass and Rieder [23].

Daubechies (1988) has constructed a family of compactly supported orthonormal wavelets
which has the minimum support size with a given number of vanishing moments [7].

Theorem 3.16 (Daubechies). Let h be the filter of a scaling function φ whose symbol h(ω)
has p zeros at ω = π, then the filter h has at least 2p non-zero coefficients. And the filter of
the scaling function of the Daubechies compactly supported wavelet of p vanishing moments
has 2p non-zero coefficients.

Proof. See I. Daubechies 1988 [7] or I. Daubechies 1992 [8].

We call this family of wavelets Daubechies wavelets. And we use DSp and DWp to denote
the corresponding scaling function and wavelet.

Since Daubechies orthonormal compactly supported wavelets are asymmetric (see Figure
3.1) and the support sizes of wavelets are relatively large to obtain certain order of vanishing
moments, compactly supported orthogonal wavelets are not optimal in applications. If we
replace orthogonality with biorthogonality, we may obtain a more practical families of bases
of L2(R).

3.2 Biorthogonal wavelets

The construction of compactly supported orthogonal wavelet with certain regularity is to-
tally dependent on the design of the symbol h of the filter h. This is quite a burden to h. By
replacing orthogonality with biorthogonality, in which we introduce two more dual functions
φ̃, ψ̃, we may relieve the burden on a single h in the orthogonal case. These dual functions
are called dual scaling function and dual wavelet function respectively, whose corresponding
filters are h̃ and g̃. We have the following four refinement equations.
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Figure 3.1: Daubechies scaling functions and wavelets of order 2, 3 and 4.

φ(·) =
√
2

+∞∑

n=−∞

hnφ(2 · −n), φ̃(·) =
√
2

+∞∑

n=−∞

h̃nφ̃(2 · −n)

ψ(·) =
√
2

+∞∑

n=−∞

gnφ(2 · −n), ψ̃(·) =
√
2

+∞∑

n=−∞

g̃nφ̃(2 · −n).

The biorthogonality requires us that

〈φ(·), φ̃(· − n)〉 = 〈ψ(·), ψ̃(· − n)〉 = δn,0 and

〈φ(·), ψ̃(· − n)〉 = 〈ψ(·), φ̃(· − n)〉 = 0. (3.12)
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Definition 3.17. We call a set of scaling functions and wavelets, {φ, ψ, φ̃, ψ̃}, a family of
biorthogonal scaling functions and wavelets if it satisfies (3.12).

The filters (h, g, h̃, g̃) must satisfy

+∞∑

k=−∞

hkh̃k−2n =
+∞∑

k=−∞

gkg̃k−2n = δn,0, (3.13a)

+∞∑

k=−∞

hkg̃k−2n =

+∞∑

k=−∞

gkh̃k−2n = 0, (3.13b)

for ∀ n ∈ Z.
We also have the biorthogonal condition in the form of symbol:

h(ω)h̃(ω) + h(ω + π)h̃(ω + π) =1, g(ω)g̃(ω) + g(ω + π)g̃(ω + π) =1, (3.14a)

h(ω)g̃(ω) + h(ω + π)g̃(ω + π) =0, g(ω)h̃(ω) + g(ω + π)h̃(ω + π) =0, (3.14b)

for ∀ ω ∈ R.

Definition 3.18. If a group of filters (h, g, h̃, g̃) satisfies (3.13), then we call it a family of
biorthogonal filters. And if a group of symbols (h, g, h̃, g̃) satisfies (3.14), then we call it a
family of biorthogonal symbols.

The following theorem of C. K. Chui (1992 [4]) tells us a general description on the
dependence of the choice g and g̃ on h and h̃.

Theorem 3.19. Let h and h̃ be symbols of a scaling function and its dual and satisfy

h(ω)h̃(ω) + h(ω + π)h̃(ω) = 1.

Then symbols g and g̃ together with h and h̃ compose a family of biorthogonal symbols if
and only if there exists a function k, such that

k(ω) =
+∞∑

n=−∞

cn exp(−ınω) for ω ∈ R and
+∞∑

n=−∞

|cn| <∞,

and satisfies that

g̃ = exp(−ıω)h(ω + π)k(2ω) and g(ω) = exp(−ıω)h̃(ω + π)k−1(2ω).

We call a family of biorthogonal filters is finite, if each filter of the family is finite.
Let f be a function in L2(R). Let {Vj}j∈Z be the MRA generated by φ and {Wj}j∈Z be

wavelets spaces generated by ψ. We have the corresponding dual MRA {Ṽj}j∈Z and dual

wavelets spaces {W̃j}j∈Z generated by φ̃ and ψ̃, respectively. In this biorthogonal case, Wj’s
are not orthogonal to each other for different j ∈ Z. Instead, we have

Vj ⊥ W̃j and Wj ⊥ Ṽj.
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We can represent f with the basis {ψj,k}j,k∈Z

f =

+∞∑

j=−∞

+∞∑

k=−∞

〈f, ψ̃j,k〉ψj,k,

which is not an orthogonal decomposition.
The following work has been done by A. Cohen, I. Daubechies and J. -C. Feauveau

(1992) [5], who first introduced biorthogonal wavelets and constructed compactly supported
biorthogonal wavelets.

Theorem 3.20. Let h and h̃ be filters with finite supports, whose symbol are h and h̃,
respectively. Suppose that

h(ω)h̃(ω) + h(ω + π)h̃(ω + π) = 1, h(0) = h̃(0) = 1,

and

h(ω) =

(
1 + exp(−ıω)

2

)p

t(ω) and h̃(ω) =

(
1 + exp(−ıω)

2

)p̃

t̃(ω),

Here t and t̃ are trigonometric polynomials, and there exist k and k̃ in N such that

max
ω∈R
|
k−1∏

j=0

t(2jω)| ≤ 2p−1/2 and max
ω∈R
|
k̃−1∏

j=0

t̃(2jω)| ≤ 2p̃−1/2.

Then, there exist biorthogonal scaling functions φ and φ̃ whose corresponding filters are h
and h̃, respectively. Moreover, by defining ψ and ψ̃ as

ψ =
∑

n∈Z

(−1)nh̃1−nφ1,n and ψ̃ =
∑

n∈Z

(−1)nh1−nφ̃1,n,

we have a family of biorthogonal wavelets functions {φ, ψ, φ̃, ψ̃}.

One can also obtain a new family of biorthogonal scaling functions and wavelets by a
technique called lifting or dual lifting. This work has been done by W. Sweldens (1996)
[32]. Moreover, I. Daubechies and W. Sweldens (1998) have shown that any family of finite
biorthogonal filters can be obtained from any other family of finite biorthogonal filters by
performing finite number of liftings and dual liftings on it [9].

So far, we have briefly introduced the basic theory on scaling functions and wavelets. It
is convenient for us to choose a family of scaling functions which has interpolation property
in solving differential equations.

3.3 Interpolating scaling functions

In this section, we will discuss the construction and the properties of the ISF’s.
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Construction of ISF’s

In ISFM, we use uniform mesh and only involve scaling functions with the same resolution
level. Therefore, here in this section we only introduce a method of construction of ISF’s
which constructs ISF’s without involving the concept of wavelets.

Iterative interpolating process

We will construct ISF’s on the real line with a method introduced by S. Dubuc (1986 [13])
and by G. Deslauries and S. Dubuc (1989 [10]). Let N be a positive integer. We interpolate
the Kronecker sequence {δn,0}n∈Z at the integers to a function on the binary rationals by
repeating the following process. For a given integer j ≥ 0, if we have already obtained the
values on all k/2j, for all k ∈ Z, then we interpolate the values at points (k+1/2)/2j, for all
k ∈ Z, with the symmetric 2N -points Lagrangian interpolations. Then we have values on
all k/2j+1. And we continue with the next resolution level and do the same symmetric 2N -
points Lagrangian interpolations. By repeating in this way, we will have values at any binary
rationals, i.e., k/2j, for ∀ k, j ∈ Z and j ≥ 0. We call this process iterative interpolating
process. Thus we get a discrete function defined on a dense subset of R. Since this function
is uniformly continuous on the whole binary rationals, it can be uniquely extended to a
function φ on R. We also call this function fundamental interpolating function of order N ,
or briefly DDN

4.

Properties of ISF(DDN)

The construction with the iterative interpolation process tells us that DDN(N ∈ N) is even
symmetric, i.e.

DDN(−t) = DDN(t), t ∈ R.

Theorem 3.21. If p is a polynomial of degree less than 2N(N ∈ N), then p can be reproduced
by the translates of DDN .

p(t) =
+∞∑

n=−∞

p(n)DDN(t− n), for t ∈ R.

Lemma 3.22. Let N ∈ N. Then DDN vanishes outside (−2N + 1, 2N − 1).

Proof. We define a sequence {tn}n≥0 by the recurrence

tn+1 = tn + (2N − 1)/2n+1, n ∈ N,

with t0 = 0. For a given n ∈ N, we can observe from the process of iterative interpolation
that DDN vanishes outside [−tn, tn] at the resolution level n, i.e., where the points are in
the form of k/2n(k ∈ Z). We can easily compute that tn = 2N − 1 − (2N − 1)/2n. By
letting n→ +∞, we know that DDN vanishes outside (−2N + 1, 2N − 1).

Lemma 3.23. DDN(N ∈ N) is continuously differentiable.

4This term is named after Deslauriers and Dubuc.
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Figure 3.2: Deslauriers Dubuc functions of order from 2 to 5.

Proof. See S. Dubuc 1986 [13].

N. Saito and G. Beylkin have shown that DDN(N ∈ N) is the autocorrelation of
Daubechies compactly supported orthogonal scaling function [31].

DDN(t) =

∫ +∞

−∞

DSN(x)DSN(x− t)dx, (3.15)

where DSN is the Daubechies compactly supported orthogonal scaling function of order N ,
which yields the scaling equation,

DSN(t) =

2N−1∑

k=−2N+1

hkDSN(2t− k), t ∈ R.

We also know that DDN satisfies the scaling equation,

DDN(t) =
2N−1∑

k=−2N+1

h∗kDDN(2t− k), t ∈ R.
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One can also easily check the relation between the filters h∗ and h from the autocorrelation
equation (3.15),

h∗n =
+∞∑

m=−∞

hmhm−n, for ∀ n ∈ Z.

And since DDN is interpolating, the filter h∗k yields

h∗k = DDN(k/2).

Now we decompose any data set {fi}i∈Z as:

fi =
+∞∑

j=−∞

fjδi,j , (3.16)

where δ is the Kronecker symbol. Then the interpolation f of {fi}i∈Z on the whole R is
combination of translates of DDN .

f(t) =

+∞∑

j=−∞

fjDDN(t− j), t ∈ R.

Since DDN is interpolating, we know that fj = f(j). We apply this relation on the data set
{DDN(j/2)}j∈Z to have

DDN(t/2) =

+∞∑

j=−∞

DDN(j/2)DDN(t− j), t ∈ R. (3.17)

Since the DDN has a compact support, the summation in (3.17) is finite. And since
DDN vanishes outside (−2N + 1, 2N + 1), we know that DDN(j/2) = 0 for |j| ≥ 4N − 2.
Therefore

DDN(t/2) =
4N−3∑

j=−4N+3

DDN(j/2)DDN(t− j), for t ∈ R. (3.18)

We know from the interpolating property that DDN(j/2) = 0, for even j ∈ Z, hence, we only
need to compute DDN(j/2) for odd integer j. And these can be computed using 2N -points
Lagrangian interpolations. One can easily check that

DDN

(
2j + 1

2

)
= (−1)N−j

∏2N−1
k=0 (k −N + 1/2)

(j + 1/2)(N − j − 1)!(N + j)!
, for −N ≤ j < N. (3.19)

If N = 2, we have

DD2(±1/2) = 9/16, DD2(±3/2) = −1/16 and DD2(±(2j + 1)/2) = 0, for j ≥ 2.

Next, we will compute derivatives of DD2 at half integer points, j + 1/2, which will be
needed in ISFM.We knowDD2 has a finite support. And from the symmetry ofDD2, we have
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the anti-symmetry of the derivatives. Thus we only need to calculate DD′
2(1/2), DD

′
2(3/2)

and DD′
2(5/2). We rewrite the equation (3.18), since we have computed its coefficients,

DD2

(
t

2

)
= − 1

16
DD2(t+3)+

9

16
DD2(t+1)+DD2(t)+

9

16
DD2(t−1)−

1

16
DD2(t−3), t ∈ R.

(3.20)
We differentiate both sides of (3.20) to have

1

2
DD′

2

(
t

2

)
= − 1

16
DD′

2(t+3)+
9

16
DD′

2(t+1)+DD′
2(t)+

9

16
DD′

2(t−1)−
1

16
DD′

2(t−3), t ∈ R.

(3.21)
In order to compute DD′

2(1/2), DD
′
2(3/2) and DD

′
2(5/2) from equation (3.21), we need first

to compute DD′
2(1) and DD

′
2(2).

We assume that f is the extension of a discrete data set {fi}i∈Z by iterative interpolation
process with 4-points Lagrangian interpolations. Then we can write f as

f(t) =

+∞∑

j=−∞

fjDD2(t− j). (3.22)

Differentiating (3.22) we obtain

f ′(t) =
+∞∑

j=−∞

fjDD
′
2(t− j).

Taking t = 0, and since DD2 vanishes outside the interval (−3, 3) and fj = f(j), we have

f ′(0) = −DD′
2(1)[f(1)− f(−1)]−DD′

2(2)[f(2)− f(−2)]. (3.23)

Lemma 3.24.

DD′
2(1) = −2/3 and DD′

2(2) = 1/12.

Proof. This proof has been given by S. Dubuc 1986 [13].
We set pn = [f(2−n) − f(−2−n)]/(2 · 2−n). The iterative interpolation process tells us

that

f(−2−n) = −1/16f(−4 · 2−n) + 9/16f(−2 · 2−n) + 9/16f(0)− 1/16f(2 · 2−n)

f(2−n) = −1/16f(−2 · 2−n) + 9/16f(0) + 9/16f(2 · 2−n)− 1/16f(4 · 2−n)

Hence,

pn =[f(−4 · 2−n)− 10f(−2 · 2−n) + 10f(2 · 2−n)− f(4 · 2−n)]/(32 · 2−n)

=5/4[f(2 · 2−n)− f(−2 · 2−n)]/[2 · (2 · 2−n)]

− 1/4[f(4 · 2−n)− f(−4 · 2−n)]/[2 · (4 · 2−n)]

=5/4pn−1 − 1/4pn−2. for n ≥ 1. (3.24)
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The general solution of this difference equation (3.24) is

pn = c1 + c24
−n.

We use the initial condition

p−1 = c1 + 4c2 = [f(2)− f(−2)]/4 and p0 = c1 + c2 = [f(1)− f(−1)]/2. (3.25)

to compute c1 and c2, i.e.

c1 =2/3[f(1)− f(−1)]− 1/12[f(2)− f(−2)], (3.26a)

c2 =− 1/16[f(1)− f(−1)] + 1/12[f(2)− f(−2)]. (3.26b)

If we substitute (3.26) into (3.25) and let n→ +∞, then, we have

f ′(0) = 2/3[f(1)− f(−1)]− 1/12[f(2)− f(−2)]. (3.27)

This equation (3.27) does not depend on the choice of f . Now compare this with (3.23),
then we get DD′

2(1) = −2/3 and DD′
2(2) = 1/12.

Hence, by substituting these into (3.21), we can obtain that DD′
2(1/2) = −59/48,

DD′
2(3/2) = −3/32 and DD′

2(5/2) = −1/96.
Now if N = 3, by the formula (3.19), we know that

DD3(±1/2) = 75/128, DD3(±3/2) = −25/256 and DD3(±5/2) = 3/256.

One can verify that the method used in the proof of the lemma above cannot be gener-
alized for any N .

G. Deslauriers and S. Dubuc (1989) [10] have provided a beautiful technique on compu-
tations of these derivatives for N = 3, which may be generalized for the higher N .

Lemma 3.25.

DD′
3(1) = −272/365, DD′

3(2) = 53/365, DD′
3(3) = −16/1095 and DD′

3(4) = −1/2920.

Proof. We can reproduce any polynomial of degree less than 6 with translates of DD3. Let
us consider a polynomial p(t) = t(t2 − 1)(t2 − 4). We know that p can be reproduced by
DD3,

p(t) =
∑

n∈Z

p(n)DD3(t− n).

Since we know that p vanishes at t = 0,±1 and ±2, and DD′
3(t) = 0 for |t| ≥ 5, we have

p′(0) = −2p(3)DD′
3(3)− 2p(4)DD′

3(4),

In the same way, if we consider other polynomials q(t) = t(t2 − 1)(t2 − 9) and r(t) =
t(t2 − 4)(t2 − 9), we obtain

q′(0) = −2q(2)DD′
3(2)− 2q(4)DD′

3(4),
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and

r′(0) = −2r(1)DD′
3(1)− 2r(4)DD′

3(4).

So far, we have three equations for four unknowns. If we consider the equation (3.18), and
substitute t with 2s, then we have

DD3(s) =

9∑

j=−9

DD3(j/2)DD3(2s− j). (3.28)

We differentiate both sides of (3.28) and take s = 4, then we have

DD′
3(4) = 2DD3(5/2)DD

′
3(3) = 3DD′

3(3)/128.

Therefore, we can get DD′
3(1), DD

′
3(2), DD

′
3(3) and DD′

3(4) by solving these four linear
equations.

With these derivatives on integer points ready, we can also compute DD′
3(±j/2) by

differentiating (3.18), for j = 1, 3, 5, 7, 9. See the table 3.1 and 3.2.

Table 3.1: Derivative filters DD′
N(−i).

i N = 2 N = 3 N = 4
1 2/3 272/365 39296/49553
2 −1/12 −53/365 −76113/396424
3 16/1095 1664/49553
4 1/2920 −2645/1189272
5 −128/743295
6 1/1189272

Table 3.2: Derivative filters DD′
N(−i− 1/2).

i N = 2 N = 3 N = 4
0 59/48 120707/93440 266099391/202969088
1 −3/32 −76883/560640 −189991331/1217814528
2 1/96 1075/37376 63928787/1522268160
3 −1297/373760 −1505623/173973504
4 3/373760 1011845/1217814528
5 6637/608907264
6 −5/1217814528
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∆x(i−1/2)

∆xi∆x(i−1) ∆x(i+1)

∆x(i+1/2) ∆x(i+3/2)∆x(i−3/2)

x

Figure 3.3: Yee’s lattice for 1D.

3.4 Numerical approximations of the spatial deriva-

tives with ISFM

Assume there is a uniform Yee’s Lattice as in the figure 3.3. Where ∆x is the smallest mesh
size and i∆x’s (i ∈ Z) are grid points and (i+1/2)∆x’s (i ∈ Z) are midpoints of grid points.

Let f be a function which is discretized on midpoints of grid points, (i + 1/2)∆x, for
i ∈ Z. We will approximate f ′(0) with the given values {fi+1/2 = f((i+ 1/2)∆x)}i∈Z of f

at midpoints, i.e., (i+ 1/2)∆x, i ∈ Z. We approximate the function f with a function f̃∆x,
which is a linear combination of translates of contracted ISF’s.

f̃∆x(x) =
∑

i∈Z

fi+1/2DDN(x/∆x− i− 1/2), for t ∈ R, (3.29)

where fi+1/2 = f((i+ 1/2)∆x).

D. L. Donoho (1992 [12]) has shown that f̃∆x converges to f in C∞(R) as ∆x goes to 0.
Here we state two lemmas from [12].

Lemma 3.26. Let N ∈ N. And let Vj be a space spanned by {(DDN)j,k}k∈Z, for any
non-negative integer j. Then the following statements are true:� For any f ∈ Vj,

f =
∑

k

f(2−jk)/2j/2(DDN)j,k.� We have the inclusion
Vj ⊂ Vj+1.� All the polynomials of degree less then 2N are in Vj.

For a given function f ∈ C0(R), we define a projection Pjf of f on Vj(j ≥ 0), i.e.,

Vj = span{(DDN)j,k | k ∈ Z},

as
Pjf :=

∑

k

f(2−jk)/2j/2(DDN)j,k.

Note that Pjf is not an orthogonal projection since (DDN)j,k’s (k ∈ Z) are not orthogonal.

Lemma 3.27. If a function f ∈ C0(R), then

‖f − Pjf‖∞ → 0, as j → +∞.
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Differentiate both sides of (3.29), and put x = 0, then we have

f̃ ′
∆x(0) =

∑
i fi+1/2DD

′
N(−i− 1/2)

∆x
(3.30)

Since DDN has a compact support, there exists an integer l0 such that DD′
N(−i− 1/2) = 0

for |i+1/2| > l0 (i ∈ Z). For the simplification, we use a(i) to denote DD′
N(−i− 1/2), then

we have

f̃ ′
∆x(0) =

∑l0−1
i=−l0

fi+1/2a(i)

∆x
. (3.31)

This is a general formula for ISFM with Yee’s scheme. The higher the order N is, the larger
is the compact support of DDN , hence, the more is the number of terms in the sum of (3.31).

Now, in the TMy mode Maxwell’s equations systems we approximate the time derivatives
with central finite difference of second order, and the spatial derivatives with DDN (N ∈ N).
Then, we have the following difference system with ISFM. The initial conditions and the
boundary conditions are the same to that of Yee’s FDTD method and we will not repeat
them here.

Bx|n+1/2
i, j+1/2 = Bx|

n−1/2
i, j+1/2 +

∆t

∆z

l0−1∑

l=−l0

a(l)Ey|ni, j+l+1 (3.32a)

Hx|n+1/2
i, j+1/2 =

1− σz∆t

2ε0

1 +
σz∆t

2ε0

Hx|n−1/2
i, j+1/2 +

1

µ0



1 +

σx∆t

2ε0

1 +
σz∆t

2ε0

Bx|n+1/2
i, j+1/2 −

1− σx∆t

2ε0

1 +
σz∆t

2ε0

Bx|n−1/2
i, j+1/2




(3.32b)

Bz|n+1/2
i+1/2, j = Bz|

n−1/2
i+1/2, j −

∆t

∆x

l0−1∑

l=−l0

a(l)Ey|ni+l+1, j (3.32c)

Hz|n+1/2
i+1/2, j =

1− σx∆t

2ε0

1 +
σx∆t

2ε0

Hz|n−1/2
i+1/2, j +

1

µ0



1 +

σz∆t

2ε0

1 +
σx∆t

2ε0

Bz|n+1/2
i+1/2, j −

1− σz∆t

2ε0

1 +
σx∆t

2ε0

Bz|n−1/2
i+1/2, j




(3.32d)

D̃y|n+1
i, j =

1− σx∆t

2ε0

1 +
σx∆t

2ε0

D̃y|ni, j +
∆t

1 +
σx∆t

2ε0

l0−1∑

l=−l0

a(l)

(
Hx|n+1/2

i, j+l+1/2

∆z
−
Hz|n+1/2

i+l+1/2, j

∆x

)
(3.32e)

Ey|n+1
i, j =

1− σz∆t

2ε0

1 +
σz∆t

2ε0

Ey|ni, j +
1

1 +
σz∆t

2ε0

1

ε

(
D̃y|n+1

i, j − D̃y|ni, j
)
, (3.32f)
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where a(i) = DD′
N(−i − 1/2). And l0 is an integer such that [−l0, l0 − 1] is the support of

the filter {a(l)}l∈Z.

3.5 Numerical dispersion and stability

We consider the difference system (3.32) in the main computational domain Ω (Figure 1.3)

only, where all the lossy factors, σ’s, are zero and no auxiliary variable such as B or D̃ is
needed, then the system simplifies into:

Hx|n+1/2
i, j+1/2 = Hx|n−1/2

i, j+1/2 +
∆t

µ∆z

l0−1∑

l=−l0

a(l)Ey|ni, j+l+1, (3.33a)

Hz|n+1/2
i+1/2, j = Hz|n−1/2

i+1/2, j −
∆t

µ∆x

l0−1∑

l=−l0

a(l)Ey|ni+l+1, j , (3.33b)

Ey|n+1
i, j = Ey|ni, j +

∆t

ε

l0−1∑

l=−l0

a(l)

(
Hx|n+1/2

i, j+l+1/2

∆z
−
Hz|n+1/2

i+l+1/2, j

∆x

)
. (3.33c)

3.5.1 Numerical dispersion

Lemma 3.28. If a pair of real numbers k̃x and k̃z satisfies

[
1

v∆t
sin

(
ω∆t

2

)]2
=

[
1

∆x

l0−1∑

l=−l0

a(l) sin

(
k̃x(l + 1/2)∆x

2

)]2

+

[
1

∆z

l0−1∑

l=−l0

a(l) sin

(
k̃z(l + 1/2)∆z

2

)]2
, (3.34)

where v = 1/
√
µε, and a(l)’s are derivative filters in Table 3.2, then the following set (3.35)

is a solution to the difference system (3.33),

Hx|nI, J+1/2 =−
∆t

µ∆z

l0−1∑

l=−l0

a(l)
sin
(
k̃z(l + 1/2)∆z/2

)

sin
(
ω∆t/2

)

exp(ı(ω n∆t− k̃xI∆x− k̃z(J + 1/2)∆z)), (3.35a)

Hz|nI+1/2, J =
∆t

µ∆x

l0−1∑

l=−l0

a(l)
sin
(
k̃x(l + 1/2)∆x/2

)

sin
(
ω∆t/2

)

exp(ı(ω n∆t− k̃x(I + 1/2)∆x− k̃zJ∆z)), (3.35b)

Ey|nI, J = exp(ı(ω n∆t− k̃xI∆x− k̃zJ∆z)). (3.35c)

Conversely, if there exist a pair of real numbers k̃x and k̃z such that (3.35) is a solution to
the difference system (3.33), then k̃x and k̃z yield (3.34).
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Proof. The proof of this lemma is just a straightforward substitution of (3.35) into the
system (3.33). We omit the detail here.

The analysis of numerical dispersion with higher order method such as ISFM is not as
simple as that of FDTD, since it is difficult to analytically solve for numerical wavenumbers,
k̃x and k̃z. E. M. Tentzeris, R. L. Robertson, J. F. Harvey and L. P. B. Katehi have
used BisectionNewtonRaphson hybrid technique to solve this non-linear dispersion equation
(3.34) with different type of wavelets, i.e., different a(l), and provided comparison results
with FDTD, see [36]. They showed that higher order schemes have less dispersion error
than FDTD. We don’t want to discuss it in detail here. According to our experience in
numerical examples, the computation errors caused by numerical dispersion are less than
that of FDTD of second order.

3.5.2 Numerical stability

The stability analysis for the ISFM is similar to that of Yee’s FDTD scheme, see subsection
2.3.2. We keep all the notations of the subsection 2.3.2 except ∇̃, which is the discretized
gradient with respect to central finite difference of second order, and we use ∇ instead of
∇̃, which is the discretized gradient with respect to ISFM difference scheme. Here we will
have the following equation instead of (2.23),

V|n+1/2
p,q,r − V|n−1/2

p,q,r

∆t
=

j√
µε
∇× V|np,q,r, (3.36)

We substitute (2.24) into (3.36) and obtain

α1/2 − α−1/2

∆t
V0 = −

2√
µε

(u1, u2, u3)× V0,

where

u1 =

[
1

∆x

l0−1∑

l=0

a(l) sin(kx(l + 1/2)∆x/2)

]2
,

u2 =

[
1

∆y

l0−1∑

l=0

a(l) sin(ky(l + 1/2)∆y/2)

]2
,

u3 =

[
1

∆z

l0−1∑

l=0

a(l) sin(kz(l + 1/2)∆z/2)

]2

We also get a similar form to (2.26),

α1/2 − α−1/2

∆t
V0 =

2√
µε
BV0,
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where

B =




0 −u3 u2

u3 0 −u1

−u2 u1 0


 .

Then, as in Subsection 2.3.1, by solving eigenvalues of the matrix B, we obtain,

(√
µε(α1/2 − α−1/2)

2∆t

)2

+ u21 + u22 + u23 = 0.

The derivation here is not different from that in the former chapter. We get

v∆t
√
u21 + u22 + u23 ≤ 1. (3.37)

We require that the inequality (3.37) should hold for all possible kx, ky and kz, thus we
have the stability condition of the Yee’s ISFM scheme:

∆t ≤ 1

v

l0−1∑

l=0

|a(l)|
√

1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2

.

For 2D case we have

∆t ≤
[
v

(
l0−1∑

l=0

|a(l)|
)√

1

(∆x)2
+

1

(∆z)2

]−1

(3.38)

this is generalization of the stability analysis of FDTD Yee’s scheme, where differentiation
filters a(−1) = −1/2 and a(1) = 1/2. Note that the stability conditions derived here are
not only for the Yee’s scheme, which is staggered and uncollocated, but also valid for the
unstaggered and collocated scheme.
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Adaptive wavelet collocation method

In the ISFM, which was discussed in the previous chapter, we use a uniform grid to discretize
field values. Only scaling functions of one resolution level are involved in the ISFM. In
this chapter, we continue to discuss the adaptive wavelet collocation method (AWCM) (O.
Vasilyev [40, 39]), which considers not only scaling functions of one resolution level but also
wavelets of different resolution levels.

Let {φ, ψ, φ̃, ψ̃} be a family of biorthogonal scaling functions and wavelets. And let
{Vj}j∈Z and {Wj}j∈Z be the corresponding MRA and the wavelet spaces. In general, Wj is
not the orthogonal complement of Vj (j ∈ Z) in Vj+1. Suppose that j0, j1 ∈ N (j0 < j1). We
know the following relation:

Vj1 = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ · · · ⊕Wj1−1. (4.1)

Note that “⊕ ” in (4.1) is a direct sum which is not necessarily orthogonal.
Let f be a function in L2(R). We use Pj and Qj to denote projections of f into the

subspaces Vj and Wj (j ∈ Z) of L2(R), respectively. Then from (4.1) we have

Pj1f = Pj0f +

j1−1∑

j=j0

Qjf. (4.2)

We represent the R.H.S. of (4.2) with the basis functions {φj0,k}k∈Z and {ψj,m}j,m∈Z,
then we get

Pj1f =
∑

k∈Z

αj0,kφj0,k +

j1−1∑

j=j0

∑

m∈Z

βj,mψj,m,

where
αj0,k = 〈f, φ̃j0,k〉 and βj,m = 〈f, ψ̃j,m〉.

We call αj0,k scaling coefficient and βj,m wavelet coefficient. We may think that scaling
coefficients αj0,k (k ∈ Z) show rough information of Pj1f at the coarsest resolution level j0
and the wavelet coefficients βj,m (j = j0, · · · , j1 − 1, m ∈ Z) show detailed information of
Pj1f at various resolution levels from j0 to j1 − 1.

Our interest is in the wavelet coefficients. In the applications such as numerical solutions
to partial differential equations (PDE’s) or image compressions, we may approximate a

58
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function or signal by discarding some terms in its wavelet decomposition whose wavelet
coefficients are negligible, i.e. the absolute values of the wavelet coefficients are less than
a given thresholding tolerance value. We can obtain wavelet coefficients with fast wavelet
transforms. In the AWCM, we will use the lifted interpolating wavelet transform. We can
obtain the lifted interpolating wavelets by lifting a type of wavelets called interpolating
wavelets or Donoho wavelets.

4.1 Interpolating wavelets

Let us first study about the interpolating wavelets introduced by Donoho 1992 [12].
For N ∈ N, we define a function DoN (named after Donoho) by

DoN(·) := 2DDN(2 · −1).

Assume j ∈ Z (j ≥ 0). Define Wj := span{(DoN)j,m |m ∈ Z}. Note that,

(DoN)j,m(·) = 2j/2(DoN)(2
j · −m) =

√
2(DDN)j+1,2m+1(·).

Hence, we know that
Wj ⊂ Vj+1 = span{(DDN)j+1,k | k ∈ Z}.

Suppose we have two sequences {αj,k}k∈Z and {βj,m}m∈Z. Let f be a function constructed
by

f =
∑

k∈Z

αj,k(DDN)j,k +
∑

m∈Z

βj,m(DoN)j,m. (4.3)

We know that f ∈ Vj+1, thus we can also represent f as

f =
∑

k∈Z

αj+1,k(DDN)j+1,k. (4.4)

For a given integer j, we define a set of dyadic rationals of degree j,

Kj := {k/2j | k ∈ Z}.

Then we have the nested relation,
Kj ⊂ Kj+1.

We defineMj := Kj+1 \ Kj , for j ∈ Z. The grid set Kj+1 of level j + 1 is composed of two
independent parts, Kj and Mj. We call Kj a coarse part and Mj a fine part in the level
j + 1.

Now we consider the two forms (4.3) and (4.4) of representations of f ∈ Vj+1. From the
definition of DoN , we know that

(DoN)j,m(t) = 0, for t ∈ Kj.

Therefore, we have
∑

k∈Z

αj+1,k(DDN)j+1,k(t) =
∑

k∈Z

αj,k(DDN)j,k(t), for t ∈ Kj.
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Hence, we have
αj,k =

√
2αj+1,2k, for k ∈ Z.

Let t0 ∈ Mj, i.e., ∃ k ∈ Z s.t. t0 = (k + 1/2)/2j. Substituting t0 into (4.3) and (4.4), and
using the interpolating property of DDN , we have

√
2αj+1,2k+1 = 2−j/2

∑

m∈Z

αj,m(DDN)j,m((k + 1/2)/2j) + βj,k.

Hence, we have the following lemma.

Lemma 4.1. Every f ∈ Vj+1 can be represented as (4.3), with

αj,k = 2−
j

2f

(
k

2j

)
, βj,k = 2−

j

2

(
f

(
k + 1

2

2j

)
− (Pjf)

(
k + 1

2

2j

))
.

This lemma shows that the wavelet coefficients βj,k’s (k ∈ Z) represent the difference of
f and its approximation Pjf in Vj.

Now we discuss the symbols of the family of biorthogonal scaling functions and wavelets.
Let h and g be the filters of DDN and DoN respectively and h and g be their corresponding
symbols. Since DDN is interpolating, it is easy to check from its scaling equation that
h2k = δk,0/

√
2, for all k ∈ Z. In the symbol form we have

h(ω) + h(ω + π) = 1, ω ∈ R. (4.5)

Since DoN(t) = 2DDN(2t− 1), for t ∈ R, we know that g = {g0 = 0, g1 =
√
2}. Therefore,

g(ω) = exp(−ıω), ω ∈ R. The biorthogonal condition (3.12) in matrix form is

M̃(ω)M(ω)∗ = I, (4.6)

where M, M̃ ∈ C
2×2 , and

M(ω) =

[
h(ω) h(ω + π)
g(ω) g(ω + π)

]
and M̃(ω) =

[
h̃(ω) h̃(ω + π)
g̃(ω) g̃(ω + π)

]
,

and I is the 2×2 identity matrix. The notation “∗” means conjugate transpose of a complex
matrix.

Thus, we have

M̃(ω) = (M(ω)∗)−1 =

[
1 1

exp(−ıω)h(ω + π) exp(−ı(ω + π))h(ω + 2π)

]
.

Therefore, we can choose h̃(ω) = 1 and g̃(ω) = exp(−ıω)h(ω + π). Thus, the dual scaling
function φ̃ is the Dirac impulse at the origin and the dual scaling function ψ̃ is a linear
combination of the shifted Dirac impulses. This biorthogonal family {DDN , DoN , φ̃, ψ̃} with
its family of symbols {h, g, h̃, g̃} is called Donoho wavelets family.

The Donoho wavelets family has some disadvantages.
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1. DoN does not have vanishing moments. Thus, it does not satisfy the admissible con-
dition, which means it cannot generate a Riesz basis of L2(R).

2. The duals are not L2(R) functions.

W. Sweldens has introduced a smart technique, called lifting scheme 1996 [32], which
can be used to construct better families of biorthogonal scaling functions and wavelets
overcoming these disadvantages of Donoho wavelets family. This will be the main contents
of the next section.

4.2 The lifting scheme

In this section we will introduce the lifting scheme developed by W. Sweldens (1996 [32]
and 1998 [33]). We start with the following lemma.

Lemma 4.2. If we have a family of biorthogonal symbols, {h, g0, h̃0, g̃}. Then, the new
family of symbols, {h, g, h̃, g̃}, defined as the following,

g(ω) = g0(ω)− h(ω)s(2ω), (4.7a)

h̃(ω) = h̃0(ω) + g̃(ω)s(2ω), (4.7b)

for ω ∈ R, where s is a trigonometrical polynomial, is also a family of biorthogonal symbols.

Proof. Our task is to check the biorthogonal condition in matrix form (4.6). Let M0, M̃0,
M and M̃ be the corresponding 2× 2 complex matrix functions, i.e.,

M0(ω) =

[
h(ω) h(ω + π)
g0(ω) g0(ω + π)

]
, M̃0(ω) =

[
h̃0(ω) h̃0(ω + π)
g̃(ω) g̃(ω + π)

]
,

M(ω) =

[
h(ω) h(ω + π)
g(ω) g(ω + π)

]
, M̃(ω) =

[
h̃(ω) h̃(ω + π)
g̃(ω) g̃(ω + π)

]
,

for ω ∈ R. From (4.7), we know that

M̃ = S1M̃
0, and M = S2M

0,

where S1 and S2 are 2× 2 matrix funtions and

S1(ω) =

[
1 s(2ω)
0 1

]
and S2(ω) =

[
1 0

−s(2ω) 1

]
, ω ∈ R.

We know that the old family of symbols is biorthogonal, i.e., M̃0(M0)∗ = I, and it is easy
to check that S1S

∗
2 = I, therefore,

M̃(M)∗ = S1M̃
0(M0)∗S∗

2 = S1(M̃
0(M0)∗)S∗

2 = S1IS2 = I.

Hence, the new family of symbols is also biorthogonal.



62 Chapter 4

Next we observe how these changes of symbols affect the corresponding functions. We
see that the scaling function φ0 does not change, i.e, φ = φ0, because its symbol h0 does not
change. However, the other three functions change. We consider the Fourier transforms of
the refinement equations of these three functions.

ψ̂(ω) = g(ω/2)φ̂0(ω/2)

= g0(ω/2)φ̂0(ω/2)− s(ω)h0(ω/2)φ̂0(ω/2)

= g0(ω/2)φ̂0(ω/2)− s(ω)φ̂0(ω), ω ∈ R.

We assume that
s(ω) =

∑

k

sk exp(−ıω), sk ∈ R,

then by the inverse Fourier transform, we have

ψ(t) =
√
2
∑

k

g0kφ
0(2t− k)−

∑

k

skφ
0(t− k), t ∈ R.

Similarly we have

ˆ̃φ(ω) = h̃(ω/2) ˆ̃φ(ω/2)

= h̃0(ω/2) ˆ̃φ(ω/2) + s(ω)g̃0(ω/2) ˆ̃φ(ω/2)

= h̃0(ω/2) ˆ̃φ(ω/2) + s(ω) ˆ̃ψ(ω), ω ∈ R.

Thus, by the inverse Fourier transform, we have

φ̃(t) =
√
2
∑

k

h̃0
kφ̃(2t− k) +

∑

k

s−kψ̃(t− k), t ∈ R.

We also have
ˆ̃ψ(ω) = g̃(ω/2) ˆ̃φ(ω/2), ω ∈ R.

Therefore, we get

ψ̃(t) =
√
2
∑

k

g̃kφ̃(2t− k), t ∈ R.

We have the following theorem.

Theorem 4.3. Suppose that we have a family of biorthogonal scaling functions and wavelets
{φ, ψ0, φ̃0, ψ̃0}. Then a new family {φ, ψ, φ̃, ψ̃}, defined as,

ψ(·) = ψ0(·)−
∑

k

skφ(· − k),

φ̃(·) =
√
2
∑

k

h̃0
kφ̃(2 · −k) +

∑

k

s−kψ̃(· − k),

ψ̃(·) =
√
2
∑

k

g̃kφ̃(2 · −k),

where sk ∈ R, is biorthogonal.
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Remark 4.4. 1. This process of obtaining a new family of biorthogonal scaling functions
and wavelets is called lifting.

2. Assume we have an initial family {h0, g, h̃, g̃0} of biorthogonal symbols, then we can
also get a new family {h, g, h̃, g̃} of biorthogonal symbols defined by

h(ω) = h0(ω) + g(ω)s̃(2ω),

g̃(ω) = g̃0(ω)− h̃(ω)s̃(2ω),

where s̃ is a trigonometric polynomial. We call this process dual lifting.

3. The choice of trigonometric polynomials s and s̃ both in lifting and dual lifting pro-
cesses plays an important role in improving the properties of the scaling functions and
wavelets.

Example (Lazy wavelet)

We have a family of biorthogonal symbols simply defined as:

2h0(ω) = h̃(ω) = 1 and g(ω) = 2g̃0(ω) = exp(−ıω), ω ∈ R.

People call this family {h0, g, h̃, g̃0} of symbols family of Lazy wavelet symbols, see for
example W. Sweldens 1996 [32] and S. Mallat 1998 [25].

We assume that a family {h, g, h̃, g̃} is a Donoho wavelets family, i.e., h is a symbol of
DDN (N ∈ N), and

g(ω) = exp(−ıω), h̃(ω) = 1, and g̃(ω) = exp(−ıω)h(ω + π), ω ∈ R.

We will investigate how these two families {h0, g, h̃, g̃0} and {h, g, h̃, g̃} relate to each other.
Since h is a symbol of an ISF, we know that h2k = δk,0/

√
2 and h is finite. And also we

know that h2k+1 = DDN((2k + 1)/2)/
√
2. Hence, there exists a trigonometric polynomial s̃

such that
s̃(2ω) = exp(ıω) (h(ω)− 1/2) , ω ∈ R.

Then we have

h(ω) = 1/2 + exp(−ıω)s̃(2ω)
= h0(ω) + g(ω)s̃(2ω), ω ∈ R. (4.8)

And by using the fact that h(ω) + h(ω + π) = 1 (ω ∈ R), (see (4.5)), we have

g̃(ω) = exp(−ıω)h(ω + π)

= exp(−ıω)1− h(ω)

= 1/2 exp(−ıω) + exp(−ıω)1/2− h(ω)

= g̃0(ω)− h̃(ω)s̃(2ω), ω ∈ R.

Therefore, we can see that the family of Donoho wavelets can be obtained by performing a
dual lifting scheme on the family of Lazy wavelet.
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Lifting Donoho wavelets family

Now we will continue to lift the family of Donoho wavelets in order to improve the properties
of wavelet functions. We start with the family of the symbols of Donoho wavelets.

We still suppose that a family {h, g, h̃, g̃} is a Donoho wavelets family, i.e., h is a symbol
of an ISF of order N (N ∈ N), and

g(ω) = exp(−ıω), h̃(ω) = 1, and g̃(ω) = exp(−ıω)h(ω + π), ω ∈ R.

Let us consider a new family {h, g1, h̃1, g̃} lifted from the Donoho family as the following:

g1(ω) = exp(−ıω)− h(ω)s(2ω),

h̃1(ω) = 1 + exp(−ıω)h(ω + π)s(2ω), ω ∈ R,

where s is a trigonometric polynomial.
Let s(ω) =

∑
k sk exp(−ıkω), (ω ∈ R), then, we know from the theorem 4.3 that the

lifted wavelet ψ1 is

ψ1(t) = 2DDN(2t− 1)−
∑

k

skDDN(t− k), t ∈ R.

Our purpose is to choose the coefficients sk (k ∈ Z) to get ψ1 that has 2Ñ (N ∈ N)
vanishing moments. From (4.8), we can write the symbol h of DDN as

h(ω) = 1/2 + exp(−ıω)s̃(2ω). (4.9)

We can easily see that the coefficients of s̃ is half of the 2N -points Lagrangian interpolation
weights. W. Sweldens (1996 [32]) has shown the following theorem.

Theorem 4.5. Suppose N, Ñ ∈ N. Let ψ be the Donoho wavelet, i.e., ψ(·) = 2DDN(2 · −1)
and hÑ be the symbol of DDÑ . We define s̃Ñ as

s̃Ñ (ω) = exp(ıω/2)
(
hÑ(ω/2)− 1/2

)
.

If Ñ ≤ N , lifting Donoho wavelet family with

s(ω) = 2s̃Ñ(−ω),

results in the shortest wavelet with 2Ñ vanishing moments.

Proof. For the proof of the theorem, see W. Sweldens (1996 [32]).

We denote the lifted Donoho wavelet with 2N vanishing moments by DlN .
And we know from (4.9) and theorem 4.5 that

s̃(ω) = exp(ıω/2)(h(ω/2)− 1/2) and s(ω) = 2s̃(−ω).
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Now let us consider

h(ω) =
1√
2

2N−1∑

l=−2N+1

hl exp(−ıω).

For example, if N = 2, then we know

h(ω) =
1

2

(
− 1

16
exp(−ı3ω) + 9

16
exp(−ıω) + 1 +

9

16
exp(ıω)− 1

16
exp(ı3ω)

)
.

Thus, we have

s̃(ω) =
1

2

(
− 1

16
exp(−ıω) + 9

16
+

9

16
exp(ıω)− 1

16
exp(ı2ω)

)
,

s(ω) = − 1

16
exp(−ı2ω) + 9

16
exp(−ıω) + 9

16
− 1

16
exp(ıω).

Thus we know that sk’s are the 4-points Lagrangian interpolation weights and s̃k’s are halves
of the 4-points Lagrangian interpolation weights. This is true for the general N ∈ N.

The Lifted interpolating wavelet transform

SupposeN ∈ N. Let {DDN , DoN , φ̃, ψ̃} be a family of Donoho wavelets and {DDN , DlN , φ̃
1, ψ̃1}

be a family lifted from the Donoho wavelets family. Assume that s be the corresponding
lifting trigonometric polynomial,

s(ω) =
∑

k

sk exp(−ıkω), for ω ∈ R,

where sk ∈ R. We know that these coefficients sk (k ∈ Z) are the 2N -points sym-
metric Lagrangian interpolation weights (see the theorem 4.5). And let {h, g, h̃, g̃} and
{h, g1, h̃1, g̃} be the corresponding family of Donoho wavelets symbols and family of lifted
Donoho wavelets symbols, respectively.

Let us consider the theorem 4.3, then we know that

φ̃1(·) =
√
2
∑

l

h̃lφ̃
1(2 · −l) +

∑

l

s−lψ̃
1(· − l), (4.11a)

ψ̃1(·) =
√
2
∑

l

g̃lφ̃
1(2 · −l). (4.11b)

Since
h(ω) = 1 (ω ∈ R),

we know that
h̃l =

√
2δl,0 (l ∈ Z).

And because

g̃(ω) = exp(−ıω)h(ω + π) and h(ω) =
1

2
+ exp(−ıω)s̃(2ω),
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for ω ∈ R, we know that

g̃l =




−
√
2s̃−l/2, l is even,
1√
2
δk,1, l is odd.

For a function f ∈ L2(R), we define

αj,k = 〈f, φ̃1
j,k〉 and βj,m = 〈f, ψ̃1

j,m〉.

Thus, from (4.11), we get

αj,k =
√
2αj+1,2k +

∑

l

s−lβj,k+l

βj,k = 1/
√
2

(
αj+1,2k+1 −

∑

l

2s̃−lαj+1,2k+2l

)
.

This is the lifted interpolating wavelet transform. For convenience, we set

cj,k = 2j/2αj,k and dj,k = 2j/2βj,k.

Then, we have the following normalized form for the wavelet transform,

cj,k = cj+1,2k +
∑

l

s−ldj,k+l, (4.12a)

dj,k =
1

2

(
cj+1,2k+1 −

∑

l

2s̃−lcj+1,2k+2l

)
. (4.12b)

Now let us discuss the (4.12) in more detail. As we can see from the formula of the
wavelet transform, the calculation is being done from the higher resolution level to the
lower resolution level. If we assume j1 (∈ N) to be the highest resolution level which we use
to discretize the given f , i.e., f is approximated by Pj1f , where

Pj1f =
∑

k

αj1,k(DDN)j1,k.

Since DDN is interpolating, we know that αj1,k = 2−j1/2f(k/2j1). Thus, we have

cj1,k = f(k/2j1).

4.3 AWCM for time evolution equations

In this section, we will discuss the AWCM and its application to time evolution equations.
As the field values change along the time stepping, the requirements of the resolution levels
of the field values should also adapt to the field profile. The adaptivity includes not only
thinning the grid where the requirement of resolution level is relatively low but also adding
grid points where higher resolution is probably needed in the following time step.
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4.3.1 Compression of the grid points

Let f be a function in L2(R). And assume jmin, jmax ∈ N (jmin < jmax) to be the minimum
resolution level and the maximum resolution level, respectively. We represent f with the
lifted interpolating wavelet decomposition:

f =
∑

k

αjmin,k(DDN)jmin,k
+

+∞∑

j=jmin

∑

m

βj,m(DlN )j,m. (4.13)

Let Vj be the MRA generated by the scaling function DDN and Pj be the projection of f
into the subspace Vj . We consider Pjmax

f ,

Pjmax
f =

∑

k

αjmin,k(DDN)jmin,k
+

jmax−1∑

j=jmin

∑

m

βj,m(DlN )j,m. (4.14)

Then we have,

f − Pjmax
f =

+∞∑

j=jmax

∑

m

βj,m(DlN )j,m.

From the property of MRA, we know that

lim
j→+∞

‖f − Pjf‖L2(R) = 0.

Let ζ > 0 be a thresholding tolerance. Then the compression (Pjmax
f)ζ of Pjmax

f is

(Pjmax
f)ζ =

∑

k

αjmin,k(DDN)jmin,k
+

jmax−1∑

j=jmin

∑

m

Tζ(βj,m)(DlN )j,m, (4.15)

where the thresholding function Tζ is defined by

Tζ(x) :=

{
x, if |x| ≥ 2−j/2ζ,
0, otherwise

, for x ∈ R.

We know that the wavelet coefficients βj,m can be calculated from the lifted interpolating
wavelet transform (4.12). The thresholding criterion |βj,m| ≥ 2−j/2ζ is equivalent to the
normalized form |dj,m| ≥ ζ . Note that the normalization term 2−j/2 originates from the
normalization factor of (DlN )j,m. We can recursively calculate all the normalized wavelet
coefficients dj,m = 2j/2βj,m for j between jmin and jmax − 1.

We are interested in multi-dimensional cases, especially in 2D. In 2D case, we will con-
sider the tensor product of scaling functions and wavelets. For x, y ∈ R, let

φ(x, y) = DDN(x)DDN(y),

ψµ(x, y) =





DlN (x)DDN(y), µ = 1,
DDN(x)DlN (y), µ = 2,
DlN (x)DlN (y), µ = 3.
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And we denote their translates and dilations by

φj,m,n(x, y) = (DDN)j,m(x)(DDN )j,n(y),

ψ
µ
j,m,n(x, y) =





(DlN)j,m(x)(DDN)j+1,2n(y), µ = 1,

(DDN)j+1,2m(x)(DlN )j,n(y), µ = 2,

(DlN)j,m(x)(DlN )j,n(y), µ = 3.

For a 2D function f ∈ L2(R2), we have the representation formula with the lifted interpo-
lating wavelet decomposition:

f(x, y) =
∑

m,n

αjmin,m,nφjmin,m,n(x, y) +

3∑

µ=1

+∞∑

j=jmin

∑

m,n

βµ
j,m,nψ

µ
j,m,n(x, y).

First, we state the following facts on tensor products without proof.� Let H1 and H2 be two Hilbert spaces. In particular, here we only deal with Hilbert
spaces of 1D functions. Define a tensor product H of H1 and H2 as

span{f1 ⊗ f2 | f1 ∈ H1, f2 ∈ H2},

where f1 ⊗ f2(·, ∗) := f1(·)f2(∗). We denote H by H1 ⊗ H2. Then H is a Hilbert
space, with the inner product:

〈f1 ⊗ f2, g1 ⊗ g2〉H = 〈f1, g1〉H1〈f2, g2〉H2 ,

where f1, g1 ∈ H1 and f2, g2 ∈ H2. Furthermore, if {e1n}n∈N and {e2n}n∈N are two Riesz
bases of H1 and H2 respectively, then {e1n ⊗ e2m}n,m∈N is a Riesz basis of H.� L2(R2) = L2(R)⊗ L2(R).� Let {Vj}j∈Z be an MRA of L2(R) generated by DDN . Define V 2

j = Vj ⊗ Vj. Then
{V 2

j } is an MRA of L2(R2) generated by φN .

Now we use Pjf to denote a projection of f into V 2
j . Then, we have

Pjmax
f =

∑

m,n

αjmin,m,nφjmin,m,n +
3∑

µ=1

jmax−1∑

j=jmin

∑

m,n

βµ
j,m,nψ

µ
j,m,n. (4.16)

Then the compression (Pjmax
f)ζ of Pjmax

f is

(Pjmax
f)ζ =

∑

m,n

αjmin,m,nφjmin,m,n +

3∑

µ=1

jmax−1∑

j=jmin

∑

m,n

T µ
ζ (β

µ
j,m,n)ψ

µ
j,m,n, (4.17)

where the thresholding function T µ
ζ is defined by

T µ
ζ (x) =

{
x, if |x| ≥ 2−j−1/2ζ,
0, otherwise

, for µ = 1, 2, x ∈ R
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and

T 3
ζ (x) =

{
x, if |x| ≥ 2−jζ,
0, otherwise

, for x ∈ R.

The terms 2−j−1/2 and 2−j before ζ are normalized factors, which come from the normal-
ization factors of ψµ

j,m,n (See the definition of dµj,m,n below).

By discarding the wavelet coefficients which are negligible, we can compress the repre-
sentation of a function. We will consider the dual scaling function and wavelet in order to
calculate these coefficients. Let φ̃ and ψ̃ be the 1D dual scaling function and dual wavelet
of the lifted interpolating wavelet family. The 2D dual scaling function φ̃ and dual wavelet
ψ̃

µ
(µ = 1, 2, 3) are defined by their tensor products:

φ̃(x, y) = φ̃(x)φ̃(y),

ψ̃
µ
(x, y) =





ψ̃(x)φ̃(y), µ = 1,

φ̃(x)ψ̃(y), µ = 2,

ψ̃(x)ψ̃(y), µ = 3.

Since we know that

g̃(ω) = exp(−ıω)h(ω + π) and h(ω) =
1

2
+ exp(−ıω)s̃(2ω), ω ∈ R,

the equation (4.11) becomes:

φ̃(·) = 2φ̃(2·) +
∑

l

s−lψ̃(· − l),

ψ̃(·) = φ̃(2 · −1)−
∑

l

2s̃−lφ̃(2 · −2l).

We define the translates and dilations of dual functions as

φ̃j,m,n(x, y) = φ̃j,m(x)φ̃j,n(y),

ψ̃
µ

j,m,n(x, y) =





ψ̃j,m(x)φ̃j+1,2n(y), µ = 1,

φ̃j+1,2m(x)ψ̃j,n(y), µ = 2,

ψ̃j,m(x)ψ̃j,n(y), µ = 3.
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Thus,

φ̃j,m,n(x, y) =φ̃j,m(x)φ̃j,n(y)

=2jφ̃(2jx−m)φ̃(2jy − n)
=2j

(
2φ̃(2j+1x− 2m) +

∑

l

s−lψ̃(2
jx−m− l)

)(
2φ̃(2j+1y − 2n)

+
∑

l′

s−l′ψ̃(2
jy − n− l′)

)

=2j
(
4φ̃(2j+1x− 2m)φ̃(2j+1y − 2n)

+ 2
∑

l

s−lψ̃(2
jx−m− l)φ̃(2j+1y − 2n)

+ 2
∑

l′

s−l′φ̃(2
j+1x− 2m)ψ̃(2jy − n− l′)

+
∑

l

∑

l′

s−ls−l′ψ̃(2
jx−m− l)ψ̃(2jy − n− l′)

)

=2φ̃j+1,2m,2n(x, y) +
√
2
∑

l

s−lψ̃
1

j,m+l,n(x, y)

+
√
2
∑

−l′

s−l′ψ̃
2

j,m,n+l′(x, y) +
∑

l

∑

l′

s−ls−l′ψ̃
3

j,m+l,n+l′(x, y).

ψ̃
1

j,m,n(x, y) =ψ̃j,m(x)φ̃j+1,2n(y)

=2j/2ψ̃(2jx−m)φ̃j+1,2n(y)

=2j/2
(
φ̃(2j+1x− 2m− 1)−

∑

l

2s̃−lφ̃(2
j+1x− 2m− 2l)

)
φ̃j+1,2n(y)

=
1√
2

(
φ̃j+1,2m+1(x)φ̃j+1,2n(y)−

∑

l

2s̃−lφ̃j+1,2m+2l(x)φ̃j+1,2n(y)
)

=
1√
2

(
φ̃j+1,2m+1,2n(x, y)−

∑

l

2s̃−lφ̃j+1,2m+2l,2n(x, y)
)
.

In the same way, we obtain

ψ̃
2

j,m,n(x, y) =
1√
2

(
φ̃j+1,2m,2n+1(x, y)−

∑

l

2s̃−lφ̃j+1,2m,2n+2l(x, y)
)
.

and

ψ̃
3

j,m,n =
1

2

(
φ̃j+1,2m+1,2n+1 −

∑

l

2s̃−lφ̃j+1,2m+2l,2n+1

−
∑

l′

2s̃−l′φ̃j+1,2m+1,2n+2l′ +
∑

l

∑

l′

(2s̃−l)(2s̃−l′)φ̃j+1,2m+2l,2n+2l′

)
.
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Now we come to the calculations of the coefficients αj,m,n and βµ
j,m,n of the wavelet decom-

position (4.16). We know that

αj,m,n = 〈f, φ̃j,m,n〉 and βµ
j,m,n = 〈f, ψ̃µ

j,m,n〉.

Therefore, we have the following 2D fast wavelet transform:

αj,m,n =2αj+1,2m,2n +
√
2
∑

l

s−lβ
1
j,m+l,n +

√
2
∑

l′

s−l′β
2
j,m,n+l′ +

∑

l

∑

l′

s−ls−l′β
3
j,m+l,n+l′,

β1
j,m,n =

1√
2

(
αj+1,2m+1,2n −

∑

l

2s̃−lαj+1,2m+2l,2n

)
,

β2
j,m,n =

1√
2

(
αj+1,2m,2n+1 −

∑

l

2s̃−lαj+1,2m,2n+2l

)
,

β3
j,m,n =

1

2

(
αj+1,2m+1,2n+1 −

∑

l

2s̃−lαj+1,2m+2l,2n+1 −
∑

l′

2s̃−l′αj+1,2m+1,2n+2l′

+
∑

l

∑

l′

(2s̃−l)(2s̃−l′)αj+1,2m+2l,2n+2l′

)
.

To get a normalized form of the fast wavelet transform, we set

cj,m,n = 2jαj,m,n, d
1
j,m,n = 2j+1/2β1

j,m,n, d
2
j,m,n = 2j+1/2β2

j,m,n and d3j,m,n = 2jβ3
j,m,n.

Then, we have the 2D lifted interpolating wavelet transform in the normalized form:

d1j,m,n =
1

2

(
cj+1,2m+1,2n −

∑

l

2s̃−lcj+1,2m+2l,2n

)
, (4.18a)

d2j,m,n =
1

2

(
cj+1,2m,2n+1 −

∑

l

2s̃−lcj+1,2m,2n+2l

)
, (4.18b)

d3j,m,n =
1

4

(
cj+1,2m+1,2n+1 −

∑

l

2s̃−lcj+1,2m+2l,2n+1 −
∑

l′

2s̃−l′cj+1,2m+1,2n+2l′

+
∑

l

∑

l′

(2s̃−l)(2s̃−l′)cj+1,2m+2l,2n+2l′

)
. (4.18c)

cj,m,n =cj+1,2m,2n +
∑

l

s−ld
1
j,m+l,n +

∑

l′

s−l′d
2
j,m,n+l′ +

∑

l

∑

l′

s−ls−l′d
3
j,m+l,n+l′, (4.18d)

It is clear that the criterion of thresholding is simplified into |dµj,m,n| < ζ .
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And the inverse wavelet transform is

cj+1,2m,2n =cj,m,n −
∑

l

s−ld
1
j,m+l,n +

∑

l′

s−l′d
2
j,m,n+l′ +

∑

l

∑

l′

s−ls−l′d
3
j,m+l,n+l′,

(4.19a)

cj+1,2m+1,2n =2d1j,m,n +
∑

l

2s̃−lcj+1,2m+2l,2n (4.19b)

cj+1,2m,2n+1 =2d2j,m,n +
∑

l

2s̃−lcj+1,2m,2n+2l (4.19c)

cj+1,2m+1,2n+1 =4d3j,m,n +
∑

l

2s̃−lcj+1,2m+2l,2n+1 +
∑

l′

2s̃−l′cj+1,2m+1,2n+2l′

−
∑

l

∑

l′

(2s̃−l)(2s̃−l′)cj+1,2m+2l,2n+2l′ (4.19d)

Now we discuss the relation between these coefficients and the numerical grid points.
Let jmin, jmax ∈ Z (jmin < jmax). For any integer j between jmin and jmax, we define the
coordinates of mesh points in the resolution level j as

xj,m =
m

2j
and yj,n =

n

2j
, for m,n ∈ Z.

We define
Kj := {(xj,m, yj,n) | m,n ∈ Z}.

Then, we know that Kj ’s have the nested relation, i.e.,

Kj ⊂ Kj+1, for j = jmin, jmin + 1, · · · , jmax − 1.

It is easy to check that xj,m = xj+1,2m and yj,n = yj+1,2n. We also define

Mµ
j :=




{(xj+1,2m+1, yj+1,2n) | m,n ∈ Z}, if µ = 1,
{(xj+1,2m, yj+1,2n+1) | m,n ∈ Z}, if µ = 2,
{(xj+1,2m+1, yj+1,2n+1) | m,n ∈ Z}, if µ = 3.

And we set
Mj :=M1

j ∪M2
j ∪M3

j ,

then, we have
Mj = Kj+1 \ Kj .

We can also represent Pjmax
f =

∑
m,n αjmax,m,nφjmax,m,n. Thus, we know that

αjmax,m,n = 2−jmaxPjmax
f
( m

2jmax
,

n

2jmax

)
,

or in the normalized form,

cjmax,m,n = Pjmax
f
( m

2jmax
,

n

2jmax

)
.
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We start the fast wavelet transform with the values cjmax,m,n of the highest resolution level
jmax to calculate dµjmax−1,m,n’s and cjmax−1,m,n, and then we go on with the values cjmax−1,m,n

and repeatedly compute coefficients cj,m,n’s and d
µ
j,m,n’s until we reach the lowest resolution

level jmin. We have the following one to one correspondence between these coefficients and
grid points.

cjmin,m,n :(xjmin,m, yjmin,n), m, n ∈ Z

d1j,m,n :(xj+1,2m+1, yj+1,2n), m, n ∈ Z, j = jmin, jmin + 1, · · · , jmax − 1

d2j,m,n :(xj+1,2m, yj+1,2n+1), m, n ∈ Z, j = jmin, jmin + 1, · · · , jmax − 1

d3j,m,n :(xj+1,2m+1, yj+1,2n+1), m, n ∈ Z, j = jmin, jmin + 1, · · · , jmax − 1

By discarding the grid points whose absolute values of the corresponding wavelet coefficients
are less than the given thresholding tolerance ε > 0, we have the compression of the grid
points. However, we do not perform the fast wavelet transform only one time. When we
solve a time evolution equation, we perform the fast wavelet transform every time step.
Suppose a wavelet coefficient dµj,m,n survived after the compression at the time step n∆t.
Then, at the next time step (n+1)∆t, in order to calculate dµj,m,n, we need neighbor points
of the point which corresponds to dµj,m,n (See Figure 4.1).
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x j,m x j,m+2x j,m+1x j,m−1

y j,m−1

y j,m

y j,m+2

y j,m+1

(a) ×: point corresponds to
d1j,m,n; •: neighbor points

needed to calculate d1j,m,n.
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x j,m x j,m+2x j,m+1x j,m−1

y j,m−1

y j,m

y j,m+2

y j,m+1

(b) ×: point corresponds to
d2j,m,n; •: neighbor points

needed to calculate d2j,m,n.
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(c) ×: point corresponds to
d3j,m,n; •, ◦: neighbor points

needed to calculate d3j,m,n.

Figure 4.1: Descriptions of the neighbor points needed to calculate wavelet coefficients dµj,m,n

with the order N = Ñ = 2.

The process of adding these neighbor points needed to calculate wavelet coefficients is
called reconstruction check. The efficiency of the wavelet transform depends on the number
of the finest grid points at the beginning; however, after the first compression, it depends
on the number of compressed or adaptive grid points. Thus, the profile of the field values
itself determines the speed of the computation.

Of course, we cannot only discard the unimportant grid points in every time step. Since
some part of the adaptive grid which is unimportant in some time step does not necessarily
stay unimportant in the next time step, we ought to consider artificially making some poten-
tial part of the grid finer. The adaptivity of numerical grid does not only mean compression,
but also includes the process of extension. We will discuss this extension of the so called
adjacent zone in the next subsection.
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4.3.2 Adding adjacent zone

Here we want to consider the concept of the adjacent zone with the example of the time
domain Maxwell’s equations. When solving the time domain Maxwell’s equations numeri-
cally, we must choose the smallest time step according to the numerical stability condition.
From the numerical stability condition we easily know that wave information at one posi-
tion does not travel more than one spatial cell in one time step. So it is reasonable for us
to suppose that only the wavelet coefficients which are not far away from the significant
wavelet coefficients in some time step would be possible to become active in the following
time step, see for example, J. Liandrat and P. Tchamitchian 1990 [22] and O. Vasilyev 2000
[40], 2003 [39].

We will follow Vasilyev’s way of description about the adjacent zone. For 2D case, we
assume a wavelet coefficient dµj,m,n survived after the compression of the grid points in the
current time step. We assume (xj+1,k1, yj+1,k2) to be the point corresponding to dµj,m,n. Then
we require that the wavelet coefficient dµj′,m′,n′ located at the point (xj′+1,k′1

, yj′+1,k′2
) should

belong to the adjacent zone if

|j′ − j| ≤ L, |2j′−jk1 − k′1| ≤M, |2j′−jk2 − k′2| ≤M, for L,M ∈ N,

where L explains the range of the resolution levels that should be added around an existing
wavelet coefficient and M is the width of the adjacent zone. We choose L = M = 1. In
other words, if a point P ∈Mj (jmin ≤ j ≤ jmax − 1) is in the adaptive grid, we add eight
nearest points of P in Kj+1. Furthermore, if j < jmax − 1, we add additional eight nearest
points of P in Kj+2. See Figure 4.3.2.
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neighbor points in Kj+1

neighbor points in Kj+2

P

Figure 4.2: Description of adjacent zone of a point P inMj.

4.3.3 Approximation of spatial derivatives on dynamic grid

We continue to discuss the approximation of spatial derivatives of a function on an adaptive
grid. For a 2D function f in L2(R2). Let us consider the lifted interpolating wavelet
decomposition of f . Assume jmin and jmax to be the lowest resolution level and the highest
resolution level respectively. For a given tolerance ζ > 0, we compress the projection Pjmax

f
of f as the following,

(Pjmax
f)ζ =

∑

m,n

αjmin,m,nφjmin,m,n +

3∑

µ=1

jmax−1∑

j=jmin

∑

m,n

T µ
ζ (β

µ
j,m,n)ψ

µ
j,m,n.
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We will use derivatives of (Pjmax
f)ζ to approximate those of f . Before we calculate the

derivatives of (Pjmax
f)ζ at each point in an adaptive grid, we ought to first determine the

density level of the point in the adaptive grid. The density level of a point in an adaptive
grid is the maximum of the x-level and the z-level of that point.

We only discuss the x-level since the z-level is similar. For each point Q = (x0, z0) in
an adaptive grid G, we define the x-level of Q in G according to a point Q′ = (x1, z0) in G
nearest to Q. The x-level Levelx of Q in G is

Levelx := jmax − log2(dist(Q,Q
′)/∆x), (4.20)

where ∆x is the smallest computational mesh size along x axis and dist(Q,Q′) = |x1 −
x0|. If dist(Q,Q′) = ∆x, that means the level Levelx of Q is the maximum, jmax, and if
dist(Q,Q′) = 2∆x, then the Levelx of Q is jmax − 1, and so on. The z-level of a point in
an adaptive grid is defined in the same way as x-level. Then the density level of a point in
an adaptive grid is defined as the maximum value of x-level and z-level of the point in the
adaptive grid. See Figure 4.3.

∆x2∆z

Q

Figure 4.3: Description of the density level of a point Q in an adaptive grid: the x-level of
Q is jmax − 1 and the z-level of Q is jmax, thus, the density level of Q in the adaptive grid
is jmax.

Now we continue to discuss the derivative calculations. Suppose j0 to be the density
level of Q in the adaptive grid G. Then, we can approximate (Pjmax

f)ζ by Pj0f locally at
some neighborhood Ω0 of Q.

(Pj0f)(x, y) =
∑

m,n

αj0,m,nφj0,m,n(x, y), (x, y) ∈ Ω0 (4.21)

We differentiate Pj0f(x, y) to approximate x-derivative of f at Q. If some points in the
sum (4.21) are not present in G, we interpolate the values at those points using values of
the coarser levels with inverse wavelet transform. We know that

αj0,m,n = 2−j0(Pj0f)
(m
2j0
,
n

2j0

)
, for m,n ∈ Z.

Thus, we have

(Pj0f)(x, y) =
∑

m,n

(Pj0f)
(m
2j0
,
n

2j0

)
DDN

(
2j0x−m

)
DDN

(
2j0y − n

)
, (x, y) ∈ Ω0 (4.22)



76 Chapter 4

When we differentiate both sides of (4.22), we need the differentiation filters which have
been computed in the previous chapter, see the Table 3.1. For example,

(∂Pj0f)

∂x
(x, y) =

∑

m,n

(Pj0f)
(m
2j0
,
n

2j0

)dDDN

(
2j0x−m

)

dx
DDN

(
2j0y − n

)
, (x, y) ∈ Ω0.

(4.23)
The R.H.S. of (4.23) is a finite sum of products of separated functions of x and y. And since

the density level of Q is j0, there exist m′, n′ ∈ Z such that Q =
(m′

2j0
,
n′

2j0

)
. It is easy to

see that

(∂Pj0f)

∂x

(m′

2j0
,
n′

2j0

)
=
∑

m,n

(Pj0f)
(m
2j0
,
n

2j0

)dDDN

(
m′ −m

)

dx
DDN

(
n′ − n

)
.

=2j0
∑

m

(Pj0f)
(m
2j0
,
n′

2j0

)
(DDN)

′
(
m′ −m

)
. (4.24)

Similarly, we obtain

(∂Pj0f)

∂z

(m′

2j0
,
n′

2j0

)
= 2j0

∑

n

(Pj0f)
(m′

2j0
,
n

2j0

)
(DDN)

′
(
n′ − n

)
. (4.25)

4.3.4 General steps of the algorithm

We talk about the general steps of the AWCM with the example of TMy mode equations.
In TMy mode equations, we have three unknown functions Ey, Hx and Hz. These are
time dependent functions defined on xz plane in space, for example, Ey(x, z, t). Assume
that we solve the equations on a square domain Ω =

[
−L

2
, L
2

]
×
[
−L

2
, L
2

]
. Let jmin and

jmax be the coarsest and highest resolution levels respectively. We discretize the domain

Ω by 2jmax × 2jmax small square subdomains. We define xj,m :=
mL

2j
and yj,n :=

nL

2j
, for

jmin ≤ j ≤ jmax, m,n = 0, 1, · · · , 2j. And we define the nested gird sets Kj andMµ
j as

Kj := {(xj,m, yj,n) | m,n = 0, 1, · · · , 2j.}

for jmin ≤ j ≤ jmax, and

Mµ
j :=




{(xj+1,2m+1, yj+1,2n) | m = 0, 1, · · · , 2j − 1, n = 0, 1, · · · , 2j}, if µ = 1,
{(xj+1,2m, yj+1,2n+1) | m = 0, 1, · · · , 2j, n = 0, 1, · · · , 2j − 1}, if µ = 2,
{(xj+1,2m+1, yj+1,2n+1) | m,n = 0, 1, · · · , 2j − 1}, if µ = 3.

for j ∈ N (jmin ≤ j ≤ jmax − 1).
In AWCM, we use unstaggered collocated scheme instead of Yee’s scheme, i.e., all the

fields are stored at the same position. At the beginning, all the fields are discretized on
Kjmax

. For electric field component Ey, we consider the ISF representation of it. Note that
we have the scaling factor 1/L in the basis function decomposition.

Pjmax
Ey
(x
L
,
z

L
, t
)
=
∑

m,n

αjmax,m,n(t)φjmax,m,n

(x
L
,
z

L

)
.
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From the interpolating property of ISF, we get all the scaling coefficients αjmax,m,n.

αjmax,m,n(t) = 2−jmaxEy
(xjmax,m

L
,
zjmax,n

L
, t
)
,

or in the normalized form

cjmax,m,n(t) = Ey
(xjmax,m

L
,
zjmax,n

L
, t
)
,

Starting with these coefficients, we perform the lifted interpolating wavelet transform
(4.18) to get all the coefficients in the wavelet decomposition of the field,

Pjmax
Ey
(x
L
,
z

L
, t
)
=
∑

m,n

αjmin,m,n(t)φjmin,m,n

(x
L
,
z

L

)
+

3∑

µ=1

j1−1∑

j=jmin

∑

m,n

βµ
j,m,n(t)ψ

µ
j,m,n

(x
L
,
z

L

)
.

In practical coding, instead of using these original coefficients αj,m,n and βµ
j,m,n, we use the

normalized coefficients cj,m,n’s and d
µ
j,m,n’s.

Let us consider (1.26). For example, we update Bx and Hx on an adaptive grid G in the
following way. For a point Q ∈ G, we use A|kQ to denote discretized value of A at Q in the
time step k∆t. Assume j(Q) to be the density level of Q in the grid G. We can represent Q
as (xj(Q),m′, yj(Q),n′) for some m′, n′ ∈ Z. Then we have the following updating equations,

Bx|k+1/2
Q =Bx|k−1/2

Q +∆t
2j(Q)

L

∑

n

Ey|k(xj(Q),m′ ,yj(Q),n)
(DDN)

′(n′ − n), (4.26a)

Hx|k+1/2
Q =

1− σz∆t

2ε0

1 +
σz∆t

2ε0

Hx|k−1/2
Q +

1

µ0



1 +

σx∆t

2ε0

1 +
σz∆t

2ε0

Bx|k+1/2
Q −

1− σx∆t

2ε0

1 +
σz∆t

2ε0

Bx|k−1/2
Q


 . (4.26b)

AWCM algorithm for solving TMy mode equations

Here we want to discuss the AWCM algorithm for solving TMy mode equations.
First, we initialize all the necessary global variables which will be called by other sub-

routines. For example, the maximum and minimum resolution levels jmax and jmin, the
order N of DDN and the number Ñ (normally equal to N) of the vanishing moments of
the lifted wavelet DlÑ , and the geometric parameters of the computational domain, such
as length L of the computational domain, the smallest mesh sizes ∆x and ∆z, and the
updating coefficients in PML region, etc.

We will use 2D arrays of real numbers for storing the field values such as Ey, Hx, Hz,
Dy, Bx and Bz . The initial conditions of these field values are included in the process of
the initialization. For the storage of an adaptive grid, we will use a 2D array of booleans
which is called a grid mask, or simply a mask. If the value of an entry of a mask is true
or 1, that means the corresponding grid point is included in the adaptive grid; otherwise,
the grid point is not in the adaptive grid. Moreover, by forcing the value of an entry of a
mask into 1, we mean the inclusion of the corresponding point into the adaptive grid, or by
forcing the value of an entry of a mask into 0, we mean the corresponding point is removed
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from the adaptive grid. Initially, we start with a full mask grid, i.e., all entries have values
1.

The Algorithm 1 is a pseudo-code of the main function awcm2d main(). After the initial-
ization awcm2d initialize(), it goes on with time stepping repeatedly by a “for” loop, which
contains, awcm2d adaptive(), awcm2d update() and awcm2d print(). In the awcm2d adaptive(),
the grid will be adapted by performing wavelet transforms to the field value Ey. In the
awcm2d update(), all the fields will be updated on some adaptive grids. And then we
output the calculated field data into files for visualization in awcm2d print().

Algorithm 1: awcm2d main for TMy mode equations

# initialization
awcm2d initialize()
# ————————————————————————————————————
# time stepping of Ey, Hx and Hz

for t ≤ T do
# adapt the grid for t+∆t according to Eyt, see the Algorithm 2
awcm2d adaptive()
# ——————————————————————————————————
# update Hx

t+∆t/2, Hz
t+∆t/2 and Eyt+∆t, see the Algorithm 4

awcm2d update()
# ——————————————————————————————————
# print the data into files for visualization
awcm2d print()
# ——————————————————————————————————
# go to the next time step
t = t +∆t

We explain here the process of the subroutine awcm2d adaptive() in detail. Suppose
we have a 2D array of Ey with a mask Mask0. We use another mask pMask0 to store
the information Mask0 since Mask0 will later be modified by following subroutines. We
perform the fast wavelet transform (FWT) of Ey on the Mask0. Note that Mask0 is either
fully 1 if at the beginning or has been performed a reconstruction check from the last time
step, which means the fast wavelet transforms on Mask0 are always plausible. Then the
2D array of Ey will be converted into wavelet domain, i.e., scaling coefficients of the coarsest
level jmin and wavelet coefficients of levels from jmin to jmax−1. For each wavelet coefficient,
we will compare its absolute value with the given tolerance ζ . If the value is less than ζ , we
remove the corresponding point from the Mask0. In this way, Mask0 becomes thinned or
we can say that the information ofMask0 is compressed. Since some other points which are
not in Mask0 currently may also become significant in the next time step, we add points
of adjacent zone to Mask0. And then, in order that the FWT of the next time step be
possible, we need to perform a reconstruction check to Mask0. These two processes are
contained in the subroutine Maskext(Mask0).

After the adaptation of the grid is finished, we go on with the updating fields on adap-
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tive grids. First, we need to update Hx and Hz using the spatial derivatives
∂Ey
∂z

and
∂Ey
∂x

,

respectively. In order to calculate
∂Ey
∂z

and
∂Ey
∂x

, we need values of Ey at neighbor points of

points in Mask0 which are not in Mask0. We store the information of Mask0 into Mask1.
And, we add more points to Mask1 needed in calculations of spatial derivatives. For each
point in Mask1, we add neighbor points needed in calculations of derivatives according to
the density level of the points in Mask1. We will use a subroutine Level(Mask1) to calcu-
late Level0. Level0 is a 2D array that contains information of the density levels of points in
Mask1. We do not mind the density level of the points which are not in Mask1. In order
that the inverse wavelet transform be possible, we should again perform a reconstruction
check toMask1. This is done by the subroutine gMaskext(Mask1, Level0). After updating

of Hx and Hz, we need to update Ey using the spatial derivatives
∂Hx

∂z
and

∂Hz

∂x
. We should

again perform a process of adding neighbor points needed for calculations of spatial deriva-
tives. We store the information of Mask1 to Mask2. And then we calculate the density
level of Mask2 and store them into Level1. Then perform gMaskext(Mask2,Level1). Now
we use IWT(Ey, Mask2) to reconstruct the values of Ey in the physical domain.

4.4 Numerical examples

4.4.1 1D Maxwell’s equations

We will solve a system of TEM mode equations within an interval Ω = [−L/2, L/2] in free
space, i.e., εr = 1 and µr = 1. We set the length of the interval L = 20µm. The initial values
for the problem are Ey(x, 0) = exp(−16.0 × 1012x2) and Hz(x, 0) = 0, for x ∈ Ω. We will
take the minimum and maximum resolution levels as jmin = 5 and jmax = 10, respectively.
Then the smallest mesh size is ∆x = L/2jmax = 195.3125nm. We take the smallest time
step ∆t = ∆x/c/1.5, where c = 2.99792458× 108 is the light speed in the free space. The
width of the PML is taken as L/8. We take N = Ñ = 2, which are the order of ISF and
the half of the number of vanishing moments of the lifted wavelet1, respectively. We take
the threshold tolerance ζ = 10−5.

Figure 4.4 shows us the propagation of Ey field as time evolves. The Ey field is a Gaussian
peak in the center of the interval Ω0 at the beginning. As time evolves, the field splits into
two parts and the two parts propagate in opposite direction and attenuate in the PML
region.

We compute the same problem with the adaptive grid method and the full grid method.
Figure 4.5 shows the relative error between the two results inside the computational domain
which does not include PML region. When the amplitudes of both separated peaks are
attenuated by the PML region, then the relative error becomes significant.

1The number of vanishing moments of the lifted wavelet is 2Ñ , see the Theorem 4.5.
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Algorithm 2: awcm2d adaptive for TMy mode equations

# store Mask0 into pMask0
# pMask0: the adaptive grid for Ey at current time step
pMask0 =Mask0
# ————————————————————————————————————
# fast wavelet transform of Ey on Mask0 with ζ
# Ey is converted into coefficients of wavelet domain, Mask0 is thinned
# see the Algorithm 3
FWT(Ey, Mask0, ζ)
# ————————————————————————————————————
# add adjacent zone and perform a reconstruction check to Mask0
# see the Algorithm 5
Maskext(Mask0)
# ————————————————————————————————————

# add points needed to calculate
∂Ey
∂x

and
∂Ey
∂z

on Mask0

# 1. determine the density level of each point in Mask0
Level0 = Level(Mask0)
# 2. initialize Mask1 with Mask0
Mask1 =Mask0
# 3. update Mask1, see the Algorithm 6
gMaskext(Mask1, Level)
# ————————————————————————————————————

# add points needed to calculate
∂Hx

∂z
and

∂Hz

∂x
on Mask1

# 1. determine the density level of each point in Mask1
Level1 = Level(Mask1)
# 2. initialize Mask2 with Mask1
Mask2 =Mask1
# 3. update Mask2, see the Algorithm 6
gMaskext(Mask2, Level1)
# ————————————————————————————————————
# inverse wavelet transform of the values Ey in the wavelet domain on Mask2
# Ey is reconstructed from the values in the wavelet domain on Mask2
# see the Algorithm 11
IWT(Ey, Mask2)

4.4.2 2D Maxwell’s equations

We will solve a system of TMy mode equations within a square domain Ω = [−L/2, L/2]×
[−L/2, L/2] in xz plane in free space, i.e., εr = 1 and µr = 1. We set the domain length
L = 6.0µm. The initial values for the problem are Ey(x, z, 0) = exp(−16.0 × 1012(x2 + z2))
and Hx(x, z, 0) = Hz(x, z, 0) = 0 for x, z ∈ Ω. We will take the minimum and maximum
resolution levels as jmin = 3 and jmax = 9, respectively. Then the smallest mesh size is
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Algorithm 3: FWT

Input : 2D array A of field values, grid mask Mask temp, tolerance
Effects: A will be converted into wavelet domain, the adaptive grid Mask temp will

be thinned by thresholding with tolerance.
# ————————————————————————————————————
# calculate the FWT starting from the level jmax − 1 to the coarsest level jmin

for j = jmax − 1 : −1 : jmin do
# ——————————————————————————————————
# calculation of d3j,m,n

forall Q : (xj+1,2m+1, yj+1,2n+1) ∈M3
j do

if Q ∈Mask temp then
calculate d3j,m,n according to (4.18c)

if |d3j,m,n| < tolerance then
remove the point Q from Mask temp

# ——————————————————————————————————
# calculation of d1j,m,n

forall Q : (xj+1,2m+1, yj,n) ∈M1
j do

if Q ∈Mask temp then
calculate d1j,m,n according to (4.18a)

if |d1j,m,n| < tolerance then
remove the point Q from Mask temp

# ——————————————————————————————————
# calculation of d2j,m,n

forall Q : (xj,m, yj+1,2n+1) ∈M2
j do

if Q ∈Mask temp then
calculate Mask temp according to (4.18b)
if |d2j,m,n| < tolerance then

remove the point Q from Mask temp

# ——————————————————————————————————
# calculation of cj,m,n

forall Q : (xj,m, yj,n) ∈ Kj do
if Q ∈Mask temp then

calculate cj,m,n according to (4.18d)

∆ = ∆x = ∆z = L/2jmax = 11.71875nm. The stability condition of the 2D AWCM scheme
is

∆t ≤ ∆√
2c
∑l0−1

l=0 |a(l)|
, (4.27)

where a(l) is the derivative filters of ISF, see Table 3.1.

The error of the AWCM full grid method is controlled by O(∆t2), since it uses central
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Algorithm 4: awcm2d update for TMy mode equations

# update Hx and Bx
# 1. interpolate Hx and Bx on points in Mask1 that is not in pMask0
# see the Algorithm 10
interpolate(Hx, pMask0, Mask1)
interpolate(Bx, pMask0, Mask1)

# 2. Calculation of
∂Ey
∂z

on Mask1, similar with the Algorithm 9

dAz = diffz(Ey, Mask1, Level1, difffilter, dz)
Update Hx and Bx on Mask1 using dAz, see for example, (4.26).
# ————————————————————————————————————
# update Hz and Bz
# 1. interpolate Hz and Bz on points in Mask1 that is not in pMask0
interpolate(Hz , pMask0, Mask1)
interpolate(Bz , pMask0, Mask1)

# 2. Calculation of
∂Ey
∂x

on Mask1, see the Algorithm 9

dAx = diffx(Ey, Mask1, Level1, difffilter, dx)
Update Hz and Bz on Mask1 using dAx.
# ————————————————————————————————————
# update Ey and Dy

# 1. interpolate Ey and Dy on points in Mask0 that is not in pMask0
interpolate(Ey, pMask0, Mask0)
interpolate(Dy, pMask0, Mask0)

# 2. Calculations of
∂Hx

∂z
and

∂Hz

∂x
on Mask0, see the Algorithm 9

dAz = diffz(Hx, Mask0, Level0, difffilter, dz)
dAx = diffx(Hz , Mask0, Level0, difffilter, dx)
Update Ey and Dy on Mask0 using dAz and dAx.

Algorithm 5: Maskext

Input : a grid mask Mask temp
Effects: the grid mask Mask temp will be modified
# add adjacent zone to Mask temp, see the Subsection 4.3.2
Maskext adj(Mask temp)
# ————————————————————————————————————
# perform the reconstruction check to Mask temp, see the Algorithm 8
Maskext rec(Mask temp)

difference of second order for discretization of the time derivatives. Our choice of the
threshold tolerance should be larger than the discretization error of AWCM. We take ∆t =
∆/c/1.6, which is a little bit smaller than the upper bound of the CFL stability condition.
And we take a smaller threshold, ζ = 5.0 × 10−4. The PML width is taken as L/4. Let
N be the order of ISF and Ñ be the half of the number of vanishing moments of the lifted
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Algorithm 6: gMaskext

Input : a grid mask Mask temp, density level Lev
Effects: the grid mask Mask temp will be modified
# add points, needed to calculate derivatives, to Mask temp, see the Algorithm 7
Maskext diff(Mask temp, Lev)
# ————————————————————————————————————
# perform the reconstruction check to Mask temp, see the Algorithm 8
Maskext rec(Mask temp)

Algorithm 7: Maskext diff

Input : a grid mask Mask temp, density level Lev
Effects: the grid mask Mask temp will be modified
# ————————————————————————————————————
# initialize Mask temp1 with Mask temp
Mask temp1 =Mask temp
# ————————————————————————————————————
# add points, needed for calculation of derivatives, to Mask temp
forall Q = (xjmax,m, yjmax,n) ∈ Kjmax

do
if Q ∈Mask temp then

# read the density level of Q from the input Lev
j0 = Lev[n][m]
include the closest 2N neighboring points of Q in the level j0 into Mask temp

wavelet. We take N = Ñ = 4.

The centered Gaussian peak will spread away from the center of the domain Ω as time
evolves. Unlike the 1D case, since the energy is spreading along each direction in 2D, the
amplitude is decreasing, while in 1D case, the amplitude will stay as 1/2 during propagation.
We can see the compression of the grid points from Figure 4.6.

Figure 4.8 shows the relative error of Ey field values between adaptive and full grid
methods only inside the computational domain as time evolves. The amplitude of a 2D
Gaussian decays as it propagates towards the boundary. When the amplitude approaches
the threshold tolerance ζ , the relative error of Ey field between adaptive and full grid methods
increases.

We record computation time for every ten time steps. The computation of time stepping
is fast when there is a relatively less number of adaptive grid points. The time evolution
profile of the computation time is very similar to that of the percentage of adaptive grid
points in adaptive grid, see Figure 4.9. We know from numerical experiments that the
computation time of full grid method for every ten time stepping is about 18 seconds. In
adaptive grid method, the computation time of ten time steps becomes greater than 18
seconds when the percentage of adaptive grid points is more than about 2.5%. In Figure
4.9, we see that the percentage is lower than 2.5% for most of the time steps. Therefore,
adaptive grid method is faster than full grid method for this example. It took 1900 seconds
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Algorithm 8: Maskext rec

Input : a grid mask Mask temp
Effects: the grid mask Mask temp will be modified
# ————————————————————————————————————
# j: resolution level
for j = jmax − 1 : −1 : jmin do

# ——————————————————————————————————
# add points around d3j,m,n

forall Q = (xj+1,2m+1, yj+1,2n+1) ∈M3
j do

if Q ∈Mask temp then
include neighbor points of Q into Mask temp according to Figure 4.1(c)

# ——————————————————————————————————
# add points around d1j,m,n

forall Q = (xj+1,2m+1, yj,n) ∈M1
j do

if Q ∈Mask temp then
include neighbor points of Q into Mask temp according to Figure 4.1(a)

# ——————————————————————————————————
# add points around d2j,m,n

forall Q = (xj,m, yj+1,2n+1) ∈M2
j do

if Q ∈Mask temp then
include neighbor points of Q into Mask temp according to Figure 4.1(b)

Algorithm 9: diffx

# Level: x level of each point in Mask temp, difffilter: see table 3.1, h: the
smallest mesh size at the highest resolution level
Input : a 2D array of field A, a grid mask Mask temp, Level, difffilter, h

Return: a 2D array of
∂A

∂x
on Mask temp

# initialize a 2D array dA for the storage of
∂A

∂x
dA = 0
forall Q = (xjmax,m, yjmax,n) ∈ Kjmax

do
if Q ∈Mask temp then

# read the density level of Q from Level
j(Q) = Level[n][m]
calculate dA at point Q using difffilter and values of A at neighbor points
in the level j(Q). See the equation (4.24).

to run 1200 time steps with adaptive grid method, while 2160 seconds were used with full
grid method. However, this example is an extreme case. In general, we cannot expect every
example to have such nice compression, i.e., greater than 97.5%. We say the AWCM is still
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Algorithm 10: interpolate

# interpolate field values of A at points in Mask temp2 that is not included in
Mask temp1
Input : a 2D array of field A, a grid mask Mask temp1, a grid mask Mask temp2
Effects: A is modified by the interpolation
# initialize an empty grid mask Mask temp0
Mask temp0← 0
# include points in Mask temp2 but not in Mask temp1
forall Q = (xjmax,m

, yjmax,n) ∈ Kjmax
do

if Q ∈Mask temp2 but /∈Mask temp1 then
include Q into Mask temp0

# perform the reconstruction check to Mask temp0
Mask rec(Mask temp0)
for j = jmin : jmax − 1 do

# interpolate A at (xj+1,2m+1, yj,n)
forall Q = (xj+1,2m+1, yj,n) ∈M1

j do
if Q ∈Mask temp0 but /∈Mask temp1 then

calculate cj+1,2m+1,2n according to (4.19b) with d1j,m,n = 0

# interpolate A at (xj,m, yj+1,2n+1)
forall Q = (xj,m, yj+1,2n+1) ∈M2

j do
if Q ∈Mask temp0 but /∈Mask temp1 then

calculate cj+1,2m,2n+1 according to (4.19c) with d2j,m,n = 0

# interpolate A at (xj+1,2m, yj+1,2n)
forall Q = (xj+1,2m, yj+1,2n) ∈M3

j do
if Q ∈Mask temp0 but /∈Mask temp1 then

calculate cj+1,2m,2n according to (4.19d) with d3j,m,n = 0

computationally efficient for examples of which compression is about 90%, because of the
huge reduction of the storage of data, although the total computation time is longer than
that of full grid method.
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Algorithm 11: IWT

Input : a 2D array A, a grid mask Mask temp
Effects: values of A at points in Mask temp will be converted into physical domain
for j = jmin : jmax − 1 do

# calculate cj+1,2m,2n

forall Q = (xj+1,2m, yj+1,2n) ∈ Kj do
if Q ∈Mask temp then

calculate cj+1,2m,2n according to (4.19a)

else
A at point (xj+1,2m, yj+1,2n) = 0

# calculate cj+1,2m+1,2n

forall Q = (xj+1,2m+1, yj+1,2n) ∈ M1
j do

if Q ∈Mask temp then
calculate cj+1,2m+1,2n according to (4.19b)

else
A at point (xj+1,2m+1, yj+1,2n) = 0

# calculate cj+1,2m,2n+1

forall Q : (xj+1,2m, yj+1,2n+1) ∈M2
j do

if Q ∈Mask temp then
calculate cj+1,2m,2n+1 according to (4.19c)

else
A at point (xj+1,2m, yj+1,2n+1) = 0

# calculate cj+1,2m+1,2n+1

forall Q : (xj+1,2m+1, yj+1,2n+1) ∈M3
j do

if Q ∈Mask temp then
calculate cj+1,2m+1,2n+1 according to (4.19d)

else
A at point (xj+1,2m+1, yj+1,2n+1) = 0
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Figure 4.4: Visualization of the propagation of a 1D Gaussian peak along the x axis. Note
that the main computational domain is the interval [−1.0×10−5, 1.0×10−5], and the intervals
[−1.5× 10−5,−1.0× 10−5] and [1.0× 10−5, 1.5× 10−5] are both PML regions.
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Figure 4.5: Relative error of Ey field between adaptive grid and full grid method: N = Ñ = 2,
ζ = 10−5.
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Figure 4.6: Visualization of the propagation of a 2D Gaussian peak Ey in the
cross-section plane xz: N = Ñ = 4, ζ = 5.0 × 10−4, cp: percent-
age of adaptive grid points. For animation movie, see the Youtube channel:
http://www.youtube.com/user/HaojunLi?feature=mhee#p/u/1/2Yzpjf7Xnp4.
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Figure 4.7: Visualization of the propagation of a 2D Gaussian peak Ey in space: N = Ñ = 4,
ζ = 5.0× 10−4, cp: percentage of adaptive grid points.
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Figure 4.8: Relative Error of Ey between the adaptive and full grid method : N = Ñ = 4,
ζ = 5.0× 10−4.
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Figure 4.9: Time evolution profiles of computation time and that of percentage of adaptive
grid points. The computation time was recorded for every ten time steps.



Chapter 5

Simulation of the micro-ring
resonator

In this chapter, we will investigate the applicability of adaptive wavelet collocation method
(AWCM) to simulation of the micro-ring resonator. The mathematical modeling of this
optical device has been described in Chapter 1. The purpose of the simulation is to find out
the frequency responses of ring resonators. This is done by launching a guided signal through
the straight waveguide below which contains a bundle of frequencies to check how it interacts
with the ring cavity (See Figure 1.1). We set several checkpoints in the waveguides to store
signal values during time stepping. We apply discrete Fourier transform (DFT) to the
stored values of the signal at those checkpoints. In order to obtain a fair frequency response
profile, we need to run the simulation code for a certain number of time steps to store
values. Then we can find out resonance frequencies of the ring-resonator, and compare the
results with that of obtained with other available methods like finite difference time domain
(FDTD) method (Chapter 2), interpolating scaling functions method (ISFM) (Chapter 3)
and coupling mode theory (CMT) method [17]. Subsequently we also characterize the
resonances by various measures like the free spectral range (FSR), the quality factor (Q
factor) etc.

5.1 Source excitation

We will launch two types of sources. One is a guided mode of slab waveguide for a specific
frequency, the other one is a Gaussian pulse modulating a frequency carrier. The Gaussian
pulse modulating a frequency carrier is used to check out the resonance frequencies of the
device and the mono-frequency guided mode of the slab waveguide is used to confirm the
on-off resonance behavior of the resonator for the resonant frequencies.

Before we discuss the type of source called Gaussian pulse modulating a frequency carrier,
we need to understand first how to derive transverse profiles of a guided mode of a dielectric
straight waveguide at a single frequency. The theory of guided mode of a dielectric straight
waveguide is a well established topic. See Appendix for the detail of derivation of the field
profiles of the guided mode of dielectric waveguide.

91
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5.1.1 Gaussian pulse modulating a frequency carrier

In order to check the frequency response of the resonator, we need to launch a type of
source that contains a range of frequencies about a center frequency ωc. We can see from
the Appendix that the longitudinal propagation constant β depends on the choice of the
angular frequency ω. Here we will derive the accurate Gaussian pulse, see for example, X.
Ji [18]. We assume the time dependence of the source to be

f(t) = exp(ıωc(t− t0)− (t− t0)2/t2decay), t > 0, (5.1)

where t0 is the centered time of the Gaussian pulse and tdecay (> 0) is a scaling factor of the
pulse. The Fourier transform of f is

f̂(ω) =
tdecay√

2
exp(−(ω − ωc)

2t2decay/4− ıt0ω). (5.2)

Assume F ∈ {Ey,Hx,Hz} to be the corresponding phasor profile of the mono-frequency
mode exp(ıωt) as calculated in Appendix, we obtain by integration

F(x, z, t) = 1√
2π

∫
F(x, z, ω)f̂(ω) exp(ıωt)dω, (5.3)

where F ∈ {Ey,Hx,Hz} is a field in the time domain.
Then, F is an accurate Gaussian pulse with frequencies centered at ωc, which satisfies

the TMy mode equations (2.10). In our simulation, we approximate the phasor profile with
different frequencies with that at the center frequency ωc for simplicity. Therefore, the time
dependent source function of our simulation is

F(x, z, t) = F(x, z, ωc)f(t).

5.1.2 TF/SF formulation with AWCM

The total field and scattered field (TF/SF) formulation allows us modulating incident
sources of long-duration such as continuous mono-frequency waves. If we use a hard source
method to launch such type of long-duration sources, then there will occur retro-reflections
at the sourcing position when the waves scattered by materials propagate back to the sourc-
ing position. And these retro-reflections will introduce contaminations into the computa-
tional domain. However, the TF/SF formulation of incident sources is an analytical way of
launching source. In particular, if we use hard sources in AWCM, such retro-reflections will
cause bad compressions of grid points. Therefore, we choose the TF/SF method to launch
sources, although it is more complicated than the hard source method in implementation.

The idea of the total field and scattered field (TF/SF) formulation of incident sources
([38],[35]) is based on the linearity of Maxwell’s equations. Assume that we know an accurate
incident wave beforehand. We decompose the total field as a combination of the incident
field and the scattered field.

Ey,total =Ey,inc + Ey,scat,
Hx,total =Hx,inc +Hx,scat,

Hz,total =Hz,inc +Hz,scat.
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In the total field region the total field values are stored and in the scattered field region the
scattered field values are stored. Then when we approximate the derivatives with AWCM
at the numerical grid points near the TF/SF interface, both of total field and scattered field
values are used. We must correct these numerical derivatives obtained by mixed types of
field values. For example, we will look at the equation for updating of Hz component,

∂Hz

∂t
= −1

µ

∂Ey
∂x

. (5.4)

We artificially include the finest grid points near the interface between TF/SF into
the adaptive grid for convenience. Therefore, the density level of the grid points near
the interface is always the maximum, jmax. Suppose ∆x = L/2jmax . For a grid point
Q = (xjmax,m′ , yjmax,n′), we use A|kQ to denote the value of A at the point Q in the time step
k∆t. Then the AWCM discretization of the equation (5.4) is

Hz|k+1/2
Q = Hz|k−1/2

Q − ∆t

µ0∆x

∑

m

Ey|k(xjmax,m,yjmax,n′ )(DDN)
′(m′ −m). (5.5)

We consider the case N = 2, then, (5.5) becomes

Hz|k+1/2
Q =Hz|k−1/2

Q − ∆t

µ0∆x

(
1

12
Ey|k(xjmax,m′−2,yjmax,n′) −

2

3
Ey|k(xjmax,m′−1,yjmax,n′ )

+
2

3
Ey|k(xjmax,m′+1,yjmax,n′ ) −

1

12
Ey|k(xjmax,m′+2,yjmax,n′)

)
. (5.6)

T1S3S4 T2 T3 T4S2 S1

total field regionscattered field region

Figure 5.1: Description of numerical grid points for total field and scattered field.

Let us look at Figure 5.1. When Q is in the scattered field region, for example, Q = S2,
the equation (5.6) becomes

Hz|k+1/2
S2

= Hz|k−1/2
S2

− ∆t

µ0∆x

(
1

12
Ey|kS4

− 2

3
Ey|kS3

+
2

3
Ey|kS1

− 1

12
Ey|kT1

)
. (5.7)

We implement the TF/SF formulation by modifying the normal AWCM code, i.e., in which
all the fields are total fields, during each time-stepping. For example, before modifying, the
Hz component is falsely updated according to the equation (5.7) as:

{
Hz,scat|k+1/2

S2

}
=Hz,scat|k−1/2

S2
− ∆t

µ0∆x

(
1

12
Ey,scat|kS4

− 2

3
Ey,scat|kS3

+
2

3
Ey,scat|kS1

− 1

12
Ey,total|kT1

)
, (5.8)
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where
{
Hz,scat|k+1/2

S2

}
is not a correct value, since the stored value of Ey at the point T1 is a

total field, we must correct this term with a scattered field. Since the scattered field is the
difference between the total field and the incident field, we can get the right value by

Hz,scat|k+1/2
S2

=
{
Hz,scat|k+1/2

S2

}
− 1

12

∆t

µ0∆x
Ey,inc|kT1

. (5.9)

In the same way, we can correct all of the corresponding field values at S1, T1 and T2.

Remark 5.1. In time-stepping of the TMy equations with AWCM, we need to interpolate
values on some adaptive grid points which were not present in the adaptive grid of the
previous time step. The interpolation is based on the Lagrangian interpolation with the
neighboring points. If those points are on the interfaces close to the TF/SF interface, then,
the interpolations are not correct since they involve both total field points and scattered field
points. It is not impossible that we correct these values as TF/SF method above.

However, these may enhance the complicatedness of the code. A remedy for this problem
is to keep sufficiently “thick” layers close to the TF/SF interface the finest level so that
the interpolations do not happen at the boundary of the different type of the fields. Another
simpler way to avoid this is to turn off adaptivity of the grid, i.e., full grid calculation
without FWT and IWTs, until the incident source stops launching.

5.2 Numerical simulations of the micro-ring resonator

with AWCM

In this section, we will perform the numerical simulation of the micro-ring resonator (Figure
5.2) with AWCM and discuss the simulation results. We will compare AWCM with FDTD,
interpolating scaling functions method (ISFM) and coupled mode theory (CMT) [17] on
these simulation results.

We simulate the setting as in [16, 35]. We launch a 20-fs full width at half maximum
(FWHM) Gaussian pulse modulating a 200-THz carrier (center frequency ωc) at the left
port A of the straight waveguide WG1 (Figure 5.2) using the TF/SF formulation. Then
the incident Gaussian pulse propagates along WG1. When it reaches the region close to the
ring, it interacts with the ring and some parts of the Gaussian pulse switch into the ring
and the rest of the pulse continues to propagate and exits from the right port B of WG1.
The signal which switched into the ring cavity continues to circumnavigate inside the ring
and some parts of the signal will interact with WG2 and exit from the left port C of WG2.

In the simulation, the outer radius R of the ring is 2.5µm and the width wr of the
ring is 0.3µm. The width ws of the straight waveguide is 0.3µm and the gap distance g is
0.232µm. The refractive indices of the straight waveguide and the ring cavity are both 3.2,
i.e., ns = nc = 3.2. We take a squared computational domain with the length L = 8µm
and the width of the PML layer L/4. See Figure 5.3 for the geometry of the computational
domain, PML layer and TF/SF interface.

We take the maximum and minimum resolution level, jmax = 9, jmin = 3, respectively.
Then the smallest mesh size, ∆ = ∆x = ∆z, is 15.625nm. And we take N = Ñ = 2.
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Figure 5.2: A geometric diagram of a micro-ring resonator, which is composed of a circular
ring cavity and two lateral straight waveguides. On-resonance and off-resonance signal
excited from port A are guided with different directions by the ring resonator. Source: [35].

The smallest time step size is taken according to the CFL stability condition1, i.e., ∆t ≤
2
√
2∆

3c
. Since AWCM uses a central difference scheme of second order to discretize the

time derivatives of the TMy equations, the error of the full grid solutions to our problem is

limited by O(∆t2). We choose a smaller time step size, i.e., ∆t =
∆

1.6c
, in order to take a

relatively smaller threshold tolerance, ζ = 5.0× 10−4.

The choice of the threshold tolerance is the most crucial in the whole simulation. If we
take a threshold which is too small, then the adaptivity efficiency is very bad, i.e., almost all
the points of the finest level are in the adaptive grid. And if the threshold is large, then, after
the incident source exits from the right port of WG2, all the grid points are compressed,
thus, only the points of the coarsest level will remain in the adaptive grid. Therefore, we
cannot obtain detailed information for the signal circumventing inside the ring.

We run the simulation 218 time steps. The reason we select the number of simulation
time steps as a power of 2 is because we want to perform FFT with stored field values.

The snapshots of several time steps of the Ey field component are plotted in Figures 5.4
and 5.5. We see that the numerical dense grid points are following the intensive signal in
the ring. Note that the points of the cross-sections of the four ports are always kept as the
finest resolution level in order that we store the field information on these cross-sections.

1The stability condition for the AWCM is essentially the same as that of ISFM, see (3.38).
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Figure 5.3: A geometric diagram of the computational domain, PML region and TF/SF
interface for the simulation of micro-ring resonator.

The percentage cp of the adaptive grid points are given in the title of each snapshot with
the time step. Note that we only plotted fields in computational domain. For information
on fields in PML see the animation online. The link is provided in the caption of Figure 5.5.

5.2.1 Spectrum response

The signal which switched into the ring continues to circumnavigate inside the ring until
all its energy extinguishes. We store the information of the signal at the cross-sections P1,
P2, P3 and P4 during time stepping. We use the stored time domain field components to
calculate the average power densities flux through the cross-sections. The average power
density2 is defined as

Pav =
1

2
ℜ
[
E×H∗

]∣∣∣∣
Pe

, e ∈ {1, 2, 3, 4}, (5.10)

where E and H are the phasors in the frequency domain, and Pe (e = 1, 2, 3, 4) are the
cross-section ports for recording data.

2See more detail about Poynting vector and power in [3].
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The length of the cross-section Pe (e = 1, 2, 3, 4) should be taken big enough so that the
average power density flux calculated on the corss-section represents almost the full modal
power density. In our simulation we take the length of the cross-section four times the width
of the ring. We integrate the power density flux on the cross-section P3 and normalize it by
that on the cross-section P1 to get the normalized dropped power as a function of frequency,
see Figures 5.6 and 5.7. The sharp peaks in these figures are resonant frequencies. We
also calculate the normalized transmitted power which is defined as the ratio between the
power density flux on the cross-section P2 and that on the cross-section P1, see Figure 5.8.
In these figures, we rescaled the normalized power by its maximum in order to have highly
contrasted view of the resonant frequencies.

5.2.2 Coupling efficiency

The coupling coefficient κ is defined as the ratio between the power switched into the ring
and that of the incident power. It is the percentage of power coupled into the ring from
WG1. Since the power switched into the ring continues to circumvent inside the ring, we
should calculate the switched power with the stored fields at the cross-section P3 only for
the first circulation.

We can see from Figure 5.9 that the coupling efficiency decreases as the frequency in-
creases and the gap size distance increases.

5.3 Comparison with other methods

In this section, we compare the resonant data obtained with different methods, such as
FDTD, ISFM, CMT. We perform FFT on the 219 equally spaced time samples obtained by
FDTD and ISFM, see Figure 5.10, 5.11.

Calculating the resonant frequencies with single FFT is time consuming. Since the
frequency resolution is reciprocal to the product of the total number of time-steps and the
time-step size, thus, in order to get a desired accuracy of the resonant frequencies, the
simulation time should be sufficiently long. There are several methods, such as Prony’s
method [29], Pade approximation [11], which can obtain nice resonant frequencies with
relatively shorter window of time domain fields by extracting FFT peaks. We don’t want
to discuss these in detail here. There is a free software, called Harminv [26], which can
obtain much better accuracy than straightforwardly extracting FFT peaks [19]. We use it
to calculate the resonant data from the stored window of time domain field values obtained
with several different methods and compare them. The stored time domain samples are
combinations of decaying modes in the form,

exp((α + 2πıf)t), (5.11)

where α is the decay constant and f is the frequency of the mode. We define the quality
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factor (Q factor) 3 of the mode (5.11) to be

Q :=
π|f |
|α| . (5.12)

The resonant frequencies are those with high Q factors. We perform Harminv [26] on the
215 samples of the time domain electric field obtained by AWCM, FDTD, ISFM to get
frequencies with Q factors.

Let m be the longitudinal mode number inside the ring, i.e., the number of wavelengths
in the ring. Table 5.1 shows resonant data of the same micro-ring resonator calculated by
Harminv [26], except the coupled mode theory method (CMT), which is provided by K.
R. Hiremath, [17]4. We see from the table that the resonant frequencies of the same mode
obtained by different methods are differed by each other only within 0.3% range.

Table 5.1: Comparison of the resonance data for the 5.0µm-Diameter ring-resonator ob-
tained with four different methods. m: longitudinal mode number in the ring; fm: resonant
frequency; λm: resonant wavelength; Q: Q factor; FSR: free spectral range.

(a) AWCM

m fm(THz) λm (nm) Q FSR (nm)

25 186.15 1610.51 3206.00
50.99

26 192.23 1559.52 2068.65
47.62

27 198.29 1511.90 23185.0
44.69

28 204.33 1467.21 3979.14
42.32

29 210.40 1424.89 5130.40

(b) FDTD

m fm(THz) λm (nm) Q FSR (nm)

25 186.04 1611.48 3509.95
51.09

26 192.13 1560.39 4364.47
47.09

27 198.11 1513.30 5918.55
44.87

28 204.16 1468.43 7817.19
41.91

29 210.16 1426.52 11328.7

(c) ISFM

m fm(THz) λm (nm) Q FSR (nm)

25 186.19 1610.11 3499.43
51.23

26 192.31 1558.88 3692.44
47.04

27 198.30 1511.84 6368.16
44.94

28 204.37 1466.90 11301.4
41.97

29 210.39 1424.93 13771.4

(d) CMT [17]

m fm(THz) λm (nm) Q FSR (nm)

25 185.85 1613.1 4473
53.5

26 192.23 1559.6 5776
44.7

27 197.90 1514.9 7560
43.4

28 203.73 1471.5 10482
43.5

29 209.94 1428.0 14252

3Sometimes Q is defined as ratio between π|f | and the full width at half maximum of the corresponding
frequency [17].

4We calculate fm’s and (FSR)s in Table 5.1(d) from λm in [17]. And Q’s are provided by K. R. Hiremath.
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5.3.1 Steady state resonances

We can find the resonant frequencies from the spectrum response (Table 5.1) of the ring
resonator, or those peaks in Figures 5.6 and 5.7 are resonant frequencies.

If we continuously launch guided modes of the straight waveguide at these resonant
frequencies, we will observe intensive resonant power energy inside the ring. We should run
a sufficient number of time steps to simulate the steady state of on-resonances. The number
of time steps needed to reach the steady state of an on-resonance depends on the frequency
and the gap distance between the straight waveguides and the ring cavity. We have seen
that the coupling efficiency is higher with smaller frequency and smaller gap distances, see
Figure 5.9. If the coupling efficiency is high, for example, above 50%, then we can reach the
steady-state of the on-resonance with only several round trips of the wave inside the ring.
But the intensity of the resonance in the steady state is higher for a frequency of the signal
and a gap distance of the ring with low coupling efficiency. In this case, we need to run the
simulation for hundreds or thousands of round trips. When m increases, the corresponding
mode frequency also increases, and the coupling efficiency decreases. Therefore, we should
run the simulation a sufficient number of time steps to reach the steady state of on-resonance.

Here we simulate the on-resonance with a mode, m = 26, and the gap distance, g =
0.14µm. When a resonant frequency signal of the ring is continuously launched from the
port A of WG1 (Figure 5.2), the signal coupled into the ring will accumulate inside the
ring because of the resonance. Some amount of the coupled signal inside the ring will also
interact with WG2 and exit from its left port. At the beginning of the simulation, the input
signal dominates over the output signal. As the signal inside the ring becomes intensive,
then the output signal increases into the amount of input one. After sufficiently long time
of simulation, when the resonator reaches the steady state, we can observe almost 100% of
the input signal switched into the ring and exit from WG2.

For an off-resonance frequency, the signal coupled into the ring cannot accumulate and
become intensive inside the ring, since the frequency does not match with the resonant
frequency, thus few signals could be found from the port C of WG2. See Figure 5.12 for
both On-resonance and Off-resonance behavior of the ring resonator.

5.4 Conclusion

We studied AWCM and verified its applicability in the area of numerical solutions to the
time domain Maxwell’s equations with the simulation of micro-ring resonators.

Adapting the grid points dynamically with time stepping is the key feature of the method.
The adaptivity property of AWCM enables less storage of data. In each time step, we skip
computation on any point in the finest resolution level which is not in the adaptive grid. For
those points which are not in the adaptive grid, we only perform an “if” command to check
whether that point is included in the adaptive grid or not. The computation of AWCM
is mainly done on the points which are in the adaptive grid. The time of computation
depends on the percentage of adaptive grid points over the full number of grid points.
Since we perform more computations on adaptivity, such as forward and inverse wavelet
transforms, interpolations of points needed in the algorithm, than the full grid method,
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which is non-adaptive, the computation speed is highly effective only when the percentage
of the adaptive grid points are very low. The adaptive grid method becomes faster than the
full grid method when the percentage of the adaptive grid points are lower than roughly
2.5%. For example, in the simulation of 2D Gaussian peak propagation in the homogeneous
media, the adaptive grid method is faster than the full grid method. And also, in the
simulation of ring resonators, the percentage of the adaptive grid points becomes close to
2.5% from about the time step 217, which is half of the number of the total simulation time
steps.

According to our experience, the computation on an adaptive grid, whose percentage of
adaptive points is about 10%, is still efficient, although the speed of computation is a little
bit slower than that of the full grid method. Because we can save a huge amount of the
memory space for the storage of output data for visualization. In the AWCM-simulation of
ring resonators, the percentage of adaptive grid points is less than 10% for most of the time
steps and even less than 2.5% for the second half of the whole simulation time steps.

AWCM is an efficient method for the problems of signals guided by optical waveguides. It
will save huge storage of output data for visualization. Especially when signals of interests
are highly concentrated inside optical devices so that the compression of grid points for
the whole field profile is larger than about 97.5%, AWCM is even faster than the full grid
method.

One of the disadvantages of AWCM is slow speed of computation when the compression
rate of grid points is low. We are interested in improving AWCM by performing compu-
tations on wavelet domain only so that huge amount of computations are saved, since we
don’t need to do forward and inverse wavelet transforms at each time step to restore physical
fields and we even don’t need to perform those interpolations procedures in the algorithm.

Another disadvantage of AWCM is on its time integrator. At the moment, we only use
second order central difference scheme for discretization of time derivatives in the Maxwell’s
equations. Thus, no matter how high the order of spatial discretization is, the solution error
is restricted by O(∆t2). If a time integrator of higher order is applied in the problem, we may
obtain better accuracy with the full grid method so that we can use even smaller threshold
tolerance to increase the accuracy of the numerical solution of the adaptive method.
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Figure 5.4: Snapshots of AWCM-computed Ey field navigating in the ring resonator. Incident
source: a 20-fs Gaussian pulse launched from the left port of the straight waveguide below.
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Figure 5.5: More snapshots of the simulation. See the simulation movie in the following
link: http://www.youtube.com/user/HaojunLi?feature=mhee#p/u/0/f99PH9tq1VM
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Figure 5.6: Visualization of the AWCM-computed normalized dropped power. Number of
simulation time steps: 218.
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Figure 5.7: Visualization of the AWCM-computed normalized transmitted power. Number
of simulation time steps: 218.
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Figure 5.8: Comparison of the AWCM-computed normalized dropped and transmitted
power. Number of simulation time steps: 218.
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Figure 5.9: Coupling coefficients as a function of frequency and gap distance g for the
d = 0.5µm resonator.
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Figure 5.10: Visualization of the FDTD-computed normalized transmitted power. Simula-
tion time steps: 219.
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Figure 5.11: Visualization of the ISFM-computed normalized transmitted power. Simulation
time steps: 219.
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(a) (b)

Figure 5.12: Visualization of the AWCM (full grid method) - computed sinusoidal steady
state Ey - field in the 5.0µm diameter ring with the gap distance g = 0.14µm. (a) Off-
resonance: at 195 THz; (b) On-resonance (m=26): at 192.3 THz.



Appendix

Guided modes of a dielectric slab waveguide

We discuss how to calculate the guided mono-frequency modes of a dielectric slab waveguide,
see for example, D. K. Cheng [3]. These modes will be used in our simulations of the steady-
state on-off resonance of the ring resonator. And the phasor profiles of these modes will be
used in the calculation of a Gaussian pulse modulating a frequency carrier.

Let the permittivity and permeability of the slab waveguide to be ε1 and µ1 respectively,
and the slab waveguide be surrounded by a vacuum. Assume the width of the slab waveguide
to be d and the slab waveguide is symmetric about the x axis. See Figure 5.13.

x

z

0
ε1,µ 1

ε0,µ 0

ε0,µ 0

d

Figure 5.13: A longitudinal cross-section of a dielectric slab waveguide.

We will only consider the guided modes of the slab waveguide for TMy mode equations
(2.10).

Let the time harmonic fields be

Ey(x, z, t) =ℜ(Ey(x, z) exp(ıωt)), x, z ∈ R, t > 0, (5.13a)

Hx(x, z, t) =ℜ(Hx(x, z) exp(ıωt)), x, z ∈ R, t > 0, (5.13b)

Hz(x, z, t) =ℜ(Hz(x, z) exp(ıωt)), x, z ∈ R, t > 0, (5.13c)

where Ey, Hx and Hz are vector phasors which contain information on directions, magni-
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tudes and phases of the fields. We can write time harmonic TMy mode equations,

ıωµHx(x, z) =
∂Ey(x, z)

∂z
, x, z ∈ R, (5.14a)

ıωµHz(x, z) =−
∂Ey(x, z)

∂x
, x, z ∈ R, (5.14b)

ıωεEy(x, z) =
∂Hx(x, z)

∂z
− ∂Hz

∂x
, x, z ∈ R. (5.14c)

The guided modes of the slab waveguide are solutions of (5.14) in the following form,

Ey(x, z) =Ey(z) exp(−ıβx), x, z ∈ R, (5.15a)

Hx(x, z) =Hx(z) exp(−ıβx), x, z ∈ R, (5.15b)

Hz(x, z) =Hz(z) exp(−ıβx), x, z ∈ R, (5.15c)

where Ey, Hx and Hz are profiles of mode along z direction, and β is the longitudinal
propagation constant.

If we substitute (5.15) into (5.14), then we get

ıωµHx(z) =
dEy(z)

dz
, z ∈ R, (5.16a)

ıωµHz(z) =ıβEy(z), z ∈ R, (5.16b)

ıωεEy(z) =

(
dHx(z)

dz
+ ıβHz(z)

)
, z ∈ R. (5.16c)

From (5.16b), we have

Hz(z) =
β

ωµ
Ey(z), z ∈ R. (5.17)

We substitute (5.17) into (5.16c), then we get

Ey(z) =
ωµ

ı(ω2εµ− β2)

dHx(z)

dz
. (5.18)

Now we substitute (5.18) into (5.16a) to obtain

h2Hx +
d2Hx

dz2
= 0, (5.19)

where h2 = (ω2εµ − β2). We know that (5.19) has fundamental general solutions either in
the form of cosine and sine terms or in the exponential terms. We require that in the region
|z| ≤ d

2
, the solution for Hx is

Hx(z) = A1 sin(kzz) + A2 cos(kzz), |z| ≤ d

2
, (5.20)

where A1 and A2 are constants and

k2z = ω2ε1µ1 − β2. (5.21)
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If Hx contains only a sine term, we call the mode odd and if Hx contains only a cosine term,
we call the mode even.

In the free space region (|z| > d
2
), the waves must decay exponentially, thus,

Hx(z) =





A3 exp(−α(z − d/2)), z >
d

2
,

A4 exp(α(z + d/2)), z < −d
2
,

(5.22)

where A3 and A4 are constants and

α2 = β2 − ω2ε0µ0. (5.23)

We use continuity of Hx at the interface |z| = d/2 to eliminate the constants A3 and A4.
For example, for the odd mode case, i.e., Hx(z) = A1 sin kzz, we have A3 = A1 sin(kzd/2)
and A4 = −A1 sin(kzd/2). Using (5.17) and (5.18) we can also obtain corresponding profiles,
Hz and Ey.

Here we only list the odd TE modes.

(i) In the dielectric region, |z| ≤ d/2:

Hx(z) =A1 sin(kzz), (5.24a)

Hz(z) =
β

ıkz
A1 cos(kzz), (5.24b)

Ey(z) =
ωµ1

ıkz
A1 cos(kzz). (5.24c)

(ii) In the upper free-space region, z > d/2:

Hx(z) =A1 sin(kzd/2) exp(−α(z − d/2)), (5.25a)

Hz(z) =
β

ıα
A1 sin(kzd/2) exp(−α(z − d/2)), (5.25b)

Ey(z) =
ωµ0

ıα
A1 sin(kzd/2) exp(−α(z − d/2)). (5.25c)

(iii) In the lower free-space region, z < −d/2:
Hx(z) =− A1 sin(kzd/2) exp(α(z + d/2)), (5.26a)

Hx(z) =
β

ıα
A1 sin(kzd/2) exp(α(z + d/2)), (5.26b)

Ey(z) =
ωµ0

ıα
A1 sin(kzd/2) exp(α(z + d/2)). (5.26c)

Now from (5.24a) and (5.25a), by using continuity of Hx at z = d/2, we obtain

α

kz
=
µ0

µ1
tan(kzd/2). (5.27)

We also see from (5.21) and (5.23) that

α =
√
ω2(ε1µ1 − ε0µ0)− k2z . (5.28)

For a given angular frequency ω, we can compute α and kz by solving the nonlinear equations
(5.27) and (5.28). Then, we can obtain β from (5.23).
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