Karlsruher Institut für Technologie

# Karlsruhe Reports in Informatics 2011,24 

Edited by Karlsruhe Institute of Technology,
Faculty of Informatics
ISSN 2190-4782

## Orthogeodesic Point-Set Embedding of Trees

Emilio Di Giacomo, Fabrizio Frati, Radoslav Fulek, Luca Grilli, Marcus Krug

Please note:
This Report has been published on the Internet under the following Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

# Orthogeodesic Point-Set Embedding of Trees ${ }^{\star}$ 

Emilio Di Giacomo ${ }^{1}$, Fabrizio Frati ${ }^{2,3}{ }^{* \star}$, Radoslav Fulek ${ }^{2}{ }^{* \star}$, Luca Grilli ${ }^{1}$, and Marcus Krug ${ }^{4}$<br>${ }^{1}$ Dip. di Ingegneria Elettronica e dell'Informazione - Universitá degli Studi di Perugia, Italy \{digiacomo, grilli\}@diei.unipg.it<br>${ }^{2}$ School of Basic Sciences - École Polytechnique Fédérale de Lausanne, Switzerland<br>\{fabrizio.frati, radoslav.fulek\}@epfl.ch<br>${ }^{3}$ Dip. di Informatica e Automazione, Università Roma Tre<br>${ }^{4}$ Institute of Theoretical Informatics - Karlsruhe Institute of Technology, Germany marcus.krug@kit.edu


#### Abstract

Let $S$ be a set of $N$ grid points in the plane, and let $G$ a graph with $n$ vertices $(n \leq N)$. An orthogeodesic point-set embedding of $G$ on $S$ is a drawing of $G$ such that each vertex is drawn as a point of $S$ and each edge is a chain of horizontal and vertical segments with bends on grid points whose length is equal to the Manhattan distance of its end vertices. We study the following problem. Given a family of trees $\mathcal{F}$ what is the minimum value $f(n)$ such that every $n$ vertex tree in $\mathcal{F}$ admits an orthogeodesic point-set embedding on every grid-point set of size $f(n)$ ? We provide polynomial upper bounds on $f(n)$ for both planar and non-planar orthogeodesic point-set embeddings as well as for the case when edges are required to be $L$-shaped chains. This report is an extended version of a paper by the same authors that is to appear in [6].


## 1 Introduction

Let $S$ be a set of $N$ points in the plane, and let $G$ be an graph with $n$ vertices such that $n \leq N$. A point-set embedding of $G$ on $S$ is a drawing of $G$ such that each vertex of $G$ is drawn as a point of $S$. If, in addition, the drawing of $G$ is crossing-free, that is, edges are not allowed to intersect in their interior, then the point-set embedding is called planar. Point-set embeddings are a classical subject of investigation in graph drawing from both an algorithmic and a combinatorial point of view. From the algorithmic point of view we are typically interested in deciding whether a given graph has point-set embedding on a given set of points. From the combinatorial perspective, however, we typically wish to characterize point sets that admit point-set embeddings for a whole class of graphs, such as trees or planar graphs. Different types of point-set embeddings have been defined depending on the desired type of drawing, that is, depending on how the edges are mapped to the plane. Point-set embeddings have been considered for various classes of graphs, such trees, planar graphs and outerplanar graphs as well as for various types of drawings, such as straight-line drawings and polyline drawings.

Several algorithmic results are known for point-set embeddings in which edges are required to be straight-line segments. Deciding whether a planar graph admits a straightline planar point-set embedding on a given point set is an NP-complete problem [5], while straight-line planar point-set embeddings of trees [3] and outerplanar graphs [2] can be computed efficiently. From the combinatorial perspective, Gritzmann et al. [12] prove that every planar graph with $n$ vertices admits a straight-line planar point-set embedding on every set of $n$ points in general position if and only if it is outerplanar. Kaufmann

[^0]Table 1: Summary of the results in the paper. Each row corresponds to a family of trees $\mathcal{F}$ and each column corresponds to a type of drawing $\mathcal{D}$. The value in each entry is an upper bound to the minimum value $f(n)$ such that every $n$-vertex tree in $\mathcal{F}$ admits a point-set embedding of type $\mathcal{D}$ on every point set of size $f(n)$.

|  | L-Shaped |  | Orthogeodesic |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Planar | Non-Planar | Planar | Planar 2-spaced |
| Caterpillars $\Delta=3$ | $n[$ Th. 8] | $n[$ Th. 8] | $n[$ Th. 8] | $n[$ Th. 1] |
| Trees $\Delta=3$ | $n^{2}-2 n+2[$ Th. 6] | $n\left[\right.$ Th. 10 ${ }^{1}$ | $n[$ Th. 3] | $n[$ Th. 1] |
| Caterpillars $\Delta=4$ | $3 n-2[$ Th. 7$]$ | $n+1[$ Th. 11] | $[1.5 n][$ Th. 4] | $n[$ Th. 1$]$ |
| Trees $\Delta=4$ | $n^{2}-2 n+2[$ Th. 6$]$ | $4 n-3[$ Th. 9] | $4 n[$ Th. 2] | $n[$ Th. 1$]$ |

and Wiese show that every $n$-vertex planar graph admits a polyline planar point-set embedding on every set of $n$ points with at most 2 bends per edge [14]. Colored versions of planar polyline point-set embeddings in which the points are colored and adjacent vertices must be mapped to points with different color have also been investigated [1, 8]. Special research efforts have been devoted to study universal point sets for planar graphs. A point set $S$ is universal for a family $\mathcal{F}$ of graphs and for a type $\mathcal{D}$ of drawing if every graph in $\mathcal{F}$ admits a point-set embedding of type $\mathcal{D}$ on $S$. Every universal point set for straight-line planar drawings of planar graphs has size at least $1.235 \cdot n$ [15] while there exist universal point sets of size $\frac{8}{9} n^{2}$ [4]. For polyline point-set embeddings of planar graphs, on the other hand, there exist universal point sets of size $n$ [10].

In this paper we study orthogeodesic point-set embeddings on the grid. Orthogeodesic point-set embeddings were introduced by Katz et al. [13] and require edges to be represented by orthogeodesic chains, i.e. by polygonal chains consisting of horizontal and vertical straight-line segments whose total length is equal to the $L_{1}$-metric, also called Manhattan metric, between the endpoints. Since orthogeodesic chains correspond to shortest orthogonal connections in the $L_{1}$ metric, they can be considered as the counter part of straight lines in the $L_{2}$ metric.

Katz et al. [13] considered orthogeodesic point-set embeddings from the algorithmic point of view and proved that it is NP-complete to decide whether a planar graph with $n$ vertices and maximum degree 4 admits an orthogeodesic point-set embedding on $n$ points, while the problem can be solved efficiently for cycles. Katz et al. [13] also show that, if the mapping between vertices and points is given and the bends are required to be at grid points, then the problem is NP-complete even for matchings, while the problem is polynomial-time solvable if bends need not be at grid points. A 2-colored version of the planar orthogeodesic point-set embedding has been studied by Di Giacomo et al. [7].

In this paper we consider orthogeodesic point-set embeddings on the grid from the combinatorial point of view. Let $P$ be a set of grid points in the plane, i.e., $p=(i, j)$ with $i, j \in \mathbb{Z}$ for all $p \in P$. We write $x(p):=i$ and and $y(p):=j$. A set $P$ of grid points with $x(p) \neq x(q)$ and $y(p) \neq y(q)$ for all $p, q \in P$ with $p \neq q$ is called general. For different classes of trees $\mathcal{F}$ and different drawing styles $\mathcal{D}$ we study the value $f(n)$ such that every general pointset is universal for orthogeodesic point-set embeddings of all trees in $\mathcal{F}$ using $\mathcal{D}$. The restriction to general point sets is necessary since there are arbitrarily large point sets that are not universal for orthogeodesic point-set embeddings of trees, e.g., a set of collinear points. That is, without this restriction $f(n)$ would not be well-defined for graphs other than paths. We consider both planar and non-planar orthogeodesic point-set embeddings as well as the case when edges can be arbitrary orthogeodesic chains or when edges are required to be $L$-shaped chains. An $L$-shaped chain is an orthogonal chain with only one bend, thus, it is an orthogeodesic chain with the minimum number of bends for general point sets. Table 1 summarizes our results.


Fig. 1: Planar orthogeodesic point-set embedding of a tree on a general point set with bends allowed to have half-integer coordinates.

The rest of the paper is organized as follows. In Section 2 we study planar orthogeodesic point-set embeddings of trees without any further restriction. In Section 3 we consider the case when edges are required to be $L$-shaped, that is, if they are allowed to have only one bend. In Section 4 we study $L$-shaped orthogeodesic point-set embeddings without the planarity restriction. Finally, Section 5 concludes and lists some open problems.

## 2 Planar Orthogeodesic Pointset Embeddings

We start by considering planar orthogeodesic point-set embeddings of trees. First, we show that every tree with maximum degree 4 can be embedded on every general point set with $n$ points using at most two bends per edge if we require that the horizontal and vertical distance of any two points is at least two. This implies that we can embed every tree with $n$ vertices on every general point set $P$ with $n$ points whose points are not horizontally or vertically aligned, if neither vertices nor bends are required to be grid points.

Theorem 1. Every tree with $n$ vertices and with maximum degree 4 admits a planar orthogeodesic point-set embedding on every general point set $P$ with $n$ points such that $\min \{|x(p)-x(q)|,|y(p)-y(q)|\} \geq 2$ for all $p, q \in P$ with $p \neq q$.

Proof: Let $T$ be any tree with $n$ vertices and maximum degree 4 . We root $T$ at any vertex $r$ of degree at most 3. Inductively, we prove that $T$ admits a planar orthogeodesic point-set embedding on every general point set $P$ with $n$ points in which (i) each edge has two bends and (ii) no edge intersects a half-line $h$ arbitrarily chosen among the two horizontal and two vertical half-lines starting at $r$.

The statement is trivially true for $n=1$. We inductively prove that $T$ admits the required embedding for the case that no edge may intersect the horizontal half-line starting at $r$ and directed rightward. The other constructions are analogous. Let $n_{1} \geq 0$, $n_{2} \geq 0$, and $n_{3} \geq 0$ denote the number of vertices in the subtrees $T_{1}, T_{2}$, and $T_{3}$ rooted at children $r_{1}, r_{2}$, and $r_{3}$ of the root $r$ of $T$, respectively. Let $P_{1}$ denote the set of the $n_{1}$ bottommost points of $P$. Let $P_{2}$ denote the set of the $n_{2}$ leftmost points of $P \backslash P_{1}$. Let $p$ be the bottommost point of $P \backslash\left(P_{1} \cup P_{2}\right)$. Let $P_{3}=P \backslash\left(P_{1} \cup P_{2} \cup\{p\}\right)$ as illustrated in Fig. 1. We embed $r$ on $p$ and we inductively embed $T_{i}$ on $P_{i}(i=1,2,3)$ such that no edge intersects the vertical half-line $h_{1}$ starting at $r_{1}$ in the upward direction, the horizontal half-line $h_{2}$ starting at $r_{2}$ in the rightward direction and the vertical half-line $h_{3}$ starting in $r_{3}$ in the downward direction. We connect $r$ with $r_{1}$ by an orthogeodesic edge vertically attached to $r$ and to $r_{1}$, respectively, and connect the two vertical segments by an intermediate segment $s$ on the horizontal line one unit above the

[^1]top side of the bounding box of $P_{1}$. Further, we connect $r$ with $r_{2}$ and $r_{3}$ analogously as illustrated in Fig. 1.

To see why the induction hypothesis holds, first, note that the embeddings of $T_{1}, \ldots, T_{3}$ are crossing-free by induction-hypothesis. Clearly, not edge intersects the horizontal halfline $h$ starting in $r$ in the rightward direction by construction. Hence, it suffices to show that the resulting drawing is crossing free, that is none of the edges connecting $r_{1}, \ldots, r_{3}$ to $r$ are involved in any crossings. Clearly, these edge can cross each other by choice of $P_{1}, \ldots, P_{3}$ and the construction of the edges. Further, the straight-line segments incident to the vertices $r_{1}, \ldots, r_{3}$ corresponding to the edges directed towards $r$, are mapped to the half-lines $h_{1}, \ldots, h_{3}$ that are not crossed by any other edge by induction hypothesis. That is, there is no crossing in the bounding boxes of $P_{1}, \ldots, P_{3}$, respectively. Next, consider the edge $\left(r_{1}, r\right)$. The intermediate segment $s$ is located on a horizontal grid line one unit above the highest point in $P_{1}$. Hence, this line does not contain any other point since we required $\min \{|x(p)-x(q)|,|y(p)-y(q)|\} \geq 2$ for all $p, q \in P$. Therefore, we can embed the edge as required by (i) and (ii). The remaining edges are analogous, which concludes the induction step.

As an immediate consequence of Theorem 1 we obtain the following corollary for arbitrary point sets.

Corollary 1. Let $P \subseteq \mathbb{R}^{2}$ be a set of points in the plane such $x(p) \neq x(q)$ and $y(p) \neq$ $y(q)$ for all $p, q \in P$ such that $p \neq q$. Then every tree with maximum degree 4 has an orthogeodesic point-set embedding on $P$ with at most two bends per edge.

To see why Corollary 1 holds, we can consider a subdivision of the grid induced by the points in $P$. Let $x_{1}, \ldots, x_{n}$ be the sorted sequence of the $x$-coordinates of the points in $P$ and let $y_{1}, \ldots, y_{n}$ be the sorted sequence of $y$-coordinates of the points in $P$. Let $\mathcal{G}$ be the grid induced by the horizontal and vertical lines through the points in $P$ as well as by the horizontal lines $y=\frac{x_{i}+x_{i+1}}{2}$ and the vertical lines $x=\frac{y_{i}+y_{i+1}}{2}$ for $i=1, \ldots, n-1$. Then clearly, each point in $p \in P$ can be assigned a pair of integer coordinates $\left(i_{p}, j_{p}\right)$ by numbering the horizontal grid-lines from bottom to top and the vertical grid lines from left to right such that $\min \left\{\left|i_{p}-i_{q}\right|,\left|j_{p}-j_{q}\right|\right\} \geq 2$. Then the corollary immediately follows from Theorem 1.

As another consequence of Theorem 1 we obtain the following theorem for general point sets on the grid without the restriction on the horizontal and vertical distance of the points.

Theorem 2. Every tree with $n$ vertices and with maximum degree 4 admits a planar orthogeodesic point-set embedding on every general point set with $4 n$ points.

Proof: We prove that any set $P$ of $4 n$ points contains a subset of $n$ points such that no two points have a horizontal or vertical distance of less than two. The theorem then directly follows from Theorem 1. Let the points in $P$ be $p_{1}, \ldots, p_{4 n}$ sorted from left to right. Let $P_{2}$ consist of the points $p_{2 i}(1 \leq i \leq 2 n)$ and let $P_{1}=P \backslash P_{2}$. Clearly, the points in $P_{1}$ and $P_{2}$ have the desired horizontal spacing and one of the sets, say $P_{1}$ must contain at least $2 n$ points. Repeating the argument for $P_{1}$ in the vertical direction yields the claim.

For trees with maximum degree 3 , however, we can improve this result by showing that every such tree has a planar orthogeodesic point-set embedding on every general point set with $n$ points using at most two bends per edge. Hence, every general point set with $n$ points is universal for planar orthogeodesic point-set embeddings of trees with maximum degree 3 .

Theorem 3. Every tree with $n$ vertices and with maximum degree 3 admits a planar orthogeodesic point-set embedding on every general point set with $n$ points.


Fig. 2: Embedding a tree with maximum degree 3 on a set of $n$ points. (a) Embedding $r$. (b)-(c) Embedding $s$ with exactly one child. (d)-(g) Embedding $s$ with two children.

Proof: Let $T$ be a tree with maximum degree 3 and let $P$ be a general point set with $n$ points. We root $T$ in a leaf $r$. Let $w$ be the unique vertex incident to $r$. For a vertex $v$ in $T$ we denote the tree rooted in $v$ by $T_{v}$. Then we construct a point-set embedding of $T$ on $P$ as follows. First, we embed $r$ on the topmost point $p_{t}$ of $P$ and assign the subtree $T_{w}$ rooted in $w$ to the point set $P_{w}:=P \backslash\left\{p_{t}\right\}$ and an axis-parallel rectangle $R_{w}$ whose opposite corners are the left-bottom corner of the bounding-box of $P$ and the point one unit below the right-top corner of the bounding-box of $P$. We connect $r$ with the top border of $R_{w}$ by drawing a vertical segment from $p_{t}$ to the point $p^{*}$ one unit below $p_{t}$ as illustrated in Figure 2a with $r=p(v)$.

Next, we traverse $T$ in a top-down fashion. When considering the subtree $T_{v}$ of $T$ rooted in $v$ we suppose that $T_{v}$ has already been assigned to a pointset $P_{v}$ and an axis-parallel rectangle $R_{v}$ such that the following invariants hold.
(i) The sets $\left|T_{v}\right|$ and $\left|P_{v}\right|$ have equal size.
(ii) The set $P_{v}$ lies inside the rectangle $R_{v}$.
(iii) The parent $p(v)$ of $v$ lies outside of the rectangle $R_{v}$ and is connected to $R_{v}$ by a horizontal or vertical straight-line segment $\overline{p(v), p^{*}}$ such that $p^{*}$ is located on the boundary of $R_{v}$.
(iv) Let $T_{u}$ and $T_{v}$ be two subtrees of $T$. If $T_{u}$ is contained in $T_{v}$, then $R_{u}$ is contained inside $R_{v}$. Similarly, if $R_{v}$ is contained in $R_{u}$, then $R_{v}$ is contained inside $R_{u}$. If neither $T_{u}$ is contained in $T_{v}$ nor $T_{v}$ is contained in $T_{u}$, then $R_{u} \cap R_{v}=\emptyset$
(v) Let $T$ be a tree containing the edges $e=(p(v), v)$ and consider the straight-line segment $\sigma=\overline{p(v), p^{*}}$. Then $\sigma$ is contained in a rectangle $R_{v}$ such that $T_{v}$ has been assigned to $R_{v}$ if and only if $T_{v}$ contains $e$.

Clearly, these invariants are satisfied after we have handled $r$ as described above. Let $v$ be an internal vertex of $T$. Since $T$ has maximum degree 3 , the subtree rooted in $v$ has at most two children. Suppose that $p^{*}$ is on the top side of $R_{v}$; the cases in which $p^{*}$ is on the bottom, left, or right side of $R_{v}$ can be discussed analogously.

First, suppose that $v$ has one child $w$ and consider Figures 2a and 2b. We embed $v$ on the topmost point $p_{t}$ of $P_{v}$ and assign $T_{w}$ to the point set $P_{w}:=P_{v} \backslash\left\{p_{t}\right\}$ and
to the rectangle $R_{w}$ whose opposite corners are the left-bottom corner of $R_{v}$ and the point one unit below the right-top corner of $R_{v}$. Let $p^{*}$ be the point on the boundary of $R_{w}$ that is vertically below $p(v)$. and let $p^{\prime}$ be the point on the boundary of $R_{w}$ that is vertically above $v$. We connect $p(v)$ to $v$ extending the horizontal straight-line segment $\overline{p(v) p^{*}}$ that we have already drawn by the invariant by the horizontal segment $\overline{p^{*} p^{\prime}}$ and the horizontal segment $\overline{p^{\prime} v}$. Finally, we draw a vertical segment connecting $v$ to the top side of $R_{w}$ as illustrated in Figure 2b.

Next, suppose that $v$ has two children $w_{1}$ and $w_{2}$. Let $P_{w_{1}} \subset P_{v}$ denote the point set composed of the leftmost $\left|T_{w_{1}}\right|$ points of $P_{v}$ and let $P_{w_{2}}$ denote the point set composed of the rightmost $\left|T_{w_{2}}\right|$ points in $P_{v}$. Further, we denote the single remaining point in $P_{v} \backslash\left(P_{w_{1}} \cup P_{w_{2}}\right)$ by $p$. Let $p^{*}$ be the point on the boundary of $R_{v}$ vertically below $p(v)$ and let $p^{\prime}$ be the the point on the boundary of $R_{v}$ that is vertically above $p$. Then we assign $T_{w_{1}}$ the point set $P_{w_{1}}$ and to the rectangle $R_{w_{1}}$ whose opposite corners are the left-bottom corner of $R_{v}$ and the intersection point between the top side of $R_{v}$ and the vertical line one unit to the left of $p$. We consider two cases.

First, suppose that the straight-line segment $\overline{p^{*} p^{\prime}}$ does not contain any point in $P$. This case is illustrated in Figures 2c and 2d. We embed $v$ on $p$ and we assign $T_{w_{2}}$ the point set $P_{w_{2}}$ and the rectangle $R_{w_{2}}$ whose opposite corners are the right-bottom corner of $R_{v}$ and the intersection point between the top side of $R_{v}$ and the vertical line one unit to the right of $p$. Then we connect $p(v)$ to $v$ with an edge by extending the straight-line segment $\overline{p(s), p^{*}}$ by a horizontal segment $\overline{p^{*} p^{\prime}}$ and a vertical segment $\overline{p^{\prime} p}$. Finally, we draw a horizontal segment connecting $v$ with the right side of $R_{w_{1}}$. If and we draw a horizontal segment connecting $v$ with the left side of $R_{w_{2}}$ as illustrated in Figure 2d.

Second, suppose that the segment $\overline{p^{*} p^{\prime}}$ contains a point $q \in P$. This case is illustrated in Figures $2 \mathrm{e}-2 \mathrm{~h}$. We consider two sub-cases. First, suppose that $q=p$. Then we embed $v$ on $p$ and we assign $T_{w_{2}}$ the point set $P_{w_{2}}$ and the rectangle $R_{w_{2}}$ whose opposite corners are the right-bottom corner of $R_{v}$ and the point one unit below the intersection point between the top side of $R_{v}$ and the vertical line through $p$. We connect $p(v)$ to $v$ with an edge by extending the straight-line segment $\overline{p(s), p^{*}}$ by a horizontal segment $\overline{p^{*} p}$ as illustrated in Figure 2f. Second, suppose that $q \neq p$ Then we embed $v$ on $q$ and we assign assign $T_{w_{2}}$ to the point set $P_{w_{2}} \backslash\{q\} \cup\{p\}$ and to the rectangle $R_{w_{2}}$ whose opposite corners are the right-bottom corner of $R_{v}$ and the intersection point between the horizontal line one unit below the top side of $R_{v}$ and the vertical line through $p$. We connect $p(v)$ to $v$ by extending the vertical segment $\overline{p(s), p^{*}}$ by the horizontal segment $\overline{p^{*} q}$. Finally, in both cases, we draw a horizontal segment connecting $v$ with the right side of $R_{w_{1}}$ and we draw a vertical segment connecting $v$ with the left side of $R_{w_{2}}$ as illustrated in Figures 2f and 2h.

The case, when $v$ is a leaf is handled similar to the case when $v$ is an internal vertex with only one child.

Clearly, the invariants are maintained by the algorithm. The resulting drawing does not contain any crossings, since for each vertex $v$, the subtree $T_{v}$ rooted in $v$ is mapped to an axis-parallel rectangle that does not contain any vertex from $T-T_{v}$. Further, the constructed edges are orthogeodesic. Hence $P$ admits and orthogeodesic point-set embedding of $T$

A caterpillar is a tree such that by removing all leaves we are left with a path, called spine. In Theorem 2 we show that every tree with maximum degree 4 has a planar orthogeodesic point-set embedding on every general point set with $4 n$ points. For caterpillars with maximum degree 4 , however, this result is not tight.

Theorem 4. Every caterpillar with $n$ vertices and with maximum degree 4 admits a planar orthogeodesic point-set embedding on every general point set with $\lfloor 1.5 n\rfloor$ points.


Fig. 3: Embedding a caterpillar on a set of $\lfloor 1.5 n\rfloor$ points. (a)-(d) Embedding the spine $S^{+}$. (e) Embedding the leaves in $T$.

Proof: Let $C$ be a caterpillar with $n$ vertices and with maximum degree 4 and let $n_{i}$ denote the number of vertices of $C$ with degree $i=1, \ldots, 4$. Let $P^{*}$ be a general point set with $\lfloor 1.5 n\rfloor$ points. From $P^{*}$ we arbitrarily choose a point set $P$ of size $N=n+n_{3}+n_{4}$ points on which we embed $C$. First, we show that $N \leq 1.5 n$, which implies $N \leq\lfloor 1.5 n\rfloor$ since $N$ is a natural number. Suppose for contradiction that $n_{3}+n_{4}>n / 2$. Since each vertex with degree at least 3 is incident to a leaf this yields $n_{1} \geq n_{3}+n_{4}$. Summing up we have $n \geq n_{1}+n_{3}+n_{4} \geq 2\left(n_{3}+n_{4}\right)>n$, a contradiction.

Next, we show how to embed $C$ on $P$. Each vertex $v \in V$ is mapped to a point $\pi(v) \in P$. Let $S=\left(u_{1}, \ldots, u_{k}\right)$ be the spine of $C$ and let $u_{0}$ be a leaf incident to $u_{1}$ and let $u_{k+1}$ be a leaf incident to $u_{k}$. By $S^{+}$we denote the path $\left(u_{0}, u_{1}, \ldots, u_{k}, u_{k+1}\right)$. Then we consider the vertices $u_{i}$ for $i=1, \ldots, k$. If $u_{i}$ has two adjacent leaves not in $S^{+}$, label one of them "top" and one of them "bottom". If $u_{i}$ has one adjacent leaf not in $S^{+}$, arbitrarily label it "top" or "bottom". Let $B$ and $T$ be the sets of leaves of $C$ that have been labeled "bottom" and by "top", respectively.

Let $P_{T}$ be the subset of the highest $|T|$ points of $P$ and let $P_{B}$ be the subset of the lowest $|B|$ points. Further, let $Q=P \backslash\left(P_{T} \cup P_{B}\right)$ be the remaining points. By construction $Q$ contains $t=n_{2}+2\left(n_{3}+n_{4}\right)+2$ points. We embed $C$ on $P$ as follows.
(S1) The leaves in $T$ will be embedded on $P_{T}$, the leaves in $B$ will be embedded on $P_{B}$ and the vertices in $S^{+}$will be embedded on a subset $P_{S^{+}} \subseteq Q$.
(S2) The spine will be embedded as an $x$-monotone chain such that $u_{i}$ is left of $u_{i+1}$ for all $0 \leq i \leq k$.
(S3) Edge $\left\{u_{i}, u_{i+1}\right\}$ occupies the horizontal segment incident to $u_{i}$ on the right for all $0 \leq i \leq k$. If, additionally, the degree of $u_{i}$ is at least 3 , then edge $\left\{u_{i-1}, u_{i}\right\}$ occupies the horizontal segment incident to $u_{i}$ on the left for all $1 \leq i \leq k$.

Let $q_{1}, \ldots, q_{t}$ be the points in $Q$ sorted from left to right. First, we map $u_{0}$ to the leftmost point $q_{1}$ in $Q$. Suppose, we have mapped $u_{0}, \ldots, u_{i}$ for some $i<k+1$ and let $q_{j}=\pi\left(u_{i}\right)$. If $u_{i+1}$ has degree 2, then we map $u_{i+1}$ to $q_{j+1}$ and we connect $u_{i}$ and $u_{i+1}$ by an $L$-shaped orthogeodesic chain composed of a horizontal segment incident to $u_{i}$ and a vertical segment incident to $u_{i+1}$ as illustrated in Figures 3a and 3b. If $u_{i+1}$ has degree at least 3 , then we map $u_{i+1}$ to $q_{j+2}$ skipping the point $q_{j+1}$ in $Q$ and we connect $u_{i}$ by an orthogeodesic chain consisting of two horizontal segments incident to $u_{i}$ and $u_{i+1}$, respectively, and a vertical segment in the column to the left of $q_{j+2}$ as illustrated in Figures 3c and 3d. By construction, $u_{k+1}$ is mapped to a point $q_{j}$ such that $j \leq n_{2}+2\left(n_{3}+n_{4}\right)+2$ since we only skipped points for vertices with degree at least 3 .

Now we describe how to embed the leaves in $T$ on $P_{T}$. The leaves in $B$ are embedded on $P_{B}$ analogously. Let $w_{1}, \ldots, w_{|T|}$ be the vertices in $T$ sorted such that their corresponding vertices on the spine are sorted from left to right and let $T_{i}$ be the set of vertices in $T$ that are incident to vertices $u_{j}$ for $j<i$. For each $i$ with $1 \leq i \leq k$ let $P_{i}^{-}$be the set of points in $P_{T}$ to the left of $\pi\left(u_{i}\right)$ and let $P_{i}^{+}$be the set of points in $P_{T}$ to the right of $\pi\left(u_{i}\right)$, respectively, as illustrated in Figure 3e. Each leaf $w_{i}$ is mapped to a point $\pi\left(w_{i}\right)$ and is attached to the spine by an $L$-shaped orthogeodesic chain. We maintain the following invariant.
(L1) If $w_{i}$ is incident to $u_{j}$ and $\left|P_{j}^{-}\right|>\left|T_{j}\right|$, then $w_{i}$ is mapped to the lowest point $p \in P_{i}^{-} \backslash \bigcup_{l=1}^{i-1}\left\{\pi\left(w_{l}\right)\right\}$ by an $L$-shaped orthogeodesic chain consisting of the vertical segment incident to $\pi\left(u_{j}\right)$ and the horizontal segment incident to $p$. Otherwise, $w_{i}$ is mapped to the highest unused point in $P_{i}^{+} \backslash \bigcup_{l=1}^{i-1}\left\{\pi\left(w_{l}\right)\right\}$ as illustrated in Figure Figure 3 e.

The resulting point-set embedding is orthogeodesic by construction. Planarity follows from the invariants as follows.

Due to invariants (S1) and (S2) the spine is mapped to an $x$-monotone chain such that the angle at vertices with degree at least 3 is 180 degrees. This implies that the spine does not cross itself and that the vertical segments incident to the vertices with degree at least 3 are unoccupied by the spine. Since, by invariant ( $S 1$ ), we attached the leaves in $T$ above the spine and the leaves in $B$ below the spine, there cannot be a crossing between two edges incident to a leaf in $T$ and a leaf in $B$, respectively. Suppose for contradiction that there is a crossing between two edges $e_{i}$ and $e_{j}$ incident to two leaves $w_{i}$ and $w_{j}$ in $T$, respectively. Without loss of generality we assume $i<j$. If $\pi\left(w_{i}\right) \in P_{i}^{-}$and $\pi\left(w_{j}\right) \in P_{j}^{+}$ there cannot be a crossing by construction. If $\pi\left(w_{i}\right) \in P_{i}^{-} \subseteq P_{j}^{-}$and $\pi\left(w_{j}\right) \in P_{j}^{-}$, then a crossing can only occur if $\pi\left(w_{j}\right) \in P_{i}^{-}$and $\pi\left(w_{j}\right)$ is below $\pi\left(w_{i}\right)$, which contradicts invariant (L1). Analogously, if $\pi\left(w_{i}\right) \in P_{i}^{+}$and $\pi\left(w_{j}\right) \in P_{j}^{+} \subseteq P_{i}^{+}$, then a crossing can only occur if $\pi\left(w_{i}\right) \in P_{j}^{+}$and $\pi\left(w_{i}\right)$ is below $\pi\left(w_{j}\right)$, which contradicts invariant (L1). Finally, if $\pi\left(w_{j}\right) \in P_{i}^{-}$and $\pi\left(w_{i}\right) \in P_{j}^{+} \subseteq P_{i}^{+}$, then this contradicts invariant (L1), since $w_{i}$ is only mapped to a point in $P_{i}^{+}$if there is no unused point in $P_{i}^{-}$. Therefore, the embedding is crossing-free, which concludes the proof.

## 3 Planar L-Shaped Orthogeodesic Pointset Embeddings

Next, we consider planar $L$-shaped orthogeodesic point-set embeddings of trees. First we prove that every tree with $n$ vertices and with maximum degree 4 admits a planar $L$-shaped point-set embedding on every general point set with $n^{2}-2 n+2$ points. Every point set of this size contains a diagonal point set, which is universal for planar $L$ shaped point-set embeddings of trees with maximum degree 4 . Let $P$ be a point set and let $p_{1}, \ldots, p_{n}$ denote the points in $P$ ordered by increasing $x$-coordinates. Then we refer to $P$ as a positive-diagonal point set if $y\left(p_{i+1}\right)>y\left(p_{i}\right)$ for every $i=1, \ldots, n-1$. Similarly, we refer to $P$ as a negative-diagonal point set if $y\left(p_{i+1}\right)<y\left(p_{i}\right)$ for every $i=1, \ldots, n-1$. If $P$ is either a positive-diagonal point set or a negative-diagonal point set, then we call $P$ a diagonal point set. First, we show that any diagonal point set is universal for $L$-shaped orthogeodesic point-set embeddings of trees with maximum degree 4.

Theorem 5. Every tree with $n$ vertices and with maximum degree 4 admits a planar L-shaped point-set embedding on every diagonal point set with $n$ points.


Fig. 4: Orthogeodesic point-set embedding of a tree with maximum degree 4 on a (positive-)diagonal point set.

Proof: Suppose that $P$ is a positive-diagonal point set and let $T$ be a tree with $n$ vertices and with maximum degree 4 . The case, when $P$ is a negative-diagonal point set can be handled similarly. We root $T$ in a vertex $r$ with degree at most 3 . By induction, we prove that $T$ admits an orthogeodesic planar $L$-shaped point-set embedding on every diagonal point set with $n$ points such that there is no edge overlapping or crossing a halfline $h$ arbitrarily chosen among the two horizontal and two vertical half-lines starting at $r$.

In the base case $n=1$ and the statement is trivially true. Suppose that the claim of the theorem is true for all $n^{\prime}<n$. We show that $T$ admits an orthogeodesic planar $L$-shaped point-set embedding on every diagonal point set $P$ with $n$ points such that no edge overlaps or crosses the vertical half-line $h$ starting at $r$ in the upward direction. The cases, when no edge overlaps the vertical half-line starting at $r$ in the downward direction or the horizontal half-lines starting at $r$ in the leftward or rightward direction, respectively, are handled analogously. Let $r_{1}, \ldots r_{k}$ denote the children of $r$, that is, $k \leq 3$. Further, let $n_{i}$ denote the number of vertices of the subtree $T_{i}$ rooted in $r_{i}$ for $i=1, \ldots, k$. If $r$ has less than 3 children, we set $n_{i}=0$ for $k<i \leq 3$. Let $P_{1}, P_{2}$, and $P_{3}$ be the point sets consisting of the bottommost $n_{1}$ points of $P$, the bottommost $n_{2}$ points of $P \backslash P_{1}$, and of the topmost $n_{3}$ points of $P$, respectively. Further, let $p$ be the unique point in $P \backslash\left(P_{1} \cup P_{2} \cup P_{3}\right)$. By induction hypothesis, we can embed $T_{i}$ on $P_{i}$ for $1 \leq i \leq k$ as illustrated in Figure 4a such that no edge of $T_{1}$ intersects vertical half-line $h_{1}$ starting at $r_{1}$ in the upward direction, no edge of $T_{2}$ intersects the horizontal half-line $h_{2}$ starting at $r_{2}$ in the rightward direction and such that no edge of $T_{3}$ intersects the vertical halfline $h_{3}$ starting at $r_{3}$ in the downward direction. Since the bounding boxes of the point sets $P_{1}, P_{2}$ and $P_{3}$ are disjoint and since the geodesic chains corresponding to the edges of $T_{1}, T_{2}$ and $T_{3}$, respectively, are contained inside the bounding boxes of their respective point sets, the resulting embedding is crossing-free.

Then we embed $r$ on $p$ and we connect $r$ to $r_{1}, \ldots, r_{k}$ as illustrated in Figure 4b. That is, we connect $r$ to $r_{i}$ using the horizontal or vertical segment on $h_{i}$ and the the straight-line segment incident to $r$ that is orthogonal to $h_{i}$ for all $1 \leq i \leq k$. By the choice of $h_{i}$ for $1 \leq i \leq k$, the edges are mapped to no-intersecting orthogeodesic chains and we do not use or cross the vertical half-line $h$ starting at $r$ in the upward direction. This concludes the induction step.

According to the Erdős-Szekeres theorem [9], every general point set with $n^{2}-2 n+2$ points contains either a positive-diagonal point set with $n$ points or a negative-diagonal point set with $n$ points. Hence, from Theorem 5 we immediately obtain the following theorem.

Theorem 6. Every tree with $n$ vertices and with maximum degree 4 admits a planar $L$-shaped point-set embedding on every general point set with $n^{2}-2 n+2$ points.

For caterpillars with maximum degree 4 we can improve the bound of Theorem 6 as the following theorem shows.

Theorem 7. Every caterpillar with $n$ vertices and with maximum degree 4 admits a planar L-shaped point-set embedding on every general point set with $3 n-2$ points.

Proof: Let $C$ be a caterpillar with $n$ vertices and with maximum degree 4 and let $P$ be a general point set with $3 n-2$ points. Let $\left(u_{2}, \ldots, u_{k-1}\right)$ be the spine of $C$ and let $u_{1}$ and $u_{k}$ be two leaves of $C$ adjacent to $u_{2}$ and to $u_{k-1}$, respectively. Let $L$ denote the set of vertices of $C$ containing all leaves of $C$, except $u_{1}$ and $u_{k}$. For $i=1, \ldots, k-1$ we let $C_{i}$ denote the subtree of $C$ induced by the vertices $u_{1}, \ldots, u_{i}$ and by their adjacent leaves in $C-u_{k}$ and we let $C_{k}:=C$. Observe that $C_{i}$ is a caterpillar, for $i=1, \ldots, k$. By induction on $i$ we prove that $C_{i}$ admits a planar $L$-shaped point-set embedding on every general point set with $3\left|C_{i}\right|-2$ points for all $i=1, \ldots, k$, such that the following invariant is satisfied.
(C1) The horizontal half-line starting at $u_{i}$ directed rightward does not intersect any edge of the constructed drawing of $C_{i}$.

For $i=1$ we have $\left|C_{1}\right|=1$ and the induction hypothesis is trivially true. Suppose that the induction hypothesis is true for $i-1$ and consider an arbitrary point set $P_{i}$ with $3\left|C_{i}\right|-2$ points. By $P_{i-1}$ we denote the point set consisting of the leftmost $3\left|C_{i-1}\right|-2$ points of $P_{i}$. Using the induction hypothesis, we can construct an orthogeodesic planar $L$ shaped point-set embedding of $C_{i-1}$ on $P_{i-1}$ such that the horizontal half-line starting at $u_{i-1}$ in the rightward direction is not intersected by any edge of the constructed embedding. We distinguish three cases.

First, assume that $u_{i}$ is not adjacent to a leaf in $L$. Then, embed $u_{i}$ on the rightmost point of $P_{i}$. Such a point exists since $\left|P_{i} \backslash P_{i-1}\right|=3$. We connect $u_{i}$ with $u_{i-1}$ by an $L$ shaped edge using a horizontal straight-line segment incident to $u_{i-1}$ that neither used nor crossed by any other edge by the induction hypothesis and a vertical straight-line segment attached to $u_{i}$.

Second, assume that $u_{i}$ is adjacent to exactly one leaf $a_{i}$ and consider the three leftmost points of $P_{i} \backslash P_{i-1}$. These points exist since $\left|P_{i} \backslash P_{i-1}\right|=6$. Then, either two of the three points are above the horizontal line $h_{i-1}$ through $u_{i-1}$ or two of the points are below $h_{i-1}$. Suppose that two of the points, say $p_{1}$ and $p_{2}$, are above $h_{i-1}$. The other case can be handled in a similar fashion. Without loss of generality we may assume that $p_{1}$ is to the left of $p_{2}$. Then, we embed $u_{i}$ on the rightmost point $p_{2}$ and we embed $a_{i}$ on the leftmost point $p_{1}$. Further, we connect $u_{i}$ with $u_{i-1}$ by an $L$-shaped edge horizontally attached to $u_{i-1}$ and vertically attached to $u_{i}$ and we connect $u_{i}$ with $a_{i}$ by an $L$-shaped edge horizontally attached to $u_{i}$ and vertically attached to $a_{i}$.

Third, assume that $u_{i}$ is adjacent to two leaves $a_{i}$ and $b_{i}$ and consider the nine leftmost points of $P_{i} \backslash P_{i-1}$. These points exist since $\left|P_{i} \backslash P_{i-1}\right|=9$. Then, either five of such nine points are above the horizontal line $h_{i-1}$ through $u_{i-1}$ or five are below. Suppose that five points $p_{1}, \ldots, p_{5}$ are above $h_{i-1}$. The other case can be handled in a similar fashion. As a consequence of the Erdős-Szekeres-Theorem [9] every general point set with at least 5 points contains a diagonal point set with 3 points, hence the points $p_{1}, \ldots p_{5}$ contain a diagonal pointset Without loss of generality we may assume that $p_{1}, \ldots, p_{3}$ form a diagonal pointset and that $x\left(p_{1}\right)<x\left(p_{2}\right)<x\left(p_{3}\right)$. If $y\left(p_{1}\right)<$ $y\left(p_{2}\right)<y\left(p_{3}\right)$ as illustrated in Figure 5a), that is, if the points $p_{1}, \ldots, p_{3}$ form a positivediagonal point set, then we embed $u_{i}$ on $p_{2}, a_{i}$ on $p_{1}$ and $b_{i}$ on $p_{3}$. Similarly, if $y\left(p_{1}\right)>$


Fig. 5: Planar $L$-shaped point-set embedding of caterpillars on general point sets. (a) $y\left(p_{1}\right)<y\left(p_{2}\right)<y\left(p_{3}\right)$. (b) $y\left(p_{1}\right)>y\left(p_{2}\right)>y\left(p_{3}\right)$.
$y\left(p_{2}\right)>y\left(p_{3}\right)$ as illustrated in Figure 5 b$)$, that is if the points $p_{1}, \ldots, p_{3}$ for a negativediagonal point set, then we embed $u_{i}$ on $p_{3}, a_{i}$ on $p_{2}$ and $b_{i}$ on $p_{1}$. In both cases, we connect $u_{i}$ with $u_{i-1}$ by an $L$-shaped edge that is horizontally attached to $u_{i-1}$ and vertically attached to $u_{i}$ and we connect $u_{i}$ to $a_{i}$ by an $L$-shaped edge horizontally attached to $u_{i}$ and vertically attached to $a_{i}$, and we connect $u_{i}$ to $b_{i}$ by an $L$-shaped edge vertically attached to $u_{i}$ and horizontally attached to $b_{i}$ as illustrated in Figures 5a) and 5 b ), respectively. Note that we did not use or cross the horizontal half-line starting at $u_{i}$ in the rightward direction. Hence, the invariant (C1) is maintained, which concludes the induction.

For caterpillars with maximum degree 3 we can improve this bound even further by showing that every such a caterpillar can be embedded on every general point set with $n$ points using $L$-shaped edges.

Theorem 8. Every caterpillar with $n$ vertices and with maximum degree 3 admits a planar L-shaped point-set embedding on every general point set with $n$ points.

Proof: Let $C$ be a caterpillar with $n$ vertices and let $P$ be a general point set consisting of $n$ points $p_{1}, \ldots, p_{n}$. Assume that the points are sorted such that $x\left(p_{i}\right)<$ $x\left(p_{i+1}\right)$ for all $1 \leq i \leq n-1$ and let $P_{i}:=\left\{p_{1}, \ldots, p_{i}\right\}$. Let $u_{2}, \ldots, u_{k-1}$ denote the spine of $C$ and let $u_{1}$ and $u_{k}$ be two vertices adjacent to $u_{2}$ and $u_{k-1}$, respectively. Let $C_{i}$ be the sub-tree of $C-u_{k}$ induced by the vertices $u_{1}, \ldots, u_{i}$ and the leaves incident to these vertices for $1 \leq i \leq k-1$. Further, let $C_{k}:=C$.

By induction on $i$ we prove that we can find a planar $L$-shaped point-set embedding of $C_{i}$ on $P_{j}$ such that $u_{i}$ such that the following invariants are maintained.
(C1) The size of $\left|P_{j}\right|$ equals the size of $C_{i}$, that is, $j=\left|C_{i}\right|$.
(C2) The vertex $u_{i}$ is mapped either to $p_{j}$ or to $p_{j-1}$.
(C3) Both the horizontal half-line $h_{i}$ starting at $p_{j}$ in the rightward direction as well at least one vertical half-line $\ell_{i}$ starting at $p_{j}$ either in the upward or in the downward direction do not intersect the drawing of $C_{i}$.

The induction hypothesis is trivially true for $i=1$. We map $u_{1}$ to $p_{1}$ and let $h_{1}$ denote the horizontal half-line starting at $p_{1}$ in the rightward direction. Further, we let $\ell_{1}$ denote the vertical half-line starting at $p_{1}$ in the downward direction. Now, suppose that the induction hypothesis is true for $i-1$ and consider the caterpillar $C_{i}$. By the induction hypothesis, we can find a planar $L$-shaped point-set embedding of $C_{i-1}$ on $P_{j}$ such that $j=\left|C_{i-1}\right|$. Assume, without loss of generality, that $\ell_{i-1}$ denotes the vertical half-line starting at $u_{i-1}$ in the downward direction as illustrated in Figure 6a and suppose that $u_{i-1}$ is mapped to $p_{c}$ such that $c \in\left\{\left|C_{i}\right|,\left|C_{i-1}\right|\right\}$.

First, suppose that $u_{i}$ has degree at most two, that is it is adjacent to at most two vertices $u_{i-1}$ and, possibly, $u_{i+1}$ if it exists. Then we map $u_{i}$ to $p_{c+1}$ and connect $u_{i}$


Fig. 6: Orthogeodesic planar $L$-shaped point-set embedding of a caterpillar with maximum degree 3.
to $u_{i-1}$ by an $L$-shaped edge that is horizontally attached to $u_{i-1}$ and vertically attached to $u_{i}$. Clearly the invariants are maintained.

Second, suppose that $u_{i}$ has degree three, that is $i<k$ and $u_{i}$ is adjacent to two vertices $u_{i-1}$ and $u_{i+1}$ as well as an additional leaf $w_{i}$. Note that $\left|C_{i}\right|=c+2$, that is, $\left|C_{i}\right|-\left|C_{i-1}\right|=2$. Let $p_{b}$ and $p_{t}$ denote the two vertices in $P_{\left|C_{i}\right|} \backslash P_{\left|C_{i-1}\right|}$ such that $y\left(p_{b}\right)<y\left(p_{t}\right)$, that is $p_{b}$ is below $p_{t}$. We distinguish two sub-cases.

First, suppose that $p_{b}$ is below the vertical half-line $h_{i-1}$ as illustrated in Figures 6a and 6 c . Then we map $u_{i}$ to $p_{b}$ and we map $w_{i}$ to $p_{t}$. Further, we connect $u_{i-1}$ to $u_{i}$ by an $L$-shaped edge that is vertically attached to $u_{i-1}$ and horizontally attached to $u_{i}$ and we attach $w_{i}$ to $u_{i}$ by an $L$-shaped edge that is vertically attached to $u_{i}$ and horizontally attached to $w_{i}$ as illustrated in Figures 6 b and 6 d . This way, the horizontal half-line $h_{i}$ starting at $u_{i}$ in the rightward direction as well as the vertical half-line $\ell_{i}$ starting at $u_{i}$ in the downward direction do not intersect the constructed embedding. Hence, the invariants are maintained.

Second, suppose that $p_{b}$ is above the vertical half-line $h_{i-1}$, that is, $p_{t}$ is also above $h_{i-1}$ as illustrated in Figures 6 e and 6 g . We map $u_{i}$ to the rightmost point of $p_{b}$ and $p_{t}$ and we map $w_{i}$ to the leftmost point of $p_{b}$ and $p_{t}$, respectively. Further, we connect $u_{i}$ to $u_{i-1}$ by an $L$-shaped edge that is horizontally attached to $u_{i-1}$ and vertically attached to $u_{i}$ and we connect $w_{i}$ to $u_{i}$ by an $L$-shaped edge that is horizontally attached to $u_{i}$ and vertically attached to $w_{i}$ as illustrated in Figures 6 f and 6 h. Note that the newly constructed edges do not intersect. Clearly, the constructed embedding does not intersect the horizontal half-line $h_{i}$ starting at $u_{i}$ in the rightward direction and the vertical half-line $\ell_{i}$ starting at $u_{i}$ in the upward direction. Hence, the invariants are maintained. This concludes the induction.

## 4 Non-Planar L-Shaped Orthogeodesic Point-Set Embeddings

Next, we consider non-planar $L$-shaped orthogeodesic point-set embeddings. We start by showing that every tree with $n$ vertices as a non-planar $L$-shaped orthogeodesic point-set embedding on every general point set with $4 n-3$ points.

Theorem 9. Every tree with $n$ vertices and with maximum degree 4 admits a non-planar $L$-shaped point-set embedding on every general point set with $4 n-3$ points.


Fig. 7: Non-planar $L$-shaped point-set embedding of a tree with maximum degree 4.

Proof: Let $T=(V, E)$ be a tree with $n$ vertices and let $P$ be a general point set with $4 n-3$ points. Let $T$ be rooted in a leaf $r \in V$ and let the vertices of $T$ be labeled $r=v_{1}, \ldots, v_{n}$ according to a depth-first search in $T$. Let $Q_{n}=P$. For $n \geq i \geq 1$, let $P_{i}$ consist of the points on the boundary of the bounding box of $Q_{i}$, and for $n \geq i \geq 2$ let $Q_{i-1}=Q_{i} \backslash P_{i}$ as illustrated in Figure 7a. Since the boundary of the bounding box of a general point set contains at least two and at most four points, and since $P$ contains $4 n-3$ points, we have that each set $P_{i}$ contains at least two and at most four vertices, except for $P_{1}$, which contains at least one vertex.

We embed $T$ using $L$-shaped orthogeodesic chains such that vertex $v_{i}$ is mapped to a point in $P_{i}$ for all $1 \leq i \leq n$. We start by mapping the root $v_{1}$ to an arbitrary point $p^{*} \in P_{1}$. Suppose we have embedded all vertices $v_{1}, \ldots v_{i}$ for some $i \geq 1$ and we would like to embed $v_{i+1}$. Since the vertices are ordered according to a depth-first search, we have already embedded the parent $v_{j}$ of $v_{i+1}$. Further, the vertices $v_{1}, \ldots, v_{j}$ have been embedded inside the bounding box of the point set $Q_{i}$ which in the interior of the bounding box of the points in $Q_{i+1}$. Since $v_{j}$ has degree at most 4 and since, we have not yet mapped $v_{i+1}$, at least one of the segments incident to $v_{j}$ in the drawing is unoccupied by the drawing. Without loss of generality we may assume that the vertical segment above $v_{j}$ is unoccupied (otherwise we can rotate the instance accordingly). By construction the points in $P_{i+1}$ are on the bounding box of $Q_{i+1}$, which contains $Q_{i}$ in its interior. Hence, $P_{i+1}$ contains a point $p_{t}$ on the top side of the bounding box of $Q_{i+1}$. Then we map $v_{i+1}$ to $p_{t}$ and we connect it to $v_{j}$ by an $L$-shaped edge that is vertically attached to $v_{j}$ and horizontally attached to $p_{t}$ as illustrated in Figure 7b.

Next, we improve on this by showing that a general point set of size $n$ allows an $L$ shaped point-set embedding for the class of trees with $n$ vertices and maximum degree 3 .

Theorem 10. Every tree with $n$ vertices and with maximum degree 3 admits a nonplanar L-shaped point-set embedding on every general point set with $n$ points.

Proof: Let $T$ be a tree with $n$ vertices and with maximum degree 3 and let $P$ be a general point set with $n$ points. Assume that $T$ is rooted in a vertex $r$ with degree at most 2 . By induction on $n$ we prove that we can find an $L$-shaped point-set embedding of $T$ on $P$ such that none of the edges occupies the vertical line through $r$.

If $n=1$, we map the single vertex of $T$ to the single point in $P$ and we are done. Suppose that the induction hypothesis holds for all $n^{\prime}<n$. Let $n_{1} \geq 0$ and $n_{2} \geq 0$ denote the number of vertices in the subtrees $T_{1}$ and $T_{2}$ rooted at the children $r_{1}$ and $r_{2}$ of $r$, respectively. Further, let $P_{1}$ and $P_{2}$ be the point sets consisting of the leftmost $n_{1}$ points and the rightmost $n_{2}$ points of $P$, respectively. Let $p$ be the unique point of $P$ not in $P_{1}$ and not in $P_{2}$. Then we embed $r$ on $p$. By induction we can find an $L$-shaped point set embedding of $T_{1}$ on $P_{1}$ and of $T_{2}$ on $P_{2}$ such that the vertical line through $r_{1}$ and $r_{2}$


Fig. 8: Non-planar $L$-shaped point-set embedding of a tree on a general point set.
is unoccupied by any edge of the resulting drawings, respectively. Then, we connect $r$ to $r_{1}$ by an $L$-shaped edge that is horizontally attached to $r$ and vertically attached to $r_{1}$. Similarly, we connect $r$ to $r_{2}$ by an $L$-shaped edge that is horizontally attached to $r$ and vertically attached to $r_{2}$ as illustrated in Figure 8. Since the constructed edges are attached to $r$ horizontally and since the embeddings of $T_{1}$ and $T_{2}$ are contained in the bounding boxes of their respective point sets, which do not intersect the vertical line through $r$, the maintain the invariant as claimed, which concludes the induction step.

For caterpillars with maximum degree 4 we can improve this by showing that every general point set with $n+1$ points admits an orthogeodesic $L$-shaped point-set embedding of every caterpillar with $n$ vertices and with maximum degree 4 .

Theorem 11. Every caterpillar with $n$ vertices and with maximum degree 4 admits a non-planar L-shaped orthogeodesic point-set embedding on every general point set with $n+1$ points.

Proof: Let $P$ be a general point set with $n+1$ points. Let $C$ be a caterpillar with maximum degree 4 and let $\left(u_{1}, \ldots, u_{k}\right)$ denote the vertices of its spine. Further, let $S^{+}$ denote the path $\left(u_{0}, u_{1}, \ldots, u_{k}, u_{k+1}\right)$ where $u_{0}$ and $u_{k+1}$ are two leaves incident to $u_{1}$ and $u_{k}$, respectively. We embed $C$ on $P$ using $L$-shaped orthogeodesic chains for the edges such that the following invariants are maintained.
(S1) The spine is embedded as a monotone chain starting in the leftmost point in $P$.
(S2) The spine leaves each vertex along the horizontal segment to its right and enters each vertex along a vertical segment either above or below it.
(S3) All but possibly one point to the left of $u_{i}$ are occupied by the vertices $u_{j}$ for $i<j$ and the leaves adjacent to these vertices.

By applying (S3) to $u_{k+1}$ it is clear that $n+1$ points are sufficient for the embedding.
First, we embed $u_{0}$ on the leftmost point in $P$. Suppose we have mapped all vertices $u_{0}, \ldots, u_{i}$ for some $0 \leq i \leq k$. Let $u_{i}$ be mapped to $p_{j}$ and let $P_{i}^{+}$be the remaining points to the right of $u_{i}$ that are not yet occupied by a point.

In order to embed $u_{i+1}$ as well as the leaves incident to it, we distinguish four cases: Case 1: $u_{i+1}$ has degree at most two. Let $p$ be the leftmost point in $P_{i}^{+}$. We map $u_{i+1}$ to $p$ and connect it to $u_{i}$ an $L$-shaped orthogeodesic chain as illustrated in Figures 9a and 9b.

Case 2: $u_{i+1}$ has degree 3. Let $w$ be a leaf incident to $u_{i+1}$. Let $p_{1}$ be the leftmost point in $P_{i}^{+}$and let $p_{2}$ be the leftmost point in $P_{i}^{+}$to the right of $p_{1}$. We map $u_{i+1}$ to $p_{2}$ and connect it to $u_{i}$ by an $L$-shaped orthogeodesic chain starting with a horizontal segment in $u_{i+1}$. Further, we map $w$ to $p_{1}$ and connect it to $u_{i+1}$ by the horizontal


Fig. 9: Embedding a caterpillar on $n+1$ points using $L$-shaped edges.
segment incident to $p_{2}$ to the left and the vertical segment incident to $p_{1}$ as illustrated in Figures 9c and 9d.

Case 3: $u_{i+1}$ has degree 4 and there is no unoccupied point to the left of $u_{i}$. Let $w_{1}$ and $w_{2}$ be two leaves incident to $u_{i+1}$. Recall that we assumed that the vertex $u_{i}$ be mapped to a point $p_{j}$. Let $p^{*}$ be the leftmost point in $P_{i}^{+}$with the following property.

Either (i) $p^{*}$ is above $p_{j}$ and $p^{*}$ contains two distinct points $p_{\ell}$ and $p_{t}$ to its left and above, respectively, as illustrated in Figures 9 e and 9 g or, similarly, (ii) $p^{*}$ is below $p_{j}$ and $p^{*}$ contains two distinct points $p_{\ell}$ and $p_{b}$ to its left and below, respectively.

Let $Q$ denote the set of the leftmost 4 points in $P_{i}^{+}$. We claim that $Q$ contains a point $p^{*}$ with the desired property. Let $p_{t}$ be the topmost point in $Q$ and let $p_{b}$ be the bottommost point in $Q$. Further, let $p_{\ell}$ be the leftmost point such that $p_{\ell} \neq p_{t}, p_{b}$ and let $q$ be the remaining point. By construction, $q$ has the desired properties. Hence, there can be at most three points to the left of $p^{*}$.

We assume that $p^{*}$ is above $p_{j}$ as illustrated in Figures 9 e and 9 g , respectively. The case when $p^{*}$ is below $p_{j}$ is analogous. First, we consider the case that there are only two points in $P_{i}^{+}$to the left of $p^{*}$, namely a point $p_{t}$ above $p^{*}$ and a point $p_{\ell}$ left of $p^{*}$ as illustrated in Figure 9e. We map $u_{i+1}$ to $p^{*}$ and connect it to $u_{i}$ by an $L$-shaped orthogeodesic chain consisting of the horizontal segment incident to $u_{i}$ and the vertical segment incident to $u_{i+1}$. Further, we map $w_{1}$ to $p_{\ell}$ and connect it to $p^{*}$ by an $L$-shaped orthogeodesic chain consisting of the horizontal segment incident to $p^{*}$ and the vertical segment incident to $p_{\ell}$. Further, we map $w_{2}$ to $p_{t}$ and connect it by the respective orthogeodesic chain as illustrated in Figure 9f.

Next, we consider the case that there are three points to the left of $p^{*}$ as illustrated in Figure 9 g . Let $Q, p_{t}, p_{b}$ and $p_{\ell}$ be chosen as described above. We embed $u_{i+1}$ on $p^{*}$, $w_{1}$ on $p_{\ell}$ and $w_{2}$ on $p_{t}$ as in the above description and we leave the point $p_{b}$ to the left of $p^{*}$ unused as illustrated in Figure 9h.

Case 4: $u_{i+1}$ has degree 4 and there is a single unoccupied point $p^{-}$to the left of $u_{i}$. This case is analogous to the Case 3 , except that we do not require that $p^{*}$ contains a point $p_{\ell}$ to its left in $P_{i}^{+}$, since $p^{-}$will substitute $p_{\ell}$. Note that, as in Case 3 , one single point to the left of $p^{*}$ may remain unoccupied as illustrated in Figures 9 i and 9 j .

## 5 Conclusions

In this paper we studied orthogeodesic point-set embeddings of trees on the grid. For various types of drawings $\mathcal{D}$ and various families of trees $\mathcal{F}$ we proved upper bounds on the minimum value $f(n)$ such that every $n$-vertex tree in $\mathcal{F}$ admits a point-set embedding of type $\mathcal{D}$ on every point set of size $f(n)$. Since $n$ is a trivial lower bound for $f(n)$ in all considered variants of the problem and since the upper bounds we provided are larger than $n$ for some of the considered variants, it is an interesting topic for future research to close the gap between $n$ and $f(n)$. The gap is especially large for planar $L$-shaped pointset embeddings for which we only proved a quadratic upper bound. Hence it would be interesting to come up with a sub-quadratic upper bound or a non-trivial lower bound. Further, we restricted our attention to trees, but we may consider the same problem for different classes of graphs.

## References

1. M. Badent, E. Di Giacomo, and G. Liotta. Drawing colored graphs on colored points. Theoretical Computer Science, 408(2-3):129-142, 2008.
2. P. Bose. On embedding an outer-planar graph on a point set. Computational Geometry: Theory and Applications, 23:303-312, 2002.
3. P. Bose, M. McAllister, and J. Snoeyink. Optimal algorithms to embed trees in a point set. Journal of Graph Algorithms and Applications, 2(1):1-15, 1997.
4. F. J. Brandenburg. Drawing planar graphs on $\frac{8}{9} n^{2}$ area. Electronic Notes in Discrete Mathematics, 31:37-40, 2008.
5. S. Cabello. Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. Journal of Graph Algorithms and Applications, 10(2):353-366, 2006.
6. E. Di Giacomo, F. Frati, R. Fulek, L. Grilli, and M. Krug. Orthogeodesic Point-Set Embedding of Trees. In Proceedings of the 19th International Symposium on Graph Drawing (GD'11), Lecture Notes in Computer Science. Springer, 2012. to appear.
7. E. Di Giacomo, L. Grilli, M. Krug, G. Liotta, and I. Rutter. Hamiltonian orthogeodesic alternating paths. In Proceeding of IWOCA 2011, LNCS, 2011. To appear.
8. E. Di Giacomo, G. Liotta, and F. Trotta. Drawing colored graphs with constrained vertex positions and few bends per edge. Algorithmica, 57:796-818, 2010.
9. P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica, 2:463-470, 1935.
10. H. Everett, S. Lazard, G. Liotta, and S. Wismath. Universal sets of $n$ points for onebend drawings of planar graphs with $n$ vertices. Discrete and Computational Geometry, 43:272-288, 2010.
11. M. Fink, J.-H. Haunert, T. Mchedlidze, J. Spoerhase, and A. Wolff. Drawing graphs with vertices at specified positions and crossings at large angles. pre-print, July 2011. arXiv:1107.4970v1.
12. P. Gritzmann, B. Mohar, J. Pach, and R. Pollack. Embedding a planar triangulation with vertices at specified points. Amer. Math. Monthly, 98(2):165-166, 1991.
13. B. Katz, M. Krug, I. Rutter, and A. Wolff. Manhattan-geodesic embedding of planar graphs. In Proc. of Graph Drawing, pages 207-218, 2009.
14. M. Kaufmann and R. Wiese. Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications, 6(1):115-129, 2002.
15. M. Kurowski. A 1.235 lower bound on the number of points needed to draw all $n$-vertex planar graphs. Information Processing Letters, 92(2):95-98, 2004.

[^0]:    * Initiated during the "Bertinoro Workshop on Graph Drawing", Bertinoro, Italy, March 2011.
    ** Supported by the Swiss National Science Foundation Grant No.200021-125287/1.

[^1]:    ${ }^{1}$ Fink et al. [11] have independently obtained this result.

