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Abstract. Let S be a set of N grid points in the plane, and let G a graph with
n vertices (n ≤ N). An orthogeodesic point-set embedding of G on S is a drawing
of G such that each vertex is drawn as a point of S and each edge is a chain of
horizontal and vertical segments with bends on grid points whose length is equal
to the Manhattan distance of its end vertices. We study the following problem.
Given a family of trees F what is the minimum value f(n) such that every n-
vertex tree in F admits an orthogeodesic point-set embedding on every grid-point
set of size f(n)? We provide polynomial upper bounds on f(n) for both planar
and non-planar orthogeodesic point-set embeddings as well as for the case when
edges are required to be L-shaped chains. This report is an extended version of
a paper by the same authors that is to appear in [6].

1 Introduction

Let S be a set of N points in the plane, and let G be an graph with n vertices such that
n ≤ N . A point-set embedding of G on S is a drawing of G such that each vertex of G is
drawn as a point of S. If, in addition, the drawing of G is crossing-free, that is, edges are
not allowed to intersect in their interior, then the point-set embedding is called planar.
Point-set embeddings are a classical subject of investigation in graph drawing from both
an algorithmic and a combinatorial point of view. From the algorithmic point of view
we are typically interested in deciding whether a given graph has point-set embedding
on a given set of points. From the combinatorial perspective, however, we typically
wish to characterize point sets that admit point-set embeddings for a whole class of
graphs, such as trees or planar graphs. Different types of point-set embeddings have
been defined depending on the desired type of drawing, that is, depending on how the
edges are mapped to the plane. Point-set embeddings have been considered for various
classes of graphs, such trees, planar graphs and outerplanar graphs as well as for various
types of drawings, such as straight-line drawings and polyline drawings.

Several algorithmic results are known for point-set embeddings in which edges are
required to be straight-line segments. Deciding whether a planar graph admits a straight-
line planar point-set embedding on a given point set is an NP-complete problem [5], while
straight-line planar point-set embeddings of trees [3] and outerplanar graphs [2] can be
computed efficiently. From the combinatorial perspective, Gritzmann et al. [12] prove
that every planar graph with n vertices admits a straight-line planar point-set embedding
on every set of n points in general position if and only if it is outerplanar. Kaufmann

? Initiated during the “Bertinoro Workshop on Graph Drawing”, Bertinoro, Italy, March 2011.
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Table 1: Summary of the results in the paper. Each row corresponds to a family of trees
F and each column corresponds to a type of drawing D.The value in each entry is an
upper bound to the minimum value f(n) such that every n-vertex tree in F admits a
point-set embedding of type D on every point set of size f(n).

L-Shaped Orthogeodesic
Planar Non-Planar Planar Planar 2-spaced

Caterpillars ∆ = 3 n [Th. 8] n [Th. 8] n [Th. 8] n [Th. 1]

Trees ∆ = 3 n2−2n+2 [Th. 6] n [Th. 10]1 n [Th. 3] n [Th. 1]

Caterpillars ∆ = 4 3n−2 [Th. 7] n+1 [Th. 11] b1.5nc [Th. 4] n [Th. 1]

Trees ∆ = 4 n2−2n+2 [Th. 6] 4n−3 [Th. 9] 4n [Th. 2] n [Th. 1]

and Wiese show that every n-vertex planar graph admits a polyline planar point-set
embedding on every set of n points with at most 2 bends per edge [14]. Colored versions
of planar polyline point-set embeddings in which the points are colored and adjacent
vertices must be mapped to points with different color have also been investigated [1,
8]. Special research efforts have been devoted to study universal point sets for planar
graphs. A point set S is universal for a family F of graphs and for a type D of drawing
if every graph in F admits a point-set embedding of type D on S. Every universal point
set for straight-line planar drawings of planar graphs has size at least 1.235 ·n [15] while
there exist universal point sets of size 8

9n
2 [4]. For polyline point-set embeddings of

planar graphs, on the other hand, there exist universal point sets of size n [10].

In this paper we study orthogeodesic point-set embeddings on the grid. Orthogeodesic
point-set embeddings were introduced by Katz et al. [13] and require edges to be rep-
resented by orthogeodesic chains, i.e. by polygonal chains consisting of horizontal and
vertical straight-line segments whose total length is equal to the L1-metric, also called
Manhattan metric, between the endpoints. Since orthogeodesic chains correspond to
shortest orthogonal connections in the L1 metric, they can be considered as the counter
part of straight lines in the L2 metric.

Katz et al. [13] considered orthogeodesic point-set embeddings from the algorithmic
point of view and proved that it is NP-complete to decide whether a planar graph with
n vertices and maximum degree 4 admits an orthogeodesic point-set embedding on n
points, while the problem can be solved efficiently for cycles. Katz et al. [13] also show
that, if the mapping between vertices and points is given and the bends are required to be
at grid points, then the problem is NP-complete even for matchings, while the problem
is polynomial-time solvable if bends need not be at grid points. A 2-colored version of
the planar orthogeodesic point-set embedding has been studied by Di Giacomo et al. [7].

In this paper we consider orthogeodesic point-set embeddings on the grid from the
combinatorial point of view. Let P be a set of grid points in the plane, i.e., p = (i, j)
with i, j ∈ Z for all p ∈ P . We write x(p) := i and and y(p) := j. A set P of grid
points with x(p) 6= x(q) and y(p) 6= y(q) for all p, q ∈ P with p 6= q is called general.
For different classes of trees F and different drawing styles D we study the value f(n)
such that every general pointset is universal for orthogeodesic point-set embeddings of
all trees in F using D. The restriction to general point sets is necessary since there are
arbitrarily large point sets that are not universal for orthogeodesic point-set embeddings
of trees, e.g., a set of collinear points. That is, without this restriction f(n) would not
be well-defined for graphs other than paths. We consider both planar and non-planar
orthogeodesic point-set embeddings as well as the case when edges can be arbitrary
orthogeodesic chains or when edges are required to be L-shaped chains. An L-shaped
chain is an orthogonal chain with only one bend, thus, it is an orthogeodesic chain with
the minimum number of bends for general point sets. Table 1 summarizes our results.
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Fig. 1: Planar orthogeodesic point-set embedding of a tree on a general point set with
bends allowed to have half-integer coordinates.

The rest of the paper is organized as follows. In Section 2 we study planar ortho-
geodesic point-set embeddings of trees without any further restriction. In Section 3 we
consider the case when edges are required to be L-shaped, that is, if they are allowed
to have only one bend. In Section 4 we study L-shaped orthogeodesic point-set embed-
dings without the planarity restriction. Finally, Section 5 concludes and lists some open
problems.

2 Planar Orthogeodesic Pointset Embeddings

We start by considering planar orthogeodesic point-set embeddings of trees. First, we
show that every tree with maximum degree 4 can be embedded on every general point
set with n points using at most two bends per edge if we require that the horizontal
and vertical distance of any two points is at least two. This implies that we can embed
every tree with n vertices on every general point set P with n points whose points are
not horizontally or vertically aligned, if neither vertices nor bends are required to be
grid points.

Theorem 1. Every tree with n vertices and with maximum degree 4 admits a planar
orthogeodesic point-set embedding on every general point set P with n points such that
min{|x(p)− x(q)|, |y(p)− y(q)|} ≥ 2 for all p, q ∈ P with p 6= q.

Proof: Let T be any tree with n vertices and maximum degree 4. We root T at any
vertex r of degree at most 3. Inductively, we prove that T admits a planar orthogeodesic
point-set embedding on every general point set P with n points in which (i) each edge
has two bends and (ii) no edge intersects a half-line h arbitrarily chosen among the two
horizontal and two vertical half-lines starting at r.

The statement is trivially true for n = 1. We inductively prove that T admits the
required embedding for the case that no edge may intersect the horizontal half-line
starting at r and directed rightward. The other constructions are analogous. Let n1 ≥ 0,
n2 ≥ 0, and n3 ≥ 0 denote the number of vertices in the subtrees T1, T2, and T3 rooted
at children r1, r2, and r3 of the root r of T , respectively. Let P1 denote the set of the n1
bottommost points of P . Let P2 denote the set of the n2 leftmost points of P \ P1. Let
p be the bottommost point of P \ (P1 ∪ P2). Let P3 = P \ (P1 ∪ P2 ∪ {p}) as illustrated
in Fig. 1. We embed r on p and we inductively embed Ti on Pi (i = 1, 2, 3) such
that no edge intersects the vertical half-line h1 starting at r1 in the upward direction,
the horizontal half-line h2 starting at r2 in the rightward direction and the vertical
half-line h3 starting in r3 in the downward direction. We connect r with r1 by an
orthogeodesic edge vertically attached to r and to r1, respectively, and connect the two
vertical segments by an intermediate segment s on the horizontal line one unit above the

1 Fink et al. [11] have independently obtained this result.



top side of the bounding box of P1. Further, we connect r with r2 and r3 analogously
as illustrated in Fig. 1.

To see why the induction hypothesis holds, first, note that the embeddings of T1, . . . , T3
are crossing-free by induction-hypothesis. Clearly, not edge intersects the horizontal half-
line h starting in r in the rightward direction by construction. Hence, it suffices to show
that the resulting drawing is crossing free, that is none of the edges connecting r1, . . . , r3
to r are involved in any crossings. Clearly, these edge can cross each other by choice of
P1, . . . , P3 and the construction of the edges. Further, the straight-line segments incident
to the vertices r1, . . . , r3 corresponding to the edges directed towards r, are mapped to
the half-lines h1, . . . , h3 that are not crossed by any other edge by induction hypothesis.
That is, there is no crossing in the bounding boxes of P1, . . . , P3, respectively. Next,
consider the edge (r1, r). The intermediate segment s is located on a horizontal grid line
one unit above the highest point in P1. Hence, this line does not contain any other point
since we required min{|x(p)−x(q)|, |y(p)− y(q)|} ≥ 2 for all p, q ∈ P . Therefore, we can
embed the edge as required by (i) and (ii). The remaining edges are analogous, which
concludes the induction step. �

As an immediate consequence of Theorem 1 we obtain the following corollary for
arbitrary point sets.

Corollary 1. Let P ⊆ R2 be a set of points in the plane such x(p) 6= x(q) and y(p) 6=
y(q) for all p, q ∈ P such that p 6= q. Then every tree with maximum degree 4 has an
orthogeodesic point-set embedding on P with at most two bends per edge.

To see why Corollary 1 holds, we can consider a subdivision of the grid induced by
the points in P . Let x1, . . . , xn be the sorted sequence of the x-coordinates of the points
in P and let y1, . . . , yn be the sorted sequence of y-coordinates of the points in P . Let G
be the grid induced by the horizontal and vertical lines through the points in P as well as
by the horizontal lines y = xi+xi+1

2 and the vertical lines x = yi+yi+1

2 for i = 1, . . . , n−1.
Then clearly, each point in p ∈ P can be assigned a pair of integer coordinates (ip, jp)
by numbering the horizontal grid-lines from bottom to top and the vertical grid lines
from left to right such that min{|ip− iq|, |jp− jq|} ≥ 2. Then the corollary immediately
follows from Theorem 1.

As another consequence of Theorem 1 we obtain the following theorem for general
point sets on the grid without the restriction on the horizontal and vertical distance of
the points.

Theorem 2. Every tree with n vertices and with maximum degree 4 admits a planar
orthogeodesic point-set embedding on every general point set with 4n points.

Proof: We prove that any set P of 4n points contains a subset of n points such that
no two points have a horizontal or vertical distance of less than two. The theorem then
directly follows from Theorem 1. Let the points in P be p1, . . . , p4n sorted from left to
right. Let P2 consist of the points p2i (1 ≤ i ≤ 2n) and let P1 = P \ P2. Clearly, the
points in P1 and P2 have the desired horizontal spacing and one of the sets, say P1 must
contain at least 2n points. Repeating the argument for P1 in the vertical direction yields
the claim. �

For trees with maximum degree 3, however, we can improve this result by showing
that every such tree has a planar orthogeodesic point-set embedding on every general
point set with n points using at most two bends per edge. Hence, every general point set
with n points is universal for planar orthogeodesic point-set embeddings of trees with
maximum degree 3.

Theorem 3. Every tree with n vertices and with maximum degree 3 admits a planar
orthogeodesic point-set embedding on every general point set with n points.
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Fig. 2: Embedding a tree with maximum degree 3 on a set of n points. (a) Embedding
r. (b)–(c) Embedding s with exactly one child. (d)–(g) Embedding s with two children.

Proof: Let T be a tree with maximum degree 3 and let P be a general point set with
n points. We root T in a leaf r. Let w be the unique vertex incident to r. For a vertex
v in T we denote the tree rooted in v by Tv. Then we construct a point-set embedding
of T on P as follows. First, we embed r on the topmost point pt of P and assign the
subtree Tw rooted in w to the point set Pw := P \ {pt} and an axis-parallel rectangle
Rw whose opposite corners are the left-bottom corner of the bounding-box of P and the
point one unit below the right-top corner of the bounding-box of P . We connect r with
the top border of Rw by drawing a vertical segment from pt to the point p∗ one unit
below pt as illustrated in Figure 2a with r = p(v).

Next, we traverse T in a top-down fashion. When considering the subtree Tv of T
rooted in v we suppose that Tv has already been assigned to a pointset Pv and an
axis-parallel rectangle Rv such that the following invariants hold.

(i) The sets |Tv| and |Pv| have equal size.
(ii) The set Pv lies inside the rectangle Rv.
(iii) The parent p(v) of v lies outside of the rectangle Rv and is connected to Rv by a

horizontal or vertical straight-line segment p(v), p∗ such that p∗ is located on the
boundary of Rv.

(iv) Let Tu and Tv be two subtrees of T . If Tu is contained in Tv, then Ru is contained
inside Rv. Similarly, if Rv is contained in Ru, then Rv is contained inside Ru. If
neither Tu is contained in Tv nor Tv is contained in Tu, then Ru ∩Rv = ∅

(v) Let T be a tree containing the edges e = (p(v), v) and consider the straight-line
segment σ = p(v), p∗. Then σ is contained in a rectangle Rv such that Tv has been
assigned to Rv if and only if Tv contains e.

Clearly, these invariants are satisfied after we have handled r as described above. Let v
be an internal vertex of T . Since T has maximum degree 3, the subtree rooted in v has
at most two children. Suppose that p∗ is on the top side of Rv; the cases in which p∗ is
on the bottom, left, or right side of Rv can be discussed analogously.

First, suppose that v has one child w and consider Figures 2a and 2b. We embed
v on the topmost point pt of Pv and assign Tw to the point set Pw := Pv \ {pt} and



to the rectangle Rw whose opposite corners are the left-bottom corner of Rv and the
point one unit below the right-top corner of Rv. Let p∗ be the point on the boundary of
Rw that is vertically below p(v). and let p′ be the point on the boundary of Rw that is
vertically above v. We connect p(v) to v extending the horizontal straight-line segment
p(v)p∗ that we have already drawn by the invariant by the horizontal segment p∗p′ and
the horizontal segment p′v. Finally, we draw a vertical segment connecting v to the top
side of Rw as illustrated in Figure 2b.

Next, suppose that v has two children w1 and w2. Let Pw1 ⊂ Pv denote the point set
composed of the leftmost |Tw1

| points of Pv and let Pw2
denote the point set composed

of the rightmost |Tw2
| points in Pv. Further, we denote the single remaining point in

Pv \ (Pw1
∪ Pw2

) by p. Let p∗ be the point on the boundary of Rv vertically below p(v)
and let p′ be the the point on the boundary of Rv that is vertically above p. Then we
assign Tw1 the point set Pw1 and to the rectangle Rw1 whose opposite corners are the
left-bottom corner of Rv and the intersection point between the top side of Rv and the
vertical line one unit to the left of p. We consider two cases.

First, suppose that the straight-line segment p∗p′ does not contain any point in P .
This case is illustrated in Figures 2c and 2d. We embed v on p and we assign Tw2

the
point set Pw2

and the rectangle Rw2
whose opposite corners are the right-bottom corner

of Rv and the intersection point between the top side of Rv and the vertical line one unit
to the right of p. Then we connect p(v) to v with an edge by extending the straight-line
segment p(s), p∗ by a horizontal segment p∗p′ and a vertical segment p′p. Finally, we
draw a horizontal segment connecting v with the right side of Rw1

. If and we draw a
horizontal segment connecting v with the left side of Rw2

as illustrated in Figure 2d.

Second, suppose that the segment p∗p′ contains a point q ∈ P . This case is illustrated
in Figures 2e–2h. We consider two sub-cases. First, suppose that q = p. Then we embed
v on p and we assign Tw2

the point set Pw2
and the rectangle Rw2

whose opposite
corners are the right-bottom corner of Rv and the point one unit below the intersection
point between the top side of Rv and the vertical line through p. We connect p(v) to
v with an edge by extending the straight-line segment p(s), p∗ by a horizontal segment
p∗p as illustrated in Figure 2f. Second, suppose that q 6= p Then we embed v on q and
we assign assign Tw2

to the point set Pw2
\ {q} ∪ {p} and to the rectangle Rw2

whose
opposite corners are the right-bottom corner of Rv and the intersection point between
the horizontal line one unit below the top side of Rv and the vertical line through p. We
connect p(v) to v by extending the vertical segment p(s), p∗ by the horizontal segment
p∗q. Finally, in both cases, we draw a horizontal segment connecting v with the right
side of Rw1

and we draw a vertical segment connecting v with the left side of Rw2
as

illustrated in Figures 2f and 2h.

The case, when v is a leaf is handled similar to the case when v is an internal vertex
with only one child.

Clearly, the invariants are maintained by the algorithm. The resulting drawing does
not contain any crossings, since for each vertex v, the subtree Tv rooted in v is mapped
to an axis-parallel rectangle that does not contain any vertex from T − Tv. Further,
the constructed edges are orthogeodesic. Hence P admits and orthogeodesic point-set
embedding of T �

A caterpillar is a tree such that by removing all leaves we are left with a path,
called spine. In Theorem 2 we show that every tree with maximum degree 4 has a
planar orthogeodesic point-set embedding on every general point set with 4n points. For
caterpillars with maximum degree 4, however, this result is not tight.

Theorem 4. Every caterpillar with n vertices and with maximum degree 4 admits a
planar orthogeodesic point-set embedding on every general point set with b1.5nc points.
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Fig. 3: Embedding a caterpillar on a set of b1.5nc points. (a)–(d) Embedding the spine
S+. (e) Embedding the leaves in T .

Proof: Let C be a caterpillar with n vertices and with maximum degree 4 and let ni
denote the number of vertices of C with degree i = 1, . . . , 4. Let P ∗ be a general point set
with b1.5nc points. From P ∗ we arbitrarily choose a point set P of size N = n+n3 +n4
points on which we embed C. First, we show that N ≤ 1.5n, which implies N ≤ b1.5nc
since N is a natural number. Suppose for contradiction that n3 + n4 > n/2. Since each
vertex with degree at least 3 is incident to a leaf this yields n1 ≥ n3 + n4. Summing up
we have n ≥ n1 + n3 + n4 ≥ 2(n3 + n4) > n, a contradiction.

Next, we show how to embed C on P . Each vertex v ∈ V is mapped to a point
π(v) ∈ P . Let S = (u1, . . . , uk) be the spine of C and let u0 be a leaf incident to u1
and let uk+1 be a leaf incident to uk. By S+ we denote the path (u0, u1, . . . , uk, uk+1).
Then we consider the vertices ui for i = 1, . . . , k. If ui has two adjacent leaves not in
S+, label one of them “top” and one of them “bottom”. If ui has one adjacent leaf not
in S+, arbitrarily label it “top” or “bottom”. Let B and T be the sets of leaves of C
that have been labeled “bottom” and by “top”, respectively.

Let PT be the subset of the highest |T | points of P and let PB be the subset of
the lowest |B| points. Further, let Q = P \ (PT ∪ PB) be the remaining points. By
construction Q contains t = n2 + 2(n3 + n4) + 2 points. We embed C on P as follows.

(S1) The leaves in T will be embedded on PT , the leaves in B will be embedded on PB

and the vertices in S+ will be embedded on a subset PS+ ⊆ Q.
(S2) The spine will be embedded as an x-monotone chain such that ui is left of ui+1

for all 0 ≤ i ≤ k.
(S3) Edge {ui, ui+1} occupies the horizontal segment incident to ui on the right for

all 0 ≤ i ≤ k. If, additionally, the degree of ui is at least 3, then edge {ui−1, ui}
occupies the horizontal segment incident to ui on the left for all 1 ≤ i ≤ k.

Let q1, . . . , qt be the points in Q sorted from left to right. First, we map u0 to the
leftmost point q1 in Q. Suppose, we have mapped u0, . . . , ui for some i < k + 1 and
let qj = π(ui). If ui+1 has degree 2, then we map ui+1 to qj+1 and we connect ui and
ui+1 by an L-shaped orthogeodesic chain composed of a horizontal segment incident to
ui and a vertical segment incident to ui+1 as illustrated in Figures 3a and 3b. If ui+1

has degree at least 3, then we map ui+1 to qj+2 skipping the point qj+1 in Q and we
connect ui by an orthogeodesic chain consisting of two horizontal segments incident to
ui and ui+1, respectively, and a vertical segment in the column to the left of qj+2 as
illustrated in Figures 3c and 3d. By construction, uk+1 is mapped to a point qj such
that j ≤ n2 + 2(n3 + n4) + 2 since we only skipped points for vertices with degree at
least 3.



Now we describe how to embed the leaves in T on PT . The leaves in B are em-
bedded on PB analogously. Let w1, . . . , w|T | be the vertices in T sorted such that their
corresponding vertices on the spine are sorted from left to right and let Ti be the set of
vertices in T that are incident to vertices uj for j < i. For each i with 1 ≤ i ≤ k let
P−i be the set of points in PT to the left of π(ui) and let P+

i be the set of points in PT

to the right of π(ui), respectively, as illustrated in Figure 3e. Each leaf wi is mapped
to a point π(wi) and is attached to the spine by an L-shaped orthogeodesic chain. We
maintain the following invariant.

(L1) If wi is incident to uj and |P−j | > |Tj |, then wi is mapped to the lowest point

p ∈ P−i \
⋃i−1

l=1{π(wl)} by an L-shaped orthogeodesic chain consisting of the vertical
segment incident to π(uj) and the horizontal segment incident to p. Otherwise, wi

is mapped to the highest unused point in P+
i \

⋃i−1
l=1{π(wl)} as illustrated in Figure

Figure 3e.

The resulting point-set embedding is orthogeodesic by construction. Planarity follows
from the invariants as follows.

Due to invariants (S1) and (S2) the spine is mapped to an x-monotone chain such
that the angle at vertices with degree at least 3 is 180 degrees. This implies that the spine
does not cross itself and that the vertical segments incident to the vertices with degree at
least 3 are unoccupied by the spine. Since, by invariant (S1), we attached the leaves in T
above the spine and the leaves in B below the spine, there cannot be a crossing between
two edges incident to a leaf in T and a leaf in B, respectively. Suppose for contradiction
that there is a crossing between two edges ei and ej incident to two leaves wi and wj in T ,
respectively. Without loss of generality we assume i < j. If π(wi) ∈ P−i and π(wj) ∈ P+

j

there cannot be a crossing by construction. If π(wi) ∈ P−i ⊆ P−j and π(wj) ∈ P−j , then

a crossing can only occur if π(wj) ∈ P−i and π(wj) is below π(wi), which contradicts
invariant (L1). Analogously, if π(wi) ∈ P+

i and π(wj) ∈ P+
j ⊆ P+

i , then a crossing can

only occur if π(wi) ∈ P+
j and π(wi) is below π(wj), which contradicts invariant (L1).

Finally, if π(wj) ∈ P−i and π(wi) ∈ P+
j ⊆ P+

i , then this contradicts invariant (L1),

since wi is only mapped to a point in P+
i if there is no unused point in P−i . Therefore,

the embedding is crossing-free, which concludes the proof. �

3 Planar L-Shaped Orthogeodesic Pointset Embeddings

Next, we consider planar L-shaped orthogeodesic point-set embeddings of trees. First
we prove that every tree with n vertices and with maximum degree 4 admits a planar
L-shaped point-set embedding on every general point set with n2−2n+ 2 points. Every
point set of this size contains a diagonal point set, which is universal for planar L-
shaped point-set embeddings of trees with maximum degree 4. Let P be a point set
and let p1, . . . , pn denote the points in P ordered by increasing x-coordinates. Then we
refer to P as a positive-diagonal point set if y(pi+1) > y(pi) for every i = 1, . . . , n − 1.
Similarly, we refer to P as a negative-diagonal point set if y(pi+1) < y(pi) for every
i = 1, . . . , n− 1. If P is either a positive-diagonal point set or a negative-diagonal point
set, then we call P a diagonal point set. First, we show that any diagonal point set
is universal for L-shaped orthogeodesic point-set embeddings of trees with maximum
degree 4.

Theorem 5. Every tree with n vertices and with maximum degree 4 admits a planar
L-shaped point-set embedding on every diagonal point set with n points.



P1

P2

P3

r1

r2

r3

h1

h2

h3

(a) Induction hypothesis

P1

P2

P3

r1

r2

r3
h

h1

h2

h3

(b) Induction step

Fig. 4: Orthogeodesic point-set embedding of a tree with maximum degree 4 on a
(positive-)diagonal point set.

Proof: Suppose that P is a positive-diagonal point set and let T be a tree with n
vertices and with maximum degree 4. The case, when P is a negative-diagonal point set
can be handled similarly. We root T in a vertex r with degree at most 3. By induction,
we prove that T admits an orthogeodesic planar L-shaped point-set embedding on every
diagonal point set with n points such that there is no edge overlapping or crossing a half-
line h arbitrarily chosen among the two horizontal and two vertical half-lines starting
at r.

In the base case n = 1 and the statement is trivially true. Suppose that the claim
of the theorem is true for all n′ < n. We show that T admits an orthogeodesic planar
L-shaped point-set embedding on every diagonal point set P with n points such that
no edge overlaps or crosses the vertical half-line h starting at r in the upward direction.
The cases, when no edge overlaps the vertical half-line starting at r in the downward
direction or the horizontal half-lines starting at r in the leftward or rightward direction,
respectively, are handled analogously. Let r1, . . . rk denote the children of r, that is,
k ≤ 3. Further, let ni denote the number of vertices of the subtree Ti rooted in ri for
i = 1, . . . , k. If r has less than 3 children, we set ni = 0 for k < i ≤ 3. Let P1, P2, and P3

be the point sets consisting of the bottommost n1 points of P , the bottommost n2 points
of P \ P1, and of the topmost n3 points of P , respectively. Further, let p be the unique
point in P \(P1∪P2∪P3). By induction hypothesis, we can embed Ti on Pi for 1 ≤ i ≤ k
as illustrated in Figure 4a such that no edge of T1 intersects vertical half-line h1 starting
at r1 in the upward direction, no edge of T2 intersects the horizontal half-line h2 starting
at r2 in the rightward direction and such that no edge of T3 intersects the vertical half-
line h3 starting at r3 in the downward direction. Since the bounding boxes of the point
sets P1, P2 and P3 are disjoint and since the geodesic chains corresponding to the edges
of T1, T2 and T3, respectively, are contained inside the bounding boxes of their respective
point sets, the resulting embedding is crossing-free.

Then we embed r on p and we connect r to r1, . . . , rk as illustrated in Figure 4b.
That is, we connect r to ri using the horizontal or vertical segment on hi and the the
straight-line segment incident to r that is orthogonal to hi for all 1 ≤ i ≤ k. By the
choice of hi for 1 ≤ i ≤ k, the edges are mapped to no-intersecting orthogeodesic chains
and we do not use or cross the vertical half-line h starting at r in the upward direction.
This concludes the induction step. �

According to the Erdős-Szekeres theorem [9], every general point set with n2−2n+2
points contains either a positive-diagonal point set with n points or a negative-diagonal
point set with n points. Hence, from Theorem 5 we immediately obtain the following
theorem.



Theorem 6. Every tree with n vertices and with maximum degree 4 admits a planar
L-shaped point-set embedding on every general point set with n2 − 2n+ 2 points.

For caterpillars with maximum degree 4 we can improve the bound of Theorem 6 as
the following theorem shows.

Theorem 7. Every caterpillar with n vertices and with maximum degree 4 admits a
planar L-shaped point-set embedding on every general point set with 3n− 2 points.

Proof: Let C be a caterpillar with n vertices and with maximum degree 4 and let P
be a general point set with 3n−2 points. Let (u2, . . . , uk−1) be the spine of C and let u1
and uk be two leaves of C adjacent to u2 and to uk−1, respectively. Let L denote the
set of vertices of C containing all leaves of C, except u1 and uk. For i = 1, . . . , k− 1 we
let Ci denote the subtree of C induced by the vertices u1, . . . , ui and by their adjacent
leaves in C − uk and we let Ck := C. Observe that Ci is a caterpillar, for i = 1, . . . , k.
By induction on i we prove that Ci admits a planar L-shaped point-set embedding on
every general point set with 3|Ci| − 2 points for all i = 1, . . . , k, such that the following
invariant is satisfied.

(C1) The horizontal half-line starting at ui directed rightward does not intersect any
edge of the constructed drawing of Ci.

For i = 1 we have |C1| = 1 and the induction hypothesis is trivially true. Suppose
that the induction hypothesis is true for i−1 and consider an arbitrary point set Pi with
3|Ci| − 2 points. By Pi−1 we denote the point set consisting of the leftmost 3|Ci−1| − 2
points of Pi. Using the induction hypothesis, we can construct an orthogeodesic planar L-
shaped point-set embedding of Ci−1 on Pi−1 such that the horizontal half-line starting
at ui−1 in the rightward direction is not intersected by any edge of the constructed
embedding. We distinguish three cases.

First, assume that ui is not adjacent to a leaf in L. Then, embed ui on the rightmost
point of Pi. Such a point exists since |Pi \ Pi−1| = 3. We connect ui with ui−1 by an L-
shaped edge using a horizontal straight-line segment incident to ui−1 that neither used
nor crossed by any other edge by the induction hypothesis and a vertical straight-line
segment attached to ui.

Second, assume that ui is adjacent to exactly one leaf ai and consider the three
leftmost points of Pi \Pi−1. These points exist since |Pi \Pi−1| = 6. Then, either two of
the three points are above the horizontal line hi−1 through ui−1 or two of the points are
below hi−1. Suppose that two of the points, say p1 and p2, are above hi−1. The other
case can be handled in a similar fashion. Without loss of generality we may assume that
p1 is to the left of p2. Then, we embed ui on the rightmost point p2 and we embed ai on
the leftmost point p1. Further, we connect ui with ui−1 by an L-shaped edge horizontally
attached to ui−1 and vertically attached to ui and we connect ui with ai by an L-shaped
edge horizontally attached to ui and vertically attached to ai.

Third, assume that ui is adjacent to two leaves ai and bi and consider the nine
leftmost points of Pi \ Pi−1. These points exist since |Pi \ Pi−1| = 9. Then, either five
of such nine points are above the horizontal line hi−1 through ui−1 or five are below.
Suppose that five points p1, . . . , p5 are above hi−1. The other case can be handled in
a similar fashion. As a consequence of the Erdős-Szekeres-Theorem [9] every general
point set with at least 5 points contains a diagonal point set with 3 points, hence the
points p1, . . . p5 contain a diagonal pointset Without loss of generality we may assume
that p1, . . . , p3 form a diagonal pointset and that x(p1) < x(p2) < x(p3). If y(p1) <
y(p2) < y(p3) as illustrated in Figure 5a), that is, if the points p1, . . . , p3 form a positive-
diagonal point set, then we embed ui on p2, ai on p1 and bi on p3. Similarly, if y(p1) >
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Fig. 5: Planar L-shaped point-set embedding of caterpillars on general point sets. (a)
y(p1) < y(p2) < y(p3). (b) y(p1) > y(p2) > y(p3).

y(p2) > y(p3) as illustrated in Figure 5b), that is if the points p1, . . . , p3 for a negative-
diagonal point set, then we embed ui on p3, ai on p2 and bi on p1. In both cases, we
connect ui with ui−1 by an L-shaped edge that is horizontally attached to ui−1 and
vertically attached to ui and we connect ui to ai by an L-shaped edge horizontally
attached to ui and vertically attached to ai, and we connect ui to bi by an L-shaped
edge vertically attached to ui and horizontally attached to bi as illustrated in Figures 5a)
and 5b), respectively. Note that we did not use or cross the horizontal half-line starting at
ui in the rightward direction. Hence, the invariant (C1) is maintained, which concludes
the induction. �

For caterpillars with maximum degree 3 we can improve this bound even further by
showing that every such a caterpillar can be embedded on every general point set with
n points using L-shaped edges.

Theorem 8. Every caterpillar with n vertices and with maximum degree 3 admits a
planar L-shaped point-set embedding on every general point set with n points.

Proof: Let C be a caterpillar with n vertices and let P be a general point set
consisting of n points p1, . . . , pn. Assume that the points are sorted such that x(pi) <
x(pi+1) for all 1 ≤ i ≤ n − 1 and let Pi := {p1, . . . , pi}. Let u2, . . . , uk−1 denote the
spine of C and let u1 and uk be two vertices adjacent to u2 and uk−1, respectively. Let
Ci be the sub-tree of C − uk induced by the vertices u1, . . . , ui and the leaves incident
to these vertices for 1 ≤ i ≤ k − 1. Further, let Ck := C.

By induction on i we prove that we can find a planar L-shaped point-set embedding
of Ci on Pj such that ui such that the following invariants are maintained.

(C1) The size of |Pj | equals the size of Ci, that is, j = |Ci|.
(C2) The vertex ui is mapped either to pj or to pj−1.
(C3) Both the horizontal half-line hi starting at pj in the rightward direction as well at

least one vertical half-line `i starting at pj either in the upward or in the downward
direction do not intersect the drawing of Ci.

The induction hypothesis is trivially true for i = 1. We map u1 to p1 and let h1
denote the horizontal half-line starting at p1 in the rightward direction. Further, we let
`1 denote the vertical half-line starting at p1 in the downward direction. Now, suppose
that the induction hypothesis is true for i − 1 and consider the caterpillar Ci. By the
induction hypothesis, we can find a planar L-shaped point-set embedding of Ci−1 on Pj

such that j = |Ci−1|. Assume, without loss of generality, that `i−1 denotes the vertical
half-line starting at ui−1 in the downward direction as illustrated in Figure 6a and
suppose that ui−1 is mapped to pc such that c ∈ {|Ci|, |Ci−1|}.

First, suppose that ui has degree at most two, that is it is adjacent to at most two
vertices ui−1 and, possibly, ui+1 if it exists. Then we map ui to pc+1 and connect ui
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Fig. 6: Orthogeodesic planar L-shaped point-set embedding of a caterpillar with maxi-
mum degree 3.

to ui−1 by an L-shaped edge that is horizontally attached to ui−1 and vertically attached
to ui. Clearly the invariants are maintained.

Second, suppose that ui has degree three, that is i < k and ui is adjacent to two
vertices ui−1 and ui+1 as well as an additional leaf wi. Note that |Ci| = c + 2, that
is, |Ci| − |Ci−1| = 2. Let pb and pt denote the two vertices in P|Ci| \ P|Ci−1| such that
y(pb) < y(pt), that is pb is below pt. We distinguish two sub-cases.

First, suppose that pb is below the vertical half-line hi−1 as illustrated in Figures 6a
and 6c. Then we map ui to pb and we map wi to pt. Further, we connect ui−1 to ui by
an L-shaped edge that is vertically attached to ui−1 and horizontally attached to ui and
we attach wi to ui by an L-shaped edge that is vertically attached to ui and horizontally
attached to wi as illustrated in Figures 6b and 6d. This way, the horizontal half-line hi
starting at ui in the rightward direction as well as the vertical half-line `i starting at
ui in the downward direction do not intersect the constructed embedding. Hence, the
invariants are maintained.

Second, suppose that pb is above the vertical half-line hi−1, that is, pt is also
above hi−1 as illustrated in Figures 6e and 6g. We map ui to the rightmost point of
pb and pt and we map wi to the leftmost point of pb and pt, respectively. Further, we
connect ui to ui−1 by an L-shaped edge that is horizontally attached to ui−1 and ver-
tically attached to ui and we connect wi to ui by an L-shaped edge that is horizontally
attached to ui and vertically attached to wi as illustrated in Figures 6f and 6h. Note
that the newly constructed edges do not intersect. Clearly, the constructed embedding
does not intersect the horizontal half-line hi starting at ui in the rightward direction
and the vertical half-line `i starting at ui in the upward direction. Hence, the invariants
are maintained. This concludes the induction.

�

4 Non-Planar L-Shaped Orthogeodesic Point-Set Embeddings

Next, we consider non-planar L-shaped orthogeodesic point-set embeddings. We start by
showing that every tree with n vertices as a non-planar L-shaped orthogeodesic point-set
embedding on every general point set with 4n− 3 points.

Theorem 9. Every tree with n vertices and with maximum degree 4 admits a non-planar
L-shaped point-set embedding on every general point set with 4n− 3 points.
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Fig. 7: Non-planar L-shaped point-set embedding of a tree with maximum degree 4.

Proof: Let T = (V,E) be a tree with n vertices and let P be a general point set with
4n − 3 points. Let T be rooted in a leaf r ∈ V and let the vertices of T be labeled
r = v1, . . . , vn according to a depth-first search in T . Let Qn = P . For n ≥ i ≥ 1, let Pi

consist of the points on the boundary of the bounding box of Qi, and for n ≥ i ≥ 2 let
Qi−1 = Qi \ Pi as illustrated in Figure 7a. Since the boundary of the bounding box of
a general point set contains at least two and at most four points, and since P contains
4n− 3 points, we have that each set Pi contains at least two and at most four vertices,
except for P1, which contains at least one vertex.

We embed T using L-shaped orthogeodesic chains such that vertex vi is mapped
to a point in Pi for all 1 ≤ i ≤ n. We start by mapping the root v1 to an arbitrary
point p∗ ∈ P1. Suppose we have embedded all vertices v1, . . . vi for some i ≥ 1 and
we would like to embed vi+1. Since the vertices are ordered according to a depth-first
search, we have already embedded the parent vj of vi+1. Further, the vertices v1, . . . , vj
have been embedded inside the bounding box of the point set Qi which in the interior
of the bounding box of the points in Qi+1. Since vj has degree at most 4 and since, we
have not yet mapped vi+1, at least one of the segments incident to vj in the drawing is
unoccupied by the drawing. Without loss of generality we may assume that the vertical
segment above vj is unoccupied (otherwise we can rotate the instance accordingly). By
construction the points in Pi+1 are on the bounding box of Qi+1, which contains Qi in
its interior. Hence, Pi+1 contains a point pt on the top side of the bounding box of Qi+1.
Then we map vi+1 to pt and we connect it to vj by an L-shaped edge that is vertically
attached to vj and horizontally attached to pt as illustrated in Figure 7b. �

Next, we improve on this by showing that a general point set of size n allows an L-
shaped point-set embedding for the class of trees with n vertices and maximum degree 3.

Theorem 10. Every tree with n vertices and with maximum degree 3 admits a non-
planar L-shaped point-set embedding on every general point set with n points.

Proof: Let T be a tree with n vertices and with maximum degree 3 and let P be a
general point set with n points. Assume that T is rooted in a vertex r with degree at
most 2. By induction on n we prove that we can find an L-shaped point-set embedding
of T on P such that none of the edges occupies the vertical line through r.

If n = 1, we map the single vertex of T to the single point in P and we are done.
Suppose that the induction hypothesis holds for all n′ < n. Let n1 ≥ 0 and n2 ≥ 0
denote the number of vertices in the subtrees T1 and T2 rooted at the children r1 and r2
of r, respectively. Further, let P1 and P2 be the point sets consisting of the leftmost n1
points and the rightmost n2 points of P , respectively. Let p be the unique point of P not
in P1 and not in P2. Then we embed r on p. By induction we can find an L-shaped point
set embedding of T1 on P1 and of T2 on P2 such that the vertical line through r1 and r2
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Fig. 8: Non-planar L-shaped point-set embedding of a tree on a general point set.

is unoccupied by any edge of the resulting drawings, respectively. Then, we connect r
to r1 by an L-shaped edge that is horizontally attached to r and vertically attached to
r1. Similarly, we connect r to r2 by an L-shaped edge that is horizontally attached to r
and vertically attached to r2 as illustrated in Figure 8. Since the constructed edges are
attached to r horizontally and since the embeddings of T1 and T2 are contained in the
bounding boxes of their respective point sets, which do not intersect the vertical line
through r, the maintain the invariant as claimed, which concludes the induction step.

�

For caterpillars with maximum degree 4 we can improve this by showing that ev-
ery general point set with n + 1 points admits an orthogeodesic L-shaped point-set
embedding of every caterpillar with n vertices and with maximum degree 4.

Theorem 11. Every caterpillar with n vertices and with maximum degree 4 admits a
non-planar L-shaped orthogeodesic point-set embedding on every general point set with
n+ 1 points.

Proof: Let P be a general point set with n + 1 points. Let C be a caterpillar with
maximum degree 4 and let (u1, . . . , uk) denote the vertices of its spine. Further, let S+

denote the path (u0, u1, . . . , uk, uk+1) where u0 and uk+1 are two leaves incident to u1
and uk, respectively. We embed C on P using L-shaped orthogeodesic chains for the
edges such that the following invariants are maintained.

(S1) The spine is embedded as a monotone chain starting in the leftmost point in P .
(S2) The spine leaves each vertex along the horizontal segment to its right and enters

each vertex along a vertical segment either above or below it.
(S3) All but possibly one point to the left of ui are occupied by the vertices uj for i < j

and the leaves adjacent to these vertices.

By applying (S3) to uk+1 it is clear that n+ 1 points are sufficient for the embedding.
First, we embed u0 on the leftmost point in P . Suppose we have mapped all vertices

u0, . . . , ui for some 0 ≤ i ≤ k. Let ui be mapped to pj and let P+
i be the remaining

points to the right of ui that are not yet occupied by a point.
In order to embed ui+1 as well as the leaves incident to it, we distinguish four cases:

Case 1: ui+1 has degree at most two. Let p be the leftmost point in P+
i . We map ui+1

to p and connect it to ui an L-shaped orthogeodesic chain as illustrated in Figures 9a
and 9b.

Case 2: ui+1 has degree 3. Let w be a leaf incident to ui+1. Let p1 be the leftmost
point in P+

i and let p2 be the leftmost point in P+
i to the right of p1. We map ui+1 to

p2 and connect it to ui by an L-shaped orthogeodesic chain starting with a horizontal
segment in ui+1. Further, we map w to p1 and connect it to ui+1 by the horizontal
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Fig. 9: Embedding a caterpillar on n+ 1 points using L-shaped edges.

segment incident to p2 to the left and the vertical segment incident to p1 as illustrated
in Figures 9c and 9d.

Case 3: ui+1 has degree 4 and there is no unoccupied point to the left of ui. Let w1 and
w2 be two leaves incident to ui+1. Recall that we assumed that the vertex ui be mapped
to a point pj . Let p∗ be the leftmost point in P+

i with the following property.

Either (i) p∗ is above pj and p∗ contains two distinct points p` and pt to its left and
above, respectively, as illustrated in Figures 9e and 9g or, similarly, (ii) p∗ is below
pj and p∗ contains two distinct points p` and pb to its left and below, respectively.

Let Q denote the set of the leftmost 4 points in P+
i . We claim that Q contains a point p∗

with the desired property. Let pt be the topmost point in Q and let pb be the bottommost
point in Q. Further, let p` be the leftmost point such that p` 6= pt, pb and let q be the
remaining point. By construction, q has the desired properties. Hence, there can be at
most three points to the left of p∗.

We assume that p∗ is above pj as illustrated in Figures 9e and 9g, respectively. The
case when p∗ is below pj is analogous. First, we consider the case that there are only
two points in P+

i to the left of p∗, namely a point pt above p∗ and a point p` left of
p∗ as illustrated in Figure 9e. We map ui+1 to p∗ and connect it to ui by an L-shaped
orthogeodesic chain consisting of the horizontal segment incident to ui and the vertical
segment incident to ui+1. Further, we map w1 to p` and connect it to p∗ by an L-shaped
orthogeodesic chain consisting of the horizontal segment incident to p∗ and the vertical
segment incident to p`. Further, we map w2 to pt and connect it by the respective
orthogeodesic chain as illustrated in Figure 9f.

Next, we consider the case that there are three points to the left of p∗ as illustrated
in Figure 9g. Let Q, pt, pb and p` be chosen as described above. We embed ui+1 on p∗,
w1 on p` and w2 on pt as in the above description and we leave the point pb to the left
of p∗ unused as illustrated in Figure 9h.



Case 4: ui+1 has degree 4 and there is a single unoccupied point p− to the left of ui.
This case is analogous to the Case 3, except that we do not require that p∗ contains a
point p` to its left in P+

i , since p− will substitute p`. Note that, as in Case 3, one single
point to the left of p∗ may remain unoccupied as illustrated in Figures 9i and 9j. �

5 Conclusions

In this paper we studied orthogeodesic point-set embeddings of trees on the grid. For
various types of drawings D and various families of trees F we proved upper bounds on
the minimum value f(n) such that every n-vertex tree in F admits a point-set embedding
of type D on every point set of size f(n). Since n is a trivial lower bound for f(n) in all
considered variants of the problem and since the upper bounds we provided are larger
than n for some of the considered variants, it is an interesting topic for future research to
close the gap between n and f(n). The gap is especially large for planar L-shaped point-
set embeddings for which we only proved a quadratic upper bound. Hence it would be
interesting to come up with a sub-quadratic upper bound or a non-trivial lower bound.
Further, we restricted our attention to trees, but we may consider the same problem for
different classes of graphs.
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