

 Karlsruhe Reports in Informatics 2011,25
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Fully-Dynamic Cut Tree Construction

 Tanja Hartmann and Dorothea Wagner

 2011

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Fully-Dynamic Cut Tree Construction

Tanja Hartmann and Dorothea Wagner

Department of Informatics, Karlsruhe Institute of Technology (KIT)?

{t.hartmann,dorothea.wagner}@kit.edu

Abstract. A cut tree of an undirected weighted graph G = (V,E) en-
codes a minimum s-t-cut for each vertex pair {s, t} ⊆ V , and thus solves
the multiterminal network flow problem, which asks for the all-pairs max-
imum flow values in a network. On the other hand, a cut tree represents
a set of n− 1 non-crossing and, in particular, linearly independent cuts,
which constitute a minimum cut-basis of G and can be constructed by
only n − 1 maximum flow computations. Hence, cut trees are resident
in at least two fundamental fields of network analysis and graph theory,
which emphasizes their importance for many applications. In this work
we present the first fully-dynamic algorithm that efficiently maintains a
cut tree for a changing graph. We give a guarantee for the number of
saved cut computations compared to a static algorithm and prove that
two consecutive trees strongly resemble in that their cut sets or equiva-
lently minimum cut-bases heavily intersect.

1 Introduction

Cut trees were first introduced by Gomory and Hu [1] in 1961 in the field of
multiterminal network flow analysis. Shortly afterwards, in 1964, Elmaghraby [3]
already studied how the values of multiterminal flows change if the capacity of
an edge in the network varies. Elmaghraby established the sensitivity analy-
sis of multiterminal flow networks, which asks for the all-pairs maximum flow
values (or all-pairs minimum cut values) in a network, regarding any possible
capacity of the varying edge. According to Barth et al. [4] this can be answered
by constructing two cut trees. In contrast, the parametric maximum flow prob-
lem considers a flow network with only two terminals s and t and with several
parametric edge capacities. The goal is to give an actual maximum s-t-flow (or
minimum s-t-cut) regarding all possible capacities of the parametric edges in
order to choose the best flow with respect to some side constraints. Parametric
maximum flows were studied, e.g., by Gallo et al. [5] and Scutellà [6].

However, in many applications we are neither interested in all-pairs values
(sensitivity analysis) nor in one minimum s-t-cut (parametric flow) regarding all
possible changes of varying edges in the network G = (V,E). Instead we face a

? This work was partially supported by the DFG under grant WA 654/15-2 and by
the Concept for the Future of Karlsruhe Institute of Technology within the German
Excellence Initiative.

concrete capacity change on a concrete edge and need all-pairs minimum cuts
regarding this single change. This is answered by dynamic cut trees, which thus
bridge the two sides of sensitivity analysis and parametric maximum flows.

Contribution and Outline. In this work we develop the first algorithm that
efficiently and dynamically maintains a cut tree for a changing graph, allowing
arbitrary atomic changes and guaranteeing high temporal smoothness, i.e., a
large intersection of the cut sets represented by two consecutive trees. To the
best of our knowledge no fully-dynamic approach for updating cut trees exists.
Coming from sensitivity analysis, Barth et al. [4] introduce a first approach for
updating a cut tree after an edge capacity has increased and state the difficulty
in the case of decreasing capacity. Giving a concrete cut tree construction that
reuses cuts that are still valid after the change, they show that the path between
the two vertices of the changing capacity is the only part that needs to be
recomputed in order to construct a new cut tree.

In our work, we extend the approach of Barth et al. for increasing capacities
by a guaranteed temporal smoothness. However, we even formulate a general
condition for the reuse of given cuts in a cut tree construction such that cuts
that are known to remain valid can also be exploited for decreasing capacities.
We further describe how to detect such cuts, yielding an exact formula for the
number of saved cut computations compared to a computation from scratch.
Additionally, we provide techniques to determine new cuts that respect cuts
that remain valid.

We give our notational conventions and two folklore insights in Sec. 2. In
Sec. 3, we revisit the static cut tree algorithm by Gomory and Hu [1] and present
Theorem 1, which allows for the reuse of cuts. In Sec. 4 we describe our new
update algorithm proving its correctness and the guarantee of smoothness and
cut savings, concluding in Sec. 5.

2 Preliminaries and Notation

Throughout this work we consider an undirected, weighted graph G = (V,E, c)
with vertices V , edges E and a non-negative edge cost function c, writing c(u, v)
as a shorthand for c({u, v}) with u ∼ v, i.e., {u, v} ∈ E. We reserve the term node
for compound vertices of abstracted graphs, which may contain several basic
vertices; however, we identify singleton nodes with the contained vertex without
further notice. Due to space constraints we focus on dynamic modifications of
G concerning only edges. We abandon a description of inserting and deleting
disconnected vertices, which requires the handling of bridges. The latter retains
the cut trees spanning the two sides of a bridge. Thus, we assume G to be
connected; otherwise we work on each connected component independently and
the results still apply. An edge modification of G always involves an edge {b, d},
with c(b, d) = ∆, yielding G⊕ if {b, d} is newly inserted into G, and G	 if it
is deleted from G. We write G⊕	 as a shorthand for G⊕ or G	. Decreasing
edge costs can be handled by the same method as deletions, the techniques for

2

edge insertions also apply for increasing costs. We denote by c⊕ and c	 the cost
functions after inserting and deleting, respectively.

An edge eT = {u, v} of a tree T (G) = (V,ET , cT) on V induces a cut in G
by decomposing T (G) into two connected components. We sometimes identify
eT with the cut it induces in G. A weighted tree T (G) is called a cut tree if edge
costs correspond to cut costs and if for any vertex pair {u, v} ∈

(
V
2

)
the cheapest

edge on the unique path γuv between u and v induces a minimum u-v-cut in G.
Neither must this edge be unique, nor T (G). Paths are either represented as a
set of edges or vertices/nodes, as convenient. Hence, a cut tree represents for any
node pair {u, v} ⊆ V a minimum-u-v-cut θuv in G. For details on cut trees, see
the pioneering work by Gomory and Hu [1] or the simplifications by Gusfield [2].
A contraction of G by N ⊆ V means replacing the set N in G by a single node,
denoted by [N], and leaving this node adjacent to all former adjacencies u of
vertices of N , with edge costs equal to the sum of all former edges between N
and u. Analogously we can contract by a set M ⊆ E. We start by giving some
fundamental insights on the behavior of cuts in dynamic graphs. Remark 1 and
Lemma 1 are both folklore based on the sensitivity analysis of multiterminal
flow networks.

Remark 1. Consider a minimum u-v-cut θuv in G and let {b, d} ∈ E be modified.

– θuv remains valid (with respect to u, v) with the previous costs
in G⊕ iff θuv does not separate b and d and
in G	 iff additionally there exists no cut θ′ with c(θ′) − ∆ < c(θuv) that
separates b and d.

– θuv remains valid (with respect to u, v) with new costs c(θuv)∓∆
in G	 iff θuv separates b and d and
in G⊕ iff additionally there exists no cut θ′ with c(θ′) < c(θuv) + ∆ that
does not separate b and d.

– θuv becomes invalid (with respect to u, v) otherwise.

Lemma 1. Consider eT := {u, v} ∈ ET in T (G) and let {b, d} be modified in G.
If eT /∈ γb,d then eT is still a minimum u-v-cut in G⊕ with costs cT (eT).
If eT ∈ γb,d then eT is still a minimum u-v-cut in G	 with costs cT (eT)−∆.

3 The Static Cut Tree Algorithm

To provide a self-contained paper we briefly revisit the static construction of a
cut tree proposed by Gomory and Hu [1] and simplified by Gusfield [2]. Gomory
and Hu presented an algorithm that iteratively constructs n − 1 non-crossing
minimum u-v-cuts regarding n − 1 vertex pairs {u, v} ⊆ V , which we call step
pairs in the following. Those step pairs are chosen arbitrarily from the set of
pairs not separated by any of the cuts constructed so far. Crossings of the cuts
are prevented by contractions. For pseudo-code see App. A. An intermediate cut
tree T∗(G) = (V∗, E∗, c∗) is initialized as an isolated, edgeless node containing all
original vertices. Then, until no node S of T∗(G) contains more than one vertex,
a node S is split. To this end, nodes S′ 6= S are dealt with by contracting in

3

G whole subtrees Nj of S in T∗(G), connected to S via edges {S, Sj}, to single
nodes [Nj]before cutting, which yields GS—a notation we will continue using in
the following. The split of S into (Su, Sv) is then defined by a minimum u-v-cut
(split cut) in GS , which does not cross any of the previously used cuts due to
the contraction technique. Afterwards, each Nj is reconnected, again by Sj , to
either Su or Sv depending on which side of the cut [Nj] ended up. Note that this
cut in GS can be proven to induce a min-u-v-cut in G.

The correctness of this Gomory-Hu method bases on Lemma 2, which was
formulated and proven within another proof in [1] and rephrased by Gusfield [2].
Lemma 2 guarantees that in each iteration step each edge {S, S′} in T∗(G) has
a cut pair {x, y} with x ∈ S, y ∈ S′. A vertex pair {x, y} is called a cut pair of
a cut θ if θ is a minimum x-y-cut in G.

Lemma 2 (Gus. [2], Lem. 4). Let {S, Sj} be an edge in T∗(G) inducing a
cut with cut pair {x, y}, wlog. x ∈ S. Now consider step pair {u, v} ⊆ S that
splits S into Su and Sv, wlog. Sj and Su ending up on the same cut side, i.e.
{Su, Sj} becomes a new edge in T∗(G). If x ∈ Su, {x, y} remains a cut pair of
edge {Su, Sj}. If x ∈ Sv, then {u, y} is also a cut pair of {Su, Sj}.
In an intermediate tree T∗(G) we call the cut pair of an edge that appeared
most recently according to Lemma 2 the nearest cut pair of this edge. A (partial)
execution GH = (G,F,K) of Gomory-Hu is characterized by graph G, sequence
F of r ≤ n−1 step pairs and sequence K of r associated split cuts. An execution
GH returns an intermediate tree T∗(G).

Remark 2. Each split cut in K is represented by an edge in the final tree. How-
ever, the associated step pair might become hidden during the execution such
that it is not the nearest cut pair in the final tree T (G).

The following theorem follows directly from the correctness of Gomory-Hu and
constitutes a general tool for the reuse of cuts that remain valid, dynamically.

Theorem 1. Let K denote a set of non-crossing cuts in G and F a set of cut
pairs such that each cut in K is associated to exact one pair in F and separates
no other pair in F . Then GH = (G,F,K) is well-defined and returns a valid and
unique tree T∗(G) independent of the order chosen in F and K.

The result of Barth et al. [4] for edge insertion, which is that given a cut tree T (G)
it suffices to compute |γbd| minimum cuts to construct a new cut tree T (G⊕),
now easily results from Theorem 1 together with Lemma 1. Since the edges off
γbd in T (G) identified by Lemma 1 as staying valid conform to the prerequisites
of Theorem 1, there exists a valid Gomory-Hu execution that computes only
|γbd| new split cuts reusing the remaining cuts. Corollary 1 summarizes this
insight for both modification cases.

Corollary 1. Let K denote the set of cuts and F the set of vertex pairs induced
by the edges in T (G) on γbd (off γbd). Let further T◦(G) (T◦(G⊕)) denote the
tree resulting from T (G) by adjusting the costs of the edges on γbd according to
Lemma 1 and contracting ET \ γbd (γbd); cp. Fig. 1. Then GH = (G	, F,K)
(GH = (G⊕, ET \ F,ET \K)) returns T◦(G) (T◦(G⊕)).

4

In the following we will denote by T◦(G⊕) an intermediate tree which serves as
a starting point for further Gomory-Hu iterations, and by T∗(G⊕) a working
version. Furthermore, we will avoid contractions during Gomory-Hu according
to the simplification introduced by Gusfield [2] basing on the following lemma.

Lemma 3 (Gus. [2], Lem. 1). Let (N,V \ N) be a minimum x-y-cut in G,
with y ∈ N . Let (H,V \H) be a minimum u-v-cut, with u, v ∈ V \N and y ∈ H.
Then the cut (H ∪N, (V \H) ∩ (V \N)) is also a minimum u-v-cut.

Lemma 3 tells us that any split cut (H,V \ H) splitting a subtree N can be
bend along one side of N such that N is not injured. The final shape of the
split cut, i.e., the side containing N , depends on which side of the split cut the
member y ∈ N of the nearest cut pair of the link between S and N ends up; N
and y share the same side. Thus, we say N is sheltered by pseudo-contraction
and consider arbitrary cuts in G instead of GS in the following without further
notice. We will further use the pseudo-contraction technique in some proofs.

4 The Dynamic Cut Tree Algorithm

In this section we develop our new algorithm for dynamically updating cut trees
over time. Our algorithm guarantees the following smoothness between two con-
secutive trees T (G) and T (G⊕): Let θ denote the cut represented by edge {u, v}
in T (G). If θ is still a minimum u-v-cut in G⊕	 then θ is again represented in
T (G⊕), possibly with a nearest cut pair different from {u, v}.

In order to guarantee this smoothness the algorithm needs to find those edges
in T (G) that remain valid cuts with respect to their nearest cut pair. Some edges
are already known to remain valid due to theoretical deductions (cp. Lemma 1, 4
and 7), the other edges need to be checked by (re)computing a minimum u-v-cut
in G⊕	. At the same time we want the update algorithm to be as efficient as
possible, i.e., each cut computed for checking an edge in T (G) should be used
also for the construction of the new tree, independent of the checking result. We
will see that our algorithm also fulfills this efficiency constraint.

Our algorithm is a modified Gomory-Hu method starting the iteration at
the intermediate tree T◦(G⊕) constructed in Corollary 1 (see also Fig. 1). It
works in two phases. The first phase splits unmarked nodes in T∗(G⊕), the
second phase considers marked nodes resulting from the phase before. In order
to provide smoothness and efficiency the step pairs in the first phase are no
longer chosen arbitrarily but the intermediate tree T∗(G⊕) fulfills a structural
invariant that tells the algorithm which step pair to choose next. For deletions
several non-crossing split cuts are computed in one iteration step, which are all
executed at the same time.

The Invariant. We define the invariant for both modifications—deletion and
insertion—separately. To this end we introduce the treetop of a vertex and the
stem of a treetop (cp. Figure 5 and Figure 6 in App. B).

Definition 1. Consider a cut tree T (G), a vertex u ∈ V and an edge modifica-
tion between b and d in G.

5

Deletion: If u /∈ γbd the treetop ⇑u of u is given by the subtree of T (G) rooted
in u not containing γbd. If u ∈ γbd the treetop ⇑u of u is the union of u with the
treetops of all neighbors of u in T (G) that are off γbd.

Insertion: Vertex u ∈ γbd has two orientated treetops. We denote the subtree
of T (G) rooted in u and containing b by ⇑u(b); ⇑u(d) is defined analogously.

We call {u, v} in T (G), with v the only neighbor of u outside the treetop, the
stem of the treetop of u.

Edge Deletion. During the first phase of our algorithm the intermediate trees
T∗(G) fulfill the following invariant. Each marked node consists of a treetop
and constitutes a leave in T∗(G). The root of the treetop is the only member
of a nearest cut pair in the node. Let Sb and Sd denote the nodes containing b
and d. For unmarked non-singleton nodes S holds:

– S lies on the path between Sb and Sd, has at most degree two and contains
exactly one vertex that is a member of a nearest cut pair. We call this vertex
the center of the node.

– S consists of a subset of vertices of an initial treetop. The initial treetops are
the treetops of the vertices on γbd in T (G).

– the vertices in S provide an internal tree structure yielding the properties
listed below.

Properties of the internal tree structure in unmarked nodes:

a. The structure is rooted in the center c of S.
b. Let u denote a neighbor of c. The internal subtree ⇑iu rooted in u, with c /∈⇑iu,

consists of ⇑u and possibly more treetops of other vertices in S.
c. If ⇑iu consists of more than one treetop, there is a minimum u-c-cut θu as-

signed to ⇑iu (otherwise ⇑iu may have an assigned cut).
d. Assigned cuts are non-crossing. An assigned cut θu does not split an internal

subtree ⇑iû if (i) θu separates û from c or (ii) ⇑iû has an assigned cut.
e. If ⇑iu consists of ⇑u and there is no minimum u-c-cut assigned, let {u, v}

denote the stem of ⇑u in T (G). If {u, v} is still a minimum u-v-cut after the
change, any minimum u-c-cut in G	 costs cT (u, v) and {u, c} is a cut pair
of {u, v} in G	.

f. In the situation of (e.) if a minimum u-c-cut in G	 is cheaper than the stem
{u, v} of ⇑u this cut separates b and d.

Edge Insertion. The intermediate trees T∗(G⊕) fulfill the following: Each marked
node is either a singleton off γbd in T (G) or consists of a subpath of γbd. There
are only two unmarked nodes Sb′ and Sd′ . Let Sb and Sd denote the nodes
containing b and d. For the unmarked nodes holds:

– Sb′ and Sd′ are adjacent decomposing T∗(G⊕) into two parts. One part con-
tains Sb and Sb′ , the other contains Sd and Sd′ .

– There is at most one vertex b′ in Sb′ that is a member of a nearest cut pair
that links Sb′ to a marked node containing a subpath of γbd (for Sd′ the
analog assertion holds).

6

b
d

(a) T◦(G
), all nodes unmarked.

db

(b) T◦(G
⊕), singletons off γbd marked.

Fig. 1. Starting points for update algorithm with internal structure in nodes.

– Sb′ and Sd′ consist each of a subset of vertices of γbd in T (G).
– the vertices in Sb′ respectively Sd′ provide an internal path structure yielding

the properties listed below.

Properties of the internal path structure in Sb′ and Sd′ :

a. The vertices are ordered the same as in γbd.
b. Wlog. consider Sb′ in b. to d., symmetric assertions hold for Sd′ . Vertex

b′ ∈ Sb′ forms the end of the internal path that is closer to b in γbd.
c. Let further {b′, x} denote the unique edge on the internal path incident to b′,

and {v, x} the stem of ⇑x(d) in T (G). The cut induced by {v, x} does neither
cross any edge in T∗(G⊕) nor split any node apart from Sb′ . We say ⇑x(d) is
closed in T∗(G⊕).

d. If {v, x} is still a minimum v-x-cut after the change, any minimum b′-x-cut
in G⊕ costs cT (v, x) +∆ and {b′, x} is a cut pair of {v, x} in G⊕.

Split Cut Construction in the First Phase. The internal structures in the
unmarked nodes in T∗(G⊕) define the step pairs. In the case of edge deletion
the step pairs consist of the centers c together with one of their neighbors u, in
the case of edge insertion the endings {b′, x} of the internal paths are considered.
Marked nodes are not considered as long as unmarked nodes different from
singletons exist (first phase). They are handled in a second phase. In order
to preserve the invariant when splitting unmarked nodes the update algorithm
adjusts the split cuts as described in the following.

Edge Deletion. The update algorithm starts with T◦(G) where all nodes are
unmarked (cp. Fig. 1(a)). Observe that T◦(G) fulfills the invariant. In one itera-
tion step the algorithm chooses a non-singleton unmarked node S and computes
a whole set Θ of non-crossing split cuts that separate c from all its neighbors
u such that none of the subtrees ⇑iu is split by any cut in Θ. At the beginning
of each iteration step Θ is initialized by the cuts already assigned to subtrees
and the following preprocessing is done: If there is an cut in Θ that separates
a neighbor û from c but splits ⇑û that has no cut assigned, this cut is adjusted
such that ⇑û is no longer split according to scenario (c), which will soon be
described. By induction the cuts in Θ now fulfill the condition given in (d.) of
the invariant. Then the construction of split cuts begins.

The algorithm iterates the neighbors u not yet separated from c by a cut
in Θ. If the stem {u, v} of ⇑u=⇑iu in T (G) corresponds to an edge in G with

7

c(u, v) = cT (u, v), the cut induced by {u, v} remains a minimum u-v-cut in G	

according to Lemma 4 (for a proof see App. B). Due to (e.) {u, v} is also a
minimum u-c-cut, and thus, it is marked as a remaining edge and added to Θ. If
⇑u is split by a previous cut in Θ this cut is bent along ⇑u since ⇑u is sheltered
by pseudo-contraction. Afterwards, the cuts in Θ are again non-crossing.

Lemma 4. An edge {u, v} in T (G) corresponds to a bridge in G if and only if
{u, v} is an edge in G with c(u, v) = cT (u, v) (bridge detection). An edge {u, v}
in T (G) that corresponds to a bridge in G is still a minimum u-v-cut in G	.

If the stem {u, v} of ⇑u=⇑iu in T (G) is cheaper than the minimum of the
costs of the edges incident to node S in the current intermediate tree, according
to (f.), the cut induced by {u, v} remains a minimum u-v-cut in G	. Due to (e.)
{u, v} is also a minimum u-c-cut, and thus, it is marked as a remaining edge
and added to Θ. If ⇑u is split by a previous cut in Θ this cut is bent along ⇑u
since ⇑u is sheltered by pseudo-contraction. Afterwards, the cuts in Θ are again
non-crossing.

Otherwise, the algorithm computes a new minimum u-c-cut θ′uc in G	. If
c	(θ′uc) = cT (u, v), the stem {u, v} of ⇑u is also a minimum u-c-cut in G	 and
is marked before added to Θ. In this way, according to (e.), the algorithm reuses
{u, v} whenever it remains a minimum u-v-cut in G	. The cuts in Θ are adjusted
non-crossing as described before.

If the new cut θ′uc is cheaper than {u, v} it is adjusted such that it does not
cut through ⇑u, by Lemma 5. For simplicity we define (V \ ⇑u) =: #u. A proof
of Lemma 5 can be found in App. B.

Lemma 5. Given u /∈ γb,d in T (G) and v /∈⇑u. Let (A,B) be a cut separating
u and v such that (A,B) induces a cut (⇑A,⇑B) of ⇑u with u ∈⇑A and a cut
(#A,#B) of #u with v ∈ #B. Then c	(#A∪ ⇑u,#B) ≤ c	(#A∪ ⇑A,#B∪ ⇑B).

Then it is added to Θ and made non-crossing with all previous cuts in Θ such
that a subtree ⇑iû of a neighbor û is not split by any cut in θ if û is separated
from c by a cut in Θ. This adjustment follows scenario (a) – (c) (cp. Fig. 2).

Scenario (a) [θ′uc (dashed) meets θûc ∈ Θ (solid) and separates û from c]: The
new cut θ′uc is bent along θûc due to pseudo-contraction (fat dashed) such
that ⇑u ∪ ⇑iû is not split. In this scenario θûc is removed from Θ but remains
assigned to ⇑iû. The algorithm further reshapes the internal tree structure
such that û together with ⇑iû becomes a neighbor of u. Note, that θûc is also
a minimum û-u-cut according to Lemma 2 since we can consider θûc and θ′uc
as the first two split cuts in a Gomory-Hu execution.

Scenario (b) [θ′uc meets θûc ∈ Θ but does not separate û from c]: Cut θ′uc is bent
along θûc due to pseudo-contraction. Depending on the shape of θûc it might
split ⇑u after this adjustment. Thus, Lemma 5 is applied restraining θ′uc from
splitting ⇑u (fat dashed). Now ⇑u is sheltered by pseudo-contraction and θûc
is also adjusted sparing ⇑u (not depicted in Fig. 2(b)). Finally, neither ⇑u
nor ⇑iû is split.

8

u

c

û

⇑iû
⇑u

θûc

θ′uc

(a) θûc ∈ Θ, θ′uc separates
û and c.

u

c

û

⇑iû
⇑u

θûc

θ′uc

(b) θûc ∈ Θ, θ′uc does not
separate û and c.

u

c

û

⇑û⇑u
θ′uc

(c) θ′uc separates neighbor
û from c.

Fig. 2. Tree scenarios adjusting a newly computed cut with respect to other cuts in Θ.
In any other scenario θ′uc is not adjusted.

Sb Sd
c

(a) Cuts considered in one iteration
step, fat dashed cuts are in Θ.

Sb Sd

c

(b) New intermediate tree T∗(G
)

with assigned cuts in new nodes.

Fig. 3. Previous and new T∗(G
) after executing cuts in Θ. Marked nodes bold-framed,

black centers of unmarked nodes; new Θs (b) initialized with fat dashed cuts.

Scenario (c) [θ′uc separates û from c, no minimum û-c-cut in Θ yet]: Since θ′uc
might split ⇑û it is adjusted according to Lemma 5 (fat dashed) which is pos-
sible as Lemma 5 does not require cut (A,B) to be minimum. Furthermore,
û together with ⇑û becomes a neighbor of u.

At the end of each iteration step the adjusted split cuts in Θ are shaped as
described in Remark 3. Furthermore, the cuts (and cut pairs) in Θ together with
the cuts (and nearest cut pairs) already represented in the previous intermediate
tree conform to the requirements of Theorem 1. Thus, the split cuts in Θ are
executed in an arbitrary order yielding a new intermediate tree (cp. Fig. 3).
Marked edges/cuts inherit their mark to the new node not containing c. The new
intermediate tree conforms to all constraints but (d.(i)) given by the invariant.
Constraint (d.(i)) becomes true after the preprocessing at the beginning of the
next iteration step. Detailed proofs of (c.) – (f.) can be found in App. B.

Remark 3. Due to (f.) and the nesting of cuts in scenario (a) there are at most
two cuts in the final set Θ—one separating c from b and one separating c from
d—that do not correspond to a stem of a treetop of a neighbor of c.

Edge Insertion. Consider all singletons in T◦(G⊕) as marked nodes (cp.
Fig. 1(b)). Any cheapest edge e on γbd in T (G) induces a minimum b-d-cut
in G⊕ and the only non-singleton node in T◦(G⊕) consists of γbd. Thus, the up-
date algorithm starts with splitting the non-singleton node by e. The resulting
intermediate tree then fulfills the invariant with b =: b′ ∈ Sb′ and d =: d′ ∈ Sd′ .

The algorithm iteratively considers step pairs in Sb′ . When Sb′ became a
singleton the algorithm continues the same way with Sd′ . In one iteration step

9

it chooses {b′, x} as step pair and computes a new minimum b′-x-cut θ′xb′ in G⊕.
In order to preserve the invariant θx is replaced or adjusted as follows.

If θ′xb′ costs cT (v, x) + ∆ with {v, x} the stem of ⇑x(d) in T (G), the cut
induced by {v, x} is a minimum b′-x-cut in G⊕ since b′ /∈⇑x(d). Thus, θ′xb′ is
replaced by {v, x}. In this way, according to (d.), the algorithm reuses {v, x}
whenever it remains a minimum v-x-cut in G⊕. Note that the shape of {v, x}
does not change during its execution since ⇑x(d) is closed in T∗(G⊕). Afterwards
b′ is a marked singleton in the new tree. The new node Sb′ containing x is still
adjacent to Sd′ since e was sheltered by ⇑x(d); x becomes b′.

Otherwise, if θ′xb′ costs cT (e′) + ∆, with e′ any cheapest edge on the path
between b′ and x in T (G), the cut induced by e′ remains valid. Thus, θx is
replaced by e′. Note that this new split cut may be reshaped when executed
by pseudo-contraction of subtrees linked to Sb′ . However, since e′ respects ⇑x(d)
and ⇑x(d) is closed in T∗(G⊕), ⇑x(d) shelters e and ⇑y(d)⊂⇑x(d), with y the next
vertex adjacent to x on the internal path, is even closed in the new tree after
the execution; b′ becomes a marked singleton, x ∈ Sb′ becomes b′.

If θ′xb′ is cheaper than cT (e′)+∆ it does not separate b and d and needs to be
adjusted such that after its execution (c.) holds again. This adjustment bases on
the following lemma applied in two different scenarios. For simplicity we define
(V \ ⇑y(d)) =: #y(d). Lemma 6 also holds after replacing d by b.

Lemma 6. Given two vertices u, y ∈ γb,d in T (G) with u /∈⇑y(d). Let (A,B)
be a cut separating u and y such that (A,B) induces a cut (⇑A,⇑B) of ⇑y(d)
with y ∈⇑A and a cut (#A,#B) of #y(d) with u ∈ #B. Furthermore let b, d, y
share the same side of cut (#A∪ ⇑A,#B∪ ⇑B). Then c⊕(#A∪ ⇑y(d),#B) ≤
c⊕(#A∪ ⇑A,#B∪ ⇑B).

Scenario (a): If θ′xb′ does not separate x from {b, d}, according to Lemma 6, it
can be adjusted such that it does not split ⇑y(d)⊂⇑x(d), with y the next
vertex adjacent to x on the internal path (cp. Fig. 7 in App. C). In this case
b′ becomes a marked singleton, x ∈ Sb′ becomes b′ and the unmarked nodes
are again adjacent.

Scenario (b): If θ′xb′ separates x and {b, d}, let y 6= b′ denote the vertex closest
to x on the internal path that shares the cut side with {b, d}. If such an
y does not exist θ′xb′ separates all vertices of the internal path from b′ and
Sb′ becomes an unmarked singleton containing b′; e is reconnected to b′.
Otherwise, applying Lemma 6 to y prevents treetop ⇑y(d) from splitting (cp.
Fig. 4) and e is sheltered by ⇑y(d).

After splitting Sb′ by the replaced or adjusted split cut the new intermediate
tree T∗(G⊕) conforms to all constraints given by the invariant. A detailed proof
of (d.) can be found in App. C.

Handling Marked Nodes in the Second Phase. Marked nodes are consid-
ered when all unmarked nodes in T∗(G⊕) became singletons. The shape of the
marked nodes conforms to the invariant.

10

θ′xb′

b′ x y

Sb′

d′

b
d

θxb′

(a) Cut θ′xb′ (solid) is adjusted to
dashed cut θxb′ according to Lemma 6.

b′ y

Sb′

d′

b

x

d

(b) New intermediate tree after execut-
ing θxb′ .

Fig. 4. Previous and new T∗(G
⊕) for scenario (b); ⇑x(d) (left) and ⇑y(d) (right) are

gray colored, black end b′ of internal path; fat edge denotes e linking Sb′ and Sd′ .

Edge Deletion. Each non-singleton marked node S consists of a treetop ⇑u and
was formed when the stem {u, v} of ⇑u turned out to remain a valid minimum
u-v-cut in G	. Thus, Lemma 7 together with Theorem 1 allows for just unfolding
⇑u in order to complete the cut tree. For a proof of Lemma 7 see App. D.

Lemma 7. In G	, let (U, V \ U) be a minimum u-v-cut not separating {b, d},
with γb,d ∩ U = ∅. Then, a cut induced by an edge {g, h} in the old tree T (G),
with g, h ∈ U , remains a minimum separating cut in G	 for all its previous cut
pairs within U , and a minimum g-h-cut in particular.

Edge Insertion. Wlog. consider marked nodes resulting from splitting Sb′ . Each
non-singleton marked node S consists of a subpath of γbd and was formed by
scenario (b) when x was separated from b′ by a split cut θ that separated x from
{b, d} (cp. Fig. 4). Note that x became the end of the subpath in S that is closer
to b and b′ is between b and x on γbd. The following assertion holds for an edge
{g, h} ⊆ S. A proof is given in App. D.

Lemma 8. There exists no pair {u, n} ∈
(
V
2

)
such that edge {g, h} is a valid

minimum u-n-cut in G⊕. In particular, {g, h} is no minimum g-h-cut in G⊕.

Thus, there is no need for searching for remaining edges in marked nodes. Con-
sequently, the update algorithm just continues Gomory-Hu choosing arbitrary
step pairs in marked nodes until T∗(G⊕) is a tree of singletons.

5 Summary of the Algorithm’s Performance

The smoothness guarantee given in Theorem 2 holds for both modification cases
and is due to the invariant. The latter guarantees that for each edge in T (G) it is
checked whether it remains valid with respect to its nearest cut pair and allows
for reusing the found cuts by managing the choice of step pairs and reshaping
newly computed cuts in order to guarantee the right shape of T∗(G⊕).

Theorem 2. The minimum cut-basis given by T (G⊕) contains each cut rep-
resented in T (G) that remains valid with respect to its nearest cut pair.

Due to the order in which the step pairs are considered, in the case of edge
deletion, further results are applicable, these are Lemma 4 for detecting bridges
and Lemma 7 for locating valid treetops. Together with Lemma 1, they yield the
following guarantee on saved cut computations compared to a static algorithm.

11

Theorem 3. The update algorithm saves n−1− (|γbd|−1) cut computations in
the case of edge insertion (cp. to Barth et al. [4]), and |γbd|+ |B|+

∑
⇑∈X | ⇑ |

cut computations in the case of edge deletion.

In the above theorem |γbd| denotes the number of edges in γbd, | ⇑ | the number
of edges in a treetop ⇑, X the set of marked non-singleton nodes in T∗(G) after
the first phase, and B the set of edges/stems that are marked during the first
phase (B particularly contains all bridges not in γbd ∪

⋃
⇑∈X ⇑). The invariant

finally takes care that each cut computation corresponds to the splitting of a
node. This justifies Theorem 4. In the case of deletion this becomes possible due
to the storage of cuts by assigning them to treetops.

Theorem 4. The update algorithm calculates at most n− 1 cuts.

We further ask for the efficiency of our update algorithm, which we define by
the ratio of necessary cut computations to calculated cuts. Unfortunately, the
set of necessary cut computations is difficult to predict. We consider a set A of
cuts as necessary if there exists both a cut tree T̂ (G⊕) providing a maximum
intersection with T (G) in terms of represented cuts, and a Gomory-Hu execu-
tion returning T̂ (G⊕) such that the split cuts consist of A and the intersection
of T̂ (G⊕) and T (G). From this point of view, we can express bounds for the
number of necessary cuts dependent on the shape of T∗(G⊕) after the first
phase of our algorithm. This allows for estimating the efficiency at least for an
actual update. A high efficiency indicates that T (G⊕) is close to an optimum
tree T̂ (G⊕). In contrast, low efficiency does not necessarily mean that T (G⊕)
is far from T̂ (G⊕). Note that any tree T̂ (G⊕) represents at least those cuts in
T (G) that remain valid with respect to their nearest cut pair. Thus, Theorem 2
constitutes an upper bound for the distance between T (G⊕) and T̂ (G⊕).

Furthermore, in the case of deletion, low efficiency indicates that many
reusable cuts form many small treetops linked to a short path γbd in T (G),
in particular, the vertices on γbd have high degrees. In the case of insertion, low
efficiency only occurs if γbd is long and contains many reusable cuts. Both cases
seem to constitute rather special trees. Thus, we conjecture our algorithm to
achieve high efficiency on most instances. See App. F for a further discussion.

Conclusion. We introduced the first algorithm that dynamically updates a
cut tree of G, guaranteeing a high temporal smoothness and providing strong
savings of cut computations in both cases, edge insertion and deletion. Future
work includes further improvement of this algorithm by also exploiting cost
limits in order to avoid cut computations, the analysis of batch updates and a
systematic experimental runtime evaluation.

References
1. R. E. Gomory and T. Hu. Multi-terminal network flows. Journal of the Society

for Industrial and Applied Mathematics, 9(4):551–570, December 1961.
2. D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM Journal

on Computing, 19(1):143–155, 1990.

12

3. S. E. Elmaghraby. Sensitivity Analysis of Multiterminal Flow Networks. Operations
Research, 12(5):680–688, October 1964.

4. D. Barth, P. Berthomé, M. Diallo and A. Ferreira. Revisiting parametric multi-
terminal problems: Maximum flows, minimum cuts and cut-tree computations.
Discrete Optimization, 3(3):195–205, July 2006.

5. G. Gallo, M. D. Grigoriadis and R. E. Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM Journal on Computing, 18(1):30–55, 1989.

6. M. G. Scutellà. A note on the parametric maximum flow problem and some related
reoptimization issues. Annals of Operations Research, 150(1):231–244, 2006.

13

Appendix

A Omitted Pseudo-Code of Static Cut Tree Algorithm

Algorithm 1: Gomory-Hu (Cut Tree)

Input: Graph G = (V,E, c)
Output: Cut tree of G

1 Initialize V∗ ← {V }, E∗ ← ∅ and c∗ empty and tree T∗(G) := (V∗, E∗, c∗)
2 while ∃S ∈ V∗ with |S| > 1 do // unfold all nodes

3 {u, v} ← arbitrary pair from
(
S
2

)
4 forall the Sj ∼ S in T∗(G) do Nj ← subtree of S in T∗(G) with Sj ∈ Nj

5 GS = (VS , ES , cS)← in G contract each Nj to [Nj] // contraction

6 (U, VS \ U)← min-u-v-cut in GS , costs δ, u ∈ U
7 Su ← S ∩ U and Sv ← S ∩ (VS \ U) // split S = Su ·∪Sv

8 V∗ ← (V∗ \ {S}) ∪ {Su, Sv}, E∗ ← E∗ ∪ {{Su, Sv}}, c∗(Su, Sv)← δ
9 forall the former edges ej = {S, Sj} ∈ E∗ do

10 if [Nj] ∈ U then ej ← {Su, Sj} ; // reconnect Sj to Su

11 else ej ← {Sv, Sj} ; // reconnect Sj to Sv

12 return T∗(G)

B Omitted Proofs on Split Cut Construction for Deletion

Lemma 4. An edge {u, v} in T (G) corresponds to a bridge in G if and only if
{u, v} is an edge in G with c(u, v) = cT (u, v) (bridge detection). An edge {u, v}
in T (G) that corresponds to a bridge in G is still a minimum u-v-cut in G	.

Proof. Bridge detection (⇒): Assume {u, v} to be a bridge in G. Any minimum
u-v-cut in G separates u and v, and thus, is at least as expensive as c(u, v).
Furthermore, the cut decomposing G into the two parts indicated by the bridge
costs exactly c(u, v), and thus, is a minimum u-v-cut and it holds cT (u, v) =
c(u, v).

Bridge detection (⇐): Assume {u, v} to be an edge in G with c(u, v) =
cT (u, v). Any minimum u-v-cut in G separates u and v, and thus, is at least as
expensive as c(u, v). Thus, there is no cycle in G including {u, v}, i.e., {u, v} is
a bridge in G. Since we assume G to be connected, the cut decomposing G into
the two parts indicated by the bridge is the only minimum u-v-cut in G, and
thus, {u, v} is an edge in T (G).

Second assertion: Assume {u, v} to be a bridge in G. If {u, v} in T (G) is on
γbd, the assertion holds according to Lemma 1. Otherwise, since {u, v} is not

involved in the edge deletion/cost reduction it is still a bridge and still the only
minimum u-v-cut in G	. ut

Lemma 5. Given u /∈ γb,d in T (G) and v /∈⇑u. Let (A,B) be a cut separating
u and v such that (A,B) induces a cut (⇑A,⇑B) of ⇑u with u ∈⇑A and a cut
(#A,#B) of #u with v ∈ #B. Then c	(#A∪ ⇑u,#B) ≤ c	(#A∪ ⇑A,#B∪ ⇑B).

⇑A

]A

⇑B

b
d

u

v

]B

⇑u

]u

θ′

θ
r

Fig. 5. Special parts of G	: γb,d (black) connects b and d, stem {u, r} of ⇑u induces
cut (⇑u,#u); #u and ⇑u, both cut by θ′ (solid), adjusted to θ (dashed) by Lemma 5.

Proof. Using the fact that in T (G) the stem {u, r} of ⇑u represents a minimum
u-r-cut, we prove Lemma 5 by contradiction. We show that cut (⇑A, V \ ⇑A)
would have been cheaper than the edge-induced minimum u-r-cut (⇑u,#u) =
(⇑u, V \ ⇑u) in G if c	(#A∪ ⇑A,#B∪ ⇑B) was cheaper than c	(#A∪ ⇑u,#B)
in G	. We express the costs of (⇑A, V \ ⇑A) and (⇑u, V \ ⇑u) with the aid of
(#A∪ ⇑A,#B∪ ⇑B) and (#A∪ ⇑u,#B) considered in Lemma 5. Note that
(⇑A, V \ ⇑A) and (⇑u, V \ ⇑u) do not separate b and d. Thus, their costs are
unaffected by the deletion. We get

(i) c(⇑A, V \ ⇑A) = c	(#A∪ ⇑A,#B∪ ⇑B) - c	(#A,#B∪ ⇑B) + c	(#A,⇑A)
(ii) c(⇑u, V \ ⇑u) = c	(#A∪ ⇑u,#B) - c	(#A,#B) + c	(#A,⇑u)

Certainly, it is c	(#A,#B) ≤ c	(#A,#B∪ ⇑B) and c	(#A,⇑A) ≤ c	(#A,⇑u
); together with the assumption that the lemma does not hold, i.e., that
c	(#A∪ ⇑A,#B∪ ⇑B) < c	(#A∪ ⇑u,#B), we can see the following, by sub-
tracting (ii) from (i):

c(⇑A, V \ ⇑A)− c(⇑u, V \ ⇑u) = [c	(#A∪ ⇑A,#B∪ ⇑B)− c	(#A∪ ⇑u,#B)]

− [c	(#A,#B∪ ⇑B)− c	(#A,#B)]

+ [c	(#A,⇑A)− c	(#A,⇑u)] < 0

This contradicts the fact that the edge-induced cut (⇑u, V \ ⇑u) is a minimum
u-r-cut in G. ut

Proposition 1. After each iteration step during the first phase T∗(G) fulfills
constraint (c.) of the invariant:

15

If ⇑iu consists of more than one treetop, there is a minimum u-c-cut θu as-
signed to ⇑iu.

Proof. We prove Proposition 1 by induction. At the beginning T◦(G) fulfills
the invariant. Suppose further that the previous intermediate tree fulfills the
invariant. Now consider a neighbor u of the center c in an unmarked node S of
a new intermediate tree T∗(G), and assume ⇑iu 6=⇑u. We show that ⇑iu has a
minimum u-c-cut assigned.

Since ⇑iu 6=⇑u, u must have been already considered in a previous iteration
step as a neighbor of another center c′ catching an internal subtree by a min-
imum u-c′-cut θu according to scenario (a) or (c). Since u is not a center but
still a neighbor in T∗(G), u must have been further caught itself by a mini-
mum û-c′-cut according to scenario (a) where θu is also a minimum u-û-cut. If
û = c the assertion holds. Otherwise, the latter argument iteratively holds for
all reconnections of u according to scenario (a) that have occurred in previous
iteration steps finally yielding the link between u and c. ut

Proposition 2. After each iteration step during the first phase T∗(G) fulfills
all but (i) of constraint (d.) of the invariant. Constraint (d.(i)) holds after the
preprocessing at the beginning of the next iteration step:

Assigned cuts are non-crossing. An assigned cut θu does not split an internal
subtree ⇑iû if (i) θu separates û from c or (ii) ⇑iû has an assigned cut.

Proof. We prove Proposition 2 by induction. At the beginning T◦(G) fulfills
the invariant. Suppose further that the previous intermediate tree fulfills the
invariant. Now consider a subtree ⇑iu and its assigned minimum u-c-cut θu in
an unmarked node S with center c of a new intermediate tree T∗(G). We show
that θu does not split any internal subtree ⇑iû that has a cut θû assigned; in
particular if θu separates û from c. Furthermore, we will see that θu and θû are
non-crossing. After the preprocessing, according to scenario (c), θu also spares
any internal subtree ⇑iû that has no assigned cut but whose root û is separated
from c by θu.

Let ⇑iû denote the internal subtree of neighbor û and θû the assigned cut.
Wlog. let θu be initially computed before θû. Now consider the initial computa-
tion of θû with respect to a center c′. In this iteration step all assigned cuts—and
θu in particular—fulfill (d.) by induction hypothesis, and θû does not split ⇑iû
due to the application of Lemma 5.

If u is a neighbor of c′ when θû is initially computed, then θû either separates
u and c′ according to scenario (a), or scenario (b) occurs. In both scenarios θu
and θû do not cross. In scenario (a) ⇑iu becomes part of ⇑iû, and u and û will
never be neighbors of the same center in a subsequent iteration step. In scenario
(b) θu and θû are adjusted such that neither ⇑iu nor ⇑iû are split.

If u is not a neighbor of c′ when θû is initially computed, ⇑iu is part of a
subtree ⇑ix where x is a neighbor of c′ and θx the assigned cut. Thus θu and θx
are nested as shown in scenario (a). If θû separates x and c′ according to scenario
(a) ⇑ix becomes part of ⇑iû, and x and û (and in particular u and û) will never

16

be neighbors of the same center in a subsequent iteration step. If scenario (b)
occurs θx and θû are adjusted such that neither ⇑ix nor ⇑iû are split and θx and
θû do not cross. Since θu is nested in θx, also θu and θû do not cross. Note that a
possible adjustment of θx in this scenario indirectly reshapes θu such that both
cuts remain nested.

Subsequent steps after the initial computation of θû (which finally link u and
û both to c) respect the properties of θu and θû proven above. ut

Proposition 3. After each iteration step during the first phase T∗(G) fulfills
constraint (e.) of the invariant:

If ⇑iu consists of ⇑u and there is no minimum u-c-cut assigned, let {u, v}
denote the stem of ⇑u in T (G). If {u, v} is still a minimum u-v-cut after the
change, any minimum u-c-cut in G	 costs cT (u, v) and {u, c} is a cut pair
of {u, v} in G	.

Proof. We prove Proposition 3 by induction. At the beginning T◦(G) fulfills the
invariant. Suppose further that the previous intermediate tree fulfills the invari-
ant. Now let c denote the center in an unmarked node S of a new intermediate
tree T∗(G) and let ⇑iu consists of ⇑u with u a neighbor of c. Let further {u, v}
denote the stem of ⇑u in T (G) and assume that {u, v} is still a minimum u-v-cut
after the change. We show that any minimum u-c-cut θ in G	 costs cT (u, v).
Since the cut induced by {u, v} in G	 exactly cuts off ⇑u this cut also separates
u and c. Thus, θ is at most as expensive as {u, v}. In case of equality {u, c} is a
cut pair of {u, v} in G	.

If c = v or θ separates u and v, the assertion obviously holds. Otherwise, θ
does not separate u and v but v and c. Since ⇑u is linked to c 6= v, v must have
been considered as a node center in a previous iteration step, i.e., v /∈ S. Thus, v
is in a subtree [N] linked to S by a nearest cut pair {c, n} in T∗(G). As θ does
not separate u and v, [N] and u are on the same side of θ and θ separates n and
c. However, the minimum c-n-cut θn induced by the link {c, n} also separates
v ∈ [N] and u ∈ S. Thus, c	(θ) ≥ c	(θn) ≥ cT (u, v). ut

Proposition 4. After each iteration step during the first phase T∗(G) fulfills
constraint (f.) of the invariant:

In the situation of (e.) if a minimum u-c-cut in G	 is cheaper than the stem
{u, v} of ⇑u this cut separates b and d.

Proof. We prove Proposition 4 by induction. At the beginning T◦(G) fulfills
the invariant. Suppose further that the previous intermediate tree fulfills the
invariant. Now let c denote the center in an unmarked node S of a new interme-
diate tree T∗(G) and let ⇑iu consists of ⇑u with u a neighbor of c. Let further
{u, v} denote the stem of ⇑u in T (G) and θ a minimum u-c-cut in G	 that is
cheaper than the stem {u, v} of ⇑u. We show that θ separates b and d. Assume
that θ does not separate b and d.

If c = v it obviously holds c	(θ) = cT (u, v), and the assumption that θ is
cheaper than stem {u, v} fails.

17

Otherwise, if c 6= v, u must have become a neighbor of c due to the occurrence
of scenario (c) in a previous iteration step, i.e., u and c have previously been
neighbors of a common center c′, c has caught u by a minimum c-c′-cut θc, and
⇑u and ⇑c are thus disjoint in T (G). Furthermore, since θ is supposed to not
separate b and d, any cheapest edge e on the path between u and c in T (G) still
represents a valid minimum u-c-cut after the change. Note that e separates ⇑u
and ⇑c. Now let x /∈ γbd denote the vertex in T (G) with the smallest treetop
⇑x such that (⇑u ∪ ⇑c) ⊂⇑x. Vertex x exists since S consists of a subset of an
initial treetop; x it is on the path from u to c.

If e is between x and u it follows by Lemma 7 that {u, v} is still a valid
minimum u-v-cut and according to Proposition 3 θ costs cT (u, v). Thus the
assumption that θ is cheaper than stem {u, v} fails.

If e is between x and c it follows by Lemma 7 that the stem {c, y} of ⇑c in
T (G) is still a valid minimum c-y-cut. However, due to (e.), when c was initially
considered as a neighbor of c′, the cut induced by {c, y} would have been chosen
as split cut instead of θc. Thus, u would have never become a neighbor of c.
Thus, this case does not occur. ut

C Omitted Proofs on Split Cut Construction for Insertion

Lemma 6. Given two vertices u, y ∈ γb,d in T (G) with u /∈⇑y(d). Let (A,B)
be a cut separating u and y such that (A,B) induces a cut (⇑A,⇑B) of ⇑y(d)
with y ∈⇑A and a cut (#A,#B) of #y(d) with u ∈ #B. Furthermore let b, d, y
share the same side of cut (#A∪ ⇑A,#B∪ ⇑B). Then c⊕(#A∪ ⇑y(d),#B) ≤
c⊕(#A∪ ⇑A,#B∪ ⇑B).

⇑A

#B

⇑B

b
d

u
y

#A

⇑y(d)#y(d)

θ′ θ

r

Fig. 6. Special parts of G⊕: γb,d (black) connects b and d, stem {r, y} treetop ⇑y(d)

induces cut (⇑y(d),#y(d)); #y(d) and ⇑y(d) both cut by θ′ (solid), adjusted to θ (dashed)
by Lemma 6.

Proof. The Proof of Lemma 6 bases on the same idea as the proof of Lemma 5.
Using the fact that in T (G) the stem {r, y} with r ∈ #y(d) represents a
minimum r-y-cut, we prove Lemma 6 by contradiction. We show that cut
(⇑A, V \ ⇑A) would have been cheaper than the edge-induced minimum r-y-cut

18

(⇑y(d),#y(d)) = (⇑y(d), V \ ⇑y(d)) in G if c⊕(#A∪ ⇑A,#B∪ ⇑B) was cheaper
than c⊕(#A∪ ⇑y(d),#B) in G⊕. We express the costs of (⇑A, V \ ⇑A) and
(⇑y(d), V \ ⇑y(d)) with the aid of (#A∪ ⇑A,#B∪ ⇑B) and (#A∪ ⇑y(d),#B)
considered in Lemma 6. Note that c(⇑A, V \ ⇑A) = c⊕(⇑A, V \ ⇑A) − ∆
and c(⇑y(d), V \ ⇑y(d)) = c⊕(⇑y(d), V \ ⇑y(d)) − ∆. Thus, for our contradic-
tion, it will do to show that c⊕(⇑A, V \ ⇑A) would have been cheaper than
c⊕(⇑y(d), V \ ⇑y(d)). We get

(i) c⊕(⇑A, V \ ⇑A) = c⊕(#A∪ ⇑A,#B∪ ⇑B) - c⊕(#A,#B∪ ⇑B)
+ c⊕(#A,⇑A)

(ii) c⊕(⇑y(d), V \ ⇑y(d)) = c⊕(#A∪ ⇑y(d),#B) - c⊕(#A,#B)
+ c⊕(#A,⇑y(d))

Again we observe two inequalities: c⊕(#A,#B) ≤ c⊕(#A,#B∪ ⇑B) and
c⊕(#A,⇑A) ≤ c⊕(#A,⇑y(d)); together with the assumption that c⊕(#A∪ ⇑A
,#B∪ ⇑B) < c⊕(#A∪ ⇑y(d),#B), by subtracting (ii) from (i), we get:

c⊕(⇑A, V \ ⇑A)− c⊕(⇑y(d), V \ ⇑y(d)) = [c⊕(#A∪ ⇑A,#B∪ ⇑B)

−c⊕(#A∪ ⇑y(d),#B)]

− [c⊕(#A,#B∪ ⇑B)− c⊕(#A,#B)]

+ [c⊕(#A,⇑A)− c⊕(#A,⇑y(d)])] < 0

This contradicts the fact that the edge-induced cut (⇑y(d), V \ ⇑y(d)) is a mini-
mum r-y-cut in G. ut
Proposition 5. After each iteration step during the first phase T∗(G⊕) fulfills
constraint (d.) of the invariant:

If {v, x} is still a minimum v-x-cut after the change, any minimum b′-x-cut
in G⊕ costs cT (v, x) +∆ and {b′, x} is a cut pair of {v, x} in G⊕.

Proof. We prove Proposition 5 by induction. At the beginning T◦(G⊕) fulfills the
invariant after the execution of e. Suppose further that the previous intermediate
tree fulfills the invariant. Now consider the step pair {b′, x} in a new intermediate
tree T∗(G⊕). Let {v, x} denote the stem of ⇑x(d) in T (G) and assume that {v, x}
is still a minimum v-x-cut after the change. We show that any minimum b′-x-cut
θ in G⊕ costs cT (v, x) +∆. Since the cut induced by {v, x} exactly cuts off ⇑x(d)
this cut also separates b′ /∈⇑x(d) and x. Thus, θ costs at most cT (v, x) + ∆. In
case of equality {b′, x} is a cut pair of {v, x} in G⊕.

If b′ = v or θ separates x and v, the assertion obviously holds. Otherwise, θ
does not separate x and v but v and b′. Since x is adjacent to b′ 6= v, v must have
been cut out of Sb′ in a previous iteration step, i.e., v /∈ Sb′ ; v is in a subtree
[N] linked to S by a nearest cut pair {b′, n} in T∗(G⊕). Note that the subtree
can be linked only b′ in Sb′ since ⇑x(d) 63 v is closed in T∗(G⊕). Thus, [N] and
x are on the same side of θ and θ separates n and b′. However, the minimum
b′-n-cut θn induced by the link {b′, n} separates v ∈ [N] and x ∈ Sb′ . Thus,
c⊕(θ) ≥ c⊕(θn) ≥ cT (v, x) +∆. ut

19

θxb′

b′ x y

Sb′

d′
b

d

θ′xb′

(a) Cut θ′xb′ (solid) is adjusted to
dashed cut θxb′ according to Lemma 6.

x y

Sb′

d′

b

b′

d

(b) New intermediate tree after execut-
ing θxb′ .

Fig. 7. Previous and new intermediate tree T∗(G
⊕) for scenario (a); ⇑x(d) in the previ-

ous and ⇑y(d) in the new tree are colored in gray. Black vertex denotes end of internal
path closer to b, fat edge denotes e linking Sb′ and Sd′ .

D Omitted Proofs on Handling Marked Nodes

Lemma 7. In G	, let (U, V \ U) be a minimum u-v-cut not separating {b, d},
with γb,d ∩ U = ∅. Then, a cut induced by an edge {g, h} in the old tree T (G),
with g, h ∈ U , remains a minimum separating cut in G	 for all its previous cut
pairs within U , and a minimum g-h-cut in particular.

Proof. Using (U, V \U) as the first split cut of a Gomory-Hu execution for G	

yields two adjacent nodes {U} and {V \U} with b, d ∈ {V \U}. From the view of
an arbitrary step pair {x, y} in {U} b and d are sheltered by pseudo-contraction
in a common subtree of {U}. This is, there exists a minimum x-y-cut in G	

that does not separate b and d and thus is as expensive as in G, which implies
that it was already a minimum x-y-cut in G. It follows that none of the previous
minimum x-y-cuts separates b and d and each such cut remains valid in G	. In
particular, the cut induced by edge {g, h} ⊆ U remains a minimum g-h-cut and
a minimum separating cut for all its previous cut pairs within U . ut

Lemma 8. There exists no pair {u, n} ∈
(
V
2

)
such that edge {g, h} is a valid

minimum u-n-cut in G⊕. In particular, {g, h} is no minimum g-h-cut in G⊕.

Proof. Assume {g, h} to be still valid with respect to any pair {u, n}. Consider
the iteration step that formed S. By executing split cut {g, h} first ({g, h} does
not separate b′ and x since {g, h} is in ⇑x(d), which is closed in T∗(G⊕)), the
minimum b′-x-cut θ would have been bend along {g, h} by pseudo-contraction
resulting in a minimum b′-x-cut that separates b and d. Thus, the previous
minimum b′-x-cut on γbd would have remained valid and used as split cut by the
update algorithm. This contradicts the existence of S. ut

E Discussion on Performance

We call cuts in T (G) that remain valid in G⊕	 with respect to their nearest cut
pair stable edges and all other cuts in T (G) unstable edges. We call cuts in T (G)

20

that remain valid in G⊕	 with respect to any cut pair stable cuts and all other
cuts in T (G) unstable cuts. It is

stable edges ⊆ stable cuts,

unstable cuts ⊆ unstable edges.

The set of stable cuts\stable edges does not necessarily conform to the require-
ments of Theorem 1. Let M denote a maximum subset of stable cuts\stable edges
such that there exists an order of cut pairs that allows for the execution of all
cuts in M at the beginning of Gomory-Hu. In the resulting intermediate tree
T∗(G⊕) the stable edges are then executable in an arbitrary order according
to Theorem 1. In particular, the cardinality of M does not depend on the sta-
ble edges. This is, any optimal cut tree T̂ (G⊕) for G⊕	 providing maximum
intersection with T (G) in terms of represented cuts contains all stable edges.

Assuming that we know an optimum tree T̂ (G⊕), thus, the number of
cuts that can be carried over from T (G) to T̂ (G⊕) is |M | + |stable edges| ≤
|stable cuts|.

Vice versa, the number of cut computations still necessary in a Gomory-
Hu execution returning T̂ (G⊕) is n − 1 − (|M | + |stable edges)| ≥ n − 1 −
|stable cuts| = |unstable cuts|. The number of necessary cut computations is at
most n−1−|stable edges| = |unstable edges|. We define the efficiency of updating
a cut tree T (G) yielding T (G⊕) as

η(T (G), T (G⊕)) :=
necessary cut computations

calculated cuts
∈ [0, 1], with

unstable edges

calculated cuts
≥ # necessary cut computations

calculated cuts
≥ # unstable cuts

calculated cuts

If there are no cuts calculated by the update algorithm, the efficiency is set to 1.
We express the number of calculated cuts as well as the number of unstable edges
and unstable cuts dependent on the shape of the intermediate tree T∗(G⊕) after
the first phase. This yields an upper and lower bound of the efficiency of an actual
update. To this end we introduce the following notions.

– X denotes the set of all marked non-singleton nodes in T∗(G⊕) after the
first phase of the update algorithm.

– H denotes the set of inclusion maximum treetops over all treetops in T (G)
apart from initial treetops that are again treetops with respect to the same
root in T (G).

– B denotes the set of edges/stems that are marked during the first phase in
the case of edge deletion (B particularly contains all bridges in T (G) that
are not in γbd ∪

⋃
⇑∈X ⇑).

– |γbd| counts the edges, |γbd|◦ the stable edges on path γbd in T (G).

– | ⇑ | counts the edges in a treetop in T (G).

– |P | counts the edges in a subpath P of γbd in T (G).

21

In the case of edge deletion we get

calculated cuts = n− 1− (|γbd|+ |B|+
∑
⇑∈X
| ⇑ |)

unstable edges = n− 1− (|γbd|+ |B|+
∑
⇑∈X
| ⇑ |+ |X|)

unstable cuts ≥ n− 1− (|γbd|+ |B|+
∑
⇑∈X
| ⇑ |+ |X|)− |H|

Thus, the number of unnecessarily computed cuts is bounded by the interval
[|X| , |X|+ |H|] with |H| ∈ [1 , |X|]. In the case of edge insertion we get

calculated cuts = |γbd| − 1

unstable edges = |γbd| − |γbd|◦
unstable cuts ≥

∑
P∈X

|P |

The number of unnecessarily computed cuts is in [|γbd|◦−1 , |γbd|−
∑

P∈X |P |]
In the following we exemplarily analyze the cases of efficiency 1 for updates after
edge deletion.

Efficiency 1 for Edge Deletion. Efficiency 1 occurs if either (a) no cut is calcu-
lated or (b) each calculated cut is necessary.

(a) [no calculated cut] In this case T (G) is a tree where the stem of each subtree
linked to γbd is a bridge. The new tree T (G) equals T (G) apart from ad-
justed costs on γbd, i.e., all cuts in T (G) are carried over to T (G) = T̂ (G),
which is an optimum tree. Fig. 8 shows an example.

(b) [each calculated cut necessary] In this case T (G) is a tree in which no stable
cuts exist apart from the stable edges on γbd and possibly subtrees linked to
γbd by bridges. The new tree T (G) consists of a path between b and d where
the subtrees linked to this path correspond to the subtrees linked to γbd by
bridges in T (G). Since T (G) contains no real stable cuts (which are no stable
edges) the new tree T (G) = T̂ (G) is optimum. Fig. 9 shows an example
with a maximum number of saved cut computations (= n−2). Fig. 10 shows
an example with a minimum number of saved cut computations (= 1).

In both cases the number of saved cut computations compared to a construction
from scratch is |γbd|+ |B| (= n− 1 in (a)).

Maximum Efficiency < 1 for Edge Deletion. The maximum possible efficiency
different from 1 is reached if there is one more cut calculated than necessary.
Figure 11 shows that for each ε > 0 exists a graph with efficiency at least 1− ε.

22

a b

d3

d1

d2

dk

dk−1

k+2

2

. . .

3

4

5

(k+1)+2

H1

H2

Hk

(a) Graph G.

a b

d3

d1

d2

dk

dk−1

k+4

. . .

5

6

7

(k+1)+4

T1

T2

Tk

(b) Cut tree T (G),
γab red colored.

a b

d3

d1

d2

dk

dk−1

k+2

1

. . .

3

4

5

(k+1)+2

Hk

H1

H2

(c) Graph G	.

a b

d3

d1

d2

dk

dk−1

k+3

. . .

4

5

6

(k+1)+3

Tk

T1

T2

(d) Cut tree T (G),
stable edges in red.

Fig. 8. Deletion: efficiency 1, no calculated cuts; subgraphs Hi linked by bridges.

a b
∞

. . .

210

. .
.

c

Hr

Hk+1

H1

Hk

(a) Graph G.

a b
∞+2

. . .

12

. .
.

c

Tr

Tk+1Tk

T1

(b) Cut tree T (G),
γab red colored.

a b
1

. . .

210

. .
.

c

Hr

Hk+1

H1

Hk

(c) Graph G	.

a b

3

. . .

11

. .
.

c

Tr

Tk+1Tk

T1

(d) Cut tree T (G),
stable edges in red.

Fig. 9. Deletion: efficiency 1, each calculated cut (edge {a, c} in T (G)) necessary, max-
imum number of saved cut computations = n− 2; subgraphs Hi linked by bridges.

a b

d3

c

10k 1

d1

d2

dk

dk−1

10(k−1)+3

∞

. . .

10

1010

10

10

3

13

23

10(k−1)+5

(a) Graph G.

a b

d3

c
d1

d2

dk

dk−1

∞

. . .

26

4666

20k−1

20k−2

20(k−1)+6

(b) Cut tree T (G),
γab red colored.

a b

d3

c

10k 1

d1

d2

dk

dk−1

10(k−1)+3

1

. . .

10

1010

10

10

3

13

23

10(k−1)+5

(c) Graph G	.

a b

d3

c
d1

d2

dk

dk−1

20(k−1)+5

20k−3

. . .

5

25

45

20k−4

(d) Cut tree T (G),
stable edges in red.

Fig. 10. Deletion: efficiency 1, each calculated cut (all but {a, b} in T (G)) necessary,
minimum number of saved cut computations = 1.

a b

d3

c

10k 1

d1

d2

dk

dk−1

10(k−1)+3

∞

. . .

10

1010

10

10

3

13

23

e1

1
10(k−1)+5

(a) Graph G.

a b

d3

c
d1

d2

dk

dk−1

∞

. . .

27

4666

20k

20k−2

20(k−1)+6

e
2

(b) Cut tree T (G),
γab red colored.

a b

d3

c

10k 1

d1

d2

dk

dk−1

10(k−1)+3

1

. . .

10

1010

10

10

3

13

23

e1

110(k−1)+5

(c) Graph G	.

a b

d3

c
d1

d2

dk

dk−1

20(k−1)+5

20k−3

. . .

6

25

45

20k−4

e
2

(d) Cut tree T (G),
stable edges in red.

Fig. 11. Deletion: efficiency k+1
k+2

. All cuts in T (G) \ γab apart from {b, e} are unstable
cuts, one cut computations saved, one unnecessary cut computation if we consider only
bridges when marking edges. Otherwise, the algorithm would have found c(b, e) = 2 in
T (G) being cheaper than the minimum a-b-cut in G	 (which costs 6), and thus, {b, e}
would have been marked according to (f.) instead of a new cut computation.

23

F Some Pseudo Code

Algorithm 2: Edge Deletion

Input: T (G), G	, edge {b, d}, costs ∆
Output: T (G)

1 Calculate path γbd in T (G)
2 if γb,d = {b, d} with cT ({b, d}) = ∆ then // {b, d} is a bridge in G
3 cT ({b, d})← 0
4 return T (G) // tree decomposes by deletion of zero-weighted edge

5 if path γbd spans V then // T (G) is path from b to d
6 forall the edges e in T (G) do
7 cT (e)← cT (e)−∆ // edges on γbd remain, Lemma 1

8 return T (G)

9 T∗(G
)←calculate tree T◦(G

) by contracting edges off γbd // see Fig. 1(a)

10 Consider nodes S in T∗(G
) as unmarked

11 Consider vertices on γbd as centers c(S) of their ambient nodes S in T∗(G
)

12 forall the vertices u off γbd do
13 L(u), Θ(u)← ∅, D(u)← {u} // global variables

14 Calculate and store ⇑u in T (G) // as global variable

15 while there are unmarked nodes S in T∗(G
) with |S| > 1 do

16 δ ← minimum costs of edges incident to S on γSbSd in T∗(G
)

17 T∗(G
)← checkStar(G	, T∗(G), S, δ) // checkStar changes T∗(G

)

18 forall the marked nodes S in T∗(G
) with |S| > 1 do // S remains treetop

19 Replace S by the corresponding treetop // by Lemma 7

20 return T∗(G
) with singletons replaced by vertices

24

Procedure checkStar
Input: G	, T∗(G

) with current centers, S, δ
Output: T∗(G

) after unfolding lowest star in S
1 Add vertices adjacent to c(S) in S to L(c(S)) // build star, centered at c
2 while L(c(S)) has next element u do // L(c(S)) may change in loop

3 if Θ(c(S)) does not yet contain cut θu then
4 if stem of ⇑u is bridge in G then

5 θu ← θold
u // retain old cut by Lemma 4

6 else

7 if c(θold
u) < δ then

8 θu ← θold
u // retain old cut according to (f.)

9 else
10 θu ← minimum u-c(S)-cut given by FlowAlgo (u, c(S), G)

11 Add θu to Θ(c(S)) pointed at by u

12 if c	(θu) = c(θold
u) then // retain cut and treetop ⇑u acc. to (e.)

13 Remove u from L(c(S)), remove θu from Θ(c(S))

14 T∗(G
)← splitAndReconnect(T∗(G), S, u, θold

u)
15 Mark Su as remaining treetop, S ← Sc(S)

16 else
17 while L(c(S)) has next element ū 6= u do // test vs. other cuts

18 if θu separates ū and c(S) then // cp. to Scenario (a,c)

19 Remove ū from L(c(S)), D(u)← D(u) ∪D(ū)
20 Add ū to L(u) // {ū, u} becomes edge that is no stem

21 if Θ(c(S)) already contains cut θū then // pointed at by ū
22 Move θū from Θ(c(S)) to Θ(u) // by Lemma 2

23 forall the u ∈ L(c(S)) do // make new cuts treetop-preserving

24 set (R, V \R) := θu, with c(S) ∈ R for θu ∈ Θ(c(S)) pointed at by u
25 forall the ū in D(u) do // handle shadowed cuts ...

26 θu ← (R\ ⇑ū, (V \R)∪ ⇑ū) // ...with Lemma 5 and Scenario (a,c)

27 forall the ū 6= u in L(c(S)) do // handle other cuts ...

28 θu ← (R∪ ⇑ū, (V \R)\ ⇑ū) // ...with Scenario (b)

29 T∗(G
)←splitAndReconnect(T∗(G), S, u, θu)

30 S ← Sc(S)

31 return T∗(G
)

25

Procedure splitAndReconnect

Input: T∗(G
) with current centers, S, u in step pair {u, c(S)}, cut (U, V \ U)

in G	 with u ∈ U
Output: T∗(G

) after splitting S
1 Split S into Sc(S) = S ∩ V \ U and Su = S ∩ U
2 c(Sc(S))← c(S)
3 c(Su)← u
4 Create new edge {Sc(S), Su} in T∗(G

) with costs c(U, V \ U) in G	

5 forall the edges ej = {S, Sj} previously incident to S in T∗(G
) do

6 if c(Sj) ∈ U then
7 Reconnect subtree Nj with Su in T∗(G

)
8 else
9 Reconnect subtree Nj with Sc(S) in T∗(G

)

10 return T∗(G
)

26

	2011,25_Titelbl.pdf
	TR_dynCutTree.pdf

