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Abstract 
 

 

Bi-material ceramic joints are used in a number of engineering structures to 

enhance the functionality and lifetime of technological components. On the other 

hand, delamination of material composites, caused by the growth of natural flaws 

at material interfaces, can lead to catastrophic failure of the whole component 

and loss of the components functionality.  

Since interface failure of brittle composites is determined by the scatter of 

interface flaws, the reliability must be evaluated based on probabilistic methods 

such as the Weibull theory. In the present work, the Weakest Link approach will 

be generalized for the case of bi-material ceramic joints in order to extend the 

probabilistic model available for homogeneous materials. Here, a fracture 

mechanics model is developed to obtain a failure criterion for interface cracks. It 

is shown that the interface failure probability becomes a function of the crack tip 

mode-mixity state. The mode-mixity influence is assessed for a general loading 

case of a bi-material strip with an internal interface crack. A simplified analysis, 

possible in the case of gradually varying stress fields, leads to a conservative 

assessment of the failure probability for interface cracks. 

An adequate fracture mechanics algorithm for the prediction of the unstable 

propagation of interface natural flaws is developed in this work, allowing 

implementation into the finite element post-processor STAU. A parametric study 

is performed to relate limited experimental data for a specific interface system to 

reliability predictions of two possible specimen configurations. 

The probabilistic framework that was developed constitutes an important 

step in the generalization of the Weakest Link Approach to interface failure. An 

essential aspect is that it allows predicting the interface failure in ceramic 

components in the design stage. Thus, this approach contributes to increase the 
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reliability of industrial applications and facilitates a systematic planning of 

reliability experiments. 
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Kurzzusammenfassung 
 

 

Keramische Verbundwerkstoffe werden in einer Reihe von industriellen Bauteilen 

verwendet, um die Funktionalität und Lebensdauer von technischen 

Komponenten zu verbessern. Durch das Wachstum natürlicher Fehler an den 

Materialgrenzflächen kann es jedoch zu Delamination und somit zum 

katastrophalen Versagen des gesamten Bauteils und dem Verlust der 

Funktionalität der Komponente kommen. 

Da das Versagen spröder Verbundwerkstoffe von der Streuung der Defekte 

in der Grenzfläche abhängt, muss die Zuverlässigkeit solcher Materialien auf 

Basis probabilistischer Methoden wie der Weibull Theorie ausgewertet werden. 

In der vorliegenden Arbeit wird der Weakest-Link-Ansatz für den Fall einer 

keramischen Grenzfläche verallgemeinert, um das probabilistische Modell für 

homogene Materialien zu erweitern. Hierfür wird ein bruchmechanisches Modell 

entwickelt, um ein Versagenskriterium für Grenzflächenrisse zu erhalten. Es wird 

gezeigt, dass die Versagenswahrscheinlichkeit der Grenzfläche eine Funktion 

des Mixed-Mode Zustands an der Rissspitze ist. Diese Mixed-Mode-

Abhängigkeit wird für einen verallgemeinerten Belastungsfall anhand eines 

Risses in der Grenzfläche hergeleitet. Für schwach variierende Spannungsfelder 

erhält man einen konservativen Ansatz zur Vorhersage der 

Versagenswahrscheinlichkeit im Fall von Grenzflächenrissen. 

In der vorliegenden Arbeit wird ein geeigneter Algorithmus zur Vorhersage 

der instabilen Ausbreitung natürlicher Fehler an Grenzflächen entwickelt und in 

das Programm STAU (Post-Prozessor einer Finite-Elemente Analyse) 

implementiert. Anhand einer Parameterstudie wird eine begrenzte 

experimentelle Datenbasis für ein spezifisches Grenzflächensystem mit 

Zuverlässigkeitsvorhersagen von zwei möglichen Komponentenkonfigurationen 

verbunden. 
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Die entwickelten probabilistischen Methoden sind ein wichtiger Beitrag zur 

Verallgemeinerung des Weakest-Link-Ansatz für Grenzflächenversagen. Ein 

wesentlicher Aspekt hierbei ist, dass das Grenzflächenversagen keramischer 

Verbundwerkstoffen bereits in der Planungsphase berücksichtigt werden kann. 

Somit trägt diese Arbeit dazu bei, die Zuverlässigkeit von Komponenten aus 

keramischem Verbundmaterial zu verbessern und die systematische Planung 

von Zuverlässigkeitstests zu ermöglichen. 

 

 

 



 
 
 
 
 
 
 
 
 

vii 

Table of contents 

 

Abstract................................................................................................................ iii 

 
Kurzzusammenfassung ........................................................................................v 

 
List of symbols and Abbreviations ....................................................................... ix 

 
1. Introduction ...................................................................................................... 1 

1.1 Motivation................................................................................................... 1 

1.2 State of the art............................................................................................ 3 

1.3 Overview of chapters.................................................................................. 4 

 
2. Fracture mechanics of interfaces..................................................................... 7 

2.1 Role of interfaces ....................................................................................... 7 

2.2 Mechanical behaviour, Dundurs’ parameters ........................................... 10 

2.3 Interface stress singularities ..................................................................... 13 

2.4 Interface fracture mechanical parameters ................................................ 16 

2.5 Fracture resistance of interfaces .............................................................. 18 

2.5.1 Crack kinking out of the interface ....................................................... 19 

2.5.2 Crack propagation along the interface ............................................... 23 

 
3. Statistical aspects of failure ........................................................................... 27 

3.1 Basic ideas of the weakest-link approach ................................................ 27 

3.2 Weibull theory for brittle homogeneous materials..................................... 31 

3.3 Numerical integration ............................................................................... 33 

3.3.1 Finite element postprocessor STAU................................................... 33 

3.3.2 Gaussian integration method ............................................................. 34 

3.4 Generalization for the case of interface flaws........................................... 36 

3.5 Discussion of results ................................................................................ 40 



 

viii 

4. Mechanical problem of a bi-material strip .......................................................43 

4.1 Mathematical statement of the problem ....................................................44 

4.2 Solution procedure ....................................................................................45 

4.2.1 Crack-free bi-material strip of infinite length........................................46 

4.2.1.1 Derivation of singular integral equations.......................................46 

4.2.1.2 Numerical method for the solution of singular integral equations..50 

4.2.1.3 Verification of the solution procedure............................................51 

4.2.2 An interface crack in an infinite bi-material joint ..................................53 

4.2.2.1 Derivation of the Hilbert problem ..................................................54 

4.2.2.2 Solution procedure for the Hilbert problem ...................................56 

4.3 Parametric study and discussion of the results .........................................57 

 
5. Experimental characterization of material and interface strength ...................63 

5.1 Estimation of Weibull parameters..............................................................63 

5.2 Interface strength considerations ..............................................................66 

5.3 Discussion of results .................................................................................70 

 
6. Numerical study and discussions ...................................................................73 

6.1 Crack models under consideration............................................................73 

6.2 Stress analysis of interfaces .....................................................................76 

6.2.1 Two-dimensional finite element models ..............................................77 

6.2.2 Three-dimensional finite element models............................................79 

6.2.3 Equivalent stress and mode-mixity parameter ....................................83 

6.3 Interface failure probability results.............................................................86 

6.3.1 Parametric study .................................................................................86 

6.3.2 Role of the mode-mixity parameter .....................................................91 

6.4 Discussion.................................................................................................92 

 
7. Summary ........................................................................................................97 

 
Reference list....................................................................................................101 

 
Appendix A .......................................................................................................109 

Appendix B .......................................................................................................115 

 
Acknowledgement ............................................................................................119 



 
 
 
 
 
 
 
 
 

ix 

List of symbols and Abbreviations 
 

 

Roman characters 

Symbol Description 

a  Interface crack length 

0a  Minimum possible crack size 

cra  Critical crack size 

ka  Length of a kinked crack 

0A  Surface unit area 

iA  Surface of interface 

b  Weibull parameter (strength) 

nE  Young’s modulus of material “n” 

( )af a , ( )Vf xr , ( )f ωΩ  
Probability density functions of crack size, crack 

location and orientation, correspondingly 

1f , 2f  Unknown stress functions 

1g , 2g , 3g , 4g  Unknown displacement functions 

iG  Interface energy release rate 

IcrG  Pure mode-I toughness of interface 

icrG  Interface toughness 

kG  Energy release rate for kinked crack 

, ,i ix iyh h h
r

 Weight functions for stress intensity factors 

nh  Height of material “n”  

1H , 2H  Bi-material constants 

VH  Normalized stress integral 

 



List of symbols and Abbreviations 

x 

 

 

Symbol Description 

AJ , VJ , JΩ  Jacobian determinants 

K  Complex stress intensity factor 

1K , 2K  
Real and imaginary components of stress 

intensity factor, correspondingly 

IK , IIK , IIIK  Conventional stress intensity factors 

IcrK  Material toughness 

eqK  Equivalent  complex stress intensity factor 

TK  Thermally induced stress intensity factor 

L  Characteristic length 

fL  Likelihood function 

NL  Legendre polynomials 

m  Weibull parameter (scatter of strength) 

0M  Average number of flaws in unit volume/surface 

n  Number of material in joint 

P  Applied normal stress 

FP  Failure probability  

SP  Survival probability 

Q  Applied shear stress 

r  Radial coordinate in cylindrical coordinate system 

R  Radius of Brazilian disk 
( )n
iU  “i”-th component of displacement in material “n” 

0V  Unit volume 

effV  Effective volume integral 

iY  Geometry weight-function 

, ,x y z  Coordinates in Cartesian system 

 

 



List of symbols and Abbreviations 
 

 xi

 

Greek characters 

Symbol Description 

α  1-st Dundur’s parameter 

Tα  Coefficient of thermal expansion 

β  2-nd Dundur’s parameter 

δ  Distance from the crack tip along interface 

ε  Oscillatory index 

φ  
Mode-mixity parameter (amount of out-of-plane 

stress to in-plane stresses) 

Γ  Gamma-function 

nη  
Quantity inversely proportional to height of 

material “n” 

θ  
Tangential coordinate in cylindrical coordinate 

system 

nλ  Lamé constant in material “n” 

nμ  Shear modulus in material “n” 

nν  Poisson ratio in material “n” 

0σ  Characteristic strength parameter 

*σ  Reference stress 

eqσ  Equivalent stress 
( )n
klσ  Component of stress tensor in material “n” 

nσ  Normal stress along the interface 

τσ  Shear stress along the interface 

ψ  Mode-mixity parameter (amount of shear stress to 

tensile stresses) 

ω  Angle of crack orientation 

kω  Angle of crack kinking 

Ω  Range of possible crack orientations 

 

 



List of symbols and Abbreviations 

xii 

 

Abbreviations 

Symbol Description 

2D- / 3D model Two- / three dimensional model 

4PB Four point bending 

cSIF Complex stress intensity factor 

ERR Energy release rate 

FE Finite Element 

iERR Interface energy release rate 

MLM Maximum Likelihood method 

PDF Probability density function 

SEM Scanning Electron Microscopy 

SIE Singular integral equations 

SIF Stress intensity factor 

STAU 
Acronym for Weakest-link Finite Element 

Postprocessing Program 

 

 



 
 

 xiii

 

 





 
 
 
 
 
 
 
 
 

1 

1. Introduction 
 

 

In this work the classical Weibull theory, used for failure probability calculations, 

is generalized for the case of interface failure in ceramic-ceramic joints. 

 

1.1 Motivation 
 

Ceramic materials are often used in high temperature applications because 

of their attractive chemical and mechanical properties compared to metals and 

polymers. The main features of ceramic materials are low density, high strength 

at high temperatures, resistance to wear and corrosion combined with low 

electrical and thermal conductivity [53]. Today, functional properties of ceramics 

gain increasingly importance. However, the inherent brittleness of ceramics is 

limiting their use in many applications. 

In order to increase the usage efficiency of ceramic materials new ceramic 

composite components, and ceramic composites, have been developed. A 

composite was originally considered to be a combination of two materials, but 

now this class of materials is regarded as any material combination, which 

possesses structural or functional properties not present in any individual 

component. The main concept of use of composites is the aim to design and 

manufacture a new range of functional or structural materials that beneficially 

combine the optional properties of its contents. Except the functional needs, 

another more global goal of the “material efficiency” is to provide a significant 

reduction in the total environmental cost of the world economy. The idea of 

substituting the existing materials by e.g. their combinations with the same or 

better properties in order to have a reduced material impact was described by 

Allwood et al. [3]. 
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Nowadays, most functional engineering structures are generally made of 

materials with different elastic and physical properties. The most common area 

of application is, of course, automobile industry. One typical example is a 

Lambda-sensor – an electronic device, the size of finger, that measures the 

proportion of oxygen in the exhaust gas. This ceramic element contains a 

number of interfaces as can be seen in Figure 1.1a. Under periodically changing 

temperature conditions special attention should be paid to the mechanical 

behaviour of the material joints. Another surprising reason of interface damage in 

this device can be caused by an external voltage applied to the Zirconia Lambda 

sensors, for example during their checking with an ohmmeter. 

 

a)  b)  

Figure 1.1 – Application examples of ceramic material joints: a) Lambda-

sensor [13]; b) knee implant [65] 

 

Another prominent example, where the behaviour of material joints is very 

important nowadays is orthopaedic surgery. In Figure 1.1b one can see an 

advanced arthritis and avascular necrosis of the knee. When non-surgical and 

arthroscopic therapy no longer provides satisfactory results, joint replacement is 

a necessary treatment. In this case the reliability of bone-implant interfaces (e.g. 

bone-cement interface) becomes a primary problem, regarding the high wear 

characteristics of the mechanics and motion. Ceramic implants are also often 

used as dentures, due to their improved physical and biomechanical properties, 

including high bending and fracture resistance. Again, the reliability of interfaces 

between the denture material and tooth is critical. 

These examples illustrate that the area of ceramic bi-materials is very wide. 

The behaviour of bonded joints in all these structures plays an important role, 
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especially in transient service conditions, where interfacial cracks at material 

joints are of special concern with respect to the reliability of the whole 

component. 

 

1.2 State of the art 
 

The fracture mechanics assessment of interface failure was considered in a 

large number of papers dealing with different aspects. The main aspects of 

interface cracks are the mixed-mode character of crack tip fields even for pure 

mode-I remote loading (i.e. crack tip tensile and shear effects are inseparable), 

the presence of oscillatory singularities in the elastic stress and displacement 

fields [21, 24], the choice of an appropriate crack tip model for the definition of 

fracture parameters [19, 37], and selection of a suitable fracture criterion [25, 40, 

61]. 

The statistical aspect of the analysis of fracture by relating strength to 

microstructure was provided by a number of authors (e.g. Neville and Knott [58] 

using order statistics for various kinds of microstructure; Zweben and Rosen [75] 

using a representative volume approach) for homogeneous as well as for 

inhomogeneous materials, including the case of fibrous fracture. The 

probabilistic models have also been developed to analyze the fracture stresses 

in metals (Lin et al [43] for brittle transgranular cleavage fracture; Poncelet et al 

[60] for high cycle fatigue failure; Wu and Knott [72] for the modelling of 

degradation processes). In most cases, a local approach [11] based on weakest-

link type fracture is used, even if plastic deformation precedes cleavage fracture. 

Failure probability of brittle ceramic materials is generally assessed using 

Weibull theory [70] with fracture mechanics extensions [9, 26, 49], where failure 

of the whole component occurs if the most unfavourable flaw or crack becomes 

critical. Appropriate numerical tools for a corresponding reliability analysis are 

available (Cares/Life [57], STAU [14, 36]). The fracture mechanics failure 

description used in the reliability tools is based on a number of assumptions, 

including the assumption that stresses can be considered constant along the 

crack faces. In the case of bi-material ceramic joints the stress field depends on 

the material combination and changes significantly along the faces of interface 

flaws or cracks ([19, 25, 61]). Consequently, classical Weibull failure theory 
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needs to be modified in order to properly take into account the high stress 

gradients. While high stress gradient generalizations already exist in the case of 

homogeneous materials [15], the aim of the present work is to generalize the 

Weibull approach for the case of interface fracture. In particular, the interface 

mode-mixity parameter should be included to calculate the failure probability of 

the interface. 

 

1.3 Overview of chapters 
 

In order to obtain the appropriate theory for determining the interface failure 

probability, suitable probabilistic and fracture mechanics methods have to be 

combined. The fracture mechanics of interfaces is discussed in Chapter 2. The 

main criteria of interface crack propagation as well as mechanical behaviour of 

interface stresses are treated. In Chapter 3 the statistical aspects of failure 

phenomenon are introduced. The Weibull theory is generalized to the case of 

interface failure according to the weakest-link approach and a fracture 

mechanical model, which is based on the energy release rate fracture criterion. 

The comparison of the interface statistical model with ordinary Weibull theory for 

brittle homogeneous materials shows an appearance of a new term, which 

measures the mode-mixity of the stress state. In order to determine the impact of 

this parameter on interface failure probability a detailed analysis of stress state at 

the interface of a bi-material strip is presented in Chapter 4. The solution 

procedure requires to split the main problem into two special cases. Their 

superposition gives the solution for the general case with arbitrary boundary 

conditions. The mathematical statement of the problem is given in the form of a 

system of singular integral equations, which are solved numerically. The values 

of mode-mixity parameter ψ , can be calculated near the tip of internal crack for 

any remote loading case, after the influence of this parameter on the interface 

failure probability is studied. 

Eventually, an experimental characterization of bi-materials is also 

important in order to gain statistical data corresponding to the strength of 

interfaces. Sample configurations and test setups, as well as methods of data 

evaluation are described in Chapter 5. A numerical stress evaluation, including 

calculation of equivalent stresses and mode-mixity parameters, is presented in 
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Chapter 6. Using finite element analysis results, an algorithm for interface failure 

probability determination is introduced with the purpose to study the role of 

Weibull parameters. Moreover, the role of different crack models, such as 

“through-wall” crack model and “penny-shaped” crack model, was studied. At the 

end some recommendations for future experimental analysis are given. 

The results of this work allow the implementation of modified Weibull theory 

into the existing version of STAU-program, which will be used for the interface 

failure probability calculations of different bi-material components under different 

mechanical loading conditions. 
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2. Fracture mechanics of interfaces 
 

 

Ceramic composites have been developed for enhancing the strength and 

reliability of ceramic components. For this instance, they allow to improve 

fracture toughness of the whole component by the means of energy release 

mechanisms (crack deflection [34] or crack bifurcation (e.g. [32, 59]). On the one 

hand, interfaces can be treated as obstacles for the propagation of the cracks 

that have been originated in the individual materials. On the other hand, interface 

cracks or cracks kinked from interface into the base material can lead to the 

failure of the whole joint. Such interface cracks and their role for component 

damage is considered in this work. Therefore, the quality of interface between 

joined materials is one of the characteristic features in composites. In this 

section, the main properties of bi-materials, such as mechanical compatibility, 

mismatch in elastic properties over the interface, interface toughness and 

interface crack behaviour, are discussed. 

 

2.1 Role of interfaces 
 
The joined components consist of different materials and usually such 

composite materials or material joints fail by initiation or propagation of natural 

flaws in highly stressed interfacial regions. It is proper to distinguish two different 

kinds of interfaces: those which have low strength and/or toughness, so called 

weak interfaces, and those which are nearly ideally strong, and thereby promote 

perfect adherence and can be considered as a strong interfaces. 

Weak interfaces assume that the stiffness of joined materials is higher than 

the stiffness of interface layers. During the fracture process the propagating 

crack kinks into the weak interface, where it continues to grow (i.e. to form a 

delamination crack). Figure 2.1 schematically shows a load – deflection diagram 
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of a bending test on a material composite which contains weak interfaces. The 

behaviour of the same monolithic ceramic without interfaces is shown for 

comparison. The first part of the laminate curve is identical with the curve of 

monolith. At the point A the first lamina breaks, but the load can be increased to 

drive the delamination crack forward. Each load drop corresponds to the failure 

of one individual material layer. Subsequently the crack is deflected into the 

interface again. Failure continues in the same manner and this gives the typical 

saw-tooth shaped load-deflection diagram for laminates with weak interfaces 

[46]. 

This example illustrates that forming of ceramic composites in the 

configuration of layered system with weak interfaces is one of the ways to 

fabricate stronger and tougher ceramic components. An additional advantage of 

such layered systems is the possibility to prevent catastrophic spontaneous 

fracture, which is inherent to ceramics. 

 

 
Figure 2.1 - Typical load–deflection diagram of a laminate with weak 

interfaces 

 

In the case of strong interfaces, where dissimilar materials are joined 

together by perfectly adherent interface, residual stresses are present after the 

production process. In such components a predisposed crack coming from a 

more compliant material into stiffer material will deflect away from the interface 
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due to the tension induced in the stiffer material. In the case of an appropriate 

position of materials, when, for example, compliant material is surrounded by 

strong interfaces, effect of “crack arrest” appears. Strong interfaces hinder the 

crack propagation, and may prevent failure extending the lifetime of component. 

In order to describe the quality of material composites, it is necessary to 

know the conditions of crack initiation and propagation (see chapter 2.5) as well 

as to understand the role of other mechanical properties like strength, elastic 

modulus or thermal expansion coefficients of joined ceramics. The bonding 

properties of dissimilar materials depend on their chemical and mechanical 

compatibilities. In reality the bonding region of real bi-materials is characterized 

by a diffusion zone of finite thickness or by thin layer of reaction products, but for 

our purpose we will consider a sharp interface between two elastic and ideally 

bonded materials. This simplification provides a useful tool for description of 

bond strength and mechanical compatibility. According to Suga et al. [63], the 

coefficient for the thermally induced stress intensity (KT) at the interface can be 

used as a representative parameter to measure the mechanical compatibility of 

materials with different thermal expansion behaviour. This parameter depends 

on the elastic properties of the joined materials and is determined as: 

 

( )( )
1 2

1 2 1 2 1 2

2
(3 4 ) (3 4 )

α μ μ
μ μ ν μ μ ν

Δ
=

+ − + −
T

TK  (2.1) 

 

Herein TαΔ  is the difference in coefficients of thermal expansion, nμ , and nν  are 

shear modulus and Poisson ratio of the material n ( 1,2n = ) correspondingly. The 

KT  values for engineering materials lie between 0 and 1 MPa/K. Suga et. al. [63] 

examined a number of composite materials and proposed their classification with 

regard to their mechanical compatibility into six groups, depending on the values 

of KT  parameter and the level of anisotropy at the interface. Most ceramic-

ceramic combinations possess a low or medium level of anisotropy combined 

with low values of interfacial thermal stresses. According to the introduced 

division they fall into group 5 or 6, which are notable for good mechanical 

compatibility. This feature leads to high values of the interfacial fracture energy 

and fracture resistance, if a chemical bond is developed with the sufficient 

chemical compatibility. 
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In this work we will study weak interfaces between dissimilar ceramics. 

These materials are often separated by cracking, which would be expected if the 

toughness of interface is low compared to that of the abutting materials. 

 

2.2 Mechanical behaviour, Dundurs’ parameters 
 

In this work a bi-material joint is considered as a combination of two 

isotropic and elastic materials. For simplicity, we will consider the interface as the 

horizontal plane and refer to the materials as “above” and “below” the interface. 

The material above the interface has the shear modulus 1μ  and Poisson’s ratio 

1ν , whereas material below the interface is characterized by 2μ  and 2ν  

correspondingly.  

The elastic behaviour of bi-material interfaces can be described using 

composite parameters formed from the elastic constants of both materials. 

Dundurs [21, 22] derived parameters α  and β  and showed that the stress field 

of a composite in a state of plane deformations depends only on these two 

properties. 

 

2 1 1 2

2 1 1 2

(1 ) (1 )
(1 ) (1 )

μ ν μ να
μ ν μ ν

− − −
=

− + −
 (2.2) 

2 1 1 2

2 1 1 2

(1 2 ) (1 2 )1
2 (1 ) (1 )
μ ν μ νβ
μ ν μ ν

− − −
=

− + −
 (2.3) 

 

α  measures the mismatch in the tensile modulus across the interface and 

represents the relative stiffness of the two materials. It must lie in the range 

1 1α− < <  for all possible material combinations. Combinations with 1α =  

indicate that material 1 is much stiffer than material 2, while 1α = −  signifies the 

opposite case. The second parameter β  is a measure of mismatch in bulk 

modulus across the interface. Both parameters vanish for identical materials 

across the interface. When the indexes of materials 1 and 2 change places, the 

sign of parameters α  and β  changes without change of their absolute values. 
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For Poisson’s ratios in the range 0 0.5ν< < , one can see that the physically 

admissible values of Dundurs’ parameters are restricted to the parallelogram: 

1 4 1α β− < − <  and 1 1α− < < , which is shown in Figure 2.2. 

 

 
Figure 2.2 - Parallelogram of Dundurs’ composite parameters 

 

The α β− -plane provides a convenient way to classify material joints with 

regard to their physical behaviour. The four elastic constants for a pair of 

materials determine an unique point in the α β− -plane. At the same time, one 

point in this diagram may correspond to a number of material combinations. The 

origin 0α β= =  represents the combination of two elastically identical materials. 

The parallelogram can be divided into two zones by a straight line β α= , along 

which the shear modules of joined materials are equal. The zone on the left side 

of the line contains combinations with 1 2μ μ> , while the other corresponds to 

combinations with 1 2μ μ< , respectively. 

It was also noticed by Hutchinson [40] that for real existing materials the 

range of Dundurs’ parameters is somewhat more restricted. Most of ( ),α β - 

combinations fall between the lines 0β =  and 4β α=  (see Figure 2.3), whereas 

α  values are distributed over the whole possible region. Here the sign of 

parameter α  is chosen to be always positive by suitably selecting the indexes of 

joined materials 1 and 2. 



2. Fracture mechanics of interfaces 

 12 

Combinations that satisfy 0β =  correspond to the case of more simple 

structure of the interface crack tip fields than those combinations with 0β ≠ [61]. 

The plain strain parameter β  vanishes, when either two identical materials are 

joined or both materials are incompressible ( 1 2 0.5ν ν= = ). 

 

Figure 2.3 - Values of Dundurs’ parameters for some typical material 

combinations [40] 

 

This reduction in the number of elastic constants from four to two simplifies 

the analysis considerably. The incorporation of the composite parameters into 

the analysis of elastic bi-material problems leads to more simple description and 

generalization of the solutions in an interfacial problem. 

One more important parameter to determine the stress state at the interface 

is the so called “oscillatory index”, which depends only on second Dundurs’ 

parameter (2.3) and is defined as 

 
1 1ln

2 1
βε

π β
⎛ ⎞−

= ⎜ ⎟+⎝ ⎠
 (2.4) 

 
For most ceramic combinations the value of ε  is very small, typically of 

order 0.01 or so. In the case of 0ε =  the stress behaviour at the interface will be 

similar to the homogeneous case, at the same time a small difference in the 
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elastic properties of the joined materials causes high stress gradients on the 

crack faces. 

 

2.3 Interface stress singularities 
 

Williams [71] in 1959 was the first one to carry out the crack tip singularity 

analysis and for dissimilar media. He showed that the stresses near interface 

crack tips are proportional to 1rΛ−  and that in general the order of stress 

singularity is no longer 1/ 2r−  like for cracks in homogeneous materials. The 

asymptotic representation of the interface crack tip stresses klσ  (Figure 2.4) is 

[42]: 

 
1( , ) ( ) ( )kl klr Kr g O rσ θ θΛ− Λ= + ,        , 1, 2,3k l =  (2.5) 

 

where ,  r θ  are polar coordinates defined at the crack tip, ( )klg θ  is an angle 

function, stress intensity factor K takes into account the influence of applied 

loading, the geometry of the component and the crack length. The parameter 

( , )α βΛ = Λ  describes the order of singularity. 

 

 
Figure 2.4 - Polar coordinate system at the tip of interface crack 

 

Commonly one of the following three methods is used to calculate the 

stress singularity order: 
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- complex stress functions method, built on a suitably chosen approach (e.g. [18, 

19]), 

- eigenvalue – eigenfunction method for the Airy function (e.g. [71, 27]), 

- Mellin – transformation technique (e.g. [12]). 

Below, for the example of the second approach, the algorithm for 

determination of the stress singularity at the tip of the interfacial crack is shown. 

According to the eigenvalue – eigenfunction method, the Airy function nA  

has to be determined for each material ( 1,2n = ): 

 
1( , ) ( , )n nA r r Fθ θΛ+= Λ , (2.6) 

 

where functions ( , )nF θ Λ  should correspond to the solution of the differential 

bipotential equation 4 0nA∇ =  and therefore can be written in the form: 

 

( , ) sin( 1) cos( 1) sin( 1) sin( 1)n n n n nF a b c dθ θ θ θ θΛ = Λ + + Λ + + Λ − + Λ − , (2.7) 

 

The boundary conditions of a traction free crack surface and continuity 

conditions on the uncracked part of interface form a system of eight equations 

with eight unknown coefficients na , nb , nc , nd  ( 1,2n = ). Due to the homogeneity 

of equations, a non-trivial solution exists only when the determinant of the 

coefficient matrix for the system of linear equations vanishes. Thus, the equation 

( ) 0f Det AΛ = =  gives us the solution for the parameter Λ , which turn out to be 

the eigenvalues of the system. For the problem of an interface crack lying 

between two materials, the value order of stress singularity is a complex number, 

which is found to be 1 2 iεΛ = +  ( 1i = −  is the imaginary unit). This implies that 

the stresses change their signs infinitely often in the vicinity of the crack tip and 

their values are oscillating between the raising asymptote as it is shown on the 

Figure 2.5. 

The oscillatory feature of the elastic field occurs due to the non-zero value 

of ε . The behaviour of the stresses makes it difficult to obtain a convenient 

definition of the corresponding fracture parameters in the vicinity of the crack tip 

and as a result of the oscillation phenomena, it is also difficult to unambiguously 
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separate the loading into normal and shear components – an opening stress 

induces shear effects near the crack tip and vice-versa. 

 

 
Figure 2.5 - Oscillation behaviour of the stresses in vicinity of interface 

crack 

 

At the same time the oscillation behaviour of displacements takes place as well. 

It means that the solution predicts that the crack faces overlap near the crack tip, 

which is physically impossible. This problem was discussed by number of 

authors (e.g. [19, 24, 25, 61]). Some special crack tip models (for example, the 

contact zone model [19] or the interlock model [47]) were proposed. The 

Comninou contact zone model assumes that the crack is not completely open 

and its faces are in frictionless contact near the tips. The extent of the contact 

zone is unknown and must be determined as part of the stress solution. On the 

other hand, the standard procedure in linear elastic interfacial fracture mechanics 

is to ignore the overlap between crack faces. It was shown by a number of 

authors (e.g. [24, 38]) that the size of the oscillation zone is very small compared 

to the crack length (in the worst theoretical case, which is practically never 

reached, it is about 410−  of the crack length). Consequently, from physical 

arguments, it will be acceptable to use a stress solution, which is provided on 

distance δ  from the ends of the crack, where 41.26 10 aδ −≥ ⋅  and a  is a 

characteristic size of the interface crack.  

The way of measuring “stress intensity” is introduced in the chapter 2.4 in 

order to predict more accurately the stress state at the tip of interface crack, 

caused by a remote loading or residual stresses. 
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2.4 Interface fracture mechanical parameters 
 

The mechanical fracture behaviour of interface cracks is of major 

importance with respect to the strength of the bonded materials. The singular 

behaviour of the stresses can be uniquely characterized by the complex stress 

intensity factor (cSIF) 1 2K K iK= +  as [71]: 

 

( )( ) ( ) ( )1( , ) Re ( ) Im ( )
2

n i n I i n II
kl kl klr Kr Kr

r
ε εσ θ σ θ σ θ

π
⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ , (2.8) 

 

where 1,2n =  denotes the upper and lower materials, Re and Im are the real and 

imaginary parts of the quantities in the parentheses, 1i = − , expressions 
( ) ( )n I
klσ θ  and ( ) ( )n II

klσ θ  are normalized mode-I and mode-II stresses, which 

depend upon polar angle θ  and elastic material constants. 

In the same way, displacements at the interface crack tip are governed by 

cSIF: 

 

( )( ) ( ) ( )( , ) Re ( ) Im ( )
2

n i n I i n II
k k k

rU r Kr U Kr Uε εθ θ θ
π

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ , (2.9) 

 

where ( ) ( )n I
kU θ  and ( ) ( )n II

kU θ  are normalized mode-I and mode-II displacements. 

The combination of tensile ( 22σ ) and shear ( 12σ ) stresses acting along the 

interface ( 0θ = ) can be presented by the following expression: 

 

( )22 12 1 22

iri K iK
r

ε

σ σ
π

+ = + . (2.10) 

 

1K  and 2K  are analogues of the classical stress intensity factors ( IK , IIK ), 

but they no longer represent in-plane tensile and shear modes like in the case of 

homogeneous material. From the expressions for stresses on the interface near 

the crack tip (2.10) one can see that even the presence of only tensile stresses 

leads to the combination of both stress intensity factors 1K  and 2K : 
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1 2 22Re ( ) 2iK iK r rε σ π⎡ ⎤+ =⎣ ⎦  (2.11) 

 

According to Rice [61] a global stress intensity factor ( MPa m ) may be 

defined in the usual manner for fixed length of radial distance ahead of the 

interface crack tip ( r r= % ): 

 

1 2( ) cos( ln( )) sin( ln( ))IK r K r K rε ε= −% % %  (2.12) 

1 2( ) sin( ln( )) cos( ln( ))IIK r K r K rε ε= +% % %  (2.13) 

 

Complex stress intensity factor 1 2K K iK= +  reduces to I IIK K iK= +  if the 

material mismatch is zero ( 0ε = ), where IK  and IIK  are stress intensity factors 

associated with pure mode-I and mode-II loading. At the same time, as every 

complex number, the cSIF can be rewritten in trigonometric form using Euler’s 

formula: 

 

1 2
i iK K iK K e Lψ ε−= + = , (2.14) 

 

where L is some characteristic length from the crack tip, K  and ψ  are modulus 

and an argument of a complex number correspondingly, which are determined 

as: 

 

2 2
1 2K K K= +  (2.15) 

1 21

1 2

Im ( )
tan

Re ( )

i

i

K iK L

K iK L

ε

ε
ψ −

⎛ ⎞⎡ ⎤+⎣ ⎦⎜ ⎟=
⎜ ⎟⎡ ⎤+⎣ ⎦⎝ ⎠

 (2.16) 

 

Thus, it’s necessary to say that there are three main parameters 

characterizing the stress state near the crack of the crack: an arbitrary 

characteristic length L, the magnitude of the complex stress intensity factor K  

and the phase angle of the loading ψ . Arbitrary characteristic length is usually 

taken to be 100 mμ , and thereby exceeds the size of oscillatory zone. All fracture 

parameters can be uniquely determined at the distance L from the crack tip. The 
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values of K  and ψ  are determined by the component’s shape and the way of 

loading. From (2.16) one can see that the value of the loading phase angle also 

depends on the choice of the characteristic length L. The freedom in the choice 

of reference length is a consequence of the simple transformation rule [40] from 

one choice ( 1L l= ) to another ( 2L l= ): 2 1 2 1ln( / )l lψ ψ ε= + . 

Taking into account equation (2.10), the interface fracture parameters K  

and ψ  from (2.14) and (2.16) can be introduced through the stresses acting on 

the interface in the following manner: 

 

( )22 120
lim 2

i
i

r

rK e i r
L

ε
ψ σ σ π

−
−

→

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 (2.17) 

1 12 12

1 22

( )tan tan
( )

K r L
K r L

σψ
σ

− −⎛ ⎞ ⎛ ⎞=
= =⎜ ⎟ ⎜ ⎟=⎝ ⎠ ⎝ ⎠

 (2.18) 

 

The expression (2.18) illustrates that phase angle ψ  measures the relative 

amount of shear stresses to normal stresses acting at the distance L from the 

crack tip along the interface. Throughout this paper we will call this parameter 

the mode-mixity parameter. 

The asymptotic crack tip field for an interface crack is strikingly different to 

the corresponding solution for a homogeneous solid. The bi-material crack is 

always intrinsically under the mixed mode, as a result of elastic mismatch of 

joined materials, regardless of the nature of the remote loading conditions. 

 

2.5 Fracture resistance of interfaces 
 

Knowledge of the stress state at the tip of the crack is important to describe 

the behaviour of the crack and to assess whether an interface crack will tend to 

propagate along the interface or whether it will advance by kinking out of the 

interface. To understand the fundamental mechanisms responsible for the above 

mentioned fracture modes the analysis of the interface energy release rate 

(iERR) has to be carried out. 

Subsequently iERR introduces the energy dissipated during the fracture per 

unit of newly created fracture surface area. The relationship between the iERR 
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( iG ) and the absolute value of the cSIF ( K ) of an interfacial crack is 

independent of the chosen crack tip model and is given by [48]: 

 

( )2 2 2
1 2

1 1

1 1  or   i iG K G K K
H H

= = +  (2.19) 

 
where the subscript i  represents the interface and iG  has units of energy per 

area. H1 depends upon the material properties (En – Young’s modulus, nν  - 

Poisson ratio) of the considered bi-material and has the following form: 

 
2 2
1 2 2 1

2
1 1 2

(1 ) (1 )1
2 cosh ( )

E E
H E E

ν ν
πε

− + −
= . 

 

The majority of fracture criteria are focused on the propagation of cracks 

subjected to opening (mode-I) conditions. But especially along the interfaces, the 

microstructural fracture phenomena, as it was shown above, tends to be a mixed 

mode problem. It should be noted that inherently for any interface both stress 

intensity factors 1K  and 2K  must be prescribed (2.19). To make a conclusion if 

the interface crack kinks into one of joined materials, interrelations between 

iERR ( iG ) and the toughness of the more compliant material (see chapter 2.5.1) 

are necessary. In characterizing an interface fracture due to crack propagation, 

one may prescribe a relation between 1K  and 2K  at fracture, or what is 

commonly done, introduce the critical energy release rate icrG  (see chapter 

2.5.2). 

2.5.1 Crack kinking out of the interface 
 

In this chapter an analysis of a crack kinking out of an interface is 

performed. The analysed crack tip geometry is shown in Figure 2.6. The main 

interfacial crack lies between two different elastic materials. A straight crack 

segment of the length ka  kinks downwards into the lower material under the 

angle kω  (if upper material 1 is much stiffer than lower material 2). The length ka  

is assumed to be small compared to the length of the interfacial crack itself. The 

stress field prior to kinking is a singular field (as discussed in chapter 2.3), which 
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is described by cSIF 1 2K K iK= + . Since the tip of the kinked crack is surrounded 

by the homogeneous material 2, the stress state can be uniquely described by 

conventional mode-I and mode-II stress intensity factors, IK  and IIK  of 

material 2: 

 

( )2 2 1 2
1

1
2 I IIi K iK

x
σ σ

π′ ′ ′ ′+ = +
′

, (2.20) 

 

where 1 2x x′ ′  is the coordinate system with origin at the tip of the kinked crack. 

 

 
Figure 2.6 - Geometry at the tip of a kinked crack 

 

The relationship between the intensity factors of a kinked crack and the 

prescribed complex interface intensity K obtained by He and Hutchinson [35] and 

Cotterell and Rice [20] can be written as: 

 

( , , ) ( , , )i i
I II k k k kK iK c Ka d Kaε εω α β ω α β −+ = + , (2.21) 

 

where (  )  denotes complex conjugation, functions ( , , )kc ω α β  and ( , , )kd ω α β  

are complex-valued functions of kinking angle kω  and Dundurs parameters α  

and β . 

According to the relationship (2.21), the ratio of the energy release rates for 

a kinked crack ( kG ) and an interfacial crack ( iG ) can be found as: 
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( )2 2 2
2

1 2Re
1

ik

i

G c d cde
G

ψα
β

⎛ ⎞+ ⎡ ⎤= + +⎜ ⎟ ⎣ ⎦−⎝ ⎠
% , (2.22) 

 

where ln ka
L

ψ ψ ε ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

%  is used as a measure of the loading combination. 

Tabulated values for R Ic c ic= +  and R Id d id= +  are given by [33]. 

The ratio (2.22) is an important factor to predict the behaviour of an 

interface crack. To explain its role, the graphs which show the dependence of the 

kinked angle kω  on the ratio of energy release rates /k iG G , are built for two 

different material joints in Figure 2.7 (Fig. 2.7a – material joint with both Dundurs’ 

parameters equal zero, Fig. 2.7b – Alumina-Zirconia ceramic joint with 0.209α =  

and 0.015β = ). The choice of these two material combinations can be explained 

by the fact that the first joint corresponds to the homogeneous ceramic material, 

while the second 2 3 2Al O ZrO−  joint was selected as a typical engineering bi-

material, which occurs e.g. in Lambda-sensor designs. 

Each line in Figure 2.7 corresponds to different loading combinations, the 

lowest one ( 0ψ = ) represents pure mode-I, other lines represent mixed-modes 

with different relative amount of mode-II to mode-I (parameter ψ  varies from 0 to 

/ 2π ). Eventually the pure mode-II stress state at the interface is reached for 

/ 2ψ π= . It was noted in [35] that the ratio of toughness (2.22) strongly depends 

on α , while the effect of the second Dundurs’ parameter β  appears to be weak, 

especially in the range of 0.1β < . 

For each material combination the dashed line shows the minimum value of 

ratio /k iG G  which is needed to ensure crack kinking out of interface for any 

applied loading conditions. One can see that for a joint of two identical materials 

this value becomes 1.8. At the same time for a combination of Alumina-Zirconia 

materials, the toughness of Zirconia has to be twice greater than the interface 

energy release rate to keep the crack staying at the interface for any loading 

combination ψ . In the case of a pure mode-I stress state at the tip of the 

interfacial crack for both considered bi-materials, the crack will propagate along 

the interface without kinking when the simple for understanding condition i kG G<  

( / 1k iG G > ) takes place. 
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Figure 2.7 - Variations of /k iG G  with kink angle kω  for range of loading 

combinations: a) joint of identical materials; b) 2ZrO (Mg-PSZ) / 2 3Al O (por. 0.1%) 

 

 

 
Figure 2.8 - The minimum value of the toughness ratio to ensure crack 

kinking for different loading combinations ψ  

 

It should be noted that in the case of mode-mixity stress state, the ratio 

depends on the bi-material properties as well. Thus, the following conclusions 

can be made: if kG  is sufficiently large compared to iERR ( iG ) the crack will 

never kink into the compliant material. However if kG  is comparable to iG  there 
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will still be a loading range of max0 ψ ψ≤ ≤ , such that the crack stays in the 

interface, while for other loading combinations maxψ ψ>  the crack kinking will 

take place. Figure 2.8 displays the dependence of maxψ  on the toughness ratio 

/k iG G  and allows to illustrate the arguments from above. The lines show for 

each material the minimum value of the ratio (2.22) needed to ensure that the 

interfacial crack will not leave the interface. If the ratio of the toughness /k iG G  is 

2.1, the dashed line is above both material curves means that kinking will never 

occur for bi-material 1 ( 0.0α = , 0.0β = ) and also for bi-material 2 ( 0.209α = , 

0.015β = ). In case that of /k iG G  equals 1.67, the dashed line crosses the 

material curves and the points of intersection give us the values of maxψ . For bi-

material 1 until max 45ψ ψ< = o  crack will stay at interface. When the equal bi-

action of shear and tensile stresses is achieved ( 45ψ = o ) the crack will kink into 

the compliant component of the joint under the angle 57kω = o . But in the case of 

bi-material 2 the range of mode-mixed stress states to keep the crack at 

interface is somewhat narrower and crack kinking will occur for max 37ψ ψ≥ = o . 

In summary, the condition for crack kinking from the interface into one of the 

joined materials depends on the combination of the toughness of the joined 

materials and the interface as well as of the loading conditions. From here on, 

we assume that the crack stays on the interface to facilitate the reliability 

analysis of interfaces. 

2.5.2 Crack propagation along the interface 
 

According to the energy release rate approach (based on Griffith’s criterion 

[30]) failure occurs when the iERR reaches a critical value criG , the fracture 

energy or toughness of the interface. Thus, the following behaviours can be 

distinguished: 

 

cri iG G<  - no crack growth, 

cri iG G=  - the crack will begin to propagate, (2.23) 

cri iG G>  - the crack propagates and failure occurs; 
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In the case of a homogeneous material, the energy, which is needed to 

create a unit fracture surface, is a parameter that depends only on the material. 

For interfaces in bi-material joints, it will be shown below that the interface 

toughness criG  is not a pure material property but it depends strongly on the 

mode-mixity parameter ψ . According to expression (2.19), criG  can be rewritten 

as: 

 

( )
2 2

2 2 1 2
1 2 2

1 1 1

1 1cr cr
icr cr cr

cr

K KG K K
H H K

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠
. 

 

Using (2.18) and designating ratio 2
1 1/crK H  as IG , where IG  is the pure 

mode-I toughness, the critical energy release rate can be explicitly denoted as:  

 

( )21 tanicr IG G ψ= +  (2.24) 

 

It should be noted, that icrG  is associated only with cSIF 1K  and depends 

on 2K  only through the phase angle ψ . 

Criterion (2.24) is similar to the empirical expressions presented by 

Hutchinson and Suo [40], who suggested two functions to describe the critical 

iERR: 

 

[ ]( )2( ) 1 tan (1 )icr IG Gψ γ ψ= + −  (2.25) 

( )2( ) 1 (1 ) tanicr IG Gψ γ ψ= + − , (2.26) 

 

which coincide with equation (2.24) for 0γ =  (γ  is a parameter, which adjusts 

the sensibility to mode-II contribution in the criterion). 

Another alternative formulation of the energy release criterion, where the 

roughness of interface is taking into account, was presented by Charalambides 

in [16]. There, it is assumed that fracture is caused by a mode-I energy release 

rate 0G , which is presented from two sides as: 
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2
0 sinI IIG G Gϖ= + , (2.27) 

2 2 2
0 0 0cos ( ) sin sin ( )icrG G ϖ⎡ ⎤= Ψ −Ψ + Ψ −Ψ⎣ ⎦ , (2.28) 

 

with ϖ  representing the surface roughness slope. In order to employ this 

criterion, three experimental observations are required to determine 0G , ϖ  and 

the bi-material phase shift 0Ψ . For a bi-material pair of ceramic materials, the 

roughness slope ϖ  may be taken to be zero. Then from (2.27) and (2.28) we 

can obtain an expression: 

 
2

01 tan ( )icr IG G ⎡ ⎤= + Ψ −Ψ⎣ ⎦ , (2.29) 

 

which can be compared to (2.24). They are essentially the same except the 

phase shift 0Ψ , the third free parameter. It was noted [5] that the effect of this 

parameter is similar to the effect of choosing another value for the reference 

length L in (2.16). 

 

  
Figure 2.9 - Comparison of fracture criteria for different values of free 

parameters 

 

For comparison of the above-mentioned fracture criteria Figure 2.9 is 

presented. The four fracture energy release criteria differ by parameters γ  and 

0Ψ , which have be chosen to fit experimental data. The total fracture energy of 

interfacial cracks is found to increase as mode-II loading increases, especially for 
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brittle interfaces. Also it can be noted that at some interval near 0ψ =  (mode-I 

stress state) all the criteria are essentially the same, nevertheless they differ with 

increasing of mode-mixity parameter, what means they differently describe the 

impact of stress mode-II.  

In this work, it is expected that the failure will occur for interface cracks 

under mode-mixed loading conditions, where normal stresses predominate over 

the shear stresses ( 0.5ψ < ). Thus, without losing in accuracy the energy 

release rate fracture criteria based on equation (2.24) for interface toughness will 

be used. 

 

 



 
 
 
 
 
 
 
 
 

27 

3. Statistical aspects of failure 
 

 

The natural flaws, such as pores, inclusions, imperfect grain boundaries or 

surface machining defects, occur in components due to the fabrication procedure 

or further processing. The failure of ceramic components is often caused by an 

unstable propagation of cracks originated from such natural imperfections. The 

reliability of brittle materials is generally assessed using the Weibull theory [70], 

which is based on a weakest-link approach (see chapter 3.1). Following the idea 

of probabilistic methods, the distribution of material strength is presented as a 

function of the defects size distribution with its fracture mechanics extensions. 

Models for the failure probability determination for homogeneous brittle materials 

are based on a number of assumptions, e.g. that stresses can be considered 

constant along the crack faces [74, 36]. In the case of bi-material ceramic joints 

the stress field depends on the material combination and changes significantly 

along the faces of interface flaws or cracks. This means that the classical Weibull 

failure theory needs to be modified in order to describe the role of cracks at 

interfaces properly. 

 

3.1 Basic ideas of the weakest-link approach 
 

The weakest-link model is used to determine the reliability of bi-material 

ceramic components subjected to the multiaxial stress state. According to this 

approach, the most dangerous natural flaw is the one, which has the most 

unfavourable combination of size, location and orientation in the stress field. To 

predict the failure of the component in the frame of a statistical model, the 

following assumptions are made [74]: 

a) The material contains a number of defects of different size, which can be 

described as cracks with fracture mechanics methods, 
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σσ σσ σσ

b) the size of the defect is a random variable, which is described by a 

certain distribution function, 

c) there are no interactions between the natural flaws, i.e. failure of a crack 

is not affected by the presence of other cracks, 

d) failure of the worst natural flaw (i.e. where the combination between high 

stress and large size is most unfavourable) causes the failure of the 

whole component, 

e)  location and orientation of the natural flaws are random. 

Thus, failure occurs in a stress field if the size a  of natural flaw exceeds 

some critical value cra . The critical crack size depends on the location 

( , , )x x y z=
r  and orientation ( , )ω ω ϕ=  of the crack in the existing stress field 

(see Figure 3.1). The failure probability of the component, which contains exactly 

one flaw of random size, location and orientation can be written as: 

 

1
( , )

( ) ( ) ( )
cr

V a
V a x

Q f x dV f d f a da
ω

ω
∞

Ω
Ω

= ⋅ Ω⋅∫ ∫ ∫
r

 (3.1) 

 

where ( )Vf xr , ( )f ωΩ  and ( )af a  are probability density functions (PDF) of the 

location, orientation and the random flaw size a, respectively. 

 

 

Figure 3.1 - Locations and orientations of natural flaws in stress field 

 

For homogeneous isotropic materials the distribution of the flaws locations 

and orientations are uniform distributions over the volume V and all possible 

orientations Ω  (which in three-dimensional space is 4π ), with following PDFs 

( )Vf xr  and ( )f ωΩ : 
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1( )Vf x
V

=
r

, (3.2) 

1( )
4

f ω
πΩ = . (3.3) 

 

The probability that a flaw exceeds the critical value ( , )cra x ω  is given by: 

 

( , )

( ) ( )
cr

a cr a
a x

P P a a f a da
ω

∞

= > = ∫ , (3.4) 

 

Where the PDF ( )af a  of the flaw size is generally modelled corresponding to the 

Pareto distribution [31, 74]: 

 
1

0

( , )

( ) 1 ( )
cr

r

a a
a x

af a F a
aω

−∞ ⎛ ⎞= − = ⎜ ⎟
⎝ ⎠∫ , (3.5) 

 

where 0a a≤  is the minimum possible flaw size considered and ensures 

normalization of the PDF. 

Taking the probability density functions (3.2), (3.3) and (3.5) into account, 

the failure probability of a homogeneous isotropic component with one natural 

flaw is given by: 

 

1
1 1 (1 ( ))

4 a cr
V

Q F a d dV
V π Ω

= − Ω∫ ∫  (3.6) 

 

The corresponding survival probability for a component with only one 

natural flaw is (1)
11SP Q= − . According to the assumption c), the survival 

probability for a component with n natural defects can be presented as the 

simultaneous survival probability of n different components (see Figure 3.2), 

each of them exhibiting only one natural flaw: ( )( )
11 nn

SP Q= − . 
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Figure 3.2 – Schematic illustrating the probability of independent events: 

one component with n flaws can be represented by n components with one flaw. 

 

The actual number of the natural flaws in a specific component is a random 

quantity. For statistically independent infinitesimal volume elements, dV , the 

number of flaws, n, contained can be described by a Poisson distribution, what is 

in good agreement with empirical data. Correspondingly the probability ( nP ) of 

having exactly n flaws in the volume V of a component is [14, 36]: 

 

!

n M

n
M eP

n

−

= , (3.7) 

 
where M is the average number of flaws in such components. 

Now, the survival probability of a component containing an arbitrary number 

of flaws can be given by the product of the probabilities nP  and ( )n
SP  and the sum 

over all possible numbers of flaws: 

 

( )
1

0 0
(1 )

!

n M
n n

S n S
n n

M eP P P Q
n

−∞ ∞

= =
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[ ]
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n k
M Q MQM h M
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M Q he e e e e
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∞ ∞
− −− −

= =

− ⎧ ⎫
= = = = =⎨ ⎬

⎩ ⎭
∑ ∑  (3.8) 

 

Finally the expression for the failure probability of a component with an 

arbitrary number of natural flaws is obtained as: 

 

11 exp( )FP M Q= − − ⋅  (3.9) 

 

or in full form inserting equation (3.6): 
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One can see that the failure probability of the component, caused by 

unstable propagation of the natural flaws, is a function of the critical crack size of 

the most dangerous flaw in the applied stress field. A similar equation can be 

formulated if failure is induced by surface flaws. The worst flaw in the component 

determines the effective permissible load for a prescribed failure probability. The 

dependence of the critical flaw size on the local stress field has to be derived 

from an appropriate fracture mechanics model [9]. 

 

3.2 Weibull theory for brittle homogeneous materials 
 

For homogeneous components subjected to mixed-mode loading, fracture 

occurs when the equivalent mode-I stress intensity factor ( IeqK ) exceeds the 

fracture toughness ( IcK ) of the material. ( , , )Ieq I II III eq IK K K K aYσ=  is a function 

of the mode I-III stress intensity factors, and depends on the multiaxial stress 

field as well as on the fracture mechanics geometry factor IY , accounting for the 

crack shape, the specimens geometry and the geometry of the applied loading. 

According to the failure criterion Ieq IcK K≥  the following expression for the 

critical crack size cra  is obtained: 

 
2
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cr

eq I

Ka x
x Y

ω
σ ω
⎛ ⎞

= ⎜ ⎟⎜ ⎟⋅⎝ ⎠

r
r  (3.11) 

 

This representation is only valid if ( , )eq xσ ωr  is considered to be constant 

along the crack size a  or if only small stress gradients exist. Different functional 

criteria for determination equivalent stresses can be introduced in order to 

described the sensitivity of material to mixed-mode loading. 

The failure probability (3.10), rewritten in terms of stresses, using (3.11), 

has the following form: 
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where 2( 1)m r= −  characterizes the scatter of the strength distribution, 0V  is the 

unit volume containing an average number of 0M  flaws and 0σ  is a 

characteristic strength value: 
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σ =  (3.13) 

 

Introducing a reference stress *σ , which characterizes the load level, the 

expression for failure probability can be brought to the form of a Weibull 

distribution [14, 36, 39, 62, 74]: 

 

*
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 (3.14) 

 

with the two Weibull parameters m and b reflecting the distribution of flaws in the 

material. First, m is a dimensionless number corresponding to the variability in 

the measured strength, while the Weibull parameter b has the dimension of 

stress. Parameter b depends on the material parameters m and 0σ , the volume 

of the component and the load level, described by *σ : 
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According to (3.15) we can introduce the relation between b and 0σ  in the 

form: 0 Vb Hσ = ⋅ , with the normalized stress integral 
1/

0/
m

V effH V V⎡ ⎤= ⎣ ⎦ , where  
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is an effective volume integral or so called stress integral. This parameter 

describes the dependence of the Weibull parameter b on the component’s 

geometry, while the parameter 0σ  relates only to material properties. It means 

that for the same material, but different geometry configurations of the 

component, we will have the following general relations: 

 

0 1 1 2 2 3 3V V Vb H b H b H constσ = ⋅ = ⋅ = ⋅ =  (3.17) 

 

where HVj have to be evaluated separately for each component. Equation (3.17) 

is an important basis for failure probability calculations and the assessment of 

size effects. 

 

3.3 Numerical integration 
 
For determining the failure probability, a numerical integration over the 

entire volume of a component and different flaw orientations becomes necessary 

(see eq. (3.12)) due to the possible complexity of the component’s geometry and 

the stress representation. The main principle of postprocessor STAU (German 

acronym for Statistische Auswertung ≡  statistical analysis) used for this purpose 

is discussed in chapter 3.3.1. This program was initially developed as a 

numerical integration scheme for the calculation of failure probability and it is 

based on the Gaussian integration method (see chapter 3.3.2). 

3.3.1 Finite element postprocessor STAU 
 

STAU is a weakest-link finite element (FE) postprocessor tool, which 

provides the integration routine required for equation (3.12). The input for STAU 

are the results of a FE-analysis, containing the solution of the stress distribution 

over the volume of a component. The schematic process of a failure probability 

analysis with STAU is shown in Figure 3.3. Material properties and the 

component’s geometry as well as the applied loading and boundary conditions 

determine the stress distribution, which is the basis for the prediction of the 

failure probability. 
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Figure 3.3 – Failure probability analysis using STAU 

 

The geometry of the component is realized in STAU as a set of nodes and 

elements of a FE-mesh. The stress state of the component is given by the stress 

values in the nodes of the FE-model. The material parameters m and 0σ  need to 

be specified by the user as well as appropriate equivalent stress criteria. For the 

integration process STAU introduces additional integration points (Gaussian 

collocation points), in which interpolated stress functions are calculated. This 

procedure leads to an enhanced numerical accuracy. 

Compared to other similar tools, STAU is a unique program due to a 

number of possibilities. One can solve the problems associated with 

spontaneous fracture, sub-critical crack propagation under transient loading, or 

thermo-mechanical problems, including thermal shock and contact loading [62]. 

3.3.2 Gaussian integration method 
 

In a numerical analysis according to Gaussian quadrature rule, the definite 

integral of a function is usually approximated by a weighted sum of function 

values at specified points within the domain of integration, which is 

conventionally taken as [−1, 1]: 
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here N-point Gaussian quadrature rule yields an exact result for polynomials of 

degree 2N−1 or less by a suitable choice of the collocation points nx  and weight 

coefficients nhx  ( 1,n N= ). 

An integral over an arbitrary interval [a, b] must be mapped into an integral 

over [−1, 1] before applying the Gaussian quadrature rule. The corresponding 

numerical solution can be obtained in the form: 

 

1

( ) ( )
2 2 2

b N

n n
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b a b a b af x dx hx f x
=

− − +
≈ +∑∫  (3.19) 

 

The collocation points nx  are determined as the roots of the Legendre 

polynomials NL  [2] and the respective weight functions are given by: 
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Now the integrals in expression (3.12) can be rewritten by taking into 

account that the stress values ( ,eq kσ ) are given in FEN -number of elements of 

corresponding the FE-model: 
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(3.21) 

 

where VJ , JΩ  are Jacobian matrices, which describe the change of the 

integration intervals according to (3.19), xα% , yγ% , zξ% , ϖω%  and φϕ%  are Gaussian 

collocation points with their respective weights hxα , hyγ , hzξ , h ϖω  and h φϕ . 
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3.4 Generalization for the case of interface flaws 
 
Equation (3.12) represents the failure probability of homogeneous 

components. In our research, due to the presence of interfaces, the assumptions 

of the classical Weibull theory have to be adapted for the case of interface 

failure. The statements that there are no interactions between natural flaws and 

that all of them could have arbitrary location and orientation with a random 

distribution of the defect size are still relevant. But in this special case the focus 

will only be on the natural flaws lying at the interface iA , the location of natural 

defects is described by ( , )x x z=
r  and their orientation by single angle ω  (see 

Figure 3.4). Also ordinary Weibull theory considers stresses to be constant over 

the crack faces, where the relation between stress state and critical flaw length is 

given by (3.11). This assumption is not valid any longer in the case of bi-material 

joints, where the stress field at the interface depends on the material 

combination and changes significantly near the tips of interface cracks. 

 

σ

σ

σ

σ

 

x

y

z ω
x

y

z ω  
Figure 3.4 - Locations and orientations of interface natural flaws in a stress 

field 

 

As mentioned above, the stress state at the interface can be uniquely 

described by the cSIF 1 2K K iK= + . Most methods require a separate calculation 

of SIFs for each given stress distribution and each crack length. A weight 

function approach for bi-material joints, as proposed by L. Banks-Sills [4], 

simplifies this procedure and SIFs for specified geometry can be found with the 

help of two arbitrary reference solutions ( ( )kK , ( )mK ) through the weight functions 

( , )i ix iyh h h=
r

for bi-material components ( 1, 2i = ): 
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where TS  is a boundary with applied arbitrary tractions ( , )T σ τ=
r

 and 

expressions for the weight functions are given by: 
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2 ( ) ( ) ( ) ( )
1 2 2 1 0m k m kK K K KΣ = − ≠ , 

 

Where the stress intensity factors ( )k
iK , ( )m

iK  and the displacement fields ( )kU
r

, 

( )mU
r

 are known for two reference loading systems, denoted by k and m, applied 

to the same cracked body. 

The failure state for the same bi-material component can be reached for 

different values of principal stresses depending also on their combination. 

Therefore, introduction of equivalent stresses is needed. Implying the equivalent 

stress ( eqσ ) as the mode-I stress, which produces the same interface energy 

release rate as the given mixed mode stresses, the equivalent cSIF can be 

written as 
2 2 2 2 2

1 2eq eq eq eq xK K K Yσ= + = , where xY  is a combination of the weight 

functions ih
r

 and describes the remote loading conditions. 

Combining (2.19) and (2.24), we obtain the following equation for the critical 

crack length ( cra ) at the interface fracture of the bi-material: 

 

[ ] ( )
2

2 2
1 cr

1

( ) 1 taneq
x crY a G

H
σ

ψ= +  (3.24) 

 

While in most cases this equation can be solved only numerically for cra  

due to the complicated form of the correction factor xY , an analytical solution can 
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be given for the special case of an infinite bi-material joint with internal interfacial 

crack. This particular case is useful, because it corresponds to the case of 

natural flaws lying at the interface, whose size a  is infinitesimally small 

compared to the component’s dimensions. 

Stress intensity factors for this type of crack geometry were provided by 

various authors (e.g. [4, 17, 41, 61]) and they read: 

 

1 2 22 12(1 2 )( ) ( )
2

iaK iK i i a επε σ σ −+ = + +  (3.25) 

 

or through the far-field equivalent stresses: 

 

1 2 (1 2 ) ( )
2

i
eq eq eq

aK iK i a επε σ −+ = + . (3.26) 

 

Now, separating real and imaginary parts, the stress intensity factors K1eq 

and K2eq can be obtained to calculate iERR according to (2.19):  
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Consequently,  

 

( ) [ ] [ ]( )1 Re cos ln( ) 2 sin ln( )
2eq eq eq
aK K a aπ σ ε ε ε⎡ ⎤= = +⎣ ⎦  (3.27) 

( ) [ ] [ ]( )2 Im 2 cos ln( ) sin ln( )
2eq eq eq
aK K a aπ σ ε ε ε⎡ ⎤= = −⎣ ⎦  (3.28) 

 

Thus, the modulus of the equivalent complex stress intensity factor eqK  

according to (2.15) is: 
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Therefore expressions (3.24) and (3.29) yield to a linear equation with 

respect to the critical crack length and the solution is given by: 
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where 2(1 4 ) / 2iY π ε= +  is a real constant for the given specified material 

combination. 

The interface failure probability following (3.10) rewritten in terms of 

stresses becomes: 
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where the integration is performed over the whole interface plane iA . 0A  is a unit 

area containing an average number of 0M  flaws. In the form of a Weibull 

distribution (3.14) for interface failure the Weibull parameter b for the bi-material 

joint is: 
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The integration over Ω  takes the orientation dependence of the equivalent 

stresses due to the non-symmetrical shape of the in-plane crack into account. 
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In the next chapter the comparison of the failure probability expressions for 

the case of a homogeneous brittle component (3.12) and the case of interface 

failure in a ceramic bi-material (3.31) is provided. 

 

3.5 Discussion of results 
 

As it was mentioned [15, 62], ordinary Weibull theory for homogeneous 

materials has some limitations. First, it is built on a similar fracture mechanical 

model ( Icr eq crK a Yσ= ), while in the general case of bi-material, as it was shown 

in (3.24), the relation between the critical interface flaw size and the equivalent 

stress cannot be written in terms of simple power law ( ( )icr eq cr crG a Y aσ= ). 

However, for both – cracks in homogeneous material and interfacial cracks – 

once the critical crack size is known as a function of equivalent stresses in the 

volume or over the interface plane, the failure probability formulation in terms of 

stresses can be determined directly, as it is exemplified for the infinite bi-material 

joint with an one-dimensional crack model. The second important limitation of 

classical Weibull theory is the fact that unstable crack propagation in 

homogeneous material is described through the fracture toughness, which is a 

material constant. For a bi-material this is not the case any more and the 

interface toughness becomes a function of the applied loading combination, 

determined by (2.24). 

This difference becomes evident when comparing the obtained results for 

the interface failure probability (3.31), (3.32) with the ordinary Weibull theory for 

brittle fracture of homogeneous ceramics (3.12), (3.13) and (3.15). The failure 

probability relation for bi-material case mainly corresponds to that of the 

homogeneous case, except the 2tan ψ -term in the denominator of the geometry-

dependent strength parameter b. This term appears, namely due to the fact that 

the interface toughness is not a pure material constant, but a function of mode-

mixity at the tip of the crack. This leads to a dependence of the interface failure 

probability on the way of the applied loading. 

Similar to (3.21), the integrals in expression (3.31) with given stress values 

,eq kσ  from the corresponding FE-model and the calculated values of mode-mixity 
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parameters ( kψ ) at the tips of potential cracks (in each FE-node) are the 

following: 
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 (3.33) 

 

where AJ , JΩ  are Jacobian matrices, which describe the change of the 

integration intervals according to (3.19), xα% , zξ%  and ϖω%  are Gaussian collocation 

points with their corresponding weights hxα , hzξ , and h ϖω , which are calculated 

from (3.20). 

The main task of the next chapter will be to consider the impact of the 
2tan ψ -term on the failure probability prediction. For this purpose, an auxiliary 

problem of a bi-material strip with internal interfacial crack under remote stress 

field is considered. 
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4. Mechanical problem of a bi-material strip 
 

 

The plane elasticity problem for a bi-material strip of infinite length is considered 

(Figure 4.1). The origin of a Cartesian coordinate system 1 2( , )x x  is located at the 

centre of a crack. It is assumed that the upper material ( 1E , 1ν ), occupying 

2 10 x h< < , is perfectly bonded to the lower material ( 2E , 2ν ), occupying 

2 2 0h x− < < , everywhere on the interface 2 0x =  except along the crack faces 

1a x a− < < . 

 

 
Figure 4.1 - Bi-material strip with an interface crack at x2 = 0, remote loading 

by tensile 1( )P x  and shear 1( )Q x  stresses. 

 

The considered bi-material strip is loaded on the upper ( 2 1x h= ) and lower 

( 2 2x h= − ) borders by tensile and shear loading. Our task is to find the stress 

state at the interface of the bi-material strip. To be more precise, the value of 

mode-mixity parameter ψ  is of special interest; which measures the ratio of 

shear and normal stresses at the tip of the crack and depends on the loading 

conditions and the geometry of the strip. 
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4.1 Mathematical statement of the problem 
 
The remote loading, presented by tensile 1( )P x  and shear 1( )Q x  stresses, 

is applied on the upper and lower surface of the component. Thus, the boundary 

conditions in terms of stresses are the following: 

 
(1)
12 1 1 1( , ) ( )x h Q xσ =  (2)

12 1 2 1( , ) ( )x h Q xσ − =  (4.1) 

(1)
22 1 1 1( , ) ( )x h P xσ =  (2)

22 1 2 1( , ) ( )x h P xσ − = −  (4.2) 

 

Along the un-cracked part of the interface, the following continuity 

conditions for the stress components and displacements are imposed: 
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and the conditions, which describe that the crack surfaces are free of loading, 

are: 

 
(1) (2)
2 1 2 1 1( ,0) ( ,0) 0,         where    xk kx x aσ σ= = ≤     1,2k =  (4.4) 

 

Assuming a state of plane strain, the relations between stresses ( ( )n
kjσ ) and 

displacements ( ( )n
kU ) in each material can be described by Hooke’s law: 
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where index (n) indicates the number of material; nλ , nμ  (n = 1,2) are elastic 

Lame constants, which are defined through the given material properties as: 

 

(1 )(1 2 )
n n

n
n n

E νλ
ν ν

=
+ −

, 
2(1 )

n n
n

n

E νμ
ν

=
+

. 
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The system of equations of equilibrium for the considered materials, in 

terms of displacements, has the following form: 

 
2 ( ) 2 ( ) 2 ( )

1 1 2
2 2
1 2 1 2

2 ( ) 2 ( ) 2 ( )
2 2 1
2 2
2 1 1 2

( 2 ) ( ) 0

( 2 ) ( ) 0

n n n

n n n n n

n n n

n n n n n

U U U
x x x x

U U U
x x x x

λ μ μ λ μ

λ μ μ λ μ

⎧ ∂ ∂ ∂
+ + + + =⎪ ∂ ∂ ∂ ∂⎪

⎨
∂ ∂ ∂⎪ + + + + =⎪ ∂ ∂ ∂ ∂⎩

 (4.6) 

 

Thus, the mathematical statement of the considered plane problem of a bi-

material strip with internal interface crack is given by the system of four 

differential equations (4.6) under the above stated boundary (4.1), (4.2) and 

interfacial (4.3), (4.4) conditions. 

 

4.2 Solution procedure 
 

The problem formulated in the previous chapter can be represented as a 

superposition of two sub problems (Figure 4.2), for which solutions can be 

obtained in analytical or half-analytical way by means of solving singular integral 

equations (SIE). Problem (a) – an un-cracked bi-material strip of infinite length, 

where normal and shear stresses are applied on the boundaries: this sub 

problem represents itself a problem of theory of elasticity and allows to vary the 

boundary conditions and geometry of the strip. Problem (b) – an infinite bi-

material joint with an interface crack of finite length, where no remote loading is 

applied – represents the fracture mechanical part [51]. 

The stress state at the interface for the originally compound problem ( ( )comσ ) 

is then given as a sum of the solutions for problems (a) and (b), respectively: 

 
( ) ( ) ( )

1 1 1( ,0) ( ,0) ( ,0)com a b
kj kj kjx x xσ σ σ= +  (4.7) 
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Figure 4.2 - Superposition for a bi-material strip with an internal crack 

 

4.2.1 Crack-free bi-material strip of infinite length 
 

The mathematical statement of the problem (a) is presented by the 

equilibrium equation (4.6) with the boundary conditions (4.1), (4.2) and following 

stress and displacement continuity conditions at the interface: 

 
(1) (2)

1 1
1(1) (2)

1 1

( ,0) ( ,0)
,            where   - x

( ,0) ( ,0)
kj kj

k k

x x

U x U x

σ σ ⎫= ⎪ ∞ < < ∞⎬
= ⎪⎭

 (4.8) 

 

4.2.1.1 Derivation of singular integral equations 
 

Because of symmetry it is sufficient to consider the elastic strip problem for 

10 x< < ∞  only. We introduce six unknown functions 1g , 2g , 3g , 4g  1f , 2f  

representing the stresses and displacements for a specific choice of the strip 

geometry in the following way, similar to [29, 44]: 
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(1) (1)
1 1 12 1 1 2 1 2 1 1

(1) (2) (1) (2)
1 1 12 1 12 1 2 1 2 1 2 1

(2) (2)
3 1 12 1 2 4 1 2 1

( ) ( , ),                            ( ) ( , )

( ) ( ,0) ( ,0)          ( ) ( ,0) ( ,0)

( ) ( , ),                         ( ) (

g x x h g x U x h

f x x x f x U x U x

g x x h g x U x

σ

σ σ

σ

= =

= = = =

= − = 2, )h−

 (4.9) 

 

In order to solve the differential equation (4.6) we apply the finite Fourier 

transforms on x2-direction. They allow us to reduce the number of independent 

variables in the partial differential equations [67]. Thereby, for the upper material 

we obtain: 

 
1

1

(1) (1)
1 1 1 1 2 1 2 2

0

(1) (1)
2 1 2 1 2 1 2 2

0

( , ) ( , ) cos( )

( , ) ( , ) sin( )

h

h

U x p U x x px dx

U x p U x x px dx

η

η

=

=

∫

∫
 (4.10) 

 

where 1
1h
πη =  and the symbol (  )  indicates the Fourier transforms. In this case 

functions (1)
1 1( , )U x p  and (1)

2 1( , )U x p  are governed by the system of ordinary 

differential equations: 

 

( )

2 (1) (1)
2 2 (1)1 2

1 1 1 1 1 1 1 1 1 1 1 2 1 22
1 1

2 (1) (1)
2 2 (1)2 1

1 1 1 1 1 1 1 2 1 1 1 2 22
1 1

( 2 ) ( ) ( 1) ( 1)

( ) ( 2 ) ( 2 ) ( 1)

p p

p

d U dUp p U g f g f
dx dx

d U dUp p U p g f
dx dx

λ μ λ μ η μη λ λ

μ λ μ η λ μ η λ μ η

⎧
′ ′+ + + − = − − + − − +⎪

⎪
⎨
⎪ − + − + = + − −⎪⎩

 

 

Introducing additional infinite Fourier transforms with respect to the x1-

coordinate 

 

(1) (1)
1 1 1 1 1

0

(1) (1)
2 2 1 1 1

0

( , ) ( , )sin( )

( , ) ( , ) cos( )

U t p U x p tx dx

U t p U x p tx dx

∞

∞

=

=

∫

∫
 (4.11) 
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to the previous system of equations, we will arrive at the following algebraic 

system of linear equations concerning the second transforms of displacements: 
(1)
1 ( , )U t p  and (1)

2 ( , )U t p : 

 

( )
( ) ( )

2 2 2 (1) (1)
1 1 1 1 1 1 1 1 2 1 1 1 2 1 2

(1) 2 2 2 (1)
1 1 1 1 1 1 1 1 2 1 1 1 2 2

( 2 ) ( ) ( 1) ( 1)

1( ) ( 2 ) ( 2 ) ( 1)

p p

p

t p U ptU g f g f

ptU p t U p g f
t

λ μ μη λ μ η λ λ

λ μ η λ μ η μ λ μ η

⎧ ′ ′+ + + + = − − + − −
⎪
⎨

′ ′+ + + + = + − −⎪
⎩

 (4.12) 

 

where 

 

1 1 1 1 1
0

( ) ( )sin( )g t g x tx dx
∞

= ∫ , 1 1 1 1 1
0

( ) ( )sin( )f t f x tx dx
∞

= ∫ , 

2 2 1 1 1
0

( ) ( )sin( )g t g x tx dx
∞

′ ′= ∫ , 2 2 1 1 1
0

( ) ( )sin( )f t f x tx dx
∞

′ ′= ∫ , 

 

symbol (  )′  indicates total derivative, t, p – are Fourier variables. 

Thus, the system of differential equations (4.6) was reduced to an algebraic 

system of linear equations with respect to integral transforms of variables. The 

solution of the system (4.12) and both inverse transforms will lead to the 

following expressions for displacements in the upper material through the 

unknown functions 1g , 2g′ , 1f , 2f ′ : 

 
(1)

(1) (1)1
1 2 1 1 1 2 2 1 1 2

1 0 0

( , ) ( ) ( , , ) ( ) ( , , )u x x g A x x d g B x x d
x

τ τ τ τ τ τ
∞ ∞∂ ′= + +

∂ ∫ ∫  

(1) (1)
1 1 1 2 2 1 1 2

0 0

( ) ( , , ) ( ) ( , , )f C x x d f D x x dτ τ τ τ τ τ
∞ ∞

′+ +∫ ∫ , (4.13) 

 

and 

 
(1)

(1) (1)2
1 2 1 2 1 2 2 2 1 2

2 0 0

( , ) ( ) ( , , ) ( ) ( , , )u x x g A x x d g B x x d
x

τ τ τ τ τ τ
∞ ∞∂ ′= + +

∂ ∫ ∫  
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(1) (1)
1 2 1 2 2 2 1 2

0 0

( ) ( , , ) ( ) ( , , )f C x x d f D x x dτ τ τ τ τ τ
∞ ∞

′+ +∫ ∫ , (4.14) 

 

where functions (1)
1 2( , , )kA x x τ , (1)

1 2( , , )kB x x τ , (1)
1 2( , , )kC x x τ  and (1)

1 2( , , )kD x x τ are 

determined and introduced in Appendix A. 

The normal stress component can be found according to Hooke’s law (4.5), 

therefore: 

 

(1) (1) (1)
22 1 2 1 3 1 2 2 3 1 2

0 0

( , ) ( ) ( , , ) ( ) ( , , )x x g A x x d g B x x dσ τ τ τ τ τ τ
∞ ∞

′= + +∫ ∫  

(1) (1)
1 3 1 2 2 3 1 2

0 0

( ) ( , , ) ( ) ( , , )f C x x d f D x x dτ τ τ τ τ τ
∞ ∞

′+ +∫ ∫ , (4.15) 

 

where the functions (1)
3A  to (1)

3D  are known functions of material properties and 

geometry parameters and can be obtained subsequently as a combination of the 

above-mentioned functions (1)
kA  to (1)

kD  ( 1,2k = ). 

Similar expressions can be obtained for stress and displacement 

components in the lower material by analogical considerations (see eq. (A.1)-

(A.3)). 

Thus, the mathematical statement can be reformulated in terms of singular 

integral equations (SIE) of Cauchy-type similar to [29, 44, 73]. These equations 

with respect to 2g′ , 4g′ , 1f , 2f ′  are the following (an expanded form is provided in 

Appendix A): 

 
(1)
22 1 1 1 2 1 2 1
(2)
22 1 2 3 4 1 2 1
(1) (2)
22 1 1 2 1 2 22 1 3 4 1 2

(1) (2)
1 1

1 1 2 1 2 1 3 4 1 2
1 1

( , , , , , ) ( )

( , , , , , ) ( )

( ,0, , , , ) ( ,0, , , , ) 0

( ,0, , , , ) ( ,0, , , , ) 0

x h g g f f P x

x h g g f f P x

x g g f f x g g f f

U Ux g g f f x g g f f
x x

σ

σ

σ σ

′ ′⎧ =
⎪

′− = −⎪
⎪

′ ′ ′⎨ − =
⎪
∂ ∂⎪ ′ ′ ′− =⎪ ∂ ∂⎩

 (4.16) 

 

The unknown functions 1g  and 3g  can be found directly from the boundary 

conditions (4.1) by taking into account equation (4.9), the other four unknown 

functions can be determined by solving system (4.16). 
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4.2.1.2 Numerical method for the solution of singular integral equations 
 

Analysing the obtained system of integral equations (4.16) with the help of 

expressions for integral kernels introduced in Appendix A, one can see that the 

functions ( )
1( ,0, )n

kA x τ , ( )
1( ,0, )n

kB x τ , ( )
1( , , )n

kC x h τ  and ( )
1( , , )n

kD x h τ  are continuous 

functions all over x1, whereas the functions ( )
1( , , )n

kA x h τ , ( )
1( , , )n

kB x h τ , ( )
1( ,0, )n

kC x τ  

and ( )
1( ,0, )n

kD x τ are singular for 1x τ→  and the singular part is given by: 

 

1 1
1

1( , )S x
x

τ
τ

=
−

 (4.17) 

 

In integrals (4.13) - (4.15) and analogical integrals for the lower material 

(A.1) – (A.3), due to St. Venant’s principle, one can use { }1 2max ;c h h>>  instead 

of infinity (∞ ). Substituting ( )1 1 / 2x c cχ= + , ( ) / 2c ctτ = + , system (4.16) can be 

rewritten in matrix form: 

 

( )
1

1 1 1 1
1

( , ) ( , ) ( ) ( )S t Y t t dt Fχ χ χ
−

+ Φ =∫  (4.18) 

 

In this form the system of equations (4.16), which describes the equilibrium 

state of the un-cracked bi-material strip, can be recognized as a system of 

Fredholm integral equations of first kind with Cauchy-type singular kernels [54]. 

In (4.18) ( )tΦ  is a vector of the unknown functions 2g′ , 4g′ , 1f  and 2f ′ , 1( , )Y tχ  is 

a matrix of regular parts of integral kernels, which can be easily obtained as an 

algebraic combination of integral kerns ( )n
kA  to ( )n

kD  ( 1,3k = ). The functions in 

vector 1( )F χ  represent the boundary conditions from the right side of equations 

in (4.16). 

The solution for obtained system of equations is presented in the form [52, 

54]: 

 
**

2

( )( )
1

tt
t

Φ
Φ =

−
 (4.19) 
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By applying the Gauss-quadrature rule to (4.18), with taking into account 

(4.19), the system of four integral equations will reduce to the following 4N-order 

system of algebraic equations: 

 

**

1

**

1

1 ( , ) ( ) ( )
        1, 1

( )

N

l m m l
m l m

N

m
m

Y t t F
N t

l N
t Const

N

π χ χ
χ

π
=

=

⎧ ⎛ ⎞
+ Φ =⎪ ⎜ ⎟−⎪ ⎝ ⎠ = −⎨

⎪ Φ =⎪⎩

∑

∑
 (4.20) 

 

where ( )(2 1) /mt Cos m Nπ= −  are roots of Chebyshev polynomials of the first kind 

of order N and lχ  are determined as ( )/l Cos l Nχ π= . 

This system has a unique solution with respect to the unknown variables 

2mg′ , 4mg′ , 1mf , 2mf ′  ( 1,m N= ), which correspond to the values of the unknown 

functions ( )2g τ′ , ( )4g τ′ , ( )1f τ , ( )2f τ′  at the collocation points mt . Thus, the 

sought-for functions introduced by (4.9) are obtained as a result of interpolation. 

Therefore, the stress distributions on the interface from (4.15) are evaluated 

numerically for the case of uncracked bi-material strip depending on the given 

geometry of joined materials and on the given applied remote loading. 

The dependence of obtained solution on the loading conditions is obviously 

determined by the right side of equation (4.16), while the effect of different strip 

geometries is more hidden, but could be found in dependences of integral 

kernels of expressions (4.13)-(4.16) and (A.1)-(A.3) on the height of joined 

materials 1h and 2h . Simple replacement of the height parameters by appropriate 

geometrical values will lead to solutions inherent for chosen geometries. 

However, it should be noted that the solution is presented for an infinite bi-

material strips, what means that the height of bi-material is significantly smaller 

than the length of the strip. 

4.2.1.3 Verification of the solution procedure 
 

To illustrate the above presented mechanism of solution of singular integral 

equations, we consider the problem of a homogeneous material strip, infinite in 

x1-direction, with fixed lower border and loaded with uniform distributed tensile 

stress on the upper border (Figure 4.3a), as a test case. 
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The boundary conditions instead of (4.1), (4.2) and (4.3) will be presented 

as following: 

 
(1)
12 1 1( , ) 0x hσ =  (1)

22 1 1( , )x h Pσ =  (4.21) 

(1)
1 1( ,0) 0U x =  (1)

2 1( ,0) 0U x =  

 

According to above introduced analyses, the derived system of SIE (4.16) 

for the problem of a homogeneous strip has a more simple view and can be 

written as: 

 

(1) (1)
2 3 1 1 1 3 1 1

0

(1) (1)
2 1 1 1 1 1

0

( ) ( , , ) ( ) ( , , )

( ) ( ,0, ) ( ) ( ,0, ) 0

g B x h f C x h d P

g B x f C x d

τ τ τ τ τ

τ τ τ τ τ

∞

∞

⎧
′⎡ ⎤+ =⎪ ⎣ ⎦

⎪
⎨
⎪ ′⎡ ⎤+ =⎣ ⎦⎪⎩

∫

∫
 (4.22) 

 

In this case we have only two unknown functions 2 ( )g τ′  and 1( )f τ . The 

solution of (4.22) is searched in the form of (4.19). Thus, unknown functions can 

be introduced as 
*

2
2 2

( )( )
1

q tq t
t

′
′ =

−
, 

*
1

1 2

( )( )
1
f tf t

t
=

−
 using following additional 

conditions: 

 
1

*
2

1

( ) 0q t dt
−

′ =∫ , 
1

*
1

1

( ) 0f t dt
−

=∫  (4.23) 

 

Finally, the 2N-order system of algebraic equations can be written as: 

( )

( )

* (1) * (1)
2 3 1 1 3 1

1

* (1) * (1)
2 3 1 3

1

*
2

1

*
1

1

( ) ( , , ) ( ) ( , , )

( ) ( ,0, ) ( ) ( ,0, ) 0

( ) 0

( ) 0

N

k l k k l k
k
N

k l k k l k
k

N

k
k

N

k
k

g t B h t f t C h t P
N

g t B t f t C t
N

g t
N

f t
N

π χ χ

π χ χ

π

π

=

=

=

=

⎧ ′ + =⎪
⎪
⎪ ′ + =⎪⎪
⎨
⎪ ′ =
⎪
⎪
⎪ =⎪⎩

∑

∑

∑

∑

     1, 1l N= −  (4.24) 
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The stress component 22 1 2( , )x xσ  can be obtained from (4.15) using the 

found functions: 

 

(1) (1) (1)
22 1 2 2 3 1 2 1 3 1 2

0 0

( , ) ( ) ( , , ) ( ) ( , , )x x g B x x d f C x x dσ τ τ τ τ τ τ
∞ ∞

′= +∫ ∫ . 

 

a)  b)  

Figure 4.3 - Homogeneous strip with an fixed end under the uniform tensile 

loading: a) geometry configuration; b) stresses at the “interface” ( 2 0x = ) 

 

The stress solution on the fixed end of the strip is shown qualitatively in 

Figure 4.3b. The abscissa coordinate is a coordinate along the fixed end ( 2 0x = ), 

normalized by the height of the component. One can see a persistent behaviour 

of obtained results over the whole interface, except the small regions near the 

ends of the strip. These effects appear due to the replacement of the upper limit 

in integrals (4.22) from infinity to 1100c h= . This stress behaviour is limited to the 

very neighborhood of the strip ends and can be neglected for the case of an 

infinite strip. The solution is found to be in a good agreement with the numerical 

results, obtained from a simple FE-model and the results, presented earlier in the 

literature (e.g. [29, 44, 45]). 

4.2.2 An interface crack in an infinite bi-material joint 
 
The mathematical statement for the interface crack in infinite bi-material 

joint is presented by equilibrium equations (4.6) with the following stress 

conditions on the bi-material interface: 

 
(1) (2)
2 1 2 1

1(1) (2)
1 1

( ,0) ( ,0) 0
,                           for   0<a x

( ,0) ( ,0)
k k

k k

x x

U x U x

σ σ ⎫= = ⎪ ≤ < ∞⎬
= ⎪⎭

    1,2k =  (4.25) 
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(1) (2)
22 1 12 1 1 1 1( ,0) ( ,0) ( ) ( ),       for    xx i x p x iq x aσ σ− = − + ≤  (4.26) 

 

where 1( )p x  and 1( )q x  represent tensile and shear stresses acting on the 

interface ( 2 0x = ). According to the solution of problem (a), they are ( )
22 1( ,0)a xσ− , 

( )
12 1( ,0)a xσ  correspondingly.  

Problems of such kind were considered by England [24], Erdogan [25] and 

others. 

4.2.2.1 Derivation of the Hilbert problem 
 

Problem (b) simplifies to the classical Hilbert problem. The solution for the 

stress state at the tip of interface crack is obtained by rewriting the basic 

relations for two-dimensional classical elasticity in the form of Kolosov-

Muskhelishvili equations. This means that stresses and displacements in any 

point of the component are presented in terms of two unknown functions – 

complex potentials ( )zϕ  and ( )zΨ  [55]: 

 

( )

( ) ( )
11 22

( ) ( )
22 12

( ) ( )
1 2

4 ( ) ( )

2 ( ) ( ) ( ) ( )

(3 4 ) ( ) ( ) ( )

n n
n n

n n
n n n n

n n
n n n n n

z z

i z z z z

U U z z z z

σ σ ϕ ϕ

σ σ ϕ ϕ ϕ

μ ν ϕ ϕ

⎧ ⎡ ⎤′ ′+ = +⎣ ⎦⎪
⎪ ⎡ ⎤′ ′ ′′ ′′− = + + +Ψ⎨ ⎣ ⎦
⎪

′ ′+ = − − −Ψ⎪⎩

, (4.27) 

 

where 1 2z x ix= +  and 1 2z x ix= − . 

If we denote 
2

10
lim ( ) ( )

x
z xϕ ϕ+

→ +
=  and 

2
10

lim ( ) ( )
x

z xϕ ϕ−

→ −
= , then from continuity 

conditions (4.25) and representation (4.27) for the displacements in the upper 

and lower material we can rewrite: 

 

2 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 2 1(3 4 ) ( ) ( ) ( ) (3 4 ) ( ) ( ) ( )x x x x x x x xμ ν ϕ ϕ μ ν ϕ ϕ
− − + ++ −⎡ ⎤ ⎡ ⎤′ ′ ′ ′− − −Ψ = − − −Ψ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

or 

 

2 1 1 1 1 1 2 1 1 2 1 1 2 2 1 2 1 1 1 2 1 1(3 4 ) ( ) ( ) ( ) (3 4 ) ( ) ( ) ( )x x x x x x x xμ ν ϕ μ ϕ μ μ ν ϕ μ ϕ μ
+ + − −+ −′ ′ ′ ′− + + Ψ = − + + Ψ
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This equation describes the fact that displacements are continuous over the 

uncracked part of the interface. This will be identically satisfied, if we present a 

function ( )zΦ  in following way: 

 
+

2 1 1 1 2 1 2

1 2 2 2 1 2 1

(3 4 ) ( ) ( ) ( ) ( ),      z S

(3 4 ) ( ) ( ) ( ) ( ),      z S

z z z z z

z z z z z

μ ν ϕ μ ϕ μ

μ ν ϕ μ ϕ μ −

′ ′− + + Ψ = Φ ∈

′ ′− + + Ψ = Φ ∈
, (4.28) 

 

where +S  denotes the upper half-plane and S−  the lower half-plane respectively. 

Function ( )zΦ  is a holomorphic function over the whole plane cut along the crack 

length. 

In a similar way another holomorphic function ( )zΘ  in whole plane cut along 

( , )a a−  can be presented. This function provides the continuity conditions of the 

stresses over the interface: 

 
+

1 2 2 2

2 1 1 1

( ) ( ) ( ) ( ) ( ),      z S

( ) ( ) ( ) ( ) ( ),       z S

z z z z z z

z z z z z z

ϕ ϕ ϕ

ϕ ϕ ϕ −

′ ′ ′′ ′′− − −Ψ = Θ ∈

′ ′ ′′ ′′− − −Ψ = Θ ∈
. (4.29) 

 

Solving equations (4.28) and (4.29) with respect to complex potentials, we 

find: 

 

( )
( )

+
1 2 1 1 1

2 1 2 2 2

(3 4 ) ( ) ( ) ( ),       z S

(3 4 ) ( ) ( ) ( ),      z S

z z z

z z z

μ μ ν ϕ μ

μ μ ν ϕ μ −

′ ′+ − = Θ +Φ ∈

′ ′+ − = Θ +Φ ∈
, (4.30) 

 

and the complex potentials 1( )z′Ψ , 2 ( )z′Ψ  are determined in (4.28). Thus, the 

continuity conditions at the interface are satisfied and only one boundary 

condition (4.26), which describes the stress state at the crack faces, is 

remaining. Combining (4.26) with expressions (4.28) and (4.30), and assuming 

that stress and rotation in materials vanish at infinity for large z  ( 2( ) (1/ )z O z′Φ =  

and 2( ) (1/ )z O zΘ = ), our problem will reduce to a Hilbert problem in the form: 
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[ ]1 2 1 1 2 1
1 1 1 1

2 1 2

1

(3 4 ) (3 4 )( ) ( ) ( ) ( )
(3 4 ) 2

                                                                                                     for x

x x p x iq x

a

μ μ ν μ μ ν
μ μ ν

+ −+ − + −′ ′Φ + Φ = −
+ −

≤
 (4.31) 

 

from which the piecewise-holomorphic function should be determined. 

 

4.2.2.2 Solution procedure for the Hilbert problem 
 

Muskhelishvili [56] gave a solution to the Hilbert problem for the case when 

the crack is presented by the union of line segments (what corresponds to the 

finite number of interface cracks). Applying his solution to the case of a single 

line crack, one can get: 
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∫
 (4.32) 

 

This solution refers to the branches which are holomorphic in the whole 

plane cut along ( , )a a− , with an arbitrary polynomial ( )N z . Since 2( ) (1/ )z O z′Φ =  

for z →∞ , it leads to ( ) 0N z ≡ . 

Now, the stresses over the interface for the problem (b) can be determined 

from (4.27), (4.28) and (4.30), what yields to: 

 

( ) ( )
22 1 12 1 1 1

1 2 1 2 1 2

1 1( ,0) ( ,0) 2 ( ) ( )
(3 4 ) (3 4 )

b bx i x x xσ σ
μ μ ν μ μ ν

+ −⎡ ⎤
′ ′− = Φ + Φ⎢ ⎥+ − + −⎣ ⎦

 (4.33) 

 

with 
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According to the superposition principle (4.7), presented in the beginning of 

the chapter (4.2) and using the obtained expressions for the interface stresses of 

problem (a) – (4.9), (4.15) and problem (b) – (4.33), the initial problem of a bi-

material strip with interface crack is considered to be solved. 

Thus, when tensile and shear stresses at the interface are known, the value 

of the mode-mixity parameter can be found from the interface stresses 
( )
22 1( ,0)com xσ  and ( )

12 1( ,0)com xσ  of the combined solution. Because of logarithmic 

singularities in the expressions of stress components at the tip of the interface 

crack, the value of mode-mixity parameter ( )1 ( ) ( )
12 1 22 1tan ( ,0) / ( ,0)com comx xψ σ σ−=  has 

to be determined at some distance L from the tip crack, as it was described in 

(2.18). England [24] showed that the good correspondence of the solution with 

the physical state of the component is provided for points at a small distance not 

less than 42,52 10L a−= ⋅  from the end of the crack. 

 

4.3 Parametric study and discussion of the results 
 
We consider a specific case of the general solution – the problem of a bi-

material strip with an internal interface crack (Figure 4.1) under uniform loading. 

That means constant normal and shear stresses ( 1( )P x Const= , 1( )Q x Const= ), 

with respect to x1-coordinate are applied on the upper and lower boundaries of 

the examined bi-material strip. 

According to the solution procedure presented in section 4.2, the stress 

components ( )
2
n

kσ  ( 1,2k = ) for the problems (a) and (b) can be determined on the 

interface of the two materials. It should be noted that for the problem (b) the 

expression for the holomorphic function ( )y′Φ  can be simplified, in this case the 

integral in (4.34) is evaluated analytically and one obtains: 
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 (4.35) 

 

Thus, normal ( ( )
22

bσ ) and shear ( ( )
12

bσ ) stresses can be evaluated from (4.33) 

by separating real and imaginary parts of the expression and taking into account 
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that on the uncracked part of the interface 1 1 1( ) ( ) ( )x x x+ −′ ′ ′Φ = Φ = Φ  holds. The 

solution of the problem is obtained according to the superposition principle (4.7). 

Numerical calculations were carried out for a bi-material strip consisting of a 

material pair 2 3 2Al O ZrO−  with 1 347E GPa= , 1 0.21ν =  and 2 213E GPa= , 

2 0.32ν = . The corresponding Dundurs’ parameters, which characterize the bi-

material behaviour are calculated as 0.209α =  and 0.015β = . The 

corresponding oscillation index for the bi-material pair is 0.0048ε = . 

Three characteristic loading cases are considered and analysed: 

a. Pure uniform tensile stresses are acting on the boundaries of the bi-material 

strip ( 1( )P x P= , 1( ) 0Q x = ). 

b. Pure uniform shear stresses are acting on the boundaries of the bi-material 

strip ( 1( ) 0P x = , 1( )Q x Q= ). 

c. Combined uniform tensile and shear stresses of equal magnitude are 

applied on the boundaries of the bi-material strip ( 1( )P x P= , 1( )Q x Q= , 

/ 1Q P = ). 

In Figure 4.4 normal and shear stress distributions over the interface part 

close to the crack tip are shown for the three cases (a), (b), (c). 

One can see that the presence of pure tensile stresses (Figure 4.4a) acting 

on the borders of the bi-material strip ( Q/P = 0 ) causes weak shear effects near 

the tip of the crack. The mode-mixity factor in this case is 0.03ψ =  compared to 

0ψ =  for the homogeneous material. The effect of elastic mismatch across the 

interface is also observed for the loading combinations (b) (Figure 4.4b) and (c) 

(Figure 4.4c), where it causes slight differences in the normal ( 22σ ) and shear 

( 12σ ) stresses. 

The dependence of crack-tip parameter ψ  on the varying ratio of applied 

shear and tensile loadings ( /Q P ) is shown in Figure 4.5. The dashed line 

corresponds to a homogeneous material with Dundurs’ parameters 0α = , 0β = . 

One can see that for the considered 2 3 2Al O ZrO−  pair of materials (red curve) the 

effect of dissimilarity in elastic constants of joined materials is only weak 

( 0.03ψ = ) compared with the homogeneous case. 
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Figure 4.4 - Stresses on the interface of a bi-material strip: (a) / 0Q P = ; 

(b) /Q P →∞ ; (c) / 1Q P = . 

 

 

 
Figure 4.5 - Dependence of mode-mixity parameter on the ratio of applied 

shear and tensile loading. 
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For a comparison, the blue curve in Figure 4.5 shows the dependence of the ψ -

parameter on /Q P  - ratio for a variation of the bi-material combination, where 

the same 2ZrO  ceramic is combined with an 2 3Al O  of higher porosity 

( 1 147E GPa= , 1 0.30ν = ). Dundur’s parameters can be found to be 0.190α = , 

0.62β = . Here, the oscillation index is larger than in the previous case and 

equals 0.02ε = . As a result, we observe a larger shift with a ψ  value of 0.14  for 

applied pure mode-I ( / 0Q P = ). 

An important result is the fact that the mode-mixity parameter is a non-local 

quantity in this case, i.e. that its value depends on the local crack tip stress field 

only through the remote boundary loading conditions P and Q. This will still be 

approximately the case for the general problem of a bi-material strip under an 

arbitrary stress state, as long as the remote loading ratio of shear to tensile 

stress ( /Q P ) does not vary strongly along the x1-axis. Thus, the mode-mixity 

parameter can be treated as a global quantity in the general loading case. 

Therefore, the term 21 tan ψ+  can be taken out of the integrals in equation 

(3.31), since it is independent of the integration variables - crack location and 

orientation in the stress field. 

For the case of a constant /Q P -ratio with respect to the in-plane 

coordinates, applying simple algebraic transformations to the expression (3.31), 

the interface failure probability can be rewritten as: 

 

*

2
1

1 exp
1 tan

m

FP
b

σ
ψ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − −
⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

 (4.36) 

 

with b  being replaced by 2
1 1 tanb ψ+ . 

 

The parameters m and b1 of the Weibull distribution, which are independent 

of the ψ -parameter, have to be determined experimentally for each bi-material 

pair. The schematic representation of interface failure probability depending on 

the crack tip stress state is shown in Figure 4.6, where I
FP  is the value of failure 

probability for vanishing mode-mixity parameter. 
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One can see that a maximum of FP  is achieved when the crack tip is under 

mode-I ( 0ψ = ) loading. For the case of pure mode-II ( / 2ψ π= ) loading the 

probability of component’s failure due to the crack propagation along the 

interface vanishes. However, it should be noted that in this case crack kinking 

out of the interface has to be considered as a failure mode, depending on the 

toughness of the joined materials, as it was shown in (2.22). Thus, the value of 

interface failure probability for a specified bi-material joint under arbitrary loading 

conditions can be either estimated conservatively by the maximum value at 

0ψ =  or calculated according to the algorithm presented above considering the 

exact stress state at the interface. 

 

 
Figure 4.6 - Dependence of interface failure probability on the ψ -parameter 

( I
FP  corresponds to pure mode-I loading). 

 

The presented solution algorithm for the stress state on the interface based 

on the evaluation of singular integral equations and complex variable method 

allows a general treatment of weakest-link interface failure probability in the case 

of complex component geometries. The remote stresses for the boundary 

conditions will generally be taken from a Finite Element stress analysis of the 

whole component under consideration.  
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5. Experimental characterization of material and 
interface strength 

 

 

The experimental characterization of interfaces is an essential part of the 

reliability analysis of composite components. As it was shown in the previous 

chapters, the strength distribution of interfaces in ceramic joints can be described 

by two material parameters m and b. These parameters of the Weibull 

distribution for the strength of the interfaces need to be determined from the 

empirically observed data. The numerical procedure of the estimation of m and b 

based on experiments is presented in chapter 5.1 by the example of the 

commonly used Maximum-Likelihood method (MLM). The course of experiments 

as well as the results of the tests and their analysis are presented in chapters 5.2 

and 5.3. 

 

5.1 Estimation of Weibull parameters 
 

The strength of brittle materials varies from specimen to specimen. As a 

consequence, the material resistance against failure is not a specific value, but a 

distribution of strength values. The scatter in the strength of ceramic materials is 

significantly larger compared to metals. For ceramic-ceramic interfaces, as in the 

case of homogeneous materials, cracks originate from small defects. Therefore, 

the scatter of interface strength is caused by the scatter of the interface flaw size. 

For accurate results in determining the distribution parameters, m and b, the 

Maximum-Likelihood method is used. This method requires to specify density 

functions 1( ,..,. )i pf x ϑ ϑ  for all the observations , where jϑ ( 1,j p= ) are the 

distribution parameters. In our case p  equals 2 ( 1 mϑ =  and 2 bϑ = ) and 

ix ( 1,i N= ) are random values of the distribution, which correspond to the 
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strength values ciσ , that are measured in each i-th experiment. Now, the 

Likelihood function can be written as: 

 

1 1 2( , , ,..., ) ( , ) ( , ) ... ( , )f c cN c c cNL m b f m b f m b f m bσ σ σ σ σ= ⋅ ⋅ ⋅  (5.1) 

 

The best set of parameters m and b leads to the maximum value of the L-

function. Searching for supremum 
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i

L σ σ ϑ ϑ
ϑ

∂

∂
 (5.2) 

 

the estimators of Weibull parameters for given sample values ciσ  will be found. 

Expression (5.2) reduces to a system of two non-linear equations in the 

case of a Weibull distribution [53]: 
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 (5.3) 

 

From the first equation of system (5.3), one can see that the value of the 

Weibull parameter m can be directly determined based on the experimentally 

obtained data and the second equation provides the geometry dependent 

parameter b. Applying (3.17), the material dependent Weibull parameter 0σ  can 

be found and subsequently converted for any geometry. 

Another method, which is less exact but gives fast and good visualised 

estimation procedure, is a probability plotting method. Equation (3.14) describes 

the strength distribution of interfaces, with Weibull parameter b determined by 

(3.32). Finding the logarithm of the left- and right-side of (3.14) one gets: 

 

( ) ( )*
1ln ln ln ln

1 F

m m b
P

σ
⎛ ⎞

= −⎜ ⎟−⎝ ⎠
 (5.4) 
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For plotting the strength data ( ciσ ) obtained from N experiments ( 1,i N= ) 

are ranked in increasing order. Each strength value ciσ  is related to the failure 

probability FiP . Different estimations used for the probability function are listed in 

[10]. Here, we use the form valid for the approximation of an average value for 

each i -th observation, namely FiP  is defined as: 

 

1Fi
iP

N
=

+
 (5.5) 

 

The plot ( )( )ln ln 1/ 1 FP−  versus *ln( )σ  will provide the Weibull parameters. 

For clarity the representation of the strength scatter data for 2 3Al O (99.6%) is 

shown in Figure 5.1. 

 

 
Figure 5.1 – Representation of the scatter in strength by a Weibull diagram 

for 2 3Al O (99.6%) [53] 
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The slope of the straight approximation line corresponds to the value of 

parameter m . Coefficient ln b  is obtained as a shift of the line along the axis of 

abscissas. It follows from (5.4) that Weibull parameter b corresponds to the 

strength value cσ  with 63.2%FP =  ( ( )( )ln ln 1/ 1 0FP− = ). 

 

5.2 Interface strength considerations 
 

To characterize the strength of ceramic-ceramic interfaces a number of 

experiments were carried out using the facilities of an industrial partner (Robert 

Bosch GmbH) [64]. For determination of the maximum interface stresses four 

point bending (4PB) tests were performed. During these tests three main 

specimen configurations were used to keep the material interface on different 

distances from the zero-axis (see Figure 5.2). Correspondingly, interfaces 

experience either compressive or tensile stresses. 
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Height 0.6 -0.7mm
Width 5mm

≈
≈
≈
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2 3Al O2 3Al O2 3Al O

a) Interface in compression zone b) Interface in tension zone

c) Interface close to surfaces

2Y ZrO− 2Y ZrO− 2Y ZrO−

 
Figure 5.2 – Schematic representation of the 4PB test samples 

 

The samples were produced by the tape casting and the screen printing 

methods. Materials used for the 4PB specimens were Yttria-stabilised Zirconia 

( 2-Y ZrO ) and Alumina of two different types ( 2 3 ( )Al O LP -low porosity and 

2 3( )Al O HP -high porosity). Mechanical properties of these materials are 

summarized in Table 5.1. 
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For the example of pre-notched 4PB specimen, the typical result for a 

layered component is shown in Figure 5.3. A schematic load-displacement 

diagram contains four representative sections: the first straight line segment 

represents the linear-elastic behaviour, which is described by Hooke’s law. It is 

followed by a sudden load drop related to the instantaneous crack propagation 

towards to the interface. The third domain is a plateau, which corresponds to the 

crack growth along the interface and the last segment is related to the crack 

propagation into the substrate material and the straight line has the slope equal 

to the remaining sample stiffness. 

In our case, initially uncracked samples were tested and during the loading 

process load-displacement curves were examined. 

 

Table 5.1 – Mechanical properties of joined materials 

 
2-Y ZrO  

Low porosity 

2 3 ( )Al O LP  

High porosity 

2 3( )Al O HP  

Density (g/cm3) 5.75 3.63 2.757 

Young’s modulus (GPa) 213 347 147 

Poisson ratio 0.32 0.21 0.3 

Expansion coefficient (1/K) 9.29 e-06 6.7 e-06 7.09 e-06 

 

 

 

 
Figure 5.3 – Schematic load-displacement plot for notched 4PB specimen 
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Figure 5.4 – Load-displacement plots [64] for various specimen geometries 

(see Figure 5.2) 

 

For each material combination and geometry structure 20 samples were 

tested to obtain statistical data. The bending of the samples was carried out 
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under displacement control with the constant displacement rate of 0.5mm  per 

minute. 

Typical load-displacement plots are shown in Figure 5.4. It can be seen that 

there are no specific indications in the data, which could be related to interface 

failure. Contrary to the expectations, no load plateau, load drop or slope change 

occurred. This indicates that the failure was most likely caused by surface 

defects. The fractographic analysis confirmed that in most cases fracture origin 

was located at the tensile surface of the specimens. 

For the samples of the 2 3 2 2 3-Al O Y ZrO Al O− −  type (Figure 5.2c), where the 

material interface is close to the fracture surface, most of the natural flaws which 

consequently caused the fracture were observed very close to the interface, but 

still in the 2-Y ZrO -layer (see Figure 5.5). Only for one specimen, the fracture 

origin was present right at the interface as noticed by Scanning Electron 

Microscopy (SEM) results. Since no interface fracture occurred, an assessment 

of the interface strength is not possible from these experimental results and 

alternative methods are necessary. 

 

 
Figure 5.5 – Fracture origin in 2 3 2 2 3( ) - ( )Al O HP Y ZrO Al O HP− −  

specimen [64] 

 

This first approach to characterize the strength of ceramic interfaces by 4PB 

strength tests proved essentially unsuccessful. Although a number of authors 

have used macroscopic pre-cracks to investigate the fracture mechanical 

properties of interfaces [7, 8, 66, 68], probabilistic strength data of such 

components, especially for ceramic interfaces where natural flaws are relevant 

for fracture, are not available. Alternative sample geometries, which possibly 
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produce more informative results, were proposed by Tahir [64], but have not 

been tested so far. 

 

5.3 Discussion of results 
 

As mentioned in the previous section, experimental results were not 

sufficient to provide a data base for the strength of interfaces. As a rough 

estimation, however, using the limited empirical data which were obtained, the 

interval for the values of Weibull strength parameter 0σ  will be assessed. 

For the single observed interface crack, which occurred in the case of 

2 3 2 2 3( ) - ( )Al O HP Y ZrO Al O HP− −  4PB specimen, the critical crack length 

19,74 exa mμ=  was measured from the SEM image (see Figure 5.6). 

 

 
Figure 5.6 – Sizing of the observed interface crack from Scanning Electron 

Microscopy image [64] 

 

Moreover, interface toughness measurements were conducted for notched 

4PB specimen. The energy release rate for 2 3 2-Al O Y ZrO−  interface was 

calculated to be 2
 ex 24,2 /iG J m= . Using expression (3.30) and assuming that the 

specimen with only one interface crack of given length is under tensile loading 

( 0.14exψ = ), one can find the outer fibre stress *σ  at fracture. The numerical 

value is equal to 390 MPa . 

Since we do not have enough information about the possible crack size 

distribution, we will assume that the obtained value of stress at fracture is typical 

either of the smallest flaws, which cause failure only in 10% of all cases, or of the 
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flaws of the largest size, which cause failure in 90% of cases. These values 

correspond to two limiting cases and will be used to estimate the interval of 

material strength parameter 0σ  for the 2 3 2-Al O Y ZrO−  interface. 

According to the methods presented in chapter 5.1, Weibull parameter 0σ  

can be estimated for given values of m . Here we analyse three representative 

cases (see Figure 5.7): large scatter of strength data ( 10m =  - blue lines), 

medium scatter ( 18m =  - red dotted lines) and small scatter ( 35m =  - purple 

dashed lines). Hence, the widest range of 0σ -values, corresponding to 10m = , is 

358 488 MPa− . It gives us a rough understanding about the possible values for 

the interface strength, which are shown to be lower than the strength values for 

the surrounding homogeneous materials ( 2 3Al O  and 2-Y ZrO ). In the small scatter 

case ( 35m = ), the interval for the strength values is only 35 MPa . This allows to 

approximate 0σ  with the average value (398 MPa ) from the interval with an error 

of 8.8%, which is an acceptable error comparing with the admissible errors, e.g. 

in determination of elastic constants. 

 

 
Figure 5.7 - Range of Weibull straight lines for different material properties 

 

Following the discussion of this chapter, the question is addressed, how 

sensitive the interface failure probability is to the changes of Weibull parameters. 

Therefore, a parametric study was performed (see chapter 6) to examine the 

behaviour of the failure probability for the possible range of Weibull parameters 
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m  and 0σ . The aim of the parametric study is twofold: first, to evaluate suitable 

bi-material sample geometries for new experiments in order to obtain the failure 

along the interface, and second, to explore possible domains of small sensitivity 

of failure probability to variations in one or both of the Weibull parameters for the 

strength distribution. 
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6. Numerical study and discussions 
 

 

In this chapter an algorithm of failure probability calculations will be introduced by 

numerical evaluations of Brazilian disk and 4PB specimens. First, the stress 

analysis of the bi-material sample has to be performed. For this purpose, FE-

models as a basis for STAU calculations are built in ABAQUS (see chapter 6.2). 

We will treat two-dimensional (2D) and three-dimensional (3D) models 

separately in order to test the available procedures in STAU program. Facilitating 

the task, as a pre-step before changing the STAU code, the numerical 

integration routine has been performed using the commercial software 

Mathematica (Wolfram Research). For the 3D problems, two different crack 

models are considered: “through-wall” crack model and “penny-shaped” crack 

model (see chapter 6.1). The preference for one or the other model will be 

discussed below. 

At the present stage, the stresses in each node of the interface line (2D 

case) or interface plane (3D case) are taken from the FE-model. This data form 

an input file which is read by Mathematica for the following analysis. For each of 

the chosen crack models, equivalent stresses and mode-mixity parameters are 

determined and the failure probability is calculated at a chosen stress level 

resulting in a parametric study for the Weibull parameters (see chapter 6.3).  

The results of the chapter are discussed in order to give the 

recommendations for next experimental observations and measurements as well 

as for future possible extensions of the STAU program. 

 

6.1 Crack models under consideration 
 

For the 2D case we consider a bi-material component, where the interface 

is introduced by a line. All natural flaws are supposed to be oriented along the 

interface. It is sufficient to describe them through the “through-wall” crack model, 
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where the only characteristics of the interface crack is its length. According to the 

given determination of equivalent stresses (chapter 3.4) and expressions (2.19), 

(3.25) and (3.26), one will obtain: 

 

2 2
eq n τσ σ σ= + , (6.1) 

 

where nσ , τσ  - are normal and shear stresses acting along the bi-material 

interface. 

For the 3D model, the interface is presented by a two-dimensional plane. In 

this chapter two different crack models are examined. First, “through-wall” cracks 

having a characteristic length a are assumed to be arbitrarily oriented with 

respect to the interface plain. The stress state at the tip of such a crack is 

described by normal stresses ( nσ ), in-plane ( 1τσ ) and out-of-plane ( 2τσ ) shear 

stresses (see Figure 6.1a). 
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Figure 6.1 - Stress state in arbitrary point of interface for 3D case: 

a)”through-wall” crack model; b) “penny-shaped” crack model 

 

“Penny-shaped” cracks are modelled as the cracks of radius a. In each 

point of the crack circumference, the stress state is presented by a resultant 

shear stress vector ( 3( )τσ θ ) and by the normal stress ( nσ ) (see Figure 6.1b). 

To take properly out-of-plane stress in the 3D case into account, we have to 

introduce in the equation for the interface energy release rate (2.19) one 

additional (mode-III) term [6]: 

 

( )2 2 2
1 2

1 2

1 1
= + +i IIIG K K K

H H
, (6.2) 
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where the in-plane stress field in the vicinity of the crack tip is governed by a 

complex stress intensity factor 1 2K K iK= + , and the out-of-plane stress field is 

governed by a real stress intensity factor IIIK . Parameter 2H  depends on 

material properties of considered bi-material and has the following form: 

 

1 2

2 1 2

1
4H
μ μ
μ μ
+

= . 

 

The critical energy release rate from equation (2.24) in the three-

dimensional case is extended to ( )( )2 21 tan 1 tanicr IcrG G ψ φ= + + , where φ  is a 

second mode-mixity parameter, which measures the relative amount of out-of-

plane stresses to in-plane stresses and determined as: 
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2 2

2 1 2
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φ
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 (6.3) 

 

Taking into account the above expression for iG , the interface failure 

probability becomes: 

 

( )( )2 2
0 0

( , , )1 11 exp
2 1 tan 1 tani

m

eq
F i

A

x z
P d dA

A
σ ω

π σ ψ φΩ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − − Ω⎜ ⎟⎜ ⎟⎜ ⎟+ +⎜ ⎟⎝ ⎠⎝ ⎠

∫ ∫  (6.4) 

 

The procedure for determination of equivalent stresses for each crack 

model is described in Appendix B. Finally for “through-wall” cracks model the 

expression for equivalent stress is: 

 

2 2 21
1 22

2(1 4 )eq n
H

Hτ τσ σ σ σ
ε

= + +
+

, (6.5) 

 

where 1τσ  and 2τσ  are determined from the results of the FE simulations in the 

following way: 
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For “penny-shaped” cracks, the combination of normal ( FE
n yyσ σ= ) and shear 

stresses ( ( ) ( )2 2

3
FE FE
xy yzτσ σ σ= + ) leads to following equivalent stress: 

 

2 2 2 2 2 2 21
3 32

2

cos sin
(2 ) / (0.5 )

eq n II III
HY Y

i i H
τ τσ σ σ θ σ θ

ε ε
= + +

Γ + Γ +
, (6.7) 

 

where IIY  and IIIY  depend on the elastic properties of the joined materials (see 

Appendix B), ( )εΓ  is a gamma function, θ  is the angle along the circumference 

of the crack, with respect to the direction of the shear stress. Failure is trigged by 

the point at which the equivalent stress has its maximum. It could be shown that 

the maximum of eqσ for “penny-shaped” cracks is achieved for 0θ =  (i.e. cos 1θ =  

and sin 0θ = ). 

Also, in the case of “penny-shaped” cracks, the orientation problem 

vanishes completely. This fact allows to simplify the integration procedure in 

failure probability formula (6.4). 

 

6.2 Stress analysis of interfaces 
 
In this chapter, finite element models are generated for 2D as well as for 3D 

cases in order to study the stress state at the interface. The stress analysis is 

provided for initially uncracked components. Then, using the methods presented 

in chapter 4.2, the stress states at the tip of probable cracks can be determined. 

As a consequence, with respect to expressions (6.1), (6.5) and (6.7) for different 

crack models equivalent stresses are calculated as well as the mode-mixity 

parameters. 
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6.2.1 Two-dimensional finite element models 
 

For a parametric study in 2D, the Brazilian disk specimen was chosen. The 

geometry of the bi-material component is shown in Figure 6.2a, where the thin 

2 3Al O -layer ( 1 347E GPa= , 1 0.21ν = ) is surrounded by 2-Y ZrO  material 

( 2 213E GPa= , 2 0.32ν = ). The Brazilian disk is under a diametrical compression 

( 50F kN= ). The geometry was selected to take advantage of symmetry in the 

modelling – further, only the left interface between Alumina and Zirconia 

materials is considered. 

Three FE models were built in order to examine the influence of the inter-

layer thickness ( 0.1t mm= , 1.0t mm=  and 3.0t mm= ) on the interface stress field. 

The analytical solution for a homogeneous Brazilian disk was taken as the limit 

for the infinitesimal interlayer thickness. Analytical expressions for stress 

components are given in [69]. The radius of the disk in every case is 22.5R mm= . 

 

a) 

R
F
α2 R
F
α2 R
F
α2

 b)  

Figure 6.2 - a) Geometry of the Brazilian disk specimen; b) FE mesh for 

Brazilian disk bi-material component 

 

Finite element models were built in ABAQUS [1]. The two-dimensional 

mesh used for Brazilian disk is shown in Figure 6.2b. It contains 2,460 eight 

nodded quadratic elements with 7,473 nodal points; 492 of those elements are 

lying in the interlayer. 

 

 

t 
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Figure 6.3 - Normal stresses at the interface of 2D Brazilian disk for the 

geometry shown in Figure 6.2 

 

 

 
Figure 6.4 - Shear stresses on the interface of 2D Brazilian disk for the 

geometry shown in Figure 6.2 
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For the different geometries of Brazilian disk, the normal and shear stresses 

at the interface were calculated. Figure 6.3 and Figure 6.4 show the results 

together with the analytical solution according to [69].  

The FE results compare well with the analytic solution, especially for the 

case of 2 3Al O -layer with thickness 0.1t mm= . Apparently, with increasing inter-

layer thickness the tensile stresses at the interface between the two materials 

decrease and more pronounced interface shear stresses occur, when the 

interface is shifted from the middle line. It should be noted that for the 

homogeneous material, a pure mode-I stress acts at the middle line, while even 

in the case of a very thin interlayer, the stress state at the interface has non-

vanishing shear stresses (Figure 6.4). 

6.2.2 Three-dimensional finite element models 
 

For the parametric study in 3D, two different specimen geometries were 

considered: 4PB and Brazilian disk specimens. 

The geometry of the 4PB bi-material component is shown in Figure 6.5 (due 

to symmetry reasons (x and z are axes of symmetry) only one quarter of the 

specimen is considered, where the 2-Y ZrO  material ( 2 213E GPa= , 2 0.32ν = ) is 

surrounded by a thin 2 3Al O -layers ( 1 347E GPa= , 1 0.21ν = ). As a FE loading 

history, the component was first cooled down from 9500C to room temperature, 

in order to recreate the process of sample preparation and to study the role of 

thermal stresses. After cooling, the bending specimen was subject to uniform 

distributed force, applied to the upper role ( 143F N= ). Size parameters are the 

following: (0 ;11 )x mm mm∈ , (0 ;2.2 )z mm mm∈  and the origin of coordinate system 

is chosen in the way that 0y =  at the interface. 

Finite element models were built in ABAQUS. The three-dimensional mesh 

used for 4PB specimen contains 4,940 elements (1,512 elements of C3D8R type 

and 3,428 elements of C3D20R type) with 21,637 nodal points. 
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Figure 6.5 – Geometry and FE mesh for 4PB bi-material component, 

consisting of Zirconia surrounded by thin Alumina layers 

 

The stresses acting at lower 2 3Al O - 2-Y ZrO  interface after all thermal and 

mechanical loading steps are presented in Figure 6.6. 

 

a)a)

 
 

b)b)
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c)c)

 
 

x(1)
y(2)

z(3)

x(1)
y(2)

z(3)  
Figure 6.6 – Stress state at the interface of 4PB specimen from FE-model: 

a) normal stress; b) in-plane shear stress and c) out-of-plane shear stress 

 

A second considered geometry is the Brazilian disk geometry, which is 

shown in Figure 6.7. Here, a diametrical 2 3Al O -layer is surrounded by 2-Y ZrO . As 

in the 2D case, the Brazilian disk is under diametrical compression ( 50F kN= ). 

The load was chosen in the way to obtain interface tensile stresses of the order 

of material toughness values with purpose to ensure interface failure. The 

thickness of the interlayer is taken to be 1.0t mm= , the radius of the disk is 

22.5R mm=  and the thickness of the whole component is 5.0w mm= . 

 

 
Figure 6.7 - Geometry and FE mesh for Brazilian bi-material disk 
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The FE-model of the Brazilian disk specimen contains 19,680 cubic 

elements of C3D20 type with 87,313 nodal points in total. 

In Figure 6.8 the interface stress distributions on the left interface are 

presented. 

 

a)a)

 
 

b)b)

 
 

c)c)

 
 

y(1)
x(2)

z(3)

y(1)
x(2)

z(3)  
Figure 6.8 – Stress state at the interface of Brazilian disk specimen from 

FE-model: a) normal stress; b) in-plane shear stress and c) out-of-plane shear 

stress 
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Using the stress results obtained from FE models, the analysis of equivalent 

stresses and mode-mixity parameters is now possible. 

6.2.3 Equivalent stress and mode-mixity parameter 
 

In the 2D case for Brazilian disk specimen with respect to the proposed 

crack model (6.1), equivalent stresses are calculated along the interface (see 

Figure 6.9). Computation of mode-mixity parameter ψ  according to (2.18) is 

reflected in Figure 6.10. 

For the case of the homogeneous disk, where the stress state is described 

by the analytical solution [69], the mode-mixity parameter ψ  equals zero along 

the middle line. With increasing thickness of the inter-layer stress will slowly 

change from mode-I to mixed-mode. In Figure 6.10 one can see that for Brazilian 

disk of type one ( 0.1t mm= ) shear effects in the centre of the specimen are 

weak. Whereas for Brazilian disk of third type ( 3.0t mm= ) the behaviour of mode-

mixity parameter is completely different and pure mode-I stress state is achieved 

only at few points along the interface. 

 

 

 
Figure 6.9 – Equivalent stresses at the interface of the Brazilian disk based 

on the 2D FE simulation (see Figure 6.3 and Figure 6.4) 
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Figure 6.10 – Mode-mixity parameter at the interface of the Brazilian disk 

based on the 2D FE simulation (see Figure 6.3 and Figure 6.4) 

 

With respect to the expression of failure probability (3.31) it is obvious, that 

the most dangerous places of interface are those, where eqσ  reaches the 

maximum value and those, where the mode-mixity parameter ψ  goes to zero. 

For the Brazilian disk of type one ( 0.1t mm= ) and type two ( 1.0t mm= ), as well as 

for homogeneous material, it is most probable to have the cracks origin at the 

centre of the disk ( 0r ≈ ), where the tensile stress has its maximum value and 

shear stresses are almost vanishing. In the case of a wide inter-layer 

( 3.0t mm= ), when the interface is sufficiently remote from the middle line, the 

fracture would be expected to occur near the edges of the disk ( 17 19r mm≈ − ).  

In case of 3D components, equivalent stresses were calculated for two 

different crack models. In Figure 6.11 they are shown for both geometries in the 

case of a “penny-shaped” crack model. 

A comparison of the stress state for different crack models shows that, in 

the case of “penny-shaped” cracks, equivalent stresses are lower than those, 

obtained for “through-wall” cracks, although shear stresses have a bigger 

influence on “penny-shaped” cracks than on “through-wall” cracks. 

Mode-mixity parameters were calculated over the whole interface as a 

functions of two coordinates x  and z  and the crack orientation angle ω . For 

4PB specimen ψ - and φ -parameters are shown in Figure 6.12. 
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a)

( , )eq x zσ ( , )eq x zσ

 b)

( , )eq r zσ ( , )eq r zσ

 

Figure 6.11 – Equivalent stresses for the “penny-shaped” crack model at 

the interface of: a) 3D 4PB specimen; b) 3D Brazilian disk 

 

a) b)  

Figure 6.12 – Mode-mixity parameters at the interface of 3D 4PB specimen: 

a) ψ -parameter; b) φ -parameter (both for “through-wall” crack model) 

 

a) b)  

Figure 6.13 – Mode-mixity parameters ψ  at the interface of 3D Brazilian disk: 

a) “through-wall” crack model; b) “penny-shaped” crack 
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Both parameters, according to their definitions (2.18) and (6.3) are laying in 

the interval ( 2; 2)π π− . The oscillation of the ψ -parameter is due to the coarse 

mesh of FE-model, which was built with the only purpose of testing the algorithm 

of failure probability determination. Although it gives the relevant stress values, it 

is not sufficiently fine for the calculation of the mode-mixity parameter. It turned 

out that ψ , as an arctangent function, is sensitive even to slight changes of 

normal and shear stresses with respect to each other. From Figure 6.12, it is still 

possible to distinguish qualitatively, between a mode-I stress state (shown by 

grey colour) and a mixed-mode stress state (blue colour). For the φ -parameter 

regions where the out-of plane stress appears are shown in blue. 

In the case of 3D Brazilian disk, the φ -parameter equals zero along the 

interface. In Figure 6.13, the phase angle ψ  is shown for two crack models in 

order to compare the results. One can see a difference, which appears due to 

the different determination of in-plane shear stresses for “penny-shaped” and 

“through-wall” cracks. Regardless of the model choice, the regions of the mode-I 

stress state at the centre of the disk and the adjacent mode-mixity regions are 

identical. 

 

6.3 Interface failure probability results 
 

The final step of numerical analysis is the failure probability calculation. It 

requires integration over the interface plane and over the crack orientation if 

appropriate (for example in “through-wall” crack model, where the crack 

orientation in the stress field plays an important role). The role of Weibull 

parameters as well as of mode-mixity parameters will be discussed below. 

6.3.1 Parametric study 
 

Interface failure probability FP  is calculated for the two crack models in 

above-considered components. The behaviour of the function 0( , )F FP P m σ=  is 

shown in Figure 6.14 for the Brazilian disk problem with “penny-shaped” natural 

flaws. Results for other cases show qualitatively similar behaviour and they are 

described later in more detail. It has to be noted that the plot 0( , )FP m σ  is 
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obtained for the prescribed fixed load. Large values of FP  correspond to, e.g., 

small values of the strength parameter 0σ . The location of transition region is 

determined by the selected load level of 50kN  applied in diametrically 

compressive way, which causes equivalent interface stresses stress shown in 

Figure 6.11b. 

 

 
Figure 6.14 – Interface failure probability as a function of Weibull 

parameters for 3D Brazilian disk problem 

 

The plot of interface failure probability exhibits three main zones. For low 

values of the strength parameter 0σ  and the whole range of the parameter m , 

failure generally occurs and FP  is 100%  for the considered loading case (shown 

by the red plane). The opposite situation is in the case of strong interfaces – 

failure probability goes to zero, except for very small m -values. The third zone in 

the middle is the most interesting for the interpretation of the parametric study. In 

this transition zone, the values of the interface reliability are changing from 0% to 

100%. For small values of the shape parameter m  the transition is very wide, 

whereas for the high values of m  a sharp transition is present and the transition 

width is only 50MPa .  
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This is shown more clearly in Figure 6.15, where the contour plot of 

interface failure probability as a function of the Weibull parameters is introduced. 

The vertical lines correspond to the interval of Figure 5.7 based on the 

fractographic observation and on an assumed Weibull modulus of 10m = . 

 

 
Figure 6.15 – Contour plot 0( , )fP m σ  for 3D-Brazilian disk specimen 

 

Table 6.1 – Interface failure probability for 4PB specimen 

10m =  18m =  25m =  

4PB specimen Through-

wall 

Penny-

shaped

Through-

wall 

Penny-

shaped

Through-
wall 

Penny-
shaped

0 80MPaσ =  100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

0 120MPaσ =  90.29% 41.30% 100.0% 100.0% 100.0% 100.0%

0 150MPaσ =  22.15% 5.56% 99.57% 35.90% 100.0% 93.67%

0 180MPaσ =  39.63% 9.20% 18.51% 1.65% 67.62% 28.52%

0 420MPaσ =  510−� % 610−� % 810−� % 910−� % 910−� % 1110−� %

 

For a more detailed comparison of the “through-wall” and “penny-shaped” 

crack models the values of interface failure probability are determined for some 
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combinations the of Weibull parameters. For the considered loading cases, the 

results are shown in Table 6.1 for 3D 4PB specimen and in Table 6.2 for 

Brazilian disk, correspondingly. 

 

Table 6.2 – Interface failure probability for Brazilian disk specimen 

10m =  18m =  25m =  
Brazilian disk 

specimen 
Through-

wall 

Penny-

shaped

Through-

wall 

Penny-

shaped

Through-
wall 

Penny-
shaped

0 380MPaσ =  84.50% 64.98% 100.0% 100.0% 100.0% 100.0%

0 420MPaσ =  49.61% 32.00% 99.84% 98.32% 100.0% 100.0%

0 480MPaσ =  16.50% 9.65% 44.06% 30.89% 89.69% 77.11%

0 550MPaσ =  4.52% 2.57% 4.89% 3.14% 7.28% 4.79%

0 720MPaσ =  0.31% 0.17% 0.04% 0.02% 0.009% 0.006%

 

For both geometries we can observe the decreasing numerical values for 

the interface failure probability with increasing interface strength 0σ . The 

dependence of the failure probability function on m  is more complex and 

accounts the position of strength parameter 0σ  with respect to the transition 

zone. For low 0σ -values, in the beginning of transition zone, the numerical 

values of failure probability are growing with increasing parameter m . When 0σ  

belongs to the centre of transition zone, FP  first decreases and then increase 

with increasing m  (see e.g. line 0 180MPaσ =  in Table 6.1). For 0σ  at the end of 

the transition zone, the failure probability decreases with increasing m , what is 

shown for 0 420MPaσ =  in Table 6.1 and 0 720MPaσ =  in Table 6.2. This 

behaviour is observed until 0σ  is high enough that for any m -value the 

probability of interface failure vanishes ( 0FP = ). 

It can be also seen that the reliability of components with “penny-shaped” 

approach is higher than for the same components with “through-wall” cracks. 

This is a direct consequence of the fact, that stress concentrations around 

circular flaws are less pronounced than those at the tips of elliptical cracks or 

“through-wall” cracks [23]. 
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In Figure 6.16 the influence of the crack model on the failure probability as 

function of material strength is shown for two selected m -values. The purple 

lines indicate the penny-shaped crack model and the blue lines represent the 

through-wall crack model. Numerical results correspond again to the reference 

loading case of the Brazilian disk. Very high and low values of parameter 0σ  lead 

to the same values of FP  or the difference between different mechanical 

approaches is negligibly small. In an intermediate range of the Weibull parameter 

0σ , where the numerical value of failure probability is sensitive to the choice of 

the crack model (e.g. for 0 400MPaσ =  difference in FP  between “trough-wall” 

and “penny-shaped” cracks is about 20%, while for 0 500MPaσ =  it is just 0.04%). 

 

 
Figure 6.16 – Comparison of the interface failure probability for different 

crack models by example of reference loading case of Brazilian disk 

 

An important result of this chapter is that the algorithm for calculating the 

failure probability for three-dimensional problems works consistently. This 

algorithm allows to use different crack models, e.g. through-wall and penny-

shaped cracks which were discussed before. The influence of Weibull 

parameters on the failure probability can be studied for any reference loading 

case and any specimen’s geometry. The interpretation of results regarding the 
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discussion about possible specimen configurations in future experiments is 

introduced in chapter 6.4. 

6.3.2 Role of the mode-mixity parameter 
 

On the basis of stress analysis for 2D Brazilian disk specimens (chapter 

6.2.1), the interface failure probability was calculated for all four component 

geometries. Numerical results for three selected 0( , )m σ -combinations are 

introduced in Table 6.3 with the purpose to evaluate the role of the mode-mixity 

parameter ψ . Therefore, for each pair of Weibull parameters values of failure 

probability are compared according to the exact and the conservative 

approaches (see chapter 4.3), where the conservative model [50] gives the 

upper critical value of the failure probability, which is achieved for 0ψ =  along 

the interface. 

 

Table 6.3 – Interface failure probability: comparison of the exact and 

conservative ( 0ψ = ) approach 

10m = , 0 320MPaσ =  10m = , 0 430MPaσ = 18m = , 0 380MPaσ =   

exact conservative exact conservative exact conservative

Analytical 63.26% 63.26% 5.08% 5.08% 6.95% 6.95% 

0.1t mm=  64.75% 64.99% 5.29% 5.32% 7.47% 7.55% 

1.0t mm=  69.26% 71.77% 5.96% 6.38% 12.6% 13.22% 

3.0t mm=  61.89% 100.0% 4.90% 69.05% 10.49% 100% 

 

For loading cases, where the role of shear stresses is small, the difference 

between the two approaches is less than the hundredth part of a percent. Even 

for moderate variations of shear stresses ( 1.0t mm= ), the dependence of the FP  

on ψ -parameter is not strong. It should be noted that in this particular loading 

case, the normal stresses still dominate the shear stresses. However, for the 

example of the Brazilian disk with an interlayer 3.0t mm= , where shear stresses 

are high (see Figure 6.4) and normal stresses become lower (see Figure 6.3), 

the interface is subjected to the stress state, which is different from mode-I (see 

Figure 6.10), and one can see that the difference between the exact and the 

conservative approaches is large. 
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Another tendency can be noticed - interface failure probability increases 

with moving the interface away from the middle line for any material combination. 

This behaviour is observed until a certain value of the interlayer thickness is 

reached. Then, the values of the failure probability decrease slowly. This 

observation is explained by the influence of two counteracting factors: first, 

increasing of shear stresses from zero in the case of the homogeneous disk to 

much more higher values in the case of interlayer with thickness 3.0t mm= , as it 

is shown in the Figure 6.4, leads to the increasing of the equivalent stresses and 

causes higher failure probability. On the other hand, the normal stresses (see 

Figure 6.3) decrease. 

 

6.4 Discussion 
 

By the example of a 2D Brazilian disk model, the contribution of the mode-

mixity parameter ψ  to the determination of interface failure probability was 

considered. A conservative solution, assuming pure mode-I stress state acting at 

the interface, allows to reduce possible error in failure probability calculation 

similar to use of additional safety factors in failure analysis. But on the other 

hand, as it was shown by the example of the disk with interface slightly away 

from the middle line, it is possible to overestimate the failure probability. 

A comparison of the interface failure probability values for 2D as well as for 

3D Brazilian disk models (see Table 6.2 and Table 6.3) shows a deviation in 

failure probability values at nominal equal load. In Figure 6.17 failure probability 

is plotted as a function of the strength parameter 0σ  and for a constant value of 

10m = . The difference can be mostly attributed to effects of load application 

modelling in studied examples. In the case of 3D component, the failure 

probability is sensitive to stress concentrations which appear in the region of 

applied load. In Figure 6.18 the local failure probability is shown. It is regarded as 

the failure probability density function with respect to the surface or volume. 

Thus, the stresses acting at the edges of 3D specimen (see Figure 6.18b) cause 

very high failure probability comparing with stresses acting near the middle line 

and close to the material interface. Since the calculations are performed with the 

aim of establishing the methodology for the failure probability calculations, no 
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refinement of the load application way was done for 3D model. In 2D case the 

applied compressive load was distributed over the circular arc of 15o . 

 

 
Figure 6.17 – Comparison of 2D and 3D models: interface failure probability 

of Brazilian disk with radius 22.5R mm=  

 

 

 

a)  b)  

Figure 6.18 – Local risk of failure for Brazilian disk specimen: a) 2D model; 

b) 3D-model 
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Figure 6.19 proves that the difference between 2D and 3D models appears 

mainly due to the stress concentrations at the point of applied loading. Interface 

failure probability was calculated for different lengths of the central part of the 

interface. Strength parameters 0σ , corresponding to a failure probability of 50% , 

were taken as representative values and shown in Figure 6.19 (see arrows in 

Figure 6.17 and Figure 6.19). Results of this analysis allow to compare 2D(green 

curve) and 3D(purple curve) approaches for failure probability calculations, 

excluding the effects appearing on the edges of the disk. One can see, that 

already at a distance of 4.5mm  from the points of applied force ( 36r mm= ) both 

models are in good agreement. The difference in the interface strength values 

obtained from 2D and 3D (“penny-shaped” crack) models is 6MPa  only and it 

vanishes with moving away from the disk edges. 

 

 
Figure 6.19 – Comparison of 2D and 3D (“penny-shaped”) models: strength 

of the Alumina-Zirconia interface, corresponding to a failure probability of 50% 

( 0.5FP = ), for reference loading case of Brazilian disk 
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The Brazilian disk component configurations are recommended to 

experiments in order to obtain sufficient statistical strength data. By putting the 

interface close to the middle line the interface failure appears to be high (see 

Figure 6.18a). On the other hand, the combination of interface strength 

parameters has to be sufficient to ensure specimen cracking in the middle of the 

disk, where homogeneous Alumina material ( 15m = , 0 347MPaσ = ) is located. 

Calculations of the volume failure probability for the considered loading case of 

the Brazilian disk were carried out in STAU. Failure probability of the 

homogeneous 2 3Al O  bulk material is 12%, while for the interface with the same 

values of Weibull parameters, interface failure probability reaches 44%. This is 

the indication that the described Brazilian disk configuration is suitable for 

interface strength testing. The role of the thickness of the interlayer, respectively 

the role of the distance between the interface and the middle line has already 

been discussed in chapter 6.3.2. However, it is important to account for contact 

stresses which may govern the failure in a Brazilian disk test. Thus, the load 

concentration effects have to be eliminated in experimental settings. 

With the results of this work, the implementation of modified Weibull theory 

into the existing version of STAU is possible. It should be noted that the 

calculation of the interface failure probability based on the “penny-shaped” crack 

model is less resource-intensive than it is for the “through-wall” crack model. The 

final choice of the crack model has, however, to be done in agreement with the 

experimental observations of the interface crack shape. The “penny-shaped” 

crack model is probably more appropriate to describe the form of natural defects. 

In this chapter, the influence of different parameters on the interface failure 

probability was studied. The role of Weibull modulus and interface mode-mixity 

stress state as well as the component geometries and two different crack models 

were examined. 
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7. Summary 
 

 

In the present work, a framework for the probabilistic description of brittle failure 

of interfaces in bi-material ceramic joints was developed. The results were 

applied to assess the sensitivity of failure probability with respect to Weibull 

parameters and mixed-mode parameter on the basis of limited data for strength 

measurements. Using two different specimen geometries, the method was tested 

and hints towards future experiments were obtained. 

To assess the interface failure probability, the Weibull theory used for brittle 

ceramic materials needed some modification – to take properly interface stress 

states into account. The extension of the classical probabilistic model is based 

on the weakest-link approach and requires a suitable fracture mechanics model 

to describe the conditions of an interface crack propagation, especially to cope 

with the oscillating mixed-mode character of the stress field at the tip of interface 

crack. An energy release fracture criterion was chosen for this purpose. 

Assigning this approach to combine probabilistic and fracture mechanics 

methods, the Weibull failure relations for brittle interfaces in bi-material joints 

were derived. A mode-mixity parameter, ψ , occurs in the generalized expression 

for the failure probability. The impact of this term was investigated by a 

decomposition of the general interface problem into two auxiliary mechanical 

problems, for which analytical solutions are possible. 

The solution algorithm for the stress state on the interface is built on the 

evaluation of singular integral equations and complex variable method, and was 

numerically presented for the problem of an interface crack in a finite bi-material 

strip under remote uniform tensile and shear loading. The results obtained can 

be used for a general treatment of the weakest-link interface failure probability 

where the remote stresses for the boundary conditions are obtained from a Finite 

Element stress analysis of the whole component under consideration. Neglecting 
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the mode-mixity parameter ψ  in the obtained solution leads to a conservative 

assessment of the failure probability for interface cracks in a gradually varying 

remote stress field. On the other hand, in this work it was explicitly shown that 

this conservative approach for failure probability determination can result in an 

appreciable overestimation for some loading combinations. 

The calculations of component’s reliability are normally based on the 

experimental characterization of the material strength parameters by some 

reference geometrical and loading configurations. However, interface strength 

data for natural interface cracks were not available. From experiments carried 

out elsewhere only a limited amount of data could be used to calibrate the 

model. 

Special attention was, therefore, devoted to a numerical parametric study, 

with the purpose to compensate the insufficiency of statistical interface strength 

data. The main purpose of this approach, provided to verify the suggested 

method of failure probability determination, was to investigate the sensitivity of 

interface reliability with respect to variations of the Weibull parameters. The 

behaviour of the failure probability with respect to the interface strength 

parameter shows a transition zone between regions of high and of very low 

failure probability, respectively, whose width was essentially given by the second 

parameter of the Weibull distribution. The shape of the transition zone was also 

studied and quantitatively described for some reference loading cases by the 

examples of 4PB and Brazilian disk specimens. 

An important contribution to the characterization of interface failure consists 

of the description and investigation of two different crack models for the fracture 

mechanics approach, which are probably appropriate for the form of natural 

flaws at the interface. A comparison of “through-wall” and “penny-shaped” crack 

models regarding the numerical values of the interface failure probability shows 

only qualitatively consistency of the results. Quantitatively, it was observed that 

the presence of “through-wall” natural flaws causes higher stress concentrations 

and as a consequence higher failure probability for the same reference remote 

loading case. Also, it was revealed that the calculation of interface failure 

probability based on the “penny-shaped” crack model is less resource-intensive. 

The importance of the numerical study provided in this work relates to the 

planning of future experiments and in the ability to give the necessary 
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interpretation of test results. At the same time, this work presents an adequate 

algorithm which allows prediction of the brittle failure, caused by unstable 

propagation of interface natural cracks. As soon as experimental interface 

strength data are available, this algorithm tested by simple two- and three-

dimensional bi-material geometries, can be used for any real application, e.g. 

Lambda-sensors. The proposed algorithm can be extended for the case of cyclic 

mechanical loading or complex thermal and electromagnetic loading conditions. 

Finally, the method of interface failure probability calculation for bi-material 

ceramic joints under remote multiaxial stress field developed in this work is ready 

to be implemented in an updated version of the existing finite-element 

postprocessing program STAU. This provides an opportunity to a wide range of 

industrial applications related to using or manufacturing ceramic components 

with brittle interfaces, to improve the reliable operation of the products. 
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Appendix A 
 

 

For the upper material the expressions of integral kernels are listed below: 
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2) Integral kernels in formula (4.14) for the derivative of displacements 
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3) Integral kernels in formula (4.15) for stress component (1)
22σ  can be calculated 

as: 
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For the lower material, similar to Eq. (4.14) and (4.15) the expressions for 

the derivatives of displacements are: 
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With the integral kernels listed below.  

Therefore, the normal stress component can be rewritten in the following 

way: 
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′= + +∫ ∫  

(2) (2)
1 3 1 2 2 3 1 2

0 0

( ) ( , , ) ( ) ( , , )f C x x d f D x x dτ τ τ τ τ τ
∞ ∞

′+ +∫ ∫ , (A.3) 

 

1) Integral kernels for the derivative of displacements 
(2)
1

1

U
x

∂
∂

 are: 

 

(2) 2 1
1 1 2 2

2 2 2 2 2 1 2 2 2

sinh( [ ])1( , , ) 2
4 ( 2 ) cosh( [ ]) cos( [ ])

xA x x
h x x h

η ττ μ
μ λ μ η τ η

⎧ ⎡ +⎪= − −⎨ ⎢+ + − +⎪ ⎣⎩

2 1

2 1 2 2 2

sinh( [ ])
cosh( [ ]) cos( [ ])

x
x x h

η τ
η τ η

⎤−
− +⎥− − + ⎦
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1 2 2 2 2 1
2 2 2 2

2 2 2 2 1

( )[1 cos( [ ]) cosh( [ ])]( )
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τη λ μ
η η τ

⎡ + − + +
+ + −⎢ + − +⎣

1 2 2 2 2 1
2

2 2 2 2 1

( )[1 cos( [ ]) cosh( [ ])]
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τ
η η τ

⎫⎤− − + − ⎪− ⎬⎥+ − − ⎪⎦⎭
 

 
(2) 2 1

1 1 2 2
2 2 2 2 1 2 2 2

sinh( [ ])1( , , )
2 ( 2 ) cosh( [ ]) cos( [ ])

xB x x
h x x h

η ττ λ
λ μ η τ η

⎧ ⎡ +⎪= − −⎨ ⎢+ + − +⎪ ⎣⎩

2 1

2 1 2 2 2

sinh( [ ])
cosh( [ ]) cos( [ ])

x
x x h

η τ
η τ η

⎤−
− −⎥− − + ⎦

 

1 2 2 2 2 1
2 2 2 2

2 2 2 2 1

( )[1 cos( [ ]) cosh( [ ])]( )
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τη λ μ
η η τ

⎡ + − + +
− + −⎢ + − +⎣

1 2 2 2 2 1
2

2 2 2 2 1

( )[1 cos( [ ]) cosh( [ ])]
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τ
η η τ

⎫⎤− − + − ⎪− ⎬⎥+ − − ⎪⎦⎭
 

 
(2) 2 1
1 1 2 2

2 2 2 2 2 1 2 2 2

sinh( [ ])1( , , ) 2
4 ( 2 ) cosh( [ ]) cos( [ ])

xC x x
h x x h

η ττ μ
μ λ μ η τ η

⎧ ⎡ +⎪= −⎨ ⎢+ + + +⎪ ⎣⎩

2 1

2 1 2 2 2

sinh( [ ])
cosh( [ ]) cos( [ ])

x
x x h

η τ
η τ η

⎤−
− −⎥− + + ⎦

 

1 2 2 2 2 1
2 2 2 2

2 2 2 2 1

( )[1 cos( [ ]) cosh( [ ])]( )
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τη λ μ
η η τ

⎡ + + + +
− + −⎢ + + +⎣

1 2 2 2 2 1
2

2 2 2 2 1

( )[1 cos( [ ]) cosh( [ ])]
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τ
η η τ

⎫⎤− + + − ⎪− ⎬⎥+ + − ⎪⎦⎭
 

 

(2) 2 1
1 1 2 2

2 2 2 2 1 2 2 2

sinh( [ ])1( , , )
2 ( 2 ) cosh( [ ]) cos( [ ])

xD x x
h x x h

η ττ λ
λ μ η τ η

⎧ ⎡ +⎪= −⎨ ⎢+ + + +⎪ ⎣⎩

2 1

2 1 2 2 2

sinh( [ ])
cosh( [ ]) cos( [ ])

x
x x h

η τ
η τ η

⎤−
− +⎥− + + ⎦

 

1 2 2 2 2 1
2 2 2 2

2 2 2 2 1

( )[1 cos( [ ]) cosh( [ ])]( )
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τη λ μ
η η τ

⎡ + + + +
+ + −⎢ + + +⎣

1 2 2 2 2 1
2

2 2 2 2 1

( )[1 cos( [ ]) cosh( [ ])]
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τ
η η τ

⎫⎤− + + − ⎪− ⎬⎥+ + − ⎪⎦⎭
 

 

2) Integral kernels for the derivative of displacements 
(2)
2

2

U
x

∂
∂

 are: 
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(2) 2 2 2 1 2 2 2 2 1
2 1 2 2

2 2 2 2 2 2 2 2 1

( ) ( )[1 cos( [ ]) cosh( [ ])]( , , )
4 ( 2 ) [cos( [ ]) cosh( [ ])]

x x h xA x x
h x h x
η λ μ τ η η ττ
μ λ μ η η τ

⎧− + + − + +
= −⎨+ + − +⎩

 

1 2 2 2 2 1
2

2 2 2 2 1

( )[1 cos( [ ])cosh( [ ])]
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τ
η η τ

⎫− − + −
− ⎬

+ − − ⎭
 

 

( )(2) 2 1
2 1 2 2 2

2 2 2 2 1 2 2 2

sinh( [ ])1( , , ) 2
2 ( 2 ) cosh( [ ]) cos( [ ])

xB x x
h x x h

η ττ λ μ
λ μ η τ η

⎧ ⎡ +− ⎪= − + −⎨ ⎢+ + − +⎪ ⎣⎩

2 1

2 1 2 2 2

sinh( [ ])
cosh( [ ]) cos( [ ])

x
x x h

η τ
η τ η

⎤−
− −⎥− − + ⎦

 

1 2 2 2 2 1
2 2 2 2

2 2 2 2 1

( )[1 cos( [ ]) cosh( [ ])]( )
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τη λ μ
η η τ

⎡ + − + +
− + −⎢ + − +⎣

1 2 2 2 2 1
2

2 2 2 2 1

( )[1 cos( [ ])cosh( [ ])]
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τ
η η τ

⎫⎤− − + − ⎪− ⎬⎥+ − − ⎪⎦⎭
 

 
(2) 2 2 2 1 2 2 2 2 1
2 1 2 2

2 2 2 2 2 2 2 2 1

( ) ( )[1 cos( [ ]) cosh( [ ])]( , , )
4 ( 2 ) [cos( [ ]) cosh( [ ])]

x x h xC x x
h x h x
η λ μ τ η η ττ
μ λ μ η η τ

⎧+ + + + +
= −⎨+ + + +⎩

 

1 2 2 2 2 1
2

2 2 2 2 1

( )[1 cos( [ ]) cosh( [ ])]
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τ
η η τ

⎫− + + −
− ⎬+ + − ⎭

 

 

( )(2) 2 1
2 1 2 2 2

2 2 2 2 1 2 2 2

sinh( [ ])1( , , ) 2
2 ( 2 ) cosh( [ ]) cos( [ ])

xD x x
h x x h

η ττ λ μ
λ μ η τ η

⎧ ⎡ +− ⎪= + −⎨ ⎢+ + + +⎪ ⎣⎩

2 1

2 2 2 2 2

sinh( [ ])
cosh( [ ]) cos( [ ])

x
x x h

η τ
η τ η

⎤−
− +⎥− + + ⎦

 

1 2 2 2 2 1
2 2 2 2

2 2 2 2 1

( )[1 cos( [ ]) cosh( [ ])]( )
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τη λ μ
η η τ

⎡ + + + +
+ + −⎢ + + +⎣

1 2 2 2 2 1
2

2 2 2 2 1

( )[1 cos( [ ]) cosh( [ ])]
[cos( [ ]) cosh( [ ])]

x x h x
x h x

τ η η τ
η η τ

⎫⎤− + + − ⎪− ⎬⎥+ + − ⎪⎦⎭
 

 
3) Integral kernels in the expression of the stress component (2)

22σ  are obtained in 

the same way as it was shown in paragraph 3) for the upper material by simple 

change of indexes of material number. 

 

Thus, system of integral singular equations (4.16) can be presented in an 

expanded form: 
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(1) (1) (1)
1 3 1 1 2 3 1 1 1 3 1 1

0

(1)
2 3 1 1 1

(2)
3 3

( ) ( , , ) ( ) ( , , ) ( ) ( , , )

                                                                                         + ( ) ( , , ) ( )

( ) (

g A x h g B x h f C x h

f D x h d P x

g A x

τ τ τ τ τ τ

τ τ τ

τ

∞

′⎡ + + +⎣

′ ⎤ =⎦

∫

(2) (2)
1 2 4 3 1 2 1 3 1 2

0
(2)

2 3 1 2 1

(1)
1 3 1 2

, , ) ( ) ( , , ) ( ) ( , , )

                                                                                       + ( ) ( , , ) ( )

( ) ( ,0, ) (

h g B x h f C x h

f D x h d P x

g A x g

τ τ τ τ τ

τ τ τ

τ τ τ

∞

′⎡ − + − + − +⎣

′ − = −

′+

∫

( )

( )

(1) (1) (2)
3 1 1 3 1 3 1

0

(1) (2) (2) (2)
2 3 1 3 1 4 3 1 3 3 1

(1) (1) (1)
1 1 1 2 1 1 1 1 1

) ( ,0, ) ( ) ( ,0, ) ( ,0, )

         + ( ) ( ,0, ) ( ,0, ) ( ) ( ,0, ) ( ) ( ,0, ) 0

( ) ( ,0, ) ( ) ( ,0, ) ( ) ( ,0, )

B x f C x C x

f D x D x g B x g A x d

g A x g B x f C x C

τ τ τ τ

τ τ τ τ τ τ τ τ

τ τ τ τ τ τ

∞

⎡ + − +⎣

⎤′ ′− − − =⎦

′+ + −

∫

( )

( )

(2)
1 1

0

(1) (2) (2) (2)
2 1 1 1 1 4 1 1 3 1 1

( ,0, )

        + ( ) ( ,0, ) ( ,0, ) ( ) ( ,0, ) ( ) ( ,0, ) 0

x

f D x D x g B x g A x d

τ

τ τ τ τ τ τ τ τ

∞

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪ ⎡ +⎪ ⎣
⎪
⎪ ⎤′ ′− − − =⎪ ⎦⎩

∫
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Appendix B 
 

 

Under equivalent stress we understand tensile stress acting in the component, 

which produces the same interface energy release rate as a mixed-mode stress 

state (see Figure B.1). 

 

 
Figure B.1 - Equivalent stress criteria 

 

The presentation of equivalent stresses through normal and shear stress 

components acting on the interface can be obtained from equation 

 

eq iG G= , (B.1) 

 

furthermore the interface energy release rate iG  determined in 3D case as : 

 

( )2 2 2
1 2

1 2

1 1
= + +i IIIG K K K

H H
 (B.2) 

 

For “through-wall” crack model complex stress intensity factor K  and real 

stress intensity factor IIIK  are: 
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1 2 1(1 2 )( ) ( )
2

i
n

aK iK i i a ε
τ

πε σ σ −+ = + +  (B.3) 

22III
aK τ

π σ=  (B.4) 

 

Taking into account that cos( ln ) sin( ln )ia a i aε ε ε− = −  and separating real 

and imaginary parts in equation (B.3), one will get: 

 

( ) ( )1 1cos( ln ) 2 sin( ln ) 2 cos( ln ) sin( ln )
2 n
aK a a a a τ

π ε ε ε σ ε ε ε σ= + − −⎡ ⎤⎣ ⎦  

( ) ( )2 12 cos( ln ) sin( ln ) cos( ln ) 2 sin( ln )
2 n
aK a a a a τ

π ε ε ε σ ε ε ε σ= − + +⎡ ⎤⎣ ⎦  

 

Consequently, 

 

( )
( )

(

2 2 2 2 2 2
1 2

2 2 2 2
1

2
1

cos ( ln ) 4 sin ( ln ) 4 sin( ln )cos( ln )
2

                       + sin ( ln ) 4 cos ( ln ) 4 sin( ln )cos( ln )

                       -2 2 cos ( ln ) sin( ln )cos( ln )

  

n

n

aK K a a a a

a a a a

a a a

τ

τ

π σ ε ε ε ε ε ε

σ ε ε ε ε ε ε

σ σ ε ε ε ε

⎡+ = + + +⎣

+ − −

− −

)
( )

2 2

2 2 2 2

2 2 2 2
1

                                   -2 sin ( ln ) 4 sin( ln )cos( ln )

                       + 4 cos ( ln ) sin ( ln ) 4 sin( ln )cos( ln )

                       + cos ( ln ) 4 sin ( ln ) 4 s

n

a a a

a a a a

a aτ

ε ε ε ε ε

σ ε ε ε ε ε ε

σ ε ε ε ε

+ +

+ − +

+ +( )
(

)

( )

2
1

2 2

2 2 2
1

in( ln )cos( ln )

                       -2 -2 sin ( ln ) sin( ln )cos( ln )

                                     2 cos ( ln ) 4 sin( ln )cos( ln )

                 (1 4 )
2

n

n

a a

a a a

a a a

a

τ

τ

ε ε

σ σ ε ε ε ε

ε ε ε ε ε

π ε σ σ

+

− −

⎤+ + =⎦

= + +

 

2 2
22III

aK τ
π σ=  

 

Thus, the latter two equations and (B.2) yield the following expression of 

interface energy release rate: 

 

( )2 2 2 2
1 2

1 2

1 1(1 4 )
2 2i n
a aG

H Hτ τ
π πε σ σ σ= + + +  (B.5) 
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On the other hand, equivalent stresses cause the following iERR: 

 

2 2

1

1 (1 4 )
2eq eq
aG

H
π ε σ= +  (B.6) 

 

According to criteria (B.1) from equations (B.5) and (B.6) equivalent stress 

can be found as a combination of normal and shear stress acting along the crack 

line as: 

 

2 2 21
1 22

2(1 4 )eq n
H

Hτ τσ σ σ σ
ε

= + +
+

, (B.7) 

 

For “penny-shaped” crack model complex stress intensity factor K  and real 

stress intensity factor IIIK  are [28, 38]: 

 

[ ]1 2 3

3

(2 )2 ( ) cos
2 (0.5 )

2 sin
2

i
n II

III III

a iK iK a iY
i

aK Y

ε
τ

τ

ε σ σ θ
ε

σ θ

−Γ +
+ = +

Γ +

=

 (B.8) 

 

where ( )εΓ  is the gamma function, and parameters γ , IIY  and IIIY  depend on 

elastic properties of joined materials: 

 

1 2

2 1 1 24 (1 ) 4 (1 )
μ μγ

μ ν μ ν
+

=
− + −

, 

2 2

8
4 (1 ) (1 )IIY γβ
γβ β πε ε

=
− − +

, 

2 2

2 2

(1 ) (1 )
4 (1 ) (1 )IIIY β ε ε
γβ β πε ε

− +
=

− − +
. 

 

Repeating the same procedure as described above, one will obtain: 
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( )
2

2 2 2 2 2 2 2
3 3

1 2

4 (2 ) 4cos sin
2 (0.5 ) 2i n II III

a i aG Y Y
H i Hτ τ

ε σ σ θ σ θ
ε

Γ +
= + +

Γ +
 (B.9) 

and 
2

2

1

4 (2 )
2 (0.5 )eq eq

a iG
H i

ε σ
ε

Γ +
=

Γ +
 (B.10) 

 

Equations (B.9) and (B.10) lead to the following presentation of equivalent 

stresses: 

 

2 2 2 2 2 2 21
3 32

2

cos sin
(2 ) / (0.5 )

eq n II III
HY Y

i i H
τ τσ σ σ θ σ θ

ε ε
= + +

Γ + Γ +
 (B.11) 

 

 


