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Generalizing Geometric Graphs

Edith Brunel1, Andreas Gemsa1, Marcus Krug1, Ignaz Rutter1, Dorothea Wagner1

Faculty of Informatics, Karlsruhe Institute of Technology (KIT), Germany
firstname.lastname@kit.edu

Abstract. Network visualization is essential for understanding the data obtained from huge
real-world networks such as flight-networks, the AS-network or social networks. Although we
can compute layouts for these networks reasonably fast, even the most recent display media
are not capable of displaying these layouts in an adequate way. Moreover, the human viewer
may be overwhelmed by the displayed level of detail. The increasing amount of data therefore
requires techniques aiming at a sensible reduction of the visual complexity of huge layouts.

We consider the problem of computing a generalization of a given layout reducing the com-
plexity of the drawing to an amount that can be displayed without clutter and handled by a
human viewer. We take a first step at formulating graph generalization within a mathematical
model and we consider the resulting problems from an algorithmic point of view. Although
these problems are NP-hard in general, we provide efficient approximation algorithms as well
as efficient and effective heuristics. At the end of the paper we showcase some sample gener-
alizations. This technical report is an extended version of a paper by the same authors that
is to appear in [10].

1 Introduction

As a natural consequence of the increasing amount of available data we are frequently facing large
and even huge networks such as road and flight networks, the Internet and social networks with
millions of vertices. Visualization of these networks is a key to assessing the inherent graph-based
information via human inspection. There are several methods for computing layouts of huge graphs
with millions of vertices within a few minutes [28, 31, 25].

But, how do we display such layouts? Modern HD displays feature roughly 2 Mio pixels and a
standard A4 page allows roughly 8.7 Mio dots at a resolution of 300 pixels per inch. Although these
numbers do sound adequate for large-scale graph visualization at first glance, both media are not
at all suited for displaying huge graphs with millions of vertices. Even if we require only a minimal
distance of 10 pixels or dots between the vertices of the graph, which yields a distance between
vertices of roughly 3 millimeters on the screen and less than 1 millimeter on paper, then we can
display only several thousand vertices, and not too many edges. If we additionally seek to display
graph structure and keep visual clutter low, the number of vertices we can display degrades even
further and may go down as far as less than a hundred for dense graphs.

Even worse, the human perception is not capable of extracting detailed information from huge
layouts with millions of vertices. Since, by a simple counting argument, there are incompressible
adjacency matrices [32], a graph with only 1 Mio vertices may encode incompressible information of
up to 125 Gigabytes. This exceeds by a factor of 3.6 the average daily information consumption of
an average American estimated at 34 (highly compressible) Gigabytes of information in the current
report on American Consumers [7].



Related Work Known approaches to coping with the huge amount of data by allowing for some kind
of abstraction can be categorized into structural and geometric methods. While structural methods
create a new layout for the data, typically using a clustering of the graph, geometric methods are
applied to a given layout maintaining the user’s mental map [35].

Graph-theoretic clustering methods, which can be used to cluster the graph for visualization
are discussed in [21]. Eades and Feng [17] describe a multilevel visualization method for clustered
graphs with the aim of visualizing network-based data that has been clustered hierarchically at
different levels of abstraction induced by the hierarchy of the clustering. A force-directed layout
algorithm based on a hierarchical decomposition of the graph is given by Quigley and Eades [36].
This method allows for visualizing the graph at different levels of abstraction by computing a layout
based on a hierarchical grouping of the vertices of the graph. Harel and Koren [27] present a multi-
scale algorithm with the purpose of producing nice drawings on large and small scale, respectively.
Different levels of abstraction of the graph are obtained by iteratively coarsening the graph. Multi-
scale drawing methods are combined with fisheye views by Gansner et al. [22]. Their approach is
to compute a layout of a graph whose level of detail deteriorates with increasing distance to the
focal node of the layout, that is, they provide a topological version of classical fisheye visualization
techniques. Abello el al. [5] discuss graph sketches for very large graphs based on mapping clusters of
the graph to certain regions of the screen. Their notion of a sketch is based on a hierchcical clustering
of the graph and is mainly focused at exploring the graph via a detail-on-demand strategy without
providing a good approximation of the graph’s structure and geometry. Rafiei and Curial [37] study
the generalization of graphs by sampling.

Classical fisheye visualizations [20, 39], on the other hand, can be directly applied to a given
layout and apply a distortion to a given layout to emphasize the structure of the drawing in a
certain area of interest. The resolution of the drawing deteriorates towards the boundary of the
drawing and parts of the drawing in this area are usually densely cluttered. Abello et al. [4] study
the visualization of large graphs with compound-fisheye views and treemaps, employing hierarchical
clustering and a treemap representation of this clustering. Edge Bundling techniques [40, 29] aim
at reducing the complexity of layouts by bundling similar edges.

Finally, Generalization has received considerable attention in cartography [34]. Mackaness and
Bear [33] highlight the potential of graph theory for map generalization. Saalfeld states the map
generalization problem as a straight-line graph drawing problem [38] and formulates a number of
challenges resulting from this perspective. Among others, he asks for a rigorous mathematical model
for graph-based generalizations and provable guarantees. We are not aware of any work aiming at
assessing this problem to its full extent.

Our Contribution We take a first step towards establishing a mathematical model for the problem of
generalizing geometric graphs. A key to assessing the problem of computing a suitable generalization
is to find an adequate measure of the quality or appropriateness of a generalization. It is essential to
understand the geometric and combinatorial features resulting in the visual complexity of geometric
graphs and how they affect human perception. The geometric features of the drawing include, among
others, the distributions of points and edges as well as the distribution of crossings, the shapes of
the faces of the arrangement, especially the outer face, as well as symmetries and peculiarities. The
combinatorial features include connectivity, structure and length of shortest paths as well as, for
instance, planarity. Although we are far from fully understanding the impact of the these features on
the human perception we try to incorporate a carefully selected set of these features into our model
of a generalization. The generalization should maintain the spirit of the drawing of the graph and



Fig. 1: Vertex-Clutter Fig. 2: Edge-Clutter Fig. 3: Vertex-Edge-Clutter

preserve the prominent features while reducing the amount of detailed information to an amount
that can be displayed without clutter and handled by a human viewer. Our model is based on the
fact that vertices have a fixed size and edges have a fixed width on the screen. Visual clutter refers
to an agglomeration of overlapping visual features in a limited area that renders these features
indistinguishable. Our goal is to either avoid or reduce visual clutter. We identify three types of
clutter.

Vertex-Clutter occurs when two or more vertices are too close to each other. It may render the
drawing unusable due to hidden edge information; see Fig. 1.

Edge-Clutter occurs when too many edges cross a limited area. Even if vertices are far enough
apart, edge clutter may lead to indistinguishable edge information; see Fig. 2.

Vertex-Edge-Clutter occurs when a vertex is too close to an edge. In this case, we are unable
to tell, whether the vertex is incident to the edge or not; see Fig. 3.

We devise a framework that allows for assessing all types of clutter in an incremental way by
modeling the elimination or reduction of each type of clutter as an optimization problem, which
we analyze in terms of complexity. We show that these problems are NP-hard in general and we
provide approximation algorithms as well as effective and efficient heuristics that can be applied to
huge graphs within reasonable time.

Preliminaries A geometric graph is a pair G = (P,E) such that P ⊆ R2 is a finite set of n points
in the plane and E is a set of m straight-line segments with endpoints in P . If not otherwise
stated, graph refers to a geometric graph throughout this paper. For p ∈ P and a non-negative
number r ∈ R+

0 , we denote by B(p, r) the disk with center p and radius r. We model the finite
resolution of a screen by assuming that each point p occupies the locus of points whose distance
to p is bounded by s ∈ R+

0 and, similarly, each edge e occupies the locus of points whose distance
to e is bounded by w ∈ R+

0 .
A generalization of G is a pair (H,ϕ) where H = (Q,F ) is a geometric graph with Q ⊆ P such

that ϕ : P → Q maps vertices of G to vertices of H and F is a subset of edges resulting from a
contraction of G according to ϕ. Since the subgraph induced by ϕ−1(q) is contracted into a single
vertex, we call this subgraph the cluster of q, denoted by Cq. Given Q ⊆ P , we denote by ν : P → Q
the Voronoi mapping ; which maps p ∈ P to its closest neighbor in Q with respect to the Euclidean
metric. We call the corresponding clusters Voronoi clusters. We especially focus on this mapping
since it minimizes

∑
p∈P d(p, ϕ(p)) and, hence, seems to be a natural mapping. Throughout the

paper distance refers to the Euclidean metric.



Organization of the Paper In Section 2, we consider the problem of eliminating vertex-clutter. We
discuss our model for the generalization of the vertex set and show NP-hardness of the corresponding
optimization problem. We further show that the size of the generalized pointset can be approximated
efficiently and we devise an efficient heuristic for further optimization. In Section 3, we study the
reduction of edge-clutter. We show that it is in general NP-hard to find a sparse or short subset
of the edges maintaining monotone tendencies. When the original graph is complete, however, or
if we are not restricted to use edges of the original graph, we can efficiently compute a sparse
graph approximately representing monotone tendencies of the edges. In Section 4, we model the
problem of reducing vertex-edge clutter and we show how to compute a drawing that allows for
unambiguously deciding whether an edge is incident to a vertex or not, thus effectively eliminating
vertex-edge clutter. We showcase some sample generalizations and conclude with a short discussion
as well as open problems in Section 6.

2 Generalizing the Vertex Set without Vertex-Clutter

In this section we consider the problem of computing a generalization (H,ϕ) without vertex clutter
for a geometric graph G = (V,E), where H = (Q,F ). We focus on the case that ϕ is the Voronoi-
mapping assigning each vertex in P to its nearest neighbor in Q. In order to avoid vertex-clutter,
we require a minimal distance r ∈ R+

0 between the vertices of a generalized geometric graph.
Let % : P → R+

0 be a function that maps a positive real number %(p) ≥ r to every point p ∈ P . For
each vertex p ∈ Q in the generalized graph we require that the disk B(p, %(p)) does not contain any
other point from Q. We call a pointset Q with this property a %-set of P . This prerequisite, however,
must be balanced with additional quality measures such as the size of the %-set, the clustering
induced by ϕ and the distribution of the points in Q in order to avoid trivial solutions such as
a single vertex. Clearly, it is desirable to maximize the size of a %-set in order to retain as many
vertices of the original graph as possible. That is, even in the presence of other optimization goals
we may assume that the vertex set Q of the generalization constitutes an inclusion-maximal %-set
of the original point set P .

Choosing % ≡ r uniformly for all points p ∈ P may have a severe effect on the distribution
of the points when maximizing the size of a %-set since the distances to the nearest neighbors in
an inclusion-maximal %-set tend to be uniformly distributed regardless of the original distribution.
However, it may be more appropriate to approximate the distribution of the original pointset. In
order to approximate this distribution by an inclusion-maximal %-set we can choose % as follows.
Let p0 be the point that maximizes the number of points in B(p, r) ∩ P over all p ∈ P and let k =
|B(p0, r)∩P |−1 denote the number of points in this disk that are different from p0. For each p ∈ P
let dk(p) ≥ r denote p’s distance to its k-nearest neighbor in P . By choosing %(p) = dk(p) ≥ r any
inclusion-maximal pointset will have approximately the same distribution as the original pointset
since for each point in the generalized pointset we discarded the same amount of points from the
original graph.

Since, in general, it is not clear which behavior is more appropriate, we introduce a parameter α ∈
[0, 1] and let the user decide by setting %(p) := max{r, αdk(p)}. That is, the user can choose between
retaining as many points in areas with low clutter as possible (α = 0) and approximating the
distribution of the pointset (α = 1) as well as interpolations between the two extremes.

We consider two measures to assess the quality of a %-set Q. While the size of Q is a measure of
the amount of data that is retained, the quality of the clustering induced by ϕ is a measure for the
amount of data that is lost due to the contraction of the vertices. There are several established ways



of assessing the quality of clusterings, such as coverage, performance, conductance [21], and modu-
larity [9]. Since the information contained in the inter-cluster edges is retained in the generalization,
we concentrate on assessing the quality of the clusters based on the intra-cluster edges. We consider
a measure similar to coverage, which we adapt to our purpose as follows. For each cluster Cq let nq
denote the number of vertices and mq denote the number of edges in Cq, respectively. We define the
local coverage of a cluster Cq by lcov(Cq) = 2mq/(nq(nq − 1)) , i.e., as the amount of intra-cluster
coherence that is explained by the intra-cluster edges. The local coverage of the generalization is
defined as lcov(H,ϕ) = minq∈Q lcov(ϕ−1(q)) .

We consider the following multi-objective optimization problem. Given a geometric graph G =
(P,E), a non-negative radius r ∈ R+

0 and α ∈ [0, 1] the Local Coverage Cluster Packing
(LCCP) problem is to compute a %-set Q ⊆ P and a mapping ϕ : P → Q that maximizes both |Q|
and lcov(H,ϕ).

Problem Local Coverage Cluster Packing (LCCP)

Instance: Geometric graph G = (P,E), r ∈ R+
0 , α ∈ [0, 1]

Solution: %-set Q ⊆ P , mapping ϕ : P → Q
Goal: maximize lcov(H,ϕ), maximize |Q|

First we show that several single-criteria optimization variants of this multi-criteria optimization
problem are NP-hard. Then we show how to approximate the size of a %-set efficiently and we devise
an efficient heuristic for balancing the size of a %-set with the quality of the induced local coverage.

2.1 Complexity

The problem of computing a %-set of maximum size for α = 0 can be reduced to the problem
of computing a maximum independent set in the intersection graph of the disks with radius r/2
centered at the points in P . Clark et al. [13] prove that this problem is NP-hard in unit-disk graphs,
even if the disk representation of the graph is given.

Corollary 1. Maximizing the size of a %-set is NP-hard for α = 0.

Next, we show that it is also NP-hard to maximize the local coverage in the induced clusters of
a %-set as well as the total size of the generalization obtained by choosing a %-set if the clustering
is obtained by the Voronoi mapping induced by the points in Q.

Theorem 1. Maximizing lcov(H, ν) of a generalization (H, ν) is NP-hard for α = 0.

Proof. The proof is by reduction from the NP-hard problem Planar Monotone 3-sat [15].
Let U = {x1, . . . , xn} be a set of Boolean variables and let C = C1 ∧ C2 · · ·Cm be 3-sat formula.
Then C is called monotone if all clauses consist only of positive or only of negative literals. Let G =
(U ∪ C, E) be the bipartite graph, on the clauses and variables, where E contains the edge (xi, Cj)
if and only if the literal xi or its negation is contained in Cj . A monotone rectilinear representation
of a monotone 3-sat formula is a rectilinear drawing of G such that the following conditions are
met, as illustrated in Figure 4.

(i) The variables and clauses are drawn as axis-aligned boxes such that all variable boxes are on
a horizontal line.

(ii) The edges are drawn as vertical line segments connecting the corresponding boxes.
(iii) The drawing does not contain any crossings.



An instance of Planar Monotone 3-sat consists of a monotone rectilinear representation of a
planar monotone 3-sat instance and we wish to decide, whether the corresponding 3-sat instance
is solvable.

A %-set with local coverage 1 is called a perfect %-set. A %-set is perfect if and only if the graphs
induced by the vertices in each of the Voronoi faces defined by Q are cliques. Given a monotone
rectilinear representation of a planar monotone 3-sat formula we will construct a corresponding
instance I = (G = (P,E), %) of problem LCCP such that I contains a perfect %-set if and only if the
3-sat formula is satisfiable. For reasons of simplicity our construction is based on a disconnected
graph with collinear points, but the construction can be modified in a straightforward way to obtain
similar results for connected graphs with vertices in general position. We choose % ≡ 1.25 and we
construct G from a set of variable/literal gadgets, transmitter/bend gadgets and clause gadgets,
which we will describe subsequently. We will use the following trivial observation.

Observation 1 Every perfect %-set of G contains at least one vertex of each clique of G.

Variable/Literal Gadget. We distinguish between basic and extended variable and literal gadgets,
respectively. The basic variable gadgets incorporate the functionality needed to correctly represent
the variables. These gadgets can be extended to transmit their state along the transmitters. Each
basic variable gadget consists of three vertically aligned cliques of size three and four, respectively,
as illustrated in Figure 5. Each clique consists of vertically aligned points at distance 1, and the
cliques are separated by a vertical gap of 0.5.

Due to Observation 1 a perfect %-set of G must contain at least one vertex in each of the cliques.
Note that we cannot choose two vertically subsequent vertices in any of the cliques, since they do
not constitute a %-set. Due to the chosen vertical distribution of the vertices, the vertices of any
%-set closest to the gaps must be chosen symmetrically to the bisector of the two cliques. Otherwise,
the bisector of these vertices will intersect the edges of one of the cliques as illustrated in Figure 5d.
Furthermore, we cannot choose the two vertices closest to the gap since they do not constitute a
valid %-set. Hence, there are only two valid %-sets of the basic variable gadget, corresponding to the
true and false state of the corresponding variable, as illustrated in Figure 5b and 5c, respectively.
The variable gadgets can be extended in order to connect them to the transmitter gadgets. In order
to extend the variable gadgets, we substitute the cliques of size 3 at the corresponding end by a
clique of size 4.

The literal gadgets are composed of basic and extended variable gadgets that are horizontally
aligned. The horizontal gap between the gadgets is variable and can be chosen to be 1 or 1.5, as
illustrated in Figure 6.

x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

Fig. 4: Monotone rectilinear representation of the 3-sat formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧
(x2 ∨ x3 ∨ x4).



(a)
Graph

(b) True (c) False (d) Illegal

Fig. 5: Variable gadget

(a) True (b) False (c) Illegal

Fig. 6: Literal gadget

Transmitter/Bend Gadget. The transmitter gadgets consist of two vertically aligned cliques of size 4
that are separated by a gap of 0.5 similar to the variable gadgets. When stacked upon the extended
variable gadgets with a vertical gap of 0.5 the transmitter gadgets can be in one of two valid states
corresponding to the assignment of the variable. The bend gadgets consist of one vertical and one
horizontal transmitter gadget as illustrated in Figure 7. Figure 7c illustrates that the state cannot
change at the transition between the horizontal and the vertical transmitter segment. Such a change
would result in locate coverage strictly smaller than 1.

Clause Gadget. Finally, the clause gadget is constructed as illustrated in Figure 7. It consists of
three small gadgets that are arranged in a T -shaped fashion and which are constructed exactly as
the topmost two cliques of the basic variable gadget. The functionality of the clause is realized by
a small triangle arranged in the middle of the T-shaped figure. If all literals corresponding to the
clause are false, then each of the triangle’s vertices is contained in the %-ball of one of the vertices
contained in the corresponding %-set. Hence, none of the vertices of the triangle may be contained



(a) True (b) False (c) Illegal State

(d) satisfied (e) dissatisfied

Fig. 7: (7a)–(7c) Bend gadget, (7d)–(7e) Clause gadget.

in the %-set and, thus, the vertices of the triangle are mapped to a neighboring point resulting in
local coverage strictly less than 1. This is illustrated in Figure 7e. If, on the other hand, at least one
of the variables is in a true state, then one of the triangle’s vertices can be included in the %-set.
The vertices of the triangle are chosen in such a way that that the bisector between any of these
vertices and the closest vertex corresponding to a true assignment does not intersect any of the
cliques of the clause. As illustrated in Figure 7d, this leads to a Voronoi diagram that does not
intersect the edges of G, resulting in a perfect %-set.

Clearly, a satisfying assignment of the 3-sat formula can be transformed into a perfect %-set
of G. Conversely, assume that we are given a perfect %-set of G. As argued, the variable gadgets can
be in one of two states in this case as illustrated in Figure 5. This state is likewise represented in
the adjacent transmitters and will thus be transmitted without error to the clauses. Since the %-set
is perfect, one of the central triangle’s vertices of each clause gadget must be in the set. Hence,
at least one of the adjacent transmitters must be in a true state, corresponding to the assignment
of one of the literals. Hence the states of the variables as in Figure 5 correspond to a satisfying
assignment of the 3-sat formula. A sample reduction is illustrated in Figure 8.

Since the reduction is based on deciding whether the given graph contains a perfect %-set whose
size is equal to the number of cliques in G it yields that both the maximization of local coverage as
well as the maximization of the size of the %-set with given minimum local coverage are NP-hard.



Fig. 8: Sample reduction of the 3-sat formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4). The
black points constitute a perfect %-set corresponding to the assignment x1 = true, x2 = true, x3 =
true, x4 = false.
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Fig. 9: Illustration for the proof of Lemma 1

ut

2.2 Approximating the Maximum Size of a Generalization

Although it is unlikely that we can efficiently compute a %-set with maximum size, we show that
we can approximate the size of a maximum %-set.

Theorem 2. Let G be a geometric graph and let r ∈ R+
0 and α ∈ [0, 1] be given. In O(kn +

n log5 n(log log n)2) time we can compute a generalization H of G that approximates the maximum
number of vertices of a generalization by a factor of (7k + 2)/3, where k = maxp∈P |B(p, %(p)) ∩
P | − 1 .

In order to prove Theorem 2 we use the following auxiliary lemma.

Lemma 1. Let p0 be a point in the plane and let k ∈ N. Then there are at most 6k points Q such
that p0 is among the k closest points for each of the points q ∈ Q.

Proof. We first establish the somewhat simpler claim that there are at most 6 points p1, . . . , pt (t ≤
6) such that for each pi no point is closer to pi than p0, i.e., p0 is the closest point to each pi.
Assume without loss of generality that p1 is closest to p0 and consider the infinite ray r1 starting
in p0 in the direction of p1. Let p2 be the next point to p1 in the clockwise cyclic order of p1, . . . , pt
around p0, as illustrated in Figure 9. Without loss of generality we may assume that p2 is such
that the disk D2 centered at p2 with radius d(p2, p0) touches p1. If this is not the case, we rotate
p2 around p0 counter-clockwisely until it touches p2. By the choice of p2 there will be no point in
the disk around p2 in its new position. If D2 touches both p0 and p1, then its center must be on
the bisector b of p1 and p2. Since it must also be outside D1, the disk centered at p1 with radius
equal to d(p0, p1), p2 cannot be closer to p1 on b than the intersection x of b and the boundary
of D1. Since p0, p1 and x form the corners of a equilateral triangle, the angle between p0p1 and p0p2
must be at least 60 degrees. By repeating the argument, it is clear that the angle between p0p1
and p0pi increases by 60 degrees for each i = 2, . . . , t. After at most 6 steps, this angle is at least 360
degrees. Hence there are at most 6 points with the desired property. Since we can put at most k−1
additional points in each of the disks, the claim of the lemma holds. ut



Now we are ready to prove Theorem 2.

Proof (Proof of Theorem 2). Let H be the graph on the set of points such that pq is a (directed)
edge if and only if q ∈ B(p, %(p)). The graph H contains an independent set of size s if and only
if G contains a %-set of this size. Each independent set in H corresponds to a %-set in G since each
point in H is connected to all points that are closer than %(p) and it is connected to all points q
such that p is in the %(q) disk around q. On the other hand, each %-set in G induces an independent
set due to this construction.

By choice of %, each vertex has out-degree bounded by k = maxp∈P |B(p, r) ∩ P | − 1 for any
value of α. There is an ingoing edge from q into p if and only if p is among the k closest neighbors
of q. By Lemma 1 there are at most 6k points such that p is among the closest k points for each of
these points. Hence, the in-degree of each vertex is bounded by 6k. In total, each vertex has degree
at most 7k. Hence, by a result due to Halldórsson and Radhakrishnan [26] we can approximate
the maximum size of an independent set by a factor of (7k + 2)/3. The algorithm greedily chooses
the minimum degree vertex in each step and can be implemented to run in time O(kn), given the
graph H.

In order to compute H we locate the points in a closed disk by a circular range query in O(log n+
k) time using O(n log5 n(log log n)2) preprocessing time [11]. Hence, the total running time is O(kn+
n log5 n(log log n)2). ut

Based on this approximation, we heuristically compute a %-set Q balancing both the size of Q
and the local coverage of the Voronoi clustering induced by Q as follows. For p ∈ P let m̃(p) denote
the number of edges whose endpoints are both contained in B(p, %(p)/2) and let ñ(p) denote the
number of points in B(p, %(p)). We can use these values to compute an estimate of the local coverage
as summarized in the following lemma.

Lemma 2. Let Q be an inclusion-maximal %-set and let α = 0. Further, let H = (Q,F ) be the
generalization obtained from G = (P,E) by the Voronoi-mapping ν. Then the value

min
q∈Q

{
2m̃(q)

ñ(q)(ñ(q)− 1)

}
is a lower bound for lcov(H, ν).

Proof. For α = 0 we have % ≡ r. Whenever p is chosen as a cluster center in Q, the points
in B(p, r/2) are closer to p than to any other point in Q, since the closest point to p in Q has
distance to p at least r. Hence, the edges in B(p, r/2) are intra-cluster edges of Cp. On the other
hand, the number of points in each of the clusters is bounded by ñ(p) whenever α = 0 and Q is
an inclusion-maximal %-set. To see this, consider any vertex q that is not contained in B(p, r), but
closer to p than to any other cluster center. Then q is contained in none of the disks centered in
the cluster centers and, thus, q must be a cluster center itself, since Q is inclusion-maximal. Hence,
the claim holds. ut

Based on Lemma 2 we propose a heuristic, called Greedy Weight Heuristic, that operates
as follows. First we compute an estimate of 2m̃(q)/(ñ(q)(ñ(q)− 1)) for each p ∈ P since computing
the exact value involves complicated algorithms and data structures. Subsequently, we sort the
points according to these estimates in O(n log n) time and iteratively consider the points in this
order. If the current vertex is not covered by the %-disk of a previous vertex, then it is chosen for
the %-set, otherwise it is discarded.



Instead of computing m̃(p) and ñ(p) exactly, we estimate these numbers by counting the number
of vertices and edges in the bounding boxes of the disks B(p, %(p)/2). To count the number of
edges we use a 4-dimensional range searching query on a data structure containing tuples of points
corresponding to edges in E with query timeO(log3m) [12]. We use the 2-dimensional counterpart to
locate points. Further, we use a data structure for dynamic nearest neighbor queries with O(log2 n)
query time [6], into which we insert the selected points to decide whether the current point is
covered by a previously selected point. The total running time is O((n+m) log3m+ n log2 n).

3 Minimizing Edge-Clutter

In order to reduce the clutter resulting from an excess of edges in certain areas we must filter out
some of the edges without destroying the visual appearance of the graph. The total length of the
edges seems to be a good measure for the clutteredness of the graph since it is proportional to the
ink used for the drawing. While a minimum spanning tree will minimize this quantity, it is unlikely
to preserve the visual appearance of the graph. We therefore require that monotone tendencies
of the edges are preserved in order to best maintain the mental map of the adjacencies between
vertices of the graph. This also motivated from a recent work by Huang et al. [30], whose controlled
user experiments seem to suggest that geodesic paths are more likely to be explored when reading
a graph drawing.

Let ` be a line in the plane and let S = (p1, . . . , pk) be a sequence of points. We say that S is
`-monotone if the order of the orthogonal projections of p1, . . . , pk onto ` is the same as the order
of the points in S. Let G = (P,E) be a geometric graph and let (H,ϕ) be a generalization of G
such that H = (P, F ), i.e., F ⊆ E. We say that H is a monotone generalization of G if for every
edge e ∈ E with endpoints p and q there is a p-q-path πe in H such that πe is `e-monotone, where `e
is the line defined by the endpoints of e. Given G = (P,E) the Shortest Geodesic Subgraph
(SGS) problem asks for a monotone generalization H of G minimizing the total length of H.

Problem Shortest Geodesic Subgraph (SGS)

Instance: Geometric graph G = (P,E), δ ∈ R+
0

Solution: Geometric graph H = (P, F ) such that F ⊆ E and such that H contains a monotone
path for each edge e ∈ E

Goal: minimize total length of H

First, we show that Shortest Geodesic Subgraph is NP-hard.

Theorem 3. Shortest Geodesic Subgraph is NP-hard.

Proof. We reduce from monotone 3-sat, a variant of 3-sat where each clause contains either
only positive or only negative literals. Monotone 3-sat is NP-complete [23]. Let ϕ be an instance
of monotone 3-sat with variables x1, . . . , xn and clauses C1, . . . , Cm. We construct the following
instance Gϕ of Shortest Geodesic Subgraph. For each variable x we create a kite consisting
of vertices `, r, t and f as shown in Figure 10a. Note that the angles at f , ` and r are strictly less
than 90◦, and the angle at t is strictly more than 90◦. The two edges incident to the top vertex t are
called top edges, the edges f` and fr are called the left and right side edges, respectively. We place
the kites so that their foot points lie evenly spaced on the x-axis and the kites are disjoint. Denote
by s` and sr the slopes of the left and right side edges of a kite, respectively. The region R+ is the
region below the x-axis and to the right of the line through the bottom point of the rightmost kite
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Fig. 10: Overview of the reduction from 3-sat to Shortest Geodesic Subgraph. A kite with
foot point f , top point t and left and right points r and ` (a), and the arrangement of the kites in
the reduction with the corresponding regions for clause vertices (b).

with slope −1/sr (i.e., it is perpendicular to the right sides of the kites). Further, we denote by L+

the region that is above the horizontal line defined by the topmost points of the kites and to the
left of the line with slope −1/sr through the foot point of the leftmost kite. We define R− and L−

analogously, with sr replaced by s`.
It follows immediately from the construction that a path that is monotone in the direction from

a point in R+ to a point in L+ may not contain any right edge of a kite as this would imply a
turn of more than 90◦, which is not monotone. Analogously, monotone paths from L− to R− may
not contain left edges of kites. In our reduction the kites will play the role of variables, and edges
from R+ to L+ (from L− to R−) will play the role of clauses with only positive (only negative)
literals.

For each clause Ci consisting of only positive literals, we add a clause vertex c1i into R+ and
a clause vertex c2i in L+. We add connector edges that connect c1i to the foot points of all kites
that correspond to variables that occur in Ci and that connect c2i to all the left points of kites that
correspond to variables that occur in Ci. Finally, we add the clause edge c1i c

2
i . We treat the clauses

consisting of only negative literals analogously, except that we place the new vertices in L− and R−,
respectively, and we connect the new vertices in R− to the right kite points instead to the left.

This completes our construction, and we claim that an optimal solution of this instance allows
us to decide whether the initial formula ϕ was satisfiable. We will make this more precise in the
following. A subset of edges of Gϕ is called tight if it contains both top edges of each kite, all
connector edges, and exactly one of the two side edges of each kite. We now claim the following.

Claim. Any feasible solution contains a tight edge set.

Proof of Claim. First note that the top vertex of each kite is incident to only two edges, hence at
least one of them must be in any feasible solution. However, the left edge is not monotone in the
direction of the right edge and vice versa. Hence, a feasible solution necessarily contains both of
them.

Next, we show that all edges from clause vertices in L− or R+ to foot vertices of kites must be
contained in every solution. Let c be a vertex in L− (the case c in R+ is symmetric) and let f a foot
point of a kite that is adjacent to c. We now consider the paths from c to f that avoid the edge cf in
our graph. Since G contains no edge connecting two vertices of different kites, any path from c to f
that avoids cf must contain at least one vertex x 6= c that is in one of the four regions L+, L−, R−,
and R+. Note that, by construction of the region L−, the line orthogonal to cf is at least as steep
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Fig. 11: Illustration for the proof of the first claim. There is no monotone path in Gϕ replacing the
edge cf since every path avoiding this edge first visits a footpoint f ′ of a kite before it visits a
point x ∈ L+ whose orthogonal projection onto the line defined by c and f is to the left of the
projection of f ′.

as the left side of any kite, and hence the points in R− and in R+ lie to the right of the line that
is orthogonal to cf through f , and thus are not part of any monotone connection from c to f as
illustrated in Figure 11. Now assume that x is in L+ or L−, and denote by f ′ the first vertex after c
on a cf -path that avoids the edge cf . The regions L+ and L− lie to the left of the line h that is
orthogonal to cf through the foot point of the leftmost kite. Therefore both the edge cf ′ and the
subpath from x to f must cross this line, and hence project to the same point on the line segment
from c to f . This shows that the path is not monotone, and hence cf must be contained in any
feasible solution.

Next, consider a vertex c in L+ and a corresponding edge c` to the left vertex of a kite (again
the case c in R− and edge cr where r is the right vertex of a kite is symmetric). As before, every
path from c to ` avoiding c` must contain a vertex x 6= c belonging to one of the four regions.
Again, the regions R− and R+ are to the right of the line orthogonal to c` through `, and can thus
not be contained in a monotone c`-path. Hence, we can assume that x is in L+ or L−. Let `′ be the
first vertex after c on a c`-path that avoids the edge c`. If x is in L−, consider the line orthogonal
to c` through the foot point of the leftmost kite. By construction this line is at least as steep as the
right side of a kite, and hence the region R+ is to its left. Since any path from c to x must contain
a foot vertex of a kite, both the subpath from c to x and the subpath from x to f must cross this
line, and thus project to the same point on the edge c`. Hence the path would not be monotone
and we can assume that x is in L+. Considering the line orthogonal to c` through the left point of
the leftmost kite as above rules out the existence of such a monotone path.

It remains to show that at least one side edge of each kite must be in any feasible solution.
Let f be the foot point of a kite K with left point `, right point r and top point t. We show that G
does not contain a monotone f`-path that avoids both f` and fr. First observe that all foot points
of kites to the right of K project before f on the line through f and `, directed from f to `, and
hence cannot be contained in a monotone f`-path. Similarly, all non-foot vertices of kites to the
left of K project behind ` on this line, and hence are also not contained in monotone f`-paths. The
points in R+ and all points in L+ can be ruled out similarly. Since a monotone f`-path needs to
contain an edge that connects a vertex whose y-coordinate is at most the y-coordinate of f to a
vertex whose y-coordinate is at least the y-coordinate of `, and we cannot use any edge of a kite,
the only option is that it uses an edge from a vertex x in L− to a vertex x′ in R− as illustrated in
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Fig. 12: Illustration for the proof of the first claim. In each of the kites at least one of the side edges
must be present. Otherwise, any replacing path for f` must use an edge xx′ that is not monotone
with respect to f`.

Figure 12. However, the line orthogonal to such an edge is steeper than the edge f`, and hence xx′

is not monotone with respect to f`. This completes the proof of the claim.
Note that the size, as well as the total length, is the same for all tight edge sets, and hence this

size forms a lower bound for the size of a geodesic subgraph. We claim that this bound can be met
if and only if ϕ is satisfiable.

Claim. There exists a tight set that is feasible if and only if ϕ is satisfiable.

Proof of claim. Note that a tight set is completely specified by giving for each kite the information
whether its left or right edge is contained in the set.

Assume that ϕ is satisfiable and take a satisfying assignment. We construct a tight set E′ by
taking the left side of a kite if and only if the corresponding variable has the value true in the
assignment. We now argue that the corresponding set is feasible. The only edges for which we have
to check the existence of a monotone replacement path are the clause edges. Let c1i c

2
i be a clause

edge with c1i in R+ and c2i in L+. The edge c1i c
2
i by construction corresponds to a clause Ci with

only positive literals. Let xj be a satisfied literal (and thus a satisfied variable) in Ci, and let Kj

denote the corresponding kite with foot point f and left point `. By construction E′ contains the
edges c1i f, f` and `c2i , which together form a monotone c1i c

2
i -path. The argument for a clause edge

c1i c
2
i with c1i in L− and c2i in R−, which corresponds to a clause with only negative literals, is

analogous. This proves that the tight set E′ is feasible.
Conversely, assume that E′ is a feasible tight set. We construct a truth assignment by setting

a variable to true if and only if the left edge of the corresponding kite is in E′. Now consider a
clause Ci containing the variables xu, xv and xw as positive literals (the case of only negative literals
is symmetric). If Ci is not satisfied by our assignment then E′ contains none of the left edges of
the three kites corresponding to xu, xv and xw. However, by definition the edge set must contain
a monotone c1i c

2
i -path. Such a path may not use any right edge of any kite as this would not be

monotone. Hence it necessarily contains a left edge of some kite since E′ does not contain any of the
clause edges. This implies that any monotone path must first visit the foot point of one of the kites
corresponding to xu, xv, xw, then pass on to a vertex x 6= c1i in L− or R+ and from there to the foot
point of another kite. By construction all points in R+ lie to the right of the line that is orthogonal
to c1i c

2
i through the foot of the rightmost kite. This excludes the case that x is in R+. Similarly, the

line orthogonal to c1i c
2
i through the foot of the leftmost kite separates the points in R− from the



foot points of all kites. Hence the edges from x to its two incident foot points both cross this line
and hence the path is not monotone. This is a contradiction, and hence E′ must contain the left
edge of at least one of the kites corresponding to xu, xv and xw, thus implying that Ci is satisfied.
This proves the claim.

Note that the size L is the same for all tight edge sets. The first claim shows that any geodesic
subgraph has length at least L. And thus, the second claim implies that ϕ is satisfiable if and
only if Gϕ admits a geodesic subgraph of length at most L. Since the construction can easily be
performed in polynomial time this concludes the proof. ut

As we have seen, the restriction to edges from the input graph makes it difficult to construct
short monotone subgraphs. One possibility is thus to drop this constraint and to allow arbitrary
edges. Additionally, we would like to control the distance of the monotone path πe and the edge it
is approximating in terms of monotonicity. This is motivated by the observation that the shortest
monotone generalization of a clique, whose vertices are arranged equidistantly on a circle, is given by
the convex hull of the pointset. Given a line segment s with length `s and a point p with distance dp
from s we call the ratio dp/`s the drift of p from s. The drift of a path πe with endpoints pq is defined
as the maximum drift of any point on πe from the segment pq. Given a geometric graph G = (P,E)
and a non-negative real number δ ∈ R+

0 the Sparse Geodesic Network (SGN) problem asks
for a geometric graph H = (P, F ) with minimum total length such that for each edge e in E there
is an `e-monotone path πe with drift at most δ, where `e denotes the line defined by the endpoints
of e.

Problem Sparse Geodesic Network (SGN)

Instance: Geometric graph G = (P,E), δ ∈ R+
0

Solution: Geometric graph H = (P, F ) such that H contains a geodesic path for each edge e ∈ E
whose vertices are at distance at most δ · |e| from the straight line e

Goal: minimize |F |

We show the following.

Lemma 3. Given a (complete) geometric graph G = (P,E), the Delaunay graph D(P ) contains
for each edge e ∈ E an `e-monotone path πe with drift at most 1/2.

Proof. Let P be a set of points and let p, q ∈ P . Without loss of generality we assume that p
and q are on the x-axis such that x(p) < x(q). According to Dobkin et al. [16] we can construct
an x-monotone path in the Delaunay graph D(P ) of P as follows. Let V(P ) denote the Voronoi
diagram of P and let p1, . . . , pk be the ordered points corresponding to the Voronoi cells that are
traversed when following the line from p to q. Then the path p, p1, . . . , pk, q is an x-monotone path
in the Delaunay graph. Further, all points pi are contained within the disk with radius d(p, q)/2
centered in the midpoint of the segment pq. Hence, the drift is at most 1/2. ut

Although the Delaunay graph seems to be well suited to represent monotone tendencies, this
result also shows the limitations of allowing arbitrary edges. In the following we therefore focus on
subgraphs of the original graph and describe a greedy heuristic for computing a monotone general-
ization with bounded drift δ and short total length, which we call Monotone Drift Heuristic.
Given a geometric graph G = (P,E) and a maximal drift δ we sort the edges of G with respect
to increasing length in O(m logm) time. Then we consider the edges e1, . . . , em in this order and
iteratively construct a sequence of graphs H0, H1, . . . ,Hm, where H0 = (P, ∅). We insert the edge ei



into Hi−1 whenever there is no `ei-monotone path with drift at most δ in Hi−1. This can be tested
by performing a modified depth-first search exploring only monotone subpaths in O(n + m) time.
Hence, the total running time of this approach is O(nm+m2).

4 Vertex-Edge-Clutter

Fig. 13: Line per-
ception

Vertex-edge-clutter is the most complicated type of clutter since it involves
both vertices and edges and the selection of these features cannot be handled
independently as in the previous sections. On the other hand, this type of
clutter may be considered as the least annoying type of clutter. While vertex-
edge clutter is caused by edges that are close to a vertex resulting in the
difficulty to determine correct incidences,the human perception is rather good
at determining whether a line passes a disk through the center or not. For
instance, it is easy to see that the leftmost line in Figure 13 is not incident to the vertex although it
crosses the vertex. Additionally, the human perception is also good at determining whether a line
has a bend or not, which is illustrated in Figure 13.

Hence, as long as there is neither vertex-clutter nor edge-clutter and as long as no pair of edges
incident to a common vertex form a 180◦-angle, we will be able to unambiguously tell whether an
edge is incident to a vertex or not. In order to attack vertex-edge clutter we therefore propose the
following optimization problem. For a pair of edges incident to a common vertex p we define the
angular straight-line deviation as the smaller of the two angles that is enclosed by the lines defined by
the two edges, respectively. The angular straight-line deviation of p is then defined as the minimum
angular straight-line deviation over all pairs of edges incident to p, as illustrated in Figure 14.
The angular straight-line deviation of a geometric graph G is the minimum angular straight-line
deviation over all vertices of G. Note, that the angular straight-line deviation is maximized if
all angles are close to a right angle. Given a geometric graph G = (P,E) and a non-negative
value r ∈ R+, the Optimal Angle Adjustment problem is to find a new position for each
vertex p inside B(p, r) minimizing the angular straight-line deviation of the resulting geometric
graph.

Problem Optimal Angle Adjustment

Instance: Geometric graph G = (P,E), r ∈ R+
0

Solution: Geometric graph H = (Q,F ) and a mapping f : P → Q such that d(p, f(p)) ≤ r and
such that f(p)f(q) ∈ F if and only if pq ∈ E

Goal: maximize the angular straight-line deviation of H

Note that this problem differs considerably from the problem of maximizing the angular resolu-
tion of a graph, defined as the minimum angle over all pairs of adjacent edges. The optimal angular
resolution of a star-shaped graph with an odd number n of vertices, for instance, will result in zero
straight-line deviation, while it is obvious that the optimal straight-line deviation is positive. We
tackle the Optimal Angle Adjustment problem by maximizing the vertices’ distances from the
lines defined by the edges incident to their neighbors. Let G = (P,E) be a geometric graph and
let v ∈ P be a vertex. Let N(v) denote its neighbors in G. Further, let E(v) denote the edges
incident to v and let F (v) denote the set of edges incident to the vertices in N(v) but not to v. By
moving v we change the angles formed by pairs of edges in E(v) as well as the angles formed by
pairs of edges (e, f) such that e ∈ E and f ∈ F , respectively. Let LF (v) be the set of lines defined
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Fig. 14: Angular straight-line deviation of a vertex p. In the drawing the angular straight-line devi-
ation is defined by the angle α.

by the edges in F (v) and let LE(v) be the set of lines defined by all pairs of vertices in N(v). A
vertex v along with the lines defined by the edges in LE(v) and LF (v) is illustrated in Figure 15a.
Note, that there will be an angle of 180 degrees involving an edge incident to v if and only if v
is placed on one of the lines in LE(v) ∪ LF (v). Given p ∈ R2 we denote by µv(p) the minimum
distance of p to the lines in LE(v) ∪ LF (v). We prove the following.

Theorem 4. Given a graph G = (P,E), a vertex v ∈ P and a positive radius r ∈ R+ we can
compute a new position p∗ for v in B(v, r) such that µv(p∗) > 0 and such that p∗ maximizes µv(p)
over all p ∈ B(v, r) in O(t3α(t)) time where t = min{∆2,m}, ∆ denotes the maximum degree of G
and α(·) denotes the inverse Ackermann function.

Proof. First, we compute the set of edges LF (v)′ incident to v’s neighbors, but not to v, that inter-
sect B(v, r) as well as the set of lines LE(v)′ defined by all pairs of v’s neighbors intersecting B(v, r).
Let L = LE(v)′ ∪ LF (v)′. We compute the arrangement of lines in L in O(|L|2) time. Over each of
the resulting faces C we compute the lower envelope of the hyperplanes defining the distance to the
boundaries of the faces and project the graph GC defined by the resulting 3-dimensional polytope
onto the plane. This is illustrated in Figure 15b.

The lower envelope of a set of n hyperplanes can be computed in O(n2α(n)) time where α(·)
denotes the inverse of the Ackermann function [18]. Hence the lower envelopes can be computed in
time O(|L|2α(|L|)) for each face, resulting in a total complexity of O(|L|3α(|L|)). For each face C
we inspect the vertices of GC in B(v, r) as well as its intersection with B(v, c) and thus compute the
point p∗ maximizing µv in B(v, r). Then we update the position of v as illustrated in Figure 15c.
Since L is bounded by max{∆2,m} we obtain the claimed time complexity. Further, since r > 0
and therefore B(v, r) is non-degenerate, there must be a non-degenerate face in the arrangement
containing a point p∗ in its interior such that µ(p∗) > 0. ut

Using Theorem 4 we can incrementally compute a new position for each vertex v such that
none of the edges incident to v encloses an angle of 180 degrees with any other edge. Since the
angles between pairs of edges that are not incident to v are not affected by this operation, we can
iteratively apply Theorem 4 to the vertices one after another to obtain a drawing with strictly
positive angular straight-line deviation. At the same time this approach heuristically maximizes
this deviation.

Note that we may assume that we apply the angle adjustment to a generalized graph whose
complexity tends to be significantly lower than the complexity of the original graph, i.e., both m
and ∆ should be considerably smaller.
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Fig. 15: Illustration for the proof of Theorem 4. (a) A vertex v and its neighbors as well as the
arrangement of lines induced by the respective edges in LE(v) and LF (v). (b) Intersection of the
circle with projections of the graphs Gc (dashed) and locally optimal positions (black dots) in the
faces. (c) Globally optimal position and resulting new drawing.

5 Sample Generalizations

In order to evaluate the quality of the described heuristics and in order to obtain estimates for the
running time we implemented the described Greedy Weight Heuristic and Monotone Drift
Heuristic in C++ using the BOOST library [8] and the CGAL library [1]. All generalizations
were computed on a standard Intel Core 2 Duo processor running at 2.00 GHz with 2 GB RAM.

We performed our experiments on the benchmark set of graphs listed in Table 1 in Appendix A.
These graphs have between 1,000 and 100,000 vertices and between 3,000 and 2,000,000 edges,
respectively. The table lists, for each graph, an index that is used to identify the graphs in the
following figures as well as its size. All but the graphs marked with ? have been taken from the
University of Florida sparse matrix collection [14]. The graph clique-planar is a planar graph
with an implanted clique. The graph lunar-vis is a LunarVis [24] layout of a snapshot of the
Internet graph at the autonomous systems level that has been taken from the data collected by
the University of Oregon Routeviews Project [2]. The graph email is a force-based visualization of
the graph obtained from the e-mail communication at the faculty of informatics at the Karlsruhe
Institute of Technology during a fixed amount of time. The graphs osm berlin and osm isleofman

are street networks of Berlin, Germany, and Isle of Man, respectively, that have been extracted from
the OpenStreetMap data [3]. The graphs from the University of Florida sparse matrix collection
have additionally been layouted using the sfdp multi-scale force-based layouter from the graphviz
library [19].

For each of the graphs listed in Table 1 as well as for both α = 0 and α = 1, we performed
generalizations with 10 different radii ri = ∆/n + (∆/

√
n − ∆/N) · i in the range [∆/n,∆/

√
n]

for i = 0, . . . , 9, where ∆ := xmax−xmin is the width of the drawing. For each run, we measured the
time t1 of the Greedy Weight Heuristic and the time t2 of the Monotone Drift Heuristic.
Further, we collected the number of vertices nH and the the number of edges mH of the resulting
generalized graphs.

Even for the largest input graphs with several thousand vertices and over a million edges, the
observed running times were less than 5 minutes. However, most of the running time is caused
by the Monotone Drift Heuristic, which has a quadratic worst-case running time. For the
Greedy Weight Heuristic, the observed running time was less than 5 seconds for all graphs.
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Fig. 16: Running times of the generalization heuristics with respect to the size of the generalization in
a log-log-scale plot for α ∈ {0, 1} and drift = 0.3 (a)–(c) and running times for the individual graphs
in a linear-scale plot for α = 1 and drift = 0.3 (d)–(f). For reasons of clarity, Figure (a) contains
only the graphs with 0.3 ≤ t1 + t2 < 3, Figure (b) contains only the graphs with 3 ≤ t1 + t2 < 20
and Figure (c) contains only the graphs with t1 + t2 ≥ 20.

Figure 16 shows the running time of the heuristics as a function of the size nH + mH of the
generalized graphs. Figure 16a shows the running time t1 of the Greedy Weight Heuristic,
Figure 16b shows the running time t2 of the Monotone Drift Heuristic and Figure 16c shows
the resulting combined running time. In order to display all data in one chart, we employed a log-log-
scale plot for these figures. We added a line to each chart displaying the results of a linear regression,
applied to the log-transformed data. That is, for x = nH +mH and for each y ∈ {t1, t2, t1 + t2} we
computed ay and by minimizing the linear least-squares function

min
ay,by∈R

N∑
i=1

(log yi − (ay log xi + by))2

where xi and yi denote the measured sizes and running times of the single experiments for i =
1, . . . , N , respectively. The results suggest that the running time of the Greedy Weight Heuris-



tic t1 ≈ e−10.4578x0.9076 is approximated by a function that is slightly sub-linear in the size of the
generalized graph and the running time of the Monotone Drift Heuristic t2 ≈ e−15.95x1.56 is
approximated by a super-linear but sub-quadratic function in the size of the generalized graph. The
combined running time is approximately t1 + t2 ≈ e−13.105x1.328, which is super-linear.

Figures 16d–16f display the running times for α = 1 for the individual graphs of our benchmark
on a linear scale. Figure 16d contains all graphs for which t1 + t2 was at most 3 seconds, Figure 16e
contains all graphs whose maximum running time was between 3 and 20 seconds and Figure 16f
contains all graphs whose running time was more than 20 seconds. With only a few exceptions,
such as ex3sta1, TF16 and conf5 4-8x8-05, the running times seem to be slightly sub-linear or
slightly super-linear in the size of the generalized graph. The results for α = 0 are similar.

Next, we shortly discuss the generalized graphs. Figure 17 shows how the parameter α affects
the generalization. While the sizes of the generalized graphs for α = 0 and α = 1 will, in general,
differ considerably for a fixed radius r, we chose generalized graphs with roughly the same sizes in
order to illustrate the effects of choosing α = 0 and α = 1, respectively. Figure 17 clearly shows
that the generalizations with α = 1 are better suited at preserving the distribution of the original
point set. However, this is only achieved at the price of a higher resolution of the resulting drawing.
On the other hand, the homogeneous distribution of the points resulting from α = 0 does not seem
to capture the geometric properties of the original very well. Indeed, it seems that setting α = 0 is
not well suited for most of the graphs we inspected due to this behavior. Therefore, all remaining
generalization are performed with α = 1 if not otherwise stated.

Figure 18 shows how the radius r and the drift δ impact the resulting generalizations for α = 1.
To illustrate the effects of δ we applied the Greedy Weight Heuristic and Monotone Drift
Heuristic for different values of r and δ to a planar graph with an implanted clique whose vertices
have been arranged equidistantly on a cycle. While none of the edges of the clique is distinctly
perceivable in the original drawing, a higher drift helps remedying this without destroying the
impression of a clique even without generalizing the vertex set, as can be seen in the first row of
Figure 18. Note that the clique in the middle of the drawing remains a clique when setting δ = 0
for all values of r. With increasing δ, the clique becomes much sparser but is still perceivable as a
rather dense subgraph in the generalized graph for all radii.

Finally, Figures 19–26 show some selected sample generalizations. First, we discuss how the
heuristics perform on the graphs we used to illustrate the various types of clutter in Figure 3. These
graphs as well as the results of the heuristic generalization are displayed in Figures 19–21. Note
that the displayed generalized graphs have only 2–5% of the vertices of the respective originals.
Clearly, both vertex-clutter and edge-clutter can be significantly reduced without changing the
main impression of the graph. However, two drawbacks of our approach are immediately obvious
from these illustrations.

First, consider the graph oix and its generalization in Figures 20a and 20b, respectively. In the
original, there are many edges between a few vertices on the left and the vertices in the bottom
center. Apparently, these edges are mapped to only few monotone paths in the generalization,
which changes the impression of the density of the edges. This could be tackled by emphasizing
the edges in the generalization according to the number of edges that were mapped to it. As
another approach to this problem we could try to approximate the geometric edge distribution.
That is, similar to our approximation of the point-set distribution we could try to remove more
edges from regions containing few edges and removing fewer edges in regions with many edges. In
contrast to approximating the point-set distribution, however, it is not clear how to achieve this



(a) original (n=7920, m=31680)

(b) generalization (n=2104, m=8585) (d) generalization (n=2098, m=8188)

(c) generalization (n=1305, m=5636) (e) generalization (n=1358, m=5678)

Fig. 17: Effects of parameter α on the commanche dual graph from the University of Florida sparse
matrix collection [14]. (a) Original, (b), (c) Generalization with α = 1, (d), (e) Generalization
with α = 0.



drift= 0 drift= .15 drift= .2

r = 0

orig. (n=2423, m=11672) gen. (n=2424, m=9380) gen. (n=2424, m=9111)

r = 70

gen. (n=326, m=1860) gen. (n=326, m=1728) gen. (n=326, m=1657)

r = 100

gen. (n=203, m=1172) gen. (n=203, m=1120) gen. (n=203, m=1090)

r = 200

gen. (n=80, m=442) gen. (n=80, m=424) gen. (n=80, m=420)

r = 300

gen. (n=45, m=238) gen. (n=45, m=228) gen. (n=45, m=226)

Fig. 18: Effect of radius and drift on the graph clique-planar, a planar graph with an implanted
clique. All generalizations with α = 1.



(a) original (n=106675, m=248390) (b) generalization (n=5649, m=17273)

Fig. 19: Streetmap Data of Berlin [3] (osm berlin)

in a straightforward way since a single edge may cross both dense and less dense regions in the
drawing.

Second, consider the the graph PDS10 and its generalization in Figures 21a and 21b, respectively.
Clearly, the topmost vertices of the generalization show that our approach may create unwanted
adjacencies. These adjacencies are the result of contracting vertices that are close to each other and
working on the contracted edge set. While the edges are not false in the sense that each edge in
the contraction corresponds to at least one edge of the original, these edges create the wrong visual
impression. This problem could be approached, for instance, by trying to approximate the features
of the contracted vertex sets. For instance, the average degree of the contracted vertex sets will be
roughly two for most of the problematic vertices in these figures, while the resulting degree in the
generalization is larger.

The remaining figures serve as a further visual benchmark of the generalization heuristics. While
the general (geometric) impression of the graphs are reasonably well maintained, some further issues
for future research can be observed.

Consider, for instance the graph ukerbe1 dual and its generalization illustrated in Figure 24a
and 24b, respectively. While the density of the point set and the size of the faces is maintained
quite well, most of the faces are triangulated in the generalization, whereas most of the faces of
the original contain four vertices. Further, consider the cube graph illustrated in Figure 25. The
topological structure of the generalized graph is rather different from the original. Although the
vertices contracted into single clusters are close to each other both geometrically and with respect to
graph-distance, the cubic structure is not maintained. Again this may be remedied by approximating
the features of the contracted vertices, such as average degree.

While the proposed heuristics do not solve the generalization problem in all its facets, especially
with respect to the topological features of the graph, they seem to be well suited at maintaining



(a) original (n=17233, m=74436) (b) generalization (n=397, m=2134)

Fig. 20: LunarVis Layout of the AS-Graph [24] (lunar-vis)

the geometric impression of the originals and, thus, form good starting points for future research
on this problem. In order to overcome the current difficulties, however, we must explicitly include
topological features of the original graph into the generalization process.

6 Conclusion and Open Problems

We have undertaken a first step at studying the problem of generalizing geometric graphs within a
rigorous mathematical model. We formalized the problem by considering an incremental framework
modeling the elimination or reduction of different types of clutter as optimization problems, which
we analyzed in terms of complexity. Since these problems turned out to be NP-hard in general, we
also devised efficient approximation algorithms as well as efficient heuristics. We showed how to
heuristically eliminate vertex-clutter in O((n+m) log3m+ n log2 n) time and how to reduce edge
clutter in O(nm+m2) time considering geometric features such as point distributions and geodesic
tendencies. After the elimination of vertex-clutter and edge-clutter we can expect the graph to
be much smaller than the original graph. Hence, even larger complexities may scale accordingly.
Thus, even the relatively high complexity of our heuristic for reducing vertex-edge clutter may be
practical.

Even without this step, however, the resulting generalizations exhibit considerably less clutter
and are easier to analyze. We showcased some promising generalizations produced by our heuristics.
We conclude by listing some open problems.

– Is it possible to approximate both the local coverage and the size of a %-set in the vertex
generalization step?

– What is the complexity of the Local Coverage Cluster Packing problem for different
types of mappings?



– Is it possible to approximate the size of a shortest geodesic subgraph, possibly in the presence
of a limited drift?

– What is the complexity of the optimal angle adjustment problem?
– How can the generalization problem be adapted to a dynamic scenario, where consistency issues

play an additional role.

Acknowledgments. We thank Robert Görke for the helpful discussion and for providing the
LunarVis layout.
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A Benchmark Graphs

Table 1: Benchmark set of graphs used for our experiments, sorted according to number of ver-
tices. All graphs, except those marked with ?, are from the University of Florida sparse matrix
collection [14]; clique-planar is a planar graph with an implanted clique, lunar-vis is a Lu-
narVis layout of the AS-Graph [24], email is a force-based layout of the email network of the
faculty of informatics and osm berlin and osm isleofman are street networks extracted from the
OpenStreetMap data [3].

i name n m i name n m
1 bcspwr09 1036 3736 22 ex33 16558 149658
2 bcsstk08 1050 29156 23 ex3 16782 678998
3 bcsstk14 1072 12444 24 jagmesh8 16840 96464
4 bcsstk26 1074 12960 25 aug3d 17233 74436
5 can 1072 1133 10902 26 cep1 17546 121938
6 clique-planar? 1141 7465 27 commanche dual 18354 166080
7 bcsstk35 1242 10426 28 conf5 4-8x8-05 18454 253350
8 bcsstk36 1723 6511 29 lpl3 18728 101576
9 bcsstk37 1733 22189 30 nemscem 23052 1143140

10 bodyy4 1806 63454 31 pds10 24300 69984
11 c-48 1821 52685 32 sstmodel 24494 51256
12 cti 1866 7076 33 msc01050 25503 1140977
13 ex3sta1 1919 32399 34 netz4504 30237 1450163
14 ford1 1922 30336 35 lunar-vis? 34758 432346
15 g7jac060sc 1960 11187 36 osm berlin? 35460 406632
16 jan99jac060 1961 5156 37 osm isleofman? 41228 254364
17 jan99jac100sc 2363 7680 38 plat1919 44514 201050
18 tandem vtx 2423 11672 39 rajat02 49152 2064384
19 TF16 3345 19404 40 stufe 68908 431724
20 dwt 1242 6290 16466 41 ukerbe1 dual 106675 248390
21 email? 7920 31680



(a) original (n=16558, m=149658) (b) generalization (n=910, m=3520)

Fig. 21: Generalization of the graph PDS10 from the University of Florida sparse matrix collec-
tion [14]

(a) original (n=1050, m=29156) (b) generalization (n=157, m=1110)

Fig. 22: Generalization of the graph msc01050 from the University of Florida sparse matrix collec-
tion [14]



(a) original (n=1242, m=10426) (b) generalization (n=469, m=2608)

Fig. 23: Generalization of the graph dwt 1242 from the University of Florida sparse matrix collec-
tion [14]

(a) original (n=1866, m=7076) (b) generalization (n=234, m=1062)

Fig. 24: Generalization of the graph ukerbe1 dual from the University of Florida sparse matrix
collection [14]



(a) original (n=24300, m=69984) (b) generalization (n=2093, m=13546)

Fig. 25: Generalization of the graph aug3d from the University of Florida sparse matrix collec-
tion [14]

(a) original (n=44514, m=201050) (b) generalization (n=958, m=5763)

Fig. 26: Generalization of the graph lpl3 from the University of Florida sparse matrix collection [14]
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