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Abstract

The aim of this thesis is to use Galerkin boundary element methods to solve the

eigenvalue problems for the Helmholtz equation and the Maxwell’s equations with an

application to the computation of band structures of photonic crystals. Boundary element

methods (BEM) may be considered as the application of Galerkin methods to boundary

integral equations. The central to boundary element methods is the reduction of boundary

value problems to equivalent boundary integral equations. This boundary reduction has

the advantage of reducing the number of space dimension by one and the capability to

solve problems involving infinite domains. The strategy for studying boundary integral

equations by weak solutions is the same with partial differential equations. Boundary

element methods are based on variational formulations and the strategy for studying

boundary element methods is also the same with finite element methods. In Chapter 1 we

give a brief introduction of Galerkin-BEMs for the Laplace and Helmholtz equations, and

the Maxwell’s equations for the Dirichlet and Neumann boundary value problems with a

Priori error estimates. In Chapter 2 we use Galerkin-BEMs with domain decomposition

methods to solve the inhomogeneous problems for the Helmholtz equation and the

Maxwell’s equations with a Priori error estimates. The numerical results confirm the

a Priori results for boundary value problems. To solve eigenvalue problems by using

boundary element methods is a new work. In Chapter 3 we give an introduction of

Galerkin-BEMs for solving the eigenvalue problems for the Helmholtz equation and the

Maxwell’s equations with a Priori error estimates (three times). The proof of a Priori

error estimates follow the Ph.D. work of Dr. Gerhard Unger in 2010. In Chapter 4 we use

Galerkin-BEMs to solve the interface eigenvalue problems for the Helmholtz equation

and the Maxwell’s equations. The numerical results confirm the a Priori results. If we use

Galerkin-BEMs to solve these eigenvalue problems, the linear eigenvalue problems will

be changed to the nonlinear eigenvalue problems and we use the Newton method to solve

this kind of nonlinear eigenvalue problems. Because of the limit of the Newton method,

an alternative method such as the contour integral method will be considered in the further

work after this thesis.

Photonic crystals are the materials which are composed of periodic dielectric or

metallo-dielectric nanostructures. They exist in nature and have been studied for

more than one hundred years. Photonic crystals can also be technically designed

and produced to allow and forbid electromagnetic waves in a similar way that the

periodicity of semiconductor crystals affects the motion of electrons. Since photonic

crystals affect electromagnetic waves, the Maxwell’s equations are used to describe this

phenomena. When we design photonic crystals, we need to know for which frequencies

electromagnetic waves can not propagate in them. So we need to calculate the frequencies



and this is an eigenvalue problem. By using the famous Bloch theorem, the problem is

changed from the whole domain to one unit cell with quasi-periodic boundary conditions.

As a summary, we get an interface eigenvalue problem with quasi-periodic boundary

conditions for the Maxwell’s equations. In Chapter 5 we solve the eigenvalue problems

in homogeneous and inhomogeneous mediums, respectively, with periodic boundary

conditions. At the end we solve an interface eigenvalue problem with quasi-periodic

boundary conditions as an example for the computation of band structures of photonic

crystals and compare our results with finite element methods. The results from Galerkin-

BEMs match the results from finite element methods very well and we confirm the

application of Galerkin-BEMs for solving this kind of eigenvalue problems.
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Chapter 1

Boundary Element Methods for
Boundary Value Problems

Partial differential equations (PDE) and boundary integral equations (BIE) are used to

describe different problems in physics and other research fields. At first we should have

an understanding of a well-posed problem. A well-posed problem means the existence,

uniqueness and stability of the solution. The study of these properties is the main work

for PDEs and BIEs and we have two ways. One way is to find a representation formula

for the solution. This kind of the solution is called a classical solution and the study could

follow [27, 39, 25, 23]. A classical solution is usually required to be k-times continuously

differentiable according to the order of the PDE. This is a strong condition and many

boundary value problems don’t have so regular solutions. Even if the solution is regular,

it is also difficult to find a formula for it in many cases. So if we want to discuss a more

general problem, we use the other way which generalizes the problem and discusses the

properties of the solution by a variational formulation. This kind of the solution is called

a weak solution and the study could follow [23, 5, 25]. The strategy for studying BIEs

by a weak solution is exactly the same with PDEs [65, 62, 35]. Finite element methods

(FEM) and boundary element methods (BEM) are based on variational formulations. The

study of FEMs could follow [22, 47, 4, 50, 16]. As a summary we have three steps.

(1a) a generalization of the problem;

(1b) the existence, uniqueness and stability of a weak solution;

(1c) FEMs or BEMs based on variational formulations.

The main idea of (1a) for BIEs is to extend continuously differentiable function spaces

to Sobolev spaces and operators are also extended to Sobolev spaces. The study of

Sobolev spaces could follow [26, 60, 1]. Since Sobolev spaces and generalized operators

are defined in a distributional sense, the continuously differentiable condition is released

and the problem could be defined on a domain with a Lipschitz boundary. We have three

steps for (1a) and five sub-steps for the continuity of boundary integral operators (BIO).

(2a) definitions of Sobolev spaces;

(2b) definitions of generalized operators;
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(2c) continuity of generalized operators.

• continuity of Neumann and Dirichlet trace operators;

• continuity of potential operators;

• potentials as weak solutions of a generalized problem;

• continuity of boundary integral operators;

• representations of singular integrals.

The next step (1b) is to define a variational formulation by a dual pairing and discuss

the existence, uniqueness and stability of a weak solution. The Lax-Milgram theorem

and Fredholm alternative lemma are the common tools used in this step. They need the

bilinear form in the variational formulation to be elliptic or satisfy the Gårding inequality.

This step need the knowledge of function analysis and the study could follow [20, 59, 5].

In the last step (1c) we need to define a boundary element space instead of the Sobolev

space in the variational formulation and get a discretization formulation. The strategy to

do the a Priori error estimates for BEMs is exactly the same with FEMs. They are the

Cea’s lemma, optimal convergence and super convergence. The study of BEMs could

follow [34, 58, 65, 62]

Figure 1.1 A flow chart of Galerkin-BEMs for boundary value problems
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Fig 1.1 is a flow chart of a standard procedure of the study of BIEs and BEMs for

boundary value problems. In this chapter we follow Fig 1.1 to give an introduction of

Galerkin-BEMs for Dirichlet and Neumann boundary value problems for the Helmholtz

equation and the Maxwell’s equations with some numerical examples. This chapter is

the basis of the whole thesis which includes the definitions of function spaces, and the

definitions and properties of boundary integral operators for the Helmholtz equation and

the Maxwell’s equations. The work of BEMs for the Maxwell’s equations is based on the

work for the Helmholtz equation and the work for the Helmholtz equation is based on

the work for the Laplace equation. The work for the Laplace equation is based on some

results of the study of the Laplace equation as a PDE.

1.1 Classical electrodynamics
In this section we introduce theMaxwell’s equations for different problems in classical

electrodynamics and classify them into the Poisson, heat and wave equations. We only

consider electromagnetic fields in a linear, homogeneous and isotropic medium. The study

of classical electrodynamics could follow [78, 30, 37].

The Maxwell’s equations

In 1864 J. C. Maxwell published the famous paper to combine the equations from

electrostatics and magnetostatics with Faraday law and modify them to be a consistent

equation system. We call this equation system the Maxwell’s equations. The Maxwell’s

equations are used to describe electromagnetic phenomena. In 1886 H. Hertz generated

and detected electromagnetic radiation in the University of Karlsruhe.

∇ · E =
ρ

ε
, (1.1.1a)

∇× E = −μ∂H
∂t

, (1.1.1b)

∇ ·H = 0 , (1.1.1c)

∇×H = j+ ε
∂E

∂t
, (1.1.1d)

whereE is the electric field intensity,H is the magnetic field intensity, ε is the permittivity,

μ is the permeability, ρ is the electric charge density and j is the electric current density.

The boundary conditions at the interface between two different mediums are given by

n · (ε2E2 − ε1E1) = Σ , (1.1.2a)

n× (E2 − E1) = 0 , (1.1.2b)

n · (μ2H2 − μ1H1) = 0 , (1.1.2c)

n× (H2 −H1) = K , (1.1.2d)

where n is the unit normal on the interface, μ1, μ2 and ε1, ε2 are the permeability and

permittivity of two different mediums, respectively, Σ is the surface charge density, and
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K is the surface current density.

Electrostatics (the Poisson equation)

Electrostatics is the study of static electric fields generated by stationary electric

charges. The Coulomb’s law is the basis of electrostatics and the Maxwell’s equations

(1.1.1) are reduced to

∇ · E =
ρ

ε
, (1.1.3a)

∇× E = 0 . (1.1.3b)

Since (1.1.3b) holds, we define E as the gradient of a scalar potential Φ

E = −∇Φ . (1.1.4)

We use (1.1.4) in (1.1.3a) and get

−ΔΦ =
ρ

ε
. (1.1.5)

Magnetostatics (the Poisson equation)

Magnetostatics is the study of static magnetic fields generated by steady currents. The

Biot and Savart law is the basis of magnetostatics and the Maxwell’s equations (1.1.1) are

reduced to

∇ ·H = 0 , (1.1.6a)

∇×H = j , (1.1.6b)

Since (1.1.6a) holds, we define H as the curl of a vector potential A which satisfies the

transverse gauge

∇ ·A = 0 , (1.1.7a)

H = ∇×A . (1.1.7b)

We use (1.1.7b) in (1.1.6b) with (1.1.7a) and get a system of equations

∇ ·A =0 , (1.1.8a)

−∇2A =j . (1.1.8b)

Electromagnetics (the wave and heat equation)

First, we consider electromagnetic fields in a dielectric medium. Since (1.1.1c) holds,

we have the same definition for H as (1.1.7b). We use (1.1.7b) in (1.1.1b) and get

∇×
(
E+ μ

∂A

∂t

)
= 0 . (1.1.9)
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According (1.1.9) we define E+ μ∂A
∂t

as the gradient of a scalar potential

E+ μ
∂A

∂t
= −∇Φ .

We could use the Lorenz gauge or the transverse gauge for Φ andA. By the Lorenz gauge

(1.1.10a) we get a system of equations

∇ ·A+ ε
∂Φ

∂t
= 0 , (1.1.10a)

εμ
∂2Φ

∂t2
−ΔΦ =

ρ

ε
, (1.1.10b)

εμ
∂2A

∂t2
−∇2A = j . (1.1.10c)

For the electric field intensity we use (1.1.1d) in (1.1.1b) and get

εμ
∂2E

∂t2
−∇2E = −μ∂j

∂t
. (1.1.11)

We could also use (1.1.1b) in (1.1.1d) to get an equation forHwhich is similar to (1.1.11).

Next, we consider electromagnetic fields in a conducting medium, so (1.1.1d) has a

different form by the Ohm’s law

∇×H = j+ σE+ ε
∂E

∂t
, (1.1.12)

where σ is the electrical conductivity. Using the same definitions of the scalar and vector

potentials and the Lorenz gauge (1.1.13a), we get a system of equations

∇ ·A+ σΦ + ε
∂Φ

∂t
= 0 , (1.1.13a)

εμ
∂2Φ

∂t2
+ μσ

∂Φ

∂t
−ΔΦ =

ρ

ε
, (1.1.13b)

εμ
∂2A

∂t2
+ μσ

∂A

∂t
−∇2A = j . (1.1.13c)

For the electric field intensity we use (1.1.12) in (1.1.1b) and get

εμ
∂2E

∂t2
+ μσ

∂E

∂t
−∇2E = −μ∂j

∂t
. (1.1.14)

Then, for a conducting medium, σ is much larger than ε, so we may neglect the second

order differential terms in (1.1.13b), (1.1.13c) and (1.1.14) and get

μσ
∂Φ

∂t
−ΔΦ =

ρ

ε
, (1.1.15a)

μσ
∂A

∂t
−∇2A = j , (1.1.15b)
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μσ
∂E

∂t
−∇2E = −μ∂j

∂t
. (1.1.16)

Electromagnetic waves (the Helmholtz equation)

The study of the propagation of electromagnetic waves is a common topic in classical

electrodynamics. We just consider the equations for the electric field intensityE. First, we

consider electromagnetic waves in a dielectric medium without sources (j and ρ). From

(1.1.11) we get

εμ
∂2E

∂t2
−∇2E = 0 . (1.1.17)

Next, we consider electromagnetic waves in a conducting medium without sources. From

(1.1.14) we get

εμ
∂2E

∂t2
+ μσ

∂E

∂t
−∇2E = 0 . (1.1.18)

Then, we neglect the second order differential term in (1.1.18) and get

μσ
∂E

∂t
−∇2E = 0 . (1.1.19)

Let ω be a certain frequency of electromagnetic waves. We use E(x, t) = e(x)e−iωt in

(1.1.17), (1.1.18), (1.1.19) and (1.1.1a). We get a system of equations for time-harmonic

electric fields

∇ · e =0 , (1.1.20a)

−∇2e =λe , (1.1.20b)

where λ = εμω2 for (1.1.17), λ = εμω2 + iμωσ for (1.1.18), or λ = iμωσ for (1.1.19).

We can do the same transformations for the corresponding equations for H.

Classification

Now we have already seen some familiar equations in classical electrodynamics. Φ in

(1.1.5) andAi in (1.1.8) satisfy the Poisson equation respectively. Φ,Ai andEi satisfy the

wave equation in (1.1.10) and (1.1.11) respectively. They also satisfy the wave equation

with a damping term in (1.1.13) and (1.1.14) and the heat equation in (1.1.15) and (1.1.16)

respectively. ei satisfies the Helmholtz equation and λ is a real number or a complex

number with zero or nonzero real part in (1.1.20). The above equations with appropriate

boundary and initial conditions will be boundary value problems or initial-boundary value

problems. If we calculate λ and e together in (1.1.20), this is an eigenvalue problem.

1.2 The Helmholtz case
From (1.1.20) we know that ei satisfies the Helmholtz equation and λ could be a real

number or a complex number. In this section we study Dirichlet and Neumann boundary

value problems for the Helmholtz equation. We just consider electromagnetic waves in a
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dielectric medium, so λ is a real number. We assume that λ = k2 and k is a positive real

number. The Helmholtz equation is

Δu(x) + k2u(x) =0 ∀x ∈ Ω , (1.2.1)

where Ω is a bounded domain. Dirichlet and Neumann boundary conditions are given by

u(x) = f(x) ∀x ∈ Γ , (1.2.2a)

∂u

∂n
(x) := n(x) · ∇u(x) = g(x) ∀x ∈ Γ , (1.2.2b)

respectively, where Γ := ∂Ω, n is the exterior unit normal to Γ, and f and g are the given

data.

1.2.1 Representation formula

We assume that Γ is a smooth boundary. Green’s first formula for (1.2.1) is∫
Ω

(Δu(x) + k2u(x))v(x)dx+

∫
Ω

(∇u(x) · ∇v(x)− k2u(x)v(x))dx

=

∫
Γ

∂u

∂n
(x)v(x)dsx .

(1.2.3)

for any smooth function v. Green’s second formula is∫
Ω

(Δu(x) + k2u(x))v(x)dx−
∫
Ω

u(x)(Δv(x) + k2v(x))dx

=

∫
Γ

∂u

∂n
(x)v(x)dsx −

∫
Γ

u(x)
∂v

∂n
(x)dsx .

(1.2.4)

The fundamental solution for the Helmholtz equation is

Ek(x, y) =
eik|x−y|

4π|x− y| , (1.2.5)

which satisfies

−(Δ + k2)Ek(x, y) = δ(x− y) .

We use v(x) = Ek(x, y) and (1.2.1) in (1.2.4), and exchange the notations for x and y.
Then we get a representation formula for u,

u(x) =

∫
Γ

Ek(x, y)
∂u

∂ny

(y)dsy −
∫
Γ

∂Ek(x, y)

∂ny

u(y)dsy ∀x ∈ Ω . (1.2.6)

1.2.2 Function spaces

In this section we introduce some basic notation and list the definitions of the function

spaces which we will use. Let α = (α1, · · · , αd) be a d-dimensional vector and αi be
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non-negative integers. |α| := ∑d
i=1 αi. Then we define partial derivatives for a real

valued function u which is sufficiently smooth as

Dαu :=
∂|α|u

∂xα1
1 · · · ∂xαd

d

.

Let Ω be a bounded domain. In our work a domain means an open and connected

subset of Rn (n = 2, 3). The definitions of continuously differentiable function spaces

Cm(Ω) and Hölder continuously differentiable function spaces Cm+β(Ω) form ∈ N
0 and

0 < β < 1 are

Cm(Ω) := {u | u is m times continuously differentiable in Ω} ,

and

Cm+β(Ω) := {u ∈ Cm(Ω) | ‖u‖Cm+β(Ω) <∞} ,
with the corresponding norms

‖u‖Cm(Ω) :=
∑
|α|≤m

sup
x∈Ω

|Dαu(x)|

and

‖u‖Cm+β(Ω) := ‖u‖Cm(Ω) +
∑
|α|=m

sup
x,y∈Ω,x �=y

|Dαu(x)−Dαu(y)|
|x− y|β .

C∞(Ω) is the space of functions which are infinitely continuously differentiable.

L2(Ω) is a Hilbert space and the definition is

L2(Ω) := {u | u is a measurable function , ‖u‖L2(Ω) <∞} ,

where

‖u‖2L2(Ω) :=

∫
Ω

|u(x)|2dx .

The definition of the inner product of L2(Ω) is

〈u, v〉L2(Ω) :=

∫
Ω

u(x)v(x)dx .

We can define Sobolev spaces as the closure of smooth function spaces by the norm

defined by weak derivatives. Alternatively, we can define Sobolev spaces as a subset of

distributions. We use the first definition with the notation from the second definition.

Hm(Ω) := C∞(Ω)
‖·‖Hm(Ω)

,

with the norm

‖u‖2Hm(Ω) :=
∑
α≤m

‖Dαu‖2L2(Ω) .

Hm+β(Ω) := C∞(Ω)
‖·‖

Hm+β(Ω) ,
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with the norm

‖u‖2Hm+β(Ω) := ‖u‖2Hm(Ω) + |u|2Hm+β(Ω) ,

and the semi-norm is

|u|2Hm+β(Ω) :=
∑
|α|=m

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|2
|x− y|n+2β dxdy .

n is the dimension of the Euclidean space. β ∈ (0, 1). H−(m+β)(Ω) is the dual space of

Hm+β(Ω).

For boundary integral equations we need Sobolev spaces defined on the manifold Γ.
We can define Sobolev spaces on Γ by the same way as on Ω, or by the trace inequality

and the inverse trace inequality from [65, Theorem 2.21 and 2.22] and [1, 48], we can also

define Sobolev spaces on Γ as the trace spaces of Sobolev spaces on Ω. That is

Hm+β(Γ) := {u|Γ | u ∈ Hm+β+1/2(Ω)} .

H−(m+β)(Γ) is the dual space of Hm+β(Γ).

1.2.3 Boundary integral equations

When we derive the representation formula (1.2.6), we assume that the boundary is

smooth and u ∈ C2(Ω). We call (1.2.6) the classical representation formula. In the last

section we have introduced (2a) in Fig. 1.1 and in this section we continue to introduce

(2b) and (2c), then we can generalize the problem for (1.2.6).

Let u be the solution of (1.2.1). From Dirichlet and Neumann boundary conditions

(1.2.2a) and (1.2.2b), we need to define two trace operators.

γ0(u)(x) := lim
x̃∈Ω→x∈Γ

u(x̃)

We define γ1(u) as the solution of the variational formulation

〈γ1(u), v〉Γ :=

∫
Ω

(∇u(x) · ∇E(v)(x)− k2u(x)E(v)(x))dx

for all v ∈ H1/2(Γ). 〈·, ·〉Γ is the dual pairing. The operator E : H1/2(Γ) → H1(Ω) is

defined by the inverse trace inequality [65, Theorem 2.22]. Then for u ∈ H1(Ω) we have

γ0(u) ∈ H1/2(Γ) by the trace inequality and γ1(u) ∈ H−1/2(Γ). We call γ0 the Dirichlet

trace operator and γ1 the Neumann trace operator. We have a lemma for the continuity of

the trace operators.

Lemma 1. Let Γ be a Lipschitz boundary. The Dirichlet trace operator γ0 and the
Neumann trace operator γ1 for the Helmholtz equation are bounded operators

γ0 : H1(Ω)→ H1/2(Γ) ,

γ1 : H1(Ω)→ H−1/2(Γ) .
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Proof. See [1, 48] and Lemma 4.4 in [65].

We define two potential operators corresponding to the two boundary integrals in

(1.2.6) for v ∈ H−1/2(Γ) and w ∈ H1/2(Γ) as

Ṽk(v)(x) =

∫
Γ

Ek(x, y)v(y)dsy ∀x ∈ Ω ,

Wk(w)(x) =

∫
Γ

∂Ek(x, y)

∂n(y)
w(y)dsy ∀x ∈ Ω .

We call Ṽk the single-layer potential operator and Wk the double-layer potential operator.

We have a lemma for the continuity of Ṽk and Wk.

Lemma 2. Let Γ be a Lipschitz boundary and let v ∈ H−1/2(Γ) or w ∈ H1/2(Γ) be
given. Then, u(x) = Ṽk(v)(x) or u(x) = Wk(w)(x) for x ∈ Ω is a weak solution of the
Helmholtz equation. The single-layer potential operator Ṽk and the double-layer potential
operator Wk are bounded operators

Ṽk : H−1/2(Γ)→ H1(Ω) ,

Wk : H1/2(Γ)→ H1(Ω) .

Proof. See Lemma 6.6 and Lemma 6.10 in [65].

By using the Dirichlet and Neumann trace operators to the single-layer and double-

layer potential operators, respectively, we could define four boundary integral operators

for the Helmholtz equation. By the continuity of trace operators and potential operators,

we also have the continuity of boundary integral operators. Then we get the following

theorem.

Theorem 1. Let Γ be a Lipschitz boundary. The boundary integral operators, γ0Ṽk, γ0Wk,
γ1Ṽk, and γ1Wk, are bounded operators

γ0Ṽk : H−1/2(Γ)→ H1/2(Γ) ,

γ0Wk : H1/2(Γ)→ H1/2(Γ) ,

γ1Ṽk : H−1/2(Γ)→ H−1/2(Γ) ,

γ1Wk : H1/2(Γ)→ H−1/2(Γ) .

Proof. By using Lemma 1 and Lemma 2.

In the calculation we need explicit formulae for the boundary integral operators. We
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have the following definitions

(Vkv)(x) :=

∫
Γ\{x}

Ek(x, y)v(y)dsy , (1.2.7a)

(Kkw)(x) :=p.v.

∫
Γ\{x}

γ1,y(Ek(x, y))w(y)dsy , (1.2.7b)

(K ′
kv)(x) :=p.v.

∫
Γ\{x}

γ1,x(Ek(x, y))v(y)dsy , (1.2.7c)

(Dkw)(x) :=− p.v.

∫
Γ

γ1,x(γ1,y(Ek(x, y)))(w(y)− w(x))dsy , (1.2.7d)

for x ∈ Γ, v ∈ H−1/2(Γ) and w ∈ H1/2(Γ). Vk is called the single-layer boundary

integral operator and Vkv is a weakly singular integral. Kk and K ′
k are called the double-

layer and adjoint double-layer boundary integral operator, respectively, andKkw andK ′
kv

are Cauchy principle value integrals. Dk is called the hyper-singular boundary integral

operator. For the hyper-singular boundary integral operator, it is not integrable. We need

to do a regularization for it. (1.2.7d) is a regularization of Dk and it is a Cauchy principle

value integral. Then we have the following results for the boundary integral operators.

There exists η ∈ L∞(Γ) such that

Vk = γ0Ṽk : H−1/2(Γ)→ H1/2(Γ) ,

(−1 + η)I +Kk = γ0Wk : H1/2(Γ)→ H1/2(Γ) ,

ηI +K ′
k = γ1Ṽk : H−1/2(Γ)→ H−1/2(Γ) ,

Dk = γ1Wk : H1/2(Γ)→ H−1/2(Γ) .

More details see [65, 49].

If Γ is differentiable within a neighborhood of x ∈ Γ, we have η(x) = 1
2
. So without

loss of generality, we always assume that η(x) = 1
2
for almost all x ∈ Γ in our work.

(1.2.7d) is still not enough for the calculation, we have the other formula for the dual

pairing 〈Dkw, v〉Γ,

〈Dkw, v〉Γ =

∫
Γ

∫
Γ

Ek(x, y)(n(y)×∇w̃(y)) · (n(x)×∇ṽ(x))dsydsx

− k2
∫
Γ

∫
Γ

Ek(x, y)w(y)v(x)n(y) · n(x)dsydsx ,
(1.2.8)

where w̃ and ṽ are the suitable extensions of w and v into a three-dimensional

neighborhood of Γ respectively. For more details see [65, 51].

Now we go back to the representation formula (1.2.6). The function space for u is

extended to H1(Ω) and we have

u(x) = (Ṽkγ1(u))(x)− (Wkγ0(u))(x) ∀x ∈ Ω . (1.2.9)

We call (1.2.9) the generalized representation formula. We use the Dirichlet trace operator
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γ0 and the Neumann trace operator γ1 on (1.2.9), respectively, and get two boundary

integral equations

γ0u =Vk(γ1u)−
(
−1

2
I +Kk

)
(γ0u) , (1.2.10a)

γ1u =

(
1

2
I +K ′

k

)
(γ1u) +Dk(γ0u) , (1.2.10b)

for γ0u ∈ H1/2(Γ) and γ1u ∈ H−1/2(Γ). If we want to use the generalized representation

formula (1.2.9) to calculate the solution in the domain, we need to know (γ0u, γ1u) on the

whole boundary. So by using (1.2.10), we define a Calderón projection for (γ0u, γ1u) as

C =

(
1
2
I −Kk Vk

Dk
1
2
I +K ′

k

)
: H1/2(Γ)×H−1/2(Γ)→ H1/2(Γ)×H−1/2(Γ) . (1.2.11)

By using the Dirichlet boundary condition (1.2.2a) and the Neumann boundary condition

(1.2.2b), respectively, we get two boundary integral equations

Vk(γ1u) =

(
1

2
I +Kk

)
f , (1.2.12)

Dk(γ0u) =

(
1

2
I −K ′

k

)
g . (1.2.13)

1.2.4 Variational formulations
In the last section we consider the step (1a) in Fig. 1.1. In this section we continue to

introduce the step (1b) in Fig. 1.1. We define σ := γ1u and ϕ := γ0u.
The variational formulation for (1.2.12) is to find σ ∈ H−1/2(Γ) such that

〈Vkσ, χ〉Γ =

〈(
1

2
I +Kk

)
f, χ

〉
Γ

, (1.2.14)

for all χ ∈ H−1/2(Γ).
The variational formulation for (1.2.13) is to find ϕ ∈ H1/2(Γ) such that

〈Dkϕ, υ〉Γ =

〈(
1

2
I −K ′

k

)
g, υ

〉
Γ

, (1.2.15)

for all υ ∈ H1/2(Γ).
If k = 0, (1.2.1) is the Laplace equation. Let V denote the single-layer boundary

integral operator and D denote the hyper-singular boundary integral operator of the

Laplace equation. V is proved to be H−1/2(Γ)-elliptic and D is proved to be H1/2(Γ)-
semi-elliptic. Vk is notH−1/2(Γ)-elliptic andDk is notH1/2(Γ)-elliptic for the Helmholtz

equation. If we want to prove the existence and uniqueness of the solutions of (1.2.14)

and (1.2.15), we need to prove the coercivity of Vk and Dk. The coercivity means that

for a bounded operator there exists a compact operator such that the addition of these two



1.2 The Helmholtz case 13

operators is an elliptic operator. We have a lemma for the coercivity of Vk and Dk.

Lemma 3. Let Γ be a Lipschitz boundary. Let CV := V − Vk and CD := D + I − Dk.
Then CV and CD are compact operators, and Vk and Dk satisfy the Gårding inequality

〈(Vk + CV )v, v〉Γ = 〈V v, v〉Γ ≥ cV ‖v‖2H−1/2(Γ) , (1.2.16)

〈(Dk + CD)w,w〉Γ = 〈(D + I)w,w〉Γ ≥ cD‖w‖2H1/2(Γ) (1.2.17)

for v ∈ H−1/2(Γ) and w ∈ H1/2(Γ).

Proof. More details see Theorem 6.40 in [65].

If k2 is not an eigenvalue of the Laplace eigenvalue problem, by the Fredholm’s alternative

and Lemma 3, we have the existence and uniqueness of (1.2.14) and (1.2.15).

1.2.5 Galerkin-BEMs
In this section we go to the last step (1c) in Fig. 1.1 to introduce Galerkin-BEMs for

(1.2.14) and (1.2.15). In our work we only consider triangular meshes.

Definition 1. A triangular cell C consists of a domain ΩC , vertices V = {x1, x2, x3} and
edges E = {e1, e2, e3}.
Definition 2. A triangular mesh Γh is built by cells {Ci}Ni=1 and defines a boundary Γh

such that Γh =
⋃N

i=1Ωi, VΓh
=
⋃N

i=1 Vi, and EΓh
=
⋃N

i=1 Ei.
Def. 1 and 2 are important for the data structure of meshes in M++ which is a parallel

FEM software developed by Prof. C. Wieners in KIT. More details see [74, 76, 75].

Definition 3. A boundary element is defined by (C, PC,ΣC). PC is a polynomial function
space on ΩC . ΣC is a set of linear functionals on PC and they are called the degrees of
freedom.

A cell C and a boundary element (C, PC,ΣC) could also be defined from a reference cell

Ĉ and a reference boundary element (Ĉ, P
̂C,Σ̂C) by a mapping.

We define two piecewise polynomial function spaces on the boundary

S0h(Γh) := {vh ∈ L2(Γh) | vh is constant on every Ωi in the mesh Γh} ,

S1h(Γh) := {wh ∈ C(Γh) | wh is a linear function on every Ωi in the mesh Γh} .
Boundary elements on every Ci in the mesh Γh with polynomial function spaces defined

by S0h(Γh)|Ωi
and S1h(Γh)|Ωi

are (Ci, S0h(Γh)|Ωi
,Σ0

Ci) and (Ci, S1h(Γh)|Ωi
,Σ1

Ci), and

Σ0
Ci := {l is a lineal functional , l(v) = v((x1 + x2 + x3)/3) , v ∈ S0h(Γh)|Ωi

} ,

Σ1
Ci := {li is a linear functional for i = 1, 2, 3 , li(w) = w(xi) , w ∈ S1h(Γh)|Ωi

} .
Then we define two boundary element spaces for (1.2.14) and (1.2.15) by (Γh, S

0
h(Γh),Σ

0
Γh
)

and (Γh, S
1
h(Γh),Σ

1
Γh
). Σ0

Γh
andΣ1

Γh
are the union of the degrees of freedom of allΣ0

Ci and
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Σ1
Ci . We simplify the notations from (Γh, S

0
h(Γh),Σ

0
Γh
) and (Γh, S

1
h(Γh),Σ

1
Γh
) to S0h(Γh)

and S1h(Γh).
The discretization of (1.2.14) is to find σh ∈ S0h(Γh) such that

〈Vkσh, χh〉Γ =

〈(
1

2
I +Kk

)
f, χh

〉
Γ

, (1.2.18)

for all χh ∈ S0h(Γh).
The discretization of (1.2.15) is to find ϕh ∈ S1h(Γh) such that

〈Dkϕh, υh〉Γ =

〈(
1

2
I −K ′

k

)
g, υh

〉
Γ

, (1.2.19)

for all υh ∈ S1h(Γh).
Let {Φ0

i }N0
i=1 be a basis of S0h(Γh) and {Φ1

i }N1
i=1 be a basis of S1h(Γh). We use σh =∑N0

j=1 ξ
0
jΦ

0
j and ϕh =

∑N1

j=1 ξ
1
jΦ

1
j in (1.2.18) and (1.2.19) and get two linear systems.

A0ξ0 = b0

A0[i, j] =
1

4π

∫
Ωi

∫
Ωj

eik|x−y|

|x− y|dsydsx

b0[i] =
1

2

∫
Ωi

f(x)dsx +
1

4π

∫
Ωi

∫
Γ

(1− ik|x− y|)eik|x−y| (x− y) · n(y)
|x− y|3 f(y)dsydsx

A1ξ1 = b1

A1[i, j] =
1

4π

∫
Γ

∫
Γ

eik|x−y|

|x− y|(n(y)×∇Φ̃1
j(y)) · (n(x)×∇Φ̃1

i (x))dsydsx

− k2

4π

∫
Γ

∫
Γ

eik|x−y|

|x− y|Φ
1
j(y)Φ

1
i (x)n(y) · n(x)dsydsx

b1[i] =
1

2

∫
Γ

g(x)Φ1
i (x)dsx−

1

4π

∫
Γ

∫
Γ

(1−ik|x−y|)eik|x−y| (y − x) · n(x)
|x− y|3 g(y)Φ1

i (x)dsydsx

The last step is the a Priori error estimates for (1.2.18) and (1.2.19). The first error

estimate is the Cea’s lemma which constructs the error by the best approximation. The

Cea’s lemma is based on the stability from the well-known Ladyzenskaya-Babuška-Brezzi

condition (LBB condition). The LBB condition is from the Gårding inequality and the

uniqueness of Vk, Dk. We prove the LBB condition firstly following [34, Theorem 5.5].

Lemma 4. There exists h0 > 0 such that for all χh ∈ S0h(Γh) and υh ∈ S1h(Γh) and
0 < h < h0 we have

cs‖χh‖H−1/2(Γ) ≤ sup
χ′h∈S0

h(Γh),‖χ′h‖H−1/2(Γ)
>0

|〈Vkχh, χ
′
h〉Γ|

‖χ′h‖H−1/2(Γ)

, (1.2.20a)

cd‖υh‖H1/2(Γ) ≤ sup
υ′h∈S1

h(Γh),‖υ′h‖H1/2(Γ)
>0

|〈Dkυh, υ
′
h〉Γ|

‖υ′h‖H1/2(Γ)

. (1.2.20b)
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Proof. We prove the LBB condition for the Dirichlet boundary value problem and the

proof for the Neumann boundary value problem is the same. We define B := Vk +CV . B
is H−1/2(Γ)-elliptic. We define a new variational problem to find v̄ ∈ H−1/2(Γ) such that

〈Bv̄, v〉Γ =〈CV χh, v〉Γ ∀v ∈ H−1/2(Γ) .

We have v̄ = B−1CV χh. The Galerkin formulation is to find v̄h ∈ S0h(Γh) such that

〈Bv̄h, vh〉Γ =〈CV χh, vh〉Γ ∀vh ∈ S0h(Γh) .

From the variational formulation and the Galerkin formulation we get

〈Bv̄h − Bv̄, vh〉Γ =0 ∀vh ∈ S0h(Γh) .

This defines a Galerkin projection GhB : v̄ → v̄h and GhB → I as h→ 0.

Vk and B are bounded. B is H−1/2(Γ)-elliptic and Vk satisfies the Gårding inequality.

Then we have B and Vk are invertible, and B−1 and V −1k are bounded. We define two

operators by GhB, B and CV ,

L := I − B−1CV = B−1Vk and Lh := I −GhBB
−1CV .

By the properties of GhB, B and CV , L is bounded and invertible, L−1 is bounded and Lh

is bounded. By the consistency of GhB we get

‖L− Lh‖ =‖(GhB − I)B−1CV ‖ → 0 as h→ 0 .

So L−1h exits and it is uniformly bounded if h is as small as enough.

We begin to consider the right-hand side of (1.2.20a).

〈Vkχh, χ
′
h〉Γ = 〈BLhχh, χ

′
h〉Γ − 〈(BLh − BL)χh, χ

′
h〉Γ

|〈Vkχh, χ
′
h〉Γ|+ |〈(BLh − BL)χh, χ

′
h〉Γ| ≥ |〈BLhχh, χ

′
h〉Γ|

If χ′h = Lhχh we have

〈BLhχh, Lhχh〉Γ ≥ c1‖Lhχh‖2H−1/2(Γ) ≥ c1c2‖χh‖H−1/2(Γ)‖Lhχh‖H−1/2(Γ)

by using L−1h is uniformly bounded in the last inequality and

|〈(BLh − BL)χh, Lhχh〉Γ| ≤ ‖B‖‖Lh − L‖‖χh‖H−1/2(Γ)‖Lhχh‖H−1/2(Γ) .

Then we have

|〈Vkχh, Lhχh〉Γ| ≥ (c1c2 − ‖B‖‖Lh − L‖)‖χh‖H−1/2(Γ)‖Lhχh‖H−1/2(Γ) .

We can choose h as small as enough such that c1c2−‖B‖‖Lh−L‖ > cs and the proof is

done.

From the BBL condition it is easy to get the stability of (1.2.18) and (1.2.19). For a
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finite dimensional problem, uniqueness implies existence. So by the stability we have the

existence and uniqueness of the solutions of (1.2.18) and (1.2.19).

Lemma 5. There exists c1 > 0 and c2 > 0 such that for the solutions of (1.2.14) and
(1.2.15) and the solutions of (1.2.18) and (1.2.19), we have

‖σ − σh‖H−1/2(Γ) ≤c1 inf
χh∈S0

h(Γh)
‖σ − χh‖H−1/2(Γ) , (1.2.21a)

‖ϕ− ϕh‖H1/2(Γ) ≤c2 inf
υh∈S1

h(Γh)
‖ϕ− υh‖H1/2(Γ) . (1.2.21b)

Proof. We prove Cea’s lemma for the Dirichlet boundary value problem following [65,

Theorem 8.10] and the proof for the Neumann boundary value problem is the same. From

(1.2.14) and (1.2.18) we have

〈Vkσh, χh〉Γ = 〈Vkσ, χh〉Γ for all χh ∈ S0h(Γh).

This defines a Galerkin projection GhVk
σ = σh. By the stability from the LBB condition,

GhVk
is bounded. Then we have

‖σ − σh‖H−1/2(Γ) =‖σ −GhVk
χh +GhVk

χh − σh‖H−1/2(Γ)

≤‖σ − χh‖H−1/2(Γ) + ‖GhVk
(χh − σ)‖H−1/2(Γ)

≤(1 + c)‖σ − χh‖H−1/2(Γ) .

The proof is done.

We need the following approximation properties of S0h(Γh) and S1h(Γh) for χ ∈
Hs

pw(Γ) and υ ∈ Hs
pw(Γ), respectively, from [58, Theorem 2.1, 2.3] for quasi-optimal

error estimates. Hs
pw(Γ) := {u ∈ L2(Γ) | u|Γi

∈ Hs(Γi) , i = 1, · · · , n}.

inf
χh∈S0

h(Γh)
‖χ− χh‖Ha(Γ) ≤chs−a|χ|Hs

pw(Γ) for a ∈ [−1, 0] and s ∈ [0, 1] , (1.2.22a)

inf
υh∈S1

h(Γh)
‖υ − υh‖Ha(Γ) ≤chs−a|υ|Hs

pw(Γ) for a ∈ [−2, 1] and s ∈ [1, 2] . (1.2.22b)

We use (1.2.22a) and (1.2.22b) in (1.2.21a) and (1.2.21b), respectively, and get quasi-

optimal error estimates

‖σ − σh‖H−1/2(Γ) ≤chs+1/2|σ|Hs
pw(Γ) , (1.2.23a)

‖ϕ− ϕh‖H1/2(Γ) ≤chs−1/2|ϕ|Hs
pw(Γ) . (1.2.23b)

From (1.2.23a) and (1.2.23b), it is obviously that it is difficult to calculate error in

the norms, ‖ · ‖H−1/2(Γ) and ‖ · ‖H1/2(Γ). A good choice is to use L2(Γ)-norm. We use

Aubin-Nitsche duality to derive error estimates in L2(Γ)-norm.

Theorem 2. Let σ ∈ Hs
pw(Γ) for s ∈ [0, 1] and ϕ ∈ Hs

pw(Γ) for s ∈ [1, 2]. We have

‖σ − σh‖L2(Γ) ≤chs|σ|Hs
pw(Γ) , (1.2.24a)

‖ϕ− ϕh‖L2(Γ) ≤chs|ϕ|Hs
pw(Γ) . (1.2.24b)
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Proof. We prove the error estimate for the Dirichlet boundary value problem following

[65, Lemma 12.2] and the proof for the Neumann boundary value problem is the same.

In the proof we need the global inverse inequality from [65, Lemma 10.10] and the

approximation properties of L2-projection in S0h(Γh). Let Qhσ be L2-projection of σ
to S0h(Γh).

‖σ − σh‖L2(Γ) ≤‖σ −Qhσ‖L2(Γ) + ‖Qhσ − σh‖L2(Γ)

≤︸︷︷︸
global inverse inequality

‖σ −Qhσ‖L2(Γ) + ch−1/2‖Qhσ − σh‖H−1/2(Γ)

≤‖σ −Qhσ‖L2(Γ) + ch−1/2
(‖Qhσ − σ‖H−1/2(Γ) + ‖σ − σh‖H−1/2(Γ)

)
By the approximation properties of L2-projection in L2(Γ)-norm and H−1/2(Γ)-norm
from [65, Theorem 10.2] and [65, Corollary 10.3], respectively, and (1.2.23a), the proof

is done.

1.2.6 Numerical tests
We consider two numerical tests on the boundary of a unit cube (0, 1)3. In the first test

we assume that k = 0 and (1.2.1) is the Laplace equation. An analytical solution used for

the test is

u0(x) = (1 + x1)e
x2 cos(x3) . (1.2.25)

In the second test we consider the Helmholtz equation (k =
√
3) with an analytical

solution used for the test

u1(x) = (1 + x1)e
x2 sin(2x3) . (1.2.26)

For Neumann boundary value problems of the Laplace equation, since D is H1/2(Γ)-
semi-elliptic, we need additional terms in the variational formulation. In Tables 1.1 and

1.2 the first column is the level of meshes, the second column is the number of degrees of

freedom, the third and fifth columns are L2-error for the Laplace equation and Helmholtz

equation respectively and the fourth and sixth columns are the rate of convergence (s)
in O(hs). Table 1.1 and Fig.1.2 are the results of Dirichlet boundary value problems of

(1.2.25) and (1.2.26). Table 1.2 and Fig.1.3 are the results of Neumann boundary value

problems of (1.2.25) and (1.2.26). "CR" means the rate of convergence (s) and σn
h is the

approximated solution calculated by using a mesh of level n. The calculation of L2-error
and rate of convergence for ϕh is similar with σh. The formulae are

‖σh − σ‖2L2(Γ) =

∫
Γ

(σh(x)− σ(x))2dsx ,

CR = log2
‖σn−1

h − σ‖L2(Γ)

‖σn
h − σ‖L2(Γ)

.

In the fourth and sixth columns of Table 1.1 we observe a linear convergence for piecewise

constant function spaces and in the fourth and sixth columns of Table 1.2 we observe a

quadratic convergence for piecewise linear function spaces approximately.
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level dof ErrorL CRL ErrorH CRH

0 24 1.38597 - 3.16616 -

1 96 0.65702 1.0769 1.50606 1.0720

2 384 0.28534 1.2033 0.62868 1.2604

3 1536 0.12640 1.1747 0.26788 1.2307

Table 1.1 Accuracy of Galerkin-BEMs for Dirichlet boundary value problems for the

Laplace and Helmholtz equations

(a) the Laplace equation (b) the Helmholtz equation

Figure 1.2 Dirichlet boundary value problems for the Laplace and Helmholtz equations

level dof ErrorL CRL ErrorH CRH

0 14 0.39467 - 1.05687 -

1 50 0.09237 2.0951 0.25747 2.0373

2 194 0.02157 2.0984 0.05917 2.1215

3 770 0.00517 2.0617 0.01413 2.0660

Table 1.2 Accuracy of Galerkin-BEMs for Neumann boundary value problems for the

Laplace and Helmholtz equations
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(a) the Laplace equation (b) the Helmholtz equation

Figure 1.3 Neumann boundary value problems for the Laplace and Helmholtz equations

1.3 The Maxwell case
In this section we study Dirichlet and Neumann boundary value problems for the

Maxwell’s equations (1.1.20). We just consider electromagnetic waves in a dielectric

medium, so λ is a real number. We assume that λ = k2 and k is a positive real number.

The time-harmonic Maxwell’s equations for electric or magnetic fields are

∇×∇× u(x) =k2u(x) ∀x ∈ Ω , (1.3.1a)

∇ · u(x) =0 ∀x ∈ Ω , (1.3.1b)

where Ω is a bounded domain. Dirichlet and Neumann boundary conditions are

n× u(x) =f(x) ∀x ∈ Γ , (1.3.2a)

n×∇× u(x) =g(x) ∀x ∈ Γ , (1.3.2b)

respectively, where Γ := ∂Ω, n is the exterior unit normal to Γ, and f or g is the given

data.

1.3.1 Representation formula
We assume that Ω has a smooth boundary. Green’s first formula for (1.3.1) is∫

Ω

(∇×∇× u(x)− k2u(x)) · v(x)dx

−
∫
Ω

(∇× u(x) · ∇ × v(x)− k2u(x) · v(x))dx

=

∫
Γ

n×∇× u(x) · v(x)dsx .

(1.3.3)
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Green’s second formula is∫
Ω

(∇×∇× u(x)− k2u(x)) · v(x)dx

−
∫
Ω

u(x) · (∇×∇× v(x)− k2v(x))dx

=

∫
Γ

n×∇× u(x) · v(x)dsx −
∫
Γ

u(x) · n×∇× v(x)dsx .

(1.3.4)

Inserting (1.3.1a) in the left hand side of (1.3.4) yields

−
∫
Ω

u(x) · (∇(∇ · v(x))−∇2v(x)− k2v(x))dx

=−
∫
Γ

n · u(x)∇ · v(x)dsx +
∫
Ω

u(x) · (∇2v(x) + k2v(x))dx .

With the right hand side of (1.3.4) we get∫
Ω

u(x) · (∇2v(x) + k2v(x))dx =

∫
Γ

n×∇× u(x) · v(x)dsx

+

∫
Γ

n · u(x)∇ · v(x)dsx +
∫
Γ

n× u(x) · ∇ × v(x)dsx .

(1.3.5)

We set v = Ek(x, y)ei in (1.3.5) with i = 1, 2, 3. ei is a unit vector. Ek(x, y) is the

fundamental solution (1.2.5) of the Helmholtz equation. We exchange the notation for x
and y and get

ui(x) =−
∫
Γ

ny ×∇y × u(y) · (Ek(x, y)ei)dsy −
∫
Γ

ny · u(y)∇y · (Ek(x, y)ei)dsy

−
∫
Γ

ny × u(y) · ∇y × (Ek(x, y)ei)dsy

=−
∫
Γ

ny ×∇y × u(y) · eiEk(x, y)dsy −
∫
Γ

ny · u(y)∂Ek(x, y)

∂yi
dsy

+

∫
Γ

ny × u(y) · ∇x × (Ek(x, y)ei)dsy

=−
∫
Γ

ny ×∇y × u(y) · eiEk(x, y)dsy +
∂

∂xi

∫
Γ

ny · u(y)Ek(x, y)dsy

−∇x ×
∫
Γ

ny × u(y) · Ek(x, y)dsy · ei .

We put ui for i = 1, 2, 3 together and get the Stratton-Chu representation formula

u(x) =−
∫
Γ

ny ×∇y × u(y) · Ek(x, y)dsy +∇x

∫
Γ

ny · u(y)Ek(x, y)dsy

−∇x ×
∫
Γ

ny × u(y) · Ek(x, y)dsy .

(1.3.6)
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Now we derive an alternative evaluation of ny · u(y) in (1.3.6).∫
Γ

divΓ(n×w(x))v(x)dsx = −
∫
Γ

n×w(x) ·
(
∇v(x)− n · ∂

∂n
v(x)

)
dsx

= −
∫
Ω

∇×w(x) · ∇v(x)dx+

∫
Ω

w(x) · ∇ ×∇v(x)dx

= −
∫
Ω

∇×w(x) · ∇v(x)dx−
∫
Ω

∇ · ∇ ×w(x)v(x)dx

= −
∫
Γ

n · ∇ ×w(x)v(x)dsx

From the above derivation we get∫
Γ

divΓ(n×w(x))v(x)dsx = −
∫
Γ

n · ∇ ×w(x)v(x)dsx . (1.3.7)

We use (1.3.7) in the second term of the right-hand side of (1.3.6) and get

∇x

∫
Γ

ny · u(y)Ek(x, y)dsy = ∇x

∫
Γ

ny · ∇y ×∇y × u(y)
k2

Ek(x, y)dsy

= − 1

k2
∇x

∫
Γ

divΓ(ny ×∇y × u(y))Ek(x, y)dsy .

Then (1.3.6) is changed to

u(x) =−
∫
Γ

ny ×∇y × u(y) · Ek(x, y)dsy

− 1

k2
∇x

∫
Γ

divΓ(ny ×∇y × u(y))Ek(x, y)dsy

−∇x ×
∫
Γ

ny × u(y) · Ek(x, y)dsy

∀x ∈ Ω . (1.3.8)

Since we assume that u is a regular solution and the boundary is a smooth boundary, we

call (1.3.8) the classical representation formula for (1.3.1).

1.3.2 Function spaces
In Section 1.2.2 we introduce function spaces for scalar-valued functions. In this

section we introduce continuously differentiable function spaces and Lebesgue integrable

function spaces for vector-valued functions and use them to define the function spaces for

the Maxwell’s equations in the domain and on the boundary. The function spaces on the

boundary have been studied in [9, 10, 6] for piecewise smooth boundaries and in [12] for

Lipschitz boundaries. [7] is a summary of all these work.

Let Ω be a bounded domain. The definitions of continuously differentiable function

spaces Cm(Ω) and Hölder continuously differentiable function spaces Cm+β(Ω) are

Cm(Ω) := {u | ui ∈ Cm(Ω)} and Cm+β(Ω) := {u | ui ∈ Cm+β(Ω)} .
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The definition of L2(Ω) is

L2(Ω) := {u | ui ∈ L2(Ω)} with ‖u‖2L2(Ω) :=
3∑

i=1

‖ui‖2L2(Ω) .

The definitions of Hm(Ω) and Hm+β(Ω) for m ∈ N
0 and β ∈ (0, 1) are

Hm(Ω) := C∞(Ω)
‖·‖Hm(Ω)

with ‖u‖2Hm(Ω) :=
3∑

i=1

‖ui‖2Hm(Ω) ,

Hm+β(Ω) := C∞(Ω)
‖·‖

Hm+β(Ω) with ‖u‖2Hm+β(Ω) :=
3∑

i=1

‖ui‖2Hm+β(Ω) .

Let d be a first order differential operator. The definitions of Hm(d,Ω) and Hm+β(d,Ω)
are given by

Hm(d,Ω) := {u ∈ Hm(Ω) | du ∈ Hm(Ω)}
with ‖u‖2Hm(d,Ω) := ‖u‖2Hm(Ω) + ‖du‖2Hm(Ω) ,

Hm+β(d,Ω) := {u ∈ Hm+β(Ω) | du ∈ Hm+β(Ω)}
with ‖u‖2Hm+β(d,Ω) := ‖u‖2Hm+β(Ω) + ‖du‖2Hm+β(Ω) .

Let H(Ω) denote L2(Ω). The common Sobolev spaces in the study of the Maxwell’s

equations are H(curl,Ω), H(div,Ω) and H(curl2,Ω).

For boundary integral equations we need function spaces defined on the manifold Γ.
One common way is to use the Dirichlet trace to define function spaces on Γ. In Section

1.2.2 the Sobolev space Hm+β(Γ) is defined as the trace space of Hm+β+1/2(Ω) by the

Dirichlet trace operator γ0 and H−m−β(Γ) is the dual space of Hm+β(Γ). According the

boundary condition (1.3.2a) we use the tangential trace (n×u)|Γ as the Dirichlet trace for

the Maxwell’s equations. We compare (n × u)|Γ with γ0u. If the boundary is a smooth

boundary, we have the definition of n on the whole boundary. We can use Sobolev spaces

on Γ in Section 1.2.2 to define Sobolev spaces on Γ for the Maxwell’s equations. More

discussions about smooth boundaries could be found in [55, 2, 15, 52]. If the boundary

is a non-smooth boundary, we don’t have the definition of n on the whole boundary. So

even if u ∈ C∞(Ω), we don’t have (n× u)|Γ ∈ H1/2(Γ). We can not use Sobolev spaces

on Γ in Section 1.2.2, so we define new Hilbert spaces on Γ by the tangential trace

Hβ
×(Γ) := {(n× u)|Γ | u ∈ Hβ+1/2(Ω)} ∀β ∈ (0, 1) ,

with an inner product such that the tangential trace is continuous and surjective. The

definition of the tangential trace is generalized to a weak solution of∫
Ω

∇× u(x) · v(x)dx−
∫
Ω

u(x) · ∇ × v(x)dx =

∫
Γ

n(x)× u(x) · v(x)dsx .

We define

L2t(Γ) := {u ∈ L2(Γ) | n · u = 0} .
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H−β
× (Γ) is the dual space of Hβ

×(Γ) with L2t(Γ) as a pivot space. We use the following

dual pairing

〈v,w〉τ,Γ :=

∫
Γ

(v × n)(x) ·w(x)dsx . (1.3.9)

More discussions about non-smooth boundaries see [6, 9, 10, 12].

For curvilinear polyhedra, a norm is given in [9] for H
1/2
× (Γ). Let Γ :=

⋃n
i=1 Γi. Ii

is the set of indices of Γj such that Γj

⋂
Γi = 0 and i = j. nij is the exterior tangential

normal to Γi and on Γi

⋂
Γj . The norm is defined by

‖v‖2
H

1/2
× (Γ)

:=
n∑

i=1

‖v|Γi
‖2H1/2(Γi)

+
n∑

i=1

∑
j∈Ii

∫
Γi

∫
Γj

|v|Γi
(x) · nij(x)− v|Γj

(y) · nji(y)|2
|x− y|3 dsydsx .

The divΓ in (1.3.7) is generalized in [6, 8, 12] to

divΓv :=

{
divΓi

(v|Γi
) on Γi

v|Γi
· nij + v|Γj

· nji on Γi

⋂
Γj

.

Then we could define the Hilbert space on Γ for the Maxwell’s equations

H
−1/2
× (divΓ,Γ) := {v ∈ H

−1/2
× (Γ) | divΓv ∈ H−1/2(Γ)} .

1.3.3 Boundary integral equations

When we derive the classical representation formula, we assume that the boundary is

smooth and u ∈ C2(Ω). In the last section we have introduced (2a) in Fig. 1.1 and in this

section we continue to introduce (2b) and (2c), then we can generalize our problems from

(1.3.8). We simplify the notation from H
−1/2
× (divΓ,Γ) to W−1/2(Γ).

Let u be the solution of (1.3.1). According the Dirichlet and Neumann boundary

conditions (1.3.2a) and (1.3.2b), the classical definitions of trace operators are given by

γt(u)(x) := lim
x̃∈Ω→x∈Γ

n(x)×u(x̃) and γN(u)(x) := lim
x̃∈Ω→x∈Γ

n(x)×∇×u(x̃) .

We need a generalized definition of γN(u) as the weak solution of the following

variational formulation

〈γN(u), γt(v)〉τ,Γ :=
1

k

∫
Ω

(∇×∇× u(x) · v(x)−∇× u(x) · ∇ × v(x))dx ,

for u ∈ H(curl2,Ω) and v ∈ C∞(Ω). The generalized definition of γt(u) is given in the

last section. We call γt the Dirichlet trace operator and γN the Neumann trace operator.

We have a lemma for the continuity of the trace operators.

Lemma 6. Let Γ be a Lipschitz boundary. The Dirichlet trace operator γt and Neumann
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trace operator γN are bounded operators

γt : H(curl,Ω)→W−1/2(Γ) ,

γN : H(curl2,Ω)→W−1/2(Γ) .

Proof. See [10, Theorem 4.4], [12, Section 4] and [13, Lemma 3].

We define two potential operators corresponding to the two boundary integrals in

(1.3.8) for v,w ∈W−1/2(Γ) as

Ψk
SL(v)(x) :=− k

∫
Γ

v(y) · Ek(x, y)dsy − 1

k
∇x

∫
Γ

divΓ(v(y))Ek(x, y)dsy ∀x ∈ Ω ,

Ψk
DL(w)(x) :=−∇x ×

∫
Γ

w(y) · Ek(x, y)dsy ∀x ∈ Ω .

We call Ψk
SL the single-layer potential operator and Ψk

DL the double-layer potential

operator. Let d be a first order differential operator. We define

H(d0,Ω) := {u ∈ H(Ω) | du = 0} .

We have a lemma for the continuity of Ψk
SL and Ψk

DL.

Lemma 7. Let Γ be a Lipschitz boundary and let v,w ∈ W−1/2(Γ) be given. Then,
u(x) = Ψk

SL(v)(x) or u(x) = Ψk
DL(w)(x) for x ∈ Ω is a weak solution of the Maxwell’s

equations. The potential operators,Ψk
SL andΨk

DL, are bounded operators

Ψk
SL : W−1/2(Γ)→ H(curl2,Ω)

⋂
H(div0,Ω) ,

Ψk
DL : W−1/2(Γ)→ H(curl2,Ω)

⋂
H(div0,Ω) .

Proof. See Theorem 5 in [13].

By using trace operators to potential operators, respectively, we get boundary integral

operators and the continuity of boundary integral operators is from the continuity of trace

operators and potential operators. For the Maxwell’s equations we just need two boundary

integral operators. If we compare the Dirichlet trace operator (γt) with the Neumann trace

operator (γN), we find that the difference is the curl operator. If γt is the tangential trace

of electric fields, γN is the tangential trace of magnetic fields. Electric fields and magnetic

fields are symmetric. This is the physical explanation for two boundary integral operators.

For mathematics, we can derive that the curl of Ψk
SL is changed to Ψk

DL and the curl of

Ψk
DL is changed to Ψk

SL. Compared with the four boundary integral operators of the

Helmholtz equation, mathematics match physics very well. Let x be in the domain.

∇x ×Ψk
SL(v)(x) =−∇x ×

(
k

∫
Γ

v(y) · Ek(x, y)dsy

)
−∇x ×

(
1

k
∇x

∫
Γ

divΓ(v(y))Ek(x, y)dsy

)
=−∇x ×

(
k

∫
Γ

v(y) · Ek(x, y)dsy

)
= kΨk

DL(v)(x)
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∇x ×Ψk
DL(w)(x) = −∇x ×

(
∇x ×

∫
Γ

w(y) · Ek(x, y)dsy

)
=−

∫
Γ

∇x(∇x · (w(y) · Ek(x, y)))dsy +

∫
Γ

∇2
x(w(y) · Ek(x, y))dsy

=∇x

∫
Γ

w(y) ·
(
∇yEk(x, y)− ny · ∂Ek(x, y)

∂ny

)
dsy +

∫
Γ

w(y) ·ΔyEk(x, y)dsy

=−∇x

∫
Γ

divΓ(w(y))Ek(x, y)dsy − k2
∫
Γ

w(y) · Ek(x, y)dsy = kΨk
SL(w)(x)

From the above derivation we get

∇x ×Ψk
SL(v) = kΨk

DL(v) and ∇x ×Ψk
DL(w) = kΨk

SL(w) . (1.3.10)

Theorem 3. Let Γ be a Lipschitz boundary. Then, γtΨk
SL = γNΨ

k
DL and γtΨ

k
DL =

γNΨ
k
SL from (1.3.10) are bounded operators

γtΨ
k
SL : W

−1/2(Γ)→W−1/2(Γ) ,

γtΨ
k
DL : W

−1/2(Γ)→W−1/2(Γ) .

Proof. By Lemma 6 and Lemma 7.

In the calculation we need explicit formulae for boundary integral operators.

γtΨ
k
SL(v)(x) =− lim

x̃∈Ω→x∈Γ
n(x)×

(
k lim

ε→0

∫
y∈Γ:|y−x|>ε

v(y) · Ek(x̃, y)dsy

)
− lim

x̃∈Ω→x∈Γ
n(x)×

(
1

k
lim
ε→0
∇x̃

∫
y∈Γ:|y−x|>ε

divΓ(v(y))Ek(x̃, y)dsy

)
=− k lim

ε→0

∫
y∈Γ:|y−x|>ε

n(x)× (v(y) · Ek(x, y))dsy

− 1

k
lim
ε→0

∫
y∈Γ:|y−x|>ε

n(x)×∇x(divΓ(v(y))Ek(x, y))dsy

=− k

∫
Γ\{x}

n(x)× (v(y) · Ek(x, y))dsy

− 1

k
p.v.

∫
Γ\{x}

n(x)×∇x(divΓ(v(y))Ek(x, y))dsy

γtΨ
k
DL(w)(x) =− lim

x̃∈Ω→x∈Γ
n(x)×

(
lim
ε→0
∇x̃ ×

∫
y∈Γ:|y−x|>ε

w(y) · Ek(x̃, y)dsy

)
=− lim

ε→0

∫
y∈Γ:|y−x|>ε

n(x)×∇x × (w(y) · Ek(x, y))dsy

=− lim
ε→0

⎛⎜⎜⎜⎝
∫
y∈Γ:|y−x|>ε

(
n(x) ·w(y)∂Ek(x,y)

∂x1
−w1(y)

∂Ek(x,y)
∂nx

)
dsy∫

y∈Γ:|y−x|>ε

(
n(x) ·w(y)∂Ek(x,y)

∂x2
−w2(y)

∂Ek(x,y)
∂nx

)
dsy∫

y∈Γ:|y−x|>ε

(
n(x) ·w(y)∂Ek(x,y)

∂x3
−w3(y)

∂Ek(x,y)
∂nx

)
dsy

⎞⎟⎟⎟⎠
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By using the same argument as the adjoint double-layer operator in Section 1.2.3 we get

lim
ε→0

∫
y∈Γ:|y−x|>ε

wi(y)
∂Ek(x, y)

∂nx

dsy =
1

2
wi + p.v.

∫
Γ\{x}

wi(y)
∂Ek(x, y)

∂nx

dsy

for i = 1, 2, 3. By using this result we get

γtΨ
k
DL(w)(x) =

1

2
w(x)− p.v.

∫
Γ\{x}

n(x)×∇x × (w(y) · Ek(x, y))dsy .

Then we could define two boundary integral operators

Sk(v)(x) :=− k

∫
Γ\{x}

n(x)× (v(y) · Ek(x, y))dsy

− 1

k
p.v.

∫
Γ\{x}

n(x)×∇x(divΓ(v(y))Ek(x, y))dsy ,

(1.3.11a)

Ck(w)(x) :=− p.v.

∫
Γ\{x}

n(x)×∇x × (w(y) · Ek(x, y))dsy (1.3.11b)

for x ∈ Γ and v,w ∈ W−1/2(Γ). We call Sk the single-layer boundary integral

operator and Ck the double-layer boundary integral operator. The first term of Sk(v)
is a weakly singular integral and the second term is a Cauchy principle value integral. In

fact the second term is similar with the hyper-singular boundary integral operator for the

Helmholtz equation and divΓ is a regularization for it. Ck(w) is a Cauchy principle value

integral. Then we have

Sk = γtΨ
k
SL : W−1/2(Γ)→W−1/2(Γ) ,

1

2
I +Ck = γtΨ

k
DL : W−1/2(Γ)→W−1/2(Γ) .

(1.3.11a) and (1.3.11b) are still not enough for the calculation and we have the other two

formulae for their dual pairings. In the derivation of the new formulae, we need to use

n×w × n · v = w · v − (n ·w)(n · v) and get

〈Sk(v),w〉τ,Γ =− k

∫
Γ

∫
Γ\{x}

v(y) ·w(x)Ek(x, y)dsydsx

+
1

k

∫
Γ

∫
Γ\{x}

divΓ(v)(y)divΓ(w)(x)Ek(x, y)dsydsx ,

〈Ck(w),v〉τ,Γ =−
∫
Γ

∫
Γ\{x}

∇xEk(x, y) · (w(y)× v(x))dsydsx .

We use these two formulae for the assembling of matrices and vectors in Galerkin-BEMs.

Now we can go back to the classical representation formula (1.3.8). The function

space of u is extended to H(curl2,Ω)
⋂

H(div0,Ω) and we have

u(x) = Ψk
SL(γNu)(x) +Ψk

DL(γtu)(x) ∀x ∈ Ω . (1.3.12)
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(1.3.12) is the generalized representation formula. We use the Dirichlet and Neumann

trace operators on (1.3.12), respectively, and get two boundary integral equations

γtu =Sk(γNu) +

(
1

2
I +Ck

)
(γtu) , (1.3.13a)

γNu =

(
1

2
I +Ck

)
(γNu) + Sk(γtu) . (1.3.13b)

The idea is the same with the Helmholtz equation. If we want to calculate the solution in

the domain by (1.3.12), we need to know (γtu, γNu) on the whole boundary. By using

(1.3.13) we define a Calderón projection as

C =

(
1
2
I +Ck Sk

Sk
1
2
I +Ck

)
: W−1/2(Γ)×W−1/2(Γ)→W−1/2(Γ)×W−1/2(Γ) .

(1.3.14)

The Calderón projection is a coupling of the Dirichlet trace and the Neumann trace and it

is important for mixed boundary value problems, Robin boundary condition and interface

problems. By using Dirichlet and Neumann boundary conditions, we get two boundary

integral equations

Sk(γNu) =

(
1

2
I −Ck

)
f , (1.3.15)

Sk(γtu) =

(
1

2
I −Ck

)
g . (1.3.16)

In fact (1.3.15) and (1.3.16) are equations of the same type and we just need to change the

given data to get different solutions. So in the next sections we just consider the Dirichlet

boundary value problem (1.3.15).

1.3.4 Variational formulations

In the last section we considered step (1a) in Fig. 1.1. In this section we introduce

step (1b) in Fig. 1.1. We define σ := γNu. The variational formulation for (1.3.15) is to

find σ ∈W−1/2(Γ) such that

〈Sk(σ),χ〉τ,Γ =

〈(
1

2
I −Ck

)
f ,χ

〉
τ,Γ

(1.3.17)

for all χ ∈W−1/2(Γ).
For the existence and uniqueness of the solution of (1.3.17) we need a Helmholtz-

type regular decomposition for W−1/2(Γ) and use it to get the generalized Gårding

inequality. We explain the reason for this decomposition by a physical point of view. The

physical problems described by the Helmholtz equation are different from the Maxwell’s

equations. For example, the Helmholtz equation could be used for acoustics. In acoustics

the potential energy and the kinetic energy are converted into each other and the total

energy is conserved. We can find corresponding terms for both of them in the Helmholtz

equation. The Maxwell’s equations are used to describe electromagnetic fields. Electric
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fields and magnetic fields are symmetric as a part of electromagnetic fields and they are

converted into each other. This is a kind of conversion. But just a part of electric fields is

converted into magnetic fields, we need to do a decomposition to get this part and by the

conversation we could get the ellipticity. We define

H
−1/2
× (divΓ0,Γ) := {v ∈ H

−1/2
× (Γ) | divΓv = 0} .

Lemma 8. There exists a projection RΓ forW−1/2(Γ) such that

RΓ : W−1/2(Γ)→ H
1/2
× (Γ) ,

ZΓ := I −RΓ : W−1/2(Γ)→ H
−1/2
× (divΓ0,Γ) ,

and we also have the continuity of RΓ

‖RΓv‖W−1/2(Γ) ≤ C‖divΓv‖H−1/2(Γ) ∀v ∈W−1/2(Γ) .

Proof. See [13, Lemma 2].

We use this decomposition to prove the generalized Gårding inequality for Sk.

Lemma 9. Let Γ be a Lipschitz boundary. XΓ := RΓ − ZΓ. There exists a compact
bilinear form cΓ such that Sk satisfies a generalized Gårding inequality

|〈Sk(v), X
Γv〉τ,Γ + cΓ(v,v)| ≥ cg‖v‖2W−1/2(Γ) ∀v ∈W−1/2(Γ) .

Proof. The basic idea of the proof is given in [13, Lemma 10]. First we define

〈S0,k(v),w〉τ,Γ :=
1

k
〈V (divΓ(v)), divΓ(w)〉Γ − k〈V(v),w〉τ,Γ ,

where V is defined in Section 1.2.4,Vk is defined by the first term in (1.3.11a) and we set

V = V0. From [13, Corollary 4] we know that S0,k −Sk is compact and more details see

[32, Theorem 6.2] and [19, Theorem 3]. We consider

〈Sk(v), X
Γv〉τ,Γ + 〈S0,k(v)− Sk(v), X

Γv〉τ,Γ = 〈S0,k(RΓv + ZΓv), RΓv − ZΓv〉τ,Γ
=
1

k
〈V (divΓ(R

Γv)), divΓ(R
Γv)〉Γ + k〈V(ZΓv), ZΓv〉τ,Γ − k〈V(RΓv), RΓv〉τ,Γ

− k〈V(ZΓv), RΓv〉τ,Γ + k〈V(RΓv), ZΓv〉τ,Γ .
(1.3.18)

V is an elliptic operator and from [13, Lemma 8] we know the ellipticity of V. For

the first two terms of the right-hand side of (1.3.18), by using Lemma 8 we get

1

k
〈V (divΓ(R

Γv)), divΓ(R
Γv)〉Γ + k〈V(ZΓv), ZΓv〉τ,Γ

≥c
(
‖divΓ(RΓv)‖2H−1/2(Γ) + ‖ZΓv‖2W−1/2(Γ)

)
≥︸︷︷︸

Lemma 8

c
(
‖RΓv‖2W−1/2(Γ) + ‖ZΓv‖2W−1/2(Γ)

)
≥ c‖v‖2W−1/2(Γ) .
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From [13, Lemma 9] we know that 〈Vk·, ·〉τ,Γ is a compact bilinear form from

H
1/2
× (Γ)×H

−1/2
× (Γ) orH

−1/2
× (Γ)×H

1/2
× (Γ) to C. From [13, Lemma 7] and [33, Lemma

3.2], we know that Vk −V is compact. We consider the left three terms of the right-hand

side of (1.3.18) and know that the following bilinear form is also compact

k〈(Vk −V)(RΓv), RΓv〉τ,Γ+k〈(Vk −V)(ZΓv), RΓv〉τ,Γ
+k〈(V −Vk)(R

Γv), ZΓv〉τ,Γ .
(1.3.19)

Then we can define a compact bilinear form cΓ according (1.3.18) and (1.3.19). The proof

is done.

If k2 is not an eigenvalue of the eigenvalue problem of the Maxwell’s equations, by

[13, Theorem 4] and Fredholm’s alternative, we have the existence and uniqueness of a

solution σ ∈W−1/2(Γ) of (1.3.17).

1.3.5 Galerkin-BEMs
In this section we go to the last step (1c) in Fig. 1.1 to introduce Galerkin-BEMs for

(1.3.17). As in Section 1.2.5 we only consider triangular meshes. The basic definitions of

meshes and boundary element spaces have been given in Section 1.2.5. In this section we

define 2D triangular Raviart-Thomas elements as boundary elements.

Definition 4. A 2D triangular Raviart-Thomas element of degree l is defined by
(C,PC,ΣC).
• PC is a polynomial vector space on ΩC . Let PC be a polynomial function space
with maximum total degree l− 1 and let P̃C be a homogeneous polynomial function
space with total degree exactly l − 1 in two variables. PC with degree l is defined
as PC := (PC)2 ⊕ P̃Cx.

• The degrees of freedom ΣC are defined by two parts. Let li be a linear functional for
i = 1, 2, 3 and

li(v) :=

∫
ei

v(x) · nei(x)p(x)dsx

for v ∈ PC and p ∈ Pei with degree l−1. Pei is a polynomial function space defined
on ei and ei is an edge of a cell. nei is a tangential normal to ei for i = 1, 2, 3. l4 is
a linear functional with

l4(v) :=

∫
Ω

v(x) · p(x)dx

for v ∈ PC and p ∈ (PC)2 with degree l − 2.

For the lowest order Raviart-Thomas boundary element, we just need the first three

degrees of freedom. A cell C and a boundary element (C,PC,ΣC) could be defined from a

reference cell by a mapping and a reference boundary element by the Piola transformation

respectively. The definition of boundary element spaces is the same as in Section 1.2.5.

We use the notation W
−1/2
h (Γh) for Raviart-Thomas finite element spaces of degree one.
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The discretization of (1.3.17) is to find σh ∈W
−1/2
h (Γh) such that

〈Sk(σh),χh〉τ,Γ =

〈(
1

2
I −Ck

)
f ,χh

〉
τ,Γ

, (1.3.20)

for all χh ∈W
−1/2
h (Γh). Let {Φi}Ni=1 be a basis of W

−1/2
h (Γh). We use σh =

∑N
i=1 ξiΦi

in (1.3.20) and get a linear system

Aξ = b .

The elements in A and b are calculated by

A[i, j] =− k

∫
Γ

∫
Γ\{x}

Φj(y) ·Φi(x)Ek(x, y)dsydsx

+
1

k

∫
Γ

∫
Γ\{x}

divΓ(Φj)(y)divΓ(Φi)(x)Ek(x, y)dsydsx ,

b[i] =
1

2

∫
Γ

f(x)× n(x) ·Φi(x)dsx +

∫
Γ

∫
Γ\{x}

∇xEk(x, y) · (f(y)×Φi(x))dsydsx .

Now we begin to study the error estimates for (1.3.20). As in Section 1.2.5 we also

prove the best approximation, the optimal convergence and a super convergent result.

Lemma 10. There exists h0 > 0 such that for all χh ∈ W
−1/2
h (Γh) and 0 < h < h0 we

have

cs‖χh‖W−1/2(Γ) ≤ sup
χ′h∈W

−1/2
h (Γh),‖χ′h‖W−1/2(Γ)

>0

〈Skχh,χ
′
h〉Γ

‖χ′h‖W−1/2(Γ)

. (1.3.21)

Proof. The basic ideas of this proof is given in [13, Section 9.1]. In the proof we need to

use the generalized Gårding inequality. If we compare Lemma 3 with Lemma 9, we find

that we use a compact bilinear form cΓ in Lemma 9 and a compact operator CV in Lemma

3. So we define an operator T : W−1/2(Γ)→W−1/2(Γ) corresponding to cΓ by

〈Skχ,Tχ̂〉τ,Γ = cΓ(χ, χ̂) ∀χ ∈W−1/2(Γ) .

Sk defines an isomorphism as in the discussion in Section 1.3.4. Since cΓ is a compact

bilinear form, T is a compact operator by the inf-sup condition for Sk.

We begin to consider the right-hand side of (1.3.21).

〈Skχh, (P
X
h X

Γ +PT
hT)χh〉τ,Γ

=〈Skχh, (X
Γ +T)χh〉τ,Γ − 〈Skχh, ((I −PX

h )X
Γ + (I −PT

h )T)χh〉τ,Γ ,

wherePX
h andPT

h are two continuous projection operators toW
−1/2
h (Γh). The definitions

of PX
h and PT

h and their uniform convergence could be found in [13, Section 9.1]. We get

|〈Skχh, (P
X
h X

Γ +PT
hT)χh〉τ,Γ|+ |〈Skχh, ((I −PX

h )X
Γ + (I −PT

h )T)χh〉τ,Γ|
≥ |〈Skχh, (X

Γ +T)χh〉τ,Γ| .
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Now we can use the generalized Gårding inequality and get

|〈Skχh, (X
Γ +T)χh〉τ,Γ| = |〈Skχh, X

Γχh〉τ,Γ + cΓ(χh,χh)| ≥ cg‖χh‖2W−1/2(Γ) ,

|〈Skχh, ((I −PX
h )X

Γ + (I −PT
h )T)χh〉τ,Γ|

≤ c(‖(I −PX
h )X

Γ‖+ ‖(I −PT
h )T‖)‖χh‖2W−1/2(Γ) .

By using the uniform convergence of PX
h and PT

h , we could find a h0 such that

|〈Skχh, ((I −PX
h )X

Γ + (I −PT
h )T)χh〉τ,Γ| ≤ c‖χh‖2W−1/2(Γ)

for h < h0 and c < cg. Then we have

|〈Skχh, (P
X
h X

Γ +PT
hT)χh〉τ,Γ| ≥ (cg − c)‖χh‖2W−1/2(Γ) .

By the continuity of the operators, the proof is done.

Lemma 11. There exists c > 0 such that for the solutions of (1.3.17) and (1.3.20) we
have

‖σ − σh‖W−1/2(Γ) ≤c inf
χh∈W

−1/2
h (Γh)

‖σ − χh‖W−1/2(Γ) . (1.3.22)

Proof. From (1.3.17) and (1.3.20) we have

〈Skσh,χh〉τ,Γ = 〈Skσ,χh〉τ,Γ for all χh ∈W
−1/2
h (Γh).

This defines a Galerkin projection GhSk
σ = σh. By the stability from the LBB condition

GhSk
is bounded. Then we have

‖σ − σh‖W−1/2(Γ) =‖σ −GhSk
χh +GhSk

χh − σh‖W−1/2(Γ)

≤‖σ − χh‖W−1/2(Γ) + ‖GhSk
(χh − σ)‖W−1/2(Γ)

≤(1 + c)‖σ − χh‖W−1/2(Γ) .

The proof is done.

The approximation property of W
−1/2
h (Γh) for χ ∈ Hs

×(divΓ,Γ) is given in [13,

Theorem 14]

‖χ−Qhχ‖W−1/2(Γ) ≤ chs+1/2‖χ‖Hs
×(divΓ,Γ) for s ∈ [−1/2, l] , (1.3.23)

where Qhχ is an orthogonal projection of χ to W
−1/2
h (Γh) with respect to the inner

product of W−1/2(Γ) and l is the order of Raviart-Thomas boundary element spaces. We

use (1.3.23) in (1.3.22) and get a quasi-optimal error estimate

‖σ − σh‖W−1/2(Γ) ≤chs+1/2‖σ‖Hs
×(divΓ,Γ) . (1.3.24)

As for the Helmholtz equation we need to calculate errors in the L2t(Γ)-norm and we
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just consider the lowest order Raviart-Thomas boundary element with l = 1.

Theorem 4. Let σ ∈ Hs
×(divΓ,Γ) for s ∈ [−1/2, 1]. We have

‖σ − σh‖L2
t(Γ)

≤ chs‖σ‖Hs
×(divΓ,Γ) .

Proof. The proof is similar with Theorem 2. The inverse inequality could be found in [17,

Lemma 10]. We find

‖σ − σh‖L2
t(Γ)

≤‖σ −Qhσ‖L2
t(Γ)

+ ‖Qhσ − σh‖L2
t(Γ)

≤︸︷︷︸
inverse inequality

‖σ −Qhσ‖L2
t(Γ)

+ ch−1/2‖Qhσ − σh‖W−1/2(Γ)

≤‖σ −Qhσ‖L2
t(Γ)

+ ch−1/2
(‖Qhσ − σ‖W−1/2(Γ) + ‖σ − σh‖W−1/2(Γ)

)
.

By (1.3.23) and (1.3.24), the proof is done.

1.3.6 Numerical tests
We consider one example on the boundary of a unit cube (0, 1)3. A analytical solution

used for the test is

u(x) =

⎛⎝ x2 cos(x3) + x3 cos(x2)
x1 cos(x3) + x3 cos(x1)
x1 cos(x2) + x2 cos(x1)

⎞⎠ (1.3.25)

In Table 1.3 the first column is the level of meshes, the second column is the number of

degrees of freedom, the third and fifth columns are L2-error for Dirichlet and Neumann

boundary value problems respectively, and the fourth and sixth columns are the rate of

convergence (s) in O(hs). Fig.1.4a is the result of the Dirichlet boundary value problem

of (1.3.25). Fig.1.4b is the result of the Neumann boundary value problem of (1.3.25).

"CR" means the rate of convergence (s) and σn
h is the approximated solution calculated

by using a mesh of level n. The formulae are

‖σh − σ‖2L2(Γ) =

∫
Γ

(σh(x)− σ(x)) · (σh(x)− σ(x))dsx ,

CR = log2
‖σn−1

h − σ‖L2(Γ)

‖σn
h − σ‖L2(Γ)

.

level dof ErrorD CRD ErrorN CRN

0 36 0.52560 - 0.69761 -

1 144 0.26010 1.0149 0.27707 1.3322

2 576 0.13016 0.9987 0.13268 1.0623

3 2304 0.06476 1.0072 0.06488 1.0320

Table 1.3 Accuracy of Galerkin-BEMs for Dirichlet and Neumann boundary value

problems for Maxwell’s equations



1.3 The Maxwell case 33

(a) Dirichlet boundary value problem (b) Neumann boundary value problem

Figure 1.4 Dirichlet and Neumann boundary value problems for Maxwell’s equations

In the fourth and sixth columns of Table 1.3 we observe a linear convergence for the

lowest order Raviat-Thomas boundary element space. The perturbation in the rate of

convergence is from the approximation of the linear form on the right-hand side of the

variational formulation and numerical integrations.



Chapter 2

Domain Decomposition Methods

Domain decomposition methods (DDM) can be used for the coupling of different

physical problems in different domains, the coupling of different numerical methods in

different domains, parallel computing and preconditioners for iterative methods. The

basic idea of domain decomposition methods for boundary value problems is to reduce the

solution of the boundary value problem in the whole domain to the solution of problems

of the same type in subdomains by using interface conditions [56, 57, 64, 63, 68]. For a

boundary integral equation, the solution on the boundary of the whole domain is reduced

to the solution on the boundaries of subdomains. The calculation of band strucutres of

photonic crystals is an inhomogeneous problem for the propagation of electromagnetic

waves in an inhomogeneous dielectric medium. In our case we assume that the medium

has different permittivity and permeability in different subdomains and in each subdomain

the permittivity and permeability are constant. This is the coupling of different physical

problems in different subdomains and we need to use DDMs to deal with this problem.

Domain decomposition methods can also be used for the coupling of BEMs and FEMs.

This is a very good combination of the advantages of BEMs and FEMs and it is very

suitable for solving the transmission problem for electromagnetic waves.

2.1 The Helmholtz case

2.1.1 Interface problem

In this section we consider an inhomogeneous problem for the Helmholtz equation in

Ω := Ωex
⋃

Ωin and the coefficient α in the equation has different values in Ωex and Ωin.

Since we use interface conditions for the coupling in this problem, we call it the interface

problem. The interface problem with the Dirichlet boundary condition is

−∇ ·
(
1

α
∇u(x)

)
− k2u(x) = 0 x ∈ Ωex

⋃
Ωin , (2.1.1a)

u(x) = f(x) x ∈ Γ := ∂Ω , (2.1.1b)

where k is a positive real number, α = αex in Ωex, α = αin in Ωin, and f is the given data.

αex and αin are positive constants.
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We have two interface conditions for this problem

γex
0 (uex)(x) = γin

0 (uin)(x) ∀x ∈ ΓI , (2.1.2a)

αexγex
1 (uex)(x) = −αinγin

1 (uin)(x) ∀x ∈ ΓI . (2.1.2b)

where uex := u|Ωex , uin := u|Ωin , γex
0 ,γin

0 ,γex
1 , and γin

1 are Dirichlet and Neumann trace

operators from Ωex and Ωin, respectively, and ΓI := Γex
⋂

Γin with Γex := ∂Ωex and

Γin := ∂Ωin. The definitions of the trace operators could be found in Section 1.2.3.

2.1.2 Domain decomposition method

We define σex := γex
1 (uex), σin := γin

1 (uin), ϕex := γex
0 (uex) and ϕin := γin

0 (uin).
By using (1.2.11) we may define two Calderon projections for (ϕex, σex) and (ϕin, σin)
respectively as (

ϕex

σex

)
=

(
1
2
I −KΓex

kex V Γex

kex

DΓex

kex
1
2
I +K ′Γex

kex

)(
ϕex

σex

)
, (2.1.3a)(

ϕin

σin

)
=

(
1
2
I −KΓin

kin V Γin

kin

DΓin

kin
1
2
I +K ′Γin

kin

)(
ϕin

σin

)
. (2.1.3b)

where kex =
√
αexk, kin =

√
αink, and the definitions of the boundary integral operators

are given in Section 1.2.3 on Γex and Γin respectively.

We use the second equations of (2.1.3a) and (2.1.3b) in (2.1.2b) and get

αex

(
DΓex

kexϕ
ex +

(
1

2
I +K ′Γex

kex

)
σex

)
+ αin

(
DΓin

kinϕ
in +

(
1

2
I +K ′Γin

kin

)
σin

)
= 0 .

(2.1.4)

From (2.1.2a) and (2.1.1b), we have ϕex = ϕin on ΓI and ϕex = f on Γ. We define ϕI as

ϕI := ϕex = ϕin on ΓI and ϕI = 0 on Γ. We also assume that the extension of f on ΓI is

zero. We assume that the exterior unit normal on ΓI and Γ is the same as on Γex. We use

ϕI and f in (2.1.4) and get

(αexDΓI

kex + αinDΓI

kin)(ϕ
I)(x) + αex

(
1

2
I +K ′Γex

kex

)
(σex)(x)

+ αin

(
1

2
I +K ′Γin

kin

)
(σin)(x) = −αexDΓ

kex(f)(x)

∀x ∈ ΓI . (2.1.5)

From the first equations in (2.1.3a) and (2.1.3b) we get(
1

2
I +KΓI

kex

)
(ϕI)(x)− V Γex

kex (σex)(x)

= −
(
1

2
I +KΓ

kex

)
(f)(x)

∀x ∈ Γex , (2.1.6)
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(
1

2
I +KΓin

kin

)
(ϕI)(x)− V Γin

kin (σin)(x) = 0 ∀x ∈ Γin . (2.1.7)

The combination of (2.1.5), (2.1.6) and (2.1.7) is the system of equations for the solution

on the boundaries of subdomains.

2.1.3 Variational formulation
By using the left hand sides of (2.1.5), (2.1.6) and (2.1.7), we define three operators

F1 : H
1/2(ΓI)×H−1/2(Γex)×H−1/2(Γin)→ H−1/2(ΓI) ,

F2 : H
1/2(ΓI)×H−1/2(Γex)→ H1/2(Γex) ,

F3 : H
1/2(ΓI)×H−1/2(Γin)→ H1/2(Γin) ,

which result into the following variational problem.

Find (ϕI , σex, σin) ∈ H1/2(ΓI)×H−1/2(Γex)×H−1/2(Γin) such that

〈F1(ϕ
I , σex, σin), υI〉ΓI = 〈−αexDΓ

kex(f), υ
I〉ΓI , (2.1.8a)

〈F2(ϕ
I , σex), χex〉Γex =

〈
−
(
1

2
I +KΓ

kex

)
(f), χex

〉
Γex

, (2.1.8b)

〈F3(ϕ
I , σin), χin〉Γin = 0 (2.1.8c)

for all (υI , χex, χin) ∈ H1/2(ΓI)×H−1/2(Γex)×H−1/2(Γin).

Theorem 5. If kex and kin are no eigenvalues of the Laplace eigenvalue problem in Ωex

and Ωin, respectively, then there exists an unique solution for (2.1.8).

Proof. A similar proof is given in [58, Section 1.1.8]. We recall that ϕI = 0 on Γ. We

can extend the operator KΓI

kex in (2.1.6) to KΓex

kex and get(
1

2
I +KΓex

kex

)
(ϕI)− V Γex

kex (σex) =−
(
1

2
I +KΓ

kex

)
(f) .

If we consider the variational formulation

〈V Γex

kex (σex), χex〉Γex =

〈(
1

2
I +KΓex

kex

)
(ϕI) +

(
1

2
I +KΓ

kex

)
(f), χex

〉
Γex

,

and we assume that kex is not an eigenvalue of the Laplace operator in Ωex, from Section

1.2.4 we know the existence and uniqueness of the solution of this variational formulation.

Then we have

σex = (V Γex

kex )−1
((

1

2
I +KΓex

kex

)
(ϕI) +

(
1

2
I +KΓ

kex

)
(f)

)
.

It is the same for (2.1.7) and we have

σin = (V Γin

kin )−1
(
1

2
I +KΓin

kin

)
(ϕI) .
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We can extend the operator DΓI

kex in (2.1.5) to DΓex

kex . By using the above two formulae

for σex and σin in (2.1.5), we get

αex

[
DΓex

kex +

(
1

2
I +K ′Γex

kex

)
(V Γex

kex )−1
(
1

2
I +KΓex

kex

)]
︸ ︷︷ ︸

SΓex
k

(ϕI)

+ αin

[
DΓin

kin +

(
1

2
I +K ′Γin

kin

)
(V Γin

kin )−1
(
1

2
I +KΓin

kin

)]
︸ ︷︷ ︸

SΓin
k

(ϕI)

=− αexDΓ
kex(f)− αex

(
1

2
I +K ′Γex

kex

)
(V Γex

kex )−1
(
1

2
I +KΓ

kex

)
(f) .

(2.1.9)

From the left hand side of (2.1.9), we can define two Steklov-Poincaré operators, SΓ
ex

kex

and SΓ
in

kin , and from Lemma 2.3 in [53] we know that they are coercive. Since we assume

that kex and kin are no eigenvalues of the Laplace operator in Ωex and Ωin, respectively,

SΓ
ex

kex and SΓ
in

kin are injective. Then we have the existence and uniqueness of ϕI in (2.1.9)

by the Fredholm’s alternative. By the existence and uniqueness of ϕI , we get the same

properties for σex and σin. The proof is done.

2.1.4 Galerkin-BEM

The Galerkin discretization of (2.1.8) is to find (ϕI
h, σ

ex
h , σin

h ) ∈ S1h(Γ
I
h) × S0h(Γ

ex
h ) ×

S0h(Γ
in
h ) such that

〈F1(ϕ
I
h, σ

ex
h , σin

h ), υI
h〉ΓI = 〈−αexDΓ

kex(f), υ
I
h〉ΓI , (2.1.10a)

〈F2(ϕ
I
h, σ

ex
h ), χex

h 〉Γex =

〈
−
(
1

2
I +KΓ

kex

)
(f), χex

h

〉
Γex

, (2.1.10b)

〈F3(ϕ
I
h, σ

in
h ), χin

h 〉Γin = 0 (2.1.10c)

for all (υI
h, χ

ex
h , χin

h ) ∈ S1h(Γ
I
h)×S0h(Γ

ex
h )×S0h(Γ

in
h ). S1h(Γ

I
h) is a piecewise linear function

space, and S0h(Γ
ex
h ) and S0h(Γ

in
h ) are piecewise constant function spaces.

Let {ΦI
i }NI

i=1, {Φex
i }Nex

i=1 and {Φin
i }N in

i=1 be the basis of S1h(Γ
I
h), S

0
h(Γ

ex
h ) and S0h(Γ

in
h )

respectively. We use ϕI
h =

∑NI

i=1 ξ
I
i Φ

I
i , σ

ex
h =

∑Nex

i=1 ξ
ex
i Φex

i and σin
h =

∑N in

i=1 ξ
in
i Φin

i in

(2.1.10) and get one linear system

Aξ :=

⎛⎝ A11 A12 A13

A21 A22 0
A31 0 A33

⎞⎠⎛⎝ ξI

ξex

ξin

⎞⎠ = b .

Obviously A11, A22 and A33 are symmetric and the calculation is the same asA in Section

1.2.5. So we just compare A12 with A21 and A13 with A31.

A12[i][j] =αex

(
1

2

∫
ΓI

Φex
j (x)ΦI

i (x)dsx +

∫
ΓI

∫
Γex

∂Ekex(x, y)

∂nx

Φex
j (y)ΦI

i (x)dsydsx

)



38 Domain Decomposition Methods

A21[j][i] =
1

2

∫
ΓI

ΦI
i (x)Φ

ex
j (x)dsx +

∫
Γex

∫
ΓI

∂Ekex(x, y)

∂ny

ΦI
i (y)Φ

ex
j (x)dsydsx

A13[i][j] =αin

(
1

2

∫
ΓI

Φin
j (x)ΦI

i (x)dsx −
∫
ΓI

∫
Γin

∂Ekin(x, y)

∂nex
x

Φin
j (y)ΦI

i (x)dsydsx

)
A31[j][i] =

1

2

∫
Γin

ΦI
i (x)Φ

in
j (x)dsx +

∫
Γin

∫
Γin

∂Ekin(x, y)

∂nin
y

ΦI
i (y)Φ

in
j (x)dsydsx

This shows that A12[i][j] = αexA21[j][i] and A13[i][j] = αinA31[j][i] results from

nex(x) = −nin(x) for x ∈ ΓI .

Now we go to the last step to consider the a Priori error estimates for (2.1.10). The

Galerkin discretization for the variation formulation of (2.1.9) is the same with (2.1.10).

From [53, Lemma 2.3], we have the coercivity of SΓ
ex

kex and SΓ
in

kin , so we can repeat all the

work in Section 1.2.5 for (2.1.9) and get the best approximation for ϕI
h

‖ϕI
h − ϕI‖H1/2(ΓI) ≤ c inf

υI
h∈S1

h(Γ
I)
‖υI

h − ϕI‖H1/2(ΓI) . (2.1.11)

If we assume that the solution is regular enough, we can use (1.2.22b) in (2.1.11) and get

the quasi-optimal error estimate

‖ϕI
h − ϕI‖H1/2(ΓI) ≤ ch3/2|ϕI |H2

pw(Γ
I) . (2.1.12)

By using the Aubin-Nitsche duality, we get the super convergence in L2-norm

‖ϕI
h − ϕI‖L2(ΓI) ≤ ch2|ϕI |H2

pw(Γ
I) . (2.1.13)

We can use ϕI
h as the given data in (2.1.10b) and (2.1.10c) to calculate σex

h and σin
h . The

error estimates for σex
h and σin

h are definitely the same as for the Dirichlet boundary value

problem in Section 1.2.5. Then we have

‖σex
h − σex‖L2(Γex) ≤ ch|σex|H1

pw(Γ
ex) , (2.1.14)

‖σin
h − σin‖L2(Γin) ≤ ch|σin|H1

pw(Γ
in) . (2.1.15)

2.1.5 Numerical tests

We consider one example on the boundary of Ωin = (1/3, 2/3)3 and the boundary

of Ωex = (0, 1)3 \ Ωin. The analytical solution used for the test is (1.2.26). In Table

2.1 the first column is the level of meshes, the second column is the number of degrees of

freedom, the third, fifth and seventh columns are L2-error for σex
h , ϕI

h and σin
h respectively.

The fourth, sixth and eighth columns are the rate of convergence (s) in O(hs). Fig. 2.1a,
2.1b and 2.1c are the results of σex

h , ϕI
h and σin

h respectively. The calculation of L2-error
and the rate of convergence is the same as in Section 1.2.6.

In the fourth and eighth columns we observe a linear convergence for piecewise

constant function spaces and in the sixth column we observe a quadratic convergence

for piecewise linear function spaces approximately. The perturbation in the rate of

convergence is the same reasons as in Chapter 1.
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level dof ‖σex
h − σex‖L2 CR ‖ϕI

h − ϕI‖L2 CR ‖σin
h − σin‖L2 CR

0 278 1.36232 - 0.03133 - 0.27695 -

1 1106 0.52224 1.3833 0.00690 2.1827 0.13659 1.0197

2 4418 0.21007 1.3138 0.00163 2.0813 0.05520 1.3071

Table 2.1 Accuracy of Galerkin-BEMs for interface problem with Dirichlet boundary

condition for the Helmholtz equation

(a) σex, Neumann trace from exterior domain (b) ϕI , Dirichlet trace on interface

(c) σin, Neumann trace from interior domain

Figure 2.1 Interface problem with Dirichlet boundary condition for the Helmholtz

equation
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2.2 The Maxwell case

2.2.1 Interface problem
In this section we consider electromagnetic waves in an inhomogeneous dielectric

medium in Ω := Ωex
⋃

Ωin. The medium has different permeability and permittivity in

Ωex andΩin respectively. The time-harmonicMaxwell’s equations for electric or magnetic

fields with a Dirichlet boundary condition are

∇×
(

1

α(x)
∇× u(x)

)
− k2u(x) = 0 ∀x ∈ Ωex

⋃
Ωin , (2.2.1a)

∇ · u(x) = 0 ∀x ∈ Ωex
⋃

Ωin , (2.2.1b)

γt(u)(x) = f(x) ∀x ∈ Γ := ∂Ω , (2.2.1c)

where k is a positive real number, α = αex = εexμex in Ωex, α = αin = εinμin in Ωin,

and f is the given data. εex, μex, εin, μin are positive constants.

We have two interface conditions for this problem from (1.1.2b) and (1.1.2d),

γex
t (uex)(x) + γin

t (uin)(x) = 0 ∀x ∈ ΓI , (2.2.2a)

βexγex
N (uex)(x) + βinγin

N (uin)(x) = 0 ∀x ∈ ΓI , (2.2.2b)

where uex := u|Ωex , uin := u|Ωin , γex
t ,γin

t ,γex
N ,γin

N are Dirichlet and Neumann trace

operators from Ωex and Ωin, respectively, βex =
√

εex

μex , β
in =

√
εin

μin for electric fields,

and ΓI := Γex
⋂

Γin with Γex := ∂Ωex and Γin := ∂Ωin. The definitions of the Dirichlet

and Neumann trace operators could be found in Section 1.3.3.

2.2.2 Domain decomposition method
We define σex := γex

N (uex), σin := γin
N (uin), ϕex := γex

t (uex) and ϕin := γin
t (uin).

From (1.3.14) we could define two Calderon projections for (σex,ϕex) and (σin,ϕin),
respectively, as (

ϕex

σex

)
=

(
1
2
I +CΓex

kex SΓ
ex

kex

SΓ
ex

kex
1
2
I +CΓex

kex

)(
ϕex

σex

)
, (2.2.3a)(

ϕin

σin

)
=

(
1
2
I +CΓin

kin SΓ
in

kin

SΓ
in

kin
1
2
I +CΓin

kin

)(
ϕin

σin

)
, (2.2.3b)

where kex =
√
αexk, kin =

√
αink, and SΓ

ex

kex ,C
Γex

kex ,S
Γin

kin ,C
Γin

kin are boundary integral

operators on Γex and Γin, respectively, with the definitions in Section 1.3.3.

We use the second equations of (2.2.3a) and (2.2.3b) in (2.2.2b) and get

βex

(
SΓ

ex

kex (ϕ
ex) +

(
1

2
I +CΓex

kex

)
(σex)

)
+ βin

(
SΓ

in

kin (ϕ
in) +

(
1

2
I +CΓin

kin

)
(σin)

)
= 0 .

(2.2.4)
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From (2.2.2a) and (2.2.1c) we have ϕex = −ϕin on ΓI and ϕex = f on Γ. We define ϕI

as ϕI = ϕex = −ϕin on ΓI and ϕI = 0 on Γ. We also assume that the extension of f is

zero on ΓI . We assume that the exterior unit normal on ΓI and Γ is the same as on Γex.

We use ϕI and f in (2.2.4) and get(
βexSΓ

I

kex + βinSΓ
I

kin

)
(ϕI)(x) + βex

(
1

2
I +CΓex

kex

)
(σex)(x)

+βin

(
1

2
I +CΓin

kin

)
(σin)(x) = −βexSΓkex(f)(x)

∀x ∈ ΓI . (2.2.5)

Notice that we change the operator SΓ
in

kin to −SΓI

kin in (2.2.5). From the first equations in

(2.2.3a) and (2.2.3b) we get(
−1

2
I +CΓI

kex

)
(ϕI)(x) + SΓ

ex

kex (σ
ex)(x)

= −
(
−1

2
I +CΓ

kex

)
(f)(x)

∀x ∈ Γex , (2.2.6)

(
1

2
I −CΓin

kin

)
(ϕI)(x) + SΓ

in

kin (σ
in)(x) = 0 ∀x ∈ Γin . (2.2.7)

The combination of (2.2.5), (2.2.6) and (2.2.7) is the system of equations for the unknown

functions (ϕI , σex, σin). The solution on the boundary of the whole domain has been

changed to the solution on the boundaries of the subdomains.

2.2.3 Variational formulation

By using the left hand side of (2.2.5), (2.2.6) and (2.2.7) we define three operators

F1 : W
−1/2(ΓI)×W−1/2(Γex)×W−1/2(Γin)→W−1/2(ΓI) ,

F2 : W
−1/2(ΓI)×W−1/2(Γex)→W−1/2(Γex) ,

F3 : W
−1/2(ΓI)×W−1/2(Γin)→W−1/2(Γin) ,

which results into the following variational formulation.

Find (ϕI ,σex,σin) ∈W−1/2(ΓI)×W−1/2(Γex)×W−1/2(Γin) such that

〈F1(ϕ
I ,σex,σin),υ1〉τ,ΓI = 〈−βexSΓkex(f),υ

1〉τ,ΓI , (2.2.8a)

〈F2(ϕ
I ,σex),υ2〉τ,Γex =

〈(
1

2
I −CΓ

kex

)
(f),υ2

〉
τ,Γex

, (2.2.8b)

〈F3(ϕ
I ,σin),υ3〉τ,Γin = 0 , (2.2.8c)

for all (υ1,υ2,υ3) ∈W−1/2(ΓI)×W−1/2(Γex)×W−1/2(Γin).

For the existence and uniqueness of the solution of (2.2.8), we need a generalized

Gårding inequality as in Section 1.3.4. The basic ideas of the proof have been given in

[13, Theorem 9] for the transmission problem. We follow their ideas and give a proof for
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our problem (2.2.8). We define an operator F as

F

⎛⎝ v1
v2
v3

⎞⎠ =

⎛⎝ F1(v1,v2,v3)
βexF2(v1,v2)
βinF3(v1,v3)

⎞⎠
for (v1,v2,v3) ∈ W−1/2(ΓI) ×W−1/2(Γex) ×W−1/2(Γin). The reason to multiply by

βex and βin is to have a symmetry of F. We also define a sesquilinear pairing for F as〈
F

⎛⎝ v1
v2
v3

⎞⎠ ,

⎛⎝ w1

w2

w3

⎞⎠〉
τ

=
〈F1(v1,v2,v3),w1〉τ,ΓI

+〈F2(v1,v2),w2〉τ,Γex

+〈F3(v1,v3),w3〉τ,Γin

.

We define an operator X as

X

⎛⎝ v1
v2
v3

⎞⎠ =

⎛⎝ XΓI
(v1)

XΓex
(v2)

XΓin
(v3)

⎞⎠ ,

where the definitions of XΓI
, XΓex

and XΓin
can be found in Lemma 9 in Section 1.3.4.

Then we have a lemma for the generalized Gårding inequality for F.

Lemma 12. There exists a compact bilinear form c(·, ·) such that F satisfies the
generalized Gårding inequality〈

F

⎛⎝ v1
v2
v3

⎞⎠ ,X

⎛⎝ v1
v2
v3

⎞⎠〉
τ

+ c

⎛⎝⎛⎝ v1
v2
v3

⎞⎠ ,

⎛⎝ v1
v2
v3

⎞⎠⎞⎠
≥ c

(
‖v1‖2W−1/2(ΓI)

+ ‖v2‖2W−1/2(Γex)
+ ‖v3‖2W−1/2(Γin)

)
.

Proof. First we consider the left hand side of the inequality and get〈
F

⎛⎝ v1
v2
v3

⎞⎠ ,X

⎛⎝ v1
v2
v3

⎞⎠〉
τ

=
〈F1(v1,v2,v3), X

ΓI
(v1)〉τ,ΓI

+〈F2(v1,v2), X
Γex

(v2)〉τ,Γex

+〈F3(v1,v3), X
Γin

(v3)〉τ,Γin

=

〈(
βexSΓ

I

kex + βinSΓ
I

kin

)
(v1) + βex

(
1

2
I +CΓex

kex

)
(v2)

+βin

(
1

2
I +CΓin

kin

)
(v3), X

ΓI

(v1)

〉
τ,ΓI

+ βex

〈(
−1

2
I +CΓI

kex

)
(v1) + SΓ

ex

kex (v2), X
Γex

(v2)

〉
τ,Γex

+ βin

〈(
1

2
I −CΓin

kin

)
(v1) + SΓ

in

kin (v3), X
Γin

(v3)

〉
τ,Γin

.

From Lemma 9 we have the coercivity of SΓ
I

kex , S
ΓI

kin , S
Γex

kex and SΓ
in

kin , so we just need to
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consider the double-layer boundary integral operators. We consider the second and fourth

terms on the right hand side of the above formulation as the following〈
βex

(
1

2
I +CΓex

kex

)
(v2), X

ΓI

(v1)

〉
τ,ΓI

+ βex

〈(
−1

2
I +CΓI

kex

)
(v1), X

Γex

(v2)

〉
τ,Γex

,

(2.2.9)

and the argument for the third and sixth terms is the same.

By using Lemma 6 in [13] for the double-layer operators in (2.2.9), we have

〈CΓex

kex (v2), X
ΓI

(v1)〉τ,ΓI + 〈CΓI

kex(v1), X
Γex

(v2)〉τ,Γex

=︸︷︷︸
Lemma 6

〈CΓI

kex(X
ΓI

(v1)),v2〉τ,Γex + 〈CΓI

kex(v1), X
Γex

(v2)〉τ,Γex

=〈CΓI

kex(R
ΓI

(v1)− ZΓI

(v1)), R
Γex

(v2) + ZΓex

(v2)〉τ,Γex

+ 〈CΓI

kex(R
ΓI

(v1) + ZΓI

(v1)), R
Γex

(v2)− ZΓex

(v2)〉τ,Γex

=2〈CΓI

kex(R
ΓI

(v1)), R
Γex

(v2)〉τ,Γex − 2〈CΓI

kex(Z
ΓI

(v1)), Z
Γex

(v2)〉τ,Γex .

By Lemma 12 in [13], we know that 〈CΓI

kex ·, ·〉τ,Γex onRΓex
(W−1/2(Γex))2 and 〈CΓI

kex ·, ·〉τ,Γex

on ZΓex
(W−1/2(Γex))2 are compact bilinear forms. For the left terms in (2.2.9), we have

〈v2, XΓI

(v1)〉τ,ΓI − 〈v1, XΓex

(v2)〉τ,ΓI

=〈v2, XΓI

(v1)〉τ,ΓI + 〈XΓex

(v2),v1〉τ,ΓI

=〈RΓex

(v2) + ZΓex

(v2), R
ΓI

(v1)− ZΓI

(v1)〉τ,ΓI

+ 〈RΓex

(v2)− ZΓex

(v2), R
ΓI

(v1) + ZΓI

(v1)〉τ,ΓI

=2〈RΓex

(v2), R
ΓI

(v1)〉τ,ΓI − 2〈ZΓex

(v2), Z
ΓI

(v1)〉τ,ΓI .

By Corollary 1 in [13], we know that 〈RΓex ·, RΓI ·〉τ,ΓI and 〈ZΓex ·, ZΓI ·〉τ,ΓI are compact

bilinear forms. So with the coercivity of the single-layer operators we can define a

compact bilinear form. The proof is done.

If we assume that k is not an eigenvalue, we have the existence and uniqueness of the

solution of (2.2.8) by Theorem 4 in [13] and the Fredholm alternative.

2.2.4 Galerkin-BEM
The discretization of (2.2.8) is to find (ϕI

h,σ
ex
h ,σin

h ) ∈W
−1/2
h (ΓI

h)×W
−1/2
h (Γex

h )×
W

−1/2
h (Γin

h ) such that

〈F1(ϕ
I
h,σ

ex
h ,σin

h ),υ1h〉τ,ΓI = 〈−βexSΓkex(f),υ
1
h〉τ,ΓI , (2.2.10a)

〈F2(ϕ
I
h,σ

ex
h ),υ2h〉τ,Γex =

〈(
1

2
I −CΓ

kex

)
(f),υ2h

〉
τ,Γex

, (2.2.10b)

〈F3(ϕ
I
h,σ

in
h ),υ3h〉τ,Γin = 0 , (2.2.10c)
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for all (υ1h,υ
2
h,υ

3
h) ∈ W

−1/2
h (ΓI

h) × W
−1/2
h (Γex

h ) × W
−1/2
h (Γin

h ). The definitions of

W
−1/2
h (ΓI

h), W
−1/2
h (Γex

h ) and W
−1/2
h (Γin

h ) could be found in Section 1.3.5.

Let {ΦI
i }NI

i=1, {Φex
i }Nex

i=1 and {Φin
i }N in

i=1 be the basis of W
−1/2
h (ΓI

h), W
−1/2
h (Γex

h ) and

W
−1/2
h (Γin

h ) respectively. We use ϕI
h =

∑NI

j=1 ξ
I
jΦ

I
j , ϕ

ex
h =

∑Nex

j=1 ξ
ex
j Φex

j and ϕin
h =∑N in

j=1 ξ
in
j Φin

j in (2.2.10) and get one linear system

Aξ :=

⎛⎝ A11 A12 A13

A21 A22 0
A31 0 A33

⎞⎠⎛⎝ ξI

ξex

ξin

⎞⎠ = b .

Obviously A11, A22 and A33 are symmetric and the calculation is the same asA in Section

1.3.5. So we just compare A12 and A13 with A21 and A31.

A12[i, j]

βex
=
1

2

∫
ΓI

Φex
j (x)× n(x) ·ΦI

i (x)dsx

+

∫
ΓI

∫
Γex\{x}

∇xEk(x, y) · (Φex
j (y)×ΦI

i (x))dsydsx

A21[j, i] =− 1

2

∫
ΓI

ΦI
i (x)× n(x) ·Φex

j (x)dsx

+

∫
Γex

∫
ΓI\{x}

∇xEk(x, y) · (ΦI
i (y)×Φex

j (x))dsydsx

A13[i, j]

βin
=
1

2

∫
ΓI

ΦI
j (x)× n(x) ·ΦI

i (x)dsx

−
∫
ΓI

∫
ΓI\{x}

∇xEk(x, y) · (ΦI
j (y)×ΦI

i (x))dsydsx

A31[j, i] =
1

2

∫
Γin

ΦI
i (x)× n(x) ·ΦI

j (x)dsx

−
∫
Γin

∫
Γin\{x}

∇xEk(x, y) · (ΦI
i (y)×ΦI

j (x))dsydsx

This shows A12[i, j] = βexA21[j, i], and A13[i, j] = βinA31[j, i] results from nex(x) =
−nin(x) for x ∈ ΓI .

Now we go to the last step to consider the a Priori error estimates for (2.2.10). The

difference between this section and Section 2.1.4 is that for the interface problem for

the Helmholtz equation we use piecewise constant function spaces and piecewise linear

function spaces together and for the Maxwell’s equations we just use Raviart-Thomas

boundary element spaces. So for the Helmholtz equation we need to use (2.1.9) to define

Steklov-Poincaré operators to separate piecewise linear function spaces from piecewise

constant function spaces. But for the Maxwell’s equations, we just use Raviart-Thomas

boundary element spaces, so we can repeat all the work in Section 1.3.5 directly. Then

we know that ‖ϕI − ϕI
h‖L2

t(Γ
I), ‖σex − σex

h ‖L2
t(Γ

ex), and ‖σin − σin
h ‖L2

t(Γ
in) are linear

convergence with the lowest order Raviart-Thomas boundary element spaces. We will not

repeat all these technical work.
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2.2.5 Numerical tests

We consider one example on the boundary of Ωin = (1/3, 2/3)3 and Ωex = (0, 1)3 \
Ωin. An analytical solution used for the test is (1.3.25). In Table 2.2 the first column is

the level of meshes, the second column is the number of degrees of freedom, the third,

fifth and seventh columns are L2-error for σex
h ,ϕI

h and σin
h , respectively. The fourth, sixth

and eighth columns are the rate of convergence (s) in O(hs). Fig. 2.2a, 2.2b and 2.2c are

the results of σex
h , ϕI

h and σin
h , respectively. The calculation of L2-error and the rate of

convergence is the same as Section 1.3.6.

(a) σex, Neumann trace from exterior domain (b) ϕI , Dirichlet trace from exterior domain on

interface

(c) σin, Neumann trace from interior domain

Figure 2.2 Interface problem with Dirichlet boundary condition for Maxwell’s

equations
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level dof ‖σex − σex
h ‖L2 CR ‖ϕI −ϕI

h‖L2 CR ‖σin − σin
h ‖L2 CR

0 432 0.17427 - 0.04833 - 0.01998 -

1 1728 0.08608 1.0177 0.02515 0.9426 0.01012 0.9810

2 6912 0.04265 1.0131 0.01268 0.9878 0.00499 1.0210

Table 2.2 Accuracy of Galerkin-BEMs for interface problem with Dirichlet boundary

condition for Maxwell’s equations

In the fourth, sixth and eighth columns of Table 2.2, we observe a linear convergence for

the lowest order Raviart-Thomas boundary element spaces. Our numerical results match

the a Priori error estimates very well.



Chapter 3

Boundary Element Methods for
Eigenvalue Problems

3.1 A Priori error estimates for holomorphic eigenvalue
problems

If we use Galerkin-BEMs to solve a linear eigenvalue problem, the eigenvalue is a

parameter in the fundamental solution. So the linear eigenvalue problem is changed to a

nonlinear eigenvalue problem. For the study of this nonlinear problem, we follow the PhD

work of Dr. G. Unger [71]. In his thesis he presents a method to compute eigenvalues

of the Helmholtz equation and he provides a Priori error estimates for eigenvalues and

eigenvectors. His results could be applied to nonlinear operator functions satisfying:

1. Operator functions are holomorphic;

2. The operator defined by an operator function with a fixed value is a Fredholm

operator with index zero and the operator can be splitted into an elliptic operator

and a compact operator. For example,

H(k) = E + C(k) , (3.1.1)

where E is an elliptic operator and C(k) is a compact operator.

Definition 5. The operator E : X → X ′ is called X-elliptic if

〈Ex, x〉 ≥c‖x‖2X ∀x ∈ X ,

where X is a Hilbert space, X ′ is the dual space of X and 〈·, ·〉 is the dual pairing.
In this section we give a brief summary of the work in [71] and we will use these results

to check the convergence of our numerical results.

3.1.1 Basic definitions
First we define some notations. Let Λ denote an open and connected subset of C. Let

L(X, Y ) denote a space of bounded linear operators from X to Y . X and Y are Banach
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spaces. Since X and Y are Banach spaces, L(X, Y ) is also a Banach space. If X is a

Hilbert space, let {Xn}n∈N denote a sequence of finite dimensional subspaces of X such

that Xn ⊂ Xn+1 and

lim
n→∞

inf
xn∈Xn

‖xn − x‖X =0 ∀x ∈ X .

Let P n denote a projection from X to Xn by the best approximation in X .

Definition 6. Let B be a Banach space. A function h : Λ → B is holomorphic on Λ if
there exists a function h′ : Λ→ B such that

lim
ε→0

∥∥∥∥h(k + ε)− h(k)

ε
− h′(k)

∥∥∥∥
B

=0 ∀ k ∈ Λ .

One can show that holomorphic functions are analytic [71, Definition 3.1.1]. In our work,

B is a Banach space L(X, Y ), so we call h an operator function. If h(k) is a Fredholm

operator for all k ∈ Λ, we call h a Fredholm operator function. Then we can define

a holomorphic Fredholm operator function h. We characterize a holomorphic operator

function based on [43, Theorem 3.12] as the following lemma.

Lemma 13. An operator function H : Λ → L(X, Y ) is holomorphic if the function
defined by

k ∈ Λ→ 〈H(k)x, y〉Y×Y ′ (3.1.2)

is holomorphic for all x ∈ X and y ∈ Y ′. Y ′ is the dual space of Y .

Definition 7. A number k0 ∈ Λ is called an eigenvalue of a holomorphic operator
function H if there exists a nontrivial solution x0 ∈ X such that

H(k0)x0 = 0 . (3.1.3)

Every x0 satisfying (3.1.3) is called an eigenvector of H corresponding to k0.

The definitions of the resolvent ρ(H) and spectrum σ(H) are similar to linear eigenvalue

problems and could be found in [71, Definition 3.1.5].

In the proof of a Priori error estimates we need to define Jordan chains and Jordan

functions for holomorphic operator functions.

Definition 8. Let H : Λ → L(X, Y ) be a holomorphic operator function. Let k0 be an
eigenvalue of H with a corresponding eigenvector x0. A Jordan chain with order m is a
set {x0, x1, · · · , xm−1} ⊂ X such that

H(k0)x0 = 0 and
i∑

j=0

1

j!
H(j)(k0)xi−j = 0 for i = 1, · · · ,m− 1 .

For holomorphic Fredholm operators all Jordan chains are finite [71, Lemma 3.2.4].

Definition 9. Let H : Λ → L(X, Y ) be a holomorphic operator function. Let k0 be an
eigenvalue ofH with a corresponding eigenvector x0. A Jordan function u : Λ→ X with
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orderm is defined in a neighborhood of k0 such that u(k0) = x0,

H(k0)u(k0) = 0 and
[
∂j

∂kj
(H(k)u(k))

]
k=k0

= 0 j = 1, · · · ,m− 1 ,[
∂m

∂km
(H(k)u(k))

]
k=k0

= 0 .

Jordan functions can be constructed by Jordan chains [71, Lemma 3.2.13]. From the

definitions of Jordan chains and Jordan functions we know that there are different Jordan

chains and Jordan functions corresponding to the same eigenvalue and eigenvector. By

using order m we can identify eigenvectors to define a canonical system.

Definition 10. Let H : Λ → L(X, Y ) be a holomorphic Fredholm operator function.
Let k0 be an eigenvalue of H such that the eigenspace has finite dimension. Let
{x01, · · · , x0J} be a basis of the eigenspace corresponding to k0 and m(H, k0, x0j) denote
the highest order of a Jordan chain corresponding to (k0, x0j) for j = 1, · · · , J . We
call m(H, k0, x0j) the partial multiplicity and the sum of partial multiplicities is called
the algebraic multiplicity. A canonical system corresponding to k0 is defined by a set of
{x01, · · · , x0J} ordered by partial multiplicities.

3.1.2 Convergence
The eigenvalue problem in our work is to find k0 ∈ Λ with a nontrivial solution

x0 ∈ X such that

(H(k0)x0, y)X =0 ∀ y ∈ X , (3.1.4)

where H : Λ → L(X,X) is a holomorphic Fredholm operator function and H satisfies

(3.1.1). (·, ·)X is an inner product of X .

Remark 1. The reason to consider H : Λ → L(X,X) is to use an inner product and
only one function space for this complicated and very technical convergence analysis.

The discrete problem is to find k0,n ∈ Λ and a nontrivial solution x0,n ∈ Xn such that

(H(k0,n)x0,n, yn)X =0 ∀ yn ∈ Xn . (3.1.5)

By the orthogonality from (3.1.5) we have

P nH(k0,n)x0,n = 0 . (3.1.6)

Obviously (3.1.5) is equivalent to (3.1.6).

Remark 2. The eigenvalue problem for P nH(k) is to find an eigenvalue k0,n ∈ Λ and an
eigenvector x0,n ∈ Xn for (3.1.6).

Lemma 14. Let H : Λ → L(X,X) be a holomorphic Fredholm operator function and
satisfy (3.1.1). Let {k0,n}n∈N ∈ Λ be a sequence such that

lim
n→∞

k0,n = k0 .



50 Boundary Element Methods for Eigenvalue Problems

Let {x0,n}n∈N be a sequence for x0,n ∈ Xn and ‖x0,n‖X = 1 such that

lim
n→∞

P nH(k0,n)x0,n = 0 .

Then there exists x0 ∈ X with ‖x0‖X = 1 such that

H(k0)x0 = 0 ,

lim
l→∞

‖x0 − x0,nl‖X → 0 ,

where {x0,nl}l∈N is a subsequence of {x0,n}n∈N.
Proof. This Lemma is given in [71, Lemma 4.2.1] which follows [31].

Obviously the last lemma does not give the existence of a converging sequence of

eigenvalues of (3.1.6). We give a theorem from [71, Theorem 4.2.3] which could be used

for the convergence of Galerkin-BEMs for the nonlinear problem (3.1.6).

Theorem 6. Let H : Λ → L(X,X) be a holomorphic Fredholm operator function and
satisfy (3.1.1). Let k0,n be an eigenvalue of (3.1.6) with a corresponding eigenvector
x0,n ∈ Xn. Then we have

lim
n→∞

k0,n = k0 and lim
n→∞

x0,n = x0 ,

k0 is an eigenvalue of H with a corresponding eigenvector x0 ∈ X .

Proof. The proof follows the part (i) in [71, Theorem 4.2.3] by Lemma 14.

3.1.3 A Priori error estimates
The work for a Priori error estimates in [71] follows [41] and [42]. The basic idea is

to construct the equivalent eigenvalue problems M for H and Mn for P nH respectively.

M and Mn are matrix functions. Then the work is changed to do a Priori error estimates

for Mn. Lemma 15 is from [71, Lemma 4.3.1] and it is the basis to construct equivalent

problems.

Lemma 15. Let X and Z be Banach spaces. We define five holomorphic operator
functions, H : Λ→ L(X,X), R : Λ→ L(X,X), C : Λ→ L(X,Z), D : Λ→ L(Z,X),
andM : Λ→ L(Z,Z), such that

H(k) =R(k)(IX −D(k)C(k)) , (3.1.7a)

M(k) =IZ − C(k)D(k) , (3.1.7b)

for all k ∈ Λ. We assume that H is a holomorphic Fredholm operator function. We
assume that ρ(H) is not empty and Λ ⊂ ρ(R). Then we have the following relations for
k0 ∈ σ(H), x0 ∈ X and z0 ∈ Z.

1. If x0 = 0 such thatH(k0)x0 = 0, we haveC(k0)x0 = 0 such thatM(k0)C(k0)x0 =
0 andm(H, k0, x0) = m(M, k0, C(k0)x0).



3.1 A Priori error estimates for holomorphic eigenvalue problems 51

2. If z0 = 0 such thatM(k0)z0 = 0, we haveD(k0)z0 = 0 such thatH(k0)D(k0)z0 =
0 and m(M, k0, z0) = m(H, k0, D(k0)z0).

3. If u(k) is a Jordan function of order m for H to k0, C(k)u(k) is a Jordan function
of orderm′ ≥ m forM to k0.

4. If v(k) is a Jordan function of orderm′ forM to k0,D(k)v(k) is a Jordan function
of orderm ≥ m′ for H to k0.

5. A canonical system of H to k0 could be changed to a canonical system of M to k0

by a mapping C(k0) with the same partial and algebraic multiplicities.

Proof. See [71, Lemma 4.3.1].

From Lemma 15, the idea is clear to build an equivalent eigenvalue problem M . Let

Z = C
J and J is the dimension of the eigenspace of k0. ThenM is a matrix function from

C
J to C

J . The next step is to build R, C and D which satisfy the requirements in Lemma

15. The basic idea is to define a finite dimensional operator by using Jordan functions

based on Jordan chains. Jordan chains are corresponding to two canonical systems of an

eigenvalue k0 of H and an eigenvalue k0 of H∗ respectively. H∗ is the adjoint operator of

H . k0 is an eigenvalue of H if and only if k0 is an eigenvalue of H∗ and the partial and

algebraic multiplicities are the same from [71, Lemma 3.3.4].

Let H : Λ → L(X,X) be a holomorphic Fredholm operator function. The reason

to use L(X,X) is the same as Remark 2. Let {x01, · · · , x0J} be a canonical system of an

eigenvalue k0 of H and we simplify the notation for partial multiplicities m(H, k0, x0j)

to mj . Let {x0j , · · · , xmj−1
j } be a Jordan chain with order mj corresponding to x0j for

j = 1, · · · , J . According [71, Lemma 3.2.13] we can define a Jordan function with order

mj by {x0j , · · · , xmj−1
j },

uj(k) =

mj−1∑
i=0

(k − k0)ixi
j j = 1, · · · , J .

By the definition of a Jordan function with order mj , we have[
∂mj

∂kmj
(H(k)uj(k))

]
k=k0

= 0 .

We define holomorphic functions as

ûj(k) :=

{
(k − k0)−mjH(k)uj(k) k = k0

1
mj !

[
∂mj

∂kmj (H(k)uj(k))
]
k=k0

k = k0
j = 1, · · · , J .

We can repeat this for the adjoint operator H∗ and define

v̂j(k) :=

{
(k − k0)−mjH∗(k)vj(k) k = k0

1
mj !

[
∂mj

∂kmj (H
∗(k)vj(k))

]
k=k0

k = k0
j = 1, · · · , J ,
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where the definition vj is similar with uj .

Then we define an operator function

K(k)x :=
J∑

j=1

(x, v̂j(k))X ûj(k) . (3.1.8)

K is holomorphic and the proof see [71, Section 4.3]. R is defined by

R(k) := H(k) +K(k) . (3.1.9)

Lemma 4.3.3 in [71] proves that there exists a neighborhood Λ of an eigenvalue k0 which

satisfies the condition Λ ⊂ ρ(R) in Lemma 15. By using (3.1.8) in (3.1.9) we get

H(k)x =(R(k)−K(k))x = R(k)(I −R(k)−1K(k))x

=R(k)

(
x−

J∑
j=1

(x, v̂j(k))XR(k)−1ûj(k)

)
.

(3.1.10)

From (3.1.10) we can define C and D as the following.

C(k) : x ∈ X → a ∈ C
J , (3.1.11)

with ai = (x, v̂i(k))X for i = 1, · · · , J .

D(k) : a ∈ C
J → x ∈ X , (3.1.12)

with x =
∑J

j=1 ajR(k)−1ûj(k). According (3.1.7b), (3.1.11) and (3.1.12), we define

M(k) = I − C(k)D(k) as

M(k) : a ∈ C
J → b ∈ C

J , (3.1.13)

with bi = ai −
∑J

j=1 aj(R(k)−1ûj(k), v̂i(k))X . More detial see [71, Section 4.3].

We continue to define corresponding operators for a discretization Xn. The definition

of P n is given in Section 3.1.1. We define

Hn(k) : Hn(k)x = P nH(k)x ∀x ∈ Xn ,

Kn(k) : Kn(k)x = P nK(k)x ∀x ∈ Xn ,

Rn(k) := Hn(k) +Kn(k) : Xn → Xn .

Lemma 4.3.3 in [71] also proves that Rn satisfies the conditions in Lemma 15. We have

Hn(k)x =(Rn(k)−Kn(k))x

=Rn(k)(I −Rn(k)−1Kn(k))x

=Rn(k)

(
x−

J∑
j=1

(x, v̂j(k))X(R
n(k))−1P nûj(k)

) ∀x ∈ Xn .
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The definitions of Cn and Dn are

Cn(k) : x ∈ Xn → a ∈ C
J (3.1.15)

with ai = (x, v̂i(k))X for i = 1, · · · , J and

Dn(k) : a ∈ C
J → x ∈ Xn (3.1.16)

with x =
∑J

j=1 aj(R
n(k))−1P nûj(k). According (3.1.15) and (3.1.16) we define Mn as

Mn(k) : a ∈ C
J → b ∈ C

J , (3.1.17)

with bi = ai −
∑J

j=1 aj(R(k)−1P nûj(k), v̂i(k))X . More detial see [71, Section 4.3].

According Lemma 15, M is an equivalent eigenvalue problem of H and Mn is an

equivalent eigenvalue problem of Hn. For a Priori error estimates of Mn the following

results are given in [71, Chapter 4].

Lemma 16. Let Λ satisfy the condition Λ ⊂ ρ(R) in Lemma 15. Let Λc be a compact
subset of Λ. c depends on Λc and c > 0. There exist a N ∈ N such that for all n > N

sup{|mij(k)−mn
ij(k)|} ≤ c sup

z∈G(H,k0)
‖z‖X≤1

inf
xn∈Xn

‖z − xn‖X sup
z∗∈G(H∗,k0)
‖z∗‖X≤1

inf
xn∈Xn

‖z∗ − xn‖X .

for k ∈ Λc and G(H, k0) and G(H∗, k0) are the generalized eigenspaces corresponding
to H and k0, and H∗ and k0, respectively.

Proof. See [71, Lemma 4.3.5].

Lemma 16 is the key tool to do a Priori error estimates for eigenvalues and eigenvectors.

From this lemma we can see the reasons to use equivalent eigenvalue problems. Since M
and Mn are finite dimensional operators, we just need to consider |mij(k)−mn

ij(k)| and
this is much easier. From (3.1.13) and (3.1.17) we know that we can use the properties of

R and Rn in the proof of Lemma 16. R and Rn are invertible in Λ and the inverse of Rn

is uniformly bounded. This is the other reason to use M and Mn.

We define

dn1 = sup
z∈G(H,k0)
‖z‖X≤1

inf
xn∈Xn

‖z − xn‖X and dn2 = sup
z∗∈G(H∗,k0)
‖z∗‖X≤1

inf
xn∈Xn

‖z∗ − xn‖X .

Theorem 7 gives a Priori error estimate for eigenvalues by using the result from Lemma

16. In our numerical examples we will use this theorem to check the convergence for

eigenvalues. In our cases we don’t consider the convergence of eigenvectors.

Theorem 7. Let H : Λ → L(X,X) be a holomorphic Fredholm operator function and
satisfy (3.1.1). Let Λc be a compact subset of Λ. ∂Λc ⊂ ρ(H) and Λc

⋂
σ(H) = {k0}.

There exist a N ∈ N such that

σ(P nH)
⋂

Λc =∅ ∀n > N .
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Let k0,n be an eigenvalue of P nH and k0,n ∈ σ(P nH)
⋂

Λc. There exist a constant c > 0
such that

|k0,n − k0| ≤c(dn1dn2 )1/κ ∀n > N ,

where κ is the maximal length of Jordan chains of k0.

Proof. See Theorem 4.3.6 in [71]

A Priori error estimate for eigenvectors is also given in [71, Theorem 4.3.7].

3.2 The Helmholtz case
From Section 1.1 we know that if we want to calculate λ and e together in (1.1.20),

this is an eigenvalue problem. In this section we study the eigenvalue problem for the

Helmholtz equation with a homogeneous Dirichlet boundary condition. Find λ with a

nontrivial solution u such that

−Δu(x) =λu(x) ∀x ∈ Ω , (3.2.1a)

u(x) =0 ∀x ∈ Γ , (3.2.1b)

where λ is a positive real number, Ω is a bounded domain and Γ := ∂Ω.

3.2.1 Nonlinear solution method for eigenvalue problem
We define σ := γ1u. From the boundary integral equation (1.2.12) we have

Vk(σ) =

(
1

2
I +Kk

)
f ,

where f is the Dirichlet given data and k =
√
λ. The homogeneous Dirichlet boundary

condition (3.2.1b) yields f = 0, so the boundary integral equation is

Vk(σ) = 0 . (3.2.2)

Obviously, k is a parameter in the fundamental solution Ek(·, ·), so this is a nonlinear

eigenvalue problem.

The variation formulation is to find k ∈ R
+ with a nontrivial solution σ ∈ H−1/2(Γ)

such that

〈Vk(σ), χ〉Γ =0 (3.2.3)

for all χ ∈ H−1/2(Γ).
The discretization of (3.2.3) is to find kh ∈ R

+ with a nontrivial solution σh ∈ S0h(Γh)
such that

〈Vkh(σh), χh〉Γ =0 (3.2.4)
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for all χh ∈ S0h(Γh).

Let {Φi}Ni=1 be a basis of S0h(Γh). We use σh =
∑N

j=1 ξjΦj in (3.2.4) and get a

nonlinear system of equations

A(kh)ξ = 0 , (3.2.5)

where

A(kh)[i, j] = Re

(∫
Ωi

∫
Ωj

eikh|x−y|

4π|x− y|dsydsx
)

.

Iterative methods for nonlinear solution method

We use the Newton method to solve (3.2.5). To avoid the trivial solution of (3.2.5) we

need to do the normalization for ξ by ‖ξ‖2l2 = 1. The nonlinear system of equations is

A(kh)ξ = 0 ,

‖ξ‖2l2 − 1 = 0 .

The Frechet derivative is derived by

lim
ε→0

A(kh + εk′h)(ξ + εξ′)− A(kh)(ξ)

ε
=A(kh)ξ

′ +
(
lim
ε→0

A(kh + εk′h)− A(kh)

ε

)
ξ

=A(kh)ξ
′ + k′hC(kh)ξ ,

where

C(kh)[i, j] = Re

(
1

4π

∫
Ωi

∫
Ωj

ieikh|x−y|

4π
dsydsx

)
.

lim
h→0

‖ξ + hξ′‖2l2 − ‖ξ‖2l2
h

= 2(ξ, ξ′)l2 .

The Newton method is defined by

A(kn
h)(ξ

n+1 − ξn) + (kn+1
h − kn

h)C(kn
h)ξ

n + A(kn
h)ξ

n = 0 ,

2(ξn, ξn+1 − ξn)l2 + ‖ξn‖2l2 − 1 = 0 ,

and the iteration step is to find (kn+1
h , ξn+1) with the given data (kn

h , ξ
n) by solving

A(kn
h)ξ

n+1 + kn+1
h C(kn

h)ξ
n = kn

hC(kn
h)ξ

n ,

2(ξn, ξn+1)l2 = ‖ξn‖2l2 + 1 .

3.2.2 A Priori error estimates

If we want to give a Priori error estimates for eigenvalue values of (3.2.3) and (3.2.4)

by Theorem 7, we need to check that Vk is a holomorphic Fredholm operator function and

satisfies (3.1.1). In our work we consider electromagnetic waves in a dielectric medium,

so k is a real positive number. We can extend k to be a complex number and the results
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are the same. We change the notation from Vk to V (k). First we have

V (k) = V (0) + V (k)− V (0) ,

where V (0) is an elliptic operator from H−1/2(Γ) to H1/2(Γ) and V (k) − V (0) is a

compact operator. So V (k) satisfies 3.1.1. Next by using the Gårding inequality in Lemma

3 and the Fredholm alternative we know that V (k) is a Fredholm operator with index zero

for all k ∈ C. Then we give a lemma to show that V (k) is holomorphic following [71,

Lemma 5.1.1].

Lemma 17. The operator function V (k) is holomorphic.

Proof. The proof uses Lemma 13. We define a function as

fv,w(k) :=〈(V (k))(v), w〉Γ ∀v, w ∈ H−1/2(Γ) .

fv,w(k) =

∫
Γ

∫
Γ

eik|x−y|

4π|x− y|v(y)w(x)dsydsx
By using the Taylor expansion we have

eik|x−y| =
∞∑
n=0

(ik|x− y|)n
n!

.

We use eik|x−y| in fv,w(k) and get

fv,w(k) =
∞∑
n=0

(∫
Γ

∫
Γ

in|x− y|n−1
4πn!

v(y)w(x)dsydsx

)
kn .

So fv,w(k) is a power series in k and the highest order singular integral in the

coefficients is a weakly singular integral for n = 0 which is bounded. So fv,w(k) is a

holomorphic function for k ∈ C. The proof is done.

By Theorem 1 we have

V (k) : C→ L(H−1/2(Γ), H1/2(Γ)) .

V (k) does not satisfy the requirementH(k) : Λ→ L(X,X) in Theorem 7. An additional

operator I : H1/2(Γ)→ H−1/2(Γ) is defined by [71, (5.9)] and from [71, Theorem 5.1.3]

we know that IV (k) : C → L(H−1/2(Γ), H−1/2(Γ)) has the same properties with V (k).
Then we can use Theorem 6 for IV (k) with X = H−1/2(Γ) and by the results of IV (k)
we get the convergence of (3.2.4).

Theorem 8. Let kh ∈ C be an eigenvalue of (3.2.4) with a corresponding eigenvector
σh ∈ S0h(Γh). Then there exist k and σ such that

lim
h→0

kh = k and lim
h→0

σh = σ ,

k is an eigenvalue of V (k) with a corresponding eigenvector σ ∈ H−1/2(Γ).
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Proof. See [71, Theorem 5.3.1].

It is the same to use Theorem 7 for IV (k) and by the results of IV (k) with (1.2.22a)

we get a Priori error estimates of eigenvalues of (3.2.4).

Theorem 9. Let k be an eigenvalue of V (k). There exists a δ such that k is the
only eigenvalue in Uδ(k). Let {t1, · · · , tn} be an orthonormal basis of the generalized
eigenspace G(V (k), k). Assume that ti ∈ Hs

pw(Γ) for s ∈ [0, 1]. There exists a h0 > 0
such that for all h < h0

|kh − k| ≤c(h2s+1)1/κ(V,k)
n∑

i=1

|ti|Hs
pw(Γ) ,

where kh is the eigenvalue of (3.2.4) and kh ∈ Uδ(k).

Proof. See Theorem 5.3.2 and Corollary 5.3.3 in [71].

3.2.3 Numerical tests
We consider the first and second eigenvalues of the Laplace eigenvalue problem with

corresponding eigenvectors on the boundary of a unit cube (0, 1)3. An analytical solution

used for the test is

u(x) = sin(πm1x1) sin(πm2x2) sin(πm3x3). (3.2.6)

where m1,m2,m3 are nonzero integers. The eigenvalue λ is given by
√
λ = k =

π
√
m2
1 +m2

2 +m2
3. In Tables 3.1 and 3.2 the first column is the level of meshes and the

second column is the number of degrees of freedom. In Table 3.1 the third column is the

numerical results for the first eigenvalue and the fourth column is the rate of convergence

(s) in O(h2s+1). κ = 1 from [67, Lemma 5.3]. In Table 3.2 the third, fifth and seventh

columns are the numerical results for the second eigenvalue and the fourth, sixth and

eighth columns are the rate of convergence (s) in O(h2s+1). Fig. 3.1a is the numerical

result of an eigenvector corresponding to the first eigenvalue and Fig. 3.1b - 3.1d are the

numerical results of eigenvectors corresponding to the second eigenvalue. In the fourth

column in Table 3.1 and the fourth, sixth and eighth columns in Table 3.2 we observe a

cubic convergence approximately, since we use piecewise constant function spaces.

(1, 1, 1)
level dof kh CRk

0 24 5.04298 -

1 96 5.42173 4.3404

2 384 5.43908 3.0860

3 1536 5.44116 3.2624

∞ 5.44140

Table 3.1 Convergence of the first eigenvalue of the Laplace eigenvalue problem with

homogeneous Dirichlet boundary condition
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The formula for the rate of convergence (s) of eigenvalues is given by

CRk = log2
|kn−1

h − k|
|kn

h − k| ,

where kn
h is the eigenvalue calculated by a mesh of a level n.

(a) σh, Neumann trace of the first eigenvector (b) σh, Neumann trace of one second eigenvec-

tor

(c) σh, Neumann trace of one second eigenvec-

tor

(d) σh, Neumann trace of one second eigenvec-

tor

Figure 3.1 First eigenvector and second eigenvector of the Laplace eigenvalue problem

with homogeneous Dirichlet boundary condition
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(2, 1, 1) (1, 2, 1) (1, 1, 2)
level dof kh CRk kh CRk kh CRk

0 24 7.182768265 - 7.182768275 - 7.182761379 -

1 96 7.619649988 2.7602 7.619649309 2.7602 7.619649019 2.7602

2 384 7.688713513 3.5220 7.688713646 3.5220 7.688713542 3.5220

3 1536 7.694600008 3.2360 7.694601568 3.2392 7.694602375 3.2409

∞ 7.695298981 7.695298981 7.695298981

Table 3.2 Convergence of the second eigenvalue of the Laplace eigenvalue problem

with homogeneous Dirichlet boundary condition

3.3 The Maxwell case

In this section we study the eigenvalue problem for the Maxwell’s equations. Find λ
with a nontrivial solution u such that

∇×∇× u(x)− λu(x) =0 ∀x ∈ Ω , (3.3.1a)

∇ · u(x) =0 ∀x ∈ Ω , (3.3.1b)

γt(u)(x) =0 ∀x ∈ Γ , (3.3.1c)

where λ is a real positive number, Ω is a bounded domain and Γ := ∂Ω.

3.3.1 Nonlinear solution method for eigenvalue problem

We define σ := γt(u). From the boundary integral equation (1.3.15) we get

Sk(σ) =

(
1

2
I −Ck

)
f ,

where f is the Dirichlet given data and k =
√
λ. From (3.3.1c) we know f = 0, so the

boundary integral equations is

Sk(σ) = 0 . (3.3.2)

The variational formulation is to find k with a nontrivial solution σ ∈W−1/2(Γ) such
that

〈Sk(σ),χ〉τ,Γ = 0 , (3.3.3)

for all χ ∈W−1/2(Γ).
The discretization of (3.3.3) is to find kh with a nontrivial solution σh ∈ W

−1/2
h (Γh)

such that

〈Skh(σh),χh〉τ,Γ = 0 , (3.3.4)

for all χh ∈W
−1/2
h (Γh).

Let {Φi}Ni=1 be a basis of W
−1/2
h (Γh). We use σh =

∑N
j=1 ξjΦj in (3.3.4) and get a
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nonlinear equation system,

A(kh)ξ = 0 , (3.3.5)

A(kh)[i, j] =Re

(
−kh

∫
Γ

∫
Γ\{x}

Φj(y) ·Φi(x)
eikh|x−y|

4π|x− y|dsydsx

+
1

kh

∫
Γ

∫
Γ\{x}

divΓ(Φj)(y)divΓ(Φi)(x)
eikh|x−y|

4π|x− y|dsydsx
)

.

Iterative methods for the nonlinear solution method

We use the Newton method to solve (3.3.5). To avoid a trivial solution of (3.3.5) we

include the normalization for ξ as ‖ξ‖2l2 = 1. The nonlinear equation system is

A(kh)ξ = 0 ,

‖ξ‖2l2 − 1 = 0 .

The Frechet derivative is

lim
ε→0

A(kh + εk′h)(ξ + εξ′)− A(kh)(ξ)

ε
=A(kh)ξ

′ +
(
lim
ε→0

A(kh + εk′h)− A(kh)

ε

)
ξ

=A(kh)ξ
′ + k′hC(kh)ξ ,

where

C(kh)[i, j] =Re

(
−
∫
Γ

∫
Γ\{x}

Φj(y) ·Φi(x)
eikh|x−y|

4π

(
1

|x− y| + ikh

)
dsydsx

+

∫
Γ

∫
Γ\{x}

divΓ(Φj)(y)divΓ(Φi)(x)
eikh|x−y|

4π

(
− 1

k2h|x− y| +
i

kh

)
dsydsx

)
.

lim
h→0

‖ξ + hξ′‖2l2 − ‖ξ‖2l2
h

= 2(ξ, ξ′)l2 .

The Newton iteration is the same as in Section 3.2.1.

3.3.2 A Priori error estimates

If we want to give a Priori error estimate for eigenvalues of (3.3.3) and (3.3.4) by

Theorem 7, we need to check if Sk is a holomorphic Fredholm operator function and

satisfies (3.1.1). In our work we consider electromagnetic waves in a dielectric medium,

so k is a real positive number. We can extend k to be a complex number and the results

are the same. We change the notation from Sk to S(k). First according the generalized

Gårding inequality in Lemma 9 we can define an elliptic operator and a compact operator

such that Sk can be splitted into these two operators. So S(k) satisfies (3.1.1). Next by

using the generalized Gårding inequality, Theorem 4 in [13] and the Fredholm alternative

we know that S(k) is a Fredholm operator with index zero for all k ∈ C \ {0}. Then we

give a lemma to show that S(k) is holomorphic.
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Lemma 18. The operator function S(k) is holomorphic for k ∈ C \ {0}.
Proof. The proof uses Lemma 13. We define a function as

fv,w(k) :=〈(S(k))(v),w〉τ,Γ ∀v,w ∈W−1/2(Γ) .

By using the formula for 〈(S(k))(v),w〉τ,Γ in Section 1.3.3 we have

fv,w(k) =− k

∫
Γ

∫
Γ

v(y) ·w(x)Ek(x, y)dsydsx

+
1

k

∫
Γ

∫
Γ

divΓ(v)(y)divΓ(w)(x)Ek(x, y)dsydsx ,

By using the Taylor expansion we have

eik|x−y| =
∞∑
n=0

(ik|x− y|)n
n!

.

We use eik|x−y| in fv,w(k) and get

fv,w(k) =
∞∑
n=0

(
−
∫
Γ

∫
Γ

v(y) ·w(x)
in|x− y|n−1

4πn!
dsydsx

)
kn+1

+
∞∑
n=0

(∫
Γ

∫
Γ

divΓ(v)(y)divΓ(w)(x)
in|x− y|n−1

4πn!
dsydsx

)
kn−1 ,

So fv,w(k) is a power series in k and the highest order singular integral in the

coefficients is a weakly singular integral for n = 0 which is bounded. So fv,w(k) is a

holomorphic function for k ∈ C \ {0}. The proof is done.

For the proof of a Priori error estimates of eigenvalues of (3.3.4) we can follow the

same way as for the Helmholtz equation. We don’t repeat these technical work and for

the lowest order Raviart-Thomas boundary element space we should also get a cubic

convergence.

3.3.3 Numerical tests
We consider the first and second eigenvalues of the Maxwell eigenvalue problem with

corresponding eigenvectors on the boundary of a unit cube (0, 1)3. An analytical solution

used for the test is

uk =

⎛⎝ λ1 cos(m1πx1) sin(m2πx2) sin(m3πx3)
λ2 sin(m1πx1) cos(m2πx2) sin(m3πx3)
λ3 sin(m1πx1) sin(m2πx2) cos(m3πx3)

⎞⎠ . (3.3.6)

where m1,m2,m3 are nonzero integers. The eigenvalue is given by

√
λ = k = π

√
m2
1 +m2

2 +m2
3 .
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In Tables 3.3 the first column is the level of meshes and the second column is the number

of degrees of freedom, the third and fifth columns are the numerical results for the first

and second eigenvalues and the fourth and sixth columns are the rate of convergence (s)
in O(h2s+1). Fig. 3.2a is the numerical result of one eigenvector corresponding to the

first eigenvalue and Fig. 3.2b is the numerical result of one eigenvector corresponding to

the second eigenvalue. In the fourth and sixth columns in Table 3.3 we observe a cubic

convergence approximately, since we use the lowest order Raviart-Thomas boundary

element space. Our numerical results match the a Priori error estimate very well.

first eigenvalue second eigenvalue

level dof kh CRk kh CRk

1 144 4.39613 - 5.31930 -

2 576 4.43845 3.4004 5.43078 3.5228

3 2304 4.44241 3.2383 5.44026 3.2217

∞ 4.44288 5.44140

Table 3.3 Convergence of the first eigenvalue and second eigenvalue of Maxwell

eigenvalue problem with homogeneous Dirichlet boundary values

(a) σh, Neumann trace of one first eigenvector (b) σh, Neumann trace of one second eigen-

vector

Figure 3.2 First eigenvector and second eigenvector of Maxwell eigenvalue problem

with homogeneous Dirichlet boundary condition



Chapter 4

Boundary Element Methods for
Interface Eigenvalue Problems

4.1 The Helmholtz case

In this section we consider the inhomogeneous problem for the Helmholtz equation

in Ω := Ωex
⋃

Ωin in Section 2.1 as an eigenvalue problem and the coefficient α in the

equation has different values in Ωex and Ωin. Since we use interface conditions for the

coupling in this eigenvalue problem, we call it the interface eigenvalue problem. The

interface eigenvalue problem with a homogeneous Dirichlet boundary condition is to find

λ with a nontrivial solution u such that

−∇ ·
(
1

α
∇u(x)

)
− λu(x) = 0 ∀x ∈ Ωex

⋃
Ωin , (4.1.1a)

u(x) = 0 ∀x ∈ Γ := ∂Ω , (4.1.1b)

where λ = k2, k is a positive real number, α = αex in Ωex, and α = αin in Ωin. αex and

αin are positive constants.

We have two interface conditions for this problem

γex
0 (uex)(x) = γin

0 (uin)(x) ∀x ∈ ΓI , (4.1.2a)

αexγex
1 (uex)(x) = −αinγin

1 (uin)(x) ∀x ∈ ΓI , (4.1.2b)

where uex := u|Ωex , uin := u|Ωin , γex
0 ,γin

0 ,γex
1 ,γin

1 are Dirichlet and Neumann trace

operators from Ωex and Ωin, respectively, and ΓI := Γex
⋂

Γin. Γex := ∂Ωex and

Γin := ∂Ωin.

4.1.1 Nonlinear solution method for interface eigenvalue problem

As in Chapter 2 we also use domain decomposition methods for this interface

eigenvalue problem. We define σex := γex
1 uex, σin := γin

1 uin, ϕex := γex
0 uex, and

ϕin := γin
0 uin. From (1.2.11) we have two Calderon projections for (ϕex, σex) and



64 Boundary Element Methods for Interface Eigenvalue Problems

(ϕin, σin) respectively as(
ϕex

σex

)
=

(
1
2
I −KΓex

kex V Γex

kex

DΓex

kex
1
2
I +K ′Γex

kex

)(
ϕex

σex

)
, (4.1.3a)(

ϕin

σin

)
=

(
1
2
I −KΓin

kin V Γin

kin

DΓin

kin
1
2
I +K ′Γin

kin

)(
ϕin

σin

)
, (4.1.3b)

where kex =
√
αexk, kin =

√
αink, and the definitions of boundary integral operators

could be found in Section 1.2.3 on Γex and Γin respectively.

We use the second equations in (4.1.3a) and (4.1.3b) in (4.1.2b) and get on ΓI

αex

(
DΓex

kexϕ
ex +

(
1

2
I +K ′Γex

kex

)
σex

)
+ αin

(
DΓin

kinϕ
in +

(
1

2
I +K ′Γin

kin

)
σin

)
= 0 .

(4.1.4)

From (4.1.2a) and (4.1.1b) we have ϕex = ϕin on ΓI and ϕex = 0 on Γ. We define ϕI as

ϕI = ϕex = ϕin on ΓI and ϕI = 0 on Γ. We assume that the exterior unit normal on ΓI

and Γ is the same as on Γex. We use ϕI and ϕex = 0 on Γ in (4.1.4) and get

(αexDΓI

kex + αinDΓI

kin)(ϕ
I)(x) + αex

(
1

2
I +K ′Γex

kex

)
(σex)(x)

+ αin

(
1

2
I +K ′Γin

kin

)
(σin)(x) = 0

a.e. x ∈ ΓI . (4.1.5)

From the first equations in (4.1.3a) and (4.1.3b) we get(
1

2
I +KΓI

kex

)
(ϕI)(x)− V Γex

kex (σex)(x) = 0 a.e. x ∈ Γex , (4.1.6)

(
1

2
I +KΓin

kin

)
(ϕI)(x)− V Γin

kin (σin)(x) = 0 a.e. x ∈ Γin . (4.1.7)

The combination of (4.1.5), (4.1.6) and (4.1.7) is the system of equations in distributional

sense.

By using the left hand side of (4.1.5), (4.1.6) and (4.1.7) we define three operators

F1 : H
1/2(ΓI)×H−1/2(Γex)×H−1/2(Γin)× R→ H−1/2(ΓI) ,

F2 : H
1/2(ΓI)×H−1/2(Γex)× R→ H1/2(Γex) ,

F3 : H
1/2(ΓI)×H−1/2(Γin)× R→ H1/2(Γin) ,

which result into the following variational problem: Find k with a nontrivial solution

(ϕI , σex, σin) ∈ H1/2(ΓI)×H−1/2(Γex)×H−1/2(Γin) such that

〈F1(ϕ
I , σex, σin, k), υI〉ΓI = 0 , (4.1.8a)

〈F2(ϕ
I , σex, k), χex〉Γex = 0 , (4.1.8b)

〈F3(ϕ
I , σin, k), χin〉Γin = 0 , (4.1.8c)
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for all (υI , χex, χin) ∈ H1/2(ΓI)×H−1/2(Γex)×H−1/2(Γin).
We define a piecewise linear function space S1h(Γ

I
h) and two piecewise constant func-

tion spaces S0h(Γ
ex
h ) and S0h(Γ

in
h ) corresponding to the Sobolev spaces. The discretization

of (4.1.8) is to find kh and a nontrivial solution (ϕI
h, σ

ex
h , σin

h ) ∈ S1h(Γ
I
h) × S0h(Γ

ex
h ) ×

S0h(Γ
in
h ) such that

〈F1(ϕ
I
h, σ

ex
h , σin

h , kh), υ
I
h〉ΓI = 0 , (4.1.9a)

〈F2(ϕ
I
h, σ

ex
h , kh), χ

ex
h 〉Γex = 0 , (4.1.9b)

〈F3(ϕ
I
h, σ

in
h , kh), χ

in
h 〉Γin = 0 , (4.1.9c)

for all (υI
h, χ

ex
h , χin

h ) ∈ S1h(Γ
I
h)× S0h(Γ

ex
h )× S0h(Γ

in
h ).

Let {ΦI
i }NI

i=1, {Φex
i }Nex

i=1 and {Φin
i }N in

i=1 be the basis of S1h(Γ
I
h), S

0
h(Γ

ex
h ) and S0h(Γ

in
h ).

We use ϕI
h =

∑NI

i=1 ξ
I
i Φ

I
i , σ

ex
h =

∑Nex

i=1 ξ
ex
i Φex

i and σin
h =

∑N in

i=1 ξ
in
i Φin

i in (4.1.9) and get

a nonlinear equation system,

ReA(kh)ξ := Re

⎛⎝ A11(kh) A12(kh) A13(kh)
A21(kh) A22(kh) 0
A31(kh) 0 A33(kh)

⎞⎠⎛⎝ ξI

ξex

ξin

⎞⎠ = 0 .

Obviously the calculation of the elements in A(kh) is the same as in A in Section 2.1.4

and A(kh) is symmetric. To avoid a trivial solution we include a normalization for ξ. A

suitable normalization is defined by

‖ξI‖2l2 + ‖ξex‖2l2 + ‖ξin‖2l2 = 1 .

Then the eigenvalue problem is to solve a real nonlinear equation system

ReA(kh)ξ = 0 , (4.1.10a)

‖ξI‖2l2 + ‖ξex‖2l2 + ‖ξin‖2l2 − 1 = 0 . (4.1.10b)

We continue to use the Newton method to solve (4.1.10). The Frechet derivative is

derived as the following.

lim
h→0

A(k + hk′)(ξ + hξ′)− A(k)(ξ)

h
= A(k)ξ′ + k′C(k)ξ ,

where

C(k) =

⎛⎝ C11(k) C12(k) C13(k)
C21(k) C22(k) 0
C31(k) 0 C33(k)

⎞⎠ .

ReC11(k)[i, j] = Re

(
−αex

∫
ΓI

∫
ΓI

∂

∂nx

(
∂

∂ny

(
i
√
αexeik

ex|x−y|

4π

))
ΦI

j (y)Φ
I
i (x)dsydsx

−αin

∫
ΓI

∫
ΓI

∂

∂nx

(
∂

∂ny

(
i
√
αineik

in|x−y|

4π

))
ΦI

j (y)Φ
I
i (x)dsydsx

)
The calculation of C22(k) and C33(k) is the same as in Section 3.2.1. Obviously C11(k),
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C22(k) and C33(k) are symmetric.

ReC12(k)[i][j] =Re

(
αex

∫
ΓI

∫
Γex

∂

∂nx

(
i
√
αexeik

ex|x−y|

4π

)
Φex

j (y)ΦI
i (x)dsydsx

)
ReC21(k)[j][i] =Re

(∫
Γex

∫
ΓI

∂

∂ny

(
i
√
αexeik

ex|x−y|

4π

)
ΦI

i (y)Φ
ex
j (x)dsydsx

)
ReC13(k)[i][j] =Re

(
−αin

∫
ΓI

∫
Γin

∂

∂nex
x

(
i
√
αineik

in|x−y|

4π

)
Φin

j (y)ΦI
i (x)dsydsx

)

ReC31(k)[j][i] =Re

(∫
Γin

∫
Γin

∂

∂nin
y

(
i
√
αineik

in|x−y|

4π

)
ΦI

i (y)Φ
in
j (x)dsydsx

)

This shows thatReC12(k)[i][j] = αexReC21(k)[j][i], andReC13(k)[i][j] = αinReC31(k)[j][i]
results from nex(x) = −nin(x) for x ∈ ΓI . So ReC(k) is symmetric. The integrals in

C(k) are more regular than in A(k).

lim
h→0

‖ξ + hξ′‖2l2 − ‖ξ‖2l2
h

= 2(ξI , ξI
′
)l2 + 2(ξex, ξex′)l2 + 2(ξin, ξin

′
)l2 .

The Newton method is defined by

ReA(kn)(ξn+1 − ξn) + (kn+1 − kn)ReC(kn)ξn + ReA(kn)ξn = 0 ,

2(ξn, ξn+1 − ξn)l2 + ‖ξ‖2l2 − 1 = 0 ,

and the iteration step is to find (kn+1, ξn+1) with given data (kn, ξn) by solving

ReA(kn)ξn+1 + kn+1ReC(kn)ξn = knReC(kn)ξn ,

2(ξn, ξn+1)l2 = ‖ξ‖2l2 + 1 .

4.1.2 Numerical tests
We consider the first and second eigenvalues of the interface eigenvalue problem for

the Laplace operator with corresponding eigenvectors on the boundary of a unit cube

(0, 1)3. We assume αex = αin = 1. An analytical solution used for the test is (3.2.6). The

eigenvalue is k = π
√
m2
1 +m2

2 +m2
3. In Table 4.1, the first column is the level of meshes,

the second column is the number of degrees of freedom, the third and fifth columns are

the absolute value of the difference between eigenvalues and their approximations, and the

fourth and sixth columns are the rate of convergence (s) in O(h2s+1). Fig. 4.1a, 4.1b and

4.1c are the results of an eigenvector (σex
h , ϕI

h, σ
in
h ) corresponding to the first eigenvalue

and Fig. 4.2a, 4.2b and 4.2c are the results of an eigenvector (σex
h , ϕI

h, σ
in
h ) corresponding

to the second eigenvalue. In the fourth and sixth columns in Table 4.1 we observed that

the rate of convergence is much faster than a cubic convergence. This may be explained

by the better approximation of ϕI with piecewise linear function spaces if the error is

dominated at the interface.
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(a) σex, Neumann trace from exterior domain (b) ϕI , Dirichlet trace on interface

(c) σin, Neumann trace from interior domain

Figure 4.1 First eigenvector of the interface eigenvalue problem for the Helmholtz

equation with homogeneous Dirichlet boundary condition

first eigenvalue second eigenvalue

level dof |kh − k| CRk |kh − k| CRk

0 278 5.43185 - 7.66779 -

1 1106 5.44105 4.7890 7.69367 4.0782

2 4418 5.44142 4.1393 7.69518 3.7372

∞ 5.44140 7.69530

Table 4.1 Convergence of the first eigenvalue and second eigenvalue of the interface

eigenvalue problem for the Laplace equation with homogeneous Dirichlet boundary

condition
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(a) σex, Neumann trace from exterior domain (b) ϕI , Dirichlet trace on interface

(c) σin, Neumann trace from interior domain

Figure 4.2 Second eigenvector of the interface eigenvalue problem for the Helmholtz

equation with homogeneous Dirichlet boundary condition
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4.2 The Maxwell case

In Section 2.2 we consider electromagnetic waves in an inhomogeneous dielectric

medium. In this section we consider this inhomogeneous problem for the Maxwell’s

equations in Ω := Ωex
⋃

Ωin as an eigenvalue problem and the coefficient α in the

equation has different values in Ωex and Ωin. Since we use interface conditions for this

eigenvalue problem, we call it the interface eigenvalue problem. The interface eigenvalue

problem with a homogeneous Dirichlet boundary condition is to find λ with a nontrivial

solution u such that

∇×
(

1

α(x)
∇× u(x)

)
− λu(x) = 0 ∀x ∈ Ωex

⋃
Ωin , (4.2.1a)

∇ · u(x) = 0 ∀x ∈ Ωex
⋃

Ωin , (4.2.1b)

γt(u)(x) = 0 ∀x ∈ Γ := ∂Ω , (4.2.1c)

where λ = k2, k is the frequence ω, α = αex = εexμex in Ωex, and α = αin = εinμin in

Ωin. εex, εin, μex, μin are the permeability and permittivity in Ωex and Ωin, respectively,

and they are positive constants.

We have two interface conditions for this problem from (1.1.2b) and (1.1.2d),

γex
t (uex)(x) + γin

t (uin)(x) = 0 ∀x ∈ ΓI , (4.2.2a)

βexγex
N (uex)(x) + βinγin

N (uin)(x) = 0 ∀x ∈ ΓI , (4.2.2b)

where uex := u|Ωex , uin := u|Ωin , γex
t ,γin

t ,γex
N ,γin

N are Dirichlet and Neumann trace

operators from Ωex and Ωin, respectively, βex =
√

εex

μex and βin =
√

εin

μin for electric

fields, and ΓI := Γex
⋂

Γin with Γex := ∂Ωex and Γin := ∂Ωin. The definitions of the

trace operators could be found in Section 1.3.3 from Ωex and Ωin, respectively.

4.2.1 Nonlinear solution method for interface eigenvalue problem

As in Chapter 2 we also use domain decomposition methods for this interface

eigenvalue problem. We define σex := γex
N (uex), σin := γin

N (uin), ϕex := γex
t (uex)

and ϕin := γin
t (uin). From (1.3.14) we define two Calderon projections for (σex,ϕex)

and (σin,ϕin), respectively, as(
ϕex

σex

)
=

(
1
2
I +CΓex

kex SΓ
ex

kex

SΓ
ex

kex
1
2
I +CΓex

kex

)(
ϕex

σex

)
, (4.2.3a)(

ϕin

σin

)
=

(
1
2
I +CΓin

kin SΓ
in

kin

SΓ
in

kin
1
2
I +CΓin

kin

)(
ϕin

σin

)
, (4.2.3b)

where kex =
√
αexk, kin =

√
αink, and SΓ

ex

kex ,C
Γex

kex ,S
Γin

kin ,C
Γin

kin are boundary integral

operators on Γex and Γin with the definitions in Section 1.3.3.
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We use the second equations of (4.2.3a) and (4.2.3b) in (4.2.2b) and get on ΓI

βex

(
SΓ

ex

kex (ϕ
ex) +

(
1

2
I +CΓex

kex

)
(σex)

)
+ βin

(
SΓ

in

kin (ϕ
in) +

(
1

2
I +CΓin

kin

)
(σin)

)
= 0 .

(4.2.4)

From (4.2.2a) and (4.2.1c) we have ϕex = −ϕin on ΓI and ϕex = 0 on Γ. We define ϕI

as ϕI = ϕex = −ϕin on ΓI and ϕI = 0 on Γ. We assume that the exterior unit normal

on ΓI and Γ is the same as on Γex. We use ϕI and ϕex = 0 on Γ in (4.2.4) and get(
βexSΓ

I

kex + βinSΓ
I

kin

)
(ϕI)(x)+βex

(
1

2
I +CΓex

kex

)
(σex)(x)

+βin

(
1

2
I +CΓin

kin

)
(σin)(x) = 0

a.e. x ∈ ΓI .

(4.2.5)

We change the operator SΓ
in

kin to −SΓI

kin in (4.2.5). From the first equations in (4.2.3a) and

(4.2.3b) we get(
−1

2
I +CΓI

kex

)
(ϕI)(x) + SΓ

ex

kex (σ
ex)(x) = 0 a.e. x ∈ Γex , (4.2.6)

(
1

2
I −CΓin

kin

)
(ϕI)(x) + SΓ

in

kin (σ
in)(x) = 0 a.e. x ∈ Γin . (4.2.7)

The combination of (4.2.5), (4.2.6) and (4.2.7) defines the solution of (4.2.1), an

eigenvalue k with it’s corresponding eigenvector (ϕI ,σex,σin).

By using the left hand side of (4.2.5), (4.2.6) and (4.2.7) we define three operators

F1 : W
−1/2(ΓI)×W−1/2(Γex)×W−1/2(Γin)× R→W−1/2(ΓI) ,

F2 : W
−1/2(ΓI)×W−1/2(Γex)× R→W−1/2(Γex) ,

F3 : W
−1/2(ΓI)×W−1/2(Γin)× R→W−1/2(Γin) ,

which results into the following variational formulation:

Find k with a nontrivial solution (ϕI ,σex,σin) ∈ W−1/2(ΓI) × W−1/2(Γex) ×
W−1/2(Γin) such that

〈F1(ϕ
I ,σex,σin, k),υ1〉τ,ΓI = 0 , (4.2.8a)

〈F2(ϕ
I ,σex, k),υ2〉τ,Γex = 0 , (4.2.8b)

〈F3(ϕ
I ,σin, k),υ3〉τ,Γin = 0 (4.2.8c)

for all (υ1,υ2,υ3) ∈W−1/2(ΓI)×W−1/2(Γex)×W−1/2(Γin).

We use the lowest order Raviart-Thomas boundary element spaces W
−1/2
h (ΓI

h),

W
−1/2
h (Γex

h ) and W
−1/2
h (Γin

h ) corresponding to the Hilbert spaces. The discretization
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of (4.2.8) is to find kh with a nontrivial solution (ϕI
h,σ

ex
h ,σin

h ) ∈ W
−1/2
h (ΓI

h) ×
W

−1/2
h (Γex

h )×W
−1/2
h (Γin

h ) such that

〈F1(ϕ
I
h,σ

ex
h ,σin

h , kh),υ
1
h〉τ,ΓI = 0 , (4.2.9a)

〈F2(ϕ
I
h,σ

ex
h , kh),υ

2
h〉τ,Γex = 0 , (4.2.9b)

〈F3(ϕ
I
h,σ

in
h , kh),υ

3
h〉τ,Γin = 0 (4.2.9c)

for all (υ1h,υ
2
h,υ

3
h) ∈W

−1/2
h (ΓI

h)×W
−1/2
h (Γex

h )×W
−1/2
h (Γin

h ).

Let {ΦI
i }NI

i=1, {Φex
i }Nex

i=1 and {Φin
i }N in

i=1 be the basis of W
−1/2
h (ΓI

h), W
−1/2
h (Γex

h ) and

W
−1/2
h (Γin

h ), respectively. We use ϕI
h =

∑NI

i=1 ξ
I
jΦ

I
j , ϕ

ex
h =

∑Nex

i=1 ξ
ex
j Φex

j and ϕin
h =∑N in

i=1 ξ
in
j Φin

j in (4.2.9) and get one nonlinear system

ReA(kh)ξ := Re

⎛⎝ A11(kh) A12(kh) A13(kh)
A21(kh) A22(kh) 0
A31(kh) 0 A33(kh)

⎞⎠⎛⎝ ξI

ξex

ξin

⎞⎠ = 0 .

The calculation of the elements in A(kh) is the same as in A in Section 2.2.4 and A(kh)
is symmetric. To avoid a trivial solution we include a normalization for ξ. A suitable

normalization is defined by

‖ξI‖2l2 + ‖ξex‖2l2 + ‖ξin‖2l2 = 1 .

Then the eigenvalue problem is to solve a nonlinear equation system

ReA(kh)ξ = 0 , (4.2.10a)

‖ξI‖2l2 + ‖ξex‖2l2 + ‖ξin‖2l2 − 1 = 0 . (4.2.10b)

We continue to use the Newton method to solve (4.2.10). The Frechet derivative is

lim
h→0

A(k + hk′)(ξ + hξ′)− A(k)(ξ)

h
= A(k)ξ′ + k′C(k)ξ ,

where

C(k) =

⎛⎝ C11(k) C12(k) C13(k)
C21(k) C22(k) 0
C31(k) 0 C33(k)

⎞⎠ .

The calculation of C11(k), C22(k) and C33(k) is similar with C(k) in Section 3.3.1 and

they are symmetric.

C12[i, j](k) =βex

∫
ΓI

∫
Γex\{x}

∇x

(
i
√
αexeik

ex|x−y|

4π

)
· (Φex

j (y)×ΦI
i (x))dsydsx

C21(k)[j, i] =

∫
Γex

∫
ΓI\{x}

∇x

(
i
√
αexeik

ex|x−y|

4π

)
· (ΦI

i (y)×Φex
j (x))dsydsx
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C13(k)[i, j] =− βin

∫
ΓI

∫
ΓI\{x}

∇x

(
i
√
αineik

in|x−y|

4π

)
· (ΦI

j (y)×ΦI
i (x))dsydsx

C31(k)[j, i] =−
∫
Γin

∫
Γin\{x}

∇x

(
i
√
αineik

in|x−y|

4π

)
· (ΦI

i (y)×ΦI
j (x))dsydsx

This shows C12(k)[i, j] = βexC21(k)[j, i], and C13(k)[i, j] = βinC31(k)[j, i] results from
nex(x) = −nin(x) for x ∈ ΓI . nex is the exterior unit normal from Ωex and nin is the

exterior unit normal from Ωin. So C(k) is symmetric. The integrals in C(k) are more

regular than the integrals in A(k).

lim
h→0

‖ξ + hξ′‖2l2 − ‖ξ‖2l2
h

= 2(ξI , ξI
′
)l2 + 2(ξex, ξex′)l2 + 2(ξin, ξin

′
)l2 .

The Newton method is defined by

ReA(kn)(ξn+1 − ξn) + (kn+1 − kn)ReC(kn)ξn + ReA(kn)ξn = 0 ,

2(ξn, ξn+1 − ξn)l2 + ‖ξn‖2l2 − 1 = 0 ,

and the iteration step is to find (kn+1, ξn+1) with given data (kn, ξn) by solving

ReA(kn)ξn+1 + kn+1ReC(kn)ξn = knReC(kn)ξn ,

2(ξn, ξn+1)l2 = ‖ξn‖2l2 + 1 .

4.2.2 Numerical tests
We consider the first and second eigenvalues of the interface eigenvalue problem for

the Maxwell’s equations with corresponding eigenvectors on the boundary of a unit cube

(0, 1)3. We assume that εex = εin and μex = μin. An analytical solution used for

the test is (3.3.6). The eigenvalue is k = π
√
m2
1 +m2

2 +m2
3. In Table 4.2, the first

column is the level of meshes, the second column is the number of degrees of freedom,

the third and fifth columns are the absolute value of the difference between eigenvalue

and their approximation, and the fourth and sixth columns are the rate of convergence

(s) in O(h2s+1). Fig. 4.3a, 4.3b and 4.3c are the results of an eigenvector (σex
h ,ϕI

h,σ
in
h )

corresponding to the first eigenvalue and Fig. 4.4a, 4.4b and 4.4c are the results of an

eigenvector (σex
h ,ϕI

h,σ
in
h ) corresponding to the second eigenvalue. In the fourth and sixth

columns in Table 4.2 we observe that the rate of convergence is cubic.
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(a) σex, Neumann trace from exterior domain (b) ϕI , Dirichlet trace on interface

(c) σin, Neumann trace from interior domain

Figure 4.3 First eigenvector of the interface eigenvalue problem for Maxwell’s

equations with homogeneous Dirichlet boundary condition

first eigenvalue second eigenvalue

level dof |kh − k| CRk |kh − k| CRk

0 432 4.42676 - 5.37587 -

1 1728 4.44152 3.5593 5.43617 3.6474

2 6912 4.44276 3.4450 5.44088 3.3271

∞ 4.44288 5.44140

Table 4.2 Convergence of the first eigenvalue and second eigenvalue of the interface

eigenvalue problem for Maxwell’s equations with homogeneous Dirichlet boundary

condition
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(a) σex, Neumann trace from exterior domain (b) ϕI , Dirichlet trace on interface

(c) σin, Neumann trace from interior domain

Figure 4.4 Second eigenvector of the interface eigenvalue problem for Maxwell’s

equations with homogeneous Dirichlet boundary condition



Chapter 5

Comparison of BEMs and FEMs in
Band Structure Computation in 3D
Photonic Crystals

5.1 A brief introduction to photonic crystals
Photonic crystals are materials which are composed of periodic dielectric or metallo-

dielectric nanostructures. They exist in nature and can also be technically produced.

Photonic crystals have been studied for more than one hundred years, but the term

"Photonic crystals" was first used in 1987 in [77] and [40]. In this section we introduce

some background about photonic crystals to define the final problem in this thesis. The

study of photonic crystals could follow [38]. First we give a definition of photonic crystals

from [45].

Definition 11. Photonic crystals are periodic optical nanostructures that are designed to
affect the motion of photons in a similar way that periodicity of a semiconductor crystal
affects the motion of electrons.

Since photonic crystals affect the motion of photons, the Maxwell’s equations are

used to describe this phenomena. Since semiconductor crystals affect the motion of

electrons, the Schrödinger equation is used to describe this phenomena. The motion of

electrons in semiconductor crystals is studied in solid physics [36], and photonic crystals

and semiconductor crystals affect the motion of photons and electrons, respectively, in a

similar way. So the knowledge of solid physics is very useful for the understanding of

photonic crystals. For the beginning, we have the following questions from Definition 11.

1. What is the definition of crystals?

2. How does the periodic structure of photonic crystals affect the motion of photons?

3. How to use PDEs to describe a problem in a periodic structure?

First, from solid physics we have a very simple definition of crystals for the first question:

Crystals = Lattice+Basis .
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(a) lattice and basis (b) crystals

Figure 5.1 A simple definition of crystals

Figure 5.1 is an example of the definition of crystals. Figure 5.1a gives a basis and a

lattice and Figure 5.1b is the structure of crystals. From Figure 5.1 it is obviously that

crystals have periodic structures. We can use the same way to define periodic structures

for photonic crystals. The difference between crystals and photonic crystals is that the

periodic structures of crystals are built by atoms and the periodic structures of photonic

crystals are built by dielectric materials. The following figures are 1D, 2D and 3D periodic

structures for photonic crystals from [38].

Figure 5.2 1D, 2D and 3D periodic structures of photonic crystals

The different colors in Figures 5.2 (a), (b) and (c) mean the jump of the properties of

dielectric materials. For dielectric materials, the properties are the permeability μ and

permittivity ε. By the periodicity, μ and ε are periodic functions. We should pay attention

that Figures 5.2 (a), (b) and (c) just show an abstract meaning of the periodicity and in

fact the dielectric material in one unit cell of photonic crystals is inhomogeneous.

Next, we go to the second question. It is found that electromagnetic waves can not

propagate through photonic crystals for some frequencies by Bragg diffraction because of

the periodicity. This means that we can use photonic crystals to control the flow of light

and this is the reason for us to produce photonic crystals. If we want to design and produce

photonic crystals, we need to know for which frequencies electromagnetic waves can not

propagate. So we need to calculate the frequencies and this is an eigenvalue problem

obviously.

Then, we go to the third question. It looks very complex to solve the Maxwell’s

equations in the whole domain which has different permeabilities and permittivities in so

many sub-domains. So we change the problem from the whole domain to one unit cell

by the famous Bloch theorem. We give a brief introduction of the Bloch theorem for the

Schrödinger equation in a periodic structure from [36] and we can use the same results to



5.1 A brief introduction to photonic crystals 77

the Maxwell’s equations. We have the Schrödinger equation in a periodic structure as

Hψ(x) :=

(
− �

2

2m
Δ+ V (x)

)
ψ(x) = Eψ(x) , (5.1.1)

where H is called the Hamiltonian operator, � is the reduced Planck constant, m is the

mass of the particle, V is the potential energy, E is the energy and ψ is the wave function

for the particle. V is a periodic potential from the periodic structure such that

V (x+Rn) = V (x) , (5.1.2)

where Rn = n1a1 + n2a2 + n3a3 with n1, n2, n3 ∈ N
0. {a1, a2, a3} is a basis of one unit

cell.

We define an operator T (Rn) as

T (Rn)f(x) = f(x+Rn) ,

where f is any function. We use T (Rn) to the Hamiltonian operator and get

T (Rn)

(
− �

2

2m
Δ+ V (x)

)
ψ(x) =

(
− �

2

2m
Δ+ V (x+Rn)

)
ψ(x+Rn)

=

(
− �

2

2m
Δ+ V (x)

)
ψ(x+Rn)

=

(
− �

2

2m
Δ+ V (x)

)
T (Rn)ψ(x) .

The second equality is from (5.1.2). So the eigenvalue problem for the Hamiltonian

operator is equivalent to the eigenvalue problem for T (Rn). The eigenvalue problem

for T (Rn) is
T (Rn)ψ(x) = λnψ(x) . (5.1.3)

By the periodic structure, we have

|ψ(x+Rn)| = |T (Rn)ψ(x)| = |λnψ(x)| =|ψ(x)| ,
|λn| =1 .

So we can write λn as

λn = eiα·R
n

, (5.1.4)

where α is any vector. By using (5.1.4) in (5.1.3), we get the Bloch theorem for the

Schrödinger equation

ψ(x+Rn) = eiα·R
n

ψ(x) . (5.1.5)

We continue to consider the Maxwell’s equations. By the periodic structure, we have

ε(x+Rn) =ε(x) , (5.1.6a)

μ(x+Rn) =μ(x) . (5.1.6b)
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If we consider the time-harmonic Maxwell’s equations for magnetic fields, we have

1

μ
∇×

(
1

ε
∇× u

)
= ω2u , (5.1.7a)

∇ · u = 0 . (5.1.7b)

From (5.1.6), it is obviously that the operator on the left hand side of (5.1.7) is also a

periodic operator and we can repeat all the same things for (5.1.7) as for the Schrödinger

equation. We have the Bloch theorem for the Maxwell’s equations as

u(x+Rn) = eiα·R
nu(x) . (5.1.8)

As a summary we define our final problem. Let Ω := Ωex
⋃

Ωin be a primitive cell

and be a unit cube. Γ := ∂Ω. For this primitive cell, a1 = (1, 0, 0), a2 = (0, 1, 0) and

a3 = (0, 0, 1) and we change the notation from a to e. Let Γ1 = [0, 1] × [0, 1] × {0},
Γ2 = [0, 1]× {0} × [0, 1] and Γ3 = {0} × [0, 1]× [0, 1]. By using the Bloch theorem, we

have the Maxwell’s equations with quasi-periodic boundary conditions as the following.

1

μ
∇×

(
1

ε
∇× u

)
=ω2u ∀x ∈ Ωex

⋃
Ωin , (5.1.9a)

∇ · u =0 ∀x ∈ Ωex
⋃

Ωin , (5.1.9b)

γex
t (uex)(x+ ei) =− eiα·eiγex

t (uex)(x) a.e. x ∈ Γi, i = 1, 2, 3 , (5.1.9c)

γex
N (uex)(x+ ei) =− eiα·eiγex

N (uex)(x) a.e. x ∈ Γi, i = 1, 2, 3 . (5.1.9d)

As we have mentioned in the first question, the dielectric material in one unit cell of

photonic crystals is inhomogeneous. So we need interface conditions as the following,

γex
t (uex)(x) + γin

t (uin)(x) = 0 a.e. x ∈ ΓI , (5.1.10a)

βexγex
N (uex)(x) + βinγin

N (uin)(x) = 0 a.e. x ∈ ΓI , (5.1.10b)

where uex := u|Ωex , uin := u|Ωin , γex
t ,γin

t ,γex
N ,γin

N are Dirichlet and Neumann trace

operators from Ωex and Ωin respectively, βex =
√

μex

εex
, βin =

√
μin

εin
for magnetic fields,

and ΓI := Γex
⋂

Γin with Γex := ∂Ωex and Γin := ∂Ωin. As we have mentioned in the

second question, we solve (5.1.9) as an eigenvalue problem. So our final problem is an

interface eigenvalue problem for the Maxwell’s equations with quasi-periodic boundary

conditions.

5.2 A homogeneous problem with periodic boundary
conditions

It is too complex to solve (5.1.9) with (5.1.10) directly. So in this section we simplify

the problem to a homogeneous problem with periodic boundary conditions and in the next

section we consider an inhomogeneous problem with periodic boundary conditions. For



5.2 A homogeneous problem with periodic boundary conditions 79

a homogeneous problem, we assume that εex = εin = μex = μin = 1 and α = (0, 0, 0)
in (5.1.9). Quasi-periodic boundary conditions in (5.1.9c) and (5.1.9d) are simplified

to periodic boundary conditions and we don’t need interface conditions (5.1.10) for this

problem. Then the Maxwell’s equations (5.1.9) with interface conditions (5.1.10) are

changed to

∇×∇× u(x) = λu(x) ∀x ∈ Ω , (5.2.1a)

∇ · u(x) = 0 ∀x ∈ Ω , (5.2.1b)

γt(u)(x+ ei) = −γt(u)(x) ∀x ∈ Γi, i = 1, 2, 3 , (5.2.1c)

γN(u)(x+ ei) = −γN(u)(x) ∀x ∈ Γi, i = 1, 2, 3 . (5.2.1d)

where λ = k2 = μεω2.

5.2.1 Nonlinear solution method
We define ϕ := γt(u) and σ := γN(u). From (1.3.14) we have a Calderón projection

for (ϕ,σ) ( (
1
2
I +Ck

)
Sk

Sk

(
1
2
I +Ck

) )(
ϕ
σ

)
=

(
ϕ
σ

)
. (5.2.2)

By using (5.2.2), the eigenvalue problem (5.2.1) is to find k ∈ R
+ with a nontrivial

solution (ϕ,σ) such that(
−1

2
I +Ck

)
(ϕ)(x) + Sk(σ)(x) = 0 a.e. x ∈ Γ , (5.2.3a)

Sk(ϕ)(x) +

(
−1

2
I +Ck

)
(σ)(x) = 0 a.e. x ∈ Γ , (5.2.3b)

where ϕ and σ satisfy the periodic boundary conditions in (5.2.1c) and (5.2.1d). The

variational formulation for (5.2.3) is to find k ∈ R
+ with a nontrivial solution (ϕ,σ) ∈

W−1/2(Γ)×W−1/2(Γ) such that〈(
−1

2
I +Ck

)
(ϕ) + Sk(σ),υ

1

〉
τ,Γ

= 0 , (5.2.4a)〈
Sk(ϕ) +

(
−1

2
I +Ck

)
(σ),υ2

〉
τ,Γ

= 0 , (5.2.4b)

for all (υ1,υ2) ∈W−1/2(Γ)×W−1/2(Γ). ϕ and σ satisfy periodic boundary conditions.

The Galerkin formulation for (5.2.4) is to find kh ∈ R
+ with a nontrivial solution

(ϕh,σh) ∈W
−1/2
h (Γh)×W

−1/2
h (Γh) such that〈(

−1

2
I +Ckh

)
(ϕh) + Skh(σh),υ

1
h

〉
τ,Γ

= 0 , (5.2.5a)〈
Skh(ϕh) +

(
−1

2
I +Ckh

)
(σh),υ

2
h

〉
τ,Γ

= 0 , (5.2.5b)
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for all (υ1h,υ
2
h) ∈ W

−1/2
h (Γh) × W

−1/2
h (Γh). ϕh and σh satisfy periodic boundary

conditions.

Let {Φi}Ni=1 be a basis ofW−1/2
h (Γh). We useϕh =

∑N
i=1 ξ

t
iΦi andσh =

∑N
i=1 ξ

N
i Φi

in the Galerkin formulation (5.2.5) and get a nonlinear equation system

ReAξ :=

(
ReA11(kh) ReA12(kh)
ReA21(kh) ReA22(kh)

)(
ξt

ξN

)
= 0 , (5.2.6)

where ξt and ξN satisfy the periodic boundary conditions. The calculation of the elements

in A is similar with Section 3.3.1 and Section 4.2.1. We define Γ̂1 := (0, 1)× (0, 1)×{0},
Γ̂2 := (0, 1) × {0} × (0, 1) and Γ̂3 := {0} × (0, 1) × (0, 1). We define Γ12 := Γ1

⋂
Γ2,

Γ13 := Γ1
⋂

Γ3 and Γ23 := Γ2
⋂

Γ3. We define Γper := Γ̂1
⋃

Γ̂2
⋃

Γ̂3
⋃

Γ12
⋃

Γ13
⋃

Γ23.

Let {Φik}Mk=1 be a basis of W
−1/2
h (Γper

h ). By using the periodic boundary conditions, we

could define a mapping BN×M such that

ξt = Bξtper and ξN = BξNper , (5.2.7)

where ξtper and ξNper are the coefficients of the testing functions defined on Γper. We use

the mapping (5.2.7) in (5.2.6) and get

Aper(kh)ξ
per :=

(
BTReA11(kh)B BTReA12(kh)B
BTReA21(kh)B BTReA22(kh)B

)(
ξtper
ξNper

)
= 0 .

To avoid a trivial solution, we include a suitable normalization for ξper by ‖ξper‖l2 = 1.
The nonlinear equation system is

Aper(k)ξper = 0 , (5.2.8a)

‖ξper‖2l2 − 1 = 0 . (5.2.8b)

We continue to use the Newton method for (5.2.8), and the Frechet derivative and the

iteration steps are the same as in Section 3.3.1 and Section 4.2.1.

5.2.2 Numerical tests

We consider the first and second eigenvalues of the periodic eigenvalue problem with

corresponding eigenvectors on the boundary of a unit cube (0, 1)3. An analytical solution

used for the test is

uk =

⎛⎝ λ1 cos(2m1πx1) sin(2m2πx2) sin(2m3πx3)
λ2 sin(2m1πx1) cos(2m2πx2) sin(2m3πx3)
λ3 sin(2m1πx1) sin(2m2πx2) cos(2m3πx3)

⎞⎠ .

The eigenvalue is given by k = 2π
√
m2
1 +m2

2 +m2
3 with m1,m2,m3 ∈ N

0. In Table 5.1

the first column is the level of meshes and the second column is the number of degrees

of freedom, the third and fifth columns are the numerical results for the first and second

eigenvalues and the fourth and sixth columns are the rate of convergence. Fig. 5.3a and



5.2 A homogeneous problem with periodic boundary conditions 81

5.3b are the numerical results of one eigenvector corresponding to the first eigenvalue

and Fig. 5.3c and 5.3d are the numerical results of one eigenvector corresponding to the

second eigenvalue. In the fourth and sixth columns in Table 5.1 we observe a cubic

convergence approximately, since we use the lowest order Raviart Thomas boundary

element space.

(a) Dirichlet trace of one eigenvector corre-

sponding to the first eigenvalue on Γper
(b) Neumann trace of one eigenvector corre-

sponding to the first eigenvalue on Γper

(c) Dirichlet trace of one eigenvector corre-

sponding to the second eigenvalue on Γper
(d) Neumann trace of one eigenvector corre-

sponding to the second eigenvalue on Γper

Figure 5.3 First eigenvector and second eigenvector of the eigenvalue problem for

Maxwell’s equations with periodic boundary conditions
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first eigenvalue second eigenvalue

level dof |kh − k| CRk |kh − k| CRk

2 552 8.83865 - 10.78751 -

3 2256 8.88096 3.2930 10.87471 3.5589

∞ 8.88577 10.88280

Table 5.1 Convergence of the first eigenvalue and second eigenvalue of the eigenvalue

problem for Maxwell’s equations with periodic boundary conditions

5.3 An inhomogeneous problem with periodic boundary
conditions

In this section we consider an interface eigenvalue problem for (5.1.9) and assume

that α = (0, 0, 0). Quasi-periodic boundary conditions in (5.1.9c) and (5.1.9d) are

simplified to periodic boundary conditions. The Maxwell’s equations (5.1.9) with

interface conditions (5.1.10) are changed to

1

μ
∇×

(
1

ε
∇× u

)
= ω2u ∀x ∈ Ωex

⋃
Ωin , (5.3.1a)

∇ · u = 0 ∀x ∈ Ωex
⋃

Ωin , (5.3.1b)

γex
t (uex)(x+ ei) = −γex

t (uex)(x) ∀x ∈ Γi, i = 1, 2, 3 , (5.3.1c)

γex
N (uex)(x+ ei) = −γex

N (uex)(x) ∀x ∈ Γi, i = 1, 2, 3 , (5.3.1d)

γex
t (uex)(x) + γin

t (uin)(x) = 0 ∀x ∈ ΓI , (5.3.1e)

βexγex
N (uex)(x) + βinγin

N (uin)(x) = 0 ∀x ∈ ΓI , (5.3.1f)

where all the notations are the same as in (5.1.9) and (5.1.10).

5.3.1 Nonlinear solution method
As in Section 4.2.1 we use domain decomposition methods to solve this interface

eigenvalue problem. We define σex := γex
N (uex), σin := γin

N (uin), ϕex := γex
t (uex) and

ϕin := γin
t (uin). From (1.3.14) we have two Calderon projections for (σex,ϕex) and

(σin,ϕin), respectively, as(
ϕex

σex

)
=

(
1
2
I +CΓex

kex SΓ
ex

kex

SΓ
ex

kex
1
2
I +CΓex

kex

)(
ϕex

σex

)
, (5.3.2a)(

ϕin

σin

)
=

(
1
2
I +CΓin

kin SΓ
in

kin

SΓ
in

kin
1
2
I +CΓin

kin

)(
ϕin

σin

)
, (5.3.2b)

where kex =
√
αexk, kin =

√
αink, and SΓ

ex

kex ,C
Γex

kex ,S
Γin

kin ,C
Γin

kin are boundary integral

operators on Γex and Γin with the definitions in Section 1.3.3. αex = εexμex and

αin = εinμin. From the interface condition (5.3.1e) we have ϕex = −ϕin on ΓI . We

define ϕI as ϕI = ϕex = −ϕin on ΓI and ϕI = 0 on Γ. We use the second equations of
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(5.3.2a) and (5.3.2b) in (5.3.1f) and get

βex

(
SΓ

ex

kex (ϕ
ex) +

(
1

2
I +CΓex

kex

)
(σex)

)
+ βin

(
SΓ

in

kin (ϕ
in) +

(
1

2
I +CΓin

kin

)
(σin)

)
= 0 ,

and by using ϕI we get(
βexSΓ

I

kex + βinSΓ
I

kin

)
(ϕI)(x) + βexSΓkex(ϕ

ex|Γ)(x)

+ βex

(
1

2
I +CΓI

kex

)
(σex|ΓI )(x) + βexCΓ

kex(σ
ex|Γ)(x)

+ βin

(
1

2
I +CΓin

kin

)
(σin)(x) = 0

a.e. x ∈ ΓI . (5.3.3)

By using the second equation in (5.3.2a) on Γ we get

SΓ
ex

kex (ϕ
ex) +

(
−1

2
I +CΓex

kex

)
(σex) = 0 ,

and by using ϕI we get

SΓ
I

kex(ϕ
I)(x) + SΓkex(ϕ

ex|Γ)(x) +CΓI

kex(σ
ex|ΓI )(x)

+

(
−1

2
I +CΓ

kex

)
(σex|Γ)(x) = 0

a.e. x ∈ Γ . (5.3.4)

By using the first equations in (5.3.2a) and (5.3.2b) we get(
−1

2
I +CΓex

kex

)
(ϕex) + SΓ

ex

kex (σ
ex) = 0 ,(

−1

2
I +CΓin

kin

)
(ϕin) + SΓ

in

kin (σ
in) = 0 ,

and by using ϕI we get(
−1

2
I +CΓI

kex

)
(ϕI)(x) +CΓ

kex(ϕ
ex|Γ)(x)

+SΓ
I

kex(σ
ex|ΓI )(x) + SΓkex(σ

ex|Γ)(x) = 0

a.e. x ∈ ΓI , (5.3.5)

CΓI

kex(ϕ
I)(x) +

(
−1

2
I +CΓ

kex

)
(ϕex|Γ)(x)

+SΓ
I

kex(σ
ex|ΓI )(x) + SΓkex(σ

ex|Γ)(x) = 0

a.e. x ∈ Γ , (5.3.6)

(
1

2
I −CΓin

kin

)
(ϕI)(x) + SΓ

in

kin (σ
in)(x) = 0 a.e. x ∈ Γin . (5.3.7)
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The combination of (5.3.3), (5.3.4), (5.3.5), (5.3.6) and (5.3.7) is the system of

equations in distributional sense. By using their left hand side, we define five operators as

F1 : W
−1/2(ΓI)×W−1/2(Γ)×W−1/2(ΓI)×W−1/2(Γ)×W−1/2(Γin)× R

→W−1/2(ΓI) ,

F2 : W
−1/2(ΓI)×W−1/2(Γ)×W−1/2(ΓI)×W−1/2(Γ)× R→W−1/2(Γ) ,

F3 : W
−1/2(ΓI)×W−1/2(Γ)×W−1/2(ΓI)×W−1/2(Γ)× R→W−1/2(ΓI) ,

F4 : W
−1/2(ΓI)×W−1/2(Γ)×W−1/2(ΓI)×W−1/2(Γ)× R→W−1/2(Γ) ,

F5 : W
−1/2(Γin)×W−1/2(Γin)× R→W−1/2(Γin) .

The variational formulation for this system of equations is to find k with a nontrivial

solution (ϕI ,ϕex|Γ,σex|ΓI ,σex|Γ,σin, k) ∈ W−1/2(ΓI) ×W−1/2(Γ) ×W−1/2(ΓI) ×
W−1/2(Γ)×W−1/2(Γin) such that〈

F1(ϕ
I ,ϕex|Γ,σex|ΓI ,σex|Γ,σin, k),υ1

〉
τ,ΓI = 0 , (5.3.8a)〈

F2(ϕ
I ,ϕex|Γ,σex|ΓI ,σex|Γ, k),υ2

〉
τ,Γ

= 0 , (5.3.8b)〈
F3(ϕ

I ,ϕex|Γ,σex|ΓI ,σex|Γ, k),υ3
〉
τ,ΓI = 0 , (5.3.8c)〈

F4(ϕ
I ,ϕex|Γ,σex|ΓI ,σex|Γ, k),υ3

〉
τ,Γ

= 0 , (5.3.8d)〈
F5(ϕ

I ,σin, k),υ5
〉
τ,Γin = 0 , (5.3.8e)

for all (υ1,υ2,υ3,υ4,υ5) ∈ W−1/2(ΓI) × W−1/2(Γ) × W−1/2(ΓI) × W−1/2(Γ) ×
W−1/2(Γin), and ϕex|Γ and σex|Γ satisfy the periodic boundary conditions (5.3.1c) and

(5.3.1d).

The discretization for the variational formulation (5.3.8) is to find kh with a nontrivial

solution (ϕI
h,ϕ

ex
h |Γh

,σex
h |ΓI

h
,σex

h |Γh
,σin

h , kh) ∈W
−1/2
h (ΓI

h)×W−1/2
h (Γh)×W−1/2

h (ΓI
h)×

W
−1/2
h (Γh)×W

−1/2
h (Γin

h ) such that〈
F1(ϕ

I
h,ϕ

ex
h |Γh

,σex
h |ΓI

h
,σex

h |Γh
,σin

h , kh),υ
1
h

〉
τ,ΓI

= 0 , (5.3.9a)〈
F2(ϕ

I
h,ϕ

ex
h |Γh

,σex
h |ΓI

h
,σex

h |Γh
, kh),υ

2
h

〉
τ,Γ

= 0 , (5.3.9b)〈
F3(ϕ

I
h,ϕ

ex
h |Γh

,σex
h |ΓI

h
,σex

h |Γh
, kh),υ

3
h

〉
τ,ΓI

= 0 , (5.3.9c)〈
F4(ϕ

I
h,ϕ

ex
h |Γh

,σex
h |ΓI

h
,σex

h |Γh
, kh),υ

4
h

〉
τ,Γ

= 0 , (5.3.9d)〈
F5(ϕ

I
h,σ

in
h , kh),υ

5
h

〉
τ,Γin = 0 , (5.3.9e)

for all (υ1h,υ
2
h,υ

3
h,υ

4
h,υ

5
h) ∈ W

−1/2
h (ΓI

h) ×W
−1/2
h (Γh) ×W

−1/2
h (ΓI

h) ×W
−1/2
h (Γh) ×

W
−1/2
h (Γin

h ) and ϕex
h |Γh

and σex
h |Γh

satisfy the periodic boundary conditions.

Let {ΦI
i }NI

i=1 be a basis of W
−1/2
h (ΓI

h) and {ΦΓ
i }NΓ

i=1 be a basis of W
−1/2
h (Γh). We use

ϕI
h =

∑NI

j=1 ξ
1
jΦ

I
j , ϕ

ex
h |Γh

=
∑NΓ

j=1 ξ
2
jΦ

Γ
j , σ

ex
h |ΓI

h
=

∑NI

j=1 ξ
3
jΦ

I
j , σ

ex
h |Γh

=
∑NΓ

j=1 ξ
4
jΦ

Γ
j
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and σin
h =

∑NI

j=1 ξ
5
jΦ

I
j in (5.3.9) and get a nonlinear system

ReA(kh)ξ := Re

⎛⎜⎜⎜⎜⎝
A11(kh) A12(kh) A13(kh) A14(kh) A15(kh)
A21(kh) A22(kh) A23(kh) A24(kh) 0
A31(kh) A32(kh) A33(kh) A34(kh) 0
A41(kh) A42(kh) A43(kh) A44(kh) 0
A51(kh) 0 0 0 A55(kh)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ξ1

ξ2

ξ3

ξ4

ξ5

⎞⎟⎟⎟⎟⎠ = 0 ,

(5.3.10)

where ξ2 and ξ4 satisfy the periodic boundary conditions. It is easy to check that A is

a symmetric matrix. The calculation of the elements in A is similar with Section 3.3.1

and Section 4.2.1. The definition of W
−1/2
h (Γper

h ) is the same as in Section 5.2.1. By the

periodic boundary conditions we can define a mapping B such that

ξ2 = Bξ2per and ξ4 = Bξ4per . (5.3.11)

where ξ2per and ξ4per are the coefficients of the testing functions defined on Γper
h . We use

(5.3.11) in (5.3.10) and get a system of equations

Aper(kh)ξ
per :=

Re

⎛⎜⎜⎜⎜⎝
A11(kh) A12(kh)B A13(kh) A14(kh)B A15(kh)

BTA21(kh) BTA22(kh)B BTA23(kh) BTA24(kh)B 0
A31(kh) A32(kh)B A33(kh) A34(kh)B 0

BTA41(kh) BTA42(kh)B BTA43(kh) BTA44(kh)B 0
A51(kh) 0 0 0 A55(kh)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ξ1

ξ2per
ξ3

ξ4per
ξ5

⎞⎟⎟⎟⎟⎠
= 0 .

(5.3.12)

To avoid a trivial solution, we include a suitable normalization for ξper by ‖ξper‖l2 = 1.
Then the nonlinear equations for (ξper, kh) is

Aper(kh)ξ
per =0 , (5.3.13a)

‖ξper‖l2 − 1 =0 . (5.3.13b)

We continue to use the Newton method to solve (5.3.13). The Frechet derivative is

derived as the following.

lim
h→0

Aper(k + hk′)(ξper + hξper ′)− Aper(k)(ξper)

h
= Aper(k)ξper ′ + k′Cper(k)ξper ,

lim
h→0

‖ξper + hξper ′‖2l2 − ‖ξper‖2l2
h

= 2(ξper, ξper ′)l2 .

5.3.2 Numerical tests

We consider the first and second eigenvalues of the interface eigenvalue problem with

periodic boundary conditions with corresponding eigenvectors on the boundary of a unit
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cube (0, 1)3. We assume that Ωin = (1
3
, 2
3
)3, Ωex = (0, 1)3 \ Ωin, εin = εex = 1 and

μin = μex = 1. An analytical solution used for the test is the same as in Section 5.2.2.

The eigenvalue is given by k = 2π
√
m2
1 +m2

2 +m2
3 with m1,m2,m3 ∈ N

0. In Table 5.2

the first column is the level of meshes and the second column is the number of degrees

of freedom, the third and fifth columns are the numerical results for the first and second

eigenvalues and the fourth and sixth columns are the rate of convergence. Fig. 5.4a, 5.4b

and 5.4c are the numerical results of one eigenvector corresponding to the first eigenvalue

and Fig. 5.5a, 5.5b and 5.5c are the numerical results of one eigenvector corresponding

to the second eigenvalue. In the fourth and sixth columns in Table 5.2 we observe a

cubic convergence approximately, since we use the lowest order Raviart Thomas boundary

element space.

(a) ϕex corresponding to the first eigenvalue (b) σex corresponding to the first eigenvalue

(c) σin corresponding to the first eigenvalue

Figure 5.4 First eigenvector of the interface eigenvalue problem for Maxwell’s

equations with periodic boundary conditions
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(a) ϕex of one eigenvector corresponding to the

second eigenvalue

(b) σex of one eigenvector corresponding to the

second eigenvalue

(c) σin of one eigenvector corresponding to the

second eigenvalue

Figure 5.5 Second eigenvector of the interface eigenvalue problem for Maxwell’s

equations with periodic boundary conditions

5.4 Comparison of BEMs and FEMs
In this section we use Galerkin-BEMs to calculate the band structure of photonic

crystals and compare the accuracy of our results with FEMs. The numerical results of

FEMs are from the PhD work of Dr. A. Bulovyatov [14]. In the first numerical test

we solve the interface eigenvalue problem with quasi-periodic boundary conditions in

a homogeneous medium as a test and an analytical solution is known. In the second

numerical example we solve the same problem in an inhomogeneous medium without a
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first eigenvalue second eigenvalue

level dof Error CR Error CR
0 415 8.66876 - 10.46234 -

1 1693 8.86738 3.5608 10.85214 3.7778

2 6841 8.88392 3.3185 10.87987 3.3906

∞ 8.88577 10.88280

Table 5.2 Convergence of the first eigenvalue and second eigenvalue of the interface

eigenvalue problem for Maxwell’s equations with periodic boundary conditions

given solution which is compared with FEMs.

5.4.1 Numerical tests

We assume that Ω = (0, 1)3, Ωin = (1/3, 2/3)3, Ωex = (0, 1)3 \ Ωin and μex = μin =
εex = εin = 1. The problem is defined by

∇×∇× uin(x) = k2uin(x) ∀x ∈ Ωin , (5.4.1a)

∇ · uin(x) = 0 ∀x ∈ Ωin , (5.4.1b)

∇×∇× uex(x) = k2uex(x) ∀x ∈ Ωex , (5.4.1c)

∇ · uex(x) = 0 ∀x ∈ Ωex , (5.4.1d)

γex
t (uex)(x) + γin

t (uin)(x) = 0 ∀x ∈ ΓI , (5.4.1e)

γex
N (uex)(x) + γin

N (uin)(x) = 0 ∀x ∈ ΓI , (5.4.1f)

γex
t (uex)(x+ ei) = −eiα·eiγex

t (uex)(x) ∀x ∈ Γi, i = 1, 2, 3 , (5.4.1g)

γex
N (uex)(x+ ei) = −eiα·eiγex

N (uex)(x) ∀x ∈ Γi, i = 1, 2, 3 . (5.4.1h)

The nonlinear solution method for (5.4.1) is similar with (5.3.1). The only difference

is that by using the quasi-periodic boundary conditions (5.1.9c) and (5.1.9d), the mapping

B is a complex matrix. Then the nonlinear equation system (5.3.12) is changed to

Aper(kh)ξ
per := DHReA(kh)D, (5.4.2)

where A(kh) is given in (5.3.10) and

D :=

⎛⎜⎜⎜⎜⎝
I 0 0 0 0
0 B 0 0 0
0 0 I 0 0
0 0 0 B 0
0 0 0 0 I

⎞⎟⎟⎟⎟⎠ .

Aper(kh) is a complex matrix and ξper is a complex vector. To avoid a trivial solution, the

normalization for a real vector (5.3.13b) is changed to vHξ = 1. v is a given complex
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vector and the nonlinear equation system is

A(kh)ξ =0 , (5.4.3a)

vHξ − 1 =0 . (5.4.3b)

The Frechet derivative is derived as the following.

lim
h→0

Aper(k + hk′)(ξper + hξper ′)− Aper(k)(ξper)

h
= Aper(k)ξper ′ + k′Cper(k)ξ ,

lim
h→0

vH(ξper + hξper ′)− 1− (vHξper − 1)

h
= vHξper ′ .

The Newton method is the same with other sections.

An analytical solution used for the test is

u(x) =

⎛⎝ λ1u1(x)
λ2u2(x)
λ3u3(x)

⎞⎠ ,

where

u1(x) = u2(x) = u3(x) = eiα1x1eiα2x2eiα3x3ei2m1πx1ei2m2πx2ei2m3πx3 .

for α ∈ [−π, π]3 and m1,m2,m3 ∈ Z
0. From (5.4.1b) and (5.4.1d) we need

λ1(α1 + 2πm1) + λ2(α2 + 2πm2) + λ3(α3 + 2πm3) = 0 .

Figure 5.6 Band structure of a homogeneous problem calculated by Galerkin-BEMs
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The eigenvalue is given by

k2 =
3∑

i=1

(αi + 2πmi)
2 . (5.4.4)

The x-axis in Fig. 5.6 is the value of α and we define Γ := (0, 0, 0), X := (−π, 0, 0),
M := (−π,−π, 0), and R := (−π,−π,−π). The different eigenvalues for a fixed α
are calculated by m := (m1,m2,m3) = (0, 0, 0), m = (1, 0, 0), m = (0, 1, 0), and
m = (0, 0, 1). The lines with different colors in Fig. 5.6 are calculated by (5.4.4). The

dots with different color in Fig. 5.6 are calculated by Galerkin-BEMs. We observe that

the numerical results of Galerkin-BEMs match the analytical solution very well.

5.4.2 Numerical examples

We assume that Ω = (0, 1)3, Ωin = (1/8, 7/8)3, Ωex = (0, 1)3 \ Ωin
, μex = μin = 1,

εex = 13 and εin = 1. The problem is defined by

∇×∇× hin(x) = k2hin(x) ∀x ∈ Ωin , (5.4.5a)

∇ · hin(x) = 0 ∀x ∈ Ωin , (5.4.5b)

∇×∇× hex(x) = 13k2hex(x) ∀x ∈ Ωex , (5.4.5c)

∇ · hex(x) = 0 ∀x ∈ Ωex , (5.4.5d)

γex
t (hex)(x) + γin

t (hin)(x) = 0 ∀x ∈ ΓI , (5.4.5e)

γex
N (hex)(x) +

√
13γin

N (hin)(x) = 0 ∀x ∈ ΓI , (5.4.5f)

γex
t (hex)(x+ ei) = −eα·eiiγex

t (hex)(x) ∀x ∈ Γi, i = 1, 2, 3 , (5.4.5g)

γex
N (hex)(x+ ei) = −eα·eiiγex

N (hex)(x) ∀x ∈ Γi, i = 1, 2, 3 , (5.4.5h)

(a) band structure from FEMs (b) band structure from BEMs

Figure 5.7 Band structure of an inhomogeneous problem solved by Galerkin-BEMs and

FEMs
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level dof Γ |kn − kn−1| X |kn − kn−1|
1 564 1.964717262 1.03892722

2 2280 1.986816725 0.0221 1.042721944 0.0038

3 9168 1.98986934 0.0031 1.043618266 0.000896

Table 5.3 Convergence of the eigenvalues calculated by Galerkin-BEMs in band

structure

level dof Γ |kn − kn−1| X |kn − kn−1|
3 512 2.031763 1.052913

4 4096 2.002369 0.0294 1.046865 0.0060

5 32768 1.994080 0.0083 1.044979 0.0019

Table 5.4 Convergence of the eigenvalues calculated by finite element methods in band

structure

Figure 5.7a is the band structure of the problem (5.4.5) calculated by finite element

methods. Figure 5.7b is the band structure of the problem (5.4.5) calculated by Galerkin-

BEMs. In Tables 5.3 and 5.4 the first column is the level of meshes, the second column

is the number of degrees of freedom, the third and fifth columns are the numerical results

for one eigenvalue for α = Γ, X . The other columns are the rate of convergence. From

Figure 5.7 and Tables 5.3 and 5.4, we observe that the results of Galerkin-BEMs match

the results of finite element methods very well. Nevertheless, there is a problem: if we

compare Figure 5.7a with 5.7b, we find that we computed only eigenvalues of some

band by boundary element methods, since we need a Newton iteration of every single

eigenvalue. For finite element methods, block algorithms are available which compute

several eigenvalues simultaneously.
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