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Abstract

The aim of this thesis is to use Galerkin boundary element methods to solve the
eigenvalue problems for the Helmholtz equation and the Maxwell’s equations with an
application to the computation of band structures of photonic crystals. Boundary element
methods (BEM) may be considered as the application of Galerkin methods to boundary
integral equations. The central to boundary element methods is the reduction of boundary
value problems to equivalent boundary integral equations. This boundary reduction has
the advantage of reducing the number of space dimension by one and the capability to
solve problems involving infinite domains. The strategy for studying boundary integral
equations by weak solutions is the same with partial differential equations. Boundary
element methods are based on variational formulations and the strategy for studying
boundary element methods is also the same with finite element methods. In Chapter 1 we
give a brief introduction of Galerkin-BEMs for the Laplace and Helmholtz equations, and
the Maxwell’s equations for the Dirichlet and Neumann boundary value problems with a
Priori error estimates. In Chapter 2 we use Galerkin-BEMs with domain decomposition
methods to solve the inhomogeneous problems for the Helmholtz equation and the
Maxwell’s equations with a Priori error estimates. The numerical results confirm the
a Priori results for boundary value problems. To solve eigenvalue problems by using
boundary element methods is a new work. In Chapter 3 we give an introduction of
Galerkin-BEMs for solving the eigenvalue problems for the Helmholtz equation and the
Maxwell’s equations with a Priori error estimates (three times). The proof of a Priori
error estimates follow the Ph.D. work of Dr. Gerhard Unger in 2010. In Chapter 4 we use
Galerkin-BEMs to solve the interface eigenvalue problems for the Helmholtz equation
and the Maxwell’s equations. The numerical results confirm the a Priori results. If we use
Galerkin-BEMs to solve these eigenvalue problems, the linear eigenvalue problems will
be changed to the nonlinear eigenvalue problems and we use the Newton method to solve
this kind of nonlinear eigenvalue problems. Because of the limit of the Newton method,
an alternative method such as the contour integral method will be considered in the further
work after this thesis.

Photonic crystals are the materials which are composed of periodic dielectric or
metallo-dielectric nanostructures. They exist in nature and have been studied for
more than one hundred years. Photonic crystals can also be technically designed
and produced to allow and forbid electromagnetic waves in a similar way that the
periodicity of semiconductor crystals affects the motion of electrons. Since photonic
crystals affect electromagnetic waves, the Maxwell’s equations are used to describe this
phenomena. When we design photonic crystals, we need to know for which frequencies
electromagnetic waves can not propagate in them. So we need to calculate the frequencies



and this is an eigenvalue problem. By using the famous Bloch theorem, the problem is
changed from the whole domain to one unit cell with quasi-periodic boundary conditions.
As a summary, we get an interface eigenvalue problem with quasi-periodic boundary
conditions for the Maxwell’s equations. In Chapter 5 we solve the eigenvalue problems
in homogeneous and inhomogeneous mediums, respectively, with periodic boundary
conditions. At the end we solve an interface eigenvalue problem with quasi-periodic
boundary conditions as an example for the computation of band structures of photonic
crystals and compare our results with finite element methods. The results from Galerkin-
BEMs match the results from finite element methods very well and we confirm the
application of Galerkin-BEMs for solving this kind of eigenvalue problems.
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Chapter 1

Boundary Element Methods for
Boundary Value Problems

Partial differential equations (PDE) and boundary integral equations (BIE) are used to
describe different problems in physics and other research fields. At first we should have
an understanding of a well-posed problem. A well-posed problem means the existence,
uniqueness and stability of the solution. The study of these properties is the main work
for PDEs and BIEs and we have two ways. One way is to find a representation formula
for the solution. This kind of the solution is called a classical solution and the study could
follow [27, 39, 25, 23]. A classical solution is usually required to be k-times continuously
differentiable according to the order of the PDE. This is a strong condition and many
boundary value problems don’t have so regular solutions. Even if the solution is regular,
it is also difficult to find a formula for it in many cases. So if we want to discuss a more
general problem, we use the other way which generalizes the problem and discusses the
properties of the solution by a variational formulation. This kind of the solution is called
a weak solution and the study could follow [23, 5, 25]. The strategy for studying BIEs
by a weak solution is exactly the same with PDEs [65, 62, 35]. Finite element methods
(FEM) and boundary element methods (BEM) are based on variational formulations. The
study of FEMs could follow [22, 47, 4, 50, 16]. As a summary we have three steps.

(1a) a generalization of the problem;
(1b) the existence, uniqueness and stability of a weak solution;
(1c) FEMs or BEMs based on variational formulations.

The main idea of (1a) for BIEs is to extend continuously differentiable function spaces
to Sobolev spaces and operators are also extended to Sobolev spaces. The study of
Sobolev spaces could follow [26, 60, 1]. Since Sobolev spaces and generalized operators
are defined in a distributional sense, the continuously differentiable condition is released
and the problem could be defined on a domain with a Lipschitz boundary. We have three
steps for (1a) and five sub-steps for the continuity of boundary integral operators (BIO).

(2a) definitions of Sobolev spaces;

(2b) definitions of generalized operators;



2 Boundary Element Methods for Boundary Value Problems

(2¢) continuity of generalized operators.

continuity of Neumann and Dirichlet trace operators;

e continuity of potential operators;

potentials as weak solutions of a generalized problem;

continuity of boundary integral operators;

e representations of singular integrals.

The next step (1b) is to define a variational formulation by a dual pairing and discuss
the existence, uniqueness and stability of a weak solution. The Lax-Milgram theorem
and Fredholm alternative lemma are the common tools used in this step. They need the
bilinear form in the variational formulation to be elliptic or satisfy the Garding inequality.
This step need the knowledge of function analysis and the study could follow [20, 59, 5].
In the last step (1c) we need to define a boundary element space instead of the Sobolev
space in the variational formulation and get a discretization formulation. The strategy to
do the a Priori error estimates for BEMs is exactly the same with FEMs. They are the
Cea’s lemma, optimal convergence and super convergence. The study of BEMs could
follow [34, 58, 65, 62]

the continuity of the

R trace operators
classical problems Sobolev spaces (2a) #
l the continuity of the

the definitions of the potential operators
generalized operators (2b) ‘
generalized problems (1a) |« + the potentials as the
J— weak solutions
the continuity of the
generalized operators (2c)

the continuity of BIOs

the representations
of singular integrals

the existence, uniqueness and < the Lax-Milgram theorem and Fredhalm
stability of the weak solutions (1b) alternative lemma

.
Galerkin-BEMs (1c)

| boundary element spaces ‘

Cea's lemma
the optimal
convergence

the super
convergence

Galerkin formulations

numerical integration

v

| linear system solver H fast BEMs
postprocessing

Figure 1.1 A flow chart of Galerkin-BEMs for boundary value problems
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Fig 1.1 is a flow chart of a standard procedure of the study of BIEs and BEMs for
boundary value problems. In this chapter we follow Fig 1.1 to give an introduction of
Galerkin-BEMs for Dirichlet and Neumann boundary value problems for the Helmholtz
equation and the Maxwell’s equations with some numerical examples. This chapter is
the basis of the whole thesis which includes the definitions of function spaces, and the
definitions and properties of boundary integral operators for the Helmholtz equation and
the Maxwell’s equations. The work of BEMs for the Maxwell’s equations is based on the
work for the Helmholtz equation and the work for the Helmholtz equation is based on
the work for the Laplace equation. The work for the Laplace equation is based on some
results of the study of the Laplace equation as a PDE.

1.1 Classical electrodynamics

In this section we introduce the Maxwell’s equations for different problems in classical
electrodynamics and classify them into the Poisson, heat and wave equations. We only
consider electromagnetic fields in a linear, homogeneous and isotropic medium. The study
of classical electrodynamics could follow [78, 30, 37].

The Maxwell’s equations

In 1864 J.C. Maxwell published the famous paper to combine the equations from
electrostatics and magnetostatics with Faraday law and modify them to be a consistent
equation system. We call this equation system the Maxwell’s equations. The Maxwell’s
equations are used to describe electromagnetic phenomena. In 1886 H. Hertz generated
and detected electromagnetic radiation in the University of Karlsruhe.

V.-E-= g, (1.1.1a)
OH
E=—pu>— 1.1.1b
V vt ( )
V.-H=0, (1.1.1¢)
OE
H=3; - 1.1.1d
V x J+5at , ( )

where E is the electric field intensity, H is the magnetic field intensity, ¢ is the permittivity,
1 is the permeability, p is the electric charge density and j is the electric current density.
The boundary conditions at the interface between two different mediums are given by

n- (B, —eE) =%, (1.1.2a)
nx (Ey,—E;) =0, (1.1.2b)
n- (uHy — nHy) =0, (1.1.2¢)
nx (H,—H) =K, (1.1.2d)

where n is the unit normal on the interface, y1, po and €1, €5 are the permeability and
permittivity of two different mediums, respectively, X is the surface charge density, and
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K is the surface current density.

Electrostatics (the Poisson equation)

Electrostatics is the study of static electric fields generated by stationary electric
charges. The Coulomb’s law is the basis of electrostatics and the Maxwell’s equations
(1.1.1) are reduced to

VEzg, (1.1.3)

VxE=0. (1.1.3b)

Since (1.1.3b) holds, we define E as the gradient of a scalar potential ¢

E=-Vo. (1.1.4)
We use (1.1.4) in (1.1.3a) and get
—A®:§. (1.1.5)

Magnetostatics (the Poisson equation)

Magnetostatics is the study of static magnetic fields generated by steady currents. The
Biot and Savart law is the basis of magnetostatics and the Maxwell’s equations (1.1.1) are
reduced to

V-H=0, (1.1.62)
VxH=]j, (1.1.6b)

Since (1.1.6a) holds, we define H as the curl of a vector potential A which satisfies the
transverse gauge

V-A=0, (1.1.7a)
H=V xA. (1.1.7b)

We use (1.1.7b) in (1.1.6b) with (1.1.7a) and get a system of equations
V-A =0, (1.1.8a)
~V2A =j. (1.1.8b)

Electromagnetics (the wave and heat equation)

First, we consider electromagnetic fields in a dielectric medium. Since (1.1.1c) holds,
we have the same definition for H as (1.1.7b). We use (1.1.7b) in (1.1.1b) and get

V x (E—i—,uaa—?) =0. (1.1.9)
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According (1.1.9) we define E + ,uaa—‘? as the gradient of a scalar potential
0A
ot
We could use the Lorenz gauge or the transverse gauge for ® and A. By the Lorenz gauge
(1.1.10a) we get a system of equations

E+p —Vo.

0
V-A — =0 1.1.10
—|—58t , ( a)
0?P p
— — AP == 1.1.10b
ey o ( )
O*A 9 .
For the electric field intensity we use (1.1.1d) in (1.1.1b) and get
O*E 9 dj
— —VE=—u—. 1.1.11
Sh \ Foy ( )

We could also use (1.1.1b) in (1.1.1d) to get an equation for H which is similar to (1.1.11).

Next, we consider electromagnetic fields in a conducting medium, so (1.1.1d) has a
different form by the Ohm’s law

OE
VxH=j E —
X J+o +€8t’

where o is the electrical conductivity. Using the same definitions of the scalar and vector
potentials and the Lorenz gauge (1.1.13a), we get a system of equations

(1.1.12)

0P
V~A+U<I)+€E=O, (1.1.13a)
0?P 0P P
— — — AP == 1.1.13b
S gm THO o . ( )
0’A 0A 9 ]
s,uﬁ%—;wg—v A=j. (1.1.13c)
For the electric field intensity we use (1.1.12) in (1.1.1b) and get
O*E OE 9 0j
~V’E = ——=. 1.1.14
gz THog —V Mot (1.1.19)

Then, for a conducting medium, o is much larger than €, so we may neglect the second
order differential terms in (1.1.13b), (1.1.13c) and (1.1.14) and get

0P p
— —AP="C 1.1.15
Ho =y . ( a)
A
W%—t —V3A =], (1.1.15b)
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;wa—E ~V’E = 0

5 —p (1.1.16)

Electromagnetic waves (the Helmholtz equation)

The study of the propagation of electromagnetic waves is a common topic in classical
electrodynamics. We just consider the equations for the electric field intensity E. First, we
consider electromagnetic waves in a dielectric medium without sources (j and p). From
(1.1.11) we get ,

O°E 9
el BYe V°E =0. (1.1.17)
Next, we consider electromagnetic waves in a conducting medium without sources. From

(1.1.14) we get

O*E OE 9
— — —V’E =0. 1.1.1
ep BrE + po 5 \Y% 0 ( 8)

Then, we neglect the second order differential term in (1.1.18) and get

po— —VE=0. (1.1.19)

Let w be a certain frequency of electromagnetic waves. We use E(z,t) = e(z)e ! in

(1.1.17), (1.1.18), (1.1.19) and (1.1.1a). We get a system of equations for time-harmonic
electric fields

V-e=0, (1.1.20a)
—V%e =)e, (1.1.20b)

where A\ = euw? for (1.1.17), A = epw? + ipwo for (1.1.18), or A = iuwo for (1.1.19).
We can do the same transformations for the corresponding equations for H.

Classification

Now we have already seen some familiar equations in classical electrodynamics. ¢ in
(1.1.5) and A, in (1.1.8) satisfy the Poisson equation respectively. ®, A; and E; satisfy the
wave equation in (1.1.10) and (1.1.11) respectively. They also satisfy the wave equation
with a damping termin (1.1.13) and (1.1.14) and the heat equation in (1.1.15) and (1.1.16)
respectively. e; satisfies the Helmholtz equation and A is a real number or a complex
number with zero or nonzero real part in (1.1.20). The above equations with appropriate
boundary and initial conditions will be boundary value problems or initial-boundary value
problems. If we calculate A\ and e together in (1.1.20), this is an eigenvalue problem.

1.2 The Helmbholtz case

From (1.1.20) we know that e; satisfies the Helmholtz equation and A could be a real
number or a complex number. In this section we study Dirichlet and Neumann boundary
value problems for the Helmholtz equation. We just consider electromagnetic waves in a
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dielectric medium, so ) is a real number. We assume that A = k2 and k is a positive real
number. The Helmholtz equation is

Au(z) + K*u(z) =0 Vo € Q, (1.2.1)

where () is a bounded domain. Dirichlet and Neumann boundary conditions are given by

u(z) = f(@) Vrerl, (1.2.22)
g—ﬁ@ =n(z) - Vu(z) = g(z) Veel, (1.2.2b)

respectively, where I' := 0¢2, n is the exterior unit normal to I', and f and g are the given
data.

1.2.1 Representation formula

We assume that I' is a smooth boundary. Green’s first formula for (1.2.1) is

/(Au(m) + k*u(x))v(z)dz + /(Vu(a:) - Vo(r) — k*u(z)v(z))ds
¢ ¢ (1.2.3)
ou o
= A %(a:)v(x)dsx .
for any smooth function v. Green’s second formula is

/Q(Au(x) + K*u(z))v(r)do— /Q u(z)(Av(x) + k*v(z))dz
= @(x)v(x)ds —/u(m)@(m‘)ds .
r on S on v

The fundamental solution for the Helmholtz equation is

eiklx_y‘

Eiy(x,y) = (1.2.5)

drlx —y|’

which satisfies
—(A+E)Ey(z,y) = 0(z —y).

We use v(z) = Ey(x,y) and (1.2.1) in (1.2.4), and exchange the notations for = and y.
Then we get a representation formula for w,

9] OF}(x,
u(x) :/FEk(%y)a—I:(y)dsy—L%u(y)dsy Vo e Q. (1.2.6)
1.2.2 Function spaces

In this section we introduce some basic notation and list the definitions of the function
spaces which we will use. Let &« = (ay,--- ,a4) be a d-dimensional vector and «; be
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non-negative integers. |a| := Zle a;. Then we define partial derivatives for a real

valued function u which is sufficiently smooth as

lot]
Doy 0%
Ozt - - - 0x*

Let €2 be a bounded domain. In our work a domain means an open and connected
subset of R" (n = 2,3). The definitions of continuously differentiable function spaces
C™() and Holder continuously differentiable function spaces C™ () for m € N° and
0<pB<l1lare

C™(Q) := {u | uis m times continuously differentiable in 2} ,

and
O™ () = {u € C™(Q) | [[ullemrsg) < 0o}

with the corresponding norms

lullemey == sup [D*u()]

la<m e

and

D%*u(x) — D*u(y
lullomsny = lulen@ + 3 sup 274D ()|

|a‘:mx,y69,x;ﬁy |‘/L‘ - ylﬁ

C>(£2) is the space of functions which are infinitely continuously differentiable.
L?(Q) is a Hilbert space and the definition is

L*(Q) := {u | uis a measurable function , ||ul|72(q) < oo},

where
Julfi0y = | Juo)Ps.
The definition of the inner product of L*(€) is

(u,v) 12(0) ::/Qu(x)v(x)dx.

We can define Sobolev spaces as the closure of smooth function spaces by the norm
defined by weak derivatives. Alternatively, we can define Sobolev spaces as a subset of
distributions. We use the first definition with the notation from the second definition.

Hm(Q) = COO(Q)Illle(Q) 7

with the norm
[ullfm@) = > IDullF2q -

a<m

Hm+’B(Q) — OOO—(m”'”HerB(Q) 7
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with the norm
||u||§{m+/3(ﬂ) = ||“||%1m(9) + |u|§-1m+ﬁ(g) )
and the semi-norm is

2 | Du(z) — Du(y)|?
m = dzdy .
ulfmisey = 2 /Q/Q |z — y[n e B

laf=m

n is the dimension of the Euclidean space. 8 € (0,1). H-(™*(Q) is the dual space of
H™5(Q).

For boundary integral equations we need Sobolev spaces defined on the manifold I'.
We can define Sobolev spaces on I' by the same way as on (2, or by the trace inequality
and the inverse trace inequality from [65, Theorem 2.21 and 2.22] and [1, 48], we can also
define Sobolev spaces on I as the trace spaces of Sobolev spaces on 2. That is

H™() = {ulp | u € H™HPH12(Q))

H~(m+8)(T") is the dual space of H™+A(I").

1.2.3 Boundary integral equations

When we derive the representation formula (1.2.6), we assume that the boundary is
smooth and u € C?*(2). We call (1.2.6) the classical representation formula. In the last
section we have introduced (2a) in Fig. 1.1 and in this section we continue to introduce
(2b) and (2c), then we can generalize the problem for (1.2.6).

Let u be the solution of (1.2.1). From Dirichlet and Neumann boundary conditions
(1.2.2a) and (1.2.2b), we need to define two trace operators.

Yo(u)(z) :=  lim u()

zeQ—zxel

We define 7 (u) as the solution of the variational formulation

(m(u),v)r = /Q (Vu(z) - VE()(z) — k*u(@)€(v)(z))dz
for all v € H'Y?(T'). (-, ) is the dual pairing. The operator £ : H'/*(T') — H'(Q) is
defined by the inverse trace inequality [65, Theorem 2.22]. Then for u € H'(2) we have
Yo(u) € HY?(T) by the trace inequality and v, (u) € H~Y2(T"). We call ~y, the Dirichlet
trace operator and ; the Neumann trace operator. We have a lemma for the continuity of
the trace operators.

Lemma 1. Let I' be a Lipschitz boundary. The Dirichlet trace operator vy and the
Neumann trace operator 7y, for the Helmholtz equation are bounded operators

vw: HY(Q) = HVA(T),
v HYQ) — HY2(T).
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Proof. See [1, 48] and Lemma 4.4 in [65]. O

We define two potential operators corresponding to the two boundary integrals in
(1.2.6) forv € H~Y2(T") and w € H*(T') as

io)(@) = [ Buleg)oto)ds, Ve e,
Wi(w)(z) = A ag’;(—(xy’)y)w(y)dsy Ve e Q.

We call V;, the single-layer potential operator and W, the double-layer potential operator.
We have a lemma for the continuity of Vj, and W.

Lemma 2. Let T be a Lipschitz boundary and let v € H=Y/2(T') or w € HY*(T") be
given. Then, u(z) = Vi, (v)(z) or u(z) = Wi(w)(x) for x € U is a weak solution of the
Helmholtz equation. The single-layer potential operator \7;€ and the double-layer potential
operator Wy, are bounded operators

Ve: HV(T) = HY(Q),
Wy: HYV2(T) — HY(Q).

Proof. See Lemma 6.6 and Lemma 6.10 in [65]. ]

By using the Dirichlet and Neumann trace operators to the single-layer and double-
layer potential operators, respectively, we could define four boundary integral operators
for the Helmholtz equation. By the continuity of trace operators and potential operators,
we also have the continuity of boundary integral operators. Then we get the following
theorem.

Theorem 1. Let I' be a Lipschitz boundary. The boundary integral operators, 70%, YoWhk,
Y1 Vi, and 1 Wy, are bounded operators

oVe: HV2(T) — HYA(T),
YWy : HY*(T) — HY*(T),

Ve HVA(T) — HVA(T),
1 Wy HYAI) — HVA(D) .

Proof. By using Lemma | and Lemma 2. L

In the calculation we need explicit formulae for the boundary integral operators. We
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have the following definitions

(Vkv)(x) ::/ Ey(x,y)v(y)ds,, (1.2.7a)
M\{z}

(Kw)(z) =p.v. /F o Bl (), (1.2.7b)

(K v)(z) :==p.v. /F\{ }71735(Ek(a:,y))v(y)dsy, (1.2.7¢)

(Du)(@) = = pv. [ Oy Fale ) 0) ~ wledsy, 1270

forx € I',v € HY*T) and w € HY?*T). Vj is called the single-layer boundary
integral operator and Vv is a weakly singular integral. K and K, are called the double-
layer and adjoint double-layer boundary integral operator, respectively, and Kjw and K, v
are Cauchy principle value integrals. Dy is called the hyper-singular boundary integral
operator. For the hyper-singular boundary integral operator, it is not integrable. We need
to do a regularization for it. (1.2.7d) is a regularization of Dy, and it is a Cauchy principle
value integral. Then we have the following results for the boundary integral operators.
There exists n € L>°(I") such that

Vi = Vi HYXD) — HYVA(T),

(=1 + )1+ Ky =W, HYXIT) — HYX(I),
nl + K = 1Vi: HV2(T) — HYX(D),

Dy, =Wy HY*(T) - HVA(I).

More details see [65, 49].

If T" is differentiable within a neighborhood of = € I, we have n(z) = 3. So without
loss of generality, we always assume that n(z) = % for almost all z € IT' in our work.
(1.2.7d) is still not enough for the calculation, we have the other formula for the dual
pairing (Dyw, v)r,

(Dyw, ) = / / Ey(z,9)(n(y) x Va(y)) - (n(z) x Vi(z))ds,ds,

(1.2.8)
— k? /r /r Ey(z,y)w(y)v(z)n(y) - n(z)ds,ds, ,

where w and v are the suitable extensions of w and v into a three-dimensional
neighborhood of I' respectively. For more details see [65, 51].

Now we go back to the representation formula (1.2.6). The function space for wu is
extended to H'(£2) and we have
u(z) = (Vim(u)(@) = (Wiro(w))(z) Vo€ Q.

We call (1.2.9) the generalized representation formula. We use the Dirichlet trace operator

(1.2.9)
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7o and the Neumann trace operator v; on (1.2.9), respectively, and get two boundary
integral equations

1
You =Vi(mu) — <—§I + Kk> (vou) , (1.2.10a)
1 !
MU = (51 + Kk) (mu) + Dy(vou), (1.2.10b)

for you € HY?(T') and v,u € H~Y2(T). If we want to use the generalized representation
formula (1.2.9) to calculate the solution in the domain, we need to know (yyu, y;u) on the
whole boundary. So by using (1.2.10), we define a Calderdn projection for (you, y1u) as

K,V
_( 2 . 77l/2 ~1/2 1/2 ~1/2
C—( Do arxg ) HYOHTAD) 5 HEC) X HTAD) . (120D

By using the Dirichlet boundary condition (1.2.2a) and the Neumann boundary condition
(1.2.2b), respectively, we get two boundary integral equations

1

Vi(niu) = (51 + Kk) f, (1.2.12)
1

Dy (ou) = <§1 — K,;) qg. (1.2.13)

1.2.4 Variational formulations

In the last section we consider the step (1a) in Fig. 1.1. In this section we continue to
introduce the step (1b) in Fig. 1.1. We define o := y;u and ¢ := ypu.
The variational formulation for (1.2.12) is to find ¢ € H~'/%(T") such that

1
I

forall x € H-V2(T).
The variational formulation for (1.2.13) is to find ¢ € H/2(T") such that

1
(D, v)p = <(§I - K,;) g,v> : (1.2.15)
r

for all v € HY?(T).

It £ = 0, (1.2.1) is the Laplace equation. Let V' denote the single-layer boundary
integral operator and D denote the hyper-singular boundary integral operator of the
Laplace equation. V is proved to be H~'/2(I")-elliptic and D is proved to be H'/?(I')-
semi-elliptic. V}, is not H—1/2(T")-elliptic and D}, is not H'/?(I")-elliptic for the Helmholtz
equation. If we want to prove the existence and uniqueness of the solutions of (1.2.14)
and (1.2.15), we need to prove the coercivity of V. and Dj. The coercivity means that
for a bounded operator there exists a compact operator such that the addition of these two
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operators is an elliptic operator. We have a lemma for the coercivity of V}, and Dy.

Lemma 3. Let ' be a Lipschitz boundary. Let Cy =V — Vi, and Cp := D + I — Dy.
Then Cy and Cp are compact operators, and Vi, and Dy, satisfy the Garding inequality

(Vi + Cy)v,v)p = (Vo,0)p > CV|]vH§{_1/Q(F) ) (1.2.16)
((Dx + Cp)w, w)r = (D + Dw, w)r > ¢ |w|[F2p (1.2.17)

forv e HY(T) and w € H'*(T).
Proof. More details see Theorem 6.40 in [65]. O]

If k2 is not an eigenvalue of the Laplace eigenvalue problem, by the Fredholm’s alternative
and Lemma 3, we have the existence and uniqueness of (1.2.14) and (1.2.15).

1.2.5 Galerkin-BEMs

In this section we go to the last step (Ic) in Fig. 1.1 to introduce Galerkin-BEMs for
(1.2.14) and (1.2.15). In our work we only consider triangular meshes.

Definition 1. A triangular cell C consists of a domain Q¢, vertices V = {x1,x2,x3} and
edges £ = {ey,e9,€3}.

Definition 2. A triangular mesh 1y, is built Dy cells {C:}¥, and defines a boundary T,
such that T}, = Ufil Q0 Vr, = Ufil V;, and &Ep, = Ufil E;.

Def. 1 and 2 are important for the data structure of meshes in M++ which is a parallel
FEM software developed by Prof. C. Wieners in KIT. More details see [74, 76, 75].

Definition 3. A boundary element is defined by (C, Pe, Xc). Fe is a polynomial function
space on Qe. Yc is a set of linear functionals on Pe and they are called the degrees of
freedom.

A cell C and a boundary element (C, P, ¥¢) could also be defined from a reference cell
C and a reference boundary element (C, Pz, ¥5) by a mapping.
We define two piecewise polynomial function spaces on the boundary

S)(Ty,) := {vy € L*(T'}) | vy, is constant on every €2; in the mesh '},

SHT'p) := {wy, € C(T'},) | wy, is a linear function on every €; in the mesh T} .
Boundary elements on every C; in the mesh I';, with polynomial function spaces defined
by Si(T'n)|e, and S;(I'y)]|q, are (C;, Sp(L'h)la,, X¢.) and (Ci, Si(Th)|a,, X¢,), and

Qi}v
3¢ = {l; is a linear functional for i = 1,2,3,l;(w) = w(z;) ,w € Sp(Th)|a, }-

Then we define two boundary element spaces for (1.2.14) and (1.2.15) by (T'y,, SY(T'1), E%h)
and (I'y, S;(I's), r, ). X2, and Xt are the union of the degrees of freedom of all ¥¢, and

. := {lis a lineal functional , [(v) = v((z; + 22 + x3)/3) ,v € Sp(T's)
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¢, We simplify the notations from (I, Sp(I's), X9, ) and (T'n, Sp(T's), Xt ) to Sp(I's)
and S} (T'y,).
The discretization of (1.2.14) is to find o}, € SP(T';) such that

1
(Veoh, Xn)r = <(§] + Kk) f Xh> , (1.2.18)
r

for all x;, € SP(T).
The discretization of (1.2.15) is to find ¢, € S} (') such that

1
(Dipn, Up)p = <(§I — K,Q) g,vh> , (1.2.19)
r

for all v, € S}.(T'p).
NLet {0917 be a bas]\i[s of SY(I';) and {®!}", be a basis of S}(I';). We use o), =
> i £909 and @), = >t £;®j in (1.2.18) and (1.2.19) and get two linear systems.

AO&-O — bO

/ / 1k|ac Yy e
z ] SydSy
47T Q; lz =yl Y

-5 [ fos o /Q [ i = e I s, s,

lz —yl?

=10t

1k|a: y\ —
i, 4] 477// ) X V<I>1( ) - (n(z) x VO (z))ds,ds,

!:If—yl

/ / |;:|i ; )@ (z)n(y) - n(x)ds,ds,

i = Sa = —ik|x— 1k|xy‘( v) -n(z) Y(x)ds,ds
1 = 5 [ o@ol@as—g- [ [ ity )0l @)as,ds,

The last step is the a Priori error estimates for (1.2.18) and (1.2.19). The first error
estimate is the Cea’s lemma which constructs the error by the best approximation. The
Cea’s lemma is based on the stability from the well-known Ladyzenskaya-BabuSka-Brezzi
condition (LBB condition). The LBB condition is from the Garding inequality and the
uniqueness of Vj, Di. We prove the LBB condition firstly following [34, Theorem 5.5].

Lemma 4. There exists hg > 0 such that for all x;, € SY(T';) and v, € S}(T}) and
0 < h < hg we have

(VX Xj)r]

cslIxnll =120y < sup e ShiD L (1.2.20a)
x;lesg(rh),uxgl\\H,1/2(F)>0 HXh”H*1/2(F)
D /
callvnll gy < sup {Dxon, vyl (1.2.20b)

/
VL ESAITR)IV | 1 /2y >0 [CAIPPEEnY
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Proof. We prove the LBB condition for the Dirichlet boundary value problem and the
proof for the Neumann boundary value problem is the same. We define B :=V, +Cy. B
is H~1/2(I")-elliptic. We define a new variational problem to find ¥ € H~'/2(I") such that

(Bu,v)r =(Cyxph, V)1 Yo e H-V4(D).
We have o = B~'Cy x;. The Galerkin formulation is to find v, € S{(T'),) such that
(Bup, vp)r =(Cv Xn, n)r Yo, € S)(Th) .
From the variational formulation and the Galerkin formulation we get
(B, — Bo,vp)p = Vo, € Sp(T4).

This defines a Galerkin projection Gp: v — vy and G — [ as h — 0.

Vi and B are bounded. B is H~'/?(I")-elliptic and V, satisfies the Gérding inequality.
Then we have B and V,, are invertible, and B~! and Vk_1 are bounded. We define two
operators by G5, B and C'y,

L:=1-B'Cy =BV and L,:=1-G,sB~Cy.

By the properties of G}, 5, B and Cy, L is bounded and invertible, L~! is bounded and L,
is bounded. By the consistency of Gz we get

|L — Ly|| =||[(Ghg — )B™'Cy|| — 0 ash—0.

So L; ! exits and it is uniformly bounded if / is as small as enough.
We begin to consider the right-hand side of (1.2.20a).

(Vixn, Xp)r = (BLuxn, Xp)r — ((BLy — BL)Xn, Xj)r

[(Vixns Xpor| + [{(BLy — BL)Xn, X3)r| = [{(BLXn, X3)r|
If x}, = Lpxn we have

(BLyxn, Lixa)r 2 elllLaxallfr-1zmy > crcalxallz-zm 1 Laxallm-ve
by using L,:l is uniformly bounded in the last inequality and

{(BLa — BL)xu, Luxa)e] < IBINEn = Lxall-s2y | Laxalla-vaq -
Then we have

|[(Vixa, Lnxa)r| = (eves = I BIIILn = LIDIxw -2y [ Lnxnll =12y -

We can choose h as small as enough such that ¢, — || B|||| L, — L|| > ¢, and the proof is
done. O]

From the BBL condition it is easy to get the stability of (1.2.18) and (1.2.19). For a
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finite dimensional problem, uniqueness implies existence. So by the stability we have the
existence and uniqueness of the solutions of (1.2.18) and (1.2.19).

Lemma 5. There exists c; > 0 and co > 0 such that for the solutions of (1.2.14) and
(1.2.15) and the solutions of (1.2.18) and (1.2.19), we have

o= onllg-12ry <1 xhelg‘if(Fh) lo = xnllz-—12(ry s (1.2.21a)
— <c inf —v ) 1.2.21b
I SOhHHl/Q(F) > 2thS,1l(Fh) I h||H1/2(F) ( )

Proof. We prove Cea’s lemma for the Dirichlet boundary value problem following [65,
Theorem 8.10] and the proof for the Neumann boundary value problem is the same. From
(1.2.14) and (1.2.18) we have

<V;c0'h> Xh>r‘ = <Vk0', Xh>F for all Xhn € S;?(Fh)

This defines a Galerkin projection Gy, 0 = oy,. By the stability from the LBB condition,
Gy, is bounded. Then we have

lo = onllz-120y =llo = Grvixn + GrviXn = onllg-12(r)
<llo = xnllz-12) + |Gy (Xt — ) =121
<+ )llo = xnll -2 -

The proof is done. [

We need the following approximation properties of Sp(I';) and S}(T},) for x €
H;,(T') and v € H;,(I'), respectively, from [58, Theorem 2.1, 2.3] for quasi-optimal
error estimates. /3, (I') := {u € L*(T) | u|r, € H*(T;),i=1,--- ,n}.

inf [[x = xnllge@) <ch®x
xh€SP(Th)

ws,@) fora €[—1,0lands €[0,1], (1.2.22a)

inf v —vp||gery <ch™v

ms,ry fora€[-21]ands € [1,2]. (1.2.22b)
U}LGS}L(F}L)

We use (1.2.22a) and (1.2.22b) in (1.2.21a) and (1.2.21b), respectively, and get quasi-
optimal error estimates

||0' - O-hHHfl/Q(F) §0h8+1/2|0|H5w(I‘) s (12233)

i () - (1.2.23b)

e = enllia <ch*™p

From (1.2.23a) and (1.2.23b), it is obviously that it is difficult to calculate error in
the norms, || - || -1/2y and || - || g1/2r). A good choice is to use L*(I")-norm. We use
Aubin-Nitsche duality to derive error estimates in L?(T")-norm.

Theorem 2. Let o € H,, (') for s € [0,1] and ¢ € H,,,(T') for s € [1,2]. We have

”O' — 0h||L2(F) SChs|O' Hg, (1) (12243.)

I — @nllz2@y <c’|plag, @) - (1.2.24b)
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Proof. We prove the error estimate for the Dirichlet boundary value problem following
[65, Lemma 12.2] and the proof for the Neumann boundary value problem is the same.
In the proof we need the global inverse inequality from [65, Lemma 10.10] and the
approximation properties of L*-projection in SP(T';). Let Qo be L*-projection of o
to Sg(Fh)

lo = onlle2y <llo = Quoll2@y + |Qno — anll L2
< lo = Qnoll 2wy + b 2]|Qno — onllir-1/2r)

global inverse inequality

<llo = Qnollzzwy + ch ™2 (1Qno = oll 12y + lo = onllgr-1/2(r))

By the approximation properties of L2-projection in L?(I')-norm and H~'/?(I')-norm
from [65, Theorem 10.2] and [65, Corollary 10.3], respectively, and (1.2.23a), the proof
is done. O]

1.2.6 Numerical tests

We consider two numerical tests on the boundary of a unit cube (0, 1)3. In the first test
we assume that £ = 0 and (1.2.1) is the Laplace equation. An analytical solution used for
the test is

up(x) = (1 4 x1)e" cos(xs) . (1.2.25)
In the second test we consider the Helmholtz equation (k = +/3) with an analytical
solution used for the test

uy(z) = (1 + x1)e™ sin(2z3) . (1.2.26)

For Neumann boundary value problems of the Laplace equation, since D is H'/?(I')-
semi-elliptic, we need additional terms in the variational formulation. In Tables 1.1 and
1.2 the first column is the level of meshes, the second column is the number of degrees of
freedom, the third and fifth columns are L?-error for the Laplace equation and Helmholtz
equation respectively and the fourth and sixth columns are the rate of convergence (s)
in O(h*). Table 1.1 and Fig.1.2 are the results of Dirichlet boundary value problems of
(1.2.25) and (1.2.26). Table 1.2 and Fig.1.3 are the results of Neumann boundary value
problems of (1.2.25) and (1.2.26). "CR" means the rate of convergence (s) and o}, is the
approximated solution calculated by using a mesh of level n. The calculation of L*-error
and rate of convergence for ¢y, is similar with o,. The formulae are

lon — ooy = / (on(z) — o(x))?ds,

o™ = ollamy

CR =log, ||

i = 0llzm)

In the fourth and sixth columns of Table 1.1 we observe a linear convergence for piecewise
constant function spaces and in the fourth and sixth columns of Table 1.2 we observe a
quadratic convergence for piecewise linear function spaces approximately.
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level | dof | Errory CR;, Errory CRpy
0 24 | 1.38597 - 3.16616 -

1 96 | 0.65702 | 1.0769 | 1.50606 | 1.0720

2 384 | 0.28534 | 1.2033 | 0.62868 | 1.2604

3 1536 | 0.12640 | 1.1747 | 0.26788 | 1.2307

Table 1.1 Accuracy of Galerkin-BEMs for Dirichlet boundary value problems for the
Laplace and Helmholtz equations

1.o0 1.00

(a) the Laplace equation (b) the Helmholtz equation

Figure 1.2 Dirichlet boundary value problems for the Laplace and Helmholtz equations

level | dof | Errory, CR,, Errorgy | CRy
0 14 | 0.39467 - 1.05687 -

1 50 | 0.09237 | 2.0951 | 0.25747 | 2.0373

2 194 | 0.02157 | 2.0984 | 0.05917 | 2.1215

3 770 | 0.00517 | 2.0617 | 0.01413 | 2.0660

Table 1.2 Accuracy of Galerkin-BEMs for Neumann boundary value problems for the
Laplace and Helmholtz equations
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1.00 1.og

(a) the Laplace equation (b) the Helmholtz equation

Figure 1.3 Neumann boundary value problems for the Laplace and Helmholtz equations

1.3 The Maxwell case

In this section we study Dirichlet and Neumann boundary value problems for the
Maxwell’s equations (1.1.20). We just consider electromagnetic waves in a dielectric
medium, so \ is a real number. We assume that A\ = k2 and k is a positive real number.
The time-harmonic Maxwell’s equations for electric or magnetic fields are

V x V x u(r) =k*u(x) Vz € Q, (1.3.1a)
V-u(x) =0 Vo € Q) (1.3.1b)

where (2 is a bounded domain. Dirichlet and Neumann boundary conditions are

n x u(x) =f(x) Ve el (1.3.2a)
n xV xu(x) =g(z) Ve el, (1.3.2b)

respectively, where I" := 0f), n is the exterior unit normal to I', and f or g is the given
data.

1.3.1 Representation formula

We assume that €2 has a smooth boundary. Green’s first formula for (1.3.1) is
/(V x V x u(z) — k*u(z)) - v(z)dz
Q
- /(V x u(z) -V x v(z) — k*u(z) - v(z))dz (1.3.3)
Q

:/n x V xu(z)-v(r)ds, .
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Green’s second formula is
/(V x V xu(z) — k*u(z)) - v(z)dz
Q

- /Qu(x) (V x V xv(z) — kv(z))dx (1.3.4)
:/Fn x V xu(z)-v(r)ds, — /Fu(x) nxV xv(z)ds,.

Inserting (1.3.1a) in the left hand side of (1.3.4) yields
— / u(z) - (V(V - v(z)) — Vv(z) — k*v(z))d
Q
=— / n-u(z)V-v(x)ds, + / u(z) - (V3v(z) + k*v(z))dz.
r Q

With the right hand side of (1.3.4) we get

/u(x) (VAv(2) + k*v(x))dz = /n x V xu(z)-v(z)ds,
“ . (1.3.5)

+ / n-u(x)V-v(x)ds, + / nxu(z)- -V xv(z)ds,.

We set v = Ej(x,y)e; in (1.3.5) with i = 1,2,3. e; is a unit vector. Ej(z,y) is the
fundamental solution (1.2.5) of the Helmholtz equation. We exchange the notation for x
and y and get

wi(z) = — /F n, x V, x u(y) - (Ex(x, y)e:)ds, — / n, - u(y)V, - (Bx(z,y)e)ds,

_ /Fny xu(y) - Vy x (Ex(z,y)e;)ds,

OE(x,
=— / n, X Vy X u(y) - e;Ey(z,y)ds, — / n, - U(y)—g(y. y)dsy
r 7

r
+ [y xu) - Vi x (B pe)ds,
r
0
=— / n, X V, xu(y) - €;E(z,y)ds, + e / n, - u(y)Ex(z,y)ds,
r T Jr
-V, X /ny xu(y) - Ex(x,y)ds, -e;.
r

We put u; for ¢ = 1, 2, 3 together and get the Stratton-Chu representation formula

u(z) =— / n, x V, xu(y) - Ex(z,y)ds, + V, / n, - u(y)Ex(z, y)ds,
r r (1.3.6)

-V, X /ny xu(y) - Ex(x,y)ds, .
r
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Now we derive an alternative evaluation of n,, - u(y) in (1.3.6).

/F dive(n x w(z))o(z)ds, — — /F n x w(z) - <Vv(a:) . a%v(x)) ds,
= — i V x w(z) - Vu(x)dr + /Qw(x) -V x Vou(z)dz

— —/Qv x w(z) - Vo(z)dz — /Qv ¥ x w(z)o(z)dz
_ _/Fn Y x w(z)v(x)ds,
From the above derivation we get
/F dive(n x w(z))o(z)ds, = — /F n-V x w(z)u(z)ds, . (1.3.7)

We use (1.3.7) in the second term of the right-hand side of (1.3.6) and get

V, xV, xu(y
Vz/rny-u(y)Ek(x,y)dsy —Vz/rny- Y ky2 ( )Ek(l’,y)dsy

1 .
-V, / divr(n, x V, x u(y)) Bx(z, y)ds,

Then (1.3.6) is changed to
u(z) =— / n, x V, xu(y) - Ex(z,y)ds,
T
1 :
- 5. /F dive(ny, x V, x u(y)Ex(z,y)ds, VeeQ.  (138)
-V, x /ny xu(y) - Ex(x,y)ds,
r

Since we assume that u is a regular solution and the boundary is a smooth boundary, we
call (1.3.8) the classical representation formula for (1.3.1).

1.3.2 Function spaces

In Section 1.2.2 we introduce function spaces for scalar-valued functions. In this
section we introduce continuously differentiable function spaces and Lebesgue integrable
function spaces for vector-valued functions and use them to define the function spaces for
the Maxwell’s equations in the domain and on the boundary. The function spaces on the
boundary have been studied in [9, 10, 6] for piecewise smooth boundaries and in [12] for
Lipschitz boundaries. [7] is a summary of all these work.

Let (2 be a bounded domain. The definitions of continuously differentiable function
spaces C™((2) and Holder continuously differentiable function spaces C™#((2) are

C"(Q):={u|u,€cC™Q)} ad C™P(Q):={u|w cCm™PQ)}.
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The definition of L?((?) is
3
LX(Q):={ulw e (@)}  with  [|Jullfeq) =) lwlisq-
The definitions of H™ () and H™*#(Q) for m € N° and 3 € (0, 1) are

z Jul

- o7 lmts .
H™P(Q) = C(Q) =@ with HUH%{MB(Q) = Z HuinHmw(Q)

H™(Q) = C=(Q) ™" with  [Jul]2

H m

Let d be a first order differential operator. The definitions of H™(d, 2) and H™+#(d, )
are given by
H"(d,Q) :={ueH"(Q)|duec H"(Q)}

with ||u||%lm(d,(2) = ||u||%1m(sz) + ||du||%-lm(Q)7
H™(d, Q) := {uc H"™(Q) | du € H"(Q)}
with [ullfpniaaay = 1ullfmesq) + [dalfms ) -

Let H(Q) denote L?*(2). The common Sobolev spaces in the study of the Maxwell’s
equations are H(curl, Q2), H(div, Q) and H(curl? ().

For boundary integral equations we need function spaces defined on the manifold I'.
One common way is to use the Dirichlet trace to define function spaces on I'. In Section
1.2.2 the Sobolev space H™+#(I") is defined as the trace space of H™+#+1/2(Q)) by the
Dirichlet trace operator 7o and H~™~#(T") is the dual space of H™*#(T"). According the
boundary condition (1.3.2a) we use the tangential trace (n X u)|r as the Dirichlet trace for
the Maxwell’s equations. We compare (n X u)|r with you. If the boundary is a smooth
boundary, we have the definition of n on the whole boundary. We can use Sobolev spaces
on ' in Section 1.2.2 to define Sobolev spaces on I' for the Maxwell’s equations. More
discussions about smooth boundaries could be found in [55, 2, 15, 52]. If the boundary
is a non-smooth boundary, we don’t have the definition of n on the whole boundary. So
even if u € C*(Q), we don’t have (n x u)|r € H'2(I'). We can not use Sobolev spaces
on ' in Section 1.2.2, so we define new Hilbert spaces on I' by the tangential trace

H? (D) :={(nxu)|r |ue H*2(Q)}  vBe(0,1),

with an inner product such that the tangential trace is continuous and surjective. The
definition of the tangential trace is generalized to a weak solution of

/ V xu(zx) - v(z)dr — /Qu(a:) -V x v(z)dx = /Fn(x) x u(x) - v(z)ds, .

We define
LT) :={ueL*T) |n-u=0}.



1.3 The Maxwell case 23

H_°(I) is the dual space of H” (I') with L2(T") as a pivot space. We use the following
dual pairing

(V, W), = /(v xn)(x) - w(z)ds, . (1.3.9)
r
More discussions about non-smooth boundaries see [6, 9, 10, 12].
For curvilinear polyhedra, a norm is given in [9] for Hl/ (). Let I := U, T L

is the set of indices of I'; such that F NI #O0andi # j. n;; is the exterior tangential
normal to I'; and on I'; ﬂ I';. The norm is defined by

[ e

VIr, (#) -0y (x) = Vi, (y) - nji(y) [
+ZZ// Py ds,ds, .

i=1 jel;

The divr in (1.3.7) is generalized in [6, 8, 12] to

diveey — divr, (v|r,) on T
A i 'Ilij+V|1"]. s on FZﬂFJ

Then we could define the Hilbert space on ' for the Maxwell’s equations

H;l/z(divr7 I:={ve H;1/2<F) | divev € HV*(I)}

1.3.3 Boundary integral equations

When we derive the classical representation formula, we assume that the boundary is
smooth and u € C?(). In the last section we have introduced (2a) in Fig. 1.1 and in this
section we continue to introduce (2b) and (2c), then we can generalize our problems from
(1.3.8). We simplify the notation from H"/?(divy, T') to W~1/2(I").

Let u be the solution of (1.3.1). According the Dirichlet and Neumann boundary
conditions (1.3.2a) and (1.3.2b), the classical definitions of trace operators are given by

y(u)(x) := lim n(x)xu(z) and n(u)(z) = lim n(z)xVxu(z).

zeQ—zel TeQ—zel

We need a generalized definition of yn(u) as the weak solution of the following
variational formulation

(), %(v))rpr = %/Q(V xVxu(z) v(z) -V xu(z) Vxv(z))de,

for u € H(curl®, Q) and v € C=(Q). The generalized definition of ~;(u) is given in the
last section. We call v; the Dirichlet trace operator and yn the Neumann trace operator.
We have a lemma for the continuity of the trace operators.

Lemma 6. Let I' be a Lipschitz boundary. The Dirichlet trace operator v, and Neumann
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trace operator YN are bounded operators

v¢: H(curl, Q) — W V4(T)
w: H(curl?, Q) - WY2(T).

Proof. See [10, Theorem 4.4], [12, Section 4] and [13, Lemma 3]. ]

We define two potential operators corresponding to the two boundary integrals in
(1.3.8) for v,w € W/2(I") as

W, () (w) i=

1 :
v(y) - Ex(x,y)ds, — Evm / divp(v(y))Ex(z,y)ds, Ve Q,
r r

U (w)(r) = — V, x /Fw(y) - By (z,y)ds, Vo € 2.

We call W%, the single-layer potential operator and W%, the double-layer potential
operator. Let d be a first order differential operator. We define

H(d0, Q) := {u € H(Q) | du = 0}.

We have a lemma for the continuity of W%, and W%, .

Lemma 7. Let T be a Lipschitz boundary and let v,w € W~Y2(T') be given. Then,
u(r) = Ok, (v)(z) oru(x) = O, (w)(x) for v € Qis a weak solution of the Maxwell’s
equations. The potential operators, $%, and W%, are bounded operators

Tk . W V2(T) — H(curl?, Q)NH(div0, Q)
vk WY2(T) — H(curl?, Q)NH(div0, Q) .

Proof. See Theorem 5 in [13]. ]

By using trace operators to potential operators, respectively, we get boundary integral
operators and the continuity of boundary integral operators is from the continuity of trace
operators and potential operators. For the Maxwell’s equations we just need two boundary
integral operators. If we compare the Dirichlet trace operator () with the Neumann trace
operator (yn), we find that the difference is the curl operator. If 74 is the tangential trace
of electric fields, vy is the tangential trace of magnetic fields. Electric fields and magnetic
fields are symmetric. This is the physical explanation for two boundary integral operators.
For mathematics, we can derive that the curl of W%, is changed to W%, and the curl of
Wk is changed to W¥,. Compared with the four boundary integral operators of the
Helmholtz equation, mathematics match physics very well. Let « be in the domain.

VX W) == Vo (& [ Vi) Buleas,
~V, x (%vz FdivF(v(y))Ek(x,y)dsy>

== Vo (b [ v Bueas,) = kb))
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V. x Ok (w)(z) = —V, x (v x/w - Byla, y)dsy)

—/va(vx-(vv(y )))ds, + /V2 9))ds,y

zvx/W(y)- (VyEk(x,y) —1ny- %jg’y)) dsy+/W(y) Ay Ei(z, y)dsy
== 9, [ dive(wu) Bula,p)ds, = 1 [ w(o) - Bie.y)ds, = k¥ (w)(o)

From the above derivation we get
Ve x W (v)=kWU% (v) and  V,x ¥% (w)=kTk (w). (1.3.10)

Theorem 3. Let T be a Lipschitz boundary. Then, vw¥%, = ynP%, and ¥%, =
YnPE, from (1.3.10) are bounded operators

%W W2(0) - WVA(I),
v Wh - WYY - WY2(T) .

Proof. By Lemma 6 and Lemma 7. O]

In the calculation we need explicit formulae for boundary integral operators.

k _ . .
W) ==t o) < (ki [ ) B )
. 1. : .
_ @eglzlgier n(r) x (E 113(1) Vi S divp(v(y)) Ex(Z, y)dsy)
= — klim n(z) x (v(y) - Ex(x,y))ds,
=0 yel:ly—z|>e
1
— 7 lim n(z) x Vu(dive(v(y)) Bk (2, y))ds,
k20 Jyery—of>e

=—k n(zr) x (v(y) - Ex(z,y))ds,
/W (2) x (v(y) - Ex(z.))

e [ ) Vv () Bl ),

k _ . . B . ~
b)) =~ tim (o) x (1 ¥ax [ wly) B,
yel:ly—z|>e
~ lim / n(z) x Va x (w(y) - Bx(z, y))ds,
0 Jyerjy—a|>e
OFE (x, OF(x,
Jyery—apse (0(2) - W (y) 2520 — wi(y) 25220 ) ds,
. O0FEy(z, O0Ey (z,
- llg(l) fyeF:\y—x|>e n(x) ' W(y)%gy) o WQ(y)E@%my) dsy

OFE} (x, OF(x,
fyeF:\y7m|>e n(fE) ’ W(:U)% - W3(y)$ dSy
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By using the same argument as the adjoint double-layer operator in Section 1.2.3 we get

E
e—0 yel“:\y—ac|>e 8le

ds, = ~wit+pv. | wily) DYy
Sy 5 +p.v /1“\{1} (y) o Sy

fori = 1,2, 3. By using this result we get

Wy (w)(x) = Jw(r) ~ pv. /F )X T () Bl ),

Then we could define two boundary integral operators

Se(v)(x) = — k / n(z) x (v(y) - Bx(z, y))ds,

X Pz (1.3.11a)
— o [ ne) % Va(dive (V) Bl ),
M\ {z}
Ch(w)(z) = — pv. / P X T (W) Bl ) (13.11b)
M\{z

for v € T and v,w € W~Y2(I'). We call S, the single-layer boundary integral
operator and Cy, the double-layer boundary integral operator. The first term of Sy(v)
is a weakly singular integral and the second term is a Cauchy principle value integral. In
fact the second term is similar with the hyper-singular boundary integral operator for the
Helmholtz equation and divr is a regularization for it. C,(w) is a Cauchy principle value
integral. Then we have

Sk =Pk, WAT) - WD),

1
51 +Ci = W WVAI) - WV

(1.3.11a) and (1.3.11b) are still not enough for the calculation and we have the other two
formulae for their dual pairings. In the derivation of the new formulae, we need to use
nXwxn-v=w-v—(n-w)(n-v)and get

(Sk(v), W), =— k/r/r\{ }V(y) -w(z)Ey(z,y)ds,ds,
1 ) .
v /F /F ) ) () () i, ) s
(Cr(W),V)rr = — /F /F\{ }VxEk(:E, y) - (w(y) x v(z))ds,ds, .

We use these two formulae for the assembling of matrices and vectors in Galerkin-BEMs.

Now we can go back to the classical representation formula (1.3.8). The function
space of u is extended to H(curl®, Q) () H(div0, Q) and we have

u(z) = Uk, (ynu)(z) + U5 (ypu) () Ve e Q. (1.3.12)
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(1.3.12) is the generalized representation formula. We use the Dirichlet and Neumann
trace operators on (1.3.12), respectively, and get two boundary integral equations

1
yeu =Sk (ynu) + (51 + Ck) (veu), (1.3.13a)
1
NU = (51 + Ck) (ywu) + Sk(ypu) . (1.3.13b)

The idea is the same with the Helmholtz equation. If we want to calculate the solution in
the domain by (1.3.12), we need to know (~;u,ynu) on the whole boundary. By using
(1.3.13) we define a Calderdn projection as

i1+ Cy Sk ~1/2 ~1/2 ~1/2 ~1/2
c=|( 2 . : WD) x WVA(I) — WD) x W (D).
Sk §I+Ck
(1.3.14)

The Calderén projection is a coupling of the Dirichlet trace and the Neumann trace and it
is important for mixed boundary value problems, Robin boundary condition and interface
problems. By using Dirichlet and Neumann boundary conditions, we get two boundary
integral equations

1

In fact (1.3.15) and (1.3.16) are equations of the same type and we just need to change the
given data to get different solutions. So in the next sections we just consider the Dirichlet
boundary value problem (1.3.15).

1.3.4 Variational formulations

In the last section we considered step (1a) in Fig. 1.1. In this section we introduce
step (1b) in Fig. 1.1. We define o := ynu. The variational formulation for (1.3.15) is to
find o € W~/2(I") such that

1
(Sk(o), X)rr = <<§I — Ck) f, x> (1.3.17)
T,

for all x € W=Y/2(T).

For the existence and uniqueness of the solution of (1.3.17) we need a Helmholtz-
type regular decomposition for W~2(T") and use it to get the generalized Gérding
inequality. We explain the reason for this decomposition by a physical point of view. The
physical problems described by the Helmholtz equation are different from the Maxwell’s
equations. For example, the Helmholtz equation could be used for acoustics. In acoustics
the potential energy and the kinetic energy are converted into each other and the total
energy is conserved. We can find corresponding terms for both of them in the Helmholtz
equation. The Maxwell’s equations are used to describe electromagnetic fields. Electric



28 Boundary Element Methods for Boundary Value Problems

fields and magnetic fields are symmetric as a part of electromagnetic fields and they are
converted into each other. This is a kind of conversion. But just a part of electric fields is
converted into magnetic fields, we need to do a decomposition to get this part and by the
conversation we could get the ellipticity. We define

H,"?(divp0,T) := {v € H;"*(T") | divpv = 0}
Lemma 8. There exists a projection R" for W—'/2(T') such that
R W) - HYA(T),
Z'=1—R": W 2(I') = H?(div0,T),
and we also have the continuity of R"
HRFVﬂw—l/?(F) < O||diVFV||H—1/2(F) Vv e W_l/z(r) :

Proof. See [13, Lemma 2]. ]
We use this decomposition to prove the generalized Garding inequality for Sy.

Lemma 9. Let I be a Lipschitz boundary. X' := R' — Z'. There exists a compact
bilinear form cr such that Sy, satisfies a generalized Garding inequality

[(Sk(v), X'V)rr +er(v,v)| > Cg||V||%;v—1/2(F) Vv e W 2T,

Proof. The basic idea of the proof is given in [13, Lemma 10]. First we define

(Sok(Vv), W), = %(V(divp(v)), divp(w))r — E(V(V), W),

where V' is defined in Section 1.2.4, V. is defined by the first term in (1.3.11a) and we set

V = V. From [13, Corollary 4] we know that S, ;, — Sj, is compact and more details see
[32, Theorem 6.2] and [19, Theorem 3]. We consider

(Sk(v), X'V)rr + (Sox(v) = Sk(v), X'V)rr = (Sos(R'v + Z'v), R'v — Z'v) 1
1
:E<V(din(Rrv)), dive (R'v))r + E(V(Z'V), Z"V)rr — K(V(R'V), R"V) .1

—k(V(Z'"V),R"V).r + K(V(R"V), Z' V), .
(1.3.18)

V' is an elliptic operator and from [13, Lemma 8] we know the ellipticity of V. For
the first two terms of the right-hand side of (1.3.18), by using Lemma 8 we get

1
E(V(din(RFv)), divr (R'v))r + k(V(Z'V), Z' V), 1
>c (11dive (B V)32 ) + 1271y

I 2 T 2 2
> ¢ (IR ysraqy + 12"V gsraqry ) 2 elVIByry

Lemma 8
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From [13, Lemma 9] we know that (V- -),r is a compact bilinear form from
Hlx/z(F) X H;l/z(F) or H;l/z(F) X Hlx/z(F) to C. From [13, Lemma 7] and [33, Lemma
3.2], we know that V;, — V is compact. We consider the left three terms of the right-hand
side of (1.3.18) and know that the following bilinear form is also compact

E(Vi— V)(R'V), R"v), r+k{(Vy — V)(Z'V), R'V), r

1.3.1
+E((V = V)(R'V), Z' V), r. ( %)

Then we can define a compact bilinear form cr according (1.3.18) and (1.3.19). The proof
is done. u

If k2 is not an eigenvalue of the eigenvalue problem of the Maxwell’s equations, by
[13, Theorem 4] and Fredholm’s alternative, we have the existence and uniqueness of a
solution & € W—/2(T") of (1.3.17).

1.3.5 Galerkin-BEMs

In this section we go to the last step (1c) in Fig. 1.1 to introduce Galerkin-BEMs for
(1.3.17). As in Section 1.2.5 we only consider triangular meshes. The basic definitions of
meshes and boundary element spaces have been given in Section 1.2.5. In this section we
define 2D triangular Raviart-Thomas elements as boundary elements.

Definition 4. A 2D triangular Raviart-Thomas element of degree [ is defined by
(C7PC7EC)'

e P. is a polynomial vector space on Qc. Let Pe be a polynomial function space
with maximum total degree | — 1 and let P bea homogeneous polynomial function
space with total degree exactly | — 1 in two variables. P with degree | is defined
as Pe:= (Pe)* @ P

e The degrees of freedom X.¢ are defined by two parts. Let l; be a linear functional for
1=1,2,3 and
L) = [ v n s,
forv € Pecandp € P., withdegree l—1. P, is a polynomial function space defined
on e; and e; is an edge of a cell. n., is a tangential normal to e; fori = 1,2,3. l; is
a linear functional with

forv € Pcand p € (P¢)? with degree | — 2.

For the lowest order Raviart-Thomas boundary element, we just need the first three
degrees of freedom. A cell C and a boundary element (C, P, ¥¢) could be defined from a
reference cell by a mapping and a reference boundary element by the Piola transformation
respectively. The definition of boundary element spaces is the same as in Section 1.2.5.
We use the notation W,:l/ 2(Fh) for Raviart-Thomas finite element spaces of degree one.
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The discretization of (1.3.17) is to find o, € W;l/Q(Fh) such that

1
(Sk(on), Xn)rr = < (51 — Ck) f, xh> , (1.3.20)
7,I’

forall x;, € W;I/Q(Fh). Let {®;}Y | be a basis of W;I/Q(Fh). We use o, = Zfil &P,
in (1.3.20) and get a linear system
AE=b.

The elements in A and b are calculated by
Aid) ==k [ [ 80 Bi(o)Eel)ds,ds,
I JT\{z}

1 ‘ |
+ E/F/F\{x} divp(®;) (y)divr(®;)(z) By (2, y)ds,ds, ,

i = 5 [[8@) xne) - @ase+ [ [ VEe) (1) x @)

Now we begin to study the error estimates for (1.3.20). As in Section 1.2.5 we also
prove the best approximation, the optimal convergence and a super convergent result.

Lemma 10. There exists hy > 0 such that for all x;, € W;1/2(Fh) and 0 < h < hg we
have

(SEXh> X1

; (1.3.21)
=0 ”XhHW*l/?(F)

cslixallw-12ry < 1/2 Sup
X, EW, / (Fh)»HX/h”wfl/?(r)

Proof. The basic ideas of this proof is given in [13, Section 9.1]. In the proof we need to
use the generalized Garding inequality. If we compare Lemma 3 with Lemma 9, we find
that we use a compact bilinear form cr in Lemma 9 and a compact operator Cy in Lemma
3. So we define an operator T : W~1/2(I") — W~'/2(T") corresponding to cr by

<SkX7 T52>T,F = CF(X> 52) VX S W71/2(I‘) :

S;. defines an isomorphism as in the discussion in Section 1.3.4. Since cr is a compact
bilinear form, T is a compact operator by the inf-sup condition for S.
We begin to consider the right-hand side of (1.3.21).

(Skxn, (Pr X"+ PLT)xp)rr
=(Sixp: (X' + T)xp)rr — (Sixp: (I = P)X" 4+ (I —PL)T)xp)rr

where P5X and P7 are two continuous projection operators to W;l/ 2(Fh). The definitions
of P;¥ and P and their uniform convergence could be found in [13, Section 9.1]. We get

1(Skxh, (PEXT + PIT)x)wr| + [(Skx, (I = POXY + (I —PHT)x,)rr]
> [(Sexns (X5 + T)xp)rr -
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Now we can use the generalized Garding inequality and get
[(Skxtn, (X + T)xi)rel = [Skxn: X x0) e + eo(Xn Xin)| = CollXnlliy-12ry »

[{Skxns (I = PR)X" + (I = P3)T)x) 7
< c(|[(1 = P)X |+ 1(1 = PR)TID X3 -120) -
By using the uniform convergence of P;¥ and P7, we could find a &g such that

Sk, (1= PXT 4 (1= PDYT)x0)mr] < ellxnlldy-veq

for h < hg and ¢ < ¢,. Then we have

[(Sixim (PEXT + PIT) X rrl 2 (¢ — OlIxalZy-vsqr) -
By the continuity of the operators, the proof is done. [

Lemma 11. There exists ¢ > 0 such that for the solutions of (1.3.17) and (1.3.20) we
have

||0' - O'h||w—1/2(1'\) SC lnf ||U - Xh”w—1/2(1'\) . (13.22)
X €W, A0

Proof. From (1.3.17) and (1.3.20) we have

(Sk0h, Xp)rr = (k0. Xp),p forall x, € W, V2(T,).

This defines a Galerkin projection G, 0 = o, By the stability from the LBB condition
G, is bounded. Then we have
lo = onllw-12@) =llo — Grs,Xn + Grsi X — Onllw-12n)
<llo = xullw-2@) + 1Grsi (X1, — &) w12
<1+ )|l — xpllw-r2r) -
The proof is done. ]

The approximation property of W,:l/ (T, for x € H&(divp,T) is given in [13,
Theorem 14]

||X — QhXHW—l/Q(F) S Chs+1/2l|X| H3, (divr,T) for s € [—1/2, l] s (1323)
where Q;,x is an orthogonal projection of x to W,:l/ 2(Fh) with respect to the inner
product of W~/2(T") and [ is the order of Raviart-Thomas boundary element spaces. We
use (1.3.23) in (1.3.22) and get a quasi-optimal error estimate

o — onllw-1r2y <ch* 2|0l ws (@iver) - (1.3.24)

As for the Helmholtz equation we need to calculate errors in the Li(T")-norm and we
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just consider the lowest order Raviart-Thomas boundary element with [ = 1.

Theorem 4. Let o € H? (divr, ') for s € [—1/2,1]. We have

lo — onllLzry < ch’|lo|las @iver) -
Proof. The proof is similar with Theorem 2. The inverse inequality could be found in [17,
Lemma 10]. We find

lo —oullLzry <llo — Quollzw) + |Qro — anllzm)

= lo = Quollzr) + ch™ 2| Quo — anllw-1/2m)

inverse inequality

<|lo — QnollLzr) + ch™'/? (1Quo — ollw-1/2(r) + lo — Thllsw-172r)) -

By (1.3.23) and (1.3.24), the proof is done. ]

1.3.6 Numerical tests

We consider one example on the boundary of a unit cube (0, 1)3. A analytical solution

used for the test is
xo cos(x3) + x5 cos(xa)

u(z) = | =z cos(zs) + x5 cos(z) (1.3.25)
x1 cos(x2) + x5 cos(x1)

In Table 1.3 the first column is the level of meshes, the second column is the number of
degrees of freedom, the third and fifth columns are L2-error for Dirichlet and Neumann
boundary value problems respectively, and the fourth and sixth columns are the rate of
convergence (s) in O(h®). Fig.1.4a is the result of the Dirichlet boundary value problem
of (1.3.25). Fig.1.4b is the result of the Neumann boundary value problem of (1.3.25).
"CR" means the rate of convergence (s) and o7} is the approximated solution calculated
by using a mesh of level n. The formulae are

lo — alltar) = /F(Uh(x) —0o(x)) - (on(z) - o(z))ds. ,

los " — ol

o — 0'||L2(r)

CR = log,

level | dof | Errorp CRp Errory CRy
0 36 | 0.52560 - 0.69761 -
144 | 0.26010 | 1.0149 | 0.27707 | 1.3322
576 | 0.13016 | 0.9987 | 0.13268 | 1.0623
2304 | 0.06476 | 1.0072 | 0.06488 | 1.0320

W =

Table 1.3 Accuracy of Galerkin-BEMs for Dirichlet and Neumann boundary value
problems for Maxwell’s equations
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(a) Dirichlet boundary value problem (b) Neumann boundary value problem

Figure 1.4 Dirichlet and Neumann boundary value problems for Maxwell’s equations

In the fourth and sixth columns of Table 1.3 we observe a linear convergence for the
lowest order Raviat-Thomas boundary element space. The perturbation in the rate of
convergence is from the approximation of the linear form on the right-hand side of the
variational formulation and numerical integrations.



Chapter 2

Domain Decomposition Methods

Domain decomposition methods (DDM) can be used for the coupling of different
physical problems in different domains, the coupling of different numerical methods in
different domains, parallel computing and preconditioners for iterative methods. The
basic idea of domain decomposition methods for boundary value problems is to reduce the
solution of the boundary value problem in the whole domain to the solution of problems
of the same type in subdomains by using interface conditions [56, 57, 64, 63, 68]. For a
boundary integral equation, the solution on the boundary of the whole domain is reduced
to the solution on the boundaries of subdomains. The calculation of band strucutres of
photonic crystals is an inhomogeneous problem for the propagation of electromagnetic
waves in an inhomogeneous dielectric medium. In our case we assume that the medium
has different permittivity and permeability in different subdomains and in each subdomain
the permittivity and permeability are constant. This is the coupling of different physical
problems in different subdomains and we need to use DDMs to deal with this problem.
Domain decomposition methods can also be used for the coupling of BEMs and FEMs.
This is a very good combination of the advantages of BEMs and FEMs and it is very
suitable for solving the transmission problem for electromagnetic waves.

2.1 The Helmholtz case

2.1.1 Interface problem

In this section we consider an inhomogeneous problem for the Helmholtz equation in
Q := Q" |J Q™ and the coefficient « in the equation has different values in O and Q™.
Since we use interface conditions for the coupling in this problem, we call it the interface
problem. The interface problem with the Dirichlet boundary condition is

-V (éVu(x)) — Ku(x) =0 re QT Yan, (2.1.1a)
u(z) = f(z) x el =00, (2.1.1b)

where k is a positive real number, o = a* in Q°%, o = '™ in Q™*, and f is the given data.
o and o' are positive constants.
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We have two interface conditions for this problem

Y5 (u) (2) = A" (u™) () vz eI, (2.1.2a)
AT () (x) = —a " (u™) (2) vrell. (2.1.2b)

where u®’ 1= u|ge, U = ulgm, Y§ 05", and 4" are Dirichlet and Neumann trace
operators from Q°° and ™, respectively, and I'! := T'** (" ['" with I'** := 9Q° and

'™ := 9Q". The definitions of the trace operators could be found in Section 1.2.3.

2.1.2 Domain decomposition method

We define o 1= 7*(u®), 0™ 1= "(u™), 9 = 75" (u) and ™ = 5" (u™).
By using (1.2.11) we may define two Calderon projections for (¢, c°*) and (@™, c'")
respectively as

exr 1 Tex ez ex
SD — 5[ - Kkerc Vke:r SO 2 1
( g% ) ( DII;f 1] + K/kez o ) ( . 321)
mn 1[ Kl"zn VF”L in
Soin = Flnk’m ) kzn/ ( SOWL ) . (213b)
g ka ] + K Kin o

where k°® = v/ack, k™ = v/a'"k, and the definitions of the boundary integral operators
are given in Section 1.2.3 on I'*” and I'*" respectively.
We use the second equations of (2.1.3a) and (2.1.3b) in (2.1.2b) and get

exr ]. exr
ot (D,I;z 0% + (2[ + K ’£z> ”)
(2.1.4)

+ o™ (D]I;m QOln + (5] + Klgm) O'ZTL) =0.

From (2.1.2a) and (2.1.1b), we have ©®* = ¢ on I' and ©°* = f on I'. We define ¢’ as
ol == ¢ = p™mon ' and ¢! = 0 on I". We also assume that the extension of f on I'/ is
zero. We assume that the exterior unit normal on I'/ and I" is the same as on '**. We use
ol and f in (2.1.4) and get

. 1 .
(@ DE' 4 "D o) + 0 (51 + KT ) (00
| _ vz el (2.1.5)
Fa (31 4+ K1) (0")(0) = ~a* DL (1))
From the first equations in (2.1.3a) and (2.1.3b) we get

GHKF;)( (&) = VE () (a)

X Yoz eI, (2.1.6)
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(%1 + KLY ) (e (x) = VE (6™ (z)=0  Veel™. (2.1.7)

The combination of (2.1.5), (2.1.6) and (2.1.7) is the system of equations for the solution
on the boundaries of subdomains.

2.1.3 Variational formulation
By using the left hand sides of (2.1.5), (2.1.6) and (2.1.7), we define three operators
Fl: H1/2(FI) x H*l/Z(Fez) % H71/2(Fin) N H*l/Z(FI)’
ng H1/2(FI) x H71/2(Fez) s H1/2<Fem),
FS: H1/2(FI) x H71/2(Fin) — H1/2(Fin)’

which result into the following variational problem.
Find (¢!, 0%, 0™) € H'?(I'') x H=Y2(I'**) x H~Y2(I""™) such that

<F1(901’ Uex? O-in)v UI>FI = <_O‘€IDIE€I(f>a UI)FI ) (2-1-83-)
1
(Fa(p', o), X“)ree = <— (§I+ K{) (f),xef”> , (2.1.8b)
I‘ea:
(Fs(p',o™), x™)pim =0 (2.1.8¢)

for all (v’ x°®, ™) € HY?(T'1) x H~Y2(I'**) x H=Y2(I'"™).

Theorem 5. If k°® and k™ are no eigenvalues of the Laplace eigenvalue problem in Q°*
and Q™ respectively, then there exists an unique solution for (2.1.8).

Proof. A similar proof is given in [58, Section 1.1.8]. We recall that ¢! = 0 on I". We
can extend the operator K, in (2.1.6) to K7 and get

(%1 + Kfff) (") = ViE (0%%) = — (%1 + K};z) (f).

If we consider the variational formulation

O 0o = ( (514 KET) 6+ (514 KE) (Do)
Fe.fc

and we assume that £°* is not an eigenvalue of the Laplace operator in 2, from Section

1.2.4 we know the existence and uniqueness of the solution of this variational formulation.
Then we have

R ((%1 ; KF::) (o) + (%1 T K,Em) (f)) .

It is the same for (2.1.7) and we have

o — (V) (51 ; K,Em) ).
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We can extend the operator D,I;iz in (2.1.5) to Dj.. . By using the above two formulae
for 0°® and ¢ in (2.1.5), we get

ex 1 ex ex 1 ex
aefl‘ |:D£em _'_ (QI + K/£5x> (‘/kI:‘T )71 (51 + K]Sem ):| (901)
s,f;”

: in ]. in in ]_ in
+ ™ {D};n - <§I + K’l,;n) (Vi ) <§I + Kpin )} ) (2.1.9)

N

~~
Tin
Sk

= — oD (f) — o™ (%I + K’iﬁi) (VES)™ (%1 + K,Sem) (f).
From the left hand side of (2.1.9), we can define two Steklov-Poincaré operators, Sjc.
and S}, , and from Lemma 2.3 in [53] we know that they are coercive. Since we assume
that £ and k" are no eigenvalues of the Laplace operator in 2* and ", respectively,
Sier and S}, are injective. Then we have the existence and uniqueness of ' in (2.1.9)
by the Fredholm’s alternative. By the existence and uniqueness of ¢!, we get the same

properties for 0 and 0. The proof is done. [

2.1.4 Galerkin-BEM

The Galerkin discretization of (2.1.8) is to find (¢!, 0%, oi") € SL(T'}) x SP(I'$®) x
Sy (T4™) such that

<F1(§0l117 O-iezm7 O-;Ln)u U}IL>FI = <_aemD£ez (f); Ué)l"l s (2.1.10a)
1
(Fao(p, 08%), X5 Y per = <— (51 + K,Eem> (f),x,?f> , (2.1.10b)
I‘ex
(Fa(on, o), Xipin = 0 (2.1.10¢)

for all (vi, x§%, xi") € SHTE) x SYTE™) x SYTim). SH(T}) is a piecewise linear function
space, and SP (') and Sp(I'i") are piecewise constant function spaces.

Let {®/}N, {®¢*}NT and {®"}N'] be the basis of S}(I'), SO(I's*) and SO(T'")
respectively. We use ¢! = Z'fijl €ro!, o5t = SN e et and o = SOV €MD in
(2.1.10) and get one linear system

All A12 A13 51

Ag — A21 A22 0 geaz =b.
Az 0 Ass £

Obviously Ay, Ags and Asz are symmetric and the calculation is the same as A in Section
1.2.5. So we just compare A, with Ao and A3 with Ag;.

Aalil =a (5 [ ool + [ [ 2B g0l 0)as,0s,)

on,
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]. aEeI
Ao [5]li] = 2/FI¢I( )85 (2)ds, + //F OBl () g1 e (1) ds s,

8ny

a7 1 in OEyin (z o
Aulil) =" (5 [ ap@elas, - [ [ 2B ang)el@as,ds. )
a1 OFEyin (x ,
Asq[7][] :—/ ! (z) Cbm )ds, + / / knm y dl(y @5 (z)ds,ds,
Fln in in

2
This shows that Ap[il[j] = a®®As[j][i] and Aysli][j] = o™ Asi[j][i] results from
n®(r) = —n"(z) for x € T'L.

Now we go to the last step to consider the a Priori error estimates for (2.1.10). The
Galerkin discretization for the variation formulation of (2.1.9) is the same with (2.1.10).
From [53, Lemma 2.3], we have the coercivity of S .. and S,I;m , SO we can repeat all the
work in Section 1.2.5 for (2.1.9) and get the best approximation for ¢!

I I : I I
ln, — HHl/Q(FI) < Cugeléﬁrf) vy, — ||H1/2(F1) . (2.1.11)

If we assume that the solution is regular enough, we can use (1.2.22b) in (2.1.11) and get
the quasi-optimal error estimate

len — @l mean < ch®2@ a2, @ - (2.1.12)

pw

By using the Aubin-Nitsche duality, we get the super convergence in L?-norm
len — @ ll2qery < ch?| |z, o) - (2.1.13)

We can use @i as the given data in (2.1.10b) and (2.1.10c¢) to calculate o} and JZ". The
error estimates for o§* and 0" are definitely the same as for the Dirichlet boundary value
problem in Section 1.2.5. Then we have

HO'ZI — O'exHL2(Feac) S Ch‘O'eI’HII;w(Fex) s (2114)
oy — o |2 (riny < chlo™ |y, winy - (2.1.15)

2.1.5 Numerical tests

We consider one example on the boundary of Q™ = (1/3,2/3)% and the boundary
of Q° = (0,1)%\ Q. The analytical solution used for the test is (1.2.26). In Table
2.1 the first column is the level of meshes, the second column is the number of degrees of
freedom, the third, fifth and seventh columns are L*-error for 0%, ¢! and o™ respectively.
The fourth, sixth and eighth columns are the rate of convergence (s) in O(hs) Fig. 2.1a,
2.1b and 2.1c are the results of 0%, ¢! and oi" respectively. The calculation of L*-error
and the rate of convergence is the same as in Section 1.2.6.

In the fourth and eighth columns we observe a linear convergence for piecewise
constant function spaces and in the sixth column we observe a quadratic convergence
for piecewise linear function spaces approximately. The perturbation in the rate of
convergence is the same reasons as in Chapter 1.
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level | dof | [0 — 0|2 | CR | |¢l —¢ll;2| CR | [oi® —o™|;2 | CR
0 | 278 1.36232 - 0.03133 - 0.27695 -

1 1106 0.52224 1.3833 0.00690 2.1827 0.13659 1.0197
2 | 4418 0.21007 1.3138 0.00163 2.0813 0.05520 1.3071

Table 2.1 Accuracy of Galerkin-BEMs for interface problem with Dirichlet boundary
condition for the Helmholtz equation

Loo

(a) 0°*, Neumann trace from exterior domain (b) goI , Dirichlet trace on interface

(c) o*, Neumann trace from interior domain

Figure 2.1 Interface problem with Dirichlet boundary condition for the Helmholtz
equation
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2.2 The Maxwell case

2.2.1 Interface problem

In this section we consider electromagnetic waves in an inhomogeneous dielectric
medium in 2 := Q¢ [ J Qin. The medium has different permeability and permittivity in
Q¢ and Q" respectively. The time-harmonic Maxwell’s equations for electric or magnetic
fields with a Dirichlet boundary condition are

V x (%v X u(x)) — k() =0 Vo e Q| JQn, (2.2.1a)
V- u(z) =0 Vo € Q| Qi (2.2.1b)
y(u)(x) = f(x) Ve eI := 00, (2.2.1c)

where k is a positive real number, @ = a®® = £ ;" in 0, o = o' = "™ in Q"
and f is the given data. £, i, £ 1" are positive constants.
We have two interface conditions for this problem from (1.1.2b) and (1.1.2d),

Y () (1) + 4 (u™) (x) = 0 vr e’ (2.2.2a)
BEARE () (z) + By (u™) (x) = 0 Ve eI7, (2.2.2b)
where u® = ulge, u” = ulgm, R are Dirichlet and Neumann trace
operators from % and Q", respectively, 3 = Zej, Bin = Z—: for electric fields,

and ' := '@ T with T'*® := 90°® and '™ := 9Q™. The definitions of the Dirichlet
and Neumann trace operators could be found in Section 1.3.3.

2.2.2 Domain decomposition method
We define o := & (u), o™ := 4 (u™), = 4 (u) and ¢ := " (u™).

From (1.3.14) we could define two Calderon projections for (%, ") and (o™, ™),
respectively, as

“ 1 re® ree ex

( o ) B ( sk lr+chs ser ) (2.2.3a)
in 1 rin i in

e\ _ (G S ) ([ 22.3b

( o' ) ( SEZZ %[4_01];;: oin ) (2.2.3b)

where £° = ak, k™ = Vak, and S}..,Clc. ,ng: ,Cgf: are boundary integral
operators on I'* and I'™", respectively, with the definitions in Section 1.3.3.
We use the second equations of (2.2.3a) and (2.2.3b) in (2.2.2b) and get

exr ex 1 exr exr
B (s};w(go )+ (§1+ C}Q) (o ))

; in in ]. in n
+ g (Sl,;m(cp ) + <§I+ C£> (o )) =0.

(2.2.4)
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From (2.2.2a) and (2.2.1¢) we have ¢*® = —¢™ on I' and ¢p** = f on I'. We define ¢’
as p! = p® = —™ on I'! and ! = 0 on I". We also assume that the extension of f is
zero on I'/. We assume that the exterior unit normal on I'/ and I is the same as on ['**,
We use ¢’ and f in (2.2.4) and get

(5t + 578 ) () + 5 (51 4+ CF ) ()0
veeT!. (225)

#0314 €I ) (0")(@) =~ 58 (0)@)

Notice that we change the operator st
(2.2.3a) and (2.2.3b) we get

rin ng in (2.2.5). From the first equations in

<_%I+cw) () (@) + S (o) (a)

' Yz e T, (2.2.6)

2

The combination of (2.2.5), (2.2.6) and (2.2.7) is the system of equations for the unknown
functions (goI , 0, o). The solution on the boundary of the whole domain has been
changed to the solution on the boundaries of the subdomains.

(11 —Ch ) (@)(@) +Shn(6™)(2) =0 Vo eI™. (2.2.7)

2.2.3 Variational formulation
By using the left hand side of (2.2.5), (2.2.6) and (2.2.7) we define three operators
Fl: W71/2<FI) % Wfl/Q(Fex) % Wfl/Q(Fin) N Wfl/Q(FI) 7
FZ: W71/2<FI) x W71/2<Fex) N W71/2(Fe:p) 7
F3: W71/2<FI) % W71/2<Fin> N W71/2<Fin> :

which results into the following variational formulation.
Find (¢!, 0, 0™) € W=Y2(I'T) x W=12(I'*®) x W~1/2(I"") such that

(Fi(p’, 0, 0™),v") 11 = (= BShec (F), 0") 11, (2.2.8a)

(Fy(p!,0%), 02 pee = << I— C£6x> (f), v2> : (2.2.8b)
T,I'e®

(F3(p!,0™), 0%, pin = 0, (2.2.8¢)

for all (v!, v?,v3) € WV2(I1) x W2(I'e) x W—1/2(Tn),

For the existence and uniqueness of the solution of (2.2.8), we need a generalized
Garding inequality as in Section 1.3.4. The basic ideas of the proof have been given in
[13, Theorem 9] for the transmission problem. We follow their ideas and give a proof for
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our problem (2.2.8). We define an operator F' as

Vi Fi(vi,v2,V3)
F| v = waQ(Vl, Vz)
V3 ﬁmF:a(Vl, Vs)

for (vi,va, v3) € W2(I') x W=/2(I¢®) x W~1/2(I""). The reason to multiply by
(% and 5™ is to have a symmetry of F. We also define a sesquilinear pairing for F as

= +(Fa(v1,va), W) es
+<F3(V17 VS), W3>T’pm

< Vi Wi > (F1(v1,v2,v3), W1>T,r1
F

We define an operator X as

Vi XFI (V1>
X Vo = Xrel (VQ) )
V3 er (Vg)

where the definitions of XI", X7 and X" can be found in Lemma 9 in Section 1.3.4.
Then we have a lemma for the generalized Garding inequality for F'.

Lemma 12. There exists a compact bilinear form c(-,-) such that ¥ satisfies the
generalized Garding inequality

Vi Vi Vi Vi
Fl| vo | . X]| v +c vo |, vo
V3 V3 V3 V3

T

> ¢ (IVillyorsaqer, + IVl ossaqpey + IVl ssaqeiny)

Proof. First we consider the left hand side of the inequality and get

\1 Vi <F1(V1,V2,V3>7XF (Vi))rrr
F| v X | v = +(Fy(vy,va), X Xt ( 2)>T,Few
\E vs )l (Fs(vi,va), X (vs)) e
1 exr
<(,3wsfem +ASEL) (i) + B (51 + Cl,;ez) (vs)

: 1 in I
#om (314 € ) (va) X ()
7,1

5 (=5 + B ) () 4 SEE (v2) X7 (v) )

T,1'e®

) 1 in Tin in
b0 ( (51 CB8) (0 + S X ()
T,[in

From Lemma 9 we have the coercivity of SL.,, S | SI*7 and ng: , SO we just need to

kzn b
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consider the double-layer boundary integral operators. We consider the second and fourth
terms on the right hand side of the above formulation as the following

<5“ ( I+ c};ff) (va), X" <V1>> T < (—%I s c};;) (v1), X* <V2>> ,
! T,lex
(2.2.9)

and the argument for the third and sixth terms is the same.
By using Lemma 6 in [13] for the double-layer operators in (2.2.9), we have

(CLZ (v2), XU (V1)) it 4 (Chl (v1), XU () )y pea

NP, (Chee (X" (1)), Vo) rres + (Chee (v1), X™

Lemma 6
=(Che (BT (vi) = 2 (v1)), R¥ (va) + 2" (va)) 5 e
+ (CEL(RY (vi) + 28 (v1)), R (va) — Z5 (V)7 pes
—2(CLL (R (v1)), R™ (va))rpee — 2(CLL(ZY (v1)), 28

(V2))r.pes

(V2)>7-7Fez .
By Lemma 12 in [13], we know that (CL., -, -), pee on BT (W=1/2(T'*))2 and (CL., -, -) ;. pes
on Z'*(W~Y/2(I'**))? are compact bilinear forms. For the left terms in (2.2.9), we have

(vo, X I(V1)>TFI - <V17XFEI(V2)>T,FI

=(vo, X' (v1))rrr + (X7 (o), Vi)

(R (va) + 2" (va), R" (v1) = 2" (V1))
+ (R (v2) = 2" (v2), R" (v )+Zr( 1))7r1

=2(R" (v2), R" (V1)) s — 202" (v2), Z" (V1))

!

By Corollary 1 in [13], we know that (R™"-, R™"-)_ 1 and (Z""-, Z"".) 1 are compact
bilinear forms. So with the coercivity of the single-layer operators we can define a
compact bilinear form. The proof is done. ]

If we assume that £ is not an eigenvalue, we have the existence and uniqueness of the
solution of (2.2.8) by Theorem 4 in [13] and the Fredholm alternative.

2.2.4 Galerkin-BEM

The discretization of (2.2.8) is to find (¢!, 0¢", ") € W, /*(T1) x W, '/*(5*) x
W, '/?(T"in) such that

(Fi(ph, o, o), vp)rrt = (—BShe. (F), V) 117 (2.2.10a)
1
(Fa(pl, o), 02, pes = <<§[ — cgex> (f), ui> : (2.2.10b)
T,I'e®

(Fs(pp, o), v})rpin =0, (2.2.10¢)
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for all (vl v? v?) € W, *(TL) x W, /2(T'e) x W, /*(T'"). The definitions of
W, /2(r1), W, *(Ds*) and W, "/*(T"im) could be found in Section 1.3.5.

Let {®/ Y, {®@1N7 and {®7}Y7 be the basis of w, (D), W, /2(Ie*) and
—1/2 in . N exr N cex qer in
Wh‘/ (j) respectively. We use @f = >0 &1@1, " = S0, €705 and ) =

Z;V:Z 5}”@;-" in (2.2.10) and get one linear system
All A12 A13 gl

Ag = Agl A22 0 é“ea: =b.
Az 0 As g

Obviously A1y, Ags and Asz are symmetric and the calculation is the same as A in Section
1.3.5. So we just compare A5 and A3 with Ay and Ag;.

Al?[ivj] _1 ex . P!
e 3 /FI &% (z) x n(x) - ®; (v)ds,

" / / Vo Bz, y) - (B(y) x B! (x))ds,ds,
1"[ Fez\{x}

1

Aolj, i) = — 3 /1“1 ®!(z) x n(z) - B (x)ds,

4 / / V. Bz, y) - (B! (y) x 85 (x))ds,ds,
ex FI\{x}

I
= [ @) xnto) - @la)ds,

_ / / VB, y) - (®1(y) x 8! (2))ds, ds,
rtJri\{«z}

a1
Aaliil = [ @) xn(e) - @](w)ds,
FZTL
- / / V. Ei(r,y) - (@!(y) x ®!(x))ds,ds,
in I‘in\{x}

This shows Ais[i, j] = B Aa[j,4], and Ays[i, j] = B Az [, 4] results from n®(z) =
—n"(z) for x € T,

Now we go to the last step to consider the a Priori error estimates for (2.2.10). The
difference between this section and Section 2.1.4 is that for the interface problem for
the Helmholtz equation we use piecewise constant function spaces and piecewise linear
function spaces together and for the Maxwell’s equations we just use Raviart-Thomas
boundary element spaces. So for the Helmholtz equation we need to use (2.1.9) to define
Steklov-Poincaré operators to separate piecewise linear function spaces from piecewise
constant function spaces. But for the Maxwell’s equations, we just use Raviart-Thomas
boundary element spaces, so we can repeat all the work in Section 1.3.5 directly. Then
we know that || — @fllLzrr), [0 — a5 ||lL2res), and [ — o} ||pz(rin) are linear
convergence with the lowest order Raviart-Thomas boundary element spaces. We will not
repeat all these technical work.
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2.2.5 Numerical tests

We consider one example on the boundary of Q™ = (1/3,2/3)% and Q°® = (0,1)3 \
Q. An analytical solution used for the test is (1.3.25). In Table 2.2 the first column is
the level of meshes, the second column is the number of degrees of freedom, the third,
fifth and seventh columns are L2-error for o§*, ! and oi", respectively. The fourth, sixth
and eighth columns are the rate of convergence (s) in O(h®). Fig. 2.2a, 2.2b and 2.2¢ are
the results of 0%, ¢! and o", respectively. The calculation of L2-error and the rate of
convergence is the same as Section 1.3.6.

1.00
(a) 0", Neumann trace from exterior domain (b) cpI , Dirichlet trace from exterior domain on
interface

1.00

(c) o™, Neumann trace from interior domain

Figure 2.2 Interface problem with Dirichlet boundary condition for Maxwell’s
equations
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level | dof | [0 —0%lg= | CR | |l¢! —¢lllz=| CR | |o™ —oi2 | CR
0 432 0.17427 - 0.04833 - 0.01998 -
1 1728 0.08608 1.0177 0.02515 0.9426 0.01012 0.9810
2 6912 0.04265 1.0131 0.01268 0.9878 0.00499 1.0210

Table 2.2 Accuracy of Galerkin-BEMs for interface problem with Dirichlet boundary
condition for Maxwell’s equations

In the fourth, sixth and eighth columns of Table 2.2, we observe a linear convergence for
the lowest order Raviart-Thomas boundary element spaces. Our numerical results match
the a Priori error estimates very well.




Chapter 3

Boundary Element Methods for
Eigenvalue Problems

3.1 A Priori error estimates for holomorphic eigenvalue
problems

If we use Galerkin-BEMs to solve a linear eigenvalue problem, the eigenvalue is a
parameter in the fundamental solution. So the linear eigenvalue problem is changed to a
nonlinear eigenvalue problem. For the study of this nonlinear problem, we follow the PhD
work of Dr. G. Unger [71]. In his thesis he presents a method to compute eigenvalues
of the Helmholtz equation and he provides a Priori error estimates for eigenvalues and
eigenvectors. His results could be applied to nonlinear operator functions satisfying:

1. Operator functions are holomorphic;

2. The operator defined by an operator function with a fixed value is a Fredholm
operator with index zero and the operator can be splitted into an elliptic operator
and a compact operator. For example,

H(k) = E+ C(k), (3.1.1)

where F is an elliptic operator and C'(k) is a compact operator.
Definition 5. The operator E : X — X' is called X -elliptic if

(Bx,z) >cllz||% Ve e X,

where X is a Hilbert space, X' is the dual space of X and (-,-) is the dual pairing.

In this section we give a brief summary of the work in [71] and we will use these results
to check the convergence of our numerical results.

3.1.1 Basic definitions

First we define some notations. Let A denote an open and connected subset of C. Let
L(X,Y) denote a space of bounded linear operators from X to Y. X and Y are Banach
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spaces. Since X and Y are Banach spaces, £(X,Y’) is also a Banach space. If X is a
Hilbert space, let { X" },,cn denote a sequence of finite dimensional subspaces of X such
that X" C X" and

lim inf |j2" — x| x =0 Ve e X.

n—oo gneX"
Let P™ denote a projection from X to X" by the best approximation in X .

Definition 6. Let B be a Banach space. A function h : A — B is holomorphic on \ if
there exists a function h' : A — B such that

h(k+ €) — h(k)

€

—K(k)|| =0 VkeAN.

lim
e—0

B

One can show that holomorphic functions are analytic [71, Definition 3.1.1]. In our work,
B is a Banach space £(X,Y), so we call h an operator function. If h(k) is a Fredholm
operator for all k& € A, we call i a Fredholm operator function. Then we can define
a holomorphic Fredholm operator function h. We characterize a holomorphic operator
function based on [43, Theorem 3.12] as the following lemma.

Lemma 13. An operator function H : A — L(X,Y) is holomorphic if the function
defined by
ke AN— <H(l{7)l‘7 y>Y><Y’ (312)

is holomorphic for all x € X andy € Y'. Y is the dual space of Y.

Definition 7. A number k° € A is called an eigenvalue of a holomorphic operator
function H if there exists a nontrivial solution x° € X such that

H(K%)2" = 0. (3.1.3)
Every 2° satisfying (3.1.3) is called an eigenvector of H corresponding to k°.

The definitions of the resolvent p(H ) and spectrum o (H) are similar to linear eigenvalue
problems and could be found in [71, Definition 3.1.5].

In the proof of a Priori error estimates we need to define Jordan chains and Jordan
functions for holomorphic operator functions.

Definition 8. Let H : A — L(X,Y) be a holomorphic operator function. Let k° be an
eigenvalue of H with a corresponding eigenvector z°. A Jordan chain with order m is a
set {z° x', -+  a™ '} C X such that

1 -

H(k%)z’ =0 and 5 —HY(N2" 7 =0  fori=1,--- ,m—1.
— !
j

For holomorphic Fredholm operators all Jordan chains are finite [71, Lemma 3.2.4].

Definition 9. Letr H : A — L(X,Y) be a holomorphic operator function. Let k° be an
eigenvalue of H with a corresponding eigenvector 2°. A Jordan function v : A — X with
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order m is defined in a neighborhood of k° such that u(k°) = z°,

H( (k) =0  and {%(H(k}u(ls))] . =0 gj=1---,m—1,

S (0] .

Jordan functions can be constructed by Jordan chains [71, Lemma 3.2.13]. From the
definitions of Jordan chains and Jordan functions we know that there are different Jordan
chains and Jordan functions corresponding to the same eigenvalue and eigenvector. By
using order m we can identify eigenvectors to define a canonical system.

Definition 10. Let H : A — L(X,Y) be a holomorphic Fredholm operator function.
Let k° be an eigenvalue of H such that the eigenspace has finite dimension. Let

{2, -, 2%} be a basis of the eigenspace corresponding to k° and m(H, k°, x) denote

the highest order of a Jordan chain corresponding to (ko,x?) forjg =1,--- J. We
call m(H, k°, xg’) the partial multiplicity and the sum of partial multiplicities is called
the algebraic multiplicity. A canonical system corresponding to k° is defined by a set of
{29, -+, 2%} ordered by partial multiplicities.

3.1.2 Convergence

The eigenvalue problem in our work is to find £° € A with a nontrivial solution
2% € X such that

(H(k")2°, y)x =0 Vye X, (3.1.4)
where H : A — L(X, X) is a holomorphic Fredholm operator function and H satisfies

(3.1.1). (-, +)x is an inner product of X.

Remark 1. The reason to consider H : A — L(X, X) is to use an inner product and
only one function space for this complicated and very technical convergence analysis.

The discrete problem is to find k™ € A and a nontrivial solution %" € X™ such that
(H(E"™)z%" y™) x =0 vyt e X", (3.1.5)

By the orthogonality from (3.1.5) we have
P "H (K™% = 0. (3.1.6)

Obviously (3.1.5) is equivalent to (3.1.6).

Remark 2. The eigenvalue problem for P"H (k) is to find an eigenvalue k°" € A and an
eigenvector 29" € X" for (3.1.6).

Lemma 14. Let H : A — L(X, X)) be a holomorphic Fredholm operator function and
satisfy (3.1.1). Let {k""},en € A be a sequence such that

lim k%" = k°.
n—oo
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Let {z%"},.cn be a sequence for z%" € X™ and ||z°"||x = 1 such that

lim P"H(K"™)z%" = 0.

n—o0

Then there exists 1° € X with ||2°||x = 1 such that

H(K)z2" =0,

lim [|2° — 2°™||x — 0,
l—o0

where {29}y is a subsequence of {x%"} en.
Proof. This Lemma is given in [71, Lemma 4.2.1] which follows [31]. ]

Obviously the last lemma does not give the existence of a converging sequence of
eigenvalues of (3.1.6). We give a theorem from [71, Theorem 4.2.3] which could be used
for the convergence of Galerkin-BEMs for the nonlinear problem (3.1.6).

Theorem 6. Let H : A — L(X, X) be a holomorphic Fredholm operator function and
satisfy (3.1.1). Let k%™ be an eigenvalue of (3.1.6) with a corresponding eigenvector
20" € X", Then we have

lim %" = £° and lim 2%" = 22,
n—o0 n—o0

kY is an eigenvalue of H with a corresponding eigenvector 2° € X.

Proof. The proof follows the part (1) in [71, Theorem 4.2.3] by Lemma 14. L

3.1.3 A Priori error estimates

The work for a Priori error estimates in [71] follows [41] and [42]. The basic idea is
to construct the equivalent eigenvalue problems M for H and M" for P" H respectively.
M and M™ are matrix functions. Then the work is changed to do a Priori error estimates
for M"™. Lemma 15 is from [71, Lemma 4.3.1] and it is the basis to construct equivalent
problems.

Lemma 15. Let X and Z be Banach spaces. We define five holomorphic operator
functions, H : A — L(X, X), R: AN - L(X,X), C:AN— L(X,Z),D: AN — L(Z,X),
and M : N — L(Z, Z), such that

H(k) =R(k)(Ix — D(k)C(k)), (3.1.7a)
M(k) =1 — C(k)D(k), (3.1.7b)
for all k € A. We assume that H is a holomorphic Fredholm operator function. We

assume that p(H) is not empty and A C p(R). Then we have the following relations for
K eo(H), 2" € Xand 2° € Z.

1. If 2° # 0 such that H(k°)z° = 0, we have C(k°)x° # 0 such that M (k°)C(k°)z° =
0 and m(H, k°, 2°) = m(M, k°, C(k°)z°).
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2. If 2° = 0 such that M (k°)2° = 0, we have D(k°)z° # 0 such that H(k°)D(k°)z° =
0 and m(M, k°, 2°) = m(H, k°, D(k")z2°).

3. If u(k) is a Jordan function of order m for H to k°, C'(k)u(k) is a Jordan function
of order m’ > m for M to k°.

4. Ifv(k) is a Jordan function of order m’ for M to k°, D(k)v(k) is a Jordan function
of order m > m’ for H to k°.

5. A canonical system of H to k° could be changed to a canonical system of M to k°
by a mapping C(k°) with the same partial and algebraic multiplicities.

Proof. See [71, Lemma 4.3.1]. ]

From Lemma 15, the idea is clear to build an equivalent eigenvalue problem M. Let
7 = C7 and J is the dimension of the eigenspace of k°. Then M is a matrix function from
C”7 to C’. The next step is to build R, C and D which satisfy the requirements in Lemma
15. The basic idea is to define a finite dimensional operator by using Jordan functions
based on Jordan chains. Jordan chains are corresponding to two canonical systems of an
eigenvalue k° of H and an eigenvalue k0 of H* respectively. H* is the adjoint operator of
H. k¥ is an eigenvalue of H if and only if k0 is an eigenvalue of H* and the partial and
algebraic multiplicities are the same from [71, Lemma 3.3.4].

Let H : A — L(X, X) be a holomorphic Fredholm operator function. The reason
to use £(X, X) is the same as Remark 2. Let {29, - , 29} be a canonical system of an
eigenvalue k° of H and we simplify the notation for partial multiplicities m(H, k°, x?)

to m;. Let {:c?, e ,x;-nj _1} be a Jordan chain with order m; corresponding to x? for

jg=1,---,J. According [71, Lemma 3.2.13] we can define a Jordan function with order
m;—1
mjby{.T?,---,.rj] }’

u;(k) = (k—ko)ix§ j=1,---,J.

By the definition of a Jordan function with order m;, we have

{5; <H<k>uj<k>>] L0,

k=kO

We define holomorphic functions as

(k — k%)~ H(k)u; (k) k # kY
a](k) = 1 o 0 .]:177‘]
L [ (R )] k=
We can repeat this for the adjoint operator /* and define
(k — kO~ H*(k)v, (k k # k0
ij\j(k): 1 8m>j * ( ’ ) 7.0 j:]-a"'7<]7
o [ )] k=T
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where the definition v; is similar with u;.
Then we define an operator function

J

K(k)x =Y (z,7;(k))xt;(k). (3.1.8)

j=1
K is holomorphic and the proof see [71, Section 4.3]. R is defined by
R(k) := H(k) + K(k) . (3.1.9)

Lemma 4.3.3 in [71] proves that there exists a neighborhood A of an eigenvalue £° which
satisfies the condition A C p(R) in Lemma 15. By using (3.1.8) in (3.1.9) we get

H(k)r =(R(k) — K(k))x = R(k)(I — R(k) 'K (k))z
J
- N (3.1.10)
=R(k) <x =) (2, 9;(k))x R(k) luj(k)> .
j=1
From (3.1.10) we can define C' and D as the following.
Ck)izeX —acC’, (3.1.11)
with a; = (z,0;(k))x fori =1,--- , J.
D(k):aeC/ w2 X, (3.1.12)

with = Z}-]:1 a;R(k)~'u;(k). According (3.1.7b), (3.1.11) and (3.1.12), we define
M(k)=1-C(k)D(k) as

M(k):aeC’ —-beC’, (3.1.13)

with b; = a; — S27_, a;(R(k) =1, (k), 7:(k))x. More detial see [71, Section 4.3].

7=1
We continue to define corresponding operators for a discretization X". The definition
of P™is given in Section 3.1.1. We define

H™(k) : H"(k)z = P"H(k)x Yz € X",
K™(k): K"(k)x = P"K(k)x Ve X",
R™(k) := H™(k) + K™(k) : X" — X"

Lemma 4.3.3 in [71] also proves that R" satisfies the conditions in Lemma 15. We have

H(k)x =(R"(k) — K"(k))x
=R"(k)(I — R"(k)"" K" (k))z

J
=R"(k) (fﬁ - Z(ﬂ%@(E))x(R"(k))_lpnﬂj(k))

j=1

Ve e X".
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The definitions of C™ and D™ are

C'(k):x € X" sacC’ (3.1.15)

with a; = (z,v;(k))x fori=1,---,J and
D"(k):acC/ -z e X" (3.1.16)
with x = Z}]:1 a;j(R"(k))~*P"u;(k). According (3.1.15) and (3.1.16) we define M™ as
M"(k):a€eC’ - beC’, (3.1.17)

with b; = a; — ijl a;(R(k)~1P"t;(k),v;(k))x. More detial see [71, Section 4.3].
According Lemma 15, M is an equivalent eigenvalue problem of A and M"™ is an
equivalent eigenvalue problem of H"™. For a Priori error estimates of A" the following

results are given in [71, Chapter 4].

Lemma 16. Ler A satisfy the condition A C p(R) in Lemma 15. Let A. be a compact
subset of . ¢ depends on A, and c > 0. There exist a N € N such that for all n > N

sup{|mg;(k) —mi(k)|} <c sup inf |lz—2"|x sup inf |2" —2"||x.
2€G(H,k0) TTEXT *eq(H* K0) ¥
izl x <1 llz*ll x <1

for k € A and G(H, k°) and G(H*, k) are the generalized eigenspaces corresponding
to H and k°, and H* and kO, respectively.

Proof. See [71, Lemma 4.3.5]. O

Lemma 16 is the key tool to do a Priori error estimates for eigenvalues and eigenvectors.
From this lemma we can see the reasons to use equivalent eigenvalue problems. Since M
and M™ are finite dimensional operators, we just need to consider [m;;(k) — m};(k)| and
this is much easier. From (3.1.13) and (3.1.17) we know that we can use the properties of
R and R™ in the proof of Lemma 16. R and R" are invertible in A and the inverse of R"

is uniformly bounded. This is the other reason to use M and M".

We define
di = sup inf |z —2"|x and dy = sup inf ||z — 2" x.
n n —_— n n
zeG(H K0y TEX 2+ eG(H* 10) eX
Izl x <1 l=%] x <1

Theorem 7 gives a Priori error estimate for eigenvalues by using the result from Lemma
16. In our numerical examples we will use this theorem to check the convergence for
eigenvalues. In our cases we don’t consider the convergence of eigenvectors.

Theorem 7. Let H : A — L(X, X) be a holomorphic Fredholm operator function and
satisfy (3.1.1). Let A. be a compact subset of \. O\, C p(H) and A.(\o(H) = {k"}.
There exista N € N such that

o(P"H)()Ac #0 Vn > N.
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Let k°™ be an eigenvalue of P"H and k*" € o(P"H)( A.. There exist a constant ¢ > 0
such that

KO — k0| <c(drdy)V* Vn >N,

where 3 is the maximal length of Jordan chains of k°.
Proof. See Theorem 4.3.6 in [71] L]

A Priori error estimate for eigenvectors is also given in [71, Theorem 4.3.7].

3.2 The Helmholtz case

From Section 1.1 we know that if we want to calculate A and e together in (1.1.20),
this is an eigenvalue problem. In this section we study the eigenvalue problem for the
Helmholtz equation with a homogeneous Dirichlet boundary condition. Find A with a
nontrivial solution u such that

—Au(z) =Au(x) Vo € Q) (3.2.1a)
u(z) =0 Veerl, (3.2.1b)

where A is a positive real number, € is a bounded domain and ' := 0.

3.2.1 Nonlinear solution method for eigenvalue problem

We define 0 := ~;u. From the boundary integral equation (1.2.12) we have

Vi(o) = (%1 + Kk) f,

where f is the Dirichlet given data and k& = v/A. The homogeneous Dirichlet boundary
condition (3.2.1b) yields f = 0, so the boundary integral equation is

Vi(o) =0. (3.2.2)

Obviously, k is a parameter in the fundamental solution Ej(-,-), so this is a nonlinear
eigenvalue problem.

The variation formulation is to find & € R* with a nontrivial solution ¢ € H~/2(T")
such that

(Vi(o), x)r =0 (3.2.3)
forall x € H~V/2(T).

The discretization of (3.2.3) is to find k;, € R* with a nontrivial solution o, € Sp(T';,)
such that

(Vier. (o), xn)r =0 (3.2.4)
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for all x;, € Sp(T's).
Let {®;}Y, be a basis of SY(I';). We use o, = Zjvzlfjéj in (3.2.4) and get a
nonlinear system of equations
A(kn)§ =0, (3.2.5)

y eiknlz—yl
=R .
(kn)l[2, 4] e / / prp— y|dsydsx

Iterative methods for nonlinear solution method

where

We use the Newton method to solve (3.2.5). To avoid the trivial solution of (3.2.5) we
need to do the normalization for £ by ||£||% = 1. The nonlinear system of equations is

A(kr)¢ =0,
€]l —1=0.

The Frechet derivative is derived by

LAk + k) (€ + ) — A()(E)

e—0 €

—A(kn)E' + (P_{% ¢

=A(kp)¢ + Ek,C(kn)E,

Clk)in ] = < LS e d)

1€+ REE — 1€l :
Ilzir(l) fi L= 2(§7€ )l2

The Newton method is defined by

Alkp) (€ = €M) + (k™ — kO (RE™ + A(kp)§™ =0,
206", = €M + €7 — 1 =0,

and the iteration step is to find (k"' £"*1) with the given data (7, £) by solving

A(ky, + €ky,) — A(kh))

€

where

A(kp)e™ + kR O(kp)E™ = kyC(ky)E™
26,6 e = 1€ + 1.

3.2.2 A Priori error estimates

If we want to give a Priori error estimates for eigenvalue values of (3.2.3) and (3.2.4)
by Theorem 7, we need to check that V}, is a holomorphic Fredholm operator function and
satisfies (3.1.1). In our work we consider electromagnetic waves in a dielectric medium,
so k is a real positive number. We can extend k to be a complex number and the results
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are the same. We change the notation from Vj, to V' (k). First we have
V(k) = V(0) + V(k) = V(0),

where V(0) is an elliptic operator from H~*/2(T") to H'*(T') and V (k) — V(0) is a
compact operator. So V' (k) satisfies 3.1.1. Next by using the Garding inequality in Lemma
3 and the Fredholm alternative we know that V' (k) is a Fredholm operator with index zero
for all £ € C. Then we give a lemma to show that V' (k) is holomorphic following [71,
Lemma 5.1.1].

Lemma 17. The operator function V (k) is holomorphic.

Proof. The proof uses Lemma 13. We define a function as

Jow(k) =((V(k))(v),w) Yo, w € H*1/2(F).

1k|x yl ded
fvw //47T|£L’—y| ([L‘) SydSy

By using the Taylor expansion we have

eik|xfy| — i (1k?|ZL’ — y|>n

n!
n=0

We use e*1#=¥in f, (k) and get

foulk) = ( / / '554;3,'”1 )w(x)dsydsm) ke

So f,w(k) is a power series in k£ and the highest order singular integral in the
coefficients is a weakly singular integral for n = 0 which is bounded. So f, (k) is a
holomorphic function for £ € C. The proof is done. []

By Theorem 1 we have
V(k): C— L(HY2T), HY*(T)).

V (k) does not satisfy the requirement H (k) : A — L£(X, X ) in Theorem 7. An additional
operator I : HY/?(I") — H~/2(I") is defined by [71, (5.9)] and from [71, Theorem 5.1.3]
we know that IV (k) : C — L(H~Y2("), H~Y/2(T")) has the same properties with V (k).
Then we can use Theorem 6 for IV (k) with X = H~1/%(T") and by the results of IV (k)
we get the convergence of (3.2.4).

Theorem 8. Let k;, € C be an eigenvalue of (3.2.4) with a corresponding eigenvector
on, € SY(T'1,). Then there exist k and o such that

lim k;, = k and limoy, =0,
h—0 h—0

k is an eigenvalue of V (k) with a corresponding eigenvector o € H—'/?(T).
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Proof. See [71, Theorem 5.3.1]. [l

It is the same to use Theorem 7 for IV (k) and by the results of IV (k) with (1.2.22a)
we get a Priori error estimates of eigenvalues of (3.2.4).

Theorem 9. Let k be an eigenvalue of V (k). There exists a § such that k is the
only eigenvalue in Us(k). Let {t',--- t"} be an orthonormal basis of the generalized
eigenspace G(V (k), k). Assume that t' € HS (L) for s € [0,1]. There exists a h° > 0
such that for all h < h°

|kfh _ /f| Sc(h25+l)1/z(v7k) Z |ti

i=1

Hg,,(T)»

where ky, is the eigenvalue of (3.2.4) and kj, € Us(k).
Proof. See Theorem 5.3.2 and Corollary 5.3.3 in [71]. [l

3.2.3 Numerical tests

We consider the first and second eigenvalues of the Laplace eigenvalue problem with
corresponding eigenvectors on the boundary of a unit cube (0, 1)®. An analytical solution
used for the test is

u(z) = sin(rmqxy) sin(mmaxs) sin(rmszs). (3.2.6)

where m,,my, ms are nonzero integers. The eigenvalue \ is given by VA = k =
m/m3 + m3 + m3. In Tables 3.1 and 3.2 the first column is the level of meshes and the
second column is the number of degrees of freedom. In Table 3.1 the third column is the
numerical results for the first eigenvalue and the fourth column is the rate of convergence
(s) in O(h**1). 3 = 1 from [67, Lemma 5.3]. In Table 3.2 the third, fifth and seventh
columns are the numerical results for the second eigenvalue and the fourth, sixth and
eighth columns are the rate of convergence (s) in O(h%***!). Fig. 3.la is the numerical
result of an eigenvector corresponding to the first eigenvalue and Fig. 3.1b - 3.1d are the
numerical results of eigenvectors corresponding to the second eigenvalue. In the fourth
column in Table 3.1 and the fourth, sixth and eighth columns in Table 3.2 we observe a
cubic convergence approximately, since we use piecewise constant function spaces.

(1,1,1)
level dof kh CRk
0 24 | 5.04298 -
1 96 | 5.42173 | 4.3404
2 384 | 5.43908 | 3.0860
3 1536 | 5.44116 | 3.2624
00 5.44140

Table 3.1 Convergence of the first eigenvalue of the Laplace eigenvalue problem with
homogeneous Dirichlet boundary condition
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The formula for the rate of convergence (s) of eigenvalues is given by

kp ' — K

:l _—
CRk 089 |k_Z — kf| )

where kj’ is the eigenvalue calculated by a mesh of a level n.

1.00 1.00

(a) op, Neumann trace of the first eigenvector (b) o, Neumann trace of one second eigenvec-
tor

1.oo0 1.oo0

(¢) oy, Neumann trace of one second eigenvec- (d) oy, Neumann trace of one second eigenvec-
tor tor

Figure 3.1 First eigenvector and second eigenvector of the Laplace eigenvalue problem
with homogeneous Dirichlet boundary condition
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(2,1,1) (1,2,1) (1,1,2)
level dof /{Zh CRk kh CRk k’h CRk

0 24 | 7.182768265 - 7.182768275 - 7.182761379 -
1 96 7.619649988 | 2.7602 | 7.619649309 | 2.7602 | 7.619649019 | 2.7602
2 384 | 7.688713513 | 3.5220 | 7.688713646 | 3.5220 | 7.688713542 | 3.5220
3 1536 | 7.694600008 | 3.2360 | 7.694601568 | 3.2392 | 7.694602375 | 3.2409
(o) 7.695298981 7.695298981 7.695298981

Table 3.2 Convergence of the second eigenvalue of the Laplace eigenvalue problem
with homogeneous Dirichlet boundary condition

3.3 The Maxwell case

In this section we study the eigenvalue problem for the Maxwell’s equations. Find A
with a nontrivial solution u such that

V XV xu(z) — Au(z) =0
V -u(z) =0
2o(u) () =0

Ve, (3.3.1a)
Vo € Q, (3.3.1b)
Veel, (3.3.1¢)

where A is a real positive number, € is a bounded domain and ' := 0f2.

3.3.1 Nonlinear solution method for eigenvalue problem

We define o := 7¢(u). From the boundary integral equation (1.3.15) we get

Sk(o) =

1
SI-Cy)f

where f is the Dirichlet given data and k = VA, From (3.3.1¢c) we know f = 0, so the
boundary integral equations is

Sk(O') =0.

(3.3.2)

The variational formulation is to find k with a nontrivial solution & € W~/2(T") such

that

for all x € W~/2(T).
The discretization of (3.3.3) is to find k;, with a nontrivial solution o}, € W,:l/ 2(Fh)

such that

for all x,, € W;lﬂ(l“h).
Let {®,;}Y, be a basis of W,:l/Q(Fh). We use o}, = Zjvzl &P, in (3.3.4) and get a

<Sk’(o->v X>T,F -

0,

Sk, (o), Xn)7r =0,

(3.3.3)

(3.34)
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nonlinear equation system,
E=0, (3.3.5)

A(k?h
A i, e D (y) - ®;(x ds,ds,
" J " T JT\{z} W ”|‘T yl Y

eikh‘x_yl

+kih /r /I‘\{x} dive(®;)(y)dive (®;)(z) dsydsx> '

Am|z — y|

Iterative methods for the nonlinear solution method

We use the Newton method to solve (3.3.5). To avoid a trivial solution of (3.3.5) we
include the normalization for £ as ||£]|%, = 1. The nonlinear equation system is

A(kn)¢ =0,
€]l =1 =0.

The Frechet derivative is

Al )€+ ) = AUE)

e—0 €

()€ + (lim A(ky, + €ky,) — A(k;h)> ¢

—0 €

=A(kp)&" + E,C(kn)E,

where

il ke (= [ [ @)@ (i) s
1,7 =he | — i(\y) - P;lx +1 S, A8,
" rlever dm [z — | ")
[ [ a@)mam@w i () dsds.)
+ 1V j 1V i)(x — + — s,ds, | .
rJr\{z} AT 4m k,%\x—y[ kn, Y

— lI€]I%

' +h 1112
tiy 1€+ P = 2(¢,&)e.

The Newton iteration is the same as in Section 3.2.1.

3.3.2 A Priori error estimates

If we want to give a Priori error estimate for eigenvalues of (3.3.3) and (3.3.4) by
Theorem 7, we need to check if Sy is a holomorphic Fredholm operator function and
satisfies (3.1.1). In our work we consider electromagnetic waves in a dielectric medium,
so k is a real positive number. We can extend k& to be a complex number and the results
are the same. We change the notation from Sy to S(k). First according the generalized
Garding inequality in Lemma 9 we can define an elliptic operator and a compact operator
such that S, can be splitted into these two operators. So S(k) satisfies (3.1.1). Next by
using the generalized Garding inequality, Theorem 4 in [13] and the Fredholm alternative
we know that S(k) is a Fredholm operator with index zero for all £ € C \ {0}. Then we
give a lemma to show that S(k) is holomorphic.
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Lemma 18. The operator function S(k) is holomorphic for k € C \ {0}.

Proof. The proof uses Lemma 13. We define a function as
fuw (k) :==((S(k))(V), W)rr Vv, w e WA(I).

By using the formula for ((S(k))(v), w),r in Section 1.3.3 we have

_ k// ) Ey(, y)ds,ds,

/ / dive(v) (9)dive () (2) By (z, y)ds,ds,

By using the Taylor expansion we have

oiklz—yl _ i (ik|lz —y)" '

n!
n=0

We use el*l*=¥lin f, (k) and get

’ y’n ! n+1
fv,w Z ( // - dSdex k
_ yln—1
+ Z (//dwp y)divp(w )(x)%dsydsa k)

So f, (k) is a power series in k& and the highest order singular integral in the
coefficients is a weakly singular integral for n = 0 which is bounded. So f, (k) is a
holomorphic function for k£ € C \ {0}. The proof is done. O

For the proof of a Priori error estimates of eigenvalues of (3.3.4) we can follow the
same way as for the Helmholtz equation. We don’t repeat these technical work and for
the lowest order Raviart-Thomas boundary element space we should also get a cubic
convergence.

3.3.3 Numerical tests

We consider the first and second eigenvalues of the Maxwell eigenvalue problem with
corresponding eigenvectors on the boundary of a unit cube (0, 1)®. An analytical solution
used for the test is

A1 cos(mymzy ) sin(memas) sin(msmrs)
u, = | Agsin(mymzy) cos(memas) sin(mgmxs) | . (3.3.6)
Ag sin(mymzy ) sin(memxs) cos(msmrs)

where my, my, m3 are nonzero integers. The eigenvalue is given by

\/X:kzﬁ\/m%+m§+m§.
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In Tables 3.3 the first column is the level of meshes and the second column is the number
of degrees of freedom, the third and fifth columns are the numerical results for the first
and second eigenvalues and the fourth and sixth columns are the rate of convergence (s)
in O(h**1). Fig. 3.2a is the numerical result of one eigenvector corresponding to the
first eigenvalue and Fig. 3.2b is the numerical result of one eigenvector corresponding to
the second eigenvalue. In the fourth and sixth columns in Table 3.3 we observe a cubic
convergence approximately, since we use the lowest order Raviart-Thomas boundary
element space. Our numerical results match the a Priori error estimate very well.

first eigenvalue | second eigenvalue
level dof l{?h CRk kh CRk
1 144 | 4.39613 - 5.31930 -
2 576 | 4.43845 | 3.4004 | 5.43078 | 3.5228
3 12304 | 4.44241 | 3.2383 | 5.44026 | 3.2217
00 4.44288 5.44140

Table 3.3 Convergence of the first eigenvalue and second eigenvalue of Maxwell
eigenvalue problem with homogeneous Dirichlet boundary values

1.00

(a) o, Neumann trace of one first eigenvector (b) o, Neumann trace of one second eigen-
vector

Figure 3.2 First eigenvector and second eigenvector of Maxwell eigenvalue problem
with homogeneous Dirichlet boundary condition



Chapter 4

Boundary Element Methods for
Interface Eigenvalue Problems

4.1 The Helmholtz case

In this section we consider the inhomogeneous problem for the Helmholtz equation
in Q = Q% UW in Section 2.1 as an eigenvalue problem and the coefficient « in the
equation has different values in Q°° and 2. Since we use interface conditions for the
coupling in this eigenvalue problem, we call it the interface eigenvalue problem. The
interface eigenvalue problem with a homogeneous Dirichlet boundary condition is to find
A with a nontrivial solution u such that

-V (éVu(x)) —du(z) =0 Vo e Q| JQn, (4.1.1a)
(@) =0 Vo el =00, (4.1.1b)

where \ = k2, k is a positive real number, o = a** in Q°*, and a = o' in Q™. a** and
'™ are positive constants.
We have two interface conditions for this problem

Yo" (uT) () = 0" (u'™) () Vo e TY, (4.1.22)
aex,)/f:c<uex)(x> —_ _am,}/in<u1n)<x> VLU c PI, (412b)
where v = u|ge, U™ = ulgm, YT are Dirichlet and Neumann trace

operators from Q° and Q™ respectively, and I/ := T T, T = 9O and
rin .= o0,

4.1.1 Nonlinear solution method for interface eigenvalue problem

As in Chapter 2 we also use domain decomposition methods for this interface
eigenvalue problem. We define 0% := ~{u®, o™ = ~i"y™, p = 5"y, and

@™ = A{"u™. From (1.2.11) we have two Calderon projections for (¢°", o) and
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(o™, o'™) respectively as

exr 1 Tex Tex ex
QO — 51 - Kkex ‘/;Cex 90
( o ) B ( D;E:; %] + K’gez ger | (4.1.3a)
M- KL VR
( 7 ) S ( - ) | “13b)
g ka 5[ + K Jin o

where k® = v/aok, k™ = /aik, and the definitions of boundary integral operators
could be found in Section 1.2.3 on I'® and """ respectively.

We use the second equations in (4.1.3a) and (4.1.3b) in (4.1.2b) and get on I'

Q" (D,Eff o + <%J + K'hs ) 0“) +a" (D,EZZ o™ + (%1 + K ) am) =0.
4.1.4)
From (4.1.2a) and (4.1.1b) we have p®* = ™ on I' and ¢** = 0 on I". We define ¢! as
ol = = pm on ' and ¢! = 0 on I". We assume that the exterior unit normal on I'/

and I is the same as on ['**. We use ¢! and ©*® = 0 on " in (4.1.4) and get

. 1 ex
(@ DE 4 a"DE) o) + 0 (31 + KT ) (07) 0
ae. zell. (4.1.5)

) 1 in )
+ o' (51 + K’Zin) (o™)(z) =0

From the first equations in (4.1.3a) and (4.1.3b) we get

<%I + Kl@) () (z) =V (0)(z) =0  ae x €D, (4.1.6)

(51 + K,f) (D)) = Vi (6™)(z) =0  ae xzel™. (4.1.7)

The combination of (4.1.5), (4.1.6) and (4.1.7) is the system of equations in distributional
sense.

By using the left hand side of (4.1.5), (4.1.6) and (4.1.7) we define three operators

F,: Hl/Q(FI) x H—I/Q(Fea:) « H—1/2<Fm) « R —s H—l/z(rl)7
Fy: HY2(I'T) x HY2(T*) x R — HY?(I'**)
Fs: HY/*(I'') x H-Y2(I'™) x R — HY*(I'™),
which result into the following variational problem: Find k£ with a nontrivial solution
(¢!, 0%, 0™) € HY2(I'T) x H=Y/2(T**) x H=Y/2(I'") such that
(Fi(¢!, 0% 0™, k), 0" ) =0, (4.1.82)
(Fa(p", 0% k), X“)res = 0, (4.1.8b)
<F3(S017 O-ina k)v X1n>Fm =0 > (418C)
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for all (v!, x°*, x™) € HY?(T'1) x H=Y2(I'**) x H~Y2(I'"™).

We define a piecewise linear function space S} (I') and two piecewise constant func-
tion spaces Sy (I'¢*) and SP(T'%") corresponding to the Sobolev spaces. The discretization
of (4.1.8) is to find kj;, and a nontrivial solution (p!,0¢* oin) € SHIY) x SHTS) x
S9(Tim) such that

(Fi(oh, o0 i k), vp)pr = 0, (4.1.9a)
(Folor, 08 k), X5 ) pes = 0, (4.1.9b)
(Fs(ph, ot k), xMpin = 0, (4.1.9¢)

for all (v!, x5® aXﬁ ) € Si(Th) x Sp(Ier) x Sp(Im).

Let {<I>]}Z L {CDE””}NT and {®"} V' be the basis of S}(T]), SP(I'¢®) and SP(T"").
We use ¢! = Zi:l Lol v = SN €506t and it = YOV €D in (4.1.9) and get
a nonlinear equation system,

Ap(kn) Ava(kn) Ais(kn) ¢’
ReA(kh)§ = Re A21 (k’h) AQQ(k’h) 0 fex =0.
Agy (kp) 0 Ass(kn) S

Obviously the calculation of the elements in A(ky) is the same as in A in Section 2.1.4
and A(ky) is symmetric. To avoid a trivial solution we include a normalization for £. A
suitable normalization is defined by

€77 + ll&° (I + ll€™ 7 = 1.
Then the eigenvalue problem is to solve a real nonlinear equation system

ReA(kp)¢ =0, (4.1.10a)
€M% + 1€ 1% + 1€ IR —1=0. (4.1.10b)

We continue to use the Newton method to solve (4.1.10). The Frechet derivative is
derived as the following.

g ALETIINE ) = ARE) _ g0, proqage

where

Cia(k) Ciz(k)
Cao (k) 0
0 Cs3(k)

)

)

)
ReCha ()[i, j] ( /F /F s (any( N y))@ﬁy)@g(z)dsydsm
o [ o (o (“_4 ) otntorman.

The calculation of Cy (k) and Cs3(k) is the same as in Section 3.2.1. Obviously Cy;(k),
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Cas(k) and Cs3(k) are symmetric.

Bk PR

znelkmkv yl ‘
RGCB( )[ ][ ( /FI /m 81’16‘” ( . > (I);”(y)CI)ZI(x)dSdeQC)
0 ivaimelk " lz—yl N
</ / Onin ( A >(bi[(y)q)j (:E)dsydsx>
I iy

This shows that ReC'2(K)[i][j] = a“"ReCy: (k)[j][i], and ReC13(k)[i][j] = a"ReC3: (k)|5][i]
results from n°*(x) = —n™(z) for z € I'!. So ReC(k) is symmetric. The integrals in
C(k) are more regular than in A(k).

o I+ R — Nl _
h—0 h

ReCs (k) [j][1] =

2€",€" ) + 267,67 ) + 2™, € )
The Newton method is defined by

ReA(E™) (7! — €7) + (k™! — k")ReC/(k™)€™ + ReA(k™)E™ = 0,
206", = €M + €]l —1=0,

and the iteration step is to find (K", £"*1) with given data (k", ") by solving

ReA(K")&™ + k" ReC(K")E" = k"ReC(K™)E",
206", 6" e = |l€JlE + 1.

4.1.2 Numerical tests

We consider the first and second eigenvalues of the interface eigenvalue problem for
the Laplace operator With corresponding eigenvectors on the boundary of a unit cube
(0,1)3. We assume a*” ™ = 1. An analytical solution used for the test is (3.2.6). The
eigenvalue is k = 7T\/ m? + m3 + mZ. In Table 4.1, the first column is the level of meshes,
the second column is the number of degrees of freedom, the third and fifth columns are
the absolute value of the difference between eigenvalues and their approximations, and the
fourth and sixth columns are the rate of convergence (s) in O(h***1!). Fig. 4.1a, 4.1b and
4.1c are the results of an eigenvector (0§%, !, oi") corresponding to the first eigenvalue
and Fig. 4.2a, 4.2b and 4.2¢ are the results of an eigenvector (05", i, oi") corresponding
to the second eigenvalue. In the fourth and sixth columns in Table 4.1 we observed that
the rate of convergence is much faster than a cubic convergence. This may be explained
by the better approximation of ¢! with piecewise linear function spaces if the error is
dominated at the interface.
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Lo 1.00

(a) o*, Neumann trace from exterior domain (b) <pI , Dirichlet trace on interface

(c) 0", Neumann trace from interior domain

Figure 4.1 First eigenvector of the interface eigenvalue problem for the Helmholtz
equation with homogeneous Dirichlet boundary condition

first eigenvalue | second eigenvalue
level dof |k’h — l{’ CRk |k7h — kl CRk
0 278 | 5.43185 - 7.66779 -
1 1106 | 5.44105 | 4.7890 | 7.69367 | 4.0782
2 | 4418 | 5.44142 | 4.1393 | 7.69518 | 3.7372
00 5.44140 7.69530

Table 4.1 Convergence of the first eigenvalue and second eigenvalue of the interface
eigenvalue problem for the Laplace equation with homogeneous Dirichlet boundary
condition
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1.00

(a) 0°*, Neumann trace from exterior domain

(c) o™, Neumann trace from interior domain

Figure 4.2 Second eigenvector of the interface eigenvalue problem for the Helmholtz
equation with homogeneous Dirichlet boundary condition
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4.2 The Maxwell case

In Section 2.2 we consider electromagnetic waves in an inhomogeneous dielectric
medium. In this section we consider this inhomogeneous problem for the Maxwell’s
equations in €} = Q UW as an eigenvalue problem and the coefficient « in the
equation has different values in Q° and Q. Since we use interface conditions for this
eigenvalue problem, we call it the interface eigenvalue problem. The interface eigenvalue
problem with a homogeneous Dirichlet boundary condition is to find A with a nontrivial
solution u such that

V x (ﬁv X u(:r)) —Au(z) =0 Vo e QU Jar, (4.2.1a)
V-u(z) =0 Vo € QeT | Qin (4.2.1b)
y(u)(x) =0 Ve eI := 00, (4.2.1¢)

where \ = k2, k is the frequence w, o = a®® = £ in Q°®, and o = '™ = ™™ in
Q. ger gin pe i are the permeability and permittivity in Q°° and Q, respectively,
and they are positive constants.

We have two interface conditions for this problem from (1.1.2b) and (1.1.2d),

Y () (1) + 4 (u™) (x) = 0 vr eI, (4.2.2a)
BEARE () (z) + By (u™) (x) = 0 Vo e TV, (4.2.2b)
where u* = ulge, U = ulgm, YN are Dirichlet and Neumann trace
operators from Q° and Q™, respectively, 5 = ;efc and B = ;:L for electric

fields, and I' := I'** I with ['** := 9Q° and ' := 9Q™. The definitions of the
trace operators could be found in Section 1.3.3 from Q¢* and Q% respectively.

4.2.1 Nonlinear solution method for interface eigenvalue problem

As in Chapter 2 we also use domain decomposition methods for this interface
eigenvalue problem. We define 0 := & (u®), o™ = 4% (u™), ¢ = & (u™)
and ™ := ~i"(u™). From (1.3.14) we define two Calderon projections for (%, ¢°*)
and (o™, ™), respectively, as

“r 1 ree ree ex

( o ) B ( Shee i+ Che oo | (4.2.32)
n 1 Tin rin in

( o > ( SEZ: %I+Cll;:: on | (4.2.3b)

where k" = Vack, k™ = va™k, and Sj..,Cj..,S},Cli, are boundary integral

operators on I'* and """ with the definitions in Section 1.3.3.
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We use the second equations of (4.2.3a) and (4.2.3b) in (4.2.2b) and get on '’

ex ex 1 ex ex
6 (sl,;ez( ) 4 (21+c£ez)( ))
#am (St + (314 € ) (@) =0,
From (4.2.2a) and (4.2.1¢c) we have ¢*® = —¢™ on I'! and ¢ = 0 on I". We define ¢’

as ! = p = —p™ onI'! and ¢’ = 0 on I. We assume that the exterior unit normal
on I'/ and I is the same as on I'**. We use ¢! and ¢°® = 0 on I" in (4.2.4) and get

(4.2.4)

(5i + 67S1L) (@) (a5 (514 CE ) (00

ae xell.
4" ( I+ cgz:z) (6™)(x) = 0
4.2.5)
We change the operator st pin " to Sl,; in (4.2.5). From the first equations in (4.2.3a) and
(4.2.3b) we get

1 exr

(—51 + Ckez) (") (%) + Sjex (") (z) = 0 ae r el (4.2.6)

1 in n 5
(51 - an) (e )( )+ Sgn( ")(z) =0 ae.zcl". 4.2.7)

The combination of (4.2.5), (4.2.6) and (4.2.7) defines the solution of (4.2.1), an
eigenvalue k with it’s corresponding eigenvector (¢!, o*, ™).

By using the left hand side of (4.2.5), (4.2.6) and (4.2.7) we define three operators

Fi: W20 x WD) x W2(07) x R — W2(17)
Fy: W V2(TT) x W V2(Ie) x R — W /2(Te) |
F3: W2(D) x WD) x R — W20

which results into the following variational formulation:

Find k& with a nontrivial solution (¢!, ™) € W~V3(T1) x W1/2(I*) x
W~/2(I"") such that

(Fi(p', 0 0™ k), v"), 11 =0, (4.2.82)
(Fo(p!, 0% k), v?) rree = 0, (4.2.8b)
(F3(pp", 0™, k), v*) pin =0 (4.2.8¢)

for all (v', v?, v?) € WV2(I') x W/2(Ter) x W—1/2(Tn),
We use the lowest order Raviart-Thomas boundary element spaces W;l/ 2(I‘{L),
W,;l/ *(Ier) and W,:l/ ?(I'im) corresponding to the Hilbert spaces. The discretization
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of (42.8) is to find kj, with a nontrivial solution (!, 0%, o) € W, *(T) x
W, /2(Ier) x W, /2(T'im) such that

<F1 (‘Pha Uh ) Uh ) kh) U}11>T ri = 0 ’ (42921)
<F2(50h7 O'h s kh) ’Uh>7— Tex — 0 (429b)

for all (v}, v, v3) € W;W(F{L) X W;ZI/Q(FZ:E) X W;:W(F;Ln)

Let {®1N {®}N and {®7}X" be the basis of W, /*(I'L), W, /*(I'¢*) and
Wh/_l/Q(FZ”), respectively. We use ! = ijl 5}@;, P = Zfif £ @5 and ) =
Zf\g f;n " in (4.2.9) and get one nonlinear system

Av(kp) Ava(kn)  Ais(kn) ¢’
ReA(kh)§ = Re Agl (k‘h) AQQ(kh) 0 gem =0.
Asy (kp) 0 Ass(kn) &

The calculation of the elements in A(ky) is the same as in A in Section 2.2.4 and A(ky,)
is symmetric. To avoid a trivial solution we include a normalization for . A suitable
normalization is defined by

IS + 116 + llg™ 7 = 1.
Then the eigenvalue problem is to solve a nonlinear equation system

ReA(kx)€ =0, (4.2.10a)
€717 + 1€ 1% + 1€ IR —1=0. (4.2.10b)

We continue to use the Newton method to solve (4.2.10). The Frechet derivative is

Al + h)E+0E) = ARNE) _ e 1 woge

lim
h—0 h

where
Ci(k) Cia(k) Cus(k)
C(k) = 021<k) 022(k) 0
C31(k) 0 Cs3(k)

The calculation of Cyy(k), Caa(k) and Cs3(k) is similar with C'(k) in Section 3.3.1 and
they are symmetric.

acTe 1’f”|90 Yl
Ciali, j( ﬁe’”/ / ( 1 ) (@57 (y) x @f(m))dsydsm
I Jres\{z} T

Oéexelkexll y|
Con(K)[j. / / (@] (y) X B (x))ds, ds,
whong T\ A
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in km‘x Y I I
Culigl =" [ [ ( = )w@xwxéxwwewx

melkmhj Yl
C31(k / / ( 1 (@I(y) x @;(x))dsydsm
in Jrin\ (2} 4

This shows Cy2(k)[i, 7] = 8“Cy(k)[j, 1], and Cy3(k)[i, 7] = B Cs1(k)[J, 7] results from
n°(z) = —n™(z) for v € T'1. n°® is the exterior unit normal from Q° and n™ is the
exterior unit normal from Q. So C(k) is symmetric. The integrals in C'(k) are more
regular than the integrals in A(k).

L e e — gl
h—0 h

2068, 1) + 2(6°%, )2 + 2(6™, €™ 2 .

The Newton method is defined by

ReA(K™) (€™ =€) + (k""" — K")ReC'(K")¢" + ReA(K")¢" = 0,
206", =M + 18" -1 =0,

and the iteration step is to find (K", £"*1) with given data (k" £") by solving

ReA(k™)E™ + k"M ReC (k™)™ = k"ReC(k™)€™,
2067, 6" e = [I€7 12 + 1.

4.2.2 Numerical tests

We consider the first and second eigenvalues of the interface eigenvalue problem for
the Maxwell’s equations with corresponding eigenvectors on the boundary of a unit cube
(0,1)3. We assume that e = ¢™ and p® = u'. An analytical solution used for
the test is (3.3.6). The eigenvalue is k = my/m? +m3 +m2. In Table 4.2, the first
column is the level of meshes, the second column is the number of degrees of freedom,
the third and fifth columns are the absolute value of the difference between eigenvalue
and their approximation, and the fourth and sixth columns are the rate of convergence
(s) in O(h®**1). Fig. 4.3a, 4.3b and 4.3c are the results of an eigenvector (%, ¢} oi®
corresponding to the ﬁrst eigenvalue and Fig. 4.4a, 4.4b and 4.4c are the results of an
eigenvector (%, ! | oi") corresponding to the second eigenvalue. In the fourth and sixth
columns in Table 4.2 we observe that the rate of convergence is cubic.
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1.o0

(b) !, Dirichlet trace on interface

(c) o™, Neumann trace from interior domain

Figure 4.3 First eigenvector of the interface eigenvalue problem for Maxwell’s
equations with homogeneous Dirichlet boundary condition

first eigenvalue | second eigenvalue

level | dof | |k, —k| | CRy | |kn—k|| CRg
0 432 | 4.42676 - 5.37587 -
1 1728 | 4.44152 | 3.5593 | 5.43617 | 3.6474
2 | 6912 | 4.44276 | 3.4450 | 5.44088 | 3.3271
00 4.44288 5.44140

Table 4.2 Convergence of the first eigenvalue and second eigenvalue of the interface
eigenvalue problem for Maxwell’s equations with homogeneous Dirichlet boundary
condition
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1.00 1.oo

(a) o°®, Neumann trace from exterior domain (b) <p1 , Dirichlet trace on interface

lL.oo

(c) o™, Neumann trace from interior domain

Figure 4.4 Second eigenvector of the interface eigenvalue problem for Maxwell’s
equations with homogeneous Dirichlet boundary condition



Chapter 5

Comparison of BEMs and FEMs in
Band Structure Computation in 3D
Photonic Crystals

5.1 A brief introduction to photonic crystals

Photonic crystals are materials which are composed of periodic dielectric or metallo-
dielectric nanostructures. They exist in nature and can also be technically produced.
Photonic crystals have been studied for more than one hundred years, but the term
"Photonic crystals" was first used in 1987 in [77] and [40]. In this section we introduce
some background about photonic crystals to define the final problem in this thesis. The
study of photonic crystals could follow [38]. First we give a definition of photonic crystals
from [45].

Definition 11. Photonic crystals are periodic optical nanostructures that are designed to
affect the motion of photons in a similar way that periodicity of a semiconductor crystal
affects the motion of electrons.

Since photonic crystals affect the motion of photons, the Maxwell’s equations are
used to describe this phenomena. Since semiconductor crystals affect the motion of
electrons, the Schrodinger equation is used to describe this phenomena. The motion of
electrons in semiconductor crystals is studied in solid physics [36], and photonic crystals
and semiconductor crystals affect the motion of photons and electrons, respectively, in a
similar way. So the knowledge of solid physics is very useful for the understanding of
photonic crystals. For the beginning, we have the following questions from Definition 11.

1. What is the definition of crystals?
2. How does the periodic structure of photonic crystals affect the motion of photons?
3. How to use PDEs to describe a problem in a periodic structure?

First, from solid physics we have a very simple definition of crystals for the first question:

Crystals = Lattice + Basis.
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Figure 5.1 A simple definition of crystals

Figure 5.1 is an example of the definition of crystals. Figure 5.1a gives a basis and a
lattice and Figure 5.1b is the structure of crystals. From Figure 5.1 it is obviously that
crystals have periodic structures. We can use the same way to define periodic structures
for photonic crystals. The difference between crystals and photonic crystals is that the
periodic structures of crystals are built by atoms and the periodic structures of photonic
crystals are built by dielectric materials. The following figures are 1D, 2D and 3D periodic
structures for photonic crystals from [38].

Figure 5.2 1D, 2D and 3D periodic structures of photonic crystals

The different colors in Figures 5.2 (a), (b) and (c) mean the jump of the properties of
dielectric materials. For dielectric materials, the properties are the permeability p and
permittivity €. By the periodicity, ;« and € are periodic functions. We should pay attention
that Figures 5.2 (a), (b) and (c) just show an abstract meaning of the periodicity and in
fact the dielectric material in one unit cell of photonic crystals is inhomogeneous.

Next, we go to the second question. It is found that electromagnetic waves can not
propagate through photonic crystals for some frequencies by Bragg diffraction because of
the periodicity. This means that we can use photonic crystals to control the flow of light
and this is the reason for us to produce photonic crystals. If we want to design and produce
photonic crystals, we need to know for which frequencies electromagnetic waves can not
propagate. So we need to calculate the frequencies and this is an eigenvalue problem
obviously.

Then, we go to the third question. It looks very complex to solve the Maxwell’s
equations in the whole domain which has different permeabilities and permittivities in so
many sub-domains. So we change the problem from the whole domain to one unit cell
by the famous Bloch theorem. We give a brief introduction of the Bloch theorem for the
Schrodinger equation in a periodic structure from [36] and we can use the same results to
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the Maxwell’s equations. We have the Schrodinger equation in a periodic structure as

Hy(x) = (—%A + V(x)) W(z) = Ey(x), (5.1.1)

where H is called the Hamiltonian operator, A is the reduced Planck constant, m is the
mass of the particle, V' is the potential energy, £ is the energy and ¢ is the wave function
for the particle. V' is a periodic potential from the periodic structure such that

V(z+R") = V(x), (5.1.2)

where R" = nja; + neay + nzaz with ny, no, ng € N°. {a;, as, a3} is a basis of one unit
cell.

We define an operator T'(R") as
T(R")f(x) = f(z+R"),

where f is any function. We use 7'(R") to the Hamiltonian operator and get

2

ﬂRﬂCé%A+V@0w@%:(é%A+V@+Rﬂ)wx+Rﬁ

- (—h—QA + V(x)) o(x+R")

2m
_ <_%A i m)) TR (x).

The second equality is from (5.1.2). So the eigenvalue problem for the Hamiltonian
operator is equivalent to the eigenvalue problem for 7'(R™). The eigenvalue problem
for T(R™) is

T(R™")Y(z) = A"P(x) . (5.1.3)

By the periodic structure, we have

[z +RY)| = |T(R") ()] = [\"Y(x)] =[¢(x)],
A =1,

So we can write \" as
o
)\n ela R

, (5.14)

where « is any vector. By using (5.1.4) in (5.1.3), we get the Bloch theorem for the
Schrodinger equation .
Yz + R") =R yY(z) . (5.1.5)

We continue to consider the Maxwell’s equations. By the periodic structure, we have

e(zr+ R") =¢(x), (5.1.62)
plz +R") =u(x). (5.1.6b)
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If we consider the time-harmonic Maxwell’s equations for magnetic fields, we have

lv X (lv X u) =w?u, (5.1.7a)
7] €
V-u=0. (5.1.7b)

From (5.1.6), it is obviously that the operator on the left hand side of (5.1.7) is also a
periodic operator and we can repeat all the same things for (5.1.7) as for the Schrodinger
equation. We have the Bloch theorem for the Maxwell’s equations as

u(z +R") = *Ru(r). (5.1.8)

As a summary we define our final problem. Let Q2 := Q[ J Qin be a primitive cell
and be a unit cube. I' := JS2. For this primitive cell, a; = (1,0,0), ay = (0,1,0) and
ag = (0,0, 1) and we change the notation from a to e. Let I'; = [0,1] x [0, 1] x {0},
'y =10,1] x {0} x [0,1] and I'3 = {0} x [0, 1] x [0, 1]. By using the Bloch theorem, we
have the Maxwell’s equations with quasi-periodic boundary conditions as the following.

1 1 4
-V x (EV X u> =w’u Ve e Q™ (5.1.9a)
o
V- -u=0 Vo e QUJQm,  (5.1.9b)
() (1 + e;) = — ¥ (u)(z) ae. v €ly,i=1,273, (5.1.9¢)

FE () (1 + e;) = — ¥ (u) (z) ae.xelyi=1,23. (5.1.9d)

As we have mentioned in the first question, the dielectric material in one unit cell of
photonic crystals is inhomogeneous. So we need interface conditions as the following,

A (u) (z) + 3 (u™) (z) = 0 ae. xv eIl (5.1.10a)
BARE (0 (z) + B (u™) (x) = 0 ae xv eI’ (5.1.10b)
where u® = ulge, U” = ulgm R are Dirichlet and Neumann trace
operators from Q¢ and Q™ respectively, 3°* = ‘E‘:: , B = 5:: for magnetic fields,

and I := ' T with T** := 9Q° and '™ := 9Q™. As we have mentioned in the
second question, we solve (5.1.9) as an eigenvalue problem. So our final problem is an
interface eigenvalue problem for the Maxwell’s equations with quasi-periodic boundary
conditions.

5.2 A homogeneous problem with periodic boundary
conditions
It is too complex to solve (5.1.9) with (5.1.10) directly. So in this section we simplify

the problem to a homogeneous problem with periodic boundary conditions and in the next
section we consider an inhomogeneous problem with periodic boundary conditions. For
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a homogeneous problem, we assume that ¢ = ¢™ = y* = ;" = 1 and a = (0,0, 0)
in (5.1.9). Quasi-periodic boundary conditions in (5.1.9¢c) and (5.1.9d) are simplified
to periodic boundary conditions and we don’t need interface conditions (5.1.10) for this
problem. Then the Maxwell’s equations (5.1.9) with interface conditions (5.1.10) are
changed to

V x V xu(z) = Au(z) Vr € Q, (5.2.1a)
V-u(z)=0 Vo e Q, (5.2.1b)
() (z +e;) = —y(u)(z) Veel,,i=1,2,3, (5.2.1c)
n(u)(z+e;) = —yn(u)(z) Veel;,i=1,2,3. (5.2.1d)

where A = k% = pew?.

5.2.1 Nonlinear solution method

We define ¢ := 74(u) and o := yn(u). From (1.3.14) we have a Calderén projection

for (¢, o) 1
(4% 4 20)(2)-(2) o

By using (5.2.2), the eigenvalue problem (5.2.1) is to find k& € R™ with a nontrivial
solution (¢, o) such that

(—%[ + Ck) (@)(z) + Sk(o)(z) =0 ae.xel, (5.2.3a)
Sk(e)(z) + (—%I + Ck) (o)(x) =0 ae.xel, (5.2.3b)

where ¢ and o satisfy the periodic boundary conditions in (5.2.1c) and (5.2.1d). The
variational formulation for (5.2.3) is to find & € R* with a nontrivial solution (p, o) €
W12(I') x W~Y2(T") such that

<(—%I + Ck) (@) + Sk(o), ’Ul> =0, (5.2.4a)
T,

<Sk(go) + (—%I + Ck) (0'),1)2> =0, (5.2.4b)
I’

for all (v, v?) € W2(I') x W2(T"). ¢ and o satisfy periodic boundary conditions.
The Galerkin formulation for (5.2.4) is to find k, € R* with a nontrivial solution
(op,on) € W;l/z(Fh) X W;1/2(Fh) such that

<<—%f + Ckh) (en) + Sk, (oh), v}L> = 0, (5.2.52)
<Skh(¢h) + (—%I + Ckh) (oh), vi> =0, (5.2.5b)
7,
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for all (vi,v2) € W, 2(T}) x W, *(T'}). ¢, and o), satisfy periodic boundary
conditions.

Let {®;}Y, be abasis of W, "/*(I',). Weuse @, = >N ¢t®,and o), = SN | N,
in the Galerkin formulation (5.2.5) and get a nonlinear equation system

—( ReAji(kn) ReAia(kn) &\
ReAg = ( Redu (k) Redss(ky) ) ( N ) =0 626

where £t and ¢N satisfy the periodic boundary conditions. The calculation of the elements
in A is similar with Section 3.3.1 and Section 4.2.1. We define I'; := (0,1) x (0,1) x {0},

Ty :=(0,1) x {0} x (0,1) and T’y := {0} x (0,1) x (0,1). We define I'y5 := I'; (\T'a,
I'y5 := I (T3 and T3 := Iy (\T5. We define TP .= T'; YT UT3 U T2 UTi3 U Tas.
Let {®; }1., be a basis of W,:l/ ?(T%*"). By using the periodic boundary conditions, we
could define a mapping BY*M such that

¢t = B¢t and &N = BN (5.2.7)

per per )

where ¢, and &)Y, are the coefficients of the testing functions defined on I'”*". We use

the mapping (5.2.7) in (5.2.6) and get

Aper(k )fper — BTReAH(k:h)B BTReAlg(kh)B ;er —0
4 ' BTReAy (ky)B  BT"ReAy(ky)B N '

per

To avoid a trivial solution, we include a suitable normalization for " by [|£P" ||z = 1.
The nonlinear equation system is

AP (E)EPT =0, (5.2.8a)
& —1=0. (5.2.8b)

We continue to use the Newton method for (5.2.8), and the Frechet derivative and the
iteration steps are the same as in Section 3.3.1 and Section 4.2.1.

5.2.2 Numerical tests

We consider the first and second eigenvalues of the periodic eigenvalue problem with
corresponding eigenvectors on the boundary of a unit cube (0, 1)3. An analytical solution
used for the test is

A1 cos(2mymxy) sin(2momay) sin(2msmas)
u, = | Agsin(2mymay) cos(2maomas) sin(2mgmas)
A3 sin(2my ) sin(2momas) cos(2mamas)

The eigenvalue is given by k = 271/m? + m2 + m32 with my, my, mz € N°. In Table 5.1
the first column is the level of meshes and the second column is the number of degrees
of freedom, the third and fifth columns are the numerical results for the first and second
eigenvalues and the fourth and sixth columns are the rate of convergence. Fig. 5.3a and
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5.3b are the numerical results of one eigenvector corresponding to the first eigenvalue
and Fig. 5.3c and 5.3d are the numerical results of one eigenvector corresponding to the
second eigenvalue. In the fourth and sixth columns in Table 5.1 we observe a cubic
convergence approximately, since we use the lowest order Raviart Thomas boundary
element space.

1.0000 1.0000

(a) Dirichlet trace of one eigenvector corre- (b) Neumann trace of one eigenvector corre-
sponding to the first eigenvalue on I'P¢" sponding to the first eigenvalue on I'7¢"

1.oo oo
(c¢) Dirichlet trace of one eigenvector corre- (d) Neumann trace of one eigenvector corre-
sponding to the second eigenvalue on ['P¢" sponding to the second eigenvalue on ['P¢"

Figure 5.3 First eigenvector and second eigenvector of the eigenvalue problem for
Maxwell’s equations with periodic boundary conditions
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first eigenvalue | second eigenvalue

level dof ‘kh — k’ CRk ’kh — k‘ CRk
2 552 | 8.83865 - 10.78751 -
3 2256 | 8.88096 | 3.2930 | 10.87471 | 3.5589
00 8.88577 10.88280

Table 5.1 Convergence of the first eigenvalue and second eigenvalue of the eigenvalue
problem for Maxwell’s equations with periodic boundary conditions

5.3 An inhomogeneous problem with periodic boundary
conditions

In this section we consider an interface eigenvalue problem for (5.1.9) and assume
that « = (0,0,0). Quasi-periodic boundary conditions in (5.1.9¢) and (5.1.9d) are
simplified to periodic boundary conditions. The Maxwell’s equations (5.1.9) with
interface conditions (5.1.10) are changed to

%V X (%v X u) = w’u Vo e QU Jar, (5.3.1a)
V-u= Vo e QU Jar, (5.3.1b)
yf’”(uem)( +e;) = =" (u)(z) VeeTly,i=1,2,3, (5.3.1¢)
@) (x4 €;) = =y () () Ve ely,i=1,23, (5.3.1d)
Y () () + " (u™) () = 0 Ve el (5.3.1e)
/B“m%u“)(x) AT (") () = vz el (5.3.1f)

where all the notations are the same as in (5.1.9) and (5.1.10).

5.3.1 Nonlinear solution method

As in Section 4.2.1 we use domain decomposition methods to solve this interface
eigenvalue problem. We define 0" := 1 (u), o™ := & (u™), ¢ = v¢*(u®®) and

@™ = 4 (u™). From (1.3.14) we have two Calderon projections for (o¢*, ") and
(o™, ™), respectively, as
€T 1 Tex Tex ex
P . 5[ + Ckez Skez 7
( o ) a ( Sher I+ cCha oo ) (5.3.2a)
n 1 [‘zn rin in
") " n ) 5.3.2b
( aoin ) ( ng %I + C};m o ( )

where £* = a“k, k'™ = vVa"k, and ngj ,Cgf: ,ng: ,Cl,;m are boundary integral
operators on I'** and T'™ with the definitions in Section 1.3.3. a®* = &%y and
Q' = 5mum From the interface condition (5.3.1e) we have ' = gom on I'!. We

define ! as p! = p* = —p™ on I'/ and ¢’ = 0 on I". We use the second equations of
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(5.3.2a) and (5.3.2b) in (5.3.1f) and get
5 (8K ™)+ (31 + €1 ) (0)
v (s + (3140l ) =0,
and by using ¢! we get
(BSEL + B7SEL) (1) (@) + BSTen (™ [1) ()
#5731+ CEL) (0} (o) + 5 C (000 we. el (533)
+p" (;1 + cg;?) (0™)(x) =0
By using the second equation in (5.3.2a) on " we get
L)+ (31 + €L ) () =0,
and by using ¢! we get
Sies (@) (@) + Sje (¢7[0) () + Clica (0 |p1) ()
" (_%1 " c%) (0 |r) () = 0

ae.xel'. (5.3.4)

By using the first equations in (5.3.2a) and (5.3.2b) we get
(=57 + ) (o) 88 (™) =0,
(_%z i cg::z) (™) + ST (o) = 0.
and by using ¢! we get

(_§1+ckw)< (@) + Cla (¢ |1) ()
+8}ea (0 [p1)(2) + Shee (0% 1) () = 0

ae.xell, (53.5)

CE.(¢)e) + (5 + Ch- ) (60

+SEL (07|11 ) (2) + She (6%|p) (2) = 0

ae.xel, (5.3.6)

(51 — Cgm) (") (x) + Spin (™) (z) = 0 ae x €™, (5.3.7)
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The combination of (5.3.3), (5.3.4), (5.3.5), (5.3.6) and (5.3.7) is the system of
equations in distributional sense. By using their left hand side, we define five operators as

Fi: W 2T x W2(T) x WY x WY() x WD) x R

— W21,
Fy : W2 x WY x WY x WYAI) x R - WY(T),
F3: W 2(PI) x W) x W) x WAT) x R — W21
F, V20 s« WY2(T) x W) x WY3(T) x R — WV,
2

F;: W~ 1/2(P’”) x WYD"y x R — W Y2(Din) |

The variational formulation for this system of equations is to find & with a nontrivial
solution (¢!, |p, 0°*|pr, |, 0™ k) € WV(!) x W=V(T) x W=Y(TT) x
W—Y2(T) x W~Y/2(I"") such that

(Fi(¢", ¢ Ir, 0% |pr, 0], l",k),v1>ﬁ,: , (5.3.8a)
(Fa(p", @ [r, 01,0 |p, k), v°) | = (5.3.8b)
(Fs(¢!, 9|, 0|1, 0 e, k ,v3>m (5.3.80)
(Fule', “|r, 0|01, 0 |p, k), v°) | = (5.3.8d)
(Fs(¢', 0" k), v°) L., =0, (5.3.8¢)

for all (v, v? v3 v V) € W 2(IT) x WV2(T) x WV2(T'T) x W-V(T) x
W—/2(T'"), and ¢°*|r and o°*|p satisfy the periodic boundary conditions (5.3.1c) and
(5.3.1d).

The discretization for the variational formulation (5.3.8) is to find k;, with a nontrivial
solution (0}, @57r,., o5 |py, 5|1, o i) € W (D)) W V2 (0,) x W 2(0])
W, '*(T') x W, "/2(i") such that

<F1(90{w Lplezx|f‘h7 JZx|F£L7 O-th‘ha U’;Ln7 kh)”U}L>TFI = 07 (5393-)
I ex ex ex 2 o

<F2((Ph,§0h |Fh70-h |F}IL70-h |Fh7kh)7vh> — U, (539b)
I ex ex ex 3 _

<F3((Ph7soh |Fh7a-h |F£70-h |Fh7 kh>’vh>TFI — 0; (539C)

<F4(<P£7 @5 |rs o3 rp 03 Iy k), v;t> =0 (5.3.9d)

<F5(LP{L7 0-7;:7” kh)? U?L>T71“in = 0 Y (5.3.96)

for all (v}, v2,v8, vl v3) € W, 2T x W, 2(T)) x W, 2(Th) x W, V2(T,) x
W;l/ ?(Tin) and %" |, and o¢%|r, satisfy the periodic boundary conditions.
Let {®/}Y, be a basis of W, "/*(I'L) and {®!}2] be a basis of W, "/*(T';). We use
NT ex NT ex NI ex NT
‘P{L = ijl 5‘71@;, cph |Fh = Z]:l £2¢F 0- |FI - Z]:l £3¢I 0- |Fh = Z]:l 5‘?@5
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and oi" = Z;V:II 55-’(1); in (5.3.9) and get a nonlinear system

A11<kh) AIQ(kh) A13(kh) A14(kh) A15(kh) 51

Agi(kn)  Asa(kp) Ass(kn)  Aoa(kn) 0 &
ReA(kh)f = Re Agl(l{?h) A32(k}h) A33(k)h) A34(k’h) 0 53 = 0,

An(kp)  Asa(kn)  Asz(kn)  Asa(kn) 0 ¢*

As(kn) 0 0 0 Ass(k) ) \ &

(5.3.10)
where &, and &, satisfy the periodic boundary conditions. It is easy to check that A is
a symmetric matrix. The calculation of the elements in A is similar with Section 3.3.1
and Section 4.2.1. The definition of W,;l/ (7" is the same as in Section 5.2.1. By the
periodic boundary conditions we can define a mapping B such that

¢ =B, and &= B¢ (5.3.11)

per

where &, and &, are the coefficients of the testing functions defined on I';”". We use
(5.3.11) in (5.3.10) and get a system of equations

Aper (kh)gpe’f’ ::
Aqq(kn) Ay (ky)B Ags(kn) Ayy(kn)B - Ais(kn) ¢
BT Agi (k) BT As(kn)B BT Ags(ky) BT Asu(kn)B 0 per
Re Agl(kh) Agg(l{?h>B Agg(kh) A34(l€h)B 0 53
BT Ay (kn) BTAp(kn)B BT As(kn) B"Au(kn)B 0 4
A51(l€h> 0 0 0 A55(l§h) 55
=0.

(5.3.12)

To avoid a trivial solution, we include a suitable normalization for £P¢" by [|£P" ||z = 1.
Then the nonlinear equations for (€77, ky,) is

AP (ke )P =0, (5.3.13a)
167" |12 — 1 =0. (5.3.13b)

We continue to use the Newton method to solve (5.3.13). The Frechet derivative is
derived as the following.

] Aper(k+ hk/)(gper + hfper/) _ Aper(k)(gper)
lim
h—0 h

per h per!||2 per||2
m Hg + f h||l2 ||€ ||12 — 2<§per’£per/>l2'

— Aper(k)é-per/ + klcper(k,)gpeT’

li

h—0

5.3.2 Numerical tests

We consider the first and second eigenvalues of the interface eigenvalue problem with
periodic boundary conditions with corresponding eigenvectors on the boundary of a unit
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cube (0,1)%. We assume that Q" = (1, 2)3, Q@ = (0,1)3 \ Q, ¢ = ¢ = 1 and
pw™ = p® = 1. An analytical solution used for the test is the same as in Section 5.2.2.
The eigenvalue is given by k = 27\/m? + m2 + m32 with my, my, mz € N°. In Table 5.2
the first column is the level of meshes and the second column is the number of degrees
of freedom, the third and fifth columns are the numerical results for the first and second
eigenvalues and the fourth and sixth columns are the rate of convergence. Fig. 5.4a, 5.4b
and 5.4c are the numerical results of one eigenvector corresponding to the first eigenvalue
and Fig. 5.5a, 5.5b and 5.5¢ are the numerical results of one eigenvector corresponding
to the second eigenvalue. In the fourth and sixth columns in Table 5.2 we observe a
cubic convergence approximately, since we use the lowest order Raviart Thomas boundary
element space.

1.og

(a) p°* corresponding to the first eigenvalue (b) 0 corresponding to the first eigenvalue

(c) o™ corresponding to the first eigenvalue

Figure 5.4 First eigenvector of the interface eigenvalue problem for Maxwell’s
equations with periodic boundary conditions
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L.og

(a) ¢°* of one eigenvector corresponding to the (b) 0" of one eigenvector corresponding to the
second eigenvalue second eigenvalue

lLoo
(¢) o™ of one eigenvector corresponding to the
second eigenvalue

Figure 5.5 Second eigenvector of the interface eigenvalue problem for Maxwell’s
equations with periodic boundary conditions

5.4 Comparison of BEMs and FEMs

In this section we use Galerkin-BEMs to calculate the band structure of photonic
crystals and compare the accuracy of our results with FEMs. The numerical results of
FEMs are from the PhD work of Dr. A. Bulovyatov [14]. In the first numerical test
we solve the interface eigenvalue problem with quasi-periodic boundary conditions in
a homogeneous medium as a test and an analytical solution is known. In the second
numerical example we solve the same problem in an inhomogeneous medium without a
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first eigenvalue | second eigenvalue
level | dof | Error CR Error CR
0 415 | 8.66876 - 10.46234 -
1 1693 | 8.86738 | 3.5608 | 10.85214 | 3.7778
2 | 6841 | 8.88392 | 3.3185 | 10.87987 | 3.3906
00 8.88577 10.88280

Table 5.2 Convergence of the first eigenvalue and second eigenvalue of the interface
eigenvalue problem for Maxwell’s equations with periodic boundary conditions

given solution which is compared with FEMs.

5.4.1 Numerical tests

We assume that Q = (0,1)3, Q™ = (1/3,2/3)3, Q°* = (0,1)* \ Q" and p* = ' =
g%? = ¢ = 1. The problem is defined by

V x V x u™(z) = k*u™(z) Vo e Q" (5.4.1a)
V-u™(z) =0 Vo € Q™ (5.4.1b)
V x V x u®(z) = k*u®(x) Vo € Q% (54.1c)
V- u(z) =0 Vo€ Qe (5.4.1d)
() (1) + A (0™ (7) = Vo e T, (5.4.1e)
A& () (x) + R (u™) (x) = 0 Vo eI, (5.4.1f)
() (1 + e;) = —e'* iy (0 () Veel;,i=1,2,3, (5.4.1g)
V() (1 + e;) = —e'*CingT (u) () Veel;,i=1,2,3. (5.4.1h)

The nonlinear solution method for (5.4.1) is similar with (5.3.1). The only difference
is that by using the quasi-periodic boundary conditions (5.1.9¢) and (5.1.9d), the mapping
B is a complex matrix. Then the nonlinear equation system (5.3.12) is changed to

AP (o, )P := DPReA(ky,)D, (5.4.2)

where A(ky) is given in (5.3.10) and

)

I
OO OO~
coomo
OO ~NO O
ohooo
~ o O OO

AP (ky,) is a complex matrix and £P¢" is a complex vector. To avoid a trivial solution, the
normalization for a real vector (5.3.13b) is changed to v’¢ = 1. v is a given complex
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vector and the nonlinear equation system is

A(kp)€ =0, (5.4.3a)
vHE—1=0. (5.4.3b)

The Frechet derivative is derived as the following.

i A+ BT+ BE) — A () (€

1

= AP ()P KOO (R)E,

h—0 h
H ! H
lim v (é’Per + hfper ) -1 - (,U é"per — 1) _ ngper/'
h—0 h
The Newton method is the same with other sections.
An analytical solution used for the test is
Alul(x)
u(z) = [ Aus(z) ,
A3U3<$)
where
u (IE) = uy (.CI?) = ug (I’) — eialzl eiagzg eiagxg ei2m17'rxlei2m27mg ei2m37r363 )

for a € [—m, 7] and my, my, m3 € Z°. From (5.4.1b) and (5.4.1d) we need

)\1((11 + 27Tm1) + )\2((12 + 27rm2) + )\3((13 + 27Tm3) =0.

1.4 T
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N a®¥
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06 : Lo
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+ n=(0,0,1)f
B i I i
r X M R

Figure 5.6 Band structure of a homogeneous problem calculated by Galerkin-BEMs
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The eigenvalue is given by

3
B = (o +2mm;)?. (5.4.4)

=1

The x-axis in Fig. 5.6 is the value of ax and we define I := (0,0,0), X := (—m,0,0),
M := (—m,—m,0), and R := (—m, —7,—m). The different eigenvalues for a fixed
are calculated by m := (mq, mq,m3) = (0,0,0), m = (1,0,0), m = (0,1,0), and

= (0,0,1). The lines with different colors in Fig. 5.6 are calculated by (5.4.4). The
dots with different color in Fig. 5.6 are calculated by Galerkin-BEMs. We observe that
the numerical results of Galerkin-BEMs match the analytical solution very well.

5.4.2 Numerical examples

We assume that Q = (0,1)%, Q" = (1/8,7/8)3, Q= = (0,1)3\ Q" pe* = pi = 1,
£® = 13 and €™ = 1. The problem is defined by

V x V x h"(z) = k*h"™(z) Vo € Q™ (5.4.52)
V- -h"(z) =0 Vo € Q" (5.4.5b)
V x V x h®(z) = 13k*h**(z) Vo € Q) (5.4.5¢)
V- -h*(z) =0 Vo € Q) (5.4.5d)
Y (h) (z) + ¢ (h™)(x) = 0 Vo e T7, (5.4.5¢)
S (W) (2) + \/ﬁ’yf\’%(hm)( )=0 Vo eT!, (5.4.50)
Y (W) (z + e;) = —e™ e (h) (z) Vo el,i=1,2,3, (5.4.52)
VE (W) (2 + €;) = —e™®EE (h*) (x) Veely,i=1,2,3, (5.4.5h)

T 04 . T T ;
...... | DY .,.’.‘l. .......... ...... ]
: 0.G : ] : =
Qgg e “‘ l.,.—l"..;;:
o9 bt nes .'.' .' 5
OO [ ] » --.—l’.
it L L - CLLLE
| z
...................................... g L s .l"""
______ U .
st :
3 E{ [185) 1 1i5 2 2.5 3
(a) band structure from FEMs (b) band structure from BEMs

Figure 5.7 Band structure of an inhomogeneous problem solved by Galerkin-BEMs and
FEMs



5.4 Comparison of BEMs and FEMs

level | dof r |k — kL X |km — kL
1 564 | 1.964717262 1.03892722
2 | 2280 | 1.986816725 0.0221 1.042721944 0.0038
3 9168 | 1.98986934 0.0031 1.043618266 | 0.000896

Table 5.3 Convergence of the eigenvalues calculated by Galerkin-BEMs in band
structure

level | dof r |k™ — kL X |E™ — k|
3 512 | 2.031763 1.052913
4 4096 | 2.002369 0.0294 1.046865 0.0060
5 32768 | 1.994080 0.0083 1.044979 0.0019

Table 5.4 Convergence of the eigenvalues calculated by finite element methods in band
structure

Figure 5.7a is the band structure of the problem (5.4.5) calculated by finite element
methods. Figure 5.7b is the band structure of the problem (5.4.5) calculated by Galerkin-
BEMs. In Tables 5.3 and 5.4 the first column is the level of meshes, the second column
is the number of degrees of freedom, the third and fifth columns are the numerical results
for one eigenvalue for a = I', X. The other columns are the rate of convergence. From
Figure 5.7 and Tables 5.3 and 5.4, we observe that the results of Galerkin-BEMs match
the results of finite element methods very well. Nevertheless, there is a problem: if we
compare Figure 5.7a with 5.7b, we find that we computed only eigenvalues of some
band by boundary element methods, since we need a Newton iteration of every single
eigenvalue. For finite element methods, block algorithms are available which compute
several eigenvalues simultaneously.
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